aboutsummaryrefslogtreecommitdiff
path: root/src/share
diff options
context:
space:
mode:
Diffstat (limited to 'src/share')
-rw-r--r--src/share/algebra/browse.daase3286
-rw-r--r--src/share/algebra/category.daase5051
-rw-r--r--src/share/algebra/compress.daase1312
-rw-r--r--src/share/algebra/interp.daase9750
-rw-r--r--src/share/algebra/operation.daase32019
5 files changed, 25716 insertions, 25702 deletions
diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase
index a6fc07ca..cc7661dd 100644
--- a/src/share/algebra/browse.daase
+++ b/src/share/algebra/browse.daase
@@ -1,12 +1,12 @@
-(2232450 . 3409760518)
+(2233102 . 3409778141)
(-18 A S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
NIL
NIL
(-19 S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
-((-4230 . T) (-4229 . T) (-2046 . T))
+((-4234 . T) (-4233 . T) (-2046 . T))
NIL
(-20 S)
((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (* (($ (|Integer|) $) "\\spad{n*x} is the product of \\spad{x} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}.")))
@@ -38,7 +38,7 @@ NIL
NIL
(-27)
((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
-((-4221 . T) (-4227 . T) (-4222 . T) ((-4231 "*") . T) (-4223 . T) (-4224 . T) (-4226 . T))
+((-4225 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
NIL
(-28 S R)
((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
@@ -46,20 +46,20 @@ NIL
NIL
(-29 R)
((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
-((-4226 . T) (-4224 . T) (-4223 . T) ((-4231 "*") . T) (-4222 . T) (-4227 . T) (-4221 . T) (-2046 . T))
+((-4230 . T) (-4228 . T) (-4227 . T) ((-4235 "*") . T) (-4226 . T) (-4231 . T) (-4225 . T) (-2046 . T))
NIL
(-30)
((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,{}x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,{}x,{}y,{}a..b,{}c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b,{} c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,{}x,{}y,{}xMin..xMax,{}yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted.")))
NIL
NIL
-(-31 R -4045)
+(-31 R -4049)
((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p,{} n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p,{} x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -960) (QUOTE (-520)))))
+((|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521)))))
(-32 S)
((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4229)))
+((|HasAttribute| |#1| (QUOTE -4233)))
(-33)
((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects.")))
((-2046 . T))
@@ -70,7 +70,7 @@ NIL
NIL
(-35 |Key| |Entry|)
((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,{}u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}.")))
-((-4229 . T) (-4230 . T) (-2046 . T))
+((-4233 . T) (-4234 . T) (-2046 . T))
NIL
(-36 S R)
((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")) (|coerce| (($ |#2|) "\\spad{coerce(r)} maps the ring element \\spad{r} to a member of the algebra.")))
@@ -78,20 +78,20 @@ NIL
NIL
(-37 R)
((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")) (|coerce| (($ |#1|) "\\spad{coerce(r)} maps the ring element \\spad{r} to a member of the algebra.")))
-((-4223 . T) (-4224 . T) (-4226 . T))
+((-4227 . T) (-4228 . T) (-4230 . T))
NIL
(-38 UP)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{} [a1,{}...,{}an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an.")))
NIL
NIL
-(-39 -4045 UP UPUP -3178)
+(-39 -4049 UP UPUP -2704)
((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}")))
-((-4222 |has| (-380 |#2|) (-336)) (-4227 |has| (-380 |#2|) (-336)) (-4221 |has| (-380 |#2|) (-336)) ((-4231 "*") . T) (-4223 . T) (-4224 . T) (-4226 . T))
-((|HasCategory| (-380 |#2|) (QUOTE (-133))) (|HasCategory| (-380 |#2|) (QUOTE (-135))) (|HasCategory| (-380 |#2|) (QUOTE (-322))) (|HasCategory| (-380 |#2|) (QUOTE (-336))) (-3700 (|HasCategory| (-380 |#2|) (QUOTE (-336))) (|HasCategory| (-380 |#2|) (QUOTE (-322)))) (|HasCategory| (-380 |#2|) (QUOTE (-341))) (|HasCategory| (-380 |#2|) (LIST (QUOTE -582) (QUOTE (-520)))) (|HasCategory| (-380 |#2|) (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| (-380 |#2|) (LIST (QUOTE -960) (QUOTE (-520)))) (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (QUOTE (-341))) (-3700 (|HasCategory| (-380 |#2|) (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| (-380 |#2|) (QUOTE (-336)))) (-12 (|HasCategory| (-380 |#2|) (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasCategory| (-380 |#2|) (QUOTE (-336)))) (-3700 (-12 (|HasCategory| (-380 |#2|) (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasCategory| (-380 |#2|) (QUOTE (-336)))) (-12 (|HasCategory| (-380 |#2|) (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasCategory| (-380 |#2|) (QUOTE (-322))))) (-12 (|HasCategory| (-380 |#2|) (QUOTE (-209))) (|HasCategory| (-380 |#2|) (QUOTE (-336)))) (-3700 (-12 (|HasCategory| (-380 |#2|) (QUOTE (-209))) (|HasCategory| (-380 |#2|) (QUOTE (-336)))) (|HasCategory| (-380 |#2|) (QUOTE (-322)))))
-(-40 R -4045)
+((-4226 |has| (-381 |#2|) (-337)) (-4231 |has| (-381 |#2|) (-337)) (-4225 |has| (-381 |#2|) (-337)) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
+((|HasCategory| (-381 |#2|) (QUOTE (-133))) (|HasCategory| (-381 |#2|) (QUOTE (-135))) (|HasCategory| (-381 |#2|) (QUOTE (-323))) (|HasCategory| (-381 |#2|) (QUOTE (-337))) (-3703 (|HasCategory| (-381 |#2|) (QUOTE (-337))) (|HasCategory| (-381 |#2|) (QUOTE (-323)))) (|HasCategory| (-381 |#2|) (QUOTE (-342))) (|HasCategory| (-381 |#2|) (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| (-381 |#2|) (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| (-381 |#2|) (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-342))) (-3703 (|HasCategory| (-381 |#2|) (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| (-381 |#2|) (QUOTE (-337)))) (-12 (|HasCategory| (-381 |#2|) (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasCategory| (-381 |#2|) (QUOTE (-337)))) (-3703 (-12 (|HasCategory| (-381 |#2|) (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasCategory| (-381 |#2|) (QUOTE (-337)))) (-12 (|HasCategory| (-381 |#2|) (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasCategory| (-381 |#2|) (QUOTE (-323))))) (-12 (|HasCategory| (-381 |#2|) (QUOTE (-210))) (|HasCategory| (-381 |#2|) (QUOTE (-337)))) (-3703 (-12 (|HasCategory| (-381 |#2|) (QUOTE (-210))) (|HasCategory| (-381 |#2|) (QUOTE (-337)))) (|HasCategory| (-381 |#2|) (QUOTE (-323)))))
+(-40 R -4049)
((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,{}f,{}n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f,{} a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-424))) (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#1| (LIST (QUOTE -960) (QUOTE (-520)))) (|HasCategory| |#2| (LIST (QUOTE -403) (|devaluate| |#1|)))))
+((-12 (|HasCategory| |#1| (QUOTE (-425))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -404) (|devaluate| |#1|)))))
(-41 OV E P)
((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}.")))
NIL
@@ -99,34 +99,34 @@ NIL
(-42 R A)
((|constructor| (NIL "AlgebraPackage assembles a variety of useful functions for general algebras.")) (|basis| (((|Vector| |#2|) (|Vector| |#2|)) "\\spad{basis(va)} selects a basis from the elements of \\spad{va}.")) (|radicalOfLeftTraceForm| (((|List| |#2|)) "\\spad{radicalOfLeftTraceForm()} returns basis for null space of \\spad{leftTraceMatrix()},{} if the algebra is associative,{} alternative or a Jordan algebra,{} then this space equals the radical (maximal nil ideal) of the algebra.")) (|basisOfCentroid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfCentroid()} returns a basis of the centroid,{} \\spadignore{i.e.} the endomorphism ring of \\spad{A} considered as \\spad{(A,{}A)}-bimodule.")) (|basisOfRightNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfRightNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as left module. Note: right nucloid coincides with right nucleus if \\spad{A} has a unit.")) (|basisOfLeftNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfLeftNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as right module. Note: left nucloid coincides with left nucleus if \\spad{A} has a unit.")) (|basisOfCenter| (((|List| |#2|)) "\\spad{basisOfCenter()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{commutator(x,{}a) = 0} and \\spad{associator(x,{}a,{}b) = associator(a,{}x,{}b) = associator(a,{}b,{}x) = 0} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfNucleus| (((|List| |#2|)) "\\spad{basisOfNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{associator(x,{}a,{}b) = associator(a,{}x,{}b) = associator(a,{}b,{}x) = 0} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfMiddleNucleus| (((|List| |#2|)) "\\spad{basisOfMiddleNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,{}x,{}b)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfRightNucleus| (((|List| |#2|)) "\\spad{basisOfRightNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,{}b,{}x)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfLeftNucleus| (((|List| |#2|)) "\\spad{basisOfLeftNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(x,{}a,{}b)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfRightAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfRightAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = a*x}.")) (|basisOfLeftAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfLeftAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = x*a}.")) (|basisOfCommutingElements| (((|List| |#2|)) "\\spad{basisOfCommutingElements()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = commutator(x,{}a)} for all \\spad{a} in \\spad{A}.")) (|biRank| (((|NonNegativeInteger|) |#2|) "\\spad{biRank(x)} determines the number of linearly independent elements in \\spad{x},{} \\spad{x*bi},{} \\spad{bi*x},{} \\spad{bi*x*bj},{} \\spad{i,{}j=1,{}...,{}n},{} where \\spad{b=[b1,{}...,{}bn]} is a basis. Note: if \\spad{A} has a unit,{} then \\spadfunFrom{doubleRank}{AlgebraPackage},{} \\spadfunFrom{weakBiRank}{AlgebraPackage} and \\spadfunFrom{biRank}{AlgebraPackage} coincide.")) (|weakBiRank| (((|NonNegativeInteger|) |#2|) "\\spad{weakBiRank(x)} determines the number of linearly independent elements in the \\spad{bi*x*bj},{} \\spad{i,{}j=1,{}...,{}n},{} where \\spad{b=[b1,{}...,{}bn]} is a basis.")) (|doubleRank| (((|NonNegativeInteger|) |#2|) "\\spad{doubleRank(x)} determines the number of linearly independent elements in \\spad{b1*x},{}...,{}\\spad{x*bn},{} where \\spad{b=[b1,{}...,{}bn]} is a basis.")) (|rightRank| (((|NonNegativeInteger|) |#2|) "\\spad{rightRank(x)} determines the number of linearly independent elements in \\spad{b1*x},{}...,{}\\spad{bn*x},{} where \\spad{b=[b1,{}...,{}bn]} is a basis.")) (|leftRank| (((|NonNegativeInteger|) |#2|) "\\spad{leftRank(x)} determines the number of linearly independent elements in \\spad{x*b1},{}...,{}\\spad{x*bn},{} where \\spad{b=[b1,{}...,{}bn]} is a basis.")))
NIL
-((|HasCategory| |#1| (QUOTE (-281))))
+((|HasCategory| |#1| (QUOTE (-282))))
(-43 R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,{}..,{}an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{ai} * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra.")))
-((-4226 |has| |#1| (-512)) (-4224 . T) (-4223 . T))
-((|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (QUOTE (-512))))
+((-4230 |has| |#1| (-513)) (-4228 . T) (-4227 . T))
+((|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-513))))
(-44 |Key| |Entry|)
((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data.")))
-((-4229 . T) (-4230 . T))
-((|HasCategory| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (QUOTE (-783))) (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#2| (QUOTE (-1012))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (LIST (QUOTE -283) (|devaluate| |#2|)))) (|HasCategory| (-520) (QUOTE (-783))) (|HasCategory| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (QUOTE (-1012))) (-3700 (|HasCategory| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (QUOTE (-783))) (|HasCategory| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (QUOTE (-1012))) (|HasCategory| |#2| (QUOTE (-1012)))) (-3700 (|HasCategory| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (QUOTE (-1012))) (|HasCategory| |#2| (QUOTE (-1012)))) (|HasCategory| |#2| (LIST (QUOTE -560) (QUOTE (-791)))) (-12 (|HasCategory| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (QUOTE (-1012))) (|HasCategory| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (LIST (QUOTE -283) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2526) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3043) (|devaluate| |#2|)))))) (-3700 (-12 (|HasCategory| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (QUOTE (-783))) (|HasCategory| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (LIST (QUOTE -283) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2526) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3043) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (QUOTE (-1012))) (|HasCategory| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (LIST (QUOTE -283) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2526) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3043) (|devaluate| |#2|))))))) (|HasCategory| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (LIST (QUOTE -560) (QUOTE (-791)))) (-3700 (|HasCategory| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (QUOTE (-783))) (|HasCategory| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (QUOTE (-1012))) (|HasCategory| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (LIST (QUOTE -560) (QUOTE (-791)))) (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (LIST (QUOTE -560) (QUOTE (-791))))) (-3700 (|HasCategory| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (LIST (QUOTE -560) (QUOTE (-791)))) (|HasCategory| |#2| (LIST (QUOTE -560) (QUOTE (-791))))))
+((-4233 . T) (-4234 . T))
+((|HasCategory| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-1013))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (|HasCategory| (-521) (QUOTE (-784))) (|HasCategory| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (QUOTE (-1013))) (-3703 (|HasCategory| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (QUOTE (-784))) (|HasCategory| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-1013)))) (-3703 (|HasCategory| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-1013)))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-792)))) (-12 (|HasCategory| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (QUOTE (-1013))) (|HasCategory| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (LIST (QUOTE -284) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2529) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3045) (|devaluate| |#2|)))))) (-3703 (-12 (|HasCategory| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (QUOTE (-784))) (|HasCategory| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (LIST (QUOTE -284) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2529) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3045) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (QUOTE (-1013))) (|HasCategory| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (LIST (QUOTE -284) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2529) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3045) (|devaluate| |#2|))))))) (|HasCategory| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (LIST (QUOTE -561) (QUOTE (-792)))) (-3703 (|HasCategory| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (QUOTE (-784))) (|HasCategory| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (QUOTE (-1013))) (|HasCategory| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (LIST (QUOTE -561) (QUOTE (-792)))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-792))))) (-3703 (|HasCategory| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (LIST (QUOTE -561) (QUOTE (-792)))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-792))))))
(-45 S R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#2| (QUOTE (-512))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-336))))
+((|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-513))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-337))))
(-46 R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
-(((-4231 "*") |has| |#1| (-157)) (-4222 |has| |#1| (-512)) (-4223 . T) (-4224 . T) (-4226 . T))
+(((-4235 "*") |has| |#1| (-157)) (-4226 |has| |#1| (-513)) (-4227 . T) (-4228 . T) (-4230 . T))
NIL
(-47)
((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number.")))
-((-4221 . T) (-4227 . T) (-4222 . T) ((-4231 "*") . T) (-4223 . T) (-4224 . T) (-4226 . T))
-((|HasCategory| $ (QUOTE (-969))) (|HasCategory| $ (LIST (QUOTE -960) (QUOTE (-520)))))
+((-4225 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
+((|HasCategory| $ (QUOTE (-970))) (|HasCategory| $ (LIST (QUOTE -961) (QUOTE (-521)))))
(-48)
((|constructor| (NIL "This domain implements anonymous functions")))
NIL
NIL
(-49 R |lVar|)
((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,{}...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,{}u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}.")))
-((-4226 . T))
+((-4230 . T))
NIL
(-50 S)
((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}.")))
@@ -140,7 +140,7 @@ NIL
((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p,{} f,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}.")))
NIL
NIL
-(-53 |Base| R -4045)
+(-53 |Base| R -4049)
((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,{}ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,{}...,{}rn],{} expr,{} n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,{}...,{}rn],{} expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression.")))
NIL
NIL
@@ -150,7 +150,7 @@ NIL
NIL
(-55 R |Row| |Col|)
((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}a)} assign \\spad{a(i,{}j)} to \\spad{f(a(i,{}j))} for all \\spad{i,{} j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,{}a,{}b,{}r)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} when both \\spad{a(i,{}j)} and \\spad{b(i,{}j)} exist; else \\spad{c(i,{}j) = f(r,{} b(i,{}j))} when \\spad{a(i,{}j)} does not exist; else \\spad{c(i,{}j) = f(a(i,{}j),{}r)} when \\spad{b(i,{}j)} does not exist; otherwise \\spad{c(i,{}j) = f(r,{}r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i,{} j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = f(a(i,{}j))} for all \\spad{i,{} j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,{}j,{}v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,{}i,{}v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,{}r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,{}n,{}r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays")))
-((-4229 . T) (-4230 . T) (-2046 . T))
+((-4233 . T) (-4234 . T) (-2046 . T))
NIL
(-56 A B)
((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")))
@@ -158,65 +158,65 @@ NIL
NIL
(-57 S)
((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,{}s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}")))
-((-4230 . T) (-4229 . T))
-((|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| (-520) (QUOTE (-783))) (|HasCategory| |#1| (QUOTE (-1012))) (-3700 (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#1| (QUOTE (-1012)))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (-3700 (-12 (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-791)))) (-3700 (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-791))))))
+((-4234 . T) (-4233 . T))
+((|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| (-521) (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-1013))) (-3703 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-1013)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-792)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-792))))))
(-58 R)
((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}.")))
-((-4229 . T) (-4230 . T))
-((|HasCategory| |#1| (QUOTE (-1012))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-791)))) (-3700 (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-791))))))
-(-59 -2883)
+((-4233 . T) (-4234 . T))
+((|HasCategory| |#1| (QUOTE (-1013))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-792)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-792))))))
+(-59 -2884)
((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-60 -2883)
+(-60 -2884)
((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}.")))
NIL
NIL
-(-61 -2883)
+(-61 -2884)
((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-62 -2883)
+(-62 -2884)
((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-63 -2883)
+(-63 -2884)
((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct|) (|construct| (QUOTE X) (QUOTE HESS)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-64 -2883)
+(-64 -2884)
((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-65 -2883)
+(-65 -2884)
((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-66 -2883)
+(-66 -2884)
((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-67 -2883)
+(-67 -2884)
((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}.")))
NIL
NIL
-(-68 -2883)
+(-68 -2884)
((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}")))
NIL
NIL
-(-69 -2883)
+(-69 -2884)
((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-70 -2883)
+(-70 -2884)
((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}.")))
NIL
NIL
-(-71 -2883)
+(-71 -2884)
((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}")))
NIL
NIL
-(-72 -2883)
+(-72 -2884)
((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
@@ -228,66 +228,66 @@ NIL
((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-75 -2883)
+(-75 -2884)
((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-76 -2883)
+(-76 -2884)
((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-77 -2883)
+(-77 -2884)
((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-78 -2883)
+(-78 -2884)
((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-79 -2883)
+(-79 -2884)
((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-80 -2883)
+(-80 -2884)
((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-81 -2883)
+(-81 -2884)
((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-82 -2883)
+(-82 -2884)
((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-83 -2883)
+(-83 -2884)
((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-84 -2883)
+(-84 -2884)
((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-85 -2883)
+(-85 -2884)
((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-86 -2883)
+(-86 -2884)
((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}")))
NIL
NIL
-(-87 -2883)
+(-87 -2884)
((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
(-88 R L)
((|constructor| (NIL "\\spadtype{AssociatedEquations} provides functions to compute the associated equations needed for factoring operators")) (|associatedEquations| (((|Record| (|:| |minor| (|List| (|PositiveInteger|))) (|:| |eq| |#2|) (|:| |minors| (|List| (|List| (|PositiveInteger|)))) (|:| |ops| (|List| |#2|))) |#2| (|PositiveInteger|)) "\\spad{associatedEquations(op,{} m)} returns \\spad{[w,{} eq,{} lw,{} lop]} such that \\spad{eq(w) = 0} where \\spad{w} is the given minor,{} and \\spad{lw_i = lop_i(w)} for all the other minors.")) (|uncouplingMatrices| (((|Vector| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{uncouplingMatrices(M)} returns \\spad{[A_1,{}...,{}A_n]} such that if \\spad{y = [y_1,{}...,{}y_n]} is a solution of \\spad{y' = M y},{} then \\spad{[\\$y_j',{}y_j'',{}...,{}y_j^{(n)}\\$] = \\$A_j y\\$} for all \\spad{j}\\spad{'s}.")) (|associatedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| (|List| (|PositiveInteger|))))) |#2| (|PositiveInteger|)) "\\spad{associatedSystem(op,{} m)} returns \\spad{[M,{}w]} such that the \\spad{m}-th associated equation system to \\spad{L} is \\spad{w' = M w}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-336))))
+((|HasCategory| |#1| (QUOTE (-337))))
(-89 S)
((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,{}y,{}...,{}z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
-((-4229 . T) (-4230 . T))
-((|HasCategory| |#1| (QUOTE (-1012))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-791)))) (-3700 (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-791))))))
+((-4233 . T) (-4234 . T))
+((|HasCategory| |#1| (QUOTE (-1013))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-792)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-792))))))
(-90 S)
((|constructor| (NIL "Category for the inverse trigonometric functions.")) (|atan| (($ $) "\\spad{atan(x)} returns the arc-tangent of \\spad{x}.")) (|asin| (($ $) "\\spad{asin(x)} returns the arc-sine of \\spad{x}.")) (|asec| (($ $) "\\spad{asec(x)} returns the arc-secant of \\spad{x}.")) (|acsc| (($ $) "\\spad{acsc(x)} returns the arc-cosecant of \\spad{x}.")) (|acot| (($ $) "\\spad{acot(x)} returns the arc-cotangent of \\spad{x}.")) (|acos| (($ $) "\\spad{acos(x)} returns the arc-cosine of \\spad{x}.")))
NIL
@@ -298,15 +298,15 @@ NIL
NIL
(-92)
((|constructor| (NIL "\\axiomType{AttributeButtons} implements a database and associated adjustment mechanisms for a set of attributes. \\blankline For ODEs these attributes are \"stiffness\",{} \"stability\" (\\spadignore{i.e.} how much affect the cosine or sine component of the solution has on the stability of the result),{} \"accuracy\" and \"expense\" (\\spadignore{i.e.} how expensive is the evaluation of the ODE). All these have bearing on the cost of calculating the solution given that reducing the step-length to achieve greater accuracy requires considerable number of evaluations and calculations. \\blankline The effect of each of these attributes can be altered by increasing or decreasing the button value. \\blankline For Integration there is a button for increasing and decreasing the preset number of function evaluations for each method. This is automatically used by ANNA when a method fails due to insufficient workspace or where the limit of function evaluations has been reached before the required accuracy is achieved. \\blankline")) (|setButtonValue| (((|Float|) (|String|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}routineName,{}\\spad{n})} sets the value of the button of attribute \\spad{attributeName} to routine \\spad{routineName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}\\spad{n})} sets the value of all buttons of attribute \\spad{attributeName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|setAttributeButtonStep| (((|Float|) (|Float|)) "\\axiom{setAttributeButtonStep(\\spad{n})} sets the value of the steps for increasing and decreasing the button values. \\axiom{\\spad{n}} must be greater than 0 and less than 1. The preset value is 0.5.")) (|resetAttributeButtons| (((|Void|)) "\\axiom{resetAttributeButtons()} resets the Attribute buttons to a neutral level.")) (|getButtonValue| (((|Float|) (|String|) (|String|)) "\\axiom{getButtonValue(routineName,{}attributeName)} returns the current value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|decrease| (((|Float|) (|String|)) "\\axiom{decrease(attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{decrease(routineName,{}attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|increase| (((|Float|) (|String|)) "\\axiom{increase(attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{increase(routineName,{}attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")))
-((-4229 . T))
+((-4233 . T))
NIL
(-93)
((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,{}b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|shallowlyMutable| ((|attribute|) "\\spad{shallowlyMutable} is \\spad{true} if its values have immediate components that are updateable (mutable). Note: the properties of any component domain are irrevelant to the \\spad{shallowlyMutable} proper.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements.")))
-((-4229 . T) ((-4231 "*") . T) (-4230 . T) (-4226 . T) (-4224 . T) (-4223 . T) (-4222 . T) (-4227 . T) (-4221 . T) (-4220 . T) (-4219 . T) (-4218 . T) (-4217 . T) (-4225 . T) (-4228 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4216 . T))
+((-4233 . T) ((-4235 "*") . T) (-4234 . T) (-4230 . T) (-4228 . T) (-4227 . T) (-4226 . T) (-4231 . T) (-4225 . T) (-4224 . T) (-4223 . T) (-4222 . T) (-4221 . T) (-4229 . T) (-4232 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4220 . T))
NIL
(-94 R)
((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,{}n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f,{} g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}.")))
-((-4226 . T))
+((-4230 . T))
NIL
(-95 R UP)
((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a,{} [b1,{}...,{}bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,{}...,{}bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a,{} b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{\\spad{pi}} is balanced with respect to \\spad{b}.")))
@@ -322,15 +322,15 @@ NIL
NIL
(-98 S)
((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,{}pl,{}f)} and \\spad{mapDown!(l,{}pr,{}f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}t1,{}f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t,{} ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n,{} s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}.")))
-((-4229 . T) (-4230 . T))
-((|HasCategory| |#1| (QUOTE (-1012))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-791)))) (-3700 (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-791))))))
+((-4233 . T) (-4234 . T))
+((|HasCategory| |#1| (QUOTE (-1013))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-792)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-792))))))
(-99 R UP M |Row| |Col|)
((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,{}q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,{}q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,{}q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}.")))
NIL
-((|HasAttribute| |#1| (QUOTE (-4231 "*"))))
+((|HasAttribute| |#1| (QUOTE (-4235 "*"))))
(-100)
((|bfEntry| (((|Record| (|:| |zeros| (|Stream| (|DoubleFloat|))) (|:| |ones| (|Stream| (|DoubleFloat|))) (|:| |singularities| (|Stream| (|DoubleFloat|)))) (|Symbol|)) "\\spad{bfEntry(k)} returns the entry in the \\axiomType{BasicFunctions} table corresponding to \\spad{k}")) (|bfKeys| (((|List| (|Symbol|))) "\\spad{bfKeys()} returns the names of each function in the \\axiomType{BasicFunctions} table")))
-((-4229 . T))
+((-4233 . T))
NIL
(-101 A S)
((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed.")))
@@ -338,12 +338,12 @@ NIL
NIL
(-102 S)
((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed.")))
-((-4230 . T) (-2046 . T))
+((-4234 . T) (-2046 . T))
NIL
(-103)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion.")) (|coerce| (((|RadixExpansion| 2) $) "\\spad{coerce(b)} converts a binary expansion to a radix expansion with base 2.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(b)} converts a binary expansion to a rational number.")))
-((-4221 . T) (-4227 . T) (-4222 . T) ((-4231 "*") . T) (-4223 . T) (-4224 . T) (-4226 . T))
-((|HasCategory| (-520) (QUOTE (-837))) (|HasCategory| (-520) (LIST (QUOTE -960) (QUOTE (-1083)))) (|HasCategory| (-520) (QUOTE (-133))) (|HasCategory| (-520) (QUOTE (-135))) (|HasCategory| (-520) (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| (-520) (QUOTE (-945))) (|HasCategory| (-520) (QUOTE (-756))) (|HasCategory| (-520) (LIST (QUOTE -960) (QUOTE (-520)))) (|HasCategory| (-520) (QUOTE (-1059))) (|HasCategory| (-520) (LIST (QUOTE -814) (QUOTE (-520)))) (|HasCategory| (-520) (LIST (QUOTE -814) (QUOTE (-352)))) (|HasCategory| (-520) (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-352))))) (|HasCategory| (-520) (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-520))))) (|HasCategory| (-520) (QUOTE (-209))) (|HasCategory| (-520) (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasCategory| (-520) (LIST (QUOTE -481) (QUOTE (-1083)) (QUOTE (-520)))) (|HasCategory| (-520) (LIST (QUOTE -283) (QUOTE (-520)))) (|HasCategory| (-520) (LIST (QUOTE -260) (QUOTE (-520)) (QUOTE (-520)))) (|HasCategory| (-520) (QUOTE (-281))) (|HasCategory| (-520) (QUOTE (-505))) (|HasCategory| (-520) (QUOTE (-783))) (-3700 (|HasCategory| (-520) (QUOTE (-756))) (|HasCategory| (-520) (QUOTE (-783)))) (|HasCategory| (-520) (LIST (QUOTE -582) (QUOTE (-520)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-520) (QUOTE (-837)))) (-3700 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-520) (QUOTE (-837)))) (|HasCategory| (-520) (QUOTE (-133)))))
+((-4225 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
+((|HasCategory| (-521) (QUOTE (-838))) (|HasCategory| (-521) (LIST (QUOTE -961) (QUOTE (-1084)))) (|HasCategory| (-521) (QUOTE (-133))) (|HasCategory| (-521) (QUOTE (-135))) (|HasCategory| (-521) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| (-521) (QUOTE (-946))) (|HasCategory| (-521) (QUOTE (-757))) (|HasCategory| (-521) (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| (-521) (QUOTE (-1060))) (|HasCategory| (-521) (LIST (QUOTE -815) (QUOTE (-521)))) (|HasCategory| (-521) (LIST (QUOTE -815) (QUOTE (-353)))) (|HasCategory| (-521) (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-353))))) (|HasCategory| (-521) (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-521))))) (|HasCategory| (-521) (QUOTE (-210))) (|HasCategory| (-521) (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasCategory| (-521) (LIST (QUOTE -482) (QUOTE (-1084)) (QUOTE (-521)))) (|HasCategory| (-521) (LIST (QUOTE -284) (QUOTE (-521)))) (|HasCategory| (-521) (LIST (QUOTE -261) (QUOTE (-521)) (QUOTE (-521)))) (|HasCategory| (-521) (QUOTE (-282))) (|HasCategory| (-521) (QUOTE (-506))) (|HasCategory| (-521) (QUOTE (-784))) (-3703 (|HasCategory| (-521) (QUOTE (-757))) (|HasCategory| (-521) (QUOTE (-784)))) (|HasCategory| (-521) (LIST (QUOTE -583) (QUOTE (-521)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-521) (QUOTE (-838)))) (-3703 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-521) (QUOTE (-838)))) (|HasCategory| (-521) (QUOTE (-133)))))
(-104)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Symbol|) (|List| (|ObjectProperty|))) "\\spad{binding(n,{}props)} constructs a binding with name \\spad{`n'} and property list `props'.")) (|properties| (((|List| (|ObjectProperty|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Symbol|) $) "\\spad{name(b)} returns the name of binding \\spad{b}")))
NIL
@@ -354,11 +354,11 @@ NIL
NIL
(-106)
((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,{}b)} creates bits with \\spad{n} values of \\spad{b}")))
-((-4230 . T) (-4229 . T))
-((|HasCategory| (-108) (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| (-108) (QUOTE (-783))) (|HasCategory| (-520) (QUOTE (-783))) (|HasCategory| (-108) (QUOTE (-1012))) (-12 (|HasCategory| (-108) (QUOTE (-1012))) (|HasCategory| (-108) (LIST (QUOTE -283) (QUOTE (-108))))) (|HasCategory| (-108) (LIST (QUOTE -560) (QUOTE (-791)))))
+((-4234 . T) (-4233 . T))
+((|HasCategory| (-108) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| (-108) (QUOTE (-784))) (|HasCategory| (-521) (QUOTE (-784))) (|HasCategory| (-108) (QUOTE (-1013))) (-12 (|HasCategory| (-108) (QUOTE (-1013))) (|HasCategory| (-108) (LIST (QUOTE -284) (QUOTE (-108))))) (|HasCategory| (-108) (LIST (QUOTE -561) (QUOTE (-792)))))
(-107 R S)
((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}")))
-((-4224 . T) (-4223 . T))
+((-4228 . T) (-4227 . T))
NIL
(-108)
((|constructor| (NIL "\\indented{1}{\\spadtype{Boolean} is the elementary logic with 2 values:} \\spad{true} and \\spad{false}")) (|test| (((|Boolean|) $) "\\spad{test(b)} returns \\spad{b} and is provided for compatibility with the new compiler.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical exclusive {\\em or} of Boolean \\spad{a} and \\spad{b}.")) (^ (($ $) "\\spad{^ n} returns the negation of \\spad{n}.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant.")))
@@ -367,27 +367,27 @@ NIL
(-109 A)
((|constructor| (NIL "This package exports functions to set some commonly used properties of operators,{} including properties which contain functions.")) (|constantOpIfCan| (((|Union| |#1| "failed") (|BasicOperator|)) "\\spad{constantOpIfCan(op)} returns \\spad{a} if \\spad{op} is the constant nullary operator always returning \\spad{a},{} \"failed\" otherwise.")) (|constantOperator| (((|BasicOperator|) |#1|) "\\spad{constantOperator(a)} returns a nullary operator op such that \\spad{op()} always evaluate to \\spad{a}.")) (|derivative| (((|Union| (|List| (|Mapping| |#1| (|List| |#1|))) "failed") (|BasicOperator|)) "\\spad{derivative(op)} returns the value of the \"\\%diff\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{derivative(op,{} foo)} attaches foo as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{f},{} then applying a derivation \\spad{D} to \\spad{op}(a) returns \\spad{f(a) * D(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|List| (|Mapping| |#1| (|List| |#1|)))) "\\spad{derivative(op,{} [foo1,{}...,{}foon])} attaches [foo1,{}...,{}foon] as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{[f1,{}...,{}fn]} then applying a derivation \\spad{D} to \\spad{op(a1,{}...,{}an)} returns \\spad{f1(a1,{}...,{}an) * D(a1) + ... + fn(a1,{}...,{}an) * D(an)}.")) (|evaluate| (((|Union| (|Mapping| |#1| (|List| |#1|)) "failed") (|BasicOperator|)) "\\spad{evaluate(op)} returns the value of the \"\\%eval\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to a returns the result of \\spad{f(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| (|List| |#1|))) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to \\spad{(a1,{}...,{}an)} returns the result of \\spad{f(a1,{}...,{}an)}.") (((|Union| |#1| "failed") (|BasicOperator|) (|List| |#1|)) "\\spad{evaluate(op,{} [a1,{}...,{}an])} checks if \\spad{op} has an \"\\%eval\" property \\spad{f}. If it has,{} then \\spad{f(a1,{}...,{}an)} is returned,{} and \"failed\" otherwise.")))
NIL
-((|HasCategory| |#1| (QUOTE (-783))))
+((|HasCategory| |#1| (QUOTE (-784))))
(-110)
((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op,{} l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|String|) (|None|)) "\\spad{setProperty(op,{} s,{} v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op,{} s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|String|)) "\\spad{deleteProperty!(op,{} s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|String|)) "\\spad{assert(op,{} s)} attaches property \\spad{s} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|String|)) "\\spad{has?(op,{} s)} tests if property \\spad{s} is attached to \\spad{op}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op,{} s)} tests if the name of \\spad{op} is \\spad{s}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op,{} foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to InputForm as \\spad{f(a1,{}...,{}an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to OutputForm as \\spad{f(a1,{}...,{}an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op,{} foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op,{} foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op,{} n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|arity| (((|Union| (|NonNegativeInteger|) "failed") $) "\\spad{arity(op)} returns \\spad{n} if \\spad{op} is \\spad{n}-ary,{} and \"failed\" if \\spad{op} has arbitrary arity.")) (|operator| (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f,{} n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}.")) (|name| (((|Symbol|) $) "\\spad{name(op)} returns the name of \\spad{op}.")))
NIL
NIL
-(-111 -4045 UP)
+(-111 -4049 UP)
((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots.")))
NIL
NIL
(-112 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
-((-4222 . T) ((-4231 "*") . T) (-4223 . T) (-4224 . T) (-4226 . T))
+((-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
NIL
(-113 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
-((-4221 . T) (-4227 . T) (-4222 . T) ((-4231 "*") . T) (-4223 . T) (-4224 . T) (-4226 . T))
-((|HasCategory| (-112 |#1|) (QUOTE (-837))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -960) (QUOTE (-1083)))) (|HasCategory| (-112 |#1|) (QUOTE (-133))) (|HasCategory| (-112 |#1|) (QUOTE (-135))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| (-112 |#1|) (QUOTE (-945))) (|HasCategory| (-112 |#1|) (QUOTE (-756))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -960) (QUOTE (-520)))) (|HasCategory| (-112 |#1|) (QUOTE (-1059))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -814) (QUOTE (-520)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -814) (QUOTE (-352)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-352))))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-520))))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -582) (QUOTE (-520)))) (|HasCategory| (-112 |#1|) (QUOTE (-209))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -481) (QUOTE (-1083)) (LIST (QUOTE -112) (|devaluate| |#1|)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -283) (LIST (QUOTE -112) (|devaluate| |#1|)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -260) (LIST (QUOTE -112) (|devaluate| |#1|)) (LIST (QUOTE -112) (|devaluate| |#1|)))) (|HasCategory| (-112 |#1|) (QUOTE (-281))) (|HasCategory| (-112 |#1|) (QUOTE (-505))) (|HasCategory| (-112 |#1|) (QUOTE (-783))) (-3700 (|HasCategory| (-112 |#1|) (QUOTE (-756))) (|HasCategory| (-112 |#1|) (QUOTE (-783)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-112 |#1|) (QUOTE (-837)))) (-3700 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-112 |#1|) (QUOTE (-837)))) (|HasCategory| (-112 |#1|) (QUOTE (-133)))))
+((-4225 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
+((|HasCategory| (-112 |#1|) (QUOTE (-838))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -961) (QUOTE (-1084)))) (|HasCategory| (-112 |#1|) (QUOTE (-133))) (|HasCategory| (-112 |#1|) (QUOTE (-135))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| (-112 |#1|) (QUOTE (-946))) (|HasCategory| (-112 |#1|) (QUOTE (-757))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| (-112 |#1|) (QUOTE (-1060))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -815) (QUOTE (-521)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -815) (QUOTE (-353)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-353))))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-521))))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| (-112 |#1|) (QUOTE (-210))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -482) (QUOTE (-1084)) (LIST (QUOTE -112) (|devaluate| |#1|)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -284) (LIST (QUOTE -112) (|devaluate| |#1|)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -261) (LIST (QUOTE -112) (|devaluate| |#1|)) (LIST (QUOTE -112) (|devaluate| |#1|)))) (|HasCategory| (-112 |#1|) (QUOTE (-282))) (|HasCategory| (-112 |#1|) (QUOTE (-506))) (|HasCategory| (-112 |#1|) (QUOTE (-784))) (-3703 (|HasCategory| (-112 |#1|) (QUOTE (-757))) (|HasCategory| (-112 |#1|) (QUOTE (-784)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-112 |#1|) (QUOTE (-838)))) (-3703 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-112 |#1|) (QUOTE (-838)))) (|HasCategory| (-112 |#1|) (QUOTE (-133)))))
(-114 A S)
((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4230)))
+((|HasAttribute| |#1| (QUOTE -4234)))
(-115 S)
((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
((-2046 . T))
@@ -398,15 +398,15 @@ NIL
NIL
(-117 S)
((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,{}b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,{}b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented")))
-((-4229 . T) (-4230 . T))
-((|HasCategory| |#1| (QUOTE (-1012))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-791)))) (-3700 (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-791))))))
+((-4233 . T) (-4234 . T))
+((|HasCategory| |#1| (QUOTE (-1013))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-792)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-792))))))
(-118 S)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (^ (($ $) "\\spad{^ b} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")))
NIL
NIL
(-119)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (^ (($ $) "\\spad{^ b} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")))
-((-4230 . T) (-4229 . T) (-2046 . T))
+((-4234 . T) (-4233 . T) (-2046 . T))
NIL
(-120 A S)
((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components")))
@@ -414,16 +414,16 @@ NIL
NIL
(-121 S)
((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components")))
-((-4229 . T) (-4230 . T) (-2046 . T))
+((-4233 . T) (-4234 . T) (-2046 . T))
NIL
(-122 S)
((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes.")))
-((-4229 . T) (-4230 . T))
-((|HasCategory| |#1| (QUOTE (-1012))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-791)))) (-3700 (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-791))))))
+((-4233 . T) (-4234 . T))
+((|HasCategory| |#1| (QUOTE (-1013))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-792)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-792))))))
(-123 S)
((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,{}v,{}r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty.")))
-((-4229 . T) (-4230 . T))
-((|HasCategory| |#1| (QUOTE (-1012))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-791)))) (-3700 (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-791))))))
+((-4233 . T) (-4234 . T))
+((|HasCategory| |#1| (QUOTE (-1013))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-792)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-792))))))
(-124)
((|constructor| (NIL "This is an \\spadtype{AbelianMonoid} with the cancellation property,{} \\spadignore{i.e.} \\spad{ a+b = a+c => b=c }. This is formalised by the partial subtraction operator,{} which satisfies the axioms listed below: \\blankline")) (|subtractIfCan| (((|Union| $ "failed") $ $) "\\spad{subtractIfCan(x,{} y)} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")))
NIL
@@ -434,20 +434,20 @@ NIL
NIL
(-126)
((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0,{} 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,{}1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative.")))
-(((-4231 "*") . T))
+(((-4235 "*") . T))
NIL
-(-127 |minix| -2615 S T$)
+(-127 |minix| -2617 S T$)
((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,{}ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,{}ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}.")))
NIL
NIL
-(-128 |minix| -2615 R)
+(-128 |minix| -2617 R)
((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,{}...idim) = +1/0/-1} if \\spad{i1,{}...,{}idim} is an even/is nota /is an odd permutation of \\spad{minix,{}...,{}minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,{}j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\^= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,{}[i1,{}...,{}idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t,{} [4,{}1,{}2,{}3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}i,{}j,{}k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,{}i,{}j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,{}2,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(i,{}k,{}j,{}l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}j,{}k,{}i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,{}i,{}j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,{}1,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j) = sum(h=1..dim,{}t(h,{}i,{}h,{}j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,{}i,{}s,{}j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,{}2,{}t,{}1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = sum(h=1..dim,{}s(i,{}h,{}j)*t(h,{}k,{}l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,{}rank t,{} s,{} 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N,{} t[i1,{}..,{}iN,{}k]*s[k,{}j1,{}..,{}jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,{}t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,{}t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = s(i,{}j)*t(k,{}l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,{}[i1,{}...,{}iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k,{}l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j)} gives a component of a rank 2 tensor.") ((|#3| $ (|Integer|)) "\\spad{elt(t,{}i)} gives a component of a rank 1 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,{}...,{}t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,{}...,{}r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor.")))
NIL
NIL
(-129)
((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}.")))
-((-4229 . T) (-4219 . T) (-4230 . T))
-((|HasCategory| (-132) (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| (-132) (QUOTE (-341))) (|HasCategory| (-132) (QUOTE (-783))) (|HasCategory| (-132) (QUOTE (-1012))) (-12 (|HasCategory| (-132) (QUOTE (-1012))) (|HasCategory| (-132) (LIST (QUOTE -283) (QUOTE (-132))))) (-3700 (-12 (|HasCategory| (-132) (QUOTE (-341))) (|HasCategory| (-132) (LIST (QUOTE -283) (QUOTE (-132))))) (-12 (|HasCategory| (-132) (QUOTE (-1012))) (|HasCategory| (-132) (LIST (QUOTE -283) (QUOTE (-132)))))) (|HasCategory| (-132) (LIST (QUOTE -560) (QUOTE (-791)))))
+((-4233 . T) (-4223 . T) (-4234 . T))
+((|HasCategory| (-132) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| (-132) (QUOTE (-342))) (|HasCategory| (-132) (QUOTE (-784))) (|HasCategory| (-132) (QUOTE (-1013))) (-12 (|HasCategory| (-132) (QUOTE (-1013))) (|HasCategory| (-132) (LIST (QUOTE -284) (QUOTE (-132))))) (-3703 (-12 (|HasCategory| (-132) (QUOTE (-342))) (|HasCategory| (-132) (LIST (QUOTE -284) (QUOTE (-132))))) (-12 (|HasCategory| (-132) (QUOTE (-1013))) (|HasCategory| (-132) (LIST (QUOTE -284) (QUOTE (-132)))))) (|HasCategory| (-132) (LIST (QUOTE -561) (QUOTE (-792)))))
(-130 R Q A)
((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}.")))
NIL
@@ -462,7 +462,7 @@ NIL
NIL
(-133)
((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring.")))
-((-4226 . T))
+((-4230 . T))
NIL
(-134 R)
((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,{}r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial \\spad{'x},{} then it returns the characteristic polynomial expressed as a polynomial in \\spad{'x}.")))
@@ -470,9 +470,9 @@ NIL
NIL
(-135)
((|constructor| (NIL "Rings of Characteristic Zero.")))
-((-4226 . T))
+((-4230 . T))
NIL
-(-136 -4045 UP UPUP)
+(-136 -4049 UP UPUP)
((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,{}y),{} p(x,{}y))} returns \\spad{[g(z,{}t),{} q(z,{}t),{} c1(z),{} c2(z),{} n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,{}y) = g(z,{}t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z,{} t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,{}y),{} f(x),{} g(x))} returns \\spad{p(f(x),{} y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p,{} q)} returns an integer a such that a is neither a pole of \\spad{p(x,{}y)} nor a branch point of \\spad{q(x,{}y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g,{} n)} returns \\spad{[m,{} c,{} P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x,{} y))} returns \\spad{[c(x),{} n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,{}y))} returns \\spad{[c(x),{} q(x,{}z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x,{} z) = 0}.")))
NIL
NIL
@@ -483,14 +483,14 @@ NIL
(-138 A S)
((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{^=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| |#2| (QUOTE (-1012))) (|HasAttribute| |#1| (QUOTE -4229)))
+((|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasAttribute| |#1| (QUOTE -4233)))
(-139 S)
((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{^=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
((-2046 . T))
NIL
(-140 |n| K Q)
((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,{}[i1,{}i2,{}...,{}iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,{}[i1,{}i2,{}...,{}iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element.")))
-((-4224 . T) (-4223 . T) (-4226 . T))
+((-4228 . T) (-4227 . T) (-4230 . T))
NIL
(-141)
((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,{}xMin,{}xMax,{}yMin,{}yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,{}frac,{}sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,{}frac,{}sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function.")))
@@ -504,7 +504,7 @@ NIL
((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.")))
NIL
NIL
-(-144 R -4045)
+(-144 R -4049)
((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n),{} n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n),{} n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n),{} n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n),{} n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f,{} x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} \\spad{n!}.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n,{} r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n,{} r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{r!} * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator.")))
NIL
NIL
@@ -531,10 +531,10 @@ NIL
(-150 S R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})")))
NIL
-((|HasCategory| |#2| (QUOTE (-837))) (|HasCategory| |#2| (QUOTE (-505))) (|HasCategory| |#2| (QUOTE (-926))) (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (QUOTE (-978))) (|HasCategory| |#2| (QUOTE (-945))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| |#2| (QUOTE (-336))) (|HasAttribute| |#2| (QUOTE -4225)) (|HasAttribute| |#2| (QUOTE -4228)) (|HasCategory| |#2| (QUOTE (-281))) (|HasCategory| |#2| (QUOTE (-512))) (|HasCategory| |#2| (QUOTE (-783))))
+((|HasCategory| |#2| (QUOTE (-838))) (|HasCategory| |#2| (QUOTE (-506))) (|HasCategory| |#2| (QUOTE (-927))) (|HasCategory| |#2| (QUOTE (-1105))) (|HasCategory| |#2| (QUOTE (-979))) (|HasCategory| |#2| (QUOTE (-946))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#2| (QUOTE (-337))) (|HasAttribute| |#2| (QUOTE -4229)) (|HasAttribute| |#2| (QUOTE -4232)) (|HasCategory| |#2| (QUOTE (-282))) (|HasCategory| |#2| (QUOTE (-513))) (|HasCategory| |#2| (QUOTE (-784))))
(-151 R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})")))
-((-4222 -3700 (|has| |#1| (-512)) (-12 (|has| |#1| (-281)) (|has| |#1| (-837)))) (-4227 |has| |#1| (-336)) (-4221 |has| |#1| (-336)) (-4225 |has| |#1| (-6 -4225)) (-4228 |has| |#1| (-6 -4228)) (-3901 . T) (-2046 . T) ((-4231 "*") . T) (-4223 . T) (-4224 . T) (-4226 . T))
+((-4226 -3703 (|has| |#1| (-513)) (-12 (|has| |#1| (-282)) (|has| |#1| (-838)))) (-4231 |has| |#1| (-337)) (-4225 |has| |#1| (-337)) (-4229 |has| |#1| (-6 -4229)) (-4232 |has| |#1| (-6 -4232)) (-3905 . T) (-2046 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
NIL
(-152 RR PR)
((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients.")))
@@ -546,8 +546,8 @@ NIL
NIL
(-154 R)
((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}.")))
-((-4222 -3700 (|has| |#1| (-512)) (-12 (|has| |#1| (-281)) (|has| |#1| (-837)))) (-4227 |has| |#1| (-336)) (-4221 |has| |#1| (-336)) (-4225 |has| |#1| (-6 -4225)) (-4228 |has| |#1| (-6 -4228)) (-3901 . T) ((-4231 "*") . T) (-4223 . T) (-4224 . T) (-4226 . T))
-((|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-322))) (|HasCategory| |#1| (QUOTE (-512))) (|HasCategory| |#1| (QUOTE (-336))) (-3700 (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (QUOTE (-322)))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasCategory| |#1| (LIST (QUOTE -582) (QUOTE (-520)))) (|HasCategory| |#1| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#1| (LIST (QUOTE -960) (QUOTE (-520)))) (-3700 (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (QUOTE (-512)))) (|HasCategory| |#1| (QUOTE (-1104))) (-12 (|HasCategory| |#1| (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-1104)))) (|HasCategory| |#1| (QUOTE (-945))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#1| (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-352))))) (|HasCategory| |#1| (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-520))))) (|HasCategory| |#1| (LIST (QUOTE -814) (QUOTE (-520)))) (|HasCategory| |#1| (LIST (QUOTE -814) (QUOTE (-352)))) (|HasCategory| |#1| (LIST (QUOTE -481) (QUOTE (-1083)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -260) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-764))) (|HasCategory| |#1| (QUOTE (-978))) (-12 (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1104)))) (|HasCategory| |#1| (QUOTE (-505))) (-3700 (|HasCategory| |#1| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#1| (QUOTE (-336)))) (|HasCategory| |#1| (QUOTE (-281))) (-3700 (|HasCategory| |#1| (QUOTE (-281))) (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (QUOTE (-322))) (|HasCategory| |#1| (QUOTE (-512)))) (-3700 (|HasCategory| |#1| (QUOTE (-281))) (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (QUOTE (-322)))) (|HasCategory| |#1| (QUOTE (-837))) (|HasCategory| |#1| (QUOTE (-209))) (-3700 (-12 (|HasCategory| |#1| (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-352))))) (|HasCategory| |#1| (QUOTE (-322)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-520))))) (|HasCategory| |#1| (QUOTE (-322)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -481) (QUOTE (-1083)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-322)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#1| (QUOTE (-322)))) (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-322)))) (-12 (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-322)))) (|HasCategory| |#1| (QUOTE (-209))) (-12 (|HasCategory| |#1| (QUOTE (-281))) (|HasCategory| |#1| (QUOTE (-322)))) (-12 (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (QUOTE (-322)))) (-12 (|HasCategory| |#1| (QUOTE (-322))) (|HasCategory| |#1| (LIST (QUOTE -260) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-322))) (|HasCategory| |#1| (LIST (QUOTE -582) (QUOTE (-520))))) (-12 (|HasCategory| |#1| (QUOTE (-322))) (|HasCategory| |#1| (LIST (QUOTE -828) (QUOTE (-1083))))) (-12 (|HasCategory| |#1| (QUOTE (-322))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| |#1| (QUOTE (-322))) (|HasCategory| |#1| (QUOTE (-512)))) (-12 (|HasCategory| |#1| (QUOTE (-322))) (|HasCategory| |#1| (QUOTE (-764)))) (-12 (|HasCategory| |#1| (QUOTE (-322))) (|HasCategory| |#1| (QUOTE (-783)))) (-12 (|HasCategory| |#1| (QUOTE (-322))) (|HasCategory| |#1| (QUOTE (-945)))) (-12 (|HasCategory| |#1| (QUOTE (-322))) (|HasCategory| |#1| (QUOTE (-1104)))) (-12 (|HasCategory| |#1| (QUOTE (-322))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-496))))) (-12 (|HasCategory| |#1| (QUOTE (-322))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-322))) (|HasCategory| |#1| (LIST (QUOTE -814) (QUOTE (-352))))) (-12 (|HasCategory| |#1| (QUOTE (-322))) (|HasCategory| |#1| (LIST (QUOTE -814) (QUOTE (-520))))) (-12 (|HasCategory| |#1| (QUOTE (-322))) (|HasCategory| |#1| (LIST (QUOTE -960) (QUOTE (-520)))))) (-12 (|HasCategory| |#1| (QUOTE (-281))) (|HasCategory| |#1| (QUOTE (-837)))) (-3700 (-12 (|HasCategory| |#1| (QUOTE (-281))) (|HasCategory| |#1| (QUOTE (-837)))) (|HasCategory| |#1| (QUOTE (-336))) (-12 (|HasCategory| |#1| (QUOTE (-322))) (|HasCategory| |#1| (QUOTE (-837))))) (-3700 (-12 (|HasCategory| |#1| (QUOTE (-281))) (|HasCategory| |#1| (QUOTE (-837)))) (-12 (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (QUOTE (-837)))) (-12 (|HasCategory| |#1| (QUOTE (-322))) (|HasCategory| |#1| (QUOTE (-837))))) (-3700 (-12 (|HasCategory| |#1| (QUOTE (-281))) (|HasCategory| |#1| (QUOTE (-837)))) (|HasCategory| |#1| (QUOTE (-336)))) (-3700 (-12 (|HasCategory| |#1| (QUOTE (-281))) (|HasCategory| |#1| (QUOTE (-837)))) (|HasCategory| |#1| (QUOTE (-512)))) (|HasAttribute| |#1| (QUOTE -4225)) (|HasAttribute| |#1| (QUOTE -4228)) (-12 (|HasCategory| |#1| (QUOTE (-209))) (|HasCategory| |#1| (QUOTE (-336)))) (-12 (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (LIST (QUOTE -828) (QUOTE (-1083))))) (-3700 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-281))) (|HasCategory| |#1| (QUOTE (-837)))) (|HasCategory| |#1| (QUOTE (-133)))) (-3700 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-281))) (|HasCategory| |#1| (QUOTE (-837)))) (|HasCategory| |#1| (QUOTE (-322)))))
+((-4226 -3703 (|has| |#1| (-513)) (-12 (|has| |#1| (-282)) (|has| |#1| (-838)))) (-4231 |has| |#1| (-337)) (-4225 |has| |#1| (-337)) (-4229 |has| |#1| (-6 -4229)) (-4232 |has| |#1| (-6 -4232)) (-3905 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
+((|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-323))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-337))) (-3703 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-323)))) (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521)))) (-3703 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-513)))) (|HasCategory| |#1| (QUOTE (-1105))) (-12 (|HasCategory| |#1| (QUOTE (-927))) (|HasCategory| |#1| (QUOTE (-1105)))) (|HasCategory| |#1| (QUOTE (-946))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-353))))) (|HasCategory| |#1| (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-521)))) (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-353)))) (|HasCategory| |#1| (LIST (QUOTE -482) (QUOTE (-1084)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -261) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-765))) (|HasCategory| |#1| (QUOTE (-979))) (-12 (|HasCategory| |#1| (QUOTE (-979))) (|HasCategory| |#1| (QUOTE (-1105)))) (|HasCategory| |#1| (QUOTE (-506))) (-3703 (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (QUOTE (-337)))) (|HasCategory| |#1| (QUOTE (-282))) (-3703 (|HasCategory| |#1| (QUOTE (-282))) (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-323))) (|HasCategory| |#1| (QUOTE (-513)))) (-3703 (|HasCategory| |#1| (QUOTE (-282))) (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-323)))) (|HasCategory| |#1| (QUOTE (-838))) (|HasCategory| |#1| (QUOTE (-210))) (-3703 (-12 (|HasCategory| |#1| (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-353))))) (|HasCategory| |#1| (QUOTE (-323)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-521))))) (|HasCategory| |#1| (QUOTE (-323)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -482) (QUOTE (-1084)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-323)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (QUOTE (-323)))) (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-323)))) (-12 (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-323)))) (|HasCategory| |#1| (QUOTE (-210))) (-12 (|HasCategory| |#1| (QUOTE (-282))) (|HasCategory| |#1| (QUOTE (-323)))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-323)))) (-12 (|HasCategory| |#1| (QUOTE (-323))) (|HasCategory| |#1| (LIST (QUOTE -261) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-323))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-521))))) (-12 (|HasCategory| |#1| (QUOTE (-323))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1084))))) (-12 (|HasCategory| |#1| (QUOTE (-323))) (|HasCategory| |#1| (QUOTE (-342)))) (-12 (|HasCategory| |#1| (QUOTE (-323))) (|HasCategory| |#1| (QUOTE (-513)))) (-12 (|HasCategory| |#1| (QUOTE (-323))) (|HasCategory| |#1| (QUOTE (-765)))) (-12 (|HasCategory| |#1| (QUOTE (-323))) (|HasCategory| |#1| (QUOTE (-784)))) (-12 (|HasCategory| |#1| (QUOTE (-323))) (|HasCategory| |#1| (QUOTE (-946)))) (-12 (|HasCategory| |#1| (QUOTE (-323))) (|HasCategory| |#1| (QUOTE (-1105)))) (-12 (|HasCategory| |#1| (QUOTE (-323))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-497))))) (-12 (|HasCategory| |#1| (QUOTE (-323))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-323))) (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-353))))) (-12 (|HasCategory| |#1| (QUOTE (-323))) (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-521))))) (-12 (|HasCategory| |#1| (QUOTE (-323))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521)))))) (-12 (|HasCategory| |#1| (QUOTE (-282))) (|HasCategory| |#1| (QUOTE (-838)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-282))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (QUOTE (-337))) (-12 (|HasCategory| |#1| (QUOTE (-323))) (|HasCategory| |#1| (QUOTE (-838))))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-282))) (|HasCategory| |#1| (QUOTE (-838)))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-838)))) (-12 (|HasCategory| |#1| (QUOTE (-323))) (|HasCategory| |#1| (QUOTE (-838))))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-282))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (QUOTE (-337)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-282))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (QUOTE (-513)))) (|HasAttribute| |#1| (QUOTE -4229)) (|HasAttribute| |#1| (QUOTE -4232)) (-12 (|HasCategory| |#1| (QUOTE (-210))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1084))))) (-3703 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-282))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (QUOTE (-133)))) (-3703 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-282))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (QUOTE (-323)))))
(-155 R S CS)
((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern")))
NIL
@@ -558,11 +558,11 @@ NIL
NIL
(-157)
((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative.")))
-(((-4231 "*") . T) (-4223 . T) (-4224 . T) (-4226 . T))
+(((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
NIL
(-158 R)
((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0,{} x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialQuotients(x) = [b0,{}b1,{}b2,{}b3,{}...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialDenominators(x) = [b1,{}b2,{}b3,{}...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialNumerators(x) = [a1,{}a2,{}a3,{}...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,{}b)} constructs a continued fraction in the following way: if \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,{}a,{}b)} constructs a continued fraction in the following way: if \\spad{a = [a1,{}a2,{}...]} and \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}.")))
-(((-4231 "*") . T) (-4222 . T) (-4227 . T) (-4221 . T) (-4223 . T) (-4224 . T) (-4226 . T))
+(((-4235 "*") . T) (-4226 . T) (-4231 . T) (-4225 . T) (-4227 . T) (-4228 . T) (-4230 . T))
NIL
(-159)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Union| (|Binding|) "failed") (|Symbol|) $) "\\spad{findBinding(c,{}n)} returns the first binding associated with \\spad{`n'}. Otherwise `failed'.")) (|push| (($ (|Binding|) $) "\\spad{push(c,{}b)} augments the contour with binding \\spad{`b'}.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}.")))
@@ -579,7 +579,7 @@ NIL
(-162 R S CS)
((|constructor| (NIL "This package supports matching patterns involving complex expressions")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(cexpr,{} pat,{} res)} matches the pattern \\spad{pat} to the complex expression \\spad{cexpr}. res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
-((|HasCategory| (-880 |#2|) (LIST (QUOTE -814) (|devaluate| |#1|))))
+((|HasCategory| (-881 |#2|) (LIST (QUOTE -815) (|devaluate| |#1|))))
(-163 R)
((|constructor| (NIL "This package \\undocumented{}")) (|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) "\\spad{multiEuclideanTree(l,{}r)} \\undocumented{}")) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) "\\spad{chineseRemainder(llv,{}lm)} returns a list of values,{} each of which corresponds to the Chinese remainder of the associated element of \\axiom{\\spad{llv}} and axiom{\\spad{lm}}. This is more efficient than applying chineseRemainder several times.") ((|#1| (|List| |#1|) (|List| |#1|)) "\\spad{chineseRemainder(lv,{}lm)} returns a value \\axiom{\\spad{v}} such that,{} if \\spad{x} is \\axiom{\\spad{lv}.\\spad{i}} modulo \\axiom{\\spad{lm}.\\spad{i}} for all \\axiom{\\spad{i}},{} then \\spad{x} is \\axiom{\\spad{v}} modulo \\axiom{\\spad{lm}(1)\\spad{*lm}(2)*...\\spad{*lm}(\\spad{n})}.")) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) "\\spad{modTree(r,{}l)} \\undocumented{}")))
NIL
@@ -592,4105 +592,4109 @@ NIL
((|constructor| (NIL "This package provides tools for working with cyclic streams.")) (|computeCycleEntry| ((|#2| |#2| |#2|) "\\spad{computeCycleEntry(x,{}cycElt)},{} where \\spad{cycElt} is a pointer to a node in the cyclic part of the cyclic stream \\spad{x},{} returns a pointer to the first node in the cycle")) (|computeCycleLength| (((|NonNegativeInteger|) |#2|) "\\spad{computeCycleLength(s)} returns the length of the cycle of a cyclic stream \\spad{t},{} where \\spad{s} is a pointer to a node in the cyclic part of \\spad{t}.")) (|cycleElt| (((|Union| |#2| "failed") |#2|) "\\spad{cycleElt(s)} returns a pointer to a node in the cycle if the stream \\spad{s} is cyclic and returns \"failed\" if \\spad{s} is not cyclic")))
NIL
NIL
-(-166 R -4045)
+(-166)
+((|constructor| (NIL "This domains represents a syntax object that designates a category,{} domain,{} or a package. See Also: Syntax,{} Domain")) (|arguments| (((|List| (|Syntax|)) $) "\\spad{arguments returns} the list of syntax objects for the arguments used to invoke the constructor.")) (|constructorName| (((|Symbol|) $) "\\spad{constructorName c} returns the name of the constructor")))
+NIL
+NIL
+(-167 R -4049)
((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
-(-167 R)
+(-168 R)
((|constructor| (NIL "CoerceVectorMatrixPackage: an unexposed,{} technical package for data conversions")) (|coerce| (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Vector| (|Matrix| |#1|))) "\\spad{coerce(v)} coerces a vector \\spad{v} with entries in \\spadtype{Matrix R} as vector over \\spadtype{Matrix Fraction Polynomial R}")) (|coerceP| (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|Vector| (|Matrix| |#1|))) "\\spad{coerceP(v)} coerces a vector \\spad{v} with entries in \\spadtype{Matrix R} as vector over \\spadtype{Matrix Polynomial R}")))
NIL
NIL
-(-168)
+(-169)
((|constructor| (NIL "Enumeration by cycle indices.")) (|skewSFunction| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{skewSFunction(li1,{}li2)} is the \\spad{S}-function \\indented{1}{of the partition difference \\spad{li1 - li2}} \\indented{1}{expressed in terms of power sum symmetric functions.}")) (|SFunction| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|List| (|Integer|))) "\\spad{SFunction(\\spad{li})} is the \\spad{S}-function of the partition \\spad{\\spad{li}} \\indented{1}{expressed in terms of power sum symmetric functions.}")) (|wreath| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{wreath(s1,{}s2)} is the cycle index of the wreath product \\indented{1}{of the two groups whose cycle indices are \\spad{s1} and} \\indented{1}{\\spad{s2}.}")) (|eval| (((|Fraction| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval s} is the sum of the coefficients of a cycle index.")) (|cup| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{cup(s1,{}s2)},{} introduced by Redfield,{} \\indented{1}{is the scalar product of two cycle indices,{} in which the} \\indented{1}{power sums are retained to produce a cycle index.}")) (|cap| (((|Fraction| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{cap(s1,{}s2)},{} introduced by Redfield,{} \\indented{1}{is the scalar product of two cycle indices.}")) (|graphs| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{graphs n} is the cycle index of the group induced on \\indented{1}{the edges of a graph by applying the symmetric function to the} \\indented{1}{\\spad{n} nodes.}")) (|dihedral| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{dihedral n} is the cycle index of the \\indented{1}{dihedral group of degree \\spad{n}.}")) (|cyclic| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{cyclic n} is the cycle index of the \\indented{1}{cyclic group of degree \\spad{n}.}")) (|alternating| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{alternating n} is the cycle index of the \\indented{1}{alternating group of degree \\spad{n}.}")) (|elementary| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{elementary n} is the \\spad{n} th elementary symmetric \\indented{1}{function expressed in terms of power sums.}")) (|powerSum| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{powerSum n} is the \\spad{n} th power sum symmetric \\indented{1}{function.}")) (|complete| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{complete n} is the \\spad{n} th complete homogeneous \\indented{1}{symmetric function expressed in terms of power sums.} \\indented{1}{Alternatively it is the cycle index of the symmetric} \\indented{1}{group of degree \\spad{n}.}")))
NIL
NIL
-(-169)
+(-170)
((|constructor| (NIL "This package \\undocumented{}")) (|cyclotomicFactorization| (((|Factored| (|SparseUnivariatePolynomial| (|Integer|))) (|Integer|)) "\\spad{cyclotomicFactorization(n)} \\undocumented{}")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} \\undocumented{}")) (|cyclotomicDecomposition| (((|List| (|SparseUnivariatePolynomial| (|Integer|))) (|Integer|)) "\\spad{cyclotomicDecomposition(n)} \\undocumented{}")))
NIL
NIL
-(-170)
+(-171)
((|constructor| (NIL "\\axiomType{d01AgentsPackage} is a package of numerical agents to be used to investigate attributes of an input function so as to decide the \\axiomFun{measure} of an appropriate numerical integration routine. It contains functions \\axiomFun{rangeIsFinite} to test the input range and \\axiomFun{functionIsContinuousAtEndPoints} to check for continuity at the end points of the range.")) (|changeName| (((|Result|) (|Symbol|) (|Symbol|) (|Result|)) "\\spad{changeName(s,{}t,{}r)} changes the name of item \\axiom{\\spad{s}} in \\axiom{\\spad{r}} to \\axiom{\\spad{t}}.")) (|commaSeparate| (((|String|) (|List| (|String|))) "\\spad{commaSeparate(l)} produces a comma separated string from a list of strings.")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a Stream of \\axiomType{DoubleFloat} to \\axiomType{List String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a List of \\axiomType{DoubleFloat} to \\axiomType{List String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{singularitiesOf(args)} returns a list of potential singularities of the function within the given range")) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{problemPoints(f,{}var,{}range)} returns a list of possible problem points by looking at the zeros of the denominator of the function if it can be retracted to \\axiomType{Polynomial DoubleFloat}.")) (|functionIsOscillatory| (((|Float|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsOscillatory(a)} tests whether the function \\spad{a.fn} has many zeros of its derivative.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(x)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\axiom{\\spad{x}}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(x)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\axiom{\\spad{x}}")) (|functionIsContinuousAtEndPoints| (((|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsContinuousAtEndPoints(args)} uses power series limits to check for problems at the end points of the range of \\spad{args}.")) (|rangeIsFinite| (((|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{rangeIsFinite(args)} tests the endpoints of \\spad{args.range} for infinite end points.")))
NIL
NIL
-(-171)
+(-172)
((|constructor| (NIL "\\axiomType{d01ajfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AJF,{} a general numerical integration routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine D01AJF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}.")))
NIL
NIL
-(-172)
+(-173)
((|constructor| (NIL "\\axiomType{d01akfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AKF,{} a numerical integration routine which is is suitable for oscillating,{} non-singular functions. The function \\axiomFun{measure} measures the usefulness of the routine D01AKF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}.")))
NIL
NIL
-(-173)
+(-174)
((|constructor| (NIL "\\axiomType{d01alfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01ALF,{} a general numerical integration routine which can handle a list of singularities. The function \\axiomFun{measure} measures the usefulness of the routine D01ALF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}.")))
NIL
NIL
-(-174)
+(-175)
((|constructor| (NIL "\\axiomType{d01amfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AMF,{} a general numerical integration routine which can handle infinite or semi-infinite range of the input function. The function \\axiomFun{measure} measures the usefulness of the routine D01AMF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}.")))
NIL
NIL
-(-175)
+(-176)
((|constructor| (NIL "\\axiomType{d01anfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01ANF,{} a numerical integration routine which can handle weight functions of the form cos(\\omega \\spad{x}) or sin(\\omega \\spad{x}). The function \\axiomFun{measure} measures the usefulness of the routine D01ANF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}.")))
NIL
NIL
-(-176)
+(-177)
((|constructor| (NIL "\\axiomType{d01apfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01APF,{} a general numerical integration routine which can handle end point singularities of the algebraico-logarithmic form \\spad{w}(\\spad{x}) = (\\spad{x}-a)\\spad{^c} * (\\spad{b}-\\spad{x})\\spad{^d}. The function \\axiomFun{measure} measures the usefulness of the routine D01APF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}.")))
NIL
NIL
-(-177)
+(-178)
((|constructor| (NIL "\\axiomType{d01aqfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AQF,{} a general numerical integration routine which can solve an integral of the form \\newline \\centerline{\\inputbitmap{/home/bjd/Axiom/anna/hypertex/bitmaps/d01aqf.\\spad{xbm}}} The function \\axiomFun{measure} measures the usefulness of the routine D01AQF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}.")))
NIL
NIL
-(-178)
+(-179)
((|constructor| (NIL "\\axiomType{d01asfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01ASF,{} a numerical integration routine which can handle weight functions of the form cos(\\omega \\spad{x}) or sin(\\omega \\spad{x}) on an semi-infinite range. The function \\axiomFun{measure} measures the usefulness of the routine D01ASF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}.")))
NIL
NIL
-(-179)
+(-180)
((|constructor| (NIL "\\axiomType{d01fcfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01FCF,{} a numerical integration routine which can handle multi-dimensional quadrature over a finite region. The function \\axiomFun{measure} measures the usefulness of the routine D01GBF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}.")))
NIL
NIL
-(-180)
+(-181)
((|constructor| (NIL "\\axiomType{d01gbfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01GBF,{} a numerical integration routine which can handle multi-dimensional quadrature over a finite region. The function \\axiomFun{measure} measures the usefulness of the routine D01GBF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}.")))
NIL
NIL
-(-181)
+(-182)
NIL
NIL
NIL
-(-182)
+(-183)
((|constructor| (NIL "\\axiom{d01WeightsPackage} is a package for functions used to investigate whether a function can be divided into a simpler function and a weight function. The types of weights investigated are those giving rise to end-point singularities of the algebraico-logarithmic type,{} and trigonometric weights.")) (|exprHasLogarithmicWeights| (((|Integer|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\axiom{exprHasLogarithmicWeights} looks for logarithmic weights giving rise to singularities of the function at the end-points.")) (|exprHasAlgebraicWeight| (((|Union| (|List| (|DoubleFloat|)) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\axiom{exprHasAlgebraicWeight} looks for algebraic weights giving rise to singularities of the function at the end-points.")) (|exprHasWeightCosWXorSinWX| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |w| (|DoubleFloat|))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\axiom{exprHasWeightCosWXorSinWX} looks for trigonometric weights in an expression of the form \\axiom{cos \\omega \\spad{x}} or \\axiom{sin \\omega \\spad{x}},{} returning the value of \\omega (\\notequal 1) and the operator.")))
NIL
NIL
-(-183)
+(-184)
((|constructor| (NIL "\\axiom{d02AgentsPackage} contains a set of computational agents for use with Ordinary Differential Equation solvers.")) (|intermediateResultsIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{intermediateResultsIF(o)} returns a value corresponding to the required number of intermediate results required and,{} therefore,{} an indication of how much this would affect the step-length of the calculation. It returns a value in the range [0,{}1].")) (|accuracyIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{accuracyIF(o)} returns the intensity value of the accuracy requirements of the input ODE. A request of accuracy of 10^-6 corresponds to the neutral intensity. It returns a value in the range [0,{}1].")) (|expenseOfEvaluationIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{expenseOfEvaluationIF(o)} returns the intensity value of the cost of evaluating the input ODE. This is in terms of the number of ``operational units\\spad{''}. It returns a value in the range [0,{}1].\\newline\\indent{20} 400 ``operation units\\spad{''} \\spad{->} 0.75 \\newline 200 ``operation units\\spad{''} \\spad{->} 0.5 \\newline 83 ``operation units\\spad{''} \\spad{->} 0.25 \\newline\\indent{15} exponentiation = 4 units ,{} function calls = 10 units.")) (|systemSizeIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{systemSizeIF(ode)} returns the intensity value of the size of the system of ODEs. 20 equations corresponds to the neutral value. It returns a value in the range [0,{}1].")) (|stiffnessAndStabilityOfODEIF| (((|Record| (|:| |stiffnessFactor| (|Float|)) (|:| |stabilityFactor| (|Float|))) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{stiffnessAndStabilityOfODEIF(ode)} calculates the intensity values of stiffness of a system of first-order differential equations (by evaluating the maximum difference in the real parts of the negative eigenvalues of the jacobian of the system for which \\spad{O}(10) equates to mildly stiff wheras stiffness ratios of \\spad{O}(10^6) are not uncommon) and whether the system is likely to show any oscillations (identified by the closeness to the imaginary axis of the complex eigenvalues of the jacobian). \\blankline It returns two values in the range [0,{}1].")) (|stiffnessAndStabilityFactor| (((|Record| (|:| |stiffnessFactor| (|Float|)) (|:| |stabilityFactor| (|Float|))) (|Matrix| (|Expression| (|DoubleFloat|)))) "\\spad{stiffnessAndStabilityFactor(me)} calculates the stability and stiffness factor of a system of first-order differential equations (by evaluating the maximum difference in the real parts of the negative eigenvalues of the jacobian of the system for which \\spad{O}(10) equates to mildly stiff wheras stiffness ratios of \\spad{O}(10^6) are not uncommon) and whether the system is likely to show any oscillations (identified by the closeness to the imaginary axis of the complex eigenvalues of the jacobian).")) (|eval| (((|Matrix| (|Expression| (|DoubleFloat|))) (|Matrix| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{eval(mat,{}symbols,{}values)} evaluates a multivariable matrix at given \\spad{values} for each of a list of variables")) (|jacobian| (((|Matrix| (|Expression| (|DoubleFloat|))) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|))) "\\spad{jacobian(v,{}w)} is a local function to make a jacobian matrix")) (|sparsityIF| (((|Float|) (|Matrix| (|Expression| (|DoubleFloat|)))) "\\spad{sparsityIF(m)} calculates the sparsity of a jacobian matrix")) (|combineFeatureCompatibility| (((|Float|) (|Float|) (|List| (|Float|))) "\\spad{combineFeatureCompatibility(C1,{}L)} is for interacting attributes") (((|Float|) (|Float|) (|Float|)) "\\spad{combineFeatureCompatibility(C1,{}C2)} is for interacting attributes")))
NIL
NIL
-(-184)
+(-185)
((|constructor| (NIL "\\axiomType{d02bbfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02BBF,{} a ODE routine which uses an Runge-Kutta method to solve a system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02BBF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}.")))
NIL
NIL
-(-185)
+(-186)
((|constructor| (NIL "\\axiomType{d02bhfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02BHF,{} a ODE routine which uses an Runge-Kutta method to solve a system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02BHF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}.")))
NIL
NIL
-(-186)
+(-187)
((|constructor| (NIL "\\axiomType{d02cjfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02CJF,{} a ODE routine which uses an Adams-Moulton-Bashworth method to solve a system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02CJF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}.")))
NIL
NIL
-(-187)
+(-188)
((|constructor| (NIL "\\axiomType{d02ejfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02EJF,{} a ODE routine which uses a backward differentiation formulae method to handle a stiff system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02EJF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}.")))
NIL
NIL
-(-188)
+(-189)
((|elliptic?| (((|Boolean|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{elliptic?(r)} \\undocumented{}")) (|central?| (((|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{central?(f,{}g,{}l)} \\undocumented{}")) (|subscriptedVariables| (((|Expression| (|DoubleFloat|)) (|Expression| (|DoubleFloat|))) "\\spad{subscriptedVariables(e)} \\undocumented{}")) (|varList| (((|List| (|Symbol|)) (|Symbol|) (|NonNegativeInteger|)) "\\spad{varList(s,{}n)} \\undocumented{}")))
NIL
NIL
-(-189)
+(-190)
((|constructor| (NIL "\\axiomType{d03eefAnnaType} is a domain of \\axiomType{PartialDifferentialEquationsSolverCategory} for the NAG routines D03EEF/D03EDF.")))
NIL
NIL
-(-190)
+(-191)
((|constructor| (NIL "\\axiomType{d03fafAnnaType} is a domain of \\axiomType{PartialDifferentialEquationsSolverCategory} for the NAG routine D03FAF.")))
NIL
NIL
-(-191 S)
+(-192 S)
((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(l)} makes a database out of a list")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,{}start,{}end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,{}s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,{}q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,{}s)} returns an element of \\spad{x} indexed by \\spad{s}")))
NIL
NIL
-(-192 -4045 UP UPUP R)
+(-193 -4049 UP UPUP R)
((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f,{} ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use.")))
NIL
NIL
-(-193 -4045 FP)
+(-194 -4049 FP)
((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,{}k,{}v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,{}k,{}v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,{}k,{}v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,{}sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}.")))
NIL
NIL
-(-194)
+(-195)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion.")) (|coerce| (((|RadixExpansion| 10) $) "\\spad{coerce(d)} converts a decimal expansion to a radix expansion with base 10.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(d)} converts a decimal expansion to a rational number.")))
-((-4221 . T) (-4227 . T) (-4222 . T) ((-4231 "*") . T) (-4223 . T) (-4224 . T) (-4226 . T))
-((|HasCategory| (-520) (QUOTE (-837))) (|HasCategory| (-520) (LIST (QUOTE -960) (QUOTE (-1083)))) (|HasCategory| (-520) (QUOTE (-133))) (|HasCategory| (-520) (QUOTE (-135))) (|HasCategory| (-520) (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| (-520) (QUOTE (-945))) (|HasCategory| (-520) (QUOTE (-756))) (|HasCategory| (-520) (LIST (QUOTE -960) (QUOTE (-520)))) (|HasCategory| (-520) (QUOTE (-1059))) (|HasCategory| (-520) (LIST (QUOTE -814) (QUOTE (-520)))) (|HasCategory| (-520) (LIST (QUOTE -814) (QUOTE (-352)))) (|HasCategory| (-520) (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-352))))) (|HasCategory| (-520) (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-520))))) (|HasCategory| (-520) (QUOTE (-209))) (|HasCategory| (-520) (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasCategory| (-520) (LIST (QUOTE -481) (QUOTE (-1083)) (QUOTE (-520)))) (|HasCategory| (-520) (LIST (QUOTE -283) (QUOTE (-520)))) (|HasCategory| (-520) (LIST (QUOTE -260) (QUOTE (-520)) (QUOTE (-520)))) (|HasCategory| (-520) (QUOTE (-281))) (|HasCategory| (-520) (QUOTE (-505))) (|HasCategory| (-520) (QUOTE (-783))) (-3700 (|HasCategory| (-520) (QUOTE (-756))) (|HasCategory| (-520) (QUOTE (-783)))) (|HasCategory| (-520) (LIST (QUOTE -582) (QUOTE (-520)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-520) (QUOTE (-837)))) (-3700 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-520) (QUOTE (-837)))) (|HasCategory| (-520) (QUOTE (-133)))))
-(-195 R -4045)
+((-4225 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
+((|HasCategory| (-521) (QUOTE (-838))) (|HasCategory| (-521) (LIST (QUOTE -961) (QUOTE (-1084)))) (|HasCategory| (-521) (QUOTE (-133))) (|HasCategory| (-521) (QUOTE (-135))) (|HasCategory| (-521) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| (-521) (QUOTE (-946))) (|HasCategory| (-521) (QUOTE (-757))) (|HasCategory| (-521) (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| (-521) (QUOTE (-1060))) (|HasCategory| (-521) (LIST (QUOTE -815) (QUOTE (-521)))) (|HasCategory| (-521) (LIST (QUOTE -815) (QUOTE (-353)))) (|HasCategory| (-521) (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-353))))) (|HasCategory| (-521) (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-521))))) (|HasCategory| (-521) (QUOTE (-210))) (|HasCategory| (-521) (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasCategory| (-521) (LIST (QUOTE -482) (QUOTE (-1084)) (QUOTE (-521)))) (|HasCategory| (-521) (LIST (QUOTE -284) (QUOTE (-521)))) (|HasCategory| (-521) (LIST (QUOTE -261) (QUOTE (-521)) (QUOTE (-521)))) (|HasCategory| (-521) (QUOTE (-282))) (|HasCategory| (-521) (QUOTE (-506))) (|HasCategory| (-521) (QUOTE (-784))) (-3703 (|HasCategory| (-521) (QUOTE (-757))) (|HasCategory| (-521) (QUOTE (-784)))) (|HasCategory| (-521) (LIST (QUOTE -583) (QUOTE (-521)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-521) (QUOTE (-838)))) (-3703 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-521) (QUOTE (-838)))) (|HasCategory| (-521) (QUOTE (-133)))))
+(-196 R -4049)
((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f,{} x,{} a,{} b,{} ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.")))
NIL
NIL
-(-196 R)
+(-197 R)
((|constructor| (NIL "\\spadtype{RationalFunctionDefiniteIntegration} provides functions to compute definite integrals of rational functions.")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|))) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|)))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.")))
NIL
NIL
-(-197 R1 R2)
+(-198 R1 R2)
((|constructor| (NIL "This package \\undocumented{}")) (|expand| (((|List| (|Expression| |#2|)) (|Expression| |#2|) (|PositiveInteger|)) "\\spad{expand(f,{}n)} \\undocumented{}")) (|reduce| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#1|)) (|:| |deg| (|PositiveInteger|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reduce(p)} \\undocumented{}")))
NIL
NIL
-(-198 S)
+(-199 S)
((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.")))
-((-4229 . T) (-4230 . T))
-((|HasCategory| |#1| (QUOTE (-1012))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-791)))) (-3700 (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-791))))))
-(-199 |CoefRing| |listIndVar|)
+((-4233 . T) (-4234 . T))
+((|HasCategory| |#1| (QUOTE (-1013))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-792)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-792))))))
+(-200 |CoefRing| |listIndVar|)
((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,{}df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,{}u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}.")))
-((-4226 . T))
+((-4230 . T))
NIL
-(-200 R -4045)
+(-201 R -4049)
((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} x,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x,{} g,{} a,{} b,{} eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval.")))
NIL
NIL
-(-201)
+(-202)
((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|hash| (((|Integer|) $) "\\spad{hash(x)} returns the hash key for \\spad{x}")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-3890 . T) (-4221 . T) (-4227 . T) (-4222 . T) ((-4231 "*") . T) (-4223 . T) (-4224 . T) (-4226 . T))
+((-3894 . T) (-4225 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
NIL
-(-202)
+(-203)
((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}")))
NIL
NIL
-(-203 R)
+(-204 R)
((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,{}Y,{}Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,{}sy,{}sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}")))
-((-4229 . T) (-4230 . T))
-((|HasCategory| |#1| (QUOTE (-1012))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-281))) (|HasCategory| |#1| (QUOTE (-512))) (|HasAttribute| |#1| (QUOTE (-4231 "*"))) (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-791)))) (-3700 (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-791))))))
-(-204 A S)
+((-4233 . T) (-4234 . T))
+((|HasCategory| |#1| (QUOTE (-1013))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-282))) (|HasCategory| |#1| (QUOTE (-513))) (|HasAttribute| |#1| (QUOTE (-4235 "*"))) (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-792)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-792))))))
+(-205 A S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
NIL
NIL
-(-205 S)
+(-206 S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
-((-4230 . T) (-2046 . T))
+((-4234 . T) (-2046 . T))
NIL
-(-206 S R)
+(-207 S R)
((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasCategory| |#2| (QUOTE (-209))))
-(-207 R)
+((|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasCategory| |#2| (QUOTE (-210))))
+(-208 R)
((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")))
-((-4226 . T))
+((-4230 . T))
NIL
-(-208 S)
+(-209 S)
((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")))
NIL
NIL
-(-209)
+(-210)
((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")))
-((-4226 . T))
+((-4230 . T))
NIL
-(-210 A S)
+(-211 A S)
((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4229)))
-(-211 S)
+((|HasAttribute| |#1| (QUOTE -4233)))
+(-212 S)
((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}.")))
-((-4230 . T) (-2046 . T))
+((-4234 . T) (-2046 . T))
NIL
-(-212)
+(-213)
((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation")))
NIL
NIL
-(-213 S -2615 R)
+(-214 S -2617 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#3|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#3| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#3| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
NIL
-((|HasCategory| |#3| (QUOTE (-336))) (|HasCategory| |#3| (QUOTE (-728))) (|HasCategory| |#3| (QUOTE (-781))) (|HasAttribute| |#3| (QUOTE -4226)) (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (QUOTE (-662))) (|HasCategory| |#3| (QUOTE (-124))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-969))) (|HasCategory| |#3| (QUOTE (-1012))))
-(-214 -2615 R)
+((|HasCategory| |#3| (QUOTE (-337))) (|HasCategory| |#3| (QUOTE (-729))) (|HasCategory| |#3| (QUOTE (-782))) (|HasAttribute| |#3| (QUOTE -4230)) (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-342))) (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (QUOTE (-124))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-970))) (|HasCategory| |#3| (QUOTE (-1013))))
+(-215 -2617 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
-((-4223 |has| |#2| (-969)) (-4224 |has| |#2| (-969)) (-4226 |has| |#2| (-6 -4226)) ((-4231 "*") |has| |#2| (-157)) (-4229 . T) (-2046 . T))
+((-4227 |has| |#2| (-970)) (-4228 |has| |#2| (-970)) (-4230 |has| |#2| (-6 -4230)) ((-4235 "*") |has| |#2| (-157)) (-4233 . T) (-2046 . T))
NIL
-(-215 -2615 A B)
+(-216 -2617 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
-(-216 -2615 R)
+(-217 -2617 R)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation.")))
-((-4223 |has| |#2| (-969)) (-4224 |has| |#2| (-969)) (-4226 |has| |#2| (-6 -4226)) ((-4231 "*") |has| |#2| (-157)) (-4229 . T))
-((|HasCategory| |#2| (QUOTE (-336))) (|HasCategory| |#2| (QUOTE (-969))) (|HasCategory| |#2| (QUOTE (-728))) (|HasCategory| |#2| (QUOTE (-781))) (-3700 (|HasCategory| |#2| (QUOTE (-728))) (|HasCategory| |#2| (QUOTE (-781)))) (|HasCategory| |#2| (QUOTE (-157))) (-3700 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-336))) (|HasCategory| |#2| (QUOTE (-969)))) (-3700 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-336)))) (-3700 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-969)))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -582) (QUOTE (-520)))) (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasCategory| |#2| (QUOTE (-209))) (-3700 (|HasCategory| |#2| (LIST (QUOTE -582) (QUOTE (-520)))) (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-209))) (|HasCategory| |#2| (QUOTE (-336))) (|HasCategory| |#2| (QUOTE (-969)))) (-3700 (|HasCategory| |#2| (LIST (QUOTE -582) (QUOTE (-520)))) (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-209))) (|HasCategory| |#2| (QUOTE (-969)))) (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| (-520) (QUOTE (-783))) (-12 (|HasCategory| |#2| (QUOTE (-969))) (|HasCategory| |#2| (LIST (QUOTE -582) (QUOTE (-520))))) (-12 (|HasCategory| |#2| (QUOTE (-209))) (|HasCategory| |#2| (QUOTE (-969)))) (-12 (|HasCategory| |#2| (QUOTE (-969))) (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1083))))) (|HasCategory| |#2| (QUOTE (-662))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (LIST (QUOTE -960) (QUOTE (-520))))) (-3700 (|HasCategory| |#2| (QUOTE (-969))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (LIST (QUOTE -960) (QUOTE (-520)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#2| (QUOTE (-1012)))) (|HasAttribute| |#2| (QUOTE -4226)) (|HasCategory| |#2| (QUOTE (-124))) (-3700 (|HasCategory| |#2| (LIST (QUOTE -582) (QUOTE (-520)))) (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-209))) (|HasCategory| |#2| (QUOTE (-336))) (|HasCategory| |#2| (QUOTE (-969)))) (|HasCategory| |#2| (QUOTE (-25))) (-3700 (|HasCategory| |#2| (LIST (QUOTE -582) (QUOTE (-520)))) (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-209))) (|HasCategory| |#2| (QUOTE (-336))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-728))) (|HasCategory| |#2| (QUOTE (-781))) (|HasCategory| |#2| (QUOTE (-969))) (|HasCategory| |#2| (QUOTE (-1012)))) (-3700 (|HasCategory| |#2| (LIST (QUOTE -582) (QUOTE (-520)))) (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-209))) (|HasCategory| |#2| (QUOTE (-336))) (|HasCategory| |#2| (QUOTE (-969)))) (-3700 (-12 (|HasCategory| |#2| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#2| (LIST (QUOTE -582) (QUOTE (-520))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1083))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#2| (QUOTE (-124)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#2| (QUOTE (-157)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#2| (QUOTE (-209)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#2| (QUOTE (-336)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#2| (QUOTE (-341)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#2| (QUOTE (-728)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#2| (QUOTE (-781)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#2| (QUOTE (-969)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#2| (QUOTE (-1012))))) (-3700 (-12 (|HasCategory| |#2| (LIST (QUOTE -582) (QUOTE (-520)))) (|HasCategory| |#2| (LIST (QUOTE -960) (QUOTE (-520))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasCategory| |#2| (LIST (QUOTE -960) (QUOTE (-520))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -960) (QUOTE (-520))))) (-12 (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (LIST (QUOTE -960) (QUOTE (-520))))) (-12 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (LIST (QUOTE -960) (QUOTE (-520))))) (-12 (|HasCategory| |#2| (QUOTE (-209))) (|HasCategory| |#2| (LIST (QUOTE -960) (QUOTE (-520))))) (-12 (|HasCategory| |#2| (QUOTE (-336))) (|HasCategory| |#2| (LIST (QUOTE -960) (QUOTE (-520))))) (-12 (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -960) (QUOTE (-520))))) (-12 (|HasCategory| |#2| (QUOTE (-728))) (|HasCategory| |#2| (LIST (QUOTE -960) (QUOTE (-520))))) (-12 (|HasCategory| |#2| (QUOTE (-781))) (|HasCategory| |#2| (LIST (QUOTE -960) (QUOTE (-520))))) (-12 (|HasCategory| |#2| (QUOTE (-969))) (|HasCategory| |#2| (LIST (QUOTE -960) (QUOTE (-520))))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (LIST (QUOTE -960) (QUOTE (-520)))))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (LIST (QUOTE -283) (|devaluate| |#2|)))) (-3700 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -283) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (LIST (QUOTE -283) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (LIST (QUOTE -283) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-209))) (|HasCategory| |#2| (LIST (QUOTE -283) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-336))) (|HasCategory| |#2| (LIST (QUOTE -283) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -283) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-728))) (|HasCategory| |#2| (LIST (QUOTE -283) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-781))) (|HasCategory| |#2| (LIST (QUOTE -283) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-969))) (|HasCategory| |#2| (LIST (QUOTE -283) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (LIST (QUOTE -283) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -283) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -582) (QUOTE (-520))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -283) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1083)))))) (|HasCategory| |#2| (LIST (QUOTE -560) (QUOTE (-791)))) (-3700 (-12 (|HasCategory| |#2| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#2| (QUOTE (-1012)))) (-12 (|HasCategory| |#2| (QUOTE (-209))) (|HasCategory| |#2| (QUOTE (-969)))) (-12 (|HasCategory| |#2| (QUOTE (-969))) (|HasCategory| |#2| (LIST (QUOTE -582) (QUOTE (-520))))) (-12 (|HasCategory| |#2| (QUOTE (-969))) (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1083))))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (LIST (QUOTE -283) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (LIST (QUOTE -960) (QUOTE (-520))))) (|HasCategory| |#2| (LIST (QUOTE -560) (QUOTE (-791))))))
-(-217)
+((-4227 |has| |#2| (-970)) (-4228 |has| |#2| (-970)) (-4230 |has| |#2| (-6 -4230)) ((-4235 "*") |has| |#2| (-157)) (-4233 . T))
+((|HasCategory| |#2| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-970))) (|HasCategory| |#2| (QUOTE (-729))) (|HasCategory| |#2| (QUOTE (-782))) (-3703 (|HasCategory| |#2| (QUOTE (-729))) (|HasCategory| |#2| (QUOTE (-782)))) (|HasCategory| |#2| (QUOTE (-157))) (-3703 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-970)))) (-3703 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-337)))) (-3703 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-970)))) (|HasCategory| |#2| (QUOTE (-342))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasCategory| |#2| (QUOTE (-210))) (-3703 (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-970)))) (-3703 (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-970)))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-521) (QUOTE (-784))) (-12 (|HasCategory| |#2| (QUOTE (-970))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-970)))) (-12 (|HasCategory| |#2| (QUOTE (-970))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1084))))) (|HasCategory| |#2| (QUOTE (-663))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (-3703 (|HasCategory| |#2| (QUOTE (-970))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-1013)))) (|HasAttribute| |#2| (QUOTE -4230)) (|HasCategory| |#2| (QUOTE (-124))) (-3703 (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-970)))) (|HasCategory| |#2| (QUOTE (-25))) (-3703 (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-342))) (|HasCategory| |#2| (QUOTE (-729))) (|HasCategory| |#2| (QUOTE (-782))) (|HasCategory| |#2| (QUOTE (-970))) (|HasCategory| |#2| (QUOTE (-1013)))) (-3703 (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-970)))) (-3703 (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1084))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-124)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-157)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-210)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-337)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-342)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-729)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-782)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-970)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-1013))))) (-3703 (-12 (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (QUOTE (-337))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (QUOTE (-342))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (QUOTE (-729))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (QUOTE (-782))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (QUOTE (-970))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521)))))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-3703 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-337))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-342))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-729))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-782))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-970))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1084)))))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-792)))) (-3703 (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-970)))) (-12 (|HasCategory| |#2| (QUOTE (-970))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (QUOTE (-970))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1084))))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-792))))))
+(-218)
((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,{}i,{}s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,{}i,{}s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,{}s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type.")))
NIL
NIL
-(-218 S)
+(-219 S)
((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (^ (($ $ (|Integer|)) "\\spad{x^n} returns \\spad{x} raised to the integer power \\spad{n}.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")))
NIL
NIL
-(-219)
+(-220)
((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (^ (($ $ (|Integer|)) "\\spad{x^n} returns \\spad{x} raised to the integer power \\spad{n}.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")))
-((-4222 . T) (-4223 . T) (-4224 . T) (-4226 . T))
+((-4226 . T) (-4227 . T) (-4228 . T) (-4230 . T))
NIL
-(-220 S)
+(-221 S)
((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,{}v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,{}v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")))
((-2046 . T))
NIL
-(-221 S)
+(-222 S)
((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}")) (|coerce| (((|List| |#1|) $) "\\spad{coerce(x)} returns the list of elements in \\spad{x}") (($ (|List| |#1|)) "\\spad{coerce(l)} creates a datalist from \\spad{l}")))
-((-4230 . T) (-4229 . T))
-((|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| (-520) (QUOTE (-783))) (|HasCategory| |#1| (QUOTE (-1012))) (-3700 (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#1| (QUOTE (-1012)))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (-3700 (-12 (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-791)))) (-3700 (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-791))))))
-(-222 M)
+((-4234 . T) (-4233 . T))
+((|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| (-521) (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-1013))) (-3703 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-1013)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-792)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-792))))))
+(-223 M)
((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,{}a,{}p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}")))
NIL
NIL
-(-223 |vl| R)
+(-224 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4231 "*") |has| |#2| (-157)) (-4222 |has| |#2| (-512)) (-4227 |has| |#2| (-6 -4227)) (-4224 . T) (-4223 . T) (-4226 . T))
-((|HasCategory| |#2| (QUOTE (-837))) (|HasCategory| |#2| (QUOTE (-512))) (|HasCategory| |#2| (QUOTE (-157))) (-3700 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-512)))) (-12 (|HasCategory| (-793 |#1|) (LIST (QUOTE -814) (QUOTE (-352)))) (|HasCategory| |#2| (LIST (QUOTE -814) (QUOTE (-352))))) (-12 (|HasCategory| (-793 |#1|) (LIST (QUOTE -814) (QUOTE (-520)))) (|HasCategory| |#2| (LIST (QUOTE -814) (QUOTE (-520))))) (-12 (|HasCategory| (-793 |#1|) (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-352))))) (|HasCategory| |#2| (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-352)))))) (-12 (|HasCategory| (-793 |#1|) (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-520))))) (|HasCategory| |#2| (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-520)))))) (-12 (|HasCategory| (-793 |#1|) (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-496))))) (|HasCategory| |#2| (QUOTE (-783))) (|HasCategory| |#2| (LIST (QUOTE -582) (QUOTE (-520)))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#2| (LIST (QUOTE -960) (QUOTE (-520)))) (|HasCategory| |#2| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#2| (QUOTE (-336))) (-3700 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#2| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520)))))) (|HasAttribute| |#2| (QUOTE -4227)) (|HasCategory| |#2| (QUOTE (-424))) (-3700 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-424))) (|HasCategory| |#2| (QUOTE (-512))) (|HasCategory| |#2| (QUOTE (-837)))) (-3700 (|HasCategory| |#2| (QUOTE (-424))) (|HasCategory| |#2| (QUOTE (-512))) (|HasCategory| |#2| (QUOTE (-837)))) (-3700 (|HasCategory| |#2| (QUOTE (-424))) (|HasCategory| |#2| (QUOTE (-837)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-837)))) (-3700 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-837)))) (|HasCategory| |#2| (QUOTE (-133)))))
-(-224)
-((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: December 12,{} 2007. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type")) (|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain \\spad{`d'}.")) (|reify| (((|Syntax|) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}.")))
+(((-4235 "*") |has| |#2| (-157)) (-4226 |has| |#2| (-513)) (-4231 |has| |#2| (-6 -4231)) (-4228 . T) (-4227 . T) (-4230 . T))
+((|HasCategory| |#2| (QUOTE (-838))) (|HasCategory| |#2| (QUOTE (-513))) (|HasCategory| |#2| (QUOTE (-157))) (-3703 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-513)))) (-12 (|HasCategory| (-794 |#1|) (LIST (QUOTE -815) (QUOTE (-353)))) (|HasCategory| |#2| (LIST (QUOTE -815) (QUOTE (-353))))) (-12 (|HasCategory| (-794 |#1|) (LIST (QUOTE -815) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -815) (QUOTE (-521))))) (-12 (|HasCategory| (-794 |#1|) (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-353))))) (|HasCategory| |#2| (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-353)))))) (-12 (|HasCategory| (-794 |#1|) (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-521))))) (|HasCategory| |#2| (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-521)))))) (-12 (|HasCategory| (-794 |#1|) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-497))))) (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-337))) (-3703 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521)))))) (|HasAttribute| |#2| (QUOTE -4231)) (|HasCategory| |#2| (QUOTE (-425))) (-3703 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-425))) (|HasCategory| |#2| (QUOTE (-513))) (|HasCategory| |#2| (QUOTE (-838)))) (-3703 (|HasCategory| |#2| (QUOTE (-425))) (|HasCategory| |#2| (QUOTE (-513))) (|HasCategory| |#2| (QUOTE (-838)))) (-3703 (|HasCategory| |#2| (QUOTE (-425))) (|HasCategory| |#2| (QUOTE (-838)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-838)))) (-3703 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-838)))) (|HasCategory| |#2| (QUOTE (-133)))))
+(-225)
+((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: January 19,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall")) (|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain \\spad{`d'}.")) (|reflect| (($ (|ConstructorCall|)) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall|) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}.")))
NIL
NIL
-(-225 |n| R M S)
+(-226 |n| R M S)
((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view.")))
-((-4226 -3700 (-4006 (|has| |#4| (-969)) (|has| |#4| (-209))) (-4006 (|has| |#4| (-969)) (|has| |#4| (-828 (-1083)))) (|has| |#4| (-6 -4226)) (-4006 (|has| |#4| (-969)) (|has| |#4| (-582 (-520))))) (-4223 |has| |#4| (-969)) (-4224 |has| |#4| (-969)) ((-4231 "*") |has| |#4| (-157)) (-4229 . T))
-((|HasCategory| |#4| (QUOTE (-336))) (|HasCategory| |#4| (QUOTE (-969))) (|HasCategory| |#4| (QUOTE (-728))) (|HasCategory| |#4| (QUOTE (-781))) (-3700 (|HasCategory| |#4| (QUOTE (-728))) (|HasCategory| |#4| (QUOTE (-781)))) (|HasCategory| |#4| (QUOTE (-157))) (-3700 (|HasCategory| |#4| (QUOTE (-157))) (|HasCategory| |#4| (QUOTE (-336))) (|HasCategory| |#4| (QUOTE (-969)))) (-3700 (|HasCategory| |#4| (QUOTE (-157))) (|HasCategory| |#4| (QUOTE (-336)))) (-3700 (|HasCategory| |#4| (QUOTE (-157))) (|HasCategory| |#4| (QUOTE (-969)))) (|HasCategory| |#4| (QUOTE (-341))) (|HasCategory| |#4| (LIST (QUOTE -582) (QUOTE (-520)))) (|HasCategory| |#4| (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasCategory| |#4| (QUOTE (-209))) (-3700 (|HasCategory| |#4| (LIST (QUOTE -582) (QUOTE (-520)))) (|HasCategory| |#4| (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasCategory| |#4| (QUOTE (-157))) (|HasCategory| |#4| (QUOTE (-209))) (|HasCategory| |#4| (QUOTE (-969)))) (|HasCategory| |#4| (QUOTE (-1012))) (|HasCategory| (-520) (QUOTE (-783))) (|HasCategory| |#4| (QUOTE (-662))) (-12 (|HasCategory| |#4| (QUOTE (-969))) (|HasCategory| |#4| (LIST (QUOTE -582) (QUOTE (-520))))) (-12 (|HasCategory| |#4| (QUOTE (-969))) (|HasCategory| |#4| (LIST (QUOTE -828) (QUOTE (-1083))))) (-12 (|HasCategory| |#4| (QUOTE (-209))) (|HasCategory| |#4| (QUOTE (-969)))) (-12 (|HasCategory| |#4| (QUOTE (-1012))) (|HasCategory| |#4| (LIST (QUOTE -960) (QUOTE (-520))))) (-3700 (-12 (|HasCategory| |#4| (LIST (QUOTE -582) (QUOTE (-520)))) (|HasCategory| |#4| (LIST (QUOTE -960) (QUOTE (-520))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasCategory| |#4| (LIST (QUOTE -960) (QUOTE (-520))))) (-12 (|HasCategory| |#4| (QUOTE (-157))) (|HasCategory| |#4| (LIST (QUOTE -960) (QUOTE (-520))))) (-12 (|HasCategory| |#4| (QUOTE (-209))) (|HasCategory| |#4| (LIST (QUOTE -960) (QUOTE (-520))))) (-12 (|HasCategory| |#4| (QUOTE (-336))) (|HasCategory| |#4| (LIST (QUOTE -960) (QUOTE (-520))))) (-12 (|HasCategory| |#4| (QUOTE (-341))) (|HasCategory| |#4| (LIST (QUOTE -960) (QUOTE (-520))))) (-12 (|HasCategory| |#4| (QUOTE (-728))) (|HasCategory| |#4| (LIST (QUOTE -960) (QUOTE (-520))))) (-12 (|HasCategory| |#4| (QUOTE (-781))) (|HasCategory| |#4| (LIST (QUOTE -960) (QUOTE (-520))))) (-12 (|HasCategory| |#4| (QUOTE (-969))) (|HasCategory| |#4| (LIST (QUOTE -960) (QUOTE (-520))))) (-12 (|HasCategory| |#4| (QUOTE (-1012))) (|HasCategory| |#4| (LIST (QUOTE -960) (QUOTE (-520)))))) (-3700 (|HasCategory| |#4| (QUOTE (-969))) (-12 (|HasCategory| |#4| (QUOTE (-1012))) (|HasCategory| |#4| (LIST (QUOTE -960) (QUOTE (-520)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#4| (QUOTE (-1012)))) (-3700 (-12 (|HasCategory| |#4| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#4| (LIST (QUOTE -582) (QUOTE (-520))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#4| (LIST (QUOTE -828) (QUOTE (-1083))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#4| (QUOTE (-157)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#4| (QUOTE (-209)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#4| (QUOTE (-336)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#4| (QUOTE (-341)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#4| (QUOTE (-728)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#4| (QUOTE (-781)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#4| (QUOTE (-969)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#4| (QUOTE (-1012))))) (-3700 (|HasAttribute| |#4| (QUOTE -4226)) (-12 (|HasCategory| |#4| (QUOTE (-209))) (|HasCategory| |#4| (QUOTE (-969)))) (-12 (|HasCategory| |#4| (QUOTE (-969))) (|HasCategory| |#4| (LIST (QUOTE -582) (QUOTE (-520))))) (-12 (|HasCategory| |#4| (QUOTE (-969))) (|HasCategory| |#4| (LIST (QUOTE -828) (QUOTE (-1083)))))) (|HasCategory| |#4| (QUOTE (-124))) (|HasCategory| |#4| (QUOTE (-25))) (-12 (|HasCategory| |#4| (QUOTE (-1012))) (|HasCategory| |#4| (LIST (QUOTE -283) (|devaluate| |#4|)))) (-3700 (-12 (|HasCategory| |#4| (QUOTE (-157))) (|HasCategory| |#4| (LIST (QUOTE -283) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-209))) (|HasCategory| |#4| (LIST (QUOTE -283) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-336))) (|HasCategory| |#4| (LIST (QUOTE -283) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-341))) (|HasCategory| |#4| (LIST (QUOTE -283) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-728))) (|HasCategory| |#4| (LIST (QUOTE -283) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-781))) (|HasCategory| |#4| (LIST (QUOTE -283) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-969))) (|HasCategory| |#4| (LIST (QUOTE -283) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1012))) (|HasCategory| |#4| (LIST (QUOTE -283) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -283) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -582) (QUOTE (-520))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -283) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -828) (QUOTE (-1083)))))) (|HasCategory| |#4| (LIST (QUOTE -560) (QUOTE (-791)))))
-(-226 |n| R S)
+((-4230 -3703 (-4009 (|has| |#4| (-970)) (|has| |#4| (-210))) (-4009 (|has| |#4| (-970)) (|has| |#4| (-829 (-1084)))) (|has| |#4| (-6 -4230)) (-4009 (|has| |#4| (-970)) (|has| |#4| (-583 (-521))))) (-4227 |has| |#4| (-970)) (-4228 |has| |#4| (-970)) ((-4235 "*") |has| |#4| (-157)) (-4233 . T))
+((|HasCategory| |#4| (QUOTE (-337))) (|HasCategory| |#4| (QUOTE (-970))) (|HasCategory| |#4| (QUOTE (-729))) (|HasCategory| |#4| (QUOTE (-782))) (-3703 (|HasCategory| |#4| (QUOTE (-729))) (|HasCategory| |#4| (QUOTE (-782)))) (|HasCategory| |#4| (QUOTE (-157))) (-3703 (|HasCategory| |#4| (QUOTE (-157))) (|HasCategory| |#4| (QUOTE (-337))) (|HasCategory| |#4| (QUOTE (-970)))) (-3703 (|HasCategory| |#4| (QUOTE (-157))) (|HasCategory| |#4| (QUOTE (-337)))) (-3703 (|HasCategory| |#4| (QUOTE (-157))) (|HasCategory| |#4| (QUOTE (-970)))) (|HasCategory| |#4| (QUOTE (-342))) (|HasCategory| |#4| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#4| (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasCategory| |#4| (QUOTE (-210))) (-3703 (|HasCategory| |#4| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#4| (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasCategory| |#4| (QUOTE (-157))) (|HasCategory| |#4| (QUOTE (-210))) (|HasCategory| |#4| (QUOTE (-970)))) (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| (-521) (QUOTE (-784))) (|HasCategory| |#4| (QUOTE (-663))) (-12 (|HasCategory| |#4| (QUOTE (-970))) (|HasCategory| |#4| (LIST (QUOTE -583) (QUOTE (-521))))) (-12 (|HasCategory| |#4| (QUOTE (-970))) (|HasCategory| |#4| (LIST (QUOTE -829) (QUOTE (-1084))))) (-12 (|HasCategory| |#4| (QUOTE (-210))) (|HasCategory| |#4| (QUOTE (-970)))) (-12 (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#4| (LIST (QUOTE -961) (QUOTE (-521))))) (-3703 (-12 (|HasCategory| |#4| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#4| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasCategory| |#4| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#4| (QUOTE (-157))) (|HasCategory| |#4| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#4| (QUOTE (-210))) (|HasCategory| |#4| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#4| (QUOTE (-337))) (|HasCategory| |#4| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#4| (QUOTE (-342))) (|HasCategory| |#4| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#4| (QUOTE (-729))) (|HasCategory| |#4| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#4| (QUOTE (-782))) (|HasCategory| |#4| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#4| (QUOTE (-970))) (|HasCategory| |#4| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#4| (LIST (QUOTE -961) (QUOTE (-521)))))) (-3703 (|HasCategory| |#4| (QUOTE (-970))) (-12 (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#4| (LIST (QUOTE -961) (QUOTE (-521)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#4| (QUOTE (-1013)))) (-3703 (-12 (|HasCategory| |#4| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#4| (LIST (QUOTE -583) (QUOTE (-521))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#4| (LIST (QUOTE -829) (QUOTE (-1084))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#4| (QUOTE (-157)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#4| (QUOTE (-210)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#4| (QUOTE (-337)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#4| (QUOTE (-342)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#4| (QUOTE (-729)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#4| (QUOTE (-782)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#4| (QUOTE (-970)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#4| (QUOTE (-1013))))) (-3703 (|HasAttribute| |#4| (QUOTE -4230)) (-12 (|HasCategory| |#4| (QUOTE (-210))) (|HasCategory| |#4| (QUOTE (-970)))) (-12 (|HasCategory| |#4| (QUOTE (-970))) (|HasCategory| |#4| (LIST (QUOTE -583) (QUOTE (-521))))) (-12 (|HasCategory| |#4| (QUOTE (-970))) (|HasCategory| |#4| (LIST (QUOTE -829) (QUOTE (-1084)))))) (|HasCategory| |#4| (QUOTE (-124))) (|HasCategory| |#4| (QUOTE (-25))) (-12 (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#4| (LIST (QUOTE -284) (|devaluate| |#4|)))) (-3703 (-12 (|HasCategory| |#4| (QUOTE (-157))) (|HasCategory| |#4| (LIST (QUOTE -284) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-210))) (|HasCategory| |#4| (LIST (QUOTE -284) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-337))) (|HasCategory| |#4| (LIST (QUOTE -284) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-342))) (|HasCategory| |#4| (LIST (QUOTE -284) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-729))) (|HasCategory| |#4| (LIST (QUOTE -284) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-782))) (|HasCategory| |#4| (LIST (QUOTE -284) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-970))) (|HasCategory| |#4| (LIST (QUOTE -284) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#4| (LIST (QUOTE -284) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -284) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -583) (QUOTE (-521))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -284) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -829) (QUOTE (-1084)))))) (|HasCategory| |#4| (LIST (QUOTE -561) (QUOTE (-792)))))
+(-227 |n| R S)
((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view.")))
-((-4226 -3700 (-4006 (|has| |#3| (-969)) (|has| |#3| (-209))) (-4006 (|has| |#3| (-969)) (|has| |#3| (-828 (-1083)))) (|has| |#3| (-6 -4226)) (-4006 (|has| |#3| (-969)) (|has| |#3| (-582 (-520))))) (-4223 |has| |#3| (-969)) (-4224 |has| |#3| (-969)) ((-4231 "*") |has| |#3| (-157)) (-4229 . T))
-((|HasCategory| |#3| (QUOTE (-336))) (|HasCategory| |#3| (QUOTE (-969))) (|HasCategory| |#3| (QUOTE (-728))) (|HasCategory| |#3| (QUOTE (-781))) (-3700 (|HasCategory| |#3| (QUOTE (-728))) (|HasCategory| |#3| (QUOTE (-781)))) (|HasCategory| |#3| (QUOTE (-157))) (-3700 (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-336))) (|HasCategory| |#3| (QUOTE (-969)))) (-3700 (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-336)))) (-3700 (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-969)))) (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (LIST (QUOTE -582) (QUOTE (-520)))) (|HasCategory| |#3| (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasCategory| |#3| (QUOTE (-209))) (-3700 (|HasCategory| |#3| (LIST (QUOTE -582) (QUOTE (-520)))) (|HasCategory| |#3| (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-209))) (|HasCategory| |#3| (QUOTE (-969)))) (|HasCategory| |#3| (QUOTE (-1012))) (|HasCategory| (-520) (QUOTE (-783))) (|HasCategory| |#3| (QUOTE (-662))) (-12 (|HasCategory| |#3| (QUOTE (-969))) (|HasCategory| |#3| (LIST (QUOTE -582) (QUOTE (-520))))) (-12 (|HasCategory| |#3| (QUOTE (-969))) (|HasCategory| |#3| (LIST (QUOTE -828) (QUOTE (-1083))))) (-12 (|HasCategory| |#3| (QUOTE (-209))) (|HasCategory| |#3| (QUOTE (-969)))) (-12 (|HasCategory| |#3| (QUOTE (-1012))) (|HasCategory| |#3| (LIST (QUOTE -960) (QUOTE (-520))))) (-3700 (-12 (|HasCategory| |#3| (LIST (QUOTE -582) (QUOTE (-520)))) (|HasCategory| |#3| (LIST (QUOTE -960) (QUOTE (-520))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasCategory| |#3| (LIST (QUOTE -960) (QUOTE (-520))))) (-12 (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (LIST (QUOTE -960) (QUOTE (-520))))) (-12 (|HasCategory| |#3| (QUOTE (-209))) (|HasCategory| |#3| (LIST (QUOTE -960) (QUOTE (-520))))) (-12 (|HasCategory| |#3| (QUOTE (-336))) (|HasCategory| |#3| (LIST (QUOTE -960) (QUOTE (-520))))) (-12 (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (LIST (QUOTE -960) (QUOTE (-520))))) (-12 (|HasCategory| |#3| (QUOTE (-728))) (|HasCategory| |#3| (LIST (QUOTE -960) (QUOTE (-520))))) (-12 (|HasCategory| |#3| (QUOTE (-781))) (|HasCategory| |#3| (LIST (QUOTE -960) (QUOTE (-520))))) (-12 (|HasCategory| |#3| (QUOTE (-969))) (|HasCategory| |#3| (LIST (QUOTE -960) (QUOTE (-520))))) (-12 (|HasCategory| |#3| (QUOTE (-1012))) (|HasCategory| |#3| (LIST (QUOTE -960) (QUOTE (-520)))))) (-3700 (|HasCategory| |#3| (QUOTE (-969))) (-12 (|HasCategory| |#3| (QUOTE (-1012))) (|HasCategory| |#3| (LIST (QUOTE -960) (QUOTE (-520)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#3| (QUOTE (-1012)))) (-3700 (-12 (|HasCategory| |#3| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#3| (LIST (QUOTE -582) (QUOTE (-520))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#3| (LIST (QUOTE -828) (QUOTE (-1083))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#3| (QUOTE (-157)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#3| (QUOTE (-209)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#3| (QUOTE (-336)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#3| (QUOTE (-341)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#3| (QUOTE (-728)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#3| (QUOTE (-781)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#3| (QUOTE (-969)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#3| (QUOTE (-1012))))) (-3700 (|HasAttribute| |#3| (QUOTE -4226)) (-12 (|HasCategory| |#3| (QUOTE (-209))) (|HasCategory| |#3| (QUOTE (-969)))) (-12 (|HasCategory| |#3| (QUOTE (-969))) (|HasCategory| |#3| (LIST (QUOTE -582) (QUOTE (-520))))) (-12 (|HasCategory| |#3| (QUOTE (-969))) (|HasCategory| |#3| (LIST (QUOTE -828) (QUOTE (-1083)))))) (|HasCategory| |#3| (QUOTE (-124))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1012))) (|HasCategory| |#3| (LIST (QUOTE -283) (|devaluate| |#3|)))) (-3700 (-12 (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (LIST (QUOTE -283) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-209))) (|HasCategory| |#3| (LIST (QUOTE -283) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-336))) (|HasCategory| |#3| (LIST (QUOTE -283) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (LIST (QUOTE -283) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-728))) (|HasCategory| |#3| (LIST (QUOTE -283) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-781))) (|HasCategory| |#3| (LIST (QUOTE -283) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-969))) (|HasCategory| |#3| (LIST (QUOTE -283) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1012))) (|HasCategory| |#3| (LIST (QUOTE -283) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -283) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -582) (QUOTE (-520))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -283) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -828) (QUOTE (-1083)))))) (|HasCategory| |#3| (LIST (QUOTE -560) (QUOTE (-791)))))
-(-227 A R S V E)
+((-4230 -3703 (-4009 (|has| |#3| (-970)) (|has| |#3| (-210))) (-4009 (|has| |#3| (-970)) (|has| |#3| (-829 (-1084)))) (|has| |#3| (-6 -4230)) (-4009 (|has| |#3| (-970)) (|has| |#3| (-583 (-521))))) (-4227 |has| |#3| (-970)) (-4228 |has| |#3| (-970)) ((-4235 "*") |has| |#3| (-157)) (-4233 . T))
+((|HasCategory| |#3| (QUOTE (-337))) (|HasCategory| |#3| (QUOTE (-970))) (|HasCategory| |#3| (QUOTE (-729))) (|HasCategory| |#3| (QUOTE (-782))) (-3703 (|HasCategory| |#3| (QUOTE (-729))) (|HasCategory| |#3| (QUOTE (-782)))) (|HasCategory| |#3| (QUOTE (-157))) (-3703 (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-337))) (|HasCategory| |#3| (QUOTE (-970)))) (-3703 (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-337)))) (-3703 (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-970)))) (|HasCategory| |#3| (QUOTE (-342))) (|HasCategory| |#3| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#3| (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasCategory| |#3| (QUOTE (-210))) (-3703 (|HasCategory| |#3| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#3| (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-210))) (|HasCategory| |#3| (QUOTE (-970)))) (|HasCategory| |#3| (QUOTE (-1013))) (|HasCategory| (-521) (QUOTE (-784))) (|HasCategory| |#3| (QUOTE (-663))) (-12 (|HasCategory| |#3| (QUOTE (-970))) (|HasCategory| |#3| (LIST (QUOTE -583) (QUOTE (-521))))) (-12 (|HasCategory| |#3| (QUOTE (-970))) (|HasCategory| |#3| (LIST (QUOTE -829) (QUOTE (-1084))))) (-12 (|HasCategory| |#3| (QUOTE (-210))) (|HasCategory| |#3| (QUOTE (-970)))) (-12 (|HasCategory| |#3| (QUOTE (-1013))) (|HasCategory| |#3| (LIST (QUOTE -961) (QUOTE (-521))))) (-3703 (-12 (|HasCategory| |#3| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#3| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasCategory| |#3| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#3| (QUOTE (-210))) (|HasCategory| |#3| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#3| (QUOTE (-337))) (|HasCategory| |#3| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#3| (QUOTE (-342))) (|HasCategory| |#3| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#3| (QUOTE (-729))) (|HasCategory| |#3| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#3| (QUOTE (-782))) (|HasCategory| |#3| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#3| (QUOTE (-970))) (|HasCategory| |#3| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#3| (QUOTE (-1013))) (|HasCategory| |#3| (LIST (QUOTE -961) (QUOTE (-521)))))) (-3703 (|HasCategory| |#3| (QUOTE (-970))) (-12 (|HasCategory| |#3| (QUOTE (-1013))) (|HasCategory| |#3| (LIST (QUOTE -961) (QUOTE (-521)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#3| (QUOTE (-1013)))) (-3703 (-12 (|HasCategory| |#3| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#3| (LIST (QUOTE -583) (QUOTE (-521))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#3| (LIST (QUOTE -829) (QUOTE (-1084))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#3| (QUOTE (-157)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#3| (QUOTE (-210)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#3| (QUOTE (-337)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#3| (QUOTE (-342)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#3| (QUOTE (-729)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#3| (QUOTE (-782)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#3| (QUOTE (-970)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#3| (QUOTE (-1013))))) (-3703 (|HasAttribute| |#3| (QUOTE -4230)) (-12 (|HasCategory| |#3| (QUOTE (-210))) (|HasCategory| |#3| (QUOTE (-970)))) (-12 (|HasCategory| |#3| (QUOTE (-970))) (|HasCategory| |#3| (LIST (QUOTE -583) (QUOTE (-521))))) (-12 (|HasCategory| |#3| (QUOTE (-970))) (|HasCategory| |#3| (LIST (QUOTE -829) (QUOTE (-1084)))))) (|HasCategory| |#3| (QUOTE (-124))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1013))) (|HasCategory| |#3| (LIST (QUOTE -284) (|devaluate| |#3|)))) (-3703 (-12 (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (LIST (QUOTE -284) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-210))) (|HasCategory| |#3| (LIST (QUOTE -284) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-337))) (|HasCategory| |#3| (LIST (QUOTE -284) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-342))) (|HasCategory| |#3| (LIST (QUOTE -284) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-729))) (|HasCategory| |#3| (LIST (QUOTE -284) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-782))) (|HasCategory| |#3| (LIST (QUOTE -284) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-970))) (|HasCategory| |#3| (LIST (QUOTE -284) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1013))) (|HasCategory| |#3| (LIST (QUOTE -284) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -284) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -583) (QUOTE (-521))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -284) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -829) (QUOTE (-1084)))))) (|HasCategory| |#3| (LIST (QUOTE -561) (QUOTE (-792)))))
+(-228 A R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
NIL
-((|HasCategory| |#2| (QUOTE (-209))))
-(-228 R S V E)
+((|HasCategory| |#2| (QUOTE (-210))))
+(-229 R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
-(((-4231 "*") |has| |#1| (-157)) (-4222 |has| |#1| (-512)) (-4227 |has| |#1| (-6 -4227)) (-4224 . T) (-4223 . T) (-4226 . T))
+(((-4235 "*") |has| |#1| (-157)) (-4226 |has| |#1| (-513)) (-4231 |has| |#1| (-6 -4231)) (-4228 . T) (-4227 . T) (-4230 . T))
NIL
-(-229 S)
+(-230 S)
((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}.")))
-((-4229 . T) (-4230 . T) (-2046 . T))
+((-4233 . T) (-4234 . T) (-2046 . T))
NIL
-(-230)
+(-231)
((|constructor| (NIL "TopLevelDrawFunctionsForCompiledFunctions provides top level functions for drawing graphics of expressions.")) (|recolor| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{recolor()},{} uninteresting to top level user; exported in order to compile package.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)},{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g),{}a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")))
NIL
NIL
-(-231 R |Ex|)
+(-232 R |Ex|)
((|constructor| (NIL "TopLevelDrawFunctionsForAlgebraicCurves provides top level functions for drawing non-singular algebraic curves.")) (|draw| (((|TwoDimensionalViewport|) (|Equation| |#2|) (|Symbol|) (|Symbol|) (|List| (|DrawOption|))) "\\spad{draw(f(x,{}y) = g(x,{}y),{}x,{}y,{}l)} draws the graph of a polynomial equation. The list \\spad{l} of draw options must specify a region in the plane in which the curve is to sketched.")))
NIL
NIL
-(-232)
+(-233)
((|setClipValue| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{setClipValue(x)} sets to \\spad{x} the maximum value to plot when drawing complex functions. Returns \\spad{x}.")) (|setImagSteps| (((|Integer|) (|Integer|)) "\\spad{setImagSteps(i)} sets to \\spad{i} the number of steps to use in the imaginary direction when drawing complex functions. Returns \\spad{i}.")) (|setRealSteps| (((|Integer|) (|Integer|)) "\\spad{setRealSteps(i)} sets to \\spad{i} the number of steps to use in the real direction when drawing complex functions. Returns \\spad{i}.")) (|drawComplexVectorField| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{drawComplexVectorField(f,{}rRange,{}iRange)} draws a complex vector field using arrows on the \\spad{x--y} plane. These vector fields should be viewed from the top by pressing the \"XY\" translate button on the 3-\\spad{d} viewport control panel.\\newline Sample call: \\indented{3}{\\spad{f z == sin z}} \\indented{3}{\\spad{drawComplexVectorField(f,{} -2..2,{} -2..2)}} Parameter descriptions: \\indented{2}{\\spad{f} : the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of the imaginary values} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction.")) (|drawComplex| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Boolean|)) "\\spad{drawComplex(f,{}rRange,{}iRange,{}arrows?)} draws a complex function as a height field. It uses the complex norm as the height and the complex argument as the color. It will optionally draw arrows on the surface indicating the direction of the complex value.\\newline Sample call: \\indented{2}{\\spad{f z == exp(1/z)}} \\indented{2}{\\spad{drawComplex(f,{} 0.3..3,{} 0..2*\\%\\spad{pi},{} false)}} Parameter descriptions: \\indented{2}{\\spad{f:}\\space{2}the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of imaginary values} \\indented{2}{\\spad{arrows?} : a flag indicating whether to draw the phase arrows for \\spad{f}} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction.")))
NIL
NIL
-(-233 R)
+(-234 R)
((|constructor| (NIL "Hack for the draw interface. DrawNumericHack provides a \"coercion\" from something of the form \\spad{x = a..b} where \\spad{a} and \\spad{b} are formal expressions to a binding of the form \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}. This \"coercion\" fails if \\spad{a} and \\spad{b} contains symbolic variables,{} but is meant for expressions involving \\%\\spad{pi}.")) (|coerce| (((|SegmentBinding| (|Float|)) (|SegmentBinding| (|Expression| |#1|))) "\\spad{coerce(x = a..b)} returns \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}.")))
NIL
NIL
-(-234 |Ex|)
+(-235 |Ex|)
((|constructor| (NIL "TopLevelDrawFunctions provides top level functions for drawing graphics of expressions.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(f(x,{}y),{}x = a..b,{}y = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} appears as the default title.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f(x,{}y),{}x = a..b,{}y = c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{makeObject(curve(f(t),{}g(t),{}h(t)),{}t = a..b)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f(t),{}g(t),{}h(t)),{}t = a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d,{}l)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(f(x,{}y),{}x = a..b,{}y = c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} appears in the title bar.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x,{}y),{}x = a..b,{}y = c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),{}g(t),{}h(t)),{}t = a..b)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),{}g(t),{}h(t)),{}t = a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),{}g(t)),{}t = a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{(f(t),{}g(t))} appears in the title bar.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),{}g(t)),{}t = a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{(f(t),{}g(t))} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|))) "\\spad{draw(f(x),{}x = a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{f(x)} appears in the title bar.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x),{}x = a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{f(x)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")))
NIL
NIL
-(-235)
+(-236)
((|constructor| (NIL "TopLevelDrawFunctionsForPoints provides top level functions for drawing curves and surfaces described by sets of points.")) (|draw| (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,{}ly,{}lz,{}l)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,{}ly,{}lz)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the \\axiom{\\spad{lx} \\spad{X} \\spad{ly}}.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|))) (|List| (|DrawOption|))) "\\spad{draw(lp,{}l)} plots the curve constructed from the list of points \\spad{lp}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|)))) "\\spad{draw(lp)} plots the curve constructed from the list of points \\spad{lp}.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,{}ly,{}l)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,{}ly)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}.")))
NIL
NIL
-(-236)
+(-237)
((|constructor| (NIL "This package \\undocumented{}")) (|units| (((|List| (|Float|)) (|List| (|DrawOption|)) (|List| (|Float|))) "\\spad{units(l,{}u)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{unit}. If the option does not exist the value,{} \\spad{u} is returned.")) (|coord| (((|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{coord}. If the option does not exist the value,{} \\spad{p} is returned.")) (|tubeRadius| (((|Float|) (|List| (|DrawOption|)) (|Float|)) "\\spad{tubeRadius(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubeRadius}. If the option does not exist the value,{} \\spad{n} is returned.")) (|tubePoints| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{tubePoints(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubePoints}. If the option does not exist the value,{} \\spad{n} is returned.")) (|space| (((|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{space(l)} takes a list of draw options,{} \\spad{l},{} and checks to see if it contains the option \\spad{space}. If the the option doesn\\spad{'t} exist,{} then an empty space is returned.")) (|var2Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var2Steps(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var2Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|var1Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var1Steps(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var1Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|ranges| (((|List| (|Segment| (|Float|))) (|List| (|DrawOption|)) (|List| (|Segment| (|Float|)))) "\\spad{ranges(l,{}r)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{ranges}. If the option does not exist the value,{} \\spad{r} is returned.")) (|curveColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{curveColorPalette(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{curveColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|pointColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{pointColorPalette(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{pointColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|toScale| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{toScale(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{toScale}. If the option does not exist the value,{} \\spad{b} is returned.")) (|style| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{style(l,{}s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{style}. If the option does not exist the value,{} \\spad{s} is returned.")) (|title| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{title(l,{}s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{title}. If the option does not exist the value,{} \\spad{s} is returned.")) (|viewpoint| (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(l,{}ls)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{viewpoint}. IF the option does not exist,{} the value \\spad{ls} is returned.")) (|clipBoolean| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{clipBoolean(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{clipBoolean}. If the option does not exist the value,{} \\spad{b} is returned.")) (|adaptive| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{adaptive(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{adaptive}. If the option does not exist the value,{} \\spad{b} is returned.")))
NIL
NIL
-(-237 S)
+(-238 S)
((|constructor| (NIL "This package \\undocumented{}")) (|option| (((|Union| |#1| "failed") (|List| (|DrawOption|)) (|Symbol|)) "\\spad{option(l,{}s)} determines whether the indicated drawing option,{} \\spad{s},{} is contained in the list of drawing options,{} \\spad{l},{} which is defined by the draw command.")))
NIL
NIL
-(-238)
+(-239)
((|constructor| (NIL "DrawOption allows the user to specify defaults for the creation and rendering of plots.")) (|option?| (((|Boolean|) (|List| $) (|Symbol|)) "\\spad{option?()} is not to be used at the top level; option? internally returns \\spad{true} for drawing options which are indicated in a draw command,{} or \\spad{false} for those which are not.")) (|option| (((|Union| (|Any|) "failed") (|List| $) (|Symbol|)) "\\spad{option()} is not to be used at the top level; option determines internally which drawing options are indicated in a draw command.")) (|unit| (($ (|List| (|Float|))) "\\spad{unit(lf)} will mark off the units according to the indicated list \\spad{lf}. This option is expressed in the form \\spad{unit == [f1,{}f2]}.")) (|coord| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(p)} specifies a change of coordinates of point \\spad{p}. This option is expressed in the form \\spad{coord == p}.")) (|tubePoints| (($ (|PositiveInteger|)) "\\spad{tubePoints(n)} specifies the number of points,{} \\spad{n},{} defining the circle which creates the tube around a 3D curve,{} the default is 6. This option is expressed in the form \\spad{tubePoints == n}.")) (|var2Steps| (($ (|PositiveInteger|)) "\\spad{var2Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the second range variable. This option is expressed in the form \\spad{var2Steps == n}.")) (|var1Steps| (($ (|PositiveInteger|)) "\\spad{var1Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the first range variable. This option is expressed in the form \\spad{var1Steps == n}.")) (|space| (($ (|ThreeSpace| (|DoubleFloat|))) "\\spad{space specifies} the space into which we will draw. If none is given then a new space is created.")) (|ranges| (($ (|List| (|Segment| (|Float|)))) "\\spad{ranges(l)} provides a list of user-specified ranges \\spad{l}. This option is expressed in the form \\spad{ranges == l}.")) (|range| (($ (|List| (|Segment| (|Fraction| (|Integer|))))) "\\spad{range([i])} provides a user-specified range \\spad{i}. This option is expressed in the form \\spad{range == [i]}.") (($ (|List| (|Segment| (|Float|)))) "\\spad{range([l])} provides a user-specified range \\spad{l}. This option is expressed in the form \\spad{range == [l]}.")) (|tubeRadius| (($ (|Float|)) "\\spad{tubeRadius(r)} specifies a radius,{} \\spad{r},{} for a tube plot around a 3D curve; is expressed in the form \\spad{tubeRadius == 4}.")) (|colorFunction| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(x,{}y,{}z))} specifies the color for three dimensional plots as a function of \\spad{x},{} \\spad{y},{} and \\spad{z} coordinates. This option is expressed in the form \\spad{colorFunction == f(x,{}y,{}z)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(u,{}v))} specifies the color for three dimensional plots as a function based upon the two parametric variables. This option is expressed in the form \\spad{colorFunction == f(u,{}v)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(z))} specifies the color based upon the \\spad{z}-component of three dimensional plots. This option is expressed in the form \\spad{colorFunction == f(z)}.")) (|curveColor| (($ (|Palette|)) "\\spad{curveColor(p)} specifies a color index for 2D graph curves from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{curveColor ==p}.") (($ (|Float|)) "\\spad{curveColor(v)} specifies a color,{} \\spad{v},{} for 2D graph curves. This option is expressed in the form \\spad{curveColor == v}.")) (|pointColor| (($ (|Palette|)) "\\spad{pointColor(p)} specifies a color index for 2D graph points from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{pointColor == p}.") (($ (|Float|)) "\\spad{pointColor(v)} specifies a color,{} \\spad{v},{} for 2D graph points. This option is expressed in the form \\spad{pointColor == v}.")) (|coordinates| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coordinates(p)} specifies a change of coordinate systems of point \\spad{p}. This option is expressed in the form \\spad{coordinates == p}.")) (|toScale| (($ (|Boolean|)) "\\spad{toScale(b)} specifies whether or not a plot is to be drawn to scale; if \\spad{b} is \\spad{true} it is drawn to scale,{} if \\spad{b} is \\spad{false} it is not. This option is expressed in the form \\spad{toScale == b}.")) (|style| (($ (|String|)) "\\spad{style(s)} specifies the drawing style in which the graph will be plotted by the indicated string \\spad{s}. This option is expressed in the form \\spad{style == s}.")) (|title| (($ (|String|)) "\\spad{title(s)} specifies a title for a plot by the indicated string \\spad{s}. This option is expressed in the form \\spad{title == s}.")) (|viewpoint| (($ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(vp)} creates a viewpoint data structure corresponding to the list of values. The values are interpreted as [theta,{} phi,{} scale,{} scaleX,{} scaleY,{} scaleZ,{} deltaX,{} deltaY]. This option is expressed in the form \\spad{viewpoint == ls}.")) (|clip| (($ (|List| (|Segment| (|Float|)))) "\\spad{clip([l])} provides ranges for user-defined clipping as specified in the list \\spad{l}. This option is expressed in the form \\spad{clip == [l]}.") (($ (|Boolean|)) "\\spad{clip(b)} turns 2D clipping on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{clip == b}.")) (|adaptive| (($ (|Boolean|)) "\\spad{adaptive(b)} turns adaptive 2D plotting on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{adaptive == b}.")))
NIL
NIL
-(-239 R S V)
+(-240 R S V)
((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline")))
-(((-4231 "*") |has| |#1| (-157)) (-4222 |has| |#1| (-512)) (-4227 |has| |#1| (-6 -4227)) (-4224 . T) (-4223 . T) (-4226 . T))
-((|HasCategory| |#1| (QUOTE (-837))) (|HasCategory| |#1| (QUOTE (-512))) (|HasCategory| |#1| (QUOTE (-157))) (-3700 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-512)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -814) (QUOTE (-352)))) (|HasCategory| |#3| (LIST (QUOTE -814) (QUOTE (-352))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -814) (QUOTE (-520)))) (|HasCategory| |#3| (LIST (QUOTE -814) (QUOTE (-520))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-352))))) (|HasCategory| |#3| (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-352)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-520))))) (|HasCategory| |#3| (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-520)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| |#3| (LIST (QUOTE -561) (QUOTE (-496))))) (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#1| (LIST (QUOTE -582) (QUOTE (-520)))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#1| (LIST (QUOTE -960) (QUOTE (-520)))) (|HasCategory| |#1| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#1| (QUOTE (-209))) (|HasCategory| |#1| (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasCategory| |#1| (QUOTE (-336))) (-3700 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#1| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520)))))) (|HasAttribute| |#1| (QUOTE -4227)) (|HasCategory| |#1| (QUOTE (-424))) (-3700 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-424))) (|HasCategory| |#1| (QUOTE (-512))) (|HasCategory| |#1| (QUOTE (-837)))) (-3700 (|HasCategory| |#1| (QUOTE (-424))) (|HasCategory| |#1| (QUOTE (-512))) (|HasCategory| |#1| (QUOTE (-837)))) (-3700 (|HasCategory| |#1| (QUOTE (-424))) (|HasCategory| |#1| (QUOTE (-837)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-837)))) (-3700 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-837)))) (|HasCategory| |#1| (QUOTE (-133)))))
-(-240 A S)
+(((-4235 "*") |has| |#1| (-157)) (-4226 |has| |#1| (-513)) (-4231 |has| |#1| (-6 -4231)) (-4228 . T) (-4227 . T) (-4230 . T))
+((|HasCategory| |#1| (QUOTE (-838))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-157))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-513)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-353)))) (|HasCategory| |#3| (LIST (QUOTE -815) (QUOTE (-353))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-521)))) (|HasCategory| |#3| (LIST (QUOTE -815) (QUOTE (-521))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-353))))) (|HasCategory| |#3| (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-353)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-521))))) (|HasCategory| |#3| (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-521)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#3| (LIST (QUOTE -562) (QUOTE (-497))))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (QUOTE (-210))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasCategory| |#1| (QUOTE (-337))) (-3703 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521)))))) (|HasAttribute| |#1| (QUOTE -4231)) (|HasCategory| |#1| (QUOTE (-425))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-425))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-838)))) (-3703 (|HasCategory| |#1| (QUOTE (-425))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-838)))) (-3703 (|HasCategory| |#1| (QUOTE (-425))) (|HasCategory| |#1| (QUOTE (-838)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-838)))) (-3703 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (QUOTE (-133)))))
+(-241 A S)
((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v,{} n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s,{} n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate.")))
NIL
NIL
-(-241 S)
+(-242 S)
((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v,{} n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#1| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#1| (|NonNegativeInteger|)) "\\spad{makeVariable(s,{} n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate.")))
NIL
NIL
-(-242)
+(-243)
((|optAttributes| (((|List| (|String|)) (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{optAttributes(o)} is a function for supplying a list of attributes of an optimization problem.")) (|expenseOfEvaluation| (((|Float|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{expenseOfEvaluation(o)} returns the intensity value of the cost of evaluating the input set of functions. This is in terms of the number of ``operational units\\spad{''}. It returns a value in the range [0,{}1].")) (|changeNameToObjf| (((|Result|) (|Symbol|) (|Result|)) "\\spad{changeNameToObjf(s,{}r)} changes the name of item \\axiom{\\spad{s}} in \\axiom{\\spad{r}} to objf.")) (|varList| (((|List| (|Symbol|)) (|Expression| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{varList(e,{}n)} returns a list of \\axiom{\\spad{n}} indexed variables with name as in \\axiom{\\spad{e}}.")) (|variables| (((|List| (|Symbol|)) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{variables(args)} returns the list of variables in \\axiom{\\spad{args}.\\spad{lfn}}")) (|quadratic?| (((|Boolean|) (|Expression| (|DoubleFloat|))) "\\spad{quadratic?(e)} tests if \\axiom{\\spad{e}} is a quadratic function.")) (|nonLinearPart| (((|List| (|Expression| (|DoubleFloat|))) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{nonLinearPart(l)} returns the list of non-linear functions of \\axiom{\\spad{l}}.")) (|linearPart| (((|List| (|Expression| (|DoubleFloat|))) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{linearPart(l)} returns the list of linear functions of \\axiom{\\spad{l}}.")) (|linearMatrix| (((|Matrix| (|DoubleFloat|)) (|List| (|Expression| (|DoubleFloat|))) (|NonNegativeInteger|)) "\\spad{linearMatrix(l,{}n)} returns a matrix of coefficients of the linear functions in \\axiom{\\spad{l}}. If \\spad{l} is empty,{} the matrix has at least one row.")) (|linear?| (((|Boolean|) (|Expression| (|DoubleFloat|))) "\\spad{linear?(e)} tests if \\axiom{\\spad{e}} is a linear function.") (((|Boolean|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{linear?(l)} returns \\spad{true} if all the bounds \\spad{l} are either linear or simple.")) (|simpleBounds?| (((|Boolean|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{simpleBounds?(l)} returns \\spad{true} if the list of expressions \\spad{l} are simple.")) (|splitLinear| (((|Expression| (|DoubleFloat|)) (|Expression| (|DoubleFloat|))) "\\spad{splitLinear(f)} splits the linear part from an expression which it returns.")) (|sumOfSquares| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{sumOfSquares(f)} returns either an expression for which the square is the original function of \"failed\".")) (|sortConstraints| (((|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|))))) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{sortConstraints(args)} uses a simple bubblesort on the list of constraints using the degree of the expression on which to sort. Of course,{} it must match the bounds to the constraints.")) (|finiteBound| (((|List| (|DoubleFloat|)) (|List| (|OrderedCompletion| (|DoubleFloat|))) (|DoubleFloat|)) "\\spad{finiteBound(l,{}b)} repaces all instances of an infinite entry in \\axiom{\\spad{l}} by a finite entry \\axiom{\\spad{b}} or \\axiom{\\spad{-b}}.")))
NIL
NIL
-(-243)
+(-244)
((|constructor| (NIL "\\axiomType{e04dgfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04DGF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04DGF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}.")))
NIL
NIL
-(-244)
+(-245)
((|constructor| (NIL "\\axiomType{e04fdfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04FDF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04FDF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}.")))
NIL
NIL
-(-245)
+(-246)
((|constructor| (NIL "\\axiomType{e04gcfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04GCF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04GCF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}.")))
NIL
NIL
-(-246)
+(-247)
((|constructor| (NIL "\\axiomType{e04jafAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04JAF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04JAF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}.")))
NIL
NIL
-(-247)
+(-248)
((|constructor| (NIL "\\axiomType{e04mbfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04MBF,{} an optimization routine for Linear functions. The function \\axiomFun{measure} measures the usefulness of the routine E04MBF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}.")))
NIL
NIL
-(-248)
+(-249)
((|constructor| (NIL "\\axiomType{e04nafAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04NAF,{} an optimization routine for Quadratic functions. The function \\axiomFun{measure} measures the usefulness of the routine E04NAF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}.")))
NIL
NIL
-(-249)
+(-250)
((|constructor| (NIL "\\axiomType{e04ucfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04UCF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04UCF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}.")))
NIL
NIL
-(-250)
+(-251)
((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1\\spad{'s} in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0\\spad{'s} and 1\\spad{'s} into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1.")))
NIL
NIL
-(-251 R -4045)
+(-252 R -4049)
((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,{}l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{\\spad{pi}()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}")))
NIL
NIL
-(-252 R -4045)
+(-253 R -4049)
((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,{}a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f,{} k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,{}...,{}kn],{}f,{}x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,{}x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f,{} x)} returns \\spad{[g,{} [k1,{}...,{}kn],{} [h1,{}...,{}hn]]} such that \\spad{g = normalize(f,{} x)} and each \\spad{\\spad{ki}} was rewritten as \\spad{\\spad{hi}} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f,{} x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels.")))
NIL
NIL
-(-253 |Coef| UTS ULS)
+(-254 |Coef| UTS ULS)
((|constructor| (NIL "\\indented{1}{This package provides elementary functions on any Laurent series} domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return \"failed\" when this is not possible.")) (|acsch| ((|#3| |#3|) "\\spad{acsch(z)} returns the inverse hyperbolic cosecant of Laurent series \\spad{z}.")) (|asech| ((|#3| |#3|) "\\spad{asech(z)} returns the inverse hyperbolic secant of Laurent series \\spad{z}.")) (|acoth| ((|#3| |#3|) "\\spad{acoth(z)} returns the inverse hyperbolic cotangent of Laurent series \\spad{z}.")) (|atanh| ((|#3| |#3|) "\\spad{atanh(z)} returns the inverse hyperbolic tangent of Laurent series \\spad{z}.")) (|acosh| ((|#3| |#3|) "\\spad{acosh(z)} returns the inverse hyperbolic cosine of Laurent series \\spad{z}.")) (|asinh| ((|#3| |#3|) "\\spad{asinh(z)} returns the inverse hyperbolic sine of Laurent series \\spad{z}.")) (|csch| ((|#3| |#3|) "\\spad{csch(z)} returns the hyperbolic cosecant of Laurent series \\spad{z}.")) (|sech| ((|#3| |#3|) "\\spad{sech(z)} returns the hyperbolic secant of Laurent series \\spad{z}.")) (|coth| ((|#3| |#3|) "\\spad{coth(z)} returns the hyperbolic cotangent of Laurent series \\spad{z}.")) (|tanh| ((|#3| |#3|) "\\spad{tanh(z)} returns the hyperbolic tangent of Laurent series \\spad{z}.")) (|cosh| ((|#3| |#3|) "\\spad{cosh(z)} returns the hyperbolic cosine of Laurent series \\spad{z}.")) (|sinh| ((|#3| |#3|) "\\spad{sinh(z)} returns the hyperbolic sine of Laurent series \\spad{z}.")) (|acsc| ((|#3| |#3|) "\\spad{acsc(z)} returns the arc-cosecant of Laurent series \\spad{z}.")) (|asec| ((|#3| |#3|) "\\spad{asec(z)} returns the arc-secant of Laurent series \\spad{z}.")) (|acot| ((|#3| |#3|) "\\spad{acot(z)} returns the arc-cotangent of Laurent series \\spad{z}.")) (|atan| ((|#3| |#3|) "\\spad{atan(z)} returns the arc-tangent of Laurent series \\spad{z}.")) (|acos| ((|#3| |#3|) "\\spad{acos(z)} returns the arc-cosine of Laurent series \\spad{z}.")) (|asin| ((|#3| |#3|) "\\spad{asin(z)} returns the arc-sine of Laurent series \\spad{z}.")) (|csc| ((|#3| |#3|) "\\spad{csc(z)} returns the cosecant of Laurent series \\spad{z}.")) (|sec| ((|#3| |#3|) "\\spad{sec(z)} returns the secant of Laurent series \\spad{z}.")) (|cot| ((|#3| |#3|) "\\spad{cot(z)} returns the cotangent of Laurent series \\spad{z}.")) (|tan| ((|#3| |#3|) "\\spad{tan(z)} returns the tangent of Laurent series \\spad{z}.")) (|cos| ((|#3| |#3|) "\\spad{cos(z)} returns the cosine of Laurent series \\spad{z}.")) (|sin| ((|#3| |#3|) "\\spad{sin(z)} returns the sine of Laurent series \\spad{z}.")) (|log| ((|#3| |#3|) "\\spad{log(z)} returns the logarithm of Laurent series \\spad{z}.")) (|exp| ((|#3| |#3|) "\\spad{exp(z)} returns the exponential of Laurent series \\spad{z}.")) (** ((|#3| |#3| (|Fraction| (|Integer|))) "\\spad{s ** r} raises a Laurent series \\spad{s} to a rational power \\spad{r}")))
NIL
-((|HasCategory| |#1| (QUOTE (-336))))
-(-254 |Coef| ULS UPXS EFULS)
+((|HasCategory| |#1| (QUOTE (-337))))
+(-255 |Coef| ULS UPXS EFULS)
((|constructor| (NIL "\\indented{1}{This package provides elementary functions on any Laurent series} domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return \"failed\" when this is not possible.")) (|acsch| ((|#3| |#3|) "\\spad{acsch(z)} returns the inverse hyperbolic cosecant of a Puiseux series \\spad{z}.")) (|asech| ((|#3| |#3|) "\\spad{asech(z)} returns the inverse hyperbolic secant of a Puiseux series \\spad{z}.")) (|acoth| ((|#3| |#3|) "\\spad{acoth(z)} returns the inverse hyperbolic cotangent of a Puiseux series \\spad{z}.")) (|atanh| ((|#3| |#3|) "\\spad{atanh(z)} returns the inverse hyperbolic tangent of a Puiseux series \\spad{z}.")) (|acosh| ((|#3| |#3|) "\\spad{acosh(z)} returns the inverse hyperbolic cosine of a Puiseux series \\spad{z}.")) (|asinh| ((|#3| |#3|) "\\spad{asinh(z)} returns the inverse hyperbolic sine of a Puiseux series \\spad{z}.")) (|csch| ((|#3| |#3|) "\\spad{csch(z)} returns the hyperbolic cosecant of a Puiseux series \\spad{z}.")) (|sech| ((|#3| |#3|) "\\spad{sech(z)} returns the hyperbolic secant of a Puiseux series \\spad{z}.")) (|coth| ((|#3| |#3|) "\\spad{coth(z)} returns the hyperbolic cotangent of a Puiseux series \\spad{z}.")) (|tanh| ((|#3| |#3|) "\\spad{tanh(z)} returns the hyperbolic tangent of a Puiseux series \\spad{z}.")) (|cosh| ((|#3| |#3|) "\\spad{cosh(z)} returns the hyperbolic cosine of a Puiseux series \\spad{z}.")) (|sinh| ((|#3| |#3|) "\\spad{sinh(z)} returns the hyperbolic sine of a Puiseux series \\spad{z}.")) (|acsc| ((|#3| |#3|) "\\spad{acsc(z)} returns the arc-cosecant of a Puiseux series \\spad{z}.")) (|asec| ((|#3| |#3|) "\\spad{asec(z)} returns the arc-secant of a Puiseux series \\spad{z}.")) (|acot| ((|#3| |#3|) "\\spad{acot(z)} returns the arc-cotangent of a Puiseux series \\spad{z}.")) (|atan| ((|#3| |#3|) "\\spad{atan(z)} returns the arc-tangent of a Puiseux series \\spad{z}.")) (|acos| ((|#3| |#3|) "\\spad{acos(z)} returns the arc-cosine of a Puiseux series \\spad{z}.")) (|asin| ((|#3| |#3|) "\\spad{asin(z)} returns the arc-sine of a Puiseux series \\spad{z}.")) (|csc| ((|#3| |#3|) "\\spad{csc(z)} returns the cosecant of a Puiseux series \\spad{z}.")) (|sec| ((|#3| |#3|) "\\spad{sec(z)} returns the secant of a Puiseux series \\spad{z}.")) (|cot| ((|#3| |#3|) "\\spad{cot(z)} returns the cotangent of a Puiseux series \\spad{z}.")) (|tan| ((|#3| |#3|) "\\spad{tan(z)} returns the tangent of a Puiseux series \\spad{z}.")) (|cos| ((|#3| |#3|) "\\spad{cos(z)} returns the cosine of a Puiseux series \\spad{z}.")) (|sin| ((|#3| |#3|) "\\spad{sin(z)} returns the sine of a Puiseux series \\spad{z}.")) (|log| ((|#3| |#3|) "\\spad{log(z)} returns the logarithm of a Puiseux series \\spad{z}.")) (|exp| ((|#3| |#3|) "\\spad{exp(z)} returns the exponential of a Puiseux series \\spad{z}.")) (** ((|#3| |#3| (|Fraction| (|Integer|))) "\\spad{z ** r} raises a Puiseaux series \\spad{z} to a rational power \\spad{r}")))
NIL
-((|HasCategory| |#1| (QUOTE (-336))))
-(-255 A S)
+((|HasCategory| |#1| (QUOTE (-337))))
+(-256 A S)
((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-783))) (|HasCategory| |#2| (QUOTE (-1012))))
-(-256 S)
+((|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-1013))))
+(-257 S)
((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}.")))
-((-4230 . T) (-2046 . T))
+((-4234 . T) (-2046 . T))
NIL
-(-257 S)
+(-258 S)
((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}.")))
NIL
NIL
-(-258)
+(-259)
((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}.")))
NIL
NIL
-(-259 |Coef| UTS)
+(-260 |Coef| UTS)
((|constructor| (NIL "The elliptic functions \\spad{sn},{} \\spad{sc} and \\spad{dn} are expanded as Taylor series.")) (|sncndn| (((|List| (|Stream| |#1|)) (|Stream| |#1|) |#1|) "\\spad{sncndn(s,{}c)} is used internally.")) (|dn| ((|#2| |#2| |#1|) "\\spad{dn(x,{}k)} expands the elliptic function \\spad{dn} as a Taylor \\indented{1}{series.}")) (|cn| ((|#2| |#2| |#1|) "\\spad{cn(x,{}k)} expands the elliptic function \\spad{cn} as a Taylor \\indented{1}{series.}")) (|sn| ((|#2| |#2| |#1|) "\\spad{sn(x,{}k)} expands the elliptic function \\spad{sn} as a Taylor \\indented{1}{series.}")))
NIL
NIL
-(-260 S |Index|)
+(-261 S |Index|)
((|constructor| (NIL "An eltable over domains \\spad{D} and \\spad{I} is a structure which can be viewed as a function from \\spad{D} to \\spad{I}. Examples of eltable structures range from data structures,{} \\spadignore{e.g.} those of type \\spadtype{List},{} to algebraic structures,{} \\spadignore{e.g.} \\spadtype{Polynomial}.")) (|elt| ((|#2| $ |#1|) "\\spad{elt(u,{}i)} (also written: \\spad{u} . \\spad{i}) returns the element of \\spad{u} indexed by \\spad{i}. Error: if \\spad{i} is not an index of \\spad{u}.")))
NIL
NIL
-(-261 S |Dom| |Im|)
+(-262 S |Dom| |Im|)
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4230)))
-(-262 |Dom| |Im|)
+((|HasAttribute| |#1| (QUOTE -4234)))
+(-263 |Dom| |Im|)
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
NIL
-(-263 S R |Mod| -2742 -1819 |exactQuo|)
+(-264 S R |Mod| -2633 -1318 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|elt| ((|#2| $ |#2|) "\\spad{elt(x,{}r)} or \\spad{x}.\\spad{r} \\undocumented")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented")))
-((-4222 . T) ((-4231 "*") . T) (-4223 . T) (-4224 . T) (-4226 . T))
+((-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
NIL
-(-264)
+(-265)
((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero.")))
-((-4222 . T) (-4223 . T) (-4224 . T) (-4226 . T))
+((-4226 . T) (-4227 . T) (-4228 . T) (-4230 . T))
NIL
-(-265)
+(-266)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 19,{} 2008. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|currentEnv| (($) "the current normal environment in effect.")) (|setProperties!| (($ (|Symbol|) (|List| (|ObjectProperty|)) $) "setBinding!(\\spad{n},{}props,{}\\spad{e}) set the list of properties of \\spad{`n'} to `props' in `e'.")) (|getProperties| (((|Union| (|List| (|ObjectProperty|)) "failed") (|Symbol|) $) "getBinding(\\spad{n},{}\\spad{e}) returns the list of properties of \\spad{`n'} in \\spad{e}; otherwise `failed'.")) (|setProperty!| (($ (|Symbol|) (|Symbol|) (|SExpression|) $) "\\spad{setProperty!(n,{}p,{}v,{}e)} binds the property `(\\spad{p},{}\\spad{v})' to \\spad{`n'} in the topmost scope of `e'.")) (|getProperty| (((|Union| (|SExpression|) "failed") (|Symbol|) (|Symbol|) $) "\\spad{getProperty(n,{}p,{}e)} returns the value of property with name \\spad{`p'} for the symbol \\spad{`n'} in environment `e'. Otherwise,{} `failed'.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment")))
NIL
NIL
-(-266 R)
+(-267 R)
((|constructor| (NIL "This is a package for the exact computation of eigenvalues and eigenvectors. This package can be made to work for matrices with coefficients which are rational functions over a ring where we can factor polynomials. Rational eigenvalues are always explicitly computed while the non-rational ones are expressed in terms of their minimal polynomial.")) (|eigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvectors(m)} returns the eigenvalues and eigenvectors for the matrix \\spad{m}. The rational eigenvalues and the correspondent eigenvectors are explicitely computed,{} while the non rational ones are given via their minimal polynomial and the corresponding eigenvectors are expressed in terms of a \"generic\" root of such a polynomial.")) (|generalizedEigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |geneigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvectors(m)} returns the generalized eigenvectors of the matrix \\spad{m}.")) (|generalizedEigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvector(eigen,{}m)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{eigen},{} as returned by the function eigenvectors.") (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generalizedEigenvector(alpha,{}m,{}k,{}g)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{alpha}. The integers \\spad{k} and \\spad{g} are respectively the algebraic and the geometric multiplicity of tye eigenvalue \\spad{alpha}. \\spad{alpha} can be either rational or not. In the seconda case apha is the minimal polynomial of the eigenvalue.")) (|eigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvector(eigval,{}m)} returns the eigenvectors belonging to the eigenvalue \\spad{eigval} for the matrix \\spad{m}.")) (|eigenvalues| (((|List| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvalues(m)} returns the eigenvalues of the matrix \\spad{m} which are expressible as rational functions over the rational numbers.")) (|characteristicPolynomial| (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{characteristicPolynomial(m)} returns the characteristicPolynomial of the matrix \\spad{m} using a new generated symbol symbol as the main variable.") (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}var)} returns the characteristicPolynomial of the matrix \\spad{m} using the symbol \\spad{var} as the main variable.")))
NIL
NIL
-(-267 S R)
+(-268 S R)
((|constructor| (NIL "This package provides operations for mapping the sides of equations.")) (|map| (((|Equation| |#2|) (|Mapping| |#2| |#1|) (|Equation| |#1|)) "\\spad{map(f,{}eq)} returns an equation where \\spad{f} is applied to the sides of \\spad{eq}")))
NIL
NIL
-(-268 S)
+(-269 S)
((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,{}eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn,{} [x1=v1,{} ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn,{} x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,{}b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation.")))
-((-4226 -3700 (|has| |#1| (-969)) (|has| |#1| (-445))) (-4223 |has| |#1| (-969)) (-4224 |has| |#1| (-969)))
-((|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-969))) (|HasCategory| |#1| (LIST (QUOTE -828) (QUOTE (-1083)))) (-3700 (|HasCategory| |#1| (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasCategory| |#1| (QUOTE (-969)))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (LIST (QUOTE -481) (QUOTE (-1083)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-512))) (|HasCategory| |#1| (QUOTE (-276))) (-3700 (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (QUOTE (-445)))) (-3700 (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-969)))) (|HasCategory| |#1| (QUOTE (-157))) (-3700 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (QUOTE (-969)))) (-3700 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-336)))) (|HasCategory| |#1| (QUOTE (-662))) (-3700 (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-662)))) (|HasCategory| |#1| (QUOTE (-1024))) (-3700 (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-662))) (|HasCategory| |#1| (QUOTE (-1024)))) (|HasCategory| |#1| (QUOTE (-21))) (-3700 (|HasCategory| |#1| (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (QUOTE (-969)))) (-3700 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-662)))) (|HasCategory| |#1| (QUOTE (-25))) (-3700 (|HasCategory| |#1| (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (QUOTE (-969)))) (-3700 (|HasCategory| |#1| (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-662))) (|HasCategory| |#1| (QUOTE (-969))) (|HasCategory| |#1| (QUOTE (-1024))) (|HasCategory| |#1| (QUOTE (-1012)))))
-(-269 |Key| |Entry|)
+((-4230 -3703 (|has| |#1| (-970)) (|has| |#1| (-446))) (-4227 |has| |#1| (-970)) (-4228 |has| |#1| (-970)))
+((|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-970))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1084)))) (-3703 (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasCategory| |#1| (QUOTE (-970)))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (LIST (QUOTE -482) (QUOTE (-1084)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-277))) (-3703 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-446)))) (-3703 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-970)))) (|HasCategory| |#1| (QUOTE (-157))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-970)))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-337)))) (|HasCategory| |#1| (QUOTE (-663))) (-3703 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-663)))) (|HasCategory| |#1| (QUOTE (-1025))) (-3703 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-663))) (|HasCategory| |#1| (QUOTE (-1025)))) (|HasCategory| |#1| (QUOTE (-21))) (-3703 (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-970)))) (-3703 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-663)))) (|HasCategory| |#1| (QUOTE (-25))) (-3703 (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-970)))) (-3703 (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-663))) (|HasCategory| |#1| (QUOTE (-970))) (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-1013)))))
+(-270 |Key| |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure.")))
-((-4229 . T) (-4230 . T))
-((|HasCategory| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (QUOTE (-1012))) (-12 (|HasCategory| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (QUOTE (-1012))) (|HasCategory| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (LIST (QUOTE -283) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2526) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3043) (|devaluate| |#2|)))))) (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#2| (QUOTE (-1012))) (-3700 (|HasCategory| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (QUOTE (-1012))) (|HasCategory| |#2| (QUOTE (-1012)))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (LIST (QUOTE -283) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -560) (QUOTE (-791)))) (|HasCategory| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (LIST (QUOTE -560) (QUOTE (-791)))) (-3700 (|HasCategory| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (QUOTE (-1012))) (|HasCategory| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (LIST (QUOTE -560) (QUOTE (-791)))) (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (LIST (QUOTE -560) (QUOTE (-791))))) (-3700 (|HasCategory| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (LIST (QUOTE -560) (QUOTE (-791)))) (|HasCategory| |#2| (LIST (QUOTE -560) (QUOTE (-791))))))
-(-270)
+((-4233 . T) (-4234 . T))
+((|HasCategory| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (QUOTE (-1013))) (-12 (|HasCategory| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (QUOTE (-1013))) (|HasCategory| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (LIST (QUOTE -284) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2529) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3045) (|devaluate| |#2|)))))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-1013))) (-3703 (|HasCategory| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-792)))) (|HasCategory| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (LIST (QUOTE -561) (QUOTE (-792)))) (-3703 (|HasCategory| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (QUOTE (-1013))) (|HasCategory| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (LIST (QUOTE -561) (QUOTE (-792)))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-792))))) (-3703 (|HasCategory| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (LIST (QUOTE -561) (QUOTE (-792)))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-792))))))
+(-271)
((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",{}\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,{}lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,{}msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates.")))
NIL
NIL
-(-271 -4045 S)
+(-272 -4049 S)
((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f,{} p,{} k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}.")))
NIL
NIL
-(-272 E -4045)
+(-273 E -4049)
((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f,{} k)} returns \\spad{g = op(f(a1),{}...,{}f(an))} where \\spad{k = op(a1,{}...,{}an)}.")))
NIL
NIL
-(-273 A B)
+(-274 A B)
((|constructor| (NIL "ExpertSystemContinuityPackage1 exports a function to check range inclusion")) (|in?| (((|Boolean|) (|DoubleFloat|)) "\\spad{in?(p)} tests whether point \\spad{p} is internal to the range [\\spad{A..B}]")))
NIL
NIL
-(-274)
+(-275)
((|constructor| (NIL "ExpertSystemContinuityPackage is a package of functions for the use of domains belonging to the category \\axiomType{NumericalIntegration}.")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a Stream of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a List of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|polynomialZeros| (((|List| (|DoubleFloat|)) (|Polynomial| (|Fraction| (|Integer|))) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{polynomialZeros(fn,{}var,{}range)} calculates the real zeros of the polynomial which are contained in the given interval. It returns a list of points (\\axiomType{Doublefloat}) for which the univariate polynomial \\spad{fn} is zero.")) (|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(v,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{v} will most likely produce an error. This includes those points which evaluate to 0/0.") (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(e,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error. This includes those points which evaluate to 0/0.")) (|zerosOf| (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{zerosOf(e,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error.")) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{problemPoints(f,{}var,{}range)} returns a list of possible problem points by looking at the zeros of the denominator of the function \\spad{f} if it can be retracted to \\axiomType{Polynomial(DoubleFloat)}.")) (|functionIsFracPolynomial?| (((|Boolean|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsFracPolynomial?(args)} tests whether the function can be retracted to \\axiomType{Fraction(Polynomial(DoubleFloat))}")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\axiom{\\spad{u}}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\axiom{\\spad{u}}")))
NIL
NIL
-(-275 S)
+(-276 S)
((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -960) (QUOTE (-520)))) (|HasCategory| |#1| (QUOTE (-969))))
-(-276)
+((|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-970))))
+(-277)
((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
NIL
NIL
-(-277 R1)
+(-278 R1)
((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage1} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|neglist| (((|List| |#1|) (|List| |#1|)) "\\spad{neglist(l)} returns only the negative elements of the list \\spad{l}")))
NIL
NIL
-(-278 R1 R2)
+(-279 R1 R2)
((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage2} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|map| (((|Matrix| |#2|) (|Mapping| |#2| |#1|) (|Matrix| |#1|)) "\\spad{map(f,{}m)} applies a mapping f:R1 \\spad{->} \\spad{R2} onto a matrix \\spad{m} in \\spad{R1} returning a matrix in \\spad{R2}")))
NIL
NIL
-(-279)
+(-280)
((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage} contains some useful functions for use by the computational agents of numerical solvers.")) (|mat| (((|Matrix| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{mat(a,{}n)} constructs a one-dimensional matrix of a.")) (|fi2df| (((|DoubleFloat|) (|Fraction| (|Integer|))) "\\spad{fi2df(f)} coerces a \\axiomType{Fraction Integer} to \\axiomType{DoubleFloat}")) (|df2ef| (((|Expression| (|Float|)) (|DoubleFloat|)) "\\spad{df2ef(a)} coerces a \\axiomType{DoubleFloat} to \\axiomType{Expression Float}")) (|pdf2df| (((|DoubleFloat|) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2df(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{DoubleFloat}. It is an error if \\axiom{\\spad{p}} is not retractable to DoubleFloat.")) (|pdf2ef| (((|Expression| (|Float|)) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2ef(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{Expression Float}")) (|iflist2Result| (((|Result|) (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))) "\\spad{iflist2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|att2Result| (((|Result|) (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) "\\spad{att2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|measure2Result| (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|)))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}") (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}")) (|outputMeasure| (((|String|) (|Float|)) "\\spad{outputMeasure(n)} rounds \\spad{n} to 3 decimal places and outputs it as a string")) (|concat| (((|Result|) (|List| (|Result|))) "\\spad{concat(l)} concatenates a list of aggregates of type \\axiomType{Result}") (((|Result|) (|Result|) (|Result|)) "\\spad{concat(a,{}b)} adds two aggregates of type \\axiomType{Result}.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\spad{u}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\spad{u}")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a \\axiomType{Stream DoubleFloat} to \\axiomType{String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List String}")) (|f2st| (((|String|) (|Float|)) "\\spad{f2st(n)} coerces a \\axiomType{Float} to \\axiomType{String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|in?| (((|Boolean|) (|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{in?(p,{}range)} tests whether point \\spad{p} is internal to the \\spad{range} \\spad{range}")) (|vedf2vef| (((|Vector| (|Expression| (|Float|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{vedf2vef(v)} maps \\axiomType{Vector Expression DoubleFloat} to \\axiomType{Vector Expression Float}")) (|edf2ef| (((|Expression| (|Float|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2ef(e)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Expression Float}")) (|ldf2vmf| (((|Vector| (|MachineFloat|)) (|List| (|DoubleFloat|))) "\\spad{ldf2vmf(l)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List MachineFloat}")) (|df2mf| (((|MachineFloat|) (|DoubleFloat|)) "\\spad{df2mf(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{MachineFloat}")) (|dflist| (((|List| (|DoubleFloat|)) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{dflist(l)} returns a list of \\axiomType{DoubleFloat} equivalents of list \\spad{l}")) (|dfRange| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{dfRange(r)} converts a range including \\inputbitmap{\\htbmdir{}/plusminus.bitmap} \\infty to \\axiomType{DoubleFloat} equavalents.")) (|edf2efi| (((|Expression| (|Fraction| (|Integer|))) (|Expression| (|DoubleFloat|))) "\\spad{edf2efi(e)} coerces \\axiomType{Expression DoubleFloat} into \\axiomType{Expression Fraction Integer}")) (|numberOfOperations| (((|Record| (|:| |additions| (|Integer|)) (|:| |multiplications| (|Integer|)) (|:| |exponentiations| (|Integer|)) (|:| |functionCalls| (|Integer|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{numberOfOperations(ode)} counts additions,{} multiplications,{} exponentiations and function calls in the input set of expressions.")) (|expenseOfEvaluation| (((|Float|) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{expenseOfEvaluation(o)} gives an approximation of the cost of evaluating a list of expressions in terms of the number of basic operations. < 0.3 inexpensive ; 0.5 neutral ; > 0.7 very expensive 400 `operation units' \\spad{->} 0.75 200 `operation units' \\spad{->} 0.5 83 `operation units' \\spad{->} 0.25 \\spad{**} = 4 units ,{} function calls = 10 units.")) (|isQuotient| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{isQuotient(expr)} returns the quotient part of the input expression or \\spad{\"failed\"} if the expression is not of that form.")) (|edf2df| (((|DoubleFloat|) (|Expression| (|DoubleFloat|))) "\\spad{edf2df(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{DoubleFloat} It is an error if \\spad{n} is not coercible to DoubleFloat")) (|edf2fi| (((|Fraction| (|Integer|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2fi(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Fraction Integer} It is an error if \\spad{n} is not coercible to Fraction Integer")) (|df2fi| (((|Fraction| (|Integer|)) (|DoubleFloat|)) "\\spad{df2fi(n)} is a function to convert a \\axiomType{DoubleFloat} to a \\axiomType{Fraction Integer}")) (|convert| (((|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{convert(l)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|socf2socdf| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{socf2socdf(a)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|ocf2ocdf| (((|OrderedCompletion| (|DoubleFloat|)) (|OrderedCompletion| (|Float|))) "\\spad{ocf2ocdf(a)} is a function to convert an \\axiomType{OrderedCompletion Float} to an \\axiomType{OrderedCompletion DoubleFloat}")) (|ef2edf| (((|Expression| (|DoubleFloat|)) (|Expression| (|Float|))) "\\spad{ef2edf(f)} is a function to convert an \\axiomType{Expression Float} to an \\axiomType{Expression DoubleFloat}")) (|f2df| (((|DoubleFloat|) (|Float|)) "\\spad{f2df(f)} is a function to convert a \\axiomType{Float} to a \\axiomType{DoubleFloat}")))
NIL
NIL
-(-280 S)
+(-281 S)
((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,{}...,{}fn],{}z)} returns a list of coefficients \\spad{[a1,{} ...,{} an]} such that \\spad{ z / prod \\spad{fi} = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,{}y,{}z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,{}y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,{}y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,{}y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,{}y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,{}y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}.")))
NIL
NIL
-(-281)
+(-282)
((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,{}...,{}fn],{}z)} returns a list of coefficients \\spad{[a1,{} ...,{} an]} such that \\spad{ z / prod \\spad{fi} = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,{}y,{}z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,{}y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,{}y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,{}y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,{}y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,{}y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}.")))
-((-4222 . T) ((-4231 "*") . T) (-4223 . T) (-4224 . T) (-4226 . T))
+((-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
NIL
-(-282 S R)
+(-283 S R)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-283 R)
+(-284 R)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-284 -4045)
+(-285 -4049)
((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,{}s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}")))
NIL
NIL
-(-285)
+(-286)
((|constructor| (NIL "A function which does not return directly to its caller should have Exit as its return type. \\blankline Note: It is convenient to have a formal \\spad{coerce} into each type from type Exit. This allows,{} for example,{} errors to be raised in one half of a type-balanced \\spad{if}.")))
NIL
NIL
-(-286 R FE |var| |cen|)
+(-287 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,{}f(var))}.")))
-((-4221 . T) (-4227 . T) (-4222 . T) ((-4231 "*") . T) (-4223 . T) (-4224 . T) (-4226 . T))
-((|HasCategory| (-1150 |#1| |#2| |#3| |#4|) (QUOTE (-837))) (|HasCategory| (-1150 |#1| |#2| |#3| |#4|) (LIST (QUOTE -960) (QUOTE (-1083)))) (|HasCategory| (-1150 |#1| |#2| |#3| |#4|) (QUOTE (-133))) (|HasCategory| (-1150 |#1| |#2| |#3| |#4|) (QUOTE (-135))) (|HasCategory| (-1150 |#1| |#2| |#3| |#4|) (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| (-1150 |#1| |#2| |#3| |#4|) (QUOTE (-945))) (|HasCategory| (-1150 |#1| |#2| |#3| |#4|) (QUOTE (-756))) (|HasCategory| (-1150 |#1| |#2| |#3| |#4|) (LIST (QUOTE -960) (QUOTE (-520)))) (|HasCategory| (-1150 |#1| |#2| |#3| |#4|) (QUOTE (-1059))) (|HasCategory| (-1150 |#1| |#2| |#3| |#4|) (LIST (QUOTE -814) (QUOTE (-520)))) (|HasCategory| (-1150 |#1| |#2| |#3| |#4|) (LIST (QUOTE -814) (QUOTE (-352)))) (|HasCategory| (-1150 |#1| |#2| |#3| |#4|) (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-352))))) (|HasCategory| (-1150 |#1| |#2| |#3| |#4|) (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-520))))) (|HasCategory| (-1150 |#1| |#2| |#3| |#4|) (LIST (QUOTE -582) (QUOTE (-520)))) (|HasCategory| (-1150 |#1| |#2| |#3| |#4|) (QUOTE (-209))) (|HasCategory| (-1150 |#1| |#2| |#3| |#4|) (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasCategory| (-1150 |#1| |#2| |#3| |#4|) (LIST (QUOTE -481) (QUOTE (-1083)) (LIST (QUOTE -1150) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1150 |#1| |#2| |#3| |#4|) (LIST (QUOTE -283) (LIST (QUOTE -1150) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1150 |#1| |#2| |#3| |#4|) (LIST (QUOTE -260) (LIST (QUOTE -1150) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1150) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1150 |#1| |#2| |#3| |#4|) (QUOTE (-281))) (|HasCategory| (-1150 |#1| |#2| |#3| |#4|) (QUOTE (-505))) (|HasCategory| (-1150 |#1| |#2| |#3| |#4|) (QUOTE (-783))) (-3700 (|HasCategory| (-1150 |#1| |#2| |#3| |#4|) (QUOTE (-756))) (|HasCategory| (-1150 |#1| |#2| |#3| |#4|) (QUOTE (-783)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3| |#4|) (QUOTE (-837))) (|HasCategory| $ (QUOTE (-133)))) (-3700 (|HasCategory| (-1150 |#1| |#2| |#3| |#4|) (QUOTE (-133))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3| |#4|) (QUOTE (-837))) (|HasCategory| $ (QUOTE (-133))))))
-(-287 R S)
+((-4225 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
+((|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (QUOTE (-838))) (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (LIST (QUOTE -961) (QUOTE (-1084)))) (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (QUOTE (-133))) (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (QUOTE (-135))) (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (QUOTE (-946))) (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (QUOTE (-757))) (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (QUOTE (-1060))) (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (LIST (QUOTE -815) (QUOTE (-521)))) (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (LIST (QUOTE -815) (QUOTE (-353)))) (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-353))))) (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-521))))) (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (QUOTE (-210))) (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (LIST (QUOTE -482) (QUOTE (-1084)) (LIST (QUOTE -1151) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (LIST (QUOTE -284) (LIST (QUOTE -1151) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (LIST (QUOTE -261) (LIST (QUOTE -1151) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1151) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (QUOTE (-282))) (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (QUOTE (-506))) (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (QUOTE (-784))) (-3703 (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (QUOTE (-757))) (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (QUOTE (-784)))) (-12 (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (QUOTE (-838))) (|HasCategory| $ (QUOTE (-133)))) (-3703 (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (QUOTE (-133))) (-12 (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (QUOTE (-838))) (|HasCategory| $ (QUOTE (-133))))))
+(-288 R S)
((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f,{} e)} applies \\spad{f} to all the constants appearing in \\spad{e}.")))
NIL
NIL
-(-288 R FE)
+(-289 R FE)
((|constructor| (NIL "This package provides functions to convert functional expressions to power series.")) (|series| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{series(f,{}x = a,{}n)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a); terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{series(f,{}x = a)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a).") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{series(f,{}n)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{series(f)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{series(x)} returns \\spad{x} viewed as a series.")) (|puiseux| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{puiseux(f,{}x = a,{}n)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{puiseux(f,{}x = a)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{puiseux(f,{}n)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{puiseux(f)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{puiseux(x)} returns \\spad{x} viewed as a Puiseux series.")) (|laurent| (((|Any|) |#2| (|Equation| |#2|) (|Integer|)) "\\spad{laurent(f,{}x = a,{}n)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{laurent(f,{}x = a)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Integer|)) "\\spad{laurent(f,{}n)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{laurent(f)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{laurent(x)} returns \\spad{x} viewed as a Laurent series.")) (|taylor| (((|Any|) |#2| (|Equation| |#2|) (|NonNegativeInteger|)) "\\spad{taylor(f,{}x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{taylor(f,{}x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|NonNegativeInteger|)) "\\spad{taylor(f,{}n)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{taylor(f)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{taylor(x)} returns \\spad{x} viewed as a Taylor series.")))
NIL
NIL
-(-289 R)
+(-290 R)
((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations.")))
-((-4226 -3700 (-4006 (|has| |#1| (-969)) (|has| |#1| (-582 (-520)))) (-12 (|has| |#1| (-512)) (-3700 (-4006 (|has| |#1| (-969)) (|has| |#1| (-582 (-520)))) (|has| |#1| (-969)) (|has| |#1| (-445)))) (|has| |#1| (-969)) (|has| |#1| (-445))) (-4224 |has| |#1| (-157)) (-4223 |has| |#1| (-157)) ((-4231 "*") |has| |#1| (-512)) (-4222 |has| |#1| (-512)) (-4227 |has| |#1| (-512)) (-4221 |has| |#1| (-512)))
-((|HasCategory| |#1| (QUOTE (-512))) (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-969))) (-3700 (|HasCategory| |#1| (QUOTE (-512))) (|HasCategory| |#1| (QUOTE (-969)))) (|HasCategory| |#1| (LIST (QUOTE -582) (QUOTE (-520)))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| |#1| (LIST (QUOTE -960) (QUOTE (-520)))) (|HasCategory| |#1| (LIST (QUOTE -814) (QUOTE (-520)))) (|HasCategory| |#1| (LIST (QUOTE -814) (QUOTE (-352)))) (|HasCategory| |#1| (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-352))))) (|HasCategory| |#1| (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-520))))) (-12 (|HasCategory| |#1| (QUOTE (-512))) (|HasCategory| |#1| (LIST (QUOTE -960) (QUOTE (-520))))) (-3700 (|HasCategory| |#1| (LIST (QUOTE -582) (QUOTE (-520)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-512))) (|HasCategory| |#1| (QUOTE (-969)))) (-12 (|HasCategory| |#1| (QUOTE (-424))) (|HasCategory| |#1| (QUOTE (-512)))) (-3700 (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-512)))) (-12 (|HasCategory| |#1| (QUOTE (-969))) (|HasCategory| |#1| (LIST (QUOTE -582) (QUOTE (-520))))) (-3700 (|HasCategory| |#1| (QUOTE (-969))) (|HasCategory| |#1| (LIST (QUOTE -960) (QUOTE (-520))))) (-3700 (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-969)))) (|HasCategory| |#1| (QUOTE (-21))) (-3700 (|HasCategory| |#1| (LIST (QUOTE -582) (QUOTE (-520)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-512))) (|HasCategory| |#1| (QUOTE (-969)))) (-3700 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-969))) (|HasCategory| |#1| (LIST (QUOTE -582) (QUOTE (-520)))))) (|HasCategory| |#1| (QUOTE (-25))) (-3700 (|HasCategory| |#1| (LIST (QUOTE -582) (QUOTE (-520)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-512))) (|HasCategory| |#1| (QUOTE (-969)))) (-3700 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-969))) (|HasCategory| |#1| (LIST (QUOTE -582) (QUOTE (-520)))))) (|HasCategory| |#1| (QUOTE (-1024))) (-3700 (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-1024)))) (-3700 (-12 (|HasCategory| |#1| (QUOTE (-969))) (|HasCategory| |#1| (LIST (QUOTE -582) (QUOTE (-520))))) (|HasCategory| |#1| (QUOTE (-1024)))) (-3700 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-969))) (|HasCategory| |#1| (LIST (QUOTE -582) (QUOTE (-520))))) (|HasCategory| |#1| (QUOTE (-1024)))) (|HasCategory| |#1| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (-3700 (|HasCategory| |#1| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (-12 (|HasCategory| |#1| (QUOTE (-512))) (|HasCategory| |#1| (LIST (QUOTE -960) (QUOTE (-520)))))) (-3700 (|HasCategory| |#1| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#1| (QUOTE (-512)))) (-3700 (-12 (|HasCategory| |#1| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#1| (QUOTE (-512)))) (-12 (|HasCategory| |#1| (QUOTE (-512))) (|HasCategory| |#1| (LIST (QUOTE -960) (QUOTE (-520)))))) (|HasCategory| $ (QUOTE (-969))) (|HasCategory| $ (LIST (QUOTE -960) (QUOTE (-520)))))
-(-290 R -4045)
+((-4230 -3703 (-4009 (|has| |#1| (-970)) (|has| |#1| (-583 (-521)))) (-12 (|has| |#1| (-513)) (-3703 (-4009 (|has| |#1| (-970)) (|has| |#1| (-583 (-521)))) (|has| |#1| (-970)) (|has| |#1| (-446)))) (|has| |#1| (-970)) (|has| |#1| (-446))) (-4228 |has| |#1| (-157)) (-4227 |has| |#1| (-157)) ((-4235 "*") |has| |#1| (-513)) (-4226 |has| |#1| (-513)) (-4231 |has| |#1| (-513)) (-4225 |has| |#1| (-513)))
+((|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-970))) (-3703 (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-970)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-521)))) (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-353)))) (|HasCategory| |#1| (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-353))))) (|HasCategory| |#1| (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-521))))) (-12 (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521))))) (-3703 (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-970)))) (-12 (|HasCategory| |#1| (QUOTE (-425))) (|HasCategory| |#1| (QUOTE (-513)))) (-3703 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-513)))) (-12 (|HasCategory| |#1| (QUOTE (-970))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-521))))) (-3703 (|HasCategory| |#1| (QUOTE (-970))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521))))) (-3703 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-970)))) (|HasCategory| |#1| (QUOTE (-21))) (-3703 (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-970)))) (-3703 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-970))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-521)))))) (|HasCategory| |#1| (QUOTE (-25))) (-3703 (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-970)))) (-3703 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-970))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-521)))))) (|HasCategory| |#1| (QUOTE (-1025))) (-3703 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-1025)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-970))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-521))))) (|HasCategory| |#1| (QUOTE (-1025)))) (-3703 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-970))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-521))))) (|HasCategory| |#1| (QUOTE (-1025)))) (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (-3703 (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (-12 (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521)))))) (-3703 (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (QUOTE (-513)))) (-3703 (-12 (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (QUOTE (-513)))) (-12 (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521)))))) (|HasCategory| $ (QUOTE (-970))) (|HasCategory| $ (LIST (QUOTE -961) (QUOTE (-521)))))
+(-291 R -4049)
((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} [b0,{}...,{}bn])} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} [b0,{}...,{}b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} y a = b)} is equivalent to \\spad{seriesSolve(eq=0,{} y,{} x=a,{} y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{} y,{} x = a,{} b)} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{}y,{} x=a,{} b)} is equivalent to \\spad{seriesSolve(eq,{} y,{} x=a,{} y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{}[y1 a = b1,{}...,{} yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{}[y1,{}...,{}yn],{}x = a,{}[y1 a = b1,{}...,{}yn a = bn])} returns a taylor series solution of \\spad{[eq1,{}...,{}eqn]} around \\spad{x = a} with initial conditions \\spad{\\spad{yi}(a) = \\spad{bi}}. Note: eqi must be of the form \\spad{\\spad{fi}(x,{} y1 x,{} y2 x,{}...,{} yn x) y1'(x) + \\spad{gi}(x,{} y1 x,{} y2 x,{}...,{} yn x) = h(x,{} y1 x,{} y2 x,{}...,{} yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{}[b0,{}...,{}b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x,{} y x,{} y'(x),{}...,{} y(n-1)(x)) y(n)(x) + g(x,{}y x,{}y'(x),{}...,{}y(n-1)(x)) = h(x,{}y x,{} y'(x),{}...,{} y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{} y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x,{} y x) y'(x) + g(x,{} y x) = h(x,{} y x)}.")))
NIL
NIL
-(-291)
+(-292)
((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tubePlot| (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|String|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n,{}s)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. If \\spad{s} = \"closed\",{} the tube is considered to be closed; if \\spad{s} = \"open\",{} the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. The tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|) (|String|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n,{}s)} puts a tube of radius \\spad{r(t)} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. If \\spad{s} = \"closed\",{} the tube is considered to be closed; if \\spad{s} = \"open\",{} the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n)} puts a tube of radius \\spad{r}(\\spad{t}) with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. The tube is considered to be open.")) (|constantToUnaryFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|DoubleFloat|)) "\\spad{constantToUnaryFunction(s)} is a local function which takes the value of \\spad{s},{} which may be a function of a constant,{} and returns a function which always returns the value \\spadtype{DoubleFloat} \\spad{s}.")))
NIL
NIL
-(-292 FE |var| |cen|)
+(-293 FE |var| |cen|)
((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms.")))
-(((-4231 "*") |has| |#1| (-157)) (-4222 |has| |#1| (-512)) (-4227 |has| |#1| (-336)) (-4221 |has| |#1| (-336)) (-4223 . T) (-4224 . T) (-4226 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#1| (QUOTE (-512))) (|HasCategory| |#1| (QUOTE (-157))) (-3700 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-512)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -380) (QUOTE (-520))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -380) (QUOTE (-520))) (|devaluate| |#1|))))) (|HasCategory| (-380 (-520)) (QUOTE (-1024))) (|HasCategory| |#1| (QUOTE (-336))) (-3700 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (QUOTE (-512)))) (-3700 (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (QUOTE (-512)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -380) (QUOTE (-520)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -380) (QUOTE (-520)))))) (|HasSignature| |#1| (LIST (QUOTE -2188) (LIST (|devaluate| |#1|) (QUOTE (-1083)))))) (-3700 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-520)))) (|HasCategory| |#1| (QUOTE (-886))) (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasSignature| |#1| (LIST (QUOTE -3517) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1083))))) (|HasSignature| |#1| (LIST (QUOTE -4081) (LIST (LIST (QUOTE -586) (QUOTE (-1083))) (|devaluate| |#1|)))))))
-(-293 M)
+(((-4235 "*") |has| |#1| (-157)) (-4226 |has| |#1| (-513)) (-4231 |has| |#1| (-337)) (-4225 |has| |#1| (-337)) (-4227 . T) (-4228 . T) (-4230 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-157))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-513)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -381) (QUOTE (-521))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -381) (QUOTE (-521))) (|devaluate| |#1|))))) (|HasCategory| (-381 (-521)) (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-337))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-513)))) (-3703 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-513)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -381) (QUOTE (-521)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -381) (QUOTE (-521)))))) (|HasSignature| |#1| (LIST (QUOTE -2189) (LIST (|devaluate| |#1|) (QUOTE (-1084)))))) (-3703 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-887))) (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasSignature| |#1| (LIST (QUOTE -2184) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1084))))) (|HasSignature| |#1| (LIST (QUOTE -4084) (LIST (LIST (QUOTE -587) (QUOTE (-1084))) (|devaluate| |#1|)))))))
+(-294 M)
((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,{}b1),{}...,{}(am,{}bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f,{} n)} returns \\spad{(p,{} r,{} [r1,{}...,{}rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}.")))
NIL
NIL
-(-294 E OV R P)
+(-295 E OV R P)
((|constructor| (NIL "This package provides utilities used by the factorizers which operate on polynomials represented as univariate polynomials with multivariate coefficients.")) (|ran| ((|#3| (|Integer|)) "\\spad{ran(k)} computes a random integer between \\spad{-k} and \\spad{k} as a member of \\spad{R}.")) (|normalDeriv| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|Integer|)) "\\spad{normalDeriv(poly,{}i)} computes the \\spad{i}th derivative of \\spad{poly} divided by i!.")) (|raisePolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|)) "\\spad{raisePolynomial(rpoly)} converts \\spad{rpoly} from a univariate polynomial over \\spad{r} to be a univariate polynomial with polynomial coefficients.")) (|lowerPolynomial| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{lowerPolynomial(upoly)} converts \\spad{upoly} to be a univariate polynomial over \\spad{R}. An error if the coefficients contain variables.")) (|variables| (((|List| |#2|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{variables(upoly)} returns the list of variables for the coefficients of \\spad{upoly}.")) (|degree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|)) "\\spad{degree(upoly,{} lvar)} returns a list containing the maximum degree for each variable in lvar.")) (|completeEval| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|)) "\\spad{completeEval(upoly,{} lvar,{} lval)} evaluates the polynomial \\spad{upoly} with each variable in \\spad{lvar} replaced by the corresponding value in lval. Substitutions are done for all variables in \\spad{upoly} producing a univariate polynomial over \\spad{R}.")))
NIL
NIL
-(-295 S)
+(-296 S)
((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The operation is commutative.")))
-((-4224 . T) (-4223 . T))
-((|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| (-520) (QUOTE (-727))))
-(-296 S E)
+((-4228 . T) (-4227 . T))
+((|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| (-521) (QUOTE (-728))))
+(-297 S E)
((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an,{} f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,{}[max(\\spad{ei},{} \\spad{fi}) \\spad{ci}])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,{}...,{}an}} and \\spad{{b1,{}...,{}bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f,{} e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s,{} e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}\\spad{'s}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x,{} n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} a1\\spad{\\^}e1 ... an\\spad{\\^}en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}.")))
NIL
NIL
-(-297 S)
+(-298 S)
((|constructor| (NIL "The free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The operation is commutative.")))
NIL
-((|HasCategory| (-706) (QUOTE (-727))))
-(-298 S R E)
+((|HasCategory| (-707) (QUOTE (-728))))
+(-299 S R E)
((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#2| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#2| |#3| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#3| |#3|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#3| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#2| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring.")))
NIL
-((|HasCategory| |#2| (QUOTE (-424))) (|HasCategory| |#2| (QUOTE (-512))) (|HasCategory| |#2| (QUOTE (-157))))
-(-299 R E)
+((|HasCategory| |#2| (QUOTE (-425))) (|HasCategory| |#2| (QUOTE (-513))) (|HasCategory| |#2| (QUOTE (-157))))
+(-300 R E)
((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring.")))
-(((-4231 "*") |has| |#1| (-157)) (-4222 |has| |#1| (-512)) (-4223 . T) (-4224 . T) (-4226 . T))
+(((-4235 "*") |has| |#1| (-157)) (-4226 |has| |#1| (-513)) (-4227 . T) (-4228 . T) (-4230 . T))
NIL
-(-300 S)
+(-301 S)
((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")))
-((-4230 . T) (-4229 . T))
-((|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| (-520) (QUOTE (-783))) (|HasCategory| |#1| (QUOTE (-1012))) (-3700 (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#1| (QUOTE (-1012)))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (-3700 (-12 (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-791)))) (-3700 (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-791))))))
-(-301 S -4045)
+((-4234 . T) (-4233 . T))
+((|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| (-521) (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-1013))) (-3703 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-1013)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-792)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-792))))))
+(-302 S -4049)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace.")))
NIL
-((|HasCategory| |#2| (QUOTE (-341))))
-(-302 -4045)
+((|HasCategory| |#2| (QUOTE (-342))))
+(-303 -4049)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace.")))
-((-4221 . T) (-4227 . T) (-4222 . T) ((-4231 "*") . T) (-4223 . T) (-4224 . T) (-4226 . T))
+((-4225 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
NIL
-(-303)
+(-304)
((|constructor| (NIL "This domain builds representations of program code segments for use with the FortranProgram domain.")) (|setLabelValue| (((|SingleInteger|) (|SingleInteger|)) "\\spad{setLabelValue(i)} resets the counter which produces labels to \\spad{i}")) (|getCode| (((|SExpression|) $) "\\spad{getCode(f)} returns a Lisp list of strings representing \\spad{f} in Fortran notation. This is used by the FortranProgram domain.")) (|printCode| (((|Void|) $) "\\spad{printCode(f)} prints out \\spad{f} in FORTRAN notation.")) (|code| (((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $) "\\spad{code(f)} returns the internal representation of the object represented by \\spad{f}.")) (|operation| (((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) "\\spad{operation(f)} returns the name of the operation represented by \\spad{f}.")) (|common| (($ (|Symbol|) (|List| (|Symbol|))) "\\spad{common(name,{}contents)} creates a representation a named common block.")) (|printStatement| (($ (|List| (|OutputForm|))) "\\spad{printStatement(l)} creates a representation of a PRINT statement.")) (|save| (($) "\\spad{save()} creates a representation of a SAVE statement.")) (|stop| (($) "\\spad{stop()} creates a representation of a STOP statement.")) (|block| (($ (|List| $)) "\\spad{block(l)} creates a representation of the statements in \\spad{l} as a block.")) (|assign| (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Float|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Integer|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|String|)) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.")) (|cond| (($ (|Switch|) $ $) "\\spad{cond(s,{}e,{}f)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e} ELSE \\spad{f}.") (($ (|Switch|) $) "\\spad{cond(s,{}e)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e}.")) (|returns| (($ (|Expression| (|Complex| (|Float|)))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Integer|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Float|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineComplex|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineInteger|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineFloat|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($) "\\spad{returns()} creates a representation of a FORTRAN RETURN statement.")) (|call| (($ (|String|)) "\\spad{call(s)} creates a representation of a FORTRAN CALL statement")) (|comment| (($ (|List| (|String|))) "\\spad{comment(s)} creates a representation of the Strings \\spad{s} as a multi-line FORTRAN comment.") (($ (|String|)) "\\spad{comment(s)} creates a representation of the String \\spad{s} as a single FORTRAN comment.")) (|continue| (($ (|SingleInteger|)) "\\spad{continue(l)} creates a representation of a FORTRAN CONTINUE labelled with \\spad{l}")) (|goto| (($ (|SingleInteger|)) "\\spad{goto(l)} creates a representation of a FORTRAN GOTO statement")) (|repeatUntilLoop| (($ (|Switch|) $) "\\spad{repeatUntilLoop(s,{}c)} creates a repeat ... until loop in FORTRAN.")) (|whileLoop| (($ (|Switch|) $) "\\spad{whileLoop(s,{}c)} creates a while loop in FORTRAN.")) (|forLoop| (($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $) "\\spad{forLoop(i=1..10,{}n,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10 by \\spad{n}.") (($ (|SegmentBinding| (|Polynomial| (|Integer|))) $) "\\spad{forLoop(i=1..10,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(f)} returns an object of type OutputForm.")))
NIL
NIL
-(-304 E)
+(-305 E)
((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: 12 June 1992 Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the argument of a given sin/cos expressions")) (|sin?| (((|Boolean|) $) "\\spad{sin?(x)} returns \\spad{true} if term is a sin,{} otherwise \\spad{false}")) (|cos| (($ |#1|) "\\spad{cos(x)} makes a cos kernel for use in Fourier series")) (|sin| (($ |#1|) "\\spad{sin(x)} makes a sin kernel for use in Fourier series")))
NIL
NIL
-(-305)
+(-306)
((|constructor| (NIL "\\spadtype{FortranCodePackage1} provides some utilities for producing useful objects in FortranCode domain. The Package may be used with the FortranCode domain and its \\spad{printCode} or possibly via an outputAsFortran. (The package provides items of use in connection with ASPs in the AXIOM-NAG link and,{} where appropriate,{} naming accords with that in IRENA.) The easy-to-use functions use Fortran loop variables I1,{} I2,{} and it is users' responsibility to check that this is sensible. The advanced functions use SegmentBinding to allow users control over Fortran loop variable names.")) (|identitySquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{identitySquareMatrix(s,{}p)} \\undocumented{}")) (|zeroSquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroSquareMatrix(s,{}p)} \\undocumented{}")) (|zeroMatrix| (((|FortranCode|) (|Symbol|) (|SegmentBinding| (|Polynomial| (|Integer|))) (|SegmentBinding| (|Polynomial| (|Integer|)))) "\\spad{zeroMatrix(s,{}b,{}d)} in this version gives the user control over names of Fortran variables used in loops.") (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|)) (|Polynomial| (|Integer|))) "\\spad{zeroMatrix(s,{}p,{}q)} uses loop variables in the Fortran,{} I1 and I2")) (|zeroVector| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroVector(s,{}p)} \\undocumented{}")))
NIL
NIL
-(-306 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
+(-307 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}d)} \\undocumented{}")))
NIL
NIL
-(-307 S -4045 UP UPUP R)
+(-308 S -4049 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
-(-308 -4045 UP UPUP R)
+(-309 -4049 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
-(-309 -4045 UP UPUP R)
+(-310 -4049 UP UPUP R)
((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}.")))
NIL
NIL
-(-310 S R)
+(-311 S R)
((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{} ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -481) (QUOTE (-1083)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -283) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -260) (|devaluate| |#2|) (|devaluate| |#2|))))
-(-311 R)
+((|HasCategory| |#2| (LIST (QUOTE -482) (QUOTE (-1084)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -261) (|devaluate| |#2|) (|devaluate| |#2|))))
+(-312 R)
((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{} ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex.")))
NIL
NIL
-(-312 |basicSymbols| |subscriptedSymbols| R)
+(-313 |basicSymbols| |subscriptedSymbols| R)
((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{\\spad{pi}(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function LOG10")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")))
-((-4223 . T) (-4224 . T) (-4226 . T))
-((|HasCategory| |#3| (LIST (QUOTE -960) (QUOTE (-520)))) (|HasCategory| |#3| (LIST (QUOTE -960) (QUOTE (-352)))) (|HasCategory| $ (QUOTE (-969))) (|HasCategory| $ (LIST (QUOTE -960) (QUOTE (-520)))))
-(-313 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
+((-4227 . T) (-4228 . T) (-4230 . T))
+((|HasCategory| |#3| (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#3| (LIST (QUOTE -961) (QUOTE (-353)))) (|HasCategory| $ (QUOTE (-970))) (|HasCategory| $ (LIST (QUOTE -961) (QUOTE (-521)))))
+(-314 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{} p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}.")))
NIL
NIL
-(-314 S -4045 UP UPUP)
+(-315 S -4049 UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.") (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
NIL
-((|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-336))))
-(-315 -4045 UP UPUP)
+((|HasCategory| |#2| (QUOTE (-342))) (|HasCategory| |#2| (QUOTE (-337))))
+(-316 -4049 UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.") (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
-((-4222 |has| (-380 |#2|) (-336)) (-4227 |has| (-380 |#2|) (-336)) (-4221 |has| (-380 |#2|) (-336)) ((-4231 "*") . T) (-4223 . T) (-4224 . T) (-4226 . T))
+((-4226 |has| (-381 |#2|) (-337)) (-4231 |has| (-381 |#2|) (-337)) (-4225 |has| (-381 |#2|) (-337)) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
NIL
-(-316 |p| |extdeg|)
+(-317 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
-((-4221 . T) (-4227 . T) (-4222 . T) ((-4231 "*") . T) (-4223 . T) (-4224 . T) (-4226 . T))
-((|HasCategory| (-838 |#1|) (QUOTE (-135))) (|HasCategory| (-838 |#1|) (QUOTE (-341))) (|HasCategory| (-838 |#1|) (QUOTE (-133))) (-3700 (|HasCategory| (-838 |#1|) (QUOTE (-133))) (|HasCategory| (-838 |#1|) (QUOTE (-341)))))
-(-317 GF |defpol|)
+((-4225 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
+((|HasCategory| (-839 |#1|) (QUOTE (-135))) (|HasCategory| (-839 |#1|) (QUOTE (-342))) (|HasCategory| (-839 |#1|) (QUOTE (-133))) (-3703 (|HasCategory| (-839 |#1|) (QUOTE (-133))) (|HasCategory| (-839 |#1|) (QUOTE (-342)))))
+(-318 GF |defpol|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly.")))
-((-4221 . T) (-4227 . T) (-4222 . T) ((-4231 "*") . T) (-4223 . T) (-4224 . T) (-4226 . T))
-((|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-133))) (-3700 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-341)))))
-(-318 GF |extdeg|)
+((-4225 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
+((|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (QUOTE (-133))) (-3703 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-342)))))
+(-319 GF |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
-((-4221 . T) (-4227 . T) (-4222 . T) ((-4231 "*") . T) (-4223 . T) (-4224 . T) (-4226 . T))
-((|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-133))) (-3700 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-341)))))
-(-319 GF)
+((-4225 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
+((|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (QUOTE (-133))) (-3703 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-342)))))
+(-320 GF)
((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}.")))
NIL
NIL
-(-320 F1 GF F2)
+(-321 F1 GF F2)
((|constructor| (NIL "FiniteFieldHomomorphisms(\\spad{F1},{}\\spad{GF},{}\\spad{F2}) exports coercion functions of elements between the fields {\\em F1} and {\\em F2},{} which both must be finite simple algebraic extensions of the finite ground field {\\em GF}.")) (|coerce| ((|#1| |#3|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F2} in {\\em F1},{} where {\\em coerce} is a field homomorphism between the fields extensions {\\em F2} and {\\em F1} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F2} doesn\\spad{'t} divide the extension degree of {\\em F1}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse.") ((|#3| |#1|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F1} in {\\em F2}. Thus {\\em coerce} is a field homomorphism between the fields extensions {\\em F1} and {\\em F2} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F1} doesn\\spad{'t} divide the extension degree of {\\em F2}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse.")))
NIL
NIL
-(-321 S)
+(-322 S)
((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields.")))
NIL
NIL
-(-322)
+(-323)
((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields.")))
-((-4221 . T) (-4227 . T) (-4222 . T) ((-4231 "*") . T) (-4223 . T) (-4224 . T) (-4226 . T))
+((-4225 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
NIL
-(-323 R UP -4045)
+(-324 R UP -4049)
((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
-(-324 |p| |extdeg|)
+(-325 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4221 . T) (-4227 . T) (-4222 . T) ((-4231 "*") . T) (-4223 . T) (-4224 . T) (-4226 . T))
-((|HasCategory| (-838 |#1|) (QUOTE (-135))) (|HasCategory| (-838 |#1|) (QUOTE (-341))) (|HasCategory| (-838 |#1|) (QUOTE (-133))) (-3700 (|HasCategory| (-838 |#1|) (QUOTE (-133))) (|HasCategory| (-838 |#1|) (QUOTE (-341)))))
-(-325 GF |uni|)
+((-4225 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
+((|HasCategory| (-839 |#1|) (QUOTE (-135))) (|HasCategory| (-839 |#1|) (QUOTE (-342))) (|HasCategory| (-839 |#1|) (QUOTE (-133))) (-3703 (|HasCategory| (-839 |#1|) (QUOTE (-133))) (|HasCategory| (-839 |#1|) (QUOTE (-342)))))
+(-326 GF |uni|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4221 . T) (-4227 . T) (-4222 . T) ((-4231 "*") . T) (-4223 . T) (-4224 . T) (-4226 . T))
-((|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-133))) (-3700 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-341)))))
-(-326 GF |extdeg|)
+((-4225 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
+((|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (QUOTE (-133))) (-3703 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-342)))))
+(-327 GF |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4221 . T) (-4227 . T) (-4222 . T) ((-4231 "*") . T) (-4223 . T) (-4224 . T) (-4226 . T))
-((|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-133))) (-3700 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-341)))))
-(-327 |p| |n|)
+((-4225 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
+((|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (QUOTE (-133))) (-3703 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-342)))))
+(-328 |p| |n|)
((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}.")))
-((-4221 . T) (-4227 . T) (-4222 . T) ((-4231 "*") . T) (-4223 . T) (-4224 . T) (-4226 . T))
-((|HasCategory| (-838 |#1|) (QUOTE (-135))) (|HasCategory| (-838 |#1|) (QUOTE (-341))) (|HasCategory| (-838 |#1|) (QUOTE (-133))) (-3700 (|HasCategory| (-838 |#1|) (QUOTE (-133))) (|HasCategory| (-838 |#1|) (QUOTE (-341)))))
-(-328 GF |defpol|)
+((-4225 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
+((|HasCategory| (-839 |#1|) (QUOTE (-135))) (|HasCategory| (-839 |#1|) (QUOTE (-342))) (|HasCategory| (-839 |#1|) (QUOTE (-133))) (-3703 (|HasCategory| (-839 |#1|) (QUOTE (-133))) (|HasCategory| (-839 |#1|) (QUOTE (-342)))))
+(-329 GF |defpol|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible.")))
-((-4221 . T) (-4227 . T) (-4222 . T) ((-4231 "*") . T) (-4223 . T) (-4224 . T) (-4226 . T))
-((|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-133))) (-3700 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-341)))))
-(-329 -4045 GF)
+((-4225 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
+((|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (QUOTE (-133))) (-3703 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-342)))))
+(-330 -4049 GF)
((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-330 GF)
+(-331 GF)
((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,{}x**q,{}x**(q**2),{}...,{}x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,{}n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive.")))
NIL
NIL
-(-331 -4045 FP FPP)
+(-332 -4049 FP FPP)
((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")))
NIL
NIL
-(-332 GF |n|)
+(-333 GF |n|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}.")))
-((-4221 . T) (-4227 . T) (-4222 . T) ((-4231 "*") . T) (-4223 . T) (-4224 . T) (-4226 . T))
-((|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-133))) (-3700 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-341)))))
-(-333 R |ls|)
+((-4225 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
+((|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (QUOTE (-133))) (-3703 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-342)))))
+(-334 R |ls|)
((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}.")))
NIL
NIL
-(-334 S)
+(-335 S)
((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
-((-4226 . T))
+((-4230 . T))
NIL
-(-335 S)
+(-336 S)
((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0.")))
NIL
NIL
-(-336)
+(-337)
((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0.")))
-((-4221 . T) (-4227 . T) (-4222 . T) ((-4231 "*") . T) (-4223 . T) (-4224 . T) (-4226 . T))
+((-4225 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
NIL
-(-337 |Name| S)
+(-338 |Name| S)
((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,{}s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,{}mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,{}\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,{}mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input.")))
NIL
NIL
-(-338 S)
+(-339 S)
((|constructor| (NIL "This domain provides a basic model of files to save arbitrary values. The operations provide sequential access to the contents.")) (|readIfCan!| (((|Union| |#1| "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result.")))
NIL
NIL
-(-339 S R)
+(-340 S R)
((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#2|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,{}b,{}c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Lie algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Jordan algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0 = 2*associator(a,{}b,{}b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,{}b,{}a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,{}b,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#2| (|Vector| $)) "\\spad{rightDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,{}...,{}vn]))}.")) (|leftDiscriminant| ((|#2| (|Vector| $)) "\\spad{leftDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,{}...,{}vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,{}...,{}am],{}[v1,{}...,{}vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am],{}[v1,{}...,{}vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#2| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#2| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#2| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#2| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|)) (|Vector| $)) "\\spad{structuralConstants([v1,{}v2,{}...,{}vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,{}...,{}vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis.")))
NIL
-((|HasCategory| |#2| (QUOTE (-512))))
-(-340 R)
+((|HasCategory| |#2| (QUOTE (-513))))
+(-341 R)
((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,{}b,{}c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Lie algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Jordan algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0 = 2*associator(a,{}b,{}b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,{}b,{}a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,{}b,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,{}...,{}vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,{}...,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}...,{}am],{}[v1,{}...,{}vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am],{}[v1,{}...,{}vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,{}v2,{}...,{}vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,{}...,{}vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis.")))
-((-4226 |has| |#1| (-512)) (-4224 . T) (-4223 . T))
+((-4230 |has| |#1| (-513)) (-4228 . T) (-4227 . T))
NIL
-(-341)
+(-342)
((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set.")))
NIL
NIL
-(-342 S R UP)
+(-343 S R UP)
((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#3| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#3| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{traceMatrix([v1,{}..,{}vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#2| (|Vector| $)) "\\spad{discriminant([v1,{}..,{}vn])} returns \\spad{determinant(traceMatrix([v1,{}..,{}vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,{}..,{}an],{}[v1,{}..,{}vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm],{} basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,{}basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#2| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#2| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{regularRepresentation(a,{}basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra.")))
NIL
-((|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (QUOTE (-336))))
-(-343 R UP)
+((|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (QUOTE (-337))))
+(-344 R UP)
((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,{}..,{}vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,{}..,{}vn])} returns \\spad{determinant(traceMatrix([v1,{}..,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}..,{}an],{}[v1,{}..,{}vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm],{} basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,{}basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra.")))
-((-4223 . T) (-4224 . T) (-4226 . T))
+((-4227 . T) (-4228 . T) (-4230 . T))
NIL
-(-344 S A R B)
+(-345 S A R B)
((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain.")))
NIL
NIL
-(-345 A S)
+(-346 A S)
((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4230)) (|HasCategory| |#2| (QUOTE (-783))) (|HasCategory| |#2| (QUOTE (-1012))))
-(-346 S)
+((|HasAttribute| |#1| (QUOTE -4234)) (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-1013))))
+(-347 S)
((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
-((-4229 . T) (-2046 . T))
+((-4233 . T) (-2046 . T))
NIL
-(-347 |VarSet| R)
+(-348 |VarSet| R)
((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}\\spad{xn}],{} [\\spad{v1},{}...,{}\\spad{vn}])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4224 . T) (-4223 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4228 . T) (-4227 . T))
NIL
-(-348 S V)
+(-349 S V)
((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm.")))
NIL
NIL
-(-349 S R)
+(-350 S R)
((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -582) (QUOTE (-520)))))
-(-350 R)
+((|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521)))))
+(-351 R)
((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}")))
-((-4226 . T))
+((-4230 . T))
NIL
-(-351 |Par|)
+(-352 |Par|)
((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf,{} lv,{} eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf,{} eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,{}eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,{}eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}.")))
NIL
NIL
-(-352)
+(-353)
((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,{}exponent,{}\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,{}e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{\\spad{pi}},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|convert| (($ (|DoubleFloat|)) "\\spad{convert(x)} converts a \\spadtype{DoubleFloat} \\spad{x} to a \\spadtype{Float}.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,{}n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,{}y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\^= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-4212 . T) (-4220 . T) (-3890 . T) (-4221 . T) (-4227 . T) (-4222 . T) ((-4231 "*") . T) (-4223 . T) (-4224 . T) (-4226 . T))
+((-4216 . T) (-4224 . T) (-3894 . T) (-4225 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
NIL
-(-353 |Par|)
+(-354 |Par|)
((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf,{} eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,{}lv,{}eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,{}eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,{}eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,{}eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,{}eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.")))
NIL
NIL
-(-354 R S)
+(-355 R S)
((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}")))
-((-4224 . T) (-4223 . T))
+((-4228 . T) (-4227 . T))
((|HasCategory| |#1| (QUOTE (-157))))
-(-355 R |Basis|)
+(-356 R |Basis|)
((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis,{} c: R)} such that \\spad{x} equals \\spad{reduce(+,{} map(x +-> monom(x.k,{} x.c),{} lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,{}r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,{}b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}.")))
-((-4224 . T) (-4223 . T))
+((-4228 . T) (-4227 . T))
NIL
-(-356)
+(-357)
((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}.")))
((-2046 . T))
NIL
-(-357)
+(-358)
((|constructor| (NIL "\\axiomType{FortranMatrixFunctionCategory} provides support for producing Functions and Subroutines representing matrices of expressions.")) (|retractIfCan| (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
((-2046 . T))
NIL
-(-358 R S)
+(-359 R S)
((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored.")))
-((-4224 . T) (-4223 . T))
+((-4228 . T) (-4227 . T))
((|HasCategory| |#1| (QUOTE (-157))))
-(-359 S)
+(-360 S)
((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x,{} y)} returns \\spad{[l,{} m,{} r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l,{} r) = [l,{} 1,{} r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x,{} y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l,{} r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x,{} y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x,{} y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x,{} y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x,{} y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
NIL
-((|HasCategory| |#1| (QUOTE (-783))))
-(-360)
+((|HasCategory| |#1| (QUOTE (-784))))
+(-361)
((|constructor| (NIL "A category of domains which model machine arithmetic used by machines in the AXIOM-NAG link.")))
-((-4222 . T) ((-4231 "*") . T) (-4223 . T) (-4224 . T) (-4226 . T))
+((-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
NIL
-(-361)
+(-362)
((|constructor| (NIL "This domain provides an interface to names in the file system.")))
NIL
NIL
-(-362)
+(-363)
((|constructor| (NIL "This category provides an interface to names in the file system.")) (|new| (($ (|String|) (|String|) (|String|)) "\\spad{new(d,{}pref,{}e)} constructs the name of a new writable file with \\spad{d} as its directory,{} \\spad{pref} as a prefix of its name and \\spad{e} as its extension. When \\spad{d} or \\spad{t} is the empty string,{} a default is used. An error occurs if a new file cannot be written in the given directory.")) (|writable?| (((|Boolean|) $) "\\spad{writable?(f)} tests if the named file be opened for writing. The named file need not already exist.")) (|readable?| (((|Boolean|) $) "\\spad{readable?(f)} tests if the named file exist and can it be opened for reading.")) (|exists?| (((|Boolean|) $) "\\spad{exists?(f)} tests if the file exists in the file system.")) (|extension| (((|String|) $) "\\spad{extension(f)} returns the type part of the file name.")) (|name| (((|String|) $) "\\spad{name(f)} returns the name part of the file name.")) (|directory| (((|String|) $) "\\spad{directory(f)} returns the directory part of the file name.")) (|filename| (($ (|String|) (|String|) (|String|)) "\\spad{filename(d,{}n,{}e)} creates a file name with \\spad{d} as its directory,{} \\spad{n} as its name and \\spad{e} as its extension. This is a portable way to create file names. When \\spad{d} or \\spad{t} is the empty string,{} a default is used.")) (|coerce| (((|String|) $) "\\spad{coerce(fn)} produces a string for a file name according to operating system-dependent conventions.") (($ (|String|)) "\\spad{coerce(s)} converts a string to a file name according to operating system-dependent conventions.")))
NIL
NIL
-(-363 |n| |class| R)
+(-364 |n| |class| R)
((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra")))
-((-4224 . T) (-4223 . T))
+((-4228 . T) (-4227 . T))
NIL
-(-364)
+(-365)
((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack")))
NIL
NIL
-(-365 -4045 UP UPUP R)
+(-366 -4049 UP UPUP R)
((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented")))
NIL
NIL
-(-366 S)
+(-367 S)
((|constructor| (NIL "\\spadtype{ScriptFormulaFormat1} provides a utility coercion for changing to SCRIPT formula format anything that has a coercion to the standard output format.")) (|coerce| (((|ScriptFormulaFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from an expression \\spad{s} of domain \\spad{S} to SCRIPT formula format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to SCRIPT formula format.")))
NIL
NIL
-(-367)
+(-368)
((|constructor| (NIL "\\spadtype{ScriptFormulaFormat} provides a coercion from \\spadtype{OutputForm} to IBM SCRIPT/VS Mathematical Formula Format. The basic SCRIPT formula format object consists of three parts: a prologue,{} a formula part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{formula} and \\spadfun{epilogue} extract these parts,{} respectively. The central parts of the expression go into the formula part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \":df.\" and \":edf.\" so that the formula section will be printed in display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a formatted object \\spad{t} to \\spad{strings}.")) (|setFormula!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setFormula!(t,{}strings)} sets the formula section of a formatted object \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a formatted object \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a formatted object \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setFormula!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|formula| (((|List| (|String|)) $) "\\spad{formula(t)} extracts the formula section of a formatted object \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a formatted object \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to SCRIPT formula format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")) (|coerce| (($ (|OutputForm|)) "\\spad{coerce(o)} changes \\spad{o} in the standard output format to SCRIPT formula format.")))
NIL
NIL
-(-368)
+(-369)
((|constructor| (NIL "\\axiomType{FortranProgramCategory} provides various models of FORTRAN subprograms. These can be transformed into actual FORTRAN code.")) (|outputAsFortran| (((|Void|) $) "\\axiom{outputAsFortran(\\spad{u})} translates \\axiom{\\spad{u}} into a legal FORTRAN subprogram.")))
((-2046 . T))
NIL
-(-369)
+(-370)
((|constructor| (NIL "\\axiomType{FortranFunctionCategory} is the category of arguments to NAG Library routines which return (sets of) function values.")) (|retractIfCan| (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
((-2046 . T))
NIL
-(-370)
+(-371)
((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}t,{}lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,{}l,{}ll,{}lv,{}t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}ll,{}lv)} \\undocumented{}")))
NIL
NIL
-(-371 -2883 |returnType| |arguments| |symbols|)
+(-372 -2884 |returnType| -3885 |symbols|)
((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}")))
NIL
NIL
-(-372 -4045 UP)
+(-373 -4049 UP)
((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: 6 October 1993 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{D(f)} returns the derivative of \\spad{f}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{differentiate(f)} returns the derivative of \\spad{f}.")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p,{} [[j,{} Dj,{} Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,{}Dj,{}Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}")))
NIL
NIL
-(-373 R)
+(-374 R)
((|constructor| (NIL "A set \\spad{S} is PatternMatchable over \\spad{R} if \\spad{S} can lift the pattern-matching functions of \\spad{S} over the integers and float to itself (necessary for matching in towers).")))
((-2046 . T))
NIL
-(-374 S)
+(-375 S)
((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0.")))
NIL
NIL
-(-375)
+(-376)
((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0.")))
-((-4221 . T) (-4227 . T) (-4222 . T) ((-4231 "*") . T) (-4223 . T) (-4224 . T) (-4226 . T))
+((-4225 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
NIL
-(-376 S)
+(-377 S)
((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
NIL
-((|HasAttribute| |#1| (QUOTE -4212)) (|HasAttribute| |#1| (QUOTE -4220)))
-(-377)
+((|HasAttribute| |#1| (QUOTE -4216)) (|HasAttribute| |#1| (QUOTE -4224)))
+(-378)
((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
-((-3890 . T) (-4221 . T) (-4227 . T) (-4222 . T) ((-4231 "*") . T) (-4223 . T) (-4224 . T) (-4226 . T))
+((-3894 . T) (-4225 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
NIL
-(-378 R S)
+(-379 R S)
((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,{}u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type.")))
NIL
NIL
-(-379 A B)
+(-380 A B)
((|constructor| (NIL "This package extends a map between integral domains to a map between Fractions over those domains by applying the map to the numerators and denominators.")) (|map| (((|Fraction| |#2|) (|Mapping| |#2| |#1|) (|Fraction| |#1|)) "\\spad{map(func,{}frac)} applies the function \\spad{func} to the numerator and denominator of the fraction \\spad{frac}.")))
NIL
NIL
-(-380 S)
+(-381 S)
((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical.")))
-((-4216 -12 (|has| |#1| (-6 -4227)) (|has| |#1| (-424)) (|has| |#1| (-6 -4216))) (-4221 . T) (-4227 . T) (-4222 . T) ((-4231 "*") . T) (-4223 . T) (-4224 . T) (-4226 . T))
-((|HasCategory| |#1| (QUOTE (-837))) (|HasCategory| |#1| (LIST (QUOTE -960) (QUOTE (-1083)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-945))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1059))) (|HasCategory| |#1| (LIST (QUOTE -814) (QUOTE (-352)))) (|HasCategory| |#1| (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-352))))) (|HasCategory| |#1| (QUOTE (-209))) (|HasCategory| |#1| (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasCategory| |#1| (LIST (QUOTE -481) (QUOTE (-1083)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -260) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-281))) (|HasCategory| |#1| (QUOTE (-505))) (-12 (|HasCategory| |#1| (QUOTE (-505))) (|HasCategory| |#1| (QUOTE (-764)))) (-12 (|HasAttribute| |#1| (QUOTE -4227)) (|HasAttribute| |#1| (QUOTE -4216)) (|HasCategory| |#1| (QUOTE (-424)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-496)))) (-3700 (-12 (|HasCategory| |#1| (QUOTE (-505))) (|HasCategory| |#1| (QUOTE (-764)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-496))))) (|HasCategory| |#1| (QUOTE (-783))) (-3700 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-783)))) (|HasCategory| |#1| (LIST (QUOTE -960) (QUOTE (-520)))) (-3700 (-12 (|HasCategory| |#1| (QUOTE (-505))) (|HasCategory| |#1| (QUOTE (-764)))) (|HasCategory| |#1| (LIST (QUOTE -960) (QUOTE (-520))))) (|HasCategory| |#1| (LIST (QUOTE -814) (QUOTE (-520)))) (-3700 (-12 (|HasCategory| |#1| (QUOTE (-505))) (|HasCategory| |#1| (QUOTE (-764)))) (|HasCategory| |#1| (LIST (QUOTE -814) (QUOTE (-520))))) (|HasCategory| |#1| (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-520))))) (-3700 (|HasCategory| |#1| (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-520))))) (-12 (|HasCategory| |#1| (QUOTE (-505))) (|HasCategory| |#1| (QUOTE (-764))))) (|HasCategory| |#1| (LIST (QUOTE -582) (QUOTE (-520)))) (-3700 (|HasCategory| |#1| (LIST (QUOTE -582) (QUOTE (-520)))) (-12 (|HasCategory| |#1| (QUOTE (-505))) (|HasCategory| |#1| (QUOTE (-764))))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-837)))) (-3700 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-837)))) (|HasCategory| |#1| (QUOTE (-133)))))
-(-381 S R UP)
+((-4220 -12 (|has| |#1| (-6 -4231)) (|has| |#1| (-425)) (|has| |#1| (-6 -4220))) (-4225 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
+((|HasCategory| |#1| (QUOTE (-838))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-1084)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-946))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1060))) (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-353)))) (|HasCategory| |#1| (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-353))))) (|HasCategory| |#1| (QUOTE (-210))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasCategory| |#1| (LIST (QUOTE -482) (QUOTE (-1084)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -261) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-282))) (|HasCategory| |#1| (QUOTE (-506))) (-12 (|HasCategory| |#1| (QUOTE (-506))) (|HasCategory| |#1| (QUOTE (-765)))) (-12 (|HasAttribute| |#1| (QUOTE -4231)) (|HasAttribute| |#1| (QUOTE -4220)) (|HasCategory| |#1| (QUOTE (-425)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-497)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-506))) (|HasCategory| |#1| (QUOTE (-765)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-497))))) (|HasCategory| |#1| (QUOTE (-784))) (-3703 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-784)))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-506))) (|HasCategory| |#1| (QUOTE (-765)))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-521)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-506))) (|HasCategory| |#1| (QUOTE (-765)))) (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-521))))) (-3703 (|HasCategory| |#1| (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-521))))) (-12 (|HasCategory| |#1| (QUOTE (-506))) (|HasCategory| |#1| (QUOTE (-765))))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-521)))) (-3703 (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-521)))) (-12 (|HasCategory| |#1| (QUOTE (-506))) (|HasCategory| |#1| (QUOTE (-765))))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-838)))) (-3703 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (QUOTE (-133)))))
+(-382 S R UP)
((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
NIL
NIL
-(-382 R UP)
+(-383 R UP)
((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
-((-4223 . T) (-4224 . T) (-4226 . T))
+((-4227 . T) (-4228 . T) (-4230 . T))
NIL
-(-383 A S)
+(-384 A S)
((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#2| (LIST (QUOTE -960) (QUOTE (-520)))))
-(-384 S)
+((|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521)))))
+(-385 S)
((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991")))
NIL
NIL
-(-385 R1 F1 U1 A1 R2 F2 U2 A2)
+(-386 R1 F1 U1 A1 R2 F2 U2 A2)
((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}i)} \\undocumented{}")))
NIL
NIL
-(-386 R -4045 UP A)
+(-387 R -4049 UP A)
((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,{}x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,{}...,{}fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} returns the vector \\spad{[f1,{}...,{}fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,{}...,{}fn])} returns the ideal \\spad{(f1,{}...,{}fn)}.")))
-((-4226 . T))
+((-4230 . T))
NIL
-(-387 R -4045 UP A |ibasis|)
+(-388 R -4049 UP A |ibasis|)
((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,{}...,{}fn])} = the module generated by \\spad{(f1,{}...,{}fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")))
NIL
-((|HasCategory| |#4| (LIST (QUOTE -960) (|devaluate| |#2|))))
-(-388 AR R AS S)
+((|HasCategory| |#4| (LIST (QUOTE -961) (|devaluate| |#2|))))
+(-389 AR R AS S)
((|constructor| (NIL "FramedNonAssociativeAlgebraFunctions2 implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}.")))
NIL
NIL
-(-389 S R)
+(-390 S R)
((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#2|) $) "\\spad{apply(m,{}a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#2|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#2|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#2|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#2|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#2| $ (|Integer|)) "\\spad{elt(a,{}i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
NIL
-((|HasCategory| |#2| (QUOTE (-336))))
-(-390 R)
+((|HasCategory| |#2| (QUOTE (-337))))
+(-391 R)
((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,{}a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#1| $ (|Integer|)) "\\spad{elt(a,{}i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
-((-4226 |has| |#1| (-512)) (-4224 . T) (-4223 . T))
+((-4230 |has| |#1| (-513)) (-4228 . T) (-4227 . T))
NIL
-(-391 R)
-((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,{}exponent,{}flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,{}n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,{}n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,{}n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,{}exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,{}listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically.")))
-((-4222 . T) ((-4231 "*") . T) (-4223 . T) (-4224 . T) (-4226 . T))
-((|HasCategory| |#1| (LIST (QUOTE -481) (QUOTE (-1083)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -283) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -260) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (QUOTE (-945))) (|HasCategory| |#1| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#1| (LIST (QUOTE -960) (QUOTE (-520)))) (|HasCategory| |#1| (LIST (QUOTE -481) (QUOTE (-1083)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -260) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-209))) (|HasCategory| |#1| (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasCategory| |#1| (QUOTE (-505))) (|HasCategory| |#1| (QUOTE (-424))) (-3700 (|HasCategory| |#1| (QUOTE (-424))) (|HasCategory| |#1| (QUOTE (-1122)))))
(-392 R)
+((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,{}exponent,{}flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,{}n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,{}n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,{}n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,{}exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,{}listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically.")))
+((-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
+((|HasCategory| |#1| (LIST (QUOTE -482) (QUOTE (-1084)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -284) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -261) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-1123))) (|HasCategory| |#1| (QUOTE (-946))) (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#1| (LIST (QUOTE -482) (QUOTE (-1084)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -261) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-210))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasCategory| |#1| (QUOTE (-506))) (|HasCategory| |#1| (QUOTE (-425))) (-3703 (|HasCategory| |#1| (QUOTE (-425))) (|HasCategory| |#1| (QUOTE (-1123)))))
+(-393 R)
((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,{}v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,{}fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,{}2)} then \\spad{refine(u,{}factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,{}2) * primeFactor(5,{}2)}.")))
NIL
NIL
-(-393 R FE |x| |cen|)
+(-394 R FE |x| |cen|)
((|constructor| (NIL "This package converts expressions in some function space to exponential expansions.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToXXP| (((|Union| (|:| |%expansion| (|ExponentialExpansion| |#1| |#2| |#3| |#4|)) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|)) "\\spad{exprToXXP(fcn,{}posCheck?)} converts the expression \\spad{fcn} to an exponential expansion. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed.")))
NIL
NIL
-(-394 R A S B)
+(-395 R A S B)
((|constructor| (NIL "This package allows a mapping \\spad{R} \\spad{->} \\spad{S} to be lifted to a mapping from a function space over \\spad{R} to a function space over \\spad{S}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} a)} applies \\spad{f} to all the constants in \\spad{R} appearing in \\spad{a}.")))
NIL
NIL
-(-395 R FE |Expon| UPS TRAN |x|)
+(-396 R FE |Expon| UPS TRAN |x|)
((|constructor| (NIL "This package converts expressions in some function space to power series in a variable \\spad{x} with coefficients in that function space. The function \\spadfun{exprToUPS} converts expressions to power series whose coefficients do not contain the variable \\spad{x}. The function \\spadfun{exprToGenUPS} converts functional expressions to power series whose coefficients may involve functions of \\spad{log(x)}.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToGenUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToGenUPS(fcn,{}posCheck?,{}atanFlag)} converts the expression \\spad{fcn} to a generalized power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} we return a record containing the name of the function that caused the problem and a brief description of the problem. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|exprToUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToUPS(fcn,{}posCheck?,{}atanFlag)} converts the expression \\spad{fcn} to a power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} a record containing the name of the function that caused the problem and a brief description of the problem is returned. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|integrate| (($ $) "\\spad{integrate(x)} returns the integral of \\spad{x} since we need to be able to integrate a power series")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x} since we need to be able to differentiate a power series")) (|coerce| (($ |#3|) "\\spad{coerce(e)} converts an 'exponent' \\spad{e} to an 'expression'")))
NIL
NIL
-(-396 S A R B)
+(-397 S A R B)
((|constructor| (NIL "FiniteSetAggregateFunctions2 provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad {[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain.")))
NIL
NIL
-(-397 A S)
+(-398 A S)
((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#2| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#2| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-783))) (|HasCategory| |#2| (QUOTE (-341))))
-(-398 S)
+((|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-342))))
+(-399 S)
((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}.")))
-((-4229 . T) (-4219 . T) (-4230 . T) (-2046 . T))
+((-4233 . T) (-4223 . T) (-4234 . T) (-2046 . T))
NIL
-(-399 R -4045)
+(-400 R -4049)
((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")))
NIL
NIL
-(-400 R E)
+(-401 R E)
((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,{}r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,{}r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series")))
-((-4216 -12 (|has| |#1| (-6 -4216)) (|has| |#2| (-6 -4216))) (-4223 . T) (-4224 . T) (-4226 . T))
-((-12 (|HasAttribute| |#1| (QUOTE -4216)) (|HasAttribute| |#2| (QUOTE -4216))))
-(-401 R -4045)
+((-4220 -12 (|has| |#1| (-6 -4220)) (|has| |#2| (-6 -4220))) (-4227 . T) (-4228 . T) (-4230 . T))
+((-12 (|HasAttribute| |#1| (QUOTE -4220)) (|HasAttribute| |#2| (QUOTE -4220))))
+(-402 R -4049)
((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable.")))
NIL
NIL
-(-402 S R)
+(-403 S R)
((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -960) (QUOTE (-520)))) (|HasCategory| |#2| (QUOTE (-512))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (QUOTE (-969))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-1024))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-496)))))
-(-403 R)
+((|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#2| (QUOTE (-513))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (QUOTE (-970))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-497)))))
+(-404 R)
((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
-((-4226 -3700 (|has| |#1| (-969)) (|has| |#1| (-445))) (-4224 |has| |#1| (-157)) (-4223 |has| |#1| (-157)) ((-4231 "*") |has| |#1| (-512)) (-4222 |has| |#1| (-512)) (-4227 |has| |#1| (-512)) (-4221 |has| |#1| (-512)) (-2046 . T))
+((-4230 -3703 (|has| |#1| (-970)) (|has| |#1| (-446))) (-4228 |has| |#1| (-157)) (-4227 |has| |#1| (-157)) ((-4235 "*") |has| |#1| (-513)) (-4226 |has| |#1| (-513)) (-4231 |has| |#1| (-513)) (-4225 |has| |#1| (-513)) (-2046 . T))
NIL
-(-404 R -4045)
+(-405 R -4049)
((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,{}y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,{}y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,{}y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,{}y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,{}y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,{}y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,{}x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator.")))
NIL
NIL
-(-405 R -4045)
+(-406 R -4049)
((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1,{} a2)} returns \\spad{[a,{} q1,{} q2,{} q]} such that \\spad{k(a1,{} a2) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,{}...,{}an])} returns \\spad{[a,{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.")))
NIL
((|HasCategory| |#2| (QUOTE (-27))))
-(-406 R -4045)
+(-407 R -4049)
((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,{}k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented")))
NIL
NIL
-(-407)
+(-408)
((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\"")))
NIL
NIL
-(-408 R -4045 UP)
+(-409 R -4049 UP)
((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -960) (QUOTE (-47)))))
-(-409)
+((|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-47)))))
+(-410)
((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream,{} followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp},{} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,{}fn)} processes the template \\spad{tp},{} writing the result out to \\spad{fn}.")))
NIL
NIL
-(-410)
+(-411)
((|constructor| (NIL "Creates and manipulates objects which correspond to FORTRAN data types,{} including array dimensions.")) (|fortranCharacter| (($) "\\spad{fortranCharacter()} returns CHARACTER,{} an element of FortranType")) (|fortranDoubleComplex| (($) "\\spad{fortranDoubleComplex()} returns DOUBLE COMPLEX,{} an element of FortranType")) (|fortranComplex| (($) "\\spad{fortranComplex()} returns COMPLEX,{} an element of FortranType")) (|fortranLogical| (($) "\\spad{fortranLogical()} returns LOGICAL,{} an element of FortranType")) (|fortranInteger| (($) "\\spad{fortranInteger()} returns INTEGER,{} an element of FortranType")) (|fortranDouble| (($) "\\spad{fortranDouble()} returns DOUBLE PRECISION,{} an element of FortranType")) (|fortranReal| (($) "\\spad{fortranReal()} returns REAL,{} an element of FortranType")) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType") (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Symbol|)) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType")) (|external?| (((|Boolean|) $) "\\spad{external?(u)} returns \\spad{true} if \\spad{u} is declared to be EXTERNAL")) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) "\\spad{dimensionsOf(t)} returns the dimensions of \\spad{t}")) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{scalarTypeOf(t)} returns the FORTRAN data type of \\spad{t}")) (|coerce| (($ (|FortranScalarType|)) "\\spad{coerce(t)} creates an element from a scalar type") (((|OutputForm|) $) "\\spad{coerce(x)} provides a printable form for \\spad{x}")))
NIL
NIL
-(-411 |f|)
+(-412 |f|)
((|constructor| (NIL "This domain implements named functions")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol")))
NIL
NIL
-(-412)
+(-413)
((|constructor| (NIL "\\axiomType{FortranVectorCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Vector} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Vector| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}.")))
((-2046 . T))
NIL
-(-413)
+(-414)
((|constructor| (NIL "\\axiomType{FortranVectorFunctionCategory} is the catagory of arguments to NAG Library routines which return the values of vectors of functions.")) (|retractIfCan| (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
((-2046 . T))
NIL
-(-414 UP)
+(-415 UP)
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,{}sqf,{}pd,{}r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,{}sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r,{}sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,{}p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object.")))
NIL
NIL
-(-415 R UP -4045)
+(-416 R UP -4049)
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,{}p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,{}n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}.")))
NIL
NIL
-(-416 R UP)
+(-417 R UP)
((|constructor| (NIL "\\spadtype{GaloisGroupPolynomialUtilities} provides useful functions for univariate polynomials which should be added to \\spadtype{UnivariatePolynomialCategory} or to \\spadtype{Factored} (July 1994).")) (|factorsOfDegree| (((|List| |#2|) (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorsOfDegree(d,{}f)} returns the factors of degree \\spad{d} of the factored polynomial \\spad{f}.")) (|factorOfDegree| ((|#2| (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorOfDegree(d,{}f)} returns a factor of degree \\spad{d} of the factored polynomial \\spad{f}. Such a factor shall exist.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|Factored| |#2|)) "\\spad{degreePartition(f)} returns the degree partition (\\spadignore{i.e.} the multiset of the degrees of the irreducible factors) of the polynomial \\spad{f}.")) (|shiftRoots| ((|#2| |#2| |#1|) "\\spad{shiftRoots(p,{}c)} returns the polynomial which has for roots \\spad{c} added to the roots of \\spad{p}.")) (|scaleRoots| ((|#2| |#2| |#1|) "\\spad{scaleRoots(p,{}c)} returns the polynomial which has \\spad{c} times the roots of \\spad{p}.")) (|reverse| ((|#2| |#2|) "\\spad{reverse(p)} returns the reverse polynomial of \\spad{p}.")) (|unvectorise| ((|#2| (|Vector| |#1|)) "\\spad{unvectorise(v)} returns the polynomial which has for coefficients the entries of \\spad{v} in the increasing order.")) (|monic?| (((|Boolean|) |#2|) "\\spad{monic?(p)} tests if \\spad{p} is monic (\\spadignore{i.e.} leading coefficient equal to 1).")))
NIL
NIL
-(-417 R)
+(-418 R)
((|constructor| (NIL "\\spadtype{GaloisGroupUtilities} provides several useful functions.")) (|safetyMargin| (((|NonNegativeInteger|)) "\\spad{safetyMargin()} returns the number of low weight digits we do not trust in the floating point representation (used by \\spadfun{safeCeiling}).") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{safetyMargin(n)} sets to \\spad{n} the number of low weight digits we do not trust in the floating point representation and returns the previous value (for use by \\spadfun{safeCeiling}).")) (|safeFloor| (((|Integer|) |#1|) "\\spad{safeFloor(x)} returns the integer which is lower or equal to the largest integer which has the same floating point number representation.")) (|safeCeiling| (((|Integer|) |#1|) "\\spad{safeCeiling(x)} returns the integer which is greater than any integer with the same floating point number representation.")) (|fillPascalTriangle| (((|Void|)) "\\spad{fillPascalTriangle()} fills the stored table.")) (|sizePascalTriangle| (((|NonNegativeInteger|)) "\\spad{sizePascalTriangle()} returns the number of entries currently stored in the table.")) (|rangePascalTriangle| (((|NonNegativeInteger|)) "\\spad{rangePascalTriangle()} returns the maximal number of lines stored.") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rangePascalTriangle(n)} sets the maximal number of lines which are stored and returns the previous value.")) (|pascalTriangle| ((|#1| (|NonNegativeInteger|) (|Integer|)) "\\spad{pascalTriangle(n,{}r)} returns the binomial coefficient \\spad{C(n,{}r)=n!/(r! (n-r)!)} and stores it in a table to prevent recomputation.")))
NIL
-((|HasCategory| |#1| (QUOTE (-377))))
-(-418)
+((|HasCategory| |#1| (QUOTE (-378))))
+(-419)
((|constructor| (NIL "Package for the factorization of complex or gaussian integers.")) (|prime?| (((|Boolean|) (|Complex| (|Integer|))) "\\spad{prime?(\\spad{zi})} tests if the complex integer \\spad{zi} is prime.")) (|sumSquares| (((|List| (|Integer|)) (|Integer|)) "\\spad{sumSquares(p)} construct \\spad{a} and \\spad{b} such that \\spad{a**2+b**2} is equal to the integer prime \\spad{p},{} and otherwise returns an error. It will succeed if the prime number \\spad{p} is 2 or congruent to 1 mod 4.")) (|factor| (((|Factored| (|Complex| (|Integer|))) (|Complex| (|Integer|))) "\\spad{factor(\\spad{zi})} produces the complete factorization of the complex integer \\spad{zi}.")))
NIL
NIL
-(-419 |Dom| |Expon| |VarSet| |Dpol|)
+(-420 |Dom| |Expon| |VarSet| |Dpol|)
((|constructor| (NIL "\\spadtype{EuclideanGroebnerBasisPackage} computes groebner bases for polynomial ideals over euclidean domains. The basic computation provides a distinguished set of generators for these ideals. This basis allows an easy test for membership: the operation \\spadfun{euclideanNormalForm} returns zero on ideal members. The string \"info\" and \"redcrit\" can be given as additional args to provide incremental information during the computation. If \"info\" is given,{} \\indented{1}{a computational summary is given for each \\spad{s}-polynomial. If \"redcrit\"} is given,{} the reduced critical pairs are printed. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|euclideanGroebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{euclideanGroebner(lp,{} \"info\",{} \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. If the second argument is \\spad{\"info\"},{} a summary is given of the critical pairs. If the third argument is \"redcrit\",{} critical pairs are printed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{euclideanGroebner(lp,{} infoflag)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}. During computation,{} additional information is printed out if infoflag is given as either \"info\" (for summary information) or \"redcrit\" (for reduced critical pairs)") (((|List| |#4|) (|List| |#4|)) "\\spad{euclideanGroebner(lp)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}.")) (|euclideanNormalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{euclideanNormalForm(poly,{}gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")))
NIL
NIL
-(-420 |Dom| |Expon| |VarSet| |Dpol|)
+(-421 |Dom| |Expon| |VarSet| |Dpol|)
((|constructor| (NIL "\\spadtype{GroebnerFactorizationPackage} provides the function groebnerFactor\" which uses the factorization routines of \\Language{} to factor each polynomial under consideration while doing the groebner basis algorithm. Then it writes the ideal as an intersection of ideals determined by the irreducible factors. Note that the whole ring may occur as well as other redundancies. We also use the fact,{} that from the second factor on we can assume that the preceding factors are not equal to 0 and we divide all polynomials under considerations by the elements of this list of \"nonZeroRestrictions\". The result is a list of groebner bases,{} whose union of solutions of the corresponding systems of equations is the solution of the system of equation corresponding to the input list. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|groebnerFactorize| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys,{} info)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys,{} nonZeroRestrictions,{} info)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys,{} nonZeroRestrictions)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.")) (|factorGroebnerBasis| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{factorGroebnerBasis(basis,{}info)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{factorGroebnerBasis(basis)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}.")))
NIL
NIL
-(-421 |Dom| |Expon| |VarSet| |Dpol|)
+(-422 |Dom| |Expon| |VarSet| |Dpol|)
((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Keywords: Description This package provides low level tools for Groebner basis computations")) (|virtualDegree| (((|NonNegativeInteger|) |#4|) "\\spad{virtualDegree }\\undocumented")) (|makeCrit| (((|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)) |#4| (|NonNegativeInteger|)) "\\spad{makeCrit }\\undocumented")) (|critpOrder| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critpOrder }\\undocumented")) (|prinb| (((|Void|) (|Integer|)) "\\spad{prinb }\\undocumented")) (|prinpolINFO| (((|Void|) (|List| |#4|)) "\\spad{prinpolINFO }\\undocumented")) (|fprindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{fprindINFO }\\undocumented")) (|prindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|)) "\\spad{prindINFO }\\undocumented")) (|prinshINFO| (((|Void|) |#4|) "\\spad{prinshINFO }\\undocumented")) (|lepol| (((|Integer|) |#4|) "\\spad{lepol }\\undocumented")) (|minGbasis| (((|List| |#4|) (|List| |#4|)) "\\spad{minGbasis }\\undocumented")) (|updatD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{updatD }\\undocumented")) (|sPol| ((|#4| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{sPol }\\undocumented")) (|updatF| (((|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|))) |#4| (|NonNegativeInteger|) (|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)))) "\\spad{updatF }\\undocumented")) (|hMonic| ((|#4| |#4|) "\\spad{hMonic }\\undocumented")) (|redPo| (((|Record| (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (|List| |#4|)) "\\spad{redPo }\\undocumented")) (|critMonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMonD1 }\\undocumented")) (|critMTonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMTonD1 }\\undocumented")) (|critBonD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critBonD }\\undocumented")) (|critB| (((|Boolean|) |#2| |#2| |#2| |#2|) "\\spad{critB }\\undocumented")) (|critM| (((|Boolean|) |#2| |#2|) "\\spad{critM }\\undocumented")) (|critT| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critT }\\undocumented")) (|gbasis| (((|List| |#4|) (|List| |#4|) (|Integer|) (|Integer|)) "\\spad{gbasis }\\undocumented")) (|redPol| ((|#4| |#4| (|List| |#4|)) "\\spad{redPol }\\undocumented")) (|credPol| ((|#4| |#4| (|List| |#4|)) "\\spad{credPol }\\undocumented")))
NIL
NIL
-(-422 |Dom| |Expon| |VarSet| |Dpol|)
+(-423 |Dom| |Expon| |VarSet| |Dpol|)
((|constructor| (NIL "\\spadtype{GroebnerPackage} computes groebner bases for polynomial ideals. The basic computation provides a distinguished set of generators for polynomial ideals over fields. This basis allows an easy test for membership: the operation \\spadfun{normalForm} returns zero on ideal members. When the provided coefficient domain,{} Dom,{} is not a field,{} the result is equivalent to considering the extended ideal with \\spadtype{Fraction(Dom)} as coefficients,{} but considerably more efficient since all calculations are performed in Dom. Additional argument \"info\" and \"redcrit\" can be given to provide incremental information during computation. Argument \"info\" produces a computational summary for each \\spad{s}-polynomial. Argument \"redcrit\" prints out the reduced critical pairs. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|normalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{normalForm(poly,{}gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")) (|groebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{groebner(lp,{} \"info\",{} \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp},{} displaying both a summary of the critical pairs considered (\\spad{\"info\"}) and the result of reducing each critical pair (\"redcrit\"). If the second or third arguments have any other string value,{} the indicated information is suppressed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{groebner(lp,{} infoflag)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. Argument infoflag is used to get information on the computation. If infoflag is \"info\",{} then summary information is displayed for each \\spad{s}-polynomial generated. If infoflag is \"redcrit\",{} the reduced critical pairs are displayed. If infoflag is any other string,{} no information is printed during computation.") (((|List| |#4|) (|List| |#4|)) "\\spad{groebner(lp)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-336))))
-(-423 S)
+((|HasCategory| |#1| (QUOTE (-337))))
+(-424 S)
((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,{}y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,{}y)} returns the greatest common divisor of \\spad{x} and \\spad{y}.")))
NIL
NIL
-(-424)
+(-425)
((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,{}y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,{}y)} returns the greatest common divisor of \\spad{x} and \\spad{y}.")))
-((-4222 . T) ((-4231 "*") . T) (-4223 . T) (-4224 . T) (-4226 . T))
+((-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
NIL
-(-425 R |n| |ls| |gamma|)
+(-426 R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,{}b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,{}b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,{}ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,{}v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed")))
-((-4226 |has| (-380 (-880 |#1|)) (-512)) (-4224 . T) (-4223 . T))
-((|HasCategory| (-380 (-880 |#1|)) (QUOTE (-336))) (|HasCategory| |#1| (QUOTE (-512))) (|HasCategory| (-380 (-880 |#1|)) (QUOTE (-512))))
-(-426 |vl| R E)
+((-4230 |has| (-381 (-881 |#1|)) (-513)) (-4228 . T) (-4227 . T))
+((|HasCategory| (-381 (-881 |#1|)) (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| (-381 (-881 |#1|)) (QUOTE (-513))))
+(-427 |vl| R E)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4231 "*") |has| |#2| (-157)) (-4222 |has| |#2| (-512)) (-4227 |has| |#2| (-6 -4227)) (-4224 . T) (-4223 . T) (-4226 . T))
-((|HasCategory| |#2| (QUOTE (-837))) (|HasCategory| |#2| (QUOTE (-512))) (|HasCategory| |#2| (QUOTE (-157))) (-3700 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-512)))) (-12 (|HasCategory| (-793 |#1|) (LIST (QUOTE -814) (QUOTE (-352)))) (|HasCategory| |#2| (LIST (QUOTE -814) (QUOTE (-352))))) (-12 (|HasCategory| (-793 |#1|) (LIST (QUOTE -814) (QUOTE (-520)))) (|HasCategory| |#2| (LIST (QUOTE -814) (QUOTE (-520))))) (-12 (|HasCategory| (-793 |#1|) (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-352))))) (|HasCategory| |#2| (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-352)))))) (-12 (|HasCategory| (-793 |#1|) (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-520))))) (|HasCategory| |#2| (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-520)))))) (-12 (|HasCategory| (-793 |#1|) (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-496))))) (|HasCategory| |#2| (QUOTE (-783))) (|HasCategory| |#2| (LIST (QUOTE -582) (QUOTE (-520)))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#2| (LIST (QUOTE -960) (QUOTE (-520)))) (|HasCategory| |#2| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#2| (QUOTE (-336))) (-3700 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#2| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520)))))) (|HasAttribute| |#2| (QUOTE -4227)) (|HasCategory| |#2| (QUOTE (-424))) (-3700 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-424))) (|HasCategory| |#2| (QUOTE (-512))) (|HasCategory| |#2| (QUOTE (-837)))) (-3700 (|HasCategory| |#2| (QUOTE (-424))) (|HasCategory| |#2| (QUOTE (-512))) (|HasCategory| |#2| (QUOTE (-837)))) (-3700 (|HasCategory| |#2| (QUOTE (-424))) (|HasCategory| |#2| (QUOTE (-837)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-837)))) (-3700 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-837)))) (|HasCategory| |#2| (QUOTE (-133)))))
-(-427 R BP)
+(((-4235 "*") |has| |#2| (-157)) (-4226 |has| |#2| (-513)) (-4231 |has| |#2| (-6 -4231)) (-4228 . T) (-4227 . T) (-4230 . T))
+((|HasCategory| |#2| (QUOTE (-838))) (|HasCategory| |#2| (QUOTE (-513))) (|HasCategory| |#2| (QUOTE (-157))) (-3703 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-513)))) (-12 (|HasCategory| (-794 |#1|) (LIST (QUOTE -815) (QUOTE (-353)))) (|HasCategory| |#2| (LIST (QUOTE -815) (QUOTE (-353))))) (-12 (|HasCategory| (-794 |#1|) (LIST (QUOTE -815) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -815) (QUOTE (-521))))) (-12 (|HasCategory| (-794 |#1|) (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-353))))) (|HasCategory| |#2| (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-353)))))) (-12 (|HasCategory| (-794 |#1|) (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-521))))) (|HasCategory| |#2| (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-521)))))) (-12 (|HasCategory| (-794 |#1|) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-497))))) (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-337))) (-3703 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521)))))) (|HasAttribute| |#2| (QUOTE -4231)) (|HasCategory| |#2| (QUOTE (-425))) (-3703 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-425))) (|HasCategory| |#2| (QUOTE (-513))) (|HasCategory| |#2| (QUOTE (-838)))) (-3703 (|HasCategory| |#2| (QUOTE (-425))) (|HasCategory| |#2| (QUOTE (-513))) (|HasCategory| |#2| (QUOTE (-838)))) (-3703 (|HasCategory| |#2| (QUOTE (-425))) (|HasCategory| |#2| (QUOTE (-838)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-838)))) (-3703 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-838)))) (|HasCategory| |#2| (QUOTE (-133)))))
+(-428 R BP)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,{}lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,{}table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,{}prime,{}lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,{}lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,{}prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional.")))
NIL
NIL
-(-428 OV E S R P)
+(-429 OV E S R P)
((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| |#5|) |#5|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-429 E OV R P)
+(-430 E OV R P)
((|constructor| (NIL "This package provides operations for \\spad{GCD} computations on polynomials")) (|randomR| ((|#3|) "\\spad{randomR()} should be local but conditional")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{GCD} of \\spad{p} and \\spad{q}")))
NIL
NIL
-(-430 R)
+(-431 R)
((|constructor| (NIL "\\indented{1}{Description} This package provides operations for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" the finite \"berlekamp's\" factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{factor(p)} returns the factorisation of \\spad{p}")))
NIL
NIL
-(-431 R FE)
+(-432 R FE)
((|constructor| (NIL "\\spadtype{GenerateUnivariatePowerSeries} provides functions that create power series from explicit formulas for their \\spad{n}th coefficient.")) (|series| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(a(n),{}n,{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{series(a(n),{}n,{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(n +-> a(n),{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(a(n),{}n,{}x=a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{series(a(n),{}n,{}x=a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(n +-> a(n),{}x = a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{series(a(n),{}n,{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{series(n +-> a(n),{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}.")) (|puiseux| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(a(n),{}n,{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{puiseux(a(n),{}n,{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(n +-> a(n),{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{puiseux(n +-> a(n),{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.")) (|laurent| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(a(n),{}n,{}x=a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{laurent(a(n),{}n,{}x=a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(n +-> a(n),{}x = a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{laurent(n +-> a(n),{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.")) (|taylor| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(a(n),{}n,{}x = a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n)*(x-a)**n)}; \\spad{taylor(a(n),{}n,{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..,{}a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(n +-> a(n),{}x = a,{}n0..)} returns \\spad{sum(n=n0..,{}a(n)*(x-a)**n)}; \\spad{taylor(n +-> a(n),{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..,{}a(n)*(x-a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{taylor(a(n),{}n,{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{taylor(n +-> a(n),{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}.")))
NIL
NIL
-(-432 RP TP)
+(-433 RP TP)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni} General Hensel Lifting Used for Factorization of bivariate polynomials over a finite field.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(u,{}pol)} computes the symmetric reduction of \\spad{u} mod \\spad{pol}")) (|completeHensel| (((|List| |#2|) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{completeHensel(pol,{}lfact,{}prime,{}bound)} lifts \\spad{lfact},{} the factorization mod \\spad{prime} of \\spad{pol},{} to the factorization mod prime**k>bound. Factors are recombined on the way.")) (|HenselLift| (((|Record| (|:| |plist| (|List| |#2|)) (|:| |modulo| |#1|)) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{HenselLift(pol,{}lfacts,{}prime,{}bound)} lifts \\spad{lfacts},{} that are the factors of \\spad{pol} mod \\spad{prime},{} to factors of \\spad{pol} mod prime**k > \\spad{bound}. No recombining is done .")))
NIL
NIL
-(-433 |vl| R IS E |ff| P)
+(-434 |vl| R IS E |ff| P)
((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,{}e,{}x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,{}i,{}e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,{}x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented")))
-((-4224 . T) (-4223 . T))
+((-4228 . T) (-4227 . T))
NIL
-(-434 E V R P Q)
+(-435 E V R P Q)
((|constructor| (NIL "Gosper\\spad{'s} summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b,{} n,{} new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}.")))
NIL
NIL
-(-435 R E |VarSet| P)
+(-436 R E |VarSet| P)
((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(\\spad{lp})} returns the polynomial set whose members are the polynomials of \\axiom{\\spad{lp}}.")))
-((-4230 . T) (-4229 . T))
-((|HasCategory| |#4| (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| |#4| (QUOTE (-1012))) (-12 (|HasCategory| |#4| (QUOTE (-1012))) (|HasCategory| |#4| (LIST (QUOTE -283) (|devaluate| |#4|)))) (|HasCategory| |#1| (QUOTE (-512))) (|HasCategory| |#4| (LIST (QUOTE -560) (QUOTE (-791)))))
-(-436 S R E)
+((-4234 . T) (-4233 . T))
+((|HasCategory| |#4| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#4| (QUOTE (-1013))) (-12 (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#4| (LIST (QUOTE -284) (|devaluate| |#4|)))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#4| (LIST (QUOTE -561) (QUOTE (-792)))))
+(-437 S R E)
((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,{}b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,{}b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,{}b) = product(a1,{}b) + product(a2,{}b)}} \\indented{2}{\\spad{product(a,{}b1+b2) = product(a,{}b1) + product(a,{}b2)}} \\indented{2}{\\spad{product(r*a,{}b) = product(a,{}r*b) = r*product(a,{}b)}} \\indented{2}{\\spad{product(a,{}product(b,{}c)) = product(product(a,{}b),{}c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}.")))
NIL
NIL
-(-437 R E)
+(-438 R E)
((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,{}b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,{}b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,{}b) = product(a1,{}b) + product(a2,{}b)}} \\indented{2}{\\spad{product(a,{}b1+b2) = product(a,{}b1) + product(a,{}b2)}} \\indented{2}{\\spad{product(r*a,{}b) = product(a,{}r*b) = r*product(a,{}b)}} \\indented{2}{\\spad{product(a,{}product(b,{}c)) = product(product(a,{}b),{}c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}.")))
NIL
NIL
-(-438)
+(-439)
((|constructor| (NIL "GrayCode provides a function for efficiently running through all subsets of a finite set,{} only changing one element by another one.")) (|firstSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{firstSubsetGray(n)} creates the first vector {\\em ww} to start a loop using {\\em nextSubsetGray(ww,{}n)}")) (|nextSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{nextSubsetGray(ww,{}n)} returns a vector {\\em vv} whose components have the following meanings:\\begin{items} \\item {\\em vv.1}: a vector of length \\spad{n} whose entries are 0 or 1. This \\indented{3}{can be interpreted as a code for a subset of the set 1,{}...,{}\\spad{n};} \\indented{3}{{\\em vv.1} differs from {\\em ww.1} by exactly one entry;} \\item {\\em vv.2.1} is the number of the entry of {\\em vv.1} which \\indented{3}{will be changed next time;} \\item {\\em vv.2.1 = n+1} means that {\\em vv.1} is the last subset; \\indented{3}{trying to compute nextSubsetGray(\\spad{vv}) if {\\em vv.2.1 = n+1}} \\indented{3}{will produce an error!} \\end{items} The other components of {\\em vv.2} are needed to compute nextSubsetGray efficiently. Note: this is an implementation of [Williamson,{} Topic II,{} 3.54,{} \\spad{p}. 112] for the special case {\\em r1 = r2 = ... = rn = 2}; Note: nextSubsetGray produces a side-effect,{} \\spadignore{i.e.} {\\em nextSubsetGray(vv)} and {\\em vv := nextSubsetGray(vv)} will have the same effect.")))
NIL
NIL
-(-439)
+(-440)
((|constructor| (NIL "TwoDimensionalPlotSettings sets global flags and constants for 2-dimensional plotting.")) (|screenResolution| (((|Integer|) (|Integer|)) "\\spad{screenResolution(n)} sets the screen resolution to \\spad{n}.") (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution \\spad{n}.")) (|minPoints| (((|Integer|) (|Integer|)) "\\spad{minPoints()} sets the minimum number of points in a plot.") (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot.")) (|maxPoints| (((|Integer|) (|Integer|)) "\\spad{maxPoints()} sets the maximum number of points in a plot.") (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot.")) (|adaptive| (((|Boolean|) (|Boolean|)) "\\spad{adaptive(true)} turns adaptive plotting on; \\spad{adaptive(false)} turns adaptive plotting off.") (((|Boolean|)) "\\spad{adaptive()} determines whether plotting will be done adaptively.")) (|drawToScale| (((|Boolean|) (|Boolean|)) "\\spad{drawToScale(true)} causes plots to be drawn to scale. \\spad{drawToScale(false)} causes plots to be drawn so that they fill up the viewport window. The default setting is \\spad{false}.") (((|Boolean|)) "\\spad{drawToScale()} determines whether or not plots are to be drawn to scale.")) (|clipPointsDefault| (((|Boolean|) (|Boolean|)) "\\spad{clipPointsDefault(true)} turns on automatic clipping; \\spad{clipPointsDefault(false)} turns off automatic clipping. The default setting is \\spad{true}.") (((|Boolean|)) "\\spad{clipPointsDefault()} determines whether or not automatic clipping is to be done.")))
NIL
NIL
-(-440)
+(-441)
((|constructor| (NIL "TwoDimensionalGraph creates virtual two dimensional graphs (to be displayed on TwoDimensionalViewports).")) (|putColorInfo| (((|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|))) "\\spad{putColorInfo(llp,{}lpal)} takes a list of list of points,{} \\spad{llp},{} and returns the points with their hue and shade components set according to the list of palette colors,{} \\spad{lpal}.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(\\spad{gi})} returns the indicated graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage} as output of the domain \\spadtype{OutputForm}.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{coerce(llp)} component(\\spad{gi},{}\\spad{pt}) creates and returns a graph of the domain \\spadtype{GraphImage} which is composed of the list of list of points given by \\spad{llp},{} and whose point colors,{} line colors and point sizes are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.")) (|point| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|)) "\\spad{point(\\spad{gi},{}pt,{}pal)} modifies the graph \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to be the palette color \\spad{pal},{} and whose line color and point size are determined by the default functions \\spadfun{lineColorDefault} and \\spadfun{pointSizeDefault}.")) (|appendPoint| (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{appendPoint(\\spad{gi},{}pt)} appends the point \\spad{pt} to the end of the list of points component for the graph,{} \\spad{\\spad{gi}},{} which is of the domain \\spadtype{GraphImage}.")) (|component| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(\\spad{gi},{}pt,{}pal1,{}pal2,{}ps)} modifies the graph \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to the palette color \\spad{pal1},{} line color is set to the palette color \\spad{pal2},{} and point size is set to the positive integer \\spad{ps}.") (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{component(\\spad{gi},{}pt)} modifies the graph \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color,{} line color and point size are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}.") (((|Void|) $ (|List| (|Point| (|DoubleFloat|))) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(\\spad{gi},{}lp,{}pal1,{}pal2,{}p)} sets the components of the graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} to the values given. The point list for \\spad{\\spad{gi}} is set to the list \\spad{lp},{} the color of the points in \\spad{lp} is set to the palette color \\spad{pal1},{} the color of the lines which connect the points \\spad{lp} is set to the palette color \\spad{pal2},{} and the size of the points in \\spad{lp} is given by the integer \\spad{p}.")) (|units| (((|List| (|Float|)) $ (|List| (|Float|))) "\\spad{units(\\spad{gi},{}lu)} modifies the list of unit increments for the \\spad{x} and \\spad{y} axes of the given graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} to be that of the list of unit increments,{} \\spad{lu},{} and returns the new list of units for \\spad{\\spad{gi}}.") (((|List| (|Float|)) $) "\\spad{units(\\spad{gi})} returns the list of unit increments for the \\spad{x} and \\spad{y} axes of the indicated graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|ranges| (((|List| (|Segment| (|Float|))) $ (|List| (|Segment| (|Float|)))) "\\spad{ranges(\\spad{gi},{}lr)} modifies the list of ranges for the given graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} to be that of the list of range segments,{} \\spad{lr},{} and returns the new range list for \\spad{\\spad{gi}}.") (((|List| (|Segment| (|Float|))) $) "\\spad{ranges(\\spad{gi})} returns the list of ranges of the point components from the indicated graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|key| (((|Integer|) $) "\\spad{key(\\spad{gi})} returns the process ID of the given graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|pointLists| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{pointLists(\\spad{gi})} returns the list of lists of points which compose the given graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|makeGraphImage| (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|)) (|List| (|DrawOption|))) "\\spad{makeGraphImage(llp,{}lpal1,{}lpal2,{}lp,{}lopt)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points,{} and \\spad{lopt} is the list of draw command options. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|))) "\\spad{makeGraphImage(llp,{}lpal1,{}lpal2,{}lp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{makeGraphImage(llp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} with default point size and default point and line colours. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ $) "\\spad{makeGraphImage(\\spad{gi})} takes the given graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} and sends it\\spad{'s} data to the viewport manager where it waits to be included in a two-dimensional viewport window. \\spad{\\spad{gi}} cannot be an empty graph,{} and it\\spad{'s} elements must have been created using the \\spadfun{point} or \\spadfun{component} functions,{} not by a previous \\spadfun{makeGraphImage}.")) (|graphImage| (($) "\\spad{graphImage()} returns an empty graph with 0 point lists of the domain \\spadtype{GraphImage}. A graph image contains the graph data component of a two dimensional viewport.")))
NIL
NIL
-(-441 S R E)
+(-442 S R E)
((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#2|) "\\spad{g*r} is right module multiplication.") (($ |#2| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#3| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module.")))
NIL
NIL
-(-442 R E)
+(-443 R E)
((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module.")))
NIL
NIL
-(-443 |lv| -4045 R)
+(-444 |lv| -4049 R)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,{}lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,{}lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,{}lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}.")))
NIL
NIL
-(-444 S)
+(-445 S)
((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,{}q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,{}q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (^ (($ $ (|Integer|)) "\\spad{x^n} returns \\spad{x} raised to the integer power \\spad{n}.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}.")))
NIL
NIL
-(-445)
+(-446)
((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,{}q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,{}q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (^ (($ $ (|Integer|)) "\\spad{x^n} returns \\spad{x} raised to the integer power \\spad{n}.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}.")))
-((-4226 . T))
+((-4230 . T))
NIL
-(-446 |Coef| |var| |cen|)
+(-447 |Coef| |var| |cen|)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
-(((-4231 "*") |has| |#1| (-157)) (-4222 |has| |#1| (-512)) (-4227 |has| |#1| (-336)) (-4221 |has| |#1| (-336)) (-4223 . T) (-4224 . T) (-4226 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#1| (QUOTE (-512))) (|HasCategory| |#1| (QUOTE (-157))) (-3700 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-512)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -380) (QUOTE (-520))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -380) (QUOTE (-520))) (|devaluate| |#1|))))) (|HasCategory| (-380 (-520)) (QUOTE (-1024))) (|HasCategory| |#1| (QUOTE (-336))) (-3700 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (QUOTE (-512)))) (-3700 (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (QUOTE (-512)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -380) (QUOTE (-520)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -380) (QUOTE (-520)))))) (|HasSignature| |#1| (LIST (QUOTE -2188) (LIST (|devaluate| |#1|) (QUOTE (-1083)))))) (-3700 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-520)))) (|HasCategory| |#1| (QUOTE (-886))) (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasSignature| |#1| (LIST (QUOTE -3517) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1083))))) (|HasSignature| |#1| (LIST (QUOTE -4081) (LIST (LIST (QUOTE -586) (QUOTE (-1083))) (|devaluate| |#1|)))))))
-(-447 |Key| |Entry| |Tbl| |dent|)
+(((-4235 "*") |has| |#1| (-157)) (-4226 |has| |#1| (-513)) (-4231 |has| |#1| (-337)) (-4225 |has| |#1| (-337)) (-4227 . T) (-4228 . T) (-4230 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-157))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-513)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -381) (QUOTE (-521))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -381) (QUOTE (-521))) (|devaluate| |#1|))))) (|HasCategory| (-381 (-521)) (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-337))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-513)))) (-3703 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-513)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -381) (QUOTE (-521)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -381) (QUOTE (-521)))))) (|HasSignature| |#1| (LIST (QUOTE -2189) (LIST (|devaluate| |#1|) (QUOTE (-1084)))))) (-3703 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-887))) (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasSignature| |#1| (LIST (QUOTE -2184) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1084))))) (|HasSignature| |#1| (LIST (QUOTE -4084) (LIST (LIST (QUOTE -587) (QUOTE (-1084))) (|devaluate| |#1|)))))))
+(-448 |Key| |Entry| |Tbl| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
-((-4230 . T))
-((|HasCategory| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#2| (LIST (QUOTE -560) (QUOTE (-791)))) (|HasCategory| |#2| (QUOTE (-1012))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (LIST (QUOTE -283) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (QUOTE (-1012))) (-12 (|HasCategory| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (QUOTE (-1012))) (|HasCategory| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (LIST (QUOTE -283) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2526) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3043) (|devaluate| |#2|)))))) (-3700 (|HasCategory| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (QUOTE (-1012))) (|HasCategory| |#2| (QUOTE (-1012)))) (|HasCategory| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (LIST (QUOTE -560) (QUOTE (-791)))) (-3700 (|HasCategory| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (QUOTE (-1012))) (|HasCategory| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (LIST (QUOTE -560) (QUOTE (-791)))) (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (LIST (QUOTE -560) (QUOTE (-791))))) (-3700 (|HasCategory| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (LIST (QUOTE -560) (QUOTE (-791)))) (|HasCategory| |#2| (LIST (QUOTE -560) (QUOTE (-791))))))
-(-448 R E V P)
+((-4234 . T))
+((|HasCategory| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-792)))) (|HasCategory| |#2| (QUOTE (-1013))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (QUOTE (-1013))) (-12 (|HasCategory| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (QUOTE (-1013))) (|HasCategory| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (LIST (QUOTE -284) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2529) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3045) (|devaluate| |#2|)))))) (-3703 (|HasCategory| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-1013)))) (|HasCategory| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (LIST (QUOTE -561) (QUOTE (-792)))) (-3703 (|HasCategory| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (QUOTE (-1013))) (|HasCategory| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (LIST (QUOTE -561) (QUOTE (-792)))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-792))))) (-3703 (|HasCategory| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (LIST (QUOTE -561) (QUOTE (-792)))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-792))))))
+(-449 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")))
-((-4230 . T) (-4229 . T))
-((|HasCategory| |#4| (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| |#4| (QUOTE (-1012))) (-12 (|HasCategory| |#4| (QUOTE (-1012))) (|HasCategory| |#4| (LIST (QUOTE -283) (|devaluate| |#4|)))) (|HasCategory| |#1| (QUOTE (-512))) (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#4| (LIST (QUOTE -560) (QUOTE (-791)))))
-(-449)
+((-4234 . T) (-4233 . T))
+((|HasCategory| |#4| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#4| (QUOTE (-1013))) (-12 (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#4| (LIST (QUOTE -284) (|devaluate| |#4|)))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#3| (QUOTE (-342))) (|HasCategory| |#4| (LIST (QUOTE -561) (QUOTE (-792)))))
+(-450)
((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{\\spad{pi}()} returns the symbolic \\%\\spad{pi}.")))
-((-4221 . T) (-4227 . T) (-4222 . T) ((-4231 "*") . T) (-4223 . T) (-4224 . T) (-4226 . T))
+((-4225 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
NIL
-(-450 |Key| |Entry| |hashfn|)
+(-451 |Key| |Entry| |hashfn|)
((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained.")))
-((-4229 . T) (-4230 . T))
-((|HasCategory| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (QUOTE (-1012))) (-12 (|HasCategory| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (QUOTE (-1012))) (|HasCategory| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (LIST (QUOTE -283) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2526) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3043) (|devaluate| |#2|)))))) (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#2| (QUOTE (-1012))) (-3700 (|HasCategory| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (QUOTE (-1012))) (|HasCategory| |#2| (QUOTE (-1012)))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (LIST (QUOTE -283) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -560) (QUOTE (-791)))) (|HasCategory| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (LIST (QUOTE -560) (QUOTE (-791)))) (-3700 (|HasCategory| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (QUOTE (-1012))) (|HasCategory| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (LIST (QUOTE -560) (QUOTE (-791)))) (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (LIST (QUOTE -560) (QUOTE (-791))))) (-3700 (|HasCategory| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (LIST (QUOTE -560) (QUOTE (-791)))) (|HasCategory| |#2| (LIST (QUOTE -560) (QUOTE (-791))))))
-(-451)
+((-4233 . T) (-4234 . T))
+((|HasCategory| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (QUOTE (-1013))) (-12 (|HasCategory| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (QUOTE (-1013))) (|HasCategory| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (LIST (QUOTE -284) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2529) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3045) (|devaluate| |#2|)))))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-1013))) (-3703 (|HasCategory| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-792)))) (|HasCategory| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (LIST (QUOTE -561) (QUOTE (-792)))) (-3703 (|HasCategory| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (QUOTE (-1013))) (|HasCategory| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (LIST (QUOTE -561) (QUOTE (-792)))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-792))))) (-3703 (|HasCategory| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (LIST (QUOTE -561) (QUOTE (-792)))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-792))))))
+(-452)
((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens,{} maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens,{} leftCandidate,{} rightCandidate,{} left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,{}wt,{}rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,{}n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2")))
NIL
NIL
-(-452 |vl| R)
+(-453 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4231 "*") |has| |#2| (-157)) (-4222 |has| |#2| (-512)) (-4227 |has| |#2| (-6 -4227)) (-4224 . T) (-4223 . T) (-4226 . T))
-((|HasCategory| |#2| (QUOTE (-837))) (|HasCategory| |#2| (QUOTE (-512))) (|HasCategory| |#2| (QUOTE (-157))) (-3700 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-512)))) (-12 (|HasCategory| (-793 |#1|) (LIST (QUOTE -814) (QUOTE (-352)))) (|HasCategory| |#2| (LIST (QUOTE -814) (QUOTE (-352))))) (-12 (|HasCategory| (-793 |#1|) (LIST (QUOTE -814) (QUOTE (-520)))) (|HasCategory| |#2| (LIST (QUOTE -814) (QUOTE (-520))))) (-12 (|HasCategory| (-793 |#1|) (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-352))))) (|HasCategory| |#2| (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-352)))))) (-12 (|HasCategory| (-793 |#1|) (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-520))))) (|HasCategory| |#2| (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-520)))))) (-12 (|HasCategory| (-793 |#1|) (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-496))))) (|HasCategory| |#2| (QUOTE (-783))) (|HasCategory| |#2| (LIST (QUOTE -582) (QUOTE (-520)))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#2| (LIST (QUOTE -960) (QUOTE (-520)))) (|HasCategory| |#2| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#2| (QUOTE (-336))) (-3700 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#2| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520)))))) (|HasAttribute| |#2| (QUOTE -4227)) (|HasCategory| |#2| (QUOTE (-424))) (-3700 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-424))) (|HasCategory| |#2| (QUOTE (-512))) (|HasCategory| |#2| (QUOTE (-837)))) (-3700 (|HasCategory| |#2| (QUOTE (-424))) (|HasCategory| |#2| (QUOTE (-512))) (|HasCategory| |#2| (QUOTE (-837)))) (-3700 (|HasCategory| |#2| (QUOTE (-424))) (|HasCategory| |#2| (QUOTE (-837)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-837)))) (-3700 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-837)))) (|HasCategory| |#2| (QUOTE (-133)))))
-(-453 -2615 S)
+(((-4235 "*") |has| |#2| (-157)) (-4226 |has| |#2| (-513)) (-4231 |has| |#2| (-6 -4231)) (-4228 . T) (-4227 . T) (-4230 . T))
+((|HasCategory| |#2| (QUOTE (-838))) (|HasCategory| |#2| (QUOTE (-513))) (|HasCategory| |#2| (QUOTE (-157))) (-3703 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-513)))) (-12 (|HasCategory| (-794 |#1|) (LIST (QUOTE -815) (QUOTE (-353)))) (|HasCategory| |#2| (LIST (QUOTE -815) (QUOTE (-353))))) (-12 (|HasCategory| (-794 |#1|) (LIST (QUOTE -815) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -815) (QUOTE (-521))))) (-12 (|HasCategory| (-794 |#1|) (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-353))))) (|HasCategory| |#2| (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-353)))))) (-12 (|HasCategory| (-794 |#1|) (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-521))))) (|HasCategory| |#2| (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-521)))))) (-12 (|HasCategory| (-794 |#1|) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-497))))) (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-337))) (-3703 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521)))))) (|HasAttribute| |#2| (QUOTE -4231)) (|HasCategory| |#2| (QUOTE (-425))) (-3703 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-425))) (|HasCategory| |#2| (QUOTE (-513))) (|HasCategory| |#2| (QUOTE (-838)))) (-3703 (|HasCategory| |#2| (QUOTE (-425))) (|HasCategory| |#2| (QUOTE (-513))) (|HasCategory| |#2| (QUOTE (-838)))) (-3703 (|HasCategory| |#2| (QUOTE (-425))) (|HasCategory| |#2| (QUOTE (-838)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-838)))) (-3703 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-838)))) (|HasCategory| |#2| (QUOTE (-133)))))
+(-454 -2617 S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4223 |has| |#2| (-969)) (-4224 |has| |#2| (-969)) (-4226 |has| |#2| (-6 -4226)) ((-4231 "*") |has| |#2| (-157)) (-4229 . T))
-((|HasCategory| |#2| (QUOTE (-336))) (|HasCategory| |#2| (QUOTE (-969))) (|HasCategory| |#2| (QUOTE (-728))) (|HasCategory| |#2| (QUOTE (-781))) (-3700 (|HasCategory| |#2| (QUOTE (-728))) (|HasCategory| |#2| (QUOTE (-781)))) (|HasCategory| |#2| (QUOTE (-157))) (-3700 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-336))) (|HasCategory| |#2| (QUOTE (-969)))) (-3700 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-336)))) (-3700 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-969)))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -582) (QUOTE (-520)))) (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasCategory| |#2| (QUOTE (-209))) (-3700 (|HasCategory| |#2| (LIST (QUOTE -582) (QUOTE (-520)))) (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-209))) (|HasCategory| |#2| (QUOTE (-336))) (|HasCategory| |#2| (QUOTE (-969)))) (-3700 (|HasCategory| |#2| (LIST (QUOTE -582) (QUOTE (-520)))) (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-209))) (|HasCategory| |#2| (QUOTE (-969)))) (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| (-520) (QUOTE (-783))) (-12 (|HasCategory| |#2| (QUOTE (-969))) (|HasCategory| |#2| (LIST (QUOTE -582) (QUOTE (-520))))) (-12 (|HasCategory| |#2| (QUOTE (-209))) (|HasCategory| |#2| (QUOTE (-969)))) (-12 (|HasCategory| |#2| (QUOTE (-969))) (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1083))))) (|HasCategory| |#2| (QUOTE (-662))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (LIST (QUOTE -960) (QUOTE (-520))))) (-3700 (|HasCategory| |#2| (QUOTE (-969))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (LIST (QUOTE -960) (QUOTE (-520)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#2| (QUOTE (-1012)))) (|HasAttribute| |#2| (QUOTE -4226)) (|HasCategory| |#2| (QUOTE (-124))) (-3700 (|HasCategory| |#2| (LIST (QUOTE -582) (QUOTE (-520)))) (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-209))) (|HasCategory| |#2| (QUOTE (-336))) (|HasCategory| |#2| (QUOTE (-969)))) (|HasCategory| |#2| (QUOTE (-25))) (-3700 (|HasCategory| |#2| (LIST (QUOTE -582) (QUOTE (-520)))) (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-209))) (|HasCategory| |#2| (QUOTE (-336))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-728))) (|HasCategory| |#2| (QUOTE (-781))) (|HasCategory| |#2| (QUOTE (-969))) (|HasCategory| |#2| (QUOTE (-1012)))) (-3700 (|HasCategory| |#2| (LIST (QUOTE -582) (QUOTE (-520)))) (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-209))) (|HasCategory| |#2| (QUOTE (-336))) (|HasCategory| |#2| (QUOTE (-969)))) (-3700 (-12 (|HasCategory| |#2| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#2| (LIST (QUOTE -582) (QUOTE (-520))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1083))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#2| (QUOTE (-124)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#2| (QUOTE (-157)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#2| (QUOTE (-209)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#2| (QUOTE (-336)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#2| (QUOTE (-341)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#2| (QUOTE (-728)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#2| (QUOTE (-781)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#2| (QUOTE (-969)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#2| (QUOTE (-1012))))) (-3700 (-12 (|HasCategory| |#2| (LIST (QUOTE -582) (QUOTE (-520)))) (|HasCategory| |#2| (LIST (QUOTE -960) (QUOTE (-520))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasCategory| |#2| (LIST (QUOTE -960) (QUOTE (-520))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -960) (QUOTE (-520))))) (-12 (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (LIST (QUOTE -960) (QUOTE (-520))))) (-12 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (LIST (QUOTE -960) (QUOTE (-520))))) (-12 (|HasCategory| |#2| (QUOTE (-209))) (|HasCategory| |#2| (LIST (QUOTE -960) (QUOTE (-520))))) (-12 (|HasCategory| |#2| (QUOTE (-336))) (|HasCategory| |#2| (LIST (QUOTE -960) (QUOTE (-520))))) (-12 (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -960) (QUOTE (-520))))) (-12 (|HasCategory| |#2| (QUOTE (-728))) (|HasCategory| |#2| (LIST (QUOTE -960) (QUOTE (-520))))) (-12 (|HasCategory| |#2| (QUOTE (-781))) (|HasCategory| |#2| (LIST (QUOTE -960) (QUOTE (-520))))) (-12 (|HasCategory| |#2| (QUOTE (-969))) (|HasCategory| |#2| (LIST (QUOTE -960) (QUOTE (-520))))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (LIST (QUOTE -960) (QUOTE (-520)))))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (LIST (QUOTE -283) (|devaluate| |#2|)))) (-3700 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -283) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (LIST (QUOTE -283) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (LIST (QUOTE -283) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-209))) (|HasCategory| |#2| (LIST (QUOTE -283) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-336))) (|HasCategory| |#2| (LIST (QUOTE -283) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -283) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-728))) (|HasCategory| |#2| (LIST (QUOTE -283) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-781))) (|HasCategory| |#2| (LIST (QUOTE -283) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-969))) (|HasCategory| |#2| (LIST (QUOTE -283) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (LIST (QUOTE -283) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -283) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -582) (QUOTE (-520))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -283) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1083)))))) (|HasCategory| |#2| (LIST (QUOTE -560) (QUOTE (-791)))) (-3700 (-12 (|HasCategory| |#2| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#2| (QUOTE (-1012)))) (-12 (|HasCategory| |#2| (QUOTE (-209))) (|HasCategory| |#2| (QUOTE (-969)))) (-12 (|HasCategory| |#2| (QUOTE (-969))) (|HasCategory| |#2| (LIST (QUOTE -582) (QUOTE (-520))))) (-12 (|HasCategory| |#2| (QUOTE (-969))) (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1083))))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (LIST (QUOTE -283) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (LIST (QUOTE -960) (QUOTE (-520))))) (|HasCategory| |#2| (LIST (QUOTE -560) (QUOTE (-791))))))
-(-454 S)
+((-4227 |has| |#2| (-970)) (-4228 |has| |#2| (-970)) (-4230 |has| |#2| (-6 -4230)) ((-4235 "*") |has| |#2| (-157)) (-4233 . T))
+((|HasCategory| |#2| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-970))) (|HasCategory| |#2| (QUOTE (-729))) (|HasCategory| |#2| (QUOTE (-782))) (-3703 (|HasCategory| |#2| (QUOTE (-729))) (|HasCategory| |#2| (QUOTE (-782)))) (|HasCategory| |#2| (QUOTE (-157))) (-3703 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-970)))) (-3703 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-337)))) (-3703 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-970)))) (|HasCategory| |#2| (QUOTE (-342))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasCategory| |#2| (QUOTE (-210))) (-3703 (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-970)))) (-3703 (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-970)))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-521) (QUOTE (-784))) (-12 (|HasCategory| |#2| (QUOTE (-970))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-970)))) (-12 (|HasCategory| |#2| (QUOTE (-970))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1084))))) (|HasCategory| |#2| (QUOTE (-663))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (-3703 (|HasCategory| |#2| (QUOTE (-970))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-1013)))) (|HasAttribute| |#2| (QUOTE -4230)) (|HasCategory| |#2| (QUOTE (-124))) (-3703 (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-970)))) (|HasCategory| |#2| (QUOTE (-25))) (-3703 (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-342))) (|HasCategory| |#2| (QUOTE (-729))) (|HasCategory| |#2| (QUOTE (-782))) (|HasCategory| |#2| (QUOTE (-970))) (|HasCategory| |#2| (QUOTE (-1013)))) (-3703 (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-970)))) (-3703 (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1084))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-124)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-157)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-210)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-337)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-342)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-729)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-782)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-970)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-1013))))) (-3703 (-12 (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (QUOTE (-337))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (QUOTE (-342))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (QUOTE (-729))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (QUOTE (-782))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (QUOTE (-970))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521)))))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-3703 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-337))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-342))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-729))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-782))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-970))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1084)))))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-792)))) (-3703 (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-970)))) (-12 (|HasCategory| |#2| (QUOTE (-970))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (QUOTE (-970))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1084))))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-792))))))
+(-455 S)
((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}.")))
-((-4229 . T) (-4230 . T))
-((|HasCategory| |#1| (QUOTE (-1012))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-791)))) (-3700 (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-791))))))
-(-455 -4045 UP UPUP R)
+((-4233 . T) (-4234 . T))
+((|HasCategory| |#1| (QUOTE (-1013))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-792)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-792))))))
+(-456 -4049 UP UPUP R)
((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree.")))
NIL
NIL
-(-456 BP)
+(-457 BP)
((|constructor| (NIL "This package provides the functions for the heuristic integer \\spad{gcd}. Geddes\\spad{'s} algorithm,{}for univariate polynomials with integer coefficients")) (|lintgcd| (((|Integer|) (|List| (|Integer|))) "\\spad{lintgcd([a1,{}..,{}ak])} = \\spad{gcd} of a list of integers")) (|content| (((|List| (|Integer|)) (|List| |#1|)) "\\spad{content([f1,{}..,{}fk])} = content of a list of univariate polynonials")) (|gcdcofactprim| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofactprim([f1,{}..fk])} = \\spad{gcd} and cofactors of \\spad{k} primitive polynomials.")) (|gcdcofact| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofact([f1,{}..fk])} = \\spad{gcd} and cofactors of \\spad{k} univariate polynomials.")) (|gcdprim| ((|#1| (|List| |#1|)) "\\spad{gcdprim([f1,{}..,{}fk])} = \\spad{gcd} of \\spad{k} PRIMITIVE univariate polynomials")) (|gcd| ((|#1| (|List| |#1|)) "\\spad{gcd([f1,{}..,{}fk])} = \\spad{gcd} of the polynomials \\spad{fi}.")))
NIL
NIL
-(-457)
+(-458)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion.")) (|coerce| (((|RadixExpansion| 16) $) "\\spad{coerce(h)} converts a hexadecimal expansion to a radix expansion with base 16.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(h)} converts a hexadecimal expansion to a rational number.")))
-((-4221 . T) (-4227 . T) (-4222 . T) ((-4231 "*") . T) (-4223 . T) (-4224 . T) (-4226 . T))
-((|HasCategory| (-520) (QUOTE (-837))) (|HasCategory| (-520) (LIST (QUOTE -960) (QUOTE (-1083)))) (|HasCategory| (-520) (QUOTE (-133))) (|HasCategory| (-520) (QUOTE (-135))) (|HasCategory| (-520) (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| (-520) (QUOTE (-945))) (|HasCategory| (-520) (QUOTE (-756))) (|HasCategory| (-520) (LIST (QUOTE -960) (QUOTE (-520)))) (|HasCategory| (-520) (QUOTE (-1059))) (|HasCategory| (-520) (LIST (QUOTE -814) (QUOTE (-520)))) (|HasCategory| (-520) (LIST (QUOTE -814) (QUOTE (-352)))) (|HasCategory| (-520) (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-352))))) (|HasCategory| (-520) (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-520))))) (|HasCategory| (-520) (QUOTE (-209))) (|HasCategory| (-520) (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasCategory| (-520) (LIST (QUOTE -481) (QUOTE (-1083)) (QUOTE (-520)))) (|HasCategory| (-520) (LIST (QUOTE -283) (QUOTE (-520)))) (|HasCategory| (-520) (LIST (QUOTE -260) (QUOTE (-520)) (QUOTE (-520)))) (|HasCategory| (-520) (QUOTE (-281))) (|HasCategory| (-520) (QUOTE (-505))) (|HasCategory| (-520) (QUOTE (-783))) (-3700 (|HasCategory| (-520) (QUOTE (-756))) (|HasCategory| (-520) (QUOTE (-783)))) (|HasCategory| (-520) (LIST (QUOTE -582) (QUOTE (-520)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-520) (QUOTE (-837)))) (-3700 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-520) (QUOTE (-837)))) (|HasCategory| (-520) (QUOTE (-133)))))
-(-458 A S)
+((-4225 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
+((|HasCategory| (-521) (QUOTE (-838))) (|HasCategory| (-521) (LIST (QUOTE -961) (QUOTE (-1084)))) (|HasCategory| (-521) (QUOTE (-133))) (|HasCategory| (-521) (QUOTE (-135))) (|HasCategory| (-521) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| (-521) (QUOTE (-946))) (|HasCategory| (-521) (QUOTE (-757))) (|HasCategory| (-521) (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| (-521) (QUOTE (-1060))) (|HasCategory| (-521) (LIST (QUOTE -815) (QUOTE (-521)))) (|HasCategory| (-521) (LIST (QUOTE -815) (QUOTE (-353)))) (|HasCategory| (-521) (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-353))))) (|HasCategory| (-521) (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-521))))) (|HasCategory| (-521) (QUOTE (-210))) (|HasCategory| (-521) (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasCategory| (-521) (LIST (QUOTE -482) (QUOTE (-1084)) (QUOTE (-521)))) (|HasCategory| (-521) (LIST (QUOTE -284) (QUOTE (-521)))) (|HasCategory| (-521) (LIST (QUOTE -261) (QUOTE (-521)) (QUOTE (-521)))) (|HasCategory| (-521) (QUOTE (-282))) (|HasCategory| (-521) (QUOTE (-506))) (|HasCategory| (-521) (QUOTE (-784))) (-3703 (|HasCategory| (-521) (QUOTE (-757))) (|HasCategory| (-521) (QUOTE (-784)))) (|HasCategory| (-521) (LIST (QUOTE -583) (QUOTE (-521)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-521) (QUOTE (-838)))) (-3703 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-521) (QUOTE (-838)))) (|HasCategory| (-521) (QUOTE (-133)))))
+(-459 A S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4229)) (|HasAttribute| |#1| (QUOTE -4230)) (|HasCategory| |#2| (LIST (QUOTE -283) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (LIST (QUOTE -560) (QUOTE (-791)))))
-(-459 S)
+((|HasAttribute| |#1| (QUOTE -4233)) (|HasAttribute| |#1| (QUOTE -4234)) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-792)))))
+(-460 S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
((-2046 . T))
NIL
-(-460 S)
+(-461 S)
((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}.")))
NIL
NIL
-(-461)
+(-462)
((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}.")))
NIL
NIL
-(-462 -4045 UP |AlExt| |AlPol|)
+(-463 -4049 UP |AlExt| |AlPol|)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p,{} f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP.")))
NIL
NIL
-(-463)
+(-464)
((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,{}y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number.")))
-((-4221 . T) (-4227 . T) (-4222 . T) ((-4231 "*") . T) (-4223 . T) (-4224 . T) (-4226 . T))
-((|HasCategory| $ (QUOTE (-969))) (|HasCategory| $ (LIST (QUOTE -960) (QUOTE (-520)))))
-(-464 S |mn|)
+((-4225 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
+((|HasCategory| $ (QUOTE (-970))) (|HasCategory| $ (LIST (QUOTE -961) (QUOTE (-521)))))
+(-465 S |mn|)
((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type.")))
-((-4230 . T) (-4229 . T))
-((|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| (-520) (QUOTE (-783))) (|HasCategory| |#1| (QUOTE (-1012))) (-3700 (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#1| (QUOTE (-1012)))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (-3700 (-12 (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-791)))) (-3700 (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-791))))))
-(-465 R |mnRow| |mnCol|)
+((-4234 . T) (-4233 . T))
+((|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| (-521) (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-1013))) (-3703 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-1013)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-792)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-792))))))
+(-466 R |mnRow| |mnCol|)
((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")))
-((-4229 . T) (-4230 . T))
-((|HasCategory| |#1| (QUOTE (-1012))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-791)))) (-3700 (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-791))))))
-(-466 K R UP)
+((-4233 . T) (-4234 . T))
+((|HasCategory| |#1| (QUOTE (-1013))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-792)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-792))))))
+(-467 K R UP)
((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,{}lr,{}n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,{}q,{}n)} returns the list \\spad{[bas,{}bas^Frob,{}bas^(Frob^2),{}...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,{}n,{}m,{}j)} \\undocumented")))
NIL
NIL
-(-467 R UP -4045)
+(-468 R UP -4049)
((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,{}m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{\\spad{mi}} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn} and \\spad{\\spad{mi}} is a record \\spad{[basis,{}basisDen,{}basisInv]}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then a basis \\spad{v1,{}...,{}vn} for \\spad{\\spad{mi}} is given by \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1,{} m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,{}m2,{}d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,{}m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,{}n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,{}matrixOut,{}prime,{}n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,{}sing,{}n)} is \\spad{gcd(sing,{}g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
-(-468 |mn|)
+(-469 |mn|)
((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}.")))
-((-4230 . T) (-4229 . T))
-((|HasCategory| (-108) (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| (-108) (QUOTE (-783))) (|HasCategory| (-520) (QUOTE (-783))) (|HasCategory| (-108) (QUOTE (-1012))) (-12 (|HasCategory| (-108) (QUOTE (-1012))) (|HasCategory| (-108) (LIST (QUOTE -283) (QUOTE (-108))))) (|HasCategory| (-108) (LIST (QUOTE -560) (QUOTE (-791)))))
-(-469 K R UP L)
+((-4234 . T) (-4233 . T))
+((|HasCategory| (-108) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| (-108) (QUOTE (-784))) (|HasCategory| (-521) (QUOTE (-784))) (|HasCategory| (-108) (QUOTE (-1013))) (-12 (|HasCategory| (-108) (QUOTE (-1013))) (|HasCategory| (-108) (LIST (QUOTE -284) (QUOTE (-108))))) (|HasCategory| (-108) (LIST (QUOTE -561) (QUOTE (-792)))))
+(-470 K R UP L)
((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,{}p(x,{}y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,{}y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,{}mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.")))
NIL
NIL
-(-470)
+(-471)
((|constructor| (NIL "\\indented{1}{This domain implements a container of information} about the AXIOM library")) (|coerce| (($ (|String|)) "\\spad{coerce(s)} converts \\axiom{\\spad{s}} into an \\axiom{IndexCard}. Warning: if \\axiom{\\spad{s}} is not of the right format then an error will occur when using it.")) (|fullDisplay| (((|Void|) $) "\\spad{fullDisplay(ic)} prints all of the information contained in \\axiom{\\spad{ic}}.")) (|display| (((|Void|) $) "\\spad{display(ic)} prints a summary of the information contained in \\axiom{\\spad{ic}}.")) (|elt| (((|String|) $ (|Symbol|)) "\\spad{elt(ic,{}s)} selects a particular field from \\axiom{\\spad{ic}}. Valid fields are \\axiom{name,{} nargs,{} exposed,{} type,{} abbreviation,{} kind,{} origin,{} params,{} condition,{} doc}.")))
NIL
NIL
-(-471 R Q A B)
+(-472 R Q A B)
((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}.")))
NIL
NIL
-(-472 -4045 |Expon| |VarSet| |DPoly|)
+(-473 -4049 |Expon| |VarSet| |DPoly|)
((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,{}f,{}lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,{}f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,{}lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,{}listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,{}listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,{}f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,{}J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,{}J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,{}lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,{}I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,{}J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,{}I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}.")))
NIL
-((|HasCategory| |#3| (LIST (QUOTE -561) (QUOTE (-1083)))))
-(-473 |vl| |nv|)
+((|HasCategory| |#3| (LIST (QUOTE -562) (QUOTE (-1084)))))
+(-474 |vl| |nv|)
((|constructor| (NIL "\\indented{2}{This package provides functions for the primary decomposition of} polynomial ideals over the rational numbers. The ideals are members of the \\spadtype{PolynomialIdeals} domain,{} and the polynomial generators are required to be from the \\spadtype{DistributedMultivariatePolynomial} domain.")) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) "\\spad{contract(I,{}lvar)} contracts the ideal \\spad{I} to the polynomial ring \\spad{F[lvar]}.")) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{primaryDecomp(I)} returns a list of primary ideals such that their intersection is the ideal \\spad{I}.")) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radical(I)} returns the radical of the ideal \\spad{I}.")) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{prime?(I)} tests if the ideal \\spad{I} is prime.")) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrimary?(I)} tests if the ideal \\spad{I} is 0-dimensional primary.")) (|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrime?(I)} tests if the ideal \\spad{I} is a 0-dimensional prime.")))
NIL
NIL
-(-474 A S)
+(-475 A S)
((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian groups over an abelian group \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored.")))
NIL
NIL
-(-475 A S)
+(-476 A S)
((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian monoids over an abelian monoid \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support. Only non-zero terms are stored.")))
NIL
NIL
-(-476 A S)
+(-477 A S)
((|constructor| (NIL "This category represents the direct product of some set with respect to an ordered indexing set.")) (|reductum| (($ $) "\\spad{reductum(z)} returns a new element created by removing the leading coefficient/support pair from the element \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingSupport| ((|#2| $) "\\spad{leadingSupport(z)} returns the index of leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(z)} returns the coefficient of the leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(a,{}s)} constructs a direct product element with the \\spad{s} component set to \\spad{a}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}z)} returns the new element created by applying the function \\spad{f} to each component of the direct product element \\spad{z}.")))
NIL
NIL
-(-477 A S)
+(-478 A S)
((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoids \\spad{A} of} generators indexed by the ordered set \\spad{S}. The inherited order is lexicographical. All items have finite support: only non-zero terms are stored.")))
NIL
NIL
-(-478 A S)
+(-479 A S)
((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoid sups \\spad{A},{}} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored.")))
NIL
NIL
-(-479 A S)
+(-480 A S)
((|constructor| (NIL "\\indented{1}{Indexed direct products of objects over a set \\spad{A}} of generators indexed by an ordered set \\spad{S}. All items have finite support.")))
NIL
NIL
-(-480 S A B)
+(-481 S A B)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#2|) (|List| |#3|)) "\\spad{eval(f,{} [x1,{}...,{}xn],{} [v1,{}...,{}vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#2| |#3|) "\\spad{eval(f,{} x,{} v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-481 A B)
+(-482 A B)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#1|) (|List| |#2|)) "\\spad{eval(f,{} [x1,{}...,{}xn],{} [v1,{}...,{}vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#1| |#2|) "\\spad{eval(f,{} x,{} v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-482 S E |un|)
+(-483 S E |un|)
((|constructor| (NIL "Internal implementation of a free abelian monoid.")))
NIL
-((|HasCategory| |#2| (QUOTE (-727))))
-(-483 S |mn|)
+((|HasCategory| |#2| (QUOTE (-728))))
+(-484 S |mn|)
((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,{}n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}")))
-((-4230 . T) (-4229 . T))
-((|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| (-520) (QUOTE (-783))) (|HasCategory| |#1| (QUOTE (-1012))) (-3700 (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#1| (QUOTE (-1012)))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (-3700 (-12 (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-791)))) (-3700 (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-791))))))
-(-484 |p| |n|)
+((-4234 . T) (-4233 . T))
+((|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| (-521) (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-1013))) (-3703 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-1013)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-792)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-792))))))
+(-485 |p| |n|)
((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}.")))
-((-4221 . T) (-4227 . T) (-4222 . T) ((-4231 "*") . T) (-4223 . T) (-4224 . T) (-4226 . T))
-((|HasCategory| (-533 |#1|) (QUOTE (-135))) (|HasCategory| (-533 |#1|) (QUOTE (-341))) (|HasCategory| (-533 |#1|) (QUOTE (-133))) (-3700 (|HasCategory| (-533 |#1|) (QUOTE (-133))) (|HasCategory| (-533 |#1|) (QUOTE (-341)))))
-(-485 R |mnRow| |mnCol| |Row| |Col|)
+((-4225 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
+((|HasCategory| (-534 |#1|) (QUOTE (-135))) (|HasCategory| (-534 |#1|) (QUOTE (-342))) (|HasCategory| (-534 |#1|) (QUOTE (-133))) (-3703 (|HasCategory| (-534 |#1|) (QUOTE (-133))) (|HasCategory| (-534 |#1|) (QUOTE (-342)))))
+(-486 R |mnRow| |mnCol| |Row| |Col|)
((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}.")))
-((-4229 . T) (-4230 . T))
-((|HasCategory| |#1| (QUOTE (-1012))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-791)))) (-3700 (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-791))))))
-(-486 S |mn|)
+((-4233 . T) (-4234 . T))
+((|HasCategory| |#1| (QUOTE (-1013))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-792)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-792))))))
+(-487 S |mn|)
((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,{}mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists.")))
-((-4230 . T) (-4229 . T))
-((|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| (-520) (QUOTE (-783))) (|HasCategory| |#1| (QUOTE (-1012))) (-3700 (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#1| (QUOTE (-1012)))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (-3700 (-12 (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-791)))) (-3700 (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-791))))))
-(-487 R |Row| |Col| M)
+((-4234 . T) (-4233 . T))
+((|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| (-521) (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-1013))) (-3703 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-1013)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-792)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-792))))))
+(-488 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")))
NIL
-((|HasAttribute| |#3| (QUOTE -4230)))
-(-488 R |Row| |Col| M QF |Row2| |Col2| M2)
+((|HasAttribute| |#3| (QUOTE -4234)))
+(-489 R |Row| |Col| M QF |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field.")))
NIL
-((|HasAttribute| |#7| (QUOTE -4230)))
-(-489 R |mnRow| |mnCol|)
+((|HasAttribute| |#7| (QUOTE -4234)))
+(-490 R |mnRow| |mnCol|)
((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa.")))
-((-4229 . T) (-4230 . T))
-((|HasCategory| |#1| (QUOTE (-1012))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-281))) (|HasCategory| |#1| (QUOTE (-512))) (|HasAttribute| |#1| (QUOTE (-4231 "*"))) (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-791)))) (-3700 (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-791))))))
-(-490 GF)
+((-4233 . T) (-4234 . T))
+((|HasCategory| |#1| (QUOTE (-1013))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-282))) (|HasCategory| |#1| (QUOTE (-513))) (|HasAttribute| |#1| (QUOTE (-4235 "*"))) (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-792)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-792))))))
+(-491 GF)
((|constructor| (NIL "InnerNormalBasisFieldFunctions(\\spad{GF}) (unexposed): This package has functions used by every normal basis finite field extension domain.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{minimalPolynomial(x)} \\undocumented{} See \\axiomFunFrom{minimalPolynomial}{FiniteAlgebraicExtensionField}")) (|normalElement| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{normalElement(n)} \\undocumented{} See \\axiomFunFrom{normalElement}{FiniteAlgebraicExtensionField}")) (|basis| (((|Vector| (|Vector| |#1|)) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{} See \\axiomFunFrom{basis}{FiniteAlgebraicExtensionField}")) (|normal?| (((|Boolean|) (|Vector| |#1|)) "\\spad{normal?(x)} \\undocumented{} See \\axiomFunFrom{normal?}{FiniteAlgebraicExtensionField}")) (|lookup| (((|PositiveInteger|) (|Vector| |#1|)) "\\spad{lookup(x)} \\undocumented{} See \\axiomFunFrom{lookup}{Finite}")) (|inv| (((|Vector| |#1|) (|Vector| |#1|)) "\\spad{inv x} \\undocumented{} See \\axiomFunFrom{inv}{DivisionRing}")) (|trace| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{trace(x,{}n)} \\undocumented{} See \\axiomFunFrom{trace}{FiniteAlgebraicExtensionField}")) (|norm| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{norm(x,{}n)} \\undocumented{} See \\axiomFunFrom{norm}{FiniteAlgebraicExtensionField}")) (/ (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x/y} \\undocumented{} See \\axiomFunFrom{/}{Field}")) (* (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x*y} \\undocumented{} See \\axiomFunFrom{*}{SemiGroup}")) (** (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{x**n} \\undocumented{} See \\axiomFunFrom{\\spad{**}}{DivisionRing}")) (|qPot| (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{qPot(v,{}e)} computes \\spad{v**(q**e)},{} interpreting \\spad{v} as an element of normal basis field,{} \\spad{q} the size of the ground field. This is done by a cyclic \\spad{e}-shift of the vector \\spad{v}.")) (|expPot| (((|Vector| |#1|) (|Vector| |#1|) (|SingleInteger|) (|SingleInteger|)) "\\spad{expPot(v,{}e,{}d)} returns the sum from \\spad{i = 0} to \\spad{e - 1} of \\spad{v**(q**i*d)},{} interpreting \\spad{v} as an element of a normal basis field and where \\spad{q} is the size of the ground field. Note: for a description of the algorithm,{} see \\spad{T}.Itoh and \\spad{S}.Tsujii,{} \"A fast algorithm for computing multiplicative inverses in \\spad{GF}(2^m) using normal bases\",{} Information and Computation 78,{} \\spad{pp}.171-177,{} 1988.")) (|repSq| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|)) "\\spad{repSq(v,{}e)} computes \\spad{v**e} by repeated squaring,{} interpreting \\spad{v} as an element of a normal basis field.")) (|dAndcExp| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|) (|SingleInteger|)) "\\spad{dAndcExp(v,{}n,{}k)} computes \\spad{v**e} interpreting \\spad{v} as an element of normal basis field. A divide and conquer algorithm similar to the one from \\spad{D}.\\spad{R}.Stinson,{} \"Some observations on parallel Algorithms for fast exponentiation in \\spad{GF}(2^n)\",{} Siam \\spad{J}. Computation,{} Vol.19,{} No.4,{} \\spad{pp}.711-717,{} August 1990 is used. Argument \\spad{k} is a parameter of this algorithm.")) (|xn| (((|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|)) "\\spad{xn(n)} returns the polynomial \\spad{x**n-1}.")) (|pol| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{pol(v)} turns the vector \\spad{[v0,{}...,{}vn]} into the polynomial \\spad{v0+v1*x+ ... + vn*x**n}.")) (|index| (((|Vector| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{index(n,{}m)} is a index function for vectors of length \\spad{n} over the ground field.")) (|random| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{random(n)} creates a vector over the ground field with random entries.")) (|setFieldInfo| (((|Void|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) |#1|) "\\spad{setFieldInfo(m,{}p)} initializes the field arithmetic,{} where \\spad{m} is the multiplication table and \\spad{p} is the respective normal element of the ground field \\spad{GF}.")))
NIL
NIL
-(-491 R)
+(-492 R)
((|constructor| (NIL "This package provides operations to create incrementing functions.")) (|incrementBy| (((|Mapping| |#1| |#1|) |#1|) "\\spad{incrementBy(n)} produces a function which adds \\spad{n} to whatever argument it is given. For example,{} if {\\spad{f} \\spad{:=} increment(\\spad{n})} then \\spad{f x} is \\spad{x+n}.")) (|increment| (((|Mapping| |#1| |#1|)) "\\spad{increment()} produces a function which adds \\spad{1} to whatever argument it is given. For example,{} if {\\spad{f} \\spad{:=} increment()} then \\spad{f x} is \\spad{x+1}.")))
NIL
NIL
-(-492 |Varset|)
+(-493 |Varset|)
((|constructor| (NIL "converts entire exponents to OutputForm")))
NIL
NIL
-(-493 K -4045 |Par|)
+(-494 K -4049 |Par|)
((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,{}eps,{}factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol,{} eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}")))
NIL
NIL
-(-494)
+(-495)
((|constructor| (NIL "Default infinity signatures for the interpreter; Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|minusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{minusInfinity()} returns minusInfinity.")) (|plusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{plusInfinity()} returns plusIinfinity.")) (|infinity| (((|OnePointCompletion| (|Integer|))) "\\spad{infinity()} returns infinity.")))
NIL
NIL
-(-495 R)
+(-496 R)
((|constructor| (NIL "Tools for manipulating input forms.")) (|interpret| ((|#1| (|InputForm|)) "\\spad{interpret(f)} passes \\spad{f} to the interpreter,{} and transforms the result into an object of type \\spad{R}.")) (|packageCall| (((|InputForm|) (|Symbol|)) "\\spad{packageCall(f)} returns the input form corresponding to \\spad{f}\\$\\spad{R}.")))
NIL
NIL
-(-496)
+(-497)
((|constructor| (NIL "Domain of parsed forms which can be passed to the interpreter. This is also the interface between algebra code and facilities in the interpreter.")) (|compile| (((|Symbol|) (|Symbol|) (|List| $)) "\\spad{compile(f,{} [t1,{}...,{}tn])} forces the interpreter to compile the function \\spad{f} with signature \\spad{(t1,{}...,{}tn) -> ?}. returns the symbol \\spad{f} if successful. Error: if \\spad{f} was not defined beforehand in the interpreter,{} or if the \\spad{ti}\\spad{'s} are not valid types,{} or if the compiler fails.")) (|declare| (((|Symbol|) (|List| $)) "\\spad{declare(t)} returns a name \\spad{f} such that \\spad{f} has been declared to the interpreter to be of type \\spad{t},{} but has not been assigned a value yet. Note: \\spad{t} should be created as \\spad{devaluate(T)\\$Lisp} where \\spad{T} is the actual type of \\spad{f} (this hack is required for the case where \\spad{T} is a mapping type).")) (|unparse| (((|String|) $) "\\spad{unparse(f)} returns a string \\spad{s} such that the parser would transform \\spad{s} to \\spad{f}. Error: if \\spad{f} is not the parsed form of a string.")) (|flatten| (($ $) "\\spad{flatten(s)} returns an input form corresponding to \\spad{s} with all the nested operations flattened to triples using new local variables. If \\spad{s} is a piece of code,{} this speeds up the compilation tremendously later on.")) ((|One|) (($) "\\spad{1} returns the input form corresponding to 1.")) ((|Zero|) (($) "\\spad{0} returns the input form corresponding to 0.")) (** (($ $ (|Integer|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.")) (/ (($ $ $) "\\spad{a / b} returns the input form corresponding to \\spad{a / b}.")) (* (($ $ $) "\\spad{a * b} returns the input form corresponding to \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the input form corresponding to \\spad{a + b}.")) (|lambda| (($ $ (|List| (|Symbol|))) "\\spad{lambda(code,{} [x1,{}...,{}xn])} returns the input form corresponding to \\spad{(x1,{}...,{}xn) +-> code} if \\spad{n > 1},{} or to \\spad{x1 +-> code} if \\spad{n = 1}.")) (|function| (($ $ (|List| (|Symbol|)) (|Symbol|)) "\\spad{function(code,{} [x1,{}...,{}xn],{} f)} returns the input form corresponding to \\spad{f(x1,{}...,{}xn) == code}.")) (|binary| (($ $ (|List| $)) "\\spad{binary(op,{} [a1,{}...,{}an])} returns the input form corresponding to \\spad{a1 op a2 op ... op an}.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} makes \\spad{s} into an input form.")) (|interpret| (((|Any|) $) "\\spad{interpret(f)} passes \\spad{f} to the interpreter.")))
NIL
NIL
-(-497 |Coef| UTS)
+(-498 |Coef| UTS)
((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-498 K -4045 |Par|)
+(-499 K -4049 |Par|)
((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,{}lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,{}lden,{}lvar,{}eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,{}eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,{}eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}.")))
NIL
NIL
-(-499 R BP |pMod| |nextMod|)
+(-500 R BP |pMod| |nextMod|)
((|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(f,{}p)} reduces the coefficients of the polynomial \\spad{f} modulo the prime \\spad{p}.")) (|modularGcd| ((|#2| (|List| |#2|)) "\\spad{modularGcd(listf)} computes the \\spad{gcd} of the list of polynomials \\spad{listf} by modular methods.")) (|modularGcdPrimitive| ((|#2| (|List| |#2|)) "\\spad{modularGcdPrimitive(f1,{}f2)} computes the \\spad{gcd} of the two polynomials \\spad{f1} and \\spad{f2} by modular methods.")))
NIL
NIL
-(-500 OV E R P)
+(-501 OV E R P)
((|constructor| (NIL "\\indented{2}{This is an inner package for factoring multivariate polynomials} over various coefficient domains in characteristic 0. The univariate factor operation is passed as a parameter. Multivariate hensel lifting is used to lift the univariate factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,{}ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}. \\spad{p} is represented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,{}ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}.")))
NIL
NIL
-(-501 K UP |Coef| UTS)
+(-502 K UP |Coef| UTS)
((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an arbitrary finite field.")) (|generalInfiniteProduct| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#4| |#4|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#4| |#4|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#4| |#4|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-502 |Coef| UTS)
+(-503 |Coef| UTS)
((|constructor| (NIL "This package computes infinite products of univariate Taylor series over a field of prime order.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-503 R UP)
+(-504 R UP)
((|constructor| (NIL "Find the sign of a polynomial around a point or infinity.")) (|signAround| (((|Union| (|Integer|) "failed") |#2| |#1| (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}r,{}f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| |#1| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}r,{}i,{}f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}i,{}f)} \\undocumented")))
NIL
NIL
-(-504 S)
+(-505 S)
((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,{}b)},{} \\spad{0<=a<b>1},{} \\spad{(a,{}b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|hash| (($ $) "\\spad{hash(n)} returns the hash code of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,{}i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd.")))
NIL
NIL
-(-505)
+(-506)
((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,{}b)},{} \\spad{0<=a<b>1},{} \\spad{(a,{}b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|hash| (($ $) "\\spad{hash(n)} returns the hash code of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,{}i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd.")))
-((-4227 . T) (-4228 . T) (-4222 . T) ((-4231 "*") . T) (-4223 . T) (-4224 . T) (-4226 . T))
+((-4231 . T) (-4232 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
NIL
-(-506 |Key| |Entry| |addDom|)
+(-507 |Key| |Entry| |addDom|)
((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}.")))
-((-4229 . T) (-4230 . T))
-((|HasCategory| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (QUOTE (-1012))) (-12 (|HasCategory| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (QUOTE (-1012))) (|HasCategory| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (LIST (QUOTE -283) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2526) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3043) (|devaluate| |#2|)))))) (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#2| (QUOTE (-1012))) (-3700 (|HasCategory| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (QUOTE (-1012))) (|HasCategory| |#2| (QUOTE (-1012)))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (LIST (QUOTE -283) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -560) (QUOTE (-791)))) (|HasCategory| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (LIST (QUOTE -560) (QUOTE (-791)))) (-3700 (|HasCategory| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (QUOTE (-1012))) (|HasCategory| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (LIST (QUOTE -560) (QUOTE (-791)))) (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (LIST (QUOTE -560) (QUOTE (-791))))) (-3700 (|HasCategory| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (LIST (QUOTE -560) (QUOTE (-791)))) (|HasCategory| |#2| (LIST (QUOTE -560) (QUOTE (-791))))))
-(-507 R -4045)
+((-4233 . T) (-4234 . T))
+((|HasCategory| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (QUOTE (-1013))) (-12 (|HasCategory| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (QUOTE (-1013))) (|HasCategory| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (LIST (QUOTE -284) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2529) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3045) (|devaluate| |#2|)))))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-1013))) (-3703 (|HasCategory| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-792)))) (|HasCategory| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (LIST (QUOTE -561) (QUOTE (-792)))) (-3703 (|HasCategory| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (QUOTE (-1013))) (|HasCategory| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (LIST (QUOTE -561) (QUOTE (-792)))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-792))))) (-3703 (|HasCategory| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (LIST (QUOTE -561) (QUOTE (-792)))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-792))))))
+(-508 R -4049)
((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f,{} x,{} y,{} d)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}.")))
NIL
NIL
-(-508 R0 -4045 UP UPUP R)
+(-509 R0 -4049 UP UPUP R)
((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f,{} d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}.")))
NIL
NIL
-(-509)
+(-510)
((|constructor| (NIL "This package provides functions to lookup bits in integers")) (|bitTruth| (((|Boolean|) (|Integer|) (|Integer|)) "\\spad{bitTruth(n,{}m)} returns \\spad{true} if coefficient of 2**m in abs(\\spad{n}) is 1")) (|bitCoef| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{bitCoef(n,{}m)} returns the coefficient of 2**m in abs(\\spad{n})")) (|bitLength| (((|Integer|) (|Integer|)) "\\spad{bitLength(n)} returns the number of bits to represent abs(\\spad{n})")))
NIL
NIL
-(-510 R)
+(-511 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,{}f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,{}sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,{}sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise.")))
-((-3890 . T) (-4222 . T) ((-4231 "*") . T) (-4223 . T) (-4224 . T) (-4226 . T))
+((-3894 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
NIL
-(-511 S)
+(-512 S)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
NIL
NIL
-(-512)
+(-513)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
-((-4222 . T) ((-4231 "*") . T) (-4223 . T) (-4224 . T) (-4226 . T))
+((-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
NIL
-(-513 R -4045)
+(-514 R -4049)
((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,{}x,{}k,{}[k1,{}...,{}kn])} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f,{} x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f,{} x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,{}x,{}[g1,{}...,{}gn])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} and \\spad{d(h+sum(\\spad{ci} log(\\spad{gi})))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f,{} x,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise.")))
NIL
NIL
-(-514 I)
+(-515 I)
((|constructor| (NIL "\\indented{1}{This Package contains basic methods for integer factorization.} The factor operation employs trial division up to 10,{}000. It then tests to see if \\spad{n} is a perfect power before using Pollards rho method. Because Pollards method may fail,{} the result of factor may contain composite factors. We should also employ Lenstra\\spad{'s} eliptic curve method.")) (|PollardSmallFactor| (((|Union| |#1| "failed") |#1|) "\\spad{PollardSmallFactor(n)} returns a factor of \\spad{n} or \"failed\" if no one is found")) (|BasicMethod| (((|Factored| |#1|) |#1|) "\\spad{BasicMethod(n)} returns the factorization of integer \\spad{n} by trial division")) (|squareFree| (((|Factored| |#1|) |#1|) "\\spad{squareFree(n)} returns the square free factorization of integer \\spad{n}")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(n)} returns the full factorization of integer \\spad{n}")))
NIL
NIL
-(-515)
+(-516)
((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions.")))
NIL
NIL
-(-516 R -4045 L)
+(-517 R -4049 L)
((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x,{} y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,{}g,{}x,{}y,{}z,{}t,{}c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op,{} g,{} x,{} y,{} d,{} p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,{}k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,{}k,{}f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,{}k,{}k,{}p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} t,{} c)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} d,{} p)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} z,{} t,{} c)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} d,{} p)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f,{} x,{} y,{} g,{} z,{} t,{} c)} returns functions \\spad{[h,{} d]} such that \\spad{dh/dx = f(x,{}y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f,{} x,{} y,{} g,{} d,{} p)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f,{} x,{} y,{} z,{} t,{} c)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f,{} x,{} y,{} d,{} p)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}.")))
NIL
-((|HasCategory| |#3| (LIST (QUOTE -596) (|devaluate| |#2|))))
-(-517)
+((|HasCategory| |#3| (LIST (QUOTE -597) (|devaluate| |#2|))))
+(-518)
((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,{}k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,{}p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,{}p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,{}b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,{}b) ^= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,{}k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,{}1/2)},{} where \\spad{E(n,{}x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,{}m1,{}x2,{}m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,{}0)},{} where \\spad{B(n,{}x)} is the \\spad{n}th Bernoulli polynomial.")))
NIL
NIL
-(-518 -4045 UP UPUP R)
+(-519 -4049 UP UPUP R)
((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} ')} returns \\spad{[g,{}h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles.")))
NIL
NIL
-(-519 -4045 UP)
+(-520 -4049 UP)
((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} D)} returns \\spad{[g,{} h,{} s,{} p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}.")))
NIL
NIL
-(-520)
+(-521)
((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")))
-((-4211 . T) (-4217 . T) (-4221 . T) (-4216 . T) (-4227 . T) (-4228 . T) (-4222 . T) ((-4231 "*") . T) (-4223 . T) (-4224 . T) (-4226 . T))
+((-4215 . T) (-4221 . T) (-4225 . T) (-4220 . T) (-4231 . T) (-4232 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
NIL
-(-521)
+(-522)
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp,{} x = a..b,{} numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp,{} x = a..b,{} \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel,{} routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp,{} a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsabs,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} a..b,{} epsrel,{} routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.")))
NIL
NIL
-(-522 R -4045 L)
+(-523 R -4049 L)
((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op,{} g,{} kx,{} y,{} x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp,{} f,{} g,{} x,{} y,{} foo)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a,{} b,{} x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f,{} x,{} y,{} [u1,{}...,{}un])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f,{} x,{} y,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f,{} x,{} y)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}.")))
NIL
-((|HasCategory| |#3| (LIST (QUOTE -596) (|devaluate| |#2|))))
-(-523 R -4045)
+((|HasCategory| |#3| (LIST (QUOTE -597) (|devaluate| |#2|))))
+(-524 R -4049)
((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f,{} x)} returns \\spad{[c,{} g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}.")))
NIL
-((-12 (|HasCategory| |#1| (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-520))))) (|HasCategory| |#1| (LIST (QUOTE -814) (QUOTE (-520)))) (|HasCategory| |#2| (QUOTE (-1047)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-520))))) (|HasCategory| |#1| (LIST (QUOTE -814) (QUOTE (-520)))) (|HasCategory| |#2| (QUOTE (-572)))))
-(-524 -4045 UP)
+((-12 (|HasCategory| |#1| (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-521)))) (|HasCategory| |#2| (QUOTE (-1048)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-521)))) (|HasCategory| |#2| (QUOTE (-573)))))
+(-525 -4049 UP)
((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(\\spad{ci} log(\\spad{gi})))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}.")))
NIL
NIL
-(-525 S)
+(-526 S)
((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer.")))
NIL
NIL
-(-526 -4045)
+(-527 -4049)
((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f,{} x,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f,{} x,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{} [[\\spad{ci},{}\\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(\\spad{ci} log(\\spad{gi})))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f,{} x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns \\spad{g} such that \\spad{dg/dx = f}.")))
NIL
NIL
-(-527 R)
+(-528 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals.")))
-((-3890 . T) (-4222 . T) ((-4231 "*") . T) (-4223 . T) (-4224 . T) (-4226 . T))
+((-3894 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
NIL
-(-528)
+(-529)
((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")))
NIL
NIL
-(-529 R -4045)
+(-530 R -4049)
((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f,{} x,{} int,{} pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f,{} x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f,{} x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,{}...,{}fn],{}x)} returns the set-theoretic union of \\spad{(varselect(f1,{}x),{}...,{}varselect(fn,{}x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1,{} l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k,{} [k1,{}...,{}kn],{} x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,{}...,{}kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,{}...,{}kn],{} x)} returns the \\spad{ki} which involve \\spad{x}.")))
NIL
-((-12 (|HasCategory| |#1| (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-520))))) (|HasCategory| |#1| (QUOTE (-424))) (|HasCategory| |#1| (LIST (QUOTE -814) (QUOTE (-520)))) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-572))) (|HasCategory| |#2| (LIST (QUOTE -960) (QUOTE (-1083))))) (-12 (|HasCategory| |#1| (QUOTE (-424))) (|HasCategory| |#2| (QUOTE (-258)))) (|HasCategory| |#1| (QUOTE (-512))))
-(-530 -4045 UP)
+((-12 (|HasCategory| |#1| (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-521))))) (|HasCategory| |#1| (QUOTE (-425))) (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-521)))) (|HasCategory| |#2| (QUOTE (-259))) (|HasCategory| |#2| (QUOTE (-573))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-1084))))) (-12 (|HasCategory| |#1| (QUOTE (-425))) (|HasCategory| |#2| (QUOTE (-259)))) (|HasCategory| |#1| (QUOTE (-513))))
+(-531 -4049 UP)
((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p,{} ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f,{} ')} returns \\spad{[ir,{} s,{} p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p,{} foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p,{} ',{} t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f,{} ',{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[\\spad{ci} * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f,{} ',{} g)} returns \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}.")))
NIL
NIL
-(-531 R -4045)
+(-532 R -4049)
((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f,{} s,{} t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form.")))
NIL
NIL
-(-532 |p| |unBalanced?|)
+(-533 |p| |unBalanced?|)
((|constructor| (NIL "This domain implements \\spad{Zp},{} the \\spad{p}-adic completion of the integers. This is an internal domain.")))
-((-4222 . T) ((-4231 "*") . T) (-4223 . T) (-4224 . T) (-4226 . T))
+((-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
NIL
-(-533 |p|)
+(-534 |p|)
((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check.")))
-((-4221 . T) (-4227 . T) (-4222 . T) ((-4231 "*") . T) (-4223 . T) (-4224 . T) (-4226 . T))
-((|HasCategory| $ (QUOTE (-135))) (|HasCategory| $ (QUOTE (-133))) (|HasCategory| $ (QUOTE (-341))))
-(-534)
+((-4225 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
+((|HasCategory| $ (QUOTE (-135))) (|HasCategory| $ (QUOTE (-133))) (|HasCategory| $ (QUOTE (-342))))
+(-535)
((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor.")))
NIL
NIL
-(-535 R -4045)
+(-536 R -4049)
((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}.")))
NIL
NIL
-(-536 E -4045)
+(-537 E -4049)
((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,{}ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,{}ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,{}ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,{}ire)} \\undocumented")))
NIL
NIL
-(-537 -4045)
+(-538 -4049)
((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,{}x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,{}D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,{}l,{}ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}.")))
-((-4224 . T) (-4223 . T))
-((|HasCategory| |#1| (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasCategory| |#1| (LIST (QUOTE -960) (QUOTE (-1083)))))
-(-538 I)
+((-4228 . T) (-4227 . T))
+((|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-1084)))))
+(-539 I)
((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,{}r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,{}r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,{}r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,{}r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise")))
NIL
NIL
-(-539 GF)
+(-540 GF)
((|constructor| (NIL "This package exports the function generateIrredPoly that computes a monic irreducible polynomial of degree \\spad{n} over a finite field.")) (|generateIrredPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{generateIrredPoly(n)} generates an irreducible univariate polynomial of the given degree \\spad{n} over the finite field.")))
NIL
NIL
-(-540 R)
+(-541 R)
((|constructor| (NIL "\\indented{2}{This package allows a sum of logs over the roots of a polynomial} \\indented{2}{to be expressed as explicit logarithms and arc tangents,{} provided} \\indented{2}{that the indexing polynomial can be factored into quadratics.} Date Created: 21 August 1988 Date Last Updated: 4 October 1993")) (|complexIntegrate| (((|Expression| |#1|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{complexIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|integrate| (((|Union| (|Expression| |#1|) (|List| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{integrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable..")) (|complexExpand| (((|Expression| |#1|) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| (|Expression| |#1|)) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}.")))
NIL
((|HasCategory| |#1| (QUOTE (-135))))
-(-541)
+(-542)
((|constructor| (NIL "IrrRepSymNatPackage contains functions for computing the ordinary irreducible representations of symmetric groups on \\spad{n} letters {\\em {1,{}2,{}...,{}n}} in Young\\spad{'s} natural form and their dimensions. These representations can be labelled by number partitions of \\spad{n},{} \\spadignore{i.e.} a weakly decreasing sequence of integers summing up to \\spad{n},{} \\spadignore{e.g.} {\\em [3,{}3,{}3,{}1]} labels an irreducible representation for \\spad{n} equals 10. Note: whenever a \\spadtype{List Integer} appears in a signature,{} a partition required.")) (|irreducibleRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|)) (|List| (|Permutation| (|Integer|)))) "\\spad{irreducibleRepresentation(lambda,{}listOfPerm)} is the list of the irreducible representations corresponding to {\\em lambda} in Young\\spad{'s} natural form for the list of permutations given by {\\em listOfPerm}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{irreducibleRepresentation(lambda)} is the list of the two irreducible representations corresponding to the partition {\\em lambda} in Young\\spad{'s} natural form for the following two generators of the symmetric group,{} whose elements permute {\\em {1,{}2,{}...,{}n}},{} namely {\\em (1 2)} (2-cycle) and {\\em (1 2 ... n)} (\\spad{n}-cycle).") (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|Permutation| (|Integer|))) "\\spad{irreducibleRepresentation(lambda,{}\\spad{pi})} is the irreducible representation corresponding to partition {\\em lambda} in Young\\spad{'s} natural form of the permutation {\\em \\spad{pi}} in the symmetric group,{} whose elements permute {\\em {1,{}2,{}...,{}n}}.")) (|dimensionOfIrreducibleRepresentation| (((|NonNegativeInteger|) (|List| (|Integer|))) "\\spad{dimensionOfIrreducibleRepresentation(lambda)} is the dimension of the ordinary irreducible representation of the symmetric group corresponding to {\\em lambda}. Note: the Robinson-Thrall hook formula is implemented.")))
NIL
NIL
-(-542 R E V P TS)
+(-543 R E V P TS)
((|constructor| (NIL "\\indented{1}{An internal package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a square-free} \\indented{1}{triangular set.} \\indented{1}{The main operation is \\axiomOpFrom{rur}{InternalRationalUnivariateRepresentationPackage}.} \\indented{1}{It is based on the {\\em generic} algorithm description in [1]. \\newline References:} [1] \\spad{D}. LAZARD \"Solving Zero-dimensional Algebraic Systems\" \\indented{4}{Journal of Symbolic Computation,{} 1992,{} 13,{} 117-131}")) (|checkRur| (((|Boolean|) |#5| (|List| |#5|)) "\\spad{checkRur(ts,{}lus)} returns \\spad{true} if \\spad{lus} is a rational univariate representation of \\spad{ts}.")) (|rur| (((|List| |#5|) |#5| (|Boolean|)) "\\spad{rur(ts,{}univ?)} returns a rational univariate representation of \\spad{ts}. This assumes that the lowest polynomial in \\spad{ts} is a variable \\spad{v} which does not occur in the other polynomials of \\spad{ts}. This variable will be used to define the simple algebraic extension over which these other polynomials will be rewritten as univariate polynomials with degree one. If \\spad{univ?} is \\spad{true} then these polynomials will have a constant initial.")))
NIL
NIL
-(-543 |mn|)
+(-544 |mn|)
((|constructor| (NIL "This domain implements low-level strings")) (|hash| (((|Integer|) $) "\\spad{hash(x)} provides a hashing function for strings")))
-((-4230 . T) (-4229 . T))
-((|HasCategory| (-132) (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| (-132) (QUOTE (-783))) (|HasCategory| (-520) (QUOTE (-783))) (|HasCategory| (-132) (QUOTE (-1012))) (-3700 (|HasCategory| (-132) (QUOTE (-783))) (|HasCategory| (-132) (QUOTE (-1012)))) (-12 (|HasCategory| (-132) (QUOTE (-1012))) (|HasCategory| (-132) (LIST (QUOTE -283) (QUOTE (-132))))) (-3700 (-12 (|HasCategory| (-132) (QUOTE (-783))) (|HasCategory| (-132) (LIST (QUOTE -283) (QUOTE (-132))))) (-12 (|HasCategory| (-132) (QUOTE (-1012))) (|HasCategory| (-132) (LIST (QUOTE -283) (QUOTE (-132)))))) (|HasCategory| (-132) (LIST (QUOTE -560) (QUOTE (-791)))) (-3700 (|HasCategory| (-132) (LIST (QUOTE -560) (QUOTE (-791)))) (-12 (|HasCategory| (-132) (QUOTE (-1012))) (|HasCategory| (-132) (LIST (QUOTE -283) (QUOTE (-132)))))))
-(-544 E V R P)
+((-4234 . T) (-4233 . T))
+((|HasCategory| (-132) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| (-132) (QUOTE (-784))) (|HasCategory| (-521) (QUOTE (-784))) (|HasCategory| (-132) (QUOTE (-1013))) (-3703 (|HasCategory| (-132) (QUOTE (-784))) (|HasCategory| (-132) (QUOTE (-1013)))) (-12 (|HasCategory| (-132) (QUOTE (-1013))) (|HasCategory| (-132) (LIST (QUOTE -284) (QUOTE (-132))))) (-3703 (-12 (|HasCategory| (-132) (QUOTE (-784))) (|HasCategory| (-132) (LIST (QUOTE -284) (QUOTE (-132))))) (-12 (|HasCategory| (-132) (QUOTE (-1013))) (|HasCategory| (-132) (LIST (QUOTE -284) (QUOTE (-132)))))) (|HasCategory| (-132) (LIST (QUOTE -561) (QUOTE (-792)))) (-3703 (|HasCategory| (-132) (LIST (QUOTE -561) (QUOTE (-792)))) (-12 (|HasCategory| (-132) (QUOTE (-1013))) (|HasCategory| (-132) (LIST (QUOTE -284) (QUOTE (-132)))))))
+(-545 E V R P)
((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n),{} n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n),{} n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}.")))
NIL
NIL
-(-545 |Coef|)
-((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,{}r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,{}r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,{}refer,{}var,{}cen,{}r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,{}g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,{}g,{}taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,{}f)} returns the series \\spad{sum(fn(n) * an * x^n,{}n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,{}n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,{}str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}.")))
-(((-4231 "*") |has| |#1| (-157)) (-4222 |has| |#1| (-512)) (-4223 . T) (-4224 . T) (-4226 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#1| (QUOTE (-512))) (|HasCategory| |#1| (QUOTE (-157))) (-3700 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-512)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-520)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-520)) (|devaluate| |#1|))))) (|HasCategory| (-520) (QUOTE (-1024))) (|HasCategory| |#1| (QUOTE (-336))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-520))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-520))))) (|HasSignature| |#1| (LIST (QUOTE -2188) (LIST (|devaluate| |#1|) (QUOTE (-1083)))))))
(-546 |Coef|)
+((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,{}r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,{}r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,{}refer,{}var,{}cen,{}r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,{}g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,{}g,{}taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,{}f)} returns the series \\spad{sum(fn(n) * an * x^n,{}n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,{}n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,{}str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}.")))
+(((-4235 "*") |has| |#1| (-157)) (-4226 |has| |#1| (-513)) (-4227 . T) (-4228 . T) (-4230 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-157))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-513)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-521)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-521)) (|devaluate| |#1|))))) (|HasCategory| (-521) (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-337))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-521))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-521))))) (|HasSignature| |#1| (LIST (QUOTE -2189) (LIST (|devaluate| |#1|) (QUOTE (-1084)))))))
+(-547 |Coef|)
((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.") (($ $ |#1|) "\\spad{x*c} returns the product of \\spad{c} and the series \\spad{x}.") (($ |#1| $) "\\spad{c*x} returns the product of \\spad{c} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,{}n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}")))
-((-4224 |has| |#1| (-512)) (-4223 |has| |#1| (-512)) ((-4231 "*") |has| |#1| (-512)) (-4222 |has| |#1| (-512)) (-4226 . T))
-((|HasCategory| |#1| (QUOTE (-512))))
-(-547 A B)
+((-4228 |has| |#1| (-513)) (-4227 |has| |#1| (-513)) ((-4235 "*") |has| |#1| (-513)) (-4226 |has| |#1| (-513)) (-4230 . T))
+((|HasCategory| |#1| (QUOTE (-513))))
+(-548 A B)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[f(x0),{}f(x1),{}f(x2),{}..]}.")))
NIL
NIL
-(-548 A B C)
+(-549 A B C)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented")))
NIL
NIL
-(-549 R -4045 FG)
+(-550 R -4049 FG)
((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f,{} [k1,{}...,{}kn],{} [x1,{}...,{}xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{\\spad{xi}'s} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{\\spad{ki}'s},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain.")))
NIL
NIL
-(-550 S)
+(-551 S)
((|constructor| (NIL "\\indented{1}{This package implements 'infinite tuples' for the interpreter.} The representation is a stream.")) (|construct| (((|Stream| |#1|) $) "\\spad{construct(t)} converts an infinite tuple to a stream.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}s)} returns \\spad{[s,{}f(s),{}f(f(s)),{}...]}.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,{}t)} returns \\spad{[x for x in t | p(x)]}.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}t)} returns \\spad{[x for x in t while not p(x)]}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}t)} returns \\spad{[x for x in t while p(x)]}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}t)} replaces the tuple \\spad{t} by \\spad{[f(x) for x in t]}.")))
NIL
NIL
-(-551 R |mn|)
+(-552 R |mn|)
((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index.")))
-((-4230 . T) (-4229 . T))
-((|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| (-520) (QUOTE (-783))) (|HasCategory| |#1| (QUOTE (-1012))) (-3700 (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-662))) (|HasCategory| |#1| (QUOTE (-969))) (-12 (|HasCategory| |#1| (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-969)))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (-3700 (-12 (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-791)))) (-3700 (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-791))))))
-(-552 S |Index| |Entry|)
+((-4234 . T) (-4233 . T))
+((|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| (-521) (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-1013))) (-3703 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-663))) (|HasCategory| |#1| (QUOTE (-970))) (-12 (|HasCategory| |#1| (QUOTE (-927))) (|HasCategory| |#1| (QUOTE (-970)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-792)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-792))))))
+(-553 S |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4230)) (|HasCategory| |#2| (QUOTE (-783))) (|HasAttribute| |#1| (QUOTE -4229)) (|HasCategory| |#3| (QUOTE (-1012))))
-(-553 |Index| |Entry|)
+((|HasAttribute| |#1| (QUOTE -4234)) (|HasCategory| |#2| (QUOTE (-784))) (|HasAttribute| |#1| (QUOTE -4233)) (|HasCategory| |#3| (QUOTE (-1013))))
+(-554 |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
((-2046 . T))
NIL
-(-554 R A)
+(-555 R A)
((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,{}b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A).")))
-((-4226 -3700 (-4006 (|has| |#2| (-340 |#1|)) (|has| |#1| (-512))) (-12 (|has| |#2| (-390 |#1|)) (|has| |#1| (-512)))) (-4224 . T) (-4223 . T))
-((|HasCategory| |#2| (LIST (QUOTE -390) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#2| (LIST (QUOTE -390) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -340) (|devaluate| |#1|))) (-3700 (|HasCategory| |#2| (LIST (QUOTE -340) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -390) (|devaluate| |#1|)))) (-3700 (-12 (|HasCategory| |#1| (QUOTE (-512))) (|HasCategory| |#2| (LIST (QUOTE -340) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-512))) (|HasCategory| |#2| (LIST (QUOTE -390) (|devaluate| |#1|))))))
-(-555 |Entry|)
+((-4230 -3703 (-4009 (|has| |#2| (-341 |#1|)) (|has| |#1| (-513))) (-12 (|has| |#2| (-391 |#1|)) (|has| |#1| (-513)))) (-4228 . T) (-4227 . T))
+((|HasCategory| |#2| (LIST (QUOTE -391) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (LIST (QUOTE -391) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -341) (|devaluate| |#1|))) (-3703 (|HasCategory| |#2| (LIST (QUOTE -341) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -391) (|devaluate| |#1|)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#2| (LIST (QUOTE -341) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#2| (LIST (QUOTE -391) (|devaluate| |#1|))))))
+(-556 |Entry|)
((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")))
-((-4229 . T) (-4230 . T))
-((|HasCategory| (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-1012))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (|HasCategory| (-1066) (QUOTE (-783))) (|HasCategory| (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (QUOTE (-1012))) (-12 (|HasCategory| (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (QUOTE (-1012))) (|HasCategory| (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (LIST (QUOTE -283) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2526) (QUOTE (-1066))) (LIST (QUOTE |:|) (QUOTE -3043) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-791)))) (|HasCategory| (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (LIST (QUOTE -560) (QUOTE (-791)))))
-(-556 S |Key| |Entry|)
+((-4233 . T) (-4234 . T))
+((|HasCategory| (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-1013))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| (-1067) (QUOTE (-784))) (|HasCategory| (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (QUOTE (-1013))) (-12 (|HasCategory| (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (QUOTE (-1013))) (|HasCategory| (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (LIST (QUOTE -284) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2529) (QUOTE (-1067))) (LIST (QUOTE |:|) (QUOTE -3045) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-792)))) (|HasCategory| (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (LIST (QUOTE -561) (QUOTE (-792)))))
+(-557 S |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}.")))
NIL
NIL
-(-557 |Key| |Entry|)
+(-558 |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}.")))
-((-4230 . T) (-2046 . T))
+((-4234 . T) (-2046 . T))
NIL
-(-558 R S)
+(-559 R S)
((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented")))
NIL
NIL
-(-559 S)
+(-560 S)
((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,{}...,{}an),{} s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,{}...,{}an),{} f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op,{} [a1,{}...,{}an],{} m)} returns the kernel \\spad{op(a1,{}...,{}an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,{}...,{}an))} returns \\spad{[a1,{}...,{}an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,{}...,{}an))} returns the operator op.")) (|name| (((|Symbol|) $) "\\spad{name(op(a1,{}...,{}an))} returns the name of op.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| |#1| (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-352))))) (|HasCategory| |#1| (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-520))))))
-(-560 S)
+((|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#1| (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-353))))) (|HasCategory| |#1| (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-521))))))
+(-561 S)
((|constructor| (NIL "A is coercible to \\spad{B} means any element of A can automatically be converted into an element of \\spad{B} by the interpreter.")) (|coerce| ((|#1| $) "\\spad{coerce(a)} transforms a into an element of \\spad{S}.")))
NIL
NIL
-(-561 S)
+(-562 S)
((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}.")))
NIL
NIL
-(-562 -4045 UP)
+(-563 -4049 UP)
((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2,{}ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions.")))
NIL
NIL
-(-563 S R)
+(-564 S R)
((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#2|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra.")))
NIL
NIL
-(-564 R)
+(-565 R)
((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra.")))
-((-4226 . T))
+((-4230 . T))
NIL
-(-565 A R S)
+(-566 A R S)
((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-4223 . T) (-4224 . T) (-4226 . T))
-((|HasCategory| |#1| (QUOTE (-781))))
-(-566 R -4045)
+((-4227 . T) (-4228 . T) (-4230 . T))
+((|HasCategory| |#1| (QUOTE (-782))))
+(-567 R -4049)
((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f,{} t,{} s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t),{} t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f,{} t,{} s)} if it cannot compute the transform.")))
NIL
NIL
-(-567 R UP)
+(-568 R UP)
((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,{}n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,{}n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented")))
-((-4224 . T) (-4223 . T) ((-4231 "*") . T) (-4222 . T) (-4226 . T))
-((|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasCategory| |#2| (QUOTE (-209))) (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#1| (LIST (QUOTE -960) (QUOTE (-520)))))
-(-568 R E V P TS ST)
+((-4228 . T) (-4227 . T) ((-4235 "*") . T) (-4226 . T) (-4230 . T))
+((|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521)))))
+(-569 R E V P TS ST)
((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(\\spad{lp},{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(\\spad{ts})} returns \\axiom{\\spad{ts}} in an normalized shape if \\axiom{\\spad{ts}} is zero-dimensional.")))
NIL
NIL
-(-569 OV E Z P)
+(-570 OV E Z P)
((|constructor| (NIL "Package for leading coefficient determination in the lifting step. Package working for every \\spad{R} euclidean with property \\spad{\"F\"}.")) (|distFact| (((|Union| (|Record| (|:| |polfac| (|List| |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (|List| (|SparseUnivariatePolynomial| |#3|)))) "failed") |#3| (|List| (|SparseUnivariatePolynomial| |#3|)) (|Record| (|:| |contp| |#3|) (|:| |factors| (|List| (|Record| (|:| |irr| |#4|) (|:| |pow| (|Integer|)))))) (|List| |#3|) (|List| |#1|) (|List| |#3|)) "\\spad{distFact(contm,{}unilist,{}plead,{}vl,{}lvar,{}lval)},{} where \\spad{contm} is the content of the evaluated polynomial,{} \\spad{unilist} is the list of factors of the evaluated polynomial,{} \\spad{plead} is the complete factorization of the leading coefficient,{} \\spad{vl} is the list of factors of the leading coefficient evaluated,{} \\spad{lvar} is the list of variables,{} \\spad{lval} is the list of values,{} returns a record giving the list of leading coefficients to impose on the univariate factors,{}")) (|polCase| (((|Boolean|) |#3| (|NonNegativeInteger|) (|List| |#3|)) "\\spad{polCase(contprod,{} numFacts,{} evallcs)},{} where \\spad{contprod} is the product of the content of the leading coefficient of the polynomial to be factored with the content of the evaluated polynomial,{} \\spad{numFacts} is the number of factors of the leadingCoefficient,{} and evallcs is the list of the evaluated factors of the leadingCoefficient,{} returns \\spad{true} if the factors of the leading Coefficient can be distributed with this valuation.")))
NIL
NIL
-(-570 |VarSet| R |Order|)
+(-571 |VarSet| R |Order|)
((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(\\spad{lv})} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}.")))
-((-4226 . T))
+((-4230 . T))
NIL
-(-571 R |ls|)
+(-572 R |ls|)
((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}}. If \\axiom{\\spad{lp}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lp})} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(\\spad{lp})} returns \\spad{true} iff \\axiom{\\spad{lp}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{\\spad{lp}}.")))
NIL
NIL
-(-572)
+(-573)
((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%\\spad{pi})} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{\\spad{li}(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{\\spad{Ci}(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{\\spad{Si}(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{\\spad{Ei}(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}.")))
NIL
NIL
-(-573 R -4045)
+(-574 R -4049)
((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,{}x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,{}x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{\\spad{li}(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{\\spad{Ci}(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{\\spad{Si}(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{\\spad{Ei}(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian")))
NIL
NIL
-(-574 |lv| -4045)
+(-575 |lv| -4049)
((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented")))
NIL
NIL
-(-575)
+(-576)
((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|elt| (((|Any|) $ (|Symbol|)) "\\spad{elt(lib,{}k)} or \\spad{lib}.\\spad{k} extracts the value corresponding to the key \\spad{k} from the library \\spad{lib}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file.")))
-((-4230 . T))
-((|HasCategory| (-2 (|:| -2526 (-1066)) (|:| -3043 (-51))) (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| (-1066) (QUOTE (-783))) (|HasCategory| (-51) (LIST (QUOTE -560) (QUOTE (-791)))) (|HasCategory| (-51) (QUOTE (-1012))) (-12 (|HasCategory| (-51) (QUOTE (-1012))) (|HasCategory| (-51) (LIST (QUOTE -283) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -2526 (-1066)) (|:| -3043 (-51))) (QUOTE (-1012))) (-12 (|HasCategory| (-2 (|:| -2526 (-1066)) (|:| -3043 (-51))) (QUOTE (-1012))) (|HasCategory| (-2 (|:| -2526 (-1066)) (|:| -3043 (-51))) (LIST (QUOTE -283) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2526) (QUOTE (-1066))) (LIST (QUOTE |:|) (QUOTE -3043) (QUOTE (-51))))))) (-3700 (|HasCategory| (-2 (|:| -2526 (-1066)) (|:| -3043 (-51))) (QUOTE (-1012))) (|HasCategory| (-51) (QUOTE (-1012)))) (|HasCategory| (-2 (|:| -2526 (-1066)) (|:| -3043 (-51))) (LIST (QUOTE -560) (QUOTE (-791)))) (-3700 (|HasCategory| (-2 (|:| -2526 (-1066)) (|:| -3043 (-51))) (QUOTE (-1012))) (|HasCategory| (-2 (|:| -2526 (-1066)) (|:| -3043 (-51))) (LIST (QUOTE -560) (QUOTE (-791)))) (|HasCategory| (-51) (QUOTE (-1012))) (|HasCategory| (-51) (LIST (QUOTE -560) (QUOTE (-791))))) (-3700 (|HasCategory| (-2 (|:| -2526 (-1066)) (|:| -3043 (-51))) (LIST (QUOTE -560) (QUOTE (-791)))) (|HasCategory| (-51) (LIST (QUOTE -560) (QUOTE (-791))))))
-(-576 S R)
+((-4234 . T))
+((|HasCategory| (-2 (|:| -2529 (-1067)) (|:| -3045 (-51))) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| (-1067) (QUOTE (-784))) (|HasCategory| (-51) (LIST (QUOTE -561) (QUOTE (-792)))) (|HasCategory| (-51) (QUOTE (-1013))) (-12 (|HasCategory| (-51) (QUOTE (-1013))) (|HasCategory| (-51) (LIST (QUOTE -284) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -2529 (-1067)) (|:| -3045 (-51))) (QUOTE (-1013))) (-12 (|HasCategory| (-2 (|:| -2529 (-1067)) (|:| -3045 (-51))) (QUOTE (-1013))) (|HasCategory| (-2 (|:| -2529 (-1067)) (|:| -3045 (-51))) (LIST (QUOTE -284) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2529) (QUOTE (-1067))) (LIST (QUOTE |:|) (QUOTE -3045) (QUOTE (-51))))))) (-3703 (|HasCategory| (-2 (|:| -2529 (-1067)) (|:| -3045 (-51))) (QUOTE (-1013))) (|HasCategory| (-51) (QUOTE (-1013)))) (|HasCategory| (-2 (|:| -2529 (-1067)) (|:| -3045 (-51))) (LIST (QUOTE -561) (QUOTE (-792)))) (-3703 (|HasCategory| (-2 (|:| -2529 (-1067)) (|:| -3045 (-51))) (QUOTE (-1013))) (|HasCategory| (-2 (|:| -2529 (-1067)) (|:| -3045 (-51))) (LIST (QUOTE -561) (QUOTE (-792)))) (|HasCategory| (-51) (QUOTE (-1013))) (|HasCategory| (-51) (LIST (QUOTE -561) (QUOTE (-792))))) (-3703 (|HasCategory| (-2 (|:| -2529 (-1067)) (|:| -3045 (-51))) (LIST (QUOTE -561) (QUOTE (-792)))) (|HasCategory| (-51) (LIST (QUOTE -561) (QUOTE (-792))))))
+(-577 S R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-336))))
-(-577 R)
+((|HasCategory| |#2| (QUOTE (-337))))
+(-578 R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4224 . T) (-4223 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4228 . T) (-4227 . T))
NIL
-(-578 R A)
+(-579 R A)
((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,{}b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A).")))
-((-4226 -3700 (-4006 (|has| |#2| (-340 |#1|)) (|has| |#1| (-512))) (-12 (|has| |#2| (-390 |#1|)) (|has| |#1| (-512)))) (-4224 . T) (-4223 . T))
-((|HasCategory| |#2| (LIST (QUOTE -390) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#2| (LIST (QUOTE -390) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -340) (|devaluate| |#1|))) (-3700 (|HasCategory| |#2| (LIST (QUOTE -340) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -390) (|devaluate| |#1|)))) (-3700 (-12 (|HasCategory| |#1| (QUOTE (-512))) (|HasCategory| |#2| (LIST (QUOTE -340) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-512))) (|HasCategory| |#2| (LIST (QUOTE -390) (|devaluate| |#1|))))))
-(-579 R FE)
+((-4230 -3703 (-4009 (|has| |#2| (-341 |#1|)) (|has| |#1| (-513))) (-12 (|has| |#2| (-391 |#1|)) (|has| |#1| (-513)))) (-4228 . T) (-4227 . T))
+((|HasCategory| |#2| (LIST (QUOTE -391) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (LIST (QUOTE -391) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -341) (|devaluate| |#1|))) (-3703 (|HasCategory| |#2| (LIST (QUOTE -341) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -391) (|devaluate| |#1|)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#2| (LIST (QUOTE -341) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#2| (LIST (QUOTE -391) (|devaluate| |#1|))))))
+(-580 R FE)
((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit \\spad{lim(x -> a,{}f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),{}x=a,{}\"left\")} computes the left hand real limit \\spad{lim(x -> a-,{}f(x))}; \\spad{limit(f(x),{}x=a,{}\"right\")} computes the right hand real limit \\spad{lim(x -> a+,{}f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),{}x = a)} computes the real limit \\spad{lim(x -> a,{}f(x))}.")))
NIL
NIL
-(-580 R)
+(-581 R)
((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),{}x,{}a,{}\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(\\spad{f}(\\spad{x}),{}\\spad{x},{}a,{}\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")))
NIL
NIL
-(-581 S R)
+(-582 S R)
((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise.")))
NIL
-((|HasCategory| |#1| (QUOTE (-336))) (-2399 (|HasCategory| |#1| (QUOTE (-336)))))
-(-582 R)
+((|HasCategory| |#1| (QUOTE (-337))) (-2400 (|HasCategory| |#1| (QUOTE (-337)))))
+(-583 R)
((|constructor| (NIL "An extension ring with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A,{} v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}.")))
-((-4226 . T))
+((-4230 . T))
NIL
-(-583 A B)
+(-584 A B)
((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} a,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la,{} lb,{} a,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la,{} lb,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la,{} lb,{} a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la,{} lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}.")))
NIL
NIL
-(-584 A B)
+(-585 A B)
((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,{}u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,{}[1,{}2,{}3]) = [1,{}4,{}9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,{}[1,{}2,{}3],{}0) = fn(3,{}fn(2,{}fn(1,{}0)))} and \\spad{reduce(*,{}[2,{}3],{}1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,{}[1,{}2],{}0) = [fn(2,{}fn(1,{}0)),{}fn(1,{}0)]} and \\spad{scan(*,{}[2,{}3],{}1) = [2 * 1,{} 3 * (2 * 1)]}.")))
NIL
NIL
-(-585 A B C)
+(-586 A B C)
((|constructor| (NIL "\\spadtype{ListFunctions3} implements utility functions that operate on three kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#3|) (|Mapping| |#3| |#1| |#2|) (|List| |#1|) (|List| |#2|)) "\\spad{map(fn,{}list1,{} u2)} applies the binary function \\spad{fn} to corresponding elements of lists \\spad{u1} and \\spad{u2} and returns a list of the results (in the same order). Thus \\spad{map(/,{}[1,{}2,{}3],{}[4,{}5,{}6]) = [1/4,{}2/4,{}1/2]}. The computation terminates when the end of either list is reached. That is,{} the length of the result list is equal to the minimum of the lengths of \\spad{u1} and \\spad{u2}.")))
NIL
NIL
-(-586 S)
-((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,{}u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,{}u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,{}u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,{}u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,{}u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil()} returns the empty list.")))
-((-4230 . T) (-4229 . T))
-((|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#1| (QUOTE (-764))) (|HasCategory| (-520) (QUOTE (-783))) (|HasCategory| |#1| (QUOTE (-1012))) (-3700 (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#1| (QUOTE (-1012)))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (-3700 (-12 (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-791)))) (-3700 (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-791))))))
(-587 S)
+((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,{}u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,{}u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,{}u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,{}u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,{}u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil()} returns the empty list.")))
+((-4234 . T) (-4233 . T))
+((|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-765))) (|HasCategory| (-521) (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-1013))) (-3703 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-1013)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-792)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-792))))))
+(-588 S)
((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,{}y,{}d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries.")))
-((-4229 . T) (-4230 . T))
-((|HasCategory| |#1| (QUOTE (-1012))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-791)))) (-3700 (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-791))))))
-(-588 R)
+((-4233 . T) (-4234 . T))
+((|HasCategory| |#1| (QUOTE (-1013))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-792)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-792))))))
+(-589 R)
((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline")) (* (($ |#1| $) "\\spad{r*x} returns the left multiplication of the module element \\spad{x} by the ring element \\spad{r}.")))
NIL
NIL
-(-589 S E |un|)
+(-590 S E |un|)
((|constructor| (NIL "This internal package represents monoid (abelian or not,{} with or without inverses) as lists and provides some common operations to the various flavors of monoids.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|commutativeEquality| (((|Boolean|) $ $) "\\spad{commutativeEquality(x,{}y)} returns \\spad{true} if \\spad{x} and \\spad{y} are equal assuming commutativity")) (|plus| (($ $ $) "\\spad{plus(x,{} y)} returns \\spad{x + y} where \\spad{+} is the monoid operation,{} which is assumed commutative.") (($ |#1| |#2| $) "\\spad{plus(s,{} e,{} x)} returns \\spad{e * s + x} where \\spad{+} is the monoid operation,{} which is assumed commutative.")) (|leftMult| (($ |#1| $) "\\spad{leftMult(s,{} a)} returns \\spad{s * a} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|rightMult| (($ $ |#1|) "\\spad{rightMult(a,{} s)} returns \\spad{a * s} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|makeUnit| (($) "\\spad{makeUnit()} returns the unit element of the monomial.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(l)} returns the number of monomials forming \\spad{l}.")) (|reverse!| (($ $) "\\spad{reverse!(l)} reverses the list of monomials forming \\spad{l},{} destroying the element \\spad{l}.")) (|reverse| (($ $) "\\spad{reverse(l)} reverses the list of monomials forming \\spad{l}. This has some effect if the monoid is non-abelian,{} \\spadignore{i.e.} \\spad{reverse(a1\\^e1 ... an\\^en) = an\\^en ... a1\\^e1} which is different.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(l,{} n)} returns the factor of the n^th monomial of \\spad{l}.")) (|nthExpon| ((|#2| $ (|Integer|)) "\\spad{nthExpon(l,{} n)} returns the exponent of the n^th monomial of \\spad{l}.")) (|makeMulti| (($ (|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|)))) "\\spad{makeMulti(l)} returns the element whose list of monomials is \\spad{l}.")) (|makeTerm| (($ |#1| |#2|) "\\spad{makeTerm(s,{} e)} returns the monomial \\spad{s} exponentiated by \\spad{e} (\\spadignore{e.g.} s^e or \\spad{e} * \\spad{s}).")) (|listOfMonoms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{listOfMonoms(l)} returns the list of the monomials forming \\spad{l}.")) (|outputForm| (((|OutputForm|) $ (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Integer|)) "\\spad{outputForm(l,{} fop,{} fexp,{} unit)} converts the monoid element represented by \\spad{l} to an \\spadtype{OutputForm}. Argument unit is the output form for the \\spadignore{unit} of the monoid (\\spadignore{e.g.} 0 or 1),{} \\spad{fop(a,{} b)} is the output form for the monoid operation applied to \\spad{a} and \\spad{b} (\\spadignore{e.g.} \\spad{a + b},{} \\spad{a * b},{} \\spad{ab}),{} and \\spad{fexp(a,{} n)} is the output form for the exponentiation operation applied to \\spad{a} and \\spad{n} (\\spadignore{e.g.} \\spad{n a},{} \\spad{n * a},{} \\spad{a ** n},{} \\spad{a\\^n}).")))
NIL
NIL
-(-590 A S)
+(-591 A S)
((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4230)))
-(-591 S)
+((|HasAttribute| |#1| (QUOTE -4234)))
+(-592 S)
((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
((-2046 . T))
NIL
-(-592 R -4045 L)
+(-593 R -4049 L)
((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op,{} g,{} x,{} a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{op y = g,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op,{} g,{} x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable.")))
NIL
NIL
-(-593 A)
+(-594 A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
-((-4223 . T) (-4224 . T) (-4226 . T))
-((|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#1| (LIST (QUOTE -960) (QUOTE (-520)))) (|HasCategory| |#1| (QUOTE (-512))) (|HasCategory| |#1| (QUOTE (-424))) (|HasCategory| |#1| (QUOTE (-336))))
-(-594 A M)
+((-4227 . T) (-4228 . T) (-4230 . T))
+((|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-425))) (|HasCategory| |#1| (QUOTE (-337))))
+(-595 A M)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}")))
-((-4223 . T) (-4224 . T) (-4226 . T))
-((|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#1| (LIST (QUOTE -960) (QUOTE (-520)))) (|HasCategory| |#1| (QUOTE (-512))) (|HasCategory| |#1| (QUOTE (-424))) (|HasCategory| |#1| (QUOTE (-336))))
-(-595 S A)
+((-4227 . T) (-4228 . T) (-4230 . T))
+((|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-425))) (|HasCategory| |#1| (QUOTE (-337))))
+(-596 S A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-336))))
-(-596 A)
+((|HasCategory| |#2| (QUOTE (-337))))
+(-597 A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
-((-4223 . T) (-4224 . T) (-4226 . T))
+((-4227 . T) (-4228 . T) (-4230 . T))
NIL
-(-597 -4045 UP)
+(-598 -4049 UP)
((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a,{} zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-598 A -1615)
+(-599 A -3838)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
-((-4223 . T) (-4224 . T) (-4226 . T))
-((|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#1| (LIST (QUOTE -960) (QUOTE (-520)))) (|HasCategory| |#1| (QUOTE (-512))) (|HasCategory| |#1| (QUOTE (-424))) (|HasCategory| |#1| (QUOTE (-336))))
-(-599 A L)
+((-4227 . T) (-4228 . T) (-4230 . T))
+((|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-425))) (|HasCategory| |#1| (QUOTE (-337))))
+(-600 A L)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,{}n,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-600 S)
+(-601 S)
((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}.")))
NIL
NIL
-(-601)
+(-602)
((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}.")))
NIL
NIL
-(-602 M R S)
+(-603 M R S)
((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-4224 . T) (-4223 . T))
-((|HasCategory| |#1| (QUOTE (-726))))
-(-603 R)
+((-4228 . T) (-4227 . T))
+((|HasCategory| |#1| (QUOTE (-727))))
+(-604 R)
((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such exists.")))
NIL
NIL
-(-604 |VarSet| R)
+(-605 |VarSet| R)
((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4224 . T) (-4223 . T))
-((|HasCategory| |#2| (QUOTE (-336))) (|HasCategory| |#2| (QUOTE (-157))))
-(-605 A S)
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4228 . T) (-4227 . T))
+((|HasCategory| |#2| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-157))))
+(-606 A S)
((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
NIL
NIL
-(-606 S)
+(-607 S)
((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
-((-4230 . T) (-4229 . T) (-2046 . T))
+((-4234 . T) (-4233 . T) (-2046 . T))
NIL
-(-607 -4045)
+(-608 -4049)
((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
-(-608 -4045 |Row| |Col| M)
+(-609 -4049 |Row| |Col| M)
((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
-(-609 R E OV P)
+(-610 R E OV P)
((|constructor| (NIL "this package finds the solutions of linear systems presented as a list of polynomials.")) (|linSolve| (((|Record| (|:| |particular| (|Union| (|Vector| (|Fraction| |#4|)) "failed")) (|:| |basis| (|List| (|Vector| (|Fraction| |#4|))))) (|List| |#4|) (|List| |#3|)) "\\spad{linSolve(lp,{}lvar)} finds the solutions of the linear system of polynomials \\spad{lp} = 0 with respect to the list of symbols \\spad{lvar}.")))
NIL
NIL
-(-610 |n| R)
+(-611 |n| R)
((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,{}R) b - b *\\$SQMATRIX(n,{}R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication.")))
-((-4226 . T) (-4229 . T) (-4223 . T) (-4224 . T))
-((|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasCategory| |#2| (QUOTE (-209))) (|HasAttribute| |#2| (QUOTE (-4231 "*"))) (|HasCategory| |#2| (LIST (QUOTE -582) (QUOTE (-520)))) (|HasCategory| |#2| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#2| (LIST (QUOTE -960) (QUOTE (-520)))) (|HasCategory| |#2| (QUOTE (-281))) (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (QUOTE (-336))) (|HasCategory| |#2| (QUOTE (-512))) (-3700 (|HasAttribute| |#2| (QUOTE (-4231 "*"))) (|HasCategory| |#2| (LIST (QUOTE -582) (QUOTE (-520)))) (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasCategory| |#2| (QUOTE (-209)))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (LIST (QUOTE -283) (|devaluate| |#2|)))) (-3700 (-12 (|HasCategory| |#2| (QUOTE (-209))) (|HasCategory| |#2| (LIST (QUOTE -283) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (LIST (QUOTE -283) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -283) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -582) (QUOTE (-520))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -283) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1083)))))) (|HasCategory| |#2| (LIST (QUOTE -560) (QUOTE (-791)))) (|HasCategory| |#2| (QUOTE (-157))))
-(-611 |VarSet|)
+((-4230 . T) (-4233 . T) (-4227 . T) (-4228 . T))
+((|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasCategory| |#2| (QUOTE (-210))) (|HasAttribute| |#2| (QUOTE (-4235 "*"))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#2| (QUOTE (-282))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-513))) (-3703 (|HasAttribute| |#2| (QUOTE (-4235 "*"))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasCategory| |#2| (QUOTE (-210)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-3703 (-12 (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1084)))))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-792)))) (|HasCategory| |#2| (QUOTE (-157))))
+(-612 |VarSet|)
((|constructor| (NIL "Lyndon words over arbitrary (ordered) symbols: see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). A Lyndon word is a word which is smaller than any of its right factors \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering. If \\axiom{a} and \\axiom{\\spad{b}} are two Lyndon words such that \\axiom{a < \\spad{b}} holds \\spad{w}.\\spad{r}.\\spad{t} lexicographical ordering then \\axiom{a*b} is a Lyndon word. Parenthesized Lyndon words can be generated from symbols by using the following rule: \\axiom{[[a,{}\\spad{b}],{}\\spad{c}]} is a Lyndon word iff \\axiom{a*b < \\spad{c} \\spad{<=} \\spad{b}} holds. Lyndon words are internally represented by binary trees using the \\spadtype{Magma} domain constructor. Two ordering are provided: lexicographic and length-lexicographic. \\newline Author : Michel Petitot (petitot@lifl.\\spad{fr}).")) (|LyndonWordsList| (((|List| $) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList(\\spad{vl},{} \\spad{n})} returns the list of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|LyndonWordsList1| (((|OneDimensionalArray| (|List| $)) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList1(\\spad{vl},{} \\spad{n})} returns an array of lists of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|lyndonIfCan| (((|Union| $ "failed") (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndonIfCan(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word.")) (|lyndon| (($ (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word,{} error if \\axiom{\\spad{w}} is not a Lyndon word.")) (|lyndon?| (((|Boolean|) (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon?(\\spad{w})} test if \\axiom{\\spad{w}} is a Lyndon word.")) (|factor| (((|List| $) (|OrderedFreeMonoid| |#1|)) "\\axiom{factor(\\spad{x})} returns the decreasing factorization into Lyndon words.")) (|coerce| (((|Magma| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{Magma}(VarSet) corresponding to \\axiom{\\spad{x}}.") (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")))
NIL
NIL
-(-612 A S)
+(-613 A S)
((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,{}n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#2| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,{}st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,{}st) = [x for x in st | not f(x)]}.")))
NIL
NIL
-(-613 S)
+(-614 S)
((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,{}n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#1| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,{}st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,{}st) = [x for x in st | not f(x)]}.")))
((-2046 . T))
NIL
-(-614 R)
+(-615 R)
((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,{}x,{}y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,{}i,{}j,{}k,{}s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,{}i,{}j,{}k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,{}y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,{}j,{}k)} create a matrix with all zero terms")))
NIL
-((|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-969))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (-3700 (-12 (|HasCategory| |#1| (QUOTE (-969))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-791)))) (-3700 (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-791))))))
-(-615 |VarSet|)
+((|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-970))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-970))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-792)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-792))))))
+(-616 |VarSet|)
((|constructor| (NIL "This type is the basic representation of parenthesized words (binary trees over arbitrary symbols) useful in \\spadtype{LiePolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")) (|rest| (($ $) "\\axiom{rest(\\spad{x})} return \\axiom{\\spad{x}} without the first entry or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns the reversed word of \\axiom{\\spad{x}}. That is \\axiom{\\spad{x}} itself if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true} and \\axiom{mirror(\\spad{z}) * mirror(\\spad{y})} if \\axiom{\\spad{x}} is \\axiom{\\spad{y*z}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}. \\spad{N}.\\spad{B}. This operation does not take into account the tree structure of its arguments. Thus this is not a total ordering.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|first| ((|#1| $) "\\axiom{first(\\spad{x})} returns the first entry of the tree \\axiom{\\spad{x}}.")) (|coerce| (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}} by removing parentheses.")) (* (($ $ $) "\\axiom{x*y} returns the tree \\axiom{[\\spad{x},{}\\spad{y}]}.")))
NIL
NIL
-(-616 A)
+(-617 A)
((|constructor| (NIL "various Currying operations.")) (|recur| ((|#1| (|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|NonNegativeInteger|) |#1|) "\\spad{recur(n,{}g,{}x)} is \\spad{g(n,{}g(n-1,{}..g(1,{}x)..))}.")) (|iter| ((|#1| (|Mapping| |#1| |#1|) (|NonNegativeInteger|) |#1|) "\\spad{iter(f,{}n,{}x)} applies \\spad{f n} times to \\spad{x}.")))
NIL
NIL
-(-617 A C)
+(-618 A C)
((|constructor| (NIL "various Currying operations.")) (|arg2| ((|#2| |#1| |#2|) "\\spad{arg2(a,{}c)} selects its second argument.")) (|arg1| ((|#1| |#1| |#2|) "\\spad{arg1(a,{}c)} selects its first argument.")))
NIL
NIL
-(-618 A B C)
+(-619 A B C)
((|constructor| (NIL "various Currying operations.")) (|comp| ((|#3| (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{comp(f,{}g,{}x)} is \\spad{f(g x)}.")))
NIL
NIL
-(-619 A)
+(-620 A)
((|constructor| (NIL "various Currying operations.")) (|recur| (((|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|Mapping| |#1| (|NonNegativeInteger|) |#1|)) "\\spad{recur(g)} is the function \\spad{h} such that \\indented{1}{\\spad{h(n,{}x)= g(n,{}g(n-1,{}..g(1,{}x)..))}.}")) (** (((|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{f**n} is the function which is the \\spad{n}-fold application \\indented{1}{of \\spad{f}.}")) (|id| ((|#1| |#1|) "\\spad{id x} is \\spad{x}.")) (|fixedPoint| (((|List| |#1|) (|Mapping| (|List| |#1|) (|List| |#1|)) (|Integer|)) "\\spad{fixedPoint(f,{}n)} is the fixed point of function \\indented{1}{\\spad{f} which is assumed to transform a list of length} \\indented{1}{\\spad{n}.}") ((|#1| (|Mapping| |#1| |#1|)) "\\spad{fixedPoint f} is the fixed point of function \\spad{f}. \\indented{1}{\\spadignore{i.e.} such that \\spad{fixedPoint f = f(fixedPoint f)}.}")) (|coerce| (((|Mapping| |#1|) |#1|) "\\spad{coerce A} changes its argument into a \\indented{1}{nullary function.}")) (|nullary| (((|Mapping| |#1|) |#1|) "\\spad{nullary A} changes its argument into a \\indented{1}{nullary function.}")))
NIL
NIL
-(-620 A C)
+(-621 A C)
((|constructor| (NIL "various Currying operations.")) (|diag| (((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1| |#1|)) "\\spad{diag(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a = f(a,{}a)}.}")) (|constant| (((|Mapping| |#2| |#1|) (|Mapping| |#2|)) "\\spad{vu(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a= f ()}.}")) (|curry| (((|Mapping| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{cu(f,{}a)} is the function \\spad{g} \\indented{1}{such that \\spad{g ()= f a}.}")) (|const| (((|Mapping| |#2| |#1|) |#2|) "\\spad{const c} is a function which produces \\spad{c} when \\indented{1}{applied to its argument.}")))
NIL
NIL
-(-621 A B C)
+(-622 A B C)
((|constructor| (NIL "various Currying operations.")) (* (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|)) "\\spad{f*g} is the function \\spad{h} \\indented{1}{such that \\spad{h x= f(g x)}.}")) (|twist| (((|Mapping| |#3| |#2| |#1|) (|Mapping| |#3| |#1| |#2|)) "\\spad{twist(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f(b,{}a)}.}")) (|constantLeft| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#2|)) "\\spad{constantLeft(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f b}.}")) (|constantRight| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#1|)) "\\spad{constantRight(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f a}.}")) (|curryLeft| (((|Mapping| |#3| |#2|) (|Mapping| |#3| |#1| |#2|) |#1|) "\\spad{curryLeft(f,{}a)} is the function \\spad{g} \\indented{1}{such that \\spad{g b = f(a,{}b)}.}")) (|curryRight| (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#1| |#2|) |#2|) "\\spad{curryRight(f,{}b)} is the function \\spad{g} such that \\indented{1}{\\spad{g a = f(a,{}b)}.}")))
NIL
NIL
-(-622 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
+(-623 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.")))
NIL
NIL
-(-623 S R |Row| |Col|)
+(-624 S R |Row| |Col|)
((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
NIL
-((|HasAttribute| |#2| (QUOTE (-4231 "*"))) (|HasCategory| |#2| (QUOTE (-281))) (|HasCategory| |#2| (QUOTE (-336))) (|HasCategory| |#2| (QUOTE (-512))))
-(-624 R |Row| |Col|)
+((|HasAttribute| |#2| (QUOTE (-4235 "*"))) (|HasCategory| |#2| (QUOTE (-282))) (|HasCategory| |#2| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-513))))
+(-625 R |Row| |Col|)
((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
-((-4229 . T) (-4230 . T) (-2046 . T))
+((-4233 . T) (-4234 . T) (-2046 . T))
NIL
-(-625 R |Row| |Col| M)
+(-626 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that \\spad{m*n} = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,{}a,{}i,{}j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{^=j})")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,{}a,{}i,{}j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{^=j})")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,{}i,{}j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")))
NIL
-((|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (QUOTE (-281))) (|HasCategory| |#1| (QUOTE (-512))))
-(-626 R)
-((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal.")))
-((-4229 . T) (-4230 . T))
-((|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-281))) (|HasCategory| |#1| (QUOTE (-512))) (|HasAttribute| |#1| (QUOTE (-4231 "*"))) (|HasCategory| |#1| (QUOTE (-336))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (-3700 (-12 (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-791)))) (-3700 (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-791))))))
+((|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-282))) (|HasCategory| |#1| (QUOTE (-513))))
(-627 R)
+((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal.")))
+((-4233 . T) (-4234 . T))
+((|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-282))) (|HasCategory| |#1| (QUOTE (-513))) (|HasAttribute| |#1| (QUOTE (-4235 "*"))) (|HasCategory| |#1| (QUOTE (-337))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-792)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-792))))))
+(-628 R)
((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,{}b,{}c,{}m,{}n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,{}a,{}b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,{}a,{}r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,{}r,{}a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,{}a,{}b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,{}a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,{}a,{}b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,{}a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")))
NIL
NIL
-(-628 S -4045 FLAF FLAS)
+(-629 S -4049 FLAF FLAS)
((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,{}xlist,{}kl,{}ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,{}xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,{}xlist,{}k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,{}xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,{}xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,{}xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,{}xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")))
NIL
NIL
-(-629 R Q)
+(-630 R Q)
((|constructor| (NIL "MatrixCommonDenominator provides functions to compute the common denominator of a matrix of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| (|Matrix| |#1|)) (|:| |den| |#1|)) (|Matrix| |#2|)) "\\spad{splitDenominator(q)} returns \\spad{[p,{} d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|clearDenominator| (((|Matrix| |#1|) (|Matrix| |#2|)) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|commonDenominator| ((|#1| (|Matrix| |#2|)) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the elements of \\spad{q}.")))
NIL
NIL
-(-630)
+(-631)
((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex")))
-((-4222 . T) (-4227 |has| (-635) (-336)) (-4221 |has| (-635) (-336)) (-3901 . T) (-4228 |has| (-635) (-6 -4228)) (-4225 |has| (-635) (-6 -4225)) ((-4231 "*") . T) (-4223 . T) (-4224 . T) (-4226 . T))
-((|HasCategory| (-635) (QUOTE (-135))) (|HasCategory| (-635) (QUOTE (-133))) (|HasCategory| (-635) (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| (-635) (LIST (QUOTE -582) (QUOTE (-520)))) (|HasCategory| (-635) (QUOTE (-341))) (|HasCategory| (-635) (QUOTE (-336))) (|HasCategory| (-635) (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasCategory| (-635) (QUOTE (-209))) (|HasCategory| (-635) (QUOTE (-322))) (-3700 (|HasCategory| (-635) (QUOTE (-336))) (|HasCategory| (-635) (QUOTE (-322)))) (|HasCategory| (-635) (LIST (QUOTE -260) (QUOTE (-635)) (QUOTE (-635)))) (|HasCategory| (-635) (LIST (QUOTE -283) (QUOTE (-635)))) (|HasCategory| (-635) (LIST (QUOTE -481) (QUOTE (-1083)) (QUOTE (-635)))) (|HasCategory| (-635) (LIST (QUOTE -814) (QUOTE (-352)))) (|HasCategory| (-635) (LIST (QUOTE -814) (QUOTE (-520)))) (|HasCategory| (-635) (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-520))))) (|HasCategory| (-635) (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-352))))) (|HasCategory| (-635) (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| (-635) (QUOTE (-945))) (|HasCategory| (-635) (QUOTE (-1104))) (-12 (|HasCategory| (-635) (QUOTE (-926))) (|HasCategory| (-635) (QUOTE (-1104)))) (|HasCategory| (-635) (QUOTE (-505))) (|HasCategory| (-635) (QUOTE (-978))) (-12 (|HasCategory| (-635) (QUOTE (-978))) (|HasCategory| (-635) (QUOTE (-1104)))) (-3700 (|HasCategory| (-635) (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| (-635) (QUOTE (-336)))) (|HasCategory| (-635) (QUOTE (-281))) (-3700 (|HasCategory| (-635) (QUOTE (-281))) (|HasCategory| (-635) (QUOTE (-336))) (|HasCategory| (-635) (QUOTE (-322)))) (|HasCategory| (-635) (QUOTE (-837))) (-12 (|HasCategory| (-635) (QUOTE (-209))) (|HasCategory| (-635) (QUOTE (-336)))) (-12 (|HasCategory| (-635) (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasCategory| (-635) (QUOTE (-336)))) (|HasCategory| (-635) (LIST (QUOTE -960) (QUOTE (-520)))) (|HasCategory| (-635) (QUOTE (-783))) (|HasCategory| (-635) (QUOTE (-512))) (|HasAttribute| (-635) (QUOTE -4228)) (|HasAttribute| (-635) (QUOTE -4225)) (-12 (|HasCategory| (-635) (QUOTE (-281))) (|HasCategory| (-635) (QUOTE (-837)))) (-3700 (-12 (|HasCategory| (-635) (QUOTE (-281))) (|HasCategory| (-635) (QUOTE (-837)))) (|HasCategory| (-635) (QUOTE (-336))) (-12 (|HasCategory| (-635) (QUOTE (-322))) (|HasCategory| (-635) (QUOTE (-837))))) (-3700 (-12 (|HasCategory| (-635) (QUOTE (-281))) (|HasCategory| (-635) (QUOTE (-837)))) (-12 (|HasCategory| (-635) (QUOTE (-336))) (|HasCategory| (-635) (QUOTE (-837)))) (-12 (|HasCategory| (-635) (QUOTE (-322))) (|HasCategory| (-635) (QUOTE (-837))))) (-3700 (-12 (|HasCategory| (-635) (QUOTE (-281))) (|HasCategory| (-635) (QUOTE (-837)))) (|HasCategory| (-635) (QUOTE (-336)))) (-3700 (-12 (|HasCategory| (-635) (QUOTE (-281))) (|HasCategory| (-635) (QUOTE (-837)))) (|HasCategory| (-635) (QUOTE (-512)))) (-3700 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-635) (QUOTE (-281))) (|HasCategory| (-635) (QUOTE (-837)))) (|HasCategory| (-635) (QUOTE (-133)))) (-3700 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-635) (QUOTE (-281))) (|HasCategory| (-635) (QUOTE (-837)))) (|HasCategory| (-635) (QUOTE (-322)))))
-(-631 S)
+((-4226 . T) (-4231 |has| (-636) (-337)) (-4225 |has| (-636) (-337)) (-3905 . T) (-4232 |has| (-636) (-6 -4232)) (-4229 |has| (-636) (-6 -4229)) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
+((|HasCategory| (-636) (QUOTE (-135))) (|HasCategory| (-636) (QUOTE (-133))) (|HasCategory| (-636) (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| (-636) (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| (-636) (QUOTE (-342))) (|HasCategory| (-636) (QUOTE (-337))) (|HasCategory| (-636) (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasCategory| (-636) (QUOTE (-210))) (|HasCategory| (-636) (QUOTE (-323))) (-3703 (|HasCategory| (-636) (QUOTE (-337))) (|HasCategory| (-636) (QUOTE (-323)))) (|HasCategory| (-636) (LIST (QUOTE -261) (QUOTE (-636)) (QUOTE (-636)))) (|HasCategory| (-636) (LIST (QUOTE -284) (QUOTE (-636)))) (|HasCategory| (-636) (LIST (QUOTE -482) (QUOTE (-1084)) (QUOTE (-636)))) (|HasCategory| (-636) (LIST (QUOTE -815) (QUOTE (-353)))) (|HasCategory| (-636) (LIST (QUOTE -815) (QUOTE (-521)))) (|HasCategory| (-636) (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-521))))) (|HasCategory| (-636) (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-353))))) (|HasCategory| (-636) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| (-636) (QUOTE (-946))) (|HasCategory| (-636) (QUOTE (-1105))) (-12 (|HasCategory| (-636) (QUOTE (-927))) (|HasCategory| (-636) (QUOTE (-1105)))) (|HasCategory| (-636) (QUOTE (-506))) (|HasCategory| (-636) (QUOTE (-979))) (-12 (|HasCategory| (-636) (QUOTE (-979))) (|HasCategory| (-636) (QUOTE (-1105)))) (-3703 (|HasCategory| (-636) (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| (-636) (QUOTE (-337)))) (|HasCategory| (-636) (QUOTE (-282))) (-3703 (|HasCategory| (-636) (QUOTE (-282))) (|HasCategory| (-636) (QUOTE (-337))) (|HasCategory| (-636) (QUOTE (-323)))) (|HasCategory| (-636) (QUOTE (-838))) (-12 (|HasCategory| (-636) (QUOTE (-210))) (|HasCategory| (-636) (QUOTE (-337)))) (-12 (|HasCategory| (-636) (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasCategory| (-636) (QUOTE (-337)))) (|HasCategory| (-636) (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| (-636) (QUOTE (-784))) (|HasCategory| (-636) (QUOTE (-513))) (|HasAttribute| (-636) (QUOTE -4232)) (|HasAttribute| (-636) (QUOTE -4229)) (-12 (|HasCategory| (-636) (QUOTE (-282))) (|HasCategory| (-636) (QUOTE (-838)))) (-3703 (-12 (|HasCategory| (-636) (QUOTE (-282))) (|HasCategory| (-636) (QUOTE (-838)))) (|HasCategory| (-636) (QUOTE (-337))) (-12 (|HasCategory| (-636) (QUOTE (-323))) (|HasCategory| (-636) (QUOTE (-838))))) (-3703 (-12 (|HasCategory| (-636) (QUOTE (-282))) (|HasCategory| (-636) (QUOTE (-838)))) (-12 (|HasCategory| (-636) (QUOTE (-337))) (|HasCategory| (-636) (QUOTE (-838)))) (-12 (|HasCategory| (-636) (QUOTE (-323))) (|HasCategory| (-636) (QUOTE (-838))))) (-3703 (-12 (|HasCategory| (-636) (QUOTE (-282))) (|HasCategory| (-636) (QUOTE (-838)))) (|HasCategory| (-636) (QUOTE (-337)))) (-3703 (-12 (|HasCategory| (-636) (QUOTE (-282))) (|HasCategory| (-636) (QUOTE (-838)))) (|HasCategory| (-636) (QUOTE (-513)))) (-3703 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-636) (QUOTE (-282))) (|HasCategory| (-636) (QUOTE (-838)))) (|HasCategory| (-636) (QUOTE (-133)))) (-3703 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-636) (QUOTE (-282))) (|HasCategory| (-636) (QUOTE (-838)))) (|HasCategory| (-636) (QUOTE (-323)))))
+(-632 S)
((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,{}d,{}n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}.")))
-((-4230 . T) (-2046 . T))
+((-4234 . T) (-2046 . T))
NIL
-(-632 U)
+(-633 U)
((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,{}n,{}g,{}p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl,{} p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,{}p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,{}p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,{}p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,{}f2,{}p)} computes the \\spad{gcd} of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}.")))
NIL
NIL
-(-633)
+(-634)
((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,{}b,{}c,{}d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,{}t,{}u,{}f,{}s1,{}l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,{}g,{}s1,{}s2,{}l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,{}f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}g,{}h,{}j,{}s1,{}s2,{}l)} \\undocumented")))
NIL
NIL
-(-634 OV E -4045 PG)
+(-635 OV E -4049 PG)
((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field.")))
NIL
NIL
-(-635)
+(-636)
((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,{}man,{}base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}")))
-((-3890 . T) (-4221 . T) (-4227 . T) (-4222 . T) ((-4231 "*") . T) (-4223 . T) (-4224 . T) (-4226 . T))
+((-3894 . T) (-4225 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
NIL
-(-636 R)
+(-637 R)
((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m,{} d,{} p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,{}p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m,{} d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus.")))
NIL
NIL
-(-637)
+(-638)
((|constructor| (NIL "A domain which models the integer representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Expression| $) (|Expression| (|Integer|))) "\\spad{coerce(x)} returns \\spad{x} with coefficients in the domain")) (|maxint| (((|PositiveInteger|)) "\\spad{maxint()} returns the maximum integer in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{maxint(u)} sets the maximum integer in the model to \\spad{u}")))
-((-4228 . T) (-4227 . T) (-4222 . T) ((-4231 "*") . T) (-4223 . T) (-4224 . T) (-4226 . T))
+((-4232 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
NIL
-(-638 S D1 D2 I)
+(-639 S D1 D2 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,{}x,{}y)} returns a function \\spad{f: (D1,{} D2) -> I} defined by \\spad{f(x,{} y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1,{} D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function")))
NIL
NIL
-(-639 S)
+(-640 S)
((|constructor| (NIL "MakeCachableSet(\\spad{S}) returns a cachable set which is equal to \\spad{S} as a set.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} returns \\spad{s} viewed as an element of \\%.")))
NIL
NIL
-(-640 S)
+(-641 S)
((|constructor| (NIL "MakeFloatCompiledFunction transforms top-level objects into compiled Lisp functions whose arguments are Lisp floats. This by-passes the \\Language{} compiler and interpreter,{} thereby gaining several orders of magnitude.")) (|makeFloatFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|) (|Symbol|)) "\\spad{makeFloatFunction(expr,{} x,{} y)} returns a Lisp function \\spad{f: (\\axiomType{DoubleFloat},{} \\axiomType{DoubleFloat}) -> \\axiomType{DoubleFloat}} defined by \\spad{f(x,{} y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(\\axiomType{DoubleFloat},{} \\axiomType{DoubleFloat})}.") (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|)) "\\spad{makeFloatFunction(expr,{} x)} returns a Lisp function \\spad{f: \\axiomType{DoubleFloat} -> \\axiomType{DoubleFloat}} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\axiomType{DoubleFloat}.")))
NIL
NIL
-(-641 S)
+(-642 S)
((|constructor| (NIL "transforms top-level objects into interpreter functions.")) (|function| (((|Symbol|) |#1| (|Symbol|) (|List| (|Symbol|))) "\\spad{function(e,{} foo,{} [x1,{}...,{}xn])} creates a function \\spad{foo(x1,{}...,{}xn) == e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|) (|Symbol|)) "\\spad{function(e,{} foo,{} x,{} y)} creates a function \\spad{foo(x,{} y) = e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|)) "\\spad{function(e,{} foo,{} x)} creates a function \\spad{foo(x) == e}.") (((|Symbol|) |#1| (|Symbol|)) "\\spad{function(e,{} foo)} creates a function \\spad{foo() == e}.")))
NIL
NIL
-(-642 S T$)
+(-643 S T$)
((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,{}b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}.")))
NIL
NIL
-(-643 S -2211 I)
+(-644 S -2212 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr,{} x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function")))
NIL
NIL
-(-644 E OV R P)
+(-645 E OV R P)
((|constructor| (NIL "This package provides the functions for the multivariate \"lifting\",{} using an algorithm of Paul Wang. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|lifting1| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|List| |#4|) (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#4|)))) (|List| (|NonNegativeInteger|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{lifting1(u,{}lv,{}lu,{}lr,{}lp,{}lt,{}ln,{}t,{}r)} \\undocumented")) (|lifting| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#3|)) (|List| |#3|) (|List| |#4|) (|List| (|NonNegativeInteger|)) |#3|) "\\spad{lifting(u,{}lv,{}lu,{}lr,{}lp,{}ln,{}r)} \\undocumented")) (|corrPoly| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|) (|List| (|NonNegativeInteger|)) (|List| (|SparseUnivariatePolynomial| |#4|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{corrPoly(u,{}lv,{}lr,{}ln,{}lu,{}t,{}r)} \\undocumented")))
NIL
NIL
-(-645 R)
+(-646 R)
((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,{}1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i,{} i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\^= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\^= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")))
-((-4223 . T) (-4224 . T) (-4226 . T))
+((-4227 . T) (-4228 . T) (-4230 . T))
NIL
-(-646 R1 UP1 UPUP1 R2 UP2 UPUP2)
+(-647 R1 UP1 UPUP1 R2 UP2 UPUP2)
((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f,{} p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}.")))
NIL
NIL
-(-647 R |Mod| -2742 -1819 |exactQuo|)
+(-648 R |Mod| -2633 -1318 |exactQuo|)
((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
-((-4221 . T) (-4227 . T) (-4222 . T) ((-4231 "*") . T) (-4223 . T) (-4224 . T) (-4226 . T))
+((-4225 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
NIL
-(-648 R |Rep|)
+(-649 R |Rep|)
((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|coerce| (($ |#2|) "\\spad{coerce(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented")))
-(((-4231 "*") |has| |#1| (-157)) (-4222 |has| |#1| (-512)) (-4225 |has| |#1| (-336)) (-4227 |has| |#1| (-6 -4227)) (-4224 . T) (-4223 . T) (-4226 . T))
-((|HasCategory| |#1| (QUOTE (-837))) (|HasCategory| |#1| (QUOTE (-512))) (|HasCategory| |#1| (QUOTE (-157))) (-3700 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-512)))) (-12 (|HasCategory| (-997) (LIST (QUOTE -814) (QUOTE (-352)))) (|HasCategory| |#1| (LIST (QUOTE -814) (QUOTE (-352))))) (-12 (|HasCategory| (-997) (LIST (QUOTE -814) (QUOTE (-520)))) (|HasCategory| |#1| (LIST (QUOTE -814) (QUOTE (-520))))) (-12 (|HasCategory| (-997) (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-352))))) (|HasCategory| |#1| (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-352)))))) (-12 (|HasCategory| (-997) (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-520))))) (|HasCategory| |#1| (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-520)))))) (-12 (|HasCategory| (-997) (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-496))))) (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#1| (LIST (QUOTE -582) (QUOTE (-520)))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#1| (LIST (QUOTE -960) (QUOTE (-520)))) (|HasCategory| |#1| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (QUOTE (-1059))) (|HasCategory| |#1| (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-322))) (-3700 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#1| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520)))))) (|HasCategory| |#1| (QUOTE (-209))) (|HasAttribute| |#1| (QUOTE -4227)) (|HasCategory| |#1| (QUOTE (-424))) (-3700 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (QUOTE (-424))) (|HasCategory| |#1| (QUOTE (-512))) (|HasCategory| |#1| (QUOTE (-837)))) (-3700 (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (QUOTE (-424))) (|HasCategory| |#1| (QUOTE (-512))) (|HasCategory| |#1| (QUOTE (-837)))) (-3700 (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (QUOTE (-424))) (|HasCategory| |#1| (QUOTE (-837)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-837)))) (-3700 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-837)))) (|HasCategory| |#1| (QUOTE (-133)))))
-(-649 IS E |ff|)
+(((-4235 "*") |has| |#1| (-157)) (-4226 |has| |#1| (-513)) (-4229 |has| |#1| (-337)) (-4231 |has| |#1| (-6 -4231)) (-4228 . T) (-4227 . T) (-4230 . T))
+((|HasCategory| |#1| (QUOTE (-838))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-157))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-513)))) (-12 (|HasCategory| (-998) (LIST (QUOTE -815) (QUOTE (-353)))) (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-353))))) (-12 (|HasCategory| (-998) (LIST (QUOTE -815) (QUOTE (-521)))) (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-521))))) (-12 (|HasCategory| (-998) (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-353))))) (|HasCategory| |#1| (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-353)))))) (-12 (|HasCategory| (-998) (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-521)))))) (-12 (|HasCategory| (-998) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-497))))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-1060))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (QUOTE (-323))) (-3703 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521)))))) (|HasCategory| |#1| (QUOTE (-210))) (|HasAttribute| |#1| (QUOTE -4231)) (|HasCategory| |#1| (QUOTE (-425))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-425))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-838)))) (-3703 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-425))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-838)))) (-3703 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-425))) (|HasCategory| |#1| (QUOTE (-838)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-838)))) (-3703 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (QUOTE (-133)))))
+(-650 IS E |ff|)
((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,{}e)} \\undocumented")) (|coerce| (((|Record| (|:| |index| |#1|) (|:| |exponent| |#2|)) $) "\\spad{coerce(x)} \\undocumented") (($ (|Record| (|:| |index| |#1|) (|:| |exponent| |#2|))) "\\spad{coerce(x)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented")))
NIL
NIL
-(-650 R M)
+(-651 R M)
((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,{}f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f,{} u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1,{} op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}.")))
-((-4224 |has| |#1| (-157)) (-4223 |has| |#1| (-157)) (-4226 . T))
+((-4228 |has| |#1| (-157)) (-4227 |has| |#1| (-157)) (-4230 . T))
((|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))))
-(-651 R |Mod| -2742 -1819 |exactQuo|)
+(-652 R |Mod| -2633 -1318 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
-((-4226 . T))
+((-4230 . T))
NIL
-(-652 S R)
+(-653 S R)
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
NIL
NIL
-(-653 R)
+(-654 R)
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
-((-4224 . T) (-4223 . T))
+((-4228 . T) (-4227 . T))
NIL
-(-654 -4045)
+(-655 -4049)
((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,{}1],{}[1,{}0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,{}h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,{}0],{}[0,{}1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,{}h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,{}k],{}[0,{}1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,{}b,{}c,{}d)} returns \\spad{matrix [[a,{}b],{}[c,{}d]]}.")))
-((-4226 . T))
+((-4230 . T))
NIL
-(-655 S)
+(-656 S)
((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation.")))
NIL
NIL
-(-656)
+(-657)
((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation.")))
NIL
NIL
-(-657 S)
+(-658 S)
((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1.")))
NIL
NIL
-(-658)
+(-659)
((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1.")))
NIL
NIL
-(-659 S R UP)
+(-660 S R UP)
((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#2|) (|Vector| $) (|Mapping| |#2| |#2|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#3| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#3|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#3|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#3|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#3|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain.")))
NIL
-((|HasCategory| |#2| (QUOTE (-322))) (|HasCategory| |#2| (QUOTE (-336))) (|HasCategory| |#2| (QUOTE (-341))))
-(-660 R UP)
+((|HasCategory| |#2| (QUOTE (-323))) (|HasCategory| |#2| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-342))))
+(-661 R UP)
((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain.")))
-((-4222 |has| |#1| (-336)) (-4227 |has| |#1| (-336)) (-4221 |has| |#1| (-336)) ((-4231 "*") . T) (-4223 . T) (-4224 . T) (-4226 . T))
+((-4226 |has| |#1| (-337)) (-4231 |has| |#1| (-337)) (-4225 |has| |#1| (-337)) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
NIL
-(-661 S)
+(-662 S)
((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (^ (($ $ (|NonNegativeInteger|)) "\\spad{x^n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity.")))
NIL
NIL
-(-662)
+(-663)
((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (^ (($ $ (|NonNegativeInteger|)) "\\spad{x^n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity.")))
NIL
NIL
-(-663 -4045 UP)
+(-664 -4049 UP)
((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f,{} D)} returns \\spad{[p,{}n,{}s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f,{} D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p,{} D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m,{} s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p,{} D)} returns \\spad{[n,{}s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-664 |VarSet| E1 E2 R S PR PS)
+(-665 |VarSet| E1 E2 R S PR PS)
((|constructor| (NIL "\\indented{1}{Utilities for MPolyCat} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 28 March 1990 (\\spad{PG})")) (|reshape| ((|#7| (|List| |#5|) |#6|) "\\spad{reshape(l,{}p)} \\undocumented")) (|map| ((|#7| (|Mapping| |#5| |#4|) |#6|) "\\spad{map(f,{}p)} \\undocumented")))
NIL
NIL
-(-665 |Vars1| |Vars2| E1 E2 R PR1 PR2)
+(-666 |Vars1| |Vars2| E1 E2 R PR1 PR2)
((|constructor| (NIL "This package \\undocumented")) (|map| ((|#7| (|Mapping| |#2| |#1|) |#6|) "\\spad{map(f,{}x)} \\undocumented")))
NIL
NIL
-(-666 E OV R PPR)
+(-667 E OV R PPR)
((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are polynomials over some ring \\spad{R} over which we can factor. It is used internally by packages such as the solve package which need to work with polynomials in a specific set of variables with coefficients which are polynomials in all the other variables.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors a polynomial with polynomial coefficients.")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-667 |vl| R)
+(-668 |vl| R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")))
-(((-4231 "*") |has| |#2| (-157)) (-4222 |has| |#2| (-512)) (-4227 |has| |#2| (-6 -4227)) (-4224 . T) (-4223 . T) (-4226 . T))
-((|HasCategory| |#2| (QUOTE (-837))) (|HasCategory| |#2| (QUOTE (-512))) (|HasCategory| |#2| (QUOTE (-157))) (-3700 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-512)))) (-12 (|HasCategory| (-793 |#1|) (LIST (QUOTE -814) (QUOTE (-352)))) (|HasCategory| |#2| (LIST (QUOTE -814) (QUOTE (-352))))) (-12 (|HasCategory| (-793 |#1|) (LIST (QUOTE -814) (QUOTE (-520)))) (|HasCategory| |#2| (LIST (QUOTE -814) (QUOTE (-520))))) (-12 (|HasCategory| (-793 |#1|) (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-352))))) (|HasCategory| |#2| (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-352)))))) (-12 (|HasCategory| (-793 |#1|) (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-520))))) (|HasCategory| |#2| (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-520)))))) (-12 (|HasCategory| (-793 |#1|) (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-496))))) (|HasCategory| |#2| (QUOTE (-783))) (|HasCategory| |#2| (LIST (QUOTE -582) (QUOTE (-520)))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#2| (LIST (QUOTE -960) (QUOTE (-520)))) (|HasCategory| |#2| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#2| (QUOTE (-336))) (-3700 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#2| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520)))))) (|HasAttribute| |#2| (QUOTE -4227)) (|HasCategory| |#2| (QUOTE (-424))) (-3700 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-424))) (|HasCategory| |#2| (QUOTE (-512))) (|HasCategory| |#2| (QUOTE (-837)))) (-3700 (|HasCategory| |#2| (QUOTE (-424))) (|HasCategory| |#2| (QUOTE (-512))) (|HasCategory| |#2| (QUOTE (-837)))) (-3700 (|HasCategory| |#2| (QUOTE (-424))) (|HasCategory| |#2| (QUOTE (-837)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-837)))) (-3700 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-837)))) (|HasCategory| |#2| (QUOTE (-133)))))
-(-668 E OV R PRF)
+(((-4235 "*") |has| |#2| (-157)) (-4226 |has| |#2| (-513)) (-4231 |has| |#2| (-6 -4231)) (-4228 . T) (-4227 . T) (-4230 . T))
+((|HasCategory| |#2| (QUOTE (-838))) (|HasCategory| |#2| (QUOTE (-513))) (|HasCategory| |#2| (QUOTE (-157))) (-3703 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-513)))) (-12 (|HasCategory| (-794 |#1|) (LIST (QUOTE -815) (QUOTE (-353)))) (|HasCategory| |#2| (LIST (QUOTE -815) (QUOTE (-353))))) (-12 (|HasCategory| (-794 |#1|) (LIST (QUOTE -815) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -815) (QUOTE (-521))))) (-12 (|HasCategory| (-794 |#1|) (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-353))))) (|HasCategory| |#2| (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-353)))))) (-12 (|HasCategory| (-794 |#1|) (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-521))))) (|HasCategory| |#2| (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-521)))))) (-12 (|HasCategory| (-794 |#1|) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-497))))) (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-337))) (-3703 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521)))))) (|HasAttribute| |#2| (QUOTE -4231)) (|HasCategory| |#2| (QUOTE (-425))) (-3703 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-425))) (|HasCategory| |#2| (QUOTE (-513))) (|HasCategory| |#2| (QUOTE (-838)))) (-3703 (|HasCategory| |#2| (QUOTE (-425))) (|HasCategory| |#2| (QUOTE (-513))) (|HasCategory| |#2| (QUOTE (-838)))) (-3703 (|HasCategory| |#2| (QUOTE (-425))) (|HasCategory| |#2| (QUOTE (-838)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-838)))) (-3703 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-838)))) (|HasCategory| |#2| (QUOTE (-133)))))
+(-669 E OV R PRF)
((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,{}var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,{}var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,{}var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-669 E OV R P)
+(-670 E OV R P)
((|constructor| (NIL "\\indented{1}{MRationalFactorize contains the factor function for multivariate} polynomials over the quotient field of a ring \\spad{R} such that the package MultivariateFactorize can factor multivariate polynomials over \\spad{R}.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} with coefficients which are fractions of elements of \\spad{R}.")))
NIL
NIL
-(-670 R S M)
+(-671 R S M)
((|constructor| (NIL "MonoidRingFunctions2 implements functions between two monoid rings defined with the same monoid over different rings.")) (|map| (((|MonoidRing| |#2| |#3|) (|Mapping| |#2| |#1|) (|MonoidRing| |#1| |#3|)) "\\spad{map(f,{}u)} maps \\spad{f} onto the coefficients \\spad{f} the element \\spad{u} of the monoid ring to create an element of a monoid ring with the same monoid \\spad{b}.")))
NIL
NIL
-(-671 R M)
+(-672 R M)
((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,{}m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}m)} creates a scalar multiple of the basis element \\spad{m}.")))
-((-4224 |has| |#1| (-157)) (-4223 |has| |#1| (-157)) (-4226 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#2| (QUOTE (-783))))
-(-672 S)
+((-4228 |has| |#1| (-157)) (-4227 |has| |#1| (-157)) (-4230 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#2| (QUOTE (-342)))) (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#2| (QUOTE (-784))))
+(-673 S)
((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements.")))
-((-4219 . T) (-4230 . T) (-2046 . T))
+((-4223 . T) (-4234 . T) (-2046 . T))
NIL
-(-673 S)
+(-674 S)
((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,{}ms,{}number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,{}ms,{}number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,{}ms,{}number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,{}ms,{}number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}.")))
-((-4229 . T) (-4219 . T) (-4230 . T))
-((|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-1012))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-791)))))
-(-674)
+((-4233 . T) (-4223 . T) (-4234 . T))
+((|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-1013))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-792)))))
+(-675)
((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned.")))
NIL
NIL
-(-675 S)
+(-676 S)
((|constructor| (NIL "This package exports tools for merging lists")) (|mergeDifference| (((|List| |#1|) (|List| |#1|) (|List| |#1|)) "\\spad{mergeDifference(l1,{}l2)} returns a list of elements in \\spad{l1} not present in \\spad{l2}. Assumes lists are ordered and all \\spad{x} in \\spad{l2} are also in \\spad{l1}.")))
NIL
NIL
-(-676 |Coef| |Var|)
+(-677 |Coef| |Var|)
((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,{}x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,{}x,{}n)} returns \\spad{min(n,{}order(f,{}x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,{}x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,{}x,{}n)} returns the coefficient of \\spad{x^n} in \\spad{f}.")))
-(((-4231 "*") |has| |#1| (-157)) (-4222 |has| |#1| (-512)) (-4224 . T) (-4223 . T) (-4226 . T))
+(((-4235 "*") |has| |#1| (-157)) (-4226 |has| |#1| (-513)) (-4228 . T) (-4227 . T) (-4230 . T))
NIL
-(-677 OV E R P)
+(-678 OV E R P)
((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")))
NIL
NIL
-(-678 E OV R P)
+(-679 E OV R P)
((|constructor| (NIL "Author : \\spad{P}.Gianni This package provides the functions for the computation of the square free decomposition of a multivariate polynomial. It uses the package GenExEuclid for the resolution of the equation \\spad{Af + Bg = h} and its generalization to \\spad{n} polynomials over an integral domain and the package \\spad{MultivariateLifting} for the \"multivariate\" lifting.")) (|normDeriv2| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{normDeriv2 should} be local")) (|myDegree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|NonNegativeInteger|)) "\\spad{myDegree should} be local")) (|lift| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) |#4| (|List| |#2|) (|List| (|NonNegativeInteger|)) (|List| |#3|)) "\\spad{lift should} be local")) (|check| (((|Boolean|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|)))) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{check should} be local")) (|coefChoose| ((|#4| (|Integer|) (|Factored| |#4|)) "\\spad{coefChoose should} be local")) (|intChoose| (((|Record| (|:| |upol| (|SparseUnivariatePolynomial| |#3|)) (|:| |Lval| (|List| |#3|)) (|:| |Lfact| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) (|:| |ctpol| |#3|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{intChoose should} be local")) (|nsqfree| (((|Record| (|:| |unitPart| |#4|) (|:| |suPart| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#4|)) (|:| |exponent| (|Integer|)))))) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{nsqfree should} be local")) (|consnewpol| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#4|)) (|:| |polval| (|SparseUnivariatePolynomial| |#3|))) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{consnewpol should} be local")) (|univcase| (((|Factored| |#4|) |#4| |#2|) "\\spad{univcase should} be local")) (|compdegd| (((|Integer|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{compdegd should} be local")) (|squareFreePrim| (((|Factored| |#4|) |#4|) "\\spad{squareFreePrim(p)} compute the square free decomposition of a primitive multivariate polynomial \\spad{p}.")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p} presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p}.")))
NIL
NIL
-(-679 S R)
+(-680 S R)
((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,{}n)} is recursively defined to be \\spad{plenaryPower(a,{}n-1)*plenaryPower(a,{}n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}.")))
NIL
NIL
-(-680 R)
+(-681 R)
((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,{}n)} is recursively defined to be \\spad{plenaryPower(a,{}n-1)*plenaryPower(a,{}n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}.")))
-((-4224 . T) (-4223 . T))
+((-4228 . T) (-4227 . T))
NIL
-(-681)
+(-682)
((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients. See \\downlink{Manual Page}{manpageXXc02}.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,{}n,{}scale,{}ifail)} finds all the roots of a real polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,{}n,{}scale,{}ifail)} finds all the roots of a complex polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02aff}.")))
NIL
NIL
-(-682)
+(-683)
((|constructor| (NIL "This package uses the NAG Library to calculate real zeros of continuous real functions of one or more variables. (Complex equations must be expressed in terms of the equivalent larger system of real equations.) See \\downlink{Manual Page}{manpageXXc05}.")) (|c05pbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp35| FCN)))) "\\spad{c05pbf(n,{}ldfjac,{}lwa,{}x,{}xtol,{}ifail,{}fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. The user must provide the Jacobian. See \\downlink{Manual Page}{manpageXXc05pbf}.")) (|c05nbf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp6| FCN)))) "\\spad{c05nbf(n,{}lwa,{}x,{}xtol,{}ifail,{}fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. See \\downlink{Manual Page}{manpageXXc05nbf}.")) (|c05adf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{c05adf(a,{}b,{}eps,{}eta,{}ifail,{}f)} locates a zero of a continuous function in a given interval by a combination of the methods of linear interpolation,{} extrapolation and bisection. See \\downlink{Manual Page}{manpageXXc05adf}.")))
NIL
NIL
-(-683)
+(-684)
((|constructor| (NIL "This package uses the NAG Library to calculate the discrete Fourier transform of a sequence of real or complex data values,{} and applies it to calculate convolutions and correlations. See \\downlink{Manual Page}{manpageXXc06}.")) (|c06gsf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gsf(m,{}n,{}x,{}ifail)} takes \\spad{m} Hermitian sequences,{} each containing \\spad{n} data values,{} and forms the real and imaginary parts of the \\spad{m} corresponding complex sequences. See \\downlink{Manual Page}{manpageXXc06gsf}.")) (|c06gqf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gqf(m,{}n,{}x,{}ifail)} forms the complex conjugates,{} each containing \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gqf}.")) (|c06gcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gcf(n,{}y,{}ifail)} forms the complex conjugate of a sequence of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gcf}.")) (|c06gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gbf(n,{}x,{}ifail)} forms the complex conjugate of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gbf}.")) (|c06fuf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fuf(m,{}n,{}init,{}x,{}y,{}trigm,{}trign,{}ifail)} computes the two-dimensional discrete Fourier transform of a bivariate sequence of complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fuf}.")) (|c06frf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06frf(m,{}n,{}init,{}x,{}y,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06frf}.")) (|c06fqf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fqf(m,{}n,{}init,{}x,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} Hermitian sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fqf}.")) (|c06fpf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fpf(m,{}n,{}init,{}x,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} real data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fpf}.")) (|c06ekf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ekf(job,{}n,{}x,{}y,{}ifail)} calculates the circular convolution of two real vectors of period \\spad{n}. No extra workspace is required. See \\downlink{Manual Page}{manpageXXc06ekf}.")) (|c06ecf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ecf(n,{}x,{}y,{}ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ecf}.")) (|c06ebf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ebf(n,{}x,{}ifail)} calculates the discrete Fourier transform of a Hermitian sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ebf}.")) (|c06eaf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06eaf(n,{}x,{}ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} real data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06eaf}.")))
NIL
NIL
-(-684)
+(-685)
((|constructor| (NIL "This package uses the NAG Library to calculate the numerical value of definite integrals in one or more dimensions and to evaluate weights and abscissae of integration rules. See \\downlink{Manual Page}{manpageXXd01}.")) (|d01gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01gbf(ndim,{}a,{}b,{}maxcls,{}eps,{}lenwrk,{}mincls,{}wrkstr,{}ifail,{}functn)} returns an approximation to the integral of a function over a hyper-rectangular region,{} using a Monte Carlo method. An approximate relative error estimate is also returned. This routine is suitable for low accuracy work. See \\downlink{Manual Page}{manpageXXd01gbf}.")) (|d01gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|)) "\\spad{d01gaf(x,{}y,{}n,{}ifail)} integrates a function which is specified numerically at four or more points,{} over the whole of its specified range,{} using third-order finite-difference formulae with error estimates,{} according to a method due to Gill and Miller. See \\downlink{Manual Page}{manpageXXd01gaf}.")) (|d01fcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01fcf(ndim,{}a,{}b,{}maxpts,{}eps,{}lenwrk,{}minpts,{}ifail,{}functn)} attempts to evaluate a multi-dimensional integral (up to 15 dimensions),{} with constant and finite limits,{} to a specified relative accuracy,{} using an adaptive subdivision strategy. See \\downlink{Manual Page}{manpageXXd01fcf}.")) (|d01bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{d01bbf(a,{}b,{}itype,{}n,{}gtype,{}ifail)} returns the weight appropriate to a Gaussian quadrature. The formulae provided are Gauss-Legendre,{} Gauss-Rational,{} Gauss- Laguerre and Gauss-Hermite. See \\downlink{Manual Page}{manpageXXd01bbf}.")) (|d01asf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01asf(a,{}omega,{}key,{}epsabs,{}limlst,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}infty): See \\downlink{Manual Page}{manpageXXd01asf}.")) (|d01aqf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01aqf(a,{}b,{}c,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the Hilbert transform of a function \\spad{g}(\\spad{x}) over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01aqf}.")) (|d01apf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01apf(a,{}b,{}alfa,{}beta,{}key,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} is an adaptive integrator which calculates an approximation to the integral of a function \\spad{g}(\\spad{x})\\spad{w}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01apf}.")) (|d01anf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01anf(a,{}b,{}omega,{}key,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01anf}.")) (|d01amf| (((|Result|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01amf(bound,{}inf,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over an infinite or semi-infinite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01amf}.")) (|d01alf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01alf(a,{}b,{}npts,{}points,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is a general purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01alf}.")) (|d01akf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01akf(a,{}b,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is an adaptive integrator,{} especially suited to oscillating,{} non-singular integrands,{} which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01akf}.")) (|d01ajf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01ajf(a,{}b,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is a general-purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01ajf}.")))
NIL
NIL
-(-685)
+(-686)
((|constructor| (NIL "This package uses the NAG Library to calculate the numerical solution of ordinary differential equations. There are two main types of problem,{} those in which all boundary conditions are specified at one point (initial-value problems),{} and those in which the boundary conditions are distributed between two or more points (boundary- value problems and eigenvalue problems). Routines are available for initial-value problems,{} two-point boundary-value problems and Sturm-Liouville eigenvalue problems. See \\downlink{Manual Page}{manpageXXd02}.")) (|d02raf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp41| FCN JACOBF JACEPS))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp42| G JACOBG JACGEP)))) "\\spad{d02raf(n,{}mnp,{}numbeg,{}nummix,{}tol,{}init,{}iy,{}ijac,{}lwork,{}liwork,{}np,{}x,{}y,{}deleps,{}ifail,{}fcn,{}g)} solves the two-point boundary-value problem with general boundary conditions for a system of ordinary differential equations,{} using a deferred correction technique and Newton iteration. See \\downlink{Manual Page}{manpageXXd02raf}.")) (|d02kef| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL))) (|FileName|) (|FileName|)) "\\spad{d02kef(xpoint,{}m,{}k,{}tol,{}maxfun,{}match,{}elam,{}delam,{}hmax,{}maxit,{}ifail,{}coeffn,{}bdyval,{}monit,{}report)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. Files \\spad{monit} and \\spad{report} will be used to define the subroutines for the MONIT and REPORT arguments. See \\downlink{Manual Page}{manpageXXd02gbf}.") (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL)))) "\\spad{d02kef(xpoint,{}m,{}k,{}tol,{}maxfun,{}match,{}elam,{}delam,{}hmax,{}maxit,{}ifail,{}coeffn,{}bdyval)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. ASP domains Asp12 and Asp33 are used to supply default subroutines for the MONIT and REPORT arguments via their \\axiomOp{outputAsFortran} operation.")) (|d02gbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp77| FCNF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp78| FCNG)))) "\\spad{d02gbf(a,{}b,{}n,{}tol,{}mnp,{}lw,{}liw,{}c,{}d,{}gam,{}x,{}np,{}ifail,{}fcnf,{}fcng)} solves a general linear two-point boundary value problem for a system of ordinary differential equations using a deferred correction technique. See \\downlink{Manual Page}{manpageXXd02gbf}.")) (|d02gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02gaf(u,{}v,{}n,{}a,{}b,{}tol,{}mnp,{}lw,{}liw,{}x,{}np,{}ifail,{}fcn)} solves the two-point boundary-value problem with assigned boundary values for a system of ordinary differential equations,{} using a deferred correction technique and a Newton iteration. See \\downlink{Manual Page}{manpageXXd02gaf}.")) (|d02ejf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp31| PEDERV))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02ejf(xend,{}m,{}n,{}relabs,{}iw,{}x,{}y,{}tol,{}ifail,{}g,{}fcn,{}pederv,{}output)} integrates a stiff system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a variable-order,{} variable-step method implementing the Backward Differentiation Formulae (\\spad{BDF}),{} until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02ejf}.")) (|d02cjf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|String|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02cjf(xend,{}m,{}n,{}tol,{}relabs,{}x,{}y,{}ifail,{}g,{}fcn,{}output)} integrates a system of first-order ordinary differential equations over a range with suitable initial conditions,{} using a variable-order,{} variable-step Adams method until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02cjf}.")) (|d02bhf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02bhf(xend,{}n,{}irelab,{}hmax,{}x,{}y,{}tol,{}ifail,{}g,{}fcn)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} until a user-specified function of the solution is zero. See \\downlink{Manual Page}{manpageXXd02bhf}.")) (|d02bbf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02bbf(xend,{}m,{}n,{}irelab,{}x,{}y,{}tol,{}ifail,{}fcn,{}output)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} and returns the solution at points specified by the user. See \\downlink{Manual Page}{manpageXXd02bbf}.")))
NIL
NIL
-(-686)
+(-687)
((|constructor| (NIL "This package uses the NAG Library to solve partial differential equations. See \\downlink{Manual Page}{manpageXXd03}.")) (|d03faf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|ThreeDimensionalMatrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03faf(xs,{}xf,{}l,{}lbdcnd,{}bdxs,{}bdxf,{}ys,{}yf,{}m,{}mbdcnd,{}bdys,{}bdyf,{}zs,{}zf,{}n,{}nbdcnd,{}bdzs,{}bdzf,{}lambda,{}ldimf,{}mdimf,{}lwrk,{}f,{}ifail)} solves the Helmholtz equation in Cartesian co-ordinates in three dimensions using the standard seven-point finite difference approximation. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXd03faf}.")) (|d03eef| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp73| PDEF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp74| BNDY)))) "\\spad{d03eef(xmin,{}xmax,{}ymin,{}ymax,{}ngx,{}ngy,{}lda,{}scheme,{}ifail,{}pdef,{}bndy)} discretizes a second order elliptic partial differential equation (PDE) on a rectangular region. See \\downlink{Manual Page}{manpageXXd03eef}.")) (|d03edf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03edf(ngx,{}ngy,{}lda,{}maxit,{}acc,{}iout,{}a,{}rhs,{}ub,{}ifail)} solves seven-diagonal systems of linear equations which arise from the discretization of an elliptic partial differential equation on a rectangular region. This routine uses a multigrid technique. See \\downlink{Manual Page}{manpageXXd03edf}.")))
NIL
NIL
-(-687)
+(-688)
((|constructor| (NIL "This package uses the NAG Library to calculate the interpolation of a function of one or two variables. When provided with the value of the function (and possibly one or more of its lowest-order derivatives) at each of a number of values of the variable(\\spad{s}),{} the routines provide either an interpolating function or an interpolated value. For some of the interpolating functions,{} there are supporting routines to evaluate,{} differentiate or integrate them. See \\downlink{Manual Page}{manpageXXe01}.")) (|e01sff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sff(m,{}x,{}y,{}f,{}rnw,{}fnodes,{}px,{}py,{}ifail)} evaluates at a given point the two-dimensional interpolating function computed by E01SEF. See \\downlink{Manual Page}{manpageXXe01sff}.")) (|e01sef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sef(m,{}x,{}y,{}f,{}nw,{}nq,{}rnw,{}rnq,{}ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using a modified Shepard method. See \\downlink{Manual Page}{manpageXXe01sef}.")) (|e01sbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sbf(m,{}x,{}y,{}f,{}triang,{}grads,{}px,{}py,{}ifail)} evaluates at a given point the two-dimensional interpolant function computed by E01SAF. See \\downlink{Manual Page}{manpageXXe01sbf}.")) (|e01saf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01saf(m,{}x,{}y,{}f,{}ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using the method of Renka and Cline. See \\downlink{Manual Page}{manpageXXe01saf}.")) (|e01daf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01daf(mx,{}my,{}x,{}y,{}f,{}ifail)} computes a bicubic spline interpolating surface through a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. See \\downlink{Manual Page}{manpageXXe01daf}.")) (|e01bhf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01bhf(n,{}x,{}f,{}d,{}a,{}b,{}ifail)} evaluates the definite integral of a piecewise cubic Hermite interpolant over the interval [a,{}\\spad{b}]. See \\downlink{Manual Page}{manpageXXe01bhf}.")) (|e01bgf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bgf(n,{}x,{}f,{}d,{}m,{}px,{}ifail)} evaluates a piecewise cubic Hermite interpolant and its first derivative at a set of points. See \\downlink{Manual Page}{manpageXXe01bgf}.")) (|e01bff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bff(n,{}x,{}f,{}d,{}m,{}px,{}ifail)} evaluates a piecewise cubic Hermite interpolant at a set of points. See \\downlink{Manual Page}{manpageXXe01bff}.")) (|e01bef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bef(n,{}x,{}f,{}ifail)} computes a monotonicity-preserving piecewise cubic Hermite interpolant to a set of data points. See \\downlink{Manual Page}{manpageXXe01bef}.")) (|e01baf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e01baf(m,{}x,{}y,{}lck,{}lwrk,{}ifail)} determines a cubic spline to a given set of data. See \\downlink{Manual Page}{manpageXXe01baf}.")))
NIL
NIL
-(-688)
+(-689)
((|constructor| (NIL "This package uses the NAG Library to find a function which approximates a set of data points. Typically the data contain random errors,{} as of experimental measurement,{} which need to be smoothed out. To seek an approximation to the data,{} it is first necessary to specify for the approximating function a mathematical form (a polynomial,{} for example) which contains a number of unspecified coefficients: the appropriate fitting routine then derives for the coefficients the values which provide the best fit of that particular form. The package deals mainly with curve and surface fitting (\\spadignore{i.e.} fitting with functions of one and of two variables) when a polynomial or a cubic spline is used as the fitting function,{} since these cover the most common needs. However,{} fitting with other functions and/or more variables can be undertaken by means of general linear or nonlinear routines (some of which are contained in other packages) depending on whether the coefficients in the function occur linearly or nonlinearly. Cases where a graph rather than a set of data points is given can be treated simply by first reading a suitable set of points from the graph. The package also contains routines for evaluating,{} differentiating and integrating polynomial and spline curves and surfaces,{} once the numerical values of their coefficients have been determined. See \\downlink{Manual Page}{manpageXXe02}.")) (|e02zaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02zaf(px,{}py,{}lamda,{}mu,{}m,{}x,{}y,{}npoint,{}nadres,{}ifail)} sorts two-dimensional data into rectangular panels. See \\downlink{Manual Page}{manpageXXe02zaf}.")) (|e02gaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02gaf(m,{}la,{}nplus2,{}toler,{}a,{}b,{}ifail)} calculates an \\spad{l} solution to an over-determined system of \\indented{22}{1} linear equations. See \\downlink{Manual Page}{manpageXXe02gaf}.")) (|e02dff| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02dff(mx,{}my,{}px,{}py,{}x,{}y,{}lamda,{}mu,{}c,{}lwrk,{}liwrk,{}ifail)} calculates values of a bicubic spline representation. The spline is evaluated at all points on a rectangular grid. See \\downlink{Manual Page}{manpageXXe02dff}.")) (|e02def| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02def(m,{}px,{}py,{}x,{}y,{}lamda,{}mu,{}c,{}ifail)} calculates values of a bicubic spline representation. See \\downlink{Manual Page}{manpageXXe02def}.")) (|e02ddf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02ddf(start,{}m,{}x,{}y,{}f,{}w,{}s,{}nxest,{}nyest,{}lwrk,{}liwrk,{}nx,{}lamda,{}ny,{}mu,{}wrk,{}ifail)} computes a bicubic spline approximation to a set of scattered data are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02ddf}.")) (|e02dcf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{e02dcf(start,{}mx,{}x,{}my,{}y,{}f,{}s,{}nxest,{}nyest,{}lwrk,{}liwrk,{}nx,{}lamda,{}ny,{}mu,{}wrk,{}iwrk,{}ifail)} computes a bicubic spline approximation to a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. The knots of the spline are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02dcf}.")) (|e02daf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02daf(m,{}px,{}py,{}x,{}y,{}f,{}w,{}mu,{}point,{}npoint,{}nc,{}nws,{}eps,{}lamda,{}ifail)} forms a minimal,{} weighted least-squares bicubic spline surface fit with prescribed knots to a given set of data points. See \\downlink{Manual Page}{manpageXXe02daf}.")) (|e02bef| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|))) "\\spad{e02bef(start,{}m,{}x,{}y,{}w,{}s,{}nest,{}lwrk,{}n,{}lamda,{}ifail,{}wrk,{}iwrk)} computes a cubic spline approximation to an arbitrary set of data points. The knot are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02bef}.")) (|e02bdf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02bdf(ncap7,{}lamda,{}c,{}ifail)} computes the definite integral from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bdf}.")) (|e02bcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|)) "\\spad{e02bcf(ncap7,{}lamda,{}c,{}x,{}left,{}ifail)} evaluates a cubic spline and its first three derivatives from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bcf}.")) (|e02bbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02bbf(ncap7,{}lamda,{}c,{}x,{}ifail)} evaluates a cubic spline representation. See \\downlink{Manual Page}{manpageXXe02bbf}.")) (|e02baf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02baf(m,{}ncap7,{}x,{}y,{}w,{}lamda,{}ifail)} computes a weighted least-squares approximation to an arbitrary set of data points by a cubic splines prescribed by the user. Cubic spline can also be carried out. See \\downlink{Manual Page}{manpageXXe02baf}.")) (|e02akf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|)) "\\spad{e02akf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}x,{}ifail)} evaluates a polynomial from its Chebyshev-series representation,{} allowing an arbitrary index increment for accessing the array of coefficients. See \\downlink{Manual Page}{manpageXXe02akf}.")) (|e02ajf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ajf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}qatm1,{}iaint1,{}laint,{}ifail)} determines the coefficients in the Chebyshev-series representation of the indefinite integral of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ajf}.")) (|e02ahf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ahf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}iadif1,{}ladif,{}ifail)} determines the coefficients in the Chebyshev-series representation of the derivative of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ahf}.")) (|e02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02agf(m,{}kplus1,{}nrows,{}xmin,{}xmax,{}x,{}y,{}w,{}mf,{}xf,{}yf,{}lyf,{}ip,{}lwrk,{}liwrk,{}ifail)} computes constrained weighted least-squares polynomial approximations in Chebyshev-series form to an arbitrary set of data points. The values of the approximations and any number of their derivatives can be specified at selected points. See \\downlink{Manual Page}{manpageXXe02agf}.")) (|e02aef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02aef(nplus1,{}a,{}xcap,{}ifail)} evaluates a polynomial from its Chebyshev-series representation. See \\downlink{Manual Page}{manpageXXe02aef}.")) (|e02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02adf(m,{}kplus1,{}nrows,{}x,{}y,{}w,{}ifail)} computes weighted least-squares polynomial approximations to an arbitrary set of data points. See \\downlink{Manual Page}{manpageXXe02adf}.")))
NIL
NIL
-(-689)
+(-690)
((|constructor| (NIL "This package uses the NAG Library to perform optimization. An optimization problem involves minimizing a function (called the objective function) of several variables,{} possibly subject to restrictions on the values of the variables defined by a set of constraint functions. The routines in the NAG Foundation Library are concerned with function minimization only,{} since the problem of maximizing a given function can be transformed into a minimization problem simply by multiplying the function by \\spad{-1}. See \\downlink{Manual Page}{manpageXXe04}.")) (|e04ycf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04ycf(job,{}m,{}n,{}fsumsq,{}s,{}lv,{}v,{}ifail)} returns estimates of elements of the variance matrix of the estimated regression coefficients for a nonlinear least squares problem. The estimates are derived from the Jacobian of the function \\spad{f}(\\spad{x}) at the solution. See \\downlink{Manual Page}{manpageXXe04ycf}.")) (|e04ucf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Boolean|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp55| CONFUN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04ucf(n,{}nclin,{}ncnln,{}nrowa,{}nrowj,{}nrowr,{}a,{}bl,{}bu,{}liwork,{}lwork,{}sta,{}cra,{}der,{}fea,{}fun,{}hes,{}infb,{}infs,{}linf,{}lint,{}list,{}maji,{}majp,{}mini,{}minp,{}mon,{}nonf,{}opt,{}ste,{}stao,{}stac,{}stoo,{}stoc,{}ve,{}istate,{}cjac,{}clamda,{}r,{}x,{}ifail,{}confun,{}objfun)} is designed to minimize an arbitrary smooth function subject to constraints on the variables,{} linear constraints. (E04UCF may be used for unconstrained,{} bound-constrained and linearly constrained optimization.) The user must provide subroutines that define the objective and constraint functions and as many of their first partial derivatives as possible. Unspecified derivatives are approximated by finite differences. All matrices are treated as dense,{} and hence E04UCF is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04ucf}.")) (|e04naf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Boolean|) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp20| QPHESS)))) "\\spad{e04naf(itmax,{}msglvl,{}n,{}nclin,{}nctotl,{}nrowa,{}nrowh,{}ncolh,{}bigbnd,{}a,{}bl,{}bu,{}cvec,{}featol,{}hess,{}cold,{}lpp,{}orthog,{}liwork,{}lwork,{}x,{}istate,{}ifail,{}qphess)} is a comprehensive programming (\\spad{QP}) or linear programming (\\spad{LP}) problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04naf}.")) (|e04mbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04mbf(itmax,{}msglvl,{}n,{}nclin,{}nctotl,{}nrowa,{}a,{}bl,{}bu,{}cvec,{}linobj,{}liwork,{}lwork,{}x,{}ifail)} is an easy-to-use routine for solving linear programming problems,{} or for finding a feasible point for such problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04mbf}.")) (|e04jaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp24| FUNCT1)))) "\\spad{e04jaf(n,{}ibound,{}liw,{}lw,{}bl,{}bu,{}x,{}ifail,{}funct1)} is an easy-to-use quasi-Newton algorithm for finding a minimum of a function \\spad{F}(\\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ),{} subject to fixed upper and \\indented{25}{1\\space{2}2\\space{6}\\spad{n}} lower bounds of the independent variables \\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ,{} using \\indented{43}{1\\space{2}2\\space{6}\\spad{n}} function values only. See \\downlink{Manual Page}{manpageXXe04jaf}.")) (|e04gcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp19| LSFUN2)))) "\\spad{e04gcf(m,{}n,{}liw,{}lw,{}x,{}ifail,{}lsfun2)} is an easy-to-use quasi-Newton algorithm for finding an unconstrained minimum of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). First derivatives are required. See \\downlink{Manual Page}{manpageXXe04gcf}.")) (|e04fdf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp50| LSFUN1)))) "\\spad{e04fdf(m,{}n,{}liw,{}lw,{}x,{}ifail,{}lsfun1)} is an easy-to-use algorithm for finding an unconstrained minimum of a sum of squares of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). No derivatives are required. See \\downlink{Manual Page}{manpageXXe04fdf}.")) (|e04dgf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04dgf(n,{}es,{}fu,{}it,{}lin,{}list,{}ma,{}op,{}pr,{}sta,{}sto,{}ve,{}x,{}ifail,{}objfun)} minimizes an unconstrained nonlinear function of several variables using a pre-conditioned,{} limited memory quasi-Newton conjugate gradient method. First derivatives are required. The routine is intended for use on large scale problems. See \\downlink{Manual Page}{manpageXXe04dgf}.")))
NIL
NIL
-(-690)
+(-691)
((|constructor| (NIL "This package uses the NAG Library to provide facilities for matrix factorizations and associated transformations. See \\downlink{Manual Page}{manpageXXf01}.")) (|f01ref| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01ref(wheret,{}m,{}n,{}ncolq,{}lda,{}theta,{}a,{}ifail)} returns the first \\spad{ncolq} columns of the complex \\spad{m} by \\spad{m} unitary matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01ref}.")) (|f01rdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rdf(trans,{}wheret,{}m,{}n,{}a,{}lda,{}theta,{}ncolb,{}ldb,{}b,{}ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01rdf}.")) (|f01rcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rcf(m,{}n,{}lda,{}a,{}ifail)} finds the \\spad{QR} factorization of the complex \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01rcf}.")) (|f01qef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qef(wheret,{}m,{}n,{}ncolq,{}lda,{}zeta,{}a,{}ifail)} returns the first \\spad{ncolq} columns of the real \\spad{m} by \\spad{m} orthogonal matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01qef}.")) (|f01qdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qdf(trans,{}wheret,{}m,{}n,{}a,{}lda,{}zeta,{}ncolb,{}ldb,{}b,{}ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01qdf}.")) (|f01qcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qcf(m,{}n,{}lda,{}a,{}ifail)} finds the \\spad{QR} factorization of the real \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01qcf}.")) (|f01mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01mcf(n,{}avals,{}lal,{}nrow,{}ifail)} computes the Cholesky factorization of a real symmetric positive-definite variable-bandwidth matrix. See \\downlink{Manual Page}{manpageXXf01mcf}.")) (|f01maf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{f01maf(n,{}nz,{}licn,{}lirn,{}abort,{}avals,{}irn,{}icn,{}droptl,{}densw,{}ifail)} computes an incomplete Cholesky factorization of a real sparse symmetric positive-definite matrix A. See \\downlink{Manual Page}{manpageXXf01maf}.")) (|f01bsf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Boolean|) (|DoubleFloat|) (|Boolean|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01bsf(n,{}nz,{}licn,{}ivect,{}jvect,{}icn,{}ikeep,{}grow,{}eta,{}abort,{}idisp,{}avals,{}ifail)} factorizes a real sparse matrix using the pivotal sequence previously obtained by F01BRF when a matrix of the same sparsity pattern was factorized. See \\downlink{Manual Page}{manpageXXf01bsf}.")) (|f01brf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Boolean|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01brf(n,{}nz,{}licn,{}lirn,{}pivot,{}lblock,{}grow,{}abort,{}a,{}irn,{}icn,{}ifail)} factorizes a real sparse matrix. The routine either forms the LU factorization of a permutation of the entire matrix,{} or,{} optionally,{} first permutes the matrix to block lower triangular form and then only factorizes the diagonal blocks. See \\downlink{Manual Page}{manpageXXf01brf}.")))
NIL
NIL
-(-691)
+(-692)
((|constructor| (NIL "This package uses the NAG Library to compute \\begin{items} \\item eigenvalues and eigenvectors of a matrix \\item eigenvalues and eigenvectors of generalized matrix eigenvalue problems \\item singular values and singular vectors of a matrix. \\end{items} See \\downlink{Manual Page}{manpageXXf02}.")) (|f02xef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f02xef(m,{}n,{}lda,{}ncolb,{}ldb,{}wantq,{}ldq,{}wantp,{}ldph,{}a,{}b,{}ifail)} returns all,{} or part,{} of the singular value decomposition of a general complex matrix. See \\downlink{Manual Page}{manpageXXf02xef}.")) (|f02wef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02wef(m,{}n,{}lda,{}ncolb,{}ldb,{}wantq,{}ldq,{}wantp,{}ldpt,{}a,{}b,{}ifail)} returns all,{} or part,{} of the singular value decomposition of a general real matrix. See \\downlink{Manual Page}{manpageXXf02wef}.")) (|f02fjf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE))) (|FileName|)) "\\spad{f02fjf(n,{}k,{}tol,{}novecs,{}nrx,{}lwork,{}lrwork,{}liwork,{}m,{}noits,{}x,{}ifail,{}dot,{}image,{}monit)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.") (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE)))) "\\spad{f02fjf(n,{}k,{}tol,{}novecs,{}nrx,{}lwork,{}lrwork,{}liwork,{}m,{}noits,{}x,{}ifail,{}dot,{}image)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.")) (|f02bjf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bjf(n,{}ia,{}ib,{}eps1,{}matv,{}iv,{}a,{}b,{}ifail)} calculates all the eigenvalues and,{} if required,{} all the eigenvectors of the generalized eigenproblem Ax=(lambda)\\spad{Bx} where A and \\spad{B} are real,{} square matrices,{} using the \\spad{QZ} algorithm. See \\downlink{Manual Page}{manpageXXf02bjf}.")) (|f02bbf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bbf(ia,{}n,{}alb,{}ub,{}m,{}iv,{}a,{}ifail)} calculates selected eigenvalues of a real symmetric matrix by reduction to tridiagonal form,{} bisection and inverse iteration,{} where the selected eigenvalues lie within a given interval. See \\downlink{Manual Page}{manpageXXf02bbf}.")) (|f02axf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02axf(ar,{}iar,{}\\spad{ai},{}iai,{}n,{}ivr,{}ivi,{}ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02axf}.")) (|f02awf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02awf(iar,{}iai,{}n,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02awf}.")) (|f02akf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02akf(iar,{}iai,{}n,{}ivr,{}ivi,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalues of a complex matrix. See \\downlink{Manual Page}{manpageXXf02akf}.")) (|f02ajf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02ajf(iar,{}iai,{}n,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02ajf}.")) (|f02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02agf(ia,{}n,{}ivr,{}ivi,{}a,{}ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02agf}.")) (|f02aff| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aff(ia,{}n,{}a,{}ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02aff}.")) (|f02aef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aef(ia,{}ib,{}n,{}iv,{}a,{}b,{}ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf02aef}.")) (|f02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02adf(ia,{}ib,{}n,{}a,{}b,{}ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive- definite matrix. See \\downlink{Manual Page}{manpageXXf02adf}.")) (|f02abf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02abf(a,{}ia,{}n,{}iv,{}ifail)} calculates all the eigenvalues of a real symmetric matrix. See \\downlink{Manual Page}{manpageXXf02abf}.")) (|f02aaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aaf(ia,{}n,{}a,{}ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02aaf}.")))
NIL
NIL
-(-692)
+(-693)
((|constructor| (NIL "This package uses the NAG Library to solve the matrix equation \\axiom{AX=B},{} where \\axiom{\\spad{B}} may be a single vector or a matrix of multiple right-hand sides. The matrix \\axiom{A} may be real,{} complex,{} symmetric,{} Hermitian positive- definite,{} or sparse. It may also be rectangular,{} in which case a least-squares solution is obtained. See \\downlink{Manual Page}{manpageXXf04}.")) (|f04qaf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp30| APROD)))) "\\spad{f04qaf(m,{}n,{}damp,{}atol,{}btol,{}conlim,{}itnlim,{}msglvl,{}lrwork,{}liwork,{}b,{}ifail,{}aprod)} solves sparse unsymmetric equations,{} sparse linear least- squares problems and sparse damped linear least-squares problems,{} using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04qaf}.")) (|f04mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04mcf(n,{}al,{}lal,{}d,{}nrow,{}ir,{}b,{}nrb,{}iselct,{}nrx,{}ifail)} computes the approximate solution of a system of real linear equations with multiple right-hand sides,{} AX=B,{} where A is a symmetric positive-definite variable-bandwidth matrix,{} which has previously been factorized by F01MCF. Related systems may also be solved. See \\downlink{Manual Page}{manpageXXf04mcf}.")) (|f04mbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| APROD))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp34| MSOLVE)))) "\\spad{f04mbf(n,{}b,{}precon,{}shift,{}itnlim,{}msglvl,{}lrwork,{}liwork,{}rtol,{}ifail,{}aprod,{}msolve)} solves a system of real sparse symmetric linear equations using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04mbf}.")) (|f04maf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f04maf(n,{}nz,{}avals,{}licn,{}irn,{}lirn,{}icn,{}wkeep,{}ikeep,{}inform,{}b,{}acc,{}noits,{}ifail)} \\spad{e} a sparse symmetric positive-definite system of linear equations,{} Ax=b,{} using a pre-conditioned conjugate gradient method,{} where A has been factorized by F01MAF. See \\downlink{Manual Page}{manpageXXf04maf}.")) (|f04jgf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04jgf(m,{}n,{}nra,{}tol,{}lwork,{}a,{}b,{}ifail)} finds the solution of a linear least-squares problem,{} Ax=b ,{} where A is a real \\spad{m} by \\spad{n} (m>=n) matrix and \\spad{b} is an \\spad{m} element vector. If the matrix of observations is not of full rank,{} then the minimal least-squares solution is returned. See \\downlink{Manual Page}{manpageXXf04jgf}.")) (|f04faf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04faf(job,{}n,{}d,{}e,{}b,{}ifail)} calculates the approximate solution of a set of real symmetric positive-definite tridiagonal linear equations. See \\downlink{Manual Page}{manpageXXf04faf}.")) (|f04axf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|))) "\\spad{f04axf(n,{}a,{}licn,{}icn,{}ikeep,{}mtype,{}idisp,{}rhs)} calculates the approximate solution of a set of real sparse linear equations with a single right-hand side,{} Ax=b or \\indented{1}{\\spad{T}} A \\spad{x=b},{} where A has been factorized by F01BRF or F01BSF. See \\downlink{Manual Page}{manpageXXf04axf}.")) (|f04atf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04atf(a,{}ia,{}b,{}n,{}iaa,{}ifail)} calculates the accurate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting,{} and iterative refinement. See \\downlink{Manual Page}{manpageXXf04atf}.")) (|f04asf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04asf(ia,{}b,{}n,{}a,{}ifail)} calculates the accurate solution of a set of real symmetric positive-definite linear equations with a single right- hand side,{} Ax=b,{} using a Cholesky factorization and iterative refinement. See \\downlink{Manual Page}{manpageXXf04asf}.")) (|f04arf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04arf(ia,{}b,{}n,{}a,{}ifail)} calculates the approximate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04arf}.")) (|f04adf| (((|Result|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f04adf(ia,{}b,{}ib,{}n,{}m,{}ic,{}a,{}ifail)} calculates the approximate solution of a set of complex linear equations with multiple right-hand sides,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04adf}.")))
NIL
NIL
-(-693)
+(-694)
((|constructor| (NIL "This package uses the NAG Library to compute matrix factorizations,{} and to solve systems of linear equations following the matrix factorizations. See \\downlink{Manual Page}{manpageXXf07}.")) (|f07fef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fef(uplo,{}n,{}nrhs,{}a,{}lda,{}ldb,{}b)} (DPOTRS) solves a real symmetric positive-definite system of linear equations with multiple right-hand sides,{} AX=B,{} where A has been factorized by F07FDF (DPOTRF). See \\downlink{Manual Page}{manpageXXf07fef}.")) (|f07fdf| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fdf(uplo,{}n,{}lda,{}a)} (DPOTRF) computes the Cholesky factorization of a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf07fdf}.")) (|f07aef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07aef(trans,{}n,{}nrhs,{}a,{}lda,{}ipiv,{}ldb,{}b)} (DGETRS) solves a real system of linear equations with \\indented{36}{\\spad{T}} multiple right-hand sides,{} AX=B or A \\spad{X=B},{} where A has been factorized by F07ADF (DGETRF). See \\downlink{Manual Page}{manpageXXf07aef}.")) (|f07adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07adf(m,{}n,{}lda,{}a)} (DGETRF) computes the LU factorization of a real \\spad{m} by \\spad{n} matrix. See \\downlink{Manual Page}{manpageXXf07adf}.")))
NIL
NIL
-(-694)
+(-695)
((|constructor| (NIL "This package uses the NAG Library to compute some commonly occurring physical and mathematical functions. See \\downlink{Manual Page}{manpageXXs}.")) (|s21bdf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bdf(x,{}y,{}z,{}r,{}ifail)} returns a value of the symmetrised elliptic integral of the third kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bdf}.")) (|s21bcf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bcf(x,{}y,{}z,{}ifail)} returns a value of the symmetrised elliptic integral of the second kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bcf}.")) (|s21bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bbf(x,{}y,{}z,{}ifail)} returns a value of the symmetrised elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bbf}.")) (|s21baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21baf(x,{}y,{}ifail)} returns a value of an elementary integral,{} which occurs as a degenerate case of an elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21baf}.")) (|s20adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20adf(x,{}ifail)} returns a value for the Fresnel Integral \\spad{C}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20adf}.")) (|s20acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20acf(x,{}ifail)} returns a value for the Fresnel Integral \\spad{S}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20acf}.")) (|s19adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19adf(x,{}ifail)} returns a value for the Kelvin function kei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19adf}.")) (|s19acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19acf(x,{}ifail)} returns a value for the Kelvin function ker(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs19acf}.")) (|s19abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19abf(x,{}ifail)} returns a value for the Kelvin function bei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19abf}.")) (|s19aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19aaf(x,{}ifail)} returns a value for the Kelvin function ber(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19aaf}.")) (|s18def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18def(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{I}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18def}.")) (|s18dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18dcf(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{K}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18dcf}.")) (|s18aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aff(x,{}ifail)} returns a value for the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18aff}.")) (|s18aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aef(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18aef}.")) (|s18adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18adf(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18adf}.")) (|s18acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18acf(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18acf}.")) (|s17dlf| (((|Result|) (|Integer|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dlf(m,{}fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Hankel functions \\indented{2}{(1)\\space{11}(2)} \\indented{1}{\\spad{H}\\space{6}(\\spad{z}) or \\spad{H}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}\\space{8}(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dlf}.")) (|s17dhf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dhf(deriv,{}z,{}scale,{}ifail)} returns the value of the Airy function \\spad{Bi}(\\spad{z}) or its derivative Bi'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dhf}.")) (|s17dgf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dgf(deriv,{}z,{}scale,{}ifail)} returns the value of the Airy function \\spad{Ai}(\\spad{z}) or its derivative Ai'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dgf}.")) (|s17def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17def(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{J}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17def}.")) (|s17dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dcf(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{Y}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dcf}.")) (|s17akf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17akf(x,{}ifail)} returns a value for the derivative of the Airy function \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17akf}.")) (|s17ajf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ajf(x,{}ifail)} returns a value of the derivative of the Airy function \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ajf}.")) (|s17ahf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ahf(x,{}ifail)} returns a value of the Airy function,{} \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ahf}.")) (|s17agf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17agf(x,{}ifail)} returns a value for the Airy function,{} \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17agf}.")) (|s17aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aff(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17aff}.")) (|s17aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aef(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17aef}.")) (|s17adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17adf(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17adf}.")) (|s17acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17acf(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17acf}.")) (|s15aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15aef(x,{}ifail)} returns the value of the error function erf(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15aef}.")) (|s15adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15adf(x,{}ifail)} returns the value of the complementary error function,{} erfc(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15adf}.")) (|s14baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s14baf(a,{}x,{}tol,{}ifail)} computes values for the incomplete gamma functions \\spad{P}(a,{}\\spad{x}) and \\spad{Q}(a,{}\\spad{x}). See \\downlink{Manual Page}{manpageXXs14baf}.")) (|s14abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14abf(x,{}ifail)} returns a value for the log,{} \\spad{ln}(Gamma(\\spad{x})),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14abf}.")) (|s14aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14aaf(x,{}ifail)} returns the value of the Gamma function (Gamma)(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14aaf}.")) (|s13adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13adf(x,{}ifail)} returns the value of the sine integral See \\downlink{Manual Page}{manpageXXs13adf}.")) (|s13acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13acf(x,{}ifail)} returns the value of the cosine integral See \\downlink{Manual Page}{manpageXXs13acf}.")) (|s13aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13aaf(x,{}ifail)} returns the value of the exponential integral \\indented{1}{\\spad{E} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs13aaf}.")) (|s01eaf| (((|Result|) (|Complex| (|DoubleFloat|)) (|Integer|)) "\\spad{s01eaf(z,{}ifail)} S01EAF evaluates the exponential function exp(\\spad{z}) ,{} for complex \\spad{z}. See \\downlink{Manual Page}{manpageXXs01eaf}.")))
NIL
NIL
-(-695)
+(-696)
((|constructor| (NIL "Support functions for the NAG Library Link functions")) (|restorePrecision| (((|Void|)) "\\spad{restorePrecision()} \\undocumented{}")) (|checkPrecision| (((|Boolean|)) "\\spad{checkPrecision()} \\undocumented{}")) (|dimensionsOf| (((|SExpression|) (|Symbol|) (|Matrix| (|Integer|))) "\\spad{dimensionsOf(s,{}m)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|Matrix| (|DoubleFloat|))) "\\spad{dimensionsOf(s,{}m)} \\undocumented{}")) (|aspFilename| (((|String|) (|String|)) "\\spad{aspFilename(\"f\")} returns a String consisting of \\spad{\"f\"} suffixed with \\indented{1}{an extension identifying the current AXIOM session.}")) (|fortranLinkerArgs| (((|String|)) "\\spad{fortranLinkerArgs()} returns the current linker arguments")) (|fortranCompilerName| (((|String|)) "\\spad{fortranCompilerName()} returns the name of the currently selected \\indented{1}{Fortran compiler}")))
NIL
NIL
-(-696 S)
+(-697 S)
((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,{}b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,{}b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,{}b,{}c)} returns \\spad{(a*b)*c-a*(b*c)}.")))
NIL
NIL
-(-697)
+(-698)
((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,{}b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,{}b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,{}b,{}c)} returns \\spad{(a*b)*c-a*(b*c)}.")))
NIL
NIL
-(-698 S)
+(-699 S)
((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring.")))
NIL
NIL
-(-699)
+(-700)
((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring.")))
NIL
NIL
-(-700 |Par|)
+(-701 |Par|)
((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,{}eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable.")))
NIL
NIL
-(-701 -4045)
+(-702 -4049)
((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction.")))
NIL
NIL
-(-702 P -4045)
+(-703 P -4049)
((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")))
NIL
NIL
-(-703 UP -4045)
+(-704 UP -4049)
((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}.")))
NIL
NIL
-(-704)
+(-705)
((|retract| (((|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-705 R)
+(-706 R)
((|constructor| (NIL "NonLinearSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving. The solutions are given in the algebraic closure of \\spad{R} whenever possible.")) (|solve| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solve(lp)} finds the solution in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solve(lp,{}lv)} finds the solutions in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")) (|solveInField| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solveInField(lp)} finds the solution of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solveInField(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")))
NIL
NIL
-(-706)
+(-707)
((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,{}b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder.")))
-(((-4231 "*") . T))
+(((-4235 "*") . T))
NIL
-(-707 R -4045)
+(-708 R -4049)
((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,{}y),{} N(x,{}y),{} y,{} x)} returns \\spad{F(x,{}y)} such that \\spad{F(x,{}y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,{}y) dx + N(x,{}y) dy = 0},{} or \"failed\" if no first-integral can be found.")))
NIL
NIL
-(-708 S)
+(-709 S)
((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}.")))
NIL
NIL
-(-709)
+(-710)
((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (\\spadignore{e.g.} the interpreter and some of the internal \\spadtype{Expression} code).")))
NIL
NIL
-(-710 R |PolR| E |PolE|)
+(-711 R |PolR| E |PolE|)
((|constructor| (NIL "This package implements the norm of a polynomial with coefficients in a monogenic algebra (using resultants)")) (|norm| ((|#2| |#4|) "\\spad{norm q} returns the norm of \\spad{q},{} \\spadignore{i.e.} the product of all the conjugates of \\spad{q}.")))
NIL
NIL
-(-711 R E V P TS)
+(-712 R E V P TS)
((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")))
NIL
NIL
-(-712 -4045 |ExtF| |SUEx| |ExtP| |n|)
+(-713 -4049 |ExtF| |SUEx| |ExtP| |n|)
((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented")))
NIL
NIL
-(-713 BP E OV R P)
+(-714 BP E OV R P)
((|constructor| (NIL "Package for the determination of the coefficients in the lifting process. Used by \\spadtype{MultivariateLifting}. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|listexp| (((|List| (|NonNegativeInteger|)) |#1|) "\\spad{listexp }\\undocumented")) (|npcoef| (((|Record| (|:| |deter| (|List| (|SparseUnivariatePolynomial| |#5|))) (|:| |dterm| (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (|List| |#1|)) (|:| |nlead| (|List| |#5|))) (|SparseUnivariatePolynomial| |#5|) (|List| |#1|) (|List| |#5|)) "\\spad{npcoef }\\undocumented")))
NIL
NIL
-(-714 |Par|)
+(-715 |Par|)
((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the Rational Numbers. The results are expressed as floating numbers or as rational numbers depending on the type of the parameter Par.")) (|realEigenvectors| (((|List| (|Record| (|:| |outval| |#1|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#1|))))) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvectors(m,{}eps)} returns a list of records each one containing a real eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} as floats or rational numbers depending on the type of \\spad{eps} .")) (|realEigenvalues| (((|List| |#1|) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as floats or rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with variable \\spad{x}. Fraction \\spad{P} \\spad{RN}.") (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|)))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with a new symbol as variable.")))
NIL
NIL
-(-715 R |VarSet|)
+(-716 R |VarSet|)
((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor.")))
-(((-4231 "*") |has| |#1| (-157)) (-4222 |has| |#1| (-512)) (-4227 |has| |#1| (-6 -4227)) (-4224 . T) (-4223 . T) (-4226 . T))
-((|HasCategory| |#1| (QUOTE (-837))) (|HasCategory| |#1| (QUOTE (-512))) (|HasCategory| |#1| (QUOTE (-157))) (-3700 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-512)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -814) (QUOTE (-352)))) (|HasCategory| |#2| (LIST (QUOTE -814) (QUOTE (-352))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -814) (QUOTE (-520)))) (|HasCategory| |#2| (LIST (QUOTE -814) (QUOTE (-520))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-352))))) (|HasCategory| |#2| (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-352)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-520))))) (|HasCategory| |#2| (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-520)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-496))))) (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#1| (LIST (QUOTE -582) (QUOTE (-520)))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#1| (LIST (QUOTE -960) (QUOTE (-520)))) (|HasCategory| |#1| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-1083)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -960) (QUOTE (-520)))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-1083))))) (|HasCategory| |#1| (QUOTE (-336))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-1083))))) (-3700 (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-520)))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-1083)))) (-2399 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-1083)))))) (-3700 (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-520)))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-1083)))) (-2399 (|HasCategory| |#1| (QUOTE (-505)))) (-2399 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-1083)))) (-2399 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-520))))) (-2399 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-1083)))) (-2399 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-520))))))) (-3700 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#1| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520)))))) (|HasAttribute| |#1| (QUOTE -4227)) (|HasCategory| |#1| (QUOTE (-424))) (-3700 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-424))) (|HasCategory| |#1| (QUOTE (-512))) (|HasCategory| |#1| (QUOTE (-837)))) (-3700 (|HasCategory| |#1| (QUOTE (-424))) (|HasCategory| |#1| (QUOTE (-512))) (|HasCategory| |#1| (QUOTE (-837)))) (-3700 (|HasCategory| |#1| (QUOTE (-424))) (|HasCategory| |#1| (QUOTE (-837)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-837)))) (-3700 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-837)))) (|HasCategory| |#1| (QUOTE (-133)))))
-(-716 R S)
+(((-4235 "*") |has| |#1| (-157)) (-4226 |has| |#1| (-513)) (-4231 |has| |#1| (-6 -4231)) (-4228 . T) (-4227 . T) (-4230 . T))
+((|HasCategory| |#1| (QUOTE (-838))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-157))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-513)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-353)))) (|HasCategory| |#2| (LIST (QUOTE -815) (QUOTE (-353))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -815) (QUOTE (-521))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-353))))) (|HasCategory| |#2| (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-353)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-521))))) (|HasCategory| |#2| (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-521)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-497))))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-1084)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-1084))))) (|HasCategory| |#1| (QUOTE (-337))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-1084))))) (-3703 (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-1084)))) (-2400 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-1084)))))) (-3703 (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-1084)))) (-2400 (|HasCategory| |#1| (QUOTE (-506)))) (-2400 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-1084)))) (-2400 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-521))))) (-2400 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-1084)))) (-2400 (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-521))))))) (-3703 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521)))))) (|HasAttribute| |#1| (QUOTE -4231)) (|HasCategory| |#1| (QUOTE (-425))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-425))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-838)))) (-3703 (|HasCategory| |#1| (QUOTE (-425))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-838)))) (-3703 (|HasCategory| |#1| (QUOTE (-425))) (|HasCategory| |#1| (QUOTE (-838)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-838)))) (-3703 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (QUOTE (-133)))))
+(-717 R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-717 R)
-((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}")))
-(((-4231 "*") |has| |#1| (-157)) (-4222 |has| |#1| (-512)) (-4225 |has| |#1| (-336)) (-4227 |has| |#1| (-6 -4227)) (-4224 . T) (-4223 . T) (-4226 . T))
-((|HasCategory| |#1| (QUOTE (-837))) (|HasCategory| |#1| (QUOTE (-512))) (|HasCategory| |#1| (QUOTE (-157))) (-3700 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-512)))) (-12 (|HasCategory| (-997) (LIST (QUOTE -814) (QUOTE (-352)))) (|HasCategory| |#1| (LIST (QUOTE -814) (QUOTE (-352))))) (-12 (|HasCategory| (-997) (LIST (QUOTE -814) (QUOTE (-520)))) (|HasCategory| |#1| (LIST (QUOTE -814) (QUOTE (-520))))) (-12 (|HasCategory| (-997) (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-352))))) (|HasCategory| |#1| (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-352)))))) (-12 (|HasCategory| (-997) (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-520))))) (|HasCategory| |#1| (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-520)))))) (-12 (|HasCategory| (-997) (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-496))))) (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#1| (LIST (QUOTE -582) (QUOTE (-520)))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#1| (LIST (QUOTE -960) (QUOTE (-520)))) (|HasCategory| |#1| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (QUOTE (-1059))) (|HasCategory| |#1| (LIST (QUOTE -828) (QUOTE (-1083)))) (-3700 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#1| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520)))))) (|HasCategory| |#1| (QUOTE (-209))) (|HasAttribute| |#1| (QUOTE -4227)) (|HasCategory| |#1| (QUOTE (-424))) (-3700 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (QUOTE (-424))) (|HasCategory| |#1| (QUOTE (-512))) (|HasCategory| |#1| (QUOTE (-837)))) (-3700 (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (QUOTE (-424))) (|HasCategory| |#1| (QUOTE (-512))) (|HasCategory| |#1| (QUOTE (-837)))) (-3700 (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (QUOTE (-424))) (|HasCategory| |#1| (QUOTE (-837)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-837)))) (-3700 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-837)))) (|HasCategory| |#1| (QUOTE (-133)))))
(-718 R)
+((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}")))
+(((-4235 "*") |has| |#1| (-157)) (-4226 |has| |#1| (-513)) (-4229 |has| |#1| (-337)) (-4231 |has| |#1| (-6 -4231)) (-4228 . T) (-4227 . T) (-4230 . T))
+((|HasCategory| |#1| (QUOTE (-838))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-157))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-513)))) (-12 (|HasCategory| (-998) (LIST (QUOTE -815) (QUOTE (-353)))) (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-353))))) (-12 (|HasCategory| (-998) (LIST (QUOTE -815) (QUOTE (-521)))) (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-521))))) (-12 (|HasCategory| (-998) (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-353))))) (|HasCategory| |#1| (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-353)))))) (-12 (|HasCategory| (-998) (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-521)))))) (-12 (|HasCategory| (-998) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-497))))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-1060))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1084)))) (-3703 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521)))))) (|HasCategory| |#1| (QUOTE (-210))) (|HasAttribute| |#1| (QUOTE -4231)) (|HasCategory| |#1| (QUOTE (-425))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-425))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-838)))) (-3703 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-425))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-838)))) (-3703 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-425))) (|HasCategory| |#1| (QUOTE (-838)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-838)))) (-3703 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (QUOTE (-133)))))
+(-719 R)
((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,{}r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,{}r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,{}r)} \\undocumented")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520))))))
-(-719 R E V P)
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))))
+(-720 R E V P)
((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,{}v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,{}v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,{}mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")))
-((-4230 . T) (-4229 . T) (-2046 . T))
+((-4234 . T) (-4233 . T) (-2046 . T))
NIL
-(-720 S)
+(-721 S)
((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-512))) (-12 (|HasCategory| |#1| (QUOTE (-512))) (|HasCategory| |#1| (QUOTE (-783)))) (|HasCategory| |#1| (QUOTE (-969))) (|HasCategory| |#1| (QUOTE (-157))))
-(-721)
+((|HasCategory| |#1| (QUOTE (-513))) (-12 (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-784)))) (|HasCategory| |#1| (QUOTE (-970))) (|HasCategory| |#1| (QUOTE (-157))))
+(-722)
((|constructor| (NIL "NumberFormats provides function to format and read arabic and roman numbers,{} to convert numbers to strings and to read floating-point numbers.")) (|ScanFloatIgnoreSpacesIfCan| (((|Union| (|Float|) "failed") (|String|)) "\\spad{ScanFloatIgnoreSpacesIfCan(s)} tries to form a floating point number from the string \\spad{s} ignoring any spaces.")) (|ScanFloatIgnoreSpaces| (((|Float|) (|String|)) "\\spad{ScanFloatIgnoreSpaces(s)} forms a floating point number from the string \\spad{s} ignoring any spaces. Error is generated if the string is not recognised as a floating point number.")) (|ScanRoman| (((|PositiveInteger|) (|String|)) "\\spad{ScanRoman(s)} forms an integer from a Roman numeral string \\spad{s}.")) (|FormatRoman| (((|String|) (|PositiveInteger|)) "\\spad{FormatRoman(n)} forms a Roman numeral string from an integer \\spad{n}.")) (|ScanArabic| (((|PositiveInteger|) (|String|)) "\\spad{ScanArabic(s)} forms an integer from an Arabic numeral string \\spad{s}.")) (|FormatArabic| (((|String|) (|PositiveInteger|)) "\\spad{FormatArabic(n)} forms an Arabic numeral string from an integer \\spad{n}.")))
NIL
NIL
-(-722)
+(-723)
((|numericalIntegration| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,{}hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,{}hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-723)
+(-724)
((|constructor| (NIL "This package is a suite of functions for the numerical integration of an ordinary differential equation of \\spad{n} variables: \\blankline \\indented{8}{\\center{dy/dx = \\spad{f}(\\spad{y},{}\\spad{x})\\space{5}\\spad{y} is an \\spad{n}-vector}} \\blankline \\par All the routines are based on a 4-th order Runge-Kutta kernel. These routines generally have as arguments: \\spad{n},{} the number of dependent variables; \\spad{x1},{} the initial point; \\spad{h},{} the step size; \\spad{y},{} a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h}; \\spad{derivs},{} a function which computes the right hand side of the ordinary differential equation: \\spad{derivs(dydx,{}y,{}x)} computes \\spad{dydx},{} a vector which contains the derivative information. \\blankline \\par In order of increasing complexity:\\begin{items} \\blankline \\item \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} advances the solution vector to \\spad{x1 + h} and return the values in \\spad{y}. \\blankline \\item \\spad{rk4(y,{}n,{}x1,{}h,{}derivs,{}t1,{}t2,{}t3,{}t4)} is the same as \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. \\blankline \\item Starting with \\spad{y} at \\spad{x1},{} \\spad{rk4f(y,{}n,{}x1,{}x2,{}ns,{}derivs)} uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. Argument \\spad{x2},{} is the final point,{} and \\spad{ns},{} the number of steps to take. \\blankline \\item \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} takes a 5-th order Runge-Kutta step with monitoring of local truncation to ensure accuracy and adjust stepsize. The function takes two half steps and one full step and scales the difference in solutions at the final point. If the error is within \\spad{eps},{} the step is taken and the result is returned. If the error is not within \\spad{eps},{} the stepsize if decreased and the procedure is tried again until the desired accuracy is reached. Upon input,{} an trial step size must be given and upon return,{} an estimate of the next step size to use is returned as well as the step size which produced the desired accuracy. The scaled error is computed as \\center{\\spad{error = MAX(ABS((y2steps(i) - y1step(i))/yscal(i)))}} and this is compared against \\spad{eps}. If this is greater than \\spad{eps},{} the step size is reduced accordingly to \\center{\\spad{hnew = 0.9 * hdid * (error/eps)**(-1/4)}} If the error criterion is satisfied,{} then we check if the step size was too fine and return a more efficient one. If \\spad{error > \\spad{eps} * (6.0E-04)} then the next step size should be \\center{\\spad{hnext = 0.9 * hdid * (error/\\spad{eps})\\spad{**}(-1/5)}} Otherwise \\spad{hnext = 4.0 * hdid} is returned. A more detailed discussion of this and related topics can be found in the book \"Numerical Recipies\" by \\spad{W}.Press,{} \\spad{B}.\\spad{P}. Flannery,{} \\spad{S}.A. Teukolsky,{} \\spad{W}.\\spad{T}. Vetterling published by Cambridge University Press. Argument \\spad{step} is a record of 3 floating point numbers \\spad{(try ,{} did ,{} next)},{} \\spad{eps} is the required accuracy,{} \\spad{yscal} is the scaling vector for the difference in solutions. On input,{} \\spad{step.try} should be the guess at a step size to achieve the accuracy. On output,{} \\spad{step.did} contains the step size which achieved the accuracy and \\spad{step.next} is the next step size to use. \\blankline \\item \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs,{}t1,{}t2,{}t3,{}t4,{}t5,{}t6,{}t7)} is the same as \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} except that the user must provide the 7 scratch arrays \\spad{t1-t7} of size \\spad{n}. \\blankline \\item \\spad{rk4a(y,{}n,{}x1,{}x2,{}eps,{}h,{}ns,{}derivs)} is a driver program which uses \\spad{rk4qc} to integrate \\spad{n} ordinary differential equations starting at \\spad{x1} to \\spad{x2},{} keeping the local truncation error to within \\spad{eps} by changing the local step size. The scaling vector is defined as \\center{\\spad{yscal(i) = abs(y(i)) + abs(h*dydx(i)) + tiny}} where \\spad{y(i)} is the solution at location \\spad{x},{} \\spad{dydx} is the ordinary differential equation\\spad{'s} right hand side,{} \\spad{h} is the current step size and \\spad{tiny} is 10 times the smallest positive number representable. The user must supply an estimate for a trial step size and the maximum number of calls to \\spad{rk4qc} to use. Argument \\spad{x2} is the final point,{} \\spad{eps} is local truncation,{} \\spad{ns} is the maximum number of call to \\spad{rk4qc} to use. \\end{items}")) (|rk4f| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4f(y,{}n,{}x1,{}x2,{}ns,{}derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Starting with \\spad{y} at \\spad{x1},{} this function uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4qc| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs,{}t1,{}t2,{}t3,{}t4,{}t5,{}t6,{}t7)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4a| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4a(y,{}n,{}x1,{}x2,{}eps,{}h,{}ns,{}derivs)} is a driver function for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4(y,{}n,{}x1,{}h,{}derivs,{}t1,{}t2,{}t3,{}t4)} is the same as \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Argument \\spad{y} is a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h},{} \\spad{n} is the number of dependent variables,{} \\spad{x1} is the initial point,{} \\spad{h} is the step size,{} and \\spad{derivs} is a function which computes the right hand side of the ordinary differential equation. For details,{} see \\spadtype{NumericalOrdinaryDifferentialEquations}.")))
NIL
NIL
-(-724)
+(-725)
((|constructor| (NIL "This suite of routines performs numerical quadrature using algorithms derived from the basic trapezoidal rule. Because the error term of this rule contains only even powers of the step size (for open and closed versions),{} fast convergence can be obtained if the integrand is sufficiently smooth. \\blankline Each routine returns a Record of type TrapAns,{} which contains\\indent{3} \\newline value (\\spadtype{Float}):\\tab{20} estimate of the integral \\newline error (\\spadtype{Float}):\\tab{20} estimate of the error in the computation \\newline totalpts (\\spadtype{Integer}):\\tab{20} total number of function evaluations \\newline success (\\spadtype{Boolean}):\\tab{20} if the integral was computed within the user specified error criterion \\indent{0}\\indent{0} To produce this estimate,{} each routine generates an internal sequence of sub-estimates,{} denoted by {\\em S(i)},{} depending on the routine,{} to which the various convergence criteria are applied. The user must supply a relative accuracy,{} \\spad{eps_r},{} and an absolute accuracy,{} \\spad{eps_a}. Convergence is obtained when either \\center{\\spad{ABS(S(i) - S(i-1)) < eps_r * ABS(S(i-1))}} \\center{or \\spad{ABS(S(i) - S(i-1)) < eps_a}} are \\spad{true} statements. \\blankline The routines come in three families and three flavors: \\newline\\tab{3} closed:\\tab{20}romberg,{}\\tab{30}simpson,{}\\tab{42}trapezoidal \\newline\\tab{3} open: \\tab{20}rombergo,{}\\tab{30}simpsono,{}\\tab{42}trapezoidalo \\newline\\tab{3} adaptive closed:\\tab{20}aromberg,{}\\tab{30}asimpson,{}\\tab{42}atrapezoidal \\par The {\\em S(i)} for the trapezoidal family is the value of the integral using an equally spaced absicca trapezoidal rule for that level of refinement. \\par The {\\em S(i)} for the simpson family is the value of the integral using an equally spaced absicca simpson rule for that level of refinement. \\par The {\\em S(i)} for the romberg family is the estimate of the integral using an equally spaced absicca romberg method. For the \\spad{i}\\spad{-}th level,{} this is an appropriate combination of all the previous trapezodial estimates so that the error term starts with the \\spad{2*(i+1)} power only. \\par The three families come in a closed version,{} where the formulas include the endpoints,{} an open version where the formulas do not include the endpoints and an adaptive version,{} where the user is required to input the number of subintervals over which the appropriate closed family integrator will apply with the usual convergence parmeters for each subinterval. This is useful where a large number of points are needed only in a small fraction of the entire domain. \\par Each routine takes as arguments: \\newline \\spad{f}\\tab{10} integrand \\newline a\\tab{10} starting point \\newline \\spad{b}\\tab{10} ending point \\newline \\spad{eps_r}\\tab{10} relative error \\newline \\spad{eps_a}\\tab{10} absolute error \\newline \\spad{nmin} \\tab{10} refinement level when to start checking for convergence (> 1) \\newline \\spad{nmax} \\tab{10} maximum level of refinement \\par The adaptive routines take as an additional parameter \\newline \\spad{nint}\\tab{10} the number of independent intervals to apply a closed \\indented{1}{family integrator of the same name.} \\par Notes: \\newline Closed family level \\spad{i} uses \\spad{1 + 2**i} points. \\newline Open family level \\spad{i} uses \\spad{1 + 3**i} points.")) (|trapezoidalo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidalo(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the trapezoidal method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpsono| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpsono(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|rombergo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{rombergo(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the romberg method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|trapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidal(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the trapezoidal method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpson(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|romberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{romberg(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the romberg method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|atrapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{atrapezoidal(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive trapezoidal method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|asimpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{asimpson(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive simpson method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|aromberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{aromberg(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive romberg method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")))
NIL
NIL
-(-725 |Curve|)
+(-726 |Curve|)
((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tube| (((|TubePlot| |#1|) |#1| (|DoubleFloat|) (|Integer|)) "\\spad{tube(c,{}r,{}n)} creates a tube of radius \\spad{r} around the curve \\spad{c}.")))
NIL
NIL
-(-726)
+(-727)
((|constructor| (NIL "Ordered sets which are also abelian groups,{} such that the addition preserves the ordering.")))
NIL
NIL
-(-727)
+(-728)
((|constructor| (NIL "Ordered sets which are also abelian monoids,{} such that the addition preserves the ordering.")))
NIL
NIL
-(-728)
+(-729)
((|constructor| (NIL "This domain is an OrderedAbelianMonoid with a \\spadfun{sup} operation added. The purpose of the \\spadfun{sup} operator in this domain is to act as a supremum with respect to the partial order imposed by \\spadop{-},{} rather than with respect to the total \\spad{>} order (since that is \"max\"). \\blankline")) (|sup| (($ $ $) "\\spad{sup(x,{}y)} returns the least element from which both \\spad{x} and \\spad{y} can be subtracted.")))
NIL
NIL
-(-729)
+(-730)
((|constructor| (NIL "Ordered sets which are also abelian semigroups,{} such that the addition preserves the ordering. \\indented{2}{\\spad{ x < y => x+z < y+z}}")))
NIL
NIL
-(-730)
+(-731)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `ObjectProperty' is a pair of name and value.")) (|property| (($ (|Symbol|) (|SExpression|)) "\\spad{property(n,{}val)} constructs a property with name \\spad{`n'} and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Symbol|) $) "\\spad{name(p)} returns the name of property \\spad{p}")))
NIL
NIL
-(-731)
+(-732)
((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering.")))
NIL
NIL
-(-732 S R)
+(-733 S R)
((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-336))) (|HasCategory| |#2| (QUOTE (-505))) (|HasCategory| |#2| (QUOTE (-978))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| |#2| (QUOTE (-783))) (|HasCategory| |#2| (QUOTE (-341))))
-(-733 R)
+((|HasCategory| |#2| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-506))) (|HasCategory| |#2| (QUOTE (-979))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-342))))
+(-734 R)
((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}.")))
-((-4223 . T) (-4224 . T) (-4226 . T))
+((-4227 . T) (-4228 . T) (-4230 . T))
NIL
-(-734 -3700 R OS S)
+(-735 -3703 R OS S)
((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}.")))
NIL
NIL
-(-735 R)
+(-736 R)
((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,{}qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}.")))
-((-4223 . T) (-4224 . T) (-4226 . T))
-((|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (LIST (QUOTE -481) (QUOTE (-1083)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -260) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-505))) (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| (-923 |#1|) (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| (-923 |#1|) (LIST (QUOTE -960) (QUOTE (-520)))) (|HasCategory| |#1| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (-3700 (|HasCategory| (-923 |#1|) (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#1| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520)))))) (|HasCategory| |#1| (LIST (QUOTE -960) (QUOTE (-520)))) (-3700 (|HasCategory| (-923 |#1|) (LIST (QUOTE -960) (QUOTE (-520)))) (|HasCategory| |#1| (LIST (QUOTE -960) (QUOTE (-520))))))
-(-736)
+((-4227 . T) (-4228 . T) (-4230 . T))
+((|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (LIST (QUOTE -482) (QUOTE (-1084)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -261) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-979))) (|HasCategory| |#1| (QUOTE (-506))) (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| (-924 |#1|) (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| (-924 |#1|) (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (-3703 (|HasCategory| (-924 |#1|) (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521)))))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521)))) (-3703 (|HasCategory| (-924 |#1|) (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521))))))
+(-737)
((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-737 R -4045 L)
+(-738 R -4049 L)
((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op,{} g,{} x)} returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{\\spad{yi}}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}.")))
NIL
NIL
-(-738 R -4045)
+(-739 R -4049)
((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m,{} x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m,{} v,{} x)} returns \\spad{[v_p,{} [v_1,{}...,{}v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.")))
NIL
NIL
-(-739)
+(-740)
((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions.")))
NIL
NIL
-(-740 R -4045)
+(-741 R -4049)
((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f,{} x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f,{} x)} returns the integral of \\spad{f} with respect to \\spad{x}.")))
NIL
NIL
-(-741)
+(-742)
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}epsabs,{}epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,{}R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.")))
NIL
NIL
-(-742 -4045 UP UPUP R)
+(-743 -4049 UP UPUP R)
((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation.")))
NIL
NIL
-(-743 -4045 UP L LQ)
+(-744 -4049 UP L LQ)
((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op,{} [g1,{}...,{}gm])} returns \\spad{op0,{} [h1,{}...,{}hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op,{} [g1,{}...,{}gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op,{} g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution.")))
NIL
NIL
-(-744)
+(-745)
((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-745 -4045 UP L LQ)
+(-746 -4049 UP L LQ)
((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} zeros,{} ezfactor)} returns \\spad{[[f1,{} L1],{} [f2,{} L2],{} ... ,{} [fk,{} Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z=0}. \\spad{zeros(C(x),{}H(x,{}y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,{}P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{} Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op,{} ric)} returns \\spad{[[a1,{} L1],{} [a2,{} L2],{} ... ,{} [ak,{} Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1,{} p1],{} [m2,{} p2],{} ... ,{} [mk,{} pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}.")))
NIL
NIL
-(-746 -4045 UP)
+(-747 -4049 UP)
((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.")))
NIL
NIL
-(-747 -4045 L UP A LO)
+(-748 -4049 L UP A LO)
((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op,{} g)} returns \\spad{[m,{} v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,{}...,{}z_m) . (b_1,{}...,{}b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}.")))
NIL
NIL
-(-748 -4045 UP)
+(-749 -4049 UP)
((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{}Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{\\spad{Li} z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} ezfactor)} returns \\spad{[[f1,{}L1],{} [f2,{}L2],{}...,{} [fk,{}Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-749 -4045 LO)
+(-750 -4049 LO)
((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m,{} v)} returns \\spad{[m_0,{} v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,{}v)} returns \\spad{A,{}[[C_1,{}g_1,{}L_1,{}h_1],{}...,{}[C_k,{}g_k,{}L_k,{}h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}.")))
NIL
NIL
-(-750 -4045 LODO)
+(-751 -4049 LODO)
((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op,{} g,{} [f1,{}...,{}fm],{} I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op,{} g,{} [f1,{}...,{}fm])} returns \\spad{[u1,{}...,{}um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,{}...,{}fn],{} q,{} D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,{}...,{}fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}.")))
NIL
NIL
-(-751 -2615 S |f|)
+(-752 -2617 S |f|)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4223 |has| |#2| (-969)) (-4224 |has| |#2| (-969)) (-4226 |has| |#2| (-6 -4226)) ((-4231 "*") |has| |#2| (-157)) (-4229 . T))
-((|HasCategory| |#2| (QUOTE (-336))) (|HasCategory| |#2| (QUOTE (-969))) (|HasCategory| |#2| (QUOTE (-728))) (|HasCategory| |#2| (QUOTE (-781))) (-3700 (|HasCategory| |#2| (QUOTE (-728))) (|HasCategory| |#2| (QUOTE (-781)))) (|HasCategory| |#2| (QUOTE (-157))) (-3700 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-336))) (|HasCategory| |#2| (QUOTE (-969)))) (-3700 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-336)))) (-3700 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-969)))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -582) (QUOTE (-520)))) (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasCategory| |#2| (QUOTE (-209))) (-3700 (|HasCategory| |#2| (LIST (QUOTE -582) (QUOTE (-520)))) (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-209))) (|HasCategory| |#2| (QUOTE (-336))) (|HasCategory| |#2| (QUOTE (-969)))) (-3700 (|HasCategory| |#2| (LIST (QUOTE -582) (QUOTE (-520)))) (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-209))) (|HasCategory| |#2| (QUOTE (-969)))) (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| (-520) (QUOTE (-783))) (-12 (|HasCategory| |#2| (QUOTE (-969))) (|HasCategory| |#2| (LIST (QUOTE -582) (QUOTE (-520))))) (-12 (|HasCategory| |#2| (QUOTE (-209))) (|HasCategory| |#2| (QUOTE (-969)))) (-12 (|HasCategory| |#2| (QUOTE (-969))) (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1083))))) (|HasCategory| |#2| (QUOTE (-662))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (LIST (QUOTE -960) (QUOTE (-520))))) (-3700 (|HasCategory| |#2| (QUOTE (-969))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (LIST (QUOTE -960) (QUOTE (-520)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#2| (QUOTE (-1012)))) (|HasAttribute| |#2| (QUOTE -4226)) (|HasCategory| |#2| (QUOTE (-124))) (-3700 (|HasCategory| |#2| (LIST (QUOTE -582) (QUOTE (-520)))) (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-209))) (|HasCategory| |#2| (QUOTE (-336))) (|HasCategory| |#2| (QUOTE (-969)))) (|HasCategory| |#2| (QUOTE (-25))) (-3700 (|HasCategory| |#2| (LIST (QUOTE -582) (QUOTE (-520)))) (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-209))) (|HasCategory| |#2| (QUOTE (-336))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-728))) (|HasCategory| |#2| (QUOTE (-781))) (|HasCategory| |#2| (QUOTE (-969))) (|HasCategory| |#2| (QUOTE (-1012)))) (-3700 (|HasCategory| |#2| (LIST (QUOTE -582) (QUOTE (-520)))) (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-209))) (|HasCategory| |#2| (QUOTE (-336))) (|HasCategory| |#2| (QUOTE (-969)))) (-3700 (-12 (|HasCategory| |#2| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#2| (LIST (QUOTE -582) (QUOTE (-520))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1083))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#2| (QUOTE (-124)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#2| (QUOTE (-157)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#2| (QUOTE (-209)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#2| (QUOTE (-336)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#2| (QUOTE (-341)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#2| (QUOTE (-728)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#2| (QUOTE (-781)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#2| (QUOTE (-969)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#2| (QUOTE (-1012))))) (-3700 (-12 (|HasCategory| |#2| (LIST (QUOTE -582) (QUOTE (-520)))) (|HasCategory| |#2| (LIST (QUOTE -960) (QUOTE (-520))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasCategory| |#2| (LIST (QUOTE -960) (QUOTE (-520))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -960) (QUOTE (-520))))) (-12 (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (LIST (QUOTE -960) (QUOTE (-520))))) (-12 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (LIST (QUOTE -960) (QUOTE (-520))))) (-12 (|HasCategory| |#2| (QUOTE (-209))) (|HasCategory| |#2| (LIST (QUOTE -960) (QUOTE (-520))))) (-12 (|HasCategory| |#2| (QUOTE (-336))) (|HasCategory| |#2| (LIST (QUOTE -960) (QUOTE (-520))))) (-12 (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -960) (QUOTE (-520))))) (-12 (|HasCategory| |#2| (QUOTE (-728))) (|HasCategory| |#2| (LIST (QUOTE -960) (QUOTE (-520))))) (-12 (|HasCategory| |#2| (QUOTE (-781))) (|HasCategory| |#2| (LIST (QUOTE -960) (QUOTE (-520))))) (-12 (|HasCategory| |#2| (QUOTE (-969))) (|HasCategory| |#2| (LIST (QUOTE -960) (QUOTE (-520))))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (LIST (QUOTE -960) (QUOTE (-520)))))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (LIST (QUOTE -283) (|devaluate| |#2|)))) (-3700 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -283) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (LIST (QUOTE -283) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (LIST (QUOTE -283) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-209))) (|HasCategory| |#2| (LIST (QUOTE -283) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-336))) (|HasCategory| |#2| (LIST (QUOTE -283) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -283) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-728))) (|HasCategory| |#2| (LIST (QUOTE -283) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-781))) (|HasCategory| |#2| (LIST (QUOTE -283) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-969))) (|HasCategory| |#2| (LIST (QUOTE -283) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (LIST (QUOTE -283) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -283) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -582) (QUOTE (-520))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -283) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1083)))))) (|HasCategory| |#2| (LIST (QUOTE -560) (QUOTE (-791)))) (-3700 (-12 (|HasCategory| |#2| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#2| (QUOTE (-1012)))) (-12 (|HasCategory| |#2| (QUOTE (-209))) (|HasCategory| |#2| (QUOTE (-969)))) (-12 (|HasCategory| |#2| (QUOTE (-969))) (|HasCategory| |#2| (LIST (QUOTE -582) (QUOTE (-520))))) (-12 (|HasCategory| |#2| (QUOTE (-969))) (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1083))))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (LIST (QUOTE -283) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (LIST (QUOTE -960) (QUOTE (-520))))) (|HasCategory| |#2| (LIST (QUOTE -560) (QUOTE (-791))))))
-(-752 R)
+((-4227 |has| |#2| (-970)) (-4228 |has| |#2| (-970)) (-4230 |has| |#2| (-6 -4230)) ((-4235 "*") |has| |#2| (-157)) (-4233 . T))
+((|HasCategory| |#2| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-970))) (|HasCategory| |#2| (QUOTE (-729))) (|HasCategory| |#2| (QUOTE (-782))) (-3703 (|HasCategory| |#2| (QUOTE (-729))) (|HasCategory| |#2| (QUOTE (-782)))) (|HasCategory| |#2| (QUOTE (-157))) (-3703 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-970)))) (-3703 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-337)))) (-3703 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-970)))) (|HasCategory| |#2| (QUOTE (-342))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasCategory| |#2| (QUOTE (-210))) (-3703 (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-970)))) (-3703 (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-970)))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-521) (QUOTE (-784))) (-12 (|HasCategory| |#2| (QUOTE (-970))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-970)))) (-12 (|HasCategory| |#2| (QUOTE (-970))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1084))))) (|HasCategory| |#2| (QUOTE (-663))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (-3703 (|HasCategory| |#2| (QUOTE (-970))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-1013)))) (|HasAttribute| |#2| (QUOTE -4230)) (|HasCategory| |#2| (QUOTE (-124))) (-3703 (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-970)))) (|HasCategory| |#2| (QUOTE (-25))) (-3703 (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-342))) (|HasCategory| |#2| (QUOTE (-729))) (|HasCategory| |#2| (QUOTE (-782))) (|HasCategory| |#2| (QUOTE (-970))) (|HasCategory| |#2| (QUOTE (-1013)))) (-3703 (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-970)))) (-3703 (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1084))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-124)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-157)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-210)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-337)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-342)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-729)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-782)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-970)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-1013))))) (-3703 (-12 (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (QUOTE (-337))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (QUOTE (-342))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (QUOTE (-729))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (QUOTE (-782))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (QUOTE (-970))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521)))))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-3703 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-337))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-342))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-729))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-782))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-970))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1084)))))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-792)))) (-3703 (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-970)))) (-12 (|HasCategory| |#2| (QUOTE (-970))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (QUOTE (-970))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1084))))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-792))))))
+(-753 R)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline")))
-(((-4231 "*") |has| |#1| (-157)) (-4222 |has| |#1| (-512)) (-4227 |has| |#1| (-6 -4227)) (-4224 . T) (-4223 . T) (-4226 . T))
-((|HasCategory| |#1| (QUOTE (-837))) (|HasCategory| |#1| (QUOTE (-512))) (|HasCategory| |#1| (QUOTE (-157))) (-3700 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-512)))) (-12 (|HasCategory| (-754 (-1083)) (LIST (QUOTE -814) (QUOTE (-352)))) (|HasCategory| |#1| (LIST (QUOTE -814) (QUOTE (-352))))) (-12 (|HasCategory| (-754 (-1083)) (LIST (QUOTE -814) (QUOTE (-520)))) (|HasCategory| |#1| (LIST (QUOTE -814) (QUOTE (-520))))) (-12 (|HasCategory| (-754 (-1083)) (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-352))))) (|HasCategory| |#1| (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-352)))))) (-12 (|HasCategory| (-754 (-1083)) (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-520))))) (|HasCategory| |#1| (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-520)))))) (-12 (|HasCategory| (-754 (-1083)) (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-496))))) (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#1| (LIST (QUOTE -582) (QUOTE (-520)))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#1| (LIST (QUOTE -960) (QUOTE (-520)))) (|HasCategory| |#1| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#1| (QUOTE (-209))) (|HasCategory| |#1| (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasCategory| |#1| (QUOTE (-336))) (-3700 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#1| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520)))))) (|HasAttribute| |#1| (QUOTE -4227)) (|HasCategory| |#1| (QUOTE (-424))) (-3700 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-424))) (|HasCategory| |#1| (QUOTE (-512))) (|HasCategory| |#1| (QUOTE (-837)))) (-3700 (|HasCategory| |#1| (QUOTE (-424))) (|HasCategory| |#1| (QUOTE (-512))) (|HasCategory| |#1| (QUOTE (-837)))) (-3700 (|HasCategory| |#1| (QUOTE (-424))) (|HasCategory| |#1| (QUOTE (-837)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-837)))) (-3700 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-837)))) (|HasCategory| |#1| (QUOTE (-133)))))
-(-753 |Kernels| R |var|)
+(((-4235 "*") |has| |#1| (-157)) (-4226 |has| |#1| (-513)) (-4231 |has| |#1| (-6 -4231)) (-4228 . T) (-4227 . T) (-4230 . T))
+((|HasCategory| |#1| (QUOTE (-838))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-157))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-513)))) (-12 (|HasCategory| (-755 (-1084)) (LIST (QUOTE -815) (QUOTE (-353)))) (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-353))))) (-12 (|HasCategory| (-755 (-1084)) (LIST (QUOTE -815) (QUOTE (-521)))) (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-521))))) (-12 (|HasCategory| (-755 (-1084)) (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-353))))) (|HasCategory| |#1| (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-353)))))) (-12 (|HasCategory| (-755 (-1084)) (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-521)))))) (-12 (|HasCategory| (-755 (-1084)) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-497))))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (QUOTE (-210))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasCategory| |#1| (QUOTE (-337))) (-3703 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521)))))) (|HasAttribute| |#1| (QUOTE -4231)) (|HasCategory| |#1| (QUOTE (-425))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-425))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-838)))) (-3703 (|HasCategory| |#1| (QUOTE (-425))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-838)))) (-3703 (|HasCategory| |#1| (QUOTE (-425))) (|HasCategory| |#1| (QUOTE (-838)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-838)))) (-3703 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (QUOTE (-133)))))
+(-754 |Kernels| R |var|)
((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable.")) (|coerce| ((|#2| $) "\\spad{coerce(p)} views \\spad{p} as a valie in the partial differential ring.") (($ |#2|) "\\spad{coerce(r)} views \\spad{r} as a value in the ordinary differential ring.")))
-(((-4231 "*") |has| |#2| (-336)) (-4222 |has| |#2| (-336)) (-4227 |has| |#2| (-336)) (-4221 |has| |#2| (-336)) (-4226 . T) (-4224 . T) (-4223 . T))
-((|HasCategory| |#2| (QUOTE (-336))))
-(-754 S)
+(((-4235 "*") |has| |#2| (-337)) (-4226 |has| |#2| (-337)) (-4231 |has| |#2| (-337)) (-4225 |has| |#2| (-337)) (-4230 . T) (-4228 . T) (-4227 . T))
+((|HasCategory| |#2| (QUOTE (-337))))
+(-755 S)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u})).")))
NIL
NIL
-(-755 S)
+(-756 S)
((|constructor| (NIL "\\indented{3}{The free monoid on a set \\spad{S} is the monoid of finite products of} the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The multiplication is not commutative. For two elements \\spad{x} and \\spad{y} the relation \\spad{x < y} holds if either \\spad{length(x) < length(y)} holds or if these lengths are equal and if \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\spad{S}. This domain inherits implementation from \\spadtype{FreeMonoid}.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables of \\spad{x}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the length of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the \\spad{n-th} monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the \\spad{n-th} monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x,{} y)} returns \\spad{[l,{} m,{} r]} such that \\spad{x = l * m} and \\spad{y = m * r} hold and such that \\spad{l} and \\spad{r} have no overlap,{} that is \\spad{overlap(l,{} r) = [l,{} 1,{} r]}.")) (|div| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{x div y} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} that is \\spad{[l,{} r]} such that \\spad{x = l * y * r}. \"failed\" is returned iff \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ |#1|) "\\spad{rquo(x,{} s)} returns the exact right quotient of \\spad{x} by \\spad{s}.") (((|Union| $ "failed") $ $) "\\spad{rquo(x,{} y)} returns the exact right quotient of \\spad{x} by \\spad{y} that is \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ |#1|) "\\spad{lquo(x,{} s)} returns the exact left quotient of \\spad{x} by \\spad{s}.") (((|Union| $ "failed") $ $) "\\spad{lquo(x,{} y)} returns the exact left quotient of \\spad{x} \\indented{1}{by \\spad{y} that is \\spad{q} such that \\spad{x = y * q},{}} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x,{} y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} that is the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x,{} y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} that is the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (|lexico| (((|Boolean|) $ $) "\\spad{lexico(x,{}y)} returns \\spad{true} iff \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering induced by \\spad{S}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns the reversed word of \\spad{x}.")) (|rest| (($ $) "\\spad{rest(x)} returns \\spad{x} except the first letter.")) (|first| ((|#1| $) "\\spad{first(x)} returns the first letter of \\spad{x}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
NIL
NIL
-(-756)
+(-757)
((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline")))
-((-4222 . T) ((-4231 "*") . T) (-4223 . T) (-4224 . T) (-4226 . T))
+((-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
NIL
-(-757)
+(-758)
((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}")))
NIL
NIL
-(-758)
+(-759)
((|constructor| (NIL "\\spadtype{OpenMathDevice} provides support for reading and writing openMath objects to files,{} strings etc. It also provides access to low-level operations from within the interpreter.")) (|OMgetType| (((|Symbol|) $) "\\spad{OMgetType(dev)} returns the type of the next object on \\axiom{\\spad{dev}}.")) (|OMgetSymbol| (((|Record| (|:| |cd| (|String|)) (|:| |name| (|String|))) $) "\\spad{OMgetSymbol(dev)} reads a symbol from \\axiom{\\spad{dev}}.")) (|OMgetString| (((|String|) $) "\\spad{OMgetString(dev)} reads a string from \\axiom{\\spad{dev}}.")) (|OMgetVariable| (((|Symbol|) $) "\\spad{OMgetVariable(dev)} reads a variable from \\axiom{\\spad{dev}}.")) (|OMgetFloat| (((|DoubleFloat|) $) "\\spad{OMgetFloat(dev)} reads a float from \\axiom{\\spad{dev}}.")) (|OMgetInteger| (((|Integer|) $) "\\spad{OMgetInteger(dev)} reads an integer from \\axiom{\\spad{dev}}.")) (|OMgetEndObject| (((|Void|) $) "\\spad{OMgetEndObject(dev)} reads an end object token from \\axiom{\\spad{dev}}.")) (|OMgetEndError| (((|Void|) $) "\\spad{OMgetEndError(dev)} reads an end error token from \\axiom{\\spad{dev}}.")) (|OMgetEndBVar| (((|Void|) $) "\\spad{OMgetEndBVar(dev)} reads an end bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetEndBind| (((|Void|) $) "\\spad{OMgetEndBind(dev)} reads an end binder token from \\axiom{\\spad{dev}}.")) (|OMgetEndAttr| (((|Void|) $) "\\spad{OMgetEndAttr(dev)} reads an end attribute token from \\axiom{\\spad{dev}}.")) (|OMgetEndAtp| (((|Void|) $) "\\spad{OMgetEndAtp(dev)} reads an end attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetEndApp| (((|Void|) $) "\\spad{OMgetEndApp(dev)} reads an end application token from \\axiom{\\spad{dev}}.")) (|OMgetObject| (((|Void|) $) "\\spad{OMgetObject(dev)} reads a begin object token from \\axiom{\\spad{dev}}.")) (|OMgetError| (((|Void|) $) "\\spad{OMgetError(dev)} reads a begin error token from \\axiom{\\spad{dev}}.")) (|OMgetBVar| (((|Void|) $) "\\spad{OMgetBVar(dev)} reads a begin bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetBind| (((|Void|) $) "\\spad{OMgetBind(dev)} reads a begin binder token from \\axiom{\\spad{dev}}.")) (|OMgetAttr| (((|Void|) $) "\\spad{OMgetAttr(dev)} reads a begin attribute token from \\axiom{\\spad{dev}}.")) (|OMgetAtp| (((|Void|) $) "\\spad{OMgetAtp(dev)} reads a begin attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetApp| (((|Void|) $) "\\spad{OMgetApp(dev)} reads a begin application token from \\axiom{\\spad{dev}}.")) (|OMputSymbol| (((|Void|) $ (|String|) (|String|)) "\\spad{OMputSymbol(dev,{}cd,{}s)} writes the symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}} to \\axiom{\\spad{dev}}.")) (|OMputString| (((|Void|) $ (|String|)) "\\spad{OMputString(dev,{}i)} writes the string \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputVariable| (((|Void|) $ (|Symbol|)) "\\spad{OMputVariable(dev,{}i)} writes the variable \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputFloat| (((|Void|) $ (|DoubleFloat|)) "\\spad{OMputFloat(dev,{}i)} writes the float \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputInteger| (((|Void|) $ (|Integer|)) "\\spad{OMputInteger(dev,{}i)} writes the integer \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputEndObject| (((|Void|) $) "\\spad{OMputEndObject(dev)} writes an end object token to \\axiom{\\spad{dev}}.")) (|OMputEndError| (((|Void|) $) "\\spad{OMputEndError(dev)} writes an end error token to \\axiom{\\spad{dev}}.")) (|OMputEndBVar| (((|Void|) $) "\\spad{OMputEndBVar(dev)} writes an end bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputEndBind| (((|Void|) $) "\\spad{OMputEndBind(dev)} writes an end binder token to \\axiom{\\spad{dev}}.")) (|OMputEndAttr| (((|Void|) $) "\\spad{OMputEndAttr(dev)} writes an end attribute token to \\axiom{\\spad{dev}}.")) (|OMputEndAtp| (((|Void|) $) "\\spad{OMputEndAtp(dev)} writes an end attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputEndApp| (((|Void|) $) "\\spad{OMputEndApp(dev)} writes an end application token to \\axiom{\\spad{dev}}.")) (|OMputObject| (((|Void|) $) "\\spad{OMputObject(dev)} writes a begin object token to \\axiom{\\spad{dev}}.")) (|OMputError| (((|Void|) $) "\\spad{OMputError(dev)} writes a begin error token to \\axiom{\\spad{dev}}.")) (|OMputBVar| (((|Void|) $) "\\spad{OMputBVar(dev)} writes a begin bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputBind| (((|Void|) $) "\\spad{OMputBind(dev)} writes a begin binder token to \\axiom{\\spad{dev}}.")) (|OMputAttr| (((|Void|) $) "\\spad{OMputAttr(dev)} writes a begin attribute token to \\axiom{\\spad{dev}}.")) (|OMputAtp| (((|Void|) $) "\\spad{OMputAtp(dev)} writes a begin attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputApp| (((|Void|) $) "\\spad{OMputApp(dev)} writes a begin application token to \\axiom{\\spad{dev}}.")) (|OMsetEncoding| (((|Void|) $ (|OpenMathEncoding|)) "\\spad{OMsetEncoding(dev,{}enc)} sets the encoding used for reading or writing OpenMath objects to or from \\axiom{\\spad{dev}} to \\axiom{\\spad{enc}}.")) (|OMclose| (((|Void|) $) "\\spad{OMclose(dev)} closes \\axiom{\\spad{dev}},{} flushing output if necessary.")) (|OMopenString| (($ (|String|) (|OpenMathEncoding|)) "\\spad{OMopenString(s,{}mode)} opens the string \\axiom{\\spad{s}} for reading or writing OpenMath objects in encoding \\axiom{enc}.")) (|OMopenFile| (($ (|String|) (|String|) (|OpenMathEncoding|)) "\\spad{OMopenFile(f,{}mode,{}enc)} opens file \\axiom{\\spad{f}} for reading or writing OpenMath objects (depending on \\axiom{\\spad{mode}} which can be \\spad{\"r\"},{} \\spad{\"w\"} or \"a\" for read,{} write and append respectively),{} in the encoding \\axiom{\\spad{enc}}.")))
NIL
NIL
-(-759)
+(-760)
((|constructor| (NIL "\\spadtype{OpenMathEncoding} is the set of valid OpenMath encodings.")) (|OMencodingBinary| (($) "\\spad{OMencodingBinary()} is the constant for the OpenMath binary encoding.")) (|OMencodingSGML| (($) "\\spad{OMencodingSGML()} is the constant for the deprecated OpenMath SGML encoding.")) (|OMencodingXML| (($) "\\spad{OMencodingXML()} is the constant for the OpenMath \\spad{XML} encoding.")) (|OMencodingUnknown| (($) "\\spad{OMencodingUnknown()} is the constant for unknown encoding types. If this is used on an input device,{} the encoding will be autodetected. It is invalid to use it on an output device.")))
NIL
NIL
-(-760)
+(-761)
((|constructor| (NIL "\\spadtype{OpenMathErrorKind} represents different kinds of OpenMath errors: specifically parse errors,{} unknown \\spad{CD} or symbol errors,{} and read errors.")) (|OMReadError?| (((|Boolean|) $) "\\spad{OMReadError?(u)} tests whether \\spad{u} is an OpenMath read error.")) (|OMUnknownSymbol?| (((|Boolean|) $) "\\spad{OMUnknownSymbol?(u)} tests whether \\spad{u} is an OpenMath unknown symbol error.")) (|OMUnknownCD?| (((|Boolean|) $) "\\spad{OMUnknownCD?(u)} tests whether \\spad{u} is an OpenMath unknown \\spad{CD} error.")) (|OMParseError?| (((|Boolean|) $) "\\spad{OMParseError?(u)} tests whether \\spad{u} is an OpenMath parsing error.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(u)} creates an OpenMath error object of an appropriate type if \\axiom{\\spad{u}} is one of \\axiom{OMParseError},{} \\axiom{OMReadError},{} \\axiom{OMUnknownCD} or \\axiom{OMUnknownSymbol},{} otherwise it raises a runtime error.")))
NIL
NIL
-(-761)
+(-762)
((|constructor| (NIL "\\spadtype{OpenMathError} is the domain of OpenMath errors.")) (|omError| (($ (|OpenMathErrorKind|) (|List| (|Symbol|))) "\\spad{omError(k,{}l)} creates an instance of OpenMathError.")) (|errorInfo| (((|List| (|Symbol|)) $) "\\spad{errorInfo(u)} returns information about the error \\spad{u}.")) (|errorKind| (((|OpenMathErrorKind|) $) "\\spad{errorKind(u)} returns the type of error which \\spad{u} represents.")))
NIL
NIL
-(-762 R)
+(-763 R)
((|constructor| (NIL "\\spadtype{ExpressionToOpenMath} provides support for converting objects of type \\spadtype{Expression} into OpenMath.")))
NIL
NIL
-(-763 P R)
+(-764 P R)
((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite\\spad{''} in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}.")))
-((-4223 . T) (-4224 . T) (-4226 . T))
-((|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-209))))
-(-764)
+((-4227 . T) (-4228 . T) (-4230 . T))
+((|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-210))))
+(-765)
((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev,{} u,{} true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev,{} u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u,{} true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object.")))
NIL
NIL
-(-765)
+(-766)
((|constructor| (NIL "\\spadtype{OpenMathPackage} provides some simple utilities to make reading OpenMath objects easier.")) (|OMunhandledSymbol| (((|Exit|) (|String|) (|String|)) "\\spad{OMunhandledSymbol(s,{}cd)} raises an error if AXIOM reads a symbol which it is unable to handle. Note that this is different from an unexpected symbol.")) (|OMsupportsSymbol?| (((|Boolean|) (|String|) (|String|)) "\\spad{OMsupportsSymbol?(s,{}cd)} returns \\spad{true} if AXIOM supports symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMsupportsCD?| (((|Boolean|) (|String|)) "\\spad{OMsupportsCD?(cd)} returns \\spad{true} if AXIOM supports \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMlistSymbols| (((|List| (|String|)) (|String|)) "\\spad{OMlistSymbols(cd)} lists all the symbols in \\axiom{\\spad{cd}}.")) (|OMlistCDs| (((|List| (|String|))) "\\spad{OMlistCDs()} lists all the \\spad{CDs} supported by AXIOM.")) (|OMreadStr| (((|Any|) (|String|)) "\\spad{OMreadStr(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMreadFile| (((|Any|) (|String|)) "\\spad{OMreadFile(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMread| (((|Any|) (|OpenMathDevice|)) "\\spad{OMread(dev)} reads an OpenMath object from \\axiom{\\spad{dev}} and passes it to AXIOM.")))
NIL
NIL
-(-766 S)
+(-767 S)
((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}.")))
-((-4229 . T) (-4219 . T) (-4230 . T) (-2046 . T))
+((-4233 . T) (-4223 . T) (-4234 . T) (-2046 . T))
NIL
-(-767)
+(-768)
((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server,{} reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls \\spadignore{e.g.} \\axiom{Omserve(4000,{}60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,{}timeout)} puts AXIOM into server mode on port number \\axiom{\\spad{portnum}}. The parameter \\axiom{\\spad{timeout}} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,{}u)} attempts to output \\axiom{\\spad{u}} on \\aciom{\\spad{c}} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{\\spad{c}} and returns the appropriate AXIOM object.")))
NIL
NIL
-(-768 R S)
+(-769 R S)
((|constructor| (NIL "Lifting of maps to one-point completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)) "\\spad{map(f,{} r,{} i)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = \\spad{i}.") (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|)) "\\spad{map(f,{} r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = infinity.")))
NIL
NIL
-(-769 R)
-((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity.")))
-((-4226 |has| |#1| (-781)))
-((|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#1| (LIST (QUOTE -960) (QUOTE (-520)))) (|HasCategory| |#1| (QUOTE (-505))) (-3700 (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (LIST (QUOTE -960) (QUOTE (-520))))) (|HasCategory| |#1| (QUOTE (-21))) (-3700 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-781)))))
(-770 R)
+((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity.")))
+((-4230 |has| |#1| (-782)))
+((|HasCategory| |#1| (QUOTE (-782))) (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-506))) (-3703 (|HasCategory| |#1| (QUOTE (-782))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521))))) (|HasCategory| |#1| (QUOTE (-21))) (-3703 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-782)))))
+(-771 R)
((|constructor| (NIL "Algebra of ADDITIVE operators over a ring.")))
-((-4224 |has| |#1| (-157)) (-4223 |has| |#1| (-157)) (-4226 . T))
+((-4228 |has| |#1| (-157)) (-4227 |has| |#1| (-157)) (-4230 . T))
((|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))))
-(-771)
+(-772)
((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \\spad{\"k\"} (constructors),{} \\spad{\"d\"} (domains),{} \\spad{\"c\"} (categories) or \\spad{\"p\"} (packages).")))
NIL
NIL
-(-772)
+(-773)
((|numericalOptimization| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-773)
+(-774)
((|goodnessOfFit| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{goodnessOfFit(lf,{}start)} is a top level ANNA function to check to goodness of fit of a least squares model \\spadignore{i.e.} the minimization of a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation. goodnessOfFit(\\spad{lf},{}\\spad{start}) is a top level function to iterate over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then checks the goodness of fit of the least squares model.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{goodnessOfFit(prob)} is a top level ANNA function to check to goodness of fit of a least squares model as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation.")) (|optimize| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{optimize(lf,{}start)} is a top level ANNA function to minimize a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints \\spadignore{i.e.} a least-squares problem. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|))) "\\spad{optimize(f,{}start)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,{}start,{}lower,{}upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with simple constraints. The bounds on the variables are defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|Expression| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,{}start,{}lower,{}cons,{}upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with the given constraints. \\blankline These constraints may be simple constraints on the variables in which case \\axiom{\\spad{cons}} would be an empty list and the bounds on those variables defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}},{} or a mixture of simple,{} linear and non-linear constraints,{} where \\axiom{\\spad{cons}} contains the linear and non-linear constraints and the bounds on these are added to \\axiom{\\spad{upper}} and \\axiom{\\spad{lower}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{optimize(prob)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{optimize(prob,{}routines)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} listed in \\axiom{\\spad{routines}} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")))
NIL
NIL
-(-774)
+(-775)
((|retract| (((|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|)))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-775 R S)
+(-776 R S)
((|constructor| (NIL "Lifting of maps to ordered completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{map(f,{} r,{} p,{} m)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = \\spad{p} and that \\spad{f}(minusInfinity) = \\spad{m}.") (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|)) "\\spad{map(f,{} r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = plusInfinity and that \\spad{f}(minusInfinity) = minusInfinity.")))
NIL
NIL
-(-776 R)
+(-777 R)
((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity.")))
-((-4226 |has| |#1| (-781)))
-((|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#1| (LIST (QUOTE -960) (QUOTE (-520)))) (|HasCategory| |#1| (QUOTE (-505))) (-3700 (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (LIST (QUOTE -960) (QUOTE (-520))))) (|HasCategory| |#1| (QUOTE (-21))) (-3700 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-781)))))
-(-777)
+((-4230 |has| |#1| (-782)))
+((|HasCategory| |#1| (QUOTE (-782))) (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-506))) (-3703 (|HasCategory| |#1| (QUOTE (-782))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521))))) (|HasCategory| |#1| (QUOTE (-21))) (-3703 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-782)))))
+(-778)
((|constructor| (NIL "Ordered finite sets.")))
NIL
NIL
-(-778 -2615 S)
+(-779 -2617 S)
((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering.")))
NIL
NIL
-(-779)
+(-780)
((|constructor| (NIL "Ordered sets which are also monoids,{} such that multiplication preserves the ordering. \\blankline")))
NIL
NIL
-(-780 S)
+(-781 S)
((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0.")))
NIL
NIL
-(-781)
+(-782)
((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0.")))
-((-4226 . T))
+((-4230 . T))
NIL
-(-782 S)
+(-783 S)
((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,{}b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,{}y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,{}y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set.")))
NIL
NIL
-(-783)
+(-784)
((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,{}b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,{}y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,{}y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set.")))
NIL
NIL
-(-784 S R)
+(-785 S R)
((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#2| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#2| $ |#2| |#2|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#2| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#2| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ^= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")))
NIL
-((|HasCategory| |#2| (QUOTE (-336))) (|HasCategory| |#2| (QUOTE (-424))) (|HasCategory| |#2| (QUOTE (-512))) (|HasCategory| |#2| (QUOTE (-157))))
-(-785 R)
+((|HasCategory| |#2| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-425))) (|HasCategory| |#2| (QUOTE (-513))) (|HasCategory| |#2| (QUOTE (-157))))
+(-786 R)
((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ^= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")))
-((-4223 . T) (-4224 . T) (-4226 . T))
+((-4227 . T) (-4228 . T) (-4230 . T))
NIL
-(-786 R C)
+(-787 R C)
((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p,{} c,{} m,{} sigma,{} delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p,{} q,{} sigma,{} delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use.")))
NIL
-((|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (QUOTE (-512))))
-(-787 R |sigma| -1201)
+((|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-513))))
+(-788 R |sigma| -1202)
((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{} x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable.")))
-((-4223 . T) (-4224 . T) (-4226 . T))
-((|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#1| (LIST (QUOTE -960) (QUOTE (-520)))) (|HasCategory| |#1| (QUOTE (-512))) (|HasCategory| |#1| (QUOTE (-424))) (|HasCategory| |#1| (QUOTE (-336))))
-(-788 |x| R |sigma| -1201)
+((-4227 . T) (-4228 . T) (-4230 . T))
+((|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-425))) (|HasCategory| |#1| (QUOTE (-337))))
+(-789 |x| R |sigma| -1202)
((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|coerce| (($ (|Variable| |#1|)) "\\spad{coerce(x)} returns \\spad{x} as a skew-polynomial.")))
-((-4223 . T) (-4224 . T) (-4226 . T))
-((|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#2| (LIST (QUOTE -960) (QUOTE (-520)))) (|HasCategory| |#2| (QUOTE (-512))) (|HasCategory| |#2| (QUOTE (-424))) (|HasCategory| |#2| (QUOTE (-336))))
-(-789 R)
+((-4227 . T) (-4228 . T) (-4230 . T))
+((|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#2| (QUOTE (-513))) (|HasCategory| |#2| (QUOTE (-425))) (|HasCategory| |#2| (QUOTE (-337))))
+(-790 R)
((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,{}x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n,{} n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,{}n,{}x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,{}x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!,{} n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,{}x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520))))))
-(-790)
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))))
+(-791)
((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date created : 14 August 1988 Date Last Updated : 11 March 1991 Description : A domain used in order to take the free \\spad{R}-module on the Integers \\spad{I}. This is actually the forgetful functor from OrderedRings to OrderedSets applied to \\spad{I}")) (|value| (((|Integer|) $) "\\spad{value(x)} returns the integer associated with \\spad{x}")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} returns the element corresponding to \\spad{i}")))
NIL
NIL
-(-791)
+(-792)
((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,{}y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,{}g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (^= (($ $ $) "\\spad{f ^= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,{}f)} creates the form \\spad{f} with \\spad{\"x} overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,{}n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,{}n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,{}[sub1,{}super1,{}sub2,{}super2,{}...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f,{} [sub,{} super,{} presuper,{} presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,{}n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,{}n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,{}n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,{}n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,{}m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{}n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \\spad{\"f} super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,{}g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,{}g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,{}g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,{}g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,{}n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,{}g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,{}f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,{}l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op,{} a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op,{} a,{} b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,{}l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,{}l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,{}g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,{}g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,{}n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,{}n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,{}n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,{}m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}.")))
NIL
NIL
-(-792)
+(-793)
((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,{}x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.")))
NIL
NIL
-(-793 |VariableList|)
+(-794 |VariableList|)
((|constructor| (NIL "This domain implements ordered variables")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} returns a member of the variable set or failed")))
NIL
NIL
-(-794 R |vl| |wl| |wtlevel|)
+(-795 R |vl| |wl| |wtlevel|)
((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(p)} coerces a Polynomial(\\spad{R}) into Weighted form,{} applying weights and ignoring terms") (((|Polynomial| |#1|) $) "\\spad{coerce(p)} converts back into a Polynomial(\\spad{R}),{} ignoring weights")))
-((-4224 |has| |#1| (-157)) (-4223 |has| |#1| (-157)) (-4226 . T))
-((|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-336))))
-(-795 R PS UP)
+((-4228 |has| |#1| (-157)) (-4227 |has| |#1| (-157)) (-4230 . T))
+((|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-337))))
+(-796 R PS UP)
((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,{}dd,{}ns,{}ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,{}dd,{}ns,{}ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")))
NIL
NIL
-(-796 R |x| |pt|)
+(-797 R |x| |pt|)
((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Trager,{}Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|pade| (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,{}dd,{}s)} computes the quotient of polynomials (if it exists) with numerator degree at most \\spad{nd} and denominator degree at most \\spad{dd} which matches the series \\spad{s} to order \\spad{nd + dd}.") (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,{}dd,{}ns,{}ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")))
NIL
NIL
-(-797 |p|)
+(-798 |p|)
((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,{}a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,{}a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}.")))
-((-4222 . T) ((-4231 "*") . T) (-4223 . T) (-4224 . T) (-4226 . T))
+((-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
NIL
-(-798 |p|)
+(-799 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
-((-4222 . T) ((-4231 "*") . T) (-4223 . T) (-4224 . T) (-4226 . T))
+((-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
NIL
-(-799 |p|)
+(-800 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
-((-4221 . T) (-4227 . T) (-4222 . T) ((-4231 "*") . T) (-4223 . T) (-4224 . T) (-4226 . T))
-((|HasCategory| (-798 |#1|) (QUOTE (-837))) (|HasCategory| (-798 |#1|) (LIST (QUOTE -960) (QUOTE (-1083)))) (|HasCategory| (-798 |#1|) (QUOTE (-133))) (|HasCategory| (-798 |#1|) (QUOTE (-135))) (|HasCategory| (-798 |#1|) (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| (-798 |#1|) (QUOTE (-945))) (|HasCategory| (-798 |#1|) (QUOTE (-756))) (|HasCategory| (-798 |#1|) (LIST (QUOTE -960) (QUOTE (-520)))) (|HasCategory| (-798 |#1|) (QUOTE (-1059))) (|HasCategory| (-798 |#1|) (LIST (QUOTE -814) (QUOTE (-520)))) (|HasCategory| (-798 |#1|) (LIST (QUOTE -814) (QUOTE (-352)))) (|HasCategory| (-798 |#1|) (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-352))))) (|HasCategory| (-798 |#1|) (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-520))))) (|HasCategory| (-798 |#1|) (LIST (QUOTE -582) (QUOTE (-520)))) (|HasCategory| (-798 |#1|) (QUOTE (-209))) (|HasCategory| (-798 |#1|) (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasCategory| (-798 |#1|) (LIST (QUOTE -481) (QUOTE (-1083)) (LIST (QUOTE -798) (|devaluate| |#1|)))) (|HasCategory| (-798 |#1|) (LIST (QUOTE -283) (LIST (QUOTE -798) (|devaluate| |#1|)))) (|HasCategory| (-798 |#1|) (LIST (QUOTE -260) (LIST (QUOTE -798) (|devaluate| |#1|)) (LIST (QUOTE -798) (|devaluate| |#1|)))) (|HasCategory| (-798 |#1|) (QUOTE (-281))) (|HasCategory| (-798 |#1|) (QUOTE (-505))) (|HasCategory| (-798 |#1|) (QUOTE (-783))) (-3700 (|HasCategory| (-798 |#1|) (QUOTE (-756))) (|HasCategory| (-798 |#1|) (QUOTE (-783)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-798 |#1|) (QUOTE (-837)))) (-3700 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-798 |#1|) (QUOTE (-837)))) (|HasCategory| (-798 |#1|) (QUOTE (-133)))))
-(-800 |p| PADIC)
+((-4225 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
+((|HasCategory| (-799 |#1|) (QUOTE (-838))) (|HasCategory| (-799 |#1|) (LIST (QUOTE -961) (QUOTE (-1084)))) (|HasCategory| (-799 |#1|) (QUOTE (-133))) (|HasCategory| (-799 |#1|) (QUOTE (-135))) (|HasCategory| (-799 |#1|) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| (-799 |#1|) (QUOTE (-946))) (|HasCategory| (-799 |#1|) (QUOTE (-757))) (|HasCategory| (-799 |#1|) (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| (-799 |#1|) (QUOTE (-1060))) (|HasCategory| (-799 |#1|) (LIST (QUOTE -815) (QUOTE (-521)))) (|HasCategory| (-799 |#1|) (LIST (QUOTE -815) (QUOTE (-353)))) (|HasCategory| (-799 |#1|) (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-353))))) (|HasCategory| (-799 |#1|) (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-521))))) (|HasCategory| (-799 |#1|) (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| (-799 |#1|) (QUOTE (-210))) (|HasCategory| (-799 |#1|) (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasCategory| (-799 |#1|) (LIST (QUOTE -482) (QUOTE (-1084)) (LIST (QUOTE -799) (|devaluate| |#1|)))) (|HasCategory| (-799 |#1|) (LIST (QUOTE -284) (LIST (QUOTE -799) (|devaluate| |#1|)))) (|HasCategory| (-799 |#1|) (LIST (QUOTE -261) (LIST (QUOTE -799) (|devaluate| |#1|)) (LIST (QUOTE -799) (|devaluate| |#1|)))) (|HasCategory| (-799 |#1|) (QUOTE (-282))) (|HasCategory| (-799 |#1|) (QUOTE (-506))) (|HasCategory| (-799 |#1|) (QUOTE (-784))) (-3703 (|HasCategory| (-799 |#1|) (QUOTE (-757))) (|HasCategory| (-799 |#1|) (QUOTE (-784)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-799 |#1|) (QUOTE (-838)))) (-3703 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-799 |#1|) (QUOTE (-838)))) (|HasCategory| (-799 |#1|) (QUOTE (-133)))))
+(-801 |p| PADIC)
((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}.")))
-((-4221 . T) (-4227 . T) (-4222 . T) ((-4231 "*") . T) (-4223 . T) (-4224 . T) (-4226 . T))
-((|HasCategory| |#2| (QUOTE (-837))) (|HasCategory| |#2| (LIST (QUOTE -960) (QUOTE (-1083)))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| |#2| (QUOTE (-945))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (LIST (QUOTE -960) (QUOTE (-520)))) (|HasCategory| |#2| (QUOTE (-1059))) (|HasCategory| |#2| (LIST (QUOTE -814) (QUOTE (-520)))) (|HasCategory| |#2| (LIST (QUOTE -814) (QUOTE (-352)))) (|HasCategory| |#2| (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-352))))) (|HasCategory| |#2| (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-520))))) (|HasCategory| |#2| (LIST (QUOTE -582) (QUOTE (-520)))) (|HasCategory| |#2| (QUOTE (-209))) (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasCategory| |#2| (LIST (QUOTE -481) (QUOTE (-1083)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -283) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -260) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-281))) (|HasCategory| |#2| (QUOTE (-505))) (|HasCategory| |#2| (QUOTE (-783))) (-3700 (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-783)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-837)))) (-3700 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-837)))) (|HasCategory| |#2| (QUOTE (-133)))))
-(-801 S T$)
+((-4225 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
+((|HasCategory| |#2| (QUOTE (-838))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-1084)))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#2| (QUOTE (-946))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -815) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -815) (QUOTE (-353)))) (|HasCategory| |#2| (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-353))))) (|HasCategory| |#2| (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-521))))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasCategory| |#2| (LIST (QUOTE -482) (QUOTE (-1084)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -261) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-282))) (|HasCategory| |#2| (QUOTE (-506))) (|HasCategory| |#2| (QUOTE (-784))) (-3703 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-784)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-838)))) (-3703 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-838)))) (|HasCategory| |#2| (QUOTE (-133)))))
+(-802 S T$)
((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of \\spad{`p'}.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of \\spad{`p'}.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,{}t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,{}t)} returns a pair object composed of \\spad{`s'} and \\spad{`t'}.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#2| (QUOTE (-1012)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-791)))) (|HasCategory| |#2| (LIST (QUOTE -560) (QUOTE (-791))))) (-3700 (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#2| (QUOTE (-1012)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-791)))) (|HasCategory| |#2| (LIST (QUOTE -560) (QUOTE (-791)))))))
-(-802)
+((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-792)))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-792))))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-792)))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-792)))))))
+(-803)
((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value.")))
NIL
NIL
-(-803)
+(-804)
((|constructor| (NIL "This package provides a coerce from polynomials over algebraic numbers to \\spadtype{Expression AlgebraicNumber}.")) (|coerce| (((|Expression| (|Integer|)) (|Fraction| (|Polynomial| (|AlgebraicNumber|)))) "\\spad{coerce(rf)} converts \\spad{rf},{} a fraction of polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.") (((|Expression| (|Integer|)) (|Polynomial| (|AlgebraicNumber|))) "\\spad{coerce(p)} converts the polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.")))
NIL
NIL
-(-804 CF1 CF2)
+(-805 CF1 CF2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricPlaneCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricPlaneCurve| |#1|)) "\\spad{map(f,{}x)} \\undocumented")))
NIL
NIL
-(-805 |ComponentFunction|)
+(-806 |ComponentFunction|)
((|constructor| (NIL "ParametricPlaneCurve is used for plotting parametric plane curves in the affine plane.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,{}i)} returns a coordinate function for \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component \\spad{i} of the plane curve is.")) (|curve| (($ |#1| |#1|) "\\spad{curve(c1,{}c2)} creates a plane curve from 2 component functions \\spad{c1} and \\spad{c2}.")))
NIL
NIL
-(-806 CF1 CF2)
+(-807 CF1 CF2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSpaceCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricSpaceCurve| |#1|)) "\\spad{map(f,{}x)} \\undocumented")))
NIL
NIL
-(-807 |ComponentFunction|)
+(-808 |ComponentFunction|)
((|constructor| (NIL "ParametricSpaceCurve is used for plotting parametric space curves in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,{}i)} returns a coordinate function of \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the space curve is.")) (|curve| (($ |#1| |#1| |#1|) "\\spad{curve(c1,{}c2,{}c3)} creates a space curve from 3 component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}.")))
NIL
NIL
-(-808)
+(-809)
((|constructor| (NIL "\\indented{1}{This package provides a simple Spad script parser.} Related Constructors: Syntax. See Also: Syntax.")) (|getSyntaxFormsFromFile| (((|List| (|Syntax|)) (|String|)) "\\spad{getSyntaxFormsFromFile(f)} parses the source file \\spad{f} (supposedly containing Spad scripts) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that source location information is not part of result.")))
NIL
NIL
-(-809 CF1 CF2)
+(-810 CF1 CF2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSurface| |#2|) (|Mapping| |#2| |#1|) (|ParametricSurface| |#1|)) "\\spad{map(f,{}x)} \\undocumented")))
NIL
NIL
-(-810 |ComponentFunction|)
+(-811 |ComponentFunction|)
((|constructor| (NIL "ParametricSurface is used for plotting parametric surfaces in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(s,{}i)} returns a coordinate function of \\spad{s} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the surface is.")) (|surface| (($ |#1| |#1| |#1|) "\\spad{surface(c1,{}c2,{}c3)} creates a surface from 3 parametric component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}.")))
NIL
NIL
-(-811)
+(-812)
((|constructor| (NIL "PartitionsAndPermutations contains functions for generating streams of integer partitions,{} and streams of sequences of integers composed from a multi-set.")) (|permutations| (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{permutations(n)} is the stream of permutations \\indented{1}{formed from \\spad{1,{}2,{}3,{}...,{}n}.}")) (|sequences| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{sequences([l0,{}l1,{}l2,{}..,{}ln])} is the set of \\indented{1}{all sequences formed from} \\spad{l0} 0\\spad{'s},{}\\spad{l1} 1\\spad{'s},{}\\spad{l2} 2\\spad{'s},{}...,{}\\spad{ln} \\spad{n}\\spad{'s}.") (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{sequences(l1,{}l2)} is the stream of all sequences that \\indented{1}{can be composed from the multiset defined from} \\indented{1}{two lists of integers \\spad{l1} and \\spad{l2}.} \\indented{1}{For example,{}the pair \\spad{([1,{}2,{}4],{}[2,{}3,{}5])} represents} \\indented{1}{multi-set with 1 \\spad{2},{} 2 \\spad{3}\\spad{'s},{} and 4 \\spad{5}\\spad{'s}.}")) (|shufflein| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|Stream| (|List| (|Integer|)))) "\\spad{shufflein(l,{}st)} maps shuffle(\\spad{l},{}\\spad{u}) on to all \\indented{1}{members \\spad{u} of \\spad{st},{} concatenating the results.}")) (|shuffle| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{shuffle(l1,{}l2)} forms the stream of all shuffles of \\spad{l1} \\indented{1}{and \\spad{l2},{} \\spadignore{i.e.} all sequences that can be formed from} \\indented{1}{merging \\spad{l1} and \\spad{l2}.}")) (|conjugates| (((|Stream| (|List| (|Integer|))) (|Stream| (|List| (|Integer|)))) "\\spad{conjugates(lp)} is the stream of conjugates of a stream \\indented{1}{of partitions \\spad{lp}.}")) (|conjugate| (((|List| (|Integer|)) (|List| (|Integer|))) "\\spad{conjugate(pt)} is the conjugate of the partition \\spad{pt}.")) (|partitions| (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{partitions(p,{}l)} is the stream of all \\indented{1}{partitions whose number of} \\indented{1}{parts and largest part are no greater than \\spad{p} and \\spad{l}.}") (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{partitions(n)} is the stream of all partitions of \\spad{n}.") (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|) (|Integer|)) "\\spad{partitions(p,{}l,{}n)} is the stream of partitions \\indented{1}{of \\spad{n} whose number of parts is no greater than \\spad{p}} \\indented{1}{and whose largest part is no greater than \\spad{l}.}")))
NIL
NIL
-(-812 R)
+(-813 R)
((|constructor| (NIL "An object \\spad{S} is Patternable over an object \\spad{R} if \\spad{S} can lift the conversions from \\spad{R} into \\spadtype{Pattern(Integer)} and \\spadtype{Pattern(Float)} to itself.")))
NIL
NIL
-(-813 R S L)
+(-814 R S L)
((|constructor| (NIL "A PatternMatchListResult is an object internally returned by the pattern matcher when matching on lists. It is either a failed match,{} or a pair of PatternMatchResult,{} one for atoms (elements of the list),{} and one for lists.")) (|lists| (((|PatternMatchResult| |#1| |#3|) $) "\\spad{lists(r)} returns the list of matches that match lists.")) (|atoms| (((|PatternMatchResult| |#1| |#2|) $) "\\spad{atoms(r)} returns the list of matches that match atoms (elements of the lists).")) (|makeResult| (($ (|PatternMatchResult| |#1| |#2|) (|PatternMatchResult| |#1| |#3|)) "\\spad{makeResult(r1,{}r2)} makes the combined result [\\spad{r1},{}\\spad{r2}].")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match.")))
NIL
NIL
-(-814 S)
+(-815 S)
((|constructor| (NIL "A set \\spad{R} is PatternMatchable over \\spad{S} if elements of \\spad{R} can be matched to patterns over \\spad{S}.")) (|patternMatch| (((|PatternMatchResult| |#1| $) $ (|Pattern| |#1|) (|PatternMatchResult| |#1| $)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}. res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion). Initially,{} res is just the result of \\spadfun{new} which is an empty list of matches.")))
NIL
NIL
-(-815 |Base| |Subject| |Pat|)
+(-816 |Base| |Subject| |Pat|)
((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,{}...,{}en],{} pat)} matches the pattern pat on the list of expressions \\spad{[e1,{}...,{}en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,{}...,{}en],{} pat)} tests if the list of expressions \\spad{[e1,{}...,{}en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr,{} pat)} tests if the expression \\spad{expr} matches the pattern pat.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -960) (QUOTE (-1083)))) (-12 (-2399 (|HasCategory| |#2| (QUOTE (-969)))) (-2399 (|HasCategory| |#2| (LIST (QUOTE -960) (QUOTE (-1083)))))) (-12 (|HasCategory| |#2| (QUOTE (-969))) (-2399 (|HasCategory| |#2| (LIST (QUOTE -960) (QUOTE (-1083)))))))
-(-816 R A B)
+((|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-1084)))) (-12 (-2400 (|HasCategory| |#2| (QUOTE (-970)))) (-2400 (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-1084)))))) (-12 (|HasCategory| |#2| (QUOTE (-970))) (-2400 (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-1084)))))))
+(-817 R A B)
((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f,{} [(v1,{}a1),{}...,{}(vn,{}an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))].")))
NIL
NIL
-(-817 R S)
+(-818 R S)
((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r,{} p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,{}e1],{}...,{}[vn,{}en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var,{} expr,{} r,{} val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var,{} r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a,{} b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match.")))
NIL
NIL
-(-818 R -2211)
+(-819 R -2212)
((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,{}...,{}vn],{} p)} returns \\spad{f(v1,{}...,{}vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v,{} p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p,{} [a1,{}...,{}an],{} f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p,{} [f1,{}...,{}fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p,{} f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned.")))
NIL
NIL
-(-819 R S)
+(-820 R S)
((|constructor| (NIL "Lifts maps to patterns.")) (|map| (((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)) "\\spad{map(f,{} p)} applies \\spad{f} to all the leaves of \\spad{p} and returns the result as a pattern over \\spad{S}.")))
NIL
NIL
-(-820 R)
+(-821 R)
((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a,{} b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,{}...,{}an],{} f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,{}...,{}an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x,{} [a1,{}...,{}an],{} f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x,{} c?,{} o?,{} m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p,{} [p1,{}...,{}pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and \\spad{pn} to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p,{} [p1,{}...,{}pn])} attaches the predicate \\spad{p1} and ... and \\spad{pn} to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,{}...,{}pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and \\spad{pn}.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form \\spad{'s} for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the pattern \\spad{[a1,{}...,{}an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{} [a1,{}...,{}an])} returns \\spad{op(a1,{}...,{}an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a,{} b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = [a1,{}...,{}an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a,{} b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q,{} n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op,{} [a1,{}...,{}an]]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p,{} op)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0")))
NIL
NIL
-(-821 |VarSet|)
+(-822 |VarSet|)
((|constructor| (NIL "This domain provides the internal representation of polynomials in non-commutative variables written over the Poincare-Birkhoff-Witt basis. See the \\spadtype{XPBWPolynomial} domain constructor. See Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\spad{varList([l1]*[l2]*...[ln])} returns the list of variables in the word \\spad{l1*l2*...*ln}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?([l1]*[l2]*...[ln])} returns \\spad{true} iff \\spad{n} equals \\spad{1}.")) (|rest| (($ $) "\\spad{rest([l1]*[l2]*...[ln])} returns the list \\spad{l2,{} .... ln}.")) (|ListOfTerms| (((|List| (|LyndonWord| |#1|)) $) "\\spad{ListOfTerms([l1]*[l2]*...[ln])} returns the list of words \\spad{l1,{} l2,{} .... ln}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length([l1]*[l2]*...[ln])} returns the length of the word \\spad{l1*l2*...*ln}.")) (|first| (((|LyndonWord| |#1|) $) "\\spad{first([l1]*[l2]*...[ln])} returns the Lyndon word \\spad{l1}.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} return \\spad{v}") (((|OrderedFreeMonoid| |#1|) $) "\\spad{coerce([l1]*[l2]*...[ln])} returns the word \\spad{l1*l2*...*ln},{} where \\spad{[l_i]} is the backeted form of the Lyndon word \\spad{l_i}.")) ((|One|) (($) "\\spad{1} returns the empty list.")))
NIL
NIL
-(-822 UP R)
+(-823 UP R)
((|constructor| (NIL "This package \\undocumented")) (|compose| ((|#1| |#1| |#1|) "\\spad{compose(p,{}q)} \\undocumented")))
NIL
NIL
-(-823)
+(-824)
((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-824 UP -4045)
+(-825 UP -4049)
((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,{}n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,{}q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,{}m,{}n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented")))
NIL
NIL
-(-825)
+(-826)
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|)) "\\spad{solve(xmin,{}ymin,{}xmax,{}ymax,{}ngx,{}ngy,{}pde,{}bounds,{}st)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}) and the boundary values (\\axiom{\\spad{bounds}}). A default value for tolerance is used. There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|) (|DoubleFloat|)) "\\spad{solve(xmin,{}ymin,{}xmax,{}ymax,{}ngx,{}ngy,{}pde,{}bounds,{}st,{}tol)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}),{} the boundary values (\\axiom{\\spad{bounds}}) and a tolerance requirement (\\axiom{\\spad{tol}}). There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{solve(PDEProblem,{}routines)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the \\spad{routines} contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|)) "\\spad{solve(PDEProblem)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}")))
NIL
NIL
-(-826)
+(-827)
((|retract| (((|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-827 A S)
+(-828 A S)
((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1,{} n1)...,{} sn,{} nn)}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{D(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{D(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1)...,{} sn)}.") (($ $ |#2|) "\\spad{D(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{differentiate(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{differentiate(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x,{} s1)...,{} sn)}.") (($ $ |#2|) "\\spad{differentiate(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")))
NIL
NIL
-(-828 S)
+(-829 S)
((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1,{} n1)...,{} sn,{} nn)}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{D(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{D(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{differentiate(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")))
-((-4226 . T))
+((-4230 . T))
NIL
-(-829 S)
+(-830 S)
((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|coerce| (((|Tree| |#1|) $) "\\spad{coerce(x)} \\undocumented")) (|ptree| (($ $ $) "\\spad{ptree(x,{}y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree")))
NIL
-((|HasCategory| |#1| (QUOTE (-1012))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-791)))) (-3700 (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-791))))))
-(-830 |n| R)
+((|HasCategory| |#1| (QUOTE (-1013))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-792)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-792))))))
+(-831 |n| R)
((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ^= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}")))
NIL
NIL
-(-831 S)
+(-832 S)
((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p,{} el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|elt| ((|#1| $ |#1|) "\\spad{elt(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|eval| ((|#1| $ |#1|) "\\spad{eval(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.")))
-((-4226 . T))
+((-4230 . T))
NIL
-(-832 S)
+(-833 S)
((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,{}m,{}n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,{}0,{}1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,{}gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,{}ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,{}els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,{}el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,{}20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,{}i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,{}i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}.")))
NIL
NIL
-(-833 S)
+(-834 S)
((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,{}...,{}n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(p)} returns the set of points moved by the permutation \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation.")))
-((-4226 . T))
-((|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-783))) (-3700 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-783)))))
-(-834 R E |VarSet| S)
+((-4230 . T))
+((|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (QUOTE (-784))) (-3703 (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (QUOTE (-784)))))
+(-835 R E |VarSet| S)
((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,{}p,{}v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned.")))
NIL
NIL
-(-835 R S)
+(-836 R S)
((|constructor| (NIL "\\indented{1}{PolynomialFactorizationByRecursionUnivariate} \\spad{R} is a \\spadfun{PolynomialFactorizationExplicit} domain,{} \\spad{S} is univariate polynomials over \\spad{R} We are interested in handling SparseUnivariatePolynomials over \\spad{S},{} is a variable we shall call \\spad{z}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|randomR| ((|#1|) "\\spad{randomR()} produces a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned.")))
NIL
NIL
-(-836 S)
+(-837 S)
((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}.")))
NIL
((|HasCategory| |#1| (QUOTE (-133))))
-(-837)
+(-838)
((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}.")))
-((-4222 . T) ((-4231 "*") . T) (-4223 . T) (-4224 . T) (-4226 . T))
+((-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
NIL
-(-838 |p|)
+(-839 |p|)
((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime.")))
-((-4221 . T) (-4227 . T) (-4222 . T) ((-4231 "*") . T) (-4223 . T) (-4224 . T) (-4226 . T))
-((|HasCategory| $ (QUOTE (-135))) (|HasCategory| $ (QUOTE (-133))) (|HasCategory| $ (QUOTE (-341))))
-(-839 R0 -4045 UP UPUP R)
+((-4225 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
+((|HasCategory| $ (QUOTE (-135))) (|HasCategory| $ (QUOTE (-133))) (|HasCategory| $ (QUOTE (-342))))
+(-840 R0 -4049 UP UPUP R)
((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented")))
NIL
NIL
-(-840 UP UPUP R)
+(-841 UP UPUP R)
((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#3|)) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsionIfCan(f)} \\undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{order(f)} \\undocumented")))
NIL
NIL
-(-841 UP UPUP)
+(-842 UP UPUP)
((|constructor| (NIL "\\indented{1}{Utilities for PFOQ and PFO} Author: Manuel Bronstein Date Created: 25 Aug 1988 Date Last Updated: 11 Jul 1990")) (|polyred| ((|#2| |#2|) "\\spad{polyred(u)} \\undocumented")) (|doubleDisc| (((|Integer|) |#2|) "\\spad{doubleDisc(u)} \\undocumented")) (|mix| (((|Integer|) (|List| (|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))))) "\\spad{mix(l)} \\undocumented")) (|badNum| (((|Integer|) |#2|) "\\spad{badNum(u)} \\undocumented") (((|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))) |#1|) "\\spad{badNum(p)} \\undocumented")) (|getGoodPrime| (((|PositiveInteger|) (|Integer|)) "\\spad{getGoodPrime n} returns the smallest prime not dividing \\spad{n}")))
NIL
NIL
-(-842 R)
+(-843 R)
((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact\\spad{''} form has only one fractional term per prime in the denominator,{} while the \\spad{``p}-adic\\spad{''} form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,{}denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,{}x)} is a utility function that expands the second argument \\spad{x} \\spad{``p}-adically\\spad{''} in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,{}n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction.")))
-((-4221 . T) (-4227 . T) (-4222 . T) ((-4231 "*") . T) (-4223 . T) (-4224 . T) (-4226 . T))
+((-4225 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
NIL
-(-843 R)
+(-844 R)
((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num,{} facdenom,{} var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf,{} var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var.")))
NIL
NIL
-(-844 E OV R P)
+(-845 E OV R P)
((|gcdPrimitive| ((|#4| (|List| |#4|)) "\\spad{gcdPrimitive lp} computes the \\spad{gcd} of the list of primitive polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPrimitive(p,{}q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.") ((|#4| |#4| |#4|) "\\spad{gcdPrimitive(p,{}q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.")) (|gcd| (((|SparseUnivariatePolynomial| |#4|) (|List| (|SparseUnivariatePolynomial| |#4|))) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcd(p,{}q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}.") ((|#4| (|List| |#4|)) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") ((|#4| |#4| |#4|) "\\spad{gcd(p,{}q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}.")))
NIL
NIL
-(-845)
+(-846)
((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,{}...,{}nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(\\spad{li})} constructs the janko group acting on the 100 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(\\spad{li})} constructs the mathieu group acting on the 24 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(\\spad{li})} constructs the mathieu group acting on the 23 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(\\spad{li})} constructs the mathieu group acting on the 22 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(\\spad{li})} constructs the mathieu group acting on the 12 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed Error: if {\\em \\spad{li}} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(\\spad{li})} constructs the mathieu group acting on the 11 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. error,{} if {\\em \\spad{li}} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,{}...,{}ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,{}...,{}ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,{}...,{}nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em \\spad{ni}}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(\\spad{li})} constructs the alternating group acting on the integers in the list {\\em \\spad{li}},{} generators are in general the {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)} with {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,{}2)} with {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(\\spad{li})} constructs the symmetric group acting on the integers in the list {\\em \\spad{li}},{} generators are the cycle given by {\\em \\spad{li}} and the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,{}...,{}n)} and the 2-cycle {\\em (1,{}2)}.")))
NIL
NIL
-(-846 -4045)
+(-847 -4049)
((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}.")))
NIL
NIL
-(-847 R)
+(-848 R)
((|constructor| (NIL "\\indented{1}{Provides a coercion from the symbolic fractions in \\%\\spad{pi} with} integer coefficients to any Expression type. Date Created: 21 Feb 1990 Date Last Updated: 21 Feb 1990")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(\\spad{R}).")))
NIL
NIL
-(-848)
+(-849)
((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,{}...,{}fn],{}h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,{}...,{}fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,{}...,{}fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}")))
-((-4222 . T) ((-4231 "*") . T) (-4223 . T) (-4224 . T) (-4226 . T))
+((-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
NIL
-(-849)
+(-850)
((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}.")))
-(((-4231 "*") . T))
+(((-4235 "*") . T))
NIL
-(-850 -4045 P)
+(-851 -4049 P)
((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,{}l2)} \\undocumented")))
NIL
NIL
-(-851 |xx| -4045)
+(-852 |xx| -4049)
((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,{}lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,{}lf,{}lg)} \\undocumented")))
NIL
NIL
-(-852 R |Var| |Expon| GR)
+(-853 R |Var| |Expon| GR)
((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,{}c,{} w,{} p,{} r,{} rm,{} m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,{}g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,{}k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,{}sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,{}k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,{}g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,{}r)} computes a list of subdeterminants of each rank \\spad{>=} \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g,{} l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} \\spad{^=} 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c,{} w,{} r,{} s,{} m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,{}s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}k,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}")))
NIL
NIL
-(-853 S)
+(-854 S)
((|constructor| (NIL "PlotFunctions1 provides facilities for plotting curves where functions \\spad{SF} \\spad{->} \\spad{SF} are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,{}theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}theta,{}seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}t,{}seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,{}x,{}seg)} plots the graph of \\spad{y = f(x)} on a interval")))
NIL
NIL
-(-854)
+(-855)
((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s,{}t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,{}f2,{}f3,{}f4,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")))
NIL
NIL
-(-855)
+(-856)
((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,{}2*\\%\\spad{pi}]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,{}b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b,{}c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b,{}c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}.")))
NIL
NIL
-(-856)
+(-857)
((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented")))
NIL
NIL
-(-857 R -4045)
+(-858 R -4049)
((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol.")))
NIL
NIL
-(-858)
+(-859)
((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}.")))
NIL
NIL
-(-859 S A B)
+(-860 S A B)
((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B).")))
NIL
NIL
-(-860 S R -4045)
+(-861 S R -4049)
((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-861 I)
+(-862 I)
((|constructor| (NIL "This package provides pattern matching functions on integers.")) (|patternMatch| (((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|)) "\\spad{patternMatch(n,{} pat,{} res)} matches the pattern \\spad{pat} to the integer \\spad{n}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-862 S E)
+(-863 S E)
((|constructor| (NIL "This package provides pattern matching functions on kernels.")) (|patternMatch| (((|PatternMatchResult| |#1| |#2|) (|Kernel| |#2|) (|Pattern| |#1|) (|PatternMatchResult| |#1| |#2|)) "\\spad{patternMatch(f(e1,{}...,{}en),{} pat,{} res)} matches the pattern \\spad{pat} to \\spad{f(e1,{}...,{}en)}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-863 S R L)
+(-864 S R L)
((|constructor| (NIL "This package provides pattern matching functions on lists.")) (|patternMatch| (((|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchListResult| |#1| |#2| |#3|)) "\\spad{patternMatch(l,{} pat,{} res)} matches the pattern \\spad{pat} to the list \\spad{l}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-864 S E V R P)
+(-865 S E V R P)
((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p,{} pat,{} res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p,{} pat,{} res,{} vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables.")))
NIL
-((|HasCategory| |#3| (LIST (QUOTE -814) (|devaluate| |#1|))))
-(-865 R -4045 -2211)
+((|HasCategory| |#3| (LIST (QUOTE -815) (|devaluate| |#1|))))
+(-866 R -4049 -2212)
((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol.")))
NIL
NIL
-(-866 -2211)
+(-867 -2212)
((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}.")))
NIL
NIL
-(-867 S R Q)
+(-868 S R Q)
((|constructor| (NIL "This package provides pattern matching functions on quotients.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(a/b,{} pat,{} res)} matches the pattern \\spad{pat} to the quotient \\spad{a/b}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-868 S)
+(-869 S)
((|constructor| (NIL "This package provides pattern matching functions on symbols.")) (|patternMatch| (((|PatternMatchResult| |#1| (|Symbol|)) (|Symbol|) (|Pattern| |#1|) (|PatternMatchResult| |#1| (|Symbol|))) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion).")))
NIL
NIL
-(-869 S R P)
+(-870 S R P)
((|constructor| (NIL "This package provides tools for the pattern matcher.")) (|patternMatchTimes| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatchTimes(lsubj,{} lpat,{} res,{} match)} matches the product of patterns \\spad{reduce(*,{}lpat)} to the product of subjects \\spad{reduce(*,{}lsubj)}; \\spad{r} contains the previous matches and match is a pattern-matching function on \\spad{P}.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|Mapping| |#3| (|List| |#3|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatch(lsubj,{} lpat,{} op,{} res,{} match)} matches the list of patterns \\spad{lpat} to the list of subjects \\spad{lsubj},{} allowing for commutativity; \\spad{op} is the operator such that \\spad{op}(\\spad{lpat}) should match \\spad{op}(\\spad{lsubj}) at the end,{} \\spad{r} contains the previous matches,{} and match is a pattern-matching function on \\spad{P}.")))
NIL
NIL
-(-870)
+(-871)
((|constructor| (NIL "This package provides various polynomial number theoretic functions over the integers.")) (|legendre| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{legendre(n)} returns the \\spad{n}th Legendre polynomial \\spad{P[n](x)}. Note: Legendre polynomials,{} denoted \\spad{P[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{1/sqrt(1-2*t*x+t**2) = sum(P[n](x)*t**n,{} n=0..infinity)}.")) (|laguerre| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{laguerre(n)} returns the \\spad{n}th Laguerre polynomial \\spad{L[n](x)}. Note: Laguerre polynomials,{} denoted \\spad{L[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(x*t/(t-1))/(1-t) = sum(L[n](x)*t**n/n!,{} n=0..infinity)}.")) (|hermite| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{hermite(n)} returns the \\spad{n}th Hermite polynomial \\spad{H[n](x)}. Note: Hermite polynomials,{} denoted \\spad{H[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n=0..infinity)}.")) (|fixedDivisor| (((|Integer|) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{fixedDivisor(a)} for \\spad{a(x)} in \\spad{Z[x]} is the largest integer \\spad{f} such that \\spad{f} divides \\spad{a(x=k)} for all integers \\spad{k}. Note: fixed divisor of \\spad{a} is \\spad{reduce(gcd,{}[a(x=k) for k in 0..degree(a)])}.")) (|euler| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler polynomial \\spad{E[n](x)}. Note: Euler polynomials denoted \\spad{E(n,{}x)} computed by solving the differential equation \\spad{differentiate(E(n,{}x),{}x) = n E(n-1,{}x)} where \\spad{E(0,{}x) = 1} and initial condition comes from \\spad{E(n) = 2**n E(n,{}1/2)}.")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} returns the \\spad{n}th cyclotomic polynomial \\spad{phi[n](x)}. Note: \\spad{phi[n](x)} is the factor of \\spad{x**n - 1} whose roots are the primitive \\spad{n}th roots of unity.")) (|chebyshevU| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevU(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{U[n](x)}. Note: Chebyshev polynomials of the second kind,{} denoted \\spad{U[n](x)},{} computed from the two term recurrence. The generating function \\spad{1/(1-2*t*x+t**2) = sum(T[n](x)*t**n,{} n=0..infinity)}.")) (|chebyshevT| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevT(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{T[n](x)}. Note: Chebyshev polynomials of the first kind,{} denoted \\spad{T[n](x)},{} computed from the two term recurrence. The generating function \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x)*t**n,{} n=0..infinity)}.")) (|bernoulli| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli polynomial \\spad{B[n](x)}. Note: Bernoulli polynomials denoted \\spad{B(n,{}x)} computed by solving the differential equation \\spad{differentiate(B(n,{}x),{}x) = n B(n-1,{}x)} where \\spad{B(0,{}x) = 1} and initial condition comes from \\spad{B(n) = B(n,{}0)}.")))
NIL
NIL
-(-871 R)
+(-872 R)
((|constructor| (NIL "This domain implements points in coordinate space")))
-((-4230 . T) (-4229 . T))
-((|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| (-520) (QUOTE (-783))) (|HasCategory| |#1| (QUOTE (-1012))) (-3700 (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-662))) (|HasCategory| |#1| (QUOTE (-969))) (-12 (|HasCategory| |#1| (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-969)))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (-3700 (-12 (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-791)))) (-3700 (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-791))))))
-(-872 |lv| R)
+((-4234 . T) (-4233 . T))
+((|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| (-521) (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-1013))) (-3703 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-663))) (|HasCategory| |#1| (QUOTE (-970))) (-12 (|HasCategory| |#1| (QUOTE (-927))) (|HasCategory| |#1| (QUOTE (-970)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-792)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-792))))))
+(-873 |lv| R)
((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}.")))
NIL
NIL
-(-873 |TheField| |ThePols|)
+(-874 |TheField| |ThePols|)
((|constructor| (NIL "\\axiomType{RealPolynomialUtilitiesPackage} provides common functions used by interval coding.")) (|lazyVariations| (((|NonNegativeInteger|) (|List| |#1|) (|Integer|) (|Integer|)) "\\axiom{lazyVariations(\\spad{l},{}\\spad{s1},{}\\spad{sn})} is the number of sign variations in the list of non null numbers [s1::l]\\spad{@sn},{}")) (|sturmVariationsOf| (((|NonNegativeInteger|) (|List| |#1|)) "\\axiom{sturmVariationsOf(\\spad{l})} is the number of sign variations in the list of numbers \\spad{l},{} note that the first term counts as a sign")) (|boundOfCauchy| ((|#1| |#2|) "\\axiom{boundOfCauchy(\\spad{p})} bounds the roots of \\spad{p}")) (|sturmSequence| (((|List| |#2|) |#2|) "\\axiom{sturmSequence(\\spad{p}) = sylvesterSequence(\\spad{p},{}\\spad{p'})}")) (|sylvesterSequence| (((|List| |#2|) |#2| |#2|) "\\axiom{sylvesterSequence(\\spad{p},{}\\spad{q})} is the negated remainder sequence of \\spad{p} and \\spad{q} divided by the last computed term")))
NIL
-((|HasCategory| |#1| (QUOTE (-781))))
-(-874 R S)
+((|HasCategory| |#1| (QUOTE (-782))))
+(-875 R S)
((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f,{} p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}.")))
NIL
NIL
-(-875 |x| R)
+(-876 |x| R)
((|constructor| (NIL "This package is primarily to help the interpreter do coercions. It allows you to view a polynomial as a univariate polynomial in one of its variables with coefficients which are again a polynomial in all the other variables.")) (|univariate| (((|UnivariatePolynomial| |#1| (|Polynomial| |#2|)) (|Polynomial| |#2|) (|Variable| |#1|)) "\\spad{univariate(p,{} x)} converts the polynomial \\spad{p} to a one of type \\spad{UnivariatePolynomial(x,{}Polynomial(R))},{} ie. as a member of \\spad{R[...][x]}.")))
NIL
NIL
-(-876 S R E |VarSet|)
+(-877 S R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-837))) (|HasAttribute| |#2| (QUOTE -4227)) (|HasCategory| |#2| (QUOTE (-424))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#4| (LIST (QUOTE -814) (QUOTE (-352)))) (|HasCategory| |#2| (LIST (QUOTE -814) (QUOTE (-352)))) (|HasCategory| |#4| (LIST (QUOTE -814) (QUOTE (-520)))) (|HasCategory| |#2| (LIST (QUOTE -814) (QUOTE (-520)))) (|HasCategory| |#4| (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-352))))) (|HasCategory| |#2| (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-352))))) (|HasCategory| |#4| (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-520))))) (|HasCategory| |#2| (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-520))))) (|HasCategory| |#4| (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| |#2| (QUOTE (-783))))
-(-877 R E |VarSet|)
+((|HasCategory| |#2| (QUOTE (-838))) (|HasAttribute| |#2| (QUOTE -4231)) (|HasCategory| |#2| (QUOTE (-425))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#4| (LIST (QUOTE -815) (QUOTE (-353)))) (|HasCategory| |#2| (LIST (QUOTE -815) (QUOTE (-353)))) (|HasCategory| |#4| (LIST (QUOTE -815) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -815) (QUOTE (-521)))) (|HasCategory| |#4| (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-353))))) (|HasCategory| |#2| (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-353))))) (|HasCategory| |#4| (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-521))))) (|HasCategory| |#2| (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-521))))) (|HasCategory| |#4| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#2| (QUOTE (-784))))
+(-878 R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
-(((-4231 "*") |has| |#1| (-157)) (-4222 |has| |#1| (-512)) (-4227 |has| |#1| (-6 -4227)) (-4224 . T) (-4223 . T) (-4226 . T))
+(((-4235 "*") |has| |#1| (-157)) (-4226 |has| |#1| (-513)) (-4231 |has| |#1| (-6 -4231)) (-4228 . T) (-4227 . T) (-4230 . T))
NIL
-(-878 E V R P -4045)
+(-879 E V R P -4049)
((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f,{} x,{} p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
NIL
NIL
-(-879 E |Vars| R P S)
+(-880 E |Vars| R P S)
((|constructor| (NIL "This package provides a very general map function,{} which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S},{} maps polynomials into \\spad{S}. \\spad{S} is assumed to support \\spad{+},{} \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap,{} coefmap,{} p)} takes a \\spad{varmap},{} a mapping from the variables of polynomial \\spad{p} into \\spad{S},{} \\spad{coefmap},{} a mapping from coefficients of \\spad{p} into \\spad{S},{} and \\spad{p},{} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}")))
NIL
NIL
-(-880 R)
+(-881 R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,{}x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}.")))
-(((-4231 "*") |has| |#1| (-157)) (-4222 |has| |#1| (-512)) (-4227 |has| |#1| (-6 -4227)) (-4224 . T) (-4223 . T) (-4226 . T))
-((|HasCategory| |#1| (QUOTE (-837))) (|HasCategory| |#1| (QUOTE (-512))) (|HasCategory| |#1| (QUOTE (-157))) (-3700 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-512)))) (-12 (|HasCategory| (-1083) (LIST (QUOTE -814) (QUOTE (-352)))) (|HasCategory| |#1| (LIST (QUOTE -814) (QUOTE (-352))))) (-12 (|HasCategory| (-1083) (LIST (QUOTE -814) (QUOTE (-520)))) (|HasCategory| |#1| (LIST (QUOTE -814) (QUOTE (-520))))) (-12 (|HasCategory| (-1083) (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-352))))) (|HasCategory| |#1| (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-352)))))) (-12 (|HasCategory| (-1083) (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-520))))) (|HasCategory| |#1| (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-520)))))) (-12 (|HasCategory| (-1083) (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-496))))) (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#1| (LIST (QUOTE -582) (QUOTE (-520)))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#1| (LIST (QUOTE -960) (QUOTE (-520)))) (|HasCategory| |#1| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#1| (QUOTE (-336))) (-3700 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#1| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520)))))) (|HasAttribute| |#1| (QUOTE -4227)) (|HasCategory| |#1| (QUOTE (-424))) (-3700 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-424))) (|HasCategory| |#1| (QUOTE (-512))) (|HasCategory| |#1| (QUOTE (-837)))) (-3700 (|HasCategory| |#1| (QUOTE (-424))) (|HasCategory| |#1| (QUOTE (-512))) (|HasCategory| |#1| (QUOTE (-837)))) (-3700 (|HasCategory| |#1| (QUOTE (-424))) (|HasCategory| |#1| (QUOTE (-837)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-837)))) (-3700 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-837)))) (|HasCategory| |#1| (QUOTE (-133)))))
-(-881 E V R P -4045)
+(((-4235 "*") |has| |#1| (-157)) (-4226 |has| |#1| (-513)) (-4231 |has| |#1| (-6 -4231)) (-4228 . T) (-4227 . T) (-4230 . T))
+((|HasCategory| |#1| (QUOTE (-838))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-157))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-513)))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -815) (QUOTE (-353)))) (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-353))))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -815) (QUOTE (-521)))) (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-521))))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-353))))) (|HasCategory| |#1| (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-353)))))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-521)))))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-497))))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (QUOTE (-337))) (-3703 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521)))))) (|HasAttribute| |#1| (QUOTE -4231)) (|HasCategory| |#1| (QUOTE (-425))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-425))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-838)))) (-3703 (|HasCategory| |#1| (QUOTE (-425))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-838)))) (-3703 (|HasCategory| |#1| (QUOTE (-425))) (|HasCategory| |#1| (QUOTE (-838)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-838)))) (-3703 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (QUOTE (-133)))))
+(-882 E V R P -4049)
((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,{}n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|coerce| (($ |#4|) "\\spad{coerce(p)} \\undocumented")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented")))
NIL
-((|HasCategory| |#3| (QUOTE (-424))))
-(-882)
+((|HasCategory| |#3| (QUOTE (-425))))
+(-883)
((|constructor| (NIL "PlottablePlaneCurveCategory is the category of curves in the plane which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x}-coordinates and \\spad{y}-coordinates of the points on the curve.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}.")))
NIL
NIL
-(-883 R L)
+(-884 R L)
((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op,{} m)} returns the matrix A such that \\spad{A w = (W',{}W'',{}...,{}W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L),{} m}.")))
NIL
NIL
-(-884 A B)
+(-885 A B)
((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")))
NIL
NIL
-(-885 S)
+(-886 S)
((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed")))
-((-4230 . T) (-4229 . T))
-((|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| (-520) (QUOTE (-783))) (|HasCategory| |#1| (QUOTE (-1012))) (-3700 (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#1| (QUOTE (-1012)))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (-3700 (-12 (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-791)))) (-3700 (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-791))))))
-(-886)
+((-4234 . T) (-4233 . T))
+((|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| (-521) (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-1013))) (-3703 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-1013)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-792)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-792))))))
+(-887)
((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f,{} x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f,{} x)} returns the formal integral of \\spad{f} \\spad{dx}.")))
NIL
NIL
-(-887 -4045)
+(-888 -4049)
((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an],{} a)} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an])} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1,{} a1,{} p2,{} a2)} returns \\spad{[c1,{} c2,{} q]} such that \\spad{k(a1,{} a2) = k(a)} where \\spad{a = c1 a1 + c2 a2,{} and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}.")))
NIL
NIL
-(-888 I)
+(-889 I)
((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin\\spad{'s} probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,{}b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin\\spad{'s} probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for n<10**20. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime")))
NIL
NIL
-(-889)
+(-890)
((|constructor| (NIL "PrintPackage provides a print function for output forms.")) (|print| (((|Void|) (|OutputForm|)) "\\spad{print(o)} writes the output form \\spad{o} on standard output using the two-dimensional formatter.")))
NIL
NIL
-(-890 R E)
+(-891 R E)
((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
-(((-4231 "*") |has| |#1| (-157)) (-4222 |has| |#1| (-512)) (-4227 |has| |#1| (-6 -4227)) (-4223 . T) (-4224 . T) (-4226 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#1| (QUOTE (-512))) (|HasCategory| |#1| (QUOTE (-157))) (-3700 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-512)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#1| (LIST (QUOTE -960) (QUOTE (-520)))) (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (QUOTE (-424))) (-12 (|HasCategory| |#1| (QUOTE (-512))) (|HasCategory| |#2| (QUOTE (-124)))) (-3700 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#1| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520)))))) (|HasAttribute| |#1| (QUOTE -4227)))
-(-891 A B)
+(((-4235 "*") |has| |#1| (-157)) (-4226 |has| |#1| (-513)) (-4231 |has| |#1| (-6 -4231)) (-4227 . T) (-4228 . T) (-4230 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-157))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-513)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-425))) (-12 (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#2| (QUOTE (-124)))) (-3703 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521)))))) (|HasAttribute| |#1| (QUOTE -4231)))
+(-892 A B)
((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,{}b)} \\undocumented")))
-((-4226 -12 (|has| |#2| (-445)) (|has| |#1| (-445))))
-((-12 (|HasCategory| |#1| (QUOTE (-728))) (|HasCategory| |#2| (QUOTE (-728)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-445)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-341)))) (-12 (|HasCategory| |#1| (QUOTE (-662))) (|HasCategory| |#2| (QUOTE (-662)))) (-3700 (-12 (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-445)))) (-12 (|HasCategory| |#1| (QUOTE (-662))) (|HasCategory| |#2| (QUOTE (-662))))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-124)))) (-3700 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-124)))) (-12 (|HasCategory| |#1| (QUOTE (-728))) (|HasCategory| |#2| (QUOTE (-728))))) (-3700 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-124)))) (-12 (|HasCategory| |#1| (QUOTE (-728))) (|HasCategory| |#2| (QUOTE (-728))))) (-3700 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-124)))) (-12 (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-445)))) (-12 (|HasCategory| |#1| (QUOTE (-662))) (|HasCategory| |#2| (QUOTE (-662)))) (-12 (|HasCategory| |#1| (QUOTE (-728))) (|HasCategory| |#2| (QUOTE (-728))))) (-12 (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#2| (QUOTE (-783)))) (-3700 (-12 (|HasCategory| |#1| (QUOTE (-728))) (|HasCategory| |#2| (QUOTE (-728)))) (-12 (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#2| (QUOTE (-783))))))
-(-892 T$)
+((-4230 -12 (|has| |#2| (-446)) (|has| |#1| (-446))))
+((-12 (|HasCategory| |#1| (QUOTE (-729))) (|HasCategory| |#2| (QUOTE (-729)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-446)))) (-12 (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#2| (QUOTE (-342)))) (-12 (|HasCategory| |#1| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-663)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-446)))) (-12 (|HasCategory| |#1| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-663))))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-124)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-124)))) (-12 (|HasCategory| |#1| (QUOTE (-729))) (|HasCategory| |#2| (QUOTE (-729))))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-124)))) (-12 (|HasCategory| |#1| (QUOTE (-729))) (|HasCategory| |#2| (QUOTE (-729))))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-124)))) (-12 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-446)))) (-12 (|HasCategory| |#1| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-663)))) (-12 (|HasCategory| |#1| (QUOTE (-729))) (|HasCategory| |#2| (QUOTE (-729))))) (-12 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-784)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-729))) (|HasCategory| |#2| (QUOTE (-729)))) (-12 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-784))))))
+(-893 T$)
((|constructor| (NIL "This domain implements propositional formula build over a term domain,{} that itself belongs to PropositionalLogic")) (|equivOperands| (((|Pair| $ $) $) "\\spad{equivOperands p} extracts the operands to the logical equivalence; otherwise errors.")) (|equiv?| (((|Boolean|) $) "\\spad{equiv? p} is \\spad{true} when \\spad{`p'} is a logical equivalence.")) (|impliesOperands| (((|Pair| $ $) $) "\\spad{impliesOperands p} extracts the operands to the logical implication; otherwise errors.")) (|implies?| (((|Boolean|) $) "\\spad{implies? p} is \\spad{true} when \\spad{`p'} is a logical implication.")) (|orOperands| (((|Pair| $ $) $) "\\spad{orOperands p} extracts the operands to the logical disjunction; otherwise errors.")) (|or?| (((|Boolean|) $) "\\spad{or? p} is \\spad{true} when \\spad{`p'} is a logical disjunction.")) (|andOperands| (((|Pair| $ $) $) "\\spad{andOperands p} extracts the operands of the logical conjunction; otherwise errors.")) (|and?| (((|Boolean|) $) "\\spad{and? p} is \\spad{true} when \\spad{`p'} is a logical conjunction.")) (|notOperand| (($ $) "\\spad{notOperand returns} the operand to the logical `not' operator; otherwise errors.")) (|not?| (((|Boolean|) $) "\\spad{not? p} is \\spad{true} when \\spad{`p'} is a logical negation")) (|variable| (((|Symbol|) $) "\\spad{variable p} extracts the varible name from \\spad{`p'}; otherwise errors.")) (|variable?| (((|Boolean|) $) "variables? \\spad{p} returns \\spad{true} when \\spad{`p'} really is a variable.")) (|term| ((|#1| $) "\\spad{term p} extracts the term value from \\spad{`p'}; otherwise errors.")) (|term?| (((|Boolean|) $) "\\spad{term? p} returns \\spad{true} when \\spad{`p'} really is a term")) (|variables| (((|Set| (|Symbol|)) $) "\\spad{variables(p)} returns the set of propositional variables appearing in the proposition \\spad{`p'}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(t)} turns the term \\spad{`t'} into a propositional variable.") (($ |#1|) "\\spad{coerce(t)} turns the term \\spad{`t'} into a propositional formula")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-791)))))
-(-893)
+((|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-792)))))
+(-894)
((|constructor| (NIL "This category declares the connectives of Propositional Logic.")) (|equiv| (($ $ $) "\\spad{equiv(p,{}q)} returns the logical equivalence of \\spad{`p'},{} \\spad{`q'}.")) (|implies| (($ $ $) "\\spad{implies(p,{}q)} returns the logical implication of \\spad{`q'} by \\spad{`p'}.")) (|or| (($ $ $) "\\spad{p or q} returns the logical disjunction of \\spad{`p'},{} \\spad{`q'}.")) (|and| (($ $ $) "\\spad{p and q} returns the logical conjunction of \\spad{`p'},{} \\spad{`q'}.")) (|not| (($ $) "\\spad{not p} returns the logical negation of \\spad{`p'}.")))
NIL
NIL
-(-894 S)
+(-895 S)
((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,{}q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,{}q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}.")))
-((-4229 . T) (-4230 . T) (-2046 . T))
+((-4233 . T) (-4234 . T) (-2046 . T))
NIL
-(-895 R |polR|)
+(-896 R |polR|)
((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean1}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean2}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.\\spad{fr}}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{nextsousResultant2(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{\\spad{S_}{\\spad{e}-1}} where \\axiom{\\spad{P} ~ \\spad{S_d},{} \\spad{Q} = \\spad{S_}{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = \\spad{lc}(\\spad{S_d})}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard2(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)\\spad{**}(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{\\spad{gcd}(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{coef1 * \\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")))
NIL
-((|HasCategory| |#1| (QUOTE (-424))))
-(-896)
+((|HasCategory| |#1| (QUOTE (-425))))
+(-897)
((|constructor| (NIL "\\indented{1}{Partition is an OrderedCancellationAbelianMonoid which is used} as the basis for symmetric polynomial representation of the sums of powers in SymmetricPolynomial. Thus,{} \\spad{(5 2 2 1)} will represent \\spad{s5 * s2**2 * s1}.")) (|coerce| (((|List| (|Integer|)) $) "\\spad{coerce(p)} coerces a partition into a list of integers")) (|conjugate| (($ $) "\\spad{conjugate(p)} returns the conjugate partition of a partition \\spad{p}")) (|pdct| (((|Integer|) $) "\\spad{pdct(a1**n1 a2**n2 ...)} returns \\spad{n1! * a1**n1 * n2! * a2**n2 * ...}. This function is used in the package \\spadtype{CycleIndicators}.")) (|powers| (((|List| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{powers(\\spad{li})} returns a list of 2-element lists. For each 2-element list,{} the first element is an entry of \\spad{li} and the second element is the multiplicity with which the first element occurs in \\spad{li}. There is a 2-element list for each value occurring in \\spad{l}.")) (|partition| (($ (|List| (|Integer|))) "\\spad{partition(\\spad{li})} converts a list of integers \\spad{li} to a partition")))
NIL
NIL
-(-897 S |Coef| |Expon| |Var|)
+(-898 S |Coef| |Expon| |Var|)
((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#4|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#3| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#4|) (|List| |#3|)) "\\spad{monomial(a,{}[x1,{}..,{}xk],{}[n1,{}..,{}nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#4| |#3|) "\\spad{monomial(a,{}x,{}n)} computes \\spad{a*x**n}.")))
NIL
NIL
-(-898 |Coef| |Expon| |Var|)
+(-899 |Coef| |Expon| |Var|)
((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,{}[x1,{}..,{}xk],{}[n1,{}..,{}nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,{}x,{}n)} computes \\spad{a*x**n}.")))
-(((-4231 "*") |has| |#1| (-157)) (-4222 |has| |#1| (-512)) (-4223 . T) (-4224 . T) (-4226 . T))
+(((-4235 "*") |has| |#1| (-157)) (-4226 |has| |#1| (-513)) (-4227 . T) (-4228 . T) (-4230 . T))
NIL
-(-899)
+(-900)
((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x-},{} \\spad{y-},{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}.")))
NIL
NIL
-(-900 S R E |VarSet| P)
+(-901 S R E |VarSet| P)
((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#4|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned.")))
NIL
-((|HasCategory| |#2| (QUOTE (-512))))
-(-901 R E |VarSet| P)
+((|HasCategory| |#2| (QUOTE (-513))))
+(-902 R E |VarSet| P)
((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned.")))
-((-4229 . T) (-2046 . T))
+((-4233 . T) (-2046 . T))
NIL
-(-902 R E V P)
+(-903 R E V P)
((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{irreducibleFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of \\spad{gcd} techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{\\spad{lp}}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp},{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(\\spad{lp})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp})} returns \\axiom{\\spad{lg}} where \\axiom{\\spad{lg}} is a list of the gcds of every pair in \\axiom{\\spad{lp}} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(\\spad{lp},{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} and \\axiom{\\spad{lp}} generate the same ideal in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{lq}} has rank not higher than the one of \\axiom{\\spad{lp}}. Moreover,{} \\axiom{\\spad{lq}} is computed by reducing \\axiom{\\spad{lp}} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{\\spad{lp}}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(\\spad{lp},{}pred?,{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and and \\axiom{\\spad{lq}} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{\\spad{lq}}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(\\spad{lp})} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{\\spad{lp}}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and \\axiom{\\spad{lq}} generate the same ideal and no polynomial in \\axiom{\\spad{lq}} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}\\spad{lf})} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}\\spad{lf},{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf},{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(\\spad{lp})} returns \\axiom{\\spad{bps},{}nbps} where \\axiom{\\spad{bps}} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(\\spad{lp})} returns \\axiom{\\spad{lps},{}nlps} where \\axiom{\\spad{lps}} is a list of the linear polynomials in \\spad{lp},{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(\\spad{lp})} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(\\spad{lp})} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{\\spad{lp}} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{\\spad{bps}} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(\\spad{lp})} returns \\spad{true} iff the number of polynomials in \\axiom{\\spad{lp}} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}\\spad{llp})} returns \\spad{true} iff for every \\axiom{\\spad{lp}} in \\axiom{\\spad{llp}} certainlySubVariety?(newlp,{}\\spad{lp}) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}\\spad{lp})} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is \\spad{gcd}-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(\\spad{lp})} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in \\spad{lp}]} if \\axiom{\\spad{R}} is \\spad{gcd}-domain else returns \\axiom{\\spad{lp}}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq},{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lq})),{}\\spad{lq})} assuming that \\axiom{remOp(\\spad{lq})} returns \\axiom{\\spad{lq}} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{removeRedundantFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}\\spad{lp}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lq}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lq} = [\\spad{q1},{}...,{}\\spad{qm}]} then the product \\axiom{p1*p2*...\\spad{*pn}} vanishes iff the product \\axiom{q1*q2*...\\spad{*qm}} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{\\spad{pj}},{} and no polynomial in \\axiom{\\spad{lq}} divides another polynomial in \\axiom{\\spad{lq}}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{\\spad{lq}} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is \\spad{gcd}-domain,{} the polynomials in \\axiom{\\spad{lq}} are pairwise without common non trivial factor.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-281)))) (|HasCategory| |#1| (QUOTE (-424))))
-(-903 K)
+((-12 (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-282)))) (|HasCategory| |#1| (QUOTE (-425))))
+(-904 K)
((|constructor| (NIL "PseudoLinearNormalForm provides a function for computing a block-companion form for pseudo-linear operators.")) (|companionBlocks| (((|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{companionBlocks(m,{} v)} returns \\spad{[[C_1,{} g_1],{}...,{}[C_k,{} g_k]]} such that each \\spad{C_i} is a companion block and \\spad{m = diagonal(C_1,{}...,{}C_k)}.")) (|changeBase| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{changeBase(M,{} A,{} sig,{} der)}: computes the new matrix of a pseudo-linear transform given by the matrix \\spad{M} under the change of base A")) (|normalForm| (((|Record| (|:| R (|Matrix| |#1|)) (|:| A (|Matrix| |#1|)) (|:| |Ainv| (|Matrix| |#1|))) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{normalForm(M,{} sig,{} der)} returns \\spad{[R,{} A,{} A^{-1}]} such that the pseudo-linear operator whose matrix in the basis \\spad{y} is \\spad{M} had matrix \\spad{R} in the basis \\spad{z = A y}. \\spad{der} is a \\spad{sig}-derivation.")))
NIL
NIL
-(-904 |VarSet| E RC P)
+(-905 |VarSet| E RC P)
((|constructor| (NIL "This package computes square-free decomposition of multivariate polynomials over a coefficient ring which is an arbitrary \\spad{gcd} domain. The requirement on the coefficient domain guarantees that the \\spadfun{content} can be removed so that factors will be primitive as well as square-free. Over an infinite ring of finite characteristic,{}it may not be possible to guarantee that the factors are square-free.")) (|squareFree| (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} returns the square-free factorization of the polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")))
NIL
NIL
-(-905 R)
+(-906 R)
((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,{}l,{}r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|convert| (($ (|List| |#1|)) "\\spad{convert(l)} takes a list of elements,{} \\spad{l},{} from the domain Ring and returns the form of point category.")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}.")))
-((-4230 . T) (-4229 . T) (-2046 . T))
+((-4234 . T) (-4233 . T) (-2046 . T))
NIL
-(-906 R1 R2)
+(-907 R1 R2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,{}p)} \\undocumented")))
NIL
NIL
-(-907 R)
+(-908 R)
((|constructor| (NIL "This package \\undocumented")) (|shade| ((|#1| (|Point| |#1|)) "\\spad{shade(pt)} returns the fourth element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} shade to express a fourth dimension.")) (|hue| ((|#1| (|Point| |#1|)) "\\spad{hue(pt)} returns the third element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} hue to express a third dimension.")) (|color| ((|#1| (|Point| |#1|)) "\\spad{color(pt)} returns the fourth element of the point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} color to express a fourth dimension.")) (|phiCoord| ((|#1| (|Point| |#1|)) "\\spad{phiCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical coordinate system.")) (|thetaCoord| ((|#1| (|Point| |#1|)) "\\spad{thetaCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|rCoord| ((|#1| (|Point| |#1|)) "\\spad{rCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|zCoord| ((|#1| (|Point| |#1|)) "\\spad{zCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian or a cylindrical coordinate system.")) (|yCoord| ((|#1| (|Point| |#1|)) "\\spad{yCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")) (|xCoord| ((|#1| (|Point| |#1|)) "\\spad{xCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")))
NIL
NIL
-(-908 K)
+(-909 K)
((|constructor| (NIL "This is the description of any package which provides partial functions on a domain belonging to TranscendentalFunctionCategory.")) (|acschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acschIfCan(z)} returns acsch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asechIfCan(z)} returns asech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acothIfCan(z)} returns acoth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanhIfCan(z)} returns atanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acoshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acoshIfCan(z)} returns acosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinhIfCan(z)} returns asinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cschIfCan(z)} returns csch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sechIfCan(z)} returns sech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cothIfCan(z)} returns coth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanhIfCan(z)} returns tanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|coshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{coshIfCan(z)} returns cosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinhIfCan(z)} returns sinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acscIfCan(z)} returns acsc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asecIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asecIfCan(z)} returns asec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acotIfCan(z)} returns acot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanIfCan(z)} returns atan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acosIfCan(z)} returns acos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinIfCan(z)} returns asin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cscIfCan(z)} returns \\spad{csc}(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|secIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{secIfCan(z)} returns sec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cotIfCan(z)} returns cot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanIfCan(z)} returns tan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cosIfCan(z)} returns cos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinIfCan(z)} returns sin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|logIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{logIfCan(z)} returns log(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|expIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{expIfCan(z)} returns exp(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|nthRootIfCan| (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{nthRootIfCan(z,{}n)} returns the \\spad{n}th root of \\spad{z} if possible,{} and \"failed\" otherwise.")))
NIL
NIL
-(-909 R E OV PPR)
+(-910 R E OV PPR)
((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,{}p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,{}v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,{}v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-910 K R UP -4045)
+(-911 K R UP -4049)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,{}y]/(f(x,{}y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,{}y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")))
NIL
NIL
-(-911 |vl| |nv|)
+(-912 |vl| |nv|)
((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals")))
NIL
NIL
-(-912 R |Var| |Expon| |Dpoly|)
+(-913 R |Var| |Expon| |Dpoly|)
((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger\\spad{'s} algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) "failed")) "\\spad{setStatus(s,{}t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don\\spad{'t} know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) "failed") $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,{}q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} \\spad{^=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-281)))))
-(-913 R E V P TS)
+((-12 (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-282)))))
+(-914 R E V P TS)
((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
NIL
-(-914)
+(-915)
((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (\\spadignore{i.e.} right hand side) of \\axiom{\\spad{q}}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (\\spadignore{i.e.} left hand side) of \\axiom{\\spad{q}}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,{}\"a\")} creates a new equation.")))
NIL
NIL
-(-915 A B R S)
+(-916 A B R S)
((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,{}frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}.")))
NIL
NIL
-(-916 A S)
+(-917 A S)
((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-837))) (|HasCategory| |#2| (QUOTE (-505))) (|HasCategory| |#2| (QUOTE (-281))) (|HasCategory| |#2| (LIST (QUOTE -960) (QUOTE (-1083)))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| |#2| (QUOTE (-945))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-783))) (|HasCategory| |#2| (LIST (QUOTE -960) (QUOTE (-520)))) (|HasCategory| |#2| (QUOTE (-1059))))
-(-917 S)
+((|HasCategory| |#2| (QUOTE (-838))) (|HasCategory| |#2| (QUOTE (-506))) (|HasCategory| |#2| (QUOTE (-282))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-1084)))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#2| (QUOTE (-946))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#2| (QUOTE (-1060))))
+(-918 S)
((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}.")))
-((-2046 . T) (-4221 . T) (-4227 . T) (-4222 . T) ((-4231 "*") . T) (-4223 . T) (-4224 . T) (-4226 . T))
+((-2046 . T) (-4225 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
NIL
-(-918 |n| K)
+(-919 |n| K)
((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|elt| ((|#2| $ (|DirectProduct| |#1| |#2|)) "\\spad{elt(qf,{}v)} evaluates the quadratic form \\spad{qf} on the vector \\spad{v},{} producing a scalar.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}.")))
NIL
NIL
-(-919 S)
+(-920 S)
((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\spad{#q}}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,{}q)} inserts \\spad{x} into the queue \\spad{q} at the back end.")))
-((-4229 . T) (-4230 . T) (-2046 . T))
+((-4233 . T) (-4234 . T) (-2046 . T))
NIL
-(-920 S R)
+(-921 S R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-505))) (|HasCategory| |#2| (QUOTE (-978))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| |#2| (QUOTE (-336))) (|HasCategory| |#2| (QUOTE (-783))) (|HasCategory| |#2| (QUOTE (-264))))
-(-921 R)
+((|HasCategory| |#2| (QUOTE (-506))) (|HasCategory| |#2| (QUOTE (-979))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#2| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-265))))
+(-922 R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
-((-4222 |has| |#1| (-264)) (-4223 . T) (-4224 . T) (-4226 . T))
+((-4226 |has| |#1| (-265)) (-4227 . T) (-4228 . T) (-4230 . T))
NIL
-(-922 QR R QS S)
+(-923 QR R QS S)
((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}.")))
NIL
NIL
-(-923 R)
+(-924 R)
((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}")))
-((-4222 |has| |#1| (-264)) (-4223 . T) (-4224 . T) (-4226 . T))
-((|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (QUOTE (-264))) (-3700 (|HasCategory| |#1| (QUOTE (-264))) (|HasCategory| |#1| (QUOTE (-336)))) (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#1| (LIST (QUOTE -582) (QUOTE (-520)))) (|HasCategory| |#1| (LIST (QUOTE -481) (QUOTE (-1083)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -260) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-209))) (|HasCategory| |#1| (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasCategory| |#1| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#1| (LIST (QUOTE -960) (QUOTE (-520)))) (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-505))) (-3700 (|HasCategory| |#1| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#1| (QUOTE (-336)))))
-(-924 S)
-((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,{}y,{}...,{}z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}.")))
-((-4229 . T) (-4230 . T))
-((|HasCategory| |#1| (QUOTE (-1012))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-791)))) (-3700 (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-791))))))
+((-4226 |has| |#1| (-265)) (-4227 . T) (-4228 . T) (-4230 . T))
+((|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-265))) (-3703 (|HasCategory| |#1| (QUOTE (-265))) (|HasCategory| |#1| (QUOTE (-337)))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#1| (LIST (QUOTE -482) (QUOTE (-1084)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -261) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-210))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-979))) (|HasCategory| |#1| (QUOTE (-506))) (-3703 (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (QUOTE (-337)))))
(-925 S)
+((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,{}y,{}...,{}z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}.")))
+((-4233 . T) (-4234 . T))
+((|HasCategory| |#1| (QUOTE (-1013))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-792)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-792))))))
+(-926 S)
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
NIL
-(-926)
+(-927)
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
NIL
-(-927 -4045 UP UPUP |radicnd| |n|)
+(-928 -4049 UP UPUP |radicnd| |n|)
((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x}).")))
-((-4222 |has| (-380 |#2|) (-336)) (-4227 |has| (-380 |#2|) (-336)) (-4221 |has| (-380 |#2|) (-336)) ((-4231 "*") . T) (-4223 . T) (-4224 . T) (-4226 . T))
-((|HasCategory| (-380 |#2|) (QUOTE (-133))) (|HasCategory| (-380 |#2|) (QUOTE (-135))) (|HasCategory| (-380 |#2|) (QUOTE (-322))) (|HasCategory| (-380 |#2|) (QUOTE (-336))) (-3700 (|HasCategory| (-380 |#2|) (QUOTE (-336))) (|HasCategory| (-380 |#2|) (QUOTE (-322)))) (|HasCategory| (-380 |#2|) (QUOTE (-341))) (|HasCategory| (-380 |#2|) (LIST (QUOTE -582) (QUOTE (-520)))) (|HasCategory| (-380 |#2|) (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| (-380 |#2|) (LIST (QUOTE -960) (QUOTE (-520)))) (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (QUOTE (-341))) (-3700 (|HasCategory| (-380 |#2|) (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| (-380 |#2|) (QUOTE (-336)))) (-12 (|HasCategory| (-380 |#2|) (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasCategory| (-380 |#2|) (QUOTE (-336)))) (-3700 (-12 (|HasCategory| (-380 |#2|) (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasCategory| (-380 |#2|) (QUOTE (-336)))) (-12 (|HasCategory| (-380 |#2|) (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasCategory| (-380 |#2|) (QUOTE (-322))))) (-12 (|HasCategory| (-380 |#2|) (QUOTE (-209))) (|HasCategory| (-380 |#2|) (QUOTE (-336)))) (-3700 (-12 (|HasCategory| (-380 |#2|) (QUOTE (-209))) (|HasCategory| (-380 |#2|) (QUOTE (-336)))) (|HasCategory| (-380 |#2|) (QUOTE (-322)))))
-(-928 |bb|)
+((-4226 |has| (-381 |#2|) (-337)) (-4231 |has| (-381 |#2|) (-337)) (-4225 |has| (-381 |#2|) (-337)) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
+((|HasCategory| (-381 |#2|) (QUOTE (-133))) (|HasCategory| (-381 |#2|) (QUOTE (-135))) (|HasCategory| (-381 |#2|) (QUOTE (-323))) (|HasCategory| (-381 |#2|) (QUOTE (-337))) (-3703 (|HasCategory| (-381 |#2|) (QUOTE (-337))) (|HasCategory| (-381 |#2|) (QUOTE (-323)))) (|HasCategory| (-381 |#2|) (QUOTE (-342))) (|HasCategory| (-381 |#2|) (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| (-381 |#2|) (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| (-381 |#2|) (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-342))) (-3703 (|HasCategory| (-381 |#2|) (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| (-381 |#2|) (QUOTE (-337)))) (-12 (|HasCategory| (-381 |#2|) (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasCategory| (-381 |#2|) (QUOTE (-337)))) (-3703 (-12 (|HasCategory| (-381 |#2|) (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasCategory| (-381 |#2|) (QUOTE (-337)))) (-12 (|HasCategory| (-381 |#2|) (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasCategory| (-381 |#2|) (QUOTE (-323))))) (-12 (|HasCategory| (-381 |#2|) (QUOTE (-210))) (|HasCategory| (-381 |#2|) (QUOTE (-337)))) (-3703 (-12 (|HasCategory| (-381 |#2|) (QUOTE (-210))) (|HasCategory| (-381 |#2|) (QUOTE (-337)))) (|HasCategory| (-381 |#2|) (QUOTE (-323)))))
+(-929 |bb|)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,{}cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],{}[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,{}3,{}4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,{}1,{}4,{}2,{}8,{}5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,{}0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion.")) (|coerce| (((|Fraction| (|Integer|)) $) "\\spad{coerce(rx)} converts a radix expansion to a rational number.")))
-((-4221 . T) (-4227 . T) (-4222 . T) ((-4231 "*") . T) (-4223 . T) (-4224 . T) (-4226 . T))
-((|HasCategory| (-520) (QUOTE (-837))) (|HasCategory| (-520) (LIST (QUOTE -960) (QUOTE (-1083)))) (|HasCategory| (-520) (QUOTE (-133))) (|HasCategory| (-520) (QUOTE (-135))) (|HasCategory| (-520) (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| (-520) (QUOTE (-945))) (|HasCategory| (-520) (QUOTE (-756))) (|HasCategory| (-520) (LIST (QUOTE -960) (QUOTE (-520)))) (|HasCategory| (-520) (QUOTE (-1059))) (|HasCategory| (-520) (LIST (QUOTE -814) (QUOTE (-520)))) (|HasCategory| (-520) (LIST (QUOTE -814) (QUOTE (-352)))) (|HasCategory| (-520) (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-352))))) (|HasCategory| (-520) (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-520))))) (|HasCategory| (-520) (QUOTE (-209))) (|HasCategory| (-520) (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasCategory| (-520) (LIST (QUOTE -481) (QUOTE (-1083)) (QUOTE (-520)))) (|HasCategory| (-520) (LIST (QUOTE -283) (QUOTE (-520)))) (|HasCategory| (-520) (LIST (QUOTE -260) (QUOTE (-520)) (QUOTE (-520)))) (|HasCategory| (-520) (QUOTE (-281))) (|HasCategory| (-520) (QUOTE (-505))) (|HasCategory| (-520) (QUOTE (-783))) (-3700 (|HasCategory| (-520) (QUOTE (-756))) (|HasCategory| (-520) (QUOTE (-783)))) (|HasCategory| (-520) (LIST (QUOTE -582) (QUOTE (-520)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-520) (QUOTE (-837)))) (-3700 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-520) (QUOTE (-837)))) (|HasCategory| (-520) (QUOTE (-133)))))
-(-929)
+((-4225 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
+((|HasCategory| (-521) (QUOTE (-838))) (|HasCategory| (-521) (LIST (QUOTE -961) (QUOTE (-1084)))) (|HasCategory| (-521) (QUOTE (-133))) (|HasCategory| (-521) (QUOTE (-135))) (|HasCategory| (-521) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| (-521) (QUOTE (-946))) (|HasCategory| (-521) (QUOTE (-757))) (|HasCategory| (-521) (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| (-521) (QUOTE (-1060))) (|HasCategory| (-521) (LIST (QUOTE -815) (QUOTE (-521)))) (|HasCategory| (-521) (LIST (QUOTE -815) (QUOTE (-353)))) (|HasCategory| (-521) (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-353))))) (|HasCategory| (-521) (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-521))))) (|HasCategory| (-521) (QUOTE (-210))) (|HasCategory| (-521) (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasCategory| (-521) (LIST (QUOTE -482) (QUOTE (-1084)) (QUOTE (-521)))) (|HasCategory| (-521) (LIST (QUOTE -284) (QUOTE (-521)))) (|HasCategory| (-521) (LIST (QUOTE -261) (QUOTE (-521)) (QUOTE (-521)))) (|HasCategory| (-521) (QUOTE (-282))) (|HasCategory| (-521) (QUOTE (-506))) (|HasCategory| (-521) (QUOTE (-784))) (-3703 (|HasCategory| (-521) (QUOTE (-757))) (|HasCategory| (-521) (QUOTE (-784)))) (|HasCategory| (-521) (LIST (QUOTE -583) (QUOTE (-521)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-521) (QUOTE (-838)))) (-3703 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-521) (QUOTE (-838)))) (|HasCategory| (-521) (QUOTE (-133)))))
+(-930)
((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,{}b)} converts \\spad{x} to a radix expansion in base \\spad{b}.")))
NIL
NIL
-(-930)
+(-931)
((|constructor| (NIL "Random number generators \\indented{2}{All random numbers used in the system should originate from} \\indented{2}{the same generator.\\space{2}This package is intended to be the source.}")) (|seed| (((|Integer|)) "\\spad{seed()} returns the current seed value.")) (|reseed| (((|Void|) (|Integer|)) "\\spad{reseed(n)} restarts the random number generator at \\spad{n}.")) (|size| (((|Integer|)) "\\spad{size()} is the base of the random number generator")) (|randnum| (((|Integer|) (|Integer|)) "\\spad{randnum(n)} is a random number between 0 and \\spad{n}.") (((|Integer|)) "\\spad{randnum()} is a random number between 0 and size().")))
NIL
NIL
-(-931 RP)
+(-932 RP)
((|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} factors an extended squareFree polynomial \\spad{p} over the rational numbers.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} factors an extended polynomial \\spad{p} over the rational numbers.")))
NIL
NIL
-(-932 S)
+(-933 S)
((|constructor| (NIL "rational number testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") |#1|) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} \"failed\" if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) |#1|) "\\spad{rational?(x)} returns \\spad{true} if \\spad{x} is a rational number,{} \\spad{false} otherwise.")) (|rational| (((|Fraction| (|Integer|)) |#1|) "\\spad{rational(x)} returns \\spad{x} as a rational number; error if \\spad{x} is not a rational number.")))
NIL
NIL
-(-933 A S)
+(-934 A S)
((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4230)) (|HasCategory| |#2| (QUOTE (-1012))))
-(-934 S)
+((|HasAttribute| |#1| (QUOTE -4234)) (|HasCategory| |#2| (QUOTE (-1013))))
+(-935 S)
((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
((-2046 . T))
NIL
-(-935 S)
+(-936 S)
((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|NonNegativeInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}")))
NIL
NIL
-(-936)
+(-937)
((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|NonNegativeInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}")))
-((-4222 . T) (-4227 . T) (-4221 . T) (-4224 . T) (-4223 . T) ((-4231 "*") . T) (-4226 . T))
+((-4226 . T) (-4231 . T) (-4225 . T) (-4228 . T) (-4227 . T) ((-4235 "*") . T) (-4230 . T))
NIL
-(-937 R -4045)
+(-938 R -4049)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n,{} f,{} g,{} x,{} lim,{} ext)} returns \\spad{[y,{} h,{} b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function.")))
NIL
NIL
-(-938 R -4045)
+(-939 R -4049)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n,{} f,{} g_1,{} g_2,{} x,{}lim,{}ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,{}dy2/dx) + ((0,{} - n df/dx),{}(n df/dx,{}0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function.")))
NIL
NIL
-(-939 -4045 UP)
+(-940 -4049 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a,{} B,{} C,{} n,{} D)} returns either: 1. \\spad{[Q,{} b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1,{} C1,{} m,{} \\alpha,{} \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f,{} g)} returns a \\spad{[y,{} b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,{}g,{}D)} returns \\spad{[A,{} B,{} C,{} T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-940 -4045 UP)
+(-941 -4049 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f,{} g1,{} g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,{}g1,{}g2,{}D)} returns \\spad{[A,{} B,{} H,{} C1,{} C2,{} T]} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} has a solution if and only if \\spad{y1 = Q1 / T,{} y2 = Q2 / T},{} where \\spad{B,{}C1,{}C2,{}Q1,{}Q2} have no normal poles and satisfy A \\spad{(Q1',{} Q2') + ((H,{} -B),{} (B,{} H)) (Q1,{}Q2) = (C1,{}C2)} \\spad{D} is the derivation to use.")))
NIL
NIL
-(-941 S)
+(-942 S)
((|constructor| (NIL "This package exports random distributions")) (|rdHack1| (((|Mapping| |#1|) (|Vector| |#1|) (|Vector| (|Integer|)) (|Integer|)) "\\spad{rdHack1(v,{}u,{}n)} \\undocumented")) (|weighted| (((|Mapping| |#1|) (|List| (|Record| (|:| |value| |#1|) (|:| |weight| (|Integer|))))) "\\spad{weighted(l)} \\undocumented")) (|uniform| (((|Mapping| |#1|) (|Set| |#1|)) "\\spad{uniform(s)} \\undocumented")))
NIL
NIL
-(-942 F1 UP UPUP R F2)
+(-943 F1 UP UPUP R F2)
((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 8 November 1994")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|) |#3| (|Mapping| |#5| |#1|)) "\\spad{order(f,{}u,{}g)} \\undocumented")))
NIL
NIL
-(-943 |Pol|)
+(-944 |Pol|)
((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}.")))
NIL
NIL
-(-944 |Pol|)
+(-945 |Pol|)
((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}.")))
NIL
NIL
-(-945)
+(-946)
((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats.")))
NIL
NIL
-(-946)
+(-947)
((|constructor| (NIL "\\indented{1}{This package provides numerical solutions of systems of polynomial} equations for use in ACPLOT.")) (|realSolve| (((|List| (|List| (|Float|))) (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Float|)) "\\spad{realSolve(lp,{}lv,{}eps)} = compute the list of the real solutions of the list \\spad{lp} of polynomials with integer coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}.")) (|solve| (((|List| (|Float|)) (|Polynomial| (|Integer|)) (|Float|)) "\\spad{solve(p,{}eps)} finds the real zeroes of a univariate integer polynomial \\spad{p} with precision \\spad{eps}.") (((|List| (|Float|)) (|Polynomial| (|Fraction| (|Integer|))) (|Float|)) "\\spad{solve(p,{}eps)} finds the real zeroes of a univariate rational polynomial \\spad{p} with precision \\spad{eps}.")))
NIL
NIL
-(-947 |TheField|)
+(-948 |TheField|)
((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number")))
-((-4222 . T) (-4227 . T) (-4221 . T) (-4224 . T) (-4223 . T) ((-4231 "*") . T) (-4226 . T))
-((|HasCategory| |#1| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#1| (LIST (QUOTE -960) (QUOTE (-520)))) (|HasCategory| (-380 (-520)) (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| (-380 (-520)) (LIST (QUOTE -960) (QUOTE (-520)))) (-3700 (|HasCategory| (-380 (-520)) (LIST (QUOTE -960) (QUOTE (-520)))) (|HasCategory| |#1| (LIST (QUOTE -960) (QUOTE (-520))))))
-(-948 -4045 L)
+((-4226 . T) (-4231 . T) (-4225 . T) (-4228 . T) (-4227 . T) ((-4235 "*") . T) (-4230 . T))
+((|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| (-381 (-521)) (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| (-381 (-521)) (LIST (QUOTE -961) (QUOTE (-521)))) (-3703 (|HasCategory| (-381 (-521)) (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521))))))
+(-949 -4049 L)
((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op,{} [f1,{}...,{}fk])} returns \\spad{[op1,{}[g1,{}...,{}gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{\\spad{fi}} must satisfy \\spad{op \\spad{fi} = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op,{} s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}.")))
NIL
NIL
-(-949 S)
+(-950 S)
((|constructor| (NIL "\\indented{1}{\\spadtype{Reference} is for making a changeable instance} of something.")) (= (((|Boolean|) $ $) "\\spad{a=b} tests if \\spad{a} and \\spad{b} are equal.")) (|setref| ((|#1| $ |#1|) "\\spad{setref(n,{}m)} same as \\spad{setelt(n,{}m)}.")) (|deref| ((|#1| $) "\\spad{deref(n)} is equivalent to \\spad{elt(n)}.")) (|setelt| ((|#1| $ |#1|) "\\spad{setelt(n,{}m)} changes the value of the object \\spad{n} to \\spad{m}.")) (|elt| ((|#1| $) "\\spad{elt(n)} returns the object \\spad{n}.")) (|ref| (($ |#1|) "\\spad{ref(n)} creates a pointer (reference) to the object \\spad{n}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-1012))))
-(-950 R E V P)
+((|HasCategory| |#1| (QUOTE (-1013))))
+(-951 R E V P)
((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
-((-4230 . T) (-4229 . T))
-((|HasCategory| |#4| (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| |#4| (QUOTE (-1012))) (-12 (|HasCategory| |#4| (QUOTE (-1012))) (|HasCategory| |#4| (LIST (QUOTE -283) (|devaluate| |#4|)))) (|HasCategory| |#1| (QUOTE (-512))) (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#4| (LIST (QUOTE -560) (QUOTE (-791)))))
-(-951 R)
+((-4234 . T) (-4233 . T))
+((|HasCategory| |#4| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#4| (QUOTE (-1013))) (-12 (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#4| (LIST (QUOTE -284) (|devaluate| |#4|)))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#3| (QUOTE (-342))) (|HasCategory| |#4| (LIST (QUOTE -561) (QUOTE (-792)))))
+(-952 R)
((|constructor| (NIL "RepresentationPackage1 provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,{}4,{}3,{}2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,{}2,{}...,{}n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} (Kronecker delta) for the permutations {\\em pi1,{}...,{}pik} of {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) if the permutation {\\em \\spad{pi}} is in list notation and permutes {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) for a permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...ak])} calculates the list of Kronecker products of each matrix {\\em \\spad{ai}} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...,{}ak],{}[b1,{}...,{}bk])} calculates the list of Kronecker products of the matrices {\\em \\spad{ai}} and {\\em \\spad{bi}} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,{}b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,{}n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,{}j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,{}n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.")))
NIL
-((|HasAttribute| |#1| (QUOTE (-4231 "*"))))
-(-952 R)
+((|HasAttribute| |#1| (QUOTE (-4235 "*"))))
+(-953 R)
((|constructor| (NIL "RepresentationPackage2 provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,{}n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,{}...,{}0,{}1,{}*,{}...,{}*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG,{} numberOfTries)} calls {\\em meatAxe(aG,{}true,{}numberOfTries,{}7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG,{} randomElements)} calls {\\em meatAxe(aG,{}false,{}6,{}7)},{} only using Parker\\spad{'s} fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,{}true,{}25,{}7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,{}false,{}25,{}7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker\\spad{'s} fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,{}randomElements,{}numberOfTries,{} maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker\\spad{'s} fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,{}submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG,{} vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG,{} numberOfTries)} uses Norton\\spad{'s} irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}numberOfTries)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,{}aG1)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}randomelements,{}numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,{}v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,{}v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,{}x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis.")))
NIL
-((|HasCategory| |#1| (QUOTE (-336))) (-12 (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-281))))
-(-953 S)
+((|HasCategory| |#1| (QUOTE (-337))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-342)))) (|HasCategory| |#1| (QUOTE (-282))))
+(-954 S)
((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i,{} r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}")))
NIL
NIL
-(-954)
+(-955)
((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,{}m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals.")))
NIL
NIL
-(-955 S)
+(-956 S)
((|constructor| (NIL "Implements exponentiation by repeated squaring")) (|expt| ((|#1| |#1| (|PositiveInteger|)) "\\spad{expt(r,{} i)} computes r**i by repeated squaring")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}")))
NIL
NIL
-(-956 S)
+(-957 S)
((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used.")))
NIL
NIL
-(-957 -4045 |Expon| |VarSet| |FPol| |LFPol|)
+(-958 -4049 |Expon| |VarSet| |FPol| |LFPol|)
((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring")))
-(((-4231 "*") . T) (-4223 . T) (-4224 . T) (-4226 . T))
+(((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
NIL
-(-958)
+(-959)
((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}")))
-((-4229 . T) (-4230 . T))
-((|HasCategory| (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (QUOTE (-1012))) (-12 (|HasCategory| (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (QUOTE (-1012))) (|HasCategory| (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (LIST (QUOTE -283) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2526) (QUOTE (-1083))) (LIST (QUOTE |:|) (QUOTE -3043) (QUOTE (-51))))))) (|HasCategory| (-1083) (QUOTE (-783))) (|HasCategory| (-51) (QUOTE (-1012))) (-3700 (|HasCategory| (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (QUOTE (-1012))) (|HasCategory| (-51) (QUOTE (-1012)))) (-12 (|HasCategory| (-51) (QUOTE (-1012))) (|HasCategory| (-51) (LIST (QUOTE -283) (QUOTE (-51))))) (|HasCategory| (-51) (LIST (QUOTE -560) (QUOTE (-791)))) (|HasCategory| (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (LIST (QUOTE -560) (QUOTE (-791)))) (-3700 (|HasCategory| (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (QUOTE (-1012))) (|HasCategory| (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (LIST (QUOTE -560) (QUOTE (-791)))) (|HasCategory| (-51) (QUOTE (-1012))) (|HasCategory| (-51) (LIST (QUOTE -560) (QUOTE (-791))))) (-3700 (|HasCategory| (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (LIST (QUOTE -560) (QUOTE (-791)))) (|HasCategory| (-51) (LIST (QUOTE -560) (QUOTE (-791))))))
-(-959 A S)
+((-4233 . T) (-4234 . T))
+((|HasCategory| (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (QUOTE (-1013))) (-12 (|HasCategory| (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (QUOTE (-1013))) (|HasCategory| (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (LIST (QUOTE -284) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2529) (QUOTE (-1084))) (LIST (QUOTE |:|) (QUOTE -3045) (QUOTE (-51))))))) (|HasCategory| (-1084) (QUOTE (-784))) (|HasCategory| (-51) (QUOTE (-1013))) (-3703 (|HasCategory| (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (QUOTE (-1013))) (|HasCategory| (-51) (QUOTE (-1013)))) (-12 (|HasCategory| (-51) (QUOTE (-1013))) (|HasCategory| (-51) (LIST (QUOTE -284) (QUOTE (-51))))) (|HasCategory| (-51) (LIST (QUOTE -561) (QUOTE (-792)))) (|HasCategory| (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (LIST (QUOTE -561) (QUOTE (-792)))) (-3703 (|HasCategory| (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (QUOTE (-1013))) (|HasCategory| (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (LIST (QUOTE -561) (QUOTE (-792)))) (|HasCategory| (-51) (QUOTE (-1013))) (|HasCategory| (-51) (LIST (QUOTE -561) (QUOTE (-792))))) (-3703 (|HasCategory| (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (LIST (QUOTE -561) (QUOTE (-792)))) (|HasCategory| (-51) (LIST (QUOTE -561) (QUOTE (-792))))))
+(-960 A S)
((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#2| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#2| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} transforms a into an element of \\%.")))
NIL
NIL
-(-960 S)
+(-961 S)
((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#1| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")) (|coerce| (($ |#1|) "\\spad{coerce(a)} transforms a into an element of \\%.")))
NIL
NIL
-(-961 Q R)
+(-962 Q R)
((|constructor| (NIL "RetractSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving.")) (|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) "\\spad{solveRetract(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}. The function tries to retract all the coefficients of the equations to \\spad{Q} before solving if possible.")))
NIL
NIL
-(-962)
+(-963)
((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,{}m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,{}m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,{}g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,{}g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented")))
NIL
NIL
-(-963 UP)
+(-964 UP)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-964 R)
+(-965 R)
((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r}.")))
NIL
NIL
-(-965 R)
+(-966 R)
((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f,{} [v1 = g1,{}...,{}vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} [v1,{}...,{}vn],{} [g1,{}...,{}gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f,{} v,{} g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
NIL
NIL
-(-966 R |ls|)
+(-967 R |ls|)
((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a \\spad{Gcd}-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?,{}info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}.")))
-((-4230 . T) (-4229 . T))
-((|HasCategory| (-715 |#1| (-793 |#2|)) (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| (-715 |#1| (-793 |#2|)) (QUOTE (-1012))) (-12 (|HasCategory| (-715 |#1| (-793 |#2|)) (QUOTE (-1012))) (|HasCategory| (-715 |#1| (-793 |#2|)) (LIST (QUOTE -283) (LIST (QUOTE -715) (|devaluate| |#1|) (LIST (QUOTE -793) (|devaluate| |#2|)))))) (|HasCategory| |#1| (QUOTE (-512))) (|HasCategory| (-793 |#2|) (QUOTE (-341))) (|HasCategory| (-715 |#1| (-793 |#2|)) (LIST (QUOTE -560) (QUOTE (-791)))))
-(-967)
+((-4234 . T) (-4233 . T))
+((|HasCategory| (-716 |#1| (-794 |#2|)) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| (-716 |#1| (-794 |#2|)) (QUOTE (-1013))) (-12 (|HasCategory| (-716 |#1| (-794 |#2|)) (QUOTE (-1013))) (|HasCategory| (-716 |#1| (-794 |#2|)) (LIST (QUOTE -284) (LIST (QUOTE -716) (|devaluate| |#1|) (LIST (QUOTE -794) (|devaluate| |#2|)))))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| (-794 |#2|) (QUOTE (-342))) (|HasCategory| (-716 |#1| (-794 |#2|)) (LIST (QUOTE -561) (QUOTE (-792)))))
+(-968)
((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,{}j,{}k,{}l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,{}f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented")))
NIL
NIL
-(-968 S)
+(-969 S)
((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} converts the integer \\spad{i} to a member of the given domain.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists.")))
NIL
NIL
-(-969)
+(-970)
((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} converts the integer \\spad{i} to a member of the given domain.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists.")))
-((-4226 . T))
+((-4230 . T))
NIL
-(-970 |xx| -4045)
+(-971 |xx| -4049)
((|constructor| (NIL "This package exports rational interpolation algorithms")))
NIL
NIL
-(-971 S |m| |n| R |Row| |Col|)
+(-972 S |m| |n| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#4| |#4|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite")))
NIL
-((|HasCategory| |#4| (QUOTE (-281))) (|HasCategory| |#4| (QUOTE (-336))) (|HasCategory| |#4| (QUOTE (-512))) (|HasCategory| |#4| (QUOTE (-157))))
-(-972 |m| |n| R |Row| |Col|)
+((|HasCategory| |#4| (QUOTE (-282))) (|HasCategory| |#4| (QUOTE (-337))) (|HasCategory| |#4| (QUOTE (-513))) (|HasCategory| |#4| (QUOTE (-157))))
+(-973 |m| |n| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite")))
-((-4229 . T) (-2046 . T) (-4224 . T) (-4223 . T))
+((-4233 . T) (-2046 . T) (-4228 . T) (-4227 . T))
NIL
-(-973 |m| |n| R)
+(-974 |m| |n| R)
((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|coerce| (((|Matrix| |#3|) $) "\\spad{coerce(m)} converts a matrix of type \\spadtype{RectangularMatrix} to a matrix of type \\spad{Matrix}.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}.")))
-((-4229 . T) (-4224 . T) (-4223 . T))
-((|HasCategory| |#3| (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| |#3| (QUOTE (-336))) (|HasCategory| |#3| (QUOTE (-1012))) (|HasCategory| |#3| (QUOTE (-281))) (|HasCategory| |#3| (QUOTE (-512))) (|HasCategory| |#3| (QUOTE (-157))) (-3700 (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-336)))) (|HasCategory| |#3| (LIST (QUOTE -560) (QUOTE (-791)))) (-12 (|HasCategory| |#3| (QUOTE (-1012))) (|HasCategory| |#3| (LIST (QUOTE -283) (|devaluate| |#3|)))) (-3700 (-12 (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (LIST (QUOTE -283) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-336))) (|HasCategory| |#3| (LIST (QUOTE -283) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1012))) (|HasCategory| |#3| (LIST (QUOTE -283) (|devaluate| |#3|))))))
-(-974 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
+((-4233 . T) (-4228 . T) (-4227 . T))
+((|HasCategory| |#3| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#3| (QUOTE (-337))) (|HasCategory| |#3| (QUOTE (-1013))) (|HasCategory| |#3| (QUOTE (-282))) (|HasCategory| |#3| (QUOTE (-513))) (|HasCategory| |#3| (QUOTE (-157))) (-3703 (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-337)))) (|HasCategory| |#3| (LIST (QUOTE -561) (QUOTE (-792)))) (-12 (|HasCategory| |#3| (QUOTE (-1013))) (|HasCategory| |#3| (LIST (QUOTE -284) (|devaluate| |#3|)))) (-3703 (-12 (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (LIST (QUOTE -284) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-337))) (|HasCategory| |#3| (LIST (QUOTE -284) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1013))) (|HasCategory| |#3| (LIST (QUOTE -284) (|devaluate| |#3|))))))
+(-975 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.")))
NIL
NIL
-(-975 R)
+(-976 R)
((|constructor| (NIL "The category of right modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports right multiplation by elements of the \\spad{rng}. \\blankline")) (* (($ $ |#1|) "\\spad{x*r} returns the right multiplication of the module element \\spad{x} by the ring element \\spad{r}.")))
NIL
NIL
-(-976)
+(-977)
((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline")))
NIL
NIL
-(-977 S)
+(-978 S)
((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value.")))
NIL
NIL
-(-978)
+(-979)
((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value.")))
-((-4221 . T) (-4227 . T) (-4222 . T) ((-4231 "*") . T) (-4223 . T) (-4224 . T) (-4226 . T))
+((-4225 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
NIL
-(-979 |TheField| |ThePolDom|)
+(-980 |TheField| |ThePolDom|)
((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval")))
NIL
NIL
-(-980)
+(-981)
((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|convert| (($ (|Symbol|)) "\\spad{convert(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")))
-((-4217 . T) (-4221 . T) (-4216 . T) (-4227 . T) (-4228 . T) (-4222 . T) ((-4231 "*") . T) (-4223 . T) (-4224 . T) (-4226 . T))
+((-4221 . T) (-4225 . T) (-4220 . T) (-4231 . T) (-4232 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
NIL
-(-981)
+(-982)
((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,{}routineName,{}ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,{}s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,{}s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,{}s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,{}s,{}newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,{}s,{}newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,{}y)} merges two tables \\spad{x} and \\spad{y}")))
-((-4229 . T) (-4230 . T))
-((|HasCategory| (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (QUOTE (-1012))) (-12 (|HasCategory| (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (QUOTE (-1012))) (|HasCategory| (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (LIST (QUOTE -283) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2526) (QUOTE (-1083))) (LIST (QUOTE |:|) (QUOTE -3043) (QUOTE (-51))))))) (|HasCategory| (-1083) (QUOTE (-783))) (|HasCategory| (-51) (QUOTE (-1012))) (-3700 (|HasCategory| (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (QUOTE (-1012))) (|HasCategory| (-51) (QUOTE (-1012)))) (-12 (|HasCategory| (-51) (QUOTE (-1012))) (|HasCategory| (-51) (LIST (QUOTE -283) (QUOTE (-51))))) (|HasCategory| (-51) (LIST (QUOTE -560) (QUOTE (-791)))) (|HasCategory| (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (LIST (QUOTE -560) (QUOTE (-791)))) (-3700 (|HasCategory| (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (QUOTE (-1012))) (|HasCategory| (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (LIST (QUOTE -560) (QUOTE (-791)))) (|HasCategory| (-51) (QUOTE (-1012))) (|HasCategory| (-51) (LIST (QUOTE -560) (QUOTE (-791))))) (-3700 (|HasCategory| (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (LIST (QUOTE -560) (QUOTE (-791)))) (|HasCategory| (-51) (LIST (QUOTE -560) (QUOTE (-791))))))
-(-982 S R E V)
+((-4233 . T) (-4234 . T))
+((|HasCategory| (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (QUOTE (-1013))) (-12 (|HasCategory| (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (QUOTE (-1013))) (|HasCategory| (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (LIST (QUOTE -284) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2529) (QUOTE (-1084))) (LIST (QUOTE |:|) (QUOTE -3045) (QUOTE (-51))))))) (|HasCategory| (-1084) (QUOTE (-784))) (|HasCategory| (-51) (QUOTE (-1013))) (-3703 (|HasCategory| (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (QUOTE (-1013))) (|HasCategory| (-51) (QUOTE (-1013)))) (-12 (|HasCategory| (-51) (QUOTE (-1013))) (|HasCategory| (-51) (LIST (QUOTE -284) (QUOTE (-51))))) (|HasCategory| (-51) (LIST (QUOTE -561) (QUOTE (-792)))) (|HasCategory| (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (LIST (QUOTE -561) (QUOTE (-792)))) (-3703 (|HasCategory| (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (QUOTE (-1013))) (|HasCategory| (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (LIST (QUOTE -561) (QUOTE (-792)))) (|HasCategory| (-51) (QUOTE (-1013))) (|HasCategory| (-51) (LIST (QUOTE -561) (QUOTE (-792))))) (-3703 (|HasCategory| (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (LIST (QUOTE -561) (QUOTE (-792)))) (|HasCategory| (-51) (LIST (QUOTE -561) (QUOTE (-792))))))
+(-983 S R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-424))) (|HasCategory| |#2| (QUOTE (-512))) (|HasCategory| |#2| (LIST (QUOTE -960) (QUOTE (-520)))) (|HasCategory| |#2| (QUOTE (-505))) (|HasCategory| |#2| (LIST (QUOTE -37) (QUOTE (-520)))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-520)))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#4| (LIST (QUOTE -561) (QUOTE (-1083)))))
-(-983 R E V)
+((|HasCategory| |#2| (QUOTE (-425))) (|HasCategory| |#2| (QUOTE (-513))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#2| (QUOTE (-506))) (|HasCategory| |#2| (LIST (QUOTE -37) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#4| (LIST (QUOTE -562) (QUOTE (-1084)))))
+(-984 R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
-(((-4231 "*") |has| |#1| (-157)) (-4222 |has| |#1| (-512)) (-4227 |has| |#1| (-6 -4227)) (-4224 . T) (-4223 . T) (-4226 . T))
+(((-4235 "*") |has| |#1| (-157)) (-4226 |has| |#1| (-513)) (-4231 |has| |#1| (-6 -4231)) (-4228 . T) (-4227 . T) (-4230 . T))
NIL
-(-984 S |TheField| |ThePols|)
+(-985 S |TheField| |ThePols|)
((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#3| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#3|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#3| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#3| "failed") |#3| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#3| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#3| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#3| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#3| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}")))
NIL
NIL
-(-985 |TheField| |ThePols|)
+(-986 |TheField| |ThePols|)
((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#2| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#2|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#2| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#2| "failed") |#2| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#2| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#2| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#2| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#2| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}")))
NIL
NIL
-(-986 R E V P TS)
+(-987 R E V P TS)
((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are proposed: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\axiomType{QCMPACK}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}) and \\axiomType{RSETGCD}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}). The same way it does not care about the way univariate polynomial \\spad{gcd} (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these \\spad{gcd} need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiom{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
-(-987 S R E V P)
+(-988 S R E V P)
((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#5|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#5| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#5| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#5|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#5| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#5|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#5| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#5| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#5| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#5|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#5| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| |#5| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#5| (|List| $)) |#5| |#5| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#5| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#5| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#5| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#5| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#5| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#5| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#5| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#5| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")))
NIL
NIL
-(-988 R E V P)
+(-989 R E V P)
((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#4| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")))
-((-4230 . T) (-4229 . T) (-2046 . T))
+((-4234 . T) (-4233 . T) (-2046 . T))
NIL
-(-989 R E V P TS)
+(-990 R E V P TS)
((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts},{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
NIL
-(-990 |f|)
+(-991 |f|)
((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol")))
NIL
NIL
-(-991 |Base| R -4045)
+(-992 |Base| R -4049)
((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r,{} [a1,{}...,{}an],{} f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,{}...,{}an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f,{} g,{} [f1,{}...,{}fn])} creates the rewrite rule \\spad{f == eval(eval(g,{} g is f),{} [f1,{}...,{}fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f,{} g)} creates the rewrite rule: \\spad{f == eval(g,{} g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}.")))
NIL
NIL
-(-992 |Base| R -4045)
+(-993 |Base| R -4049)
((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,{}...,{}rn])} creates the rule set \\spad{{r1,{}...,{}rn}}.")))
NIL
NIL
-(-993 R |ls|)
+(-994 R |ls|)
((|constructor| (NIL "\\indented{1}{A package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a regular} \\indented{1}{triangular set. This package is essentially an interface for the} \\spadtype{InternalRationalUnivariateRepresentationPackage} constructor. It is used in the \\spadtype{ZeroDimensionalSolvePackage} for solving polynomial systems with finitely many solutions.")) (|rur| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{rur(lp,{}univ?,{}check?)} returns the same as \\spad{rur(lp,{}true)}. Moreover,{} if \\spad{check?} is \\spad{true} then the result is checked.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{rur(lp)} returns the same as \\spad{rur(lp,{}true)}") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{rur(lp,{}univ?)} returns a rational univariate representation of \\spad{lp}. This assumes that \\spad{lp} defines a regular triangular \\spad{ts} whose associated variety is zero-dimensional over \\spad{R}. \\spad{rur(lp,{}univ?)} returns a list of items \\spad{[u,{}lc]} where \\spad{u} is an irreducible univariate polynomial and each \\spad{c} in \\spad{lc} involves two variables: one from \\spad{ls},{} called the coordinate of \\spad{c},{} and an extra variable which represents any root of \\spad{u}. Every root of \\spad{u} leads to a tuple of values for the coordinates of \\spad{lc}. Moreover,{} a point \\spad{x} belongs to the variety associated with \\spad{lp} iff there exists an item \\spad{[u,{}lc]} in \\spad{rur(lp,{}univ?)} and a root \\spad{r} of \\spad{u} such that \\spad{x} is given by the tuple of values for the coordinates of \\spad{lc} evaluated at \\spad{r}. If \\spad{univ?} is \\spad{true} then each polynomial \\spad{c} will have a constant leading coefficient \\spad{w}.\\spad{r}.\\spad{t}. its coordinate. See the example which illustrates the \\spadtype{ZeroDimensionalSolvePackage} package constructor.")))
NIL
NIL
-(-994 UP SAE UPA)
+(-995 UP SAE UPA)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-995 R UP M)
+(-996 R UP M)
((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself.")))
-((-4222 |has| |#1| (-336)) (-4227 |has| |#1| (-336)) (-4221 |has| |#1| (-336)) ((-4231 "*") . T) (-4223 . T) (-4224 . T) (-4226 . T))
-((|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-322))) (|HasCategory| |#1| (QUOTE (-336))) (-3700 (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (QUOTE (-322)))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (LIST (QUOTE -582) (QUOTE (-520)))) (|HasCategory| |#1| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#1| (LIST (QUOTE -960) (QUOTE (-520)))) (-12 (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (LIST (QUOTE -828) (QUOTE (-1083))))) (-3700 (-12 (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (LIST (QUOTE -828) (QUOTE (-1083))))) (-12 (|HasCategory| |#1| (QUOTE (-322))) (|HasCategory| |#1| (LIST (QUOTE -828) (QUOTE (-1083)))))) (-3700 (|HasCategory| |#1| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#1| (QUOTE (-336)))) (-12 (|HasCategory| |#1| (QUOTE (-209))) (|HasCategory| |#1| (QUOTE (-336)))) (-3700 (-12 (|HasCategory| |#1| (QUOTE (-209))) (|HasCategory| |#1| (QUOTE (-336)))) (|HasCategory| |#1| (QUOTE (-322)))))
-(-996 UP SAE UPA)
+((-4226 |has| |#1| (-337)) (-4231 |has| |#1| (-337)) (-4225 |has| |#1| (-337)) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
+((|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-323))) (|HasCategory| |#1| (QUOTE (-337))) (-3703 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-323)))) (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521)))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1084))))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1084))))) (-12 (|HasCategory| |#1| (QUOTE (-323))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1084)))))) (-3703 (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| |#1| (QUOTE (-210))) (|HasCategory| |#1| (QUOTE (-337)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-210))) (|HasCategory| |#1| (QUOTE (-337)))) (|HasCategory| |#1| (QUOTE (-323)))))
+(-997 UP SAE UPA)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-997)
+(-998)
((|constructor| (NIL "This trivial domain lets us build Univariate Polynomials in an anonymous variable")))
NIL
NIL
-(-998 S)
+(-999 S)
((|constructor| (NIL "\\indented{1}{Cache of elements in a set} Author: Manuel Bronstein Date Created: 31 Oct 1988 Date Last Updated: 14 May 1991 \\indented{2}{A sorted cache of a cachable set \\spad{S} is a dynamic structure that} \\indented{2}{keeps the elements of \\spad{S} sorted and assigns an integer to each} \\indented{2}{element of \\spad{S} once it is in the cache. This way,{} equality and ordering} \\indented{2}{on \\spad{S} are tested directly on the integers associated with the elements} \\indented{2}{of \\spad{S},{} once they have been entered in the cache.}")) (|enterInCache| ((|#1| |#1| (|Mapping| (|Integer|) |#1| |#1|)) "\\spad{enterInCache(x,{} f)} enters \\spad{x} in the cache,{} calling \\spad{f(x,{} y)} to determine whether \\spad{x < y (f(x,{}y) < 0),{} x = y (f(x,{}y) = 0)},{} or \\spad{x > y (f(x,{}y) > 0)}. It returns \\spad{x} with an integer associated with it.") ((|#1| |#1| (|Mapping| (|Boolean|) |#1|)) "\\spad{enterInCache(x,{} f)} enters \\spad{x} in the cache,{} calling \\spad{f(y)} to determine whether \\spad{x} is equal to \\spad{y}. It returns \\spad{x} with an integer associated with it.")) (|cache| (((|List| |#1|)) "\\spad{cache()} returns the current cache as a list.")) (|clearCache| (((|Void|)) "\\spad{clearCache()} empties the cache.")))
NIL
NIL
-(-999)
+(-1000)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Scope' is a sequence of contours.")) (|currentCategoryFrame| (($) "\\spad{currentCategoryFrame()} returns the category frame currently in effect.")) (|currentScope| (($) "\\spad{currentScope()} returns the scope currently in effect")) (|pushNewContour| (($ (|Binding|) $) "\\spad{pushNewContour(b,{}s)} pushs a new contour with sole binding \\spad{`b'}.")) (|findBinding| (((|Union| (|Binding|) "failed") (|Symbol|) $) "\\spad{findBinding(n,{}s)} returns the first binding of \\spad{`n'} in \\spad{`s'}; otherwise `failed'.")) (|contours| (((|List| (|Contour|)) $) "\\spad{contours(s)} returns the list of contours in scope \\spad{s}.")) (|empty| (($) "\\spad{empty()} returns an empty scope.")))
NIL
NIL
-(-1000 R)
+(-1001 R)
((|constructor| (NIL "StructuralConstantsPackage provides functions creating structural constants from a multiplication tables or a basis of a matrix algebra and other useful functions in this context.")) (|coordinates| (((|Vector| |#1|) (|Matrix| |#1|) (|List| (|Matrix| |#1|))) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{structuralConstants(basis)} takes the \\spad{basis} of a matrix algebra,{} \\spadignore{e.g.} the result of \\spadfun{basisOfCentroid} and calculates the structural constants. Note,{} that the it is not checked,{} whether \\spad{basis} really is a \\spad{basis} of a matrix algebra.") (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|List| (|Symbol|)) (|Matrix| (|Polynomial| |#1|))) "\\spad{structuralConstants(ls,{}mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}") (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|)) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{structuralConstants(ls,{}mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}")))
NIL
NIL
-(-1001 R)
+(-1002 R)
((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline")))
-(((-4231 "*") |has| |#1| (-157)) (-4222 |has| |#1| (-512)) (-4227 |has| |#1| (-6 -4227)) (-4224 . T) (-4223 . T) (-4226 . T))
-((|HasCategory| |#1| (QUOTE (-837))) (|HasCategory| |#1| (QUOTE (-512))) (|HasCategory| |#1| (QUOTE (-157))) (-3700 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-512)))) (-12 (|HasCategory| (-1002 (-1083)) (LIST (QUOTE -814) (QUOTE (-352)))) (|HasCategory| |#1| (LIST (QUOTE -814) (QUOTE (-352))))) (-12 (|HasCategory| (-1002 (-1083)) (LIST (QUOTE -814) (QUOTE (-520)))) (|HasCategory| |#1| (LIST (QUOTE -814) (QUOTE (-520))))) (-12 (|HasCategory| (-1002 (-1083)) (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-352))))) (|HasCategory| |#1| (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-352)))))) (-12 (|HasCategory| (-1002 (-1083)) (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-520))))) (|HasCategory| |#1| (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-520)))))) (-12 (|HasCategory| (-1002 (-1083)) (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-496))))) (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#1| (LIST (QUOTE -582) (QUOTE (-520)))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#1| (LIST (QUOTE -960) (QUOTE (-520)))) (|HasCategory| |#1| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#1| (QUOTE (-209))) (|HasCategory| |#1| (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasCategory| |#1| (QUOTE (-336))) (-3700 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#1| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520)))))) (|HasAttribute| |#1| (QUOTE -4227)) (|HasCategory| |#1| (QUOTE (-424))) (-3700 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-424))) (|HasCategory| |#1| (QUOTE (-512))) (|HasCategory| |#1| (QUOTE (-837)))) (-3700 (|HasCategory| |#1| (QUOTE (-424))) (|HasCategory| |#1| (QUOTE (-512))) (|HasCategory| |#1| (QUOTE (-837)))) (-3700 (|HasCategory| |#1| (QUOTE (-424))) (|HasCategory| |#1| (QUOTE (-837)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-837)))) (-3700 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-837)))) (|HasCategory| |#1| (QUOTE (-133)))))
-(-1002 S)
+(((-4235 "*") |has| |#1| (-157)) (-4226 |has| |#1| (-513)) (-4231 |has| |#1| (-6 -4231)) (-4228 . T) (-4227 . T) (-4230 . T))
+((|HasCategory| |#1| (QUOTE (-838))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-157))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-513)))) (-12 (|HasCategory| (-1003 (-1084)) (LIST (QUOTE -815) (QUOTE (-353)))) (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-353))))) (-12 (|HasCategory| (-1003 (-1084)) (LIST (QUOTE -815) (QUOTE (-521)))) (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-521))))) (-12 (|HasCategory| (-1003 (-1084)) (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-353))))) (|HasCategory| |#1| (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-353)))))) (-12 (|HasCategory| (-1003 (-1084)) (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-521)))))) (-12 (|HasCategory| (-1003 (-1084)) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-497))))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (QUOTE (-210))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasCategory| |#1| (QUOTE (-337))) (-3703 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521)))))) (|HasAttribute| |#1| (QUOTE -4231)) (|HasCategory| |#1| (QUOTE (-425))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-425))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-838)))) (-3703 (|HasCategory| |#1| (QUOTE (-425))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-838)))) (-3703 (|HasCategory| |#1| (QUOTE (-425))) (|HasCategory| |#1| (QUOTE (-838)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-838)))) (-3703 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (QUOTE (-133)))))
+(-1003 S)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u})).")))
NIL
NIL
-(-1003 R S)
+(-1004 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,{}s)} expands the segment \\spad{s},{} applying \\spad{f} to each value. For example,{} if \\spad{s = l..h by k},{} then the list \\spad{[f(l),{} f(l+k),{}...,{} f(lN)]} is computed,{} where \\spad{lN <= h < lN+k}.") (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,{}l..h)} returns a new segment \\spad{f(l)..f(h)}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-781))))
-(-1004 R S)
+((|HasCategory| |#1| (QUOTE (-782))))
+(-1005 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,{}v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}.")))
NIL
NIL
-(-1005 S)
+(-1006 S)
((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions.")) (|segment| (((|Segment| |#1|) $) "\\spad{segment(segb)} returns the segment from the right hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{segment(segb)} returns \\spad{a..b}.")) (|variable| (((|Symbol|) $) "\\spad{variable(segb)} returns the variable from the left hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{variable(segb)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) (|Segment| |#1|)) "\\spad{equation(v,{}a..b)} creates a segment binding value with variable \\spad{v} and segment \\spad{a..b}. Note that the interpreter parses \\spad{v=a..b} to this form.")))
NIL
-((|HasCategory| |#1| (QUOTE (-1012))))
-(-1006 S)
+((|HasCategory| |#1| (QUOTE (-1013))))
+(-1007 S)
((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|convert| (($ |#1|) "\\spad{convert(i)} creates the segment \\spad{i..i}.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,{}j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{\\spad{hi}(s)} returns the second endpoint of \\spad{s}. Note: \\spad{\\spad{hi}(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints.")))
((-2046 . T))
NIL
-(-1007 S)
+(-1008 S)
((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (QUOTE (-1012))))
-(-1008 S L)
+((|HasCategory| |#1| (QUOTE (-782))) (|HasCategory| |#1| (QUOTE (-1013))))
+(-1009 S L)
((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l),{} f(l+k),{} ...,{} f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l,{} l+k,{} ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,{}3,{}5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l,{} l+k,{} ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4,{} 7..9] = [1,{}2,{}3,{}4,{}7,{}8,{}9]}.")))
((-2046 . T))
NIL
-(-1009 A S)
+(-1010 A S)
((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (< (((|Boolean|) $ $) "\\spad{s < t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
NIL
NIL
-(-1010 S)
+(-1011 S)
((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (< (((|Boolean|) $ $) "\\spad{s < t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
-((-4219 . T) (-2046 . T))
+((-4223 . T) (-2046 . T))
NIL
-(-1011 S)
+(-1012 S)
((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}.")))
NIL
NIL
-(-1012)
+(-1013)
((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}.")))
NIL
NIL
-(-1013 |m| |n|)
+(-1014 |m| |n|)
((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,{}k,{}p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the \\spad{k^}{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p,{} s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,{}...,{}a_m])} returns the set {a_1,{}...,{}a_m}. Error if {a_1,{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ "failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,{}k,{}p)} replaces the \\spad{k^}{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ "failed") $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,{}k)} increments the \\spad{k^}{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")))
NIL
NIL
-(-1014 S)
+(-1015 S)
((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,{}b,{}c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,{}m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{union(s,{}t)},{} \\spad{intersect(s,{}t)},{} \\spad{minus(s,{}t)},{} \\spad{symmetricDifference(s,{}t)} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{member(x,{}t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,{}t)} and \\spad{remove(x,{}t)} is \\spad{O(n)}}")))
-((-4229 . T) (-4219 . T) (-4230 . T))
-((|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-783))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (-3700 (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-791)))))
-(-1015 |Str| |Sym| |Int| |Flt| |Expr|)
+((-4233 . T) (-4223 . T) (-4234 . T))
+((|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-784))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-792)))))
+(-1016 |Str| |Sym| |Int| |Flt| |Expr|)
((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|elt| (($ $ (|List| (|Integer|))) "\\spad{elt((a1,{}...,{}an),{} [i1,{}...,{}im])} returns \\spad{(a_i1,{}...,{}a_im)}.") (($ $ (|Integer|)) "\\spad{elt((a1,{}...,{}an),{} i)} returns \\spad{\\spad{ai}}.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,{}...,{}an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,{}...,{}an))} returns \\spad{(a2,{}...,{}an)}.")) (|car| (($ $) "\\spad{car((a1,{}...,{}an))} returns a1.")) (|convert| (($ |#5|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#4|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#3|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#2|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#1|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the \\spad{S}-expression \\spad{(a1,{}...,{}an)}.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,{}...,{}an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s,{} t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp.")))
NIL
NIL
-(-1016)
+(-1017)
((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values.")))
NIL
NIL
-(-1017 |Str| |Sym| |Int| |Flt| |Expr|)
+(-1018 |Str| |Sym| |Int| |Flt| |Expr|)
((|constructor| (NIL "This domain allows the manipulation of Lisp values over arbitrary atomic types.")))
NIL
NIL
-(-1018 R FS)
+(-1019 R FS)
((|constructor| (NIL "\\axiomType{SimpleFortranProgram(\\spad{f},{}type)} provides a simple model of some FORTRAN subprograms,{} making it possible to coerce objects of various domains into a FORTRAN subprogram called \\axiom{\\spad{f}}. These can then be translated into legal FORTRAN code.")) (|fortran| (($ (|Symbol|) (|FortranScalarType|) |#2|) "\\spad{fortran(fname,{}ftype,{}body)} builds an object of type \\axiomType{FortranProgramCategory}. The three arguments specify the name,{} the type and the \\spad{body} of the program.")))
NIL
NIL
-(-1019 R E V P TS)
+(-1020 R E V P TS)
((|constructor| (NIL "\\indented{2}{A internal package for removing redundant quasi-components and redundant} \\indented{2}{branches when decomposing a variety by means of quasi-components} \\indented{2}{of regular triangular sets. \\newline} References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{5}{Tech. Report (PoSSo project)} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?(\\spad{ts},{}us)}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
NIL
-(-1020 R E V P TS)
+(-1021 R E V P TS)
((|constructor| (NIL "A internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field. There is no need to use directly this package since its main operations are available from \\spad{TS}. \\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
-(-1021 R E V P)
+(-1022 R E V P)
((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the \\spad{gcd} of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,{}mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
-((-4230 . T) (-4229 . T) (-2046 . T))
+((-4234 . T) (-4233 . T) (-2046 . T))
NIL
-(-1022)
+(-1023)
((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,{}0,{}0] < [0,{}3,{}0] < [0,{}0,{}3] < [2,{}1,{}0] < [2,{}0,{}1] < [0,{}2,{}1] < [1,{}2,{}0] < [1,{}0,{}2] < [0,{}1,{}2] < [1,{}1,{}1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,{}0,{}3] < [0,{}1,{}2] < [0,{}2,{}1] < [0,{}3,{}0] < [1,{}0,{}2] < [1,{}1,{}1] < [1,{}2,{}0] < [2,{}0,{}1] < [2,{}1,{}0] < [3,{}0,{}0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,{}m,{}k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,{}1,{}...,{}(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,{}...,{}(m-1)} into {\\em 0,{}...,{}(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,{}m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,{}3)} is 10,{} since {\\em [0,{}0,{}3],{} [0,{}1,{}2],{} [0,{}2,{}1],{} [0,{}3,{}0],{} [1,{}0,{}2],{} [1,{}1,{}1],{} [1,{}2,{}0],{} [2,{}0,{}1],{} [2,{}1,{}0],{} [3,{}0,{}0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,{}lattP,{}constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,{}beta,{}C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,{}1,{}0)}. Also,{} {\\em new(1,{}1,{}0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,{}gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,{}...,{}n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,{}...,{}n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,{}beta,{}C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em \\spad{pi}} in the corresponding double coset. Note: the resulting permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,{}beta,{}\\spad{pi})}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em \\spad{pi}} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha,{} beta,{} \\spad{pi}}. Note: The permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em \\spad{pi}} is the lexicographical smallest permutation in the coset). For details see James/Kerber.")))
NIL
NIL
-(-1023 S)
+(-1024 S)
((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (^ (($ $ (|PositiveInteger|)) "\\spad{x^n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}.")))
NIL
NIL
-(-1024)
+(-1025)
((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (^ (($ $ (|PositiveInteger|)) "\\spad{x^n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}.")))
NIL
NIL
-(-1025 |dimtot| |dim1| S)
+(-1026 |dimtot| |dim1| S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4223 |has| |#3| (-969)) (-4224 |has| |#3| (-969)) (-4226 |has| |#3| (-6 -4226)) ((-4231 "*") |has| |#3| (-157)) (-4229 . T))
-((|HasCategory| |#3| (QUOTE (-336))) (|HasCategory| |#3| (QUOTE (-969))) (|HasCategory| |#3| (QUOTE (-728))) (|HasCategory| |#3| (QUOTE (-781))) (-3700 (|HasCategory| |#3| (QUOTE (-728))) (|HasCategory| |#3| (QUOTE (-781)))) (|HasCategory| |#3| (QUOTE (-157))) (-3700 (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-336))) (|HasCategory| |#3| (QUOTE (-969)))) (-3700 (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-336)))) (-3700 (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-969)))) (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (LIST (QUOTE -582) (QUOTE (-520)))) (|HasCategory| |#3| (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasCategory| |#3| (QUOTE (-209))) (-3700 (|HasCategory| |#3| (LIST (QUOTE -582) (QUOTE (-520)))) (|HasCategory| |#3| (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-209))) (|HasCategory| |#3| (QUOTE (-336))) (|HasCategory| |#3| (QUOTE (-969)))) (-3700 (|HasCategory| |#3| (LIST (QUOTE -582) (QUOTE (-520)))) (|HasCategory| |#3| (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-209))) (|HasCategory| |#3| (QUOTE (-969)))) (|HasCategory| |#3| (QUOTE (-1012))) (|HasCategory| (-520) (QUOTE (-783))) (-12 (|HasCategory| |#3| (QUOTE (-969))) (|HasCategory| |#3| (LIST (QUOTE -582) (QUOTE (-520))))) (-12 (|HasCategory| |#3| (QUOTE (-209))) (|HasCategory| |#3| (QUOTE (-969)))) (-12 (|HasCategory| |#3| (QUOTE (-969))) (|HasCategory| |#3| (LIST (QUOTE -828) (QUOTE (-1083))))) (|HasCategory| |#3| (QUOTE (-662))) (-12 (|HasCategory| |#3| (QUOTE (-1012))) (|HasCategory| |#3| (LIST (QUOTE -960) (QUOTE (-520))))) (-3700 (|HasCategory| |#3| (QUOTE (-969))) (-12 (|HasCategory| |#3| (QUOTE (-1012))) (|HasCategory| |#3| (LIST (QUOTE -960) (QUOTE (-520)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#3| (QUOTE (-1012)))) (|HasAttribute| |#3| (QUOTE -4226)) (|HasCategory| |#3| (QUOTE (-124))) (-3700 (|HasCategory| |#3| (LIST (QUOTE -582) (QUOTE (-520)))) (|HasCategory| |#3| (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasCategory| |#3| (QUOTE (-124))) (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-209))) (|HasCategory| |#3| (QUOTE (-336))) (|HasCategory| |#3| (QUOTE (-969)))) (|HasCategory| |#3| (QUOTE (-25))) (-3700 (|HasCategory| |#3| (LIST (QUOTE -582) (QUOTE (-520)))) (|HasCategory| |#3| (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-124))) (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-209))) (|HasCategory| |#3| (QUOTE (-336))) (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (QUOTE (-728))) (|HasCategory| |#3| (QUOTE (-781))) (|HasCategory| |#3| (QUOTE (-969))) (|HasCategory| |#3| (QUOTE (-1012)))) (-3700 (|HasCategory| |#3| (LIST (QUOTE -582) (QUOTE (-520)))) (|HasCategory| |#3| (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-124))) (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-209))) (|HasCategory| |#3| (QUOTE (-336))) (|HasCategory| |#3| (QUOTE (-969)))) (-3700 (-12 (|HasCategory| |#3| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#3| (LIST (QUOTE -582) (QUOTE (-520))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#3| (LIST (QUOTE -828) (QUOTE (-1083))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#3| (QUOTE (-124)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#3| (QUOTE (-157)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#3| (QUOTE (-209)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#3| (QUOTE (-336)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#3| (QUOTE (-341)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#3| (QUOTE (-728)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#3| (QUOTE (-781)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#3| (QUOTE (-969)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#3| (QUOTE (-1012))))) (-3700 (-12 (|HasCategory| |#3| (LIST (QUOTE -582) (QUOTE (-520)))) (|HasCategory| |#3| (LIST (QUOTE -960) (QUOTE (-520))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasCategory| |#3| (LIST (QUOTE -960) (QUOTE (-520))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -960) (QUOTE (-520))))) (-12 (|HasCategory| |#3| (QUOTE (-124))) (|HasCategory| |#3| (LIST (QUOTE -960) (QUOTE (-520))))) (-12 (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (LIST (QUOTE -960) (QUOTE (-520))))) (-12 (|HasCategory| |#3| (QUOTE (-209))) (|HasCategory| |#3| (LIST (QUOTE -960) (QUOTE (-520))))) (-12 (|HasCategory| |#3| (QUOTE (-336))) (|HasCategory| |#3| (LIST (QUOTE -960) (QUOTE (-520))))) (-12 (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (LIST (QUOTE -960) (QUOTE (-520))))) (-12 (|HasCategory| |#3| (QUOTE (-728))) (|HasCategory| |#3| (LIST (QUOTE -960) (QUOTE (-520))))) (-12 (|HasCategory| |#3| (QUOTE (-781))) (|HasCategory| |#3| (LIST (QUOTE -960) (QUOTE (-520))))) (-12 (|HasCategory| |#3| (QUOTE (-969))) (|HasCategory| |#3| (LIST (QUOTE -960) (QUOTE (-520))))) (-12 (|HasCategory| |#3| (QUOTE (-1012))) (|HasCategory| |#3| (LIST (QUOTE -960) (QUOTE (-520)))))) (-12 (|HasCategory| |#3| (QUOTE (-1012))) (|HasCategory| |#3| (LIST (QUOTE -283) (|devaluate| |#3|)))) (-3700 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -283) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-124))) (|HasCategory| |#3| (LIST (QUOTE -283) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (LIST (QUOTE -283) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-209))) (|HasCategory| |#3| (LIST (QUOTE -283) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-336))) (|HasCategory| |#3| (LIST (QUOTE -283) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (LIST (QUOTE -283) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-728))) (|HasCategory| |#3| (LIST (QUOTE -283) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-781))) (|HasCategory| |#3| (LIST (QUOTE -283) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-969))) (|HasCategory| |#3| (LIST (QUOTE -283) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1012))) (|HasCategory| |#3| (LIST (QUOTE -283) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -283) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -582) (QUOTE (-520))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -283) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -828) (QUOTE (-1083)))))) (|HasCategory| |#3| (LIST (QUOTE -560) (QUOTE (-791)))) (-3700 (-12 (|HasCategory| |#3| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#3| (QUOTE (-1012)))) (-12 (|HasCategory| |#3| (QUOTE (-209))) (|HasCategory| |#3| (QUOTE (-969)))) (-12 (|HasCategory| |#3| (QUOTE (-969))) (|HasCategory| |#3| (LIST (QUOTE -582) (QUOTE (-520))))) (-12 (|HasCategory| |#3| (QUOTE (-969))) (|HasCategory| |#3| (LIST (QUOTE -828) (QUOTE (-1083))))) (-12 (|HasCategory| |#3| (QUOTE (-1012))) (|HasCategory| |#3| (LIST (QUOTE -283) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1012))) (|HasCategory| |#3| (LIST (QUOTE -960) (QUOTE (-520))))) (|HasCategory| |#3| (LIST (QUOTE -560) (QUOTE (-791))))))
-(-1026 R |x|)
+((-4227 |has| |#3| (-970)) (-4228 |has| |#3| (-970)) (-4230 |has| |#3| (-6 -4230)) ((-4235 "*") |has| |#3| (-157)) (-4233 . T))
+((|HasCategory| |#3| (QUOTE (-337))) (|HasCategory| |#3| (QUOTE (-970))) (|HasCategory| |#3| (QUOTE (-729))) (|HasCategory| |#3| (QUOTE (-782))) (-3703 (|HasCategory| |#3| (QUOTE (-729))) (|HasCategory| |#3| (QUOTE (-782)))) (|HasCategory| |#3| (QUOTE (-157))) (-3703 (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-337))) (|HasCategory| |#3| (QUOTE (-970)))) (-3703 (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-337)))) (-3703 (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-970)))) (|HasCategory| |#3| (QUOTE (-342))) (|HasCategory| |#3| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#3| (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasCategory| |#3| (QUOTE (-210))) (-3703 (|HasCategory| |#3| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#3| (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-210))) (|HasCategory| |#3| (QUOTE (-337))) (|HasCategory| |#3| (QUOTE (-970)))) (-3703 (|HasCategory| |#3| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#3| (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-210))) (|HasCategory| |#3| (QUOTE (-970)))) (|HasCategory| |#3| (QUOTE (-1013))) (|HasCategory| (-521) (QUOTE (-784))) (-12 (|HasCategory| |#3| (QUOTE (-970))) (|HasCategory| |#3| (LIST (QUOTE -583) (QUOTE (-521))))) (-12 (|HasCategory| |#3| (QUOTE (-210))) (|HasCategory| |#3| (QUOTE (-970)))) (-12 (|HasCategory| |#3| (QUOTE (-970))) (|HasCategory| |#3| (LIST (QUOTE -829) (QUOTE (-1084))))) (|HasCategory| |#3| (QUOTE (-663))) (-12 (|HasCategory| |#3| (QUOTE (-1013))) (|HasCategory| |#3| (LIST (QUOTE -961) (QUOTE (-521))))) (-3703 (|HasCategory| |#3| (QUOTE (-970))) (-12 (|HasCategory| |#3| (QUOTE (-1013))) (|HasCategory| |#3| (LIST (QUOTE -961) (QUOTE (-521)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#3| (QUOTE (-1013)))) (|HasAttribute| |#3| (QUOTE -4230)) (|HasCategory| |#3| (QUOTE (-124))) (-3703 (|HasCategory| |#3| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#3| (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasCategory| |#3| (QUOTE (-124))) (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-210))) (|HasCategory| |#3| (QUOTE (-337))) (|HasCategory| |#3| (QUOTE (-970)))) (|HasCategory| |#3| (QUOTE (-25))) (-3703 (|HasCategory| |#3| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#3| (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-124))) (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-210))) (|HasCategory| |#3| (QUOTE (-337))) (|HasCategory| |#3| (QUOTE (-342))) (|HasCategory| |#3| (QUOTE (-729))) (|HasCategory| |#3| (QUOTE (-782))) (|HasCategory| |#3| (QUOTE (-970))) (|HasCategory| |#3| (QUOTE (-1013)))) (-3703 (|HasCategory| |#3| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#3| (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-124))) (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-210))) (|HasCategory| |#3| (QUOTE (-337))) (|HasCategory| |#3| (QUOTE (-970)))) (-3703 (-12 (|HasCategory| |#3| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#3| (LIST (QUOTE -583) (QUOTE (-521))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#3| (LIST (QUOTE -829) (QUOTE (-1084))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#3| (QUOTE (-124)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#3| (QUOTE (-157)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#3| (QUOTE (-210)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#3| (QUOTE (-337)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#3| (QUOTE (-342)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#3| (QUOTE (-729)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#3| (QUOTE (-782)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#3| (QUOTE (-970)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#3| (QUOTE (-1013))))) (-3703 (-12 (|HasCategory| |#3| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#3| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasCategory| |#3| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#3| (QUOTE (-124))) (|HasCategory| |#3| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#3| (QUOTE (-210))) (|HasCategory| |#3| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#3| (QUOTE (-337))) (|HasCategory| |#3| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#3| (QUOTE (-342))) (|HasCategory| |#3| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#3| (QUOTE (-729))) (|HasCategory| |#3| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#3| (QUOTE (-782))) (|HasCategory| |#3| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#3| (QUOTE (-970))) (|HasCategory| |#3| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#3| (QUOTE (-1013))) (|HasCategory| |#3| (LIST (QUOTE -961) (QUOTE (-521)))))) (-12 (|HasCategory| |#3| (QUOTE (-1013))) (|HasCategory| |#3| (LIST (QUOTE -284) (|devaluate| |#3|)))) (-3703 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -284) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-124))) (|HasCategory| |#3| (LIST (QUOTE -284) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (LIST (QUOTE -284) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-210))) (|HasCategory| |#3| (LIST (QUOTE -284) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-337))) (|HasCategory| |#3| (LIST (QUOTE -284) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-342))) (|HasCategory| |#3| (LIST (QUOTE -284) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-729))) (|HasCategory| |#3| (LIST (QUOTE -284) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-782))) (|HasCategory| |#3| (LIST (QUOTE -284) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-970))) (|HasCategory| |#3| (LIST (QUOTE -284) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1013))) (|HasCategory| |#3| (LIST (QUOTE -284) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -284) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -583) (QUOTE (-521))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -284) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -829) (QUOTE (-1084)))))) (|HasCategory| |#3| (LIST (QUOTE -561) (QUOTE (-792)))) (-3703 (-12 (|HasCategory| |#3| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#3| (QUOTE (-1013)))) (-12 (|HasCategory| |#3| (QUOTE (-210))) (|HasCategory| |#3| (QUOTE (-970)))) (-12 (|HasCategory| |#3| (QUOTE (-970))) (|HasCategory| |#3| (LIST (QUOTE -583) (QUOTE (-521))))) (-12 (|HasCategory| |#3| (QUOTE (-970))) (|HasCategory| |#3| (LIST (QUOTE -829) (QUOTE (-1084))))) (-12 (|HasCategory| |#3| (QUOTE (-1013))) (|HasCategory| |#3| (LIST (QUOTE -284) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1013))) (|HasCategory| |#3| (LIST (QUOTE -961) (QUOTE (-521))))) (|HasCategory| |#3| (LIST (QUOTE -561) (QUOTE (-792))))))
+(-1027 R |x|)
((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,{}p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,{}p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,{}p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}")))
NIL
-((|HasCategory| |#1| (QUOTE (-424))))
-(-1027 R -4045)
+((|HasCategory| |#1| (QUOTE (-425))))
+(-1028 R -4049)
((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere.")))
NIL
NIL
-(-1028 R)
+(-1029 R)
((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere.")))
NIL
NIL
-(-1029)
+(-1030)
((|constructor| (NIL "\\indented{1}{Package to allow simplify to be called on AlgebraicNumbers} by converting to EXPR(INT)")) (|simplify| (((|Expression| (|Integer|)) (|AlgebraicNumber|)) "\\spad{simplify(an)} applies simplifications to \\spad{an}")))
NIL
NIL
-(-1030)
+(-1031)
((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|xor| (($ $ $) "\\spad{xor(n,{}m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|\\/| (($ $ $) "\\spad{n} \\spad{\\/} \\spad{m} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|/\\| (($ $ $) "\\spad{n} \\spad{/\\} \\spad{m} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (~ (($ $) "\\spad{~ n} returns the bit-by-bit logical {\\em not } of the single integer \\spad{n}.")) (|not| (($ $) "\\spad{not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|min| (($) "\\spad{min()} returns the smallest single integer.")) (|max| (($) "\\spad{max()} returns the largest single integer.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality.")))
-((-4217 . T) (-4221 . T) (-4216 . T) (-4227 . T) (-4228 . T) (-4222 . T) ((-4231 "*") . T) (-4223 . T) (-4224 . T) (-4226 . T))
+((-4221 . T) (-4225 . T) (-4220 . T) (-4231 . T) (-4232 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
NIL
-(-1031 S)
+(-1032 S)
((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\spad{#s}}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,{}s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}.")))
-((-4229 . T) (-4230 . T) (-2046 . T))
+((-4233 . T) (-4234 . T) (-2046 . T))
NIL
-(-1032 S |ndim| R |Row| |Col|)
+(-1033 S |ndim| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")))
NIL
-((|HasCategory| |#3| (QUOTE (-336))) (|HasAttribute| |#3| (QUOTE (-4231 "*"))) (|HasCategory| |#3| (QUOTE (-157))))
-(-1033 |ndim| R |Row| |Col|)
+((|HasCategory| |#3| (QUOTE (-337))) (|HasAttribute| |#3| (QUOTE (-4235 "*"))) (|HasCategory| |#3| (QUOTE (-157))))
+(-1034 |ndim| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")))
-((-2046 . T) (-4229 . T) (-4223 . T) (-4224 . T) (-4226 . T))
+((-2046 . T) (-4233 . T) (-4227 . T) (-4228 . T) (-4230 . T))
NIL
-(-1034 R |Row| |Col| M)
+(-1035 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,{}B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}.")))
NIL
NIL
-(-1035 R |VarSet|)
+(-1036 R |VarSet|)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute.")))
-(((-4231 "*") |has| |#1| (-157)) (-4222 |has| |#1| (-512)) (-4227 |has| |#1| (-6 -4227)) (-4224 . T) (-4223 . T) (-4226 . T))
-((|HasCategory| |#1| (QUOTE (-837))) (|HasCategory| |#1| (QUOTE (-512))) (|HasCategory| |#1| (QUOTE (-157))) (-3700 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-512)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -814) (QUOTE (-352)))) (|HasCategory| |#2| (LIST (QUOTE -814) (QUOTE (-352))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -814) (QUOTE (-520)))) (|HasCategory| |#2| (LIST (QUOTE -814) (QUOTE (-520))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-352))))) (|HasCategory| |#2| (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-352)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-520))))) (|HasCategory| |#2| (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-520)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-496))))) (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#1| (LIST (QUOTE -582) (QUOTE (-520)))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#1| (LIST (QUOTE -960) (QUOTE (-520)))) (|HasCategory| |#1| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#1| (QUOTE (-336))) (-3700 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#1| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520)))))) (|HasAttribute| |#1| (QUOTE -4227)) (|HasCategory| |#1| (QUOTE (-424))) (-3700 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-424))) (|HasCategory| |#1| (QUOTE (-512))) (|HasCategory| |#1| (QUOTE (-837)))) (-3700 (|HasCategory| |#1| (QUOTE (-424))) (|HasCategory| |#1| (QUOTE (-512))) (|HasCategory| |#1| (QUOTE (-837)))) (-3700 (|HasCategory| |#1| (QUOTE (-424))) (|HasCategory| |#1| (QUOTE (-837)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-837)))) (-3700 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-837)))) (|HasCategory| |#1| (QUOTE (-133)))))
-(-1036 |Coef| |Var| SMP)
+(((-4235 "*") |has| |#1| (-157)) (-4226 |has| |#1| (-513)) (-4231 |has| |#1| (-6 -4231)) (-4228 . T) (-4227 . T) (-4230 . T))
+((|HasCategory| |#1| (QUOTE (-838))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-157))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-513)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-353)))) (|HasCategory| |#2| (LIST (QUOTE -815) (QUOTE (-353))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -815) (QUOTE (-521))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-353))))) (|HasCategory| |#2| (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-353)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-521))))) (|HasCategory| |#2| (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-521)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-497))))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (QUOTE (-337))) (-3703 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521)))))) (|HasAttribute| |#1| (QUOTE -4231)) (|HasCategory| |#1| (QUOTE (-425))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-425))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-838)))) (-3703 (|HasCategory| |#1| (QUOTE (-425))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-838)))) (-3703 (|HasCategory| |#1| (QUOTE (-425))) (|HasCategory| |#1| (QUOTE (-838)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-838)))) (-3703 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (QUOTE (-133)))))
+(-1037 |Coef| |Var| SMP)
((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,{}b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}.")))
-(((-4231 "*") |has| |#1| (-157)) (-4222 |has| |#1| (-512)) (-4224 . T) (-4223 . T) (-4226 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-512))) (-3700 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-512)))) (|HasCategory| |#1| (QUOTE (-336))))
-(-1037 R E V P)
+(((-4235 "*") |has| |#1| (-157)) (-4226 |has| |#1| (-513)) (-4228 . T) (-4227 . T) (-4230 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-513))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-513)))) (|HasCategory| |#1| (QUOTE (-337))))
+(-1038 R E V P)
((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}")))
-((-4230 . T) (-4229 . T) (-2046 . T))
+((-4234 . T) (-4233 . T) (-2046 . T))
NIL
-(-1038 UP -4045)
+(-1039 UP -4049)
((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,{}g,{}h,{}i,{}k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,{}g,{}h,{}j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,{}g,{}h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,{}g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,{}g,{}h,{}i,{}j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,{}g,{}h,{}i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,{}g,{}h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,{}g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,{}f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented")))
NIL
NIL
-(-1039 R)
+(-1040 R)
((|constructor| (NIL "This package tries to find solutions expressed in terms of radicals for systems of equations of rational functions with coefficients in an integral domain \\spad{R}.")) (|contractSolve| (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{contractSolve(rf,{}x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function. The result contains new symbols for common subexpressions in order to reduce the size of the output.") (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{contractSolve(eq,{}x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}. The result contains new symbols for common subexpressions in order to reduce the size of the output.")) (|radicalRoots| (((|List| (|List| (|Expression| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalRoots(lrf,{}lvar)} finds the roots expressed in terms of radicals of the list of rational functions \\spad{lrf} with respect to the list of symbols \\spad{lvar}.") (((|List| (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalRoots(rf,{}x)} finds the roots expressed in terms of radicals of the rational function \\spad{rf} with respect to the symbol \\spad{x}.")) (|radicalSolve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{radicalSolve(leq)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the unique symbol \\spad{x} appearing in \\spad{leq}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{radicalSolve(leq,{}lvar)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the list of symbols \\spad{lvar}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(lrf)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0,{} where \\spad{lrf} is a system of univariate rational functions.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalSolve(lrf,{}lvar)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0 with respect to the list of symbols \\spad{lvar},{} where \\spad{lrf} is a list of rational functions.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(eq)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{radicalSolve(eq,{}x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{radicalSolve(rf)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0,{} where \\spad{rf} is a univariate rational function.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalSolve(rf,{}x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function.")))
NIL
NIL
-(-1040 R)
+(-1041 R)
((|constructor| (NIL "This package finds the function func3 where func1 and func2 \\indented{1}{are given and\\space{2}func1 = func3(func2) .\\space{2}If there is no solution then} \\indented{1}{function func1 will be returned.} \\indented{1}{An example would be\\space{2}\\spad{func1:= 8*X**3+32*X**2-14*X ::EXPR INT} and} \\indented{1}{\\spad{func2:=2*X ::EXPR INT} convert them via univariate} \\indented{1}{to FRAC SUP EXPR INT and then the solution is \\spad{func3:=X**3+X**2-X}} \\indented{1}{of type FRAC SUP EXPR INT}")) (|unvectorise| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)) "\\spad{unvectorise(vect,{} var,{} n)} returns \\spad{vect(1) + vect(2)*var + ... + vect(n+1)*var**(n)} where \\spad{vect} is the vector of the coefficients of the polynomail ,{} \\spad{var} the new variable and \\spad{n} the degree.")) (|decomposeFunc| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|)))) "\\spad{decomposeFunc(func1,{} func2,{} newvar)} returns a function func3 where \\spad{func1} = func3(\\spad{func2}) and expresses it in the new variable newvar. If there is no solution then \\spad{func1} will be returned.")))
NIL
NIL
-(-1041 R)
+(-1042 R)
((|constructor| (NIL "This package tries to find solutions of equations of type Expression(\\spad{R}). This means expressions involving transcendental,{} exponential,{} logarithmic and nthRoot functions. After trying to transform different kernels to one kernel by applying several rules,{} it calls zerosOf for the SparseUnivariatePolynomial in the remaining kernel. For example the expression \\spad{sin(x)*cos(x)-2} will be transformed to \\indented{3}{\\spad{-2 tan(x/2)**4 -2 tan(x/2)**3 -4 tan(x/2)**2 +2 tan(x/2) -2}} by using the function normalize and then to \\indented{3}{\\spad{-2 tan(x)**2 + tan(x) -2}} with help of subsTan. This function tries to express the given function in terms of \\spad{tan(x/2)} to express in terms of \\spad{tan(x)} . Other examples are the expressions \\spad{sqrt(x+1)+sqrt(x+7)+1} or \\indented{1}{\\spad{sqrt(sin(x))+1} .}")) (|solve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Expression| |#1|))) (|List| (|Symbol|))) "\\spad{solve(leqs,{} lvar)} returns a list of solutions to the list of equations \\spad{leqs} with respect to the list of symbols lvar.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|) (|Symbol|)) "\\spad{solve(expr,{}x)} finds the solutions of the equation \\spad{expr} = 0 with respect to the symbol \\spad{x} where \\spad{expr} is a function of type Expression(\\spad{R}).") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|)) (|Symbol|)) "\\spad{solve(eq,{}x)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|)) "\\spad{solve(expr)} finds the solutions of the equation \\spad{expr} = 0 where \\spad{expr} is a function of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in eq.")))
NIL
NIL
-(-1042 S A)
+(-1043 S A)
((|constructor| (NIL "This package exports sorting algorithnms")) (|insertionSort!| ((|#2| |#2|) "\\spad{insertionSort! }\\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{insertionSort!(a,{}f)} \\undocumented")) (|bubbleSort!| ((|#2| |#2|) "\\spad{bubbleSort!(a)} \\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{bubbleSort!(a,{}f)} \\undocumented")))
NIL
-((|HasCategory| |#1| (QUOTE (-783))))
-(-1043 R)
+((|HasCategory| |#1| (QUOTE (-784))))
+(-1044 R)
((|constructor| (NIL "The domain ThreeSpace is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")))
NIL
NIL
-(-1044 R)
+(-1045 R)
((|constructor| (NIL "The category ThreeSpaceCategory is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(s)} returns the \\spadtype{ThreeSpace} \\spad{s} to Output format.")) (|subspace| (((|SubSpace| 3 |#1|) $) "\\spad{subspace(s)} returns the \\spadtype{SubSpace} which holds all the point information in the \\spadtype{ThreeSpace},{} \\spad{s}.")) (|check| (($ $) "\\spad{check(s)} returns lllpt,{} list of lists of lists of point information about the \\spadtype{ThreeSpace} \\spad{s}.")) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) "\\spad{objects(s)} returns the \\spadtype{ThreeSpace},{} \\spad{s},{} in the form of a 3D object record containing information on the number of points,{} curves,{} polygons and constructs comprising the \\spadtype{ThreeSpace}..")) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) "\\spad{lprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of subspace component properties,{} and if so,{} returns the list; An error is signaled otherwise.")) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) "\\spad{llprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of curves which are lists of the subspace component properties of the curves,{} and if so,{} returns the list of lists; An error is signaled otherwise.")) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) "\\spad{lllp(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) "\\spad{lllip(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of indices to points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lp| (((|List| (|Point| |#1|)) $) "\\spad{lp(s)} returns the list of points component which the \\spadtype{ThreeSpace},{} \\spad{s},{} contains; these points are used by reference,{} \\spadignore{i.e.} the component holds indices referring to the points rather than the points themselves. This allows for sharing of the points.")) (|mesh?| (((|Boolean|) $) "\\spad{mesh?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} is composed of one component,{} a mesh comprising a list of curves which are lists of points,{} or returns \\spad{false} if otherwise")) (|mesh| (((|List| (|List| (|Point| |#1|))) $) "\\spad{mesh(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single surface component defined by a list curves which contain lists of points,{} and if so,{} returns the list of lists of points; An error is signaled otherwise.") (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh([[p0],{}[p1],{}...,{}[pn]],{} close1,{} close2)} creates a surface defined over a list of curves,{} \\spad{p0} through \\spad{pn},{} which are lists of points; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: \\spad{close1} set to \\spad{true} means that each individual list (a curve) is to be closed (that is,{} the last point of the list is to be connected to the first point); close2 set to \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)); the \\spadtype{ThreeSpace} containing this surface is returned.") (($ (|List| (|List| (|Point| |#1|)))) "\\spad{mesh([[p0],{}[p1],{}...,{}[pn]])} creates a surface defined by a list of curves which are lists,{} \\spad{p0} through \\spad{pn},{} of points,{} and returns a \\spadtype{ThreeSpace} whose component is the surface.") (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,{}[ [[r10]...,{}[r1m]],{} [[r20]...,{}[r2m]],{}...,{} [[rn0]...,{}[rnm]] ],{} close1,{} close2)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: if \\spad{close1} is \\spad{true} this means that each individual list (a curve) is to be closed (\\spadignore{i.e.} the last point of the list is to be connected to the first point); if close2 is \\spad{true},{} this means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)).") (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,{}[[p0],{}[p1],{}...,{}[pn]],{} close1,{} close2)} adds a surface component to the \\spadtype{ThreeSpace},{} which is defined over a list of curves,{} in which each of these curves is a list of points. The boolean arguments \\spad{close1} and close2 indicate how the surface is to be closed. Argument \\spad{close1} equal \\spad{true} means that each individual list (a curve) is to be closed,{} \\spadignore{i.e.} the last point of the list is to be connected to the first point. Argument close2 equal \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end,{} \\spadignore{i.e.} the boundaries are defined as the first list of points (curve) and the last list of points (curve).") (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,{}[ [[r10]...,{}[r1m]],{} [[r20]...,{}[r2m]],{}...,{} [[rn0]...,{}[rnm]] ],{} [props],{} prop)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; lprops is the list of the subspace component properties for each curve list,{} and prop is the subspace component property by which the points are defined.") (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,{}[[p0],{}[p1],{}...,{}[pn]],{}[props],{}prop)} adds a surface component,{} defined over a list curves which contains lists of points,{} to the \\spadtype{ThreeSpace} \\spad{s}; props is a list which contains the subspace component properties for each surface parameter,{} and \\spad{prop} is the subspace component property by which the points are defined.")) (|polygon?| (((|Boolean|) $) "\\spad{polygon?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single polygon component,{} or \\spad{false} otherwise.")) (|polygon| (((|List| (|Point| |#1|)) $) "\\spad{polygon(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single polygon component defined by a list of points,{} and if so,{} returns the list of points; An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{polygon([p0,{}p1,{}...,{}pn])} creates a polygon defined by a list of points,{} \\spad{p0} through \\spad{pn},{} and returns a \\spadtype{ThreeSpace} whose component is the polygon.") (($ $ (|List| (|List| |#1|))) "\\spad{polygon(s,{}[[r0],{}[r1],{}...,{}[rn]])} adds a polygon component defined by a list of points \\spad{r0} through \\spad{rn},{} which are lists of elements from the domain \\spad{PointDomain(m,{}R)} to the \\spadtype{ThreeSpace} \\spad{s},{} where \\spad{m} is the dimension of the points and \\spad{R} is the \\spadtype{Ring} over which the points are defined.") (($ $ (|List| (|Point| |#1|))) "\\spad{polygon(s,{}[p0,{}p1,{}...,{}pn])} adds a polygon component defined by a list of points,{} \\spad{p0} throught \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|closedCurve?| (((|Boolean|) $) "\\spad{closedCurve?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single closed curve component,{} \\spadignore{i.e.} the first element of the curve is also the last element,{} or \\spad{false} otherwise.")) (|closedCurve| (((|List| (|Point| |#1|)) $) "\\spad{closedCurve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single closed curve component defined by a list of points in which the first point is also the last point,{} all of which are from the domain \\spad{PointDomain(m,{}R)} and if so,{} returns the list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{closedCurve(lp)} sets a list of points defined by the first element of \\spad{lp} through the last element of \\spad{lp} and back to the first elelment again and returns a \\spadtype{ThreeSpace} whose component is the closed curve defined by \\spad{lp}.") (($ $ (|List| (|List| |#1|))) "\\spad{closedCurve(s,{}[[lr0],{}[lr1],{}...,{}[lrn],{}[lr0]])} adds a closed curve component defined by a list of points \\spad{lr0} through \\spad{lrn},{} which are lists of elements from the domain \\spad{PointDomain(m,{}R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} in which the last element of the list of points contains a copy of the first element list,{} \\spad{lr0}. The closed curve is added to the \\spadtype{ThreeSpace},{} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{closedCurve(s,{}[p0,{}p1,{}...,{}pn,{}p0])} adds a closed curve component which is a list of points defined by the first element \\spad{p0} through the last element \\spad{pn} and back to the first element \\spad{p0} again,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|curve?| (((|Boolean|) $) "\\spad{curve?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is a curve,{} \\spadignore{i.e.} has one component,{} a list of list of points,{} and returns \\spad{true} if it is,{} or \\spad{false} otherwise.")) (|curve| (((|List| (|Point| |#1|)) $) "\\spad{curve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single curve defined by a list of points and if so,{} returns the curve,{} \\spadignore{i.e.} list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{curve([p0,{}p1,{}p2,{}...,{}pn])} creates a space curve defined by the list of points \\spad{p0} through \\spad{pn},{} and returns the \\spadtype{ThreeSpace} whose component is the curve.") (($ $ (|List| (|List| |#1|))) "\\spad{curve(s,{}[[p0],{}[p1],{}...,{}[pn]])} adds a space curve which is a list of points \\spad{p0} through \\spad{pn} defined by lists of elements from the domain \\spad{PointDomain(m,{}R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} to the \\spadtype{ThreeSpace} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{curve(s,{}[p0,{}p1,{}...,{}pn])} adds a space curve component defined by a list of points \\spad{p0} through \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|point?| (((|Boolean|) $) "\\spad{point?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single component which is a point and returns the boolean result.")) (|point| (((|Point| |#1|) $) "\\spad{point(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of only a single point and if so,{} returns the point. An error is signaled otherwise.") (($ (|Point| |#1|)) "\\spad{point(p)} returns a \\spadtype{ThreeSpace} object which is composed of one component,{} the point \\spad{p}.") (($ $ (|NonNegativeInteger|)) "\\spad{point(s,{}i)} adds a point component which is placed into a component list of the \\spadtype{ThreeSpace},{} \\spad{s},{} at the index given by \\spad{i}.") (($ $ (|List| |#1|)) "\\spad{point(s,{}[x,{}y,{}z])} adds a point component defined by a list of elements which are from the \\spad{PointDomain(R)} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined.") (($ $ (|Point| |#1|)) "\\spad{point(s,{}p)} adds a point component defined by the point,{} \\spad{p},{} specified as a list from \\spad{List(R)},{} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point is defined.")) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) "\\spad{modifyPointData(s,{}i,{}p)} changes the point at the indexed location \\spad{i} in the \\spadtype{ThreeSpace},{} \\spad{s},{} to that of point \\spad{p}. This is useful for making changes to a point which has been transformed.")) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) "\\spad{enterPointData(s,{}[p0,{}p1,{}...,{}pn])} adds a list of points from \\spad{p0} through \\spad{pn} to the \\spadtype{ThreeSpace},{} \\spad{s},{} and returns the index,{} to the starting point of the list.")) (|copy| (($ $) "\\spad{copy(s)} returns a new \\spadtype{ThreeSpace} that is an exact copy of \\spad{s}.")) (|composites| (((|List| $) $) "\\spad{composites(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single composite of \\spad{s}. If \\spad{s} has no composites defined (composites need to be explicitly created),{} the list returned is empty. Note that not all the components need to be part of a composite.")) (|components| (((|List| $) $) "\\spad{components(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single component of \\spad{s}. If \\spad{s} has no components defined,{} the list returned is empty.")) (|composite| (($ (|List| $)) "\\spad{composite([s1,{}s2,{}...,{}sn])} will create a new \\spadtype{ThreeSpace} that is a union of all the components from each \\spadtype{ThreeSpace} in the parameter list,{} grouped as a composite.")) (|merge| (($ $ $) "\\spad{merge(s1,{}s2)} will create a new \\spadtype{ThreeSpace} that has the components of \\spad{s1} and \\spad{s2}; Groupings of components into composites are maintained.") (($ (|List| $)) "\\spad{merge([s1,{}s2,{}...,{}sn])} will create a new \\spadtype{ThreeSpace} that has the components of all the ones in the list; Groupings of components into composites are maintained.")) (|numberOfComposites| (((|NonNegativeInteger|) $) "\\spad{numberOfComposites(s)} returns the number of supercomponents,{} or composites,{} in the \\spadtype{ThreeSpace},{} \\spad{s}; Composites are arbitrary groupings of otherwise distinct and unrelated components; A \\spadtype{ThreeSpace} need not have any composites defined at all and,{} outside of the requirement that no component can belong to more than one composite at a time,{} the definition and interpretation of composites are unrestricted.")) (|numberOfComponents| (((|NonNegativeInteger|) $) "\\spad{numberOfComponents(s)} returns the number of distinct object components in the indicated \\spadtype{ThreeSpace},{} \\spad{s},{} such as points,{} curves,{} polygons,{} and constructs.")) (|create3Space| (($ (|SubSpace| 3 |#1|)) "\\spad{create3Space(s)} creates a \\spadtype{ThreeSpace} object containing objects pre-defined within some \\spadtype{SubSpace} \\spad{s}.") (($) "\\spad{create3Space()} creates a \\spadtype{ThreeSpace} object capable of holding point,{} curve,{} mesh components and any combination.")))
NIL
NIL
-(-1045)
+(-1046)
((|constructor| (NIL "\\indented{1}{This package provides a simple Spad algebra parser.} Related Constructors: Syntax. See Also: Syntax.")) (|parse| (((|List| (|Syntax|)) (|String|)) "\\spad{parse(f)} parses the source file \\spad{f} (supposedly containing Spad algebras) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that this function has the side effect of executing any system command contained in the file \\spad{f},{} even if it might not be meaningful.")))
NIL
NIL
-(-1046)
+(-1047)
((|constructor| (NIL "SpecialOutputPackage allows FORTRAN,{} Tex and \\indented{2}{Script Formula Formatter output from programs.}")) (|outputAsTex| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsTex(l)} sends (for each expression in the list \\spad{l}) output in Tex format to the destination as defined by \\spadsyscom{set output tex}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsTex(o)} sends output \\spad{o} in Tex format to the destination defined by \\spadsyscom{set output tex}.")) (|outputAsScript| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsScript(l)} sends (for each expression in the list \\spad{l}) output in Script Formula Formatter format to the destination defined. by \\spadsyscom{set output forumula}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsScript(o)} sends output \\spad{o} in Script Formula Formatter format to the destination defined by \\spadsyscom{set output formula}.")) (|outputAsFortran| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsFortran(l)} sends (for each expression in the list \\spad{l}) output in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsFortran(o)} sends output \\spad{o} in FORTRAN format.") (((|Void|) (|String|) (|OutputForm|)) "\\spad{outputAsFortran(v,{}o)} sends output \\spad{v} = \\spad{o} in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.")))
NIL
NIL
-(-1047)
+(-1048)
((|constructor| (NIL "Category for the other special functions.")) (|airyBi| (($ $) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}.")) (|airyAi| (($ $) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}.")) (|besselK| (($ $ $) "\\spad{besselK(v,{}z)} is the modified Bessel function of the second kind.")) (|besselI| (($ $ $) "\\spad{besselI(v,{}z)} is the modified Bessel function of the first kind.")) (|besselY| (($ $ $) "\\spad{besselY(v,{}z)} is the Bessel function of the second kind.")) (|besselJ| (($ $ $) "\\spad{besselJ(v,{}z)} is the Bessel function of the first kind.")) (|polygamma| (($ $ $) "\\spad{polygamma(k,{}x)} is the \\spad{k-th} derivative of \\spad{digamma(x)},{} (often written \\spad{psi(k,{}x)} in the literature).")) (|digamma| (($ $) "\\spad{digamma(x)} is the logarithmic derivative of \\spad{Gamma(x)} (often written \\spad{psi(x)} in the literature).")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $ $) "\\spad{Gamma(a,{}x)} is the incomplete Gamma function.") (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")))
NIL
NIL
-(-1048 V C)
+(-1049 V C)
((|constructor| (NIL "This domain exports a modest implementation for the vertices of splitting trees. These vertices are called here splitting nodes. Every of these nodes store 3 informations. The first one is its value,{} that is the current expression to evaluate. The second one is its condition,{} that is the hypothesis under which the value has to be evaluated. The last one is its status,{} that is a boolean flag which is \\spad{true} iff the value is the result of its evaluation under its condition. Two splitting vertices are equal iff they have the sane values and the same conditions (so their status do not matter).")) (|subNode?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNode?(\\spad{n1},{}\\spad{n2},{}o2)} returns \\spad{true} iff \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}")) (|infLex?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{infLex?(\\spad{n1},{}\\spad{n2},{}o1,{}o2)} returns \\spad{true} iff \\axiom{o1(value(\\spad{n1}),{}value(\\spad{n2}))} or \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}.")) (|setEmpty!| (($ $) "\\axiom{setEmpty!(\\spad{n})} replaces \\spad{n} by \\axiom{empty()\\$\\%}.")) (|setStatus!| (($ $ (|Boolean|)) "\\axiom{setStatus!(\\spad{n},{}\\spad{b})} returns \\spad{n} whose status has been replaced by \\spad{b} if it is not empty,{} else an error is produced.")) (|setCondition!| (($ $ |#2|) "\\axiom{setCondition!(\\spad{n},{}\\spad{t})} returns \\spad{n} whose condition has been replaced by \\spad{t} if it is not empty,{} else an error is produced.")) (|setValue!| (($ $ |#1|) "\\axiom{setValue!(\\spad{n},{}\\spad{v})} returns \\spad{n} whose value has been replaced by \\spad{v} if it is not empty,{} else an error is produced.")) (|copy| (($ $) "\\axiom{copy(\\spad{n})} returns a copy of \\spad{n}.")) (|construct| (((|List| $) |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v},{}\\spad{lt})} returns the same as \\axiom{[construct(\\spad{v},{}\\spad{t}) for \\spad{t} in \\spad{lt}]}") (((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) "\\axiom{construct(\\spad{lvt})} returns the same as \\axiom{[construct(\\spad{vt}.val,{}\\spad{vt}.tower) for \\spad{vt} in \\spad{lvt}]}") (($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) "\\axiom{construct(\\spad{vt})} returns the same as \\axiom{construct(\\spad{vt}.val,{}\\spad{vt}.tower)}") (($ |#1| |#2|) "\\axiom{construct(\\spad{v},{}\\spad{t})} returns the same as \\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{false})}") (($ |#1| |#2| (|Boolean|)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{b})} returns the non-empty node with value \\spad{v},{} condition \\spad{t} and flag \\spad{b}")) (|status| (((|Boolean|) $) "\\axiom{status(\\spad{n})} returns the status of the node \\spad{n}.")) (|condition| ((|#2| $) "\\axiom{condition(\\spad{n})} returns the condition of the node \\spad{n}.")) (|value| ((|#1| $) "\\axiom{value(\\spad{n})} returns the value of the node \\spad{n}.")) (|empty?| (((|Boolean|) $) "\\axiom{empty?(\\spad{n})} returns \\spad{true} iff the node \\spad{n} is \\axiom{empty()\\$\\%}.")) (|empty| (($) "\\axiom{empty()} returns the same as \\axiom{[empty()\\$\\spad{V},{}empty()\\$\\spad{C},{}\\spad{false}]\\$\\%}")))
NIL
NIL
-(-1049 V C)
+(-1050 V C)
((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned.")))
-((-4229 . T) (-4230 . T))
-((|HasCategory| (-1048 |#1| |#2|) (QUOTE (-1012))) (-12 (|HasCategory| (-1048 |#1| |#2|) (LIST (QUOTE -283) (LIST (QUOTE -1048) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1048 |#1| |#2|) (QUOTE (-1012)))) (|HasCategory| (-1048 |#1| |#2|) (LIST (QUOTE -560) (QUOTE (-791)))) (-3700 (|HasCategory| (-1048 |#1| |#2|) (LIST (QUOTE -560) (QUOTE (-791)))) (-12 (|HasCategory| (-1048 |#1| |#2|) (LIST (QUOTE -283) (LIST (QUOTE -1048) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1048 |#1| |#2|) (QUOTE (-1012))))))
-(-1050 |ndim| R)
+((-4233 . T) (-4234 . T))
+((|HasCategory| (-1049 |#1| |#2|) (QUOTE (-1013))) (-12 (|HasCategory| (-1049 |#1| |#2|) (LIST (QUOTE -284) (LIST (QUOTE -1049) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1049 |#1| |#2|) (QUOTE (-1013)))) (|HasCategory| (-1049 |#1| |#2|) (LIST (QUOTE -561) (QUOTE (-792)))) (-3703 (|HasCategory| (-1049 |#1| |#2|) (LIST (QUOTE -561) (QUOTE (-792)))) (-12 (|HasCategory| (-1049 |#1| |#2|) (LIST (QUOTE -284) (LIST (QUOTE -1049) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1049 |#1| |#2|) (QUOTE (-1013))))))
+(-1051 |ndim| R)
((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|coerce| (((|Matrix| |#2|) $) "\\spad{coerce(m)} converts a matrix of type \\spadtype{SquareMatrix} to a matrix of type \\spadtype{Matrix}.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")))
-((-4226 . T) (-4218 |has| |#2| (-6 (-4231 "*"))) (-4229 . T) (-4223 . T) (-4224 . T))
-((|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasCategory| |#2| (QUOTE (-209))) (|HasAttribute| |#2| (QUOTE (-4231 "*"))) (|HasCategory| |#2| (LIST (QUOTE -582) (QUOTE (-520)))) (|HasCategory| |#2| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#2| (LIST (QUOTE -960) (QUOTE (-520)))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| |#2| (QUOTE (-281))) (|HasCategory| |#2| (QUOTE (-512))) (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (QUOTE (-336))) (-3700 (|HasAttribute| |#2| (QUOTE (-4231 "*"))) (|HasCategory| |#2| (LIST (QUOTE -582) (QUOTE (-520)))) (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasCategory| |#2| (QUOTE (-209)))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (LIST (QUOTE -283) (|devaluate| |#2|)))) (-3700 (-12 (|HasCategory| |#2| (QUOTE (-209))) (|HasCategory| |#2| (LIST (QUOTE -283) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (LIST (QUOTE -283) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -283) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -582) (QUOTE (-520))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -283) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1083)))))) (|HasCategory| |#2| (LIST (QUOTE -560) (QUOTE (-791)))) (|HasCategory| |#2| (QUOTE (-157))))
-(-1051 S)
+((-4230 . T) (-4222 |has| |#2| (-6 (-4235 "*"))) (-4233 . T) (-4227 . T) (-4228 . T))
+((|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasCategory| |#2| (QUOTE (-210))) (|HasAttribute| |#2| (QUOTE (-4235 "*"))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#2| (QUOTE (-282))) (|HasCategory| |#2| (QUOTE (-513))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-337))) (-3703 (|HasAttribute| |#2| (QUOTE (-4235 "*"))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasCategory| |#2| (QUOTE (-210)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-3703 (-12 (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1084)))))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-792)))) (|HasCategory| |#2| (QUOTE (-157))))
+(-1052 S)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
NIL
NIL
-(-1052)
+(-1053)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
-((-4230 . T) (-4229 . T) (-2046 . T))
+((-4234 . T) (-4233 . T) (-2046 . T))
NIL
-(-1053 R E V P TS)
+(-1054 R E V P TS)
((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,{}E,{}V,{}P,{}TS)} and \\spad{RSETGCD(R,{}E,{}V,{}P,{}TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
-(-1054 R E V P)
+(-1055 R E V P)
((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
-((-4230 . T) (-4229 . T))
-((|HasCategory| |#4| (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| |#4| (QUOTE (-1012))) (-12 (|HasCategory| |#4| (QUOTE (-1012))) (|HasCategory| |#4| (LIST (QUOTE -283) (|devaluate| |#4|)))) (|HasCategory| |#1| (QUOTE (-512))) (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#4| (LIST (QUOTE -560) (QUOTE (-791)))))
-(-1055 S)
+((-4234 . T) (-4233 . T))
+((|HasCategory| |#4| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#4| (QUOTE (-1013))) (-12 (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#4| (LIST (QUOTE -284) (|devaluate| |#4|)))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#3| (QUOTE (-342))) (|HasCategory| |#4| (LIST (QUOTE -561) (QUOTE (-792)))))
+(-1056 S)
((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,{}y,{}...,{}z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
-((-4229 . T) (-4230 . T))
-((|HasCategory| |#1| (QUOTE (-1012))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-791)))) (-3700 (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-791))))))
-(-1056 A S)
+((-4233 . T) (-4234 . T))
+((|HasCategory| |#1| (QUOTE (-1013))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-792)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-792))))))
+(-1057 A S)
((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}.")))
NIL
NIL
-(-1057 S)
+(-1058 S)
((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}.")))
((-2046 . T))
NIL
-(-1058 |Key| |Ent| |dent|)
+(-1059 |Key| |Ent| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
-((-4230 . T))
-((|HasCategory| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#2| (LIST (QUOTE -560) (QUOTE (-791)))) (|HasCategory| |#2| (QUOTE (-1012))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (LIST (QUOTE -283) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (QUOTE (-1012))) (-12 (|HasCategory| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (QUOTE (-1012))) (|HasCategory| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (LIST (QUOTE -283) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2526) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3043) (|devaluate| |#2|)))))) (-3700 (|HasCategory| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (QUOTE (-1012))) (|HasCategory| |#2| (QUOTE (-1012)))) (|HasCategory| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (LIST (QUOTE -560) (QUOTE (-791)))) (-3700 (|HasCategory| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (QUOTE (-1012))) (|HasCategory| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (LIST (QUOTE -560) (QUOTE (-791)))) (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (LIST (QUOTE -560) (QUOTE (-791))))) (-3700 (|HasCategory| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (LIST (QUOTE -560) (QUOTE (-791)))) (|HasCategory| |#2| (LIST (QUOTE -560) (QUOTE (-791))))))
-(-1059)
+((-4234 . T))
+((|HasCategory| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-792)))) (|HasCategory| |#2| (QUOTE (-1013))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (QUOTE (-1013))) (-12 (|HasCategory| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (QUOTE (-1013))) (|HasCategory| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (LIST (QUOTE -284) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2529) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3045) (|devaluate| |#2|)))))) (-3703 (|HasCategory| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-1013)))) (|HasCategory| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (LIST (QUOTE -561) (QUOTE (-792)))) (-3703 (|HasCategory| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (QUOTE (-1013))) (|HasCategory| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (LIST (QUOTE -561) (QUOTE (-792)))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-792))))) (-3703 (|HasCategory| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (LIST (QUOTE -561) (QUOTE (-792)))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-792))))))
+(-1060)
((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}\\spad{'s} are never \"failed\".}")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping.")))
NIL
NIL
-(-1060 |Coef|)
+(-1061 |Coef|)
((|constructor| (NIL "This package computes infinite products of Taylor series over an integral domain of characteristic 0. Here Taylor series are represented by streams of Taylor coefficients.")) (|generalInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-1061 S)
+(-1062 S)
((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,{}u)}.")))
NIL
NIL
-(-1062 A B)
+(-1063 A B)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,{}f,{}u)},{} where \\spad{u} is a finite stream \\spad{[x0,{}x1,{}...,{}xn]},{} returns the value \\spad{r(n)} computed as follows: \\spad{r0 = f(x0,{}b),{} r1 = f(x1,{}r0),{}...,{} r(n) = f(xn,{}r(n-1))}.")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,{}h,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[y0,{}y1,{}y2,{}...]},{} where \\spad{y0 = h(x0,{}b)},{} \\spad{y1 = h(x1,{}y0)},{}\\spad{...} \\spad{yn = h(xn,{}y(n-1))}.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,{}s)} returns a stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{s}. Note: \\spad{map(f,{}[x0,{}x1,{}x2,{}...]) = [f(x0),{}f(x1),{}f(x2),{}..]}.")))
NIL
NIL
-(-1063 A B C)
+(-1064 A B C)
((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}st1,{}st2)} returns the stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{st1} and \\spad{st2}. Note: \\spad{map(f,{}[x0,{}x1,{}x2,{}..],{}[y0,{}y1,{}y2,{}..]) = [f(x0,{}y0),{}f(x1,{}y1),{}..]}.")))
NIL
NIL
-(-1064 S)
+(-1065 S)
((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n-1)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,{}x) = [x,{}f(x),{}f(f(x)),{}...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),{}f(),{}f(),{}...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,{}n,{}y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,{}st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,{}s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,{}s) = concat(a,{}s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,{}st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,{}s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(l)} converts a list \\spad{l} to a stream.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries.")))
-((-4230 . T))
-((|HasCategory| |#1| (QUOTE (-1012))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| (-520) (QUOTE (-783))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-791)))) (-3700 (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-791))))))
-(-1065)
+((-4234 . T))
+((|HasCategory| |#1| (QUOTE (-1013))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| (-521) (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-792)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-792))))))
+(-1066)
((|constructor| (NIL "A category for string-like objects")) (|string| (($ (|Integer|)) "\\spad{string(i)} returns the decimal representation of \\spad{i} in a string")))
-((-4230 . T) (-4229 . T) (-2046 . T))
+((-4234 . T) (-4233 . T) (-2046 . T))
NIL
-(-1066)
+(-1067)
NIL
-((-4230 . T) (-4229 . T))
-((|HasCategory| (-132) (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| (-132) (QUOTE (-783))) (|HasCategory| (-520) (QUOTE (-783))) (|HasCategory| (-132) (QUOTE (-1012))) (-12 (|HasCategory| (-132) (QUOTE (-1012))) (|HasCategory| (-132) (LIST (QUOTE -283) (QUOTE (-132))))) (-3700 (-12 (|HasCategory| (-132) (QUOTE (-783))) (|HasCategory| (-132) (LIST (QUOTE -283) (QUOTE (-132))))) (-12 (|HasCategory| (-132) (QUOTE (-1012))) (|HasCategory| (-132) (LIST (QUOTE -283) (QUOTE (-132)))))) (|HasCategory| (-132) (LIST (QUOTE -560) (QUOTE (-791)))))
-(-1067 |Entry|)
+((-4234 . T) (-4233 . T))
+((|HasCategory| (-132) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| (-132) (QUOTE (-784))) (|HasCategory| (-521) (QUOTE (-784))) (|HasCategory| (-132) (QUOTE (-1013))) (-12 (|HasCategory| (-132) (QUOTE (-1013))) (|HasCategory| (-132) (LIST (QUOTE -284) (QUOTE (-132))))) (-3703 (-12 (|HasCategory| (-132) (QUOTE (-784))) (|HasCategory| (-132) (LIST (QUOTE -284) (QUOTE (-132))))) (-12 (|HasCategory| (-132) (QUOTE (-1013))) (|HasCategory| (-132) (LIST (QUOTE -284) (QUOTE (-132)))))) (|HasCategory| (-132) (LIST (QUOTE -561) (QUOTE (-792)))))
+(-1068 |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used.")))
-((-4229 . T) (-4230 . T))
-((|HasCategory| (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (QUOTE (-1012))) (-12 (|HasCategory| (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (QUOTE (-1012))) (|HasCategory| (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (LIST (QUOTE -283) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2526) (QUOTE (-1066))) (LIST (QUOTE |:|) (QUOTE -3043) (|devaluate| |#1|)))))) (|HasCategory| (-1066) (QUOTE (-783))) (|HasCategory| |#1| (QUOTE (-1012))) (-3700 (|HasCategory| (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-1012)))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-791)))) (|HasCategory| (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (LIST (QUOTE -560) (QUOTE (-791)))) (-3700 (|HasCategory| (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (QUOTE (-1012))) (|HasCategory| (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (LIST (QUOTE -560) (QUOTE (-791)))) (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-791))))) (-3700 (|HasCategory| (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (LIST (QUOTE -560) (QUOTE (-791)))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-791))))))
-(-1068 A)
+((-4233 . T) (-4234 . T))
+((|HasCategory| (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (QUOTE (-1013))) (-12 (|HasCategory| (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (QUOTE (-1013))) (|HasCategory| (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (LIST (QUOTE -284) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2529) (QUOTE (-1067))) (LIST (QUOTE |:|) (QUOTE -3045) (|devaluate| |#1|)))))) (|HasCategory| (-1067) (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-1013))) (-3703 (|HasCategory| (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-1013)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-792)))) (|HasCategory| (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (LIST (QUOTE -561) (QUOTE (-792)))) (-3703 (|HasCategory| (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (QUOTE (-1013))) (|HasCategory| (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (LIST (QUOTE -561) (QUOTE (-792)))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-792))))) (-3703 (|HasCategory| (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (LIST (QUOTE -561) (QUOTE (-792)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-792))))))
+(-1069 A)
((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,{}f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,{}r,{}g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0/b0,{}a1/b1,{}..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,{}f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,{}0>,{}b<0,{}1>,{}...],{}[b<1,{}0>,{}b<1,{}1>,{}.],{}...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,{}j=0 to infinity,{}b<i,{}j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,{}f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,{}a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,{}[a0,{}a1,{}a2,{}...]) = [a,{}a0,{}a1/2,{}a2/3,{}...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,{}b,{}st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,{}b,{}st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),{}n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),{}n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),{}n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,{}0>,{}a<0,{}1>,{}..],{}[a<1,{}0>,{}a<1,{}1>,{}..],{}[a<2,{}0>,{}a<2,{}1>,{}..],{}..]} and \\spad{addiag(x) = [b<0,{}b<1>,{}...],{} then b<k> = sum(i+j=k,{}a<i,{}j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient 1.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,{}b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,{}r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,{}[a0,{}a1,{}a2,{}..])} returns \\spad{[f(0)*a0,{}f(1)*a1,{}f(2)*a2,{}..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,{}a1,{}a2,{}...])} returns \\spad{[a1,{}2 a2,{}3 a3,{}...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0*b0,{}a1*b1,{}..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,{}n+2,{}n+4,{}...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,{}n+1,{}n+2,{}...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,{}coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,{}b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,{}a1,{}...] * r = [a0 * r,{}a1 * r,{}...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,{}a1,{}...] = [r * a0,{}r * a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,{}a1,{}...] * [b0,{}b1,{}...] = [c0,{}c1,{}...]} where \\spad{ck = sum(i + j = k,{}\\spad{ai} * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,{}a1,{}...] = [- a0,{}- a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] - [b0,{}b1,{}..] = [a0 - b0,{}a1 - b1,{}..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] + [b0,{}b1,{}..] = [a0 + b0,{}a1 + b1,{}..]}")))
NIL
-((|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520))))))
-(-1069 |Coef|)
+((|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))))
+(-1070 |Coef|)
((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
NIL
NIL
-(-1070 |Coef|)
+(-1071 |Coef|)
((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
NIL
NIL
-(-1071 R UP)
+(-1072 R UP)
((|constructor| (NIL "This package computes the subresultants of two polynomials which is needed for the `Lazard Rioboo' enhancement to Tragers integrations formula For efficiency reasons this has been rewritten to call Lionel Ducos package which is currently the best one. \\blankline")) (|primitivePart| ((|#2| |#2| |#1|) "\\spad{primitivePart(p,{} q)} reduces the coefficient of \\spad{p} modulo \\spad{q},{} takes the primitive part of the result,{} and ensures that the leading coefficient of that result is monic.")) (|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) "\\spad{subresultantVector(p,{} q)} returns \\spad{[p0,{}...,{}pn]} where \\spad{pi} is the \\spad{i}-th subresultant of \\spad{p} and \\spad{q}. In particular,{} \\spad{p0 = resultant(p,{} q)}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-281))))
-(-1072 |n| R)
+((|HasCategory| |#1| (QUOTE (-282))))
+(-1073 |n| R)
((|constructor| (NIL "This domain \\undocumented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,{}\\spad{li})} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,{}\\spad{li},{}p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,{}\\spad{li},{}b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,{}ind,{}p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,{}\\spad{li},{}i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,{}\\spad{li},{}p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,{}s2,{}\\spad{li},{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,{}p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,{}\\spad{li},{}i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,{}\\spad{li},{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,{}s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} \\undocumented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} \\undocumented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} \\undocumented")) (|children| (((|List| $) $) "\\spad{children(x)} \\undocumented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,{}n)} \\undocumented")) (|birth| (($ $) "\\spad{birth(x)} \\undocumented")) (|subspace| (($) "\\spad{subspace()} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} \\undocumented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} \\undocumented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} \\undocumented")))
NIL
NIL
-(-1073 S1 S2)
+(-1074 S1 S2)
((|constructor| (NIL "This domain implements \"such that\" forms")) (|rhs| ((|#2| $) "\\spad{rhs(f)} returns the right side of \\spad{f}")) (|lhs| ((|#1| $) "\\spad{lhs(f)} returns the left side of \\spad{f}")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,{}t)} makes a form \\spad{s:t}")))
NIL
NIL
-(-1074 |Coef| |var| |cen|)
+(-1075 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-4231 "*") -3700 (-4006 (|has| |#1| (-336)) (|has| (-1081 |#1| |#2| |#3|) (-756))) (|has| |#1| (-157)) (-4006 (|has| |#1| (-336)) (|has| (-1081 |#1| |#2| |#3|) (-837)))) (-4222 -3700 (-4006 (|has| |#1| (-336)) (|has| (-1081 |#1| |#2| |#3|) (-756))) (|has| |#1| (-512)) (-4006 (|has| |#1| (-336)) (|has| (-1081 |#1| |#2| |#3|) (-837)))) (-4227 |has| |#1| (-336)) (-4221 |has| |#1| (-336)) (-4223 . T) (-4224 . T) (-4226 . T))
-((|HasCategory| |#1| (QUOTE (-512))) (|HasCategory| |#1| (QUOTE (-157))) (-3700 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-512)))) (|HasCategory| (-520) (QUOTE (-1024))) (|HasCategory| |#1| (QUOTE (-336))) (-3700 (-12 (|HasCategory| (-1081 |#1| |#2| |#3|) (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-336)))) (|HasCategory| |#1| (QUOTE (-135)))) (-3700 (-12 (|HasCategory| (-1081 |#1| |#2| |#3|) (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasCategory| |#1| (QUOTE (-336)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-520)) (|devaluate| |#1|)))))) (-3700 (-12 (|HasCategory| (-1081 |#1| |#2| |#3|) (QUOTE (-209))) (|HasCategory| |#1| (QUOTE (-336)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-520)) (|devaluate| |#1|))))) (-3700 (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (QUOTE (-512)))) (-12 (|HasCategory| (-1081 |#1| |#2| |#3|) (LIST (QUOTE -960) (QUOTE (-1083)))) (|HasCategory| |#1| (QUOTE (-336)))) (-12 (|HasCategory| (-1081 |#1| |#2| |#3|) (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-336)))) (-12 (|HasCategory| (-1081 |#1| |#2| |#3|) (QUOTE (-945))) (|HasCategory| |#1| (QUOTE (-336)))) (-3700 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (QUOTE (-512)))) (-12 (|HasCategory| (-1081 |#1| |#2| |#3|) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-336)))) (-12 (|HasCategory| (-1081 |#1| |#2| |#3|) (LIST (QUOTE -960) (QUOTE (-520)))) (|HasCategory| |#1| (QUOTE (-336)))) (-12 (|HasCategory| (-1081 |#1| |#2| |#3|) (QUOTE (-1059))) (|HasCategory| |#1| (QUOTE (-336)))) (-12 (|HasCategory| (-1081 |#1| |#2| |#3|) (LIST (QUOTE -260) (LIST (QUOTE -1081) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1081) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-336)))) (-12 (|HasCategory| (-1081 |#1| |#2| |#3|) (LIST (QUOTE -283) (LIST (QUOTE -1081) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-336)))) (-12 (|HasCategory| (-1081 |#1| |#2| |#3|) (LIST (QUOTE -481) (QUOTE (-1083)) (LIST (QUOTE -1081) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-336)))) (-12 (|HasCategory| (-1081 |#1| |#2| |#3|) (LIST (QUOTE -582) (QUOTE (-520)))) (|HasCategory| |#1| (QUOTE (-336)))) (-12 (|HasCategory| (-1081 |#1| |#2| |#3|) (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-520))))) (|HasCategory| |#1| (QUOTE (-336)))) (-12 (|HasCategory| (-1081 |#1| |#2| |#3|) (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-352))))) (|HasCategory| |#1| (QUOTE (-336)))) (-12 (|HasCategory| (-1081 |#1| |#2| |#3|) (LIST (QUOTE -814) (QUOTE (-520)))) (|HasCategory| |#1| (QUOTE (-336)))) (-12 (|HasCategory| (-1081 |#1| |#2| |#3|) (LIST (QUOTE -814) (QUOTE (-352)))) (|HasCategory| |#1| (QUOTE (-336)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-520))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-520))))) (|HasSignature| |#1| (LIST (QUOTE -2188) (LIST (|devaluate| |#1|) (QUOTE (-1083)))))) (-12 (|HasCategory| (-1081 |#1| |#2| |#3|) (QUOTE (-505))) (|HasCategory| |#1| (QUOTE (-336)))) (-12 (|HasCategory| (-1081 |#1| |#2| |#3|) (QUOTE (-281))) (|HasCategory| |#1| (QUOTE (-336)))) (|HasCategory| (-1081 |#1| |#2| |#3|) (QUOTE (-837))) (-12 (|HasCategory| (-1081 |#1| |#2| |#3|) (QUOTE (-837))) (|HasCategory| |#1| (QUOTE (-336)))) (|HasCategory| (-1081 |#1| |#2| |#3|) (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-133))) (-3700 (-12 (|HasCategory| (-1081 |#1| |#2| |#3|) (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-336)))) (|HasCategory| |#1| (QUOTE (-133)))) (-3700 (-12 (|HasCategory| (-1081 |#1| |#2| |#3|) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-336)))) (-12 (|HasCategory| (-1081 |#1| |#2| |#3|) (QUOTE (-837))) (|HasCategory| |#1| (QUOTE (-336)))) (|HasCategory| |#1| (QUOTE (-512)))) (-3700 (-12 (|HasCategory| (-1081 |#1| |#2| |#3|) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-336)))) (-12 (|HasCategory| (-1081 |#1| |#2| |#3|) (QUOTE (-837))) (|HasCategory| |#1| (QUOTE (-336)))) (|HasCategory| |#1| (QUOTE (-157)))) (-12 (|HasCategory| (-1081 |#1| |#2| |#3|) (QUOTE (-783))) (|HasCategory| |#1| (QUOTE (-336)))) (-3700 (-12 (|HasCategory| (-1081 |#1| |#2| |#3|) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-336)))) (-12 (|HasCategory| (-1081 |#1| |#2| |#3|) (QUOTE (-783))) (|HasCategory| |#1| (QUOTE (-336))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520))))) (-3700 (-12 (|HasCategory| (-1081 |#1| |#2| |#3|) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-336)))) (-12 (|HasCategory| (-1081 |#1| |#2| |#3|) (QUOTE (-783))) (|HasCategory| |#1| (QUOTE (-336)))) (-12 (|HasCategory| (-1081 |#1| |#2| |#3|) (QUOTE (-837))) (|HasCategory| |#1| (QUOTE (-336)))) (-12 (|HasCategory| (-1081 |#1| |#2| |#3|) (QUOTE (-945))) (|HasCategory| |#1| (QUOTE (-336)))) (-12 (|HasCategory| (-1081 |#1| |#2| |#3|) (QUOTE (-1059))) (|HasCategory| |#1| (QUOTE (-336)))) (-12 (|HasCategory| (-1081 |#1| |#2| |#3|) (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-336)))) (-12 (|HasCategory| (-1081 |#1| |#2| |#3|) (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-352))))) (|HasCategory| |#1| (QUOTE (-336)))) (-12 (|HasCategory| (-1081 |#1| |#2| |#3|) (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-520))))) (|HasCategory| |#1| (QUOTE (-336)))) (-12 (|HasCategory| (-1081 |#1| |#2| |#3|) (LIST (QUOTE -260) (LIST (QUOTE -1081) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1081) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-336)))) (-12 (|HasCategory| (-1081 |#1| |#2| |#3|) (LIST (QUOTE -283) (LIST (QUOTE -1081) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-336)))) (-12 (|HasCategory| (-1081 |#1| |#2| |#3|) (LIST (QUOTE -481) (QUOTE (-1083)) (LIST (QUOTE -1081) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-336)))) (-12 (|HasCategory| (-1081 |#1| |#2| |#3|) (LIST (QUOTE -582) (QUOTE (-520)))) (|HasCategory| |#1| (QUOTE (-336)))) (-12 (|HasCategory| (-1081 |#1| |#2| |#3|) (LIST (QUOTE -814) (QUOTE (-352)))) (|HasCategory| |#1| (QUOTE (-336)))) (-12 (|HasCategory| (-1081 |#1| |#2| |#3|) (LIST (QUOTE -814) (QUOTE (-520)))) (|HasCategory| |#1| (QUOTE (-336)))) (-12 (|HasCategory| (-1081 |#1| |#2| |#3|) (LIST (QUOTE -960) (QUOTE (-520)))) (|HasCategory| |#1| (QUOTE (-336)))) (-12 (|HasCategory| (-1081 |#1| |#2| |#3|) (LIST (QUOTE -960) (QUOTE (-1083)))) (|HasCategory| |#1| (QUOTE (-336)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520)))))) (-3700 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-520)))) (|HasCategory| |#1| (QUOTE (-886))) (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasSignature| |#1| (LIST (QUOTE -3517) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1083))))) (|HasSignature| |#1| (LIST (QUOTE -4081) (LIST (LIST (QUOTE -586) (QUOTE (-1083))) (|devaluate| |#1|)))))) (-3700 (-12 (|HasCategory| (-1081 |#1| |#2| |#3|) (LIST (QUOTE -960) (QUOTE (-520)))) (|HasCategory| |#1| (QUOTE (-336)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520)))))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-1081 |#1| |#2| |#3|) (QUOTE (-837))) (|HasCategory| |#1| (QUOTE (-336)))) (-3700 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-1081 |#1| |#2| |#3|) (QUOTE (-837))) (|HasCategory| |#1| (QUOTE (-336)))) (-12 (|HasCategory| (-1081 |#1| |#2| |#3|) (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-336)))) (|HasCategory| |#1| (QUOTE (-133)))))
-(-1075 R -4045)
+(((-4235 "*") -3703 (-4009 (|has| |#1| (-337)) (|has| (-1082 |#1| |#2| |#3|) (-757))) (|has| |#1| (-157)) (-4009 (|has| |#1| (-337)) (|has| (-1082 |#1| |#2| |#3|) (-838)))) (-4226 -3703 (-4009 (|has| |#1| (-337)) (|has| (-1082 |#1| |#2| |#3|) (-757))) (|has| |#1| (-513)) (-4009 (|has| |#1| (-337)) (|has| (-1082 |#1| |#2| |#3|) (-838)))) (-4231 |has| |#1| (-337)) (-4225 |has| |#1| (-337)) (-4227 . T) (-4228 . T) (-4230 . T))
+((|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-157))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-513)))) (|HasCategory| (-521) (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-337))) (-3703 (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-337)))) (|HasCategory| |#1| (QUOTE (-135)))) (-3703 (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-521)) (|devaluate| |#1|)))))) (-3703 (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (QUOTE (-210))) (|HasCategory| |#1| (QUOTE (-337)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-521)) (|devaluate| |#1|))))) (-3703 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-513)))) (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (LIST (QUOTE -961) (QUOTE (-1084)))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (QUOTE (-946))) (|HasCategory| |#1| (QUOTE (-337)))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-513)))) (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (QUOTE (-1060))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (LIST (QUOTE -261) (LIST (QUOTE -1082) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1082) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (LIST (QUOTE -284) (LIST (QUOTE -1082) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (LIST (QUOTE -482) (QUOTE (-1084)) (LIST (QUOTE -1082) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-521))))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-353))))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (LIST (QUOTE -815) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (LIST (QUOTE -815) (QUOTE (-353)))) (|HasCategory| |#1| (QUOTE (-337)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-521))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-521))))) (|HasSignature| |#1| (LIST (QUOTE -2189) (LIST (|devaluate| |#1|) (QUOTE (-1084)))))) (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (QUOTE (-506))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (QUOTE (-282))) (|HasCategory| |#1| (QUOTE (-337)))) (|HasCategory| (-1082 |#1| |#2| |#3|) (QUOTE (-838))) (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (QUOTE (-838))) (|HasCategory| |#1| (QUOTE (-337)))) (|HasCategory| (-1082 |#1| |#2| |#3|) (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-133))) (-3703 (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-337)))) (|HasCategory| |#1| (QUOTE (-133)))) (-3703 (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (QUOTE (-838))) (|HasCategory| |#1| (QUOTE (-337)))) (|HasCategory| |#1| (QUOTE (-513)))) (-3703 (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (QUOTE (-838))) (|HasCategory| |#1| (QUOTE (-337)))) (|HasCategory| |#1| (QUOTE (-157)))) (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-337)))) (-3703 (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-337))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (-3703 (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (QUOTE (-838))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (QUOTE (-946))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (QUOTE (-1060))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-353))))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-521))))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (LIST (QUOTE -261) (LIST (QUOTE -1082) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1082) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (LIST (QUOTE -284) (LIST (QUOTE -1082) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (LIST (QUOTE -482) (QUOTE (-1084)) (LIST (QUOTE -1082) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (LIST (QUOTE -815) (QUOTE (-353)))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (LIST (QUOTE -815) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (LIST (QUOTE -961) (QUOTE (-1084)))) (|HasCategory| |#1| (QUOTE (-337)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521)))))) (-3703 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-887))) (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasSignature| |#1| (LIST (QUOTE -2184) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1084))))) (|HasSignature| |#1| (LIST (QUOTE -4084) (LIST (LIST (QUOTE -587) (QUOTE (-1084))) (|devaluate| |#1|)))))) (-3703 (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-337)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521)))))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-1082 |#1| |#2| |#3|) (QUOTE (-838))) (|HasCategory| |#1| (QUOTE (-337)))) (-3703 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-1082 |#1| |#2| |#3|) (QUOTE (-838))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-337)))) (|HasCategory| |#1| (QUOTE (-133)))))
+(-1076 R -4049)
((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n),{} n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n}).")))
NIL
NIL
-(-1076 R)
+(-1077 R)
((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n),{} n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n),{} n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.")))
NIL
NIL
-(-1077 R S)
+(-1078 R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func,{} poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-1078 E OV R P)
+(-1079 E OV R P)
((|constructor| (NIL "\\indented{1}{SupFractionFactorize} contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}. Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}.")))
NIL
NIL
-(-1079 R)
+(-1080 R)
((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{}var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable.")))
-(((-4231 "*") |has| |#1| (-157)) (-4222 |has| |#1| (-512)) (-4225 |has| |#1| (-336)) (-4227 |has| |#1| (-6 -4227)) (-4224 . T) (-4223 . T) (-4226 . T))
-((|HasCategory| |#1| (QUOTE (-837))) (|HasCategory| |#1| (QUOTE (-512))) (|HasCategory| |#1| (QUOTE (-157))) (-3700 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-512)))) (-12 (|HasCategory| (-997) (LIST (QUOTE -814) (QUOTE (-352)))) (|HasCategory| |#1| (LIST (QUOTE -814) (QUOTE (-352))))) (-12 (|HasCategory| (-997) (LIST (QUOTE -814) (QUOTE (-520)))) (|HasCategory| |#1| (LIST (QUOTE -814) (QUOTE (-520))))) (-12 (|HasCategory| (-997) (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-352))))) (|HasCategory| |#1| (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-352)))))) (-12 (|HasCategory| (-997) (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-520))))) (|HasCategory| |#1| (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-520)))))) (-12 (|HasCategory| (-997) (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-496))))) (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#1| (LIST (QUOTE -582) (QUOTE (-520)))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#1| (LIST (QUOTE -960) (QUOTE (-520)))) (|HasCategory| |#1| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (QUOTE (-1059))) (|HasCategory| |#1| (LIST (QUOTE -828) (QUOTE (-1083)))) (-3700 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#1| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520)))))) (|HasCategory| |#1| (QUOTE (-209))) (|HasAttribute| |#1| (QUOTE -4227)) (|HasCategory| |#1| (QUOTE (-424))) (-3700 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (QUOTE (-424))) (|HasCategory| |#1| (QUOTE (-512))) (|HasCategory| |#1| (QUOTE (-837)))) (-3700 (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (QUOTE (-424))) (|HasCategory| |#1| (QUOTE (-512))) (|HasCategory| |#1| (QUOTE (-837)))) (-3700 (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (QUOTE (-424))) (|HasCategory| |#1| (QUOTE (-837)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-837)))) (-3700 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-837)))) (|HasCategory| |#1| (QUOTE (-133)))))
-(-1080 |Coef| |var| |cen|)
-((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
-(((-4231 "*") |has| |#1| (-157)) (-4222 |has| |#1| (-512)) (-4227 |has| |#1| (-336)) (-4221 |has| |#1| (-336)) (-4223 . T) (-4224 . T) (-4226 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#1| (QUOTE (-512))) (|HasCategory| |#1| (QUOTE (-157))) (-3700 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-512)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -380) (QUOTE (-520))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -380) (QUOTE (-520))) (|devaluate| |#1|))))) (|HasCategory| (-380 (-520)) (QUOTE (-1024))) (|HasCategory| |#1| (QUOTE (-336))) (-3700 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (QUOTE (-512)))) (-3700 (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (QUOTE (-512)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -380) (QUOTE (-520)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -380) (QUOTE (-520)))))) (|HasSignature| |#1| (LIST (QUOTE -2188) (LIST (|devaluate| |#1|) (QUOTE (-1083)))))) (-3700 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-520)))) (|HasCategory| |#1| (QUOTE (-886))) (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasSignature| |#1| (LIST (QUOTE -3517) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1083))))) (|HasSignature| |#1| (LIST (QUOTE -4081) (LIST (LIST (QUOTE -586) (QUOTE (-1083))) (|devaluate| |#1|)))))))
+(((-4235 "*") |has| |#1| (-157)) (-4226 |has| |#1| (-513)) (-4229 |has| |#1| (-337)) (-4231 |has| |#1| (-6 -4231)) (-4228 . T) (-4227 . T) (-4230 . T))
+((|HasCategory| |#1| (QUOTE (-838))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-157))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-513)))) (-12 (|HasCategory| (-998) (LIST (QUOTE -815) (QUOTE (-353)))) (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-353))))) (-12 (|HasCategory| (-998) (LIST (QUOTE -815) (QUOTE (-521)))) (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-521))))) (-12 (|HasCategory| (-998) (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-353))))) (|HasCategory| |#1| (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-353)))))) (-12 (|HasCategory| (-998) (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-521)))))) (-12 (|HasCategory| (-998) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-497))))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-1060))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1084)))) (-3703 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521)))))) (|HasCategory| |#1| (QUOTE (-210))) (|HasAttribute| |#1| (QUOTE -4231)) (|HasCategory| |#1| (QUOTE (-425))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-425))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-838)))) (-3703 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-425))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-838)))) (-3703 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-425))) (|HasCategory| |#1| (QUOTE (-838)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-838)))) (-3703 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (QUOTE (-133)))))
(-1081 |Coef| |var| |cen|)
+((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
+(((-4235 "*") |has| |#1| (-157)) (-4226 |has| |#1| (-513)) (-4231 |has| |#1| (-337)) (-4225 |has| |#1| (-337)) (-4227 . T) (-4228 . T) (-4230 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-157))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-513)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -381) (QUOTE (-521))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -381) (QUOTE (-521))) (|devaluate| |#1|))))) (|HasCategory| (-381 (-521)) (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-337))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-513)))) (-3703 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-513)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -381) (QUOTE (-521)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -381) (QUOTE (-521)))))) (|HasSignature| |#1| (LIST (QUOTE -2189) (LIST (|devaluate| |#1|) (QUOTE (-1084)))))) (-3703 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-887))) (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasSignature| |#1| (LIST (QUOTE -2184) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1084))))) (|HasSignature| |#1| (LIST (QUOTE -4084) (LIST (LIST (QUOTE -587) (QUOTE (-1084))) (|devaluate| |#1|)))))))
+(-1082 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-4231 "*") |has| |#1| (-157)) (-4222 |has| |#1| (-512)) (-4223 . T) (-4224 . T) (-4226 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#1| (QUOTE (-512))) (|HasCategory| |#1| (QUOTE (-157))) (-3700 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-512)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-706)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-706)) (|devaluate| |#1|))))) (|HasCategory| (-706) (QUOTE (-1024))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-706))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-706))))) (|HasSignature| |#1| (LIST (QUOTE -2188) (LIST (|devaluate| |#1|) (QUOTE (-1083)))))) (|HasCategory| |#1| (QUOTE (-336))) (-3700 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-520)))) (|HasCategory| |#1| (QUOTE (-886))) (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasSignature| |#1| (LIST (QUOTE -3517) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1083))))) (|HasSignature| |#1| (LIST (QUOTE -4081) (LIST (LIST (QUOTE -586) (QUOTE (-1083))) (|devaluate| |#1|)))))))
-(-1082)
+(((-4235 "*") |has| |#1| (-157)) (-4226 |has| |#1| (-513)) (-4227 . T) (-4228 . T) (-4230 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-157))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-513)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-707)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-707)) (|devaluate| |#1|))))) (|HasCategory| (-707) (QUOTE (-1025))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-707))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-707))))) (|HasSignature| |#1| (LIST (QUOTE -2189) (LIST (|devaluate| |#1|) (QUOTE (-1084)))))) (|HasCategory| |#1| (QUOTE (-337))) (-3703 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-887))) (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasSignature| |#1| (LIST (QUOTE -2184) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1084))))) (|HasSignature| |#1| (LIST (QUOTE -4084) (LIST (LIST (QUOTE -587) (QUOTE (-1084))) (|devaluate| |#1|)))))))
+(-1083)
((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}")))
NIL
NIL
-(-1083)
+(-1084)
((|constructor| (NIL "Basic and scripted symbols.")) (|sample| (($) "\\spad{sample()} returns a sample of \\%")) (|list| (((|List| $) $) "\\spad{list(sy)} takes a scripted symbol and produces a list of the name followed by the scripts.")) (|string| (((|String|) $) "\\spad{string(s)} converts the symbol \\spad{s} to a string. Error: if the symbol is subscripted.")) (|elt| (($ $ (|List| (|OutputForm|))) "\\spad{elt(s,{}[a1,{}...,{}an])} or \\spad{s}([a1,{}...,{}an]) returns \\spad{s} subscripted by \\spad{[a1,{}...,{}an]}.")) (|argscript| (($ $ (|List| (|OutputForm|))) "\\spad{argscript(s,{} [a1,{}...,{}an])} returns \\spad{s} arg-scripted by \\spad{[a1,{}...,{}an]}.")) (|superscript| (($ $ (|List| (|OutputForm|))) "\\spad{superscript(s,{} [a1,{}...,{}an])} returns \\spad{s} superscripted by \\spad{[a1,{}...,{}an]}.")) (|subscript| (($ $ (|List| (|OutputForm|))) "\\spad{subscript(s,{} [a1,{}...,{}an])} returns \\spad{s} subscripted by \\spad{[a1,{}...,{}an]}.")) (|script| (($ $ (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|))))) "\\spad{script(s,{} [a,{}b,{}c,{}d,{}e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}.") (($ $ (|List| (|List| (|OutputForm|)))) "\\spad{script(s,{} [a,{}b,{}c,{}d,{}e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}. Omitted components are taken to be empty. For example,{} \\spad{script(s,{} [a,{}b,{}c])} is equivalent to \\spad{script(s,{}[a,{}b,{}c,{}[],{}[]])}.")) (|scripts| (((|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))) $) "\\spad{scripts(s)} returns all the scripts of \\spad{s}.")) (|scripted?| (((|Boolean|) $) "\\spad{scripted?(s)} is \\spad{true} if \\spad{s} has been given any scripts.")) (|name| (($ $) "\\spad{name(s)} returns \\spad{s} without its scripts.")) (|coerce| (($ (|String|)) "\\spad{coerce(s)} converts the string \\spad{s} to a symbol.")) (|resetNew| (((|Void|)) "\\spad{resetNew()} resets the internals counters that new() and new(\\spad{s}) use to return distinct symbols every time.")) (|new| (($ $) "\\spad{new(s)} returns a new symbol whose name starts with \\%\\spad{s}.") (($) "\\spad{new()} returns a new symbol whose name starts with \\%.")))
NIL
NIL
-(-1084 R)
+(-1085 R)
((|constructor| (NIL "Computes all the symmetric functions in \\spad{n} variables.")) (|symFunc| (((|Vector| |#1|) |#1| (|PositiveInteger|)) "\\spad{symFunc(r,{} n)} returns the vector of the elementary symmetric functions in \\spad{[r,{}r,{}...,{}r]} \\spad{n} times.") (((|Vector| |#1|) (|List| |#1|)) "\\spad{symFunc([r1,{}...,{}rn])} returns the vector of the elementary symmetric functions in the \\spad{\\spad{ri}'s}: \\spad{[r1 + ... + rn,{} r1 r2 + ... + r(n-1) rn,{} ...,{} r1 r2 ... rn]}.")))
NIL
NIL
-(-1085 R)
+(-1086 R)
((|constructor| (NIL "This domain implements symmetric polynomial")))
-(((-4231 "*") |has| |#1| (-157)) (-4222 |has| |#1| (-512)) (-4227 |has| |#1| (-6 -4227)) (-4223 . T) (-4224 . T) (-4226 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#1| (QUOTE (-512))) (|HasCategory| |#1| (QUOTE (-157))) (-3700 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-512)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#1| (LIST (QUOTE -960) (QUOTE (-520)))) (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (QUOTE (-424))) (-12 (|HasCategory| (-896) (QUOTE (-124))) (|HasCategory| |#1| (QUOTE (-512)))) (-3700 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#1| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520)))))) (|HasAttribute| |#1| (QUOTE -4227)))
-(-1086)
+(((-4235 "*") |has| |#1| (-157)) (-4226 |has| |#1| (-513)) (-4231 |has| |#1| (-6 -4231)) (-4227 . T) (-4228 . T) (-4230 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-157))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-513)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-425))) (-12 (|HasCategory| (-897) (QUOTE (-124))) (|HasCategory| |#1| (QUOTE (-513)))) (-3703 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521)))))) (|HasAttribute| |#1| (QUOTE -4231)))
+(-1087)
((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,{}tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,{}tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $) "\\spad{returnTypeOf(f,{}tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,{}tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(f,{}t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{returnType!(f,{}t,{}tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,{}l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,{}l,{}tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,{}t,{}asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,{}t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table.")))
NIL
NIL
-(-1087)
+(-1088)
((|constructor| (NIL "Create and manipulate a symbol table for generated FORTRAN code")) (|symbolTable| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|FortranType|))))) "\\spad{symbolTable(l)} creates a symbol table from the elements of \\spad{l}.")) (|printTypes| (((|Void|) $) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|newTypeLists| (((|SExpression|) $) "\\spad{newTypeLists(x)} \\undocumented")) (|typeLists| (((|List| (|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|))))))))) $) "\\spad{typeLists(tab)} returns a list of lists of types of objects in \\spad{tab}")) (|externalList| (((|List| (|Symbol|)) $) "\\spad{externalList(tab)} returns a list of all the external symbols in \\spad{tab}")) (|typeList| (((|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|)))))))) (|FortranScalarType|) $) "\\spad{typeList(t,{}tab)} returns a list of all the objects of type \\spad{t} in \\spad{tab}")) (|parametersOf| (((|List| (|Symbol|)) $) "\\spad{parametersOf(tab)} returns a list of all the symbols declared in \\spad{tab}")) (|fortranTypeOf| (((|FortranType|) (|Symbol|) $) "\\spad{fortranTypeOf(u,{}tab)} returns the type of \\spad{u} in \\spad{tab}")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) $) "\\spad{declare!(u,{}t,{}tab)} creates a new entry in \\spad{tab},{} declaring \\spad{u} to be of type \\spad{t}") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) $) "\\spad{declare!(l,{}t,{}tab)} creates new entrys in \\spad{tab},{} declaring each of \\spad{l} to be of type \\spad{t}")) (|empty| (($) "\\spad{empty()} returns a new,{} empty symbol table")) (|coerce| (((|Table| (|Symbol|) (|FortranType|)) $) "\\spad{coerce(x)} returns a table view of \\spad{x}")))
NIL
NIL
-(-1088)
+(-1089)
((|constructor| (NIL "\\indented{1}{This domain provides a simple,{} general,{} and arguably} complete representation of Spad programs as objects of a term algebra built from ground terms of type boolean,{} integers,{} foats,{} symbols,{} and strings. This domain differs from InputForm in that it represents any entity from a Spad program,{} not just expressions. Related Constructors: Boolean,{} Integer,{} Float,{} symbol,{} String,{} SExpression. See Also: SExpression.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} is \\spad{true} is \\spad{x} really is a String") (((|Boolean|) $ (|[\|\|]| (|Symbol|))) "\\spad{x case Symbol} is \\spad{true} is \\spad{x} really is a Symbol") (((|Boolean|) $ (|[\|\|]| (|DoubleFloat|))) "\\spad{x case DoubleFloat} is \\spad{true} is \\spad{x} really is a DoubleFloat") (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{x case Integer} is \\spad{true} is \\spad{x} really is an Integer")) (|compound?| (((|Boolean|) $) "\\spad{compound? x} is \\spad{true} when not an atomic syntax.")) (|getOperands| (((|List| $) $) "\\spad{getOperands(x)} returns the list of operands to the operator in \\spad{`x'}.")) (|getOperator| (((|Union| (|Integer|) (|DoubleFloat|) (|Symbol|) (|String|) $) $) "\\spad{getOperator(x)} returns the operator,{} or tag,{} of the syntax \\spad{`x'}. The return value is itself a syntax if \\spad{`x'} really is an application of a function symbol as opposed to being an atomic ground term.")) (|nil?| (((|Boolean|) $) "\\spad{nil?(s)} is \\spad{true} when \\spad{`s'} is a syntax for the constant nil.")) (|buildSyntax| (($ $ (|List| $)) "\\spad{buildSyntax(op,{} [a1,{} ...,{} an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).") (($ (|Symbol|) (|List| $)) "\\spad{buildSyntax(op,{} [a1,{} ...,{} an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(s)} forcibly extracts a string value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.") (((|Symbol|) $) "\\spad{autoCoerce(s)} forcibly extracts a symbo from the Syntax domain \\spad{`s'}; no check performed. To be called only at at the discretion of the compiler.") (((|DoubleFloat|) $) "\\spad{autoCoerce(s)} forcibly extracts a float value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler") (((|Integer|) $) "\\spad{autoCoerce(s)} forcibly extracts an integer value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.")) (|coerce| (((|String|) $) "\\spad{coerce(s)} extracts a string value from the syntax \\spad{`s'}.") (($ (|String|)) "\\spad{coerce(s)} injects the string value \\spad{`s'} into the syntax domain") (((|Symbol|) $) "\\spad{coerce(s)} extracts a symbol from the syntax \\spad{`s'}.") (($ (|Symbol|)) "\\spad{coerce(s)} injects the symbol \\spad{`s'} into the Syntax domain.") (((|DoubleFloat|) $) "\\spad{coerce(s)} extracts a float value from the syntax \\spad{`s'}.") (($ (|DoubleFloat|)) "\\spad{coerce(f)} injects the float value \\spad{`f'} into the Syntax domain") (((|Integer|) $) "\\spad{coerce(s)} extracts and integer value from the syntax \\spad{`s'}") (($ (|Integer|)) "\\spad{coerce(i)} injects the integer value `i' into the Syntax domain")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} converts an \\spad{s}-expression to syntax. Note,{} when \\spad{`s'} is not an atom,{} it is expected that it designates a proper list,{} \\spadignore{e.g.} a sequence of cons cell ending with nil.") (((|SExpression|) $) "\\spad{convert(s)} returns the \\spad{s}-expression representation of a syntax.")))
NIL
NIL
-(-1089 R)
+(-1090 R)
((|triangularSystems| (((|List| (|List| (|Polynomial| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{triangularSystems(lf,{}lv)} solves the system of equations defined by \\spad{lf} with respect to the list of symbols \\spad{lv}; the system of equations is obtaining by equating to zero the list of rational functions \\spad{lf}. The output is a list of solutions where each solution is expressed as a \"reduced\" triangular system of polynomials.")) (|solve| (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} with respect to the unique variable appearing in \\spad{eq}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|))) "\\spad{solve(p)} finds the solution of a rational function \\spad{p} = 0 with respect to the unique variable appearing in \\spad{p}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{solve(eq,{}v)} finds the solutions of the equation \\spad{eq} with respect to the variable \\spad{v}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{solve(p,{}v)} solves the equation \\spad{p=0},{} where \\spad{p} is a rational function with respect to the variable \\spad{v}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{solve(le)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to all symbols appearing in \\spad{le}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(lp)} finds the solutions of the list \\spad{lp} of rational functions with respect to all symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{solve(le,{}lv)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to the list of symbols \\spad{lv}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{solve(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")))
NIL
NIL
-(-1090 S)
+(-1091 S)
((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,{}b,{}c,{}d,{}e)} is an auxiliary function for \\spad{mr}")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{ListFunctions3}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{tab1}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation bat1 is the inverse of tab1.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,{}llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,{}t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,{}pr,{}t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,{}pr,{}r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record")))
NIL
NIL
-(-1091 S)
+(-1092 S)
((|constructor| (NIL "\\indented{1}{The tableau domain is for printing Young tableaux,{} and} coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists t} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau.")))
NIL
NIL
-(-1092 |Key| |Entry|)
+(-1093 |Key| |Entry|)
((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}")))
-((-4229 . T) (-4230 . T))
-((|HasCategory| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (QUOTE (-1012))) (-12 (|HasCategory| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (QUOTE (-1012))) (|HasCategory| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (LIST (QUOTE -283) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2526) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3043) (|devaluate| |#2|)))))) (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#2| (QUOTE (-1012))) (-3700 (|HasCategory| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (QUOTE (-1012))) (|HasCategory| |#2| (QUOTE (-1012)))) (-12 (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (LIST (QUOTE -283) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -560) (QUOTE (-791)))) (|HasCategory| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (LIST (QUOTE -560) (QUOTE (-791)))) (-3700 (|HasCategory| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (QUOTE (-1012))) (|HasCategory| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (LIST (QUOTE -560) (QUOTE (-791)))) (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (LIST (QUOTE -560) (QUOTE (-791))))) (-3700 (|HasCategory| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (LIST (QUOTE -560) (QUOTE (-791)))) (|HasCategory| |#2| (LIST (QUOTE -560) (QUOTE (-791))))))
-(-1093 R)
+((-4233 . T) (-4234 . T))
+((|HasCategory| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (QUOTE (-1013))) (-12 (|HasCategory| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (QUOTE (-1013))) (|HasCategory| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (LIST (QUOTE -284) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2529) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3045) (|devaluate| |#2|)))))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-1013))) (-3703 (|HasCategory| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-792)))) (|HasCategory| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (LIST (QUOTE -561) (QUOTE (-792)))) (-3703 (|HasCategory| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (QUOTE (-1013))) (|HasCategory| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (LIST (QUOTE -561) (QUOTE (-792)))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-792))))) (-3703 (|HasCategory| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (LIST (QUOTE -561) (QUOTE (-792)))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-792))))))
+(-1094 R)
((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a,{} n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a,{} n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,{}...,{}an])} returns \\spad{f(a1,{}...,{}an)} such that if \\spad{\\spad{ai} = tan(\\spad{ui})} then \\spad{f(a1,{}...,{}an) = tan(u1 + ... + un)}.")))
NIL
NIL
-(-1094 S |Key| |Entry|)
+(-1095 S |Key| |Entry|)
((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(fn,{}t1,{}t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)))) "\\spad{table([x,{}y,{}...,{}z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(t,{}k,{}e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}.")))
NIL
NIL
-(-1095 |Key| |Entry|)
+(-1096 |Key| |Entry|)
((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,{}t1,{}t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,{}y,{}...,{}z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,{}k,{}e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}.")))
-((-4230 . T) (-2046 . T))
+((-4234 . T) (-2046 . T))
NIL
-(-1096 |Key| |Entry|)
+(-1097 |Key| |Entry|)
((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key \\spad{->} Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table.")))
NIL
NIL
-(-1097)
+(-1098)
((|constructor| (NIL "This package provides functions for template manipulation")) (|stripCommentsAndBlanks| (((|String|) (|String|)) "\\spad{stripCommentsAndBlanks(s)} treats \\spad{s} as a piece of AXIOM input,{} and removes comments,{} and leading and trailing blanks.")) (|interpretString| (((|Any|) (|String|)) "\\spad{interpretString(s)} treats a string as a piece of AXIOM input,{} by parsing and interpreting it.")))
NIL
NIL
-(-1098 S)
+(-1099 S)
((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format.")))
NIL
NIL
-(-1099)
+(-1100)
((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \\spad{``}\\verb+\\spad{\\[}+\\spad{''} and \\spad{``}\\verb+\\spad{\\]}+\\spad{''},{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,{}strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,{}step,{}type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")) (|coerce| (($ (|OutputForm|)) "\\spad{coerce(o)} changes \\spad{o} in the standard output format to TeX format.")))
NIL
NIL
-(-1100)
+(-1101)
((|constructor| (NIL "This domain provides an implementation of text files. Text is stored in these files using the native character set of the computer.")) (|endOfFile?| (((|Boolean|) $) "\\spad{endOfFile?(f)} tests whether the file \\spad{f} is positioned after the end of all text. If the file is open for output,{} then this test is always \\spad{true}.")) (|readIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLineIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readLineIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLine!| (((|String|) $) "\\spad{readLine!(f)} returns a string of the contents of a line from the file \\spad{f}.")) (|writeLine!| (((|String|) $) "\\spad{writeLine!(f)} finishes the current line in the file \\spad{f}. An empty string is returned. The call \\spad{writeLine!(f)} is equivalent to \\spad{writeLine!(f,{}\"\")}.") (((|String|) $ (|String|)) "\\spad{writeLine!(f,{}s)} writes the contents of the string \\spad{s} and finishes the current line in the file \\spad{f}. The value of \\spad{s} is returned.")))
NIL
NIL
-(-1101 R)
+(-1102 R)
((|constructor| (NIL "Tools for the sign finding utilities.")) (|direction| (((|Integer|) (|String|)) "\\spad{direction(s)} \\undocumented")) (|nonQsign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{nonQsign(r)} \\undocumented")) (|sign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{sign(r)} \\undocumented")))
NIL
NIL
-(-1102)
+(-1103)
((|constructor| (NIL "This package exports a function for making a \\spadtype{ThreeSpace}")) (|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) "\\spad{createThreeSpace()} creates a \\spadtype{ThreeSpace(DoubleFloat)} object capable of holding point,{} curve,{} mesh components and any combination.")))
NIL
NIL
-(-1103 S)
+(-1104 S)
((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{\\spad{pi}()} returns the constant \\spad{pi}.")))
NIL
NIL
-(-1104)
+(-1105)
((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{\\spad{pi}()} returns the constant \\spad{pi}.")))
NIL
NIL
-(-1105 S)
-((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1,{} t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,{}ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}.")))
-((-4230 . T) (-4229 . T))
-((|HasCategory| |#1| (QUOTE (-1012))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-791)))) (-3700 (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-791))))))
(-1106 S)
+((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1,{} t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,{}ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}.")))
+((-4234 . T) (-4233 . T))
+((|HasCategory| |#1| (QUOTE (-1013))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-792)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-792))))))
+(-1107 S)
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
NIL
-(-1107)
+(-1108)
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
NIL
-(-1108 R -4045)
+(-1109 R -4049)
((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
-(-1109 R |Row| |Col| M)
+(-1110 R |Row| |Col| M)
((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")))
NIL
NIL
-(-1110 R -4045)
+(-1111 R -4049)
((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}")))
NIL
-((-12 (|HasCategory| |#1| (LIST (QUOTE -561) (LIST (QUOTE -820) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -814) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -561) (LIST (QUOTE -820) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -814) (|devaluate| |#1|)))))
-(-1111 S R E V P)
+((-12 (|HasCategory| |#1| (LIST (QUOTE -562) (LIST (QUOTE -821) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -815) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -562) (LIST (QUOTE -821) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -815) (|devaluate| |#1|)))))
+(-1112 S R E V P)
((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#5|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense.")))
NIL
-((|HasCategory| |#4| (QUOTE (-341))))
-(-1112 R E V P)
+((|HasCategory| |#4| (QUOTE (-342))))
+(-1113 R E V P)
((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#4|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense.")))
-((-4230 . T) (-4229 . T) (-2046 . T))
+((-4234 . T) (-4233 . T) (-2046 . T))
NIL
-(-1113 |Coef|)
+(-1114 |Coef|)
((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}.")))
-(((-4231 "*") |has| |#1| (-157)) (-4222 |has| |#1| (-512)) (-4224 . T) (-4223 . T) (-4226 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-512))) (-3700 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-512)))) (|HasCategory| |#1| (QUOTE (-336))))
-(-1114 |Curve|)
+(((-4235 "*") |has| |#1| (-157)) (-4226 |has| |#1| (-513)) (-4228 . T) (-4227 . T) (-4230 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-513))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-513)))) (|HasCategory| |#1| (QUOTE (-337))))
+(-1115 |Curve|)
((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,{}ll,{}b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,{}b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}.")))
NIL
NIL
-(-1115)
+(-1116)
((|constructor| (NIL "Tools for constructing tubes around 3-dimensional parametric curves.")) (|loopPoints| (((|List| (|Point| (|DoubleFloat|))) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|List| (|List| (|DoubleFloat|)))) "\\spad{loopPoints(p,{}n,{}b,{}r,{}lls)} creates and returns a list of points which form the loop with radius \\spad{r},{} around the center point indicated by the point \\spad{p},{} with the principal normal vector of the space curve at point \\spad{p} given by the point(vector) \\spad{n},{} and the binormal vector given by the point(vector) \\spad{b},{} and a list of lists,{} \\spad{lls},{} which is the \\spadfun{cosSinInfo} of the number of points defining the loop.")) (|cosSinInfo| (((|List| (|List| (|DoubleFloat|))) (|Integer|)) "\\spad{cosSinInfo(n)} returns the list of lists of values for \\spad{n},{} in the form: \\spad{[[cos(n - 1) a,{}sin(n - 1) a],{}...,{}[cos 2 a,{}sin 2 a],{}[cos a,{}sin a]]} where \\spad{a = 2 pi/n}. Note: \\spad{n} should be greater than 2.")) (|unitVector| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{unitVector(p)} creates the unit vector of the point \\spad{p} and returns the result as a point. Note: \\spad{unitVector(p) = p/|p|}.")) (|cross| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and keeping the color of the first point \\spad{p}. The result is returned as a point.")) (|dot| (((|DoubleFloat|) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{dot(p,{}q)} computes the dot product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and returns the resulting \\spadtype{DoubleFloat}.")) (- (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p - q} computes and returns a point whose coordinates are the differences of the coordinates of two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (+ (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p + q} computes and returns a point whose coordinates are the sums of the coordinates of the two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (* (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|Point| (|DoubleFloat|))) "\\spad{s * p} returns a point whose coordinates are the scalar multiple of the point \\spad{p} by the scalar \\spad{s},{} preserving the color,{} or fourth coordinate,{} of \\spad{p}.")) (|point| (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{point(x1,{}x2,{}x3,{}c)} creates and returns a point from the three specified coordinates \\spad{x1},{} \\spad{x2},{} \\spad{x3},{} and also a fourth coordinate,{} \\spad{c},{} which is generally used to specify the color of the point.")))
NIL
NIL
-(-1116 S)
+(-1117 S)
((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,{}n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based")) (|coerce| (($ (|PrimitiveArray| |#1|)) "\\spad{coerce(a)} makes a tuple from primitive array a")))
NIL
-((|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-791)))))
-(-1117 -4045)
+((|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-792)))))
+(-1118 -4049)
((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,{}n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")))
NIL
NIL
-(-1118)
+(-1119)
((|constructor| (NIL "The fundamental Type.")))
((-2046 . T))
NIL
-(-1119 S)
+(-1120 S)
((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l,{} fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by \\spad{fn}.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a,{} b,{} fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a,{} b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,{}...,{}bm],{} [a1,{}...,{}an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,{}...,{}bm],{}[a1,{}...,{}an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < \\spad{ai}}\\space{2}for \\spad{c} not among the \\spad{ai}\\spad{'s} and \\spad{bj}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,{}d)} if neither is among the \\spad{ai}\\spad{'s},{}\\spad{bj}\\spad{'s}.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < \\spad{ai}\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b,{} c)} if neither is among the \\spad{ai}\\spad{'s}.}")))
NIL
-((|HasCategory| |#1| (QUOTE (-783))))
-(-1120)
+((|HasCategory| |#1| (QUOTE (-784))))
+(-1121)
((|constructor| (NIL "This packages provides functions to allow the user to select the ordering on the variables and operators for displaying polynomials,{} fractions and expressions. The ordering affects the display only and not the computations.")) (|resetVariableOrder| (((|Void|)) "\\spad{resetVariableOrder()} cancels any previous use of setVariableOrder and returns to the default system ordering.")) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) "\\spad{getVariableOrder()} returns \\spad{[[b1,{}...,{}bm],{} [a1,{}...,{}an]]} such that the ordering on the variables was given by \\spad{setVariableOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])}.")) (|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) "\\spad{setVariableOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])} defines an ordering on the variables given by \\spad{b1 > b2 > ... > bm >} other variables \\spad{> a1 > a2 > ... > an}.") (((|Void|) (|List| (|Symbol|))) "\\spad{setVariableOrder([a1,{}...,{}an])} defines an ordering on the variables given by \\spad{a1 > a2 > ... > an > other variables}.")))
NIL
NIL
-(-1121 S)
+(-1122 S)
((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element.")))
NIL
NIL
-(-1122)
+(-1123)
((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element.")))
-((-4222 . T) ((-4231 "*") . T) (-4223 . T) (-4224 . T) (-4226 . T))
+((-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
NIL
-(-1123 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
+(-1124 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}.")))
NIL
NIL
-(-1124 |Coef|)
+(-1125 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,{}k1,{}k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,{}k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{<=} \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = n0..infinity,{}a[n] * x**n)) = sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-4231 "*") |has| |#1| (-157)) (-4222 |has| |#1| (-512)) (-4227 |has| |#1| (-336)) (-4221 |has| |#1| (-336)) (-4223 . T) (-4224 . T) (-4226 . T))
+(((-4235 "*") |has| |#1| (-157)) (-4226 |has| |#1| (-513)) (-4231 |has| |#1| (-337)) (-4225 |has| |#1| (-337)) (-4227 . T) (-4228 . T) (-4230 . T))
NIL
-(-1125 S |Coef| UTS)
+(-1126 S |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|coerce| (($ |#3|) "\\spad{coerce(f(x))} converts the Taylor series \\spad{f(x)} to a Laurent series.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-336))))
-(-1126 |Coef| UTS)
+((|HasCategory| |#2| (QUOTE (-337))))
+(-1127 |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|coerce| (($ |#2|) "\\spad{coerce(f(x))} converts the Taylor series \\spad{f(x)} to a Laurent series.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}.")))
-(((-4231 "*") |has| |#1| (-157)) (-4222 |has| |#1| (-512)) (-4227 |has| |#1| (-336)) (-4221 |has| |#1| (-336)) (-2046 |has| |#1| (-336)) (-4223 . T) (-4224 . T) (-4226 . T))
+(((-4235 "*") |has| |#1| (-157)) (-4226 |has| |#1| (-513)) (-4231 |has| |#1| (-337)) (-4225 |has| |#1| (-337)) (-2046 |has| |#1| (-337)) (-4227 . T) (-4228 . T) (-4230 . T))
NIL
-(-1127 |Coef| UTS)
+(-1128 |Coef| UTS)
((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")))
-(((-4231 "*") |has| |#1| (-157)) (-4222 |has| |#1| (-512)) (-4227 |has| |#1| (-336)) (-4221 |has| |#1| (-336)) (-4223 . T) (-4224 . T) (-4226 . T))
-((|HasCategory| |#1| (QUOTE (-512))) (|HasCategory| |#1| (QUOTE (-157))) (-3700 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-512)))) (|HasCategory| (-520) (QUOTE (-1024))) (|HasCategory| |#1| (QUOTE (-336))) (-3700 (|HasCategory| |#1| (QUOTE (-135))) (-12 (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#2| (QUOTE (-135))))) (-3700 (-12 (|HasCategory| |#1| (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-520)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1083)))))) (-3700 (-12 (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#2| (QUOTE (-209)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-520)) (|devaluate| |#1|))))) (-3700 (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (QUOTE (-512)))) (-12 (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#2| (LIST (QUOTE -960) (QUOTE (-1083))))) (-12 (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-496))))) (-12 (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#2| (QUOTE (-945)))) (-3700 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (QUOTE (-512)))) (-12 (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#2| (QUOTE (-756)))) (-12 (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#2| (LIST (QUOTE -960) (QUOTE (-520))))) (-12 (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#2| (QUOTE (-1059)))) (-12 (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#2| (LIST (QUOTE -260) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#2| (LIST (QUOTE -283) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#2| (LIST (QUOTE -481) (QUOTE (-1083)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#2| (LIST (QUOTE -582) (QUOTE (-520))))) (-12 (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#2| (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-520)))))) (-12 (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#2| (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-352)))))) (-12 (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#2| (LIST (QUOTE -814) (QUOTE (-520))))) (-12 (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#2| (LIST (QUOTE -814) (QUOTE (-352))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-520))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-520))))) (|HasSignature| |#1| (LIST (QUOTE -2188) (LIST (|devaluate| |#1|) (QUOTE (-1083)))))) (-12 (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#2| (QUOTE (-783)))) (-3700 (-12 (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#2| (QUOTE (-756)))) (-12 (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#2| (QUOTE (-783))))) (|HasCategory| |#2| (QUOTE (-837))) (-12 (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#2| (QUOTE (-837)))) (-12 (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#2| (QUOTE (-505)))) (-12 (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#2| (QUOTE (-281)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133))) (-3700 (|HasCategory| |#1| (QUOTE (-133))) (-12 (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#2| (QUOTE (-133))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520))))) (-3700 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520))))) (-12 (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#2| (LIST (QUOTE -260) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#2| (LIST (QUOTE -481) (QUOTE (-1083)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#2| (QUOTE (-756)))) (-12 (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#2| (QUOTE (-783)))) (-12 (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#2| (QUOTE (-837)))) (-12 (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#2| (QUOTE (-945)))) (-12 (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#2| (QUOTE (-1059)))) (-12 (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-496))))) (-12 (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#2| (LIST (QUOTE -283) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#2| (LIST (QUOTE -960) (QUOTE (-520))))) (-12 (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#2| (LIST (QUOTE -960) (QUOTE (-1083)))))) (-3700 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-520)))) (|HasCategory| |#1| (QUOTE (-886))) (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasSignature| |#1| (LIST (QUOTE -3517) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1083))))) (|HasSignature| |#1| (LIST (QUOTE -4081) (LIST (LIST (QUOTE -586) (QUOTE (-1083))) (|devaluate| |#1|)))))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#2| (QUOTE (-837)))) (-3700 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#2| (QUOTE (-837)))) (|HasCategory| |#1| (QUOTE (-133))) (-12 (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#2| (QUOTE (-133))))))
-(-1128 |Coef| |var| |cen|)
+(((-4235 "*") |has| |#1| (-157)) (-4226 |has| |#1| (-513)) (-4231 |has| |#1| (-337)) (-4225 |has| |#1| (-337)) (-4227 . T) (-4228 . T) (-4230 . T))
+((|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-157))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-513)))) (|HasCategory| (-521) (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-337))) (-3703 (|HasCategory| |#1| (QUOTE (-135))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-135))))) (-3703 (-12 (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-521)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1084)))))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-210)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-521)) (|devaluate| |#1|))))) (-3703 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-513)))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-1084))))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-497))))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-946)))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-513)))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-757)))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-1060)))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (LIST (QUOTE -261) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (LIST (QUOTE -482) (QUOTE (-1084)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521))))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-521)))))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-353)))))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (LIST (QUOTE -815) (QUOTE (-521))))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (LIST (QUOTE -815) (QUOTE (-353))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-521))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-521))))) (|HasSignature| |#1| (LIST (QUOTE -2189) (LIST (|devaluate| |#1|) (QUOTE (-1084)))))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-784)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-757)))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-784))))) (|HasCategory| |#2| (QUOTE (-838))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-838)))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-506)))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-282)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133))) (-3703 (|HasCategory| |#1| (QUOTE (-133))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-133))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (-3703 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (LIST (QUOTE -261) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (LIST (QUOTE -482) (QUOTE (-1084)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-757)))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-784)))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-838)))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-946)))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-1060)))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-497))))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-1084)))))) (-3703 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-887))) (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasSignature| |#1| (LIST (QUOTE -2184) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1084))))) (|HasSignature| |#1| (LIST (QUOTE -4084) (LIST (LIST (QUOTE -587) (QUOTE (-1084))) (|devaluate| |#1|)))))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-838)))) (-3703 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-838)))) (|HasCategory| |#1| (QUOTE (-133))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-133))))))
+(-1129 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-4231 "*") -3700 (-4006 (|has| |#1| (-336)) (|has| (-1156 |#1| |#2| |#3|) (-756))) (|has| |#1| (-157)) (-4006 (|has| |#1| (-336)) (|has| (-1156 |#1| |#2| |#3|) (-837)))) (-4222 -3700 (-4006 (|has| |#1| (-336)) (|has| (-1156 |#1| |#2| |#3|) (-756))) (|has| |#1| (-512)) (-4006 (|has| |#1| (-336)) (|has| (-1156 |#1| |#2| |#3|) (-837)))) (-4227 |has| |#1| (-336)) (-4221 |has| |#1| (-336)) (-4223 . T) (-4224 . T) (-4226 . T))
-((|HasCategory| |#1| (QUOTE (-512))) (|HasCategory| |#1| (QUOTE (-157))) (-3700 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-512)))) (|HasCategory| (-520) (QUOTE (-1024))) (|HasCategory| |#1| (QUOTE (-336))) (-3700 (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-336)))) (|HasCategory| |#1| (QUOTE (-135)))) (-3700 (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasCategory| |#1| (QUOTE (-336)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-520)) (|devaluate| |#1|)))))) (-3700 (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-209))) (|HasCategory| |#1| (QUOTE (-336)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-520)) (|devaluate| |#1|))))) (-3700 (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (QUOTE (-512)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (LIST (QUOTE -960) (QUOTE (-1083)))) (|HasCategory| |#1| (QUOTE (-336)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-336)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-945))) (|HasCategory| |#1| (QUOTE (-336)))) (-3700 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (QUOTE (-512)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-336)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (LIST (QUOTE -960) (QUOTE (-520)))) (|HasCategory| |#1| (QUOTE (-336)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-1059))) (|HasCategory| |#1| (QUOTE (-336)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (LIST (QUOTE -260) (LIST (QUOTE -1156) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1156) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-336)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (LIST (QUOTE -283) (LIST (QUOTE -1156) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-336)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (LIST (QUOTE -481) (QUOTE (-1083)) (LIST (QUOTE -1156) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-336)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (LIST (QUOTE -582) (QUOTE (-520)))) (|HasCategory| |#1| (QUOTE (-336)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-520))))) (|HasCategory| |#1| (QUOTE (-336)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-352))))) (|HasCategory| |#1| (QUOTE (-336)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (LIST (QUOTE -814) (QUOTE (-520)))) (|HasCategory| |#1| (QUOTE (-336)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (LIST (QUOTE -814) (QUOTE (-352)))) (|HasCategory| |#1| (QUOTE (-336)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-520))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-520))))) (|HasSignature| |#1| (LIST (QUOTE -2188) (LIST (|devaluate| |#1|) (QUOTE (-1083)))))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-505))) (|HasCategory| |#1| (QUOTE (-336)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-281))) (|HasCategory| |#1| (QUOTE (-336)))) (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-837))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-837))) (|HasCategory| |#1| (QUOTE (-336)))) (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-133))) (-3700 (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-336)))) (|HasCategory| |#1| (QUOTE (-133)))) (-3700 (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-336)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-837))) (|HasCategory| |#1| (QUOTE (-336)))) (|HasCategory| |#1| (QUOTE (-512)))) (-3700 (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-336)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-837))) (|HasCategory| |#1| (QUOTE (-336)))) (|HasCategory| |#1| (QUOTE (-157)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-783))) (|HasCategory| |#1| (QUOTE (-336)))) (-3700 (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-336)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-783))) (|HasCategory| |#1| (QUOTE (-336))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520))))) (-3700 (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-336)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-783))) (|HasCategory| |#1| (QUOTE (-336)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-837))) (|HasCategory| |#1| (QUOTE (-336)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-945))) (|HasCategory| |#1| (QUOTE (-336)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-1059))) (|HasCategory| |#1| (QUOTE (-336)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-336)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-352))))) (|HasCategory| |#1| (QUOTE (-336)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-520))))) (|HasCategory| |#1| (QUOTE (-336)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (LIST (QUOTE -260) (LIST (QUOTE -1156) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1156) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-336)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (LIST (QUOTE -283) (LIST (QUOTE -1156) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-336)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (LIST (QUOTE -481) (QUOTE (-1083)) (LIST (QUOTE -1156) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-336)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (LIST (QUOTE -582) (QUOTE (-520)))) (|HasCategory| |#1| (QUOTE (-336)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (LIST (QUOTE -814) (QUOTE (-352)))) (|HasCategory| |#1| (QUOTE (-336)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (LIST (QUOTE -814) (QUOTE (-520)))) (|HasCategory| |#1| (QUOTE (-336)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (LIST (QUOTE -960) (QUOTE (-520)))) (|HasCategory| |#1| (QUOTE (-336)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (LIST (QUOTE -960) (QUOTE (-1083)))) (|HasCategory| |#1| (QUOTE (-336)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520)))))) (-3700 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-520)))) (|HasCategory| |#1| (QUOTE (-886))) (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasSignature| |#1| (LIST (QUOTE -3517) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1083))))) (|HasSignature| |#1| (LIST (QUOTE -4081) (LIST (LIST (QUOTE -586) (QUOTE (-1083))) (|devaluate| |#1|)))))) (-3700 (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (LIST (QUOTE -960) (QUOTE (-520)))) (|HasCategory| |#1| (QUOTE (-336)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520)))))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-837))) (|HasCategory| |#1| (QUOTE (-336)))) (-3700 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-837))) (|HasCategory| |#1| (QUOTE (-336)))) (-12 (|HasCategory| (-1156 |#1| |#2| |#3|) (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-336)))) (|HasCategory| |#1| (QUOTE (-133)))))
-(-1129 ZP)
+(((-4235 "*") -3703 (-4009 (|has| |#1| (-337)) (|has| (-1157 |#1| |#2| |#3|) (-757))) (|has| |#1| (-157)) (-4009 (|has| |#1| (-337)) (|has| (-1157 |#1| |#2| |#3|) (-838)))) (-4226 -3703 (-4009 (|has| |#1| (-337)) (|has| (-1157 |#1| |#2| |#3|) (-757))) (|has| |#1| (-513)) (-4009 (|has| |#1| (-337)) (|has| (-1157 |#1| |#2| |#3|) (-838)))) (-4231 |has| |#1| (-337)) (-4225 |has| |#1| (-337)) (-4227 . T) (-4228 . T) (-4230 . T))
+((|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-157))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-513)))) (|HasCategory| (-521) (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-337))) (-3703 (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-337)))) (|HasCategory| |#1| (QUOTE (-135)))) (-3703 (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-521)) (|devaluate| |#1|)))))) (-3703 (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (QUOTE (-210))) (|HasCategory| |#1| (QUOTE (-337)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-521)) (|devaluate| |#1|))))) (-3703 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-513)))) (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (LIST (QUOTE -961) (QUOTE (-1084)))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (QUOTE (-946))) (|HasCategory| |#1| (QUOTE (-337)))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-513)))) (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (QUOTE (-1060))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (LIST (QUOTE -261) (LIST (QUOTE -1157) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1157) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (LIST (QUOTE -284) (LIST (QUOTE -1157) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (LIST (QUOTE -482) (QUOTE (-1084)) (LIST (QUOTE -1157) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-521))))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-353))))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (LIST (QUOTE -815) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (LIST (QUOTE -815) (QUOTE (-353)))) (|HasCategory| |#1| (QUOTE (-337)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-521))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-521))))) (|HasSignature| |#1| (LIST (QUOTE -2189) (LIST (|devaluate| |#1|) (QUOTE (-1084)))))) (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (QUOTE (-506))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (QUOTE (-282))) (|HasCategory| |#1| (QUOTE (-337)))) (|HasCategory| (-1157 |#1| |#2| |#3|) (QUOTE (-838))) (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (QUOTE (-838))) (|HasCategory| |#1| (QUOTE (-337)))) (|HasCategory| (-1157 |#1| |#2| |#3|) (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-133))) (-3703 (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-337)))) (|HasCategory| |#1| (QUOTE (-133)))) (-3703 (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (QUOTE (-838))) (|HasCategory| |#1| (QUOTE (-337)))) (|HasCategory| |#1| (QUOTE (-513)))) (-3703 (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (QUOTE (-838))) (|HasCategory| |#1| (QUOTE (-337)))) (|HasCategory| |#1| (QUOTE (-157)))) (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-337)))) (-3703 (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-337))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (-3703 (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (QUOTE (-838))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (QUOTE (-946))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (QUOTE (-1060))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-353))))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-521))))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (LIST (QUOTE -261) (LIST (QUOTE -1157) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1157) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (LIST (QUOTE -284) (LIST (QUOTE -1157) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (LIST (QUOTE -482) (QUOTE (-1084)) (LIST (QUOTE -1157) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (LIST (QUOTE -815) (QUOTE (-353)))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (LIST (QUOTE -815) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (LIST (QUOTE -961) (QUOTE (-1084)))) (|HasCategory| |#1| (QUOTE (-337)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521)))))) (-3703 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-887))) (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasSignature| |#1| (LIST (QUOTE -2184) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1084))))) (|HasSignature| |#1| (LIST (QUOTE -4084) (LIST (LIST (QUOTE -587) (QUOTE (-1084))) (|devaluate| |#1|)))))) (-3703 (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-337)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521)))))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-1157 |#1| |#2| |#3|) (QUOTE (-838))) (|HasCategory| |#1| (QUOTE (-337)))) (-3703 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-1157 |#1| |#2| |#3|) (QUOTE (-838))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-337)))) (|HasCategory| |#1| (QUOTE (-133)))))
+(-1130 ZP)
((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,{}flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}")))
NIL
NIL
-(-1130 R S)
+(-1131 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-781))))
-(-1131 S)
+((|HasCategory| |#1| (QUOTE (-782))))
+(-1132 S)
((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound.")))
NIL
-((|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (QUOTE (-1012))))
-(-1132 |x| R |y| S)
+((|HasCategory| |#1| (QUOTE (-782))) (|HasCategory| |#1| (QUOTE (-1013))))
+(-1133 |x| R |y| S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func,{} poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-1133 R Q UP)
+(-1134 R Q UP)
((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a \\spad{gcd} domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p,{} d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}.")))
NIL
NIL
-(-1134 R UP)
+(-1135 R UP)
((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} \\spad{fn} ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} \\spad{fn}).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,{}h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,{}d,{}c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,{}d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")))
NIL
NIL
-(-1135 R UP)
+(-1136 R UP)
((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,{}g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded.")))
NIL
NIL
-(-1136 R U)
+(-1137 R U)
((|constructor| (NIL "This package implements Karatsuba\\spad{'s} trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,{}b,{}l,{}k)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,{}b)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,{}b)} returns \\spad{a*b} without using Karatsuba\\spad{'s} trick at all.")))
NIL
NIL
-(-1137 |x| R)
+(-1138 |x| R)
((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|coerce| (($ (|Variable| |#1|)) "\\spad{coerce(x)} converts the variable \\spad{x} to a univariate polynomial.")))
-(((-4231 "*") |has| |#2| (-157)) (-4222 |has| |#2| (-512)) (-4225 |has| |#2| (-336)) (-4227 |has| |#2| (-6 -4227)) (-4224 . T) (-4223 . T) (-4226 . T))
-((|HasCategory| |#2| (QUOTE (-837))) (|HasCategory| |#2| (QUOTE (-512))) (|HasCategory| |#2| (QUOTE (-157))) (-3700 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-512)))) (-12 (|HasCategory| (-997) (LIST (QUOTE -814) (QUOTE (-352)))) (|HasCategory| |#2| (LIST (QUOTE -814) (QUOTE (-352))))) (-12 (|HasCategory| (-997) (LIST (QUOTE -814) (QUOTE (-520)))) (|HasCategory| |#2| (LIST (QUOTE -814) (QUOTE (-520))))) (-12 (|HasCategory| (-997) (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-352))))) (|HasCategory| |#2| (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-352)))))) (-12 (|HasCategory| (-997) (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-520))))) (|HasCategory| |#2| (LIST (QUOTE -561) (LIST (QUOTE -820) (QUOTE (-520)))))) (-12 (|HasCategory| (-997) (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-496))))) (|HasCategory| |#2| (QUOTE (-783))) (|HasCategory| |#2| (LIST (QUOTE -582) (QUOTE (-520)))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#2| (LIST (QUOTE -960) (QUOTE (-520)))) (|HasCategory| |#2| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#2| (QUOTE (-336))) (|HasCategory| |#2| (QUOTE (-1059))) (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1083)))) (-3700 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#2| (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520)))))) (|HasCategory| |#2| (QUOTE (-209))) (|HasAttribute| |#2| (QUOTE -4227)) (|HasCategory| |#2| (QUOTE (-424))) (-3700 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-336))) (|HasCategory| |#2| (QUOTE (-424))) (|HasCategory| |#2| (QUOTE (-512))) (|HasCategory| |#2| (QUOTE (-837)))) (-3700 (|HasCategory| |#2| (QUOTE (-336))) (|HasCategory| |#2| (QUOTE (-424))) (|HasCategory| |#2| (QUOTE (-512))) (|HasCategory| |#2| (QUOTE (-837)))) (-3700 (|HasCategory| |#2| (QUOTE (-336))) (|HasCategory| |#2| (QUOTE (-424))) (|HasCategory| |#2| (QUOTE (-837)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-837)))) (-3700 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-837)))) (|HasCategory| |#2| (QUOTE (-133)))))
-(-1138 R PR S PS)
+(((-4235 "*") |has| |#2| (-157)) (-4226 |has| |#2| (-513)) (-4229 |has| |#2| (-337)) (-4231 |has| |#2| (-6 -4231)) (-4228 . T) (-4227 . T) (-4230 . T))
+((|HasCategory| |#2| (QUOTE (-838))) (|HasCategory| |#2| (QUOTE (-513))) (|HasCategory| |#2| (QUOTE (-157))) (-3703 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-513)))) (-12 (|HasCategory| (-998) (LIST (QUOTE -815) (QUOTE (-353)))) (|HasCategory| |#2| (LIST (QUOTE -815) (QUOTE (-353))))) (-12 (|HasCategory| (-998) (LIST (QUOTE -815) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -815) (QUOTE (-521))))) (-12 (|HasCategory| (-998) (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-353))))) (|HasCategory| |#2| (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-353)))))) (-12 (|HasCategory| (-998) (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-521))))) (|HasCategory| |#2| (LIST (QUOTE -562) (LIST (QUOTE -821) (QUOTE (-521)))))) (-12 (|HasCategory| (-998) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-497))))) (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1084)))) (-3703 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521)))))) (|HasCategory| |#2| (QUOTE (-210))) (|HasAttribute| |#2| (QUOTE -4231)) (|HasCategory| |#2| (QUOTE (-425))) (-3703 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-425))) (|HasCategory| |#2| (QUOTE (-513))) (|HasCategory| |#2| (QUOTE (-838)))) (-3703 (|HasCategory| |#2| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-425))) (|HasCategory| |#2| (QUOTE (-513))) (|HasCategory| |#2| (QUOTE (-838)))) (-3703 (|HasCategory| |#2| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-425))) (|HasCategory| |#2| (QUOTE (-838)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-838)))) (-3703 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-838)))) (|HasCategory| |#2| (QUOTE (-133)))))
+(-1139 R PR S PS)
((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero.")))
NIL
NIL
-(-1139 S R)
+(-1140 S R)
((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#2| (QUOTE (-336))) (|HasCategory| |#2| (QUOTE (-424))) (|HasCategory| |#2| (QUOTE (-512))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-1059))))
-(-1140 R)
+((|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-425))) (|HasCategory| |#2| (QUOTE (-513))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-1060))))
+(-1141 R)
((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
-(((-4231 "*") |has| |#1| (-157)) (-4222 |has| |#1| (-512)) (-4225 |has| |#1| (-336)) (-4227 |has| |#1| (-6 -4227)) (-4224 . T) (-4223 . T) (-4226 . T))
+(((-4235 "*") |has| |#1| (-157)) (-4226 |has| |#1| (-513)) (-4229 |has| |#1| (-337)) (-4231 |has| |#1| (-6 -4231)) (-4228 . T) (-4227 . T) (-4230 . T))
NIL
-(-1141 S |Coef| |Expon|)
+(-1142 S |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#2| $ |#3|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1024))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -2188) (LIST (|devaluate| |#2|) (QUOTE (-1083))))))
-(-1142 |Coef| |Expon|)
+((|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1025))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -2189) (LIST (|devaluate| |#2|) (QUOTE (-1084))))))
+(-1143 |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#1| $ |#2|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
-(((-4231 "*") |has| |#1| (-157)) (-4222 |has| |#1| (-512)) (-4223 . T) (-4224 . T) (-4226 . T))
+(((-4235 "*") |has| |#1| (-157)) (-4226 |has| |#1| (-513)) (-4227 . T) (-4228 . T) (-4230 . T))
NIL
-(-1143 RC P)
+(-1144 RC P)
((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,{}q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}.")))
NIL
NIL
-(-1144 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
+(-1145 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}.")))
NIL
NIL
-(-1145 |Coef|)
+(-1146 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,{}r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,{}st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms.")))
-(((-4231 "*") |has| |#1| (-157)) (-4222 |has| |#1| (-512)) (-4227 |has| |#1| (-336)) (-4221 |has| |#1| (-336)) (-4223 . T) (-4224 . T) (-4226 . T))
+(((-4235 "*") |has| |#1| (-157)) (-4226 |has| |#1| (-513)) (-4231 |has| |#1| (-337)) (-4225 |has| |#1| (-337)) (-4227 . T) (-4228 . T) (-4230 . T))
NIL
-(-1146 S |Coef| ULS)
+(-1147 S |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|coerce| (($ |#3|) "\\spad{coerce(f(x))} converts the Laurent series \\spad{f(x)} to a Puiseux series.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}.")))
NIL
NIL
-(-1147 |Coef| ULS)
+(-1148 |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|coerce| (($ |#2|) "\\spad{coerce(f(x))} converts the Laurent series \\spad{f(x)} to a Puiseux series.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}.")))
-(((-4231 "*") |has| |#1| (-157)) (-4222 |has| |#1| (-512)) (-4227 |has| |#1| (-336)) (-4221 |has| |#1| (-336)) (-4223 . T) (-4224 . T) (-4226 . T))
+(((-4235 "*") |has| |#1| (-157)) (-4226 |has| |#1| (-513)) (-4231 |has| |#1| (-337)) (-4225 |has| |#1| (-337)) (-4227 . T) (-4228 . T) (-4230 . T))
NIL
-(-1148 |Coef| ULS)
+(-1149 |Coef| ULS)
((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")))
-(((-4231 "*") |has| |#1| (-157)) (-4222 |has| |#1| (-512)) (-4227 |has| |#1| (-336)) (-4221 |has| |#1| (-336)) (-4223 . T) (-4224 . T) (-4226 . T))
-((|HasCategory| |#1| (QUOTE (-512))) (|HasCategory| |#1| (QUOTE (-157))) (-3700 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-512)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -380) (QUOTE (-520))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -380) (QUOTE (-520))) (|devaluate| |#1|))))) (|HasCategory| (-380 (-520)) (QUOTE (-1024))) (|HasCategory| |#1| (QUOTE (-336))) (-3700 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (QUOTE (-512)))) (-3700 (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (QUOTE (-512)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -380) (QUOTE (-520)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -380) (QUOTE (-520)))))) (|HasSignature| |#1| (LIST (QUOTE -2188) (LIST (|devaluate| |#1|) (QUOTE (-1083)))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520))))) (-3700 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-520)))) (|HasCategory| |#1| (QUOTE (-886))) (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasSignature| |#1| (LIST (QUOTE -3517) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1083))))) (|HasSignature| |#1| (LIST (QUOTE -4081) (LIST (LIST (QUOTE -586) (QUOTE (-1083))) (|devaluate| |#1|)))))))
-(-1149 |Coef| |var| |cen|)
+(((-4235 "*") |has| |#1| (-157)) (-4226 |has| |#1| (-513)) (-4231 |has| |#1| (-337)) (-4225 |has| |#1| (-337)) (-4227 . T) (-4228 . T) (-4230 . T))
+((|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-157))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-513)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -381) (QUOTE (-521))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -381) (QUOTE (-521))) (|devaluate| |#1|))))) (|HasCategory| (-381 (-521)) (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-337))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-513)))) (-3703 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-513)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -381) (QUOTE (-521)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -381) (QUOTE (-521)))))) (|HasSignature| |#1| (LIST (QUOTE -2189) (LIST (|devaluate| |#1|) (QUOTE (-1084)))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (-3703 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-887))) (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasSignature| |#1| (LIST (QUOTE -2184) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1084))))) (|HasSignature| |#1| (LIST (QUOTE -4084) (LIST (LIST (QUOTE -587) (QUOTE (-1084))) (|devaluate| |#1|)))))))
+(-1150 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
-(((-4231 "*") |has| |#1| (-157)) (-4222 |has| |#1| (-512)) (-4227 |has| |#1| (-336)) (-4221 |has| |#1| (-336)) (-4223 . T) (-4224 . T) (-4226 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#1| (QUOTE (-512))) (|HasCategory| |#1| (QUOTE (-157))) (-3700 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-512)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -380) (QUOTE (-520))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -380) (QUOTE (-520))) (|devaluate| |#1|))))) (|HasCategory| (-380 (-520)) (QUOTE (-1024))) (|HasCategory| |#1| (QUOTE (-336))) (-3700 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (QUOTE (-512)))) (-3700 (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (QUOTE (-512)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -380) (QUOTE (-520)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -380) (QUOTE (-520)))))) (|HasSignature| |#1| (LIST (QUOTE -2188) (LIST (|devaluate| |#1|) (QUOTE (-1083)))))) (-3700 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-520)))) (|HasCategory| |#1| (QUOTE (-886))) (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasSignature| |#1| (LIST (QUOTE -3517) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1083))))) (|HasSignature| |#1| (LIST (QUOTE -4081) (LIST (LIST (QUOTE -586) (QUOTE (-1083))) (|devaluate| |#1|)))))))
-(-1150 R FE |var| |cen|)
+(((-4235 "*") |has| |#1| (-157)) (-4226 |has| |#1| (-513)) (-4231 |has| |#1| (-337)) (-4225 |has| |#1| (-337)) (-4227 . T) (-4228 . T) (-4230 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-157))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-513)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -381) (QUOTE (-521))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -381) (QUOTE (-521))) (|devaluate| |#1|))))) (|HasCategory| (-381 (-521)) (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-337))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-513)))) (-3703 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-513)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -381) (QUOTE (-521)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -381) (QUOTE (-521)))))) (|HasSignature| |#1| (LIST (QUOTE -2189) (LIST (|devaluate| |#1|) (QUOTE (-1084)))))) (-3703 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-887))) (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasSignature| |#1| (LIST (QUOTE -2184) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1084))))) (|HasSignature| |#1| (LIST (QUOTE -4084) (LIST (LIST (QUOTE -587) (QUOTE (-1084))) (|devaluate| |#1|)))))))
+(-1151 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,{}f(var))}.")))
-(((-4231 "*") |has| (-1149 |#2| |#3| |#4|) (-157)) (-4222 |has| (-1149 |#2| |#3| |#4|) (-512)) (-4223 . T) (-4224 . T) (-4226 . T))
-((|HasCategory| (-1149 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| (-1149 |#2| |#3| |#4|) (QUOTE (-133))) (|HasCategory| (-1149 |#2| |#3| |#4|) (QUOTE (-135))) (|HasCategory| (-1149 |#2| |#3| |#4|) (QUOTE (-157))) (|HasCategory| (-1149 |#2| |#3| |#4|) (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| (-1149 |#2| |#3| |#4|) (LIST (QUOTE -960) (QUOTE (-520)))) (|HasCategory| (-1149 |#2| |#3| |#4|) (QUOTE (-336))) (|HasCategory| (-1149 |#2| |#3| |#4|) (QUOTE (-424))) (-3700 (|HasCategory| (-1149 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| (-1149 |#2| |#3| |#4|) (LIST (QUOTE -960) (LIST (QUOTE -380) (QUOTE (-520)))))) (|HasCategory| (-1149 |#2| |#3| |#4|) (QUOTE (-512))))
-(-1151 A S)
+(((-4235 "*") |has| (-1150 |#2| |#3| |#4|) (-157)) (-4226 |has| (-1150 |#2| |#3| |#4|) (-513)) (-4227 . T) (-4228 . T) (-4230 . T))
+((|HasCategory| (-1150 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| (-1150 |#2| |#3| |#4|) (QUOTE (-133))) (|HasCategory| (-1150 |#2| |#3| |#4|) (QUOTE (-135))) (|HasCategory| (-1150 |#2| |#3| |#4|) (QUOTE (-157))) (|HasCategory| (-1150 |#2| |#3| |#4|) (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| (-1150 |#2| |#3| |#4|) (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| (-1150 |#2| |#3| |#4|) (QUOTE (-337))) (|HasCategory| (-1150 |#2| |#3| |#4|) (QUOTE (-425))) (-3703 (|HasCategory| (-1150 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| (-1150 |#2| |#3| |#4|) (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521)))))) (|HasCategory| (-1150 |#2| |#3| |#4|) (QUOTE (-513))))
+(-1152 A S)
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4230)))
-(-1152 S)
+((|HasAttribute| |#1| (QUOTE -4234)))
+(-1153 S)
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
((-2046 . T))
NIL
-(-1153 |Coef1| |Coef2| UTS1 UTS2)
+(-1154 |Coef1| |Coef2| UTS1 UTS2)
((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}")))
NIL
NIL
-(-1154 S |Coef|)
+(-1155 S |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-520)))) (|HasCategory| |#2| (QUOTE (-886))) (|HasCategory| |#2| (QUOTE (-1104))) (|HasSignature| |#2| (LIST (QUOTE -4081) (LIST (LIST (QUOTE -586) (QUOTE (-1083))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -3517) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1083))))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#2| (QUOTE (-336))))
-(-1155 |Coef|)
+((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-521)))) (|HasCategory| |#2| (QUOTE (-887))) (|HasCategory| |#2| (QUOTE (-1105))) (|HasSignature| |#2| (LIST (QUOTE -4084) (LIST (LIST (QUOTE -587) (QUOTE (-1084))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -2184) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1084))))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-337))))
+(-1156 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-4231 "*") |has| |#1| (-157)) (-4222 |has| |#1| (-512)) (-4223 . T) (-4224 . T) (-4226 . T))
+(((-4235 "*") |has| |#1| (-157)) (-4226 |has| |#1| (-513)) (-4227 . T) (-4228 . T) (-4230 . T))
NIL
-(-1156 |Coef| |var| |cen|)
+(-1157 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,{}b,{}f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,{}b,{}f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and 1st order coefficient 1.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,{}f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-4231 "*") |has| |#1| (-157)) (-4222 |has| |#1| (-512)) (-4223 . T) (-4224 . T) (-4226 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasCategory| |#1| (QUOTE (-512))) (|HasCategory| |#1| (QUOTE (-157))) (-3700 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-512)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-706)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -828) (QUOTE (-1083)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-706)) (|devaluate| |#1|))))) (|HasCategory| (-706) (QUOTE (-1024))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-706))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-706))))) (|HasSignature| |#1| (LIST (QUOTE -2188) (LIST (|devaluate| |#1|) (QUOTE (-1083)))))) (|HasCategory| |#1| (QUOTE (-336))) (-3700 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-520)))) (|HasCategory| |#1| (QUOTE (-886))) (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasSignature| |#1| (LIST (QUOTE -3517) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1083))))) (|HasSignature| |#1| (LIST (QUOTE -4081) (LIST (LIST (QUOTE -586) (QUOTE (-1083))) (|devaluate| |#1|)))))))
-(-1157 |Coef| UTS)
+(((-4235 "*") |has| |#1| (-157)) (-4226 |has| |#1| (-513)) (-4227 . T) (-4228 . T) (-4230 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-157))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-513)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-707)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1084)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-707)) (|devaluate| |#1|))))) (|HasCategory| (-707) (QUOTE (-1025))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-707))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-707))))) (|HasSignature| |#1| (LIST (QUOTE -2189) (LIST (|devaluate| |#1|) (QUOTE (-1084)))))) (|HasCategory| |#1| (QUOTE (-337))) (-3703 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-887))) (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasSignature| |#1| (LIST (QUOTE -2184) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1084))))) (|HasSignature| |#1| (LIST (QUOTE -4084) (LIST (LIST (QUOTE -587) (QUOTE (-1084))) (|devaluate| |#1|)))))))
+(-1158 |Coef| UTS)
((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,{}f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,{}y[1],{}y[2],{}...,{}y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,{}cl)} is the solution to \\spad{y<n>=f(y,{}y',{}..,{}y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,{}c0,{}c1)} is the solution to \\spad{y'' = f(y,{}y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,{}c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,{}g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")))
NIL
NIL
-(-1158 -4045 UP L UTS)
+(-1159 -4049 UP L UTS)
((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s,{} n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series.")))
NIL
-((|HasCategory| |#1| (QUOTE (-512))))
-(-1159)
+((|HasCategory| |#1| (QUOTE (-513))))
+(-1160)
((|constructor| (NIL "The category of domains that act like unions. UnionType,{} like Type or Category,{} acts mostly as a take that communicates `union-like' intended semantics to the compiler. A domain \\spad{D} that satifies UnionType should provide definitions for `case' operators,{} with corresponding `autoCoerce' operators.")))
((-2046 . T))
NIL
-(-1160 |sym|)
+(-1161 |sym|)
((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol")))
NIL
NIL
-(-1161 S R)
+(-1162 S R)
((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")))
NIL
-((|HasCategory| |#2| (QUOTE (-926))) (|HasCategory| |#2| (QUOTE (-969))) (|HasCategory| |#2| (QUOTE (-662))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))))
-(-1162 R)
+((|HasCategory| |#2| (QUOTE (-927))) (|HasCategory| |#2| (QUOTE (-970))) (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))))
+(-1163 R)
((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")))
-((-4230 . T) (-4229 . T) (-2046 . T))
+((-4234 . T) (-4233 . T) (-2046 . T))
NIL
-(-1163 A B)
+(-1164 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
-(-1164 R)
+(-1165 R)
((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector.")))
-((-4230 . T) (-4229 . T))
-((|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| (-520) (QUOTE (-783))) (|HasCategory| |#1| (QUOTE (-1012))) (-3700 (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-662))) (|HasCategory| |#1| (QUOTE (-969))) (-12 (|HasCategory| |#1| (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-969)))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (-3700 (-12 (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-791)))) (-3700 (-12 (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -283) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -560) (QUOTE (-791))))))
-(-1165)
+((-4234 . T) (-4233 . T))
+((|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| (-521) (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-1013))) (-3703 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-663))) (|HasCategory| |#1| (QUOTE (-970))) (-12 (|HasCategory| |#1| (QUOTE (-927))) (|HasCategory| |#1| (QUOTE (-970)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-792)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-792))))))
+(-1166)
((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,{}gr,{}n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,{}n,{}s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,{}n,{}dx,{}dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,{}n,{}sx,{}sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,{}n,{}s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,{}n,{}s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,{}n,{}s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,{}n,{}c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,{}n,{}s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,{}n,{}c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,{}n,{}s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,{}n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,{}\\spad{gi},{}n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{\\spad{gi}} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{\\spad{gi}} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,{}num,{}sX,{}sY,{}dX,{}dY,{}pts,{}lns,{}box,{}axes,{}axesC,{}un,{}unC,{}cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(\\spad{gi},{}lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc.")))
NIL
NIL
-(-1166)
+(-1167)
((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,{}c1,{}c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,{}i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,{}x,{}y,{}z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,{}s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,{}s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,{}s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,{}h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,{}d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,{}s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,{}dx,{}dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,{}sx,{}sy,{}sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,{}s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,{}s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,{}s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,{}s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,{}s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}rotx,{}roty,{}rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,{}viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,{}ind,{}pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,{}sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,{}lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,{}s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians.")))
NIL
NIL
-(-1167)
+(-1168)
((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,{}h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,{}y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport.")))
NIL
NIL
-(-1168)
+(-1169)
((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(\\spad{gi})} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}.")))
NIL
NIL
-(-1169)
+(-1170)
((|constructor| (NIL "This type is used when no value is needed,{} \\spadignore{e.g.} in the \\spad{then} part of a one armed \\spad{if}. All values can be coerced to type Void. Once a value has been coerced to Void,{} it cannot be recovered.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} coerces void object to outputForm.")) (|void| (($) "\\spad{void()} produces a void object.")))
NIL
NIL
-(-1170 A S)
+(-1171 A S)
((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#2|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}.")))
NIL
NIL
-(-1171 S)
+(-1172 S)
((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}.")))
-((-4224 . T) (-4223 . T))
+((-4228 . T) (-4227 . T))
NIL
-(-1172 R)
+(-1173 R)
((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,{}s,{}st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,{}ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,{}s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally.")))
NIL
NIL
-(-1173 K R UP -4045)
+(-1174 K R UP -4049)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")))
NIL
NIL
-(-1174 R |VarSet| E P |vl| |wl| |wtlevel|)
+(-1175 R |VarSet| E P |vl| |wl| |wtlevel|)
((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")) (|coerce| (($ |#4|) "\\spad{coerce(p)} coerces \\spad{p} into Weighted form,{} applying weights and ignoring terms") ((|#4| $) "convert back into a \\spad{\"P\"},{} ignoring weights")))
-((-4224 |has| |#1| (-157)) (-4223 |has| |#1| (-157)) (-4226 . T))
-((|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-336))))
-(-1175 R E V P)
+((-4228 |has| |#1| (-157)) (-4227 |has| |#1| (-157)) (-4230 . T))
+((|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-337))))
+(-1176 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{\\spad{MM} Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. DISCO'92. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(\\spad{ps})} returns the same as \\axiom{characteristicSerie(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(\\spad{ps},{}redOp?,{}redOp)} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{ps}} is the union of the regular zero sets of the members of \\axiom{\\spad{lts}}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(\\spad{ps})} returns the same as \\axiom{characteristicSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{\\spad{ps}} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(\\spad{ps})} returns the same as \\axiom{medialSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(\\spad{ps},{}redOp?,{}redOp)} returns \\axiom{\\spad{bs}} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{\\spad{ps}} (with rank not higher than any basic set of \\axiom{\\spad{ps}}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{\\spad{bs}} has to be understood as a candidate for being a characteristic set of \\axiom{\\spad{ps}}. In the original algorithm,{} \\axiom{\\spad{bs}} is simply a basic set of \\axiom{\\spad{ps}}.")))
-((-4230 . T) (-4229 . T))
-((|HasCategory| |#4| (LIST (QUOTE -561) (QUOTE (-496)))) (|HasCategory| |#4| (QUOTE (-1012))) (-12 (|HasCategory| |#4| (QUOTE (-1012))) (|HasCategory| |#4| (LIST (QUOTE -283) (|devaluate| |#4|)))) (|HasCategory| |#1| (QUOTE (-512))) (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#4| (LIST (QUOTE -560) (QUOTE (-791)))))
-(-1176 R)
+((-4234 . T) (-4233 . T))
+((|HasCategory| |#4| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#4| (QUOTE (-1013))) (-12 (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#4| (LIST (QUOTE -284) (|devaluate| |#4|)))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#3| (QUOTE (-342))) (|HasCategory| |#4| (LIST (QUOTE -561) (QUOTE (-792)))))
+(-1177 R)
((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|coerce| (($ |#1|) "\\spad{coerce(r)} equals \\spad{r*1}.")))
-((-4223 . T) (-4224 . T) (-4226 . T))
+((-4227 . T) (-4228 . T) (-4230 . T))
NIL
-(-1177 |vl| R)
+(-1178 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute.")))
-((-4226 . T) (-4222 |has| |#2| (-6 -4222)) (-4224 . T) (-4223 . T))
-((|HasCategory| |#2| (QUOTE (-157))) (|HasAttribute| |#2| (QUOTE -4222)))
-(-1178 R |VarSet| XPOLY)
+((-4230 . T) (-4226 |has| |#2| (-6 -4226)) (-4228 . T) (-4227 . T))
+((|HasCategory| |#2| (QUOTE (-157))) (|HasAttribute| |#2| (QUOTE -4226)))
+(-1179 R |VarSet| XPOLY)
((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")))
NIL
NIL
-(-1179 |vl| R)
+(-1180 |vl| R)
((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,{}n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,{}y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,{}r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,{}y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,{}w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,{}v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,{}y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,{}w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,{}v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,{}y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,{}w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}.")))
-((-4222 |has| |#2| (-6 -4222)) (-4224 . T) (-4223 . T) (-4226 . T))
+((-4226 |has| |#2| (-6 -4226)) (-4228 . T) (-4227 . T) (-4230 . T))
NIL
-(-1180 S -4045)
+(-1181 S -4049)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-135))))
-(-1181 -4045)
+((|HasCategory| |#2| (QUOTE (-342))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-135))))
+(-1182 -4049)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
-((-4221 . T) (-4227 . T) (-4222 . T) ((-4231 "*") . T) (-4223 . T) (-4224 . T) (-4226 . T))
+((-4225 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
NIL
-(-1182 |VarSet| R)
+(-1183 |VarSet| R)
((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}.")))
-((-4222 |has| |#2| (-6 -4222)) (-4224 . T) (-4223 . T) (-4226 . T))
-((|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (LIST (QUOTE -653) (LIST (QUOTE -380) (QUOTE (-520))))) (|HasAttribute| |#2| (QUOTE -4222)))
-(-1183 |vl| R)
+((-4226 |has| |#2| (-6 -4226)) (-4228 . T) (-4227 . T) (-4230 . T))
+((|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (LIST (QUOTE -654) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasAttribute| |#2| (QUOTE -4226)))
+(-1184 |vl| R)
((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,{}n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}.")))
-((-4222 |has| |#2| (-6 -4222)) (-4224 . T) (-4223 . T) (-4226 . T))
+((-4226 |has| |#2| (-6 -4226)) (-4228 . T) (-4227 . T) (-4230 . T))
NIL
-(-1184 R)
+(-1185 R)
((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute.")))
-((-4222 |has| |#1| (-6 -4222)) (-4224 . T) (-4223 . T) (-4226 . T))
-((|HasCategory| |#1| (QUOTE (-157))) (|HasAttribute| |#1| (QUOTE -4222)))
-(-1185 R E)
+((-4226 |has| |#1| (-6 -4226)) (-4228 . T) (-4227 . T) (-4230 . T))
+((|HasCategory| |#1| (QUOTE (-157))) (|HasAttribute| |#1| (QUOTE -4226)))
+(-1186 R E)
((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,{}e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|coerce| (($ |#2|) "\\spad{coerce(e)} returns \\spad{1*e}")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}.")))
-((-4226 . T) (-4227 |has| |#1| (-6 -4227)) (-4222 |has| |#1| (-6 -4222)) (-4224 . T) (-4223 . T))
-((|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-336))) (|HasAttribute| |#1| (QUOTE -4226)) (|HasAttribute| |#1| (QUOTE -4227)) (|HasAttribute| |#1| (QUOTE -4222)))
-(-1186 |VarSet| R)
+((-4230 . T) (-4231 |has| |#1| (-6 -4231)) (-4226 |has| |#1| (-6 -4226)) (-4228 . T) (-4227 . T))
+((|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-337))) (|HasAttribute| |#1| (QUOTE -4230)) (|HasAttribute| |#1| (QUOTE -4231)) (|HasAttribute| |#1| (QUOTE -4226)))
+(-1187 |VarSet| R)
((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form.")))
-((-4222 |has| |#2| (-6 -4222)) (-4224 . T) (-4223 . T) (-4226 . T))
-((|HasCategory| |#2| (QUOTE (-157))) (|HasAttribute| |#2| (QUOTE -4222)))
-(-1187 A)
+((-4226 |has| |#2| (-6 -4226)) (-4228 . T) (-4227 . T) (-4230 . T))
+((|HasCategory| |#2| (QUOTE (-157))) (|HasAttribute| |#2| (QUOTE -4226)))
+(-1188 A)
((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,{}n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}.")))
NIL
NIL
-(-1188 R |ls| |ls2|)
+(-1189 R |ls| |ls2|)
((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,{}s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING: The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see the \\spadtype{LexTriangularPackage} package constructor). For that purpose,{} the operations \\axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage},{} \\axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \\axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} admit an optional argument. \\newline Author: Marc Moreno Maza.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}.") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover,{} each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts},{} which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING: \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,{}false,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,{}info?,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,{}info?,{}lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{positiveSolve(lp,{}info?,{}lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,{}false,{}false,{}false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,{}info?)} returns the same as \\spad{realSolve(ts,{}info?,{}false,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,{}info?,{}check?)} returns the same as \\spad{realSolve(ts,{}info?,{}check?,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,{}info?,{}check?,{}lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{realSolve(ts,{}info?,{}check?,{}lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING: For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,{}false,{}false,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?)} returns the same as \\spad{univariateSolve(lp,{}info?,{}false,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?,{}check?)} returns the same as \\spad{univariateSolve(lp,{}info?,{}check?,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?,{}check?,{}lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,{}false,{}false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,{}info?)} returns the same as \\spad{triangSolve(lp,{}false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,{}info?,{}lextri?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{\\spad{lp}} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (\\spad{w}.\\spad{r}.\\spad{t}. Zarisky topology). Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}(\\spad{lp},{}\\spad{true},{}\\spad{info?}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.")))
NIL
NIL
-(-1189 R)
+(-1190 R)
((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such rational numbers \\spad{ci}\\spad{'s} exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over the integers,{} \\spad{false} otherwise.")))
NIL
NIL
-(-1190 |p|)
+(-1191 |p|)
((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}.")))
-(((-4231 "*") . T) (-4223 . T) (-4224 . T) (-4226 . T))
+(((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
NIL
NIL
NIL
@@ -4712,4 +4716,4 @@ NIL
NIL
NIL
NIL
-((-1195 NIL 2232430 2232435 2232440 2232445) (-3 NIL 2232410 2232415 2232420 2232425) (-2 NIL 2232390 2232395 2232400 2232405) (-1 NIL 2232370 2232375 2232380 2232385) (0 NIL 2232350 2232355 2232360 2232365) (-1190 "ZMOD.spad" 2232159 2232172 2232288 2232345) (-1189 "ZLINDEP.spad" 2231203 2231214 2232149 2232154) (-1188 "ZDSOLVE.spad" 2221052 2221074 2231193 2231198) (-1187 "YSTREAM.spad" 2220545 2220556 2221042 2221047) (-1186 "XRPOLY.spad" 2219765 2219785 2220401 2220470) (-1185 "XPR.spad" 2217494 2217507 2219483 2219582) (-1184 "XPOLY.spad" 2217049 2217060 2217350 2217419) (-1183 "XPOLYC.spad" 2216366 2216382 2216975 2217044) (-1182 "XPBWPOLY.spad" 2214803 2214823 2216146 2216215) (-1181 "XF.spad" 2213264 2213279 2214705 2214798) (-1180 "XF.spad" 2211705 2211722 2213148 2213153) (-1179 "XFALG.spad" 2208729 2208745 2211631 2211700) (-1178 "XEXPPKG.spad" 2207980 2208006 2208719 2208724) (-1177 "XDPOLY.spad" 2207594 2207610 2207836 2207905) (-1176 "XALG.spad" 2207192 2207203 2207550 2207589) (-1175 "WUTSET.spad" 2203031 2203048 2206838 2206865) (-1174 "WP.spad" 2202045 2202089 2202889 2202956) (-1173 "WFFINTBS.spad" 2199608 2199630 2202035 2202040) (-1172 "WEIER.spad" 2197822 2197833 2199598 2199603) (-1171 "VSPACE.spad" 2197495 2197506 2197790 2197817) (-1170 "VSPACE.spad" 2197188 2197201 2197485 2197490) (-1169 "VOID.spad" 2196778 2196787 2197178 2197183) (-1168 "VIEW.spad" 2194400 2194409 2196768 2196773) (-1167 "VIEWDEF.spad" 2189597 2189606 2194390 2194395) (-1166 "VIEW3D.spad" 2173432 2173441 2189587 2189592) (-1165 "VIEW2D.spad" 2161169 2161178 2173422 2173427) (-1164 "VECTOR.spad" 2159846 2159857 2160097 2160124) (-1163 "VECTOR2.spad" 2158473 2158486 2159836 2159841) (-1162 "VECTCAT.spad" 2156361 2156372 2158429 2158468) (-1161 "VECTCAT.spad" 2154070 2154083 2156140 2156145) (-1160 "VARIABLE.spad" 2153850 2153865 2154060 2154065) (-1159 "UTYPE.spad" 2153484 2153493 2153830 2153845) (-1158 "UTSODETL.spad" 2152777 2152801 2153440 2153445) (-1157 "UTSODE.spad" 2150965 2150985 2152767 2152772) (-1156 "UTS.spad" 2145754 2145782 2149432 2149529) (-1155 "UTSCAT.spad" 2143205 2143221 2145652 2145749) (-1154 "UTSCAT.spad" 2140300 2140318 2142749 2142754) (-1153 "UTS2.spad" 2139893 2139928 2140290 2140295) (-1152 "URAGG.spad" 2134515 2134526 2139873 2139888) (-1151 "URAGG.spad" 2129111 2129124 2134471 2134476) (-1150 "UPXSSING.spad" 2126757 2126783 2128195 2128328) (-1149 "UPXS.spad" 2123784 2123812 2124889 2125038) (-1148 "UPXSCONS.spad" 2121541 2121561 2121916 2122065) (-1147 "UPXSCCA.spad" 2119999 2120019 2121387 2121536) (-1146 "UPXSCCA.spad" 2118599 2118621 2119989 2119994) (-1145 "UPXSCAT.spad" 2117180 2117196 2118445 2118594) (-1144 "UPXS2.spad" 2116721 2116774 2117170 2117175) (-1143 "UPSQFREE.spad" 2115133 2115147 2116711 2116716) (-1142 "UPSCAT.spad" 2112726 2112750 2115031 2115128) (-1141 "UPSCAT.spad" 2110025 2110051 2112332 2112337) (-1140 "UPOLYC.spad" 2105003 2105014 2109867 2110020) (-1139 "UPOLYC.spad" 2099873 2099886 2104739 2104744) (-1138 "UPOLYC2.spad" 2099342 2099361 2099863 2099868) (-1137 "UP.spad" 2096392 2096407 2096900 2097053) (-1136 "UPMP.spad" 2095282 2095295 2096382 2096387) (-1135 "UPDIVP.spad" 2094845 2094859 2095272 2095277) (-1134 "UPDECOMP.spad" 2093082 2093096 2094835 2094840) (-1133 "UPCDEN.spad" 2092289 2092305 2093072 2093077) (-1132 "UP2.spad" 2091651 2091672 2092279 2092284) (-1131 "UNISEG.spad" 2091004 2091015 2091570 2091575) (-1130 "UNISEG2.spad" 2090497 2090510 2090960 2090965) (-1129 "UNIFACT.spad" 2089598 2089610 2090487 2090492) (-1128 "ULS.spad" 2080157 2080185 2081250 2081679) (-1127 "ULSCONS.spad" 2074200 2074220 2074572 2074721) (-1126 "ULSCCAT.spad" 2071797 2071817 2074020 2074195) (-1125 "ULSCCAT.spad" 2069528 2069550 2071753 2071758) (-1124 "ULSCAT.spad" 2067744 2067760 2069374 2069523) (-1123 "ULS2.spad" 2067256 2067309 2067734 2067739) (-1122 "UFD.spad" 2066321 2066330 2067182 2067251) (-1121 "UFD.spad" 2065448 2065459 2066311 2066316) (-1120 "UDVO.spad" 2064295 2064304 2065438 2065443) (-1119 "UDPO.spad" 2061722 2061733 2064251 2064256) (-1118 "TYPE.spad" 2061644 2061653 2061702 2061717) (-1117 "TWOFACT.spad" 2060294 2060309 2061634 2061639) (-1116 "TUPLE.spad" 2059680 2059691 2060193 2060198) (-1115 "TUBETOOL.spad" 2056517 2056526 2059670 2059675) (-1114 "TUBE.spad" 2055158 2055175 2056507 2056512) (-1113 "TS.spad" 2053747 2053763 2054723 2054820) (-1112 "TSETCAT.spad" 2040862 2040879 2053703 2053742) (-1111 "TSETCAT.spad" 2027975 2027994 2040818 2040823) (-1110 "TRMANIP.spad" 2022341 2022358 2027681 2027686) (-1109 "TRIMAT.spad" 2021300 2021325 2022331 2022336) (-1108 "TRIGMNIP.spad" 2019817 2019834 2021290 2021295) (-1107 "TRIGCAT.spad" 2019329 2019338 2019807 2019812) (-1106 "TRIGCAT.spad" 2018839 2018850 2019319 2019324) (-1105 "TREE.spad" 2017410 2017421 2018446 2018473) (-1104 "TRANFUN.spad" 2017241 2017250 2017400 2017405) (-1103 "TRANFUN.spad" 2017070 2017081 2017231 2017236) (-1102 "TOPSP.spad" 2016744 2016753 2017060 2017065) (-1101 "TOOLSIGN.spad" 2016407 2016418 2016734 2016739) (-1100 "TEXTFILE.spad" 2014964 2014973 2016397 2016402) (-1099 "TEX.spad" 2011981 2011990 2014954 2014959) (-1098 "TEX1.spad" 2011537 2011548 2011971 2011976) (-1097 "TEMUTL.spad" 2011092 2011101 2011527 2011532) (-1096 "TBCMPPK.spad" 2009185 2009208 2011082 2011087) (-1095 "TBAGG.spad" 2008209 2008232 2009153 2009180) (-1094 "TBAGG.spad" 2007253 2007278 2008199 2008204) (-1093 "TANEXP.spad" 2006629 2006640 2007243 2007248) (-1092 "TABLE.spad" 2005040 2005063 2005310 2005337) (-1091 "TABLEAU.spad" 2004521 2004532 2005030 2005035) (-1090 "TABLBUMP.spad" 2001304 2001315 2004511 2004516) (-1089 "SYSSOLP.spad" 1998777 1998788 2001294 2001299) (-1088 "syntax.spad" 1995062 1995071 1998767 1998772) (-1087 "SYMTAB.spad" 1993118 1993127 1995052 1995057) (-1086 "SYMS.spad" 1989103 1989112 1993108 1993113) (-1085 "SYMPOLY.spad" 1988113 1988124 1988195 1988322) (-1084 "SYMFUNC.spad" 1987588 1987599 1988103 1988108) (-1083 "SYMBOL.spad" 1984924 1984933 1987578 1987583) (-1082 "SWITCH.spad" 1981681 1981690 1984914 1984919) (-1081 "SUTS.spad" 1978580 1978608 1980148 1980245) (-1080 "SUPXS.spad" 1975594 1975622 1976712 1976861) (-1079 "SUP.spad" 1972371 1972382 1973152 1973305) (-1078 "SUPFRACF.spad" 1971476 1971494 1972361 1972366) (-1077 "SUP2.spad" 1970866 1970879 1971466 1971471) (-1076 "SUMRF.spad" 1969832 1969843 1970856 1970861) (-1075 "SUMFS.spad" 1969465 1969482 1969822 1969827) (-1074 "SULS.spad" 1960011 1960039 1961117 1961546) (-1073 "SUCH.spad" 1959691 1959706 1960001 1960006) (-1072 "SUBSPACE.spad" 1951698 1951713 1959681 1959686) (-1071 "SUBRESP.spad" 1950858 1950872 1951654 1951659) (-1070 "STTF.spad" 1946957 1946973 1950848 1950853) (-1069 "STTFNC.spad" 1943425 1943441 1946947 1946952) (-1068 "STTAYLOR.spad" 1935823 1935834 1943306 1943311) (-1067 "STRTBL.spad" 1934328 1934345 1934477 1934504) (-1066 "STRING.spad" 1933737 1933746 1933751 1933778) (-1065 "STRICAT.spad" 1933513 1933522 1933693 1933732) (-1064 "STREAM.spad" 1930281 1930292 1933038 1933053) (-1063 "STREAM3.spad" 1929826 1929841 1930271 1930276) (-1062 "STREAM2.spad" 1928894 1928907 1929816 1929821) (-1061 "STREAM1.spad" 1928598 1928609 1928884 1928889) (-1060 "STINPROD.spad" 1927504 1927520 1928588 1928593) (-1059 "STEP.spad" 1926705 1926714 1927494 1927499) (-1058 "STBL.spad" 1925231 1925259 1925398 1925413) (-1057 "STAGG.spad" 1924296 1924307 1925211 1925226) (-1056 "STAGG.spad" 1923369 1923382 1924286 1924291) (-1055 "STACK.spad" 1922720 1922731 1922976 1923003) (-1054 "SREGSET.spad" 1920424 1920441 1922366 1922393) (-1053 "SRDCMPK.spad" 1918969 1918989 1920414 1920419) (-1052 "SRAGG.spad" 1914054 1914063 1918925 1918964) (-1051 "SRAGG.spad" 1909171 1909182 1914044 1914049) (-1050 "SQMATRIX.spad" 1906797 1906815 1907705 1907792) (-1049 "SPLTREE.spad" 1901349 1901362 1906233 1906260) (-1048 "SPLNODE.spad" 1897937 1897950 1901339 1901344) (-1047 "SPFCAT.spad" 1896714 1896723 1897927 1897932) (-1046 "SPECOUT.spad" 1895264 1895273 1896704 1896709) (-1045 "spad-parser.spad" 1894729 1894738 1895254 1895259) (-1044 "SPACEC.spad" 1878742 1878753 1894719 1894724) (-1043 "SPACE3.spad" 1878518 1878529 1878732 1878737) (-1042 "SORTPAK.spad" 1878063 1878076 1878474 1878479) (-1041 "SOLVETRA.spad" 1875820 1875831 1878053 1878058) (-1040 "SOLVESER.spad" 1874340 1874351 1875810 1875815) (-1039 "SOLVERAD.spad" 1870350 1870361 1874330 1874335) (-1038 "SOLVEFOR.spad" 1868770 1868788 1870340 1870345) (-1037 "SNTSCAT.spad" 1868358 1868375 1868726 1868765) (-1036 "SMTS.spad" 1866618 1866644 1867923 1868020) (-1035 "SMP.spad" 1864060 1864080 1864450 1864577) (-1034 "SMITH.spad" 1862903 1862928 1864050 1864055) (-1033 "SMATCAT.spad" 1861001 1861031 1862835 1862898) (-1032 "SMATCAT.spad" 1859043 1859075 1860879 1860884) (-1031 "SKAGG.spad" 1857992 1858003 1858999 1859038) (-1030 "SINT.spad" 1856300 1856309 1857858 1857987) (-1029 "SIMPAN.spad" 1856028 1856037 1856290 1856295) (-1028 "SIGNRF.spad" 1855136 1855147 1856018 1856023) (-1027 "SIGNEF.spad" 1854405 1854422 1855126 1855131) (-1026 "SHP.spad" 1852323 1852338 1854361 1854366) (-1025 "SHDP.spad" 1843713 1843740 1844222 1844351) (-1024 "SGROUP.spad" 1843179 1843188 1843703 1843708) (-1023 "SGROUP.spad" 1842643 1842654 1843169 1843174) (-1022 "SGCF.spad" 1835524 1835533 1842633 1842638) (-1021 "SFRTCAT.spad" 1834440 1834457 1835480 1835519) (-1020 "SFRGCD.spad" 1833503 1833523 1834430 1834435) (-1019 "SFQCMPK.spad" 1828140 1828160 1833493 1833498) (-1018 "SFORT.spad" 1827575 1827589 1828130 1828135) (-1017 "SEXOF.spad" 1827418 1827458 1827565 1827570) (-1016 "SEX.spad" 1827310 1827319 1827408 1827413) (-1015 "SEXCAT.spad" 1824414 1824454 1827300 1827305) (-1014 "SET.spad" 1822714 1822725 1823835 1823874) (-1013 "SETMN.spad" 1821148 1821165 1822704 1822709) (-1012 "SETCAT.spad" 1820633 1820642 1821138 1821143) (-1011 "SETCAT.spad" 1820116 1820127 1820623 1820628) (-1010 "SETAGG.spad" 1816639 1816650 1820084 1820111) (-1009 "SETAGG.spad" 1813182 1813195 1816629 1816634) (-1008 "SEGXCAT.spad" 1812294 1812307 1813162 1813177) (-1007 "SEG.spad" 1812107 1812118 1812213 1812218) (-1006 "SEGCAT.spad" 1810926 1810937 1812087 1812102) (-1005 "SEGBIND.spad" 1809998 1810009 1810881 1810886) (-1004 "SEGBIND2.spad" 1809694 1809707 1809988 1809993) (-1003 "SEG2.spad" 1809119 1809132 1809650 1809655) (-1002 "SDVAR.spad" 1808395 1808406 1809109 1809114) (-1001 "SDPOL.spad" 1805788 1805799 1806079 1806206) (-1000 "SCPKG.spad" 1803867 1803878 1805778 1805783) (-999 "SCOPE.spad" 1803013 1803021 1803857 1803862) (-998 "SCACHE.spad" 1801696 1801706 1803003 1803008) (-997 "SAOS.spad" 1801569 1801577 1801686 1801691) (-996 "SAERFFC.spad" 1801283 1801302 1801559 1801564) (-995 "SAE.spad" 1799462 1799477 1800072 1800207) (-994 "SAEFACT.spad" 1799164 1799183 1799452 1799457) (-993 "RURPK.spad" 1796806 1796821 1799154 1799159) (-992 "RULESET.spad" 1796248 1796271 1796796 1796801) (-991 "RULE.spad" 1794453 1794476 1796238 1796243) (-990 "RULECOLD.spad" 1794306 1794318 1794443 1794448) (-989 "RSETGCD.spad" 1790685 1790704 1794296 1794301) (-988 "RSETCAT.spad" 1780458 1780474 1790641 1790680) (-987 "RSETCAT.spad" 1770263 1770281 1780448 1780453) (-986 "RSDCMPK.spad" 1768716 1768735 1770253 1770258) (-985 "RRCC.spad" 1767101 1767130 1768706 1768711) (-984 "RRCC.spad" 1765484 1765515 1767091 1767096) (-983 "RPOLCAT.spad" 1744845 1744859 1765352 1765479) (-982 "RPOLCAT.spad" 1723921 1723937 1744430 1744435) (-981 "ROUTINE.spad" 1719785 1719793 1722568 1722595) (-980 "ROMAN.spad" 1719018 1719026 1719651 1719780) (-979 "ROIRC.spad" 1718099 1718130 1719008 1719013) (-978 "RNS.spad" 1717003 1717011 1718001 1718094) (-977 "RNS.spad" 1715993 1716003 1716993 1716998) (-976 "RNG.spad" 1715729 1715737 1715983 1715988) (-975 "RMODULE.spad" 1715368 1715378 1715719 1715724) (-974 "RMCAT2.spad" 1714777 1714833 1715358 1715363) (-973 "RMATRIX.spad" 1713457 1713475 1713944 1713983) (-972 "RMATCAT.spad" 1708979 1709009 1713401 1713452) (-971 "RMATCAT.spad" 1704403 1704435 1708827 1708832) (-970 "RINTERP.spad" 1704292 1704311 1704393 1704398) (-969 "RING.spad" 1703650 1703658 1704272 1704287) (-968 "RING.spad" 1703016 1703026 1703640 1703645) (-967 "RIDIST.spad" 1702401 1702409 1703006 1703011) (-966 "RGCHAIN.spad" 1700981 1700996 1701886 1701913) (-965 "RF.spad" 1698596 1698606 1700971 1700976) (-964 "RFFACTOR.spad" 1698059 1698069 1698586 1698591) (-963 "RFFACT.spad" 1697795 1697806 1698049 1698054) (-962 "RFDIST.spad" 1696784 1696792 1697785 1697790) (-961 "RETSOL.spad" 1696202 1696214 1696774 1696779) (-960 "RETRACT.spad" 1695552 1695562 1696192 1696197) (-959 "RETRACT.spad" 1694900 1694912 1695542 1695547) (-958 "RESULT.spad" 1692961 1692969 1693547 1693574) (-957 "RESRING.spad" 1692309 1692355 1692899 1692956) (-956 "RESLATC.spad" 1691634 1691644 1692299 1692304) (-955 "REPSQ.spad" 1691364 1691374 1691624 1691629) (-954 "REP.spad" 1688917 1688925 1691354 1691359) (-953 "REPDB.spad" 1688623 1688633 1688907 1688912) (-952 "REP2.spad" 1678196 1678206 1688465 1688470) (-951 "REP1.spad" 1672187 1672197 1678146 1678151) (-950 "REGSET.spad" 1669985 1670001 1671833 1671860) (-949 "REF.spad" 1669315 1669325 1669940 1669945) (-948 "REDORDER.spad" 1668492 1668508 1669305 1669310) (-947 "RECLOS.spad" 1667282 1667301 1667985 1668078) (-946 "REALSOLV.spad" 1666415 1666423 1667272 1667277) (-945 "REAL.spad" 1666288 1666296 1666405 1666410) (-944 "REAL0Q.spad" 1663571 1663585 1666278 1666283) (-943 "REAL0.spad" 1660400 1660414 1663561 1663566) (-942 "RDIV.spad" 1660052 1660076 1660390 1660395) (-941 "RDIST.spad" 1659616 1659626 1660042 1660047) (-940 "RDETRS.spad" 1658413 1658430 1659606 1659611) (-939 "RDETR.spad" 1656521 1656538 1658403 1658408) (-938 "RDEEFS.spad" 1655595 1655611 1656511 1656516) (-937 "RDEEF.spad" 1654592 1654608 1655585 1655590) (-936 "RCFIELD.spad" 1651776 1651784 1654494 1654587) (-935 "RCFIELD.spad" 1649046 1649056 1651766 1651771) (-934 "RCAGG.spad" 1646949 1646959 1649026 1649041) (-933 "RCAGG.spad" 1644789 1644801 1646868 1646873) (-932 "RATRET.spad" 1644150 1644160 1644779 1644784) (-931 "RATFACT.spad" 1643843 1643854 1644140 1644145) (-930 "RANDSRC.spad" 1643163 1643171 1643833 1643838) (-929 "RADUTIL.spad" 1642918 1642926 1643153 1643158) (-928 "RADIX.spad" 1639711 1639724 1641388 1641481) (-927 "RADFF.spad" 1638128 1638164 1638246 1638402) (-926 "RADCAT.spad" 1637722 1637730 1638118 1638123) (-925 "RADCAT.spad" 1637314 1637324 1637712 1637717) (-924 "QUEUE.spad" 1636657 1636667 1636921 1636948) (-923 "QUAT.spad" 1635243 1635253 1635585 1635650) (-922 "QUATCT2.spad" 1634862 1634880 1635233 1635238) (-921 "QUATCAT.spad" 1633027 1633037 1634792 1634857) (-920 "QUATCAT.spad" 1630944 1630956 1632711 1632716) (-919 "QUAGG.spad" 1629758 1629768 1630900 1630939) (-918 "QFORM.spad" 1629221 1629235 1629748 1629753) (-917 "QFCAT.spad" 1627912 1627922 1629111 1629216) (-916 "QFCAT.spad" 1626209 1626221 1627410 1627415) (-915 "QFCAT2.spad" 1625900 1625916 1626199 1626204) (-914 "QEQUAT.spad" 1625457 1625465 1625890 1625895) (-913 "QCMPACK.spad" 1620204 1620223 1625447 1625452) (-912 "QALGSET.spad" 1616279 1616311 1620118 1620123) (-911 "QALGSET2.spad" 1614275 1614293 1616269 1616274) (-910 "PWFFINTB.spad" 1611585 1611606 1614265 1614270) (-909 "PUSHVAR.spad" 1610914 1610933 1611575 1611580) (-908 "PTRANFN.spad" 1607040 1607050 1610904 1610909) (-907 "PTPACK.spad" 1604128 1604138 1607030 1607035) (-906 "PTFUNC2.spad" 1603949 1603963 1604118 1604123) (-905 "PTCAT.spad" 1603031 1603041 1603905 1603944) (-904 "PSQFR.spad" 1602338 1602362 1603021 1603026) (-903 "PSEUDLIN.spad" 1601196 1601206 1602328 1602333) (-902 "PSETPK.spad" 1586629 1586645 1601074 1601079) (-901 "PSETCAT.spad" 1580537 1580560 1586597 1586624) (-900 "PSETCAT.spad" 1574431 1574456 1580493 1580498) (-899 "PSCURVE.spad" 1573414 1573422 1574421 1574426) (-898 "PSCAT.spad" 1572181 1572210 1573312 1573409) (-897 "PSCAT.spad" 1571038 1571069 1572171 1572176) (-896 "PRTITION.spad" 1569881 1569889 1571028 1571033) (-895 "PRS.spad" 1559443 1559460 1569837 1569842) (-894 "PRQAGG.spad" 1558862 1558872 1559399 1559438) (-893 "PROPLOG.spad" 1558265 1558273 1558852 1558857) (-892 "PROPFRML.spad" 1556130 1556141 1558201 1558206) (-891 "PRODUCT.spad" 1553810 1553822 1554096 1554151) (-890 "PR.spad" 1552199 1552211 1552904 1553031) (-889 "PRINT.spad" 1551951 1551959 1552189 1552194) (-888 "PRIMES.spad" 1550202 1550212 1551941 1551946) (-887 "PRIMELT.spad" 1548183 1548197 1550192 1550197) (-886 "PRIMCAT.spad" 1547806 1547814 1548173 1548178) (-885 "PRIMARR.spad" 1546811 1546821 1546989 1547016) (-884 "PRIMARR2.spad" 1545534 1545546 1546801 1546806) (-883 "PREASSOC.spad" 1544906 1544918 1545524 1545529) (-882 "PPCURVE.spad" 1544043 1544051 1544896 1544901) (-881 "POLYROOT.spad" 1542815 1542837 1543999 1544004) (-880 "POLY.spad" 1540115 1540125 1540632 1540759) (-879 "POLYLIFT.spad" 1539376 1539399 1540105 1540110) (-878 "POLYCATQ.spad" 1537478 1537500 1539366 1539371) (-877 "POLYCAT.spad" 1530884 1530905 1537346 1537473) (-876 "POLYCAT.spad" 1523592 1523615 1530056 1530061) (-875 "POLY2UP.spad" 1523040 1523054 1523582 1523587) (-874 "POLY2.spad" 1522635 1522647 1523030 1523035) (-873 "POLUTIL.spad" 1521576 1521605 1522591 1522596) (-872 "POLTOPOL.spad" 1520324 1520339 1521566 1521571) (-871 "POINT.spad" 1519165 1519175 1519252 1519279) (-870 "PNTHEORY.spad" 1515831 1515839 1519155 1519160) (-869 "PMTOOLS.spad" 1514588 1514602 1515821 1515826) (-868 "PMSYM.spad" 1514133 1514143 1514578 1514583) (-867 "PMQFCAT.spad" 1513720 1513734 1514123 1514128) (-866 "PMPRED.spad" 1513189 1513203 1513710 1513715) (-865 "PMPREDFS.spad" 1512633 1512655 1513179 1513184) (-864 "PMPLCAT.spad" 1511703 1511721 1512565 1512570) (-863 "PMLSAGG.spad" 1511284 1511298 1511693 1511698) (-862 "PMKERNEL.spad" 1510851 1510863 1511274 1511279) (-861 "PMINS.spad" 1510427 1510437 1510841 1510846) (-860 "PMFS.spad" 1510000 1510018 1510417 1510422) (-859 "PMDOWN.spad" 1509286 1509300 1509990 1509995) (-858 "PMASS.spad" 1508298 1508306 1509276 1509281) (-857 "PMASSFS.spad" 1507267 1507283 1508288 1508293) (-856 "PLOTTOOL.spad" 1507047 1507055 1507257 1507262) (-855 "PLOT.spad" 1501878 1501886 1507037 1507042) (-854 "PLOT3D.spad" 1498298 1498306 1501868 1501873) (-853 "PLOT1.spad" 1497439 1497449 1498288 1498293) (-852 "PLEQN.spad" 1484655 1484682 1497429 1497434) (-851 "PINTERP.spad" 1484271 1484290 1484645 1484650) (-850 "PINTERPA.spad" 1484053 1484069 1484261 1484266) (-849 "PI.spad" 1483660 1483668 1484027 1484048) (-848 "PID.spad" 1482616 1482624 1483586 1483655) (-847 "PICOERCE.spad" 1482273 1482283 1482606 1482611) (-846 "PGROEB.spad" 1480870 1480884 1482263 1482268) (-845 "PGE.spad" 1472123 1472131 1480860 1480865) (-844 "PGCD.spad" 1471005 1471022 1472113 1472118) (-843 "PFRPAC.spad" 1470148 1470158 1470995 1471000) (-842 "PFR.spad" 1466805 1466815 1470050 1470143) (-841 "PFOTOOLS.spad" 1466063 1466079 1466795 1466800) (-840 "PFOQ.spad" 1465433 1465451 1466053 1466058) (-839 "PFO.spad" 1464852 1464879 1465423 1465428) (-838 "PF.spad" 1464426 1464438 1464657 1464750) (-837 "PFECAT.spad" 1462092 1462100 1464352 1464421) (-836 "PFECAT.spad" 1459786 1459796 1462048 1462053) (-835 "PFBRU.spad" 1457656 1457668 1459776 1459781) (-834 "PFBR.spad" 1455194 1455217 1457646 1457651) (-833 "PERM.spad" 1450875 1450885 1455024 1455039) (-832 "PERMGRP.spad" 1445611 1445621 1450865 1450870) (-831 "PERMCAT.spad" 1444163 1444173 1445591 1445606) (-830 "PERMAN.spad" 1442695 1442709 1444153 1444158) (-829 "PENDTREE.spad" 1441968 1441978 1442324 1442329) (-828 "PDRING.spad" 1440459 1440469 1441948 1441963) (-827 "PDRING.spad" 1438958 1438970 1440449 1440454) (-826 "PDEPROB.spad" 1437915 1437923 1438948 1438953) (-825 "PDEPACK.spad" 1431917 1431925 1437905 1437910) (-824 "PDECOMP.spad" 1431379 1431396 1431907 1431912) (-823 "PDECAT.spad" 1429733 1429741 1431369 1431374) (-822 "PCOMP.spad" 1429584 1429597 1429723 1429728) (-821 "PBWLB.spad" 1428166 1428183 1429574 1429579) (-820 "PATTERN.spad" 1422597 1422607 1428156 1428161) (-819 "PATTERN2.spad" 1422333 1422345 1422587 1422592) (-818 "PATTERN1.spad" 1420635 1420651 1422323 1422328) (-817 "PATRES.spad" 1418182 1418194 1420625 1420630) (-816 "PATRES2.spad" 1417844 1417858 1418172 1418177) (-815 "PATMATCH.spad" 1416006 1416037 1417557 1417562) (-814 "PATMAB.spad" 1415431 1415441 1415996 1416001) (-813 "PATLRES.spad" 1414515 1414529 1415421 1415426) (-812 "PATAB.spad" 1414279 1414289 1414505 1414510) (-811 "PARTPERM.spad" 1411641 1411649 1414269 1414274) (-810 "PARSURF.spad" 1411069 1411097 1411631 1411636) (-809 "PARSU2.spad" 1410864 1410880 1411059 1411064) (-808 "script-parser.spad" 1410384 1410392 1410854 1410859) (-807 "PARSCURV.spad" 1409812 1409840 1410374 1410379) (-806 "PARSC2.spad" 1409601 1409617 1409802 1409807) (-805 "PARPCURV.spad" 1409059 1409087 1409591 1409596) (-804 "PARPC2.spad" 1408848 1408864 1409049 1409054) (-803 "PAN2EXPR.spad" 1408260 1408268 1408838 1408843) (-802 "PALETTE.spad" 1407230 1407238 1408250 1408255) (-801 "PAIR.spad" 1406213 1406226 1406818 1406823) (-800 "PADICRC.spad" 1403546 1403564 1404721 1404814) (-799 "PADICRAT.spad" 1401564 1401576 1401785 1401878) (-798 "PADIC.spad" 1401259 1401271 1401490 1401559) (-797 "PADICCT.spad" 1399800 1399812 1401185 1401254) (-796 "PADEPAC.spad" 1398479 1398498 1399790 1399795) (-795 "PADE.spad" 1397219 1397235 1398469 1398474) (-794 "OWP.spad" 1396203 1396233 1397077 1397144) (-793 "OVAR.spad" 1395984 1396007 1396193 1396198) (-792 "OUT.spad" 1395068 1395076 1395974 1395979) (-791 "OUTFORM.spad" 1384482 1384490 1395058 1395063) (-790 "OSI.spad" 1383957 1383965 1384472 1384477) (-789 "ORTHPOL.spad" 1382418 1382428 1383874 1383879) (-788 "OREUP.spad" 1381778 1381806 1382100 1382139) (-787 "ORESUP.spad" 1381079 1381103 1381460 1381499) (-786 "OREPCTO.spad" 1378898 1378910 1380999 1381004) (-785 "OREPCAT.spad" 1372955 1372965 1378854 1378893) (-784 "OREPCAT.spad" 1366902 1366914 1372803 1372808) (-783 "ORDSET.spad" 1366068 1366076 1366892 1366897) (-782 "ORDSET.spad" 1365232 1365242 1366058 1366063) (-781 "ORDRING.spad" 1364622 1364630 1365212 1365227) (-780 "ORDRING.spad" 1364020 1364030 1364612 1364617) (-779 "ORDMON.spad" 1363875 1363883 1364010 1364015) (-778 "ORDFUNS.spad" 1363001 1363017 1363865 1363870) (-777 "ORDFIN.spad" 1362935 1362943 1362991 1362996) (-776 "ORDCOMP.spad" 1361403 1361413 1362485 1362514) (-775 "ORDCOMP2.spad" 1360688 1360700 1361393 1361398) (-774 "OPTPROB.spad" 1359268 1359276 1360678 1360683) (-773 "OPTPACK.spad" 1351653 1351661 1359258 1359263) (-772 "OPTCAT.spad" 1349328 1349336 1351643 1351648) (-771 "OPQUERY.spad" 1348877 1348885 1349318 1349323) (-770 "OP.spad" 1348619 1348629 1348699 1348766) (-769 "ONECOMP.spad" 1347367 1347377 1348169 1348198) (-768 "ONECOMP2.spad" 1346785 1346797 1347357 1347362) (-767 "OMSERVER.spad" 1345787 1345795 1346775 1346780) (-766 "OMSAGG.spad" 1345563 1345573 1345731 1345782) (-765 "OMPKG.spad" 1344175 1344183 1345553 1345558) (-764 "OM.spad" 1343140 1343148 1344165 1344170) (-763 "OMLO.spad" 1342565 1342577 1343026 1343065) (-762 "OMEXPR.spad" 1342399 1342409 1342555 1342560) (-761 "OMERR.spad" 1341942 1341950 1342389 1342394) (-760 "OMERRK.spad" 1340976 1340984 1341932 1341937) (-759 "OMENC.spad" 1340320 1340328 1340966 1340971) (-758 "OMDEV.spad" 1334609 1334617 1340310 1340315) (-757 "OMCONN.spad" 1334018 1334026 1334599 1334604) (-756 "OINTDOM.spad" 1333781 1333789 1333944 1334013) (-755 "OFMONOID.spad" 1329968 1329978 1333771 1333776) (-754 "ODVAR.spad" 1329229 1329239 1329958 1329963) (-753 "ODR.spad" 1328677 1328703 1329041 1329190) (-752 "ODPOL.spad" 1326026 1326036 1326366 1326493) (-751 "ODP.spad" 1317552 1317572 1317925 1318054) (-750 "ODETOOLS.spad" 1316135 1316154 1317542 1317547) (-749 "ODESYS.spad" 1313785 1313802 1316125 1316130) (-748 "ODERTRIC.spad" 1309726 1309743 1313742 1313747) (-747 "ODERED.spad" 1309113 1309137 1309716 1309721) (-746 "ODERAT.spad" 1306664 1306681 1309103 1309108) (-745 "ODEPRRIC.spad" 1303555 1303577 1306654 1306659) (-744 "ODEPROB.spad" 1302754 1302762 1303545 1303550) (-743 "ODEPRIM.spad" 1300028 1300050 1302744 1302749) (-742 "ODEPAL.spad" 1299404 1299428 1300018 1300023) (-741 "ODEPACK.spad" 1286006 1286014 1299394 1299399) (-740 "ODEINT.spad" 1285437 1285453 1285996 1286001) (-739 "ODEIFTBL.spad" 1282832 1282840 1285427 1285432) (-738 "ODEEF.spad" 1278199 1278215 1282822 1282827) (-737 "ODECONST.spad" 1277718 1277736 1278189 1278194) (-736 "ODECAT.spad" 1276314 1276322 1277708 1277713) (-735 "OCT.spad" 1274461 1274471 1275177 1275216) (-734 "OCTCT2.spad" 1274105 1274126 1274451 1274456) (-733 "OC.spad" 1271879 1271889 1274061 1274100) (-732 "OC.spad" 1269379 1269391 1271563 1271568) (-731 "OCAMON.spad" 1269227 1269235 1269369 1269374) (-730 "OBJPROP.spad" 1268715 1268723 1269217 1269222) (-729 "OASGP.spad" 1268530 1268538 1268705 1268710) (-728 "OAMONS.spad" 1268050 1268058 1268520 1268525) (-727 "OAMON.spad" 1267911 1267919 1268040 1268045) (-726 "OAGROUP.spad" 1267773 1267781 1267901 1267906) (-725 "NUMTUBE.spad" 1267360 1267376 1267763 1267768) (-724 "NUMQUAD.spad" 1255222 1255230 1267350 1267355) (-723 "NUMODE.spad" 1246358 1246366 1255212 1255217) (-722 "NUMINT.spad" 1243916 1243924 1246348 1246353) (-721 "NUMFMT.spad" 1242756 1242764 1243906 1243911) (-720 "NUMERIC.spad" 1234829 1234839 1242562 1242567) (-719 "NTSCAT.spad" 1233319 1233335 1234785 1234824) (-718 "NTPOLFN.spad" 1232864 1232874 1233236 1233241) (-717 "NSUP.spad" 1225882 1225892 1230422 1230575) (-716 "NSUP2.spad" 1225274 1225286 1225872 1225877) (-715 "NSMP.spad" 1221473 1221492 1221781 1221908) (-714 "NREP.spad" 1219845 1219859 1221463 1221468) (-713 "NPCOEF.spad" 1219091 1219111 1219835 1219840) (-712 "NORMRETR.spad" 1218689 1218728 1219081 1219086) (-711 "NORMPK.spad" 1216591 1216610 1218679 1218684) (-710 "NORMMA.spad" 1216279 1216305 1216581 1216586) (-709 "NONE.spad" 1216020 1216028 1216269 1216274) (-708 "NONE1.spad" 1215696 1215706 1216010 1216015) (-707 "NODE1.spad" 1215165 1215181 1215686 1215691) (-706 "NNI.spad" 1214052 1214060 1215139 1215160) (-705 "NLINSOL.spad" 1212674 1212684 1214042 1214047) (-704 "NIPROB.spad" 1211157 1211165 1212664 1212669) (-703 "NFINTBAS.spad" 1208617 1208634 1211147 1211152) (-702 "NCODIV.spad" 1206815 1206831 1208607 1208612) (-701 "NCNTFRAC.spad" 1206457 1206471 1206805 1206810) (-700 "NCEP.spad" 1204617 1204631 1206447 1206452) (-699 "NASRING.spad" 1204213 1204221 1204607 1204612) (-698 "NASRING.spad" 1203807 1203817 1204203 1204208) (-697 "NARNG.spad" 1203151 1203159 1203797 1203802) (-696 "NARNG.spad" 1202493 1202503 1203141 1203146) (-695 "NAGSP.spad" 1201566 1201574 1202483 1202488) (-694 "NAGS.spad" 1191091 1191099 1201556 1201561) (-693 "NAGF07.spad" 1189484 1189492 1191081 1191086) (-692 "NAGF04.spad" 1183716 1183724 1189474 1189479) (-691 "NAGF02.spad" 1177525 1177533 1183706 1183711) (-690 "NAGF01.spad" 1173128 1173136 1177515 1177520) (-689 "NAGE04.spad" 1166588 1166596 1173118 1173123) (-688 "NAGE02.spad" 1156930 1156938 1166578 1166583) (-687 "NAGE01.spad" 1152814 1152822 1156920 1156925) (-686 "NAGD03.spad" 1150734 1150742 1152804 1152809) (-685 "NAGD02.spad" 1143265 1143273 1150724 1150729) (-684 "NAGD01.spad" 1137378 1137386 1143255 1143260) (-683 "NAGC06.spad" 1133165 1133173 1137368 1137373) (-682 "NAGC05.spad" 1131634 1131642 1133155 1133160) (-681 "NAGC02.spad" 1130889 1130897 1131624 1131629) (-680 "NAALG.spad" 1130424 1130434 1130857 1130884) (-679 "NAALG.spad" 1129979 1129991 1130414 1130419) (-678 "MULTSQFR.spad" 1126937 1126954 1129969 1129974) (-677 "MULTFACT.spad" 1126320 1126337 1126927 1126932) (-676 "MTSCAT.spad" 1124354 1124375 1126218 1126315) (-675 "MTHING.spad" 1124011 1124021 1124344 1124349) (-674 "MSYSCMD.spad" 1123445 1123453 1124001 1124006) (-673 "MSET.spad" 1121387 1121397 1123151 1123190) (-672 "MSETAGG.spad" 1121220 1121230 1121343 1121382) (-671 "MRING.spad" 1118191 1118203 1120928 1120995) (-670 "MRF2.spad" 1117759 1117773 1118181 1118186) (-669 "MRATFAC.spad" 1117305 1117322 1117749 1117754) (-668 "MPRFF.spad" 1115335 1115354 1117295 1117300) (-667 "MPOLY.spad" 1112773 1112788 1113132 1113259) (-666 "MPCPF.spad" 1112037 1112056 1112763 1112768) (-665 "MPC3.spad" 1111852 1111892 1112027 1112032) (-664 "MPC2.spad" 1111494 1111527 1111842 1111847) (-663 "MONOTOOL.spad" 1109829 1109846 1111484 1111489) (-662 "MONOID.spad" 1109003 1109011 1109819 1109824) (-661 "MONOID.spad" 1108175 1108185 1108993 1108998) (-660 "MONOGEN.spad" 1106921 1106934 1108035 1108170) (-659 "MONOGEN.spad" 1105689 1105704 1106805 1106810) (-658 "MONADWU.spad" 1103703 1103711 1105679 1105684) (-657 "MONADWU.spad" 1101715 1101725 1103693 1103698) (-656 "MONAD.spad" 1100859 1100867 1101705 1101710) (-655 "MONAD.spad" 1100001 1100011 1100849 1100854) (-654 "MOEBIUS.spad" 1098687 1098701 1099981 1099996) (-653 "MODULE.spad" 1098557 1098567 1098655 1098682) (-652 "MODULE.spad" 1098447 1098459 1098547 1098552) (-651 "MODRING.spad" 1097778 1097817 1098427 1098442) (-650 "MODOP.spad" 1096437 1096449 1097600 1097667) (-649 "MODMONOM.spad" 1095969 1095987 1096427 1096432) (-648 "MODMON.spad" 1092679 1092695 1093455 1093608) (-647 "MODFIELD.spad" 1092037 1092076 1092581 1092674) (-646 "MMAP.spad" 1091777 1091811 1092027 1092032) (-645 "MLO.spad" 1090204 1090214 1091733 1091772) (-644 "MLIFT.spad" 1088776 1088793 1090194 1090199) (-643 "MKUCFUNC.spad" 1088309 1088327 1088766 1088771) (-642 "MKRECORD.spad" 1087911 1087924 1088299 1088304) (-641 "MKFUNC.spad" 1087292 1087302 1087901 1087906) (-640 "MKFLCFN.spad" 1086248 1086258 1087282 1087287) (-639 "MKCHSET.spad" 1086024 1086034 1086238 1086243) (-638 "MKBCFUNC.spad" 1085509 1085527 1086014 1086019) (-637 "MINT.spad" 1084948 1084956 1085411 1085504) (-636 "MHROWRED.spad" 1083449 1083459 1084938 1084943) (-635 "MFLOAT.spad" 1081894 1081902 1083339 1083444) (-634 "MFINFACT.spad" 1081294 1081316 1081884 1081889) (-633 "MESH.spad" 1079026 1079034 1081284 1081289) (-632 "MDDFACT.spad" 1077219 1077229 1079016 1079021) (-631 "MDAGG.spad" 1076494 1076504 1077187 1077214) (-630 "MCMPLX.spad" 1072474 1072482 1073088 1073289) (-629 "MCDEN.spad" 1071682 1071694 1072464 1072469) (-628 "MCALCFN.spad" 1068784 1068810 1071672 1071677) (-627 "MATSTOR.spad" 1066060 1066070 1068774 1068779) (-626 "MATRIX.spad" 1064764 1064774 1065248 1065275) (-625 "MATLIN.spad" 1062090 1062114 1064648 1064653) (-624 "MATCAT.spad" 1053663 1053685 1062046 1062085) (-623 "MATCAT.spad" 1045120 1045144 1053505 1053510) (-622 "MATCAT2.spad" 1044388 1044436 1045110 1045115) (-621 "MAPPKG3.spad" 1043287 1043301 1044378 1044383) (-620 "MAPPKG2.spad" 1042621 1042633 1043277 1043282) (-619 "MAPPKG1.spad" 1041439 1041449 1042611 1042616) (-618 "MAPHACK3.spad" 1041247 1041261 1041429 1041434) (-617 "MAPHACK2.spad" 1041012 1041024 1041237 1041242) (-616 "MAPHACK1.spad" 1040642 1040652 1041002 1041007) (-615 "MAGMA.spad" 1038432 1038449 1040632 1040637) (-614 "M3D.spad" 1036130 1036140 1037812 1037817) (-613 "LZSTAGG.spad" 1033348 1033358 1036110 1036125) (-612 "LZSTAGG.spad" 1030574 1030586 1033338 1033343) (-611 "LWORD.spad" 1027279 1027296 1030564 1030569) (-610 "LSQM.spad" 1025507 1025521 1025905 1025956) (-609 "LSPP.spad" 1025040 1025057 1025497 1025502) (-608 "LSMP.spad" 1023880 1023908 1025030 1025035) (-607 "LSMP1.spad" 1021684 1021698 1023870 1023875) (-606 "LSAGG.spad" 1021341 1021351 1021640 1021679) (-605 "LSAGG.spad" 1021030 1021042 1021331 1021336) (-604 "LPOLY.spad" 1019984 1020003 1020886 1020955) (-603 "LPEFRAC.spad" 1019241 1019251 1019974 1019979) (-602 "LO.spad" 1018642 1018656 1019175 1019202) (-601 "LOGIC.spad" 1018244 1018252 1018632 1018637) (-600 "LOGIC.spad" 1017844 1017854 1018234 1018239) (-599 "LODOOPS.spad" 1016762 1016774 1017834 1017839) (-598 "LODO.spad" 1016148 1016164 1016444 1016483) (-597 "LODOF.spad" 1015192 1015209 1016105 1016110) (-596 "LODOCAT.spad" 1013850 1013860 1015148 1015187) (-595 "LODOCAT.spad" 1012506 1012518 1013806 1013811) (-594 "LODO2.spad" 1011781 1011793 1012188 1012227) (-593 "LODO1.spad" 1011183 1011193 1011463 1011502) (-592 "LODEEF.spad" 1009955 1009973 1011173 1011178) (-591 "LNAGG.spad" 1005747 1005757 1009935 1009950) (-590 "LNAGG.spad" 1001513 1001525 1005703 1005708) (-589 "LMOPS.spad" 998249 998266 1001503 1001508) (-588 "LMODULE.spad" 997891 997901 998239 998244) (-587 "LMDICT.spad" 997174 997184 997442 997469) (-586 "LIST.spad" 994892 994902 996321 996348) (-585 "LIST3.spad" 994183 994197 994882 994887) (-584 "LIST2.spad" 992823 992835 994173 994178) (-583 "LIST2MAP.spad" 989700 989712 992813 992818) (-582 "LINEXP.spad" 989132 989142 989680 989695) (-581 "LINDEP.spad" 987909 987921 989044 989049) (-580 "LIMITRF.spad" 985823 985833 987899 987904) (-579 "LIMITPS.spad" 984706 984719 985813 985818) (-578 "LIE.spad" 982720 982732 983996 984141) (-577 "LIECAT.spad" 982196 982206 982646 982715) (-576 "LIECAT.spad" 981700 981712 982152 982157) (-575 "LIB.spad" 979748 979756 980359 980374) (-574 "LGROBP.spad" 977101 977120 979738 979743) (-573 "LF.spad" 976020 976036 977091 977096) (-572 "LFCAT.spad" 975039 975047 976010 976015) (-571 "LEXTRIPK.spad" 970542 970557 975029 975034) (-570 "LEXP.spad" 968545 968572 970522 970537) (-569 "LEADCDET.spad" 966929 966946 968535 968540) (-568 "LAZM3PK.spad" 965633 965655 966919 966924) (-567 "LAUPOL.spad" 964324 964337 965228 965297) (-566 "LAPLACE.spad" 963897 963913 964314 964319) (-565 "LA.spad" 963337 963351 963819 963858) (-564 "LALG.spad" 963113 963123 963317 963332) (-563 "LALG.spad" 962897 962909 963103 963108) (-562 "KOVACIC.spad" 961610 961627 962887 962892) (-561 "KONVERT.spad" 961332 961342 961600 961605) (-560 "KOERCE.spad" 961069 961079 961322 961327) (-559 "KERNEL.spad" 959604 959614 960853 960858) (-558 "KERNEL2.spad" 959307 959319 959594 959599) (-557 "KDAGG.spad" 958398 958420 959275 959302) (-556 "KDAGG.spad" 957509 957533 958388 958393) (-555 "KAFILE.spad" 956472 956488 956707 956734) (-554 "JORDAN.spad" 954299 954311 955762 955907) (-553 "IXAGG.spad" 952412 952436 954279 954294) (-552 "IXAGG.spad" 950390 950416 952259 952264) (-551 "IVECTOR.spad" 949163 949178 949318 949345) (-550 "ITUPLE.spad" 948308 948318 949153 949158) (-549 "ITRIGMNP.spad" 947119 947138 948298 948303) (-548 "ITFUN3.spad" 946613 946627 947109 947114) (-547 "ITFUN2.spad" 946343 946355 946603 946608) (-546 "ITAYLOR.spad" 944135 944150 946179 946304) (-545 "ISUPS.spad" 936546 936561 943109 943206) (-544 "ISUMP.spad" 936043 936059 936536 936541) (-543 "ISTRING.spad" 935046 935059 935212 935239) (-542 "IRURPK.spad" 933759 933778 935036 935041) (-541 "IRSN.spad" 931719 931727 933749 933754) (-540 "IRRF2F.spad" 930194 930204 931675 931680) (-539 "IRREDFFX.spad" 929795 929806 930184 930189) (-538 "IROOT.spad" 928126 928136 929785 929790) (-537 "IR.spad" 925916 925930 927982 928009) (-536 "IR2.spad" 924936 924952 925906 925911) (-535 "IR2F.spad" 924136 924152 924926 924931) (-534 "IPRNTPK.spad" 923896 923904 924126 924131) (-533 "IPF.spad" 923461 923473 923701 923794) (-532 "IPADIC.spad" 923222 923248 923387 923456) (-531 "INVLAPLA.spad" 922867 922883 923212 923217) (-530 "INTTR.spad" 916113 916130 922857 922862) (-529 "INTTOOLS.spad" 913825 913841 915688 915693) (-528 "INTSLPE.spad" 913131 913139 913815 913820) (-527 "INTRVL.spad" 912697 912707 913045 913126) (-526 "INTRF.spad" 911061 911075 912687 912692) (-525 "INTRET.spad" 910493 910503 911051 911056) (-524 "INTRAT.spad" 909168 909185 910483 910488) (-523 "INTPM.spad" 907531 907547 908811 908816) (-522 "INTPAF.spad" 905299 905317 907463 907468) (-521 "INTPACK.spad" 895609 895617 905289 905294) (-520 "INT.spad" 894970 894978 895463 895604) (-519 "INTHERTR.spad" 894236 894253 894960 894965) (-518 "INTHERAL.spad" 893902 893926 894226 894231) (-517 "INTHEORY.spad" 890315 890323 893892 893897) (-516 "INTG0.spad" 883778 883796 890247 890252) (-515 "INTFTBL.spad" 877807 877815 883768 883773) (-514 "INTFACT.spad" 876866 876876 877797 877802) (-513 "INTEF.spad" 875181 875197 876856 876861) (-512 "INTDOM.spad" 873796 873804 875107 875176) (-511 "INTDOM.spad" 872473 872483 873786 873791) (-510 "INTCAT.spad" 870726 870736 872387 872468) (-509 "INTBIT.spad" 870229 870237 870716 870721) (-508 "INTALG.spad" 869411 869438 870219 870224) (-507 "INTAF.spad" 868903 868919 869401 869406) (-506 "INTABL.spad" 867421 867452 867584 867611) (-505 "INS.spad" 864817 864825 867323 867416) (-504 "INS.spad" 862299 862309 864807 864812) (-503 "INPSIGN.spad" 861733 861746 862289 862294) (-502 "INPRODPF.spad" 860799 860818 861723 861728) (-501 "INPRODFF.spad" 859857 859881 860789 860794) (-500 "INNMFACT.spad" 858828 858845 859847 859852) (-499 "INMODGCD.spad" 858312 858342 858818 858823) (-498 "INFSP.spad" 856597 856619 858302 858307) (-497 "INFPROD0.spad" 855647 855666 856587 856592) (-496 "INFORM.spad" 852915 852923 855637 855642) (-495 "INFORM1.spad" 852540 852550 852905 852910) (-494 "INFINITY.spad" 852092 852100 852530 852535) (-493 "INEP.spad" 850624 850646 852082 852087) (-492 "INDE.spad" 850530 850547 850614 850619) (-491 "INCRMAPS.spad" 849951 849961 850520 850525) (-490 "INBFF.spad" 845721 845732 849941 849946) (-489 "IMATRIX.spad" 844666 844692 845178 845205) (-488 "IMATQF.spad" 843760 843804 844622 844627) (-487 "IMATLIN.spad" 842365 842389 843716 843721) (-486 "ILIST.spad" 841021 841036 841548 841575) (-485 "IIARRAY2.spad" 840409 840447 840628 840655) (-484 "IFF.spad" 839819 839835 840090 840183) (-483 "IFARRAY.spad" 837306 837321 839002 839029) (-482 "IFAMON.spad" 837168 837185 837262 837267) (-481 "IEVALAB.spad" 836557 836569 837158 837163) (-480 "IEVALAB.spad" 835944 835958 836547 836552) (-479 "IDPO.spad" 835742 835754 835934 835939) (-478 "IDPOAMS.spad" 835498 835510 835732 835737) (-477 "IDPOAM.spad" 835218 835230 835488 835493) (-476 "IDPC.spad" 834152 834164 835208 835213) (-475 "IDPAM.spad" 833897 833909 834142 834147) (-474 "IDPAG.spad" 833644 833656 833887 833892) (-473 "IDECOMP.spad" 830881 830899 833634 833639) (-472 "IDEAL.spad" 825804 825843 830816 830821) (-471 "ICDEN.spad" 824955 824971 825794 825799) (-470 "ICARD.spad" 824144 824152 824945 824950) (-469 "IBPTOOLS.spad" 822737 822754 824134 824139) (-468 "IBITS.spad" 821936 821949 822373 822400) (-467 "IBATOOL.spad" 818811 818830 821926 821931) (-466 "IBACHIN.spad" 817298 817313 818801 818806) (-465 "IARRAY2.spad" 816286 816312 816905 816932) (-464 "IARRAY1.spad" 815331 815346 815469 815496) (-463 "IAN.spad" 813546 813554 815149 815242) (-462 "IALGFACT.spad" 813147 813180 813536 813541) (-461 "HYPCAT.spad" 812571 812579 813137 813142) (-460 "HYPCAT.spad" 811993 812003 812561 812566) (-459 "HOAGG.spad" 809251 809261 811973 811988) (-458 "HOAGG.spad" 806294 806306 809018 809023) (-457 "HEXADEC.spad" 804166 804174 804764 804857) (-456 "HEUGCD.spad" 803181 803192 804156 804161) (-455 "HELLFDIV.spad" 802771 802795 803171 803176) (-454 "HEAP.spad" 802163 802173 802378 802405) (-453 "HDP.spad" 793685 793701 794062 794191) (-452 "HDMP.spad" 790864 790879 791482 791609) (-451 "HB.spad" 789101 789109 790854 790859) (-450 "HASHTBL.spad" 787571 787602 787782 787809) (-449 "HACKPI.spad" 787054 787062 787473 787566) (-448 "GTSET.spad" 785993 786009 786700 786727) (-447 "GSTBL.spad" 784512 784547 784686 784701) (-446 "GSERIES.spad" 781679 781706 782644 782793) (-445 "GROUP.spad" 780853 780861 781659 781674) (-444 "GROUP.spad" 780035 780045 780843 780848) (-443 "GROEBSOL.spad" 778523 778544 780025 780030) (-442 "GRMOD.spad" 777094 777106 778513 778518) (-441 "GRMOD.spad" 775663 775677 777084 777089) (-440 "GRIMAGE.spad" 768268 768276 775653 775658) (-439 "GRDEF.spad" 766647 766655 768258 768263) (-438 "GRAY.spad" 765106 765114 766637 766642) (-437 "GRALG.spad" 764153 764165 765096 765101) (-436 "GRALG.spad" 763198 763212 764143 764148) (-435 "GPOLSET.spad" 762652 762675 762880 762907) (-434 "GOSPER.spad" 761917 761935 762642 762647) (-433 "GMODPOL.spad" 761055 761082 761885 761912) (-432 "GHENSEL.spad" 760124 760138 761045 761050) (-431 "GENUPS.spad" 756225 756238 760114 760119) (-430 "GENUFACT.spad" 755802 755812 756215 756220) (-429 "GENPGCD.spad" 755386 755403 755792 755797) (-428 "GENMFACT.spad" 754838 754857 755376 755381) (-427 "GENEEZ.spad" 752777 752790 754828 754833) (-426 "GDMP.spad" 749798 749815 750574 750701) (-425 "GCNAALG.spad" 743693 743720 749592 749659) (-424 "GCDDOM.spad" 742865 742873 743619 743688) (-423 "GCDDOM.spad" 742099 742109 742855 742860) (-422 "GB.spad" 739617 739655 742055 742060) (-421 "GBINTERN.spad" 735637 735675 739607 739612) (-420 "GBF.spad" 731394 731432 735627 735632) (-419 "GBEUCLID.spad" 729268 729306 731384 731389) (-418 "GAUSSFAC.spad" 728565 728573 729258 729263) (-417 "GALUTIL.spad" 726887 726897 728521 728526) (-416 "GALPOLYU.spad" 725333 725346 726877 726882) (-415 "GALFACTU.spad" 723498 723517 725323 725328) (-414 "GALFACT.spad" 713631 713642 723488 723493) (-413 "FVFUN.spad" 710644 710652 713611 713626) (-412 "FVC.spad" 709686 709694 710624 710639) (-411 "FUNCTION.spad" 709535 709547 709676 709681) (-410 "FT.spad" 707747 707755 709525 709530) (-409 "FTEM.spad" 706910 706918 707737 707742) (-408 "FSUPFACT.spad" 705811 705830 706847 706852) (-407 "FST.spad" 703897 703905 705801 705806) (-406 "FSRED.spad" 703375 703391 703887 703892) (-405 "FSPRMELT.spad" 702199 702215 703332 703337) (-404 "FSPECF.spad" 700276 700292 702189 702194) (-403 "FS.spad" 694327 694337 700040 700271) (-402 "FS.spad" 688169 688181 693884 693889) (-401 "FSINT.spad" 687827 687843 688159 688164) (-400 "FSERIES.spad" 687014 687026 687647 687746) (-399 "FSCINT.spad" 686327 686343 687004 687009) (-398 "FSAGG.spad" 685432 685442 686271 686322) (-397 "FSAGG.spad" 684511 684523 685352 685357) (-396 "FSAGG2.spad" 683210 683226 684501 684506) (-395 "FS2UPS.spad" 677599 677633 683200 683205) (-394 "FS2.spad" 677244 677260 677589 677594) (-393 "FS2EXPXP.spad" 676367 676390 677234 677239) (-392 "FRUTIL.spad" 675309 675319 676357 676362) (-391 "FR.spad" 669006 669016 674336 674405) (-390 "FRNAALG.spad" 664093 664103 668948 669001) (-389 "FRNAALG.spad" 659192 659204 664049 664054) (-388 "FRNAAF2.spad" 658646 658664 659182 659187) (-387 "FRMOD.spad" 658041 658071 658578 658583) (-386 "FRIDEAL.spad" 657236 657257 658021 658036) (-385 "FRIDEAL2.spad" 656838 656870 657226 657231) (-384 "FRETRCT.spad" 656349 656359 656828 656833) (-383 "FRETRCT.spad" 655728 655740 656209 656214) (-382 "FRAMALG.spad" 654056 654069 655684 655723) (-381 "FRAMALG.spad" 652416 652431 654046 654051) (-380 "FRAC.spad" 649519 649529 649922 650095) (-379 "FRAC2.spad" 649122 649134 649509 649514) (-378 "FR2.spad" 648456 648468 649112 649117) (-377 "FPS.spad" 645265 645273 648346 648451) (-376 "FPS.spad" 642102 642112 645185 645190) (-375 "FPC.spad" 641144 641152 642004 642097) (-374 "FPC.spad" 640272 640282 641134 641139) (-373 "FPATMAB.spad" 640024 640034 640252 640267) (-372 "FPARFRAC.spad" 638497 638514 640014 640019) (-371 "FORTRAN.spad" 636997 637046 638487 638492) (-370 "FORT.spad" 635926 635934 636987 636992) (-369 "FORTFN.spad" 633086 633094 635906 635921) (-368 "FORTCAT.spad" 632760 632768 633066 633081) (-367 "FORMULA.spad" 630098 630106 632750 632755) (-366 "FORMULA1.spad" 629577 629587 630088 630093) (-365 "FORDER.spad" 629268 629292 629567 629572) (-364 "FOP.spad" 628469 628477 629258 629263) (-363 "FNLA.spad" 627893 627915 628437 628464) (-362 "FNCAT.spad" 626221 626229 627883 627888) (-361 "FNAME.spad" 626113 626121 626211 626216) (-360 "FMTC.spad" 625911 625919 626039 626108) (-359 "FMONOID.spad" 622966 622976 625867 625872) (-358 "FM.spad" 622661 622673 622900 622927) (-357 "FMFUN.spad" 619681 619689 622641 622656) (-356 "FMC.spad" 618723 618731 619661 619676) (-355 "FMCAT.spad" 616377 616395 618691 618718) (-354 "FM1.spad" 615734 615746 616311 616338) (-353 "FLOATRP.spad" 613455 613469 615724 615729) (-352 "FLOAT.spad" 606619 606627 613321 613450) (-351 "FLOATCP.spad" 604036 604050 606609 606614) (-350 "FLINEXP.spad" 603748 603758 604016 604031) (-349 "FLINEXP.spad" 603414 603426 603684 603689) (-348 "FLASORT.spad" 602734 602746 603404 603409) (-347 "FLALG.spad" 600380 600399 602660 602729) (-346 "FLAGG.spad" 597386 597396 600348 600375) (-345 "FLAGG.spad" 594305 594317 597269 597274) (-344 "FLAGG2.spad" 592986 593002 594295 594300) (-343 "FINRALG.spad" 591015 591028 592942 592981) (-342 "FINRALG.spad" 588970 588985 590899 590904) (-341 "FINITE.spad" 588122 588130 588960 588965) (-340 "FINAALG.spad" 577103 577113 588064 588117) (-339 "FINAALG.spad" 566096 566108 577059 577064) (-338 "FILE.spad" 565679 565689 566086 566091) (-337 "FILECAT.spad" 564197 564214 565669 565674) (-336 "FIELD.spad" 563603 563611 564099 564192) (-335 "FIELD.spad" 563095 563105 563593 563598) (-334 "FGROUP.spad" 561704 561714 563075 563090) (-333 "FGLMICPK.spad" 560491 560506 561694 561699) (-332 "FFX.spad" 559866 559881 560207 560300) (-331 "FFSLPE.spad" 559355 559376 559856 559861) (-330 "FFPOLY.spad" 550607 550618 559345 559350) (-329 "FFPOLY2.spad" 549667 549684 550597 550602) (-328 "FFP.spad" 549064 549084 549383 549476) (-327 "FF.spad" 548512 548528 548745 548838) (-326 "FFNBX.spad" 547024 547044 548228 548321) (-325 "FFNBP.spad" 545537 545554 546740 546833) (-324 "FFNB.spad" 544002 544023 545218 545311) (-323 "FFINTBAS.spad" 541416 541435 543992 543997) (-322 "FFIELDC.spad" 538991 538999 541318 541411) (-321 "FFIELDC.spad" 536652 536662 538981 538986) (-320 "FFHOM.spad" 535400 535417 536642 536647) (-319 "FFF.spad" 532835 532846 535390 535395) (-318 "FFCGX.spad" 531682 531702 532551 532644) (-317 "FFCGP.spad" 530571 530591 531398 531491) (-316 "FFCG.spad" 529363 529384 530252 530345) (-315 "FFCAT.spad" 522264 522286 529202 529358) (-314 "FFCAT.spad" 515244 515268 522184 522189) (-313 "FFCAT2.spad" 514989 515029 515234 515239) (-312 "FEXPR.spad" 506702 506748 514749 514788) (-311 "FEVALAB.spad" 506408 506418 506692 506697) (-310 "FEVALAB.spad" 505899 505911 506185 506190) (-309 "FDIV.spad" 505341 505365 505889 505894) (-308 "FDIVCAT.spad" 503383 503407 505331 505336) (-307 "FDIVCAT.spad" 501423 501449 503373 503378) (-306 "FDIV2.spad" 501077 501117 501413 501418) (-305 "FCPAK1.spad" 499630 499638 501067 501072) (-304 "FCOMP.spad" 499009 499019 499620 499625) (-303 "FC.spad" 488834 488842 498999 499004) (-302 "FAXF.spad" 481769 481783 488736 488829) (-301 "FAXF.spad" 474756 474772 481725 481730) (-300 "FARRAY.spad" 472902 472912 473939 473966) (-299 "FAMR.spad" 471022 471034 472800 472897) (-298 "FAMR.spad" 469126 469140 470906 470911) (-297 "FAMONOID.spad" 468776 468786 469080 469085) (-296 "FAMONC.spad" 466998 467010 468766 468771) (-295 "FAGROUP.spad" 466604 466614 466894 466921) (-294 "FACUTIL.spad" 464800 464817 466594 466599) (-293 "FACTFUNC.spad" 463976 463986 464790 464795) (-292 "EXPUPXS.spad" 460809 460832 462108 462257) (-291 "EXPRTUBE.spad" 458037 458045 460799 460804) (-290 "EXPRODE.spad" 454909 454925 458027 458032) (-289 "EXPR.spad" 450211 450221 450925 451328) (-288 "EXPR2UPS.spad" 446303 446316 450201 450206) (-287 "EXPR2.spad" 446006 446018 446293 446298) (-286 "EXPEXPAN.spad" 442947 442972 443581 443674) (-285 "EXIT.spad" 442618 442626 442937 442942) (-284 "EVALCYC.spad" 442076 442090 442608 442613) (-283 "EVALAB.spad" 441640 441650 442066 442071) (-282 "EVALAB.spad" 441202 441214 441630 441635) (-281 "EUCDOM.spad" 438744 438752 441128 441197) (-280 "EUCDOM.spad" 436348 436358 438734 438739) (-279 "ESTOOLS.spad" 428188 428196 436338 436343) (-278 "ESTOOLS2.spad" 427789 427803 428178 428183) (-277 "ESTOOLS1.spad" 427474 427485 427779 427784) (-276 "ES.spad" 420021 420029 427464 427469) (-275 "ES.spad" 412476 412486 419921 419926) (-274 "ESCONT.spad" 409249 409257 412466 412471) (-273 "ESCONT1.spad" 408998 409010 409239 409244) (-272 "ES2.spad" 408493 408509 408988 408993) (-271 "ES1.spad" 408059 408075 408483 408488) (-270 "ERROR.spad" 405380 405388 408049 408054) (-269 "EQTBL.spad" 403852 403874 404061 404088) (-268 "EQ.spad" 398736 398746 401535 401644) (-267 "EQ2.spad" 398452 398464 398726 398731) (-266 "EP.spad" 394766 394776 398442 398447) (-265 "ENV.spad" 393456 393464 394756 394761) (-264 "ENTIRER.spad" 393124 393132 393400 393451) (-263 "EMR.spad" 392325 392366 393050 393119) (-262 "ELTAGG.spad" 390565 390584 392315 392320) (-261 "ELTAGG.spad" 388769 388790 390521 390526) (-260 "ELTAB.spad" 388216 388234 388759 388764) (-259 "ELFUTS.spad" 387595 387614 388206 388211) (-258 "ELEMFUN.spad" 387284 387292 387585 387590) (-257 "ELEMFUN.spad" 386971 386981 387274 387279) (-256 "ELAGG.spad" 384902 384912 386939 386966) (-255 "ELAGG.spad" 382782 382794 384821 384826) (-254 "EFUPXS.spad" 379558 379588 382738 382743) (-253 "EFULS.spad" 376394 376417 379514 379519) (-252 "EFSTRUC.spad" 374349 374365 376384 376389) (-251 "EF.spad" 369115 369131 374339 374344) (-250 "EAB.spad" 367391 367399 369105 369110) (-249 "E04UCFA.spad" 366927 366935 367381 367386) (-248 "E04NAFA.spad" 366504 366512 366917 366922) (-247 "E04MBFA.spad" 366084 366092 366494 366499) (-246 "E04JAFA.spad" 365620 365628 366074 366079) (-245 "E04GCFA.spad" 365156 365164 365610 365615) (-244 "E04FDFA.spad" 364692 364700 365146 365151) (-243 "E04DGFA.spad" 364228 364236 364682 364687) (-242 "E04AGNT.spad" 360070 360078 364218 364223) (-241 "DVARCAT.spad" 356755 356765 360060 360065) (-240 "DVARCAT.spad" 353438 353450 356745 356750) (-239 "DSMP.spad" 350872 350886 351177 351304) (-238 "DROPT.spad" 344817 344825 350862 350867) (-237 "DROPT1.spad" 344480 344490 344807 344812) (-236 "DROPT0.spad" 339307 339315 344470 344475) (-235 "DRAWPT.spad" 337462 337470 339297 339302) (-234 "DRAW.spad" 330062 330075 337452 337457) (-233 "DRAWHACK.spad" 329370 329380 330052 330057) (-232 "DRAWCX.spad" 326812 326820 329360 329365) (-231 "DRAWCURV.spad" 326349 326364 326802 326807) (-230 "DRAWCFUN.spad" 315521 315529 326339 326344) (-229 "DQAGG.spad" 313677 313687 315477 315516) (-228 "DPOLCAT.spad" 309018 309034 313545 313672) (-227 "DPOLCAT.spad" 304445 304463 308974 308979) (-226 "DPMO.spad" 298432 298448 298570 298866) (-225 "DPMM.spad" 292432 292450 292557 292853) (-224 "domain.spad" 291948 291956 292422 292427) (-223 "DMP.spad" 289173 289188 289745 289872) (-222 "DLP.spad" 288521 288531 289163 289168) (-221 "DLIST.spad" 286933 286943 287704 287731) (-220 "DLAGG.spad" 285334 285344 286913 286928) (-219 "DIVRING.spad" 284781 284789 285278 285329) (-218 "DIVRING.spad" 284272 284282 284771 284776) (-217 "DISPLAY.spad" 282452 282460 284262 284267) (-216 "DIRPROD.spad" 273711 273727 274351 274480) (-215 "DIRPROD2.spad" 272519 272537 273701 273706) (-214 "DIRPCAT.spad" 271451 271467 272373 272514) (-213 "DIRPCAT.spad" 270123 270141 271047 271052) (-212 "DIOSP.spad" 268948 268956 270113 270118) (-211 "DIOPS.spad" 267920 267930 268916 268943) (-210 "DIOPS.spad" 266878 266890 267876 267881) (-209 "DIFRING.spad" 266170 266178 266858 266873) (-208 "DIFRING.spad" 265470 265480 266160 266165) (-207 "DIFEXT.spad" 264629 264639 265450 265465) (-206 "DIFEXT.spad" 263705 263717 264528 264533) (-205 "DIAGG.spad" 263323 263333 263673 263700) (-204 "DIAGG.spad" 262961 262973 263313 263318) (-203 "DHMATRIX.spad" 261265 261275 262418 262445) (-202 "DFSFUN.spad" 254673 254681 261255 261260) (-201 "DFLOAT.spad" 251196 251204 254563 254668) (-200 "DFINTTLS.spad" 249405 249421 251186 251191) (-199 "DERHAM.spad" 247315 247347 249385 249400) (-198 "DEQUEUE.spad" 246633 246643 246922 246949) (-197 "DEGRED.spad" 246248 246262 246623 246628) (-196 "DEFINTRF.spad" 243773 243783 246238 246243) (-195 "DEFINTEF.spad" 242269 242285 243763 243768) (-194 "DECIMAL.spad" 240153 240161 240739 240832) (-193 "DDFACT.spad" 237952 237969 240143 240148) (-192 "DBLRESP.spad" 237550 237574 237942 237947) (-191 "DBASE.spad" 236122 236132 237540 237545) (-190 "D03FAFA.spad" 235950 235958 236112 236117) (-189 "D03EEFA.spad" 235770 235778 235940 235945) (-188 "D03AGNT.spad" 234850 234858 235760 235765) (-187 "D02EJFA.spad" 234312 234320 234840 234845) (-186 "D02CJFA.spad" 233790 233798 234302 234307) (-185 "D02BHFA.spad" 233280 233288 233780 233785) (-184 "D02BBFA.spad" 232770 232778 233270 233275) (-183 "D02AGNT.spad" 227574 227582 232760 232765) (-182 "D01WGTS.spad" 225893 225901 227564 227569) (-181 "D01TRNS.spad" 225870 225878 225883 225888) (-180 "D01GBFA.spad" 225392 225400 225860 225865) (-179 "D01FCFA.spad" 224914 224922 225382 225387) (-178 "D01ASFA.spad" 224382 224390 224904 224909) (-177 "D01AQFA.spad" 223828 223836 224372 224377) (-176 "D01APFA.spad" 223252 223260 223818 223823) (-175 "D01ANFA.spad" 222746 222754 223242 223247) (-174 "D01AMFA.spad" 222256 222264 222736 222741) (-173 "D01ALFA.spad" 221796 221804 222246 222251) (-172 "D01AKFA.spad" 221322 221330 221786 221791) (-171 "D01AJFA.spad" 220845 220853 221312 221317) (-170 "D01AGNT.spad" 216904 216912 220835 220840) (-169 "CYCLOTOM.spad" 216410 216418 216894 216899) (-168 "CYCLES.spad" 213242 213250 216400 216405) (-167 "CVMP.spad" 212659 212669 213232 213237) (-166 "CTRIGMNP.spad" 211149 211165 212649 212654) (-165 "CSTTOOLS.spad" 210392 210405 211139 211144) (-164 "CRFP.spad" 204096 204109 210382 210387) (-163 "CRAPACK.spad" 203139 203149 204086 204091) (-162 "CPMATCH.spad" 202639 202654 203064 203069) (-161 "CPIMA.spad" 202344 202363 202629 202634) (-160 "COORDSYS.spad" 197237 197247 202334 202339) (-159 "CONTOUR.spad" 196639 196647 197227 197232) (-158 "CONTFRAC.spad" 192251 192261 196541 196634) (-157 "COMRING.spad" 191925 191933 192189 192246) (-156 "COMPPROP.spad" 191439 191447 191915 191920) (-155 "COMPLPAT.spad" 191206 191221 191429 191434) (-154 "COMPLEX.spad" 185239 185249 185483 185744) (-153 "COMPLEX2.spad" 184952 184964 185229 185234) (-152 "COMPFACT.spad" 184554 184568 184942 184947) (-151 "COMPCAT.spad" 182610 182620 184276 184549) (-150 "COMPCAT.spad" 180373 180385 182041 182046) (-149 "COMMUPC.spad" 180119 180137 180363 180368) (-148 "COMMONOP.spad" 179652 179660 180109 180114) (-147 "COMM.spad" 179461 179469 179642 179647) (-146 "COMBOPC.spad" 178366 178374 179451 179456) (-145 "COMBINAT.spad" 177111 177121 178356 178361) (-144 "COMBF.spad" 174479 174495 177101 177106) (-143 "COLOR.spad" 173316 173324 174469 174474) (-142 "CMPLXRT.spad" 173025 173042 173306 173311) (-141 "CLIP.spad" 169117 169125 173015 173020) (-140 "CLIF.spad" 167756 167772 169073 169112) (-139 "CLAGG.spad" 164231 164241 167736 167751) (-138 "CLAGG.spad" 160587 160599 164094 164099) (-137 "CINTSLPE.spad" 159912 159925 160577 160582) (-136 "CHVAR.spad" 157990 158012 159902 159907) (-135 "CHARZ.spad" 157905 157913 157970 157985) (-134 "CHARPOL.spad" 157413 157423 157895 157900) (-133 "CHARNZ.spad" 157166 157174 157393 157408) (-132 "CHAR.spad" 155056 155064 157156 157161) (-131 "CFCAT.spad" 154372 154380 155046 155051) (-130 "CDEN.spad" 153530 153544 154362 154367) (-129 "CCLASS.spad" 151679 151687 152941 152980) (-128 "CARTEN.spad" 146782 146806 151669 151674) (-127 "CARTEN2.spad" 146168 146195 146772 146777) (-126 "CARD.spad" 143457 143465 146142 146163) (-125 "CACHSET.spad" 143079 143087 143447 143452) (-124 "CABMON.spad" 142632 142640 143069 143074) (-123 "BTREE.spad" 141701 141711 142239 142266) (-122 "BTOURN.spad" 140704 140714 141308 141335) (-121 "BTCAT.spad" 140080 140090 140660 140699) (-120 "BTCAT.spad" 139488 139500 140070 140075) (-119 "BTAGG.spad" 138504 138512 139444 139483) (-118 "BTAGG.spad" 137552 137562 138494 138499) (-117 "BSTREE.spad" 136287 136297 137159 137186) (-116 "BRILL.spad" 134482 134493 136277 136282) (-115 "BRAGG.spad" 133396 133406 134462 134477) (-114 "BRAGG.spad" 132284 132296 133352 133357) (-113 "BPADICRT.spad" 130268 130280 130523 130616) (-112 "BPADIC.spad" 129932 129944 130194 130263) (-111 "BOUNDZRO.spad" 129588 129605 129922 129927) (-110 "BOP.spad" 125052 125060 129578 129583) (-109 "BOP1.spad" 122438 122448 125008 125013) (-108 "BOOLEAN.spad" 121691 121699 122428 122433) (-107 "BMODULE.spad" 121403 121415 121659 121686) (-106 "BITS.spad" 120822 120830 121039 121066) (-105 "BINFILE.spad" 120165 120173 120812 120817) (-104 "BINDING.spad" 119572 119580 120155 120160) (-103 "BINARY.spad" 117465 117473 118042 118135) (-102 "BGAGG.spad" 116650 116660 117433 117460) (-101 "BGAGG.spad" 115855 115867 116640 116645) (-100 "BFUNCT.spad" 115419 115427 115835 115850) (-99 "BEZOUT.spad" 114554 114580 115369 115374) (-98 "BBTREE.spad" 111374 111383 114161 114188) (-97 "BASTYPE.spad" 111047 111054 111364 111369) (-96 "BASTYPE.spad" 110718 110727 111037 111042) (-95 "BALFACT.spad" 110158 110170 110708 110713) (-94 "AUTOMOR.spad" 109605 109614 110138 110153) (-93 "ATTREG.spad" 106324 106331 109357 109600) (-92 "ATTRBUT.spad" 102347 102354 106304 106319) (-91 "ATRIG.spad" 101817 101824 102337 102342) (-90 "ATRIG.spad" 101285 101294 101807 101812) (-89 "ASTACK.spad" 100618 100627 100892 100919) (-88 "ASSOCEQ.spad" 99418 99429 100574 100579) (-87 "ASP9.spad" 98499 98512 99408 99413) (-86 "ASP8.spad" 97542 97555 98489 98494) (-85 "ASP80.spad" 96864 96877 97532 97537) (-84 "ASP7.spad" 96024 96037 96854 96859) (-83 "ASP78.spad" 95475 95488 96014 96019) (-82 "ASP77.spad" 94844 94857 95465 95470) (-81 "ASP74.spad" 93936 93949 94834 94839) (-80 "ASP73.spad" 93207 93220 93926 93931) (-79 "ASP6.spad" 91839 91852 93197 93202) (-78 "ASP55.spad" 90348 90361 91829 91834) (-77 "ASP50.spad" 88165 88178 90338 90343) (-76 "ASP4.spad" 87460 87473 88155 88160) (-75 "ASP49.spad" 86459 86472 87450 87455) (-74 "ASP42.spad" 84866 84905 86449 86454) (-73 "ASP41.spad" 83445 83484 84856 84861) (-72 "ASP35.spad" 82433 82446 83435 83440) (-71 "ASP34.spad" 81734 81747 82423 82428) (-70 "ASP33.spad" 81294 81307 81724 81729) (-69 "ASP31.spad" 80434 80447 81284 81289) (-68 "ASP30.spad" 79326 79339 80424 80429) (-67 "ASP29.spad" 78792 78805 79316 79321) (-66 "ASP28.spad" 70065 70078 78782 78787) (-65 "ASP27.spad" 68962 68975 70055 70060) (-64 "ASP24.spad" 68049 68062 68952 68957) (-63 "ASP20.spad" 67265 67278 68039 68044) (-62 "ASP1.spad" 66646 66659 67255 67260) (-61 "ASP19.spad" 61332 61345 66636 66641) (-60 "ASP12.spad" 60746 60759 61322 61327) (-59 "ASP10.spad" 60017 60030 60736 60741) (-58 "ARRAY2.spad" 59377 59386 59624 59651) (-57 "ARRAY1.spad" 58212 58221 58560 58587) (-56 "ARRAY12.spad" 56881 56892 58202 58207) (-55 "ARR2CAT.spad" 52531 52552 56837 56876) (-54 "ARR2CAT.spad" 48213 48236 52521 52526) (-53 "APPRULE.spad" 47457 47479 48203 48208) (-52 "APPLYORE.spad" 47072 47085 47447 47452) (-51 "ANY.spad" 45414 45421 47062 47067) (-50 "ANY1.spad" 44485 44494 45404 45409) (-49 "ANTISYM.spad" 42924 42940 44465 44480) (-48 "ANON.spad" 42837 42844 42914 42919) (-47 "AN.spad" 41140 41147 42655 42748) (-46 "AMR.spad" 39319 39330 41038 41135) (-45 "AMR.spad" 37335 37348 39056 39061) (-44 "ALIST.spad" 34747 34768 35097 35124) (-43 "ALGSC.spad" 33870 33896 34619 34672) (-42 "ALGPKG.spad" 29579 29590 33826 33831) (-41 "ALGMFACT.spad" 28768 28782 29569 29574) (-40 "ALGMANIP.spad" 26189 26204 28566 28571) (-39 "ALGFF.spad" 24507 24534 24724 24880) (-38 "ALGFACT.spad" 23628 23638 24497 24502) (-37 "ALGEBRA.spad" 23359 23368 23584 23623) (-36 "ALGEBRA.spad" 23122 23133 23349 23354) (-35 "ALAGG.spad" 22620 22641 23078 23117) (-34 "AHYP.spad" 22001 22008 22610 22615) (-33 "AGG.spad" 20300 20307 21981 21996) (-32 "AGG.spad" 18573 18582 20256 20261) (-31 "AF.spad" 16999 17014 18509 18514) (-30 "ACPLOT.spad" 15570 15577 16989 16994) (-29 "ACFS.spad" 13309 13318 15460 15565) (-28 "ACFS.spad" 11146 11157 13299 13304) (-27 "ACF.spad" 7748 7755 11048 11141) (-26 "ACF.spad" 4436 4445 7738 7743) (-25 "ABELSG.spad" 3977 3984 4426 4431) (-24 "ABELSG.spad" 3516 3525 3967 3972) (-23 "ABELMON.spad" 3059 3066 3506 3511) (-22 "ABELMON.spad" 2600 2609 3049 3054) (-21 "ABELGRP.spad" 2172 2179 2590 2595) (-20 "ABELGRP.spad" 1742 1751 2162 2167) (-19 "A1AGG.spad" 870 879 1698 1737) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file
+((-1196 NIL 2233082 2233087 2233092 2233097) (-3 NIL 2233062 2233067 2233072 2233077) (-2 NIL 2233042 2233047 2233052 2233057) (-1 NIL 2233022 2233027 2233032 2233037) (0 NIL 2233002 2233007 2233012 2233017) (-1191 "ZMOD.spad" 2232811 2232824 2232940 2232997) (-1190 "ZLINDEP.spad" 2231855 2231866 2232801 2232806) (-1189 "ZDSOLVE.spad" 2221704 2221726 2231845 2231850) (-1188 "YSTREAM.spad" 2221197 2221208 2221694 2221699) (-1187 "XRPOLY.spad" 2220417 2220437 2221053 2221122) (-1186 "XPR.spad" 2218146 2218159 2220135 2220234) (-1185 "XPOLY.spad" 2217701 2217712 2218002 2218071) (-1184 "XPOLYC.spad" 2217018 2217034 2217627 2217696) (-1183 "XPBWPOLY.spad" 2215455 2215475 2216798 2216867) (-1182 "XF.spad" 2213916 2213931 2215357 2215450) (-1181 "XF.spad" 2212357 2212374 2213800 2213805) (-1180 "XFALG.spad" 2209381 2209397 2212283 2212352) (-1179 "XEXPPKG.spad" 2208632 2208658 2209371 2209376) (-1178 "XDPOLY.spad" 2208246 2208262 2208488 2208557) (-1177 "XALG.spad" 2207844 2207855 2208202 2208241) (-1176 "WUTSET.spad" 2203683 2203700 2207490 2207517) (-1175 "WP.spad" 2202697 2202741 2203541 2203608) (-1174 "WFFINTBS.spad" 2200260 2200282 2202687 2202692) (-1173 "WEIER.spad" 2198474 2198485 2200250 2200255) (-1172 "VSPACE.spad" 2198147 2198158 2198442 2198469) (-1171 "VSPACE.spad" 2197840 2197853 2198137 2198142) (-1170 "VOID.spad" 2197430 2197439 2197830 2197835) (-1169 "VIEW.spad" 2195052 2195061 2197420 2197425) (-1168 "VIEWDEF.spad" 2190249 2190258 2195042 2195047) (-1167 "VIEW3D.spad" 2174084 2174093 2190239 2190244) (-1166 "VIEW2D.spad" 2161821 2161830 2174074 2174079) (-1165 "VECTOR.spad" 2160498 2160509 2160749 2160776) (-1164 "VECTOR2.spad" 2159125 2159138 2160488 2160493) (-1163 "VECTCAT.spad" 2157013 2157024 2159081 2159120) (-1162 "VECTCAT.spad" 2154722 2154735 2156792 2156797) (-1161 "VARIABLE.spad" 2154502 2154517 2154712 2154717) (-1160 "UTYPE.spad" 2154136 2154145 2154482 2154497) (-1159 "UTSODETL.spad" 2153429 2153453 2154092 2154097) (-1158 "UTSODE.spad" 2151617 2151637 2153419 2153424) (-1157 "UTS.spad" 2146406 2146434 2150084 2150181) (-1156 "UTSCAT.spad" 2143857 2143873 2146304 2146401) (-1155 "UTSCAT.spad" 2140952 2140970 2143401 2143406) (-1154 "UTS2.spad" 2140545 2140580 2140942 2140947) (-1153 "URAGG.spad" 2135167 2135178 2140525 2140540) (-1152 "URAGG.spad" 2129763 2129776 2135123 2135128) (-1151 "UPXSSING.spad" 2127409 2127435 2128847 2128980) (-1150 "UPXS.spad" 2124436 2124464 2125541 2125690) (-1149 "UPXSCONS.spad" 2122193 2122213 2122568 2122717) (-1148 "UPXSCCA.spad" 2120651 2120671 2122039 2122188) (-1147 "UPXSCCA.spad" 2119251 2119273 2120641 2120646) (-1146 "UPXSCAT.spad" 2117832 2117848 2119097 2119246) (-1145 "UPXS2.spad" 2117373 2117426 2117822 2117827) (-1144 "UPSQFREE.spad" 2115785 2115799 2117363 2117368) (-1143 "UPSCAT.spad" 2113378 2113402 2115683 2115780) (-1142 "UPSCAT.spad" 2110677 2110703 2112984 2112989) (-1141 "UPOLYC.spad" 2105655 2105666 2110519 2110672) (-1140 "UPOLYC.spad" 2100525 2100538 2105391 2105396) (-1139 "UPOLYC2.spad" 2099994 2100013 2100515 2100520) (-1138 "UP.spad" 2097044 2097059 2097552 2097705) (-1137 "UPMP.spad" 2095934 2095947 2097034 2097039) (-1136 "UPDIVP.spad" 2095497 2095511 2095924 2095929) (-1135 "UPDECOMP.spad" 2093734 2093748 2095487 2095492) (-1134 "UPCDEN.spad" 2092941 2092957 2093724 2093729) (-1133 "UP2.spad" 2092303 2092324 2092931 2092936) (-1132 "UNISEG.spad" 2091656 2091667 2092222 2092227) (-1131 "UNISEG2.spad" 2091149 2091162 2091612 2091617) (-1130 "UNIFACT.spad" 2090250 2090262 2091139 2091144) (-1129 "ULS.spad" 2080809 2080837 2081902 2082331) (-1128 "ULSCONS.spad" 2074852 2074872 2075224 2075373) (-1127 "ULSCCAT.spad" 2072449 2072469 2074672 2074847) (-1126 "ULSCCAT.spad" 2070180 2070202 2072405 2072410) (-1125 "ULSCAT.spad" 2068396 2068412 2070026 2070175) (-1124 "ULS2.spad" 2067908 2067961 2068386 2068391) (-1123 "UFD.spad" 2066973 2066982 2067834 2067903) (-1122 "UFD.spad" 2066100 2066111 2066963 2066968) (-1121 "UDVO.spad" 2064947 2064956 2066090 2066095) (-1120 "UDPO.spad" 2062374 2062385 2064903 2064908) (-1119 "TYPE.spad" 2062296 2062305 2062354 2062369) (-1118 "TWOFACT.spad" 2060946 2060961 2062286 2062291) (-1117 "TUPLE.spad" 2060332 2060343 2060845 2060850) (-1116 "TUBETOOL.spad" 2057169 2057178 2060322 2060327) (-1115 "TUBE.spad" 2055810 2055827 2057159 2057164) (-1114 "TS.spad" 2054399 2054415 2055375 2055472) (-1113 "TSETCAT.spad" 2041514 2041531 2054355 2054394) (-1112 "TSETCAT.spad" 2028627 2028646 2041470 2041475) (-1111 "TRMANIP.spad" 2022993 2023010 2028333 2028338) (-1110 "TRIMAT.spad" 2021952 2021977 2022983 2022988) (-1109 "TRIGMNIP.spad" 2020469 2020486 2021942 2021947) (-1108 "TRIGCAT.spad" 2019981 2019990 2020459 2020464) (-1107 "TRIGCAT.spad" 2019491 2019502 2019971 2019976) (-1106 "TREE.spad" 2018062 2018073 2019098 2019125) (-1105 "TRANFUN.spad" 2017893 2017902 2018052 2018057) (-1104 "TRANFUN.spad" 2017722 2017733 2017883 2017888) (-1103 "TOPSP.spad" 2017396 2017405 2017712 2017717) (-1102 "TOOLSIGN.spad" 2017059 2017070 2017386 2017391) (-1101 "TEXTFILE.spad" 2015616 2015625 2017049 2017054) (-1100 "TEX.spad" 2012633 2012642 2015606 2015611) (-1099 "TEX1.spad" 2012189 2012200 2012623 2012628) (-1098 "TEMUTL.spad" 2011744 2011753 2012179 2012184) (-1097 "TBCMPPK.spad" 2009837 2009860 2011734 2011739) (-1096 "TBAGG.spad" 2008861 2008884 2009805 2009832) (-1095 "TBAGG.spad" 2007905 2007930 2008851 2008856) (-1094 "TANEXP.spad" 2007281 2007292 2007895 2007900) (-1093 "TABLE.spad" 2005692 2005715 2005962 2005989) (-1092 "TABLEAU.spad" 2005173 2005184 2005682 2005687) (-1091 "TABLBUMP.spad" 2001956 2001967 2005163 2005168) (-1090 "SYSSOLP.spad" 1999429 1999440 2001946 2001951) (-1089 "SYNTAX.spad" 1995714 1995723 1999419 1999424) (-1088 "SYMTAB.spad" 1993770 1993779 1995704 1995709) (-1087 "SYMS.spad" 1989755 1989764 1993760 1993765) (-1086 "SYMPOLY.spad" 1988765 1988776 1988847 1988974) (-1085 "SYMFUNC.spad" 1988240 1988251 1988755 1988760) (-1084 "SYMBOL.spad" 1985576 1985585 1988230 1988235) (-1083 "SWITCH.spad" 1982333 1982342 1985566 1985571) (-1082 "SUTS.spad" 1979232 1979260 1980800 1980897) (-1081 "SUPXS.spad" 1976246 1976274 1977364 1977513) (-1080 "SUP.spad" 1973023 1973034 1973804 1973957) (-1079 "SUPFRACF.spad" 1972128 1972146 1973013 1973018) (-1078 "SUP2.spad" 1971518 1971531 1972118 1972123) (-1077 "SUMRF.spad" 1970484 1970495 1971508 1971513) (-1076 "SUMFS.spad" 1970117 1970134 1970474 1970479) (-1075 "SULS.spad" 1960663 1960691 1961769 1962198) (-1074 "SUCH.spad" 1960343 1960358 1960653 1960658) (-1073 "SUBSPACE.spad" 1952350 1952365 1960333 1960338) (-1072 "SUBRESP.spad" 1951510 1951524 1952306 1952311) (-1071 "STTF.spad" 1947609 1947625 1951500 1951505) (-1070 "STTFNC.spad" 1944077 1944093 1947599 1947604) (-1069 "STTAYLOR.spad" 1936475 1936486 1943958 1943963) (-1068 "STRTBL.spad" 1934980 1934997 1935129 1935156) (-1067 "STRING.spad" 1934389 1934398 1934403 1934430) (-1066 "STRICAT.spad" 1934165 1934174 1934345 1934384) (-1065 "STREAM.spad" 1930933 1930944 1933690 1933705) (-1064 "STREAM3.spad" 1930478 1930493 1930923 1930928) (-1063 "STREAM2.spad" 1929546 1929559 1930468 1930473) (-1062 "STREAM1.spad" 1929250 1929261 1929536 1929541) (-1061 "STINPROD.spad" 1928156 1928172 1929240 1929245) (-1060 "STEP.spad" 1927357 1927366 1928146 1928151) (-1059 "STBL.spad" 1925883 1925911 1926050 1926065) (-1058 "STAGG.spad" 1924948 1924959 1925863 1925878) (-1057 "STAGG.spad" 1924021 1924034 1924938 1924943) (-1056 "STACK.spad" 1923372 1923383 1923628 1923655) (-1055 "SREGSET.spad" 1921076 1921093 1923018 1923045) (-1054 "SRDCMPK.spad" 1919621 1919641 1921066 1921071) (-1053 "SRAGG.spad" 1914706 1914715 1919577 1919616) (-1052 "SRAGG.spad" 1909823 1909834 1914696 1914701) (-1051 "SQMATRIX.spad" 1907449 1907467 1908357 1908444) (-1050 "SPLTREE.spad" 1902001 1902014 1906885 1906912) (-1049 "SPLNODE.spad" 1898589 1898602 1901991 1901996) (-1048 "SPFCAT.spad" 1897366 1897375 1898579 1898584) (-1047 "SPECOUT.spad" 1895916 1895925 1897356 1897361) (-1046 "spad-parser.spad" 1895381 1895390 1895906 1895911) (-1045 "SPACEC.spad" 1879394 1879405 1895371 1895376) (-1044 "SPACE3.spad" 1879170 1879181 1879384 1879389) (-1043 "SORTPAK.spad" 1878715 1878728 1879126 1879131) (-1042 "SOLVETRA.spad" 1876472 1876483 1878705 1878710) (-1041 "SOLVESER.spad" 1874992 1875003 1876462 1876467) (-1040 "SOLVERAD.spad" 1871002 1871013 1874982 1874987) (-1039 "SOLVEFOR.spad" 1869422 1869440 1870992 1870997) (-1038 "SNTSCAT.spad" 1869010 1869027 1869378 1869417) (-1037 "SMTS.spad" 1867270 1867296 1868575 1868672) (-1036 "SMP.spad" 1864712 1864732 1865102 1865229) (-1035 "SMITH.spad" 1863555 1863580 1864702 1864707) (-1034 "SMATCAT.spad" 1861653 1861683 1863487 1863550) (-1033 "SMATCAT.spad" 1859695 1859727 1861531 1861536) (-1032 "SKAGG.spad" 1858644 1858655 1859651 1859690) (-1031 "SINT.spad" 1856952 1856961 1858510 1858639) (-1030 "SIMPAN.spad" 1856680 1856689 1856942 1856947) (-1029 "SIGNRF.spad" 1855788 1855799 1856670 1856675) (-1028 "SIGNEF.spad" 1855057 1855074 1855778 1855783) (-1027 "SHP.spad" 1852975 1852990 1855013 1855018) (-1026 "SHDP.spad" 1844365 1844392 1844874 1845003) (-1025 "SGROUP.spad" 1843831 1843840 1844355 1844360) (-1024 "SGROUP.spad" 1843295 1843306 1843821 1843826) (-1023 "SGCF.spad" 1836176 1836185 1843285 1843290) (-1022 "SFRTCAT.spad" 1835092 1835109 1836132 1836171) (-1021 "SFRGCD.spad" 1834155 1834175 1835082 1835087) (-1020 "SFQCMPK.spad" 1828792 1828812 1834145 1834150) (-1019 "SFORT.spad" 1828227 1828241 1828782 1828787) (-1018 "SEXOF.spad" 1828070 1828110 1828217 1828222) (-1017 "SEX.spad" 1827962 1827971 1828060 1828065) (-1016 "SEXCAT.spad" 1825066 1825106 1827952 1827957) (-1015 "SET.spad" 1823366 1823377 1824487 1824526) (-1014 "SETMN.spad" 1821800 1821817 1823356 1823361) (-1013 "SETCAT.spad" 1821285 1821294 1821790 1821795) (-1012 "SETCAT.spad" 1820768 1820779 1821275 1821280) (-1011 "SETAGG.spad" 1817291 1817302 1820736 1820763) (-1010 "SETAGG.spad" 1813834 1813847 1817281 1817286) (-1009 "SEGXCAT.spad" 1812946 1812959 1813814 1813829) (-1008 "SEG.spad" 1812759 1812770 1812865 1812870) (-1007 "SEGCAT.spad" 1811578 1811589 1812739 1812754) (-1006 "SEGBIND.spad" 1810650 1810661 1811533 1811538) (-1005 "SEGBIND2.spad" 1810346 1810359 1810640 1810645) (-1004 "SEG2.spad" 1809771 1809784 1810302 1810307) (-1003 "SDVAR.spad" 1809047 1809058 1809761 1809766) (-1002 "SDPOL.spad" 1806440 1806451 1806731 1806858) (-1001 "SCPKG.spad" 1804519 1804530 1806430 1806435) (-1000 "SCOPE.spad" 1803664 1803673 1804509 1804514) (-999 "SCACHE.spad" 1802347 1802357 1803654 1803659) (-998 "SAOS.spad" 1802220 1802228 1802337 1802342) (-997 "SAERFFC.spad" 1801934 1801953 1802210 1802215) (-996 "SAE.spad" 1800113 1800128 1800723 1800858) (-995 "SAEFACT.spad" 1799815 1799834 1800103 1800108) (-994 "RURPK.spad" 1797457 1797472 1799805 1799810) (-993 "RULESET.spad" 1796899 1796922 1797447 1797452) (-992 "RULE.spad" 1795104 1795127 1796889 1796894) (-991 "RULECOLD.spad" 1794957 1794969 1795094 1795099) (-990 "RSETGCD.spad" 1791336 1791355 1794947 1794952) (-989 "RSETCAT.spad" 1781109 1781125 1791292 1791331) (-988 "RSETCAT.spad" 1770914 1770932 1781099 1781104) (-987 "RSDCMPK.spad" 1769367 1769386 1770904 1770909) (-986 "RRCC.spad" 1767752 1767781 1769357 1769362) (-985 "RRCC.spad" 1766135 1766166 1767742 1767747) (-984 "RPOLCAT.spad" 1745496 1745510 1766003 1766130) (-983 "RPOLCAT.spad" 1724572 1724588 1745081 1745086) (-982 "ROUTINE.spad" 1720436 1720444 1723219 1723246) (-981 "ROMAN.spad" 1719669 1719677 1720302 1720431) (-980 "ROIRC.spad" 1718750 1718781 1719659 1719664) (-979 "RNS.spad" 1717654 1717662 1718652 1718745) (-978 "RNS.spad" 1716644 1716654 1717644 1717649) (-977 "RNG.spad" 1716380 1716388 1716634 1716639) (-976 "RMODULE.spad" 1716019 1716029 1716370 1716375) (-975 "RMCAT2.spad" 1715428 1715484 1716009 1716014) (-974 "RMATRIX.spad" 1714108 1714126 1714595 1714634) (-973 "RMATCAT.spad" 1709630 1709660 1714052 1714103) (-972 "RMATCAT.spad" 1705054 1705086 1709478 1709483) (-971 "RINTERP.spad" 1704943 1704962 1705044 1705049) (-970 "RING.spad" 1704301 1704309 1704923 1704938) (-969 "RING.spad" 1703667 1703677 1704291 1704296) (-968 "RIDIST.spad" 1703052 1703060 1703657 1703662) (-967 "RGCHAIN.spad" 1701632 1701647 1702537 1702564) (-966 "RF.spad" 1699247 1699257 1701622 1701627) (-965 "RFFACTOR.spad" 1698710 1698720 1699237 1699242) (-964 "RFFACT.spad" 1698446 1698457 1698700 1698705) (-963 "RFDIST.spad" 1697435 1697443 1698436 1698441) (-962 "RETSOL.spad" 1696853 1696865 1697425 1697430) (-961 "RETRACT.spad" 1696203 1696213 1696843 1696848) (-960 "RETRACT.spad" 1695551 1695563 1696193 1696198) (-959 "RESULT.spad" 1693612 1693620 1694198 1694225) (-958 "RESRING.spad" 1692960 1693006 1693550 1693607) (-957 "RESLATC.spad" 1692285 1692295 1692950 1692955) (-956 "REPSQ.spad" 1692015 1692025 1692275 1692280) (-955 "REP.spad" 1689568 1689576 1692005 1692010) (-954 "REPDB.spad" 1689274 1689284 1689558 1689563) (-953 "REP2.spad" 1678847 1678857 1689116 1689121) (-952 "REP1.spad" 1672838 1672848 1678797 1678802) (-951 "REGSET.spad" 1670636 1670652 1672484 1672511) (-950 "REF.spad" 1669966 1669976 1670591 1670596) (-949 "REDORDER.spad" 1669143 1669159 1669956 1669961) (-948 "RECLOS.spad" 1667933 1667952 1668636 1668729) (-947 "REALSOLV.spad" 1667066 1667074 1667923 1667928) (-946 "REAL.spad" 1666939 1666947 1667056 1667061) (-945 "REAL0Q.spad" 1664222 1664236 1666929 1666934) (-944 "REAL0.spad" 1661051 1661065 1664212 1664217) (-943 "RDIV.spad" 1660703 1660727 1661041 1661046) (-942 "RDIST.spad" 1660267 1660277 1660693 1660698) (-941 "RDETRS.spad" 1659064 1659081 1660257 1660262) (-940 "RDETR.spad" 1657172 1657189 1659054 1659059) (-939 "RDEEFS.spad" 1656246 1656262 1657162 1657167) (-938 "RDEEF.spad" 1655243 1655259 1656236 1656241) (-937 "RCFIELD.spad" 1652427 1652435 1655145 1655238) (-936 "RCFIELD.spad" 1649697 1649707 1652417 1652422) (-935 "RCAGG.spad" 1647600 1647610 1649677 1649692) (-934 "RCAGG.spad" 1645440 1645452 1647519 1647524) (-933 "RATRET.spad" 1644801 1644811 1645430 1645435) (-932 "RATFACT.spad" 1644494 1644505 1644791 1644796) (-931 "RANDSRC.spad" 1643814 1643822 1644484 1644489) (-930 "RADUTIL.spad" 1643569 1643577 1643804 1643809) (-929 "RADIX.spad" 1640362 1640375 1642039 1642132) (-928 "RADFF.spad" 1638779 1638815 1638897 1639053) (-927 "RADCAT.spad" 1638373 1638381 1638769 1638774) (-926 "RADCAT.spad" 1637965 1637975 1638363 1638368) (-925 "QUEUE.spad" 1637308 1637318 1637572 1637599) (-924 "QUAT.spad" 1635894 1635904 1636236 1636301) (-923 "QUATCT2.spad" 1635513 1635531 1635884 1635889) (-922 "QUATCAT.spad" 1633678 1633688 1635443 1635508) (-921 "QUATCAT.spad" 1631595 1631607 1633362 1633367) (-920 "QUAGG.spad" 1630409 1630419 1631551 1631590) (-919 "QFORM.spad" 1629872 1629886 1630399 1630404) (-918 "QFCAT.spad" 1628563 1628573 1629762 1629867) (-917 "QFCAT.spad" 1626860 1626872 1628061 1628066) (-916 "QFCAT2.spad" 1626551 1626567 1626850 1626855) (-915 "QEQUAT.spad" 1626108 1626116 1626541 1626546) (-914 "QCMPACK.spad" 1620855 1620874 1626098 1626103) (-913 "QALGSET.spad" 1616930 1616962 1620769 1620774) (-912 "QALGSET2.spad" 1614926 1614944 1616920 1616925) (-911 "PWFFINTB.spad" 1612236 1612257 1614916 1614921) (-910 "PUSHVAR.spad" 1611565 1611584 1612226 1612231) (-909 "PTRANFN.spad" 1607691 1607701 1611555 1611560) (-908 "PTPACK.spad" 1604779 1604789 1607681 1607686) (-907 "PTFUNC2.spad" 1604600 1604614 1604769 1604774) (-906 "PTCAT.spad" 1603682 1603692 1604556 1604595) (-905 "PSQFR.spad" 1602989 1603013 1603672 1603677) (-904 "PSEUDLIN.spad" 1601847 1601857 1602979 1602984) (-903 "PSETPK.spad" 1587280 1587296 1601725 1601730) (-902 "PSETCAT.spad" 1581188 1581211 1587248 1587275) (-901 "PSETCAT.spad" 1575082 1575107 1581144 1581149) (-900 "PSCURVE.spad" 1574065 1574073 1575072 1575077) (-899 "PSCAT.spad" 1572832 1572861 1573963 1574060) (-898 "PSCAT.spad" 1571689 1571720 1572822 1572827) (-897 "PRTITION.spad" 1570532 1570540 1571679 1571684) (-896 "PRS.spad" 1560094 1560111 1570488 1570493) (-895 "PRQAGG.spad" 1559513 1559523 1560050 1560089) (-894 "PROPLOG.spad" 1558916 1558924 1559503 1559508) (-893 "PROPFRML.spad" 1556781 1556792 1558852 1558857) (-892 "PRODUCT.spad" 1554461 1554473 1554747 1554802) (-891 "PR.spad" 1552850 1552862 1553555 1553682) (-890 "PRINT.spad" 1552602 1552610 1552840 1552845) (-889 "PRIMES.spad" 1550853 1550863 1552592 1552597) (-888 "PRIMELT.spad" 1548834 1548848 1550843 1550848) (-887 "PRIMCAT.spad" 1548457 1548465 1548824 1548829) (-886 "PRIMARR.spad" 1547462 1547472 1547640 1547667) (-885 "PRIMARR2.spad" 1546185 1546197 1547452 1547457) (-884 "PREASSOC.spad" 1545557 1545569 1546175 1546180) (-883 "PPCURVE.spad" 1544694 1544702 1545547 1545552) (-882 "POLYROOT.spad" 1543466 1543488 1544650 1544655) (-881 "POLY.spad" 1540766 1540776 1541283 1541410) (-880 "POLYLIFT.spad" 1540027 1540050 1540756 1540761) (-879 "POLYCATQ.spad" 1538129 1538151 1540017 1540022) (-878 "POLYCAT.spad" 1531535 1531556 1537997 1538124) (-877 "POLYCAT.spad" 1524243 1524266 1530707 1530712) (-876 "POLY2UP.spad" 1523691 1523705 1524233 1524238) (-875 "POLY2.spad" 1523286 1523298 1523681 1523686) (-874 "POLUTIL.spad" 1522227 1522256 1523242 1523247) (-873 "POLTOPOL.spad" 1520975 1520990 1522217 1522222) (-872 "POINT.spad" 1519816 1519826 1519903 1519930) (-871 "PNTHEORY.spad" 1516482 1516490 1519806 1519811) (-870 "PMTOOLS.spad" 1515239 1515253 1516472 1516477) (-869 "PMSYM.spad" 1514784 1514794 1515229 1515234) (-868 "PMQFCAT.spad" 1514371 1514385 1514774 1514779) (-867 "PMPRED.spad" 1513840 1513854 1514361 1514366) (-866 "PMPREDFS.spad" 1513284 1513306 1513830 1513835) (-865 "PMPLCAT.spad" 1512354 1512372 1513216 1513221) (-864 "PMLSAGG.spad" 1511935 1511949 1512344 1512349) (-863 "PMKERNEL.spad" 1511502 1511514 1511925 1511930) (-862 "PMINS.spad" 1511078 1511088 1511492 1511497) (-861 "PMFS.spad" 1510651 1510669 1511068 1511073) (-860 "PMDOWN.spad" 1509937 1509951 1510641 1510646) (-859 "PMASS.spad" 1508949 1508957 1509927 1509932) (-858 "PMASSFS.spad" 1507918 1507934 1508939 1508944) (-857 "PLOTTOOL.spad" 1507698 1507706 1507908 1507913) (-856 "PLOT.spad" 1502529 1502537 1507688 1507693) (-855 "PLOT3D.spad" 1498949 1498957 1502519 1502524) (-854 "PLOT1.spad" 1498090 1498100 1498939 1498944) (-853 "PLEQN.spad" 1485306 1485333 1498080 1498085) (-852 "PINTERP.spad" 1484922 1484941 1485296 1485301) (-851 "PINTERPA.spad" 1484704 1484720 1484912 1484917) (-850 "PI.spad" 1484311 1484319 1484678 1484699) (-849 "PID.spad" 1483267 1483275 1484237 1484306) (-848 "PICOERCE.spad" 1482924 1482934 1483257 1483262) (-847 "PGROEB.spad" 1481521 1481535 1482914 1482919) (-846 "PGE.spad" 1472774 1472782 1481511 1481516) (-845 "PGCD.spad" 1471656 1471673 1472764 1472769) (-844 "PFRPAC.spad" 1470799 1470809 1471646 1471651) (-843 "PFR.spad" 1467456 1467466 1470701 1470794) (-842 "PFOTOOLS.spad" 1466714 1466730 1467446 1467451) (-841 "PFOQ.spad" 1466084 1466102 1466704 1466709) (-840 "PFO.spad" 1465503 1465530 1466074 1466079) (-839 "PF.spad" 1465077 1465089 1465308 1465401) (-838 "PFECAT.spad" 1462743 1462751 1465003 1465072) (-837 "PFECAT.spad" 1460437 1460447 1462699 1462704) (-836 "PFBRU.spad" 1458307 1458319 1460427 1460432) (-835 "PFBR.spad" 1455845 1455868 1458297 1458302) (-834 "PERM.spad" 1451526 1451536 1455675 1455690) (-833 "PERMGRP.spad" 1446262 1446272 1451516 1451521) (-832 "PERMCAT.spad" 1444814 1444824 1446242 1446257) (-831 "PERMAN.spad" 1443346 1443360 1444804 1444809) (-830 "PENDTREE.spad" 1442619 1442629 1442975 1442980) (-829 "PDRING.spad" 1441110 1441120 1442599 1442614) (-828 "PDRING.spad" 1439609 1439621 1441100 1441105) (-827 "PDEPROB.spad" 1438566 1438574 1439599 1439604) (-826 "PDEPACK.spad" 1432568 1432576 1438556 1438561) (-825 "PDECOMP.spad" 1432030 1432047 1432558 1432563) (-824 "PDECAT.spad" 1430384 1430392 1432020 1432025) (-823 "PCOMP.spad" 1430235 1430248 1430374 1430379) (-822 "PBWLB.spad" 1428817 1428834 1430225 1430230) (-821 "PATTERN.spad" 1423248 1423258 1428807 1428812) (-820 "PATTERN2.spad" 1422984 1422996 1423238 1423243) (-819 "PATTERN1.spad" 1421286 1421302 1422974 1422979) (-818 "PATRES.spad" 1418833 1418845 1421276 1421281) (-817 "PATRES2.spad" 1418495 1418509 1418823 1418828) (-816 "PATMATCH.spad" 1416657 1416688 1418208 1418213) (-815 "PATMAB.spad" 1416082 1416092 1416647 1416652) (-814 "PATLRES.spad" 1415166 1415180 1416072 1416077) (-813 "PATAB.spad" 1414930 1414940 1415156 1415161) (-812 "PARTPERM.spad" 1412292 1412300 1414920 1414925) (-811 "PARSURF.spad" 1411720 1411748 1412282 1412287) (-810 "PARSU2.spad" 1411515 1411531 1411710 1411715) (-809 "script-parser.spad" 1411035 1411043 1411505 1411510) (-808 "PARSCURV.spad" 1410463 1410491 1411025 1411030) (-807 "PARSC2.spad" 1410252 1410268 1410453 1410458) (-806 "PARPCURV.spad" 1409710 1409738 1410242 1410247) (-805 "PARPC2.spad" 1409499 1409515 1409700 1409705) (-804 "PAN2EXPR.spad" 1408911 1408919 1409489 1409494) (-803 "PALETTE.spad" 1407881 1407889 1408901 1408906) (-802 "PAIR.spad" 1406864 1406877 1407469 1407474) (-801 "PADICRC.spad" 1404197 1404215 1405372 1405465) (-800 "PADICRAT.spad" 1402215 1402227 1402436 1402529) (-799 "PADIC.spad" 1401910 1401922 1402141 1402210) (-798 "PADICCT.spad" 1400451 1400463 1401836 1401905) (-797 "PADEPAC.spad" 1399130 1399149 1400441 1400446) (-796 "PADE.spad" 1397870 1397886 1399120 1399125) (-795 "OWP.spad" 1396854 1396884 1397728 1397795) (-794 "OVAR.spad" 1396635 1396658 1396844 1396849) (-793 "OUT.spad" 1395719 1395727 1396625 1396630) (-792 "OUTFORM.spad" 1385133 1385141 1395709 1395714) (-791 "OSI.spad" 1384608 1384616 1385123 1385128) (-790 "ORTHPOL.spad" 1383069 1383079 1384525 1384530) (-789 "OREUP.spad" 1382429 1382457 1382751 1382790) (-788 "ORESUP.spad" 1381730 1381754 1382111 1382150) (-787 "OREPCTO.spad" 1379549 1379561 1381650 1381655) (-786 "OREPCAT.spad" 1373606 1373616 1379505 1379544) (-785 "OREPCAT.spad" 1367553 1367565 1373454 1373459) (-784 "ORDSET.spad" 1366719 1366727 1367543 1367548) (-783 "ORDSET.spad" 1365883 1365893 1366709 1366714) (-782 "ORDRING.spad" 1365273 1365281 1365863 1365878) (-781 "ORDRING.spad" 1364671 1364681 1365263 1365268) (-780 "ORDMON.spad" 1364526 1364534 1364661 1364666) (-779 "ORDFUNS.spad" 1363652 1363668 1364516 1364521) (-778 "ORDFIN.spad" 1363586 1363594 1363642 1363647) (-777 "ORDCOMP.spad" 1362054 1362064 1363136 1363165) (-776 "ORDCOMP2.spad" 1361339 1361351 1362044 1362049) (-775 "OPTPROB.spad" 1359919 1359927 1361329 1361334) (-774 "OPTPACK.spad" 1352304 1352312 1359909 1359914) (-773 "OPTCAT.spad" 1349979 1349987 1352294 1352299) (-772 "OPQUERY.spad" 1349528 1349536 1349969 1349974) (-771 "OP.spad" 1349270 1349280 1349350 1349417) (-770 "ONECOMP.spad" 1348018 1348028 1348820 1348849) (-769 "ONECOMP2.spad" 1347436 1347448 1348008 1348013) (-768 "OMSERVER.spad" 1346438 1346446 1347426 1347431) (-767 "OMSAGG.spad" 1346214 1346224 1346382 1346433) (-766 "OMPKG.spad" 1344826 1344834 1346204 1346209) (-765 "OM.spad" 1343791 1343799 1344816 1344821) (-764 "OMLO.spad" 1343216 1343228 1343677 1343716) (-763 "OMEXPR.spad" 1343050 1343060 1343206 1343211) (-762 "OMERR.spad" 1342593 1342601 1343040 1343045) (-761 "OMERRK.spad" 1341627 1341635 1342583 1342588) (-760 "OMENC.spad" 1340971 1340979 1341617 1341622) (-759 "OMDEV.spad" 1335260 1335268 1340961 1340966) (-758 "OMCONN.spad" 1334669 1334677 1335250 1335255) (-757 "OINTDOM.spad" 1334432 1334440 1334595 1334664) (-756 "OFMONOID.spad" 1330619 1330629 1334422 1334427) (-755 "ODVAR.spad" 1329880 1329890 1330609 1330614) (-754 "ODR.spad" 1329328 1329354 1329692 1329841) (-753 "ODPOL.spad" 1326677 1326687 1327017 1327144) (-752 "ODP.spad" 1318203 1318223 1318576 1318705) (-751 "ODETOOLS.spad" 1316786 1316805 1318193 1318198) (-750 "ODESYS.spad" 1314436 1314453 1316776 1316781) (-749 "ODERTRIC.spad" 1310377 1310394 1314393 1314398) (-748 "ODERED.spad" 1309764 1309788 1310367 1310372) (-747 "ODERAT.spad" 1307315 1307332 1309754 1309759) (-746 "ODEPRRIC.spad" 1304206 1304228 1307305 1307310) (-745 "ODEPROB.spad" 1303405 1303413 1304196 1304201) (-744 "ODEPRIM.spad" 1300679 1300701 1303395 1303400) (-743 "ODEPAL.spad" 1300055 1300079 1300669 1300674) (-742 "ODEPACK.spad" 1286657 1286665 1300045 1300050) (-741 "ODEINT.spad" 1286088 1286104 1286647 1286652) (-740 "ODEIFTBL.spad" 1283483 1283491 1286078 1286083) (-739 "ODEEF.spad" 1278850 1278866 1283473 1283478) (-738 "ODECONST.spad" 1278369 1278387 1278840 1278845) (-737 "ODECAT.spad" 1276965 1276973 1278359 1278364) (-736 "OCT.spad" 1275112 1275122 1275828 1275867) (-735 "OCTCT2.spad" 1274756 1274777 1275102 1275107) (-734 "OC.spad" 1272530 1272540 1274712 1274751) (-733 "OC.spad" 1270030 1270042 1272214 1272219) (-732 "OCAMON.spad" 1269878 1269886 1270020 1270025) (-731 "OBJPROP.spad" 1269366 1269374 1269868 1269873) (-730 "OASGP.spad" 1269181 1269189 1269356 1269361) (-729 "OAMONS.spad" 1268701 1268709 1269171 1269176) (-728 "OAMON.spad" 1268562 1268570 1268691 1268696) (-727 "OAGROUP.spad" 1268424 1268432 1268552 1268557) (-726 "NUMTUBE.spad" 1268011 1268027 1268414 1268419) (-725 "NUMQUAD.spad" 1255873 1255881 1268001 1268006) (-724 "NUMODE.spad" 1247009 1247017 1255863 1255868) (-723 "NUMINT.spad" 1244567 1244575 1246999 1247004) (-722 "NUMFMT.spad" 1243407 1243415 1244557 1244562) (-721 "NUMERIC.spad" 1235480 1235490 1243213 1243218) (-720 "NTSCAT.spad" 1233970 1233986 1235436 1235475) (-719 "NTPOLFN.spad" 1233515 1233525 1233887 1233892) (-718 "NSUP.spad" 1226533 1226543 1231073 1231226) (-717 "NSUP2.spad" 1225925 1225937 1226523 1226528) (-716 "NSMP.spad" 1222124 1222143 1222432 1222559) (-715 "NREP.spad" 1220496 1220510 1222114 1222119) (-714 "NPCOEF.spad" 1219742 1219762 1220486 1220491) (-713 "NORMRETR.spad" 1219340 1219379 1219732 1219737) (-712 "NORMPK.spad" 1217242 1217261 1219330 1219335) (-711 "NORMMA.spad" 1216930 1216956 1217232 1217237) (-710 "NONE.spad" 1216671 1216679 1216920 1216925) (-709 "NONE1.spad" 1216347 1216357 1216661 1216666) (-708 "NODE1.spad" 1215816 1215832 1216337 1216342) (-707 "NNI.spad" 1214703 1214711 1215790 1215811) (-706 "NLINSOL.spad" 1213325 1213335 1214693 1214698) (-705 "NIPROB.spad" 1211808 1211816 1213315 1213320) (-704 "NFINTBAS.spad" 1209268 1209285 1211798 1211803) (-703 "NCODIV.spad" 1207466 1207482 1209258 1209263) (-702 "NCNTFRAC.spad" 1207108 1207122 1207456 1207461) (-701 "NCEP.spad" 1205268 1205282 1207098 1207103) (-700 "NASRING.spad" 1204864 1204872 1205258 1205263) (-699 "NASRING.spad" 1204458 1204468 1204854 1204859) (-698 "NARNG.spad" 1203802 1203810 1204448 1204453) (-697 "NARNG.spad" 1203144 1203154 1203792 1203797) (-696 "NAGSP.spad" 1202217 1202225 1203134 1203139) (-695 "NAGS.spad" 1191742 1191750 1202207 1202212) (-694 "NAGF07.spad" 1190135 1190143 1191732 1191737) (-693 "NAGF04.spad" 1184367 1184375 1190125 1190130) (-692 "NAGF02.spad" 1178176 1178184 1184357 1184362) (-691 "NAGF01.spad" 1173779 1173787 1178166 1178171) (-690 "NAGE04.spad" 1167239 1167247 1173769 1173774) (-689 "NAGE02.spad" 1157581 1157589 1167229 1167234) (-688 "NAGE01.spad" 1153465 1153473 1157571 1157576) (-687 "NAGD03.spad" 1151385 1151393 1153455 1153460) (-686 "NAGD02.spad" 1143916 1143924 1151375 1151380) (-685 "NAGD01.spad" 1138029 1138037 1143906 1143911) (-684 "NAGC06.spad" 1133816 1133824 1138019 1138024) (-683 "NAGC05.spad" 1132285 1132293 1133806 1133811) (-682 "NAGC02.spad" 1131540 1131548 1132275 1132280) (-681 "NAALG.spad" 1131075 1131085 1131508 1131535) (-680 "NAALG.spad" 1130630 1130642 1131065 1131070) (-679 "MULTSQFR.spad" 1127588 1127605 1130620 1130625) (-678 "MULTFACT.spad" 1126971 1126988 1127578 1127583) (-677 "MTSCAT.spad" 1125005 1125026 1126869 1126966) (-676 "MTHING.spad" 1124662 1124672 1124995 1125000) (-675 "MSYSCMD.spad" 1124096 1124104 1124652 1124657) (-674 "MSET.spad" 1122038 1122048 1123802 1123841) (-673 "MSETAGG.spad" 1121871 1121881 1121994 1122033) (-672 "MRING.spad" 1118842 1118854 1121579 1121646) (-671 "MRF2.spad" 1118410 1118424 1118832 1118837) (-670 "MRATFAC.spad" 1117956 1117973 1118400 1118405) (-669 "MPRFF.spad" 1115986 1116005 1117946 1117951) (-668 "MPOLY.spad" 1113424 1113439 1113783 1113910) (-667 "MPCPF.spad" 1112688 1112707 1113414 1113419) (-666 "MPC3.spad" 1112503 1112543 1112678 1112683) (-665 "MPC2.spad" 1112145 1112178 1112493 1112498) (-664 "MONOTOOL.spad" 1110480 1110497 1112135 1112140) (-663 "MONOID.spad" 1109654 1109662 1110470 1110475) (-662 "MONOID.spad" 1108826 1108836 1109644 1109649) (-661 "MONOGEN.spad" 1107572 1107585 1108686 1108821) (-660 "MONOGEN.spad" 1106340 1106355 1107456 1107461) (-659 "MONADWU.spad" 1104354 1104362 1106330 1106335) (-658 "MONADWU.spad" 1102366 1102376 1104344 1104349) (-657 "MONAD.spad" 1101510 1101518 1102356 1102361) (-656 "MONAD.spad" 1100652 1100662 1101500 1101505) (-655 "MOEBIUS.spad" 1099338 1099352 1100632 1100647) (-654 "MODULE.spad" 1099208 1099218 1099306 1099333) (-653 "MODULE.spad" 1099098 1099110 1099198 1099203) (-652 "MODRING.spad" 1098429 1098468 1099078 1099093) (-651 "MODOP.spad" 1097088 1097100 1098251 1098318) (-650 "MODMONOM.spad" 1096620 1096638 1097078 1097083) (-649 "MODMON.spad" 1093330 1093346 1094106 1094259) (-648 "MODFIELD.spad" 1092688 1092727 1093232 1093325) (-647 "MMAP.spad" 1092428 1092462 1092678 1092683) (-646 "MLO.spad" 1090855 1090865 1092384 1092423) (-645 "MLIFT.spad" 1089427 1089444 1090845 1090850) (-644 "MKUCFUNC.spad" 1088960 1088978 1089417 1089422) (-643 "MKRECORD.spad" 1088562 1088575 1088950 1088955) (-642 "MKFUNC.spad" 1087943 1087953 1088552 1088557) (-641 "MKFLCFN.spad" 1086899 1086909 1087933 1087938) (-640 "MKCHSET.spad" 1086675 1086685 1086889 1086894) (-639 "MKBCFUNC.spad" 1086160 1086178 1086665 1086670) (-638 "MINT.spad" 1085599 1085607 1086062 1086155) (-637 "MHROWRED.spad" 1084100 1084110 1085589 1085594) (-636 "MFLOAT.spad" 1082545 1082553 1083990 1084095) (-635 "MFINFACT.spad" 1081945 1081967 1082535 1082540) (-634 "MESH.spad" 1079677 1079685 1081935 1081940) (-633 "MDDFACT.spad" 1077870 1077880 1079667 1079672) (-632 "MDAGG.spad" 1077145 1077155 1077838 1077865) (-631 "MCMPLX.spad" 1073125 1073133 1073739 1073940) (-630 "MCDEN.spad" 1072333 1072345 1073115 1073120) (-629 "MCALCFN.spad" 1069435 1069461 1072323 1072328) (-628 "MATSTOR.spad" 1066711 1066721 1069425 1069430) (-627 "MATRIX.spad" 1065415 1065425 1065899 1065926) (-626 "MATLIN.spad" 1062741 1062765 1065299 1065304) (-625 "MATCAT.spad" 1054314 1054336 1062697 1062736) (-624 "MATCAT.spad" 1045771 1045795 1054156 1054161) (-623 "MATCAT2.spad" 1045039 1045087 1045761 1045766) (-622 "MAPPKG3.spad" 1043938 1043952 1045029 1045034) (-621 "MAPPKG2.spad" 1043272 1043284 1043928 1043933) (-620 "MAPPKG1.spad" 1042090 1042100 1043262 1043267) (-619 "MAPHACK3.spad" 1041898 1041912 1042080 1042085) (-618 "MAPHACK2.spad" 1041663 1041675 1041888 1041893) (-617 "MAPHACK1.spad" 1041293 1041303 1041653 1041658) (-616 "MAGMA.spad" 1039083 1039100 1041283 1041288) (-615 "M3D.spad" 1036781 1036791 1038463 1038468) (-614 "LZSTAGG.spad" 1033999 1034009 1036761 1036776) (-613 "LZSTAGG.spad" 1031225 1031237 1033989 1033994) (-612 "LWORD.spad" 1027930 1027947 1031215 1031220) (-611 "LSQM.spad" 1026158 1026172 1026556 1026607) (-610 "LSPP.spad" 1025691 1025708 1026148 1026153) (-609 "LSMP.spad" 1024531 1024559 1025681 1025686) (-608 "LSMP1.spad" 1022335 1022349 1024521 1024526) (-607 "LSAGG.spad" 1021992 1022002 1022291 1022330) (-606 "LSAGG.spad" 1021681 1021693 1021982 1021987) (-605 "LPOLY.spad" 1020635 1020654 1021537 1021606) (-604 "LPEFRAC.spad" 1019892 1019902 1020625 1020630) (-603 "LO.spad" 1019293 1019307 1019826 1019853) (-602 "LOGIC.spad" 1018895 1018903 1019283 1019288) (-601 "LOGIC.spad" 1018495 1018505 1018885 1018890) (-600 "LODOOPS.spad" 1017413 1017425 1018485 1018490) (-599 "LODO.spad" 1016799 1016815 1017095 1017134) (-598 "LODOF.spad" 1015843 1015860 1016756 1016761) (-597 "LODOCAT.spad" 1014501 1014511 1015799 1015838) (-596 "LODOCAT.spad" 1013157 1013169 1014457 1014462) (-595 "LODO2.spad" 1012432 1012444 1012839 1012878) (-594 "LODO1.spad" 1011834 1011844 1012114 1012153) (-593 "LODEEF.spad" 1010606 1010624 1011824 1011829) (-592 "LNAGG.spad" 1006398 1006408 1010586 1010601) (-591 "LNAGG.spad" 1002164 1002176 1006354 1006359) (-590 "LMOPS.spad" 998900 998917 1002154 1002159) (-589 "LMODULE.spad" 998542 998552 998890 998895) (-588 "LMDICT.spad" 997825 997835 998093 998120) (-587 "LIST.spad" 995543 995553 996972 996999) (-586 "LIST3.spad" 994834 994848 995533 995538) (-585 "LIST2.spad" 993474 993486 994824 994829) (-584 "LIST2MAP.spad" 990351 990363 993464 993469) (-583 "LINEXP.spad" 989783 989793 990331 990346) (-582 "LINDEP.spad" 988560 988572 989695 989700) (-581 "LIMITRF.spad" 986474 986484 988550 988555) (-580 "LIMITPS.spad" 985357 985370 986464 986469) (-579 "LIE.spad" 983371 983383 984647 984792) (-578 "LIECAT.spad" 982847 982857 983297 983366) (-577 "LIECAT.spad" 982351 982363 982803 982808) (-576 "LIB.spad" 980399 980407 981010 981025) (-575 "LGROBP.spad" 977752 977771 980389 980394) (-574 "LF.spad" 976671 976687 977742 977747) (-573 "LFCAT.spad" 975690 975698 976661 976666) (-572 "LEXTRIPK.spad" 971193 971208 975680 975685) (-571 "LEXP.spad" 969196 969223 971173 971188) (-570 "LEADCDET.spad" 967580 967597 969186 969191) (-569 "LAZM3PK.spad" 966284 966306 967570 967575) (-568 "LAUPOL.spad" 964975 964988 965879 965948) (-567 "LAPLACE.spad" 964548 964564 964965 964970) (-566 "LA.spad" 963988 964002 964470 964509) (-565 "LALG.spad" 963764 963774 963968 963983) (-564 "LALG.spad" 963548 963560 963754 963759) (-563 "KOVACIC.spad" 962261 962278 963538 963543) (-562 "KONVERT.spad" 961983 961993 962251 962256) (-561 "KOERCE.spad" 961720 961730 961973 961978) (-560 "KERNEL.spad" 960255 960265 961504 961509) (-559 "KERNEL2.spad" 959958 959970 960245 960250) (-558 "KDAGG.spad" 959049 959071 959926 959953) (-557 "KDAGG.spad" 958160 958184 959039 959044) (-556 "KAFILE.spad" 957123 957139 957358 957385) (-555 "JORDAN.spad" 954950 954962 956413 956558) (-554 "IXAGG.spad" 953063 953087 954930 954945) (-553 "IXAGG.spad" 951041 951067 952910 952915) (-552 "IVECTOR.spad" 949814 949829 949969 949996) (-551 "ITUPLE.spad" 948959 948969 949804 949809) (-550 "ITRIGMNP.spad" 947770 947789 948949 948954) (-549 "ITFUN3.spad" 947264 947278 947760 947765) (-548 "ITFUN2.spad" 946994 947006 947254 947259) (-547 "ITAYLOR.spad" 944786 944801 946830 946955) (-546 "ISUPS.spad" 937197 937212 943760 943857) (-545 "ISUMP.spad" 936694 936710 937187 937192) (-544 "ISTRING.spad" 935697 935710 935863 935890) (-543 "IRURPK.spad" 934410 934429 935687 935692) (-542 "IRSN.spad" 932370 932378 934400 934405) (-541 "IRRF2F.spad" 930845 930855 932326 932331) (-540 "IRREDFFX.spad" 930446 930457 930835 930840) (-539 "IROOT.spad" 928777 928787 930436 930441) (-538 "IR.spad" 926567 926581 928633 928660) (-537 "IR2.spad" 925587 925603 926557 926562) (-536 "IR2F.spad" 924787 924803 925577 925582) (-535 "IPRNTPK.spad" 924547 924555 924777 924782) (-534 "IPF.spad" 924112 924124 924352 924445) (-533 "IPADIC.spad" 923873 923899 924038 924107) (-532 "INVLAPLA.spad" 923518 923534 923863 923868) (-531 "INTTR.spad" 916764 916781 923508 923513) (-530 "INTTOOLS.spad" 914476 914492 916339 916344) (-529 "INTSLPE.spad" 913782 913790 914466 914471) (-528 "INTRVL.spad" 913348 913358 913696 913777) (-527 "INTRF.spad" 911712 911726 913338 913343) (-526 "INTRET.spad" 911144 911154 911702 911707) (-525 "INTRAT.spad" 909819 909836 911134 911139) (-524 "INTPM.spad" 908182 908198 909462 909467) (-523 "INTPAF.spad" 905950 905968 908114 908119) (-522 "INTPACK.spad" 896260 896268 905940 905945) (-521 "INT.spad" 895621 895629 896114 896255) (-520 "INTHERTR.spad" 894887 894904 895611 895616) (-519 "INTHERAL.spad" 894553 894577 894877 894882) (-518 "INTHEORY.spad" 890966 890974 894543 894548) (-517 "INTG0.spad" 884429 884447 890898 890903) (-516 "INTFTBL.spad" 878458 878466 884419 884424) (-515 "INTFACT.spad" 877517 877527 878448 878453) (-514 "INTEF.spad" 875832 875848 877507 877512) (-513 "INTDOM.spad" 874447 874455 875758 875827) (-512 "INTDOM.spad" 873124 873134 874437 874442) (-511 "INTCAT.spad" 871377 871387 873038 873119) (-510 "INTBIT.spad" 870880 870888 871367 871372) (-509 "INTALG.spad" 870062 870089 870870 870875) (-508 "INTAF.spad" 869554 869570 870052 870057) (-507 "INTABL.spad" 868072 868103 868235 868262) (-506 "INS.spad" 865468 865476 867974 868067) (-505 "INS.spad" 862950 862960 865458 865463) (-504 "INPSIGN.spad" 862384 862397 862940 862945) (-503 "INPRODPF.spad" 861450 861469 862374 862379) (-502 "INPRODFF.spad" 860508 860532 861440 861445) (-501 "INNMFACT.spad" 859479 859496 860498 860503) (-500 "INMODGCD.spad" 858963 858993 859469 859474) (-499 "INFSP.spad" 857248 857270 858953 858958) (-498 "INFPROD0.spad" 856298 856317 857238 857243) (-497 "INFORM.spad" 853566 853574 856288 856293) (-496 "INFORM1.spad" 853191 853201 853556 853561) (-495 "INFINITY.spad" 852743 852751 853181 853186) (-494 "INEP.spad" 851275 851297 852733 852738) (-493 "INDE.spad" 851181 851198 851265 851270) (-492 "INCRMAPS.spad" 850602 850612 851171 851176) (-491 "INBFF.spad" 846372 846383 850592 850597) (-490 "IMATRIX.spad" 845317 845343 845829 845856) (-489 "IMATQF.spad" 844411 844455 845273 845278) (-488 "IMATLIN.spad" 843016 843040 844367 844372) (-487 "ILIST.spad" 841672 841687 842199 842226) (-486 "IIARRAY2.spad" 841060 841098 841279 841306) (-485 "IFF.spad" 840470 840486 840741 840834) (-484 "IFARRAY.spad" 837957 837972 839653 839680) (-483 "IFAMON.spad" 837819 837836 837913 837918) (-482 "IEVALAB.spad" 837208 837220 837809 837814) (-481 "IEVALAB.spad" 836595 836609 837198 837203) (-480 "IDPO.spad" 836393 836405 836585 836590) (-479 "IDPOAMS.spad" 836149 836161 836383 836388) (-478 "IDPOAM.spad" 835869 835881 836139 836144) (-477 "IDPC.spad" 834803 834815 835859 835864) (-476 "IDPAM.spad" 834548 834560 834793 834798) (-475 "IDPAG.spad" 834295 834307 834538 834543) (-474 "IDECOMP.spad" 831532 831550 834285 834290) (-473 "IDEAL.spad" 826455 826494 831467 831472) (-472 "ICDEN.spad" 825606 825622 826445 826450) (-471 "ICARD.spad" 824795 824803 825596 825601) (-470 "IBPTOOLS.spad" 823388 823405 824785 824790) (-469 "IBITS.spad" 822587 822600 823024 823051) (-468 "IBATOOL.spad" 819462 819481 822577 822582) (-467 "IBACHIN.spad" 817949 817964 819452 819457) (-466 "IARRAY2.spad" 816937 816963 817556 817583) (-465 "IARRAY1.spad" 815982 815997 816120 816147) (-464 "IAN.spad" 814197 814205 815800 815893) (-463 "IALGFACT.spad" 813798 813831 814187 814192) (-462 "HYPCAT.spad" 813222 813230 813788 813793) (-461 "HYPCAT.spad" 812644 812654 813212 813217) (-460 "HOAGG.spad" 809902 809912 812624 812639) (-459 "HOAGG.spad" 806945 806957 809669 809674) (-458 "HEXADEC.spad" 804817 804825 805415 805508) (-457 "HEUGCD.spad" 803832 803843 804807 804812) (-456 "HELLFDIV.spad" 803422 803446 803822 803827) (-455 "HEAP.spad" 802814 802824 803029 803056) (-454 "HDP.spad" 794336 794352 794713 794842) (-453 "HDMP.spad" 791515 791530 792133 792260) (-452 "HB.spad" 789752 789760 791505 791510) (-451 "HASHTBL.spad" 788222 788253 788433 788460) (-450 "HACKPI.spad" 787705 787713 788124 788217) (-449 "GTSET.spad" 786644 786660 787351 787378) (-448 "GSTBL.spad" 785163 785198 785337 785352) (-447 "GSERIES.spad" 782330 782357 783295 783444) (-446 "GROUP.spad" 781504 781512 782310 782325) (-445 "GROUP.spad" 780686 780696 781494 781499) (-444 "GROEBSOL.spad" 779174 779195 780676 780681) (-443 "GRMOD.spad" 777745 777757 779164 779169) (-442 "GRMOD.spad" 776314 776328 777735 777740) (-441 "GRIMAGE.spad" 768919 768927 776304 776309) (-440 "GRDEF.spad" 767298 767306 768909 768914) (-439 "GRAY.spad" 765757 765765 767288 767293) (-438 "GRALG.spad" 764804 764816 765747 765752) (-437 "GRALG.spad" 763849 763863 764794 764799) (-436 "GPOLSET.spad" 763303 763326 763531 763558) (-435 "GOSPER.spad" 762568 762586 763293 763298) (-434 "GMODPOL.spad" 761706 761733 762536 762563) (-433 "GHENSEL.spad" 760775 760789 761696 761701) (-432 "GENUPS.spad" 756876 756889 760765 760770) (-431 "GENUFACT.spad" 756453 756463 756866 756871) (-430 "GENPGCD.spad" 756037 756054 756443 756448) (-429 "GENMFACT.spad" 755489 755508 756027 756032) (-428 "GENEEZ.spad" 753428 753441 755479 755484) (-427 "GDMP.spad" 750449 750466 751225 751352) (-426 "GCNAALG.spad" 744344 744371 750243 750310) (-425 "GCDDOM.spad" 743516 743524 744270 744339) (-424 "GCDDOM.spad" 742750 742760 743506 743511) (-423 "GB.spad" 740268 740306 742706 742711) (-422 "GBINTERN.spad" 736288 736326 740258 740263) (-421 "GBF.spad" 732045 732083 736278 736283) (-420 "GBEUCLID.spad" 729919 729957 732035 732040) (-419 "GAUSSFAC.spad" 729216 729224 729909 729914) (-418 "GALUTIL.spad" 727538 727548 729172 729177) (-417 "GALPOLYU.spad" 725984 725997 727528 727533) (-416 "GALFACTU.spad" 724149 724168 725974 725979) (-415 "GALFACT.spad" 714282 714293 724139 724144) (-414 "FVFUN.spad" 711295 711303 714262 714277) (-413 "FVC.spad" 710337 710345 711275 711290) (-412 "FUNCTION.spad" 710186 710198 710327 710332) (-411 "FT.spad" 708398 708406 710176 710181) (-410 "FTEM.spad" 707561 707569 708388 708393) (-409 "FSUPFACT.spad" 706462 706481 707498 707503) (-408 "FST.spad" 704548 704556 706452 706457) (-407 "FSRED.spad" 704026 704042 704538 704543) (-406 "FSPRMELT.spad" 702850 702866 703983 703988) (-405 "FSPECF.spad" 700927 700943 702840 702845) (-404 "FS.spad" 694978 694988 700691 700922) (-403 "FS.spad" 688820 688832 694535 694540) (-402 "FSINT.spad" 688478 688494 688810 688815) (-401 "FSERIES.spad" 687665 687677 688298 688397) (-400 "FSCINT.spad" 686978 686994 687655 687660) (-399 "FSAGG.spad" 686083 686093 686922 686973) (-398 "FSAGG.spad" 685162 685174 686003 686008) (-397 "FSAGG2.spad" 683861 683877 685152 685157) (-396 "FS2UPS.spad" 678250 678284 683851 683856) (-395 "FS2.spad" 677895 677911 678240 678245) (-394 "FS2EXPXP.spad" 677018 677041 677885 677890) (-393 "FRUTIL.spad" 675960 675970 677008 677013) (-392 "FR.spad" 669657 669667 674987 675056) (-391 "FRNAALG.spad" 664744 664754 669599 669652) (-390 "FRNAALG.spad" 659843 659855 664700 664705) (-389 "FRNAAF2.spad" 659297 659315 659833 659838) (-388 "FRMOD.spad" 658692 658722 659229 659234) (-387 "FRIDEAL.spad" 657887 657908 658672 658687) (-386 "FRIDEAL2.spad" 657489 657521 657877 657882) (-385 "FRETRCT.spad" 657000 657010 657479 657484) (-384 "FRETRCT.spad" 656379 656391 656860 656865) (-383 "FRAMALG.spad" 654707 654720 656335 656374) (-382 "FRAMALG.spad" 653067 653082 654697 654702) (-381 "FRAC.spad" 650170 650180 650573 650746) (-380 "FRAC2.spad" 649773 649785 650160 650165) (-379 "FR2.spad" 649107 649119 649763 649768) (-378 "FPS.spad" 645916 645924 648997 649102) (-377 "FPS.spad" 642753 642763 645836 645841) (-376 "FPC.spad" 641795 641803 642655 642748) (-375 "FPC.spad" 640923 640933 641785 641790) (-374 "FPATMAB.spad" 640675 640685 640903 640918) (-373 "FPARFRAC.spad" 639148 639165 640665 640670) (-372 "FORTRAN.spad" 637654 637697 639138 639143) (-371 "FORT.spad" 636583 636591 637644 637649) (-370 "FORTFN.spad" 633743 633751 636563 636578) (-369 "FORTCAT.spad" 633417 633425 633723 633738) (-368 "FORMULA.spad" 630755 630763 633407 633412) (-367 "FORMULA1.spad" 630234 630244 630745 630750) (-366 "FORDER.spad" 629925 629949 630224 630229) (-365 "FOP.spad" 629126 629134 629915 629920) (-364 "FNLA.spad" 628550 628572 629094 629121) (-363 "FNCAT.spad" 626878 626886 628540 628545) (-362 "FNAME.spad" 626770 626778 626868 626873) (-361 "FMTC.spad" 626568 626576 626696 626765) (-360 "FMONOID.spad" 623623 623633 626524 626529) (-359 "FM.spad" 623318 623330 623557 623584) (-358 "FMFUN.spad" 620338 620346 623298 623313) (-357 "FMC.spad" 619380 619388 620318 620333) (-356 "FMCAT.spad" 617034 617052 619348 619375) (-355 "FM1.spad" 616391 616403 616968 616995) (-354 "FLOATRP.spad" 614112 614126 616381 616386) (-353 "FLOAT.spad" 607276 607284 613978 614107) (-352 "FLOATCP.spad" 604693 604707 607266 607271) (-351 "FLINEXP.spad" 604405 604415 604673 604688) (-350 "FLINEXP.spad" 604071 604083 604341 604346) (-349 "FLASORT.spad" 603391 603403 604061 604066) (-348 "FLALG.spad" 601037 601056 603317 603386) (-347 "FLAGG.spad" 598043 598053 601005 601032) (-346 "FLAGG.spad" 594962 594974 597926 597931) (-345 "FLAGG2.spad" 593643 593659 594952 594957) (-344 "FINRALG.spad" 591672 591685 593599 593638) (-343 "FINRALG.spad" 589627 589642 591556 591561) (-342 "FINITE.spad" 588779 588787 589617 589622) (-341 "FINAALG.spad" 577760 577770 588721 588774) (-340 "FINAALG.spad" 566753 566765 577716 577721) (-339 "FILE.spad" 566336 566346 566743 566748) (-338 "FILECAT.spad" 564854 564871 566326 566331) (-337 "FIELD.spad" 564260 564268 564756 564849) (-336 "FIELD.spad" 563752 563762 564250 564255) (-335 "FGROUP.spad" 562361 562371 563732 563747) (-334 "FGLMICPK.spad" 561148 561163 562351 562356) (-333 "FFX.spad" 560523 560538 560864 560957) (-332 "FFSLPE.spad" 560012 560033 560513 560518) (-331 "FFPOLY.spad" 551264 551275 560002 560007) (-330 "FFPOLY2.spad" 550324 550341 551254 551259) (-329 "FFP.spad" 549721 549741 550040 550133) (-328 "FF.spad" 549169 549185 549402 549495) (-327 "FFNBX.spad" 547681 547701 548885 548978) (-326 "FFNBP.spad" 546194 546211 547397 547490) (-325 "FFNB.spad" 544659 544680 545875 545968) (-324 "FFINTBAS.spad" 542073 542092 544649 544654) (-323 "FFIELDC.spad" 539648 539656 541975 542068) (-322 "FFIELDC.spad" 537309 537319 539638 539643) (-321 "FFHOM.spad" 536057 536074 537299 537304) (-320 "FFF.spad" 533492 533503 536047 536052) (-319 "FFCGX.spad" 532339 532359 533208 533301) (-318 "FFCGP.spad" 531228 531248 532055 532148) (-317 "FFCG.spad" 530020 530041 530909 531002) (-316 "FFCAT.spad" 522921 522943 529859 530015) (-315 "FFCAT.spad" 515901 515925 522841 522846) (-314 "FFCAT2.spad" 515646 515686 515891 515896) (-313 "FEXPR.spad" 507359 507405 515406 515445) (-312 "FEVALAB.spad" 507065 507075 507349 507354) (-311 "FEVALAB.spad" 506556 506568 506842 506847) (-310 "FDIV.spad" 505998 506022 506546 506551) (-309 "FDIVCAT.spad" 504040 504064 505988 505993) (-308 "FDIVCAT.spad" 502080 502106 504030 504035) (-307 "FDIV2.spad" 501734 501774 502070 502075) (-306 "FCPAK1.spad" 500287 500295 501724 501729) (-305 "FCOMP.spad" 499666 499676 500277 500282) (-304 "FC.spad" 489491 489499 499656 499661) (-303 "FAXF.spad" 482426 482440 489393 489486) (-302 "FAXF.spad" 475413 475429 482382 482387) (-301 "FARRAY.spad" 473559 473569 474596 474623) (-300 "FAMR.spad" 471679 471691 473457 473554) (-299 "FAMR.spad" 469783 469797 471563 471568) (-298 "FAMONOID.spad" 469433 469443 469737 469742) (-297 "FAMONC.spad" 467655 467667 469423 469428) (-296 "FAGROUP.spad" 467261 467271 467551 467578) (-295 "FACUTIL.spad" 465457 465474 467251 467256) (-294 "FACTFUNC.spad" 464633 464643 465447 465452) (-293 "EXPUPXS.spad" 461466 461489 462765 462914) (-292 "EXPRTUBE.spad" 458694 458702 461456 461461) (-291 "EXPRODE.spad" 455566 455582 458684 458689) (-290 "EXPR.spad" 450868 450878 451582 451985) (-289 "EXPR2UPS.spad" 446960 446973 450858 450863) (-288 "EXPR2.spad" 446663 446675 446950 446955) (-287 "EXPEXPAN.spad" 443604 443629 444238 444331) (-286 "EXIT.spad" 443275 443283 443594 443599) (-285 "EVALCYC.spad" 442733 442747 443265 443270) (-284 "EVALAB.spad" 442297 442307 442723 442728) (-283 "EVALAB.spad" 441859 441871 442287 442292) (-282 "EUCDOM.spad" 439401 439409 441785 441854) (-281 "EUCDOM.spad" 437005 437015 439391 439396) (-280 "ESTOOLS.spad" 428845 428853 436995 437000) (-279 "ESTOOLS2.spad" 428446 428460 428835 428840) (-278 "ESTOOLS1.spad" 428131 428142 428436 428441) (-277 "ES.spad" 420678 420686 428121 428126) (-276 "ES.spad" 413133 413143 420578 420583) (-275 "ESCONT.spad" 409906 409914 413123 413128) (-274 "ESCONT1.spad" 409655 409667 409896 409901) (-273 "ES2.spad" 409150 409166 409645 409650) (-272 "ES1.spad" 408716 408732 409140 409145) (-271 "ERROR.spad" 406037 406045 408706 408711) (-270 "EQTBL.spad" 404509 404531 404718 404745) (-269 "EQ.spad" 399393 399403 402192 402301) (-268 "EQ2.spad" 399109 399121 399383 399388) (-267 "EP.spad" 395423 395433 399099 399104) (-266 "ENV.spad" 394113 394121 395413 395418) (-265 "ENTIRER.spad" 393781 393789 394057 394108) (-264 "EMR.spad" 392982 393023 393707 393776) (-263 "ELTAGG.spad" 391222 391241 392972 392977) (-262 "ELTAGG.spad" 389426 389447 391178 391183) (-261 "ELTAB.spad" 388873 388891 389416 389421) (-260 "ELFUTS.spad" 388252 388271 388863 388868) (-259 "ELEMFUN.spad" 387941 387949 388242 388247) (-258 "ELEMFUN.spad" 387628 387638 387931 387936) (-257 "ELAGG.spad" 385559 385569 387596 387623) (-256 "ELAGG.spad" 383439 383451 385478 385483) (-255 "EFUPXS.spad" 380215 380245 383395 383400) (-254 "EFULS.spad" 377051 377074 380171 380176) (-253 "EFSTRUC.spad" 375006 375022 377041 377046) (-252 "EF.spad" 369772 369788 374996 375001) (-251 "EAB.spad" 368048 368056 369762 369767) (-250 "E04UCFA.spad" 367584 367592 368038 368043) (-249 "E04NAFA.spad" 367161 367169 367574 367579) (-248 "E04MBFA.spad" 366741 366749 367151 367156) (-247 "E04JAFA.spad" 366277 366285 366731 366736) (-246 "E04GCFA.spad" 365813 365821 366267 366272) (-245 "E04FDFA.spad" 365349 365357 365803 365808) (-244 "E04DGFA.spad" 364885 364893 365339 365344) (-243 "E04AGNT.spad" 360727 360735 364875 364880) (-242 "DVARCAT.spad" 357412 357422 360717 360722) (-241 "DVARCAT.spad" 354095 354107 357402 357407) (-240 "DSMP.spad" 351529 351543 351834 351961) (-239 "DROPT.spad" 345474 345482 351519 351524) (-238 "DROPT1.spad" 345137 345147 345464 345469) (-237 "DROPT0.spad" 339964 339972 345127 345132) (-236 "DRAWPT.spad" 338119 338127 339954 339959) (-235 "DRAW.spad" 330719 330732 338109 338114) (-234 "DRAWHACK.spad" 330027 330037 330709 330714) (-233 "DRAWCX.spad" 327469 327477 330017 330022) (-232 "DRAWCURV.spad" 327006 327021 327459 327464) (-231 "DRAWCFUN.spad" 316178 316186 326996 327001) (-230 "DQAGG.spad" 314334 314344 316134 316173) (-229 "DPOLCAT.spad" 309675 309691 314202 314329) (-228 "DPOLCAT.spad" 305102 305120 309631 309636) (-227 "DPMO.spad" 299089 299105 299227 299523) (-226 "DPMM.spad" 293089 293107 293214 293510) (-225 "domain.spad" 292360 292368 293079 293084) (-224 "DMP.spad" 289585 289600 290157 290284) (-223 "DLP.spad" 288933 288943 289575 289580) (-222 "DLIST.spad" 287345 287355 288116 288143) (-221 "DLAGG.spad" 285746 285756 287325 287340) (-220 "DIVRING.spad" 285193 285201 285690 285741) (-219 "DIVRING.spad" 284684 284694 285183 285188) (-218 "DISPLAY.spad" 282864 282872 284674 284679) (-217 "DIRPROD.spad" 274123 274139 274763 274892) (-216 "DIRPROD2.spad" 272931 272949 274113 274118) (-215 "DIRPCAT.spad" 271863 271879 272785 272926) (-214 "DIRPCAT.spad" 270535 270553 271459 271464) (-213 "DIOSP.spad" 269360 269368 270525 270530) (-212 "DIOPS.spad" 268332 268342 269328 269355) (-211 "DIOPS.spad" 267290 267302 268288 268293) (-210 "DIFRING.spad" 266582 266590 267270 267285) (-209 "DIFRING.spad" 265882 265892 266572 266577) (-208 "DIFEXT.spad" 265041 265051 265862 265877) (-207 "DIFEXT.spad" 264117 264129 264940 264945) (-206 "DIAGG.spad" 263735 263745 264085 264112) (-205 "DIAGG.spad" 263373 263385 263725 263730) (-204 "DHMATRIX.spad" 261677 261687 262830 262857) (-203 "DFSFUN.spad" 255085 255093 261667 261672) (-202 "DFLOAT.spad" 251608 251616 254975 255080) (-201 "DFINTTLS.spad" 249817 249833 251598 251603) (-200 "DERHAM.spad" 247727 247759 249797 249812) (-199 "DEQUEUE.spad" 247045 247055 247334 247361) (-198 "DEGRED.spad" 246660 246674 247035 247040) (-197 "DEFINTRF.spad" 244185 244195 246650 246655) (-196 "DEFINTEF.spad" 242681 242697 244175 244180) (-195 "DECIMAL.spad" 240565 240573 241151 241244) (-194 "DDFACT.spad" 238364 238381 240555 240560) (-193 "DBLRESP.spad" 237962 237986 238354 238359) (-192 "DBASE.spad" 236534 236544 237952 237957) (-191 "D03FAFA.spad" 236362 236370 236524 236529) (-190 "D03EEFA.spad" 236182 236190 236352 236357) (-189 "D03AGNT.spad" 235262 235270 236172 236177) (-188 "D02EJFA.spad" 234724 234732 235252 235257) (-187 "D02CJFA.spad" 234202 234210 234714 234719) (-186 "D02BHFA.spad" 233692 233700 234192 234197) (-185 "D02BBFA.spad" 233182 233190 233682 233687) (-184 "D02AGNT.spad" 227986 227994 233172 233177) (-183 "D01WGTS.spad" 226305 226313 227976 227981) (-182 "D01TRNS.spad" 226282 226290 226295 226300) (-181 "D01GBFA.spad" 225804 225812 226272 226277) (-180 "D01FCFA.spad" 225326 225334 225794 225799) (-179 "D01ASFA.spad" 224794 224802 225316 225321) (-178 "D01AQFA.spad" 224240 224248 224784 224789) (-177 "D01APFA.spad" 223664 223672 224230 224235) (-176 "D01ANFA.spad" 223158 223166 223654 223659) (-175 "D01AMFA.spad" 222668 222676 223148 223153) (-174 "D01ALFA.spad" 222208 222216 222658 222663) (-173 "D01AKFA.spad" 221734 221742 222198 222203) (-172 "D01AJFA.spad" 221257 221265 221724 221729) (-171 "D01AGNT.spad" 217316 217324 221247 221252) (-170 "CYCLOTOM.spad" 216822 216830 217306 217311) (-169 "CYCLES.spad" 213654 213662 216812 216817) (-168 "CVMP.spad" 213071 213081 213644 213649) (-167 "CTRIGMNP.spad" 211561 211577 213061 213066) (-166 "CTORCALL.spad" 211149 211157 211551 211556) (-165 "CSTTOOLS.spad" 210392 210405 211139 211144) (-164 "CRFP.spad" 204096 204109 210382 210387) (-163 "CRAPACK.spad" 203139 203149 204086 204091) (-162 "CPMATCH.spad" 202639 202654 203064 203069) (-161 "CPIMA.spad" 202344 202363 202629 202634) (-160 "COORDSYS.spad" 197237 197247 202334 202339) (-159 "CONTOUR.spad" 196639 196647 197227 197232) (-158 "CONTFRAC.spad" 192251 192261 196541 196634) (-157 "COMRING.spad" 191925 191933 192189 192246) (-156 "COMPPROP.spad" 191439 191447 191915 191920) (-155 "COMPLPAT.spad" 191206 191221 191429 191434) (-154 "COMPLEX.spad" 185239 185249 185483 185744) (-153 "COMPLEX2.spad" 184952 184964 185229 185234) (-152 "COMPFACT.spad" 184554 184568 184942 184947) (-151 "COMPCAT.spad" 182610 182620 184276 184549) (-150 "COMPCAT.spad" 180373 180385 182041 182046) (-149 "COMMUPC.spad" 180119 180137 180363 180368) (-148 "COMMONOP.spad" 179652 179660 180109 180114) (-147 "COMM.spad" 179461 179469 179642 179647) (-146 "COMBOPC.spad" 178366 178374 179451 179456) (-145 "COMBINAT.spad" 177111 177121 178356 178361) (-144 "COMBF.spad" 174479 174495 177101 177106) (-143 "COLOR.spad" 173316 173324 174469 174474) (-142 "CMPLXRT.spad" 173025 173042 173306 173311) (-141 "CLIP.spad" 169117 169125 173015 173020) (-140 "CLIF.spad" 167756 167772 169073 169112) (-139 "CLAGG.spad" 164231 164241 167736 167751) (-138 "CLAGG.spad" 160587 160599 164094 164099) (-137 "CINTSLPE.spad" 159912 159925 160577 160582) (-136 "CHVAR.spad" 157990 158012 159902 159907) (-135 "CHARZ.spad" 157905 157913 157970 157985) (-134 "CHARPOL.spad" 157413 157423 157895 157900) (-133 "CHARNZ.spad" 157166 157174 157393 157408) (-132 "CHAR.spad" 155056 155064 157156 157161) (-131 "CFCAT.spad" 154372 154380 155046 155051) (-130 "CDEN.spad" 153530 153544 154362 154367) (-129 "CCLASS.spad" 151679 151687 152941 152980) (-128 "CARTEN.spad" 146782 146806 151669 151674) (-127 "CARTEN2.spad" 146168 146195 146772 146777) (-126 "CARD.spad" 143457 143465 146142 146163) (-125 "CACHSET.spad" 143079 143087 143447 143452) (-124 "CABMON.spad" 142632 142640 143069 143074) (-123 "BTREE.spad" 141701 141711 142239 142266) (-122 "BTOURN.spad" 140704 140714 141308 141335) (-121 "BTCAT.spad" 140080 140090 140660 140699) (-120 "BTCAT.spad" 139488 139500 140070 140075) (-119 "BTAGG.spad" 138504 138512 139444 139483) (-118 "BTAGG.spad" 137552 137562 138494 138499) (-117 "BSTREE.spad" 136287 136297 137159 137186) (-116 "BRILL.spad" 134482 134493 136277 136282) (-115 "BRAGG.spad" 133396 133406 134462 134477) (-114 "BRAGG.spad" 132284 132296 133352 133357) (-113 "BPADICRT.spad" 130268 130280 130523 130616) (-112 "BPADIC.spad" 129932 129944 130194 130263) (-111 "BOUNDZRO.spad" 129588 129605 129922 129927) (-110 "BOP.spad" 125052 125060 129578 129583) (-109 "BOP1.spad" 122438 122448 125008 125013) (-108 "BOOLEAN.spad" 121691 121699 122428 122433) (-107 "BMODULE.spad" 121403 121415 121659 121686) (-106 "BITS.spad" 120822 120830 121039 121066) (-105 "BINFILE.spad" 120165 120173 120812 120817) (-104 "BINDING.spad" 119572 119580 120155 120160) (-103 "BINARY.spad" 117465 117473 118042 118135) (-102 "BGAGG.spad" 116650 116660 117433 117460) (-101 "BGAGG.spad" 115855 115867 116640 116645) (-100 "BFUNCT.spad" 115419 115427 115835 115850) (-99 "BEZOUT.spad" 114554 114580 115369 115374) (-98 "BBTREE.spad" 111374 111383 114161 114188) (-97 "BASTYPE.spad" 111047 111054 111364 111369) (-96 "BASTYPE.spad" 110718 110727 111037 111042) (-95 "BALFACT.spad" 110158 110170 110708 110713) (-94 "AUTOMOR.spad" 109605 109614 110138 110153) (-93 "ATTREG.spad" 106324 106331 109357 109600) (-92 "ATTRBUT.spad" 102347 102354 106304 106319) (-91 "ATRIG.spad" 101817 101824 102337 102342) (-90 "ATRIG.spad" 101285 101294 101807 101812) (-89 "ASTACK.spad" 100618 100627 100892 100919) (-88 "ASSOCEQ.spad" 99418 99429 100574 100579) (-87 "ASP9.spad" 98499 98512 99408 99413) (-86 "ASP8.spad" 97542 97555 98489 98494) (-85 "ASP80.spad" 96864 96877 97532 97537) (-84 "ASP7.spad" 96024 96037 96854 96859) (-83 "ASP78.spad" 95475 95488 96014 96019) (-82 "ASP77.spad" 94844 94857 95465 95470) (-81 "ASP74.spad" 93936 93949 94834 94839) (-80 "ASP73.spad" 93207 93220 93926 93931) (-79 "ASP6.spad" 91839 91852 93197 93202) (-78 "ASP55.spad" 90348 90361 91829 91834) (-77 "ASP50.spad" 88165 88178 90338 90343) (-76 "ASP4.spad" 87460 87473 88155 88160) (-75 "ASP49.spad" 86459 86472 87450 87455) (-74 "ASP42.spad" 84866 84905 86449 86454) (-73 "ASP41.spad" 83445 83484 84856 84861) (-72 "ASP35.spad" 82433 82446 83435 83440) (-71 "ASP34.spad" 81734 81747 82423 82428) (-70 "ASP33.spad" 81294 81307 81724 81729) (-69 "ASP31.spad" 80434 80447 81284 81289) (-68 "ASP30.spad" 79326 79339 80424 80429) (-67 "ASP29.spad" 78792 78805 79316 79321) (-66 "ASP28.spad" 70065 70078 78782 78787) (-65 "ASP27.spad" 68962 68975 70055 70060) (-64 "ASP24.spad" 68049 68062 68952 68957) (-63 "ASP20.spad" 67265 67278 68039 68044) (-62 "ASP1.spad" 66646 66659 67255 67260) (-61 "ASP19.spad" 61332 61345 66636 66641) (-60 "ASP12.spad" 60746 60759 61322 61327) (-59 "ASP10.spad" 60017 60030 60736 60741) (-58 "ARRAY2.spad" 59377 59386 59624 59651) (-57 "ARRAY1.spad" 58212 58221 58560 58587) (-56 "ARRAY12.spad" 56881 56892 58202 58207) (-55 "ARR2CAT.spad" 52531 52552 56837 56876) (-54 "ARR2CAT.spad" 48213 48236 52521 52526) (-53 "APPRULE.spad" 47457 47479 48203 48208) (-52 "APPLYORE.spad" 47072 47085 47447 47452) (-51 "ANY.spad" 45414 45421 47062 47067) (-50 "ANY1.spad" 44485 44494 45404 45409) (-49 "ANTISYM.spad" 42924 42940 44465 44480) (-48 "ANON.spad" 42837 42844 42914 42919) (-47 "AN.spad" 41140 41147 42655 42748) (-46 "AMR.spad" 39319 39330 41038 41135) (-45 "AMR.spad" 37335 37348 39056 39061) (-44 "ALIST.spad" 34747 34768 35097 35124) (-43 "ALGSC.spad" 33870 33896 34619 34672) (-42 "ALGPKG.spad" 29579 29590 33826 33831) (-41 "ALGMFACT.spad" 28768 28782 29569 29574) (-40 "ALGMANIP.spad" 26189 26204 28566 28571) (-39 "ALGFF.spad" 24507 24534 24724 24880) (-38 "ALGFACT.spad" 23628 23638 24497 24502) (-37 "ALGEBRA.spad" 23359 23368 23584 23623) (-36 "ALGEBRA.spad" 23122 23133 23349 23354) (-35 "ALAGG.spad" 22620 22641 23078 23117) (-34 "AHYP.spad" 22001 22008 22610 22615) (-33 "AGG.spad" 20300 20307 21981 21996) (-32 "AGG.spad" 18573 18582 20256 20261) (-31 "AF.spad" 16999 17014 18509 18514) (-30 "ACPLOT.spad" 15570 15577 16989 16994) (-29 "ACFS.spad" 13309 13318 15460 15565) (-28 "ACFS.spad" 11146 11157 13299 13304) (-27 "ACF.spad" 7748 7755 11048 11141) (-26 "ACF.spad" 4436 4445 7738 7743) (-25 "ABELSG.spad" 3977 3984 4426 4431) (-24 "ABELSG.spad" 3516 3525 3967 3972) (-23 "ABELMON.spad" 3059 3066 3506 3511) (-22 "ABELMON.spad" 2600 2609 3049 3054) (-21 "ABELGRP.spad" 2172 2179 2590 2595) (-20 "ABELGRP.spad" 1742 1751 2162 2167) (-19 "A1AGG.spad" 870 879 1698 1737) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file
diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase
index 03d5fcf5..e11db04a 100644
--- a/src/share/algebra/category.daase
+++ b/src/share/algebra/category.daase
@@ -1,1198 +1,1198 @@
-(142449 . 3409760523)
-(((|#2| |#2|) -12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012))) ((#0=(-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) #0#) |has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-283 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))))
+(142467 . 3409778146)
+(((|#2| |#2|) -12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))) ((#0=(-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) #0#) |has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-284 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))))
(((|#2| |#2|) . T))
-((((-520)) . T))
-((($ $) -3700 (|has| |#2| (-157)) (|has| |#2| (-336)) (|has| |#2| (-424)) (|has| |#2| (-512)) (|has| |#2| (-837))) ((|#2| |#2|) . T) ((#0=(-380 (-520)) #0#) |has| |#2| (-37 (-380 (-520)))))
+((((-521)) . T))
+((($ $) -3703 (|has| |#2| (-157)) (|has| |#2| (-337)) (|has| |#2| (-425)) (|has| |#2| (-513)) (|has| |#2| (-838))) ((|#2| |#2|) . T) ((#0=(-381 (-521)) #0#) |has| |#2| (-37 (-381 (-521)))))
((($) . T))
(((|#1|) . T))
-((($) . T) ((|#1|) . T) (((-380 (-520))) |has| |#1| (-37 (-380 (-520)))))
+((($) . T) ((|#1|) . T) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
(((|#2|) . T))
-((($) -3700 (|has| |#2| (-157)) (|has| |#2| (-336)) (|has| |#2| (-424)) (|has| |#2| (-512)) (|has| |#2| (-837))) ((|#2|) . T) (((-380 (-520))) |has| |#2| (-37 (-380 (-520)))))
-(|has| |#1| (-837))
-((((-791)) . T))
-((((-791)) . T))
-((((-791)) . T))
-((($) . T) (((-380 (-520))) . T))
+((($) -3703 (|has| |#2| (-157)) (|has| |#2| (-337)) (|has| |#2| (-425)) (|has| |#2| (-513)) (|has| |#2| (-838))) ((|#2|) . T) (((-381 (-521))) |has| |#2| (-37 (-381 (-521)))))
+(|has| |#1| (-838))
+((((-792)) . T))
+((((-792)) . T))
+((((-792)) . T))
+((($) . T) (((-381 (-521))) . T))
((($) . T))
((($) . T))
(((|#2| |#2|) . T))
((((-132)) . T))
-((((-496)) . T) (((-1066)) . T) (((-201)) . T) (((-352)) . T) (((-820 (-352))) . T))
-(((|#1|) . T))
-((((-201)) . T) (((-791)) . T))
-(((|#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))
-(((|#1|) . T))
-(-3700 (|has| |#1| (-21)) (|has| |#1| (-781)))
-((($ $) . T) ((#0=(-380 (-520)) #0#) -3700 (|has| |#1| (-336)) (|has| |#1| (-322))) ((|#1| |#1|) . T))
-(-3700 (|has| |#1| (-756)) (|has| |#1| (-783)))
-((((-380 (-520))) |has| |#1| (-960 (-380 (-520)))) (((-520)) |has| |#1| (-960 (-520))) ((|#1|) . T))
-((((-791)) . T))
-((((-791)) . T))
-(-3700 (|has| |#1| (-336)) (|has| |#1| (-512)))
-(|has| |#1| (-781))
-(((|#1| |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))
+((((-497)) . T) (((-1067)) . T) (((-202)) . T) (((-353)) . T) (((-821 (-353))) . T))
+(((|#1|) . T))
+((((-202)) . T) (((-792)) . T))
+(((|#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
+(((|#1|) . T))
+(-3703 (|has| |#1| (-21)) (|has| |#1| (-782)))
+((($ $) . T) ((#0=(-381 (-521)) #0#) -3703 (|has| |#1| (-337)) (|has| |#1| (-323))) ((|#1| |#1|) . T))
+(-3703 (|has| |#1| (-757)) (|has| |#1| (-784)))
+((((-381 (-521))) |has| |#1| (-961 (-381 (-521)))) (((-521)) |has| |#1| (-961 (-521))) ((|#1|) . T))
+((((-792)) . T))
+((((-792)) . T))
+(-3703 (|has| |#1| (-337)) (|has| |#1| (-513)))
+(|has| |#1| (-782))
+(((|#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
(((|#1| |#2| |#3|) . T))
(((|#4|) . T))
-((($) . T) (((-380 (-520))) -3700 (|has| |#1| (-336)) (|has| |#1| (-322))) ((|#1|) . T))
-((((-791)) . T))
-((((-791)) |has| |#1| (-1012)))
+((($) . T) (((-381 (-521))) -3703 (|has| |#1| (-337)) (|has| |#1| (-323))) ((|#1|) . T))
+((((-792)) . T))
+((((-792)) |has| |#1| (-1013)))
(((|#1|) . T) ((|#2|) . T))
-(((|#1|) . T) (((-520)) |has| |#1| (-960 (-520))) (((-380 (-520))) |has| |#1| (-960 (-380 (-520)))))
-(-3700 (|has| |#2| (-157)) (|has| |#2| (-424)) (|has| |#2| (-512)) (|has| |#2| (-837)))
-(-3700 (|has| |#1| (-157)) (|has| |#1| (-424)) (|has| |#1| (-512)) (|has| |#1| (-837)))
-(((|#2| (-453 (-3474 |#1|) (-706))) . T))
-(((|#1| (-492 (-1083))) . T))
-(((#0=(-798 |#1|) #0#) . T) ((#1=(-380 (-520)) #1#) . T) (($ $) . T))
-((((-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) . T))
-(|has| |#4| (-341))
-(|has| |#3| (-341))
-(((|#1|) . T))
-((((-798 |#1|)) . T) (((-380 (-520))) . T) (($) . T))
+(((|#1|) . T) (((-521)) |has| |#1| (-961 (-521))) (((-381 (-521))) |has| |#1| (-961 (-381 (-521)))))
+(-3703 (|has| |#2| (-157)) (|has| |#2| (-425)) (|has| |#2| (-513)) (|has| |#2| (-838)))
+(-3703 (|has| |#1| (-157)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-838)))
+(((|#2| (-454 (-3475 |#1|) (-707))) . T))
+(((|#1| (-493 (-1084))) . T))
+(((#0=(-799 |#1|) #0#) . T) ((#1=(-381 (-521)) #1#) . T) (($ $) . T))
+((((-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) . T))
+(|has| |#4| (-342))
+(|has| |#3| (-342))
+(((|#1|) . T))
+((((-799 |#1|)) . T) (((-381 (-521))) . T) (($) . T))
(((|#1| |#2|) . T))
((($) . T))
(|has| |#1| (-133))
(|has| |#1| (-135))
-(|has| |#1| (-512))
-(-3700 (|has| |#1| (-336)) (|has| |#1| (-512)))
-(-3700 (|has| |#1| (-336)) (|has| |#1| (-512)))
-((($) . T))
-((((-791)) -3700 (|has| |#1| (-560 (-791))) (|has| |#1| (-783)) (|has| |#1| (-1012))))
-((((-496)) |has| |#1| (-561 (-496))))
-((($) . T) (((-380 (-520))) |has| |#1| (-37 (-380 (-520)))) ((|#1|) . T))
-((($) . T))
-(((|#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))
-(((|#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))
-((((-791)) . T))
-((((-791)) . T))
-((((-380 (-520))) . T) (($) . T))
-((((-380 (-520))) -3700 (|has| |#1| (-37 (-380 (-520)))) (|has| |#1| (-336))) (((-1156 |#1| |#2| |#3|)) |has| |#1| (-336)) (($) . T) ((|#1|) . T))
-((((-791)) . T))
-((((-791)) . T))
-((((-791)) . T))
-(((|#1|) . T))
-(((|#1|) . T) (((-380 (-520))) -3700 (|has| |#1| (-37 (-380 (-520)))) (|has| |#1| (-336))) (($) . T))
-(((|#1|) . T) (((-380 (-520))) |has| |#1| (-37 (-380 (-520)))) (($) . T))
-(-3700 (|has| |#1| (-783)) (|has| |#1| (-1012)))
+(|has| |#1| (-513))
+(-3703 (|has| |#1| (-337)) (|has| |#1| (-513)))
+(-3703 (|has| |#1| (-337)) (|has| |#1| (-513)))
+((($) . T))
+((((-792)) -3703 (|has| |#1| (-561 (-792))) (|has| |#1| (-784)) (|has| |#1| (-1013))))
+((((-497)) |has| |#1| (-562 (-497))))
+((($) . T) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))) ((|#1|) . T))
+((($) . T))
+(((|#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
+(((|#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
+((((-792)) . T))
+((((-792)) . T))
+((((-381 (-521))) . T) (($) . T))
+((((-381 (-521))) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))) (((-1157 |#1| |#2| |#3|)) |has| |#1| (-337)) (($) . T) ((|#1|) . T))
+((((-792)) . T))
+((((-792)) . T))
+((((-792)) . T))
+(((|#1|) . T))
+(((|#1|) . T) (((-381 (-521))) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))) (($) . T))
+(((|#1|) . T) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))) (($) . T))
+(-3703 (|has| |#1| (-784)) (|has| |#1| (-1013)))
(((|#1| |#2|) . T))
-((((-791)) . T))
+((((-792)) . T))
(((|#1|) . T))
-(((#0=(-380 (-520)) #0#) |has| |#2| (-37 (-380 (-520)))) ((|#2| |#2|) . T) (($ $) -3700 (|has| |#2| (-157)) (|has| |#2| (-424)) (|has| |#2| (-512)) (|has| |#2| (-837))))
+(((#0=(-381 (-521)) #0#) |has| |#2| (-37 (-381 (-521)))) ((|#2| |#2|) . T) (($ $) -3703 (|has| |#2| (-157)) (|has| |#2| (-425)) (|has| |#2| (-513)) (|has| |#2| (-838))))
(((|#1|) . T))
-((((-380 (-520))) |has| |#2| (-37 (-380 (-520)))) ((|#2|) |has| |#2| (-157)) (($) -3700 (|has| |#2| (-424)) (|has| |#2| (-512)) (|has| |#2| (-837))))
-((($) -3700 (|has| |#1| (-424)) (|has| |#1| (-512)) (|has| |#1| (-837))) ((|#1|) |has| |#1| (-157)) (((-380 (-520))) |has| |#1| (-37 (-380 (-520)))))
-(((|#1|) . T) (((-380 (-520))) . T) (($) . T))
-(((|#1|) . T) (((-380 (-520))) . T) (($) . T))
-(((|#1|) . T) (((-380 (-520))) . T) (($) . T))
-(((#0=(-380 (-520)) #0#) |has| |#1| (-37 (-380 (-520)))) ((|#1| |#1|) . T) (($ $) -3700 (|has| |#1| (-157)) (|has| |#1| (-424)) (|has| |#1| (-512)) (|has| |#1| (-837))))
+((((-381 (-521))) |has| |#2| (-37 (-381 (-521)))) ((|#2|) |has| |#2| (-157)) (($) -3703 (|has| |#2| (-425)) (|has| |#2| (-513)) (|has| |#2| (-838))))
+((($) -3703 (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-838))) ((|#1|) |has| |#1| (-157)) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
+(((|#1|) . T) (((-381 (-521))) . T) (($) . T))
+(((|#1|) . T) (((-381 (-521))) . T) (($) . T))
+(((|#1|) . T) (((-381 (-521))) . T) (($) . T))
+(((#0=(-381 (-521)) #0#) |has| |#1| (-37 (-381 (-521)))) ((|#1| |#1|) . T) (($ $) -3703 (|has| |#1| (-157)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-838))))
((($ $) . T))
(((|#2|) . T))
-((((-380 (-520))) |has| |#2| (-37 (-380 (-520)))) ((|#2|) . T) (($) -3700 (|has| |#2| (-157)) (|has| |#2| (-424)) (|has| |#2| (-512)) (|has| |#2| (-837))))
-((((-380 (-520))) |has| |#1| (-37 (-380 (-520)))) ((|#1|) . T) (($) -3700 (|has| |#1| (-157)) (|has| |#1| (-424)) (|has| |#1| (-512)) (|has| |#1| (-837))))
+((((-381 (-521))) |has| |#2| (-37 (-381 (-521)))) ((|#2|) . T) (($) -3703 (|has| |#2| (-157)) (|has| |#2| (-425)) (|has| |#2| (-513)) (|has| |#2| (-838))))
+((((-381 (-521))) |has| |#1| (-37 (-381 (-521)))) ((|#1|) . T) (($) -3703 (|has| |#1| (-157)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-838))))
((($) . T))
-(|has| |#1| (-341))
+(|has| |#1| (-342))
(((|#1|) . T))
-((((-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))
-((((-791)) . T))
-((((-791)) . T))
+((((-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
+((((-792)) . T))
+((((-792)) . T))
(((|#1| |#2|) . T))
-(-3700 (|has| |#1| (-21)) (|has| |#1| (-157)) (|has| |#1| (-336)) (|has| |#1| (-828 (-1083))) (|has| |#1| (-969)))
-(-3700 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-157)) (|has| |#1| (-336)) (|has| |#1| (-828 (-1083))) (|has| |#1| (-969)))
+(-3703 (|has| |#1| (-21)) (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-829 (-1084))) (|has| |#1| (-970)))
+(-3703 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-829 (-1084))) (|has| |#1| (-970)))
(((|#1| |#1|) . T))
-(|has| |#1| (-512))
-(((|#2| |#2|) -12 (|has| |#1| (-336)) (|has| |#2| (-283 |#2|))) (((-1083) |#2|) -12 (|has| |#1| (-336)) (|has| |#2| (-481 (-1083) |#2|))))
-((((-380 |#2|)) . T) (((-380 (-520))) . T) (($) . T))
-(-3700 (|has| |#1| (-21)) (|has| |#1| (-781)))
-((($ $) . T) ((#0=(-380 (-520)) #0#) . T))
-(-3700 (|has| |#1| (-157)) (|has| |#1| (-336)) (|has| |#1| (-512)))
-(-3700 (|has| |#1| (-783)) (|has| |#1| (-1012)))
-(|has| |#1| (-1012))
-(-3700 (|has| |#1| (-783)) (|has| |#1| (-1012)))
-(|has| |#1| (-1012))
-(-3700 (|has| |#1| (-783)) (|has| |#1| (-1012)))
-(|has| |#1| (-781))
-((($) . T) (((-380 (-520))) . T))
-(((|#1|) . T))
-(-3700 (|has| |#1| (-336)) (|has| |#1| (-322)))
-(-3700 (|has| |#4| (-728)) (|has| |#4| (-781)))
-(-3700 (|has| |#4| (-728)) (|has| |#4| (-781)))
-(-3700 (|has| |#3| (-728)) (|has| |#3| (-781)))
-(-3700 (|has| |#3| (-728)) (|has| |#3| (-781)))
+(|has| |#1| (-513))
+(((|#2| |#2|) -12 (|has| |#1| (-337)) (|has| |#2| (-284 |#2|))) (((-1084) |#2|) -12 (|has| |#1| (-337)) (|has| |#2| (-482 (-1084) |#2|))))
+((((-381 |#2|)) . T) (((-381 (-521))) . T) (($) . T))
+(-3703 (|has| |#1| (-21)) (|has| |#1| (-782)))
+((($ $) . T) ((#0=(-381 (-521)) #0#) . T))
+(-3703 (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-513)))
+(-3703 (|has| |#1| (-784)) (|has| |#1| (-1013)))
+(|has| |#1| (-1013))
+(-3703 (|has| |#1| (-784)) (|has| |#1| (-1013)))
+(|has| |#1| (-1013))
+(-3703 (|has| |#1| (-784)) (|has| |#1| (-1013)))
+(|has| |#1| (-782))
+((($) . T) (((-381 (-521))) . T))
+(((|#1|) . T))
+(-3703 (|has| |#1| (-337)) (|has| |#1| (-323)))
+(-3703 (|has| |#4| (-729)) (|has| |#4| (-782)))
+(-3703 (|has| |#4| (-729)) (|has| |#4| (-782)))
+(-3703 (|has| |#3| (-729)) (|has| |#3| (-782)))
+(-3703 (|has| |#3| (-729)) (|has| |#3| (-782)))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
-(|has| |#1| (-1012))
-(|has| |#1| (-1012))
-(((|#1| (-1083) (-1002 (-1083)) (-492 (-1002 (-1083)))) . T))
-((((-520) |#1|) . T))
-((((-520)) . T))
-((((-520)) . T))
-((((-838 |#1|)) . T))
-(((|#1| (-492 |#2|)) . T))
-((((-520)) . T))
-((((-520)) . T))
-(((|#1|) . T))
-(-3700 (|has| |#2| (-157)) (|has| |#2| (-781)) (|has| |#2| (-969)))
-(((|#1| (-706)) . T))
-(|has| |#2| (-728))
-(-3700 (|has| |#2| (-728)) (|has| |#2| (-781)))
-(|has| |#2| (-781))
+(|has| |#1| (-1013))
+(|has| |#1| (-1013))
+(((|#1| (-1084) (-1003 (-1084)) (-493 (-1003 (-1084)))) . T))
+((((-521) |#1|) . T))
+((((-521)) . T))
+((((-521)) . T))
+((((-839 |#1|)) . T))
+(((|#1| (-493 |#2|)) . T))
+((((-521)) . T))
+((((-521)) . T))
+(((|#1|) . T))
+(-3703 (|has| |#2| (-157)) (|has| |#2| (-782)) (|has| |#2| (-970)))
+(((|#1| (-707)) . T))
+(|has| |#2| (-729))
+(-3703 (|has| |#2| (-729)) (|has| |#2| (-782)))
+(|has| |#2| (-782))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2|) . T))
-((((-1066) |#1|) . T))
-((((-791)) -3700 (|has| |#1| (-560 (-791))) (|has| |#1| (-1012))))
+((((-1067) |#1|) . T))
+((((-792)) -3703 (|has| |#1| (-561 (-792))) (|has| |#1| (-1013))))
(((|#1|) . T))
-(((|#3| (-706)) . T))
+(((|#3| (-707)) . T))
(|has| |#1| (-135))
(|has| |#1| (-133))
-(-3700 (|has| |#1| (-157)) (|has| |#1| (-336)) (|has| |#1| (-512)))
-(-3700 (|has| |#1| (-157)) (|has| |#1| (-336)) (|has| |#1| (-512)))
-(|has| |#1| (-1012))
-((((-380 (-520))) . T) (((-520)) . T))
-((((-1083) |#2|) |has| |#2| (-481 (-1083) |#2|)) ((|#2| |#2|) |has| |#2| (-283 |#2|)))
-((((-380 (-520))) . T) (((-520)) . T))
+(-3703 (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-513)))
+(-3703 (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-513)))
+(|has| |#1| (-1013))
+((((-381 (-521))) . T) (((-521)) . T))
+((((-1084) |#2|) |has| |#2| (-482 (-1084) |#2|)) ((|#2| |#2|) |has| |#2| (-284 |#2|)))
+((((-381 (-521))) . T) (((-521)) . T))
(((|#1|) . T) (($) . T))
-((((-520)) . T))
-((((-520)) . T))
-((($) -3700 (|has| |#1| (-336)) (|has| |#1| (-512))) (((-380 (-520))) -3700 (|has| |#1| (-37 (-380 (-520)))) (|has| |#1| (-336))) ((|#1|) |has| |#1| (-157)))
-((((-520)) . T))
-((((-520)) . T))
-(((#0=(-635) (-1079 #0#)) . T))
-((((-380 (-520))) . T) (($) . T))
-(((|#1|) . T) (((-380 (-520))) . T) (($) . T))
-((((-520) |#1|) . T))
-((($) . T) (((-520)) . T) (((-380 (-520))) . T))
-(((|#1|) . T))
-(|has| |#2| (-336))
+((((-521)) . T))
+((((-521)) . T))
+((($) -3703 (|has| |#1| (-337)) (|has| |#1| (-513))) (((-381 (-521))) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))) ((|#1|) |has| |#1| (-157)))
+((((-521)) . T))
+((((-521)) . T))
+(((#0=(-636) (-1080 #0#)) . T))
+((((-381 (-521))) . T) (($) . T))
+(((|#1|) . T) (((-381 (-521))) . T) (($) . T))
+((((-521) |#1|) . T))
+((($) . T) (((-521)) . T) (((-381 (-521))) . T))
+(((|#1|) . T))
+(|has| |#2| (-337))
(((|#1|) . T))
(((|#1| |#2|) . T))
-((((-791)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))
-((((-1066) |#1|) . T))
+((((-792)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
+((((-1067) |#1|) . T))
(((|#3| |#3|) . T))
-((((-791)) . T))
-((((-791)) . T))
+((((-792)) . T))
+((((-792)) . T))
(((|#1| |#1|) . T))
-(((#0=(-380 (-520)) #0#) |has| |#1| (-37 (-380 (-520)))) ((|#1| |#1|) . T) (($ $) -3700 (|has| |#1| (-157)) (|has| |#1| (-424)) (|has| |#1| (-512)) (|has| |#1| (-837))))
-((($ $) -3700 (|has| |#1| (-157)) (|has| |#1| (-336)) (|has| |#1| (-424)) (|has| |#1| (-512)) (|has| |#1| (-837))) ((|#1| |#1|) . T) ((#0=(-380 (-520)) #0#) |has| |#1| (-37 (-380 (-520)))))
-(((|#1|) . T))
-((((-380 (-520))) |has| |#1| (-37 (-380 (-520)))) ((|#1|) . T) (($) -3700 (|has| |#1| (-157)) (|has| |#1| (-424)) (|has| |#1| (-512)) (|has| |#1| (-837))))
-((($) -3700 (|has| |#1| (-157)) (|has| |#1| (-336)) (|has| |#1| (-424)) (|has| |#1| (-512)) (|has| |#1| (-837))) ((|#1|) . T) (((-380 (-520))) |has| |#1| (-37 (-380 (-520)))))
-((($) -3700 (|has| |#2| (-157)) (|has| |#2| (-781)) (|has| |#2| (-969))) ((|#2|) -3700 (|has| |#2| (-157)) (|has| |#2| (-336)) (|has| |#2| (-969))))
-((((-791)) . T))
-((((-791)) . T))
-((((-791)) . T))
-((((-791)) . T))
-((((-791)) . T))
-((((-520) |#1|) . T))
-((((-791)) . T))
-((((-154 (-201))) |has| |#1| (-945)) (((-154 (-352))) |has| |#1| (-945)) (((-496)) |has| |#1| (-561 (-496))) (((-1079 |#1|)) . T) (((-820 (-520))) |has| |#1| (-561 (-820 (-520)))) (((-820 (-352))) |has| |#1| (-561 (-820 (-352)))))
-(((|#1| |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))
-(((|#1|) . T))
-(-3700 (|has| |#1| (-21)) (|has| |#1| (-781)))
-(-3700 (|has| |#1| (-21)) (|has| |#1| (-781)))
-((((-380 (-520))) -3700 (|has| |#1| (-37 (-380 (-520)))) (|has| |#1| (-336))) (($) -3700 (|has| |#1| (-336)) (|has| |#1| (-512))) ((|#2|) |has| |#1| (-336)) ((|#1|) |has| |#1| (-157)))
-(((|#1|) |has| |#1| (-157)) (((-380 (-520))) -3700 (|has| |#1| (-37 (-380 (-520)))) (|has| |#1| (-336))) (($) -3700 (|has| |#1| (-336)) (|has| |#1| (-512))))
-(|has| |#1| (-336))
-(-12 (|has| |#4| (-209)) (|has| |#4| (-969)))
-(-12 (|has| |#3| (-209)) (|has| |#3| (-969)))
-(-3700 (|has| |#4| (-157)) (|has| |#4| (-781)) (|has| |#4| (-969)))
-(-3700 (|has| |#3| (-157)) (|has| |#3| (-781)) (|has| |#3| (-969)))
-((((-791)) . T))
-(((|#1|) . T))
-((((-380 (-520))) |has| |#1| (-960 (-380 (-520)))) (((-520)) |has| |#1| (-960 (-520))) ((|#1|) . T))
-(((|#1|) . T) (((-520)) |has| |#1| (-582 (-520))))
-(((|#2|) . T) (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) . T))
-(((|#1|) . T) (((-2 (|:| -2526 (-1066)) (|:| -3043 |#1|))) . T))
-(|has| |#1| (-512))
-(|has| |#1| (-512))
-(((|#1| |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))
-(-3700 (|has| |#1| (-783)) (|has| |#1| (-1012)))
-(((|#1|) . T))
-(|has| |#1| (-512))
-(|has| |#1| (-512))
-(|has| |#1| (-512))
-((((-635)) . T))
-(((|#1|) . T))
-(-12 (|has| |#1| (-926)) (|has| |#1| (-1104)))
-(((|#2|) . T) (($) . T) (((-380 (-520))) . T))
-(-12 (|has| |#1| (-1012)) (|has| |#2| (-1012)))
-((($) . T) (((-380 (-520))) |has| |#1| (-37 (-380 (-520)))) ((|#1|) . T))
-((((-380 (-520))) -3700 (|has| |#1| (-37 (-380 (-520)))) (|has| |#1| (-336))) (((-1081 |#1| |#2| |#3|)) |has| |#1| (-336)) (($) . T) ((|#1|) . T))
-(((|#1|) . T) (((-380 (-520))) -3700 (|has| |#1| (-37 (-380 (-520)))) (|has| |#1| (-336))) (($) . T))
-(((|#1|) . T) (((-380 (-520))) |has| |#1| (-37 (-380 (-520)))) (($) . T))
-(((|#4| |#4|) -3700 (|has| |#4| (-157)) (|has| |#4| (-336)) (|has| |#4| (-969))) (($ $) |has| |#4| (-157)))
-(((|#3| |#3|) -3700 (|has| |#3| (-157)) (|has| |#3| (-336)) (|has| |#3| (-969))) (($ $) |has| |#3| (-157)))
-(((|#1|) . T))
-(((|#2|) . T))
-((((-496)) |has| |#2| (-561 (-496))) (((-820 (-352))) |has| |#2| (-561 (-820 (-352)))) (((-820 (-520))) |has| |#2| (-561 (-820 (-520)))))
-((((-791)) . T))
+(((#0=(-381 (-521)) #0#) |has| |#1| (-37 (-381 (-521)))) ((|#1| |#1|) . T) (($ $) -3703 (|has| |#1| (-157)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-838))))
+((($ $) -3703 (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-838))) ((|#1| |#1|) . T) ((#0=(-381 (-521)) #0#) |has| |#1| (-37 (-381 (-521)))))
+(((|#1|) . T))
+((((-381 (-521))) |has| |#1| (-37 (-381 (-521)))) ((|#1|) . T) (($) -3703 (|has| |#1| (-157)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-838))))
+((($) -3703 (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-838))) ((|#1|) . T) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
+((($) -3703 (|has| |#2| (-157)) (|has| |#2| (-782)) (|has| |#2| (-970))) ((|#2|) -3703 (|has| |#2| (-157)) (|has| |#2| (-337)) (|has| |#2| (-970))))
+((((-792)) . T))
+((((-792)) . T))
+((((-792)) . T))
+((((-792)) . T))
+((((-792)) . T))
+((((-521) |#1|) . T))
+((((-792)) . T))
+((((-154 (-202))) |has| |#1| (-946)) (((-154 (-353))) |has| |#1| (-946)) (((-497)) |has| |#1| (-562 (-497))) (((-1080 |#1|)) . T) (((-821 (-521))) |has| |#1| (-562 (-821 (-521)))) (((-821 (-353))) |has| |#1| (-562 (-821 (-353)))))
+(((|#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
+(((|#1|) . T))
+(-3703 (|has| |#1| (-21)) (|has| |#1| (-782)))
+(-3703 (|has| |#1| (-21)) (|has| |#1| (-782)))
+((((-381 (-521))) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))) (($) -3703 (|has| |#1| (-337)) (|has| |#1| (-513))) ((|#2|) |has| |#1| (-337)) ((|#1|) |has| |#1| (-157)))
+(((|#1|) |has| |#1| (-157)) (((-381 (-521))) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))) (($) -3703 (|has| |#1| (-337)) (|has| |#1| (-513))))
+(|has| |#1| (-337))
+(-12 (|has| |#4| (-210)) (|has| |#4| (-970)))
+(-12 (|has| |#3| (-210)) (|has| |#3| (-970)))
+(-3703 (|has| |#4| (-157)) (|has| |#4| (-782)) (|has| |#4| (-970)))
+(-3703 (|has| |#3| (-157)) (|has| |#3| (-782)) (|has| |#3| (-970)))
+((((-792)) . T))
+(((|#1|) . T))
+((((-381 (-521))) |has| |#1| (-961 (-381 (-521)))) (((-521)) |has| |#1| (-961 (-521))) ((|#1|) . T))
+(((|#1|) . T) (((-521)) |has| |#1| (-583 (-521))))
+(((|#2|) . T) (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) . T))
+(((|#1|) . T) (((-2 (|:| -2529 (-1067)) (|:| -3045 |#1|))) . T))
+(|has| |#1| (-513))
+(|has| |#1| (-513))
+(((|#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
+(-3703 (|has| |#1| (-784)) (|has| |#1| (-1013)))
+(((|#1|) . T))
+(|has| |#1| (-513))
+(|has| |#1| (-513))
+(|has| |#1| (-513))
+((((-636)) . T))
+(((|#1|) . T))
+(-12 (|has| |#1| (-927)) (|has| |#1| (-1105)))
+(((|#2|) . T) (($) . T) (((-381 (-521))) . T))
+(-12 (|has| |#1| (-1013)) (|has| |#2| (-1013)))
+((($) . T) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))) ((|#1|) . T))
+((((-381 (-521))) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))) (((-1082 |#1| |#2| |#3|)) |has| |#1| (-337)) (($) . T) ((|#1|) . T))
+(((|#1|) . T) (((-381 (-521))) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))) (($) . T))
+(((|#1|) . T) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))) (($) . T))
+(((|#4| |#4|) -3703 (|has| |#4| (-157)) (|has| |#4| (-337)) (|has| |#4| (-970))) (($ $) |has| |#4| (-157)))
+(((|#3| |#3|) -3703 (|has| |#3| (-157)) (|has| |#3| (-337)) (|has| |#3| (-970))) (($ $) |has| |#3| (-157)))
+(((|#1|) . T))
+(((|#2|) . T))
+((((-497)) |has| |#2| (-562 (-497))) (((-821 (-353))) |has| |#2| (-562 (-821 (-353)))) (((-821 (-521))) |has| |#2| (-562 (-821 (-521)))))
+((((-792)) . T))
(((|#1| |#2| |#3| |#4|) . T))
-((((-791)) . T))
-((((-496)) |has| |#1| (-561 (-496))) (((-820 (-352))) |has| |#1| (-561 (-820 (-352)))) (((-820 (-520))) |has| |#1| (-561 (-820 (-520)))))
-((((-791)) . T))
-(((|#4|) -3700 (|has| |#4| (-157)) (|has| |#4| (-336)) (|has| |#4| (-969))) (($) |has| |#4| (-157)))
-(((|#3|) -3700 (|has| |#3| (-157)) (|has| |#3| (-336)) (|has| |#3| (-969))) (($) |has| |#3| (-157)))
-((((-791)) . T))
-((((-496)) . T) (((-520)) . T) (((-820 (-520))) . T) (((-352)) . T) (((-201)) . T))
-(((|#1|) . T) (((-520)) |has| |#1| (-960 (-520))) (((-380 (-520))) |has| |#1| (-960 (-380 (-520)))))
-((($) . T) (((-380 (-520))) |has| |#2| (-37 (-380 (-520)))) ((|#2|) . T))
-((((-380 $) (-380 $)) |has| |#2| (-512)) (($ $) . T) ((|#2| |#2|) . T))
-((((-2 (|:| -2526 (-1066)) (|:| -3043 (-51)))) . T))
-(((|#1|) . T))
-(|has| |#2| (-837))
-((((-1066) (-51)) . T))
-((((-520)) |has| #0=(-380 |#2|) (-582 (-520))) ((#0#) . T))
-((((-496)) . T) (((-201)) . T) (((-352)) . T) (((-820 (-352))) . T))
-((((-791)) . T))
-(-3700 (|has| |#1| (-21)) (|has| |#1| (-157)) (|has| |#1| (-336)) (|has| |#1| (-828 (-1083))) (|has| |#1| (-969)))
+((((-792)) . T))
+((((-497)) |has| |#1| (-562 (-497))) (((-821 (-353))) |has| |#1| (-562 (-821 (-353)))) (((-821 (-521))) |has| |#1| (-562 (-821 (-521)))))
+((((-792)) . T))
+(((|#4|) -3703 (|has| |#4| (-157)) (|has| |#4| (-337)) (|has| |#4| (-970))) (($) |has| |#4| (-157)))
+(((|#3|) -3703 (|has| |#3| (-157)) (|has| |#3| (-337)) (|has| |#3| (-970))) (($) |has| |#3| (-157)))
+((((-792)) . T))
+((((-497)) . T) (((-521)) . T) (((-821 (-521))) . T) (((-353)) . T) (((-202)) . T))
+(((|#1|) . T) (((-521)) |has| |#1| (-961 (-521))) (((-381 (-521))) |has| |#1| (-961 (-381 (-521)))))
+((($) . T) (((-381 (-521))) |has| |#2| (-37 (-381 (-521)))) ((|#2|) . T))
+((((-381 $) (-381 $)) |has| |#2| (-513)) (($ $) . T) ((|#2| |#2|) . T))
+((((-2 (|:| -2529 (-1067)) (|:| -3045 (-51)))) . T))
+(((|#1|) . T))
+(|has| |#2| (-838))
+((((-1067) (-51)) . T))
+((((-521)) |has| #0=(-381 |#2|) (-583 (-521))) ((#0#) . T))
+((((-497)) . T) (((-202)) . T) (((-353)) . T) (((-821 (-353))) . T))
+((((-792)) . T))
+(-3703 (|has| |#1| (-21)) (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-829 (-1084))) (|has| |#1| (-970)))
(((|#1|) |has| |#1| (-157)))
-(((|#1| $) |has| |#1| (-260 |#1| |#1|)))
-((((-791)) . T))
-((((-791)) . T))
-((((-380 (-520))) . T) (($) . T))
-((((-380 (-520))) . T) (($) . T))
-((((-791)) . T))
-(|has| |#1| (-783))
-(|has| |#1| (-1012))
-(((|#1|) . T))
-((((-791)) -3700 (|has| |#1| (-560 (-791))) (|has| |#1| (-783)) (|has| |#1| (-1012))))
-((((-496)) |has| |#1| (-561 (-496))))
-((((-380 (-520))) |has| |#2| (-37 (-380 (-520)))) ((|#2|) |has| |#2| (-157)) (($) -3700 (|has| |#2| (-424)) (|has| |#2| (-512)) (|has| |#2| (-837))))
-((($) -3700 (|has| |#1| (-424)) (|has| |#1| (-512)) (|has| |#1| (-837))) ((|#1|) |has| |#1| (-157)) (((-380 (-520))) |has| |#1| (-37 (-380 (-520)))))
-((($) -3700 (|has| |#1| (-336)) (|has| |#1| (-424)) (|has| |#1| (-512)) (|has| |#1| (-837))) ((|#1|) |has| |#1| (-157)) (((-380 (-520))) |has| |#1| (-37 (-380 (-520)))))
-(|has| |#1| (-209))
-((($) -3700 (|has| |#1| (-424)) (|has| |#1| (-512)) (|has| |#1| (-837))) ((|#1|) |has| |#1| (-157)) (((-380 (-520))) |has| |#1| (-37 (-380 (-520)))))
-(((|#1| (-492 (-754 (-1083)))) . T))
-(((|#1| (-896)) . T))
-(((#0=(-798 |#1|) $) |has| #0# (-260 #0# #0#)))
-((((-520) |#4|) . T))
-((((-520) |#3|) . T))
+(((|#1| $) |has| |#1| (-261 |#1| |#1|)))
+((((-792)) . T))
+((((-792)) . T))
+((((-381 (-521))) . T) (($) . T))
+((((-381 (-521))) . T) (($) . T))
+((((-792)) . T))
+(|has| |#1| (-784))
+(|has| |#1| (-1013))
+(((|#1|) . T))
+((((-792)) -3703 (|has| |#1| (-561 (-792))) (|has| |#1| (-784)) (|has| |#1| (-1013))))
+((((-497)) |has| |#1| (-562 (-497))))
+((((-381 (-521))) |has| |#2| (-37 (-381 (-521)))) ((|#2|) |has| |#2| (-157)) (($) -3703 (|has| |#2| (-425)) (|has| |#2| (-513)) (|has| |#2| (-838))))
+((($) -3703 (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-838))) ((|#1|) |has| |#1| (-157)) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
+((($) -3703 (|has| |#1| (-337)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-838))) ((|#1|) |has| |#1| (-157)) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
+(|has| |#1| (-210))
+((($) -3703 (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-838))) ((|#1|) |has| |#1| (-157)) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
+(((|#1| (-493 (-755 (-1084)))) . T))
+(((|#1| (-897)) . T))
+(((#0=(-799 |#1|) $) |has| #0# (-261 #0# #0#)))
+((((-521) |#4|) . T))
+((((-521) |#3|) . T))
(((|#1|) . T))
(((|#2| |#2|) . T))
-(|has| |#1| (-1059))
-((((-2 (|:| -2526 (-1066)) (|:| -3043 |#1|))) . T))
-(|has| (-1150 |#1| |#2| |#3| |#4|) (-133))
-(|has| (-1150 |#1| |#2| |#3| |#4|) (-135))
+(|has| |#1| (-1060))
+((((-2 (|:| -2529 (-1067)) (|:| -3045 |#1|))) . T))
+(|has| (-1151 |#1| |#2| |#3| |#4|) (-133))
+(|has| (-1151 |#1| |#2| |#3| |#4|) (-135))
(|has| |#1| (-133))
(|has| |#1| (-135))
(((|#1|) |has| |#1| (-157)))
-((((-1083)) -12 (|has| |#2| (-828 (-1083))) (|has| |#2| (-969))))
+((((-1084)) -12 (|has| |#2| (-829 (-1084))) (|has| |#2| (-970))))
(((|#2|) . T))
-(|has| |#1| (-1012))
-((((-1066) |#1|) . T))
+(|has| |#1| (-1013))
+((((-1067) |#1|) . T))
(((|#1|) . T))
-(((|#2|) . T) (((-520)) |has| |#2| (-582 (-520))))
-(|has| |#2| (-341))
-(((|#1| |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))
+(((|#2|) . T) (((-521)) |has| |#2| (-583 (-521))))
+(|has| |#2| (-342))
+(((|#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
((($) . T) ((|#1|) . T))
-(((|#2|) |has| |#2| (-969)))
-((((-791)) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012))) ((#0=(-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) #0#) |has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-283 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))))
+(((|#2|) |has| |#2| (-970)))
+((((-792)) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))) ((#0=(-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) #0#) |has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-284 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))))
(((|#1|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))) ((#0=(-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) #0#) |has| (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (-283 (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)))))
-((((-520) |#1|) . T))
-((((-791)) . T))
-((((-496)) -12 (|has| |#1| (-561 (-496))) (|has| |#2| (-561 (-496)))) (((-820 (-352))) -12 (|has| |#1| (-561 (-820 (-352)))) (|has| |#2| (-561 (-820 (-352))))) (((-820 (-520))) -12 (|has| |#1| (-561 (-820 (-520)))) (|has| |#2| (-561 (-820 (-520))))))
-((((-791)) . T))
-((((-791)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((#0=(-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) #0#) |has| (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (-284 (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)))))
+((((-521) |#1|) . T))
+((((-792)) . T))
+((((-497)) -12 (|has| |#1| (-562 (-497))) (|has| |#2| (-562 (-497)))) (((-821 (-353))) -12 (|has| |#1| (-562 (-821 (-353)))) (|has| |#2| (-562 (-821 (-353))))) (((-821 (-521))) -12 (|has| |#1| (-562 (-821 (-521)))) (|has| |#2| (-562 (-821 (-521))))))
+((((-792)) . T))
+((((-792)) . T))
((($) . T))
-((($ $) -3700 (|has| |#1| (-157)) (|has| |#1| (-424)) (|has| |#1| (-512)) (|has| |#1| (-837))) ((|#1| |#1|) . T) ((#0=(-380 (-520)) #0#) |has| |#1| (-37 (-380 (-520)))))
+((($ $) -3703 (|has| |#1| (-157)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-838))) ((|#1| |#1|) . T) ((#0=(-381 (-521)) #0#) |has| |#1| (-37 (-381 (-521)))))
((($) . T))
((($) . T))
((($) . T))
-((($) -3700 (|has| |#1| (-157)) (|has| |#1| (-424)) (|has| |#1| (-512)) (|has| |#1| (-837))) ((|#1|) . T) (((-380 (-520))) |has| |#1| (-37 (-380 (-520)))))
-((((-791)) . T))
-((((-791)) . T))
-(|has| (-1149 |#2| |#3| |#4|) (-135))
-(|has| (-1149 |#2| |#3| |#4|) (-133))
-(((|#2|) |has| |#2| (-1012)) (((-520)) -12 (|has| |#2| (-960 (-520))) (|has| |#2| (-1012))) (((-380 (-520))) -12 (|has| |#2| (-960 (-380 (-520)))) (|has| |#2| (-1012))))
+((($) -3703 (|has| |#1| (-157)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-838))) ((|#1|) . T) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
+((((-792)) . T))
+((((-792)) . T))
+(|has| (-1150 |#2| |#3| |#4|) (-135))
+(|has| (-1150 |#2| |#3| |#4|) (-133))
+(((|#2|) |has| |#2| (-1013)) (((-521)) -12 (|has| |#2| (-961 (-521))) (|has| |#2| (-1013))) (((-381 (-521))) -12 (|has| |#2| (-961 (-381 (-521)))) (|has| |#2| (-1013))))
(((|#1|) . T))
-(|has| |#1| (-1012))
-((((-791)) . T))
+(|has| |#1| (-1013))
+((((-792)) . T))
(((|#1|) . T))
(((|#1|) . T))
-(-3700 (|has| |#1| (-21)) (|has| |#1| (-157)) (|has| |#1| (-336)) (|has| |#1| (-828 (-1083))) (|has| |#1| (-969)))
+(-3703 (|has| |#1| (-21)) (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-829 (-1084))) (|has| |#1| (-970)))
(((|#1|) . T))
-((((-520) |#1|) . T))
+((((-521) |#1|) . T))
(((|#2|) |has| |#2| (-157)))
(((|#1|) |has| |#1| (-157)))
(((|#1|) . T))
-(-3700 (|has| |#1| (-21)) (|has| |#1| (-781)))
-((((-791)) |has| |#1| (-1012)))
-(-3700 (|has| |#1| (-445)) (|has| |#1| (-662)) (|has| |#1| (-828 (-1083))) (|has| |#1| (-969)) (|has| |#1| (-1024)))
-(-3700 (|has| |#1| (-336)) (|has| |#1| (-322)))
-((((-838 |#1|)) . T))
-((((-380 |#2|) |#3|) . T))
-(|has| |#1| (-15 * (|#1| (-520) |#1|)))
-((((-380 (-520))) . T) (($) . T))
-(|has| |#1| (-783))
+(-3703 (|has| |#1| (-21)) (|has| |#1| (-782)))
+((((-792)) |has| |#1| (-1013)))
+(-3703 (|has| |#1| (-446)) (|has| |#1| (-663)) (|has| |#1| (-829 (-1084))) (|has| |#1| (-970)) (|has| |#1| (-1025)))
+(-3703 (|has| |#1| (-337)) (|has| |#1| (-323)))
+((((-839 |#1|)) . T))
+((((-381 |#2|) |#3|) . T))
+(|has| |#1| (-15 * (|#1| (-521) |#1|)))
+((((-381 (-521))) . T) (($) . T))
+(|has| |#1| (-784))
(((|#1|) . T) (($) . T))
-((((-380 (-520))) . T) (($) . T))
-((((-791)) . T))
-(((|#1|) . T))
-((((-380 (-520))) |has| |#1| (-37 (-380 (-520)))) ((|#1|) |has| |#1| (-157)) (($) |has| |#1| (-512)))
-(|has| |#1| (-336))
-(-3700 (-12 (|has| (-1156 |#1| |#2| |#3|) (-209)) (|has| |#1| (-336))) (|has| |#1| (-15 * (|#1| (-520) |#1|))))
-(|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|)))
-(|has| |#1| (-336))
-((((-520)) . T))
-(|has| |#1| (-15 * (|#1| (-706) |#1|)))
-((((-1050 |#2| (-380 (-880 |#1|)))) . T) (((-380 (-880 |#1|))) . T))
+((((-381 (-521))) . T) (($) . T))
+((((-792)) . T))
+(((|#1|) . T))
+((((-381 (-521))) |has| |#1| (-37 (-381 (-521)))) ((|#1|) |has| |#1| (-157)) (($) |has| |#1| (-513)))
+(|has| |#1| (-337))
+(-3703 (-12 (|has| (-1157 |#1| |#2| |#3|) (-210)) (|has| |#1| (-337))) (|has| |#1| (-15 * (|#1| (-521) |#1|))))
+(|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|)))
+(|has| |#1| (-337))
+((((-521)) . T))
+(|has| |#1| (-15 * (|#1| (-707) |#1|)))
+((((-1051 |#2| (-381 (-881 |#1|)))) . T) (((-381 (-881 |#1|))) . T))
((($) . T))
(((|#1|) |has| |#1| (-157)) (($) . T))
-(((|#1|) . T) (((-380 (-520))) |has| |#1| (-37 (-380 (-520)))) (($) . T))
-(((|#1|) . T))
-((((-520) |#1|) . T))
-(((|#2|) . T))
-(-3700 (|has| |#2| (-336)) (|has| |#2| (-424)) (|has| |#2| (-512)) (|has| |#2| (-837)))
-(-3700 (|has| |#2| (-728)) (|has| |#2| (-781)))
-(-3700 (|has| |#2| (-728)) (|has| |#2| (-781)))
-(((|#1|) . T))
-((((-1083)) -12 (|has| |#3| (-828 (-1083))) (|has| |#3| (-969))))
-(((|#1| |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))
-(-12 (|has| |#1| (-336)) (|has| |#2| (-756)))
-(-3700 (|has| |#1| (-281)) (|has| |#1| (-336)) (|has| |#1| (-322)) (|has| |#1| (-512)))
-(((#0=(-380 (-520)) #0#) |has| |#1| (-37 (-380 (-520)))) ((|#1| |#1|) . T) (($ $) -3700 (|has| |#1| (-157)) (|has| |#1| (-512))))
-((($ $) |has| |#1| (-512)))
-(((#0=(-635) (-1079 #0#)) . T))
-((((-791)) . T))
-((((-791)) . T) (((-1164 |#4|)) . T))
-((((-791)) . T) (((-1164 |#3|)) . T))
-((((-380 (-520))) |has| |#1| (-37 (-380 (-520)))) ((|#1|) . T) (($) -3700 (|has| |#1| (-157)) (|has| |#1| (-512))))
-((($) |has| |#1| (-512)))
-((((-791)) . T))
-((($) . T))
-((($ $) -3700 (|has| |#1| (-157)) (|has| |#1| (-336)) (|has| |#1| (-512))) ((#0=(-380 (-520)) #0#) -3700 (|has| |#1| (-37 (-380 (-520)))) (|has| |#1| (-336))) ((#1=(-1156 |#1| |#2| |#3|) #1#) |has| |#1| (-336)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -3700 (|has| |#1| (-157)) (|has| |#1| (-336)) (|has| |#1| (-512))) ((#0=(-380 (-520)) #0#) -3700 (|has| |#1| (-37 (-380 (-520)))) (|has| |#1| (-336))))
-((($ $) -3700 (|has| |#1| (-157)) (|has| |#1| (-512))) ((|#1| |#1|) . T) ((#0=(-380 (-520)) #0#) |has| |#1| (-37 (-380 (-520)))))
-((($) -3700 (|has| |#1| (-157)) (|has| |#1| (-336)) (|has| |#1| (-512))) (((-380 (-520))) -3700 (|has| |#1| (-37 (-380 (-520)))) (|has| |#1| (-336))) (((-1156 |#1| |#2| |#3|)) |has| |#1| (-336)) ((|#1|) . T))
-(((|#1|) . T) (($) -3700 (|has| |#1| (-157)) (|has| |#1| (-336)) (|has| |#1| (-512))) (((-380 (-520))) -3700 (|has| |#1| (-37 (-380 (-520)))) (|has| |#1| (-336))))
-(((|#3|) |has| |#3| (-969)))
-((($) -3700 (|has| |#1| (-157)) (|has| |#1| (-512))) ((|#1|) . T) (((-380 (-520))) |has| |#1| (-37 (-380 (-520)))))
-(|has| |#1| (-1012))
-(((|#2| (-755 |#1|)) . T))
-(((|#1|) . T))
-(|has| |#1| (-336))
-((((-380 $) (-380 $)) |has| |#1| (-512)) (($ $) . T) ((|#1| |#1|) . T))
-(((#0=(-997) |#2|) . T) ((#0# $) . T) (($ $) . T))
-((((-838 |#1|)) . T))
+(((|#1|) . T) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))) (($) . T))
+(((|#1|) . T))
+((((-521) |#1|) . T))
+(((|#2|) . T))
+(-3703 (|has| |#2| (-337)) (|has| |#2| (-425)) (|has| |#2| (-513)) (|has| |#2| (-838)))
+(-3703 (|has| |#2| (-729)) (|has| |#2| (-782)))
+(-3703 (|has| |#2| (-729)) (|has| |#2| (-782)))
+(((|#1|) . T))
+((((-1084)) -12 (|has| |#3| (-829 (-1084))) (|has| |#3| (-970))))
+(((|#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
+(-12 (|has| |#1| (-337)) (|has| |#2| (-757)))
+(-3703 (|has| |#1| (-282)) (|has| |#1| (-337)) (|has| |#1| (-323)) (|has| |#1| (-513)))
+(((#0=(-381 (-521)) #0#) |has| |#1| (-37 (-381 (-521)))) ((|#1| |#1|) . T) (($ $) -3703 (|has| |#1| (-157)) (|has| |#1| (-513))))
+((($ $) |has| |#1| (-513)))
+(((#0=(-636) (-1080 #0#)) . T))
+((((-792)) . T))
+((((-792)) . T) (((-1165 |#4|)) . T))
+((((-792)) . T) (((-1165 |#3|)) . T))
+((((-381 (-521))) |has| |#1| (-37 (-381 (-521)))) ((|#1|) . T) (($) -3703 (|has| |#1| (-157)) (|has| |#1| (-513))))
+((($) |has| |#1| (-513)))
+((((-792)) . T))
+((($) . T))
+((($ $) -3703 (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-513))) ((#0=(-381 (-521)) #0#) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))) ((#1=(-1157 |#1| |#2| |#3|) #1#) |has| |#1| (-337)) ((|#1| |#1|) . T))
+(((|#1| |#1|) . T) (($ $) -3703 (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-513))) ((#0=(-381 (-521)) #0#) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))))
+((($ $) -3703 (|has| |#1| (-157)) (|has| |#1| (-513))) ((|#1| |#1|) . T) ((#0=(-381 (-521)) #0#) |has| |#1| (-37 (-381 (-521)))))
+((($) -3703 (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-513))) (((-381 (-521))) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))) (((-1157 |#1| |#2| |#3|)) |has| |#1| (-337)) ((|#1|) . T))
+(((|#1|) . T) (($) -3703 (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-513))) (((-381 (-521))) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))))
+(((|#3|) |has| |#3| (-970)))
+((($) -3703 (|has| |#1| (-157)) (|has| |#1| (-513))) ((|#1|) . T) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
+(|has| |#1| (-1013))
+(((|#2| (-756 |#1|)) . T))
+(((|#1|) . T))
+(|has| |#1| (-337))
+((((-381 $) (-381 $)) |has| |#1| (-513)) (($ $) . T) ((|#1| |#1|) . T))
+(((#0=(-998) |#2|) . T) ((#0# $) . T) (($ $) . T))
+((((-839 |#1|)) . T))
((((-132)) . T))
((((-132)) . T))
-(((|#3|) |has| |#3| (-1012)) (((-520)) -12 (|has| |#3| (-960 (-520))) (|has| |#3| (-1012))) (((-380 (-520))) -12 (|has| |#3| (-960 (-380 (-520)))) (|has| |#3| (-1012))))
-((((-791)) . T))
-((((-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) . T))
-(((|#1|) . T))
-((((-791)) -3700 (|has| |#1| (-560 (-791))) (|has| |#1| (-783)) (|has| |#1| (-1012))))
-((((-496)) |has| |#1| (-561 (-496))))
-((((-2 (|:| -2526 (-1083)) (|:| -3043 (-51)))) . T))
-(|has| |#1| (-336))
-(-3700 (|has| |#1| (-21)) (|has| |#1| (-781)))
-((((-1083) |#1|) |has| |#1| (-481 (-1083) |#1|)) ((|#1| |#1|) |has| |#1| (-283 |#1|)))
-(|has| |#2| (-756))
-(|has| |#1| (-37 (-380 (-520))))
-(|has| |#1| (-781))
-(-3700 (|has| |#1| (-783)) (|has| |#1| (-1012)))
-((((-791)) . T))
-((((-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) . T))
-((((-496)) |has| |#1| (-561 (-496))))
+(((|#3|) |has| |#3| (-1013)) (((-521)) -12 (|has| |#3| (-961 (-521))) (|has| |#3| (-1013))) (((-381 (-521))) -12 (|has| |#3| (-961 (-381 (-521)))) (|has| |#3| (-1013))))
+((((-792)) . T))
+((((-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) . T))
+(((|#1|) . T))
+((((-792)) -3703 (|has| |#1| (-561 (-792))) (|has| |#1| (-784)) (|has| |#1| (-1013))))
+((((-497)) |has| |#1| (-562 (-497))))
+((((-2 (|:| -2529 (-1084)) (|:| -3045 (-51)))) . T))
+(|has| |#1| (-337))
+(-3703 (|has| |#1| (-21)) (|has| |#1| (-782)))
+((((-1084) |#1|) |has| |#1| (-482 (-1084) |#1|)) ((|#1| |#1|) |has| |#1| (-284 |#1|)))
+(|has| |#2| (-757))
+(|has| |#1| (-37 (-381 (-521))))
+(|has| |#1| (-782))
+(-3703 (|has| |#1| (-784)) (|has| |#1| (-1013)))
+((((-792)) . T))
+((((-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) . T))
+((((-497)) |has| |#1| (-562 (-497))))
(((|#1| |#2|) . T))
-((((-1083)) -12 (|has| |#1| (-336)) (|has| |#1| (-828 (-1083)))))
-((((-1066) |#1|) . T))
-(((|#1| |#2| |#3| (-492 |#3|)) . T))
-((((-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) . T))
-(|has| |#1| (-341))
-(|has| |#1| (-341))
-(|has| |#1| (-341))
-((((-791)) . T))
-(((|#1|) . T))
-(-3700 (|has| |#2| (-424)) (|has| |#2| (-512)) (|has| |#2| (-837)))
-(|has| |#1| (-341))
-(-3700 (|has| |#1| (-424)) (|has| |#1| (-512)) (|has| |#1| (-837)))
-((((-520)) . T))
-((((-520)) . T))
-(-3700 (|has| |#2| (-157)) (|has| |#2| (-336)) (|has| |#2| (-424)) (|has| |#2| (-512)) (|has| |#2| (-837)))
-((((-791)) . T))
-((((-791)) . T))
-(-12 (|has| |#2| (-209)) (|has| |#2| (-969)))
-((((-1083) #0=(-798 |#1|)) |has| #0# (-481 (-1083) #0#)) ((#0# #0#) |has| #0# (-283 #0#)))
-(((|#1|) . T))
-((((-520) |#4|) . T))
-((((-520) |#3|) . T))
-(((|#1|) . T) (((-520)) |has| |#1| (-582 (-520))))
-(-3700 (|has| |#2| (-157)) (|has| |#2| (-781)) (|has| |#2| (-969)))
-((((-1150 |#1| |#2| |#3| |#4|)) . T))
-((((-380 (-520))) . T) (((-520)) . T))
-((((-791)) -3700 (|has| |#1| (-560 (-791))) (|has| |#1| (-1012))))
+((((-1084)) -12 (|has| |#1| (-337)) (|has| |#1| (-829 (-1084)))))
+((((-1067) |#1|) . T))
+(((|#1| |#2| |#3| (-493 |#3|)) . T))
+((((-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) . T))
+(|has| |#1| (-342))
+(|has| |#1| (-342))
+(|has| |#1| (-342))
+((((-792)) . T))
+(((|#1|) . T))
+(-3703 (|has| |#2| (-425)) (|has| |#2| (-513)) (|has| |#2| (-838)))
+(|has| |#1| (-342))
+(-3703 (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-838)))
+((((-521)) . T))
+((((-521)) . T))
+(-3703 (|has| |#2| (-157)) (|has| |#2| (-337)) (|has| |#2| (-425)) (|has| |#2| (-513)) (|has| |#2| (-838)))
+((((-792)) . T))
+((((-792)) . T))
+(-12 (|has| |#2| (-210)) (|has| |#2| (-970)))
+((((-1084) #0=(-799 |#1|)) |has| #0# (-482 (-1084) #0#)) ((#0# #0#) |has| #0# (-284 #0#)))
+(((|#1|) . T))
+((((-521) |#4|) . T))
+((((-521) |#3|) . T))
+(((|#1|) . T) (((-521)) |has| |#1| (-583 (-521))))
+(-3703 (|has| |#2| (-157)) (|has| |#2| (-782)) (|has| |#2| (-970)))
+((((-1151 |#1| |#2| |#3| |#4|)) . T))
+((((-381 (-521))) . T) (((-521)) . T))
+((((-792)) -3703 (|has| |#1| (-561 (-792))) (|has| |#1| (-1013))))
(((|#1| |#1|) . T))
(((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))
+(((|#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
(((|#1|) . T))
(((|#1|) . T))
-((($) . T) (((-520)) . T) (((-380 (-520))) . T))
-((((-520)) . T))
-((((-520)) . T))
-((($) . T) (((-520)) . T) (((-380 (-520))) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-380 (-520)) #0#) . T))
+((($) . T) (((-521)) . T) (((-381 (-521))) . T))
+((((-521)) . T))
+((((-521)) . T))
+((($) . T) (((-521)) . T) (((-381 (-521))) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-381 (-521)) #0#) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((#0=(-520) #0#) . T) ((#1=(-380 (-520)) #1#) . T) (($ $) . T))
-(((|#1|) . T) (((-520)) |has| |#1| (-960 (-520))) (((-380 (-520))) |has| |#1| (-960 (-380 (-520)))))
-(((|#1|) . T) (($) . T) (((-380 (-520))) . T))
-(((|#1|) |has| |#1| (-512)))
-((((-520) |#4|) . T))
-((((-520) |#3|) . T))
-((((-791)) . T))
-((((-520)) . T) (((-380 (-520))) . T) (($) . T))
-((((-791)) . T))
-((((-520) |#1|) . T))
+(((#0=(-521) #0#) . T) ((#1=(-381 (-521)) #1#) . T) (($ $) . T))
+(((|#1|) . T) (((-521)) |has| |#1| (-961 (-521))) (((-381 (-521))) |has| |#1| (-961 (-381 (-521)))))
+(((|#1|) . T) (($) . T) (((-381 (-521))) . T))
+(((|#1|) |has| |#1| (-513)))
+((((-521) |#4|) . T))
+((((-521) |#3|) . T))
+((((-792)) . T))
+((((-521)) . T) (((-381 (-521))) . T) (($) . T))
+((((-792)) . T))
+((((-521) |#1|) . T))
(((|#1|) . T))
-((($ $) . T) ((#0=(-793 |#1|) $) . T) ((#0# |#2|) . T))
+((($ $) . T) ((#0=(-794 |#1|) $) . T) ((#0# |#2|) . T))
((($) . T))
-((($ $) . T) ((#0=(-1083) $) . T) ((#0# |#1|) . T))
+((($ $) . T) ((#0=(-1084) $) . T) ((#0# |#1|) . T))
(((|#2|) |has| |#2| (-157)))
-((($) -3700 (|has| |#2| (-336)) (|has| |#2| (-424)) (|has| |#2| (-512)) (|has| |#2| (-837))) ((|#2|) |has| |#2| (-157)) (((-380 (-520))) |has| |#2| (-37 (-380 (-520)))))
-(((|#2| |#2|) -3700 (|has| |#2| (-157)) (|has| |#2| (-336)) (|has| |#2| (-969))) (($ $) |has| |#2| (-157)))
+((($) -3703 (|has| |#2| (-337)) (|has| |#2| (-425)) (|has| |#2| (-513)) (|has| |#2| (-838))) ((|#2|) |has| |#2| (-157)) (((-381 (-521))) |has| |#2| (-37 (-381 (-521)))))
+(((|#2| |#2|) -3703 (|has| |#2| (-157)) (|has| |#2| (-337)) (|has| |#2| (-970))) (($ $) |has| |#2| (-157)))
((((-132)) . T))
(((|#1|) . T))
-(-12 (|has| |#1| (-341)) (|has| |#2| (-341)))
-((((-791)) . T))
-(((|#2|) -3700 (|has| |#2| (-157)) (|has| |#2| (-336)) (|has| |#2| (-969))) (($) |has| |#2| (-157)))
+(-12 (|has| |#1| (-342)) (|has| |#2| (-342)))
+((((-792)) . T))
+(((|#2|) -3703 (|has| |#2| (-157)) (|has| |#2| (-337)) (|has| |#2| (-970))) (($) |has| |#2| (-157)))
(((|#1|) . T))
-((((-791)) . T))
-(|has| |#1| (-1012))
+((((-792)) . T))
+(|has| |#1| (-1013))
(|has| $ (-135))
-((((-520) |#1|) . T))
-((($) -3700 (|has| |#1| (-281)) (|has| |#1| (-336)) (|has| |#1| (-322)) (|has| |#1| (-512))) (((-380 (-520))) -3700 (|has| |#1| (-336)) (|has| |#1| (-322))) ((|#1|) . T))
-((((-1083)) -12 (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|))) (|has| |#1| (-828 (-1083)))))
-(|has| |#1| (-336))
-(-3700 (-12 (|has| (-1081 |#1| |#2| |#3|) (-209)) (|has| |#1| (-336))) (|has| |#1| (-15 * (|#1| (-520) |#1|))))
-(|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|)))
-(|has| |#1| (-336))
-(|has| |#1| (-15 * (|#1| (-706) |#1|)))
-(((|#1|) . T))
-(-3700 (|has| |#1| (-783)) (|has| |#1| (-1012)))
-((((-791)) . T))
-(((|#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))
-(-3700 (|has| |#2| (-157)) (|has| |#2| (-424)) (|has| |#2| (-512)) (|has| |#2| (-837)))
-(((|#2| (-492 (-793 |#1|))) . T))
-((((-791)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))
-(((|#1|) . T))
-(-3700 (|has| |#1| (-157)) (|has| |#1| (-424)) (|has| |#1| (-512)) (|has| |#1| (-837)))
-(-3700 (|has| |#1| (-424)) (|has| |#1| (-512)) (|has| |#1| (-837)))
-(-3700 (|has| |#1| (-336)) (|has| |#1| (-424)) (|has| |#1| (-512)) (|has| |#1| (-837)))
-((((-533 |#1|)) . T))
+((((-521) |#1|) . T))
+((($) -3703 (|has| |#1| (-282)) (|has| |#1| (-337)) (|has| |#1| (-323)) (|has| |#1| (-513))) (((-381 (-521))) -3703 (|has| |#1| (-337)) (|has| |#1| (-323))) ((|#1|) . T))
+((((-1084)) -12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-829 (-1084)))))
+(|has| |#1| (-337))
+(-3703 (-12 (|has| (-1082 |#1| |#2| |#3|) (-210)) (|has| |#1| (-337))) (|has| |#1| (-15 * (|#1| (-521) |#1|))))
+(|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|)))
+(|has| |#1| (-337))
+(|has| |#1| (-15 * (|#1| (-707) |#1|)))
+(((|#1|) . T))
+(-3703 (|has| |#1| (-784)) (|has| |#1| (-1013)))
+((((-792)) . T))
+(((|#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
+(-3703 (|has| |#2| (-157)) (|has| |#2| (-425)) (|has| |#2| (-513)) (|has| |#2| (-838)))
+(((|#2| (-493 (-794 |#1|))) . T))
+((((-792)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
+(((|#1|) . T))
+(-3703 (|has| |#1| (-157)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-838)))
+(-3703 (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-838)))
+(-3703 (|has| |#1| (-337)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-838)))
+((((-534 |#1|)) . T))
((($) . T))
(((|#1|) . T) (($) . T))
-((((-520)) |has| |#1| (-582 (-520))) ((|#1|) . T))
+((((-521)) |has| |#1| (-583 (-521))) ((|#1|) . T))
(((|#4|) . T))
(((|#3|) . T))
-((((-798 |#1|)) . T) (($) . T) (((-380 (-520))) . T))
-((((-1083)) -12 (|has| |#2| (-828 (-1083))) (|has| |#2| (-969))))
-(((|#1|) . T))
-((((-791)) . T))
-((((-791)) . T))
-((((-520) |#2|) . T))
-((((-791)) . T))
-((((-791)) . T))
-((((-791)) . T))
+((((-799 |#1|)) . T) (($) . T) (((-381 (-521))) . T))
+((((-1084)) -12 (|has| |#2| (-829 (-1084))) (|has| |#2| (-970))))
+(((|#1|) . T))
+((((-792)) . T))
+((((-792)) . T))
+((((-521) |#2|) . T))
+((((-792)) . T))
+((((-792)) . T))
+((((-792)) . T))
(((|#1| |#2| |#3| |#4| |#5|) . T))
-(((#0=(-380 (-520)) #0#) |has| |#1| (-37 (-380 (-520)))) ((|#1| |#1|) . T) (($ $) -3700 (|has| |#1| (-157)) (|has| |#1| (-512))))
-((($ $) -3700 (|has| |#1| (-157)) (|has| |#1| (-336)) (|has| |#1| (-512))) ((#0=(-380 (-520)) #0#) -3700 (|has| |#1| (-37 (-380 (-520)))) (|has| |#1| (-336))) ((#1=(-1081 |#1| |#2| |#3|) #1#) |has| |#1| (-336)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -3700 (|has| |#1| (-157)) (|has| |#1| (-336)) (|has| |#1| (-512))) ((#0=(-380 (-520)) #0#) -3700 (|has| |#1| (-37 (-380 (-520)))) (|has| |#1| (-336))))
-((($ $) -3700 (|has| |#1| (-157)) (|has| |#1| (-512))) ((|#1| |#1|) . T) ((#0=(-380 (-520)) #0#) |has| |#1| (-37 (-380 (-520)))))
-(((|#2|) |has| |#2| (-969)))
-(|has| |#1| (-1012))
-((((-380 (-520))) |has| |#1| (-37 (-380 (-520)))) ((|#1|) . T) (($) -3700 (|has| |#1| (-157)) (|has| |#1| (-512))))
-((($) -3700 (|has| |#1| (-157)) (|has| |#1| (-336)) (|has| |#1| (-512))) (((-380 (-520))) -3700 (|has| |#1| (-37 (-380 (-520)))) (|has| |#1| (-336))) (((-1081 |#1| |#2| |#3|)) |has| |#1| (-336)) ((|#1|) . T))
-(((|#1|) . T) (($) -3700 (|has| |#1| (-157)) (|has| |#1| (-336)) (|has| |#1| (-512))) (((-380 (-520))) -3700 (|has| |#1| (-37 (-380 (-520)))) (|has| |#1| (-336))))
-((($) -3700 (|has| |#1| (-157)) (|has| |#1| (-512))) ((|#1|) . T) (((-380 (-520))) |has| |#1| (-37 (-380 (-520)))))
+(((#0=(-381 (-521)) #0#) |has| |#1| (-37 (-381 (-521)))) ((|#1| |#1|) . T) (($ $) -3703 (|has| |#1| (-157)) (|has| |#1| (-513))))
+((($ $) -3703 (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-513))) ((#0=(-381 (-521)) #0#) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))) ((#1=(-1082 |#1| |#2| |#3|) #1#) |has| |#1| (-337)) ((|#1| |#1|) . T))
+(((|#1| |#1|) . T) (($ $) -3703 (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-513))) ((#0=(-381 (-521)) #0#) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))))
+((($ $) -3703 (|has| |#1| (-157)) (|has| |#1| (-513))) ((|#1| |#1|) . T) ((#0=(-381 (-521)) #0#) |has| |#1| (-37 (-381 (-521)))))
+(((|#2|) |has| |#2| (-970)))
+(|has| |#1| (-1013))
+((((-381 (-521))) |has| |#1| (-37 (-381 (-521)))) ((|#1|) . T) (($) -3703 (|has| |#1| (-157)) (|has| |#1| (-513))))
+((($) -3703 (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-513))) (((-381 (-521))) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))) (((-1082 |#1| |#2| |#3|)) |has| |#1| (-337)) ((|#1|) . T))
+(((|#1|) . T) (($) -3703 (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-513))) (((-381 (-521))) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))))
+((($) -3703 (|has| |#1| (-157)) (|has| |#1| (-513))) ((|#1|) . T) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
(((|#1|) |has| |#1| (-157)) (($) . T))
(((|#1|) . T))
-(((#0=(-380 (-520)) #0#) |has| |#2| (-37 (-380 (-520)))) ((|#2| |#2|) . T) (($ $) -3700 (|has| |#2| (-157)) (|has| |#2| (-424)) (|has| |#2| (-512)) (|has| |#2| (-837))))
-((((-791)) . T))
-((((-380 (-520))) |has| |#2| (-37 (-380 (-520)))) ((|#2|) |has| |#2| (-157)) (($) -3700 (|has| |#2| (-424)) (|has| |#2| (-512)) (|has| |#2| (-837))))
+(((#0=(-381 (-521)) #0#) |has| |#2| (-37 (-381 (-521)))) ((|#2| |#2|) . T) (($ $) -3703 (|has| |#2| (-157)) (|has| |#2| (-425)) (|has| |#2| (-513)) (|has| |#2| (-838))))
+((((-792)) . T))
+((((-381 (-521))) |has| |#2| (-37 (-381 (-521)))) ((|#2|) |has| |#2| (-157)) (($) -3703 (|has| |#2| (-425)) (|has| |#2| (-513)) (|has| |#2| (-838))))
((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T))
-((((-380 (-520))) |has| |#1| (-37 (-380 (-520)))) ((|#1|) |has| |#1| (-157)) (($) -3700 (|has| |#1| (-424)) (|has| |#1| (-512)) (|has| |#1| (-837))))
-(((#0=(-997) |#1|) . T) ((#0# $) . T) (($ $) . T))
-((((-380 (-520))) |has| |#2| (-37 (-380 (-520)))) ((|#2|) . T) (($) -3700 (|has| |#2| (-157)) (|has| |#2| (-424)) (|has| |#2| (-512)) (|has| |#2| (-837))))
-((($) . T))
-(((|#1|) . T) (((-380 (-520))) |has| |#1| (-37 (-380 (-520)))) (($) . T))
-(-3700 (|has| |#1| (-783)) (|has| |#1| (-1012)))
-(((|#2|) |has| |#1| (-336)))
-(((|#1|) . T))
-(((|#2|) |has| |#2| (-1012)) (((-520)) -12 (|has| |#2| (-960 (-520))) (|has| |#2| (-1012))) (((-380 (-520))) -12 (|has| |#2| (-960 (-380 (-520)))) (|has| |#2| (-1012))))
-((((-520) |#1|) . T))
-(((|#1| (-380 (-520))) . T))
-((((-380 |#2|) |#3|) . T))
-((((-380 (-520))) . T) (($) . T))
-((((-380 (-520))) . T) (($) . T))
-(|has| |#1| (-37 (-380 (-520))))
-(|has| |#1| (-37 (-380 (-520))))
-(|has| |#1| (-37 (-380 (-520))))
+((((-381 (-521))) |has| |#1| (-37 (-381 (-521)))) ((|#1|) |has| |#1| (-157)) (($) -3703 (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-838))))
+(((#0=(-998) |#1|) . T) ((#0# $) . T) (($ $) . T))
+((((-381 (-521))) |has| |#2| (-37 (-381 (-521)))) ((|#2|) . T) (($) -3703 (|has| |#2| (-157)) (|has| |#2| (-425)) (|has| |#2| (-513)) (|has| |#2| (-838))))
+((($) . T))
+(((|#1|) . T) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))) (($) . T))
+(-3703 (|has| |#1| (-784)) (|has| |#1| (-1013)))
+(((|#2|) |has| |#1| (-337)))
+(((|#1|) . T))
+(((|#2|) |has| |#2| (-1013)) (((-521)) -12 (|has| |#2| (-961 (-521))) (|has| |#2| (-1013))) (((-381 (-521))) -12 (|has| |#2| (-961 (-381 (-521)))) (|has| |#2| (-1013))))
+((((-521) |#1|) . T))
+(((|#1| (-381 (-521))) . T))
+((((-381 |#2|) |#3|) . T))
+((((-381 (-521))) . T) (($) . T))
+((((-381 (-521))) . T) (($) . T))
+(|has| |#1| (-37 (-381 (-521))))
+(|has| |#1| (-37 (-381 (-521))))
+(|has| |#1| (-37 (-381 (-521))))
(|has| |#1| (-133))
(|has| |#1| (-135))
-((((-380 (-520))) |has| |#2| (-37 (-380 (-520)))) ((|#2|) |has| |#2| (-157)) (($) -3700 (|has| |#2| (-424)) (|has| |#2| (-512)) (|has| |#2| (-837))))
-((($) -3700 (|has| |#1| (-424)) (|has| |#1| (-512)) (|has| |#1| (-837))) ((|#1|) |has| |#1| (-157)) (((-380 (-520))) |has| |#1| (-37 (-380 (-520)))))
-((((-380 (-520))) . T) (($) . T))
-((((-380 (-520))) . T) (($) . T))
-((((-380 (-520))) . T) (($) . T))
-(((|#2| |#3| (-793 |#1|)) . T))
-((((-1083)) |has| |#2| (-828 (-1083))))
-(((|#1|) . T))
-(((|#1| (-492 |#2|) |#2|) . T))
-(((|#1| (-706) (-997)) . T))
-((((-380 (-520))) |has| |#2| (-336)) (($) . T))
-(((|#1| (-492 (-1002 (-1083))) (-1002 (-1083))) . T))
-(-3700 (|has| |#1| (-157)) (|has| |#1| (-424)) (|has| |#1| (-512)) (|has| |#1| (-837)))
-(-3700 (|has| |#1| (-157)) (|has| |#1| (-336)) (|has| |#1| (-424)) (|has| |#1| (-512)) (|has| |#1| (-837)))
-(((|#1|) . T))
-(-3700 (|has| |#2| (-157)) (|has| |#2| (-781)) (|has| |#2| (-969)))
-(|has| |#2| (-728))
-(-3700 (|has| |#2| (-728)) (|has| |#2| (-781)))
-(|has| |#1| (-341))
-(|has| |#1| (-341))
-(|has| |#1| (-341))
-(|has| |#2| (-781))
-((((-821 |#1|)) . T) (((-755 |#1|)) . T))
-((((-755 (-1083))) . T))
-(((|#1|) . T))
-(((|#2|) . T))
-(((|#2|) . T))
-((((-791)) . T))
-((((-791)) . T))
-((((-586 (-520))) . T))
-((((-791)) . T))
-((((-791)) . T))
-((((-496)) . T) (((-820 (-520))) . T) (((-352)) . T) (((-201)) . T))
-(|has| |#1| (-209))
-(((|#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))
-(((|#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))
-(((|#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))
-(((|#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))
+((((-381 (-521))) |has| |#2| (-37 (-381 (-521)))) ((|#2|) |has| |#2| (-157)) (($) -3703 (|has| |#2| (-425)) (|has| |#2| (-513)) (|has| |#2| (-838))))
+((($) -3703 (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-838))) ((|#1|) |has| |#1| (-157)) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
+((((-381 (-521))) . T) (($) . T))
+((((-381 (-521))) . T) (($) . T))
+((((-381 (-521))) . T) (($) . T))
+(((|#2| |#3| (-794 |#1|)) . T))
+((((-1084)) |has| |#2| (-829 (-1084))))
+(((|#1|) . T))
+(((|#1| (-493 |#2|) |#2|) . T))
+(((|#1| (-707) (-998)) . T))
+((((-381 (-521))) |has| |#2| (-337)) (($) . T))
+(((|#1| (-493 (-1003 (-1084))) (-1003 (-1084))) . T))
+(-3703 (|has| |#1| (-157)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-838)))
+(-3703 (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-838)))
+(((|#1|) . T))
+(-3703 (|has| |#2| (-157)) (|has| |#2| (-782)) (|has| |#2| (-970)))
+(|has| |#2| (-729))
+(-3703 (|has| |#2| (-729)) (|has| |#2| (-782)))
+(|has| |#1| (-342))
+(|has| |#1| (-342))
+(|has| |#1| (-342))
+(|has| |#2| (-782))
+((((-822 |#1|)) . T) (((-756 |#1|)) . T))
+((((-756 (-1084))) . T))
+(((|#1|) . T))
+(((|#2|) . T))
+(((|#2|) . T))
+((((-792)) . T))
+((((-792)) . T))
+((((-587 (-521))) . T))
+((((-792)) . T))
+((((-792)) . T))
+((((-497)) . T) (((-821 (-521))) . T) (((-353)) . T) (((-202)) . T))
+(|has| |#1| (-210))
+(((|#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
+(((|#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
+(((|#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
+(((|#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
((($ $) . T))
(((|#1| |#1|) . T))
-(((|#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))
-((((-1156 |#1| |#2| |#3|) $) -12 (|has| (-1156 |#1| |#2| |#3|) (-260 (-1156 |#1| |#2| |#3|) (-1156 |#1| |#2| |#3|))) (|has| |#1| (-336))) (($ $) . T))
+(((|#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
+((((-1157 |#1| |#2| |#3|) $) -12 (|has| (-1157 |#1| |#2| |#3|) (-261 (-1157 |#1| |#2| |#3|) (-1157 |#1| |#2| |#3|))) (|has| |#1| (-337))) (($ $) . T))
((($ $) . T))
((($ $) . T))
(((|#1|) . T))
-((((-1048 |#1| |#2|)) |has| (-1048 |#1| |#2|) (-283 (-1048 |#1| |#2|))))
-(((|#4| |#4|) -12 (|has| |#4| (-283 |#4|)) (|has| |#4| (-1012))))
-(((|#2|) . T) (((-520)) |has| |#2| (-960 (-520))) (((-380 (-520))) |has| |#2| (-960 (-380 (-520)))))
-(((|#3| |#3|) -12 (|has| |#3| (-283 |#3|)) (|has| |#3| (-1012))))
-(((|#2|) -12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012))) (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) |has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-283 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))))
+((((-1049 |#1| |#2|)) |has| (-1049 |#1| |#2|) (-284 (-1049 |#1| |#2|))))
+(((|#4| |#4|) -12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013))))
+(((|#2|) . T) (((-521)) |has| |#2| (-961 (-521))) (((-381 (-521))) |has| |#2| (-961 (-381 (-521)))))
+(((|#3| |#3|) -12 (|has| |#3| (-284 |#3|)) (|has| |#3| (-1013))))
+(((|#2|) -12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))) (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) |has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-284 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))))
(((|#1|) . T))
(((|#1| |#2|) . T))
((($) . T))
((($) . T))
(((|#2|) . T))
(((|#3|) . T))
-(-3700 (|has| |#1| (-783)) (|has| |#1| (-1012)))
-(((|#2|) -12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012))) (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) |has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-283 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))))
+(-3703 (|has| |#1| (-784)) (|has| |#1| (-1013)))
+(((|#2|) -12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))) (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) |has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-284 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))))
(((|#2|) . T))
-((((-791)) -3700 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-560 (-791))) (|has| |#2| (-157)) (|has| |#2| (-336)) (|has| |#2| (-341)) (|has| |#2| (-728)) (|has| |#2| (-781)) (|has| |#2| (-969)) (|has| |#2| (-1012))) (((-1164 |#2|)) . T))
+((((-792)) -3703 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-561 (-792))) (|has| |#2| (-157)) (|has| |#2| (-337)) (|has| |#2| (-342)) (|has| |#2| (-729)) (|has| |#2| (-782)) (|has| |#2| (-970)) (|has| |#2| (-1013))) (((-1165 |#2|)) . T))
(((|#1|) |has| |#1| (-157)))
-((((-520)) . T))
-((((-380 (-520))) |has| |#1| (-37 (-380 (-520)))) ((|#1|) |has| |#1| (-157)) (($) -3700 (|has| |#1| (-424)) (|has| |#1| (-512)) (|has| |#1| (-837))))
-((($) -3700 (|has| |#1| (-336)) (|has| |#1| (-424)) (|has| |#1| (-512)) (|has| |#1| (-837))) ((|#1|) |has| |#1| (-157)) (((-380 (-520))) |has| |#1| (-37 (-380 (-520)))))
-((((-520) (-132)) . T))
-((($) -3700 (|has| |#2| (-157)) (|has| |#2| (-781)) (|has| |#2| (-969))) ((|#2|) -3700 (|has| |#2| (-157)) (|has| |#2| (-336)) (|has| |#2| (-969))))
-(-3700 (|has| |#1| (-21)) (|has| |#1| (-133)) (|has| |#1| (-135)) (|has| |#1| (-157)) (|has| |#1| (-512)) (|has| |#1| (-969)))
-(((|#1|) . T))
-(-3700 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-133)) (|has| |#1| (-135)) (|has| |#1| (-157)) (|has| |#1| (-512)) (|has| |#1| (-969)))
-(((|#2|) |has| |#1| (-336)))
-(((|#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))
+((((-521)) . T))
+((((-381 (-521))) |has| |#1| (-37 (-381 (-521)))) ((|#1|) |has| |#1| (-157)) (($) -3703 (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-838))))
+((($) -3703 (|has| |#1| (-337)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-838))) ((|#1|) |has| |#1| (-157)) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
+((((-521) (-132)) . T))
+((($) -3703 (|has| |#2| (-157)) (|has| |#2| (-782)) (|has| |#2| (-970))) ((|#2|) -3703 (|has| |#2| (-157)) (|has| |#2| (-337)) (|has| |#2| (-970))))
+(-3703 (|has| |#1| (-21)) (|has| |#1| (-133)) (|has| |#1| (-135)) (|has| |#1| (-157)) (|has| |#1| (-513)) (|has| |#1| (-970)))
+(((|#1|) . T))
+(-3703 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-133)) (|has| |#1| (-135)) (|has| |#1| (-157)) (|has| |#1| (-513)) (|has| |#1| (-970)))
+(((|#2|) |has| |#1| (-337)))
+(((|#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
(((|#1| |#1|) . T) (($ $) . T))
-((($) -3700 (|has| |#1| (-336)) (|has| |#1| (-512))) (((-380 (-520))) -3700 (|has| |#1| (-37 (-380 (-520)))) (|has| |#1| (-336))) ((|#1|) |has| |#1| (-157)))
-(((|#1| |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))
-(((|#1| (-492 #0=(-1083)) #0#) . T))
+((($) -3703 (|has| |#1| (-337)) (|has| |#1| (-513))) (((-381 (-521))) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))) ((|#1|) |has| |#1| (-157)))
+(((|#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
+(((|#1| (-493 #0=(-1084)) #0#) . T))
(((|#1|) . T) (($) . T))
(|has| |#4| (-157))
(|has| |#3| (-157))
-(((#0=(-380 (-880 |#1|)) #0#) . T))
-(-3700 (|has| |#1| (-783)) (|has| |#1| (-1012)))
-(|has| |#1| (-1012))
-(-3700 (|has| |#1| (-783)) (|has| |#1| (-1012)))
-(|has| |#1| (-1012))
-((((-791)) -3700 (|has| |#1| (-560 (-791))) (|has| |#1| (-783)) (|has| |#1| (-1012))))
-((((-496)) |has| |#1| (-561 (-496))))
-(-3700 (|has| |#1| (-783)) (|has| |#1| (-1012)))
+(((#0=(-381 (-881 |#1|)) #0#) . T))
+(-3703 (|has| |#1| (-784)) (|has| |#1| (-1013)))
+(|has| |#1| (-1013))
+(-3703 (|has| |#1| (-784)) (|has| |#1| (-1013)))
+(|has| |#1| (-1013))
+((((-792)) -3703 (|has| |#1| (-561 (-792))) (|has| |#1| (-784)) (|has| |#1| (-1013))))
+((((-497)) |has| |#1| (-562 (-497))))
+(-3703 (|has| |#1| (-784)) (|has| |#1| (-1013)))
(((|#1| |#1|) |has| |#1| (-157)))
-((($ $) -3700 (|has| |#1| (-157)) (|has| |#1| (-512))) ((|#1| |#1|) . T) ((#0=(-380 (-520)) #0#) |has| |#1| (-37 (-380 (-520)))))
-(((|#1| |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))
+((($ $) -3703 (|has| |#1| (-157)) (|has| |#1| (-513))) ((|#1| |#1|) . T) ((#0=(-381 (-521)) #0#) |has| |#1| (-37 (-381 (-521)))))
+(((|#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
(((|#1|) . T))
-((((-380 (-880 |#1|))) . T))
+((((-381 (-881 |#1|))) . T))
(((|#1|) |has| |#1| (-157)))
-((($) -3700 (|has| |#1| (-157)) (|has| |#1| (-512))) ((|#1|) . T) (((-380 (-520))) |has| |#1| (-37 (-380 (-520)))))
-(-3700 (|has| |#1| (-424)) (|has| |#1| (-512)) (|has| |#1| (-837)))
-((((-791)) . T))
-((((-1150 |#1| |#2| |#3| |#4|)) . T))
-(((|#1|) |has| |#1| (-969)) (((-520)) -12 (|has| |#1| (-582 (-520))) (|has| |#1| (-969))))
+((($) -3703 (|has| |#1| (-157)) (|has| |#1| (-513))) ((|#1|) . T) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
+(-3703 (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-838)))
+((((-792)) . T))
+((((-1151 |#1| |#2| |#3| |#4|)) . T))
+(((|#1|) |has| |#1| (-970)) (((-521)) -12 (|has| |#1| (-583 (-521))) (|has| |#1| (-970))))
(((|#1| |#2|) . T))
-(-3700 (|has| |#3| (-157)) (|has| |#3| (-781)) (|has| |#3| (-969)))
-(|has| |#3| (-728))
-(-3700 (|has| |#3| (-728)) (|has| |#3| (-781)))
-(|has| |#3| (-781))
-((((-380 (-520))) -3700 (|has| |#1| (-37 (-380 (-520)))) (|has| |#1| (-336))) (($) -3700 (|has| |#1| (-336)) (|has| |#1| (-512))) ((|#2|) |has| |#1| (-336)) ((|#1|) |has| |#1| (-157)))
-(((|#1|) |has| |#1| (-157)) (((-380 (-520))) -3700 (|has| |#1| (-37 (-380 (-520)))) (|has| |#1| (-336))) (($) -3700 (|has| |#1| (-336)) (|has| |#1| (-512))))
-(((|#2|) . T))
-((((-791)) . T))
-((((-791)) . T))
-((((-791)) . T))
-((((-791)) . T))
-(((|#1| (-1064 |#1|)) |has| |#1| (-781)))
-((((-520) |#2|) . T))
-(|has| |#1| (-1012))
-(((|#1|) . T))
-(-12 (|has| |#1| (-336)) (|has| |#2| (-1059)))
-(((|#1| |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))
-(|has| |#1| (-1012))
-(((|#2|) . T))
-((((-496)) |has| |#2| (-561 (-496))) (((-820 (-352))) |has| |#2| (-561 (-820 (-352)))) (((-820 (-520))) |has| |#2| (-561 (-820 (-520)))))
-(((|#4|) -3700 (|has| |#4| (-157)) (|has| |#4| (-336))))
-(((|#3|) -3700 (|has| |#3| (-157)) (|has| |#3| (-336))))
-((((-791)) . T))
-(((|#1|) . T))
-(-3700 (|has| |#2| (-424)) (|has| |#2| (-837)))
-(-3700 (|has| |#1| (-424)) (|has| |#1| (-837)))
-(-3700 (|has| |#1| (-336)) (|has| |#1| (-424)) (|has| |#1| (-837)))
-((($ $) . T) ((#0=(-1083) $) |has| |#1| (-209)) ((#0# |#1|) |has| |#1| (-209)) ((#1=(-754 (-1083)) |#1|) . T) ((#1# $) . T))
-(-3700 (|has| |#1| (-424)) (|has| |#1| (-837)))
-((((-520) |#2|) . T))
-((((-791)) . T))
-((((-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) . T))
-((((-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) . T))
-((((-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) . T))
-(((|#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))
-((($) -3700 (|has| |#3| (-157)) (|has| |#3| (-781)) (|has| |#3| (-969))) ((|#3|) -3700 (|has| |#3| (-157)) (|has| |#3| (-336)) (|has| |#3| (-969))))
-((((-520) |#1|) . T))
-(|has| (-380 |#2|) (-135))
-(|has| (-380 |#2|) (-133))
-(((|#2|) -12 (|has| |#1| (-336)) (|has| |#2| (-283 |#2|))))
-(|has| |#1| (-37 (-380 (-520))))
-(((|#1|) . T))
-(((|#2|) . T) (($) . T) (((-380 (-520))) . T))
-((((-791)) . T))
-(|has| |#1| (-512))
-(|has| |#1| (-512))
-(|has| |#1| (-37 (-380 (-520))))
-(|has| |#1| (-37 (-380 (-520))))
-((((-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) . T))
-((((-791)) . T))
-((((-2 (|:| -2526 (-1066)) (|:| -3043 |#1|))) . T))
-(|has| |#1| (-37 (-380 (-520))))
-((((-361) (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|))) . T))
-(|has| |#1| (-37 (-380 (-520))))
-(|has| |#2| (-1059))
-(-3700 (|has| |#1| (-336)) (|has| |#1| (-512)))
-(-3700 (|has| |#1| (-336)) (|has| |#1| (-512)))
-(((|#1|) . T))
-((((-361) (-1066)) . T))
-(|has| |#1| (-512))
+(-3703 (|has| |#3| (-157)) (|has| |#3| (-782)) (|has| |#3| (-970)))
+(|has| |#3| (-729))
+(-3703 (|has| |#3| (-729)) (|has| |#3| (-782)))
+(|has| |#3| (-782))
+((((-381 (-521))) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))) (($) -3703 (|has| |#1| (-337)) (|has| |#1| (-513))) ((|#2|) |has| |#1| (-337)) ((|#1|) |has| |#1| (-157)))
+(((|#1|) |has| |#1| (-157)) (((-381 (-521))) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))) (($) -3703 (|has| |#1| (-337)) (|has| |#1| (-513))))
+(((|#2|) . T))
+((((-792)) . T))
+((((-792)) . T))
+((((-792)) . T))
+((((-792)) . T))
+(((|#1| (-1065 |#1|)) |has| |#1| (-782)))
+((((-521) |#2|) . T))
+(|has| |#1| (-1013))
+(((|#1|) . T))
+(-12 (|has| |#1| (-337)) (|has| |#2| (-1060)))
+(((|#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
+(|has| |#1| (-1013))
+(((|#2|) . T))
+((((-497)) |has| |#2| (-562 (-497))) (((-821 (-353))) |has| |#2| (-562 (-821 (-353)))) (((-821 (-521))) |has| |#2| (-562 (-821 (-521)))))
+(((|#4|) -3703 (|has| |#4| (-157)) (|has| |#4| (-337))))
+(((|#3|) -3703 (|has| |#3| (-157)) (|has| |#3| (-337))))
+((((-792)) . T))
+(((|#1|) . T))
+(-3703 (|has| |#2| (-425)) (|has| |#2| (-838)))
+(-3703 (|has| |#1| (-425)) (|has| |#1| (-838)))
+(-3703 (|has| |#1| (-337)) (|has| |#1| (-425)) (|has| |#1| (-838)))
+((($ $) . T) ((#0=(-1084) $) |has| |#1| (-210)) ((#0# |#1|) |has| |#1| (-210)) ((#1=(-755 (-1084)) |#1|) . T) ((#1# $) . T))
+(-3703 (|has| |#1| (-425)) (|has| |#1| (-838)))
+((((-521) |#2|) . T))
+((((-792)) . T))
+((((-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) . T))
+((((-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) . T))
+((((-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) . T))
+(((|#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
+((($) -3703 (|has| |#3| (-157)) (|has| |#3| (-782)) (|has| |#3| (-970))) ((|#3|) -3703 (|has| |#3| (-157)) (|has| |#3| (-337)) (|has| |#3| (-970))))
+((((-521) |#1|) . T))
+(|has| (-381 |#2|) (-135))
+(|has| (-381 |#2|) (-133))
+(((|#2|) -12 (|has| |#1| (-337)) (|has| |#2| (-284 |#2|))))
+(|has| |#1| (-37 (-381 (-521))))
+(((|#1|) . T))
+(((|#2|) . T) (($) . T) (((-381 (-521))) . T))
+((((-792)) . T))
+(|has| |#1| (-513))
+(|has| |#1| (-513))
+(|has| |#1| (-37 (-381 (-521))))
+(|has| |#1| (-37 (-381 (-521))))
+((((-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) . T))
+((((-792)) . T))
+((((-2 (|:| -2529 (-1067)) (|:| -3045 |#1|))) . T))
+(|has| |#1| (-37 (-381 (-521))))
+((((-362) (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|))) . T))
+(|has| |#1| (-37 (-381 (-521))))
+(|has| |#2| (-1060))
+(-3703 (|has| |#1| (-337)) (|has| |#1| (-513)))
+(-3703 (|has| |#1| (-337)) (|has| |#1| (-513)))
+(((|#1|) . T))
+((((-362) (-1067)) . T))
+(|has| |#1| (-513))
((((-112 |#1|)) . T))
-((((-520) |#1|) . T))
-(-3700 (|has| |#1| (-157)) (|has| |#1| (-424)) (|has| |#1| (-512)) (|has| |#1| (-837)))
+((((-521) |#1|) . T))
+(-3703 (|has| |#1| (-157)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-838)))
(((|#2|) . T))
-((((-791)) . T))
-((((-755 |#1|)) . T))
+((((-792)) . T))
+((((-756 |#1|)) . T))
(((|#2|) |has| |#2| (-157)))
-((((-1083) (-51)) . T))
+((((-1084) (-51)) . T))
(((|#1|) . T))
-(|has| |#1| (-37 (-380 (-520))))
-(|has| |#1| (-37 (-380 (-520))))
-(|has| |#1| (-512))
+(|has| |#1| (-37 (-381 (-521))))
+(|has| |#1| (-37 (-381 (-521))))
+(|has| |#1| (-513))
(((|#1|) |has| |#1| (-157)))
-((((-791)) . T))
-((((-496)) |has| |#1| (-561 (-496))))
-(-3700 (|has| |#1| (-783)) (|has| |#1| (-1012)))
-(((|#2|) |has| |#2| (-283 |#2|)))
-(((#0=(-520) #0#) . T) ((#1=(-380 (-520)) #1#) . T) (($ $) . T))
+((((-792)) . T))
+((((-497)) |has| |#1| (-562 (-497))))
+(-3703 (|has| |#1| (-784)) (|has| |#1| (-1013)))
+(((|#2|) |has| |#2| (-284 |#2|)))
+(((#0=(-521) #0#) . T) ((#1=(-381 (-521)) #1#) . T) (($ $) . T))
(((|#1|) . T))
-(((|#1| (-1079 |#1|)) . T))
+(((|#1| (-1080 |#1|)) . T))
(|has| $ (-135))
(((|#2|) . T))
-(((#0=(-520) #0#) . T) ((#1=(-380 (-520)) #1#) . T) (($ $) . T))
-((($) . T) (((-520)) . T) (((-380 (-520))) . T))
-(|has| |#2| (-341))
-(-3700 (|has| |#1| (-783)) (|has| |#1| (-1012)))
-(((|#1|) . T) (((-380 (-520))) . T) (($) . T))
-(((|#1|) . T) (((-380 (-520))) . T) (($) . T))
-(((|#1|) . T) (((-380 (-520))) . T) (($) . T))
-((((-520)) . T) (((-380 (-520))) . T) (($) . T))
+(((#0=(-521) #0#) . T) ((#1=(-381 (-521)) #1#) . T) (($ $) . T))
+((($) . T) (((-521)) . T) (((-381 (-521))) . T))
+(|has| |#2| (-342))
+(-3703 (|has| |#1| (-784)) (|has| |#1| (-1013)))
+(((|#1|) . T) (((-381 (-521))) . T) (($) . T))
+(((|#1|) . T) (((-381 (-521))) . T) (($) . T))
+(((|#1|) . T) (((-381 (-521))) . T) (($) . T))
+((((-521)) . T) (((-381 (-521))) . T) (($) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
-((((-520)) . T) (((-380 (-520))) . T) (($) . T))
-((((-1081 |#1| |#2| |#3|) $) -12 (|has| (-1081 |#1| |#2| |#3|) (-260 (-1081 |#1| |#2| |#3|) (-1081 |#1| |#2| |#3|))) (|has| |#1| (-336))) (($ $) . T))
-((((-791)) . T))
-((((-791)) . T))
-((($) . T) (((-380 (-520))) -3700 (|has| |#1| (-336)) (|has| |#1| (-322))) ((|#1|) . T))
-((((-496)) |has| |#1| (-561 (-496))))
-((((-791)) -3700 (|has| |#1| (-560 (-791))) (|has| |#1| (-1012))))
+((((-521)) . T) (((-381 (-521))) . T) (($) . T))
+((((-1082 |#1| |#2| |#3|) $) -12 (|has| (-1082 |#1| |#2| |#3|) (-261 (-1082 |#1| |#2| |#3|) (-1082 |#1| |#2| |#3|))) (|has| |#1| (-337))) (($ $) . T))
+((((-792)) . T))
+((((-792)) . T))
+((($) . T) (((-381 (-521))) -3703 (|has| |#1| (-337)) (|has| |#1| (-323))) ((|#1|) . T))
+((((-497)) |has| |#1| (-562 (-497))))
+((((-792)) -3703 (|has| |#1| (-561 (-792))) (|has| |#1| (-1013))))
((($ $) . T))
((($ $) . T))
-((((-791)) . T))
-(((|#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))
-(((#0=(-1156 |#1| |#2| |#3|) #0#) -12 (|has| (-1156 |#1| |#2| |#3|) (-283 (-1156 |#1| |#2| |#3|))) (|has| |#1| (-336))) (((-1083) #0#) -12 (|has| (-1156 |#1| |#2| |#3|) (-481 (-1083) (-1156 |#1| |#2| |#3|))) (|has| |#1| (-336))))
-(-12 (|has| |#1| (-1012)) (|has| |#2| (-1012)))
+((((-792)) . T))
+(((|#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
+(((#0=(-1157 |#1| |#2| |#3|) #0#) -12 (|has| (-1157 |#1| |#2| |#3|) (-284 (-1157 |#1| |#2| |#3|))) (|has| |#1| (-337))) (((-1084) #0#) -12 (|has| (-1157 |#1| |#2| |#3|) (-482 (-1084) (-1157 |#1| |#2| |#3|))) (|has| |#1| (-337))))
+(-12 (|has| |#1| (-1013)) (|has| |#2| (-1013)))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((($) -3700 (|has| |#1| (-424)) (|has| |#1| (-512)) (|has| |#1| (-837))) ((|#1|) |has| |#1| (-157)) (((-380 (-520))) |has| |#1| (-37 (-380 (-520)))))
-((((-380 (-520))) . T) (((-520)) . T))
-((((-520) (-132)) . T))
+((($) -3703 (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-838))) ((|#1|) |has| |#1| (-157)) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
+((((-381 (-521))) . T) (((-521)) . T))
+((((-521) (-132)) . T))
((((-132)) . T))
(((|#1|) . T))
-(-3700 (|has| |#1| (-21)) (|has| |#1| (-133)) (|has| |#1| (-135)) (|has| |#1| (-157)) (|has| |#1| (-512)) (|has| |#1| (-969)))
+(-3703 (|has| |#1| (-21)) (|has| |#1| (-133)) (|has| |#1| (-135)) (|has| |#1| (-157)) (|has| |#1| (-513)) (|has| |#1| (-970)))
((((-108)) . T))
-(((|#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))
+(((|#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
((((-108)) . T))
(((|#1|) . T))
-((((-496)) |has| |#1| (-561 (-496))) (((-201)) . #0=(|has| |#1| (-945))) (((-352)) . #0#))
-((((-791)) . T))
-(|has| |#1| (-756))
-(-3700 (|has| |#1| (-336)) (|has| |#1| (-424)) (|has| |#1| (-512)) (|has| |#1| (-837)))
-(|has| |#1| (-783))
-(-3700 (|has| |#1| (-157)) (|has| |#1| (-512)))
-(|has| |#1| (-512))
-(|has| |#1| (-837))
-(((|#1|) . T))
-(|has| |#1| (-1012))
-((((-791)) . T))
-(-3700 (|has| |#1| (-157)) (|has| |#1| (-336)) (|has| |#1| (-512)))
-(-3700 (|has| |#1| (-157)) (|has| |#1| (-336)) (|has| |#1| (-512)))
-(-3700 (|has| |#1| (-157)) (|has| |#1| (-512)))
-((((-791)) . T))
-((((-791)) . T))
-((((-791)) . T))
-(((|#1| (-1164 |#1|) (-1164 |#1|)) . T))
-((((-520) (-132)) . T))
-((($) . T))
-(-3700 (|has| |#4| (-157)) (|has| |#4| (-781)) (|has| |#4| (-969)))
-(-3700 (|has| |#3| (-157)) (|has| |#3| (-781)) (|has| |#3| (-969)))
-((((-791)) . T))
-(|has| |#1| (-1012))
-(((|#1| (-896)) . T))
+((((-497)) |has| |#1| (-562 (-497))) (((-202)) . #0=(|has| |#1| (-946))) (((-353)) . #0#))
+((((-792)) . T))
+(|has| |#1| (-757))
+(-3703 (|has| |#1| (-337)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-838)))
+(|has| |#1| (-784))
+(-3703 (|has| |#1| (-157)) (|has| |#1| (-513)))
+(|has| |#1| (-513))
+(|has| |#1| (-838))
+(((|#1|) . T))
+(|has| |#1| (-1013))
+((((-792)) . T))
+(-3703 (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-513)))
+(-3703 (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-513)))
+(-3703 (|has| |#1| (-157)) (|has| |#1| (-513)))
+((((-792)) . T))
+((((-792)) . T))
+((((-792)) . T))
+(((|#1| (-1165 |#1|) (-1165 |#1|)) . T))
+((((-521) (-132)) . T))
+((($) . T))
+(-3703 (|has| |#4| (-157)) (|has| |#4| (-782)) (|has| |#4| (-970)))
+(-3703 (|has| |#3| (-157)) (|has| |#3| (-782)) (|has| |#3| (-970)))
+((((-792)) . T))
+(|has| |#1| (-1013))
+(((|#1| (-897)) . T))
(((|#1| |#1|) . T))
((($) . T))
-(-3700 (|has| |#2| (-728)) (|has| |#2| (-781)))
-(-3700 (|has| |#2| (-728)) (|has| |#2| (-781)))
-(-12 (|has| |#1| (-445)) (|has| |#2| (-445)))
-(-3700 (|has| |#2| (-157)) (|has| |#2| (-781)) (|has| |#2| (-969)))
-(-3700 (-12 (|has| |#1| (-445)) (|has| |#2| (-445))) (-12 (|has| |#1| (-662)) (|has| |#2| (-662))))
+(-3703 (|has| |#2| (-729)) (|has| |#2| (-782)))
+(-3703 (|has| |#2| (-729)) (|has| |#2| (-782)))
+(-12 (|has| |#1| (-446)) (|has| |#2| (-446)))
+(-3703 (|has| |#2| (-157)) (|has| |#2| (-782)) (|has| |#2| (-970)))
+(-3703 (-12 (|has| |#1| (-446)) (|has| |#2| (-446))) (-12 (|has| |#1| (-663)) (|has| |#2| (-663))))
(((|#1|) . T))
-(|has| |#2| (-728))
-(-3700 (|has| |#2| (-728)) (|has| |#2| (-781)))
+(|has| |#2| (-729))
+(-3703 (|has| |#2| (-729)) (|has| |#2| (-782)))
(((|#1| |#2|) . T))
-(((|#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))
-(|has| |#2| (-781))
-(-12 (|has| |#1| (-728)) (|has| |#2| (-728)))
-(-12 (|has| |#1| (-728)) (|has| |#2| (-728)))
+(((|#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
+(|has| |#2| (-782))
+(-12 (|has| |#1| (-729)) (|has| |#2| (-729)))
+(-12 (|has| |#1| (-729)) (|has| |#2| (-729)))
(((|#1| |#2|) . T))
(((|#2|) |has| |#2| (-157)))
(((|#1|) |has| |#1| (-157)))
-((((-791)) . T))
-(|has| |#1| (-322))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-380 (-520))) . T) (($) . T))
-((($) . T) (((-380 (-520))) -3700 (|has| |#1| (-37 (-380 (-520)))) (|has| |#1| (-336))) ((|#1|) . T))
-(|has| |#1| (-764))
-((((-380 (-520))) |has| |#1| (-960 (-380 (-520)))) (((-520)) |has| |#1| (-960 (-520))) ((|#1|) . T))
-(|has| |#1| (-1012))
-(((|#1| $) |has| |#1| (-260 |#1| |#1|)))
-((((-380 (-520))) |has| |#1| (-37 (-380 (-520)))) ((|#1|) |has| |#1| (-157)) (($) |has| |#1| (-512)))
-((($) |has| |#1| (-512)))
-(((|#4|) |has| |#4| (-1012)))
-(((|#3|) |has| |#3| (-1012)))
-(|has| |#3| (-341))
-(((|#1|) . T) (((-791)) . T))
-((((-380 (-520))) -3700 (|has| |#1| (-37 (-380 (-520)))) (|has| |#1| (-336))) (($) -3700 (|has| |#1| (-336)) (|has| |#1| (-512))) (((-1156 |#1| |#2| |#3|)) |has| |#1| (-336)) ((|#1|) |has| |#1| (-157)))
-(((|#1|) |has| |#1| (-157)) (((-380 (-520))) -3700 (|has| |#1| (-37 (-380 (-520)))) (|has| |#1| (-336))) (($) -3700 (|has| |#1| (-336)) (|has| |#1| (-512))))
-((((-791)) . T))
-((($) |has| |#1| (-512)) ((|#1|) |has| |#1| (-157)) (((-380 (-520))) |has| |#1| (-37 (-380 (-520)))))
+((((-792)) . T))
+(|has| |#1| (-323))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-381 (-521))) . T) (($) . T))
+((($) . T) (((-381 (-521))) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))) ((|#1|) . T))
+(|has| |#1| (-765))
+((((-381 (-521))) |has| |#1| (-961 (-381 (-521)))) (((-521)) |has| |#1| (-961 (-521))) ((|#1|) . T))
+(|has| |#1| (-1013))
+(((|#1| $) |has| |#1| (-261 |#1| |#1|)))
+((((-381 (-521))) |has| |#1| (-37 (-381 (-521)))) ((|#1|) |has| |#1| (-157)) (($) |has| |#1| (-513)))
+((($) |has| |#1| (-513)))
+(((|#4|) |has| |#4| (-1013)))
+(((|#3|) |has| |#3| (-1013)))
+(|has| |#3| (-342))
+(((|#1|) . T) (((-792)) . T))
+((((-381 (-521))) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))) (($) -3703 (|has| |#1| (-337)) (|has| |#1| (-513))) (((-1157 |#1| |#2| |#3|)) |has| |#1| (-337)) ((|#1|) |has| |#1| (-157)))
+(((|#1|) |has| |#1| (-157)) (((-381 (-521))) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))) (($) -3703 (|has| |#1| (-337)) (|has| |#1| (-513))))
+((((-792)) . T))
+((($) |has| |#1| (-513)) ((|#1|) |has| |#1| (-157)) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
(((|#2|) . T))
(((|#1| |#1|) |has| |#1| (-157)))
(((|#1| |#2|) . T))
-(|has| |#2| (-336))
+(|has| |#2| (-337))
(((|#1|) . T))
(((|#1|) |has| |#1| (-157)))
-((((-380 (-520))) . T) (((-520)) . T))
-((($ $) -3700 (|has| |#1| (-157)) (|has| |#1| (-512))) ((|#1| |#1|) . T) ((#0=(-380 (-520)) #0#) |has| |#1| (-37 (-380 (-520)))))
-((($) -3700 (|has| |#1| (-157)) (|has| |#1| (-512))) ((|#1|) . T) (((-380 (-520))) |has| |#1| (-37 (-380 (-520)))))
-(((|#2| |#2|) -12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012))))
+((((-381 (-521))) . T) (((-521)) . T))
+((($ $) -3703 (|has| |#1| (-157)) (|has| |#1| (-513))) ((|#1| |#1|) . T) ((#0=(-381 (-521)) #0#) |has| |#1| (-37 (-381 (-521)))))
+((($) -3703 (|has| |#1| (-157)) (|has| |#1| (-513))) ((|#1|) . T) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
+(((|#2| |#2|) -12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))))
((((-132)) . T))
(((|#1|) . T))
((((-132)) . T))
-((($) -3700 (|has| |#2| (-157)) (|has| |#2| (-781)) (|has| |#2| (-969))) ((|#2|) -3700 (|has| |#2| (-157)) (|has| |#2| (-336)) (|has| |#2| (-969))))
+((($) -3703 (|has| |#2| (-157)) (|has| |#2| (-782)) (|has| |#2| (-970))) ((|#2|) -3703 (|has| |#2| (-157)) (|has| |#2| (-337)) (|has| |#2| (-970))))
((((-132)) . T))
(((|#1| |#2| |#3|) . T))
-(-3700 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-133)) (|has| |#1| (-135)) (|has| |#1| (-157)) (|has| |#1| (-512)) (|has| |#1| (-969)))
+(-3703 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-133)) (|has| |#1| (-135)) (|has| |#1| (-157)) (|has| |#1| (-513)) (|has| |#1| (-970)))
(|has| $ (-135))
(|has| $ (-135))
-(|has| |#1| (-1012))
-((((-791)) . T))
-(|has| |#1| (-37 (-380 (-520))))
-(|has| |#1| (-37 (-380 (-520))))
-(-3700 (|has| |#1| (-133)) (|has| |#1| (-135)) (|has| |#1| (-157)) (|has| |#1| (-445)) (|has| |#1| (-512)) (|has| |#1| (-969)) (|has| |#1| (-1024)))
-((($ $) |has| |#1| (-260 $ $)) ((|#1| $) |has| |#1| (-260 |#1| |#1|)))
-(((|#1| (-380 (-520))) . T))
-(((|#1|) . T))
-((((-1083)) . T))
-(|has| |#1| (-512))
-(-3700 (|has| |#1| (-336)) (|has| |#1| (-512)))
-(-3700 (|has| |#1| (-336)) (|has| |#1| (-512)))
-(|has| |#1| (-512))
-(|has| |#1| (-37 (-380 (-520))))
-(|has| |#1| (-37 (-380 (-520))))
-((((-791)) . T))
+(|has| |#1| (-1013))
+((((-792)) . T))
+(|has| |#1| (-37 (-381 (-521))))
+(|has| |#1| (-37 (-381 (-521))))
+(-3703 (|has| |#1| (-133)) (|has| |#1| (-135)) (|has| |#1| (-157)) (|has| |#1| (-446)) (|has| |#1| (-513)) (|has| |#1| (-970)) (|has| |#1| (-1025)))
+((($ $) |has| |#1| (-261 $ $)) ((|#1| $) |has| |#1| (-261 |#1| |#1|)))
+(((|#1| (-381 (-521))) . T))
+(((|#1|) . T))
+((((-1084)) . T))
+(|has| |#1| (-513))
+(-3703 (|has| |#1| (-337)) (|has| |#1| (-513)))
+(-3703 (|has| |#1| (-337)) (|has| |#1| (-513)))
+(|has| |#1| (-513))
+(|has| |#1| (-37 (-381 (-521))))
+(|has| |#1| (-37 (-381 (-521))))
+((((-792)) . T))
(|has| |#2| (-133))
(|has| |#2| (-135))
(((|#2|) . T) (($) . T))
(|has| |#1| (-135))
(|has| |#1| (-133))
-(|has| |#4| (-781))
-(((|#2| (-216 (-3474 |#1|) (-706)) (-793 |#1|)) . T))
-(|has| |#3| (-781))
-(((|#1| (-492 |#3|) |#3|) . T))
+(|has| |#4| (-782))
+(((|#2| (-217 (-3475 |#1|) (-707)) (-794 |#1|)) . T))
+(|has| |#3| (-782))
+(((|#1| (-493 |#3|) |#3|) . T))
(|has| |#1| (-135))
(|has| |#1| (-133))
-(((#0=(-380 (-520)) #0#) |has| |#2| (-336)) (($ $) . T))
-((((-798 |#1|)) . T))
+(((#0=(-381 (-521)) #0#) |has| |#2| (-337)) (($ $) . T))
+((((-799 |#1|)) . T))
(|has| |#1| (-135))
-(|has| |#1| (-341))
-(|has| |#1| (-341))
-(|has| |#1| (-341))
+(|has| |#1| (-342))
+(|has| |#1| (-342))
+(|has| |#1| (-342))
(|has| |#1| (-133))
-((((-380 (-520))) |has| |#2| (-336)) (($) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))
-(-3700 (|has| |#2| (-424)) (|has| |#2| (-512)) (|has| |#2| (-837)))
-(-3700 (|has| |#1| (-322)) (|has| |#1| (-341)))
-((((-1050 |#2| |#1|)) . T) ((|#1|) . T))
+((((-381 (-521))) |has| |#2| (-337)) (($) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
+(-3703 (|has| |#2| (-425)) (|has| |#2| (-513)) (|has| |#2| (-838)))
+(-3703 (|has| |#1| (-323)) (|has| |#1| (-342)))
+((((-1051 |#2| |#1|)) . T) ((|#1|) . T))
(|has| |#2| (-157))
(((|#1| |#2|) . T))
-(-12 (|has| |#2| (-209)) (|has| |#2| (-969)))
-(((|#2|) . T) (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) . T))
-(-3700 (|has| |#3| (-728)) (|has| |#3| (-781)))
-(-3700 (|has| |#3| (-728)) (|has| |#3| (-781)))
-((((-791)) . T))
+(-12 (|has| |#2| (-210)) (|has| |#2| (-970)))
+(((|#2|) . T) (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) . T))
+(-3703 (|has| |#3| (-729)) (|has| |#3| (-782)))
+(-3703 (|has| |#3| (-729)) (|has| |#3| (-782)))
+((((-792)) . T))
(((|#1|) . T))
(((|#2|) . T) (($) . T))
(((|#1|) . T) (($) . T))
-((((-635)) . T))
-(-3700 (|has| |#2| (-157)) (|has| |#2| (-781)) (|has| |#2| (-969)))
-(|has| |#1| (-512))
+((((-636)) . T))
+(-3703 (|has| |#2| (-157)) (|has| |#2| (-782)) (|has| |#2| (-970)))
+(|has| |#1| (-513))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-1083) (-51)) . T))
-((((-791)) . T))
-((((-496)) . T) (((-820 (-520))) . T) (((-352)) . T) (((-201)) . T))
+((((-1084) (-51)) . T))
+((((-792)) . T))
+((((-497)) . T) (((-821 (-521))) . T) (((-353)) . T) (((-202)) . T))
(((|#1|) . T))
-((((-791)) . T))
-((((-496)) . T) (((-820 (-520))) . T) (((-352)) . T) (((-201)) . T))
-(((|#1| (-520)) . T))
-((((-791)) . T))
-((((-791)) . T))
+((((-792)) . T))
+((((-497)) . T) (((-821 (-521))) . T) (((-353)) . T) (((-202)) . T))
+(((|#1| (-521)) . T))
+((((-792)) . T))
+((((-792)) . T))
(((|#1| |#2|) . T))
(((|#1|) . T))
-(((|#1| (-380 (-520))) . T))
-(((|#3|) . T) (((-559 $)) . T))
+(((|#1| (-381 (-521))) . T))
+(((|#3|) . T) (((-560 $)) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) . T))
+((((-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) . T))
(((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))
-((((-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) . T))
+(((|#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
+((((-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) . T))
((($ $) . T) ((|#2| $) . T))
-(((|#1|) . T) (((-380 (-520))) . T) (($) . T))
-(((#0=(-1081 |#1| |#2| |#3|) #0#) -12 (|has| (-1081 |#1| |#2| |#3|) (-283 (-1081 |#1| |#2| |#3|))) (|has| |#1| (-336))) (((-1083) #0#) -12 (|has| (-1081 |#1| |#2| |#3|) (-481 (-1083) (-1081 |#1| |#2| |#3|))) (|has| |#1| (-336))))
-((((-520)) . T) (($) . T) (((-380 (-520))) . T))
-((((-791)) . T))
-((((-791)) . T))
+(((|#1|) . T) (((-381 (-521))) . T) (($) . T))
+(((#0=(-1082 |#1| |#2| |#3|) #0#) -12 (|has| (-1082 |#1| |#2| |#3|) (-284 (-1082 |#1| |#2| |#3|))) (|has| |#1| (-337))) (((-1084) #0#) -12 (|has| (-1082 |#1| |#2| |#3|) (-482 (-1084) (-1082 |#1| |#2| |#3|))) (|has| |#1| (-337))))
+((((-521)) . T) (($) . T) (((-381 (-521))) . T))
+((((-792)) . T))
+((((-792)) . T))
(((|#1| |#1|) . T))
-(((|#2|) -12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012))) (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) |has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-283 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))))
-(((|#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))) (((-2 (|:| -2526 (-1066)) (|:| -3043 |#1|))) |has| (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (-283 (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)))))
-((((-791)) . T))
+(((|#2|) -12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))) (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) |has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-284 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))))
+(((|#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) (((-2 (|:| -2529 (-1067)) (|:| -3045 |#1|))) |has| (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (-284 (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)))))
+((((-792)) . T))
(((|#1|) . T))
(((|#3| |#3|) . T))
(((|#1|) . T))
((($) . T) ((|#2|) . T))
-((((-1083) (-51)) . T))
+((((-1084) (-51)) . T))
(((|#3|) . T))
-((($ $) . T) ((#0=(-793 |#1|) $) . T) ((#0# |#2|) . T))
-(|has| |#1| (-764))
-(|has| |#1| (-1012))
-(((|#2| |#2|) -3700 (|has| |#2| (-157)) (|has| |#2| (-336)) (|has| |#2| (-969))) (($ $) |has| |#2| (-157)))
-(((|#2|) -3700 (|has| |#2| (-157)) (|has| |#2| (-336))))
-((((-520) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) . T) ((|#1| |#2|) . T))
-(((|#2|) -3700 (|has| |#2| (-157)) (|has| |#2| (-336)) (|has| |#2| (-969))) (($) |has| |#2| (-157)))
-((((-706)) . T))
-((((-520)) . T))
-(|has| |#1| (-512))
-((((-791)) . T))
-(((|#1| (-380 (-520)) (-997)) . T))
+((($ $) . T) ((#0=(-794 |#1|) $) . T) ((#0# |#2|) . T))
+(|has| |#1| (-765))
+(|has| |#1| (-1013))
+(((|#2| |#2|) -3703 (|has| |#2| (-157)) (|has| |#2| (-337)) (|has| |#2| (-970))) (($ $) |has| |#2| (-157)))
+(((|#2|) -3703 (|has| |#2| (-157)) (|has| |#2| (-337))))
+((((-521) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) . T) ((|#1| |#2|) . T))
+(((|#2|) -3703 (|has| |#2| (-157)) (|has| |#2| (-337)) (|has| |#2| (-970))) (($) |has| |#2| (-157)))
+((((-707)) . T))
+((((-521)) . T))
+(|has| |#1| (-513))
+((((-792)) . T))
+(((|#1| (-381 (-521)) (-998)) . T))
(|has| |#1| (-133))
(((|#1|) . T))
-(|has| |#1| (-512))
-((((-520)) . T))
+(|has| |#1| (-513))
+((((-521)) . T))
((((-112 |#1|)) . T))
(((|#1|) . T))
(|has| |#1| (-135))
-(-3700 (|has| |#1| (-157)) (|has| |#1| (-512)))
-(-3700 (|has| |#1| (-157)) (|has| |#1| (-336)) (|has| |#1| (-512)))
-(-3700 (|has| |#1| (-157)) (|has| |#1| (-336)) (|has| |#1| (-512)))
-(-3700 (|has| |#1| (-157)) (|has| |#1| (-512)))
-((((-820 (-520))) . T) (((-820 (-352))) . T) (((-496)) . T) (((-1083)) . T))
-((((-791)) . T))
-(-3700 (|has| |#1| (-783)) (|has| |#1| (-1012)))
-((($) . T))
-((((-791)) . T))
-(-3700 (|has| |#2| (-157)) (|has| |#2| (-424)) (|has| |#2| (-512)) (|has| |#2| (-837)))
+(-3703 (|has| |#1| (-157)) (|has| |#1| (-513)))
+(-3703 (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-513)))
+(-3703 (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-513)))
+(-3703 (|has| |#1| (-157)) (|has| |#1| (-513)))
+((((-821 (-521))) . T) (((-821 (-353))) . T) (((-497)) . T) (((-1084)) . T))
+((((-792)) . T))
+(-3703 (|has| |#1| (-784)) (|has| |#1| (-1013)))
+((($) . T))
+((((-792)) . T))
+(-3703 (|has| |#2| (-157)) (|has| |#2| (-425)) (|has| |#2| (-513)) (|has| |#2| (-838)))
(((|#2|) |has| |#2| (-157)))
-((($) -3700 (|has| |#2| (-336)) (|has| |#2| (-424)) (|has| |#2| (-512)) (|has| |#2| (-837))) ((|#2|) |has| |#2| (-157)) (((-380 (-520))) |has| |#2| (-37 (-380 (-520)))))
-((((-798 |#1|)) . T))
-(-3700 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-336)) (|has| |#2| (-341)) (|has| |#2| (-728)) (|has| |#2| (-781)) (|has| |#2| (-969)) (|has| |#2| (-1012)))
-(-12 (|has| |#3| (-209)) (|has| |#3| (-969)))
-(|has| |#2| (-1059))
-(((#0=(-51)) . T) (((-2 (|:| -2526 (-1083)) (|:| -3043 #0#))) . T))
+((($) -3703 (|has| |#2| (-337)) (|has| |#2| (-425)) (|has| |#2| (-513)) (|has| |#2| (-838))) ((|#2|) |has| |#2| (-157)) (((-381 (-521))) |has| |#2| (-37 (-381 (-521)))))
+((((-799 |#1|)) . T))
+(-3703 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-337)) (|has| |#2| (-342)) (|has| |#2| (-729)) (|has| |#2| (-782)) (|has| |#2| (-970)) (|has| |#2| (-1013)))
+(-12 (|has| |#3| (-210)) (|has| |#3| (-970)))
+(|has| |#2| (-1060))
+(((#0=(-51)) . T) (((-2 (|:| -2529 (-1084)) (|:| -3045 #0#))) . T))
(((|#1| |#2|) . T))
-(-3700 (|has| |#3| (-157)) (|has| |#3| (-781)) (|has| |#3| (-969)))
-(((|#1| (-520) (-997)) . T))
-(((|#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))
-(((|#1| (-380 (-520)) (-997)) . T))
-((($) -3700 (|has| |#1| (-281)) (|has| |#1| (-336)) (|has| |#1| (-322)) (|has| |#1| (-512))) (((-380 (-520))) -3700 (|has| |#1| (-336)) (|has| |#1| (-322))) ((|#1|) . T))
-((((-520) |#2|) . T))
+(-3703 (|has| |#3| (-157)) (|has| |#3| (-782)) (|has| |#3| (-970)))
+(((|#1| (-521) (-998)) . T))
+(((|#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
+(((|#1| (-381 (-521)) (-998)) . T))
+((($) -3703 (|has| |#1| (-282)) (|has| |#1| (-337)) (|has| |#1| (-323)) (|has| |#1| (-513))) (((-381 (-521))) -3703 (|has| |#1| (-337)) (|has| |#1| (-323))) ((|#1|) . T))
+((((-521) |#2|) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
-(|has| |#2| (-341))
-(-12 (|has| |#1| (-341)) (|has| |#2| (-341)))
-((((-791)) . T))
-((((-1083) |#1|) |has| |#1| (-481 (-1083) |#1|)) ((|#1| |#1|) |has| |#1| (-283 |#1|)))
-(-3700 (|has| |#1| (-133)) (|has| |#1| (-341)))
-(-3700 (|has| |#1| (-133)) (|has| |#1| (-341)))
-(-3700 (|has| |#1| (-133)) (|has| |#1| (-341)))
-(((|#1|) . T))
-((((-380 (-520))) |has| |#1| (-37 (-380 (-520)))) ((|#1|) |has| |#1| (-157)) (($) |has| |#1| (-512)))
-((((-380 (-520))) -3700 (|has| |#1| (-37 (-380 (-520)))) (|has| |#1| (-336))) (($) -3700 (|has| |#1| (-336)) (|has| |#1| (-512))) (((-1081 |#1| |#2| |#3|)) |has| |#1| (-336)) ((|#1|) |has| |#1| (-157)))
-(((|#1|) |has| |#1| (-157)) (((-380 (-520))) -3700 (|has| |#1| (-37 (-380 (-520)))) (|has| |#1| (-336))) (($) -3700 (|has| |#1| (-336)) (|has| |#1| (-512))))
-((($) |has| |#1| (-512)) ((|#1|) |has| |#1| (-157)) (((-380 (-520))) |has| |#1| (-37 (-380 (-520)))))
-((((-791)) . T))
-(|has| |#1| (-322))
-(((|#1|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012))) ((#0=(-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) #0#) |has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-283 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))))
-(|has| |#1| (-512))
-(((|#1| |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))
-((((-791)) . T))
+(|has| |#2| (-342))
+(-12 (|has| |#1| (-342)) (|has| |#2| (-342)))
+((((-792)) . T))
+((((-1084) |#1|) |has| |#1| (-482 (-1084) |#1|)) ((|#1| |#1|) |has| |#1| (-284 |#1|)))
+(-3703 (|has| |#1| (-133)) (|has| |#1| (-342)))
+(-3703 (|has| |#1| (-133)) (|has| |#1| (-342)))
+(-3703 (|has| |#1| (-133)) (|has| |#1| (-342)))
+(((|#1|) . T))
+((((-381 (-521))) |has| |#1| (-37 (-381 (-521)))) ((|#1|) |has| |#1| (-157)) (($) |has| |#1| (-513)))
+((((-381 (-521))) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))) (($) -3703 (|has| |#1| (-337)) (|has| |#1| (-513))) (((-1082 |#1| |#2| |#3|)) |has| |#1| (-337)) ((|#1|) |has| |#1| (-157)))
+(((|#1|) |has| |#1| (-157)) (((-381 (-521))) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))) (($) -3703 (|has| |#1| (-337)) (|has| |#1| (-513))))
+((($) |has| |#1| (-513)) ((|#1|) |has| |#1| (-157)) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
+((((-792)) . T))
+(|has| |#1| (-323))
+(((|#1|) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))) ((#0=(-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) #0#) |has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-284 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))))
+(|has| |#1| (-513))
+(((|#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
+((((-792)) . T))
(((|#1| |#2|) . T))
-(-3700 (|has| |#2| (-424)) (|has| |#2| (-837)))
-(-3700 (|has| |#1| (-783)) (|has| |#1| (-1012)))
-(-3700 (|has| |#1| (-424)) (|has| |#1| (-837)))
-((((-380 (-520))) . T) (((-520)) . T))
-((((-520)) . T))
-((((-380 (-520))) |has| |#2| (-37 (-380 (-520)))) ((|#2|) |has| |#2| (-157)) (($) -3700 (|has| |#2| (-424)) (|has| |#2| (-512)) (|has| |#2| (-837))))
-((($) . T))
-((((-791)) . T))
-(((|#1|) . T))
-((((-798 |#1|)) . T) (($) . T) (((-380 (-520))) . T))
-((((-791)) . T))
-(((|#3| |#3|) -3700 (|has| |#3| (-157)) (|has| |#3| (-336)) (|has| |#3| (-969))) (($ $) |has| |#3| (-157)))
-(|has| |#1| (-945))
-((((-791)) . T))
-(((|#3|) -3700 (|has| |#3| (-157)) (|has| |#3| (-336)) (|has| |#3| (-969))) (($) |has| |#3| (-157)))
-((((-520) (-108)) . T))
-(((|#1|) |has| |#1| (-283 |#1|)))
-(|has| |#1| (-341))
-(|has| |#1| (-341))
-(|has| |#1| (-341))
-((((-1083) $) |has| |#1| (-481 (-1083) $)) (($ $) |has| |#1| (-283 $)) ((|#1| |#1|) |has| |#1| (-283 |#1|)) (((-1083) |#1|) |has| |#1| (-481 (-1083) |#1|)))
-((((-1083)) |has| |#1| (-828 (-1083))))
-(-3700 (-12 (|has| |#1| (-209)) (|has| |#1| (-336))) (|has| |#1| (-322)))
-((((-361) (-1030)) . T))
+(-3703 (|has| |#2| (-425)) (|has| |#2| (-838)))
+(-3703 (|has| |#1| (-784)) (|has| |#1| (-1013)))
+(-3703 (|has| |#1| (-425)) (|has| |#1| (-838)))
+((((-381 (-521))) . T) (((-521)) . T))
+((((-521)) . T))
+((((-381 (-521))) |has| |#2| (-37 (-381 (-521)))) ((|#2|) |has| |#2| (-157)) (($) -3703 (|has| |#2| (-425)) (|has| |#2| (-513)) (|has| |#2| (-838))))
+((($) . T))
+((((-792)) . T))
+(((|#1|) . T))
+((((-799 |#1|)) . T) (($) . T) (((-381 (-521))) . T))
+((((-792)) . T))
+(((|#3| |#3|) -3703 (|has| |#3| (-157)) (|has| |#3| (-337)) (|has| |#3| (-970))) (($ $) |has| |#3| (-157)))
+(|has| |#1| (-946))
+((((-792)) . T))
+(((|#3|) -3703 (|has| |#3| (-157)) (|has| |#3| (-337)) (|has| |#3| (-970))) (($) |has| |#3| (-157)))
+((((-521) (-108)) . T))
+(((|#1|) |has| |#1| (-284 |#1|)))
+(|has| |#1| (-342))
+(|has| |#1| (-342))
+(|has| |#1| (-342))
+((((-1084) $) |has| |#1| (-482 (-1084) $)) (($ $) |has| |#1| (-284 $)) ((|#1| |#1|) |has| |#1| (-284 |#1|)) (((-1084) |#1|) |has| |#1| (-482 (-1084) |#1|)))
+((((-1084)) |has| |#1| (-829 (-1084))))
+(-3703 (-12 (|has| |#1| (-210)) (|has| |#1| (-337))) (|has| |#1| (-323)))
+((((-362) (-1031)) . T))
(((|#1| |#4|) . T))
(((|#1| |#3|) . T))
-((((-361) |#1|) . T))
-(-3700 (|has| |#1| (-336)) (|has| |#1| (-322)))
-(|has| |#1| (-1012))
-((((-791)) . T))
-((((-791)) . T))
-((((-838 |#1|)) . T))
-((((-380 (-520))) |has| |#2| (-37 (-380 (-520)))) ((|#2|) |has| |#2| (-157)) (($) -3700 (|has| |#2| (-424)) (|has| |#2| (-512)) (|has| |#2| (-837))))
-((((-380 (-520))) |has| |#1| (-37 (-380 (-520)))) ((|#1|) |has| |#1| (-157)) (($) -3700 (|has| |#1| (-424)) (|has| |#1| (-512)) (|has| |#1| (-837))))
+((((-362) |#1|) . T))
+(-3703 (|has| |#1| (-337)) (|has| |#1| (-323)))
+(|has| |#1| (-1013))
+((((-792)) . T))
+((((-792)) . T))
+((((-839 |#1|)) . T))
+((((-381 (-521))) |has| |#2| (-37 (-381 (-521)))) ((|#2|) |has| |#2| (-157)) (($) -3703 (|has| |#2| (-425)) (|has| |#2| (-513)) (|has| |#2| (-838))))
+((((-381 (-521))) |has| |#1| (-37 (-381 (-521)))) ((|#1|) |has| |#1| (-157)) (($) -3703 (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-838))))
(((|#1| |#2|) . T))
((($) . T))
(((|#1| |#1|) . T))
-(((#0=(-798 |#1|)) |has| #0# (-283 #0#)))
+(((#0=(-799 |#1|)) |has| #0# (-284 #0#)))
(((|#1| |#2|) . T))
-(-3700 (|has| |#2| (-728)) (|has| |#2| (-781)))
-(-3700 (|has| |#2| (-728)) (|has| |#2| (-781)))
-(-12 (|has| |#1| (-728)) (|has| |#2| (-728)))
+(-3703 (|has| |#2| (-729)) (|has| |#2| (-782)))
+(-3703 (|has| |#2| (-729)) (|has| |#2| (-782)))
+(-12 (|has| |#1| (-729)) (|has| |#2| (-729)))
(((|#1|) . T))
-(-12 (|has| |#1| (-728)) (|has| |#2| (-728)))
-(-3700 (|has| |#2| (-157)) (|has| |#2| (-781)) (|has| |#2| (-969)))
+(-12 (|has| |#1| (-729)) (|has| |#2| (-729)))
+(-3703 (|has| |#2| (-157)) (|has| |#2| (-782)) (|has| |#2| (-970)))
(((|#2|) . T) (($) . T))
-(((|#2|) . T) (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) . T))
-(|has| |#1| (-1104))
-(((#0=(-520) #0#) . T) ((#1=(-380 (-520)) #1#) . T) (($ $) . T))
-((((-380 (-520))) . T) (($) . T))
-(((|#4|) |has| |#4| (-969)))
-(((|#3|) |has| |#3| (-969)))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-380 (-520)) #0#) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-380 (-520)) #0#) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-380 (-520)) #0#) . T))
-(|has| |#1| (-336))
-((((-520)) . T) (((-380 (-520))) . T) (($) . T))
-((($ $) . T) ((#0=(-380 (-520)) #0#) -3700 (|has| |#1| (-336)) (|has| |#1| (-322))) ((|#1| |#1|) . T))
-((((-791)) -3700 (|has| |#1| (-560 (-791))) (|has| |#1| (-1012))))
-(((|#1|) . T) (($) . T) (((-380 (-520))) . T))
-((((-791)) . T))
-((((-791)) . T))
-(((|#1|) . T) (($) . T) (((-380 (-520))) . T))
-(((|#1|) . T) (($) . T) (((-380 (-520))) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-520) |#3|) . T))
-((((-791)) . T))
-((((-496)) |has| |#3| (-561 (-496))))
-((((-626 |#3|)) . T) (((-791)) . T))
+(((|#2|) . T) (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) . T))
+(|has| |#1| (-1105))
+(((#0=(-521) #0#) . T) ((#1=(-381 (-521)) #1#) . T) (($ $) . T))
+((((-381 (-521))) . T) (($) . T))
+(((|#4|) |has| |#4| (-970)))
+(((|#3|) |has| |#3| (-970)))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-381 (-521)) #0#) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-381 (-521)) #0#) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-381 (-521)) #0#) . T))
+(|has| |#1| (-337))
+((((-521)) . T) (((-381 (-521))) . T) (($) . T))
+((($ $) . T) ((#0=(-381 (-521)) #0#) -3703 (|has| |#1| (-337)) (|has| |#1| (-323))) ((|#1| |#1|) . T))
+((((-792)) -3703 (|has| |#1| (-561 (-792))) (|has| |#1| (-1013))))
+(((|#1|) . T) (($) . T) (((-381 (-521))) . T))
+((((-792)) . T))
+((((-792)) . T))
+(((|#1|) . T) (($) . T) (((-381 (-521))) . T))
+(((|#1|) . T) (($) . T) (((-381 (-521))) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-521) |#3|) . T))
+((((-792)) . T))
+((((-497)) |has| |#3| (-562 (-497))))
+((((-627 |#3|)) . T) (((-792)) . T))
(((|#1| |#2|) . T))
-(|has| |#1| (-781))
-(|has| |#1| (-781))
-((($) . T) (((-380 (-520))) -3700 (|has| |#1| (-336)) (|has| |#1| (-322))) ((|#1|) . T))
-(-3700 (|has| |#1| (-157)) (|has| |#1| (-512)))
-(((#0=(-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) #0#) |has| (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (-283 (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))))))
-((($) . T))
-(|has| |#2| (-783))
-((($) . T))
-(((|#2|) |has| |#2| (-1012)))
-((((-791)) -3700 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-560 (-791))) (|has| |#2| (-157)) (|has| |#2| (-336)) (|has| |#2| (-341)) (|has| |#2| (-728)) (|has| |#2| (-781)) (|has| |#2| (-969)) (|has| |#2| (-1012))) (((-1164 |#2|)) . T))
-(|has| |#1| (-783))
-(|has| |#1| (-783))
-((((-1066) (-51)) . T))
-(|has| |#1| (-783))
-((((-791)) . T))
-((((-520)) |has| #0=(-380 |#2|) (-582 (-520))) ((#0#) . T))
-((((-520) (-132)) . T))
-((((-520) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) . T) ((|#1| |#2|) . T))
-((((-380 (-520))) . T) (($) . T))
-(((|#1|) . T))
-((((-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) . T))
-((((-791)) . T))
-((((-838 |#1|)) . T))
-(|has| |#1| (-336))
-(|has| |#1| (-336))
-(|has| |#1| (-336))
-(|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|)))
-(|has| |#1| (-781))
-(|has| |#1| (-336))
-(|has| |#1| (-781))
+(|has| |#1| (-782))
+(|has| |#1| (-782))
+((($) . T) (((-381 (-521))) -3703 (|has| |#1| (-337)) (|has| |#1| (-323))) ((|#1|) . T))
+(-3703 (|has| |#1| (-157)) (|has| |#1| (-513)))
+(((#0=(-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) #0#) |has| (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (-284 (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))))))
+((($) . T))
+(|has| |#2| (-784))
+((($) . T))
+(((|#2|) |has| |#2| (-1013)))
+((((-792)) -3703 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-561 (-792))) (|has| |#2| (-157)) (|has| |#2| (-337)) (|has| |#2| (-342)) (|has| |#2| (-729)) (|has| |#2| (-782)) (|has| |#2| (-970)) (|has| |#2| (-1013))) (((-1165 |#2|)) . T))
+(|has| |#1| (-784))
+(|has| |#1| (-784))
+((((-1067) (-51)) . T))
+(|has| |#1| (-784))
+((((-792)) . T))
+((((-521)) |has| #0=(-381 |#2|) (-583 (-521))) ((#0#) . T))
+((((-521) (-132)) . T))
+((((-521) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) . T) ((|#1| |#2|) . T))
+((((-381 (-521))) . T) (($) . T))
+(((|#1|) . T))
+((((-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) . T))
+((((-792)) . T))
+((((-839 |#1|)) . T))
+(|has| |#1| (-337))
+(|has| |#1| (-337))
+(|has| |#1| (-337))
+(|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|)))
+(|has| |#1| (-782))
+(|has| |#1| (-337))
+(|has| |#1| (-782))
(((|#1|) . T) (($) . T))
-(|has| |#1| (-781))
-((((-1083)) |has| |#1| (-828 (-1083))))
-(((|#1| (-1083)) . T))
-(((|#1| (-1164 |#1|) (-1164 |#1|)) . T))
+(|has| |#1| (-782))
+((((-1084)) |has| |#1| (-829 (-1084))))
+(((|#1| (-1084)) . T))
+(((|#1| (-1165 |#1|) (-1165 |#1|)) . T))
(((|#1| |#2|) . T))
((($ $) . T))
-(|has| |#1| (-1012))
-(((|#1| (-1083) (-754 (-1083)) (-492 (-754 (-1083)))) . T))
-((((-380 (-880 |#1|))) . T))
-((((-496)) . T))
-((((-791)) . T))
+(|has| |#1| (-1013))
+(((|#1| (-1084) (-755 (-1084)) (-493 (-755 (-1084)))) . T))
+((((-381 (-881 |#1|))) . T))
+((((-497)) . T))
+((((-792)) . T))
((($) . T))
(((|#2|) . T) (($) . T))
(((|#1|) |has| |#1| (-157)))
-((((-520) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) . T) ((|#1| |#2|) . T))
+((((-521) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) . T) ((|#1| |#2|) . T))
(((|#1|) . T))
-((($) |has| |#1| (-512)) ((|#1|) |has| |#1| (-157)) (((-380 (-520))) |has| |#1| (-37 (-380 (-520)))))
-(((|#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))
+((($) |has| |#1| (-513)) ((|#1|) |has| |#1| (-157)) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
+(((|#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
(((|#3|) . T))
(((|#1|) |has| |#1| (-157)))
-((((-380 (-520))) |has| |#1| (-37 (-380 (-520)))) ((|#1|) |has| |#1| (-157)) (($) -3700 (|has| |#1| (-424)) (|has| |#1| (-512)) (|has| |#1| (-837))))
-((($) -3700 (|has| |#1| (-336)) (|has| |#1| (-424)) (|has| |#1| (-512)) (|has| |#1| (-837))) ((|#1|) |has| |#1| (-157)) (((-380 (-520))) |has| |#1| (-37 (-380 (-520)))))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-496)) |has| |#1| (-561 (-496))) (((-820 (-352))) |has| |#1| (-561 (-820 (-352)))) (((-820 (-520))) |has| |#1| (-561 (-820 (-520)))))
-((((-791)) . T))
-(((|#2|) . T) (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) . T))
-(|has| |#2| (-781))
-(-12 (|has| |#2| (-209)) (|has| |#2| (-969)))
-(|has| |#1| (-512))
-(|has| |#1| (-1059))
-((((-1066) |#1|) . T))
-(-3700 (|has| |#2| (-157)) (|has| |#2| (-781)) (|has| |#2| (-969)))
-(((#0=(-380 (-520)) #0#) -3700 (|has| |#1| (-37 (-380 (-520)))) (|has| |#1| (-336))) (($ $) -3700 (|has| |#1| (-157)) (|has| |#1| (-336)) (|has| |#1| (-512))) ((|#1| |#1|) . T))
-((((-380 (-520))) |has| |#1| (-960 (-520))) (((-520)) |has| |#1| (-960 (-520))) (((-1083)) |has| |#1| (-960 (-1083))) ((|#1|) . T))
-((((-520) |#2|) . T))
-((((-380 (-520))) |has| |#1| (-960 (-380 (-520)))) (((-520)) |has| |#1| (-960 (-520))) ((|#1|) . T))
-((((-520)) |has| |#1| (-814 (-520))) (((-352)) |has| |#1| (-814 (-352))))
-((((-380 (-520))) -3700 (|has| |#1| (-37 (-380 (-520)))) (|has| |#1| (-336))) (($) -3700 (|has| |#1| (-157)) (|has| |#1| (-336)) (|has| |#1| (-512))) ((|#1|) . T))
-(((|#1|) . T))
-((((-586 |#4|)) . T) (((-791)) . T))
-((((-496)) |has| |#4| (-561 (-496))))
-((((-496)) |has| |#4| (-561 (-496))))
-((((-791)) . T) (((-586 |#4|)) . T))
-((($) |has| |#1| (-781)))
-(((|#1|) . T))
-((((-586 |#4|)) . T) (((-791)) . T))
-((((-496)) |has| |#4| (-561 (-496))))
-(((|#1|) . T))
-(((|#2|) . T))
-((((-1083)) |has| (-380 |#2|) (-828 (-1083))))
-(((|#2| |#2|) -12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012))) ((#0=(-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) #0#) |has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-283 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))))
-((($) . T))
-((($) . T))
-(((|#2|) . T))
-((((-791)) -3700 (|has| |#3| (-25)) (|has| |#3| (-124)) (|has| |#3| (-560 (-791))) (|has| |#3| (-157)) (|has| |#3| (-336)) (|has| |#3| (-341)) (|has| |#3| (-728)) (|has| |#3| (-781)) (|has| |#3| (-969)) (|has| |#3| (-1012))) (((-1164 |#3|)) . T))
-((((-520) |#2|) . T))
-(-3700 (|has| |#1| (-783)) (|has| |#1| (-1012)))
-(((|#2| |#2|) -3700 (|has| |#2| (-157)) (|has| |#2| (-336)) (|has| |#2| (-969))) (($ $) |has| |#2| (-157)))
-((((-791)) . T))
-((((-791)) . T))
-((((-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) . T) ((|#2|) . T))
-((((-791)) . T))
-((((-791)) . T))
-((((-1066) (-1083) (-520) (-201) (-791)) . T))
-((((-791)) . T))
-((((-791)) . T))
-((((-791)) . T))
-((((-791)) . T))
-((((-791)) . T))
-((((-791)) . T))
-((((-791)) . T))
-((((-791)) . T))
-((((-791)) . T))
-((((-791)) . T))
-((((-791)) . T))
-(|has| |#1| (-37 (-380 (-520))))
-(|has| |#1| (-37 (-380 (-520))))
-((((-791)) . T))
-((((-520) (-108)) . T))
-(((|#1|) . T))
-((((-791)) . T))
+((((-381 (-521))) |has| |#1| (-37 (-381 (-521)))) ((|#1|) |has| |#1| (-157)) (($) -3703 (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-838))))
+((($) -3703 (|has| |#1| (-337)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-838))) ((|#1|) |has| |#1| (-157)) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-497)) |has| |#1| (-562 (-497))) (((-821 (-353))) |has| |#1| (-562 (-821 (-353)))) (((-821 (-521))) |has| |#1| (-562 (-821 (-521)))))
+((((-792)) . T))
+(((|#2|) . T) (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) . T))
+(|has| |#2| (-782))
+(-12 (|has| |#2| (-210)) (|has| |#2| (-970)))
+(|has| |#1| (-513))
+(|has| |#1| (-1060))
+((((-1067) |#1|) . T))
+(-3703 (|has| |#2| (-157)) (|has| |#2| (-782)) (|has| |#2| (-970)))
+(((#0=(-381 (-521)) #0#) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))) (($ $) -3703 (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-513))) ((|#1| |#1|) . T))
+((((-381 (-521))) |has| |#1| (-961 (-521))) (((-521)) |has| |#1| (-961 (-521))) (((-1084)) |has| |#1| (-961 (-1084))) ((|#1|) . T))
+((((-521) |#2|) . T))
+((((-381 (-521))) |has| |#1| (-961 (-381 (-521)))) (((-521)) |has| |#1| (-961 (-521))) ((|#1|) . T))
+((((-521)) |has| |#1| (-815 (-521))) (((-353)) |has| |#1| (-815 (-353))))
+((((-381 (-521))) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))) (($) -3703 (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-513))) ((|#1|) . T))
+(((|#1|) . T))
+((((-587 |#4|)) . T) (((-792)) . T))
+((((-497)) |has| |#4| (-562 (-497))))
+((((-497)) |has| |#4| (-562 (-497))))
+((((-792)) . T) (((-587 |#4|)) . T))
+((($) |has| |#1| (-782)))
+(((|#1|) . T))
+((((-587 |#4|)) . T) (((-792)) . T))
+((((-497)) |has| |#4| (-562 (-497))))
+(((|#1|) . T))
+(((|#2|) . T))
+((((-1084)) |has| (-381 |#2|) (-829 (-1084))))
+(((|#2| |#2|) -12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))) ((#0=(-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) #0#) |has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-284 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))))
+((($) . T))
+((($) . T))
+(((|#2|) . T))
+((((-792)) -3703 (|has| |#3| (-25)) (|has| |#3| (-124)) (|has| |#3| (-561 (-792))) (|has| |#3| (-157)) (|has| |#3| (-337)) (|has| |#3| (-342)) (|has| |#3| (-729)) (|has| |#3| (-782)) (|has| |#3| (-970)) (|has| |#3| (-1013))) (((-1165 |#3|)) . T))
+((((-521) |#2|) . T))
+(-3703 (|has| |#1| (-784)) (|has| |#1| (-1013)))
+(((|#2| |#2|) -3703 (|has| |#2| (-157)) (|has| |#2| (-337)) (|has| |#2| (-970))) (($ $) |has| |#2| (-157)))
+((((-792)) . T))
+((((-792)) . T))
+((((-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) . T) ((|#2|) . T))
+((((-792)) . T))
+((((-792)) . T))
+((((-1067) (-1084) (-521) (-202) (-792)) . T))
+((((-792)) . T))
+((((-792)) . T))
+((((-792)) . T))
+((((-792)) . T))
+((((-792)) . T))
+((((-792)) . T))
+((((-792)) . T))
+((((-792)) . T))
+((((-792)) . T))
+((((-792)) . T))
+((((-792)) . T))
+(|has| |#1| (-37 (-381 (-521))))
+(|has| |#1| (-37 (-381 (-521))))
+((((-792)) . T))
+((((-521) (-108)) . T))
+(((|#1|) . T))
+((((-792)) . T))
((((-108)) . T))
((((-108)) . T))
-((((-791)) . T))
-((((-791)) . T))
+((((-792)) . T))
+((((-792)) . T))
((((-108)) . T))
-((((-791)) . T))
-((((-791)) . T))
-((((-791)) . T))
-((((-791)) . T))
-((((-791)) . T))
-(|has| |#1| (-37 (-380 (-520))))
-(|has| |#1| (-37 (-380 (-520))))
-((((-791)) . T))
-((((-496)) |has| |#1| (-561 (-496))))
-((((-791)) -3700 (|has| |#1| (-560 (-791))) (|has| |#1| (-1012))))
-(((|#2|) -3700 (|has| |#2| (-157)) (|has| |#2| (-336)) (|has| |#2| (-969))) (($) |has| |#2| (-157)))
+((((-792)) . T))
+((((-792)) . T))
+((((-792)) . T))
+((((-792)) . T))
+((((-792)) . T))
+(|has| |#1| (-37 (-381 (-521))))
+(|has| |#1| (-37 (-381 (-521))))
+((((-792)) . T))
+((((-497)) |has| |#1| (-562 (-497))))
+((((-792)) -3703 (|has| |#1| (-561 (-792))) (|has| |#1| (-1013))))
+(((|#2|) -3703 (|has| |#2| (-157)) (|has| |#2| (-337)) (|has| |#2| (-970))) (($) |has| |#2| (-157)))
(|has| $ (-135))
-((((-380 |#2|)) . T))
-((((-380 (-520))) |has| #0=(-380 |#2|) (-960 (-380 (-520)))) (((-520)) |has| #0# (-960 (-520))) ((#0#) . T))
+((((-381 |#2|)) . T))
+((((-381 (-521))) |has| #0=(-381 |#2|) (-961 (-381 (-521)))) (((-521)) |has| #0# (-961 (-521))) ((#0#) . T))
(((|#2| |#2|) . T))
(((|#4|) |has| |#4| (-157)))
(|has| |#2| (-133))
@@ -1200,171 +1200,171 @@
(((|#3|) |has| |#3| (-157)))
(|has| |#1| (-135))
(|has| |#1| (-133))
-(-3700 (|has| |#1| (-133)) (|has| |#1| (-341)))
+(-3703 (|has| |#1| (-133)) (|has| |#1| (-342)))
(|has| |#1| (-135))
-(-3700 (|has| |#1| (-133)) (|has| |#1| (-341)))
+(-3703 (|has| |#1| (-133)) (|has| |#1| (-342)))
(|has| |#1| (-135))
-(-3700 (|has| |#1| (-133)) (|has| |#1| (-341)))
+(-3703 (|has| |#1| (-133)) (|has| |#1| (-342)))
(|has| |#1| (-135))
(((|#1|) . T))
(((|#2|) . T))
-(|has| |#2| (-209))
-((((-1083) (-51)) . T))
-((((-791)) . T))
+(|has| |#2| (-210))
+((((-1084) (-51)) . T))
+((((-792)) . T))
(((|#1| |#1|) . T))
-((((-1083)) |has| |#2| (-828 (-1083))))
-((((-520) (-108)) . T))
-(|has| |#1| (-512))
+((((-1084)) |has| |#2| (-829 (-1084))))
+((((-521) (-108)) . T))
+(|has| |#1| (-513))
(((|#2|) . T))
(((|#2|) . T))
(((|#1|) . T))
(((|#2| |#2|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-37 (-380 (-520))))
-(|has| |#1| (-37 (-380 (-520))))
+(|has| |#1| (-37 (-381 (-521))))
+(|has| |#1| (-37 (-381 (-521))))
(((|#3|) . T))
-(|has| |#1| (-37 (-380 (-520))))
-(|has| |#1| (-37 (-380 (-520))))
-(((|#1|) . T))
-((((-791)) . T))
-((((-496)) . T) (((-820 (-520))) . T) (((-352)) . T) (((-201)) . T))
-((((-791)) . T))
-((((-791)) . T))
-((((-791)) . T))
-((((-923 |#1|)) . T) ((|#1|) . T))
-((((-791)) . T))
-((((-791)) . T))
-((((-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) . T))
-((((-380 (-520))) . T) (((-380 |#1|)) . T) ((|#1|) . T) (($) . T))
-(((|#1| (-1079 |#1|)) . T))
-((((-520)) . T) (($) . T) (((-380 (-520))) . T))
+(|has| |#1| (-37 (-381 (-521))))
+(|has| |#1| (-37 (-381 (-521))))
+(((|#1|) . T))
+((((-792)) . T))
+((((-497)) . T) (((-821 (-521))) . T) (((-353)) . T) (((-202)) . T))
+((((-792)) . T))
+((((-792)) . T))
+((((-792)) . T))
+((((-924 |#1|)) . T) ((|#1|) . T))
+((((-792)) . T))
+((((-792)) . T))
+((((-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) . T))
+((((-381 (-521))) . T) (((-381 |#1|)) . T) ((|#1|) . T) (($) . T))
+(((|#1| (-1080 |#1|)) . T))
+((((-521)) . T) (($) . T) (((-381 (-521))) . T))
(((|#3|) . T) (($) . T))
-(|has| |#1| (-783))
+(|has| |#1| (-784))
(((|#2|) . T))
-((((-520)) . T) (($) . T) (((-380 (-520))) . T))
-((((-2 (|:| -2526 (-1066)) (|:| -3043 |#1|))) . T))
-((((-520) |#2|) . T))
-((((-791)) -3700 (|has| |#1| (-560 (-791))) (|has| |#1| (-1012))))
+((((-521)) . T) (($) . T) (((-381 (-521))) . T))
+((((-2 (|:| -2529 (-1067)) (|:| -3045 |#1|))) . T))
+((((-521) |#2|) . T))
+((((-792)) -3703 (|has| |#1| (-561 (-792))) (|has| |#1| (-1013))))
(((|#2|) . T))
-((((-520) |#3|) . T))
+((((-521) |#3|) . T))
(((|#2|) . T))
-(|has| |#1| (-37 (-380 (-520))))
-(|has| |#1| (-37 (-380 (-520))))
-((((-1156 |#1| |#2| |#3|)) |has| |#1| (-336)))
-(|has| |#1| (-37 (-380 (-520))))
-(|has| |#1| (-37 (-380 (-520))))
-((((-791)) . T))
-(|has| |#1| (-1012))
-(((|#4|) -12 (|has| |#4| (-283 |#4|)) (|has| |#4| (-1012))))
-(((|#3|) -12 (|has| |#3| (-283 |#3|)) (|has| |#3| (-1012))))
+(|has| |#1| (-37 (-381 (-521))))
+(|has| |#1| (-37 (-381 (-521))))
+((((-1157 |#1| |#2| |#3|)) |has| |#1| (-337)))
+(|has| |#1| (-37 (-381 (-521))))
+(|has| |#1| (-37 (-381 (-521))))
+((((-792)) . T))
+(|has| |#1| (-1013))
+(((|#4|) -12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013))))
+(((|#3|) -12 (|has| |#3| (-284 |#3|)) (|has| |#3| (-1013))))
(((|#2|) . T))
(((|#1|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012))) ((#0=(-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) #0#) |has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-283 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))))
+(((|#2| |#2|) -12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))) ((#0=(-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) #0#) |has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-284 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))))
(((|#2| |#2|) . T))
-(|has| |#2| (-336))
-(((|#2|) . T) (((-520)) |has| |#2| (-960 (-520))) (((-380 (-520))) |has| |#2| (-960 (-380 (-520)))))
+(|has| |#2| (-337))
+(((|#2|) . T) (((-521)) |has| |#2| (-961 (-521))) (((-381 (-521))) |has| |#2| (-961 (-381 (-521)))))
(((|#2|) . T))
-((((-1066) (-51)) . T))
+((((-1067) (-51)) . T))
(((|#2|) |has| |#2| (-157)))
-((((-520) |#3|) . T))
-((((-520) (-132)) . T))
+((((-521) |#3|) . T))
+((((-521) (-132)) . T))
((((-132)) . T))
-((((-791)) . T))
+((((-792)) . T))
((((-108)) . T))
(|has| |#1| (-135))
(((|#1|) . T))
(|has| |#1| (-133))
((($) . T))
-(|has| |#1| (-512))
-(((|#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))
+(|has| |#1| (-513))
+(((|#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
((($) . T))
(((|#1|) . T))
-(((|#2|) . T) (((-520)) |has| |#2| (-582 (-520))))
-((((-791)) . T))
-((((-520)) |has| |#1| (-582 (-520))) ((|#1|) . T))
-((((-520)) |has| |#1| (-582 (-520))) ((|#1|) . T))
-((((-520)) |has| |#1| (-582 (-520))) ((|#1|) . T))
-((((-1066) (-51)) . T))
+(((|#2|) . T) (((-521)) |has| |#2| (-583 (-521))))
+((((-792)) . T))
+((((-521)) |has| |#1| (-583 (-521))) ((|#1|) . T))
+((((-521)) |has| |#1| (-583 (-521))) ((|#1|) . T))
+((((-521)) |has| |#1| (-583 (-521))) ((|#1|) . T))
+((((-1067) (-51)) . T))
(((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))
+(((|#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
(((|#1| |#2|) . T))
-((((-520) (-132)) . T))
-(((#0=(-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) #0#) |has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-283 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012))))
-((($) -3700 (|has| |#1| (-424)) (|has| |#1| (-512)) (|has| |#1| (-837))) ((|#1|) |has| |#1| (-157)) (((-380 (-520))) |has| |#1| (-37 (-380 (-520)))))
-(|has| |#1| (-783))
-(((|#2| (-706) (-997)) . T))
+((((-521) (-132)) . T))
+(((#0=(-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) #0#) |has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-284 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))))
+((($) -3703 (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-838))) ((|#1|) |has| |#1| (-157)) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
+(|has| |#1| (-784))
+(((|#2| (-707) (-998)) . T))
(((|#1| |#2|) . T))
-(-3700 (|has| |#1| (-157)) (|has| |#1| (-512)))
-(|has| |#1| (-726))
+(-3703 (|has| |#1| (-157)) (|has| |#1| (-513)))
+(|has| |#1| (-727))
(((|#1|) |has| |#1| (-157)))
(((|#4|) . T))
(((|#4|) . T))
(((|#1| |#2|) . T))
-(-3700 (|has| |#1| (-135)) (-12 (|has| |#1| (-336)) (|has| |#2| (-135))))
-(-3700 (|has| |#1| (-133)) (-12 (|has| |#1| (-336)) (|has| |#2| (-133))))
+(-3703 (|has| |#1| (-135)) (-12 (|has| |#1| (-337)) (|has| |#2| (-135))))
+(-3703 (|has| |#1| (-133)) (-12 (|has| |#1| (-337)) (|has| |#2| (-133))))
(((|#4|) . T))
(|has| |#1| (-133))
-((((-1066) |#1|) . T))
+((((-1067) |#1|) . T))
(|has| |#1| (-135))
(((|#1|) . T))
-((((-520)) . T))
-((((-791)) . T))
+((((-521)) . T))
+((((-792)) . T))
(((|#1| |#2|) . T))
-((((-791)) . T))
-(((|#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))
+((((-792)) . T))
+(((|#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
(((|#3|) . T))
-((((-1156 |#1| |#2| |#3|)) |has| |#1| (-336)))
-(-3700 (|has| |#1| (-783)) (|has| |#1| (-1012)))
-(((|#1|) . T))
-((((-791)) -3700 (|has| |#1| (-560 (-791))) (|has| |#1| (-1012))))
-((((-791)) -3700 (|has| |#1| (-560 (-791))) (|has| |#1| (-1012))) (((-885 |#1|)) . T))
-(|has| |#1| (-781))
-(|has| |#1| (-781))
-(((|#1| |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))
-(|has| |#2| (-336))
+((((-1157 |#1| |#2| |#3|)) |has| |#1| (-337)))
+(-3703 (|has| |#1| (-784)) (|has| |#1| (-1013)))
+(((|#1|) . T))
+((((-792)) -3703 (|has| |#1| (-561 (-792))) (|has| |#1| (-1013))))
+((((-792)) -3703 (|has| |#1| (-561 (-792))) (|has| |#1| (-1013))) (((-886 |#1|)) . T))
+(|has| |#1| (-782))
+(|has| |#1| (-782))
+(((|#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
+(|has| |#2| (-337))
(((|#1|) |has| |#1| (-157)))
-(((|#2|) |has| |#2| (-969)))
-((((-1066) |#1|) . T))
-(((|#3| |#3|) -12 (|has| |#3| (-283 |#3|)) (|has| |#3| (-1012))))
-(((|#2| (-821 |#1|)) . T))
-((($) . T))
-((((-361) (-1066)) . T))
-((($) |has| |#1| (-512)) ((|#1|) |has| |#1| (-157)) (((-380 (-520))) |has| |#1| (-37 (-380 (-520)))))
-((((-791)) -3700 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-560 (-791))) (|has| |#2| (-157)) (|has| |#2| (-336)) (|has| |#2| (-341)) (|has| |#2| (-728)) (|has| |#2| (-781)) (|has| |#2| (-969)) (|has| |#2| (-1012))) (((-1164 |#2|)) . T))
-(((#0=(-51)) . T) (((-2 (|:| -2526 (-1066)) (|:| -3043 #0#))) . T))
-(((|#1|) . T))
-((((-791)) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012))))
+(((|#2|) |has| |#2| (-970)))
+((((-1067) |#1|) . T))
+(((|#3| |#3|) -12 (|has| |#3| (-284 |#3|)) (|has| |#3| (-1013))))
+(((|#2| (-822 |#1|)) . T))
+((($) . T))
+((((-362) (-1067)) . T))
+((($) |has| |#1| (-513)) ((|#1|) |has| |#1| (-157)) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
+((((-792)) -3703 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-561 (-792))) (|has| |#2| (-157)) (|has| |#2| (-337)) (|has| |#2| (-342)) (|has| |#2| (-729)) (|has| |#2| (-782)) (|has| |#2| (-970)) (|has| |#2| (-1013))) (((-1165 |#2|)) . T))
+(((#0=(-51)) . T) (((-2 (|:| -2529 (-1067)) (|:| -3045 #0#))) . T))
+(((|#1|) . T))
+((((-792)) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))))
((((-132)) . T))
(|has| |#2| (-133))
(|has| |#2| (-135))
-(|has| |#1| (-445))
-(-3700 (|has| |#1| (-445)) (|has| |#1| (-662)) (|has| |#1| (-828 (-1083))) (|has| |#1| (-969)))
-(|has| |#1| (-336))
-((((-791)) . T))
-(|has| |#1| (-37 (-380 (-520))))
-((((-380 (-520))) |has| |#1| (-37 (-380 (-520)))) ((|#1|) |has| |#1| (-157)) (($) |has| |#1| (-512)))
-((($) |has| |#1| (-512)))
-(|has| |#1| (-781))
-(|has| |#1| (-781))
-((((-791)) . T))
-((((-380 (-520))) -3700 (|has| |#1| (-37 (-380 (-520)))) (|has| |#1| (-336))) (($) -3700 (|has| |#1| (-336)) (|has| |#1| (-512))) (((-1156 |#1| |#2| |#3|)) |has| |#1| (-336)) ((|#1|) |has| |#1| (-157)))
-(((|#1|) |has| |#1| (-157)) (((-380 (-520))) -3700 (|has| |#1| (-37 (-380 (-520)))) (|has| |#1| (-336))) (($) -3700 (|has| |#1| (-336)) (|has| |#1| (-512))))
-((($) |has| |#1| (-512)) ((|#1|) |has| |#1| (-157)) (((-380 (-520))) |has| |#1| (-37 (-380 (-520)))))
+(|has| |#1| (-446))
+(-3703 (|has| |#1| (-446)) (|has| |#1| (-663)) (|has| |#1| (-829 (-1084))) (|has| |#1| (-970)))
+(|has| |#1| (-337))
+((((-792)) . T))
+(|has| |#1| (-37 (-381 (-521))))
+((((-381 (-521))) |has| |#1| (-37 (-381 (-521)))) ((|#1|) |has| |#1| (-157)) (($) |has| |#1| (-513)))
+((($) |has| |#1| (-513)))
+(|has| |#1| (-782))
+(|has| |#1| (-782))
+((((-792)) . T))
+((((-381 (-521))) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))) (($) -3703 (|has| |#1| (-337)) (|has| |#1| (-513))) (((-1157 |#1| |#2| |#3|)) |has| |#1| (-337)) ((|#1|) |has| |#1| (-157)))
+(((|#1|) |has| |#1| (-157)) (((-381 (-521))) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))) (($) -3703 (|has| |#1| (-337)) (|has| |#1| (-513))))
+((($) |has| |#1| (-513)) ((|#1|) |has| |#1| (-157)) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
(((|#1| |#2|) . T))
-((((-1083)) |has| |#1| (-828 (-1083))))
-((((-838 |#1|)) . T) (((-380 (-520))) . T) (($) . T))
-((((-791)) . T))
-((((-791)) . T))
-(|has| |#1| (-1012))
-(((|#2| (-453 (-3474 |#1|) (-706)) (-793 |#1|)) . T))
-((((-380 (-520))) . #0=(|has| |#2| (-336))) (($) . #0#))
-(((|#1| (-492 (-1083)) (-1083)) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-791)) . T))
-((((-791)) . T))
+((((-1084)) |has| |#1| (-829 (-1084))))
+((((-839 |#1|)) . T) (((-381 (-521))) . T) (($) . T))
+((((-792)) . T))
+((((-792)) . T))
+(|has| |#1| (-1013))
+(((|#2| (-454 (-3475 |#1|) (-707)) (-794 |#1|)) . T))
+((((-381 (-521))) . #0=(|has| |#2| (-337))) (($) . #0#))
+(((|#1| (-493 (-1084)) (-1084)) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-792)) . T))
+((((-792)) . T))
(((|#3|) . T))
(((|#3|) . T))
(((|#1|) . T))
@@ -1378,330 +1378,330 @@
(|has| |#1| (-135))
(((|#1|) . T))
(((|#2|) . T))
-(((|#1|) . T) (((-2 (|:| -2526 (-1066)) (|:| -3043 |#1|))) . T))
-((((-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) . T))
-((((-2 (|:| -2526 (-1083)) (|:| -3043 (-51)))) . T))
-((((-1081 |#1| |#2| |#3|)) |has| |#1| (-336)))
-((((-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) . T))
-((((-1083) (-51)) . T))
+(((|#1|) . T) (((-2 (|:| -2529 (-1067)) (|:| -3045 |#1|))) . T))
+((((-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) . T))
+((((-2 (|:| -2529 (-1084)) (|:| -3045 (-51)))) . T))
+((((-1082 |#1| |#2| |#3|)) |has| |#1| (-337)))
+((((-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) . T))
+((((-1084) (-51)) . T))
((($ $) . T))
-(((|#1| (-520)) . T))
-((((-838 |#1|)) . T))
-(((|#1|) -3700 (|has| |#1| (-157)) (|has| |#1| (-336)) (|has| |#1| (-969))) (($) -3700 (|has| |#1| (-828 (-1083))) (|has| |#1| (-969))))
-(((|#1|) . T) (((-520)) |has| |#1| (-960 (-520))) (((-380 (-520))) |has| |#1| (-960 (-380 (-520)))))
-(|has| |#1| (-783))
-(|has| |#1| (-783))
-((((-520) |#2|) . T))
-((((-520)) . T))
-((((-1156 |#1| |#2| |#3|)) -12 (|has| (-1156 |#1| |#2| |#3|) (-283 (-1156 |#1| |#2| |#3|))) (|has| |#1| (-336))))
-(|has| |#1| (-783))
-((((-626 |#2|)) . T) (((-791)) . T))
+(((|#1| (-521)) . T))
+((((-839 |#1|)) . T))
+(((|#1|) -3703 (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-970))) (($) -3703 (|has| |#1| (-829 (-1084))) (|has| |#1| (-970))))
+(((|#1|) . T) (((-521)) |has| |#1| (-961 (-521))) (((-381 (-521))) |has| |#1| (-961 (-381 (-521)))))
+(|has| |#1| (-784))
+(|has| |#1| (-784))
+((((-521) |#2|) . T))
+((((-521)) . T))
+((((-1157 |#1| |#2| |#3|)) -12 (|has| (-1157 |#1| |#2| |#3|) (-284 (-1157 |#1| |#2| |#3|))) (|has| |#1| (-337))))
+(|has| |#1| (-784))
+((((-627 |#2|)) . T) (((-792)) . T))
(((|#1| |#2|) . T))
-((((-380 (-880 |#1|))) . T))
-(((|#4| |#4|) -12 (|has| |#4| (-283 |#4|)) (|has| |#4| (-1012))))
-(((|#4| |#4|) -12 (|has| |#4| (-283 |#4|)) (|has| |#4| (-1012))))
+((((-381 (-881 |#1|))) . T))
+(((|#4| |#4|) -12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013))))
+(((|#4| |#4|) -12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013))))
(((|#1|) |has| |#1| (-157)))
-(((|#4| |#4|) -12 (|has| |#4| (-283 |#4|)) (|has| |#4| (-1012))))
-(((|#3|) -3700 (|has| |#3| (-157)) (|has| |#3| (-336))))
-(|has| |#2| (-783))
-(|has| |#1| (-783))
-(-3700 (|has| |#2| (-336)) (|has| |#2| (-424)) (|has| |#2| (-837)))
-((($ $) . T) ((#0=(-380 (-520)) #0#) . T))
-((((-520) |#2|) . T))
-(((|#2|) -3700 (|has| |#2| (-157)) (|has| |#2| (-336))))
-(|has| |#1| (-322))
-(((|#3| |#3|) -12 (|has| |#3| (-283 |#3|)) (|has| |#3| (-1012))))
-((($) . T) (((-380 (-520))) . T))
-((((-520) (-108)) . T))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
-(((|#1|) . T))
-(-3700 (|has| |#1| (-281)) (|has| |#1| (-336)) (|has| |#1| (-322)))
-(|has| |#1| (-781))
-(|has| |#1| (-781))
-(|has| |#1| (-781))
-(((|#1|) . T) (((-380 (-520))) . T) (($) . T))
-(|has| |#1| (-37 (-380 (-520))))
-((((-520)) . T) (($) . T) (((-380 (-520))) . T))
-(|has| |#1| (-37 (-380 (-520))))
-(|has| |#1| (-37 (-380 (-520))))
-(-3700 (|has| |#1| (-336)) (|has| |#1| (-322)))
-(|has| |#1| (-37 (-380 (-520))))
-((((-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) . T))
-((((-1083)) |has| |#1| (-828 (-1083))) (((-997)) . T))
-(((|#1|) . T))
-(|has| |#1| (-781))
-(((#0=(-2 (|:| -2526 (-1066)) (|:| -3043 (-51))) #0#) |has| (-2 (|:| -2526 (-1066)) (|:| -3043 (-51))) (-283 (-2 (|:| -2526 (-1066)) (|:| -3043 (-51))))))
-(((|#1| |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))
-(|has| |#1| (-1012))
+(((|#4| |#4|) -12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013))))
+(((|#3|) -3703 (|has| |#3| (-157)) (|has| |#3| (-337))))
+(|has| |#2| (-784))
+(|has| |#1| (-784))
+(-3703 (|has| |#2| (-337)) (|has| |#2| (-425)) (|has| |#2| (-838)))
+((($ $) . T) ((#0=(-381 (-521)) #0#) . T))
+((((-521) |#2|) . T))
+(((|#2|) -3703 (|has| |#2| (-157)) (|has| |#2| (-337))))
+(|has| |#1| (-323))
+(((|#3| |#3|) -12 (|has| |#3| (-284 |#3|)) (|has| |#3| (-1013))))
+((($) . T) (((-381 (-521))) . T))
+((((-521) (-108)) . T))
+(|has| |#1| (-757))
+(|has| |#1| (-757))
+(((|#1|) . T))
+(-3703 (|has| |#1| (-282)) (|has| |#1| (-337)) (|has| |#1| (-323)))
+(|has| |#1| (-782))
+(|has| |#1| (-782))
+(|has| |#1| (-782))
+(((|#1|) . T) (((-381 (-521))) . T) (($) . T))
+(|has| |#1| (-37 (-381 (-521))))
+((((-521)) . T) (($) . T) (((-381 (-521))) . T))
+(|has| |#1| (-37 (-381 (-521))))
+(|has| |#1| (-37 (-381 (-521))))
+(-3703 (|has| |#1| (-337)) (|has| |#1| (-323)))
+(|has| |#1| (-37 (-381 (-521))))
+((((-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) . T))
+((((-1084)) |has| |#1| (-829 (-1084))) (((-998)) . T))
+(((|#1|) . T))
+(|has| |#1| (-782))
+(((#0=(-2 (|:| -2529 (-1067)) (|:| -3045 (-51))) #0#) |has| (-2 (|:| -2529 (-1067)) (|:| -3045 (-51))) (-284 (-2 (|:| -2529 (-1067)) (|:| -3045 (-51))))))
+(((|#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
+(|has| |#1| (-1013))
(((|#1|) . T))
(((|#2| |#2|) . T))
(((|#1|) . T))
-(((|#1| |#2| |#3| (-216 |#2| |#3|) (-216 |#1| |#3|)) . T))
+(((|#1| |#2| |#3| (-217 |#2| |#3|) (-217 |#1| |#3|)) . T))
(((|#1|) . T))
(((|#3| |#3|) . T))
(((|#2|) . T))
(((|#1|) . T))
-(((|#1| (-492 |#2|) |#2|) . T))
-((((-791)) . T))
-(((|#1| (-706) (-997)) . T))
+(((|#1| (-493 |#2|) |#2|) . T))
+((((-792)) . T))
+(((|#1| (-707) (-998)) . T))
(((|#3|) . T))
(((|#1|) . T))
((((-132)) . T))
(((|#2|) |has| |#2| (-157)))
-(-3700 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-336)) (|has| |#2| (-341)) (|has| |#2| (-728)) (|has| |#2| (-781)) (|has| |#2| (-969)) (|has| |#2| (-1012)))
+(-3703 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-337)) (|has| |#2| (-342)) (|has| |#2| (-729)) (|has| |#2| (-782)) (|has| |#2| (-970)) (|has| |#2| (-1013)))
(((|#1|) . T))
(|has| |#1| (-133))
(|has| |#1| (-135))
(|has| |#3| (-157))
-(((|#4|) |has| |#4| (-336)))
-(((|#3|) |has| |#3| (-336)))
+(((|#4|) |has| |#4| (-337)))
+(((|#3|) |has| |#3| (-337)))
(((|#1|) . T))
-(((|#2|) |has| |#1| (-336)))
+(((|#2|) |has| |#1| (-337)))
(((|#2|) . T))
-(((|#1| (-1079 |#1|)) . T))
-((((-997)) . T) ((|#1|) . T) (((-520)) |has| |#1| (-960 (-520))) (((-380 (-520))) |has| |#1| (-960 (-380 (-520)))))
-((($) . T) ((|#1|) . T) (((-380 (-520))) . T))
+(((|#1| (-1080 |#1|)) . T))
+((((-998)) . T) ((|#1|) . T) (((-521)) |has| |#1| (-961 (-521))) (((-381 (-521))) |has| |#1| (-961 (-381 (-521)))))
+((($) . T) ((|#1|) . T) (((-381 (-521))) . T))
(((|#2|) . T))
-((((-1081 |#1| |#2| |#3|)) |has| |#1| (-336)))
-((($) |has| |#1| (-781)))
-(|has| |#1| (-837))
-((((-791)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))
+((((-1082 |#1| |#2| |#3|)) |has| |#1| (-337)))
+((($) |has| |#1| (-782)))
+(|has| |#1| (-838))
+((((-792)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
(((|#1|) . T))
(((|#1| |#2|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))) ((#0=(-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) #0#) |has| (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (-283 (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)))))
-(-3700 (|has| |#2| (-424)) (|has| |#2| (-837)))
-(-3700 (|has| |#1| (-424)) (|has| |#1| (-837)))
+(((|#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((#0=(-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) #0#) |has| (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (-284 (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)))))
+(-3703 (|has| |#2| (-425)) (|has| |#2| (-838)))
+(-3703 (|has| |#1| (-425)) (|has| |#1| (-838)))
(((|#1|) . T) (($) . T))
-(((|#2|) -12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012))))
+(((|#2|) -12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))))
(((|#1| |#2|) . T))
-((((-791)) . T))
+((((-792)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#3|) -3700 (|has| |#3| (-157)) (|has| |#3| (-336))))
-(|has| |#1| (-783))
-(|has| |#1| (-512))
-((((-533 |#1|)) . T))
+(((|#3|) -3703 (|has| |#3| (-157)) (|has| |#3| (-337))))
+(|has| |#1| (-784))
+(|has| |#1| (-513))
+((((-534 |#1|)) . T))
((($) . T))
(((|#2|) . T))
-(-3700 (-12 (|has| |#1| (-336)) (|has| |#2| (-756))) (-12 (|has| |#1| (-336)) (|has| |#2| (-783))))
-(-3700 (|has| |#1| (-336)) (|has| |#1| (-512)))
-((((-838 |#1|)) . T))
-(((|#1| (-464 |#1| |#3|) (-464 |#1| |#2|)) . T))
+(-3703 (-12 (|has| |#1| (-337)) (|has| |#2| (-757))) (-12 (|has| |#1| (-337)) (|has| |#2| (-784))))
+(-3703 (|has| |#1| (-337)) (|has| |#1| (-513)))
+((((-839 |#1|)) . T))
+(((|#1| (-465 |#1| |#3|) (-465 |#1| |#2|)) . T))
(((|#1| |#4| |#5|) . T))
-(((|#1| (-706)) . T))
-((((-380 (-520))) |has| |#1| (-37 (-380 (-520)))) ((|#1|) |has| |#1| (-157)) (($) |has| |#1| (-512)))
-((((-380 (-520))) -3700 (|has| |#1| (-37 (-380 (-520)))) (|has| |#1| (-336))) (($) -3700 (|has| |#1| (-336)) (|has| |#1| (-512))) (((-1081 |#1| |#2| |#3|)) |has| |#1| (-336)) ((|#1|) |has| |#1| (-157)))
-(((|#1|) |has| |#1| (-157)) (((-380 (-520))) -3700 (|has| |#1| (-37 (-380 (-520)))) (|has| |#1| (-336))) (($) -3700 (|has| |#1| (-336)) (|has| |#1| (-512))))
-((($) |has| |#1| (-512)) ((|#1|) |has| |#1| (-157)) (((-380 (-520))) |has| |#1| (-37 (-380 (-520)))))
-((((-2 (|:| -2526 (-1083)) (|:| -3043 (-51)))) . T))
-((((-380 |#2|)) . T) (((-380 (-520))) . T) (($) . T))
-((((-611 |#1|)) . T))
+(((|#1| (-707)) . T))
+((((-381 (-521))) |has| |#1| (-37 (-381 (-521)))) ((|#1|) |has| |#1| (-157)) (($) |has| |#1| (-513)))
+((((-381 (-521))) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))) (($) -3703 (|has| |#1| (-337)) (|has| |#1| (-513))) (((-1082 |#1| |#2| |#3|)) |has| |#1| (-337)) ((|#1|) |has| |#1| (-157)))
+(((|#1|) |has| |#1| (-157)) (((-381 (-521))) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))) (($) -3703 (|has| |#1| (-337)) (|has| |#1| (-513))))
+((($) |has| |#1| (-513)) ((|#1|) |has| |#1| (-157)) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
+((((-2 (|:| -2529 (-1084)) (|:| -3045 (-51)))) . T))
+((((-381 |#2|)) . T) (((-381 (-521))) . T) (($) . T))
+((((-612 |#1|)) . T))
(((|#1| |#2| |#3| |#4|) . T))
-((((-496)) . T))
-((((-791)) . T))
-(((|#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))
-((((-791)) . T))
-((((-380 (-520))) |has| |#2| (-37 (-380 (-520)))) ((|#2|) |has| |#2| (-157)) (($) -3700 (|has| |#2| (-424)) (|has| |#2| (-512)) (|has| |#2| (-837))))
-((((-791)) . T))
-((((-791)) . T))
-((((-791)) . T))
-(((|#2|) . T))
-(-3700 (|has| |#3| (-25)) (|has| |#3| (-124)) (|has| |#3| (-157)) (|has| |#3| (-336)) (|has| |#3| (-341)) (|has| |#3| (-728)) (|has| |#3| (-781)) (|has| |#3| (-969)) (|has| |#3| (-1012)))
-(-3700 (|has| |#2| (-157)) (|has| |#2| (-781)) (|has| |#2| (-969)))
-((((-380 (-520))) |has| |#1| (-960 (-380 (-520)))) (((-520)) |has| |#1| (-960 (-520))) ((|#1|) . T))
-(|has| |#1| (-1104))
-(|has| |#1| (-1104))
-(-3700 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-336)) (|has| |#2| (-341)) (|has| |#2| (-728)) (|has| |#2| (-781)) (|has| |#2| (-969)) (|has| |#2| (-1012)))
-(|has| |#1| (-1104))
-(|has| |#1| (-1104))
+((((-497)) . T))
+((((-792)) . T))
+(((|#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
+((((-792)) . T))
+((((-381 (-521))) |has| |#2| (-37 (-381 (-521)))) ((|#2|) |has| |#2| (-157)) (($) -3703 (|has| |#2| (-425)) (|has| |#2| (-513)) (|has| |#2| (-838))))
+((((-792)) . T))
+((((-792)) . T))
+((((-792)) . T))
+(((|#2|) . T))
+(-3703 (|has| |#3| (-25)) (|has| |#3| (-124)) (|has| |#3| (-157)) (|has| |#3| (-337)) (|has| |#3| (-342)) (|has| |#3| (-729)) (|has| |#3| (-782)) (|has| |#3| (-970)) (|has| |#3| (-1013)))
+(-3703 (|has| |#2| (-157)) (|has| |#2| (-782)) (|has| |#2| (-970)))
+((((-381 (-521))) |has| |#1| (-961 (-381 (-521)))) (((-521)) |has| |#1| (-961 (-521))) ((|#1|) . T))
+(|has| |#1| (-1105))
+(|has| |#1| (-1105))
+(-3703 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-337)) (|has| |#2| (-342)) (|has| |#2| (-729)) (|has| |#2| (-782)) (|has| |#2| (-970)) (|has| |#2| (-1013)))
+(|has| |#1| (-1105))
+(|has| |#1| (-1105))
(((|#3| |#3|) . T))
-(((|#1|) . T) (((-380 (-520))) . T) (($) . T))
-((($ $) . T) ((#0=(-380 (-520)) #0#) . T) ((#1=(-380 |#1|) #1#) . T) ((|#1| |#1|) . T))
-((((-520)) . T) (($) . T) (((-380 (-520))) . T))
+(((|#1|) . T) (((-381 (-521))) . T) (($) . T))
+((($ $) . T) ((#0=(-381 (-521)) #0#) . T) ((#1=(-381 |#1|) #1#) . T) ((|#1| |#1|) . T))
+((((-521)) . T) (($) . T) (((-381 (-521))) . T))
(((|#3|) . T))
-((($) . T) (((-380 (-520))) . T) (((-380 |#1|)) . T) ((|#1|) . T))
-(((|#1|) . T) (((-380 (-520))) . T) (($) . T))
-(((|#1|) . T) (((-380 (-520))) . T) (($) . T))
-((((-1066) (-51)) . T))
-(|has| |#1| (-1012))
-(-3700 (|has| |#2| (-756)) (|has| |#2| (-783)))
-(((|#1|) . T))
-((($) -3700 (|has| |#1| (-336)) (|has| |#1| (-322))) (((-380 (-520))) -3700 (|has| |#1| (-336)) (|has| |#1| (-322))) ((|#1|) . T))
+((($) . T) (((-381 (-521))) . T) (((-381 |#1|)) . T) ((|#1|) . T))
+(((|#1|) . T) (((-381 (-521))) . T) (($) . T))
+(((|#1|) . T) (((-381 (-521))) . T) (($) . T))
+((((-1067) (-51)) . T))
+(|has| |#1| (-1013))
+(-3703 (|has| |#2| (-757)) (|has| |#2| (-784)))
+(((|#1|) . T))
+((($) -3703 (|has| |#1| (-337)) (|has| |#1| (-323))) (((-381 (-521))) -3703 (|has| |#1| (-337)) (|has| |#1| (-323))) ((|#1|) . T))
(((|#1|) |has| |#1| (-157)) (($) . T))
((($) . T))
-((((-1081 |#1| |#2| |#3|)) -12 (|has| (-1081 |#1| |#2| |#3|) (-283 (-1081 |#1| |#2| |#3|))) (|has| |#1| (-336))))
-((((-791)) . T))
-(-3700 (|has| |#2| (-424)) (|has| |#2| (-512)) (|has| |#2| (-837)))
-((($) . T))
-(-3700 (|has| |#1| (-424)) (|has| |#1| (-512)) (|has| |#1| (-837)))
-(-3700 (|has| |#1| (-336)) (|has| |#1| (-424)) (|has| |#1| (-512)) (|has| |#1| (-837)))
-(((|#1| |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))
-((((-791)) . T))
-(-3700 (|has| |#1| (-424)) (|has| |#1| (-837)))
-(|has| |#2| (-837))
-(|has| |#1| (-336))
-(((|#2|) |has| |#2| (-1012)))
-(-3700 (|has| |#1| (-424)) (|has| |#1| (-512)) (|has| |#1| (-837)))
+((((-1082 |#1| |#2| |#3|)) -12 (|has| (-1082 |#1| |#2| |#3|) (-284 (-1082 |#1| |#2| |#3|))) (|has| |#1| (-337))))
+((((-792)) . T))
+(-3703 (|has| |#2| (-425)) (|has| |#2| (-513)) (|has| |#2| (-838)))
+((($) . T))
+(-3703 (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-838)))
+(-3703 (|has| |#1| (-337)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-838)))
+(((|#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
+((((-792)) . T))
+(-3703 (|has| |#1| (-425)) (|has| |#1| (-838)))
+(|has| |#2| (-838))
+(|has| |#1| (-337))
+(((|#2|) |has| |#2| (-1013)))
+(-3703 (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-838)))
((($) . T) ((|#2|) . T))
-(-3700 (|has| |#1| (-336)) (|has| |#1| (-424)) (|has| |#1| (-837)))
-(|has| |#1| (-837))
-(|has| |#1| (-837))
-((((-496)) . T) (((-380 (-1079 (-520)))) . T) (((-201)) . T) (((-352)) . T))
-((((-352)) . T) (((-201)) . T) (((-791)) . T))
-(|has| |#1| (-837))
-(-3700 (|has| |#1| (-783)) (|has| |#1| (-1012)))
-(((|#1|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012))))
+(-3703 (|has| |#1| (-337)) (|has| |#1| (-425)) (|has| |#1| (-838)))
+(|has| |#1| (-838))
+(|has| |#1| (-838))
+((((-497)) . T) (((-381 (-1080 (-521)))) . T) (((-202)) . T) (((-353)) . T))
+((((-353)) . T) (((-202)) . T) (((-792)) . T))
+(|has| |#1| (-838))
+(-3703 (|has| |#1| (-784)) (|has| |#1| (-1013)))
+(((|#1|) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))))
((($ $) . T))
-((((-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) . T))
+((((-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) . T))
((($ $) . T))
-((((-520) (-108)) . T))
+((((-521) (-108)) . T))
((($) . T))
(((|#1|) . T))
-((((-520)) . T))
+((((-521)) . T))
((((-108)) . T))
-(-3700 (|has| |#1| (-157)) (|has| |#1| (-336)) (|has| |#1| (-512)))
-(|has| |#1| (-37 (-380 (-520))))
-(((|#1| (-520)) . T))
+(-3703 (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-513)))
+(|has| |#1| (-37 (-381 (-521))))
+(((|#1| (-521)) . T))
((($) . T))
-(((|#2|) . T) (((-520)) |has| |#2| (-582 (-520))))
-((((-520)) |has| |#1| (-582 (-520))) ((|#1|) . T))
+(((|#2|) . T) (((-521)) |has| |#2| (-583 (-521))))
+((((-521)) |has| |#1| (-583 (-521))) ((|#1|) . T))
(((|#1|) . T))
-((((-520)) . T))
+((((-521)) . T))
(((|#1| |#2|) . T))
-((((-1083)) |has| |#1| (-969)))
-(|has| |#1| (-37 (-380 (-520))))
-(|has| |#1| (-37 (-380 (-520))))
-(|has| |#1| (-37 (-380 (-520))))
+((((-1084)) |has| |#1| (-970)))
+(|has| |#1| (-37 (-381 (-521))))
+(|has| |#1| (-37 (-381 (-521))))
+(|has| |#1| (-37 (-381 (-521))))
(((|#1|) . T))
-((((-791)) . T))
-(((|#1| (-520)) . T))
-(((|#1| (-1156 |#1| |#2| |#3|)) . T))
+((((-792)) . T))
+(((|#1| (-521)) . T))
+(((|#1| (-1157 |#1| |#2| |#3|)) . T))
(((|#1|) . T))
-(((|#1| (-380 (-520))) . T))
-(((|#1| (-1128 |#1| |#2| |#3|)) . T))
-(((|#1| (-706)) . T))
+(((|#1| (-381 (-521))) . T))
+(((|#1| (-1129 |#1| |#2| |#3|)) . T))
+(((|#1| (-707)) . T))
(((|#1|) . T))
-((((-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) . T))
-((((-791)) . T))
-(|has| |#1| (-1012))
-((((-1066) |#1|) . T))
+((((-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) . T))
+((((-792)) . T))
+(|has| |#1| (-1013))
+((((-1067) |#1|) . T))
((($) . T))
(|has| |#2| (-135))
(|has| |#2| (-133))
-(((|#1| (-492 (-754 (-1083))) (-754 (-1083))) . T))
-((((-791)) . T))
-((((-1150 |#1| |#2| |#3| |#4|)) . T))
-((((-1150 |#1| |#2| |#3| |#4|)) . T))
-(((|#1|) |has| |#1| (-969)))
-((((-520) (-108)) . T))
-((((-791)) |has| |#1| (-1012)))
+(((|#1| (-493 (-755 (-1084))) (-755 (-1084))) . T))
+((((-792)) . T))
+((((-1151 |#1| |#2| |#3| |#4|)) . T))
+((((-1151 |#1| |#2| |#3| |#4|)) . T))
+(((|#1|) |has| |#1| (-970)))
+((((-521) (-108)) . T))
+((((-792)) |has| |#1| (-1013)))
(|has| |#2| (-157))
-((((-520)) . T))
-(|has| |#2| (-781))
+((((-521)) . T))
+(|has| |#2| (-782))
(((|#1|) . T))
-((((-520)) . T))
-((((-791)) . T))
-(-3700 (|has| |#1| (-133)) (|has| |#1| (-322)))
-((((-791)) . T))
+((((-521)) . T))
+((((-792)) . T))
+(-3703 (|has| |#1| (-133)) (|has| |#1| (-323)))
+((((-792)) . T))
(|has| |#1| (-135))
(((|#3|) . T))
-(-3700 (|has| |#3| (-157)) (|has| |#3| (-781)) (|has| |#3| (-969)))
-((((-791)) . T))
-((((-1149 |#2| |#3| |#4|)) . T) (((-1150 |#1| |#2| |#3| |#4|)) . T))
-((((-791)) . T))
-((((-47)) -12 (|has| |#1| (-512)) (|has| |#1| (-960 (-520)))) (((-559 $)) . T) ((|#1|) . T) (((-520)) |has| |#1| (-960 (-520))) (((-380 (-520))) -3700 (-12 (|has| |#1| (-512)) (|has| |#1| (-960 (-520)))) (|has| |#1| (-960 (-380 (-520))))) (((-380 (-880 |#1|))) |has| |#1| (-512)) (((-880 |#1|)) |has| |#1| (-969)) (((-1083)) . T))
+(-3703 (|has| |#3| (-157)) (|has| |#3| (-782)) (|has| |#3| (-970)))
+((((-792)) . T))
+((((-1150 |#2| |#3| |#4|)) . T) (((-1151 |#1| |#2| |#3| |#4|)) . T))
+((((-792)) . T))
+((((-47)) -12 (|has| |#1| (-513)) (|has| |#1| (-961 (-521)))) (((-560 $)) . T) ((|#1|) . T) (((-521)) |has| |#1| (-961 (-521))) (((-381 (-521))) -3703 (-12 (|has| |#1| (-513)) (|has| |#1| (-961 (-521)))) (|has| |#1| (-961 (-381 (-521))))) (((-381 (-881 |#1|))) |has| |#1| (-513)) (((-881 |#1|)) |has| |#1| (-970)) (((-1084)) . T))
(((|#1|) . T) (($) . T))
-(((|#1| (-706)) . T))
-((($) -3700 (|has| |#1| (-336)) (|has| |#1| (-512))) (((-380 (-520))) -3700 (|has| |#1| (-37 (-380 (-520)))) (|has| |#1| (-336))) ((|#1|) |has| |#1| (-157)))
-(((|#1|) |has| |#1| (-283 |#1|)))
-((((-1150 |#1| |#2| |#3| |#4|)) . T))
-((((-520)) |has| |#1| (-814 (-520))) (((-352)) |has| |#1| (-814 (-352))))
+(((|#1| (-707)) . T))
+((($) -3703 (|has| |#1| (-337)) (|has| |#1| (-513))) (((-381 (-521))) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))) ((|#1|) |has| |#1| (-157)))
+(((|#1|) |has| |#1| (-284 |#1|)))
+((((-1151 |#1| |#2| |#3| |#4|)) . T))
+((((-521)) |has| |#1| (-815 (-521))) (((-353)) |has| |#1| (-815 (-353))))
(((|#1|) . T))
-(|has| |#1| (-512))
+(|has| |#1| (-513))
(((|#1|) . T))
-((((-791)) . T))
-(((|#2|) -12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012))) (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) |has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-283 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))))
+((((-792)) . T))
+(((|#2|) -12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))) (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) |has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-284 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))))
(((|#1|) |has| |#1| (-157)))
-((($) |has| |#1| (-512)) ((|#1|) |has| |#1| (-157)) (((-380 (-520))) |has| |#1| (-37 (-380 (-520)))))
-(((|#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))
-(((|#2| |#2|) -12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012))))
+((($) |has| |#1| (-513)) ((|#1|) |has| |#1| (-157)) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
+(((|#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
+(((|#2| |#2|) -12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))))
(((|#1|) . T))
-(((|#3|) |has| |#3| (-1012)))
-(((|#2|) -3700 (|has| |#2| (-157)) (|has| |#2| (-336))))
-((((-1149 |#2| |#3| |#4|)) . T))
+(((|#3|) |has| |#3| (-1013)))
+(((|#2|) -3703 (|has| |#2| (-157)) (|has| |#2| (-337))))
+((((-1150 |#2| |#3| |#4|)) . T))
((((-108)) . T))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
-(((|#1| (-520) (-997)) . T))
-((($) |has| |#1| (-283 $)) ((|#1|) |has| |#1| (-283 |#1|)))
-(|has| |#1| (-781))
-(|has| |#1| (-781))
-(((|#1| (-520) (-997)) . T))
-(-3700 (|has| |#1| (-828 (-1083))) (|has| |#1| (-969)))
-((((-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) . T))
-(((|#1| (-380 (-520)) (-997)) . T))
-(((|#1| (-706) (-997)) . T))
-(|has| |#1| (-783))
-(((#0=(-838 |#1|) #0#) . T) (($ $) . T) ((#1=(-380 (-520)) #1#) . T))
+(|has| |#1| (-757))
+(|has| |#1| (-757))
+(((|#1| (-521) (-998)) . T))
+((($) |has| |#1| (-284 $)) ((|#1|) |has| |#1| (-284 |#1|)))
+(|has| |#1| (-782))
+(|has| |#1| (-782))
+(((|#1| (-521) (-998)) . T))
+(-3703 (|has| |#1| (-829 (-1084))) (|has| |#1| (-970)))
+((((-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) . T))
+(((|#1| (-381 (-521)) (-998)) . T))
+(((|#1| (-707) (-998)) . T))
+(|has| |#1| (-784))
+(((#0=(-839 |#1|) #0#) . T) (($ $) . T) ((#1=(-381 (-521)) #1#) . T))
(|has| |#2| (-133))
(|has| |#2| (-135))
(((|#2|) . T))
(|has| |#1| (-133))
(|has| |#1| (-135))
-(|has| |#1| (-1012))
-((((-838 |#1|)) . T) (($) . T) (((-380 (-520))) . T))
-(|has| |#1| (-1012))
+(|has| |#1| (-1013))
+((((-839 |#1|)) . T) (($) . T) (((-381 (-521))) . T))
+(|has| |#1| (-1013))
(((|#1|) . T))
-(|has| |#1| (-1012))
-((((-520)) -12 (|has| |#1| (-336)) (|has| |#2| (-582 (-520)))) ((|#2|) |has| |#1| (-336)))
-(-3700 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-336)) (|has| |#2| (-341)) (|has| |#2| (-728)) (|has| |#2| (-781)) (|has| |#2| (-969)) (|has| |#2| (-1012)))
+(|has| |#1| (-1013))
+((((-521)) -12 (|has| |#1| (-337)) (|has| |#2| (-583 (-521)))) ((|#2|) |has| |#1| (-337)))
+(-3703 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-337)) (|has| |#2| (-342)) (|has| |#2| (-729)) (|has| |#2| (-782)) (|has| |#2| (-970)) (|has| |#2| (-1013)))
(((|#2|) |has| |#2| (-157)))
(((|#1|) |has| |#1| (-157)))
-((((-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) . T))
-((((-2 (|:| -2526 (-1066)) (|:| -3043 |#1|))) . T))
-((((-791)) . T))
-(|has| |#3| (-781))
-((((-791)) . T))
-((((-1149 |#2| |#3| |#4|) (-292 |#2| |#3| |#4|)) . T))
-((((-791)) . T))
-(((|#1| |#1|) -3700 (|has| |#1| (-157)) (|has| |#1| (-336)) (|has| |#1| (-969))))
-(((|#1|) . T))
-((((-520)) . T))
-((((-520)) . T))
-(((|#1|) -3700 (|has| |#1| (-157)) (|has| |#1| (-336)) (|has| |#1| (-969))))
-(((|#2|) |has| |#2| (-336)))
-((($) . T) ((|#1|) . T) (((-380 (-520))) |has| |#1| (-336)))
-(|has| |#1| (-783))
-((((-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) . T))
-(((|#2|) . T))
-((((-2 (|:| -2526 (-1083)) (|:| -3043 (-51)))) |has| (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (-283 (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))))))
-(-3700 (|has| |#1| (-424)) (|has| |#1| (-837)))
-(((|#2|) . T) (((-520)) |has| |#2| (-582 (-520))))
-((((-791)) . T))
-((((-791)) . T))
-((((-496)) . T) (((-520)) . T) (((-820 (-520))) . T) (((-352)) . T) (((-201)) . T))
-((((-791)) . T))
-(|has| |#1| (-37 (-380 (-520))))
-((((-520)) . T) (($) . T) (((-380 (-520))) . T))
-((((-520)) . T) (($) . T) (((-380 (-520))) . T))
-(|has| |#1| (-209))
-(((|#1|) . T))
-(((|#1| (-520)) . T))
-(|has| |#1| (-781))
-(((|#1| (-1081 |#1| |#2| |#3|)) . T))
+((((-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) . T))
+((((-2 (|:| -2529 (-1067)) (|:| -3045 |#1|))) . T))
+((((-792)) . T))
+(|has| |#3| (-782))
+((((-792)) . T))
+((((-1150 |#2| |#3| |#4|) (-293 |#2| |#3| |#4|)) . T))
+((((-792)) . T))
+(((|#1| |#1|) -3703 (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-970))))
+(((|#1|) . T))
+((((-521)) . T))
+((((-521)) . T))
+(((|#1|) -3703 (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-970))))
+(((|#2|) |has| |#2| (-337)))
+((($) . T) ((|#1|) . T) (((-381 (-521))) |has| |#1| (-337)))
+(|has| |#1| (-784))
+((((-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) . T))
+(((|#2|) . T))
+((((-2 (|:| -2529 (-1084)) (|:| -3045 (-51)))) |has| (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (-284 (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))))))
+(-3703 (|has| |#1| (-425)) (|has| |#1| (-838)))
+(((|#2|) . T) (((-521)) |has| |#2| (-583 (-521))))
+((((-792)) . T))
+((((-792)) . T))
+((((-497)) . T) (((-521)) . T) (((-821 (-521))) . T) (((-353)) . T) (((-202)) . T))
+((((-792)) . T))
+(|has| |#1| (-37 (-381 (-521))))
+((((-521)) . T) (($) . T) (((-381 (-521))) . T))
+((((-521)) . T) (($) . T) (((-381 (-521))) . T))
+(|has| |#1| (-210))
+(((|#1|) . T))
+(((|#1| (-521)) . T))
+(|has| |#1| (-782))
+(((|#1| (-1082 |#1| |#2| |#3|)) . T))
(((|#1| |#1|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#1| (-380 (-520))) . T))
-(((|#1| (-1074 |#1| |#2| |#3|)) . T))
-(((|#1| (-706)) . T))
+(((|#1| (-381 (-521))) . T))
+(((|#1| (-1075 |#1| |#2| |#3|)) . T))
+(((|#1| (-707)) . T))
(((|#1|) . T))
-(((|#1| |#1| |#2| (-216 |#1| |#2|) (-216 |#1| |#2|)) . T))
+(((|#1| |#1| |#2| (-217 |#1| |#2|) (-217 |#1| |#2|)) . T))
(((|#1|) . T))
(((|#1|) . T))
(|has| |#1| (-133))
@@ -1710,1498 +1710,1499 @@
(|has| |#1| (-133))
(((|#1| |#2|) . T))
((((-132)) . T))
-(|has| |#1| (-37 (-380 (-520))))
-(|has| |#1| (-37 (-380 (-520))))
-(((|#1|) . T))
-(-3700 (|has| |#2| (-157)) (|has| |#2| (-781)) (|has| |#2| (-969)))
-(((|#1| |#1|) . T) ((#0=(-380 (-520)) #0#) . T) (($ $) . T))
-((((-791)) . T))
-(((|#1|) . T) (((-380 (-520))) . T) (($) . T))
-((($) . T) ((|#1|) . T) (((-380 (-520))) |has| |#1| (-37 (-380 (-520)))))
-((((-791)) -3700 (|has| |#1| (-560 (-791))) (|has| |#1| (-1012))))
-(|has| |#1| (-336))
-(|has| |#1| (-336))
-(|has| (-380 |#2|) (-209))
-(|has| |#1| (-837))
-(((|#2|) |has| |#2| (-969)))
-(((|#2|) -12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012))) (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) |has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-283 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))))
-(|has| |#1| (-336))
+(|has| |#1| (-37 (-381 (-521))))
+(|has| |#1| (-37 (-381 (-521))))
+(((|#1|) . T))
+(-3703 (|has| |#2| (-157)) (|has| |#2| (-782)) (|has| |#2| (-970)))
+(((|#1| |#1|) . T) ((#0=(-381 (-521)) #0#) . T) (($ $) . T))
+((((-792)) . T))
+(((|#1|) . T) (((-381 (-521))) . T) (($) . T))
+((($) . T) ((|#1|) . T) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
+((((-792)) -3703 (|has| |#1| (-561 (-792))) (|has| |#1| (-1013))))
+(|has| |#1| (-337))
+(|has| |#1| (-337))
+(|has| (-381 |#2|) (-210))
+(|has| |#1| (-838))
+(((|#2|) |has| |#2| (-970)))
+(((|#2|) -12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))) (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) |has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-284 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))))
+(|has| |#1| (-337))
(((|#1|) |has| |#1| (-157)))
(((|#1| |#1|) . T))
-((((-798 |#1|)) . T))
-((((-791)) . T))
+((((-799 |#1|)) . T))
+((((-792)) . T))
(((|#1|) . T))
-(((|#2|) |has| |#2| (-1012)))
-(|has| |#2| (-783))
+(((|#2|) |has| |#2| (-1013)))
+(|has| |#2| (-784))
(((|#1|) . T))
-((((-380 (-520))) . T) (((-520)) . T) (((-559 $)) . T))
+((((-381 (-521))) . T) (((-521)) . T) (((-560 $)) . T))
(((|#1|) . T))
-((((-791)) . T))
+((((-792)) . T))
((($) . T))
-(|has| |#1| (-783))
-((((-791)) . T))
-(((|#1| (-492 |#2|) |#2|) . T))
-(((|#1| (-520) (-997)) . T))
-((((-838 |#1|)) . T))
-((((-791)) . T))
+(|has| |#1| (-784))
+((((-792)) . T))
+(((|#1| (-493 |#2|) |#2|) . T))
+(((|#1| (-521) (-998)) . T))
+((((-839 |#1|)) . T))
+((((-792)) . T))
(((|#1| |#2|) . T))
(((|#1|) . T))
-(((|#1| (-380 (-520)) (-997)) . T))
-(((|#1| (-706) (-997)) . T))
-(((#0=(-380 |#2|) #0#) . T) ((#1=(-380 (-520)) #1#) . T) (($ $) . T))
-(((|#1|) . T) (((-520)) -3700 (|has| (-380 (-520)) (-960 (-520))) (|has| |#1| (-960 (-520)))) (((-380 (-520))) . T))
-(((|#1| (-551 |#1| |#3|) (-551 |#1| |#2|)) . T))
+(((|#1| (-381 (-521)) (-998)) . T))
+(((|#1| (-707) (-998)) . T))
+(((#0=(-381 |#2|) #0#) . T) ((#1=(-381 (-521)) #1#) . T) (($ $) . T))
+(((|#1|) . T) (((-521)) -3703 (|has| (-381 (-521)) (-961 (-521))) (|has| |#1| (-961 (-521)))) (((-381 (-521))) . T))
+(((|#1| (-552 |#1| |#3|) (-552 |#1| |#2|)) . T))
(((|#1|) |has| |#1| (-157)))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-380 |#2|)) . T) (((-380 (-520))) . T) (($) . T))
-(|has| |#2| (-209))
-(((|#2| (-492 (-793 |#1|)) (-793 |#1|)) . T))
-((((-791)) . T))
-((($) |has| |#1| (-512)) ((|#1|) |has| |#1| (-157)) (((-380 (-520))) |has| |#1| (-37 (-380 (-520)))))
-((((-791)) . T))
+((((-381 |#2|)) . T) (((-381 (-521))) . T) (($) . T))
+(|has| |#2| (-210))
+(((|#2| (-493 (-794 |#1|)) (-794 |#1|)) . T))
+((((-792)) . T))
+((($) |has| |#1| (-513)) ((|#1|) |has| |#1| (-157)) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
+((((-792)) . T))
(((|#1| |#3|) . T))
-((((-791)) . T))
+((((-792)) . T))
(((|#1|) |has| |#1| (-157)))
-((((-635)) . T))
-((((-635)) . T))
+((((-636)) . T))
+((((-636)) . T))
(((|#2|) |has| |#2| (-157)))
-(|has| |#2| (-781))
-((((-108)) |has| |#1| (-1012)) (((-791)) -3700 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-157)) (|has| |#1| (-336)) (|has| |#1| (-445)) (|has| |#1| (-662)) (|has| |#1| (-828 (-1083))) (|has| |#1| (-969)) (|has| |#1| (-1024)) (|has| |#1| (-1012))))
+(|has| |#2| (-782))
+((((-108)) |has| |#1| (-1013)) (((-792)) -3703 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-446)) (|has| |#1| (-663)) (|has| |#1| (-829 (-1084))) (|has| |#1| (-970)) (|has| |#1| (-1025)) (|has| |#1| (-1013))))
(((|#1|) . T) (($) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -2526 (-1066)) (|:| -3043 (-51)))) . T))
-((((-791)) . T))
-((((-520) |#1|) . T))
-((((-635)) . T) (((-380 (-520))) . T) (((-520)) . T))
+((((-2 (|:| -2529 (-1067)) (|:| -3045 (-51)))) . T))
+((((-792)) . T))
+((((-521) |#1|) . T))
+((((-636)) . T) (((-381 (-521))) . T) (((-521)) . T))
(((|#1| |#1|) |has| |#1| (-157)))
(((|#2|) . T))
-(((|#2|) -12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012))) (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) |has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-283 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))))
-((((-352)) . T))
-((((-635)) . T))
-((((-380 (-520))) . #0=(|has| |#2| (-336))) (($) . #0#))
+(((|#2|) -12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))) (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) |has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-284 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))))
+((((-353)) . T))
+((((-636)) . T))
+((((-381 (-521))) . #0=(|has| |#2| (-337))) (($) . #0#))
(((|#1|) |has| |#1| (-157)))
-((((-380 (-880 |#1|))) . T))
+((((-381 (-881 |#1|))) . T))
(((|#2| |#2|) . T))
-(-3700 (|has| |#2| (-424)) (|has| |#2| (-512)) (|has| |#2| (-837)))
-(-3700 (|has| |#1| (-424)) (|has| |#1| (-512)) (|has| |#1| (-837)))
-(((|#2|) . T))
-(|has| |#2| (-783))
-(((|#3|) |has| |#3| (-969)))
-(|has| |#2| (-837))
-(|has| |#1| (-837))
-(|has| |#1| (-336))
-(|has| |#1| (-783))
-((((-1083)) |has| |#2| (-828 (-1083))))
-((((-791)) . T))
-((((-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) . T))
-((((-380 (-520))) . T) (($) . T))
-(|has| |#1| (-445))
-(|has| |#1| (-341))
-(|has| |#1| (-341))
-(|has| |#1| (-341))
-(|has| |#1| (-336))
-(-3700 (|has| |#1| (-133)) (|has| |#1| (-135)) (|has| |#1| (-157)) (|has| |#1| (-445)) (|has| |#1| (-512)) (|has| |#1| (-969)) (|has| |#1| (-1024)))
-(|has| |#1| (-37 (-380 (-520))))
+(-3703 (|has| |#2| (-425)) (|has| |#2| (-513)) (|has| |#2| (-838)))
+(-3703 (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-838)))
+(((|#2|) . T))
+(|has| |#2| (-784))
+(((|#3|) |has| |#3| (-970)))
+(|has| |#2| (-838))
+(|has| |#1| (-838))
+(|has| |#1| (-337))
+(|has| |#1| (-784))
+((((-1084)) |has| |#2| (-829 (-1084))))
+((((-792)) . T))
+((((-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) . T))
+((((-381 (-521))) . T) (($) . T))
+(|has| |#1| (-446))
+(|has| |#1| (-342))
+(|has| |#1| (-342))
+(|has| |#1| (-342))
+(|has| |#1| (-337))
+(-3703 (|has| |#1| (-133)) (|has| |#1| (-135)) (|has| |#1| (-157)) (|has| |#1| (-446)) (|has| |#1| (-513)) (|has| |#1| (-970)) (|has| |#1| (-1025)))
+(|has| |#1| (-37 (-381 (-521))))
((((-112 |#1|)) . T))
((((-112 |#1|)) . T))
-(|has| |#1| (-322))
+(|has| |#1| (-323))
((((-132)) . T))
-(|has| |#1| (-37 (-380 (-520))))
-((($) . T))
-(|has| |#1| (-37 (-380 (-520))))
-(|has| |#1| (-37 (-380 (-520))))
-(((|#2|) . T) (((-791)) . T))
-(((|#2|) . T) (((-791)) . T))
-(|has| |#1| (-37 (-380 (-520))))
-(|has| |#1| (-37 (-380 (-520))))
-(|has| |#1| (-37 (-380 (-520))))
-(|has| |#1| (-37 (-380 (-520))))
-(|has| |#1| (-37 (-380 (-520))))
-(|has| |#1| (-37 (-380 (-520))))
-(|has| |#1| (-37 (-380 (-520))))
-(|has| |#1| (-37 (-380 (-520))))
-(|has| |#1| (-783))
-((((-2 (|:| -2526 (-1066)) (|:| -3043 |#1|))) . T))
+(|has| |#1| (-37 (-381 (-521))))
+((($) . T))
+(|has| |#1| (-37 (-381 (-521))))
+(|has| |#1| (-37 (-381 (-521))))
+(((|#2|) . T) (((-792)) . T))
+(((|#2|) . T) (((-792)) . T))
+(|has| |#1| (-37 (-381 (-521))))
+(|has| |#1| (-37 (-381 (-521))))
+(|has| |#1| (-37 (-381 (-521))))
+(|has| |#1| (-37 (-381 (-521))))
+(|has| |#1| (-37 (-381 (-521))))
+(|has| |#1| (-37 (-381 (-521))))
+(|has| |#1| (-37 (-381 (-521))))
+(|has| |#1| (-37 (-381 (-521))))
+(|has| |#1| (-784))
+((((-2 (|:| -2529 (-1067)) (|:| -3045 |#1|))) . T))
(((|#1| |#2|) . T))
(|has| |#1| (-135))
(|has| |#1| (-133))
-((((-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) |has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-283 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) ((|#2|) -12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012))))
+((((-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) |has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-284 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) ((|#2|) -12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))))
(((|#2|) . T))
(((|#3|) . T))
((((-112 |#1|)) . T))
-(|has| |#1| (-341))
-(|has| |#1| (-783))
-(((|#2|) . T) (((-380 (-520))) |has| |#1| (-960 (-380 (-520)))) (((-520)) |has| |#1| (-960 (-520))) ((|#1|) . T))
+(|has| |#1| (-342))
+(|has| |#1| (-784))
+(((|#2|) . T) (((-381 (-521))) |has| |#1| (-961 (-381 (-521)))) (((-521)) |has| |#1| (-961 (-521))) ((|#1|) . T))
((((-112 |#1|)) . T))
(((|#2|) |has| |#2| (-157)))
(((|#1|) . T))
-((((-520)) . T))
-(|has| |#1| (-336))
-(|has| |#1| (-336))
-((((-791)) . T))
-((((-791)) . T))
-((((-496)) |has| |#1| (-561 (-496))) (((-820 (-520))) |has| |#1| (-561 (-820 (-520)))) (((-820 (-352))) |has| |#1| (-561 (-820 (-352)))) (((-352)) . #0=(|has| |#1| (-945))) (((-201)) . #0#))
-(((|#1|) |has| |#1| (-336)))
-((((-791)) . T))
-((((-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) . T))
-((($ $) . T) (((-559 $) $) . T))
-(-3700 (|has| |#1| (-336)) (|has| |#1| (-512)))
-((($) . T) (((-1150 |#1| |#2| |#3| |#4|)) . T) (((-380 (-520))) . T))
-((($) -3700 (|has| |#1| (-133)) (|has| |#1| (-135)) (|has| |#1| (-157)) (|has| |#1| (-512)) (|has| |#1| (-969))) ((|#1|) |has| |#1| (-157)) (((-380 (-520))) |has| |#1| (-512)))
-(|has| |#1| (-336))
-(|has| |#1| (-336))
-(|has| |#1| (-336))
-((((-352)) . T) (((-520)) . T) (((-380 (-520))) . T))
-((((-586 (-715 |#1| (-793 |#2|)))) . T) (((-791)) . T))
-((((-496)) |has| (-715 |#1| (-793 |#2|)) (-561 (-496))))
-(((|#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))
-((((-352)) . T))
-(((|#3|) -12 (|has| |#3| (-283 |#3|)) (|has| |#3| (-1012))))
-((((-791)) . T))
-(-3700 (|has| |#2| (-424)) (|has| |#2| (-837)))
-(((|#1|) . T))
-(|has| |#1| (-783))
-(|has| |#1| (-783))
-((((-791)) -3700 (|has| |#1| (-560 (-791))) (|has| |#1| (-1012))))
-((((-496)) |has| |#1| (-561 (-496))))
-(((|#2|) -12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012))))
-(|has| |#1| (-1012))
-((((-791)) . T))
-((((-380 (-520))) . T) (((-520)) . T) (((-559 $)) . T))
+((((-521)) . T))
+(|has| |#1| (-337))
+(|has| |#1| (-337))
+((((-792)) . T))
+((((-792)) . T))
+((((-497)) |has| |#1| (-562 (-497))) (((-821 (-521))) |has| |#1| (-562 (-821 (-521)))) (((-821 (-353))) |has| |#1| (-562 (-821 (-353)))) (((-353)) . #0=(|has| |#1| (-946))) (((-202)) . #0#))
+(((|#1|) |has| |#1| (-337)))
+((((-792)) . T))
+((((-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) . T))
+((($ $) . T) (((-560 $) $) . T))
+(-3703 (|has| |#1| (-337)) (|has| |#1| (-513)))
+((($) . T) (((-1151 |#1| |#2| |#3| |#4|)) . T) (((-381 (-521))) . T))
+((($) -3703 (|has| |#1| (-133)) (|has| |#1| (-135)) (|has| |#1| (-157)) (|has| |#1| (-513)) (|has| |#1| (-970))) ((|#1|) |has| |#1| (-157)) (((-381 (-521))) |has| |#1| (-513)))
+(|has| |#1| (-337))
+(|has| |#1| (-337))
+(|has| |#1| (-337))
+((((-353)) . T) (((-521)) . T) (((-381 (-521))) . T))
+((((-587 (-716 |#1| (-794 |#2|)))) . T) (((-792)) . T))
+((((-497)) |has| (-716 |#1| (-794 |#2|)) (-562 (-497))))
+(((|#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
+((((-353)) . T))
+(((|#3|) -12 (|has| |#3| (-284 |#3|)) (|has| |#3| (-1013))))
+((((-792)) . T))
+(-3703 (|has| |#2| (-425)) (|has| |#2| (-838)))
+(((|#1|) . T))
+(|has| |#1| (-784))
+(|has| |#1| (-784))
+((((-792)) -3703 (|has| |#1| (-561 (-792))) (|has| |#1| (-1013))))
+((((-497)) |has| |#1| (-562 (-497))))
+(((|#2|) -12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))))
+(|has| |#1| (-1013))
+((((-792)) . T))
+((((-381 (-521))) . T) (((-521)) . T) (((-560 $)) . T))
(|has| |#1| (-133))
(|has| |#1| (-135))
-((((-520)) . T))
-(-3700 (|has| |#1| (-336)) (|has| |#1| (-512)))
-(-3700 (|has| |#1| (-336)) (|has| |#1| (-512)))
-(((#0=(-1149 |#2| |#3| |#4|)) . T) (((-380 (-520))) |has| #0# (-37 (-380 (-520)))) (($) . T))
-((((-520)) . T))
-(|has| |#1| (-336))
-(-3700 (-12 (|has| (-1156 |#1| |#2| |#3|) (-135)) (|has| |#1| (-336))) (|has| |#1| (-135)))
-(-3700 (-12 (|has| (-1156 |#1| |#2| |#3|) (-133)) (|has| |#1| (-336))) (|has| |#1| (-133)))
-(|has| |#1| (-336))
+((((-521)) . T))
+(-3703 (|has| |#1| (-337)) (|has| |#1| (-513)))
+(-3703 (|has| |#1| (-337)) (|has| |#1| (-513)))
+(((#0=(-1150 |#2| |#3| |#4|)) . T) (((-381 (-521))) |has| #0# (-37 (-381 (-521)))) (($) . T))
+((((-521)) . T))
+(|has| |#1| (-337))
+(-3703 (-12 (|has| (-1157 |#1| |#2| |#3|) (-135)) (|has| |#1| (-337))) (|has| |#1| (-135)))
+(-3703 (-12 (|has| (-1157 |#1| |#2| |#3|) (-133)) (|has| |#1| (-337))) (|has| |#1| (-133)))
+(|has| |#1| (-337))
(|has| |#1| (-133))
(|has| |#1| (-135))
(|has| |#1| (-135))
(|has| |#1| (-133))
-(|has| |#1| (-209))
-(|has| |#1| (-336))
+(|has| |#1| (-210))
+(|has| |#1| (-337))
(((|#3|) . T))
-((((-791)) . T))
-((((-791)) . T))
-((((-520)) |has| |#2| (-582 (-520))) ((|#2|) . T))
+((((-792)) . T))
+((((-792)) . T))
+((((-521)) |has| |#2| (-583 (-521))) ((|#2|) . T))
(((|#2|) . T))
-(|has| |#1| (-1012))
+(|has| |#1| (-1013))
(((|#1| |#2|) . T))
-(((|#1|) . T) (((-520)) |has| |#1| (-582 (-520))))
+(((|#1|) . T) (((-521)) |has| |#1| (-583 (-521))))
(((|#3|) |has| |#3| (-157)))
-(-3700 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-336)) (|has| |#2| (-341)) (|has| |#2| (-728)) (|has| |#2| (-781)) (|has| |#2| (-969)) (|has| |#2| (-1012)))
-((((-520)) . T))
-(((|#1| $) |has| |#1| (-260 |#1| |#1|)))
-((((-380 (-520))) . T) (($) . T) (((-380 |#1|)) . T) ((|#1|) . T))
-((((-791)) . T))
+(-3703 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-337)) (|has| |#2| (-342)) (|has| |#2| (-729)) (|has| |#2| (-782)) (|has| |#2| (-970)) (|has| |#2| (-1013)))
+((((-521)) . T))
+(((|#1| $) |has| |#1| (-261 |#1| |#1|)))
+((((-381 (-521))) . T) (($) . T) (((-381 |#1|)) . T) ((|#1|) . T))
+((((-792)) . T))
(((|#3|) . T))
-(((|#1| |#1|) . T) (($ $) -3700 (|has| |#1| (-264)) (|has| |#1| (-336))) ((#0=(-380 (-520)) #0#) |has| |#1| (-336)))
-((((-2 (|:| -2526 (-1083)) (|:| -3043 (-51)))) . T))
-((($) . T))
-((((-520) |#1|) . T))
-((((-1083)) |has| (-380 |#2|) (-828 (-1083))))
-(((|#1|) . T) (($) -3700 (|has| |#1| (-264)) (|has| |#1| (-336))) (((-380 (-520))) |has| |#1| (-336)))
-((((-496)) |has| |#2| (-561 (-496))))
-((((-626 |#2|)) . T) (((-791)) . T))
-(((|#1|) . T))
-(((|#4|) -12 (|has| |#4| (-283 |#4|)) (|has| |#4| (-1012))))
-(((|#4|) -12 (|has| |#4| (-283 |#4|)) (|has| |#4| (-1012))))
-((((-798 |#1|)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))
-(-3700 (|has| |#4| (-728)) (|has| |#4| (-781)))
-(-3700 (|has| |#3| (-728)) (|has| |#3| (-781)))
-((((-791)) . T))
-((((-791)) . T))
-(((|#4|) -12 (|has| |#4| (-283 |#4|)) (|has| |#4| (-1012))))
-(((|#2|) |has| |#2| (-969)))
-(((|#1|) . T))
-((((-380 |#2|)) . T))
-(((|#1|) . T))
-(((|#3|) -12 (|has| |#3| (-283 |#3|)) (|has| |#3| (-1012))))
-((((-520) |#1|) . T))
-(((|#1|) . T))
-((($) . T))
-((((-520)) . T) (($) . T) (((-380 (-520))) . T))
-((((-380 (-520))) . T) (($) . T))
-((((-380 (-520))) . T) (($) . T))
-((((-380 (-520))) . T) (($) . T))
-(-3700 (|has| |#1| (-424)) (|has| |#1| (-1122)))
-((($) . T))
-((((-380 (-520))) |has| #0=(-380 |#2|) (-960 (-380 (-520)))) (((-520)) |has| #0# (-960 (-520))) ((#0#) . T))
-(((|#2|) . T) (((-520)) |has| |#2| (-582 (-520))))
-(((|#1| (-706)) . T))
-(|has| |#1| (-783))
-(((|#1|) . T) (((-520)) |has| |#1| (-582 (-520))))
-((($) -3700 (|has| |#1| (-336)) (|has| |#1| (-322))) (((-380 (-520))) -3700 (|has| |#1| (-336)) (|has| |#1| (-322))) ((|#1|) . T))
-((((-520)) . T))
-(|has| |#1| (-37 (-380 (-520))))
-((((-2 (|:| -2526 (-1066)) (|:| -3043 (-51)))) |has| (-2 (|:| -2526 (-1066)) (|:| -3043 (-51))) (-283 (-2 (|:| -2526 (-1066)) (|:| -3043 (-51))))))
-(((|#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))
-(|has| |#1| (-781))
-(|has| |#1| (-37 (-380 (-520))))
-(|has| |#1| (-37 (-380 (-520))))
-(|has| |#1| (-37 (-380 (-520))))
-(|has| |#1| (-37 (-380 (-520))))
-(|has| |#1| (-341))
-(|has| |#1| (-341))
-(|has| |#1| (-341))
-(|has| |#1| (-37 (-380 (-520))))
-(|has| |#1| (-37 (-380 (-520))))
-(|has| |#1| (-37 (-380 (-520))))
-(|has| |#1| (-37 (-380 (-520))))
-(|has| |#1| (-37 (-380 (-520))))
-(|has| |#1| (-37 (-380 (-520))))
-(|has| |#1| (-37 (-380 (-520))))
-(|has| |#1| (-322))
-(|has| |#1| (-37 (-380 (-520))))
-(|has| |#1| (-37 (-380 (-520))))
-(|has| |#1| (-37 (-380 (-520))))
-(|has| |#1| (-37 (-380 (-520))))
+(((|#1| |#1|) . T) (($ $) -3703 (|has| |#1| (-265)) (|has| |#1| (-337))) ((#0=(-381 (-521)) #0#) |has| |#1| (-337)))
+((((-2 (|:| -2529 (-1084)) (|:| -3045 (-51)))) . T))
+((($) . T))
+((((-521) |#1|) . T))
+((((-1084)) |has| (-381 |#2|) (-829 (-1084))))
+(((|#1|) . T) (($) -3703 (|has| |#1| (-265)) (|has| |#1| (-337))) (((-381 (-521))) |has| |#1| (-337)))
+((((-497)) |has| |#2| (-562 (-497))))
+((((-627 |#2|)) . T) (((-792)) . T))
+(((|#1|) . T))
+(((|#4|) -12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013))))
+(((|#4|) -12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013))))
+((((-799 |#1|)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
+(-3703 (|has| |#4| (-729)) (|has| |#4| (-782)))
+(-3703 (|has| |#3| (-729)) (|has| |#3| (-782)))
+((((-792)) . T))
+((((-792)) . T))
+(((|#4|) -12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013))))
+(((|#2|) |has| |#2| (-970)))
+(((|#1|) . T))
+((((-381 |#2|)) . T))
+(((|#1|) . T))
+(((|#3|) -12 (|has| |#3| (-284 |#3|)) (|has| |#3| (-1013))))
+((((-521) |#1|) . T))
+(((|#1|) . T))
+((($) . T))
+((((-521)) . T) (($) . T) (((-381 (-521))) . T))
+((((-381 (-521))) . T) (($) . T))
+((((-381 (-521))) . T) (($) . T))
+((((-381 (-521))) . T) (($) . T))
+(-3703 (|has| |#1| (-425)) (|has| |#1| (-1123)))
+((($) . T))
+((((-381 (-521))) |has| #0=(-381 |#2|) (-961 (-381 (-521)))) (((-521)) |has| #0# (-961 (-521))) ((#0#) . T))
+(((|#2|) . T) (((-521)) |has| |#2| (-583 (-521))))
+(((|#1| (-707)) . T))
+(|has| |#1| (-784))
+(((|#1|) . T) (((-521)) |has| |#1| (-583 (-521))))
+((($) -3703 (|has| |#1| (-337)) (|has| |#1| (-323))) (((-381 (-521))) -3703 (|has| |#1| (-337)) (|has| |#1| (-323))) ((|#1|) . T))
+((((-521)) . T))
+(|has| |#1| (-37 (-381 (-521))))
+((((-2 (|:| -2529 (-1067)) (|:| -3045 (-51)))) |has| (-2 (|:| -2529 (-1067)) (|:| -3045 (-51))) (-284 (-2 (|:| -2529 (-1067)) (|:| -3045 (-51))))))
+(((|#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
+(|has| |#1| (-782))
+(|has| |#1| (-37 (-381 (-521))))
+(|has| |#1| (-37 (-381 (-521))))
+(|has| |#1| (-37 (-381 (-521))))
+(|has| |#1| (-37 (-381 (-521))))
+(|has| |#1| (-342))
+(|has| |#1| (-342))
+(|has| |#1| (-342))
+(|has| |#1| (-37 (-381 (-521))))
+(|has| |#1| (-37 (-381 (-521))))
+(|has| |#1| (-37 (-381 (-521))))
+(|has| |#1| (-37 (-381 (-521))))
+(|has| |#1| (-37 (-381 (-521))))
+(|has| |#1| (-37 (-381 (-521))))
+(|has| |#1| (-37 (-381 (-521))))
+(|has| |#1| (-323))
+(|has| |#1| (-37 (-381 (-521))))
+(|has| |#1| (-37 (-381 (-521))))
+(|has| |#1| (-37 (-381 (-521))))
+(|has| |#1| (-37 (-381 (-521))))
(((|#1| |#2|) . T))
((((-132)) . T))
-((((-715 |#1| (-793 |#2|))) . T))
-((((-791)) -3700 (|has| |#1| (-560 (-791))) (|has| |#1| (-1012))))
-(|has| |#1| (-1104))
+((((-716 |#1| (-794 |#2|))) . T))
+((((-792)) -3703 (|has| |#1| (-561 (-792))) (|has| |#1| (-1013))))
+(|has| |#1| (-1105))
(((|#1|) . T))
-(-3700 (|has| |#3| (-25)) (|has| |#3| (-124)) (|has| |#3| (-157)) (|has| |#3| (-336)) (|has| |#3| (-341)) (|has| |#3| (-728)) (|has| |#3| (-781)) (|has| |#3| (-969)) (|has| |#3| (-1012)))
-((((-1083) |#1|) |has| |#1| (-481 (-1083) |#1|)))
+(-3703 (|has| |#3| (-25)) (|has| |#3| (-124)) (|has| |#3| (-157)) (|has| |#3| (-337)) (|has| |#3| (-342)) (|has| |#3| (-729)) (|has| |#3| (-782)) (|has| |#3| (-970)) (|has| |#3| (-1013)))
+((((-1084) |#1|) |has| |#1| (-482 (-1084) |#1|)))
(((|#2|) . T))
-((($ $) -3700 (|has| |#1| (-157)) (|has| |#1| (-336)) (|has| |#1| (-424)) (|has| |#1| (-512)) (|has| |#1| (-837))) ((|#1| |#1|) . T) ((#0=(-380 (-520)) #0#) |has| |#1| (-37 (-380 (-520)))))
-((($) -3700 (|has| |#1| (-157)) (|has| |#1| (-336)) (|has| |#1| (-424)) (|has| |#1| (-512)) (|has| |#1| (-837))) ((|#1|) . T) (((-380 (-520))) |has| |#1| (-37 (-380 (-520)))))
-((((-838 |#1|)) . T))
+((($ $) -3703 (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-838))) ((|#1| |#1|) . T) ((#0=(-381 (-521)) #0#) |has| |#1| (-37 (-381 (-521)))))
+((($) -3703 (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-838))) ((|#1|) . T) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
+((((-839 |#1|)) . T))
((($) . T))
-((((-380 (-880 |#1|))) . T))
-(((|#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))
-((((-496)) |has| |#4| (-561 (-496))))
-((((-791)) . T) (((-586 |#4|)) . T))
-((((-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) . T))
+((((-381 (-881 |#1|))) . T))
+(((|#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
+((((-497)) |has| |#4| (-562 (-497))))
+((((-792)) . T) (((-587 |#4|)) . T))
+((((-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) . T))
(((|#1|) . T))
-(|has| |#1| (-781))
-(((|#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))) (((-2 (|:| -2526 (-1066)) (|:| -3043 |#1|))) |has| (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (-283 (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)))))
-(|has| |#1| (-1012))
-(|has| |#1| (-336))
-(|has| |#1| (-783))
+(|has| |#1| (-782))
+(((|#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) (((-2 (|:| -2529 (-1067)) (|:| -3045 |#1|))) |has| (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (-284 (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)))))
+(|has| |#1| (-1013))
+(|has| |#1| (-337))
+(|has| |#1| (-784))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((($) . T) (((-380 (-520))) . T))
-((($) -3700 (|has| |#1| (-336)) (|has| |#1| (-512))) (((-380 (-520))) -3700 (|has| |#1| (-37 (-380 (-520)))) (|has| |#1| (-336))) ((|#1|) |has| |#1| (-157)))
+((($) . T) (((-381 (-521))) . T))
+((($) -3703 (|has| |#1| (-337)) (|has| |#1| (-513))) (((-381 (-521))) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))) ((|#1|) |has| |#1| (-157)))
(|has| |#1| (-133))
(|has| |#1| (-135))
-(-3700 (-12 (|has| (-1081 |#1| |#2| |#3|) (-135)) (|has| |#1| (-336))) (|has| |#1| (-135)))
-(-3700 (-12 (|has| (-1081 |#1| |#2| |#3|) (-133)) (|has| |#1| (-336))) (|has| |#1| (-133)))
+(-3703 (-12 (|has| (-1082 |#1| |#2| |#3|) (-135)) (|has| |#1| (-337))) (|has| |#1| (-135)))
+(-3703 (-12 (|has| (-1082 |#1| |#2| |#3|) (-133)) (|has| |#1| (-337))) (|has| |#1| (-133)))
(|has| |#1| (-133))
(|has| |#1| (-135))
(|has| |#1| (-135))
(|has| |#1| (-133))
-((((-791)) -3700 (|has| |#1| (-560 (-791))) (|has| |#1| (-1012))))
-((((-1156 |#1| |#2| |#3|)) |has| |#1| (-336)))
-(|has| |#1| (-781))
+((((-792)) -3703 (|has| |#1| (-561 (-792))) (|has| |#1| (-1013))))
+((((-1157 |#1| |#2| |#3|)) |has| |#1| (-337)))
+(|has| |#1| (-782))
(((|#1| |#2|) . T))
-(((|#1|) . T) (((-520)) |has| |#1| (-582 (-520))))
-((((-520)) |has| |#1| (-582 (-520))) ((|#1|) . T))
-((((-838 |#1|)) . T) (((-380 (-520))) . T) (($) . T))
-(|has| |#1| (-1012))
-(((|#1|) . T) (($) . T) (((-380 (-520))) . T) (((-520)) . T))
+(((|#1|) . T) (((-521)) |has| |#1| (-583 (-521))))
+((((-521)) |has| |#1| (-583 (-521))) ((|#1|) . T))
+((((-839 |#1|)) . T) (((-381 (-521))) . T) (($) . T))
+(|has| |#1| (-1013))
+(((|#1|) . T) (($) . T) (((-381 (-521))) . T) (((-521)) . T))
(|has| |#2| (-133))
(|has| |#2| (-135))
-((((-838 |#1|)) . T) (((-380 (-520))) . T) (($) . T))
-(|has| |#1| (-1012))
+((((-839 |#1|)) . T) (((-381 (-521))) . T) (($) . T))
+(|has| |#1| (-1013))
(((|#2|) |has| |#2| (-157)))
(((|#2|) . T))
(((|#1| |#1|) . T))
-(((|#3|) |has| |#3| (-336)))
-((((-380 |#2|)) . T))
-((((-791)) . T))
-(((|#1|) . T))
-((((-791)) . T))
-((((-791)) . T))
-((((-496)) |has| |#1| (-561 (-496))))
-((((-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) . T))
-((((-1083) |#1|) |has| |#1| (-481 (-1083) |#1|)) ((|#1| |#1|) |has| |#1| (-283 |#1|)))
-(((|#1|) -3700 (|has| |#1| (-157)) (|has| |#1| (-336))))
-((((-289 |#1|)) . T))
-(((|#2|) |has| |#2| (-336)))
-(((|#2|) . T))
-((((-380 (-520))) . T) (((-635)) . T) (($) . T))
-(((|#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))
-(((#0=(-715 |#1| (-793 |#2|)) #0#) |has| (-715 |#1| (-793 |#2|)) (-283 (-715 |#1| (-793 |#2|)))))
-((((-793 |#1|)) . T))
+(((|#3|) |has| |#3| (-337)))
+((((-381 |#2|)) . T))
+((((-792)) . T))
+(((|#1|) . T))
+((((-792)) . T))
+((((-792)) . T))
+((((-497)) |has| |#1| (-562 (-497))))
+((((-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) . T))
+((((-1084) |#1|) |has| |#1| (-482 (-1084) |#1|)) ((|#1| |#1|) |has| |#1| (-284 |#1|)))
+(((|#1|) -3703 (|has| |#1| (-157)) (|has| |#1| (-337))))
+((((-290 |#1|)) . T))
+(((|#2|) |has| |#2| (-337)))
+(((|#2|) . T))
+((((-381 (-521))) . T) (((-636)) . T) (($) . T))
+(((|#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
+(((#0=(-716 |#1| (-794 |#2|)) #0#) |has| (-716 |#1| (-794 |#2|)) (-284 (-716 |#1| (-794 |#2|)))))
+((((-794 |#1|)) . T))
(((|#2|) |has| |#2| (-157)))
(((|#1|) |has| |#1| (-157)))
(((|#2|) . T))
-((((-1083)) |has| |#1| (-828 (-1083))) (((-997)) . T))
-((((-1083)) |has| |#1| (-828 (-1083))) (((-1002 (-1083))) . T))
-(((|#2|) -12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012))))
-(((|#1| |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))
-(|has| |#1| (-37 (-380 (-520))))
-(((|#4|) |has| |#4| (-969)) (((-520)) -12 (|has| |#4| (-582 (-520))) (|has| |#4| (-969))))
-(((|#3|) |has| |#3| (-969)) (((-520)) -12 (|has| |#3| (-582 (-520))) (|has| |#3| (-969))))
+((((-1084)) |has| |#1| (-829 (-1084))) (((-998)) . T))
+((((-1084)) |has| |#1| (-829 (-1084))) (((-1003 (-1084))) . T))
+(((|#2|) -12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))))
+(((|#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
+(|has| |#1| (-37 (-381 (-521))))
+(((|#4|) |has| |#4| (-970)) (((-521)) -12 (|has| |#4| (-583 (-521))) (|has| |#4| (-970))))
+(((|#3|) |has| |#3| (-970)) (((-521)) -12 (|has| |#3| (-583 (-521))) (|has| |#3| (-970))))
(|has| |#1| (-133))
(|has| |#1| (-135))
((($ $) . T))
-(-3700 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-157)) (|has| |#1| (-336)) (|has| |#1| (-445)) (|has| |#1| (-662)) (|has| |#1| (-828 (-1083))) (|has| |#1| (-969)) (|has| |#1| (-1024)) (|has| |#1| (-1012)))
-(|has| |#1| (-512))
+(-3703 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-446)) (|has| |#1| (-663)) (|has| |#1| (-829 (-1084))) (|has| |#1| (-970)) (|has| |#1| (-1025)) (|has| |#1| (-1013)))
+(|has| |#1| (-513))
(((|#2|) . T))
-((((-520)) . T))
-((((-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) . T))
+((((-521)) . T))
+((((-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) . T))
(((|#1|) . T))
(((|#1|) . T))
-(-3700 (|has| |#1| (-133)) (|has| |#1| (-135)) (|has| |#1| (-157)) (|has| |#1| (-512)) (|has| |#1| (-969)))
-((((-533 |#1|)) . T))
+(-3703 (|has| |#1| (-133)) (|has| |#1| (-135)) (|has| |#1| (-157)) (|has| |#1| (-513)) (|has| |#1| (-970)))
+((((-534 |#1|)) . T))
((($) . T))
(((|#1| (-57 |#1|) (-57 |#1|)) . T))
(((|#1|) . T))
((($) . T))
(((|#1|) . T))
-((((-791)) . T))
-(((|#2|) |has| |#2| (-6 (-4231 "*"))))
+((((-792)) . T))
+(((|#2|) |has| |#2| (-6 (-4235 "*"))))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-380 (-520))) |has| |#2| (-960 (-380 (-520)))) (((-520)) |has| |#2| (-960 (-520))) ((|#2|) . T) (((-793 |#1|)) . T))
-((($) . T) (((-112 |#1|)) . T) (((-380 (-520))) . T))
-((((-1035 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-520)) |has| |#1| (-960 (-520))) (((-380 (-520))) |has| |#1| (-960 (-380 (-520)))))
-((((-1079 |#1|)) . T) (((-997)) . T) ((|#1|) . T) (((-520)) |has| |#1| (-960 (-520))) (((-380 (-520))) |has| |#1| (-960 (-380 (-520)))))
-((((-1035 |#1| (-1083))) . T) (((-1002 (-1083))) . T) ((|#1|) . T) (((-520)) |has| |#1| (-960 (-520))) (((-380 (-520))) |has| |#1| (-960 (-380 (-520)))) (((-1083)) . T))
-(|has| |#1| (-1012))
+((((-381 (-521))) |has| |#2| (-961 (-381 (-521)))) (((-521)) |has| |#2| (-961 (-521))) ((|#2|) . T) (((-794 |#1|)) . T))
+((($) . T) (((-112 |#1|)) . T) (((-381 (-521))) . T))
+((((-1036 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-521)) |has| |#1| (-961 (-521))) (((-381 (-521))) |has| |#1| (-961 (-381 (-521)))))
+((((-1080 |#1|)) . T) (((-998)) . T) ((|#1|) . T) (((-521)) |has| |#1| (-961 (-521))) (((-381 (-521))) |has| |#1| (-961 (-381 (-521)))))
+((((-1036 |#1| (-1084))) . T) (((-1003 (-1084))) . T) ((|#1|) . T) (((-521)) |has| |#1| (-961 (-521))) (((-381 (-521))) |has| |#1| (-961 (-381 (-521)))) (((-1084)) . T))
+(|has| |#1| (-1013))
((($) . T))
-(|has| |#1| (-1012))
-((((-520)) -12 (|has| |#1| (-814 (-520))) (|has| |#2| (-814 (-520)))) (((-352)) -12 (|has| |#1| (-814 (-352))) (|has| |#2| (-814 (-352)))))
+(|has| |#1| (-1013))
+((((-521)) -12 (|has| |#1| (-815 (-521))) (|has| |#2| (-815 (-521)))) (((-353)) -12 (|has| |#1| (-815 (-353))) (|has| |#2| (-815 (-353)))))
(((|#1| |#2|) . T))
-((((-1083) |#1|) . T))
+((((-1084) |#1|) . T))
(((|#4|) . T))
-(-3700 (|has| |#1| (-336)) (|has| |#1| (-322)))
-((((-1083) (-51)) . T))
-((((-1149 |#2| |#3| |#4|) (-292 |#2| |#3| |#4|)) . T))
-((((-380 (-520))) |has| |#1| (-960 (-380 (-520)))) (((-520)) |has| |#1| (-960 (-520))) ((|#1|) . T))
-((((-791)) . T))
-(-3700 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-336)) (|has| |#2| (-341)) (|has| |#2| (-728)) (|has| |#2| (-781)) (|has| |#2| (-969)) (|has| |#2| (-1012)))
-(((#0=(-1150 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-380 (-520)) #1#) . T) (($ $) . T))
-(((|#1| |#1|) |has| |#1| (-157)) ((#0=(-380 (-520)) #0#) |has| |#1| (-512)) (($ $) |has| |#1| (-512)))
-(((|#1|) . T) (($) . T) (((-380 (-520))) . T))
-(((|#1| $) |has| |#1| (-260 |#1| |#1|)))
-((((-1150 |#1| |#2| |#3| |#4|)) . T) (((-380 (-520))) . T) (($) . T))
-(((|#1|) |has| |#1| (-157)) (((-380 (-520))) |has| |#1| (-512)) (($) |has| |#1| (-512)))
-(|has| |#1| (-336))
+(-3703 (|has| |#1| (-337)) (|has| |#1| (-323)))
+((((-1084) (-51)) . T))
+((((-1150 |#2| |#3| |#4|) (-293 |#2| |#3| |#4|)) . T))
+((((-381 (-521))) |has| |#1| (-961 (-381 (-521)))) (((-521)) |has| |#1| (-961 (-521))) ((|#1|) . T))
+((((-792)) . T))
+(-3703 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-337)) (|has| |#2| (-342)) (|has| |#2| (-729)) (|has| |#2| (-782)) (|has| |#2| (-970)) (|has| |#2| (-1013)))
+(((#0=(-1151 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-381 (-521)) #1#) . T) (($ $) . T))
+(((|#1| |#1|) |has| |#1| (-157)) ((#0=(-381 (-521)) #0#) |has| |#1| (-513)) (($ $) |has| |#1| (-513)))
+(((|#1|) . T) (($) . T) (((-381 (-521))) . T))
+(((|#1| $) |has| |#1| (-261 |#1| |#1|)))
+((((-1151 |#1| |#2| |#3| |#4|)) . T) (((-381 (-521))) . T) (($) . T))
+(((|#1|) |has| |#1| (-157)) (((-381 (-521))) |has| |#1| (-513)) (($) |has| |#1| (-513)))
+(|has| |#1| (-337))
(|has| |#1| (-133))
(|has| |#1| (-135))
(|has| |#1| (-135))
(|has| |#1| (-133))
-((((-380 (-520))) . T) (($) . T))
-(((|#3|) |has| |#3| (-336)))
-(((|#2|) -12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012))))
-((((-1083)) . T))
+((((-381 (-521))) . T) (($) . T))
+(((|#3|) |has| |#3| (-337)))
+(((|#2|) -12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))))
+((((-1084)) . T))
(((|#1|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012))))
+(((|#2| |#2|) -12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))))
(((|#2| |#3|) . T))
-(-3700 (|has| |#2| (-336)) (|has| |#2| (-424)) (|has| |#2| (-512)) (|has| |#2| (-837)))
-(((|#1| (-492 |#2|)) . T))
-(((|#1| (-706)) . T))
-(((|#1| (-492 (-1002 (-1083)))) . T))
+(-3703 (|has| |#2| (-337)) (|has| |#2| (-425)) (|has| |#2| (-513)) (|has| |#2| (-838)))
+(((|#1| (-493 |#2|)) . T))
+(((|#1| (-707)) . T))
+(((|#1| (-493 (-1003 (-1084)))) . T))
(((|#1|) |has| |#1| (-157)))
(((|#1|) . T))
-(|has| |#2| (-837))
-(-3700 (|has| |#2| (-728)) (|has| |#2| (-781)))
-((((-791)) . T))
-((($ $) . T) ((#0=(-1149 |#2| |#3| |#4|) #0#) . T) ((#1=(-380 (-520)) #1#) |has| #0# (-37 (-380 (-520)))))
-((((-838 |#1|)) . T))
-(-12 (|has| |#1| (-336)) (|has| |#2| (-756)))
-((($) . T) (((-380 (-520))) . T))
+(|has| |#2| (-838))
+(-3703 (|has| |#2| (-729)) (|has| |#2| (-782)))
+((((-792)) . T))
+((($ $) . T) ((#0=(-1150 |#2| |#3| |#4|) #0#) . T) ((#1=(-381 (-521)) #1#) |has| #0# (-37 (-381 (-521)))))
+((((-839 |#1|)) . T))
+(-12 (|has| |#1| (-337)) (|has| |#2| (-757)))
+((($) . T) (((-381 (-521))) . T))
((($) . T))
((($) . T))
-(|has| |#1| (-336))
-(-3700 (|has| |#1| (-281)) (|has| |#1| (-336)) (|has| |#1| (-322)) (|has| |#1| (-512)))
-(|has| |#1| (-336))
-((($) . T) ((#0=(-1149 |#2| |#3| |#4|)) . T) (((-380 (-520))) |has| #0# (-37 (-380 (-520)))))
+(|has| |#1| (-337))
+(-3703 (|has| |#1| (-282)) (|has| |#1| (-337)) (|has| |#1| (-323)) (|has| |#1| (-513)))
+(|has| |#1| (-337))
+((($) . T) ((#0=(-1150 |#2| |#3| |#4|)) . T) (((-381 (-521))) |has| #0# (-37 (-381 (-521)))))
(((|#1| |#2|) . T))
-((((-1081 |#1| |#2| |#3|)) |has| |#1| (-336)))
-(-3700 (-12 (|has| |#1| (-281)) (|has| |#1| (-837))) (|has| |#1| (-336)) (|has| |#1| (-322)))
-(-3700 (|has| |#1| (-828 (-1083))) (|has| |#1| (-969)))
-((((-520)) |has| |#1| (-582 (-520))) ((|#1|) . T))
+((((-1082 |#1| |#2| |#3|)) |has| |#1| (-337)))
+(-3703 (-12 (|has| |#1| (-282)) (|has| |#1| (-838))) (|has| |#1| (-337)) (|has| |#1| (-323)))
+(-3703 (|has| |#1| (-829 (-1084))) (|has| |#1| (-970)))
+((((-521)) |has| |#1| (-583 (-521))) ((|#1|) . T))
(((|#1| |#2|) . T))
-((((-791)) . T))
-((((-791)) . T))
+((((-792)) . T))
+((((-792)) . T))
((((-108)) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2| |#3| |#4|) . T))
-((((-380 |#2|)) . T) (((-380 (-520))) . T) (($) . T))
+((((-381 |#2|)) . T) (((-381 (-521))) . T) (($) . T))
(((|#1| |#2| |#3| |#4|) . T))
-(((|#1| (-492 (-793 |#2|)) (-793 |#2|) (-715 |#1| (-793 |#2|))) . T))
-(|has| |#2| (-336))
-(|has| |#1| (-783))
+(((|#1| (-493 (-794 |#2|)) (-794 |#2|) (-716 |#1| (-794 |#2|))) . T))
+(|has| |#2| (-337))
+(|has| |#1| (-784))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-791)) . T))
-(|has| |#1| (-1012))
+((((-792)) . T))
+(|has| |#1| (-1013))
(((|#4|) . T))
(((|#4|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))
-((((-380 $) (-380 $)) |has| |#1| (-512)) (($ $) . T) ((|#1| |#1|) . T))
-(|has| |#2| (-756))
+(((|#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
+((((-381 $) (-381 $)) |has| |#1| (-513)) (($ $) . T) ((|#1| |#1|) . T))
+(|has| |#2| (-757))
(((|#4|) . T))
((($) . T))
((($ $) . T))
((($) . T))
-((((-791)) . T))
-(((|#1| (-492 (-1083))) . T))
+((((-792)) . T))
+(((|#1| (-493 (-1084))) . T))
(((|#1|) |has| |#1| (-157)))
-((((-791)) . T))
-(((|#4| |#4|) -12 (|has| |#4| (-283 |#4|)) (|has| |#4| (-1012))))
-(((|#2|) -3700 (|has| |#2| (-6 (-4231 "*"))) (|has| |#2| (-157))))
-(-3700 (|has| |#2| (-424)) (|has| |#2| (-512)) (|has| |#2| (-837)))
-(-3700 (|has| |#1| (-424)) (|has| |#1| (-512)) (|has| |#1| (-837)))
-(|has| |#2| (-783))
-(|has| |#2| (-837))
-(|has| |#1| (-837))
+((((-792)) . T))
+(((|#4| |#4|) -12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013))))
+(((|#2|) -3703 (|has| |#2| (-6 (-4235 "*"))) (|has| |#2| (-157))))
+(-3703 (|has| |#2| (-425)) (|has| |#2| (-513)) (|has| |#2| (-838)))
+(-3703 (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-838)))
+(|has| |#2| (-784))
+(|has| |#2| (-838))
+(|has| |#1| (-838))
(((|#2|) |has| |#2| (-157)))
-((((-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) . T))
-((((-1156 |#1| |#2| |#3|)) |has| |#1| (-336)))
-((((-791)) . T))
-((((-791)) . T))
-((((-496)) . T) (((-520)) . T) (((-820 (-520))) . T) (((-352)) . T) (((-201)) . T))
+((((-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) . T))
+((((-1157 |#1| |#2| |#3|)) |has| |#1| (-337)))
+((((-792)) . T))
+((((-792)) . T))
+((((-497)) . T) (((-521)) . T) (((-821 (-521))) . T) (((-353)) . T) (((-202)) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) . T))
-((((-2 (|:| -2526 (-1066)) (|:| -3043 (-51)))) . T))
+((((-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) . T))
+((((-2 (|:| -2529 (-1067)) (|:| -3045 (-51)))) . T))
(((|#1|) . T))
-((((-791)) . T))
+((((-792)) . T))
(((|#1| |#2|) . T))
-(((|#1| (-380 (-520))) . T))
+(((|#1| (-381 (-521))) . T))
(((|#1|) . T))
-(-3700 (|has| |#1| (-264)) (|has| |#1| (-336)))
+(-3703 (|has| |#1| (-265)) (|has| |#1| (-337)))
((((-132)) . T))
-((((-380 |#2|)) . T) (((-380 (-520))) . T) (($) . T))
-(|has| |#1| (-781))
-((((-791)) . T))
-((((-791)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))
-(((|#1| |#1| |#2| (-216 |#1| |#2|) (-216 |#1| |#2|)) . T))
+((((-381 |#2|)) . T) (((-381 (-521))) . T) (($) . T))
+(|has| |#1| (-782))
+((((-792)) . T))
+((((-792)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
+(((|#1| |#1| |#2| (-217 |#1| |#2|) (-217 |#1| |#2|)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#2|) . T))
-((((-380 (-520))) . T) (($) . T))
-((((-791)) . T))
-((((-791)) . T))
-((((-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) . T))
+((((-381 (-521))) . T) (($) . T))
+((((-792)) . T))
+((((-792)) . T))
+((((-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) . T))
(((|#2| |#2|) . T) ((|#1| |#1|) . T))
-((((-791)) . T))
-((((-791)) . T))
-((((-496)) |has| |#1| (-561 (-496))) (((-820 (-520))) |has| |#1| (-561 (-820 (-520)))) (((-820 (-352))) |has| |#1| (-561 (-820 (-352)))))
-((((-1083) (-51)) . T))
-(((|#2|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-586 (-132))) . T) (((-1066)) . T))
-((((-791)) . T))
-((((-2 (|:| -2526 (-1066)) (|:| -3043 |#1|))) . T))
-((((-1083) |#1|) |has| |#1| (-481 (-1083) |#1|)) ((|#1| |#1|) |has| |#1| (-283 |#1|)))
-(|has| |#1| (-783))
-((((-791)) . T))
-((((-496)) |has| |#1| (-561 (-496))))
-((((-791)) . T))
-(((|#2|) |has| |#2| (-336)))
-((((-791)) . T))
-((((-496)) |has| |#4| (-561 (-496))))
-((((-791)) . T) (((-586 |#4|)) . T))
-(((|#2|) . T))
-((((-838 |#1|)) . T) (((-380 (-520))) . T) (($) . T))
-(-3700 (|has| |#4| (-157)) (|has| |#4| (-781)) (|has| |#4| (-969)))
-(-3700 (|has| |#3| (-157)) (|has| |#3| (-781)) (|has| |#3| (-969)))
-((((-1083) (-51)) . T))
-(-3700 (|has| |#1| (-424)) (|has| |#1| (-512)) (|has| |#1| (-837)))
-(-3700 (|has| |#1| (-336)) (|has| |#1| (-424)) (|has| |#1| (-512)) (|has| |#1| (-837)))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(-3700 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-336)) (|has| |#2| (-728)) (|has| |#2| (-781)) (|has| |#2| (-969)))
-(-3700 (|has| |#2| (-157)) (|has| |#2| (-336)) (|has| |#2| (-781)) (|has| |#2| (-969)))
-(|has| |#1| (-837))
-(|has| |#1| (-837))
-(((|#2|) . T))
-(((|#1|) . T))
-((((-791)) . T))
-((((-520)) . T))
-(((#0=(-380 (-520)) #0#) . T) (($ $) . T))
-((((-380 (-520))) . T) (($) . T))
-(((|#1| (-380 (-520)) (-997)) . T))
-(|has| |#1| (-1012))
-(|has| |#1| (-512))
-(|has| |#1| (-37 (-380 (-520))))
-(|has| |#1| (-37 (-380 (-520))))
-(|has| |#1| (-37 (-380 (-520))))
-(-3700 (|has| |#1| (-336)) (|has| |#1| (-424)) (|has| |#1| (-512)) (|has| |#1| (-837)))
-(|has| |#1| (-756))
-(((#0=(-838 |#1|) #0#) . T) (($ $) . T) ((#1=(-380 (-520)) #1#) . T))
-((((-380 |#2|)) . T))
-(|has| |#1| (-781))
-((((-791)) -3700 (|has| |#1| (-560 (-791))) (|has| |#1| (-1012))))
-(((|#1| |#1|) . T) ((#0=(-380 (-520)) #0#) . T) ((#1=(-520) #1#) . T) (($ $) . T))
-((((-838 |#1|)) . T) (($) . T) (((-380 (-520))) . T))
-(((|#2|) |has| |#2| (-969)) (((-520)) -12 (|has| |#2| (-582 (-520))) (|has| |#2| (-969))))
-(((|#1|) . T) (((-380 (-520))) . T) (((-520)) . T) (($) . T))
+((((-792)) . T))
+((((-792)) . T))
+((((-497)) |has| |#1| (-562 (-497))) (((-821 (-521))) |has| |#1| (-562 (-821 (-521)))) (((-821 (-353))) |has| |#1| (-562 (-821 (-353)))))
+((((-1084) (-51)) . T))
+(((|#2|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-587 (-132))) . T) (((-1067)) . T))
+((((-792)) . T))
+((((-2 (|:| -2529 (-1067)) (|:| -3045 |#1|))) . T))
+((((-1084) |#1|) |has| |#1| (-482 (-1084) |#1|)) ((|#1| |#1|) |has| |#1| (-284 |#1|)))
+(|has| |#1| (-784))
+((((-792)) . T))
+((((-497)) |has| |#1| (-562 (-497))))
+((((-792)) . T))
+(((|#2|) |has| |#2| (-337)))
+((((-792)) . T))
+((((-497)) |has| |#4| (-562 (-497))))
+((((-792)) . T) (((-587 |#4|)) . T))
+(((|#2|) . T))
+((((-839 |#1|)) . T) (((-381 (-521))) . T) (($) . T))
+(-3703 (|has| |#4| (-157)) (|has| |#4| (-782)) (|has| |#4| (-970)))
+(-3703 (|has| |#3| (-157)) (|has| |#3| (-782)) (|has| |#3| (-970)))
+((((-1084) (-51)) . T))
+(-3703 (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-838)))
+(-3703 (|has| |#1| (-337)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-838)))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(-3703 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-337)) (|has| |#2| (-729)) (|has| |#2| (-782)) (|has| |#2| (-970)))
+(-3703 (|has| |#2| (-157)) (|has| |#2| (-337)) (|has| |#2| (-782)) (|has| |#2| (-970)))
+(|has| |#1| (-838))
+(|has| |#1| (-838))
+(((|#2|) . T))
+(((|#1|) . T))
+((((-792)) . T))
+((((-521)) . T))
+(((#0=(-381 (-521)) #0#) . T) (($ $) . T))
+((((-381 (-521))) . T) (($) . T))
+(((|#1| (-381 (-521)) (-998)) . T))
+(|has| |#1| (-1013))
+(|has| |#1| (-513))
+(|has| |#1| (-37 (-381 (-521))))
+(|has| |#1| (-37 (-381 (-521))))
+(|has| |#1| (-37 (-381 (-521))))
+(-3703 (|has| |#1| (-337)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-838)))
+(|has| |#1| (-757))
+(((#0=(-839 |#1|) #0#) . T) (($ $) . T) ((#1=(-381 (-521)) #1#) . T))
+((((-381 |#2|)) . T))
+(|has| |#1| (-782))
+((((-792)) -3703 (|has| |#1| (-561 (-792))) (|has| |#1| (-1013))))
+(((|#1| |#1|) . T) ((#0=(-381 (-521)) #0#) . T) ((#1=(-521) #1#) . T) (($ $) . T))
+((((-839 |#1|)) . T) (($) . T) (((-381 (-521))) . T))
+(((|#2|) |has| |#2| (-970)) (((-521)) -12 (|has| |#2| (-583 (-521))) (|has| |#2| (-970))))
+(((|#1|) . T) (((-381 (-521))) . T) (((-521)) . T) (($) . T))
(((|#1| |#2| |#3| |#4|) . T))
(|has| |#1| (-135))
(|has| |#1| (-133))
(((|#2|) . T))
-((((-791)) . T))
-(-3700 (|has| |#1| (-133)) (|has| |#1| (-341)))
-(-3700 (|has| |#1| (-133)) (|has| |#1| (-341)))
-(-3700 (|has| |#1| (-133)) (|has| |#1| (-341)))
-((((-2 (|:| -2526 (-1083)) (|:| -3043 (-51)))) . T))
-(((#0=(-51)) . T) (((-2 (|:| -2526 (-1083)) (|:| -3043 #0#))) . T))
-(|has| |#1| (-322))
-((((-520)) . T))
-((((-791)) . T))
-(((#0=(-1150 |#1| |#2| |#3| |#4|) $) |has| #0# (-260 #0# #0#)))
-(|has| |#1| (-336))
-(((#0=(-997) |#1|) . T) ((#0# $) . T) (($ $) . T))
-(-3700 (|has| |#1| (-336)) (|has| |#1| (-322)))
-(((#0=(-380 (-520)) #0#) . T) ((#1=(-635) #1#) . T) (($ $) . T))
-((((-289 |#1|)) . T) (($) . T))
-(((|#1|) . T) (((-380 (-520))) |has| |#1| (-336)))
-(|has| |#1| (-1012))
-(((|#1|) . T))
-(((|#1|) -3700 (|has| |#2| (-340 |#1|)) (|has| |#2| (-390 |#1|))))
-(((|#1|) -3700 (|has| |#2| (-340 |#1|)) (|has| |#2| (-390 |#1|))))
-(((|#2|) . T))
-((((-380 (-520))) . T) (((-635)) . T) (($) . T))
+((((-792)) . T))
+(-3703 (|has| |#1| (-133)) (|has| |#1| (-342)))
+(-3703 (|has| |#1| (-133)) (|has| |#1| (-342)))
+(-3703 (|has| |#1| (-133)) (|has| |#1| (-342)))
+((((-2 (|:| -2529 (-1084)) (|:| -3045 (-51)))) . T))
+(((#0=(-51)) . T) (((-2 (|:| -2529 (-1084)) (|:| -3045 #0#))) . T))
+(|has| |#1| (-323))
+((((-521)) . T))
+((((-792)) . T))
+(((#0=(-1151 |#1| |#2| |#3| |#4|) $) |has| #0# (-261 #0# #0#)))
+(|has| |#1| (-337))
+(((#0=(-998) |#1|) . T) ((#0# $) . T) (($ $) . T))
+(-3703 (|has| |#1| (-337)) (|has| |#1| (-323)))
+(((#0=(-381 (-521)) #0#) . T) ((#1=(-636) #1#) . T) (($ $) . T))
+((((-290 |#1|)) . T) (($) . T))
+(((|#1|) . T) (((-381 (-521))) |has| |#1| (-337)))
+(|has| |#1| (-1013))
+(((|#1|) . T))
+(((|#1|) -3703 (|has| |#2| (-341 |#1|)) (|has| |#2| (-391 |#1|))))
+(((|#1|) -3703 (|has| |#2| (-341 |#1|)) (|has| |#2| (-391 |#1|))))
+(((|#2|) . T))
+((((-381 (-521))) . T) (((-636)) . T) (($) . T))
(((|#3| |#3|) . T))
-(|has| |#2| (-209))
-((((-793 |#1|)) . T))
-((((-1083)) |has| |#1| (-828 (-1083))) ((|#3|) . T))
-(-12 (|has| |#1| (-336)) (|has| |#2| (-945)))
-((((-1081 |#1| |#2| |#3|)) |has| |#1| (-336)))
-((((-791)) . T))
-(|has| |#1| (-336))
-(|has| |#1| (-336))
-((((-380 (-520))) . T) (($) . T) (((-380 |#1|)) . T) ((|#1|) . T))
-((((-520)) . T))
-(|has| |#1| (-1012))
+(|has| |#2| (-210))
+((((-794 |#1|)) . T))
+((((-1084)) |has| |#1| (-829 (-1084))) ((|#3|) . T))
+(-12 (|has| |#1| (-337)) (|has| |#2| (-946)))
+((((-1082 |#1| |#2| |#3|)) |has| |#1| (-337)))
+((((-792)) . T))
+(|has| |#1| (-337))
+(|has| |#1| (-337))
+((((-381 (-521))) . T) (($) . T) (((-381 |#1|)) . T) ((|#1|) . T))
+((((-521)) . T))
+(|has| |#1| (-1013))
(((|#3|) . T))
(((|#2|) . T))
(((|#1|) . T))
-((((-520)) . T))
-(-3700 (|has| |#1| (-157)) (|has| |#1| (-336)) (|has| |#1| (-424)) (|has| |#1| (-512)) (|has| |#1| (-837)))
-(((|#2|) . T) (((-520)) |has| |#2| (-582 (-520))))
+((((-521)) . T))
+(-3703 (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-838)))
+(((|#2|) . T) (((-521)) |has| |#2| (-583 (-521))))
(((|#1| |#2|) . T))
((($) . T))
-((((-533 |#1|)) . T) (((-380 (-520))) . T) (($) . T))
-((($) . T) (((-380 (-520))) . T))
+((((-534 |#1|)) . T) (((-381 (-521))) . T) (($) . T))
+((($) . T) (((-381 (-521))) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1|) . T) (($) . T))
-(((|#1| (-1164 |#1|) (-1164 |#1|)) . T))
+(((|#1| (-1165 |#1|) (-1165 |#1|)) . T))
(((|#1| |#2| |#3| |#4|) . T))
-((((-791)) . T))
-((((-791)) . T))
-(((#0=(-112 |#1|) #0#) . T) ((#1=(-380 (-520)) #1#) . T) (($ $) . T))
-((((-380 (-520))) |has| |#2| (-960 (-380 (-520)))) (((-520)) |has| |#2| (-960 (-520))) ((|#2|) . T) (((-793 |#1|)) . T))
-((((-1035 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-520)) |has| |#1| (-960 (-520))) (((-380 (-520))) |has| |#1| (-960 (-380 (-520)))) ((|#2|) . T))
+((((-792)) . T))
+((((-792)) . T))
+(((#0=(-112 |#1|) #0#) . T) ((#1=(-381 (-521)) #1#) . T) (($ $) . T))
+((((-381 (-521))) |has| |#2| (-961 (-381 (-521)))) (((-521)) |has| |#2| (-961 (-521))) ((|#2|) . T) (((-794 |#1|)) . T))
+((((-1036 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-521)) |has| |#1| (-961 (-521))) (((-381 (-521))) |has| |#1| (-961 (-381 (-521)))) ((|#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
((($ $) . T))
-((((-611 |#1|)) . T))
-((($) . T) (((-380 (-520))) |has| |#2| (-37 (-380 (-520)))) ((|#2|) . T))
-((((-112 |#1|)) . T) (((-380 (-520))) . T) (($) . T))
-((((-520)) -12 (|has| |#1| (-814 (-520))) (|has| |#3| (-814 (-520)))) (((-352)) -12 (|has| |#1| (-814 (-352))) (|has| |#3| (-814 (-352)))))
+((((-612 |#1|)) . T))
+((($) . T) (((-381 (-521))) |has| |#2| (-37 (-381 (-521)))) ((|#2|) . T))
+((((-112 |#1|)) . T) (((-381 (-521))) . T) (($) . T))
+((((-521)) -12 (|has| |#1| (-815 (-521))) (|has| |#3| (-815 (-521)))) (((-353)) -12 (|has| |#1| (-815 (-353))) (|has| |#3| (-815 (-353)))))
(((|#2|) . T) ((|#6|) . T))
-(((|#1|) . T) (((-380 (-520))) |has| |#1| (-37 (-380 (-520)))) (($) . T))
+(((|#1|) . T) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))) (($) . T))
((((-132)) . T))
((($) . T))
-((($) . T) ((|#1|) . T) (((-380 (-520))) |has| |#1| (-37 (-380 (-520)))))
-((($) . T) ((|#1|) . T) (((-380 (-520))) |has| |#1| (-37 (-380 (-520)))))
+((($) . T) ((|#1|) . T) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
+((($) . T) ((|#1|) . T) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
(((|#1|) . T))
-(|has| |#2| (-837))
-(|has| |#1| (-837))
-(|has| |#1| (-837))
+(|has| |#2| (-838))
+(|has| |#1| (-838))
+(|has| |#1| (-838))
(((|#4|) . T))
-(|has| |#2| (-945))
+(|has| |#2| (-946))
((($) . T))
-(|has| |#1| (-837))
-((((-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) . T))
+(|has| |#1| (-838))
+((((-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) . T))
((($) . T))
(((|#2|) . T))
(((|#1|) . T))
(((|#1|) . T) (($) . T))
((($) . T))
-(|has| |#1| (-336))
-((((-838 |#1|)) . T))
-((($) -3700 (|has| |#1| (-336)) (|has| |#1| (-424)) (|has| |#1| (-512)) (|has| |#1| (-837))) ((|#1|) |has| |#1| (-157)) (((-380 (-520))) |has| |#1| (-37 (-380 (-520)))))
-((($ $) . T) ((#0=(-380 (-520)) #0#) . T))
-(-3700 (|has| |#1| (-341)) (|has| |#1| (-783)))
-(((|#1|) . T))
-((((-791)) . T))
-((((-1083)) -12 (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|))) (|has| |#1| (-828 (-1083)))))
-((((-380 |#2|) |#3|) . T))
-((($) . T) (((-380 (-520))) . T))
-((((-706) |#1|) . T))
-(((|#2| (-216 (-3474 |#1|) (-706))) . T))
-(((|#1| (-492 |#3|)) . T))
-((((-380 (-520))) . T))
-(-3700 (|has| |#1| (-424)) (|has| |#1| (-512)) (|has| |#1| (-837)))
-((((-791)) . T))
-(((#0=(-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) #0#) |has| (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (-283 (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))))))
-(|has| |#1| (-837))
-(|has| |#2| (-336))
-(-3700 (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-336)) (|has| |#2| (-728)) (|has| |#2| (-781)) (|has| |#2| (-969)))
-((((-154 (-352))) . T) (((-201)) . T) (((-352)) . T))
-((((-791)) . T))
-(((|#1|) . T))
-((((-352)) . T) (((-520)) . T))
-(((#0=(-380 (-520)) #0#) . T) (($ $) . T))
+(|has| |#1| (-337))
+((((-839 |#1|)) . T))
+((($) -3703 (|has| |#1| (-337)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-838))) ((|#1|) |has| |#1| (-157)) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
+((($ $) . T) ((#0=(-381 (-521)) #0#) . T))
+(-3703 (|has| |#1| (-342)) (|has| |#1| (-784)))
+(((|#1|) . T))
+((((-792)) . T))
+((((-1084)) -12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-829 (-1084)))))
+((((-381 |#2|) |#3|) . T))
+((($) . T) (((-381 (-521))) . T))
+((((-707) |#1|) . T))
+(((|#2| (-217 (-3475 |#1|) (-707))) . T))
+(((|#1| (-493 |#3|)) . T))
+((((-381 (-521))) . T))
+(-3703 (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-838)))
+((((-792)) . T))
+(((#0=(-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) #0#) |has| (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (-284 (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))))))
+(|has| |#1| (-838))
+(|has| |#2| (-337))
+(-3703 (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-337)) (|has| |#2| (-729)) (|has| |#2| (-782)) (|has| |#2| (-970)))
+((((-154 (-353))) . T) (((-202)) . T) (((-353)) . T))
+((((-792)) . T))
+(((|#1|) . T))
+((((-353)) . T) (((-521)) . T))
+(((#0=(-381 (-521)) #0#) . T) (($ $) . T))
((($ $) . T))
((($ $) . T))
(((|#1| |#1|) . T))
-((((-791)) . T))
-(|has| |#1| (-512))
-((((-380 (-520))) . T) (($) . T))
-((($) . T))
-((($) . T))
-(|has| |#1| (-37 (-380 (-520))))
-(|has| |#1| (-37 (-380 (-520))))
-(|has| |#1| (-37 (-380 (-520))))
-(-3700 (|has| |#1| (-281)) (|has| |#1| (-336)) (|has| |#1| (-322)))
-(|has| |#1| (-37 (-380 (-520))))
-(-12 (|has| |#1| (-505)) (|has| |#1| (-764)))
-((((-791)) . T))
-((((-1083)) -3700 (-12 (|has| |#1| (-15 * (|#1| (-520) |#1|))) (|has| |#1| (-828 (-1083)))) (-12 (|has| |#1| (-336)) (|has| |#2| (-828 (-1083))))))
-(|has| |#1| (-336))
-((((-1083)) -12 (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|))) (|has| |#1| (-828 (-1083)))))
-(|has| |#1| (-336))
-((((-380 (-520))) . T) (($) . T))
-((($) . T) (((-380 (-520))) |has| |#1| (-37 (-380 (-520)))) ((|#1|) . T))
-((((-520) |#1|) . T))
-(((|#1|) . T))
-(((|#2|) |has| |#1| (-336)))
-(((|#2|) |has| |#1| (-336)))
-((((-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) . T))
+((((-792)) . T))
+(|has| |#1| (-513))
+((((-381 (-521))) . T) (($) . T))
+((($) . T))
+((($) . T))
+(|has| |#1| (-37 (-381 (-521))))
+(|has| |#1| (-37 (-381 (-521))))
+(|has| |#1| (-37 (-381 (-521))))
+(-3703 (|has| |#1| (-282)) (|has| |#1| (-337)) (|has| |#1| (-323)))
+(|has| |#1| (-37 (-381 (-521))))
+(-12 (|has| |#1| (-506)) (|has| |#1| (-765)))
+((((-792)) . T))
+((((-1084)) -3703 (-12 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (|has| |#1| (-829 (-1084)))) (-12 (|has| |#1| (-337)) (|has| |#2| (-829 (-1084))))))
+(|has| |#1| (-337))
+((((-1084)) -12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-829 (-1084)))))
+(|has| |#1| (-337))
+((((-381 (-521))) . T) (($) . T))
+((($) . T) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))) ((|#1|) . T))
+((((-521) |#1|) . T))
+(((|#1|) . T))
+(((|#2|) |has| |#1| (-337)))
+(((|#2|) |has| |#1| (-337)))
+((((-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) . T))
(((|#1|) . T))
(((|#1|) |has| |#1| (-157)))
(((|#1|) . T))
-(((|#2|) . T) (((-1083)) -12 (|has| |#1| (-336)) (|has| |#2| (-960 (-1083)))) (((-520)) -12 (|has| |#1| (-336)) (|has| |#2| (-960 (-520)))) (((-380 (-520))) -12 (|has| |#1| (-336)) (|has| |#2| (-960 (-520)))))
+(((|#2|) . T) (((-1084)) -12 (|has| |#1| (-337)) (|has| |#2| (-961 (-1084)))) (((-521)) -12 (|has| |#1| (-337)) (|has| |#2| (-961 (-521)))) (((-381 (-521))) -12 (|has| |#1| (-337)) (|has| |#2| (-961 (-521)))))
(((|#2|) . T))
-((((-1083) #0=(-1150 |#1| |#2| |#3| |#4|)) |has| #0# (-481 (-1083) #0#)) ((#0# #0#) |has| #0# (-283 #0#)))
-((((-559 $) $) . T) (($ $) . T))
-((((-154 (-201))) . T) (((-154 (-352))) . T) (((-1079 (-635))) . T) (((-820 (-352))) . T))
-((((-791)) . T))
-(|has| |#1| (-512))
-(|has| |#1| (-512))
-(|has| (-380 |#2|) (-209))
-(((|#1| (-380 (-520))) . T))
+((((-1084) #0=(-1151 |#1| |#2| |#3| |#4|)) |has| #0# (-482 (-1084) #0#)) ((#0# #0#) |has| #0# (-284 #0#)))
+((((-560 $) $) . T) (($ $) . T))
+((((-154 (-202))) . T) (((-154 (-353))) . T) (((-1080 (-636))) . T) (((-821 (-353))) . T))
+((((-792)) . T))
+(|has| |#1| (-513))
+(|has| |#1| (-513))
+(|has| (-381 |#2|) (-210))
+(((|#1| (-381 (-521))) . T))
((($ $) . T))
-((((-1083)) |has| |#2| (-828 (-1083))))
-((($) . T))
-((((-791)) . T))
-((((-380 (-520))) . T) (($) . T))
-(((|#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))
-(((|#2|) |has| |#1| (-336)))
-((((-352)) -12 (|has| |#1| (-336)) (|has| |#2| (-814 (-352)))) (((-520)) -12 (|has| |#1| (-336)) (|has| |#2| (-814 (-520)))))
-(|has| |#1| (-336))
-(-3700 (|has| |#1| (-336)) (|has| |#1| (-512)))
-(|has| |#1| (-336))
-(((|#1| |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))
-(-3700 (|has| |#1| (-336)) (|has| |#1| (-512)))
-(|has| |#1| (-336))
-(|has| |#1| (-512))
-(((|#4| |#4|) -12 (|has| |#4| (-283 |#4|)) (|has| |#4| (-1012))))
+((((-1084)) |has| |#2| (-829 (-1084))))
+((($) . T))
+((((-792)) . T))
+((((-381 (-521))) . T) (($) . T))
+(((|#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
+(((|#2|) |has| |#1| (-337)))
+((((-353)) -12 (|has| |#1| (-337)) (|has| |#2| (-815 (-353)))) (((-521)) -12 (|has| |#1| (-337)) (|has| |#2| (-815 (-521)))))
+(|has| |#1| (-337))
+(-3703 (|has| |#1| (-337)) (|has| |#1| (-513)))
+(|has| |#1| (-337))
+(((|#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
+(-3703 (|has| |#1| (-337)) (|has| |#1| (-513)))
+(|has| |#1| (-337))
+(|has| |#1| (-513))
+(((|#4| |#4|) -12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013))))
(((|#3|) . T))
(((|#1|) . T))
-(-3700 (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-336)) (|has| |#2| (-728)) (|has| |#2| (-781)) (|has| |#2| (-969)))
+(-3703 (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-337)) (|has| |#2| (-729)) (|has| |#2| (-782)) (|has| |#2| (-970)))
(((|#2|) . T))
(((|#2|) . T))
-(-3700 (|has| |#2| (-157)) (|has| |#2| (-781)) (|has| |#2| (-969)))
-((((-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) . T))
-((((-2 (|:| -2526 (-1066)) (|:| -3043 |#1|))) . T))
-((((-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) . T))
-(|has| |#1| (-37 (-380 (-520))))
+(-3703 (|has| |#2| (-157)) (|has| |#2| (-782)) (|has| |#2| (-970)))
+((((-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) . T))
+((((-2 (|:| -2529 (-1067)) (|:| -3045 |#1|))) . T))
+((((-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) . T))
+(|has| |#1| (-37 (-381 (-521))))
(((|#1| |#2|) . T))
-(|has| |#1| (-37 (-380 (-520))))
-(-3700 (|has| |#1| (-133)) (|has| |#1| (-341)))
+(|has| |#1| (-37 (-381 (-521))))
+(-3703 (|has| |#1| (-133)) (|has| |#1| (-342)))
(|has| |#1| (-135))
-((((-1066) |#1|) . T))
-(-3700 (|has| |#1| (-133)) (|has| |#1| (-341)))
+((((-1067) |#1|) . T))
+(-3703 (|has| |#1| (-133)) (|has| |#1| (-342)))
(|has| |#1| (-135))
-(-3700 (|has| |#1| (-133)) (|has| |#1| (-341)))
+(-3703 (|has| |#1| (-133)) (|has| |#1| (-342)))
(|has| |#1| (-135))
-((((-533 |#1|)) . T))
+((((-534 |#1|)) . T))
((($) . T))
-((((-380 |#2|)) . T))
-(|has| |#1| (-512))
-(|has| |#1| (-37 (-380 (-520))))
-(|has| |#1| (-37 (-380 (-520))))
-(-3700 (|has| |#1| (-133)) (|has| |#1| (-322)))
+((((-381 |#2|)) . T))
+(|has| |#1| (-513))
+(|has| |#1| (-37 (-381 (-521))))
+(|has| |#1| (-37 (-381 (-521))))
+(-3703 (|has| |#1| (-133)) (|has| |#1| (-323)))
(|has| |#1| (-135))
-((((-791)) . T))
+((((-792)) . T))
((($) . T))
-((((-380 (-520))) |has| |#2| (-960 (-520))) (((-520)) |has| |#2| (-960 (-520))) (((-1083)) |has| |#2| (-960 (-1083))) ((|#2|) . T))
-(((#0=(-380 |#2|) #0#) . T) ((#1=(-380 (-520)) #1#) . T) (($ $) . T))
-((((-1048 |#1| |#2|)) . T))
-(((|#1| (-520)) . T))
-(((|#1| (-380 (-520))) . T))
-((((-520)) |has| |#2| (-814 (-520))) (((-352)) |has| |#2| (-814 (-352))))
+((((-381 (-521))) |has| |#2| (-961 (-521))) (((-521)) |has| |#2| (-961 (-521))) (((-1084)) |has| |#2| (-961 (-1084))) ((|#2|) . T))
+(((#0=(-381 |#2|) #0#) . T) ((#1=(-381 (-521)) #1#) . T) (($ $) . T))
+((((-1049 |#1| |#2|)) . T))
+(((|#1| (-521)) . T))
+(((|#1| (-381 (-521))) . T))
+((((-521)) |has| |#2| (-815 (-521))) (((-353)) |has| |#2| (-815 (-353))))
(((|#2|) . T))
-((((-380 |#2|)) . T) (((-380 (-520))) . T) (($) . T))
+((((-381 |#2|)) . T) (((-381 (-521))) . T) (($) . T))
((((-108)) . T))
-(((|#1| |#2| (-216 |#1| |#2|) (-216 |#1| |#2|)) . T))
-(((|#2|) . T))
-((((-791)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))
-((((-1083) (-51)) . T))
-((((-380 |#2|)) . T))
-((((-791)) . T))
-(((|#1|) . T))
-(|has| |#1| (-1012))
-(|has| |#1| (-726))
-(|has| |#1| (-726))
-((((-496)) |has| |#1| (-561 (-496))))
-((((-791)) -3700 (|has| |#1| (-560 (-791))) (|has| |#1| (-783)) (|has| |#1| (-1012))))
+(((|#1| |#2| (-217 |#1| |#2|) (-217 |#1| |#2|)) . T))
+(((|#2|) . T))
+((((-792)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
+((((-1084) (-51)) . T))
+((((-381 |#2|)) . T))
+((((-792)) . T))
+(((|#1|) . T))
+(|has| |#1| (-1013))
+(|has| |#1| (-727))
+(|has| |#1| (-727))
+((((-497)) |has| |#1| (-562 (-497))))
+((((-792)) -3703 (|has| |#1| (-561 (-792))) (|has| |#1| (-784)) (|has| |#1| (-1013))))
((((-110)) . T) ((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-201)) . T) (((-352)) . T) (((-820 (-352))) . T))
-((((-791)) . T))
-((((-1150 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-380 (-520))) . T))
-(((|#1|) |has| |#1| (-157)) (($) |has| |#1| (-512)) (((-380 (-520))) |has| |#1| (-512)))
-((((-791)) . T))
+((((-202)) . T) (((-353)) . T) (((-821 (-353))) . T))
+((((-792)) . T))
+((((-1151 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-381 (-521))) . T))
+(((|#1|) |has| |#1| (-157)) (($) |has| |#1| (-513)) (((-381 (-521))) |has| |#1| (-513)))
+((((-792)) . T))
(((|#2|) . T))
-((((-791)) . T))
-(((#0=(-838 |#1|) #0#) . T) (($ $) . T) ((#1=(-380 (-520)) #1#) . T))
+((((-792)) . T))
+(((#0=(-839 |#1|) #0#) . T) (($ $) . T) ((#1=(-381 (-521)) #1#) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-838 |#1|)) . T) (($) . T) (((-380 (-520))) . T))
-(|has| |#1| (-336))
+((((-839 |#1|)) . T) (($) . T) (((-381 (-521))) . T))
+(|has| |#1| (-337))
(((|#2|) . T))
-((((-520)) . T))
-((((-520)) . T))
-(-3700 (|has| |#2| (-728)) (|has| |#2| (-781)))
-((((-154 (-352))) . T) (((-201)) . T) (((-352)) . T))
-((((-791)) . T))
-((((-791)) . T))
-((((-1066)) . T) (((-496)) . T) (((-520)) . T) (((-820 (-520))) . T) (((-352)) . T) (((-201)) . T))
-((((-791)) . T))
+((((-521)) . T))
+((((-521)) . T))
+(-3703 (|has| |#2| (-729)) (|has| |#2| (-782)))
+((((-154 (-353))) . T) (((-202)) . T) (((-353)) . T))
+((((-792)) . T))
+((((-792)) . T))
+((((-1067)) . T) (((-497)) . T) (((-521)) . T) (((-821 (-521))) . T) (((-353)) . T) (((-202)) . T))
+((((-792)) . T))
(|has| |#1| (-135))
(|has| |#1| (-133))
-((($) . T) ((#0=(-1149 |#2| |#3| |#4|)) |has| #0# (-157)) (((-380 (-520))) |has| #0# (-37 (-380 (-520)))))
-(((|#1|) . T) (($) . T) (((-380 (-520))) . T))
-(|has| |#1| (-336))
-(|has| |#1| (-336))
-((((-791)) -3700 (|has| |#1| (-560 (-791))) (|has| |#1| (-1012))))
-((((-791)) -3700 (|has| |#1| (-560 (-791))) (|has| |#1| (-1012))))
-(-3700 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-157)) (|has| |#1| (-336)) (|has| |#1| (-445)) (|has| |#1| (-662)) (|has| |#1| (-828 (-1083))) (|has| |#1| (-969)) (|has| |#1| (-1024)) (|has| |#1| (-1012)))
-(|has| |#1| (-1059))
-((((-520) |#1|) . T))
-(((|#1|) . T))
-(((#0=(-112 |#1|) $) |has| #0# (-260 #0# #0#)))
+((($) . T) ((#0=(-1150 |#2| |#3| |#4|)) |has| #0# (-157)) (((-381 (-521))) |has| #0# (-37 (-381 (-521)))))
+(((|#1|) . T) (($) . T) (((-381 (-521))) . T))
+(|has| |#1| (-337))
+(|has| |#1| (-337))
+((((-792)) -3703 (|has| |#1| (-561 (-792))) (|has| |#1| (-1013))))
+((((-792)) -3703 (|has| |#1| (-561 (-792))) (|has| |#1| (-1013))))
+(-3703 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-446)) (|has| |#1| (-663)) (|has| |#1| (-829 (-1084))) (|has| |#1| (-970)) (|has| |#1| (-1025)) (|has| |#1| (-1013)))
+(|has| |#1| (-1060))
+((((-521) |#1|) . T))
+(((|#1|) . T))
+(((#0=(-112 |#1|) $) |has| #0# (-261 #0# #0#)))
(((|#1|) |has| |#1| (-157)))
(((|#1|) . T))
((((-110)) . T) ((|#1|) . T))
-((((-791)) . T))
+((((-792)) . T))
(((|#1| |#2|) . T))
-((((-1083) |#1|) . T))
-(((|#1|) |has| |#1| (-283 |#1|)))
-((((-520) |#1|) . T))
+((((-1084) |#1|) . T))
+(((|#1|) |has| |#1| (-284 |#1|)))
+((((-521) |#1|) . T))
(((|#1|) . T))
-((((-520)) . T) (((-380 (-520))) . T))
+((((-521)) . T) (((-381 (-521))) . T))
(((|#1|) . T))
-(|has| |#1| (-512))
-((((-380 |#2|)) . T) (((-380 (-520))) . T) (($) . T))
-(-3700 (|has| |#1| (-336)) (|has| |#1| (-512)))
-(-3700 (|has| |#1| (-336)) (|has| |#1| (-512)))
-((((-352)) . T))
+(|has| |#1| (-513))
+((((-381 |#2|)) . T) (((-381 (-521))) . T) (($) . T))
+(-3703 (|has| |#1| (-337)) (|has| |#1| (-513)))
+(-3703 (|has| |#1| (-337)) (|has| |#1| (-513)))
+((((-353)) . T))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-336))
-(|has| |#1| (-336))
-(|has| |#1| (-512))
-(|has| |#1| (-1012))
-((((-715 |#1| (-793 |#2|))) |has| (-715 |#1| (-793 |#2|)) (-283 (-715 |#1| (-793 |#2|)))))
-(-3700 (|has| |#2| (-424)) (|has| |#2| (-512)) (|has| |#2| (-837)))
+(|has| |#1| (-337))
+(|has| |#1| (-337))
+(|has| |#1| (-513))
+(|has| |#1| (-1013))
+((((-716 |#1| (-794 |#2|))) |has| (-716 |#1| (-794 |#2|)) (-284 (-716 |#1| (-794 |#2|)))))
+(-3703 (|has| |#2| (-425)) (|has| |#2| (-513)) (|has| |#2| (-838)))
(((|#1|) . T))
(((|#2| |#3|) . T))
-(|has| |#2| (-837))
+(|has| |#2| (-838))
(((|#1|) . T))
-(((|#1| (-492 |#2|)) . T))
-(((|#1| (-706)) . T))
-(|has| |#1| (-209))
-(((|#1| (-492 (-1002 (-1083)))) . T))
-(|has| |#2| (-336))
-((((-2 (|:| -2526 (-1066)) (|:| -3043 (-51)))) . T))
+(((|#1| (-493 |#2|)) . T))
+(((|#1| (-707)) . T))
+(|has| |#1| (-210))
+(((|#1| (-493 (-1003 (-1084)))) . T))
+(|has| |#2| (-337))
+((((-2 (|:| -2529 (-1067)) (|:| -3045 (-51)))) . T))
(((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))
-((((-791)) . T))
-((((-791)) . T))
-(-3700 (|has| |#3| (-728)) (|has| |#3| (-781)))
-((((-791)) . T))
-((((-791)) . T))
+(((|#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
+((((-792)) . T))
+((((-792)) . T))
+(-3703 (|has| |#3| (-729)) (|has| |#3| (-782)))
+((((-792)) . T))
+((((-792)) . T))
(((|#1|) . T))
-((($ $) . T) (((-559 $) $) . T))
+((($ $) . T) (((-560 $) $) . T))
(((|#1|) . T))
-((((-520)) . T))
+((((-521)) . T))
(((|#3|) . T))
-((((-791)) . T))
-(-3700 (|has| |#1| (-281)) (|has| |#1| (-336)) (|has| |#1| (-322)))
-(-3700 (|has| |#1| (-133)) (|has| |#1| (-135)) (|has| |#1| (-157)) (|has| |#1| (-512)) (|has| |#1| (-969)))
-(((#0=(-533 |#1|) #0#) . T) (($ $) . T) ((#1=(-380 (-520)) #1#) . T))
-((($ $) . T) ((#0=(-380 (-520)) #0#) . T))
+((((-792)) . T))
+(-3703 (|has| |#1| (-282)) (|has| |#1| (-337)) (|has| |#1| (-323)))
+(-3703 (|has| |#1| (-133)) (|has| |#1| (-135)) (|has| |#1| (-157)) (|has| |#1| (-513)) (|has| |#1| (-970)))
+(((#0=(-534 |#1|) #0#) . T) (($ $) . T) ((#1=(-381 (-521)) #1#) . T))
+((($ $) . T) ((#0=(-381 (-521)) #0#) . T))
(((|#1|) |has| |#1| (-157)))
-(((|#1| (-1164 |#1|) (-1164 |#1|)) . T))
-((((-533 |#1|)) . T) (($) . T) (((-380 (-520))) . T))
-((($) . T) (((-380 (-520))) . T))
-((($) . T) (((-380 (-520))) . T))
-(((|#2|) |has| |#2| (-6 (-4231 "*"))))
+(((|#1| (-1165 |#1|) (-1165 |#1|)) . T))
+((((-534 |#1|)) . T) (($) . T) (((-381 (-521))) . T))
+((($) . T) (((-381 (-521))) . T))
+((($) . T) (((-381 (-521))) . T))
+(((|#2|) |has| |#2| (-6 (-4235 "*"))))
(((|#1|) . T))
(((|#1|) . T))
-((((-791)) |has| |#1| (-560 (-791))))
-((((-268 |#3|)) . T))
-(((#0=(-380 (-520)) #0#) |has| |#2| (-37 (-380 (-520)))) ((|#2| |#2|) . T) (($ $) -3700 (|has| |#2| (-157)) (|has| |#2| (-424)) (|has| |#2| (-512)) (|has| |#2| (-837))))
+((((-792)) |has| |#1| (-561 (-792))))
+((((-269 |#3|)) . T))
+(((#0=(-381 (-521)) #0#) |has| |#2| (-37 (-381 (-521)))) ((|#2| |#2|) . T) (($ $) -3703 (|has| |#2| (-157)) (|has| |#2| (-425)) (|has| |#2| (-513)) (|has| |#2| (-838))))
(((|#2| |#2|) . T) ((|#6| |#6|) . T))
(((|#1|) . T))
-((($) . T) (((-380 (-520))) |has| |#2| (-37 (-380 (-520)))) ((|#2|) . T))
-((($) . T) ((|#1|) . T) (((-380 (-520))) |has| |#1| (-37 (-380 (-520)))))
-(((|#1|) . T) (((-380 (-520))) . T) (($) . T))
-(((|#1|) . T) (((-380 (-520))) . T) (($) . T))
-(((|#1|) . T) (((-380 (-520))) . T) (($) . T))
-((($ $) -3700 (|has| |#1| (-157)) (|has| |#1| (-424)) (|has| |#1| (-512)) (|has| |#1| (-837))) ((|#1| |#1|) . T) ((#0=(-380 (-520)) #0#) |has| |#1| (-37 (-380 (-520)))))
-((($ $) -3700 (|has| |#1| (-157)) (|has| |#1| (-336)) (|has| |#1| (-424)) (|has| |#1| (-512)) (|has| |#1| (-837))) ((|#1| |#1|) . T) ((#0=(-380 (-520)) #0#) |has| |#1| (-37 (-380 (-520)))))
+((($) . T) (((-381 (-521))) |has| |#2| (-37 (-381 (-521)))) ((|#2|) . T))
+((($) . T) ((|#1|) . T) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
+(((|#1|) . T) (((-381 (-521))) . T) (($) . T))
+(((|#1|) . T) (((-381 (-521))) . T) (($) . T))
+(((|#1|) . T) (((-381 (-521))) . T) (($) . T))
+((($ $) -3703 (|has| |#1| (-157)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-838))) ((|#1| |#1|) . T) ((#0=(-381 (-521)) #0#) |has| |#1| (-37 (-381 (-521)))))
+((($ $) -3703 (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-838))) ((|#1| |#1|) . T) ((#0=(-381 (-521)) #0#) |has| |#1| (-37 (-381 (-521)))))
(((|#2|) . T))
-((((-380 (-520))) |has| |#2| (-37 (-380 (-520)))) ((|#2|) . T) (($) -3700 (|has| |#2| (-157)) (|has| |#2| (-424)) (|has| |#2| (-512)) (|has| |#2| (-837))))
+((((-381 (-521))) |has| |#2| (-37 (-381 (-521)))) ((|#2|) . T) (($) -3703 (|has| |#2| (-157)) (|has| |#2| (-425)) (|has| |#2| (-513)) (|has| |#2| (-838))))
(((|#2|) . T) ((|#6|) . T))
-((($ $) -3700 (|has| |#1| (-157)) (|has| |#1| (-424)) (|has| |#1| (-512)) (|has| |#1| (-837))) ((|#1| |#1|) . T) ((#0=(-380 (-520)) #0#) |has| |#1| (-37 (-380 (-520)))))
-((((-791)) . T))
-((($) -3700 (|has| |#1| (-157)) (|has| |#1| (-424)) (|has| |#1| (-512)) (|has| |#1| (-837))) ((|#1|) . T) (((-380 (-520))) |has| |#1| (-37 (-380 (-520)))))
-((($) -3700 (|has| |#1| (-157)) (|has| |#1| (-336)) (|has| |#1| (-424)) (|has| |#1| (-512)) (|has| |#1| (-837))) ((|#1|) . T) (((-380 (-520))) |has| |#1| (-37 (-380 (-520)))))
-(|has| |#2| (-837))
-(|has| |#1| (-837))
-((($) -3700 (|has| |#1| (-157)) (|has| |#1| (-424)) (|has| |#1| (-512)) (|has| |#1| (-837))) ((|#1|) . T) (((-380 (-520))) |has| |#1| (-37 (-380 (-520)))))
+((($ $) -3703 (|has| |#1| (-157)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-838))) ((|#1| |#1|) . T) ((#0=(-381 (-521)) #0#) |has| |#1| (-37 (-381 (-521)))))
+((((-792)) . T))
+((($) -3703 (|has| |#1| (-157)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-838))) ((|#1|) . T) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
+((($) -3703 (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-838))) ((|#1|) . T) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
+(|has| |#2| (-838))
+(|has| |#1| (-838))
+((($) -3703 (|has| |#1| (-157)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-838))) ((|#1|) . T) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
(((|#1|) . T))
-((((-2 (|:| -2526 (-1066)) (|:| -3043 |#1|))) . T))
+((((-2 (|:| -2529 (-1067)) (|:| -3045 |#1|))) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-1012))
-(((|#1|) . T))
-((((-1083)) . T) ((|#1|) . T))
-((((-791)) . T))
-((((-791)) . T))
-(((|#2|) -12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012))))
-(((#0=(-380 (-520)) #0#) . T))
-((((-380 (-520))) . T))
-(-3700 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-336)) (|has| |#2| (-728)) (|has| |#2| (-781)) (|has| |#2| (-969)))
-(((|#1|) . T))
-(((|#1|) . T))
-(-3700 (|has| |#2| (-157)) (|has| |#2| (-336)) (|has| |#2| (-781)) (|has| |#2| (-969)))
-((((-496)) . T))
-((((-791)) . T))
-((((-1083)) |has| |#2| (-828 (-1083))) (((-997)) . T))
-((((-1149 |#2| |#3| |#4|)) . T))
-((((-838 |#1|)) . T))
-((($) . T) (((-380 (-520))) . T))
-(-12 (|has| |#1| (-336)) (|has| |#2| (-756)))
-(-12 (|has| |#1| (-336)) (|has| |#2| (-756)))
-(|has| |#1| (-1122))
-(((|#2|) . T))
-((($ $) . T) ((#0=(-380 (-520)) #0#) . T))
-((((-1083)) |has| |#1| (-828 (-1083))))
-((((-838 |#1|)) . T) (((-380 (-520))) . T) (($) . T))
-((($) . T) (((-380 (-520))) -3700 (|has| |#1| (-37 (-380 (-520)))) (|has| |#1| (-336))) ((|#1|) . T))
-(((#0=(-380 (-520)) #0#) |has| |#1| (-37 (-380 (-520)))) ((|#1| |#1|) . T) (($ $) -3700 (|has| |#1| (-157)) (|has| |#1| (-512))))
-((($) . T) (((-380 (-520))) . T))
-(((|#1|) . T) (((-380 (-520))) . T) (((-520)) . T) (($) . T))
-(((|#2|) |has| |#2| (-969)) (((-520)) -12 (|has| |#2| (-582 (-520))) (|has| |#2| (-969))))
-((((-380 (-520))) |has| |#1| (-37 (-380 (-520)))) ((|#1|) . T) (($) -3700 (|has| |#1| (-157)) (|has| |#1| (-512))))
-(|has| |#1| (-512))
-(((|#1|) |has| |#1| (-336)))
-((((-520)) . T))
-(|has| |#1| (-726))
-(|has| |#1| (-726))
-((((-1083) #0=(-112 |#1|)) |has| #0# (-481 (-1083) #0#)) ((#0# #0#) |has| #0# (-283 #0#)))
-(((|#2|) . T) (((-520)) |has| |#2| (-960 (-520))) (((-380 (-520))) |has| |#2| (-960 (-380 (-520)))))
-((((-997)) . T) ((|#2|) . T) (((-520)) |has| |#2| (-960 (-520))) (((-380 (-520))) |has| |#2| (-960 (-380 (-520)))))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-520) (-706)) . T) ((|#3| (-706)) . T))
+(|has| |#1| (-1013))
+(((|#1|) . T))
+((((-1084)) . T) ((|#1|) . T))
+((((-792)) . T))
+((((-792)) . T))
+(((|#2|) -12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))))
+(((#0=(-381 (-521)) #0#) . T))
+((((-381 (-521))) . T))
+(-3703 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-337)) (|has| |#2| (-729)) (|has| |#2| (-782)) (|has| |#2| (-970)))
+(((|#1|) . T))
+(((|#1|) . T))
+(-3703 (|has| |#2| (-157)) (|has| |#2| (-337)) (|has| |#2| (-782)) (|has| |#2| (-970)))
+((((-497)) . T))
+((((-792)) . T))
+((((-1084)) |has| |#2| (-829 (-1084))) (((-998)) . T))
+((((-1150 |#2| |#3| |#4|)) . T))
+((((-839 |#1|)) . T))
+((($) . T) (((-381 (-521))) . T))
+(-12 (|has| |#1| (-337)) (|has| |#2| (-757)))
+(-12 (|has| |#1| (-337)) (|has| |#2| (-757)))
+(|has| |#1| (-1123))
+(((|#2|) . T))
+((($ $) . T) ((#0=(-381 (-521)) #0#) . T))
+((((-1084)) |has| |#1| (-829 (-1084))))
+((((-839 |#1|)) . T) (((-381 (-521))) . T) (($) . T))
+((($) . T) (((-381 (-521))) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))) ((|#1|) . T))
+(((#0=(-381 (-521)) #0#) |has| |#1| (-37 (-381 (-521)))) ((|#1| |#1|) . T) (($ $) -3703 (|has| |#1| (-157)) (|has| |#1| (-513))))
+((($) . T) (((-381 (-521))) . T))
+(((|#1|) . T) (((-381 (-521))) . T) (((-521)) . T) (($) . T))
+(((|#2|) |has| |#2| (-970)) (((-521)) -12 (|has| |#2| (-583 (-521))) (|has| |#2| (-970))))
+((((-381 (-521))) |has| |#1| (-37 (-381 (-521)))) ((|#1|) . T) (($) -3703 (|has| |#1| (-157)) (|has| |#1| (-513))))
+(|has| |#1| (-513))
+(((|#1|) |has| |#1| (-337)))
+((((-521)) . T))
+(|has| |#1| (-727))
+(|has| |#1| (-727))
+((((-1084) #0=(-112 |#1|)) |has| #0# (-482 (-1084) #0#)) ((#0# #0#) |has| #0# (-284 #0#)))
+(((|#2|) . T) (((-521)) |has| |#2| (-961 (-521))) (((-381 (-521))) |has| |#2| (-961 (-381 (-521)))))
+((((-998)) . T) ((|#2|) . T) (((-521)) |has| |#2| (-961 (-521))) (((-381 (-521))) |has| |#2| (-961 (-381 (-521)))))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-521) (-707)) . T) ((|#3| (-707)) . T))
(((|#1|) . T))
(((|#1| |#2|) . T))
-(((|#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))
-((((-791)) . T))
-(|has| |#2| (-756))
-(|has| |#2| (-756))
-((((-380 (-520))) -3700 (|has| |#1| (-37 (-380 (-520)))) (|has| |#1| (-336))) ((|#2|) |has| |#1| (-336)) (($) . T) ((|#1|) . T))
-(((|#1|) . T) (((-380 (-520))) -3700 (|has| |#1| (-37 (-380 (-520)))) (|has| |#1| (-336))) (($) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))
-(((|#1|) . T) (((-520)) |has| |#1| (-960 (-520))) (((-380 (-520))) |has| |#1| (-960 (-380 (-520)))))
-((((-520)) |has| |#1| (-814 (-520))) (((-352)) |has| |#1| (-814 (-352))))
+(((|#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
+((((-792)) . T))
+(|has| |#2| (-757))
+(|has| |#2| (-757))
+((((-381 (-521))) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))) ((|#2|) |has| |#1| (-337)) (($) . T) ((|#1|) . T))
+(((|#1|) . T) (((-381 (-521))) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))) (($) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
+(((|#1|) . T) (((-521)) |has| |#1| (-961 (-521))) (((-381 (-521))) |has| |#1| (-961 (-381 (-521)))))
+((((-521)) |has| |#1| (-815 (-521))) (((-353)) |has| |#1| (-815 (-353))))
(((|#1|) . T))
-((((-798 |#1|)) . T))
-((((-798 |#1|)) . T))
-(-12 (|has| |#1| (-336)) (|has| |#2| (-837)))
-((((-380 (-520))) . T) (((-635)) . T) (($) . T))
-(|has| |#1| (-336))
-(|has| |#1| (-336))
+((((-799 |#1|)) . T))
+((((-799 |#1|)) . T))
+(-12 (|has| |#1| (-337)) (|has| |#2| (-838)))
+((((-381 (-521))) . T) (((-636)) . T) (($) . T))
+(|has| |#1| (-337))
+(|has| |#1| (-337))
(((|#1|) . T))
(((|#1|) . T))
-(((|#4|) -12 (|has| |#4| (-283 |#4|)) (|has| |#4| (-1012))))
-(|has| |#1| (-336))
+(((|#4|) -12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013))))
+(|has| |#1| (-337))
(((|#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-793 |#1|)) . T))
+((((-794 |#1|)) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#2| (-706)) . T))
-((((-1083)) . T))
-((((-798 |#1|)) . T))
-(-3700 (|has| |#3| (-25)) (|has| |#3| (-124)) (|has| |#3| (-157)) (|has| |#3| (-336)) (|has| |#3| (-728)) (|has| |#3| (-781)) (|has| |#3| (-969)))
-(-3700 (|has| |#3| (-157)) (|has| |#3| (-336)) (|has| |#3| (-781)) (|has| |#3| (-969)))
-((((-791)) . T))
+(((|#2| (-707)) . T))
+((((-1084)) . T))
+((((-799 |#1|)) . T))
+(-3703 (|has| |#3| (-25)) (|has| |#3| (-124)) (|has| |#3| (-157)) (|has| |#3| (-337)) (|has| |#3| (-729)) (|has| |#3| (-782)) (|has| |#3| (-970)))
+(-3703 (|has| |#3| (-157)) (|has| |#3| (-337)) (|has| |#3| (-782)) (|has| |#3| (-970)))
+((((-792)) . T))
(((|#1|) . T))
-(-3700 (|has| |#2| (-728)) (|has| |#2| (-781)))
-(-3700 (-12 (|has| |#1| (-728)) (|has| |#2| (-728))) (-12 (|has| |#1| (-783)) (|has| |#2| (-783))))
-((((-798 |#1|)) . T))
+(-3703 (|has| |#2| (-729)) (|has| |#2| (-782)))
+(-3703 (-12 (|has| |#1| (-729)) (|has| |#2| (-729))) (-12 (|has| |#1| (-784)) (|has| |#2| (-784))))
+((((-799 |#1|)) . T))
(((|#1|) . T))
-(|has| |#1| (-341))
-(|has| |#1| (-341))
-(|has| |#1| (-341))
-((($ $) . T) (((-559 $) $) . T))
+(|has| |#1| (-342))
+(|has| |#1| (-342))
+(|has| |#1| (-342))
+((($ $) . T) (((-560 $) $) . T))
((($) . T))
-((((-791)) . T))
-((((-520)) . T))
+((((-792)) . T))
+((((-521)) . T))
(((|#2|) . T))
-((((-791)) . T))
-(((|#1|) . T) (((-380 (-520))) |has| |#1| (-336)))
-((((-791)) . T))
+((((-792)) . T))
+(((|#1|) . T) (((-381 (-521))) |has| |#1| (-337)))
+((((-792)) . T))
(((|#1|) . T))
-((((-791)) . T))
-((($) . T) ((|#2|) . T) (((-380 (-520))) . T))
-(|has| |#1| (-1012))
-(((|#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))
-(((|#1| |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))
-(((|#1| |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))
+((((-792)) . T))
+((($) . T) ((|#2|) . T) (((-381 (-521))) . T))
+(|has| |#1| (-1013))
+(((|#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
+(((|#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
+(((|#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-791)) . T))
-(|has| |#2| (-837))
-((((-2 (|:| -2526 (-1083)) (|:| -3043 (-51)))) . T))
-((((-496)) |has| |#2| (-561 (-496))) (((-820 (-352))) |has| |#2| (-561 (-820 (-352)))) (((-820 (-520))) |has| |#2| (-561 (-820 (-520)))))
-((((-791)) . T))
-((((-791)) . T))
-(((|#3|) |has| |#3| (-969)) (((-520)) -12 (|has| |#3| (-582 (-520))) (|has| |#3| (-969))))
-((((-1035 |#1| |#2|)) . T) (((-880 |#1|)) |has| |#2| (-561 (-1083))) (((-791)) . T))
-((((-880 |#1|)) |has| |#2| (-561 (-1083))) (((-1066)) -12 (|has| |#1| (-960 (-520))) (|has| |#2| (-561 (-1083)))) (((-820 (-520))) -12 (|has| |#1| (-561 (-820 (-520)))) (|has| |#2| (-561 (-820 (-520))))) (((-820 (-352))) -12 (|has| |#1| (-561 (-820 (-352)))) (|has| |#2| (-561 (-820 (-352))))) (((-496)) -12 (|has| |#1| (-561 (-496))) (|has| |#2| (-561 (-496)))))
-((((-1079 |#1|)) . T) (((-791)) . T))
-((((-791)) . T))
-((((-380 (-520))) |has| |#2| (-960 (-380 (-520)))) (((-520)) |has| |#2| (-960 (-520))) ((|#2|) . T) (((-793 |#1|)) . T))
-((((-112 |#1|)) . T) (($) . T) (((-380 (-520))) . T))
-((((-380 (-520))) |has| |#1| (-960 (-380 (-520)))) (((-520)) |has| |#1| (-960 (-520))) ((|#1|) . T) (((-1083)) . T))
-((((-791)) . T))
-((((-520)) . T))
+((((-792)) . T))
+(|has| |#2| (-838))
+((((-2 (|:| -2529 (-1084)) (|:| -3045 (-51)))) . T))
+((((-497)) |has| |#2| (-562 (-497))) (((-821 (-353))) |has| |#2| (-562 (-821 (-353)))) (((-821 (-521))) |has| |#2| (-562 (-821 (-521)))))
+((((-792)) . T))
+((((-792)) . T))
+(((|#3|) |has| |#3| (-970)) (((-521)) -12 (|has| |#3| (-583 (-521))) (|has| |#3| (-970))))
+((((-1036 |#1| |#2|)) . T) (((-881 |#1|)) |has| |#2| (-562 (-1084))) (((-792)) . T))
+((((-881 |#1|)) |has| |#2| (-562 (-1084))) (((-1067)) -12 (|has| |#1| (-961 (-521))) (|has| |#2| (-562 (-1084)))) (((-821 (-521))) -12 (|has| |#1| (-562 (-821 (-521)))) (|has| |#2| (-562 (-821 (-521))))) (((-821 (-353))) -12 (|has| |#1| (-562 (-821 (-353)))) (|has| |#2| (-562 (-821 (-353))))) (((-497)) -12 (|has| |#1| (-562 (-497))) (|has| |#2| (-562 (-497)))))
+((((-1080 |#1|)) . T) (((-792)) . T))
+((((-792)) . T))
+((((-381 (-521))) |has| |#2| (-961 (-381 (-521)))) (((-521)) |has| |#2| (-961 (-521))) ((|#2|) . T) (((-794 |#1|)) . T))
+((((-112 |#1|)) . T) (($) . T) (((-381 (-521))) . T))
+((((-381 (-521))) |has| |#1| (-961 (-381 (-521)))) (((-521)) |has| |#1| (-961 (-521))) ((|#1|) . T) (((-1084)) . T))
+((((-792)) . T))
+((((-521)) . T))
((($) . T))
-((((-352)) |has| |#1| (-814 (-352))) (((-520)) |has| |#1| (-814 (-520))))
-((((-520)) . T))
+((((-353)) |has| |#1| (-815 (-353))) (((-521)) |has| |#1| (-815 (-521))))
+((((-521)) . T))
(((|#1|) . T))
-((((-791)) . T))
+((((-792)) . T))
(((|#1|) . T))
-((((-791)) . T))
+((((-792)) . T))
(((|#1|) |has| |#1| (-157)) (($) . T))
-((((-520)) . T) (((-380 (-520))) . T))
-(((|#1|) |has| |#1| (-283 |#1|)))
-((((-791)) . T))
-((((-352)) . T))
+((((-521)) . T) (((-381 (-521))) . T))
+(((|#1|) |has| |#1| (-284 |#1|)))
+((((-792)) . T))
+((((-353)) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-791)) . T))
-((((-380 (-520))) . T) (($) . T))
-((((-380 |#2|) |#3|) . T))
+((((-792)) . T))
+((((-381 (-521))) . T) (($) . T))
+((((-381 |#2|) |#3|) . T))
(((|#1|) . T))
-(|has| |#1| (-1012))
-(((|#2| (-453 (-3474 |#1|) (-706))) . T))
-((((-520) |#1|) . T))
+(|has| |#1| (-1013))
+(((|#2| (-454 (-3475 |#1|) (-707))) . T))
+((((-521) |#1|) . T))
(((|#2| |#2|) . T))
-(((|#1| (-492 (-1083))) . T))
-(-3700 (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-336)) (|has| |#2| (-728)) (|has| |#2| (-781)) (|has| |#2| (-969)))
-((((-520)) . T))
+(((|#1| (-493 (-1084))) . T))
+(-3703 (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-337)) (|has| |#2| (-729)) (|has| |#2| (-782)) (|has| |#2| (-970)))
+((((-521)) . T))
(((|#2|) . T))
(((|#2|) . T))
-((((-1083)) |has| |#1| (-828 (-1083))) (((-997)) . T))
-(((|#1|) . T) (((-520)) |has| |#1| (-582 (-520))))
-(|has| |#1| (-512))
-((($) . T) (((-380 (-520))) . T))
+((((-1084)) |has| |#1| (-829 (-1084))) (((-998)) . T))
+(((|#1|) . T) (((-521)) |has| |#1| (-583 (-521))))
+(|has| |#1| (-513))
+((($) . T) (((-381 (-521))) . T))
((($) . T))
((($) . T))
-(-3700 (|has| |#1| (-783)) (|has| |#1| (-1012)))
+(-3703 (|has| |#1| (-784)) (|has| |#1| (-1013)))
(((|#1|) . T))
-((($) -3700 (|has| |#1| (-336)) (|has| |#1| (-424)) (|has| |#1| (-512)) (|has| |#1| (-837))) ((|#1|) |has| |#1| (-157)) (((-380 (-520))) |has| |#1| (-37 (-380 (-520)))))
-((((-791)) . T))
+((($) -3703 (|has| |#1| (-337)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-838))) ((|#1|) |has| |#1| (-157)) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
+((((-792)) . T))
((((-132)) . T))
-(((|#1|) . T) (((-380 (-520))) . T))
+(((|#1|) . T) (((-381 (-521))) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-791)) . T))
+((((-792)) . T))
(((|#1|) . T))
-(|has| |#1| (-1059))
-(((|#1| (-492 (-793 |#2|)) (-793 |#2|) (-715 |#1| (-793 |#2|))) . T))
+(|has| |#1| (-1060))
+(((|#1| (-493 (-794 |#2|)) (-794 |#2|) (-716 |#1| (-794 |#2|))) . T))
(((|#1|) . T))
-((((-380 $) (-380 $)) |has| |#1| (-512)) (($ $) . T) ((|#1| |#1|) . T))
-(((|#1|) . T) (((-520)) |has| |#1| (-960 (-520))) (((-380 (-520))) |has| |#1| (-960 (-380 (-520)))))
-((((-380 (-520))) |has| |#1| (-960 (-380 (-520)))) (((-520)) |has| |#1| (-960 (-520))) ((|#1|) . T) ((|#2|) . T))
-((((-997)) . T) ((|#1|) . T) (((-520)) |has| |#1| (-960 (-520))) (((-380 (-520))) |has| |#1| (-960 (-380 (-520)))))
-((((-352)) -12 (|has| |#1| (-814 (-352))) (|has| |#2| (-814 (-352)))) (((-520)) -12 (|has| |#1| (-814 (-520))) (|has| |#2| (-814 (-520)))))
-((((-1150 |#1| |#2| |#3| |#4|)) . T))
-((((-520) |#1|) . T))
+((((-381 $) (-381 $)) |has| |#1| (-513)) (($ $) . T) ((|#1| |#1|) . T))
+(((|#1|) . T) (((-521)) |has| |#1| (-961 (-521))) (((-381 (-521))) |has| |#1| (-961 (-381 (-521)))))
+((((-792)) . T))
+((((-381 (-521))) |has| |#1| (-961 (-381 (-521)))) (((-521)) |has| |#1| (-961 (-521))) ((|#1|) . T) ((|#2|) . T))
+((((-998)) . T) ((|#1|) . T) (((-521)) |has| |#1| (-961 (-521))) (((-381 (-521))) |has| |#1| (-961 (-381 (-521)))))
+((((-353)) -12 (|has| |#1| (-815 (-353))) (|has| |#2| (-815 (-353)))) (((-521)) -12 (|has| |#1| (-815 (-521))) (|has| |#2| (-815 (-521)))))
+((((-1151 |#1| |#2| |#3| |#4|)) . T))
+((((-521) |#1|) . T))
(((|#1| |#1|) . T))
((($) . T) ((|#2|) . T))
(((|#1|) |has| |#1| (-157)) (($) . T))
((($) . T))
-((((-635)) . T))
-((((-715 |#1| (-793 |#2|))) . T))
-((($) . T))
-((((-380 (-520))) . T) (($) . T))
-(|has| |#1| (-1012))
-(|has| |#1| (-1012))
-(|has| |#2| (-336))
-(|has| |#1| (-336))
-(|has| |#1| (-336))
-(|has| |#1| (-37 (-380 (-520))))
-((((-520)) . T))
-((((-1083)) -12 (|has| |#4| (-828 (-1083))) (|has| |#4| (-969))))
-((((-1083)) -12 (|has| |#3| (-828 (-1083))) (|has| |#3| (-969))))
-(((|#1|) . T))
-(|has| |#1| (-209))
-(((|#1| (-492 |#3|)) . T))
-(|has| |#1| (-341))
-(((|#2| (-216 (-3474 |#1|) (-706))) . T))
-(|has| |#1| (-341))
-(|has| |#1| (-341))
+((((-636)) . T))
+((((-716 |#1| (-794 |#2|))) . T))
+((($) . T))
+((((-381 (-521))) . T) (($) . T))
+(|has| |#1| (-1013))
+(|has| |#1| (-1013))
+(|has| |#2| (-337))
+(|has| |#1| (-337))
+(|has| |#1| (-337))
+(|has| |#1| (-37 (-381 (-521))))
+((((-521)) . T))
+((((-1084)) -12 (|has| |#4| (-829 (-1084))) (|has| |#4| (-970))))
+((((-1084)) -12 (|has| |#3| (-829 (-1084))) (|has| |#3| (-970))))
+(((|#1|) . T))
+(|has| |#1| (-210))
+(((|#1| (-493 |#3|)) . T))
+(|has| |#1| (-342))
+(((|#2| (-217 (-3475 |#1|) (-707))) . T))
+(|has| |#1| (-342))
+(|has| |#1| (-342))
(((|#1|) . T) (($) . T))
-(((|#1| (-492 |#2|)) . T))
-(-3700 (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-336)) (|has| |#2| (-728)) (|has| |#2| (-781)) (|has| |#2| (-969)))
-(((|#1| (-706)) . T))
-(|has| |#1| (-512))
-(-3700 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-336)) (|has| |#2| (-728)) (|has| |#2| (-781)) (|has| |#2| (-969)))
-(-3700 (|has| |#2| (-157)) (|has| |#2| (-336)) (|has| |#2| (-781)) (|has| |#2| (-969)))
+(((|#1| (-493 |#2|)) . T))
+(-3703 (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-337)) (|has| |#2| (-729)) (|has| |#2| (-782)) (|has| |#2| (-970)))
+(((|#1| (-707)) . T))
+(|has| |#1| (-513))
+(-3703 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-337)) (|has| |#2| (-729)) (|has| |#2| (-782)) (|has| |#2| (-970)))
+(-3703 (|has| |#2| (-157)) (|has| |#2| (-337)) (|has| |#2| (-782)) (|has| |#2| (-970)))
(-12 (|has| |#1| (-21)) (|has| |#2| (-21)))
-((((-791)) . T))
-(-3700 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-728)) (|has| |#2| (-728))))
-(-3700 (|has| |#3| (-124)) (|has| |#3| (-157)) (|has| |#3| (-336)) (|has| |#3| (-728)) (|has| |#3| (-781)) (|has| |#3| (-969)))
-(-3700 (|has| |#2| (-157)) (|has| |#2| (-781)) (|has| |#2| (-969)))
+((((-792)) . T))
+(-3703 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-729)) (|has| |#2| (-729))))
+(-3703 (|has| |#3| (-124)) (|has| |#3| (-157)) (|has| |#3| (-337)) (|has| |#3| (-729)) (|has| |#3| (-782)) (|has| |#3| (-970)))
+(-3703 (|has| |#2| (-157)) (|has| |#2| (-782)) (|has| |#2| (-970)))
(((|#1|) |has| |#1| (-157)))
-(((|#4|) |has| |#4| (-969)))
-(((|#3|) |has| |#3| (-969)))
-(-12 (|has| |#1| (-336)) (|has| |#2| (-756)))
-(-12 (|has| |#1| (-336)) (|has| |#2| (-756)))
-((((-791)) -3700 (|has| |#1| (-560 (-791))) (|has| |#1| (-783)) (|has| |#1| (-1012))))
-((((-496)) |has| |#1| (-561 (-496))))
-((((-380 |#2|)) . T) (((-380 (-520))) . T) (($) . T))
-((($ $) . T) ((#0=(-380 (-520)) #0#) . T))
-((((-791)) . T))
-((($) . T) (((-380 (-520))) . T))
-(((|#1|) . T))
-(((|#4|) |has| |#4| (-1012)) (((-520)) -12 (|has| |#4| (-960 (-520))) (|has| |#4| (-1012))) (((-380 (-520))) -12 (|has| |#4| (-960 (-380 (-520)))) (|has| |#4| (-1012))))
-(((|#3|) |has| |#3| (-1012)) (((-520)) -12 (|has| |#3| (-960 (-520))) (|has| |#3| (-1012))) (((-380 (-520))) -12 (|has| |#3| (-960 (-380 (-520)))) (|has| |#3| (-1012))))
-(|has| |#2| (-336))
-(((|#2|) |has| |#2| (-969)) (((-520)) -12 (|has| |#2| (-582 (-520))) (|has| |#2| (-969))))
-(((|#1|) . T))
-(|has| |#2| (-336))
-(((#0=(-380 (-520)) #0#) |has| |#2| (-37 (-380 (-520)))) ((|#2| |#2|) . T) (($ $) -3700 (|has| |#2| (-157)) (|has| |#2| (-424)) (|has| |#2| (-512)) (|has| |#2| (-837))))
-((($ $) -3700 (|has| |#1| (-157)) (|has| |#1| (-424)) (|has| |#1| (-512)) (|has| |#1| (-837))) ((|#1| |#1|) . T) ((#0=(-380 (-520)) #0#) |has| |#1| (-37 (-380 (-520)))))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-380 (-520)) #0#) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-380 (-520)) #0#) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-380 (-520)) #0#) . T))
+(((|#4|) |has| |#4| (-970)))
+(((|#3|) |has| |#3| (-970)))
+(-12 (|has| |#1| (-337)) (|has| |#2| (-757)))
+(-12 (|has| |#1| (-337)) (|has| |#2| (-757)))
+((((-792)) -3703 (|has| |#1| (-561 (-792))) (|has| |#1| (-784)) (|has| |#1| (-1013))))
+((((-497)) |has| |#1| (-562 (-497))))
+((((-381 |#2|)) . T) (((-381 (-521))) . T) (($) . T))
+((($ $) . T) ((#0=(-381 (-521)) #0#) . T))
+((((-792)) . T))
+((($) . T) (((-381 (-521))) . T))
+(((|#1|) . T))
+(((|#4|) |has| |#4| (-1013)) (((-521)) -12 (|has| |#4| (-961 (-521))) (|has| |#4| (-1013))) (((-381 (-521))) -12 (|has| |#4| (-961 (-381 (-521)))) (|has| |#4| (-1013))))
+(((|#3|) |has| |#3| (-1013)) (((-521)) -12 (|has| |#3| (-961 (-521))) (|has| |#3| (-1013))) (((-381 (-521))) -12 (|has| |#3| (-961 (-381 (-521)))) (|has| |#3| (-1013))))
+(|has| |#2| (-337))
+(((|#2|) |has| |#2| (-970)) (((-521)) -12 (|has| |#2| (-583 (-521))) (|has| |#2| (-970))))
+(((|#1|) . T))
+(|has| |#2| (-337))
+(((#0=(-381 (-521)) #0#) |has| |#2| (-37 (-381 (-521)))) ((|#2| |#2|) . T) (($ $) -3703 (|has| |#2| (-157)) (|has| |#2| (-425)) (|has| |#2| (-513)) (|has| |#2| (-838))))
+((($ $) -3703 (|has| |#1| (-157)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-838))) ((|#1| |#1|) . T) ((#0=(-381 (-521)) #0#) |has| |#1| (-37 (-381 (-521)))))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-381 (-521)) #0#) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-381 (-521)) #0#) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-381 (-521)) #0#) . T))
(((|#2| |#2|) . T))
-((((-380 (-520))) |has| |#2| (-37 (-380 (-520)))) ((|#2|) . T) (($) -3700 (|has| |#2| (-157)) (|has| |#2| (-424)) (|has| |#2| (-512)) (|has| |#2| (-837))))
-((($) -3700 (|has| |#1| (-157)) (|has| |#1| (-424)) (|has| |#1| (-512)) (|has| |#1| (-837))) ((|#1|) . T) (((-380 (-520))) |has| |#1| (-37 (-380 (-520)))))
-(((|#1|) . T) (($) . T) (((-380 (-520))) . T))
-(((|#1|) . T) (($) . T) (((-380 (-520))) . T))
-(((|#1|) . T) (($) . T) (((-380 (-520))) . T))
-(((|#2|) . T))
-((($) . T))
-((((-791)) |has| |#1| (-1012)))
-((((-1150 |#1| |#2| |#3| |#4|)) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(|has| |#2| (-756))
-(|has| |#2| (-756))
-(|has| |#1| (-336))
-(|has| |#1| (-336))
-(|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|)))
-(|has| |#1| (-336))
-(((|#1|) |has| |#2| (-390 |#1|)))
-(((|#1|) |has| |#2| (-390 |#1|)))
-((((-838 |#1|)) . T) (((-380 (-520))) . T) (($) . T))
-((((-791)) -3700 (|has| |#1| (-560 (-791))) (|has| |#1| (-783)) (|has| |#1| (-1012))))
-((((-496)) |has| |#1| (-561 (-496))))
-((((-791)) . T))
-((((-2 (|:| -2526 (-1083)) (|:| -3043 (-51)))) |has| (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (-283 (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))))))
-(-3700 (|has| |#2| (-424)) (|has| |#2| (-512)) (|has| |#2| (-837)))
-((((-520) |#1|) . T))
-((((-520) |#1|) . T))
-((((-520) |#1|) . T))
-(-3700 (|has| |#1| (-424)) (|has| |#1| (-512)) (|has| |#1| (-837)))
-((((-520) |#1|) . T))
-(((|#1|) . T))
-(-3700 (|has| |#1| (-336)) (|has| |#1| (-424)) (|has| |#1| (-512)) (|has| |#1| (-837)))
-(-3700 (|has| |#1| (-424)) (|has| |#1| (-512)) (|has| |#1| (-837)))
-((((-1083)) |has| |#1| (-828 (-1083))) (((-754 (-1083))) . T))
-(-3700 (|has| |#3| (-124)) (|has| |#3| (-157)) (|has| |#3| (-336)) (|has| |#3| (-728)) (|has| |#3| (-781)) (|has| |#3| (-969)))
-((((-755 |#1|)) . T))
+((((-381 (-521))) |has| |#2| (-37 (-381 (-521)))) ((|#2|) . T) (($) -3703 (|has| |#2| (-157)) (|has| |#2| (-425)) (|has| |#2| (-513)) (|has| |#2| (-838))))
+((($) -3703 (|has| |#1| (-157)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-838))) ((|#1|) . T) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
+(((|#1|) . T) (($) . T) (((-381 (-521))) . T))
+(((|#1|) . T) (($) . T) (((-381 (-521))) . T))
+(((|#1|) . T) (($) . T) (((-381 (-521))) . T))
+(((|#2|) . T))
+((($) . T))
+((((-792)) |has| |#1| (-1013)))
+((((-1151 |#1| |#2| |#3| |#4|)) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(|has| |#2| (-757))
+(|has| |#2| (-757))
+(|has| |#1| (-337))
+(|has| |#1| (-337))
+(|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|)))
+(|has| |#1| (-337))
+(((|#1|) |has| |#2| (-391 |#1|)))
+(((|#1|) |has| |#2| (-391 |#1|)))
+((((-839 |#1|)) . T) (((-381 (-521))) . T) (($) . T))
+((((-792)) -3703 (|has| |#1| (-561 (-792))) (|has| |#1| (-784)) (|has| |#1| (-1013))))
+((((-497)) |has| |#1| (-562 (-497))))
+((((-792)) . T))
+((((-2 (|:| -2529 (-1084)) (|:| -3045 (-51)))) |has| (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (-284 (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))))))
+(-3703 (|has| |#2| (-425)) (|has| |#2| (-513)) (|has| |#2| (-838)))
+((((-521) |#1|) . T))
+((((-521) |#1|) . T))
+((((-521) |#1|) . T))
+(-3703 (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-838)))
+((((-521) |#1|) . T))
+(((|#1|) . T))
+(-3703 (|has| |#1| (-337)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-838)))
+(-3703 (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-838)))
+((((-1084)) |has| |#1| (-829 (-1084))) (((-755 (-1084))) . T))
+(-3703 (|has| |#3| (-124)) (|has| |#3| (-157)) (|has| |#3| (-337)) (|has| |#3| (-729)) (|has| |#3| (-782)) (|has| |#3| (-970)))
+((((-756 |#1|)) . T))
(((|#1| |#2|) . T))
-((((-791)) . T))
-(-3700 (|has| |#3| (-157)) (|has| |#3| (-781)) (|has| |#3| (-969)))
+((((-792)) . T))
+(-3703 (|has| |#3| (-157)) (|has| |#3| (-782)) (|has| |#3| (-970)))
(((|#1| |#2|) . T))
-(|has| |#1| (-37 (-380 (-520))))
-((((-791)) . T))
-((((-1150 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-380 (-520))) . T))
-(((|#1|) |has| |#1| (-157)) (($) |has| |#1| (-512)) (((-380 (-520))) |has| |#1| (-512)))
-(((|#2|) . T) (((-520)) |has| |#2| (-582 (-520))))
-(|has| |#1| (-336))
-(-3700 (|has| |#1| (-15 * (|#1| (-520) |#1|))) (-12 (|has| |#1| (-336)) (|has| |#2| (-209))))
-(|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|)))
-(|has| |#1| (-336))
-(((|#1|) . T))
-(((#0=(-380 (-520)) #0#) -3700 (|has| |#1| (-37 (-380 (-520)))) (|has| |#1| (-336))) (($ $) -3700 (|has| |#1| (-157)) (|has| |#1| (-336)) (|has| |#1| (-512))) ((|#1| |#1|) . T))
-((((-520) |#1|) . T))
-((((-289 |#1|)) . T))
-(((#0=(-635) (-1079 #0#)) . T))
-((((-380 (-520))) -3700 (|has| |#1| (-37 (-380 (-520)))) (|has| |#1| (-336))) (($) -3700 (|has| |#1| (-157)) (|has| |#1| (-336)) (|has| |#1| (-512))) ((|#1|) . T))
+(|has| |#1| (-37 (-381 (-521))))
+((((-792)) . T))
+((((-1151 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-381 (-521))) . T))
+(((|#1|) |has| |#1| (-157)) (($) |has| |#1| (-513)) (((-381 (-521))) |has| |#1| (-513)))
+(((|#2|) . T) (((-521)) |has| |#2| (-583 (-521))))
+(|has| |#1| (-337))
+(-3703 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (-12 (|has| |#1| (-337)) (|has| |#2| (-210))))
+(|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|)))
+(|has| |#1| (-337))
+(((|#1|) . T))
+(((#0=(-381 (-521)) #0#) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))) (($ $) -3703 (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-513))) ((|#1| |#1|) . T))
+((((-521) |#1|) . T))
+((((-290 |#1|)) . T))
+(((#0=(-636) (-1080 #0#)) . T))
+((((-381 (-521))) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))) (($) -3703 (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-513))) ((|#1|) . T))
(((|#1| |#2| |#3| |#4|) . T))
-(|has| |#1| (-781))
-((($ $) . T) ((#0=(-793 |#1|) $) . T) ((#0# |#2|) . T))
-((((-1035 |#1| (-1083))) . T) (((-754 (-1083))) . T) ((|#1|) . T) (((-520)) |has| |#1| (-960 (-520))) (((-380 (-520))) |has| |#1| (-960 (-380 (-520)))) (((-1083)) . T))
+(|has| |#1| (-782))
+((($ $) . T) ((#0=(-794 |#1|) $) . T) ((#0# |#2|) . T))
+((((-1036 |#1| (-1084))) . T) (((-755 (-1084))) . T) ((|#1|) . T) (((-521)) |has| |#1| (-961 (-521))) (((-381 (-521))) |has| |#1| (-961 (-381 (-521)))) (((-1084)) . T))
((($) . T))
(((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T))
-(((#0=(-997) |#1|) . T) ((#0# $) . T) (($ $) . T))
-((($ $) . T) ((#0=(-1083) $) |has| |#1| (-209)) ((#0# |#1|) |has| |#1| (-209)) ((#1=(-1002 (-1083)) |#1|) . T) ((#1# $) . T))
+(((#0=(-998) |#1|) . T) ((#0# $) . T) (($ $) . T))
+((($ $) . T) ((#0=(-1084) $) |has| |#1| (-210)) ((#0# |#1|) |has| |#1| (-210)) ((#1=(-1003 (-1084)) |#1|) . T) ((#1# $) . T))
((($) . T) ((|#2|) . T))
-((($) . T) ((|#2|) . T) (((-380 (-520))) |has| |#2| (-37 (-380 (-520)))))
-(|has| |#2| (-837))
-((($) . T) ((#0=(-1149 |#2| |#3| |#4|)) |has| #0# (-157)) (((-380 (-520))) |has| #0# (-37 (-380 (-520)))))
-((((-520) |#1|) . T))
-(((#0=(-1150 |#1| |#2| |#3| |#4|)) |has| #0# (-283 #0#)))
+((($) . T) ((|#2|) . T) (((-381 (-521))) |has| |#2| (-37 (-381 (-521)))))
+(|has| |#2| (-838))
+((($) . T) ((#0=(-1150 |#2| |#3| |#4|)) |has| #0# (-157)) (((-381 (-521))) |has| #0# (-37 (-381 (-521)))))
+((((-521) |#1|) . T))
+(((#0=(-1151 |#1| |#2| |#3| |#4|)) |has| #0# (-284 #0#)))
((($) . T))
(((|#1|) . T))
-((($ $) -3700 (|has| |#1| (-157)) (|has| |#1| (-336)) (|has| |#1| (-512))) ((#0=(-380 (-520)) #0#) -3700 (|has| |#1| (-37 (-380 (-520)))) (|has| |#1| (-336))) ((|#2| |#2|) |has| |#1| (-336)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -3700 (|has| |#1| (-157)) (|has| |#1| (-336)) (|has| |#1| (-512))) ((#0=(-380 (-520)) #0#) -3700 (|has| |#1| (-37 (-380 (-520)))) (|has| |#1| (-336))))
-(|has| |#2| (-209))
+((($ $) -3703 (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-513))) ((#0=(-381 (-521)) #0#) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))) ((|#2| |#2|) |has| |#1| (-337)) ((|#1| |#1|) . T))
+(((|#1| |#1|) . T) (($ $) -3703 (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-513))) ((#0=(-381 (-521)) #0#) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))))
+(|has| |#2| (-210))
(|has| $ (-135))
-((((-791)) . T))
-((($) . T) (((-380 (-520))) -3700 (|has| |#1| (-336)) (|has| |#1| (-322))) ((|#1|) . T))
-((((-791)) . T))
-(|has| |#1| (-781))
-((((-1083)) -12 (|has| |#1| (-15 * (|#1| (-520) |#1|))) (|has| |#1| (-828 (-1083)))))
-((((-380 |#2|) |#3|) . T))
-(((|#1|) . T))
-((((-791)) . T))
-(((|#2| (-611 |#1|)) . T))
-(-12 (|has| |#1| (-281)) (|has| |#1| (-837)))
-(((|#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))
+((((-792)) . T))
+((($) . T) (((-381 (-521))) -3703 (|has| |#1| (-337)) (|has| |#1| (-323))) ((|#1|) . T))
+((((-792)) . T))
+(|has| |#1| (-782))
+((((-1084)) -12 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (|has| |#1| (-829 (-1084)))))
+((((-381 |#2|) |#3|) . T))
+(((|#1|) . T))
+((((-792)) . T))
+(((|#2| (-612 |#1|)) . T))
+(-12 (|has| |#1| (-282)) (|has| |#1| (-838)))
+(((|#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
(((|#4|) . T))
-(|has| |#1| (-512))
-((($) -3700 (|has| |#1| (-157)) (|has| |#1| (-336)) (|has| |#1| (-512))) (((-380 (-520))) -3700 (|has| |#1| (-37 (-380 (-520)))) (|has| |#1| (-336))) ((|#2|) |has| |#1| (-336)) ((|#1|) . T))
-((((-1083)) -3700 (-12 (|has| (-1156 |#1| |#2| |#3|) (-828 (-1083))) (|has| |#1| (-336))) (-12 (|has| |#1| (-15 * (|#1| (-520) |#1|))) (|has| |#1| (-828 (-1083))))))
-(((|#1|) . T) (($) -3700 (|has| |#1| (-157)) (|has| |#1| (-336)) (|has| |#1| (-512))) (((-380 (-520))) -3700 (|has| |#1| (-37 (-380 (-520)))) (|has| |#1| (-336))))
-((((-1083)) -12 (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|))) (|has| |#1| (-828 (-1083)))))
-((((-1083)) -12 (|has| |#1| (-15 * (|#1| (-706) |#1|))) (|has| |#1| (-828 (-1083)))))
-(((|#4|) -12 (|has| |#4| (-283 |#4|)) (|has| |#4| (-1012))))
-((((-520) |#1|) . T))
-(-3700 (|has| |#2| (-157)) (|has| |#2| (-424)) (|has| |#2| (-512)) (|has| |#2| (-837)))
-(((|#1|) . T))
-(((|#1| (-492 (-754 (-1083)))) . T))
-(-3700 (|has| |#1| (-157)) (|has| |#1| (-424)) (|has| |#1| (-512)) (|has| |#1| (-837)))
-(-3700 (|has| |#1| (-157)) (|has| |#1| (-336)) (|has| |#1| (-424)) (|has| |#1| (-512)) (|has| |#1| (-837)))
-(((|#1|) . T))
-(-3700 (|has| |#1| (-157)) (|has| |#1| (-424)) (|has| |#1| (-512)) (|has| |#1| (-837)))
-(((|#1|) . T))
-(-3700 (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-336)) (|has| |#2| (-728)) (|has| |#2| (-781)) (|has| |#2| (-969)))
-(-3700 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-728)) (|has| |#2| (-728))))
-((((-1156 |#1| |#2| |#3|)) |has| |#1| (-336)))
-((($) . T) (((-798 |#1|)) . T) (((-380 (-520))) . T))
-((((-1156 |#1| |#2| |#3|)) |has| |#1| (-336)))
-(|has| |#1| (-512))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-380 |#2|)) . T))
-(-3700 (|has| |#1| (-336)) (|has| |#1| (-322)))
-((((-791)) -3700 (|has| |#1| (-560 (-791))) (|has| |#1| (-783)) (|has| |#1| (-1012))))
-((((-496)) |has| |#1| (-561 (-496))))
-((((-791)) -3700 (|has| |#1| (-560 (-791))) (|has| |#1| (-1012))))
-((((-791)) -3700 (|has| |#1| (-560 (-791))) (|has| |#1| (-783)) (|has| |#1| (-1012))))
-((((-496)) |has| |#1| (-561 (-496))))
-((((-791)) -3700 (|has| |#1| (-560 (-791))) (|has| |#1| (-783)) (|has| |#1| (-1012))))
-((((-496)) |has| |#1| (-561 (-496))))
-((((-791)) -3700 (|has| |#1| (-560 (-791))) (|has| |#1| (-1012))))
-(((|#1|) . T))
-(((|#2| |#2|) . T) ((#0=(-380 (-520)) #0#) . T) (($ $) . T))
-((((-520)) . T))
-((((-791)) . T))
-(((|#2|) . T) (((-380 (-520))) . T) (($) . T))
-((((-533 |#1|)) . T) (((-380 (-520))) . T) (($) . T))
-((((-791)) . T))
-((((-380 (-520))) . T) (($) . T))
-((((-520) |#1|) . T))
-((((-791)) . T))
-((($ $) . T) (((-1083) $) . T))
-((((-1156 |#1| |#2| |#3|)) . T))
-((((-1156 |#1| |#2| |#3|)) . T) (((-1128 |#1| |#2| |#3|)) . T))
-(((|#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))
-(((|#1| (-492 (-793 |#2|)) (-793 |#2|) (-715 |#1| (-793 |#2|))) . T))
-((((-496)) |has| |#2| (-561 (-496))) (((-820 (-352))) |has| |#2| (-561 (-820 (-352)))) (((-820 (-520))) |has| |#2| (-561 (-820 (-520)))))
-((((-791)) . T))
-((((-791)) . T))
-((((-820 (-520))) -12 (|has| |#1| (-561 (-820 (-520)))) (|has| |#3| (-561 (-820 (-520))))) (((-820 (-352))) -12 (|has| |#1| (-561 (-820 (-352)))) (|has| |#3| (-561 (-820 (-352))))) (((-496)) -12 (|has| |#1| (-561 (-496))) (|has| |#3| (-561 (-496)))))
-((((-791)) . T))
-((((-791)) . T))
-((((-791)) . T))
-((((-791)) . T))
-(((|#1| |#2| (-216 |#1| |#2|) (-216 |#1| |#2|)) . T))
-((((-791)) . T))
-((((-1156 |#1| |#2| |#3|)) |has| |#1| (-336)))
-((((-1083)) . T) (((-791)) . T))
-(|has| |#1| (-336))
-((((-380 (-520))) |has| |#2| (-37 (-380 (-520)))) ((|#2|) |has| |#2| (-157)) (($) -3700 (|has| |#2| (-424)) (|has| |#2| (-512)) (|has| |#2| (-837))))
+(|has| |#1| (-513))
+((($) -3703 (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-513))) (((-381 (-521))) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))) ((|#2|) |has| |#1| (-337)) ((|#1|) . T))
+((((-1084)) -3703 (-12 (|has| (-1157 |#1| |#2| |#3|) (-829 (-1084))) (|has| |#1| (-337))) (-12 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (|has| |#1| (-829 (-1084))))))
+(((|#1|) . T) (($) -3703 (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-513))) (((-381 (-521))) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))))
+((((-1084)) -12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-829 (-1084)))))
+((((-1084)) -12 (|has| |#1| (-15 * (|#1| (-707) |#1|))) (|has| |#1| (-829 (-1084)))))
+(((|#4|) -12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013))))
+((((-521) |#1|) . T))
+(-3703 (|has| |#2| (-157)) (|has| |#2| (-425)) (|has| |#2| (-513)) (|has| |#2| (-838)))
+(((|#1|) . T))
+(((|#1| (-493 (-755 (-1084)))) . T))
+(-3703 (|has| |#1| (-157)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-838)))
+(-3703 (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-838)))
+(((|#1|) . T))
+(-3703 (|has| |#1| (-157)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-838)))
+(((|#1|) . T))
+(-3703 (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-337)) (|has| |#2| (-729)) (|has| |#2| (-782)) (|has| |#2| (-970)))
+(-3703 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-729)) (|has| |#2| (-729))))
+((((-1157 |#1| |#2| |#3|)) |has| |#1| (-337)))
+((($) . T) (((-799 |#1|)) . T) (((-381 (-521))) . T))
+((((-1157 |#1| |#2| |#3|)) |has| |#1| (-337)))
+(|has| |#1| (-513))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-381 |#2|)) . T))
+(-3703 (|has| |#1| (-337)) (|has| |#1| (-323)))
+((((-792)) -3703 (|has| |#1| (-561 (-792))) (|has| |#1| (-784)) (|has| |#1| (-1013))))
+((((-497)) |has| |#1| (-562 (-497))))
+((((-792)) -3703 (|has| |#1| (-561 (-792))) (|has| |#1| (-1013))))
+((((-792)) -3703 (|has| |#1| (-561 (-792))) (|has| |#1| (-784)) (|has| |#1| (-1013))))
+((((-497)) |has| |#1| (-562 (-497))))
+((((-792)) -3703 (|has| |#1| (-561 (-792))) (|has| |#1| (-784)) (|has| |#1| (-1013))))
+((((-497)) |has| |#1| (-562 (-497))))
+((((-792)) -3703 (|has| |#1| (-561 (-792))) (|has| |#1| (-1013))))
+(((|#1|) . T))
+(((|#2| |#2|) . T) ((#0=(-381 (-521)) #0#) . T) (($ $) . T))
+((((-521)) . T))
+((((-792)) . T))
+(((|#2|) . T) (((-381 (-521))) . T) (($) . T))
+((((-534 |#1|)) . T) (((-381 (-521))) . T) (($) . T))
+((((-792)) . T))
+((((-381 (-521))) . T) (($) . T))
+((((-521) |#1|) . T))
+((((-792)) . T))
+((($ $) . T) (((-1084) $) . T))
+((((-1157 |#1| |#2| |#3|)) . T))
+((((-1157 |#1| |#2| |#3|)) . T) (((-1129 |#1| |#2| |#3|)) . T))
+(((|#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
+(((|#1| (-493 (-794 |#2|)) (-794 |#2|) (-716 |#1| (-794 |#2|))) . T))
+((((-497)) |has| |#2| (-562 (-497))) (((-821 (-353))) |has| |#2| (-562 (-821 (-353)))) (((-821 (-521))) |has| |#2| (-562 (-821 (-521)))))
+((((-792)) . T))
+((((-792)) . T))
+((((-821 (-521))) -12 (|has| |#1| (-562 (-821 (-521)))) (|has| |#3| (-562 (-821 (-521))))) (((-821 (-353))) -12 (|has| |#1| (-562 (-821 (-353)))) (|has| |#3| (-562 (-821 (-353))))) (((-497)) -12 (|has| |#1| (-562 (-497))) (|has| |#3| (-562 (-497)))))
+((((-792)) . T))
+((((-792)) . T))
+((((-792)) . T))
+((((-792)) . T))
+(((|#1| |#2| (-217 |#1| |#2|) (-217 |#1| |#2|)) . T))
+((((-792)) . T))
+((((-1157 |#1| |#2| |#3|)) |has| |#1| (-337)))
+((((-1084)) . T) (((-792)) . T))
+(|has| |#1| (-337))
+((((-381 (-521))) |has| |#2| (-37 (-381 (-521)))) ((|#2|) |has| |#2| (-157)) (($) -3703 (|has| |#2| (-425)) (|has| |#2| (-513)) (|has| |#2| (-838))))
(((|#2|) . T) ((|#6|) . T))
-((($) . T) (((-380 (-520))) |has| |#2| (-37 (-380 (-520)))) ((|#2|) . T))
-((($) -3700 (|has| |#1| (-424)) (|has| |#1| (-512)) (|has| |#1| (-837))) ((|#1|) |has| |#1| (-157)) (((-380 (-520))) |has| |#1| (-37 (-380 (-520)))))
-((($) -3700 (|has| |#1| (-336)) (|has| |#1| (-424)) (|has| |#1| (-512)) (|has| |#1| (-837))) ((|#1|) |has| |#1| (-157)) (((-380 (-520))) |has| |#1| (-37 (-380 (-520)))))
-((((-1016)) . T))
-((((-791)) . T))
-((($) . T) (((-380 (-520))) |has| |#1| (-37 (-380 (-520)))) ((|#1|) . T))
+((($) . T) (((-381 (-521))) |has| |#2| (-37 (-381 (-521)))) ((|#2|) . T))
+((($) -3703 (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-838))) ((|#1|) |has| |#1| (-157)) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
+((($) -3703 (|has| |#1| (-337)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-838))) ((|#1|) |has| |#1| (-157)) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
+((((-1017)) . T))
+((((-792)) . T))
+((($) . T) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))) ((|#1|) . T))
((($) . T))
-((($) -3700 (|has| |#1| (-424)) (|has| |#1| (-512)) (|has| |#1| (-837))) ((|#1|) |has| |#1| (-157)) (((-380 (-520))) |has| |#1| (-37 (-380 (-520)))))
-(|has| |#2| (-837))
-(|has| |#1| (-837))
+((($) -3703 (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-838))) ((|#1|) |has| |#1| (-157)) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
+(|has| |#2| (-838))
+(|has| |#1| (-838))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) |has| |#1| (-157)))
-((((-635)) . T))
-((((-791)) -3700 (|has| |#1| (-560 (-791))) (|has| |#1| (-1012))))
+((((-636)) . T))
+((((-792)) -3703 (|has| |#1| (-561 (-792))) (|has| |#1| (-1013))))
(((|#1|) |has| |#1| (-157)))
(((|#1|) |has| |#1| (-157)))
-((((-380 (-520))) . T) (($) . T))
-(((|#1| (-520)) . T))
-(-3700 (|has| |#1| (-336)) (|has| |#1| (-322)))
-(|has| |#1| (-336))
-(|has| |#1| (-336))
-(-3700 (|has| |#1| (-336)) (|has| |#1| (-322)))
-(-3700 (|has| |#1| (-157)) (|has| |#1| (-512)))
-(((|#1| (-520)) . T))
-(((|#1| (-380 (-520))) . T))
-(((|#1| (-706)) . T))
-((((-380 (-520))) . T))
-(((|#1| (-492 |#2|) |#2|) . T))
-((((-520) |#1|) . T))
-((((-520) |#1|) . T))
-(|has| |#1| (-1012))
-((((-520) |#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-820 (-352))) . T) (((-820 (-520))) . T) (((-1083)) . T) (((-496)) . T))
-(((|#1|) . T))
-((((-791)) . T))
-(-3700 (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-336)) (|has| |#2| (-728)) (|has| |#2| (-781)) (|has| |#2| (-969)))
-(-3700 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-728)) (|has| |#2| (-728))))
-((((-520)) . T))
-((((-520)) . T))
-((((-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) . T))
+((((-381 (-521))) . T) (($) . T))
+(((|#1| (-521)) . T))
+(-3703 (|has| |#1| (-337)) (|has| |#1| (-323)))
+(|has| |#1| (-337))
+(|has| |#1| (-337))
+(-3703 (|has| |#1| (-337)) (|has| |#1| (-323)))
+(-3703 (|has| |#1| (-157)) (|has| |#1| (-513)))
+(((|#1| (-521)) . T))
+(((|#1| (-381 (-521))) . T))
+(((|#1| (-707)) . T))
+((((-381 (-521))) . T))
+(((|#1| (-493 |#2|) |#2|) . T))
+((((-521) |#1|) . T))
+((((-521) |#1|) . T))
+(|has| |#1| (-1013))
+((((-521) |#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-821 (-353))) . T) (((-821 (-521))) . T) (((-1084)) . T) (((-497)) . T))
+(((|#1|) . T))
+((((-792)) . T))
+(-3703 (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-337)) (|has| |#2| (-729)) (|has| |#2| (-782)) (|has| |#2| (-970)))
+(-3703 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-729)) (|has| |#2| (-729))))
+((((-521)) . T))
+((((-521)) . T))
+((((-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) . T))
(((|#1| |#2|) . T))
(((|#1|) . T))
-(-3700 (|has| |#2| (-157)) (|has| |#2| (-781)) (|has| |#2| (-969)))
-((((-1083)) -12 (|has| |#2| (-828 (-1083))) (|has| |#2| (-969))))
-(-3700 (-12 (|has| |#1| (-445)) (|has| |#2| (-445))) (-12 (|has| |#1| (-662)) (|has| |#2| (-662))))
+(-3703 (|has| |#2| (-157)) (|has| |#2| (-782)) (|has| |#2| (-970)))
+((((-1084)) -12 (|has| |#2| (-829 (-1084))) (|has| |#2| (-970))))
+(-3703 (-12 (|has| |#1| (-446)) (|has| |#2| (-446))) (-12 (|has| |#1| (-663)) (|has| |#2| (-663))))
(|has| |#1| (-133))
(|has| |#1| (-135))
-(|has| |#1| (-336))
+(|has| |#1| (-337))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
-(|has| |#1| (-209))
-((((-791)) . T))
-(((|#1| (-706) (-997)) . T))
-((((-520) |#1|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))
-((((-520) |#1|) . T))
-((((-520) |#1|) . T))
+(|has| |#1| (-210))
+((((-792)) . T))
+(((|#1| (-707) (-998)) . T))
+((((-521) |#1|) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
+((((-521) |#1|) . T))
+((((-521) |#1|) . T))
((((-112 |#1|)) . T))
-((((-380 (-520))) . T) (((-520)) . T))
-(((|#2|) |has| |#2| (-969)))
-((((-380 (-520))) . T) (($) . T))
-(((|#2|) . T))
-((((-380 (-520))) |has| |#1| (-37 (-380 (-520)))) ((|#1|) |has| |#1| (-157)) (($) |has| |#1| (-512)))
-((((-520)) . T))
-((((-520)) . T))
-((((-1066) (-1083) (-520) (-201) (-791)) . T))
+((((-381 (-521))) . T) (((-521)) . T))
+(((|#2|) |has| |#2| (-970)))
+((((-381 (-521))) . T) (($) . T))
+(((|#2|) . T))
+((((-381 (-521))) |has| |#1| (-37 (-381 (-521)))) ((|#1|) |has| |#1| (-157)) (($) |has| |#1| (-513)))
+((((-521)) . T))
+((((-521)) . T))
+((((-1067) (-1084) (-521) (-202) (-792)) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2|) . T))
-(-3700 (|has| |#1| (-322)) (|has| |#1| (-341)))
+(-3703 (|has| |#1| (-323)) (|has| |#1| (-342)))
(((|#1| |#2|) . T))
((($) . T) ((|#1|) . T))
-((((-791)) . T))
-((($) . T) (((-380 (-520))) |has| |#1| (-37 (-380 (-520)))) ((|#1|) . T))
-((($) . T) ((|#1|) . T) (((-380 (-520))) |has| |#1| (-37 (-380 (-520)))))
-(((|#2|) |has| |#2| (-1012)) (((-520)) -12 (|has| |#2| (-960 (-520))) (|has| |#2| (-1012))) (((-380 (-520))) -12 (|has| |#2| (-960 (-380 (-520)))) (|has| |#2| (-1012))))
-((((-496)) |has| |#1| (-561 (-496))))
-((((-791)) -3700 (|has| |#1| (-560 (-791))) (|has| |#1| (-783)) (|has| |#1| (-1012))))
-((($) . T) (((-380 (-520))) . T))
-(|has| |#1| (-837))
-(|has| |#1| (-837))
-((((-201)) -12 (|has| |#1| (-336)) (|has| |#2| (-945))) (((-352)) -12 (|has| |#1| (-336)) (|has| |#2| (-945))) (((-820 (-352))) -12 (|has| |#1| (-336)) (|has| |#2| (-561 (-820 (-352))))) (((-820 (-520))) -12 (|has| |#1| (-336)) (|has| |#2| (-561 (-820 (-520))))) (((-496)) -12 (|has| |#1| (-336)) (|has| |#2| (-561 (-496)))))
-((((-791)) . T))
-((((-791)) . T))
+((((-792)) . T))
+((($) . T) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))) ((|#1|) . T))
+((($) . T) ((|#1|) . T) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
+(((|#2|) |has| |#2| (-1013)) (((-521)) -12 (|has| |#2| (-961 (-521))) (|has| |#2| (-1013))) (((-381 (-521))) -12 (|has| |#2| (-961 (-381 (-521)))) (|has| |#2| (-1013))))
+((((-497)) |has| |#1| (-562 (-497))))
+((((-792)) -3703 (|has| |#1| (-561 (-792))) (|has| |#1| (-784)) (|has| |#1| (-1013))))
+((($) . T) (((-381 (-521))) . T))
+(|has| |#1| (-838))
+(|has| |#1| (-838))
+((((-202)) -12 (|has| |#1| (-337)) (|has| |#2| (-946))) (((-353)) -12 (|has| |#1| (-337)) (|has| |#2| (-946))) (((-821 (-353))) -12 (|has| |#1| (-337)) (|has| |#2| (-562 (-821 (-353))))) (((-821 (-521))) -12 (|has| |#1| (-337)) (|has| |#2| (-562 (-821 (-521))))) (((-497)) -12 (|has| |#1| (-337)) (|has| |#2| (-562 (-497)))))
+((((-792)) . T))
+((((-792)) . T))
(((|#2| |#2|) . T))
(((|#1| |#1|) |has| |#1| (-157)))
-(-3700 (|has| |#1| (-336)) (|has| |#1| (-512)))
-(-3700 (|has| |#1| (-21)) (|has| |#1| (-781)))
+(-3703 (|has| |#1| (-337)) (|has| |#1| (-513)))
+(-3703 (|has| |#1| (-21)) (|has| |#1| (-782)))
(((|#2|) . T))
-(-3700 (|has| |#1| (-21)) (|has| |#1| (-781)))
+(-3703 (|has| |#1| (-21)) (|has| |#1| (-782)))
(((|#1|) |has| |#1| (-157)))
(((|#1|) . T))
(((|#1|) . T))
-((((-791)) -3700 (-12 (|has| |#1| (-560 (-791))) (|has| |#2| (-560 (-791)))) (-12 (|has| |#1| (-1012)) (|has| |#2| (-1012)))))
-((((-380 |#2|) |#3|) . T))
-((((-380 (-520))) . T) (($) . T))
-(|has| |#1| (-37 (-380 (-520))))
-(|has| |#1| (-336))
-((($ $) . T) ((#0=(-380 (-520)) #0#) . T))
-(|has| (-380 |#2|) (-135))
-(|has| (-380 |#2|) (-133))
-((((-635)) . T))
-(((|#1|) . T) (((-380 (-520))) . T) (((-520)) . T) (($) . T))
-(((#0=(-520) #0#) . T))
-((($) . T) (((-380 (-520))) . T))
-(-3700 (|has| |#4| (-157)) (|has| |#4| (-781)) (|has| |#4| (-969)))
-(-3700 (|has| |#3| (-157)) (|has| |#3| (-781)) (|has| |#3| (-969)))
-(|has| |#4| (-728))
-(-3700 (|has| |#4| (-728)) (|has| |#4| (-781)))
-(|has| |#4| (-781))
-(|has| |#3| (-728))
-(-3700 (|has| |#3| (-728)) (|has| |#3| (-781)))
-(|has| |#3| (-781))
-((((-520)) . T))
-(((|#2|) . T))
-((((-1083)) -3700 (-12 (|has| (-1081 |#1| |#2| |#3|) (-828 (-1083))) (|has| |#1| (-336))) (-12 (|has| |#1| (-15 * (|#1| (-520) |#1|))) (|has| |#1| (-828 (-1083))))))
-((((-1083)) -12 (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|))) (|has| |#1| (-828 (-1083)))))
-((((-1083)) -12 (|has| |#1| (-15 * (|#1| (-706) |#1|))) (|has| |#1| (-828 (-1083)))))
+((((-792)) -3703 (-12 (|has| |#1| (-561 (-792))) (|has| |#2| (-561 (-792)))) (-12 (|has| |#1| (-1013)) (|has| |#2| (-1013)))))
+((((-381 |#2|) |#3|) . T))
+((((-381 (-521))) . T) (($) . T))
+(|has| |#1| (-37 (-381 (-521))))
+(|has| |#1| (-337))
+((($ $) . T) ((#0=(-381 (-521)) #0#) . T))
+(|has| (-381 |#2|) (-135))
+(|has| (-381 |#2|) (-133))
+((((-636)) . T))
+(((|#1|) . T) (((-381 (-521))) . T) (((-521)) . T) (($) . T))
+(((#0=(-521) #0#) . T))
+((($) . T) (((-381 (-521))) . T))
+(-3703 (|has| |#4| (-157)) (|has| |#4| (-782)) (|has| |#4| (-970)))
+(-3703 (|has| |#3| (-157)) (|has| |#3| (-782)) (|has| |#3| (-970)))
+(|has| |#4| (-729))
+(-3703 (|has| |#4| (-729)) (|has| |#4| (-782)))
+(|has| |#4| (-782))
+(|has| |#3| (-729))
+(-3703 (|has| |#3| (-729)) (|has| |#3| (-782)))
+(|has| |#3| (-782))
+((((-521)) . T))
+(((|#2|) . T))
+((((-1084)) -3703 (-12 (|has| (-1082 |#1| |#2| |#3|) (-829 (-1084))) (|has| |#1| (-337))) (-12 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (|has| |#1| (-829 (-1084))))))
+((((-1084)) -12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-829 (-1084)))))
+((((-1084)) -12 (|has| |#1| (-15 * (|#1| (-707) |#1|))) (|has| |#1| (-829 (-1084)))))
(((|#1| |#1|) . T) (($ $) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))
+(((|#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T) (($) . T))
(((|#1|) . T))
-((((-793 |#1|)) . T))
-((((-1081 |#1| |#2| |#3|)) |has| |#1| (-336)))
-((((-1081 |#1| |#2| |#3|)) |has| |#1| (-336)))
-((((-1048 |#1| |#2|)) . T))
-(((|#2|) . T) (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) . T))
-((((-2 (|:| -2526 (-1083)) (|:| -3043 (-51)))) . T))
-((($) . T))
-(|has| |#1| (-945))
-(((|#2|) . T) (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) . T))
-((((-791)) . T))
-((((-496)) |has| |#2| (-561 (-496))) (((-820 (-520))) |has| |#2| (-561 (-820 (-520)))) (((-820 (-352))) |has| |#2| (-561 (-820 (-352)))) (((-352)) . #0=(|has| |#2| (-945))) (((-201)) . #0#))
-((((-1083) (-51)) . T))
-(|has| |#1| (-37 (-380 (-520))))
-(|has| |#1| (-37 (-380 (-520))))
+((((-794 |#1|)) . T))
+((((-1082 |#1| |#2| |#3|)) |has| |#1| (-337)))
+((((-1082 |#1| |#2| |#3|)) |has| |#1| (-337)))
+((((-1049 |#1| |#2|)) . T))
+(((|#2|) . T) (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) . T))
+((((-2 (|:| -2529 (-1084)) (|:| -3045 (-51)))) . T))
+((($) . T))
+(|has| |#1| (-946))
+(((|#2|) . T) (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) . T))
+((((-792)) . T))
+((((-497)) |has| |#2| (-562 (-497))) (((-821 (-521))) |has| |#2| (-562 (-821 (-521)))) (((-821 (-353))) |has| |#2| (-562 (-821 (-353)))) (((-353)) . #0=(|has| |#2| (-946))) (((-202)) . #0#))
+((((-1084) (-51)) . T))
+(|has| |#1| (-37 (-381 (-521))))
+(|has| |#1| (-37 (-381 (-521))))
(((|#2|) . T))
((($ $) . T))
-((((-380 (-520))) . T) (((-635)) . T) (($) . T))
-((((-1081 |#1| |#2| |#3|)) . T))
-((((-1081 |#1| |#2| |#3|)) . T) (((-1074 |#1| |#2| |#3|)) . T))
-((((-791)) . T))
-((((-791)) -3700 (|has| |#1| (-560 (-791))) (|has| |#1| (-1012))))
-((((-520) |#1|) . T))
-((((-1081 |#1| |#2| |#3|)) |has| |#1| (-336)))
+((((-381 (-521))) . T) (((-636)) . T) (($) . T))
+((((-1082 |#1| |#2| |#3|)) . T))
+((((-1082 |#1| |#2| |#3|)) . T) (((-1075 |#1| |#2| |#3|)) . T))
+((((-792)) . T))
+((((-792)) -3703 (|has| |#1| (-561 (-792))) (|has| |#1| (-1013))))
+((((-521) |#1|) . T))
+((((-1082 |#1| |#2| |#3|)) |has| |#1| (-337)))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1|) . T))
(((|#2|) . T))
-(|has| |#2| (-336))
-(((|#3|) . T) ((|#2|) . T) (($) -3700 (|has| |#4| (-157)) (|has| |#4| (-781)) (|has| |#4| (-969))) ((|#4|) -3700 (|has| |#4| (-157)) (|has| |#4| (-336)) (|has| |#4| (-969))))
-(((|#2|) . T) (($) -3700 (|has| |#3| (-157)) (|has| |#3| (-781)) (|has| |#3| (-969))) ((|#3|) -3700 (|has| |#3| (-157)) (|has| |#3| (-336)) (|has| |#3| (-969))))
+(|has| |#2| (-337))
+(((|#3|) . T) ((|#2|) . T) (($) -3703 (|has| |#4| (-157)) (|has| |#4| (-782)) (|has| |#4| (-970))) ((|#4|) -3703 (|has| |#4| (-157)) (|has| |#4| (-337)) (|has| |#4| (-970))))
+(((|#2|) . T) (($) -3703 (|has| |#3| (-157)) (|has| |#3| (-782)) (|has| |#3| (-970))) ((|#3|) -3703 (|has| |#3| (-157)) (|has| |#3| (-337)) (|has| |#3| (-970))))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-336))
+(|has| |#1| (-337))
((((-112 |#1|)) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-380 (-520))) |has| |#2| (-960 (-380 (-520)))) (((-520)) |has| |#2| (-960 (-520))) ((|#2|) . T) (((-793 |#1|)) . T))
-((((-791)) . T))
-((((-791)) . T))
-((((-791)) . T))
+((((-381 (-521))) |has| |#2| (-961 (-381 (-521)))) (((-521)) |has| |#2| (-961 (-521))) ((|#2|) . T) (((-794 |#1|)) . T))
+((((-792)) . T))
+((((-792)) . T))
+((((-792)) . T))
(((|#1|) . T))
-((((-791)) -3700 (|has| |#1| (-560 (-791))) (|has| |#1| (-1012))))
-((((-520) |#1|) . T))
+((((-792)) -3703 (|has| |#1| (-561 (-792))) (|has| |#1| (-1013))))
+((((-521) |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#2| $) -12 (|has| |#1| (-336)) (|has| |#2| (-260 |#2| |#2|))) (($ $) . T))
+(((|#2| $) -12 (|has| |#1| (-337)) (|has| |#2| (-261 |#2| |#2|))) (($ $) . T))
((($ $) . T))
-(-3700 (|has| |#1| (-336)) (|has| |#1| (-424)) (|has| |#1| (-837)))
-(-3700 (|has| |#1| (-783)) (|has| |#1| (-1012)))
-((((-791)) . T))
-((((-791)) . T))
-((((-791)) . T))
-(((|#1| (-492 |#2|)) . T))
-((((-2 (|:| -2526 (-1083)) (|:| -3043 (-51)))) . T))
-(((|#1| (-520)) . T))
-(((|#1| (-380 (-520))) . T))
-(((|#1| (-706)) . T))
-((((-112 |#1|)) . T) (($) . T) (((-380 (-520))) . T))
-(-3700 (|has| |#2| (-424)) (|has| |#2| (-512)) (|has| |#2| (-837)))
-(-3700 (|has| |#1| (-424)) (|has| |#1| (-512)) (|has| |#1| (-837)))
-((($) . T))
-(((|#2| (-492 (-793 |#1|))) . T))
-((((-520) |#1|) . T))
-(((|#2|) . T))
-(((|#2| (-706)) . T))
-((((-791)) -3700 (|has| |#1| (-560 (-791))) (|has| |#1| (-1012))))
+(-3703 (|has| |#1| (-337)) (|has| |#1| (-425)) (|has| |#1| (-838)))
+(-3703 (|has| |#1| (-784)) (|has| |#1| (-1013)))
+((((-792)) . T))
+((((-792)) . T))
+((((-792)) . T))
+(((|#1| (-493 |#2|)) . T))
+((((-2 (|:| -2529 (-1084)) (|:| -3045 (-51)))) . T))
+(((|#1| (-521)) . T))
+(((|#1| (-381 (-521))) . T))
+(((|#1| (-707)) . T))
+((((-112 |#1|)) . T) (($) . T) (((-381 (-521))) . T))
+(-3703 (|has| |#2| (-425)) (|has| |#2| (-513)) (|has| |#2| (-838)))
+(-3703 (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-838)))
+((($) . T))
+(((|#2| (-493 (-794 |#1|))) . T))
+((((-521) |#1|) . T))
+(((|#2|) . T))
+(((|#2| (-707)) . T))
+((((-792)) -3703 (|has| |#1| (-561 (-792))) (|has| |#1| (-1013))))
(((|#1|) . T))
(((|#1| |#2|) . T))
-((((-1066) |#1|) . T))
-((((-380 |#2|)) . T))
-((((-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) . T))
-(|has| |#1| (-512))
-(|has| |#1| (-512))
+((((-1067) |#1|) . T))
+((((-381 |#2|)) . T))
+((((-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) . T))
+(|has| |#1| (-513))
+(|has| |#1| (-513))
((($) . T) ((|#2|) . T))
(((|#1|) . T))
(((|#1| |#2|) . T))
-(((|#2| $) |has| |#2| (-260 |#2| |#2|)))
-(((|#1| (-586 |#1|)) |has| |#1| (-781)))
-(-3700 (|has| |#1| (-209)) (|has| |#1| (-322)))
-(-3700 (|has| |#1| (-336)) (|has| |#1| (-322)))
-(|has| |#1| (-1012))
-(((|#1|) . T))
-((((-380 (-520))) . T) (($) . T))
-((((-923 |#1|)) . T) ((|#1|) . T) (((-520)) -3700 (|has| (-923 |#1|) (-960 (-520))) (|has| |#1| (-960 (-520)))) (((-380 (-520))) -3700 (|has| (-923 |#1|) (-960 (-380 (-520)))) (|has| |#1| (-960 (-380 (-520))))))
-(((|#1| |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))
-(((|#1| |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))
-(((|#1| |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))
-((((-1083)) |has| |#1| (-828 (-1083))))
-(((|#1| |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))
-(((|#1| |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))
-(((|#1| (-551 |#1| |#3|) (-551 |#1| |#2|)) . T))
+(((|#2| $) |has| |#2| (-261 |#2| |#2|)))
+(((|#1| (-587 |#1|)) |has| |#1| (-782)))
+(-3703 (|has| |#1| (-210)) (|has| |#1| (-323)))
+(-3703 (|has| |#1| (-337)) (|has| |#1| (-323)))
+(|has| |#1| (-1013))
+(((|#1|) . T))
+((((-381 (-521))) . T) (($) . T))
+((((-924 |#1|)) . T) ((|#1|) . T) (((-521)) -3703 (|has| (-924 |#1|) (-961 (-521))) (|has| |#1| (-961 (-521)))) (((-381 (-521))) -3703 (|has| (-924 |#1|) (-961 (-381 (-521)))) (|has| |#1| (-961 (-381 (-521))))))
+(((|#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
+(((|#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
+(((|#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
+((((-1084)) |has| |#1| (-829 (-1084))))
+(((|#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
+(((|#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
+(((|#1| (-552 |#1| |#3|) (-552 |#1| |#2|)) . T))
(((|#1|) . T))
(((|#1| |#2| |#3| |#4|) . T))
-(((#0=(-1048 |#1| |#2|) #0#) |has| (-1048 |#1| |#2|) (-283 (-1048 |#1| |#2|))))
-(((|#2| |#2|) -12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012))) ((#0=(-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) #0#) |has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-283 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))))
-(((#0=(-112 |#1|)) |has| #0# (-283 #0#)))
-(-3700 (|has| |#1| (-783)) (|has| |#1| (-1012)))
+(((#0=(-1049 |#1| |#2|) #0#) |has| (-1049 |#1| |#2|) (-284 (-1049 |#1| |#2|))))
+(((|#2| |#2|) -12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))) ((#0=(-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) #0#) |has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-284 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))))
+(((#0=(-112 |#1|)) |has| #0# (-284 #0#)))
+(-3703 (|has| |#1| (-784)) (|has| |#1| (-1013)))
((($ $) . T))
-((($ $) . T) ((#0=(-793 |#1|) $) . T) ((#0# |#2|) . T))
-((($ $) . T) ((|#2| $) |has| |#1| (-209)) ((|#2| |#1|) |has| |#1| (-209)) ((|#3| |#1|) . T) ((|#3| $) . T))
-(((-602 . -1012) T) ((-239 . -481) 142340) ((-223 . -481) 142283) ((-527 . -107) 142268) ((-492 . -23) T) ((-221 . -1012) 142218) ((-113 . -283) 142175) ((-450 . -481) 141967) ((-630 . -97) T) ((-1049 . -481) 141886) ((-363 . -124) T) ((-1175 . -901) 141855) ((-551 . -459) 141839) ((-565 . -124) T) ((-755 . -779) T) ((-489 . -55) 141789) ((-57 . -481) 141722) ((-485 . -481) 141655) ((-391 . -828) 141614) ((-154 . -969) T) ((-483 . -481) 141547) ((-465 . -481) 141480) ((-464 . -481) 141413) ((-735 . -960) 141200) ((-635 . -37) 141165) ((-316 . -322) T) ((-1007 . -1006) 141149) ((-1007 . -1012) 141127) ((-154 . -219) 141078) ((-154 . -209) 141029) ((-1007 . -1008) 140987) ((-800 . -260) 140945) ((-201 . -731) T) ((-201 . -727) T) ((-630 . -258) NIL) ((-1058 . -1095) 140924) ((-380 . -917) 140908) ((-637 . -21) T) ((-637 . -25) T) ((-1177 . -588) 140882) ((-289 . -146) 140861) ((-289 . -131) 140840) ((-1058 . -102) 140790) ((-126 . -25) T) ((-39 . -207) 140767) ((-112 . -21) T) ((-112 . -25) T) ((-555 . -262) 140743) ((-447 . -262) 140722) ((-1137 . -969) T) ((-788 . -969) T) ((-735 . -311) 140706) ((-113 . -1059) NIL) ((-89 . -560) 140638) ((-449 . -124) T) ((-543 . -1118) T) ((-1137 . -299) 140615) ((-527 . -969) T) ((-1137 . -209) T) ((-602 . -653) 140599) ((-885 . -262) 140576) ((-58 . -33) T) ((-980 . -731) T) ((-980 . -727) T) ((-752 . -662) T) ((-667 . -46) 140541) ((-567 . -37) 140528) ((-328 . -264) T) ((-325 . -264) T) ((-317 . -264) T) ((-239 . -264) 140459) ((-223 . -264) 140390) ((-947 . -97) T) ((-386 . -662) T) ((-113 . -37) 140335) ((-386 . -445) T) ((-327 . -97) T) ((-1113 . -976) T) ((-647 . -976) T) ((-1081 . -46) 140312) ((-1080 . -46) 140282) ((-1074 . -46) 140259) ((-958 . -139) 140205) ((-838 . -264) T) ((-1036 . -46) 140177) ((-630 . -283) NIL) ((-482 . -560) 140159) ((-477 . -560) 140141) ((-475 . -560) 140123) ((-300 . -1012) 140073) ((-648 . -424) 140004) ((-47 . -97) T) ((-1148 . -260) 139989) ((-1127 . -260) 139909) ((-586 . -606) 139893) ((-586 . -591) 139877) ((-312 . -21) T) ((-312 . -25) T) ((-39 . -322) NIL) ((-158 . -21) T) ((-158 . -25) T) ((-586 . -346) 139861) ((-551 . -260) 139838) ((-361 . -97) T) ((-1030 . -131) T) ((-122 . -560) 139770) ((-802 . -1012) T) ((-598 . -384) 139754) ((-650 . -560) 139736) ((-147 . -560) 139718) ((-143 . -560) 139700) ((-1177 . -662) T) ((-1014 . -33) T) ((-799 . -731) NIL) ((-799 . -727) NIL) ((-790 . -783) T) ((-667 . -814) NIL) ((-1186 . -124) T) ((-354 . -124) T) ((-832 . -97) T) ((-667 . -960) 139578) ((-492 . -124) T) ((-1001 . -384) 139562) ((-924 . -459) 139546) ((-113 . -373) 139523) ((-1074 . -1118) 139502) ((-717 . -384) 139486) ((-715 . -384) 139470) ((-871 . -33) T) ((-630 . -1059) NIL) ((-226 . -588) 139307) ((-225 . -588) 139131) ((-753 . -848) 139110) ((-426 . -384) 139094) ((-551 . -19) 139078) ((-1054 . -1112) 139047) ((-1074 . -814) NIL) ((-1074 . -812) 138999) ((-551 . -553) 138976) ((-1105 . -560) 138908) ((-1082 . -560) 138890) ((-60 . -368) T) ((-1080 . -960) 138825) ((-1074 . -960) 138791) ((-630 . -37) 138741) ((-446 . -260) 138726) ((-667 . -350) 138710) ((-598 . -976) T) ((-1148 . -926) 138676) ((-1127 . -926) 138642) ((-981 . -1095) 138617) ((-800 . -561) 138425) ((-800 . -560) 138407) ((-1092 . -459) 138344) ((-391 . -945) 138323) ((-47 . -283) 138310) ((-981 . -102) 138256) ((-450 . -459) 138193) ((-486 . -1118) T) ((-1049 . -459) 138164) ((-1074 . -311) 138116) ((-1074 . -350) 138068) ((-410 . -97) T) ((-1001 . -976) T) ((-226 . -33) T) ((-225 . -33) T) ((-717 . -976) T) ((-715 . -976) T) ((-667 . -828) 138045) ((-426 . -976) T) ((-57 . -459) 138029) ((-957 . -975) 138003) ((-485 . -459) 137987) ((-483 . -459) 137971) ((-465 . -459) 137955) ((-464 . -459) 137939) ((-221 . -481) 137872) ((-957 . -107) 137839) ((-1081 . -828) 137752) ((-610 . -1024) T) ((-1080 . -828) 137658) ((-1074 . -828) 137491) ((-1036 . -828) 137475) ((-327 . -1059) T) ((-295 . -975) 137457) ((-226 . -726) 137436) ((-226 . -729) 137387) ((-226 . -728) 137366) ((-225 . -726) 137345) ((-225 . -729) 137296) ((-225 . -728) 137275) ((-49 . -976) T) ((-226 . -662) 137206) ((-225 . -662) 137137) ((-1113 . -1012) T) ((-610 . -23) T) ((-533 . -976) T) ((-484 . -976) T) ((-352 . -975) 137102) ((-295 . -107) 137077) ((-71 . -356) T) ((-71 . -368) T) ((-947 . -37) 137014) ((-630 . -373) 136996) ((-94 . -97) T) ((-647 . -1012) T) ((-927 . -133) 136968) ((-927 . -135) 136940) ((-352 . -107) 136896) ((-292 . -1122) 136875) ((-446 . -926) 136841) ((-327 . -37) 136806) ((-39 . -343) 136778) ((-801 . -560) 136650) ((-123 . -121) 136634) ((-117 . -121) 136618) ((-770 . -975) 136588) ((-769 . -21) 136540) ((-763 . -975) 136524) ((-769 . -25) 136476) ((-292 . -512) 136427) ((-520 . -764) T) ((-216 . -1118) T) ((-770 . -107) 136392) ((-763 . -107) 136371) ((-1148 . -560) 136353) ((-1127 . -560) 136335) ((-1127 . -561) 136008) ((-1079 . -837) 135987) ((-1035 . -837) 135966) ((-47 . -37) 135931) ((-1184 . -1024) T) ((-551 . -560) 135843) ((-551 . -561) 135804) ((-1182 . -1024) T) ((-216 . -960) 135633) ((-1079 . -588) 135558) ((-1035 . -588) 135483) ((-654 . -560) 135465) ((-787 . -588) 135439) ((-1184 . -23) T) ((-1182 . -23) T) ((-957 . -969) T) ((-1092 . -260) 135418) ((-154 . -341) 135369) ((-928 . -1118) T) ((-43 . -23) T) ((-450 . -260) 135348) ((-537 . -1012) T) ((-1054 . -1021) 135317) ((-1016 . -1015) 135269) ((-363 . -21) T) ((-363 . -25) T) ((-140 . -1024) T) ((-1190 . -97) T) ((-928 . -812) 135251) ((-928 . -814) 135233) ((-1113 . -653) 135130) ((-567 . -207) 135114) ((-565 . -21) T) ((-263 . -512) T) ((-565 . -25) T) ((-1099 . -1012) T) ((-647 . -653) 135079) ((-216 . -350) 135049) ((-928 . -960) 135009) ((-352 . -969) T) ((-199 . -976) T) ((-113 . -207) 134986) ((-57 . -260) 134963) ((-140 . -23) T) ((-483 . -260) 134940) ((-300 . -481) 134873) ((-464 . -260) 134850) ((-352 . -219) T) ((-352 . -209) T) ((-770 . -969) T) ((-763 . -969) T) ((-648 . -877) 134820) ((-637 . -783) T) ((-446 . -560) 134802) ((-763 . -209) 134781) ((-126 . -783) T) ((-598 . -1012) T) ((-1092 . -553) 134760) ((-506 . -1095) 134739) ((-309 . -1012) T) ((-292 . -336) 134718) ((-380 . -135) 134697) ((-380 . -133) 134676) ((-891 . -1024) 134575) ((-216 . -828) 134508) ((-751 . -1024) 134439) ((-594 . -785) 134423) ((-450 . -553) 134402) ((-506 . -102) 134352) ((-928 . -350) 134334) ((-928 . -311) 134316) ((-92 . -1012) T) ((-891 . -23) 134127) ((-449 . -21) T) ((-449 . -25) T) ((-751 . -23) 133998) ((-1083 . -560) 133980) ((-57 . -19) 133964) ((-1083 . -561) 133886) ((-1079 . -662) T) ((-1035 . -662) T) ((-483 . -19) 133870) ((-464 . -19) 133854) ((-57 . -553) 133831) ((-1001 . -1012) T) ((-829 . -97) 133809) ((-787 . -662) T) ((-717 . -1012) T) ((-483 . -553) 133786) ((-464 . -553) 133763) ((-715 . -1012) T) ((-715 . -983) 133730) ((-433 . -1012) T) ((-426 . -1012) T) ((-537 . -653) 133705) ((-589 . -1012) T) ((-928 . -828) NIL) ((-1156 . -46) 133682) ((-570 . -1024) T) ((-610 . -124) T) ((-1150 . -97) T) ((-1149 . -46) 133652) ((-1128 . -46) 133629) ((-1113 . -157) 133580) ((-995 . -1122) 133531) ((-250 . -1012) T) ((-83 . -413) T) ((-83 . -368) T) ((-1080 . -281) 133510) ((-1074 . -281) 133489) ((-49 . -1012) T) ((-995 . -512) 133440) ((-647 . -157) T) ((-545 . -46) 133417) ((-201 . -588) 133382) ((-533 . -1012) T) ((-484 . -1012) T) ((-332 . -1122) T) ((-326 . -1122) T) ((-318 . -1122) T) ((-457 . -756) T) ((-457 . -848) T) ((-292 . -1024) T) ((-103 . -1122) T) ((-312 . -783) T) ((-194 . -848) T) ((-194 . -756) T) ((-650 . -975) 133352) ((-332 . -512) T) ((-326 . -512) T) ((-318 . -512) T) ((-103 . -512) T) ((-598 . -653) 133322) ((-1074 . -945) NIL) ((-292 . -23) T) ((-65 . -1118) T) ((-924 . -560) 133254) ((-630 . -207) 133236) ((-650 . -107) 133201) ((-586 . -33) T) ((-221 . -459) 133185) ((-1014 . -1010) 133169) ((-156 . -1012) T) ((-880 . -837) 133148) ((-452 . -837) 133127) ((-1186 . -21) T) ((-1186 . -25) T) ((-1184 . -124) T) ((-1182 . -124) T) ((-1001 . -653) 132976) ((-980 . -588) 132963) ((-880 . -588) 132888) ((-496 . -560) 132870) ((-496 . -561) 132851) ((-717 . -653) 132680) ((-715 . -653) 132529) ((-1175 . -97) T) ((-992 . -97) T) ((-354 . -25) T) ((-354 . -21) T) ((-452 . -588) 132454) ((-433 . -653) 132425) ((-426 . -653) 132274) ((-912 . -97) T) ((-673 . -97) T) ((-492 . -25) T) ((-1128 . -1118) 132253) ((-1160 . -560) 132219) ((-1128 . -814) NIL) ((-1128 . -812) 132171) ((-129 . -97) T) ((-43 . -124) T) ((-1092 . -561) NIL) ((-1092 . -560) 132153) ((-1050 . -1033) 132098) ((-316 . -976) T) ((-604 . -560) 132080) ((-263 . -1024) T) ((-328 . -560) 132062) ((-325 . -560) 132044) ((-317 . -560) 132026) ((-239 . -561) 131774) ((-239 . -560) 131756) ((-223 . -560) 131738) ((-223 . -561) 131599) ((-966 . -1112) 131528) ((-829 . -283) 131466) ((-1190 . -1059) T) ((-1149 . -960) 131401) ((-1128 . -960) 131367) ((-1113 . -481) 131334) ((-1049 . -560) 131316) ((-755 . -662) T) ((-551 . -262) 131293) ((-533 . -653) 131258) ((-450 . -561) NIL) ((-450 . -560) 131240) ((-484 . -653) 131185) ((-289 . -97) T) ((-286 . -97) T) ((-263 . -23) T) ((-140 . -124) T) ((-359 . -662) T) ((-800 . -975) 131137) ((-838 . -560) 131119) ((-838 . -561) 131101) ((-800 . -107) 131039) ((-128 . -97) T) ((-110 . -97) T) ((-648 . -1140) 131023) ((-650 . -969) T) ((-630 . -322) NIL) ((-485 . -560) 130955) ((-352 . -731) T) ((-199 . -1012) T) ((-352 . -727) T) ((-201 . -729) T) ((-201 . -726) T) ((-57 . -561) 130916) ((-57 . -560) 130828) ((-201 . -662) T) ((-483 . -561) 130789) ((-483 . -560) 130701) ((-465 . -560) 130633) ((-464 . -561) 130594) ((-464 . -560) 130506) ((-995 . -336) 130457) ((-39 . -384) 130434) ((-75 . -1118) T) ((-799 . -837) NIL) ((-332 . -302) 130418) ((-332 . -336) T) ((-326 . -302) 130402) ((-326 . -336) T) ((-318 . -302) 130386) ((-318 . -336) T) ((-289 . -258) 130365) ((-103 . -336) T) ((-68 . -1118) T) ((-1128 . -311) 130317) ((-799 . -588) 130262) ((-1128 . -350) 130214) ((-891 . -124) 130069) ((-751 . -124) 129940) ((-885 . -591) 129924) ((-1001 . -157) 129835) ((-885 . -346) 129819) ((-980 . -729) T) ((-980 . -726) T) ((-717 . -157) 129710) ((-715 . -157) 129621) ((-752 . -46) 129583) ((-980 . -662) T) ((-300 . -459) 129567) ((-880 . -662) T) ((-426 . -157) 129478) ((-221 . -260) 129455) ((-452 . -662) T) ((-1175 . -283) 129393) ((-1156 . -828) 129306) ((-1149 . -828) 129212) ((-1148 . -975) 129047) ((-1128 . -828) 128880) ((-1127 . -975) 128688) ((-1113 . -264) 128667) ((-1054 . -139) 128651) ((-990 . -97) T) ((-855 . -882) T) ((-73 . -1118) T) ((-673 . -283) 128589) ((-154 . -837) 128542) ((-604 . -355) 128514) ((-30 . -882) T) ((-1 . -560) 128496) ((-1030 . -97) T) ((-995 . -23) T) ((-49 . -564) 128480) ((-995 . -1024) T) ((-927 . -382) 128452) ((-545 . -828) 128365) ((-411 . -97) T) ((-129 . -283) NIL) ((-800 . -969) T) ((-769 . -783) 128344) ((-79 . -1118) T) ((-647 . -264) T) ((-39 . -976) T) ((-533 . -157) T) ((-484 . -157) T) ((-478 . -560) 128326) ((-154 . -588) 128236) ((-474 . -560) 128218) ((-324 . -135) 128200) ((-324 . -133) T) ((-332 . -1024) T) ((-326 . -1024) T) ((-318 . -1024) T) ((-928 . -281) T) ((-842 . -281) T) ((-800 . -219) T) ((-103 . -1024) T) ((-800 . -209) 128179) ((-1148 . -107) 128000) ((-1127 . -107) 127789) ((-221 . -1152) 127773) ((-520 . -781) T) ((-332 . -23) T) ((-327 . -322) T) ((-289 . -283) 127760) ((-286 . -283) 127701) ((-326 . -23) T) ((-292 . -124) T) ((-318 . -23) T) ((-928 . -945) T) ((-103 . -23) T) ((-221 . -553) 127678) ((-1150 . -37) 127570) ((-1137 . -837) 127549) ((-108 . -1012) T) ((-958 . -97) T) ((-1137 . -588) 127474) ((-799 . -729) NIL) ((-788 . -588) 127448) ((-799 . -726) NIL) ((-752 . -814) NIL) ((-799 . -662) T) ((-1001 . -481) 127321) ((-717 . -481) 127269) ((-715 . -481) 127221) ((-527 . -588) 127208) ((-752 . -960) 127038) ((-426 . -481) 126981) ((-361 . -362) T) ((-58 . -1118) T) ((-565 . -783) 126960) ((-468 . -601) T) ((-1054 . -901) 126929) ((-927 . -424) T) ((-635 . -781) T) ((-477 . -727) T) ((-446 . -975) 126764) ((-316 . -1012) T) ((-286 . -1059) NIL) ((-263 . -124) T) ((-367 . -1012) T) ((-630 . -343) 126731) ((-798 . -976) T) ((-199 . -564) 126708) ((-300 . -260) 126685) ((-446 . -107) 126506) ((-1148 . -969) T) ((-1127 . -969) T) ((-752 . -350) 126490) ((-154 . -662) T) ((-594 . -97) T) ((-1148 . -219) 126469) ((-1148 . -209) 126421) ((-1127 . -209) 126326) ((-1127 . -219) 126305) ((-927 . -375) NIL) ((-610 . -582) 126253) ((-289 . -37) 126163) ((-286 . -37) 126092) ((-67 . -560) 126074) ((-292 . -461) 126040) ((-1092 . -262) 126019) ((-1025 . -1024) 125950) ((-81 . -1118) T) ((-59 . -560) 125932) ((-450 . -262) 125911) ((-1177 . -960) 125888) ((-1072 . -1012) T) ((-1025 . -23) 125759) ((-752 . -828) 125695) ((-1137 . -662) T) ((-1014 . -1118) T) ((-1001 . -264) 125626) ((-821 . -97) T) ((-717 . -264) 125537) ((-300 . -19) 125521) ((-57 . -262) 125498) ((-715 . -264) 125429) ((-788 . -662) T) ((-113 . -781) NIL) ((-483 . -262) 125406) ((-300 . -553) 125383) ((-464 . -262) 125360) ((-426 . -264) 125291) ((-958 . -283) 125142) ((-527 . -662) T) ((-602 . -560) 125124) ((-221 . -561) 125085) ((-221 . -560) 124997) ((-1055 . -33) T) ((-871 . -1118) T) ((-316 . -653) 124942) ((-610 . -25) T) ((-610 . -21) T) ((-446 . -969) T) ((-578 . -390) 124907) ((-554 . -390) 124872) ((-1030 . -1059) T) ((-533 . -264) T) ((-484 . -264) T) ((-1149 . -281) 124851) ((-446 . -209) 124803) ((-446 . -219) 124782) ((-1128 . -281) 124761) ((-995 . -124) T) ((-800 . -731) 124740) ((-132 . -97) T) ((-39 . -1012) T) ((-800 . -727) 124719) ((-586 . -934) 124703) ((-532 . -976) T) ((-520 . -976) T) ((-463 . -976) T) ((-380 . -424) T) ((-332 . -124) T) ((-289 . -373) 124687) ((-286 . -373) 124648) ((-326 . -124) T) ((-318 . -124) T) ((-1128 . -945) NIL) ((-1007 . -560) 124615) ((-103 . -124) T) ((-1030 . -37) 124602) ((-849 . -1012) T) ((-706 . -1012) T) ((-611 . -1012) T) ((-637 . -135) T) ((-112 . -135) T) ((-1184 . -21) T) ((-1184 . -25) T) ((-1182 . -21) T) ((-1182 . -25) T) ((-604 . -975) 124586) ((-492 . -783) T) ((-468 . -783) T) ((-328 . -975) 124538) ((-325 . -975) 124490) ((-317 . -975) 124442) ((-226 . -1118) T) ((-225 . -1118) T) ((-239 . -975) 124285) ((-223 . -975) 124128) ((-604 . -107) 124107) ((-328 . -107) 124045) ((-325 . -107) 123983) ((-317 . -107) 123921) ((-239 . -107) 123750) ((-223 . -107) 123579) ((-753 . -1122) 123558) ((-567 . -384) 123542) ((-43 . -21) T) ((-43 . -25) T) ((-751 . -582) 123450) ((-753 . -512) 123429) ((-226 . -960) 123258) ((-225 . -960) 123087) ((-122 . -115) 123071) ((-838 . -975) 123036) ((-635 . -976) T) ((-648 . -97) T) ((-316 . -157) T) ((-140 . -21) T) ((-140 . -25) T) ((-86 . -560) 123018) ((-838 . -107) 122974) ((-39 . -653) 122919) ((-798 . -1012) T) ((-300 . -561) 122880) ((-300 . -560) 122792) ((-1127 . -727) 122745) ((-1127 . -731) 122698) ((-226 . -350) 122668) ((-225 . -350) 122638) ((-594 . -37) 122608) ((-555 . -33) T) ((-453 . -1024) 122539) ((-447 . -33) T) ((-1025 . -124) 122410) ((-891 . -25) 122221) ((-802 . -560) 122203) ((-891 . -21) 122158) ((-751 . -21) 122069) ((-751 . -25) 121921) ((-567 . -976) T) ((-1085 . -512) 121900) ((-1079 . -46) 121877) ((-328 . -969) T) ((-325 . -969) T) ((-453 . -23) 121748) ((-317 . -969) T) ((-239 . -969) T) ((-223 . -969) T) ((-1035 . -46) 121720) ((-113 . -976) T) ((-957 . -588) 121694) ((-885 . -33) T) ((-328 . -209) 121673) ((-328 . -219) T) ((-325 . -209) 121652) ((-223 . -299) 121609) ((-325 . -219) T) ((-317 . -209) 121588) ((-317 . -219) T) ((-239 . -299) 121560) ((-239 . -209) 121539) ((-1064 . -139) 121523) ((-226 . -828) 121456) ((-225 . -828) 121389) ((-997 . -783) T) ((-1131 . -1118) T) ((-387 . -1024) T) ((-973 . -23) T) ((-838 . -969) T) ((-295 . -588) 121371) ((-947 . -781) T) ((-1113 . -926) 121337) ((-1080 . -848) 121316) ((-1074 . -848) 121295) ((-838 . -219) T) ((-753 . -336) 121274) ((-358 . -23) T) ((-123 . -1012) 121252) ((-117 . -1012) 121230) ((-838 . -209) T) ((-1074 . -756) NIL) ((-352 . -588) 121195) ((-798 . -653) 121182) ((-966 . -139) 121147) ((-39 . -157) T) ((-630 . -384) 121129) ((-648 . -283) 121116) ((-770 . -588) 121076) ((-763 . -588) 121050) ((-292 . -25) T) ((-292 . -21) T) ((-598 . -260) 121029) ((-532 . -1012) T) ((-520 . -1012) T) ((-463 . -1012) T) ((-221 . -262) 121006) ((-286 . -207) 120967) ((-1079 . -814) NIL) ((-1035 . -814) 120826) ((-1079 . -960) 120709) ((-1035 . -960) 120594) ((-787 . -960) 120492) ((-717 . -260) 120419) ((-753 . -1024) T) ((-957 . -662) T) ((-551 . -591) 120403) ((-966 . -901) 120332) ((-923 . -97) T) ((-753 . -23) T) ((-648 . -1059) 120310) ((-630 . -976) T) ((-551 . -346) 120294) ((-324 . -424) T) ((-316 . -264) T) ((-1165 . -1012) T) ((-372 . -97) T) ((-263 . -21) T) ((-263 . -25) T) ((-334 . -662) T) ((-635 . -1012) T) ((-334 . -445) T) ((-1113 . -560) 120276) ((-1079 . -350) 120260) ((-1035 . -350) 120244) ((-947 . -384) 120206) ((-129 . -205) 120188) ((-352 . -729) T) ((-352 . -726) T) ((-798 . -157) T) ((-352 . -662) T) ((-647 . -560) 120170) ((-648 . -37) 119999) ((-1164 . -1162) 119983) ((-324 . -375) T) ((-1164 . -1012) 119933) ((-532 . -653) 119920) ((-520 . -653) 119907) ((-463 . -653) 119872) ((-289 . -572) 119851) ((-770 . -662) T) ((-763 . -662) T) ((-586 . -1118) T) ((-995 . -582) 119799) ((-1079 . -828) 119743) ((-1035 . -828) 119727) ((-602 . -975) 119711) ((-103 . -582) 119693) ((-453 . -124) 119564) ((-1085 . -1024) T) ((-880 . -46) 119533) ((-567 . -1012) T) ((-602 . -107) 119512) ((-300 . -262) 119489) ((-452 . -46) 119446) ((-1085 . -23) T) ((-113 . -1012) T) ((-98 . -97) 119424) ((-1174 . -1024) T) ((-973 . -124) T) ((-947 . -976) T) ((-755 . -960) 119408) ((-927 . -660) 119380) ((-1174 . -23) T) ((-635 . -653) 119345) ((-537 . -560) 119327) ((-359 . -960) 119311) ((-327 . -976) T) ((-358 . -124) T) ((-297 . -960) 119295) ((-201 . -814) 119277) ((-928 . -848) T) ((-89 . -33) T) ((-928 . -756) T) ((-842 . -848) T) ((-457 . -1122) T) ((-1099 . -560) 119259) ((-1017 . -1012) T) ((-194 . -1122) T) ((-923 . -283) 119224) ((-201 . -960) 119184) ((-39 . -264) T) ((-995 . -21) T) ((-995 . -25) T) ((-1030 . -764) T) ((-457 . -512) T) ((-332 . -25) T) ((-194 . -512) T) ((-332 . -21) T) ((-326 . -25) T) ((-326 . -21) T) ((-650 . -588) 119144) ((-318 . -25) T) ((-318 . -21) T) ((-103 . -25) T) ((-103 . -21) T) ((-47 . -976) T) ((-532 . -157) T) ((-520 . -157) T) ((-463 . -157) T) ((-598 . -560) 119126) ((-673 . -672) 119110) ((-309 . -560) 119092) ((-66 . -356) T) ((-66 . -368) T) ((-1014 . -102) 119076) ((-980 . -814) 119058) ((-880 . -814) 118983) ((-593 . -1024) T) ((-567 . -653) 118970) ((-452 . -814) NIL) ((-1054 . -97) T) ((-980 . -960) 118952) ((-92 . -560) 118934) ((-449 . -135) T) ((-880 . -960) 118816) ((-113 . -653) 118761) ((-593 . -23) T) ((-452 . -960) 118639) ((-1001 . -561) NIL) ((-1001 . -560) 118621) ((-717 . -561) NIL) ((-717 . -560) 118582) ((-715 . -561) 118217) ((-715 . -560) 118131) ((-1025 . -582) 118039) ((-433 . -560) 118021) ((-426 . -560) 118003) ((-426 . -561) 117864) ((-958 . -205) 117810) ((-122 . -33) T) ((-753 . -124) T) ((-800 . -837) 117789) ((-589 . -560) 117771) ((-328 . -1181) 117755) ((-325 . -1181) 117739) ((-317 . -1181) 117723) ((-123 . -481) 117656) ((-117 . -481) 117589) ((-478 . -727) T) ((-478 . -731) T) ((-477 . -729) T) ((-98 . -283) 117527) ((-198 . -97) 117505) ((-630 . -1012) T) ((-635 . -157) T) ((-800 . -588) 117457) ((-63 . -357) T) ((-250 . -560) 117439) ((-63 . -368) T) ((-880 . -350) 117423) ((-798 . -264) T) ((-49 . -560) 117405) ((-923 . -37) 117353) ((-533 . -560) 117335) ((-452 . -350) 117319) ((-533 . -561) 117301) ((-484 . -560) 117283) ((-838 . -1181) 117270) ((-799 . -1118) T) ((-637 . -424) T) ((-463 . -481) 117236) ((-457 . -336) T) ((-328 . -341) 117215) ((-325 . -341) 117194) ((-317 . -341) 117173) ((-194 . -336) T) ((-650 . -662) T) ((-112 . -424) T) ((-1185 . -1176) 117157) ((-799 . -812) 117134) ((-799 . -814) NIL) ((-891 . -783) 117033) ((-751 . -783) 116984) ((-594 . -596) 116968) ((-1105 . -33) T) ((-156 . -560) 116950) ((-1025 . -21) 116861) ((-1025 . -25) 116713) ((-799 . -960) 116690) ((-880 . -828) 116671) ((-1137 . -46) 116648) ((-838 . -341) T) ((-57 . -591) 116632) ((-483 . -591) 116616) ((-452 . -828) 116593) ((-69 . -413) T) ((-69 . -368) T) ((-464 . -591) 116577) ((-57 . -346) 116561) ((-567 . -157) T) ((-483 . -346) 116545) ((-464 . -346) 116529) ((-763 . -645) 116513) ((-1079 . -281) 116492) ((-1085 . -124) T) ((-113 . -157) T) ((-1054 . -283) 116430) ((-154 . -1118) T) ((-578 . -680) 116414) ((-554 . -680) 116398) ((-1174 . -124) T) ((-1149 . -848) 116377) ((-1128 . -848) 116356) ((-1128 . -756) NIL) ((-630 . -653) 116306) ((-1127 . -837) 116259) ((-947 . -1012) T) ((-799 . -350) 116236) ((-799 . -311) 116213) ((-833 . -1024) T) ((-154 . -812) 116197) ((-154 . -814) 116122) ((-457 . -1024) T) ((-327 . -1012) T) ((-194 . -1024) T) ((-74 . -413) T) ((-74 . -368) T) ((-154 . -960) 116020) ((-292 . -783) T) ((-1164 . -481) 115953) ((-1148 . -588) 115850) ((-1127 . -588) 115720) ((-800 . -729) 115699) ((-800 . -726) 115678) ((-800 . -662) T) ((-457 . -23) T) ((-199 . -560) 115660) ((-158 . -424) T) ((-198 . -283) 115598) ((-84 . -413) T) ((-84 . -368) T) ((-194 . -23) T) ((-1186 . -1179) 115577) ((-532 . -264) T) ((-520 . -264) T) ((-615 . -960) 115561) ((-463 . -264) T) ((-128 . -442) 115516) ((-47 . -1012) T) ((-648 . -207) 115500) ((-799 . -828) NIL) ((-1137 . -814) NIL) ((-817 . -97) T) ((-813 . -97) T) ((-361 . -1012) T) ((-154 . -350) 115484) ((-154 . -311) 115468) ((-1137 . -960) 115351) ((-788 . -960) 115249) ((-1050 . -97) T) ((-593 . -124) T) ((-113 . -481) 115157) ((-602 . -727) 115136) ((-602 . -731) 115115) ((-527 . -960) 115097) ((-268 . -1171) 115067) ((-794 . -97) T) ((-890 . -512) 115046) ((-1113 . -975) 114929) ((-453 . -582) 114837) ((-832 . -1012) T) ((-947 . -653) 114774) ((-647 . -975) 114739) ((-551 . -33) T) ((-1055 . -1118) T) ((-1113 . -107) 114608) ((-446 . -588) 114505) ((-327 . -653) 114450) ((-154 . -828) 114409) ((-635 . -264) T) ((-630 . -157) T) ((-647 . -107) 114365) ((-1190 . -976) T) ((-1137 . -350) 114349) ((-391 . -1122) 114327) ((-286 . -781) NIL) ((-391 . -512) T) ((-201 . -281) T) ((-1127 . -726) 114280) ((-1127 . -729) 114233) ((-1148 . -662) T) ((-1127 . -662) T) ((-47 . -653) 114198) ((-201 . -945) T) ((-324 . -1171) 114175) ((-1150 . -384) 114141) ((-654 . -662) T) ((-1137 . -828) 114085) ((-108 . -560) 114067) ((-108 . -561) 114049) ((-654 . -445) T) ((-453 . -21) 113960) ((-123 . -459) 113944) ((-117 . -459) 113928) ((-453 . -25) 113780) ((-567 . -264) T) ((-537 . -975) 113755) ((-410 . -1012) T) ((-980 . -281) T) ((-113 . -264) T) ((-1016 . -97) T) ((-927 . -97) T) ((-537 . -107) 113723) ((-1050 . -283) 113661) ((-1113 . -969) T) ((-980 . -945) T) ((-64 . -1118) T) ((-973 . -25) T) ((-973 . -21) T) ((-647 . -969) T) ((-358 . -21) T) ((-358 . -25) T) ((-630 . -481) NIL) ((-947 . -157) T) ((-647 . -219) T) ((-980 . -505) T) ((-470 . -97) T) ((-327 . -157) T) ((-316 . -560) 113643) ((-367 . -560) 113625) ((-446 . -662) T) ((-1030 . -781) T) ((-820 . -960) 113593) ((-103 . -783) T) ((-598 . -975) 113577) ((-457 . -124) T) ((-1150 . -976) T) ((-194 . -124) T) ((-1064 . -97) 113555) ((-94 . -1012) T) ((-221 . -606) 113539) ((-221 . -591) 113523) ((-598 . -107) 113502) ((-289 . -384) 113486) ((-221 . -346) 113470) ((-1067 . -211) 113417) ((-923 . -207) 113401) ((-72 . -1118) T) ((-47 . -157) T) ((-637 . -360) T) ((-637 . -131) T) ((-1185 . -97) T) ((-1001 . -975) 113244) ((-239 . -837) 113223) ((-223 . -837) 113202) ((-717 . -975) 113025) ((-715 . -975) 112868) ((-555 . -1118) T) ((-1072 . -560) 112850) ((-1001 . -107) 112679) ((-966 . -97) T) ((-447 . -1118) T) ((-433 . -975) 112650) ((-426 . -975) 112493) ((-604 . -588) 112477) ((-799 . -281) T) ((-717 . -107) 112286) ((-715 . -107) 112115) ((-328 . -588) 112067) ((-325 . -588) 112019) ((-317 . -588) 111971) ((-239 . -588) 111896) ((-223 . -588) 111821) ((-1066 . -783) T) ((-1002 . -960) 111805) ((-433 . -107) 111766) ((-426 . -107) 111595) ((-991 . -960) 111572) ((-924 . -33) T) ((-892 . -560) 111533) ((-885 . -1118) T) ((-122 . -934) 111517) ((-890 . -1024) T) ((-799 . -945) NIL) ((-671 . -1024) T) ((-651 . -1024) T) ((-1164 . -459) 111501) ((-1050 . -37) 111461) ((-890 . -23) T) ((-776 . -97) T) ((-753 . -21) T) ((-753 . -25) T) ((-671 . -23) T) ((-651 . -23) T) ((-106 . -601) T) ((-838 . -588) 111426) ((-533 . -975) 111391) ((-484 . -975) 111336) ((-203 . -55) 111294) ((-425 . -23) T) ((-380 . -97) T) ((-238 . -97) T) ((-630 . -264) T) ((-794 . -37) 111264) ((-533 . -107) 111220) ((-484 . -107) 111149) ((-391 . -1024) T) ((-289 . -976) 111040) ((-286 . -976) T) ((-598 . -969) T) ((-1190 . -1012) T) ((-154 . -281) 110971) ((-391 . -23) T) ((-39 . -560) 110953) ((-39 . -561) 110937) ((-103 . -917) 110919) ((-112 . -797) 110903) ((-47 . -481) 110869) ((-1105 . -934) 110853) ((-1088 . -560) 110835) ((-1092 . -33) T) ((-849 . -560) 110817) ((-1025 . -783) 110768) ((-706 . -560) 110750) ((-611 . -560) 110732) ((-1064 . -283) 110670) ((-450 . -33) T) ((-1005 . -1118) T) ((-449 . -424) T) ((-1001 . -969) T) ((-1049 . -33) T) ((-717 . -969) T) ((-715 . -969) T) ((-587 . -211) 110654) ((-575 . -211) 110600) ((-1137 . -281) 110579) ((-1001 . -299) 110540) ((-426 . -969) T) ((-1085 . -21) T) ((-1001 . -209) 110519) ((-717 . -299) 110496) ((-717 . -209) T) ((-715 . -299) 110468) ((-300 . -591) 110452) ((-667 . -1122) 110431) ((-1085 . -25) T) ((-57 . -33) T) ((-485 . -33) T) ((-483 . -33) T) ((-426 . -299) 110410) ((-300 . -346) 110394) ((-465 . -33) T) ((-464 . -33) T) ((-927 . -1059) NIL) ((-578 . -97) T) ((-554 . -97) T) ((-667 . -512) 110325) ((-328 . -662) T) ((-325 . -662) T) ((-317 . -662) T) ((-239 . -662) T) ((-223 . -662) T) ((-966 . -283) 110233) ((-829 . -1012) 110211) ((-49 . -969) T) ((-1174 . -21) T) ((-1174 . -25) T) ((-1081 . -512) 110190) ((-1080 . -1122) 110169) ((-533 . -969) T) ((-484 . -969) T) ((-1074 . -1122) 110148) ((-334 . -960) 110132) ((-295 . -960) 110116) ((-947 . -264) T) ((-352 . -814) 110098) ((-1080 . -512) 110049) ((-1074 . -512) 110000) ((-927 . -37) 109945) ((-735 . -1024) T) ((-838 . -662) T) ((-533 . -219) T) ((-533 . -209) T) ((-484 . -209) T) ((-484 . -219) T) ((-1036 . -512) 109924) ((-327 . -264) T) ((-587 . -631) 109908) ((-352 . -960) 109868) ((-1030 . -976) T) ((-98 . -121) 109852) ((-735 . -23) T) ((-1164 . -260) 109829) ((-380 . -283) 109794) ((-1184 . -1179) 109770) ((-1182 . -1179) 109749) ((-1150 . -1012) T) ((-798 . -560) 109731) ((-770 . -960) 109700) ((-181 . -722) T) ((-180 . -722) T) ((-179 . -722) T) ((-178 . -722) T) ((-177 . -722) T) ((-176 . -722) T) ((-175 . -722) T) ((-174 . -722) T) ((-173 . -722) T) ((-172 . -722) T) ((-463 . -926) T) ((-249 . -772) T) ((-248 . -772) T) ((-247 . -772) T) ((-246 . -772) T) ((-47 . -264) T) ((-245 . -772) T) ((-244 . -772) T) ((-243 . -772) T) ((-171 . -722) T) ((-559 . -783) T) ((-594 . -384) 109684) ((-106 . -783) T) ((-593 . -21) T) ((-593 . -25) T) ((-1185 . -37) 109654) ((-113 . -260) 109605) ((-1164 . -19) 109589) ((-1164 . -553) 109566) ((-1175 . -1012) T) ((-992 . -1012) T) ((-912 . -1012) T) ((-890 . -124) T) ((-673 . -1012) T) ((-671 . -124) T) ((-651 . -124) T) ((-478 . -728) T) ((-380 . -1059) 109544) ((-425 . -124) T) ((-478 . -729) T) ((-199 . -969) T) ((-268 . -97) 109327) ((-129 . -1012) T) ((-635 . -926) T) ((-89 . -1118) T) ((-123 . -560) 109259) ((-117 . -560) 109191) ((-1190 . -157) T) ((-1080 . -336) 109170) ((-1074 . -336) 109149) ((-289 . -1012) T) ((-391 . -124) T) ((-286 . -1012) T) ((-380 . -37) 109101) ((-1043 . -97) T) ((-1150 . -653) 108993) ((-594 . -976) T) ((-292 . -133) 108972) ((-292 . -135) 108951) ((-128 . -1012) T) ((-110 . -1012) T) ((-790 . -97) T) ((-532 . -560) 108933) ((-520 . -561) 108832) ((-520 . -560) 108814) ((-463 . -560) 108796) ((-463 . -561) 108741) ((-455 . -23) T) ((-453 . -783) 108692) ((-457 . -582) 108674) ((-194 . -582) 108656) ((-201 . -377) T) ((-602 . -588) 108640) ((-1079 . -848) 108619) ((-667 . -1024) T) ((-324 . -97) T) ((-754 . -783) T) ((-667 . -23) T) ((-316 . -975) 108564) ((-1066 . -1065) T) ((-1055 . -102) 108548) ((-1081 . -1024) T) ((-1080 . -1024) T) ((-482 . -960) 108532) ((-1074 . -1024) T) ((-1036 . -1024) T) ((-316 . -107) 108461) ((-928 . -1122) T) ((-122 . -1118) T) ((-842 . -1122) T) ((-630 . -260) NIL) ((-1165 . -560) 108443) ((-1081 . -23) T) ((-1080 . -23) T) ((-928 . -512) T) ((-1074 . -23) T) ((-842 . -512) T) ((-1050 . -207) 108427) ((-224 . -560) 108409) ((-1036 . -23) T) ((-990 . -1012) T) ((-735 . -124) T) ((-289 . -653) 108319) ((-286 . -653) 108248) ((-635 . -560) 108230) ((-635 . -561) 108175) ((-380 . -373) 108159) ((-411 . -1012) T) ((-457 . -25) T) ((-457 . -21) T) ((-1030 . -1012) T) ((-194 . -25) T) ((-194 . -21) T) ((-648 . -384) 108143) ((-650 . -960) 108112) ((-1164 . -560) 108024) ((-1164 . -561) 107985) ((-1150 . -157) T) ((-221 . -33) T) ((-854 . -899) T) ((-1105 . -1118) T) ((-602 . -726) 107964) ((-602 . -729) 107943) ((-371 . -368) T) ((-489 . -97) 107921) ((-958 . -1012) T) ((-198 . -919) 107905) ((-472 . -97) T) ((-567 . -560) 107887) ((-44 . -783) NIL) ((-567 . -561) 107864) ((-958 . -557) 107839) ((-829 . -481) 107772) ((-316 . -969) T) ((-113 . -561) NIL) ((-113 . -560) 107754) ((-800 . -1118) T) ((-610 . -390) 107738) ((-610 . -1033) 107683) ((-468 . -139) 107665) ((-316 . -209) T) ((-316 . -219) T) ((-39 . -975) 107610) ((-800 . -812) 107594) ((-800 . -814) 107519) ((-648 . -976) T) ((-630 . -926) NIL) ((-1148 . -46) 107489) ((-1127 . -46) 107466) ((-1049 . -934) 107437) ((-201 . -848) T) ((-39 . -107) 107366) ((-800 . -960) 107233) ((-1030 . -653) 107220) ((-1017 . -560) 107202) ((-995 . -135) 107181) ((-995 . -133) 107132) ((-928 . -336) T) ((-292 . -1107) 107098) ((-352 . -281) T) ((-292 . -1104) 107064) ((-289 . -157) 107043) ((-286 . -157) T) ((-927 . -207) 107020) ((-842 . -336) T) ((-533 . -1181) 107007) ((-484 . -1181) 106984) ((-332 . -135) 106963) ((-332 . -133) 106914) ((-326 . -135) 106893) ((-326 . -133) 106844) ((-555 . -1095) 106820) ((-318 . -135) 106799) ((-318 . -133) 106750) ((-292 . -34) 106716) ((-447 . -1095) 106695) ((0 . |EnumerationCategory|) T) ((-292 . -91) 106661) ((-352 . -945) T) ((-103 . -135) T) ((-103 . -133) NIL) ((-44 . -211) 106611) ((-594 . -1012) T) ((-555 . -102) 106558) ((-455 . -124) T) ((-447 . -102) 106508) ((-216 . -1024) 106439) ((-800 . -350) 106423) ((-800 . -311) 106407) ((-216 . -23) 106278) ((-980 . -848) T) ((-980 . -756) T) ((-533 . -341) T) ((-484 . -341) T) ((-324 . -1059) T) ((-300 . -33) T) ((-43 . -390) 106262) ((-801 . -1118) T) ((-363 . -680) 106246) ((-1175 . -481) 106179) ((-667 . -124) T) ((-1156 . -512) 106158) ((-1149 . -1122) 106137) ((-1149 . -512) 106088) ((-673 . -481) 106021) ((-1128 . -1122) 106000) ((-1128 . -512) 105951) ((-821 . -1012) T) ((-132 . -777) T) ((-1127 . -1118) 105930) ((-1127 . -814) 105803) ((-1127 . -812) 105773) ((-489 . -283) 105711) ((-1081 . -124) T) ((-129 . -481) NIL) ((-1080 . -124) T) ((-1074 . -124) T) ((-1036 . -124) T) ((-947 . -926) T) ((-324 . -37) 105676) ((-928 . -1024) T) ((-842 . -1024) T) ((-80 . -560) 105658) ((-39 . -969) T) ((-798 . -975) 105645) ((-928 . -23) T) ((-800 . -828) 105604) ((-637 . -97) T) ((-927 . -322) NIL) ((-551 . -1118) T) ((-896 . -23) T) ((-842 . -23) T) ((-798 . -107) 105589) ((-400 . -1024) T) ((-446 . -46) 105559) ((-126 . -97) T) ((-39 . -209) 105531) ((-39 . -219) T) ((-112 . -97) T) ((-546 . -512) 105510) ((-545 . -512) 105489) ((-630 . -560) 105471) ((-630 . -561) 105379) ((-289 . -481) 105345) ((-286 . -481) 105237) ((-1148 . -960) 105221) ((-1127 . -960) 105010) ((-923 . -384) 104994) ((-400 . -23) T) ((-1030 . -157) T) ((-1150 . -264) T) ((-594 . -653) 104964) ((-132 . -1012) T) ((-47 . -926) T) ((-380 . -207) 104948) ((-269 . -211) 104898) ((-799 . -848) T) ((-799 . -756) NIL) ((-793 . -783) T) ((-1127 . -311) 104868) ((-1127 . -350) 104838) ((-198 . -1031) 104822) ((-1164 . -262) 104799) ((-1113 . -588) 104724) ((-890 . -21) T) ((-890 . -25) T) ((-671 . -21) T) ((-671 . -25) T) ((-651 . -21) T) ((-651 . -25) T) ((-647 . -588) 104689) ((-425 . -21) T) ((-425 . -25) T) ((-312 . -97) T) ((-158 . -97) T) ((-923 . -976) T) ((-798 . -969) T) ((-709 . -97) T) ((-1149 . -336) 104668) ((-1148 . -828) 104574) ((-1128 . -336) 104553) ((-1127 . -828) 104404) ((-947 . -560) 104386) ((-380 . -764) 104339) ((-1081 . -461) 104305) ((-154 . -848) 104236) ((-1080 . -461) 104202) ((-1074 . -461) 104168) ((-648 . -1012) T) ((-1036 . -461) 104134) ((-532 . -975) 104121) ((-520 . -975) 104108) ((-463 . -975) 104073) ((-289 . -264) 104052) ((-286 . -264) T) ((-327 . -560) 104034) ((-391 . -25) T) ((-391 . -21) T) ((-94 . -260) 104013) ((-532 . -107) 103998) ((-520 . -107) 103983) ((-463 . -107) 103939) ((-1083 . -814) 103906) ((-829 . -459) 103890) ((-47 . -560) 103872) ((-47 . -561) 103817) ((-216 . -124) 103688) ((-1137 . -848) 103667) ((-752 . -1122) 103646) ((-958 . -481) 103490) ((-361 . -560) 103472) ((-752 . -512) 103403) ((-537 . -588) 103378) ((-239 . -46) 103350) ((-223 . -46) 103307) ((-492 . -476) 103284) ((-924 . -1118) T) ((-635 . -975) 103249) ((-1156 . -1024) T) ((-1149 . -1024) T) ((-1128 . -1024) T) ((-927 . -343) 103221) ((-108 . -341) T) ((-446 . -828) 103127) ((-1156 . -23) T) ((-1149 . -23) T) ((-832 . -560) 103109) ((-89 . -102) 103093) ((-1113 . -662) T) ((-833 . -783) 103044) ((-637 . -1059) T) ((-635 . -107) 103000) ((-1128 . -23) T) ((-546 . -1024) T) ((-545 . -1024) T) ((-648 . -653) 102829) ((-647 . -662) T) ((-1030 . -264) T) ((-928 . -124) T) ((-457 . -783) T) ((-896 . -124) T) ((-842 . -124) T) ((-532 . -969) T) ((-194 . -783) T) ((-520 . -969) T) ((-735 . -25) T) ((-735 . -21) T) ((-463 . -969) T) ((-546 . -23) T) ((-316 . -1181) 102806) ((-292 . -424) 102785) ((-312 . -283) 102772) ((-545 . -23) T) ((-400 . -124) T) ((-598 . -588) 102746) ((-221 . -934) 102730) ((-800 . -281) T) ((-1186 . -1176) 102714) ((-637 . -37) 102701) ((-520 . -209) T) ((-463 . -219) T) ((-463 . -209) T) ((-706 . -727) T) ((-706 . -731) T) ((-1058 . -211) 102651) ((-1001 . -837) 102630) ((-112 . -37) 102617) ((-187 . -736) T) ((-186 . -736) T) ((-185 . -736) T) ((-184 . -736) T) ((-800 . -945) 102596) ((-1175 . -459) 102580) ((-717 . -837) 102559) ((-715 . -837) 102538) ((-1092 . -1118) T) ((-426 . -837) 102517) ((-673 . -459) 102501) ((-1001 . -588) 102426) ((-717 . -588) 102351) ((-567 . -975) 102338) ((-450 . -1118) T) ((-316 . -341) T) ((-129 . -459) 102320) ((-715 . -588) 102245) ((-1049 . -1118) T) ((-433 . -588) 102216) ((-239 . -814) 102075) ((-223 . -814) NIL) ((-113 . -975) 102020) ((-426 . -588) 101945) ((-604 . -960) 101922) ((-567 . -107) 101907) ((-328 . -960) 101891) ((-325 . -960) 101875) ((-317 . -960) 101859) ((-239 . -960) 101705) ((-223 . -960) 101583) ((-113 . -107) 101512) ((-57 . -1118) T) ((-485 . -1118) T) ((-483 . -1118) T) ((-465 . -1118) T) ((-464 . -1118) T) ((-410 . -560) 101494) ((-407 . -560) 101476) ((-3 . -97) T) ((-950 . -1112) 101445) ((-769 . -97) T) ((-626 . -55) 101403) ((-635 . -969) T) ((-49 . -588) 101377) ((-263 . -424) T) ((-448 . -1112) 101346) ((0 . -97) T) ((-533 . -588) 101311) ((-484 . -588) 101256) ((-48 . -97) T) ((-838 . -960) 101243) ((-635 . -219) T) ((-995 . -382) 101222) ((-667 . -582) 101170) ((-923 . -1012) T) ((-648 . -157) 101061) ((-457 . -917) 101043) ((-239 . -350) 101027) ((-223 . -350) 101011) ((-372 . -1012) T) ((-312 . -37) 100995) ((-949 . -97) 100973) ((-194 . -917) 100955) ((-158 . -37) 100887) ((-1148 . -281) 100866) ((-1127 . -281) 100845) ((-598 . -662) T) ((-94 . -560) 100827) ((-1074 . -582) 100779) ((-455 . -25) T) ((-455 . -21) T) ((-1127 . -945) 100732) ((-567 . -969) T) ((-352 . -377) T) ((-363 . -97) T) ((-239 . -828) 100678) ((-223 . -828) 100655) ((-113 . -969) T) ((-752 . -1024) T) ((-1001 . -662) T) ((-567 . -209) 100634) ((-565 . -97) T) ((-717 . -662) T) ((-715 . -662) T) ((-386 . -1024) T) ((-113 . -219) T) ((-39 . -341) NIL) ((-113 . -209) NIL) ((-426 . -662) T) ((-752 . -23) T) ((-667 . -25) T) ((-667 . -21) T) ((-639 . -783) T) ((-992 . -260) 100613) ((-76 . -369) T) ((-76 . -368) T) ((-630 . -975) 100563) ((-1156 . -124) T) ((-1149 . -124) T) ((-1128 . -124) T) ((-1050 . -384) 100547) ((-578 . -340) 100479) ((-554 . -340) 100411) ((-1064 . -1057) 100395) ((-98 . -1012) 100373) ((-1081 . -25) T) ((-1081 . -21) T) ((-1080 . -21) T) ((-923 . -653) 100321) ((-199 . -588) 100288) ((-630 . -107) 100222) ((-49 . -662) T) ((-1080 . -25) T) ((-324 . -322) T) ((-1074 . -21) T) ((-995 . -424) 100173) ((-1074 . -25) T) ((-648 . -481) 100121) ((-533 . -662) T) ((-484 . -662) T) ((-1036 . -21) T) ((-1036 . -25) T) ((-546 . -124) T) ((-545 . -124) T) ((-332 . -424) T) ((-326 . -424) T) ((-318 . -424) T) ((-446 . -281) 100100) ((-286 . -260) 100035) ((-103 . -424) T) ((-77 . -413) T) ((-77 . -368) T) ((-449 . -97) T) ((-1190 . -560) 100017) ((-1190 . -561) 99999) ((-995 . -375) 99978) ((-958 . -459) 99909) ((-520 . -731) T) ((-520 . -727) T) ((-981 . -211) 99855) ((-332 . -375) 99806) ((-326 . -375) 99757) ((-318 . -375) 99708) ((-1177 . -1024) T) ((-1177 . -23) T) ((-1166 . -97) T) ((-159 . -560) 99690) ((-1050 . -976) T) ((-610 . -680) 99674) ((-1085 . -133) 99653) ((-1085 . -135) 99632) ((-1054 . -1012) T) ((-1054 . -988) 99601) ((-67 . -1118) T) ((-947 . -975) 99538) ((-794 . -976) T) ((-216 . -582) 99446) ((-630 . -969) T) ((-327 . -975) 99391) ((-59 . -1118) T) ((-947 . -107) 99307) ((-829 . -560) 99239) ((-630 . -219) T) ((-630 . -209) NIL) ((-776 . -781) 99218) ((-635 . -731) T) ((-635 . -727) T) ((-927 . -384) 99195) ((-327 . -107) 99124) ((-352 . -848) T) ((-380 . -781) 99103) ((-648 . -264) 99014) ((-199 . -662) T) ((-1156 . -461) 98980) ((-1149 . -461) 98946) ((-1128 . -461) 98912) ((-289 . -926) 98891) ((-198 . -1012) 98869) ((-292 . -898) 98832) ((-100 . -97) T) ((-47 . -975) 98797) ((-1186 . -97) T) ((-354 . -97) T) ((-47 . -107) 98753) ((-928 . -582) 98735) ((-1150 . -560) 98717) ((-492 . -97) T) ((-468 . -97) T) ((-1043 . -1044) 98701) ((-140 . -1171) 98685) ((-221 . -1118) T) ((-1079 . -1122) 98664) ((-1035 . -1122) 98643) ((-216 . -21) 98554) ((-216 . -25) 98406) ((-123 . -115) 98390) ((-117 . -115) 98374) ((-43 . -680) 98358) ((-1079 . -512) 98269) ((-1035 . -512) 98200) ((-958 . -260) 98175) ((-752 . -124) T) ((-113 . -731) NIL) ((-113 . -727) NIL) ((-328 . -281) T) ((-325 . -281) T) ((-317 . -281) T) ((-1007 . -1118) T) ((-226 . -1024) 98106) ((-225 . -1024) 98037) ((-947 . -969) T) ((-927 . -976) T) ((-316 . -588) 97982) ((-565 . -37) 97966) ((-1175 . -560) 97928) ((-1175 . -561) 97889) ((-992 . -560) 97871) ((-947 . -219) T) ((-327 . -969) T) ((-751 . -1171) 97841) ((-226 . -23) T) ((-225 . -23) T) ((-912 . -560) 97823) ((-673 . -561) 97784) ((-673 . -560) 97766) ((-735 . -783) 97745) ((-923 . -481) 97657) ((-327 . -209) T) ((-327 . -219) T) ((-1067 . -139) 97604) ((-928 . -25) T) ((-129 . -560) 97586) ((-129 . -561) 97545) ((-838 . -281) T) ((-928 . -21) T) ((-896 . -25) T) ((-842 . -21) T) ((-842 . -25) T) ((-400 . -21) T) ((-400 . -25) T) ((-776 . -384) 97529) ((-47 . -969) T) ((-1184 . -1176) 97513) ((-1182 . -1176) 97497) ((-958 . -553) 97472) ((-289 . -561) 97333) ((-289 . -560) 97315) ((-286 . -561) NIL) ((-286 . -560) 97297) ((-47 . -219) T) ((-47 . -209) T) ((-594 . -260) 97258) ((-506 . -211) 97208) ((-128 . -560) 97190) ((-110 . -560) 97172) ((-449 . -37) 97137) ((-1186 . -1183) 97116) ((-1177 . -124) T) ((-1185 . -976) T) ((-997 . -97) T) ((-86 . -1118) T) ((-468 . -283) NIL) ((-924 . -102) 97100) ((-817 . -1012) T) ((-813 . -1012) T) ((-1164 . -591) 97084) ((-1164 . -346) 97068) ((-300 . -1118) T) ((-543 . -783) T) ((-1050 . -1012) T) ((-1050 . -972) 97008) ((-98 . -481) 96941) ((-855 . -560) 96923) ((-316 . -662) T) ((-30 . -560) 96905) ((-794 . -1012) T) ((-776 . -976) 96884) ((-39 . -588) 96829) ((-201 . -1122) T) ((-380 . -976) T) ((-1066 . -139) 96811) ((-923 . -264) 96762) ((-201 . -512) T) ((-292 . -1145) 96746) ((-292 . -1142) 96716) ((-1092 . -1095) 96695) ((-990 . -560) 96677) ((-587 . -139) 96661) ((-575 . -139) 96607) ((-1092 . -102) 96557) ((-450 . -1095) 96536) ((-457 . -135) T) ((-457 . -133) NIL) ((-1030 . -561) 96451) ((-411 . -560) 96433) ((-194 . -135) T) ((-194 . -133) NIL) ((-1030 . -560) 96415) ((-51 . -97) T) ((-1128 . -582) 96367) ((-450 . -102) 96317) ((-918 . -23) T) ((-1186 . -37) 96287) ((-1079 . -1024) T) ((-1035 . -1024) T) ((-980 . -1122) T) ((-787 . -1024) T) ((-880 . -1122) 96266) ((-452 . -1122) 96245) ((-667 . -783) 96224) ((-980 . -512) T) ((-880 . -512) 96155) ((-1079 . -23) T) ((-1035 . -23) T) ((-787 . -23) T) ((-452 . -512) 96086) ((-1050 . -653) 96018) ((-1054 . -481) 95951) ((-958 . -561) NIL) ((-958 . -560) 95933) ((-794 . -653) 95903) ((-1113 . -46) 95872) ((-226 . -124) T) ((-225 . -124) T) ((-1016 . -1012) T) ((-927 . -1012) T) ((-60 . -560) 95854) ((-1074 . -783) NIL) ((-947 . -727) T) ((-947 . -731) T) ((-1190 . -975) 95841) ((-1190 . -107) 95826) ((-798 . -588) 95813) ((-1156 . -25) T) ((-1156 . -21) T) ((-1149 . -21) T) ((-1149 . -25) T) ((-1128 . -21) T) ((-1128 . -25) T) ((-950 . -139) 95797) ((-800 . -756) 95776) ((-800 . -848) T) ((-648 . -260) 95703) ((-546 . -21) T) ((-546 . -25) T) ((-545 . -21) T) ((-39 . -662) T) ((-198 . -481) 95636) ((-545 . -25) T) ((-448 . -139) 95620) ((-435 . -139) 95604) ((-849 . -662) T) ((-706 . -728) T) ((-706 . -729) T) ((-470 . -1012) T) ((-706 . -662) T) ((-201 . -336) T) ((-1064 . -1012) 95582) ((-799 . -1122) T) ((-594 . -560) 95564) ((-799 . -512) T) ((-630 . -341) NIL) ((-332 . -1171) 95548) ((-610 . -97) T) ((-326 . -1171) 95532) ((-318 . -1171) 95516) ((-1185 . -1012) T) ((-486 . -783) 95495) ((-753 . -424) 95474) ((-966 . -1012) T) ((-966 . -988) 95403) ((-950 . -901) 95372) ((-755 . -1024) T) ((-927 . -653) 95317) ((-359 . -1024) T) ((-448 . -901) 95286) ((-435 . -901) 95255) ((-106 . -139) 95237) ((-71 . -560) 95219) ((-821 . -560) 95201) ((-995 . -660) 95180) ((-1190 . -969) T) ((-752 . -582) 95128) ((-268 . -976) 95071) ((-154 . -1122) 94976) ((-201 . -1024) T) ((-297 . -23) T) ((-1074 . -917) 94928) ((-776 . -1012) T) ((-1036 . -676) 94907) ((-1150 . -975) 94812) ((-1148 . -848) 94791) ((-798 . -662) T) ((-154 . -512) 94702) ((-1127 . -848) 94681) ((-532 . -588) 94668) ((-380 . -1012) T) ((-520 . -588) 94655) ((-238 . -1012) T) ((-463 . -588) 94620) ((-201 . -23) T) ((-1127 . -756) 94573) ((-1184 . -97) T) ((-327 . -1181) 94550) ((-1182 . -97) T) ((-1150 . -107) 94442) ((-132 . -560) 94424) ((-918 . -124) T) ((-43 . -97) T) ((-216 . -783) 94375) ((-1137 . -1122) 94354) ((-98 . -459) 94338) ((-1185 . -653) 94308) ((-1001 . -46) 94269) ((-980 . -1024) T) ((-880 . -1024) T) ((-123 . -33) T) ((-117 . -33) T) ((-717 . -46) 94246) ((-715 . -46) 94218) ((-1137 . -512) 94129) ((-327 . -341) T) ((-452 . -1024) T) ((-1079 . -124) T) ((-1035 . -124) T) ((-426 . -46) 94108) ((-799 . -336) T) ((-787 . -124) T) ((-140 . -97) T) ((-980 . -23) T) ((-880 . -23) T) ((-527 . -512) T) ((-752 . -25) T) ((-752 . -21) T) ((-1050 . -481) 94041) ((-537 . -960) 94025) ((-452 . -23) T) ((-324 . -976) T) ((-1113 . -828) 94006) ((-610 . -283) 93944) ((-1025 . -1171) 93914) ((-635 . -588) 93879) ((-927 . -157) T) ((-890 . -133) 93858) ((-578 . -1012) T) ((-554 . -1012) T) ((-890 . -135) 93837) ((-928 . -783) T) ((-671 . -135) 93816) ((-671 . -133) 93795) ((-896 . -783) T) ((-446 . -848) 93774) ((-289 . -975) 93684) ((-286 . -975) 93613) ((-923 . -260) 93571) ((-380 . -653) 93523) ((-637 . -781) T) ((-1150 . -969) T) ((-289 . -107) 93419) ((-286 . -107) 93332) ((-891 . -97) T) ((-751 . -97) 93143) ((-648 . -561) NIL) ((-648 . -560) 93125) ((-598 . -960) 93023) ((-1150 . -299) 92967) ((-958 . -262) 92942) ((-532 . -662) T) ((-520 . -729) T) ((-154 . -336) 92893) ((-520 . -726) T) ((-520 . -662) T) ((-463 . -662) T) ((-1054 . -459) 92877) ((-1001 . -814) NIL) ((-799 . -1024) T) ((-113 . -837) NIL) ((-1184 . -1183) 92853) ((-1182 . -1183) 92832) ((-717 . -814) NIL) ((-715 . -814) 92691) ((-1177 . -25) T) ((-1177 . -21) T) ((-1116 . -97) 92669) ((-1018 . -368) T) ((-567 . -588) 92656) ((-426 . -814) NIL) ((-614 . -97) 92634) ((-1001 . -960) 92463) ((-799 . -23) T) ((-717 . -960) 92325) ((-715 . -960) 92184) ((-113 . -588) 92129) ((-426 . -960) 92007) ((-589 . -960) 91991) ((-570 . -97) T) ((-198 . -459) 91975) ((-1164 . -33) T) ((-578 . -653) 91959) ((-554 . -653) 91943) ((-610 . -37) 91903) ((-292 . -97) T) ((-83 . -560) 91885) ((-49 . -960) 91869) ((-1030 . -975) 91856) ((-1001 . -350) 91840) ((-58 . -55) 91802) ((-635 . -729) T) ((-635 . -726) T) ((-533 . -960) 91789) ((-484 . -960) 91766) ((-635 . -662) T) ((-289 . -969) 91657) ((-297 . -124) T) ((-286 . -969) T) ((-154 . -1024) T) ((-717 . -350) 91641) ((-715 . -350) 91625) ((-44 . -139) 91575) ((-928 . -917) 91557) ((-426 . -350) 91541) ((-380 . -157) T) ((-289 . -219) 91520) ((-286 . -219) T) ((-286 . -209) NIL) ((-268 . -1012) 91303) ((-201 . -124) T) ((-1030 . -107) 91288) ((-154 . -23) T) ((-735 . -135) 91267) ((-735 . -133) 91246) ((-226 . -582) 91154) ((-225 . -582) 91062) ((-292 . -258) 91028) ((-1064 . -481) 90961) ((-1043 . -1012) T) ((-201 . -978) T) ((-751 . -283) 90899) ((-1001 . -828) 90834) ((-717 . -828) 90778) ((-715 . -828) 90762) ((-1184 . -37) 90732) ((-1182 . -37) 90702) ((-1137 . -1024) T) ((-788 . -1024) T) ((-426 . -828) 90679) ((-790 . -1012) T) ((-1137 . -23) T) ((-527 . -1024) T) ((-788 . -23) T) ((-567 . -662) T) ((-328 . -848) T) ((-325 . -848) T) ((-263 . -97) T) ((-317 . -848) T) ((-980 . -124) T) ((-880 . -124) T) ((-113 . -729) NIL) ((-113 . -726) NIL) ((-113 . -662) T) ((-630 . -837) NIL) ((-966 . -481) 90580) ((-452 . -124) T) ((-527 . -23) T) ((-614 . -283) 90518) ((-578 . -697) T) ((-554 . -697) T) ((-1128 . -783) NIL) ((-927 . -264) T) ((-226 . -21) T) ((-630 . -588) 90468) ((-324 . -1012) T) ((-226 . -25) T) ((-225 . -21) T) ((-225 . -25) T) ((-140 . -37) 90452) ((-2 . -97) T) ((-838 . -848) T) ((-453 . -1171) 90422) ((-199 . -960) 90399) ((-1030 . -969) T) ((-647 . -281) T) ((-268 . -653) 90341) ((-637 . -976) T) ((-457 . -424) T) ((-380 . -481) 90253) ((-194 . -424) T) ((-1030 . -209) T) ((-269 . -139) 90203) ((-923 . -561) 90164) ((-923 . -560) 90146) ((-914 . -560) 90128) ((-112 . -976) T) ((-594 . -975) 90112) ((-201 . -461) T) ((-372 . -560) 90094) ((-372 . -561) 90071) ((-973 . -1171) 90041) ((-594 . -107) 90020) ((-1050 . -459) 90004) ((-751 . -37) 89974) ((-61 . -413) T) ((-61 . -368) T) ((-1067 . -97) T) ((-799 . -124) T) ((-454 . -97) 89952) ((-1190 . -341) T) ((-995 . -97) T) ((-979 . -97) T) ((-324 . -653) 89897) ((-667 . -135) 89876) ((-667 . -133) 89855) ((-947 . -588) 89792) ((-489 . -1012) 89770) ((-332 . -97) T) ((-326 . -97) T) ((-318 . -97) T) ((-103 . -97) T) ((-472 . -1012) T) ((-327 . -588) 89715) ((-1079 . -582) 89663) ((-1035 . -582) 89611) ((-358 . -476) 89590) ((-769 . -781) 89569) ((-352 . -1122) T) ((-630 . -662) T) ((-312 . -976) T) ((-1128 . -917) 89521) ((-158 . -976) T) ((-98 . -560) 89453) ((-1081 . -133) 89432) ((-1081 . -135) 89411) ((-352 . -512) T) ((-1080 . -135) 89390) ((-1080 . -133) 89369) ((-1074 . -133) 89276) ((-380 . -264) T) ((-1074 . -135) 89183) ((-1036 . -135) 89162) ((-1036 . -133) 89141) ((-292 . -37) 88982) ((-154 . -124) T) ((-286 . -731) NIL) ((-286 . -727) NIL) ((-594 . -969) T) ((-47 . -588) 88947) ((-918 . -21) T) ((-123 . -934) 88931) ((-117 . -934) 88915) ((-918 . -25) T) ((-829 . -115) 88899) ((-1066 . -97) T) ((-752 . -783) 88878) ((-1137 . -124) T) ((-1079 . -25) T) ((-1079 . -21) T) ((-788 . -124) T) ((-1035 . -25) T) ((-1035 . -21) T) ((-787 . -25) T) ((-787 . -21) T) ((-717 . -281) 88857) ((-587 . -97) 88835) ((-575 . -97) T) ((-1067 . -283) 88630) ((-527 . -124) T) ((-565 . -781) 88609) ((-1064 . -459) 88593) ((-1058 . -139) 88543) ((-1054 . -560) 88505) ((-1054 . -561) 88466) ((-947 . -726) T) ((-947 . -729) T) ((-947 . -662) T) ((-454 . -283) 88404) ((-425 . -390) 88374) ((-324 . -157) T) ((-263 . -37) 88361) ((-249 . -97) T) ((-248 . -97) T) ((-247 . -97) T) ((-246 . -97) T) ((-245 . -97) T) ((-244 . -97) T) ((-243 . -97) T) ((-316 . -960) 88338) ((-190 . -97) T) ((-189 . -97) T) ((-187 . -97) T) ((-186 . -97) T) ((-185 . -97) T) ((-184 . -97) T) ((-181 . -97) T) ((-180 . -97) T) ((-648 . -975) 88161) ((-179 . -97) T) ((-178 . -97) T) ((-177 . -97) T) ((-176 . -97) T) ((-175 . -97) T) ((-174 . -97) T) ((-173 . -97) T) ((-172 . -97) T) ((-171 . -97) T) ((-327 . -662) T) ((-648 . -107) 87970) ((-610 . -207) 87954) ((-533 . -281) T) ((-484 . -281) T) ((-268 . -481) 87903) ((-103 . -283) NIL) ((-70 . -368) T) ((-1025 . -97) 87714) ((-769 . -384) 87698) ((-1030 . -731) T) ((-1030 . -727) T) ((-637 . -1012) T) ((-352 . -336) T) ((-154 . -461) 87676) ((-198 . -560) 87608) ((-126 . -1012) T) ((-112 . -1012) T) ((-47 . -662) T) ((-966 . -459) 87573) ((-129 . -398) 87555) ((-129 . -341) T) ((-950 . -97) T) ((-479 . -476) 87534) ((-448 . -97) T) ((-435 . -97) T) ((-957 . -1024) T) ((-1081 . -34) 87500) ((-1081 . -91) 87466) ((-1081 . -1107) 87432) ((-1081 . -1104) 87398) ((-1066 . -283) NIL) ((-87 . -369) T) ((-87 . -368) T) ((-995 . -1059) 87377) ((-1080 . -1104) 87343) ((-1080 . -1107) 87309) ((-957 . -23) T) ((-1080 . -91) 87275) ((-527 . -461) T) ((-1080 . -34) 87241) ((-1074 . -1104) 87207) ((-1074 . -1107) 87173) ((-1074 . -91) 87139) ((-334 . -1024) T) ((-332 . -1059) 87118) ((-326 . -1059) 87097) ((-318 . -1059) 87076) ((-1074 . -34) 87042) ((-1036 . -34) 87008) ((-1036 . -91) 86974) ((-103 . -1059) T) ((-1036 . -1107) 86940) ((-769 . -976) 86919) ((-587 . -283) 86857) ((-575 . -283) 86708) ((-1036 . -1104) 86674) ((-648 . -969) T) ((-980 . -582) 86656) ((-995 . -37) 86524) ((-880 . -582) 86472) ((-928 . -135) T) ((-928 . -133) NIL) ((-352 . -1024) T) ((-297 . -25) T) ((-295 . -23) T) ((-871 . -783) 86451) ((-648 . -299) 86428) ((-452 . -582) 86376) ((-39 . -960) 86266) ((-637 . -653) 86253) ((-648 . -209) T) ((-312 . -1012) T) ((-158 . -1012) T) ((-304 . -783) T) ((-391 . -424) 86203) ((-352 . -23) T) ((-332 . -37) 86168) ((-326 . -37) 86133) ((-318 . -37) 86098) ((-78 . -413) T) ((-78 . -368) T) ((-201 . -25) T) ((-201 . -21) T) ((-770 . -1024) T) ((-103 . -37) 86048) ((-763 . -1024) T) ((-709 . -1012) T) ((-112 . -653) 86035) ((-611 . -960) 86019) ((-559 . -97) T) ((-770 . -23) T) ((-763 . -23) T) ((-1064 . -260) 85996) ((-1025 . -283) 85934) ((-1014 . -211) 85918) ((-62 . -369) T) ((-62 . -368) T) ((-106 . -97) T) ((-39 . -350) 85895) ((-593 . -785) 85879) ((-980 . -21) T) ((-980 . -25) T) ((-751 . -207) 85849) ((-880 . -25) T) ((-880 . -21) T) ((-565 . -976) T) ((-452 . -25) T) ((-452 . -21) T) ((-950 . -283) 85787) ((-817 . -560) 85769) ((-813 . -560) 85751) ((-226 . -783) 85702) ((-225 . -783) 85653) ((-489 . -481) 85586) ((-799 . -582) 85563) ((-448 . -283) 85501) ((-435 . -283) 85439) ((-324 . -264) T) ((-1064 . -1152) 85423) ((-1050 . -560) 85385) ((-1050 . -561) 85346) ((-1048 . -97) T) ((-923 . -975) 85242) ((-39 . -828) 85194) ((-1064 . -553) 85171) ((-1190 . -588) 85158) ((-981 . -139) 85104) ((-800 . -1122) T) ((-923 . -107) 84986) ((-312 . -653) 84970) ((-794 . -560) 84952) ((-158 . -653) 84884) ((-380 . -260) 84842) ((-800 . -512) T) ((-103 . -373) 84824) ((-82 . -357) T) ((-82 . -368) T) ((-637 . -157) T) ((-94 . -662) T) ((-453 . -97) 84635) ((-94 . -445) T) ((-112 . -157) T) ((-1025 . -37) 84605) ((-154 . -582) 84553) ((-973 . -97) T) ((-799 . -25) T) ((-751 . -214) 84532) ((-799 . -21) T) ((-754 . -97) T) ((-387 . -97) T) ((-358 . -97) T) ((-106 . -283) NIL) ((-203 . -97) 84510) ((-123 . -1118) T) ((-117 . -1118) T) ((-957 . -124) T) ((-610 . -340) 84494) ((-923 . -969) T) ((-1137 . -582) 84442) ((-1016 . -560) 84424) ((-927 . -560) 84406) ((-482 . -23) T) ((-477 . -23) T) ((-316 . -281) T) ((-475 . -23) T) ((-295 . -124) T) ((-3 . -1012) T) ((-927 . -561) 84390) ((-923 . -219) 84369) ((-923 . -209) 84348) ((-1190 . -662) T) ((-1156 . -133) 84327) ((-769 . -1012) T) ((-1156 . -135) 84306) ((-1149 . -135) 84285) ((-1149 . -133) 84264) ((-1148 . -1122) 84243) ((-1128 . -133) 84150) ((-1128 . -135) 84057) ((-1127 . -1122) 84036) ((-352 . -124) T) ((-520 . -814) 84018) ((0 . -1012) T) ((-158 . -157) T) ((-154 . -21) T) ((-154 . -25) T) ((-48 . -1012) T) ((-1150 . -588) 83923) ((-1148 . -512) 83874) ((-650 . -1024) T) ((-1127 . -512) 83825) ((-520 . -960) 83807) ((-545 . -135) 83786) ((-545 . -133) 83765) ((-463 . -960) 83708) ((-85 . -357) T) ((-85 . -368) T) ((-800 . -336) T) ((-770 . -124) T) ((-763 . -124) T) ((-650 . -23) T) ((-470 . -560) 83690) ((-1186 . -976) T) ((-352 . -978) T) ((-949 . -1012) 83668) ((-829 . -33) T) ((-453 . -283) 83606) ((-1064 . -561) 83567) ((-1064 . -560) 83499) ((-1079 . -783) 83478) ((-44 . -97) T) ((-1035 . -783) 83457) ((-753 . -97) T) ((-1137 . -25) T) ((-1137 . -21) T) ((-788 . -25) T) ((-43 . -340) 83441) ((-788 . -21) T) ((-667 . -424) 83392) ((-1185 . -560) 83374) ((-527 . -25) T) ((-527 . -21) T) ((-363 . -1012) T) ((-973 . -283) 83312) ((-565 . -1012) T) ((-635 . -814) 83294) ((-1164 . -1118) T) ((-203 . -283) 83232) ((-132 . -341) T) ((-966 . -561) 83174) ((-966 . -560) 83117) ((-286 . -837) NIL) ((-635 . -960) 83062) ((-647 . -848) T) ((-446 . -1122) 83041) ((-1080 . -424) 83020) ((-1074 . -424) 82999) ((-303 . -97) T) ((-800 . -1024) T) ((-289 . -588) 82821) ((-286 . -588) 82750) ((-446 . -512) 82701) ((-312 . -481) 82667) ((-506 . -139) 82617) ((-39 . -281) T) ((-776 . -560) 82599) ((-637 . -264) T) ((-800 . -23) T) ((-352 . -461) T) ((-995 . -207) 82569) ((-479 . -97) T) ((-380 . -561) 82377) ((-380 . -560) 82359) ((-238 . -560) 82341) ((-112 . -264) T) ((-1150 . -662) T) ((-1148 . -336) 82320) ((-1127 . -336) 82299) ((-1175 . -33) T) ((-113 . -1118) T) ((-103 . -207) 82281) ((-1085 . -97) T) ((-449 . -1012) T) ((-489 . -459) 82265) ((-673 . -33) T) ((-453 . -37) 82235) ((-129 . -33) T) ((-113 . -812) 82212) ((-113 . -814) NIL) ((-567 . -960) 82097) ((-586 . -783) 82076) ((-1174 . -97) T) ((-269 . -97) T) ((-648 . -341) 82055) ((-113 . -960) 82032) ((-363 . -653) 82016) ((-565 . -653) 82000) ((-44 . -283) 81804) ((-752 . -133) 81783) ((-752 . -135) 81762) ((-1185 . -355) 81741) ((-755 . -783) T) ((-1166 . -1012) T) ((-1067 . -205) 81688) ((-359 . -783) 81667) ((-1156 . -1107) 81633) ((-1156 . -1104) 81599) ((-1149 . -1104) 81565) ((-482 . -124) T) ((-1149 . -1107) 81531) ((-1128 . -1104) 81497) ((-1128 . -1107) 81463) ((-1156 . -34) 81429) ((-1156 . -91) 81395) ((-578 . -560) 81364) ((-554 . -560) 81333) ((-201 . -783) T) ((-1149 . -91) 81299) ((-1149 . -34) 81265) ((-1148 . -1024) T) ((-1030 . -588) 81252) ((-1128 . -91) 81218) ((-1127 . -1024) T) ((-543 . -139) 81200) ((-995 . -322) 81179) ((-113 . -350) 81156) ((-113 . -311) 81133) ((-158 . -264) T) ((-1128 . -34) 81099) ((-798 . -281) T) ((-286 . -729) NIL) ((-286 . -726) NIL) ((-289 . -662) 80949) ((-286 . -662) T) ((-446 . -336) 80928) ((-332 . -322) 80907) ((-326 . -322) 80886) ((-318 . -322) 80865) ((-289 . -445) 80844) ((-1148 . -23) T) ((-1127 . -23) T) ((-654 . -1024) T) ((-650 . -124) T) ((-593 . -97) T) ((-449 . -653) 80809) ((-44 . -256) 80759) ((-100 . -1012) T) ((-66 . -560) 80741) ((-793 . -97) T) ((-567 . -828) 80700) ((-1186 . -1012) T) ((-354 . -1012) T) ((-80 . -1118) T) ((-980 . -783) T) ((-880 . -783) 80679) ((-113 . -828) NIL) ((-717 . -848) 80658) ((-649 . -783) T) ((-492 . -1012) T) ((-468 . -1012) T) ((-328 . -1122) T) ((-325 . -1122) T) ((-317 . -1122) T) ((-239 . -1122) 80637) ((-223 . -1122) 80616) ((-1025 . -207) 80586) ((-452 . -783) 80565) ((-1050 . -975) 80549) ((-363 . -697) T) ((-1066 . -764) T) ((-630 . -1118) T) ((-328 . -512) T) ((-325 . -512) T) ((-317 . -512) T) ((-239 . -512) 80480) ((-223 . -512) 80411) ((-1050 . -107) 80390) ((-425 . -680) 80360) ((-794 . -975) 80330) ((-753 . -37) 80272) ((-630 . -812) 80254) ((-630 . -814) 80236) ((-269 . -283) 80040) ((-838 . -1122) T) ((-610 . -384) 80024) ((-794 . -107) 79989) ((-630 . -960) 79934) ((-928 . -424) T) ((-838 . -512) T) ((-533 . -848) T) ((-446 . -1024) T) ((-484 . -848) T) ((-1064 . -262) 79911) ((-842 . -424) T) ((-63 . -560) 79893) ((-575 . -205) 79839) ((-446 . -23) T) ((-1030 . -729) T) ((-800 . -124) T) ((-1030 . -726) T) ((-1177 . -1179) 79818) ((-1030 . -662) T) ((-594 . -588) 79792) ((-268 . -560) 79534) ((-958 . -33) T) ((-751 . -781) 79513) ((-532 . -281) T) ((-520 . -281) T) ((-463 . -281) T) ((-1186 . -653) 79483) ((-630 . -350) 79465) ((-630 . -311) 79447) ((-449 . -157) T) ((-354 . -653) 79417) ((-799 . -783) NIL) ((-520 . -945) T) ((-463 . -945) T) ((-1043 . -560) 79399) ((-1025 . -214) 79378) ((-191 . -97) T) ((-1058 . -97) T) ((-69 . -560) 79360) ((-1050 . -969) T) ((-1085 . -37) 79257) ((-790 . -560) 79239) ((-520 . -505) T) ((-610 . -976) T) ((-667 . -877) 79192) ((-1050 . -209) 79171) ((-997 . -1012) T) ((-957 . -25) T) ((-957 . -21) T) ((-927 . -975) 79116) ((-833 . -97) T) ((-794 . -969) T) ((-630 . -828) NIL) ((-328 . -302) 79100) ((-328 . -336) T) ((-325 . -302) 79084) ((-325 . -336) T) ((-317 . -302) 79068) ((-317 . -336) T) ((-457 . -97) T) ((-1174 . -37) 79038) ((-489 . -624) 78988) ((-194 . -97) T) ((-947 . -960) 78870) ((-927 . -107) 78799) ((-1081 . -898) 78769) ((-1080 . -898) 78732) ((-486 . -139) 78716) ((-995 . -343) 78695) ((-324 . -560) 78677) ((-295 . -21) T) ((-327 . -960) 78654) ((-295 . -25) T) ((-1074 . -898) 78624) ((-1036 . -898) 78591) ((-74 . -560) 78573) ((-635 . -281) T) ((-154 . -783) 78552) ((-838 . -336) T) ((-352 . -25) T) ((-352 . -21) T) ((-838 . -302) 78539) ((-84 . -560) 78521) ((-635 . -945) T) ((-615 . -783) T) ((-1148 . -124) T) ((-1127 . -124) T) ((-829 . -934) 78505) ((-770 . -21) T) ((-47 . -960) 78448) ((-770 . -25) T) ((-763 . -25) T) ((-763 . -21) T) ((-1184 . -976) T) ((-1182 . -976) T) ((-594 . -662) T) ((-1185 . -975) 78432) ((-1137 . -783) 78411) ((-751 . -384) 78380) ((-98 . -115) 78364) ((-51 . -1012) T) ((-854 . -560) 78346) ((-799 . -917) 78323) ((-759 . -97) T) ((-1185 . -107) 78302) ((-593 . -37) 78272) ((-527 . -783) T) ((-328 . -1024) T) ((-325 . -1024) T) ((-317 . -1024) T) ((-239 . -1024) T) ((-223 . -1024) T) ((-567 . -281) 78251) ((-1058 . -283) 78055) ((-604 . -23) T) ((-453 . -207) 78025) ((-140 . -976) T) ((-328 . -23) T) ((-325 . -23) T) ((-317 . -23) T) ((-113 . -281) T) ((-239 . -23) T) ((-223 . -23) T) ((-927 . -969) T) ((-648 . -837) 78004) ((-927 . -209) 77976) ((-927 . -219) T) ((-113 . -945) NIL) ((-838 . -1024) T) ((-1149 . -424) 77955) ((-1128 . -424) 77934) ((-489 . -560) 77866) ((-648 . -588) 77791) ((-380 . -975) 77743) ((-472 . -560) 77725) ((-838 . -23) T) ((-457 . -283) NIL) ((-446 . -124) T) ((-194 . -283) NIL) ((-380 . -107) 77663) ((-751 . -976) 77594) ((-673 . -1010) 77578) ((-1148 . -461) 77544) ((-1127 . -461) 77510) ((-129 . -1010) 77492) ((-449 . -264) T) ((-1185 . -969) T) ((-981 . -97) T) ((-468 . -481) NIL) ((-639 . -97) T) ((-453 . -214) 77471) ((-1079 . -133) 77450) ((-1079 . -135) 77429) ((-1035 . -135) 77408) ((-1035 . -133) 77387) ((-578 . -975) 77371) ((-554 . -975) 77355) ((-610 . -1012) T) ((-610 . -972) 77295) ((-1081 . -1155) 77279) ((-1081 . -1142) 77256) ((-457 . -1059) T) ((-1080 . -1147) 77217) ((-1080 . -1142) 77187) ((-1080 . -1145) 77171) ((-194 . -1059) T) ((-316 . -848) T) ((-754 . -241) 77155) ((-578 . -107) 77134) ((-554 . -107) 77113) ((-1074 . -1126) 77074) ((-776 . -969) 77053) ((-1074 . -1142) 77030) ((-482 . -25) T) ((-463 . -276) T) ((-478 . -23) T) ((-477 . -25) T) ((-475 . -25) T) ((-474 . -23) T) ((-1074 . -1124) 77014) ((-380 . -969) T) ((-292 . -976) T) ((-630 . -281) T) ((-103 . -781) T) ((-380 . -219) T) ((-380 . -209) 76993) ((-648 . -662) T) ((-457 . -37) 76943) ((-194 . -37) 76893) ((-446 . -461) 76859) ((-1066 . -1052) T) ((-1013 . -97) T) ((-637 . -560) 76841) ((-637 . -561) 76756) ((-650 . -21) T) ((-650 . -25) T) ((-126 . -560) 76738) ((-112 . -560) 76720) ((-143 . -25) T) ((-1184 . -1012) T) ((-800 . -582) 76668) ((-1182 . -1012) T) ((-890 . -97) T) ((-671 . -97) T) ((-651 . -97) T) ((-425 . -97) T) ((-752 . -424) 76619) ((-43 . -1012) T) ((-1002 . -783) T) ((-604 . -124) T) ((-981 . -283) 76470) ((-610 . -653) 76454) ((-263 . -976) T) ((-328 . -124) T) ((-325 . -124) T) ((-317 . -124) T) ((-239 . -124) T) ((-223 . -124) T) ((-391 . -97) T) ((-140 . -1012) T) ((-44 . -205) 76404) ((-885 . -783) 76383) ((-923 . -588) 76321) ((-216 . -1171) 76291) ((-947 . -281) T) ((-268 . -975) 76213) ((-838 . -124) T) ((-39 . -848) T) ((-457 . -373) 76195) ((-327 . -281) T) ((-194 . -373) 76177) ((-995 . -384) 76161) ((-268 . -107) 76078) ((-800 . -25) T) ((-800 . -21) T) ((-312 . -560) 76060) ((-1150 . -46) 76004) ((-201 . -135) T) ((-158 . -560) 75986) ((-1025 . -781) 75965) ((-709 . -560) 75947) ((-555 . -211) 75894) ((-447 . -211) 75844) ((-1184 . -653) 75814) ((-47 . -281) T) ((-1182 . -653) 75784) ((-891 . -1012) T) ((-751 . -1012) 75595) ((-285 . -97) T) ((-829 . -1118) T) ((-47 . -945) T) ((-1127 . -582) 75503) ((-626 . -97) 75481) ((-43 . -653) 75465) ((-506 . -97) T) ((-65 . -356) T) ((-65 . -368) T) ((-602 . -23) T) ((-610 . -697) T) ((-1116 . -1012) 75443) ((-324 . -975) 75388) ((-614 . -1012) 75366) ((-980 . -135) T) ((-880 . -135) 75345) ((-880 . -133) 75324) ((-735 . -97) T) ((-140 . -653) 75308) ((-452 . -135) 75287) ((-452 . -133) 75266) ((-324 . -107) 75195) ((-995 . -976) T) ((-295 . -783) 75174) ((-1156 . -898) 75144) ((-570 . -1012) T) ((-1149 . -898) 75107) ((-478 . -124) T) ((-474 . -124) T) ((-269 . -205) 75057) ((-332 . -976) T) ((-326 . -976) T) ((-318 . -976) T) ((-268 . -969) 75000) ((-1128 . -898) 74970) ((-352 . -783) T) ((-103 . -976) T) ((-923 . -662) T) ((-798 . -848) T) ((-776 . -731) 74949) ((-776 . -727) 74928) ((-391 . -283) 74867) ((-440 . -97) T) ((-545 . -898) 74837) ((-292 . -1012) T) ((-380 . -731) 74816) ((-380 . -727) 74795) ((-468 . -459) 74777) ((-1150 . -960) 74743) ((-1148 . -21) T) ((-1148 . -25) T) ((-1127 . -21) T) ((-1127 . -25) T) ((-751 . -653) 74685) ((-635 . -377) T) ((-1175 . -1118) T) ((-1025 . -384) 74654) ((-927 . -341) NIL) ((-98 . -33) T) ((-673 . -1118) T) ((-43 . -697) T) ((-543 . -97) T) ((-75 . -369) T) ((-75 . -368) T) ((-593 . -596) 74638) ((-129 . -1118) T) ((-799 . -135) T) ((-799 . -133) NIL) ((-324 . -969) T) ((-68 . -356) T) ((-68 . -368) T) ((-1073 . -97) T) ((-610 . -481) 74571) ((-626 . -283) 74509) ((-890 . -37) 74406) ((-671 . -37) 74376) ((-506 . -283) 74180) ((-289 . -1118) T) ((-324 . -209) T) ((-324 . -219) T) ((-286 . -1118) T) ((-263 . -1012) T) ((-1087 . -560) 74162) ((-647 . -1122) T) ((-1064 . -591) 74146) ((-1113 . -512) 74125) ((-647 . -512) T) ((-289 . -812) 74109) ((-289 . -814) 74034) ((-286 . -812) 73995) ((-286 . -814) NIL) ((-735 . -283) 73960) ((-292 . -653) 73801) ((-297 . -296) 73778) ((-455 . -97) T) ((-446 . -25) T) ((-446 . -21) T) ((-391 . -37) 73752) ((-289 . -960) 73420) ((-201 . -1104) T) ((-201 . -1107) T) ((-3 . -560) 73402) ((-286 . -960) 73332) ((-2 . -1012) T) ((-2 . |RecordCategory|) T) ((-769 . -560) 73314) ((-1025 . -976) 73245) ((-532 . -848) T) ((-520 . -756) T) ((-520 . -848) T) ((-463 . -848) T) ((-128 . -960) 73229) ((-201 . -91) T) ((-154 . -135) 73208) ((-73 . -413) T) ((0 . -560) 73190) ((-73 . -368) T) ((-154 . -133) 73141) ((-201 . -34) T) ((-48 . -560) 73123) ((-449 . -976) T) ((-457 . -207) 73105) ((-454 . -894) 73089) ((-453 . -781) 73068) ((-194 . -207) 73050) ((-79 . -413) T) ((-79 . -368) T) ((-1054 . -33) T) ((-751 . -157) 73029) ((-667 . -97) T) ((-949 . -560) 72996) ((-468 . -260) 72971) ((-289 . -350) 72941) ((-286 . -350) 72902) ((-286 . -311) 72863) ((-999 . -560) 72845) ((-752 . -877) 72792) ((-602 . -124) T) ((-1137 . -133) 72771) ((-1137 . -135) 72750) ((-1081 . -97) T) ((-1080 . -97) T) ((-1074 . -97) T) ((-1067 . -1012) T) ((-1036 . -97) T) ((-198 . -33) T) ((-263 . -653) 72737) ((-1067 . -557) 72713) ((-543 . -283) NIL) ((-454 . -1012) 72691) ((-363 . -560) 72673) ((-477 . -783) T) ((-1058 . -205) 72623) ((-1156 . -1155) 72607) ((-1156 . -1142) 72584) ((-1149 . -1147) 72545) ((-1149 . -1142) 72515) ((-1149 . -1145) 72499) ((-1128 . -1126) 72460) ((-1128 . -1142) 72437) ((-565 . -560) 72419) ((-1128 . -1124) 72403) ((-635 . -848) T) ((-1081 . -258) 72369) ((-1080 . -258) 72335) ((-1074 . -258) 72301) ((-995 . -1012) T) ((-979 . -1012) T) ((-47 . -276) T) ((-289 . -828) 72268) ((-286 . -828) NIL) ((-979 . -985) 72247) ((-1030 . -814) 72229) ((-735 . -37) 72213) ((-239 . -582) 72161) ((-223 . -582) 72109) ((-637 . -975) 72096) ((-545 . -1142) 72073) ((-1036 . -258) 72039) ((-292 . -157) 71970) ((-332 . -1012) T) ((-326 . -1012) T) ((-318 . -1012) T) ((-468 . -19) 71952) ((-1030 . -960) 71934) ((-1014 . -139) 71918) ((-103 . -1012) T) ((-112 . -975) 71905) ((-647 . -336) T) ((-468 . -553) 71880) ((-637 . -107) 71865) ((-409 . -97) T) ((-44 . -1057) 71815) ((-112 . -107) 71800) ((-578 . -656) T) ((-554 . -656) T) ((-751 . -481) 71733) ((-958 . -1118) T) ((-871 . -139) 71717) ((-486 . -97) 71667) ((-1001 . -1122) 71646) ((-449 . -560) 71598) ((-449 . -561) 71520) ((-60 . -1118) T) ((-717 . -1122) 71499) ((-715 . -1122) 71478) ((-1079 . -424) 71409) ((-1066 . -1012) T) ((-1050 . -588) 71383) ((-1001 . -512) 71314) ((-453 . -384) 71283) ((-567 . -848) 71262) ((-426 . -1122) 71241) ((-1035 . -424) 71192) ((-371 . -560) 71174) ((-614 . -481) 71107) ((-717 . -512) 71018) ((-715 . -512) 70949) ((-667 . -283) 70936) ((-604 . -25) T) ((-604 . -21) T) ((-426 . -512) 70867) ((-113 . -848) T) ((-113 . -756) NIL) ((-328 . -25) T) ((-328 . -21) T) ((-325 . -25) T) ((-325 . -21) T) ((-317 . -25) T) ((-317 . -21) T) ((-239 . -25) T) ((-239 . -21) T) ((-81 . -357) T) ((-81 . -368) T) ((-223 . -25) T) ((-223 . -21) T) ((-1166 . -560) 70849) ((-1113 . -1024) T) ((-1113 . -23) T) ((-1074 . -283) 70734) ((-1036 . -283) 70721) ((-794 . -588) 70681) ((-995 . -653) 70549) ((-871 . -905) 70533) ((-263 . -157) T) ((-838 . -21) T) ((-838 . -25) T) ((-800 . -783) 70484) ((-647 . -1024) T) ((-647 . -23) T) ((-587 . -1012) 70462) ((-575 . -557) 70437) ((-575 . -1012) T) ((-533 . -1122) T) ((-484 . -1122) T) ((-533 . -512) T) ((-484 . -512) T) ((-332 . -653) 70389) ((-326 . -653) 70341) ((-158 . -975) 70273) ((-312 . -975) 70257) ((-103 . -653) 70207) ((-158 . -107) 70118) ((-318 . -653) 70070) ((-312 . -107) 70049) ((-249 . -1012) T) ((-248 . -1012) T) ((-247 . -1012) T) ((-246 . -1012) T) ((-637 . -969) T) ((-245 . -1012) T) ((-244 . -1012) T) ((-243 . -1012) T) ((-190 . -1012) T) ((-189 . -1012) T) ((-187 . -1012) T) ((-154 . -1107) 70027) ((-154 . -1104) 70005) ((-186 . -1012) T) ((-185 . -1012) T) ((-112 . -969) T) ((-184 . -1012) T) ((-181 . -1012) T) ((-637 . -209) T) ((-180 . -1012) T) ((-179 . -1012) T) ((-178 . -1012) T) ((-177 . -1012) T) ((-176 . -1012) T) ((-175 . -1012) T) ((-174 . -1012) T) ((-173 . -1012) T) ((-172 . -1012) T) ((-171 . -1012) T) ((-216 . -97) 69816) ((-154 . -34) 69794) ((-154 . -91) 69772) ((-594 . -960) 69670) ((-453 . -976) 69601) ((-1025 . -1012) 69412) ((-1050 . -33) T) ((-610 . -459) 69396) ((-71 . -1118) T) ((-100 . -560) 69378) ((-1186 . -560) 69360) ((-354 . -560) 69342) ((-527 . -1107) T) ((-527 . -1104) T) ((-667 . -37) 69191) ((-492 . -560) 69173) ((-486 . -283) 69111) ((-468 . -560) 69093) ((-468 . -561) 69075) ((-1074 . -1059) NIL) ((-950 . -988) 69044) ((-950 . -1012) T) ((-928 . -97) T) ((-896 . -97) T) ((-842 . -97) T) ((-821 . -960) 69021) ((-1050 . -662) T) ((-927 . -588) 68966) ((-448 . -1012) T) ((-435 . -1012) T) ((-537 . -23) T) ((-527 . -34) T) ((-527 . -91) T) ((-400 . -97) T) ((-981 . -205) 68912) ((-1081 . -37) 68809) ((-794 . -662) T) ((-630 . -848) T) ((-478 . -25) T) ((-474 . -21) T) ((-474 . -25) T) ((-1080 . -37) 68650) ((-312 . -969) T) ((-1074 . -37) 68446) ((-995 . -157) T) ((-158 . -969) T) ((-1036 . -37) 68343) ((-648 . -46) 68320) ((-332 . -157) T) ((-326 . -157) T) ((-485 . -55) 68294) ((-465 . -55) 68244) ((-324 . -1181) 68221) ((-201 . -424) T) ((-292 . -264) 68172) ((-318 . -157) T) ((-158 . -219) T) ((-1127 . -783) 68071) ((-103 . -157) T) ((-800 . -917) 68055) ((-598 . -1024) T) ((-533 . -336) T) ((-533 . -302) 68042) ((-484 . -302) 68019) ((-484 . -336) T) ((-289 . -281) 67998) ((-286 . -281) T) ((-551 . -783) 67977) ((-1025 . -653) 67919) ((-486 . -256) 67903) ((-598 . -23) T) ((-391 . -207) 67887) ((-286 . -945) NIL) ((-309 . -23) T) ((-98 . -934) 67871) ((-730 . -560) 67853) ((-44 . -35) 67832) ((-559 . -1012) T) ((-324 . -341) T) ((-463 . -27) T) ((-216 . -283) 67770) ((-1001 . -1024) T) ((-1185 . -588) 67744) ((-717 . -1024) T) ((-715 . -1024) T) ((-426 . -1024) T) ((-980 . -424) T) ((-880 . -424) 67695) ((-106 . -1012) T) ((-1001 . -23) T) ((-753 . -976) T) ((-717 . -23) T) ((-715 . -23) T) ((-452 . -424) 67646) ((-1067 . -481) 67429) ((-354 . -355) 67408) ((-1085 . -384) 67392) ((-433 . -23) T) ((-426 . -23) T) ((-454 . -481) 67325) ((-263 . -264) T) ((-997 . -560) 67307) ((-380 . -837) 67286) ((-49 . -1024) T) ((-947 . -848) T) ((-927 . -662) T) ((-648 . -814) NIL) ((-533 . -1024) T) ((-484 . -1024) T) ((-776 . -588) 67259) ((-1113 . -124) T) ((-1074 . -373) 67211) ((-928 . -283) NIL) ((-751 . -459) 67195) ((-327 . -848) T) ((-1064 . -33) T) ((-380 . -588) 67147) ((-49 . -23) T) ((-647 . -124) T) ((-648 . -960) 67030) ((-533 . -23) T) ((-103 . -481) NIL) ((-484 . -23) T) ((-154 . -382) 67001) ((-1048 . -1012) T) ((-1177 . -1176) 66985) ((-637 . -731) T) ((-637 . -727) T) ((-352 . -135) T) ((-1030 . -281) T) ((-1127 . -917) 66955) ((-47 . -848) T) ((-614 . -459) 66939) ((-226 . -1171) 66909) ((-225 . -1171) 66879) ((-1083 . -783) T) ((-1025 . -157) 66858) ((-1030 . -945) T) ((-966 . -33) T) ((-770 . -135) 66837) ((-770 . -133) 66816) ((-673 . -102) 66800) ((-559 . -125) T) ((-453 . -1012) 66611) ((-1085 . -976) T) ((-799 . -424) T) ((-83 . -1118) T) ((-216 . -37) 66581) ((-129 . -102) 66563) ((-648 . -350) 66547) ((-1030 . -505) T) ((-363 . -975) 66531) ((-1185 . -662) T) ((-1079 . -877) 66501) ((-51 . -560) 66483) ((-1035 . -877) 66450) ((-593 . -384) 66434) ((-1174 . -976) T) ((-565 . -975) 66418) ((-602 . -25) T) ((-602 . -21) T) ((-1066 . -481) NIL) ((-1156 . -97) T) ((-1149 . -97) T) ((-363 . -107) 66397) ((-198 . -229) 66381) ((-1128 . -97) T) ((-973 . -1012) T) ((-928 . -1059) T) ((-973 . -972) 66321) ((-754 . -1012) T) ((-316 . -1122) T) ((-578 . -588) 66305) ((-565 . -107) 66284) ((-554 . -588) 66268) ((-546 . -97) T) ((-537 . -124) T) ((-545 . -97) T) ((-387 . -1012) T) ((-358 . -1012) T) ((-203 . -1012) 66246) ((-587 . -481) 66179) ((-575 . -481) 66023) ((-769 . -969) 66002) ((-586 . -139) 65986) ((-316 . -512) T) ((-648 . -828) 65930) ((-506 . -205) 65880) ((-1156 . -258) 65846) ((-995 . -264) 65797) ((-457 . -781) T) ((-199 . -1024) T) ((-1149 . -258) 65763) ((-1128 . -258) 65729) ((-928 . -37) 65679) ((-194 . -781) T) ((-1113 . -461) 65645) ((-842 . -37) 65597) ((-776 . -729) 65576) ((-776 . -726) 65555) ((-776 . -662) 65534) ((-332 . -264) T) ((-326 . -264) T) ((-318 . -264) T) ((-154 . -424) 65465) ((-400 . -37) 65449) ((-103 . -264) T) ((-199 . -23) T) ((-380 . -729) 65428) ((-380 . -726) 65407) ((-380 . -662) T) ((-468 . -262) 65382) ((-449 . -975) 65347) ((-598 . -124) T) ((-1025 . -481) 65280) ((-309 . -124) T) ((-154 . -375) 65259) ((-453 . -653) 65201) ((-751 . -260) 65178) ((-449 . -107) 65134) ((-593 . -976) T) ((-1137 . -424) 65065) ((-1001 . -124) T) ((-239 . -783) 65044) ((-223 . -783) 65023) ((-717 . -124) T) ((-715 . -124) T) ((-527 . -424) T) ((-973 . -653) 64965) ((-565 . -969) T) ((-950 . -481) 64898) ((-433 . -124) T) ((-426 . -124) T) ((-44 . -1012) T) ((-358 . -653) 64868) ((-753 . -1012) T) ((-448 . -481) 64801) ((-435 . -481) 64734) ((-425 . -340) 64704) ((-44 . -557) 64683) ((-289 . -276) T) ((-610 . -560) 64645) ((-57 . -783) 64624) ((-1128 . -283) 64509) ((-928 . -373) 64491) ((-751 . -553) 64468) ((-483 . -783) 64447) ((-464 . -783) 64426) ((-39 . -1122) T) ((-923 . -960) 64324) ((-49 . -124) T) ((-533 . -124) T) ((-484 . -124) T) ((-268 . -588) 64186) ((-316 . -302) 64163) ((-316 . -336) T) ((-295 . -296) 64140) ((-292 . -260) 64125) ((-39 . -512) T) ((-352 . -1104) T) ((-352 . -1107) T) ((-958 . -1095) 64100) ((-1092 . -211) 64050) ((-1074 . -207) 64002) ((-303 . -1012) T) ((-352 . -91) T) ((-352 . -34) T) ((-958 . -102) 63948) ((-449 . -969) T) ((-450 . -211) 63898) ((-1067 . -459) 63832) ((-1186 . -975) 63816) ((-354 . -975) 63800) ((-449 . -219) T) ((-752 . -97) T) ((-650 . -135) 63779) ((-650 . -133) 63758) ((-454 . -459) 63742) ((-455 . -308) 63711) ((-1186 . -107) 63690) ((-479 . -1012) T) ((-453 . -157) 63669) ((-923 . -350) 63653) ((-386 . -97) T) ((-354 . -107) 63632) ((-923 . -311) 63616) ((-254 . -908) 63600) ((-253 . -908) 63584) ((-1184 . -560) 63566) ((-1182 . -560) 63548) ((-106 . -481) NIL) ((-1079 . -1140) 63532) ((-787 . -785) 63516) ((-1085 . -1012) T) ((-98 . -1118) T) ((-880 . -877) 63477) ((-753 . -653) 63419) ((-1128 . -1059) NIL) ((-452 . -877) 63364) ((-980 . -131) T) ((-58 . -97) 63342) ((-43 . -560) 63324) ((-76 . -560) 63306) ((-324 . -588) 63251) ((-1174 . -1012) T) ((-478 . -783) T) ((-316 . -1024) T) ((-269 . -1012) T) ((-923 . -828) 63210) ((-269 . -557) 63189) ((-1156 . -37) 63086) ((-1149 . -37) 62927) ((-457 . -976) T) ((-1128 . -37) 62723) ((-194 . -976) T) ((-316 . -23) T) ((-140 . -560) 62705) ((-769 . -731) 62684) ((-769 . -727) 62663) ((-546 . -37) 62636) ((-545 . -37) 62533) ((-798 . -512) T) ((-199 . -124) T) ((-292 . -926) 62499) ((-77 . -560) 62481) ((-648 . -281) 62460) ((-268 . -662) 62363) ((-760 . -97) T) ((-793 . -777) T) ((-268 . -445) 62342) ((-1177 . -97) T) ((-39 . -336) T) ((-800 . -135) 62321) ((-800 . -133) 62300) ((-1066 . -459) 62282) ((-1186 . -969) T) ((-453 . -481) 62215) ((-1054 . -1118) T) ((-891 . -560) 62197) ((-587 . -459) 62181) ((-575 . -459) 62112) ((-751 . -560) 61864) ((-47 . -27) T) ((-1085 . -653) 61761) ((-593 . -1012) T) ((-409 . -337) 61735) ((-1014 . -97) T) ((-752 . -283) 61722) ((-793 . -1012) T) ((-1182 . -355) 61694) ((-973 . -481) 61627) ((-1067 . -260) 61603) ((-216 . -207) 61573) ((-1174 . -653) 61543) ((-753 . -157) 61522) ((-203 . -481) 61455) ((-565 . -731) 61434) ((-565 . -727) 61413) ((-1116 . -560) 61325) ((-198 . -1118) T) ((-614 . -560) 61257) ((-1064 . -934) 61241) ((-324 . -662) T) ((-871 . -97) 61191) ((-1128 . -373) 61143) ((-1025 . -459) 61127) ((-58 . -283) 61065) ((-304 . -97) T) ((-1113 . -21) T) ((-1113 . -25) T) ((-39 . -1024) T) ((-647 . -21) T) ((-570 . -560) 61047) ((-482 . -296) 61026) ((-647 . -25) T) ((-103 . -260) NIL) ((-849 . -1024) T) ((-39 . -23) T) ((-706 . -1024) T) ((-520 . -1122) T) ((-463 . -1122) T) ((-292 . -560) 61008) ((-928 . -207) 60990) ((-154 . -151) 60974) ((-532 . -512) T) ((-520 . -512) T) ((-463 . -512) T) ((-706 . -23) T) ((-1148 . -135) 60953) ((-1067 . -553) 60929) ((-1148 . -133) 60908) ((-950 . -459) 60892) ((-1127 . -133) 60817) ((-1127 . -135) 60742) ((-1177 . -1183) 60721) ((-448 . -459) 60705) ((-435 . -459) 60689) ((-489 . -33) T) ((-593 . -653) 60659) ((-108 . -893) T) ((-602 . -783) 60638) ((-1085 . -157) 60589) ((-338 . -97) T) ((-216 . -214) 60568) ((-226 . -97) T) ((-225 . -97) T) ((-1137 . -877) 60538) ((-105 . -97) T) ((-221 . -783) 60517) ((-752 . -37) 60366) ((-44 . -481) 60158) ((-1066 . -260) 60133) ((-191 . -1012) T) ((-1058 . -1012) T) ((-1058 . -557) 60112) ((-537 . -25) T) ((-537 . -21) T) ((-1014 . -283) 60050) ((-890 . -384) 60034) ((-635 . -1122) T) ((-575 . -260) 60009) ((-1001 . -582) 59957) ((-717 . -582) 59905) ((-715 . -582) 59853) ((-316 . -124) T) ((-263 . -560) 59835) ((-635 . -512) T) ((-833 . -1012) T) ((-798 . -1024) T) ((-426 . -582) 59783) ((-833 . -831) 59767) ((-352 . -424) T) ((-457 . -1012) T) ((-637 . -588) 59754) ((-871 . -283) 59692) ((-194 . -1012) T) ((-289 . -848) 59671) ((-286 . -848) T) ((-286 . -756) NIL) ((-363 . -656) T) ((-798 . -23) T) ((-112 . -588) 59658) ((-446 . -133) 59637) ((-391 . -384) 59621) ((-446 . -135) 59600) ((-106 . -459) 59582) ((-2 . -560) 59564) ((-1066 . -19) 59546) ((-1066 . -553) 59521) ((-598 . -21) T) ((-598 . -25) T) ((-543 . -1052) T) ((-1025 . -260) 59498) ((-309 . -25) T) ((-309 . -21) T) ((-463 . -336) T) ((-1177 . -37) 59468) ((-1050 . -1118) T) ((-575 . -553) 59443) ((-1001 . -25) T) ((-1001 . -21) T) ((-492 . -727) T) ((-492 . -731) T) ((-113 . -1122) T) ((-890 . -976) T) ((-567 . -512) T) ((-671 . -976) T) ((-651 . -976) T) ((-717 . -25) T) ((-717 . -21) T) ((-715 . -21) T) ((-715 . -25) T) ((-610 . -975) 59427) ((-433 . -25) T) ((-113 . -512) T) ((-433 . -21) T) ((-426 . -25) T) ((-426 . -21) T) ((-1050 . -960) 59325) ((-753 . -264) 59304) ((-759 . -1012) T) ((-892 . -893) T) ((-610 . -107) 59283) ((-269 . -481) 59075) ((-1184 . -975) 59059) ((-1182 . -975) 59043) ((-226 . -283) 58981) ((-225 . -283) 58919) ((-1131 . -97) 58897) ((-1067 . -561) NIL) ((-1067 . -560) 58879) ((-1148 . -1104) 58845) ((-1148 . -1107) 58811) ((-1128 . -207) 58763) ((-1127 . -1104) 58729) ((-1127 . -1107) 58695) ((-1050 . -350) 58679) ((-1030 . -756) T) ((-1030 . -848) T) ((-1025 . -553) 58656) ((-995 . -561) 58640) ((-454 . -560) 58572) ((-751 . -262) 58549) ((-555 . -139) 58496) ((-391 . -976) T) ((-457 . -653) 58446) ((-453 . -459) 58430) ((-300 . -783) 58409) ((-312 . -588) 58383) ((-49 . -21) T) ((-49 . -25) T) ((-194 . -653) 58333) ((-154 . -660) 58304) ((-158 . -588) 58236) ((-533 . -21) T) ((-533 . -25) T) ((-484 . -25) T) ((-484 . -21) T) ((-447 . -139) 58186) ((-995 . -560) 58168) ((-979 . -560) 58150) ((-918 . -97) T) ((-791 . -97) T) ((-735 . -384) 58114) ((-39 . -124) T) ((-635 . -336) T) ((-190 . -823) T) ((-637 . -729) T) ((-637 . -726) T) ((-532 . -1024) T) ((-520 . -1024) T) ((-463 . -1024) T) ((-637 . -662) T) ((-332 . -560) 58096) ((-326 . -560) 58078) ((-318 . -560) 58060) ((-64 . -369) T) ((-64 . -368) T) ((-103 . -561) 57990) ((-103 . -560) 57972) ((-189 . -823) T) ((-885 . -139) 57956) ((-1148 . -91) 57922) ((-706 . -124) T) ((-126 . -662) T) ((-112 . -662) T) ((-1148 . -34) 57888) ((-973 . -459) 57872) ((-532 . -23) T) ((-520 . -23) T) ((-463 . -23) T) ((-1127 . -91) 57838) ((-1127 . -34) 57804) ((-1079 . -97) T) ((-1035 . -97) T) ((-787 . -97) T) ((-203 . -459) 57788) ((-1184 . -107) 57767) ((-1182 . -107) 57746) ((-43 . -975) 57730) ((-1137 . -1140) 57714) ((-788 . -785) 57698) ((-1085 . -264) 57677) ((-106 . -260) 57652) ((-1050 . -828) 57611) ((-43 . -107) 57590) ((-610 . -969) T) ((-1088 . -1159) T) ((-1066 . -561) NIL) ((-1066 . -560) 57572) ((-981 . -557) 57547) ((-981 . -1012) T) ((-72 . -413) T) ((-72 . -368) T) ((-610 . -209) 57526) ((-140 . -975) 57510) ((-527 . -510) 57494) ((-328 . -135) 57473) ((-328 . -133) 57424) ((-325 . -135) 57403) ((-639 . -1012) T) ((-325 . -133) 57354) ((-317 . -135) 57333) ((-317 . -133) 57284) ((-239 . -133) 57263) ((-239 . -135) 57242) ((-226 . -37) 57212) ((-223 . -135) 57191) ((-113 . -336) T) ((-223 . -133) 57170) ((-225 . -37) 57140) ((-140 . -107) 57119) ((-927 . -960) 57009) ((-1074 . -781) NIL) ((-630 . -1122) T) ((-735 . -976) T) ((-635 . -1024) T) ((-1184 . -969) T) ((-1182 . -969) T) ((-1064 . -1118) T) ((-927 . -350) 56986) ((-838 . -133) T) ((-838 . -135) 56968) ((-798 . -124) T) ((-751 . -975) 56866) ((-630 . -512) T) ((-635 . -23) T) ((-587 . -560) 56798) ((-587 . -561) 56759) ((-575 . -561) NIL) ((-575 . -560) 56741) ((-457 . -157) T) ((-199 . -21) T) ((-194 . -157) T) ((-199 . -25) T) ((-446 . -1107) 56707) ((-446 . -1104) 56673) ((-249 . -560) 56655) ((-248 . -560) 56637) ((-247 . -560) 56619) ((-246 . -560) 56601) ((-245 . -560) 56583) ((-468 . -591) 56565) ((-244 . -560) 56547) ((-312 . -662) T) ((-243 . -560) 56529) ((-106 . -19) 56511) ((-158 . -662) T) ((-468 . -346) 56493) ((-190 . -560) 56475) ((-486 . -1057) 56459) ((-468 . -119) T) ((-106 . -553) 56434) ((-189 . -560) 56416) ((-446 . -34) 56382) ((-446 . -91) 56348) ((-187 . -560) 56330) ((-186 . -560) 56312) ((-185 . -560) 56294) ((-184 . -560) 56276) ((-181 . -560) 56258) ((-180 . -560) 56240) ((-179 . -560) 56222) ((-178 . -560) 56204) ((-177 . -560) 56186) ((-176 . -560) 56168) ((-175 . -560) 56150) ((-496 . -1015) 56102) ((-174 . -560) 56084) ((-173 . -560) 56066) ((-44 . -459) 56003) ((-172 . -560) 55985) ((-171 . -560) 55967) ((-751 . -107) 55858) ((-586 . -97) 55808) ((-453 . -260) 55785) ((-1025 . -560) 55537) ((-1013 . -1012) T) ((-966 . -1118) T) ((-567 . -1024) T) ((-1185 . -960) 55521) ((-1079 . -283) 55508) ((-1035 . -283) 55495) ((-113 . -1024) T) ((-755 . -97) T) ((-567 . -23) T) ((-1058 . -481) 55287) ((-359 . -97) T) ((-297 . -97) T) ((-927 . -828) 55239) ((-890 . -1012) T) ((-140 . -969) T) ((-113 . -23) T) ((-667 . -384) 55223) ((-671 . -1012) T) ((-651 . -1012) T) ((-639 . -125) T) ((-425 . -1012) T) ((-289 . -403) 55207) ((-380 . -1118) T) ((-950 . -561) 55168) ((-947 . -1122) T) ((-201 . -97) T) ((-950 . -560) 55130) ((-752 . -207) 55114) ((-947 . -512) T) ((-769 . -588) 55087) ((-327 . -1122) T) ((-448 . -560) 55049) ((-448 . -561) 55010) ((-435 . -561) 54971) ((-435 . -560) 54933) ((-380 . -812) 54917) ((-292 . -975) 54752) ((-380 . -814) 54677) ((-776 . -960) 54575) ((-457 . -481) NIL) ((-453 . -553) 54552) ((-327 . -512) T) ((-194 . -481) NIL) ((-800 . -424) T) ((-391 . -1012) T) ((-380 . -960) 54419) ((-292 . -107) 54240) ((-630 . -336) T) ((-201 . -258) T) ((-47 . -1122) T) ((-751 . -969) 54171) ((-532 . -124) T) ((-520 . -124) T) ((-463 . -124) T) ((-47 . -512) T) ((-1067 . -262) 54147) ((-1079 . -1059) 54125) ((-289 . -27) 54104) ((-980 . -97) T) ((-751 . -209) 54057) ((-216 . -781) 54036) ((-880 . -97) T) ((-649 . -97) T) ((-269 . -459) 53973) ((-452 . -97) T) ((-667 . -976) T) ((-559 . -560) 53955) ((-559 . -561) 53816) ((-380 . -350) 53800) ((-380 . -311) 53784) ((-1079 . -37) 53613) ((-1035 . -37) 53462) ((-787 . -37) 53432) ((-363 . -588) 53416) ((-586 . -283) 53354) ((-890 . -653) 53251) ((-198 . -102) 53235) ((-44 . -260) 53160) ((-671 . -653) 53130) ((-565 . -588) 53104) ((-285 . -1012) T) ((-263 . -975) 53091) ((-106 . -560) 53073) ((-106 . -561) 53055) ((-425 . -653) 53025) ((-752 . -228) 52964) ((-626 . -1012) 52942) ((-506 . -1012) T) ((-1081 . -976) T) ((-1080 . -976) T) ((-263 . -107) 52927) ((-1074 . -976) T) ((-1036 . -976) T) ((-506 . -557) 52906) ((-928 . -781) T) ((-203 . -624) 52864) ((-630 . -1024) T) ((-1113 . -676) 52840) ((-292 . -969) T) ((-316 . -25) T) ((-316 . -21) T) ((-380 . -828) 52799) ((-66 . -1118) T) ((-769 . -729) 52778) ((-391 . -653) 52752) ((-735 . -1012) T) ((-769 . -726) 52731) ((-635 . -124) T) ((-648 . -848) 52710) ((-630 . -23) T) ((-457 . -264) T) ((-769 . -662) 52689) ((-292 . -209) 52641) ((-292 . -219) 52620) ((-194 . -264) T) ((-947 . -336) T) ((-1148 . -424) 52599) ((-1127 . -424) 52578) ((-327 . -302) 52555) ((-327 . -336) T) ((-1048 . -560) 52537) ((-44 . -1152) 52487) ((-799 . -97) T) ((-586 . -256) 52471) ((-635 . -978) T) ((-449 . -588) 52436) ((-440 . -1012) T) ((-44 . -553) 52361) ((-1066 . -262) 52336) ((-39 . -582) 52275) ((-47 . -336) T) ((-1018 . -560) 52257) ((-1001 . -783) 52236) ((-575 . -262) 52211) ((-717 . -783) 52190) ((-715 . -783) 52169) ((-453 . -560) 51921) ((-216 . -384) 51890) ((-880 . -283) 51877) ((-426 . -783) 51856) ((-63 . -1118) T) ((-567 . -124) T) ((-452 . -283) 51843) ((-981 . -481) 51687) ((-263 . -969) T) ((-113 . -124) T) ((-425 . -697) T) ((-890 . -157) 51638) ((-995 . -975) 51548) ((-565 . -729) 51527) ((-543 . -1012) T) ((-565 . -726) 51506) ((-565 . -662) T) ((-269 . -260) 51485) ((-268 . -1118) T) ((-973 . -560) 51447) ((-973 . -561) 51408) ((-947 . -1024) T) ((-154 . -97) T) ((-250 . -783) T) ((-1073 . -1012) T) ((-754 . -560) 51390) ((-1025 . -262) 51367) ((-1014 . -205) 51351) ((-927 . -281) T) ((-735 . -653) 51335) ((-332 . -975) 51287) ((-327 . -1024) T) ((-326 . -975) 51239) ((-387 . -560) 51221) ((-358 . -560) 51203) ((-318 . -975) 51155) ((-203 . -560) 51087) ((-995 . -107) 50983) ((-947 . -23) T) ((-103 . -975) 50933) ((-826 . -97) T) ((-774 . -97) T) ((-744 . -97) T) ((-704 . -97) T) ((-615 . -97) T) ((-446 . -424) 50912) ((-391 . -157) T) ((-332 . -107) 50850) ((-326 . -107) 50788) ((-318 . -107) 50726) ((-226 . -207) 50696) ((-225 . -207) 50666) ((-327 . -23) T) ((-69 . -1118) T) ((-201 . -37) 50631) ((-103 . -107) 50565) ((-39 . -25) T) ((-39 . -21) T) ((-610 . -656) T) ((-154 . -258) 50543) ((-47 . -1024) T) ((-849 . -25) T) ((-706 . -25) T) ((-1058 . -459) 50480) ((-455 . -1012) T) ((-1186 . -588) 50454) ((-1137 . -97) T) ((-788 . -97) T) ((-216 . -976) 50385) ((-980 . -1059) T) ((-891 . -727) 50338) ((-354 . -588) 50322) ((-47 . -23) T) ((-891 . -731) 50275) ((-751 . -731) 50226) ((-751 . -727) 50177) ((-269 . -553) 50156) ((-449 . -662) T) ((-527 . -97) T) ((-799 . -283) 50113) ((-593 . -260) 50092) ((-108 . -601) T) ((-74 . -1118) T) ((-980 . -37) 50079) ((-604 . -347) 50058) ((-880 . -37) 49907) ((-667 . -1012) T) ((-452 . -37) 49756) ((-84 . -1118) T) ((-527 . -258) T) ((-1128 . -781) NIL) ((-1081 . -1012) T) ((-1080 . -1012) T) ((-1074 . -1012) T) ((-324 . -960) 49733) ((-995 . -969) T) ((-928 . -976) T) ((-44 . -560) 49715) ((-44 . -561) NIL) ((-842 . -976) T) ((-753 . -560) 49697) ((-1055 . -97) 49675) ((-995 . -219) 49626) ((-400 . -976) T) ((-332 . -969) T) ((-326 . -969) T) ((-338 . -337) 49603) ((-318 . -969) T) ((-226 . -214) 49582) ((-225 . -214) 49561) ((-105 . -337) 49535) ((-995 . -209) 49460) ((-1036 . -1012) T) ((-268 . -828) 49419) ((-103 . -969) T) ((-630 . -124) T) ((-391 . -481) 49261) ((-332 . -209) 49240) ((-332 . -219) T) ((-43 . -656) T) ((-326 . -209) 49219) ((-326 . -219) T) ((-318 . -209) 49198) ((-318 . -219) T) ((-154 . -283) 49163) ((-103 . -219) T) ((-103 . -209) T) ((-292 . -727) T) ((-798 . -21) T) ((-798 . -25) T) ((-380 . -281) T) ((-468 . -33) T) ((-106 . -262) 49138) ((-1025 . -975) 49036) ((-799 . -1059) NIL) ((-303 . -560) 49018) ((-380 . -945) 48997) ((-1025 . -107) 48888) ((-409 . -1012) T) ((-1186 . -662) T) ((-61 . -560) 48870) ((-799 . -37) 48815) ((-489 . -1118) T) ((-551 . -139) 48799) ((-479 . -560) 48781) ((-1137 . -283) 48768) ((-667 . -653) 48617) ((-492 . -728) T) ((-492 . -729) T) ((-520 . -582) 48599) ((-463 . -582) 48559) ((-328 . -424) T) ((-325 . -424) T) ((-317 . -424) T) ((-239 . -424) 48510) ((-486 . -1012) 48460) ((-223 . -424) 48411) ((-1058 . -260) 48390) ((-1085 . -560) 48372) ((-626 . -481) 48305) ((-890 . -264) 48284) ((-506 . -481) 48076) ((-1079 . -207) 48060) ((-154 . -1059) 48039) ((-1174 . -560) 48021) ((-1081 . -653) 47918) ((-1080 . -653) 47759) ((-820 . -97) T) ((-1074 . -653) 47555) ((-1036 . -653) 47452) ((-1064 . -613) 47436) ((-328 . -375) 47387) ((-325 . -375) 47338) ((-317 . -375) 47289) ((-947 . -124) T) ((-735 . -481) 47201) ((-269 . -561) NIL) ((-269 . -560) 47183) ((-838 . -424) T) ((-891 . -341) 47136) ((-751 . -341) 47115) ((-477 . -476) 47094) ((-475 . -476) 47073) ((-457 . -260) NIL) ((-453 . -262) 47050) ((-391 . -264) T) ((-327 . -124) T) ((-194 . -260) NIL) ((-630 . -461) NIL) ((-94 . -1024) T) ((-154 . -37) 46878) ((-1148 . -898) 46841) ((-1055 . -283) 46779) ((-1127 . -898) 46749) ((-838 . -375) T) ((-1025 . -969) 46680) ((-1150 . -512) T) ((-1058 . -553) 46659) ((-108 . -783) T) ((-981 . -459) 46590) ((-532 . -21) T) ((-532 . -25) T) ((-520 . -21) T) ((-520 . -25) T) ((-463 . -25) T) ((-463 . -21) T) ((-1137 . -1059) 46568) ((-1025 . -209) 46521) ((-47 . -124) T) ((-1100 . -97) T) ((-216 . -1012) 46332) ((-799 . -373) 46309) ((-1002 . -97) T) ((-991 . -97) T) ((-555 . -97) T) ((-447 . -97) T) ((-1137 . -37) 46138) ((-788 . -37) 46108) ((-667 . -157) 46019) ((-593 . -560) 46001) ((-527 . -37) 45988) ((-885 . -97) 45938) ((-793 . -560) 45920) ((-793 . -561) 45842) ((-543 . -481) NIL) ((-1156 . -976) T) ((-1149 . -976) T) ((-1128 . -976) T) ((-546 . -976) T) ((-545 . -976) T) ((-1190 . -1024) T) ((-1081 . -157) 45793) ((-1080 . -157) 45724) ((-1074 . -157) 45655) ((-1036 . -157) 45606) ((-928 . -1012) T) ((-896 . -1012) T) ((-842 . -1012) T) ((-1113 . -135) 45585) ((-735 . -733) 45569) ((-635 . -25) T) ((-635 . -21) T) ((-113 . -582) 45546) ((-637 . -814) 45528) ((-400 . -1012) T) ((-289 . -1122) 45507) ((-286 . -1122) T) ((-154 . -373) 45491) ((-1113 . -133) 45470) ((-446 . -898) 45433) ((-70 . -560) 45415) ((-103 . -731) T) ((-103 . -727) T) ((-289 . -512) 45394) ((-637 . -960) 45376) ((-286 . -512) T) ((-1190 . -23) T) ((-126 . -960) 45358) ((-453 . -975) 45256) ((-44 . -262) 45181) ((-216 . -653) 45123) ((-453 . -107) 45014) ((-1005 . -97) 44992) ((-957 . -97) T) ((-586 . -764) 44971) ((-667 . -481) 44914) ((-973 . -975) 44898) ((-567 . -21) T) ((-567 . -25) T) ((-981 . -260) 44873) ((-334 . -97) T) ((-295 . -97) T) ((-610 . -588) 44847) ((-358 . -975) 44831) ((-973 . -107) 44810) ((-752 . -384) 44794) ((-113 . -25) T) ((-87 . -560) 44776) ((-113 . -21) T) ((-555 . -283) 44571) ((-447 . -283) 44375) ((-1058 . -561) NIL) ((-358 . -107) 44354) ((-352 . -97) T) ((-191 . -560) 44336) ((-1058 . -560) 44318) ((-928 . -653) 44268) ((-1074 . -481) 44037) ((-842 . -653) 43989) ((-1036 . -481) 43959) ((-324 . -281) T) ((-1092 . -139) 43909) ((-885 . -283) 43847) ((-770 . -97) T) ((-400 . -653) 43831) ((-201 . -764) T) ((-763 . -97) T) ((-761 . -97) T) ((-450 . -139) 43781) ((-1148 . -1147) 43760) ((-1030 . -1122) T) ((-312 . -960) 43727) ((-1148 . -1142) 43697) ((-1148 . -1145) 43681) ((-1127 . -1126) 43660) ((-78 . -560) 43642) ((-833 . -560) 43624) ((-1127 . -1142) 43601) ((-1030 . -512) T) ((-849 . -783) T) ((-457 . -561) 43531) ((-457 . -560) 43513) ((-706 . -783) T) ((-352 . -258) T) ((-611 . -783) T) ((-1127 . -1124) 43497) ((-1150 . -1024) T) ((-194 . -561) 43427) ((-194 . -560) 43409) ((-981 . -553) 43384) ((-57 . -139) 43368) ((-483 . -139) 43352) ((-464 . -139) 43336) ((-332 . -1181) 43320) ((-326 . -1181) 43304) ((-318 . -1181) 43288) ((-289 . -336) 43267) ((-286 . -336) T) ((-453 . -969) 43198) ((-630 . -582) 43180) ((-1184 . -588) 43154) ((-1182 . -588) 43128) ((-1150 . -23) T) ((-626 . -459) 43112) ((-62 . -560) 43094) ((-1025 . -731) 43045) ((-1025 . -727) 42996) ((-506 . -459) 42933) ((-610 . -33) T) ((-453 . -209) 42886) ((-269 . -262) 42865) ((-216 . -157) 42844) ((-752 . -976) T) ((-43 . -588) 42802) ((-995 . -341) 42753) ((-667 . -264) 42684) ((-486 . -481) 42617) ((-753 . -975) 42568) ((-1001 . -133) 42547) ((-332 . -341) 42526) ((-326 . -341) 42505) ((-318 . -341) 42484) ((-1001 . -135) 42463) ((-799 . -207) 42440) ((-753 . -107) 42382) ((-717 . -133) 42361) ((-717 . -135) 42340) ((-239 . -877) 42307) ((-226 . -781) 42286) ((-223 . -877) 42231) ((-225 . -781) 42210) ((-715 . -133) 42189) ((-715 . -135) 42168) ((-140 . -588) 42142) ((-426 . -135) 42121) ((-426 . -133) 42100) ((-610 . -662) T) ((-759 . -560) 42082) ((-1156 . -1012) T) ((-1149 . -1012) T) ((-1128 . -1012) T) ((-1113 . -1107) 42048) ((-1113 . -1104) 42014) ((-1081 . -264) 41993) ((-1080 . -264) 41944) ((-1074 . -264) 41895) ((-1036 . -264) 41874) ((-312 . -828) 41855) ((-928 . -157) T) ((-842 . -157) T) ((-546 . -1012) T) ((-545 . -1012) T) ((-630 . -21) T) ((-630 . -25) T) ((-446 . -1145) 41839) ((-446 . -1142) 41809) ((-391 . -260) 41737) ((-289 . -1024) 41587) ((-286 . -1024) T) ((-1113 . -34) 41553) ((-1113 . -91) 41519) ((-82 . -560) 41501) ((-89 . -97) 41479) ((-1190 . -124) T) ((-533 . -133) T) ((-533 . -135) 41461) ((-484 . -135) 41443) ((-484 . -133) T) ((-289 . -23) 41296) ((-39 . -315) 41270) ((-286 . -23) T) ((-1066 . -591) 41252) ((-751 . -588) 41102) ((-1177 . -976) T) ((-1066 . -346) 41084) ((-154 . -207) 41068) ((-543 . -459) 41050) ((-216 . -481) 40983) ((-1184 . -662) T) ((-1182 . -662) T) ((-1085 . -975) 40866) ((-1085 . -107) 40735) ((-753 . -969) T) ((-482 . -97) T) ((-47 . -582) 40695) ((-477 . -97) T) ((-475 . -97) T) ((-1174 . -975) 40665) ((-957 . -37) 40649) ((-753 . -209) T) ((-753 . -219) 40628) ((-506 . -260) 40607) ((-1174 . -107) 40572) ((-1137 . -207) 40556) ((-1156 . -653) 40453) ((-981 . -561) NIL) ((-981 . -560) 40435) ((-1149 . -653) 40276) ((-1128 . -653) 40072) ((-927 . -848) T) ((-639 . -560) 40041) ((-140 . -662) T) ((-1025 . -341) 40020) ((-928 . -481) NIL) ((-226 . -384) 39989) ((-225 . -384) 39958) ((-947 . -25) T) ((-947 . -21) T) ((-546 . -653) 39931) ((-545 . -653) 39828) ((-735 . -260) 39786) ((-122 . -97) 39764) ((-769 . -960) 39662) ((-154 . -764) 39641) ((-292 . -588) 39538) ((-751 . -33) T) ((-650 . -97) T) ((-1030 . -1024) T) ((-949 . -1118) T) ((-352 . -37) 39503) ((-327 . -25) T) ((-327 . -21) T) ((-147 . -97) T) ((-143 . -97) T) ((-328 . -1171) 39487) ((-325 . -1171) 39471) ((-317 . -1171) 39455) ((-154 . -322) 39434) ((-520 . -783) T) ((-463 . -783) T) ((-1030 . -23) T) ((-85 . -560) 39416) ((-637 . -281) T) ((-770 . -37) 39386) ((-763 . -37) 39356) ((-1150 . -124) T) ((-1058 . -262) 39335) ((-891 . -728) 39288) ((-891 . -729) 39241) ((-751 . -726) 39220) ((-112 . -281) T) ((-89 . -283) 39158) ((-614 . -33) T) ((-506 . -553) 39137) ((-47 . -25) T) ((-47 . -21) T) ((-751 . -729) 39088) ((-751 . -728) 39067) ((-637 . -945) T) ((-593 . -975) 39051) ((-891 . -662) 38950) ((-751 . -662) 38881) ((-891 . -445) 38834) ((-453 . -731) 38785) ((-453 . -727) 38736) ((-838 . -1171) 38723) ((-1085 . -969) T) ((-593 . -107) 38702) ((-1085 . -299) 38679) ((-1105 . -97) 38657) ((-1013 . -560) 38639) ((-637 . -505) T) ((-752 . -1012) T) ((-1174 . -969) T) ((-386 . -1012) T) ((-226 . -976) 38570) ((-225 . -976) 38501) ((-263 . -588) 38488) ((-543 . -260) 38463) ((-626 . -624) 38421) ((-890 . -560) 38403) ((-800 . -97) T) ((-671 . -560) 38385) ((-651 . -560) 38367) ((-1156 . -157) 38318) ((-1149 . -157) 38249) ((-1128 . -157) 38180) ((-635 . -783) T) ((-928 . -264) T) ((-425 . -560) 38162) ((-570 . -662) T) ((-58 . -1012) 38140) ((-221 . -139) 38124) ((-842 . -264) T) ((-947 . -936) T) ((-570 . -445) T) ((-648 . -1122) 38103) ((-546 . -157) 38082) ((-545 . -157) 38033) ((-1164 . -783) 38012) ((-648 . -512) 37923) ((-380 . -848) T) ((-380 . -756) 37902) ((-292 . -729) T) ((-292 . -662) T) ((-391 . -560) 37884) ((-391 . -561) 37792) ((-586 . -1057) 37776) ((-106 . -591) 37758) ((-122 . -283) 37696) ((-106 . -346) 37678) ((-158 . -281) T) ((-371 . -1118) T) ((-289 . -124) 37550) ((-286 . -124) T) ((-67 . -368) T) ((-106 . -119) T) ((-486 . -459) 37534) ((-594 . -1024) T) ((-543 . -19) 37516) ((-59 . -413) T) ((-59 . -368) T) ((-760 . -1012) T) ((-543 . -553) 37491) ((-449 . -960) 37451) ((-593 . -969) T) ((-594 . -23) T) ((-1177 . -1012) T) ((-752 . -653) 37300) ((-113 . -783) NIL) ((-1079 . -384) 37284) ((-1035 . -384) 37268) ((-787 . -384) 37252) ((-801 . -97) 37203) ((-1148 . -97) T) ((-1128 . -481) 36972) ((-1105 . -283) 36910) ((-285 . -560) 36892) ((-1127 . -97) T) ((-1014 . -1012) T) ((-1081 . -260) 36877) ((-1080 . -260) 36862) ((-263 . -662) T) ((-103 . -837) NIL) ((-626 . -560) 36794) ((-626 . -561) 36755) ((-995 . -588) 36665) ((-550 . -560) 36647) ((-506 . -561) NIL) ((-506 . -560) 36629) ((-1074 . -260) 36477) ((-457 . -975) 36427) ((-647 . -424) T) ((-478 . -476) 36406) ((-474 . -476) 36385) ((-194 . -975) 36335) ((-332 . -588) 36287) ((-326 . -588) 36239) ((-201 . -781) T) ((-318 . -588) 36191) ((-551 . -97) 36141) ((-453 . -341) 36120) ((-103 . -588) 36070) ((-457 . -107) 36004) ((-216 . -459) 35988) ((-316 . -135) 35970) ((-316 . -133) T) ((-154 . -343) 35941) ((-871 . -1162) 35925) ((-194 . -107) 35859) ((-800 . -283) 35824) ((-871 . -1012) 35774) ((-735 . -561) 35735) ((-735 . -560) 35717) ((-654 . -97) T) ((-304 . -1012) T) ((-1030 . -124) T) ((-650 . -37) 35687) ((-289 . -461) 35666) ((-468 . -1118) T) ((-1148 . -258) 35632) ((-1127 . -258) 35598) ((-300 . -139) 35582) ((-981 . -262) 35557) ((-1177 . -653) 35527) ((-1067 . -33) T) ((-1186 . -960) 35504) ((-440 . -560) 35486) ((-454 . -33) T) ((-354 . -960) 35470) ((-1079 . -976) T) ((-1035 . -976) T) ((-787 . -976) T) ((-980 . -781) T) ((-752 . -157) 35381) ((-486 . -260) 35358) ((-113 . -917) 35335) ((-1156 . -264) 35314) ((-1100 . -337) 35288) ((-1002 . -241) 35272) ((-446 . -97) T) ((-338 . -1012) T) ((-226 . -1012) T) ((-225 . -1012) T) ((-1149 . -264) 35223) ((-105 . -1012) T) ((-1128 . -264) 35174) ((-800 . -1059) 35152) ((-1081 . -926) 35118) ((-555 . -337) 35058) ((-1080 . -926) 35024) ((-555 . -205) 34971) ((-543 . -560) 34953) ((-543 . -561) NIL) ((-630 . -783) T) ((-447 . -205) 34903) ((-457 . -969) T) ((-1074 . -926) 34869) ((-86 . -412) T) ((-86 . -368) T) ((-194 . -969) T) ((-1036 . -926) 34835) ((-995 . -662) T) ((-648 . -1024) T) ((-546 . -264) 34814) ((-545 . -264) 34793) ((-457 . -219) T) ((-457 . -209) T) ((-194 . -219) T) ((-194 . -209) T) ((-1073 . -560) 34775) ((-800 . -37) 34727) ((-332 . -662) T) ((-326 . -662) T) ((-318 . -662) T) ((-103 . -729) T) ((-103 . -726) T) ((-486 . -1152) 34711) ((-103 . -662) T) ((-648 . -23) T) ((-1190 . -25) T) ((-446 . -258) 34677) ((-1190 . -21) T) ((-1127 . -283) 34616) ((-1083 . -97) T) ((-39 . -133) 34588) ((-39 . -135) 34560) ((-486 . -553) 34537) ((-1025 . -588) 34387) ((-551 . -283) 34325) ((-44 . -591) 34275) ((-44 . -606) 34225) ((-44 . -346) 34175) ((-1066 . -33) T) ((-799 . -781) NIL) ((-594 . -124) T) ((-455 . -560) 34157) ((-216 . -260) 34134) ((-587 . -33) T) ((-575 . -33) T) ((-1001 . -424) 34085) ((-752 . -481) 33959) ((-717 . -424) 33890) ((-715 . -424) 33841) ((-426 . -424) 33792) ((-880 . -384) 33776) ((-667 . -560) 33758) ((-226 . -653) 33700) ((-225 . -653) 33642) ((-667 . -561) 33503) ((-452 . -384) 33487) ((-312 . -276) T) ((-324 . -848) T) ((-924 . -97) 33465) ((-947 . -783) T) ((-58 . -481) 33398) ((-1127 . -1059) 33350) ((-928 . -260) NIL) ((-201 . -976) T) ((-352 . -764) T) ((-1025 . -33) T) ((-533 . -424) T) ((-484 . -424) T) ((-1131 . -1006) 33334) ((-1131 . -1012) 33312) ((-216 . -553) 33289) ((-1131 . -1008) 33246) ((-1081 . -560) 33228) ((-1080 . -560) 33210) ((-1074 . -560) 33192) ((-1074 . -561) NIL) ((-1036 . -560) 33174) ((-800 . -373) 33158) ((-496 . -97) T) ((-1148 . -37) 32999) ((-1127 . -37) 32813) ((-798 . -135) T) ((-533 . -375) T) ((-47 . -783) T) ((-484 . -375) T) ((-1150 . -21) T) ((-1150 . -25) T) ((-1025 . -726) 32792) ((-1025 . -729) 32743) ((-1025 . -728) 32722) ((-918 . -1012) T) ((-950 . -33) T) ((-791 . -1012) T) ((-1160 . -97) T) ((-1025 . -662) 32653) ((-604 . -97) T) ((-506 . -262) 32632) ((-1092 . -97) T) ((-448 . -33) T) ((-435 . -33) T) ((-328 . -97) T) ((-325 . -97) T) ((-317 . -97) T) ((-239 . -97) T) ((-223 . -97) T) ((-449 . -281) T) ((-980 . -976) T) ((-880 . -976) T) ((-289 . -582) 32540) ((-286 . -582) 32501) ((-452 . -976) T) ((-450 . -97) T) ((-409 . -560) 32483) ((-1079 . -1012) T) ((-1035 . -1012) T) ((-787 . -1012) T) ((-1049 . -97) T) ((-752 . -264) 32414) ((-890 . -975) 32297) ((-449 . -945) T) ((-671 . -975) 32267) ((-425 . -975) 32237) ((-1055 . -1031) 32221) ((-1014 . -481) 32154) ((-890 . -107) 32023) ((-838 . -97) T) ((-671 . -107) 31988) ((-57 . -97) 31938) ((-486 . -561) 31899) ((-486 . -560) 31811) ((-485 . -97) 31789) ((-483 . -97) 31739) ((-465 . -97) 31717) ((-464 . -97) 31667) ((-425 . -107) 31630) ((-226 . -157) 31609) ((-225 . -157) 31588) ((-391 . -975) 31562) ((-1113 . -898) 31524) ((-923 . -1024) T) ((-871 . -481) 31457) ((-457 . -731) T) ((-446 . -37) 31298) ((-391 . -107) 31265) ((-457 . -727) T) ((-924 . -283) 31203) ((-194 . -731) T) ((-194 . -727) T) ((-923 . -23) T) ((-648 . -124) T) ((-1127 . -373) 31173) ((-289 . -25) 31026) ((-154 . -384) 31010) ((-289 . -21) 30882) ((-286 . -25) T) ((-286 . -21) T) ((-793 . -341) T) ((-106 . -33) T) ((-453 . -588) 30732) ((-799 . -976) T) ((-543 . -262) 30707) ((-532 . -135) T) ((-520 . -135) T) ((-463 . -135) T) ((-1079 . -653) 30536) ((-1035 . -653) 30385) ((-1030 . -582) 30367) ((-787 . -653) 30337) ((-610 . -1118) T) ((-1 . -97) T) ((-216 . -560) 30089) ((-1137 . -384) 30073) ((-1092 . -283) 29877) ((-890 . -969) T) ((-671 . -969) T) ((-651 . -969) T) ((-586 . -1012) 29827) ((-973 . -588) 29811) ((-788 . -384) 29795) ((-478 . -97) T) ((-474 . -97) T) ((-223 . -283) 29782) ((-239 . -283) 29769) ((-890 . -299) 29748) ((-358 . -588) 29732) ((-450 . -283) 29536) ((-226 . -481) 29469) ((-610 . -960) 29367) ((-225 . -481) 29300) ((-1049 . -283) 29226) ((-755 . -1012) T) ((-735 . -975) 29210) ((-1156 . -260) 29195) ((-1149 . -260) 29180) ((-1128 . -260) 29028) ((-359 . -1012) T) ((-297 . -1012) T) ((-391 . -969) T) ((-154 . -976) T) ((-57 . -283) 28966) ((-735 . -107) 28945) ((-545 . -260) 28930) ((-485 . -283) 28868) ((-483 . -283) 28806) ((-465 . -283) 28744) ((-464 . -283) 28682) ((-391 . -209) 28661) ((-453 . -33) T) ((-928 . -561) 28591) ((-201 . -1012) T) ((-928 . -560) 28573) ((-896 . -560) 28555) ((-896 . -561) 28530) ((-842 . -560) 28512) ((-635 . -135) T) ((-637 . -848) T) ((-637 . -756) T) ((-400 . -560) 28494) ((-1030 . -21) T) ((-1030 . -25) T) ((-610 . -350) 28478) ((-112 . -848) T) ((-800 . -207) 28462) ((-76 . -1118) T) ((-122 . -121) 28446) ((-973 . -33) T) ((-1184 . -960) 28420) ((-1182 . -960) 28377) ((-1137 . -976) T) ((-788 . -976) T) ((-453 . -726) 28356) ((-328 . -1059) 28335) ((-325 . -1059) 28314) ((-317 . -1059) 28293) ((-453 . -729) 28244) ((-453 . -728) 28223) ((-203 . -33) T) ((-453 . -662) 28154) ((-58 . -459) 28138) ((-527 . -976) T) ((-1079 . -157) 28029) ((-1035 . -157) 27940) ((-980 . -1012) T) ((-1001 . -877) 27885) ((-880 . -1012) T) ((-753 . -588) 27836) ((-717 . -877) 27806) ((-649 . -1012) T) ((-715 . -877) 27773) ((-483 . -256) 27757) ((-610 . -828) 27716) ((-452 . -1012) T) ((-426 . -877) 27683) ((-77 . -1118) T) ((-328 . -37) 27648) ((-325 . -37) 27613) ((-317 . -37) 27578) ((-239 . -37) 27427) ((-223 . -37) 27276) ((-838 . -1059) T) ((-567 . -135) 27255) ((-567 . -133) 27234) ((-113 . -135) T) ((-113 . -133) NIL) ((-387 . -662) T) ((-735 . -969) T) ((-316 . -424) T) ((-1156 . -926) 27200) ((-1149 . -926) 27166) ((-1128 . -926) 27132) ((-838 . -37) 27097) ((-201 . -653) 27062) ((-39 . -382) 27034) ((-292 . -46) 27004) ((-923 . -124) T) ((-751 . -1118) T) ((-158 . -848) T) ((-316 . -375) T) ((-486 . -262) 26981) ((-44 . -33) T) ((-751 . -960) 26810) ((-602 . -97) T) ((-594 . -21) T) ((-594 . -25) T) ((-1014 . -459) 26794) ((-1127 . -207) 26764) ((-614 . -1118) T) ((-221 . -97) 26714) ((-799 . -1012) T) ((-1085 . -588) 26639) ((-980 . -653) 26626) ((-667 . -975) 26469) ((-1079 . -481) 26417) ((-880 . -653) 26266) ((-1035 . -481) 26218) ((-452 . -653) 26067) ((-65 . -560) 26049) ((-667 . -107) 25878) ((-871 . -459) 25862) ((-1174 . -588) 25822) ((-753 . -662) T) ((-1081 . -975) 25705) ((-1080 . -975) 25540) ((-1074 . -975) 25330) ((-1036 . -975) 25213) ((-927 . -1122) T) ((-1007 . -97) 25191) ((-751 . -350) 25161) ((-927 . -512) T) ((-1081 . -107) 25030) ((-1080 . -107) 24851) ((-1074 . -107) 24620) ((-1036 . -107) 24489) ((-1017 . -1015) 24453) ((-352 . -781) T) ((-1156 . -560) 24435) ((-1149 . -560) 24417) ((-1128 . -560) 24399) ((-1128 . -561) NIL) ((-216 . -262) 24376) ((-39 . -424) T) ((-201 . -157) T) ((-154 . -1012) T) ((-630 . -135) T) ((-630 . -133) NIL) ((-546 . -560) 24358) ((-545 . -560) 24340) ((-826 . -1012) T) ((-774 . -1012) T) ((-744 . -1012) T) ((-704 . -1012) T) ((-598 . -785) 24324) ((-615 . -1012) T) ((-751 . -828) 24257) ((-39 . -375) NIL) ((-1030 . -601) T) ((-799 . -653) 24202) ((-226 . -459) 24186) ((-225 . -459) 24170) ((-648 . -582) 24118) ((-593 . -588) 24092) ((-269 . -33) T) ((-667 . -969) T) ((-533 . -1171) 24079) ((-484 . -1171) 24056) ((-1137 . -1012) T) ((-1079 . -264) 23967) ((-1035 . -264) 23898) ((-980 . -157) T) ((-788 . -1012) T) ((-880 . -157) 23809) ((-717 . -1140) 23793) ((-586 . -481) 23726) ((-75 . -560) 23708) ((-667 . -299) 23673) ((-1085 . -662) T) ((-527 . -1012) T) ((-452 . -157) 23584) ((-221 . -283) 23522) ((-1050 . -1024) T) ((-68 . -560) 23504) ((-1174 . -662) T) ((-1081 . -969) T) ((-1080 . -969) T) ((-300 . -97) 23454) ((-1074 . -969) T) ((-1050 . -23) T) ((-1036 . -969) T) ((-89 . -1031) 23438) ((-794 . -1024) T) ((-1081 . -209) 23397) ((-1080 . -219) 23376) ((-1080 . -209) 23328) ((-1074 . -209) 23215) ((-1074 . -219) 23194) ((-292 . -828) 23100) ((-794 . -23) T) ((-154 . -653) 22928) ((-380 . -1122) T) ((-1013 . -341) T) ((-947 . -135) T) ((-927 . -336) T) ((-798 . -424) T) ((-871 . -260) 22905) ((-289 . -783) T) ((-286 . -783) NIL) ((-802 . -97) T) ((-648 . -25) T) ((-380 . -512) T) ((-648 . -21) T) ((-327 . -135) 22887) ((-327 . -133) T) ((-1055 . -1012) 22865) ((-425 . -656) T) ((-73 . -560) 22847) ((-110 . -783) T) ((-221 . -256) 22831) ((-216 . -975) 22729) ((-79 . -560) 22711) ((-671 . -341) 22664) ((-1083 . -764) T) ((-673 . -211) 22648) ((-1067 . -1118) T) ((-129 . -211) 22630) ((-216 . -107) 22521) ((-1137 . -653) 22350) ((-47 . -135) T) ((-799 . -157) T) ((-788 . -653) 22320) ((-454 . -1118) T) ((-880 . -481) 22267) ((-593 . -662) T) ((-527 . -653) 22254) ((-957 . -976) T) ((-452 . -481) 22197) ((-871 . -19) 22181) ((-871 . -553) 22158) ((-752 . -561) NIL) ((-752 . -560) 22140) ((-928 . -975) 22090) ((-386 . -560) 22072) ((-226 . -260) 22049) ((-225 . -260) 22026) ((-457 . -837) NIL) ((-289 . -29) 21996) ((-103 . -1118) T) ((-927 . -1024) T) ((-194 . -837) NIL) ((-842 . -975) 21948) ((-995 . -960) 21846) ((-928 . -107) 21780) ((-239 . -207) 21764) ((-673 . -631) 21748) ((-400 . -975) 21732) ((-352 . -976) T) ((-927 . -23) T) ((-842 . -107) 21670) ((-630 . -1107) NIL) ((-457 . -588) 21620) ((-103 . -812) 21602) ((-103 . -814) 21584) ((-630 . -1104) NIL) ((-194 . -588) 21534) ((-332 . -960) 21518) ((-326 . -960) 21502) ((-300 . -283) 21440) ((-318 . -960) 21424) ((-201 . -264) T) ((-400 . -107) 21403) ((-58 . -560) 21335) ((-154 . -157) T) ((-1030 . -783) T) ((-103 . -960) 21295) ((-820 . -1012) T) ((-770 . -976) T) ((-763 . -976) T) ((-630 . -34) NIL) ((-630 . -91) NIL) ((-286 . -917) 21256) ((-532 . -424) T) ((-520 . -424) T) ((-463 . -424) T) ((-380 . -336) T) ((-216 . -969) 21187) ((-1058 . -33) T) ((-449 . -848) T) ((-923 . -582) 21135) ((-226 . -553) 21112) ((-225 . -553) 21089) ((-995 . -350) 21073) ((-799 . -481) 20981) ((-216 . -209) 20934) ((-1066 . -1118) T) ((-760 . -560) 20916) ((-1185 . -1024) T) ((-1177 . -560) 20898) ((-1137 . -157) 20789) ((-103 . -350) 20771) ((-103 . -311) 20753) ((-980 . -264) T) ((-880 . -264) 20684) ((-735 . -341) 20663) ((-587 . -1118) T) ((-575 . -1118) T) ((-452 . -264) 20594) ((-527 . -157) T) ((-300 . -256) 20578) ((-1185 . -23) T) ((-1113 . -97) T) ((-1100 . -1012) T) ((-1002 . -1012) T) ((-991 . -1012) T) ((-81 . -560) 20560) ((-647 . -97) T) ((-328 . -322) 20539) ((-555 . -1012) T) ((-325 . -322) 20518) ((-317 . -322) 20497) ((-447 . -1012) T) ((-1092 . -205) 20447) ((-239 . -228) 20409) ((-1050 . -124) T) ((-555 . -557) 20385) ((-995 . -828) 20318) ((-928 . -969) T) ((-842 . -969) T) ((-447 . -557) 20297) ((-1074 . -727) NIL) ((-1074 . -731) NIL) ((-1014 . -561) 20258) ((-450 . -205) 20208) ((-1014 . -560) 20190) ((-928 . -219) T) ((-928 . -209) T) ((-400 . -969) T) ((-885 . -1012) 20140) ((-842 . -219) T) ((-794 . -124) T) ((-635 . -424) T) ((-776 . -1024) 20119) ((-103 . -828) NIL) ((-1113 . -258) 20085) ((-800 . -781) 20064) ((-1025 . -1118) T) ((-833 . -662) T) ((-154 . -481) 19976) ((-923 . -25) T) ((-833 . -445) T) ((-380 . -1024) T) ((-457 . -729) T) ((-457 . -726) T) ((-838 . -322) T) ((-457 . -662) T) ((-194 . -729) T) ((-194 . -726) T) ((-923 . -21) T) ((-194 . -662) T) ((-776 . -23) 19928) ((-292 . -281) 19907) ((-958 . -211) 19853) ((-380 . -23) T) ((-871 . -561) 19814) ((-871 . -560) 19726) ((-586 . -459) 19710) ((-44 . -934) 19660) ((-304 . -560) 19642) ((-1025 . -960) 19471) ((-543 . -591) 19453) ((-543 . -346) 19435) ((-316 . -1171) 19412) ((-950 . -1118) T) ((-799 . -264) T) ((-1137 . -481) 19360) ((-448 . -1118) T) ((-435 . -1118) T) ((-537 . -97) T) ((-1079 . -260) 19287) ((-567 . -424) 19266) ((-924 . -919) 19250) ((-1177 . -355) 19222) ((-113 . -424) T) ((-1099 . -97) T) ((-1005 . -1012) 19200) ((-957 . -1012) T) ((-821 . -783) T) ((-324 . -1122) T) ((-1156 . -975) 19083) ((-1025 . -350) 19053) ((-1149 . -975) 18888) ((-1128 . -975) 18678) ((-1156 . -107) 18547) ((-1149 . -107) 18368) ((-1128 . -107) 18137) ((-1113 . -283) 18124) ((-324 . -512) T) ((-338 . -560) 18106) ((-263 . -281) T) ((-546 . -975) 18079) ((-545 . -975) 17962) ((-334 . -1012) T) ((-295 . -1012) T) ((-226 . -560) 17923) ((-225 . -560) 17884) ((-927 . -124) T) ((-105 . -560) 17866) ((-578 . -23) T) ((-630 . -382) 17833) ((-554 . -23) T) ((-598 . -97) T) ((-546 . -107) 17804) ((-545 . -107) 17673) ((-352 . -1012) T) ((-309 . -97) T) ((-154 . -264) 17584) ((-1127 . -781) 17537) ((-650 . -976) T) ((-1055 . -481) 17470) ((-1025 . -828) 17403) ((-770 . -1012) T) ((-763 . -1012) T) ((-761 . -1012) T) ((-92 . -97) T) ((-132 . -783) T) ((-559 . -812) 17387) ((-106 . -1118) T) ((-1001 . -97) T) ((-981 . -33) T) ((-717 . -97) T) ((-715 . -97) T) ((-433 . -97) T) ((-426 . -97) T) ((-216 . -731) 17338) ((-216 . -727) 17289) ((-589 . -97) T) ((-1137 . -264) 17200) ((-604 . -577) 17184) ((-586 . -260) 17161) ((-957 . -653) 17145) ((-527 . -264) T) ((-890 . -588) 17070) ((-1185 . -124) T) ((-671 . -588) 17030) ((-651 . -588) 17017) ((-250 . -97) T) ((-425 . -588) 16947) ((-49 . -97) T) ((-533 . -97) T) ((-484 . -97) T) ((-1156 . -969) T) ((-1149 . -969) T) ((-1128 . -969) T) ((-1156 . -209) 16906) ((-295 . -653) 16888) ((-1149 . -219) 16867) ((-1149 . -209) 16819) ((-1128 . -209) 16706) ((-1128 . -219) 16685) ((-1113 . -37) 16582) ((-928 . -731) T) ((-546 . -969) T) ((-545 . -969) T) ((-928 . -727) T) ((-896 . -731) T) ((-896 . -727) T) ((-800 . -976) T) ((-798 . -797) 16566) ((-104 . -560) 16548) ((-630 . -424) T) ((-352 . -653) 16513) ((-391 . -588) 16487) ((-648 . -783) 16466) ((-647 . -37) 16431) ((-545 . -209) 16390) ((-39 . -660) 16362) ((-324 . -302) 16339) ((-324 . -336) T) ((-995 . -281) 16290) ((-268 . -1024) 16172) ((-1018 . -1118) T) ((-156 . -97) T) ((-1131 . -560) 16139) ((-776 . -124) 16091) ((-586 . -1152) 16075) ((-770 . -653) 16045) ((-763 . -653) 16015) ((-453 . -1118) T) ((-332 . -281) T) ((-326 . -281) T) ((-318 . -281) T) ((-586 . -553) 15992) ((-380 . -124) T) ((-486 . -606) 15976) ((-103 . -281) T) ((-268 . -23) 15860) ((-486 . -591) 15844) ((-630 . -375) NIL) ((-486 . -346) 15828) ((-265 . -560) 15810) ((-89 . -1012) 15788) ((-103 . -945) T) ((-520 . -131) T) ((-1164 . -139) 15772) ((-453 . -960) 15601) ((-1150 . -133) 15562) ((-1150 . -135) 15523) ((-973 . -1118) T) ((-918 . -560) 15505) ((-791 . -560) 15487) ((-752 . -975) 15330) ((-1001 . -283) 15317) ((-203 . -1118) T) ((-717 . -283) 15304) ((-715 . -283) 15291) ((-752 . -107) 15120) ((-426 . -283) 15107) ((-1079 . -561) NIL) ((-1079 . -560) 15089) ((-1035 . -560) 15071) ((-1035 . -561) 14819) ((-957 . -157) T) ((-787 . -560) 14801) ((-871 . -262) 14778) ((-555 . -481) 14561) ((-754 . -960) 14545) ((-447 . -481) 14337) ((-890 . -662) T) ((-671 . -662) T) ((-651 . -662) T) ((-324 . -1024) T) ((-1086 . -560) 14319) ((-199 . -97) T) ((-453 . -350) 14289) ((-482 . -1012) T) ((-477 . -1012) T) ((-475 . -1012) T) ((-735 . -588) 14263) ((-947 . -424) T) ((-885 . -481) 14196) ((-324 . -23) T) ((-578 . -124) T) ((-554 . -124) T) ((-327 . -424) T) ((-216 . -341) 14175) ((-352 . -157) T) ((-1148 . -976) T) ((-1127 . -976) T) ((-201 . -926) T) ((-635 . -360) T) ((-391 . -662) T) ((-637 . -1122) T) ((-1050 . -582) 14123) ((-532 . -797) 14107) ((-1067 . -1095) 14083) ((-637 . -512) T) ((-122 . -1012) 14061) ((-1177 . -975) 14045) ((-650 . -1012) T) ((-453 . -828) 13978) ((-598 . -37) 13948) ((-327 . -375) T) ((-289 . -135) 13927) ((-289 . -133) 13906) ((-112 . -512) T) ((-286 . -135) 13862) ((-286 . -133) 13818) ((-47 . -424) T) ((-147 . -1012) T) ((-143 . -1012) T) ((-1067 . -102) 13765) ((-717 . -1059) 13743) ((-626 . -33) T) ((-1177 . -107) 13722) ((-506 . -33) T) ((-454 . -102) 13706) ((-226 . -262) 13683) ((-225 . -262) 13660) ((-799 . -260) 13611) ((-44 . -1118) T) ((-752 . -969) T) ((-1085 . -46) 13588) ((-752 . -299) 13550) ((-1001 . -37) 13399) ((-752 . -209) 13378) ((-717 . -37) 13207) ((-715 . -37) 13056) ((-426 . -37) 12905) ((-586 . -561) 12866) ((-586 . -560) 12778) ((-533 . -1059) T) ((-484 . -1059) T) ((-1055 . -459) 12762) ((-1105 . -1012) 12740) ((-1050 . -25) T) ((-1050 . -21) T) ((-446 . -976) T) ((-1128 . -727) NIL) ((-1128 . -731) NIL) ((-923 . -783) 12719) ((-755 . -560) 12701) ((-794 . -21) T) ((-794 . -25) T) ((-735 . -662) T) ((-158 . -1122) T) ((-533 . -37) 12666) ((-484 . -37) 12631) ((-359 . -560) 12613) ((-297 . -560) 12595) ((-154 . -260) 12553) ((-61 . -1118) T) ((-108 . -97) T) ((-800 . -1012) T) ((-158 . -512) T) ((-650 . -653) 12523) ((-268 . -124) 12407) ((-201 . -560) 12389) ((-201 . -561) 12319) ((-927 . -582) 12258) ((-1177 . -969) T) ((-1030 . -135) T) ((-575 . -1095) 12233) ((-667 . -837) 12212) ((-543 . -33) T) ((-587 . -102) 12196) ((-575 . -102) 12142) ((-1137 . -260) 12069) ((-667 . -588) 11994) ((-269 . -1118) T) ((-1085 . -960) 11892) ((-1074 . -837) NIL) ((-980 . -561) 11807) ((-980 . -560) 11789) ((-316 . -97) T) ((-226 . -975) 11687) ((-225 . -975) 11585) ((-367 . -97) T) ((-880 . -560) 11567) ((-880 . -561) 11428) ((-649 . -560) 11410) ((-1175 . -1112) 11379) ((-452 . -560) 11361) ((-452 . -561) 11222) ((-223 . -384) 11206) ((-239 . -384) 11190) ((-226 . -107) 11081) ((-225 . -107) 10972) ((-1081 . -588) 10897) ((-1080 . -588) 10794) ((-1074 . -588) 10646) ((-1036 . -588) 10571) ((-324 . -124) T) ((-80 . -413) T) ((-80 . -368) T) ((-927 . -25) T) ((-927 . -21) T) ((-801 . -1012) 10522) ((-800 . -653) 10474) ((-352 . -264) T) ((-154 . -926) 10426) ((-630 . -360) T) ((-923 . -921) 10410) ((-637 . -1024) T) ((-630 . -151) 10392) ((-1148 . -1012) T) ((-1127 . -1012) T) ((-289 . -1104) 10371) ((-289 . -1107) 10350) ((-1072 . -97) T) ((-289 . -886) 10329) ((-126 . -1024) T) ((-112 . -1024) T) ((-551 . -1162) 10313) ((-637 . -23) T) ((-551 . -1012) 10263) ((-89 . -481) 10196) ((-158 . -336) T) ((-289 . -91) 10175) ((-289 . -34) 10154) ((-555 . -459) 10088) ((-126 . -23) T) ((-112 . -23) T) ((-654 . -1012) T) ((-447 . -459) 10025) ((-380 . -582) 9973) ((-593 . -960) 9871) ((-885 . -459) 9855) ((-328 . -976) T) ((-325 . -976) T) ((-317 . -976) T) ((-239 . -976) T) ((-223 . -976) T) ((-799 . -561) NIL) ((-799 . -560) 9837) ((-1185 . -21) T) ((-527 . -926) T) ((-667 . -662) T) ((-1185 . -25) T) ((-226 . -969) 9768) ((-225 . -969) 9699) ((-70 . -1118) T) ((-226 . -209) 9652) ((-225 . -209) 9605) ((-39 . -97) T) ((-838 . -976) T) ((-1081 . -662) T) ((-1080 . -662) T) ((-1074 . -662) T) ((-1074 . -726) NIL) ((-1074 . -729) NIL) ((-849 . -97) T) ((-1036 . -662) T) ((-706 . -97) T) ((-611 . -97) T) ((-446 . -1012) T) ((-312 . -1024) T) ((-158 . -1024) T) ((-292 . -848) 9584) ((-1148 . -653) 9425) ((-800 . -157) T) ((-1127 . -653) 9239) ((-776 . -21) 9191) ((-776 . -25) 9143) ((-221 . -1057) 9127) ((-122 . -481) 9060) ((-380 . -25) T) ((-380 . -21) T) ((-312 . -23) T) ((-154 . -561) 8828) ((-154 . -560) 8810) ((-158 . -23) T) ((-586 . -262) 8787) ((-486 . -33) T) ((-826 . -560) 8769) ((-87 . -1118) T) ((-774 . -560) 8751) ((-744 . -560) 8733) ((-704 . -560) 8715) ((-615 . -560) 8697) ((-216 . -588) 8547) ((-1083 . -1012) T) ((-1079 . -975) 8370) ((-1058 . -1118) T) ((-1035 . -975) 8213) ((-787 . -975) 8197) ((-1079 . -107) 8006) ((-1035 . -107) 7835) ((-787 . -107) 7814) ((-1137 . -561) NIL) ((-1137 . -560) 7796) ((-316 . -1059) T) ((-788 . -560) 7778) ((-991 . -260) 7757) ((-78 . -1118) T) ((-928 . -837) NIL) ((-555 . -260) 7733) ((-1105 . -481) 7666) ((-457 . -1118) T) ((-527 . -560) 7648) ((-447 . -260) 7627) ((-194 . -1118) T) ((-1001 . -207) 7611) ((-263 . -848) T) ((-753 . -281) 7590) ((-798 . -97) T) ((-717 . -207) 7574) ((-928 . -588) 7524) ((-885 . -260) 7501) ((-842 . -588) 7453) ((-578 . -21) T) ((-578 . -25) T) ((-554 . -21) T) ((-316 . -37) 7418) ((-630 . -660) 7385) ((-457 . -812) 7367) ((-457 . -814) 7349) ((-446 . -653) 7190) ((-194 . -812) 7172) ((-62 . -1118) T) ((-194 . -814) 7154) ((-554 . -25) T) ((-400 . -588) 7128) ((-457 . -960) 7088) ((-800 . -481) 7000) ((-194 . -960) 6960) ((-216 . -33) T) ((-924 . -1012) 6938) ((-1148 . -157) 6869) ((-1127 . -157) 6800) ((-648 . -133) 6779) ((-648 . -135) 6758) ((-637 . -124) T) ((-128 . -437) 6735) ((-598 . -596) 6719) ((-1055 . -560) 6651) ((-112 . -124) T) ((-449 . -1122) T) ((-555 . -553) 6627) ((-447 . -553) 6606) ((-309 . -308) 6575) ((-496 . -1012) T) ((-449 . -512) T) ((-1079 . -969) T) ((-1035 . -969) T) ((-787 . -969) T) ((-216 . -726) 6554) ((-216 . -729) 6505) ((-216 . -728) 6484) ((-1079 . -299) 6461) ((-216 . -662) 6392) ((-885 . -19) 6376) ((-457 . -350) 6358) ((-457 . -311) 6340) ((-1035 . -299) 6312) ((-327 . -1171) 6289) ((-194 . -350) 6271) ((-194 . -311) 6253) ((-885 . -553) 6230) ((-1079 . -209) T) ((-604 . -1012) T) ((-1160 . -1012) T) ((-1092 . -1012) T) ((-1001 . -228) 6167) ((-328 . -1012) T) ((-325 . -1012) T) ((-317 . -1012) T) ((-239 . -1012) T) ((-223 . -1012) T) ((-82 . -1118) T) ((-123 . -97) 6145) ((-117 . -97) 6123) ((-1092 . -557) 6102) ((-450 . -1012) T) ((-1049 . -1012) T) ((-450 . -557) 6081) ((-226 . -731) 6032) ((-226 . -727) 5983) ((-225 . -731) 5934) ((-39 . -1059) NIL) ((-225 . -727) 5885) ((-995 . -848) 5836) ((-928 . -729) T) ((-928 . -726) T) ((-928 . -662) T) ((-896 . -729) T) ((-842 . -662) T) ((-89 . -459) 5820) ((-457 . -828) NIL) ((-838 . -1012) T) ((-201 . -975) 5785) ((-800 . -264) T) ((-194 . -828) NIL) ((-769 . -1024) 5764) ((-57 . -1012) 5714) ((-485 . -1012) 5692) ((-483 . -1012) 5642) ((-465 . -1012) 5620) ((-464 . -1012) 5570) ((-532 . -97) T) ((-520 . -97) T) ((-463 . -97) T) ((-446 . -157) 5501) ((-332 . -848) T) ((-326 . -848) T) ((-318 . -848) T) ((-201 . -107) 5457) ((-769 . -23) 5409) ((-400 . -662) T) ((-103 . -848) T) ((-39 . -37) 5354) ((-103 . -756) T) ((-533 . -322) T) ((-484 . -322) T) ((-1127 . -481) 5214) ((-289 . -424) 5193) ((-286 . -424) T) ((-770 . -260) 5172) ((-312 . -124) T) ((-158 . -124) T) ((-268 . -25) 5037) ((-268 . -21) 4921) ((-44 . -1095) 4900) ((-64 . -560) 4882) ((-820 . -560) 4864) ((-551 . -481) 4797) ((-44 . -102) 4747) ((-1014 . -398) 4731) ((-1014 . -341) 4710) ((-981 . -1118) T) ((-980 . -975) 4697) ((-880 . -975) 4540) ((-452 . -975) 4383) ((-604 . -653) 4367) ((-980 . -107) 4352) ((-880 . -107) 4181) ((-449 . -336) T) ((-328 . -653) 4133) ((-325 . -653) 4085) ((-317 . -653) 4037) ((-239 . -653) 3886) ((-223 . -653) 3735) ((-871 . -591) 3719) ((-452 . -107) 3548) ((-1165 . -97) T) ((-871 . -346) 3532) ((-1128 . -837) NIL) ((-72 . -560) 3514) ((-890 . -46) 3493) ((-565 . -1024) T) ((-1 . -1012) T) ((-635 . -97) T) ((-1164 . -97) 3443) ((-1156 . -588) 3368) ((-1149 . -588) 3265) ((-122 . -459) 3249) ((-1100 . -560) 3231) ((-1002 . -560) 3213) ((-363 . -23) T) ((-991 . -560) 3195) ((-85 . -1118) T) ((-1128 . -588) 3047) ((-838 . -653) 3012) ((-565 . -23) T) ((-555 . -560) 2994) ((-555 . -561) NIL) ((-447 . -561) NIL) ((-447 . -560) 2976) ((-478 . -1012) T) ((-474 . -1012) T) ((-324 . -25) T) ((-324 . -21) T) ((-123 . -283) 2914) ((-117 . -283) 2852) ((-546 . -588) 2839) ((-201 . -969) T) ((-545 . -588) 2764) ((-352 . -926) T) ((-201 . -219) T) ((-201 . -209) T) ((-885 . -561) 2725) ((-885 . -560) 2637) ((-798 . -37) 2624) ((-1148 . -264) 2575) ((-1127 . -264) 2526) ((-1030 . -424) T) ((-470 . -783) T) ((-289 . -1047) 2505) ((-923 . -135) 2484) ((-923 . -133) 2463) ((-463 . -283) 2450) ((-269 . -1095) 2429) ((-449 . -1024) T) ((-799 . -975) 2374) ((-567 . -97) T) ((-1105 . -459) 2358) ((-226 . -341) 2337) ((-225 . -341) 2316) ((-269 . -102) 2266) ((-980 . -969) T) ((-113 . -97) T) ((-880 . -969) T) ((-799 . -107) 2195) ((-449 . -23) T) ((-452 . -969) T) ((-980 . -209) T) ((-880 . -299) 2164) ((-452 . -299) 2121) ((-328 . -157) T) ((-325 . -157) T) ((-317 . -157) T) ((-239 . -157) 2032) ((-223 . -157) 1943) ((-890 . -960) 1841) ((-671 . -960) 1812) ((-1017 . -97) T) ((-1005 . -560) 1779) ((-957 . -560) 1761) ((-1156 . -662) T) ((-1149 . -662) T) ((-1128 . -726) NIL) ((-154 . -975) 1671) ((-1128 . -729) NIL) ((-838 . -157) T) ((-1128 . -662) T) ((-1175 . -139) 1655) ((-927 . -315) 1629) ((-924 . -481) 1562) ((-776 . -783) 1541) ((-520 . -1059) T) ((-446 . -264) 1492) ((-546 . -662) T) ((-334 . -560) 1474) ((-295 . -560) 1456) ((-391 . -960) 1354) ((-545 . -662) T) ((-380 . -783) 1305) ((-154 . -107) 1201) ((-769 . -124) 1153) ((-673 . -139) 1137) ((-1164 . -283) 1075) ((-457 . -281) T) ((-352 . -560) 1042) ((-486 . -934) 1026) ((-352 . -561) 940) ((-194 . -281) T) ((-129 . -139) 922) ((-650 . -260) 901) ((-457 . -945) T) ((-532 . -37) 888) ((-520 . -37) 875) ((-463 . -37) 840) ((-194 . -945) T) ((-799 . -969) T) ((-770 . -560) 822) ((-763 . -560) 804) ((-761 . -560) 786) ((-752 . -837) 765) ((-1186 . -1024) T) ((-1137 . -975) 588) ((-788 . -975) 572) ((-799 . -219) T) ((-799 . -209) NIL) ((-626 . -1118) T) ((-1186 . -23) T) ((-752 . -588) 497) ((-506 . -1118) T) ((-391 . -311) 481) ((-527 . -975) 468) ((-1137 . -107) 277) ((-637 . -582) 259) ((-788 . -107) 238) ((-354 . -23) T) ((-1092 . -481) 30)) \ No newline at end of file
+((($ $) . T) ((#0=(-794 |#1|) $) . T) ((#0# |#2|) . T))
+((($ $) . T) ((|#2| $) |has| |#1| (-210)) ((|#2| |#1|) |has| |#1| (-210)) ((|#3| |#1|) . T) ((|#3| $) . T))
+(((-603 . -1013) T) ((-240 . -482) 142358) ((-224 . -482) 142301) ((-528 . -107) 142286) ((-493 . -23) T) ((-222 . -1013) 142236) ((-113 . -284) 142193) ((-451 . -482) 141985) ((-631 . -97) T) ((-1050 . -482) 141904) ((-364 . -124) T) ((-1176 . -902) 141873) ((-552 . -460) 141857) ((-566 . -124) T) ((-756 . -780) T) ((-490 . -55) 141807) ((-57 . -482) 141740) ((-486 . -482) 141673) ((-392 . -829) 141632) ((-154 . -970) T) ((-484 . -482) 141565) ((-466 . -482) 141498) ((-465 . -482) 141431) ((-736 . -961) 141218) ((-636 . -37) 141183) ((-317 . -323) T) ((-1008 . -1007) 141167) ((-1008 . -1013) 141145) ((-154 . -220) 141096) ((-154 . -210) 141047) ((-1008 . -1009) 141005) ((-801 . -261) 140963) ((-202 . -732) T) ((-202 . -728) T) ((-631 . -259) NIL) ((-1059 . -1096) 140942) ((-381 . -918) 140926) ((-638 . -21) T) ((-638 . -25) T) ((-1178 . -589) 140900) ((-290 . -146) 140879) ((-290 . -131) 140858) ((-1059 . -102) 140808) ((-126 . -25) T) ((-39 . -208) 140785) ((-112 . -21) T) ((-112 . -25) T) ((-556 . -263) 140761) ((-448 . -263) 140740) ((-1138 . -970) T) ((-789 . -970) T) ((-736 . -312) 140724) ((-113 . -1060) NIL) ((-89 . -561) 140656) ((-450 . -124) T) ((-544 . -1119) T) ((-1138 . -300) 140633) ((-528 . -970) T) ((-1138 . -210) T) ((-603 . -654) 140617) ((-886 . -263) 140594) ((-58 . -33) T) ((-981 . -732) T) ((-981 . -728) T) ((-753 . -663) T) ((-668 . -46) 140559) ((-568 . -37) 140546) ((-329 . -265) T) ((-326 . -265) T) ((-318 . -265) T) ((-240 . -265) 140477) ((-224 . -265) 140408) ((-948 . -97) T) ((-387 . -663) T) ((-113 . -37) 140353) ((-387 . -446) T) ((-328 . -97) T) ((-1114 . -977) T) ((-648 . -977) T) ((-1082 . -46) 140330) ((-1081 . -46) 140300) ((-1075 . -46) 140277) ((-959 . -139) 140223) ((-839 . -265) T) ((-1037 . -46) 140195) ((-631 . -284) NIL) ((-483 . -561) 140177) ((-478 . -561) 140159) ((-476 . -561) 140141) ((-301 . -1013) 140091) ((-649 . -425) 140022) ((-47 . -97) T) ((-1149 . -261) 140007) ((-1128 . -261) 139927) ((-587 . -607) 139911) ((-587 . -592) 139895) ((-313 . -21) T) ((-313 . -25) T) ((-39 . -323) NIL) ((-158 . -21) T) ((-158 . -25) T) ((-587 . -347) 139879) ((-552 . -261) 139856) ((-362 . -97) T) ((-1031 . -131) T) ((-122 . -561) 139788) ((-803 . -1013) T) ((-599 . -385) 139772) ((-651 . -561) 139754) ((-147 . -561) 139736) ((-143 . -561) 139718) ((-1178 . -663) T) ((-1015 . -33) T) ((-800 . -732) NIL) ((-800 . -728) NIL) ((-791 . -784) T) ((-668 . -815) NIL) ((-1187 . -124) T) ((-355 . -124) T) ((-833 . -97) T) ((-668 . -961) 139596) ((-493 . -124) T) ((-1002 . -385) 139580) ((-925 . -460) 139564) ((-113 . -374) 139541) ((-1075 . -1119) 139520) ((-718 . -385) 139504) ((-716 . -385) 139488) ((-872 . -33) T) ((-631 . -1060) NIL) ((-227 . -589) 139325) ((-226 . -589) 139149) ((-754 . -849) 139128) ((-427 . -385) 139112) ((-552 . -19) 139096) ((-1055 . -1113) 139065) ((-1075 . -815) NIL) ((-1075 . -813) 139017) ((-552 . -554) 138994) ((-1106 . -561) 138926) ((-1083 . -561) 138908) ((-60 . -369) T) ((-1081 . -961) 138843) ((-1075 . -961) 138809) ((-631 . -37) 138759) ((-447 . -261) 138744) ((-668 . -351) 138728) ((-599 . -977) T) ((-1149 . -927) 138694) ((-1128 . -927) 138660) ((-982 . -1096) 138635) ((-801 . -562) 138443) ((-801 . -561) 138425) ((-1093 . -460) 138362) ((-392 . -946) 138341) ((-47 . -284) 138328) ((-982 . -102) 138274) ((-451 . -460) 138211) ((-487 . -1119) T) ((-1050 . -460) 138182) ((-1075 . -312) 138134) ((-1075 . -351) 138086) ((-411 . -97) T) ((-1002 . -977) T) ((-227 . -33) T) ((-226 . -33) T) ((-718 . -977) T) ((-716 . -977) T) ((-668 . -829) 138063) ((-427 . -977) T) ((-57 . -460) 138047) ((-958 . -976) 138021) ((-486 . -460) 138005) ((-484 . -460) 137989) ((-466 . -460) 137973) ((-465 . -460) 137957) ((-222 . -482) 137890) ((-958 . -107) 137857) ((-1082 . -829) 137770) ((-611 . -1025) T) ((-1081 . -829) 137676) ((-1075 . -829) 137509) ((-1037 . -829) 137493) ((-328 . -1060) T) ((-296 . -976) 137475) ((-227 . -727) 137454) ((-227 . -730) 137405) ((-227 . -729) 137384) ((-226 . -727) 137363) ((-226 . -730) 137314) ((-226 . -729) 137293) ((-49 . -977) T) ((-227 . -663) 137224) ((-226 . -663) 137155) ((-1114 . -1013) T) ((-611 . -23) T) ((-534 . -977) T) ((-485 . -977) T) ((-353 . -976) 137120) ((-296 . -107) 137095) ((-71 . -357) T) ((-71 . -369) T) ((-948 . -37) 137032) ((-631 . -374) 137014) ((-94 . -97) T) ((-648 . -1013) T) ((-928 . -133) 136986) ((-928 . -135) 136958) ((-353 . -107) 136914) ((-293 . -1123) 136893) ((-447 . -927) 136859) ((-328 . -37) 136824) ((-39 . -344) 136796) ((-802 . -561) 136668) ((-123 . -121) 136652) ((-117 . -121) 136636) ((-771 . -976) 136606) ((-770 . -21) 136558) ((-764 . -976) 136542) ((-770 . -25) 136494) ((-293 . -513) 136445) ((-521 . -765) T) ((-217 . -1119) T) ((-771 . -107) 136410) ((-764 . -107) 136389) ((-1149 . -561) 136371) ((-1128 . -561) 136353) ((-1128 . -562) 136026) ((-1080 . -838) 136005) ((-1036 . -838) 135984) ((-47 . -37) 135949) ((-1185 . -1025) T) ((-552 . -561) 135861) ((-552 . -562) 135822) ((-1183 . -1025) T) ((-217 . -961) 135651) ((-1080 . -589) 135576) ((-1036 . -589) 135501) ((-655 . -561) 135483) ((-788 . -589) 135457) ((-1185 . -23) T) ((-1183 . -23) T) ((-958 . -970) T) ((-1093 . -261) 135436) ((-154 . -342) 135387) ((-929 . -1119) T) ((-43 . -23) T) ((-451 . -261) 135366) ((-538 . -1013) T) ((-1055 . -1022) 135335) ((-1017 . -1016) 135287) ((-364 . -21) T) ((-364 . -25) T) ((-140 . -1025) T) ((-1191 . -97) T) ((-929 . -813) 135269) ((-929 . -815) 135251) ((-1114 . -654) 135148) ((-568 . -208) 135132) ((-566 . -21) T) ((-264 . -513) T) ((-566 . -25) T) ((-1100 . -1013) T) ((-648 . -654) 135097) ((-217 . -351) 135067) ((-929 . -961) 135027) ((-353 . -970) T) ((-200 . -977) T) ((-113 . -208) 135004) ((-57 . -261) 134981) ((-140 . -23) T) ((-484 . -261) 134958) ((-301 . -482) 134891) ((-465 . -261) 134868) ((-353 . -220) T) ((-353 . -210) T) ((-771 . -970) T) ((-764 . -970) T) ((-649 . -878) 134838) ((-638 . -784) T) ((-447 . -561) 134820) ((-764 . -210) 134799) ((-126 . -784) T) ((-599 . -1013) T) ((-1093 . -554) 134778) ((-507 . -1096) 134757) ((-310 . -1013) T) ((-293 . -337) 134736) ((-381 . -135) 134715) ((-381 . -133) 134694) ((-892 . -1025) 134593) ((-217 . -829) 134526) ((-752 . -1025) 134457) ((-595 . -786) 134441) ((-451 . -554) 134420) ((-507 . -102) 134370) ((-929 . -351) 134352) ((-929 . -312) 134334) ((-92 . -1013) T) ((-892 . -23) 134145) ((-450 . -21) T) ((-450 . -25) T) ((-752 . -23) 134016) ((-1084 . -561) 133998) ((-57 . -19) 133982) ((-1084 . -562) 133904) ((-1080 . -663) T) ((-1036 . -663) T) ((-484 . -19) 133888) ((-465 . -19) 133872) ((-57 . -554) 133849) ((-1002 . -1013) T) ((-830 . -97) 133827) ((-788 . -663) T) ((-718 . -1013) T) ((-484 . -554) 133804) ((-465 . -554) 133781) ((-716 . -1013) T) ((-716 . -984) 133748) ((-434 . -1013) T) ((-427 . -1013) T) ((-538 . -654) 133723) ((-590 . -1013) T) ((-929 . -829) NIL) ((-1157 . -46) 133700) ((-571 . -1025) T) ((-611 . -124) T) ((-1151 . -97) T) ((-1150 . -46) 133670) ((-1129 . -46) 133647) ((-1114 . -157) 133598) ((-996 . -1123) 133549) ((-251 . -1013) T) ((-83 . -414) T) ((-83 . -369) T) ((-1081 . -282) 133528) ((-1075 . -282) 133507) ((-49 . -1013) T) ((-996 . -513) 133458) ((-648 . -157) T) ((-546 . -46) 133435) ((-202 . -589) 133400) ((-534 . -1013) T) ((-485 . -1013) T) ((-333 . -1123) T) ((-327 . -1123) T) ((-319 . -1123) T) ((-458 . -757) T) ((-458 . -849) T) ((-293 . -1025) T) ((-103 . -1123) T) ((-313 . -784) T) ((-195 . -849) T) ((-195 . -757) T) ((-651 . -976) 133370) ((-333 . -513) T) ((-327 . -513) T) ((-319 . -513) T) ((-103 . -513) T) ((-599 . -654) 133340) ((-1075 . -946) NIL) ((-293 . -23) T) ((-65 . -1119) T) ((-925 . -561) 133272) ((-631 . -208) 133254) ((-651 . -107) 133219) ((-587 . -33) T) ((-222 . -460) 133203) ((-1015 . -1011) 133187) ((-156 . -1013) T) ((-881 . -838) 133166) ((-453 . -838) 133145) ((-1187 . -21) T) ((-1187 . -25) T) ((-1185 . -124) T) ((-1183 . -124) T) ((-1002 . -654) 132994) ((-981 . -589) 132981) ((-881 . -589) 132906) ((-497 . -561) 132888) ((-497 . -562) 132869) ((-718 . -654) 132698) ((-716 . -654) 132547) ((-1176 . -97) T) ((-993 . -97) T) ((-355 . -25) T) ((-355 . -21) T) ((-453 . -589) 132472) ((-434 . -654) 132443) ((-427 . -654) 132292) ((-913 . -97) T) ((-674 . -97) T) ((-493 . -25) T) ((-1129 . -1119) 132271) ((-1161 . -561) 132237) ((-1129 . -815) NIL) ((-1129 . -813) 132189) ((-129 . -97) T) ((-43 . -124) T) ((-1093 . -562) NIL) ((-1093 . -561) 132171) ((-1051 . -1034) 132116) ((-317 . -977) T) ((-605 . -561) 132098) ((-264 . -1025) T) ((-329 . -561) 132080) ((-326 . -561) 132062) ((-318 . -561) 132044) ((-240 . -562) 131792) ((-240 . -561) 131774) ((-224 . -561) 131756) ((-224 . -562) 131617) ((-967 . -1113) 131546) ((-830 . -284) 131484) ((-1191 . -1060) T) ((-1150 . -961) 131419) ((-1129 . -961) 131385) ((-1114 . -482) 131352) ((-1050 . -561) 131334) ((-756 . -663) T) ((-552 . -263) 131311) ((-534 . -654) 131276) ((-451 . -562) NIL) ((-451 . -561) 131258) ((-485 . -654) 131203) ((-290 . -97) T) ((-287 . -97) T) ((-264 . -23) T) ((-140 . -124) T) ((-360 . -663) T) ((-801 . -976) 131155) ((-839 . -561) 131137) ((-839 . -562) 131119) ((-801 . -107) 131057) ((-128 . -97) T) ((-110 . -97) T) ((-649 . -1141) 131041) ((-651 . -970) T) ((-631 . -323) NIL) ((-486 . -561) 130973) ((-353 . -732) T) ((-200 . -1013) T) ((-353 . -728) T) ((-202 . -730) T) ((-202 . -727) T) ((-57 . -562) 130934) ((-57 . -561) 130846) ((-202 . -663) T) ((-484 . -562) 130807) ((-484 . -561) 130719) ((-466 . -561) 130651) ((-465 . -562) 130612) ((-465 . -561) 130524) ((-996 . -337) 130475) ((-39 . -385) 130452) ((-75 . -1119) T) ((-800 . -838) NIL) ((-333 . -303) 130436) ((-333 . -337) T) ((-327 . -303) 130420) ((-327 . -337) T) ((-319 . -303) 130404) ((-319 . -337) T) ((-290 . -259) 130383) ((-103 . -337) T) ((-68 . -1119) T) ((-1129 . -312) 130335) ((-800 . -589) 130280) ((-1129 . -351) 130232) ((-892 . -124) 130087) ((-752 . -124) 129958) ((-886 . -592) 129942) ((-1002 . -157) 129853) ((-886 . -347) 129837) ((-981 . -730) T) ((-981 . -727) T) ((-718 . -157) 129728) ((-716 . -157) 129639) ((-753 . -46) 129601) ((-981 . -663) T) ((-301 . -460) 129585) ((-881 . -663) T) ((-427 . -157) 129496) ((-222 . -261) 129473) ((-453 . -663) T) ((-1176 . -284) 129411) ((-1157 . -829) 129324) ((-1150 . -829) 129230) ((-1149 . -976) 129065) ((-1129 . -829) 128898) ((-1128 . -976) 128706) ((-1114 . -265) 128685) ((-1055 . -139) 128669) ((-991 . -97) T) ((-856 . -883) T) ((-73 . -1119) T) ((-674 . -284) 128607) ((-154 . -838) 128560) ((-605 . -356) 128532) ((-30 . -883) T) ((-1 . -561) 128514) ((-1031 . -97) T) ((-996 . -23) T) ((-49 . -565) 128498) ((-996 . -1025) T) ((-928 . -383) 128470) ((-546 . -829) 128383) ((-412 . -97) T) ((-129 . -284) NIL) ((-801 . -970) T) ((-770 . -784) 128362) ((-79 . -1119) T) ((-648 . -265) T) ((-39 . -977) T) ((-534 . -157) T) ((-485 . -157) T) ((-479 . -561) 128344) ((-154 . -589) 128254) ((-475 . -561) 128236) ((-325 . -135) 128218) ((-325 . -133) T) ((-333 . -1025) T) ((-327 . -1025) T) ((-319 . -1025) T) ((-929 . -282) T) ((-843 . -282) T) ((-801 . -220) T) ((-103 . -1025) T) ((-801 . -210) 128197) ((-1149 . -107) 128018) ((-1128 . -107) 127807) ((-222 . -1153) 127791) ((-521 . -782) T) ((-333 . -23) T) ((-328 . -323) T) ((-290 . -284) 127778) ((-287 . -284) 127719) ((-327 . -23) T) ((-293 . -124) T) ((-319 . -23) T) ((-929 . -946) T) ((-103 . -23) T) ((-222 . -554) 127696) ((-1151 . -37) 127588) ((-1138 . -838) 127567) ((-108 . -1013) T) ((-959 . -97) T) ((-1138 . -589) 127492) ((-800 . -730) NIL) ((-789 . -589) 127466) ((-800 . -727) NIL) ((-753 . -815) NIL) ((-800 . -663) T) ((-1002 . -482) 127339) ((-718 . -482) 127287) ((-716 . -482) 127239) ((-528 . -589) 127226) ((-753 . -961) 127056) ((-427 . -482) 126999) ((-362 . -363) T) ((-58 . -1119) T) ((-566 . -784) 126978) ((-469 . -602) T) ((-1055 . -902) 126947) ((-928 . -425) T) ((-636 . -782) T) ((-478 . -728) T) ((-447 . -976) 126782) ((-317 . -1013) T) ((-287 . -1060) NIL) ((-264 . -124) T) ((-368 . -1013) T) ((-631 . -344) 126749) ((-799 . -977) T) ((-200 . -565) 126726) ((-301 . -261) 126703) ((-447 . -107) 126524) ((-1149 . -970) T) ((-1128 . -970) T) ((-753 . -351) 126508) ((-154 . -663) T) ((-595 . -97) T) ((-1149 . -220) 126487) ((-1149 . -210) 126439) ((-1128 . -210) 126344) ((-1128 . -220) 126323) ((-928 . -376) NIL) ((-611 . -583) 126271) ((-290 . -37) 126181) ((-287 . -37) 126110) ((-67 . -561) 126092) ((-293 . -462) 126058) ((-1093 . -263) 126037) ((-1026 . -1025) 125968) ((-81 . -1119) T) ((-59 . -561) 125950) ((-451 . -263) 125929) ((-1178 . -961) 125906) ((-1073 . -1013) T) ((-1026 . -23) 125777) ((-753 . -829) 125713) ((-1138 . -663) T) ((-1015 . -1119) T) ((-1002 . -265) 125644) ((-822 . -97) T) ((-718 . -265) 125555) ((-301 . -19) 125539) ((-57 . -263) 125516) ((-716 . -265) 125447) ((-789 . -663) T) ((-113 . -782) NIL) ((-484 . -263) 125424) ((-301 . -554) 125401) ((-465 . -263) 125378) ((-427 . -265) 125309) ((-959 . -284) 125160) ((-528 . -663) T) ((-603 . -561) 125142) ((-222 . -562) 125103) ((-222 . -561) 125015) ((-1056 . -33) T) ((-872 . -1119) T) ((-317 . -654) 124960) ((-611 . -25) T) ((-611 . -21) T) ((-447 . -970) T) ((-579 . -391) 124925) ((-555 . -391) 124890) ((-1031 . -1060) T) ((-534 . -265) T) ((-485 . -265) T) ((-1150 . -282) 124869) ((-447 . -210) 124821) ((-447 . -220) 124800) ((-1129 . -282) 124779) ((-996 . -124) T) ((-801 . -732) 124758) ((-132 . -97) T) ((-39 . -1013) T) ((-801 . -728) 124737) ((-587 . -935) 124721) ((-533 . -977) T) ((-521 . -977) T) ((-464 . -977) T) ((-381 . -425) T) ((-333 . -124) T) ((-290 . -374) 124705) ((-287 . -374) 124666) ((-327 . -124) T) ((-319 . -124) T) ((-1129 . -946) NIL) ((-1008 . -561) 124633) ((-103 . -124) T) ((-1031 . -37) 124620) ((-850 . -1013) T) ((-707 . -1013) T) ((-612 . -1013) T) ((-638 . -135) T) ((-112 . -135) T) ((-1185 . -21) T) ((-1185 . -25) T) ((-1183 . -21) T) ((-1183 . -25) T) ((-605 . -976) 124604) ((-493 . -784) T) ((-469 . -784) T) ((-329 . -976) 124556) ((-326 . -976) 124508) ((-318 . -976) 124460) ((-227 . -1119) T) ((-226 . -1119) T) ((-240 . -976) 124303) ((-224 . -976) 124146) ((-605 . -107) 124125) ((-329 . -107) 124063) ((-326 . -107) 124001) ((-318 . -107) 123939) ((-240 . -107) 123768) ((-224 . -107) 123597) ((-754 . -1123) 123576) ((-568 . -385) 123560) ((-43 . -21) T) ((-43 . -25) T) ((-752 . -583) 123468) ((-754 . -513) 123447) ((-227 . -961) 123276) ((-226 . -961) 123105) ((-122 . -115) 123089) ((-839 . -976) 123054) ((-636 . -977) T) ((-649 . -97) T) ((-317 . -157) T) ((-140 . -21) T) ((-140 . -25) T) ((-86 . -561) 123036) ((-839 . -107) 122992) ((-39 . -654) 122937) ((-799 . -1013) T) ((-301 . -562) 122898) ((-301 . -561) 122810) ((-1128 . -728) 122763) ((-1128 . -732) 122716) ((-227 . -351) 122686) ((-226 . -351) 122656) ((-595 . -37) 122626) ((-556 . -33) T) ((-454 . -1025) 122557) ((-448 . -33) T) ((-1026 . -124) 122428) ((-892 . -25) 122239) ((-803 . -561) 122221) ((-892 . -21) 122176) ((-752 . -21) 122087) ((-752 . -25) 121939) ((-568 . -977) T) ((-1086 . -513) 121918) ((-1080 . -46) 121895) ((-329 . -970) T) ((-326 . -970) T) ((-454 . -23) 121766) ((-318 . -970) T) ((-240 . -970) T) ((-224 . -970) T) ((-1036 . -46) 121738) ((-113 . -977) T) ((-958 . -589) 121712) ((-886 . -33) T) ((-329 . -210) 121691) ((-329 . -220) T) ((-326 . -210) 121670) ((-224 . -300) 121627) ((-326 . -220) T) ((-318 . -210) 121606) ((-318 . -220) T) ((-240 . -300) 121578) ((-240 . -210) 121557) ((-1065 . -139) 121541) ((-227 . -829) 121474) ((-226 . -829) 121407) ((-998 . -784) T) ((-1132 . -1119) T) ((-388 . -1025) T) ((-974 . -23) T) ((-839 . -970) T) ((-296 . -589) 121389) ((-948 . -782) T) ((-1114 . -927) 121355) ((-1081 . -849) 121334) ((-1075 . -849) 121313) ((-839 . -220) T) ((-754 . -337) 121292) ((-359 . -23) T) ((-123 . -1013) 121270) ((-117 . -1013) 121248) ((-839 . -210) T) ((-1075 . -757) NIL) ((-353 . -589) 121213) ((-799 . -654) 121200) ((-967 . -139) 121165) ((-39 . -157) T) ((-631 . -385) 121147) ((-649 . -284) 121134) ((-771 . -589) 121094) ((-764 . -589) 121068) ((-293 . -25) T) ((-293 . -21) T) ((-599 . -261) 121047) ((-533 . -1013) T) ((-521 . -1013) T) ((-464 . -1013) T) ((-222 . -263) 121024) ((-287 . -208) 120985) ((-1080 . -815) NIL) ((-1036 . -815) 120844) ((-1080 . -961) 120727) ((-1036 . -961) 120612) ((-166 . -561) 120594) ((-788 . -961) 120492) ((-718 . -261) 120419) ((-754 . -1025) T) ((-958 . -663) T) ((-552 . -592) 120403) ((-967 . -902) 120332) ((-924 . -97) T) ((-754 . -23) T) ((-649 . -1060) 120310) ((-631 . -977) T) ((-552 . -347) 120294) ((-325 . -425) T) ((-317 . -265) T) ((-1166 . -1013) T) ((-373 . -97) T) ((-264 . -21) T) ((-264 . -25) T) ((-335 . -663) T) ((-636 . -1013) T) ((-335 . -446) T) ((-1114 . -561) 120276) ((-1080 . -351) 120260) ((-1036 . -351) 120244) ((-948 . -385) 120206) ((-129 . -206) 120188) ((-353 . -730) T) ((-353 . -727) T) ((-799 . -157) T) ((-353 . -663) T) ((-648 . -561) 120170) ((-649 . -37) 119999) ((-1165 . -1163) 119983) ((-325 . -376) T) ((-1165 . -1013) 119933) ((-533 . -654) 119920) ((-521 . -654) 119907) ((-464 . -654) 119872) ((-290 . -573) 119851) ((-771 . -663) T) ((-764 . -663) T) ((-587 . -1119) T) ((-996 . -583) 119799) ((-1080 . -829) 119743) ((-1036 . -829) 119727) ((-603 . -976) 119711) ((-103 . -583) 119693) ((-454 . -124) 119564) ((-1086 . -1025) T) ((-881 . -46) 119533) ((-568 . -1013) T) ((-603 . -107) 119512) ((-301 . -263) 119489) ((-453 . -46) 119446) ((-1086 . -23) T) ((-113 . -1013) T) ((-98 . -97) 119424) ((-1175 . -1025) T) ((-974 . -124) T) ((-948 . -977) T) ((-756 . -961) 119408) ((-928 . -661) 119380) ((-1175 . -23) T) ((-636 . -654) 119345) ((-538 . -561) 119327) ((-360 . -961) 119311) ((-328 . -977) T) ((-359 . -124) T) ((-298 . -961) 119295) ((-202 . -815) 119277) ((-929 . -849) T) ((-89 . -33) T) ((-929 . -757) T) ((-843 . -849) T) ((-458 . -1123) T) ((-1100 . -561) 119259) ((-1018 . -1013) T) ((-195 . -1123) T) ((-924 . -284) 119224) ((-202 . -961) 119184) ((-39 . -265) T) ((-996 . -21) T) ((-996 . -25) T) ((-1031 . -765) T) ((-458 . -513) T) ((-333 . -25) T) ((-195 . -513) T) ((-333 . -21) T) ((-327 . -25) T) ((-327 . -21) T) ((-651 . -589) 119144) ((-319 . -25) T) ((-319 . -21) T) ((-103 . -25) T) ((-103 . -21) T) ((-47 . -977) T) ((-533 . -157) T) ((-521 . -157) T) ((-464 . -157) T) ((-599 . -561) 119126) ((-674 . -673) 119110) ((-310 . -561) 119092) ((-66 . -357) T) ((-66 . -369) T) ((-1015 . -102) 119076) ((-981 . -815) 119058) ((-881 . -815) 118983) ((-594 . -1025) T) ((-568 . -654) 118970) ((-453 . -815) NIL) ((-1055 . -97) T) ((-981 . -961) 118952) ((-92 . -561) 118934) ((-450 . -135) T) ((-881 . -961) 118816) ((-113 . -654) 118761) ((-594 . -23) T) ((-453 . -961) 118639) ((-1002 . -562) NIL) ((-1002 . -561) 118621) ((-718 . -562) NIL) ((-718 . -561) 118582) ((-716 . -562) 118217) ((-716 . -561) 118131) ((-1026 . -583) 118039) ((-434 . -561) 118021) ((-427 . -561) 118003) ((-427 . -562) 117864) ((-959 . -206) 117810) ((-122 . -33) T) ((-754 . -124) T) ((-801 . -838) 117789) ((-590 . -561) 117771) ((-329 . -1182) 117755) ((-326 . -1182) 117739) ((-318 . -1182) 117723) ((-123 . -482) 117656) ((-117 . -482) 117589) ((-479 . -728) T) ((-479 . -732) T) ((-478 . -730) T) ((-98 . -284) 117527) ((-199 . -97) 117505) ((-631 . -1013) T) ((-636 . -157) T) ((-801 . -589) 117457) ((-63 . -358) T) ((-251 . -561) 117439) ((-63 . -369) T) ((-881 . -351) 117423) ((-799 . -265) T) ((-49 . -561) 117405) ((-924 . -37) 117353) ((-534 . -561) 117335) ((-453 . -351) 117319) ((-534 . -562) 117301) ((-485 . -561) 117283) ((-839 . -1182) 117270) ((-800 . -1119) T) ((-638 . -425) T) ((-464 . -482) 117236) ((-458 . -337) T) ((-329 . -342) 117215) ((-326 . -342) 117194) ((-318 . -342) 117173) ((-195 . -337) T) ((-651 . -663) T) ((-112 . -425) T) ((-1186 . -1177) 117157) ((-800 . -813) 117134) ((-800 . -815) NIL) ((-892 . -784) 117033) ((-752 . -784) 116984) ((-595 . -597) 116968) ((-1106 . -33) T) ((-156 . -561) 116950) ((-1026 . -21) 116861) ((-1026 . -25) 116713) ((-800 . -961) 116690) ((-881 . -829) 116671) ((-1138 . -46) 116648) ((-839 . -342) T) ((-57 . -592) 116632) ((-484 . -592) 116616) ((-453 . -829) 116593) ((-69 . -414) T) ((-69 . -369) T) ((-465 . -592) 116577) ((-57 . -347) 116561) ((-568 . -157) T) ((-484 . -347) 116545) ((-465 . -347) 116529) ((-764 . -646) 116513) ((-1080 . -282) 116492) ((-1086 . -124) T) ((-113 . -157) T) ((-1055 . -284) 116430) ((-154 . -1119) T) ((-579 . -681) 116414) ((-555 . -681) 116398) ((-1175 . -124) T) ((-1150 . -849) 116377) ((-1129 . -849) 116356) ((-1129 . -757) NIL) ((-631 . -654) 116306) ((-1128 . -838) 116259) ((-948 . -1013) T) ((-800 . -351) 116236) ((-800 . -312) 116213) ((-834 . -1025) T) ((-154 . -813) 116197) ((-154 . -815) 116122) ((-458 . -1025) T) ((-328 . -1013) T) ((-195 . -1025) T) ((-74 . -414) T) ((-74 . -369) T) ((-154 . -961) 116020) ((-293 . -784) T) ((-1165 . -482) 115953) ((-1149 . -589) 115850) ((-1128 . -589) 115720) ((-801 . -730) 115699) ((-801 . -727) 115678) ((-801 . -663) T) ((-458 . -23) T) ((-200 . -561) 115660) ((-158 . -425) T) ((-199 . -284) 115598) ((-84 . -414) T) ((-84 . -369) T) ((-195 . -23) T) ((-1187 . -1180) 115577) ((-533 . -265) T) ((-521 . -265) T) ((-616 . -961) 115561) ((-464 . -265) T) ((-128 . -443) 115516) ((-47 . -1013) T) ((-649 . -208) 115500) ((-800 . -829) NIL) ((-1138 . -815) NIL) ((-818 . -97) T) ((-814 . -97) T) ((-362 . -1013) T) ((-154 . -351) 115484) ((-154 . -312) 115468) ((-1138 . -961) 115351) ((-789 . -961) 115249) ((-1051 . -97) T) ((-594 . -124) T) ((-113 . -482) 115157) ((-603 . -728) 115136) ((-603 . -732) 115115) ((-528 . -961) 115097) ((-269 . -1172) 115067) ((-795 . -97) T) ((-891 . -513) 115046) ((-1114 . -976) 114929) ((-454 . -583) 114837) ((-833 . -1013) T) ((-948 . -654) 114774) ((-648 . -976) 114739) ((-552 . -33) T) ((-1056 . -1119) T) ((-1114 . -107) 114608) ((-447 . -589) 114505) ((-328 . -654) 114450) ((-154 . -829) 114409) ((-636 . -265) T) ((-631 . -157) T) ((-648 . -107) 114365) ((-1191 . -977) T) ((-1138 . -351) 114349) ((-392 . -1123) 114327) ((-287 . -782) NIL) ((-392 . -513) T) ((-202 . -282) T) ((-1128 . -727) 114280) ((-1128 . -730) 114233) ((-1149 . -663) T) ((-1128 . -663) T) ((-47 . -654) 114198) ((-202 . -946) T) ((-325 . -1172) 114175) ((-1151 . -385) 114141) ((-655 . -663) T) ((-1138 . -829) 114085) ((-108 . -561) 114067) ((-108 . -562) 114049) ((-655 . -446) T) ((-454 . -21) 113960) ((-123 . -460) 113944) ((-117 . -460) 113928) ((-454 . -25) 113780) ((-568 . -265) T) ((-538 . -976) 113755) ((-411 . -1013) T) ((-981 . -282) T) ((-113 . -265) T) ((-1017 . -97) T) ((-928 . -97) T) ((-538 . -107) 113723) ((-1051 . -284) 113661) ((-1114 . -970) T) ((-981 . -946) T) ((-64 . -1119) T) ((-974 . -25) T) ((-974 . -21) T) ((-648 . -970) T) ((-359 . -21) T) ((-359 . -25) T) ((-631 . -482) NIL) ((-948 . -157) T) ((-648 . -220) T) ((-981 . -506) T) ((-471 . -97) T) ((-328 . -157) T) ((-317 . -561) 113643) ((-368 . -561) 113625) ((-447 . -663) T) ((-1031 . -782) T) ((-821 . -961) 113593) ((-103 . -784) T) ((-599 . -976) 113577) ((-458 . -124) T) ((-1151 . -977) T) ((-195 . -124) T) ((-1065 . -97) 113555) ((-94 . -1013) T) ((-222 . -607) 113539) ((-222 . -592) 113523) ((-599 . -107) 113502) ((-290 . -385) 113486) ((-222 . -347) 113470) ((-1068 . -212) 113417) ((-924 . -208) 113401) ((-72 . -1119) T) ((-47 . -157) T) ((-638 . -361) T) ((-638 . -131) T) ((-1186 . -97) T) ((-1002 . -976) 113244) ((-240 . -838) 113223) ((-224 . -838) 113202) ((-718 . -976) 113025) ((-716 . -976) 112868) ((-556 . -1119) T) ((-1073 . -561) 112850) ((-1002 . -107) 112679) ((-967 . -97) T) ((-448 . -1119) T) ((-434 . -976) 112650) ((-427 . -976) 112493) ((-605 . -589) 112477) ((-800 . -282) T) ((-718 . -107) 112286) ((-716 . -107) 112115) ((-329 . -589) 112067) ((-326 . -589) 112019) ((-318 . -589) 111971) ((-240 . -589) 111896) ((-224 . -589) 111821) ((-1067 . -784) T) ((-1003 . -961) 111805) ((-434 . -107) 111766) ((-427 . -107) 111595) ((-992 . -961) 111572) ((-925 . -33) T) ((-893 . -561) 111533) ((-886 . -1119) T) ((-122 . -935) 111517) ((-891 . -1025) T) ((-800 . -946) NIL) ((-672 . -1025) T) ((-652 . -1025) T) ((-1165 . -460) 111501) ((-1051 . -37) 111461) ((-891 . -23) T) ((-777 . -97) T) ((-754 . -21) T) ((-754 . -25) T) ((-672 . -23) T) ((-652 . -23) T) ((-106 . -602) T) ((-839 . -589) 111426) ((-534 . -976) 111391) ((-485 . -976) 111336) ((-204 . -55) 111294) ((-426 . -23) T) ((-381 . -97) T) ((-239 . -97) T) ((-631 . -265) T) ((-795 . -37) 111264) ((-534 . -107) 111220) ((-485 . -107) 111149) ((-392 . -1025) T) ((-290 . -977) 111040) ((-287 . -977) T) ((-599 . -970) T) ((-1191 . -1013) T) ((-154 . -282) 110971) ((-392 . -23) T) ((-39 . -561) 110953) ((-39 . -562) 110937) ((-103 . -918) 110919) ((-112 . -798) 110903) ((-47 . -482) 110869) ((-1106 . -935) 110853) ((-1089 . -561) 110835) ((-1093 . -33) T) ((-850 . -561) 110817) ((-1026 . -784) 110768) ((-707 . -561) 110750) ((-612 . -561) 110732) ((-1065 . -284) 110670) ((-451 . -33) T) ((-1006 . -1119) T) ((-450 . -425) T) ((-1002 . -970) T) ((-1050 . -33) T) ((-718 . -970) T) ((-716 . -970) T) ((-588 . -212) 110654) ((-576 . -212) 110600) ((-1138 . -282) 110579) ((-1002 . -300) 110540) ((-427 . -970) T) ((-1086 . -21) T) ((-1002 . -210) 110519) ((-718 . -300) 110496) ((-718 . -210) T) ((-716 . -300) 110468) ((-301 . -592) 110452) ((-668 . -1123) 110431) ((-1086 . -25) T) ((-57 . -33) T) ((-486 . -33) T) ((-484 . -33) T) ((-427 . -300) 110410) ((-301 . -347) 110394) ((-466 . -33) T) ((-465 . -33) T) ((-928 . -1060) NIL) ((-579 . -97) T) ((-555 . -97) T) ((-668 . -513) 110325) ((-329 . -663) T) ((-326 . -663) T) ((-318 . -663) T) ((-240 . -663) T) ((-224 . -663) T) ((-967 . -284) 110233) ((-830 . -1013) 110211) ((-49 . -970) T) ((-1175 . -21) T) ((-1175 . -25) T) ((-1082 . -513) 110190) ((-1081 . -1123) 110169) ((-534 . -970) T) ((-485 . -970) T) ((-1075 . -1123) 110148) ((-335 . -961) 110132) ((-296 . -961) 110116) ((-948 . -265) T) ((-353 . -815) 110098) ((-1081 . -513) 110049) ((-1075 . -513) 110000) ((-928 . -37) 109945) ((-736 . -1025) T) ((-839 . -663) T) ((-534 . -220) T) ((-534 . -210) T) ((-485 . -210) T) ((-485 . -220) T) ((-1037 . -513) 109924) ((-328 . -265) T) ((-588 . -632) 109908) ((-353 . -961) 109868) ((-1031 . -977) T) ((-98 . -121) 109852) ((-736 . -23) T) ((-1165 . -261) 109829) ((-381 . -284) 109794) ((-1185 . -1180) 109770) ((-1183 . -1180) 109749) ((-1151 . -1013) T) ((-799 . -561) 109731) ((-771 . -961) 109700) ((-182 . -723) T) ((-181 . -723) T) ((-180 . -723) T) ((-179 . -723) T) ((-178 . -723) T) ((-177 . -723) T) ((-176 . -723) T) ((-175 . -723) T) ((-174 . -723) T) ((-173 . -723) T) ((-464 . -927) T) ((-250 . -773) T) ((-249 . -773) T) ((-248 . -773) T) ((-247 . -773) T) ((-47 . -265) T) ((-246 . -773) T) ((-245 . -773) T) ((-244 . -773) T) ((-172 . -723) T) ((-560 . -784) T) ((-595 . -385) 109684) ((-106 . -784) T) ((-594 . -21) T) ((-594 . -25) T) ((-1186 . -37) 109654) ((-113 . -261) 109605) ((-1165 . -19) 109589) ((-1165 . -554) 109566) ((-1176 . -1013) T) ((-993 . -1013) T) ((-913 . -1013) T) ((-891 . -124) T) ((-674 . -1013) T) ((-672 . -124) T) ((-652 . -124) T) ((-479 . -729) T) ((-381 . -1060) 109544) ((-426 . -124) T) ((-479 . -730) T) ((-200 . -970) T) ((-269 . -97) 109327) ((-129 . -1013) T) ((-636 . -927) T) ((-89 . -1119) T) ((-123 . -561) 109259) ((-117 . -561) 109191) ((-1191 . -157) T) ((-1081 . -337) 109170) ((-1075 . -337) 109149) ((-290 . -1013) T) ((-392 . -124) T) ((-287 . -1013) T) ((-381 . -37) 109101) ((-1044 . -97) T) ((-1151 . -654) 108993) ((-595 . -977) T) ((-293 . -133) 108972) ((-293 . -135) 108951) ((-128 . -1013) T) ((-110 . -1013) T) ((-791 . -97) T) ((-533 . -561) 108933) ((-521 . -562) 108832) ((-521 . -561) 108814) ((-464 . -561) 108796) ((-464 . -562) 108741) ((-456 . -23) T) ((-454 . -784) 108692) ((-458 . -583) 108674) ((-195 . -583) 108656) ((-202 . -378) T) ((-603 . -589) 108640) ((-1080 . -849) 108619) ((-668 . -1025) T) ((-325 . -97) T) ((-755 . -784) T) ((-668 . -23) T) ((-317 . -976) 108564) ((-1067 . -1066) T) ((-1056 . -102) 108548) ((-1082 . -1025) T) ((-1081 . -1025) T) ((-483 . -961) 108532) ((-1075 . -1025) T) ((-1037 . -1025) T) ((-317 . -107) 108461) ((-929 . -1123) T) ((-122 . -1119) T) ((-843 . -1123) T) ((-631 . -261) NIL) ((-1166 . -561) 108443) ((-1082 . -23) T) ((-1081 . -23) T) ((-929 . -513) T) ((-1075 . -23) T) ((-843 . -513) T) ((-1051 . -208) 108427) ((-225 . -561) 108409) ((-1037 . -23) T) ((-991 . -1013) T) ((-736 . -124) T) ((-290 . -654) 108319) ((-287 . -654) 108248) ((-636 . -561) 108230) ((-636 . -562) 108175) ((-381 . -374) 108159) ((-412 . -1013) T) ((-458 . -25) T) ((-458 . -21) T) ((-1031 . -1013) T) ((-195 . -25) T) ((-195 . -21) T) ((-649 . -385) 108143) ((-651 . -961) 108112) ((-1165 . -561) 108024) ((-1165 . -562) 107985) ((-1151 . -157) T) ((-222 . -33) T) ((-855 . -900) T) ((-1106 . -1119) T) ((-603 . -727) 107964) ((-603 . -730) 107943) ((-372 . -369) T) ((-490 . -97) 107921) ((-959 . -1013) T) ((-199 . -920) 107905) ((-473 . -97) T) ((-568 . -561) 107887) ((-44 . -784) NIL) ((-568 . -562) 107864) ((-959 . -558) 107839) ((-830 . -482) 107772) ((-317 . -970) T) ((-113 . -562) NIL) ((-113 . -561) 107754) ((-801 . -1119) T) ((-611 . -391) 107738) ((-611 . -1034) 107683) ((-469 . -139) 107665) ((-317 . -210) T) ((-317 . -220) T) ((-39 . -976) 107610) ((-801 . -813) 107594) ((-801 . -815) 107519) ((-649 . -977) T) ((-631 . -927) NIL) ((-1149 . -46) 107489) ((-1128 . -46) 107466) ((-1050 . -935) 107437) ((-202 . -849) T) ((-39 . -107) 107366) ((-801 . -961) 107233) ((-1031 . -654) 107220) ((-1018 . -561) 107202) ((-996 . -135) 107181) ((-996 . -133) 107132) ((-929 . -337) T) ((-293 . -1108) 107098) ((-353 . -282) T) ((-293 . -1105) 107064) ((-290 . -157) 107043) ((-287 . -157) T) ((-928 . -208) 107020) ((-843 . -337) T) ((-534 . -1182) 107007) ((-485 . -1182) 106984) ((-333 . -135) 106963) ((-333 . -133) 106914) ((-327 . -135) 106893) ((-327 . -133) 106844) ((-556 . -1096) 106820) ((-319 . -135) 106799) ((-319 . -133) 106750) ((-293 . -34) 106716) ((-448 . -1096) 106695) ((0 . |EnumerationCategory|) T) ((-293 . -91) 106661) ((-353 . -946) T) ((-103 . -135) T) ((-103 . -133) NIL) ((-44 . -212) 106611) ((-595 . -1013) T) ((-556 . -102) 106558) ((-456 . -124) T) ((-448 . -102) 106508) ((-217 . -1025) 106439) ((-801 . -351) 106423) ((-801 . -312) 106407) ((-217 . -23) 106278) ((-981 . -849) T) ((-981 . -757) T) ((-534 . -342) T) ((-485 . -342) T) ((-325 . -1060) T) ((-301 . -33) T) ((-43 . -391) 106262) ((-802 . -1119) T) ((-364 . -681) 106246) ((-1176 . -482) 106179) ((-668 . -124) T) ((-1157 . -513) 106158) ((-1150 . -1123) 106137) ((-1150 . -513) 106088) ((-674 . -482) 106021) ((-1129 . -1123) 106000) ((-1129 . -513) 105951) ((-822 . -1013) T) ((-132 . -778) T) ((-1128 . -1119) 105930) ((-1128 . -815) 105803) ((-1128 . -813) 105773) ((-490 . -284) 105711) ((-1082 . -124) T) ((-129 . -482) NIL) ((-1081 . -124) T) ((-1075 . -124) T) ((-1037 . -124) T) ((-948 . -927) T) ((-325 . -37) 105676) ((-929 . -1025) T) ((-843 . -1025) T) ((-80 . -561) 105658) ((-39 . -970) T) ((-799 . -976) 105645) ((-929 . -23) T) ((-801 . -829) 105604) ((-638 . -97) T) ((-928 . -323) NIL) ((-552 . -1119) T) ((-897 . -23) T) ((-843 . -23) T) ((-799 . -107) 105589) ((-401 . -1025) T) ((-447 . -46) 105559) ((-126 . -97) T) ((-39 . -210) 105531) ((-39 . -220) T) ((-112 . -97) T) ((-547 . -513) 105510) ((-546 . -513) 105489) ((-631 . -561) 105471) ((-631 . -562) 105379) ((-290 . -482) 105345) ((-287 . -482) 105237) ((-1149 . -961) 105221) ((-1128 . -961) 105010) ((-924 . -385) 104994) ((-401 . -23) T) ((-1031 . -157) T) ((-1151 . -265) T) ((-595 . -654) 104964) ((-132 . -1013) T) ((-47 . -927) T) ((-381 . -208) 104948) ((-270 . -212) 104898) ((-800 . -849) T) ((-800 . -757) NIL) ((-794 . -784) T) ((-1128 . -312) 104868) ((-1128 . -351) 104838) ((-199 . -1032) 104822) ((-1165 . -263) 104799) ((-1114 . -589) 104724) ((-891 . -21) T) ((-891 . -25) T) ((-672 . -21) T) ((-672 . -25) T) ((-652 . -21) T) ((-652 . -25) T) ((-648 . -589) 104689) ((-426 . -21) T) ((-426 . -25) T) ((-313 . -97) T) ((-158 . -97) T) ((-924 . -977) T) ((-799 . -970) T) ((-710 . -97) T) ((-1150 . -337) 104668) ((-1149 . -829) 104574) ((-1129 . -337) 104553) ((-1128 . -829) 104404) ((-948 . -561) 104386) ((-381 . -765) 104339) ((-1082 . -462) 104305) ((-154 . -849) 104236) ((-1081 . -462) 104202) ((-1075 . -462) 104168) ((-649 . -1013) T) ((-1037 . -462) 104134) ((-533 . -976) 104121) ((-521 . -976) 104108) ((-464 . -976) 104073) ((-290 . -265) 104052) ((-287 . -265) T) ((-328 . -561) 104034) ((-392 . -25) T) ((-392 . -21) T) ((-94 . -261) 104013) ((-533 . -107) 103998) ((-521 . -107) 103983) ((-464 . -107) 103939) ((-1084 . -815) 103906) ((-830 . -460) 103890) ((-47 . -561) 103872) ((-47 . -562) 103817) ((-217 . -124) 103688) ((-1138 . -849) 103667) ((-753 . -1123) 103646) ((-959 . -482) 103490) ((-362 . -561) 103472) ((-753 . -513) 103403) ((-538 . -589) 103378) ((-240 . -46) 103350) ((-224 . -46) 103307) ((-493 . -477) 103284) ((-925 . -1119) T) ((-636 . -976) 103249) ((-1157 . -1025) T) ((-1150 . -1025) T) ((-1129 . -1025) T) ((-928 . -344) 103221) ((-108 . -342) T) ((-447 . -829) 103127) ((-1157 . -23) T) ((-1150 . -23) T) ((-833 . -561) 103109) ((-89 . -102) 103093) ((-1114 . -663) T) ((-834 . -784) 103044) ((-638 . -1060) T) ((-636 . -107) 103000) ((-1129 . -23) T) ((-547 . -1025) T) ((-546 . -1025) T) ((-649 . -654) 102829) ((-648 . -663) T) ((-1031 . -265) T) ((-929 . -124) T) ((-458 . -784) T) ((-897 . -124) T) ((-843 . -124) T) ((-533 . -970) T) ((-195 . -784) T) ((-521 . -970) T) ((-736 . -25) T) ((-736 . -21) T) ((-464 . -970) T) ((-547 . -23) T) ((-317 . -1182) 102806) ((-293 . -425) 102785) ((-313 . -284) 102772) ((-546 . -23) T) ((-401 . -124) T) ((-599 . -589) 102746) ((-222 . -935) 102730) ((-801 . -282) T) ((-1187 . -1177) 102714) ((-638 . -37) 102701) ((-521 . -210) T) ((-464 . -220) T) ((-464 . -210) T) ((-707 . -728) T) ((-707 . -732) T) ((-1059 . -212) 102651) ((-1002 . -838) 102630) ((-112 . -37) 102617) ((-188 . -737) T) ((-187 . -737) T) ((-186 . -737) T) ((-185 . -737) T) ((-801 . -946) 102596) ((-1176 . -460) 102580) ((-718 . -838) 102559) ((-716 . -838) 102538) ((-1093 . -1119) T) ((-427 . -838) 102517) ((-674 . -460) 102501) ((-1002 . -589) 102426) ((-718 . -589) 102351) ((-568 . -976) 102338) ((-451 . -1119) T) ((-317 . -342) T) ((-129 . -460) 102320) ((-716 . -589) 102245) ((-1050 . -1119) T) ((-434 . -589) 102216) ((-240 . -815) 102075) ((-224 . -815) NIL) ((-113 . -976) 102020) ((-427 . -589) 101945) ((-605 . -961) 101922) ((-568 . -107) 101907) ((-329 . -961) 101891) ((-326 . -961) 101875) ((-318 . -961) 101859) ((-240 . -961) 101705) ((-224 . -961) 101583) ((-113 . -107) 101512) ((-57 . -1119) T) ((-486 . -1119) T) ((-484 . -1119) T) ((-466 . -1119) T) ((-465 . -1119) T) ((-411 . -561) 101494) ((-408 . -561) 101476) ((-3 . -97) T) ((-951 . -1113) 101445) ((-770 . -97) T) ((-627 . -55) 101403) ((-636 . -970) T) ((-49 . -589) 101377) ((-264 . -425) T) ((-449 . -1113) 101346) ((0 . -97) T) ((-534 . -589) 101311) ((-485 . -589) 101256) ((-48 . -97) T) ((-839 . -961) 101243) ((-636 . -220) T) ((-996 . -383) 101222) ((-668 . -583) 101170) ((-924 . -1013) T) ((-649 . -157) 101061) ((-458 . -918) 101043) ((-240 . -351) 101027) ((-224 . -351) 101011) ((-373 . -1013) T) ((-313 . -37) 100995) ((-950 . -97) 100973) ((-195 . -918) 100955) ((-158 . -37) 100887) ((-1149 . -282) 100866) ((-1128 . -282) 100845) ((-599 . -663) T) ((-94 . -561) 100827) ((-1075 . -583) 100779) ((-456 . -25) T) ((-456 . -21) T) ((-1128 . -946) 100732) ((-568 . -970) T) ((-353 . -378) T) ((-364 . -97) T) ((-240 . -829) 100678) ((-224 . -829) 100655) ((-113 . -970) T) ((-753 . -1025) T) ((-1002 . -663) T) ((-568 . -210) 100634) ((-566 . -97) T) ((-718 . -663) T) ((-716 . -663) T) ((-387 . -1025) T) ((-113 . -220) T) ((-39 . -342) NIL) ((-113 . -210) NIL) ((-427 . -663) T) ((-753 . -23) T) ((-668 . -25) T) ((-668 . -21) T) ((-640 . -784) T) ((-993 . -261) 100613) ((-76 . -370) T) ((-76 . -369) T) ((-631 . -976) 100563) ((-1157 . -124) T) ((-1150 . -124) T) ((-1129 . -124) T) ((-1051 . -385) 100547) ((-579 . -341) 100479) ((-555 . -341) 100411) ((-1065 . -1058) 100395) ((-98 . -1013) 100373) ((-1082 . -25) T) ((-1082 . -21) T) ((-1081 . -21) T) ((-924 . -654) 100321) ((-200 . -589) 100288) ((-631 . -107) 100222) ((-49 . -663) T) ((-1081 . -25) T) ((-325 . -323) T) ((-1075 . -21) T) ((-996 . -425) 100173) ((-1075 . -25) T) ((-649 . -482) 100121) ((-534 . -663) T) ((-485 . -663) T) ((-1037 . -21) T) ((-1037 . -25) T) ((-547 . -124) T) ((-546 . -124) T) ((-333 . -425) T) ((-327 . -425) T) ((-319 . -425) T) ((-447 . -282) 100100) ((-287 . -261) 100035) ((-103 . -425) T) ((-77 . -414) T) ((-77 . -369) T) ((-450 . -97) T) ((-1191 . -561) 100017) ((-1191 . -562) 99999) ((-996 . -376) 99978) ((-959 . -460) 99909) ((-521 . -732) T) ((-521 . -728) T) ((-982 . -212) 99855) ((-333 . -376) 99806) ((-327 . -376) 99757) ((-319 . -376) 99708) ((-1178 . -1025) T) ((-1178 . -23) T) ((-1167 . -97) T) ((-159 . -561) 99690) ((-1051 . -977) T) ((-611 . -681) 99674) ((-1086 . -133) 99653) ((-1086 . -135) 99632) ((-1055 . -1013) T) ((-1055 . -989) 99601) ((-67 . -1119) T) ((-948 . -976) 99538) ((-795 . -977) T) ((-217 . -583) 99446) ((-631 . -970) T) ((-328 . -976) 99391) ((-59 . -1119) T) ((-948 . -107) 99307) ((-830 . -561) 99239) ((-631 . -220) T) ((-631 . -210) NIL) ((-777 . -782) 99218) ((-636 . -732) T) ((-636 . -728) T) ((-928 . -385) 99195) ((-328 . -107) 99124) ((-353 . -849) T) ((-381 . -782) 99103) ((-649 . -265) 99014) ((-200 . -663) T) ((-1157 . -462) 98980) ((-1150 . -462) 98946) ((-1129 . -462) 98912) ((-290 . -927) 98891) ((-199 . -1013) 98869) ((-293 . -899) 98832) ((-100 . -97) T) ((-47 . -976) 98797) ((-1187 . -97) T) ((-355 . -97) T) ((-47 . -107) 98753) ((-929 . -583) 98735) ((-1151 . -561) 98717) ((-493 . -97) T) ((-469 . -97) T) ((-1044 . -1045) 98701) ((-140 . -1172) 98685) ((-222 . -1119) T) ((-1080 . -1123) 98664) ((-1036 . -1123) 98643) ((-217 . -21) 98554) ((-217 . -25) 98406) ((-123 . -115) 98390) ((-117 . -115) 98374) ((-43 . -681) 98358) ((-1080 . -513) 98269) ((-1036 . -513) 98200) ((-959 . -261) 98175) ((-753 . -124) T) ((-113 . -732) NIL) ((-113 . -728) NIL) ((-329 . -282) T) ((-326 . -282) T) ((-318 . -282) T) ((-1008 . -1119) T) ((-227 . -1025) 98106) ((-226 . -1025) 98037) ((-948 . -970) T) ((-928 . -977) T) ((-317 . -589) 97982) ((-566 . -37) 97966) ((-1176 . -561) 97928) ((-1176 . -562) 97889) ((-993 . -561) 97871) ((-948 . -220) T) ((-328 . -970) T) ((-752 . -1172) 97841) ((-227 . -23) T) ((-226 . -23) T) ((-913 . -561) 97823) ((-674 . -562) 97784) ((-674 . -561) 97766) ((-736 . -784) 97745) ((-924 . -482) 97657) ((-328 . -210) T) ((-328 . -220) T) ((-1068 . -139) 97604) ((-929 . -25) T) ((-129 . -561) 97586) ((-129 . -562) 97545) ((-839 . -282) T) ((-929 . -21) T) ((-897 . -25) T) ((-843 . -21) T) ((-843 . -25) T) ((-401 . -21) T) ((-401 . -25) T) ((-777 . -385) 97529) ((-47 . -970) T) ((-1185 . -1177) 97513) ((-1183 . -1177) 97497) ((-959 . -554) 97472) ((-290 . -562) 97333) ((-290 . -561) 97315) ((-287 . -562) NIL) ((-287 . -561) 97297) ((-47 . -220) T) ((-47 . -210) T) ((-595 . -261) 97258) ((-507 . -212) 97208) ((-128 . -561) 97190) ((-110 . -561) 97172) ((-450 . -37) 97137) ((-1187 . -1184) 97116) ((-1178 . -124) T) ((-1186 . -977) T) ((-998 . -97) T) ((-86 . -1119) T) ((-469 . -284) NIL) ((-925 . -102) 97100) ((-818 . -1013) T) ((-814 . -1013) T) ((-1165 . -592) 97084) ((-1165 . -347) 97068) ((-301 . -1119) T) ((-544 . -784) T) ((-1051 . -1013) T) ((-1051 . -973) 97008) ((-98 . -482) 96941) ((-856 . -561) 96923) ((-317 . -663) T) ((-30 . -561) 96905) ((-795 . -1013) T) ((-777 . -977) 96884) ((-39 . -589) 96829) ((-202 . -1123) T) ((-381 . -977) T) ((-1067 . -139) 96811) ((-924 . -265) 96762) ((-202 . -513) T) ((-293 . -1146) 96746) ((-293 . -1143) 96716) ((-1093 . -1096) 96695) ((-991 . -561) 96677) ((-588 . -139) 96661) ((-576 . -139) 96607) ((-1093 . -102) 96557) ((-451 . -1096) 96536) ((-458 . -135) T) ((-458 . -133) NIL) ((-1031 . -562) 96451) ((-412 . -561) 96433) ((-195 . -135) T) ((-195 . -133) NIL) ((-1031 . -561) 96415) ((-51 . -97) T) ((-1129 . -583) 96367) ((-451 . -102) 96317) ((-919 . -23) T) ((-1187 . -37) 96287) ((-1080 . -1025) T) ((-1036 . -1025) T) ((-981 . -1123) T) ((-788 . -1025) T) ((-881 . -1123) 96266) ((-453 . -1123) 96245) ((-668 . -784) 96224) ((-981 . -513) T) ((-881 . -513) 96155) ((-1080 . -23) T) ((-1036 . -23) T) ((-788 . -23) T) ((-453 . -513) 96086) ((-1051 . -654) 96018) ((-1055 . -482) 95951) ((-959 . -562) NIL) ((-959 . -561) 95933) ((-795 . -654) 95903) ((-1114 . -46) 95872) ((-227 . -124) T) ((-226 . -124) T) ((-1017 . -1013) T) ((-928 . -1013) T) ((-60 . -561) 95854) ((-1075 . -784) NIL) ((-948 . -728) T) ((-948 . -732) T) ((-1191 . -976) 95841) ((-1191 . -107) 95826) ((-799 . -589) 95813) ((-1157 . -25) T) ((-1157 . -21) T) ((-1150 . -21) T) ((-1150 . -25) T) ((-1129 . -21) T) ((-1129 . -25) T) ((-951 . -139) 95797) ((-801 . -757) 95776) ((-801 . -849) T) ((-649 . -261) 95703) ((-547 . -21) T) ((-547 . -25) T) ((-546 . -21) T) ((-39 . -663) T) ((-199 . -482) 95636) ((-546 . -25) T) ((-449 . -139) 95620) ((-436 . -139) 95604) ((-850 . -663) T) ((-707 . -729) T) ((-707 . -730) T) ((-471 . -1013) T) ((-707 . -663) T) ((-202 . -337) T) ((-1065 . -1013) 95582) ((-800 . -1123) T) ((-595 . -561) 95564) ((-800 . -513) T) ((-631 . -342) NIL) ((-333 . -1172) 95548) ((-611 . -97) T) ((-327 . -1172) 95532) ((-319 . -1172) 95516) ((-1186 . -1013) T) ((-487 . -784) 95495) ((-754 . -425) 95474) ((-967 . -1013) T) ((-967 . -989) 95403) ((-951 . -902) 95372) ((-756 . -1025) T) ((-928 . -654) 95317) ((-360 . -1025) T) ((-449 . -902) 95286) ((-436 . -902) 95255) ((-106 . -139) 95237) ((-71 . -561) 95219) ((-822 . -561) 95201) ((-996 . -661) 95180) ((-1191 . -970) T) ((-753 . -583) 95128) ((-269 . -977) 95071) ((-154 . -1123) 94976) ((-202 . -1025) T) ((-298 . -23) T) ((-1075 . -918) 94928) ((-777 . -1013) T) ((-1037 . -677) 94907) ((-1151 . -976) 94812) ((-1149 . -849) 94791) ((-799 . -663) T) ((-154 . -513) 94702) ((-1128 . -849) 94681) ((-533 . -589) 94668) ((-381 . -1013) T) ((-521 . -589) 94655) ((-239 . -1013) T) ((-464 . -589) 94620) ((-202 . -23) T) ((-1128 . -757) 94573) ((-1185 . -97) T) ((-328 . -1182) 94550) ((-1183 . -97) T) ((-1151 . -107) 94442) ((-132 . -561) 94424) ((-919 . -124) T) ((-43 . -97) T) ((-217 . -784) 94375) ((-1138 . -1123) 94354) ((-98 . -460) 94338) ((-1186 . -654) 94308) ((-1002 . -46) 94269) ((-981 . -1025) T) ((-881 . -1025) T) ((-123 . -33) T) ((-117 . -33) T) ((-718 . -46) 94246) ((-716 . -46) 94218) ((-1138 . -513) 94129) ((-328 . -342) T) ((-453 . -1025) T) ((-1080 . -124) T) ((-1036 . -124) T) ((-427 . -46) 94108) ((-800 . -337) T) ((-788 . -124) T) ((-140 . -97) T) ((-981 . -23) T) ((-881 . -23) T) ((-528 . -513) T) ((-753 . -25) T) ((-753 . -21) T) ((-1051 . -482) 94041) ((-538 . -961) 94025) ((-453 . -23) T) ((-325 . -977) T) ((-1114 . -829) 94006) ((-611 . -284) 93944) ((-1026 . -1172) 93914) ((-636 . -589) 93879) ((-928 . -157) T) ((-891 . -133) 93858) ((-579 . -1013) T) ((-555 . -1013) T) ((-891 . -135) 93837) ((-929 . -784) T) ((-672 . -135) 93816) ((-672 . -133) 93795) ((-897 . -784) T) ((-447 . -849) 93774) ((-290 . -976) 93684) ((-287 . -976) 93613) ((-924 . -261) 93571) ((-381 . -654) 93523) ((-638 . -782) T) ((-1151 . -970) T) ((-290 . -107) 93419) ((-287 . -107) 93332) ((-892 . -97) T) ((-752 . -97) 93143) ((-649 . -562) NIL) ((-649 . -561) 93125) ((-599 . -961) 93023) ((-1151 . -300) 92967) ((-959 . -263) 92942) ((-533 . -663) T) ((-521 . -730) T) ((-154 . -337) 92893) ((-521 . -727) T) ((-521 . -663) T) ((-464 . -663) T) ((-1055 . -460) 92877) ((-1002 . -815) NIL) ((-800 . -1025) T) ((-113 . -838) NIL) ((-1185 . -1184) 92853) ((-1183 . -1184) 92832) ((-718 . -815) NIL) ((-716 . -815) 92691) ((-1178 . -25) T) ((-1178 . -21) T) ((-1117 . -97) 92669) ((-1019 . -369) T) ((-568 . -589) 92656) ((-427 . -815) NIL) ((-615 . -97) 92634) ((-1002 . -961) 92463) ((-800 . -23) T) ((-718 . -961) 92325) ((-716 . -961) 92184) ((-113 . -589) 92129) ((-427 . -961) 92007) ((-590 . -961) 91991) ((-571 . -97) T) ((-199 . -460) 91975) ((-1165 . -33) T) ((-579 . -654) 91959) ((-555 . -654) 91943) ((-611 . -37) 91903) ((-293 . -97) T) ((-83 . -561) 91885) ((-49 . -961) 91869) ((-1031 . -976) 91856) ((-1002 . -351) 91840) ((-58 . -55) 91802) ((-636 . -730) T) ((-636 . -727) T) ((-534 . -961) 91789) ((-485 . -961) 91766) ((-636 . -663) T) ((-290 . -970) 91657) ((-298 . -124) T) ((-287 . -970) T) ((-154 . -1025) T) ((-718 . -351) 91641) ((-716 . -351) 91625) ((-44 . -139) 91575) ((-929 . -918) 91557) ((-427 . -351) 91541) ((-381 . -157) T) ((-290 . -220) 91520) ((-287 . -220) T) ((-287 . -210) NIL) ((-269 . -1013) 91303) ((-202 . -124) T) ((-1031 . -107) 91288) ((-154 . -23) T) ((-736 . -135) 91267) ((-736 . -133) 91246) ((-227 . -583) 91154) ((-226 . -583) 91062) ((-293 . -259) 91028) ((-1065 . -482) 90961) ((-1044 . -1013) T) ((-202 . -979) T) ((-752 . -284) 90899) ((-1002 . -829) 90834) ((-718 . -829) 90778) ((-716 . -829) 90762) ((-1185 . -37) 90732) ((-1183 . -37) 90702) ((-1138 . -1025) T) ((-789 . -1025) T) ((-427 . -829) 90679) ((-791 . -1013) T) ((-1138 . -23) T) ((-528 . -1025) T) ((-789 . -23) T) ((-568 . -663) T) ((-329 . -849) T) ((-326 . -849) T) ((-264 . -97) T) ((-318 . -849) T) ((-981 . -124) T) ((-881 . -124) T) ((-113 . -730) NIL) ((-113 . -727) NIL) ((-113 . -663) T) ((-631 . -838) NIL) ((-967 . -482) 90580) ((-453 . -124) T) ((-528 . -23) T) ((-615 . -284) 90518) ((-579 . -698) T) ((-555 . -698) T) ((-1129 . -784) NIL) ((-928 . -265) T) ((-227 . -21) T) ((-631 . -589) 90468) ((-325 . -1013) T) ((-227 . -25) T) ((-226 . -21) T) ((-226 . -25) T) ((-140 . -37) 90452) ((-2 . -97) T) ((-839 . -849) T) ((-454 . -1172) 90422) ((-200 . -961) 90399) ((-1031 . -970) T) ((-648 . -282) T) ((-269 . -654) 90341) ((-638 . -977) T) ((-458 . -425) T) ((-381 . -482) 90253) ((-195 . -425) T) ((-1031 . -210) T) ((-270 . -139) 90203) ((-924 . -562) 90164) ((-924 . -561) 90146) ((-915 . -561) 90128) ((-112 . -977) T) ((-595 . -976) 90112) ((-202 . -462) T) ((-373 . -561) 90094) ((-373 . -562) 90071) ((-974 . -1172) 90041) ((-595 . -107) 90020) ((-1051 . -460) 90004) ((-752 . -37) 89974) ((-61 . -414) T) ((-61 . -369) T) ((-1068 . -97) T) ((-800 . -124) T) ((-455 . -97) 89952) ((-1191 . -342) T) ((-996 . -97) T) ((-980 . -97) T) ((-325 . -654) 89897) ((-668 . -135) 89876) ((-668 . -133) 89855) ((-948 . -589) 89792) ((-490 . -1013) 89770) ((-333 . -97) T) ((-327 . -97) T) ((-319 . -97) T) ((-103 . -97) T) ((-473 . -1013) T) ((-328 . -589) 89715) ((-1080 . -583) 89663) ((-1036 . -583) 89611) ((-359 . -477) 89590) ((-770 . -782) 89569) ((-353 . -1123) T) ((-631 . -663) T) ((-313 . -977) T) ((-1129 . -918) 89521) ((-158 . -977) T) ((-98 . -561) 89453) ((-1082 . -133) 89432) ((-1082 . -135) 89411) ((-353 . -513) T) ((-1081 . -135) 89390) ((-1081 . -133) 89369) ((-1075 . -133) 89276) ((-381 . -265) T) ((-1075 . -135) 89183) ((-1037 . -135) 89162) ((-1037 . -133) 89141) ((-293 . -37) 88982) ((-154 . -124) T) ((-287 . -732) NIL) ((-287 . -728) NIL) ((-595 . -970) T) ((-47 . -589) 88947) ((-919 . -21) T) ((-123 . -935) 88931) ((-117 . -935) 88915) ((-919 . -25) T) ((-830 . -115) 88899) ((-1067 . -97) T) ((-753 . -784) 88878) ((-1138 . -124) T) ((-1080 . -25) T) ((-1080 . -21) T) ((-789 . -124) T) ((-1036 . -25) T) ((-1036 . -21) T) ((-788 . -25) T) ((-788 . -21) T) ((-718 . -282) 88857) ((-588 . -97) 88835) ((-576 . -97) T) ((-1068 . -284) 88630) ((-528 . -124) T) ((-566 . -782) 88609) ((-1065 . -460) 88593) ((-1059 . -139) 88543) ((-1055 . -561) 88505) ((-1055 . -562) 88466) ((-948 . -727) T) ((-948 . -730) T) ((-948 . -663) T) ((-455 . -284) 88404) ((-426 . -391) 88374) ((-325 . -157) T) ((-264 . -37) 88361) ((-250 . -97) T) ((-249 . -97) T) ((-248 . -97) T) ((-247 . -97) T) ((-246 . -97) T) ((-245 . -97) T) ((-244 . -97) T) ((-317 . -961) 88338) ((-191 . -97) T) ((-190 . -97) T) ((-188 . -97) T) ((-187 . -97) T) ((-186 . -97) T) ((-185 . -97) T) ((-182 . -97) T) ((-181 . -97) T) ((-649 . -976) 88161) ((-180 . -97) T) ((-179 . -97) T) ((-178 . -97) T) ((-177 . -97) T) ((-176 . -97) T) ((-175 . -97) T) ((-174 . -97) T) ((-173 . -97) T) ((-172 . -97) T) ((-328 . -663) T) ((-649 . -107) 87970) ((-611 . -208) 87954) ((-534 . -282) T) ((-485 . -282) T) ((-269 . -482) 87903) ((-103 . -284) NIL) ((-70 . -369) T) ((-1026 . -97) 87714) ((-770 . -385) 87698) ((-1031 . -732) T) ((-1031 . -728) T) ((-638 . -1013) T) ((-353 . -337) T) ((-154 . -462) 87676) ((-199 . -561) 87608) ((-126 . -1013) T) ((-112 . -1013) T) ((-47 . -663) T) ((-967 . -460) 87573) ((-129 . -399) 87555) ((-129 . -342) T) ((-951 . -97) T) ((-480 . -477) 87534) ((-449 . -97) T) ((-436 . -97) T) ((-958 . -1025) T) ((-1082 . -34) 87500) ((-1082 . -91) 87466) ((-1082 . -1108) 87432) ((-1082 . -1105) 87398) ((-1067 . -284) NIL) ((-87 . -370) T) ((-87 . -369) T) ((-996 . -1060) 87377) ((-1081 . -1105) 87343) ((-1081 . -1108) 87309) ((-958 . -23) T) ((-1081 . -91) 87275) ((-528 . -462) T) ((-1081 . -34) 87241) ((-1075 . -1105) 87207) ((-1075 . -1108) 87173) ((-1075 . -91) 87139) ((-335 . -1025) T) ((-333 . -1060) 87118) ((-327 . -1060) 87097) ((-319 . -1060) 87076) ((-1075 . -34) 87042) ((-1037 . -34) 87008) ((-1037 . -91) 86974) ((-103 . -1060) T) ((-1037 . -1108) 86940) ((-770 . -977) 86919) ((-588 . -284) 86857) ((-576 . -284) 86708) ((-1037 . -1105) 86674) ((-649 . -970) T) ((-981 . -583) 86656) ((-996 . -37) 86524) ((-881 . -583) 86472) ((-929 . -135) T) ((-929 . -133) NIL) ((-353 . -1025) T) ((-298 . -25) T) ((-296 . -23) T) ((-872 . -784) 86451) ((-649 . -300) 86428) ((-453 . -583) 86376) ((-39 . -961) 86266) ((-638 . -654) 86253) ((-649 . -210) T) ((-313 . -1013) T) ((-158 . -1013) T) ((-305 . -784) T) ((-392 . -425) 86203) ((-353 . -23) T) ((-333 . -37) 86168) ((-327 . -37) 86133) ((-319 . -37) 86098) ((-78 . -414) T) ((-78 . -369) T) ((-202 . -25) T) ((-202 . -21) T) ((-771 . -1025) T) ((-103 . -37) 86048) ((-764 . -1025) T) ((-710 . -1013) T) ((-112 . -654) 86035) ((-612 . -961) 86019) ((-560 . -97) T) ((-771 . -23) T) ((-764 . -23) T) ((-1065 . -261) 85996) ((-1026 . -284) 85934) ((-1015 . -212) 85918) ((-62 . -370) T) ((-62 . -369) T) ((-106 . -97) T) ((-39 . -351) 85895) ((-594 . -786) 85879) ((-981 . -21) T) ((-981 . -25) T) ((-752 . -208) 85849) ((-881 . -25) T) ((-881 . -21) T) ((-566 . -977) T) ((-453 . -25) T) ((-453 . -21) T) ((-951 . -284) 85787) ((-818 . -561) 85769) ((-814 . -561) 85751) ((-227 . -784) 85702) ((-226 . -784) 85653) ((-490 . -482) 85586) ((-800 . -583) 85563) ((-449 . -284) 85501) ((-436 . -284) 85439) ((-325 . -265) T) ((-1065 . -1153) 85423) ((-1051 . -561) 85385) ((-1051 . -562) 85346) ((-1049 . -97) T) ((-924 . -976) 85242) ((-39 . -829) 85194) ((-1065 . -554) 85171) ((-1191 . -589) 85158) ((-982 . -139) 85104) ((-801 . -1123) T) ((-924 . -107) 84986) ((-313 . -654) 84970) ((-795 . -561) 84952) ((-158 . -654) 84884) ((-381 . -261) 84842) ((-801 . -513) T) ((-103 . -374) 84824) ((-82 . -358) T) ((-82 . -369) T) ((-638 . -157) T) ((-94 . -663) T) ((-454 . -97) 84635) ((-94 . -446) T) ((-112 . -157) T) ((-1026 . -37) 84605) ((-154 . -583) 84553) ((-974 . -97) T) ((-800 . -25) T) ((-752 . -215) 84532) ((-800 . -21) T) ((-755 . -97) T) ((-388 . -97) T) ((-359 . -97) T) ((-106 . -284) NIL) ((-204 . -97) 84510) ((-123 . -1119) T) ((-117 . -1119) T) ((-958 . -124) T) ((-611 . -341) 84494) ((-924 . -970) T) ((-1138 . -583) 84442) ((-1017 . -561) 84424) ((-928 . -561) 84406) ((-483 . -23) T) ((-478 . -23) T) ((-317 . -282) T) ((-476 . -23) T) ((-296 . -124) T) ((-3 . -1013) T) ((-928 . -562) 84390) ((-924 . -220) 84369) ((-924 . -210) 84348) ((-1191 . -663) T) ((-1157 . -133) 84327) ((-770 . -1013) T) ((-1157 . -135) 84306) ((-1150 . -135) 84285) ((-1150 . -133) 84264) ((-1149 . -1123) 84243) ((-1129 . -133) 84150) ((-1129 . -135) 84057) ((-1128 . -1123) 84036) ((-353 . -124) T) ((-521 . -815) 84018) ((0 . -1013) T) ((-158 . -157) T) ((-154 . -21) T) ((-154 . -25) T) ((-48 . -1013) T) ((-1151 . -589) 83923) ((-1149 . -513) 83874) ((-651 . -1025) T) ((-1128 . -513) 83825) ((-521 . -961) 83807) ((-546 . -135) 83786) ((-546 . -133) 83765) ((-464 . -961) 83708) ((-85 . -358) T) ((-85 . -369) T) ((-801 . -337) T) ((-771 . -124) T) ((-764 . -124) T) ((-651 . -23) T) ((-471 . -561) 83690) ((-1187 . -977) T) ((-353 . -979) T) ((-950 . -1013) 83668) ((-830 . -33) T) ((-454 . -284) 83606) ((-1065 . -562) 83567) ((-1065 . -561) 83499) ((-1080 . -784) 83478) ((-44 . -97) T) ((-1036 . -784) 83457) ((-754 . -97) T) ((-1138 . -25) T) ((-1138 . -21) T) ((-789 . -25) T) ((-43 . -341) 83441) ((-789 . -21) T) ((-668 . -425) 83392) ((-1186 . -561) 83374) ((-528 . -25) T) ((-528 . -21) T) ((-364 . -1013) T) ((-974 . -284) 83312) ((-566 . -1013) T) ((-636 . -815) 83294) ((-1165 . -1119) T) ((-204 . -284) 83232) ((-132 . -342) T) ((-967 . -562) 83174) ((-967 . -561) 83117) ((-287 . -838) NIL) ((-636 . -961) 83062) ((-648 . -849) T) ((-447 . -1123) 83041) ((-1081 . -425) 83020) ((-1075 . -425) 82999) ((-304 . -97) T) ((-801 . -1025) T) ((-290 . -589) 82821) ((-287 . -589) 82750) ((-447 . -513) 82701) ((-313 . -482) 82667) ((-507 . -139) 82617) ((-39 . -282) T) ((-777 . -561) 82599) ((-638 . -265) T) ((-801 . -23) T) ((-353 . -462) T) ((-996 . -208) 82569) ((-480 . -97) T) ((-381 . -562) 82377) ((-381 . -561) 82359) ((-239 . -561) 82341) ((-112 . -265) T) ((-1151 . -663) T) ((-1149 . -337) 82320) ((-1128 . -337) 82299) ((-1176 . -33) T) ((-113 . -1119) T) ((-103 . -208) 82281) ((-1086 . -97) T) ((-450 . -1013) T) ((-490 . -460) 82265) ((-674 . -33) T) ((-454 . -37) 82235) ((-129 . -33) T) ((-113 . -813) 82212) ((-113 . -815) NIL) ((-568 . -961) 82097) ((-587 . -784) 82076) ((-1175 . -97) T) ((-270 . -97) T) ((-649 . -342) 82055) ((-113 . -961) 82032) ((-364 . -654) 82016) ((-566 . -654) 82000) ((-44 . -284) 81804) ((-753 . -133) 81783) ((-753 . -135) 81762) ((-1186 . -356) 81741) ((-756 . -784) T) ((-1167 . -1013) T) ((-1068 . -206) 81688) ((-360 . -784) 81667) ((-1157 . -1108) 81633) ((-1157 . -1105) 81599) ((-1150 . -1105) 81565) ((-483 . -124) T) ((-1150 . -1108) 81531) ((-1129 . -1105) 81497) ((-1129 . -1108) 81463) ((-1157 . -34) 81429) ((-1157 . -91) 81395) ((-579 . -561) 81364) ((-555 . -561) 81333) ((-202 . -784) T) ((-1150 . -91) 81299) ((-1150 . -34) 81265) ((-1149 . -1025) T) ((-1031 . -589) 81252) ((-1129 . -91) 81218) ((-1128 . -1025) T) ((-544 . -139) 81200) ((-996 . -323) 81179) ((-113 . -351) 81156) ((-113 . -312) 81133) ((-158 . -265) T) ((-1129 . -34) 81099) ((-799 . -282) T) ((-287 . -730) NIL) ((-287 . -727) NIL) ((-290 . -663) 80949) ((-287 . -663) T) ((-447 . -337) 80928) ((-333 . -323) 80907) ((-327 . -323) 80886) ((-319 . -323) 80865) ((-290 . -446) 80844) ((-1149 . -23) T) ((-1128 . -23) T) ((-655 . -1025) T) ((-651 . -124) T) ((-594 . -97) T) ((-450 . -654) 80809) ((-44 . -257) 80759) ((-100 . -1013) T) ((-66 . -561) 80741) ((-794 . -97) T) ((-568 . -829) 80700) ((-1187 . -1013) T) ((-355 . -1013) T) ((-80 . -1119) T) ((-981 . -784) T) ((-881 . -784) 80679) ((-113 . -829) NIL) ((-718 . -849) 80658) ((-650 . -784) T) ((-493 . -1013) T) ((-469 . -1013) T) ((-329 . -1123) T) ((-326 . -1123) T) ((-318 . -1123) T) ((-240 . -1123) 80637) ((-224 . -1123) 80616) ((-1026 . -208) 80586) ((-453 . -784) 80565) ((-1051 . -976) 80549) ((-364 . -698) T) ((-1067 . -765) T) ((-631 . -1119) T) ((-329 . -513) T) ((-326 . -513) T) ((-318 . -513) T) ((-240 . -513) 80480) ((-224 . -513) 80411) ((-1051 . -107) 80390) ((-426 . -681) 80360) ((-795 . -976) 80330) ((-754 . -37) 80272) ((-631 . -813) 80254) ((-631 . -815) 80236) ((-270 . -284) 80040) ((-839 . -1123) T) ((-611 . -385) 80024) ((-795 . -107) 79989) ((-631 . -961) 79934) ((-929 . -425) T) ((-839 . -513) T) ((-534 . -849) T) ((-447 . -1025) T) ((-485 . -849) T) ((-1065 . -263) 79911) ((-843 . -425) T) ((-63 . -561) 79893) ((-576 . -206) 79839) ((-447 . -23) T) ((-1031 . -730) T) ((-801 . -124) T) ((-1031 . -727) T) ((-1178 . -1180) 79818) ((-1031 . -663) T) ((-595 . -589) 79792) ((-269 . -561) 79534) ((-959 . -33) T) ((-752 . -782) 79513) ((-533 . -282) T) ((-521 . -282) T) ((-464 . -282) T) ((-1187 . -654) 79483) ((-631 . -351) 79465) ((-631 . -312) 79447) ((-450 . -157) T) ((-355 . -654) 79417) ((-800 . -784) NIL) ((-521 . -946) T) ((-464 . -946) T) ((-1044 . -561) 79399) ((-1026 . -215) 79378) ((-192 . -97) T) ((-1059 . -97) T) ((-69 . -561) 79360) ((-1051 . -970) T) ((-1086 . -37) 79257) ((-791 . -561) 79239) ((-521 . -506) T) ((-611 . -977) T) ((-668 . -878) 79192) ((-1051 . -210) 79171) ((-998 . -1013) T) ((-958 . -25) T) ((-958 . -21) T) ((-928 . -976) 79116) ((-834 . -97) T) ((-795 . -970) T) ((-631 . -829) NIL) ((-329 . -303) 79100) ((-329 . -337) T) ((-326 . -303) 79084) ((-326 . -337) T) ((-318 . -303) 79068) ((-318 . -337) T) ((-458 . -97) T) ((-1175 . -37) 79038) ((-490 . -625) 78988) ((-195 . -97) T) ((-948 . -961) 78870) ((-928 . -107) 78799) ((-1082 . -899) 78769) ((-1081 . -899) 78732) ((-487 . -139) 78716) ((-996 . -344) 78695) ((-325 . -561) 78677) ((-296 . -21) T) ((-328 . -961) 78654) ((-296 . -25) T) ((-1075 . -899) 78624) ((-1037 . -899) 78591) ((-74 . -561) 78573) ((-636 . -282) T) ((-154 . -784) 78552) ((-839 . -337) T) ((-353 . -25) T) ((-353 . -21) T) ((-839 . -303) 78539) ((-84 . -561) 78521) ((-636 . -946) T) ((-616 . -784) T) ((-1149 . -124) T) ((-1128 . -124) T) ((-830 . -935) 78505) ((-771 . -21) T) ((-47 . -961) 78448) ((-771 . -25) T) ((-764 . -25) T) ((-764 . -21) T) ((-1185 . -977) T) ((-1183 . -977) T) ((-595 . -663) T) ((-1186 . -976) 78432) ((-1138 . -784) 78411) ((-752 . -385) 78380) ((-98 . -115) 78364) ((-51 . -1013) T) ((-855 . -561) 78346) ((-800 . -918) 78323) ((-760 . -97) T) ((-1186 . -107) 78302) ((-594 . -37) 78272) ((-528 . -784) T) ((-329 . -1025) T) ((-326 . -1025) T) ((-318 . -1025) T) ((-240 . -1025) T) ((-224 . -1025) T) ((-568 . -282) 78251) ((-1059 . -284) 78055) ((-605 . -23) T) ((-454 . -208) 78025) ((-140 . -977) T) ((-329 . -23) T) ((-326 . -23) T) ((-318 . -23) T) ((-113 . -282) T) ((-240 . -23) T) ((-224 . -23) T) ((-928 . -970) T) ((-649 . -838) 78004) ((-928 . -210) 77976) ((-928 . -220) T) ((-113 . -946) NIL) ((-839 . -1025) T) ((-1150 . -425) 77955) ((-1129 . -425) 77934) ((-490 . -561) 77866) ((-649 . -589) 77791) ((-381 . -976) 77743) ((-473 . -561) 77725) ((-839 . -23) T) ((-458 . -284) NIL) ((-447 . -124) T) ((-195 . -284) NIL) ((-381 . -107) 77663) ((-752 . -977) 77594) ((-674 . -1011) 77578) ((-1149 . -462) 77544) ((-1128 . -462) 77510) ((-129 . -1011) 77492) ((-450 . -265) T) ((-1186 . -970) T) ((-982 . -97) T) ((-469 . -482) NIL) ((-640 . -97) T) ((-454 . -215) 77471) ((-1080 . -133) 77450) ((-1080 . -135) 77429) ((-1036 . -135) 77408) ((-1036 . -133) 77387) ((-579 . -976) 77371) ((-555 . -976) 77355) ((-611 . -1013) T) ((-611 . -973) 77295) ((-1082 . -1156) 77279) ((-1082 . -1143) 77256) ((-458 . -1060) T) ((-1081 . -1148) 77217) ((-1081 . -1143) 77187) ((-1081 . -1146) 77171) ((-195 . -1060) T) ((-317 . -849) T) ((-755 . -242) 77155) ((-579 . -107) 77134) ((-555 . -107) 77113) ((-1075 . -1127) 77074) ((-777 . -970) 77053) ((-1075 . -1143) 77030) ((-483 . -25) T) ((-464 . -277) T) ((-479 . -23) T) ((-478 . -25) T) ((-476 . -25) T) ((-475 . -23) T) ((-1075 . -1125) 77014) ((-381 . -970) T) ((-293 . -977) T) ((-631 . -282) T) ((-103 . -782) T) ((-381 . -220) T) ((-381 . -210) 76993) ((-649 . -663) T) ((-458 . -37) 76943) ((-195 . -37) 76893) ((-447 . -462) 76859) ((-1067 . -1053) T) ((-1014 . -97) T) ((-638 . -561) 76841) ((-638 . -562) 76756) ((-651 . -21) T) ((-651 . -25) T) ((-126 . -561) 76738) ((-112 . -561) 76720) ((-143 . -25) T) ((-1185 . -1013) T) ((-801 . -583) 76668) ((-1183 . -1013) T) ((-891 . -97) T) ((-672 . -97) T) ((-652 . -97) T) ((-426 . -97) T) ((-753 . -425) 76619) ((-43 . -1013) T) ((-1003 . -784) T) ((-605 . -124) T) ((-982 . -284) 76470) ((-611 . -654) 76454) ((-264 . -977) T) ((-329 . -124) T) ((-326 . -124) T) ((-318 . -124) T) ((-240 . -124) T) ((-224 . -124) T) ((-392 . -97) T) ((-140 . -1013) T) ((-44 . -206) 76404) ((-886 . -784) 76383) ((-924 . -589) 76321) ((-217 . -1172) 76291) ((-948 . -282) T) ((-269 . -976) 76213) ((-839 . -124) T) ((-39 . -849) T) ((-458 . -374) 76195) ((-328 . -282) T) ((-195 . -374) 76177) ((-996 . -385) 76161) ((-269 . -107) 76078) ((-801 . -25) T) ((-801 . -21) T) ((-313 . -561) 76060) ((-1151 . -46) 76004) ((-202 . -135) T) ((-158 . -561) 75986) ((-1026 . -782) 75965) ((-710 . -561) 75947) ((-556 . -212) 75894) ((-448 . -212) 75844) ((-1185 . -654) 75814) ((-47 . -282) T) ((-1183 . -654) 75784) ((-892 . -1013) T) ((-752 . -1013) 75595) ((-286 . -97) T) ((-830 . -1119) T) ((-47 . -946) T) ((-1128 . -583) 75503) ((-627 . -97) 75481) ((-43 . -654) 75465) ((-507 . -97) T) ((-65 . -357) T) ((-65 . -369) T) ((-603 . -23) T) ((-611 . -698) T) ((-1117 . -1013) 75443) ((-325 . -976) 75388) ((-615 . -1013) 75366) ((-981 . -135) T) ((-881 . -135) 75345) ((-881 . -133) 75324) ((-736 . -97) T) ((-140 . -654) 75308) ((-453 . -135) 75287) ((-453 . -133) 75266) ((-325 . -107) 75195) ((-996 . -977) T) ((-296 . -784) 75174) ((-1157 . -899) 75144) ((-571 . -1013) T) ((-1150 . -899) 75107) ((-479 . -124) T) ((-475 . -124) T) ((-270 . -206) 75057) ((-333 . -977) T) ((-327 . -977) T) ((-319 . -977) T) ((-269 . -970) 75000) ((-1129 . -899) 74970) ((-353 . -784) T) ((-103 . -977) T) ((-924 . -663) T) ((-799 . -849) T) ((-777 . -732) 74949) ((-777 . -728) 74928) ((-392 . -284) 74867) ((-441 . -97) T) ((-546 . -899) 74837) ((-293 . -1013) T) ((-381 . -732) 74816) ((-381 . -728) 74795) ((-469 . -460) 74777) ((-1151 . -961) 74743) ((-1149 . -21) T) ((-1149 . -25) T) ((-1128 . -21) T) ((-1128 . -25) T) ((-752 . -654) 74685) ((-636 . -378) T) ((-1176 . -1119) T) ((-1026 . -385) 74654) ((-928 . -342) NIL) ((-98 . -33) T) ((-674 . -1119) T) ((-43 . -698) T) ((-544 . -97) T) ((-75 . -370) T) ((-75 . -369) T) ((-594 . -597) 74638) ((-129 . -1119) T) ((-800 . -135) T) ((-800 . -133) NIL) ((-325 . -970) T) ((-68 . -357) T) ((-68 . -369) T) ((-1074 . -97) T) ((-611 . -482) 74571) ((-627 . -284) 74509) ((-891 . -37) 74406) ((-672 . -37) 74376) ((-507 . -284) 74180) ((-290 . -1119) T) ((-325 . -210) T) ((-325 . -220) T) ((-287 . -1119) T) ((-264 . -1013) T) ((-1088 . -561) 74162) ((-648 . -1123) T) ((-1065 . -592) 74146) ((-1114 . -513) 74125) ((-648 . -513) T) ((-290 . -813) 74109) ((-290 . -815) 74034) ((-287 . -813) 73995) ((-287 . -815) NIL) ((-736 . -284) 73960) ((-293 . -654) 73801) ((-298 . -297) 73778) ((-456 . -97) T) ((-447 . -25) T) ((-447 . -21) T) ((-392 . -37) 73752) ((-290 . -961) 73420) ((-202 . -1105) T) ((-202 . -1108) T) ((-3 . -561) 73402) ((-287 . -961) 73332) ((-2 . -1013) T) ((-2 . |RecordCategory|) T) ((-770 . -561) 73314) ((-1026 . -977) 73245) ((-533 . -849) T) ((-521 . -757) T) ((-521 . -849) T) ((-464 . -849) T) ((-128 . -961) 73229) ((-202 . -91) T) ((-154 . -135) 73208) ((-73 . -414) T) ((0 . -561) 73190) ((-73 . -369) T) ((-154 . -133) 73141) ((-202 . -34) T) ((-48 . -561) 73123) ((-450 . -977) T) ((-458 . -208) 73105) ((-455 . -895) 73089) ((-454 . -782) 73068) ((-195 . -208) 73050) ((-79 . -414) T) ((-79 . -369) T) ((-1055 . -33) T) ((-752 . -157) 73029) ((-668 . -97) T) ((-950 . -561) 72996) ((-469 . -261) 72971) ((-290 . -351) 72941) ((-287 . -351) 72902) ((-287 . -312) 72863) ((-1000 . -561) 72845) ((-753 . -878) 72792) ((-603 . -124) T) ((-1138 . -133) 72771) ((-1138 . -135) 72750) ((-1082 . -97) T) ((-1081 . -97) T) ((-1075 . -97) T) ((-1068 . -1013) T) ((-1037 . -97) T) ((-199 . -33) T) ((-264 . -654) 72737) ((-1068 . -558) 72713) ((-544 . -284) NIL) ((-455 . -1013) 72691) ((-364 . -561) 72673) ((-478 . -784) T) ((-1059 . -206) 72623) ((-1157 . -1156) 72607) ((-1157 . -1143) 72584) ((-1150 . -1148) 72545) ((-1150 . -1143) 72515) ((-1150 . -1146) 72499) ((-1129 . -1127) 72460) ((-1129 . -1143) 72437) ((-566 . -561) 72419) ((-1129 . -1125) 72403) ((-636 . -849) T) ((-1082 . -259) 72369) ((-1081 . -259) 72335) ((-1075 . -259) 72301) ((-996 . -1013) T) ((-980 . -1013) T) ((-47 . -277) T) ((-290 . -829) 72268) ((-287 . -829) NIL) ((-980 . -986) 72247) ((-1031 . -815) 72229) ((-736 . -37) 72213) ((-240 . -583) 72161) ((-224 . -583) 72109) ((-638 . -976) 72096) ((-546 . -1143) 72073) ((-1037 . -259) 72039) ((-293 . -157) 71970) ((-333 . -1013) T) ((-327 . -1013) T) ((-319 . -1013) T) ((-469 . -19) 71952) ((-1031 . -961) 71934) ((-1015 . -139) 71918) ((-103 . -1013) T) ((-112 . -976) 71905) ((-648 . -337) T) ((-469 . -554) 71880) ((-638 . -107) 71865) ((-410 . -97) T) ((-44 . -1058) 71815) ((-112 . -107) 71800) ((-579 . -657) T) ((-555 . -657) T) ((-752 . -482) 71733) ((-959 . -1119) T) ((-872 . -139) 71717) ((-487 . -97) 71667) ((-1002 . -1123) 71646) ((-450 . -561) 71598) ((-450 . -562) 71520) ((-60 . -1119) T) ((-718 . -1123) 71499) ((-716 . -1123) 71478) ((-1080 . -425) 71409) ((-1067 . -1013) T) ((-1051 . -589) 71383) ((-1002 . -513) 71314) ((-454 . -385) 71283) ((-568 . -849) 71262) ((-427 . -1123) 71241) ((-1036 . -425) 71192) ((-372 . -561) 71174) ((-615 . -482) 71107) ((-718 . -513) 71018) ((-716 . -513) 70949) ((-668 . -284) 70936) ((-605 . -25) T) ((-605 . -21) T) ((-427 . -513) 70867) ((-113 . -849) T) ((-113 . -757) NIL) ((-329 . -25) T) ((-329 . -21) T) ((-326 . -25) T) ((-326 . -21) T) ((-318 . -25) T) ((-318 . -21) T) ((-240 . -25) T) ((-240 . -21) T) ((-81 . -358) T) ((-81 . -369) T) ((-224 . -25) T) ((-224 . -21) T) ((-1167 . -561) 70849) ((-1114 . -1025) T) ((-1114 . -23) T) ((-1075 . -284) 70734) ((-1037 . -284) 70721) ((-795 . -589) 70681) ((-996 . -654) 70549) ((-872 . -906) 70533) ((-264 . -157) T) ((-839 . -21) T) ((-839 . -25) T) ((-801 . -784) 70484) ((-648 . -1025) T) ((-648 . -23) T) ((-588 . -1013) 70462) ((-576 . -558) 70437) ((-576 . -1013) T) ((-534 . -1123) T) ((-485 . -1123) T) ((-534 . -513) T) ((-485 . -513) T) ((-333 . -654) 70389) ((-327 . -654) 70341) ((-158 . -976) 70273) ((-313 . -976) 70257) ((-103 . -654) 70207) ((-158 . -107) 70118) ((-319 . -654) 70070) ((-313 . -107) 70049) ((-250 . -1013) T) ((-249 . -1013) T) ((-248 . -1013) T) ((-247 . -1013) T) ((-638 . -970) T) ((-246 . -1013) T) ((-245 . -1013) T) ((-244 . -1013) T) ((-191 . -1013) T) ((-190 . -1013) T) ((-188 . -1013) T) ((-154 . -1108) 70027) ((-154 . -1105) 70005) ((-187 . -1013) T) ((-186 . -1013) T) ((-112 . -970) T) ((-185 . -1013) T) ((-182 . -1013) T) ((-638 . -210) T) ((-181 . -1013) T) ((-180 . -1013) T) ((-179 . -1013) T) ((-178 . -1013) T) ((-177 . -1013) T) ((-176 . -1013) T) ((-175 . -1013) T) ((-174 . -1013) T) ((-173 . -1013) T) ((-172 . -1013) T) ((-217 . -97) 69816) ((-154 . -34) 69794) ((-154 . -91) 69772) ((-595 . -961) 69670) ((-454 . -977) 69601) ((-1026 . -1013) 69412) ((-1051 . -33) T) ((-611 . -460) 69396) ((-71 . -1119) T) ((-100 . -561) 69378) ((-1187 . -561) 69360) ((-355 . -561) 69342) ((-528 . -1108) T) ((-528 . -1105) T) ((-668 . -37) 69191) ((-493 . -561) 69173) ((-487 . -284) 69111) ((-469 . -561) 69093) ((-469 . -562) 69075) ((-1075 . -1060) NIL) ((-951 . -989) 69044) ((-951 . -1013) T) ((-929 . -97) T) ((-897 . -97) T) ((-843 . -97) T) ((-822 . -961) 69021) ((-1051 . -663) T) ((-928 . -589) 68966) ((-449 . -1013) T) ((-436 . -1013) T) ((-538 . -23) T) ((-528 . -34) T) ((-528 . -91) T) ((-401 . -97) T) ((-982 . -206) 68912) ((-1082 . -37) 68809) ((-795 . -663) T) ((-631 . -849) T) ((-479 . -25) T) ((-475 . -21) T) ((-475 . -25) T) ((-1081 . -37) 68650) ((-313 . -970) T) ((-1075 . -37) 68446) ((-996 . -157) T) ((-158 . -970) T) ((-1037 . -37) 68343) ((-649 . -46) 68320) ((-333 . -157) T) ((-327 . -157) T) ((-486 . -55) 68294) ((-466 . -55) 68244) ((-325 . -1182) 68221) ((-202 . -425) T) ((-293 . -265) 68172) ((-319 . -157) T) ((-158 . -220) T) ((-1128 . -784) 68071) ((-103 . -157) T) ((-801 . -918) 68055) ((-599 . -1025) T) ((-534 . -337) T) ((-534 . -303) 68042) ((-485 . -303) 68019) ((-485 . -337) T) ((-290 . -282) 67998) ((-287 . -282) T) ((-552 . -784) 67977) ((-1026 . -654) 67919) ((-487 . -257) 67903) ((-599 . -23) T) ((-392 . -208) 67887) ((-287 . -946) NIL) ((-310 . -23) T) ((-98 . -935) 67871) ((-731 . -561) 67853) ((-44 . -35) 67832) ((-560 . -1013) T) ((-325 . -342) T) ((-464 . -27) T) ((-217 . -284) 67770) ((-1002 . -1025) T) ((-1186 . -589) 67744) ((-718 . -1025) T) ((-716 . -1025) T) ((-427 . -1025) T) ((-981 . -425) T) ((-881 . -425) 67695) ((-106 . -1013) T) ((-1002 . -23) T) ((-754 . -977) T) ((-718 . -23) T) ((-716 . -23) T) ((-453 . -425) 67646) ((-1068 . -482) 67429) ((-355 . -356) 67408) ((-1086 . -385) 67392) ((-434 . -23) T) ((-427 . -23) T) ((-455 . -482) 67325) ((-264 . -265) T) ((-998 . -561) 67307) ((-381 . -838) 67286) ((-49 . -1025) T) ((-948 . -849) T) ((-928 . -663) T) ((-649 . -815) NIL) ((-534 . -1025) T) ((-485 . -1025) T) ((-777 . -589) 67259) ((-1114 . -124) T) ((-1075 . -374) 67211) ((-929 . -284) NIL) ((-752 . -460) 67195) ((-328 . -849) T) ((-1065 . -33) T) ((-381 . -589) 67147) ((-49 . -23) T) ((-648 . -124) T) ((-649 . -961) 67030) ((-534 . -23) T) ((-103 . -482) NIL) ((-485 . -23) T) ((-154 . -383) 67001) ((-1049 . -1013) T) ((-1178 . -1177) 66985) ((-638 . -732) T) ((-638 . -728) T) ((-353 . -135) T) ((-1031 . -282) T) ((-1128 . -918) 66955) ((-47 . -849) T) ((-615 . -460) 66939) ((-227 . -1172) 66909) ((-226 . -1172) 66879) ((-1084 . -784) T) ((-1026 . -157) 66858) ((-1031 . -946) T) ((-967 . -33) T) ((-771 . -135) 66837) ((-771 . -133) 66816) ((-674 . -102) 66800) ((-560 . -125) T) ((-454 . -1013) 66611) ((-1086 . -977) T) ((-800 . -425) T) ((-83 . -1119) T) ((-217 . -37) 66581) ((-129 . -102) 66563) ((-649 . -351) 66547) ((-1031 . -506) T) ((-364 . -976) 66531) ((-1186 . -663) T) ((-1080 . -878) 66501) ((-51 . -561) 66483) ((-1036 . -878) 66450) ((-594 . -385) 66434) ((-1175 . -977) T) ((-566 . -976) 66418) ((-603 . -25) T) ((-603 . -21) T) ((-1067 . -482) NIL) ((-1157 . -97) T) ((-1150 . -97) T) ((-364 . -107) 66397) ((-199 . -230) 66381) ((-1129 . -97) T) ((-974 . -1013) T) ((-929 . -1060) T) ((-974 . -973) 66321) ((-755 . -1013) T) ((-317 . -1123) T) ((-579 . -589) 66305) ((-566 . -107) 66284) ((-555 . -589) 66268) ((-547 . -97) T) ((-538 . -124) T) ((-546 . -97) T) ((-388 . -1013) T) ((-359 . -1013) T) ((-204 . -1013) 66246) ((-588 . -482) 66179) ((-576 . -482) 66023) ((-770 . -970) 66002) ((-587 . -139) 65986) ((-317 . -513) T) ((-649 . -829) 65930) ((-507 . -206) 65880) ((-1157 . -259) 65846) ((-996 . -265) 65797) ((-458 . -782) T) ((-200 . -1025) T) ((-1150 . -259) 65763) ((-1129 . -259) 65729) ((-929 . -37) 65679) ((-195 . -782) T) ((-1114 . -462) 65645) ((-843 . -37) 65597) ((-777 . -730) 65576) ((-777 . -727) 65555) ((-777 . -663) 65534) ((-333 . -265) T) ((-327 . -265) T) ((-319 . -265) T) ((-154 . -425) 65465) ((-401 . -37) 65449) ((-103 . -265) T) ((-200 . -23) T) ((-381 . -730) 65428) ((-381 . -727) 65407) ((-381 . -663) T) ((-469 . -263) 65382) ((-450 . -976) 65347) ((-599 . -124) T) ((-1026 . -482) 65280) ((-310 . -124) T) ((-154 . -376) 65259) ((-454 . -654) 65201) ((-752 . -261) 65178) ((-450 . -107) 65134) ((-594 . -977) T) ((-1138 . -425) 65065) ((-1002 . -124) T) ((-240 . -784) 65044) ((-224 . -784) 65023) ((-718 . -124) T) ((-716 . -124) T) ((-528 . -425) T) ((-974 . -654) 64965) ((-566 . -970) T) ((-951 . -482) 64898) ((-434 . -124) T) ((-427 . -124) T) ((-44 . -1013) T) ((-359 . -654) 64868) ((-754 . -1013) T) ((-449 . -482) 64801) ((-436 . -482) 64734) ((-426 . -341) 64704) ((-44 . -558) 64683) ((-290 . -277) T) ((-611 . -561) 64645) ((-57 . -784) 64624) ((-1129 . -284) 64509) ((-929 . -374) 64491) ((-752 . -554) 64468) ((-484 . -784) 64447) ((-465 . -784) 64426) ((-39 . -1123) T) ((-924 . -961) 64324) ((-49 . -124) T) ((-534 . -124) T) ((-485 . -124) T) ((-269 . -589) 64186) ((-317 . -303) 64163) ((-317 . -337) T) ((-296 . -297) 64140) ((-293 . -261) 64125) ((-39 . -513) T) ((-353 . -1105) T) ((-353 . -1108) T) ((-959 . -1096) 64100) ((-1093 . -212) 64050) ((-1075 . -208) 64002) ((-304 . -1013) T) ((-353 . -91) T) ((-353 . -34) T) ((-959 . -102) 63948) ((-450 . -970) T) ((-451 . -212) 63898) ((-1068 . -460) 63832) ((-1187 . -976) 63816) ((-355 . -976) 63800) ((-450 . -220) T) ((-753 . -97) T) ((-651 . -135) 63779) ((-651 . -133) 63758) ((-455 . -460) 63742) ((-456 . -309) 63711) ((-1187 . -107) 63690) ((-480 . -1013) T) ((-454 . -157) 63669) ((-924 . -351) 63653) ((-387 . -97) T) ((-355 . -107) 63632) ((-924 . -312) 63616) ((-255 . -909) 63600) ((-254 . -909) 63584) ((-1185 . -561) 63566) ((-1183 . -561) 63548) ((-106 . -482) NIL) ((-1080 . -1141) 63532) ((-788 . -786) 63516) ((-1086 . -1013) T) ((-98 . -1119) T) ((-881 . -878) 63477) ((-754 . -654) 63419) ((-1129 . -1060) NIL) ((-453 . -878) 63364) ((-981 . -131) T) ((-58 . -97) 63342) ((-43 . -561) 63324) ((-76 . -561) 63306) ((-325 . -589) 63251) ((-1175 . -1013) T) ((-479 . -784) T) ((-317 . -1025) T) ((-270 . -1013) T) ((-924 . -829) 63210) ((-270 . -558) 63189) ((-1157 . -37) 63086) ((-1150 . -37) 62927) ((-458 . -977) T) ((-1129 . -37) 62723) ((-195 . -977) T) ((-317 . -23) T) ((-140 . -561) 62705) ((-770 . -732) 62684) ((-770 . -728) 62663) ((-547 . -37) 62636) ((-546 . -37) 62533) ((-799 . -513) T) ((-200 . -124) T) ((-293 . -927) 62499) ((-77 . -561) 62481) ((-649 . -282) 62460) ((-269 . -663) 62363) ((-761 . -97) T) ((-794 . -778) T) ((-269 . -446) 62342) ((-1178 . -97) T) ((-39 . -337) T) ((-801 . -135) 62321) ((-801 . -133) 62300) ((-1067 . -460) 62282) ((-1187 . -970) T) ((-454 . -482) 62215) ((-1055 . -1119) T) ((-892 . -561) 62197) ((-588 . -460) 62181) ((-576 . -460) 62112) ((-752 . -561) 61864) ((-47 . -27) T) ((-1086 . -654) 61761) ((-594 . -1013) T) ((-410 . -338) 61735) ((-1015 . -97) T) ((-753 . -284) 61722) ((-794 . -1013) T) ((-1183 . -356) 61694) ((-974 . -482) 61627) ((-1068 . -261) 61603) ((-217 . -208) 61573) ((-1175 . -654) 61543) ((-754 . -157) 61522) ((-204 . -482) 61455) ((-566 . -732) 61434) ((-566 . -728) 61413) ((-1117 . -561) 61325) ((-199 . -1119) T) ((-615 . -561) 61257) ((-1065 . -935) 61241) ((-325 . -663) T) ((-872 . -97) 61191) ((-1129 . -374) 61143) ((-1026 . -460) 61127) ((-58 . -284) 61065) ((-305 . -97) T) ((-1114 . -21) T) ((-1114 . -25) T) ((-39 . -1025) T) ((-648 . -21) T) ((-571 . -561) 61047) ((-483 . -297) 61026) ((-648 . -25) T) ((-103 . -261) NIL) ((-850 . -1025) T) ((-39 . -23) T) ((-707 . -1025) T) ((-521 . -1123) T) ((-464 . -1123) T) ((-293 . -561) 61008) ((-929 . -208) 60990) ((-154 . -151) 60974) ((-533 . -513) T) ((-521 . -513) T) ((-464 . -513) T) ((-707 . -23) T) ((-1149 . -135) 60953) ((-1068 . -554) 60929) ((-1149 . -133) 60908) ((-951 . -460) 60892) ((-1128 . -133) 60817) ((-1128 . -135) 60742) ((-1178 . -1184) 60721) ((-449 . -460) 60705) ((-436 . -460) 60689) ((-490 . -33) T) ((-594 . -654) 60659) ((-108 . -894) T) ((-603 . -784) 60638) ((-1086 . -157) 60589) ((-339 . -97) T) ((-217 . -215) 60568) ((-227 . -97) T) ((-226 . -97) T) ((-1138 . -878) 60538) ((-105 . -97) T) ((-222 . -784) 60517) ((-753 . -37) 60366) ((-44 . -482) 60158) ((-1067 . -261) 60133) ((-192 . -1013) T) ((-1059 . -1013) T) ((-1059 . -558) 60112) ((-538 . -25) T) ((-538 . -21) T) ((-1015 . -284) 60050) ((-891 . -385) 60034) ((-636 . -1123) T) ((-576 . -261) 60009) ((-1002 . -583) 59957) ((-718 . -583) 59905) ((-716 . -583) 59853) ((-317 . -124) T) ((-264 . -561) 59835) ((-636 . -513) T) ((-834 . -1013) T) ((-799 . -1025) T) ((-427 . -583) 59783) ((-834 . -832) 59767) ((-353 . -425) T) ((-458 . -1013) T) ((-638 . -589) 59754) ((-872 . -284) 59692) ((-195 . -1013) T) ((-290 . -849) 59671) ((-287 . -849) T) ((-287 . -757) NIL) ((-364 . -657) T) ((-799 . -23) T) ((-112 . -589) 59658) ((-447 . -133) 59637) ((-392 . -385) 59621) ((-447 . -135) 59600) ((-106 . -460) 59582) ((-2 . -561) 59564) ((-1067 . -19) 59546) ((-1067 . -554) 59521) ((-599 . -21) T) ((-599 . -25) T) ((-544 . -1053) T) ((-1026 . -261) 59498) ((-310 . -25) T) ((-310 . -21) T) ((-464 . -337) T) ((-1178 . -37) 59468) ((-1051 . -1119) T) ((-576 . -554) 59443) ((-1002 . -25) T) ((-1002 . -21) T) ((-493 . -728) T) ((-493 . -732) T) ((-113 . -1123) T) ((-891 . -977) T) ((-568 . -513) T) ((-672 . -977) T) ((-652 . -977) T) ((-718 . -25) T) ((-718 . -21) T) ((-716 . -21) T) ((-716 . -25) T) ((-611 . -976) 59427) ((-434 . -25) T) ((-113 . -513) T) ((-434 . -21) T) ((-427 . -25) T) ((-427 . -21) T) ((-1051 . -961) 59325) ((-754 . -265) 59304) ((-760 . -1013) T) ((-893 . -894) T) ((-611 . -107) 59283) ((-270 . -482) 59075) ((-1185 . -976) 59059) ((-1183 . -976) 59043) ((-227 . -284) 58981) ((-226 . -284) 58919) ((-1132 . -97) 58897) ((-1068 . -562) NIL) ((-1068 . -561) 58879) ((-1149 . -1105) 58845) ((-1149 . -1108) 58811) ((-1129 . -208) 58763) ((-1128 . -1105) 58729) ((-1128 . -1108) 58695) ((-1051 . -351) 58679) ((-1031 . -757) T) ((-1031 . -849) T) ((-1026 . -554) 58656) ((-996 . -562) 58640) ((-455 . -561) 58572) ((-752 . -263) 58549) ((-556 . -139) 58496) ((-392 . -977) T) ((-458 . -654) 58446) ((-454 . -460) 58430) ((-301 . -784) 58409) ((-313 . -589) 58383) ((-49 . -21) T) ((-49 . -25) T) ((-195 . -654) 58333) ((-154 . -661) 58304) ((-158 . -589) 58236) ((-534 . -21) T) ((-534 . -25) T) ((-485 . -25) T) ((-485 . -21) T) ((-448 . -139) 58186) ((-996 . -561) 58168) ((-980 . -561) 58150) ((-919 . -97) T) ((-792 . -97) T) ((-736 . -385) 58114) ((-39 . -124) T) ((-636 . -337) T) ((-191 . -824) T) ((-638 . -730) T) ((-638 . -727) T) ((-533 . -1025) T) ((-521 . -1025) T) ((-464 . -1025) T) ((-638 . -663) T) ((-333 . -561) 58096) ((-327 . -561) 58078) ((-319 . -561) 58060) ((-64 . -370) T) ((-64 . -369) T) ((-103 . -562) 57990) ((-103 . -561) 57972) ((-190 . -824) T) ((-886 . -139) 57956) ((-1149 . -91) 57922) ((-707 . -124) T) ((-126 . -663) T) ((-112 . -663) T) ((-1149 . -34) 57888) ((-974 . -460) 57872) ((-533 . -23) T) ((-521 . -23) T) ((-464 . -23) T) ((-1128 . -91) 57838) ((-1128 . -34) 57804) ((-1080 . -97) T) ((-1036 . -97) T) ((-788 . -97) T) ((-204 . -460) 57788) ((-1185 . -107) 57767) ((-1183 . -107) 57746) ((-43 . -976) 57730) ((-1138 . -1141) 57714) ((-789 . -786) 57698) ((-1086 . -265) 57677) ((-106 . -261) 57652) ((-1051 . -829) 57611) ((-43 . -107) 57590) ((-611 . -970) T) ((-1089 . -1160) T) ((-1067 . -562) NIL) ((-1067 . -561) 57572) ((-982 . -558) 57547) ((-982 . -1013) T) ((-72 . -414) T) ((-72 . -369) T) ((-611 . -210) 57526) ((-140 . -976) 57510) ((-528 . -511) 57494) ((-329 . -135) 57473) ((-329 . -133) 57424) ((-326 . -135) 57403) ((-640 . -1013) T) ((-326 . -133) 57354) ((-318 . -135) 57333) ((-318 . -133) 57284) ((-240 . -133) 57263) ((-240 . -135) 57242) ((-227 . -37) 57212) ((-224 . -135) 57191) ((-113 . -337) T) ((-224 . -133) 57170) ((-226 . -37) 57140) ((-140 . -107) 57119) ((-928 . -961) 57009) ((-1075 . -782) NIL) ((-631 . -1123) T) ((-736 . -977) T) ((-636 . -1025) T) ((-1185 . -970) T) ((-1183 . -970) T) ((-1065 . -1119) T) ((-928 . -351) 56986) ((-839 . -133) T) ((-839 . -135) 56968) ((-799 . -124) T) ((-752 . -976) 56866) ((-631 . -513) T) ((-636 . -23) T) ((-588 . -561) 56798) ((-588 . -562) 56759) ((-576 . -562) NIL) ((-576 . -561) 56741) ((-458 . -157) T) ((-200 . -21) T) ((-195 . -157) T) ((-200 . -25) T) ((-447 . -1108) 56707) ((-447 . -1105) 56673) ((-250 . -561) 56655) ((-249 . -561) 56637) ((-248 . -561) 56619) ((-247 . -561) 56601) ((-246 . -561) 56583) ((-469 . -592) 56565) ((-245 . -561) 56547) ((-313 . -663) T) ((-244 . -561) 56529) ((-106 . -19) 56511) ((-158 . -663) T) ((-469 . -347) 56493) ((-191 . -561) 56475) ((-487 . -1058) 56459) ((-469 . -119) T) ((-106 . -554) 56434) ((-190 . -561) 56416) ((-447 . -34) 56382) ((-447 . -91) 56348) ((-188 . -561) 56330) ((-187 . -561) 56312) ((-186 . -561) 56294) ((-185 . -561) 56276) ((-182 . -561) 56258) ((-181 . -561) 56240) ((-180 . -561) 56222) ((-179 . -561) 56204) ((-178 . -561) 56186) ((-177 . -561) 56168) ((-176 . -561) 56150) ((-497 . -1016) 56102) ((-175 . -561) 56084) ((-174 . -561) 56066) ((-44 . -460) 56003) ((-173 . -561) 55985) ((-172 . -561) 55967) ((-752 . -107) 55858) ((-587 . -97) 55808) ((-454 . -261) 55785) ((-1026 . -561) 55537) ((-1014 . -1013) T) ((-967 . -1119) T) ((-568 . -1025) T) ((-1186 . -961) 55521) ((-1080 . -284) 55508) ((-1036 . -284) 55495) ((-113 . -1025) T) ((-756 . -97) T) ((-568 . -23) T) ((-1059 . -482) 55287) ((-360 . -97) T) ((-298 . -97) T) ((-928 . -829) 55239) ((-891 . -1013) T) ((-140 . -970) T) ((-113 . -23) T) ((-668 . -385) 55223) ((-672 . -1013) T) ((-652 . -1013) T) ((-640 . -125) T) ((-426 . -1013) T) ((-290 . -404) 55207) ((-381 . -1119) T) ((-951 . -562) 55168) ((-948 . -1123) T) ((-202 . -97) T) ((-951 . -561) 55130) ((-753 . -208) 55114) ((-948 . -513) T) ((-770 . -589) 55087) ((-328 . -1123) T) ((-449 . -561) 55049) ((-449 . -562) 55010) ((-436 . -562) 54971) ((-436 . -561) 54933) ((-381 . -813) 54917) ((-293 . -976) 54752) ((-381 . -815) 54677) ((-777 . -961) 54575) ((-458 . -482) NIL) ((-454 . -554) 54552) ((-328 . -513) T) ((-195 . -482) NIL) ((-801 . -425) T) ((-392 . -1013) T) ((-381 . -961) 54419) ((-293 . -107) 54240) ((-631 . -337) T) ((-202 . -259) T) ((-47 . -1123) T) ((-752 . -970) 54171) ((-533 . -124) T) ((-521 . -124) T) ((-464 . -124) T) ((-47 . -513) T) ((-1068 . -263) 54147) ((-1080 . -1060) 54125) ((-290 . -27) 54104) ((-981 . -97) T) ((-752 . -210) 54057) ((-217 . -782) 54036) ((-881 . -97) T) ((-650 . -97) T) ((-270 . -460) 53973) ((-453 . -97) T) ((-668 . -977) T) ((-560 . -561) 53955) ((-560 . -562) 53816) ((-381 . -351) 53800) ((-381 . -312) 53784) ((-1080 . -37) 53613) ((-1036 . -37) 53462) ((-788 . -37) 53432) ((-364 . -589) 53416) ((-587 . -284) 53354) ((-891 . -654) 53251) ((-199 . -102) 53235) ((-44 . -261) 53160) ((-672 . -654) 53130) ((-566 . -589) 53104) ((-286 . -1013) T) ((-264 . -976) 53091) ((-106 . -561) 53073) ((-106 . -562) 53055) ((-426 . -654) 53025) ((-753 . -229) 52964) ((-627 . -1013) 52942) ((-507 . -1013) T) ((-1082 . -977) T) ((-1081 . -977) T) ((-264 . -107) 52927) ((-1075 . -977) T) ((-1037 . -977) T) ((-507 . -558) 52906) ((-929 . -782) T) ((-204 . -625) 52864) ((-631 . -1025) T) ((-1114 . -677) 52840) ((-293 . -970) T) ((-317 . -25) T) ((-317 . -21) T) ((-381 . -829) 52799) ((-66 . -1119) T) ((-770 . -730) 52778) ((-392 . -654) 52752) ((-736 . -1013) T) ((-770 . -727) 52731) ((-636 . -124) T) ((-649 . -849) 52710) ((-631 . -23) T) ((-458 . -265) T) ((-770 . -663) 52689) ((-293 . -210) 52641) ((-293 . -220) 52620) ((-195 . -265) T) ((-948 . -337) T) ((-1149 . -425) 52599) ((-1128 . -425) 52578) ((-328 . -303) 52555) ((-328 . -337) T) ((-1049 . -561) 52537) ((-44 . -1153) 52487) ((-800 . -97) T) ((-587 . -257) 52471) ((-636 . -979) T) ((-450 . -589) 52436) ((-441 . -1013) T) ((-44 . -554) 52361) ((-1067 . -263) 52336) ((-39 . -583) 52275) ((-47 . -337) T) ((-1019 . -561) 52257) ((-1002 . -784) 52236) ((-576 . -263) 52211) ((-718 . -784) 52190) ((-716 . -784) 52169) ((-454 . -561) 51921) ((-217 . -385) 51890) ((-881 . -284) 51877) ((-427 . -784) 51856) ((-63 . -1119) T) ((-568 . -124) T) ((-453 . -284) 51843) ((-982 . -482) 51687) ((-264 . -970) T) ((-113 . -124) T) ((-426 . -698) T) ((-891 . -157) 51638) ((-996 . -976) 51548) ((-566 . -730) 51527) ((-544 . -1013) T) ((-566 . -727) 51506) ((-566 . -663) T) ((-270 . -261) 51485) ((-269 . -1119) T) ((-974 . -561) 51447) ((-974 . -562) 51408) ((-948 . -1025) T) ((-154 . -97) T) ((-251 . -784) T) ((-1074 . -1013) T) ((-755 . -561) 51390) ((-1026 . -263) 51367) ((-1015 . -206) 51351) ((-928 . -282) T) ((-736 . -654) 51335) ((-333 . -976) 51287) ((-328 . -1025) T) ((-327 . -976) 51239) ((-388 . -561) 51221) ((-359 . -561) 51203) ((-319 . -976) 51155) ((-204 . -561) 51087) ((-996 . -107) 50983) ((-948 . -23) T) ((-103 . -976) 50933) ((-827 . -97) T) ((-775 . -97) T) ((-745 . -97) T) ((-705 . -97) T) ((-616 . -97) T) ((-447 . -425) 50912) ((-392 . -157) T) ((-333 . -107) 50850) ((-327 . -107) 50788) ((-319 . -107) 50726) ((-227 . -208) 50696) ((-226 . -208) 50666) ((-328 . -23) T) ((-69 . -1119) T) ((-202 . -37) 50631) ((-103 . -107) 50565) ((-39 . -25) T) ((-39 . -21) T) ((-611 . -657) T) ((-154 . -259) 50543) ((-47 . -1025) T) ((-850 . -25) T) ((-707 . -25) T) ((-1059 . -460) 50480) ((-456 . -1013) T) ((-1187 . -589) 50454) ((-1138 . -97) T) ((-789 . -97) T) ((-217 . -977) 50385) ((-981 . -1060) T) ((-892 . -728) 50338) ((-355 . -589) 50322) ((-47 . -23) T) ((-892 . -732) 50275) ((-752 . -732) 50226) ((-752 . -728) 50177) ((-270 . -554) 50156) ((-450 . -663) T) ((-528 . -97) T) ((-800 . -284) 50113) ((-594 . -261) 50092) ((-108 . -602) T) ((-74 . -1119) T) ((-981 . -37) 50079) ((-605 . -348) 50058) ((-881 . -37) 49907) ((-668 . -1013) T) ((-453 . -37) 49756) ((-84 . -1119) T) ((-528 . -259) T) ((-1129 . -782) NIL) ((-1082 . -1013) T) ((-1081 . -1013) T) ((-1075 . -1013) T) ((-325 . -961) 49733) ((-996 . -970) T) ((-929 . -977) T) ((-44 . -561) 49715) ((-44 . -562) NIL) ((-843 . -977) T) ((-754 . -561) 49697) ((-1056 . -97) 49675) ((-996 . -220) 49626) ((-401 . -977) T) ((-333 . -970) T) ((-327 . -970) T) ((-339 . -338) 49603) ((-319 . -970) T) ((-227 . -215) 49582) ((-226 . -215) 49561) ((-105 . -338) 49535) ((-996 . -210) 49460) ((-1037 . -1013) T) ((-269 . -829) 49419) ((-103 . -970) T) ((-631 . -124) T) ((-392 . -482) 49261) ((-333 . -210) 49240) ((-333 . -220) T) ((-43 . -657) T) ((-327 . -210) 49219) ((-327 . -220) T) ((-319 . -210) 49198) ((-319 . -220) T) ((-154 . -284) 49163) ((-103 . -220) T) ((-103 . -210) T) ((-293 . -728) T) ((-799 . -21) T) ((-799 . -25) T) ((-381 . -282) T) ((-469 . -33) T) ((-106 . -263) 49138) ((-1026 . -976) 49036) ((-800 . -1060) NIL) ((-304 . -561) 49018) ((-381 . -946) 48997) ((-1026 . -107) 48888) ((-410 . -1013) T) ((-1187 . -663) T) ((-61 . -561) 48870) ((-800 . -37) 48815) ((-490 . -1119) T) ((-552 . -139) 48799) ((-480 . -561) 48781) ((-1138 . -284) 48768) ((-668 . -654) 48617) ((-493 . -729) T) ((-493 . -730) T) ((-521 . -583) 48599) ((-464 . -583) 48559) ((-329 . -425) T) ((-326 . -425) T) ((-318 . -425) T) ((-240 . -425) 48510) ((-487 . -1013) 48460) ((-224 . -425) 48411) ((-1059 . -261) 48390) ((-1086 . -561) 48372) ((-627 . -482) 48305) ((-891 . -265) 48284) ((-507 . -482) 48076) ((-1080 . -208) 48060) ((-154 . -1060) 48039) ((-1175 . -561) 48021) ((-1082 . -654) 47918) ((-1081 . -654) 47759) ((-821 . -97) T) ((-1075 . -654) 47555) ((-1037 . -654) 47452) ((-1065 . -614) 47436) ((-329 . -376) 47387) ((-326 . -376) 47338) ((-318 . -376) 47289) ((-948 . -124) T) ((-736 . -482) 47201) ((-270 . -562) NIL) ((-270 . -561) 47183) ((-839 . -425) T) ((-892 . -342) 47136) ((-752 . -342) 47115) ((-478 . -477) 47094) ((-476 . -477) 47073) ((-458 . -261) NIL) ((-454 . -263) 47050) ((-392 . -265) T) ((-328 . -124) T) ((-195 . -261) NIL) ((-631 . -462) NIL) ((-94 . -1025) T) ((-154 . -37) 46878) ((-1149 . -899) 46841) ((-1056 . -284) 46779) ((-1128 . -899) 46749) ((-839 . -376) T) ((-1026 . -970) 46680) ((-1151 . -513) T) ((-1059 . -554) 46659) ((-108 . -784) T) ((-982 . -460) 46590) ((-533 . -21) T) ((-533 . -25) T) ((-521 . -21) T) ((-521 . -25) T) ((-464 . -25) T) ((-464 . -21) T) ((-1138 . -1060) 46568) ((-1026 . -210) 46521) ((-47 . -124) T) ((-1101 . -97) T) ((-217 . -1013) 46332) ((-800 . -374) 46309) ((-1003 . -97) T) ((-992 . -97) T) ((-556 . -97) T) ((-448 . -97) T) ((-1138 . -37) 46138) ((-789 . -37) 46108) ((-668 . -157) 46019) ((-594 . -561) 46001) ((-528 . -37) 45988) ((-886 . -97) 45938) ((-794 . -561) 45920) ((-794 . -562) 45842) ((-544 . -482) NIL) ((-1157 . -977) T) ((-1150 . -977) T) ((-1129 . -977) T) ((-547 . -977) T) ((-546 . -977) T) ((-1191 . -1025) T) ((-1082 . -157) 45793) ((-1081 . -157) 45724) ((-1075 . -157) 45655) ((-1037 . -157) 45606) ((-929 . -1013) T) ((-897 . -1013) T) ((-843 . -1013) T) ((-1114 . -135) 45585) ((-736 . -734) 45569) ((-636 . -25) T) ((-636 . -21) T) ((-113 . -583) 45546) ((-638 . -815) 45528) ((-401 . -1013) T) ((-290 . -1123) 45507) ((-287 . -1123) T) ((-154 . -374) 45491) ((-1114 . -133) 45470) ((-447 . -899) 45433) ((-70 . -561) 45415) ((-103 . -732) T) ((-103 . -728) T) ((-290 . -513) 45394) ((-638 . -961) 45376) ((-287 . -513) T) ((-1191 . -23) T) ((-126 . -961) 45358) ((-454 . -976) 45256) ((-44 . -263) 45181) ((-217 . -654) 45123) ((-454 . -107) 45014) ((-1006 . -97) 44992) ((-958 . -97) T) ((-587 . -765) 44971) ((-668 . -482) 44914) ((-974 . -976) 44898) ((-568 . -21) T) ((-568 . -25) T) ((-982 . -261) 44873) ((-335 . -97) T) ((-296 . -97) T) ((-611 . -589) 44847) ((-359 . -976) 44831) ((-974 . -107) 44810) ((-753 . -385) 44794) ((-113 . -25) T) ((-87 . -561) 44776) ((-113 . -21) T) ((-556 . -284) 44571) ((-448 . -284) 44375) ((-1059 . -562) NIL) ((-359 . -107) 44354) ((-353 . -97) T) ((-192 . -561) 44336) ((-1059 . -561) 44318) ((-929 . -654) 44268) ((-1075 . -482) 44037) ((-843 . -654) 43989) ((-1037 . -482) 43959) ((-325 . -282) T) ((-1093 . -139) 43909) ((-886 . -284) 43847) ((-771 . -97) T) ((-401 . -654) 43831) ((-202 . -765) T) ((-764 . -97) T) ((-762 . -97) T) ((-451 . -139) 43781) ((-1149 . -1148) 43760) ((-1031 . -1123) T) ((-313 . -961) 43727) ((-1149 . -1143) 43697) ((-1149 . -1146) 43681) ((-1128 . -1127) 43660) ((-78 . -561) 43642) ((-834 . -561) 43624) ((-1128 . -1143) 43601) ((-1031 . -513) T) ((-850 . -784) T) ((-458 . -562) 43531) ((-458 . -561) 43513) ((-707 . -784) T) ((-353 . -259) T) ((-612 . -784) T) ((-1128 . -1125) 43497) ((-1151 . -1025) T) ((-195 . -562) 43427) ((-195 . -561) 43409) ((-982 . -554) 43384) ((-57 . -139) 43368) ((-484 . -139) 43352) ((-465 . -139) 43336) ((-333 . -1182) 43320) ((-327 . -1182) 43304) ((-319 . -1182) 43288) ((-290 . -337) 43267) ((-287 . -337) T) ((-454 . -970) 43198) ((-631 . -583) 43180) ((-1185 . -589) 43154) ((-1183 . -589) 43128) ((-1151 . -23) T) ((-627 . -460) 43112) ((-62 . -561) 43094) ((-1026 . -732) 43045) ((-1026 . -728) 42996) ((-507 . -460) 42933) ((-611 . -33) T) ((-454 . -210) 42886) ((-270 . -263) 42865) ((-217 . -157) 42844) ((-753 . -977) T) ((-43 . -589) 42802) ((-996 . -342) 42753) ((-668 . -265) 42684) ((-487 . -482) 42617) ((-754 . -976) 42568) ((-1002 . -133) 42547) ((-333 . -342) 42526) ((-327 . -342) 42505) ((-319 . -342) 42484) ((-1002 . -135) 42463) ((-800 . -208) 42440) ((-754 . -107) 42382) ((-718 . -133) 42361) ((-718 . -135) 42340) ((-240 . -878) 42307) ((-227 . -782) 42286) ((-224 . -878) 42231) ((-226 . -782) 42210) ((-716 . -133) 42189) ((-716 . -135) 42168) ((-140 . -589) 42142) ((-427 . -135) 42121) ((-427 . -133) 42100) ((-611 . -663) T) ((-760 . -561) 42082) ((-1157 . -1013) T) ((-1150 . -1013) T) ((-1129 . -1013) T) ((-1114 . -1108) 42048) ((-1114 . -1105) 42014) ((-1082 . -265) 41993) ((-1081 . -265) 41944) ((-1075 . -265) 41895) ((-1037 . -265) 41874) ((-313 . -829) 41855) ((-929 . -157) T) ((-843 . -157) T) ((-547 . -1013) T) ((-546 . -1013) T) ((-631 . -21) T) ((-631 . -25) T) ((-447 . -1146) 41839) ((-447 . -1143) 41809) ((-392 . -261) 41737) ((-290 . -1025) 41587) ((-287 . -1025) T) ((-1114 . -34) 41553) ((-1114 . -91) 41519) ((-82 . -561) 41501) ((-89 . -97) 41479) ((-1191 . -124) T) ((-534 . -133) T) ((-534 . -135) 41461) ((-485 . -135) 41443) ((-485 . -133) T) ((-290 . -23) 41296) ((-39 . -316) 41270) ((-287 . -23) T) ((-1067 . -592) 41252) ((-752 . -589) 41102) ((-1178 . -977) T) ((-1067 . -347) 41084) ((-154 . -208) 41068) ((-544 . -460) 41050) ((-217 . -482) 40983) ((-1185 . -663) T) ((-1183 . -663) T) ((-1086 . -976) 40866) ((-1086 . -107) 40735) ((-754 . -970) T) ((-483 . -97) T) ((-47 . -583) 40695) ((-478 . -97) T) ((-476 . -97) T) ((-1175 . -976) 40665) ((-958 . -37) 40649) ((-754 . -210) T) ((-754 . -220) 40628) ((-507 . -261) 40607) ((-1175 . -107) 40572) ((-1138 . -208) 40556) ((-1157 . -654) 40453) ((-982 . -562) NIL) ((-982 . -561) 40435) ((-1150 . -654) 40276) ((-1129 . -654) 40072) ((-928 . -849) T) ((-640 . -561) 40041) ((-140 . -663) T) ((-1026 . -342) 40020) ((-929 . -482) NIL) ((-227 . -385) 39989) ((-226 . -385) 39958) ((-948 . -25) T) ((-948 . -21) T) ((-547 . -654) 39931) ((-546 . -654) 39828) ((-736 . -261) 39786) ((-122 . -97) 39764) ((-770 . -961) 39662) ((-154 . -765) 39641) ((-293 . -589) 39538) ((-752 . -33) T) ((-651 . -97) T) ((-1031 . -1025) T) ((-950 . -1119) T) ((-353 . -37) 39503) ((-328 . -25) T) ((-328 . -21) T) ((-147 . -97) T) ((-143 . -97) T) ((-329 . -1172) 39487) ((-326 . -1172) 39471) ((-318 . -1172) 39455) ((-154 . -323) 39434) ((-521 . -784) T) ((-464 . -784) T) ((-1031 . -23) T) ((-85 . -561) 39416) ((-638 . -282) T) ((-771 . -37) 39386) ((-764 . -37) 39356) ((-1151 . -124) T) ((-1059 . -263) 39335) ((-892 . -729) 39288) ((-892 . -730) 39241) ((-752 . -727) 39220) ((-112 . -282) T) ((-89 . -284) 39158) ((-615 . -33) T) ((-507 . -554) 39137) ((-47 . -25) T) ((-47 . -21) T) ((-752 . -730) 39088) ((-752 . -729) 39067) ((-638 . -946) T) ((-594 . -976) 39051) ((-892 . -663) 38950) ((-752 . -663) 38881) ((-892 . -446) 38834) ((-454 . -732) 38785) ((-454 . -728) 38736) ((-839 . -1172) 38723) ((-1086 . -970) T) ((-594 . -107) 38702) ((-1086 . -300) 38679) ((-1106 . -97) 38657) ((-1014 . -561) 38639) ((-638 . -506) T) ((-753 . -1013) T) ((-1175 . -970) T) ((-387 . -1013) T) ((-227 . -977) 38570) ((-226 . -977) 38501) ((-264 . -589) 38488) ((-544 . -261) 38463) ((-627 . -625) 38421) ((-891 . -561) 38403) ((-801 . -97) T) ((-672 . -561) 38385) ((-652 . -561) 38367) ((-1157 . -157) 38318) ((-1150 . -157) 38249) ((-1129 . -157) 38180) ((-636 . -784) T) ((-929 . -265) T) ((-426 . -561) 38162) ((-571 . -663) T) ((-58 . -1013) 38140) ((-222 . -139) 38124) ((-843 . -265) T) ((-948 . -937) T) ((-571 . -446) T) ((-649 . -1123) 38103) ((-547 . -157) 38082) ((-546 . -157) 38033) ((-1165 . -784) 38012) ((-649 . -513) 37923) ((-381 . -849) T) ((-381 . -757) 37902) ((-293 . -730) T) ((-293 . -663) T) ((-392 . -561) 37884) ((-392 . -562) 37792) ((-587 . -1058) 37776) ((-106 . -592) 37758) ((-122 . -284) 37696) ((-106 . -347) 37678) ((-158 . -282) T) ((-372 . -1119) T) ((-290 . -124) 37550) ((-287 . -124) T) ((-67 . -369) T) ((-106 . -119) T) ((-487 . -460) 37534) ((-595 . -1025) T) ((-544 . -19) 37516) ((-59 . -414) T) ((-59 . -369) T) ((-761 . -1013) T) ((-544 . -554) 37491) ((-450 . -961) 37451) ((-594 . -970) T) ((-595 . -23) T) ((-1178 . -1013) T) ((-753 . -654) 37300) ((-113 . -784) NIL) ((-1080 . -385) 37284) ((-1036 . -385) 37268) ((-788 . -385) 37252) ((-802 . -97) 37203) ((-1149 . -97) T) ((-1129 . -482) 36972) ((-1106 . -284) 36910) ((-286 . -561) 36892) ((-1128 . -97) T) ((-1015 . -1013) T) ((-1082 . -261) 36877) ((-1081 . -261) 36862) ((-264 . -663) T) ((-103 . -838) NIL) ((-627 . -561) 36794) ((-627 . -562) 36755) ((-996 . -589) 36665) ((-551 . -561) 36647) ((-507 . -562) NIL) ((-507 . -561) 36629) ((-1075 . -261) 36477) ((-458 . -976) 36427) ((-648 . -425) T) ((-479 . -477) 36406) ((-475 . -477) 36385) ((-195 . -976) 36335) ((-333 . -589) 36287) ((-327 . -589) 36239) ((-202 . -782) T) ((-319 . -589) 36191) ((-552 . -97) 36141) ((-454 . -342) 36120) ((-103 . -589) 36070) ((-458 . -107) 36004) ((-217 . -460) 35988) ((-317 . -135) 35970) ((-317 . -133) T) ((-154 . -344) 35941) ((-872 . -1163) 35925) ((-195 . -107) 35859) ((-801 . -284) 35824) ((-872 . -1013) 35774) ((-736 . -562) 35735) ((-736 . -561) 35717) ((-655 . -97) T) ((-305 . -1013) T) ((-1031 . -124) T) ((-651 . -37) 35687) ((-290 . -462) 35666) ((-469 . -1119) T) ((-1149 . -259) 35632) ((-1128 . -259) 35598) ((-301 . -139) 35582) ((-982 . -263) 35557) ((-1178 . -654) 35527) ((-1068 . -33) T) ((-1187 . -961) 35504) ((-441 . -561) 35486) ((-455 . -33) T) ((-355 . -961) 35470) ((-1080 . -977) T) ((-1036 . -977) T) ((-788 . -977) T) ((-981 . -782) T) ((-753 . -157) 35381) ((-487 . -261) 35358) ((-113 . -918) 35335) ((-1157 . -265) 35314) ((-1101 . -338) 35288) ((-1003 . -242) 35272) ((-447 . -97) T) ((-339 . -1013) T) ((-227 . -1013) T) ((-226 . -1013) T) ((-1150 . -265) 35223) ((-105 . -1013) T) ((-1129 . -265) 35174) ((-801 . -1060) 35152) ((-1082 . -927) 35118) ((-556 . -338) 35058) ((-1081 . -927) 35024) ((-556 . -206) 34971) ((-544 . -561) 34953) ((-544 . -562) NIL) ((-631 . -784) T) ((-448 . -206) 34903) ((-458 . -970) T) ((-1075 . -927) 34869) ((-86 . -413) T) ((-86 . -369) T) ((-195 . -970) T) ((-1037 . -927) 34835) ((-996 . -663) T) ((-649 . -1025) T) ((-547 . -265) 34814) ((-546 . -265) 34793) ((-458 . -220) T) ((-458 . -210) T) ((-195 . -220) T) ((-195 . -210) T) ((-1074 . -561) 34775) ((-801 . -37) 34727) ((-333 . -663) T) ((-327 . -663) T) ((-319 . -663) T) ((-103 . -730) T) ((-103 . -727) T) ((-487 . -1153) 34711) ((-103 . -663) T) ((-649 . -23) T) ((-1191 . -25) T) ((-447 . -259) 34677) ((-1191 . -21) T) ((-1128 . -284) 34616) ((-1084 . -97) T) ((-39 . -133) 34588) ((-39 . -135) 34560) ((-487 . -554) 34537) ((-1026 . -589) 34387) ((-552 . -284) 34325) ((-44 . -592) 34275) ((-44 . -607) 34225) ((-44 . -347) 34175) ((-1067 . -33) T) ((-800 . -782) NIL) ((-595 . -124) T) ((-456 . -561) 34157) ((-217 . -261) 34134) ((-588 . -33) T) ((-576 . -33) T) ((-1002 . -425) 34085) ((-753 . -482) 33959) ((-718 . -425) 33890) ((-716 . -425) 33841) ((-427 . -425) 33792) ((-881 . -385) 33776) ((-668 . -561) 33758) ((-227 . -654) 33700) ((-226 . -654) 33642) ((-668 . -562) 33503) ((-453 . -385) 33487) ((-313 . -277) T) ((-325 . -849) T) ((-925 . -97) 33465) ((-948 . -784) T) ((-58 . -482) 33398) ((-1128 . -1060) 33350) ((-929 . -261) NIL) ((-202 . -977) T) ((-353 . -765) T) ((-1026 . -33) T) ((-534 . -425) T) ((-485 . -425) T) ((-1132 . -1007) 33334) ((-1132 . -1013) 33312) ((-217 . -554) 33289) ((-1132 . -1009) 33246) ((-1082 . -561) 33228) ((-1081 . -561) 33210) ((-1075 . -561) 33192) ((-1075 . -562) NIL) ((-1037 . -561) 33174) ((-801 . -374) 33158) ((-497 . -97) T) ((-1149 . -37) 32999) ((-1128 . -37) 32813) ((-799 . -135) T) ((-534 . -376) T) ((-47 . -784) T) ((-485 . -376) T) ((-1151 . -21) T) ((-1151 . -25) T) ((-1026 . -727) 32792) ((-1026 . -730) 32743) ((-1026 . -729) 32722) ((-919 . -1013) T) ((-951 . -33) T) ((-792 . -1013) T) ((-1161 . -97) T) ((-1026 . -663) 32653) ((-605 . -97) T) ((-507 . -263) 32632) ((-1093 . -97) T) ((-449 . -33) T) ((-436 . -33) T) ((-329 . -97) T) ((-326 . -97) T) ((-318 . -97) T) ((-240 . -97) T) ((-224 . -97) T) ((-450 . -282) T) ((-981 . -977) T) ((-881 . -977) T) ((-290 . -583) 32540) ((-287 . -583) 32501) ((-453 . -977) T) ((-451 . -97) T) ((-410 . -561) 32483) ((-1080 . -1013) T) ((-1036 . -1013) T) ((-788 . -1013) T) ((-1050 . -97) T) ((-753 . -265) 32414) ((-891 . -976) 32297) ((-450 . -946) T) ((-672 . -976) 32267) ((-426 . -976) 32237) ((-1056 . -1032) 32221) ((-1015 . -482) 32154) ((-891 . -107) 32023) ((-839 . -97) T) ((-672 . -107) 31988) ((-57 . -97) 31938) ((-487 . -562) 31899) ((-487 . -561) 31811) ((-486 . -97) 31789) ((-484 . -97) 31739) ((-466 . -97) 31717) ((-465 . -97) 31667) ((-426 . -107) 31630) ((-227 . -157) 31609) ((-226 . -157) 31588) ((-392 . -976) 31562) ((-1114 . -899) 31524) ((-924 . -1025) T) ((-872 . -482) 31457) ((-458 . -732) T) ((-447 . -37) 31298) ((-392 . -107) 31265) ((-458 . -728) T) ((-925 . -284) 31203) ((-195 . -732) T) ((-195 . -728) T) ((-924 . -23) T) ((-649 . -124) T) ((-1128 . -374) 31173) ((-290 . -25) 31026) ((-154 . -385) 31010) ((-290 . -21) 30882) ((-287 . -25) T) ((-287 . -21) T) ((-794 . -342) T) ((-106 . -33) T) ((-454 . -589) 30732) ((-800 . -977) T) ((-544 . -263) 30707) ((-533 . -135) T) ((-521 . -135) T) ((-464 . -135) T) ((-1080 . -654) 30536) ((-1036 . -654) 30385) ((-1031 . -583) 30367) ((-788 . -654) 30337) ((-611 . -1119) T) ((-1 . -97) T) ((-217 . -561) 30089) ((-1138 . -385) 30073) ((-1093 . -284) 29877) ((-891 . -970) T) ((-672 . -970) T) ((-652 . -970) T) ((-587 . -1013) 29827) ((-974 . -589) 29811) ((-789 . -385) 29795) ((-479 . -97) T) ((-475 . -97) T) ((-224 . -284) 29782) ((-240 . -284) 29769) ((-891 . -300) 29748) ((-359 . -589) 29732) ((-451 . -284) 29536) ((-227 . -482) 29469) ((-611 . -961) 29367) ((-226 . -482) 29300) ((-1050 . -284) 29226) ((-756 . -1013) T) ((-736 . -976) 29210) ((-1157 . -261) 29195) ((-1150 . -261) 29180) ((-1129 . -261) 29028) ((-360 . -1013) T) ((-298 . -1013) T) ((-392 . -970) T) ((-154 . -977) T) ((-57 . -284) 28966) ((-736 . -107) 28945) ((-546 . -261) 28930) ((-486 . -284) 28868) ((-484 . -284) 28806) ((-466 . -284) 28744) ((-465 . -284) 28682) ((-392 . -210) 28661) ((-454 . -33) T) ((-929 . -562) 28591) ((-202 . -1013) T) ((-929 . -561) 28573) ((-897 . -561) 28555) ((-897 . -562) 28530) ((-843 . -561) 28512) ((-636 . -135) T) ((-638 . -849) T) ((-638 . -757) T) ((-401 . -561) 28494) ((-1031 . -21) T) ((-1031 . -25) T) ((-611 . -351) 28478) ((-112 . -849) T) ((-801 . -208) 28462) ((-76 . -1119) T) ((-122 . -121) 28446) ((-974 . -33) T) ((-1185 . -961) 28420) ((-1183 . -961) 28377) ((-1138 . -977) T) ((-789 . -977) T) ((-454 . -727) 28356) ((-329 . -1060) 28335) ((-326 . -1060) 28314) ((-318 . -1060) 28293) ((-454 . -730) 28244) ((-454 . -729) 28223) ((-204 . -33) T) ((-454 . -663) 28154) ((-58 . -460) 28138) ((-528 . -977) T) ((-1080 . -157) 28029) ((-1036 . -157) 27940) ((-981 . -1013) T) ((-1002 . -878) 27885) ((-881 . -1013) T) ((-754 . -589) 27836) ((-718 . -878) 27806) ((-650 . -1013) T) ((-716 . -878) 27773) ((-484 . -257) 27757) ((-611 . -829) 27716) ((-453 . -1013) T) ((-427 . -878) 27683) ((-77 . -1119) T) ((-329 . -37) 27648) ((-326 . -37) 27613) ((-318 . -37) 27578) ((-240 . -37) 27427) ((-224 . -37) 27276) ((-839 . -1060) T) ((-568 . -135) 27255) ((-568 . -133) 27234) ((-113 . -135) T) ((-113 . -133) NIL) ((-388 . -663) T) ((-736 . -970) T) ((-317 . -425) T) ((-1157 . -927) 27200) ((-1150 . -927) 27166) ((-1129 . -927) 27132) ((-839 . -37) 27097) ((-202 . -654) 27062) ((-39 . -383) 27034) ((-293 . -46) 27004) ((-924 . -124) T) ((-752 . -1119) T) ((-158 . -849) T) ((-317 . -376) T) ((-487 . -263) 26981) ((-44 . -33) T) ((-752 . -961) 26810) ((-603 . -97) T) ((-595 . -21) T) ((-595 . -25) T) ((-1015 . -460) 26794) ((-1128 . -208) 26764) ((-615 . -1119) T) ((-222 . -97) 26714) ((-800 . -1013) T) ((-1086 . -589) 26639) ((-981 . -654) 26626) ((-668 . -976) 26469) ((-1080 . -482) 26417) ((-881 . -654) 26266) ((-1036 . -482) 26218) ((-453 . -654) 26067) ((-65 . -561) 26049) ((-668 . -107) 25878) ((-872 . -460) 25862) ((-1175 . -589) 25822) ((-754 . -663) T) ((-1082 . -976) 25705) ((-1081 . -976) 25540) ((-1075 . -976) 25330) ((-1037 . -976) 25213) ((-928 . -1123) T) ((-1008 . -97) 25191) ((-752 . -351) 25161) ((-928 . -513) T) ((-1082 . -107) 25030) ((-1081 . -107) 24851) ((-1075 . -107) 24620) ((-1037 . -107) 24489) ((-1018 . -1016) 24453) ((-353 . -782) T) ((-1157 . -561) 24435) ((-1150 . -561) 24417) ((-1129 . -561) 24399) ((-1129 . -562) NIL) ((-217 . -263) 24376) ((-39 . -425) T) ((-202 . -157) T) ((-154 . -1013) T) ((-631 . -135) T) ((-631 . -133) NIL) ((-547 . -561) 24358) ((-546 . -561) 24340) ((-827 . -1013) T) ((-775 . -1013) T) ((-745 . -1013) T) ((-705 . -1013) T) ((-599 . -786) 24324) ((-616 . -1013) T) ((-752 . -829) 24257) ((-39 . -376) NIL) ((-1031 . -602) T) ((-800 . -654) 24202) ((-227 . -460) 24186) ((-226 . -460) 24170) ((-649 . -583) 24118) ((-594 . -589) 24092) ((-270 . -33) T) ((-668 . -970) T) ((-534 . -1172) 24079) ((-485 . -1172) 24056) ((-1138 . -1013) T) ((-1080 . -265) 23967) ((-1036 . -265) 23898) ((-981 . -157) T) ((-789 . -1013) T) ((-881 . -157) 23809) ((-718 . -1141) 23793) ((-587 . -482) 23726) ((-75 . -561) 23708) ((-668 . -300) 23673) ((-1086 . -663) T) ((-528 . -1013) T) ((-453 . -157) 23584) ((-222 . -284) 23522) ((-1051 . -1025) T) ((-68 . -561) 23504) ((-1175 . -663) T) ((-1082 . -970) T) ((-1081 . -970) T) ((-301 . -97) 23454) ((-1075 . -970) T) ((-1051 . -23) T) ((-1037 . -970) T) ((-89 . -1032) 23438) ((-795 . -1025) T) ((-1082 . -210) 23397) ((-1081 . -220) 23376) ((-1081 . -210) 23328) ((-1075 . -210) 23215) ((-1075 . -220) 23194) ((-293 . -829) 23100) ((-795 . -23) T) ((-154 . -654) 22928) ((-381 . -1123) T) ((-1014 . -342) T) ((-948 . -135) T) ((-928 . -337) T) ((-799 . -425) T) ((-872 . -261) 22905) ((-290 . -784) T) ((-287 . -784) NIL) ((-803 . -97) T) ((-649 . -25) T) ((-381 . -513) T) ((-649 . -21) T) ((-328 . -135) 22887) ((-328 . -133) T) ((-1056 . -1013) 22865) ((-426 . -657) T) ((-73 . -561) 22847) ((-110 . -784) T) ((-222 . -257) 22831) ((-217 . -976) 22729) ((-79 . -561) 22711) ((-672 . -342) 22664) ((-1084 . -765) T) ((-674 . -212) 22648) ((-1068 . -1119) T) ((-129 . -212) 22630) ((-217 . -107) 22521) ((-1138 . -654) 22350) ((-47 . -135) T) ((-800 . -157) T) ((-789 . -654) 22320) ((-455 . -1119) T) ((-881 . -482) 22267) ((-594 . -663) T) ((-528 . -654) 22254) ((-958 . -977) T) ((-453 . -482) 22197) ((-872 . -19) 22181) ((-872 . -554) 22158) ((-753 . -562) NIL) ((-753 . -561) 22140) ((-929 . -976) 22090) ((-387 . -561) 22072) ((-227 . -261) 22049) ((-226 . -261) 22026) ((-458 . -838) NIL) ((-290 . -29) 21996) ((-103 . -1119) T) ((-928 . -1025) T) ((-195 . -838) NIL) ((-843 . -976) 21948) ((-996 . -961) 21846) ((-929 . -107) 21780) ((-240 . -208) 21764) ((-674 . -632) 21748) ((-401 . -976) 21732) ((-353 . -977) T) ((-928 . -23) T) ((-843 . -107) 21670) ((-631 . -1108) NIL) ((-458 . -589) 21620) ((-103 . -813) 21602) ((-103 . -815) 21584) ((-631 . -1105) NIL) ((-195 . -589) 21534) ((-333 . -961) 21518) ((-327 . -961) 21502) ((-301 . -284) 21440) ((-319 . -961) 21424) ((-202 . -265) T) ((-401 . -107) 21403) ((-58 . -561) 21335) ((-154 . -157) T) ((-1031 . -784) T) ((-103 . -961) 21295) ((-821 . -1013) T) ((-771 . -977) T) ((-764 . -977) T) ((-631 . -34) NIL) ((-631 . -91) NIL) ((-287 . -918) 21256) ((-533 . -425) T) ((-521 . -425) T) ((-464 . -425) T) ((-381 . -337) T) ((-217 . -970) 21187) ((-1059 . -33) T) ((-450 . -849) T) ((-924 . -583) 21135) ((-227 . -554) 21112) ((-226 . -554) 21089) ((-996 . -351) 21073) ((-800 . -482) 20981) ((-217 . -210) 20934) ((-1067 . -1119) T) ((-761 . -561) 20916) ((-1186 . -1025) T) ((-1178 . -561) 20898) ((-1138 . -157) 20789) ((-103 . -351) 20771) ((-103 . -312) 20753) ((-981 . -265) T) ((-881 . -265) 20684) ((-736 . -342) 20663) ((-588 . -1119) T) ((-576 . -1119) T) ((-453 . -265) 20594) ((-528 . -157) T) ((-301 . -257) 20578) ((-1186 . -23) T) ((-1114 . -97) T) ((-1101 . -1013) T) ((-1003 . -1013) T) ((-992 . -1013) T) ((-81 . -561) 20560) ((-648 . -97) T) ((-329 . -323) 20539) ((-556 . -1013) T) ((-326 . -323) 20518) ((-318 . -323) 20497) ((-448 . -1013) T) ((-1093 . -206) 20447) ((-240 . -229) 20409) ((-1051 . -124) T) ((-556 . -558) 20385) ((-996 . -829) 20318) ((-929 . -970) T) ((-843 . -970) T) ((-448 . -558) 20297) ((-1075 . -728) NIL) ((-1075 . -732) NIL) ((-1015 . -562) 20258) ((-451 . -206) 20208) ((-1015 . -561) 20190) ((-929 . -220) T) ((-929 . -210) T) ((-401 . -970) T) ((-886 . -1013) 20140) ((-843 . -220) T) ((-795 . -124) T) ((-636 . -425) T) ((-777 . -1025) 20119) ((-103 . -829) NIL) ((-1114 . -259) 20085) ((-801 . -782) 20064) ((-1026 . -1119) T) ((-834 . -663) T) ((-154 . -482) 19976) ((-924 . -25) T) ((-834 . -446) T) ((-381 . -1025) T) ((-458 . -730) T) ((-458 . -727) T) ((-839 . -323) T) ((-458 . -663) T) ((-195 . -730) T) ((-195 . -727) T) ((-924 . -21) T) ((-195 . -663) T) ((-777 . -23) 19928) ((-293 . -282) 19907) ((-959 . -212) 19853) ((-381 . -23) T) ((-872 . -562) 19814) ((-872 . -561) 19726) ((-587 . -460) 19710) ((-44 . -935) 19660) ((-305 . -561) 19642) ((-1026 . -961) 19471) ((-544 . -592) 19453) ((-544 . -347) 19435) ((-317 . -1172) 19412) ((-951 . -1119) T) ((-800 . -265) T) ((-1138 . -482) 19360) ((-449 . -1119) T) ((-436 . -1119) T) ((-538 . -97) T) ((-1080 . -261) 19287) ((-568 . -425) 19266) ((-925 . -920) 19250) ((-1178 . -356) 19222) ((-113 . -425) T) ((-1100 . -97) T) ((-1006 . -1013) 19200) ((-958 . -1013) T) ((-822 . -784) T) ((-325 . -1123) T) ((-1157 . -976) 19083) ((-1026 . -351) 19053) ((-1150 . -976) 18888) ((-1129 . -976) 18678) ((-1157 . -107) 18547) ((-1150 . -107) 18368) ((-1129 . -107) 18137) ((-1114 . -284) 18124) ((-325 . -513) T) ((-339 . -561) 18106) ((-264 . -282) T) ((-547 . -976) 18079) ((-546 . -976) 17962) ((-335 . -1013) T) ((-296 . -1013) T) ((-227 . -561) 17923) ((-226 . -561) 17884) ((-928 . -124) T) ((-105 . -561) 17866) ((-579 . -23) T) ((-631 . -383) 17833) ((-555 . -23) T) ((-599 . -97) T) ((-547 . -107) 17804) ((-546 . -107) 17673) ((-353 . -1013) T) ((-310 . -97) T) ((-154 . -265) 17584) ((-1128 . -782) 17537) ((-651 . -977) T) ((-1056 . -482) 17470) ((-1026 . -829) 17403) ((-771 . -1013) T) ((-764 . -1013) T) ((-762 . -1013) T) ((-92 . -97) T) ((-132 . -784) T) ((-560 . -813) 17387) ((-106 . -1119) T) ((-1002 . -97) T) ((-982 . -33) T) ((-718 . -97) T) ((-716 . -97) T) ((-434 . -97) T) ((-427 . -97) T) ((-217 . -732) 17338) ((-217 . -728) 17289) ((-590 . -97) T) ((-1138 . -265) 17200) ((-605 . -578) 17184) ((-587 . -261) 17161) ((-958 . -654) 17145) ((-528 . -265) T) ((-891 . -589) 17070) ((-1186 . -124) T) ((-672 . -589) 17030) ((-652 . -589) 17017) ((-251 . -97) T) ((-426 . -589) 16947) ((-49 . -97) T) ((-534 . -97) T) ((-485 . -97) T) ((-1157 . -970) T) ((-1150 . -970) T) ((-1129 . -970) T) ((-1157 . -210) 16906) ((-296 . -654) 16888) ((-1150 . -220) 16867) ((-1150 . -210) 16819) ((-1129 . -210) 16706) ((-1129 . -220) 16685) ((-1114 . -37) 16582) ((-929 . -732) T) ((-547 . -970) T) ((-546 . -970) T) ((-929 . -728) T) ((-897 . -732) T) ((-897 . -728) T) ((-801 . -977) T) ((-799 . -798) 16566) ((-104 . -561) 16548) ((-631 . -425) T) ((-353 . -654) 16513) ((-392 . -589) 16487) ((-649 . -784) 16466) ((-648 . -37) 16431) ((-546 . -210) 16390) ((-39 . -661) 16362) ((-325 . -303) 16339) ((-325 . -337) T) ((-996 . -282) 16290) ((-269 . -1025) 16172) ((-1019 . -1119) T) ((-156 . -97) T) ((-1132 . -561) 16139) ((-777 . -124) 16091) ((-587 . -1153) 16075) ((-771 . -654) 16045) ((-764 . -654) 16015) ((-454 . -1119) T) ((-333 . -282) T) ((-327 . -282) T) ((-319 . -282) T) ((-587 . -554) 15992) ((-381 . -124) T) ((-487 . -607) 15976) ((-103 . -282) T) ((-269 . -23) 15860) ((-487 . -592) 15844) ((-631 . -376) NIL) ((-487 . -347) 15828) ((-266 . -561) 15810) ((-89 . -1013) 15788) ((-103 . -946) T) ((-521 . -131) T) ((-1165 . -139) 15772) ((-454 . -961) 15601) ((-1151 . -133) 15562) ((-1151 . -135) 15523) ((-974 . -1119) T) ((-919 . -561) 15505) ((-792 . -561) 15487) ((-753 . -976) 15330) ((-1002 . -284) 15317) ((-204 . -1119) T) ((-718 . -284) 15304) ((-716 . -284) 15291) ((-753 . -107) 15120) ((-427 . -284) 15107) ((-1080 . -562) NIL) ((-1080 . -561) 15089) ((-1036 . -561) 15071) ((-1036 . -562) 14819) ((-958 . -157) T) ((-788 . -561) 14801) ((-872 . -263) 14778) ((-556 . -482) 14561) ((-755 . -961) 14545) ((-448 . -482) 14337) ((-891 . -663) T) ((-672 . -663) T) ((-652 . -663) T) ((-325 . -1025) T) ((-1087 . -561) 14319) ((-200 . -97) T) ((-454 . -351) 14289) ((-483 . -1013) T) ((-478 . -1013) T) ((-476 . -1013) T) ((-736 . -589) 14263) ((-948 . -425) T) ((-886 . -482) 14196) ((-325 . -23) T) ((-579 . -124) T) ((-555 . -124) T) ((-328 . -425) T) ((-217 . -342) 14175) ((-353 . -157) T) ((-1149 . -977) T) ((-1128 . -977) T) ((-202 . -927) T) ((-636 . -361) T) ((-392 . -663) T) ((-638 . -1123) T) ((-1051 . -583) 14123) ((-533 . -798) 14107) ((-1068 . -1096) 14083) ((-638 . -513) T) ((-122 . -1013) 14061) ((-1178 . -976) 14045) ((-651 . -1013) T) ((-454 . -829) 13978) ((-599 . -37) 13948) ((-328 . -376) T) ((-290 . -135) 13927) ((-290 . -133) 13906) ((-112 . -513) T) ((-287 . -135) 13862) ((-287 . -133) 13818) ((-47 . -425) T) ((-147 . -1013) T) ((-143 . -1013) T) ((-1068 . -102) 13765) ((-718 . -1060) 13743) ((-627 . -33) T) ((-1178 . -107) 13722) ((-507 . -33) T) ((-455 . -102) 13706) ((-227 . -263) 13683) ((-226 . -263) 13660) ((-800 . -261) 13611) ((-44 . -1119) T) ((-753 . -970) T) ((-1086 . -46) 13588) ((-753 . -300) 13550) ((-1002 . -37) 13399) ((-753 . -210) 13378) ((-718 . -37) 13207) ((-716 . -37) 13056) ((-427 . -37) 12905) ((-587 . -562) 12866) ((-587 . -561) 12778) ((-534 . -1060) T) ((-485 . -1060) T) ((-1056 . -460) 12762) ((-1106 . -1013) 12740) ((-1051 . -25) T) ((-1051 . -21) T) ((-447 . -977) T) ((-1129 . -728) NIL) ((-1129 . -732) NIL) ((-924 . -784) 12719) ((-756 . -561) 12701) ((-795 . -21) T) ((-795 . -25) T) ((-736 . -663) T) ((-158 . -1123) T) ((-534 . -37) 12666) ((-485 . -37) 12631) ((-360 . -561) 12613) ((-298 . -561) 12595) ((-154 . -261) 12553) ((-61 . -1119) T) ((-108 . -97) T) ((-801 . -1013) T) ((-158 . -513) T) ((-651 . -654) 12523) ((-269 . -124) 12407) ((-202 . -561) 12389) ((-202 . -562) 12319) ((-928 . -583) 12258) ((-1178 . -970) T) ((-1031 . -135) T) ((-576 . -1096) 12233) ((-668 . -838) 12212) ((-544 . -33) T) ((-588 . -102) 12196) ((-576 . -102) 12142) ((-1138 . -261) 12069) ((-668 . -589) 11994) ((-270 . -1119) T) ((-1086 . -961) 11892) ((-1075 . -838) NIL) ((-981 . -562) 11807) ((-981 . -561) 11789) ((-317 . -97) T) ((-227 . -976) 11687) ((-226 . -976) 11585) ((-368 . -97) T) ((-881 . -561) 11567) ((-881 . -562) 11428) ((-650 . -561) 11410) ((-1176 . -1113) 11379) ((-453 . -561) 11361) ((-453 . -562) 11222) ((-224 . -385) 11206) ((-240 . -385) 11190) ((-227 . -107) 11081) ((-226 . -107) 10972) ((-1082 . -589) 10897) ((-1081 . -589) 10794) ((-1075 . -589) 10646) ((-1037 . -589) 10571) ((-325 . -124) T) ((-80 . -414) T) ((-80 . -369) T) ((-928 . -25) T) ((-928 . -21) T) ((-802 . -1013) 10522) ((-801 . -654) 10474) ((-353 . -265) T) ((-154 . -927) 10426) ((-631 . -361) T) ((-924 . -922) 10410) ((-638 . -1025) T) ((-631 . -151) 10392) ((-1149 . -1013) T) ((-1128 . -1013) T) ((-290 . -1105) 10371) ((-290 . -1108) 10350) ((-1073 . -97) T) ((-290 . -887) 10329) ((-126 . -1025) T) ((-112 . -1025) T) ((-552 . -1163) 10313) ((-638 . -23) T) ((-552 . -1013) 10263) ((-89 . -482) 10196) ((-158 . -337) T) ((-290 . -91) 10175) ((-290 . -34) 10154) ((-556 . -460) 10088) ((-126 . -23) T) ((-112 . -23) T) ((-655 . -1013) T) ((-448 . -460) 10025) ((-381 . -583) 9973) ((-594 . -961) 9871) ((-886 . -460) 9855) ((-329 . -977) T) ((-326 . -977) T) ((-318 . -977) T) ((-240 . -977) T) ((-224 . -977) T) ((-800 . -562) NIL) ((-800 . -561) 9837) ((-1186 . -21) T) ((-528 . -927) T) ((-668 . -663) T) ((-1186 . -25) T) ((-227 . -970) 9768) ((-226 . -970) 9699) ((-70 . -1119) T) ((-227 . -210) 9652) ((-226 . -210) 9605) ((-39 . -97) T) ((-839 . -977) T) ((-1082 . -663) T) ((-1081 . -663) T) ((-1075 . -663) T) ((-1075 . -727) NIL) ((-1075 . -730) NIL) ((-850 . -97) T) ((-1037 . -663) T) ((-707 . -97) T) ((-612 . -97) T) ((-447 . -1013) T) ((-313 . -1025) T) ((-158 . -1025) T) ((-293 . -849) 9584) ((-1149 . -654) 9425) ((-801 . -157) T) ((-1128 . -654) 9239) ((-777 . -21) 9191) ((-777 . -25) 9143) ((-222 . -1058) 9127) ((-122 . -482) 9060) ((-381 . -25) T) ((-381 . -21) T) ((-313 . -23) T) ((-154 . -562) 8828) ((-154 . -561) 8810) ((-158 . -23) T) ((-587 . -263) 8787) ((-487 . -33) T) ((-827 . -561) 8769) ((-87 . -1119) T) ((-775 . -561) 8751) ((-745 . -561) 8733) ((-705 . -561) 8715) ((-616 . -561) 8697) ((-217 . -589) 8547) ((-1084 . -1013) T) ((-1080 . -976) 8370) ((-1059 . -1119) T) ((-1036 . -976) 8213) ((-788 . -976) 8197) ((-1080 . -107) 8006) ((-1036 . -107) 7835) ((-788 . -107) 7814) ((-1138 . -562) NIL) ((-1138 . -561) 7796) ((-317 . -1060) T) ((-789 . -561) 7778) ((-992 . -261) 7757) ((-78 . -1119) T) ((-929 . -838) NIL) ((-556 . -261) 7733) ((-1106 . -482) 7666) ((-458 . -1119) T) ((-528 . -561) 7648) ((-448 . -261) 7627) ((-195 . -1119) T) ((-1002 . -208) 7611) ((-264 . -849) T) ((-754 . -282) 7590) ((-799 . -97) T) ((-718 . -208) 7574) ((-929 . -589) 7524) ((-886 . -261) 7501) ((-843 . -589) 7453) ((-579 . -21) T) ((-579 . -25) T) ((-555 . -21) T) ((-317 . -37) 7418) ((-631 . -661) 7385) ((-458 . -813) 7367) ((-458 . -815) 7349) ((-447 . -654) 7190) ((-195 . -813) 7172) ((-62 . -1119) T) ((-195 . -815) 7154) ((-555 . -25) T) ((-401 . -589) 7128) ((-458 . -961) 7088) ((-801 . -482) 7000) ((-195 . -961) 6960) ((-217 . -33) T) ((-925 . -1013) 6938) ((-1149 . -157) 6869) ((-1128 . -157) 6800) ((-649 . -133) 6779) ((-649 . -135) 6758) ((-638 . -124) T) ((-128 . -438) 6735) ((-599 . -597) 6719) ((-1056 . -561) 6651) ((-112 . -124) T) ((-450 . -1123) T) ((-556 . -554) 6627) ((-448 . -554) 6606) ((-310 . -309) 6575) ((-497 . -1013) T) ((-450 . -513) T) ((-1080 . -970) T) ((-1036 . -970) T) ((-788 . -970) T) ((-217 . -727) 6554) ((-217 . -730) 6505) ((-217 . -729) 6484) ((-1080 . -300) 6461) ((-217 . -663) 6392) ((-886 . -19) 6376) ((-458 . -351) 6358) ((-458 . -312) 6340) ((-1036 . -300) 6312) ((-328 . -1172) 6289) ((-195 . -351) 6271) ((-195 . -312) 6253) ((-886 . -554) 6230) ((-1080 . -210) T) ((-605 . -1013) T) ((-1161 . -1013) T) ((-1093 . -1013) T) ((-1002 . -229) 6167) ((-329 . -1013) T) ((-326 . -1013) T) ((-318 . -1013) T) ((-240 . -1013) T) ((-224 . -1013) T) ((-82 . -1119) T) ((-123 . -97) 6145) ((-117 . -97) 6123) ((-1093 . -558) 6102) ((-451 . -1013) T) ((-1050 . -1013) T) ((-451 . -558) 6081) ((-227 . -732) 6032) ((-227 . -728) 5983) ((-226 . -732) 5934) ((-39 . -1060) NIL) ((-226 . -728) 5885) ((-996 . -849) 5836) ((-929 . -730) T) ((-929 . -727) T) ((-929 . -663) T) ((-897 . -730) T) ((-843 . -663) T) ((-89 . -460) 5820) ((-458 . -829) NIL) ((-839 . -1013) T) ((-202 . -976) 5785) ((-801 . -265) T) ((-195 . -829) NIL) ((-770 . -1025) 5764) ((-57 . -1013) 5714) ((-486 . -1013) 5692) ((-484 . -1013) 5642) ((-466 . -1013) 5620) ((-465 . -1013) 5570) ((-533 . -97) T) ((-521 . -97) T) ((-464 . -97) T) ((-447 . -157) 5501) ((-333 . -849) T) ((-327 . -849) T) ((-319 . -849) T) ((-202 . -107) 5457) ((-770 . -23) 5409) ((-401 . -663) T) ((-103 . -849) T) ((-39 . -37) 5354) ((-103 . -757) T) ((-534 . -323) T) ((-485 . -323) T) ((-1128 . -482) 5214) ((-290 . -425) 5193) ((-287 . -425) T) ((-771 . -261) 5172) ((-313 . -124) T) ((-158 . -124) T) ((-269 . -25) 5037) ((-269 . -21) 4921) ((-44 . -1096) 4900) ((-64 . -561) 4882) ((-821 . -561) 4864) ((-552 . -482) 4797) ((-44 . -102) 4747) ((-1015 . -399) 4731) ((-1015 . -342) 4710) ((-982 . -1119) T) ((-981 . -976) 4697) ((-881 . -976) 4540) ((-453 . -976) 4383) ((-605 . -654) 4367) ((-981 . -107) 4352) ((-881 . -107) 4181) ((-450 . -337) T) ((-329 . -654) 4133) ((-326 . -654) 4085) ((-318 . -654) 4037) ((-240 . -654) 3886) ((-224 . -654) 3735) ((-872 . -592) 3719) ((-453 . -107) 3548) ((-1166 . -97) T) ((-872 . -347) 3532) ((-1129 . -838) NIL) ((-72 . -561) 3514) ((-891 . -46) 3493) ((-566 . -1025) T) ((-1 . -1013) T) ((-636 . -97) T) ((-1165 . -97) 3443) ((-1157 . -589) 3368) ((-1150 . -589) 3265) ((-122 . -460) 3249) ((-1101 . -561) 3231) ((-1003 . -561) 3213) ((-364 . -23) T) ((-992 . -561) 3195) ((-85 . -1119) T) ((-1129 . -589) 3047) ((-839 . -654) 3012) ((-566 . -23) T) ((-556 . -561) 2994) ((-556 . -562) NIL) ((-448 . -562) NIL) ((-448 . -561) 2976) ((-479 . -1013) T) ((-475 . -1013) T) ((-325 . -25) T) ((-325 . -21) T) ((-123 . -284) 2914) ((-117 . -284) 2852) ((-547 . -589) 2839) ((-202 . -970) T) ((-546 . -589) 2764) ((-353 . -927) T) ((-202 . -220) T) ((-202 . -210) T) ((-886 . -562) 2725) ((-886 . -561) 2637) ((-799 . -37) 2624) ((-1149 . -265) 2575) ((-1128 . -265) 2526) ((-1031 . -425) T) ((-471 . -784) T) ((-290 . -1048) 2505) ((-924 . -135) 2484) ((-924 . -133) 2463) ((-464 . -284) 2450) ((-270 . -1096) 2429) ((-450 . -1025) T) ((-800 . -976) 2374) ((-568 . -97) T) ((-1106 . -460) 2358) ((-227 . -342) 2337) ((-226 . -342) 2316) ((-270 . -102) 2266) ((-981 . -970) T) ((-113 . -97) T) ((-881 . -970) T) ((-800 . -107) 2195) ((-450 . -23) T) ((-453 . -970) T) ((-981 . -210) T) ((-881 . -300) 2164) ((-453 . -300) 2121) ((-329 . -157) T) ((-326 . -157) T) ((-318 . -157) T) ((-240 . -157) 2032) ((-224 . -157) 1943) ((-891 . -961) 1841) ((-672 . -961) 1812) ((-1018 . -97) T) ((-1006 . -561) 1779) ((-958 . -561) 1761) ((-1157 . -663) T) ((-1150 . -663) T) ((-1129 . -727) NIL) ((-154 . -976) 1671) ((-1129 . -730) NIL) ((-839 . -157) T) ((-1129 . -663) T) ((-1176 . -139) 1655) ((-928 . -316) 1629) ((-925 . -482) 1562) ((-777 . -784) 1541) ((-521 . -1060) T) ((-447 . -265) 1492) ((-547 . -663) T) ((-335 . -561) 1474) ((-296 . -561) 1456) ((-392 . -961) 1354) ((-546 . -663) T) ((-381 . -784) 1305) ((-154 . -107) 1201) ((-770 . -124) 1153) ((-674 . -139) 1137) ((-1165 . -284) 1075) ((-458 . -282) T) ((-353 . -561) 1042) ((-487 . -935) 1026) ((-353 . -562) 940) ((-195 . -282) T) ((-129 . -139) 922) ((-651 . -261) 901) ((-458 . -946) T) ((-533 . -37) 888) ((-521 . -37) 875) ((-464 . -37) 840) ((-195 . -946) T) ((-800 . -970) T) ((-771 . -561) 822) ((-764 . -561) 804) ((-762 . -561) 786) ((-753 . -838) 765) ((-1187 . -1025) T) ((-1138 . -976) 588) ((-789 . -976) 572) ((-800 . -220) T) ((-800 . -210) NIL) ((-627 . -1119) T) ((-1187 . -23) T) ((-753 . -589) 497) ((-507 . -1119) T) ((-392 . -312) 481) ((-528 . -976) 468) ((-1138 . -107) 277) ((-638 . -583) 259) ((-789 . -107) 238) ((-355 . -23) T) ((-1093 . -482) 30)) \ No newline at end of file
diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase
index b3c47fb6..71963093 100644
--- a/src/share/algebra/compress.daase
+++ b/src/share/algebra/compress.daase
@@ -1,6 +1,6 @@
-(30 . 3409760516)
-(4232 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain|
+(30 . 3409778139)
+(4236 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain|
ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join|
|ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&|
|OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup|
@@ -49,16 +49,16 @@
|Contour| |CoordinateSystems|
|CharacteristicPolynomialInMonogenicalAlgebra| |ComplexPatternMatch|
|CRApackage| |ComplexRootFindingPackage| |CyclicStreamTools|
- |ComplexTrigonometricManipulations| |CoerceVectorMatrixPackage|
- |CycleIndicators| |CyclotomicPolynomialPackage| |d01AgentsPackage|
- |d01ajfAnnaType| |d01akfAnnaType| |d01alfAnnaType| |d01amfAnnaType|
- |d01anfAnnaType| |d01apfAnnaType| |d01aqfAnnaType| |d01asfAnnaType|
- |d01fcfAnnaType| |d01gbfAnnaType| |d01TransformFunctionType|
- |d01WeightsPackage| |d02AgentsPackage| |d02bbfAnnaType|
- |d02bhfAnnaType| |d02cjfAnnaType| |d02ejfAnnaType| |d03AgentsPackage|
- |d03eefAnnaType| |d03fafAnnaType| |Database| |DoubleResultantPackage|
- |DistinctDegreeFactorize| |DecimalExpansion|
- |ElementaryFunctionDefiniteIntegration|
+ |ConstructorCall| |ComplexTrigonometricManipulations|
+ |CoerceVectorMatrixPackage| |CycleIndicators|
+ |CyclotomicPolynomialPackage| |d01AgentsPackage| |d01ajfAnnaType|
+ |d01akfAnnaType| |d01alfAnnaType| |d01amfAnnaType| |d01anfAnnaType|
+ |d01apfAnnaType| |d01aqfAnnaType| |d01asfAnnaType| |d01fcfAnnaType|
+ |d01gbfAnnaType| |d01TransformFunctionType| |d01WeightsPackage|
+ |d02AgentsPackage| |d02bbfAnnaType| |d02bhfAnnaType| |d02cjfAnnaType|
+ |d02ejfAnnaType| |d03AgentsPackage| |d03eefAnnaType| |d03fafAnnaType|
+ |Database| |DoubleResultantPackage| |DistinctDegreeFactorize|
+ |DecimalExpansion| |ElementaryFunctionDefiniteIntegration|
|RationalFunctionDefiniteIntegration| |DegreeReductionPackage|
|Dequeue| |DeRhamComplex| |DefiniteIntegrationTools| |DoubleFloat|
|DoubleFloatSpecialFunctions| |DenavitHartenbergMatrix| |Dictionary&|
@@ -460,646 +460,648 @@
|XPolynomialRing| |XRecursivePolynomial|
|ParadoxicalCombinatorsForStreams| |ZeroDimensionalSolvePackage|
|IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping|
- |Record| |Union| |Category| |f02axf| |halfExtendedSubResultantGcd2|
- |split!| |inR?| |hdmpToDmp| |delta| |factorList|
- |constantCoefficientRicDE| |lquo| |isPlus| |resetVariableOrder|
- |clipBoolean| |cAcsc| |create3Space| |randomR| |pointData| |hex|
- |s20acf| |inRadical?| |power!| |monicRightDivide|
- |ellipticCylindrical| |lfintegrate| |multiEuclideanTree| |appendPoint|
- |corrPoly| |birth| |prologue| |sup| |rightExtendedGcd|
- |leftFactorIfCan| |lexico| |viewSizeDefault| |denomLODE| |list?|
- |charClass| |declare| |content| |maximumExponent| |dominantTerm|
- |integerIfCan| |setAdaptive3D| |pr2dmp| |latex| |unitNormal|
- |oddintegers| |complexNumeric| |changeBase| |pushdterm| |factorset|
- |iicsc| |FormatArabic| |univariate?| |currentScope| |OMread| |depth|
- |log| |printInfo!| |generalTwoFactor| |paren| |coth2tanh| |randomLC|
- |setValue!| |rootNormalize| |returnType!| |indicialEquation|
- |generalInfiniteProduct| |highCommonTerms| |makeResult| |kernels|
- |s17dlf| |resultantReduit| |fglmIfCan| |setMaxPoints3D| |comment|
- |solid| |patternMatch| |ideal| |whatInfinity| |charpol|
- |purelyAlgebraicLeadingMonomial?| |leaves| |univariate| |movedPoints|
- |nthr| |numberOfFactors| |monicRightFactorIfCan| |extendedEuclidean|
- |lambda| |separate| |overset?| |quoByVar| |infieldIntegrate| |hermite|
- |exQuo| |lazyIntegrate| |bitLength| |conjugates| |showSummary|
- |fortranLiteral| |retractIfCan| |c06gcf| |mainDefiningPolynomial|
- |rootPower| |airyAi| |findCycle| |dequeue| |medialSet| |zeroVector|
- |transpose| |multiplyCoefficients| |tanhIfCan| |lambert| |binding|
- |rightFactorIfCan| |scalarMatrix| |factorAndSplit| |mix|
- |alternative?| |numberOfMonomials| |rootRadius| |sayLength|
- |showAttributes| |perspective| |alphanumeric?| |conical|
- |headReduced?| |cAcot| |fortranCompilerName| |setFormula!|
- |showTheFTable| |sizeLess?| |toroidal| |optpair| |powerSum|
- |factorGroebnerBasis| |e04ycf| |gcdprim| |coercePreimagesImages|
- |generalizedEigenvector| |numericalIntegration| |bitCoef| |c06ekf|
- |f02fjf| |fractRadix| |padicallyExpand| |pole?| |degreeSubResultant|
- BY |usingTable?| |primeFrobenius| |factorByRecursion| |pair?| |d01apf|
- Y |twist| |push!| |top| |brillhartIrreducible?| |mirror| |polyPart|
- |infieldint| |divideIfCan| |pade| |rule| |leadingCoefficientRicDE|
- |removeRedundantFactorsInContents| |continue| |matrix| |void|
- |fortranLiteralLine| |OMgetBVar| |leftRecip| |equiv?|
- |indicialEquations| |shiftLeft| |unitNormalize| |belong?| |e02bcf|
- |quasiRegular?| |heap| |pattern| |irreducible?|
- |fortranCarriageReturn| |cyclic| |formula| |generator| |chiSquare1|
- |lazyVariations| |unrankImproperPartitions1| |rational?|
- |clearDenominator| |symbolIfCan| |map| |less?| |quote|
- |explicitlyFinite?| |OMputError| |nextItem| |sturmVariationsOf|
- |tubePoints| |difference| |basisOfMiddleNucleus| |graeffe|
- |linearAssociatedLog| |changeMeasure| |upperCase?| |central?| |scan|
- |traceMatrix| |unary?| |leadingExponent| |nullSpace| |nrows|
- |viewport2D| |modularFactor| |tanintegrate| |subHeight| ~=
- |fortranInteger| |overbar| |zag| |op| |generalSqFr| |ncols| |remove|
- |monicLeftDivide| |OMgetEndError| |polygon?| |thetaCoord| |critMonD1|
- |curryLeft| |cTanh| |convert| |d01aqf| |true| |selectfirst| |sinIfCan|
- |norm| |OMputBind| |cardinality| |e02aef| |firstNumer| |completeEval|
- |last| |genericRightMinimalPolynomial| |f07adf| |polygamma| |assoc|
- |leftZero| |radicalOfLeftTraceForm| |finite?| |lo|
- |evenInfiniteProduct| |copies| |alternatingGroup| |qPot| |match?|
- |trace2PowMod| |atanhIfCan| |equivOperands| |setPredicates|
- |symmetricTensors| |incr| |c06eaf| |readIfCan!| |fortran|
- |minimumExponent| |position!| |swapColumns!| |gethi| |rowEchLocal|
- |limitedIntegrate| |hi| |simpson| |scanOneDimSubspaces| |vertConcat|
- |BasicMethod| |d01amf| |gcdcofact| |swap!| |primlimintfrac|
- |expintfldpoly| |exactQuotient| |cross| |outputList| |retract|
- |OMUnknownCD?| |OMbindTCP| |selectODEIVPRoutines| |fortranLogical|
- |firstDenom| |symbol| |redPol| |showTheRoutinesTable| |socf2socdf|
- |sdf2lst| |quartic| |fi2df| |getMultiplicationMatrix| |fortranComplex|
- |buildSyntax| |cPower| ~ |closeComponent| |nthFlag|
- |screenResolution3D| |null| |OMputEndApp| |string| |integer|
- |squareFree| |nodeOf?| |imagE| |groebSolve| |cAsin| |cAsec|
- |henselFact| |setOfMinN| |setTopPredicate| |paraboloidal|
- |factorsOfCyclicGroupSize| |element?| |strongGenerators| |rightMult|
- |cycleSplit!| |getButtonValue| |entries| |or?| |completeEchelonBasis|
- |leftDiscriminant| |invmod| |solveid| |distFact| = |unaryFunction|
- |e01sbf| |nextNormalPoly| |splitSquarefree| |edf2ef| |moebiusMu|
- |one?| |segment| |s18aff| |recip| |create| |OMgetEndApp| |open|
- |lifting1| |maxint| |OMencodingXML| |clearCache| < |elem?|
- |SturmHabichtSequence| |prime| |expt| |level| |divideExponents|
- |selectNonFiniteRoutines| |dimension| > |s01eaf|
- |dimensionOfIrreducibleRepresentation| |OMputBVar| |interpret|
- |showFortranOutputStack| |lazyGintegrate| |unexpand| <= |swapRows!|
- |bits| |UpTriBddDenomInv| |leader| |rationalFunction| |applyRules|
- |nonLinearPart| >= |expr| |startPolynomial| |generate| |untab| |list|
- |randnum| |script| |moduloP| |read!| |getOperator| |output|
- |sqfrFactor| |f01rdf| |setDifference| |extendedResultant|
- |leftRankPolynomial| |irreducibleFactors| |endOfFile?| |incrementBy|
- |setIntersection| |predicates| |prefixRagits| |selectAndPolynomials|
- |checkPrecision| |setfirst!| |clearTheIFTable| |algebraicVariables| +
- |cyclePartition| |expand| |setUnion| |shuffle| |rightUnit| |equation|
- |OMgetEndAttr| |mainSquareFreePart| |variable| - |key?| |filterWhile|
- |apply| |diff| |npcoef| |addMatchRestricted| |removeZero| / |e04dgf|
- |filterUntil| |trapezoidal| |prem| |iiacos| |triangulate| |floor|
- |select| |size| |sec2cos| |bindings| |tex| |pleskenSplit| |stirling2|
- |c06gqf| |elColumn2!| |wholeRadix| |numericIfCan| |t| |child?| |scale|
- |harmonic| |writeLine!| |stoseInvertible?| |idealiser| |dictionary|
- |c05nbf| |llprop| |iiatan| |close| |round| |infLex?| |basicSet|
- |rightMinimalPolynomial| |e04ucf| |phiCoord| |rootSimp|
- |viewDeltaYDefault| |edf2df| |insert| |shift| |presub| |any?|
- |splitNodeOf!| |generators| |idealiserMatrix| |condition| |range|
- |cyclotomic| |removeRoughlyRedundantFactorsInPols| |comparison|
- |unit?| SEGMENT |makeRecord| |e01baf| |inverse| |makeVariable|
- |display| |localAbs| |returnTypeOf| |inHallBasis?| |physicalLength|
- |genericPosition| |tensorProduct| |rotate| |interReduce| |ipow|
- |setTex!| |reorder| |selectSumOfSquaresRoutines| |duplicates?|
- |adjoint| |mkcomm| |rightLcm| |makeUnit| |OMreadStr| |cycleEntry|
- |lazyPquo| |kovacic| |airyBi| |product| |linearPolynomials| |palgint|
- |nextsubResultant2| |setScreenResolution| |psolve| |identityMatrix|
- |viewpoint| |relerror| |createLowComplexityTable| |infinityNorm|
- |imagK| |subCase?| |subresultantVector| |complexRoots|
- |genericLeftNorm| |expextendedint| |input| |setEmpty!| |finiteBasis|
- |genericLeftTraceForm| |cyclicCopy| |tanIfCan| |palgLODE0|
- |leftExactQuotient| |primintfldpoly| |library| |makeYoungTableau|
- |bipolarCylindrical| |complexIntegrate| |geometric| |initTable!|
- |string?| |bezoutDiscriminant| |trim| |outputArgs| |result| |csch|
- |quoted?| |uniform| |leaf?| |noLinearFactor?| |eigenvectors| |rarrow|
- |asinh| |useEisensteinCriterion?| |factorSquareFreeByRecursion|
- |useEisensteinCriterion| |mkIntegral| |possiblyNewVariety?|
- |decomposeFunc| |acosh| |maxIndex| |trailingCoefficient| |rk4f|
- |internalDecompose| |prinpolINFO| |besselK| |atanh| |insertTop!|
- |quasiMonicPolynomials| |associatedEquations| |exponents| |set|
- |inverseLaplace| |blankSeparate| |term?| |acoth| |bipolar|
- |critpOrder| |tubePlot| |setImagSteps| |prod| |iiacot| |romberg|
- |asech| |flexibleArray| |enqueue!| |quadratic| |compile| |id| |style|
- |binomThmExpt| |tablePow| |is?| |weight| |modularGcd| |e01bhf|
- |csubst| |linearMatrix| |problemPoints| |quickSort| |multiple|
- |LazardQuotient| |listConjugateBases| |ptree| |measure| |fixedPoints|
- |power| |table| |extension| |write!| |powerAssociative?| |vark|
- |applyQuote| |nullary| |computeCycleEntry| |homogeneous?|
- |antisymmetricTensors| |printStats!| |new| |explimitedint|
- |LyndonWordsList1| |lfinfieldint| |jacobi| |Beta|
- |reciprocalPolynomial| |select!| |argscript| |merge|
- |stripCommentsAndBlanks| |interpolate| |genus| |torsion?| |bfEntry|
- |factorials| |lowerCase!| |scripted?| |showTheSymbolTable| |laplacian|
- |call| |basis| |log10| |palgRDE| |front| |eyeDistance| |ruleset|
- |bandedHessian| |polarCoordinates| |anfactor| |mapBivariate| |rowEch|
- |viewport3D| |legendre| |show| |divisorCascade| |perfectSquare?|
- |increment| |leastMonomial| |Lazard2| |elliptic?| |rotatey| |d01anf|
- |evaluateInverse| |setScreenResolution3D| |primitive?| |repSq| |pdct|
- F2FG |groebner| |cSin| |reverse| |imagI|
- |semiDegreeSubResultantEuclidean| |trace| |accuracyIF| |badNum|
- |minColIndex| |invmultisect| |suchThat| |degreeSubResultantEuclidean|
- |parabolic| |s14abf| |recoverAfterFail| |fortranReal| |getProperties|
- |weierstrass| |functionIsOscillatory| |algebraicSort| |viewPosDefault|
- |generalizedInverse| |getDatabase| |rightDiscriminant| |tower|
- |e02ahf| |node?| |listYoungTableaus| |taylorQuoByVar| |maxRowIndex|
- |iisinh| |iitanh| |tableForDiscreteLogarithm| |center| |OMputFloat|
- |conditionsForIdempotents| |tab1| |var2StepsDefault| |f02aaf| |bag|
- |maxrow| |initial| |number?| |shellSort| |fixedPoint| |xn| |printInfo|
- |imaginary| |symmetricDifference| |listexp| |HermiteIntegrate|
- |monicDivide| |symmetricPower| |left| |copyInto!| |pascalTriangle|
- |UnVectorise| |factor| |subtractIfCan| |palgint0| |critB| |pdf2df|
- |d03edf| |repeatUntilLoop| |asechIfCan| |right| |rationalPoints|
- |makeTerm| |sqrt| |partialFraction| |oddlambert| |property|
- |polyRicDE| |f2st| |exprToGenUPS| |close!| |musserTrials| |real|
- |triangular?| |clipParametric| |rewriteIdealWithQuasiMonicGenerators|
- |d01ajf| |monicDecomposeIfCan| |lazyIrreducibleFactors| |rename|
- |getExplanations| |upDateBranches| |curryRight| |imag| |OMopenFile|
- |getBadValues| |pquo| |bottom!| |s17ajf| |symbolTable| |logical?|
- |makeMulti| |palgextint| |tube| |newTypeLists| |twoFactor|
- |directProduct| |degreePartition| |setelt!| |extractPoint|
- |purelyAlgebraic?| |diagonal| |subResultantsChain| |units| |chvar|
- |s21bcf| |zeroDimPrime?| |s15adf| |linearlyDependent?| |pseudoDivide|
- |reindex| |cyclic?| |categoryFrame| |d01akf| |zeroDim?|
- |removeConstantTerm| |pushFortranOutputStack| |morphism|
- |exteriorDifferential| |leftLcm| |cscIfCan| |virtualDegree|
- |addBadValue| |schwerpunkt| |destruct| |padicFraction| |plot|
- |firstUncouplingMatrix| |monomials| |partition|
- |popFortranOutputStack| |identitySquareMatrix| |useNagFunctions|
- |primeFactor| |cCos| |normalizedDivide| |lazyPseudoDivide| |f04asf|
- |optimize| |cosIfCan| |cotIfCan| |roman| |cAtanh| |setMinPoints3D|
- |outputAsFortran| |flexible?| |rombergo| |const|
- |removeRoughlyRedundantFactorsInContents| |c02agf| |rischDE|
- |perfectNthPower?| |imagi| |factorPolynomial| |rur|
- |LyndonCoordinates| |e02dcf| |leftOne| |lex| |opeval| |dequeue!|
- |quasiComponent| |mpsode| |normInvertible?| |makeprod|
- |ScanFloatIgnoreSpacesIfCan| |stFunc2| |code| |bracket| |increase|
- |minimalPolynomial| |printStatement| |prime?| |insertBottom!|
- |fortranCharacter| |polCase| |expint| |orbits| |eigenMatrix| |iifact|
- |minimize| |monomialIntegrate| |nil| |OMgetInteger| |Si| |coleman|
- |print| |radicalSolve| |mergeFactors| |cSinh| |innerEigenvectors|
- |pToDmp| |df2mf| |zeroOf| |divisor| |balancedBinaryTree| |quotient|
- |fullPartialFraction| |discreteLog| |size?| |useSingleFactorBound?|
- |internalIntegrate| |sincos| |multMonom| |nthExponent| |OMReadError?|
- |in?| |directSum| |f01qef| |fixedDivisor| |checkForZero| |regime|
- |unprotectedRemoveRedundantFactors| |intersect| |cCsch| |second|
- |branchPoint?| |cCoth| |complexLimit| |unmakeSUP|
- |commutativeEquality| |rowEchelon| |bfKeys| |stosePrepareSubResAlgo|
- |terms| |maxdeg| |isPower| |third| |function| |specialTrigs| |entry?|
- |contract| |wordInGenerators| |OMputVariable| |OMreadFile|
- |scalarTypeOf| |selectFiniteRoutines| |lyndon?| |wholeRagits|
- |controlPanel| |FormatRoman| |palgRDE0| |cAcoth| |totalfract|
- |mainContent| |iisqrt2| |iiasec| |ricDsolve| |setAdaptive| |digit|
- |basisOfRightNucloid| |diagonalMatrix| |extend| |setClipValue|
- |zeroSquareMatrix| |cAtan| |row| |rectangularMatrix| RF2UTS |tan2trig|
- |reduceBasisAtInfinity| |df2st| |pointColorDefault| |nextPrime|
- |supDimElseRittWu?| |balancedFactorisation| |headRemainder|
- |stiffnessAndStabilityOfODEIF| |palgintegrate| |s18acf|
- |stopTableInvSet!| |semiResultantEuclidean2| |tubeRadiusDefault|
- |backOldPos| |compound?| |createLowComplexityNormalBasis|
- |fractionFreeGauss!| |OMunhandledSymbol| |semiResultantEuclidean1|
- |prepareDecompose| |vector| |setRow!| |hexDigit?| |htrigs|
- |reduceLODE| |OMgetError| |rootsOf| |pointLists| |hasPredicate?|
- |mathieu24| |euler| |differentiate| |minrank| |sizeMultiplication|
- |mainPrimitivePart| |meshFun2Var| |OMgetBind| |bivariatePolynomials|
- |shrinkable| |asinIfCan| |removeRedundantFactorsInPols| |maxPoints|
- |partitions| |OMgetSymbol| |ref| |addMatch| |lastSubResultant|
- |decrease| |contains?| |precision| |case| |linear| |infiniteProduct|
- |distdfact| |nextPrimitivePoly| |consnewpol| |approxSqrt| |vspace|
- |laplace| UP2UTS |Ci| |dioSolve| |factorOfDegree| |monomialIntPoly|
- |coerce| |setRealSteps| |mathieu22| |surface| |acschIfCan| |e02baf|
- |viewPhiDefault| |subSet| |OMencodingUnknown| |numberOfVariables|
- |polynomial| |f07aef| |construct| |blue| |cylindrical| |complex?|
- |minPoints| |low| |extensionDegree| |selectsecond| |rk4a| |upperCase|
- |singRicDE| D |processTemplate| |lfunc| |associator| |roughUnitIdeal?|
- |OMgetAttr| |uniform01| |minset| |createNormalPrimitivePoly|
- |mkAnswer| |identity| |lcm| |alphabetic| |rightRemainder| |term|
- |printingInfo?| |wrregime| |exactQuotient!| |totolex| |exquo|
- |constantIfCan| |selectOrPolynomials| |ran| |computePowers| |f01maf|
- |diophantineSystem| |bright| |empty| |leftFactor| |removeSquaresIfCan|
- |div| |axesColorDefault| |removeZeroes| |clikeUniv|
- |resultantEuclideannaif| |figureUnits| |e01bgf| |exponential1|
- |getVariableOrder| |cot2trig| |concat!| |symmetricProduct| |quo|
- |setprevious!| |ffactor| |clipSurface| |gcd| |solid?| |chebyshevT|
- |jordanAlgebra?| |f04qaf| |rotatex| |subspace| |solveLinearlyOverQ|
- |euclideanNormalForm| |lazy?| |pmintegrate| |union| |iipow|
- |midpoints| |shufflein| |fintegrate| |leadingBasisTerm|
- |sylvesterSequence| |constantKernel| |rem| |secIfCan| |root?|
- |rationalIfCan| |false| |getlo| |sumOfKthPowerDivisors| |cAcosh|
- |structuralConstants| |bat1| |eval| |viewDefaults| |rootOf|
- |minRowIndex| |redPo| |setFieldInfo| |cAcos| |first|
- |pointColorPalette| |listRepresentation| |signAround|
- |semicolonSeparate| |decreasePrecision| |startStats!| |newLine|
- |genericRightNorm| |modTree| |sech2cosh| |f04adf| |rest|
- |partialNumerators| |iiacsch| |drawComplexVectorField| |ode1|
- |complexNormalize| |normalized?| |e04mbf| |mapdiv| |f02bjf|
- |halfExtendedResultant1| |substitute| |PDESolve| |leftNorm| |box|
- |extendedSubResultantGcd| |/\\| |nthRoot| |integralBasis|
- |drawToScale| |f04arf| |any| |removeRedundantFactors| |positive?| |po|
- |toseInvertible?| |removeDuplicates| |OMputSymbol| |cap| |elements|
- |iisqrt3| |zeroMatrix| |cAcsch| |f04axf| |cTan| |symmetric?|
- |oneDimensionalArray| |cyclotomicFactorization| |complexElementary|
- |increasePrecision| |OMgetEndBVar| |coerceImages| |mainMonomial|
- |nextPartition| |modifyPointData| |nary?| |tryFunctionalDecomposition|
- |complementaryBasis| |coefChoose| |mergeDifference| |domainOf|
- |f04mbf| |clipWithRanges| |iiperm| |mainMonomials|
- |linearDependenceOverZ| |iicot| |completeHermite| |ScanRoman|
- |toseInvertibleSet| |check| |equality| |forLoop| |numberOfComponents|
- |setPrologue!| |mkPrim| |multiplyExponents| |submod| |trivialIdeal?|
- |limit| |wordInStrongGenerators| |basisOfCenter| |setelt| |integral?|
- |rangePascalTriangle| |compiledFunction| |fortranLinkerArgs|
- |OMputAtp| |squareFreeFactors| |eisensteinIrreducible?| |prinshINFO|
- |viewWriteDefault| |sumSquares| |numeric| |BumInSepFFE| |rightRank|
- |perfectSqrt| |setProperty| |bernoulliB| |stoseLastSubResultant|
- |createThreeSpace| |radical| |plus| |nextsousResultant2| |not|
- |contractSolve| |extractClosed| |integralDerivationMatrix| |copy|
- |resetAttributeButtons| |reopen!| |truncate| |primextintfrac|
- |moebius| |permanent| |integral| |character?| |commonDenominator|
- |resultant| |linearDependence| |properties|
- |permutationRepresentation| |deepestTail| |besselJ| |schema|
- |nthRootIfCan| |pow| |member?| |inconsistent?| |saturate| |times!| ^=
- |numFunEvals| |initiallyReduced?| |leftCharacteristicPolynomial|
- |redpps| |LiePoly| |leadingTerm| |minPoly| |deepCopy|
- |noncommutativeJordanAlgebra?| |palgextint0| |createRandomElement|
- |children| |autoCoerce| |e02adf| |computeCycleLength| |universe|
- |lazyEvaluate| |poisson| |d03faf| |max| |reverse!| |lprop|
- |stoseIntegralLastSubResultant| |f01mcf| |coord| |complexNumericIfCan|
- |cubic| |palglimint| |rightDivide| |say| |mapExpon| |abs|
- |definingInequation| |column| |alphabetic?| |totalDifferential|
- |showRegion| |contours| |slex| |translate| |e04jaf| |patternVariable|
- |refine| |dimensions| |complexZeros| |iprint| |rightRecip|
- |numberOfIrreduciblePoly| |leftExtendedGcd| |neglist| |ldf2vmf|
- |setright!| |iilog| |asinhIfCan| |fillPascalTriangle| |redmat|
- |s14aaf| |invertible?| |times| |taylorIfCan|
- |reducedContinuedFraction| |OMputEndBind| |relativeApprox| |badValues|
- |qqq| |zeroDimPrimary?| |superHeight| |iicoth| |iidprod| |extractTop!|
- |getOperands| |setPoly| |f02abf| |setPosition| |OMgetEndBind|
- |implies?| |subNode?| |graphCurves| |null?| |bumprow| |elRow2!|
- |linSolve| |components| |lflimitedint| |meshPar2Var| |mathieu23|
- |collect| |replace| |length| |monom| |imagk| |perfectNthRoot|
- |definingEquations| |mathieu12| |removeSinSq|
- |exprHasWeightCosWXorSinWX| |resize| |scripts| |ranges| |key|
- |viewDeltaXDefault| |degree| |prindINFO| |over| |nsqfree| |sqfree|
- |eq?| |flagFactor| |options| |kmax| |cos2sec| |common|
- |rightAlternative?| |divisors| |frobenius| |RittWuCompare| |elt|
- |leftPower| |stoseInvertibleSetreg| |critM| |f07fef| |linkToFortran|
- |coth2trigh| |janko2| |Gamma| |filename| |iiGamma| |laguerreL|
- |numberOfPrimitivePoly| |symbolTableOf| |differentialVariables|
- |LyndonWordsList| |associates?| |normalizeIfCan| |basisOfLeftNucleus|
- |mapUnivariate| |outputMeasure| |extractIndex| |brillhartTrials|
- |c06gsf| |minIndex| |isExpt| |not?| |gbasis| |meatAxe| |realRoots|
- |makeEq| |exp1| |OMserve| |invertIfCan| |primPartElseUnitCanonical|
- |parse| |debug3D| |vectorise| |evenlambert| |diagonals|
- |unitCanonical| |readLine!| |cond| |binomial| |closed?|
- |univariatePolynomials| |rewriteSetWithReduction| |makeop|
- |viewThetaDefault| |dimensionsOf| |normalize| |cn| |f02bbf| |asimpson|
- |f02aff| |showScalarValues| |iiacsc| |cosh2sech| |denomRicDE|
- |mainVariables| |index?| |rightQuotient| |elliptic| |makeCrit|
- |OMputEndAttr| |expressIdealMember| |wronskianMatrix| |sturmSequence|
- |subresultantSequence| |computeInt| |prinb| |internalLastSubResultant|
- |dim| |nextSublist| |basisOfRightNucleus| |defineProperty|
- |isAbsolutelyIrreducible?| |resultantReduitEuclidean| |nullity|
- |besselY| |initials| |innerSolve| |getOrder| |nand| |ef2edf|
- |palgLODE| |hue| |sinhcosh| |atanIfCan| |selectIntegrationRoutines|
- |leftRank| |gcdPrimitive| |exprToUPS| |recur| |rightExactQuotient|
- |aLinear| |dn| |expandLog| |mapUp!| |addmod| |curve?| |width|
- |normalElement| |SturmHabichtMultiple| |exponent| |vconcat| |seed|
- |indiceSubResultantEuclidean| |summation|
- |selectMultiDimensionalRoutines| |inrootof| |representationType|
- |e02dff| |d01gbf| |drawCurves| |finiteBound| |setProperty!|
- |realEigenvalues| |LagrangeInterpolation| |inf| |s17akf| |escape|
- |coerceP| |midpoint| |critT| |transcendenceDegree| |principal?|
- |nextColeman| |OMsupportsSymbol?| |cycles| |firstSubsetGray|
- |getPickedPoints| |constant| |irreducibleFactor| |divergence|
- |univcase| |s18adf| |int| |computeBasis|
- |solveLinearPolynomialEquationByFractions| |OMputEndAtp|
- |jacobiIdentity?| |real?| |constantOperator|
- |wordsForStrongGenerators| |setMaxPoints| |imagJ| |mainKernel|
- |hyperelliptic| |makeSeries| |nextIrreduciblePoly|
- |removeIrreducibleRedundantFactors| |pureLex| |pointPlot| |optional|
- |monomRDEsys| |decompose| |exprToXXP| |s17dgf| |sncndn| |fracPart|
- |erf| |sortConstraints| |nthExpon| |froot| |linearlyDependentOverZ?|
- |hermiteH| |innerint| |hMonic| |Lazard| |showAll?| |intPatternMatch|
- |solveLinear| |index| |roughBasicSet| |leftScalarTimes!| |setrest!|
- |c06fqf| |hasTopPredicate?| |middle| |currentCategoryFrame|
- |factorial| |setErrorBound| |numberOfComposites| |complexEigenvalues|
- |OMgetString| |realElementary| |integralAtInfinity?|
- |stoseSquareFreePart| |discriminant| |dilog| |point|
- |nonSingularModel| |getMultiplicationTable| |sh| |separateFactors|
- |clearTable!| |normal?| |palglimint0| |reduction| |mapSolve| |iisin|
- |sin| |rootOfIrreduciblePoly| |search| |pair| |lllip| |s18aef|
- |stoseInvertibleSet| |stop| |reify| |closedCurve?| |binary|
- |reducedSystem| |cos| |s18def| |complete| |supRittWu?| |topPredicate|
- |reduceByQuasiMonic| |\\/| |setProperties!| |resetNew| |intcompBasis|
- |eulerE| |tan| |series| |d01gaf| |internalZeroSetSplit| |trigs|
- |OMlistCDs| |continuedFraction| |showTheIFTable| |dmpToHdmp| |odd?|
- |initiallyReduce| |cot| |edf2fi| |infinite?| |interpretString| |cCosh|
- |quadraticForm| |measure2Result| |roughBase?| |ratDenom|
- |inverseColeman| |sec| |leftUnits| |copy!| |OMconnectTCP| |e02zaf|
- |toseSquareFreePart| |iCompose| |getRef| |sylvesterMatrix| |d01fcf|
- |csc| |numer| |lfextendedint| |outputForm| |polygon| |sign|
- |qinterval| |divide| |matrixGcd| |bivariateSLPEBR| |min| |asin|
- |denom| |setnext!| |s14baf| |monicCompleteDecompose| |axes|
- |primlimitedint| |s17adf| |ODESolve| |delay| |acos| |lowerCase?|
- |stopMusserTrials| |weakBiRank| |iibinom| |c06gbf| |status|
- |coordinate| |bumptab1| |df2ef| |printTypes| |atan| |unparse| |pi|
- |message| |bivariate?| |semiDiscriminantEuclidean|
- |algebraicDecompose| |fTable| |atrapezoidal| |adaptive3D?| |optional?|
- |mindegTerm| |acot| |infinity| |rightTrim| |hcrf| |pseudoQuotient|
- |intermediateResultsIF| |rst| |digits| |leadingSupport|
- |iteratedInitials| |OMconnInDevice| |rubiksGroup| |asec| |obj|
- |leftTrim| |presuper| |resultantEuclidean| |testModulus| |revert|
- |replaceKthElement| |validExponential| |scopes| |ratDsolve|
- |endSubProgram| |acsc| |plusInfinity| |cache| |purelyTranscendental?|
- |triangSolve| |identification| |enterInCache|
- |subResultantGcdEuclidean| |lowerPolynomial| |normalDeriv| |hconcat|
- |square?| |sinh| |topFortranOutputStack| |minusInfinity| |e01sff|
- |name| |curry| |extendIfCan| |exprHasAlgebraicWeight|
- |permutationGroup| |setvalue!| |infix| |areEquivalent?| |cosh| |dom|
- |setProperties| |parametric?| |readLineIfCan!| |makeViewport2D|
- |startTable!| |label| |digamma| |addPointLast| |KrullNumber| |tableau|
- |tanh| |kernel| |hspace| |zero?| |algint| |OMmakeConn|
- |genericLeftTrace| |oblateSpheroidal| |makeFR| |iiasech|
- |rightCharacteristicPolynomial| |coth| |draw| |constDsolve|
- |principalIdeal| |root| |float?| |s17aff| |clearTheFTable| |equiv|
- |pdf2ef| |genericRightTraceForm| |sech| |expenseOfEvaluationIF|
- |doubleComplex?| |functionIsContinuousAtEndPoints| |s21bdf|
- |functionIsFracPolynomial?| |positiveSolve| |exists?| |lyndonIfCan|
- |algSplitSimple| |clipPointsDefault| |fill!| |parent| |top!|
- |viewZoomDefault| |hdmpToP| |discriminantEuclidean| |eigenvector|
- |moduleSum| |quotientByP| |conjugate|
- |generalizedContinuumHypothesisAssumed?| |checkRur|
- |characteristicPolynomial| |optAttributes| |title| |makeObject| |inc|
- |generateIrredPoly| UTS2UP |failed?| |mdeg| |whileLoop|
- |factorSFBRlcUnit| |hitherPlane| |keys| |primitiveElement| |e|
- |antiAssociative?| |ScanFloatIgnoreSpaces| |aspFilename|
- |rationalPower| |error| |has?| |getProperty| |createPrimitivePoly|
- |graphImage| |coef| |f01bsf| |compose| |rischNormalize| |changeVar|
- |d02gbf| |assert| |e02ajf| |s13aaf| |monomRDE| |maxColIndex|
- |cartesian| |removeSuperfluousCases| |find| |quotedOperators|
- |nextNormalPrimitivePoly| |rdregime| |chebyshevU| |s21bbf| |open?|
- |setLabelValue| |c06ebf| |s17agf| |modifyPoint| |rightNorm|
- |factorsOfDegree| |removeCoshSq| |solve1| |orOperands| |readable?|
- |lowerCase| |extractProperty| |debug| |notOperand|
- |expandTrigProducts| |singularAtInfinity?|
- |generalizedContinuumHypothesisAssumed| |totalLex| |cycleRagits|
- |option| |squareTop| |nullary?| |crest| |c06ecf| |overlabel|
- |leastPower| |exponential| |nextPrimitiveNormalPoly| |enumerate|
- |closedCurve| |unravel| |f01qcf| |squareFreePart| |coshIfCan|
- |relationsIdeal| |more?| |powmod| |splitDenominator| |biRank| |node|
- |numberOfHues| |physicalLength!| |systemSizeIF| |super| |hexDigit|
- |polynomialZeros| |d03eef| |region| |lookup| |c02aff| |limitPlus|
- |entry| |iflist2Result| |superscript| |numberOfFractionalTerms| |dec|
- |OMputEndBVar| |postfix| |standardBasisOfCyclicSubmodule|
- |fixedPointExquo| |kroneckerDelta| |taylor| |leadingIdeal|
- |chineseRemainder| ** |sinhIfCan| |component| |lyndon| |polar|
- |setchildren!| |realSolve| |laurent| |atoms| |cschIfCan| |float|
- |basisOfCommutingElements| |spherical| |currentSubProgram|
- |numericalOptimization| |pastel| |satisfy?| |puiseux| |df2fi| |pol|
- |failed| |calcRanges| |roughSubIdeal?| EQ |getGraph| |LiePolyIfCan|
- |useSingleFactorBound| |att2Result| |hclf| |countRealRoots|
- |lSpaceBasis| |internalSubPolSet?| |iiabs| |lagrange| |iroot|
- |notelem| |rootBound| |inv| |explogs2trigs| |andOperands| |lllp|
- |getCurve| |setleft!| |epilogue| |extractBottom!| |normalise|
- |csch2sinh| |ground?| |mathieu11|
- |rewriteSetByReducingWithParticularGenerators| |lazyResidueClass|
- |approximants| |OMsupportsCD?| |setref| |createPrimitiveNormalPoly|
- |laguerre| |innerSolve1| |ground| |gramschmidt|
- |basisOfRightAnnihilator| |ravel| |removeSuperfluousQuasiComponents|
- |directory| |d01bbf| |iiacosh| |lfextlimint| |chiSquare|
- |leadingMonomial| |RemainderList| |d02raf| |arrayStack| |An|
- |branchPointAtInfinity?| |reshape| |s17acf| |trunc| |objectOf|
- |leadingCoefficient| |maxPoints3D| |minPoints3D| |gradient|
- |getMeasure| |findBinding| |elRow1!| |rquo|
- |combineFeatureCompatibility| |primitiveMonomials| |ord| |rootSplit|
- GE |autoReduced?| |sumOfSquares| |makeGraphImage| |diagonal?|
- |reductum| |mapGen| |pushucoef| GT |sparsityIF| |anticoord| |c06fpf|
- |OMsetEncoding| |outputFloating| |assign| |rank|
- |genericLeftMinimalPolynomial| |resultantnaif| LE |leftUnit| |double?|
- |and?| |Hausdorff| |normDeriv2| |f01qdf| |d02bhf| |euclideanGroebner|
- |safeCeiling| LT |monic?| |split| |update| |sts2stst| |modulus|
- |partialDenominators| |elementary| |move| |diagonalProduct|
- |associative?| |completeSmith| |deepestInitial| |mainVariable|
- |acotIfCan| |multiEuclidean| |matrixDimensions| |eq| |printHeader|
- |external?| |rightTrace| |car| |graphs| |LazardQuotient2|
- |characteristicSerie| |raisePolynomial| |drawComplex|
- |patternMatchTimes| |iter| |pushuconst| |localReal?| |countable?|
- |solveRetract| |cdr| |numberOfComputedEntries| |generic?| |OMclose|
- |sort| |gcdcofactprim| |choosemon| |lieAdmissible?| |bitTruth| |tanNa|
- |Nul| |numFunEvals3D| |iExquo| |setVariableOrder| |splitConstant|
- |OMputString| |OMputObject| |child| |magnitude| |c06fuf| |tanQ|
- |outlineRender| |preprocess| |eigenvalues| |algebraicCoefficients?|
- |abelianGroup| |position| |allRootsOf| |numberOfOperations| |merge!|
- |generic| |typeList| |parametersOf| |dmpToP| |composite| |li|
- |retractable?| |aromberg| |complexForm| |normalizeAtInfinity|
- |splitLinear| |powers| |characteristicSet| |random| |d01alf|
- |characteristic| |inverseIntegralMatrixAtInfinity| |sPol| |makeSin|
- |cRationalPower| |constant?| |factorSquareFree| |repeating|
- |setLegalFortranSourceExtensions| |exp| |addPoint2| |d02ejf|
- |dihedral| |ridHack1| |cycleElt| |credPol| |laurentRep|
- |screenResolution| |updatD| |doubleFloatFormat| |primintegrate|
- |augment| |plenaryPower| |minPol| |integers| |evaluate| |cothIfCan|
- |baseRDEsys| |expintegrate| |composites| |clearFortranOutputStack|
- |edf2efi| |cup| |linearAssociatedExp| |OMputApp| |makeCos| |dflist|
- |fullDisplay| |e02agf| |beauzamyBound| |overlap| |e01sef| |rules|
- |makingStats?| |mapExponents| |pile| |OMputEndObject|
- |genericRightTrace| |subst| |enterPointData| |cyclicEqual?|
- |oddInfiniteProduct| |rischDEsys| |inGroundField?| |duplicates|
- |iisec| |hessian| |vedf2vef| |subResultantGcd|
- |nextLatticePermutation| |radPoly| |putColorInfo| |primextendedint|
- |insertionSort!| |OMlistSymbols| |groebnerFactorize| |fortranDouble|
- |fibonacci| |datalist| |nextSubsetGray| |loopPoints| |d02bbf|
- |leviCivitaSymbol| |unitsColorDefault| |iiatanh| |point?| |ode| |tab|
- |lazyPseudoRemainder| |s17ahf| |lazyPremWithDefault| |implies|
- |shallowCopy| |deref| |modularGcdPrimitive| |baseRDE| |changeName|
- |e02bdf| |objects| |bernoulli| |cycleLength| |ignore?| |xor| |d01asf|
- |extract!| |minordet| |f02xef| |f02akf| |base| |pushNewContour|
- |inspect| |mantissa| |iiasinh| |karatsuba| |listLoops|
- |cyclicSubmodule| |operators| |acoshIfCan| |ldf2lst| |leadingIndex|
- |singleFactorBound| |lexTriangular| |double| |moreAlgebraic?|
- |isobaric?| |GospersMethod| |mapCoef| |mulmod| |prefix| |ceiling|
- |module| |univariatePolynomial| |ptFunc| |sin2csc| |e01bef|
- |tryFunctionalDecomposition?| |OMreceive| |var1StepsDefault|
- |derivative| |iitan| |ramified?| |convergents| |prevPrime|
- |localUnquote| |OMopenString| |brace| |f04faf| |reseed| |listOfMonoms|
- |expandPower| |lepol| |shiftRight| |commutative?| |mainVariable?|
- |test| |numerators| |pomopo!| |linGenPos| |collectUpper|
- |OMencodingSGML| |OMputEndError| |numberOfNormalPoly| |multiple?|
- |derivationCoordinates| |nodes| |squareFreePrim| |tanh2coth|
- |subMatrix| |newSubProgram| |polyRDE| |OMgetObject| |transcendent?|
- |initializeGroupForWordProblem| |completeHensel|
- |rewriteIdealWithHeadRemainder| |makeSUP| |stoseInvertible?sqfreg|
- |asecIfCan| |iicos| |declare!| |cAsech| |boundOfCauchy| |yCoord|
- |fprindINFO| |padecf| |youngGroup| |stoseInvertible?reg| |minus!|
- |value| |normalDenom| |ddFact| |goodPoint| |rotatez| |cons|
- |prolateSpheroidal| |cycleTail| |bumptab| |rationalApproximation|
- |typeLists| |argument| |errorInfo| |integralBasisAtInfinity|
- |createIrreduciblePoly| |infRittWu?| |cycle| |critMTonD1| |integer?|
- |semiSubResultantGcdEuclidean2| |rightFactorCandidate|
- |removeRoughlyRedundantFactorsInPol| |tracePowMod| |atom?|
- |distribute| |heapSort| |gderiv| |internal?| |previous| |acothIfCan|
- |s17def| |constantLeft| |testDim| |partialQuotients| |plus!|
- |listOfLists| |subResultantChain| |dfRange| |drawStyle| |tree|
- |negative?| |radix| |alternating| |f02ajf| |reducedQPowers| |#|
- |coefficient| |nor| |zero| |iiexp| |internalSubQuasiComponent?|
- |acscIfCan| |solveLinearPolynomialEquation| |lexGroebner| |omError|
- |definingPolynomial| |c05pbf| |goto| |cSech| |denominators|
- |simpleBounds?| |basisOfLeftAnnihilator| |lastSubResultantEuclidean|
- |And| |factors| |plotPolar| |ParCond| |getSyntaxFormsFromFile|
- |recolor| |setMinPoints| |headReduce| |Or| |char| |groebner?| |bsolve|
- ^ |e04fdf| |showIntensityFunctions| |changeWeightLevel| |weights|
- |lazyPrem| |SturmHabichtCoefficients| |Not| |sum| |adaptive?|
- |deepExpand| |internalInfRittWu?| |rk4qc| |integrate| |scaleRoots|
- |stopTableGcd!| |direction| |pseudoRemainder| |ReduceOrder| |iidsum|
- |viewWriteAvailable| |symbol?| FG2F |curveColor| |lineColorDefault|
- |hypergeometric0F1| |singular?| |integralMatrix| |aQuadratic|
- |univariatePolynomialsGcds| |pmComplexintegrate| |hasoln|
- |solveInField| |semiLastSubResultantEuclidean| |LyndonBasis| |s15aef|
- |cCot| |traverse| |aQuartic| |rightZero| |s19adf| |supersub|
- |writable?| |shiftRoots| |isTimes| |explicitlyEmpty?|
- |numberOfImproperPartitions| |simplifyExp| |clearTheSymbolTable|
- |simplifyLog| |addiag| |ode2| |denominator| |OMgetVariable|
- |createGenericMatrix| |smith| |Zero| |dihedralGroup| |minimumDegree|
- |space| |leftDivide| |singularitiesOf| |externalList|
- |pointSizeDefault| |polyred| |semiResultantReduitEuclidean| |One|
- |basisOfNucleus| |groebnerIdeal| |integralLastSubResultant|
- |noKaratsuba| |insertRoot!| |generalizedEigenvectors| |cCsc|
- |tanh2trigh| |complexExpand| |s19acf| |laurentIfCan|
- |irreducibleRepresentation| |digit?| |comp| |dmp2rfi| |lhs| |sort!|
- |adaptive| |isList| |OMgetApp| |s19abf| |eulerPhi| |getStream| |octon|
- |rhs| |extractSplittingLeaf| |orthonormalBasis| |dark|
- |nthFractionalTerm| |solve| |s21baf| |leftRemainder| |build|
- |regularRepresentation| |s13adf| |uncouplingMatrices| |commutator|
- |mapMatrixIfCan| |high| |OMwrite| |iicosh| |nlde| |next| |s18dcf|
- |even?| |stFunc1| |constantOpIfCan| |insert!| |reducedForm|
- |doubleResultant| |pop!| |indices| |qelt| |acosIfCan| |packageCall|
- |e01bff| |e04gcf| |tRange| |simpsono| |messagePrint| |compBound|
- |systemCommand| |rightGcd| |genericRightDiscriminant| |OMParseError?|
- |constantToUnaryFunction| |semiIndiceSubResultantEuclidean|
- |probablyZeroDim?| |dot| |SFunction| |fixPredicate|
- |createNormalElement| |trigs2explogs| |intensity| |subset?|
- |startTableInvSet!| |doublyTransitive?| |transform| |numberOfDivisors|
- |queue| |colorFunction| |d02gaf| |gcdPolynomial| |cot2tan| |normal|
- |generalLambert| |commaSeparate| |unrankImproperPartitions0| |wreath|
- |leastAffineMultiple| |symmetricGroup| |e02akf| |cosSinInfo|
- |mapUnivariateIfCan| |totalDegree| |diag| |removeDuplicates!|
- |csc2sin| |antisymmetric?| |toseLastSubResultant| |rangeIsFinite|
- |newReduc| |append| |invertibleSet| |roughEqualIdeals?|
- |argumentList!| |torsionIfCan| |certainlySubVariety?|
- |tubePointsDefault| |trueEqual| |c05adf| |indicialEquationAtInfinity|
- |quasiAlgebraicSet| |s20adf| |setCondition!| |decimal| NOT |tanSum|
- |orbit| |delete| |nthFactor| |linear?| |makeViewport3D|
- |simplifyPower| |isOp| |Vectorise| |compactFraction|
- |halfExtendedResultant2| |subQuasiComponent?| OR |nthCoef| |members|
- |iisech| |euclideanSize| |represents| |cLog| |setAttributeButtonStep|
- |positiveRemainder| |internalAugment| |antiCommutator| |xCoord| AND
- |generalPosition| |jacobian| |f04atf| |OMUnknownSymbol?| |symFunc|
- |algebraic?| |groebgen| |c06frf| |karatsubaDivide| |realEigenvectors|
- |tan2cot| |bezoutResultant| |permutations| |se2rfi| |OMputInteger|
- |arity| |univariateSolve| |radicalEigenvector| |yCoordinates|
- |normal01| |f02adf| |errorKind| |updateStatus!| |substring?|
- |exprHasLogarithmicWeights| |reduced?| |pointColor| |getMatch|
- |e02def| |mesh?| |totalGroebner| |maxrank| |conjug| |nil?|
- |radicalEigenvalues| |squareMatrix| |myDegree| |showAllElements|
- |Frobenius| |OMconnOutDevice| |remainder| |subNodeOf?| |removeCosSq|
- |bezoutMatrix| |invertibleElseSplit?| |matrixConcat3D| |addPoint|
- |branchIfCan| |suffix?| |outputSpacing| |listBranches| |shade|
- |distance| |remove!| |zeroSetSplit| |option?|
- |zeroSetSplitIntoTriangularSystems| |binarySearchTree| |bringDown|
- |mainForm| |cyclicParents| |monomial?| |leftRegularRepresentation|
- |safetyMargin| |outputAsScript| |repeating?| |putGraph| |var2Steps|
- |outputFixed| |getCode| |numberOfChildren| |conditionP| |prefix?|
- |xRange| |minGbasis| |numberOfCycles| |s13acf| |coordinates|
- |lazyPseudoQuotient| |weighted| |iiacoth| |init| |incrementKthElement|
- |charthRoot| |lastSubResultantElseSplit| |PollardSmallFactor|
- |semiResultantEuclideannaif| |yRange| |bit?| |algebraicOf| |tValues|
- |stronglyReduced?| |restorePrecision| |selectPolynomials| |rightOne|
- |parabolicCylindrical| |f01brf| |bubbleSort!|
- |cyclotomicDecomposition| |rotate!| |zRange| |subscriptedVariables|
- |primes| |curveColorPalette| |graphStates| |Ei| |setlast!| |rootPoly|
- |lintgcd| |createNormalPoly| |lists| |rightUnits| |rowEchelonLocal|
- |f02wef| |tail| |parts| |logpart| |map!| * |basisOfCentroid| |rename!|
- |setColumn!| |normFactors| |f04jgf| |idealSimplify| |besselI|
- |particularSolution| |linearAssociatedOrder| |lift| |e01daf| |Is|
- |complexEigenvectors| |iFTable| |qsetelt!| |OMgetFloat|
- |symmetricSquare| |powern| |sequences| |rCoord| |cyclicGroup|
- |flatten| |normalForm| |simplify| |reduce| |f02aef| |legendreP|
- |tubeRadius| |multisect| |shanksDiscLogAlgorithm| |mightHaveRoots|
- |separant| |createPrimitiveElement| |f2df| |lifting| |color|
- |monicModulo| |fortranDoubleComplex| |constantRight| |mvar|
- |leftQuotient| |infix?| |stopTable!| |yellow| |iiasin| |operator|
- |compdegd| |withPredicates| |realZeros| |complement| |deleteProperty!|
- |UP2ifCan| |rightTraceMatrix| |frst| |mask| |stoseInvertibleSetsqfreg|
- |doubleRank| |integralCoordinates| |approximate| |mapmult| |pToHdmp|
- |crushedSet| |routines| |integralMatrixAtInfinity| |quatern|
- |multiset| |coHeight| |log2| |f04maf| |complex| |expenseOfEvaluation|
- |normalizedAssociate| |HenselLift| |varselect| |head|
- |LowTriBddDenomInv| |algintegrate| |extendedint| |chainSubResultants|
- |rspace| |deriv| |OMgetAtp| |mr| |acsch| |quasiMonic?| |cExp|
- |rightPower| |tanAn| |setEpilogue!| |resetBadValues|
- |selectPDERoutines| |primitivePart| |removeSinhSq| |safeFloor|
- |leftMult| |mat| |possiblyInfinite?| |isMult| |divideIfCan!|
- |quadraticNorm| |collectQuasiMonic| |cAsinh| |reset| |ParCondList|
- |e02ddf| |stFuncN| |e01saf| |mainCharacterization| |droot|
- |primaryDecomp| |symmetricRemainder| |triangularSystems| |nonQsign|
- |binaryFunction| |solveLinearPolynomialEquationByRecursion|
- |skewSFunction| |outerProduct| |e04naf| |zCoord| |Aleph|
- |explicitEntries?| |zerosOf| |stronglyReduce| |leftAlternative?|
- |rightScalarTimes!| |OMgetEndObject| |setStatus| |connect| |write|
- |sample| |leftGcd| |bat| |rk4| |radicalSimplify| |green| |push|
- |iomode| |changeThreshhold| |stack| |deleteRoutine!| |B1solve|
- |lighting| |save| |indiceSubResultant| |someBasis| |antiCommutative?|
- |rightRankPolynomial| |printCode| |meshPar1Var| |currentEnv|
- |absolutelyIrreducible?| |extractIfCan| |rightRegularRepresentation|
- |approxNthRoot| |squareFreeLexTriangular| |OMgetType| |qfactor|
- |order| |OMcloseConn| |or| |fractRagits| |largest| |reverseLex|
- |SturmHabicht| |predicate| |logGamma| |impliesOperands|
- |genericLeftDiscriminant| |trapezoidalo| |f04mcf| |prepareSubResAlgo|
- |toScale| |setStatus!| |seriesToOutputForm| |and| |leftTrace|
- |showClipRegion| |insertMatch| |taylorRep| |factorFraction|
- |radicalRoots| |subPolSet?| |aCubic| |setOrder| |ratpart| |pack!|
- |empty?| |quadratic?| |shallowExpand| |OMgetEndAtp| |startTableGcd!|
- |setButtonValue| |leftTraceMatrix| |sechIfCan| |setClosed| |clip|
- |hasSolution?| |sorted?| |f02agf| |sin?| |expPot| |colorDef|
- |OMencodingBinary| LODO2FUN |unit| |stoseInternalLastSubResultant|
- |lp| |monomial| |wholePart| |stiffnessAndStabilityFactor| |iicsch|
- |factor1| |variable?| F |doubleDisc| |btwFact| |rroot| |algDsolve|
- |cfirst| |stirling1| |selectOptimizationRoutines| |primitivePart!|
- |expIfCan| |rational| |setsubMatrix!| |associatedSystem|
- |zeroDimensional?| |f01ref| |ocf2ocdf| |semiSubResultantGcdEuclidean1|
- |var1Steps| |swap| |seriesSolve| |multivariate| |isQuotient|
- |collectUnder| |OMputAttr| |subscript| |showArrayValues| |ratPoly|
- |rationalPoint?| |arg1| |f01rcf| |karatsubaOnce| |integerBound|
- |bandedJacobian| |createZechTable| |countRealRootsMultiple|
- |internalIntegrate0| |variables| |sub| |reducedDiscriminant|
- |exponentialOrder| |s17dhf| |ramifiedAtInfinity?| |alphanumeric| |sn|
- |arg2| |goodnessOfFit| |slash| |multinomial|
- |createMultiplicationMatrix| |associatorDependence| |ksec| |linears|
- |varList| GF2FG |exptMod| |radicalEigenvectors| |pushdown|
- |fortranTypeOf| |coerceListOfPairs| |f07fdf| |subTriSet?|
- |getZechTable| |cSec| |leftMinimalPolynomial| |variationOfParameters|
- |outputGeneral| |e02bef| |horizConcat| |coefficients| |e02bbf|
- |numerator| |complexSolve| |binaryTree| |fmecg| |squareFreePolynomial|
- |conditions| |unitVector| |fractionPart| |cyclicEntries| |linearPart|
- |light| |logIfCan| |quasiRegular| |qroot| |points| |jordanAdmissible?|
- |unvectorise| |mapDown!| |factorSquareFreePolynomial| |freeOf?|
- |block| |returns| |inverseIntegralMatrix| |updatF| |match|
- |palginfieldint| |halfExtendedSubResultantGcd1| |hash| |sinh2csch|
- |e02gaf| |determinant| |height| |mesh| |imagj| |back| |zoom|
- |permutation| |changeNameToObjf| |nilFactor| |f02awf| |every?|
- |concat| |s19aaf| |argumentListOf| |count| |extendedIntegrate|
- |sizePascalTriangle| |curve| |hasHi| |ListOfTerms| |sumOfDivisors|
- |mainValue| |rewriteIdealWithRemainder| |setleaves!| |operation|
- |d02cjf| |primPartElseUnitCanonical!| |mainCoefficients|
- |binaryTournament| |red| |makeSketch| |upperCase!| |knownInfBasis|
- |separateDegrees| |companionBlocks| |ScanArabic|
- |transcendentalDecompose| |localIntegralBasis| |integralRepresents|
- |outputAsTex| |delete!| |limitedint| |rdHack1| |dAndcExp| |interval|
- |basisOfLeftNucloid| |showTypeInOutput| |OMsend| |getGoodPrime|
- |pushup| |userOrdered?| |makeFloatFunction| |e02daf| |rootProduct|
- |s17dcf| |rootKerSimp| |mindeg| |critBonD| |graphState| |bombieriNorm|
- |s17aef| |createMultiplicationTable| |intChoose| |lieAlgebra?|
- |d02kef| |nil| |infinite| |arbitraryExponent| |approximate| |complex|
- |shallowMutable| |canonical| |noetherian| |central|
- |partiallyOrderedSet| |arbitraryPrecision| |canonicalsClosed|
- |noZeroDivisors| |rightUnitary| |leftUnitary| |additiveValuation|
- |unitsKnown| |canonicalUnitNormal| |multiplicativeValuation|
- |finiteAggregate| |shallowlyMutable| |commutative|) \ No newline at end of file
+ |Record| |Union| |Category| |subscript| |removeZeroes|
+ |normalizedAssociate| |lazyGintegrate| |mat| |delta| |updateStatus!|
+ |createPrimitiveElement| |monic?| |leastPower| |groebner?|
+ |rightAlternative?| |mathieu11| |evenlambert| |power!|
+ |clearTheIFTable| |f02wef| |insertionSort!| |rotatez| |zeroVector|
+ |Ci| |round| |makeYoungTableau| |e01bef| |argscript| |diagonal?|
+ |conjugate| |components| |maxrow| |PDESolve| |setprevious!|
+ |OMgetVariable| |putGraph| |makeprod| |dot| |subtractIfCan| |declare|
+ |squareFreeLexTriangular| |matrixConcat3D| |c06frf| |OMputEndError|
+ |dark| |localAbs| |leadingSupport| |getMultiplicationTable|
+ |flexible?| |complexNumeric| |mainCoefficients| |middle|
+ |controlPanel| |alphabetic| |rotatex| |s17aff| |subPolSet?|
+ |bivariatePolynomials| |depth| |log| |fglmIfCan| |odd?|
+ |cRationalPower| |recip| |pdf2df| |coefficients| |forLoop|
+ |virtualDegree| |setImagSteps| |intChoose| |createLowComplexityTable|
+ |rightDivide| |kernels| |leadingTerm| |cPower| |shallowCopy| |ode1|
+ |comment| |hasSolution?| |internal?| |central?| |fortranLiteralLine|
+ |decreasePrecision| |solve1| |leaves| |normal?| |univariate|
+ |constantCoefficientRicDE| |cardinality| |binaryFunction| |lambda|
+ |makeSUP| |showArrayValues| |lyndon| |coefChoose| |cSinh|
+ |getOperands| |f2df| |OMlistCDs| |rowEch| |subResultantGcdEuclidean|
+ |showSummary| |aspFilename| |retractIfCan| |overlap|
+ |subresultantSequence| |returns| |clikeUniv| |linearPolynomials|
+ |acscIfCan| |transpose| |perfectSqrt| |characteristicSerie|
+ |rewriteSetByReducingWithParticularGenerators| |innerint| |HenselLift|
+ |position!| |rowEchelon| |open?| |createMultiplicationMatrix|
+ |createGenericMatrix| |bipolarCylindrical| |tValues| |lflimitedint|
+ |merge| |showAttributes| |certainlySubVariety?| |measure2Result|
+ |pop!| |unprotectedRemoveRedundantFactors| |binaryTournament| |pole?|
+ |selectsecond| |exponential| |karatsubaDivide| |monicRightDivide|
+ |unexpand| |number?| |leftNorm| |nlde| |SFunction| |pushdterm|
+ |tryFunctionalDecomposition?| |nthFractionalTerm| |OMlistSymbols|
+ |OMputObject| |tableForDiscreteLogarithm| |headRemainder|
+ |FormatRoman| |infLex?| |lieAlgebra?| |clearTheFTable| BY
+ |initiallyReduce| |badNum| |hessian| |showAll?| Y |d03edf|
+ |ScanFloatIgnoreSpacesIfCan| |top| |divisors| |subspace| |logpart|
+ |iteratedInitials| |optional?| |OMbindTCP| |rule| |bsolve| |deref|
+ |continue| |matrix| |void| |s14baf| |possiblyInfinite?| |setEpilogue!|
+ |cyclotomicFactorization| |lowerPolynomial| |currentCategoryFrame|
+ |doubleRank| |infinityNorm| |innerEigenvectors| |setLabelValue|
+ |pattern| |composite| |e02bbf|
+ |solveLinearPolynomialEquationByRecursion| |jacobiIdentity?| |formula|
+ |generator| |mapExpon| |setPoly| |someBasis| |setProperty|
+ |complexNormalize| |sizeLess?| |map| |orOperands| |setMaxPoints3D|
+ |genericLeftTrace| |cAcsch| |gcdPrimitive| |exQuo| |nonLinearPart|
+ |lastSubResultantEuclidean| |useSingleFactorBound|
+ |generalizedContinuumHypothesisAssumed| |laurentIfCan| |returnTypeOf|
+ |hyperelliptic| |convergents| |root?| |lagrange| |pushup|
+ |LazardQuotient| |setEmpty!| |nrows| |startStats!|
+ |selectODEIVPRoutines| |functionIsContinuousAtEndPoints| |subTriSet?|
+ ~= |clipWithRanges| |cLog| |halfExtendedResultant2| |op| |contract|
+ |ncols| |remove| |retractable?| |iiacoth| |f07fef| |cyclePartition|
+ |messagePrint| |endOfFile?| |or?| |convert| |minimize| |true|
+ |complexElementary| |critMonD1| |reverseLex| |basisOfLeftNucleus|
+ |numerators| |validExponential| |baseRDEsys| |direction| |last|
+ |oblateSpheroidal| |spherical| |log10| |assoc| |multiple?|
+ |integralCoordinates| |laguerreL| |lo| |monicDivide|
+ |genericLeftTraceForm| |commonDenominator| |antiCommutative?| |match?|
+ |belong?| |acotIfCan| |incr| |hdmpToP| |real?| |unitsColorDefault|
+ |points| |cycleRagits| |fortran| |lazyIntegrate| |style|
+ |numberOfVariables| |toroidal| |showClipRegion| |limit| |hi|
+ |atanhIfCan| |OMputVariable| |writable?| |leftOne| |e02adf|
+ |irreducibleRepresentation| |symbolIfCan| |stFuncN| |rightRemainder|
+ |pdct| |rightGcd| |outputList| |retract| |makeSeries| |setCondition!|
+ |dominantTerm| |f04axf| |symbol| |numberOfComponents| |basisOfCenter|
+ |tanNa| |increasePrecision| |startPolynomial| |writeLine!|
+ |userOrdered?| |stoseInvertible?sqfreg| |copyInto!| |polygon|
+ |getGraph| ~ |fortranLogical| |OMputAtp| |prevPrime| |iiperm|
+ |sorted?| |null| |string| |integer| |setlast!| |point?| |Vectorise|
+ |aromberg| |s21bdf| |factors| |completeEchelonBasis| |rationalPower|
+ |ratDsolve| |indicialEquation| |leftRankPolynomial| |makeFR|
+ |rationalIfCan| |SturmHabicht| |expintegrate| |realEigenvectors|
+ |ef2edf| |mainCharacterization| |top!| |rightRankPolynomial|
+ |computeCycleLength| |getZechTable| = |mapmult| |term| |squareTop|
+ |removeRoughlyRedundantFactorsInPols| |bitLength| |curryLeft| |e02bcf|
+ |segment| |optpair| |setPrologue!| |monomialIntegrate| |cyclicCopy|
+ |open| |shiftRoots| |multiEuclidean| |binomThmExpt| |clearCache| <
+ |cTan| |asecIfCan| |genericRightDiscriminant| |pseudoRemainder|
+ |level| |nextIrreduciblePoly| |palgRDE| |currentSubProgram| >
+ |dmp2rfi| |jordanAdmissible?| |OMreadFile| |interpret| |firstDenom|
+ |decimal| |f07aef| <= |makeFloatFunction| |droot| |equivOperands|
+ |leader| |OMgetEndBVar| |incrementKthElement| |untab| >= |expr| |Nul|
+ |mainMonomials| |generate| |pascalTriangle| |list| |script|
+ |complexForm| |localUnquote| |getlo| |output| |leftDiscriminant| F2FG
+ |setDifference| |ode| |iiasech| |logGamma| |integerIfCan| |rootPoly|
+ |incrementBy| |composites| |integral?| |setIntersection|
+ |functionIsFracPolynomial?| |printCode| |checkPrecision|
+ |stoseInvertible?| + |pToHdmp| |expand| |setUnion| |sign| |conjugates|
+ |equation| |universe| |squareFreeFactors| |variable| - |powerSum|
+ |filterWhile| |comparison| |apply| |isTimes| |plotPolar|
+ |quasiRegular?| / |sort!| |filterUntil| |palgLODE|
+ |removeIrreducibleRedundantFactors| |tablePow| |lex| |e02daf| |select|
+ |f01mcf| |size| |bindings| |tex| |redPol| |cSec|
+ |numericalOptimization| |linearDependenceOverZ|
+ |generalInfiniteProduct| |normalizeAtInfinity| |t| |blue| |tanSum|
+ |invmod| |OMgetInteger| |palgint| |coerceImages| |cTanh| |randnum|
+ |clearFortranOutputStack| |ReduceOrder| |close|
+ |resultantEuclideannaif| |s18dcf| |fortranLiteral| |matrixDimensions|
+ |OMopenString| |crushedSet| |unvectorise| |bfKeys| |insert|
+ |intersect| |explicitlyEmpty?| |shift| |impliesOperands| |front|
+ |factorGroebnerBasis| |iidsum| |condition| |indices| |vedf2vef|
+ |pureLex| |charthRoot| |positiveSolve| SEGMENT |adaptive| |makeRecord|
+ |groebner| |edf2fi| |display| |OMputFloat| |showTheRoutinesTable|
+ |eisensteinIrreducible?| |heap| |rootProduct| |setPredicates|
+ |shellSort| |resetBadValues| |splitLinear| |fibonacci| |lazyEvaluate|
+ |setAdaptive3D| |iicot| |completeHermite| |numFunEvals3D| |mindegTerm|
+ |quadraticNorm| |mainMonomial| |idealiser| |pastel| |solveid|
+ |OMgetObject| |lintgcd| |c06ebf| |sumOfKthPowerDivisors| |f02aef|
+ |is?| |presuper| |edf2efi| |gbasis| |qinterval| |nextsubResultant2|
+ |c06gcf| |opeval| |orbit| |subresultantVector| |factorSFBRlcUnit|
+ |routines| |highCommonTerms| |input| |cCsch| |moduloP|
+ |selectOrPolynomials| |ParCond| |extractProperty| |e04ycf|
+ |superHeight| |e04mbf| |library| |numberOfImproperPartitions|
+ |leftMinimalPolynomial| |f04faf| |jacobi| |isList| |unit?| |exists?|
+ |pointPlot| |d01aqf| |result| |csch| |s17dcf| |epilogue| |coord|
+ |socf2socdf| |genericLeftDiscriminant| |printHeader| |asinh|
+ |distFact| |OMUnknownSymbol?| |hue| |powers| |irreducible?|
+ |eyeDistance| |acosh| |cup| |minset| |iisin| |nextPartition|
+ |cylindrical| |weight| |atanh| |integralMatrixAtInfinity| |removeZero|
+ |Si| |rightZero| |set| |legendreP| |poisson|
+ |lastSubResultantElseSplit| |acoth| |ScanRoman| |implies?| |mapDown!|
+ |OMReadError?| |ran| |satisfy?| |pr2dmp| |asech|
+ |rootOfIrreduciblePoly| |gcdprim| |transcendent?| |compile| |id|
+ |inrootof| |mainDefiningPolynomial| |dictionary| |nthFactor|
+ |leftTraceMatrix| |OMgetApp| |cSin| |every?| |simplifyExp| |read!|
+ |prinshINFO| |multiple| |totolex| |rootKerSimp| |ptree| |measure|
+ |hitherPlane| |symmetricTensors| |table| |OMserve| |monomRDEsys|
+ |getSyntaxFormsFromFile| |reseed| |applyQuote| |trunc| |iicoth|
+ |finiteBasis| |unaryFunction| |iExquo| |new| |lazyResidueClass|
+ |sdf2lst| |lyndonIfCan| |dequeue!| |setRow!| |extractBottom!|
+ |linearAssociatedExp| |endSubProgram| |totalLex| |createNormalPoly|
+ |unparse| |trapezoidalo| |variationOfParameters| |totalGroebner|
+ |nullary?| |compBound| |quatern| |Beta| |divide| |call| |powern|
+ |operators| |partition| |df2fi| |complex?| |ruleset| |setright!|
+ |tanIfCan| |wordInGenerators| |subNode?| |symFunc| |e01baf| |in?|
+ |show| |getExplanations| |besselJ| |fortranCarriageReturn|
+ |selectfirst| |s21bcf| |iiatanh| |createNormalPrimitivePoly|
+ |scalarTypeOf| |coercePreimagesImages| |mapdiv| |s19adf| |push|
+ |listOfLists| |external?| |modularGcd| |errorInfo| |reverse|
+ |makeResult| |representationType| |trace| |createZechTable|
+ |addPointLast| |bandedHessian| |d03faf| |suchThat| |topPredicate|
+ |conical| |d01apf| |complexNumericIfCan| |s19aaf| |makeop|
+ |monicRightFactorIfCan| |PollardSmallFactor| |linear?|
+ |primitivePart!| |insertRoot!| |besselK| |sinhcosh| |tower|
+ |invertIfCan| |reduceBasisAtInfinity| |addMatch| |recolor|
+ |getOperator| |constantIfCan| |isAbsolutelyIrreducible?| |superscript|
+ |center| |coleman| |approximants| |assign| |symmetricGroup| |objectOf|
+ |numberOfCycles| |toseInvertible?| |initial| |viewWriteAvailable|
+ |swap!| |sequences| |printInfo| |zeroSetSplit| |notOperand|
+ |fintegrate| |hexDigit?| |dAndcExp| |acschIfCan|
+ |factorSquareFreePolynomial| |left| |iomode| |bivariate?| |factor|
+ |imagJ| |e04gcf| |generalSqFr| |maxrank| |element?|
+ |SturmHabichtSequence| |identitySquareMatrix| |c06eaf| |right|
+ |directSum| |sqrt| |isPower| |acoshIfCan| |diagonalProduct| |property|
+ |iilog| |augment| |moreAlgebraic?| |real| |supersub| |schema|
+ |upDateBranches| |testModulus| |lowerCase!| |doublyTransitive?|
+ |integralBasisAtInfinity| |deleteProperty!| |pushdown|
+ |subscriptedVariables| |listYoungTableaus| |e02dff| |imag| |psolve|
+ |subResultantChain| |KrullNumber| |leadingBasisTerm|
+ |symmetricDifference| |symbolTable| |zeroDimPrime?| |getRef| |twist|
+ |s18adf| |ricDsolve| |oddInfiniteProduct| |directProduct|
+ |extendedEuclidean| |elliptic| |argumentListOf|
+ |countRealRootsMultiple| |modifyPoint| |loopPoints| |units| |ignore?|
+ |reduceByQuasiMonic| |insertTop!| |headReduced?| |pointColorPalette|
+ |changeVar| |df2st| |primPartElseUnitCanonical| |leftFactor|
+ |viewThetaDefault| |cAsinh| |cSech| |pushFortranOutputStack|
+ |expIfCan| |polyRicDE| |numberOfFractionalTerms|
+ |resultantReduitEuclidean| |stoseInternalLastSubResultant| |coth2tanh|
+ |constantOpIfCan| |option?| |OMsupportsCD?| |e02akf| |destruct|
+ |multiplyExponents| |degree| |popFortranOutputStack|
+ |generalizedEigenvectors| |conjug| |nextNormalPrimitivePoly| |prime|
+ |lprop| |extendIfCan| |genericLeftMinimalPolynomial| |optimize|
+ |semiDiscriminantEuclidean| |primlimintfrac| |cCoth| |genericLeftNorm|
+ |denomLODE| |outputAsFortran| |isobaric?| |maxPoints3D| |lazyPquo|
+ |OMputSymbol| |splitNodeOf!| |stronglyReduce| |radPoly| |rCoord|
+ |mainKernel| |ldf2lst| |wholeRadix| |expandTrigProducts|
+ |integralDerivationMatrix| |htrigs| |interval| |fortranTypeOf|
+ |mapMatrixIfCan| |rk4qc| |intermediateResultsIF| |extendedIntegrate|
+ |curryRight| |lastSubResultant| |code| |leftScalarTimes!|
+ |createIrreduciblePoly| |relationsIdeal| |strongGenerators| |push!|
+ |f01qef| |expint| |dfRange| |d01gbf| |changeThreshhold|
+ |var2StepsDefault| |imagi| |taylorQuoByVar| |nil| |moebius| |s15adf|
+ |plenaryPower| |OMputEndBVar| |quoted?| |print| |useNagFunctions|
+ |debug3D| |tableau| |removeSinhSq| |associative?| |UP2ifCan|
+ |asinhIfCan| |transform| |quasiMonicPolynomials| |light| |rischDEsys|
+ |e04dgf| |setref| |nthRootIfCan| |separate| |monicLeftDivide| |copies|
+ |setProperties!| |exprToXXP| |int| |d02gbf| |setAdaptive|
+ |internalIntegrate0| |cyclicGroup| |toseInvertibleSet| |cosSinInfo|
+ |e02baf| |second| |f2st| |rational| |cAcot| |csc2sin| |gcdcofactprim|
+ |wholePart| |algebraicDecompose| |initializeGroupForWordProblem|
+ |resultantnaif| |pointColorDefault| |scripted?| |third| |function|
+ |kovacic| |minPoints3D| |expt| |nullity| |d01asf| |evaluateInverse|
+ |decrease| |getBadValues| |expintfldpoly| |primitiveElement| |s13acf|
+ |reduceLODE| |cap| |GospersMethod| |sylvesterMatrix|
+ |exprHasAlgebraicWeight| |leadingIndex| |boundOfCauchy| |sechIfCan|
+ |zeroSetSplitIntoTriangularSystems| |resultant| |nil?| |cCsc|
+ |coerceListOfPairs| |leftAlternative?| |primes| |iidprod|
+ |sizePascalTriangle| |primeFactor| |OMopenFile| |denominators|
+ |fillPascalTriangle| |basisOfLeftNucloid| |associatedEquations|
+ |randomLC| |uniform| |reciprocalPolynomial| |drawCurves| |pow|
+ |hspace| |prindINFO| |linearlyDependent?| |brillhartIrreducible?|
+ |rightMult| |stoseIntegralLastSubResultant| |more?| |normalise|
+ |vectorise| |deleteRoutine!| |drawStyle| |list?| |vector| |infRittWu?|
+ |ratDenom| |postfix| |digit| |generators| |createPrimitiveNormalPoly|
+ |sub| |overset?| |algebraic?| |numericIfCan| |differentiate|
+ |setsubMatrix!| |minPol| |s17dgf| |numberOfDivisors| |orbits| |fTable|
+ |binarySearchTree| |mapUnivariateIfCan| |factorPolynomial| |extract!|
+ |resetNew| |rightTraceMatrix| |antisymmetric?| |listRepresentation|
+ |rdregime| |leftUnit| |precision| |case| |normalForm| |nextPrime|
+ |linear| |sylvesterSequence| |exprToGenUPS| |gradient| |computeBasis|
+ |divideExponents| |fixedDivisor| |integrate| |yCoord| |contains?|
+ |exactQuotient| |linearDependence| |coerce| |mapCoef| |OMgetError|
+ |rightScalarTimes!| |fortranCompilerName| |permanent| |high| |cCos|
+ |pquo| |OMgetAttr| |polynomial| |OMgetEndError| |construct|
+ |exponents| |radicalEigenvalues| |permutationGroup| |besselY|
+ |logIfCan| |maxRowIndex| |finiteBound| |B1solve| |negative?|
+ |completeSmith| D |powmod| |cycle| |f07fdf| |elements|
+ |alternatingGroup| |inGroundField?| |curve| |zero?| |member?|
+ |showTheSymbolTable| |lcm| |stiffnessAndStabilityFactor|
+ |pseudoDivide| |sncndn| |tanh2trigh| |choosemon| |leaf?| |exquo|
+ |laguerre| |reducedDiscriminant| |quoByVar| |coordinates|
+ |basisOfRightNucloid| |showTypeInOutput| |associatedSystem| |e02ajf|
+ |mirror| |bright| |setScreenResolution3D| |div| |atrapezoidal|
+ |double?| |hMonic| |viewPhiDefault| |curveColorPalette| |intcompBasis|
+ |mergeDifference| |standardBasisOfCyclicSubmodule| |chebyshevU|
+ |queue| |quo| |simplify| |bringDown| |totalDegree| |charClass| |gcd|
+ |close!| |getMeasure| |toseLastSubResultant| |cycleSplit!| |d01fcf|
+ |airyBi| |bottom!| |supDimElseRittWu?| |infiniteProduct| |over|
+ |union| |rootsOf| |checkForZero| |selectNonFiniteRoutines| |integers|
+ |minordet| |setValue!| |fprindINFO| |rem| |normalizedDivide|
+ |uniform01| |simpleBounds?| |false| |scaleRoots| |mulmod|
+ |squareMatrix| |frst| |OMgetEndObject| |OMwrite| |eval| |has?|
+ |setProperty!| |inconsistent?| |cross| |first| |child?| |reindex|
+ |iisinh| |polyPart| |solveLinearPolynomialEquationByFractions|
+ |idealiserMatrix| |setvalue!| |f02agf| |hasHi| |radix| |symmetric?|
+ |constantKernel| |rest| |noLinearFactor?| |critMTonD1| |setFormula!|
+ |inverseLaplace| |signAround| |duplicates| |innerSolve1| |duplicates?|
+ |exponentialOrder| |parametersOf| |substitute| |rur| |colorFunction|
+ |box| |zeroDimensional?| |/\\| |initials| |fixedPointExquo| |s21bbf|
+ |eigenMatrix| |any| |s13aaf| |s17ajf| |algint| |and?|
+ |removeDuplicates| |polygon?| |rangeIsFinite| |eulerE| |iisqrt3|
+ |integral| |splitDenominator| |product| |tan2cot| |padecf| |distdfact|
+ |lighting| |laplacian| |iicosh| |findBinding| |fracPart|
+ |complexExpand| |diagonalMatrix| |quasiRegular| |iicos| |ListOfTerms|
+ |infieldIntegrate| |mainForm| |deepestInitial| |musserTrials|
+ |pointLists| |OMsend| |dimension| |qPot| |regime| |mkPrim|
+ |gramschmidt| |balancedFactorisation| |alternating|
+ |lazyPseudoQuotient| |domainOf| |myDegree| |iisec|
+ |rightCharacteristicPolynomial| |primitive?| |f02xef|
+ |stiffnessAndStabilityOfODEIF| |getProperty| |saturate| |diag|
+ |subSet| |setelt| |getButtonValue| |d01gaf| |iitanh| |ceiling|
+ |lieAdmissible?| |infix| |sin?| |numeric| |univariateSolve| |Lazard|
+ |lazyPseudoDivide| |nsqfree| |lfextendedint| |integer?| |meshPar1Var|
+ |evaluate| |adaptive3D?| |setStatus| |radical| |plus| |adjoint| |not|
+ |s17dhf| |OMUnknownCD?| |content| |copy| |biRank| |cyclic?|
+ |extractIndex| |sqfree| |stoseInvertibleSetsqfreg| |tanAn|
+ |graphStates| |monomRDE| |oneDimensionalArray| |Hausdorff|
+ |basisOfLeftAnnihilator| |properties| |isOp| |kroneckerDelta| |f01ref|
+ |graeffe| |OMputEndAtp| |iifact| |eigenvectors| |bezoutResultant|
+ |nextPrimitivePoly| |dmpToP| ^= |scale| |extendedResultant| |makeCrit|
+ |elRow1!| |showTheFTable| |OMputEndBind| |rootNormalize| |d02gaf|
+ |printingInfo?| |OMmakeConn| |cyclicParents| |LyndonCoordinates|
+ |autoCoerce| |janko2| |range| |innerSolve| |infieldint|
+ |explogs2trigs| |max| |extend| |times!| |indiceSubResultant|
+ |secIfCan| |shiftRight| |zeroMatrix| |antisymmetricTensors|
+ |blankSeparate| |f02akf| |getOrder| |say| |f02ajf| |hermite|
+ |thetaCoord| |setStatus!| |sortConstraints| |s19acf| |antiCommutator|
+ |semicolonSeparate| |triangular?| |translate| |removeDuplicates!|
+ |f04asf| |basis| |parent| |newReduc| |mainSquareFreePart|
+ |getGoodPrime| |areEquivalent?| |stopTableGcd!| |mainVariable|
+ |problemPoints| |brillhartTrials| |f04mbf| |s01eaf| |character?|
+ |connect| |useEisensteinCriterion?| |realEigenvalues| |times|
+ |OMencodingUnknown| |eq?| |entries| |tanh2coth| |numberOfHues| |qroot|
+ |physicalLength!| |diagonals| |weighted| |unrankImproperPartitions1|
+ |module| |cothIfCan| |trace2PowMod| |rarrow| |zeroSquareMatrix|
+ |mapGen| |harmonic| |setClipValue| |repSq| |shrinkable| |cot2tan|
+ |maximumExponent| |dioSolve| |pointData| |inspect| |bitTruth|
+ |gcdPolynomial| |addPoint| |replace| |length| |monom| |e02dcf|
+ |var2Steps| |stopTable!| |clipParametric| |Ei| |addBadValue|
+ |rewriteIdealWithQuasiMonicGenerators| |scripts| |fortranLinkerArgs|
+ |minPoly| |nextColeman| |key| |pushNewContour| |outputForm| |leftGcd|
+ |acothIfCan| |mix| |create| |options| |setProperties| |nand| |ratPoly|
+ |common| |parametric?| |OMgetType| |rspace| |elt| |palglimint0|
+ |pointSizeDefault| |sample| |returnType!| |charpol|
+ |LagrangeInterpolation| |polar| |mathieu12| |filename|
+ |continuedFraction| |transcendentalDecompose| |whatInfinity|
+ |cyclotomic| |systemSizeIF| |unitCanonical| |OMgetBVar| |prologue|
+ |cAsin| |rombergo| |pushucoef| |factorSquareFreeByRecursion|
+ |computeInt| |floor| |cycleElt| |solveLinearPolynomialEquation| |not?|
+ |printStatement| |nextPrimitiveNormalPoly| |cAtan| |asinIfCan|
+ |uncouplingMatrices| |prod| |yellow| |associatorDependence| |parse|
+ |complexIntegrate| |lazyPrem| |branchIfCan| |generalLambert|
+ |shufflein| |tubePointsDefault| |cond| |OMsupportsSymbol?|
+ |degreeSubResultant| |palgRDE0| |rootOf| |schwerpunkt| |iiasinh|
+ |tanintegrate| |swapRows!| |cn| |alternative?| |maxIndex|
+ |squareFreePolynomial| |fixPredicate| |d01ajf| |s17def| |qfactor|
+ |interpolate| |polyred| |region| |repeatUntilLoop| |polygamma|
+ |rationalPoint?| |bat| |compactFraction| |OMreceive| |sts2stst|
+ |countable?| |outputFixed| |localIntegralBasis| |modularGcdPrimitive|
+ |dim| |inf| |readLineIfCan!| |irreducibleFactors| |frobenius| |deriv|
+ |factorOfDegree| |cAsec| |skewSFunction| |leastMonomial| |leftTrace|
+ |purelyAlgebraicLeadingMonomial?| |readLine!| |equiv| |removeSinSq|
+ |credPol| |reduction| |normalDeriv| |f01brf| |sparsityIF|
+ |useEisensteinCriterion| |cAsech| |mainVariable?| |iiacot| |sup|
+ |iiasin| |OMgetEndApp| |width| |OMParseError?| |bernoulliB|
+ |OMconnectTCP| |createPrimitivePoly| |outputSpacing| |iiGamma| |super|
+ |leftRecip| |cosh2sech| |resetAttributeButtons| |const|
+ |interpretString| |rangePascalTriangle| |geometric| |expPot|
+ |commaSeparate| |removeRedundantFactorsInPols| |viewZoomDefault|
+ |prinb| |sec2cos| |UnVectorise| |showTheIFTable| |cycles| |OMread|
+ |enumerate| |mkcomm| |constantLeft| |row| |clearDenominator|
+ |commutator| |setchildren!| |constant| |createNormalElement|
+ |numberOfMonomials| |lexGroebner| |tab| |viewDeltaYDefault|
+ |processTemplate| |padicFraction| |maxColIndex| |trueEqual|
+ |subHeight| |semiResultantReduitEuclidean| |deepCopy| |cAcoth|
+ |minRowIndex| |f01rcf| |monicDecomposeIfCan| |permutations| |pdf2ef|
+ |genus| |integralRepresents| |ksec| |optional| |asechIfCan|
+ |SturmHabichtCoefficients| |s17akf| |karatsuba| |bits| |modulus| |erf|
+ |quadratic?| |usingTable?| |henselFact| |baseRDE| |prime?| |rk4|
+ |binomial| |exprHasWeightCosWXorSinWX| |var1StepsDefault| |lookup|
+ |index| |e04naf| |laurentRep| UTS2UP |unitVector| |anticoord|
+ |makeViewport2D| |OMgetAtp| |RittWuCompare| |leftZero|
+ |trailingCoefficient| |operator| |linearAssociatedLog| |hconcat|
+ |movedPoints| |maxPoints| |denomRicDE| |order| |dilog| |point|
+ |getCode| |firstSubsetGray| |relativeApprox| |Lazard2|
+ |stoseLastSubResultant| |hexDigit| |listBranches| |rightExtendedGcd|
+ |equiv?| |rootRadius| |sin| |monomialIntPoly| |search| |pair|
+ |andOperands| |solveRetract| |closedCurve| |stop| |mkIntegral|
+ |testDim| |pleskenSplit| |romberg| |cos| |basisOfNucleus|
+ |noncommutativeJordanAlgebra?| |e02zaf| |printStats!| |initTable!|
+ |\\/| |plot| |rectangularMatrix| |fortranInteger|
+ |internalLastSubResultant| |tan| |series| |trigs2explogs| |lifting1|
+ |outputAsTex| |xCoord| |bubbleSort!| |unrankImproperPartitions0|
+ |karatsubaOnce| |partialDenominators| |realSolve| |cot| |key?|
+ |dmpToHdmp| |setOfMinN| |totalfract| |printInfo!| |escape|
+ |BasicMethod| |c05adf| |torsion?| |sec| |changeName| |omError|
+ |screenResolution| |insertBottom!| |shallowExpand| |lfunc| |closed?|
+ |quasiMonic?| |UpTriBddDenomInv| |csc| |numer| |compdegd|
+ |removeRoughlyRedundantFactorsInContents| |edf2df| |rationalPoints|
+ |constantOperator| |lazyIrreducibleFactors| |derivative| |resize|
+ |min| |asin| |denom| |mapSolve| |getPickedPoints| |redPo| |zCoord|
+ |c06fpf| |listLoops| |genericRightTraceForm| |mainVariables| |acos|
+ |sayLength| |linears| |adaptive?| |square?| |minIndex| |status|
+ |partitions| |radicalSimplify| |leftPower| |leftFactorIfCan| |atan|
+ |primeFrobenius| |pi| |message| |nextSublist| |reopen!|
+ |createThreeSpace| |newSubProgram| |shade| |startTable!| |stirling2|
+ |OMcloseConn| |acot| |infinity| |rightTrim| |groebnerIdeal| |c02aff|
+ |unravel| |fractionPart| |OMgetEndAtp| |partialQuotients| |nthr|
+ |flexibleArray| |intPatternMatch| |asec| |obj| |leftTrim| |delete!|
+ |rk4f| |radicalOfLeftTraceForm| |string?| |mdeg| |polynomialZeros|
+ |firstUncouplingMatrix| |c02agf| |indicialEquations| |acsc|
+ |plusInfinity| |cache| |setRealSteps| |setTopPredicate| |elliptic?|
+ |mainContent| |upperCase?| |possiblyNewVariety?|
+ |permutationRepresentation| |palgextint0| |definingPolynomial| |sinh|
+ |updatD| |minusInfinity| |numberOfChildren| |name|
+ |numberOfComputedEntries| |intensity| |LyndonWordsList1|
+ |integerBound| |wreath| |overbar| |atoms| |cosh| |dom| |maxint|
+ |withPredicates| |cyclotomicDecomposition| |makeTerm| |qqq| |bfEntry|
+ |univariatePolynomials| RF2UTS |indicialEquationAtInfinity| |label|
+ |tanh| |kernel| |irreducibleFactor| GF2FG |e02bdf|
+ |toseSquareFreePart| |getCurve| |d01amf| |OMgetSymbol| |elementary|
+ |rationalFunction| |coth| |draw| |factorByRecursion| |perspective|
+ |Aleph| |deepExpand| |jacobian| |associator| |OMsetEncoding|
+ |expenseOfEvaluationIF| |ranges| |sech| |basisOfRightNucleus|
+ |internalDecompose| |topFortranOutputStack| |generalTwoFactor|
+ |distance| |rename| |iitan| |cExp| |integralLastSubResultant|
+ |limitPlus| |fortranCharacter| |nextsousResultant2|
+ |wordsForStrongGenerators| |cyclicSubmodule| |index?| |fractRagits|
+ |limitedint| |conditionP| |bezoutDiscriminant| |presub| |green|
+ |plus!| |lexico| |stoseInvertibleSetreg| |title| |makeObject| |inc|
+ |paraboloidal| |mathieu22| |setFieldInfo| |f01qcf| |solveLinear|
+ |monomials| |digamma| |keys| |shiftLeft| |e| |doubleFloatFormat|
+ |OMencodingXML| |iisqrt2| |cyclicEntries| |error| |numberOfFactors|
+ |deepestTail| |c06gqf| |cschIfCan| |coef| |singleFactorBound|
+ |realZeros| |subset?| |truncate| |size?| |assert| |bandedJacobian|
+ |d03eef| |c05pbf| |enqueue!| |divergence| |exptMod| |finite?|
+ |partialFraction| |semiLastSubResultantEuclidean| |decomposeFunc|
+ |rewriteSetWithReduction| |rischDE| |createRandomElement|
+ |alphanumeric?| |pair?| |rotatey| |bernoulli| |exponent| |reflect|
+ |leastAffineMultiple| |outputFloating| |zag| |quasiAlgebraicSet|
+ |iflist2Result| |lepol| |explicitEntries?| |defineProperty| |generic?|
+ |debug| |back| |applyRules| |ref| |tan2trig| |factorials| |option|
+ |degreePartition| |fill!| |prinpolINFO| |noKaratsuba| |iCompose|
+ |e01sff| |functionIsOscillatory| |gcdcofact| |remove!| |ramified?|
+ |move| |reify| |coth2trigh| |minGbasis| |rdHack1| |rotate!|
+ |contractSolve| |allRootsOf| |node| |setMaxPoints| |roughUnitIdeal?|
+ |goto| |doubleComplex?| |doubleDisc| |lazyVariations|
+ |factorsOfCyclicGroupSize| |surface| |linearPart| |iiasec| |iibinom|
+ |entry| |critM| |rightPower| |RemainderList| |any?| |primintegrate|
+ |elem?| |dec| |trim| |e01daf| |taylor| |largest| **
+ |viewDeltaXDefault| |exprHasLogarithmicWeights| |complement|
+ |lexTriangular| |cAcos| |squareFreePart| |useSingleFactorBound?|
+ |laurent| |basisOfCommutingElements| |rightQuotient| |float|
+ |compound?| |univcase| |radicalEigenvectors| |paren|
+ |startTableInvSet!| |patternVariable| |puiseux| |unitNormalize|
+ |viewSizeDefault| |prolateSpheroidal| |failed| |linearMatrix|
+ |reverse!| EQ |cycleLength| |selectSumOfSquaresRoutines|
+ |specialTrigs| |perfectNthPower?| |quadratic| |ffactor|
+ |derivationCoordinates| |closeComponent| |roughSubIdeal?| |polCase|
+ |oddlambert| |LyndonBasis| |inv| |elColumn2!| |tRange| |children|
+ |setelt!| |ratpart| |constant?| |zerosOf| |internalInfRittWu?|
+ |vconcat| |ground?| |submod| |s20adf| |roughBasicSet| |sh|
+ |characteristicPolynomial| |lquo| |primextintfrac| |curry| |zoom|
+ |ground| |OMgetEndBind| |ravel| |directory| |btwFact| |lifting|
+ |taylorIfCan| |evenInfiniteProduct| |extractClosed|
+ |numberOfOperations| |leadingMonomial| |scan| |e01bff| |reshape|
+ |closedCurve?| |difference| |multiplyCoefficients| |d01anf|
+ |outputArgs| |algebraicSort| |leadingCoefficient| |e01sef| |maxdeg|
+ |d02raf| |computeCycleEntry| |smith| |OMclose| |coshIfCan| |c06gbf|
+ |primitiveMonomials| |ellipticCylindrical| |imaginary| GE
+ |createLowComplexityNormalBasis| |red| |notelem| |Is| |reductum|
+ |varselect| |nextSubsetGray| GT |reduced?| |nthFlag|
+ |positiveRemainder| |e02aef| |commutative?| |refine| |rank|
+ |meshPar2Var| |resultantEuclidean| LE |separateFactors| |rightUnit|
+ |factorSquareFree| |raisePolynomial| |internalIntegrate|
+ |seriesToOutputForm| |dimensionsOf| |collectQuasiMonic| LT
+ |optAttributes| |rightRecip| |isPlus| |update| |viewport3D| |s15aef|
+ |Gamma| |solve| |complexRoots| |clipSurface| |color| |nodes| |column|
+ |rk4a| |permutation| |rational?| |d02kef| |eq| |lineColorDefault|
+ |outputMeasure| |car| |extractPoint| |tanhIfCan| |rightExactQuotient|
+ |stronglyReduced?| |quickSort| |seed| |iter| |solveLinearlyOverQ|
+ |inverseIntegralMatrix| |integralMatrix| |cdr| |cycleTail| |pack!|
+ |dihedralGroup| |factorial| |sort| |meatAxe| |LiePolyIfCan|
+ |traceMatrix| |swapColumns!| |binary| |makeSketch| |expandLog|
+ |factorset| |merge!| |makingStats?| |minColIndex| |rroot|
+ |screenResolution3D| |halfExtendedSubResultantGcd1| |cAcosh|
+ |viewPosDefault| |lfintegrate| |child| |arrayStack| |limitedIntegrate|
+ |repeating| |position| |basicSet| |complexEigenvectors| |head|
+ |roughBase?| |pointColor| |parabolic| |resetVariableOrder| |e04fdf|
+ |li| |coordinate| |normalize| |basisOfCentroid| |fractionFreeGauss!|
+ |tanQ| |monicModulo| |stFunc2| |random| |dimensions| |mathieu23|
+ |monicCompleteDecompose| |numberOfIrreduciblePoly| |coerceP| |s17adf|
+ |numerator| |groebnerFactorize| |cCot| |s21baf| |exp| |solid|
+ |purelyAlgebraic?| |normFactors| |lambert| |normalized?| |isMult|
+ |sincos| |euclideanNormalForm| |extendedSubResultantGcd| |bumptab|
+ |alphabetic?| |minimumDegree| |drawComplex| |OMconnInDevice|
+ |changeNameToObjf| |unary?| |hypergeometric0F1| |reducedSystem|
+ |divisor| |upperCase!| |firstNumer| |readable?|
+ |indiceSubResultantEuclidean| |mapExponents| |exprToUPS| |algDsolve|
+ |OMputEndApp| |tensorProduct| |restorePrecision| |figureUnits|
+ |realRoots| |multiEuclideanTree| |rules| |inHallBasis?| |An|
+ |clipBoolean| |aQuadratic| |legendre| |subst| |f02abf| |generic|
+ |LowTriBddDenomInv| |abs| |OMunhandledSymbol|
+ |setLegalFortranSourceExtensions| |upperCase| |imagK|
+ |generalizedInverse| |f02bbf| |newLine| |getMatch|
+ |fortranDoubleComplex| |setErrorBound| |primaryDecomp| |acosIfCan|
+ |iFTable| |collect| |pToDmp| |datalist| |rationalApproximation|
+ |midpoint| |iicsc| |stosePrepareSubResAlgo| |bumptab1| |trapezoidal|
+ |updatF| |diagonal| |binding| |rightMinimalPolynomial| |fortranDouble|
+ |complexZeros| |rightNorm| |implies| |leftRemainder| |aLinear|
+ |leftExtendedGcd| |space| |showIntensityFunctions| |divideIfCan!|
+ |objects| |multMonom| |identityMatrix| |xor| |lazy?| |gethi| |s18def|
+ |knownInfBasis| |bracket| |fixedPoint| |base| |mantissa| |traverse|
+ |removeSquaresIfCan| |leadingExponent| |invmultisect| |cfirst|
+ |squareFree| |structuralConstants| |infinite?| |summation| |checkRur|
+ |complexLimit| |pile| |double| |magnitude| |wrregime| |cAcsc|
+ |complexSolve| |prefix| |rubiksGroup| |nilFactor| |insert!|
+ |appendPoint| |setOrder| |rename!| |branchPointAtInfinity?|
+ |addPoint2| |divisorCascade| |setPosition| |makeEq| |putColorInfo|
+ |tubePoints| |algintegrate| |axes| |e02def| |brace| |constantRight|
+ |selectFiniteRoutines| |completeEval| |subCase?| |getDatabase|
+ |f02aaf| |imagk| |invertible?| |test| |df2mf|
+ |reducedContinuedFraction| |semiResultantEuclidean1| |critT|
+ |patternMatchTimes| |lowerCase| |typeList| |safeFloor| |iroot|
+ |asimpson| |nthRoot| |homogeneous?| |stirling1| |rightFactorIfCan|
+ |singRicDE| |packageCall| |df2ef| |rst| |nullary| |prem|
+ |physicalLength| |rootBound| |neglist| |leftDivide| |declare!|
+ |selectPolynomials| |terms| |OMgetFloat| |setAttributeButtonStep|
+ |build| |patternMatch| |internalAugment| |subResultantsChain| |value|
+ |separateDegrees| |increase| |xn| |iprint| |cons| |mapUnivariate|
+ |pmintegrate| |recur| |OMgetEndAttr| |typeLists| |nodeOf?|
+ |FormatArabic| |nthExponent| |shuffle| |nullSpace|
+ |definingInequation| |generateIrredPoly| |complete| |d02ejf| |e04ucf|
+ |aQuartic| |OMputEndObject| |singular?| |squareFreePrim|
+ |exactQuotient!| |create3Space| |numberOfComposites| |previous|
+ |f02awf| |extendedint| |genericRightNorm| |empty?| |s17acf| |mvar|
+ |bat1| |selectMultiDimensionalRoutines| |perfectNthRoot| |dn| |tree|
+ |prepareDecompose| |transcendenceDegree| |changeWeightLevel|
+ |graphImage| |exp1| |#| |corrPoly| |palginfieldint| |zero| |mesh?|
+ |scalarMatrix| |binaryTree| |colorDef| |symmetricSquare| |f02aff|
+ |zeroOf| |chvar| |singularitiesOf| |genericRightMinimalPolynomial|
+ |cartesian| |printTypes| |iiacos| |rowEchLocal| |And| |ldf2vmf|
+ |companionBlocks| |perfectSquare?| |rightLcm| |att2Result|
+ |regularRepresentation| |c06fuf| |Or| |char| |argument| |imagE| ^
+ |pushuconst| |se2rfi| |sech2cosh| |iipow| |listConjugateBases|
+ |degreeSubResultantEuclidean| |Not| |sum| |supRittWu?| |dihedral|
+ |rightOne| |mapUp!| |rightDiscriminant| |viewport2D| |setColumn!|
+ |subQuasiComponent?| |selectOptimizationRoutines| |randomR|
+ |leftUnits| |genericRightTrace| |sinh2csch| |chainSubResultants|
+ |pomopo!| |primlimitedint| |leftQuotient| |weights| |makeUnit|
+ |simpson| |definingEquations| |modTree| |predicates|
+ |basisOfMiddleNucleus| |logical?| |principal?| |univariate?| |f01bsf|
+ |s14abf| |showScalarValues| |numberOfPrimitivePoly| |integralBasis|
+ |e01bgf| |factorAndSplit| |minimalPolynomial| |OMencodingBinary|
+ |even?| |outlineRender| |birth| |genericPosition| |insertMatch|
+ |OMgetString| |externalList| |conditionsForIdempotents| |phiCoord|
+ |f04jgf| |removeSuperfluousCases| |Zero| |triangulate| |ideal|
+ |discriminantEuclidean| |youngGroup| |ScanArabic| |complexEigenvalues|
+ |OMputInteger| |ODESolve| |subResultantGcd| |hasPredicate?| |One|
+ |s13adf| |less?| |sumOfDivisors| |groebSolve| |balancedBinaryTree|
+ |viewDefaults| |e02ahf| |hcrf| |showAllElements| |midpoints| |hclf|
+ |basisOfRightAnnihilator| |digit?| |comp| |ridHack1| |lhs|
+ |totalDifferential| |fmecg| |enterPointData| |selectPDERoutines|
+ |categoryFrame| |modularFactor| |fixedPoints| |palgintegrate| |rhs|
+ |parabolicCylindrical| |s17agf| |compose| |rotate| |ocf2ocdf|
+ |constructorName| |split| |nthCoef| |radicalEigenvector|
+ |ramifiedAtInfinity?| |f02axf| |f04adf| |f07adf| LODO2FUN
+ |setScreenResolution| |semiSubResultantGcdEuclidean2|
+ |stripCommentsAndBlanks| |prefixRagits| |next| |realElementary|
+ |numericalIntegration| |modifyPointData| |find| |localReal?|
+ |branchPoint?| |univariatePolynomialsGcds| |internalZeroSetSplit|
+ |iiacsc| |qelt| |drawToScale| |normDeriv2| |characteristicSet|
+ |increment| |addmod| |OMreadStr| |stFunc1| |rquo| |systemCommand|
+ |makeMulti| |tubeRadius| |consnewpol| |arity| |copy!| |e02gaf|
+ |nextLatticePermutation| |absolutelyIrreducible?| |mathieu24| |d02bbf|
+ |s19abf| |exponential1| |rootPower| |monomial?| |currentScope| |node?|
+ |scanOneDimSubspaces| |tab1| |Frobenius| |listexp| |constDsolve|
+ |mindeg| |normal| |stoseInvertible?reg| |reducedQPowers|
+ |computePowers| |rootSimp| |eigenvector| |cyclicEqual?|
+ |recoverAfterFail| |primitivePart| |leadingIdeal| |d01akf| |e01sbf|
+ |ParCondList| |mainValue| |numFunEvals| |clearTheSymbolTable|
+ |rischNormalize| |linGenPos| |append| |preprocess| |pseudoQuotient|
+ |rightFactorCandidate| |OMputApp| |divideIfCan| |revert|
+ |setButtonValue| |removeSuperfluousQuasiComponents| |cosIfCan|
+ |decompose| |listOfMonoms| |latex| |unit| NOT |delete| |idealSimplify|
+ |multiset| |trigs| |nthExpon| |symbolTableOf| |nary?| |yCoordinates|
+ |alphanumeric| |algSplitSimple| |c05nbf| |addMatchRestricted| OR
+ |quotedOperators| |delay| |semiSubResultantGcdEuclidean1|
+ |OMputEndAttr| |taylorRep| |graphCurves| |s18acf| |bitCoef| |quartic|
+ |f04mcf| |viewWriteDefault| AND |partialNumerators| |cycleEntry|
+ |combineFeatureCompatibility| |generalizedEigenvector| |quote| |term?|
+ |integralAtInfinity?| |d01alf| |f01qdf| |cyclic| |quasiComponent|
+ |quotient| |eulerPhi| |subMatrix| |OMconnOutDevice| |invertibleSet|
+ |countRealRoots| |imagI| |leftRegularRepresentation| |palgextint|
+ |pol| |halfExtendedSubResultantGcd2| |substring?| |setrest!|
+ |critBonD| |inverseColeman| |c06gsf| |euler|
+ |dimensionOfIrreducibleRepresentation| |power| |setVariableOrder|
+ |f04arf| |approxSqrt| |multisect| |outputGeneral| |e01bhf|
+ |nextNormalPoly| |showRegion| |zeroDim?| |failed?| |flagFactor|
+ |members| |rightUnits| |sn| |getVariableOrder| |f01maf| |sinIfCan|
+ |suffix?| |makeViewport3D| |makeCos| |interReduce|
+ |removeRoughlyRedundantFactorsInPol| |badValues|
+ |selectAndPolynomials| |univariatePolynomial| |matrixGcd| |minus!|
+ |cotIfCan| |airyAi| |polarCoordinates| |sqfrFactor|
+ |pmComplexintegrate| |var1Steps| |changeMeasure| |principalIdeal|
+ |coHeight| |f02bjf| |rightTrace| |d01bbf| |simplifyLog|
+ |initiallyReduced?| |linkToFortran| |prefix?| |xRange| |ord| |curve?|
+ |singularAtInfinity?| |explimitedint| |null?| |extractIfCan| |s17dlf|
+ |init| |normal01| |rewriteIdealWithRemainder| |coefficient|
+ |minPoints| |expandPower| |yRange| |solid?| |determinant| |minrank|
+ |lllp| |bipolar| |expextendedint| |cubic| |stopTableInvSet!| |fi2df|
+ |c06ekf| |clipPointsDefault| |semiResultantEuclideannaif| |zRange|
+ |eigenvalues| |generalPosition| |getStream| |remainder| |entry?|
+ |pade| |tryFunctionalDecomposition| |atanIfCan| |lists| |redmat|
+ |sumSquares| |normalDenom| |d02bhf| |tail| |parts| |prepareSubResAlgo|
+ |map!| * |tracePowMod| |vertConcat| |chineseRemainder| |diff|
+ |simpsono| |graphState| |inverse| |nextItem| |removeRedundantFactors|
+ |lift| |safetyMargin| |characteristic| |unitNormal| |calcRanges|
+ |qsetelt!| |fortranReal| |leviCivitaSymbol| |removeConstantTerm|
+ |splitSquarefree| |expressIdealMember| |lllip| |powerAssociative?|
+ |flatten| |stoseSquareFreePart| |reduce| |vspace| |split!| |c06fqf|
+ |chiSquare1| |lowerCase?| |differentialVariables| |swap| |dflist|
+ |HermiteIntegrate| |froot| |symbol?| |iiabs| |nor| |cot2trig|
+ |shanksDiscLogAlgorithm| |infix?| |csubst| |llprop| |rootSplit|
+ |besselI| |log2| |e02ddf| |roughEqualIdeals?| |collectUpper|
+ |radicalSolve| |arguments| |simplifyPower| |tube|
+ |leftCharacteristicPolynomial| |findCycle| |mask| |setMinPoints|
+ |ipow| |sizeMultiplication| |approximate| |hex| |moduleSum|
+ |OMputBVar| |trivialIdeal?| |freeOf?| |iicsch| |roman|
+ |diophantineSystem| |f01rdf| |mpsode| |complex| |iiacsch|
+ |rightRegularRepresentation| |subNodeOf?| |factorFraction|
+ |replaceKthElement| |bumprow| |splitConstant| |toScale| |iiacosh|
+ |goodnessOfFit| |addiag| |e02bef| |mr| |acsch| |fullPartialFraction|
+ |morphism| |bombieriNorm| |ptFunc| |explicitlyFinite?| |cCosh|
+ |f02adf| |setleaves!| |f02fjf| |symmetricRemainder| |norm|
+ |lSpaceBasis| |hasoln| |kmax| |atom?| |npcoef| |chebyshevT|
+ |readIfCan!| |reset| |semiResultantEuclidean2|
+ |inverseIntegralMatrixAtInfinity| |euclideanGroebner| |anfactor|
+ |lazyPseudoRemainder| |contours| |seriesSolve| |extension| |octon|
+ |root| |whileLoop| |semiDegreeSubResultantEuclidean| |positive?|
+ |outerProduct| |getMultiplicationMatrix| |laplace| |compiledFunction|
+ |graphs| |iisech| |normalElement| |edf2ef| |autoReduced?| |critpOrder|
+ |rowEchelonLocal| |polyRDE| |write| |ddFact| |complementaryBasis|
+ |outputAsScript| |bit?| |triangSolve| |save| |fullDisplay| |mkAnswer|
+ |mesh| |stack| |mainPrimitivePart| |leadingCoefficientRicDE|
+ |setfirst!| |bivariateSLPEBR| |isExpt| |concat!| |iiexp| |inR?|
+ |c06ecf| |low| |currentEnv| |getProperties| |antiAssociative?|
+ |LyndonWordsList| |removeCosSq| |f04maf| |wronskianMatrix|
+ |makeVariable| |startTableGcd!| |or| |newTypeLists| |one?|
+ |mightHaveRoots| |iiatan| |leftExactQuotient| |predicate|
+ |exteriorDifferential| |algebraicCoefficients?| |completeHensel|
+ |elRow2!| |OMencodingSGML| |sinhIfCan| |setleft!|
+ |halfExtendedResultant1| |and| |discriminant| |dequeue| |cAtanh|
+ |lyndon?| |oddintegers| |stopMusserTrials| |distribute| |s20acf|
+ |quotientByP| |argumentList!| |mergeFactors| |zeroDimPrimary?|
+ |factor1| |redpps| |empty| |normInvertible?|
+ |semiIndiceSubResultantEuclidean| |factorsOfDegree|
+ |particularSolution| |collectUnder| |radicalRoots|
+ |extractSplittingLeaf| |linearlyDependentOverZ?| |lfinfieldint|
+ |resultantReduit| |lfextlimint| |slash| |ode2| |palgint0|
+ |BumInSepFFE| |sumOfSquares| |lp| |slex| |monomial| |viewpoint|
+ |jordanAlgebra?| |showFortranOutputStack| |palglimint| |f04atf| F
+ |errorKind| |d02cjf| |fractRadix| |s17ahf| |hasTopPredicate?|
+ |setTex!| |bezoutMatrix| |axesColorDefault| |approxNthRoot| |s17aef|
+ |selectIntegrationRoutines| |tubeRadiusDefault| |fortranComplex|
+ |safeCeiling| |identification| |headReduce| |reducedForm|
+ |discreteLog| |meshFun2Var| |multivariate| |check| |isQuotient|
+ |moebiusMu| |sin2csc| FG2F |goodPoint| |drawComplexVectorField| |sPol|
+ |arg1| |repeating?| |scopes| |triangularSystems| |heapSort|
+ |represents| |variables| |solveInField| |setClosed| |unmakeSUP|
+ |e02agf| |float?| |s18aef| |bag| |arg2| |po| |hdmpToDmp| UP2UTS
+ |primintfldpoly| |horizConcat| |select!| |algebraicVariables|
+ |SturmHabichtMultiple| |varList| |expenseOfEvaluation| |leftLcm|
+ |symmetricPower| |cos2sec| |leftRank| |nonSingularModel| |separant|
+ |s18aff| |mapBivariate| |overlabel|
+ |generalizedContinuumHypothesisAssumed?| |tubePlot| |primextendedint|
+ |imagj| |csch2sinh| |OMputAttr| |inRadical?| |e01saf| |block|
+ |LiePoly| |symmetricProduct| |medialSet| |purelyTranscendental?|
+ |conditions| |OMputBind| |probablyZeroDim?| |numberOfNormalPoly|
+ |makeGraphImage| |groebgen| |abelianGroup| |leftMult| |linSolve|
+ |wordInStrongGenerators| |removeRedundantFactorsInContents|
+ |accuracyIF| |identity| |component| |palgLODE0| |setMinPoints3D|
+ |twoFactor| |denominator| |match| |wholeRagits| |LazardQuotient2|
+ |normalizeIfCan| |hash| |OMgetBind| |weierstrass| |height| |digits|
+ |OMputError| |orthonormalBasis| |setnext!| |weakBiRank|
+ |primPartElseUnitCanonical!| |internalSubQuasiComponent?| |variable?|
+ |concat| |crest| |critB| |algebraicOf| |count| |aCubic| |equality|
+ |extractTop!| |createMultiplicationTable| |invertibleElseSplit?|
+ |write!| |sturmSequence| |minimumExponent| |constantToUnaryFunction|
+ |operation| |stoseInvertibleSet| |buildSyntax| |clearTable!|
+ |lazyPremWithDefault| |extensionDegree| |linearAssociatedOrder|
+ |s14aaf| |relerror| |f04qaf| |rewriteIdealWithHeadRemainder|
+ |cscIfCan| |hermiteH| |internalSubPolSet?| |doubleResultant|
+ |OMputString| |chiSquare| |multinomial| |makeSin| |rightRank|
+ |enterInCache| |clip| |sturmVariationsOf| |euclideanSize| |reorder|
+ |gderiv| |removeCoshSq| |beauzamyBound| |torsionIfCan|
+ |commutativeEquality| |quadraticForm| |curveColor| |backOldPos|
+ |factorList| |padicallyExpand| |changeBase| |nonQsign| |associates?|
+ |vark| |e04jaf| |ScanFloatIgnoreSpaces| |nil| |infinite|
+ |arbitraryExponent| |approximate| |complex| |shallowMutable|
+ |canonical| |noetherian| |central| |partiallyOrderedSet|
+ |arbitraryPrecision| |canonicalsClosed| |noZeroDivisors|
+ |rightUnitary| |leftUnitary| |additiveValuation| |unitsKnown|
+ |canonicalUnitNormal| |multiplicativeValuation| |finiteAggregate|
+ |shallowlyMutable| |commutative|) \ No newline at end of file
diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase
index e53db007..a9ea81c4 100644
--- a/src/share/algebra/interp.daase
+++ b/src/share/algebra/interp.daase
@@ -1,4895 +1,4899 @@
-(3135855 . 3409760537)
-((-4029 (((-108) (-1 (-108) |#2| |#2|) $) 63) (((-108) $) NIL)) (-3587 (($ (-1 (-108) |#2| |#2|) $) 17) (($ $) NIL)) (-2377 ((|#2| $ (-520) |#2|) NIL) ((|#2| $ (-1131 (-520)) |#2|) 34)) (-2447 (($ $) 59)) (-3856 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 41) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 38) ((|#2| (-1 |#2| |#2| |#2|) $) 37)) (-3232 (((-520) (-1 (-108) |#2|) $) 22) (((-520) |#2| $) NIL) (((-520) |#2| $ (-520)) 71)) (-3828 (((-586 |#2|) $) 13)) (-1819 (($ (-1 (-108) |#2| |#2|) $ $) 48) (($ $ $) NIL)) (-3830 (($ (-1 |#2| |#2|) $) 29)) (-1389 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 45)) (-1659 (($ |#2| $ (-520)) NIL) (($ $ $ (-520)) 50)) (-2985 (((-3 |#2| "failed") (-1 (-108) |#2|) $) 24)) (-4155 (((-108) (-1 (-108) |#2|) $) 21)) (-2543 ((|#2| $ (-520) |#2|) NIL) ((|#2| $ (-520)) NIL) (($ $ (-1131 (-520))) 49)) (-3690 (($ $ (-520)) 56) (($ $ (-1131 (-520))) 55)) (-4159 (((-706) (-1 (-108) |#2|) $) 26) (((-706) |#2| $) NIL)) (-1913 (($ $ $ (-520)) 52)) (-2403 (($ $) 51)) (-2200 (($ (-586 |#2|)) 53)) (-4156 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 64) (($ (-586 $)) 62)) (-2188 (((-791) $) 69)) (-1662 (((-108) (-1 (-108) |#2|) $) 20)) (-1530 (((-108) $ $) 70)) (-1548 (((-108) $ $) 73)))
-(((-18 |#1| |#2|) (-10 -8 (-15 -1530 ((-108) |#1| |#1|)) (-15 -2188 ((-791) |#1|)) (-15 -1548 ((-108) |#1| |#1|)) (-15 -3587 (|#1| |#1|)) (-15 -3587 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -2447 (|#1| |#1|)) (-15 -1913 (|#1| |#1| |#1| (-520))) (-15 -4029 ((-108) |#1|)) (-15 -1819 (|#1| |#1| |#1|)) (-15 -3232 ((-520) |#2| |#1| (-520))) (-15 -3232 ((-520) |#2| |#1|)) (-15 -3232 ((-520) (-1 (-108) |#2|) |#1|)) (-15 -4029 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -1819 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -2377 (|#2| |#1| (-1131 (-520)) |#2|)) (-15 -1659 (|#1| |#1| |#1| (-520))) (-15 -1659 (|#1| |#2| |#1| (-520))) (-15 -3690 (|#1| |#1| (-1131 (-520)))) (-15 -3690 (|#1| |#1| (-520))) (-15 -2543 (|#1| |#1| (-1131 (-520)))) (-15 -1389 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4156 (|#1| (-586 |#1|))) (-15 -4156 (|#1| |#1| |#1|)) (-15 -4156 (|#1| |#2| |#1|)) (-15 -4156 (|#1| |#1| |#2|)) (-15 -2200 (|#1| (-586 |#2|))) (-15 -2985 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -3856 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3856 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3856 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2543 (|#2| |#1| (-520))) (-15 -2543 (|#2| |#1| (-520) |#2|)) (-15 -2377 (|#2| |#1| (-520) |#2|)) (-15 -4159 ((-706) |#2| |#1|)) (-15 -3828 ((-586 |#2|) |#1|)) (-15 -4159 ((-706) (-1 (-108) |#2|) |#1|)) (-15 -4155 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -1662 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3830 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1389 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2403 (|#1| |#1|))) (-19 |#2|) (-1118)) (T -18))
-NIL
-(-10 -8 (-15 -1530 ((-108) |#1| |#1|)) (-15 -2188 ((-791) |#1|)) (-15 -1548 ((-108) |#1| |#1|)) (-15 -3587 (|#1| |#1|)) (-15 -3587 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -2447 (|#1| |#1|)) (-15 -1913 (|#1| |#1| |#1| (-520))) (-15 -4029 ((-108) |#1|)) (-15 -1819 (|#1| |#1| |#1|)) (-15 -3232 ((-520) |#2| |#1| (-520))) (-15 -3232 ((-520) |#2| |#1|)) (-15 -3232 ((-520) (-1 (-108) |#2|) |#1|)) (-15 -4029 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -1819 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -2377 (|#2| |#1| (-1131 (-520)) |#2|)) (-15 -1659 (|#1| |#1| |#1| (-520))) (-15 -1659 (|#1| |#2| |#1| (-520))) (-15 -3690 (|#1| |#1| (-1131 (-520)))) (-15 -3690 (|#1| |#1| (-520))) (-15 -2543 (|#1| |#1| (-1131 (-520)))) (-15 -1389 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4156 (|#1| (-586 |#1|))) (-15 -4156 (|#1| |#1| |#1|)) (-15 -4156 (|#1| |#2| |#1|)) (-15 -4156 (|#1| |#1| |#2|)) (-15 -2200 (|#1| (-586 |#2|))) (-15 -2985 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -3856 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3856 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3856 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2543 (|#2| |#1| (-520))) (-15 -2543 (|#2| |#1| (-520) |#2|)) (-15 -2377 (|#2| |#1| (-520) |#2|)) (-15 -4159 ((-706) |#2| |#1|)) (-15 -3828 ((-586 |#2|) |#1|)) (-15 -4159 ((-706) (-1 (-108) |#2|) |#1|)) (-15 -4155 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -1662 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3830 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1389 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2403 (|#1| |#1|)))
-((-1414 (((-108) $ $) 19 (|has| |#1| (-1012)))) (-1476 (((-1169) $ (-520) (-520)) 40 (|has| $ (-6 -4230)))) (-4029 (((-108) (-1 (-108) |#1| |#1|) $) 98) (((-108) $) 92 (|has| |#1| (-783)))) (-3587 (($ (-1 (-108) |#1| |#1|) $) 89 (|has| $ (-6 -4230))) (($ $) 88 (-12 (|has| |#1| (-783)) (|has| $ (-6 -4230))))) (-3210 (($ (-1 (-108) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-783)))) (-2063 (((-108) $ (-706)) 8)) (-2377 ((|#1| $ (-520) |#1|) 52 (|has| $ (-6 -4230))) ((|#1| $ (-1131 (-520)) |#1|) 58 (|has| $ (-6 -4230)))) (-1627 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4229)))) (-3961 (($) 7 T CONST)) (-2447 (($ $) 90 (|has| $ (-6 -4230)))) (-1861 (($ $) 100)) (-2331 (($ $) 78 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-1421 (($ |#1| $) 77 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4229)))) (-3856 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4229))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4229)))) (-3846 ((|#1| $ (-520) |#1|) 53 (|has| $ (-6 -4230)))) (-3623 ((|#1| $ (-520)) 51)) (-3232 (((-520) (-1 (-108) |#1|) $) 97) (((-520) |#1| $) 96 (|has| |#1| (-1012))) (((-520) |#1| $ (-520)) 95 (|has| |#1| (-1012)))) (-3828 (((-586 |#1|) $) 30 (|has| $ (-6 -4229)))) (-1810 (($ (-706) |#1|) 69)) (-3027 (((-108) $ (-706)) 9)) (-2567 (((-520) $) 43 (|has| (-520) (-783)))) (-2809 (($ $ $) 87 (|has| |#1| (-783)))) (-1819 (($ (-1 (-108) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-783)))) (-3702 (((-586 |#1|) $) 29 (|has| $ (-6 -4229)))) (-2422 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-1752 (((-520) $) 44 (|has| (-520) (-783)))) (-2446 (($ $ $) 86 (|has| |#1| (-783)))) (-3830 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-1390 (((-108) $ (-706)) 10)) (-1239 (((-1066) $) 22 (|has| |#1| (-1012)))) (-1659 (($ |#1| $ (-520)) 60) (($ $ $ (-520)) 59)) (-3622 (((-586 (-520)) $) 46)) (-2603 (((-108) (-520) $) 47)) (-4142 (((-1030) $) 21 (|has| |#1| (-1012)))) (-2293 ((|#1| $) 42 (|has| (-520) (-783)))) (-2985 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-2936 (($ $ |#1|) 41 (|has| $ (-6 -4230)))) (-4155 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 |#1|))) 26 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-268 |#1|)) 25 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-586 |#1|) (-586 |#1|)) 23 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))) (-2533 (((-108) $ $) 14)) (-2094 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-1523 (((-586 |#1|) $) 48)) (-4018 (((-108) $) 11)) (-2238 (($) 12)) (-2543 ((|#1| $ (-520) |#1|) 50) ((|#1| $ (-520)) 49) (($ $ (-1131 (-520))) 63)) (-3690 (($ $ (-520)) 62) (($ $ (-1131 (-520))) 61)) (-4159 (((-706) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4229))) (((-706) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-1913 (($ $ $ (-520)) 91 (|has| $ (-6 -4230)))) (-2403 (($ $) 13)) (-1429 (((-496) $) 79 (|has| |#1| (-561 (-496))))) (-2200 (($ (-586 |#1|)) 70)) (-4156 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-586 $)) 65)) (-2188 (((-791) $) 18 (|has| |#1| (-560 (-791))))) (-1662 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4229)))) (-1573 (((-108) $ $) 84 (|has| |#1| (-783)))) (-1557 (((-108) $ $) 83 (|has| |#1| (-783)))) (-1530 (((-108) $ $) 20 (|has| |#1| (-1012)))) (-1565 (((-108) $ $) 85 (|has| |#1| (-783)))) (-1548 (((-108) $ $) 82 (|has| |#1| (-783)))) (-3474 (((-706) $) 6 (|has| $ (-6 -4229)))))
-(((-19 |#1|) (-1195) (-1118)) (T -19))
-NIL
-(-13 (-346 |t#1|) (-10 -7 (-6 -4230)))
-(((-33) . T) ((-97) -3700 (|has| |#1| (-1012)) (|has| |#1| (-783))) ((-560 (-791)) -3700 (|has| |#1| (-1012)) (|has| |#1| (-783)) (|has| |#1| (-560 (-791)))) ((-139 |#1|) . T) ((-561 (-496)) |has| |#1| (-561 (-496))) ((-260 #0=(-520) |#1|) . T) ((-262 #0# |#1|) . T) ((-283 |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))) ((-346 |#1|) . T) ((-459 |#1|) . T) ((-553 #0# |#1|) . T) ((-481 |#1| |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))) ((-591 |#1|) . T) ((-783) |has| |#1| (-783)) ((-1012) -3700 (|has| |#1| (-1012)) (|has| |#1| (-783))) ((-1118) . T))
-((-1917 (((-3 $ "failed") $ $) 12)) (-1611 (($ $) NIL) (($ $ $) 9)) (* (($ (-849) $) NIL) (($ (-706) $) 16) (($ (-520) $) 21)))
-(((-20 |#1|) (-10 -8 (-15 * (|#1| (-520) |#1|)) (-15 -1611 (|#1| |#1| |#1|)) (-15 -1611 (|#1| |#1|)) (-15 -1917 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-706) |#1|)) (-15 * (|#1| (-849) |#1|))) (-21)) (T -20))
-NIL
-(-10 -8 (-15 * (|#1| (-520) |#1|)) (-15 -1611 (|#1| |#1| |#1|)) (-15 -1611 (|#1| |#1|)) (-15 -1917 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-706) |#1|)) (-15 * (|#1| (-849) |#1|)))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-1917 (((-3 $ "failed") $ $) 19)) (-3961 (($) 17 T CONST)) (-1239 (((-1066) $) 9)) (-4142 (((-1030) $) 10)) (-2188 (((-791) $) 11)) (-3560 (($) 18 T CONST)) (-1530 (((-108) $ $) 6)) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20)))
-(((-21) (-1195)) (T -21))
-((-1611 (*1 *1 *1) (-4 *1 (-21))) (-1611 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-520)))))
-(-13 (-124) (-10 -8 (-15 -1611 ($ $)) (-15 -1611 ($ $ $)) (-15 * ($ (-520) $))))
-(((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-560 (-791)) . T) ((-1012) . T))
-((-2906 (((-108) $) 10)) (-3961 (($) 15)) (* (($ (-849) $) 14) (($ (-706) $) 18)))
-(((-22 |#1|) (-10 -8 (-15 * (|#1| (-706) |#1|)) (-15 -2906 ((-108) |#1|)) (-15 -3961 (|#1|)) (-15 * (|#1| (-849) |#1|))) (-23)) (T -22))
-NIL
-(-10 -8 (-15 * (|#1| (-706) |#1|)) (-15 -2906 ((-108) |#1|)) (-15 -3961 (|#1|)) (-15 * (|#1| (-849) |#1|)))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-3961 (($) 17 T CONST)) (-1239 (((-1066) $) 9)) (-4142 (((-1030) $) 10)) (-2188 (((-791) $) 11)) (-3560 (($) 18 T CONST)) (-1530 (((-108) $ $) 6)) (-1601 (($ $ $) 14)) (* (($ (-849) $) 13) (($ (-706) $) 15)))
-(((-23) (-1195)) (T -23))
-((-3560 (*1 *1) (-4 *1 (-23))) (-3961 (*1 *1) (-4 *1 (-23))) (-2906 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-108)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-706)))))
-(-13 (-25) (-10 -8 (-15 (-3560) ($) -2675) (-15 -3961 ($) -2675) (-15 -2906 ((-108) $)) (-15 * ($ (-706) $))))
-(((-25) . T) ((-97) . T) ((-560 (-791)) . T) ((-1012) . T))
-((* (($ (-849) $) 10)))
-(((-24 |#1|) (-10 -8 (-15 * (|#1| (-849) |#1|))) (-25)) (T -24))
-NIL
-(-10 -8 (-15 * (|#1| (-849) |#1|)))
-((-1414 (((-108) $ $) 7)) (-1239 (((-1066) $) 9)) (-4142 (((-1030) $) 10)) (-2188 (((-791) $) 11)) (-1530 (((-108) $ $) 6)) (-1601 (($ $ $) 14)) (* (($ (-849) $) 13)))
-(((-25) (-1195)) (T -25))
-((-1601 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-849)))))
-(-13 (-1012) (-10 -8 (-15 -1601 ($ $ $)) (-15 * ($ (-849) $))))
-(((-97) . T) ((-560 (-791)) . T) ((-1012) . T))
-((-3953 (((-586 $) (-880 $)) 29) (((-586 $) (-1079 $)) 16) (((-586 $) (-1079 $) (-1083)) 20)) (-2057 (($ (-880 $)) 27) (($ (-1079 $)) 11) (($ (-1079 $) (-1083)) 54)) (-2150 (((-586 $) (-880 $)) 30) (((-586 $) (-1079 $)) 18) (((-586 $) (-1079 $) (-1083)) 19)) (-2288 (($ (-880 $)) 28) (($ (-1079 $)) 13) (($ (-1079 $) (-1083)) NIL)))
-(((-26 |#1|) (-10 -8 (-15 -3953 ((-586 |#1|) (-1079 |#1|) (-1083))) (-15 -3953 ((-586 |#1|) (-1079 |#1|))) (-15 -3953 ((-586 |#1|) (-880 |#1|))) (-15 -2057 (|#1| (-1079 |#1|) (-1083))) (-15 -2057 (|#1| (-1079 |#1|))) (-15 -2057 (|#1| (-880 |#1|))) (-15 -2150 ((-586 |#1|) (-1079 |#1|) (-1083))) (-15 -2150 ((-586 |#1|) (-1079 |#1|))) (-15 -2150 ((-586 |#1|) (-880 |#1|))) (-15 -2288 (|#1| (-1079 |#1|) (-1083))) (-15 -2288 (|#1| (-1079 |#1|))) (-15 -2288 (|#1| (-880 |#1|)))) (-27)) (T -26))
-NIL
-(-10 -8 (-15 -3953 ((-586 |#1|) (-1079 |#1|) (-1083))) (-15 -3953 ((-586 |#1|) (-1079 |#1|))) (-15 -3953 ((-586 |#1|) (-880 |#1|))) (-15 -2057 (|#1| (-1079 |#1|) (-1083))) (-15 -2057 (|#1| (-1079 |#1|))) (-15 -2057 (|#1| (-880 |#1|))) (-15 -2150 ((-586 |#1|) (-1079 |#1|) (-1083))) (-15 -2150 ((-586 |#1|) (-1079 |#1|))) (-15 -2150 ((-586 |#1|) (-880 |#1|))) (-15 -2288 (|#1| (-1079 |#1|) (-1083))) (-15 -2288 (|#1| (-1079 |#1|))) (-15 -2288 (|#1| (-880 |#1|))))
-((-1414 (((-108) $ $) 7)) (-3953 (((-586 $) (-880 $)) 80) (((-586 $) (-1079 $)) 79) (((-586 $) (-1079 $) (-1083)) 78)) (-2057 (($ (-880 $)) 83) (($ (-1079 $)) 82) (($ (-1079 $) (-1083)) 81)) (-2906 (((-108) $) 16)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) 41)) (-2583 (($ $) 40)) (-1671 (((-108) $) 38)) (-1917 (((-3 $ "failed") $ $) 19)) (-3024 (($ $) 73)) (-1507 (((-391 $) $) 72)) (-1927 (($ $) 92)) (-1327 (((-108) $ $) 59)) (-3961 (($) 17 T CONST)) (-2150 (((-586 $) (-880 $)) 86) (((-586 $) (-1079 $)) 85) (((-586 $) (-1079 $) (-1083)) 84)) (-2288 (($ (-880 $)) 89) (($ (-1079 $)) 88) (($ (-1079 $) (-1083)) 87)) (-2276 (($ $ $) 55)) (-1540 (((-3 $ "failed") $) 34)) (-2253 (($ $ $) 56)) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) 51)) (-2036 (((-108) $) 71)) (-1537 (((-108) $) 31)) (-2322 (($ $ (-520)) 91)) (-3188 (((-3 (-586 $) "failed") (-586 $) $) 52)) (-2222 (($ $ $) 46) (($ (-586 $)) 45)) (-1239 (((-1066) $) 9)) (-3093 (($ $) 70)) (-4142 (((-1030) $) 10)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) 44)) (-2257 (($ $ $) 48) (($ (-586 $)) 47)) (-1916 (((-391 $) $) 74)) (-1283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2230 (((-3 $ "failed") $ $) 42)) (-2608 (((-3 (-586 $) "failed") (-586 $) $) 50)) (-3704 (((-706) $) 58)) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) 57)) (-2188 (((-791) $) 11) (($ (-520)) 28) (($ $) 43) (($ (-380 (-520))) 65)) (-3251 (((-706)) 29)) (-2559 (((-108) $ $) 39)) (-3504 (($ $ (-849)) 26) (($ $ (-706)) 33) (($ $ (-520)) 69)) (-3560 (($) 18 T CONST)) (-3570 (($) 30 T CONST)) (-1530 (((-108) $ $) 6)) (-1619 (($ $ $) 64)) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-706)) 32) (($ $ (-520)) 68) (($ $ (-380 (-520))) 90)) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ $ $) 24) (($ $ (-380 (-520))) 67) (($ (-380 (-520)) $) 66)))
-(((-27) (-1195)) (T -27))
-((-2288 (*1 *1 *2) (-12 (-5 *2 (-880 *1)) (-4 *1 (-27)))) (-2288 (*1 *1 *2) (-12 (-5 *2 (-1079 *1)) (-4 *1 (-27)))) (-2288 (*1 *1 *2 *3) (-12 (-5 *2 (-1079 *1)) (-5 *3 (-1083)) (-4 *1 (-27)))) (-2150 (*1 *2 *3) (-12 (-5 *3 (-880 *1)) (-4 *1 (-27)) (-5 *2 (-586 *1)))) (-2150 (*1 *2 *3) (-12 (-5 *3 (-1079 *1)) (-4 *1 (-27)) (-5 *2 (-586 *1)))) (-2150 (*1 *2 *3 *4) (-12 (-5 *3 (-1079 *1)) (-5 *4 (-1083)) (-4 *1 (-27)) (-5 *2 (-586 *1)))) (-2057 (*1 *1 *2) (-12 (-5 *2 (-880 *1)) (-4 *1 (-27)))) (-2057 (*1 *1 *2) (-12 (-5 *2 (-1079 *1)) (-4 *1 (-27)))) (-2057 (*1 *1 *2 *3) (-12 (-5 *2 (-1079 *1)) (-5 *3 (-1083)) (-4 *1 (-27)))) (-3953 (*1 *2 *3) (-12 (-5 *3 (-880 *1)) (-4 *1 (-27)) (-5 *2 (-586 *1)))) (-3953 (*1 *2 *3) (-12 (-5 *3 (-1079 *1)) (-4 *1 (-27)) (-5 *2 (-586 *1)))) (-3953 (*1 *2 *3 *4) (-12 (-5 *3 (-1079 *1)) (-5 *4 (-1083)) (-4 *1 (-27)) (-5 *2 (-586 *1)))))
-(-13 (-336) (-926) (-10 -8 (-15 -2288 ($ (-880 $))) (-15 -2288 ($ (-1079 $))) (-15 -2288 ($ (-1079 $) (-1083))) (-15 -2150 ((-586 $) (-880 $))) (-15 -2150 ((-586 $) (-1079 $))) (-15 -2150 ((-586 $) (-1079 $) (-1083))) (-15 -2057 ($ (-880 $))) (-15 -2057 ($ (-1079 $))) (-15 -2057 ($ (-1079 $) (-1083))) (-15 -3953 ((-586 $) (-880 $))) (-15 -3953 ((-586 $) (-1079 $))) (-15 -3953 ((-586 $) (-1079 $) (-1083)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-380 (-520))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-124) . T) ((-560 (-791)) . T) ((-157) . T) ((-219) . T) ((-264) . T) ((-281) . T) ((-336) . T) ((-424) . T) ((-512) . T) ((-588 #0#) . T) ((-588 $) . T) ((-653 #0#) . T) ((-653 $) . T) ((-662) . T) ((-848) . T) ((-926) . T) ((-975 #0#) . T) ((-975 $) . T) ((-969) . T) ((-976) . T) ((-1024) . T) ((-1012) . T) ((-1122) . T))
-((-3953 (((-586 $) (-880 $)) NIL) (((-586 $) (-1079 $)) NIL) (((-586 $) (-1079 $) (-1083)) 50) (((-586 $) $) 19) (((-586 $) $ (-1083)) 41)) (-2057 (($ (-880 $)) NIL) (($ (-1079 $)) NIL) (($ (-1079 $) (-1083)) 52) (($ $) 17) (($ $ (-1083)) 37)) (-2150 (((-586 $) (-880 $)) NIL) (((-586 $) (-1079 $)) NIL) (((-586 $) (-1079 $) (-1083)) 48) (((-586 $) $) 15) (((-586 $) $ (-1083)) 43)) (-2288 (($ (-880 $)) NIL) (($ (-1079 $)) NIL) (($ (-1079 $) (-1083)) NIL) (($ $) 12) (($ $ (-1083)) 39)))
-(((-28 |#1| |#2|) (-10 -8 (-15 -3953 ((-586 |#1|) |#1| (-1083))) (-15 -2057 (|#1| |#1| (-1083))) (-15 -3953 ((-586 |#1|) |#1|)) (-15 -2057 (|#1| |#1|)) (-15 -2150 ((-586 |#1|) |#1| (-1083))) (-15 -2288 (|#1| |#1| (-1083))) (-15 -2150 ((-586 |#1|) |#1|)) (-15 -2288 (|#1| |#1|)) (-15 -3953 ((-586 |#1|) (-1079 |#1|) (-1083))) (-15 -3953 ((-586 |#1|) (-1079 |#1|))) (-15 -3953 ((-586 |#1|) (-880 |#1|))) (-15 -2057 (|#1| (-1079 |#1|) (-1083))) (-15 -2057 (|#1| (-1079 |#1|))) (-15 -2057 (|#1| (-880 |#1|))) (-15 -2150 ((-586 |#1|) (-1079 |#1|) (-1083))) (-15 -2150 ((-586 |#1|) (-1079 |#1|))) (-15 -2150 ((-586 |#1|) (-880 |#1|))) (-15 -2288 (|#1| (-1079 |#1|) (-1083))) (-15 -2288 (|#1| (-1079 |#1|))) (-15 -2288 (|#1| (-880 |#1|)))) (-29 |#2|) (-13 (-783) (-512))) (T -28))
-NIL
-(-10 -8 (-15 -3953 ((-586 |#1|) |#1| (-1083))) (-15 -2057 (|#1| |#1| (-1083))) (-15 -3953 ((-586 |#1|) |#1|)) (-15 -2057 (|#1| |#1|)) (-15 -2150 ((-586 |#1|) |#1| (-1083))) (-15 -2288 (|#1| |#1| (-1083))) (-15 -2150 ((-586 |#1|) |#1|)) (-15 -2288 (|#1| |#1|)) (-15 -3953 ((-586 |#1|) (-1079 |#1|) (-1083))) (-15 -3953 ((-586 |#1|) (-1079 |#1|))) (-15 -3953 ((-586 |#1|) (-880 |#1|))) (-15 -2057 (|#1| (-1079 |#1|) (-1083))) (-15 -2057 (|#1| (-1079 |#1|))) (-15 -2057 (|#1| (-880 |#1|))) (-15 -2150 ((-586 |#1|) (-1079 |#1|) (-1083))) (-15 -2150 ((-586 |#1|) (-1079 |#1|))) (-15 -2150 ((-586 |#1|) (-880 |#1|))) (-15 -2288 (|#1| (-1079 |#1|) (-1083))) (-15 -2288 (|#1| (-1079 |#1|))) (-15 -2288 (|#1| (-880 |#1|))))
-((-1414 (((-108) $ $) 7)) (-3953 (((-586 $) (-880 $)) 80) (((-586 $) (-1079 $)) 79) (((-586 $) (-1079 $) (-1083)) 78) (((-586 $) $) 126) (((-586 $) $ (-1083)) 124)) (-2057 (($ (-880 $)) 83) (($ (-1079 $)) 82) (($ (-1079 $) (-1083)) 81) (($ $) 127) (($ $ (-1083)) 125)) (-2906 (((-108) $) 16)) (-4081 (((-586 (-1083)) $) 201)) (-1278 (((-380 (-1079 $)) $ (-559 $)) 233 (|has| |#1| (-512)))) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) 41)) (-2583 (($ $) 40)) (-1671 (((-108) $) 38)) (-1883 (((-586 (-559 $)) $) 164)) (-1917 (((-3 $ "failed") $ $) 19)) (-3299 (($ $ (-586 (-559 $)) (-586 $)) 154) (($ $ (-586 (-268 $))) 153) (($ $ (-268 $)) 152)) (-3024 (($ $) 73)) (-1507 (((-391 $) $) 72)) (-1927 (($ $) 92)) (-1327 (((-108) $ $) 59)) (-3961 (($) 17 T CONST)) (-2150 (((-586 $) (-880 $)) 86) (((-586 $) (-1079 $)) 85) (((-586 $) (-1079 $) (-1083)) 84) (((-586 $) $) 130) (((-586 $) $ (-1083)) 128)) (-2288 (($ (-880 $)) 89) (($ (-1079 $)) 88) (($ (-1079 $) (-1083)) 87) (($ $) 131) (($ $ (-1083)) 129)) (-1296 (((-3 (-880 |#1|) "failed") $) 251 (|has| |#1| (-969))) (((-3 (-380 (-880 |#1|)) "failed") $) 235 (|has| |#1| (-512))) (((-3 |#1| "failed") $) 197) (((-3 (-520) "failed") $) 195 (|has| |#1| (-960 (-520)))) (((-3 (-1083) "failed") $) 188) (((-3 (-559 $) "failed") $) 139) (((-3 (-380 (-520)) "failed") $) 123 (-3700 (-12 (|has| |#1| (-960 (-520))) (|has| |#1| (-512))) (|has| |#1| (-960 (-380 (-520))))))) (-1482 (((-880 |#1|) $) 252 (|has| |#1| (-969))) (((-380 (-880 |#1|)) $) 236 (|has| |#1| (-512))) ((|#1| $) 198) (((-520) $) 194 (|has| |#1| (-960 (-520)))) (((-1083) $) 189) (((-559 $) $) 140) (((-380 (-520)) $) 122 (-3700 (-12 (|has| |#1| (-960 (-520))) (|has| |#1| (-512))) (|has| |#1| (-960 (-380 (-520))))))) (-2276 (($ $ $) 55)) (-2756 (((-626 |#1|) (-626 $)) 241 (|has| |#1| (-969))) (((-2 (|:| -3927 (-626 |#1|)) (|:| |vec| (-1164 |#1|))) (-626 $) (-1164 $)) 240 (|has| |#1| (-969))) (((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 $) (-1164 $)) 121 (-3700 (-4006 (|has| |#1| (-969)) (|has| |#1| (-582 (-520)))) (-4006 (|has| |#1| (-582 (-520))) (|has| |#1| (-969))))) (((-626 (-520)) (-626 $)) 120 (-3700 (-4006 (|has| |#1| (-969)) (|has| |#1| (-582 (-520)))) (-4006 (|has| |#1| (-582 (-520))) (|has| |#1| (-969)))))) (-1540 (((-3 $ "failed") $) 34)) (-2253 (($ $ $) 56)) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) 51)) (-2036 (((-108) $) 71)) (-1272 (((-817 (-352) $) $ (-820 (-352)) (-817 (-352) $)) 193 (|has| |#1| (-814 (-352)))) (((-817 (-520) $) $ (-820 (-520)) (-817 (-520) $)) 192 (|has| |#1| (-814 (-520))))) (-1255 (($ (-586 $)) 158) (($ $) 157)) (-3357 (((-586 (-110)) $) 165)) (-3877 (((-110) (-110)) 166)) (-1537 (((-108) $) 31)) (-2777 (((-108) $) 186 (|has| $ (-960 (-520))))) (-4115 (($ $) 218 (|has| |#1| (-969)))) (-2800 (((-1035 |#1| (-559 $)) $) 217 (|has| |#1| (-969)))) (-2322 (($ $ (-520)) 91)) (-3188 (((-3 (-586 $) "failed") (-586 $) $) 52)) (-2433 (((-1079 $) (-559 $)) 183 (|has| $ (-969)))) (-2809 (($ $ $) 137)) (-2446 (($ $ $) 136)) (-1389 (($ (-1 $ $) (-559 $)) 172)) (-2690 (((-3 (-559 $) "failed") $) 162)) (-2222 (($ $ $) 46) (($ (-586 $)) 45)) (-1239 (((-1066) $) 9)) (-1265 (((-586 (-559 $)) $) 163)) (-2904 (($ (-110) (-586 $)) 171) (($ (-110) $) 170)) (-3548 (((-3 (-586 $) "failed") $) 212 (|has| |#1| (-1024)))) (-2090 (((-3 (-2 (|:| |val| $) (|:| -2647 (-520))) "failed") $) 221 (|has| |#1| (-969)))) (-1205 (((-3 (-586 $) "failed") $) 214 (|has| |#1| (-25)))) (-3929 (((-3 (-2 (|:| -2972 (-520)) (|:| |var| (-559 $))) "failed") $) 215 (|has| |#1| (-25)))) (-2568 (((-3 (-2 (|:| |var| (-559 $)) (|:| -2647 (-520))) "failed") $ (-1083)) 220 (|has| |#1| (-969))) (((-3 (-2 (|:| |var| (-559 $)) (|:| -2647 (-520))) "failed") $ (-110)) 219 (|has| |#1| (-969))) (((-3 (-2 (|:| |var| (-559 $)) (|:| -2647 (-520))) "failed") $) 213 (|has| |#1| (-1024)))) (-1784 (((-108) $ (-1083)) 169) (((-108) $ (-110)) 168)) (-3093 (($ $) 70)) (-4146 (((-706) $) 161)) (-4142 (((-1030) $) 10)) (-3103 (((-108) $) 199)) (-3113 ((|#1| $) 200)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) 44)) (-2257 (($ $ $) 48) (($ (-586 $)) 47)) (-4134 (((-108) $ (-1083)) 174) (((-108) $ $) 173)) (-1916 (((-391 $) $) 74)) (-1283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2230 (((-3 $ "failed") $ $) 42)) (-2608 (((-3 (-586 $) "failed") (-586 $) $) 50)) (-3615 (((-108) $) 185 (|has| $ (-960 (-520))))) (-2286 (($ $ (-1083) (-706) (-1 $ $)) 225 (|has| |#1| (-969))) (($ $ (-1083) (-706) (-1 $ (-586 $))) 224 (|has| |#1| (-969))) (($ $ (-586 (-1083)) (-586 (-706)) (-586 (-1 $ (-586 $)))) 223 (|has| |#1| (-969))) (($ $ (-586 (-1083)) (-586 (-706)) (-586 (-1 $ $))) 222 (|has| |#1| (-969))) (($ $ (-586 (-110)) (-586 $) (-1083)) 211 (|has| |#1| (-561 (-496)))) (($ $ (-110) $ (-1083)) 210 (|has| |#1| (-561 (-496)))) (($ $) 209 (|has| |#1| (-561 (-496)))) (($ $ (-586 (-1083))) 208 (|has| |#1| (-561 (-496)))) (($ $ (-1083)) 207 (|has| |#1| (-561 (-496)))) (($ $ (-110) (-1 $ $)) 182) (($ $ (-110) (-1 $ (-586 $))) 181) (($ $ (-586 (-110)) (-586 (-1 $ (-586 $)))) 180) (($ $ (-586 (-110)) (-586 (-1 $ $))) 179) (($ $ (-1083) (-1 $ $)) 178) (($ $ (-1083) (-1 $ (-586 $))) 177) (($ $ (-586 (-1083)) (-586 (-1 $ (-586 $)))) 176) (($ $ (-586 (-1083)) (-586 (-1 $ $))) 175) (($ $ (-586 $) (-586 $)) 146) (($ $ $ $) 145) (($ $ (-268 $)) 144) (($ $ (-586 (-268 $))) 143) (($ $ (-586 (-559 $)) (-586 $)) 142) (($ $ (-559 $) $) 141)) (-3704 (((-706) $) 58)) (-2543 (($ (-110) (-586 $)) 151) (($ (-110) $ $ $ $) 150) (($ (-110) $ $ $) 149) (($ (-110) $ $) 148) (($ (-110) $) 147)) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) 57)) (-3453 (($ $ $) 160) (($ $) 159)) (-2155 (($ $ (-1083)) 249 (|has| |#1| (-969))) (($ $ (-586 (-1083))) 248 (|has| |#1| (-969))) (($ $ (-1083) (-706)) 247 (|has| |#1| (-969))) (($ $ (-586 (-1083)) (-586 (-706))) 246 (|has| |#1| (-969)))) (-3556 (($ $) 228 (|has| |#1| (-512)))) (-2811 (((-1035 |#1| (-559 $)) $) 227 (|has| |#1| (-512)))) (-3484 (($ $) 184 (|has| $ (-969)))) (-1429 (((-496) $) 255 (|has| |#1| (-561 (-496)))) (($ (-391 $)) 226 (|has| |#1| (-512))) (((-820 (-352)) $) 191 (|has| |#1| (-561 (-820 (-352))))) (((-820 (-520)) $) 190 (|has| |#1| (-561 (-820 (-520)))))) (-2945 (($ $ $) 254 (|has| |#1| (-445)))) (-3607 (($ $ $) 253 (|has| |#1| (-445)))) (-2188 (((-791) $) 11) (($ (-520)) 28) (($ $) 43) (($ (-380 (-520))) 65) (($ (-880 |#1|)) 250 (|has| |#1| (-969))) (($ (-380 (-880 |#1|))) 234 (|has| |#1| (-512))) (($ (-380 (-880 (-380 |#1|)))) 232 (|has| |#1| (-512))) (($ (-880 (-380 |#1|))) 231 (|has| |#1| (-512))) (($ (-380 |#1|)) 230 (|has| |#1| (-512))) (($ (-1035 |#1| (-559 $))) 216 (|has| |#1| (-969))) (($ |#1|) 196) (($ (-1083)) 187) (($ (-559 $)) 138)) (-3796 (((-3 $ "failed") $) 239 (|has| |#1| (-133)))) (-3251 (((-706)) 29)) (-2319 (($ (-586 $)) 156) (($ $) 155)) (-1373 (((-108) (-110)) 167)) (-2559 (((-108) $ $) 39)) (-1804 (($ (-1083) (-586 $)) 206) (($ (-1083) $ $ $ $) 205) (($ (-1083) $ $ $) 204) (($ (-1083) $ $) 203) (($ (-1083) $) 202)) (-3504 (($ $ (-849)) 26) (($ $ (-706)) 33) (($ $ (-520)) 69)) (-3560 (($) 18 T CONST)) (-3570 (($) 30 T CONST)) (-2211 (($ $ (-1083)) 245 (|has| |#1| (-969))) (($ $ (-586 (-1083))) 244 (|has| |#1| (-969))) (($ $ (-1083) (-706)) 243 (|has| |#1| (-969))) (($ $ (-586 (-1083)) (-586 (-706))) 242 (|has| |#1| (-969)))) (-1573 (((-108) $ $) 134)) (-1557 (((-108) $ $) 133)) (-1530 (((-108) $ $) 6)) (-1565 (((-108) $ $) 135)) (-1548 (((-108) $ $) 132)) (-1619 (($ $ $) 64) (($ (-1035 |#1| (-559 $)) (-1035 |#1| (-559 $))) 229 (|has| |#1| (-512)))) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-706)) 32) (($ $ (-520)) 68) (($ $ (-380 (-520))) 90)) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ $ $) 24) (($ $ (-380 (-520))) 67) (($ (-380 (-520)) $) 66) (($ $ |#1|) 238 (|has| |#1| (-157))) (($ |#1| $) 237 (|has| |#1| (-157)))))
-(((-29 |#1|) (-1195) (-13 (-783) (-512))) (T -29))
-((-2288 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-783) (-512))))) (-2150 (*1 *2 *1) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *2 (-586 *1)) (-4 *1 (-29 *3)))) (-2288 (*1 *1 *1 *2) (-12 (-5 *2 (-1083)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-783) (-512))))) (-2150 (*1 *2 *1 *3) (-12 (-5 *3 (-1083)) (-4 *4 (-13 (-783) (-512))) (-5 *2 (-586 *1)) (-4 *1 (-29 *4)))) (-2057 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-783) (-512))))) (-3953 (*1 *2 *1) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *2 (-586 *1)) (-4 *1 (-29 *3)))) (-2057 (*1 *1 *1 *2) (-12 (-5 *2 (-1083)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-783) (-512))))) (-3953 (*1 *2 *1 *3) (-12 (-5 *3 (-1083)) (-4 *4 (-13 (-783) (-512))) (-5 *2 (-586 *1)) (-4 *1 (-29 *4)))))
-(-13 (-27) (-403 |t#1|) (-10 -8 (-15 -2288 ($ $)) (-15 -2150 ((-586 $) $)) (-15 -2288 ($ $ (-1083))) (-15 -2150 ((-586 $) $ (-1083))) (-15 -2057 ($ $)) (-15 -3953 ((-586 $) $)) (-15 -2057 ($ $ (-1083))) (-15 -3953 ((-586 $) $ (-1083)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-380 (-520))) . T) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) . T) ((-27) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 |#1| |#1|) |has| |#1| (-157)) ((-107 $ $) . T) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-560 (-791)) . T) ((-157) . T) ((-561 (-496)) |has| |#1| (-561 (-496))) ((-561 (-820 (-352))) |has| |#1| (-561 (-820 (-352)))) ((-561 (-820 (-520))) |has| |#1| (-561 (-820 (-520)))) ((-219) . T) ((-264) . T) ((-281) . T) ((-283 $) . T) ((-276) . T) ((-336) . T) ((-350 |#1|) |has| |#1| (-969)) ((-373 |#1|) . T) ((-384 |#1|) . T) ((-403 |#1|) . T) ((-424) . T) ((-445) |has| |#1| (-445)) ((-481 (-559 $) $) . T) ((-481 $ $) . T) ((-512) . T) ((-588 #0#) . T) ((-588 |#1|) |has| |#1| (-157)) ((-588 $) . T) ((-582 (-520)) -12 (|has| |#1| (-582 (-520))) (|has| |#1| (-969))) ((-582 |#1|) |has| |#1| (-969)) ((-653 #0#) . T) ((-653 |#1|) |has| |#1| (-157)) ((-653 $) . T) ((-662) . T) ((-783) . T) ((-828 (-1083)) |has| |#1| (-969)) ((-814 (-352)) |has| |#1| (-814 (-352))) ((-814 (-520)) |has| |#1| (-814 (-520))) ((-812 |#1|) . T) ((-848) . T) ((-926) . T) ((-960 (-380 (-520))) -3700 (|has| |#1| (-960 (-380 (-520)))) (-12 (|has| |#1| (-512)) (|has| |#1| (-960 (-520))))) ((-960 (-380 (-880 |#1|))) |has| |#1| (-512)) ((-960 (-520)) |has| |#1| (-960 (-520))) ((-960 (-559 $)) . T) ((-960 (-880 |#1|)) |has| |#1| (-969)) ((-960 (-1083)) . T) ((-960 |#1|) . T) ((-975 #0#) . T) ((-975 |#1|) |has| |#1| (-157)) ((-975 $) . T) ((-969) . T) ((-976) . T) ((-1024) . T) ((-1012) . T) ((-1118) . T) ((-1122) . T))
-((-3800 (((-1007 (-201)) $) NIL)) (-3786 (((-1007 (-201)) $) NIL)) (-2469 (($ $ (-201)) 123)) (-4175 (($ (-880 (-520)) (-1083) (-1083) (-1007 (-380 (-520))) (-1007 (-380 (-520)))) 85)) (-3763 (((-586 (-586 (-871 (-201)))) $) 135)) (-2188 (((-791) $) 147)))
-(((-30) (-13 (-882) (-10 -8 (-15 -4175 ($ (-880 (-520)) (-1083) (-1083) (-1007 (-380 (-520))) (-1007 (-380 (-520))))) (-15 -2469 ($ $ (-201)))))) (T -30))
-((-4175 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-880 (-520))) (-5 *3 (-1083)) (-5 *4 (-1007 (-380 (-520)))) (-5 *1 (-30)))) (-2469 (*1 *1 *1 *2) (-12 (-5 *2 (-201)) (-5 *1 (-30)))))
-(-13 (-882) (-10 -8 (-15 -4175 ($ (-880 (-520)) (-1083) (-1083) (-1007 (-380 (-520))) (-1007 (-380 (-520))))) (-15 -2469 ($ $ (-201)))))
-((-2288 ((|#2| (-1079 |#2|) (-1083)) 42)) (-3877 (((-110) (-110)) 55)) (-2433 (((-1079 |#2|) (-559 |#2|)) 131 (|has| |#1| (-960 (-520))))) (-3090 ((|#2| |#1| (-520)) 110 (|has| |#1| (-960 (-520))))) (-2653 ((|#2| (-1079 |#2|) |#2|) 30)) (-3940 (((-791) (-586 |#2|)) 86)) (-3484 ((|#2| |#2|) 127 (|has| |#1| (-960 (-520))))) (-1373 (((-108) (-110)) 18)) (** ((|#2| |#2| (-380 (-520))) 91 (|has| |#1| (-960 (-520))))))
-(((-31 |#1| |#2|) (-10 -7 (-15 -2288 (|#2| (-1079 |#2|) (-1083))) (-15 -3877 ((-110) (-110))) (-15 -1373 ((-108) (-110))) (-15 -2653 (|#2| (-1079 |#2|) |#2|)) (-15 -3940 ((-791) (-586 |#2|))) (IF (|has| |#1| (-960 (-520))) (PROGN (-15 ** (|#2| |#2| (-380 (-520)))) (-15 -2433 ((-1079 |#2|) (-559 |#2|))) (-15 -3484 (|#2| |#2|)) (-15 -3090 (|#2| |#1| (-520)))) |%noBranch|)) (-13 (-783) (-512)) (-403 |#1|)) (T -31))
-((-3090 (*1 *2 *3 *4) (-12 (-5 *4 (-520)) (-4 *2 (-403 *3)) (-5 *1 (-31 *3 *2)) (-4 *3 (-960 *4)) (-4 *3 (-13 (-783) (-512))))) (-3484 (*1 *2 *2) (-12 (-4 *3 (-960 (-520))) (-4 *3 (-13 (-783) (-512))) (-5 *1 (-31 *3 *2)) (-4 *2 (-403 *3)))) (-2433 (*1 *2 *3) (-12 (-5 *3 (-559 *5)) (-4 *5 (-403 *4)) (-4 *4 (-960 (-520))) (-4 *4 (-13 (-783) (-512))) (-5 *2 (-1079 *5)) (-5 *1 (-31 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-380 (-520))) (-4 *4 (-960 (-520))) (-4 *4 (-13 (-783) (-512))) (-5 *1 (-31 *4 *2)) (-4 *2 (-403 *4)))) (-3940 (*1 *2 *3) (-12 (-5 *3 (-586 *5)) (-4 *5 (-403 *4)) (-4 *4 (-13 (-783) (-512))) (-5 *2 (-791)) (-5 *1 (-31 *4 *5)))) (-2653 (*1 *2 *3 *2) (-12 (-5 *3 (-1079 *2)) (-4 *2 (-403 *4)) (-4 *4 (-13 (-783) (-512))) (-5 *1 (-31 *4 *2)))) (-1373 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *4 (-13 (-783) (-512))) (-5 *2 (-108)) (-5 *1 (-31 *4 *5)) (-4 *5 (-403 *4)))) (-3877 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *3 (-13 (-783) (-512))) (-5 *1 (-31 *3 *4)) (-4 *4 (-403 *3)))) (-2288 (*1 *2 *3 *4) (-12 (-5 *3 (-1079 *2)) (-5 *4 (-1083)) (-4 *2 (-403 *5)) (-5 *1 (-31 *5 *2)) (-4 *5 (-13 (-783) (-512))))))
-(-10 -7 (-15 -2288 (|#2| (-1079 |#2|) (-1083))) (-15 -3877 ((-110) (-110))) (-15 -1373 ((-108) (-110))) (-15 -2653 (|#2| (-1079 |#2|) |#2|)) (-15 -3940 ((-791) (-586 |#2|))) (IF (|has| |#1| (-960 (-520))) (PROGN (-15 ** (|#2| |#2| (-380 (-520)))) (-15 -2433 ((-1079 |#2|) (-559 |#2|))) (-15 -3484 (|#2| |#2|)) (-15 -3090 (|#2| |#1| (-520)))) |%noBranch|))
-((-2063 (((-108) $ (-706)) 16)) (-3961 (($) 10)) (-3027 (((-108) $ (-706)) 15)) (-1390 (((-108) $ (-706)) 14)) (-2533 (((-108) $ $) 8)) (-4018 (((-108) $) 13)))
-(((-32 |#1|) (-10 -8 (-15 -3961 (|#1|)) (-15 -2063 ((-108) |#1| (-706))) (-15 -3027 ((-108) |#1| (-706))) (-15 -1390 ((-108) |#1| (-706))) (-15 -4018 ((-108) |#1|)) (-15 -2533 ((-108) |#1| |#1|))) (-33)) (T -32))
-NIL
-(-10 -8 (-15 -3961 (|#1|)) (-15 -2063 ((-108) |#1| (-706))) (-15 -3027 ((-108) |#1| (-706))) (-15 -1390 ((-108) |#1| (-706))) (-15 -4018 ((-108) |#1|)) (-15 -2533 ((-108) |#1| |#1|)))
-((-2063 (((-108) $ (-706)) 8)) (-3961 (($) 7 T CONST)) (-3027 (((-108) $ (-706)) 9)) (-1390 (((-108) $ (-706)) 10)) (-2533 (((-108) $ $) 14)) (-4018 (((-108) $) 11)) (-2238 (($) 12)) (-2403 (($ $) 13)) (-3474 (((-706) $) 6 (|has| $ (-6 -4229)))))
-(((-33) (-1195)) (T -33))
-((-2533 (*1 *2 *1 *1) (-12 (-4 *1 (-33)) (-5 *2 (-108)))) (-2403 (*1 *1 *1) (-4 *1 (-33))) (-2238 (*1 *1) (-4 *1 (-33))) (-4018 (*1 *2 *1) (-12 (-4 *1 (-33)) (-5 *2 (-108)))) (-1390 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-706)) (-5 *2 (-108)))) (-3027 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-706)) (-5 *2 (-108)))) (-2063 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-706)) (-5 *2 (-108)))) (-3961 (*1 *1) (-4 *1 (-33))) (-3474 (*1 *2 *1) (-12 (|has| *1 (-6 -4229)) (-4 *1 (-33)) (-5 *2 (-706)))))
-(-13 (-1118) (-10 -8 (-15 -2533 ((-108) $ $)) (-15 -2403 ($ $)) (-15 -2238 ($)) (-15 -4018 ((-108) $)) (-15 -1390 ((-108) $ (-706))) (-15 -3027 ((-108) $ (-706))) (-15 -2063 ((-108) $ (-706))) (-15 -3961 ($) -2675) (IF (|has| $ (-6 -4229)) (-15 -3474 ((-706) $)) |%noBranch|)))
-(((-1118) . T))
-((-1758 (($ $) 11)) (-1744 (($ $) 10)) (-1775 (($ $) 9)) (-3915 (($ $) 8)) (-1767 (($ $) 7)) (-1751 (($ $) 6)))
-(((-34) (-1195)) (T -34))
-((-1758 (*1 *1 *1) (-4 *1 (-34))) (-1744 (*1 *1 *1) (-4 *1 (-34))) (-1775 (*1 *1 *1) (-4 *1 (-34))) (-3915 (*1 *1 *1) (-4 *1 (-34))) (-1767 (*1 *1 *1) (-4 *1 (-34))) (-1751 (*1 *1 *1) (-4 *1 (-34))))
-(-13 (-10 -8 (-15 -1751 ($ $)) (-15 -1767 ($ $)) (-15 -3915 ($ $)) (-15 -1775 ($ $)) (-15 -1744 ($ $)) (-15 -1758 ($ $))))
-((-1414 (((-108) $ $) 19 (-3700 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)) (|has| |#2| (-1012)) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012))))) (-3429 (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) 125)) (-2091 (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) 148)) (-3827 (($ $) 146)) (-1799 (($) 72) (($ (-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) 71)) (-1476 (((-1169) $ |#1| |#1|) 99 (|has| $ (-6 -4230))) (((-1169) $ (-520) (-520)) 178 (|has| $ (-6 -4230)))) (-1198 (($ $ (-520)) 159 (|has| $ (-6 -4230)))) (-4029 (((-108) (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) 209) (((-108) $) 203 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-783)))) (-3587 (($ (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) 200 (|has| $ (-6 -4230))) (($ $) 199 (-12 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-783)) (|has| $ (-6 -4230))))) (-3210 (($ (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) 210) (($ $) 204 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-783)))) (-2063 (((-108) $ (-706)) 8)) (-2888 (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) 134 (|has| $ (-6 -4230)))) (-2719 (($ $ $) 155 (|has| $ (-6 -4230)))) (-3819 (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) 157 (|has| $ (-6 -4230)))) (-1598 (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) 153 (|has| $ (-6 -4230)))) (-2377 ((|#2| $ |#1| |#2|) 73) (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $ (-520) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) 189 (|has| $ (-6 -4230))) (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $ (-1131 (-520)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) 160 (|has| $ (-6 -4230))) (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $ "last" (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) 158 (|has| $ (-6 -4230))) (($ $ "rest" $) 156 (|has| $ (-6 -4230))) (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $ "first" (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) 154 (|has| $ (-6 -4230))) (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $ "value" (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) 133 (|has| $ (-6 -4230)))) (-3061 (($ $ (-586 $)) 132 (|has| $ (-6 -4230)))) (-1817 (($ (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) 45 (|has| $ (-6 -4229))) (($ (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) 216)) (-1627 (($ (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) 55 (|has| $ (-6 -4229))) (($ (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) 175 (|has| $ (-6 -4229)))) (-2079 (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) 147)) (-2747 (((-3 |#2| "failed") |#1| $) 61)) (-3961 (($) 7 T CONST)) (-2447 (($ $) 201 (|has| $ (-6 -4230)))) (-1861 (($ $) 211)) (-2305 (($ $ (-706)) 142) (($ $) 140)) (-3667 (($ $) 214 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (-2331 (($ $) 58 (-3700 (-12 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)) (|has| $ (-6 -4229))) (-12 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)) (|has| $ (-6 -4229)))))) (-3766 (($ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) 47 (|has| $ (-6 -4229))) (($ (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) 46 (|has| $ (-6 -4229))) (((-3 |#2| "failed") |#1| $) 62) (($ (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) 220) (($ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) 215 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (-1421 (($ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)) (|has| $ (-6 -4229)))) (($ (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) 54 (|has| $ (-6 -4229))) (($ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) 177 (-12 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)) (|has| $ (-6 -4229)))) (($ (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) 174 (|has| $ (-6 -4229)))) (-3856 (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) 56 (-12 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)) (|has| $ (-6 -4229)))) (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) 53 (|has| $ (-6 -4229))) (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) 52 (|has| $ (-6 -4229))) (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) 176 (-12 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)) (|has| $ (-6 -4229)))) (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) 173 (|has| $ (-6 -4229))) (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) 172 (|has| $ (-6 -4229)))) (-3846 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4230))) (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $ (-520) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) 190 (|has| $ (-6 -4230)))) (-3623 ((|#2| $ |#1|) 88) (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $ (-520)) 188)) (-3928 (((-108) $) 192)) (-3232 (((-520) (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) 208) (((-520) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) 207 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012))) (((-520) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $ (-520)) 206 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (-3828 (((-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) 30 (|has| $ (-6 -4229))) (((-586 |#2|) $) 79 (|has| $ (-6 -4229))) (((-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) 114 (|has| $ (-6 -4229)))) (-3405 (((-586 $) $) 123)) (-1885 (((-108) $ $) 131 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (-1810 (($ (-706) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) 169)) (-3027 (((-108) $ (-706)) 9)) (-2567 ((|#1| $) 96 (|has| |#1| (-783))) (((-520) $) 180 (|has| (-520) (-783)))) (-2809 (($ $ $) 198 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-783)))) (-3235 (($ (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $ $) 217) (($ $ $) 213 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-783)))) (-1819 (($ (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $ $) 212) (($ $ $) 205 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-783)))) (-3702 (((-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) 29 (|has| $ (-6 -4229))) (((-586 |#2|) $) 80 (|has| $ (-6 -4229))) (((-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) 115 (|has| $ (-6 -4229)))) (-2422 (((-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)) (|has| $ (-6 -4229)))) (((-108) |#2| $) 82 (-12 (|has| |#2| (-1012)) (|has| $ (-6 -4229)))) (((-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) 117 (-12 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)) (|has| $ (-6 -4229))))) (-1752 ((|#1| $) 95 (|has| |#1| (-783))) (((-520) $) 181 (|has| (-520) (-783)))) (-2446 (($ $ $) 197 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-783)))) (-3830 (($ (-1 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) 34 (|has| $ (-6 -4230))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4230))) (($ (-1 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) 110 (|has| $ (-6 -4230)))) (-1389 (($ (-1 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70) (($ (-1 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $ $) 166) (($ (-1 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) 109)) (-1578 (($ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) 225)) (-1390 (((-108) $ (-706)) 10)) (-1277 (((-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) 128)) (-1740 (((-108) $) 124)) (-1239 (((-1066) $) 22 (-3700 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)) (|has| |#2| (-1012)) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012))))) (-1440 (($ $ (-706)) 145) (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) 143)) (-2960 (((-586 |#1|) $) 63)) (-1612 (((-108) |#1| $) 64)) (-3351 (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) 39)) (-3618 (($ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) 40) (($ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $ (-520)) 219) (($ $ $ (-520)) 218)) (-1659 (($ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $ (-520)) 162) (($ $ $ (-520)) 161)) (-3622 (((-586 |#1|) $) 93) (((-586 (-520)) $) 183)) (-2603 (((-108) |#1| $) 92) (((-108) (-520) $) 184)) (-4142 (((-1030) $) 21 (-3700 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)) (|has| |#2| (-1012)) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012))))) (-2293 ((|#2| $) 97 (|has| |#1| (-783))) (($ $ (-706)) 139) (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) 137)) (-2985 (((-3 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) "failed") (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) 51) (((-3 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) "failed") (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) 171)) (-2936 (($ $ |#2|) 98 (|has| $ (-6 -4230))) (($ $ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) 179 (|has| $ (-6 -4230)))) (-3345 (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) 41)) (-1392 (((-108) $) 191)) (-4155 (((-108) (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) 32 (|has| $ (-6 -4229))) (((-108) (-1 (-108) |#2|) $) 77 (|has| $ (-6 -4229))) (((-108) (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) 112 (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))))) 26 (-12 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-283 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (($ $ (-268 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) 25 (-12 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-283 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (($ $ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) 24 (-12 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-283 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (($ $ (-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) (-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) 23 (-12 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-283 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (($ $ (-586 |#2|) (-586 |#2|)) 86 (-12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012)))) (($ $ (-268 |#2|)) 84 (-12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012)))) (($ $ (-586 (-268 |#2|))) 83 (-12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012)))) (($ $ (-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) (-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) 121 (-12 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-283 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (($ $ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) 120 (-12 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-283 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (($ $ (-268 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) 119 (-12 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-283 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (($ $ (-586 (-268 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))))) 118 (-12 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-283 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012))))) (-2533 (((-108) $ $) 14)) (-2094 (((-108) |#2| $) 94 (-12 (|has| $ (-6 -4229)) (|has| |#2| (-1012)))) (((-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) 182 (-12 (|has| $ (-6 -4229)) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012))))) (-1523 (((-586 |#2|) $) 91) (((-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) 185)) (-4018 (((-108) $) 11)) (-2238 (($) 12)) (-2543 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89) (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $ (-520) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) 187) (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $ (-520)) 186) (($ $ (-1131 (-520))) 165) (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $ "last") 144) (($ $ "rest") 141) (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $ "first") 138) (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $ "value") 126)) (-3765 (((-520) $ $) 129)) (-1645 (($) 49) (($ (-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) 48)) (-4185 (($ $ (-520)) 222) (($ $ (-1131 (-520))) 221)) (-3690 (($ $ (-520)) 164) (($ $ (-1131 (-520))) 163)) (-1975 (((-108) $) 127)) (-3436 (($ $) 151)) (-1521 (($ $) 152 (|has| $ (-6 -4230)))) (-3341 (((-706) $) 150)) (-1696 (($ $) 149)) (-4159 (((-706) (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) 31 (|has| $ (-6 -4229))) (((-706) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)) (|has| $ (-6 -4229)))) (((-706) |#2| $) 81 (-12 (|has| |#2| (-1012)) (|has| $ (-6 -4229)))) (((-706) (-1 (-108) |#2|) $) 78 (|has| $ (-6 -4229))) (((-706) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) 116 (-12 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)) (|has| $ (-6 -4229)))) (((-706) (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) 113 (|has| $ (-6 -4229)))) (-1913 (($ $ $ (-520)) 202 (|has| $ (-6 -4230)))) (-2403 (($ $) 13)) (-1429 (((-496) $) 59 (-3700 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-561 (-496))) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-561 (-496)))))) (-2200 (($ (-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) 50) (($ (-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) 170)) (-2251 (($ $ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) 224) (($ $ $) 223)) (-4156 (($ $ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) 168) (($ (-586 $)) 167) (($ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) 136) (($ $ $) 135)) (-2188 (((-791) $) 18 (-3700 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-560 (-791))) (|has| |#2| (-560 (-791))) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-560 (-791)))))) (-2438 (((-586 $) $) 122)) (-1639 (((-108) $ $) 130 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (-1898 (($ (-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) 42)) (-1444 (((-3 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) "failed") |#1| $) 108)) (-1662 (((-108) (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) 33 (|has| $ (-6 -4229))) (((-108) (-1 (-108) |#2|) $) 76 (|has| $ (-6 -4229))) (((-108) (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) 111 (|has| $ (-6 -4229)))) (-1573 (((-108) $ $) 195 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-783)))) (-1557 (((-108) $ $) 194 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-783)))) (-1530 (((-108) $ $) 20 (-3700 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)) (|has| |#2| (-1012)) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012))))) (-1565 (((-108) $ $) 196 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-783)))) (-1548 (((-108) $ $) 193 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-783)))) (-3474 (((-706) $) 6 (|has| $ (-6 -4229)))))
-(((-35 |#1| |#2|) (-1195) (-1012) (-1012)) (T -35))
-((-1444 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-35 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-5 *2 (-2 (|:| -2526 *3) (|:| -3043 *4))))))
-(-13 (-1095 |t#1| |t#2|) (-606 (-2 (|:| -2526 |t#1|) (|:| -3043 |t#2|))) (-10 -8 (-15 -1444 ((-3 (-2 (|:| -2526 |t#1|) (|:| -3043 |t#2|)) "failed") |t#1| $))))
-(((-33) . T) ((-102 #0=(-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) . T) ((-97) -3700 (|has| |#2| (-1012)) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-783))) ((-560 (-791)) -3700 (|has| |#2| (-1012)) (|has| |#2| (-560 (-791))) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-783)) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-560 (-791)))) ((-139 #1=(-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) . T) ((-561 (-496)) |has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-561 (-496))) ((-205 #0#) . T) ((-211 #0#) . T) ((-260 #2=(-520) #1#) . T) ((-260 |#1| |#2|) . T) ((-262 #2# #1#) . T) ((-262 |#1| |#2|) . T) ((-283 #1#) -12 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-283 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012))) ((-283 |#2|) -12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012))) ((-256 #1#) . T) ((-346 #1#) . T) ((-459 #1#) . T) ((-459 |#2|) . T) ((-553 #2# #1#) . T) ((-553 |#1| |#2|) . T) ((-481 #1# #1#) -12 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-283 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012))) ((-481 |#2| |#2|) -12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012))) ((-557 |#1| |#2|) . T) ((-591 #1#) . T) ((-606 #1#) . T) ((-783) |has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-783)) ((-934 #1#) . T) ((-1012) -3700 (|has| |#2| (-1012)) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-783))) ((-1057 #1#) . T) ((-1095 |#1| |#2|) . T) ((-1118) . T) ((-1152 #1#) . T))
-((-2188 (((-791) $) NIL) (($ (-520)) NIL) (($ |#2|) 10)))
-(((-36 |#1| |#2|) (-10 -8 (-15 -2188 (|#1| |#2|)) (-15 -2188 (|#1| (-520))) (-15 -2188 ((-791) |#1|))) (-37 |#2|) (-157)) (T -36))
-NIL
-(-10 -8 (-15 -2188 (|#1| |#2|)) (-15 -2188 (|#1| (-520))) (-15 -2188 ((-791) |#1|)))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-1917 (((-3 $ "failed") $ $) 19)) (-3961 (($) 17 T CONST)) (-1540 (((-3 $ "failed") $) 34)) (-1537 (((-108) $) 31)) (-1239 (((-1066) $) 9)) (-4142 (((-1030) $) 10)) (-2188 (((-791) $) 11) (($ (-520)) 28) (($ |#1|) 37)) (-3251 (((-706)) 29)) (-3504 (($ $ (-849)) 26) (($ $ (-706)) 33)) (-3560 (($) 18 T CONST)) (-3570 (($) 30 T CONST)) (-1530 (((-108) $ $) 6)) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-706)) 32)) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38)))
-(((-37 |#1|) (-1195) (-157)) (T -37))
-((-2188 (*1 *1 *2) (-12 (-4 *1 (-37 *2)) (-4 *2 (-157)))))
-(-13 (-969) (-653 |t#1|) (-10 -8 (-15 -2188 ($ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-560 (-791)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-653 |#1|) . T) ((-662) . T) ((-975 |#1|) . T) ((-969) . T) ((-976) . T) ((-1024) . T) ((-1012) . T))
-((-3175 (((-391 |#1|) |#1|) 38)) (-1916 (((-391 |#1|) |#1|) 27) (((-391 |#1|) |#1| (-586 (-47))) 30)) (-3647 (((-108) |#1|) 54)))
-(((-38 |#1|) (-10 -7 (-15 -1916 ((-391 |#1|) |#1| (-586 (-47)))) (-15 -1916 ((-391 |#1|) |#1|)) (-15 -3175 ((-391 |#1|) |#1|)) (-15 -3647 ((-108) |#1|))) (-1140 (-47))) (T -38))
-((-3647 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-38 *3)) (-4 *3 (-1140 (-47))))) (-3175 (*1 *2 *3) (-12 (-5 *2 (-391 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1140 (-47))))) (-1916 (*1 *2 *3) (-12 (-5 *2 (-391 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1140 (-47))))) (-1916 (*1 *2 *3 *4) (-12 (-5 *4 (-586 (-47))) (-5 *2 (-391 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1140 (-47))))))
-(-10 -7 (-15 -1916 ((-391 |#1|) |#1| (-586 (-47)))) (-15 -1916 ((-391 |#1|) |#1|)) (-15 -3175 ((-391 |#1|) |#1|)) (-15 -3647 ((-108) |#1|)))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-3731 (((-2 (|:| |num| (-1164 |#2|)) (|:| |den| |#2|)) $) NIL)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) NIL (|has| (-380 |#2|) (-336)))) (-2583 (($ $) NIL (|has| (-380 |#2|) (-336)))) (-1671 (((-108) $) NIL (|has| (-380 |#2|) (-336)))) (-1405 (((-626 (-380 |#2|)) (-1164 $)) NIL) (((-626 (-380 |#2|))) NIL)) (-1864 (((-380 |#2|) $) NIL)) (-1891 (((-1092 (-849) (-706)) (-520)) NIL (|has| (-380 |#2|) (-322)))) (-1917 (((-3 $ "failed") $ $) NIL)) (-3024 (($ $) NIL (|has| (-380 |#2|) (-336)))) (-1507 (((-391 $) $) NIL (|has| (-380 |#2|) (-336)))) (-1327 (((-108) $ $) NIL (|has| (-380 |#2|) (-336)))) (-1628 (((-706)) NIL (|has| (-380 |#2|) (-341)))) (-3007 (((-108)) NIL)) (-3530 (((-108) |#1|) NIL) (((-108) |#2|) NIL)) (-3961 (($) NIL T CONST)) (-1296 (((-3 (-520) "failed") $) NIL (|has| (-380 |#2|) (-960 (-520)))) (((-3 (-380 (-520)) "failed") $) NIL (|has| (-380 |#2|) (-960 (-380 (-520))))) (((-3 (-380 |#2|) "failed") $) NIL)) (-1482 (((-520) $) NIL (|has| (-380 |#2|) (-960 (-520)))) (((-380 (-520)) $) NIL (|has| (-380 |#2|) (-960 (-380 (-520))))) (((-380 |#2|) $) NIL)) (-3705 (($ (-1164 (-380 |#2|)) (-1164 $)) NIL) (($ (-1164 (-380 |#2|))) 57) (($ (-1164 |#2|) |#2|) 124)) (-2654 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-380 |#2|) (-322)))) (-2276 (($ $ $) NIL (|has| (-380 |#2|) (-336)))) (-3604 (((-626 (-380 |#2|)) $ (-1164 $)) NIL) (((-626 (-380 |#2|)) $) NIL)) (-2756 (((-626 (-520)) (-626 $)) NIL (|has| (-380 |#2|) (-582 (-520)))) (((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 $) (-1164 $)) NIL (|has| (-380 |#2|) (-582 (-520)))) (((-2 (|:| -3927 (-626 (-380 |#2|))) (|:| |vec| (-1164 (-380 |#2|)))) (-626 $) (-1164 $)) NIL) (((-626 (-380 |#2|)) (-626 $)) NIL)) (-2124 (((-1164 $) (-1164 $)) NIL)) (-3856 (($ |#3|) NIL) (((-3 $ "failed") (-380 |#3|)) NIL (|has| (-380 |#2|) (-336)))) (-1540 (((-3 $ "failed") $) NIL)) (-1925 (((-586 (-586 |#1|))) NIL (|has| |#1| (-341)))) (-4072 (((-108) |#1| |#1|) NIL)) (-3160 (((-849)) NIL)) (-3249 (($) NIL (|has| (-380 |#2|) (-341)))) (-4086 (((-108)) NIL)) (-3381 (((-108) |#1|) NIL) (((-108) |#2|) NIL)) (-2253 (($ $ $) NIL (|has| (-380 |#2|) (-336)))) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) NIL (|has| (-380 |#2|) (-336)))) (-3923 (($ $) NIL)) (-2961 (($) NIL (|has| (-380 |#2|) (-322)))) (-1855 (((-108) $) NIL (|has| (-380 |#2|) (-322)))) (-1346 (($ $ (-706)) NIL (|has| (-380 |#2|) (-322))) (($ $) NIL (|has| (-380 |#2|) (-322)))) (-2036 (((-108) $) NIL (|has| (-380 |#2|) (-336)))) (-3989 (((-849) $) NIL (|has| (-380 |#2|) (-322))) (((-769 (-849)) $) NIL (|has| (-380 |#2|) (-322)))) (-1537 (((-108) $) NIL)) (-2368 (((-706)) NIL)) (-3245 (((-1164 $) (-1164 $)) 100)) (-1434 (((-380 |#2|) $) NIL)) (-2735 (((-586 (-880 |#1|)) (-1083)) NIL (|has| |#1| (-336)))) (-1394 (((-3 $ "failed") $) NIL (|has| (-380 |#2|) (-322)))) (-3188 (((-3 (-586 $) "failed") (-586 $) $) NIL (|has| (-380 |#2|) (-336)))) (-2034 ((|#3| $) NIL (|has| (-380 |#2|) (-336)))) (-3040 (((-849) $) NIL (|has| (-380 |#2|) (-341)))) (-3841 ((|#3| $) NIL)) (-2222 (($ (-586 $)) NIL (|has| (-380 |#2|) (-336))) (($ $ $) NIL (|has| (-380 |#2|) (-336)))) (-1239 (((-1066) $) NIL)) (-4177 (((-1169) (-706)) 78)) (-3252 (((-626 (-380 |#2|))) 51)) (-4137 (((-626 (-380 |#2|))) 44)) (-3093 (($ $) NIL (|has| (-380 |#2|) (-336)))) (-4183 (($ (-1164 |#2|) |#2|) 125)) (-3895 (((-626 (-380 |#2|))) 45)) (-3531 (((-626 (-380 |#2|))) 43)) (-2402 (((-2 (|:| |num| (-626 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 122)) (-3889 (((-2 (|:| |num| (-1164 |#2|)) (|:| |den| |#2|)) $) 63)) (-3442 (((-1164 $)) 42)) (-2323 (((-1164 $)) 41)) (-2730 (((-108) $) NIL)) (-2378 (((-108) $) NIL) (((-108) $ |#1|) NIL) (((-108) $ |#2|) NIL)) (-3794 (($) NIL (|has| (-380 |#2|) (-322)) CONST)) (-2716 (($ (-849)) NIL (|has| (-380 |#2|) (-341)))) (-2691 (((-3 |#2| "failed")) NIL)) (-4142 (((-1030) $) NIL)) (-1822 (((-706)) NIL)) (-1382 (($) NIL)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) NIL (|has| (-380 |#2|) (-336)))) (-2257 (($ (-586 $)) NIL (|has| (-380 |#2|) (-336))) (($ $ $) NIL (|has| (-380 |#2|) (-336)))) (-1517 (((-586 (-2 (|:| -1916 (-520)) (|:| -2647 (-520))))) NIL (|has| (-380 |#2|) (-322)))) (-1916 (((-391 $) $) NIL (|has| (-380 |#2|) (-336)))) (-1283 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-380 |#2|) (-336))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) NIL (|has| (-380 |#2|) (-336)))) (-2230 (((-3 $ "failed") $ $) NIL (|has| (-380 |#2|) (-336)))) (-2608 (((-3 (-586 $) "failed") (-586 $) $) NIL (|has| (-380 |#2|) (-336)))) (-3704 (((-706) $) NIL (|has| (-380 |#2|) (-336)))) (-2543 ((|#1| $ |#1| |#1|) NIL)) (-2605 (((-3 |#2| "failed")) NIL)) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) NIL (|has| (-380 |#2|) (-336)))) (-2732 (((-380 |#2|) (-1164 $)) NIL) (((-380 |#2|)) 39)) (-2062 (((-706) $) NIL (|has| (-380 |#2|) (-322))) (((-3 (-706) "failed") $ $) NIL (|has| (-380 |#2|) (-322)))) (-2155 (($ $ (-1 (-380 |#2|) (-380 |#2|)) (-706)) NIL (|has| (-380 |#2|) (-336))) (($ $ (-1 (-380 |#2|) (-380 |#2|))) NIL (|has| (-380 |#2|) (-336))) (($ $ (-1 |#2| |#2|)) 118) (($ $ (-586 (-1083)) (-586 (-706))) NIL (-12 (|has| (-380 |#2|) (-336)) (|has| (-380 |#2|) (-828 (-1083))))) (($ $ (-1083) (-706)) NIL (-12 (|has| (-380 |#2|) (-336)) (|has| (-380 |#2|) (-828 (-1083))))) (($ $ (-586 (-1083))) NIL (-12 (|has| (-380 |#2|) (-336)) (|has| (-380 |#2|) (-828 (-1083))))) (($ $ (-1083)) NIL (-12 (|has| (-380 |#2|) (-336)) (|has| (-380 |#2|) (-828 (-1083))))) (($ $ (-706)) NIL (-3700 (-12 (|has| (-380 |#2|) (-209)) (|has| (-380 |#2|) (-336))) (|has| (-380 |#2|) (-322)))) (($ $) NIL (-3700 (-12 (|has| (-380 |#2|) (-209)) (|has| (-380 |#2|) (-336))) (|has| (-380 |#2|) (-322))))) (-3404 (((-626 (-380 |#2|)) (-1164 $) (-1 (-380 |#2|) (-380 |#2|))) NIL (|has| (-380 |#2|) (-336)))) (-3484 ((|#3|) 50)) (-3864 (($) NIL (|has| (-380 |#2|) (-322)))) (-3790 (((-1164 (-380 |#2|)) $ (-1164 $)) NIL) (((-626 (-380 |#2|)) (-1164 $) (-1164 $)) NIL) (((-1164 (-380 |#2|)) $) 58) (((-626 (-380 |#2|)) (-1164 $)) 101)) (-1429 (((-1164 (-380 |#2|)) $) NIL) (($ (-1164 (-380 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3784 (((-3 (-1164 $) "failed") (-626 $)) NIL (|has| (-380 |#2|) (-322)))) (-2352 (((-1164 $) (-1164 $)) NIL)) (-2188 (((-791) $) NIL) (($ (-520)) NIL) (($ (-380 |#2|)) NIL) (($ (-380 (-520))) NIL (-3700 (|has| (-380 |#2|) (-960 (-380 (-520)))) (|has| (-380 |#2|) (-336)))) (($ $) NIL (|has| (-380 |#2|) (-336)))) (-3796 (($ $) NIL (|has| (-380 |#2|) (-322))) (((-3 $ "failed") $) NIL (|has| (-380 |#2|) (-133)))) (-2948 ((|#3| $) NIL)) (-3251 (((-706)) NIL)) (-3128 (((-108)) 37)) (-2080 (((-108) |#1|) 49) (((-108) |#2|) 131)) (-1831 (((-1164 $)) 91)) (-2559 (((-108) $ $) NIL (|has| (-380 |#2|) (-336)))) (-2934 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-3982 (((-108)) NIL)) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL (|has| (-380 |#2|) (-336)))) (-3560 (($) 16 T CONST)) (-3570 (($) 26 T CONST)) (-2211 (($ $ (-1 (-380 |#2|) (-380 |#2|)) (-706)) NIL (|has| (-380 |#2|) (-336))) (($ $ (-1 (-380 |#2|) (-380 |#2|))) NIL (|has| (-380 |#2|) (-336))) (($ $ (-586 (-1083)) (-586 (-706))) NIL (-12 (|has| (-380 |#2|) (-336)) (|has| (-380 |#2|) (-828 (-1083))))) (($ $ (-1083) (-706)) NIL (-12 (|has| (-380 |#2|) (-336)) (|has| (-380 |#2|) (-828 (-1083))))) (($ $ (-586 (-1083))) NIL (-12 (|has| (-380 |#2|) (-336)) (|has| (-380 |#2|) (-828 (-1083))))) (($ $ (-1083)) NIL (-12 (|has| (-380 |#2|) (-336)) (|has| (-380 |#2|) (-828 (-1083))))) (($ $ (-706)) NIL (-3700 (-12 (|has| (-380 |#2|) (-209)) (|has| (-380 |#2|) (-336))) (|has| (-380 |#2|) (-322)))) (($ $) NIL (-3700 (-12 (|has| (-380 |#2|) (-209)) (|has| (-380 |#2|) (-336))) (|has| (-380 |#2|) (-322))))) (-1530 (((-108) $ $) NIL)) (-1619 (($ $ $) NIL (|has| (-380 |#2|) (-336)))) (-1611 (($ $) NIL) (($ $ $) NIL)) (-1601 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL (|has| (-380 |#2|) (-336)))) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) NIL) (($ $ (-380 |#2|)) NIL) (($ (-380 |#2|) $) NIL) (($ (-380 (-520)) $) NIL (|has| (-380 |#2|) (-336))) (($ $ (-380 (-520))) NIL (|has| (-380 |#2|) (-336)))))
-(((-39 |#1| |#2| |#3| |#4|) (-13 (-315 |#1| |#2| |#3|) (-10 -7 (-15 -4177 ((-1169) (-706))))) (-336) (-1140 |#1|) (-1140 (-380 |#2|)) |#3|) (T -39))
-((-4177 (*1 *2 *3) (-12 (-5 *3 (-706)) (-4 *4 (-336)) (-4 *5 (-1140 *4)) (-5 *2 (-1169)) (-5 *1 (-39 *4 *5 *6 *7)) (-4 *6 (-1140 (-380 *5))) (-14 *7 *6))))
-(-13 (-315 |#1| |#2| |#3|) (-10 -7 (-15 -4177 ((-1169) (-706)))))
-((-3144 ((|#2| |#2|) 47)) (-1656 ((|#2| |#2|) 117 (-12 (|has| |#2| (-403 |#1|)) (|has| |#1| (-424)) (|has| |#1| (-783)) (|has| |#1| (-960 (-520)))))) (-4198 ((|#2| |#2|) 86 (-12 (|has| |#2| (-403 |#1|)) (|has| |#1| (-424)) (|has| |#1| (-783)) (|has| |#1| (-960 (-520)))))) (-1299 ((|#2| |#2|) 87 (-12 (|has| |#2| (-403 |#1|)) (|has| |#1| (-424)) (|has| |#1| (-783)) (|has| |#1| (-960 (-520)))))) (-4200 ((|#2| (-110) |#2| (-706)) 74 (-12 (|has| |#2| (-403 |#1|)) (|has| |#1| (-424)) (|has| |#1| (-783)) (|has| |#1| (-960 (-520)))))) (-4071 (((-1079 |#2|) |#2|) 44)) (-2787 ((|#2| |#2| (-586 (-559 |#2|))) 17) ((|#2| |#2| (-586 |#2|)) 19) ((|#2| |#2| |#2|) 20) ((|#2| |#2|) 15)))
-(((-40 |#1| |#2|) (-10 -7 (-15 -3144 (|#2| |#2|)) (-15 -2787 (|#2| |#2|)) (-15 -2787 (|#2| |#2| |#2|)) (-15 -2787 (|#2| |#2| (-586 |#2|))) (-15 -2787 (|#2| |#2| (-586 (-559 |#2|)))) (-15 -4071 ((-1079 |#2|) |#2|)) (IF (|has| |#1| (-783)) (IF (|has| |#1| (-424)) (IF (|has| |#1| (-960 (-520))) (IF (|has| |#2| (-403 |#1|)) (PROGN (-15 -1299 (|#2| |#2|)) (-15 -4198 (|#2| |#2|)) (-15 -1656 (|#2| |#2|)) (-15 -4200 (|#2| (-110) |#2| (-706)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-512) (-13 (-336) (-276) (-10 -8 (-15 -2800 ((-1035 |#1| (-559 $)) $)) (-15 -2811 ((-1035 |#1| (-559 $)) $)) (-15 -2188 ($ (-1035 |#1| (-559 $))))))) (T -40))
-((-4200 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-110)) (-5 *4 (-706)) (-4 *5 (-424)) (-4 *5 (-783)) (-4 *5 (-960 (-520))) (-4 *5 (-512)) (-5 *1 (-40 *5 *2)) (-4 *2 (-403 *5)) (-4 *2 (-13 (-336) (-276) (-10 -8 (-15 -2800 ((-1035 *5 (-559 $)) $)) (-15 -2811 ((-1035 *5 (-559 $)) $)) (-15 -2188 ($ (-1035 *5 (-559 $))))))))) (-1656 (*1 *2 *2) (-12 (-4 *3 (-424)) (-4 *3 (-783)) (-4 *3 (-960 (-520))) (-4 *3 (-512)) (-5 *1 (-40 *3 *2)) (-4 *2 (-403 *3)) (-4 *2 (-13 (-336) (-276) (-10 -8 (-15 -2800 ((-1035 *3 (-559 $)) $)) (-15 -2811 ((-1035 *3 (-559 $)) $)) (-15 -2188 ($ (-1035 *3 (-559 $))))))))) (-4198 (*1 *2 *2) (-12 (-4 *3 (-424)) (-4 *3 (-783)) (-4 *3 (-960 (-520))) (-4 *3 (-512)) (-5 *1 (-40 *3 *2)) (-4 *2 (-403 *3)) (-4 *2 (-13 (-336) (-276) (-10 -8 (-15 -2800 ((-1035 *3 (-559 $)) $)) (-15 -2811 ((-1035 *3 (-559 $)) $)) (-15 -2188 ($ (-1035 *3 (-559 $))))))))) (-1299 (*1 *2 *2) (-12 (-4 *3 (-424)) (-4 *3 (-783)) (-4 *3 (-960 (-520))) (-4 *3 (-512)) (-5 *1 (-40 *3 *2)) (-4 *2 (-403 *3)) (-4 *2 (-13 (-336) (-276) (-10 -8 (-15 -2800 ((-1035 *3 (-559 $)) $)) (-15 -2811 ((-1035 *3 (-559 $)) $)) (-15 -2188 ($ (-1035 *3 (-559 $))))))))) (-4071 (*1 *2 *3) (-12 (-4 *4 (-512)) (-5 *2 (-1079 *3)) (-5 *1 (-40 *4 *3)) (-4 *3 (-13 (-336) (-276) (-10 -8 (-15 -2800 ((-1035 *4 (-559 $)) $)) (-15 -2811 ((-1035 *4 (-559 $)) $)) (-15 -2188 ($ (-1035 *4 (-559 $))))))))) (-2787 (*1 *2 *2 *3) (-12 (-5 *3 (-586 (-559 *2))) (-4 *2 (-13 (-336) (-276) (-10 -8 (-15 -2800 ((-1035 *4 (-559 $)) $)) (-15 -2811 ((-1035 *4 (-559 $)) $)) (-15 -2188 ($ (-1035 *4 (-559 $))))))) (-4 *4 (-512)) (-5 *1 (-40 *4 *2)))) (-2787 (*1 *2 *2 *3) (-12 (-5 *3 (-586 *2)) (-4 *2 (-13 (-336) (-276) (-10 -8 (-15 -2800 ((-1035 *4 (-559 $)) $)) (-15 -2811 ((-1035 *4 (-559 $)) $)) (-15 -2188 ($ (-1035 *4 (-559 $))))))) (-4 *4 (-512)) (-5 *1 (-40 *4 *2)))) (-2787 (*1 *2 *2 *2) (-12 (-4 *3 (-512)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-336) (-276) (-10 -8 (-15 -2800 ((-1035 *3 (-559 $)) $)) (-15 -2811 ((-1035 *3 (-559 $)) $)) (-15 -2188 ($ (-1035 *3 (-559 $))))))))) (-2787 (*1 *2 *2) (-12 (-4 *3 (-512)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-336) (-276) (-10 -8 (-15 -2800 ((-1035 *3 (-559 $)) $)) (-15 -2811 ((-1035 *3 (-559 $)) $)) (-15 -2188 ($ (-1035 *3 (-559 $))))))))) (-3144 (*1 *2 *2) (-12 (-4 *3 (-512)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-336) (-276) (-10 -8 (-15 -2800 ((-1035 *3 (-559 $)) $)) (-15 -2811 ((-1035 *3 (-559 $)) $)) (-15 -2188 ($ (-1035 *3 (-559 $))))))))))
-(-10 -7 (-15 -3144 (|#2| |#2|)) (-15 -2787 (|#2| |#2|)) (-15 -2787 (|#2| |#2| |#2|)) (-15 -2787 (|#2| |#2| (-586 |#2|))) (-15 -2787 (|#2| |#2| (-586 (-559 |#2|)))) (-15 -4071 ((-1079 |#2|) |#2|)) (IF (|has| |#1| (-783)) (IF (|has| |#1| (-424)) (IF (|has| |#1| (-960 (-520))) (IF (|has| |#2| (-403 |#1|)) (PROGN (-15 -1299 (|#2| |#2|)) (-15 -4198 (|#2| |#2|)) (-15 -1656 (|#2| |#2|)) (-15 -4200 (|#2| (-110) |#2| (-706)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
-((-1916 (((-391 (-1079 |#3|)) (-1079 |#3|) (-586 (-47))) 22) (((-391 |#3|) |#3| (-586 (-47))) 18)))
-(((-41 |#1| |#2| |#3|) (-10 -7 (-15 -1916 ((-391 |#3|) |#3| (-586 (-47)))) (-15 -1916 ((-391 (-1079 |#3|)) (-1079 |#3|) (-586 (-47))))) (-783) (-728) (-877 (-47) |#2| |#1|)) (T -41))
-((-1916 (*1 *2 *3 *4) (-12 (-5 *4 (-586 (-47))) (-4 *5 (-783)) (-4 *6 (-728)) (-4 *7 (-877 (-47) *6 *5)) (-5 *2 (-391 (-1079 *7))) (-5 *1 (-41 *5 *6 *7)) (-5 *3 (-1079 *7)))) (-1916 (*1 *2 *3 *4) (-12 (-5 *4 (-586 (-47))) (-4 *5 (-783)) (-4 *6 (-728)) (-5 *2 (-391 *3)) (-5 *1 (-41 *5 *6 *3)) (-4 *3 (-877 (-47) *6 *5)))))
-(-10 -7 (-15 -1916 ((-391 |#3|) |#3| (-586 (-47)))) (-15 -1916 ((-391 (-1079 |#3|)) (-1079 |#3|) (-586 (-47)))))
-((-2823 (((-706) |#2|) 65)) (-2390 (((-706) |#2|) 68)) (-1446 (((-586 |#2|)) 33)) (-2633 (((-706) |#2|) 67)) (-3888 (((-706) |#2|) 64)) (-3030 (((-706) |#2|) 66)) (-2114 (((-586 (-626 |#1|))) 60)) (-2617 (((-586 |#2|)) 55)) (-3115 (((-586 |#2|) |#2|) 43)) (-3571 (((-586 |#2|)) 57)) (-1398 (((-586 |#2|)) 56)) (-4190 (((-586 (-626 |#1|))) 48)) (-2561 (((-586 |#2|)) 54)) (-3490 (((-586 |#2|) |#2|) 42)) (-3067 (((-586 |#2|)) 50)) (-3832 (((-586 (-626 |#1|))) 61)) (-2376 (((-586 |#2|)) 59)) (-1831 (((-1164 |#2|) (-1164 |#2|)) 84 (|has| |#1| (-281)))))
-(((-42 |#1| |#2|) (-10 -7 (-15 -2633 ((-706) |#2|)) (-15 -2390 ((-706) |#2|)) (-15 -3888 ((-706) |#2|)) (-15 -2823 ((-706) |#2|)) (-15 -3030 ((-706) |#2|)) (-15 -3067 ((-586 |#2|))) (-15 -3490 ((-586 |#2|) |#2|)) (-15 -3115 ((-586 |#2|) |#2|)) (-15 -2561 ((-586 |#2|))) (-15 -2617 ((-586 |#2|))) (-15 -1398 ((-586 |#2|))) (-15 -3571 ((-586 |#2|))) (-15 -2376 ((-586 |#2|))) (-15 -4190 ((-586 (-626 |#1|)))) (-15 -2114 ((-586 (-626 |#1|)))) (-15 -3832 ((-586 (-626 |#1|)))) (-15 -1446 ((-586 |#2|))) (IF (|has| |#1| (-281)) (-15 -1831 ((-1164 |#2|) (-1164 |#2|))) |%noBranch|)) (-512) (-390 |#1|)) (T -42))
-((-1831 (*1 *2 *2) (-12 (-5 *2 (-1164 *4)) (-4 *4 (-390 *3)) (-4 *3 (-281)) (-4 *3 (-512)) (-5 *1 (-42 *3 *4)))) (-1446 (*1 *2) (-12 (-4 *3 (-512)) (-5 *2 (-586 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-390 *3)))) (-3832 (*1 *2) (-12 (-4 *3 (-512)) (-5 *2 (-586 (-626 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-390 *3)))) (-2114 (*1 *2) (-12 (-4 *3 (-512)) (-5 *2 (-586 (-626 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-390 *3)))) (-4190 (*1 *2) (-12 (-4 *3 (-512)) (-5 *2 (-586 (-626 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-390 *3)))) (-2376 (*1 *2) (-12 (-4 *3 (-512)) (-5 *2 (-586 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-390 *3)))) (-3571 (*1 *2) (-12 (-4 *3 (-512)) (-5 *2 (-586 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-390 *3)))) (-1398 (*1 *2) (-12 (-4 *3 (-512)) (-5 *2 (-586 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-390 *3)))) (-2617 (*1 *2) (-12 (-4 *3 (-512)) (-5 *2 (-586 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-390 *3)))) (-2561 (*1 *2) (-12 (-4 *3 (-512)) (-5 *2 (-586 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-390 *3)))) (-3115 (*1 *2 *3) (-12 (-4 *4 (-512)) (-5 *2 (-586 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-390 *4)))) (-3490 (*1 *2 *3) (-12 (-4 *4 (-512)) (-5 *2 (-586 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-390 *4)))) (-3067 (*1 *2) (-12 (-4 *3 (-512)) (-5 *2 (-586 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-390 *3)))) (-3030 (*1 *2 *3) (-12 (-4 *4 (-512)) (-5 *2 (-706)) (-5 *1 (-42 *4 *3)) (-4 *3 (-390 *4)))) (-2823 (*1 *2 *3) (-12 (-4 *4 (-512)) (-5 *2 (-706)) (-5 *1 (-42 *4 *3)) (-4 *3 (-390 *4)))) (-3888 (*1 *2 *3) (-12 (-4 *4 (-512)) (-5 *2 (-706)) (-5 *1 (-42 *4 *3)) (-4 *3 (-390 *4)))) (-2390 (*1 *2 *3) (-12 (-4 *4 (-512)) (-5 *2 (-706)) (-5 *1 (-42 *4 *3)) (-4 *3 (-390 *4)))) (-2633 (*1 *2 *3) (-12 (-4 *4 (-512)) (-5 *2 (-706)) (-5 *1 (-42 *4 *3)) (-4 *3 (-390 *4)))))
-(-10 -7 (-15 -2633 ((-706) |#2|)) (-15 -2390 ((-706) |#2|)) (-15 -3888 ((-706) |#2|)) (-15 -2823 ((-706) |#2|)) (-15 -3030 ((-706) |#2|)) (-15 -3067 ((-586 |#2|))) (-15 -3490 ((-586 |#2|) |#2|)) (-15 -3115 ((-586 |#2|) |#2|)) (-15 -2561 ((-586 |#2|))) (-15 -2617 ((-586 |#2|))) (-15 -1398 ((-586 |#2|))) (-15 -3571 ((-586 |#2|))) (-15 -2376 ((-586 |#2|))) (-15 -4190 ((-586 (-626 |#1|)))) (-15 -2114 ((-586 (-626 |#1|)))) (-15 -3832 ((-586 (-626 |#1|)))) (-15 -1446 ((-586 |#2|))) (IF (|has| |#1| (-281)) (-15 -1831 ((-1164 |#2|) (-1164 |#2|))) |%noBranch|))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-4036 (((-3 $ "failed")) NIL (|has| |#1| (-512)))) (-1917 (((-3 $ "failed") $ $) NIL)) (-2284 (((-1164 (-626 |#1|)) (-1164 $)) NIL) (((-1164 (-626 |#1|))) 24)) (-3976 (((-1164 $)) 50)) (-3961 (($) NIL T CONST)) (-3824 (((-3 (-2 (|:| |particular| $) (|:| -1831 (-586 $))) "failed")) NIL (|has| |#1| (-512)))) (-1606 (((-3 $ "failed")) NIL (|has| |#1| (-512)))) (-3884 (((-626 |#1|) (-1164 $)) NIL) (((-626 |#1|)) NIL)) (-3193 ((|#1| $) NIL)) (-3984 (((-626 |#1|) $ (-1164 $)) NIL) (((-626 |#1|) $) NIL)) (-2473 (((-3 $ "failed") $) NIL (|has| |#1| (-512)))) (-3978 (((-1079 (-880 |#1|))) NIL (|has| |#1| (-336)))) (-3918 (($ $ (-849)) NIL)) (-2996 ((|#1| $) NIL)) (-1653 (((-1079 |#1|) $) NIL (|has| |#1| (-512)))) (-1882 ((|#1| (-1164 $)) NIL) ((|#1|) NIL)) (-2913 (((-1079 |#1|) $) NIL)) (-2539 (((-108)) 86)) (-3705 (($ (-1164 |#1|) (-1164 $)) NIL) (($ (-1164 |#1|)) NIL)) (-1540 (((-3 $ "failed") $) 14 (|has| |#1| (-512)))) (-3160 (((-849)) 51)) (-1802 (((-108)) NIL)) (-3273 (($ $ (-849)) NIL)) (-2435 (((-108)) NIL)) (-4208 (((-108)) NIL)) (-3213 (((-108)) 88)) (-2790 (((-3 (-2 (|:| |particular| $) (|:| -1831 (-586 $))) "failed")) NIL (|has| |#1| (-512)))) (-3164 (((-3 $ "failed")) NIL (|has| |#1| (-512)))) (-4024 (((-626 |#1|) (-1164 $)) NIL) (((-626 |#1|)) NIL)) (-4007 ((|#1| $) NIL)) (-3775 (((-626 |#1|) $ (-1164 $)) NIL) (((-626 |#1|) $) NIL)) (-1368 (((-3 $ "failed") $) NIL (|has| |#1| (-512)))) (-1589 (((-1079 (-880 |#1|))) NIL (|has| |#1| (-336)))) (-2544 (($ $ (-849)) NIL)) (-2318 ((|#1| $) NIL)) (-4108 (((-1079 |#1|) $) NIL (|has| |#1| (-512)))) (-1526 ((|#1| (-1164 $)) NIL) ((|#1|) NIL)) (-2429 (((-1079 |#1|) $) NIL)) (-3955 (((-108)) 85)) (-1239 (((-1066) $) NIL)) (-2260 (((-108)) 92)) (-4130 (((-108)) 91)) (-2684 (((-108)) 93)) (-4142 (((-1030) $) NIL)) (-2009 (((-108)) 87)) (-2543 ((|#1| $ (-520)) 53)) (-3790 (((-1164 |#1|) $ (-1164 $)) 47) (((-626 |#1|) (-1164 $) (-1164 $)) NIL) (((-1164 |#1|) $) 28) (((-626 |#1|) (-1164 $)) NIL)) (-1429 (((-1164 |#1|) $) NIL) (($ (-1164 |#1|)) NIL)) (-1894 (((-586 (-880 |#1|)) (-1164 $)) NIL) (((-586 (-880 |#1|))) NIL)) (-3607 (($ $ $) NIL)) (-3393 (((-108)) 83)) (-2188 (((-791) $) 68) (($ (-1164 |#1|)) 22)) (-1831 (((-1164 $)) 44)) (-4094 (((-586 (-1164 |#1|))) NIL (|has| |#1| (-512)))) (-2214 (($ $ $ $) NIL)) (-3183 (((-108)) 81)) (-1614 (($ (-626 |#1|) $) 18)) (-3710 (($ $ $) NIL)) (-3977 (((-108)) 84)) (-2963 (((-108)) 82)) (-1314 (((-108)) 80)) (-3560 (($) NIL T CONST)) (-1530 (((-108) $ $) NIL)) (-1611 (($ $) NIL) (($ $ $) NIL)) (-1601 (($ $ $) NIL)) (** (($ $ (-849)) NIL)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) 75) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1050 |#2| |#1|) $) 19)))
-(((-43 |#1| |#2| |#3| |#4|) (-13 (-390 |#1|) (-588 (-1050 |#2| |#1|)) (-10 -8 (-15 -2188 ($ (-1164 |#1|))))) (-336) (-849) (-586 (-1083)) (-1164 (-626 |#1|))) (T -43))
-((-2188 (*1 *1 *2) (-12 (-5 *2 (-1164 *3)) (-4 *3 (-336)) (-14 *6 (-1164 (-626 *3))) (-5 *1 (-43 *3 *4 *5 *6)) (-14 *4 (-849)) (-14 *5 (-586 (-1083))))))
-(-13 (-390 |#1|) (-588 (-1050 |#2| |#1|)) (-10 -8 (-15 -2188 ($ (-1164 |#1|)))))
-((-1414 (((-108) $ $) NIL (-3700 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)) (|has| |#2| (-1012))))) (-3429 (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) NIL)) (-2091 (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) NIL)) (-3827 (($ $) NIL)) (-1799 (($) NIL) (($ (-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) NIL)) (-1476 (((-1169) $ |#1| |#1|) NIL (|has| $ (-6 -4230))) (((-1169) $ (-520) (-520)) NIL (|has| $ (-6 -4230)))) (-1198 (($ $ (-520)) NIL (|has| $ (-6 -4230)))) (-4029 (((-108) (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL) (((-108) $) NIL (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-783)))) (-3587 (($ (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4230))) (($ $) NIL (-12 (|has| $ (-6 -4230)) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-783))))) (-3210 (($ (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-783)))) (-2063 (((-108) $ (-706)) NIL)) (-2888 (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) NIL (|has| $ (-6 -4230)))) (-2719 (($ $ $) 27 (|has| $ (-6 -4230)))) (-3819 (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) NIL (|has| $ (-6 -4230)))) (-1598 (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) 29 (|has| $ (-6 -4230)))) (-2377 ((|#2| $ |#1| |#2|) 46) (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $ (-520) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) NIL (|has| $ (-6 -4230))) (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $ (-1131 (-520)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) NIL (|has| $ (-6 -4230))) (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $ "last" (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) NIL (|has| $ (-6 -4230))) (($ $ "rest" $) NIL (|has| $ (-6 -4230))) (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $ "first" (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) NIL (|has| $ (-6 -4230))) (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $ "value" (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) NIL (|has| $ (-6 -4230)))) (-3061 (($ $ (-586 $)) NIL (|has| $ (-6 -4230)))) (-1817 (($ (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4229))) (($ (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL)) (-1627 (($ (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4229))) (($ (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4229)))) (-2079 (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) NIL)) (-2747 (((-3 |#2| "failed") |#1| $) 37)) (-3961 (($) NIL T CONST)) (-2447 (($ $) NIL (|has| $ (-6 -4230)))) (-1861 (($ $) NIL)) (-2305 (($ $ (-706)) NIL) (($ $) 24)) (-3667 (($ $) NIL (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (-2331 (($ $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012))))) (-3766 (($ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) NIL (|has| $ (-6 -4229))) (($ (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4229))) (((-3 |#2| "failed") |#1| $) 47) (($ (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL) (($ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) NIL (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (-1421 (($ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (($ (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4229))) (($ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (($ (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4229)))) (-3856 (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) NIL (-12 (|has| $ (-6 -4229)) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) NIL (|has| $ (-6 -4229))) (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4229))) (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) NIL (-12 (|has| $ (-6 -4229)) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) NIL (|has| $ (-6 -4229))) (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4229)))) (-3846 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4230))) (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $ (-520) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) NIL (|has| $ (-6 -4230)))) (-3623 ((|#2| $ |#1|) NIL) (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $ (-520)) NIL)) (-3928 (((-108) $) NIL)) (-3232 (((-520) (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL) (((-520) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) NIL (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012))) (((-520) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $ (-520)) NIL (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (-3828 (((-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) 18 (|has| $ (-6 -4229))) (((-586 |#2|) $) NIL (|has| $ (-6 -4229))) (((-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) 18 (|has| $ (-6 -4229)))) (-3405 (((-586 $) $) NIL)) (-1885 (((-108) $ $) NIL (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (-1810 (($ (-706) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) NIL)) (-3027 (((-108) $ (-706)) NIL)) (-2567 ((|#1| $) NIL (|has| |#1| (-783))) (((-520) $) 32 (|has| (-520) (-783)))) (-2809 (($ $ $) NIL (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-783)))) (-3235 (($ (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-783)))) (-1819 (($ (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-783)))) (-3702 (((-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4229))) (((-586 |#2|) $) NIL (|has| $ (-6 -4229))) (((-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4229)))) (-2422 (((-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#2| (-1012)))) (((-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012))))) (-1752 ((|#1| $) NIL (|has| |#1| (-783))) (((-520) $) 34 (|has| (-520) (-783)))) (-2446 (($ $ $) NIL (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-783)))) (-3830 (($ (-1 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4230))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4230))) (($ (-1 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4230)))) (-1389 (($ (-1 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL)) (-1578 (($ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) NIL)) (-1390 (((-108) $ (-706)) NIL)) (-1277 (((-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL)) (-1740 (((-108) $) NIL)) (-1239 (((-1066) $) 42 (-3700 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)) (|has| |#2| (-1012))))) (-1440 (($ $ (-706)) NIL) (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) NIL)) (-2960 (((-586 |#1|) $) 20)) (-1612 (((-108) |#1| $) NIL)) (-3351 (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) NIL)) (-3618 (($ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) NIL) (($ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $ (-520)) NIL) (($ $ $ (-520)) NIL)) (-1659 (($ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $ (-520)) NIL) (($ $ $ (-520)) NIL)) (-3622 (((-586 |#1|) $) NIL) (((-586 (-520)) $) NIL)) (-2603 (((-108) |#1| $) NIL) (((-108) (-520) $) NIL)) (-4142 (((-1030) $) NIL (-3700 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)) (|has| |#2| (-1012))))) (-2293 ((|#2| $) NIL (|has| |#1| (-783))) (($ $ (-706)) NIL) (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) 23)) (-2985 (((-3 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) "failed") (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL) (((-3 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) "failed") (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL)) (-2936 (($ $ |#2|) NIL (|has| $ (-6 -4230))) (($ $ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) NIL (|has| $ (-6 -4230)))) (-3345 (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) NIL)) (-1392 (((-108) $) NIL)) (-4155 (((-108) (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4229))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4229))) (((-108) (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))))) NIL (-12 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-283 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (($ $ (-268 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) NIL (-12 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-283 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (($ $ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) NIL (-12 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-283 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (($ $ (-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) (-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) NIL (-12 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-283 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (($ $ (-586 |#2|) (-586 |#2|)) NIL (-12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012)))) (($ $ (-268 |#2|)) NIL (-12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012)))) (($ $ (-586 (-268 |#2|))) NIL (-12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012)))) (($ $ (-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) (-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) NIL (-12 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-283 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (($ $ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) NIL (-12 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-283 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (($ $ (-268 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) NIL (-12 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-283 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (($ $ (-586 (-268 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))))) NIL (-12 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-283 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012))))) (-2533 (((-108) $ $) NIL)) (-2094 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#2| (-1012)))) (((-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012))))) (-1523 (((-586 |#2|) $) NIL) (((-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) 17)) (-4018 (((-108) $) 16)) (-2238 (($) 13)) (-2543 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $ (-520) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) NIL) (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $ (-520)) NIL) (($ $ (-1131 (-520))) NIL) (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $ "first") NIL) (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $ "value") NIL)) (-3765 (((-520) $ $) NIL)) (-1645 (($) 12) (($ (-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) NIL)) (-4185 (($ $ (-520)) NIL) (($ $ (-1131 (-520))) NIL)) (-3690 (($ $ (-520)) NIL) (($ $ (-1131 (-520))) NIL)) (-1975 (((-108) $) NIL)) (-3436 (($ $) NIL)) (-1521 (($ $) NIL (|has| $ (-6 -4230)))) (-3341 (((-706) $) NIL)) (-1696 (($ $) NIL)) (-4159 (((-706) (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4229))) (((-706) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (((-706) |#2| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#2| (-1012)))) (((-706) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4229))) (((-706) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (((-706) (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4229)))) (-1913 (($ $ $ (-520)) NIL (|has| $ (-6 -4230)))) (-2403 (($ $) NIL)) (-1429 (((-496) $) NIL (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-561 (-496))))) (-2200 (($ (-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) NIL) (($ (-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) NIL)) (-2251 (($ $ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) NIL) (($ $ $) NIL)) (-4156 (($ $ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) NIL) (($ (-586 $)) NIL) (($ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) 25) (($ $ $) NIL)) (-2188 (((-791) $) NIL (-3700 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-560 (-791))) (|has| |#2| (-560 (-791)))))) (-2438 (((-586 $) $) NIL)) (-1639 (((-108) $ $) NIL (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (-1898 (($ (-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) NIL)) (-1444 (((-3 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) "failed") |#1| $) 44)) (-1662 (((-108) (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4229))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4229))) (((-108) (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4229)))) (-1573 (((-108) $ $) NIL (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-783)))) (-1557 (((-108) $ $) NIL (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-783)))) (-1530 (((-108) $ $) NIL (-3700 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)) (|has| |#2| (-1012))))) (-1565 (((-108) $ $) NIL (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-783)))) (-1548 (((-108) $ $) NIL (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-783)))) (-3474 (((-706) $) 22 (|has| $ (-6 -4229)))))
-(((-44 |#1| |#2|) (-35 |#1| |#2|) (-1012) (-1012)) (T -44))
+(3136382 . 3409778160)
+((-1505 (((-108) (-1 (-108) |#2| |#2|) $) 63) (((-108) $) NIL)) (-1621 (($ (-1 (-108) |#2| |#2|) $) 17) (($ $) NIL)) (-2378 ((|#2| $ (-521) |#2|) NIL) ((|#2| $ (-1132 (-521)) |#2|) 34)) (-3081 (($ $) 59)) (-3859 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 41) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 38) ((|#2| (-1 |#2| |#2| |#2|) $) 37)) (-3233 (((-521) (-1 (-108) |#2|) $) 22) (((-521) |#2| $) NIL) (((-521) |#2| $ (-521)) 71)) (-3831 (((-587 |#2|) $) 13)) (-1318 (($ (-1 (-108) |#2| |#2|) $ $) 48) (($ $ $) NIL)) (-3833 (($ (-1 |#2| |#2|) $) 29)) (-1390 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 45)) (-1659 (($ |#2| $ (-521)) NIL) (($ $ $ (-521)) 50)) (-3620 (((-3 |#2| "failed") (-1 (-108) |#2|) $) 24)) (-1789 (((-108) (-1 (-108) |#2|) $) 21)) (-2544 ((|#2| $ (-521) |#2|) NIL) ((|#2| $ (-521)) NIL) (($ $ (-1132 (-521))) 49)) (-3691 (($ $ (-521)) 56) (($ $ (-1132 (-521))) 55)) (-4163 (((-707) (-1 (-108) |#2|) $) 26) (((-707) |#2| $) NIL)) (-1497 (($ $ $ (-521)) 52)) (-2404 (($ $) 51)) (-2201 (($ (-587 |#2|)) 53)) (-4159 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 64) (($ (-587 $)) 62)) (-2189 (((-792) $) 69)) (-3049 (((-108) (-1 (-108) |#2|) $) 20)) (-1531 (((-108) $ $) 70)) (-1549 (((-108) $ $) 73)))
+(((-18 |#1| |#2|) (-10 -8 (-15 -1531 ((-108) |#1| |#1|)) (-15 -2189 ((-792) |#1|)) (-15 -1549 ((-108) |#1| |#1|)) (-15 -1621 (|#1| |#1|)) (-15 -1621 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -3081 (|#1| |#1|)) (-15 -1497 (|#1| |#1| |#1| (-521))) (-15 -1505 ((-108) |#1|)) (-15 -1318 (|#1| |#1| |#1|)) (-15 -3233 ((-521) |#2| |#1| (-521))) (-15 -3233 ((-521) |#2| |#1|)) (-15 -3233 ((-521) (-1 (-108) |#2|) |#1|)) (-15 -1505 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -1318 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -2378 (|#2| |#1| (-1132 (-521)) |#2|)) (-15 -1659 (|#1| |#1| |#1| (-521))) (-15 -1659 (|#1| |#2| |#1| (-521))) (-15 -3691 (|#1| |#1| (-1132 (-521)))) (-15 -3691 (|#1| |#1| (-521))) (-15 -2544 (|#1| |#1| (-1132 (-521)))) (-15 -1390 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4159 (|#1| (-587 |#1|))) (-15 -4159 (|#1| |#1| |#1|)) (-15 -4159 (|#1| |#2| |#1|)) (-15 -4159 (|#1| |#1| |#2|)) (-15 -2201 (|#1| (-587 |#2|))) (-15 -3620 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -3859 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3859 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3859 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2544 (|#2| |#1| (-521))) (-15 -2544 (|#2| |#1| (-521) |#2|)) (-15 -2378 (|#2| |#1| (-521) |#2|)) (-15 -4163 ((-707) |#2| |#1|)) (-15 -3831 ((-587 |#2|) |#1|)) (-15 -4163 ((-707) (-1 (-108) |#2|) |#1|)) (-15 -1789 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3049 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3833 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1390 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2404 (|#1| |#1|))) (-19 |#2|) (-1119)) (T -18))
+NIL
+(-10 -8 (-15 -1531 ((-108) |#1| |#1|)) (-15 -2189 ((-792) |#1|)) (-15 -1549 ((-108) |#1| |#1|)) (-15 -1621 (|#1| |#1|)) (-15 -1621 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -3081 (|#1| |#1|)) (-15 -1497 (|#1| |#1| |#1| (-521))) (-15 -1505 ((-108) |#1|)) (-15 -1318 (|#1| |#1| |#1|)) (-15 -3233 ((-521) |#2| |#1| (-521))) (-15 -3233 ((-521) |#2| |#1|)) (-15 -3233 ((-521) (-1 (-108) |#2|) |#1|)) (-15 -1505 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -1318 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -2378 (|#2| |#1| (-1132 (-521)) |#2|)) (-15 -1659 (|#1| |#1| |#1| (-521))) (-15 -1659 (|#1| |#2| |#1| (-521))) (-15 -3691 (|#1| |#1| (-1132 (-521)))) (-15 -3691 (|#1| |#1| (-521))) (-15 -2544 (|#1| |#1| (-1132 (-521)))) (-15 -1390 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4159 (|#1| (-587 |#1|))) (-15 -4159 (|#1| |#1| |#1|)) (-15 -4159 (|#1| |#2| |#1|)) (-15 -4159 (|#1| |#1| |#2|)) (-15 -2201 (|#1| (-587 |#2|))) (-15 -3620 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -3859 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3859 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3859 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2544 (|#2| |#1| (-521))) (-15 -2544 (|#2| |#1| (-521) |#2|)) (-15 -2378 (|#2| |#1| (-521) |#2|)) (-15 -4163 ((-707) |#2| |#1|)) (-15 -3831 ((-587 |#2|) |#1|)) (-15 -4163 ((-707) (-1 (-108) |#2|) |#1|)) (-15 -1789 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3049 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3833 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1390 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2404 (|#1| |#1|)))
+((-1415 (((-108) $ $) 19 (|has| |#1| (-1013)))) (-1903 (((-1170) $ (-521) (-521)) 40 (|has| $ (-6 -4234)))) (-1505 (((-108) (-1 (-108) |#1| |#1|) $) 98) (((-108) $) 92 (|has| |#1| (-784)))) (-1621 (($ (-1 (-108) |#1| |#1|) $) 89 (|has| $ (-6 -4234))) (($ $) 88 (-12 (|has| |#1| (-784)) (|has| $ (-6 -4234))))) (-3211 (($ (-1 (-108) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-784)))) (-2978 (((-108) $ (-707)) 8)) (-2378 ((|#1| $ (-521) |#1|) 52 (|has| $ (-6 -4234))) ((|#1| $ (-1132 (-521)) |#1|) 58 (|has| $ (-6 -4234)))) (-1628 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4233)))) (-2547 (($) 7 T CONST)) (-3081 (($ $) 90 (|has| $ (-6 -4234)))) (-1862 (($ $) 100)) (-2332 (($ $) 78 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-1422 (($ |#1| $) 77 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4233)))) (-3859 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4233)))) (-3849 ((|#1| $ (-521) |#1|) 53 (|has| $ (-6 -4234)))) (-3626 ((|#1| $ (-521)) 51)) (-3233 (((-521) (-1 (-108) |#1|) $) 97) (((-521) |#1| $) 96 (|has| |#1| (-1013))) (((-521) |#1| $ (-521)) 95 (|has| |#1| (-1013)))) (-3831 (((-587 |#1|) $) 30 (|has| $ (-6 -4233)))) (-1811 (($ (-707) |#1|) 69)) (-2139 (((-108) $ (-707)) 9)) (-2826 (((-521) $) 43 (|has| (-521) (-784)))) (-2810 (($ $ $) 87 (|has| |#1| (-784)))) (-1318 (($ (-1 (-108) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-784)))) (-3757 (((-587 |#1|) $) 29 (|has| $ (-6 -4233)))) (-2221 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-2597 (((-521) $) 44 (|has| (-521) (-784)))) (-2446 (($ $ $) 86 (|has| |#1| (-784)))) (-3833 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3574 (((-108) $ (-707)) 10)) (-3688 (((-1067) $) 22 (|has| |#1| (-1013)))) (-1659 (($ |#1| $ (-521)) 60) (($ $ $ (-521)) 59)) (-1668 (((-587 (-521)) $) 46)) (-2941 (((-108) (-521) $) 47)) (-4147 (((-1031) $) 21 (|has| |#1| (-1013)))) (-2293 ((|#1| $) 42 (|has| (-521) (-784)))) (-3620 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-3016 (($ $ |#1|) 41 (|has| $ (-6 -4234)))) (-1789 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 |#1|))) 26 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) 25 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) 23 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-2488 (((-108) $ $) 14)) (-3821 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2489 (((-587 |#1|) $) 48)) (-3462 (((-108) $) 11)) (-4024 (($) 12)) (-2544 ((|#1| $ (-521) |#1|) 50) ((|#1| $ (-521)) 49) (($ $ (-1132 (-521))) 63)) (-3691 (($ $ (-521)) 62) (($ $ (-1132 (-521))) 61)) (-4163 (((-707) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4233))) (((-707) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-1497 (($ $ $ (-521)) 91 (|has| $ (-6 -4234)))) (-2404 (($ $) 13)) (-1430 (((-497) $) 79 (|has| |#1| (-562 (-497))))) (-2201 (($ (-587 |#1|)) 70)) (-4159 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-587 $)) 65)) (-2189 (((-792) $) 18 (|has| |#1| (-561 (-792))))) (-3049 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4233)))) (-1574 (((-108) $ $) 84 (|has| |#1| (-784)))) (-1558 (((-108) $ $) 83 (|has| |#1| (-784)))) (-1531 (((-108) $ $) 20 (|has| |#1| (-1013)))) (-1566 (((-108) $ $) 85 (|has| |#1| (-784)))) (-1549 (((-108) $ $) 82 (|has| |#1| (-784)))) (-3475 (((-707) $) 6 (|has| $ (-6 -4233)))))
+(((-19 |#1|) (-1196) (-1119)) (T -19))
+NIL
+(-13 (-347 |t#1|) (-10 -7 (-6 -4234)))
+(((-33) . T) ((-97) -3703 (|has| |#1| (-1013)) (|has| |#1| (-784))) ((-561 (-792)) -3703 (|has| |#1| (-1013)) (|has| |#1| (-784)) (|has| |#1| (-561 (-792)))) ((-139 |#1|) . T) ((-562 (-497)) |has| |#1| (-562 (-497))) ((-261 #0=(-521) |#1|) . T) ((-263 #0# |#1|) . T) ((-284 |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-347 |#1|) . T) ((-460 |#1|) . T) ((-554 #0# |#1|) . T) ((-482 |#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-592 |#1|) . T) ((-784) |has| |#1| (-784)) ((-1013) -3703 (|has| |#1| (-1013)) (|has| |#1| (-784))) ((-1119) . T))
+((-1232 (((-3 $ "failed") $ $) 12)) (-1612 (($ $) NIL) (($ $ $) 9)) (* (($ (-850) $) NIL) (($ (-707) $) 16) (($ (-521) $) 21)))
+(((-20 |#1|) (-10 -8 (-15 * (|#1| (-521) |#1|)) (-15 -1612 (|#1| |#1| |#1|)) (-15 -1612 (|#1| |#1|)) (-15 -1232 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-707) |#1|)) (-15 * (|#1| (-850) |#1|))) (-21)) (T -20))
+NIL
+(-10 -8 (-15 * (|#1| (-521) |#1|)) (-15 -1612 (|#1| |#1| |#1|)) (-15 -1612 (|#1| |#1|)) (-15 -1232 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-707) |#1|)) (-15 * (|#1| (-850) |#1|)))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-1232 (((-3 $ "failed") $ $) 19)) (-2547 (($) 17 T CONST)) (-3688 (((-1067) $) 9)) (-4147 (((-1031) $) 10)) (-2189 (((-792) $) 11)) (-3561 (($) 18 T CONST)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20)))
+(((-21) (-1196)) (T -21))
+((-1612 (*1 *1 *1) (-4 *1 (-21))) (-1612 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-521)))))
+(-13 (-124) (-10 -8 (-15 -1612 ($ $)) (-15 -1612 ($ $ $)) (-15 * ($ (-521) $))))
+(((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-561 (-792)) . T) ((-1013) . T))
+((-2220 (((-108) $) 10)) (-2547 (($) 15)) (* (($ (-850) $) 14) (($ (-707) $) 18)))
+(((-22 |#1|) (-10 -8 (-15 * (|#1| (-707) |#1|)) (-15 -2220 ((-108) |#1|)) (-15 -2547 (|#1|)) (-15 * (|#1| (-850) |#1|))) (-23)) (T -22))
+NIL
+(-10 -8 (-15 * (|#1| (-707) |#1|)) (-15 -2220 ((-108) |#1|)) (-15 -2547 (|#1|)) (-15 * (|#1| (-850) |#1|)))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-2547 (($) 17 T CONST)) (-3688 (((-1067) $) 9)) (-4147 (((-1031) $) 10)) (-2189 (((-792) $) 11)) (-3561 (($) 18 T CONST)) (-1531 (((-108) $ $) 6)) (-1602 (($ $ $) 14)) (* (($ (-850) $) 13) (($ (-707) $) 15)))
+(((-23) (-1196)) (T -23))
+((-3561 (*1 *1) (-4 *1 (-23))) (-2547 (*1 *1) (-4 *1 (-23))) (-2220 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-108)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-707)))))
+(-13 (-25) (-10 -8 (-15 (-3561) ($) -2676) (-15 -2547 ($) -2676) (-15 -2220 ((-108) $)) (-15 * ($ (-707) $))))
+(((-25) . T) ((-97) . T) ((-561 (-792)) . T) ((-1013) . T))
+((* (($ (-850) $) 10)))
+(((-24 |#1|) (-10 -8 (-15 * (|#1| (-850) |#1|))) (-25)) (T -24))
+NIL
+(-10 -8 (-15 * (|#1| (-850) |#1|)))
+((-1415 (((-108) $ $) 7)) (-3688 (((-1067) $) 9)) (-4147 (((-1031) $) 10)) (-2189 (((-792) $) 11)) (-1531 (((-108) $ $) 6)) (-1602 (($ $ $) 14)) (* (($ (-850) $) 13)))
+(((-25) (-1196)) (T -25))
+((-1602 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-850)))))
+(-13 (-1013) (-10 -8 (-15 -1602 ($ $ $)) (-15 * ($ (-850) $))))
+(((-97) . T) ((-561 (-792)) . T) ((-1013) . T))
+((-3102 (((-587 $) (-881 $)) 29) (((-587 $) (-1080 $)) 16) (((-587 $) (-1080 $) (-1084)) 20)) (-3485 (($ (-881 $)) 27) (($ (-1080 $)) 11) (($ (-1080 $) (-1084)) 54)) (-2270 (((-587 $) (-881 $)) 30) (((-587 $) (-1080 $)) 18) (((-587 $) (-1080 $) (-1084)) 19)) (-2590 (($ (-881 $)) 28) (($ (-1080 $)) 13) (($ (-1080 $) (-1084)) NIL)))
+(((-26 |#1|) (-10 -8 (-15 -3102 ((-587 |#1|) (-1080 |#1|) (-1084))) (-15 -3102 ((-587 |#1|) (-1080 |#1|))) (-15 -3102 ((-587 |#1|) (-881 |#1|))) (-15 -3485 (|#1| (-1080 |#1|) (-1084))) (-15 -3485 (|#1| (-1080 |#1|))) (-15 -3485 (|#1| (-881 |#1|))) (-15 -2270 ((-587 |#1|) (-1080 |#1|) (-1084))) (-15 -2270 ((-587 |#1|) (-1080 |#1|))) (-15 -2270 ((-587 |#1|) (-881 |#1|))) (-15 -2590 (|#1| (-1080 |#1|) (-1084))) (-15 -2590 (|#1| (-1080 |#1|))) (-15 -2590 (|#1| (-881 |#1|)))) (-27)) (T -26))
+NIL
+(-10 -8 (-15 -3102 ((-587 |#1|) (-1080 |#1|) (-1084))) (-15 -3102 ((-587 |#1|) (-1080 |#1|))) (-15 -3102 ((-587 |#1|) (-881 |#1|))) (-15 -3485 (|#1| (-1080 |#1|) (-1084))) (-15 -3485 (|#1| (-1080 |#1|))) (-15 -3485 (|#1| (-881 |#1|))) (-15 -2270 ((-587 |#1|) (-1080 |#1|) (-1084))) (-15 -2270 ((-587 |#1|) (-1080 |#1|))) (-15 -2270 ((-587 |#1|) (-881 |#1|))) (-15 -2590 (|#1| (-1080 |#1|) (-1084))) (-15 -2590 (|#1| (-1080 |#1|))) (-15 -2590 (|#1| (-881 |#1|))))
+((-1415 (((-108) $ $) 7)) (-3102 (((-587 $) (-881 $)) 80) (((-587 $) (-1080 $)) 79) (((-587 $) (-1080 $) (-1084)) 78)) (-3485 (($ (-881 $)) 83) (($ (-1080 $)) 82) (($ (-1080 $) (-1084)) 81)) (-2220 (((-108) $) 16)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) 41)) (-2559 (($ $) 40)) (-1733 (((-108) $) 38)) (-1232 (((-3 $ "failed") $ $) 19)) (-3063 (($ $) 73)) (-3358 (((-392 $) $) 72)) (-1927 (($ $) 92)) (-1389 (((-108) $ $) 59)) (-2547 (($) 17 T CONST)) (-2270 (((-587 $) (-881 $)) 86) (((-587 $) (-1080 $)) 85) (((-587 $) (-1080 $) (-1084)) 84)) (-2590 (($ (-881 $)) 89) (($ (-1080 $)) 88) (($ (-1080 $) (-1084)) 87)) (-2277 (($ $ $) 55)) (-1257 (((-3 $ "failed") $) 34)) (-2253 (($ $ $) 56)) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) 51)) (-2710 (((-108) $) 71)) (-3996 (((-108) $) 31)) (-3407 (($ $ (-521)) 91)) (-1546 (((-3 (-587 $) "failed") (-587 $) $) 52)) (-2223 (($ $ $) 46) (($ (-587 $)) 45)) (-3688 (((-1067) $) 9)) (-3095 (($ $) 70)) (-4147 (((-1031) $) 10)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) 44)) (-2258 (($ $ $) 48) (($ (-587 $)) 47)) (-1916 (((-392 $) $) 74)) (-1962 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2230 (((-3 $ "failed") $ $) 42)) (-3854 (((-3 (-587 $) "failed") (-587 $) $) 50)) (-4196 (((-707) $) 58)) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) 57)) (-2189 (((-792) $) 11) (($ (-521)) 28) (($ $) 43) (($ (-381 (-521))) 65)) (-3846 (((-707)) 29)) (-4210 (((-108) $ $) 39)) (-3505 (($ $ (-850)) 26) (($ $ (-707)) 33) (($ $ (-521)) 69)) (-3561 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-1531 (((-108) $ $) 6)) (-1620 (($ $ $) 64)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-707)) 32) (($ $ (-521)) 68) (($ $ (-381 (-521))) 90)) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ $ (-381 (-521))) 67) (($ (-381 (-521)) $) 66)))
+(((-27) (-1196)) (T -27))
+((-2590 (*1 *1 *2) (-12 (-5 *2 (-881 *1)) (-4 *1 (-27)))) (-2590 (*1 *1 *2) (-12 (-5 *2 (-1080 *1)) (-4 *1 (-27)))) (-2590 (*1 *1 *2 *3) (-12 (-5 *2 (-1080 *1)) (-5 *3 (-1084)) (-4 *1 (-27)))) (-2270 (*1 *2 *3) (-12 (-5 *3 (-881 *1)) (-4 *1 (-27)) (-5 *2 (-587 *1)))) (-2270 (*1 *2 *3) (-12 (-5 *3 (-1080 *1)) (-4 *1 (-27)) (-5 *2 (-587 *1)))) (-2270 (*1 *2 *3 *4) (-12 (-5 *3 (-1080 *1)) (-5 *4 (-1084)) (-4 *1 (-27)) (-5 *2 (-587 *1)))) (-3485 (*1 *1 *2) (-12 (-5 *2 (-881 *1)) (-4 *1 (-27)))) (-3485 (*1 *1 *2) (-12 (-5 *2 (-1080 *1)) (-4 *1 (-27)))) (-3485 (*1 *1 *2 *3) (-12 (-5 *2 (-1080 *1)) (-5 *3 (-1084)) (-4 *1 (-27)))) (-3102 (*1 *2 *3) (-12 (-5 *3 (-881 *1)) (-4 *1 (-27)) (-5 *2 (-587 *1)))) (-3102 (*1 *2 *3) (-12 (-5 *3 (-1080 *1)) (-4 *1 (-27)) (-5 *2 (-587 *1)))) (-3102 (*1 *2 *3 *4) (-12 (-5 *3 (-1080 *1)) (-5 *4 (-1084)) (-4 *1 (-27)) (-5 *2 (-587 *1)))))
+(-13 (-337) (-927) (-10 -8 (-15 -2590 ($ (-881 $))) (-15 -2590 ($ (-1080 $))) (-15 -2590 ($ (-1080 $) (-1084))) (-15 -2270 ((-587 $) (-881 $))) (-15 -2270 ((-587 $) (-1080 $))) (-15 -2270 ((-587 $) (-1080 $) (-1084))) (-15 -3485 ($ (-881 $))) (-15 -3485 ($ (-1080 $))) (-15 -3485 ($ (-1080 $) (-1084))) (-15 -3102 ((-587 $) (-881 $))) (-15 -3102 ((-587 $) (-1080 $))) (-15 -3102 ((-587 $) (-1080 $) (-1084)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-381 (-521))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-124) . T) ((-561 (-792)) . T) ((-157) . T) ((-220) . T) ((-265) . T) ((-282) . T) ((-337) . T) ((-425) . T) ((-513) . T) ((-589 #0#) . T) ((-589 $) . T) ((-654 #0#) . T) ((-654 $) . T) ((-663) . T) ((-849) . T) ((-927) . T) ((-976 #0#) . T) ((-976 $) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T) ((-1123) . T))
+((-3102 (((-587 $) (-881 $)) NIL) (((-587 $) (-1080 $)) NIL) (((-587 $) (-1080 $) (-1084)) 50) (((-587 $) $) 19) (((-587 $) $ (-1084)) 41)) (-3485 (($ (-881 $)) NIL) (($ (-1080 $)) NIL) (($ (-1080 $) (-1084)) 52) (($ $) 17) (($ $ (-1084)) 37)) (-2270 (((-587 $) (-881 $)) NIL) (((-587 $) (-1080 $)) NIL) (((-587 $) (-1080 $) (-1084)) 48) (((-587 $) $) 15) (((-587 $) $ (-1084)) 43)) (-2590 (($ (-881 $)) NIL) (($ (-1080 $)) NIL) (($ (-1080 $) (-1084)) NIL) (($ $) 12) (($ $ (-1084)) 39)))
+(((-28 |#1| |#2|) (-10 -8 (-15 -3102 ((-587 |#1|) |#1| (-1084))) (-15 -3485 (|#1| |#1| (-1084))) (-15 -3102 ((-587 |#1|) |#1|)) (-15 -3485 (|#1| |#1|)) (-15 -2270 ((-587 |#1|) |#1| (-1084))) (-15 -2590 (|#1| |#1| (-1084))) (-15 -2270 ((-587 |#1|) |#1|)) (-15 -2590 (|#1| |#1|)) (-15 -3102 ((-587 |#1|) (-1080 |#1|) (-1084))) (-15 -3102 ((-587 |#1|) (-1080 |#1|))) (-15 -3102 ((-587 |#1|) (-881 |#1|))) (-15 -3485 (|#1| (-1080 |#1|) (-1084))) (-15 -3485 (|#1| (-1080 |#1|))) (-15 -3485 (|#1| (-881 |#1|))) (-15 -2270 ((-587 |#1|) (-1080 |#1|) (-1084))) (-15 -2270 ((-587 |#1|) (-1080 |#1|))) (-15 -2270 ((-587 |#1|) (-881 |#1|))) (-15 -2590 (|#1| (-1080 |#1|) (-1084))) (-15 -2590 (|#1| (-1080 |#1|))) (-15 -2590 (|#1| (-881 |#1|)))) (-29 |#2|) (-13 (-784) (-513))) (T -28))
+NIL
+(-10 -8 (-15 -3102 ((-587 |#1|) |#1| (-1084))) (-15 -3485 (|#1| |#1| (-1084))) (-15 -3102 ((-587 |#1|) |#1|)) (-15 -3485 (|#1| |#1|)) (-15 -2270 ((-587 |#1|) |#1| (-1084))) (-15 -2590 (|#1| |#1| (-1084))) (-15 -2270 ((-587 |#1|) |#1|)) (-15 -2590 (|#1| |#1|)) (-15 -3102 ((-587 |#1|) (-1080 |#1|) (-1084))) (-15 -3102 ((-587 |#1|) (-1080 |#1|))) (-15 -3102 ((-587 |#1|) (-881 |#1|))) (-15 -3485 (|#1| (-1080 |#1|) (-1084))) (-15 -3485 (|#1| (-1080 |#1|))) (-15 -3485 (|#1| (-881 |#1|))) (-15 -2270 ((-587 |#1|) (-1080 |#1|) (-1084))) (-15 -2270 ((-587 |#1|) (-1080 |#1|))) (-15 -2270 ((-587 |#1|) (-881 |#1|))) (-15 -2590 (|#1| (-1080 |#1|) (-1084))) (-15 -2590 (|#1| (-1080 |#1|))) (-15 -2590 (|#1| (-881 |#1|))))
+((-1415 (((-108) $ $) 7)) (-3102 (((-587 $) (-881 $)) 80) (((-587 $) (-1080 $)) 79) (((-587 $) (-1080 $) (-1084)) 78) (((-587 $) $) 126) (((-587 $) $ (-1084)) 124)) (-3485 (($ (-881 $)) 83) (($ (-1080 $)) 82) (($ (-1080 $) (-1084)) 81) (($ $) 127) (($ $ (-1084)) 125)) (-2220 (((-108) $) 16)) (-4084 (((-587 (-1084)) $) 201)) (-1280 (((-381 (-1080 $)) $ (-560 $)) 233 (|has| |#1| (-513)))) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) 41)) (-2559 (($ $) 40)) (-1733 (((-108) $) 38)) (-1884 (((-587 (-560 $)) $) 164)) (-1232 (((-3 $ "failed") $ $) 19)) (-3300 (($ $ (-587 (-560 $)) (-587 $)) 154) (($ $ (-587 (-269 $))) 153) (($ $ (-269 $)) 152)) (-3063 (($ $) 73)) (-3358 (((-392 $) $) 72)) (-1927 (($ $) 92)) (-1389 (((-108) $ $) 59)) (-2547 (($) 17 T CONST)) (-2270 (((-587 $) (-881 $)) 86) (((-587 $) (-1080 $)) 85) (((-587 $) (-1080 $) (-1084)) 84) (((-587 $) $) 130) (((-587 $) $ (-1084)) 128)) (-2590 (($ (-881 $)) 89) (($ (-1080 $)) 88) (($ (-1080 $) (-1084)) 87) (($ $) 131) (($ $ (-1084)) 129)) (-1297 (((-3 (-881 |#1|) "failed") $) 251 (|has| |#1| (-970))) (((-3 (-381 (-881 |#1|)) "failed") $) 235 (|has| |#1| (-513))) (((-3 |#1| "failed") $) 197) (((-3 (-521) "failed") $) 195 (|has| |#1| (-961 (-521)))) (((-3 (-1084) "failed") $) 188) (((-3 (-560 $) "failed") $) 139) (((-3 (-381 (-521)) "failed") $) 123 (-3703 (-12 (|has| |#1| (-961 (-521))) (|has| |#1| (-513))) (|has| |#1| (-961 (-381 (-521))))))) (-1483 (((-881 |#1|) $) 252 (|has| |#1| (-970))) (((-381 (-881 |#1|)) $) 236 (|has| |#1| (-513))) ((|#1| $) 198) (((-521) $) 194 (|has| |#1| (-961 (-521)))) (((-1084) $) 189) (((-560 $) $) 140) (((-381 (-521)) $) 122 (-3703 (-12 (|has| |#1| (-961 (-521))) (|has| |#1| (-513))) (|has| |#1| (-961 (-381 (-521))))))) (-2277 (($ $ $) 55)) (-3279 (((-627 |#1|) (-627 $)) 241 (|has| |#1| (-970))) (((-2 (|:| -1201 (-627 |#1|)) (|:| |vec| (-1165 |#1|))) (-627 $) (-1165 $)) 240 (|has| |#1| (-970))) (((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) 121 (-3703 (-4009 (|has| |#1| (-970)) (|has| |#1| (-583 (-521)))) (-4009 (|has| |#1| (-583 (-521))) (|has| |#1| (-970))))) (((-627 (-521)) (-627 $)) 120 (-3703 (-4009 (|has| |#1| (-970)) (|has| |#1| (-583 (-521)))) (-4009 (|has| |#1| (-583 (-521))) (|has| |#1| (-970)))))) (-1257 (((-3 $ "failed") $) 34)) (-2253 (($ $ $) 56)) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) 51)) (-2710 (((-108) $) 71)) (-3427 (((-818 (-353) $) $ (-821 (-353)) (-818 (-353) $)) 193 (|has| |#1| (-815 (-353)))) (((-818 (-521) $) $ (-821 (-521)) (-818 (-521) $)) 192 (|has| |#1| (-815 (-521))))) (-3072 (($ (-587 $)) 158) (($ $) 157)) (-1833 (((-587 (-110)) $) 165)) (-2727 (((-110) (-110)) 166)) (-3996 (((-108) $) 31)) (-1255 (((-108) $) 186 (|has| $ (-961 (-521))))) (-3257 (($ $) 218 (|has| |#1| (-970)))) (-2801 (((-1036 |#1| (-560 $)) $) 217 (|has| |#1| (-970)))) (-3407 (($ $ (-521)) 91)) (-1546 (((-3 (-587 $) "failed") (-587 $) $) 52)) (-2527 (((-1080 $) (-560 $)) 183 (|has| $ (-970)))) (-2810 (($ $ $) 137)) (-2446 (($ $ $) 136)) (-1390 (($ (-1 $ $) (-560 $)) 172)) (-2018 (((-3 (-560 $) "failed") $) 162)) (-2223 (($ $ $) 46) (($ (-587 $)) 45)) (-3688 (((-1067) $) 9)) (-1266 (((-587 (-560 $)) $) 163)) (-2905 (($ (-110) (-587 $)) 171) (($ (-110) $) 170)) (-1617 (((-3 (-587 $) "failed") $) 212 (|has| |#1| (-1025)))) (-1928 (((-3 (-2 (|:| |val| $) (|:| -2997 (-521))) "failed") $) 221 (|has| |#1| (-970)))) (-3177 (((-3 (-587 $) "failed") $) 214 (|has| |#1| (-25)))) (-3267 (((-3 (-2 (|:| -2973 (-521)) (|:| |var| (-560 $))) "failed") $) 215 (|has| |#1| (-25)))) (-3979 (((-3 (-2 (|:| |var| (-560 $)) (|:| -2997 (-521))) "failed") $ (-1084)) 220 (|has| |#1| (-970))) (((-3 (-2 (|:| |var| (-560 $)) (|:| -2997 (-521))) "failed") $ (-110)) 219 (|has| |#1| (-970))) (((-3 (-2 (|:| |var| (-560 $)) (|:| -2997 (-521))) "failed") $) 213 (|has| |#1| (-1025)))) (-1705 (((-108) $ (-1084)) 169) (((-108) $ (-110)) 168)) (-3095 (($ $) 70)) (-4150 (((-707) $) 161)) (-4147 (((-1031) $) 10)) (-3105 (((-108) $) 199)) (-3115 ((|#1| $) 200)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) 44)) (-2258 (($ $ $) 48) (($ (-587 $)) 47)) (-3899 (((-108) $ (-1084)) 174) (((-108) $ $) 173)) (-1916 (((-392 $) $) 74)) (-1962 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2230 (((-3 $ "failed") $ $) 42)) (-3854 (((-3 (-587 $) "failed") (-587 $) $) 50)) (-3550 (((-108) $) 185 (|has| $ (-961 (-521))))) (-2288 (($ $ (-1084) (-707) (-1 $ $)) 225 (|has| |#1| (-970))) (($ $ (-1084) (-707) (-1 $ (-587 $))) 224 (|has| |#1| (-970))) (($ $ (-587 (-1084)) (-587 (-707)) (-587 (-1 $ (-587 $)))) 223 (|has| |#1| (-970))) (($ $ (-587 (-1084)) (-587 (-707)) (-587 (-1 $ $))) 222 (|has| |#1| (-970))) (($ $ (-587 (-110)) (-587 $) (-1084)) 211 (|has| |#1| (-562 (-497)))) (($ $ (-110) $ (-1084)) 210 (|has| |#1| (-562 (-497)))) (($ $) 209 (|has| |#1| (-562 (-497)))) (($ $ (-587 (-1084))) 208 (|has| |#1| (-562 (-497)))) (($ $ (-1084)) 207 (|has| |#1| (-562 (-497)))) (($ $ (-110) (-1 $ $)) 182) (($ $ (-110) (-1 $ (-587 $))) 181) (($ $ (-587 (-110)) (-587 (-1 $ (-587 $)))) 180) (($ $ (-587 (-110)) (-587 (-1 $ $))) 179) (($ $ (-1084) (-1 $ $)) 178) (($ $ (-1084) (-1 $ (-587 $))) 177) (($ $ (-587 (-1084)) (-587 (-1 $ (-587 $)))) 176) (($ $ (-587 (-1084)) (-587 (-1 $ $))) 175) (($ $ (-587 $) (-587 $)) 146) (($ $ $ $) 145) (($ $ (-269 $)) 144) (($ $ (-587 (-269 $))) 143) (($ $ (-587 (-560 $)) (-587 $)) 142) (($ $ (-560 $) $) 141)) (-4196 (((-707) $) 58)) (-2544 (($ (-110) (-587 $)) 151) (($ (-110) $ $ $ $) 150) (($ (-110) $ $ $) 149) (($ (-110) $ $) 148) (($ (-110) $) 147)) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) 57)) (-4016 (($ $ $) 160) (($ $) 159)) (-2156 (($ $ (-1084)) 249 (|has| |#1| (-970))) (($ $ (-587 (-1084))) 248 (|has| |#1| (-970))) (($ $ (-1084) (-707)) 247 (|has| |#1| (-970))) (($ $ (-587 (-1084)) (-587 (-707))) 246 (|has| |#1| (-970)))) (-4142 (($ $) 228 (|has| |#1| (-513)))) (-2812 (((-1036 |#1| (-560 $)) $) 227 (|has| |#1| (-513)))) (-2879 (($ $) 184 (|has| $ (-970)))) (-1430 (((-497) $) 255 (|has| |#1| (-562 (-497)))) (($ (-392 $)) 226 (|has| |#1| (-513))) (((-821 (-353)) $) 191 (|has| |#1| (-562 (-821 (-353))))) (((-821 (-521)) $) 190 (|has| |#1| (-562 (-821 (-521)))))) (-1223 (($ $ $) 254 (|has| |#1| (-446)))) (-2674 (($ $ $) 253 (|has| |#1| (-446)))) (-2189 (((-792) $) 11) (($ (-521)) 28) (($ $) 43) (($ (-381 (-521))) 65) (($ (-881 |#1|)) 250 (|has| |#1| (-970))) (($ (-381 (-881 |#1|))) 234 (|has| |#1| (-513))) (($ (-381 (-881 (-381 |#1|)))) 232 (|has| |#1| (-513))) (($ (-881 (-381 |#1|))) 231 (|has| |#1| (-513))) (($ (-381 |#1|)) 230 (|has| |#1| (-513))) (($ (-1036 |#1| (-560 $))) 216 (|has| |#1| (-970))) (($ |#1|) 196) (($ (-1084)) 187) (($ (-560 $)) 138)) (-1671 (((-3 $ "failed") $) 239 (|has| |#1| (-133)))) (-3846 (((-707)) 29)) (-2320 (($ (-587 $)) 156) (($ $) 155)) (-1455 (((-108) (-110)) 167)) (-4210 (((-108) $ $) 39)) (-1805 (($ (-1084) (-587 $)) 206) (($ (-1084) $ $ $ $) 205) (($ (-1084) $ $ $) 204) (($ (-1084) $ $) 203) (($ (-1084) $) 202)) (-3505 (($ $ (-850)) 26) (($ $ (-707)) 33) (($ $ (-521)) 69)) (-3561 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-2212 (($ $ (-1084)) 245 (|has| |#1| (-970))) (($ $ (-587 (-1084))) 244 (|has| |#1| (-970))) (($ $ (-1084) (-707)) 243 (|has| |#1| (-970))) (($ $ (-587 (-1084)) (-587 (-707))) 242 (|has| |#1| (-970)))) (-1574 (((-108) $ $) 134)) (-1558 (((-108) $ $) 133)) (-1531 (((-108) $ $) 6)) (-1566 (((-108) $ $) 135)) (-1549 (((-108) $ $) 132)) (-1620 (($ $ $) 64) (($ (-1036 |#1| (-560 $)) (-1036 |#1| (-560 $))) 229 (|has| |#1| (-513)))) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-707)) 32) (($ $ (-521)) 68) (($ $ (-381 (-521))) 90)) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ $ (-381 (-521))) 67) (($ (-381 (-521)) $) 66) (($ $ |#1|) 238 (|has| |#1| (-157))) (($ |#1| $) 237 (|has| |#1| (-157)))))
+(((-29 |#1|) (-1196) (-13 (-784) (-513))) (T -29))
+((-2590 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-784) (-513))))) (-2270 (*1 *2 *1) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *2 (-587 *1)) (-4 *1 (-29 *3)))) (-2590 (*1 *1 *1 *2) (-12 (-5 *2 (-1084)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-784) (-513))))) (-2270 (*1 *2 *1 *3) (-12 (-5 *3 (-1084)) (-4 *4 (-13 (-784) (-513))) (-5 *2 (-587 *1)) (-4 *1 (-29 *4)))) (-3485 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-784) (-513))))) (-3102 (*1 *2 *1) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *2 (-587 *1)) (-4 *1 (-29 *3)))) (-3485 (*1 *1 *1 *2) (-12 (-5 *2 (-1084)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-784) (-513))))) (-3102 (*1 *2 *1 *3) (-12 (-5 *3 (-1084)) (-4 *4 (-13 (-784) (-513))) (-5 *2 (-587 *1)) (-4 *1 (-29 *4)))))
+(-13 (-27) (-404 |t#1|) (-10 -8 (-15 -2590 ($ $)) (-15 -2270 ((-587 $) $)) (-15 -2590 ($ $ (-1084))) (-15 -2270 ((-587 $) $ (-1084))) (-15 -3485 ($ $)) (-15 -3102 ((-587 $) $)) (-15 -3485 ($ $ (-1084))) (-15 -3102 ((-587 $) $ (-1084)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-381 (-521))) . T) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) . T) ((-27) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 |#1| |#1|) |has| |#1| (-157)) ((-107 $ $) . T) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-561 (-792)) . T) ((-157) . T) ((-562 (-497)) |has| |#1| (-562 (-497))) ((-562 (-821 (-353))) |has| |#1| (-562 (-821 (-353)))) ((-562 (-821 (-521))) |has| |#1| (-562 (-821 (-521)))) ((-220) . T) ((-265) . T) ((-282) . T) ((-284 $) . T) ((-277) . T) ((-337) . T) ((-351 |#1|) |has| |#1| (-970)) ((-374 |#1|) . T) ((-385 |#1|) . T) ((-404 |#1|) . T) ((-425) . T) ((-446) |has| |#1| (-446)) ((-482 (-560 $) $) . T) ((-482 $ $) . T) ((-513) . T) ((-589 #0#) . T) ((-589 |#1|) |has| |#1| (-157)) ((-589 $) . T) ((-583 (-521)) -12 (|has| |#1| (-583 (-521))) (|has| |#1| (-970))) ((-583 |#1|) |has| |#1| (-970)) ((-654 #0#) . T) ((-654 |#1|) |has| |#1| (-157)) ((-654 $) . T) ((-663) . T) ((-784) . T) ((-829 (-1084)) |has| |#1| (-970)) ((-815 (-353)) |has| |#1| (-815 (-353))) ((-815 (-521)) |has| |#1| (-815 (-521))) ((-813 |#1|) . T) ((-849) . T) ((-927) . T) ((-961 (-381 (-521))) -3703 (|has| |#1| (-961 (-381 (-521)))) (-12 (|has| |#1| (-513)) (|has| |#1| (-961 (-521))))) ((-961 (-381 (-881 |#1|))) |has| |#1| (-513)) ((-961 (-521)) |has| |#1| (-961 (-521))) ((-961 (-560 $)) . T) ((-961 (-881 |#1|)) |has| |#1| (-970)) ((-961 (-1084)) . T) ((-961 |#1|) . T) ((-976 #0#) . T) ((-976 |#1|) |has| |#1| (-157)) ((-976 $) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T) ((-1119) . T) ((-1123) . T))
+((-3803 (((-1008 (-202)) $) NIL)) (-3789 (((-1008 (-202)) $) NIL)) (-3161 (($ $ (-202)) 123)) (-3217 (($ (-881 (-521)) (-1084) (-1084) (-1008 (-381 (-521))) (-1008 (-381 (-521)))) 85)) (-2742 (((-587 (-587 (-872 (-202)))) $) 135)) (-2189 (((-792) $) 147)))
+(((-30) (-13 (-883) (-10 -8 (-15 -3217 ($ (-881 (-521)) (-1084) (-1084) (-1008 (-381 (-521))) (-1008 (-381 (-521))))) (-15 -3161 ($ $ (-202)))))) (T -30))
+((-3217 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-881 (-521))) (-5 *3 (-1084)) (-5 *4 (-1008 (-381 (-521)))) (-5 *1 (-30)))) (-3161 (*1 *1 *1 *2) (-12 (-5 *2 (-202)) (-5 *1 (-30)))))
+(-13 (-883) (-10 -8 (-15 -3217 ($ (-881 (-521)) (-1084) (-1084) (-1008 (-381 (-521))) (-1008 (-381 (-521))))) (-15 -3161 ($ $ (-202)))))
+((-2590 ((|#2| (-1080 |#2|) (-1084)) 42)) (-2727 (((-110) (-110)) 55)) (-2527 (((-1080 |#2|) (-560 |#2|)) 131 (|has| |#1| (-961 (-521))))) (-3405 ((|#2| |#1| (-521)) 110 (|has| |#1| (-961 (-521))))) (-1782 ((|#2| (-1080 |#2|) |#2|) 30)) (-1568 (((-792) (-587 |#2|)) 86)) (-2879 ((|#2| |#2|) 127 (|has| |#1| (-961 (-521))))) (-1455 (((-108) (-110)) 18)) (** ((|#2| |#2| (-381 (-521))) 91 (|has| |#1| (-961 (-521))))))
+(((-31 |#1| |#2|) (-10 -7 (-15 -2590 (|#2| (-1080 |#2|) (-1084))) (-15 -2727 ((-110) (-110))) (-15 -1455 ((-108) (-110))) (-15 -1782 (|#2| (-1080 |#2|) |#2|)) (-15 -1568 ((-792) (-587 |#2|))) (IF (|has| |#1| (-961 (-521))) (PROGN (-15 ** (|#2| |#2| (-381 (-521)))) (-15 -2527 ((-1080 |#2|) (-560 |#2|))) (-15 -2879 (|#2| |#2|)) (-15 -3405 (|#2| |#1| (-521)))) |%noBranch|)) (-13 (-784) (-513)) (-404 |#1|)) (T -31))
+((-3405 (*1 *2 *3 *4) (-12 (-5 *4 (-521)) (-4 *2 (-404 *3)) (-5 *1 (-31 *3 *2)) (-4 *3 (-961 *4)) (-4 *3 (-13 (-784) (-513))))) (-2879 (*1 *2 *2) (-12 (-4 *3 (-961 (-521))) (-4 *3 (-13 (-784) (-513))) (-5 *1 (-31 *3 *2)) (-4 *2 (-404 *3)))) (-2527 (*1 *2 *3) (-12 (-5 *3 (-560 *5)) (-4 *5 (-404 *4)) (-4 *4 (-961 (-521))) (-4 *4 (-13 (-784) (-513))) (-5 *2 (-1080 *5)) (-5 *1 (-31 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-381 (-521))) (-4 *4 (-961 (-521))) (-4 *4 (-13 (-784) (-513))) (-5 *1 (-31 *4 *2)) (-4 *2 (-404 *4)))) (-1568 (*1 *2 *3) (-12 (-5 *3 (-587 *5)) (-4 *5 (-404 *4)) (-4 *4 (-13 (-784) (-513))) (-5 *2 (-792)) (-5 *1 (-31 *4 *5)))) (-1782 (*1 *2 *3 *2) (-12 (-5 *3 (-1080 *2)) (-4 *2 (-404 *4)) (-4 *4 (-13 (-784) (-513))) (-5 *1 (-31 *4 *2)))) (-1455 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *4 (-13 (-784) (-513))) (-5 *2 (-108)) (-5 *1 (-31 *4 *5)) (-4 *5 (-404 *4)))) (-2727 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *3 (-13 (-784) (-513))) (-5 *1 (-31 *3 *4)) (-4 *4 (-404 *3)))) (-2590 (*1 *2 *3 *4) (-12 (-5 *3 (-1080 *2)) (-5 *4 (-1084)) (-4 *2 (-404 *5)) (-5 *1 (-31 *5 *2)) (-4 *5 (-13 (-784) (-513))))))
+(-10 -7 (-15 -2590 (|#2| (-1080 |#2|) (-1084))) (-15 -2727 ((-110) (-110))) (-15 -1455 ((-108) (-110))) (-15 -1782 (|#2| (-1080 |#2|) |#2|)) (-15 -1568 ((-792) (-587 |#2|))) (IF (|has| |#1| (-961 (-521))) (PROGN (-15 ** (|#2| |#2| (-381 (-521)))) (-15 -2527 ((-1080 |#2|) (-560 |#2|))) (-15 -2879 (|#2| |#2|)) (-15 -3405 (|#2| |#1| (-521)))) |%noBranch|))
+((-2978 (((-108) $ (-707)) 16)) (-2547 (($) 10)) (-2139 (((-108) $ (-707)) 15)) (-3574 (((-108) $ (-707)) 14)) (-2488 (((-108) $ $) 8)) (-3462 (((-108) $) 13)))
+(((-32 |#1|) (-10 -8 (-15 -2547 (|#1|)) (-15 -2978 ((-108) |#1| (-707))) (-15 -2139 ((-108) |#1| (-707))) (-15 -3574 ((-108) |#1| (-707))) (-15 -3462 ((-108) |#1|)) (-15 -2488 ((-108) |#1| |#1|))) (-33)) (T -32))
+NIL
+(-10 -8 (-15 -2547 (|#1|)) (-15 -2978 ((-108) |#1| (-707))) (-15 -2139 ((-108) |#1| (-707))) (-15 -3574 ((-108) |#1| (-707))) (-15 -3462 ((-108) |#1|)) (-15 -2488 ((-108) |#1| |#1|)))
+((-2978 (((-108) $ (-707)) 8)) (-2547 (($) 7 T CONST)) (-2139 (((-108) $ (-707)) 9)) (-3574 (((-108) $ (-707)) 10)) (-2488 (((-108) $ $) 14)) (-3462 (((-108) $) 11)) (-4024 (($) 12)) (-2404 (($ $) 13)) (-3475 (((-707) $) 6 (|has| $ (-6 -4233)))))
+(((-33) (-1196)) (T -33))
+((-2488 (*1 *2 *1 *1) (-12 (-4 *1 (-33)) (-5 *2 (-108)))) (-2404 (*1 *1 *1) (-4 *1 (-33))) (-4024 (*1 *1) (-4 *1 (-33))) (-3462 (*1 *2 *1) (-12 (-4 *1 (-33)) (-5 *2 (-108)))) (-3574 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-707)) (-5 *2 (-108)))) (-2139 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-707)) (-5 *2 (-108)))) (-2978 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-707)) (-5 *2 (-108)))) (-2547 (*1 *1) (-4 *1 (-33))) (-3475 (*1 *2 *1) (-12 (|has| *1 (-6 -4233)) (-4 *1 (-33)) (-5 *2 (-707)))))
+(-13 (-1119) (-10 -8 (-15 -2488 ((-108) $ $)) (-15 -2404 ($ $)) (-15 -4024 ($)) (-15 -3462 ((-108) $)) (-15 -3574 ((-108) $ (-707))) (-15 -2139 ((-108) $ (-707))) (-15 -2978 ((-108) $ (-707))) (-15 -2547 ($) -2676) (IF (|has| $ (-6 -4233)) (-15 -3475 ((-707) $)) |%noBranch|)))
+(((-1119) . T))
+((-1759 (($ $) 11)) (-1745 (($ $) 10)) (-1776 (($ $) 9)) (-3919 (($ $) 8)) (-1768 (($ $) 7)) (-1752 (($ $) 6)))
+(((-34) (-1196)) (T -34))
+((-1759 (*1 *1 *1) (-4 *1 (-34))) (-1745 (*1 *1 *1) (-4 *1 (-34))) (-1776 (*1 *1 *1) (-4 *1 (-34))) (-3919 (*1 *1 *1) (-4 *1 (-34))) (-1768 (*1 *1 *1) (-4 *1 (-34))) (-1752 (*1 *1 *1) (-4 *1 (-34))))
+(-13 (-10 -8 (-15 -1752 ($ $)) (-15 -1768 ($ $)) (-15 -3919 ($ $)) (-15 -1776 ($ $)) (-15 -1745 ($ $)) (-15 -1759 ($ $))))
+((-1415 (((-108) $ $) 19 (-3703 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)) (|has| |#2| (-1013)) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013))))) (-3430 (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) 125)) (-2092 (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) 148)) (-3830 (($ $) 146)) (-1800 (($) 72) (($ (-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) 71)) (-1903 (((-1170) $ |#1| |#1|) 99 (|has| $ (-6 -4234))) (((-1170) $ (-521) (-521)) 178 (|has| $ (-6 -4234)))) (-3861 (($ $ (-521)) 159 (|has| $ (-6 -4234)))) (-1505 (((-108) (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) 209) (((-108) $) 203 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-784)))) (-1621 (($ (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) 200 (|has| $ (-6 -4234))) (($ $) 199 (-12 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-784)) (|has| $ (-6 -4234))))) (-3211 (($ (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) 210) (($ $) 204 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-784)))) (-2978 (((-108) $ (-707)) 8)) (-2300 (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) 134 (|has| $ (-6 -4234)))) (-3739 (($ $ $) 155 (|has| $ (-6 -4234)))) (-1509 (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) 157 (|has| $ (-6 -4234)))) (-3977 (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) 153 (|has| $ (-6 -4234)))) (-2378 ((|#2| $ |#1| |#2|) 73) (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $ (-521) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) 189 (|has| $ (-6 -4234))) (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $ (-1132 (-521)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) 160 (|has| $ (-6 -4234))) (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $ "last" (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) 158 (|has| $ (-6 -4234))) (($ $ "rest" $) 156 (|has| $ (-6 -4234))) (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $ "first" (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) 154 (|has| $ (-6 -4234))) (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $ "value" (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) 133 (|has| $ (-6 -4234)))) (-2675 (($ $ (-587 $)) 132 (|has| $ (-6 -4234)))) (-4098 (($ (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) 45 (|has| $ (-6 -4233))) (($ (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) 216)) (-1628 (($ (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) 55 (|has| $ (-6 -4233))) (($ (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) 175 (|has| $ (-6 -4233)))) (-2080 (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) 147)) (-2748 (((-3 |#2| "failed") |#1| $) 61)) (-2547 (($) 7 T CONST)) (-3081 (($ $) 201 (|has| $ (-6 -4234)))) (-1862 (($ $) 211)) (-2306 (($ $ (-707)) 142) (($ $) 140)) (-2468 (($ $) 214 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (-2332 (($ $) 58 (-3703 (-12 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)) (|has| $ (-6 -4233))) (-12 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)) (|has| $ (-6 -4233)))))) (-3023 (($ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) 47 (|has| $ (-6 -4233))) (($ (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) 46 (|has| $ (-6 -4233))) (((-3 |#2| "failed") |#1| $) 62) (($ (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) 220) (($ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) 215 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (-1422 (($ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)) (|has| $ (-6 -4233)))) (($ (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) 54 (|has| $ (-6 -4233))) (($ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) 177 (-12 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)) (|has| $ (-6 -4233)))) (($ (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) 174 (|has| $ (-6 -4233)))) (-3859 (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) 56 (-12 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)) (|has| $ (-6 -4233)))) (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) 53 (|has| $ (-6 -4233))) (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) 52 (|has| $ (-6 -4233))) (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) 176 (-12 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)) (|has| $ (-6 -4233)))) (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) 173 (|has| $ (-6 -4233))) (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) 172 (|has| $ (-6 -4233)))) (-3849 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4234))) (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $ (-521) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) 190 (|has| $ (-6 -4234)))) (-3626 ((|#2| $ |#1|) 88) (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $ (-521)) 188)) (-1368 (((-108) $) 192)) (-3233 (((-521) (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) 208) (((-521) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) 207 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013))) (((-521) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $ (-521)) 206 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (-3831 (((-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) 30 (|has| $ (-6 -4233))) (((-587 |#2|) $) 79 (|has| $ (-6 -4233))) (((-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) 114 (|has| $ (-6 -4233)))) (-3186 (((-587 $) $) 123)) (-3651 (((-108) $ $) 131 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (-1811 (($ (-707) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) 169)) (-2139 (((-108) $ (-707)) 9)) (-2826 ((|#1| $) 96 (|has| |#1| (-784))) (((-521) $) 180 (|has| (-521) (-784)))) (-2810 (($ $ $) 198 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-784)))) (-3220 (($ (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $ $) 217) (($ $ $) 213 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-784)))) (-1318 (($ (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $ $) 212) (($ $ $) 205 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-784)))) (-3757 (((-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) 29 (|has| $ (-6 -4233))) (((-587 |#2|) $) 80 (|has| $ (-6 -4233))) (((-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) 115 (|has| $ (-6 -4233)))) (-2221 (((-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)) (|has| $ (-6 -4233)))) (((-108) |#2| $) 82 (-12 (|has| |#2| (-1013)) (|has| $ (-6 -4233)))) (((-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) 117 (-12 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)) (|has| $ (-6 -4233))))) (-2597 ((|#1| $) 95 (|has| |#1| (-784))) (((-521) $) 181 (|has| (-521) (-784)))) (-2446 (($ $ $) 197 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-784)))) (-3833 (($ (-1 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) 34 (|has| $ (-6 -4234))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4234))) (($ (-1 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) 110 (|has| $ (-6 -4234)))) (-1390 (($ (-1 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70) (($ (-1 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $ $) 166) (($ (-1 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) 109)) (-1580 (($ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) 225)) (-3574 (((-108) $ (-707)) 10)) (-1278 (((-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) 128)) (-2229 (((-108) $) 124)) (-3688 (((-1067) $) 22 (-3703 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)) (|has| |#2| (-1013)) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013))))) (-1441 (($ $ (-707)) 145) (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) 143)) (-2961 (((-587 |#1|) $) 63)) (-2781 (((-108) |#1| $) 64)) (-2511 (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) 39)) (-3373 (($ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) 40) (($ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $ (-521)) 219) (($ $ $ (-521)) 218)) (-1659 (($ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $ (-521)) 162) (($ $ $ (-521)) 161)) (-1668 (((-587 |#1|) $) 93) (((-587 (-521)) $) 183)) (-2941 (((-108) |#1| $) 92) (((-108) (-521) $) 184)) (-4147 (((-1031) $) 21 (-3703 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)) (|has| |#2| (-1013)) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013))))) (-2293 ((|#2| $) 97 (|has| |#1| (-784))) (($ $ (-707)) 139) (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) 137)) (-3620 (((-3 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) "failed") (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) 51) (((-3 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) "failed") (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) 171)) (-3016 (($ $ |#2|) 98 (|has| $ (-6 -4234))) (($ $ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) 179 (|has| $ (-6 -4234)))) (-2166 (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) 41)) (-3924 (((-108) $) 191)) (-1789 (((-108) (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) 32 (|has| $ (-6 -4233))) (((-108) (-1 (-108) |#2|) $) 77 (|has| $ (-6 -4233))) (((-108) (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) 112 (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))))) 26 (-12 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-284 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (($ $ (-269 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) 25 (-12 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-284 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (($ $ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) 24 (-12 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-284 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (($ $ (-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) (-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) 23 (-12 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-284 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (($ $ (-587 |#2|) (-587 |#2|)) 86 (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ (-269 |#2|)) 84 (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ (-587 (-269 |#2|))) 83 (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ (-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) (-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) 121 (-12 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-284 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (($ $ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) 120 (-12 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-284 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (($ $ (-269 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) 119 (-12 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-284 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (($ $ (-587 (-269 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))))) 118 (-12 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-284 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013))))) (-2488 (((-108) $ $) 14)) (-3821 (((-108) |#2| $) 94 (-12 (|has| $ (-6 -4233)) (|has| |#2| (-1013)))) (((-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) 182 (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013))))) (-2489 (((-587 |#2|) $) 91) (((-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) 185)) (-3462 (((-108) $) 11)) (-4024 (($) 12)) (-2544 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89) (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $ (-521) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) 187) (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $ (-521)) 186) (($ $ (-1132 (-521))) 165) (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $ "last") 144) (($ $ "rest") 141) (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $ "first") 138) (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $ "value") 126)) (-2931 (((-521) $ $) 129)) (-1784 (($) 49) (($ (-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) 48)) (-2859 (($ $ (-521)) 222) (($ $ (-1132 (-521))) 221)) (-3691 (($ $ (-521)) 164) (($ $ (-1132 (-521))) 163)) (-2406 (((-108) $) 127)) (-3207 (($ $) 151)) (-2262 (($ $) 152 (|has| $ (-6 -4234)))) (-3083 (((-707) $) 150)) (-3717 (($ $) 149)) (-4163 (((-707) (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) 31 (|has| $ (-6 -4233))) (((-707) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)) (|has| $ (-6 -4233)))) (((-707) |#2| $) 81 (-12 (|has| |#2| (-1013)) (|has| $ (-6 -4233)))) (((-707) (-1 (-108) |#2|) $) 78 (|has| $ (-6 -4233))) (((-707) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) 116 (-12 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)) (|has| $ (-6 -4233)))) (((-707) (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) 113 (|has| $ (-6 -4233)))) (-1497 (($ $ $ (-521)) 202 (|has| $ (-6 -4234)))) (-2404 (($ $) 13)) (-1430 (((-497) $) 59 (-3703 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-562 (-497))) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-562 (-497)))))) (-2201 (($ (-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) 50) (($ (-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) 170)) (-3980 (($ $ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) 224) (($ $ $) 223)) (-4159 (($ $ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) 168) (($ (-587 $)) 167) (($ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) 136) (($ $ $) 135)) (-2189 (((-792) $) 18 (-3703 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-561 (-792))) (|has| |#2| (-561 (-792))) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-561 (-792)))))) (-3098 (((-587 $) $) 122)) (-2294 (((-108) $ $) 130 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (-4091 (($ (-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) 42)) (-1445 (((-3 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) "failed") |#1| $) 108)) (-3049 (((-108) (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) 33 (|has| $ (-6 -4233))) (((-108) (-1 (-108) |#2|) $) 76 (|has| $ (-6 -4233))) (((-108) (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) 111 (|has| $ (-6 -4233)))) (-1574 (((-108) $ $) 195 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-784)))) (-1558 (((-108) $ $) 194 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-784)))) (-1531 (((-108) $ $) 20 (-3703 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)) (|has| |#2| (-1013)) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013))))) (-1566 (((-108) $ $) 196 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-784)))) (-1549 (((-108) $ $) 193 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-784)))) (-3475 (((-707) $) 6 (|has| $ (-6 -4233)))))
+(((-35 |#1| |#2|) (-1196) (-1013) (-1013)) (T -35))
+((-1445 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-35 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-5 *2 (-2 (|:| -2529 *3) (|:| -3045 *4))))))
+(-13 (-1096 |t#1| |t#2|) (-607 (-2 (|:| -2529 |t#1|) (|:| -3045 |t#2|))) (-10 -8 (-15 -1445 ((-3 (-2 (|:| -2529 |t#1|) (|:| -3045 |t#2|)) "failed") |t#1| $))))
+(((-33) . T) ((-102 #0=(-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) . T) ((-97) -3703 (|has| |#2| (-1013)) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-784))) ((-561 (-792)) -3703 (|has| |#2| (-1013)) (|has| |#2| (-561 (-792))) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-784)) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-561 (-792)))) ((-139 #1=(-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) . T) ((-562 (-497)) |has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-562 (-497))) ((-206 #0#) . T) ((-212 #0#) . T) ((-261 #2=(-521) #1#) . T) ((-261 |#1| |#2|) . T) ((-263 #2# #1#) . T) ((-263 |#1| |#2|) . T) ((-284 #1#) -12 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-284 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013))) ((-284 |#2|) -12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))) ((-257 #1#) . T) ((-347 #1#) . T) ((-460 #1#) . T) ((-460 |#2|) . T) ((-554 #2# #1#) . T) ((-554 |#1| |#2|) . T) ((-482 #1# #1#) -12 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-284 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013))) ((-482 |#2| |#2|) -12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))) ((-558 |#1| |#2|) . T) ((-592 #1#) . T) ((-607 #1#) . T) ((-784) |has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-784)) ((-935 #1#) . T) ((-1013) -3703 (|has| |#2| (-1013)) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-784))) ((-1058 #1#) . T) ((-1096 |#1| |#2|) . T) ((-1119) . T) ((-1153 #1#) . T))
+((-2189 (((-792) $) NIL) (($ (-521)) NIL) (($ |#2|) 10)))
+(((-36 |#1| |#2|) (-10 -8 (-15 -2189 (|#1| |#2|)) (-15 -2189 (|#1| (-521))) (-15 -2189 ((-792) |#1|))) (-37 |#2|) (-157)) (T -36))
+NIL
+(-10 -8 (-15 -2189 (|#1| |#2|)) (-15 -2189 (|#1| (-521))) (-15 -2189 ((-792) |#1|)))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-1232 (((-3 $ "failed") $ $) 19)) (-2547 (($) 17 T CONST)) (-1257 (((-3 $ "failed") $) 34)) (-3996 (((-108) $) 31)) (-3688 (((-1067) $) 9)) (-4147 (((-1031) $) 10)) (-2189 (((-792) $) 11) (($ (-521)) 28) (($ |#1|) 37)) (-3846 (((-707)) 29)) (-3505 (($ $ (-850)) 26) (($ $ (-707)) 33)) (-3561 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-707)) 32)) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38)))
+(((-37 |#1|) (-1196) (-157)) (T -37))
+((-2189 (*1 *1 *2) (-12 (-4 *1 (-37 *2)) (-4 *2 (-157)))))
+(-13 (-970) (-654 |t#1|) (-10 -8 (-15 -2189 ($ |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-561 (-792)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-654 |#1|) . T) ((-663) . T) ((-976 |#1|) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T))
+((-3604 (((-392 |#1|) |#1|) 38)) (-1916 (((-392 |#1|) |#1|) 27) (((-392 |#1|) |#1| (-587 (-47))) 30)) (-1941 (((-108) |#1|) 54)))
+(((-38 |#1|) (-10 -7 (-15 -1916 ((-392 |#1|) |#1| (-587 (-47)))) (-15 -1916 ((-392 |#1|) |#1|)) (-15 -3604 ((-392 |#1|) |#1|)) (-15 -1941 ((-108) |#1|))) (-1141 (-47))) (T -38))
+((-1941 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-38 *3)) (-4 *3 (-1141 (-47))))) (-3604 (*1 *2 *3) (-12 (-5 *2 (-392 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1141 (-47))))) (-1916 (*1 *2 *3) (-12 (-5 *2 (-392 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1141 (-47))))) (-1916 (*1 *2 *3 *4) (-12 (-5 *4 (-587 (-47))) (-5 *2 (-392 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1141 (-47))))))
+(-10 -7 (-15 -1916 ((-392 |#1|) |#1| (-587 (-47)))) (-15 -1916 ((-392 |#1|) |#1|)) (-15 -3604 ((-392 |#1|) |#1|)) (-15 -1941 ((-108) |#1|)))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-3698 (((-2 (|:| |num| (-1165 |#2|)) (|:| |den| |#2|)) $) NIL)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) NIL (|has| (-381 |#2|) (-337)))) (-2559 (($ $) NIL (|has| (-381 |#2|) (-337)))) (-1733 (((-108) $) NIL (|has| (-381 |#2|) (-337)))) (-3214 (((-627 (-381 |#2|)) (-1165 $)) NIL) (((-627 (-381 |#2|))) NIL)) (-1865 (((-381 |#2|) $) NIL)) (-1340 (((-1093 (-850) (-707)) (-521)) NIL (|has| (-381 |#2|) (-323)))) (-1232 (((-3 $ "failed") $ $) NIL)) (-3063 (($ $) NIL (|has| (-381 |#2|) (-337)))) (-3358 (((-392 $) $) NIL (|has| (-381 |#2|) (-337)))) (-1389 (((-108) $ $) NIL (|has| (-381 |#2|) (-337)))) (-1630 (((-707)) NIL (|has| (-381 |#2|) (-342)))) (-3792 (((-108)) NIL)) (-3453 (((-108) |#1|) NIL) (((-108) |#2|) NIL)) (-2547 (($) NIL T CONST)) (-1297 (((-3 (-521) "failed") $) NIL (|has| (-381 |#2|) (-961 (-521)))) (((-3 (-381 (-521)) "failed") $) NIL (|has| (-381 |#2|) (-961 (-381 (-521))))) (((-3 (-381 |#2|) "failed") $) NIL)) (-1483 (((-521) $) NIL (|has| (-381 |#2|) (-961 (-521)))) (((-381 (-521)) $) NIL (|has| (-381 |#2|) (-961 (-381 (-521))))) (((-381 |#2|) $) NIL)) (-4083 (($ (-1165 (-381 |#2|)) (-1165 $)) NIL) (($ (-1165 (-381 |#2|))) 57) (($ (-1165 |#2|) |#2|) 124)) (-1864 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-381 |#2|) (-323)))) (-2277 (($ $ $) NIL (|has| (-381 |#2|) (-337)))) (-3499 (((-627 (-381 |#2|)) $ (-1165 $)) NIL) (((-627 (-381 |#2|)) $) NIL)) (-3279 (((-627 (-521)) (-627 $)) NIL (|has| (-381 |#2|) (-583 (-521)))) (((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (|has| (-381 |#2|) (-583 (-521)))) (((-2 (|:| -1201 (-627 (-381 |#2|))) (|:| |vec| (-1165 (-381 |#2|)))) (-627 $) (-1165 $)) NIL) (((-627 (-381 |#2|)) (-627 $)) NIL)) (-1886 (((-1165 $) (-1165 $)) NIL)) (-3859 (($ |#3|) NIL) (((-3 $ "failed") (-381 |#3|)) NIL (|has| (-381 |#2|) (-337)))) (-1257 (((-3 $ "failed") $) NIL)) (-2805 (((-587 (-587 |#1|))) NIL (|has| |#1| (-342)))) (-2608 (((-108) |#1| |#1|) NIL)) (-3162 (((-850)) NIL)) (-3250 (($) NIL (|has| (-381 |#2|) (-342)))) (-3607 (((-108)) NIL)) (-3024 (((-108) |#1|) NIL) (((-108) |#2|) NIL)) (-2253 (($ $ $) NIL (|has| (-381 |#2|) (-337)))) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) NIL (|has| (-381 |#2|) (-337)))) (-3666 (($ $) NIL)) (-2103 (($) NIL (|has| (-381 |#2|) (-323)))) (-2371 (((-108) $) NIL (|has| (-381 |#2|) (-323)))) (-2833 (($ $ (-707)) NIL (|has| (-381 |#2|) (-323))) (($ $) NIL (|has| (-381 |#2|) (-323)))) (-2710 (((-108) $) NIL (|has| (-381 |#2|) (-337)))) (-2733 (((-850) $) NIL (|has| (-381 |#2|) (-323))) (((-770 (-850)) $) NIL (|has| (-381 |#2|) (-323)))) (-3996 (((-108) $) NIL)) (-1489 (((-707)) NIL)) (-1638 (((-1165 $) (-1165 $)) 100)) (-3930 (((-381 |#2|) $) NIL)) (-4107 (((-587 (-881 |#1|)) (-1084)) NIL (|has| |#1| (-337)))) (-3842 (((-3 $ "failed") $) NIL (|has| (-381 |#2|) (-323)))) (-1546 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| (-381 |#2|) (-337)))) (-3548 ((|#3| $) NIL (|has| (-381 |#2|) (-337)))) (-2715 (((-850) $) NIL (|has| (-381 |#2|) (-342)))) (-3844 ((|#3| $) NIL)) (-2223 (($ (-587 $)) NIL (|has| (-381 |#2|) (-337))) (($ $ $) NIL (|has| (-381 |#2|) (-337)))) (-3688 (((-1067) $) NIL)) (-3348 (((-1170) (-707)) 78)) (-3940 (((-627 (-381 |#2|))) 51)) (-3204 (((-627 (-381 |#2|))) 44)) (-3095 (($ $) NIL (|has| (-381 |#2|) (-337)))) (-2696 (($ (-1165 |#2|) |#2|) 125)) (-1760 (((-627 (-381 |#2|))) 45)) (-3205 (((-627 (-381 |#2|))) 43)) (-2022 (((-2 (|:| |num| (-627 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 122)) (-1447 (((-2 (|:| |num| (-1165 |#2|)) (|:| |den| |#2|)) $) 63)) (-1942 (((-1165 $)) 42)) (-3545 (((-1165 $)) 41)) (-3722 (((-108) $) NIL)) (-1596 (((-108) $) NIL) (((-108) $ |#1|) NIL) (((-108) $ |#2|) NIL)) (-3797 (($) NIL (|has| (-381 |#2|) (-323)) CONST)) (-2716 (($ (-850)) NIL (|has| (-381 |#2|) (-342)))) (-1403 (((-3 |#2| "failed")) NIL)) (-4147 (((-1031) $) NIL)) (-2695 (((-707)) NIL)) (-1383 (($) NIL)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) NIL (|has| (-381 |#2|) (-337)))) (-2258 (($ (-587 $)) NIL (|has| (-381 |#2|) (-337))) (($ $ $) NIL (|has| (-381 |#2|) (-337)))) (-3040 (((-587 (-2 (|:| -1916 (-521)) (|:| -2997 (-521))))) NIL (|has| (-381 |#2|) (-323)))) (-1916 (((-392 $) $) NIL (|has| (-381 |#2|) (-337)))) (-1962 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-381 |#2|) (-337))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL (|has| (-381 |#2|) (-337)))) (-2230 (((-3 $ "failed") $ $) NIL (|has| (-381 |#2|) (-337)))) (-3854 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| (-381 |#2|) (-337)))) (-4196 (((-707) $) NIL (|has| (-381 |#2|) (-337)))) (-2544 ((|#1| $ |#1| |#1|) NIL)) (-1963 (((-3 |#2| "failed")) NIL)) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) NIL (|has| (-381 |#2|) (-337)))) (-4010 (((-381 |#2|) (-1165 $)) NIL) (((-381 |#2|)) 39)) (-4067 (((-707) $) NIL (|has| (-381 |#2|) (-323))) (((-3 (-707) "failed") $ $) NIL (|has| (-381 |#2|) (-323)))) (-2156 (($ $ (-1 (-381 |#2|) (-381 |#2|)) (-707)) NIL (|has| (-381 |#2|) (-337))) (($ $ (-1 (-381 |#2|) (-381 |#2|))) NIL (|has| (-381 |#2|) (-337))) (($ $ (-1 |#2| |#2|)) 118) (($ $ (-587 (-1084)) (-587 (-707))) NIL (-12 (|has| (-381 |#2|) (-337)) (|has| (-381 |#2|) (-829 (-1084))))) (($ $ (-1084) (-707)) NIL (-12 (|has| (-381 |#2|) (-337)) (|has| (-381 |#2|) (-829 (-1084))))) (($ $ (-587 (-1084))) NIL (-12 (|has| (-381 |#2|) (-337)) (|has| (-381 |#2|) (-829 (-1084))))) (($ $ (-1084)) NIL (-12 (|has| (-381 |#2|) (-337)) (|has| (-381 |#2|) (-829 (-1084))))) (($ $ (-707)) NIL (-3703 (-12 (|has| (-381 |#2|) (-210)) (|has| (-381 |#2|) (-337))) (|has| (-381 |#2|) (-323)))) (($ $) NIL (-3703 (-12 (|has| (-381 |#2|) (-210)) (|has| (-381 |#2|) (-337))) (|has| (-381 |#2|) (-323))))) (-3089 (((-627 (-381 |#2|)) (-1165 $) (-1 (-381 |#2|) (-381 |#2|))) NIL (|has| (-381 |#2|) (-337)))) (-2879 ((|#3|) 50)) (-1204 (($) NIL (|has| (-381 |#2|) (-323)))) (-2234 (((-1165 (-381 |#2|)) $ (-1165 $)) NIL) (((-627 (-381 |#2|)) (-1165 $) (-1165 $)) NIL) (((-1165 (-381 |#2|)) $) 58) (((-627 (-381 |#2|)) (-1165 $)) 101)) (-1430 (((-1165 (-381 |#2|)) $) NIL) (($ (-1165 (-381 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-2944 (((-3 (-1165 $) "failed") (-627 $)) NIL (|has| (-381 |#2|) (-323)))) (-3966 (((-1165 $) (-1165 $)) NIL)) (-2189 (((-792) $) NIL) (($ (-521)) NIL) (($ (-381 |#2|)) NIL) (($ (-381 (-521))) NIL (-3703 (|has| (-381 |#2|) (-961 (-381 (-521)))) (|has| (-381 |#2|) (-337)))) (($ $) NIL (|has| (-381 |#2|) (-337)))) (-1671 (($ $) NIL (|has| (-381 |#2|) (-323))) (((-3 $ "failed") $) NIL (|has| (-381 |#2|) (-133)))) (-3110 ((|#3| $) NIL)) (-3846 (((-707)) NIL)) (-3377 (((-108)) 37)) (-3622 (((-108) |#1|) 49) (((-108) |#2|) 131)) (-2470 (((-1165 $)) 91)) (-4210 (((-108) $ $) NIL (|has| (-381 |#2|) (-337)))) (-3700 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-3643 (((-108)) NIL)) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL (|has| (-381 |#2|) (-337)))) (-3561 (($) 16 T CONST)) (-3572 (($) 26 T CONST)) (-2212 (($ $ (-1 (-381 |#2|) (-381 |#2|)) (-707)) NIL (|has| (-381 |#2|) (-337))) (($ $ (-1 (-381 |#2|) (-381 |#2|))) NIL (|has| (-381 |#2|) (-337))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (-12 (|has| (-381 |#2|) (-337)) (|has| (-381 |#2|) (-829 (-1084))))) (($ $ (-1084) (-707)) NIL (-12 (|has| (-381 |#2|) (-337)) (|has| (-381 |#2|) (-829 (-1084))))) (($ $ (-587 (-1084))) NIL (-12 (|has| (-381 |#2|) (-337)) (|has| (-381 |#2|) (-829 (-1084))))) (($ $ (-1084)) NIL (-12 (|has| (-381 |#2|) (-337)) (|has| (-381 |#2|) (-829 (-1084))))) (($ $ (-707)) NIL (-3703 (-12 (|has| (-381 |#2|) (-210)) (|has| (-381 |#2|) (-337))) (|has| (-381 |#2|) (-323)))) (($ $) NIL (-3703 (-12 (|has| (-381 |#2|) (-210)) (|has| (-381 |#2|) (-337))) (|has| (-381 |#2|) (-323))))) (-1531 (((-108) $ $) NIL)) (-1620 (($ $ $) NIL (|has| (-381 |#2|) (-337)))) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL (|has| (-381 |#2|) (-337)))) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ (-381 |#2|)) NIL) (($ (-381 |#2|) $) NIL) (($ (-381 (-521)) $) NIL (|has| (-381 |#2|) (-337))) (($ $ (-381 (-521))) NIL (|has| (-381 |#2|) (-337)))))
+(((-39 |#1| |#2| |#3| |#4|) (-13 (-316 |#1| |#2| |#3|) (-10 -7 (-15 -3348 ((-1170) (-707))))) (-337) (-1141 |#1|) (-1141 (-381 |#2|)) |#3|) (T -39))
+((-3348 (*1 *2 *3) (-12 (-5 *3 (-707)) (-4 *4 (-337)) (-4 *5 (-1141 *4)) (-5 *2 (-1170)) (-5 *1 (-39 *4 *5 *6 *7)) (-4 *6 (-1141 (-381 *5))) (-14 *7 *6))))
+(-13 (-316 |#1| |#2| |#3|) (-10 -7 (-15 -3348 ((-1170) (-707)))))
+((-3878 ((|#2| |#2|) 47)) (-3662 ((|#2| |#2|) 117 (-12 (|has| |#2| (-404 |#1|)) (|has| |#1| (-425)) (|has| |#1| (-784)) (|has| |#1| (-961 (-521)))))) (-1683 ((|#2| |#2|) 86 (-12 (|has| |#2| (-404 |#1|)) (|has| |#1| (-425)) (|has| |#1| (-784)) (|has| |#1| (-961 (-521)))))) (-3648 ((|#2| |#2|) 87 (-12 (|has| |#2| (-404 |#1|)) (|has| |#1| (-425)) (|has| |#1| (-784)) (|has| |#1| (-961 (-521)))))) (-1795 ((|#2| (-110) |#2| (-707)) 74 (-12 (|has| |#2| (-404 |#1|)) (|has| |#1| (-425)) (|has| |#1| (-784)) (|has| |#1| (-961 (-521)))))) (-2539 (((-1080 |#2|) |#2|) 44)) (-2147 ((|#2| |#2| (-587 (-560 |#2|))) 17) ((|#2| |#2| (-587 |#2|)) 19) ((|#2| |#2| |#2|) 20) ((|#2| |#2|) 15)))
+(((-40 |#1| |#2|) (-10 -7 (-15 -3878 (|#2| |#2|)) (-15 -2147 (|#2| |#2|)) (-15 -2147 (|#2| |#2| |#2|)) (-15 -2147 (|#2| |#2| (-587 |#2|))) (-15 -2147 (|#2| |#2| (-587 (-560 |#2|)))) (-15 -2539 ((-1080 |#2|) |#2|)) (IF (|has| |#1| (-784)) (IF (|has| |#1| (-425)) (IF (|has| |#1| (-961 (-521))) (IF (|has| |#2| (-404 |#1|)) (PROGN (-15 -3648 (|#2| |#2|)) (-15 -1683 (|#2| |#2|)) (-15 -3662 (|#2| |#2|)) (-15 -1795 (|#2| (-110) |#2| (-707)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-513) (-13 (-337) (-277) (-10 -8 (-15 -2801 ((-1036 |#1| (-560 $)) $)) (-15 -2812 ((-1036 |#1| (-560 $)) $)) (-15 -2189 ($ (-1036 |#1| (-560 $))))))) (T -40))
+((-1795 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-110)) (-5 *4 (-707)) (-4 *5 (-425)) (-4 *5 (-784)) (-4 *5 (-961 (-521))) (-4 *5 (-513)) (-5 *1 (-40 *5 *2)) (-4 *2 (-404 *5)) (-4 *2 (-13 (-337) (-277) (-10 -8 (-15 -2801 ((-1036 *5 (-560 $)) $)) (-15 -2812 ((-1036 *5 (-560 $)) $)) (-15 -2189 ($ (-1036 *5 (-560 $))))))))) (-3662 (*1 *2 *2) (-12 (-4 *3 (-425)) (-4 *3 (-784)) (-4 *3 (-961 (-521))) (-4 *3 (-513)) (-5 *1 (-40 *3 *2)) (-4 *2 (-404 *3)) (-4 *2 (-13 (-337) (-277) (-10 -8 (-15 -2801 ((-1036 *3 (-560 $)) $)) (-15 -2812 ((-1036 *3 (-560 $)) $)) (-15 -2189 ($ (-1036 *3 (-560 $))))))))) (-1683 (*1 *2 *2) (-12 (-4 *3 (-425)) (-4 *3 (-784)) (-4 *3 (-961 (-521))) (-4 *3 (-513)) (-5 *1 (-40 *3 *2)) (-4 *2 (-404 *3)) (-4 *2 (-13 (-337) (-277) (-10 -8 (-15 -2801 ((-1036 *3 (-560 $)) $)) (-15 -2812 ((-1036 *3 (-560 $)) $)) (-15 -2189 ($ (-1036 *3 (-560 $))))))))) (-3648 (*1 *2 *2) (-12 (-4 *3 (-425)) (-4 *3 (-784)) (-4 *3 (-961 (-521))) (-4 *3 (-513)) (-5 *1 (-40 *3 *2)) (-4 *2 (-404 *3)) (-4 *2 (-13 (-337) (-277) (-10 -8 (-15 -2801 ((-1036 *3 (-560 $)) $)) (-15 -2812 ((-1036 *3 (-560 $)) $)) (-15 -2189 ($ (-1036 *3 (-560 $))))))))) (-2539 (*1 *2 *3) (-12 (-4 *4 (-513)) (-5 *2 (-1080 *3)) (-5 *1 (-40 *4 *3)) (-4 *3 (-13 (-337) (-277) (-10 -8 (-15 -2801 ((-1036 *4 (-560 $)) $)) (-15 -2812 ((-1036 *4 (-560 $)) $)) (-15 -2189 ($ (-1036 *4 (-560 $))))))))) (-2147 (*1 *2 *2 *3) (-12 (-5 *3 (-587 (-560 *2))) (-4 *2 (-13 (-337) (-277) (-10 -8 (-15 -2801 ((-1036 *4 (-560 $)) $)) (-15 -2812 ((-1036 *4 (-560 $)) $)) (-15 -2189 ($ (-1036 *4 (-560 $))))))) (-4 *4 (-513)) (-5 *1 (-40 *4 *2)))) (-2147 (*1 *2 *2 *3) (-12 (-5 *3 (-587 *2)) (-4 *2 (-13 (-337) (-277) (-10 -8 (-15 -2801 ((-1036 *4 (-560 $)) $)) (-15 -2812 ((-1036 *4 (-560 $)) $)) (-15 -2189 ($ (-1036 *4 (-560 $))))))) (-4 *4 (-513)) (-5 *1 (-40 *4 *2)))) (-2147 (*1 *2 *2 *2) (-12 (-4 *3 (-513)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-337) (-277) (-10 -8 (-15 -2801 ((-1036 *3 (-560 $)) $)) (-15 -2812 ((-1036 *3 (-560 $)) $)) (-15 -2189 ($ (-1036 *3 (-560 $))))))))) (-2147 (*1 *2 *2) (-12 (-4 *3 (-513)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-337) (-277) (-10 -8 (-15 -2801 ((-1036 *3 (-560 $)) $)) (-15 -2812 ((-1036 *3 (-560 $)) $)) (-15 -2189 ($ (-1036 *3 (-560 $))))))))) (-3878 (*1 *2 *2) (-12 (-4 *3 (-513)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-337) (-277) (-10 -8 (-15 -2801 ((-1036 *3 (-560 $)) $)) (-15 -2812 ((-1036 *3 (-560 $)) $)) (-15 -2189 ($ (-1036 *3 (-560 $))))))))))
+(-10 -7 (-15 -3878 (|#2| |#2|)) (-15 -2147 (|#2| |#2|)) (-15 -2147 (|#2| |#2| |#2|)) (-15 -2147 (|#2| |#2| (-587 |#2|))) (-15 -2147 (|#2| |#2| (-587 (-560 |#2|)))) (-15 -2539 ((-1080 |#2|) |#2|)) (IF (|has| |#1| (-784)) (IF (|has| |#1| (-425)) (IF (|has| |#1| (-961 (-521))) (IF (|has| |#2| (-404 |#1|)) (PROGN (-15 -3648 (|#2| |#2|)) (-15 -1683 (|#2| |#2|)) (-15 -3662 (|#2| |#2|)) (-15 -1795 (|#2| (-110) |#2| (-707)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
+((-1916 (((-392 (-1080 |#3|)) (-1080 |#3|) (-587 (-47))) 22) (((-392 |#3|) |#3| (-587 (-47))) 18)))
+(((-41 |#1| |#2| |#3|) (-10 -7 (-15 -1916 ((-392 |#3|) |#3| (-587 (-47)))) (-15 -1916 ((-392 (-1080 |#3|)) (-1080 |#3|) (-587 (-47))))) (-784) (-729) (-878 (-47) |#2| |#1|)) (T -41))
+((-1916 (*1 *2 *3 *4) (-12 (-5 *4 (-587 (-47))) (-4 *5 (-784)) (-4 *6 (-729)) (-4 *7 (-878 (-47) *6 *5)) (-5 *2 (-392 (-1080 *7))) (-5 *1 (-41 *5 *6 *7)) (-5 *3 (-1080 *7)))) (-1916 (*1 *2 *3 *4) (-12 (-5 *4 (-587 (-47))) (-4 *5 (-784)) (-4 *6 (-729)) (-5 *2 (-392 *3)) (-5 *1 (-41 *5 *6 *3)) (-4 *3 (-878 (-47) *6 *5)))))
+(-10 -7 (-15 -1916 ((-392 |#3|) |#3| (-587 (-47)))) (-15 -1916 ((-392 (-1080 |#3|)) (-1080 |#3|) (-587 (-47)))))
+((-4155 (((-707) |#2|) 65)) (-4192 (((-707) |#2|) 68)) (-2861 (((-587 |#2|)) 33)) (-4106 (((-707) |#2|) 67)) (-1373 (((-707) |#2|) 64)) (-2405 (((-707) |#2|) 66)) (-2235 (((-587 (-627 |#1|))) 60)) (-2927 (((-587 |#2|)) 55)) (-3584 (((-587 |#2|) |#2|) 43)) (-2759 (((-587 |#2|)) 57)) (-3537 (((-587 |#2|)) 56)) (-2126 (((-587 (-627 |#1|))) 48)) (-1436 (((-587 |#2|)) 54)) (-2415 (((-587 |#2|) |#2|) 42)) (-3066 (((-587 |#2|)) 50)) (-3245 (((-587 (-627 |#1|))) 61)) (-1490 (((-587 |#2|)) 59)) (-2470 (((-1165 |#2|) (-1165 |#2|)) 84 (|has| |#1| (-282)))))
+(((-42 |#1| |#2|) (-10 -7 (-15 -4106 ((-707) |#2|)) (-15 -4192 ((-707) |#2|)) (-15 -1373 ((-707) |#2|)) (-15 -4155 ((-707) |#2|)) (-15 -2405 ((-707) |#2|)) (-15 -3066 ((-587 |#2|))) (-15 -2415 ((-587 |#2|) |#2|)) (-15 -3584 ((-587 |#2|) |#2|)) (-15 -1436 ((-587 |#2|))) (-15 -2927 ((-587 |#2|))) (-15 -3537 ((-587 |#2|))) (-15 -2759 ((-587 |#2|))) (-15 -1490 ((-587 |#2|))) (-15 -2126 ((-587 (-627 |#1|)))) (-15 -2235 ((-587 (-627 |#1|)))) (-15 -3245 ((-587 (-627 |#1|)))) (-15 -2861 ((-587 |#2|))) (IF (|has| |#1| (-282)) (-15 -2470 ((-1165 |#2|) (-1165 |#2|))) |%noBranch|)) (-513) (-391 |#1|)) (T -42))
+((-2470 (*1 *2 *2) (-12 (-5 *2 (-1165 *4)) (-4 *4 (-391 *3)) (-4 *3 (-282)) (-4 *3 (-513)) (-5 *1 (-42 *3 *4)))) (-2861 (*1 *2) (-12 (-4 *3 (-513)) (-5 *2 (-587 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-391 *3)))) (-3245 (*1 *2) (-12 (-4 *3 (-513)) (-5 *2 (-587 (-627 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-391 *3)))) (-2235 (*1 *2) (-12 (-4 *3 (-513)) (-5 *2 (-587 (-627 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-391 *3)))) (-2126 (*1 *2) (-12 (-4 *3 (-513)) (-5 *2 (-587 (-627 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-391 *3)))) (-1490 (*1 *2) (-12 (-4 *3 (-513)) (-5 *2 (-587 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-391 *3)))) (-2759 (*1 *2) (-12 (-4 *3 (-513)) (-5 *2 (-587 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-391 *3)))) (-3537 (*1 *2) (-12 (-4 *3 (-513)) (-5 *2 (-587 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-391 *3)))) (-2927 (*1 *2) (-12 (-4 *3 (-513)) (-5 *2 (-587 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-391 *3)))) (-1436 (*1 *2) (-12 (-4 *3 (-513)) (-5 *2 (-587 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-391 *3)))) (-3584 (*1 *2 *3) (-12 (-4 *4 (-513)) (-5 *2 (-587 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-391 *4)))) (-2415 (*1 *2 *3) (-12 (-4 *4 (-513)) (-5 *2 (-587 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-391 *4)))) (-3066 (*1 *2) (-12 (-4 *3 (-513)) (-5 *2 (-587 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-391 *3)))) (-2405 (*1 *2 *3) (-12 (-4 *4 (-513)) (-5 *2 (-707)) (-5 *1 (-42 *4 *3)) (-4 *3 (-391 *4)))) (-4155 (*1 *2 *3) (-12 (-4 *4 (-513)) (-5 *2 (-707)) (-5 *1 (-42 *4 *3)) (-4 *3 (-391 *4)))) (-1373 (*1 *2 *3) (-12 (-4 *4 (-513)) (-5 *2 (-707)) (-5 *1 (-42 *4 *3)) (-4 *3 (-391 *4)))) (-4192 (*1 *2 *3) (-12 (-4 *4 (-513)) (-5 *2 (-707)) (-5 *1 (-42 *4 *3)) (-4 *3 (-391 *4)))) (-4106 (*1 *2 *3) (-12 (-4 *4 (-513)) (-5 *2 (-707)) (-5 *1 (-42 *4 *3)) (-4 *3 (-391 *4)))))
+(-10 -7 (-15 -4106 ((-707) |#2|)) (-15 -4192 ((-707) |#2|)) (-15 -1373 ((-707) |#2|)) (-15 -4155 ((-707) |#2|)) (-15 -2405 ((-707) |#2|)) (-15 -3066 ((-587 |#2|))) (-15 -2415 ((-587 |#2|) |#2|)) (-15 -3584 ((-587 |#2|) |#2|)) (-15 -1436 ((-587 |#2|))) (-15 -2927 ((-587 |#2|))) (-15 -3537 ((-587 |#2|))) (-15 -2759 ((-587 |#2|))) (-15 -1490 ((-587 |#2|))) (-15 -2126 ((-587 (-627 |#1|)))) (-15 -2235 ((-587 (-627 |#1|)))) (-15 -3245 ((-587 (-627 |#1|)))) (-15 -2861 ((-587 |#2|))) (IF (|has| |#1| (-282)) (-15 -2470 ((-1165 |#2|) (-1165 |#2|))) |%noBranch|))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-3689 (((-3 $ "failed")) NIL (|has| |#1| (-513)))) (-1232 (((-3 $ "failed") $ $) NIL)) (-3359 (((-1165 (-627 |#1|)) (-1165 $)) NIL) (((-1165 (-627 |#1|))) 24)) (-1386 (((-1165 $)) 50)) (-2547 (($) NIL T CONST)) (-3758 (((-3 (-2 (|:| |particular| $) (|:| -2470 (-587 $))) "failed")) NIL (|has| |#1| (-513)))) (-3167 (((-3 $ "failed")) NIL (|has| |#1| (-513)))) (-2168 (((-627 |#1|) (-1165 $)) NIL) (((-627 |#1|)) NIL)) (-3783 ((|#1| $) NIL)) (-3907 (((-627 |#1|) $ (-1165 $)) NIL) (((-627 |#1|) $) NIL)) (-3176 (((-3 $ "failed") $) NIL (|has| |#1| (-513)))) (-1528 (((-1080 (-881 |#1|))) NIL (|has| |#1| (-337)))) (-3047 (($ $ (-850)) NIL)) (-3333 ((|#1| $) NIL)) (-3330 (((-1080 |#1|) $) NIL (|has| |#1| (-513)))) (-3518 ((|#1| (-1165 $)) NIL) ((|#1|) NIL)) (-2370 (((-1080 |#1|) $) NIL)) (-1208 (((-108)) 86)) (-4083 (($ (-1165 |#1|) (-1165 $)) NIL) (($ (-1165 |#1|)) NIL)) (-1257 (((-3 $ "failed") $) 14 (|has| |#1| (-513)))) (-3162 (((-850)) 51)) (-3856 (((-108)) NIL)) (-2049 (($ $ (-850)) NIL)) (-2760 (((-108)) NIL)) (-1344 (((-108)) NIL)) (-2383 (((-108)) 88)) (-3524 (((-3 (-2 (|:| |particular| $) (|:| -2470 (-587 $))) "failed")) NIL (|has| |#1| (-513)))) (-2172 (((-3 $ "failed")) NIL (|has| |#1| (-513)))) (-1786 (((-627 |#1|) (-1165 $)) NIL) (((-627 |#1|)) NIL)) (-2627 ((|#1| $) NIL)) (-3734 (((-627 |#1|) $ (-1165 $)) NIL) (((-627 |#1|) $) NIL)) (-2652 (((-3 $ "failed") $) NIL (|has| |#1| (-513)))) (-1519 (((-1080 (-881 |#1|))) NIL (|has| |#1| (-337)))) (-2830 (($ $ (-850)) NIL)) (-1332 ((|#1| $) NIL)) (-1729 (((-1080 |#1|) $) NIL (|has| |#1| (-513)))) (-1586 ((|#1| (-1165 $)) NIL) ((|#1|) NIL)) (-3888 (((-1080 |#1|) $) NIL)) (-2118 (((-108)) 85)) (-3688 (((-1067) $) NIL)) (-4045 (((-108)) 92)) (-1560 (((-108)) 91)) (-1381 (((-108)) 93)) (-4147 (((-1031) $) NIL)) (-1242 (((-108)) 87)) (-2544 ((|#1| $ (-521)) 53)) (-2234 (((-1165 |#1|) $ (-1165 $)) 47) (((-627 |#1|) (-1165 $) (-1165 $)) NIL) (((-1165 |#1|) $) 28) (((-627 |#1|) (-1165 $)) NIL)) (-1430 (((-1165 |#1|) $) NIL) (($ (-1165 |#1|)) NIL)) (-3557 (((-587 (-881 |#1|)) (-1165 $)) NIL) (((-587 (-881 |#1|))) NIL)) (-2674 (($ $ $) NIL)) (-3160 (((-108)) 83)) (-2189 (((-792) $) 68) (($ (-1165 |#1|)) 22)) (-2470 (((-1165 $)) 44)) (-2578 (((-587 (-1165 |#1|))) NIL (|has| |#1| (-513)))) (-2922 (($ $ $ $) NIL)) (-2057 (((-108)) 81)) (-1616 (($ (-627 |#1|) $) 18)) (-2464 (($ $ $) NIL)) (-1453 (((-108)) 84)) (-3987 (((-108)) 82)) (-2596 (((-108)) 80)) (-3561 (($) NIL T CONST)) (-1531 (((-108) $ $) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) 75) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1051 |#2| |#1|) $) 19)))
+(((-43 |#1| |#2| |#3| |#4|) (-13 (-391 |#1|) (-589 (-1051 |#2| |#1|)) (-10 -8 (-15 -2189 ($ (-1165 |#1|))))) (-337) (-850) (-587 (-1084)) (-1165 (-627 |#1|))) (T -43))
+((-2189 (*1 *1 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-337)) (-14 *6 (-1165 (-627 *3))) (-5 *1 (-43 *3 *4 *5 *6)) (-14 *4 (-850)) (-14 *5 (-587 (-1084))))))
+(-13 (-391 |#1|) (-589 (-1051 |#2| |#1|)) (-10 -8 (-15 -2189 ($ (-1165 |#1|)))))
+((-1415 (((-108) $ $) NIL (-3703 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)) (|has| |#2| (-1013))))) (-3430 (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) NIL)) (-2092 (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) NIL)) (-3830 (($ $) NIL)) (-1800 (($) NIL) (($ (-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) NIL)) (-1903 (((-1170) $ |#1| |#1|) NIL (|has| $ (-6 -4234))) (((-1170) $ (-521) (-521)) NIL (|has| $ (-6 -4234)))) (-3861 (($ $ (-521)) NIL (|has| $ (-6 -4234)))) (-1505 (((-108) (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL) (((-108) $) NIL (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-784)))) (-1621 (($ (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4234))) (($ $) NIL (-12 (|has| $ (-6 -4234)) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-784))))) (-3211 (($ (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-784)))) (-2978 (((-108) $ (-707)) NIL)) (-2300 (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) NIL (|has| $ (-6 -4234)))) (-3739 (($ $ $) 27 (|has| $ (-6 -4234)))) (-1509 (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) NIL (|has| $ (-6 -4234)))) (-3977 (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) 29 (|has| $ (-6 -4234)))) (-2378 ((|#2| $ |#1| |#2|) 46) (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $ (-521) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) NIL (|has| $ (-6 -4234))) (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $ (-1132 (-521)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) NIL (|has| $ (-6 -4234))) (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $ "last" (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) NIL (|has| $ (-6 -4234))) (($ $ "rest" $) NIL (|has| $ (-6 -4234))) (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $ "first" (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) NIL (|has| $ (-6 -4234))) (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $ "value" (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) NIL (|has| $ (-6 -4234)))) (-2675 (($ $ (-587 $)) NIL (|has| $ (-6 -4234)))) (-4098 (($ (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4233))) (($ (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL)) (-1628 (($ (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4233))) (($ (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4233)))) (-2080 (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) NIL)) (-2748 (((-3 |#2| "failed") |#1| $) 37)) (-2547 (($) NIL T CONST)) (-3081 (($ $) NIL (|has| $ (-6 -4234)))) (-1862 (($ $) NIL)) (-2306 (($ $ (-707)) NIL) (($ $) 24)) (-2468 (($ $) NIL (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (-2332 (($ $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013))))) (-3023 (($ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) NIL (|has| $ (-6 -4233))) (($ (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-3 |#2| "failed") |#1| $) 47) (($ (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL) (($ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) NIL (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (-1422 (($ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (($ (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4233))) (($ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (($ (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4233)))) (-3859 (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) NIL (|has| $ (-6 -4233))) (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) NIL (|has| $ (-6 -4233))) (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4233)))) (-3849 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4234))) (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $ (-521) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) NIL (|has| $ (-6 -4234)))) (-3626 ((|#2| $ |#1|) NIL) (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $ (-521)) NIL)) (-1368 (((-108) $) NIL)) (-3233 (((-521) (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL) (((-521) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) NIL (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013))) (((-521) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $ (-521)) NIL (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (-3831 (((-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) 18 (|has| $ (-6 -4233))) (((-587 |#2|) $) NIL (|has| $ (-6 -4233))) (((-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) 18 (|has| $ (-6 -4233)))) (-3186 (((-587 $) $) NIL)) (-3651 (((-108) $ $) NIL (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (-1811 (($ (-707) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) NIL)) (-2139 (((-108) $ (-707)) NIL)) (-2826 ((|#1| $) NIL (|has| |#1| (-784))) (((-521) $) 32 (|has| (-521) (-784)))) (-2810 (($ $ $) NIL (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-784)))) (-3220 (($ (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-784)))) (-1318 (($ (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-784)))) (-3757 (((-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-587 |#2|) $) NIL (|has| $ (-6 -4233))) (((-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4233)))) (-2221 (((-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#2| (-1013)))) (((-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013))))) (-2597 ((|#1| $) NIL (|has| |#1| (-784))) (((-521) $) 34 (|has| (-521) (-784)))) (-2446 (($ $ $) NIL (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-784)))) (-3833 (($ (-1 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4234))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4234))) (($ (-1 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4234)))) (-1390 (($ (-1 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL)) (-1580 (($ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) NIL)) (-3574 (((-108) $ (-707)) NIL)) (-1278 (((-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL)) (-2229 (((-108) $) NIL)) (-3688 (((-1067) $) 42 (-3703 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)) (|has| |#2| (-1013))))) (-1441 (($ $ (-707)) NIL) (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) NIL)) (-2961 (((-587 |#1|) $) 20)) (-2781 (((-108) |#1| $) NIL)) (-2511 (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) NIL)) (-3373 (($ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) NIL) (($ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $ (-521)) NIL) (($ $ $ (-521)) NIL)) (-1659 (($ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $ (-521)) NIL) (($ $ $ (-521)) NIL)) (-1668 (((-587 |#1|) $) NIL) (((-587 (-521)) $) NIL)) (-2941 (((-108) |#1| $) NIL) (((-108) (-521) $) NIL)) (-4147 (((-1031) $) NIL (-3703 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)) (|has| |#2| (-1013))))) (-2293 ((|#2| $) NIL (|has| |#1| (-784))) (($ $ (-707)) NIL) (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) 23)) (-3620 (((-3 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) "failed") (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL) (((-3 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) "failed") (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL)) (-3016 (($ $ |#2|) NIL (|has| $ (-6 -4234))) (($ $ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) NIL (|has| $ (-6 -4234)))) (-2166 (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) NIL)) (-3924 (((-108) $) NIL)) (-1789 (((-108) (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4233))) (((-108) (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))))) NIL (-12 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-284 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (($ $ (-269 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) NIL (-12 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-284 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (($ $ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) NIL (-12 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-284 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (($ $ (-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) (-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) NIL (-12 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-284 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (($ $ (-587 |#2|) (-587 |#2|)) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ (-269 |#2|)) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ (-587 (-269 |#2|))) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ (-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) (-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) NIL (-12 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-284 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (($ $ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) NIL (-12 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-284 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (($ $ (-269 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) NIL (-12 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-284 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (($ $ (-587 (-269 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))))) NIL (-12 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-284 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013))))) (-2488 (((-108) $ $) NIL)) (-3821 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#2| (-1013)))) (((-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013))))) (-2489 (((-587 |#2|) $) NIL) (((-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) 17)) (-3462 (((-108) $) 16)) (-4024 (($) 13)) (-2544 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $ (-521) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) NIL) (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $ (-521)) NIL) (($ $ (-1132 (-521))) NIL) (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $ "first") NIL) (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $ "value") NIL)) (-2931 (((-521) $ $) NIL)) (-1784 (($) 12) (($ (-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) NIL)) (-2859 (($ $ (-521)) NIL) (($ $ (-1132 (-521))) NIL)) (-3691 (($ $ (-521)) NIL) (($ $ (-1132 (-521))) NIL)) (-2406 (((-108) $) NIL)) (-3207 (($ $) NIL)) (-2262 (($ $) NIL (|has| $ (-6 -4234)))) (-3083 (((-707) $) NIL)) (-3717 (($ $) NIL)) (-4163 (((-707) (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-707) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (((-707) |#2| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#2| (-1013)))) (((-707) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4233))) (((-707) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (((-707) (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4233)))) (-1497 (($ $ $ (-521)) NIL (|has| $ (-6 -4234)))) (-2404 (($ $) NIL)) (-1430 (((-497) $) NIL (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-562 (-497))))) (-2201 (($ (-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) NIL) (($ (-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) NIL)) (-3980 (($ $ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) NIL) (($ $ $) NIL)) (-4159 (($ $ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) NIL) (($ (-587 $)) NIL) (($ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) 25) (($ $ $) NIL)) (-2189 (((-792) $) NIL (-3703 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-561 (-792))) (|has| |#2| (-561 (-792)))))) (-3098 (((-587 $) $) NIL)) (-2294 (((-108) $ $) NIL (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (-4091 (($ (-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) NIL)) (-1445 (((-3 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) "failed") |#1| $) 44)) (-3049 (((-108) (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4233))) (((-108) (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4233)))) (-1574 (((-108) $ $) NIL (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-784)))) (-1558 (((-108) $ $) NIL (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-784)))) (-1531 (((-108) $ $) NIL (-3703 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)) (|has| |#2| (-1013))))) (-1566 (((-108) $ $) NIL (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-784)))) (-1549 (((-108) $ $) NIL (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-784)))) (-3475 (((-707) $) 22 (|has| $ (-6 -4233)))))
+(((-44 |#1| |#2|) (-35 |#1| |#2|) (-1013) (-1013)) (T -44))
NIL
(-35 |#1| |#2|)
-((-3774 (((-108) $) 12)) (-1389 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-380 (-520)) $) 24) (($ $ (-380 (-520))) NIL)))
-(((-45 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-380 (-520)))) (-15 * (|#1| (-380 (-520)) |#1|)) (-15 -3774 ((-108) |#1|)) (-15 -1389 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-520) |#1|)) (-15 * (|#1| (-706) |#1|)) (-15 * (|#1| (-849) |#1|))) (-46 |#2| |#3|) (-969) (-727)) (T -45))
-NIL
-(-10 -8 (-15 * (|#1| |#1| (-380 (-520)))) (-15 * (|#1| (-380 (-520)) |#1|)) (-15 -3774 ((-108) |#1|)) (-15 -1389 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-520) |#1|)) (-15 * (|#1| (-706) |#1|)) (-15 * (|#1| (-849) |#1|)))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) 51 (|has| |#1| (-512)))) (-2583 (($ $) 52 (|has| |#1| (-512)))) (-1671 (((-108) $) 54 (|has| |#1| (-512)))) (-1917 (((-3 $ "failed") $ $) 19)) (-3961 (($) 17 T CONST)) (-3150 (($ $) 60)) (-1540 (((-3 $ "failed") $) 34)) (-1537 (((-108) $) 31)) (-3774 (((-108) $) 62)) (-4039 (($ |#1| |#2|) 61)) (-1389 (($ (-1 |#1| |#1|) $) 63)) (-3123 (($ $) 65)) (-3133 ((|#1| $) 66)) (-1239 (((-1066) $) 9)) (-4142 (((-1030) $) 10)) (-2230 (((-3 $ "failed") $ $) 50 (|has| |#1| (-512)))) (-2528 ((|#2| $) 64)) (-2188 (((-791) $) 11) (($ (-520)) 28) (($ (-380 (-520))) 57 (|has| |#1| (-37 (-380 (-520))))) (($ $) 49 (|has| |#1| (-512))) (($ |#1|) 47 (|has| |#1| (-157)))) (-3475 ((|#1| $ |#2|) 59)) (-3796 (((-3 $ "failed") $) 48 (|has| |#1| (-133)))) (-3251 (((-706)) 29)) (-2559 (((-108) $ $) 53 (|has| |#1| (-512)))) (-3504 (($ $ (-849)) 26) (($ $ (-706)) 33)) (-3560 (($) 18 T CONST)) (-3570 (($) 30 T CONST)) (-1530 (((-108) $ $) 6)) (-1619 (($ $ |#1|) 58 (|has| |#1| (-336)))) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-706)) 32)) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-380 (-520)) $) 56 (|has| |#1| (-37 (-380 (-520))))) (($ $ (-380 (-520))) 55 (|has| |#1| (-37 (-380 (-520)))))))
-(((-46 |#1| |#2|) (-1195) (-969) (-727)) (T -46))
-((-3133 (*1 *2 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-727)) (-4 *2 (-969)))) (-3123 (*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-969)) (-4 *3 (-727)))) (-2528 (*1 *2 *1) (-12 (-4 *1 (-46 *3 *2)) (-4 *3 (-969)) (-4 *2 (-727)))) (-1389 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-46 *3 *4)) (-4 *3 (-969)) (-4 *4 (-727)))) (-3774 (*1 *2 *1) (-12 (-4 *1 (-46 *3 *4)) (-4 *3 (-969)) (-4 *4 (-727)) (-5 *2 (-108)))) (-4039 (*1 *1 *2 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-969)) (-4 *3 (-727)))) (-3150 (*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-969)) (-4 *3 (-727)))) (-3475 (*1 *2 *1 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-727)) (-4 *2 (-969)))) (-1619 (*1 *1 *1 *2) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-969)) (-4 *3 (-727)) (-4 *2 (-336)))))
-(-13 (-969) (-107 |t#1| |t#1|) (-10 -8 (-15 -3133 (|t#1| $)) (-15 -3123 ($ $)) (-15 -2528 (|t#2| $)) (-15 -1389 ($ (-1 |t#1| |t#1|) $)) (-15 -3774 ((-108) $)) (-15 -4039 ($ |t#1| |t#2|)) (-15 -3150 ($ $)) (-15 -3475 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-336)) (-15 -1619 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-157)) (PROGN (-6 (-157)) (-6 (-37 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |t#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |t#1| (-512)) (-6 (-512)) |%noBranch|) (IF (|has| |t#1| (-37 (-380 (-520)))) (-6 (-37 (-380 (-520)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-380 (-520))) |has| |#1| (-37 (-380 (-520)))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) |has| |#1| (-512)) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-380 (-520)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3700 (|has| |#1| (-512)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-560 (-791)) . T) ((-157) -3700 (|has| |#1| (-512)) (|has| |#1| (-157))) ((-264) |has| |#1| (-512)) ((-512) |has| |#1| (-512)) ((-588 #0#) |has| |#1| (-37 (-380 (-520)))) ((-588 |#1|) . T) ((-588 $) . T) ((-653 #0#) |has| |#1| (-37 (-380 (-520)))) ((-653 |#1|) |has| |#1| (-157)) ((-653 $) |has| |#1| (-512)) ((-662) . T) ((-975 #0#) |has| |#1| (-37 (-380 (-520)))) ((-975 |#1|) . T) ((-975 $) -3700 (|has| |#1| (-512)) (|has| |#1| (-157))) ((-969) . T) ((-976) . T) ((-1024) . T) ((-1012) . T))
-((-1414 (((-108) $ $) NIL)) (-3953 (((-586 $) (-1079 $) (-1083)) NIL) (((-586 $) (-1079 $)) NIL) (((-586 $) (-880 $)) NIL)) (-2057 (($ (-1079 $) (-1083)) NIL) (($ (-1079 $)) NIL) (($ (-880 $)) NIL)) (-2906 (((-108) $) 11)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) NIL)) (-2583 (($ $) NIL)) (-1671 (((-108) $) NIL)) (-1883 (((-586 (-559 $)) $) NIL)) (-1917 (((-3 $ "failed") $ $) NIL)) (-3299 (($ $ (-268 $)) NIL) (($ $ (-586 (-268 $))) NIL) (($ $ (-586 (-559 $)) (-586 $)) NIL)) (-3024 (($ $) NIL)) (-1507 (((-391 $) $) NIL)) (-1927 (($ $) NIL)) (-1327 (((-108) $ $) NIL)) (-3961 (($) NIL T CONST)) (-2150 (((-586 $) (-1079 $) (-1083)) NIL) (((-586 $) (-1079 $)) NIL) (((-586 $) (-880 $)) NIL)) (-2288 (($ (-1079 $) (-1083)) NIL) (($ (-1079 $)) NIL) (($ (-880 $)) NIL)) (-1296 (((-3 (-559 $) "failed") $) NIL) (((-3 (-520) "failed") $) NIL) (((-3 (-380 (-520)) "failed") $) NIL)) (-1482 (((-559 $) $) NIL) (((-520) $) NIL) (((-380 (-520)) $) NIL)) (-2276 (($ $ $) NIL)) (-2756 (((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 $) (-1164 $)) NIL) (((-626 (-520)) (-626 $)) NIL) (((-2 (|:| -3927 (-626 (-380 (-520)))) (|:| |vec| (-1164 (-380 (-520))))) (-626 $) (-1164 $)) NIL) (((-626 (-380 (-520))) (-626 $)) NIL)) (-3856 (($ $) NIL)) (-1540 (((-3 $ "failed") $) NIL)) (-2253 (($ $ $) NIL)) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) NIL)) (-2036 (((-108) $) NIL)) (-1255 (($ $) NIL) (($ (-586 $)) NIL)) (-3357 (((-586 (-110)) $) NIL)) (-3877 (((-110) (-110)) NIL)) (-1537 (((-108) $) 14)) (-2777 (((-108) $) NIL (|has| $ (-960 (-520))))) (-2800 (((-1035 (-520) (-559 $)) $) NIL)) (-2322 (($ $ (-520)) NIL)) (-1434 (((-1079 $) (-1079 $) (-559 $)) NIL) (((-1079 $) (-1079 $) (-586 (-559 $))) NIL) (($ $ (-559 $)) NIL) (($ $ (-586 (-559 $))) NIL)) (-3188 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-2433 (((-1079 $) (-559 $)) NIL (|has| $ (-969)))) (-2809 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-1389 (($ (-1 $ $) (-559 $)) NIL)) (-2690 (((-3 (-559 $) "failed") $) NIL)) (-2222 (($ (-586 $)) NIL) (($ $ $) NIL)) (-1239 (((-1066) $) NIL)) (-1265 (((-586 (-559 $)) $) NIL)) (-2904 (($ (-110) $) NIL) (($ (-110) (-586 $)) NIL)) (-1784 (((-108) $ (-110)) NIL) (((-108) $ (-1083)) NIL)) (-3093 (($ $) NIL)) (-4146 (((-706) $) NIL)) (-4142 (((-1030) $) NIL)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) NIL)) (-2257 (($ (-586 $)) NIL) (($ $ $) NIL)) (-4134 (((-108) $ $) NIL) (((-108) $ (-1083)) NIL)) (-1916 (((-391 $) $) NIL)) (-1283 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) NIL)) (-2230 (((-3 $ "failed") $ $) NIL)) (-2608 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-3615 (((-108) $) NIL (|has| $ (-960 (-520))))) (-2286 (($ $ (-559 $) $) NIL) (($ $ (-586 (-559 $)) (-586 $)) NIL) (($ $ (-586 (-268 $))) NIL) (($ $ (-268 $)) NIL) (($ $ $ $) NIL) (($ $ (-586 $) (-586 $)) NIL) (($ $ (-586 (-1083)) (-586 (-1 $ $))) NIL) (($ $ (-586 (-1083)) (-586 (-1 $ (-586 $)))) NIL) (($ $ (-1083) (-1 $ (-586 $))) NIL) (($ $ (-1083) (-1 $ $)) NIL) (($ $ (-586 (-110)) (-586 (-1 $ $))) NIL) (($ $ (-586 (-110)) (-586 (-1 $ (-586 $)))) NIL) (($ $ (-110) (-1 $ (-586 $))) NIL) (($ $ (-110) (-1 $ $)) NIL)) (-3704 (((-706) $) NIL)) (-2543 (($ (-110) $) NIL) (($ (-110) $ $) NIL) (($ (-110) $ $ $) NIL) (($ (-110) $ $ $ $) NIL) (($ (-110) (-586 $)) NIL)) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) NIL)) (-3453 (($ $) NIL) (($ $ $) NIL)) (-2155 (($ $ (-706)) NIL) (($ $) NIL)) (-2811 (((-1035 (-520) (-559 $)) $) NIL)) (-3484 (($ $) NIL (|has| $ (-969)))) (-1429 (((-352) $) NIL) (((-201) $) NIL) (((-154 (-352)) $) NIL)) (-2188 (((-791) $) NIL) (($ (-559 $)) NIL) (($ (-380 (-520))) NIL) (($ $) NIL) (($ (-520)) NIL) (($ (-1035 (-520) (-559 $))) NIL)) (-3251 (((-706)) NIL)) (-2319 (($ $) NIL) (($ (-586 $)) NIL)) (-1373 (((-108) (-110)) NIL)) (-2559 (((-108) $ $) NIL)) (-3504 (($ $ (-520)) NIL) (($ $ (-706)) NIL) (($ $ (-849)) NIL)) (-3560 (($) 7 T CONST)) (-3570 (($) 12 T CONST)) (-2211 (($ $ (-706)) NIL) (($ $) NIL)) (-1573 (((-108) $ $) NIL)) (-1557 (((-108) $ $) NIL)) (-1530 (((-108) $ $) 16)) (-1565 (((-108) $ $) NIL)) (-1548 (((-108) $ $) NIL)) (-1619 (($ $ $) NIL)) (-1611 (($ $ $) 15) (($ $) NIL)) (-1601 (($ $ $) NIL)) (** (($ $ (-380 (-520))) NIL) (($ $ (-520)) NIL) (($ $ (-706)) NIL) (($ $ (-849)) NIL)) (* (($ (-380 (-520)) $) NIL) (($ $ (-380 (-520))) NIL) (($ $ $) NIL) (($ (-520) $) NIL) (($ (-706) $) NIL) (($ (-849) $) NIL)))
-(((-47) (-13 (-276) (-27) (-960 (-520)) (-960 (-380 (-520))) (-582 (-520)) (-945) (-582 (-380 (-520))) (-135) (-561 (-154 (-352))) (-209) (-10 -8 (-15 -2188 ($ (-1035 (-520) (-559 $)))) (-15 -2800 ((-1035 (-520) (-559 $)) $)) (-15 -2811 ((-1035 (-520) (-559 $)) $)) (-15 -3856 ($ $)) (-15 -1434 ((-1079 $) (-1079 $) (-559 $))) (-15 -1434 ((-1079 $) (-1079 $) (-586 (-559 $)))) (-15 -1434 ($ $ (-559 $))) (-15 -1434 ($ $ (-586 (-559 $))))))) (T -47))
-((-2188 (*1 *1 *2) (-12 (-5 *2 (-1035 (-520) (-559 (-47)))) (-5 *1 (-47)))) (-2800 (*1 *2 *1) (-12 (-5 *2 (-1035 (-520) (-559 (-47)))) (-5 *1 (-47)))) (-2811 (*1 *2 *1) (-12 (-5 *2 (-1035 (-520) (-559 (-47)))) (-5 *1 (-47)))) (-3856 (*1 *1 *1) (-5 *1 (-47))) (-1434 (*1 *2 *2 *3) (-12 (-5 *2 (-1079 (-47))) (-5 *3 (-559 (-47))) (-5 *1 (-47)))) (-1434 (*1 *2 *2 *3) (-12 (-5 *2 (-1079 (-47))) (-5 *3 (-586 (-559 (-47)))) (-5 *1 (-47)))) (-1434 (*1 *1 *1 *2) (-12 (-5 *2 (-559 (-47))) (-5 *1 (-47)))) (-1434 (*1 *1 *1 *2) (-12 (-5 *2 (-586 (-559 (-47)))) (-5 *1 (-47)))))
-(-13 (-276) (-27) (-960 (-520)) (-960 (-380 (-520))) (-582 (-520)) (-945) (-582 (-380 (-520))) (-135) (-561 (-154 (-352))) (-209) (-10 -8 (-15 -2188 ($ (-1035 (-520) (-559 $)))) (-15 -2800 ((-1035 (-520) (-559 $)) $)) (-15 -2811 ((-1035 (-520) (-559 $)) $)) (-15 -3856 ($ $)) (-15 -1434 ((-1079 $) (-1079 $) (-559 $))) (-15 -1434 ((-1079 $) (-1079 $) (-586 (-559 $)))) (-15 -1434 ($ $ (-559 $))) (-15 -1434 ($ $ (-586 (-559 $))))))
-((-1414 (((-108) $ $) NIL)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2188 (((-791) $) 7)) (-1530 (((-108) $ $) NIL)))
-(((-48) (-1012)) (T -48))
-NIL
-(-1012)
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) 60)) (-1917 (((-3 $ "failed") $ $) NIL)) (-3961 (($) NIL T CONST)) (-3242 (((-108) $) 20)) (-1296 (((-3 |#1| "failed") $) 23)) (-1482 ((|#1| $) 24)) (-3150 (($ $) 27)) (-1540 (((-3 $ "failed") $) NIL)) (-1537 (((-108) $) NIL)) (-1389 (($ (-1 |#1| |#1|) $) NIL)) (-3133 ((|#1| $) 21)) (-2273 (($ $) 49)) (-1239 (((-1066) $) NIL)) (-1807 (((-108) $) 28)) (-4142 (((-1030) $) NIL)) (-1382 (($ (-706)) 47)) (-3260 (($ (-586 (-520))) 48)) (-2528 (((-706) $) 29)) (-2188 (((-791) $) 63) (($ (-520)) 44) (($ |#1|) 42)) (-3475 ((|#1| $ $) 19)) (-3251 (((-706)) 46)) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (-3560 (($) 30 T CONST)) (-3570 (($) 14 T CONST)) (-1530 (((-108) $ $) NIL)) (-1611 (($ $) NIL) (($ $ $) NIL)) (-1601 (($ $ $) 40)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) 41) (($ |#1| $) 35)))
-(((-49 |#1| |#2|) (-13 (-564 |#1|) (-960 |#1|) (-10 -8 (-15 -3133 (|#1| $)) (-15 -2273 ($ $)) (-15 -3150 ($ $)) (-15 -3475 (|#1| $ $)) (-15 -1382 ($ (-706))) (-15 -3260 ($ (-586 (-520)))) (-15 -1807 ((-108) $)) (-15 -3242 ((-108) $)) (-15 -2528 ((-706) $)) (-15 -1389 ($ (-1 |#1| |#1|) $)))) (-969) (-586 (-1083))) (T -49))
-((-3133 (*1 *2 *1) (-12 (-4 *2 (-969)) (-5 *1 (-49 *2 *3)) (-14 *3 (-586 (-1083))))) (-2273 (*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-969)) (-14 *3 (-586 (-1083))))) (-3150 (*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-969)) (-14 *3 (-586 (-1083))))) (-3475 (*1 *2 *1 *1) (-12 (-4 *2 (-969)) (-5 *1 (-49 *2 *3)) (-14 *3 (-586 (-1083))))) (-1382 (*1 *1 *2) (-12 (-5 *2 (-706)) (-5 *1 (-49 *3 *4)) (-4 *3 (-969)) (-14 *4 (-586 (-1083))))) (-3260 (*1 *1 *2) (-12 (-5 *2 (-586 (-520))) (-5 *1 (-49 *3 *4)) (-4 *3 (-969)) (-14 *4 (-586 (-1083))))) (-1807 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-49 *3 *4)) (-4 *3 (-969)) (-14 *4 (-586 (-1083))))) (-3242 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-49 *3 *4)) (-4 *3 (-969)) (-14 *4 (-586 (-1083))))) (-2528 (*1 *2 *1) (-12 (-5 *2 (-706)) (-5 *1 (-49 *3 *4)) (-4 *3 (-969)) (-14 *4 (-586 (-1083))))) (-1389 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-969)) (-5 *1 (-49 *3 *4)) (-14 *4 (-586 (-1083))))))
-(-13 (-564 |#1|) (-960 |#1|) (-10 -8 (-15 -3133 (|#1| $)) (-15 -2273 ($ $)) (-15 -3150 ($ $)) (-15 -3475 (|#1| $ $)) (-15 -1382 ($ (-706))) (-15 -3260 ($ (-586 (-520)))) (-15 -1807 ((-108) $)) (-15 -3242 ((-108) $)) (-15 -2528 ((-706) $)) (-15 -1389 ($ (-1 |#1| |#1|) $))))
-((-3242 (((-108) (-51)) 13)) (-1296 (((-3 |#1| "failed") (-51)) 21)) (-1482 ((|#1| (-51)) 22)) (-2188 (((-51) |#1|) 18)))
-(((-50 |#1|) (-10 -7 (-15 -2188 ((-51) |#1|)) (-15 -1296 ((-3 |#1| "failed") (-51))) (-15 -3242 ((-108) (-51))) (-15 -1482 (|#1| (-51)))) (-1118)) (T -50))
-((-1482 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1118)))) (-3242 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-108)) (-5 *1 (-50 *4)) (-4 *4 (-1118)))) (-1296 (*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1118)))) (-2188 (*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-50 *3)) (-4 *3 (-1118)))))
-(-10 -7 (-15 -2188 ((-51) |#1|)) (-15 -1296 ((-3 |#1| "failed") (-51))) (-15 -3242 ((-108) (-51))) (-15 -1482 (|#1| (-51))))
-((-1414 (((-108) $ $) NIL)) (-4191 (((-1066) (-108)) 25)) (-3132 (((-791) $) 24)) (-2856 (((-709) $) 12)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2355 (((-791) $) 16)) (-2892 (((-1016) $) 14)) (-2188 (((-791) $) 32)) (-2326 (($ (-1016) (-709)) 33)) (-1530 (((-108) $ $) 18)))
-(((-51) (-13 (-1012) (-10 -8 (-15 -2326 ($ (-1016) (-709))) (-15 -2355 ((-791) $)) (-15 -3132 ((-791) $)) (-15 -2892 ((-1016) $)) (-15 -2856 ((-709) $)) (-15 -4191 ((-1066) (-108)))))) (T -51))
-((-2326 (*1 *1 *2 *3) (-12 (-5 *2 (-1016)) (-5 *3 (-709)) (-5 *1 (-51)))) (-2355 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-51)))) (-3132 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-51)))) (-2892 (*1 *2 *1) (-12 (-5 *2 (-1016)) (-5 *1 (-51)))) (-2856 (*1 *2 *1) (-12 (-5 *2 (-709)) (-5 *1 (-51)))) (-4191 (*1 *2 *3) (-12 (-5 *3 (-108)) (-5 *2 (-1066)) (-5 *1 (-51)))))
-(-13 (-1012) (-10 -8 (-15 -2326 ($ (-1016) (-709))) (-15 -2355 ((-791) $)) (-15 -3132 ((-791) $)) (-15 -2892 ((-1016) $)) (-15 -2856 ((-709) $)) (-15 -4191 ((-1066) (-108)))))
-((-1614 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16)))
-(((-52 |#1| |#2| |#3|) (-10 -7 (-15 -1614 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-969) (-588 |#1|) (-785 |#1|)) (T -52))
-((-1614 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-588 *5)) (-4 *5 (-969)) (-5 *1 (-52 *5 *2 *3)) (-4 *3 (-785 *5)))))
-(-10 -7 (-15 -1614 (|#2| |#3| (-1 |#2| |#2|) |#2|)))
-((-3384 ((|#3| |#3| (-586 (-1083))) 35)) (-1571 ((|#3| (-586 (-991 |#1| |#2| |#3|)) |#3| (-849)) 22) ((|#3| (-586 (-991 |#1| |#2| |#3|)) |#3|) 20)))
-(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -1571 (|#3| (-586 (-991 |#1| |#2| |#3|)) |#3|)) (-15 -1571 (|#3| (-586 (-991 |#1| |#2| |#3|)) |#3| (-849))) (-15 -3384 (|#3| |#3| (-586 (-1083))))) (-1012) (-13 (-969) (-814 |#1|) (-783) (-561 (-820 |#1|))) (-13 (-403 |#2|) (-814 |#1|) (-561 (-820 |#1|)))) (T -53))
-((-3384 (*1 *2 *2 *3) (-12 (-5 *3 (-586 (-1083))) (-4 *4 (-1012)) (-4 *5 (-13 (-969) (-814 *4) (-783) (-561 (-820 *4)))) (-5 *1 (-53 *4 *5 *2)) (-4 *2 (-13 (-403 *5) (-814 *4) (-561 (-820 *4)))))) (-1571 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-586 (-991 *5 *6 *2))) (-5 *4 (-849)) (-4 *5 (-1012)) (-4 *6 (-13 (-969) (-814 *5) (-783) (-561 (-820 *5)))) (-4 *2 (-13 (-403 *6) (-814 *5) (-561 (-820 *5)))) (-5 *1 (-53 *5 *6 *2)))) (-1571 (*1 *2 *3 *2) (-12 (-5 *3 (-586 (-991 *4 *5 *2))) (-4 *4 (-1012)) (-4 *5 (-13 (-969) (-814 *4) (-783) (-561 (-820 *4)))) (-4 *2 (-13 (-403 *5) (-814 *4) (-561 (-820 *4)))) (-5 *1 (-53 *4 *5 *2)))))
-(-10 -7 (-15 -1571 (|#3| (-586 (-991 |#1| |#2| |#3|)) |#3|)) (-15 -1571 (|#3| (-586 (-991 |#1| |#2| |#3|)) |#3| (-849))) (-15 -3384 (|#3| |#3| (-586 (-1083)))))
-((-2063 (((-108) $ (-706)) 23)) (-2145 (($ $ (-520) |#3|) 45)) (-3834 (($ $ (-520) |#4|) 49)) (-2120 ((|#3| $ (-520)) 58)) (-3828 (((-586 |#2|) $) 30)) (-3027 (((-108) $ (-706)) 25)) (-2422 (((-108) |#2| $) 53)) (-3830 (($ (-1 |#2| |#2|) $) 37)) (-1389 (($ (-1 |#2| |#2|) $) 36) (($ (-1 |#2| |#2| |#2|) $ $) 39) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 41)) (-1390 (((-108) $ (-706)) 24)) (-2936 (($ $ |#2|) 34)) (-4155 (((-108) (-1 (-108) |#2|) $) 19)) (-2543 ((|#2| $ (-520) (-520)) NIL) ((|#2| $ (-520) (-520) |#2|) 27)) (-4159 (((-706) (-1 (-108) |#2|) $) 28) (((-706) |#2| $) 55)) (-2403 (($ $) 33)) (-2460 ((|#4| $ (-520)) 61)) (-2188 (((-791) $) 66)) (-1662 (((-108) (-1 (-108) |#2|) $) 18)) (-1530 (((-108) $ $) 52)) (-3474 (((-706) $) 26)))
-(((-54 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2188 ((-791) |#1|)) (-15 -1389 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -1389 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3830 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3834 (|#1| |#1| (-520) |#4|)) (-15 -2145 (|#1| |#1| (-520) |#3|)) (-15 -3828 ((-586 |#2|) |#1|)) (-15 -2460 (|#4| |#1| (-520))) (-15 -2120 (|#3| |#1| (-520))) (-15 -2543 (|#2| |#1| (-520) (-520) |#2|)) (-15 -2543 (|#2| |#1| (-520) (-520))) (-15 -2936 (|#1| |#1| |#2|)) (-15 -1530 ((-108) |#1| |#1|)) (-15 -2422 ((-108) |#2| |#1|)) (-15 -4159 ((-706) |#2| |#1|)) (-15 -4159 ((-706) (-1 (-108) |#2|) |#1|)) (-15 -4155 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -1662 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -1389 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3474 ((-706) |#1|)) (-15 -2063 ((-108) |#1| (-706))) (-15 -3027 ((-108) |#1| (-706))) (-15 -1390 ((-108) |#1| (-706))) (-15 -2403 (|#1| |#1|))) (-55 |#2| |#3| |#4|) (-1118) (-346 |#2|) (-346 |#2|)) (T -54))
-NIL
-(-10 -8 (-15 -2188 ((-791) |#1|)) (-15 -1389 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -1389 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3830 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3834 (|#1| |#1| (-520) |#4|)) (-15 -2145 (|#1| |#1| (-520) |#3|)) (-15 -3828 ((-586 |#2|) |#1|)) (-15 -2460 (|#4| |#1| (-520))) (-15 -2120 (|#3| |#1| (-520))) (-15 -2543 (|#2| |#1| (-520) (-520) |#2|)) (-15 -2543 (|#2| |#1| (-520) (-520))) (-15 -2936 (|#1| |#1| |#2|)) (-15 -1530 ((-108) |#1| |#1|)) (-15 -2422 ((-108) |#2| |#1|)) (-15 -4159 ((-706) |#2| |#1|)) (-15 -4159 ((-706) (-1 (-108) |#2|) |#1|)) (-15 -4155 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -1662 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -1389 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3474 ((-706) |#1|)) (-15 -2063 ((-108) |#1| (-706))) (-15 -3027 ((-108) |#1| (-706))) (-15 -1390 ((-108) |#1| (-706))) (-15 -2403 (|#1| |#1|)))
-((-1414 (((-108) $ $) 19 (|has| |#1| (-1012)))) (-2063 (((-108) $ (-706)) 8)) (-2377 ((|#1| $ (-520) (-520) |#1|) 44)) (-2145 (($ $ (-520) |#2|) 42)) (-3834 (($ $ (-520) |#3|) 41)) (-3961 (($) 7 T CONST)) (-2120 ((|#2| $ (-520)) 46)) (-3846 ((|#1| $ (-520) (-520) |#1|) 43)) (-3623 ((|#1| $ (-520) (-520)) 48)) (-3828 (((-586 |#1|) $) 30)) (-1409 (((-706) $) 51)) (-1810 (($ (-706) (-706) |#1|) 57)) (-1420 (((-706) $) 50)) (-3027 (((-108) $ (-706)) 9)) (-2289 (((-520) $) 55)) (-1867 (((-520) $) 53)) (-3702 (((-586 |#1|) $) 29 (|has| $ (-6 -4229)))) (-2422 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-1888 (((-520) $) 54)) (-2982 (((-520) $) 52)) (-3830 (($ (-1 |#1| |#1|) $) 34)) (-1389 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-1390 (((-108) $ (-706)) 10)) (-1239 (((-1066) $) 22 (|has| |#1| (-1012)))) (-4142 (((-1030) $) 21 (|has| |#1| (-1012)))) (-2936 (($ $ |#1|) 56)) (-4155 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 |#1|))) 26 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-268 |#1|)) 25 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-586 |#1|) (-586 |#1|)) 23 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))) (-2533 (((-108) $ $) 14)) (-4018 (((-108) $) 11)) (-2238 (($) 12)) (-2543 ((|#1| $ (-520) (-520)) 49) ((|#1| $ (-520) (-520) |#1|) 47)) (-4159 (((-706) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4229))) (((-706) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-2403 (($ $) 13)) (-2460 ((|#3| $ (-520)) 45)) (-2188 (((-791) $) 18 (|has| |#1| (-560 (-791))))) (-1662 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4229)))) (-1530 (((-108) $ $) 20 (|has| |#1| (-1012)))) (-3474 (((-706) $) 6 (|has| $ (-6 -4229)))))
-(((-55 |#1| |#2| |#3|) (-1195) (-1118) (-346 |t#1|) (-346 |t#1|)) (T -55))
-((-1389 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1118)) (-4 *4 (-346 *3)) (-4 *5 (-346 *3)))) (-1810 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-706)) (-4 *3 (-1118)) (-4 *1 (-55 *3 *4 *5)) (-4 *4 (-346 *3)) (-4 *5 (-346 *3)))) (-2936 (*1 *1 *1 *2) (-12 (-4 *1 (-55 *2 *3 *4)) (-4 *2 (-1118)) (-4 *3 (-346 *2)) (-4 *4 (-346 *2)))) (-2289 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1118)) (-4 *4 (-346 *3)) (-4 *5 (-346 *3)) (-5 *2 (-520)))) (-1888 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1118)) (-4 *4 (-346 *3)) (-4 *5 (-346 *3)) (-5 *2 (-520)))) (-1867 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1118)) (-4 *4 (-346 *3)) (-4 *5 (-346 *3)) (-5 *2 (-520)))) (-2982 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1118)) (-4 *4 (-346 *3)) (-4 *5 (-346 *3)) (-5 *2 (-520)))) (-1409 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1118)) (-4 *4 (-346 *3)) (-4 *5 (-346 *3)) (-5 *2 (-706)))) (-1420 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1118)) (-4 *4 (-346 *3)) (-4 *5 (-346 *3)) (-5 *2 (-706)))) (-2543 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-520)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-346 *2)) (-4 *5 (-346 *2)) (-4 *2 (-1118)))) (-3623 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-520)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-346 *2)) (-4 *5 (-346 *2)) (-4 *2 (-1118)))) (-2543 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-520)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1118)) (-4 *4 (-346 *2)) (-4 *5 (-346 *2)))) (-2120 (*1 *2 *1 *3) (-12 (-5 *3 (-520)) (-4 *1 (-55 *4 *2 *5)) (-4 *4 (-1118)) (-4 *5 (-346 *4)) (-4 *2 (-346 *4)))) (-2460 (*1 *2 *1 *3) (-12 (-5 *3 (-520)) (-4 *1 (-55 *4 *5 *2)) (-4 *4 (-1118)) (-4 *5 (-346 *4)) (-4 *2 (-346 *4)))) (-3828 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1118)) (-4 *4 (-346 *3)) (-4 *5 (-346 *3)) (-5 *2 (-586 *3)))) (-2377 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-520)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1118)) (-4 *4 (-346 *2)) (-4 *5 (-346 *2)))) (-3846 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-520)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1118)) (-4 *4 (-346 *2)) (-4 *5 (-346 *2)))) (-2145 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-520)) (-4 *1 (-55 *4 *3 *5)) (-4 *4 (-1118)) (-4 *3 (-346 *4)) (-4 *5 (-346 *4)))) (-3834 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-520)) (-4 *1 (-55 *4 *5 *3)) (-4 *4 (-1118)) (-4 *5 (-346 *4)) (-4 *3 (-346 *4)))) (-3830 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1118)) (-4 *4 (-346 *3)) (-4 *5 (-346 *3)))) (-1389 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1118)) (-4 *4 (-346 *3)) (-4 *5 (-346 *3)))) (-1389 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1118)) (-4 *4 (-346 *3)) (-4 *5 (-346 *3)))))
-(-13 (-459 |t#1|) (-10 -8 (-6 -4230) (-6 -4229) (-15 -1810 ($ (-706) (-706) |t#1|)) (-15 -2936 ($ $ |t#1|)) (-15 -2289 ((-520) $)) (-15 -1888 ((-520) $)) (-15 -1867 ((-520) $)) (-15 -2982 ((-520) $)) (-15 -1409 ((-706) $)) (-15 -1420 ((-706) $)) (-15 -2543 (|t#1| $ (-520) (-520))) (-15 -3623 (|t#1| $ (-520) (-520))) (-15 -2543 (|t#1| $ (-520) (-520) |t#1|)) (-15 -2120 (|t#2| $ (-520))) (-15 -2460 (|t#3| $ (-520))) (-15 -3828 ((-586 |t#1|) $)) (-15 -2377 (|t#1| $ (-520) (-520) |t#1|)) (-15 -3846 (|t#1| $ (-520) (-520) |t#1|)) (-15 -2145 ($ $ (-520) |t#2|)) (-15 -3834 ($ $ (-520) |t#3|)) (-15 -1389 ($ (-1 |t#1| |t#1|) $)) (-15 -3830 ($ (-1 |t#1| |t#1|) $)) (-15 -1389 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -1389 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|))))
-(((-33) . T) ((-97) |has| |#1| (-1012)) ((-560 (-791)) -3700 (|has| |#1| (-1012)) (|has| |#1| (-560 (-791)))) ((-283 |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))) ((-459 |#1|) . T) ((-481 |#1| |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))) ((-1012) |has| |#1| (-1012)) ((-1118) . T))
-((-1404 (((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|) 16)) (-3856 ((|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|) 18)) (-1389 (((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)) 13)))
-(((-56 |#1| |#2|) (-10 -7 (-15 -1404 ((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -3856 (|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -1389 ((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)))) (-1118) (-1118)) (T -56))
-((-1389 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-57 *5)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-5 *2 (-57 *6)) (-5 *1 (-56 *5 *6)))) (-3856 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-57 *5)) (-4 *5 (-1118)) (-4 *2 (-1118)) (-5 *1 (-56 *5 *2)))) (-1404 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-57 *6)) (-4 *6 (-1118)) (-4 *5 (-1118)) (-5 *2 (-57 *5)) (-5 *1 (-56 *6 *5)))))
-(-10 -7 (-15 -1404 ((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -3856 (|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -1389 ((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|))))
-((-1414 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-1476 (((-1169) $ (-520) (-520)) NIL (|has| $ (-6 -4230)))) (-4029 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-783)))) (-3587 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4230))) (($ $) NIL (-12 (|has| $ (-6 -4230)) (|has| |#1| (-783))))) (-3210 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-783)))) (-2063 (((-108) $ (-706)) NIL)) (-2377 ((|#1| $ (-520) |#1|) 11 (|has| $ (-6 -4230))) ((|#1| $ (-1131 (-520)) |#1|) NIL (|has| $ (-6 -4230)))) (-1627 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-3961 (($) NIL T CONST)) (-2447 (($ $) NIL (|has| $ (-6 -4230)))) (-1861 (($ $) NIL)) (-2331 (($ $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-1421 (($ |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-3856 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4229))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4229)))) (-3846 ((|#1| $ (-520) |#1|) NIL (|has| $ (-6 -4230)))) (-3623 ((|#1| $ (-520)) NIL)) (-3232 (((-520) (-1 (-108) |#1|) $) NIL) (((-520) |#1| $) NIL (|has| |#1| (-1012))) (((-520) |#1| $ (-520)) NIL (|has| |#1| (-1012)))) (-3828 (((-586 |#1|) $) NIL (|has| $ (-6 -4229)))) (-2341 (($ (-586 |#1|)) 13) (($ (-706) |#1|) 14)) (-1810 (($ (-706) |#1|) 9)) (-3027 (((-108) $ (-706)) NIL)) (-2567 (((-520) $) NIL (|has| (-520) (-783)))) (-2809 (($ $ $) NIL (|has| |#1| (-783)))) (-1819 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-783)))) (-3702 (((-586 |#1|) $) NIL (|has| $ (-6 -4229)))) (-2422 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-1752 (((-520) $) NIL (|has| (-520) (-783)))) (-2446 (($ $ $) NIL (|has| |#1| (-783)))) (-3830 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1390 (((-108) $ (-706)) NIL)) (-1239 (((-1066) $) NIL (|has| |#1| (-1012)))) (-1659 (($ |#1| $ (-520)) NIL) (($ $ $ (-520)) NIL)) (-3622 (((-586 (-520)) $) NIL)) (-2603 (((-108) (-520) $) NIL)) (-4142 (((-1030) $) NIL (|has| |#1| (-1012)))) (-2293 ((|#1| $) NIL (|has| (-520) (-783)))) (-2985 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-2936 (($ $ |#1|) NIL (|has| $ (-6 -4230)))) (-4155 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 |#1|))) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-268 |#1|)) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-586 |#1|) (-586 |#1|)) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))) (-2533 (((-108) $ $) NIL)) (-2094 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-1523 (((-586 |#1|) $) NIL)) (-4018 (((-108) $) NIL)) (-2238 (($) 7)) (-2543 ((|#1| $ (-520) |#1|) NIL) ((|#1| $ (-520)) NIL) (($ $ (-1131 (-520))) NIL)) (-3690 (($ $ (-520)) NIL) (($ $ (-1131 (-520))) NIL)) (-4159 (((-706) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229))) (((-706) |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-1913 (($ $ $ (-520)) NIL (|has| $ (-6 -4230)))) (-2403 (($ $) NIL)) (-1429 (((-496) $) NIL (|has| |#1| (-561 (-496))))) (-2200 (($ (-586 |#1|)) NIL)) (-4156 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-586 $)) NIL)) (-2188 (((-791) $) NIL (|has| |#1| (-560 (-791))))) (-1662 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-1573 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1557 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1530 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-1565 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1548 (((-108) $ $) NIL (|has| |#1| (-783)))) (-3474 (((-706) $) NIL (|has| $ (-6 -4229)))))
-(((-57 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -2341 ($ (-586 |#1|))) (-15 -2341 ($ (-706) |#1|)))) (-1118)) (T -57))
-((-2341 (*1 *1 *2) (-12 (-5 *2 (-586 *3)) (-4 *3 (-1118)) (-5 *1 (-57 *3)))) (-2341 (*1 *1 *2 *3) (-12 (-5 *2 (-706)) (-5 *1 (-57 *3)) (-4 *3 (-1118)))))
-(-13 (-19 |#1|) (-10 -8 (-15 -2341 ($ (-586 |#1|))) (-15 -2341 ($ (-706) |#1|))))
-((-1414 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-2063 (((-108) $ (-706)) NIL)) (-2377 ((|#1| $ (-520) (-520) |#1|) NIL)) (-2145 (($ $ (-520) (-57 |#1|)) NIL)) (-3834 (($ $ (-520) (-57 |#1|)) NIL)) (-3961 (($) NIL T CONST)) (-2120 (((-57 |#1|) $ (-520)) NIL)) (-3846 ((|#1| $ (-520) (-520) |#1|) NIL)) (-3623 ((|#1| $ (-520) (-520)) NIL)) (-3828 (((-586 |#1|) $) NIL)) (-1409 (((-706) $) NIL)) (-1810 (($ (-706) (-706) |#1|) NIL)) (-1420 (((-706) $) NIL)) (-3027 (((-108) $ (-706)) NIL)) (-2289 (((-520) $) NIL)) (-1867 (((-520) $) NIL)) (-3702 (((-586 |#1|) $) NIL (|has| $ (-6 -4229)))) (-2422 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-1888 (((-520) $) NIL)) (-2982 (((-520) $) NIL)) (-3830 (($ (-1 |#1| |#1|) $) NIL)) (-1389 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1390 (((-108) $ (-706)) NIL)) (-1239 (((-1066) $) NIL (|has| |#1| (-1012)))) (-4142 (((-1030) $) NIL (|has| |#1| (-1012)))) (-2936 (($ $ |#1|) NIL)) (-4155 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 |#1|))) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-268 |#1|)) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-586 |#1|) (-586 |#1|)) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))) (-2533 (((-108) $ $) NIL)) (-4018 (((-108) $) NIL)) (-2238 (($) NIL)) (-2543 ((|#1| $ (-520) (-520)) NIL) ((|#1| $ (-520) (-520) |#1|) NIL)) (-4159 (((-706) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229))) (((-706) |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-2403 (($ $) NIL)) (-2460 (((-57 |#1|) $ (-520)) NIL)) (-2188 (((-791) $) NIL (|has| |#1| (-560 (-791))))) (-1662 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-1530 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-3474 (((-706) $) NIL (|has| $ (-6 -4229)))))
-(((-58 |#1|) (-13 (-55 |#1| (-57 |#1|) (-57 |#1|)) (-10 -7 (-6 -4230))) (-1118)) (T -58))
-NIL
-(-13 (-55 |#1| (-57 |#1|) (-57 |#1|)) (-10 -7 (-6 -4230)))
-((-1296 (((-3 $ "failed") (-1164 (-289 (-352)))) 69) (((-3 $ "failed") (-1164 (-289 (-520)))) 58) (((-3 $ "failed") (-1164 (-880 (-352)))) 91) (((-3 $ "failed") (-1164 (-880 (-520)))) 80) (((-3 $ "failed") (-1164 (-380 (-880 (-352))))) 47) (((-3 $ "failed") (-1164 (-380 (-880 (-520))))) 36)) (-1482 (($ (-1164 (-289 (-352)))) 65) (($ (-1164 (-289 (-520)))) 54) (($ (-1164 (-880 (-352)))) 87) (($ (-1164 (-880 (-520)))) 76) (($ (-1164 (-380 (-880 (-352))))) 43) (($ (-1164 (-380 (-880 (-520))))) 29)) (-2008 (((-1169) $) 118)) (-2188 (((-791) $) 111) (($ (-586 (-303))) 100) (($ (-303)) 94) (($ (-2 (|:| |localSymbols| (-1087)) (|:| -2031 (-586 (-303))))) 97) (($ (-1164 (-312 (-2200 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2200) (-635)))) 28)))
-(((-59 |#1|) (-13 (-413) (-10 -8 (-15 -2188 ($ (-1164 (-312 (-2200 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2200) (-635))))))) (-1083)) (T -59))
-((-2188 (*1 *1 *2) (-12 (-5 *2 (-1164 (-312 (-2200 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2200) (-635)))) (-5 *1 (-59 *3)) (-14 *3 (-1083)))))
-(-13 (-413) (-10 -8 (-15 -2188 ($ (-1164 (-312 (-2200 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2200) (-635)))))))
-((-2008 (((-1169) $) 48) (((-1169)) 49)) (-2188 (((-791) $) 45)))
-(((-60 |#1|) (-13 (-368) (-10 -7 (-15 -2008 ((-1169))))) (-1083)) (T -60))
-((-2008 (*1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-60 *3)) (-14 *3 (-1083)))))
-(-13 (-368) (-10 -7 (-15 -2008 ((-1169)))))
-((-1296 (((-3 $ "failed") (-1164 (-289 (-352)))) 142) (((-3 $ "failed") (-1164 (-289 (-520)))) 132) (((-3 $ "failed") (-1164 (-880 (-352)))) 163) (((-3 $ "failed") (-1164 (-880 (-520)))) 152) (((-3 $ "failed") (-1164 (-380 (-880 (-352))))) 121) (((-3 $ "failed") (-1164 (-380 (-880 (-520))))) 110)) (-1482 (($ (-1164 (-289 (-352)))) 138) (($ (-1164 (-289 (-520)))) 128) (($ (-1164 (-880 (-352)))) 159) (($ (-1164 (-880 (-520)))) 148) (($ (-1164 (-380 (-880 (-352))))) 117) (($ (-1164 (-380 (-880 (-520))))) 103)) (-2008 (((-1169) $) 96)) (-2188 (((-791) $) 90) (($ (-586 (-303))) 28) (($ (-303)) 34) (($ (-2 (|:| |localSymbols| (-1087)) (|:| -2031 (-586 (-303))))) 31) (($ (-1164 (-312 (-2200) (-2200 (QUOTE XC)) (-635)))) 88)))
-(((-61 |#1|) (-13 (-413) (-10 -8 (-15 -2188 ($ (-1164 (-312 (-2200) (-2200 (QUOTE XC)) (-635))))))) (-1083)) (T -61))
-((-2188 (*1 *1 *2) (-12 (-5 *2 (-1164 (-312 (-2200) (-2200 (QUOTE XC)) (-635)))) (-5 *1 (-61 *3)) (-14 *3 (-1083)))))
-(-13 (-413) (-10 -8 (-15 -2188 ($ (-1164 (-312 (-2200) (-2200 (QUOTE XC)) (-635)))))))
-((-1296 (((-3 $ "failed") (-289 (-352))) 36) (((-3 $ "failed") (-289 (-520))) 41) (((-3 $ "failed") (-880 (-352))) 46) (((-3 $ "failed") (-880 (-520))) 51) (((-3 $ "failed") (-380 (-880 (-352)))) 31) (((-3 $ "failed") (-380 (-880 (-520)))) 26)) (-1482 (($ (-289 (-352))) 34) (($ (-289 (-520))) 39) (($ (-880 (-352))) 44) (($ (-880 (-520))) 49) (($ (-380 (-880 (-352)))) 29) (($ (-380 (-880 (-520)))) 23)) (-2008 (((-1169) $) 73)) (-2188 (((-791) $) 66) (($ (-586 (-303))) 57) (($ (-303)) 63) (($ (-2 (|:| |localSymbols| (-1087)) (|:| -2031 (-586 (-303))))) 60) (($ (-312 (-2200 (QUOTE X)) (-2200) (-635))) 22)))
-(((-62 |#1|) (-13 (-369) (-10 -8 (-15 -2188 ($ (-312 (-2200 (QUOTE X)) (-2200) (-635)))))) (-1083)) (T -62))
-((-2188 (*1 *1 *2) (-12 (-5 *2 (-312 (-2200 (QUOTE X)) (-2200) (-635))) (-5 *1 (-62 *3)) (-14 *3 (-1083)))))
-(-13 (-369) (-10 -8 (-15 -2188 ($ (-312 (-2200 (QUOTE X)) (-2200) (-635))))))
-((-1296 (((-3 $ "failed") (-626 (-289 (-352)))) 100) (((-3 $ "failed") (-626 (-289 (-520)))) 89) (((-3 $ "failed") (-626 (-880 (-352)))) 122) (((-3 $ "failed") (-626 (-880 (-520)))) 111) (((-3 $ "failed") (-626 (-380 (-880 (-352))))) 78) (((-3 $ "failed") (-626 (-380 (-880 (-520))))) 67)) (-1482 (($ (-626 (-289 (-352)))) 96) (($ (-626 (-289 (-520)))) 85) (($ (-626 (-880 (-352)))) 118) (($ (-626 (-880 (-520)))) 107) (($ (-626 (-380 (-880 (-352))))) 74) (($ (-626 (-380 (-880 (-520))))) 60)) (-2008 (((-1169) $) 130)) (-2188 (((-791) $) 124) (($ (-586 (-303))) 27) (($ (-303)) 33) (($ (-2 (|:| |localSymbols| (-1087)) (|:| -2031 (-586 (-303))))) 30) (($ (-626 (-312 (-2200) (-2200 (QUOTE X) (QUOTE HESS)) (-635)))) 53)))
-(((-63 |#1|) (-13 (-357) (-10 -8 (-15 -2188 ($ (-626 (-312 (-2200) (-2200 (QUOTE X) (QUOTE HESS)) (-635))))))) (-1083)) (T -63))
-((-2188 (*1 *1 *2) (-12 (-5 *2 (-626 (-312 (-2200) (-2200 (QUOTE X) (QUOTE HESS)) (-635)))) (-5 *1 (-63 *3)) (-14 *3 (-1083)))))
-(-13 (-357) (-10 -8 (-15 -2188 ($ (-626 (-312 (-2200) (-2200 (QUOTE X) (QUOTE HESS)) (-635)))))))
-((-1296 (((-3 $ "failed") (-289 (-352))) 54) (((-3 $ "failed") (-289 (-520))) 59) (((-3 $ "failed") (-880 (-352))) 64) (((-3 $ "failed") (-880 (-520))) 69) (((-3 $ "failed") (-380 (-880 (-352)))) 49) (((-3 $ "failed") (-380 (-880 (-520)))) 44)) (-1482 (($ (-289 (-352))) 52) (($ (-289 (-520))) 57) (($ (-880 (-352))) 62) (($ (-880 (-520))) 67) (($ (-380 (-880 (-352)))) 47) (($ (-380 (-880 (-520)))) 41)) (-2008 (((-1169) $) 78)) (-2188 (((-791) $) 72) (($ (-586 (-303))) 27) (($ (-303)) 33) (($ (-2 (|:| |localSymbols| (-1087)) (|:| -2031 (-586 (-303))))) 30) (($ (-312 (-2200) (-2200 (QUOTE XC)) (-635))) 38)))
-(((-64 |#1|) (-13 (-369) (-10 -8 (-15 -2188 ($ (-312 (-2200) (-2200 (QUOTE XC)) (-635)))))) (-1083)) (T -64))
-((-2188 (*1 *1 *2) (-12 (-5 *2 (-312 (-2200) (-2200 (QUOTE XC)) (-635))) (-5 *1 (-64 *3)) (-14 *3 (-1083)))))
-(-13 (-369) (-10 -8 (-15 -2188 ($ (-312 (-2200) (-2200 (QUOTE XC)) (-635))))))
-((-2008 (((-1169) $) 63)) (-2188 (((-791) $) 57) (($ (-626 (-635))) 49) (($ (-586 (-303))) 48) (($ (-303)) 55) (($ (-2 (|:| |localSymbols| (-1087)) (|:| -2031 (-586 (-303))))) 53)))
-(((-65 |#1|) (-356) (-1083)) (T -65))
-NIL
-(-356)
-((-2008 (((-1169) $) 64)) (-2188 (((-791) $) 58) (($ (-626 (-635))) 50) (($ (-586 (-303))) 49) (($ (-303)) 52) (($ (-2 (|:| |localSymbols| (-1087)) (|:| -2031 (-586 (-303))))) 55)))
-(((-66 |#1|) (-356) (-1083)) (T -66))
-NIL
-(-356)
-((-2008 (((-1169) $) NIL) (((-1169)) 32)) (-2188 (((-791) $) NIL)))
-(((-67 |#1|) (-13 (-368) (-10 -7 (-15 -2008 ((-1169))))) (-1083)) (T -67))
-((-2008 (*1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-67 *3)) (-14 *3 (-1083)))))
-(-13 (-368) (-10 -7 (-15 -2008 ((-1169)))))
-((-2008 (((-1169) $) 68)) (-2188 (((-791) $) 62) (($ (-626 (-635))) 53) (($ (-586 (-303))) 56) (($ (-303)) 59) (($ (-2 (|:| |localSymbols| (-1087)) (|:| -2031 (-586 (-303))))) 52)))
-(((-68 |#1|) (-356) (-1083)) (T -68))
-NIL
-(-356)
-((-1296 (((-3 $ "failed") (-1164 (-289 (-352)))) 98) (((-3 $ "failed") (-1164 (-289 (-520)))) 87) (((-3 $ "failed") (-1164 (-880 (-352)))) 119) (((-3 $ "failed") (-1164 (-880 (-520)))) 108) (((-3 $ "failed") (-1164 (-380 (-880 (-352))))) 76) (((-3 $ "failed") (-1164 (-380 (-880 (-520))))) 65)) (-1482 (($ (-1164 (-289 (-352)))) 94) (($ (-1164 (-289 (-520)))) 83) (($ (-1164 (-880 (-352)))) 115) (($ (-1164 (-880 (-520)))) 104) (($ (-1164 (-380 (-880 (-352))))) 72) (($ (-1164 (-380 (-880 (-520))))) 58)) (-2008 (((-1169) $) 133)) (-2188 (((-791) $) 127) (($ (-586 (-303))) 122) (($ (-303)) 125) (($ (-2 (|:| |localSymbols| (-1087)) (|:| -2031 (-586 (-303))))) 50) (($ (-1164 (-312 (-2200 (QUOTE X)) (-2200 (QUOTE -1350)) (-635)))) 51)))
-(((-69 |#1|) (-13 (-413) (-10 -8 (-15 -2188 ($ (-1164 (-312 (-2200 (QUOTE X)) (-2200 (QUOTE -1350)) (-635))))))) (-1083)) (T -69))
-((-2188 (*1 *1 *2) (-12 (-5 *2 (-1164 (-312 (-2200 (QUOTE X)) (-2200 (QUOTE -1350)) (-635)))) (-5 *1 (-69 *3)) (-14 *3 (-1083)))))
-(-13 (-413) (-10 -8 (-15 -2188 ($ (-1164 (-312 (-2200 (QUOTE X)) (-2200 (QUOTE -1350)) (-635)))))))
-((-2008 (((-1169) $) 32) (((-1169)) 31)) (-2188 (((-791) $) 35)))
-(((-70 |#1|) (-13 (-368) (-10 -7 (-15 -2008 ((-1169))))) (-1083)) (T -70))
-((-2008 (*1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-70 *3)) (-14 *3 (-1083)))))
-(-13 (-368) (-10 -7 (-15 -2008 ((-1169)))))
-((-2008 (((-1169) $) 62)) (-2188 (((-791) $) 56) (($ (-626 (-635))) 47) (($ (-586 (-303))) 50) (($ (-303)) 53) (($ (-2 (|:| |localSymbols| (-1087)) (|:| -2031 (-586 (-303))))) 46)))
-(((-71 |#1|) (-356) (-1083)) (T -71))
-NIL
-(-356)
-((-1296 (((-3 $ "failed") (-1164 (-289 (-352)))) 119) (((-3 $ "failed") (-1164 (-289 (-520)))) 108) (((-3 $ "failed") (-1164 (-880 (-352)))) 141) (((-3 $ "failed") (-1164 (-880 (-520)))) 130) (((-3 $ "failed") (-1164 (-380 (-880 (-352))))) 98) (((-3 $ "failed") (-1164 (-380 (-880 (-520))))) 87)) (-1482 (($ (-1164 (-289 (-352)))) 115) (($ (-1164 (-289 (-520)))) 104) (($ (-1164 (-880 (-352)))) 137) (($ (-1164 (-880 (-520)))) 126) (($ (-1164 (-380 (-880 (-352))))) 94) (($ (-1164 (-380 (-880 (-520))))) 80)) (-2008 (((-1169) $) 73)) (-2188 (((-791) $) 27) (($ (-586 (-303))) 63) (($ (-303)) 59) (($ (-2 (|:| |localSymbols| (-1087)) (|:| -2031 (-586 (-303))))) 66) (($ (-1164 (-312 (-2200) (-2200 (QUOTE X)) (-635)))) 60)))
-(((-72 |#1|) (-13 (-413) (-10 -8 (-15 -2188 ($ (-1164 (-312 (-2200) (-2200 (QUOTE X)) (-635))))))) (-1083)) (T -72))
-((-2188 (*1 *1 *2) (-12 (-5 *2 (-1164 (-312 (-2200) (-2200 (QUOTE X)) (-635)))) (-5 *1 (-72 *3)) (-14 *3 (-1083)))))
-(-13 (-413) (-10 -8 (-15 -2188 ($ (-1164 (-312 (-2200) (-2200 (QUOTE X)) (-635)))))))
-((-1296 (((-3 $ "failed") (-1164 (-289 (-352)))) 125) (((-3 $ "failed") (-1164 (-289 (-520)))) 114) (((-3 $ "failed") (-1164 (-880 (-352)))) 147) (((-3 $ "failed") (-1164 (-880 (-520)))) 136) (((-3 $ "failed") (-1164 (-380 (-880 (-352))))) 103) (((-3 $ "failed") (-1164 (-380 (-880 (-520))))) 92)) (-1482 (($ (-1164 (-289 (-352)))) 121) (($ (-1164 (-289 (-520)))) 110) (($ (-1164 (-880 (-352)))) 143) (($ (-1164 (-880 (-520)))) 132) (($ (-1164 (-380 (-880 (-352))))) 99) (($ (-1164 (-380 (-880 (-520))))) 85)) (-2008 (((-1169) $) 78)) (-2188 (((-791) $) 70) (($ (-586 (-303))) NIL) (($ (-303)) NIL) (($ (-2 (|:| |localSymbols| (-1087)) (|:| -2031 (-586 (-303))))) NIL) (($ (-1164 (-312 (-2200 (QUOTE X) (QUOTE EPS)) (-2200 (QUOTE -1350)) (-635)))) 65)))
-(((-73 |#1| |#2| |#3|) (-13 (-413) (-10 -8 (-15 -2188 ($ (-1164 (-312 (-2200 (QUOTE X) (QUOTE EPS)) (-2200 (QUOTE -1350)) (-635))))))) (-1083) (-1083) (-1083)) (T -73))
-((-2188 (*1 *1 *2) (-12 (-5 *2 (-1164 (-312 (-2200 (QUOTE X) (QUOTE EPS)) (-2200 (QUOTE -1350)) (-635)))) (-5 *1 (-73 *3 *4 *5)) (-14 *3 (-1083)) (-14 *4 (-1083)) (-14 *5 (-1083)))))
-(-13 (-413) (-10 -8 (-15 -2188 ($ (-1164 (-312 (-2200 (QUOTE X) (QUOTE EPS)) (-2200 (QUOTE -1350)) (-635)))))))
-((-1296 (((-3 $ "failed") (-1164 (-289 (-352)))) 129) (((-3 $ "failed") (-1164 (-289 (-520)))) 118) (((-3 $ "failed") (-1164 (-880 (-352)))) 151) (((-3 $ "failed") (-1164 (-880 (-520)))) 140) (((-3 $ "failed") (-1164 (-380 (-880 (-352))))) 107) (((-3 $ "failed") (-1164 (-380 (-880 (-520))))) 96)) (-1482 (($ (-1164 (-289 (-352)))) 125) (($ (-1164 (-289 (-520)))) 114) (($ (-1164 (-880 (-352)))) 147) (($ (-1164 (-880 (-520)))) 136) (($ (-1164 (-380 (-880 (-352))))) 103) (($ (-1164 (-380 (-880 (-520))))) 89)) (-2008 (((-1169) $) 82)) (-2188 (((-791) $) 74) (($ (-586 (-303))) NIL) (($ (-303)) NIL) (($ (-2 (|:| |localSymbols| (-1087)) (|:| -2031 (-586 (-303))))) NIL) (($ (-1164 (-312 (-2200 (QUOTE EPS)) (-2200 (QUOTE YA) (QUOTE YB)) (-635)))) 69)))
-(((-74 |#1| |#2| |#3|) (-13 (-413) (-10 -8 (-15 -2188 ($ (-1164 (-312 (-2200 (QUOTE EPS)) (-2200 (QUOTE YA) (QUOTE YB)) (-635))))))) (-1083) (-1083) (-1083)) (T -74))
-((-2188 (*1 *1 *2) (-12 (-5 *2 (-1164 (-312 (-2200 (QUOTE EPS)) (-2200 (QUOTE YA) (QUOTE YB)) (-635)))) (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1083)) (-14 *4 (-1083)) (-14 *5 (-1083)))))
-(-13 (-413) (-10 -8 (-15 -2188 ($ (-1164 (-312 (-2200 (QUOTE EPS)) (-2200 (QUOTE YA) (QUOTE YB)) (-635)))))))
-((-1296 (((-3 $ "failed") (-289 (-352))) 77) (((-3 $ "failed") (-289 (-520))) 82) (((-3 $ "failed") (-880 (-352))) 87) (((-3 $ "failed") (-880 (-520))) 92) (((-3 $ "failed") (-380 (-880 (-352)))) 72) (((-3 $ "failed") (-380 (-880 (-520)))) 67)) (-1482 (($ (-289 (-352))) 75) (($ (-289 (-520))) 80) (($ (-880 (-352))) 85) (($ (-880 (-520))) 90) (($ (-380 (-880 (-352)))) 70) (($ (-380 (-880 (-520)))) 64)) (-2008 (((-1169) $) 61)) (-2188 (((-791) $) 49) (($ (-586 (-303))) 45) (($ (-303)) 55) (($ (-2 (|:| |localSymbols| (-1087)) (|:| -2031 (-586 (-303))))) 53) (($ (-312 (-2200) (-2200 (QUOTE X)) (-635))) 46)))
-(((-75 |#1|) (-13 (-369) (-10 -8 (-15 -2188 ($ (-312 (-2200) (-2200 (QUOTE X)) (-635)))))) (-1083)) (T -75))
-((-2188 (*1 *1 *2) (-12 (-5 *2 (-312 (-2200) (-2200 (QUOTE X)) (-635))) (-5 *1 (-75 *3)) (-14 *3 (-1083)))))
-(-13 (-369) (-10 -8 (-15 -2188 ($ (-312 (-2200) (-2200 (QUOTE X)) (-635))))))
-((-1296 (((-3 $ "failed") (-289 (-352))) 41) (((-3 $ "failed") (-289 (-520))) 46) (((-3 $ "failed") (-880 (-352))) 51) (((-3 $ "failed") (-880 (-520))) 56) (((-3 $ "failed") (-380 (-880 (-352)))) 36) (((-3 $ "failed") (-380 (-880 (-520)))) 31)) (-1482 (($ (-289 (-352))) 39) (($ (-289 (-520))) 44) (($ (-880 (-352))) 49) (($ (-880 (-520))) 54) (($ (-380 (-880 (-352)))) 34) (($ (-380 (-880 (-520)))) 28)) (-2008 (((-1169) $) 77)) (-2188 (((-791) $) 71) (($ (-586 (-303))) 62) (($ (-303)) 68) (($ (-2 (|:| |localSymbols| (-1087)) (|:| -2031 (-586 (-303))))) 65) (($ (-312 (-2200) (-2200 (QUOTE X)) (-635))) 27)))
-(((-76 |#1|) (-13 (-369) (-10 -8 (-15 -2188 ($ (-312 (-2200) (-2200 (QUOTE X)) (-635)))))) (-1083)) (T -76))
-((-2188 (*1 *1 *2) (-12 (-5 *2 (-312 (-2200) (-2200 (QUOTE X)) (-635))) (-5 *1 (-76 *3)) (-14 *3 (-1083)))))
-(-13 (-369) (-10 -8 (-15 -2188 ($ (-312 (-2200) (-2200 (QUOTE X)) (-635))))))
-((-1296 (((-3 $ "failed") (-1164 (-289 (-352)))) 84) (((-3 $ "failed") (-1164 (-289 (-520)))) 73) (((-3 $ "failed") (-1164 (-880 (-352)))) 106) (((-3 $ "failed") (-1164 (-880 (-520)))) 95) (((-3 $ "failed") (-1164 (-380 (-880 (-352))))) 62) (((-3 $ "failed") (-1164 (-380 (-880 (-520))))) 51)) (-1482 (($ (-1164 (-289 (-352)))) 80) (($ (-1164 (-289 (-520)))) 69) (($ (-1164 (-880 (-352)))) 102) (($ (-1164 (-880 (-520)))) 91) (($ (-1164 (-380 (-880 (-352))))) 58) (($ (-1164 (-380 (-880 (-520))))) 44)) (-2008 (((-1169) $) 122)) (-2188 (((-791) $) 116) (($ (-586 (-303))) 109) (($ (-303)) 36) (($ (-2 (|:| |localSymbols| (-1087)) (|:| -2031 (-586 (-303))))) 112) (($ (-1164 (-312 (-2200) (-2200 (QUOTE XC)) (-635)))) 37)))
-(((-77 |#1|) (-13 (-413) (-10 -8 (-15 -2188 ($ (-1164 (-312 (-2200) (-2200 (QUOTE XC)) (-635))))))) (-1083)) (T -77))
-((-2188 (*1 *1 *2) (-12 (-5 *2 (-1164 (-312 (-2200) (-2200 (QUOTE XC)) (-635)))) (-5 *1 (-77 *3)) (-14 *3 (-1083)))))
-(-13 (-413) (-10 -8 (-15 -2188 ($ (-1164 (-312 (-2200) (-2200 (QUOTE XC)) (-635)))))))
-((-1296 (((-3 $ "failed") (-1164 (-289 (-352)))) 137) (((-3 $ "failed") (-1164 (-289 (-520)))) 126) (((-3 $ "failed") (-1164 (-880 (-352)))) 158) (((-3 $ "failed") (-1164 (-880 (-520)))) 147) (((-3 $ "failed") (-1164 (-380 (-880 (-352))))) 116) (((-3 $ "failed") (-1164 (-380 (-880 (-520))))) 105)) (-1482 (($ (-1164 (-289 (-352)))) 133) (($ (-1164 (-289 (-520)))) 122) (($ (-1164 (-880 (-352)))) 154) (($ (-1164 (-880 (-520)))) 143) (($ (-1164 (-380 (-880 (-352))))) 112) (($ (-1164 (-380 (-880 (-520))))) 98)) (-2008 (((-1169) $) 91)) (-2188 (((-791) $) 85) (($ (-586 (-303))) 76) (($ (-303)) 83) (($ (-2 (|:| |localSymbols| (-1087)) (|:| -2031 (-586 (-303))))) 81) (($ (-1164 (-312 (-2200) (-2200 (QUOTE X)) (-635)))) 77)))
-(((-78 |#1|) (-13 (-413) (-10 -8 (-15 -2188 ($ (-1164 (-312 (-2200) (-2200 (QUOTE X)) (-635))))))) (-1083)) (T -78))
-((-2188 (*1 *1 *2) (-12 (-5 *2 (-1164 (-312 (-2200) (-2200 (QUOTE X)) (-635)))) (-5 *1 (-78 *3)) (-14 *3 (-1083)))))
-(-13 (-413) (-10 -8 (-15 -2188 ($ (-1164 (-312 (-2200) (-2200 (QUOTE X)) (-635)))))))
-((-1296 (((-3 $ "failed") (-1164 (-289 (-352)))) 73) (((-3 $ "failed") (-1164 (-289 (-520)))) 62) (((-3 $ "failed") (-1164 (-880 (-352)))) 95) (((-3 $ "failed") (-1164 (-880 (-520)))) 84) (((-3 $ "failed") (-1164 (-380 (-880 (-352))))) 51) (((-3 $ "failed") (-1164 (-380 (-880 (-520))))) 40)) (-1482 (($ (-1164 (-289 (-352)))) 69) (($ (-1164 (-289 (-520)))) 58) (($ (-1164 (-880 (-352)))) 91) (($ (-1164 (-880 (-520)))) 80) (($ (-1164 (-380 (-880 (-352))))) 47) (($ (-1164 (-380 (-880 (-520))))) 33)) (-2008 (((-1169) $) 121)) (-2188 (((-791) $) 115) (($ (-586 (-303))) 106) (($ (-303)) 112) (($ (-2 (|:| |localSymbols| (-1087)) (|:| -2031 (-586 (-303))))) 110) (($ (-1164 (-312 (-2200) (-2200 (QUOTE X)) (-635)))) 32)))
-(((-79 |#1|) (-13 (-413) (-10 -8 (-15 -2188 ($ (-1164 (-312 (-2200) (-2200 (QUOTE X)) (-635))))))) (-1083)) (T -79))
-((-2188 (*1 *1 *2) (-12 (-5 *2 (-1164 (-312 (-2200) (-2200 (QUOTE X)) (-635)))) (-5 *1 (-79 *3)) (-14 *3 (-1083)))))
-(-13 (-413) (-10 -8 (-15 -2188 ($ (-1164 (-312 (-2200) (-2200 (QUOTE X)) (-635)))))))
-((-1296 (((-3 $ "failed") (-1164 (-289 (-352)))) 90) (((-3 $ "failed") (-1164 (-289 (-520)))) 79) (((-3 $ "failed") (-1164 (-880 (-352)))) 112) (((-3 $ "failed") (-1164 (-880 (-520)))) 101) (((-3 $ "failed") (-1164 (-380 (-880 (-352))))) 68) (((-3 $ "failed") (-1164 (-380 (-880 (-520))))) 57)) (-1482 (($ (-1164 (-289 (-352)))) 86) (($ (-1164 (-289 (-520)))) 75) (($ (-1164 (-880 (-352)))) 108) (($ (-1164 (-880 (-520)))) 97) (($ (-1164 (-380 (-880 (-352))))) 64) (($ (-1164 (-380 (-880 (-520))))) 50)) (-2008 (((-1169) $) 43)) (-2188 (((-791) $) 36) (($ (-586 (-303))) 26) (($ (-303)) 29) (($ (-2 (|:| |localSymbols| (-1087)) (|:| -2031 (-586 (-303))))) 32) (($ (-1164 (-312 (-2200 (QUOTE X) (QUOTE -1350)) (-2200) (-635)))) 27)))
-(((-80 |#1|) (-13 (-413) (-10 -8 (-15 -2188 ($ (-1164 (-312 (-2200 (QUOTE X) (QUOTE -1350)) (-2200) (-635))))))) (-1083)) (T -80))
-((-2188 (*1 *1 *2) (-12 (-5 *2 (-1164 (-312 (-2200 (QUOTE X) (QUOTE -1350)) (-2200) (-635)))) (-5 *1 (-80 *3)) (-14 *3 (-1083)))))
-(-13 (-413) (-10 -8 (-15 -2188 ($ (-1164 (-312 (-2200 (QUOTE X) (QUOTE -1350)) (-2200) (-635)))))))
-((-1296 (((-3 $ "failed") (-626 (-289 (-352)))) 103) (((-3 $ "failed") (-626 (-289 (-520)))) 92) (((-3 $ "failed") (-626 (-880 (-352)))) 125) (((-3 $ "failed") (-626 (-880 (-520)))) 114) (((-3 $ "failed") (-626 (-380 (-880 (-352))))) 82) (((-3 $ "failed") (-626 (-380 (-880 (-520))))) 71)) (-1482 (($ (-626 (-289 (-352)))) 99) (($ (-626 (-289 (-520)))) 88) (($ (-626 (-880 (-352)))) 121) (($ (-626 (-880 (-520)))) 110) (($ (-626 (-380 (-880 (-352))))) 78) (($ (-626 (-380 (-880 (-520))))) 64)) (-2008 (((-1169) $) 57)) (-2188 (((-791) $) 43) (($ (-586 (-303))) 50) (($ (-303)) 39) (($ (-2 (|:| |localSymbols| (-1087)) (|:| -2031 (-586 (-303))))) 47) (($ (-626 (-312 (-2200 (QUOTE X) (QUOTE -1350)) (-2200) (-635)))) 40)))
-(((-81 |#1|) (-13 (-357) (-10 -8 (-15 -2188 ($ (-626 (-312 (-2200 (QUOTE X) (QUOTE -1350)) (-2200) (-635))))))) (-1083)) (T -81))
-((-2188 (*1 *1 *2) (-12 (-5 *2 (-626 (-312 (-2200 (QUOTE X) (QUOTE -1350)) (-2200) (-635)))) (-5 *1 (-81 *3)) (-14 *3 (-1083)))))
-(-13 (-357) (-10 -8 (-15 -2188 ($ (-626 (-312 (-2200 (QUOTE X) (QUOTE -1350)) (-2200) (-635)))))))
-((-1296 (((-3 $ "failed") (-626 (-289 (-352)))) 103) (((-3 $ "failed") (-626 (-289 (-520)))) 92) (((-3 $ "failed") (-626 (-880 (-352)))) 124) (((-3 $ "failed") (-626 (-880 (-520)))) 113) (((-3 $ "failed") (-626 (-380 (-880 (-352))))) 81) (((-3 $ "failed") (-626 (-380 (-880 (-520))))) 70)) (-1482 (($ (-626 (-289 (-352)))) 99) (($ (-626 (-289 (-520)))) 88) (($ (-626 (-880 (-352)))) 120) (($ (-626 (-880 (-520)))) 109) (($ (-626 (-380 (-880 (-352))))) 77) (($ (-626 (-380 (-880 (-520))))) 63)) (-2008 (((-1169) $) 56)) (-2188 (((-791) $) 50) (($ (-586 (-303))) 44) (($ (-303)) 47) (($ (-2 (|:| |localSymbols| (-1087)) (|:| -2031 (-586 (-303))))) 40) (($ (-626 (-312 (-2200 (QUOTE X)) (-2200) (-635)))) 41)))
-(((-82 |#1|) (-13 (-357) (-10 -8 (-15 -2188 ($ (-626 (-312 (-2200 (QUOTE X)) (-2200) (-635))))))) (-1083)) (T -82))
-((-2188 (*1 *1 *2) (-12 (-5 *2 (-626 (-312 (-2200 (QUOTE X)) (-2200) (-635)))) (-5 *1 (-82 *3)) (-14 *3 (-1083)))))
-(-13 (-357) (-10 -8 (-15 -2188 ($ (-626 (-312 (-2200 (QUOTE X)) (-2200) (-635)))))))
-((-1296 (((-3 $ "failed") (-1164 (-289 (-352)))) 99) (((-3 $ "failed") (-1164 (-289 (-520)))) 88) (((-3 $ "failed") (-1164 (-880 (-352)))) 121) (((-3 $ "failed") (-1164 (-880 (-520)))) 110) (((-3 $ "failed") (-1164 (-380 (-880 (-352))))) 77) (((-3 $ "failed") (-1164 (-380 (-880 (-520))))) 66)) (-1482 (($ (-1164 (-289 (-352)))) 95) (($ (-1164 (-289 (-520)))) 84) (($ (-1164 (-880 (-352)))) 117) (($ (-1164 (-880 (-520)))) 106) (($ (-1164 (-380 (-880 (-352))))) 73) (($ (-1164 (-380 (-880 (-520))))) 59)) (-2008 (((-1169) $) 45)) (-2188 (((-791) $) 39) (($ (-586 (-303))) 48) (($ (-303)) 35) (($ (-2 (|:| |localSymbols| (-1087)) (|:| -2031 (-586 (-303))))) 51) (($ (-1164 (-312 (-2200 (QUOTE X)) (-2200) (-635)))) 36)))
-(((-83 |#1|) (-13 (-413) (-10 -8 (-15 -2188 ($ (-1164 (-312 (-2200 (QUOTE X)) (-2200) (-635))))))) (-1083)) (T -83))
-((-2188 (*1 *1 *2) (-12 (-5 *2 (-1164 (-312 (-2200 (QUOTE X)) (-2200) (-635)))) (-5 *1 (-83 *3)) (-14 *3 (-1083)))))
-(-13 (-413) (-10 -8 (-15 -2188 ($ (-1164 (-312 (-2200 (QUOTE X)) (-2200) (-635)))))))
-((-1296 (((-3 $ "failed") (-1164 (-289 (-352)))) 74) (((-3 $ "failed") (-1164 (-289 (-520)))) 63) (((-3 $ "failed") (-1164 (-880 (-352)))) 96) (((-3 $ "failed") (-1164 (-880 (-520)))) 85) (((-3 $ "failed") (-1164 (-380 (-880 (-352))))) 52) (((-3 $ "failed") (-1164 (-380 (-880 (-520))))) 41)) (-1482 (($ (-1164 (-289 (-352)))) 70) (($ (-1164 (-289 (-520)))) 59) (($ (-1164 (-880 (-352)))) 92) (($ (-1164 (-880 (-520)))) 81) (($ (-1164 (-380 (-880 (-352))))) 48) (($ (-1164 (-380 (-880 (-520))))) 34)) (-2008 (((-1169) $) 122)) (-2188 (((-791) $) 116) (($ (-586 (-303))) 107) (($ (-303)) 113) (($ (-2 (|:| |localSymbols| (-1087)) (|:| -2031 (-586 (-303))))) 111) (($ (-1164 (-312 (-2200 (QUOTE X)) (-2200 (QUOTE -1350)) (-635)))) 33)))
-(((-84 |#1|) (-13 (-413) (-10 -8 (-15 -2188 ($ (-1164 (-312 (-2200 (QUOTE X)) (-2200 (QUOTE -1350)) (-635))))))) (-1083)) (T -84))
-((-2188 (*1 *1 *2) (-12 (-5 *2 (-1164 (-312 (-2200 (QUOTE X)) (-2200 (QUOTE -1350)) (-635)))) (-5 *1 (-84 *3)) (-14 *3 (-1083)))))
-(-13 (-413) (-10 -8 (-15 -2188 ($ (-1164 (-312 (-2200 (QUOTE X)) (-2200 (QUOTE -1350)) (-635)))))))
-((-1296 (((-3 $ "failed") (-626 (-289 (-352)))) 105) (((-3 $ "failed") (-626 (-289 (-520)))) 94) (((-3 $ "failed") (-626 (-880 (-352)))) 127) (((-3 $ "failed") (-626 (-880 (-520)))) 116) (((-3 $ "failed") (-626 (-380 (-880 (-352))))) 83) (((-3 $ "failed") (-626 (-380 (-880 (-520))))) 72)) (-1482 (($ (-626 (-289 (-352)))) 101) (($ (-626 (-289 (-520)))) 90) (($ (-626 (-880 (-352)))) 123) (($ (-626 (-880 (-520)))) 112) (($ (-626 (-380 (-880 (-352))))) 79) (($ (-626 (-380 (-880 (-520))))) 65)) (-2008 (((-1169) $) 58)) (-2188 (((-791) $) 52) (($ (-586 (-303))) 42) (($ (-303)) 49) (($ (-2 (|:| |localSymbols| (-1087)) (|:| -2031 (-586 (-303))))) 47) (($ (-626 (-312 (-2200 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2200) (-635)))) 43)))
-(((-85 |#1|) (-13 (-357) (-10 -8 (-15 -2188 ($ (-626 (-312 (-2200 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2200) (-635))))))) (-1083)) (T -85))
-((-2188 (*1 *1 *2) (-12 (-5 *2 (-626 (-312 (-2200 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2200) (-635)))) (-5 *1 (-85 *3)) (-14 *3 (-1083)))))
-(-13 (-357) (-10 -8 (-15 -2188 ($ (-626 (-312 (-2200 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2200) (-635)))))))
-((-2008 (((-1169) $) 44)) (-2188 (((-791) $) 38) (($ (-1164 (-635))) 88) (($ (-586 (-303))) 29) (($ (-303)) 35) (($ (-2 (|:| |localSymbols| (-1087)) (|:| -2031 (-586 (-303))))) 32)))
-(((-86 |#1|) (-412) (-1083)) (T -86))
-NIL
-(-412)
-((-1296 (((-3 $ "failed") (-289 (-352))) 42) (((-3 $ "failed") (-289 (-520))) 47) (((-3 $ "failed") (-880 (-352))) 52) (((-3 $ "failed") (-880 (-520))) 57) (((-3 $ "failed") (-380 (-880 (-352)))) 37) (((-3 $ "failed") (-380 (-880 (-520)))) 32)) (-1482 (($ (-289 (-352))) 40) (($ (-289 (-520))) 45) (($ (-880 (-352))) 50) (($ (-880 (-520))) 55) (($ (-380 (-880 (-352)))) 35) (($ (-380 (-880 (-520)))) 29)) (-2008 (((-1169) $) 88)) (-2188 (((-791) $) 82) (($ (-586 (-303))) 76) (($ (-303)) 79) (($ (-2 (|:| |localSymbols| (-1087)) (|:| -2031 (-586 (-303))))) 73) (($ (-312 (-2200 (QUOTE X)) (-2200 (QUOTE -1350)) (-635))) 28)))
-(((-87 |#1|) (-13 (-369) (-10 -8 (-15 -2188 ($ (-312 (-2200 (QUOTE X)) (-2200 (QUOTE -1350)) (-635)))))) (-1083)) (T -87))
-((-2188 (*1 *1 *2) (-12 (-5 *2 (-312 (-2200 (QUOTE X)) (-2200 (QUOTE -1350)) (-635))) (-5 *1 (-87 *3)) (-14 *3 (-1083)))))
-(-13 (-369) (-10 -8 (-15 -2188 ($ (-312 (-2200 (QUOTE X)) (-2200 (QUOTE -1350)) (-635))))))
-((-3606 (((-1164 (-626 |#1|)) (-626 |#1|)) 55)) (-4057 (((-2 (|:| -3927 (-626 |#1|)) (|:| |vec| (-1164 (-586 (-849))))) |#2| (-849)) 45)) (-1761 (((-2 (|:| |minor| (-586 (-849))) (|:| -3190 |#2|) (|:| |minors| (-586 (-586 (-849)))) (|:| |ops| (-586 |#2|))) |#2| (-849)) 63 (|has| |#1| (-336)))))
-(((-88 |#1| |#2|) (-10 -7 (-15 -4057 ((-2 (|:| -3927 (-626 |#1|)) (|:| |vec| (-1164 (-586 (-849))))) |#2| (-849))) (-15 -3606 ((-1164 (-626 |#1|)) (-626 |#1|))) (IF (|has| |#1| (-336)) (-15 -1761 ((-2 (|:| |minor| (-586 (-849))) (|:| -3190 |#2|) (|:| |minors| (-586 (-586 (-849)))) (|:| |ops| (-586 |#2|))) |#2| (-849))) |%noBranch|)) (-512) (-596 |#1|)) (T -88))
-((-1761 (*1 *2 *3 *4) (-12 (-4 *5 (-336)) (-4 *5 (-512)) (-5 *2 (-2 (|:| |minor| (-586 (-849))) (|:| -3190 *3) (|:| |minors| (-586 (-586 (-849)))) (|:| |ops| (-586 *3)))) (-5 *1 (-88 *5 *3)) (-5 *4 (-849)) (-4 *3 (-596 *5)))) (-3606 (*1 *2 *3) (-12 (-4 *4 (-512)) (-5 *2 (-1164 (-626 *4))) (-5 *1 (-88 *4 *5)) (-5 *3 (-626 *4)) (-4 *5 (-596 *4)))) (-4057 (*1 *2 *3 *4) (-12 (-4 *5 (-512)) (-5 *2 (-2 (|:| -3927 (-626 *5)) (|:| |vec| (-1164 (-586 (-849)))))) (-5 *1 (-88 *5 *3)) (-5 *4 (-849)) (-4 *3 (-596 *5)))))
-(-10 -7 (-15 -4057 ((-2 (|:| -3927 (-626 |#1|)) (|:| |vec| (-1164 (-586 (-849))))) |#2| (-849))) (-15 -3606 ((-1164 (-626 |#1|)) (-626 |#1|))) (IF (|has| |#1| (-336)) (-15 -1761 ((-2 (|:| |minor| (-586 (-849))) (|:| -3190 |#2|) (|:| |minors| (-586 (-586 (-849)))) (|:| |ops| (-586 |#2|))) |#2| (-849))) |%noBranch|))
-((-1414 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-1353 ((|#1| $) 35)) (-2063 (((-108) $ (-706)) NIL)) (-3961 (($) NIL T CONST)) (-1352 ((|#1| |#1| $) 30)) (-3621 ((|#1| $) 28)) (-3828 (((-586 |#1|) $) NIL (|has| $ (-6 -4229)))) (-3027 (((-108) $ (-706)) NIL)) (-3702 (((-586 |#1|) $) NIL (|has| $ (-6 -4229)))) (-2422 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-3830 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#1| |#1|) $) NIL)) (-1390 (((-108) $ (-706)) NIL)) (-1239 (((-1066) $) NIL (|has| |#1| (-1012)))) (-3351 ((|#1| $) NIL)) (-3618 (($ |#1| $) 31)) (-4142 (((-1030) $) NIL (|has| |#1| (-1012)))) (-3345 ((|#1| $) 29)) (-4155 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 |#1|))) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-268 |#1|)) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-586 |#1|) (-586 |#1|)) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))) (-2533 (((-108) $ $) NIL)) (-4018 (((-108) $) 16)) (-2238 (($) 39)) (-1251 (((-706) $) 26)) (-4159 (((-706) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229))) (((-706) |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-2403 (($ $) 15)) (-2188 (((-791) $) 25 (|has| |#1| (-560 (-791))))) (-1898 (($ (-586 |#1|)) NIL)) (-3126 (($ (-586 |#1|)) 37)) (-1662 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-1530 (((-108) $ $) 13 (|has| |#1| (-1012)))) (-3474 (((-706) $) 10 (|has| $ (-6 -4229)))))
-(((-89 |#1|) (-13 (-1031 |#1|) (-10 -8 (-15 -3126 ($ (-586 |#1|))))) (-1012)) (T -89))
-((-3126 (*1 *1 *2) (-12 (-5 *2 (-586 *3)) (-4 *3 (-1012)) (-5 *1 (-89 *3)))))
-(-13 (-1031 |#1|) (-10 -8 (-15 -3126 ($ (-586 |#1|)))))
-((-2855 (($ $) 10)) (-2867 (($ $) 12)))
-(((-90 |#1|) (-10 -8 (-15 -2867 (|#1| |#1|)) (-15 -2855 (|#1| |#1|))) (-91)) (T -90))
-NIL
-(-10 -8 (-15 -2867 (|#1| |#1|)) (-15 -2855 (|#1| |#1|)))
-((-2831 (($ $) 11)) (-2810 (($ $) 10)) (-2855 (($ $) 9)) (-2867 (($ $) 8)) (-2843 (($ $) 7)) (-2820 (($ $) 6)))
-(((-91) (-1195)) (T -91))
-((-2831 (*1 *1 *1) (-4 *1 (-91))) (-2810 (*1 *1 *1) (-4 *1 (-91))) (-2855 (*1 *1 *1) (-4 *1 (-91))) (-2867 (*1 *1 *1) (-4 *1 (-91))) (-2843 (*1 *1 *1) (-4 *1 (-91))) (-2820 (*1 *1 *1) (-4 *1 (-91))))
-(-13 (-10 -8 (-15 -2820 ($ $)) (-15 -2843 ($ $)) (-15 -2867 ($ $)) (-15 -2855 ($ $)) (-15 -2810 ($ $)) (-15 -2831 ($ $))))
-((-1414 (((-108) $ $) NIL)) (-4023 (((-352) (-1066) (-352)) 42) (((-352) (-1066) (-1066) (-352)) 41)) (-3707 (((-352) (-352)) 33)) (-2404 (((-1169)) 36)) (-1239 (((-1066) $) NIL)) (-2033 (((-352) (-1066) (-1066)) 46) (((-352) (-1066)) 48)) (-4142 (((-1030) $) NIL)) (-1522 (((-352) (-1066) (-1066)) 47)) (-2171 (((-352) (-1066) (-1066)) 49) (((-352) (-1066)) 50)) (-2188 (((-791) $) NIL)) (-1530 (((-108) $ $) NIL)))
-(((-92) (-13 (-1012) (-10 -7 (-15 -2033 ((-352) (-1066) (-1066))) (-15 -2033 ((-352) (-1066))) (-15 -2171 ((-352) (-1066) (-1066))) (-15 -2171 ((-352) (-1066))) (-15 -1522 ((-352) (-1066) (-1066))) (-15 -2404 ((-1169))) (-15 -3707 ((-352) (-352))) (-15 -4023 ((-352) (-1066) (-352))) (-15 -4023 ((-352) (-1066) (-1066) (-352))) (-6 -4229)))) (T -92))
-((-2033 (*1 *2 *3 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-352)) (-5 *1 (-92)))) (-2033 (*1 *2 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-352)) (-5 *1 (-92)))) (-2171 (*1 *2 *3 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-352)) (-5 *1 (-92)))) (-2171 (*1 *2 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-352)) (-5 *1 (-92)))) (-1522 (*1 *2 *3 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-352)) (-5 *1 (-92)))) (-2404 (*1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-92)))) (-3707 (*1 *2 *2) (-12 (-5 *2 (-352)) (-5 *1 (-92)))) (-4023 (*1 *2 *3 *2) (-12 (-5 *2 (-352)) (-5 *3 (-1066)) (-5 *1 (-92)))) (-4023 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-352)) (-5 *3 (-1066)) (-5 *1 (-92)))))
-(-13 (-1012) (-10 -7 (-15 -2033 ((-352) (-1066) (-1066))) (-15 -2033 ((-352) (-1066))) (-15 -2171 ((-352) (-1066) (-1066))) (-15 -2171 ((-352) (-1066))) (-15 -1522 ((-352) (-1066) (-1066))) (-15 -2404 ((-1169))) (-15 -3707 ((-352) (-352))) (-15 -4023 ((-352) (-1066) (-352))) (-15 -4023 ((-352) (-1066) (-1066) (-352))) (-6 -4229)))
-NIL
-(((-93) (-1195)) (T -93))
-NIL
-(-13 (-10 -7 (-6 -4229) (-6 (-4231 "*")) (-6 -4230) (-6 -4226) (-6 -4224) (-6 -4223) (-6 -4222) (-6 -4227) (-6 -4221) (-6 -4220) (-6 -4219) (-6 -4218) (-6 -4217) (-6 -4225) (-6 -4228) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4216)))
-((-1414 (((-108) $ $) NIL)) (-3961 (($) NIL T CONST)) (-1540 (((-3 $ "failed") $) NIL)) (-1537 (((-108) $) NIL)) (-1981 (($ (-1 |#1| |#1|)) 25) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 24) (($ (-1 |#1| |#1| (-520))) 22)) (-1239 (((-1066) $) NIL)) (-3093 (($ $) 14)) (-4142 (((-1030) $) NIL)) (-2543 ((|#1| $ |#1|) 11)) (-2945 (($ $ $) NIL)) (-3607 (($ $ $) NIL)) (-2188 (((-791) $) 20)) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL)) (-3570 (($) 8 T CONST)) (-1530 (((-108) $ $) 10)) (-1619 (($ $ $) NIL)) (** (($ $ (-849)) 28) (($ $ (-706)) NIL) (($ $ (-520)) 16)) (* (($ $ $) 29)))
-(((-94 |#1|) (-13 (-445) (-260 |#1| |#1|) (-10 -8 (-15 -1981 ($ (-1 |#1| |#1|))) (-15 -1981 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1981 ($ (-1 |#1| |#1| (-520)))))) (-969)) (T -94))
-((-1981 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-969)) (-5 *1 (-94 *3)))) (-1981 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-969)) (-5 *1 (-94 *3)))) (-1981 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-520))) (-4 *3 (-969)) (-5 *1 (-94 *3)))))
-(-13 (-445) (-260 |#1| |#1|) (-10 -8 (-15 -1981 ($ (-1 |#1| |#1|))) (-15 -1981 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1981 ($ (-1 |#1| |#1| (-520))))))
-((-2129 (((-391 |#2|) |#2| (-586 |#2|)) 10) (((-391 |#2|) |#2| |#2|) 11)))
-(((-95 |#1| |#2|) (-10 -7 (-15 -2129 ((-391 |#2|) |#2| |#2|)) (-15 -2129 ((-391 |#2|) |#2| (-586 |#2|)))) (-13 (-424) (-135)) (-1140 |#1|)) (T -95))
-((-2129 (*1 *2 *3 *4) (-12 (-5 *4 (-586 *3)) (-4 *3 (-1140 *5)) (-4 *5 (-13 (-424) (-135))) (-5 *2 (-391 *3)) (-5 *1 (-95 *5 *3)))) (-2129 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-424) (-135))) (-5 *2 (-391 *3)) (-5 *1 (-95 *4 *3)) (-4 *3 (-1140 *4)))))
-(-10 -7 (-15 -2129 ((-391 |#2|) |#2| |#2|)) (-15 -2129 ((-391 |#2|) |#2| (-586 |#2|))))
-((-1414 (((-108) $ $) 10)))
-(((-96 |#1|) (-10 -8 (-15 -1414 ((-108) |#1| |#1|))) (-97)) (T -96))
-NIL
-(-10 -8 (-15 -1414 ((-108) |#1| |#1|)))
-((-1414 (((-108) $ $) 7)) (-1530 (((-108) $ $) 6)))
-(((-97) (-1195)) (T -97))
-((-1414 (*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-108)))) (-1530 (*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-108)))))
-(-13 (-10 -8 (-15 -1530 ((-108) $ $)) (-15 -1414 ((-108) $ $))))
-((-1414 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-3429 ((|#1| $) NIL)) (-2063 (((-108) $ (-706)) NIL)) (-2888 ((|#1| $ |#1|) 13 (|has| $ (-6 -4230)))) (-2478 (($ $ $) NIL (|has| $ (-6 -4230)))) (-3098 (($ $ $) NIL (|has| $ (-6 -4230)))) (-4168 (($ $ (-586 |#1|)) 15)) (-2377 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4230))) (($ $ "left" $) NIL (|has| $ (-6 -4230))) (($ $ "right" $) NIL (|has| $ (-6 -4230)))) (-3061 (($ $ (-586 $)) NIL (|has| $ (-6 -4230)))) (-3961 (($) NIL T CONST)) (-1924 (($ $) 11)) (-3828 (((-586 |#1|) $) NIL (|has| $ (-6 -4229)))) (-3405 (((-586 $) $) NIL)) (-1885 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-3031 (($ $ |#1| $) 17)) (-3027 (((-108) $ (-706)) NIL)) (-3702 (((-586 |#1|) $) NIL (|has| $ (-6 -4229)))) (-2422 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-2641 ((|#1| $ (-1 |#1| |#1| |#1|)) 25) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 30)) (-4132 (($ $ |#1| (-1 |#1| |#1| |#1|)) 31) (($ $ |#1| (-1 (-586 |#1|) |#1| |#1| |#1|)) 35)) (-3830 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#1| |#1|) $) NIL)) (-1390 (((-108) $ (-706)) NIL)) (-1912 (($ $) 10)) (-1277 (((-586 |#1|) $) NIL)) (-1740 (((-108) $) 12)) (-1239 (((-1066) $) NIL (|has| |#1| (-1012)))) (-4142 (((-1030) $) NIL (|has| |#1| (-1012)))) (-4155 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 |#1|))) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-268 |#1|)) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-586 |#1|) (-586 |#1|)) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))) (-2533 (((-108) $ $) NIL)) (-4018 (((-108) $) 9)) (-2238 (($) 16)) (-2543 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3765 (((-520) $ $) NIL)) (-1975 (((-108) $) NIL)) (-4159 (((-706) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229))) (((-706) |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-2403 (($ $) NIL)) (-2188 (((-791) $) NIL (|has| |#1| (-560 (-791))))) (-2438 (((-586 $) $) NIL)) (-1639 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-2059 (($ (-706) |#1|) 19)) (-1662 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-1530 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-3474 (((-706) $) NIL (|has| $ (-6 -4229)))))
-(((-98 |#1|) (-13 (-121 |#1|) (-10 -8 (-6 -4229) (-6 -4230) (-15 -2059 ($ (-706) |#1|)) (-15 -4168 ($ $ (-586 |#1|))) (-15 -2641 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2641 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -4132 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -4132 ($ $ |#1| (-1 (-586 |#1|) |#1| |#1| |#1|))))) (-1012)) (T -98))
-((-2059 (*1 *1 *2 *3) (-12 (-5 *2 (-706)) (-5 *1 (-98 *3)) (-4 *3 (-1012)))) (-4168 (*1 *1 *1 *2) (-12 (-5 *2 (-586 *3)) (-4 *3 (-1012)) (-5 *1 (-98 *3)))) (-2641 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-98 *2)) (-4 *2 (-1012)))) (-2641 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1012)) (-5 *1 (-98 *3)))) (-4132 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1012)) (-5 *1 (-98 *2)))) (-4132 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-586 *2) *2 *2 *2)) (-4 *2 (-1012)) (-5 *1 (-98 *2)))))
-(-13 (-121 |#1|) (-10 -8 (-6 -4229) (-6 -4230) (-15 -2059 ($ (-706) |#1|)) (-15 -4168 ($ $ (-586 |#1|))) (-15 -2641 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2641 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -4132 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -4132 ($ $ |#1| (-1 (-586 |#1|) |#1| |#1| |#1|)))))
-((-2797 ((|#3| |#2| |#2|) 29)) (-3724 ((|#1| |#2| |#2|) 37 (|has| |#1| (-6 (-4231 "*"))))) (-3756 ((|#3| |#2| |#2|) 30)) (-1733 ((|#1| |#2|) 41 (|has| |#1| (-6 (-4231 "*"))))))
-(((-99 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2797 (|#3| |#2| |#2|)) (-15 -3756 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4231 "*"))) (PROGN (-15 -3724 (|#1| |#2| |#2|)) (-15 -1733 (|#1| |#2|))) |%noBranch|)) (-969) (-1140 |#1|) (-624 |#1| |#4| |#5|) (-346 |#1|) (-346 |#1|)) (T -99))
-((-1733 (*1 *2 *3) (-12 (|has| *2 (-6 (-4231 "*"))) (-4 *5 (-346 *2)) (-4 *6 (-346 *2)) (-4 *2 (-969)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1140 *2)) (-4 *4 (-624 *2 *5 *6)))) (-3724 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4231 "*"))) (-4 *5 (-346 *2)) (-4 *6 (-346 *2)) (-4 *2 (-969)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1140 *2)) (-4 *4 (-624 *2 *5 *6)))) (-3756 (*1 *2 *3 *3) (-12 (-4 *4 (-969)) (-4 *2 (-624 *4 *5 *6)) (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1140 *4)) (-4 *5 (-346 *4)) (-4 *6 (-346 *4)))) (-2797 (*1 *2 *3 *3) (-12 (-4 *4 (-969)) (-4 *2 (-624 *4 *5 *6)) (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1140 *4)) (-4 *5 (-346 *4)) (-4 *6 (-346 *4)))))
-(-10 -7 (-15 -2797 (|#3| |#2| |#2|)) (-15 -3756 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4231 "*"))) (PROGN (-15 -3724 (|#1| |#2| |#2|)) (-15 -1733 (|#1| |#2|))) |%noBranch|))
-((-1414 (((-108) $ $) NIL)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2188 (((-791) $) NIL)) (-2086 (((-586 (-1083))) 32)) (-1824 (((-2 (|:| |zeros| (-1064 (-201))) (|:| |ones| (-1064 (-201))) (|:| |singularities| (-1064 (-201)))) (-1083)) 35)) (-1530 (((-108) $ $) NIL)))
-(((-100) (-13 (-1012) (-10 -7 (-15 -2086 ((-586 (-1083)))) (-15 -1824 ((-2 (|:| |zeros| (-1064 (-201))) (|:| |ones| (-1064 (-201))) (|:| |singularities| (-1064 (-201)))) (-1083))) (-6 -4229)))) (T -100))
-((-2086 (*1 *2) (-12 (-5 *2 (-586 (-1083))) (-5 *1 (-100)))) (-1824 (*1 *2 *3) (-12 (-5 *3 (-1083)) (-5 *2 (-2 (|:| |zeros| (-1064 (-201))) (|:| |ones| (-1064 (-201))) (|:| |singularities| (-1064 (-201))))) (-5 *1 (-100)))))
-(-13 (-1012) (-10 -7 (-15 -2086 ((-586 (-1083)))) (-15 -1824 ((-2 (|:| |zeros| (-1064 (-201))) (|:| |ones| (-1064 (-201))) (|:| |singularities| (-1064 (-201)))) (-1083))) (-6 -4229)))
-((-1898 (($ (-586 |#2|)) 11)))
-(((-101 |#1| |#2|) (-10 -8 (-15 -1898 (|#1| (-586 |#2|)))) (-102 |#2|) (-1118)) (T -101))
-NIL
-(-10 -8 (-15 -1898 (|#1| (-586 |#2|))))
-((-1414 (((-108) $ $) 19 (|has| |#1| (-1012)))) (-2063 (((-108) $ (-706)) 8)) (-3961 (($) 7 T CONST)) (-3828 (((-586 |#1|) $) 30 (|has| $ (-6 -4229)))) (-3027 (((-108) $ (-706)) 9)) (-3702 (((-586 |#1|) $) 29 (|has| $ (-6 -4229)))) (-2422 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-3830 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#1| |#1|) $) 35)) (-1390 (((-108) $ (-706)) 10)) (-1239 (((-1066) $) 22 (|has| |#1| (-1012)))) (-3351 ((|#1| $) 39)) (-3618 (($ |#1| $) 40)) (-4142 (((-1030) $) 21 (|has| |#1| (-1012)))) (-3345 ((|#1| $) 41)) (-4155 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 |#1|))) 26 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-268 |#1|)) 25 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-586 |#1|) (-586 |#1|)) 23 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))) (-2533 (((-108) $ $) 14)) (-4018 (((-108) $) 11)) (-2238 (($) 12)) (-4159 (((-706) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4229))) (((-706) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-2403 (($ $) 13)) (-2188 (((-791) $) 18 (|has| |#1| (-560 (-791))))) (-1898 (($ (-586 |#1|)) 42)) (-1662 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4229)))) (-1530 (((-108) $ $) 20 (|has| |#1| (-1012)))) (-3474 (((-706) $) 6 (|has| $ (-6 -4229)))))
-(((-102 |#1|) (-1195) (-1118)) (T -102))
-((-1898 (*1 *1 *2) (-12 (-5 *2 (-586 *3)) (-4 *3 (-1118)) (-4 *1 (-102 *3)))) (-3345 (*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1118)))) (-3618 (*1 *1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1118)))) (-3351 (*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1118)))))
-(-13 (-459 |t#1|) (-10 -8 (-6 -4230) (-15 -1898 ($ (-586 |t#1|))) (-15 -3345 (|t#1| $)) (-15 -3618 ($ |t#1| $)) (-15 -3351 (|t#1| $))))
-(((-33) . T) ((-97) |has| |#1| (-1012)) ((-560 (-791)) -3700 (|has| |#1| (-1012)) (|has| |#1| (-560 (-791)))) ((-283 |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))) ((-459 |#1|) . T) ((-481 |#1| |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))) ((-1012) |has| |#1| (-1012)) ((-1118) . T))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-4040 (((-520) $) NIL (|has| (-520) (-281)))) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) NIL)) (-2583 (($ $) NIL)) (-1671 (((-108) $) NIL)) (-1917 (((-3 $ "failed") $ $) NIL)) (-4119 (((-391 (-1079 $)) (-1079 $)) NIL (|has| (-520) (-837)))) (-3024 (($ $) NIL)) (-1507 (((-391 $) $) NIL)) (-3481 (((-3 (-586 (-1079 $)) "failed") (-586 (-1079 $)) (-1079 $)) NIL (|has| (-520) (-837)))) (-1327 (((-108) $ $) NIL)) (-2804 (((-520) $) NIL (|has| (-520) (-756)))) (-3961 (($) NIL T CONST)) (-1296 (((-3 (-520) "failed") $) NIL) (((-3 (-1083) "failed") $) NIL (|has| (-520) (-960 (-1083)))) (((-3 (-380 (-520)) "failed") $) NIL (|has| (-520) (-960 (-520)))) (((-3 (-520) "failed") $) NIL (|has| (-520) (-960 (-520))))) (-1482 (((-520) $) NIL) (((-1083) $) NIL (|has| (-520) (-960 (-1083)))) (((-380 (-520)) $) NIL (|has| (-520) (-960 (-520)))) (((-520) $) NIL (|has| (-520) (-960 (-520))))) (-2276 (($ $ $) NIL)) (-2756 (((-626 (-520)) (-626 $)) NIL (|has| (-520) (-582 (-520)))) (((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 $) (-1164 $)) NIL (|has| (-520) (-582 (-520)))) (((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 $) (-1164 $)) NIL) (((-626 (-520)) (-626 $)) NIL)) (-1540 (((-3 $ "failed") $) NIL)) (-3249 (($) NIL (|has| (-520) (-505)))) (-2253 (($ $ $) NIL)) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) NIL)) (-2036 (((-108) $) NIL)) (-2328 (((-108) $) NIL (|has| (-520) (-756)))) (-1272 (((-817 (-520) $) $ (-820 (-520)) (-817 (-520) $)) NIL (|has| (-520) (-814 (-520)))) (((-817 (-352) $) $ (-820 (-352)) (-817 (-352) $)) NIL (|has| (-520) (-814 (-352))))) (-1537 (((-108) $) NIL)) (-4115 (($ $) NIL)) (-2800 (((-520) $) NIL)) (-1394 (((-3 $ "failed") $) NIL (|has| (-520) (-1059)))) (-3469 (((-108) $) NIL (|has| (-520) (-756)))) (-3188 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-2809 (($ $ $) NIL (|has| (-520) (-783)))) (-2446 (($ $ $) NIL (|has| (-520) (-783)))) (-1389 (($ (-1 (-520) (-520)) $) NIL)) (-2222 (($ $ $) NIL) (($ (-586 $)) NIL)) (-1239 (((-1066) $) NIL)) (-3093 (($ $) NIL)) (-3794 (($) NIL (|has| (-520) (-1059)) CONST)) (-4142 (((-1030) $) NIL)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) NIL)) (-2257 (($ $ $) NIL) (($ (-586 $)) NIL)) (-4122 (($ $) NIL (|has| (-520) (-281))) (((-380 (-520)) $) NIL)) (-1626 (((-520) $) NIL (|has| (-520) (-505)))) (-4133 (((-391 (-1079 $)) (-1079 $)) NIL (|has| (-520) (-837)))) (-2017 (((-391 (-1079 $)) (-1079 $)) NIL (|has| (-520) (-837)))) (-1916 (((-391 $) $) NIL)) (-1283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2230 (((-3 $ "failed") $ $) NIL)) (-2608 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-2286 (($ $ (-586 (-520)) (-586 (-520))) NIL (|has| (-520) (-283 (-520)))) (($ $ (-520) (-520)) NIL (|has| (-520) (-283 (-520)))) (($ $ (-268 (-520))) NIL (|has| (-520) (-283 (-520)))) (($ $ (-586 (-268 (-520)))) NIL (|has| (-520) (-283 (-520)))) (($ $ (-586 (-1083)) (-586 (-520))) NIL (|has| (-520) (-481 (-1083) (-520)))) (($ $ (-1083) (-520)) NIL (|has| (-520) (-481 (-1083) (-520))))) (-3704 (((-706) $) NIL)) (-2543 (($ $ (-520)) NIL (|has| (-520) (-260 (-520) (-520))))) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) NIL)) (-2155 (($ $) NIL (|has| (-520) (-209))) (($ $ (-706)) NIL (|has| (-520) (-209))) (($ $ (-1083)) NIL (|has| (-520) (-828 (-1083)))) (($ $ (-586 (-1083))) NIL (|has| (-520) (-828 (-1083)))) (($ $ (-1083) (-706)) NIL (|has| (-520) (-828 (-1083)))) (($ $ (-586 (-1083)) (-586 (-706))) NIL (|has| (-520) (-828 (-1083)))) (($ $ (-1 (-520) (-520)) (-706)) NIL) (($ $ (-1 (-520) (-520))) NIL)) (-3556 (($ $) NIL)) (-2811 (((-520) $) NIL)) (-1429 (((-820 (-520)) $) NIL (|has| (-520) (-561 (-820 (-520))))) (((-820 (-352)) $) NIL (|has| (-520) (-561 (-820 (-352))))) (((-496) $) NIL (|has| (-520) (-561 (-496)))) (((-352) $) NIL (|has| (-520) (-945))) (((-201) $) NIL (|has| (-520) (-945)))) (-3784 (((-3 (-1164 $) "failed") (-626 $)) NIL (-12 (|has| $ (-133)) (|has| (-520) (-837))))) (-2188 (((-791) $) NIL) (($ (-520)) NIL) (($ $) NIL) (($ (-380 (-520))) 7) (($ (-520)) NIL) (($ (-1083)) NIL (|has| (-520) (-960 (-1083)))) (((-380 (-520)) $) NIL) (((-928 2) $) 9)) (-3796 (((-3 $ "failed") $) NIL (-3700 (-12 (|has| $ (-133)) (|has| (-520) (-837))) (|has| (-520) (-133))))) (-3251 (((-706)) NIL)) (-3370 (((-520) $) NIL (|has| (-520) (-505)))) (-2755 (($ (-380 (-520))) 8)) (-2559 (((-108) $ $) NIL)) (-2458 (($ $) NIL (|has| (-520) (-756)))) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL)) (-3560 (($) NIL T CONST)) (-3570 (($) NIL T CONST)) (-2211 (($ $) NIL (|has| (-520) (-209))) (($ $ (-706)) NIL (|has| (-520) (-209))) (($ $ (-1083)) NIL (|has| (-520) (-828 (-1083)))) (($ $ (-586 (-1083))) NIL (|has| (-520) (-828 (-1083)))) (($ $ (-1083) (-706)) NIL (|has| (-520) (-828 (-1083)))) (($ $ (-586 (-1083)) (-586 (-706))) NIL (|has| (-520) (-828 (-1083)))) (($ $ (-1 (-520) (-520)) (-706)) NIL) (($ $ (-1 (-520) (-520))) NIL)) (-1573 (((-108) $ $) NIL (|has| (-520) (-783)))) (-1557 (((-108) $ $) NIL (|has| (-520) (-783)))) (-1530 (((-108) $ $) NIL)) (-1565 (((-108) $ $) NIL (|has| (-520) (-783)))) (-1548 (((-108) $ $) NIL (|has| (-520) (-783)))) (-1619 (($ $ $) NIL) (($ (-520) (-520)) NIL)) (-1611 (($ $) NIL) (($ $ $) NIL)) (-1601 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) NIL) (($ $ (-380 (-520))) NIL) (($ (-380 (-520)) $) NIL) (($ (-520) $) NIL) (($ $ (-520)) NIL)))
-(((-103) (-13 (-917 (-520)) (-10 -8 (-15 -2188 ((-380 (-520)) $)) (-15 -2188 ((-928 2) $)) (-15 -4122 ((-380 (-520)) $)) (-15 -2755 ($ (-380 (-520))))))) (T -103))
-((-2188 (*1 *2 *1) (-12 (-5 *2 (-380 (-520))) (-5 *1 (-103)))) (-2188 (*1 *2 *1) (-12 (-5 *2 (-928 2)) (-5 *1 (-103)))) (-4122 (*1 *2 *1) (-12 (-5 *2 (-380 (-520))) (-5 *1 (-103)))) (-2755 (*1 *1 *2) (-12 (-5 *2 (-380 (-520))) (-5 *1 (-103)))))
-(-13 (-917 (-520)) (-10 -8 (-15 -2188 ((-380 (-520)) $)) (-15 -2188 ((-928 2) $)) (-15 -4122 ((-380 (-520)) $)) (-15 -2755 ($ (-380 (-520))))))
-((-2415 (((-586 (-730)) $) 13)) (-2883 (((-1083) $) 10)) (-2188 (((-791) $) 22)) (-1309 (($ (-1083) (-586 (-730))) 14)))
-(((-104) (-13 (-560 (-791)) (-10 -8 (-15 -2883 ((-1083) $)) (-15 -2415 ((-586 (-730)) $)) (-15 -1309 ($ (-1083) (-586 (-730))))))) (T -104))
-((-2883 (*1 *2 *1) (-12 (-5 *2 (-1083)) (-5 *1 (-104)))) (-2415 (*1 *2 *1) (-12 (-5 *2 (-586 (-730))) (-5 *1 (-104)))) (-1309 (*1 *1 *2 *3) (-12 (-5 *2 (-1083)) (-5 *3 (-586 (-730))) (-5 *1 (-104)))))
-(-13 (-560 (-791)) (-10 -8 (-15 -2883 ((-1083) $)) (-15 -2415 ((-586 (-730)) $)) (-15 -1309 ($ (-1083) (-586 (-730))))))
-((-1414 (((-108) $ $) NIL)) (-1801 (((-1030) $ (-1030)) 23)) (-2405 (($ $ (-1066)) 17)) (-1461 (((-3 (-1030) "failed") $) 22)) (-1582 (((-1030) $) 20)) (-1464 (((-1030) $ (-1030)) 25)) (-3232 (((-1030) $) 24)) (-1543 (($ (-361)) NIL) (($ (-361) (-1066)) 16)) (-2883 (((-361) $) NIL)) (-1239 (((-1066) $) NIL)) (-3968 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2188 (((-791) $) NIL)) (-1934 (($ $) 18)) (-1530 (((-108) $ $) NIL)))
-(((-105) (-13 (-337 (-361) (-1030)) (-10 -8 (-15 -1461 ((-3 (-1030) "failed") $)) (-15 -3232 ((-1030) $)) (-15 -1464 ((-1030) $ (-1030)))))) (T -105))
-((-1461 (*1 *2 *1) (|partial| -12 (-5 *2 (-1030)) (-5 *1 (-105)))) (-3232 (*1 *2 *1) (-12 (-5 *2 (-1030)) (-5 *1 (-105)))) (-1464 (*1 *2 *1 *2) (-12 (-5 *2 (-1030)) (-5 *1 (-105)))))
-(-13 (-337 (-361) (-1030)) (-10 -8 (-15 -1461 ((-3 (-1030) "failed") $)) (-15 -3232 ((-1030) $)) (-15 -1464 ((-1030) $ (-1030)))))
-((-1414 (((-108) $ $) NIL)) (-1499 (($ $) NIL)) (-3343 (($ $ $) NIL)) (-1476 (((-1169) $ (-520) (-520)) NIL (|has| $ (-6 -4230)))) (-4029 (((-108) $) NIL (|has| (-108) (-783))) (((-108) (-1 (-108) (-108) (-108)) $) NIL)) (-3587 (($ $) NIL (-12 (|has| $ (-6 -4230)) (|has| (-108) (-783)))) (($ (-1 (-108) (-108) (-108)) $) NIL (|has| $ (-6 -4230)))) (-3210 (($ $) NIL (|has| (-108) (-783))) (($ (-1 (-108) (-108) (-108)) $) NIL)) (-2063 (((-108) $ (-706)) NIL)) (-2377 (((-108) $ (-1131 (-520)) (-108)) NIL (|has| $ (-6 -4230))) (((-108) $ (-520) (-108)) NIL (|has| $ (-6 -4230)))) (-1627 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4229)))) (-3961 (($) NIL T CONST)) (-2447 (($ $) NIL (|has| $ (-6 -4230)))) (-1861 (($ $) NIL)) (-2331 (($ $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-108) (-1012))))) (-1421 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4229))) (($ (-108) $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-108) (-1012))))) (-3856 (((-108) (-1 (-108) (-108) (-108)) $) NIL (|has| $ (-6 -4229))) (((-108) (-1 (-108) (-108) (-108)) $ (-108)) NIL (|has| $ (-6 -4229))) (((-108) (-1 (-108) (-108) (-108)) $ (-108) (-108)) NIL (-12 (|has| $ (-6 -4229)) (|has| (-108) (-1012))))) (-3846 (((-108) $ (-520) (-108)) NIL (|has| $ (-6 -4230)))) (-3623 (((-108) $ (-520)) NIL)) (-3232 (((-520) (-108) $ (-520)) NIL (|has| (-108) (-1012))) (((-520) (-108) $) NIL (|has| (-108) (-1012))) (((-520) (-1 (-108) (-108)) $) NIL)) (-3828 (((-586 (-108)) $) NIL (|has| $ (-6 -4229)))) (-3991 (($ $ $) NIL)) (-2399 (($ $) NIL)) (-3476 (($ $ $) NIL)) (-1810 (($ (-706) (-108)) 8)) (-2626 (($ $ $) NIL)) (-3027 (((-108) $ (-706)) NIL)) (-2567 (((-520) $) NIL (|has| (-520) (-783)))) (-2809 (($ $ $) NIL)) (-1819 (($ $ $) NIL (|has| (-108) (-783))) (($ (-1 (-108) (-108) (-108)) $ $) NIL)) (-3702 (((-586 (-108)) $) NIL (|has| $ (-6 -4229)))) (-2422 (((-108) (-108) $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-108) (-1012))))) (-1752 (((-520) $) NIL (|has| (-520) (-783)))) (-2446 (($ $ $) NIL)) (-3830 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4230)))) (-1389 (($ (-1 (-108) (-108) (-108)) $ $) NIL) (($ (-1 (-108) (-108)) $) NIL)) (-1390 (((-108) $ (-706)) NIL)) (-1239 (((-1066) $) NIL)) (-1659 (($ $ $ (-520)) NIL) (($ (-108) $ (-520)) NIL)) (-3622 (((-586 (-520)) $) NIL)) (-2603 (((-108) (-520) $) NIL)) (-4142 (((-1030) $) NIL)) (-2293 (((-108) $) NIL (|has| (-520) (-783)))) (-2985 (((-3 (-108) "failed") (-1 (-108) (-108)) $) NIL)) (-2936 (($ $ (-108)) NIL (|has| $ (-6 -4230)))) (-4155 (((-108) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-108)) (-586 (-108))) NIL (-12 (|has| (-108) (-283 (-108))) (|has| (-108) (-1012)))) (($ $ (-108) (-108)) NIL (-12 (|has| (-108) (-283 (-108))) (|has| (-108) (-1012)))) (($ $ (-268 (-108))) NIL (-12 (|has| (-108) (-283 (-108))) (|has| (-108) (-1012)))) (($ $ (-586 (-268 (-108)))) NIL (-12 (|has| (-108) (-283 (-108))) (|has| (-108) (-1012))))) (-2533 (((-108) $ $) NIL)) (-2094 (((-108) (-108) $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-108) (-1012))))) (-1523 (((-586 (-108)) $) NIL)) (-4018 (((-108) $) NIL)) (-2238 (($) NIL)) (-2543 (($ $ (-1131 (-520))) NIL) (((-108) $ (-520)) NIL) (((-108) $ (-520) (-108)) NIL)) (-3690 (($ $ (-1131 (-520))) NIL) (($ $ (-520)) NIL)) (-4159 (((-706) (-108) $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-108) (-1012)))) (((-706) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4229)))) (-1913 (($ $ $ (-520)) NIL (|has| $ (-6 -4230)))) (-2403 (($ $) NIL)) (-1429 (((-496) $) NIL (|has| (-108) (-561 (-496))))) (-2200 (($ (-586 (-108))) NIL)) (-4156 (($ (-586 $)) NIL) (($ $ $) NIL) (($ (-108) $) NIL) (($ $ (-108)) NIL)) (-2188 (((-791) $) NIL)) (-1567 (($ (-706) (-108)) 9)) (-1662 (((-108) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4229)))) (-4006 (($ $ $) NIL)) (-3504 (($ $) NIL)) (-2763 (($ $ $) NIL)) (-1573 (((-108) $ $) NIL)) (-1557 (((-108) $ $) NIL)) (-1530 (((-108) $ $) NIL)) (-1565 (((-108) $ $) NIL)) (-1548 (((-108) $ $) NIL)) (-2321 (($ $ $) NIL)) (-3474 (((-706) $) NIL (|has| $ (-6 -4229)))))
-(((-106) (-13 (-119) (-10 -8 (-15 -1567 ($ (-706) (-108)))))) (T -106))
-((-1567 (*1 *1 *2 *3) (-12 (-5 *2 (-706)) (-5 *3 (-108)) (-5 *1 (-106)))))
-(-13 (-119) (-10 -8 (-15 -1567 ($ (-706) (-108)))))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-1917 (((-3 $ "failed") $ $) 19)) (-3961 (($) 17 T CONST)) (-1239 (((-1066) $) 9)) (-4142 (((-1030) $) 10)) (-2188 (((-791) $) 11)) (-3560 (($) 18 T CONST)) (-1530 (((-108) $ $) 6)) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ |#1| $) 23) (($ $ |#2|) 26)))
-(((-107 |#1| |#2|) (-1195) (-969) (-969)) (T -107))
-NIL
-(-13 (-588 |t#1|) (-975 |t#2|) (-10 -7 (-6 -4224) (-6 -4223)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-560 (-791)) . T) ((-588 |#1|) . T) ((-975 |#2|) . T) ((-1012) . T))
-((-1414 (((-108) $ $) NIL)) (-1499 (($ $) 12)) (-3343 (($ $ $) 17)) (-1431 (($) 8 T CONST)) (-3395 (((-108) $) 7)) (-1628 (((-706)) 26)) (-3249 (($) 32)) (-3991 (($ $ $) 15)) (-2399 (($ $) 10)) (-3476 (($ $ $) 18)) (-2626 (($ $ $) 19)) (-2809 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-3040 (((-849) $) 31)) (-1239 (((-1066) $) NIL)) (-2716 (($ (-849)) 30)) (-3332 (($ $ $) 21)) (-4142 (((-1030) $) NIL)) (-2280 (($) 9 T CONST)) (-2922 (($ $ $) 22)) (-1429 (((-496) $) 38)) (-2188 (((-791) $) 41)) (-4006 (($ $ $) 13)) (-3504 (($ $) 11)) (-2763 (($ $ $) 16)) (-1573 (((-108) $ $) NIL)) (-1557 (((-108) $ $) NIL)) (-1530 (((-108) $ $) 20)) (-1565 (((-108) $ $) NIL)) (-1548 (((-108) $ $) 24)) (-2321 (($ $ $) 14)))
-(((-108) (-13 (-783) (-341) (-601) (-893) (-561 (-496)) (-10 -8 (-15 -1431 ($) -2675) (-15 -2280 ($) -2675) (-15 -3504 ($ $)) (-15 -3343 ($ $ $)) (-15 -2626 ($ $ $)) (-15 -3476 ($ $ $)) (-15 -3395 ((-108) $))))) (T -108))
-((-1431 (*1 *1) (-5 *1 (-108))) (-2280 (*1 *1) (-5 *1 (-108))) (-3504 (*1 *1 *1) (-5 *1 (-108))) (-3343 (*1 *1 *1 *1) (-5 *1 (-108))) (-2626 (*1 *1 *1 *1) (-5 *1 (-108))) (-3476 (*1 *1 *1 *1) (-5 *1 (-108))) (-3395 (*1 *1 *1) (-5 *1 (-108))))
-(-13 (-783) (-341) (-601) (-893) (-561 (-496)) (-10 -8 (-15 -1431 ($) -2675) (-15 -2280 ($) -2675) (-15 -3504 ($ $)) (-15 -3343 ($ $ $)) (-15 -2626 ($ $ $)) (-15 -3476 ($ $ $)) (-15 -3395 ((-108) $))))
-((-3276 (((-3 (-1 |#1| (-586 |#1|)) "failed") (-110)) 18) (((-110) (-110) (-1 |#1| |#1|)) 13) (((-110) (-110) (-1 |#1| (-586 |#1|))) 11) (((-3 |#1| "failed") (-110) (-586 |#1|)) 20)) (-3379 (((-3 (-586 (-1 |#1| (-586 |#1|))) "failed") (-110)) 24) (((-110) (-110) (-1 |#1| |#1|)) 30) (((-110) (-110) (-586 (-1 |#1| (-586 |#1|)))) 26)) (-2686 (((-110) |#1|) 54 (|has| |#1| (-783)))) (-3617 (((-3 |#1| "failed") (-110)) 49 (|has| |#1| (-783)))))
-(((-109 |#1|) (-10 -7 (-15 -3276 ((-3 |#1| "failed") (-110) (-586 |#1|))) (-15 -3276 ((-110) (-110) (-1 |#1| (-586 |#1|)))) (-15 -3276 ((-110) (-110) (-1 |#1| |#1|))) (-15 -3276 ((-3 (-1 |#1| (-586 |#1|)) "failed") (-110))) (-15 -3379 ((-110) (-110) (-586 (-1 |#1| (-586 |#1|))))) (-15 -3379 ((-110) (-110) (-1 |#1| |#1|))) (-15 -3379 ((-3 (-586 (-1 |#1| (-586 |#1|))) "failed") (-110))) (IF (|has| |#1| (-783)) (PROGN (-15 -2686 ((-110) |#1|)) (-15 -3617 ((-3 |#1| "failed") (-110)))) |%noBranch|)) (-1012)) (T -109))
-((-3617 (*1 *2 *3) (|partial| -12 (-5 *3 (-110)) (-4 *2 (-1012)) (-4 *2 (-783)) (-5 *1 (-109 *2)))) (-2686 (*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-109 *3)) (-4 *3 (-783)) (-4 *3 (-1012)))) (-3379 (*1 *2 *3) (|partial| -12 (-5 *3 (-110)) (-5 *2 (-586 (-1 *4 (-586 *4)))) (-5 *1 (-109 *4)) (-4 *4 (-1012)))) (-3379 (*1 *2 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1012)) (-5 *1 (-109 *4)))) (-3379 (*1 *2 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-586 (-1 *4 (-586 *4)))) (-4 *4 (-1012)) (-5 *1 (-109 *4)))) (-3276 (*1 *2 *3) (|partial| -12 (-5 *3 (-110)) (-5 *2 (-1 *4 (-586 *4))) (-5 *1 (-109 *4)) (-4 *4 (-1012)))) (-3276 (*1 *2 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1012)) (-5 *1 (-109 *4)))) (-3276 (*1 *2 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 (-586 *4))) (-4 *4 (-1012)) (-5 *1 (-109 *4)))) (-3276 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-110)) (-5 *4 (-586 *2)) (-5 *1 (-109 *2)) (-4 *2 (-1012)))))
-(-10 -7 (-15 -3276 ((-3 |#1| "failed") (-110) (-586 |#1|))) (-15 -3276 ((-110) (-110) (-1 |#1| (-586 |#1|)))) (-15 -3276 ((-110) (-110) (-1 |#1| |#1|))) (-15 -3276 ((-3 (-1 |#1| (-586 |#1|)) "failed") (-110))) (-15 -3379 ((-110) (-110) (-586 (-1 |#1| (-586 |#1|))))) (-15 -3379 ((-110) (-110) (-1 |#1| |#1|))) (-15 -3379 ((-3 (-586 (-1 |#1| (-586 |#1|))) "failed") (-110))) (IF (|has| |#1| (-783)) (PROGN (-15 -2686 ((-110) |#1|)) (-15 -3617 ((-3 |#1| "failed") (-110)))) |%noBranch|))
-((-1414 (((-108) $ $) NIL)) (-1785 (((-706) $) 68) (($ $ (-706)) 30)) (-1406 (((-108) $) 32)) (-2392 (($ $ (-1066) (-709)) 26)) (-2893 (($ $ (-44 (-1066) (-709))) 13)) (-1930 (((-3 (-709) "failed") $ (-1066)) 24)) (-2415 (((-44 (-1066) (-709)) $) 12)) (-3877 (($ (-1083)) 15) (($ (-1083) (-706)) 20)) (-3013 (((-108) $) 31)) (-2350 (((-108) $) 33)) (-2883 (((-1083) $) 8)) (-2809 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-1239 (((-1066) $) NIL)) (-1784 (((-108) $ (-1083)) 10)) (-1717 (($ $ (-1 (-496) (-586 (-496)))) 50) (((-3 (-1 (-496) (-586 (-496))) "failed") $) 54)) (-4142 (((-1030) $) NIL)) (-2968 (((-108) $ (-1066)) 29)) (-2366 (($ $ (-1 (-108) $ $)) 35)) (-1677 (((-3 (-1 (-791) (-586 (-791))) "failed") $) 52) (($ $ (-1 (-791) (-586 (-791)))) 41) (($ $ (-1 (-791) (-791))) 43)) (-3882 (($ $ (-1066)) 45)) (-2403 (($ $) 61)) (-1670 (($ $ (-1 (-108) $ $)) 36)) (-2188 (((-791) $) 48)) (-2978 (($ $ (-1066)) 27)) (-3728 (((-3 (-706) "failed") $) 56)) (-1573 (((-108) $ $) NIL)) (-1557 (((-108) $ $) NIL)) (-1530 (((-108) $ $) 67)) (-1565 (((-108) $ $) NIL)) (-1548 (((-108) $ $) 73)))
-(((-110) (-13 (-783) (-10 -8 (-15 -2883 ((-1083) $)) (-15 -2415 ((-44 (-1066) (-709)) $)) (-15 -2403 ($ $)) (-15 -3877 ($ (-1083))) (-15 -3877 ($ (-1083) (-706))) (-15 -3728 ((-3 (-706) "failed") $)) (-15 -3013 ((-108) $)) (-15 -1406 ((-108) $)) (-15 -2350 ((-108) $)) (-15 -1785 ((-706) $)) (-15 -1785 ($ $ (-706))) (-15 -2366 ($ $ (-1 (-108) $ $))) (-15 -1670 ($ $ (-1 (-108) $ $))) (-15 -1677 ((-3 (-1 (-791) (-586 (-791))) "failed") $)) (-15 -1677 ($ $ (-1 (-791) (-586 (-791))))) (-15 -1677 ($ $ (-1 (-791) (-791)))) (-15 -1717 ($ $ (-1 (-496) (-586 (-496))))) (-15 -1717 ((-3 (-1 (-496) (-586 (-496))) "failed") $)) (-15 -1784 ((-108) $ (-1083))) (-15 -2968 ((-108) $ (-1066))) (-15 -2978 ($ $ (-1066))) (-15 -3882 ($ $ (-1066))) (-15 -1930 ((-3 (-709) "failed") $ (-1066))) (-15 -2392 ($ $ (-1066) (-709))) (-15 -2893 ($ $ (-44 (-1066) (-709))))))) (T -110))
-((-2883 (*1 *2 *1) (-12 (-5 *2 (-1083)) (-5 *1 (-110)))) (-2415 (*1 *2 *1) (-12 (-5 *2 (-44 (-1066) (-709))) (-5 *1 (-110)))) (-2403 (*1 *1 *1) (-5 *1 (-110))) (-3877 (*1 *1 *2) (-12 (-5 *2 (-1083)) (-5 *1 (-110)))) (-3877 (*1 *1 *2 *3) (-12 (-5 *2 (-1083)) (-5 *3 (-706)) (-5 *1 (-110)))) (-3728 (*1 *2 *1) (|partial| -12 (-5 *2 (-706)) (-5 *1 (-110)))) (-3013 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110)))) (-1406 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110)))) (-2350 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110)))) (-1785 (*1 *2 *1) (-12 (-5 *2 (-706)) (-5 *1 (-110)))) (-1785 (*1 *1 *1 *2) (-12 (-5 *2 (-706)) (-5 *1 (-110)))) (-2366 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-108) (-110) (-110))) (-5 *1 (-110)))) (-1670 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-108) (-110) (-110))) (-5 *1 (-110)))) (-1677 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-791) (-586 (-791)))) (-5 *1 (-110)))) (-1677 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-791) (-586 (-791)))) (-5 *1 (-110)))) (-1677 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-791) (-791))) (-5 *1 (-110)))) (-1717 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-496) (-586 (-496)))) (-5 *1 (-110)))) (-1717 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-496) (-586 (-496)))) (-5 *1 (-110)))) (-1784 (*1 *2 *1 *3) (-12 (-5 *3 (-1083)) (-5 *2 (-108)) (-5 *1 (-110)))) (-2968 (*1 *2 *1 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-108)) (-5 *1 (-110)))) (-2978 (*1 *1 *1 *2) (-12 (-5 *2 (-1066)) (-5 *1 (-110)))) (-3882 (*1 *1 *1 *2) (-12 (-5 *2 (-1066)) (-5 *1 (-110)))) (-1930 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1066)) (-5 *2 (-709)) (-5 *1 (-110)))) (-2392 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1066)) (-5 *3 (-709)) (-5 *1 (-110)))) (-2893 (*1 *1 *1 *2) (-12 (-5 *2 (-44 (-1066) (-709))) (-5 *1 (-110)))))
-(-13 (-783) (-10 -8 (-15 -2883 ((-1083) $)) (-15 -2415 ((-44 (-1066) (-709)) $)) (-15 -2403 ($ $)) (-15 -3877 ($ (-1083))) (-15 -3877 ($ (-1083) (-706))) (-15 -3728 ((-3 (-706) "failed") $)) (-15 -3013 ((-108) $)) (-15 -1406 ((-108) $)) (-15 -2350 ((-108) $)) (-15 -1785 ((-706) $)) (-15 -1785 ($ $ (-706))) (-15 -2366 ($ $ (-1 (-108) $ $))) (-15 -1670 ($ $ (-1 (-108) $ $))) (-15 -1677 ((-3 (-1 (-791) (-586 (-791))) "failed") $)) (-15 -1677 ($ $ (-1 (-791) (-586 (-791))))) (-15 -1677 ($ $ (-1 (-791) (-791)))) (-15 -1717 ($ $ (-1 (-496) (-586 (-496))))) (-15 -1717 ((-3 (-1 (-496) (-586 (-496))) "failed") $)) (-15 -1784 ((-108) $ (-1083))) (-15 -2968 ((-108) $ (-1066))) (-15 -2978 ($ $ (-1066))) (-15 -3882 ($ $ (-1066))) (-15 -1930 ((-3 (-709) "failed") $ (-1066))) (-15 -2392 ($ $ (-1066) (-709))) (-15 -2893 ($ $ (-44 (-1066) (-709))))))
-((-4076 (((-520) |#2|) 36)))
-(((-111 |#1| |#2|) (-10 -7 (-15 -4076 ((-520) |#2|))) (-13 (-336) (-960 (-380 (-520)))) (-1140 |#1|)) (T -111))
-((-4076 (*1 *2 *3) (-12 (-4 *4 (-13 (-336) (-960 (-380 *2)))) (-5 *2 (-520)) (-5 *1 (-111 *4 *3)) (-4 *3 (-1140 *4)))))
-(-10 -7 (-15 -4076 ((-520) |#2|)))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) NIL)) (-2583 (($ $) NIL)) (-1671 (((-108) $) NIL)) (-1917 (((-3 $ "failed") $ $) NIL)) (-1927 (($ $ (-520)) NIL)) (-1327 (((-108) $ $) NIL)) (-3961 (($) NIL T CONST)) (-2918 (($ (-1079 (-520)) (-520)) NIL)) (-2276 (($ $ $) NIL)) (-1540 (((-3 $ "failed") $) NIL)) (-2944 (($ $) NIL)) (-2253 (($ $ $) NIL)) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) NIL)) (-3989 (((-706) $) NIL)) (-1537 (((-108) $) NIL)) (-3188 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-3178 (((-520)) NIL)) (-1581 (((-520) $) NIL)) (-2222 (($ $ $) NIL) (($ (-586 $)) NIL)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) NIL)) (-2257 (($ $ $) NIL) (($ (-586 $)) NIL)) (-1283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2116 (($ $ (-520)) NIL)) (-2230 (((-3 $ "failed") $ $) NIL)) (-2608 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-3704 (((-706) $) NIL)) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) NIL)) (-2850 (((-1064 (-520)) $) NIL)) (-2759 (($ $) NIL)) (-2188 (((-791) $) NIL) (($ (-520)) NIL) (($ $) NIL)) (-3251 (((-706)) NIL)) (-2559 (((-108) $ $) NIL)) (-3890 (((-520) $ (-520)) NIL)) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (-3560 (($) NIL T CONST)) (-3570 (($) NIL T CONST)) (-1530 (((-108) $ $) NIL)) (-1611 (($ $) NIL) (($ $ $) NIL)) (-1601 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) NIL)))
-(((-112 |#1|) (-797 |#1|) (-520)) (T -112))
-NIL
-(-797 |#1|)
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-4040 (((-112 |#1|) $) NIL (|has| (-112 |#1|) (-281)))) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) NIL)) (-2583 (($ $) NIL)) (-1671 (((-108) $) NIL)) (-1917 (((-3 $ "failed") $ $) NIL)) (-4119 (((-391 (-1079 $)) (-1079 $)) NIL (|has| (-112 |#1|) (-837)))) (-3024 (($ $) NIL)) (-1507 (((-391 $) $) NIL)) (-3481 (((-3 (-586 (-1079 $)) "failed") (-586 (-1079 $)) (-1079 $)) NIL (|has| (-112 |#1|) (-837)))) (-1327 (((-108) $ $) NIL)) (-2804 (((-520) $) NIL (|has| (-112 |#1|) (-756)))) (-3961 (($) NIL T CONST)) (-1296 (((-3 (-112 |#1|) "failed") $) NIL) (((-3 (-1083) "failed") $) NIL (|has| (-112 |#1|) (-960 (-1083)))) (((-3 (-380 (-520)) "failed") $) NIL (|has| (-112 |#1|) (-960 (-520)))) (((-3 (-520) "failed") $) NIL (|has| (-112 |#1|) (-960 (-520))))) (-1482 (((-112 |#1|) $) NIL) (((-1083) $) NIL (|has| (-112 |#1|) (-960 (-1083)))) (((-380 (-520)) $) NIL (|has| (-112 |#1|) (-960 (-520)))) (((-520) $) NIL (|has| (-112 |#1|) (-960 (-520))))) (-2243 (($ $) NIL) (($ (-520) $) NIL)) (-2276 (($ $ $) NIL)) (-2756 (((-626 (-520)) (-626 $)) NIL (|has| (-112 |#1|) (-582 (-520)))) (((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 $) (-1164 $)) NIL (|has| (-112 |#1|) (-582 (-520)))) (((-2 (|:| -3927 (-626 (-112 |#1|))) (|:| |vec| (-1164 (-112 |#1|)))) (-626 $) (-1164 $)) NIL) (((-626 (-112 |#1|)) (-626 $)) NIL)) (-1540 (((-3 $ "failed") $) NIL)) (-3249 (($) NIL (|has| (-112 |#1|) (-505)))) (-2253 (($ $ $) NIL)) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) NIL)) (-2036 (((-108) $) NIL)) (-2328 (((-108) $) NIL (|has| (-112 |#1|) (-756)))) (-1272 (((-817 (-520) $) $ (-820 (-520)) (-817 (-520) $)) NIL (|has| (-112 |#1|) (-814 (-520)))) (((-817 (-352) $) $ (-820 (-352)) (-817 (-352) $)) NIL (|has| (-112 |#1|) (-814 (-352))))) (-1537 (((-108) $) NIL)) (-4115 (($ $) NIL)) (-2800 (((-112 |#1|) $) NIL)) (-1394 (((-3 $ "failed") $) NIL (|has| (-112 |#1|) (-1059)))) (-3469 (((-108) $) NIL (|has| (-112 |#1|) (-756)))) (-3188 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-2809 (($ $ $) NIL (|has| (-112 |#1|) (-783)))) (-2446 (($ $ $) NIL (|has| (-112 |#1|) (-783)))) (-1389 (($ (-1 (-112 |#1|) (-112 |#1|)) $) NIL)) (-2222 (($ $ $) NIL) (($ (-586 $)) NIL)) (-1239 (((-1066) $) NIL)) (-3093 (($ $) NIL)) (-3794 (($) NIL (|has| (-112 |#1|) (-1059)) CONST)) (-4142 (((-1030) $) NIL)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) NIL)) (-2257 (($ $ $) NIL) (($ (-586 $)) NIL)) (-4122 (($ $) NIL (|has| (-112 |#1|) (-281)))) (-1626 (((-112 |#1|) $) NIL (|has| (-112 |#1|) (-505)))) (-4133 (((-391 (-1079 $)) (-1079 $)) NIL (|has| (-112 |#1|) (-837)))) (-2017 (((-391 (-1079 $)) (-1079 $)) NIL (|has| (-112 |#1|) (-837)))) (-1916 (((-391 $) $) NIL)) (-1283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2230 (((-3 $ "failed") $ $) NIL)) (-2608 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-2286 (($ $ (-586 (-112 |#1|)) (-586 (-112 |#1|))) NIL (|has| (-112 |#1|) (-283 (-112 |#1|)))) (($ $ (-112 |#1|) (-112 |#1|)) NIL (|has| (-112 |#1|) (-283 (-112 |#1|)))) (($ $ (-268 (-112 |#1|))) NIL (|has| (-112 |#1|) (-283 (-112 |#1|)))) (($ $ (-586 (-268 (-112 |#1|)))) NIL (|has| (-112 |#1|) (-283 (-112 |#1|)))) (($ $ (-586 (-1083)) (-586 (-112 |#1|))) NIL (|has| (-112 |#1|) (-481 (-1083) (-112 |#1|)))) (($ $ (-1083) (-112 |#1|)) NIL (|has| (-112 |#1|) (-481 (-1083) (-112 |#1|))))) (-3704 (((-706) $) NIL)) (-2543 (($ $ (-112 |#1|)) NIL (|has| (-112 |#1|) (-260 (-112 |#1|) (-112 |#1|))))) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) NIL)) (-2155 (($ $) NIL (|has| (-112 |#1|) (-209))) (($ $ (-706)) NIL (|has| (-112 |#1|) (-209))) (($ $ (-1083)) NIL (|has| (-112 |#1|) (-828 (-1083)))) (($ $ (-586 (-1083))) NIL (|has| (-112 |#1|) (-828 (-1083)))) (($ $ (-1083) (-706)) NIL (|has| (-112 |#1|) (-828 (-1083)))) (($ $ (-586 (-1083)) (-586 (-706))) NIL (|has| (-112 |#1|) (-828 (-1083)))) (($ $ (-1 (-112 |#1|) (-112 |#1|)) (-706)) NIL) (($ $ (-1 (-112 |#1|) (-112 |#1|))) NIL)) (-3556 (($ $) NIL)) (-2811 (((-112 |#1|) $) NIL)) (-1429 (((-820 (-520)) $) NIL (|has| (-112 |#1|) (-561 (-820 (-520))))) (((-820 (-352)) $) NIL (|has| (-112 |#1|) (-561 (-820 (-352))))) (((-496) $) NIL (|has| (-112 |#1|) (-561 (-496)))) (((-352) $) NIL (|has| (-112 |#1|) (-945))) (((-201) $) NIL (|has| (-112 |#1|) (-945)))) (-2774 (((-158 (-380 (-520))) $) NIL)) (-3784 (((-3 (-1164 $) "failed") (-626 $)) NIL (-12 (|has| $ (-133)) (|has| (-112 |#1|) (-837))))) (-2188 (((-791) $) NIL) (($ (-520)) NIL) (($ $) NIL) (($ (-380 (-520))) NIL) (($ (-112 |#1|)) NIL) (($ (-1083)) NIL (|has| (-112 |#1|) (-960 (-1083))))) (-3796 (((-3 $ "failed") $) NIL (-3700 (-12 (|has| $ (-133)) (|has| (-112 |#1|) (-837))) (|has| (-112 |#1|) (-133))))) (-3251 (((-706)) NIL)) (-3370 (((-112 |#1|) $) NIL (|has| (-112 |#1|) (-505)))) (-2559 (((-108) $ $) NIL)) (-3890 (((-380 (-520)) $ (-520)) NIL)) (-2458 (($ $) NIL (|has| (-112 |#1|) (-756)))) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL)) (-3560 (($) NIL T CONST)) (-3570 (($) NIL T CONST)) (-2211 (($ $) NIL (|has| (-112 |#1|) (-209))) (($ $ (-706)) NIL (|has| (-112 |#1|) (-209))) (($ $ (-1083)) NIL (|has| (-112 |#1|) (-828 (-1083)))) (($ $ (-586 (-1083))) NIL (|has| (-112 |#1|) (-828 (-1083)))) (($ $ (-1083) (-706)) NIL (|has| (-112 |#1|) (-828 (-1083)))) (($ $ (-586 (-1083)) (-586 (-706))) NIL (|has| (-112 |#1|) (-828 (-1083)))) (($ $ (-1 (-112 |#1|) (-112 |#1|)) (-706)) NIL) (($ $ (-1 (-112 |#1|) (-112 |#1|))) NIL)) (-1573 (((-108) $ $) NIL (|has| (-112 |#1|) (-783)))) (-1557 (((-108) $ $) NIL (|has| (-112 |#1|) (-783)))) (-1530 (((-108) $ $) NIL)) (-1565 (((-108) $ $) NIL (|has| (-112 |#1|) (-783)))) (-1548 (((-108) $ $) NIL (|has| (-112 |#1|) (-783)))) (-1619 (($ $ $) NIL) (($ (-112 |#1|) (-112 |#1|)) NIL)) (-1611 (($ $) NIL) (($ $ $) NIL)) (-1601 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) NIL) (($ $ (-380 (-520))) NIL) (($ (-380 (-520)) $) NIL) (($ (-112 |#1|) $) NIL) (($ $ (-112 |#1|)) NIL)))
-(((-113 |#1|) (-13 (-917 (-112 |#1|)) (-10 -8 (-15 -3890 ((-380 (-520)) $ (-520))) (-15 -2774 ((-158 (-380 (-520))) $)) (-15 -2243 ($ $)) (-15 -2243 ($ (-520) $)))) (-520)) (T -113))
-((-3890 (*1 *2 *1 *3) (-12 (-5 *2 (-380 (-520))) (-5 *1 (-113 *4)) (-14 *4 *3) (-5 *3 (-520)))) (-2774 (*1 *2 *1) (-12 (-5 *2 (-158 (-380 (-520)))) (-5 *1 (-113 *3)) (-14 *3 (-520)))) (-2243 (*1 *1 *1) (-12 (-5 *1 (-113 *2)) (-14 *2 (-520)))) (-2243 (*1 *1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-113 *3)) (-14 *3 *2))))
-(-13 (-917 (-112 |#1|)) (-10 -8 (-15 -3890 ((-380 (-520)) $ (-520))) (-15 -2774 ((-158 (-380 (-520))) $)) (-15 -2243 ($ $)) (-15 -2243 ($ (-520) $))))
-((-2377 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 49) (($ $ "right" $) 51)) (-3405 (((-586 $) $) 27)) (-1885 (((-108) $ $) 32)) (-2422 (((-108) |#2| $) 36)) (-1277 (((-586 |#2|) $) 22)) (-1740 (((-108) $) 16)) (-2543 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-1975 (((-108) $) 45)) (-2188 (((-791) $) 41)) (-2438 (((-586 $) $) 28)) (-1530 (((-108) $ $) 34)) (-3474 (((-706) $) 43)))
-(((-114 |#1| |#2|) (-10 -8 (-15 -2188 ((-791) |#1|)) (-15 -2377 (|#1| |#1| "right" |#1|)) (-15 -2377 (|#1| |#1| "left" |#1|)) (-15 -2543 (|#1| |#1| "right")) (-15 -2543 (|#1| |#1| "left")) (-15 -2377 (|#2| |#1| "value" |#2|)) (-15 -1885 ((-108) |#1| |#1|)) (-15 -1277 ((-586 |#2|) |#1|)) (-15 -1975 ((-108) |#1|)) (-15 -2543 (|#2| |#1| "value")) (-15 -1740 ((-108) |#1|)) (-15 -3405 ((-586 |#1|) |#1|)) (-15 -2438 ((-586 |#1|) |#1|)) (-15 -1530 ((-108) |#1| |#1|)) (-15 -2422 ((-108) |#2| |#1|)) (-15 -3474 ((-706) |#1|))) (-115 |#2|) (-1118)) (T -114))
-NIL
-(-10 -8 (-15 -2188 ((-791) |#1|)) (-15 -2377 (|#1| |#1| "right" |#1|)) (-15 -2377 (|#1| |#1| "left" |#1|)) (-15 -2543 (|#1| |#1| "right")) (-15 -2543 (|#1| |#1| "left")) (-15 -2377 (|#2| |#1| "value" |#2|)) (-15 -1885 ((-108) |#1| |#1|)) (-15 -1277 ((-586 |#2|) |#1|)) (-15 -1975 ((-108) |#1|)) (-15 -2543 (|#2| |#1| "value")) (-15 -1740 ((-108) |#1|)) (-15 -3405 ((-586 |#1|) |#1|)) (-15 -2438 ((-586 |#1|) |#1|)) (-15 -1530 ((-108) |#1| |#1|)) (-15 -2422 ((-108) |#2| |#1|)) (-15 -3474 ((-706) |#1|)))
-((-1414 (((-108) $ $) 19 (|has| |#1| (-1012)))) (-3429 ((|#1| $) 48)) (-2063 (((-108) $ (-706)) 8)) (-2888 ((|#1| $ |#1|) 39 (|has| $ (-6 -4230)))) (-2478 (($ $ $) 52 (|has| $ (-6 -4230)))) (-3098 (($ $ $) 54 (|has| $ (-6 -4230)))) (-2377 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4230))) (($ $ "left" $) 55 (|has| $ (-6 -4230))) (($ $ "right" $) 53 (|has| $ (-6 -4230)))) (-3061 (($ $ (-586 $)) 41 (|has| $ (-6 -4230)))) (-3961 (($) 7 T CONST)) (-1924 (($ $) 57)) (-3828 (((-586 |#1|) $) 30 (|has| $ (-6 -4229)))) (-3405 (((-586 $) $) 50)) (-1885 (((-108) $ $) 42 (|has| |#1| (-1012)))) (-3027 (((-108) $ (-706)) 9)) (-3702 (((-586 |#1|) $) 29 (|has| $ (-6 -4229)))) (-2422 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-3830 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#1| |#1|) $) 35)) (-1390 (((-108) $ (-706)) 10)) (-1912 (($ $) 59)) (-1277 (((-586 |#1|) $) 45)) (-1740 (((-108) $) 49)) (-1239 (((-1066) $) 22 (|has| |#1| (-1012)))) (-4142 (((-1030) $) 21 (|has| |#1| (-1012)))) (-4155 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 |#1|))) 26 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-268 |#1|)) 25 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-586 |#1|) (-586 |#1|)) 23 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))) (-2533 (((-108) $ $) 14)) (-4018 (((-108) $) 11)) (-2238 (($) 12)) (-2543 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-3765 (((-520) $ $) 44)) (-1975 (((-108) $) 46)) (-4159 (((-706) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4229))) (((-706) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-2403 (($ $) 13)) (-2188 (((-791) $) 18 (|has| |#1| (-560 (-791))))) (-2438 (((-586 $) $) 51)) (-1639 (((-108) $ $) 43 (|has| |#1| (-1012)))) (-1662 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4229)))) (-1530 (((-108) $ $) 20 (|has| |#1| (-1012)))) (-3474 (((-706) $) 6 (|has| $ (-6 -4229)))))
-(((-115 |#1|) (-1195) (-1118)) (T -115))
-((-1912 (*1 *1 *1) (-12 (-4 *1 (-115 *2)) (-4 *2 (-1118)))) (-2543 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-115 *3)) (-4 *3 (-1118)))) (-1924 (*1 *1 *1) (-12 (-4 *1 (-115 *2)) (-4 *2 (-1118)))) (-2543 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-115 *3)) (-4 *3 (-1118)))) (-2377 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4230)) (-4 *1 (-115 *3)) (-4 *3 (-1118)))) (-3098 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4230)) (-4 *1 (-115 *2)) (-4 *2 (-1118)))) (-2377 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4230)) (-4 *1 (-115 *3)) (-4 *3 (-1118)))) (-2478 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4230)) (-4 *1 (-115 *2)) (-4 *2 (-1118)))))
-(-13 (-934 |t#1|) (-10 -8 (-15 -1912 ($ $)) (-15 -2543 ($ $ "left")) (-15 -1924 ($ $)) (-15 -2543 ($ $ "right")) (IF (|has| $ (-6 -4230)) (PROGN (-15 -2377 ($ $ "left" $)) (-15 -3098 ($ $ $)) (-15 -2377 ($ $ "right" $)) (-15 -2478 ($ $ $))) |%noBranch|)))
-(((-33) . T) ((-97) |has| |#1| (-1012)) ((-560 (-791)) -3700 (|has| |#1| (-1012)) (|has| |#1| (-560 (-791)))) ((-283 |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))) ((-459 |#1|) . T) ((-481 |#1| |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))) ((-934 |#1|) . T) ((-1012) |has| |#1| (-1012)) ((-1118) . T))
-((-1741 (((-108) |#1|) 24)) (-2565 (((-706) (-706)) 23) (((-706)) 22)) (-1354 (((-108) |#1| (-108)) 25) (((-108) |#1|) 26)))
-(((-116 |#1|) (-10 -7 (-15 -1354 ((-108) |#1|)) (-15 -1354 ((-108) |#1| (-108))) (-15 -2565 ((-706))) (-15 -2565 ((-706) (-706))) (-15 -1741 ((-108) |#1|))) (-1140 (-520))) (T -116))
-((-1741 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1140 (-520))))) (-2565 (*1 *2 *2) (-12 (-5 *2 (-706)) (-5 *1 (-116 *3)) (-4 *3 (-1140 (-520))))) (-2565 (*1 *2) (-12 (-5 *2 (-706)) (-5 *1 (-116 *3)) (-4 *3 (-1140 (-520))))) (-1354 (*1 *2 *3 *2) (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1140 (-520))))) (-1354 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1140 (-520))))))
-(-10 -7 (-15 -1354 ((-108) |#1|)) (-15 -1354 ((-108) |#1| (-108))) (-15 -2565 ((-706))) (-15 -2565 ((-706) (-706))) (-15 -1741 ((-108) |#1|)))
-((-1414 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-3429 ((|#1| $) 15)) (-3175 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 22)) (-2063 (((-108) $ (-706)) NIL)) (-2888 ((|#1| $ |#1|) NIL (|has| $ (-6 -4230)))) (-2478 (($ $ $) 18 (|has| $ (-6 -4230)))) (-3098 (($ $ $) 20 (|has| $ (-6 -4230)))) (-2377 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4230))) (($ $ "left" $) NIL (|has| $ (-6 -4230))) (($ $ "right" $) NIL (|has| $ (-6 -4230)))) (-3061 (($ $ (-586 $)) NIL (|has| $ (-6 -4230)))) (-3961 (($) NIL T CONST)) (-1924 (($ $) 17)) (-3828 (((-586 |#1|) $) NIL (|has| $ (-6 -4229)))) (-3405 (((-586 $) $) NIL)) (-1885 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-3031 (($ $ |#1| $) 23)) (-3027 (((-108) $ (-706)) NIL)) (-3702 (((-586 |#1|) $) NIL (|has| $ (-6 -4229)))) (-2422 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-3830 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#1| |#1|) $) NIL)) (-1390 (((-108) $ (-706)) NIL)) (-1912 (($ $) 19)) (-1277 (((-586 |#1|) $) NIL)) (-1740 (((-108) $) NIL)) (-1239 (((-1066) $) NIL (|has| |#1| (-1012)))) (-3575 (($ |#1| $) 24)) (-3618 (($ |#1| $) 10)) (-4142 (((-1030) $) NIL (|has| |#1| (-1012)))) (-4155 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 |#1|))) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-268 |#1|)) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-586 |#1|) (-586 |#1|)) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))) (-2533 (((-108) $ $) NIL)) (-4018 (((-108) $) 14)) (-2238 (($) 8)) (-2543 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3765 (((-520) $ $) NIL)) (-1975 (((-108) $) NIL)) (-4159 (((-706) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229))) (((-706) |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-2403 (($ $) NIL)) (-2188 (((-791) $) NIL (|has| |#1| (-560 (-791))))) (-2438 (((-586 $) $) NIL)) (-1639 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-3770 (($ (-586 |#1|)) 12)) (-1662 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-1530 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-3474 (((-706) $) NIL (|has| $ (-6 -4229)))))
-(((-117 |#1|) (-13 (-121 |#1|) (-10 -8 (-6 -4230) (-6 -4229) (-15 -3770 ($ (-586 |#1|))) (-15 -3618 ($ |#1| $)) (-15 -3575 ($ |#1| $)) (-15 -3175 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-783)) (T -117))
-((-3770 (*1 *1 *2) (-12 (-5 *2 (-586 *3)) (-4 *3 (-783)) (-5 *1 (-117 *3)))) (-3618 (*1 *1 *2 *1) (-12 (-5 *1 (-117 *2)) (-4 *2 (-783)))) (-3575 (*1 *1 *2 *1) (-12 (-5 *1 (-117 *2)) (-4 *2 (-783)))) (-3175 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-117 *3)) (|:| |greater| (-117 *3)))) (-5 *1 (-117 *3)) (-4 *3 (-783)))))
-(-13 (-121 |#1|) (-10 -8 (-6 -4230) (-6 -4229) (-15 -3770 ($ (-586 |#1|))) (-15 -3618 ($ |#1| $)) (-15 -3575 ($ |#1| $)) (-15 -3175 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $))))
-((-1499 (($ $) 14)) (-2399 (($ $) 11)) (-3476 (($ $ $) 24)) (-2626 (($ $ $) 22)) (-3504 (($ $) 12)) (-2763 (($ $ $) 20)) (-2321 (($ $ $) 18)))
-(((-118 |#1|) (-10 -8 (-15 -3476 (|#1| |#1| |#1|)) (-15 -2626 (|#1| |#1| |#1|)) (-15 -3504 (|#1| |#1|)) (-15 -2399 (|#1| |#1|)) (-15 -1499 (|#1| |#1|)) (-15 -2321 (|#1| |#1| |#1|)) (-15 -2763 (|#1| |#1| |#1|))) (-119)) (T -118))
-NIL
-(-10 -8 (-15 -3476 (|#1| |#1| |#1|)) (-15 -2626 (|#1| |#1| |#1|)) (-15 -3504 (|#1| |#1|)) (-15 -2399 (|#1| |#1|)) (-15 -1499 (|#1| |#1|)) (-15 -2321 (|#1| |#1| |#1|)) (-15 -2763 (|#1| |#1| |#1|)))
-((-1414 (((-108) $ $) 7)) (-1499 (($ $) 104)) (-3343 (($ $ $) 25)) (-1476 (((-1169) $ (-520) (-520)) 67 (|has| $ (-6 -4230)))) (-4029 (((-108) $) 99 (|has| (-108) (-783))) (((-108) (-1 (-108) (-108) (-108)) $) 93)) (-3587 (($ $) 103 (-12 (|has| (-108) (-783)) (|has| $ (-6 -4230)))) (($ (-1 (-108) (-108) (-108)) $) 102 (|has| $ (-6 -4230)))) (-3210 (($ $) 98 (|has| (-108) (-783))) (($ (-1 (-108) (-108) (-108)) $) 92)) (-2063 (((-108) $ (-706)) 38)) (-2377 (((-108) $ (-1131 (-520)) (-108)) 89 (|has| $ (-6 -4230))) (((-108) $ (-520) (-108)) 55 (|has| $ (-6 -4230)))) (-1627 (($ (-1 (-108) (-108)) $) 72 (|has| $ (-6 -4229)))) (-3961 (($) 39 T CONST)) (-2447 (($ $) 101 (|has| $ (-6 -4230)))) (-1861 (($ $) 91)) (-2331 (($ $) 69 (-12 (|has| (-108) (-1012)) (|has| $ (-6 -4229))))) (-1421 (($ (-1 (-108) (-108)) $) 73 (|has| $ (-6 -4229))) (($ (-108) $) 70 (-12 (|has| (-108) (-1012)) (|has| $ (-6 -4229))))) (-3856 (((-108) (-1 (-108) (-108) (-108)) $) 75 (|has| $ (-6 -4229))) (((-108) (-1 (-108) (-108) (-108)) $ (-108)) 74 (|has| $ (-6 -4229))) (((-108) (-1 (-108) (-108) (-108)) $ (-108) (-108)) 71 (-12 (|has| (-108) (-1012)) (|has| $ (-6 -4229))))) (-3846 (((-108) $ (-520) (-108)) 54 (|has| $ (-6 -4230)))) (-3623 (((-108) $ (-520)) 56)) (-3232 (((-520) (-108) $ (-520)) 96 (|has| (-108) (-1012))) (((-520) (-108) $) 95 (|has| (-108) (-1012))) (((-520) (-1 (-108) (-108)) $) 94)) (-3828 (((-586 (-108)) $) 46 (|has| $ (-6 -4229)))) (-3991 (($ $ $) 26)) (-2399 (($ $) 31)) (-3476 (($ $ $) 28)) (-1810 (($ (-706) (-108)) 78)) (-2626 (($ $ $) 29)) (-3027 (((-108) $ (-706)) 37)) (-2567 (((-520) $) 64 (|has| (-520) (-783)))) (-2809 (($ $ $) 13)) (-1819 (($ $ $) 97 (|has| (-108) (-783))) (($ (-1 (-108) (-108) (-108)) $ $) 90)) (-3702 (((-586 (-108)) $) 47 (|has| $ (-6 -4229)))) (-2422 (((-108) (-108) $) 49 (-12 (|has| (-108) (-1012)) (|has| $ (-6 -4229))))) (-1752 (((-520) $) 63 (|has| (-520) (-783)))) (-2446 (($ $ $) 14)) (-3830 (($ (-1 (-108) (-108)) $) 42 (|has| $ (-6 -4230)))) (-1389 (($ (-1 (-108) (-108) (-108)) $ $) 83) (($ (-1 (-108) (-108)) $) 41)) (-1390 (((-108) $ (-706)) 36)) (-1239 (((-1066) $) 9)) (-1659 (($ $ $ (-520)) 88) (($ (-108) $ (-520)) 87)) (-3622 (((-586 (-520)) $) 61)) (-2603 (((-108) (-520) $) 60)) (-4142 (((-1030) $) 10)) (-2293 (((-108) $) 65 (|has| (-520) (-783)))) (-2985 (((-3 (-108) "failed") (-1 (-108) (-108)) $) 76)) (-2936 (($ $ (-108)) 66 (|has| $ (-6 -4230)))) (-4155 (((-108) (-1 (-108) (-108)) $) 44 (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-108)) (-586 (-108))) 53 (-12 (|has| (-108) (-283 (-108))) (|has| (-108) (-1012)))) (($ $ (-108) (-108)) 52 (-12 (|has| (-108) (-283 (-108))) (|has| (-108) (-1012)))) (($ $ (-268 (-108))) 51 (-12 (|has| (-108) (-283 (-108))) (|has| (-108) (-1012)))) (($ $ (-586 (-268 (-108)))) 50 (-12 (|has| (-108) (-283 (-108))) (|has| (-108) (-1012))))) (-2533 (((-108) $ $) 32)) (-2094 (((-108) (-108) $) 62 (-12 (|has| $ (-6 -4229)) (|has| (-108) (-1012))))) (-1523 (((-586 (-108)) $) 59)) (-4018 (((-108) $) 35)) (-2238 (($) 34)) (-2543 (($ $ (-1131 (-520))) 84) (((-108) $ (-520)) 58) (((-108) $ (-520) (-108)) 57)) (-3690 (($ $ (-1131 (-520))) 86) (($ $ (-520)) 85)) (-4159 (((-706) (-108) $) 48 (-12 (|has| (-108) (-1012)) (|has| $ (-6 -4229)))) (((-706) (-1 (-108) (-108)) $) 45 (|has| $ (-6 -4229)))) (-1913 (($ $ $ (-520)) 100 (|has| $ (-6 -4230)))) (-2403 (($ $) 33)) (-1429 (((-496) $) 68 (|has| (-108) (-561 (-496))))) (-2200 (($ (-586 (-108))) 77)) (-4156 (($ (-586 $)) 82) (($ $ $) 81) (($ (-108) $) 80) (($ $ (-108)) 79)) (-2188 (((-791) $) 11)) (-1662 (((-108) (-1 (-108) (-108)) $) 43 (|has| $ (-6 -4229)))) (-4006 (($ $ $) 27)) (-3504 (($ $) 30)) (-2763 (($ $ $) 106)) (-1573 (((-108) $ $) 16)) (-1557 (((-108) $ $) 17)) (-1530 (((-108) $ $) 6)) (-1565 (((-108) $ $) 15)) (-1548 (((-108) $ $) 18)) (-2321 (($ $ $) 105)) (-3474 (((-706) $) 40 (|has| $ (-6 -4229)))))
-(((-119) (-1195)) (T -119))
-((-2399 (*1 *1 *1) (-4 *1 (-119))) (-3504 (*1 *1 *1) (-4 *1 (-119))) (-2626 (*1 *1 *1 *1) (-4 *1 (-119))) (-3476 (*1 *1 *1 *1) (-4 *1 (-119))) (-4006 (*1 *1 *1 *1) (-4 *1 (-119))) (-3991 (*1 *1 *1 *1) (-4 *1 (-119))) (-3343 (*1 *1 *1 *1) (-4 *1 (-119))))
-(-13 (-783) (-601) (-19 (-108)) (-10 -8 (-15 -2399 ($ $)) (-15 -3504 ($ $)) (-15 -2626 ($ $ $)) (-15 -3476 ($ $ $)) (-15 -4006 ($ $ $)) (-15 -3991 ($ $ $)) (-15 -3343 ($ $ $))))
-(((-33) . T) ((-97) . T) ((-560 (-791)) . T) ((-139 #0=(-108)) . T) ((-561 (-496)) |has| (-108) (-561 (-496))) ((-260 #1=(-520) #0#) . T) ((-262 #1# #0#) . T) ((-283 #0#) -12 (|has| (-108) (-283 (-108))) (|has| (-108) (-1012))) ((-346 #0#) . T) ((-459 #0#) . T) ((-553 #1# #0#) . T) ((-481 #0# #0#) -12 (|has| (-108) (-283 (-108))) (|has| (-108) (-1012))) ((-591 #0#) . T) ((-601) . T) ((-19 #0#) . T) ((-783) . T) ((-1012) . T) ((-1118) . T))
-((-3830 (($ (-1 |#2| |#2|) $) 22)) (-2403 (($ $) 16)) (-3474 (((-706) $) 24)))
-(((-120 |#1| |#2|) (-10 -8 (-15 -3830 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3474 ((-706) |#1|)) (-15 -2403 (|#1| |#1|))) (-121 |#2|) (-1012)) (T -120))
-NIL
-(-10 -8 (-15 -3830 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3474 ((-706) |#1|)) (-15 -2403 (|#1| |#1|)))
-((-1414 (((-108) $ $) 19 (|has| |#1| (-1012)))) (-3429 ((|#1| $) 48)) (-2063 (((-108) $ (-706)) 8)) (-2888 ((|#1| $ |#1|) 39 (|has| $ (-6 -4230)))) (-2478 (($ $ $) 52 (|has| $ (-6 -4230)))) (-3098 (($ $ $) 54 (|has| $ (-6 -4230)))) (-2377 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4230))) (($ $ "left" $) 55 (|has| $ (-6 -4230))) (($ $ "right" $) 53 (|has| $ (-6 -4230)))) (-3061 (($ $ (-586 $)) 41 (|has| $ (-6 -4230)))) (-3961 (($) 7 T CONST)) (-1924 (($ $) 57)) (-3828 (((-586 |#1|) $) 30 (|has| $ (-6 -4229)))) (-3405 (((-586 $) $) 50)) (-1885 (((-108) $ $) 42 (|has| |#1| (-1012)))) (-3031 (($ $ |#1| $) 60)) (-3027 (((-108) $ (-706)) 9)) (-3702 (((-586 |#1|) $) 29 (|has| $ (-6 -4229)))) (-2422 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-3830 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#1| |#1|) $) 35)) (-1390 (((-108) $ (-706)) 10)) (-1912 (($ $) 59)) (-1277 (((-586 |#1|) $) 45)) (-1740 (((-108) $) 49)) (-1239 (((-1066) $) 22 (|has| |#1| (-1012)))) (-4142 (((-1030) $) 21 (|has| |#1| (-1012)))) (-4155 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 |#1|))) 26 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-268 |#1|)) 25 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-586 |#1|) (-586 |#1|)) 23 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))) (-2533 (((-108) $ $) 14)) (-4018 (((-108) $) 11)) (-2238 (($) 12)) (-2543 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-3765 (((-520) $ $) 44)) (-1975 (((-108) $) 46)) (-4159 (((-706) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4229))) (((-706) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-2403 (($ $) 13)) (-2188 (((-791) $) 18 (|has| |#1| (-560 (-791))))) (-2438 (((-586 $) $) 51)) (-1639 (((-108) $ $) 43 (|has| |#1| (-1012)))) (-1662 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4229)))) (-1530 (((-108) $ $) 20 (|has| |#1| (-1012)))) (-3474 (((-706) $) 6 (|has| $ (-6 -4229)))))
-(((-121 |#1|) (-1195) (-1012)) (T -121))
-((-3031 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-121 *2)) (-4 *2 (-1012)))))
-(-13 (-115 |t#1|) (-10 -8 (-6 -4230) (-6 -4229) (-15 -3031 ($ $ |t#1| $))))
-(((-33) . T) ((-97) |has| |#1| (-1012)) ((-115 |#1|) . T) ((-560 (-791)) -3700 (|has| |#1| (-1012)) (|has| |#1| (-560 (-791)))) ((-283 |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))) ((-459 |#1|) . T) ((-481 |#1| |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))) ((-934 |#1|) . T) ((-1012) |has| |#1| (-1012)) ((-1118) . T))
-((-1414 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-3429 ((|#1| $) 15)) (-2063 (((-108) $ (-706)) NIL)) (-2888 ((|#1| $ |#1|) 19 (|has| $ (-6 -4230)))) (-2478 (($ $ $) 20 (|has| $ (-6 -4230)))) (-3098 (($ $ $) 18 (|has| $ (-6 -4230)))) (-2377 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4230))) (($ $ "left" $) NIL (|has| $ (-6 -4230))) (($ $ "right" $) NIL (|has| $ (-6 -4230)))) (-3061 (($ $ (-586 $)) NIL (|has| $ (-6 -4230)))) (-3961 (($) NIL T CONST)) (-1924 (($ $) 21)) (-3828 (((-586 |#1|) $) NIL (|has| $ (-6 -4229)))) (-3405 (((-586 $) $) NIL)) (-1885 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-3031 (($ $ |#1| $) NIL)) (-3027 (((-108) $ (-706)) NIL)) (-3702 (((-586 |#1|) $) NIL (|has| $ (-6 -4229)))) (-2422 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-3830 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#1| |#1|) $) NIL)) (-1390 (((-108) $ (-706)) NIL)) (-1912 (($ $) NIL)) (-1277 (((-586 |#1|) $) NIL)) (-1740 (((-108) $) NIL)) (-1239 (((-1066) $) NIL (|has| |#1| (-1012)))) (-3618 (($ |#1| $) 10)) (-4142 (((-1030) $) NIL (|has| |#1| (-1012)))) (-4155 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 |#1|))) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-268 |#1|)) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-586 |#1|) (-586 |#1|)) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))) (-2533 (((-108) $ $) NIL)) (-4018 (((-108) $) 14)) (-2238 (($) 8)) (-2543 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3765 (((-520) $ $) NIL)) (-1975 (((-108) $) NIL)) (-4159 (((-706) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229))) (((-706) |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-2403 (($ $) 17)) (-2188 (((-791) $) NIL (|has| |#1| (-560 (-791))))) (-2438 (((-586 $) $) NIL)) (-1639 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-4173 (($ (-586 |#1|)) 12)) (-1662 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-1530 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-3474 (((-706) $) NIL (|has| $ (-6 -4229)))))
-(((-122 |#1|) (-13 (-121 |#1|) (-10 -8 (-6 -4230) (-15 -4173 ($ (-586 |#1|))) (-15 -3618 ($ |#1| $)))) (-783)) (T -122))
-((-4173 (*1 *1 *2) (-12 (-5 *2 (-586 *3)) (-4 *3 (-783)) (-5 *1 (-122 *3)))) (-3618 (*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-783)))))
-(-13 (-121 |#1|) (-10 -8 (-6 -4230) (-15 -4173 ($ (-586 |#1|))) (-15 -3618 ($ |#1| $))))
-((-1414 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-3429 ((|#1| $) 24)) (-2063 (((-108) $ (-706)) NIL)) (-2888 ((|#1| $ |#1|) 26 (|has| $ (-6 -4230)))) (-2478 (($ $ $) 30 (|has| $ (-6 -4230)))) (-3098 (($ $ $) 28 (|has| $ (-6 -4230)))) (-2377 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4230))) (($ $ "left" $) NIL (|has| $ (-6 -4230))) (($ $ "right" $) NIL (|has| $ (-6 -4230)))) (-3061 (($ $ (-586 $)) NIL (|has| $ (-6 -4230)))) (-3961 (($) NIL T CONST)) (-1924 (($ $) 20)) (-3828 (((-586 |#1|) $) NIL (|has| $ (-6 -4229)))) (-3405 (((-586 $) $) NIL)) (-1885 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-3031 (($ $ |#1| $) 15)) (-3027 (((-108) $ (-706)) NIL)) (-3702 (((-586 |#1|) $) NIL (|has| $ (-6 -4229)))) (-2422 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-3830 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#1| |#1|) $) NIL)) (-1390 (((-108) $ (-706)) NIL)) (-1912 (($ $) 19)) (-1277 (((-586 |#1|) $) NIL)) (-1740 (((-108) $) 21)) (-1239 (((-1066) $) NIL (|has| |#1| (-1012)))) (-4142 (((-1030) $) NIL (|has| |#1| (-1012)))) (-4155 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 |#1|))) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-268 |#1|)) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-586 |#1|) (-586 |#1|)) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))) (-2533 (((-108) $ $) NIL)) (-4018 (((-108) $) 18)) (-2238 (($) 11)) (-2543 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3765 (((-520) $ $) NIL)) (-1975 (((-108) $) NIL)) (-4159 (((-706) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229))) (((-706) |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-2403 (($ $) NIL)) (-2188 (((-791) $) NIL (|has| |#1| (-560 (-791))))) (-2438 (((-586 $) $) NIL)) (-1639 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-4117 (($ |#1|) 17) (($ $ |#1| $) 16)) (-1662 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-1530 (((-108) $ $) 10 (|has| |#1| (-1012)))) (-3474 (((-706) $) NIL (|has| $ (-6 -4229)))))
-(((-123 |#1|) (-13 (-121 |#1|) (-10 -8 (-15 -4117 ($ |#1|)) (-15 -4117 ($ $ |#1| $)))) (-1012)) (T -123))
-((-4117 (*1 *1 *2) (-12 (-5 *1 (-123 *2)) (-4 *2 (-1012)))) (-4117 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-123 *2)) (-4 *2 (-1012)))))
-(-13 (-121 |#1|) (-10 -8 (-15 -4117 ($ |#1|)) (-15 -4117 ($ $ |#1| $))))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-1917 (((-3 $ "failed") $ $) 19)) (-3961 (($) 17 T CONST)) (-1239 (((-1066) $) 9)) (-4142 (((-1030) $) 10)) (-2188 (((-791) $) 11)) (-3560 (($) 18 T CONST)) (-1530 (((-108) $ $) 6)) (-1601 (($ $ $) 14)) (* (($ (-849) $) 13) (($ (-706) $) 15)))
-(((-124) (-1195)) (T -124))
-((-1917 (*1 *1 *1 *1) (|partial| -4 *1 (-124))))
-(-13 (-23) (-10 -8 (-15 -1917 ((-3 $ "failed") $ $))))
-(((-23) . T) ((-25) . T) ((-97) . T) ((-560 (-791)) . T) ((-1012) . T))
-((-1414 (((-108) $ $) 7)) (-2500 (((-1169) $ (-706)) 19)) (-3232 (((-706) $) 20)) (-2809 (($ $ $) 13)) (-2446 (($ $ $) 14)) (-1239 (((-1066) $) 9)) (-4142 (((-1030) $) 10)) (-2188 (((-791) $) 11)) (-1573 (((-108) $ $) 16)) (-1557 (((-108) $ $) 17)) (-1530 (((-108) $ $) 6)) (-1565 (((-108) $ $) 15)) (-1548 (((-108) $ $) 18)))
-(((-125) (-1195)) (T -125))
-((-3232 (*1 *2 *1) (-12 (-4 *1 (-125)) (-5 *2 (-706)))) (-2500 (*1 *2 *1 *3) (-12 (-4 *1 (-125)) (-5 *3 (-706)) (-5 *2 (-1169)))))
-(-13 (-783) (-10 -8 (-15 -3232 ((-706) $)) (-15 -2500 ((-1169) $ (-706)))))
-(((-97) . T) ((-560 (-791)) . T) ((-783) . T) ((-1012) . T))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-3961 (($) NIL T CONST)) (-1296 (((-3 (-706) "failed") $) 38)) (-1482 (((-706) $) 36)) (-1540 (((-3 $ "failed") $) NIL)) (-1537 (((-108) $) NIL)) (-2809 (($ $ $) NIL)) (-2446 (($ $ $) 26)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2946 (((-108)) 39)) (-3008 (((-108) (-108)) 41)) (-1447 (((-108) $) 23)) (-3204 (((-108) $) 35)) (-2188 (((-791) $) 22) (($ (-706)) 14)) (-3504 (($ $ (-706)) NIL) (($ $ (-849)) NIL)) (-3560 (($) 12 T CONST)) (-3570 (($) 11 T CONST)) (-3951 (($ (-706)) 15)) (-1573 (((-108) $ $) NIL)) (-1557 (((-108) $ $) NIL)) (-1530 (((-108) $ $) 24)) (-1565 (((-108) $ $) NIL)) (-1548 (((-108) $ $) 25)) (-1611 (((-3 $ "failed") $ $) 29)) (-1601 (($ $ $) 27)) (** (($ $ (-706)) NIL) (($ $ (-849)) NIL) (($ $ $) 34)) (* (($ (-706) $) 32) (($ (-849) $) NIL) (($ $ $) 30)))
-(((-126) (-13 (-783) (-23) (-662) (-960 (-706)) (-10 -8 (-6 (-4231 "*")) (-15 -1611 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -3951 ($ (-706))) (-15 -1447 ((-108) $)) (-15 -3204 ((-108) $)) (-15 -2946 ((-108))) (-15 -3008 ((-108) (-108)))))) (T -126))
-((-1611 (*1 *1 *1 *1) (|partial| -5 *1 (-126))) (** (*1 *1 *1 *1) (-5 *1 (-126))) (-3951 (*1 *1 *2) (-12 (-5 *2 (-706)) (-5 *1 (-126)))) (-1447 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-126)))) (-3204 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-126)))) (-2946 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-126)))) (-3008 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-126)))))
-(-13 (-783) (-23) (-662) (-960 (-706)) (-10 -8 (-6 (-4231 "*")) (-15 -1611 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -3951 ($ (-706))) (-15 -1447 ((-108) $)) (-15 -3204 ((-108) $)) (-15 -2946 ((-108))) (-15 -3008 ((-108) (-108)))))
-((-3129 (((-128 |#1| |#2| |#4|) (-586 |#4|) (-128 |#1| |#2| |#3|)) 14)) (-1389 (((-128 |#1| |#2| |#4|) (-1 |#4| |#3|) (-128 |#1| |#2| |#3|)) 18)))
-(((-127 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3129 ((-128 |#1| |#2| |#4|) (-586 |#4|) (-128 |#1| |#2| |#3|))) (-15 -1389 ((-128 |#1| |#2| |#4|) (-1 |#4| |#3|) (-128 |#1| |#2| |#3|)))) (-520) (-706) (-157) (-157)) (T -127))
-((-1389 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-128 *5 *6 *7)) (-14 *5 (-520)) (-14 *6 (-706)) (-4 *7 (-157)) (-4 *8 (-157)) (-5 *2 (-128 *5 *6 *8)) (-5 *1 (-127 *5 *6 *7 *8)))) (-3129 (*1 *2 *3 *4) (-12 (-5 *3 (-586 *8)) (-5 *4 (-128 *5 *6 *7)) (-14 *5 (-520)) (-14 *6 (-706)) (-4 *7 (-157)) (-4 *8 (-157)) (-5 *2 (-128 *5 *6 *8)) (-5 *1 (-127 *5 *6 *7 *8)))))
-(-10 -7 (-15 -3129 ((-128 |#1| |#2| |#4|) (-586 |#4|) (-128 |#1| |#2| |#3|))) (-15 -1389 ((-128 |#1| |#2| |#4|) (-1 |#4| |#3|) (-128 |#1| |#2| |#3|))))
-((-1414 (((-108) $ $) NIL)) (-3022 (($ (-586 |#3|)) 39)) (-1305 (($ $) 98) (($ $ (-520) (-520)) 97)) (-3961 (($) 17)) (-1296 (((-3 |#3| "failed") $) 59)) (-1482 ((|#3| $) NIL)) (-1974 (($ $ (-586 (-520))) 99)) (-3116 (((-586 |#3|) $) 35)) (-3160 (((-706) $) 43)) (-1700 (($ $ $) 92)) (-3323 (($) 42)) (-1239 (((-1066) $) NIL)) (-3052 (($) 16)) (-4142 (((-1030) $) NIL)) (-2543 ((|#3| $) 45) ((|#3| $ (-520)) 46) ((|#3| $ (-520) (-520)) 47) ((|#3| $ (-520) (-520) (-520)) 48) ((|#3| $ (-520) (-520) (-520) (-520)) 49) ((|#3| $ (-586 (-520))) 51)) (-2528 (((-706) $) 44)) (-2095 (($ $ (-520) $ (-520)) 93) (($ $ (-520) (-520)) 95)) (-2188 (((-791) $) 66) (($ |#3|) 67) (($ (-216 |#2| |#3|)) 74) (($ (-1050 |#2| |#3|)) 77) (($ (-586 |#3|)) 52) (($ (-586 $)) 57)) (-3560 (($) 68 T CONST)) (-3570 (($) 69 T CONST)) (-1530 (((-108) $ $) 79)) (-1611 (($ $) 85) (($ $ $) 83)) (-1601 (($ $ $) 81)) (* (($ |#3| $) 90) (($ $ |#3|) 91) (($ $ (-520)) 88) (($ (-520) $) 87) (($ $ $) 94)))
-(((-128 |#1| |#2| |#3|) (-13 (-437 |#3| (-706)) (-442 (-520) (-706)) (-10 -8 (-15 -2188 ($ (-216 |#2| |#3|))) (-15 -2188 ($ (-1050 |#2| |#3|))) (-15 -2188 ($ (-586 |#3|))) (-15 -2188 ($ (-586 $))) (-15 -3160 ((-706) $)) (-15 -2543 (|#3| $)) (-15 -2543 (|#3| $ (-520))) (-15 -2543 (|#3| $ (-520) (-520))) (-15 -2543 (|#3| $ (-520) (-520) (-520))) (-15 -2543 (|#3| $ (-520) (-520) (-520) (-520))) (-15 -2543 (|#3| $ (-586 (-520)))) (-15 -1700 ($ $ $)) (-15 * ($ $ $)) (-15 -2095 ($ $ (-520) $ (-520))) (-15 -2095 ($ $ (-520) (-520))) (-15 -1305 ($ $)) (-15 -1305 ($ $ (-520) (-520))) (-15 -1974 ($ $ (-586 (-520)))) (-15 -3052 ($)) (-15 -3323 ($)) (-15 -3116 ((-586 |#3|) $)) (-15 -3022 ($ (-586 |#3|))) (-15 -3961 ($)))) (-520) (-706) (-157)) (T -128))
-((-1700 (*1 *1 *1 *1) (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-520)) (-14 *3 (-706)) (-4 *4 (-157)))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-216 *4 *5)) (-14 *4 (-706)) (-4 *5 (-157)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-520)))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-1050 *4 *5)) (-14 *4 (-706)) (-4 *5 (-157)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-520)))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-586 *5)) (-4 *5 (-157)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-520)) (-14 *4 (-706)))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-586 (-128 *3 *4 *5))) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-520)) (-14 *4 (-706)) (-4 *5 (-157)))) (-3160 (*1 *2 *1) (-12 (-5 *2 (-706)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-520)) (-14 *4 *2) (-4 *5 (-157)))) (-2543 (*1 *2 *1) (-12 (-4 *2 (-157)) (-5 *1 (-128 *3 *4 *2)) (-14 *3 (-520)) (-14 *4 (-706)))) (-2543 (*1 *2 *1 *3) (-12 (-5 *3 (-520)) (-4 *2 (-157)) (-5 *1 (-128 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-706)))) (-2543 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-520)) (-4 *2 (-157)) (-5 *1 (-128 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-706)))) (-2543 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-520)) (-4 *2 (-157)) (-5 *1 (-128 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-706)))) (-2543 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-520)) (-4 *2 (-157)) (-5 *1 (-128 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-706)))) (-2543 (*1 *2 *1 *3) (-12 (-5 *3 (-586 (-520))) (-4 *2 (-157)) (-5 *1 (-128 *4 *5 *2)) (-14 *4 (-520)) (-14 *5 (-706)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-520)) (-14 *3 (-706)) (-4 *4 (-157)))) (-2095 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-706)) (-4 *5 (-157)))) (-2095 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-520)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-706)) (-4 *5 (-157)))) (-1305 (*1 *1 *1) (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-520)) (-14 *3 (-706)) (-4 *4 (-157)))) (-1305 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-520)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-706)) (-4 *5 (-157)))) (-1974 (*1 *1 *1 *2) (-12 (-5 *2 (-586 (-520))) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-520)) (-14 *4 (-706)) (-4 *5 (-157)))) (-3052 (*1 *1) (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-520)) (-14 *3 (-706)) (-4 *4 (-157)))) (-3323 (*1 *1) (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-520)) (-14 *3 (-706)) (-4 *4 (-157)))) (-3116 (*1 *2 *1) (-12 (-5 *2 (-586 *5)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-520)) (-14 *4 (-706)) (-4 *5 (-157)))) (-3022 (*1 *1 *2) (-12 (-5 *2 (-586 *5)) (-4 *5 (-157)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-520)) (-14 *4 (-706)))) (-3961 (*1 *1) (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-520)) (-14 *3 (-706)) (-4 *4 (-157)))))
-(-13 (-437 |#3| (-706)) (-442 (-520) (-706)) (-10 -8 (-15 -2188 ($ (-216 |#2| |#3|))) (-15 -2188 ($ (-1050 |#2| |#3|))) (-15 -2188 ($ (-586 |#3|))) (-15 -2188 ($ (-586 $))) (-15 -3160 ((-706) $)) (-15 -2543 (|#3| $)) (-15 -2543 (|#3| $ (-520))) (-15 -2543 (|#3| $ (-520) (-520))) (-15 -2543 (|#3| $ (-520) (-520) (-520))) (-15 -2543 (|#3| $ (-520) (-520) (-520) (-520))) (-15 -2543 (|#3| $ (-586 (-520)))) (-15 -1700 ($ $ $)) (-15 * ($ $ $)) (-15 -2095 ($ $ (-520) $ (-520))) (-15 -2095 ($ $ (-520) (-520))) (-15 -1305 ($ $)) (-15 -1305 ($ $ (-520) (-520))) (-15 -1974 ($ $ (-586 (-520)))) (-15 -3052 ($)) (-15 -3323 ($)) (-15 -3116 ((-586 |#3|) $)) (-15 -3022 ($ (-586 |#3|))) (-15 -3961 ($))))
-((-1414 (((-108) $ $) NIL)) (-2209 (($) 15 T CONST)) (-2442 (($) NIL (|has| (-132) (-341)))) (-2268 (($ $ $) 17) (($ $ (-132)) NIL) (($ (-132) $) NIL)) (-1907 (($ $ $) NIL)) (-3645 (((-108) $ $) NIL)) (-2063 (((-108) $ (-706)) NIL)) (-1628 (((-706)) NIL (|has| (-132) (-341)))) (-1763 (($) NIL) (($ (-586 (-132))) NIL)) (-1817 (($ (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4229)))) (-1627 (($ (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4229)))) (-3961 (($) NIL T CONST)) (-2331 (($ $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-132) (-1012))))) (-3766 (($ (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4229))) (($ (-132) $) 51 (|has| $ (-6 -4229)))) (-1421 (($ (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4229))) (($ (-132) $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-132) (-1012))))) (-3856 (((-132) (-1 (-132) (-132) (-132)) $) NIL (|has| $ (-6 -4229))) (((-132) (-1 (-132) (-132) (-132)) $ (-132)) NIL (|has| $ (-6 -4229))) (((-132) (-1 (-132) (-132) (-132)) $ (-132) (-132)) NIL (-12 (|has| $ (-6 -4229)) (|has| (-132) (-1012))))) (-3249 (($) NIL (|has| (-132) (-341)))) (-3828 (((-586 (-132)) $) 60 (|has| $ (-6 -4229)))) (-3027 (((-108) $ (-706)) NIL)) (-2809 (((-132) $) NIL (|has| (-132) (-783)))) (-3702 (((-586 (-132)) $) NIL (|has| $ (-6 -4229)))) (-2422 (((-108) (-132) $) 26 (-12 (|has| $ (-6 -4229)) (|has| (-132) (-1012))))) (-2446 (((-132) $) NIL (|has| (-132) (-783)))) (-3830 (($ (-1 (-132) (-132)) $) 59 (|has| $ (-6 -4230)))) (-1389 (($ (-1 (-132) (-132)) $) 55)) (-3002 (($) 16 T CONST)) (-3040 (((-849) $) NIL (|has| (-132) (-341)))) (-1390 (((-108) $ (-706)) NIL)) (-1239 (((-1066) $) NIL)) (-2077 (($ $ $) 29)) (-3351 (((-132) $) 52)) (-3618 (($ (-132) $) 50)) (-2716 (($ (-849)) NIL (|has| (-132) (-341)))) (-3036 (($) 14 T CONST)) (-4142 (((-1030) $) NIL)) (-2985 (((-3 (-132) "failed") (-1 (-108) (-132)) $) NIL)) (-3345 (((-132) $) 53)) (-4155 (((-108) (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-132)) (-586 (-132))) NIL (-12 (|has| (-132) (-283 (-132))) (|has| (-132) (-1012)))) (($ $ (-132) (-132)) NIL (-12 (|has| (-132) (-283 (-132))) (|has| (-132) (-1012)))) (($ $ (-268 (-132))) NIL (-12 (|has| (-132) (-283 (-132))) (|has| (-132) (-1012)))) (($ $ (-586 (-268 (-132)))) NIL (-12 (|has| (-132) (-283 (-132))) (|has| (-132) (-1012))))) (-2533 (((-108) $ $) NIL)) (-4018 (((-108) $) NIL)) (-2238 (($) 48)) (-2113 (($) 13 T CONST)) (-1397 (($ $ $) 31) (($ $ (-132)) NIL)) (-1645 (($ (-586 (-132))) NIL) (($) NIL)) (-4159 (((-706) (-132) $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-132) (-1012)))) (((-706) (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4229)))) (-2403 (($ $) NIL)) (-1429 (((-1066) $) 36) (((-496) $) NIL (|has| (-132) (-561 (-496)))) (((-586 (-132)) $) 34)) (-2200 (($ (-586 (-132))) NIL)) (-3881 (($ $) 32 (|has| (-132) (-341)))) (-2188 (((-791) $) 46)) (-1231 (($ (-1066)) 12) (($ (-586 (-132))) 43)) (-1436 (((-706) $) NIL)) (-3386 (($) 49) (($ (-586 (-132))) NIL)) (-1898 (($ (-586 (-132))) NIL)) (-1662 (((-108) (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4229)))) (-4087 (($) 19 T CONST)) (-2223 (($) 18 T CONST)) (-1530 (((-108) $ $) 22)) (-1548 (((-108) $ $) NIL)) (-3474 (((-706) $) 47 (|has| $ (-6 -4229)))))
-(((-129) (-13 (-1012) (-561 (-1066)) (-398 (-132)) (-561 (-586 (-132))) (-10 -8 (-15 -1231 ($ (-1066))) (-15 -1231 ($ (-586 (-132)))) (-15 -2113 ($) -2675) (-15 -3036 ($) -2675) (-15 -2209 ($) -2675) (-15 -3002 ($) -2675) (-15 -2223 ($) -2675) (-15 -4087 ($) -2675)))) (T -129))
-((-1231 (*1 *1 *2) (-12 (-5 *2 (-1066)) (-5 *1 (-129)))) (-1231 (*1 *1 *2) (-12 (-5 *2 (-586 (-132))) (-5 *1 (-129)))) (-2113 (*1 *1) (-5 *1 (-129))) (-3036 (*1 *1) (-5 *1 (-129))) (-2209 (*1 *1) (-5 *1 (-129))) (-3002 (*1 *1) (-5 *1 (-129))) (-2223 (*1 *1) (-5 *1 (-129))) (-4087 (*1 *1) (-5 *1 (-129))))
-(-13 (-1012) (-561 (-1066)) (-398 (-132)) (-561 (-586 (-132))) (-10 -8 (-15 -1231 ($ (-1066))) (-15 -1231 ($ (-586 (-132)))) (-15 -2113 ($) -2675) (-15 -3036 ($) -2675) (-15 -2209 ($) -2675) (-15 -3002 ($) -2675) (-15 -2223 ($) -2675) (-15 -4087 ($) -2675)))
-((-3029 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-2412 ((|#1| |#3|) 9)) (-1387 ((|#3| |#3|) 15)))
-(((-130 |#1| |#2| |#3|) (-10 -7 (-15 -2412 (|#1| |#3|)) (-15 -1387 (|#3| |#3|)) (-15 -3029 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-512) (-917 |#1|) (-346 |#2|)) (T -130))
-((-3029 (*1 *2 *3) (-12 (-4 *4 (-512)) (-4 *5 (-917 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-130 *4 *5 *3)) (-4 *3 (-346 *5)))) (-1387 (*1 *2 *2) (-12 (-4 *3 (-512)) (-4 *4 (-917 *3)) (-5 *1 (-130 *3 *4 *2)) (-4 *2 (-346 *4)))) (-2412 (*1 *2 *3) (-12 (-4 *4 (-917 *2)) (-4 *2 (-512)) (-5 *1 (-130 *2 *4 *3)) (-4 *3 (-346 *4)))))
-(-10 -7 (-15 -2412 (|#1| |#3|)) (-15 -1387 (|#3| |#3|)) (-15 -3029 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
-((-4151 (($ $ $) 8)) (-2724 (($ $) 7)) (-2586 (($ $ $) 6)))
-(((-131) (-1195)) (T -131))
-((-4151 (*1 *1 *1 *1) (-4 *1 (-131))) (-2724 (*1 *1 *1) (-4 *1 (-131))) (-2586 (*1 *1 *1 *1) (-4 *1 (-131))))
-(-13 (-10 -8 (-15 -2586 ($ $ $)) (-15 -2724 ($ $)) (-15 -4151 ($ $ $))))
-((-1414 (((-108) $ $) NIL)) (-1402 (((-108) $) 38)) (-2209 (($ $) 50)) (-3563 (($) 25)) (-1628 (((-706)) 16)) (-3249 (($) 24)) (-1391 (($) 26)) (-3143 (((-520) $) 21)) (-2809 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-2821 (((-108) $) 40)) (-3002 (($ $) 51)) (-3040 (((-849) $) 22)) (-1239 (((-1066) $) 46)) (-2716 (($ (-849)) 20)) (-2146 (((-108) $) 36)) (-4142 (((-1030) $) NIL)) (-2664 (($) 27)) (-3583 (((-108) $) 34)) (-2188 (((-791) $) 29)) (-3501 (($ (-520)) 18) (($ (-1066)) 49)) (-1320 (((-108) $) 44)) (-2461 (((-108) $) 42)) (-1573 (((-108) $ $) NIL)) (-1557 (((-108) $ $) NIL)) (-1530 (((-108) $ $) 13)) (-1565 (((-108) $ $) NIL)) (-1548 (((-108) $ $) 14)))
-(((-132) (-13 (-777) (-10 -8 (-15 -3143 ((-520) $)) (-15 -3501 ($ (-520))) (-15 -3501 ($ (-1066))) (-15 -3563 ($)) (-15 -1391 ($)) (-15 -2664 ($)) (-15 -2209 ($ $)) (-15 -3002 ($ $)) (-15 -3583 ((-108) $)) (-15 -2146 ((-108) $)) (-15 -2461 ((-108) $)) (-15 -1402 ((-108) $)) (-15 -2821 ((-108) $)) (-15 -1320 ((-108) $))))) (T -132))
-((-3143 (*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-132)))) (-3501 (*1 *1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-132)))) (-3501 (*1 *1 *2) (-12 (-5 *2 (-1066)) (-5 *1 (-132)))) (-3563 (*1 *1) (-5 *1 (-132))) (-1391 (*1 *1) (-5 *1 (-132))) (-2664 (*1 *1) (-5 *1 (-132))) (-2209 (*1 *1 *1) (-5 *1 (-132))) (-3002 (*1 *1 *1) (-5 *1 (-132))) (-3583 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-132)))) (-2146 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-132)))) (-2461 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-132)))) (-1402 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-132)))) (-2821 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-132)))) (-1320 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-132)))))
-(-13 (-777) (-10 -8 (-15 -3143 ((-520) $)) (-15 -3501 ($ (-520))) (-15 -3501 ($ (-1066))) (-15 -3563 ($)) (-15 -1391 ($)) (-15 -2664 ($)) (-15 -2209 ($ $)) (-15 -3002 ($ $)) (-15 -3583 ((-108) $)) (-15 -2146 ((-108) $)) (-15 -2461 ((-108) $)) (-15 -1402 ((-108) $)) (-15 -2821 ((-108) $)) (-15 -1320 ((-108) $))))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-1917 (((-3 $ "failed") $ $) 19)) (-3961 (($) 17 T CONST)) (-1540 (((-3 $ "failed") $) 34)) (-1537 (((-108) $) 31)) (-1239 (((-1066) $) 9)) (-4142 (((-1030) $) 10)) (-2188 (((-791) $) 11) (($ (-520)) 28)) (-3796 (((-3 $ "failed") $) 35)) (-3251 (((-706)) 29)) (-3504 (($ $ (-849)) 26) (($ $ (-706)) 33)) (-3560 (($) 18 T CONST)) (-3570 (($) 30 T CONST)) (-1530 (((-108) $ $) 6)) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-706)) 32)) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ $ $) 24)))
-(((-133) (-1195)) (T -133))
-((-3796 (*1 *1 *1) (|partial| -4 *1 (-133))))
-(-13 (-969) (-10 -8 (-15 -3796 ((-3 $ "failed") $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-560 (-791)) . T) ((-588 $) . T) ((-662) . T) ((-969) . T) ((-976) . T) ((-1024) . T) ((-1012) . T))
-((-2948 ((|#1| (-626 |#1|) |#1|) 17)))
-(((-134 |#1|) (-10 -7 (-15 -2948 (|#1| (-626 |#1|) |#1|))) (-157)) (T -134))
-((-2948 (*1 *2 *3 *2) (-12 (-5 *3 (-626 *2)) (-4 *2 (-157)) (-5 *1 (-134 *2)))))
-(-10 -7 (-15 -2948 (|#1| (-626 |#1|) |#1|)))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-1917 (((-3 $ "failed") $ $) 19)) (-3961 (($) 17 T CONST)) (-1540 (((-3 $ "failed") $) 34)) (-1537 (((-108) $) 31)) (-1239 (((-1066) $) 9)) (-4142 (((-1030) $) 10)) (-2188 (((-791) $) 11) (($ (-520)) 28)) (-3251 (((-706)) 29)) (-3504 (($ $ (-849)) 26) (($ $ (-706)) 33)) (-3560 (($) 18 T CONST)) (-3570 (($) 30 T CONST)) (-1530 (((-108) $ $) 6)) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-706)) 32)) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ $ $) 24)))
-(((-135) (-1195)) (T -135))
-NIL
-(-13 (-969))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-560 (-791)) . T) ((-588 $) . T) ((-662) . T) ((-969) . T) ((-976) . T) ((-1024) . T) ((-1012) . T))
-((-3820 (((-2 (|:| -2647 (-706)) (|:| -2972 (-380 |#2|)) (|:| |radicand| |#2|)) (-380 |#2|) (-706)) 70)) (-3311 (((-3 (-2 (|:| |radicand| (-380 |#2|)) (|:| |deg| (-706))) "failed") |#3|) 52)) (-1748 (((-2 (|:| -2972 (-380 |#2|)) (|:| |poly| |#3|)) |#3|) 37)) (-3432 ((|#1| |#3| |#3|) 40)) (-2286 ((|#3| |#3| (-380 |#2|) (-380 |#2|)) 19)) (-1968 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-380 |#2|)) (|:| |c2| (-380 |#2|)) (|:| |deg| (-706))) |#3| |#3|) 49)))
-(((-136 |#1| |#2| |#3|) (-10 -7 (-15 -1748 ((-2 (|:| -2972 (-380 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -3311 ((-3 (-2 (|:| |radicand| (-380 |#2|)) (|:| |deg| (-706))) "failed") |#3|)) (-15 -3820 ((-2 (|:| -2647 (-706)) (|:| -2972 (-380 |#2|)) (|:| |radicand| |#2|)) (-380 |#2|) (-706))) (-15 -3432 (|#1| |#3| |#3|)) (-15 -2286 (|#3| |#3| (-380 |#2|) (-380 |#2|))) (-15 -1968 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-380 |#2|)) (|:| |c2| (-380 |#2|)) (|:| |deg| (-706))) |#3| |#3|))) (-1122) (-1140 |#1|) (-1140 (-380 |#2|))) (T -136))
-((-1968 (*1 *2 *3 *3) (-12 (-4 *4 (-1122)) (-4 *5 (-1140 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-380 *5)) (|:| |c2| (-380 *5)) (|:| |deg| (-706)))) (-5 *1 (-136 *4 *5 *3)) (-4 *3 (-1140 (-380 *5))))) (-2286 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-380 *5)) (-4 *4 (-1122)) (-4 *5 (-1140 *4)) (-5 *1 (-136 *4 *5 *2)) (-4 *2 (-1140 *3)))) (-3432 (*1 *2 *3 *3) (-12 (-4 *4 (-1140 *2)) (-4 *2 (-1122)) (-5 *1 (-136 *2 *4 *3)) (-4 *3 (-1140 (-380 *4))))) (-3820 (*1 *2 *3 *4) (-12 (-5 *3 (-380 *6)) (-4 *5 (-1122)) (-4 *6 (-1140 *5)) (-5 *2 (-2 (|:| -2647 (-706)) (|:| -2972 *3) (|:| |radicand| *6))) (-5 *1 (-136 *5 *6 *7)) (-5 *4 (-706)) (-4 *7 (-1140 *3)))) (-3311 (*1 *2 *3) (|partial| -12 (-4 *4 (-1122)) (-4 *5 (-1140 *4)) (-5 *2 (-2 (|:| |radicand| (-380 *5)) (|:| |deg| (-706)))) (-5 *1 (-136 *4 *5 *3)) (-4 *3 (-1140 (-380 *5))))) (-1748 (*1 *2 *3) (-12 (-4 *4 (-1122)) (-4 *5 (-1140 *4)) (-5 *2 (-2 (|:| -2972 (-380 *5)) (|:| |poly| *3))) (-5 *1 (-136 *4 *5 *3)) (-4 *3 (-1140 (-380 *5))))))
-(-10 -7 (-15 -1748 ((-2 (|:| -2972 (-380 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -3311 ((-3 (-2 (|:| |radicand| (-380 |#2|)) (|:| |deg| (-706))) "failed") |#3|)) (-15 -3820 ((-2 (|:| -2647 (-706)) (|:| -2972 (-380 |#2|)) (|:| |radicand| |#2|)) (-380 |#2|) (-706))) (-15 -3432 (|#1| |#3| |#3|)) (-15 -2286 (|#3| |#3| (-380 |#2|) (-380 |#2|))) (-15 -1968 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-380 |#2|)) (|:| |c2| (-380 |#2|)) (|:| |deg| (-706))) |#3| |#3|)))
-((-3481 (((-3 (-586 (-1079 |#2|)) "failed") (-586 (-1079 |#2|)) (-1079 |#2|)) 32)))
-(((-137 |#1| |#2|) (-10 -7 (-15 -3481 ((-3 (-586 (-1079 |#2|)) "failed") (-586 (-1079 |#2|)) (-1079 |#2|)))) (-505) (-151 |#1|)) (T -137))
-((-3481 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-586 (-1079 *5))) (-5 *3 (-1079 *5)) (-4 *5 (-151 *4)) (-4 *4 (-505)) (-5 *1 (-137 *4 *5)))))
-(-10 -7 (-15 -3481 ((-3 (-586 (-1079 |#2|)) "failed") (-586 (-1079 |#2|)) (-1079 |#2|))))
-((-1627 (($ (-1 (-108) |#2|) $) 29)) (-2331 (($ $) 36)) (-1421 (($ (-1 (-108) |#2|) $) 27) (($ |#2| $) 32)) (-3856 ((|#2| (-1 |#2| |#2| |#2|) $) 22) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 24) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 34)) (-2985 (((-3 |#2| "failed") (-1 (-108) |#2|) $) 19)) (-4155 (((-108) (-1 (-108) |#2|) $) 16)) (-4159 (((-706) (-1 (-108) |#2|) $) 13) (((-706) |#2| $) NIL)) (-1662 (((-108) (-1 (-108) |#2|) $) 15)) (-3474 (((-706) $) 11)))
-(((-138 |#1| |#2|) (-10 -8 (-15 -2331 (|#1| |#1|)) (-15 -1421 (|#1| |#2| |#1|)) (-15 -3856 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1627 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -1421 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3856 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3856 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2985 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -4159 ((-706) |#2| |#1|)) (-15 -4159 ((-706) (-1 (-108) |#2|) |#1|)) (-15 -4155 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -1662 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3474 ((-706) |#1|))) (-139 |#2|) (-1118)) (T -138))
-NIL
-(-10 -8 (-15 -2331 (|#1| |#1|)) (-15 -1421 (|#1| |#2| |#1|)) (-15 -3856 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1627 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -1421 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3856 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3856 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2985 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -4159 ((-706) |#2| |#1|)) (-15 -4159 ((-706) (-1 (-108) |#2|) |#1|)) (-15 -4155 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -1662 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3474 ((-706) |#1|)))
-((-1414 (((-108) $ $) 19 (|has| |#1| (-1012)))) (-2063 (((-108) $ (-706)) 8)) (-1627 (($ (-1 (-108) |#1|) $) 44 (|has| $ (-6 -4229)))) (-3961 (($) 7 T CONST)) (-2331 (($ $) 41 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-1421 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4229))) (($ |#1| $) 42 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-3856 ((|#1| (-1 |#1| |#1| |#1|) $) 47 (|has| $ (-6 -4229))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 46 (|has| $ (-6 -4229))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-3828 (((-586 |#1|) $) 30 (|has| $ (-6 -4229)))) (-3027 (((-108) $ (-706)) 9)) (-3702 (((-586 |#1|) $) 29 (|has| $ (-6 -4229)))) (-2422 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-3830 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#1| |#1|) $) 35)) (-1390 (((-108) $ (-706)) 10)) (-1239 (((-1066) $) 22 (|has| |#1| (-1012)))) (-4142 (((-1030) $) 21 (|has| |#1| (-1012)))) (-2985 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 48)) (-4155 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 |#1|))) 26 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-268 |#1|)) 25 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-586 |#1|) (-586 |#1|)) 23 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))) (-2533 (((-108) $ $) 14)) (-4018 (((-108) $) 11)) (-2238 (($) 12)) (-4159 (((-706) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4229))) (((-706) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-2403 (($ $) 13)) (-1429 (((-496) $) 40 (|has| |#1| (-561 (-496))))) (-2200 (($ (-586 |#1|)) 49)) (-2188 (((-791) $) 18 (|has| |#1| (-560 (-791))))) (-1662 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4229)))) (-1530 (((-108) $ $) 20 (|has| |#1| (-1012)))) (-3474 (((-706) $) 6 (|has| $ (-6 -4229)))))
-(((-139 |#1|) (-1195) (-1118)) (T -139))
-((-2200 (*1 *1 *2) (-12 (-5 *2 (-586 *3)) (-4 *3 (-1118)) (-4 *1 (-139 *3)))) (-2985 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-108) *2)) (-4 *1 (-139 *2)) (-4 *2 (-1118)))) (-3856 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4229)) (-4 *1 (-139 *2)) (-4 *2 (-1118)))) (-3856 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4229)) (-4 *1 (-139 *2)) (-4 *2 (-1118)))) (-1421 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4229)) (-4 *1 (-139 *3)) (-4 *3 (-1118)))) (-1627 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4229)) (-4 *1 (-139 *3)) (-4 *3 (-1118)))) (-3856 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1012)) (|has| *1 (-6 -4229)) (-4 *1 (-139 *2)) (-4 *2 (-1118)))) (-1421 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4229)) (-4 *1 (-139 *2)) (-4 *2 (-1118)) (-4 *2 (-1012)))) (-2331 (*1 *1 *1) (-12 (|has| *1 (-6 -4229)) (-4 *1 (-139 *2)) (-4 *2 (-1118)) (-4 *2 (-1012)))))
-(-13 (-459 |t#1|) (-10 -8 (-15 -2200 ($ (-586 |t#1|))) (-15 -2985 ((-3 |t#1| "failed") (-1 (-108) |t#1|) $)) (IF (|has| $ (-6 -4229)) (PROGN (-15 -3856 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -3856 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -1421 ($ (-1 (-108) |t#1|) $)) (-15 -1627 ($ (-1 (-108) |t#1|) $)) (IF (|has| |t#1| (-1012)) (PROGN (-15 -3856 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -1421 ($ |t#1| $)) (-15 -2331 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-561 (-496))) (-6 (-561 (-496))) |%noBranch|)))
-(((-33) . T) ((-97) |has| |#1| (-1012)) ((-560 (-791)) -3700 (|has| |#1| (-1012)) (|has| |#1| (-560 (-791)))) ((-561 (-496)) |has| |#1| (-561 (-496))) ((-283 |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))) ((-459 |#1|) . T) ((-481 |#1| |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))) ((-1012) |has| |#1| (-1012)) ((-1118) . T))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-1917 (((-3 $ "failed") $ $) NIL)) (-3961 (($) NIL T CONST)) (-1540 (((-3 $ "failed") $) 86)) (-1537 (((-108) $) NIL)) (-4039 (($ |#2| (-586 (-849))) 57)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2962 (($ (-849)) 48)) (-1556 (((-126)) 23)) (-2188 (((-791) $) 69) (($ (-520)) 46) (($ |#2|) 47)) (-3475 ((|#2| $ (-586 (-849))) 59)) (-3251 (((-706)) 20)) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (-3560 (($) 40 T CONST)) (-3570 (($) 44 T CONST)) (-1530 (((-108) $ $) 26)) (-1619 (($ $ |#2|) NIL)) (-1611 (($ $) 34) (($ $ $) 32)) (-1601 (($ $ $) 30)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) 37) (($ $ $) 52) (($ |#2| $) 39) (($ $ |#2|) NIL)))
-(((-140 |#1| |#2| |#3|) (-13 (-969) (-37 |#2|) (-1171 |#2|) (-10 -8 (-15 -2962 ($ (-849))) (-15 -4039 ($ |#2| (-586 (-849)))) (-15 -3475 (|#2| $ (-586 (-849)))) (-15 -1540 ((-3 $ "failed") $)))) (-849) (-336) (-918 |#1| |#2|)) (T -140))
-((-1540 (*1 *1 *1) (|partial| -12 (-5 *1 (-140 *2 *3 *4)) (-14 *2 (-849)) (-4 *3 (-336)) (-14 *4 (-918 *2 *3)))) (-2962 (*1 *1 *2) (-12 (-5 *2 (-849)) (-5 *1 (-140 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-336)) (-14 *5 (-918 *3 *4)))) (-4039 (*1 *1 *2 *3) (-12 (-5 *3 (-586 (-849))) (-5 *1 (-140 *4 *2 *5)) (-14 *4 (-849)) (-4 *2 (-336)) (-14 *5 (-918 *4 *2)))) (-3475 (*1 *2 *1 *3) (-12 (-5 *3 (-586 (-849))) (-4 *2 (-336)) (-5 *1 (-140 *4 *2 *5)) (-14 *4 (-849)) (-14 *5 (-918 *4 *2)))))
-(-13 (-969) (-37 |#2|) (-1171 |#2|) (-10 -8 (-15 -2962 ($ (-849))) (-15 -4039 ($ |#2| (-586 (-849)))) (-15 -3475 (|#2| $ (-586 (-849)))) (-15 -1540 ((-3 $ "failed") $))))
-((-2357 (((-2 (|:| |brans| (-586 (-586 (-871 (-201))))) (|:| |xValues| (-1007 (-201))) (|:| |yValues| (-1007 (-201)))) (-586 (-586 (-871 (-201)))) (-201) (-201) (-201) (-201)) 38)) (-1938 (((-2 (|:| |brans| (-586 (-586 (-871 (-201))))) (|:| |xValues| (-1007 (-201))) (|:| |yValues| (-1007 (-201)))) (-855) (-380 (-520)) (-380 (-520))) 63) (((-2 (|:| |brans| (-586 (-586 (-871 (-201))))) (|:| |xValues| (-1007 (-201))) (|:| |yValues| (-1007 (-201)))) (-855)) 64)) (-4027 (((-2 (|:| |brans| (-586 (-586 (-871 (-201))))) (|:| |xValues| (-1007 (-201))) (|:| |yValues| (-1007 (-201)))) (-586 (-586 (-871 (-201))))) 67) (((-2 (|:| |brans| (-586 (-586 (-871 (-201))))) (|:| |xValues| (-1007 (-201))) (|:| |yValues| (-1007 (-201)))) (-586 (-871 (-201)))) 66) (((-2 (|:| |brans| (-586 (-586 (-871 (-201))))) (|:| |xValues| (-1007 (-201))) (|:| |yValues| (-1007 (-201)))) (-855) (-380 (-520)) (-380 (-520))) 58) (((-2 (|:| |brans| (-586 (-586 (-871 (-201))))) (|:| |xValues| (-1007 (-201))) (|:| |yValues| (-1007 (-201)))) (-855)) 59)))
-(((-141) (-10 -7 (-15 -4027 ((-2 (|:| |brans| (-586 (-586 (-871 (-201))))) (|:| |xValues| (-1007 (-201))) (|:| |yValues| (-1007 (-201)))) (-855))) (-15 -4027 ((-2 (|:| |brans| (-586 (-586 (-871 (-201))))) (|:| |xValues| (-1007 (-201))) (|:| |yValues| (-1007 (-201)))) (-855) (-380 (-520)) (-380 (-520)))) (-15 -1938 ((-2 (|:| |brans| (-586 (-586 (-871 (-201))))) (|:| |xValues| (-1007 (-201))) (|:| |yValues| (-1007 (-201)))) (-855))) (-15 -1938 ((-2 (|:| |brans| (-586 (-586 (-871 (-201))))) (|:| |xValues| (-1007 (-201))) (|:| |yValues| (-1007 (-201)))) (-855) (-380 (-520)) (-380 (-520)))) (-15 -2357 ((-2 (|:| |brans| (-586 (-586 (-871 (-201))))) (|:| |xValues| (-1007 (-201))) (|:| |yValues| (-1007 (-201)))) (-586 (-586 (-871 (-201)))) (-201) (-201) (-201) (-201))) (-15 -4027 ((-2 (|:| |brans| (-586 (-586 (-871 (-201))))) (|:| |xValues| (-1007 (-201))) (|:| |yValues| (-1007 (-201)))) (-586 (-871 (-201))))) (-15 -4027 ((-2 (|:| |brans| (-586 (-586 (-871 (-201))))) (|:| |xValues| (-1007 (-201))) (|:| |yValues| (-1007 (-201)))) (-586 (-586 (-871 (-201)))))))) (T -141))
-((-4027 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-586 (-586 (-871 (-201))))) (|:| |xValues| (-1007 (-201))) (|:| |yValues| (-1007 (-201))))) (-5 *1 (-141)) (-5 *3 (-586 (-586 (-871 (-201))))))) (-4027 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-586 (-586 (-871 (-201))))) (|:| |xValues| (-1007 (-201))) (|:| |yValues| (-1007 (-201))))) (-5 *1 (-141)) (-5 *3 (-586 (-871 (-201)))))) (-2357 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-201)) (-5 *2 (-2 (|:| |brans| (-586 (-586 (-871 *4)))) (|:| |xValues| (-1007 *4)) (|:| |yValues| (-1007 *4)))) (-5 *1 (-141)) (-5 *3 (-586 (-586 (-871 *4)))))) (-1938 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-855)) (-5 *4 (-380 (-520))) (-5 *2 (-2 (|:| |brans| (-586 (-586 (-871 (-201))))) (|:| |xValues| (-1007 (-201))) (|:| |yValues| (-1007 (-201))))) (-5 *1 (-141)))) (-1938 (*1 *2 *3) (-12 (-5 *3 (-855)) (-5 *2 (-2 (|:| |brans| (-586 (-586 (-871 (-201))))) (|:| |xValues| (-1007 (-201))) (|:| |yValues| (-1007 (-201))))) (-5 *1 (-141)))) (-4027 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-855)) (-5 *4 (-380 (-520))) (-5 *2 (-2 (|:| |brans| (-586 (-586 (-871 (-201))))) (|:| |xValues| (-1007 (-201))) (|:| |yValues| (-1007 (-201))))) (-5 *1 (-141)))) (-4027 (*1 *2 *3) (-12 (-5 *3 (-855)) (-5 *2 (-2 (|:| |brans| (-586 (-586 (-871 (-201))))) (|:| |xValues| (-1007 (-201))) (|:| |yValues| (-1007 (-201))))) (-5 *1 (-141)))))
-(-10 -7 (-15 -4027 ((-2 (|:| |brans| (-586 (-586 (-871 (-201))))) (|:| |xValues| (-1007 (-201))) (|:| |yValues| (-1007 (-201)))) (-855))) (-15 -4027 ((-2 (|:| |brans| (-586 (-586 (-871 (-201))))) (|:| |xValues| (-1007 (-201))) (|:| |yValues| (-1007 (-201)))) (-855) (-380 (-520)) (-380 (-520)))) (-15 -1938 ((-2 (|:| |brans| (-586 (-586 (-871 (-201))))) (|:| |xValues| (-1007 (-201))) (|:| |yValues| (-1007 (-201)))) (-855))) (-15 -1938 ((-2 (|:| |brans| (-586 (-586 (-871 (-201))))) (|:| |xValues| (-1007 (-201))) (|:| |yValues| (-1007 (-201)))) (-855) (-380 (-520)) (-380 (-520)))) (-15 -2357 ((-2 (|:| |brans| (-586 (-586 (-871 (-201))))) (|:| |xValues| (-1007 (-201))) (|:| |yValues| (-1007 (-201)))) (-586 (-586 (-871 (-201)))) (-201) (-201) (-201) (-201))) (-15 -4027 ((-2 (|:| |brans| (-586 (-586 (-871 (-201))))) (|:| |xValues| (-1007 (-201))) (|:| |yValues| (-1007 (-201)))) (-586 (-871 (-201))))) (-15 -4027 ((-2 (|:| |brans| (-586 (-586 (-871 (-201))))) (|:| |xValues| (-1007 (-201))) (|:| |yValues| (-1007 (-201)))) (-586 (-586 (-871 (-201)))))))
-((-2471 (((-586 (-154 |#2|)) |#1| |#2|) 45)))
-(((-142 |#1| |#2|) (-10 -7 (-15 -2471 ((-586 (-154 |#2|)) |#1| |#2|))) (-1140 (-154 (-520))) (-13 (-336) (-781))) (T -142))
-((-2471 (*1 *2 *3 *4) (-12 (-5 *2 (-586 (-154 *4))) (-5 *1 (-142 *3 *4)) (-4 *3 (-1140 (-154 (-520)))) (-4 *4 (-13 (-336) (-781))))))
-(-10 -7 (-15 -2471 ((-586 (-154 |#2|)) |#1| |#2|)))
-((-1414 (((-108) $ $) NIL)) (-3875 (($) 16)) (-4174 (($) 15)) (-3032 (((-849)) 23)) (-1239 (((-1066) $) NIL)) (-2629 (((-520) $) 20)) (-4142 (((-1030) $) NIL)) (-3966 (($) 17)) (-3867 (($ (-520)) 24)) (-2188 (((-791) $) 30)) (-2201 (($) 18)) (-1530 (((-108) $ $) 14)) (-1601 (($ $ $) 13)) (* (($ (-849) $) 22) (($ (-201) $) 8)))
-(((-143) (-13 (-25) (-10 -8 (-15 * ($ (-849) $)) (-15 * ($ (-201) $)) (-15 -1601 ($ $ $)) (-15 -4174 ($)) (-15 -3875 ($)) (-15 -3966 ($)) (-15 -2201 ($)) (-15 -2629 ((-520) $)) (-15 -3032 ((-849))) (-15 -3867 ($ (-520)))))) (T -143))
-((-1601 (*1 *1 *1 *1) (-5 *1 (-143))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-849)) (-5 *1 (-143)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-201)) (-5 *1 (-143)))) (-4174 (*1 *1) (-5 *1 (-143))) (-3875 (*1 *1) (-5 *1 (-143))) (-3966 (*1 *1) (-5 *1 (-143))) (-2201 (*1 *1) (-5 *1 (-143))) (-2629 (*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-143)))) (-3032 (*1 *2) (-12 (-5 *2 (-849)) (-5 *1 (-143)))) (-3867 (*1 *1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-143)))))
-(-13 (-25) (-10 -8 (-15 * ($ (-849) $)) (-15 * ($ (-201) $)) (-15 -1601 ($ $ $)) (-15 -4174 ($)) (-15 -3875 ($)) (-15 -3966 ($)) (-15 -2201 ($)) (-15 -2629 ((-520) $)) (-15 -3032 ((-849))) (-15 -3867 ($ (-520)))))
-((-2651 ((|#2| |#2| (-1005 |#2|)) 87) ((|#2| |#2| (-1083)) 67)) (-1700 ((|#2| |#2| (-1005 |#2|)) 86) ((|#2| |#2| (-1083)) 66)) (-4151 ((|#2| |#2| |#2|) 27)) (-3877 (((-110) (-110)) 97)) (-1686 ((|#2| (-586 |#2|)) 116)) (-2269 ((|#2| (-586 |#2|)) 134)) (-2358 ((|#2| (-586 |#2|)) 124)) (-2043 ((|#2| |#2|) 122)) (-3523 ((|#2| (-586 |#2|)) 109)) (-2495 ((|#2| (-586 |#2|)) 110)) (-2824 ((|#2| (-586 |#2|)) 132)) (-1825 ((|#2| |#2| (-1083)) 54) ((|#2| |#2|) 53)) (-2724 ((|#2| |#2|) 23)) (-2586 ((|#2| |#2| |#2|) 26)) (-1373 (((-108) (-110)) 47)) (** ((|#2| |#2| |#2|) 38)))
-(((-144 |#1| |#2|) (-10 -7 (-15 -1373 ((-108) (-110))) (-15 -3877 ((-110) (-110))) (-15 ** (|#2| |#2| |#2|)) (-15 -2586 (|#2| |#2| |#2|)) (-15 -4151 (|#2| |#2| |#2|)) (-15 -2724 (|#2| |#2|)) (-15 -1825 (|#2| |#2|)) (-15 -1825 (|#2| |#2| (-1083))) (-15 -2651 (|#2| |#2| (-1083))) (-15 -2651 (|#2| |#2| (-1005 |#2|))) (-15 -1700 (|#2| |#2| (-1083))) (-15 -1700 (|#2| |#2| (-1005 |#2|))) (-15 -2043 (|#2| |#2|)) (-15 -2824 (|#2| (-586 |#2|))) (-15 -2358 (|#2| (-586 |#2|))) (-15 -2269 (|#2| (-586 |#2|))) (-15 -3523 (|#2| (-586 |#2|))) (-15 -2495 (|#2| (-586 |#2|))) (-15 -1686 (|#2| (-586 |#2|)))) (-13 (-783) (-512)) (-403 |#1|)) (T -144))
-((-1686 (*1 *2 *3) (-12 (-5 *3 (-586 *2)) (-4 *2 (-403 *4)) (-5 *1 (-144 *4 *2)) (-4 *4 (-13 (-783) (-512))))) (-2495 (*1 *2 *3) (-12 (-5 *3 (-586 *2)) (-4 *2 (-403 *4)) (-5 *1 (-144 *4 *2)) (-4 *4 (-13 (-783) (-512))))) (-3523 (*1 *2 *3) (-12 (-5 *3 (-586 *2)) (-4 *2 (-403 *4)) (-5 *1 (-144 *4 *2)) (-4 *4 (-13 (-783) (-512))))) (-2269 (*1 *2 *3) (-12 (-5 *3 (-586 *2)) (-4 *2 (-403 *4)) (-5 *1 (-144 *4 *2)) (-4 *4 (-13 (-783) (-512))))) (-2358 (*1 *2 *3) (-12 (-5 *3 (-586 *2)) (-4 *2 (-403 *4)) (-5 *1 (-144 *4 *2)) (-4 *4 (-13 (-783) (-512))))) (-2824 (*1 *2 *3) (-12 (-5 *3 (-586 *2)) (-4 *2 (-403 *4)) (-5 *1 (-144 *4 *2)) (-4 *4 (-13 (-783) (-512))))) (-2043 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-144 *3 *2)) (-4 *2 (-403 *3)))) (-1700 (*1 *2 *2 *3) (-12 (-5 *3 (-1005 *2)) (-4 *2 (-403 *4)) (-4 *4 (-13 (-783) (-512))) (-5 *1 (-144 *4 *2)))) (-1700 (*1 *2 *2 *3) (-12 (-5 *3 (-1083)) (-4 *4 (-13 (-783) (-512))) (-5 *1 (-144 *4 *2)) (-4 *2 (-403 *4)))) (-2651 (*1 *2 *2 *3) (-12 (-5 *3 (-1005 *2)) (-4 *2 (-403 *4)) (-4 *4 (-13 (-783) (-512))) (-5 *1 (-144 *4 *2)))) (-2651 (*1 *2 *2 *3) (-12 (-5 *3 (-1083)) (-4 *4 (-13 (-783) (-512))) (-5 *1 (-144 *4 *2)) (-4 *2 (-403 *4)))) (-1825 (*1 *2 *2 *3) (-12 (-5 *3 (-1083)) (-4 *4 (-13 (-783) (-512))) (-5 *1 (-144 *4 *2)) (-4 *2 (-403 *4)))) (-1825 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-144 *3 *2)) (-4 *2 (-403 *3)))) (-2724 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-144 *3 *2)) (-4 *2 (-403 *3)))) (-4151 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-144 *3 *2)) (-4 *2 (-403 *3)))) (-2586 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-144 *3 *2)) (-4 *2 (-403 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-144 *3 *2)) (-4 *2 (-403 *3)))) (-3877 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *3 (-13 (-783) (-512))) (-5 *1 (-144 *3 *4)) (-4 *4 (-403 *3)))) (-1373 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *4 (-13 (-783) (-512))) (-5 *2 (-108)) (-5 *1 (-144 *4 *5)) (-4 *5 (-403 *4)))))
-(-10 -7 (-15 -1373 ((-108) (-110))) (-15 -3877 ((-110) (-110))) (-15 ** (|#2| |#2| |#2|)) (-15 -2586 (|#2| |#2| |#2|)) (-15 -4151 (|#2| |#2| |#2|)) (-15 -2724 (|#2| |#2|)) (-15 -1825 (|#2| |#2|)) (-15 -1825 (|#2| |#2| (-1083))) (-15 -2651 (|#2| |#2| (-1083))) (-15 -2651 (|#2| |#2| (-1005 |#2|))) (-15 -1700 (|#2| |#2| (-1083))) (-15 -1700 (|#2| |#2| (-1005 |#2|))) (-15 -2043 (|#2| |#2|)) (-15 -2824 (|#2| (-586 |#2|))) (-15 -2358 (|#2| (-586 |#2|))) (-15 -2269 (|#2| (-586 |#2|))) (-15 -3523 (|#2| (-586 |#2|))) (-15 -2495 (|#2| (-586 |#2|))) (-15 -1686 (|#2| (-586 |#2|))))
-((-1633 ((|#1| |#1| |#1|) 52)) (-4051 ((|#1| |#1| |#1|) 49)) (-4151 ((|#1| |#1| |#1|) 43)) (-1993 ((|#1| |#1|) 34)) (-4092 ((|#1| |#1| (-586 |#1|)) 42)) (-2724 ((|#1| |#1|) 36)) (-2586 ((|#1| |#1| |#1|) 39)))
-(((-145 |#1|) (-10 -7 (-15 -2586 (|#1| |#1| |#1|)) (-15 -2724 (|#1| |#1|)) (-15 -4092 (|#1| |#1| (-586 |#1|))) (-15 -1993 (|#1| |#1|)) (-15 -4151 (|#1| |#1| |#1|)) (-15 -4051 (|#1| |#1| |#1|)) (-15 -1633 (|#1| |#1| |#1|))) (-505)) (T -145))
-((-1633 (*1 *2 *2 *2) (-12 (-5 *1 (-145 *2)) (-4 *2 (-505)))) (-4051 (*1 *2 *2 *2) (-12 (-5 *1 (-145 *2)) (-4 *2 (-505)))) (-4151 (*1 *2 *2 *2) (-12 (-5 *1 (-145 *2)) (-4 *2 (-505)))) (-1993 (*1 *2 *2) (-12 (-5 *1 (-145 *2)) (-4 *2 (-505)))) (-4092 (*1 *2 *2 *3) (-12 (-5 *3 (-586 *2)) (-4 *2 (-505)) (-5 *1 (-145 *2)))) (-2724 (*1 *2 *2) (-12 (-5 *1 (-145 *2)) (-4 *2 (-505)))) (-2586 (*1 *2 *2 *2) (-12 (-5 *1 (-145 *2)) (-4 *2 (-505)))))
-(-10 -7 (-15 -2586 (|#1| |#1| |#1|)) (-15 -2724 (|#1| |#1|)) (-15 -4092 (|#1| |#1| (-586 |#1|))) (-15 -1993 (|#1| |#1|)) (-15 -4151 (|#1| |#1| |#1|)) (-15 -4051 (|#1| |#1| |#1|)) (-15 -1633 (|#1| |#1| |#1|)))
-((-2651 (($ $ (-1083)) 12) (($ $ (-1005 $)) 11)) (-1700 (($ $ (-1083)) 10) (($ $ (-1005 $)) 9)) (-4151 (($ $ $) 8)) (-1825 (($ $) 14) (($ $ (-1083)) 13)) (-2724 (($ $) 7)) (-2586 (($ $ $) 6)))
-(((-146) (-1195)) (T -146))
-((-1825 (*1 *1 *1) (-4 *1 (-146))) (-1825 (*1 *1 *1 *2) (-12 (-4 *1 (-146)) (-5 *2 (-1083)))) (-2651 (*1 *1 *1 *2) (-12 (-4 *1 (-146)) (-5 *2 (-1083)))) (-2651 (*1 *1 *1 *2) (-12 (-5 *2 (-1005 *1)) (-4 *1 (-146)))) (-1700 (*1 *1 *1 *2) (-12 (-4 *1 (-146)) (-5 *2 (-1083)))) (-1700 (*1 *1 *1 *2) (-12 (-5 *2 (-1005 *1)) (-4 *1 (-146)))))
-(-13 (-131) (-10 -8 (-15 -1825 ($ $)) (-15 -1825 ($ $ (-1083))) (-15 -2651 ($ $ (-1083))) (-15 -2651 ($ $ (-1005 $))) (-15 -1700 ($ $ (-1083))) (-15 -1700 ($ $ (-1005 $)))))
+((-3649 (((-108) $) 12)) (-1390 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-381 (-521)) $) 24) (($ $ (-381 (-521))) NIL)))
+(((-45 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-381 (-521)))) (-15 * (|#1| (-381 (-521)) |#1|)) (-15 -3649 ((-108) |#1|)) (-15 -1390 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-521) |#1|)) (-15 * (|#1| (-707) |#1|)) (-15 * (|#1| (-850) |#1|))) (-46 |#2| |#3|) (-970) (-728)) (T -45))
+NIL
+(-10 -8 (-15 * (|#1| |#1| (-381 (-521)))) (-15 * (|#1| (-381 (-521)) |#1|)) (-15 -3649 ((-108) |#1|)) (-15 -1390 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-521) |#1|)) (-15 * (|#1| (-707) |#1|)) (-15 * (|#1| (-850) |#1|)))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) 51 (|has| |#1| (-513)))) (-2559 (($ $) 52 (|has| |#1| (-513)))) (-1733 (((-108) $) 54 (|has| |#1| (-513)))) (-1232 (((-3 $ "failed") $ $) 19)) (-2547 (($) 17 T CONST)) (-3152 (($ $) 60)) (-1257 (((-3 $ "failed") $) 34)) (-3996 (((-108) $) 31)) (-3649 (((-108) $) 62)) (-4043 (($ |#1| |#2|) 61)) (-1390 (($ (-1 |#1| |#1|) $) 63)) (-3125 (($ $) 65)) (-3135 ((|#1| $) 66)) (-3688 (((-1067) $) 9)) (-4147 (((-1031) $) 10)) (-2230 (((-3 $ "failed") $ $) 50 (|has| |#1| (-513)))) (-1994 ((|#2| $) 64)) (-2189 (((-792) $) 11) (($ (-521)) 28) (($ (-381 (-521))) 57 (|has| |#1| (-37 (-381 (-521))))) (($ $) 49 (|has| |#1| (-513))) (($ |#1|) 47 (|has| |#1| (-157)))) (-3800 ((|#1| $ |#2|) 59)) (-1671 (((-3 $ "failed") $) 48 (|has| |#1| (-133)))) (-3846 (((-707)) 29)) (-4210 (((-108) $ $) 53 (|has| |#1| (-513)))) (-3505 (($ $ (-850)) 26) (($ $ (-707)) 33)) (-3561 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-1531 (((-108) $ $) 6)) (-1620 (($ $ |#1|) 58 (|has| |#1| (-337)))) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-707)) 32)) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-381 (-521)) $) 56 (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) 55 (|has| |#1| (-37 (-381 (-521)))))))
+(((-46 |#1| |#2|) (-1196) (-970) (-728)) (T -46))
+((-3135 (*1 *2 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-728)) (-4 *2 (-970)))) (-3125 (*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-970)) (-4 *3 (-728)))) (-1994 (*1 *2 *1) (-12 (-4 *1 (-46 *3 *2)) (-4 *3 (-970)) (-4 *2 (-728)))) (-1390 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-46 *3 *4)) (-4 *3 (-970)) (-4 *4 (-728)))) (-3649 (*1 *2 *1) (-12 (-4 *1 (-46 *3 *4)) (-4 *3 (-970)) (-4 *4 (-728)) (-5 *2 (-108)))) (-4043 (*1 *1 *2 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-970)) (-4 *3 (-728)))) (-3152 (*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-970)) (-4 *3 (-728)))) (-3800 (*1 *2 *1 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-728)) (-4 *2 (-970)))) (-1620 (*1 *1 *1 *2) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-970)) (-4 *3 (-728)) (-4 *2 (-337)))))
+(-13 (-970) (-107 |t#1| |t#1|) (-10 -8 (-15 -3135 (|t#1| $)) (-15 -3125 ($ $)) (-15 -1994 (|t#2| $)) (-15 -1390 ($ (-1 |t#1| |t#1|) $)) (-15 -3649 ((-108) $)) (-15 -4043 ($ |t#1| |t#2|)) (-15 -3152 ($ $)) (-15 -3800 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-337)) (-15 -1620 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-157)) (PROGN (-6 (-157)) (-6 (-37 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |t#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |t#1| (-513)) (-6 (-513)) |%noBranch|) (IF (|has| |t#1| (-37 (-381 (-521)))) (-6 (-37 (-381 (-521)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-381 (-521))) |has| |#1| (-37 (-381 (-521)))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) |has| |#1| (-513)) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-381 (-521)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3703 (|has| |#1| (-513)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-561 (-792)) . T) ((-157) -3703 (|has| |#1| (-513)) (|has| |#1| (-157))) ((-265) |has| |#1| (-513)) ((-513) |has| |#1| (-513)) ((-589 #0#) |has| |#1| (-37 (-381 (-521)))) ((-589 |#1|) . T) ((-589 $) . T) ((-654 #0#) |has| |#1| (-37 (-381 (-521)))) ((-654 |#1|) |has| |#1| (-157)) ((-654 $) |has| |#1| (-513)) ((-663) . T) ((-976 #0#) |has| |#1| (-37 (-381 (-521)))) ((-976 |#1|) . T) ((-976 $) -3703 (|has| |#1| (-513)) (|has| |#1| (-157))) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T))
+((-1415 (((-108) $ $) NIL)) (-3102 (((-587 $) (-1080 $) (-1084)) NIL) (((-587 $) (-1080 $)) NIL) (((-587 $) (-881 $)) NIL)) (-3485 (($ (-1080 $) (-1084)) NIL) (($ (-1080 $)) NIL) (($ (-881 $)) NIL)) (-2220 (((-108) $) 11)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-2559 (($ $) NIL)) (-1733 (((-108) $) NIL)) (-1884 (((-587 (-560 $)) $) NIL)) (-1232 (((-3 $ "failed") $ $) NIL)) (-3300 (($ $ (-269 $)) NIL) (($ $ (-587 (-269 $))) NIL) (($ $ (-587 (-560 $)) (-587 $)) NIL)) (-3063 (($ $) NIL)) (-3358 (((-392 $) $) NIL)) (-1927 (($ $) NIL)) (-1389 (((-108) $ $) NIL)) (-2547 (($) NIL T CONST)) (-2270 (((-587 $) (-1080 $) (-1084)) NIL) (((-587 $) (-1080 $)) NIL) (((-587 $) (-881 $)) NIL)) (-2590 (($ (-1080 $) (-1084)) NIL) (($ (-1080 $)) NIL) (($ (-881 $)) NIL)) (-1297 (((-3 (-560 $) "failed") $) NIL) (((-3 (-521) "failed") $) NIL) (((-3 (-381 (-521)) "failed") $) NIL)) (-1483 (((-560 $) $) NIL) (((-521) $) NIL) (((-381 (-521)) $) NIL)) (-2277 (($ $ $) NIL)) (-3279 (((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL) (((-627 (-521)) (-627 $)) NIL) (((-2 (|:| -1201 (-627 (-381 (-521)))) (|:| |vec| (-1165 (-381 (-521))))) (-627 $) (-1165 $)) NIL) (((-627 (-381 (-521))) (-627 $)) NIL)) (-3859 (($ $) NIL)) (-1257 (((-3 $ "failed") $) NIL)) (-2253 (($ $ $) NIL)) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) NIL)) (-2710 (((-108) $) NIL)) (-3072 (($ $) NIL) (($ (-587 $)) NIL)) (-1833 (((-587 (-110)) $) NIL)) (-2727 (((-110) (-110)) NIL)) (-3996 (((-108) $) 14)) (-1255 (((-108) $) NIL (|has| $ (-961 (-521))))) (-2801 (((-1036 (-521) (-560 $)) $) NIL)) (-3407 (($ $ (-521)) NIL)) (-3930 (((-1080 $) (-1080 $) (-560 $)) NIL) (((-1080 $) (-1080 $) (-587 (-560 $))) NIL) (($ $ (-560 $)) NIL) (($ $ (-587 (-560 $))) NIL)) (-1546 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-2527 (((-1080 $) (-560 $)) NIL (|has| $ (-970)))) (-2810 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-1390 (($ (-1 $ $) (-560 $)) NIL)) (-2018 (((-3 (-560 $) "failed") $) NIL)) (-2223 (($ (-587 $)) NIL) (($ $ $) NIL)) (-3688 (((-1067) $) NIL)) (-1266 (((-587 (-560 $)) $) NIL)) (-2905 (($ (-110) $) NIL) (($ (-110) (-587 $)) NIL)) (-1705 (((-108) $ (-110)) NIL) (((-108) $ (-1084)) NIL)) (-3095 (($ $) NIL)) (-4150 (((-707) $) NIL)) (-4147 (((-1031) $) NIL)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) NIL)) (-2258 (($ (-587 $)) NIL) (($ $ $) NIL)) (-3899 (((-108) $ $) NIL) (((-108) $ (-1084)) NIL)) (-1916 (((-392 $) $) NIL)) (-1962 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL)) (-2230 (((-3 $ "failed") $ $) NIL)) (-3854 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-3550 (((-108) $) NIL (|has| $ (-961 (-521))))) (-2288 (($ $ (-560 $) $) NIL) (($ $ (-587 (-560 $)) (-587 $)) NIL) (($ $ (-587 (-269 $))) NIL) (($ $ (-269 $)) NIL) (($ $ $ $) NIL) (($ $ (-587 $) (-587 $)) NIL) (($ $ (-587 (-1084)) (-587 (-1 $ $))) NIL) (($ $ (-587 (-1084)) (-587 (-1 $ (-587 $)))) NIL) (($ $ (-1084) (-1 $ (-587 $))) NIL) (($ $ (-1084) (-1 $ $)) NIL) (($ $ (-587 (-110)) (-587 (-1 $ $))) NIL) (($ $ (-587 (-110)) (-587 (-1 $ (-587 $)))) NIL) (($ $ (-110) (-1 $ (-587 $))) NIL) (($ $ (-110) (-1 $ $)) NIL)) (-4196 (((-707) $) NIL)) (-2544 (($ (-110) $) NIL) (($ (-110) $ $) NIL) (($ (-110) $ $ $) NIL) (($ (-110) $ $ $ $) NIL) (($ (-110) (-587 $)) NIL)) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) NIL)) (-4016 (($ $) NIL) (($ $ $) NIL)) (-2156 (($ $ (-707)) NIL) (($ $) NIL)) (-2812 (((-1036 (-521) (-560 $)) $) NIL)) (-2879 (($ $) NIL (|has| $ (-970)))) (-1430 (((-353) $) NIL) (((-202) $) NIL) (((-154 (-353)) $) NIL)) (-2189 (((-792) $) NIL) (($ (-560 $)) NIL) (($ (-381 (-521))) NIL) (($ $) NIL) (($ (-521)) NIL) (($ (-1036 (-521) (-560 $))) NIL)) (-3846 (((-707)) NIL)) (-2320 (($ $) NIL) (($ (-587 $)) NIL)) (-1455 (((-108) (-110)) NIL)) (-4210 (((-108) $ $) NIL)) (-3505 (($ $ (-521)) NIL) (($ $ (-707)) NIL) (($ $ (-850)) NIL)) (-3561 (($) 7 T CONST)) (-3572 (($) 12 T CONST)) (-2212 (($ $ (-707)) NIL) (($ $) NIL)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) 16)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) NIL)) (-1620 (($ $ $) NIL)) (-1612 (($ $ $) 15) (($ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-381 (-521))) NIL) (($ $ (-521)) NIL) (($ $ (-707)) NIL) (($ $ (-850)) NIL)) (* (($ (-381 (-521)) $) NIL) (($ $ (-381 (-521))) NIL) (($ $ $) NIL) (($ (-521) $) NIL) (($ (-707) $) NIL) (($ (-850) $) NIL)))
+(((-47) (-13 (-277) (-27) (-961 (-521)) (-961 (-381 (-521))) (-583 (-521)) (-946) (-583 (-381 (-521))) (-135) (-562 (-154 (-353))) (-210) (-10 -8 (-15 -2189 ($ (-1036 (-521) (-560 $)))) (-15 -2801 ((-1036 (-521) (-560 $)) $)) (-15 -2812 ((-1036 (-521) (-560 $)) $)) (-15 -3859 ($ $)) (-15 -3930 ((-1080 $) (-1080 $) (-560 $))) (-15 -3930 ((-1080 $) (-1080 $) (-587 (-560 $)))) (-15 -3930 ($ $ (-560 $))) (-15 -3930 ($ $ (-587 (-560 $))))))) (T -47))
+((-2189 (*1 *1 *2) (-12 (-5 *2 (-1036 (-521) (-560 (-47)))) (-5 *1 (-47)))) (-2801 (*1 *2 *1) (-12 (-5 *2 (-1036 (-521) (-560 (-47)))) (-5 *1 (-47)))) (-2812 (*1 *2 *1) (-12 (-5 *2 (-1036 (-521) (-560 (-47)))) (-5 *1 (-47)))) (-3859 (*1 *1 *1) (-5 *1 (-47))) (-3930 (*1 *2 *2 *3) (-12 (-5 *2 (-1080 (-47))) (-5 *3 (-560 (-47))) (-5 *1 (-47)))) (-3930 (*1 *2 *2 *3) (-12 (-5 *2 (-1080 (-47))) (-5 *3 (-587 (-560 (-47)))) (-5 *1 (-47)))) (-3930 (*1 *1 *1 *2) (-12 (-5 *2 (-560 (-47))) (-5 *1 (-47)))) (-3930 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-560 (-47)))) (-5 *1 (-47)))))
+(-13 (-277) (-27) (-961 (-521)) (-961 (-381 (-521))) (-583 (-521)) (-946) (-583 (-381 (-521))) (-135) (-562 (-154 (-353))) (-210) (-10 -8 (-15 -2189 ($ (-1036 (-521) (-560 $)))) (-15 -2801 ((-1036 (-521) (-560 $)) $)) (-15 -2812 ((-1036 (-521) (-560 $)) $)) (-15 -3859 ($ $)) (-15 -3930 ((-1080 $) (-1080 $) (-560 $))) (-15 -3930 ((-1080 $) (-1080 $) (-587 (-560 $)))) (-15 -3930 ($ $ (-560 $))) (-15 -3930 ($ $ (-587 (-560 $))))))
+((-1415 (((-108) $ $) NIL)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2189 (((-792) $) 7)) (-1531 (((-108) $ $) NIL)))
+(((-48) (-1013)) (T -48))
+NIL
+(-1013)
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) 60)) (-1232 (((-3 $ "failed") $ $) NIL)) (-2547 (($) NIL T CONST)) (-1423 (((-108) $) 20)) (-1297 (((-3 |#1| "failed") $) 23)) (-1483 ((|#1| $) 24)) (-3152 (($ $) 27)) (-1257 (((-3 $ "failed") $) NIL)) (-3996 (((-108) $) NIL)) (-1390 (($ (-1 |#1| |#1|) $) NIL)) (-3135 ((|#1| $) 21)) (-1952 (($ $) 49)) (-3688 (((-1067) $) NIL)) (-3408 (((-108) $) 28)) (-4147 (((-1031) $) NIL)) (-1383 (($ (-707)) 47)) (-3261 (($ (-587 (-521))) 48)) (-1994 (((-707) $) 29)) (-2189 (((-792) $) 63) (($ (-521)) 44) (($ |#1|) 42)) (-3800 ((|#1| $ $) 19)) (-3846 (((-707)) 46)) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (-3561 (($) 30 T CONST)) (-3572 (($) 14 T CONST)) (-1531 (((-108) $ $) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) 40)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) 41) (($ |#1| $) 35)))
+(((-49 |#1| |#2|) (-13 (-565 |#1|) (-961 |#1|) (-10 -8 (-15 -3135 (|#1| $)) (-15 -1952 ($ $)) (-15 -3152 ($ $)) (-15 -3800 (|#1| $ $)) (-15 -1383 ($ (-707))) (-15 -3261 ($ (-587 (-521)))) (-15 -3408 ((-108) $)) (-15 -1423 ((-108) $)) (-15 -1994 ((-707) $)) (-15 -1390 ($ (-1 |#1| |#1|) $)))) (-970) (-587 (-1084))) (T -49))
+((-3135 (*1 *2 *1) (-12 (-4 *2 (-970)) (-5 *1 (-49 *2 *3)) (-14 *3 (-587 (-1084))))) (-1952 (*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-970)) (-14 *3 (-587 (-1084))))) (-3152 (*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-970)) (-14 *3 (-587 (-1084))))) (-3800 (*1 *2 *1 *1) (-12 (-4 *2 (-970)) (-5 *1 (-49 *2 *3)) (-14 *3 (-587 (-1084))))) (-1383 (*1 *1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-49 *3 *4)) (-4 *3 (-970)) (-14 *4 (-587 (-1084))))) (-3261 (*1 *1 *2) (-12 (-5 *2 (-587 (-521))) (-5 *1 (-49 *3 *4)) (-4 *3 (-970)) (-14 *4 (-587 (-1084))))) (-3408 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-49 *3 *4)) (-4 *3 (-970)) (-14 *4 (-587 (-1084))))) (-1423 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-49 *3 *4)) (-4 *3 (-970)) (-14 *4 (-587 (-1084))))) (-1994 (*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-49 *3 *4)) (-4 *3 (-970)) (-14 *4 (-587 (-1084))))) (-1390 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-970)) (-5 *1 (-49 *3 *4)) (-14 *4 (-587 (-1084))))))
+(-13 (-565 |#1|) (-961 |#1|) (-10 -8 (-15 -3135 (|#1| $)) (-15 -1952 ($ $)) (-15 -3152 ($ $)) (-15 -3800 (|#1| $ $)) (-15 -1383 ($ (-707))) (-15 -3261 ($ (-587 (-521)))) (-15 -3408 ((-108) $)) (-15 -1423 ((-108) $)) (-15 -1994 ((-707) $)) (-15 -1390 ($ (-1 |#1| |#1|) $))))
+((-1423 (((-108) (-51)) 13)) (-1297 (((-3 |#1| "failed") (-51)) 21)) (-1483 ((|#1| (-51)) 22)) (-2189 (((-51) |#1|) 18)))
+(((-50 |#1|) (-10 -7 (-15 -2189 ((-51) |#1|)) (-15 -1297 ((-3 |#1| "failed") (-51))) (-15 -1423 ((-108) (-51))) (-15 -1483 (|#1| (-51)))) (-1119)) (T -50))
+((-1483 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1119)))) (-1423 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-108)) (-5 *1 (-50 *4)) (-4 *4 (-1119)))) (-1297 (*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1119)))) (-2189 (*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-50 *3)) (-4 *3 (-1119)))))
+(-10 -7 (-15 -2189 ((-51) |#1|)) (-15 -1297 ((-3 |#1| "failed") (-51))) (-15 -1423 ((-108) (-51))) (-15 -1483 (|#1| (-51))))
+((-1415 (((-108) $ $) NIL)) (-2236 (((-1067) (-108)) 25)) (-1898 (((-792) $) 24)) (-2857 (((-710) $) 12)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2367 (((-792) $) 16)) (-2893 (((-1017) $) 14)) (-2189 (((-792) $) 32)) (-2327 (($ (-1017) (-710)) 33)) (-1531 (((-108) $ $) 18)))
+(((-51) (-13 (-1013) (-10 -8 (-15 -2327 ($ (-1017) (-710))) (-15 -2367 ((-792) $)) (-15 -1898 ((-792) $)) (-15 -2893 ((-1017) $)) (-15 -2857 ((-710) $)) (-15 -2236 ((-1067) (-108)))))) (T -51))
+((-2327 (*1 *1 *2 *3) (-12 (-5 *2 (-1017)) (-5 *3 (-710)) (-5 *1 (-51)))) (-2367 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-51)))) (-1898 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-51)))) (-2893 (*1 *2 *1) (-12 (-5 *2 (-1017)) (-5 *1 (-51)))) (-2857 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-51)))) (-2236 (*1 *2 *3) (-12 (-5 *3 (-108)) (-5 *2 (-1067)) (-5 *1 (-51)))))
+(-13 (-1013) (-10 -8 (-15 -2327 ($ (-1017) (-710))) (-15 -2367 ((-792) $)) (-15 -1898 ((-792) $)) (-15 -2893 ((-1017) $)) (-15 -2857 ((-710) $)) (-15 -2236 ((-1067) (-108)))))
+((-1616 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16)))
+(((-52 |#1| |#2| |#3|) (-10 -7 (-15 -1616 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-970) (-589 |#1|) (-786 |#1|)) (T -52))
+((-1616 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-589 *5)) (-4 *5 (-970)) (-5 *1 (-52 *5 *2 *3)) (-4 *3 (-786 *5)))))
+(-10 -7 (-15 -1616 (|#2| |#3| (-1 |#2| |#2|) |#2|)))
+((-1583 ((|#3| |#3| (-587 (-1084))) 35)) (-3010 ((|#3| (-587 (-992 |#1| |#2| |#3|)) |#3| (-850)) 22) ((|#3| (-587 (-992 |#1| |#2| |#3|)) |#3|) 20)))
+(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -3010 (|#3| (-587 (-992 |#1| |#2| |#3|)) |#3|)) (-15 -3010 (|#3| (-587 (-992 |#1| |#2| |#3|)) |#3| (-850))) (-15 -1583 (|#3| |#3| (-587 (-1084))))) (-1013) (-13 (-970) (-815 |#1|) (-784) (-562 (-821 |#1|))) (-13 (-404 |#2|) (-815 |#1|) (-562 (-821 |#1|)))) (T -53))
+((-1583 (*1 *2 *2 *3) (-12 (-5 *3 (-587 (-1084))) (-4 *4 (-1013)) (-4 *5 (-13 (-970) (-815 *4) (-784) (-562 (-821 *4)))) (-5 *1 (-53 *4 *5 *2)) (-4 *2 (-13 (-404 *5) (-815 *4) (-562 (-821 *4)))))) (-3010 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-587 (-992 *5 *6 *2))) (-5 *4 (-850)) (-4 *5 (-1013)) (-4 *6 (-13 (-970) (-815 *5) (-784) (-562 (-821 *5)))) (-4 *2 (-13 (-404 *6) (-815 *5) (-562 (-821 *5)))) (-5 *1 (-53 *5 *6 *2)))) (-3010 (*1 *2 *3 *2) (-12 (-5 *3 (-587 (-992 *4 *5 *2))) (-4 *4 (-1013)) (-4 *5 (-13 (-970) (-815 *4) (-784) (-562 (-821 *4)))) (-4 *2 (-13 (-404 *5) (-815 *4) (-562 (-821 *4)))) (-5 *1 (-53 *4 *5 *2)))))
+(-10 -7 (-15 -3010 (|#3| (-587 (-992 |#1| |#2| |#3|)) |#3|)) (-15 -3010 (|#3| (-587 (-992 |#1| |#2| |#3|)) |#3| (-850))) (-15 -1583 (|#3| |#3| (-587 (-1084)))))
+((-2978 (((-108) $ (-707)) 23)) (-1816 (($ $ (-521) |#3|) 45)) (-3520 (($ $ (-521) |#4|) 49)) (-2672 ((|#3| $ (-521)) 58)) (-3831 (((-587 |#2|) $) 30)) (-2139 (((-108) $ (-707)) 25)) (-2221 (((-108) |#2| $) 53)) (-3833 (($ (-1 |#2| |#2|) $) 37)) (-1390 (($ (-1 |#2| |#2|) $) 36) (($ (-1 |#2| |#2| |#2|) $ $) 39) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 41)) (-3574 (((-108) $ (-707)) 24)) (-3016 (($ $ |#2|) 34)) (-1789 (((-108) (-1 (-108) |#2|) $) 19)) (-2544 ((|#2| $ (-521) (-521)) NIL) ((|#2| $ (-521) (-521) |#2|) 27)) (-4163 (((-707) (-1 (-108) |#2|) $) 28) (((-707) |#2| $) 55)) (-2404 (($ $) 33)) (-3187 ((|#4| $ (-521)) 61)) (-2189 (((-792) $) 66)) (-3049 (((-108) (-1 (-108) |#2|) $) 18)) (-1531 (((-108) $ $) 52)) (-3475 (((-707) $) 26)))
+(((-54 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2189 ((-792) |#1|)) (-15 -1390 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -1390 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3833 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3520 (|#1| |#1| (-521) |#4|)) (-15 -1816 (|#1| |#1| (-521) |#3|)) (-15 -3831 ((-587 |#2|) |#1|)) (-15 -3187 (|#4| |#1| (-521))) (-15 -2672 (|#3| |#1| (-521))) (-15 -2544 (|#2| |#1| (-521) (-521) |#2|)) (-15 -2544 (|#2| |#1| (-521) (-521))) (-15 -3016 (|#1| |#1| |#2|)) (-15 -1531 ((-108) |#1| |#1|)) (-15 -2221 ((-108) |#2| |#1|)) (-15 -4163 ((-707) |#2| |#1|)) (-15 -4163 ((-707) (-1 (-108) |#2|) |#1|)) (-15 -1789 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3049 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -1390 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3475 ((-707) |#1|)) (-15 -2978 ((-108) |#1| (-707))) (-15 -2139 ((-108) |#1| (-707))) (-15 -3574 ((-108) |#1| (-707))) (-15 -2404 (|#1| |#1|))) (-55 |#2| |#3| |#4|) (-1119) (-347 |#2|) (-347 |#2|)) (T -54))
+NIL
+(-10 -8 (-15 -2189 ((-792) |#1|)) (-15 -1390 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -1390 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3833 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3520 (|#1| |#1| (-521) |#4|)) (-15 -1816 (|#1| |#1| (-521) |#3|)) (-15 -3831 ((-587 |#2|) |#1|)) (-15 -3187 (|#4| |#1| (-521))) (-15 -2672 (|#3| |#1| (-521))) (-15 -2544 (|#2| |#1| (-521) (-521) |#2|)) (-15 -2544 (|#2| |#1| (-521) (-521))) (-15 -3016 (|#1| |#1| |#2|)) (-15 -1531 ((-108) |#1| |#1|)) (-15 -2221 ((-108) |#2| |#1|)) (-15 -4163 ((-707) |#2| |#1|)) (-15 -4163 ((-707) (-1 (-108) |#2|) |#1|)) (-15 -1789 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3049 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -1390 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3475 ((-707) |#1|)) (-15 -2978 ((-108) |#1| (-707))) (-15 -2139 ((-108) |#1| (-707))) (-15 -3574 ((-108) |#1| (-707))) (-15 -2404 (|#1| |#1|)))
+((-1415 (((-108) $ $) 19 (|has| |#1| (-1013)))) (-2978 (((-108) $ (-707)) 8)) (-2378 ((|#1| $ (-521) (-521) |#1|) 44)) (-1816 (($ $ (-521) |#2|) 42)) (-3520 (($ $ (-521) |#3|) 41)) (-2547 (($) 7 T CONST)) (-2672 ((|#2| $ (-521)) 46)) (-3849 ((|#1| $ (-521) (-521) |#1|) 43)) (-3626 ((|#1| $ (-521) (-521)) 48)) (-3831 (((-587 |#1|) $) 30)) (-1410 (((-707) $) 51)) (-1811 (($ (-707) (-707) |#1|) 57)) (-1421 (((-707) $) 50)) (-2139 (((-108) $ (-707)) 9)) (-2690 (((-521) $) 55)) (-3222 (((-521) $) 53)) (-3757 (((-587 |#1|) $) 29 (|has| $ (-6 -4233)))) (-2221 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-2207 (((-521) $) 54)) (-2684 (((-521) $) 52)) (-3833 (($ (-1 |#1| |#1|) $) 34)) (-1390 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-3574 (((-108) $ (-707)) 10)) (-3688 (((-1067) $) 22 (|has| |#1| (-1013)))) (-4147 (((-1031) $) 21 (|has| |#1| (-1013)))) (-3016 (($ $ |#1|) 56)) (-1789 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 |#1|))) 26 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) 25 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) 23 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-2488 (((-108) $ $) 14)) (-3462 (((-108) $) 11)) (-4024 (($) 12)) (-2544 ((|#1| $ (-521) (-521)) 49) ((|#1| $ (-521) (-521) |#1|) 47)) (-4163 (((-707) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4233))) (((-707) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-2404 (($ $) 13)) (-3187 ((|#3| $ (-521)) 45)) (-2189 (((-792) $) 18 (|has| |#1| (-561 (-792))))) (-3049 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4233)))) (-1531 (((-108) $ $) 20 (|has| |#1| (-1013)))) (-3475 (((-707) $) 6 (|has| $ (-6 -4233)))))
+(((-55 |#1| |#2| |#3|) (-1196) (-1119) (-347 |t#1|) (-347 |t#1|)) (T -55))
+((-1390 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)))) (-1811 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-707)) (-4 *3 (-1119)) (-4 *1 (-55 *3 *4 *5)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)))) (-3016 (*1 *1 *1 *2) (-12 (-4 *1 (-55 *2 *3 *4)) (-4 *2 (-1119)) (-4 *3 (-347 *2)) (-4 *4 (-347 *2)))) (-2690 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)) (-5 *2 (-521)))) (-2207 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)) (-5 *2 (-521)))) (-3222 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)) (-5 *2 (-521)))) (-2684 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)) (-5 *2 (-521)))) (-1410 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)) (-5 *2 (-707)))) (-1421 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)) (-5 *2 (-707)))) (-2544 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-521)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-347 *2)) (-4 *5 (-347 *2)) (-4 *2 (-1119)))) (-3626 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-521)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-347 *2)) (-4 *5 (-347 *2)) (-4 *2 (-1119)))) (-2544 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-521)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1119)) (-4 *4 (-347 *2)) (-4 *5 (-347 *2)))) (-2672 (*1 *2 *1 *3) (-12 (-5 *3 (-521)) (-4 *1 (-55 *4 *2 *5)) (-4 *4 (-1119)) (-4 *5 (-347 *4)) (-4 *2 (-347 *4)))) (-3187 (*1 *2 *1 *3) (-12 (-5 *3 (-521)) (-4 *1 (-55 *4 *5 *2)) (-4 *4 (-1119)) (-4 *5 (-347 *4)) (-4 *2 (-347 *4)))) (-3831 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)) (-5 *2 (-587 *3)))) (-2378 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-521)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1119)) (-4 *4 (-347 *2)) (-4 *5 (-347 *2)))) (-3849 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-521)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1119)) (-4 *4 (-347 *2)) (-4 *5 (-347 *2)))) (-1816 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-521)) (-4 *1 (-55 *4 *3 *5)) (-4 *4 (-1119)) (-4 *3 (-347 *4)) (-4 *5 (-347 *4)))) (-3520 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-521)) (-4 *1 (-55 *4 *5 *3)) (-4 *4 (-1119)) (-4 *5 (-347 *4)) (-4 *3 (-347 *4)))) (-3833 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)))) (-1390 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)))) (-1390 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)))))
+(-13 (-460 |t#1|) (-10 -8 (-6 -4234) (-6 -4233) (-15 -1811 ($ (-707) (-707) |t#1|)) (-15 -3016 ($ $ |t#1|)) (-15 -2690 ((-521) $)) (-15 -2207 ((-521) $)) (-15 -3222 ((-521) $)) (-15 -2684 ((-521) $)) (-15 -1410 ((-707) $)) (-15 -1421 ((-707) $)) (-15 -2544 (|t#1| $ (-521) (-521))) (-15 -3626 (|t#1| $ (-521) (-521))) (-15 -2544 (|t#1| $ (-521) (-521) |t#1|)) (-15 -2672 (|t#2| $ (-521))) (-15 -3187 (|t#3| $ (-521))) (-15 -3831 ((-587 |t#1|) $)) (-15 -2378 (|t#1| $ (-521) (-521) |t#1|)) (-15 -3849 (|t#1| $ (-521) (-521) |t#1|)) (-15 -1816 ($ $ (-521) |t#2|)) (-15 -3520 ($ $ (-521) |t#3|)) (-15 -1390 ($ (-1 |t#1| |t#1|) $)) (-15 -3833 ($ (-1 |t#1| |t#1|) $)) (-15 -1390 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -1390 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|))))
+(((-33) . T) ((-97) |has| |#1| (-1013)) ((-561 (-792)) -3703 (|has| |#1| (-1013)) (|has| |#1| (-561 (-792)))) ((-284 |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-460 |#1|) . T) ((-482 |#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-1013) |has| |#1| (-1013)) ((-1119) . T))
+((-3126 (((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|) 16)) (-3859 ((|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|) 18)) (-1390 (((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)) 13)))
+(((-56 |#1| |#2|) (-10 -7 (-15 -3126 ((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -3859 (|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -1390 ((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)))) (-1119) (-1119)) (T -56))
+((-1390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-57 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-57 *6)) (-5 *1 (-56 *5 *6)))) (-3859 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-57 *5)) (-4 *5 (-1119)) (-4 *2 (-1119)) (-5 *1 (-56 *5 *2)))) (-3126 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-57 *6)) (-4 *6 (-1119)) (-4 *5 (-1119)) (-5 *2 (-57 *5)) (-5 *1 (-56 *6 *5)))))
+(-10 -7 (-15 -3126 ((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -3859 (|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -1390 ((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|))))
+((-1415 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-1903 (((-1170) $ (-521) (-521)) NIL (|has| $ (-6 -4234)))) (-1505 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-784)))) (-1621 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4234))) (($ $) NIL (-12 (|has| $ (-6 -4234)) (|has| |#1| (-784))))) (-3211 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-784)))) (-2978 (((-108) $ (-707)) NIL)) (-2378 ((|#1| $ (-521) |#1|) 11 (|has| $ (-6 -4234))) ((|#1| $ (-1132 (-521)) |#1|) NIL (|has| $ (-6 -4234)))) (-1628 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2547 (($) NIL T CONST)) (-3081 (($ $) NIL (|has| $ (-6 -4234)))) (-1862 (($ $) NIL)) (-2332 (($ $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-1422 (($ |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-3859 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4233)))) (-3849 ((|#1| $ (-521) |#1|) NIL (|has| $ (-6 -4234)))) (-3626 ((|#1| $ (-521)) NIL)) (-3233 (((-521) (-1 (-108) |#1|) $) NIL) (((-521) |#1| $) NIL (|has| |#1| (-1013))) (((-521) |#1| $ (-521)) NIL (|has| |#1| (-1013)))) (-3831 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-2413 (($ (-587 |#1|)) 13) (($ (-707) |#1|) 14)) (-1811 (($ (-707) |#1|) 9)) (-2139 (((-108) $ (-707)) NIL)) (-2826 (((-521) $) NIL (|has| (-521) (-784)))) (-2810 (($ $ $) NIL (|has| |#1| (-784)))) (-1318 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-784)))) (-3757 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-2221 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2597 (((-521) $) NIL (|has| (-521) (-784)))) (-2446 (($ $ $) NIL (|has| |#1| (-784)))) (-3833 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3574 (((-108) $ (-707)) NIL)) (-3688 (((-1067) $) NIL (|has| |#1| (-1013)))) (-1659 (($ |#1| $ (-521)) NIL) (($ $ $ (-521)) NIL)) (-1668 (((-587 (-521)) $) NIL)) (-2941 (((-108) (-521) $) NIL)) (-4147 (((-1031) $) NIL (|has| |#1| (-1013)))) (-2293 ((|#1| $) NIL (|has| (-521) (-784)))) (-3620 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-3016 (($ $ |#1|) NIL (|has| $ (-6 -4234)))) (-1789 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 |#1|))) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-2488 (((-108) $ $) NIL)) (-3821 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2489 (((-587 |#1|) $) NIL)) (-3462 (((-108) $) NIL)) (-4024 (($) 7)) (-2544 ((|#1| $ (-521) |#1|) NIL) ((|#1| $ (-521)) NIL) (($ $ (-1132 (-521))) NIL)) (-3691 (($ $ (-521)) NIL) (($ $ (-1132 (-521))) NIL)) (-4163 (((-707) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (((-707) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-1497 (($ $ $ (-521)) NIL (|has| $ (-6 -4234)))) (-2404 (($ $) NIL)) (-1430 (((-497) $) NIL (|has| |#1| (-562 (-497))))) (-2201 (($ (-587 |#1|)) NIL)) (-4159 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-587 $)) NIL)) (-2189 (((-792) $) NIL (|has| |#1| (-561 (-792))))) (-3049 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-1574 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1558 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1531 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-1566 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1549 (((-108) $ $) NIL (|has| |#1| (-784)))) (-3475 (((-707) $) NIL (|has| $ (-6 -4233)))))
+(((-57 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -2413 ($ (-587 |#1|))) (-15 -2413 ($ (-707) |#1|)))) (-1119)) (T -57))
+((-2413 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1119)) (-5 *1 (-57 *3)))) (-2413 (*1 *1 *2 *3) (-12 (-5 *2 (-707)) (-5 *1 (-57 *3)) (-4 *3 (-1119)))))
+(-13 (-19 |#1|) (-10 -8 (-15 -2413 ($ (-587 |#1|))) (-15 -2413 ($ (-707) |#1|))))
+((-1415 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-2978 (((-108) $ (-707)) NIL)) (-2378 ((|#1| $ (-521) (-521) |#1|) NIL)) (-1816 (($ $ (-521) (-57 |#1|)) NIL)) (-3520 (($ $ (-521) (-57 |#1|)) NIL)) (-2547 (($) NIL T CONST)) (-2672 (((-57 |#1|) $ (-521)) NIL)) (-3849 ((|#1| $ (-521) (-521) |#1|) NIL)) (-3626 ((|#1| $ (-521) (-521)) NIL)) (-3831 (((-587 |#1|) $) NIL)) (-1410 (((-707) $) NIL)) (-1811 (($ (-707) (-707) |#1|) NIL)) (-1421 (((-707) $) NIL)) (-2139 (((-108) $ (-707)) NIL)) (-2690 (((-521) $) NIL)) (-3222 (((-521) $) NIL)) (-3757 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-2221 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2207 (((-521) $) NIL)) (-2684 (((-521) $) NIL)) (-3833 (($ (-1 |#1| |#1|) $) NIL)) (-1390 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3574 (((-108) $ (-707)) NIL)) (-3688 (((-1067) $) NIL (|has| |#1| (-1013)))) (-4147 (((-1031) $) NIL (|has| |#1| (-1013)))) (-3016 (($ $ |#1|) NIL)) (-1789 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 |#1|))) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-2488 (((-108) $ $) NIL)) (-3462 (((-108) $) NIL)) (-4024 (($) NIL)) (-2544 ((|#1| $ (-521) (-521)) NIL) ((|#1| $ (-521) (-521) |#1|) NIL)) (-4163 (((-707) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (((-707) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2404 (($ $) NIL)) (-3187 (((-57 |#1|) $ (-521)) NIL)) (-2189 (((-792) $) NIL (|has| |#1| (-561 (-792))))) (-3049 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-1531 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3475 (((-707) $) NIL (|has| $ (-6 -4233)))))
+(((-58 |#1|) (-13 (-55 |#1| (-57 |#1|) (-57 |#1|)) (-10 -7 (-6 -4234))) (-1119)) (T -58))
+NIL
+(-13 (-55 |#1| (-57 |#1|) (-57 |#1|)) (-10 -7 (-6 -4234)))
+((-1297 (((-3 $ "failed") (-1165 (-290 (-353)))) 69) (((-3 $ "failed") (-1165 (-290 (-521)))) 58) (((-3 $ "failed") (-1165 (-881 (-353)))) 91) (((-3 $ "failed") (-1165 (-881 (-521)))) 80) (((-3 $ "failed") (-1165 (-381 (-881 (-353))))) 47) (((-3 $ "failed") (-1165 (-381 (-881 (-521))))) 36)) (-1483 (($ (-1165 (-290 (-353)))) 65) (($ (-1165 (-290 (-521)))) 54) (($ (-1165 (-881 (-353)))) 87) (($ (-1165 (-881 (-521)))) 76) (($ (-1165 (-381 (-881 (-353))))) 43) (($ (-1165 (-381 (-881 (-521))))) 29)) (-2009 (((-1170) $) 118)) (-2189 (((-792) $) 111) (($ (-587 (-304))) 100) (($ (-304)) 94) (($ (-2 (|:| |localSymbols| (-1088)) (|:| -2032 (-587 (-304))))) 97) (($ (-1165 (-313 (-2201 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2201) (-636)))) 28)))
+(((-59 |#1|) (-13 (-414) (-10 -8 (-15 -2189 ($ (-1165 (-313 (-2201 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2201) (-636))))))) (-1084)) (T -59))
+((-2189 (*1 *1 *2) (-12 (-5 *2 (-1165 (-313 (-2201 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2201) (-636)))) (-5 *1 (-59 *3)) (-14 *3 (-1084)))))
+(-13 (-414) (-10 -8 (-15 -2189 ($ (-1165 (-313 (-2201 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2201) (-636)))))))
+((-2009 (((-1170) $) 48) (((-1170)) 49)) (-2189 (((-792) $) 45)))
+(((-60 |#1|) (-13 (-369) (-10 -7 (-15 -2009 ((-1170))))) (-1084)) (T -60))
+((-2009 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-60 *3)) (-14 *3 (-1084)))))
+(-13 (-369) (-10 -7 (-15 -2009 ((-1170)))))
+((-1297 (((-3 $ "failed") (-1165 (-290 (-353)))) 142) (((-3 $ "failed") (-1165 (-290 (-521)))) 132) (((-3 $ "failed") (-1165 (-881 (-353)))) 163) (((-3 $ "failed") (-1165 (-881 (-521)))) 152) (((-3 $ "failed") (-1165 (-381 (-881 (-353))))) 121) (((-3 $ "failed") (-1165 (-381 (-881 (-521))))) 110)) (-1483 (($ (-1165 (-290 (-353)))) 138) (($ (-1165 (-290 (-521)))) 128) (($ (-1165 (-881 (-353)))) 159) (($ (-1165 (-881 (-521)))) 148) (($ (-1165 (-381 (-881 (-353))))) 117) (($ (-1165 (-381 (-881 (-521))))) 103)) (-2009 (((-1170) $) 96)) (-2189 (((-792) $) 90) (($ (-587 (-304))) 28) (($ (-304)) 34) (($ (-2 (|:| |localSymbols| (-1088)) (|:| -2032 (-587 (-304))))) 31) (($ (-1165 (-313 (-2201) (-2201 (QUOTE XC)) (-636)))) 88)))
+(((-61 |#1|) (-13 (-414) (-10 -8 (-15 -2189 ($ (-1165 (-313 (-2201) (-2201 (QUOTE XC)) (-636))))))) (-1084)) (T -61))
+((-2189 (*1 *1 *2) (-12 (-5 *2 (-1165 (-313 (-2201) (-2201 (QUOTE XC)) (-636)))) (-5 *1 (-61 *3)) (-14 *3 (-1084)))))
+(-13 (-414) (-10 -8 (-15 -2189 ($ (-1165 (-313 (-2201) (-2201 (QUOTE XC)) (-636)))))))
+((-1297 (((-3 $ "failed") (-290 (-353))) 36) (((-3 $ "failed") (-290 (-521))) 41) (((-3 $ "failed") (-881 (-353))) 46) (((-3 $ "failed") (-881 (-521))) 51) (((-3 $ "failed") (-381 (-881 (-353)))) 31) (((-3 $ "failed") (-381 (-881 (-521)))) 26)) (-1483 (($ (-290 (-353))) 34) (($ (-290 (-521))) 39) (($ (-881 (-353))) 44) (($ (-881 (-521))) 49) (($ (-381 (-881 (-353)))) 29) (($ (-381 (-881 (-521)))) 23)) (-2009 (((-1170) $) 73)) (-2189 (((-792) $) 66) (($ (-587 (-304))) 57) (($ (-304)) 63) (($ (-2 (|:| |localSymbols| (-1088)) (|:| -2032 (-587 (-304))))) 60) (($ (-313 (-2201 (QUOTE X)) (-2201) (-636))) 22)))
+(((-62 |#1|) (-13 (-370) (-10 -8 (-15 -2189 ($ (-313 (-2201 (QUOTE X)) (-2201) (-636)))))) (-1084)) (T -62))
+((-2189 (*1 *1 *2) (-12 (-5 *2 (-313 (-2201 (QUOTE X)) (-2201) (-636))) (-5 *1 (-62 *3)) (-14 *3 (-1084)))))
+(-13 (-370) (-10 -8 (-15 -2189 ($ (-313 (-2201 (QUOTE X)) (-2201) (-636))))))
+((-1297 (((-3 $ "failed") (-627 (-290 (-353)))) 100) (((-3 $ "failed") (-627 (-290 (-521)))) 89) (((-3 $ "failed") (-627 (-881 (-353)))) 122) (((-3 $ "failed") (-627 (-881 (-521)))) 111) (((-3 $ "failed") (-627 (-381 (-881 (-353))))) 78) (((-3 $ "failed") (-627 (-381 (-881 (-521))))) 67)) (-1483 (($ (-627 (-290 (-353)))) 96) (($ (-627 (-290 (-521)))) 85) (($ (-627 (-881 (-353)))) 118) (($ (-627 (-881 (-521)))) 107) (($ (-627 (-381 (-881 (-353))))) 74) (($ (-627 (-381 (-881 (-521))))) 60)) (-2009 (((-1170) $) 130)) (-2189 (((-792) $) 124) (($ (-587 (-304))) 27) (($ (-304)) 33) (($ (-2 (|:| |localSymbols| (-1088)) (|:| -2032 (-587 (-304))))) 30) (($ (-627 (-313 (-2201) (-2201 (QUOTE X) (QUOTE HESS)) (-636)))) 53)))
+(((-63 |#1|) (-13 (-358) (-10 -8 (-15 -2189 ($ (-627 (-313 (-2201) (-2201 (QUOTE X) (QUOTE HESS)) (-636))))))) (-1084)) (T -63))
+((-2189 (*1 *1 *2) (-12 (-5 *2 (-627 (-313 (-2201) (-2201 (QUOTE X) (QUOTE HESS)) (-636)))) (-5 *1 (-63 *3)) (-14 *3 (-1084)))))
+(-13 (-358) (-10 -8 (-15 -2189 ($ (-627 (-313 (-2201) (-2201 (QUOTE X) (QUOTE HESS)) (-636)))))))
+((-1297 (((-3 $ "failed") (-290 (-353))) 54) (((-3 $ "failed") (-290 (-521))) 59) (((-3 $ "failed") (-881 (-353))) 64) (((-3 $ "failed") (-881 (-521))) 69) (((-3 $ "failed") (-381 (-881 (-353)))) 49) (((-3 $ "failed") (-381 (-881 (-521)))) 44)) (-1483 (($ (-290 (-353))) 52) (($ (-290 (-521))) 57) (($ (-881 (-353))) 62) (($ (-881 (-521))) 67) (($ (-381 (-881 (-353)))) 47) (($ (-381 (-881 (-521)))) 41)) (-2009 (((-1170) $) 78)) (-2189 (((-792) $) 72) (($ (-587 (-304))) 27) (($ (-304)) 33) (($ (-2 (|:| |localSymbols| (-1088)) (|:| -2032 (-587 (-304))))) 30) (($ (-313 (-2201) (-2201 (QUOTE XC)) (-636))) 38)))
+(((-64 |#1|) (-13 (-370) (-10 -8 (-15 -2189 ($ (-313 (-2201) (-2201 (QUOTE XC)) (-636)))))) (-1084)) (T -64))
+((-2189 (*1 *1 *2) (-12 (-5 *2 (-313 (-2201) (-2201 (QUOTE XC)) (-636))) (-5 *1 (-64 *3)) (-14 *3 (-1084)))))
+(-13 (-370) (-10 -8 (-15 -2189 ($ (-313 (-2201) (-2201 (QUOTE XC)) (-636))))))
+((-2009 (((-1170) $) 63)) (-2189 (((-792) $) 57) (($ (-627 (-636))) 49) (($ (-587 (-304))) 48) (($ (-304)) 55) (($ (-2 (|:| |localSymbols| (-1088)) (|:| -2032 (-587 (-304))))) 53)))
+(((-65 |#1|) (-357) (-1084)) (T -65))
+NIL
+(-357)
+((-2009 (((-1170) $) 64)) (-2189 (((-792) $) 58) (($ (-627 (-636))) 50) (($ (-587 (-304))) 49) (($ (-304)) 52) (($ (-2 (|:| |localSymbols| (-1088)) (|:| -2032 (-587 (-304))))) 55)))
+(((-66 |#1|) (-357) (-1084)) (T -66))
+NIL
+(-357)
+((-2009 (((-1170) $) NIL) (((-1170)) 32)) (-2189 (((-792) $) NIL)))
+(((-67 |#1|) (-13 (-369) (-10 -7 (-15 -2009 ((-1170))))) (-1084)) (T -67))
+((-2009 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-67 *3)) (-14 *3 (-1084)))))
+(-13 (-369) (-10 -7 (-15 -2009 ((-1170)))))
+((-2009 (((-1170) $) 68)) (-2189 (((-792) $) 62) (($ (-627 (-636))) 53) (($ (-587 (-304))) 56) (($ (-304)) 59) (($ (-2 (|:| |localSymbols| (-1088)) (|:| -2032 (-587 (-304))))) 52)))
+(((-68 |#1|) (-357) (-1084)) (T -68))
+NIL
+(-357)
+((-1297 (((-3 $ "failed") (-1165 (-290 (-353)))) 98) (((-3 $ "failed") (-1165 (-290 (-521)))) 87) (((-3 $ "failed") (-1165 (-881 (-353)))) 119) (((-3 $ "failed") (-1165 (-881 (-521)))) 108) (((-3 $ "failed") (-1165 (-381 (-881 (-353))))) 76) (((-3 $ "failed") (-1165 (-381 (-881 (-521))))) 65)) (-1483 (($ (-1165 (-290 (-353)))) 94) (($ (-1165 (-290 (-521)))) 83) (($ (-1165 (-881 (-353)))) 115) (($ (-1165 (-881 (-521)))) 104) (($ (-1165 (-381 (-881 (-353))))) 72) (($ (-1165 (-381 (-881 (-521))))) 58)) (-2009 (((-1170) $) 133)) (-2189 (((-792) $) 127) (($ (-587 (-304))) 122) (($ (-304)) 125) (($ (-2 (|:| |localSymbols| (-1088)) (|:| -2032 (-587 (-304))))) 50) (($ (-1165 (-313 (-2201 (QUOTE X)) (-2201 (QUOTE -1351)) (-636)))) 51)))
+(((-69 |#1|) (-13 (-414) (-10 -8 (-15 -2189 ($ (-1165 (-313 (-2201 (QUOTE X)) (-2201 (QUOTE -1351)) (-636))))))) (-1084)) (T -69))
+((-2189 (*1 *1 *2) (-12 (-5 *2 (-1165 (-313 (-2201 (QUOTE X)) (-2201 (QUOTE -1351)) (-636)))) (-5 *1 (-69 *3)) (-14 *3 (-1084)))))
+(-13 (-414) (-10 -8 (-15 -2189 ($ (-1165 (-313 (-2201 (QUOTE X)) (-2201 (QUOTE -1351)) (-636)))))))
+((-2009 (((-1170) $) 32) (((-1170)) 31)) (-2189 (((-792) $) 35)))
+(((-70 |#1|) (-13 (-369) (-10 -7 (-15 -2009 ((-1170))))) (-1084)) (T -70))
+((-2009 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-70 *3)) (-14 *3 (-1084)))))
+(-13 (-369) (-10 -7 (-15 -2009 ((-1170)))))
+((-2009 (((-1170) $) 62)) (-2189 (((-792) $) 56) (($ (-627 (-636))) 47) (($ (-587 (-304))) 50) (($ (-304)) 53) (($ (-2 (|:| |localSymbols| (-1088)) (|:| -2032 (-587 (-304))))) 46)))
+(((-71 |#1|) (-357) (-1084)) (T -71))
+NIL
+(-357)
+((-1297 (((-3 $ "failed") (-1165 (-290 (-353)))) 119) (((-3 $ "failed") (-1165 (-290 (-521)))) 108) (((-3 $ "failed") (-1165 (-881 (-353)))) 141) (((-3 $ "failed") (-1165 (-881 (-521)))) 130) (((-3 $ "failed") (-1165 (-381 (-881 (-353))))) 98) (((-3 $ "failed") (-1165 (-381 (-881 (-521))))) 87)) (-1483 (($ (-1165 (-290 (-353)))) 115) (($ (-1165 (-290 (-521)))) 104) (($ (-1165 (-881 (-353)))) 137) (($ (-1165 (-881 (-521)))) 126) (($ (-1165 (-381 (-881 (-353))))) 94) (($ (-1165 (-381 (-881 (-521))))) 80)) (-2009 (((-1170) $) 73)) (-2189 (((-792) $) 27) (($ (-587 (-304))) 63) (($ (-304)) 59) (($ (-2 (|:| |localSymbols| (-1088)) (|:| -2032 (-587 (-304))))) 66) (($ (-1165 (-313 (-2201) (-2201 (QUOTE X)) (-636)))) 60)))
+(((-72 |#1|) (-13 (-414) (-10 -8 (-15 -2189 ($ (-1165 (-313 (-2201) (-2201 (QUOTE X)) (-636))))))) (-1084)) (T -72))
+((-2189 (*1 *1 *2) (-12 (-5 *2 (-1165 (-313 (-2201) (-2201 (QUOTE X)) (-636)))) (-5 *1 (-72 *3)) (-14 *3 (-1084)))))
+(-13 (-414) (-10 -8 (-15 -2189 ($ (-1165 (-313 (-2201) (-2201 (QUOTE X)) (-636)))))))
+((-1297 (((-3 $ "failed") (-1165 (-290 (-353)))) 125) (((-3 $ "failed") (-1165 (-290 (-521)))) 114) (((-3 $ "failed") (-1165 (-881 (-353)))) 147) (((-3 $ "failed") (-1165 (-881 (-521)))) 136) (((-3 $ "failed") (-1165 (-381 (-881 (-353))))) 103) (((-3 $ "failed") (-1165 (-381 (-881 (-521))))) 92)) (-1483 (($ (-1165 (-290 (-353)))) 121) (($ (-1165 (-290 (-521)))) 110) (($ (-1165 (-881 (-353)))) 143) (($ (-1165 (-881 (-521)))) 132) (($ (-1165 (-381 (-881 (-353))))) 99) (($ (-1165 (-381 (-881 (-521))))) 85)) (-2009 (((-1170) $) 78)) (-2189 (((-792) $) 70) (($ (-587 (-304))) NIL) (($ (-304)) NIL) (($ (-2 (|:| |localSymbols| (-1088)) (|:| -2032 (-587 (-304))))) NIL) (($ (-1165 (-313 (-2201 (QUOTE X) (QUOTE EPS)) (-2201 (QUOTE -1351)) (-636)))) 65)))
+(((-73 |#1| |#2| |#3|) (-13 (-414) (-10 -8 (-15 -2189 ($ (-1165 (-313 (-2201 (QUOTE X) (QUOTE EPS)) (-2201 (QUOTE -1351)) (-636))))))) (-1084) (-1084) (-1084)) (T -73))
+((-2189 (*1 *1 *2) (-12 (-5 *2 (-1165 (-313 (-2201 (QUOTE X) (QUOTE EPS)) (-2201 (QUOTE -1351)) (-636)))) (-5 *1 (-73 *3 *4 *5)) (-14 *3 (-1084)) (-14 *4 (-1084)) (-14 *5 (-1084)))))
+(-13 (-414) (-10 -8 (-15 -2189 ($ (-1165 (-313 (-2201 (QUOTE X) (QUOTE EPS)) (-2201 (QUOTE -1351)) (-636)))))))
+((-1297 (((-3 $ "failed") (-1165 (-290 (-353)))) 129) (((-3 $ "failed") (-1165 (-290 (-521)))) 118) (((-3 $ "failed") (-1165 (-881 (-353)))) 151) (((-3 $ "failed") (-1165 (-881 (-521)))) 140) (((-3 $ "failed") (-1165 (-381 (-881 (-353))))) 107) (((-3 $ "failed") (-1165 (-381 (-881 (-521))))) 96)) (-1483 (($ (-1165 (-290 (-353)))) 125) (($ (-1165 (-290 (-521)))) 114) (($ (-1165 (-881 (-353)))) 147) (($ (-1165 (-881 (-521)))) 136) (($ (-1165 (-381 (-881 (-353))))) 103) (($ (-1165 (-381 (-881 (-521))))) 89)) (-2009 (((-1170) $) 82)) (-2189 (((-792) $) 74) (($ (-587 (-304))) NIL) (($ (-304)) NIL) (($ (-2 (|:| |localSymbols| (-1088)) (|:| -2032 (-587 (-304))))) NIL) (($ (-1165 (-313 (-2201 (QUOTE EPS)) (-2201 (QUOTE YA) (QUOTE YB)) (-636)))) 69)))
+(((-74 |#1| |#2| |#3|) (-13 (-414) (-10 -8 (-15 -2189 ($ (-1165 (-313 (-2201 (QUOTE EPS)) (-2201 (QUOTE YA) (QUOTE YB)) (-636))))))) (-1084) (-1084) (-1084)) (T -74))
+((-2189 (*1 *1 *2) (-12 (-5 *2 (-1165 (-313 (-2201 (QUOTE EPS)) (-2201 (QUOTE YA) (QUOTE YB)) (-636)))) (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1084)) (-14 *4 (-1084)) (-14 *5 (-1084)))))
+(-13 (-414) (-10 -8 (-15 -2189 ($ (-1165 (-313 (-2201 (QUOTE EPS)) (-2201 (QUOTE YA) (QUOTE YB)) (-636)))))))
+((-1297 (((-3 $ "failed") (-290 (-353))) 77) (((-3 $ "failed") (-290 (-521))) 82) (((-3 $ "failed") (-881 (-353))) 87) (((-3 $ "failed") (-881 (-521))) 92) (((-3 $ "failed") (-381 (-881 (-353)))) 72) (((-3 $ "failed") (-381 (-881 (-521)))) 67)) (-1483 (($ (-290 (-353))) 75) (($ (-290 (-521))) 80) (($ (-881 (-353))) 85) (($ (-881 (-521))) 90) (($ (-381 (-881 (-353)))) 70) (($ (-381 (-881 (-521)))) 64)) (-2009 (((-1170) $) 61)) (-2189 (((-792) $) 49) (($ (-587 (-304))) 45) (($ (-304)) 55) (($ (-2 (|:| |localSymbols| (-1088)) (|:| -2032 (-587 (-304))))) 53) (($ (-313 (-2201) (-2201 (QUOTE X)) (-636))) 46)))
+(((-75 |#1|) (-13 (-370) (-10 -8 (-15 -2189 ($ (-313 (-2201) (-2201 (QUOTE X)) (-636)))))) (-1084)) (T -75))
+((-2189 (*1 *1 *2) (-12 (-5 *2 (-313 (-2201) (-2201 (QUOTE X)) (-636))) (-5 *1 (-75 *3)) (-14 *3 (-1084)))))
+(-13 (-370) (-10 -8 (-15 -2189 ($ (-313 (-2201) (-2201 (QUOTE X)) (-636))))))
+((-1297 (((-3 $ "failed") (-290 (-353))) 41) (((-3 $ "failed") (-290 (-521))) 46) (((-3 $ "failed") (-881 (-353))) 51) (((-3 $ "failed") (-881 (-521))) 56) (((-3 $ "failed") (-381 (-881 (-353)))) 36) (((-3 $ "failed") (-381 (-881 (-521)))) 31)) (-1483 (($ (-290 (-353))) 39) (($ (-290 (-521))) 44) (($ (-881 (-353))) 49) (($ (-881 (-521))) 54) (($ (-381 (-881 (-353)))) 34) (($ (-381 (-881 (-521)))) 28)) (-2009 (((-1170) $) 77)) (-2189 (((-792) $) 71) (($ (-587 (-304))) 62) (($ (-304)) 68) (($ (-2 (|:| |localSymbols| (-1088)) (|:| -2032 (-587 (-304))))) 65) (($ (-313 (-2201) (-2201 (QUOTE X)) (-636))) 27)))
+(((-76 |#1|) (-13 (-370) (-10 -8 (-15 -2189 ($ (-313 (-2201) (-2201 (QUOTE X)) (-636)))))) (-1084)) (T -76))
+((-2189 (*1 *1 *2) (-12 (-5 *2 (-313 (-2201) (-2201 (QUOTE X)) (-636))) (-5 *1 (-76 *3)) (-14 *3 (-1084)))))
+(-13 (-370) (-10 -8 (-15 -2189 ($ (-313 (-2201) (-2201 (QUOTE X)) (-636))))))
+((-1297 (((-3 $ "failed") (-1165 (-290 (-353)))) 84) (((-3 $ "failed") (-1165 (-290 (-521)))) 73) (((-3 $ "failed") (-1165 (-881 (-353)))) 106) (((-3 $ "failed") (-1165 (-881 (-521)))) 95) (((-3 $ "failed") (-1165 (-381 (-881 (-353))))) 62) (((-3 $ "failed") (-1165 (-381 (-881 (-521))))) 51)) (-1483 (($ (-1165 (-290 (-353)))) 80) (($ (-1165 (-290 (-521)))) 69) (($ (-1165 (-881 (-353)))) 102) (($ (-1165 (-881 (-521)))) 91) (($ (-1165 (-381 (-881 (-353))))) 58) (($ (-1165 (-381 (-881 (-521))))) 44)) (-2009 (((-1170) $) 122)) (-2189 (((-792) $) 116) (($ (-587 (-304))) 109) (($ (-304)) 36) (($ (-2 (|:| |localSymbols| (-1088)) (|:| -2032 (-587 (-304))))) 112) (($ (-1165 (-313 (-2201) (-2201 (QUOTE XC)) (-636)))) 37)))
+(((-77 |#1|) (-13 (-414) (-10 -8 (-15 -2189 ($ (-1165 (-313 (-2201) (-2201 (QUOTE XC)) (-636))))))) (-1084)) (T -77))
+((-2189 (*1 *1 *2) (-12 (-5 *2 (-1165 (-313 (-2201) (-2201 (QUOTE XC)) (-636)))) (-5 *1 (-77 *3)) (-14 *3 (-1084)))))
+(-13 (-414) (-10 -8 (-15 -2189 ($ (-1165 (-313 (-2201) (-2201 (QUOTE XC)) (-636)))))))
+((-1297 (((-3 $ "failed") (-1165 (-290 (-353)))) 137) (((-3 $ "failed") (-1165 (-290 (-521)))) 126) (((-3 $ "failed") (-1165 (-881 (-353)))) 158) (((-3 $ "failed") (-1165 (-881 (-521)))) 147) (((-3 $ "failed") (-1165 (-381 (-881 (-353))))) 116) (((-3 $ "failed") (-1165 (-381 (-881 (-521))))) 105)) (-1483 (($ (-1165 (-290 (-353)))) 133) (($ (-1165 (-290 (-521)))) 122) (($ (-1165 (-881 (-353)))) 154) (($ (-1165 (-881 (-521)))) 143) (($ (-1165 (-381 (-881 (-353))))) 112) (($ (-1165 (-381 (-881 (-521))))) 98)) (-2009 (((-1170) $) 91)) (-2189 (((-792) $) 85) (($ (-587 (-304))) 76) (($ (-304)) 83) (($ (-2 (|:| |localSymbols| (-1088)) (|:| -2032 (-587 (-304))))) 81) (($ (-1165 (-313 (-2201) (-2201 (QUOTE X)) (-636)))) 77)))
+(((-78 |#1|) (-13 (-414) (-10 -8 (-15 -2189 ($ (-1165 (-313 (-2201) (-2201 (QUOTE X)) (-636))))))) (-1084)) (T -78))
+((-2189 (*1 *1 *2) (-12 (-5 *2 (-1165 (-313 (-2201) (-2201 (QUOTE X)) (-636)))) (-5 *1 (-78 *3)) (-14 *3 (-1084)))))
+(-13 (-414) (-10 -8 (-15 -2189 ($ (-1165 (-313 (-2201) (-2201 (QUOTE X)) (-636)))))))
+((-1297 (((-3 $ "failed") (-1165 (-290 (-353)))) 73) (((-3 $ "failed") (-1165 (-290 (-521)))) 62) (((-3 $ "failed") (-1165 (-881 (-353)))) 95) (((-3 $ "failed") (-1165 (-881 (-521)))) 84) (((-3 $ "failed") (-1165 (-381 (-881 (-353))))) 51) (((-3 $ "failed") (-1165 (-381 (-881 (-521))))) 40)) (-1483 (($ (-1165 (-290 (-353)))) 69) (($ (-1165 (-290 (-521)))) 58) (($ (-1165 (-881 (-353)))) 91) (($ (-1165 (-881 (-521)))) 80) (($ (-1165 (-381 (-881 (-353))))) 47) (($ (-1165 (-381 (-881 (-521))))) 33)) (-2009 (((-1170) $) 121)) (-2189 (((-792) $) 115) (($ (-587 (-304))) 106) (($ (-304)) 112) (($ (-2 (|:| |localSymbols| (-1088)) (|:| -2032 (-587 (-304))))) 110) (($ (-1165 (-313 (-2201) (-2201 (QUOTE X)) (-636)))) 32)))
+(((-79 |#1|) (-13 (-414) (-10 -8 (-15 -2189 ($ (-1165 (-313 (-2201) (-2201 (QUOTE X)) (-636))))))) (-1084)) (T -79))
+((-2189 (*1 *1 *2) (-12 (-5 *2 (-1165 (-313 (-2201) (-2201 (QUOTE X)) (-636)))) (-5 *1 (-79 *3)) (-14 *3 (-1084)))))
+(-13 (-414) (-10 -8 (-15 -2189 ($ (-1165 (-313 (-2201) (-2201 (QUOTE X)) (-636)))))))
+((-1297 (((-3 $ "failed") (-1165 (-290 (-353)))) 90) (((-3 $ "failed") (-1165 (-290 (-521)))) 79) (((-3 $ "failed") (-1165 (-881 (-353)))) 112) (((-3 $ "failed") (-1165 (-881 (-521)))) 101) (((-3 $ "failed") (-1165 (-381 (-881 (-353))))) 68) (((-3 $ "failed") (-1165 (-381 (-881 (-521))))) 57)) (-1483 (($ (-1165 (-290 (-353)))) 86) (($ (-1165 (-290 (-521)))) 75) (($ (-1165 (-881 (-353)))) 108) (($ (-1165 (-881 (-521)))) 97) (($ (-1165 (-381 (-881 (-353))))) 64) (($ (-1165 (-381 (-881 (-521))))) 50)) (-2009 (((-1170) $) 43)) (-2189 (((-792) $) 36) (($ (-587 (-304))) 26) (($ (-304)) 29) (($ (-2 (|:| |localSymbols| (-1088)) (|:| -2032 (-587 (-304))))) 32) (($ (-1165 (-313 (-2201 (QUOTE X) (QUOTE -1351)) (-2201) (-636)))) 27)))
+(((-80 |#1|) (-13 (-414) (-10 -8 (-15 -2189 ($ (-1165 (-313 (-2201 (QUOTE X) (QUOTE -1351)) (-2201) (-636))))))) (-1084)) (T -80))
+((-2189 (*1 *1 *2) (-12 (-5 *2 (-1165 (-313 (-2201 (QUOTE X) (QUOTE -1351)) (-2201) (-636)))) (-5 *1 (-80 *3)) (-14 *3 (-1084)))))
+(-13 (-414) (-10 -8 (-15 -2189 ($ (-1165 (-313 (-2201 (QUOTE X) (QUOTE -1351)) (-2201) (-636)))))))
+((-1297 (((-3 $ "failed") (-627 (-290 (-353)))) 103) (((-3 $ "failed") (-627 (-290 (-521)))) 92) (((-3 $ "failed") (-627 (-881 (-353)))) 125) (((-3 $ "failed") (-627 (-881 (-521)))) 114) (((-3 $ "failed") (-627 (-381 (-881 (-353))))) 82) (((-3 $ "failed") (-627 (-381 (-881 (-521))))) 71)) (-1483 (($ (-627 (-290 (-353)))) 99) (($ (-627 (-290 (-521)))) 88) (($ (-627 (-881 (-353)))) 121) (($ (-627 (-881 (-521)))) 110) (($ (-627 (-381 (-881 (-353))))) 78) (($ (-627 (-381 (-881 (-521))))) 64)) (-2009 (((-1170) $) 57)) (-2189 (((-792) $) 43) (($ (-587 (-304))) 50) (($ (-304)) 39) (($ (-2 (|:| |localSymbols| (-1088)) (|:| -2032 (-587 (-304))))) 47) (($ (-627 (-313 (-2201 (QUOTE X) (QUOTE -1351)) (-2201) (-636)))) 40)))
+(((-81 |#1|) (-13 (-358) (-10 -8 (-15 -2189 ($ (-627 (-313 (-2201 (QUOTE X) (QUOTE -1351)) (-2201) (-636))))))) (-1084)) (T -81))
+((-2189 (*1 *1 *2) (-12 (-5 *2 (-627 (-313 (-2201 (QUOTE X) (QUOTE -1351)) (-2201) (-636)))) (-5 *1 (-81 *3)) (-14 *3 (-1084)))))
+(-13 (-358) (-10 -8 (-15 -2189 ($ (-627 (-313 (-2201 (QUOTE X) (QUOTE -1351)) (-2201) (-636)))))))
+((-1297 (((-3 $ "failed") (-627 (-290 (-353)))) 103) (((-3 $ "failed") (-627 (-290 (-521)))) 92) (((-3 $ "failed") (-627 (-881 (-353)))) 124) (((-3 $ "failed") (-627 (-881 (-521)))) 113) (((-3 $ "failed") (-627 (-381 (-881 (-353))))) 81) (((-3 $ "failed") (-627 (-381 (-881 (-521))))) 70)) (-1483 (($ (-627 (-290 (-353)))) 99) (($ (-627 (-290 (-521)))) 88) (($ (-627 (-881 (-353)))) 120) (($ (-627 (-881 (-521)))) 109) (($ (-627 (-381 (-881 (-353))))) 77) (($ (-627 (-381 (-881 (-521))))) 63)) (-2009 (((-1170) $) 56)) (-2189 (((-792) $) 50) (($ (-587 (-304))) 44) (($ (-304)) 47) (($ (-2 (|:| |localSymbols| (-1088)) (|:| -2032 (-587 (-304))))) 40) (($ (-627 (-313 (-2201 (QUOTE X)) (-2201) (-636)))) 41)))
+(((-82 |#1|) (-13 (-358) (-10 -8 (-15 -2189 ($ (-627 (-313 (-2201 (QUOTE X)) (-2201) (-636))))))) (-1084)) (T -82))
+((-2189 (*1 *1 *2) (-12 (-5 *2 (-627 (-313 (-2201 (QUOTE X)) (-2201) (-636)))) (-5 *1 (-82 *3)) (-14 *3 (-1084)))))
+(-13 (-358) (-10 -8 (-15 -2189 ($ (-627 (-313 (-2201 (QUOTE X)) (-2201) (-636)))))))
+((-1297 (((-3 $ "failed") (-1165 (-290 (-353)))) 99) (((-3 $ "failed") (-1165 (-290 (-521)))) 88) (((-3 $ "failed") (-1165 (-881 (-353)))) 121) (((-3 $ "failed") (-1165 (-881 (-521)))) 110) (((-3 $ "failed") (-1165 (-381 (-881 (-353))))) 77) (((-3 $ "failed") (-1165 (-381 (-881 (-521))))) 66)) (-1483 (($ (-1165 (-290 (-353)))) 95) (($ (-1165 (-290 (-521)))) 84) (($ (-1165 (-881 (-353)))) 117) (($ (-1165 (-881 (-521)))) 106) (($ (-1165 (-381 (-881 (-353))))) 73) (($ (-1165 (-381 (-881 (-521))))) 59)) (-2009 (((-1170) $) 45)) (-2189 (((-792) $) 39) (($ (-587 (-304))) 48) (($ (-304)) 35) (($ (-2 (|:| |localSymbols| (-1088)) (|:| -2032 (-587 (-304))))) 51) (($ (-1165 (-313 (-2201 (QUOTE X)) (-2201) (-636)))) 36)))
+(((-83 |#1|) (-13 (-414) (-10 -8 (-15 -2189 ($ (-1165 (-313 (-2201 (QUOTE X)) (-2201) (-636))))))) (-1084)) (T -83))
+((-2189 (*1 *1 *2) (-12 (-5 *2 (-1165 (-313 (-2201 (QUOTE X)) (-2201) (-636)))) (-5 *1 (-83 *3)) (-14 *3 (-1084)))))
+(-13 (-414) (-10 -8 (-15 -2189 ($ (-1165 (-313 (-2201 (QUOTE X)) (-2201) (-636)))))))
+((-1297 (((-3 $ "failed") (-1165 (-290 (-353)))) 74) (((-3 $ "failed") (-1165 (-290 (-521)))) 63) (((-3 $ "failed") (-1165 (-881 (-353)))) 96) (((-3 $ "failed") (-1165 (-881 (-521)))) 85) (((-3 $ "failed") (-1165 (-381 (-881 (-353))))) 52) (((-3 $ "failed") (-1165 (-381 (-881 (-521))))) 41)) (-1483 (($ (-1165 (-290 (-353)))) 70) (($ (-1165 (-290 (-521)))) 59) (($ (-1165 (-881 (-353)))) 92) (($ (-1165 (-881 (-521)))) 81) (($ (-1165 (-381 (-881 (-353))))) 48) (($ (-1165 (-381 (-881 (-521))))) 34)) (-2009 (((-1170) $) 122)) (-2189 (((-792) $) 116) (($ (-587 (-304))) 107) (($ (-304)) 113) (($ (-2 (|:| |localSymbols| (-1088)) (|:| -2032 (-587 (-304))))) 111) (($ (-1165 (-313 (-2201 (QUOTE X)) (-2201 (QUOTE -1351)) (-636)))) 33)))
+(((-84 |#1|) (-13 (-414) (-10 -8 (-15 -2189 ($ (-1165 (-313 (-2201 (QUOTE X)) (-2201 (QUOTE -1351)) (-636))))))) (-1084)) (T -84))
+((-2189 (*1 *1 *2) (-12 (-5 *2 (-1165 (-313 (-2201 (QUOTE X)) (-2201 (QUOTE -1351)) (-636)))) (-5 *1 (-84 *3)) (-14 *3 (-1084)))))
+(-13 (-414) (-10 -8 (-15 -2189 ($ (-1165 (-313 (-2201 (QUOTE X)) (-2201 (QUOTE -1351)) (-636)))))))
+((-1297 (((-3 $ "failed") (-627 (-290 (-353)))) 105) (((-3 $ "failed") (-627 (-290 (-521)))) 94) (((-3 $ "failed") (-627 (-881 (-353)))) 127) (((-3 $ "failed") (-627 (-881 (-521)))) 116) (((-3 $ "failed") (-627 (-381 (-881 (-353))))) 83) (((-3 $ "failed") (-627 (-381 (-881 (-521))))) 72)) (-1483 (($ (-627 (-290 (-353)))) 101) (($ (-627 (-290 (-521)))) 90) (($ (-627 (-881 (-353)))) 123) (($ (-627 (-881 (-521)))) 112) (($ (-627 (-381 (-881 (-353))))) 79) (($ (-627 (-381 (-881 (-521))))) 65)) (-2009 (((-1170) $) 58)) (-2189 (((-792) $) 52) (($ (-587 (-304))) 42) (($ (-304)) 49) (($ (-2 (|:| |localSymbols| (-1088)) (|:| -2032 (-587 (-304))))) 47) (($ (-627 (-313 (-2201 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2201) (-636)))) 43)))
+(((-85 |#1|) (-13 (-358) (-10 -8 (-15 -2189 ($ (-627 (-313 (-2201 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2201) (-636))))))) (-1084)) (T -85))
+((-2189 (*1 *1 *2) (-12 (-5 *2 (-627 (-313 (-2201 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2201) (-636)))) (-5 *1 (-85 *3)) (-14 *3 (-1084)))))
+(-13 (-358) (-10 -8 (-15 -2189 ($ (-627 (-313 (-2201 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2201) (-636)))))))
+((-2009 (((-1170) $) 44)) (-2189 (((-792) $) 38) (($ (-1165 (-636))) 88) (($ (-587 (-304))) 29) (($ (-304)) 35) (($ (-2 (|:| |localSymbols| (-1088)) (|:| -2032 (-587 (-304))))) 32)))
+(((-86 |#1|) (-413) (-1084)) (T -86))
+NIL
+(-413)
+((-1297 (((-3 $ "failed") (-290 (-353))) 42) (((-3 $ "failed") (-290 (-521))) 47) (((-3 $ "failed") (-881 (-353))) 52) (((-3 $ "failed") (-881 (-521))) 57) (((-3 $ "failed") (-381 (-881 (-353)))) 37) (((-3 $ "failed") (-381 (-881 (-521)))) 32)) (-1483 (($ (-290 (-353))) 40) (($ (-290 (-521))) 45) (($ (-881 (-353))) 50) (($ (-881 (-521))) 55) (($ (-381 (-881 (-353)))) 35) (($ (-381 (-881 (-521)))) 29)) (-2009 (((-1170) $) 88)) (-2189 (((-792) $) 82) (($ (-587 (-304))) 76) (($ (-304)) 79) (($ (-2 (|:| |localSymbols| (-1088)) (|:| -2032 (-587 (-304))))) 73) (($ (-313 (-2201 (QUOTE X)) (-2201 (QUOTE -1351)) (-636))) 28)))
+(((-87 |#1|) (-13 (-370) (-10 -8 (-15 -2189 ($ (-313 (-2201 (QUOTE X)) (-2201 (QUOTE -1351)) (-636)))))) (-1084)) (T -87))
+((-2189 (*1 *1 *2) (-12 (-5 *2 (-313 (-2201 (QUOTE X)) (-2201 (QUOTE -1351)) (-636))) (-5 *1 (-87 *3)) (-14 *3 (-1084)))))
+(-13 (-370) (-10 -8 (-15 -2189 ($ (-313 (-2201 (QUOTE X)) (-2201 (QUOTE -1351)) (-636))))))
+((-2575 (((-1165 (-627 |#1|)) (-627 |#1|)) 55)) (-2237 (((-2 (|:| -1201 (-627 |#1|)) (|:| |vec| (-1165 (-587 (-850))))) |#2| (-850)) 45)) (-2127 (((-2 (|:| |minor| (-587 (-850))) (|:| -3192 |#2|) (|:| |minors| (-587 (-587 (-850)))) (|:| |ops| (-587 |#2|))) |#2| (-850)) 63 (|has| |#1| (-337)))))
+(((-88 |#1| |#2|) (-10 -7 (-15 -2237 ((-2 (|:| -1201 (-627 |#1|)) (|:| |vec| (-1165 (-587 (-850))))) |#2| (-850))) (-15 -2575 ((-1165 (-627 |#1|)) (-627 |#1|))) (IF (|has| |#1| (-337)) (-15 -2127 ((-2 (|:| |minor| (-587 (-850))) (|:| -3192 |#2|) (|:| |minors| (-587 (-587 (-850)))) (|:| |ops| (-587 |#2|))) |#2| (-850))) |%noBranch|)) (-513) (-597 |#1|)) (T -88))
+((-2127 (*1 *2 *3 *4) (-12 (-4 *5 (-337)) (-4 *5 (-513)) (-5 *2 (-2 (|:| |minor| (-587 (-850))) (|:| -3192 *3) (|:| |minors| (-587 (-587 (-850)))) (|:| |ops| (-587 *3)))) (-5 *1 (-88 *5 *3)) (-5 *4 (-850)) (-4 *3 (-597 *5)))) (-2575 (*1 *2 *3) (-12 (-4 *4 (-513)) (-5 *2 (-1165 (-627 *4))) (-5 *1 (-88 *4 *5)) (-5 *3 (-627 *4)) (-4 *5 (-597 *4)))) (-2237 (*1 *2 *3 *4) (-12 (-4 *5 (-513)) (-5 *2 (-2 (|:| -1201 (-627 *5)) (|:| |vec| (-1165 (-587 (-850)))))) (-5 *1 (-88 *5 *3)) (-5 *4 (-850)) (-4 *3 (-597 *5)))))
+(-10 -7 (-15 -2237 ((-2 (|:| -1201 (-627 |#1|)) (|:| |vec| (-1165 (-587 (-850))))) |#2| (-850))) (-15 -2575 ((-1165 (-627 |#1|)) (-627 |#1|))) (IF (|has| |#1| (-337)) (-15 -2127 ((-2 (|:| |minor| (-587 (-850))) (|:| -3192 |#2|) (|:| |minors| (-587 (-587 (-850)))) (|:| |ops| (-587 |#2|))) |#2| (-850))) |%noBranch|))
+((-1415 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-1354 ((|#1| $) 35)) (-2978 (((-108) $ (-707)) NIL)) (-2547 (($) NIL T CONST)) (-2037 ((|#1| |#1| $) 30)) (-1322 ((|#1| $) 28)) (-3831 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-2139 (((-108) $ (-707)) NIL)) (-3757 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-2221 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-3833 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#1| |#1|) $) NIL)) (-3574 (((-108) $ (-707)) NIL)) (-3688 (((-1067) $) NIL (|has| |#1| (-1013)))) (-2511 ((|#1| $) NIL)) (-3373 (($ |#1| $) 31)) (-4147 (((-1031) $) NIL (|has| |#1| (-1013)))) (-2166 ((|#1| $) 29)) (-1789 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 |#1|))) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-2488 (((-108) $ $) NIL)) (-3462 (((-108) $) 16)) (-4024 (($) 39)) (-1252 (((-707) $) 26)) (-4163 (((-707) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (((-707) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2404 (($ $) 15)) (-2189 (((-792) $) 25 (|has| |#1| (-561 (-792))))) (-4091 (($ (-587 |#1|)) NIL)) (-3230 (($ (-587 |#1|)) 37)) (-3049 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-1531 (((-108) $ $) 13 (|has| |#1| (-1013)))) (-3475 (((-707) $) 10 (|has| $ (-6 -4233)))))
+(((-89 |#1|) (-13 (-1032 |#1|) (-10 -8 (-15 -3230 ($ (-587 |#1|))))) (-1013)) (T -89))
+((-3230 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1013)) (-5 *1 (-89 *3)))))
+(-13 (-1032 |#1|) (-10 -8 (-15 -3230 ($ (-587 |#1|)))))
+((-2856 (($ $) 10)) (-2868 (($ $) 12)))
+(((-90 |#1|) (-10 -8 (-15 -2868 (|#1| |#1|)) (-15 -2856 (|#1| |#1|))) (-91)) (T -90))
+NIL
+(-10 -8 (-15 -2868 (|#1| |#1|)) (-15 -2856 (|#1| |#1|)))
+((-2832 (($ $) 11)) (-2811 (($ $) 10)) (-2856 (($ $) 9)) (-2868 (($ $) 8)) (-2844 (($ $) 7)) (-2821 (($ $) 6)))
+(((-91) (-1196)) (T -91))
+((-2832 (*1 *1 *1) (-4 *1 (-91))) (-2811 (*1 *1 *1) (-4 *1 (-91))) (-2856 (*1 *1 *1) (-4 *1 (-91))) (-2868 (*1 *1 *1) (-4 *1 (-91))) (-2844 (*1 *1 *1) (-4 *1 (-91))) (-2821 (*1 *1 *1) (-4 *1 (-91))))
+(-13 (-10 -8 (-15 -2821 ($ $)) (-15 -2844 ($ $)) (-15 -2868 ($ $)) (-15 -2856 ($ $)) (-15 -2811 ($ $)) (-15 -2832 ($ $))))
+((-1415 (((-108) $ $) NIL)) (-3683 (((-353) (-1067) (-353)) 42) (((-353) (-1067) (-1067) (-353)) 41)) (-3425 (((-353) (-353)) 33)) (-2654 (((-1170)) 36)) (-3688 (((-1067) $) NIL)) (-3432 (((-353) (-1067) (-1067)) 46) (((-353) (-1067)) 48)) (-4147 (((-1031) $) NIL)) (-2379 (((-353) (-1067) (-1067)) 47)) (-2100 (((-353) (-1067) (-1067)) 49) (((-353) (-1067)) 50)) (-2189 (((-792) $) NIL)) (-1531 (((-108) $ $) NIL)))
+(((-92) (-13 (-1013) (-10 -7 (-15 -3432 ((-353) (-1067) (-1067))) (-15 -3432 ((-353) (-1067))) (-15 -2100 ((-353) (-1067) (-1067))) (-15 -2100 ((-353) (-1067))) (-15 -2379 ((-353) (-1067) (-1067))) (-15 -2654 ((-1170))) (-15 -3425 ((-353) (-353))) (-15 -3683 ((-353) (-1067) (-353))) (-15 -3683 ((-353) (-1067) (-1067) (-353))) (-6 -4233)))) (T -92))
+((-3432 (*1 *2 *3 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-353)) (-5 *1 (-92)))) (-3432 (*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-353)) (-5 *1 (-92)))) (-2100 (*1 *2 *3 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-353)) (-5 *1 (-92)))) (-2100 (*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-353)) (-5 *1 (-92)))) (-2379 (*1 *2 *3 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-353)) (-5 *1 (-92)))) (-2654 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-92)))) (-3425 (*1 *2 *2) (-12 (-5 *2 (-353)) (-5 *1 (-92)))) (-3683 (*1 *2 *3 *2) (-12 (-5 *2 (-353)) (-5 *3 (-1067)) (-5 *1 (-92)))) (-3683 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-353)) (-5 *3 (-1067)) (-5 *1 (-92)))))
+(-13 (-1013) (-10 -7 (-15 -3432 ((-353) (-1067) (-1067))) (-15 -3432 ((-353) (-1067))) (-15 -2100 ((-353) (-1067) (-1067))) (-15 -2100 ((-353) (-1067))) (-15 -2379 ((-353) (-1067) (-1067))) (-15 -2654 ((-1170))) (-15 -3425 ((-353) (-353))) (-15 -3683 ((-353) (-1067) (-353))) (-15 -3683 ((-353) (-1067) (-1067) (-353))) (-6 -4233)))
+NIL
+(((-93) (-1196)) (T -93))
+NIL
+(-13 (-10 -7 (-6 -4233) (-6 (-4235 "*")) (-6 -4234) (-6 -4230) (-6 -4228) (-6 -4227) (-6 -4226) (-6 -4231) (-6 -4225) (-6 -4224) (-6 -4223) (-6 -4222) (-6 -4221) (-6 -4229) (-6 -4232) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4220)))
+((-1415 (((-108) $ $) NIL)) (-2547 (($) NIL T CONST)) (-1257 (((-3 $ "failed") $) NIL)) (-3996 (((-108) $) NIL)) (-3921 (($ (-1 |#1| |#1|)) 25) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 24) (($ (-1 |#1| |#1| (-521))) 22)) (-3688 (((-1067) $) NIL)) (-3095 (($ $) 14)) (-4147 (((-1031) $) NIL)) (-2544 ((|#1| $ |#1|) 11)) (-1223 (($ $ $) NIL)) (-2674 (($ $ $) NIL)) (-2189 (((-792) $) 20)) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (-3572 (($) 8 T CONST)) (-1531 (((-108) $ $) 10)) (-1620 (($ $ $) NIL)) (** (($ $ (-850)) 28) (($ $ (-707)) NIL) (($ $ (-521)) 16)) (* (($ $ $) 29)))
+(((-94 |#1|) (-13 (-446) (-261 |#1| |#1|) (-10 -8 (-15 -3921 ($ (-1 |#1| |#1|))) (-15 -3921 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -3921 ($ (-1 |#1| |#1| (-521)))))) (-970)) (T -94))
+((-3921 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-970)) (-5 *1 (-94 *3)))) (-3921 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-970)) (-5 *1 (-94 *3)))) (-3921 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-521))) (-4 *3 (-970)) (-5 *1 (-94 *3)))))
+(-13 (-446) (-261 |#1| |#1|) (-10 -8 (-15 -3921 ($ (-1 |#1| |#1|))) (-15 -3921 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -3921 ($ (-1 |#1| |#1| (-521))))))
+((-2364 (((-392 |#2|) |#2| (-587 |#2|)) 10) (((-392 |#2|) |#2| |#2|) 11)))
+(((-95 |#1| |#2|) (-10 -7 (-15 -2364 ((-392 |#2|) |#2| |#2|)) (-15 -2364 ((-392 |#2|) |#2| (-587 |#2|)))) (-13 (-425) (-135)) (-1141 |#1|)) (T -95))
+((-2364 (*1 *2 *3 *4) (-12 (-5 *4 (-587 *3)) (-4 *3 (-1141 *5)) (-4 *5 (-13 (-425) (-135))) (-5 *2 (-392 *3)) (-5 *1 (-95 *5 *3)))) (-2364 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-425) (-135))) (-5 *2 (-392 *3)) (-5 *1 (-95 *4 *3)) (-4 *3 (-1141 *4)))))
+(-10 -7 (-15 -2364 ((-392 |#2|) |#2| |#2|)) (-15 -2364 ((-392 |#2|) |#2| (-587 |#2|))))
+((-1415 (((-108) $ $) 10)))
+(((-96 |#1|) (-10 -8 (-15 -1415 ((-108) |#1| |#1|))) (-97)) (T -96))
+NIL
+(-10 -8 (-15 -1415 ((-108) |#1| |#1|)))
+((-1415 (((-108) $ $) 7)) (-1531 (((-108) $ $) 6)))
+(((-97) (-1196)) (T -97))
+((-1415 (*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-108)))) (-1531 (*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-108)))))
+(-13 (-10 -8 (-15 -1531 ((-108) $ $)) (-15 -1415 ((-108) $ $))))
+((-1415 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3430 ((|#1| $) NIL)) (-2978 (((-108) $ (-707)) NIL)) (-2300 ((|#1| $ |#1|) 13 (|has| $ (-6 -4234)))) (-1838 (($ $ $) NIL (|has| $ (-6 -4234)))) (-4007 (($ $ $) NIL (|has| $ (-6 -4234)))) (-3927 (($ $ (-587 |#1|)) 15)) (-2378 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4234))) (($ $ "left" $) NIL (|has| $ (-6 -4234))) (($ $ "right" $) NIL (|has| $ (-6 -4234)))) (-2675 (($ $ (-587 $)) NIL (|has| $ (-6 -4234)))) (-2547 (($) NIL T CONST)) (-1925 (($ $) 11)) (-3831 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-3186 (((-587 $) $) NIL)) (-3651 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3033 (($ $ |#1| $) 17)) (-2139 (((-108) $ (-707)) NIL)) (-3757 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-2221 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-3517 ((|#1| $ (-1 |#1| |#1| |#1|)) 25) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 30)) (-1771 (($ $ |#1| (-1 |#1| |#1| |#1|)) 31) (($ $ |#1| (-1 (-587 |#1|) |#1| |#1| |#1|)) 35)) (-3833 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#1| |#1|) $) NIL)) (-3574 (((-108) $ (-707)) NIL)) (-1913 (($ $) 10)) (-1278 (((-587 |#1|) $) NIL)) (-2229 (((-108) $) 12)) (-3688 (((-1067) $) NIL (|has| |#1| (-1013)))) (-4147 (((-1031) $) NIL (|has| |#1| (-1013)))) (-1789 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 |#1|))) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-2488 (((-108) $ $) NIL)) (-3462 (((-108) $) 9)) (-4024 (($) 16)) (-2544 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2931 (((-521) $ $) NIL)) (-2406 (((-108) $) NIL)) (-4163 (((-707) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (((-707) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2404 (($ $) NIL)) (-2189 (((-792) $) NIL (|has| |#1| (-561 (-792))))) (-3098 (((-587 $) $) NIL)) (-2294 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3577 (($ (-707) |#1|) 19)) (-3049 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-1531 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3475 (((-707) $) NIL (|has| $ (-6 -4233)))))
+(((-98 |#1|) (-13 (-121 |#1|) (-10 -8 (-6 -4233) (-6 -4234) (-15 -3577 ($ (-707) |#1|)) (-15 -3927 ($ $ (-587 |#1|))) (-15 -3517 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3517 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1771 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1771 ($ $ |#1| (-1 (-587 |#1|) |#1| |#1| |#1|))))) (-1013)) (T -98))
+((-3577 (*1 *1 *2 *3) (-12 (-5 *2 (-707)) (-5 *1 (-98 *3)) (-4 *3 (-1013)))) (-3927 (*1 *1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1013)) (-5 *1 (-98 *3)))) (-3517 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-98 *2)) (-4 *2 (-1013)))) (-3517 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1013)) (-5 *1 (-98 *3)))) (-1771 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1013)) (-5 *1 (-98 *2)))) (-1771 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-587 *2) *2 *2 *2)) (-4 *2 (-1013)) (-5 *1 (-98 *2)))))
+(-13 (-121 |#1|) (-10 -8 (-6 -4233) (-6 -4234) (-15 -3577 ($ (-707) |#1|)) (-15 -3927 ($ $ (-587 |#1|))) (-15 -3517 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3517 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1771 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1771 ($ $ |#1| (-1 (-587 |#1|) |#1| |#1| |#1|)))))
+((-2108 ((|#3| |#2| |#2|) 29)) (-2424 ((|#1| |#2| |#2|) 37 (|has| |#1| (-6 (-4235 "*"))))) (-4056 ((|#3| |#2| |#2|) 30)) (-2945 ((|#1| |#2|) 41 (|has| |#1| (-6 (-4235 "*"))))))
+(((-99 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2108 (|#3| |#2| |#2|)) (-15 -4056 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4235 "*"))) (PROGN (-15 -2424 (|#1| |#2| |#2|)) (-15 -2945 (|#1| |#2|))) |%noBranch|)) (-970) (-1141 |#1|) (-625 |#1| |#4| |#5|) (-347 |#1|) (-347 |#1|)) (T -99))
+((-2945 (*1 *2 *3) (-12 (|has| *2 (-6 (-4235 "*"))) (-4 *5 (-347 *2)) (-4 *6 (-347 *2)) (-4 *2 (-970)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1141 *2)) (-4 *4 (-625 *2 *5 *6)))) (-2424 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4235 "*"))) (-4 *5 (-347 *2)) (-4 *6 (-347 *2)) (-4 *2 (-970)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1141 *2)) (-4 *4 (-625 *2 *5 *6)))) (-4056 (*1 *2 *3 *3) (-12 (-4 *4 (-970)) (-4 *2 (-625 *4 *5 *6)) (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1141 *4)) (-4 *5 (-347 *4)) (-4 *6 (-347 *4)))) (-2108 (*1 *2 *3 *3) (-12 (-4 *4 (-970)) (-4 *2 (-625 *4 *5 *6)) (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1141 *4)) (-4 *5 (-347 *4)) (-4 *6 (-347 *4)))))
+(-10 -7 (-15 -2108 (|#3| |#2| |#2|)) (-15 -4056 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4235 "*"))) (PROGN (-15 -2424 (|#1| |#2| |#2|)) (-15 -2945 (|#1| |#2|))) |%noBranch|))
+((-1415 (((-108) $ $) NIL)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2189 (((-792) $) NIL)) (-1658 (((-587 (-1084))) 32)) (-2899 (((-2 (|:| |zeros| (-1065 (-202))) (|:| |ones| (-1065 (-202))) (|:| |singularities| (-1065 (-202)))) (-1084)) 35)) (-1531 (((-108) $ $) NIL)))
+(((-100) (-13 (-1013) (-10 -7 (-15 -1658 ((-587 (-1084)))) (-15 -2899 ((-2 (|:| |zeros| (-1065 (-202))) (|:| |ones| (-1065 (-202))) (|:| |singularities| (-1065 (-202)))) (-1084))) (-6 -4233)))) (T -100))
+((-1658 (*1 *2) (-12 (-5 *2 (-587 (-1084))) (-5 *1 (-100)))) (-2899 (*1 *2 *3) (-12 (-5 *3 (-1084)) (-5 *2 (-2 (|:| |zeros| (-1065 (-202))) (|:| |ones| (-1065 (-202))) (|:| |singularities| (-1065 (-202))))) (-5 *1 (-100)))))
+(-13 (-1013) (-10 -7 (-15 -1658 ((-587 (-1084)))) (-15 -2899 ((-2 (|:| |zeros| (-1065 (-202))) (|:| |ones| (-1065 (-202))) (|:| |singularities| (-1065 (-202)))) (-1084))) (-6 -4233)))
+((-4091 (($ (-587 |#2|)) 11)))
+(((-101 |#1| |#2|) (-10 -8 (-15 -4091 (|#1| (-587 |#2|)))) (-102 |#2|) (-1119)) (T -101))
+NIL
+(-10 -8 (-15 -4091 (|#1| (-587 |#2|))))
+((-1415 (((-108) $ $) 19 (|has| |#1| (-1013)))) (-2978 (((-108) $ (-707)) 8)) (-2547 (($) 7 T CONST)) (-3831 (((-587 |#1|) $) 30 (|has| $ (-6 -4233)))) (-2139 (((-108) $ (-707)) 9)) (-3757 (((-587 |#1|) $) 29 (|has| $ (-6 -4233)))) (-2221 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-3833 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#1| |#1|) $) 35)) (-3574 (((-108) $ (-707)) 10)) (-3688 (((-1067) $) 22 (|has| |#1| (-1013)))) (-2511 ((|#1| $) 39)) (-3373 (($ |#1| $) 40)) (-4147 (((-1031) $) 21 (|has| |#1| (-1013)))) (-2166 ((|#1| $) 41)) (-1789 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 |#1|))) 26 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) 25 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) 23 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-2488 (((-108) $ $) 14)) (-3462 (((-108) $) 11)) (-4024 (($) 12)) (-4163 (((-707) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4233))) (((-707) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-2404 (($ $) 13)) (-2189 (((-792) $) 18 (|has| |#1| (-561 (-792))))) (-4091 (($ (-587 |#1|)) 42)) (-3049 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4233)))) (-1531 (((-108) $ $) 20 (|has| |#1| (-1013)))) (-3475 (((-707) $) 6 (|has| $ (-6 -4233)))))
+(((-102 |#1|) (-1196) (-1119)) (T -102))
+((-4091 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1119)) (-4 *1 (-102 *3)))) (-2166 (*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1119)))) (-3373 (*1 *1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1119)))) (-2511 (*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1119)))))
+(-13 (-460 |t#1|) (-10 -8 (-6 -4234) (-15 -4091 ($ (-587 |t#1|))) (-15 -2166 (|t#1| $)) (-15 -3373 ($ |t#1| $)) (-15 -2511 (|t#1| $))))
+(((-33) . T) ((-97) |has| |#1| (-1013)) ((-561 (-792)) -3703 (|has| |#1| (-1013)) (|has| |#1| (-561 (-792)))) ((-284 |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-460 |#1|) . T) ((-482 |#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-1013) |has| |#1| (-1013)) ((-1119) . T))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-2086 (((-521) $) NIL (|has| (-521) (-282)))) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-2559 (($ $) NIL)) (-1733 (((-108) $) NIL)) (-1232 (((-3 $ "failed") $ $) NIL)) (-2598 (((-392 (-1080 $)) (-1080 $)) NIL (|has| (-521) (-838)))) (-3063 (($ $) NIL)) (-3358 (((-392 $) $) NIL)) (-2569 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) NIL (|has| (-521) (-838)))) (-1389 (((-108) $ $) NIL)) (-1606 (((-521) $) NIL (|has| (-521) (-757)))) (-2547 (($) NIL T CONST)) (-1297 (((-3 (-521) "failed") $) NIL) (((-3 (-1084) "failed") $) NIL (|has| (-521) (-961 (-1084)))) (((-3 (-381 (-521)) "failed") $) NIL (|has| (-521) (-961 (-521)))) (((-3 (-521) "failed") $) NIL (|has| (-521) (-961 (-521))))) (-1483 (((-521) $) NIL) (((-1084) $) NIL (|has| (-521) (-961 (-1084)))) (((-381 (-521)) $) NIL (|has| (-521) (-961 (-521)))) (((-521) $) NIL (|has| (-521) (-961 (-521))))) (-2277 (($ $ $) NIL)) (-3279 (((-627 (-521)) (-627 $)) NIL (|has| (-521) (-583 (-521)))) (((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (|has| (-521) (-583 (-521)))) (((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL) (((-627 (-521)) (-627 $)) NIL)) (-1257 (((-3 $ "failed") $) NIL)) (-3250 (($) NIL (|has| (-521) (-506)))) (-2253 (($ $ $) NIL)) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) NIL)) (-2710 (((-108) $) NIL)) (-3951 (((-108) $) NIL (|has| (-521) (-757)))) (-3427 (((-818 (-521) $) $ (-821 (-521)) (-818 (-521) $)) NIL (|has| (-521) (-815 (-521)))) (((-818 (-353) $) $ (-821 (-353)) (-818 (-353) $)) NIL (|has| (-521) (-815 (-353))))) (-3996 (((-108) $) NIL)) (-3257 (($ $) NIL)) (-2801 (((-521) $) NIL)) (-3842 (((-3 $ "failed") $) NIL (|has| (-521) (-1060)))) (-2210 (((-108) $) NIL (|has| (-521) (-757)))) (-1546 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-2810 (($ $ $) NIL (|has| (-521) (-784)))) (-2446 (($ $ $) NIL (|has| (-521) (-784)))) (-1390 (($ (-1 (-521) (-521)) $) NIL)) (-2223 (($ $ $) NIL) (($ (-587 $)) NIL)) (-3688 (((-1067) $) NIL)) (-3095 (($ $) NIL)) (-3797 (($) NIL (|has| (-521) (-1060)) CONST)) (-4147 (((-1031) $) NIL)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) NIL)) (-2258 (($ $ $) NIL) (($ (-587 $)) NIL)) (-2850 (($ $) NIL (|has| (-521) (-282))) (((-381 (-521)) $) NIL)) (-2567 (((-521) $) NIL (|has| (-521) (-506)))) (-1912 (((-392 (-1080 $)) (-1080 $)) NIL (|has| (-521) (-838)))) (-2165 (((-392 (-1080 $)) (-1080 $)) NIL (|has| (-521) (-838)))) (-1916 (((-392 $) $) NIL)) (-1962 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2230 (((-3 $ "failed") $ $) NIL)) (-3854 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-2288 (($ $ (-587 (-521)) (-587 (-521))) NIL (|has| (-521) (-284 (-521)))) (($ $ (-521) (-521)) NIL (|has| (-521) (-284 (-521)))) (($ $ (-269 (-521))) NIL (|has| (-521) (-284 (-521)))) (($ $ (-587 (-269 (-521)))) NIL (|has| (-521) (-284 (-521)))) (($ $ (-587 (-1084)) (-587 (-521))) NIL (|has| (-521) (-482 (-1084) (-521)))) (($ $ (-1084) (-521)) NIL (|has| (-521) (-482 (-1084) (-521))))) (-4196 (((-707) $) NIL)) (-2544 (($ $ (-521)) NIL (|has| (-521) (-261 (-521) (-521))))) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) NIL)) (-2156 (($ $) NIL (|has| (-521) (-210))) (($ $ (-707)) NIL (|has| (-521) (-210))) (($ $ (-1084)) NIL (|has| (-521) (-829 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| (-521) (-829 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| (-521) (-829 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| (-521) (-829 (-1084)))) (($ $ (-1 (-521) (-521)) (-707)) NIL) (($ $ (-1 (-521) (-521))) NIL)) (-4142 (($ $) NIL)) (-2812 (((-521) $) NIL)) (-1430 (((-821 (-521)) $) NIL (|has| (-521) (-562 (-821 (-521))))) (((-821 (-353)) $) NIL (|has| (-521) (-562 (-821 (-353))))) (((-497) $) NIL (|has| (-521) (-562 (-497)))) (((-353) $) NIL (|has| (-521) (-946))) (((-202) $) NIL (|has| (-521) (-946)))) (-2944 (((-3 (-1165 $) "failed") (-627 $)) NIL (-12 (|has| $ (-133)) (|has| (-521) (-838))))) (-2189 (((-792) $) NIL) (($ (-521)) NIL) (($ $) NIL) (($ (-381 (-521))) 7) (($ (-521)) NIL) (($ (-1084)) NIL (|has| (-521) (-961 (-1084)))) (((-381 (-521)) $) NIL) (((-929 2) $) 9)) (-1671 (((-3 $ "failed") $) NIL (-3703 (-12 (|has| $ (-133)) (|has| (-521) (-838))) (|has| (-521) (-133))))) (-3846 (((-707)) NIL)) (-2382 (((-521) $) NIL (|has| (-521) (-506)))) (-3216 (($ (-381 (-521))) 8)) (-4210 (((-108) $ $) NIL)) (-3304 (($ $) NIL (|has| (-521) (-757)))) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (-3561 (($) NIL T CONST)) (-3572 (($) NIL T CONST)) (-2212 (($ $) NIL (|has| (-521) (-210))) (($ $ (-707)) NIL (|has| (-521) (-210))) (($ $ (-1084)) NIL (|has| (-521) (-829 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| (-521) (-829 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| (-521) (-829 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| (-521) (-829 (-1084)))) (($ $ (-1 (-521) (-521)) (-707)) NIL) (($ $ (-1 (-521) (-521))) NIL)) (-1574 (((-108) $ $) NIL (|has| (-521) (-784)))) (-1558 (((-108) $ $) NIL (|has| (-521) (-784)))) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL (|has| (-521) (-784)))) (-1549 (((-108) $ $) NIL (|has| (-521) (-784)))) (-1620 (($ $ $) NIL) (($ (-521) (-521)) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ (-381 (-521))) NIL) (($ (-381 (-521)) $) NIL) (($ (-521) $) NIL) (($ $ (-521)) NIL)))
+(((-103) (-13 (-918 (-521)) (-10 -8 (-15 -2189 ((-381 (-521)) $)) (-15 -2189 ((-929 2) $)) (-15 -2850 ((-381 (-521)) $)) (-15 -3216 ($ (-381 (-521))))))) (T -103))
+((-2189 (*1 *2 *1) (-12 (-5 *2 (-381 (-521))) (-5 *1 (-103)))) (-2189 (*1 *2 *1) (-12 (-5 *2 (-929 2)) (-5 *1 (-103)))) (-2850 (*1 *2 *1) (-12 (-5 *2 (-381 (-521))) (-5 *1 (-103)))) (-3216 (*1 *1 *2) (-12 (-5 *2 (-381 (-521))) (-5 *1 (-103)))))
+(-13 (-918 (-521)) (-10 -8 (-15 -2189 ((-381 (-521)) $)) (-15 -2189 ((-929 2) $)) (-15 -2850 ((-381 (-521)) $)) (-15 -3216 ($ (-381 (-521))))))
+((-2416 (((-587 (-731)) $) 13)) (-2884 (((-1084) $) 10)) (-2189 (((-792) $) 22)) (-3329 (($ (-1084) (-587 (-731))) 14)))
+(((-104) (-13 (-561 (-792)) (-10 -8 (-15 -2884 ((-1084) $)) (-15 -2416 ((-587 (-731)) $)) (-15 -3329 ($ (-1084) (-587 (-731))))))) (T -104))
+((-2884 (*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-104)))) (-2416 (*1 *2 *1) (-12 (-5 *2 (-587 (-731))) (-5 *1 (-104)))) (-3329 (*1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-587 (-731))) (-5 *1 (-104)))))
+(-13 (-561 (-792)) (-10 -8 (-15 -2884 ((-1084) $)) (-15 -2416 ((-587 (-731)) $)) (-15 -3329 ($ (-1084) (-587 (-731))))))
+((-1415 (((-108) $ $) NIL)) (-4169 (((-1031) $ (-1031)) 23)) (-2837 (($ $ (-1067)) 17)) (-3937 (((-3 (-1031) "failed") $) 22)) (-1791 (((-1031) $) 20)) (-1310 (((-1031) $ (-1031)) 25)) (-3233 (((-1031) $) 24)) (-1544 (($ (-362)) NIL) (($ (-362) (-1067)) 16)) (-2884 (((-362) $) NIL)) (-3688 (((-1067) $) NIL)) (-1914 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2189 (((-792) $) NIL)) (-2259 (($ $) 18)) (-1531 (((-108) $ $) NIL)))
+(((-105) (-13 (-338 (-362) (-1031)) (-10 -8 (-15 -3937 ((-3 (-1031) "failed") $)) (-15 -3233 ((-1031) $)) (-15 -1310 ((-1031) $ (-1031)))))) (T -105))
+((-3937 (*1 *2 *1) (|partial| -12 (-5 *2 (-1031)) (-5 *1 (-105)))) (-3233 (*1 *2 *1) (-12 (-5 *2 (-1031)) (-5 *1 (-105)))) (-1310 (*1 *2 *1 *2) (-12 (-5 *2 (-1031)) (-5 *1 (-105)))))
+(-13 (-338 (-362) (-1031)) (-10 -8 (-15 -3937 ((-3 (-1031) "failed") $)) (-15 -3233 ((-1031) $)) (-15 -1310 ((-1031) $ (-1031)))))
+((-1415 (((-108) $ $) NIL)) (-1500 (($ $) NIL)) (-3344 (($ $ $) NIL)) (-1903 (((-1170) $ (-521) (-521)) NIL (|has| $ (-6 -4234)))) (-1505 (((-108) $) NIL (|has| (-108) (-784))) (((-108) (-1 (-108) (-108) (-108)) $) NIL)) (-1621 (($ $) NIL (-12 (|has| $ (-6 -4234)) (|has| (-108) (-784)))) (($ (-1 (-108) (-108) (-108)) $) NIL (|has| $ (-6 -4234)))) (-3211 (($ $) NIL (|has| (-108) (-784))) (($ (-1 (-108) (-108) (-108)) $) NIL)) (-2978 (((-108) $ (-707)) NIL)) (-2378 (((-108) $ (-1132 (-521)) (-108)) NIL (|has| $ (-6 -4234))) (((-108) $ (-521) (-108)) NIL (|has| $ (-6 -4234)))) (-1628 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4233)))) (-2547 (($) NIL T CONST)) (-3081 (($ $) NIL (|has| $ (-6 -4234)))) (-1862 (($ $) NIL)) (-2332 (($ $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-108) (-1013))))) (-1422 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4233))) (($ (-108) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-108) (-1013))))) (-3859 (((-108) (-1 (-108) (-108) (-108)) $) NIL (|has| $ (-6 -4233))) (((-108) (-1 (-108) (-108) (-108)) $ (-108)) NIL (|has| $ (-6 -4233))) (((-108) (-1 (-108) (-108) (-108)) $ (-108) (-108)) NIL (-12 (|has| $ (-6 -4233)) (|has| (-108) (-1013))))) (-3849 (((-108) $ (-521) (-108)) NIL (|has| $ (-6 -4234)))) (-3626 (((-108) $ (-521)) NIL)) (-3233 (((-521) (-108) $ (-521)) NIL (|has| (-108) (-1013))) (((-521) (-108) $) NIL (|has| (-108) (-1013))) (((-521) (-1 (-108) (-108)) $) NIL)) (-3831 (((-587 (-108)) $) NIL (|has| $ (-6 -4233)))) (-3994 (($ $ $) NIL)) (-2400 (($ $) NIL)) (-3872 (($ $ $) NIL)) (-1811 (($ (-707) (-108)) 8)) (-2538 (($ $ $) NIL)) (-2139 (((-108) $ (-707)) NIL)) (-2826 (((-521) $) NIL (|has| (-521) (-784)))) (-2810 (($ $ $) NIL)) (-1318 (($ $ $) NIL (|has| (-108) (-784))) (($ (-1 (-108) (-108) (-108)) $ $) NIL)) (-3757 (((-587 (-108)) $) NIL (|has| $ (-6 -4233)))) (-2221 (((-108) (-108) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-108) (-1013))))) (-2597 (((-521) $) NIL (|has| (-521) (-784)))) (-2446 (($ $ $) NIL)) (-3833 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4234)))) (-1390 (($ (-1 (-108) (-108) (-108)) $ $) NIL) (($ (-1 (-108) (-108)) $) NIL)) (-3574 (((-108) $ (-707)) NIL)) (-3688 (((-1067) $) NIL)) (-1659 (($ $ $ (-521)) NIL) (($ (-108) $ (-521)) NIL)) (-1668 (((-587 (-521)) $) NIL)) (-2941 (((-108) (-521) $) NIL)) (-4147 (((-1031) $) NIL)) (-2293 (((-108) $) NIL (|has| (-521) (-784)))) (-3620 (((-3 (-108) "failed") (-1 (-108) (-108)) $) NIL)) (-3016 (($ $ (-108)) NIL (|has| $ (-6 -4234)))) (-1789 (((-108) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-108)) (-587 (-108))) NIL (-12 (|has| (-108) (-284 (-108))) (|has| (-108) (-1013)))) (($ $ (-108) (-108)) NIL (-12 (|has| (-108) (-284 (-108))) (|has| (-108) (-1013)))) (($ $ (-269 (-108))) NIL (-12 (|has| (-108) (-284 (-108))) (|has| (-108) (-1013)))) (($ $ (-587 (-269 (-108)))) NIL (-12 (|has| (-108) (-284 (-108))) (|has| (-108) (-1013))))) (-2488 (((-108) $ $) NIL)) (-3821 (((-108) (-108) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-108) (-1013))))) (-2489 (((-587 (-108)) $) NIL)) (-3462 (((-108) $) NIL)) (-4024 (($) NIL)) (-2544 (($ $ (-1132 (-521))) NIL) (((-108) $ (-521)) NIL) (((-108) $ (-521) (-108)) NIL)) (-3691 (($ $ (-1132 (-521))) NIL) (($ $ (-521)) NIL)) (-4163 (((-707) (-108) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-108) (-1013)))) (((-707) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4233)))) (-1497 (($ $ $ (-521)) NIL (|has| $ (-6 -4234)))) (-2404 (($ $) NIL)) (-1430 (((-497) $) NIL (|has| (-108) (-562 (-497))))) (-2201 (($ (-587 (-108))) NIL)) (-4159 (($ (-587 $)) NIL) (($ $ $) NIL) (($ (-108) $) NIL) (($ $ (-108)) NIL)) (-2189 (((-792) $) NIL)) (-2703 (($ (-707) (-108)) 9)) (-3049 (((-108) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4233)))) (-4009 (($ $ $) NIL)) (-3505 (($ $) NIL)) (-2764 (($ $ $) NIL)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) NIL)) (-2322 (($ $ $) NIL)) (-3475 (((-707) $) NIL (|has| $ (-6 -4233)))))
+(((-106) (-13 (-119) (-10 -8 (-15 -2703 ($ (-707) (-108)))))) (T -106))
+((-2703 (*1 *1 *2 *3) (-12 (-5 *2 (-707)) (-5 *3 (-108)) (-5 *1 (-106)))))
+(-13 (-119) (-10 -8 (-15 -2703 ($ (-707) (-108)))))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-1232 (((-3 $ "failed") $ $) 19)) (-2547 (($) 17 T CONST)) (-3688 (((-1067) $) 9)) (-4147 (((-1031) $) 10)) (-2189 (((-792) $) 11)) (-3561 (($) 18 T CONST)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ |#1| $) 23) (($ $ |#2|) 26)))
+(((-107 |#1| |#2|) (-1196) (-970) (-970)) (T -107))
+NIL
+(-13 (-589 |t#1|) (-976 |t#2|) (-10 -7 (-6 -4228) (-6 -4227)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-561 (-792)) . T) ((-589 |#1|) . T) ((-976 |#2|) . T) ((-1013) . T))
+((-1415 (((-108) $ $) NIL)) (-1500 (($ $) 12)) (-3344 (($ $ $) 17)) (-1432 (($) 8 T CONST)) (-3396 (((-108) $) 7)) (-1630 (((-707)) 26)) (-3250 (($) 32)) (-3994 (($ $ $) 15)) (-2400 (($ $) 10)) (-3872 (($ $ $) 18)) (-2538 (($ $ $) 19)) (-2810 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-2715 (((-850) $) 31)) (-3688 (((-1067) $) NIL)) (-2716 (($ (-850)) 30)) (-3334 (($ $ $) 21)) (-4147 (((-1031) $) NIL)) (-2281 (($) 9 T CONST)) (-2630 (($ $ $) 22)) (-1430 (((-497) $) 38)) (-2189 (((-792) $) 41)) (-4009 (($ $ $) 13)) (-3505 (($ $) 11)) (-2764 (($ $ $) 16)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) 20)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 24)) (-2322 (($ $ $) 14)))
+(((-108) (-13 (-784) (-342) (-602) (-894) (-562 (-497)) (-10 -8 (-15 -1432 ($) -2676) (-15 -2281 ($) -2676) (-15 -3505 ($ $)) (-15 -3344 ($ $ $)) (-15 -2538 ($ $ $)) (-15 -3872 ($ $ $)) (-15 -3396 ((-108) $))))) (T -108))
+((-1432 (*1 *1) (-5 *1 (-108))) (-2281 (*1 *1) (-5 *1 (-108))) (-3505 (*1 *1 *1) (-5 *1 (-108))) (-3344 (*1 *1 *1 *1) (-5 *1 (-108))) (-2538 (*1 *1 *1 *1) (-5 *1 (-108))) (-3872 (*1 *1 *1 *1) (-5 *1 (-108))) (-3396 (*1 *1 *1) (-5 *1 (-108))))
+(-13 (-784) (-342) (-602) (-894) (-562 (-497)) (-10 -8 (-15 -1432 ($) -2676) (-15 -2281 ($) -2676) (-15 -3505 ($ $)) (-15 -3344 ($ $ $)) (-15 -2538 ($ $ $)) (-15 -3872 ($ $ $)) (-15 -3396 ((-108) $))))
+((-2394 (((-3 (-1 |#1| (-587 |#1|)) "failed") (-110)) 18) (((-110) (-110) (-1 |#1| |#1|)) 13) (((-110) (-110) (-1 |#1| (-587 |#1|))) 11) (((-3 |#1| "failed") (-110) (-587 |#1|)) 20)) (-2808 (((-3 (-587 (-1 |#1| (-587 |#1|))) "failed") (-110)) 24) (((-110) (-110) (-1 |#1| |#1|)) 30) (((-110) (-110) (-587 (-1 |#1| (-587 |#1|)))) 26)) (-2806 (((-110) |#1|) 54 (|has| |#1| (-784)))) (-1988 (((-3 |#1| "failed") (-110)) 49 (|has| |#1| (-784)))))
+(((-109 |#1|) (-10 -7 (-15 -2394 ((-3 |#1| "failed") (-110) (-587 |#1|))) (-15 -2394 ((-110) (-110) (-1 |#1| (-587 |#1|)))) (-15 -2394 ((-110) (-110) (-1 |#1| |#1|))) (-15 -2394 ((-3 (-1 |#1| (-587 |#1|)) "failed") (-110))) (-15 -2808 ((-110) (-110) (-587 (-1 |#1| (-587 |#1|))))) (-15 -2808 ((-110) (-110) (-1 |#1| |#1|))) (-15 -2808 ((-3 (-587 (-1 |#1| (-587 |#1|))) "failed") (-110))) (IF (|has| |#1| (-784)) (PROGN (-15 -2806 ((-110) |#1|)) (-15 -1988 ((-3 |#1| "failed") (-110)))) |%noBranch|)) (-1013)) (T -109))
+((-1988 (*1 *2 *3) (|partial| -12 (-5 *3 (-110)) (-4 *2 (-1013)) (-4 *2 (-784)) (-5 *1 (-109 *2)))) (-2806 (*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-109 *3)) (-4 *3 (-784)) (-4 *3 (-1013)))) (-2808 (*1 *2 *3) (|partial| -12 (-5 *3 (-110)) (-5 *2 (-587 (-1 *4 (-587 *4)))) (-5 *1 (-109 *4)) (-4 *4 (-1013)))) (-2808 (*1 *2 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1013)) (-5 *1 (-109 *4)))) (-2808 (*1 *2 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-587 (-1 *4 (-587 *4)))) (-4 *4 (-1013)) (-5 *1 (-109 *4)))) (-2394 (*1 *2 *3) (|partial| -12 (-5 *3 (-110)) (-5 *2 (-1 *4 (-587 *4))) (-5 *1 (-109 *4)) (-4 *4 (-1013)))) (-2394 (*1 *2 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1013)) (-5 *1 (-109 *4)))) (-2394 (*1 *2 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 (-587 *4))) (-4 *4 (-1013)) (-5 *1 (-109 *4)))) (-2394 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-110)) (-5 *4 (-587 *2)) (-5 *1 (-109 *2)) (-4 *2 (-1013)))))
+(-10 -7 (-15 -2394 ((-3 |#1| "failed") (-110) (-587 |#1|))) (-15 -2394 ((-110) (-110) (-1 |#1| (-587 |#1|)))) (-15 -2394 ((-110) (-110) (-1 |#1| |#1|))) (-15 -2394 ((-3 (-1 |#1| (-587 |#1|)) "failed") (-110))) (-15 -2808 ((-110) (-110) (-587 (-1 |#1| (-587 |#1|))))) (-15 -2808 ((-110) (-110) (-1 |#1| |#1|))) (-15 -2808 ((-3 (-587 (-1 |#1| (-587 |#1|))) "failed") (-110))) (IF (|has| |#1| (-784)) (PROGN (-15 -2806 ((-110) |#1|)) (-15 -1988 ((-3 |#1| "failed") (-110)))) |%noBranch|))
+((-1415 (((-108) $ $) NIL)) (-1758 (((-707) $) 68) (($ $ (-707)) 30)) (-3277 (((-108) $) 32)) (-1387 (($ $ (-1067) (-710)) 26)) (-2537 (($ $ (-44 (-1067) (-710))) 13)) (-1931 (((-3 (-710) "failed") $ (-1067)) 24)) (-2416 (((-44 (-1067) (-710)) $) 12)) (-2727 (($ (-1084)) 15) (($ (-1084) (-707)) 20)) (-1826 (((-108) $) 31)) (-3697 (((-108) $) 33)) (-2884 (((-1084) $) 8)) (-2810 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-3688 (((-1067) $) NIL)) (-1705 (((-108) $ (-1084)) 10)) (-1718 (($ $ (-1 (-497) (-587 (-497)))) 50) (((-3 (-1 (-497) (-587 (-497))) "failed") $) 54)) (-4147 (((-1031) $) NIL)) (-2289 (((-108) $ (-1067)) 29)) (-4165 (($ $ (-1 (-108) $ $)) 35)) (-1678 (((-3 (-1 (-792) (-587 (-792))) "failed") $) 52) (($ $ (-1 (-792) (-587 (-792)))) 41) (($ $ (-1 (-792) (-792))) 43)) (-1943 (($ $ (-1067)) 45)) (-2404 (($ $) 61)) (-1615 (($ $ (-1 (-108) $ $)) 36)) (-2189 (((-792) $) 48)) (-2979 (($ $ (-1067)) 27)) (-3639 (((-3 (-707) "failed") $) 56)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) 67)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 73)))
+(((-110) (-13 (-784) (-10 -8 (-15 -2884 ((-1084) $)) (-15 -2416 ((-44 (-1067) (-710)) $)) (-15 -2404 ($ $)) (-15 -2727 ($ (-1084))) (-15 -2727 ($ (-1084) (-707))) (-15 -3639 ((-3 (-707) "failed") $)) (-15 -1826 ((-108) $)) (-15 -3277 ((-108) $)) (-15 -3697 ((-108) $)) (-15 -1758 ((-707) $)) (-15 -1758 ($ $ (-707))) (-15 -4165 ($ $ (-1 (-108) $ $))) (-15 -1615 ($ $ (-1 (-108) $ $))) (-15 -1678 ((-3 (-1 (-792) (-587 (-792))) "failed") $)) (-15 -1678 ($ $ (-1 (-792) (-587 (-792))))) (-15 -1678 ($ $ (-1 (-792) (-792)))) (-15 -1718 ($ $ (-1 (-497) (-587 (-497))))) (-15 -1718 ((-3 (-1 (-497) (-587 (-497))) "failed") $)) (-15 -1705 ((-108) $ (-1084))) (-15 -2289 ((-108) $ (-1067))) (-15 -2979 ($ $ (-1067))) (-15 -1943 ($ $ (-1067))) (-15 -1931 ((-3 (-710) "failed") $ (-1067))) (-15 -1387 ($ $ (-1067) (-710))) (-15 -2537 ($ $ (-44 (-1067) (-710))))))) (T -110))
+((-2884 (*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-110)))) (-2416 (*1 *2 *1) (-12 (-5 *2 (-44 (-1067) (-710))) (-5 *1 (-110)))) (-2404 (*1 *1 *1) (-5 *1 (-110))) (-2727 (*1 *1 *2) (-12 (-5 *2 (-1084)) (-5 *1 (-110)))) (-2727 (*1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-707)) (-5 *1 (-110)))) (-3639 (*1 *2 *1) (|partial| -12 (-5 *2 (-707)) (-5 *1 (-110)))) (-1826 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110)))) (-3277 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110)))) (-3697 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110)))) (-1758 (*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-110)))) (-1758 (*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-110)))) (-4165 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-108) (-110) (-110))) (-5 *1 (-110)))) (-1615 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-108) (-110) (-110))) (-5 *1 (-110)))) (-1678 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-792) (-587 (-792)))) (-5 *1 (-110)))) (-1678 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-792) (-587 (-792)))) (-5 *1 (-110)))) (-1678 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-792) (-792))) (-5 *1 (-110)))) (-1718 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-497) (-587 (-497)))) (-5 *1 (-110)))) (-1718 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-497) (-587 (-497)))) (-5 *1 (-110)))) (-1705 (*1 *2 *1 *3) (-12 (-5 *3 (-1084)) (-5 *2 (-108)) (-5 *1 (-110)))) (-2289 (*1 *2 *1 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-108)) (-5 *1 (-110)))) (-2979 (*1 *1 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-110)))) (-1943 (*1 *1 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-110)))) (-1931 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1067)) (-5 *2 (-710)) (-5 *1 (-110)))) (-1387 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1067)) (-5 *3 (-710)) (-5 *1 (-110)))) (-2537 (*1 *1 *1 *2) (-12 (-5 *2 (-44 (-1067) (-710))) (-5 *1 (-110)))))
+(-13 (-784) (-10 -8 (-15 -2884 ((-1084) $)) (-15 -2416 ((-44 (-1067) (-710)) $)) (-15 -2404 ($ $)) (-15 -2727 ($ (-1084))) (-15 -2727 ($ (-1084) (-707))) (-15 -3639 ((-3 (-707) "failed") $)) (-15 -1826 ((-108) $)) (-15 -3277 ((-108) $)) (-15 -3697 ((-108) $)) (-15 -1758 ((-707) $)) (-15 -1758 ($ $ (-707))) (-15 -4165 ($ $ (-1 (-108) $ $))) (-15 -1615 ($ $ (-1 (-108) $ $))) (-15 -1678 ((-3 (-1 (-792) (-587 (-792))) "failed") $)) (-15 -1678 ($ $ (-1 (-792) (-587 (-792))))) (-15 -1678 ($ $ (-1 (-792) (-792)))) (-15 -1718 ($ $ (-1 (-497) (-587 (-497))))) (-15 -1718 ((-3 (-1 (-497) (-587 (-497))) "failed") $)) (-15 -1705 ((-108) $ (-1084))) (-15 -2289 ((-108) $ (-1067))) (-15 -2979 ($ $ (-1067))) (-15 -1943 ($ $ (-1067))) (-15 -1931 ((-3 (-710) "failed") $ (-1067))) (-15 -1387 ($ $ (-1067) (-710))) (-15 -2537 ($ $ (-44 (-1067) (-710))))))
+((-2888 (((-521) |#2|) 36)))
+(((-111 |#1| |#2|) (-10 -7 (-15 -2888 ((-521) |#2|))) (-13 (-337) (-961 (-381 (-521)))) (-1141 |#1|)) (T -111))
+((-2888 (*1 *2 *3) (-12 (-4 *4 (-13 (-337) (-961 (-381 *2)))) (-5 *2 (-521)) (-5 *1 (-111 *4 *3)) (-4 *3 (-1141 *4)))))
+(-10 -7 (-15 -2888 ((-521) |#2|)))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-2559 (($ $) NIL)) (-1733 (((-108) $) NIL)) (-1232 (((-3 $ "failed") $ $) NIL)) (-1927 (($ $ (-521)) NIL)) (-1389 (((-108) $ $) NIL)) (-2547 (($) NIL T CONST)) (-3948 (($ (-1080 (-521)) (-521)) NIL)) (-2277 (($ $ $) NIL)) (-1257 (((-3 $ "failed") $) NIL)) (-4018 (($ $) NIL)) (-2253 (($ $ $) NIL)) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) NIL)) (-2733 (((-707) $) NIL)) (-3996 (((-108) $) NIL)) (-1546 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-2704 (((-521)) NIL)) (-1720 (((-521) $) NIL)) (-2223 (($ $ $) NIL) (($ (-587 $)) NIL)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) NIL)) (-2258 (($ $ $) NIL) (($ (-587 $)) NIL)) (-1962 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2447 (($ $ (-521)) NIL)) (-2230 (((-3 $ "failed") $ $) NIL)) (-3854 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-4196 (((-707) $) NIL)) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) NIL)) (-4151 (((-1065 (-521)) $) NIL)) (-3448 (($ $) NIL)) (-2189 (((-792) $) NIL) (($ (-521)) NIL) (($ $) NIL)) (-3846 (((-707)) NIL)) (-4210 (((-108) $ $) NIL)) (-3894 (((-521) $ (-521)) NIL)) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (-3561 (($) NIL T CONST)) (-3572 (($) NIL T CONST)) (-1531 (((-108) $ $) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL)))
+(((-112 |#1|) (-798 |#1|) (-521)) (T -112))
+NIL
+(-798 |#1|)
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-2086 (((-112 |#1|) $) NIL (|has| (-112 |#1|) (-282)))) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-2559 (($ $) NIL)) (-1733 (((-108) $) NIL)) (-1232 (((-3 $ "failed") $ $) NIL)) (-2598 (((-392 (-1080 $)) (-1080 $)) NIL (|has| (-112 |#1|) (-838)))) (-3063 (($ $) NIL)) (-3358 (((-392 $) $) NIL)) (-2569 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) NIL (|has| (-112 |#1|) (-838)))) (-1389 (((-108) $ $) NIL)) (-1606 (((-521) $) NIL (|has| (-112 |#1|) (-757)))) (-2547 (($) NIL T CONST)) (-1297 (((-3 (-112 |#1|) "failed") $) NIL) (((-3 (-1084) "failed") $) NIL (|has| (-112 |#1|) (-961 (-1084)))) (((-3 (-381 (-521)) "failed") $) NIL (|has| (-112 |#1|) (-961 (-521)))) (((-3 (-521) "failed") $) NIL (|has| (-112 |#1|) (-961 (-521))))) (-1483 (((-112 |#1|) $) NIL) (((-1084) $) NIL (|has| (-112 |#1|) (-961 (-1084)))) (((-381 (-521)) $) NIL (|has| (-112 |#1|) (-961 (-521)))) (((-521) $) NIL (|has| (-112 |#1|) (-961 (-521))))) (-1198 (($ $) NIL) (($ (-521) $) NIL)) (-2277 (($ $ $) NIL)) (-3279 (((-627 (-521)) (-627 $)) NIL (|has| (-112 |#1|) (-583 (-521)))) (((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (|has| (-112 |#1|) (-583 (-521)))) (((-2 (|:| -1201 (-627 (-112 |#1|))) (|:| |vec| (-1165 (-112 |#1|)))) (-627 $) (-1165 $)) NIL) (((-627 (-112 |#1|)) (-627 $)) NIL)) (-1257 (((-3 $ "failed") $) NIL)) (-3250 (($) NIL (|has| (-112 |#1|) (-506)))) (-2253 (($ $ $) NIL)) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) NIL)) (-2710 (((-108) $) NIL)) (-3951 (((-108) $) NIL (|has| (-112 |#1|) (-757)))) (-3427 (((-818 (-521) $) $ (-821 (-521)) (-818 (-521) $)) NIL (|has| (-112 |#1|) (-815 (-521)))) (((-818 (-353) $) $ (-821 (-353)) (-818 (-353) $)) NIL (|has| (-112 |#1|) (-815 (-353))))) (-3996 (((-108) $) NIL)) (-3257 (($ $) NIL)) (-2801 (((-112 |#1|) $) NIL)) (-3842 (((-3 $ "failed") $) NIL (|has| (-112 |#1|) (-1060)))) (-2210 (((-108) $) NIL (|has| (-112 |#1|) (-757)))) (-1546 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-2810 (($ $ $) NIL (|has| (-112 |#1|) (-784)))) (-2446 (($ $ $) NIL (|has| (-112 |#1|) (-784)))) (-1390 (($ (-1 (-112 |#1|) (-112 |#1|)) $) NIL)) (-2223 (($ $ $) NIL) (($ (-587 $)) NIL)) (-3688 (((-1067) $) NIL)) (-3095 (($ $) NIL)) (-3797 (($) NIL (|has| (-112 |#1|) (-1060)) CONST)) (-4147 (((-1031) $) NIL)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) NIL)) (-2258 (($ $ $) NIL) (($ (-587 $)) NIL)) (-2850 (($ $) NIL (|has| (-112 |#1|) (-282)))) (-2567 (((-112 |#1|) $) NIL (|has| (-112 |#1|) (-506)))) (-1912 (((-392 (-1080 $)) (-1080 $)) NIL (|has| (-112 |#1|) (-838)))) (-2165 (((-392 (-1080 $)) (-1080 $)) NIL (|has| (-112 |#1|) (-838)))) (-1916 (((-392 $) $) NIL)) (-1962 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2230 (((-3 $ "failed") $ $) NIL)) (-3854 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-2288 (($ $ (-587 (-112 |#1|)) (-587 (-112 |#1|))) NIL (|has| (-112 |#1|) (-284 (-112 |#1|)))) (($ $ (-112 |#1|) (-112 |#1|)) NIL (|has| (-112 |#1|) (-284 (-112 |#1|)))) (($ $ (-269 (-112 |#1|))) NIL (|has| (-112 |#1|) (-284 (-112 |#1|)))) (($ $ (-587 (-269 (-112 |#1|)))) NIL (|has| (-112 |#1|) (-284 (-112 |#1|)))) (($ $ (-587 (-1084)) (-587 (-112 |#1|))) NIL (|has| (-112 |#1|) (-482 (-1084) (-112 |#1|)))) (($ $ (-1084) (-112 |#1|)) NIL (|has| (-112 |#1|) (-482 (-1084) (-112 |#1|))))) (-4196 (((-707) $) NIL)) (-2544 (($ $ (-112 |#1|)) NIL (|has| (-112 |#1|) (-261 (-112 |#1|) (-112 |#1|))))) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) NIL)) (-2156 (($ $) NIL (|has| (-112 |#1|) (-210))) (($ $ (-707)) NIL (|has| (-112 |#1|) (-210))) (($ $ (-1084)) NIL (|has| (-112 |#1|) (-829 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| (-112 |#1|) (-829 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| (-112 |#1|) (-829 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| (-112 |#1|) (-829 (-1084)))) (($ $ (-1 (-112 |#1|) (-112 |#1|)) (-707)) NIL) (($ $ (-1 (-112 |#1|) (-112 |#1|))) NIL)) (-4142 (($ $) NIL)) (-2812 (((-112 |#1|) $) NIL)) (-1430 (((-821 (-521)) $) NIL (|has| (-112 |#1|) (-562 (-821 (-521))))) (((-821 (-353)) $) NIL (|has| (-112 |#1|) (-562 (-821 (-353))))) (((-497) $) NIL (|has| (-112 |#1|) (-562 (-497)))) (((-353) $) NIL (|has| (-112 |#1|) (-946))) (((-202) $) NIL (|has| (-112 |#1|) (-946)))) (-2554 (((-158 (-381 (-521))) $) NIL)) (-2944 (((-3 (-1165 $) "failed") (-627 $)) NIL (-12 (|has| $ (-133)) (|has| (-112 |#1|) (-838))))) (-2189 (((-792) $) NIL) (($ (-521)) NIL) (($ $) NIL) (($ (-381 (-521))) NIL) (($ (-112 |#1|)) NIL) (($ (-1084)) NIL (|has| (-112 |#1|) (-961 (-1084))))) (-1671 (((-3 $ "failed") $) NIL (-3703 (-12 (|has| $ (-133)) (|has| (-112 |#1|) (-838))) (|has| (-112 |#1|) (-133))))) (-3846 (((-707)) NIL)) (-2382 (((-112 |#1|) $) NIL (|has| (-112 |#1|) (-506)))) (-4210 (((-108) $ $) NIL)) (-3894 (((-381 (-521)) $ (-521)) NIL)) (-3304 (($ $) NIL (|has| (-112 |#1|) (-757)))) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (-3561 (($) NIL T CONST)) (-3572 (($) NIL T CONST)) (-2212 (($ $) NIL (|has| (-112 |#1|) (-210))) (($ $ (-707)) NIL (|has| (-112 |#1|) (-210))) (($ $ (-1084)) NIL (|has| (-112 |#1|) (-829 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| (-112 |#1|) (-829 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| (-112 |#1|) (-829 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| (-112 |#1|) (-829 (-1084)))) (($ $ (-1 (-112 |#1|) (-112 |#1|)) (-707)) NIL) (($ $ (-1 (-112 |#1|) (-112 |#1|))) NIL)) (-1574 (((-108) $ $) NIL (|has| (-112 |#1|) (-784)))) (-1558 (((-108) $ $) NIL (|has| (-112 |#1|) (-784)))) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL (|has| (-112 |#1|) (-784)))) (-1549 (((-108) $ $) NIL (|has| (-112 |#1|) (-784)))) (-1620 (($ $ $) NIL) (($ (-112 |#1|) (-112 |#1|)) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ (-381 (-521))) NIL) (($ (-381 (-521)) $) NIL) (($ (-112 |#1|) $) NIL) (($ $ (-112 |#1|)) NIL)))
+(((-113 |#1|) (-13 (-918 (-112 |#1|)) (-10 -8 (-15 -3894 ((-381 (-521)) $ (-521))) (-15 -2554 ((-158 (-381 (-521))) $)) (-15 -1198 ($ $)) (-15 -1198 ($ (-521) $)))) (-521)) (T -113))
+((-3894 (*1 *2 *1 *3) (-12 (-5 *2 (-381 (-521))) (-5 *1 (-113 *4)) (-14 *4 *3) (-5 *3 (-521)))) (-2554 (*1 *2 *1) (-12 (-5 *2 (-158 (-381 (-521)))) (-5 *1 (-113 *3)) (-14 *3 (-521)))) (-1198 (*1 *1 *1) (-12 (-5 *1 (-113 *2)) (-14 *2 (-521)))) (-1198 (*1 *1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-113 *3)) (-14 *3 *2))))
+(-13 (-918 (-112 |#1|)) (-10 -8 (-15 -3894 ((-381 (-521)) $ (-521))) (-15 -2554 ((-158 (-381 (-521))) $)) (-15 -1198 ($ $)) (-15 -1198 ($ (-521) $))))
+((-2378 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 49) (($ $ "right" $) 51)) (-3186 (((-587 $) $) 27)) (-3651 (((-108) $ $) 32)) (-2221 (((-108) |#2| $) 36)) (-1278 (((-587 |#2|) $) 22)) (-2229 (((-108) $) 16)) (-2544 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-2406 (((-108) $) 45)) (-2189 (((-792) $) 41)) (-3098 (((-587 $) $) 28)) (-1531 (((-108) $ $) 34)) (-3475 (((-707) $) 43)))
+(((-114 |#1| |#2|) (-10 -8 (-15 -2189 ((-792) |#1|)) (-15 -2378 (|#1| |#1| "right" |#1|)) (-15 -2378 (|#1| |#1| "left" |#1|)) (-15 -2544 (|#1| |#1| "right")) (-15 -2544 (|#1| |#1| "left")) (-15 -2378 (|#2| |#1| "value" |#2|)) (-15 -3651 ((-108) |#1| |#1|)) (-15 -1278 ((-587 |#2|) |#1|)) (-15 -2406 ((-108) |#1|)) (-15 -2544 (|#2| |#1| "value")) (-15 -2229 ((-108) |#1|)) (-15 -3186 ((-587 |#1|) |#1|)) (-15 -3098 ((-587 |#1|) |#1|)) (-15 -1531 ((-108) |#1| |#1|)) (-15 -2221 ((-108) |#2| |#1|)) (-15 -3475 ((-707) |#1|))) (-115 |#2|) (-1119)) (T -114))
+NIL
+(-10 -8 (-15 -2189 ((-792) |#1|)) (-15 -2378 (|#1| |#1| "right" |#1|)) (-15 -2378 (|#1| |#1| "left" |#1|)) (-15 -2544 (|#1| |#1| "right")) (-15 -2544 (|#1| |#1| "left")) (-15 -2378 (|#2| |#1| "value" |#2|)) (-15 -3651 ((-108) |#1| |#1|)) (-15 -1278 ((-587 |#2|) |#1|)) (-15 -2406 ((-108) |#1|)) (-15 -2544 (|#2| |#1| "value")) (-15 -2229 ((-108) |#1|)) (-15 -3186 ((-587 |#1|) |#1|)) (-15 -3098 ((-587 |#1|) |#1|)) (-15 -1531 ((-108) |#1| |#1|)) (-15 -2221 ((-108) |#2| |#1|)) (-15 -3475 ((-707) |#1|)))
+((-1415 (((-108) $ $) 19 (|has| |#1| (-1013)))) (-3430 ((|#1| $) 48)) (-2978 (((-108) $ (-707)) 8)) (-2300 ((|#1| $ |#1|) 39 (|has| $ (-6 -4234)))) (-1838 (($ $ $) 52 (|has| $ (-6 -4234)))) (-4007 (($ $ $) 54 (|has| $ (-6 -4234)))) (-2378 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4234))) (($ $ "left" $) 55 (|has| $ (-6 -4234))) (($ $ "right" $) 53 (|has| $ (-6 -4234)))) (-2675 (($ $ (-587 $)) 41 (|has| $ (-6 -4234)))) (-2547 (($) 7 T CONST)) (-1925 (($ $) 57)) (-3831 (((-587 |#1|) $) 30 (|has| $ (-6 -4233)))) (-3186 (((-587 $) $) 50)) (-3651 (((-108) $ $) 42 (|has| |#1| (-1013)))) (-2139 (((-108) $ (-707)) 9)) (-3757 (((-587 |#1|) $) 29 (|has| $ (-6 -4233)))) (-2221 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-3833 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#1| |#1|) $) 35)) (-3574 (((-108) $ (-707)) 10)) (-1913 (($ $) 59)) (-1278 (((-587 |#1|) $) 45)) (-2229 (((-108) $) 49)) (-3688 (((-1067) $) 22 (|has| |#1| (-1013)))) (-4147 (((-1031) $) 21 (|has| |#1| (-1013)))) (-1789 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 |#1|))) 26 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) 25 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) 23 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-2488 (((-108) $ $) 14)) (-3462 (((-108) $) 11)) (-4024 (($) 12)) (-2544 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-2931 (((-521) $ $) 44)) (-2406 (((-108) $) 46)) (-4163 (((-707) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4233))) (((-707) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-2404 (($ $) 13)) (-2189 (((-792) $) 18 (|has| |#1| (-561 (-792))))) (-3098 (((-587 $) $) 51)) (-2294 (((-108) $ $) 43 (|has| |#1| (-1013)))) (-3049 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4233)))) (-1531 (((-108) $ $) 20 (|has| |#1| (-1013)))) (-3475 (((-707) $) 6 (|has| $ (-6 -4233)))))
+(((-115 |#1|) (-1196) (-1119)) (T -115))
+((-1913 (*1 *1 *1) (-12 (-4 *1 (-115 *2)) (-4 *2 (-1119)))) (-2544 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-115 *3)) (-4 *3 (-1119)))) (-1925 (*1 *1 *1) (-12 (-4 *1 (-115 *2)) (-4 *2 (-1119)))) (-2544 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-115 *3)) (-4 *3 (-1119)))) (-2378 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4234)) (-4 *1 (-115 *3)) (-4 *3 (-1119)))) (-4007 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4234)) (-4 *1 (-115 *2)) (-4 *2 (-1119)))) (-2378 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4234)) (-4 *1 (-115 *3)) (-4 *3 (-1119)))) (-1838 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4234)) (-4 *1 (-115 *2)) (-4 *2 (-1119)))))
+(-13 (-935 |t#1|) (-10 -8 (-15 -1913 ($ $)) (-15 -2544 ($ $ "left")) (-15 -1925 ($ $)) (-15 -2544 ($ $ "right")) (IF (|has| $ (-6 -4234)) (PROGN (-15 -2378 ($ $ "left" $)) (-15 -4007 ($ $ $)) (-15 -2378 ($ $ "right" $)) (-15 -1838 ($ $ $))) |%noBranch|)))
+(((-33) . T) ((-97) |has| |#1| (-1013)) ((-561 (-792)) -3703 (|has| |#1| (-1013)) (|has| |#1| (-561 (-792)))) ((-284 |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-460 |#1|) . T) ((-482 |#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-935 |#1|) . T) ((-1013) |has| |#1| (-1013)) ((-1119) . T))
+((-2307 (((-108) |#1|) 24)) (-2479 (((-707) (-707)) 23) (((-707)) 22)) (-2136 (((-108) |#1| (-108)) 25) (((-108) |#1|) 26)))
+(((-116 |#1|) (-10 -7 (-15 -2136 ((-108) |#1|)) (-15 -2136 ((-108) |#1| (-108))) (-15 -2479 ((-707))) (-15 -2479 ((-707) (-707))) (-15 -2307 ((-108) |#1|))) (-1141 (-521))) (T -116))
+((-2307 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1141 (-521))))) (-2479 (*1 *2 *2) (-12 (-5 *2 (-707)) (-5 *1 (-116 *3)) (-4 *3 (-1141 (-521))))) (-2479 (*1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-116 *3)) (-4 *3 (-1141 (-521))))) (-2136 (*1 *2 *3 *2) (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1141 (-521))))) (-2136 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1141 (-521))))))
+(-10 -7 (-15 -2136 ((-108) |#1|)) (-15 -2136 ((-108) |#1| (-108))) (-15 -2479 ((-707))) (-15 -2479 ((-707) (-707))) (-15 -2307 ((-108) |#1|)))
+((-1415 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3430 ((|#1| $) 15)) (-3604 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 22)) (-2978 (((-108) $ (-707)) NIL)) (-2300 ((|#1| $ |#1|) NIL (|has| $ (-6 -4234)))) (-1838 (($ $ $) 18 (|has| $ (-6 -4234)))) (-4007 (($ $ $) 20 (|has| $ (-6 -4234)))) (-2378 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4234))) (($ $ "left" $) NIL (|has| $ (-6 -4234))) (($ $ "right" $) NIL (|has| $ (-6 -4234)))) (-2675 (($ $ (-587 $)) NIL (|has| $ (-6 -4234)))) (-2547 (($) NIL T CONST)) (-1925 (($ $) 17)) (-3831 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-3186 (((-587 $) $) NIL)) (-3651 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3033 (($ $ |#1| $) 23)) (-2139 (((-108) $ (-707)) NIL)) (-3757 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-2221 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-3833 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#1| |#1|) $) NIL)) (-3574 (((-108) $ (-707)) NIL)) (-1913 (($ $) 19)) (-1278 (((-587 |#1|) $) NIL)) (-2229 (((-108) $) NIL)) (-3688 (((-1067) $) NIL (|has| |#1| (-1013)))) (-1881 (($ |#1| $) 24)) (-3373 (($ |#1| $) 10)) (-4147 (((-1031) $) NIL (|has| |#1| (-1013)))) (-1789 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 |#1|))) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-2488 (((-108) $ $) NIL)) (-3462 (((-108) $) 14)) (-4024 (($) 8)) (-2544 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2931 (((-521) $ $) NIL)) (-2406 (((-108) $) NIL)) (-4163 (((-707) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (((-707) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2404 (($ $) NIL)) (-2189 (((-792) $) NIL (|has| |#1| (-561 (-792))))) (-3098 (((-587 $) $) NIL)) (-2294 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-2163 (($ (-587 |#1|)) 12)) (-3049 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-1531 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3475 (((-707) $) NIL (|has| $ (-6 -4233)))))
+(((-117 |#1|) (-13 (-121 |#1|) (-10 -8 (-6 -4234) (-6 -4233) (-15 -2163 ($ (-587 |#1|))) (-15 -3373 ($ |#1| $)) (-15 -1881 ($ |#1| $)) (-15 -3604 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-784)) (T -117))
+((-2163 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-784)) (-5 *1 (-117 *3)))) (-3373 (*1 *1 *2 *1) (-12 (-5 *1 (-117 *2)) (-4 *2 (-784)))) (-1881 (*1 *1 *2 *1) (-12 (-5 *1 (-117 *2)) (-4 *2 (-784)))) (-3604 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-117 *3)) (|:| |greater| (-117 *3)))) (-5 *1 (-117 *3)) (-4 *3 (-784)))))
+(-13 (-121 |#1|) (-10 -8 (-6 -4234) (-6 -4233) (-15 -2163 ($ (-587 |#1|))) (-15 -3373 ($ |#1| $)) (-15 -1881 ($ |#1| $)) (-15 -3604 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $))))
+((-1500 (($ $) 14)) (-2400 (($ $) 11)) (-3872 (($ $ $) 24)) (-2538 (($ $ $) 22)) (-3505 (($ $) 12)) (-2764 (($ $ $) 20)) (-2322 (($ $ $) 18)))
+(((-118 |#1|) (-10 -8 (-15 -3872 (|#1| |#1| |#1|)) (-15 -2538 (|#1| |#1| |#1|)) (-15 -3505 (|#1| |#1|)) (-15 -2400 (|#1| |#1|)) (-15 -1500 (|#1| |#1|)) (-15 -2322 (|#1| |#1| |#1|)) (-15 -2764 (|#1| |#1| |#1|))) (-119)) (T -118))
+NIL
+(-10 -8 (-15 -3872 (|#1| |#1| |#1|)) (-15 -2538 (|#1| |#1| |#1|)) (-15 -3505 (|#1| |#1|)) (-15 -2400 (|#1| |#1|)) (-15 -1500 (|#1| |#1|)) (-15 -2322 (|#1| |#1| |#1|)) (-15 -2764 (|#1| |#1| |#1|)))
+((-1415 (((-108) $ $) 7)) (-1500 (($ $) 104)) (-3344 (($ $ $) 25)) (-1903 (((-1170) $ (-521) (-521)) 67 (|has| $ (-6 -4234)))) (-1505 (((-108) $) 99 (|has| (-108) (-784))) (((-108) (-1 (-108) (-108) (-108)) $) 93)) (-1621 (($ $) 103 (-12 (|has| (-108) (-784)) (|has| $ (-6 -4234)))) (($ (-1 (-108) (-108) (-108)) $) 102 (|has| $ (-6 -4234)))) (-3211 (($ $) 98 (|has| (-108) (-784))) (($ (-1 (-108) (-108) (-108)) $) 92)) (-2978 (((-108) $ (-707)) 38)) (-2378 (((-108) $ (-1132 (-521)) (-108)) 89 (|has| $ (-6 -4234))) (((-108) $ (-521) (-108)) 55 (|has| $ (-6 -4234)))) (-1628 (($ (-1 (-108) (-108)) $) 72 (|has| $ (-6 -4233)))) (-2547 (($) 39 T CONST)) (-3081 (($ $) 101 (|has| $ (-6 -4234)))) (-1862 (($ $) 91)) (-2332 (($ $) 69 (-12 (|has| (-108) (-1013)) (|has| $ (-6 -4233))))) (-1422 (($ (-1 (-108) (-108)) $) 73 (|has| $ (-6 -4233))) (($ (-108) $) 70 (-12 (|has| (-108) (-1013)) (|has| $ (-6 -4233))))) (-3859 (((-108) (-1 (-108) (-108) (-108)) $) 75 (|has| $ (-6 -4233))) (((-108) (-1 (-108) (-108) (-108)) $ (-108)) 74 (|has| $ (-6 -4233))) (((-108) (-1 (-108) (-108) (-108)) $ (-108) (-108)) 71 (-12 (|has| (-108) (-1013)) (|has| $ (-6 -4233))))) (-3849 (((-108) $ (-521) (-108)) 54 (|has| $ (-6 -4234)))) (-3626 (((-108) $ (-521)) 56)) (-3233 (((-521) (-108) $ (-521)) 96 (|has| (-108) (-1013))) (((-521) (-108) $) 95 (|has| (-108) (-1013))) (((-521) (-1 (-108) (-108)) $) 94)) (-3831 (((-587 (-108)) $) 46 (|has| $ (-6 -4233)))) (-3994 (($ $ $) 26)) (-2400 (($ $) 31)) (-3872 (($ $ $) 28)) (-1811 (($ (-707) (-108)) 78)) (-2538 (($ $ $) 29)) (-2139 (((-108) $ (-707)) 37)) (-2826 (((-521) $) 64 (|has| (-521) (-784)))) (-2810 (($ $ $) 13)) (-1318 (($ $ $) 97 (|has| (-108) (-784))) (($ (-1 (-108) (-108) (-108)) $ $) 90)) (-3757 (((-587 (-108)) $) 47 (|has| $ (-6 -4233)))) (-2221 (((-108) (-108) $) 49 (-12 (|has| (-108) (-1013)) (|has| $ (-6 -4233))))) (-2597 (((-521) $) 63 (|has| (-521) (-784)))) (-2446 (($ $ $) 14)) (-3833 (($ (-1 (-108) (-108)) $) 42 (|has| $ (-6 -4234)))) (-1390 (($ (-1 (-108) (-108) (-108)) $ $) 83) (($ (-1 (-108) (-108)) $) 41)) (-3574 (((-108) $ (-707)) 36)) (-3688 (((-1067) $) 9)) (-1659 (($ $ $ (-521)) 88) (($ (-108) $ (-521)) 87)) (-1668 (((-587 (-521)) $) 61)) (-2941 (((-108) (-521) $) 60)) (-4147 (((-1031) $) 10)) (-2293 (((-108) $) 65 (|has| (-521) (-784)))) (-3620 (((-3 (-108) "failed") (-1 (-108) (-108)) $) 76)) (-3016 (($ $ (-108)) 66 (|has| $ (-6 -4234)))) (-1789 (((-108) (-1 (-108) (-108)) $) 44 (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-108)) (-587 (-108))) 53 (-12 (|has| (-108) (-284 (-108))) (|has| (-108) (-1013)))) (($ $ (-108) (-108)) 52 (-12 (|has| (-108) (-284 (-108))) (|has| (-108) (-1013)))) (($ $ (-269 (-108))) 51 (-12 (|has| (-108) (-284 (-108))) (|has| (-108) (-1013)))) (($ $ (-587 (-269 (-108)))) 50 (-12 (|has| (-108) (-284 (-108))) (|has| (-108) (-1013))))) (-2488 (((-108) $ $) 32)) (-3821 (((-108) (-108) $) 62 (-12 (|has| $ (-6 -4233)) (|has| (-108) (-1013))))) (-2489 (((-587 (-108)) $) 59)) (-3462 (((-108) $) 35)) (-4024 (($) 34)) (-2544 (($ $ (-1132 (-521))) 84) (((-108) $ (-521)) 58) (((-108) $ (-521) (-108)) 57)) (-3691 (($ $ (-1132 (-521))) 86) (($ $ (-521)) 85)) (-4163 (((-707) (-108) $) 48 (-12 (|has| (-108) (-1013)) (|has| $ (-6 -4233)))) (((-707) (-1 (-108) (-108)) $) 45 (|has| $ (-6 -4233)))) (-1497 (($ $ $ (-521)) 100 (|has| $ (-6 -4234)))) (-2404 (($ $) 33)) (-1430 (((-497) $) 68 (|has| (-108) (-562 (-497))))) (-2201 (($ (-587 (-108))) 77)) (-4159 (($ (-587 $)) 82) (($ $ $) 81) (($ (-108) $) 80) (($ $ (-108)) 79)) (-2189 (((-792) $) 11)) (-3049 (((-108) (-1 (-108) (-108)) $) 43 (|has| $ (-6 -4233)))) (-4009 (($ $ $) 27)) (-3505 (($ $) 30)) (-2764 (($ $ $) 106)) (-1574 (((-108) $ $) 16)) (-1558 (((-108) $ $) 17)) (-1531 (((-108) $ $) 6)) (-1566 (((-108) $ $) 15)) (-1549 (((-108) $ $) 18)) (-2322 (($ $ $) 105)) (-3475 (((-707) $) 40 (|has| $ (-6 -4233)))))
+(((-119) (-1196)) (T -119))
+((-2400 (*1 *1 *1) (-4 *1 (-119))) (-3505 (*1 *1 *1) (-4 *1 (-119))) (-2538 (*1 *1 *1 *1) (-4 *1 (-119))) (-3872 (*1 *1 *1 *1) (-4 *1 (-119))) (-4009 (*1 *1 *1 *1) (-4 *1 (-119))) (-3994 (*1 *1 *1 *1) (-4 *1 (-119))) (-3344 (*1 *1 *1 *1) (-4 *1 (-119))))
+(-13 (-784) (-602) (-19 (-108)) (-10 -8 (-15 -2400 ($ $)) (-15 -3505 ($ $)) (-15 -2538 ($ $ $)) (-15 -3872 ($ $ $)) (-15 -4009 ($ $ $)) (-15 -3994 ($ $ $)) (-15 -3344 ($ $ $))))
+(((-33) . T) ((-97) . T) ((-561 (-792)) . T) ((-139 #0=(-108)) . T) ((-562 (-497)) |has| (-108) (-562 (-497))) ((-261 #1=(-521) #0#) . T) ((-263 #1# #0#) . T) ((-284 #0#) -12 (|has| (-108) (-284 (-108))) (|has| (-108) (-1013))) ((-347 #0#) . T) ((-460 #0#) . T) ((-554 #1# #0#) . T) ((-482 #0# #0#) -12 (|has| (-108) (-284 (-108))) (|has| (-108) (-1013))) ((-592 #0#) . T) ((-602) . T) ((-19 #0#) . T) ((-784) . T) ((-1013) . T) ((-1119) . T))
+((-3833 (($ (-1 |#2| |#2|) $) 22)) (-2404 (($ $) 16)) (-3475 (((-707) $) 24)))
+(((-120 |#1| |#2|) (-10 -8 (-15 -3833 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3475 ((-707) |#1|)) (-15 -2404 (|#1| |#1|))) (-121 |#2|) (-1013)) (T -120))
+NIL
+(-10 -8 (-15 -3833 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3475 ((-707) |#1|)) (-15 -2404 (|#1| |#1|)))
+((-1415 (((-108) $ $) 19 (|has| |#1| (-1013)))) (-3430 ((|#1| $) 48)) (-2978 (((-108) $ (-707)) 8)) (-2300 ((|#1| $ |#1|) 39 (|has| $ (-6 -4234)))) (-1838 (($ $ $) 52 (|has| $ (-6 -4234)))) (-4007 (($ $ $) 54 (|has| $ (-6 -4234)))) (-2378 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4234))) (($ $ "left" $) 55 (|has| $ (-6 -4234))) (($ $ "right" $) 53 (|has| $ (-6 -4234)))) (-2675 (($ $ (-587 $)) 41 (|has| $ (-6 -4234)))) (-2547 (($) 7 T CONST)) (-1925 (($ $) 57)) (-3831 (((-587 |#1|) $) 30 (|has| $ (-6 -4233)))) (-3186 (((-587 $) $) 50)) (-3651 (((-108) $ $) 42 (|has| |#1| (-1013)))) (-3033 (($ $ |#1| $) 60)) (-2139 (((-108) $ (-707)) 9)) (-3757 (((-587 |#1|) $) 29 (|has| $ (-6 -4233)))) (-2221 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-3833 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#1| |#1|) $) 35)) (-3574 (((-108) $ (-707)) 10)) (-1913 (($ $) 59)) (-1278 (((-587 |#1|) $) 45)) (-2229 (((-108) $) 49)) (-3688 (((-1067) $) 22 (|has| |#1| (-1013)))) (-4147 (((-1031) $) 21 (|has| |#1| (-1013)))) (-1789 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 |#1|))) 26 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) 25 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) 23 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-2488 (((-108) $ $) 14)) (-3462 (((-108) $) 11)) (-4024 (($) 12)) (-2544 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-2931 (((-521) $ $) 44)) (-2406 (((-108) $) 46)) (-4163 (((-707) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4233))) (((-707) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-2404 (($ $) 13)) (-2189 (((-792) $) 18 (|has| |#1| (-561 (-792))))) (-3098 (((-587 $) $) 51)) (-2294 (((-108) $ $) 43 (|has| |#1| (-1013)))) (-3049 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4233)))) (-1531 (((-108) $ $) 20 (|has| |#1| (-1013)))) (-3475 (((-707) $) 6 (|has| $ (-6 -4233)))))
+(((-121 |#1|) (-1196) (-1013)) (T -121))
+((-3033 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-121 *2)) (-4 *2 (-1013)))))
+(-13 (-115 |t#1|) (-10 -8 (-6 -4234) (-6 -4233) (-15 -3033 ($ $ |t#1| $))))
+(((-33) . T) ((-97) |has| |#1| (-1013)) ((-115 |#1|) . T) ((-561 (-792)) -3703 (|has| |#1| (-1013)) (|has| |#1| (-561 (-792)))) ((-284 |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-460 |#1|) . T) ((-482 |#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-935 |#1|) . T) ((-1013) |has| |#1| (-1013)) ((-1119) . T))
+((-1415 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3430 ((|#1| $) 15)) (-2978 (((-108) $ (-707)) NIL)) (-2300 ((|#1| $ |#1|) 19 (|has| $ (-6 -4234)))) (-1838 (($ $ $) 20 (|has| $ (-6 -4234)))) (-4007 (($ $ $) 18 (|has| $ (-6 -4234)))) (-2378 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4234))) (($ $ "left" $) NIL (|has| $ (-6 -4234))) (($ $ "right" $) NIL (|has| $ (-6 -4234)))) (-2675 (($ $ (-587 $)) NIL (|has| $ (-6 -4234)))) (-2547 (($) NIL T CONST)) (-1925 (($ $) 21)) (-3831 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-3186 (((-587 $) $) NIL)) (-3651 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3033 (($ $ |#1| $) NIL)) (-2139 (((-108) $ (-707)) NIL)) (-3757 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-2221 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-3833 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#1| |#1|) $) NIL)) (-3574 (((-108) $ (-707)) NIL)) (-1913 (($ $) NIL)) (-1278 (((-587 |#1|) $) NIL)) (-2229 (((-108) $) NIL)) (-3688 (((-1067) $) NIL (|has| |#1| (-1013)))) (-3373 (($ |#1| $) 10)) (-4147 (((-1031) $) NIL (|has| |#1| (-1013)))) (-1789 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 |#1|))) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-2488 (((-108) $ $) NIL)) (-3462 (((-108) $) 14)) (-4024 (($) 8)) (-2544 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2931 (((-521) $ $) NIL)) (-2406 (((-108) $) NIL)) (-4163 (((-707) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (((-707) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2404 (($ $) 17)) (-2189 (((-792) $) NIL (|has| |#1| (-561 (-792))))) (-3098 (((-587 $) $) NIL)) (-2294 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-1324 (($ (-587 |#1|)) 12)) (-3049 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-1531 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3475 (((-707) $) NIL (|has| $ (-6 -4233)))))
+(((-122 |#1|) (-13 (-121 |#1|) (-10 -8 (-6 -4234) (-15 -1324 ($ (-587 |#1|))) (-15 -3373 ($ |#1| $)))) (-784)) (T -122))
+((-1324 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-784)) (-5 *1 (-122 *3)))) (-3373 (*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-784)))))
+(-13 (-121 |#1|) (-10 -8 (-6 -4234) (-15 -1324 ($ (-587 |#1|))) (-15 -3373 ($ |#1| $))))
+((-1415 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3430 ((|#1| $) 24)) (-2978 (((-108) $ (-707)) NIL)) (-2300 ((|#1| $ |#1|) 26 (|has| $ (-6 -4234)))) (-1838 (($ $ $) 30 (|has| $ (-6 -4234)))) (-4007 (($ $ $) 28 (|has| $ (-6 -4234)))) (-2378 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4234))) (($ $ "left" $) NIL (|has| $ (-6 -4234))) (($ $ "right" $) NIL (|has| $ (-6 -4234)))) (-2675 (($ $ (-587 $)) NIL (|has| $ (-6 -4234)))) (-2547 (($) NIL T CONST)) (-1925 (($ $) 20)) (-3831 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-3186 (((-587 $) $) NIL)) (-3651 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3033 (($ $ |#1| $) 15)) (-2139 (((-108) $ (-707)) NIL)) (-3757 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-2221 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-3833 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#1| |#1|) $) NIL)) (-3574 (((-108) $ (-707)) NIL)) (-1913 (($ $) 19)) (-1278 (((-587 |#1|) $) NIL)) (-2229 (((-108) $) 21)) (-3688 (((-1067) $) NIL (|has| |#1| (-1013)))) (-4147 (((-1031) $) NIL (|has| |#1| (-1013)))) (-1789 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 |#1|))) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-2488 (((-108) $ $) NIL)) (-3462 (((-108) $) 18)) (-4024 (($) 11)) (-2544 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2931 (((-521) $ $) NIL)) (-2406 (((-108) $) NIL)) (-4163 (((-707) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (((-707) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2404 (($ $) NIL)) (-2189 (((-792) $) NIL (|has| |#1| (-561 (-792))))) (-3098 (((-587 $) $) NIL)) (-2294 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3481 (($ |#1|) 17) (($ $ |#1| $) 16)) (-3049 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-1531 (((-108) $ $) 10 (|has| |#1| (-1013)))) (-3475 (((-707) $) NIL (|has| $ (-6 -4233)))))
+(((-123 |#1|) (-13 (-121 |#1|) (-10 -8 (-15 -3481 ($ |#1|)) (-15 -3481 ($ $ |#1| $)))) (-1013)) (T -123))
+((-3481 (*1 *1 *2) (-12 (-5 *1 (-123 *2)) (-4 *2 (-1013)))) (-3481 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-123 *2)) (-4 *2 (-1013)))))
+(-13 (-121 |#1|) (-10 -8 (-15 -3481 ($ |#1|)) (-15 -3481 ($ $ |#1| $))))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-1232 (((-3 $ "failed") $ $) 19)) (-2547 (($) 17 T CONST)) (-3688 (((-1067) $) 9)) (-4147 (((-1031) $) 10)) (-2189 (((-792) $) 11)) (-3561 (($) 18 T CONST)) (-1531 (((-108) $ $) 6)) (-1602 (($ $ $) 14)) (* (($ (-850) $) 13) (($ (-707) $) 15)))
+(((-124) (-1196)) (T -124))
+((-1232 (*1 *1 *1 *1) (|partial| -4 *1 (-124))))
+(-13 (-23) (-10 -8 (-15 -1232 ((-3 $ "failed") $ $))))
+(((-23) . T) ((-25) . T) ((-97) . T) ((-561 (-792)) . T) ((-1013) . T))
+((-1415 (((-108) $ $) 7)) (-3380 (((-1170) $ (-707)) 19)) (-3233 (((-707) $) 20)) (-2810 (($ $ $) 13)) (-2446 (($ $ $) 14)) (-3688 (((-1067) $) 9)) (-4147 (((-1031) $) 10)) (-2189 (((-792) $) 11)) (-1574 (((-108) $ $) 16)) (-1558 (((-108) $ $) 17)) (-1531 (((-108) $ $) 6)) (-1566 (((-108) $ $) 15)) (-1549 (((-108) $ $) 18)))
+(((-125) (-1196)) (T -125))
+((-3233 (*1 *2 *1) (-12 (-4 *1 (-125)) (-5 *2 (-707)))) (-3380 (*1 *2 *1 *3) (-12 (-4 *1 (-125)) (-5 *3 (-707)) (-5 *2 (-1170)))))
+(-13 (-784) (-10 -8 (-15 -3233 ((-707) $)) (-15 -3380 ((-1170) $ (-707)))))
+(((-97) . T) ((-561 (-792)) . T) ((-784) . T) ((-1013) . T))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-2547 (($) NIL T CONST)) (-1297 (((-3 (-707) "failed") $) 38)) (-1483 (((-707) $) 36)) (-1257 (((-3 $ "failed") $) NIL)) (-3996 (((-108) $) NIL)) (-2810 (($ $ $) NIL)) (-2446 (($ $ $) 26)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-4112 (((-108)) 39)) (-1400 (((-108) (-108)) 41)) (-2986 (((-108) $) 23)) (-2613 (((-108) $) 35)) (-2189 (((-792) $) 22) (($ (-707)) 14)) (-3505 (($ $ (-707)) NIL) (($ $ (-850)) NIL)) (-3561 (($) 12 T CONST)) (-3572 (($) 11 T CONST)) (-2919 (($ (-707)) 15)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) 24)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 25)) (-1612 (((-3 $ "failed") $ $) 29)) (-1602 (($ $ $) 27)) (** (($ $ (-707)) NIL) (($ $ (-850)) NIL) (($ $ $) 34)) (* (($ (-707) $) 32) (($ (-850) $) NIL) (($ $ $) 30)))
+(((-126) (-13 (-784) (-23) (-663) (-961 (-707)) (-10 -8 (-6 (-4235 "*")) (-15 -1612 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2919 ($ (-707))) (-15 -2986 ((-108) $)) (-15 -2613 ((-108) $)) (-15 -4112 ((-108))) (-15 -1400 ((-108) (-108)))))) (T -126))
+((-1612 (*1 *1 *1 *1) (|partial| -5 *1 (-126))) (** (*1 *1 *1 *1) (-5 *1 (-126))) (-2919 (*1 *1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-126)))) (-2986 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-126)))) (-2613 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-126)))) (-4112 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-126)))) (-1400 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-126)))))
+(-13 (-784) (-23) (-663) (-961 (-707)) (-10 -8 (-6 (-4235 "*")) (-15 -1612 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2919 ($ (-707))) (-15 -2986 ((-108) $)) (-15 -2613 ((-108) $)) (-15 -4112 ((-108))) (-15 -1400 ((-108) (-108)))))
+((-3128 (((-128 |#1| |#2| |#4|) (-587 |#4|) (-128 |#1| |#2| |#3|)) 14)) (-1390 (((-128 |#1| |#2| |#4|) (-1 |#4| |#3|) (-128 |#1| |#2| |#3|)) 18)))
+(((-127 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3128 ((-128 |#1| |#2| |#4|) (-587 |#4|) (-128 |#1| |#2| |#3|))) (-15 -1390 ((-128 |#1| |#2| |#4|) (-1 |#4| |#3|) (-128 |#1| |#2| |#3|)))) (-521) (-707) (-157) (-157)) (T -127))
+((-1390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-128 *5 *6 *7)) (-14 *5 (-521)) (-14 *6 (-707)) (-4 *7 (-157)) (-4 *8 (-157)) (-5 *2 (-128 *5 *6 *8)) (-5 *1 (-127 *5 *6 *7 *8)))) (-3128 (*1 *2 *3 *4) (-12 (-5 *3 (-587 *8)) (-5 *4 (-128 *5 *6 *7)) (-14 *5 (-521)) (-14 *6 (-707)) (-4 *7 (-157)) (-4 *8 (-157)) (-5 *2 (-128 *5 *6 *8)) (-5 *1 (-127 *5 *6 *7 *8)))))
+(-10 -7 (-15 -3128 ((-128 |#1| |#2| |#4|) (-587 |#4|) (-128 |#1| |#2| |#3|))) (-15 -1390 ((-128 |#1| |#2| |#4|) (-1 |#4| |#3|) (-128 |#1| |#2| |#3|))))
+((-1415 (((-108) $ $) NIL)) (-2849 (($ (-587 |#3|)) 39)) (-1304 (($ $) 98) (($ $ (-521) (-521)) 97)) (-2547 (($) 17)) (-1297 (((-3 |#3| "failed") $) 59)) (-1483 ((|#3| $) NIL)) (-2295 (($ $ (-587 (-521))) 99)) (-3117 (((-587 |#3|) $) 35)) (-3162 (((-707) $) 43)) (-2339 (($ $ $) 92)) (-3851 (($) 42)) (-3688 (((-1067) $) NIL)) (-2418 (($) 16)) (-4147 (((-1031) $) NIL)) (-2544 ((|#3| $) 45) ((|#3| $ (-521)) 46) ((|#3| $ (-521) (-521)) 47) ((|#3| $ (-521) (-521) (-521)) 48) ((|#3| $ (-521) (-521) (-521) (-521)) 49) ((|#3| $ (-587 (-521))) 51)) (-1994 (((-707) $) 44)) (-1420 (($ $ (-521) $ (-521)) 93) (($ $ (-521) (-521)) 95)) (-2189 (((-792) $) 66) (($ |#3|) 67) (($ (-217 |#2| |#3|)) 74) (($ (-1051 |#2| |#3|)) 77) (($ (-587 |#3|)) 52) (($ (-587 $)) 57)) (-3561 (($) 68 T CONST)) (-3572 (($) 69 T CONST)) (-1531 (((-108) $ $) 79)) (-1612 (($ $) 85) (($ $ $) 83)) (-1602 (($ $ $) 81)) (* (($ |#3| $) 90) (($ $ |#3|) 91) (($ $ (-521)) 88) (($ (-521) $) 87) (($ $ $) 94)))
+(((-128 |#1| |#2| |#3|) (-13 (-438 |#3| (-707)) (-443 (-521) (-707)) (-10 -8 (-15 -2189 ($ (-217 |#2| |#3|))) (-15 -2189 ($ (-1051 |#2| |#3|))) (-15 -2189 ($ (-587 |#3|))) (-15 -2189 ($ (-587 $))) (-15 -3162 ((-707) $)) (-15 -2544 (|#3| $)) (-15 -2544 (|#3| $ (-521))) (-15 -2544 (|#3| $ (-521) (-521))) (-15 -2544 (|#3| $ (-521) (-521) (-521))) (-15 -2544 (|#3| $ (-521) (-521) (-521) (-521))) (-15 -2544 (|#3| $ (-587 (-521)))) (-15 -2339 ($ $ $)) (-15 * ($ $ $)) (-15 -1420 ($ $ (-521) $ (-521))) (-15 -1420 ($ $ (-521) (-521))) (-15 -1304 ($ $)) (-15 -1304 ($ $ (-521) (-521))) (-15 -2295 ($ $ (-587 (-521)))) (-15 -2418 ($)) (-15 -3851 ($)) (-15 -3117 ((-587 |#3|) $)) (-15 -2849 ($ (-587 |#3|))) (-15 -2547 ($)))) (-521) (-707) (-157)) (T -128))
+((-2339 (*1 *1 *1 *1) (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-521)) (-14 *3 (-707)) (-4 *4 (-157)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-217 *4 *5)) (-14 *4 (-707)) (-4 *5 (-157)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-521)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-1051 *4 *5)) (-14 *4 (-707)) (-4 *5 (-157)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-521)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-587 *5)) (-4 *5 (-157)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-521)) (-14 *4 (-707)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-587 (-128 *3 *4 *5))) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-521)) (-14 *4 (-707)) (-4 *5 (-157)))) (-3162 (*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-521)) (-14 *4 *2) (-4 *5 (-157)))) (-2544 (*1 *2 *1) (-12 (-4 *2 (-157)) (-5 *1 (-128 *3 *4 *2)) (-14 *3 (-521)) (-14 *4 (-707)))) (-2544 (*1 *2 *1 *3) (-12 (-5 *3 (-521)) (-4 *2 (-157)) (-5 *1 (-128 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-707)))) (-2544 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-521)) (-4 *2 (-157)) (-5 *1 (-128 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-707)))) (-2544 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-521)) (-4 *2 (-157)) (-5 *1 (-128 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-707)))) (-2544 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-521)) (-4 *2 (-157)) (-5 *1 (-128 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-707)))) (-2544 (*1 *2 *1 *3) (-12 (-5 *3 (-587 (-521))) (-4 *2 (-157)) (-5 *1 (-128 *4 *5 *2)) (-14 *4 (-521)) (-14 *5 (-707)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-521)) (-14 *3 (-707)) (-4 *4 (-157)))) (-1420 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-707)) (-4 *5 (-157)))) (-1420 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-707)) (-4 *5 (-157)))) (-1304 (*1 *1 *1) (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-521)) (-14 *3 (-707)) (-4 *4 (-157)))) (-1304 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-707)) (-4 *5 (-157)))) (-2295 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-521))) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-521)) (-14 *4 (-707)) (-4 *5 (-157)))) (-2418 (*1 *1) (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-521)) (-14 *3 (-707)) (-4 *4 (-157)))) (-3851 (*1 *1) (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-521)) (-14 *3 (-707)) (-4 *4 (-157)))) (-3117 (*1 *2 *1) (-12 (-5 *2 (-587 *5)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-521)) (-14 *4 (-707)) (-4 *5 (-157)))) (-2849 (*1 *1 *2) (-12 (-5 *2 (-587 *5)) (-4 *5 (-157)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-521)) (-14 *4 (-707)))) (-2547 (*1 *1) (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-521)) (-14 *3 (-707)) (-4 *4 (-157)))))
+(-13 (-438 |#3| (-707)) (-443 (-521) (-707)) (-10 -8 (-15 -2189 ($ (-217 |#2| |#3|))) (-15 -2189 ($ (-1051 |#2| |#3|))) (-15 -2189 ($ (-587 |#3|))) (-15 -2189 ($ (-587 $))) (-15 -3162 ((-707) $)) (-15 -2544 (|#3| $)) (-15 -2544 (|#3| $ (-521))) (-15 -2544 (|#3| $ (-521) (-521))) (-15 -2544 (|#3| $ (-521) (-521) (-521))) (-15 -2544 (|#3| $ (-521) (-521) (-521) (-521))) (-15 -2544 (|#3| $ (-587 (-521)))) (-15 -2339 ($ $ $)) (-15 * ($ $ $)) (-15 -1420 ($ $ (-521) $ (-521))) (-15 -1420 ($ $ (-521) (-521))) (-15 -1304 ($ $)) (-15 -1304 ($ $ (-521) (-521))) (-15 -2295 ($ $ (-587 (-521)))) (-15 -2418 ($)) (-15 -3851 ($)) (-15 -3117 ((-587 |#3|) $)) (-15 -2849 ($ (-587 |#3|))) (-15 -2547 ($))))
+((-1415 (((-108) $ $) NIL)) (-3307 (($) 15 T CONST)) (-1609 (($) NIL (|has| (-132) (-342)))) (-2269 (($ $ $) 17) (($ $ (-132)) NIL) (($ (-132) $) NIL)) (-1953 (($ $ $) NIL)) (-2976 (((-108) $ $) NIL)) (-2978 (((-108) $ (-707)) NIL)) (-1630 (((-707)) NIL (|has| (-132) (-342)))) (-1764 (($) NIL) (($ (-587 (-132))) NIL)) (-4098 (($ (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4233)))) (-1628 (($ (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4233)))) (-2547 (($) NIL T CONST)) (-2332 (($ $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-132) (-1013))))) (-3023 (($ (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4233))) (($ (-132) $) 51 (|has| $ (-6 -4233)))) (-1422 (($ (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4233))) (($ (-132) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-132) (-1013))))) (-3859 (((-132) (-1 (-132) (-132) (-132)) $) NIL (|has| $ (-6 -4233))) (((-132) (-1 (-132) (-132) (-132)) $ (-132)) NIL (|has| $ (-6 -4233))) (((-132) (-1 (-132) (-132) (-132)) $ (-132) (-132)) NIL (-12 (|has| $ (-6 -4233)) (|has| (-132) (-1013))))) (-3250 (($) NIL (|has| (-132) (-342)))) (-3831 (((-587 (-132)) $) 60 (|has| $ (-6 -4233)))) (-2139 (((-108) $ (-707)) NIL)) (-2810 (((-132) $) NIL (|has| (-132) (-784)))) (-3757 (((-587 (-132)) $) NIL (|has| $ (-6 -4233)))) (-2221 (((-108) (-132) $) 26 (-12 (|has| $ (-6 -4233)) (|has| (-132) (-1013))))) (-2446 (((-132) $) NIL (|has| (-132) (-784)))) (-3833 (($ (-1 (-132) (-132)) $) 59 (|has| $ (-6 -4234)))) (-1390 (($ (-1 (-132) (-132)) $) 55)) (-3402 (($) 16 T CONST)) (-2715 (((-850) $) NIL (|has| (-132) (-342)))) (-3574 (((-108) $ (-707)) NIL)) (-3688 (((-1067) $) NIL)) (-1660 (($ $ $) 29)) (-2511 (((-132) $) 52)) (-3373 (($ (-132) $) 50)) (-2716 (($ (-850)) NIL (|has| (-132) (-342)))) (-2741 (($) 14 T CONST)) (-4147 (((-1031) $) NIL)) (-3620 (((-3 (-132) "failed") (-1 (-108) (-132)) $) NIL)) (-2166 (((-132) $) 53)) (-1789 (((-108) (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-132)) (-587 (-132))) NIL (-12 (|has| (-132) (-284 (-132))) (|has| (-132) (-1013)))) (($ $ (-132) (-132)) NIL (-12 (|has| (-132) (-284 (-132))) (|has| (-132) (-1013)))) (($ $ (-269 (-132))) NIL (-12 (|has| (-132) (-284 (-132))) (|has| (-132) (-1013)))) (($ $ (-587 (-269 (-132)))) NIL (-12 (|has| (-132) (-284 (-132))) (|has| (-132) (-1013))))) (-2488 (((-108) $ $) NIL)) (-3462 (((-108) $) NIL)) (-4024 (($) 48)) (-2149 (($) 13 T CONST)) (-3130 (($ $ $) 31) (($ $ (-132)) NIL)) (-1784 (($ (-587 (-132))) NIL) (($) NIL)) (-4163 (((-707) (-132) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-132) (-1013)))) (((-707) (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4233)))) (-2404 (($ $) NIL)) (-1430 (((-1067) $) 36) (((-497) $) NIL (|has| (-132) (-562 (-497)))) (((-587 (-132)) $) 34)) (-2201 (($ (-587 (-132))) NIL)) (-3060 (($ $) 32 (|has| (-132) (-342)))) (-2189 (((-792) $) 46)) (-2257 (($ (-1067)) 12) (($ (-587 (-132))) 43)) (-1282 (((-707) $) NIL)) (-3387 (($) 49) (($ (-587 (-132))) NIL)) (-4091 (($ (-587 (-132))) NIL)) (-3049 (((-108) (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4233)))) (-3699 (($) 19 T CONST)) (-1247 (($) 18 T CONST)) (-1531 (((-108) $ $) 22)) (-1549 (((-108) $ $) NIL)) (-3475 (((-707) $) 47 (|has| $ (-6 -4233)))))
+(((-129) (-13 (-1013) (-562 (-1067)) (-399 (-132)) (-562 (-587 (-132))) (-10 -8 (-15 -2257 ($ (-1067))) (-15 -2257 ($ (-587 (-132)))) (-15 -2149 ($) -2676) (-15 -2741 ($) -2676) (-15 -3307 ($) -2676) (-15 -3402 ($) -2676) (-15 -1247 ($) -2676) (-15 -3699 ($) -2676)))) (T -129))
+((-2257 (*1 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-129)))) (-2257 (*1 *1 *2) (-12 (-5 *2 (-587 (-132))) (-5 *1 (-129)))) (-2149 (*1 *1) (-5 *1 (-129))) (-2741 (*1 *1) (-5 *1 (-129))) (-3307 (*1 *1) (-5 *1 (-129))) (-3402 (*1 *1) (-5 *1 (-129))) (-1247 (*1 *1) (-5 *1 (-129))) (-3699 (*1 *1) (-5 *1 (-129))))
+(-13 (-1013) (-562 (-1067)) (-399 (-132)) (-562 (-587 (-132))) (-10 -8 (-15 -2257 ($ (-1067))) (-15 -2257 ($ (-587 (-132)))) (-15 -2149 ($) -2676) (-15 -2741 ($) -2676) (-15 -3307 ($) -2676) (-15 -3402 ($) -2676) (-15 -1247 ($) -2676) (-15 -3699 ($) -2676)))
+((-2338 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-1452 ((|#1| |#3|) 9)) (-2673 ((|#3| |#3|) 15)))
+(((-130 |#1| |#2| |#3|) (-10 -7 (-15 -1452 (|#1| |#3|)) (-15 -2673 (|#3| |#3|)) (-15 -2338 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-513) (-918 |#1|) (-347 |#2|)) (T -130))
+((-2338 (*1 *2 *3) (-12 (-4 *4 (-513)) (-4 *5 (-918 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-130 *4 *5 *3)) (-4 *3 (-347 *5)))) (-2673 (*1 *2 *2) (-12 (-4 *3 (-513)) (-4 *4 (-918 *3)) (-5 *1 (-130 *3 *4 *2)) (-4 *2 (-347 *4)))) (-1452 (*1 *2 *3) (-12 (-4 *4 (-918 *2)) (-4 *2 (-513)) (-5 *1 (-130 *2 *4 *3)) (-4 *3 (-347 *4)))))
+(-10 -7 (-15 -1452 (|#1| |#3|)) (-15 -2673 (|#3| |#3|)) (-15 -2338 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
+((-3189 (($ $ $) 8)) (-3210 (($ $) 7)) (-2712 (($ $ $) 6)))
+(((-131) (-1196)) (T -131))
+((-3189 (*1 *1 *1 *1) (-4 *1 (-131))) (-3210 (*1 *1 *1) (-4 *1 (-131))) (-2712 (*1 *1 *1 *1) (-4 *1 (-131))))
+(-13 (-10 -8 (-15 -2712 ($ $ $)) (-15 -3210 ($ $)) (-15 -3189 ($ $ $))))
+((-1415 (((-108) $ $) NIL)) (-2875 (((-108) $) 38)) (-3307 (($ $) 50)) (-3338 (($) 25)) (-1630 (((-707)) 16)) (-3250 (($) 24)) (-3720 (($) 26)) (-3790 (((-521) $) 21)) (-2810 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-3864 (((-108) $) 40)) (-3402 (($ $) 51)) (-2715 (((-850) $) 22)) (-3688 (((-1067) $) 46)) (-2716 (($ (-850)) 20)) (-1909 (((-108) $) 36)) (-4147 (((-1031) $) NIL)) (-2786 (($) 27)) (-3585 (((-108) $) 34)) (-2189 (((-792) $) 29)) (-3502 (($ (-521)) 18) (($ (-1067)) 49)) (-2993 (((-108) $) 44)) (-3272 (((-108) $) 42)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) 13)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 14)))
+(((-132) (-13 (-778) (-10 -8 (-15 -3790 ((-521) $)) (-15 -3502 ($ (-521))) (-15 -3502 ($ (-1067))) (-15 -3338 ($)) (-15 -3720 ($)) (-15 -2786 ($)) (-15 -3307 ($ $)) (-15 -3402 ($ $)) (-15 -3585 ((-108) $)) (-15 -1909 ((-108) $)) (-15 -3272 ((-108) $)) (-15 -2875 ((-108) $)) (-15 -3864 ((-108) $)) (-15 -2993 ((-108) $))))) (T -132))
+((-3790 (*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-132)))) (-3502 (*1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-132)))) (-3502 (*1 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-132)))) (-3338 (*1 *1) (-5 *1 (-132))) (-3720 (*1 *1) (-5 *1 (-132))) (-2786 (*1 *1) (-5 *1 (-132))) (-3307 (*1 *1 *1) (-5 *1 (-132))) (-3402 (*1 *1 *1) (-5 *1 (-132))) (-3585 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-132)))) (-1909 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-132)))) (-3272 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-132)))) (-2875 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-132)))) (-3864 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-132)))) (-2993 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-132)))))
+(-13 (-778) (-10 -8 (-15 -3790 ((-521) $)) (-15 -3502 ($ (-521))) (-15 -3502 ($ (-1067))) (-15 -3338 ($)) (-15 -3720 ($)) (-15 -2786 ($)) (-15 -3307 ($ $)) (-15 -3402 ($ $)) (-15 -3585 ((-108) $)) (-15 -1909 ((-108) $)) (-15 -3272 ((-108) $)) (-15 -2875 ((-108) $)) (-15 -3864 ((-108) $)) (-15 -2993 ((-108) $))))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-1232 (((-3 $ "failed") $ $) 19)) (-2547 (($) 17 T CONST)) (-1257 (((-3 $ "failed") $) 34)) (-3996 (((-108) $) 31)) (-3688 (((-1067) $) 9)) (-4147 (((-1031) $) 10)) (-2189 (((-792) $) 11) (($ (-521)) 28)) (-1671 (((-3 $ "failed") $) 35)) (-3846 (((-707)) 29)) (-3505 (($ $ (-850)) 26) (($ $ (-707)) 33)) (-3561 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-707)) 32)) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24)))
+(((-133) (-1196)) (T -133))
+((-1671 (*1 *1 *1) (|partial| -4 *1 (-133))))
+(-13 (-970) (-10 -8 (-15 -1671 ((-3 $ "failed") $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-561 (-792)) . T) ((-589 $) . T) ((-663) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T))
+((-3110 ((|#1| (-627 |#1|) |#1|) 17)))
+(((-134 |#1|) (-10 -7 (-15 -3110 (|#1| (-627 |#1|) |#1|))) (-157)) (T -134))
+((-3110 (*1 *2 *3 *2) (-12 (-5 *3 (-627 *2)) (-4 *2 (-157)) (-5 *1 (-134 *2)))))
+(-10 -7 (-15 -3110 (|#1| (-627 |#1|) |#1|)))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-1232 (((-3 $ "failed") $ $) 19)) (-2547 (($) 17 T CONST)) (-1257 (((-3 $ "failed") $) 34)) (-3996 (((-108) $) 31)) (-3688 (((-1067) $) 9)) (-4147 (((-1031) $) 10)) (-2189 (((-792) $) 11) (($ (-521)) 28)) (-3846 (((-707)) 29)) (-3505 (($ $ (-850)) 26) (($ $ (-707)) 33)) (-3561 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-707)) 32)) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24)))
+(((-135) (-1196)) (T -135))
+NIL
+(-13 (-970))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-561 (-792)) . T) ((-589 $) . T) ((-663) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T))
+((-1593 (((-2 (|:| -2997 (-707)) (|:| -2973 (-381 |#2|)) (|:| |radicand| |#2|)) (-381 |#2|) (-707)) 70)) (-2016 (((-3 (-2 (|:| |radicand| (-381 |#2|)) (|:| |deg| (-707))) "failed") |#3|) 52)) (-2754 (((-2 (|:| -2973 (-381 |#2|)) (|:| |poly| |#3|)) |#3|) 37)) (-4075 ((|#1| |#3| |#3|) 40)) (-2288 ((|#3| |#3| (-381 |#2|) (-381 |#2|)) 19)) (-3486 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-381 |#2|)) (|:| |c2| (-381 |#2|)) (|:| |deg| (-707))) |#3| |#3|) 49)))
+(((-136 |#1| |#2| |#3|) (-10 -7 (-15 -2754 ((-2 (|:| -2973 (-381 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2016 ((-3 (-2 (|:| |radicand| (-381 |#2|)) (|:| |deg| (-707))) "failed") |#3|)) (-15 -1593 ((-2 (|:| -2997 (-707)) (|:| -2973 (-381 |#2|)) (|:| |radicand| |#2|)) (-381 |#2|) (-707))) (-15 -4075 (|#1| |#3| |#3|)) (-15 -2288 (|#3| |#3| (-381 |#2|) (-381 |#2|))) (-15 -3486 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-381 |#2|)) (|:| |c2| (-381 |#2|)) (|:| |deg| (-707))) |#3| |#3|))) (-1123) (-1141 |#1|) (-1141 (-381 |#2|))) (T -136))
+((-3486 (*1 *2 *3 *3) (-12 (-4 *4 (-1123)) (-4 *5 (-1141 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-381 *5)) (|:| |c2| (-381 *5)) (|:| |deg| (-707)))) (-5 *1 (-136 *4 *5 *3)) (-4 *3 (-1141 (-381 *5))))) (-2288 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-381 *5)) (-4 *4 (-1123)) (-4 *5 (-1141 *4)) (-5 *1 (-136 *4 *5 *2)) (-4 *2 (-1141 *3)))) (-4075 (*1 *2 *3 *3) (-12 (-4 *4 (-1141 *2)) (-4 *2 (-1123)) (-5 *1 (-136 *2 *4 *3)) (-4 *3 (-1141 (-381 *4))))) (-1593 (*1 *2 *3 *4) (-12 (-5 *3 (-381 *6)) (-4 *5 (-1123)) (-4 *6 (-1141 *5)) (-5 *2 (-2 (|:| -2997 (-707)) (|:| -2973 *3) (|:| |radicand| *6))) (-5 *1 (-136 *5 *6 *7)) (-5 *4 (-707)) (-4 *7 (-1141 *3)))) (-2016 (*1 *2 *3) (|partial| -12 (-4 *4 (-1123)) (-4 *5 (-1141 *4)) (-5 *2 (-2 (|:| |radicand| (-381 *5)) (|:| |deg| (-707)))) (-5 *1 (-136 *4 *5 *3)) (-4 *3 (-1141 (-381 *5))))) (-2754 (*1 *2 *3) (-12 (-4 *4 (-1123)) (-4 *5 (-1141 *4)) (-5 *2 (-2 (|:| -2973 (-381 *5)) (|:| |poly| *3))) (-5 *1 (-136 *4 *5 *3)) (-4 *3 (-1141 (-381 *5))))))
+(-10 -7 (-15 -2754 ((-2 (|:| -2973 (-381 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2016 ((-3 (-2 (|:| |radicand| (-381 |#2|)) (|:| |deg| (-707))) "failed") |#3|)) (-15 -1593 ((-2 (|:| -2997 (-707)) (|:| -2973 (-381 |#2|)) (|:| |radicand| |#2|)) (-381 |#2|) (-707))) (-15 -4075 (|#1| |#3| |#3|)) (-15 -2288 (|#3| |#3| (-381 |#2|) (-381 |#2|))) (-15 -3486 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-381 |#2|)) (|:| |c2| (-381 |#2|)) (|:| |deg| (-707))) |#3| |#3|)))
+((-2569 (((-3 (-587 (-1080 |#2|)) "failed") (-587 (-1080 |#2|)) (-1080 |#2|)) 32)))
+(((-137 |#1| |#2|) (-10 -7 (-15 -2569 ((-3 (-587 (-1080 |#2|)) "failed") (-587 (-1080 |#2|)) (-1080 |#2|)))) (-506) (-151 |#1|)) (T -137))
+((-2569 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-587 (-1080 *5))) (-5 *3 (-1080 *5)) (-4 *5 (-151 *4)) (-4 *4 (-506)) (-5 *1 (-137 *4 *5)))))
+(-10 -7 (-15 -2569 ((-3 (-587 (-1080 |#2|)) "failed") (-587 (-1080 |#2|)) (-1080 |#2|))))
+((-1628 (($ (-1 (-108) |#2|) $) 29)) (-2332 (($ $) 36)) (-1422 (($ (-1 (-108) |#2|) $) 27) (($ |#2| $) 32)) (-3859 ((|#2| (-1 |#2| |#2| |#2|) $) 22) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 24) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 34)) (-3620 (((-3 |#2| "failed") (-1 (-108) |#2|) $) 19)) (-1789 (((-108) (-1 (-108) |#2|) $) 16)) (-4163 (((-707) (-1 (-108) |#2|) $) 13) (((-707) |#2| $) NIL)) (-3049 (((-108) (-1 (-108) |#2|) $) 15)) (-3475 (((-707) $) 11)))
+(((-138 |#1| |#2|) (-10 -8 (-15 -2332 (|#1| |#1|)) (-15 -1422 (|#1| |#2| |#1|)) (-15 -3859 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1628 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -1422 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3859 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3859 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3620 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -4163 ((-707) |#2| |#1|)) (-15 -4163 ((-707) (-1 (-108) |#2|) |#1|)) (-15 -1789 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3049 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3475 ((-707) |#1|))) (-139 |#2|) (-1119)) (T -138))
+NIL
+(-10 -8 (-15 -2332 (|#1| |#1|)) (-15 -1422 (|#1| |#2| |#1|)) (-15 -3859 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1628 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -1422 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3859 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3859 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3620 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -4163 ((-707) |#2| |#1|)) (-15 -4163 ((-707) (-1 (-108) |#2|) |#1|)) (-15 -1789 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3049 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3475 ((-707) |#1|)))
+((-1415 (((-108) $ $) 19 (|has| |#1| (-1013)))) (-2978 (((-108) $ (-707)) 8)) (-1628 (($ (-1 (-108) |#1|) $) 44 (|has| $ (-6 -4233)))) (-2547 (($) 7 T CONST)) (-2332 (($ $) 41 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-1422 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4233))) (($ |#1| $) 42 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-3859 ((|#1| (-1 |#1| |#1| |#1|) $) 47 (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 46 (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-3831 (((-587 |#1|) $) 30 (|has| $ (-6 -4233)))) (-2139 (((-108) $ (-707)) 9)) (-3757 (((-587 |#1|) $) 29 (|has| $ (-6 -4233)))) (-2221 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-3833 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#1| |#1|) $) 35)) (-3574 (((-108) $ (-707)) 10)) (-3688 (((-1067) $) 22 (|has| |#1| (-1013)))) (-4147 (((-1031) $) 21 (|has| |#1| (-1013)))) (-3620 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 48)) (-1789 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 |#1|))) 26 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) 25 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) 23 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-2488 (((-108) $ $) 14)) (-3462 (((-108) $) 11)) (-4024 (($) 12)) (-4163 (((-707) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4233))) (((-707) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-2404 (($ $) 13)) (-1430 (((-497) $) 40 (|has| |#1| (-562 (-497))))) (-2201 (($ (-587 |#1|)) 49)) (-2189 (((-792) $) 18 (|has| |#1| (-561 (-792))))) (-3049 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4233)))) (-1531 (((-108) $ $) 20 (|has| |#1| (-1013)))) (-3475 (((-707) $) 6 (|has| $ (-6 -4233)))))
+(((-139 |#1|) (-1196) (-1119)) (T -139))
+((-2201 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1119)) (-4 *1 (-139 *3)))) (-3620 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-108) *2)) (-4 *1 (-139 *2)) (-4 *2 (-1119)))) (-3859 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4233)) (-4 *1 (-139 *2)) (-4 *2 (-1119)))) (-3859 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4233)) (-4 *1 (-139 *2)) (-4 *2 (-1119)))) (-1422 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4233)) (-4 *1 (-139 *3)) (-4 *3 (-1119)))) (-1628 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4233)) (-4 *1 (-139 *3)) (-4 *3 (-1119)))) (-3859 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1013)) (|has| *1 (-6 -4233)) (-4 *1 (-139 *2)) (-4 *2 (-1119)))) (-1422 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4233)) (-4 *1 (-139 *2)) (-4 *2 (-1119)) (-4 *2 (-1013)))) (-2332 (*1 *1 *1) (-12 (|has| *1 (-6 -4233)) (-4 *1 (-139 *2)) (-4 *2 (-1119)) (-4 *2 (-1013)))))
+(-13 (-460 |t#1|) (-10 -8 (-15 -2201 ($ (-587 |t#1|))) (-15 -3620 ((-3 |t#1| "failed") (-1 (-108) |t#1|) $)) (IF (|has| $ (-6 -4233)) (PROGN (-15 -3859 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -3859 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -1422 ($ (-1 (-108) |t#1|) $)) (-15 -1628 ($ (-1 (-108) |t#1|) $)) (IF (|has| |t#1| (-1013)) (PROGN (-15 -3859 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -1422 ($ |t#1| $)) (-15 -2332 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-562 (-497))) (-6 (-562 (-497))) |%noBranch|)))
+(((-33) . T) ((-97) |has| |#1| (-1013)) ((-561 (-792)) -3703 (|has| |#1| (-1013)) (|has| |#1| (-561 (-792)))) ((-562 (-497)) |has| |#1| (-562 (-497))) ((-284 |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-460 |#1|) . T) ((-482 |#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-1013) |has| |#1| (-1013)) ((-1119) . T))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-1232 (((-3 $ "failed") $ $) NIL)) (-2547 (($) NIL T CONST)) (-1257 (((-3 $ "failed") $) 86)) (-3996 (((-108) $) NIL)) (-4043 (($ |#2| (-587 (-850))) 57)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2963 (($ (-850)) 48)) (-2359 (((-126)) 23)) (-2189 (((-792) $) 69) (($ (-521)) 46) (($ |#2|) 47)) (-3800 ((|#2| $ (-587 (-850))) 59)) (-3846 (((-707)) 20)) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (-3561 (($) 40 T CONST)) (-3572 (($) 44 T CONST)) (-1531 (((-108) $ $) 26)) (-1620 (($ $ |#2|) NIL)) (-1612 (($ $) 34) (($ $ $) 32)) (-1602 (($ $ $) 30)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) 37) (($ $ $) 52) (($ |#2| $) 39) (($ $ |#2|) NIL)))
+(((-140 |#1| |#2| |#3|) (-13 (-970) (-37 |#2|) (-1172 |#2|) (-10 -8 (-15 -2963 ($ (-850))) (-15 -4043 ($ |#2| (-587 (-850)))) (-15 -3800 (|#2| $ (-587 (-850)))) (-15 -1257 ((-3 $ "failed") $)))) (-850) (-337) (-919 |#1| |#2|)) (T -140))
+((-1257 (*1 *1 *1) (|partial| -12 (-5 *1 (-140 *2 *3 *4)) (-14 *2 (-850)) (-4 *3 (-337)) (-14 *4 (-919 *2 *3)))) (-2963 (*1 *1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-140 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-337)) (-14 *5 (-919 *3 *4)))) (-4043 (*1 *1 *2 *3) (-12 (-5 *3 (-587 (-850))) (-5 *1 (-140 *4 *2 *5)) (-14 *4 (-850)) (-4 *2 (-337)) (-14 *5 (-919 *4 *2)))) (-3800 (*1 *2 *1 *3) (-12 (-5 *3 (-587 (-850))) (-4 *2 (-337)) (-5 *1 (-140 *4 *2 *5)) (-14 *4 (-850)) (-14 *5 (-919 *4 *2)))))
+(-13 (-970) (-37 |#2|) (-1172 |#2|) (-10 -8 (-15 -2963 ($ (-850))) (-15 -4043 ($ |#2| (-587 (-850)))) (-15 -3800 (|#2| $ (-587 (-850)))) (-15 -1257 ((-3 $ "failed") $))))
+((-1416 (((-2 (|:| |brans| (-587 (-587 (-872 (-202))))) (|:| |xValues| (-1008 (-202))) (|:| |yValues| (-1008 (-202)))) (-587 (-587 (-872 (-202)))) (-202) (-202) (-202) (-202)) 38)) (-2521 (((-2 (|:| |brans| (-587 (-587 (-872 (-202))))) (|:| |xValues| (-1008 (-202))) (|:| |yValues| (-1008 (-202)))) (-856) (-381 (-521)) (-381 (-521))) 63) (((-2 (|:| |brans| (-587 (-587 (-872 (-202))))) (|:| |xValues| (-1008 (-202))) (|:| |yValues| (-1008 (-202)))) (-856)) 64)) (-4194 (((-2 (|:| |brans| (-587 (-587 (-872 (-202))))) (|:| |xValues| (-1008 (-202))) (|:| |yValues| (-1008 (-202)))) (-587 (-587 (-872 (-202))))) 67) (((-2 (|:| |brans| (-587 (-587 (-872 (-202))))) (|:| |xValues| (-1008 (-202))) (|:| |yValues| (-1008 (-202)))) (-587 (-872 (-202)))) 66) (((-2 (|:| |brans| (-587 (-587 (-872 (-202))))) (|:| |xValues| (-1008 (-202))) (|:| |yValues| (-1008 (-202)))) (-856) (-381 (-521)) (-381 (-521))) 58) (((-2 (|:| |brans| (-587 (-587 (-872 (-202))))) (|:| |xValues| (-1008 (-202))) (|:| |yValues| (-1008 (-202)))) (-856)) 59)))
+(((-141) (-10 -7 (-15 -4194 ((-2 (|:| |brans| (-587 (-587 (-872 (-202))))) (|:| |xValues| (-1008 (-202))) (|:| |yValues| (-1008 (-202)))) (-856))) (-15 -4194 ((-2 (|:| |brans| (-587 (-587 (-872 (-202))))) (|:| |xValues| (-1008 (-202))) (|:| |yValues| (-1008 (-202)))) (-856) (-381 (-521)) (-381 (-521)))) (-15 -2521 ((-2 (|:| |brans| (-587 (-587 (-872 (-202))))) (|:| |xValues| (-1008 (-202))) (|:| |yValues| (-1008 (-202)))) (-856))) (-15 -2521 ((-2 (|:| |brans| (-587 (-587 (-872 (-202))))) (|:| |xValues| (-1008 (-202))) (|:| |yValues| (-1008 (-202)))) (-856) (-381 (-521)) (-381 (-521)))) (-15 -1416 ((-2 (|:| |brans| (-587 (-587 (-872 (-202))))) (|:| |xValues| (-1008 (-202))) (|:| |yValues| (-1008 (-202)))) (-587 (-587 (-872 (-202)))) (-202) (-202) (-202) (-202))) (-15 -4194 ((-2 (|:| |brans| (-587 (-587 (-872 (-202))))) (|:| |xValues| (-1008 (-202))) (|:| |yValues| (-1008 (-202)))) (-587 (-872 (-202))))) (-15 -4194 ((-2 (|:| |brans| (-587 (-587 (-872 (-202))))) (|:| |xValues| (-1008 (-202))) (|:| |yValues| (-1008 (-202)))) (-587 (-587 (-872 (-202)))))))) (T -141))
+((-4194 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-587 (-587 (-872 (-202))))) (|:| |xValues| (-1008 (-202))) (|:| |yValues| (-1008 (-202))))) (-5 *1 (-141)) (-5 *3 (-587 (-587 (-872 (-202))))))) (-4194 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-587 (-587 (-872 (-202))))) (|:| |xValues| (-1008 (-202))) (|:| |yValues| (-1008 (-202))))) (-5 *1 (-141)) (-5 *3 (-587 (-872 (-202)))))) (-1416 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-202)) (-5 *2 (-2 (|:| |brans| (-587 (-587 (-872 *4)))) (|:| |xValues| (-1008 *4)) (|:| |yValues| (-1008 *4)))) (-5 *1 (-141)) (-5 *3 (-587 (-587 (-872 *4)))))) (-2521 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-856)) (-5 *4 (-381 (-521))) (-5 *2 (-2 (|:| |brans| (-587 (-587 (-872 (-202))))) (|:| |xValues| (-1008 (-202))) (|:| |yValues| (-1008 (-202))))) (-5 *1 (-141)))) (-2521 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-2 (|:| |brans| (-587 (-587 (-872 (-202))))) (|:| |xValues| (-1008 (-202))) (|:| |yValues| (-1008 (-202))))) (-5 *1 (-141)))) (-4194 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-856)) (-5 *4 (-381 (-521))) (-5 *2 (-2 (|:| |brans| (-587 (-587 (-872 (-202))))) (|:| |xValues| (-1008 (-202))) (|:| |yValues| (-1008 (-202))))) (-5 *1 (-141)))) (-4194 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-2 (|:| |brans| (-587 (-587 (-872 (-202))))) (|:| |xValues| (-1008 (-202))) (|:| |yValues| (-1008 (-202))))) (-5 *1 (-141)))))
+(-10 -7 (-15 -4194 ((-2 (|:| |brans| (-587 (-587 (-872 (-202))))) (|:| |xValues| (-1008 (-202))) (|:| |yValues| (-1008 (-202)))) (-856))) (-15 -4194 ((-2 (|:| |brans| (-587 (-587 (-872 (-202))))) (|:| |xValues| (-1008 (-202))) (|:| |yValues| (-1008 (-202)))) (-856) (-381 (-521)) (-381 (-521)))) (-15 -2521 ((-2 (|:| |brans| (-587 (-587 (-872 (-202))))) (|:| |xValues| (-1008 (-202))) (|:| |yValues| (-1008 (-202)))) (-856))) (-15 -2521 ((-2 (|:| |brans| (-587 (-587 (-872 (-202))))) (|:| |xValues| (-1008 (-202))) (|:| |yValues| (-1008 (-202)))) (-856) (-381 (-521)) (-381 (-521)))) (-15 -1416 ((-2 (|:| |brans| (-587 (-587 (-872 (-202))))) (|:| |xValues| (-1008 (-202))) (|:| |yValues| (-1008 (-202)))) (-587 (-587 (-872 (-202)))) (-202) (-202) (-202) (-202))) (-15 -4194 ((-2 (|:| |brans| (-587 (-587 (-872 (-202))))) (|:| |xValues| (-1008 (-202))) (|:| |yValues| (-1008 (-202)))) (-587 (-872 (-202))))) (-15 -4194 ((-2 (|:| |brans| (-587 (-587 (-872 (-202))))) (|:| |xValues| (-1008 (-202))) (|:| |yValues| (-1008 (-202)))) (-587 (-587 (-872 (-202)))))))
+((-3332 (((-587 (-154 |#2|)) |#1| |#2|) 45)))
+(((-142 |#1| |#2|) (-10 -7 (-15 -3332 ((-587 (-154 |#2|)) |#1| |#2|))) (-1141 (-154 (-521))) (-13 (-337) (-782))) (T -142))
+((-3332 (*1 *2 *3 *4) (-12 (-5 *2 (-587 (-154 *4))) (-5 *1 (-142 *3 *4)) (-4 *3 (-1141 (-154 (-521)))) (-4 *4 (-13 (-337) (-782))))))
+(-10 -7 (-15 -3332 ((-587 (-154 |#2|)) |#1| |#2|)))
+((-1415 (((-108) $ $) NIL)) (-2577 (($) 16)) (-3149 (($) 15)) (-2491 (((-850)) 23)) (-3688 (((-1067) $) NIL)) (-1748 (((-521) $) 20)) (-4147 (((-1031) $) NIL)) (-2947 (($) 17)) (-3185 (($ (-521)) 24)) (-2189 (((-792) $) 30)) (-1640 (($) 18)) (-1531 (((-108) $ $) 14)) (-1602 (($ $ $) 13)) (* (($ (-850) $) 22) (($ (-202) $) 8)))
+(((-143) (-13 (-25) (-10 -8 (-15 * ($ (-850) $)) (-15 * ($ (-202) $)) (-15 -1602 ($ $ $)) (-15 -3149 ($)) (-15 -2577 ($)) (-15 -2947 ($)) (-15 -1640 ($)) (-15 -1748 ((-521) $)) (-15 -2491 ((-850))) (-15 -3185 ($ (-521)))))) (T -143))
+((-1602 (*1 *1 *1 *1) (-5 *1 (-143))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-850)) (-5 *1 (-143)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-202)) (-5 *1 (-143)))) (-3149 (*1 *1) (-5 *1 (-143))) (-2577 (*1 *1) (-5 *1 (-143))) (-2947 (*1 *1) (-5 *1 (-143))) (-1640 (*1 *1) (-5 *1 (-143))) (-1748 (*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-143)))) (-2491 (*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-143)))) (-3185 (*1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-143)))))
+(-13 (-25) (-10 -8 (-15 * ($ (-850) $)) (-15 * ($ (-202) $)) (-15 -1602 ($ $ $)) (-15 -3149 ($)) (-15 -2577 ($)) (-15 -2947 ($)) (-15 -1640 ($)) (-15 -1748 ((-521) $)) (-15 -2491 ((-850))) (-15 -3185 ($ (-521)))))
+((-3361 ((|#2| |#2| (-1006 |#2|)) 87) ((|#2| |#2| (-1084)) 67)) (-2339 ((|#2| |#2| (-1006 |#2|)) 86) ((|#2| |#2| (-1084)) 66)) (-3189 ((|#2| |#2| |#2|) 27)) (-2727 (((-110) (-110)) 97)) (-3892 ((|#2| (-587 |#2|)) 116)) (-3509 ((|#2| (-587 |#2|)) 134)) (-1504 ((|#2| (-587 |#2|)) 124)) (-2422 ((|#2| |#2|) 122)) (-1666 ((|#2| (-587 |#2|)) 109)) (-2120 ((|#2| (-587 |#2|)) 110)) (-3044 ((|#2| (-587 |#2|)) 132)) (-3013 ((|#2| |#2| (-1084)) 54) ((|#2| |#2|) 53)) (-3210 ((|#2| |#2|) 23)) (-2712 ((|#2| |#2| |#2|) 26)) (-1455 (((-108) (-110)) 47)) (** ((|#2| |#2| |#2|) 38)))
+(((-144 |#1| |#2|) (-10 -7 (-15 -1455 ((-108) (-110))) (-15 -2727 ((-110) (-110))) (-15 ** (|#2| |#2| |#2|)) (-15 -2712 (|#2| |#2| |#2|)) (-15 -3189 (|#2| |#2| |#2|)) (-15 -3210 (|#2| |#2|)) (-15 -3013 (|#2| |#2|)) (-15 -3013 (|#2| |#2| (-1084))) (-15 -3361 (|#2| |#2| (-1084))) (-15 -3361 (|#2| |#2| (-1006 |#2|))) (-15 -2339 (|#2| |#2| (-1084))) (-15 -2339 (|#2| |#2| (-1006 |#2|))) (-15 -2422 (|#2| |#2|)) (-15 -3044 (|#2| (-587 |#2|))) (-15 -1504 (|#2| (-587 |#2|))) (-15 -3509 (|#2| (-587 |#2|))) (-15 -1666 (|#2| (-587 |#2|))) (-15 -2120 (|#2| (-587 |#2|))) (-15 -3892 (|#2| (-587 |#2|)))) (-13 (-784) (-513)) (-404 |#1|)) (T -144))
+((-3892 (*1 *2 *3) (-12 (-5 *3 (-587 *2)) (-4 *2 (-404 *4)) (-5 *1 (-144 *4 *2)) (-4 *4 (-13 (-784) (-513))))) (-2120 (*1 *2 *3) (-12 (-5 *3 (-587 *2)) (-4 *2 (-404 *4)) (-5 *1 (-144 *4 *2)) (-4 *4 (-13 (-784) (-513))))) (-1666 (*1 *2 *3) (-12 (-5 *3 (-587 *2)) (-4 *2 (-404 *4)) (-5 *1 (-144 *4 *2)) (-4 *4 (-13 (-784) (-513))))) (-3509 (*1 *2 *3) (-12 (-5 *3 (-587 *2)) (-4 *2 (-404 *4)) (-5 *1 (-144 *4 *2)) (-4 *4 (-13 (-784) (-513))))) (-1504 (*1 *2 *3) (-12 (-5 *3 (-587 *2)) (-4 *2 (-404 *4)) (-5 *1 (-144 *4 *2)) (-4 *4 (-13 (-784) (-513))))) (-3044 (*1 *2 *3) (-12 (-5 *3 (-587 *2)) (-4 *2 (-404 *4)) (-5 *1 (-144 *4 *2)) (-4 *4 (-13 (-784) (-513))))) (-2422 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-144 *3 *2)) (-4 *2 (-404 *3)))) (-2339 (*1 *2 *2 *3) (-12 (-5 *3 (-1006 *2)) (-4 *2 (-404 *4)) (-4 *4 (-13 (-784) (-513))) (-5 *1 (-144 *4 *2)))) (-2339 (*1 *2 *2 *3) (-12 (-5 *3 (-1084)) (-4 *4 (-13 (-784) (-513))) (-5 *1 (-144 *4 *2)) (-4 *2 (-404 *4)))) (-3361 (*1 *2 *2 *3) (-12 (-5 *3 (-1006 *2)) (-4 *2 (-404 *4)) (-4 *4 (-13 (-784) (-513))) (-5 *1 (-144 *4 *2)))) (-3361 (*1 *2 *2 *3) (-12 (-5 *3 (-1084)) (-4 *4 (-13 (-784) (-513))) (-5 *1 (-144 *4 *2)) (-4 *2 (-404 *4)))) (-3013 (*1 *2 *2 *3) (-12 (-5 *3 (-1084)) (-4 *4 (-13 (-784) (-513))) (-5 *1 (-144 *4 *2)) (-4 *2 (-404 *4)))) (-3013 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-144 *3 *2)) (-4 *2 (-404 *3)))) (-3210 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-144 *3 *2)) (-4 *2 (-404 *3)))) (-3189 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-144 *3 *2)) (-4 *2 (-404 *3)))) (-2712 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-144 *3 *2)) (-4 *2 (-404 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-144 *3 *2)) (-4 *2 (-404 *3)))) (-2727 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *3 (-13 (-784) (-513))) (-5 *1 (-144 *3 *4)) (-4 *4 (-404 *3)))) (-1455 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *4 (-13 (-784) (-513))) (-5 *2 (-108)) (-5 *1 (-144 *4 *5)) (-4 *5 (-404 *4)))))
+(-10 -7 (-15 -1455 ((-108) (-110))) (-15 -2727 ((-110) (-110))) (-15 ** (|#2| |#2| |#2|)) (-15 -2712 (|#2| |#2| |#2|)) (-15 -3189 (|#2| |#2| |#2|)) (-15 -3210 (|#2| |#2|)) (-15 -3013 (|#2| |#2|)) (-15 -3013 (|#2| |#2| (-1084))) (-15 -3361 (|#2| |#2| (-1084))) (-15 -3361 (|#2| |#2| (-1006 |#2|))) (-15 -2339 (|#2| |#2| (-1084))) (-15 -2339 (|#2| |#2| (-1006 |#2|))) (-15 -2422 (|#2| |#2|)) (-15 -3044 (|#2| (-587 |#2|))) (-15 -1504 (|#2| (-587 |#2|))) (-15 -3509 (|#2| (-587 |#2|))) (-15 -1666 (|#2| (-587 |#2|))) (-15 -2120 (|#2| (-587 |#2|))) (-15 -3892 (|#2| (-587 |#2|))))
+((-2842 ((|#1| |#1| |#1|) 52)) (-3409 ((|#1| |#1| |#1|) 49)) (-3189 ((|#1| |#1| |#1|) 43)) (-1834 ((|#1| |#1|) 34)) (-4190 ((|#1| |#1| (-587 |#1|)) 42)) (-3210 ((|#1| |#1|) 36)) (-2712 ((|#1| |#1| |#1|) 39)))
+(((-145 |#1|) (-10 -7 (-15 -2712 (|#1| |#1| |#1|)) (-15 -3210 (|#1| |#1|)) (-15 -4190 (|#1| |#1| (-587 |#1|))) (-15 -1834 (|#1| |#1|)) (-15 -3189 (|#1| |#1| |#1|)) (-15 -3409 (|#1| |#1| |#1|)) (-15 -2842 (|#1| |#1| |#1|))) (-506)) (T -145))
+((-2842 (*1 *2 *2 *2) (-12 (-5 *1 (-145 *2)) (-4 *2 (-506)))) (-3409 (*1 *2 *2 *2) (-12 (-5 *1 (-145 *2)) (-4 *2 (-506)))) (-3189 (*1 *2 *2 *2) (-12 (-5 *1 (-145 *2)) (-4 *2 (-506)))) (-1834 (*1 *2 *2) (-12 (-5 *1 (-145 *2)) (-4 *2 (-506)))) (-4190 (*1 *2 *2 *3) (-12 (-5 *3 (-587 *2)) (-4 *2 (-506)) (-5 *1 (-145 *2)))) (-3210 (*1 *2 *2) (-12 (-5 *1 (-145 *2)) (-4 *2 (-506)))) (-2712 (*1 *2 *2 *2) (-12 (-5 *1 (-145 *2)) (-4 *2 (-506)))))
+(-10 -7 (-15 -2712 (|#1| |#1| |#1|)) (-15 -3210 (|#1| |#1|)) (-15 -4190 (|#1| |#1| (-587 |#1|))) (-15 -1834 (|#1| |#1|)) (-15 -3189 (|#1| |#1| |#1|)) (-15 -3409 (|#1| |#1| |#1|)) (-15 -2842 (|#1| |#1| |#1|)))
+((-3361 (($ $ (-1084)) 12) (($ $ (-1006 $)) 11)) (-2339 (($ $ (-1084)) 10) (($ $ (-1006 $)) 9)) (-3189 (($ $ $) 8)) (-3013 (($ $) 14) (($ $ (-1084)) 13)) (-3210 (($ $) 7)) (-2712 (($ $ $) 6)))
+(((-146) (-1196)) (T -146))
+((-3013 (*1 *1 *1) (-4 *1 (-146))) (-3013 (*1 *1 *1 *2) (-12 (-4 *1 (-146)) (-5 *2 (-1084)))) (-3361 (*1 *1 *1 *2) (-12 (-4 *1 (-146)) (-5 *2 (-1084)))) (-3361 (*1 *1 *1 *2) (-12 (-5 *2 (-1006 *1)) (-4 *1 (-146)))) (-2339 (*1 *1 *1 *2) (-12 (-4 *1 (-146)) (-5 *2 (-1084)))) (-2339 (*1 *1 *1 *2) (-12 (-5 *2 (-1006 *1)) (-4 *1 (-146)))))
+(-13 (-131) (-10 -8 (-15 -3013 ($ $)) (-15 -3013 ($ $ (-1084))) (-15 -3361 ($ $ (-1084))) (-15 -3361 ($ $ (-1006 $))) (-15 -2339 ($ $ (-1084))) (-15 -2339 ($ $ (-1006 $)))))
(((-131) . T))
-((-1414 (((-108) $ $) NIL)) (-1692 (($ (-520)) 13) (($ $ $) 14)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2188 (((-791) $) 17)) (-1530 (((-108) $ $) 9)))
-(((-147) (-13 (-1012) (-10 -8 (-15 -1692 ($ (-520))) (-15 -1692 ($ $ $))))) (T -147))
-((-1692 (*1 *1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-147)))) (-1692 (*1 *1 *1 *1) (-5 *1 (-147))))
-(-13 (-1012) (-10 -8 (-15 -1692 ($ (-520))) (-15 -1692 ($ $ $))))
-((-3877 (((-110) (-1083)) 97)))
-(((-148) (-10 -7 (-15 -3877 ((-110) (-1083))))) (T -148))
-((-3877 (*1 *2 *3) (-12 (-5 *3 (-1083)) (-5 *2 (-110)) (-5 *1 (-148)))))
-(-10 -7 (-15 -3877 ((-110) (-1083))))
-((-4063 ((|#3| |#3|) 20)))
-(((-149 |#1| |#2| |#3|) (-10 -7 (-15 -4063 (|#3| |#3|))) (-969) (-1140 |#1|) (-1140 |#2|)) (T -149))
-((-4063 (*1 *2 *2) (-12 (-4 *3 (-969)) (-4 *4 (-1140 *3)) (-5 *1 (-149 *3 *4 *2)) (-4 *2 (-1140 *4)))))
-(-10 -7 (-15 -4063 (|#3| |#3|)))
-((-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) 216)) (-1864 ((|#2| $) 96)) (-2903 (($ $) 243)) (-2768 (($ $) 237)) (-3481 (((-3 (-586 (-1079 $)) "failed") (-586 (-1079 $)) (-1079 $)) 40)) (-2879 (($ $) 241)) (-2745 (($ $) 235)) (-1296 (((-3 (-520) "failed") $) NIL) (((-3 (-380 (-520)) "failed") $) NIL) (((-3 |#2| "failed") $) 140)) (-1482 (((-520) $) NIL) (((-380 (-520)) $) NIL) ((|#2| $) 138)) (-2276 (($ $ $) 221)) (-2756 (((-626 (-520)) (-626 $)) NIL) (((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 $) (-1164 $)) NIL) (((-2 (|:| -3927 (-626 |#2|)) (|:| |vec| (-1164 |#2|))) (-626 $) (-1164 $)) 154) (((-626 |#2|) (-626 $)) 148)) (-3856 (($ (-1079 |#2|)) 119) (((-3 $ "failed") (-380 (-1079 |#2|))) NIL)) (-1540 (((-3 $ "failed") $) 208)) (-2279 (((-3 (-380 (-520)) "failed") $) 198)) (-1386 (((-108) $) 193)) (-4055 (((-380 (-520)) $) 196)) (-3160 (((-849)) 89)) (-2253 (($ $ $) 223)) (-1838 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 259)) (-2833 (($) 232)) (-1272 (((-817 (-520) $) $ (-820 (-520)) (-817 (-520) $)) 185) (((-817 (-352) $) $ (-820 (-352)) (-817 (-352) $)) 190)) (-1434 ((|#2| $) 94)) (-2034 (((-1079 |#2|) $) 121)) (-1389 (($ (-1 |#2| |#2|) $) 102)) (-1252 (($ $) 234)) (-3841 (((-1079 |#2|) $) 120)) (-3093 (($ $) 201)) (-1906 (($) 97)) (-4133 (((-391 (-1079 $)) (-1079 $)) 88)) (-2017 (((-391 (-1079 $)) (-1079 $)) 57)) (-2230 (((-3 $ "failed") $ |#2|) 203) (((-3 $ "failed") $ $) 206)) (-3260 (($ $) 233)) (-3704 (((-706) $) 218)) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) 227)) (-2732 ((|#2| (-1164 $)) NIL) ((|#2|) 91)) (-2155 (($ $ (-1 |#2| |#2|) (-706)) NIL) (($ $ (-1 |#2| |#2|)) 113) (($ $ (-586 (-1083)) (-586 (-706))) NIL) (($ $ (-1083) (-706)) NIL) (($ $ (-586 (-1083))) NIL) (($ $ (-1083)) NIL) (($ $ (-706)) NIL) (($ $) NIL)) (-3484 (((-1079 |#2|)) 114)) (-2891 (($ $) 242)) (-2757 (($ $) 236)) (-3790 (((-1164 |#2|) $ (-1164 $)) 127) (((-626 |#2|) (-1164 $) (-1164 $)) NIL) (((-1164 |#2|) $) 110) (((-626 |#2|) (-1164 $)) NIL)) (-1429 (((-1164 |#2|) $) NIL) (($ (-1164 |#2|)) NIL) (((-1079 |#2|) $) NIL) (($ (-1079 |#2|)) NIL) (((-820 (-520)) $) 176) (((-820 (-352)) $) 180) (((-154 (-352)) $) 166) (((-154 (-201)) $) 161) (((-496) $) 172)) (-2945 (($ $) 98)) (-2188 (((-791) $) 137) (($ (-520)) NIL) (($ |#2|) NIL) (($ (-380 (-520))) NIL) (($ $) NIL)) (-2948 (((-1079 |#2|) $) 23)) (-3251 (((-706)) 100)) (-1758 (($ $) 246)) (-2831 (($ $) 240)) (-1744 (($ $) 244)) (-2810 (($ $) 238)) (-3440 ((|#2| $) 231)) (-1751 (($ $) 245)) (-2820 (($ $) 239)) (-2458 (($ $) 156)) (-1530 (((-108) $ $) 104)) (-1548 (((-108) $ $) 192)) (-1611 (($ $) 106) (($ $ $) NIL)) (-1601 (($ $ $) 105)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-380 (-520))) 265) (($ $ $) NIL) (($ $ (-520)) NIL)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) 112) (($ $ $) 141) (($ $ |#2|) NIL) (($ |#2| $) 108) (($ (-380 (-520)) $) NIL) (($ $ (-380 (-520))) NIL)))
-(((-150 |#1| |#2|) (-10 -8 (-15 -2155 (|#1| |#1|)) (-15 -2155 (|#1| |#1| (-706))) (-15 -2188 (|#1| |#1|)) (-15 -2230 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1240 ((-2 (|:| -4036 |#1|) (|:| -4216 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2155 (|#1| |#1| (-1083))) (-15 -2155 (|#1| |#1| (-586 (-1083)))) (-15 -2155 (|#1| |#1| (-1083) (-706))) (-15 -2155 (|#1| |#1| (-586 (-1083)) (-586 (-706)))) (-15 -3704 ((-706) |#1|)) (-15 -2806 ((-2 (|:| -2060 |#1|) (|:| -3753 |#1|)) |#1| |#1|)) (-15 -2253 (|#1| |#1| |#1|)) (-15 -2276 (|#1| |#1| |#1|)) (-15 -3093 (|#1| |#1|)) (-15 ** (|#1| |#1| (-520))) (-15 * (|#1| |#1| (-380 (-520)))) (-15 * (|#1| (-380 (-520)) |#1|)) (-15 -2188 (|#1| (-380 (-520)))) (-15 -1548 ((-108) |#1| |#1|)) (-15 -1429 ((-496) |#1|)) (-15 -1429 ((-154 (-201)) |#1|)) (-15 -1429 ((-154 (-352)) |#1|)) (-15 -2768 (|#1| |#1|)) (-15 -2745 (|#1| |#1|)) (-15 -2757 (|#1| |#1|)) (-15 -2820 (|#1| |#1|)) (-15 -2810 (|#1| |#1|)) (-15 -2831 (|#1| |#1|)) (-15 -2891 (|#1| |#1|)) (-15 -2879 (|#1| |#1|)) (-15 -2903 (|#1| |#1|)) (-15 -1751 (|#1| |#1|)) (-15 -1744 (|#1| |#1|)) (-15 -1758 (|#1| |#1|)) (-15 -1252 (|#1| |#1|)) (-15 -3260 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2833 (|#1|)) (-15 ** (|#1| |#1| (-380 (-520)))) (-15 -2017 ((-391 (-1079 |#1|)) (-1079 |#1|))) (-15 -4133 ((-391 (-1079 |#1|)) (-1079 |#1|))) (-15 -3481 ((-3 (-586 (-1079 |#1|)) "failed") (-586 (-1079 |#1|)) (-1079 |#1|))) (-15 -2279 ((-3 (-380 (-520)) "failed") |#1|)) (-15 -4055 ((-380 (-520)) |#1|)) (-15 -1386 ((-108) |#1|)) (-15 -1838 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3440 (|#2| |#1|)) (-15 -2458 (|#1| |#1|)) (-15 -2230 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2945 (|#1| |#1|)) (-15 -1906 (|#1|)) (-15 -1429 ((-820 (-352)) |#1|)) (-15 -1429 ((-820 (-520)) |#1|)) (-15 -1272 ((-817 (-352) |#1|) |#1| (-820 (-352)) (-817 (-352) |#1|))) (-15 -1272 ((-817 (-520) |#1|) |#1| (-820 (-520)) (-817 (-520) |#1|))) (-15 -1389 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2155 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2155 (|#1| |#1| (-1 |#2| |#2|) (-706))) (-15 -3856 ((-3 |#1| "failed") (-380 (-1079 |#2|)))) (-15 -3841 ((-1079 |#2|) |#1|)) (-15 -1429 (|#1| (-1079 |#2|))) (-15 -3856 (|#1| (-1079 |#2|))) (-15 -3484 ((-1079 |#2|))) (-15 -2756 ((-626 |#2|) (-626 |#1|))) (-15 -2756 ((-2 (|:| -3927 (-626 |#2|)) (|:| |vec| (-1164 |#2|))) (-626 |#1|) (-1164 |#1|))) (-15 -2756 ((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 |#1|) (-1164 |#1|))) (-15 -2756 ((-626 (-520)) (-626 |#1|))) (-15 -1482 (|#2| |#1|)) (-15 -1296 ((-3 |#2| "failed") |#1|)) (-15 -1296 ((-3 (-380 (-520)) "failed") |#1|)) (-15 -1482 ((-380 (-520)) |#1|)) (-15 -1296 ((-3 (-520) "failed") |#1|)) (-15 -1482 ((-520) |#1|)) (-15 -1429 ((-1079 |#2|) |#1|)) (-15 -2732 (|#2|)) (-15 -1429 (|#1| (-1164 |#2|))) (-15 -1429 ((-1164 |#2|) |#1|)) (-15 -3790 ((-626 |#2|) (-1164 |#1|))) (-15 -3790 ((-1164 |#2|) |#1|)) (-15 -2034 ((-1079 |#2|) |#1|)) (-15 -2948 ((-1079 |#2|) |#1|)) (-15 -2732 (|#2| (-1164 |#1|))) (-15 -3790 ((-626 |#2|) (-1164 |#1|) (-1164 |#1|))) (-15 -3790 ((-1164 |#2|) |#1| (-1164 |#1|))) (-15 -1434 (|#2| |#1|)) (-15 -1864 (|#2| |#1|)) (-15 -3160 ((-849))) (-15 -2188 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2188 (|#1| (-520))) (-15 -3251 ((-706))) (-15 ** (|#1| |#1| (-706))) (-15 -1540 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-849))) (-15 * (|#1| (-520) |#1|)) (-15 -1611 (|#1| |#1| |#1|)) (-15 -1611 (|#1| |#1|)) (-15 * (|#1| (-706) |#1|)) (-15 * (|#1| (-849) |#1|)) (-15 -1601 (|#1| |#1| |#1|)) (-15 -2188 ((-791) |#1|)) (-15 -1530 ((-108) |#1| |#1|))) (-151 |#2|) (-157)) (T -150))
-((-3251 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-706)) (-5 *1 (-150 *3 *4)) (-4 *3 (-151 *4)))) (-3160 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-849)) (-5 *1 (-150 *3 *4)) (-4 *3 (-151 *4)))) (-2732 (*1 *2) (-12 (-4 *2 (-157)) (-5 *1 (-150 *3 *2)) (-4 *3 (-151 *2)))) (-3484 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-1079 *4)) (-5 *1 (-150 *3 *4)) (-4 *3 (-151 *4)))))
-(-10 -8 (-15 -2155 (|#1| |#1|)) (-15 -2155 (|#1| |#1| (-706))) (-15 -2188 (|#1| |#1|)) (-15 -2230 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1240 ((-2 (|:| -4036 |#1|) (|:| -4216 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2155 (|#1| |#1| (-1083))) (-15 -2155 (|#1| |#1| (-586 (-1083)))) (-15 -2155 (|#1| |#1| (-1083) (-706))) (-15 -2155 (|#1| |#1| (-586 (-1083)) (-586 (-706)))) (-15 -3704 ((-706) |#1|)) (-15 -2806 ((-2 (|:| -2060 |#1|) (|:| -3753 |#1|)) |#1| |#1|)) (-15 -2253 (|#1| |#1| |#1|)) (-15 -2276 (|#1| |#1| |#1|)) (-15 -3093 (|#1| |#1|)) (-15 ** (|#1| |#1| (-520))) (-15 * (|#1| |#1| (-380 (-520)))) (-15 * (|#1| (-380 (-520)) |#1|)) (-15 -2188 (|#1| (-380 (-520)))) (-15 -1548 ((-108) |#1| |#1|)) (-15 -1429 ((-496) |#1|)) (-15 -1429 ((-154 (-201)) |#1|)) (-15 -1429 ((-154 (-352)) |#1|)) (-15 -2768 (|#1| |#1|)) (-15 -2745 (|#1| |#1|)) (-15 -2757 (|#1| |#1|)) (-15 -2820 (|#1| |#1|)) (-15 -2810 (|#1| |#1|)) (-15 -2831 (|#1| |#1|)) (-15 -2891 (|#1| |#1|)) (-15 -2879 (|#1| |#1|)) (-15 -2903 (|#1| |#1|)) (-15 -1751 (|#1| |#1|)) (-15 -1744 (|#1| |#1|)) (-15 -1758 (|#1| |#1|)) (-15 -1252 (|#1| |#1|)) (-15 -3260 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2833 (|#1|)) (-15 ** (|#1| |#1| (-380 (-520)))) (-15 -2017 ((-391 (-1079 |#1|)) (-1079 |#1|))) (-15 -4133 ((-391 (-1079 |#1|)) (-1079 |#1|))) (-15 -3481 ((-3 (-586 (-1079 |#1|)) "failed") (-586 (-1079 |#1|)) (-1079 |#1|))) (-15 -2279 ((-3 (-380 (-520)) "failed") |#1|)) (-15 -4055 ((-380 (-520)) |#1|)) (-15 -1386 ((-108) |#1|)) (-15 -1838 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3440 (|#2| |#1|)) (-15 -2458 (|#1| |#1|)) (-15 -2230 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2945 (|#1| |#1|)) (-15 -1906 (|#1|)) (-15 -1429 ((-820 (-352)) |#1|)) (-15 -1429 ((-820 (-520)) |#1|)) (-15 -1272 ((-817 (-352) |#1|) |#1| (-820 (-352)) (-817 (-352) |#1|))) (-15 -1272 ((-817 (-520) |#1|) |#1| (-820 (-520)) (-817 (-520) |#1|))) (-15 -1389 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2155 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2155 (|#1| |#1| (-1 |#2| |#2|) (-706))) (-15 -3856 ((-3 |#1| "failed") (-380 (-1079 |#2|)))) (-15 -3841 ((-1079 |#2|) |#1|)) (-15 -1429 (|#1| (-1079 |#2|))) (-15 -3856 (|#1| (-1079 |#2|))) (-15 -3484 ((-1079 |#2|))) (-15 -2756 ((-626 |#2|) (-626 |#1|))) (-15 -2756 ((-2 (|:| -3927 (-626 |#2|)) (|:| |vec| (-1164 |#2|))) (-626 |#1|) (-1164 |#1|))) (-15 -2756 ((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 |#1|) (-1164 |#1|))) (-15 -2756 ((-626 (-520)) (-626 |#1|))) (-15 -1482 (|#2| |#1|)) (-15 -1296 ((-3 |#2| "failed") |#1|)) (-15 -1296 ((-3 (-380 (-520)) "failed") |#1|)) (-15 -1482 ((-380 (-520)) |#1|)) (-15 -1296 ((-3 (-520) "failed") |#1|)) (-15 -1482 ((-520) |#1|)) (-15 -1429 ((-1079 |#2|) |#1|)) (-15 -2732 (|#2|)) (-15 -1429 (|#1| (-1164 |#2|))) (-15 -1429 ((-1164 |#2|) |#1|)) (-15 -3790 ((-626 |#2|) (-1164 |#1|))) (-15 -3790 ((-1164 |#2|) |#1|)) (-15 -2034 ((-1079 |#2|) |#1|)) (-15 -2948 ((-1079 |#2|) |#1|)) (-15 -2732 (|#2| (-1164 |#1|))) (-15 -3790 ((-626 |#2|) (-1164 |#1|) (-1164 |#1|))) (-15 -3790 ((-1164 |#2|) |#1| (-1164 |#1|))) (-15 -1434 (|#2| |#1|)) (-15 -1864 (|#2| |#1|)) (-15 -3160 ((-849))) (-15 -2188 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2188 (|#1| (-520))) (-15 -3251 ((-706))) (-15 ** (|#1| |#1| (-706))) (-15 -1540 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-849))) (-15 * (|#1| (-520) |#1|)) (-15 -1611 (|#1| |#1| |#1|)) (-15 -1611 (|#1| |#1|)) (-15 * (|#1| (-706) |#1|)) (-15 * (|#1| (-849) |#1|)) (-15 -1601 (|#1| |#1| |#1|)) (-15 -2188 ((-791) |#1|)) (-15 -1530 ((-108) |#1| |#1|)))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) 93 (-3700 (|has| |#1| (-512)) (-12 (|has| |#1| (-281)) (|has| |#1| (-837)))))) (-2583 (($ $) 94 (-3700 (|has| |#1| (-512)) (-12 (|has| |#1| (-281)) (|has| |#1| (-837)))))) (-1671 (((-108) $) 96 (-3700 (|has| |#1| (-512)) (-12 (|has| |#1| (-281)) (|has| |#1| (-837)))))) (-1405 (((-626 |#1|) (-1164 $)) 46) (((-626 |#1|)) 61)) (-1864 ((|#1| $) 52)) (-2903 (($ $) 228 (|has| |#1| (-1104)))) (-2768 (($ $) 211 (|has| |#1| (-1104)))) (-1891 (((-1092 (-849) (-706)) (-520)) 147 (|has| |#1| (-322)))) (-1917 (((-3 $ "failed") $ $) 19)) (-4119 (((-391 (-1079 $)) (-1079 $)) 242 (-12 (|has| |#1| (-281)) (|has| |#1| (-837))))) (-3024 (($ $) 113 (-3700 (-12 (|has| |#1| (-281)) (|has| |#1| (-837))) (|has| |#1| (-336))))) (-1507 (((-391 $) $) 114 (-3700 (-12 (|has| |#1| (-281)) (|has| |#1| (-837))) (|has| |#1| (-336))))) (-1927 (($ $) 241 (-12 (|has| |#1| (-926)) (|has| |#1| (-1104))))) (-3481 (((-3 (-586 (-1079 $)) "failed") (-586 (-1079 $)) (-1079 $)) 245 (-12 (|has| |#1| (-281)) (|has| |#1| (-837))))) (-1327 (((-108) $ $) 104 (|has| |#1| (-281)))) (-1628 (((-706)) 87 (|has| |#1| (-341)))) (-2879 (($ $) 227 (|has| |#1| (-1104)))) (-2745 (($ $) 212 (|has| |#1| (-1104)))) (-2925 (($ $) 226 (|has| |#1| (-1104)))) (-2789 (($ $) 213 (|has| |#1| (-1104)))) (-3961 (($) 17 T CONST)) (-1296 (((-3 (-520) "failed") $) 169 (|has| |#1| (-960 (-520)))) (((-3 (-380 (-520)) "failed") $) 167 (|has| |#1| (-960 (-380 (-520))))) (((-3 |#1| "failed") $) 166)) (-1482 (((-520) $) 170 (|has| |#1| (-960 (-520)))) (((-380 (-520)) $) 168 (|has| |#1| (-960 (-380 (-520))))) ((|#1| $) 165)) (-3705 (($ (-1164 |#1|) (-1164 $)) 48) (($ (-1164 |#1|)) 64)) (-2654 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| |#1| (-322)))) (-2276 (($ $ $) 108 (|has| |#1| (-281)))) (-3604 (((-626 |#1|) $ (-1164 $)) 53) (((-626 |#1|) $) 59)) (-2756 (((-626 (-520)) (-626 $)) 164 (|has| |#1| (-582 (-520)))) (((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 $) (-1164 $)) 163 (|has| |#1| (-582 (-520)))) (((-2 (|:| -3927 (-626 |#1|)) (|:| |vec| (-1164 |#1|))) (-626 $) (-1164 $)) 162) (((-626 |#1|) (-626 $)) 161)) (-3856 (($ (-1079 |#1|)) 158) (((-3 $ "failed") (-380 (-1079 |#1|))) 155 (|has| |#1| (-336)))) (-1540 (((-3 $ "failed") $) 34)) (-1936 ((|#1| $) 253)) (-2279 (((-3 (-380 (-520)) "failed") $) 246 (|has| |#1| (-505)))) (-1386 (((-108) $) 248 (|has| |#1| (-505)))) (-4055 (((-380 (-520)) $) 247 (|has| |#1| (-505)))) (-3160 (((-849)) 54)) (-3249 (($) 90 (|has| |#1| (-341)))) (-2253 (($ $ $) 107 (|has| |#1| (-281)))) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) 102 (|has| |#1| (-281)))) (-2961 (($) 149 (|has| |#1| (-322)))) (-1855 (((-108) $) 150 (|has| |#1| (-322)))) (-1346 (($ $ (-706)) 141 (|has| |#1| (-322))) (($ $) 140 (|has| |#1| (-322)))) (-2036 (((-108) $) 115 (-3700 (-12 (|has| |#1| (-281)) (|has| |#1| (-837))) (|has| |#1| (-336))))) (-1838 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 249 (-12 (|has| |#1| (-978)) (|has| |#1| (-1104))))) (-2833 (($) 238 (|has| |#1| (-1104)))) (-1272 (((-817 (-520) $) $ (-820 (-520)) (-817 (-520) $)) 261 (|has| |#1| (-814 (-520)))) (((-817 (-352) $) $ (-820 (-352)) (-817 (-352) $)) 260 (|has| |#1| (-814 (-352))))) (-3989 (((-849) $) 152 (|has| |#1| (-322))) (((-769 (-849)) $) 138 (|has| |#1| (-322)))) (-1537 (((-108) $) 31)) (-2322 (($ $ (-520)) 240 (-12 (|has| |#1| (-926)) (|has| |#1| (-1104))))) (-1434 ((|#1| $) 51)) (-1394 (((-3 $ "failed") $) 142 (|has| |#1| (-322)))) (-3188 (((-3 (-586 $) "failed") (-586 $) $) 111 (|has| |#1| (-281)))) (-2034 (((-1079 |#1|) $) 44 (|has| |#1| (-336)))) (-2809 (($ $ $) 207 (|has| |#1| (-783)))) (-2446 (($ $ $) 206 (|has| |#1| (-783)))) (-1389 (($ (-1 |#1| |#1|) $) 262)) (-3040 (((-849) $) 89 (|has| |#1| (-341)))) (-1252 (($ $) 235 (|has| |#1| (-1104)))) (-3841 (((-1079 |#1|) $) 156)) (-2222 (($ (-586 $)) 100 (-3700 (|has| |#1| (-281)) (-12 (|has| |#1| (-281)) (|has| |#1| (-837))))) (($ $ $) 99 (-3700 (|has| |#1| (-281)) (-12 (|has| |#1| (-281)) (|has| |#1| (-837)))))) (-1239 (((-1066) $) 9)) (-3093 (($ $) 116 (|has| |#1| (-336)))) (-3794 (($) 143 (|has| |#1| (-322)) CONST)) (-2716 (($ (-849)) 88 (|has| |#1| (-341)))) (-1906 (($) 257)) (-1947 ((|#1| $) 254)) (-4142 (((-1030) $) 10)) (-1382 (($) 160)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) 101 (-3700 (|has| |#1| (-281)) (-12 (|has| |#1| (-281)) (|has| |#1| (-837)))))) (-2257 (($ (-586 $)) 98 (-3700 (|has| |#1| (-281)) (-12 (|has| |#1| (-281)) (|has| |#1| (-837))))) (($ $ $) 97 (-3700 (|has| |#1| (-281)) (-12 (|has| |#1| (-281)) (|has| |#1| (-837)))))) (-1517 (((-586 (-2 (|:| -1916 (-520)) (|:| -2647 (-520))))) 146 (|has| |#1| (-322)))) (-4133 (((-391 (-1079 $)) (-1079 $)) 244 (-12 (|has| |#1| (-281)) (|has| |#1| (-837))))) (-2017 (((-391 (-1079 $)) (-1079 $)) 243 (-12 (|has| |#1| (-281)) (|has| |#1| (-837))))) (-1916 (((-391 $) $) 112 (-3700 (-12 (|has| |#1| (-281)) (|has| |#1| (-837))) (|has| |#1| (-336))))) (-1283 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-281))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) 109 (|has| |#1| (-281)))) (-2230 (((-3 $ "failed") $ |#1|) 252 (|has| |#1| (-512))) (((-3 $ "failed") $ $) 92 (-3700 (|has| |#1| (-512)) (-12 (|has| |#1| (-281)) (|has| |#1| (-837)))))) (-2608 (((-3 (-586 $) "failed") (-586 $) $) 103 (|has| |#1| (-281)))) (-3260 (($ $) 236 (|has| |#1| (-1104)))) (-2286 (($ $ (-586 |#1|) (-586 |#1|)) 268 (|has| |#1| (-283 |#1|))) (($ $ |#1| |#1|) 267 (|has| |#1| (-283 |#1|))) (($ $ (-268 |#1|)) 266 (|has| |#1| (-283 |#1|))) (($ $ (-586 (-268 |#1|))) 265 (|has| |#1| (-283 |#1|))) (($ $ (-586 (-1083)) (-586 |#1|)) 264 (|has| |#1| (-481 (-1083) |#1|))) (($ $ (-1083) |#1|) 263 (|has| |#1| (-481 (-1083) |#1|)))) (-3704 (((-706) $) 105 (|has| |#1| (-281)))) (-2543 (($ $ |#1|) 269 (|has| |#1| (-260 |#1| |#1|)))) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) 106 (|has| |#1| (-281)))) (-2732 ((|#1| (-1164 $)) 47) ((|#1|) 60)) (-2062 (((-706) $) 151 (|has| |#1| (-322))) (((-3 (-706) "failed") $ $) 139 (|has| |#1| (-322)))) (-2155 (($ $ (-1 |#1| |#1|) (-706)) 123) (($ $ (-1 |#1| |#1|)) 122) (($ $ (-586 (-1083)) (-586 (-706))) 130 (|has| |#1| (-828 (-1083)))) (($ $ (-1083) (-706)) 131 (|has| |#1| (-828 (-1083)))) (($ $ (-586 (-1083))) 132 (|has| |#1| (-828 (-1083)))) (($ $ (-1083)) 133 (|has| |#1| (-828 (-1083)))) (($ $ (-706)) 135 (-3700 (-4006 (|has| |#1| (-336)) (|has| |#1| (-209))) (|has| |#1| (-209)) (-4006 (|has| |#1| (-209)) (|has| |#1| (-336))))) (($ $) 137 (-3700 (-4006 (|has| |#1| (-336)) (|has| |#1| (-209))) (|has| |#1| (-209)) (-4006 (|has| |#1| (-209)) (|has| |#1| (-336)))))) (-3404 (((-626 |#1|) (-1164 $) (-1 |#1| |#1|)) 154 (|has| |#1| (-336)))) (-3484 (((-1079 |#1|)) 159)) (-1737 (($ $) 225 (|has| |#1| (-1104)))) (-2799 (($ $) 214 (|has| |#1| (-1104)))) (-3864 (($) 148 (|has| |#1| (-322)))) (-2914 (($ $) 224 (|has| |#1| (-1104)))) (-2779 (($ $) 215 (|has| |#1| (-1104)))) (-2891 (($ $) 223 (|has| |#1| (-1104)))) (-2757 (($ $) 216 (|has| |#1| (-1104)))) (-3790 (((-1164 |#1|) $ (-1164 $)) 50) (((-626 |#1|) (-1164 $) (-1164 $)) 49) (((-1164 |#1|) $) 66) (((-626 |#1|) (-1164 $)) 65)) (-1429 (((-1164 |#1|) $) 63) (($ (-1164 |#1|)) 62) (((-1079 |#1|) $) 171) (($ (-1079 |#1|)) 157) (((-820 (-520)) $) 259 (|has| |#1| (-561 (-820 (-520))))) (((-820 (-352)) $) 258 (|has| |#1| (-561 (-820 (-352))))) (((-154 (-352)) $) 210 (|has| |#1| (-945))) (((-154 (-201)) $) 209 (|has| |#1| (-945))) (((-496) $) 208 (|has| |#1| (-561 (-496))))) (-2945 (($ $) 256)) (-3784 (((-3 (-1164 $) "failed") (-626 $)) 145 (-3700 (-4006 (|has| $ (-133)) (-12 (|has| |#1| (-281)) (|has| |#1| (-837)))) (|has| |#1| (-322))))) (-3901 (($ |#1| |#1|) 255)) (-2188 (((-791) $) 11) (($ (-520)) 28) (($ |#1|) 37) (($ (-380 (-520))) 86 (-3700 (|has| |#1| (-336)) (|has| |#1| (-960 (-380 (-520)))))) (($ $) 91 (-3700 (|has| |#1| (-512)) (-12 (|has| |#1| (-281)) (|has| |#1| (-837)))))) (-3796 (($ $) 144 (|has| |#1| (-322))) (((-3 $ "failed") $) 43 (-3700 (-4006 (|has| $ (-133)) (-12 (|has| |#1| (-281)) (|has| |#1| (-837)))) (|has| |#1| (-133))))) (-2948 (((-1079 |#1|) $) 45)) (-3251 (((-706)) 29)) (-1831 (((-1164 $)) 67)) (-1758 (($ $) 234 (|has| |#1| (-1104)))) (-2831 (($ $) 222 (|has| |#1| (-1104)))) (-2559 (((-108) $ $) 95 (-3700 (|has| |#1| (-512)) (-12 (|has| |#1| (-281)) (|has| |#1| (-837)))))) (-1744 (($ $) 233 (|has| |#1| (-1104)))) (-2810 (($ $) 221 (|has| |#1| (-1104)))) (-1775 (($ $) 232 (|has| |#1| (-1104)))) (-2855 (($ $) 220 (|has| |#1| (-1104)))) (-3440 ((|#1| $) 250 (|has| |#1| (-1104)))) (-3915 (($ $) 231 (|has| |#1| (-1104)))) (-2867 (($ $) 219 (|has| |#1| (-1104)))) (-1767 (($ $) 230 (|has| |#1| (-1104)))) (-2843 (($ $) 218 (|has| |#1| (-1104)))) (-1751 (($ $) 229 (|has| |#1| (-1104)))) (-2820 (($ $) 217 (|has| |#1| (-1104)))) (-2458 (($ $) 251 (|has| |#1| (-978)))) (-3504 (($ $ (-849)) 26) (($ $ (-706)) 33) (($ $ (-520)) 117 (|has| |#1| (-336)))) (-3560 (($) 18 T CONST)) (-3570 (($) 30 T CONST)) (-2211 (($ $ (-1 |#1| |#1|) (-706)) 125) (($ $ (-1 |#1| |#1|)) 124) (($ $ (-586 (-1083)) (-586 (-706))) 126 (|has| |#1| (-828 (-1083)))) (($ $ (-1083) (-706)) 127 (|has| |#1| (-828 (-1083)))) (($ $ (-586 (-1083))) 128 (|has| |#1| (-828 (-1083)))) (($ $ (-1083)) 129 (|has| |#1| (-828 (-1083)))) (($ $ (-706)) 134 (-3700 (-4006 (|has| |#1| (-336)) (|has| |#1| (-209))) (|has| |#1| (-209)) (-4006 (|has| |#1| (-209)) (|has| |#1| (-336))))) (($ $) 136 (-3700 (-4006 (|has| |#1| (-336)) (|has| |#1| (-209))) (|has| |#1| (-209)) (-4006 (|has| |#1| (-209)) (|has| |#1| (-336)))))) (-1573 (((-108) $ $) 204 (|has| |#1| (-783)))) (-1557 (((-108) $ $) 203 (|has| |#1| (-783)))) (-1530 (((-108) $ $) 6)) (-1565 (((-108) $ $) 205 (|has| |#1| (-783)))) (-1548 (((-108) $ $) 202 (|has| |#1| (-783)))) (-1619 (($ $ $) 121 (|has| |#1| (-336)))) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-706)) 32) (($ $ (-380 (-520))) 239 (-12 (|has| |#1| (-926)) (|has| |#1| (-1104)))) (($ $ $) 237 (|has| |#1| (-1104))) (($ $ (-520)) 118 (|has| |#1| (-336)))) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ (-380 (-520)) $) 120 (|has| |#1| (-336))) (($ $ (-380 (-520))) 119 (|has| |#1| (-336)))))
-(((-151 |#1|) (-1195) (-157)) (T -151))
-((-1434 (*1 *2 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157)))) (-1906 (*1 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157)))) (-2945 (*1 *1 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157)))) (-3901 (*1 *1 *2 *2) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157)))) (-1947 (*1 *2 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157)))) (-1936 (*1 *2 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157)))) (-2230 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-151 *2)) (-4 *2 (-157)) (-4 *2 (-512)))) (-2458 (*1 *1 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157)) (-4 *2 (-978)))) (-3440 (*1 *2 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157)) (-4 *2 (-1104)))) (-1838 (*1 *2 *1) (-12 (-4 *1 (-151 *3)) (-4 *3 (-157)) (-4 *3 (-978)) (-4 *3 (-1104)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-1386 (*1 *2 *1) (-12 (-4 *1 (-151 *3)) (-4 *3 (-157)) (-4 *3 (-505)) (-5 *2 (-108)))) (-4055 (*1 *2 *1) (-12 (-4 *1 (-151 *3)) (-4 *3 (-157)) (-4 *3 (-505)) (-5 *2 (-380 (-520))))) (-2279 (*1 *2 *1) (|partial| -12 (-4 *1 (-151 *3)) (-4 *3 (-157)) (-4 *3 (-505)) (-5 *2 (-380 (-520))))))
-(-13 (-660 |t#1| (-1079 |t#1|)) (-384 |t#1|) (-207 |t#1|) (-311 |t#1|) (-373 |t#1|) (-812 |t#1|) (-350 |t#1|) (-157) (-10 -8 (-6 -3901) (-15 -1906 ($)) (-15 -2945 ($ $)) (-15 -3901 ($ |t#1| |t#1|)) (-15 -1947 (|t#1| $)) (-15 -1936 (|t#1| $)) (-15 -1434 (|t#1| $)) (IF (|has| |t#1| (-783)) (-6 (-783)) |%noBranch|) (IF (|has| |t#1| (-512)) (PROGN (-6 (-512)) (-15 -2230 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-281)) (-6 (-281)) |%noBranch|) (IF (|has| |t#1| (-6 -4228)) (-6 -4228) |%noBranch|) (IF (|has| |t#1| (-6 -4225)) (-6 -4225) |%noBranch|) (IF (|has| |t#1| (-336)) (-6 (-336)) |%noBranch|) (IF (|has| |t#1| (-561 (-496))) (-6 (-561 (-496))) |%noBranch|) (IF (|has| |t#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |t#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |t#1| (-945)) (PROGN (-6 (-561 (-154 (-201)))) (-6 (-561 (-154 (-352))))) |%noBranch|) (IF (|has| |t#1| (-978)) (-15 -2458 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1104)) (PROGN (-6 (-1104)) (-15 -3440 (|t#1| $)) (IF (|has| |t#1| (-926)) (-6 (-926)) |%noBranch|) (IF (|has| |t#1| (-978)) (-15 -1838 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-505)) (PROGN (-15 -1386 ((-108) $)) (-15 -4055 ((-380 (-520)) $)) (-15 -2279 ((-3 (-380 (-520)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-837)) (IF (|has| |t#1| (-281)) (-6 (-837)) |%noBranch|) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-380 (-520))) -3700 (|has| |#1| (-322)) (|has| |#1| (-336))) ((-37 |#1|) . T) ((-37 $) -3700 (|has| |#1| (-512)) (|has| |#1| (-322)) (|has| |#1| (-336)) (|has| |#1| (-281))) ((-34) |has| |#1| (-1104)) ((-91) |has| |#1| (-1104)) ((-97) . T) ((-107 #0# #0#) -3700 (|has| |#1| (-322)) (|has| |#1| (-336))) ((-107 |#1| |#1|) . T) ((-107 $ $) . T) ((-124) . T) ((-133) -3700 (|has| |#1| (-322)) (|has| |#1| (-133))) ((-135) |has| |#1| (-135)) ((-560 (-791)) . T) ((-157) . T) ((-561 (-154 (-201))) |has| |#1| (-945)) ((-561 (-154 (-352))) |has| |#1| (-945)) ((-561 (-496)) |has| |#1| (-561 (-496))) ((-561 (-820 (-352))) |has| |#1| (-561 (-820 (-352)))) ((-561 (-820 (-520))) |has| |#1| (-561 (-820 (-520)))) ((-561 #1=(-1079 |#1|)) . T) ((-207 |#1|) . T) ((-209) -3700 (|has| |#1| (-322)) (|has| |#1| (-209))) ((-219) -3700 (|has| |#1| (-322)) (|has| |#1| (-336))) ((-258) |has| |#1| (-1104)) ((-260 |#1| $) |has| |#1| (-260 |#1| |#1|)) ((-264) -3700 (|has| |#1| (-512)) (|has| |#1| (-322)) (|has| |#1| (-336)) (|has| |#1| (-281))) ((-281) -3700 (|has| |#1| (-322)) (|has| |#1| (-336)) (|has| |#1| (-281))) ((-283 |#1|) |has| |#1| (-283 |#1|)) ((-336) -3700 (|has| |#1| (-322)) (|has| |#1| (-336))) ((-375) |has| |#1| (-322)) ((-341) -3700 (|has| |#1| (-341)) (|has| |#1| (-322))) ((-322) |has| |#1| (-322)) ((-343 |#1| #1#) . T) ((-382 |#1| #1#) . T) ((-311 |#1|) . T) ((-350 |#1|) . T) ((-373 |#1|) . T) ((-384 |#1|) . T) ((-424) -3700 (|has| |#1| (-322)) (|has| |#1| (-336)) (|has| |#1| (-281))) ((-461) |has| |#1| (-1104)) ((-481 (-1083) |#1|) |has| |#1| (-481 (-1083) |#1|)) ((-481 |#1| |#1|) |has| |#1| (-283 |#1|)) ((-512) -3700 (|has| |#1| (-512)) (|has| |#1| (-322)) (|has| |#1| (-336)) (|has| |#1| (-281))) ((-588 #0#) -3700 (|has| |#1| (-322)) (|has| |#1| (-336))) ((-588 |#1|) . T) ((-588 $) . T) ((-582 (-520)) |has| |#1| (-582 (-520))) ((-582 |#1|) . T) ((-653 #0#) -3700 (|has| |#1| (-322)) (|has| |#1| (-336))) ((-653 |#1|) . T) ((-653 $) -3700 (|has| |#1| (-512)) (|has| |#1| (-322)) (|has| |#1| (-336)) (|has| |#1| (-281))) ((-660 |#1| #1#) . T) ((-662) . T) ((-783) |has| |#1| (-783)) ((-828 (-1083)) |has| |#1| (-828 (-1083))) ((-814 (-352)) |has| |#1| (-814 (-352))) ((-814 (-520)) |has| |#1| (-814 (-520))) ((-812 |#1|) . T) ((-837) -12 (|has| |#1| (-281)) (|has| |#1| (-837))) ((-848) -3700 (|has| |#1| (-322)) (|has| |#1| (-336)) (|has| |#1| (-281))) ((-926) -12 (|has| |#1| (-926)) (|has| |#1| (-1104))) ((-960 (-380 (-520))) |has| |#1| (-960 (-380 (-520)))) ((-960 (-520)) |has| |#1| (-960 (-520))) ((-960 |#1|) . T) ((-975 #0#) -3700 (|has| |#1| (-322)) (|has| |#1| (-336))) ((-975 |#1|) . T) ((-975 $) . T) ((-969) . T) ((-976) . T) ((-1024) . T) ((-1012) . T) ((-1059) |has| |#1| (-322)) ((-1104) |has| |#1| (-1104)) ((-1107) |has| |#1| (-1104)) ((-1118) . T) ((-1122) -3700 (|has| |#1| (-322)) (|has| |#1| (-336)) (-12 (|has| |#1| (-281)) (|has| |#1| (-837)))))
-((-1916 (((-391 |#2|) |#2|) 63)))
-(((-152 |#1| |#2|) (-10 -7 (-15 -1916 ((-391 |#2|) |#2|))) (-281) (-1140 (-154 |#1|))) (T -152))
-((-1916 (*1 *2 *3) (-12 (-4 *4 (-281)) (-5 *2 (-391 *3)) (-5 *1 (-152 *4 *3)) (-4 *3 (-1140 (-154 *4))))))
-(-10 -7 (-15 -1916 ((-391 |#2|) |#2|)))
-((-1389 (((-154 |#2|) (-1 |#2| |#1|) (-154 |#1|)) 14)))
-(((-153 |#1| |#2|) (-10 -7 (-15 -1389 ((-154 |#2|) (-1 |#2| |#1|) (-154 |#1|)))) (-157) (-157)) (T -153))
-((-1389 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-154 *5)) (-4 *5 (-157)) (-4 *6 (-157)) (-5 *2 (-154 *6)) (-5 *1 (-153 *5 *6)))))
-(-10 -7 (-15 -1389 ((-154 |#2|) (-1 |#2| |#1|) (-154 |#1|))))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) 33)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) NIL (-3700 (-12 (|has| |#1| (-281)) (|has| |#1| (-837))) (|has| |#1| (-512))))) (-2583 (($ $) NIL (-3700 (-12 (|has| |#1| (-281)) (|has| |#1| (-837))) (|has| |#1| (-512))))) (-1671 (((-108) $) NIL (-3700 (-12 (|has| |#1| (-281)) (|has| |#1| (-837))) (|has| |#1| (-512))))) (-1405 (((-626 |#1|) (-1164 $)) NIL) (((-626 |#1|)) NIL)) (-1864 ((|#1| $) NIL)) (-2903 (($ $) NIL (|has| |#1| (-1104)))) (-2768 (($ $) NIL (|has| |#1| (-1104)))) (-1891 (((-1092 (-849) (-706)) (-520)) NIL (|has| |#1| (-322)))) (-1917 (((-3 $ "failed") $ $) NIL)) (-4119 (((-391 (-1079 $)) (-1079 $)) NIL (-12 (|has| |#1| (-281)) (|has| |#1| (-837))))) (-3024 (($ $) NIL (-3700 (-12 (|has| |#1| (-281)) (|has| |#1| (-837))) (|has| |#1| (-336))))) (-1507 (((-391 $) $) NIL (-3700 (-12 (|has| |#1| (-281)) (|has| |#1| (-837))) (|has| |#1| (-336))))) (-1927 (($ $) NIL (-12 (|has| |#1| (-926)) (|has| |#1| (-1104))))) (-3481 (((-3 (-586 (-1079 $)) "failed") (-586 (-1079 $)) (-1079 $)) NIL (-12 (|has| |#1| (-281)) (|has| |#1| (-837))))) (-1327 (((-108) $ $) NIL (|has| |#1| (-281)))) (-1628 (((-706)) NIL (|has| |#1| (-341)))) (-2879 (($ $) NIL (|has| |#1| (-1104)))) (-2745 (($ $) NIL (|has| |#1| (-1104)))) (-2925 (($ $) NIL (|has| |#1| (-1104)))) (-2789 (($ $) NIL (|has| |#1| (-1104)))) (-3961 (($) NIL T CONST)) (-1296 (((-3 (-520) "failed") $) NIL (|has| |#1| (-960 (-520)))) (((-3 (-380 (-520)) "failed") $) NIL (|has| |#1| (-960 (-380 (-520))))) (((-3 |#1| "failed") $) NIL)) (-1482 (((-520) $) NIL (|has| |#1| (-960 (-520)))) (((-380 (-520)) $) NIL (|has| |#1| (-960 (-380 (-520))))) ((|#1| $) NIL)) (-3705 (($ (-1164 |#1|) (-1164 $)) NIL) (($ (-1164 |#1|)) NIL)) (-2654 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-322)))) (-2276 (($ $ $) NIL (|has| |#1| (-281)))) (-3604 (((-626 |#1|) $ (-1164 $)) NIL) (((-626 |#1|) $) NIL)) (-2756 (((-626 (-520)) (-626 $)) NIL (|has| |#1| (-582 (-520)))) (((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 $) (-1164 $)) NIL (|has| |#1| (-582 (-520)))) (((-2 (|:| -3927 (-626 |#1|)) (|:| |vec| (-1164 |#1|))) (-626 $) (-1164 $)) NIL) (((-626 |#1|) (-626 $)) NIL)) (-3856 (($ (-1079 |#1|)) NIL) (((-3 $ "failed") (-380 (-1079 |#1|))) NIL (|has| |#1| (-336)))) (-1540 (((-3 $ "failed") $) NIL)) (-1936 ((|#1| $) 13)) (-2279 (((-3 (-380 (-520)) "failed") $) NIL (|has| |#1| (-505)))) (-1386 (((-108) $) NIL (|has| |#1| (-505)))) (-4055 (((-380 (-520)) $) NIL (|has| |#1| (-505)))) (-3160 (((-849)) NIL)) (-3249 (($) NIL (|has| |#1| (-341)))) (-2253 (($ $ $) NIL (|has| |#1| (-281)))) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) NIL (|has| |#1| (-281)))) (-2961 (($) NIL (|has| |#1| (-322)))) (-1855 (((-108) $) NIL (|has| |#1| (-322)))) (-1346 (($ $ (-706)) NIL (|has| |#1| (-322))) (($ $) NIL (|has| |#1| (-322)))) (-2036 (((-108) $) NIL (-3700 (-12 (|has| |#1| (-281)) (|has| |#1| (-837))) (|has| |#1| (-336))))) (-1838 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-978)) (|has| |#1| (-1104))))) (-2833 (($) NIL (|has| |#1| (-1104)))) (-1272 (((-817 (-520) $) $ (-820 (-520)) (-817 (-520) $)) NIL (|has| |#1| (-814 (-520)))) (((-817 (-352) $) $ (-820 (-352)) (-817 (-352) $)) NIL (|has| |#1| (-814 (-352))))) (-3989 (((-849) $) NIL (|has| |#1| (-322))) (((-769 (-849)) $) NIL (|has| |#1| (-322)))) (-1537 (((-108) $) 35)) (-2322 (($ $ (-520)) NIL (-12 (|has| |#1| (-926)) (|has| |#1| (-1104))))) (-1434 ((|#1| $) 46)) (-1394 (((-3 $ "failed") $) NIL (|has| |#1| (-322)))) (-3188 (((-3 (-586 $) "failed") (-586 $) $) NIL (|has| |#1| (-281)))) (-2034 (((-1079 |#1|) $) NIL (|has| |#1| (-336)))) (-2809 (($ $ $) NIL (|has| |#1| (-783)))) (-2446 (($ $ $) NIL (|has| |#1| (-783)))) (-1389 (($ (-1 |#1| |#1|) $) NIL)) (-3040 (((-849) $) NIL (|has| |#1| (-341)))) (-1252 (($ $) NIL (|has| |#1| (-1104)))) (-3841 (((-1079 |#1|) $) NIL)) (-2222 (($ (-586 $)) NIL (|has| |#1| (-281))) (($ $ $) NIL (|has| |#1| (-281)))) (-1239 (((-1066) $) NIL)) (-3093 (($ $) NIL (|has| |#1| (-336)))) (-3794 (($) NIL (|has| |#1| (-322)) CONST)) (-2716 (($ (-849)) NIL (|has| |#1| (-341)))) (-1906 (($) NIL)) (-1947 ((|#1| $) 15)) (-4142 (((-1030) $) NIL)) (-1382 (($) NIL)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) NIL (|has| |#1| (-281)))) (-2257 (($ (-586 $)) NIL (|has| |#1| (-281))) (($ $ $) NIL (|has| |#1| (-281)))) (-1517 (((-586 (-2 (|:| -1916 (-520)) (|:| -2647 (-520))))) NIL (|has| |#1| (-322)))) (-4133 (((-391 (-1079 $)) (-1079 $)) NIL (-12 (|has| |#1| (-281)) (|has| |#1| (-837))))) (-2017 (((-391 (-1079 $)) (-1079 $)) NIL (-12 (|has| |#1| (-281)) (|has| |#1| (-837))))) (-1916 (((-391 $) $) NIL (-3700 (-12 (|has| |#1| (-281)) (|has| |#1| (-837))) (|has| |#1| (-336))))) (-1283 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-281))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) NIL (|has| |#1| (-281)))) (-2230 (((-3 $ "failed") $ |#1|) 44 (|has| |#1| (-512))) (((-3 $ "failed") $ $) 47 (-3700 (-12 (|has| |#1| (-281)) (|has| |#1| (-837))) (|has| |#1| (-512))))) (-2608 (((-3 (-586 $) "failed") (-586 $) $) NIL (|has| |#1| (-281)))) (-3260 (($ $) NIL (|has| |#1| (-1104)))) (-2286 (($ $ (-586 |#1|) (-586 |#1|)) NIL (|has| |#1| (-283 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-283 |#1|))) (($ $ (-268 |#1|)) NIL (|has| |#1| (-283 |#1|))) (($ $ (-586 (-268 |#1|))) NIL (|has| |#1| (-283 |#1|))) (($ $ (-586 (-1083)) (-586 |#1|)) NIL (|has| |#1| (-481 (-1083) |#1|))) (($ $ (-1083) |#1|) NIL (|has| |#1| (-481 (-1083) |#1|)))) (-3704 (((-706) $) NIL (|has| |#1| (-281)))) (-2543 (($ $ |#1|) NIL (|has| |#1| (-260 |#1| |#1|)))) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) NIL (|has| |#1| (-281)))) (-2732 ((|#1| (-1164 $)) NIL) ((|#1|) NIL)) (-2062 (((-706) $) NIL (|has| |#1| (-322))) (((-3 (-706) "failed") $ $) NIL (|has| |#1| (-322)))) (-2155 (($ $ (-1 |#1| |#1|) (-706)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-586 (-1083)) (-586 (-706))) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-1083) (-706)) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-586 (-1083))) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-1083)) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-706)) NIL (|has| |#1| (-209))) (($ $) NIL (|has| |#1| (-209)))) (-3404 (((-626 |#1|) (-1164 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-336)))) (-3484 (((-1079 |#1|)) NIL)) (-1737 (($ $) NIL (|has| |#1| (-1104)))) (-2799 (($ $) NIL (|has| |#1| (-1104)))) (-3864 (($) NIL (|has| |#1| (-322)))) (-2914 (($ $) NIL (|has| |#1| (-1104)))) (-2779 (($ $) NIL (|has| |#1| (-1104)))) (-2891 (($ $) NIL (|has| |#1| (-1104)))) (-2757 (($ $) NIL (|has| |#1| (-1104)))) (-3790 (((-1164 |#1|) $ (-1164 $)) NIL) (((-626 |#1|) (-1164 $) (-1164 $)) NIL) (((-1164 |#1|) $) NIL) (((-626 |#1|) (-1164 $)) NIL)) (-1429 (((-1164 |#1|) $) NIL) (($ (-1164 |#1|)) NIL) (((-1079 |#1|) $) NIL) (($ (-1079 |#1|)) NIL) (((-820 (-520)) $) NIL (|has| |#1| (-561 (-820 (-520))))) (((-820 (-352)) $) NIL (|has| |#1| (-561 (-820 (-352))))) (((-154 (-352)) $) NIL (|has| |#1| (-945))) (((-154 (-201)) $) NIL (|has| |#1| (-945))) (((-496) $) NIL (|has| |#1| (-561 (-496))))) (-2945 (($ $) 45)) (-3784 (((-3 (-1164 $) "failed") (-626 $)) NIL (-3700 (-12 (|has| $ (-133)) (|has| |#1| (-281)) (|has| |#1| (-837))) (|has| |#1| (-322))))) (-3901 (($ |#1| |#1|) 37)) (-2188 (((-791) $) NIL) (($ (-520)) NIL) (($ |#1|) 36) (($ (-380 (-520))) NIL (-3700 (|has| |#1| (-336)) (|has| |#1| (-960 (-380 (-520)))))) (($ $) NIL (-3700 (-12 (|has| |#1| (-281)) (|has| |#1| (-837))) (|has| |#1| (-512))))) (-3796 (($ $) NIL (|has| |#1| (-322))) (((-3 $ "failed") $) NIL (-3700 (-12 (|has| $ (-133)) (|has| |#1| (-281)) (|has| |#1| (-837))) (|has| |#1| (-133))))) (-2948 (((-1079 |#1|) $) NIL)) (-3251 (((-706)) NIL)) (-1831 (((-1164 $)) NIL)) (-1758 (($ $) NIL (|has| |#1| (-1104)))) (-2831 (($ $) NIL (|has| |#1| (-1104)))) (-2559 (((-108) $ $) NIL (-3700 (-12 (|has| |#1| (-281)) (|has| |#1| (-837))) (|has| |#1| (-512))))) (-1744 (($ $) NIL (|has| |#1| (-1104)))) (-2810 (($ $) NIL (|has| |#1| (-1104)))) (-1775 (($ $) NIL (|has| |#1| (-1104)))) (-2855 (($ $) NIL (|has| |#1| (-1104)))) (-3440 ((|#1| $) NIL (|has| |#1| (-1104)))) (-3915 (($ $) NIL (|has| |#1| (-1104)))) (-2867 (($ $) NIL (|has| |#1| (-1104)))) (-1767 (($ $) NIL (|has| |#1| (-1104)))) (-2843 (($ $) NIL (|has| |#1| (-1104)))) (-1751 (($ $) NIL (|has| |#1| (-1104)))) (-2820 (($ $) NIL (|has| |#1| (-1104)))) (-2458 (($ $) NIL (|has| |#1| (-978)))) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL (|has| |#1| (-336)))) (-3560 (($) 28 T CONST)) (-3570 (($) 30 T CONST)) (-3610 (((-1066) $) 23 (|has| |#1| (-764))) (((-1066) $ (-108)) 25 (|has| |#1| (-764))) (((-1169) (-758) $) 26 (|has| |#1| (-764))) (((-1169) (-758) $ (-108)) 27 (|has| |#1| (-764)))) (-2211 (($ $ (-1 |#1| |#1|) (-706)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-586 (-1083)) (-586 (-706))) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-1083) (-706)) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-586 (-1083))) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-1083)) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-706)) NIL (|has| |#1| (-209))) (($ $) NIL (|has| |#1| (-209)))) (-1573 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1557 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1530 (((-108) $ $) NIL)) (-1565 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1548 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1619 (($ $ $) NIL (|has| |#1| (-336)))) (-1611 (($ $) NIL) (($ $ $) NIL)) (-1601 (($ $ $) 39)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-380 (-520))) NIL (-12 (|has| |#1| (-926)) (|has| |#1| (-1104)))) (($ $ $) NIL (|has| |#1| (-1104))) (($ $ (-520)) NIL (|has| |#1| (-336)))) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) 42) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-380 (-520)) $) NIL (|has| |#1| (-336))) (($ $ (-380 (-520))) NIL (|has| |#1| (-336)))))
-(((-154 |#1|) (-13 (-151 |#1|) (-10 -7 (IF (|has| |#1| (-764)) (-6 (-764)) |%noBranch|))) (-157)) (T -154))
-NIL
-(-13 (-151 |#1|) (-10 -7 (IF (|has| |#1| (-764)) (-6 (-764)) |%noBranch|)))
-((-1429 (((-820 |#1|) |#3|) 22)))
-(((-155 |#1| |#2| |#3|) (-10 -7 (-15 -1429 ((-820 |#1|) |#3|))) (-1012) (-13 (-561 (-820 |#1|)) (-157)) (-151 |#2|)) (T -155))
-((-1429 (*1 *2 *3) (-12 (-4 *5 (-13 (-561 *2) (-157))) (-5 *2 (-820 *4)) (-5 *1 (-155 *4 *5 *3)) (-4 *4 (-1012)) (-4 *3 (-151 *5)))))
-(-10 -7 (-15 -1429 ((-820 |#1|) |#3|)))
-((-1414 (((-108) $ $) NIL)) (-2258 (((-108) $) 9)) (-1271 (((-108) $ (-108)) 11)) (-1810 (($) 12)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2403 (($ $) 13)) (-2188 (((-791) $) 17)) (-2587 (((-108) $) 8)) (-1649 (((-108) $ (-108)) 10)) (-1530 (((-108) $ $) NIL)))
-(((-156) (-13 (-1012) (-10 -8 (-15 -1810 ($)) (-15 -2587 ((-108) $)) (-15 -2258 ((-108) $)) (-15 -1649 ((-108) $ (-108))) (-15 -1271 ((-108) $ (-108))) (-15 -2403 ($ $))))) (T -156))
-((-1810 (*1 *1) (-5 *1 (-156))) (-2587 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-156)))) (-2258 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-156)))) (-1649 (*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-156)))) (-1271 (*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-156)))) (-2403 (*1 *1 *1) (-5 *1 (-156))))
-(-13 (-1012) (-10 -8 (-15 -1810 ($)) (-15 -2587 ((-108) $)) (-15 -2258 ((-108) $)) (-15 -1649 ((-108) $ (-108))) (-15 -1271 ((-108) $ (-108))) (-15 -2403 ($ $))))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-1917 (((-3 $ "failed") $ $) 19)) (-3961 (($) 17 T CONST)) (-1540 (((-3 $ "failed") $) 34)) (-1537 (((-108) $) 31)) (-1239 (((-1066) $) 9)) (-4142 (((-1030) $) 10)) (-2188 (((-791) $) 11) (($ (-520)) 28)) (-3251 (((-706)) 29)) (-3504 (($ $ (-849)) 26) (($ $ (-706)) 33)) (-3560 (($) 18 T CONST)) (-3570 (($) 30 T CONST)) (-1530 (((-108) $ $) 6)) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-706)) 32)) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ $ $) 24)))
-(((-157) (-1195)) (T -157))
-NIL
-(-13 (-969) (-107 $ $) (-10 -7 (-6 (-4231 "*"))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-560 (-791)) . T) ((-588 $) . T) ((-662) . T) ((-975 $) . T) ((-969) . T) ((-976) . T) ((-1024) . T) ((-1012) . T))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-4040 ((|#1| $) 75)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) NIL)) (-2583 (($ $) NIL)) (-1671 (((-108) $) NIL)) (-1917 (((-3 $ "failed") $ $) NIL)) (-3024 (($ $) NIL)) (-1507 (((-391 $) $) NIL)) (-1327 (((-108) $ $) NIL)) (-3961 (($) NIL T CONST)) (-2276 (($ $ $) NIL)) (-3619 (($ $) 19)) (-2487 (($ |#1| (-1064 |#1|)) 48)) (-1540 (((-3 $ "failed") $) 117)) (-2253 (($ $ $) NIL)) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) NIL)) (-2036 (((-108) $) NIL)) (-3462 (((-1064 |#1|) $) 82)) (-2306 (((-1064 |#1|) $) 79)) (-3179 (((-1064 |#1|) $) 80)) (-1537 (((-108) $) NIL)) (-3396 (((-1064 |#1|) $) 88)) (-3188 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-2222 (($ (-586 $)) NIL) (($ $ $) NIL)) (-1239 (((-1066) $) NIL)) (-3093 (($ $) NIL)) (-4142 (((-1030) $) NIL)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) NIL)) (-2257 (($ (-586 $)) NIL) (($ $ $) NIL)) (-1916 (((-391 $) $) NIL)) (-1283 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) NIL)) (-2116 (($ $ (-520)) 91)) (-2230 (((-3 $ "failed") $ $) NIL)) (-2608 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-3704 (((-706) $) NIL)) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) NIL)) (-3488 (((-1064 |#1|) $) 89)) (-3382 (((-1064 (-380 |#1|)) $) 13)) (-2774 (($ (-380 |#1|)) 17) (($ |#1| (-1064 |#1|) (-1064 |#1|)) 38)) (-2759 (($ $) 93)) (-2188 (((-791) $) 127) (($ (-520)) 51) (($ |#1|) 52) (($ (-380 |#1|)) 36) (($ (-380 (-520))) NIL) (($ $) NIL)) (-3251 (((-706)) 64)) (-2559 (((-108) $ $) NIL)) (-3107 (((-1064 (-380 |#1|)) $) 18)) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL)) (-3560 (($) 25 T CONST)) (-3570 (($) 28 T CONST)) (-1530 (((-108) $ $) 35)) (-1619 (($ $ $) 115)) (-1611 (($ $) 106) (($ $ $) 103)) (-1601 (($ $ $) 101)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) 113) (($ $ $) 108) (($ $ |#1|) NIL) (($ |#1| $) 110) (($ (-380 |#1|) $) 111) (($ $ (-380 |#1|)) NIL) (($ (-380 (-520)) $) NIL) (($ $ (-380 (-520))) NIL)))
-(((-158 |#1|) (-13 (-37 |#1|) (-37 (-380 |#1|)) (-336) (-10 -8 (-15 -2774 ($ (-380 |#1|))) (-15 -2774 ($ |#1| (-1064 |#1|) (-1064 |#1|))) (-15 -2487 ($ |#1| (-1064 |#1|))) (-15 -2306 ((-1064 |#1|) $)) (-15 -3179 ((-1064 |#1|) $)) (-15 -3462 ((-1064 |#1|) $)) (-15 -4040 (|#1| $)) (-15 -3619 ($ $)) (-15 -3107 ((-1064 (-380 |#1|)) $)) (-15 -3382 ((-1064 (-380 |#1|)) $)) (-15 -3396 ((-1064 |#1|) $)) (-15 -3488 ((-1064 |#1|) $)) (-15 -2116 ($ $ (-520))) (-15 -2759 ($ $)))) (-281)) (T -158))
-((-2774 (*1 *1 *2) (-12 (-5 *2 (-380 *3)) (-4 *3 (-281)) (-5 *1 (-158 *3)))) (-2774 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1064 *2)) (-4 *2 (-281)) (-5 *1 (-158 *2)))) (-2487 (*1 *1 *2 *3) (-12 (-5 *3 (-1064 *2)) (-4 *2 (-281)) (-5 *1 (-158 *2)))) (-2306 (*1 *2 *1) (-12 (-5 *2 (-1064 *3)) (-5 *1 (-158 *3)) (-4 *3 (-281)))) (-3179 (*1 *2 *1) (-12 (-5 *2 (-1064 *3)) (-5 *1 (-158 *3)) (-4 *3 (-281)))) (-3462 (*1 *2 *1) (-12 (-5 *2 (-1064 *3)) (-5 *1 (-158 *3)) (-4 *3 (-281)))) (-4040 (*1 *2 *1) (-12 (-5 *1 (-158 *2)) (-4 *2 (-281)))) (-3619 (*1 *1 *1) (-12 (-5 *1 (-158 *2)) (-4 *2 (-281)))) (-3107 (*1 *2 *1) (-12 (-5 *2 (-1064 (-380 *3))) (-5 *1 (-158 *3)) (-4 *3 (-281)))) (-3382 (*1 *2 *1) (-12 (-5 *2 (-1064 (-380 *3))) (-5 *1 (-158 *3)) (-4 *3 (-281)))) (-3396 (*1 *2 *1) (-12 (-5 *2 (-1064 *3)) (-5 *1 (-158 *3)) (-4 *3 (-281)))) (-3488 (*1 *2 *1) (-12 (-5 *2 (-1064 *3)) (-5 *1 (-158 *3)) (-4 *3 (-281)))) (-2116 (*1 *1 *1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-158 *3)) (-4 *3 (-281)))) (-2759 (*1 *1 *1) (-12 (-5 *1 (-158 *2)) (-4 *2 (-281)))))
-(-13 (-37 |#1|) (-37 (-380 |#1|)) (-336) (-10 -8 (-15 -2774 ($ (-380 |#1|))) (-15 -2774 ($ |#1| (-1064 |#1|) (-1064 |#1|))) (-15 -2487 ($ |#1| (-1064 |#1|))) (-15 -2306 ((-1064 |#1|) $)) (-15 -3179 ((-1064 |#1|) $)) (-15 -3462 ((-1064 |#1|) $)) (-15 -4040 (|#1| $)) (-15 -3619 ($ $)) (-15 -3107 ((-1064 (-380 |#1|)) $)) (-15 -3382 ((-1064 (-380 |#1|)) $)) (-15 -3396 ((-1064 |#1|) $)) (-15 -3488 ((-1064 |#1|) $)) (-15 -2116 ($ $ (-520))) (-15 -2759 ($ $))))
-((-3967 (($ (-104) $) 13)) (-3138 (((-3 (-104) "failed") (-1083) $) 12)) (-2188 (((-791) $) 16)) (-1630 (((-586 (-104)) $) 7)))
-(((-159) (-13 (-560 (-791)) (-10 -8 (-15 -1630 ((-586 (-104)) $)) (-15 -3967 ($ (-104) $)) (-15 -3138 ((-3 (-104) "failed") (-1083) $))))) (T -159))
-((-1630 (*1 *2 *1) (-12 (-5 *2 (-586 (-104))) (-5 *1 (-159)))) (-3967 (*1 *1 *2 *1) (-12 (-5 *2 (-104)) (-5 *1 (-159)))) (-3138 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1083)) (-5 *2 (-104)) (-5 *1 (-159)))))
-(-13 (-560 (-791)) (-10 -8 (-15 -1630 ((-586 (-104)) $)) (-15 -3967 ($ (-104) $)) (-15 -3138 ((-3 (-104) "failed") (-1083) $))))
-((-1328 (((-1 (-871 |#1|) (-871 |#1|)) |#1|) 40)) (-3068 (((-871 |#1|) (-871 |#1|)) 19)) (-3435 (((-1 (-871 |#1|) (-871 |#1|)) |#1|) 36)) (-3060 (((-871 |#1|) (-871 |#1|)) 17)) (-1516 (((-871 |#1|) (-871 |#1|)) 25)) (-3808 (((-871 |#1|) (-871 |#1|)) 24)) (-1871 (((-871 |#1|) (-871 |#1|)) 23)) (-2910 (((-1 (-871 |#1|) (-871 |#1|)) |#1|) 37)) (-1217 (((-1 (-871 |#1|) (-871 |#1|)) |#1|) 35)) (-2605 (((-1 (-871 |#1|) (-871 |#1|)) |#1|) 34)) (-2202 (((-871 |#1|) (-871 |#1|)) 18)) (-1321 (((-1 (-871 |#1|) (-871 |#1|)) |#1| |#1|) 43)) (-2983 (((-871 |#1|) (-871 |#1|)) 8)) (-1728 (((-1 (-871 |#1|) (-871 |#1|)) |#1|) 39)) (-1768 (((-1 (-871 |#1|) (-871 |#1|)) |#1|) 38)))
-(((-160 |#1|) (-10 -7 (-15 -2983 ((-871 |#1|) (-871 |#1|))) (-15 -3060 ((-871 |#1|) (-871 |#1|))) (-15 -2202 ((-871 |#1|) (-871 |#1|))) (-15 -3068 ((-871 |#1|) (-871 |#1|))) (-15 -1871 ((-871 |#1|) (-871 |#1|))) (-15 -3808 ((-871 |#1|) (-871 |#1|))) (-15 -1516 ((-871 |#1|) (-871 |#1|))) (-15 -2605 ((-1 (-871 |#1|) (-871 |#1|)) |#1|)) (-15 -1217 ((-1 (-871 |#1|) (-871 |#1|)) |#1|)) (-15 -3435 ((-1 (-871 |#1|) (-871 |#1|)) |#1|)) (-15 -2910 ((-1 (-871 |#1|) (-871 |#1|)) |#1|)) (-15 -1768 ((-1 (-871 |#1|) (-871 |#1|)) |#1|)) (-15 -1728 ((-1 (-871 |#1|) (-871 |#1|)) |#1|)) (-15 -1328 ((-1 (-871 |#1|) (-871 |#1|)) |#1|)) (-15 -1321 ((-1 (-871 |#1|) (-871 |#1|)) |#1| |#1|))) (-13 (-336) (-1104) (-926))) (T -160))
-((-1321 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-871 *3) (-871 *3))) (-5 *1 (-160 *3)) (-4 *3 (-13 (-336) (-1104) (-926))))) (-1328 (*1 *2 *3) (-12 (-5 *2 (-1 (-871 *3) (-871 *3))) (-5 *1 (-160 *3)) (-4 *3 (-13 (-336) (-1104) (-926))))) (-1728 (*1 *2 *3) (-12 (-5 *2 (-1 (-871 *3) (-871 *3))) (-5 *1 (-160 *3)) (-4 *3 (-13 (-336) (-1104) (-926))))) (-1768 (*1 *2 *3) (-12 (-5 *2 (-1 (-871 *3) (-871 *3))) (-5 *1 (-160 *3)) (-4 *3 (-13 (-336) (-1104) (-926))))) (-2910 (*1 *2 *3) (-12 (-5 *2 (-1 (-871 *3) (-871 *3))) (-5 *1 (-160 *3)) (-4 *3 (-13 (-336) (-1104) (-926))))) (-3435 (*1 *2 *3) (-12 (-5 *2 (-1 (-871 *3) (-871 *3))) (-5 *1 (-160 *3)) (-4 *3 (-13 (-336) (-1104) (-926))))) (-1217 (*1 *2 *3) (-12 (-5 *2 (-1 (-871 *3) (-871 *3))) (-5 *1 (-160 *3)) (-4 *3 (-13 (-336) (-1104) (-926))))) (-2605 (*1 *2 *3) (-12 (-5 *2 (-1 (-871 *3) (-871 *3))) (-5 *1 (-160 *3)) (-4 *3 (-13 (-336) (-1104) (-926))))) (-1516 (*1 *2 *2) (-12 (-5 *2 (-871 *3)) (-4 *3 (-13 (-336) (-1104) (-926))) (-5 *1 (-160 *3)))) (-3808 (*1 *2 *2) (-12 (-5 *2 (-871 *3)) (-4 *3 (-13 (-336) (-1104) (-926))) (-5 *1 (-160 *3)))) (-1871 (*1 *2 *2) (-12 (-5 *2 (-871 *3)) (-4 *3 (-13 (-336) (-1104) (-926))) (-5 *1 (-160 *3)))) (-3068 (*1 *2 *2) (-12 (-5 *2 (-871 *3)) (-4 *3 (-13 (-336) (-1104) (-926))) (-5 *1 (-160 *3)))) (-2202 (*1 *2 *2) (-12 (-5 *2 (-871 *3)) (-4 *3 (-13 (-336) (-1104) (-926))) (-5 *1 (-160 *3)))) (-3060 (*1 *2 *2) (-12 (-5 *2 (-871 *3)) (-4 *3 (-13 (-336) (-1104) (-926))) (-5 *1 (-160 *3)))) (-2983 (*1 *2 *2) (-12 (-5 *2 (-871 *3)) (-4 *3 (-13 (-336) (-1104) (-926))) (-5 *1 (-160 *3)))))
-(-10 -7 (-15 -2983 ((-871 |#1|) (-871 |#1|))) (-15 -3060 ((-871 |#1|) (-871 |#1|))) (-15 -2202 ((-871 |#1|) (-871 |#1|))) (-15 -3068 ((-871 |#1|) (-871 |#1|))) (-15 -1871 ((-871 |#1|) (-871 |#1|))) (-15 -3808 ((-871 |#1|) (-871 |#1|))) (-15 -1516 ((-871 |#1|) (-871 |#1|))) (-15 -2605 ((-1 (-871 |#1|) (-871 |#1|)) |#1|)) (-15 -1217 ((-1 (-871 |#1|) (-871 |#1|)) |#1|)) (-15 -3435 ((-1 (-871 |#1|) (-871 |#1|)) |#1|)) (-15 -2910 ((-1 (-871 |#1|) (-871 |#1|)) |#1|)) (-15 -1768 ((-1 (-871 |#1|) (-871 |#1|)) |#1|)) (-15 -1728 ((-1 (-871 |#1|) (-871 |#1|)) |#1|)) (-15 -1328 ((-1 (-871 |#1|) (-871 |#1|)) |#1|)) (-15 -1321 ((-1 (-871 |#1|) (-871 |#1|)) |#1| |#1|)))
-((-2948 ((|#2| |#3|) 27)))
-(((-161 |#1| |#2| |#3|) (-10 -7 (-15 -2948 (|#2| |#3|))) (-157) (-1140 |#1|) (-660 |#1| |#2|)) (T -161))
-((-2948 (*1 *2 *3) (-12 (-4 *4 (-157)) (-4 *2 (-1140 *4)) (-5 *1 (-161 *4 *2 *3)) (-4 *3 (-660 *4 *2)))))
-(-10 -7 (-15 -2948 (|#2| |#3|)))
-((-1272 (((-817 |#1| |#3|) |#3| (-820 |#1|) (-817 |#1| |#3|)) 47 (|has| (-880 |#2|) (-814 |#1|)))))
-(((-162 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-880 |#2|) (-814 |#1|)) (-15 -1272 ((-817 |#1| |#3|) |#3| (-820 |#1|) (-817 |#1| |#3|))) |%noBranch|)) (-1012) (-13 (-814 |#1|) (-157)) (-151 |#2|)) (T -162))
-((-1272 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-817 *5 *3)) (-5 *4 (-820 *5)) (-4 *5 (-1012)) (-4 *3 (-151 *6)) (-4 (-880 *6) (-814 *5)) (-4 *6 (-13 (-814 *5) (-157))) (-5 *1 (-162 *5 *6 *3)))))
-(-10 -7 (IF (|has| (-880 |#2|) (-814 |#1|)) (-15 -1272 ((-817 |#1| |#3|) |#3| (-820 |#1|) (-817 |#1| |#3|))) |%noBranch|))
-((-1219 (((-586 |#1|) (-586 |#1|) |#1|) 36)) (-2302 (((-586 |#1|) |#1| (-586 |#1|)) 19)) (-3055 (((-586 |#1|) (-586 (-586 |#1|)) (-586 |#1|)) 31) ((|#1| (-586 |#1|) (-586 |#1|)) 29)))
-(((-163 |#1|) (-10 -7 (-15 -2302 ((-586 |#1|) |#1| (-586 |#1|))) (-15 -3055 (|#1| (-586 |#1|) (-586 |#1|))) (-15 -3055 ((-586 |#1|) (-586 (-586 |#1|)) (-586 |#1|))) (-15 -1219 ((-586 |#1|) (-586 |#1|) |#1|))) (-281)) (T -163))
-((-1219 (*1 *2 *2 *3) (-12 (-5 *2 (-586 *3)) (-4 *3 (-281)) (-5 *1 (-163 *3)))) (-3055 (*1 *2 *3 *2) (-12 (-5 *3 (-586 (-586 *4))) (-5 *2 (-586 *4)) (-4 *4 (-281)) (-5 *1 (-163 *4)))) (-3055 (*1 *2 *3 *3) (-12 (-5 *3 (-586 *2)) (-5 *1 (-163 *2)) (-4 *2 (-281)))) (-2302 (*1 *2 *3 *2) (-12 (-5 *2 (-586 *3)) (-4 *3 (-281)) (-5 *1 (-163 *3)))))
-(-10 -7 (-15 -2302 ((-586 |#1|) |#1| (-586 |#1|))) (-15 -3055 (|#1| (-586 |#1|) (-586 |#1|))) (-15 -3055 ((-586 |#1|) (-586 (-586 |#1|)) (-586 |#1|))) (-15 -1219 ((-586 |#1|) (-586 |#1|) |#1|)))
-((-1575 (((-2 (|:| |start| |#2|) (|:| -3493 (-391 |#2|))) |#2|) 61)) (-2725 ((|#1| |#1|) 54)) (-1987 (((-154 |#1|) |#2|) 83)) (-1316 ((|#1| |#2|) 123) ((|#1| |#2| |#1|) 81)) (-1816 ((|#2| |#2|) 82)) (-1632 (((-391 |#2|) |#2| |#1|) 113) (((-391 |#2|) |#2| |#1| (-108)) 80)) (-1434 ((|#1| |#2|) 112)) (-1399 ((|#2| |#2|) 119)) (-1916 (((-391 |#2|) |#2|) 134) (((-391 |#2|) |#2| |#1|) 32) (((-391 |#2|) |#2| |#1| (-108)) 133)) (-1845 (((-586 (-2 (|:| -3493 (-586 |#2|)) (|:| -2967 |#1|))) |#2| |#2|) 132) (((-586 (-2 (|:| -3493 (-586 |#2|)) (|:| -2967 |#1|))) |#2| |#2| (-108)) 75)) (-2471 (((-586 (-154 |#1|)) |#2| |#1|) 40) (((-586 (-154 |#1|)) |#2|) 41)))
-(((-164 |#1| |#2|) (-10 -7 (-15 -2471 ((-586 (-154 |#1|)) |#2|)) (-15 -2471 ((-586 (-154 |#1|)) |#2| |#1|)) (-15 -1845 ((-586 (-2 (|:| -3493 (-586 |#2|)) (|:| -2967 |#1|))) |#2| |#2| (-108))) (-15 -1845 ((-586 (-2 (|:| -3493 (-586 |#2|)) (|:| -2967 |#1|))) |#2| |#2|)) (-15 -1916 ((-391 |#2|) |#2| |#1| (-108))) (-15 -1916 ((-391 |#2|) |#2| |#1|)) (-15 -1916 ((-391 |#2|) |#2|)) (-15 -1399 (|#2| |#2|)) (-15 -1434 (|#1| |#2|)) (-15 -1632 ((-391 |#2|) |#2| |#1| (-108))) (-15 -1632 ((-391 |#2|) |#2| |#1|)) (-15 -1816 (|#2| |#2|)) (-15 -1316 (|#1| |#2| |#1|)) (-15 -1316 (|#1| |#2|)) (-15 -1987 ((-154 |#1|) |#2|)) (-15 -2725 (|#1| |#1|)) (-15 -1575 ((-2 (|:| |start| |#2|) (|:| -3493 (-391 |#2|))) |#2|))) (-13 (-336) (-781)) (-1140 (-154 |#1|))) (T -164))
-((-1575 (*1 *2 *3) (-12 (-4 *4 (-13 (-336) (-781))) (-5 *2 (-2 (|:| |start| *3) (|:| -3493 (-391 *3)))) (-5 *1 (-164 *4 *3)) (-4 *3 (-1140 (-154 *4))))) (-2725 (*1 *2 *2) (-12 (-4 *2 (-13 (-336) (-781))) (-5 *1 (-164 *2 *3)) (-4 *3 (-1140 (-154 *2))))) (-1987 (*1 *2 *3) (-12 (-5 *2 (-154 *4)) (-5 *1 (-164 *4 *3)) (-4 *4 (-13 (-336) (-781))) (-4 *3 (-1140 *2)))) (-1316 (*1 *2 *3) (-12 (-4 *2 (-13 (-336) (-781))) (-5 *1 (-164 *2 *3)) (-4 *3 (-1140 (-154 *2))))) (-1316 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-336) (-781))) (-5 *1 (-164 *2 *3)) (-4 *3 (-1140 (-154 *2))))) (-1816 (*1 *2 *2) (-12 (-4 *3 (-13 (-336) (-781))) (-5 *1 (-164 *3 *2)) (-4 *2 (-1140 (-154 *3))))) (-1632 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-336) (-781))) (-5 *2 (-391 *3)) (-5 *1 (-164 *4 *3)) (-4 *3 (-1140 (-154 *4))))) (-1632 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-108)) (-4 *4 (-13 (-336) (-781))) (-5 *2 (-391 *3)) (-5 *1 (-164 *4 *3)) (-4 *3 (-1140 (-154 *4))))) (-1434 (*1 *2 *3) (-12 (-4 *2 (-13 (-336) (-781))) (-5 *1 (-164 *2 *3)) (-4 *3 (-1140 (-154 *2))))) (-1399 (*1 *2 *2) (-12 (-4 *3 (-13 (-336) (-781))) (-5 *1 (-164 *3 *2)) (-4 *2 (-1140 (-154 *3))))) (-1916 (*1 *2 *3) (-12 (-4 *4 (-13 (-336) (-781))) (-5 *2 (-391 *3)) (-5 *1 (-164 *4 *3)) (-4 *3 (-1140 (-154 *4))))) (-1916 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-336) (-781))) (-5 *2 (-391 *3)) (-5 *1 (-164 *4 *3)) (-4 *3 (-1140 (-154 *4))))) (-1916 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-108)) (-4 *4 (-13 (-336) (-781))) (-5 *2 (-391 *3)) (-5 *1 (-164 *4 *3)) (-4 *3 (-1140 (-154 *4))))) (-1845 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-336) (-781))) (-5 *2 (-586 (-2 (|:| -3493 (-586 *3)) (|:| -2967 *4)))) (-5 *1 (-164 *4 *3)) (-4 *3 (-1140 (-154 *4))))) (-1845 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-336) (-781))) (-5 *2 (-586 (-2 (|:| -3493 (-586 *3)) (|:| -2967 *5)))) (-5 *1 (-164 *5 *3)) (-4 *3 (-1140 (-154 *5))))) (-2471 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-336) (-781))) (-5 *2 (-586 (-154 *4))) (-5 *1 (-164 *4 *3)) (-4 *3 (-1140 (-154 *4))))) (-2471 (*1 *2 *3) (-12 (-4 *4 (-13 (-336) (-781))) (-5 *2 (-586 (-154 *4))) (-5 *1 (-164 *4 *3)) (-4 *3 (-1140 (-154 *4))))))
-(-10 -7 (-15 -2471 ((-586 (-154 |#1|)) |#2|)) (-15 -2471 ((-586 (-154 |#1|)) |#2| |#1|)) (-15 -1845 ((-586 (-2 (|:| -3493 (-586 |#2|)) (|:| -2967 |#1|))) |#2| |#2| (-108))) (-15 -1845 ((-586 (-2 (|:| -3493 (-586 |#2|)) (|:| -2967 |#1|))) |#2| |#2|)) (-15 -1916 ((-391 |#2|) |#2| |#1| (-108))) (-15 -1916 ((-391 |#2|) |#2| |#1|)) (-15 -1916 ((-391 |#2|) |#2|)) (-15 -1399 (|#2| |#2|)) (-15 -1434 (|#1| |#2|)) (-15 -1632 ((-391 |#2|) |#2| |#1| (-108))) (-15 -1632 ((-391 |#2|) |#2| |#1|)) (-15 -1816 (|#2| |#2|)) (-15 -1316 (|#1| |#2| |#1|)) (-15 -1316 (|#1| |#2|)) (-15 -1987 ((-154 |#1|) |#2|)) (-15 -2725 (|#1| |#1|)) (-15 -1575 ((-2 (|:| |start| |#2|) (|:| -3493 (-391 |#2|))) |#2|)))
-((-3265 (((-3 |#2| "failed") |#2|) 14)) (-2441 (((-706) |#2|) 16)) (-1806 ((|#2| |#2| |#2|) 18)))
-(((-165 |#1| |#2|) (-10 -7 (-15 -3265 ((-3 |#2| "failed") |#2|)) (-15 -2441 ((-706) |#2|)) (-15 -1806 (|#2| |#2| |#2|))) (-1118) (-613 |#1|)) (T -165))
-((-1806 (*1 *2 *2 *2) (-12 (-4 *3 (-1118)) (-5 *1 (-165 *3 *2)) (-4 *2 (-613 *3)))) (-2441 (*1 *2 *3) (-12 (-4 *4 (-1118)) (-5 *2 (-706)) (-5 *1 (-165 *4 *3)) (-4 *3 (-613 *4)))) (-3265 (*1 *2 *2) (|partial| -12 (-4 *3 (-1118)) (-5 *1 (-165 *3 *2)) (-4 *2 (-613 *3)))))
-(-10 -7 (-15 -3265 ((-3 |#2| "failed") |#2|)) (-15 -2441 ((-706) |#2|)) (-15 -1806 (|#2| |#2| |#2|)))
-((-2772 ((|#2| |#2|) 28)) (-2685 (((-108) |#2|) 19)) (-1936 (((-289 |#1|) |#2|) 12)) (-1947 (((-289 |#1|) |#2|) 14)) (-2310 ((|#2| |#2| (-1083)) 68) ((|#2| |#2|) 69)) (-3244 (((-154 (-289 |#1|)) |#2|) 9)) (-2343 ((|#2| |#2| (-1083)) 65) ((|#2| |#2|) 58)))
-(((-166 |#1| |#2|) (-10 -7 (-15 -2310 (|#2| |#2|)) (-15 -2310 (|#2| |#2| (-1083))) (-15 -2343 (|#2| |#2|)) (-15 -2343 (|#2| |#2| (-1083))) (-15 -1936 ((-289 |#1|) |#2|)) (-15 -1947 ((-289 |#1|) |#2|)) (-15 -2685 ((-108) |#2|)) (-15 -2772 (|#2| |#2|)) (-15 -3244 ((-154 (-289 |#1|)) |#2|))) (-13 (-512) (-783) (-960 (-520))) (-13 (-27) (-1104) (-403 (-154 |#1|)))) (T -166))
-((-3244 (*1 *2 *3) (-12 (-4 *4 (-13 (-512) (-783) (-960 (-520)))) (-5 *2 (-154 (-289 *4))) (-5 *1 (-166 *4 *3)) (-4 *3 (-13 (-27) (-1104) (-403 (-154 *4)))))) (-2772 (*1 *2 *2) (-12 (-4 *3 (-13 (-512) (-783) (-960 (-520)))) (-5 *1 (-166 *3 *2)) (-4 *2 (-13 (-27) (-1104) (-403 (-154 *3)))))) (-2685 (*1 *2 *3) (-12 (-4 *4 (-13 (-512) (-783) (-960 (-520)))) (-5 *2 (-108)) (-5 *1 (-166 *4 *3)) (-4 *3 (-13 (-27) (-1104) (-403 (-154 *4)))))) (-1947 (*1 *2 *3) (-12 (-4 *4 (-13 (-512) (-783) (-960 (-520)))) (-5 *2 (-289 *4)) (-5 *1 (-166 *4 *3)) (-4 *3 (-13 (-27) (-1104) (-403 (-154 *4)))))) (-1936 (*1 *2 *3) (-12 (-4 *4 (-13 (-512) (-783) (-960 (-520)))) (-5 *2 (-289 *4)) (-5 *1 (-166 *4 *3)) (-4 *3 (-13 (-27) (-1104) (-403 (-154 *4)))))) (-2343 (*1 *2 *2 *3) (-12 (-5 *3 (-1083)) (-4 *4 (-13 (-512) (-783) (-960 (-520)))) (-5 *1 (-166 *4 *2)) (-4 *2 (-13 (-27) (-1104) (-403 (-154 *4)))))) (-2343 (*1 *2 *2) (-12 (-4 *3 (-13 (-512) (-783) (-960 (-520)))) (-5 *1 (-166 *3 *2)) (-4 *2 (-13 (-27) (-1104) (-403 (-154 *3)))))) (-2310 (*1 *2 *2 *3) (-12 (-5 *3 (-1083)) (-4 *4 (-13 (-512) (-783) (-960 (-520)))) (-5 *1 (-166 *4 *2)) (-4 *2 (-13 (-27) (-1104) (-403 (-154 *4)))))) (-2310 (*1 *2 *2) (-12 (-4 *3 (-13 (-512) (-783) (-960 (-520)))) (-5 *1 (-166 *3 *2)) (-4 *2 (-13 (-27) (-1104) (-403 (-154 *3)))))))
-(-10 -7 (-15 -2310 (|#2| |#2|)) (-15 -2310 (|#2| |#2| (-1083))) (-15 -2343 (|#2| |#2|)) (-15 -2343 (|#2| |#2| (-1083))) (-15 -1936 ((-289 |#1|) |#2|)) (-15 -1947 ((-289 |#1|) |#2|)) (-15 -2685 ((-108) |#2|)) (-15 -2772 (|#2| |#2|)) (-15 -3244 ((-154 (-289 |#1|)) |#2|)))
-((-2665 (((-1164 (-626 (-880 |#1|))) (-1164 (-626 |#1|))) 22)) (-2188 (((-1164 (-626 (-380 (-880 |#1|)))) (-1164 (-626 |#1|))) 30)))
-(((-167 |#1|) (-10 -7 (-15 -2665 ((-1164 (-626 (-880 |#1|))) (-1164 (-626 |#1|)))) (-15 -2188 ((-1164 (-626 (-380 (-880 |#1|)))) (-1164 (-626 |#1|))))) (-157)) (T -167))
-((-2188 (*1 *2 *3) (-12 (-5 *3 (-1164 (-626 *4))) (-4 *4 (-157)) (-5 *2 (-1164 (-626 (-380 (-880 *4))))) (-5 *1 (-167 *4)))) (-2665 (*1 *2 *3) (-12 (-5 *3 (-1164 (-626 *4))) (-4 *4 (-157)) (-5 *2 (-1164 (-626 (-880 *4)))) (-5 *1 (-167 *4)))))
-(-10 -7 (-15 -2665 ((-1164 (-626 (-880 |#1|))) (-1164 (-626 |#1|)))) (-15 -2188 ((-1164 (-626 (-380 (-880 |#1|)))) (-1164 (-626 |#1|)))))
-((-3659 (((-1085 (-380 (-520))) (-1085 (-380 (-520))) (-1085 (-380 (-520)))) 66)) (-3947 (((-1085 (-380 (-520))) (-586 (-520)) (-586 (-520))) 74)) (-1330 (((-1085 (-380 (-520))) (-520)) 40)) (-3195 (((-1085 (-380 (-520))) (-520)) 52)) (-2286 (((-380 (-520)) (-1085 (-380 (-520)))) 62)) (-3180 (((-1085 (-380 (-520))) (-520)) 32)) (-3263 (((-1085 (-380 (-520))) (-520)) 48)) (-1380 (((-1085 (-380 (-520))) (-520)) 46)) (-3283 (((-1085 (-380 (-520))) (-1085 (-380 (-520))) (-1085 (-380 (-520)))) 60)) (-2759 (((-1085 (-380 (-520))) (-520)) 25)) (-2333 (((-380 (-520)) (-1085 (-380 (-520))) (-1085 (-380 (-520)))) 64)) (-3471 (((-1085 (-380 (-520))) (-520)) 30)) (-3640 (((-1085 (-380 (-520))) (-586 (-520))) 71)))
-(((-168) (-10 -7 (-15 -2759 ((-1085 (-380 (-520))) (-520))) (-15 -1330 ((-1085 (-380 (-520))) (-520))) (-15 -3180 ((-1085 (-380 (-520))) (-520))) (-15 -3471 ((-1085 (-380 (-520))) (-520))) (-15 -1380 ((-1085 (-380 (-520))) (-520))) (-15 -3263 ((-1085 (-380 (-520))) (-520))) (-15 -3195 ((-1085 (-380 (-520))) (-520))) (-15 -2333 ((-380 (-520)) (-1085 (-380 (-520))) (-1085 (-380 (-520))))) (-15 -3283 ((-1085 (-380 (-520))) (-1085 (-380 (-520))) (-1085 (-380 (-520))))) (-15 -2286 ((-380 (-520)) (-1085 (-380 (-520))))) (-15 -3659 ((-1085 (-380 (-520))) (-1085 (-380 (-520))) (-1085 (-380 (-520))))) (-15 -3640 ((-1085 (-380 (-520))) (-586 (-520)))) (-15 -3947 ((-1085 (-380 (-520))) (-586 (-520)) (-586 (-520)))))) (T -168))
-((-3947 (*1 *2 *3 *3) (-12 (-5 *3 (-586 (-520))) (-5 *2 (-1085 (-380 (-520)))) (-5 *1 (-168)))) (-3640 (*1 *2 *3) (-12 (-5 *3 (-586 (-520))) (-5 *2 (-1085 (-380 (-520)))) (-5 *1 (-168)))) (-3659 (*1 *2 *2 *2) (-12 (-5 *2 (-1085 (-380 (-520)))) (-5 *1 (-168)))) (-2286 (*1 *2 *3) (-12 (-5 *3 (-1085 (-380 (-520)))) (-5 *2 (-380 (-520))) (-5 *1 (-168)))) (-3283 (*1 *2 *2 *2) (-12 (-5 *2 (-1085 (-380 (-520)))) (-5 *1 (-168)))) (-2333 (*1 *2 *3 *3) (-12 (-5 *3 (-1085 (-380 (-520)))) (-5 *2 (-380 (-520))) (-5 *1 (-168)))) (-3195 (*1 *2 *3) (-12 (-5 *2 (-1085 (-380 (-520)))) (-5 *1 (-168)) (-5 *3 (-520)))) (-3263 (*1 *2 *3) (-12 (-5 *2 (-1085 (-380 (-520)))) (-5 *1 (-168)) (-5 *3 (-520)))) (-1380 (*1 *2 *3) (-12 (-5 *2 (-1085 (-380 (-520)))) (-5 *1 (-168)) (-5 *3 (-520)))) (-3471 (*1 *2 *3) (-12 (-5 *2 (-1085 (-380 (-520)))) (-5 *1 (-168)) (-5 *3 (-520)))) (-3180 (*1 *2 *3) (-12 (-5 *2 (-1085 (-380 (-520)))) (-5 *1 (-168)) (-5 *3 (-520)))) (-1330 (*1 *2 *3) (-12 (-5 *2 (-1085 (-380 (-520)))) (-5 *1 (-168)) (-5 *3 (-520)))) (-2759 (*1 *2 *3) (-12 (-5 *2 (-1085 (-380 (-520)))) (-5 *1 (-168)) (-5 *3 (-520)))))
-(-10 -7 (-15 -2759 ((-1085 (-380 (-520))) (-520))) (-15 -1330 ((-1085 (-380 (-520))) (-520))) (-15 -3180 ((-1085 (-380 (-520))) (-520))) (-15 -3471 ((-1085 (-380 (-520))) (-520))) (-15 -1380 ((-1085 (-380 (-520))) (-520))) (-15 -3263 ((-1085 (-380 (-520))) (-520))) (-15 -3195 ((-1085 (-380 (-520))) (-520))) (-15 -2333 ((-380 (-520)) (-1085 (-380 (-520))) (-1085 (-380 (-520))))) (-15 -3283 ((-1085 (-380 (-520))) (-1085 (-380 (-520))) (-1085 (-380 (-520))))) (-15 -2286 ((-380 (-520)) (-1085 (-380 (-520))))) (-15 -3659 ((-1085 (-380 (-520))) (-1085 (-380 (-520))) (-1085 (-380 (-520))))) (-15 -3640 ((-1085 (-380 (-520))) (-586 (-520)))) (-15 -3947 ((-1085 (-380 (-520))) (-586 (-520)) (-586 (-520)))))
-((-2342 (((-391 (-1079 (-520))) (-520)) 28)) (-3811 (((-586 (-1079 (-520))) (-520)) 23)) (-1668 (((-1079 (-520)) (-520)) 21)))
-(((-169) (-10 -7 (-15 -3811 ((-586 (-1079 (-520))) (-520))) (-15 -1668 ((-1079 (-520)) (-520))) (-15 -2342 ((-391 (-1079 (-520))) (-520))))) (T -169))
-((-2342 (*1 *2 *3) (-12 (-5 *2 (-391 (-1079 (-520)))) (-5 *1 (-169)) (-5 *3 (-520)))) (-1668 (*1 *2 *3) (-12 (-5 *2 (-1079 (-520))) (-5 *1 (-169)) (-5 *3 (-520)))) (-3811 (*1 *2 *3) (-12 (-5 *2 (-586 (-1079 (-520)))) (-5 *1 (-169)) (-5 *3 (-520)))))
-(-10 -7 (-15 -3811 ((-586 (-1079 (-520))) (-520))) (-15 -1668 ((-1079 (-520)) (-520))) (-15 -2342 ((-391 (-1079 (-520))) (-520))))
-((-3565 (((-1064 (-201)) (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 101)) (-1492 (((-586 (-1066)) (-1064 (-201))) NIL)) (-3671 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 77)) (-1790 (((-586 (-201)) (-289 (-201)) (-1083) (-1007 (-776 (-201)))) NIL)) (-3359 (((-586 (-1066)) (-586 (-201))) NIL)) (-2281 (((-201) (-1007 (-776 (-201)))) 22)) (-1466 (((-201) (-1007 (-776 (-201)))) 23)) (-1877 (((-352) (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 93)) (-2928 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 40)) (-2125 (((-1066) (-201)) NIL)) (-3657 (((-1066) (-586 (-1066))) 19)) (-3337 (((-958) (-1083) (-1083) (-958)) 12)))
-(((-170) (-10 -7 (-15 -3671 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))) (-15 -2928 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))) (-15 -2281 ((-201) (-1007 (-776 (-201))))) (-15 -1466 ((-201) (-1007 (-776 (-201))))) (-15 -1877 ((-352) (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))) (-15 -1790 ((-586 (-201)) (-289 (-201)) (-1083) (-1007 (-776 (-201))))) (-15 -3565 ((-1064 (-201)) (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))) (-15 -2125 ((-1066) (-201))) (-15 -3359 ((-586 (-1066)) (-586 (-201)))) (-15 -1492 ((-586 (-1066)) (-1064 (-201)))) (-15 -3657 ((-1066) (-586 (-1066)))) (-15 -3337 ((-958) (-1083) (-1083) (-958))))) (T -170))
-((-3337 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-958)) (-5 *3 (-1083)) (-5 *1 (-170)))) (-3657 (*1 *2 *3) (-12 (-5 *3 (-586 (-1066))) (-5 *2 (-1066)) (-5 *1 (-170)))) (-1492 (*1 *2 *3) (-12 (-5 *3 (-1064 (-201))) (-5 *2 (-586 (-1066))) (-5 *1 (-170)))) (-3359 (*1 *2 *3) (-12 (-5 *3 (-586 (-201))) (-5 *2 (-586 (-1066))) (-5 *1 (-170)))) (-2125 (*1 *2 *3) (-12 (-5 *3 (-201)) (-5 *2 (-1066)) (-5 *1 (-170)))) (-3565 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (-5 *2 (-1064 (-201))) (-5 *1 (-170)))) (-1790 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-289 (-201))) (-5 *4 (-1083)) (-5 *5 (-1007 (-776 (-201)))) (-5 *2 (-586 (-201))) (-5 *1 (-170)))) (-1877 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (-5 *2 (-352)) (-5 *1 (-170)))) (-1466 (*1 *2 *3) (-12 (-5 *3 (-1007 (-776 (-201)))) (-5 *2 (-201)) (-5 *1 (-170)))) (-2281 (*1 *2 *3) (-12 (-5 *3 (-1007 (-776 (-201)))) (-5 *2 (-201)) (-5 *1 (-170)))) (-2928 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-170)))) (-3671 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-170)))))
-(-10 -7 (-15 -3671 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))) (-15 -2928 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))) (-15 -2281 ((-201) (-1007 (-776 (-201))))) (-15 -1466 ((-201) (-1007 (-776 (-201))))) (-15 -1877 ((-352) (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))) (-15 -1790 ((-586 (-201)) (-289 (-201)) (-1083) (-1007 (-776 (-201))))) (-15 -3565 ((-1064 (-201)) (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))) (-15 -2125 ((-1066) (-201))) (-15 -3359 ((-586 (-1066)) (-586 (-201)))) (-15 -1492 ((-586 (-1066)) (-1064 (-201)))) (-15 -3657 ((-1066) (-586 (-1066)))) (-15 -3337 ((-958) (-1083) (-1083) (-958))))
-((-1414 (((-108) $ $) NIL)) (-1336 (((-958) (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201))) (-958)) 53) (((-958) (-2 (|:| |fn| (-289 (-201))) (|:| -1667 (-586 (-1007 (-776 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201))) (-958)) NIL)) (-1796 (((-2 (|:| -1796 (-352)) (|:| |explanations| (-1066)) (|:| |extra| (-958))) (-981) (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 28) (((-2 (|:| -1796 (-352)) (|:| |explanations| (-1066)) (|:| |extra| (-958))) (-981) (-2 (|:| |fn| (-289 (-201))) (|:| -1667 (-586 (-1007 (-776 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) NIL)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2188 (((-791) $) NIL)) (-1530 (((-108) $ $) NIL)))
-(((-171) (-722)) (T -171))
-NIL
-(-722)
-((-1414 (((-108) $ $) NIL)) (-1336 (((-958) (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201))) (-958)) 58) (((-958) (-2 (|:| |fn| (-289 (-201))) (|:| -1667 (-586 (-1007 (-776 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201))) (-958)) NIL)) (-1796 (((-2 (|:| -1796 (-352)) (|:| |explanations| (-1066)) (|:| |extra| (-958))) (-981) (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 37) (((-2 (|:| -1796 (-352)) (|:| |explanations| (-1066)) (|:| |extra| (-958))) (-981) (-2 (|:| |fn| (-289 (-201))) (|:| -1667 (-586 (-1007 (-776 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) NIL)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2188 (((-791) $) NIL)) (-1530 (((-108) $ $) NIL)))
-(((-172) (-722)) (T -172))
-NIL
-(-722)
-((-1414 (((-108) $ $) NIL)) (-1336 (((-958) (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201))) (-958)) 67) (((-958) (-2 (|:| |fn| (-289 (-201))) (|:| -1667 (-586 (-1007 (-776 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201))) (-958)) NIL)) (-1796 (((-2 (|:| -1796 (-352)) (|:| |explanations| (-1066)) (|:| |extra| (-958))) (-981) (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 36) (((-2 (|:| -1796 (-352)) (|:| |explanations| (-1066)) (|:| |extra| (-958))) (-981) (-2 (|:| |fn| (-289 (-201))) (|:| -1667 (-586 (-1007 (-776 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) NIL)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2188 (((-791) $) NIL)) (-1530 (((-108) $ $) NIL)))
-(((-173) (-722)) (T -173))
-NIL
-(-722)
-((-1414 (((-108) $ $) NIL)) (-1336 (((-958) (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201))) (-958)) 54) (((-958) (-2 (|:| |fn| (-289 (-201))) (|:| -1667 (-586 (-1007 (-776 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201))) (-958)) NIL)) (-1796 (((-2 (|:| -1796 (-352)) (|:| |explanations| (-1066)) (|:| |extra| (-958))) (-981) (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 30) (((-2 (|:| -1796 (-352)) (|:| |explanations| (-1066)) (|:| |extra| (-958))) (-981) (-2 (|:| |fn| (-289 (-201))) (|:| -1667 (-586 (-1007 (-776 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) NIL)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2188 (((-791) $) NIL)) (-1530 (((-108) $ $) NIL)))
-(((-174) (-722)) (T -174))
-NIL
-(-722)
-((-1414 (((-108) $ $) NIL)) (-1336 (((-958) (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201))) (-958)) 65) (((-958) (-2 (|:| |fn| (-289 (-201))) (|:| -1667 (-586 (-1007 (-776 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201))) (-958)) NIL)) (-1796 (((-2 (|:| -1796 (-352)) (|:| |explanations| (-1066)) (|:| |extra| (-958))) (-981) (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 35) (((-2 (|:| -1796 (-352)) (|:| |explanations| (-1066)) (|:| |extra| (-958))) (-981) (-2 (|:| |fn| (-289 (-201))) (|:| -1667 (-586 (-1007 (-776 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) NIL)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2188 (((-791) $) NIL)) (-1530 (((-108) $ $) NIL)))
-(((-175) (-722)) (T -175))
-NIL
-(-722)
-((-1414 (((-108) $ $) NIL)) (-1336 (((-958) (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201))) (-958)) 71) (((-958) (-2 (|:| |fn| (-289 (-201))) (|:| -1667 (-586 (-1007 (-776 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201))) (-958)) NIL)) (-1796 (((-2 (|:| -1796 (-352)) (|:| |explanations| (-1066)) (|:| |extra| (-958))) (-981) (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 33) (((-2 (|:| -1796 (-352)) (|:| |explanations| (-1066)) (|:| |extra| (-958))) (-981) (-2 (|:| |fn| (-289 (-201))) (|:| -1667 (-586 (-1007 (-776 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) NIL)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2188 (((-791) $) NIL)) (-1530 (((-108) $ $) NIL)))
-(((-176) (-722)) (T -176))
-NIL
-(-722)
-((-1414 (((-108) $ $) NIL)) (-1336 (((-958) (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201))) (-958)) 78) (((-958) (-2 (|:| |fn| (-289 (-201))) (|:| -1667 (-586 (-1007 (-776 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201))) (-958)) NIL)) (-1796 (((-2 (|:| -1796 (-352)) (|:| |explanations| (-1066)) (|:| |extra| (-958))) (-981) (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 43) (((-2 (|:| -1796 (-352)) (|:| |explanations| (-1066)) (|:| |extra| (-958))) (-981) (-2 (|:| |fn| (-289 (-201))) (|:| -1667 (-586 (-1007 (-776 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) NIL)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2188 (((-791) $) NIL)) (-1530 (((-108) $ $) NIL)))
-(((-177) (-722)) (T -177))
-NIL
-(-722)
-((-1414 (((-108) $ $) NIL)) (-1336 (((-958) (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201))) (-958)) 68) (((-958) (-2 (|:| |fn| (-289 (-201))) (|:| -1667 (-586 (-1007 (-776 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201))) (-958)) NIL)) (-1796 (((-2 (|:| -1796 (-352)) (|:| |explanations| (-1066)) (|:| |extra| (-958))) (-981) (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 37) (((-2 (|:| -1796 (-352)) (|:| |explanations| (-1066)) (|:| |extra| (-958))) (-981) (-2 (|:| |fn| (-289 (-201))) (|:| -1667 (-586 (-1007 (-776 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) NIL)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2188 (((-791) $) NIL)) (-1530 (((-108) $ $) NIL)))
-(((-178) (-722)) (T -178))
-NIL
-(-722)
-((-1414 (((-108) $ $) NIL)) (-1336 (((-958) (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201))) (-958)) NIL) (((-958) (-2 (|:| |fn| (-289 (-201))) (|:| -1667 (-586 (-1007 (-776 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201))) (-958)) 62)) (-1796 (((-2 (|:| -1796 (-352)) (|:| |explanations| (-1066)) (|:| |extra| (-958))) (-981) (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) NIL) (((-2 (|:| -1796 (-352)) (|:| |explanations| (-1066)) (|:| |extra| (-958))) (-981) (-2 (|:| |fn| (-289 (-201))) (|:| -1667 (-586 (-1007 (-776 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 29)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2188 (((-791) $) NIL)) (-1530 (((-108) $ $) NIL)))
-(((-179) (-722)) (T -179))
-NIL
-(-722)
-((-1414 (((-108) $ $) NIL)) (-1336 (((-958) (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201))) (-958)) NIL) (((-958) (-2 (|:| |fn| (-289 (-201))) (|:| -1667 (-586 (-1007 (-776 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201))) (-958)) 60)) (-1796 (((-2 (|:| -1796 (-352)) (|:| |explanations| (-1066)) (|:| |extra| (-958))) (-981) (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) NIL) (((-2 (|:| -1796 (-352)) (|:| |explanations| (-1066)) (|:| |extra| (-958))) (-981) (-2 (|:| |fn| (-289 (-201))) (|:| -1667 (-586 (-1007 (-776 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 32)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2188 (((-791) $) NIL)) (-1530 (((-108) $ $) NIL)))
-(((-180) (-722)) (T -180))
-NIL
-(-722)
-((-1414 (((-108) $ $) NIL)) (-1336 (((-958) (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201))) (-958)) 89) (((-958) (-2 (|:| |fn| (-289 (-201))) (|:| -1667 (-586 (-1007 (-776 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201))) (-958)) NIL)) (-1796 (((-2 (|:| -1796 (-352)) (|:| |explanations| (-1066)) (|:| |extra| (-958))) (-981) (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 77) (((-2 (|:| -1796 (-352)) (|:| |explanations| (-1066)) (|:| |extra| (-958))) (-981) (-2 (|:| |fn| (-289 (-201))) (|:| -1667 (-586 (-1007 (-776 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) NIL)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2188 (((-791) $) NIL)) (-1530 (((-108) $ $) NIL)))
-(((-181) (-722)) (T -181))
-NIL
-(-722)
-((-2522 (((-3 (-2 (|:| -1418 (-110)) (|:| |w| (-201))) "failed") (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 81)) (-3737 (((-520) (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 39)) (-2886 (((-3 (-586 (-201)) "failed") (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 69)))
-(((-182) (-10 -7 (-15 -2522 ((-3 (-2 (|:| -1418 (-110)) (|:| |w| (-201))) "failed") (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))) (-15 -2886 ((-3 (-586 (-201)) "failed") (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))) (-15 -3737 ((-520) (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))))) (T -182))
-((-3737 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (-5 *2 (-520)) (-5 *1 (-182)))) (-2886 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (-5 *2 (-586 (-201))) (-5 *1 (-182)))) (-2522 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (-5 *2 (-2 (|:| -1418 (-110)) (|:| |w| (-201)))) (-5 *1 (-182)))))
-(-10 -7 (-15 -2522 ((-3 (-2 (|:| -1418 (-110)) (|:| |w| (-201))) "failed") (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))) (-15 -2886 ((-3 (-586 (-201)) "failed") (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))) (-15 -3737 ((-520) (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))))
-((-3034 (((-352) (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1164 (-289 (-201)))) (|:| |yinit| (-586 (-201))) (|:| |intvals| (-586 (-201))) (|:| |g| (-289 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 37)) (-2131 (((-2 (|:| |stiffnessFactor| (-352)) (|:| |stabilityFactor| (-352))) (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1164 (-289 (-201)))) (|:| |yinit| (-586 (-201))) (|:| |intvals| (-586 (-201))) (|:| |g| (-289 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 128)) (-4041 (((-2 (|:| |stiffnessFactor| (-352)) (|:| |stabilityFactor| (-352))) (-626 (-289 (-201)))) 88)) (-3154 (((-352) (-626 (-289 (-201)))) 111)) (-3714 (((-626 (-289 (-201))) (-1164 (-289 (-201))) (-586 (-1083))) 108)) (-2848 (((-352) (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1164 (-289 (-201)))) (|:| |yinit| (-586 (-201))) (|:| |intvals| (-586 (-201))) (|:| |g| (-289 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 26)) (-2926 (((-352) (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1164 (-289 (-201)))) (|:| |yinit| (-586 (-201))) (|:| |intvals| (-586 (-201))) (|:| |g| (-289 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 42)) (-2286 (((-626 (-289 (-201))) (-626 (-289 (-201))) (-586 (-1083)) (-1164 (-289 (-201)))) 100)) (-3141 (((-352) (-352) (-586 (-352))) 105) (((-352) (-352) (-352)) 103)) (-1865 (((-352) (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1164 (-289 (-201)))) (|:| |yinit| (-586 (-201))) (|:| |intvals| (-586 (-201))) (|:| |g| (-289 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 33)))
-(((-183) (-10 -7 (-15 -3141 ((-352) (-352) (-352))) (-15 -3141 ((-352) (-352) (-586 (-352)))) (-15 -3154 ((-352) (-626 (-289 (-201))))) (-15 -3714 ((-626 (-289 (-201))) (-1164 (-289 (-201))) (-586 (-1083)))) (-15 -2286 ((-626 (-289 (-201))) (-626 (-289 (-201))) (-586 (-1083)) (-1164 (-289 (-201))))) (-15 -4041 ((-2 (|:| |stiffnessFactor| (-352)) (|:| |stabilityFactor| (-352))) (-626 (-289 (-201))))) (-15 -2131 ((-2 (|:| |stiffnessFactor| (-352)) (|:| |stabilityFactor| (-352))) (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1164 (-289 (-201)))) (|:| |yinit| (-586 (-201))) (|:| |intvals| (-586 (-201))) (|:| |g| (-289 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))) (-15 -3034 ((-352) (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1164 (-289 (-201)))) (|:| |yinit| (-586 (-201))) (|:| |intvals| (-586 (-201))) (|:| |g| (-289 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))) (-15 -2926 ((-352) (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1164 (-289 (-201)))) (|:| |yinit| (-586 (-201))) (|:| |intvals| (-586 (-201))) (|:| |g| (-289 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))) (-15 -1865 ((-352) (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1164 (-289 (-201)))) (|:| |yinit| (-586 (-201))) (|:| |intvals| (-586 (-201))) (|:| |g| (-289 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))) (-15 -2848 ((-352) (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1164 (-289 (-201)))) (|:| |yinit| (-586 (-201))) (|:| |intvals| (-586 (-201))) (|:| |g| (-289 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))))) (T -183))
-((-2848 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1164 (-289 (-201)))) (|:| |yinit| (-586 (-201))) (|:| |intvals| (-586 (-201))) (|:| |g| (-289 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (-5 *2 (-352)) (-5 *1 (-183)))) (-1865 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1164 (-289 (-201)))) (|:| |yinit| (-586 (-201))) (|:| |intvals| (-586 (-201))) (|:| |g| (-289 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (-5 *2 (-352)) (-5 *1 (-183)))) (-2926 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1164 (-289 (-201)))) (|:| |yinit| (-586 (-201))) (|:| |intvals| (-586 (-201))) (|:| |g| (-289 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (-5 *2 (-352)) (-5 *1 (-183)))) (-3034 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1164 (-289 (-201)))) (|:| |yinit| (-586 (-201))) (|:| |intvals| (-586 (-201))) (|:| |g| (-289 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (-5 *2 (-352)) (-5 *1 (-183)))) (-2131 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1164 (-289 (-201)))) (|:| |yinit| (-586 (-201))) (|:| |intvals| (-586 (-201))) (|:| |g| (-289 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-352)) (|:| |stabilityFactor| (-352)))) (-5 *1 (-183)))) (-4041 (*1 *2 *3) (-12 (-5 *3 (-626 (-289 (-201)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-352)) (|:| |stabilityFactor| (-352)))) (-5 *1 (-183)))) (-2286 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-626 (-289 (-201)))) (-5 *3 (-586 (-1083))) (-5 *4 (-1164 (-289 (-201)))) (-5 *1 (-183)))) (-3714 (*1 *2 *3 *4) (-12 (-5 *3 (-1164 (-289 (-201)))) (-5 *4 (-586 (-1083))) (-5 *2 (-626 (-289 (-201)))) (-5 *1 (-183)))) (-3154 (*1 *2 *3) (-12 (-5 *3 (-626 (-289 (-201)))) (-5 *2 (-352)) (-5 *1 (-183)))) (-3141 (*1 *2 *2 *3) (-12 (-5 *3 (-586 (-352))) (-5 *2 (-352)) (-5 *1 (-183)))) (-3141 (*1 *2 *2 *2) (-12 (-5 *2 (-352)) (-5 *1 (-183)))))
-(-10 -7 (-15 -3141 ((-352) (-352) (-352))) (-15 -3141 ((-352) (-352) (-586 (-352)))) (-15 -3154 ((-352) (-626 (-289 (-201))))) (-15 -3714 ((-626 (-289 (-201))) (-1164 (-289 (-201))) (-586 (-1083)))) (-15 -2286 ((-626 (-289 (-201))) (-626 (-289 (-201))) (-586 (-1083)) (-1164 (-289 (-201))))) (-15 -4041 ((-2 (|:| |stiffnessFactor| (-352)) (|:| |stabilityFactor| (-352))) (-626 (-289 (-201))))) (-15 -2131 ((-2 (|:| |stiffnessFactor| (-352)) (|:| |stabilityFactor| (-352))) (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1164 (-289 (-201)))) (|:| |yinit| (-586 (-201))) (|:| |intvals| (-586 (-201))) (|:| |g| (-289 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))) (-15 -3034 ((-352) (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1164 (-289 (-201)))) (|:| |yinit| (-586 (-201))) (|:| |intvals| (-586 (-201))) (|:| |g| (-289 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))) (-15 -2926 ((-352) (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1164 (-289 (-201)))) (|:| |yinit| (-586 (-201))) (|:| |intvals| (-586 (-201))) (|:| |g| (-289 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))) (-15 -1865 ((-352) (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1164 (-289 (-201)))) (|:| |yinit| (-586 (-201))) (|:| |intvals| (-586 (-201))) (|:| |g| (-289 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))) (-15 -2848 ((-352) (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1164 (-289 (-201)))) (|:| |yinit| (-586 (-201))) (|:| |intvals| (-586 (-201))) (|:| |g| (-289 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))))
-((-1414 (((-108) $ $) NIL)) (-1796 (((-2 (|:| -1796 (-352)) (|:| |explanations| (-1066))) (-981) (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1164 (-289 (-201)))) (|:| |yinit| (-586 (-201))) (|:| |intvals| (-586 (-201))) (|:| |g| (-289 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 37)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2188 (((-791) $) NIL)) (-2818 (((-958) (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1164 (-289 (-201)))) (|:| |yinit| (-586 (-201))) (|:| |intvals| (-586 (-201))) (|:| |g| (-289 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 60)) (-1530 (((-108) $ $) NIL)))
-(((-184) (-736)) (T -184))
-NIL
-(-736)
-((-1414 (((-108) $ $) NIL)) (-1796 (((-2 (|:| -1796 (-352)) (|:| |explanations| (-1066))) (-981) (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1164 (-289 (-201)))) (|:| |yinit| (-586 (-201))) (|:| |intvals| (-586 (-201))) (|:| |g| (-289 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 37)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2188 (((-791) $) NIL)) (-2818 (((-958) (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1164 (-289 (-201)))) (|:| |yinit| (-586 (-201))) (|:| |intvals| (-586 (-201))) (|:| |g| (-289 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 60)) (-1530 (((-108) $ $) NIL)))
-(((-185) (-736)) (T -185))
-NIL
-(-736)
-((-1414 (((-108) $ $) NIL)) (-1796 (((-2 (|:| -1796 (-352)) (|:| |explanations| (-1066))) (-981) (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1164 (-289 (-201)))) (|:| |yinit| (-586 (-201))) (|:| |intvals| (-586 (-201))) (|:| |g| (-289 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 36)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2188 (((-791) $) NIL)) (-2818 (((-958) (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1164 (-289 (-201)))) (|:| |yinit| (-586 (-201))) (|:| |intvals| (-586 (-201))) (|:| |g| (-289 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 64)) (-1530 (((-108) $ $) NIL)))
-(((-186) (-736)) (T -186))
-NIL
-(-736)
-((-1414 (((-108) $ $) NIL)) (-1796 (((-2 (|:| -1796 (-352)) (|:| |explanations| (-1066))) (-981) (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1164 (-289 (-201)))) (|:| |yinit| (-586 (-201))) (|:| |intvals| (-586 (-201))) (|:| |g| (-289 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 42)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2188 (((-791) $) NIL)) (-2818 (((-958) (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1164 (-289 (-201)))) (|:| |yinit| (-586 (-201))) (|:| |intvals| (-586 (-201))) (|:| |g| (-289 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 73)) (-1530 (((-108) $ $) NIL)))
-(((-187) (-736)) (T -187))
-NIL
-(-736)
-((-4097 (((-586 (-1083)) (-1083) (-706)) 22)) (-3814 (((-289 (-201)) (-289 (-201))) 29)) (-1850 (((-108) (-2 (|:| |pde| (-586 (-289 (-201)))) (|:| |constraints| (-586 (-2 (|:| |start| (-201)) (|:| |finish| (-201)) (|:| |grid| (-706)) (|:| |boundaryType| (-520)) (|:| |dStart| (-626 (-201))) (|:| |dFinish| (-626 (-201)))))) (|:| |f| (-586 (-586 (-289 (-201))))) (|:| |st| (-1066)) (|:| |tol| (-201)))) 67)) (-1403 (((-108) (-201) (-201) (-586 (-289 (-201)))) 43)))
-(((-188) (-10 -7 (-15 -4097 ((-586 (-1083)) (-1083) (-706))) (-15 -3814 ((-289 (-201)) (-289 (-201)))) (-15 -1403 ((-108) (-201) (-201) (-586 (-289 (-201))))) (-15 -1850 ((-108) (-2 (|:| |pde| (-586 (-289 (-201)))) (|:| |constraints| (-586 (-2 (|:| |start| (-201)) (|:| |finish| (-201)) (|:| |grid| (-706)) (|:| |boundaryType| (-520)) (|:| |dStart| (-626 (-201))) (|:| |dFinish| (-626 (-201)))))) (|:| |f| (-586 (-586 (-289 (-201))))) (|:| |st| (-1066)) (|:| |tol| (-201))))))) (T -188))
-((-1850 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-586 (-289 (-201)))) (|:| |constraints| (-586 (-2 (|:| |start| (-201)) (|:| |finish| (-201)) (|:| |grid| (-706)) (|:| |boundaryType| (-520)) (|:| |dStart| (-626 (-201))) (|:| |dFinish| (-626 (-201)))))) (|:| |f| (-586 (-586 (-289 (-201))))) (|:| |st| (-1066)) (|:| |tol| (-201)))) (-5 *2 (-108)) (-5 *1 (-188)))) (-1403 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-586 (-289 (-201)))) (-5 *3 (-201)) (-5 *2 (-108)) (-5 *1 (-188)))) (-3814 (*1 *2 *2) (-12 (-5 *2 (-289 (-201))) (-5 *1 (-188)))) (-4097 (*1 *2 *3 *4) (-12 (-5 *4 (-706)) (-5 *2 (-586 (-1083))) (-5 *1 (-188)) (-5 *3 (-1083)))))
-(-10 -7 (-15 -4097 ((-586 (-1083)) (-1083) (-706))) (-15 -3814 ((-289 (-201)) (-289 (-201)))) (-15 -1403 ((-108) (-201) (-201) (-586 (-289 (-201))))) (-15 -1850 ((-108) (-2 (|:| |pde| (-586 (-289 (-201)))) (|:| |constraints| (-586 (-2 (|:| |start| (-201)) (|:| |finish| (-201)) (|:| |grid| (-706)) (|:| |boundaryType| (-520)) (|:| |dStart| (-626 (-201))) (|:| |dFinish| (-626 (-201)))))) (|:| |f| (-586 (-586 (-289 (-201))))) (|:| |st| (-1066)) (|:| |tol| (-201))))))
-((-1414 (((-108) $ $) NIL)) (-1796 (((-2 (|:| -1796 (-352)) (|:| |explanations| (-1066))) (-981) (-2 (|:| |pde| (-586 (-289 (-201)))) (|:| |constraints| (-586 (-2 (|:| |start| (-201)) (|:| |finish| (-201)) (|:| |grid| (-706)) (|:| |boundaryType| (-520)) (|:| |dStart| (-626 (-201))) (|:| |dFinish| (-626 (-201)))))) (|:| |f| (-586 (-586 (-289 (-201))))) (|:| |st| (-1066)) (|:| |tol| (-201)))) 17)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2188 (((-791) $) NIL)) (-2317 (((-958) (-2 (|:| |pde| (-586 (-289 (-201)))) (|:| |constraints| (-586 (-2 (|:| |start| (-201)) (|:| |finish| (-201)) (|:| |grid| (-706)) (|:| |boundaryType| (-520)) (|:| |dStart| (-626 (-201))) (|:| |dFinish| (-626 (-201)))))) (|:| |f| (-586 (-586 (-289 (-201))))) (|:| |st| (-1066)) (|:| |tol| (-201)))) 55)) (-1530 (((-108) $ $) NIL)))
-(((-189) (-823)) (T -189))
-NIL
-(-823)
-((-1414 (((-108) $ $) NIL)) (-1796 (((-2 (|:| -1796 (-352)) (|:| |explanations| (-1066))) (-981) (-2 (|:| |pde| (-586 (-289 (-201)))) (|:| |constraints| (-586 (-2 (|:| |start| (-201)) (|:| |finish| (-201)) (|:| |grid| (-706)) (|:| |boundaryType| (-520)) (|:| |dStart| (-626 (-201))) (|:| |dFinish| (-626 (-201)))))) (|:| |f| (-586 (-586 (-289 (-201))))) (|:| |st| (-1066)) (|:| |tol| (-201)))) 12)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2188 (((-791) $) NIL)) (-2317 (((-958) (-2 (|:| |pde| (-586 (-289 (-201)))) (|:| |constraints| (-586 (-2 (|:| |start| (-201)) (|:| |finish| (-201)) (|:| |grid| (-706)) (|:| |boundaryType| (-520)) (|:| |dStart| (-626 (-201))) (|:| |dFinish| (-626 (-201)))))) (|:| |f| (-586 (-586 (-289 (-201))))) (|:| |st| (-1066)) (|:| |tol| (-201)))) NIL)) (-1530 (((-108) $ $) NIL)))
-(((-190) (-823)) (T -190))
-NIL
-(-823)
-((-1414 (((-108) $ $) NIL)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-3288 (((-1169) $) 36) (((-1169) $ (-849) (-849)) 38)) (-2543 (($ $ (-914)) 19) (((-221 (-1066)) $ (-1083)) 15)) (-1677 (((-1169) $) 34)) (-2188 (((-791) $) 31) (($ (-586 |#1|)) 8)) (-1530 (((-108) $ $) NIL)) (-1611 (($ $ $) 27)) (-1601 (($ $ $) 22)))
-(((-191 |#1|) (-13 (-1012) (-10 -8 (-15 -2543 ($ $ (-914))) (-15 -2543 ((-221 (-1066)) $ (-1083))) (-15 -1601 ($ $ $)) (-15 -1611 ($ $ $)) (-15 -2188 ($ (-586 |#1|))) (-15 -1677 ((-1169) $)) (-15 -3288 ((-1169) $)) (-15 -3288 ((-1169) $ (-849) (-849))))) (-13 (-783) (-10 -8 (-15 -2543 ((-1066) $ (-1083))) (-15 -1677 ((-1169) $)) (-15 -3288 ((-1169) $))))) (T -191))
-((-2543 (*1 *1 *1 *2) (-12 (-5 *2 (-914)) (-5 *1 (-191 *3)) (-4 *3 (-13 (-783) (-10 -8 (-15 -2543 ((-1066) $ (-1083))) (-15 -1677 ((-1169) $)) (-15 -3288 ((-1169) $))))))) (-2543 (*1 *2 *1 *3) (-12 (-5 *3 (-1083)) (-5 *2 (-221 (-1066))) (-5 *1 (-191 *4)) (-4 *4 (-13 (-783) (-10 -8 (-15 -2543 ((-1066) $ *3)) (-15 -1677 ((-1169) $)) (-15 -3288 ((-1169) $))))))) (-1601 (*1 *1 *1 *1) (-12 (-5 *1 (-191 *2)) (-4 *2 (-13 (-783) (-10 -8 (-15 -2543 ((-1066) $ (-1083))) (-15 -1677 ((-1169) $)) (-15 -3288 ((-1169) $))))))) (-1611 (*1 *1 *1 *1) (-12 (-5 *1 (-191 *2)) (-4 *2 (-13 (-783) (-10 -8 (-15 -2543 ((-1066) $ (-1083))) (-15 -1677 ((-1169) $)) (-15 -3288 ((-1169) $))))))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-586 *3)) (-4 *3 (-13 (-783) (-10 -8 (-15 -2543 ((-1066) $ (-1083))) (-15 -1677 ((-1169) $)) (-15 -3288 ((-1169) $))))) (-5 *1 (-191 *3)))) (-1677 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-191 *3)) (-4 *3 (-13 (-783) (-10 -8 (-15 -2543 ((-1066) $ (-1083))) (-15 -1677 (*2 $)) (-15 -3288 (*2 $))))))) (-3288 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-191 *3)) (-4 *3 (-13 (-783) (-10 -8 (-15 -2543 ((-1066) $ (-1083))) (-15 -1677 (*2 $)) (-15 -3288 (*2 $))))))) (-3288 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-849)) (-5 *2 (-1169)) (-5 *1 (-191 *4)) (-4 *4 (-13 (-783) (-10 -8 (-15 -2543 ((-1066) $ (-1083))) (-15 -1677 (*2 $)) (-15 -3288 (*2 $))))))))
-(-13 (-1012) (-10 -8 (-15 -2543 ($ $ (-914))) (-15 -2543 ((-221 (-1066)) $ (-1083))) (-15 -1601 ($ $ $)) (-15 -1611 ($ $ $)) (-15 -2188 ($ (-586 |#1|))) (-15 -1677 ((-1169) $)) (-15 -3288 ((-1169) $)) (-15 -3288 ((-1169) $ (-849) (-849)))))
-((-3620 ((|#2| |#4| (-1 |#2| |#2|)) 46)))
-(((-192 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3620 (|#2| |#4| (-1 |#2| |#2|)))) (-336) (-1140 |#1|) (-1140 (-380 |#2|)) (-315 |#1| |#2| |#3|)) (T -192))
-((-3620 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-336)) (-4 *6 (-1140 (-380 *2))) (-4 *2 (-1140 *5)) (-5 *1 (-192 *5 *2 *6 *3)) (-4 *3 (-315 *5 *2 *6)))))
-(-10 -7 (-15 -3620 (|#2| |#4| (-1 |#2| |#2|))))
-((-3451 ((|#2| |#2| (-706) |#2|) 41)) (-1454 ((|#2| |#2| (-706) |#2|) 37)) (-2738 (((-586 |#2|) (-586 (-2 (|:| |deg| (-706)) (|:| -1772 |#2|)))) 57)) (-4178 (((-586 (-2 (|:| |deg| (-706)) (|:| -1772 |#2|))) |#2|) 52)) (-1378 (((-108) |#2|) 49)) (-3257 (((-391 |#2|) |#2|) 76)) (-1916 (((-391 |#2|) |#2|) 75)) (-4099 ((|#2| |#2| (-706) |#2|) 35)) (-2177 (((-2 (|:| |cont| |#1|) (|:| -3493 (-586 (-2 (|:| |irr| |#2|) (|:| -2421 (-520)))))) |#2| (-108)) 68)))
-(((-193 |#1| |#2|) (-10 -7 (-15 -1916 ((-391 |#2|) |#2|)) (-15 -3257 ((-391 |#2|) |#2|)) (-15 -2177 ((-2 (|:| |cont| |#1|) (|:| -3493 (-586 (-2 (|:| |irr| |#2|) (|:| -2421 (-520)))))) |#2| (-108))) (-15 -4178 ((-586 (-2 (|:| |deg| (-706)) (|:| -1772 |#2|))) |#2|)) (-15 -2738 ((-586 |#2|) (-586 (-2 (|:| |deg| (-706)) (|:| -1772 |#2|))))) (-15 -4099 (|#2| |#2| (-706) |#2|)) (-15 -1454 (|#2| |#2| (-706) |#2|)) (-15 -3451 (|#2| |#2| (-706) |#2|)) (-15 -1378 ((-108) |#2|))) (-322) (-1140 |#1|)) (T -193))
-((-1378 (*1 *2 *3) (-12 (-4 *4 (-322)) (-5 *2 (-108)) (-5 *1 (-193 *4 *3)) (-4 *3 (-1140 *4)))) (-3451 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-706)) (-4 *4 (-322)) (-5 *1 (-193 *4 *2)) (-4 *2 (-1140 *4)))) (-1454 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-706)) (-4 *4 (-322)) (-5 *1 (-193 *4 *2)) (-4 *2 (-1140 *4)))) (-4099 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-706)) (-4 *4 (-322)) (-5 *1 (-193 *4 *2)) (-4 *2 (-1140 *4)))) (-2738 (*1 *2 *3) (-12 (-5 *3 (-586 (-2 (|:| |deg| (-706)) (|:| -1772 *5)))) (-4 *5 (-1140 *4)) (-4 *4 (-322)) (-5 *2 (-586 *5)) (-5 *1 (-193 *4 *5)))) (-4178 (*1 *2 *3) (-12 (-4 *4 (-322)) (-5 *2 (-586 (-2 (|:| |deg| (-706)) (|:| -1772 *3)))) (-5 *1 (-193 *4 *3)) (-4 *3 (-1140 *4)))) (-2177 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-322)) (-5 *2 (-2 (|:| |cont| *5) (|:| -3493 (-586 (-2 (|:| |irr| *3) (|:| -2421 (-520))))))) (-5 *1 (-193 *5 *3)) (-4 *3 (-1140 *5)))) (-3257 (*1 *2 *3) (-12 (-4 *4 (-322)) (-5 *2 (-391 *3)) (-5 *1 (-193 *4 *3)) (-4 *3 (-1140 *4)))) (-1916 (*1 *2 *3) (-12 (-4 *4 (-322)) (-5 *2 (-391 *3)) (-5 *1 (-193 *4 *3)) (-4 *3 (-1140 *4)))))
-(-10 -7 (-15 -1916 ((-391 |#2|) |#2|)) (-15 -3257 ((-391 |#2|) |#2|)) (-15 -2177 ((-2 (|:| |cont| |#1|) (|:| -3493 (-586 (-2 (|:| |irr| |#2|) (|:| -2421 (-520)))))) |#2| (-108))) (-15 -4178 ((-586 (-2 (|:| |deg| (-706)) (|:| -1772 |#2|))) |#2|)) (-15 -2738 ((-586 |#2|) (-586 (-2 (|:| |deg| (-706)) (|:| -1772 |#2|))))) (-15 -4099 (|#2| |#2| (-706) |#2|)) (-15 -1454 (|#2| |#2| (-706) |#2|)) (-15 -3451 (|#2| |#2| (-706) |#2|)) (-15 -1378 ((-108) |#2|)))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-4040 (((-520) $) NIL (|has| (-520) (-281)))) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) NIL)) (-2583 (($ $) NIL)) (-1671 (((-108) $) NIL)) (-1917 (((-3 $ "failed") $ $) NIL)) (-4119 (((-391 (-1079 $)) (-1079 $)) NIL (|has| (-520) (-837)))) (-3024 (($ $) NIL)) (-1507 (((-391 $) $) NIL)) (-3481 (((-3 (-586 (-1079 $)) "failed") (-586 (-1079 $)) (-1079 $)) NIL (|has| (-520) (-837)))) (-1327 (((-108) $ $) NIL)) (-2804 (((-520) $) NIL (|has| (-520) (-756)))) (-3961 (($) NIL T CONST)) (-1296 (((-3 (-520) "failed") $) NIL) (((-3 (-1083) "failed") $) NIL (|has| (-520) (-960 (-1083)))) (((-3 (-380 (-520)) "failed") $) NIL (|has| (-520) (-960 (-520)))) (((-3 (-520) "failed") $) NIL (|has| (-520) (-960 (-520))))) (-1482 (((-520) $) NIL) (((-1083) $) NIL (|has| (-520) (-960 (-1083)))) (((-380 (-520)) $) NIL (|has| (-520) (-960 (-520)))) (((-520) $) NIL (|has| (-520) (-960 (-520))))) (-2276 (($ $ $) NIL)) (-2756 (((-626 (-520)) (-626 $)) NIL (|has| (-520) (-582 (-520)))) (((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 $) (-1164 $)) NIL (|has| (-520) (-582 (-520)))) (((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 $) (-1164 $)) NIL) (((-626 (-520)) (-626 $)) NIL)) (-1540 (((-3 $ "failed") $) NIL)) (-3249 (($) NIL (|has| (-520) (-505)))) (-2253 (($ $ $) NIL)) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) NIL)) (-2036 (((-108) $) NIL)) (-2328 (((-108) $) NIL (|has| (-520) (-756)))) (-1272 (((-817 (-520) $) $ (-820 (-520)) (-817 (-520) $)) NIL (|has| (-520) (-814 (-520)))) (((-817 (-352) $) $ (-820 (-352)) (-817 (-352) $)) NIL (|has| (-520) (-814 (-352))))) (-1537 (((-108) $) NIL)) (-4115 (($ $) NIL)) (-2800 (((-520) $) NIL)) (-1394 (((-3 $ "failed") $) NIL (|has| (-520) (-1059)))) (-3469 (((-108) $) NIL (|has| (-520) (-756)))) (-3188 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-2809 (($ $ $) NIL (|has| (-520) (-783)))) (-2446 (($ $ $) NIL (|has| (-520) (-783)))) (-1389 (($ (-1 (-520) (-520)) $) NIL)) (-2222 (($ $ $) NIL) (($ (-586 $)) NIL)) (-1239 (((-1066) $) NIL)) (-3093 (($ $) NIL)) (-3794 (($) NIL (|has| (-520) (-1059)) CONST)) (-4142 (((-1030) $) NIL)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) NIL)) (-2257 (($ $ $) NIL) (($ (-586 $)) NIL)) (-4122 (($ $) NIL (|has| (-520) (-281))) (((-380 (-520)) $) NIL)) (-1626 (((-520) $) NIL (|has| (-520) (-505)))) (-4133 (((-391 (-1079 $)) (-1079 $)) NIL (|has| (-520) (-837)))) (-2017 (((-391 (-1079 $)) (-1079 $)) NIL (|has| (-520) (-837)))) (-1916 (((-391 $) $) NIL)) (-1283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2230 (((-3 $ "failed") $ $) NIL)) (-2608 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-2286 (($ $ (-586 (-520)) (-586 (-520))) NIL (|has| (-520) (-283 (-520)))) (($ $ (-520) (-520)) NIL (|has| (-520) (-283 (-520)))) (($ $ (-268 (-520))) NIL (|has| (-520) (-283 (-520)))) (($ $ (-586 (-268 (-520)))) NIL (|has| (-520) (-283 (-520)))) (($ $ (-586 (-1083)) (-586 (-520))) NIL (|has| (-520) (-481 (-1083) (-520)))) (($ $ (-1083) (-520)) NIL (|has| (-520) (-481 (-1083) (-520))))) (-3704 (((-706) $) NIL)) (-2543 (($ $ (-520)) NIL (|has| (-520) (-260 (-520) (-520))))) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) NIL)) (-2155 (($ $) NIL (|has| (-520) (-209))) (($ $ (-706)) NIL (|has| (-520) (-209))) (($ $ (-1083)) NIL (|has| (-520) (-828 (-1083)))) (($ $ (-586 (-1083))) NIL (|has| (-520) (-828 (-1083)))) (($ $ (-1083) (-706)) NIL (|has| (-520) (-828 (-1083)))) (($ $ (-586 (-1083)) (-586 (-706))) NIL (|has| (-520) (-828 (-1083)))) (($ $ (-1 (-520) (-520)) (-706)) NIL) (($ $ (-1 (-520) (-520))) NIL)) (-3556 (($ $) NIL)) (-2811 (((-520) $) NIL)) (-3686 (($ (-380 (-520))) 8)) (-1429 (((-820 (-520)) $) NIL (|has| (-520) (-561 (-820 (-520))))) (((-820 (-352)) $) NIL (|has| (-520) (-561 (-820 (-352))))) (((-496) $) NIL (|has| (-520) (-561 (-496)))) (((-352) $) NIL (|has| (-520) (-945))) (((-201) $) NIL (|has| (-520) (-945)))) (-3784 (((-3 (-1164 $) "failed") (-626 $)) NIL (-12 (|has| $ (-133)) (|has| (-520) (-837))))) (-2188 (((-791) $) NIL) (($ (-520)) NIL) (($ $) NIL) (($ (-380 (-520))) 7) (($ (-520)) NIL) (($ (-1083)) NIL (|has| (-520) (-960 (-1083)))) (((-380 (-520)) $) NIL) (((-928 10) $) 9)) (-3796 (((-3 $ "failed") $) NIL (-3700 (-12 (|has| $ (-133)) (|has| (-520) (-837))) (|has| (-520) (-133))))) (-3251 (((-706)) NIL)) (-3370 (((-520) $) NIL (|has| (-520) (-505)))) (-2559 (((-108) $ $) NIL)) (-2458 (($ $) NIL (|has| (-520) (-756)))) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL)) (-3560 (($) NIL T CONST)) (-3570 (($) NIL T CONST)) (-2211 (($ $) NIL (|has| (-520) (-209))) (($ $ (-706)) NIL (|has| (-520) (-209))) (($ $ (-1083)) NIL (|has| (-520) (-828 (-1083)))) (($ $ (-586 (-1083))) NIL (|has| (-520) (-828 (-1083)))) (($ $ (-1083) (-706)) NIL (|has| (-520) (-828 (-1083)))) (($ $ (-586 (-1083)) (-586 (-706))) NIL (|has| (-520) (-828 (-1083)))) (($ $ (-1 (-520) (-520)) (-706)) NIL) (($ $ (-1 (-520) (-520))) NIL)) (-1573 (((-108) $ $) NIL (|has| (-520) (-783)))) (-1557 (((-108) $ $) NIL (|has| (-520) (-783)))) (-1530 (((-108) $ $) NIL)) (-1565 (((-108) $ $) NIL (|has| (-520) (-783)))) (-1548 (((-108) $ $) NIL (|has| (-520) (-783)))) (-1619 (($ $ $) NIL) (($ (-520) (-520)) NIL)) (-1611 (($ $) NIL) (($ $ $) NIL)) (-1601 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) NIL) (($ $ (-380 (-520))) NIL) (($ (-380 (-520)) $) NIL) (($ (-520) $) NIL) (($ $ (-520)) NIL)))
-(((-194) (-13 (-917 (-520)) (-10 -8 (-15 -2188 ((-380 (-520)) $)) (-15 -2188 ((-928 10) $)) (-15 -4122 ((-380 (-520)) $)) (-15 -3686 ($ (-380 (-520))))))) (T -194))
-((-2188 (*1 *2 *1) (-12 (-5 *2 (-380 (-520))) (-5 *1 (-194)))) (-2188 (*1 *2 *1) (-12 (-5 *2 (-928 10)) (-5 *1 (-194)))) (-4122 (*1 *2 *1) (-12 (-5 *2 (-380 (-520))) (-5 *1 (-194)))) (-3686 (*1 *1 *2) (-12 (-5 *2 (-380 (-520))) (-5 *1 (-194)))))
-(-13 (-917 (-520)) (-10 -8 (-15 -2188 ((-380 (-520)) $)) (-15 -2188 ((-928 10) $)) (-15 -4122 ((-380 (-520)) $)) (-15 -3686 ($ (-380 (-520))))))
-((-3517 (((-3 (|:| |f1| (-776 |#2|)) (|:| |f2| (-586 (-776 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1005 (-776 |#2|)) (-1066)) 27) (((-3 (|:| |f1| (-776 |#2|)) (|:| |f2| (-586 (-776 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1005 (-776 |#2|))) 23)) (-2710 (((-3 (|:| |f1| (-776 |#2|)) (|:| |f2| (-586 (-776 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1083) (-776 |#2|) (-776 |#2|) (-108)) 16)))
-(((-195 |#1| |#2|) (-10 -7 (-15 -3517 ((-3 (|:| |f1| (-776 |#2|)) (|:| |f2| (-586 (-776 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1005 (-776 |#2|)))) (-15 -3517 ((-3 (|:| |f1| (-776 |#2|)) (|:| |f2| (-586 (-776 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1005 (-776 |#2|)) (-1066))) (-15 -2710 ((-3 (|:| |f1| (-776 |#2|)) (|:| |f2| (-586 (-776 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1083) (-776 |#2|) (-776 |#2|) (-108)))) (-13 (-281) (-783) (-135) (-960 (-520)) (-582 (-520))) (-13 (-1104) (-886) (-29 |#1|))) (T -195))
-((-2710 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1083)) (-5 *6 (-108)) (-4 *7 (-13 (-281) (-783) (-135) (-960 (-520)) (-582 (-520)))) (-4 *3 (-13 (-1104) (-886) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-776 *3)) (|:| |f2| (-586 (-776 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-195 *7 *3)) (-5 *5 (-776 *3)))) (-3517 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1005 (-776 *3))) (-5 *5 (-1066)) (-4 *3 (-13 (-1104) (-886) (-29 *6))) (-4 *6 (-13 (-281) (-783) (-135) (-960 (-520)) (-582 (-520)))) (-5 *2 (-3 (|:| |f1| (-776 *3)) (|:| |f2| (-586 (-776 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-195 *6 *3)))) (-3517 (*1 *2 *3 *4) (-12 (-5 *4 (-1005 (-776 *3))) (-4 *3 (-13 (-1104) (-886) (-29 *5))) (-4 *5 (-13 (-281) (-783) (-135) (-960 (-520)) (-582 (-520)))) (-5 *2 (-3 (|:| |f1| (-776 *3)) (|:| |f2| (-586 (-776 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-195 *5 *3)))))
-(-10 -7 (-15 -3517 ((-3 (|:| |f1| (-776 |#2|)) (|:| |f2| (-586 (-776 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1005 (-776 |#2|)))) (-15 -3517 ((-3 (|:| |f1| (-776 |#2|)) (|:| |f2| (-586 (-776 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1005 (-776 |#2|)) (-1066))) (-15 -2710 ((-3 (|:| |f1| (-776 |#2|)) (|:| |f2| (-586 (-776 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1083) (-776 |#2|) (-776 |#2|) (-108))))
-((-3517 (((-3 (|:| |f1| (-776 (-289 |#1|))) (|:| |f2| (-586 (-776 (-289 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-380 (-880 |#1|)) (-1005 (-776 (-380 (-880 |#1|)))) (-1066)) 44) (((-3 (|:| |f1| (-776 (-289 |#1|))) (|:| |f2| (-586 (-776 (-289 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-380 (-880 |#1|)) (-1005 (-776 (-380 (-880 |#1|))))) 41) (((-3 (|:| |f1| (-776 (-289 |#1|))) (|:| |f2| (-586 (-776 (-289 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-380 (-880 |#1|)) (-1005 (-776 (-289 |#1|))) (-1066)) 45) (((-3 (|:| |f1| (-776 (-289 |#1|))) (|:| |f2| (-586 (-776 (-289 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-380 (-880 |#1|)) (-1005 (-776 (-289 |#1|)))) 17)))
-(((-196 |#1|) (-10 -7 (-15 -3517 ((-3 (|:| |f1| (-776 (-289 |#1|))) (|:| |f2| (-586 (-776 (-289 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-380 (-880 |#1|)) (-1005 (-776 (-289 |#1|))))) (-15 -3517 ((-3 (|:| |f1| (-776 (-289 |#1|))) (|:| |f2| (-586 (-776 (-289 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-380 (-880 |#1|)) (-1005 (-776 (-289 |#1|))) (-1066))) (-15 -3517 ((-3 (|:| |f1| (-776 (-289 |#1|))) (|:| |f2| (-586 (-776 (-289 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-380 (-880 |#1|)) (-1005 (-776 (-380 (-880 |#1|)))))) (-15 -3517 ((-3 (|:| |f1| (-776 (-289 |#1|))) (|:| |f2| (-586 (-776 (-289 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-380 (-880 |#1|)) (-1005 (-776 (-380 (-880 |#1|)))) (-1066)))) (-13 (-281) (-783) (-135) (-960 (-520)) (-582 (-520)))) (T -196))
-((-3517 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1005 (-776 (-380 (-880 *6))))) (-5 *5 (-1066)) (-5 *3 (-380 (-880 *6))) (-4 *6 (-13 (-281) (-783) (-135) (-960 (-520)) (-582 (-520)))) (-5 *2 (-3 (|:| |f1| (-776 (-289 *6))) (|:| |f2| (-586 (-776 (-289 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-196 *6)))) (-3517 (*1 *2 *3 *4) (-12 (-5 *4 (-1005 (-776 (-380 (-880 *5))))) (-5 *3 (-380 (-880 *5))) (-4 *5 (-13 (-281) (-783) (-135) (-960 (-520)) (-582 (-520)))) (-5 *2 (-3 (|:| |f1| (-776 (-289 *5))) (|:| |f2| (-586 (-776 (-289 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-196 *5)))) (-3517 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-380 (-880 *6))) (-5 *4 (-1005 (-776 (-289 *6)))) (-5 *5 (-1066)) (-4 *6 (-13 (-281) (-783) (-135) (-960 (-520)) (-582 (-520)))) (-5 *2 (-3 (|:| |f1| (-776 (-289 *6))) (|:| |f2| (-586 (-776 (-289 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-196 *6)))) (-3517 (*1 *2 *3 *4) (-12 (-5 *3 (-380 (-880 *5))) (-5 *4 (-1005 (-776 (-289 *5)))) (-4 *5 (-13 (-281) (-783) (-135) (-960 (-520)) (-582 (-520)))) (-5 *2 (-3 (|:| |f1| (-776 (-289 *5))) (|:| |f2| (-586 (-776 (-289 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-196 *5)))))
-(-10 -7 (-15 -3517 ((-3 (|:| |f1| (-776 (-289 |#1|))) (|:| |f2| (-586 (-776 (-289 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-380 (-880 |#1|)) (-1005 (-776 (-289 |#1|))))) (-15 -3517 ((-3 (|:| |f1| (-776 (-289 |#1|))) (|:| |f2| (-586 (-776 (-289 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-380 (-880 |#1|)) (-1005 (-776 (-289 |#1|))) (-1066))) (-15 -3517 ((-3 (|:| |f1| (-776 (-289 |#1|))) (|:| |f2| (-586 (-776 (-289 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-380 (-880 |#1|)) (-1005 (-776 (-380 (-880 |#1|)))))) (-15 -3517 ((-3 (|:| |f1| (-776 (-289 |#1|))) (|:| |f2| (-586 (-776 (-289 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-380 (-880 |#1|)) (-1005 (-776 (-380 (-880 |#1|)))) (-1066))))
-((-3856 (((-2 (|:| -3075 (-1079 |#1|)) (|:| |deg| (-849))) (-1079 |#1|)) 21)) (-1603 (((-586 (-289 |#2|)) (-289 |#2|) (-849)) 43)))
-(((-197 |#1| |#2|) (-10 -7 (-15 -3856 ((-2 (|:| -3075 (-1079 |#1|)) (|:| |deg| (-849))) (-1079 |#1|))) (-15 -1603 ((-586 (-289 |#2|)) (-289 |#2|) (-849)))) (-969) (-13 (-512) (-783))) (T -197))
-((-1603 (*1 *2 *3 *4) (-12 (-5 *4 (-849)) (-4 *6 (-13 (-512) (-783))) (-5 *2 (-586 (-289 *6))) (-5 *1 (-197 *5 *6)) (-5 *3 (-289 *6)) (-4 *5 (-969)))) (-3856 (*1 *2 *3) (-12 (-4 *4 (-969)) (-5 *2 (-2 (|:| -3075 (-1079 *4)) (|:| |deg| (-849)))) (-5 *1 (-197 *4 *5)) (-5 *3 (-1079 *4)) (-4 *5 (-13 (-512) (-783))))))
-(-10 -7 (-15 -3856 ((-2 (|:| -3075 (-1079 |#1|)) (|:| |deg| (-849))) (-1079 |#1|))) (-15 -1603 ((-586 (-289 |#2|)) (-289 |#2|) (-849))))
-((-1414 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-2938 ((|#1| $) NIL)) (-1353 ((|#1| $) 25)) (-2063 (((-108) $ (-706)) NIL)) (-3961 (($) NIL T CONST)) (-3812 (($ $) NIL)) (-2447 (($ $) 31)) (-1352 ((|#1| |#1| $) NIL)) (-3621 ((|#1| $) NIL)) (-3828 (((-586 |#1|) $) NIL (|has| $ (-6 -4229)))) (-3027 (((-108) $ (-706)) NIL)) (-3702 (((-586 |#1|) $) NIL (|has| $ (-6 -4229)))) (-2422 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-3830 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#1| |#1|) $) NIL)) (-1390 (((-108) $ (-706)) NIL)) (-2515 (((-706) $) NIL)) (-1239 (((-1066) $) NIL (|has| |#1| (-1012)))) (-3351 ((|#1| $) NIL)) (-1759 ((|#1| |#1| $) 28)) (-2037 ((|#1| |#1| $) 30)) (-3618 (($ |#1| $) NIL)) (-4146 (((-706) $) 27)) (-4142 (((-1030) $) NIL (|has| |#1| (-1012)))) (-1834 ((|#1| $) NIL)) (-2496 ((|#1| $) 26)) (-3100 ((|#1| $) 24)) (-3345 ((|#1| $) NIL)) (-4155 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 |#1|))) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-268 |#1|)) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-586 |#1|) (-586 |#1|)) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))) (-2533 (((-108) $ $) NIL)) (-1777 ((|#1| |#1| $) NIL)) (-4018 (((-108) $) 9)) (-2238 (($) NIL)) (-2024 ((|#1| $) NIL)) (-1302 (($) NIL) (($ (-586 |#1|)) 16)) (-1251 (((-706) $) NIL)) (-4159 (((-706) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229))) (((-706) |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-2403 (($ $) NIL)) (-2188 (((-791) $) NIL (|has| |#1| (-560 (-791))))) (-1951 ((|#1| $) 13)) (-1898 (($ (-586 |#1|)) NIL)) (-4149 ((|#1| $) NIL)) (-1662 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-1530 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-3474 (((-706) $) NIL (|has| $ (-6 -4229)))))
-(((-198 |#1|) (-13 (-229 |#1|) (-10 -8 (-15 -1302 ($ (-586 |#1|))))) (-1012)) (T -198))
-((-1302 (*1 *1 *2) (-12 (-5 *2 (-586 *3)) (-4 *3 (-1012)) (-5 *1 (-198 *3)))))
-(-13 (-229 |#1|) (-10 -8 (-15 -1302 ($ (-586 |#1|)))))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-2462 (($ (-289 |#1|)) 23)) (-1917 (((-3 $ "failed") $ $) NIL)) (-3961 (($) NIL T CONST)) (-3242 (((-108) $) NIL)) (-1296 (((-3 (-289 |#1|) "failed") $) NIL)) (-1482 (((-289 |#1|) $) NIL)) (-3150 (($ $) 31)) (-1540 (((-3 $ "failed") $) NIL)) (-1537 (((-108) $) NIL)) (-1389 (($ (-1 (-289 |#1|) (-289 |#1|)) $) NIL)) (-3133 (((-289 |#1|) $) NIL)) (-2273 (($ $) 30)) (-1239 (((-1066) $) NIL)) (-1807 (((-108) $) NIL)) (-4142 (((-1030) $) NIL)) (-1382 (($ (-706)) NIL)) (-1982 (($ $) 32)) (-2528 (((-520) $) NIL)) (-2188 (((-791) $) 57) (($ (-520)) NIL) (($ (-289 |#1|)) NIL)) (-3475 (((-289 |#1|) $ $) NIL)) (-3251 (((-706)) NIL)) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (-3560 (($) 25 T CONST)) (-3570 (($) 50 T CONST)) (-1530 (((-108) $ $) 28)) (-1611 (($ $) NIL) (($ $ $) NIL)) (-1601 (($ $ $) 19)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) 24) (($ (-289 |#1|) $) 18)))
-(((-199 |#1| |#2|) (-13 (-564 (-289 |#1|)) (-960 (-289 |#1|)) (-10 -8 (-15 -3133 ((-289 |#1|) $)) (-15 -2273 ($ $)) (-15 -3150 ($ $)) (-15 -3475 ((-289 |#1|) $ $)) (-15 -1382 ($ (-706))) (-15 -1807 ((-108) $)) (-15 -3242 ((-108) $)) (-15 -2528 ((-520) $)) (-15 -1389 ($ (-1 (-289 |#1|) (-289 |#1|)) $)) (-15 -2462 ($ (-289 |#1|))) (-15 -1982 ($ $)))) (-13 (-969) (-783)) (-586 (-1083))) (T -199))
-((-3133 (*1 *2 *1) (-12 (-5 *2 (-289 *3)) (-5 *1 (-199 *3 *4)) (-4 *3 (-13 (-969) (-783))) (-14 *4 (-586 (-1083))))) (-2273 (*1 *1 *1) (-12 (-5 *1 (-199 *2 *3)) (-4 *2 (-13 (-969) (-783))) (-14 *3 (-586 (-1083))))) (-3150 (*1 *1 *1) (-12 (-5 *1 (-199 *2 *3)) (-4 *2 (-13 (-969) (-783))) (-14 *3 (-586 (-1083))))) (-3475 (*1 *2 *1 *1) (-12 (-5 *2 (-289 *3)) (-5 *1 (-199 *3 *4)) (-4 *3 (-13 (-969) (-783))) (-14 *4 (-586 (-1083))))) (-1382 (*1 *1 *2) (-12 (-5 *2 (-706)) (-5 *1 (-199 *3 *4)) (-4 *3 (-13 (-969) (-783))) (-14 *4 (-586 (-1083))))) (-1807 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-199 *3 *4)) (-4 *3 (-13 (-969) (-783))) (-14 *4 (-586 (-1083))))) (-3242 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-199 *3 *4)) (-4 *3 (-13 (-969) (-783))) (-14 *4 (-586 (-1083))))) (-2528 (*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-199 *3 *4)) (-4 *3 (-13 (-969) (-783))) (-14 *4 (-586 (-1083))))) (-1389 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-289 *3) (-289 *3))) (-4 *3 (-13 (-969) (-783))) (-5 *1 (-199 *3 *4)) (-14 *4 (-586 (-1083))))) (-2462 (*1 *1 *2) (-12 (-5 *2 (-289 *3)) (-4 *3 (-13 (-969) (-783))) (-5 *1 (-199 *3 *4)) (-14 *4 (-586 (-1083))))) (-1982 (*1 *1 *1) (-12 (-5 *1 (-199 *2 *3)) (-4 *2 (-13 (-969) (-783))) (-14 *3 (-586 (-1083))))))
-(-13 (-564 (-289 |#1|)) (-960 (-289 |#1|)) (-10 -8 (-15 -3133 ((-289 |#1|) $)) (-15 -2273 ($ $)) (-15 -3150 ($ $)) (-15 -3475 ((-289 |#1|) $ $)) (-15 -1382 ($ (-706))) (-15 -1807 ((-108) $)) (-15 -3242 ((-108) $)) (-15 -2528 ((-520) $)) (-15 -1389 ($ (-1 (-289 |#1|) (-289 |#1|)) $)) (-15 -2462 ($ (-289 |#1|))) (-15 -1982 ($ $))))
-((-3342 (((-108) (-1066)) 22)) (-2612 (((-3 (-776 |#2|) "failed") (-559 |#2|) |#2| (-776 |#2|) (-776 |#2|) (-108)) 32)) (-2074 (((-3 (-108) "failed") (-1079 |#2|) (-776 |#2|) (-776 |#2|) (-108)) 73) (((-3 (-108) "failed") (-880 |#1|) (-1083) (-776 |#2|) (-776 |#2|) (-108)) 74)))
-(((-200 |#1| |#2|) (-10 -7 (-15 -3342 ((-108) (-1066))) (-15 -2612 ((-3 (-776 |#2|) "failed") (-559 |#2|) |#2| (-776 |#2|) (-776 |#2|) (-108))) (-15 -2074 ((-3 (-108) "failed") (-880 |#1|) (-1083) (-776 |#2|) (-776 |#2|) (-108))) (-15 -2074 ((-3 (-108) "failed") (-1079 |#2|) (-776 |#2|) (-776 |#2|) (-108)))) (-13 (-424) (-783) (-960 (-520)) (-582 (-520))) (-13 (-1104) (-29 |#1|))) (T -200))
-((-2074 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-108)) (-5 *3 (-1079 *6)) (-5 *4 (-776 *6)) (-4 *6 (-13 (-1104) (-29 *5))) (-4 *5 (-13 (-424) (-783) (-960 (-520)) (-582 (-520)))) (-5 *1 (-200 *5 *6)))) (-2074 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-108)) (-5 *3 (-880 *6)) (-5 *4 (-1083)) (-5 *5 (-776 *7)) (-4 *6 (-13 (-424) (-783) (-960 (-520)) (-582 (-520)))) (-4 *7 (-13 (-1104) (-29 *6))) (-5 *1 (-200 *6 *7)))) (-2612 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-776 *4)) (-5 *3 (-559 *4)) (-5 *5 (-108)) (-4 *4 (-13 (-1104) (-29 *6))) (-4 *6 (-13 (-424) (-783) (-960 (-520)) (-582 (-520)))) (-5 *1 (-200 *6 *4)))) (-3342 (*1 *2 *3) (-12 (-5 *3 (-1066)) (-4 *4 (-13 (-424) (-783) (-960 (-520)) (-582 (-520)))) (-5 *2 (-108)) (-5 *1 (-200 *4 *5)) (-4 *5 (-13 (-1104) (-29 *4))))))
-(-10 -7 (-15 -3342 ((-108) (-1066))) (-15 -2612 ((-3 (-776 |#2|) "failed") (-559 |#2|) |#2| (-776 |#2|) (-776 |#2|) (-108))) (-15 -2074 ((-3 (-108) "failed") (-880 |#1|) (-1083) (-776 |#2|) (-776 |#2|) (-108))) (-15 -2074 ((-3 (-108) "failed") (-1079 |#2|) (-776 |#2|) (-776 |#2|) (-108))))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) 89)) (-4040 (((-520) $) 99)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) NIL)) (-2583 (($ $) NIL)) (-1671 (((-108) $) NIL)) (-2406 (($ $) NIL)) (-2903 (($ $) 77)) (-2768 (($ $) 65)) (-1917 (((-3 $ "failed") $ $) NIL)) (-3024 (($ $) NIL)) (-1507 (((-391 $) $) NIL)) (-1927 (($ $) 56)) (-1327 (((-108) $ $) NIL)) (-2879 (($ $) 75)) (-2745 (($ $) 63)) (-2804 (((-520) $) 116)) (-2925 (($ $) 80)) (-2789 (($ $) 67)) (-3961 (($) NIL T CONST)) (-1650 (($ $) NIL)) (-1296 (((-3 (-520) "failed") $) 115) (((-3 (-380 (-520)) "failed") $) 112)) (-1482 (((-520) $) 113) (((-380 (-520)) $) 110)) (-2276 (($ $ $) NIL)) (-1540 (((-3 $ "failed") $) 92)) (-3438 (((-380 (-520)) $ (-706)) 108) (((-380 (-520)) $ (-706) (-706)) 107)) (-2253 (($ $ $) NIL)) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) NIL)) (-2036 (((-108) $) NIL)) (-2173 (((-849)) 29) (((-849) (-849)) NIL (|has| $ (-6 -4220)))) (-2328 (((-108) $) NIL)) (-2833 (($) 39)) (-1272 (((-817 (-352) $) $ (-820 (-352)) (-817 (-352) $)) NIL)) (-3989 (((-520) $) 35)) (-1537 (((-108) $) NIL)) (-2322 (($ $ (-520)) NIL)) (-1434 (($ $) NIL)) (-3469 (((-108) $) 88)) (-3188 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-2809 (($ $ $) 53) (($) 34 (-12 (-2399 (|has| $ (-6 -4212))) (-2399 (|has| $ (-6 -4220)))))) (-2446 (($ $ $) 52) (($) 33 (-12 (-2399 (|has| $ (-6 -4212))) (-2399 (|has| $ (-6 -4220)))))) (-3352 (((-520) $) 27)) (-3899 (($ $) 30)) (-1832 (($ $) 57)) (-1252 (($ $) 62)) (-2222 (($ $ $) NIL) (($ (-586 $)) NIL)) (-1239 (((-1066) $) NIL)) (-3093 (($ $) NIL)) (-2344 (((-849) (-520)) NIL (|has| $ (-6 -4220)))) (-4142 (((-1030) $) NIL) (((-520) $) 90)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) NIL)) (-2257 (($ $ $) NIL) (($ (-586 $)) NIL)) (-4122 (($ $) NIL)) (-1626 (($ $) NIL)) (-3066 (($ (-520) (-520)) NIL) (($ (-520) (-520) (-849)) 100)) (-1916 (((-391 $) $) NIL)) (-1283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2230 (((-3 $ "failed") $ $) NIL)) (-2608 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-2647 (((-520) $) 28)) (-2574 (($) 38)) (-3260 (($ $) 61)) (-3704 (((-706) $) NIL)) (-3270 (((-1066) (-1066)) 8)) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) NIL)) (-2850 (((-849)) NIL) (((-849) (-849)) NIL (|has| $ (-6 -4220)))) (-2155 (($ $ (-706)) NIL) (($ $) 93)) (-2298 (((-849) (-520)) NIL (|has| $ (-6 -4220)))) (-1737 (($ $) 78)) (-2799 (($ $) 68)) (-2914 (($ $) 79)) (-2779 (($ $) 66)) (-2891 (($ $) 76)) (-2757 (($ $) 64)) (-1429 (((-352) $) 104) (((-201) $) 101) (((-820 (-352)) $) NIL) (((-496) $) 45)) (-2188 (((-791) $) 42) (($ (-520)) 60) (($ $) NIL) (($ (-380 (-520))) NIL) (($ (-520)) 60) (($ (-380 (-520))) NIL)) (-3251 (((-706)) NIL)) (-3370 (($ $) NIL)) (-1567 (((-849)) 32) (((-849) (-849)) NIL (|has| $ (-6 -4220)))) (-3349 (((-849)) 25)) (-1758 (($ $) 83)) (-2831 (($ $) 71) (($ $ $) 109)) (-2559 (((-108) $ $) NIL)) (-1744 (($ $) 81)) (-2810 (($ $) 69)) (-1775 (($ $) 86)) (-2855 (($ $) 74)) (-3915 (($ $) 84)) (-2867 (($ $) 72)) (-1767 (($ $) 85)) (-2843 (($ $) 73)) (-1751 (($ $) 82)) (-2820 (($ $) 70)) (-2458 (($ $) 117)) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL)) (-3560 (($) 36 T CONST)) (-3570 (($) 37 T CONST)) (-3610 (((-1066) $) 19) (((-1066) $ (-108)) 21) (((-1169) (-758) $) 22) (((-1169) (-758) $ (-108)) 23)) (-2551 (($ $) 96)) (-2211 (($ $ (-706)) NIL) (($ $) NIL)) (-1815 (($ $ $) 98)) (-1573 (((-108) $ $) NIL)) (-1557 (((-108) $ $) NIL)) (-1530 (((-108) $ $) 54)) (-1565 (((-108) $ $) NIL)) (-1548 (((-108) $ $) 46)) (-1619 (($ $ $) 87) (($ $ (-520)) 55)) (-1611 (($ $) 47) (($ $ $) 49)) (-1601 (($ $ $) 48)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) 58) (($ $ (-380 (-520))) 128) (($ $ $) 59)) (* (($ (-849) $) 31) (($ (-706) $) NIL) (($ (-520) $) 51) (($ $ $) 50) (($ $ (-380 (-520))) NIL) (($ (-380 (-520)) $) NIL)))
-(((-201) (-13 (-377) (-209) (-764) (-1104) (-561 (-496)) (-10 -8 (-15 -1619 ($ $ (-520))) (-15 ** ($ $ $)) (-15 -2574 ($)) (-15 -4142 ((-520) $)) (-15 -3899 ($ $)) (-15 -1832 ($ $)) (-15 -2831 ($ $ $)) (-15 -2551 ($ $)) (-15 -1815 ($ $ $)) (-15 -3270 ((-1066) (-1066))) (-15 -3438 ((-380 (-520)) $ (-706))) (-15 -3438 ((-380 (-520)) $ (-706) (-706)))))) (T -201))
-((** (*1 *1 *1 *1) (-5 *1 (-201))) (-1619 (*1 *1 *1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-201)))) (-2574 (*1 *1) (-5 *1 (-201))) (-4142 (*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-201)))) (-3899 (*1 *1 *1) (-5 *1 (-201))) (-1832 (*1 *1 *1) (-5 *1 (-201))) (-2831 (*1 *1 *1 *1) (-5 *1 (-201))) (-2551 (*1 *1 *1) (-5 *1 (-201))) (-1815 (*1 *1 *1 *1) (-5 *1 (-201))) (-3270 (*1 *2 *2) (-12 (-5 *2 (-1066)) (-5 *1 (-201)))) (-3438 (*1 *2 *1 *3) (-12 (-5 *3 (-706)) (-5 *2 (-380 (-520))) (-5 *1 (-201)))) (-3438 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-706)) (-5 *2 (-380 (-520))) (-5 *1 (-201)))))
-(-13 (-377) (-209) (-764) (-1104) (-561 (-496)) (-10 -8 (-15 -1619 ($ $ (-520))) (-15 ** ($ $ $)) (-15 -2574 ($)) (-15 -4142 ((-520) $)) (-15 -3899 ($ $)) (-15 -1832 ($ $)) (-15 -2831 ($ $ $)) (-15 -2551 ($ $)) (-15 -1815 ($ $ $)) (-15 -3270 ((-1066) (-1066))) (-15 -3438 ((-380 (-520)) $ (-706))) (-15 -3438 ((-380 (-520)) $ (-706) (-706)))))
-((-1443 (((-154 (-201)) (-706) (-154 (-201))) 11) (((-201) (-706) (-201)) 12)) (-3997 (((-154 (-201)) (-154 (-201))) 13) (((-201) (-201)) 14)) (-3529 (((-154 (-201)) (-154 (-201)) (-154 (-201))) 19) (((-201) (-201) (-201)) 22)) (-2899 (((-154 (-201)) (-154 (-201))) 25) (((-201) (-201)) 24)) (-2622 (((-154 (-201)) (-154 (-201)) (-154 (-201))) 43) (((-201) (-201) (-201)) 35)) (-1757 (((-154 (-201)) (-154 (-201)) (-154 (-201))) 48) (((-201) (-201) (-201)) 45)) (-2418 (((-154 (-201)) (-154 (-201)) (-154 (-201))) 15) (((-201) (-201) (-201)) 16)) (-3838 (((-154 (-201)) (-154 (-201)) (-154 (-201))) 17) (((-201) (-201) (-201)) 18)) (-1699 (((-154 (-201)) (-154 (-201))) 60) (((-201) (-201)) 59)) (-1300 (((-201) (-201)) 54) (((-154 (-201)) (-154 (-201))) 58)) (-2551 (((-154 (-201)) (-154 (-201))) 7) (((-201) (-201)) 9)) (-1815 (((-154 (-201)) (-154 (-201)) (-154 (-201))) 30) (((-201) (-201) (-201)) 26)))
-(((-202) (-10 -7 (-15 -2551 ((-201) (-201))) (-15 -2551 ((-154 (-201)) (-154 (-201)))) (-15 -1815 ((-201) (-201) (-201))) (-15 -1815 ((-154 (-201)) (-154 (-201)) (-154 (-201)))) (-15 -3997 ((-201) (-201))) (-15 -3997 ((-154 (-201)) (-154 (-201)))) (-15 -2899 ((-201) (-201))) (-15 -2899 ((-154 (-201)) (-154 (-201)))) (-15 -1443 ((-201) (-706) (-201))) (-15 -1443 ((-154 (-201)) (-706) (-154 (-201)))) (-15 -2418 ((-201) (-201) (-201))) (-15 -2418 ((-154 (-201)) (-154 (-201)) (-154 (-201)))) (-15 -2622 ((-201) (-201) (-201))) (-15 -2622 ((-154 (-201)) (-154 (-201)) (-154 (-201)))) (-15 -3838 ((-201) (-201) (-201))) (-15 -3838 ((-154 (-201)) (-154 (-201)) (-154 (-201)))) (-15 -1757 ((-201) (-201) (-201))) (-15 -1757 ((-154 (-201)) (-154 (-201)) (-154 (-201)))) (-15 -1300 ((-154 (-201)) (-154 (-201)))) (-15 -1300 ((-201) (-201))) (-15 -1699 ((-201) (-201))) (-15 -1699 ((-154 (-201)) (-154 (-201)))) (-15 -3529 ((-201) (-201) (-201))) (-15 -3529 ((-154 (-201)) (-154 (-201)) (-154 (-201)))))) (T -202))
-((-3529 (*1 *2 *2 *2) (-12 (-5 *2 (-154 (-201))) (-5 *1 (-202)))) (-3529 (*1 *2 *2 *2) (-12 (-5 *2 (-201)) (-5 *1 (-202)))) (-1699 (*1 *2 *2) (-12 (-5 *2 (-154 (-201))) (-5 *1 (-202)))) (-1699 (*1 *2 *2) (-12 (-5 *2 (-201)) (-5 *1 (-202)))) (-1300 (*1 *2 *2) (-12 (-5 *2 (-201)) (-5 *1 (-202)))) (-1300 (*1 *2 *2) (-12 (-5 *2 (-154 (-201))) (-5 *1 (-202)))) (-1757 (*1 *2 *2 *2) (-12 (-5 *2 (-154 (-201))) (-5 *1 (-202)))) (-1757 (*1 *2 *2 *2) (-12 (-5 *2 (-201)) (-5 *1 (-202)))) (-3838 (*1 *2 *2 *2) (-12 (-5 *2 (-154 (-201))) (-5 *1 (-202)))) (-3838 (*1 *2 *2 *2) (-12 (-5 *2 (-201)) (-5 *1 (-202)))) (-2622 (*1 *2 *2 *2) (-12 (-5 *2 (-154 (-201))) (-5 *1 (-202)))) (-2622 (*1 *2 *2 *2) (-12 (-5 *2 (-201)) (-5 *1 (-202)))) (-2418 (*1 *2 *2 *2) (-12 (-5 *2 (-154 (-201))) (-5 *1 (-202)))) (-2418 (*1 *2 *2 *2) (-12 (-5 *2 (-201)) (-5 *1 (-202)))) (-1443 (*1 *2 *3 *2) (-12 (-5 *2 (-154 (-201))) (-5 *3 (-706)) (-5 *1 (-202)))) (-1443 (*1 *2 *3 *2) (-12 (-5 *2 (-201)) (-5 *3 (-706)) (-5 *1 (-202)))) (-2899 (*1 *2 *2) (-12 (-5 *2 (-154 (-201))) (-5 *1 (-202)))) (-2899 (*1 *2 *2) (-12 (-5 *2 (-201)) (-5 *1 (-202)))) (-3997 (*1 *2 *2) (-12 (-5 *2 (-154 (-201))) (-5 *1 (-202)))) (-3997 (*1 *2 *2) (-12 (-5 *2 (-201)) (-5 *1 (-202)))) (-1815 (*1 *2 *2 *2) (-12 (-5 *2 (-154 (-201))) (-5 *1 (-202)))) (-1815 (*1 *2 *2 *2) (-12 (-5 *2 (-201)) (-5 *1 (-202)))) (-2551 (*1 *2 *2) (-12 (-5 *2 (-154 (-201))) (-5 *1 (-202)))) (-2551 (*1 *2 *2) (-12 (-5 *2 (-201)) (-5 *1 (-202)))))
-(-10 -7 (-15 -2551 ((-201) (-201))) (-15 -2551 ((-154 (-201)) (-154 (-201)))) (-15 -1815 ((-201) (-201) (-201))) (-15 -1815 ((-154 (-201)) (-154 (-201)) (-154 (-201)))) (-15 -3997 ((-201) (-201))) (-15 -3997 ((-154 (-201)) (-154 (-201)))) (-15 -2899 ((-201) (-201))) (-15 -2899 ((-154 (-201)) (-154 (-201)))) (-15 -1443 ((-201) (-706) (-201))) (-15 -1443 ((-154 (-201)) (-706) (-154 (-201)))) (-15 -2418 ((-201) (-201) (-201))) (-15 -2418 ((-154 (-201)) (-154 (-201)) (-154 (-201)))) (-15 -2622 ((-201) (-201) (-201))) (-15 -2622 ((-154 (-201)) (-154 (-201)) (-154 (-201)))) (-15 -3838 ((-201) (-201) (-201))) (-15 -3838 ((-154 (-201)) (-154 (-201)) (-154 (-201)))) (-15 -1757 ((-201) (-201) (-201))) (-15 -1757 ((-154 (-201)) (-154 (-201)) (-154 (-201)))) (-15 -1300 ((-154 (-201)) (-154 (-201)))) (-15 -1300 ((-201) (-201))) (-15 -1699 ((-201) (-201))) (-15 -1699 ((-154 (-201)) (-154 (-201)))) (-15 -3529 ((-201) (-201) (-201))) (-15 -3529 ((-154 (-201)) (-154 (-201)) (-154 (-201)))))
-((-1414 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-3477 (($ (-706) (-706)) NIL)) (-1472 (($ $ $) NIL)) (-1305 (($ (-1164 |#1|)) NIL) (($ $) NIL)) (-2466 (($ |#1| |#1| |#1|) 32)) (-2340 (((-108) $) NIL)) (-1566 (($ $ (-520) (-520)) NIL)) (-1465 (($ $ (-520) (-520)) NIL)) (-3408 (($ $ (-520) (-520) (-520) (-520)) NIL)) (-3012 (($ $) NIL)) (-2878 (((-108) $) NIL)) (-2063 (((-108) $ (-706)) NIL)) (-4056 (($ $ (-520) (-520) $) NIL)) (-2377 ((|#1| $ (-520) (-520) |#1|) NIL) (($ $ (-586 (-520)) (-586 (-520)) $) NIL)) (-2145 (($ $ (-520) (-1164 |#1|)) NIL)) (-3834 (($ $ (-520) (-1164 |#1|)) NIL)) (-1640 (($ |#1| |#1| |#1|) 31)) (-1311 (($ (-706) |#1|) NIL)) (-3961 (($) NIL T CONST)) (-2085 (($ $) NIL (|has| |#1| (-281)))) (-2120 (((-1164 |#1|) $ (-520)) NIL)) (-3433 (($ |#1|) 30)) (-1851 (($ |#1|) 29)) (-2262 (($ |#1|) 28)) (-3160 (((-706) $) NIL (|has| |#1| (-512)))) (-3846 ((|#1| $ (-520) (-520) |#1|) NIL)) (-3623 ((|#1| $ (-520) (-520)) NIL)) (-3828 (((-586 |#1|) $) NIL)) (-2621 (((-706) $) NIL (|has| |#1| (-512)))) (-1408 (((-586 (-1164 |#1|)) $) NIL (|has| |#1| (-512)))) (-1409 (((-706) $) NIL)) (-1810 (($ (-706) (-706) |#1|) NIL)) (-1420 (((-706) $) NIL)) (-3027 (((-108) $ (-706)) NIL)) (-3346 ((|#1| $) NIL (|has| |#1| (-6 (-4231 "*"))))) (-2289 (((-520) $) NIL)) (-1867 (((-520) $) NIL)) (-3702 (((-586 |#1|) $) NIL (|has| $ (-6 -4229)))) (-2422 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-1888 (((-520) $) NIL)) (-2982 (((-520) $) NIL)) (-1364 (($ (-586 (-586 |#1|))) 10)) (-3830 (($ (-1 |#1| |#1|) $) NIL)) (-1389 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3464 (((-586 (-586 |#1|)) $) NIL)) (-1390 (((-108) $ (-706)) NIL)) (-1239 (((-1066) $) NIL (|has| |#1| (-1012)))) (-1675 (((-3 $ "failed") $) NIL (|has| |#1| (-336)))) (-2221 (($) 11)) (-4112 (($ $ $) NIL)) (-4142 (((-1030) $) NIL (|has| |#1| (-1012)))) (-2936 (($ $ |#1|) NIL)) (-2230 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-512)))) (-4155 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 |#1|))) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-268 |#1|)) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-586 |#1|) (-586 |#1|)) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))) (-2533 (((-108) $ $) NIL)) (-4018 (((-108) $) NIL)) (-2238 (($) NIL)) (-2543 ((|#1| $ (-520) (-520)) NIL) ((|#1| $ (-520) (-520) |#1|) NIL) (($ $ (-586 (-520)) (-586 (-520))) NIL)) (-2115 (($ (-586 |#1|)) NIL) (($ (-586 $)) NIL)) (-3149 (((-108) $) NIL)) (-4145 ((|#1| $) NIL (|has| |#1| (-6 (-4231 "*"))))) (-4159 (((-706) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229))) (((-706) |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-2403 (($ $) NIL)) (-2460 (((-1164 |#1|) $ (-520)) NIL)) (-2188 (($ (-1164 |#1|)) NIL) (((-791) $) NIL (|has| |#1| (-560 (-791))))) (-1662 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-3669 (((-108) $) NIL)) (-1530 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-1619 (($ $ |#1|) NIL (|has| |#1| (-336)))) (-1611 (($ $ $) NIL) (($ $) NIL)) (-1601 (($ $ $) NIL)) (** (($ $ (-706)) NIL) (($ $ (-520)) NIL (|has| |#1| (-336)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-520) $) NIL) (((-1164 |#1|) $ (-1164 |#1|)) 14) (((-1164 |#1|) (-1164 |#1|) $) NIL) (((-871 |#1|) $ (-871 |#1|)) 20)) (-3474 (((-706) $) NIL (|has| $ (-6 -4229)))))
-(((-203 |#1|) (-13 (-624 |#1| (-1164 |#1|) (-1164 |#1|)) (-10 -8 (-15 * ((-871 |#1|) $ (-871 |#1|))) (-15 -2221 ($)) (-15 -2262 ($ |#1|)) (-15 -1851 ($ |#1|)) (-15 -3433 ($ |#1|)) (-15 -1640 ($ |#1| |#1| |#1|)) (-15 -2466 ($ |#1| |#1| |#1|)))) (-13 (-336) (-1104))) (T -203))
-((* (*1 *2 *1 *2) (-12 (-5 *2 (-871 *3)) (-4 *3 (-13 (-336) (-1104))) (-5 *1 (-203 *3)))) (-2221 (*1 *1) (-12 (-5 *1 (-203 *2)) (-4 *2 (-13 (-336) (-1104))))) (-2262 (*1 *1 *2) (-12 (-5 *1 (-203 *2)) (-4 *2 (-13 (-336) (-1104))))) (-1851 (*1 *1 *2) (-12 (-5 *1 (-203 *2)) (-4 *2 (-13 (-336) (-1104))))) (-3433 (*1 *1 *2) (-12 (-5 *1 (-203 *2)) (-4 *2 (-13 (-336) (-1104))))) (-1640 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-203 *2)) (-4 *2 (-13 (-336) (-1104))))) (-2466 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-203 *2)) (-4 *2 (-13 (-336) (-1104))))))
-(-13 (-624 |#1| (-1164 |#1|) (-1164 |#1|)) (-10 -8 (-15 * ((-871 |#1|) $ (-871 |#1|))) (-15 -2221 ($)) (-15 -2262 ($ |#1|)) (-15 -1851 ($ |#1|)) (-15 -3433 ($ |#1|)) (-15 -1640 ($ |#1| |#1| |#1|)) (-15 -2466 ($ |#1| |#1| |#1|))))
-((-1817 (($ (-1 (-108) |#2|) $) 16)) (-3766 (($ |#2| $) NIL) (($ (-1 (-108) |#2|) $) 24)) (-1645 (($) NIL) (($ (-586 |#2|)) 11)) (-1530 (((-108) $ $) 22)))
-(((-204 |#1| |#2|) (-10 -8 (-15 -1817 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3766 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3766 (|#1| |#2| |#1|)) (-15 -1645 (|#1| (-586 |#2|))) (-15 -1645 (|#1|)) (-15 -1530 ((-108) |#1| |#1|))) (-205 |#2|) (-1012)) (T -204))
-NIL
-(-10 -8 (-15 -1817 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3766 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3766 (|#1| |#2| |#1|)) (-15 -1645 (|#1| (-586 |#2|))) (-15 -1645 (|#1|)) (-15 -1530 ((-108) |#1| |#1|)))
-((-1414 (((-108) $ $) 19 (|has| |#1| (-1012)))) (-2063 (((-108) $ (-706)) 8)) (-1817 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4229)))) (-1627 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4229)))) (-3961 (($) 7 T CONST)) (-2331 (($ $) 58 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-3766 (($ |#1| $) 47 (|has| $ (-6 -4229))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4229)))) (-1421 (($ |#1| $) 57 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4229)))) (-3856 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4229))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4229)))) (-3828 (((-586 |#1|) $) 30 (|has| $ (-6 -4229)))) (-3027 (((-108) $ (-706)) 9)) (-3702 (((-586 |#1|) $) 29 (|has| $ (-6 -4229)))) (-2422 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-3830 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#1| |#1|) $) 35)) (-1390 (((-108) $ (-706)) 10)) (-1239 (((-1066) $) 22 (|has| |#1| (-1012)))) (-3351 ((|#1| $) 39)) (-3618 (($ |#1| $) 40)) (-4142 (((-1030) $) 21 (|has| |#1| (-1012)))) (-2985 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-3345 ((|#1| $) 41)) (-4155 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 |#1|))) 26 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-268 |#1|)) 25 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-586 |#1|) (-586 |#1|)) 23 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))) (-2533 (((-108) $ $) 14)) (-4018 (((-108) $) 11)) (-2238 (($) 12)) (-1645 (($) 49) (($ (-586 |#1|)) 48)) (-4159 (((-706) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4229))) (((-706) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-2403 (($ $) 13)) (-1429 (((-496) $) 59 (|has| |#1| (-561 (-496))))) (-2200 (($ (-586 |#1|)) 50)) (-2188 (((-791) $) 18 (|has| |#1| (-560 (-791))))) (-1898 (($ (-586 |#1|)) 42)) (-1662 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4229)))) (-1530 (((-108) $ $) 20 (|has| |#1| (-1012)))) (-3474 (((-706) $) 6 (|has| $ (-6 -4229)))))
-(((-205 |#1|) (-1195) (-1012)) (T -205))
-NIL
-(-13 (-211 |t#1|))
-(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1012)) ((-560 (-791)) -3700 (|has| |#1| (-1012)) (|has| |#1| (-560 (-791)))) ((-139 |#1|) . T) ((-561 (-496)) |has| |#1| (-561 (-496))) ((-211 |#1|) . T) ((-283 |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))) ((-459 |#1|) . T) ((-481 |#1| |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))) ((-1012) |has| |#1| (-1012)) ((-1118) . T))
-((-2155 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-706)) 11) (($ $ (-586 (-1083)) (-586 (-706))) NIL) (($ $ (-1083) (-706)) NIL) (($ $ (-586 (-1083))) NIL) (($ $ (-1083)) 19) (($ $ (-706)) NIL) (($ $) 16)) (-2211 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-706)) 14) (($ $ (-586 (-1083)) (-586 (-706))) NIL) (($ $ (-1083) (-706)) NIL) (($ $ (-586 (-1083))) NIL) (($ $ (-1083)) NIL) (($ $ (-706)) NIL) (($ $) NIL)))
-(((-206 |#1| |#2|) (-10 -8 (-15 -2155 (|#1| |#1|)) (-15 -2211 (|#1| |#1|)) (-15 -2155 (|#1| |#1| (-706))) (-15 -2211 (|#1| |#1| (-706))) (-15 -2155 (|#1| |#1| (-1083))) (-15 -2155 (|#1| |#1| (-586 (-1083)))) (-15 -2155 (|#1| |#1| (-1083) (-706))) (-15 -2155 (|#1| |#1| (-586 (-1083)) (-586 (-706)))) (-15 -2211 (|#1| |#1| (-1083))) (-15 -2211 (|#1| |#1| (-586 (-1083)))) (-15 -2211 (|#1| |#1| (-1083) (-706))) (-15 -2211 (|#1| |#1| (-586 (-1083)) (-586 (-706)))) (-15 -2211 (|#1| |#1| (-1 |#2| |#2|) (-706))) (-15 -2211 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2155 (|#1| |#1| (-1 |#2| |#2|) (-706))) (-15 -2155 (|#1| |#1| (-1 |#2| |#2|)))) (-207 |#2|) (-969)) (T -206))
-NIL
-(-10 -8 (-15 -2155 (|#1| |#1|)) (-15 -2211 (|#1| |#1|)) (-15 -2155 (|#1| |#1| (-706))) (-15 -2211 (|#1| |#1| (-706))) (-15 -2155 (|#1| |#1| (-1083))) (-15 -2155 (|#1| |#1| (-586 (-1083)))) (-15 -2155 (|#1| |#1| (-1083) (-706))) (-15 -2155 (|#1| |#1| (-586 (-1083)) (-586 (-706)))) (-15 -2211 (|#1| |#1| (-1083))) (-15 -2211 (|#1| |#1| (-586 (-1083)))) (-15 -2211 (|#1| |#1| (-1083) (-706))) (-15 -2211 (|#1| |#1| (-586 (-1083)) (-586 (-706)))) (-15 -2211 (|#1| |#1| (-1 |#2| |#2|) (-706))) (-15 -2211 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2155 (|#1| |#1| (-1 |#2| |#2|) (-706))) (-15 -2155 (|#1| |#1| (-1 |#2| |#2|))))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-1917 (((-3 $ "failed") $ $) 19)) (-3961 (($) 17 T CONST)) (-1540 (((-3 $ "failed") $) 34)) (-1537 (((-108) $) 31)) (-1239 (((-1066) $) 9)) (-4142 (((-1030) $) 10)) (-2155 (($ $ (-1 |#1| |#1|)) 52) (($ $ (-1 |#1| |#1|) (-706)) 51) (($ $ (-586 (-1083)) (-586 (-706))) 44 (|has| |#1| (-828 (-1083)))) (($ $ (-1083) (-706)) 43 (|has| |#1| (-828 (-1083)))) (($ $ (-586 (-1083))) 42 (|has| |#1| (-828 (-1083)))) (($ $ (-1083)) 41 (|has| |#1| (-828 (-1083)))) (($ $ (-706)) 39 (|has| |#1| (-209))) (($ $) 37 (|has| |#1| (-209)))) (-2188 (((-791) $) 11) (($ (-520)) 28)) (-3251 (((-706)) 29)) (-3504 (($ $ (-849)) 26) (($ $ (-706)) 33)) (-3560 (($) 18 T CONST)) (-3570 (($) 30 T CONST)) (-2211 (($ $ (-1 |#1| |#1|)) 50) (($ $ (-1 |#1| |#1|) (-706)) 49) (($ $ (-586 (-1083)) (-586 (-706))) 48 (|has| |#1| (-828 (-1083)))) (($ $ (-1083) (-706)) 47 (|has| |#1| (-828 (-1083)))) (($ $ (-586 (-1083))) 46 (|has| |#1| (-828 (-1083)))) (($ $ (-1083)) 45 (|has| |#1| (-828 (-1083)))) (($ $ (-706)) 40 (|has| |#1| (-209))) (($ $) 38 (|has| |#1| (-209)))) (-1530 (((-108) $ $) 6)) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-706)) 32)) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ $ $) 24)))
-(((-207 |#1|) (-1195) (-969)) (T -207))
-((-2155 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-207 *3)) (-4 *3 (-969)))) (-2155 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-706)) (-4 *1 (-207 *4)) (-4 *4 (-969)))) (-2211 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-207 *3)) (-4 *3 (-969)))) (-2211 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-706)) (-4 *1 (-207 *4)) (-4 *4 (-969)))))
-(-13 (-969) (-10 -8 (-15 -2155 ($ $ (-1 |t#1| |t#1|))) (-15 -2155 ($ $ (-1 |t#1| |t#1|) (-706))) (-15 -2211 ($ $ (-1 |t#1| |t#1|))) (-15 -2211 ($ $ (-1 |t#1| |t#1|) (-706))) (IF (|has| |t#1| (-209)) (-6 (-209)) |%noBranch|) (IF (|has| |t#1| (-828 (-1083))) (-6 (-828 (-1083))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-560 (-791)) . T) ((-209) |has| |#1| (-209)) ((-588 $) . T) ((-662) . T) ((-828 (-1083)) |has| |#1| (-828 (-1083))) ((-969) . T) ((-976) . T) ((-1024) . T) ((-1012) . T))
-((-2155 (($ $) NIL) (($ $ (-706)) 10)) (-2211 (($ $) 8) (($ $ (-706)) 12)))
-(((-208 |#1|) (-10 -8 (-15 -2211 (|#1| |#1| (-706))) (-15 -2155 (|#1| |#1| (-706))) (-15 -2211 (|#1| |#1|)) (-15 -2155 (|#1| |#1|))) (-209)) (T -208))
-NIL
-(-10 -8 (-15 -2211 (|#1| |#1| (-706))) (-15 -2155 (|#1| |#1| (-706))) (-15 -2211 (|#1| |#1|)) (-15 -2155 (|#1| |#1|)))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-1917 (((-3 $ "failed") $ $) 19)) (-3961 (($) 17 T CONST)) (-1540 (((-3 $ "failed") $) 34)) (-1537 (((-108) $) 31)) (-1239 (((-1066) $) 9)) (-4142 (((-1030) $) 10)) (-2155 (($ $) 38) (($ $ (-706)) 36)) (-2188 (((-791) $) 11) (($ (-520)) 28)) (-3251 (((-706)) 29)) (-3504 (($ $ (-849)) 26) (($ $ (-706)) 33)) (-3560 (($) 18 T CONST)) (-3570 (($) 30 T CONST)) (-2211 (($ $) 37) (($ $ (-706)) 35)) (-1530 (((-108) $ $) 6)) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-706)) 32)) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ $ $) 24)))
-(((-209) (-1195)) (T -209))
-((-2155 (*1 *1 *1) (-4 *1 (-209))) (-2211 (*1 *1 *1) (-4 *1 (-209))) (-2155 (*1 *1 *1 *2) (-12 (-4 *1 (-209)) (-5 *2 (-706)))) (-2211 (*1 *1 *1 *2) (-12 (-4 *1 (-209)) (-5 *2 (-706)))))
-(-13 (-969) (-10 -8 (-15 -2155 ($ $)) (-15 -2211 ($ $)) (-15 -2155 ($ $ (-706))) (-15 -2211 ($ $ (-706)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-560 (-791)) . T) ((-588 $) . T) ((-662) . T) ((-969) . T) ((-976) . T) ((-1024) . T) ((-1012) . T))
-((-1645 (($) 12) (($ (-586 |#2|)) NIL)) (-2403 (($ $) 14)) (-2200 (($ (-586 |#2|)) 10)) (-2188 (((-791) $) 21)))
-(((-210 |#1| |#2|) (-10 -8 (-15 -2188 ((-791) |#1|)) (-15 -1645 (|#1| (-586 |#2|))) (-15 -1645 (|#1|)) (-15 -2200 (|#1| (-586 |#2|))) (-15 -2403 (|#1| |#1|))) (-211 |#2|) (-1012)) (T -210))
-NIL
-(-10 -8 (-15 -2188 ((-791) |#1|)) (-15 -1645 (|#1| (-586 |#2|))) (-15 -1645 (|#1|)) (-15 -2200 (|#1| (-586 |#2|))) (-15 -2403 (|#1| |#1|)))
-((-1414 (((-108) $ $) 19 (|has| |#1| (-1012)))) (-2063 (((-108) $ (-706)) 8)) (-1817 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4229)))) (-1627 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4229)))) (-3961 (($) 7 T CONST)) (-2331 (($ $) 58 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-3766 (($ |#1| $) 47 (|has| $ (-6 -4229))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4229)))) (-1421 (($ |#1| $) 57 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4229)))) (-3856 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4229))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4229)))) (-3828 (((-586 |#1|) $) 30 (|has| $ (-6 -4229)))) (-3027 (((-108) $ (-706)) 9)) (-3702 (((-586 |#1|) $) 29 (|has| $ (-6 -4229)))) (-2422 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-3830 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#1| |#1|) $) 35)) (-1390 (((-108) $ (-706)) 10)) (-1239 (((-1066) $) 22 (|has| |#1| (-1012)))) (-3351 ((|#1| $) 39)) (-3618 (($ |#1| $) 40)) (-4142 (((-1030) $) 21 (|has| |#1| (-1012)))) (-2985 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-3345 ((|#1| $) 41)) (-4155 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 |#1|))) 26 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-268 |#1|)) 25 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-586 |#1|) (-586 |#1|)) 23 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))) (-2533 (((-108) $ $) 14)) (-4018 (((-108) $) 11)) (-2238 (($) 12)) (-1645 (($) 49) (($ (-586 |#1|)) 48)) (-4159 (((-706) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4229))) (((-706) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-2403 (($ $) 13)) (-1429 (((-496) $) 59 (|has| |#1| (-561 (-496))))) (-2200 (($ (-586 |#1|)) 50)) (-2188 (((-791) $) 18 (|has| |#1| (-560 (-791))))) (-1898 (($ (-586 |#1|)) 42)) (-1662 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4229)))) (-1530 (((-108) $ $) 20 (|has| |#1| (-1012)))) (-3474 (((-706) $) 6 (|has| $ (-6 -4229)))))
-(((-211 |#1|) (-1195) (-1012)) (T -211))
-((-1645 (*1 *1) (-12 (-4 *1 (-211 *2)) (-4 *2 (-1012)))) (-1645 (*1 *1 *2) (-12 (-5 *2 (-586 *3)) (-4 *3 (-1012)) (-4 *1 (-211 *3)))) (-3766 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4229)) (-4 *1 (-211 *2)) (-4 *2 (-1012)))) (-3766 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4229)) (-4 *1 (-211 *3)) (-4 *3 (-1012)))) (-1817 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4229)) (-4 *1 (-211 *3)) (-4 *3 (-1012)))))
-(-13 (-102 |t#1|) (-139 |t#1|) (-10 -8 (-15 -1645 ($)) (-15 -1645 ($ (-586 |t#1|))) (IF (|has| $ (-6 -4229)) (PROGN (-15 -3766 ($ |t#1| $)) (-15 -3766 ($ (-1 (-108) |t#1|) $)) (-15 -1817 ($ (-1 (-108) |t#1|) $))) |%noBranch|)))
-(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1012)) ((-560 (-791)) -3700 (|has| |#1| (-1012)) (|has| |#1| (-560 (-791)))) ((-139 |#1|) . T) ((-561 (-496)) |has| |#1| (-561 (-496))) ((-283 |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))) ((-459 |#1|) . T) ((-481 |#1| |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))) ((-1012) |has| |#1| (-1012)) ((-1118) . T))
-((-2185 (((-2 (|:| |varOrder| (-586 (-1083))) (|:| |inhom| (-3 (-586 (-1164 (-706))) "failed")) (|:| |hom| (-586 (-1164 (-706))))) (-268 (-880 (-520)))) 25)))
-(((-212) (-10 -7 (-15 -2185 ((-2 (|:| |varOrder| (-586 (-1083))) (|:| |inhom| (-3 (-586 (-1164 (-706))) "failed")) (|:| |hom| (-586 (-1164 (-706))))) (-268 (-880 (-520))))))) (T -212))
-((-2185 (*1 *2 *3) (-12 (-5 *3 (-268 (-880 (-520)))) (-5 *2 (-2 (|:| |varOrder| (-586 (-1083))) (|:| |inhom| (-3 (-586 (-1164 (-706))) "failed")) (|:| |hom| (-586 (-1164 (-706)))))) (-5 *1 (-212)))))
-(-10 -7 (-15 -2185 ((-2 (|:| |varOrder| (-586 (-1083))) (|:| |inhom| (-3 (-586 (-1164 (-706))) "failed")) (|:| |hom| (-586 (-1164 (-706))))) (-268 (-880 (-520))))))
-((-1628 (((-706)) 51)) (-2756 (((-2 (|:| -3927 (-626 |#3|)) (|:| |vec| (-1164 |#3|))) (-626 $) (-1164 $)) 49) (((-626 |#3|) (-626 $)) 41) (((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 $) (-1164 $)) NIL) (((-626 (-520)) (-626 $)) NIL)) (-1556 (((-126)) 57)) (-2155 (($ $ (-1 |#3| |#3|) (-706)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-586 (-1083)) (-586 (-706))) NIL) (($ $ (-1083) (-706)) NIL) (($ $ (-586 (-1083))) NIL) (($ $ (-1083)) NIL) (($ $ (-706)) NIL) (($ $) NIL)) (-2188 (((-1164 |#3|) $) NIL) (($ |#3|) NIL) (((-791) $) NIL) (($ (-520)) 12) (($ (-380 (-520))) NIL)) (-3251 (((-706)) 15)) (-1619 (($ $ |#3|) 54)))
-(((-213 |#1| |#2| |#3|) (-10 -8 (-15 -2188 (|#1| (-380 (-520)))) (-15 -2188 (|#1| (-520))) (-15 -2188 ((-791) |#1|)) (-15 -3251 ((-706))) (-15 -2155 (|#1| |#1|)) (-15 -2155 (|#1| |#1| (-706))) (-15 -2155 (|#1| |#1| (-1083))) (-15 -2155 (|#1| |#1| (-586 (-1083)))) (-15 -2155 (|#1| |#1| (-1083) (-706))) (-15 -2155 (|#1| |#1| (-586 (-1083)) (-586 (-706)))) (-15 -2756 ((-626 (-520)) (-626 |#1|))) (-15 -2756 ((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 |#1|) (-1164 |#1|))) (-15 -2188 (|#1| |#3|)) (-15 -2155 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2155 (|#1| |#1| (-1 |#3| |#3|) (-706))) (-15 -2756 ((-626 |#3|) (-626 |#1|))) (-15 -2756 ((-2 (|:| -3927 (-626 |#3|)) (|:| |vec| (-1164 |#3|))) (-626 |#1|) (-1164 |#1|))) (-15 -1628 ((-706))) (-15 -1619 (|#1| |#1| |#3|)) (-15 -1556 ((-126))) (-15 -2188 ((-1164 |#3|) |#1|))) (-214 |#2| |#3|) (-706) (-1118)) (T -213))
-((-1556 (*1 *2) (-12 (-14 *4 (-706)) (-4 *5 (-1118)) (-5 *2 (-126)) (-5 *1 (-213 *3 *4 *5)) (-4 *3 (-214 *4 *5)))) (-1628 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1118)) (-5 *2 (-706)) (-5 *1 (-213 *3 *4 *5)) (-4 *3 (-214 *4 *5)))) (-3251 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1118)) (-5 *2 (-706)) (-5 *1 (-213 *3 *4 *5)) (-4 *3 (-214 *4 *5)))))
-(-10 -8 (-15 -2188 (|#1| (-380 (-520)))) (-15 -2188 (|#1| (-520))) (-15 -2188 ((-791) |#1|)) (-15 -3251 ((-706))) (-15 -2155 (|#1| |#1|)) (-15 -2155 (|#1| |#1| (-706))) (-15 -2155 (|#1| |#1| (-1083))) (-15 -2155 (|#1| |#1| (-586 (-1083)))) (-15 -2155 (|#1| |#1| (-1083) (-706))) (-15 -2155 (|#1| |#1| (-586 (-1083)) (-586 (-706)))) (-15 -2756 ((-626 (-520)) (-626 |#1|))) (-15 -2756 ((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 |#1|) (-1164 |#1|))) (-15 -2188 (|#1| |#3|)) (-15 -2155 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2155 (|#1| |#1| (-1 |#3| |#3|) (-706))) (-15 -2756 ((-626 |#3|) (-626 |#1|))) (-15 -2756 ((-2 (|:| -3927 (-626 |#3|)) (|:| |vec| (-1164 |#3|))) (-626 |#1|) (-1164 |#1|))) (-15 -1628 ((-706))) (-15 -1619 (|#1| |#1| |#3|)) (-15 -1556 ((-126))) (-15 -2188 ((-1164 |#3|) |#1|)))
-((-1414 (((-108) $ $) 19 (|has| |#2| (-1012)))) (-2906 (((-108) $) 72 (|has| |#2| (-124)))) (-4121 (($ (-849)) 127 (|has| |#2| (-969)))) (-1476 (((-1169) $ (-520) (-520)) 40 (|has| $ (-6 -4230)))) (-1224 (($ $ $) 123 (|has| |#2| (-728)))) (-1917 (((-3 $ "failed") $ $) 74 (|has| |#2| (-124)))) (-2063 (((-108) $ (-706)) 8)) (-1628 (((-706)) 109 (|has| |#2| (-341)))) (-2804 (((-520) $) 121 (|has| |#2| (-781)))) (-2377 ((|#2| $ (-520) |#2|) 52 (|has| $ (-6 -4230)))) (-3961 (($) 7 T CONST)) (-1296 (((-3 (-520) "failed") $) 67 (-4006 (|has| |#2| (-960 (-520))) (|has| |#2| (-1012)))) (((-3 (-380 (-520)) "failed") $) 64 (-4006 (|has| |#2| (-960 (-380 (-520)))) (|has| |#2| (-1012)))) (((-3 |#2| "failed") $) 61 (|has| |#2| (-1012)))) (-1482 (((-520) $) 68 (-4006 (|has| |#2| (-960 (-520))) (|has| |#2| (-1012)))) (((-380 (-520)) $) 65 (-4006 (|has| |#2| (-960 (-380 (-520)))) (|has| |#2| (-1012)))) ((|#2| $) 60 (|has| |#2| (-1012)))) (-2756 (((-626 (-520)) (-626 $)) 108 (-4006 (|has| |#2| (-582 (-520))) (|has| |#2| (-969)))) (((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 $) (-1164 $)) 107 (-4006 (|has| |#2| (-582 (-520))) (|has| |#2| (-969)))) (((-2 (|:| -3927 (-626 |#2|)) (|:| |vec| (-1164 |#2|))) (-626 $) (-1164 $)) 106 (|has| |#2| (-969))) (((-626 |#2|) (-626 $)) 105 (|has| |#2| (-969)))) (-1540 (((-3 $ "failed") $) 99 (|has| |#2| (-969)))) (-3249 (($) 112 (|has| |#2| (-341)))) (-3846 ((|#2| $ (-520) |#2|) 53 (|has| $ (-6 -4230)))) (-3623 ((|#2| $ (-520)) 51)) (-2328 (((-108) $) 119 (|has| |#2| (-781)))) (-3828 (((-586 |#2|) $) 30 (|has| $ (-6 -4229)))) (-1537 (((-108) $) 102 (|has| |#2| (-969)))) (-3469 (((-108) $) 120 (|has| |#2| (-781)))) (-3027 (((-108) $ (-706)) 9)) (-2567 (((-520) $) 43 (|has| (-520) (-783)))) (-2809 (($ $ $) 118 (-3700 (|has| |#2| (-781)) (|has| |#2| (-728))))) (-3702 (((-586 |#2|) $) 29 (|has| $ (-6 -4229)))) (-2422 (((-108) |#2| $) 27 (-12 (|has| |#2| (-1012)) (|has| $ (-6 -4229))))) (-1752 (((-520) $) 44 (|has| (-520) (-783)))) (-2446 (($ $ $) 117 (-3700 (|has| |#2| (-781)) (|has| |#2| (-728))))) (-3830 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#2| |#2|) $) 35)) (-3040 (((-849) $) 111 (|has| |#2| (-341)))) (-1390 (((-108) $ (-706)) 10)) (-1239 (((-1066) $) 22 (|has| |#2| (-1012)))) (-3622 (((-586 (-520)) $) 46)) (-2603 (((-108) (-520) $) 47)) (-2716 (($ (-849)) 110 (|has| |#2| (-341)))) (-4142 (((-1030) $) 21 (|has| |#2| (-1012)))) (-2293 ((|#2| $) 42 (|has| (-520) (-783)))) (-2936 (($ $ |#2|) 41 (|has| $ (-6 -4230)))) (-4155 (((-108) (-1 (-108) |#2|) $) 32 (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 |#2|))) 26 (-12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012)))) (($ $ (-268 |#2|)) 25 (-12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012)))) (($ $ (-586 |#2|) (-586 |#2|)) 23 (-12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012))))) (-2533 (((-108) $ $) 14)) (-2094 (((-108) |#2| $) 45 (-12 (|has| $ (-6 -4229)) (|has| |#2| (-1012))))) (-1523 (((-586 |#2|) $) 48)) (-4018 (((-108) $) 11)) (-2238 (($) 12)) (-2543 ((|#2| $ (-520) |#2|) 50) ((|#2| $ (-520)) 49)) (-3639 ((|#2| $ $) 126 (|has| |#2| (-969)))) (-1960 (($ (-1164 |#2|)) 128)) (-1556 (((-126)) 125 (|has| |#2| (-336)))) (-2155 (($ $) 92 (-4006 (|has| |#2| (-209)) (|has| |#2| (-969)))) (($ $ (-706)) 90 (-4006 (|has| |#2| (-209)) (|has| |#2| (-969)))) (($ $ (-1083)) 88 (-4006 (|has| |#2| (-828 (-1083))) (|has| |#2| (-969)))) (($ $ (-586 (-1083))) 87 (-4006 (|has| |#2| (-828 (-1083))) (|has| |#2| (-969)))) (($ $ (-1083) (-706)) 86 (-4006 (|has| |#2| (-828 (-1083))) (|has| |#2| (-969)))) (($ $ (-586 (-1083)) (-586 (-706))) 85 (-4006 (|has| |#2| (-828 (-1083))) (|has| |#2| (-969)))) (($ $ (-1 |#2| |#2|) (-706)) 78 (|has| |#2| (-969))) (($ $ (-1 |#2| |#2|)) 77 (|has| |#2| (-969)))) (-4159 (((-706) (-1 (-108) |#2|) $) 31 (|has| $ (-6 -4229))) (((-706) |#2| $) 28 (-12 (|has| |#2| (-1012)) (|has| $ (-6 -4229))))) (-2403 (($ $) 13)) (-2188 (((-1164 |#2|) $) 129) (($ (-520)) 66 (-3700 (-4006 (|has| |#2| (-960 (-520))) (|has| |#2| (-1012))) (|has| |#2| (-969)))) (($ (-380 (-520))) 63 (-4006 (|has| |#2| (-960 (-380 (-520)))) (|has| |#2| (-1012)))) (($ |#2|) 62 (|has| |#2| (-1012))) (((-791) $) 18 (|has| |#2| (-560 (-791))))) (-3251 (((-706)) 104 (|has| |#2| (-969)))) (-1662 (((-108) (-1 (-108) |#2|) $) 33 (|has| $ (-6 -4229)))) (-2458 (($ $) 122 (|has| |#2| (-781)))) (-3504 (($ $ (-706)) 100 (|has| |#2| (-969))) (($ $ (-849)) 96 (|has| |#2| (-969)))) (-3560 (($) 71 (|has| |#2| (-124)) CONST)) (-3570 (($) 103 (|has| |#2| (-969)) CONST)) (-2211 (($ $) 91 (-4006 (|has| |#2| (-209)) (|has| |#2| (-969)))) (($ $ (-706)) 89 (-4006 (|has| |#2| (-209)) (|has| |#2| (-969)))) (($ $ (-1083)) 84 (-4006 (|has| |#2| (-828 (-1083))) (|has| |#2| (-969)))) (($ $ (-586 (-1083))) 83 (-4006 (|has| |#2| (-828 (-1083))) (|has| |#2| (-969)))) (($ $ (-1083) (-706)) 82 (-4006 (|has| |#2| (-828 (-1083))) (|has| |#2| (-969)))) (($ $ (-586 (-1083)) (-586 (-706))) 81 (-4006 (|has| |#2| (-828 (-1083))) (|has| |#2| (-969)))) (($ $ (-1 |#2| |#2|) (-706)) 80 (|has| |#2| (-969))) (($ $ (-1 |#2| |#2|)) 79 (|has| |#2| (-969)))) (-1573 (((-108) $ $) 115 (-3700 (|has| |#2| (-781)) (|has| |#2| (-728))))) (-1557 (((-108) $ $) 114 (-3700 (|has| |#2| (-781)) (|has| |#2| (-728))))) (-1530 (((-108) $ $) 20 (|has| |#2| (-1012)))) (-1565 (((-108) $ $) 116 (-3700 (|has| |#2| (-781)) (|has| |#2| (-728))))) (-1548 (((-108) $ $) 113 (-3700 (|has| |#2| (-781)) (|has| |#2| (-728))))) (-1619 (($ $ |#2|) 124 (|has| |#2| (-336)))) (-1611 (($ $ $) 94 (|has| |#2| (-969))) (($ $) 93 (|has| |#2| (-969)))) (-1601 (($ $ $) 69 (|has| |#2| (-25)))) (** (($ $ (-706)) 101 (|has| |#2| (-969))) (($ $ (-849)) 97 (|has| |#2| (-969)))) (* (($ $ $) 98 (|has| |#2| (-969))) (($ (-520) $) 95 (|has| |#2| (-969))) (($ $ |#2|) 76 (|has| |#2| (-662))) (($ |#2| $) 75 (|has| |#2| (-662))) (($ (-706) $) 73 (|has| |#2| (-124))) (($ (-849) $) 70 (|has| |#2| (-25)))) (-3474 (((-706) $) 6 (|has| $ (-6 -4229)))))
-(((-214 |#1| |#2|) (-1195) (-706) (-1118)) (T -214))
-((-1960 (*1 *1 *2) (-12 (-5 *2 (-1164 *4)) (-4 *4 (-1118)) (-4 *1 (-214 *3 *4)))) (-4121 (*1 *1 *2) (-12 (-5 *2 (-849)) (-4 *1 (-214 *3 *4)) (-4 *4 (-969)) (-4 *4 (-1118)))) (-3639 (*1 *2 *1 *1) (-12 (-4 *1 (-214 *3 *2)) (-4 *2 (-1118)) (-4 *2 (-969)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-214 *3 *2)) (-4 *2 (-1118)) (-4 *2 (-662)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-214 *3 *2)) (-4 *2 (-1118)) (-4 *2 (-662)))))
-(-13 (-553 (-520) |t#2|) (-560 (-1164 |t#2|)) (-10 -8 (-6 -4229) (-15 -1960 ($ (-1164 |t#2|))) (IF (|has| |t#2| (-1012)) (-6 (-384 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-969)) (PROGN (-6 (-107 |t#2| |t#2|)) (-6 (-207 |t#2|)) (-6 (-350 |t#2|)) (-15 -4121 ($ (-849))) (-15 -3639 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-124)) (-6 (-124)) |%noBranch|) (IF (|has| |t#2| (-662)) (PROGN (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-341)) (-6 (-341)) |%noBranch|) (IF (|has| |t#2| (-157)) (PROGN (-6 (-37 |t#2|)) (-6 (-157))) |%noBranch|) (IF (|has| |t#2| (-6 -4226)) (-6 -4226) |%noBranch|) (IF (|has| |t#2| (-781)) (-6 (-781)) |%noBranch|) (IF (|has| |t#2| (-728)) (-6 (-728)) |%noBranch|) (IF (|has| |t#2| (-336)) (-6 (-1171 |t#2|)) |%noBranch|)))
-(((-21) -3700 (|has| |#2| (-969)) (|has| |#2| (-781)) (|has| |#2| (-336)) (|has| |#2| (-157))) ((-23) -3700 (|has| |#2| (-969)) (|has| |#2| (-781)) (|has| |#2| (-728)) (|has| |#2| (-336)) (|has| |#2| (-157)) (|has| |#2| (-124))) ((-25) -3700 (|has| |#2| (-969)) (|has| |#2| (-781)) (|has| |#2| (-728)) (|has| |#2| (-336)) (|has| |#2| (-157)) (|has| |#2| (-124)) (|has| |#2| (-25))) ((-33) . T) ((-37 |#2|) |has| |#2| (-157)) ((-97) -3700 (|has| |#2| (-1012)) (|has| |#2| (-969)) (|has| |#2| (-781)) (|has| |#2| (-728)) (|has| |#2| (-341)) (|has| |#2| (-336)) (|has| |#2| (-157)) (|has| |#2| (-124)) (|has| |#2| (-25))) ((-107 |#2| |#2|) -3700 (|has| |#2| (-969)) (|has| |#2| (-336)) (|has| |#2| (-157))) ((-107 $ $) |has| |#2| (-157)) ((-124) -3700 (|has| |#2| (-969)) (|has| |#2| (-781)) (|has| |#2| (-728)) (|has| |#2| (-336)) (|has| |#2| (-157)) (|has| |#2| (-124))) ((-560 (-791)) -3700 (|has| |#2| (-1012)) (|has| |#2| (-969)) (|has| |#2| (-781)) (|has| |#2| (-728)) (|has| |#2| (-341)) (|has| |#2| (-336)) (|has| |#2| (-157)) (|has| |#2| (-560 (-791))) (|has| |#2| (-124)) (|has| |#2| (-25))) ((-560 (-1164 |#2|)) . T) ((-157) |has| |#2| (-157)) ((-207 |#2|) |has| |#2| (-969)) ((-209) -12 (|has| |#2| (-209)) (|has| |#2| (-969))) ((-260 #0=(-520) |#2|) . T) ((-262 #0# |#2|) . T) ((-283 |#2|) -12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012))) ((-341) |has| |#2| (-341)) ((-350 |#2|) |has| |#2| (-969)) ((-384 |#2|) |has| |#2| (-1012)) ((-459 |#2|) . T) ((-553 #0# |#2|) . T) ((-481 |#2| |#2|) -12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012))) ((-588 |#2|) -3700 (|has| |#2| (-969)) (|has| |#2| (-336)) (|has| |#2| (-157))) ((-588 $) -3700 (|has| |#2| (-969)) (|has| |#2| (-781)) (|has| |#2| (-157))) ((-582 (-520)) -12 (|has| |#2| (-582 (-520))) (|has| |#2| (-969))) ((-582 |#2|) |has| |#2| (-969)) ((-653 |#2|) -3700 (|has| |#2| (-336)) (|has| |#2| (-157))) ((-662) -3700 (|has| |#2| (-969)) (|has| |#2| (-781)) (|has| |#2| (-157))) ((-726) |has| |#2| (-781)) ((-727) -3700 (|has| |#2| (-781)) (|has| |#2| (-728))) ((-728) |has| |#2| (-728)) ((-729) -3700 (|has| |#2| (-781)) (|has| |#2| (-728))) ((-731) -3700 (|has| |#2| (-781)) (|has| |#2| (-728))) ((-781) |has| |#2| (-781)) ((-783) -3700 (|has| |#2| (-781)) (|has| |#2| (-728))) ((-828 (-1083)) -12 (|has| |#2| (-828 (-1083))) (|has| |#2| (-969))) ((-960 (-380 (-520))) -12 (|has| |#2| (-960 (-380 (-520)))) (|has| |#2| (-1012))) ((-960 (-520)) -12 (|has| |#2| (-960 (-520))) (|has| |#2| (-1012))) ((-960 |#2|) |has| |#2| (-1012)) ((-975 |#2|) -3700 (|has| |#2| (-969)) (|has| |#2| (-336)) (|has| |#2| (-157))) ((-975 $) |has| |#2| (-157)) ((-969) -3700 (|has| |#2| (-969)) (|has| |#2| (-781)) (|has| |#2| (-157))) ((-976) -3700 (|has| |#2| (-969)) (|has| |#2| (-781)) (|has| |#2| (-157))) ((-1024) -3700 (|has| |#2| (-969)) (|has| |#2| (-781)) (|has| |#2| (-157))) ((-1012) -3700 (|has| |#2| (-1012)) (|has| |#2| (-969)) (|has| |#2| (-781)) (|has| |#2| (-728)) (|has| |#2| (-341)) (|has| |#2| (-336)) (|has| |#2| (-157)) (|has| |#2| (-124)) (|has| |#2| (-25))) ((-1118) . T) ((-1171 |#2|) |has| |#2| (-336)))
-((-1404 (((-216 |#1| |#3|) (-1 |#3| |#2| |#3|) (-216 |#1| |#2|) |#3|) 21)) (-3856 ((|#3| (-1 |#3| |#2| |#3|) (-216 |#1| |#2|) |#3|) 23)) (-1389 (((-216 |#1| |#3|) (-1 |#3| |#2|) (-216 |#1| |#2|)) 18)))
-(((-215 |#1| |#2| |#3|) (-10 -7 (-15 -1404 ((-216 |#1| |#3|) (-1 |#3| |#2| |#3|) (-216 |#1| |#2|) |#3|)) (-15 -3856 (|#3| (-1 |#3| |#2| |#3|) (-216 |#1| |#2|) |#3|)) (-15 -1389 ((-216 |#1| |#3|) (-1 |#3| |#2|) (-216 |#1| |#2|)))) (-706) (-1118) (-1118)) (T -215))
-((-1389 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-216 *5 *6)) (-14 *5 (-706)) (-4 *6 (-1118)) (-4 *7 (-1118)) (-5 *2 (-216 *5 *7)) (-5 *1 (-215 *5 *6 *7)))) (-3856 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-216 *5 *6)) (-14 *5 (-706)) (-4 *6 (-1118)) (-4 *2 (-1118)) (-5 *1 (-215 *5 *6 *2)))) (-1404 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-216 *6 *7)) (-14 *6 (-706)) (-4 *7 (-1118)) (-4 *5 (-1118)) (-5 *2 (-216 *6 *5)) (-5 *1 (-215 *6 *7 *5)))))
-(-10 -7 (-15 -1404 ((-216 |#1| |#3|) (-1 |#3| |#2| |#3|) (-216 |#1| |#2|) |#3|)) (-15 -3856 (|#3| (-1 |#3| |#2| |#3|) (-216 |#1| |#2|) |#3|)) (-15 -1389 ((-216 |#1| |#3|) (-1 |#3| |#2|) (-216 |#1| |#2|))))
-((-1414 (((-108) $ $) NIL (|has| |#2| (-1012)))) (-2906 (((-108) $) NIL (|has| |#2| (-124)))) (-4121 (($ (-849)) 56 (|has| |#2| (-969)))) (-1476 (((-1169) $ (-520) (-520)) NIL (|has| $ (-6 -4230)))) (-1224 (($ $ $) 60 (|has| |#2| (-728)))) (-1917 (((-3 $ "failed") $ $) 48 (|has| |#2| (-124)))) (-2063 (((-108) $ (-706)) 17)) (-1628 (((-706)) NIL (|has| |#2| (-341)))) (-2804 (((-520) $) NIL (|has| |#2| (-781)))) (-2377 ((|#2| $ (-520) |#2|) NIL (|has| $ (-6 -4230)))) (-3961 (($) NIL T CONST)) (-1296 (((-3 (-520) "failed") $) NIL (-12 (|has| |#2| (-960 (-520))) (|has| |#2| (-1012)))) (((-3 (-380 (-520)) "failed") $) NIL (-12 (|has| |#2| (-960 (-380 (-520)))) (|has| |#2| (-1012)))) (((-3 |#2| "failed") $) 29 (|has| |#2| (-1012)))) (-1482 (((-520) $) NIL (-12 (|has| |#2| (-960 (-520))) (|has| |#2| (-1012)))) (((-380 (-520)) $) NIL (-12 (|has| |#2| (-960 (-380 (-520)))) (|has| |#2| (-1012)))) ((|#2| $) 27 (|has| |#2| (-1012)))) (-2756 (((-626 (-520)) (-626 $)) NIL (-12 (|has| |#2| (-582 (-520))) (|has| |#2| (-969)))) (((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 $) (-1164 $)) NIL (-12 (|has| |#2| (-582 (-520))) (|has| |#2| (-969)))) (((-2 (|:| -3927 (-626 |#2|)) (|:| |vec| (-1164 |#2|))) (-626 $) (-1164 $)) NIL (|has| |#2| (-969))) (((-626 |#2|) (-626 $)) NIL (|has| |#2| (-969)))) (-1540 (((-3 $ "failed") $) 53 (|has| |#2| (-969)))) (-3249 (($) NIL (|has| |#2| (-341)))) (-3846 ((|#2| $ (-520) |#2|) NIL (|has| $ (-6 -4230)))) (-3623 ((|#2| $ (-520)) 51)) (-2328 (((-108) $) NIL (|has| |#2| (-781)))) (-3828 (((-586 |#2|) $) 15 (|has| $ (-6 -4229)))) (-1537 (((-108) $) NIL (|has| |#2| (-969)))) (-3469 (((-108) $) NIL (|has| |#2| (-781)))) (-3027 (((-108) $ (-706)) NIL)) (-2567 (((-520) $) 20 (|has| (-520) (-783)))) (-2809 (($ $ $) NIL (-3700 (|has| |#2| (-728)) (|has| |#2| (-781))))) (-3702 (((-586 |#2|) $) NIL (|has| $ (-6 -4229)))) (-2422 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#2| (-1012))))) (-1752 (((-520) $) 50 (|has| (-520) (-783)))) (-2446 (($ $ $) NIL (-3700 (|has| |#2| (-728)) (|has| |#2| (-781))))) (-3830 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#2| |#2|) $) 41)) (-3040 (((-849) $) NIL (|has| |#2| (-341)))) (-1390 (((-108) $ (-706)) NIL)) (-1239 (((-1066) $) NIL (|has| |#2| (-1012)))) (-3622 (((-586 (-520)) $) NIL)) (-2603 (((-108) (-520) $) NIL)) (-2716 (($ (-849)) NIL (|has| |#2| (-341)))) (-4142 (((-1030) $) NIL (|has| |#2| (-1012)))) (-2293 ((|#2| $) NIL (|has| (-520) (-783)))) (-2936 (($ $ |#2|) NIL (|has| $ (-6 -4230)))) (-4155 (((-108) (-1 (-108) |#2|) $) 24 (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 |#2|))) NIL (-12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012)))) (($ $ (-268 |#2|)) NIL (-12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012)))) (($ $ (-586 |#2|) (-586 |#2|)) NIL (-12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012))))) (-2533 (((-108) $ $) NIL)) (-2094 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#2| (-1012))))) (-1523 (((-586 |#2|) $) NIL)) (-4018 (((-108) $) NIL)) (-2238 (($) NIL)) (-2543 ((|#2| $ (-520) |#2|) NIL) ((|#2| $ (-520)) 21)) (-3639 ((|#2| $ $) NIL (|has| |#2| (-969)))) (-1960 (($ (-1164 |#2|)) 18)) (-1556 (((-126)) NIL (|has| |#2| (-336)))) (-2155 (($ $) NIL (-12 (|has| |#2| (-209)) (|has| |#2| (-969)))) (($ $ (-706)) NIL (-12 (|has| |#2| (-209)) (|has| |#2| (-969)))) (($ $ (-1083)) NIL (-12 (|has| |#2| (-828 (-1083))) (|has| |#2| (-969)))) (($ $ (-586 (-1083))) NIL (-12 (|has| |#2| (-828 (-1083))) (|has| |#2| (-969)))) (($ $ (-1083) (-706)) NIL (-12 (|has| |#2| (-828 (-1083))) (|has| |#2| (-969)))) (($ $ (-586 (-1083)) (-586 (-706))) NIL (-12 (|has| |#2| (-828 (-1083))) (|has| |#2| (-969)))) (($ $ (-1 |#2| |#2|) (-706)) NIL (|has| |#2| (-969))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-969)))) (-4159 (((-706) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4229))) (((-706) |#2| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#2| (-1012))))) (-2403 (($ $) NIL)) (-2188 (((-1164 |#2|) $) 10) (($ (-520)) NIL (-3700 (-12 (|has| |#2| (-960 (-520))) (|has| |#2| (-1012))) (|has| |#2| (-969)))) (($ (-380 (-520))) NIL (-12 (|has| |#2| (-960 (-380 (-520)))) (|has| |#2| (-1012)))) (($ |#2|) 13 (|has| |#2| (-1012))) (((-791) $) NIL (|has| |#2| (-560 (-791))))) (-3251 (((-706)) NIL (|has| |#2| (-969)))) (-1662 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4229)))) (-2458 (($ $) NIL (|has| |#2| (-781)))) (-3504 (($ $ (-706)) NIL (|has| |#2| (-969))) (($ $ (-849)) NIL (|has| |#2| (-969)))) (-3560 (($) 35 (|has| |#2| (-124)) CONST)) (-3570 (($) 38 (|has| |#2| (-969)) CONST)) (-2211 (($ $) NIL (-12 (|has| |#2| (-209)) (|has| |#2| (-969)))) (($ $ (-706)) NIL (-12 (|has| |#2| (-209)) (|has| |#2| (-969)))) (($ $ (-1083)) NIL (-12 (|has| |#2| (-828 (-1083))) (|has| |#2| (-969)))) (($ $ (-586 (-1083))) NIL (-12 (|has| |#2| (-828 (-1083))) (|has| |#2| (-969)))) (($ $ (-1083) (-706)) NIL (-12 (|has| |#2| (-828 (-1083))) (|has| |#2| (-969)))) (($ $ (-586 (-1083)) (-586 (-706))) NIL (-12 (|has| |#2| (-828 (-1083))) (|has| |#2| (-969)))) (($ $ (-1 |#2| |#2|) (-706)) NIL (|has| |#2| (-969))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-969)))) (-1573 (((-108) $ $) NIL (-3700 (|has| |#2| (-728)) (|has| |#2| (-781))))) (-1557 (((-108) $ $) NIL (-3700 (|has| |#2| (-728)) (|has| |#2| (-781))))) (-1530 (((-108) $ $) 26 (|has| |#2| (-1012)))) (-1565 (((-108) $ $) NIL (-3700 (|has| |#2| (-728)) (|has| |#2| (-781))))) (-1548 (((-108) $ $) 58 (-3700 (|has| |#2| (-728)) (|has| |#2| (-781))))) (-1619 (($ $ |#2|) NIL (|has| |#2| (-336)))) (-1611 (($ $ $) NIL (|has| |#2| (-969))) (($ $) NIL (|has| |#2| (-969)))) (-1601 (($ $ $) 33 (|has| |#2| (-25)))) (** (($ $ (-706)) NIL (|has| |#2| (-969))) (($ $ (-849)) NIL (|has| |#2| (-969)))) (* (($ $ $) 49 (|has| |#2| (-969))) (($ (-520) $) NIL (|has| |#2| (-969))) (($ $ |#2|) 42 (|has| |#2| (-662))) (($ |#2| $) 43 (|has| |#2| (-662))) (($ (-706) $) NIL (|has| |#2| (-124))) (($ (-849) $) NIL (|has| |#2| (-25)))) (-3474 (((-706) $) NIL (|has| $ (-6 -4229)))))
-(((-216 |#1| |#2|) (-214 |#1| |#2|) (-706) (-1118)) (T -216))
-NIL
-(-214 |#1| |#2|)
-((-1317 (((-520) (-586 (-1066))) 24) (((-520) (-1066)) 19)) (-2456 (((-1169) (-586 (-1066))) 29) (((-1169) (-1066)) 28)) (-2300 (((-1066)) 14)) (-1450 (((-1066) (-520) (-1066)) 16)) (-1892 (((-586 (-1066)) (-586 (-1066)) (-520) (-1066)) 25) (((-1066) (-1066) (-520) (-1066)) 23)) (-2237 (((-586 (-1066)) (-586 (-1066))) 13) (((-586 (-1066)) (-1066)) 11)))
-(((-217) (-10 -7 (-15 -2237 ((-586 (-1066)) (-1066))) (-15 -2237 ((-586 (-1066)) (-586 (-1066)))) (-15 -2300 ((-1066))) (-15 -1450 ((-1066) (-520) (-1066))) (-15 -1892 ((-1066) (-1066) (-520) (-1066))) (-15 -1892 ((-586 (-1066)) (-586 (-1066)) (-520) (-1066))) (-15 -2456 ((-1169) (-1066))) (-15 -2456 ((-1169) (-586 (-1066)))) (-15 -1317 ((-520) (-1066))) (-15 -1317 ((-520) (-586 (-1066)))))) (T -217))
-((-1317 (*1 *2 *3) (-12 (-5 *3 (-586 (-1066))) (-5 *2 (-520)) (-5 *1 (-217)))) (-1317 (*1 *2 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-520)) (-5 *1 (-217)))) (-2456 (*1 *2 *3) (-12 (-5 *3 (-586 (-1066))) (-5 *2 (-1169)) (-5 *1 (-217)))) (-2456 (*1 *2 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-1169)) (-5 *1 (-217)))) (-1892 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-586 (-1066))) (-5 *3 (-520)) (-5 *4 (-1066)) (-5 *1 (-217)))) (-1892 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1066)) (-5 *3 (-520)) (-5 *1 (-217)))) (-1450 (*1 *2 *3 *2) (-12 (-5 *2 (-1066)) (-5 *3 (-520)) (-5 *1 (-217)))) (-2300 (*1 *2) (-12 (-5 *2 (-1066)) (-5 *1 (-217)))) (-2237 (*1 *2 *2) (-12 (-5 *2 (-586 (-1066))) (-5 *1 (-217)))) (-2237 (*1 *2 *3) (-12 (-5 *2 (-586 (-1066))) (-5 *1 (-217)) (-5 *3 (-1066)))))
-(-10 -7 (-15 -2237 ((-586 (-1066)) (-1066))) (-15 -2237 ((-586 (-1066)) (-586 (-1066)))) (-15 -2300 ((-1066))) (-15 -1450 ((-1066) (-520) (-1066))) (-15 -1892 ((-1066) (-1066) (-520) (-1066))) (-15 -1892 ((-586 (-1066)) (-586 (-1066)) (-520) (-1066))) (-15 -2456 ((-1169) (-1066))) (-15 -2456 ((-1169) (-586 (-1066)))) (-15 -1317 ((-520) (-1066))) (-15 -1317 ((-520) (-586 (-1066)))))
-((-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) 9)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) 18)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) NIL) (($ (-380 (-520)) $) 25) (($ $ (-380 (-520))) NIL)))
-(((-218 |#1|) (-10 -8 (-15 -3504 (|#1| |#1| (-520))) (-15 ** (|#1| |#1| (-520))) (-15 * (|#1| |#1| (-380 (-520)))) (-15 * (|#1| (-380 (-520)) |#1|)) (-15 ** (|#1| |#1| (-706))) (-15 -3504 (|#1| |#1| (-706))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-849))) (-15 -3504 (|#1| |#1| (-849))) (-15 * (|#1| (-520) |#1|)) (-15 * (|#1| (-706) |#1|)) (-15 * (|#1| (-849) |#1|))) (-219)) (T -218))
-NIL
-(-10 -8 (-15 -3504 (|#1| |#1| (-520))) (-15 ** (|#1| |#1| (-520))) (-15 * (|#1| |#1| (-380 (-520)))) (-15 * (|#1| (-380 (-520)) |#1|)) (-15 ** (|#1| |#1| (-706))) (-15 -3504 (|#1| |#1| (-706))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-849))) (-15 -3504 (|#1| |#1| (-849))) (-15 * (|#1| (-520) |#1|)) (-15 * (|#1| (-706) |#1|)) (-15 * (|#1| (-849) |#1|)))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-1917 (((-3 $ "failed") $ $) 19)) (-3961 (($) 17 T CONST)) (-1540 (((-3 $ "failed") $) 34)) (-1537 (((-108) $) 31)) (-1239 (((-1066) $) 9)) (-3093 (($ $) 39)) (-4142 (((-1030) $) 10)) (-2188 (((-791) $) 11) (($ (-520)) 28) (($ (-380 (-520))) 44)) (-3251 (((-706)) 29)) (-3504 (($ $ (-849)) 26) (($ $ (-706)) 33) (($ $ (-520)) 40)) (-3560 (($) 18 T CONST)) (-3570 (($) 30 T CONST)) (-1530 (((-108) $ $) 6)) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-706)) 32) (($ $ (-520)) 41)) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ $ $) 24) (($ (-380 (-520)) $) 43) (($ $ (-380 (-520))) 42)))
-(((-219) (-1195)) (T -219))
-((** (*1 *1 *1 *2) (-12 (-4 *1 (-219)) (-5 *2 (-520)))) (-3504 (*1 *1 *1 *2) (-12 (-4 *1 (-219)) (-5 *2 (-520)))) (-3093 (*1 *1 *1) (-4 *1 (-219))))
-(-13 (-264) (-37 (-380 (-520))) (-10 -8 (-15 ** ($ $ (-520))) (-15 -3504 ($ $ (-520))) (-15 -3093 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-380 (-520))) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-124) . T) ((-560 (-791)) . T) ((-264) . T) ((-588 #0#) . T) ((-588 $) . T) ((-653 #0#) . T) ((-662) . T) ((-975 #0#) . T) ((-975 $) . T) ((-969) . T) ((-976) . T) ((-1024) . T) ((-1012) . T))
-((-1414 (((-108) $ $) 19 (|has| |#1| (-1012)))) (-3429 ((|#1| $) 48)) (-3827 (($ $) 57)) (-2063 (((-108) $ (-706)) 8)) (-2888 ((|#1| $ |#1|) 39 (|has| $ (-6 -4230)))) (-2254 (($ $ $) 53 (|has| $ (-6 -4230)))) (-2812 (($ $ $) 52 (|has| $ (-6 -4230)))) (-2377 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4230)))) (-3061 (($ $ (-586 $)) 41 (|has| $ (-6 -4230)))) (-3961 (($) 7 T CONST)) (-3457 (($ $) 56)) (-3828 (((-586 |#1|) $) 30 (|has| $ (-6 -4229)))) (-3405 (((-586 $) $) 50)) (-1885 (((-108) $ $) 42 (|has| |#1| (-1012)))) (-3613 (($ $) 55)) (-3027 (((-108) $ (-706)) 9)) (-3702 (((-586 |#1|) $) 29 (|has| $ (-6 -4229)))) (-2422 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-3830 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#1| |#1|) $) 35)) (-1390 (((-108) $ (-706)) 10)) (-1277 (((-586 |#1|) $) 45)) (-1740 (((-108) $) 49)) (-1239 (((-1066) $) 22 (|has| |#1| (-1012)))) (-1440 ((|#1| $) 59)) (-3906 (($ $) 58)) (-4142 (((-1030) $) 21 (|has| |#1| (-1012)))) (-4155 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 |#1|))) 26 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-268 |#1|)) 25 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-586 |#1|) (-586 |#1|)) 23 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))) (-2533 (((-108) $ $) 14)) (-4018 (((-108) $) 11)) (-2238 (($) 12)) (-2543 ((|#1| $ "value") 47)) (-3765 (((-520) $ $) 44)) (-1975 (((-108) $) 46)) (-4159 (((-706) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4229))) (((-706) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-2403 (($ $) 13)) (-2251 (($ $ $) 54 (|has| $ (-6 -4230)))) (-2188 (((-791) $) 18 (|has| |#1| (-560 (-791))))) (-2438 (((-586 $) $) 51)) (-1639 (((-108) $ $) 43 (|has| |#1| (-1012)))) (-1662 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4229)))) (-1530 (((-108) $ $) 20 (|has| |#1| (-1012)))) (-3474 (((-706) $) 6 (|has| $ (-6 -4229)))))
-(((-220 |#1|) (-1195) (-1118)) (T -220))
-((-1440 (*1 *2 *1) (-12 (-4 *1 (-220 *2)) (-4 *2 (-1118)))) (-3906 (*1 *1 *1) (-12 (-4 *1 (-220 *2)) (-4 *2 (-1118)))) (-3827 (*1 *1 *1) (-12 (-4 *1 (-220 *2)) (-4 *2 (-1118)))) (-3457 (*1 *1 *1) (-12 (-4 *1 (-220 *2)) (-4 *2 (-1118)))) (-3613 (*1 *1 *1) (-12 (-4 *1 (-220 *2)) (-4 *2 (-1118)))) (-2251 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4230)) (-4 *1 (-220 *2)) (-4 *2 (-1118)))) (-2254 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4230)) (-4 *1 (-220 *2)) (-4 *2 (-1118)))) (-2812 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4230)) (-4 *1 (-220 *2)) (-4 *2 (-1118)))))
-(-13 (-934 |t#1|) (-10 -8 (-15 -1440 (|t#1| $)) (-15 -3906 ($ $)) (-15 -3827 ($ $)) (-15 -3457 ($ $)) (-15 -3613 ($ $)) (IF (|has| $ (-6 -4230)) (PROGN (-15 -2251 ($ $ $)) (-15 -2254 ($ $ $)) (-15 -2812 ($ $ $))) |%noBranch|)))
-(((-33) . T) ((-97) |has| |#1| (-1012)) ((-560 (-791)) -3700 (|has| |#1| (-1012)) (|has| |#1| (-560 (-791)))) ((-283 |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))) ((-459 |#1|) . T) ((-481 |#1| |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))) ((-934 |#1|) . T) ((-1012) |has| |#1| (-1012)) ((-1118) . T))
-((-1414 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-3429 ((|#1| $) NIL)) (-2091 ((|#1| $) NIL)) (-3827 (($ $) NIL)) (-1476 (((-1169) $ (-520) (-520)) NIL (|has| $ (-6 -4230)))) (-1198 (($ $ (-520)) NIL (|has| $ (-6 -4230)))) (-4029 (((-108) $) NIL (|has| |#1| (-783))) (((-108) (-1 (-108) |#1| |#1|) $) NIL)) (-3587 (($ $) NIL (-12 (|has| $ (-6 -4230)) (|has| |#1| (-783)))) (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4230)))) (-3210 (($ $) 10 (|has| |#1| (-783))) (($ (-1 (-108) |#1| |#1|) $) NIL)) (-2063 (((-108) $ (-706)) NIL)) (-2888 ((|#1| $ |#1|) NIL (|has| $ (-6 -4230)))) (-2719 (($ $ $) NIL (|has| $ (-6 -4230)))) (-3819 ((|#1| $ |#1|) NIL (|has| $ (-6 -4230)))) (-1598 ((|#1| $ |#1|) NIL (|has| $ (-6 -4230)))) (-2377 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4230))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4230))) (($ $ "rest" $) NIL (|has| $ (-6 -4230))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4230))) ((|#1| $ (-1131 (-520)) |#1|) NIL (|has| $ (-6 -4230))) ((|#1| $ (-520) |#1|) NIL (|has| $ (-6 -4230)))) (-3061 (($ $ (-586 $)) NIL (|has| $ (-6 -4230)))) (-1817 (($ (-1 (-108) |#1|) $) NIL)) (-1627 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-2079 ((|#1| $) NIL)) (-3961 (($) NIL T CONST)) (-2447 (($ $) NIL (|has| $ (-6 -4230)))) (-1861 (($ $) NIL)) (-2305 (($ $) NIL) (($ $ (-706)) NIL)) (-3667 (($ $) NIL (|has| |#1| (-1012)))) (-2331 (($ $) 7 (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-3766 (($ |#1| $) NIL (|has| |#1| (-1012))) (($ (-1 (-108) |#1|) $) NIL)) (-1421 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-3856 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4229))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4229))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-3846 ((|#1| $ (-520) |#1|) NIL (|has| $ (-6 -4230)))) (-3623 ((|#1| $ (-520)) NIL)) (-3928 (((-108) $) NIL)) (-3232 (((-520) |#1| $ (-520)) NIL (|has| |#1| (-1012))) (((-520) |#1| $) NIL (|has| |#1| (-1012))) (((-520) (-1 (-108) |#1|) $) NIL)) (-3828 (((-586 |#1|) $) NIL (|has| $ (-6 -4229)))) (-3405 (((-586 $) $) NIL)) (-1885 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-1810 (($ (-706) |#1|) NIL)) (-3027 (((-108) $ (-706)) NIL)) (-2567 (((-520) $) NIL (|has| (-520) (-783)))) (-2809 (($ $ $) NIL (|has| |#1| (-783)))) (-3235 (($ $ $) NIL (|has| |#1| (-783))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-1819 (($ $ $) NIL (|has| |#1| (-783))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-3702 (((-586 |#1|) $) NIL (|has| $ (-6 -4229)))) (-2422 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-1752 (((-520) $) NIL (|has| (-520) (-783)))) (-2446 (($ $ $) NIL (|has| |#1| (-783)))) (-3830 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1578 (($ |#1|) NIL)) (-1390 (((-108) $ (-706)) NIL)) (-1277 (((-586 |#1|) $) NIL)) (-1740 (((-108) $) NIL)) (-1239 (((-1066) $) NIL (|has| |#1| (-1012)))) (-1440 ((|#1| $) NIL) (($ $ (-706)) NIL)) (-3618 (($ $ $ (-520)) NIL) (($ |#1| $ (-520)) NIL)) (-1659 (($ $ $ (-520)) NIL) (($ |#1| $ (-520)) NIL)) (-3622 (((-586 (-520)) $) NIL)) (-2603 (((-108) (-520) $) NIL)) (-4142 (((-1030) $) NIL (|has| |#1| (-1012)))) (-2293 ((|#1| $) NIL) (($ $ (-706)) NIL)) (-2985 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-2936 (($ $ |#1|) NIL (|has| $ (-6 -4230)))) (-1392 (((-108) $) NIL)) (-4155 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 |#1|))) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-268 |#1|)) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-586 |#1|) (-586 |#1|)) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))) (-2533 (((-108) $ $) NIL)) (-2094 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-1523 (((-586 |#1|) $) NIL)) (-4018 (((-108) $) NIL)) (-2238 (($) NIL)) (-2543 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1131 (-520))) NIL) ((|#1| $ (-520)) NIL) ((|#1| $ (-520) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-706) $ "count") 16)) (-3765 (((-520) $ $) NIL)) (-4185 (($ $ (-1131 (-520))) NIL) (($ $ (-520)) NIL)) (-3690 (($ $ (-1131 (-520))) NIL) (($ $ (-520)) NIL)) (-3319 (($ (-586 |#1|)) 22)) (-1975 (((-108) $) NIL)) (-3436 (($ $) NIL)) (-1521 (($ $) NIL (|has| $ (-6 -4230)))) (-3341 (((-706) $) NIL)) (-1696 (($ $) NIL)) (-4159 (((-706) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229))) (((-706) |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-1913 (($ $ $ (-520)) NIL (|has| $ (-6 -4230)))) (-2403 (($ $) NIL)) (-1429 (((-496) $) NIL (|has| |#1| (-561 (-496))))) (-2200 (($ (-586 |#1|)) NIL)) (-2251 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4156 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-586 $)) NIL) (($ $ |#1|) NIL)) (-2188 (($ (-586 |#1|)) 17) (((-586 |#1|) $) 18) (((-791) $) 21 (|has| |#1| (-560 (-791))))) (-2438 (((-586 $) $) NIL)) (-1639 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-1662 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-1573 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1557 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1530 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-1565 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1548 (((-108) $ $) NIL (|has| |#1| (-783)))) (-3474 (((-706) $) 14 (|has| $ (-6 -4229)))))
-(((-221 |#1|) (-13 (-606 |#1|) (-10 -8 (-15 -2188 ($ (-586 |#1|))) (-15 -2188 ((-586 |#1|) $)) (-15 -3319 ($ (-586 |#1|))) (-15 -2543 ($ $ "unique")) (-15 -2543 ($ $ "sort")) (-15 -2543 ((-706) $ "count")))) (-783)) (T -221))
-((-2188 (*1 *1 *2) (-12 (-5 *2 (-586 *3)) (-4 *3 (-783)) (-5 *1 (-221 *3)))) (-2188 (*1 *2 *1) (-12 (-5 *2 (-586 *3)) (-5 *1 (-221 *3)) (-4 *3 (-783)))) (-3319 (*1 *1 *2) (-12 (-5 *2 (-586 *3)) (-4 *3 (-783)) (-5 *1 (-221 *3)))) (-2543 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-221 *3)) (-4 *3 (-783)))) (-2543 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-221 *3)) (-4 *3 (-783)))) (-2543 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-706)) (-5 *1 (-221 *4)) (-4 *4 (-783)))))
-(-13 (-606 |#1|) (-10 -8 (-15 -2188 ($ (-586 |#1|))) (-15 -2188 ((-586 |#1|) $)) (-15 -3319 ($ (-586 |#1|))) (-15 -2543 ($ $ "unique")) (-15 -2543 ($ $ "sort")) (-15 -2543 ((-706) $ "count"))))
-((-3861 (((-3 (-706) "failed") |#1| |#1| (-706)) 27)))
-(((-222 |#1|) (-10 -7 (-15 -3861 ((-3 (-706) "failed") |#1| |#1| (-706)))) (-13 (-662) (-341) (-10 -7 (-15 ** (|#1| |#1| (-520)))))) (T -222))
-((-3861 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-706)) (-4 *3 (-13 (-662) (-341) (-10 -7 (-15 ** (*3 *3 (-520)))))) (-5 *1 (-222 *3)))))
-(-10 -7 (-15 -3861 ((-3 (-706) "failed") |#1| |#1| (-706))))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-4081 (((-586 (-793 |#1|)) $) NIL)) (-1278 (((-1079 $) $ (-793 |#1|)) NIL) (((-1079 |#2|) $) NIL)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) NIL (|has| |#2| (-512)))) (-2583 (($ $) NIL (|has| |#2| (-512)))) (-1671 (((-108) $) NIL (|has| |#2| (-512)))) (-3665 (((-706) $) NIL) (((-706) $ (-586 (-793 |#1|))) NIL)) (-1917 (((-3 $ "failed") $ $) NIL)) (-4119 (((-391 (-1079 $)) (-1079 $)) NIL (|has| |#2| (-837)))) (-3024 (($ $) NIL (|has| |#2| (-424)))) (-1507 (((-391 $) $) NIL (|has| |#2| (-424)))) (-3481 (((-3 (-586 (-1079 $)) "failed") (-586 (-1079 $)) (-1079 $)) NIL (|has| |#2| (-837)))) (-3961 (($) NIL T CONST)) (-1296 (((-3 |#2| "failed") $) NIL) (((-3 (-380 (-520)) "failed") $) NIL (|has| |#2| (-960 (-380 (-520))))) (((-3 (-520) "failed") $) NIL (|has| |#2| (-960 (-520)))) (((-3 (-793 |#1|) "failed") $) NIL)) (-1482 ((|#2| $) NIL) (((-380 (-520)) $) NIL (|has| |#2| (-960 (-380 (-520))))) (((-520) $) NIL (|has| |#2| (-960 (-520)))) (((-793 |#1|) $) NIL)) (-2413 (($ $ $ (-793 |#1|)) NIL (|has| |#2| (-157)))) (-1688 (($ $ (-586 (-520))) NIL)) (-3150 (($ $) NIL)) (-2756 (((-626 (-520)) (-626 $)) NIL (|has| |#2| (-582 (-520)))) (((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 $) (-1164 $)) NIL (|has| |#2| (-582 (-520)))) (((-2 (|:| -3927 (-626 |#2|)) (|:| |vec| (-1164 |#2|))) (-626 $) (-1164 $)) NIL) (((-626 |#2|) (-626 $)) NIL)) (-1540 (((-3 $ "failed") $) NIL)) (-3923 (($ $) NIL (|has| |#2| (-424))) (($ $ (-793 |#1|)) NIL (|has| |#2| (-424)))) (-3142 (((-586 $) $) NIL)) (-2036 (((-108) $) NIL (|has| |#2| (-837)))) (-3397 (($ $ |#2| (-216 (-3474 |#1|) (-706)) $) NIL)) (-1272 (((-817 (-352) $) $ (-820 (-352)) (-817 (-352) $)) NIL (-12 (|has| (-793 |#1|) (-814 (-352))) (|has| |#2| (-814 (-352))))) (((-817 (-520) $) $ (-820 (-520)) (-817 (-520) $)) NIL (-12 (|has| (-793 |#1|) (-814 (-520))) (|has| |#2| (-814 (-520)))))) (-1537 (((-108) $) NIL)) (-1315 (((-706) $) NIL)) (-4065 (($ (-1079 |#2|) (-793 |#1|)) NIL) (($ (-1079 $) (-793 |#1|)) NIL)) (-1992 (((-586 $) $) NIL)) (-3774 (((-108) $) NIL)) (-4039 (($ |#2| (-216 (-3474 |#1|) (-706))) NIL) (($ $ (-793 |#1|) (-706)) NIL) (($ $ (-586 (-793 |#1|)) (-586 (-706))) NIL)) (-1910 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $ (-793 |#1|)) NIL)) (-3562 (((-216 (-3474 |#1|) (-706)) $) NIL) (((-706) $ (-793 |#1|)) NIL) (((-586 (-706)) $ (-586 (-793 |#1|))) NIL)) (-2809 (($ $ $) NIL (|has| |#2| (-783)))) (-2446 (($ $ $) NIL (|has| |#2| (-783)))) (-3295 (($ (-1 (-216 (-3474 |#1|) (-706)) (-216 (-3474 |#1|) (-706))) $) NIL)) (-1389 (($ (-1 |#2| |#2|) $) NIL)) (-3186 (((-3 (-793 |#1|) "failed") $) NIL)) (-3123 (($ $) NIL)) (-3133 ((|#2| $) NIL)) (-2222 (($ (-586 $)) NIL (|has| |#2| (-424))) (($ $ $) NIL (|has| |#2| (-424)))) (-1239 (((-1066) $) NIL)) (-3548 (((-3 (-586 $) "failed") $) NIL)) (-1205 (((-3 (-586 $) "failed") $) NIL)) (-2568 (((-3 (-2 (|:| |var| (-793 |#1|)) (|:| -2647 (-706))) "failed") $) NIL)) (-4142 (((-1030) $) NIL)) (-3103 (((-108) $) NIL)) (-3113 ((|#2| $) NIL)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) NIL (|has| |#2| (-424)))) (-2257 (($ (-586 $)) NIL (|has| |#2| (-424))) (($ $ $) NIL (|has| |#2| (-424)))) (-4133 (((-391 (-1079 $)) (-1079 $)) NIL (|has| |#2| (-837)))) (-2017 (((-391 (-1079 $)) (-1079 $)) NIL (|has| |#2| (-837)))) (-1916 (((-391 $) $) NIL (|has| |#2| (-837)))) (-2230 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-512))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-512)))) (-2286 (($ $ (-586 (-268 $))) NIL) (($ $ (-268 $)) NIL) (($ $ $ $) NIL) (($ $ (-586 $) (-586 $)) NIL) (($ $ (-793 |#1|) |#2|) NIL) (($ $ (-586 (-793 |#1|)) (-586 |#2|)) NIL) (($ $ (-793 |#1|) $) NIL) (($ $ (-586 (-793 |#1|)) (-586 $)) NIL)) (-2732 (($ $ (-793 |#1|)) NIL (|has| |#2| (-157)))) (-2155 (($ $ (-793 |#1|)) NIL) (($ $ (-586 (-793 |#1|))) NIL) (($ $ (-793 |#1|) (-706)) NIL) (($ $ (-586 (-793 |#1|)) (-586 (-706))) NIL)) (-2528 (((-216 (-3474 |#1|) (-706)) $) NIL) (((-706) $ (-793 |#1|)) NIL) (((-586 (-706)) $ (-586 (-793 |#1|))) NIL)) (-1429 (((-820 (-352)) $) NIL (-12 (|has| (-793 |#1|) (-561 (-820 (-352)))) (|has| |#2| (-561 (-820 (-352)))))) (((-820 (-520)) $) NIL (-12 (|has| (-793 |#1|) (-561 (-820 (-520)))) (|has| |#2| (-561 (-820 (-520)))))) (((-496) $) NIL (-12 (|has| (-793 |#1|) (-561 (-496))) (|has| |#2| (-561 (-496)))))) (-1233 ((|#2| $) NIL (|has| |#2| (-424))) (($ $ (-793 |#1|)) NIL (|has| |#2| (-424)))) (-3784 (((-3 (-1164 $) "failed") (-626 $)) NIL (-12 (|has| $ (-133)) (|has| |#2| (-837))))) (-2188 (((-791) $) NIL) (($ (-520)) NIL) (($ |#2|) NIL) (($ (-793 |#1|)) NIL) (($ (-380 (-520))) NIL (-3700 (|has| |#2| (-37 (-380 (-520)))) (|has| |#2| (-960 (-380 (-520)))))) (($ $) NIL (|has| |#2| (-512)))) (-4113 (((-586 |#2|) $) NIL)) (-3475 ((|#2| $ (-216 (-3474 |#1|) (-706))) NIL) (($ $ (-793 |#1|) (-706)) NIL) (($ $ (-586 (-793 |#1|)) (-586 (-706))) NIL)) (-3796 (((-3 $ "failed") $) NIL (-3700 (-12 (|has| $ (-133)) (|has| |#2| (-837))) (|has| |#2| (-133))))) (-3251 (((-706)) NIL)) (-1782 (($ $ $ (-706)) NIL (|has| |#2| (-157)))) (-2559 (((-108) $ $) NIL (|has| |#2| (-512)))) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (-3560 (($) NIL T CONST)) (-3570 (($) NIL T CONST)) (-2211 (($ $ (-793 |#1|)) NIL) (($ $ (-586 (-793 |#1|))) NIL) (($ $ (-793 |#1|) (-706)) NIL) (($ $ (-586 (-793 |#1|)) (-586 (-706))) NIL)) (-1573 (((-108) $ $) NIL (|has| |#2| (-783)))) (-1557 (((-108) $ $) NIL (|has| |#2| (-783)))) (-1530 (((-108) $ $) NIL)) (-1565 (((-108) $ $) NIL (|has| |#2| (-783)))) (-1548 (((-108) $ $) NIL (|has| |#2| (-783)))) (-1619 (($ $ |#2|) NIL (|has| |#2| (-336)))) (-1611 (($ $) NIL) (($ $ $) NIL)) (-1601 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) NIL) (($ $ (-380 (-520))) NIL (|has| |#2| (-37 (-380 (-520))))) (($ (-380 (-520)) $) NIL (|has| |#2| (-37 (-380 (-520))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-223 |#1| |#2|) (-13 (-877 |#2| (-216 (-3474 |#1|) (-706)) (-793 |#1|)) (-10 -8 (-15 -1688 ($ $ (-586 (-520)))))) (-586 (-1083)) (-969)) (T -223))
-((-1688 (*1 *1 *1 *2) (-12 (-5 *2 (-586 (-520))) (-5 *1 (-223 *3 *4)) (-14 *3 (-586 (-1083))) (-4 *4 (-969)))))
-(-13 (-877 |#2| (-216 (-3474 |#1|) (-706)) (-793 |#1|)) (-10 -8 (-15 -1688 ($ $ (-586 (-520))))))
-((-1294 (((-1169) $) 13)) (-2753 (((-1088) $) 11)) (-2188 (((-791) $) 7)))
-(((-224) (-13 (-560 (-791)) (-10 -8 (-15 -2753 ((-1088) $)) (-15 -1294 ((-1169) $))))) (T -224))
-((-2753 (*1 *2 *1) (-12 (-5 *2 (-1088)) (-5 *1 (-224)))) (-1294 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-224)))))
-(-13 (-560 (-791)) (-10 -8 (-15 -2753 ((-1088) $)) (-15 -1294 ((-1169) $))))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-4121 (($ (-849)) NIL (|has| |#4| (-969)))) (-1476 (((-1169) $ (-520) (-520)) NIL (|has| $ (-6 -4230)))) (-1224 (($ $ $) NIL (|has| |#4| (-728)))) (-1917 (((-3 $ "failed") $ $) NIL)) (-2063 (((-108) $ (-706)) NIL)) (-1628 (((-706)) NIL (|has| |#4| (-341)))) (-2804 (((-520) $) NIL (|has| |#4| (-781)))) (-2377 ((|#4| $ (-520) |#4|) NIL (|has| $ (-6 -4230)))) (-3961 (($) NIL T CONST)) (-1296 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1012))) (((-3 (-520) "failed") $) NIL (-12 (|has| |#4| (-960 (-520))) (|has| |#4| (-1012)))) (((-3 (-380 (-520)) "failed") $) NIL (-12 (|has| |#4| (-960 (-380 (-520)))) (|has| |#4| (-1012))))) (-1482 ((|#4| $) NIL (|has| |#4| (-1012))) (((-520) $) NIL (-12 (|has| |#4| (-960 (-520))) (|has| |#4| (-1012)))) (((-380 (-520)) $) NIL (-12 (|has| |#4| (-960 (-380 (-520)))) (|has| |#4| (-1012))))) (-2756 (((-2 (|:| -3927 (-626 |#4|)) (|:| |vec| (-1164 |#4|))) (-626 $) (-1164 $)) NIL (|has| |#4| (-969))) (((-626 |#4|) (-626 $)) NIL (|has| |#4| (-969))) (((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 $) (-1164 $)) NIL (-12 (|has| |#4| (-582 (-520))) (|has| |#4| (-969)))) (((-626 (-520)) (-626 $)) NIL (-12 (|has| |#4| (-582 (-520))) (|has| |#4| (-969))))) (-1540 (((-3 $ "failed") $) NIL (|has| |#4| (-969)))) (-3249 (($) NIL (|has| |#4| (-341)))) (-3846 ((|#4| $ (-520) |#4|) NIL (|has| $ (-6 -4230)))) (-3623 ((|#4| $ (-520)) NIL)) (-2328 (((-108) $) NIL (|has| |#4| (-781)))) (-3828 (((-586 |#4|) $) NIL (|has| $ (-6 -4229)))) (-1537 (((-108) $) NIL (|has| |#4| (-969)))) (-3469 (((-108) $) NIL (|has| |#4| (-781)))) (-3027 (((-108) $ (-706)) NIL)) (-2567 (((-520) $) NIL (|has| (-520) (-783)))) (-2809 (($ $ $) NIL (-3700 (|has| |#4| (-728)) (|has| |#4| (-781))))) (-3702 (((-586 |#4|) $) NIL (|has| $ (-6 -4229)))) (-2422 (((-108) |#4| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#4| (-1012))))) (-1752 (((-520) $) NIL (|has| (-520) (-783)))) (-2446 (($ $ $) NIL (-3700 (|has| |#4| (-728)) (|has| |#4| (-781))))) (-3830 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#4| |#4|) $) NIL)) (-3040 (((-849) $) NIL (|has| |#4| (-341)))) (-1390 (((-108) $ (-706)) NIL)) (-1239 (((-1066) $) NIL)) (-3622 (((-586 (-520)) $) NIL)) (-2603 (((-108) (-520) $) NIL)) (-2716 (($ (-849)) NIL (|has| |#4| (-341)))) (-4142 (((-1030) $) NIL)) (-2293 ((|#4| $) NIL (|has| (-520) (-783)))) (-2936 (($ $ |#4|) NIL (|has| $ (-6 -4230)))) (-4155 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 |#4|))) NIL (-12 (|has| |#4| (-283 |#4|)) (|has| |#4| (-1012)))) (($ $ (-268 |#4|)) NIL (-12 (|has| |#4| (-283 |#4|)) (|has| |#4| (-1012)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-283 |#4|)) (|has| |#4| (-1012)))) (($ $ (-586 |#4|) (-586 |#4|)) NIL (-12 (|has| |#4| (-283 |#4|)) (|has| |#4| (-1012))))) (-2533 (((-108) $ $) NIL)) (-2094 (((-108) |#4| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#4| (-1012))))) (-1523 (((-586 |#4|) $) NIL)) (-4018 (((-108) $) NIL)) (-2238 (($) NIL)) (-2543 ((|#4| $ (-520) |#4|) NIL) ((|#4| $ (-520)) 12)) (-3639 ((|#4| $ $) NIL (|has| |#4| (-969)))) (-1960 (($ (-1164 |#4|)) NIL)) (-1556 (((-126)) NIL (|has| |#4| (-336)))) (-2155 (($ $ (-1 |#4| |#4|) (-706)) NIL (|has| |#4| (-969))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-969))) (($ $ (-586 (-1083)) (-586 (-706))) NIL (-12 (|has| |#4| (-828 (-1083))) (|has| |#4| (-969)))) (($ $ (-1083) (-706)) NIL (-12 (|has| |#4| (-828 (-1083))) (|has| |#4| (-969)))) (($ $ (-586 (-1083))) NIL (-12 (|has| |#4| (-828 (-1083))) (|has| |#4| (-969)))) (($ $ (-1083)) NIL (-12 (|has| |#4| (-828 (-1083))) (|has| |#4| (-969)))) (($ $ (-706)) NIL (-12 (|has| |#4| (-209)) (|has| |#4| (-969)))) (($ $) NIL (-12 (|has| |#4| (-209)) (|has| |#4| (-969))))) (-4159 (((-706) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4229))) (((-706) |#4| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#4| (-1012))))) (-2403 (($ $) NIL)) (-2188 (((-1164 |#4|) $) NIL) (((-791) $) NIL) (($ |#4|) NIL (|has| |#4| (-1012))) (($ (-520)) NIL (-3700 (-12 (|has| |#4| (-960 (-520))) (|has| |#4| (-1012))) (|has| |#4| (-969)))) (($ (-380 (-520))) NIL (-12 (|has| |#4| (-960 (-380 (-520)))) (|has| |#4| (-1012))))) (-3251 (((-706)) NIL (|has| |#4| (-969)))) (-1662 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4229)))) (-2458 (($ $) NIL (|has| |#4| (-781)))) (-3504 (($ $ (-706)) NIL (|has| |#4| (-969))) (($ $ (-849)) NIL (|has| |#4| (-969)))) (-3560 (($) NIL T CONST)) (-3570 (($) NIL (|has| |#4| (-969)) CONST)) (-2211 (($ $ (-1 |#4| |#4|) (-706)) NIL (|has| |#4| (-969))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-969))) (($ $ (-586 (-1083)) (-586 (-706))) NIL (-12 (|has| |#4| (-828 (-1083))) (|has| |#4| (-969)))) (($ $ (-1083) (-706)) NIL (-12 (|has| |#4| (-828 (-1083))) (|has| |#4| (-969)))) (($ $ (-586 (-1083))) NIL (-12 (|has| |#4| (-828 (-1083))) (|has| |#4| (-969)))) (($ $ (-1083)) NIL (-12 (|has| |#4| (-828 (-1083))) (|has| |#4| (-969)))) (($ $ (-706)) NIL (-12 (|has| |#4| (-209)) (|has| |#4| (-969)))) (($ $) NIL (-12 (|has| |#4| (-209)) (|has| |#4| (-969))))) (-1573 (((-108) $ $) NIL (-3700 (|has| |#4| (-728)) (|has| |#4| (-781))))) (-1557 (((-108) $ $) NIL (-3700 (|has| |#4| (-728)) (|has| |#4| (-781))))) (-1530 (((-108) $ $) NIL)) (-1565 (((-108) $ $) NIL (-3700 (|has| |#4| (-728)) (|has| |#4| (-781))))) (-1548 (((-108) $ $) NIL (-3700 (|has| |#4| (-728)) (|has| |#4| (-781))))) (-1619 (($ $ |#4|) NIL (|has| |#4| (-336)))) (-1611 (($ $ $) NIL) (($ $) NIL)) (-1601 (($ $ $) NIL)) (** (($ $ (-706)) NIL (|has| |#4| (-969))) (($ $ (-849)) NIL (|has| |#4| (-969)))) (* (($ |#2| $) 14) (($ (-520) $) NIL) (($ (-706) $) NIL) (($ (-849) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-662))) (($ |#4| $) NIL (|has| |#4| (-662))) (($ $ $) NIL (|has| |#4| (-969)))) (-3474 (((-706) $) NIL (|has| $ (-6 -4229)))))
-(((-225 |#1| |#2| |#3| |#4|) (-13 (-214 |#1| |#4|) (-588 |#2|) (-588 |#3|)) (-849) (-969) (-1033 |#1| |#2| (-216 |#1| |#2|) (-216 |#1| |#2|)) (-588 |#2|)) (T -225))
-NIL
-(-13 (-214 |#1| |#4|) (-588 |#2|) (-588 |#3|))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-4121 (($ (-849)) NIL (|has| |#3| (-969)))) (-1476 (((-1169) $ (-520) (-520)) NIL (|has| $ (-6 -4230)))) (-1224 (($ $ $) NIL (|has| |#3| (-728)))) (-1917 (((-3 $ "failed") $ $) NIL)) (-2063 (((-108) $ (-706)) NIL)) (-1628 (((-706)) NIL (|has| |#3| (-341)))) (-2804 (((-520) $) NIL (|has| |#3| (-781)))) (-2377 ((|#3| $ (-520) |#3|) NIL (|has| $ (-6 -4230)))) (-3961 (($) NIL T CONST)) (-1296 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1012))) (((-3 (-520) "failed") $) NIL (-12 (|has| |#3| (-960 (-520))) (|has| |#3| (-1012)))) (((-3 (-380 (-520)) "failed") $) NIL (-12 (|has| |#3| (-960 (-380 (-520)))) (|has| |#3| (-1012))))) (-1482 ((|#3| $) NIL (|has| |#3| (-1012))) (((-520) $) NIL (-12 (|has| |#3| (-960 (-520))) (|has| |#3| (-1012)))) (((-380 (-520)) $) NIL (-12 (|has| |#3| (-960 (-380 (-520)))) (|has| |#3| (-1012))))) (-2756 (((-2 (|:| -3927 (-626 |#3|)) (|:| |vec| (-1164 |#3|))) (-626 $) (-1164 $)) NIL (|has| |#3| (-969))) (((-626 |#3|) (-626 $)) NIL (|has| |#3| (-969))) (((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 $) (-1164 $)) NIL (-12 (|has| |#3| (-582 (-520))) (|has| |#3| (-969)))) (((-626 (-520)) (-626 $)) NIL (-12 (|has| |#3| (-582 (-520))) (|has| |#3| (-969))))) (-1540 (((-3 $ "failed") $) NIL (|has| |#3| (-969)))) (-3249 (($) NIL (|has| |#3| (-341)))) (-3846 ((|#3| $ (-520) |#3|) NIL (|has| $ (-6 -4230)))) (-3623 ((|#3| $ (-520)) NIL)) (-2328 (((-108) $) NIL (|has| |#3| (-781)))) (-3828 (((-586 |#3|) $) NIL (|has| $ (-6 -4229)))) (-1537 (((-108) $) NIL (|has| |#3| (-969)))) (-3469 (((-108) $) NIL (|has| |#3| (-781)))) (-3027 (((-108) $ (-706)) NIL)) (-2567 (((-520) $) NIL (|has| (-520) (-783)))) (-2809 (($ $ $) NIL (-3700 (|has| |#3| (-728)) (|has| |#3| (-781))))) (-3702 (((-586 |#3|) $) NIL (|has| $ (-6 -4229)))) (-2422 (((-108) |#3| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#3| (-1012))))) (-1752 (((-520) $) NIL (|has| (-520) (-783)))) (-2446 (($ $ $) NIL (-3700 (|has| |#3| (-728)) (|has| |#3| (-781))))) (-3830 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#3| |#3|) $) NIL)) (-3040 (((-849) $) NIL (|has| |#3| (-341)))) (-1390 (((-108) $ (-706)) NIL)) (-1239 (((-1066) $) NIL)) (-3622 (((-586 (-520)) $) NIL)) (-2603 (((-108) (-520) $) NIL)) (-2716 (($ (-849)) NIL (|has| |#3| (-341)))) (-4142 (((-1030) $) NIL)) (-2293 ((|#3| $) NIL (|has| (-520) (-783)))) (-2936 (($ $ |#3|) NIL (|has| $ (-6 -4230)))) (-4155 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 |#3|))) NIL (-12 (|has| |#3| (-283 |#3|)) (|has| |#3| (-1012)))) (($ $ (-268 |#3|)) NIL (-12 (|has| |#3| (-283 |#3|)) (|has| |#3| (-1012)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-283 |#3|)) (|has| |#3| (-1012)))) (($ $ (-586 |#3|) (-586 |#3|)) NIL (-12 (|has| |#3| (-283 |#3|)) (|has| |#3| (-1012))))) (-2533 (((-108) $ $) NIL)) (-2094 (((-108) |#3| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#3| (-1012))))) (-1523 (((-586 |#3|) $) NIL)) (-4018 (((-108) $) NIL)) (-2238 (($) NIL)) (-2543 ((|#3| $ (-520) |#3|) NIL) ((|#3| $ (-520)) 11)) (-3639 ((|#3| $ $) NIL (|has| |#3| (-969)))) (-1960 (($ (-1164 |#3|)) NIL)) (-1556 (((-126)) NIL (|has| |#3| (-336)))) (-2155 (($ $ (-1 |#3| |#3|) (-706)) NIL (|has| |#3| (-969))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-969))) (($ $ (-586 (-1083)) (-586 (-706))) NIL (-12 (|has| |#3| (-828 (-1083))) (|has| |#3| (-969)))) (($ $ (-1083) (-706)) NIL (-12 (|has| |#3| (-828 (-1083))) (|has| |#3| (-969)))) (($ $ (-586 (-1083))) NIL (-12 (|has| |#3| (-828 (-1083))) (|has| |#3| (-969)))) (($ $ (-1083)) NIL (-12 (|has| |#3| (-828 (-1083))) (|has| |#3| (-969)))) (($ $ (-706)) NIL (-12 (|has| |#3| (-209)) (|has| |#3| (-969)))) (($ $) NIL (-12 (|has| |#3| (-209)) (|has| |#3| (-969))))) (-4159 (((-706) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4229))) (((-706) |#3| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#3| (-1012))))) (-2403 (($ $) NIL)) (-2188 (((-1164 |#3|) $) NIL) (((-791) $) NIL) (($ |#3|) NIL (|has| |#3| (-1012))) (($ (-520)) NIL (-3700 (-12 (|has| |#3| (-960 (-520))) (|has| |#3| (-1012))) (|has| |#3| (-969)))) (($ (-380 (-520))) NIL (-12 (|has| |#3| (-960 (-380 (-520)))) (|has| |#3| (-1012))))) (-3251 (((-706)) NIL (|has| |#3| (-969)))) (-1662 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4229)))) (-2458 (($ $) NIL (|has| |#3| (-781)))) (-3504 (($ $ (-706)) NIL (|has| |#3| (-969))) (($ $ (-849)) NIL (|has| |#3| (-969)))) (-3560 (($) NIL T CONST)) (-3570 (($) NIL (|has| |#3| (-969)) CONST)) (-2211 (($ $ (-1 |#3| |#3|) (-706)) NIL (|has| |#3| (-969))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-969))) (($ $ (-586 (-1083)) (-586 (-706))) NIL (-12 (|has| |#3| (-828 (-1083))) (|has| |#3| (-969)))) (($ $ (-1083) (-706)) NIL (-12 (|has| |#3| (-828 (-1083))) (|has| |#3| (-969)))) (($ $ (-586 (-1083))) NIL (-12 (|has| |#3| (-828 (-1083))) (|has| |#3| (-969)))) (($ $ (-1083)) NIL (-12 (|has| |#3| (-828 (-1083))) (|has| |#3| (-969)))) (($ $ (-706)) NIL (-12 (|has| |#3| (-209)) (|has| |#3| (-969)))) (($ $) NIL (-12 (|has| |#3| (-209)) (|has| |#3| (-969))))) (-1573 (((-108) $ $) NIL (-3700 (|has| |#3| (-728)) (|has| |#3| (-781))))) (-1557 (((-108) $ $) NIL (-3700 (|has| |#3| (-728)) (|has| |#3| (-781))))) (-1530 (((-108) $ $) NIL)) (-1565 (((-108) $ $) NIL (-3700 (|has| |#3| (-728)) (|has| |#3| (-781))))) (-1548 (((-108) $ $) NIL (-3700 (|has| |#3| (-728)) (|has| |#3| (-781))))) (-1619 (($ $ |#3|) NIL (|has| |#3| (-336)))) (-1611 (($ $ $) NIL) (($ $) NIL)) (-1601 (($ $ $) NIL)) (** (($ $ (-706)) NIL (|has| |#3| (-969))) (($ $ (-849)) NIL (|has| |#3| (-969)))) (* (($ |#2| $) 13) (($ (-520) $) NIL) (($ (-706) $) NIL) (($ (-849) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-662))) (($ |#3| $) NIL (|has| |#3| (-662))) (($ $ $) NIL (|has| |#3| (-969)))) (-3474 (((-706) $) NIL (|has| $ (-6 -4229)))))
-(((-226 |#1| |#2| |#3|) (-13 (-214 |#1| |#3|) (-588 |#2|)) (-706) (-969) (-588 |#2|)) (T -226))
-NIL
-(-13 (-214 |#1| |#3|) (-588 |#2|))
-((-3508 (((-586 (-706)) $) 47) (((-586 (-706)) $ |#3|) 50)) (-1785 (((-706) $) 49) (((-706) $ |#3|) 52)) (-3863 (($ $) 65)) (-1296 (((-3 |#2| "failed") $) NIL) (((-3 (-380 (-520)) "failed") $) NIL) (((-3 (-520) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 72)) (-3989 (((-706) $ |#3|) 39) (((-706) $) 36)) (-1676 (((-1 $ (-706)) |#3|) 15) (((-1 $ (-706)) $) 77)) (-1569 ((|#4| $) 58)) (-3365 (((-108) $) 56)) (-1900 (($ $) 64)) (-2286 (($ $ (-586 (-268 $))) 96) (($ $ (-268 $)) NIL) (($ $ $ $) NIL) (($ $ (-586 $) (-586 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-586 |#4|) (-586 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-586 |#4|) (-586 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-586 |#3|) (-586 $)) 89) (($ $ |#3| |#2|) NIL) (($ $ (-586 |#3|) (-586 |#2|)) 84)) (-2155 (($ $ |#4|) NIL) (($ $ (-586 |#4|)) NIL) (($ $ |#4| (-706)) NIL) (($ $ (-586 |#4|) (-586 (-706))) NIL) (($ $) NIL) (($ $ (-706)) NIL) (($ $ (-1083)) NIL) (($ $ (-586 (-1083))) NIL) (($ $ (-1083) (-706)) NIL) (($ $ (-586 (-1083)) (-586 (-706))) NIL) (($ $ (-1 |#2| |#2|) (-706)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-2557 (((-586 |#3|) $) 75)) (-2528 ((|#5| $) NIL) (((-706) $ |#4|) NIL) (((-586 (-706)) $ (-586 |#4|)) NIL) (((-706) $ |#3|) 44)) (-2188 (((-791) $) NIL) (($ (-520)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 67) (($ (-380 (-520))) NIL) (($ $) NIL)))
-(((-227 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2188 (|#1| |#1|)) (-15 -2188 (|#1| (-380 (-520)))) (-15 -2286 (|#1| |#1| (-586 |#3|) (-586 |#2|))) (-15 -2286 (|#1| |#1| |#3| |#2|)) (-15 -2286 (|#1| |#1| (-586 |#3|) (-586 |#1|))) (-15 -2286 (|#1| |#1| |#3| |#1|)) (-15 -1676 ((-1 |#1| (-706)) |#1|)) (-15 -3863 (|#1| |#1|)) (-15 -1900 (|#1| |#1|)) (-15 -1569 (|#4| |#1|)) (-15 -3365 ((-108) |#1|)) (-15 -1785 ((-706) |#1| |#3|)) (-15 -3508 ((-586 (-706)) |#1| |#3|)) (-15 -1785 ((-706) |#1|)) (-15 -3508 ((-586 (-706)) |#1|)) (-15 -2528 ((-706) |#1| |#3|)) (-15 -3989 ((-706) |#1|)) (-15 -3989 ((-706) |#1| |#3|)) (-15 -2557 ((-586 |#3|) |#1|)) (-15 -1676 ((-1 |#1| (-706)) |#3|)) (-15 -1296 ((-3 |#3| "failed") |#1|)) (-15 -2188 (|#1| |#3|)) (-15 -2155 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2155 (|#1| |#1| (-1 |#2| |#2|) (-706))) (-15 -2155 (|#1| |#1| (-586 (-1083)) (-586 (-706)))) (-15 -2155 (|#1| |#1| (-1083) (-706))) (-15 -2155 (|#1| |#1| (-586 (-1083)))) (-15 -2155 (|#1| |#1| (-1083))) (-15 -2155 (|#1| |#1| (-706))) (-15 -2155 (|#1| |#1|)) (-15 -2528 ((-586 (-706)) |#1| (-586 |#4|))) (-15 -2528 ((-706) |#1| |#4|)) (-15 -1296 ((-3 |#4| "failed") |#1|)) (-15 -2188 (|#1| |#4|)) (-15 -2286 (|#1| |#1| (-586 |#4|) (-586 |#1|))) (-15 -2286 (|#1| |#1| |#4| |#1|)) (-15 -2286 (|#1| |#1| (-586 |#4|) (-586 |#2|))) (-15 -2286 (|#1| |#1| |#4| |#2|)) (-15 -2286 (|#1| |#1| (-586 |#1|) (-586 |#1|))) (-15 -2286 (|#1| |#1| |#1| |#1|)) (-15 -2286 (|#1| |#1| (-268 |#1|))) (-15 -2286 (|#1| |#1| (-586 (-268 |#1|)))) (-15 -2528 (|#5| |#1|)) (-15 -1296 ((-3 (-520) "failed") |#1|)) (-15 -1296 ((-3 (-380 (-520)) "failed") |#1|)) (-15 -2188 (|#1| |#2|)) (-15 -1296 ((-3 |#2| "failed") |#1|)) (-15 -2155 (|#1| |#1| (-586 |#4|) (-586 (-706)))) (-15 -2155 (|#1| |#1| |#4| (-706))) (-15 -2155 (|#1| |#1| (-586 |#4|))) (-15 -2155 (|#1| |#1| |#4|)) (-15 -2188 (|#1| (-520))) (-15 -2188 ((-791) |#1|))) (-228 |#2| |#3| |#4| |#5|) (-969) (-783) (-241 |#3|) (-728)) (T -227))
-NIL
-(-10 -8 (-15 -2188 (|#1| |#1|)) (-15 -2188 (|#1| (-380 (-520)))) (-15 -2286 (|#1| |#1| (-586 |#3|) (-586 |#2|))) (-15 -2286 (|#1| |#1| |#3| |#2|)) (-15 -2286 (|#1| |#1| (-586 |#3|) (-586 |#1|))) (-15 -2286 (|#1| |#1| |#3| |#1|)) (-15 -1676 ((-1 |#1| (-706)) |#1|)) (-15 -3863 (|#1| |#1|)) (-15 -1900 (|#1| |#1|)) (-15 -1569 (|#4| |#1|)) (-15 -3365 ((-108) |#1|)) (-15 -1785 ((-706) |#1| |#3|)) (-15 -3508 ((-586 (-706)) |#1| |#3|)) (-15 -1785 ((-706) |#1|)) (-15 -3508 ((-586 (-706)) |#1|)) (-15 -2528 ((-706) |#1| |#3|)) (-15 -3989 ((-706) |#1|)) (-15 -3989 ((-706) |#1| |#3|)) (-15 -2557 ((-586 |#3|) |#1|)) (-15 -1676 ((-1 |#1| (-706)) |#3|)) (-15 -1296 ((-3 |#3| "failed") |#1|)) (-15 -2188 (|#1| |#3|)) (-15 -2155 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2155 (|#1| |#1| (-1 |#2| |#2|) (-706))) (-15 -2155 (|#1| |#1| (-586 (-1083)) (-586 (-706)))) (-15 -2155 (|#1| |#1| (-1083) (-706))) (-15 -2155 (|#1| |#1| (-586 (-1083)))) (-15 -2155 (|#1| |#1| (-1083))) (-15 -2155 (|#1| |#1| (-706))) (-15 -2155 (|#1| |#1|)) (-15 -2528 ((-586 (-706)) |#1| (-586 |#4|))) (-15 -2528 ((-706) |#1| |#4|)) (-15 -1296 ((-3 |#4| "failed") |#1|)) (-15 -2188 (|#1| |#4|)) (-15 -2286 (|#1| |#1| (-586 |#4|) (-586 |#1|))) (-15 -2286 (|#1| |#1| |#4| |#1|)) (-15 -2286 (|#1| |#1| (-586 |#4|) (-586 |#2|))) (-15 -2286 (|#1| |#1| |#4| |#2|)) (-15 -2286 (|#1| |#1| (-586 |#1|) (-586 |#1|))) (-15 -2286 (|#1| |#1| |#1| |#1|)) (-15 -2286 (|#1| |#1| (-268 |#1|))) (-15 -2286 (|#1| |#1| (-586 (-268 |#1|)))) (-15 -2528 (|#5| |#1|)) (-15 -1296 ((-3 (-520) "failed") |#1|)) (-15 -1296 ((-3 (-380 (-520)) "failed") |#1|)) (-15 -2188 (|#1| |#2|)) (-15 -1296 ((-3 |#2| "failed") |#1|)) (-15 -2155 (|#1| |#1| (-586 |#4|) (-586 (-706)))) (-15 -2155 (|#1| |#1| |#4| (-706))) (-15 -2155 (|#1| |#1| (-586 |#4|))) (-15 -2155 (|#1| |#1| |#4|)) (-15 -2188 (|#1| (-520))) (-15 -2188 ((-791) |#1|)))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-3508 (((-586 (-706)) $) 214) (((-586 (-706)) $ |#2|) 212)) (-1785 (((-706) $) 213) (((-706) $ |#2|) 211)) (-4081 (((-586 |#3|) $) 110)) (-1278 (((-1079 $) $ |#3|) 125) (((-1079 |#1|) $) 124)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) 87 (|has| |#1| (-512)))) (-2583 (($ $) 88 (|has| |#1| (-512)))) (-1671 (((-108) $) 90 (|has| |#1| (-512)))) (-3665 (((-706) $) 112) (((-706) $ (-586 |#3|)) 111)) (-1917 (((-3 $ "failed") $ $) 19)) (-4119 (((-391 (-1079 $)) (-1079 $)) 100 (|has| |#1| (-837)))) (-3024 (($ $) 98 (|has| |#1| (-424)))) (-1507 (((-391 $) $) 97 (|has| |#1| (-424)))) (-3481 (((-3 (-586 (-1079 $)) "failed") (-586 (-1079 $)) (-1079 $)) 103 (|has| |#1| (-837)))) (-3863 (($ $) 207)) (-3961 (($) 17 T CONST)) (-1296 (((-3 |#1| "failed") $) 164) (((-3 (-380 (-520)) "failed") $) 162 (|has| |#1| (-960 (-380 (-520))))) (((-3 (-520) "failed") $) 160 (|has| |#1| (-960 (-520)))) (((-3 |#3| "failed") $) 136) (((-3 |#2| "failed") $) 221)) (-1482 ((|#1| $) 165) (((-380 (-520)) $) 161 (|has| |#1| (-960 (-380 (-520))))) (((-520) $) 159 (|has| |#1| (-960 (-520)))) ((|#3| $) 135) ((|#2| $) 220)) (-2413 (($ $ $ |#3|) 108 (|has| |#1| (-157)))) (-3150 (($ $) 154)) (-2756 (((-626 (-520)) (-626 $)) 134 (|has| |#1| (-582 (-520)))) (((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 $) (-1164 $)) 133 (|has| |#1| (-582 (-520)))) (((-2 (|:| -3927 (-626 |#1|)) (|:| |vec| (-1164 |#1|))) (-626 $) (-1164 $)) 132) (((-626 |#1|) (-626 $)) 131)) (-1540 (((-3 $ "failed") $) 34)) (-3923 (($ $) 176 (|has| |#1| (-424))) (($ $ |#3|) 105 (|has| |#1| (-424)))) (-3142 (((-586 $) $) 109)) (-2036 (((-108) $) 96 (|has| |#1| (-837)))) (-3397 (($ $ |#1| |#4| $) 172)) (-1272 (((-817 (-352) $) $ (-820 (-352)) (-817 (-352) $)) 84 (-12 (|has| |#3| (-814 (-352))) (|has| |#1| (-814 (-352))))) (((-817 (-520) $) $ (-820 (-520)) (-817 (-520) $)) 83 (-12 (|has| |#3| (-814 (-520))) (|has| |#1| (-814 (-520)))))) (-3989 (((-706) $ |#2|) 217) (((-706) $) 216)) (-1537 (((-108) $) 31)) (-1315 (((-706) $) 169)) (-4065 (($ (-1079 |#1|) |#3|) 117) (($ (-1079 $) |#3|) 116)) (-1992 (((-586 $) $) 126)) (-3774 (((-108) $) 152)) (-4039 (($ |#1| |#4|) 153) (($ $ |#3| (-706)) 119) (($ $ (-586 |#3|) (-586 (-706))) 118)) (-1910 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $ |#3|) 120)) (-3562 ((|#4| $) 170) (((-706) $ |#3|) 122) (((-586 (-706)) $ (-586 |#3|)) 121)) (-2809 (($ $ $) 79 (|has| |#1| (-783)))) (-2446 (($ $ $) 78 (|has| |#1| (-783)))) (-3295 (($ (-1 |#4| |#4|) $) 171)) (-1389 (($ (-1 |#1| |#1|) $) 151)) (-1676 (((-1 $ (-706)) |#2|) 219) (((-1 $ (-706)) $) 206 (|has| |#1| (-209)))) (-3186 (((-3 |#3| "failed") $) 123)) (-3123 (($ $) 149)) (-3133 ((|#1| $) 148)) (-1569 ((|#3| $) 209)) (-2222 (($ (-586 $)) 94 (|has| |#1| (-424))) (($ $ $) 93 (|has| |#1| (-424)))) (-1239 (((-1066) $) 9)) (-3365 (((-108) $) 210)) (-3548 (((-3 (-586 $) "failed") $) 114)) (-1205 (((-3 (-586 $) "failed") $) 115)) (-2568 (((-3 (-2 (|:| |var| |#3|) (|:| -2647 (-706))) "failed") $) 113)) (-1900 (($ $) 208)) (-4142 (((-1030) $) 10)) (-3103 (((-108) $) 166)) (-3113 ((|#1| $) 167)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) 95 (|has| |#1| (-424)))) (-2257 (($ (-586 $)) 92 (|has| |#1| (-424))) (($ $ $) 91 (|has| |#1| (-424)))) (-4133 (((-391 (-1079 $)) (-1079 $)) 102 (|has| |#1| (-837)))) (-2017 (((-391 (-1079 $)) (-1079 $)) 101 (|has| |#1| (-837)))) (-1916 (((-391 $) $) 99 (|has| |#1| (-837)))) (-2230 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-512))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-512)))) (-2286 (($ $ (-586 (-268 $))) 145) (($ $ (-268 $)) 144) (($ $ $ $) 143) (($ $ (-586 $) (-586 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-586 |#3|) (-586 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-586 |#3|) (-586 $)) 138) (($ $ |#2| $) 205 (|has| |#1| (-209))) (($ $ (-586 |#2|) (-586 $)) 204 (|has| |#1| (-209))) (($ $ |#2| |#1|) 203 (|has| |#1| (-209))) (($ $ (-586 |#2|) (-586 |#1|)) 202 (|has| |#1| (-209)))) (-2732 (($ $ |#3|) 107 (|has| |#1| (-157)))) (-2155 (($ $ |#3|) 42) (($ $ (-586 |#3|)) 41) (($ $ |#3| (-706)) 40) (($ $ (-586 |#3|) (-586 (-706))) 39) (($ $) 238 (|has| |#1| (-209))) (($ $ (-706)) 236 (|has| |#1| (-209))) (($ $ (-1083)) 234 (|has| |#1| (-828 (-1083)))) (($ $ (-586 (-1083))) 233 (|has| |#1| (-828 (-1083)))) (($ $ (-1083) (-706)) 232 (|has| |#1| (-828 (-1083)))) (($ $ (-586 (-1083)) (-586 (-706))) 231 (|has| |#1| (-828 (-1083)))) (($ $ (-1 |#1| |#1|) (-706)) 224) (($ $ (-1 |#1| |#1|)) 223)) (-2557 (((-586 |#2|) $) 218)) (-2528 ((|#4| $) 150) (((-706) $ |#3|) 130) (((-586 (-706)) $ (-586 |#3|)) 129) (((-706) $ |#2|) 215)) (-1429 (((-820 (-352)) $) 82 (-12 (|has| |#3| (-561 (-820 (-352)))) (|has| |#1| (-561 (-820 (-352)))))) (((-820 (-520)) $) 81 (-12 (|has| |#3| (-561 (-820 (-520)))) (|has| |#1| (-561 (-820 (-520)))))) (((-496) $) 80 (-12 (|has| |#3| (-561 (-496))) (|has| |#1| (-561 (-496)))))) (-1233 ((|#1| $) 175 (|has| |#1| (-424))) (($ $ |#3|) 106 (|has| |#1| (-424)))) (-3784 (((-3 (-1164 $) "failed") (-626 $)) 104 (-4006 (|has| $ (-133)) (|has| |#1| (-837))))) (-2188 (((-791) $) 11) (($ (-520)) 28) (($ |#1|) 163) (($ |#3|) 137) (($ |#2|) 222) (($ (-380 (-520))) 72 (-3700 (|has| |#1| (-960 (-380 (-520)))) (|has| |#1| (-37 (-380 (-520)))))) (($ $) 85 (|has| |#1| (-512)))) (-4113 (((-586 |#1|) $) 168)) (-3475 ((|#1| $ |#4|) 155) (($ $ |#3| (-706)) 128) (($ $ (-586 |#3|) (-586 (-706))) 127)) (-3796 (((-3 $ "failed") $) 73 (-3700 (-4006 (|has| $ (-133)) (|has| |#1| (-837))) (|has| |#1| (-133))))) (-3251 (((-706)) 29)) (-1782 (($ $ $ (-706)) 173 (|has| |#1| (-157)))) (-2559 (((-108) $ $) 89 (|has| |#1| (-512)))) (-3504 (($ $ (-849)) 26) (($ $ (-706)) 33)) (-3560 (($) 18 T CONST)) (-3570 (($) 30 T CONST)) (-2211 (($ $ |#3|) 38) (($ $ (-586 |#3|)) 37) (($ $ |#3| (-706)) 36) (($ $ (-586 |#3|) (-586 (-706))) 35) (($ $) 237 (|has| |#1| (-209))) (($ $ (-706)) 235 (|has| |#1| (-209))) (($ $ (-1083)) 230 (|has| |#1| (-828 (-1083)))) (($ $ (-586 (-1083))) 229 (|has| |#1| (-828 (-1083)))) (($ $ (-1083) (-706)) 228 (|has| |#1| (-828 (-1083)))) (($ $ (-586 (-1083)) (-586 (-706))) 227 (|has| |#1| (-828 (-1083)))) (($ $ (-1 |#1| |#1|) (-706)) 226) (($ $ (-1 |#1| |#1|)) 225)) (-1573 (((-108) $ $) 76 (|has| |#1| (-783)))) (-1557 (((-108) $ $) 75 (|has| |#1| (-783)))) (-1530 (((-108) $ $) 6)) (-1565 (((-108) $ $) 77 (|has| |#1| (-783)))) (-1548 (((-108) $ $) 74 (|has| |#1| (-783)))) (-1619 (($ $ |#1|) 156 (|has| |#1| (-336)))) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-706)) 32)) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ $ $) 24) (($ $ (-380 (-520))) 158 (|has| |#1| (-37 (-380 (-520))))) (($ (-380 (-520)) $) 157 (|has| |#1| (-37 (-380 (-520))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
-(((-228 |#1| |#2| |#3| |#4|) (-1195) (-969) (-783) (-241 |t#2|) (-728)) (T -228))
-((-1676 (*1 *2 *3) (-12 (-4 *4 (-969)) (-4 *3 (-783)) (-4 *5 (-241 *3)) (-4 *6 (-728)) (-5 *2 (-1 *1 (-706))) (-4 *1 (-228 *4 *3 *5 *6)))) (-2557 (*1 *2 *1) (-12 (-4 *1 (-228 *3 *4 *5 *6)) (-4 *3 (-969)) (-4 *4 (-783)) (-4 *5 (-241 *4)) (-4 *6 (-728)) (-5 *2 (-586 *4)))) (-3989 (*1 *2 *1 *3) (-12 (-4 *1 (-228 *4 *3 *5 *6)) (-4 *4 (-969)) (-4 *3 (-783)) (-4 *5 (-241 *3)) (-4 *6 (-728)) (-5 *2 (-706)))) (-3989 (*1 *2 *1) (-12 (-4 *1 (-228 *3 *4 *5 *6)) (-4 *3 (-969)) (-4 *4 (-783)) (-4 *5 (-241 *4)) (-4 *6 (-728)) (-5 *2 (-706)))) (-2528 (*1 *2 *1 *3) (-12 (-4 *1 (-228 *4 *3 *5 *6)) (-4 *4 (-969)) (-4 *3 (-783)) (-4 *5 (-241 *3)) (-4 *6 (-728)) (-5 *2 (-706)))) (-3508 (*1 *2 *1) (-12 (-4 *1 (-228 *3 *4 *5 *6)) (-4 *3 (-969)) (-4 *4 (-783)) (-4 *5 (-241 *4)) (-4 *6 (-728)) (-5 *2 (-586 (-706))))) (-1785 (*1 *2 *1) (-12 (-4 *1 (-228 *3 *4 *5 *6)) (-4 *3 (-969)) (-4 *4 (-783)) (-4 *5 (-241 *4)) (-4 *6 (-728)) (-5 *2 (-706)))) (-3508 (*1 *2 *1 *3) (-12 (-4 *1 (-228 *4 *3 *5 *6)) (-4 *4 (-969)) (-4 *3 (-783)) (-4 *5 (-241 *3)) (-4 *6 (-728)) (-5 *2 (-586 (-706))))) (-1785 (*1 *2 *1 *3) (-12 (-4 *1 (-228 *4 *3 *5 *6)) (-4 *4 (-969)) (-4 *3 (-783)) (-4 *5 (-241 *3)) (-4 *6 (-728)) (-5 *2 (-706)))) (-3365 (*1 *2 *1) (-12 (-4 *1 (-228 *3 *4 *5 *6)) (-4 *3 (-969)) (-4 *4 (-783)) (-4 *5 (-241 *4)) (-4 *6 (-728)) (-5 *2 (-108)))) (-1569 (*1 *2 *1) (-12 (-4 *1 (-228 *3 *4 *2 *5)) (-4 *3 (-969)) (-4 *4 (-783)) (-4 *5 (-728)) (-4 *2 (-241 *4)))) (-1900 (*1 *1 *1) (-12 (-4 *1 (-228 *2 *3 *4 *5)) (-4 *2 (-969)) (-4 *3 (-783)) (-4 *4 (-241 *3)) (-4 *5 (-728)))) (-3863 (*1 *1 *1) (-12 (-4 *1 (-228 *2 *3 *4 *5)) (-4 *2 (-969)) (-4 *3 (-783)) (-4 *4 (-241 *3)) (-4 *5 (-728)))) (-1676 (*1 *2 *1) (-12 (-4 *3 (-209)) (-4 *3 (-969)) (-4 *4 (-783)) (-4 *5 (-241 *4)) (-4 *6 (-728)) (-5 *2 (-1 *1 (-706))) (-4 *1 (-228 *3 *4 *5 *6)))))
-(-13 (-877 |t#1| |t#4| |t#3|) (-207 |t#1|) (-960 |t#2|) (-10 -8 (-15 -1676 ((-1 $ (-706)) |t#2|)) (-15 -2557 ((-586 |t#2|) $)) (-15 -3989 ((-706) $ |t#2|)) (-15 -3989 ((-706) $)) (-15 -2528 ((-706) $ |t#2|)) (-15 -3508 ((-586 (-706)) $)) (-15 -1785 ((-706) $)) (-15 -3508 ((-586 (-706)) $ |t#2|)) (-15 -1785 ((-706) $ |t#2|)) (-15 -3365 ((-108) $)) (-15 -1569 (|t#3| $)) (-15 -1900 ($ $)) (-15 -3863 ($ $)) (IF (|has| |t#1| (-209)) (PROGN (-6 (-481 |t#2| |t#1|)) (-6 (-481 |t#2| $)) (-6 (-283 $)) (-15 -1676 ((-1 $ (-706)) $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| |#4|) . T) ((-25) . T) ((-37 #0=(-380 (-520))) |has| |#1| (-37 (-380 (-520)))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) -3700 (|has| |#1| (-837)) (|has| |#1| (-512)) (|has| |#1| (-424))) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-380 (-520)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3700 (|has| |#1| (-837)) (|has| |#1| (-512)) (|has| |#1| (-424)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-560 (-791)) . T) ((-157) -3700 (|has| |#1| (-837)) (|has| |#1| (-512)) (|has| |#1| (-424)) (|has| |#1| (-157))) ((-561 (-496)) -12 (|has| |#1| (-561 (-496))) (|has| |#3| (-561 (-496)))) ((-561 (-820 (-352))) -12 (|has| |#1| (-561 (-820 (-352)))) (|has| |#3| (-561 (-820 (-352))))) ((-561 (-820 (-520))) -12 (|has| |#1| (-561 (-820 (-520)))) (|has| |#3| (-561 (-820 (-520))))) ((-207 |#1|) . T) ((-209) |has| |#1| (-209)) ((-264) -3700 (|has| |#1| (-837)) (|has| |#1| (-512)) (|has| |#1| (-424))) ((-283 $) . T) ((-299 |#1| |#4|) . T) ((-350 |#1|) . T) ((-384 |#1|) . T) ((-424) -3700 (|has| |#1| (-837)) (|has| |#1| (-424))) ((-481 |#2| |#1|) |has| |#1| (-209)) ((-481 |#2| $) |has| |#1| (-209)) ((-481 |#3| |#1|) . T) ((-481 |#3| $) . T) ((-481 $ $) . T) ((-512) -3700 (|has| |#1| (-837)) (|has| |#1| (-512)) (|has| |#1| (-424))) ((-588 #0#) |has| |#1| (-37 (-380 (-520)))) ((-588 |#1|) . T) ((-588 $) . T) ((-582 (-520)) |has| |#1| (-582 (-520))) ((-582 |#1|) . T) ((-653 #0#) |has| |#1| (-37 (-380 (-520)))) ((-653 |#1|) |has| |#1| (-157)) ((-653 $) -3700 (|has| |#1| (-837)) (|has| |#1| (-512)) (|has| |#1| (-424))) ((-662) . T) ((-783) |has| |#1| (-783)) ((-828 (-1083)) |has| |#1| (-828 (-1083))) ((-828 |#3|) . T) ((-814 (-352)) -12 (|has| |#1| (-814 (-352))) (|has| |#3| (-814 (-352)))) ((-814 (-520)) -12 (|has| |#1| (-814 (-520))) (|has| |#3| (-814 (-520)))) ((-877 |#1| |#4| |#3|) . T) ((-837) |has| |#1| (-837)) ((-960 (-380 (-520))) |has| |#1| (-960 (-380 (-520)))) ((-960 (-520)) |has| |#1| (-960 (-520))) ((-960 |#1|) . T) ((-960 |#2|) . T) ((-960 |#3|) . T) ((-975 #0#) |has| |#1| (-37 (-380 (-520)))) ((-975 |#1|) . T) ((-975 $) -3700 (|has| |#1| (-837)) (|has| |#1| (-512)) (|has| |#1| (-424)) (|has| |#1| (-157))) ((-969) . T) ((-976) . T) ((-1024) . T) ((-1012) . T) ((-1122) |has| |#1| (-837)))
-((-1414 (((-108) $ $) 19 (|has| |#1| (-1012)))) (-2938 ((|#1| $) 54)) (-1353 ((|#1| $) 44)) (-2063 (((-108) $ (-706)) 8)) (-3961 (($) 7 T CONST)) (-3812 (($ $) 60)) (-2447 (($ $) 48)) (-1352 ((|#1| |#1| $) 46)) (-3621 ((|#1| $) 45)) (-3828 (((-586 |#1|) $) 30 (|has| $ (-6 -4229)))) (-3027 (((-108) $ (-706)) 9)) (-3702 (((-586 |#1|) $) 29 (|has| $ (-6 -4229)))) (-2422 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-3830 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#1| |#1|) $) 35)) (-1390 (((-108) $ (-706)) 10)) (-2515 (((-706) $) 61)) (-1239 (((-1066) $) 22 (|has| |#1| (-1012)))) (-3351 ((|#1| $) 39)) (-1759 ((|#1| |#1| $) 52)) (-2037 ((|#1| |#1| $) 51)) (-3618 (($ |#1| $) 40)) (-4146 (((-706) $) 55)) (-4142 (((-1030) $) 21 (|has| |#1| (-1012)))) (-1834 ((|#1| $) 62)) (-2496 ((|#1| $) 50)) (-3100 ((|#1| $) 49)) (-3345 ((|#1| $) 41)) (-4155 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 |#1|))) 26 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-268 |#1|)) 25 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-586 |#1|) (-586 |#1|)) 23 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))) (-2533 (((-108) $ $) 14)) (-1777 ((|#1| |#1| $) 58)) (-4018 (((-108) $) 11)) (-2238 (($) 12)) (-2024 ((|#1| $) 59)) (-1302 (($) 57) (($ (-586 |#1|)) 56)) (-1251 (((-706) $) 43)) (-4159 (((-706) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4229))) (((-706) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-2403 (($ $) 13)) (-2188 (((-791) $) 18 (|has| |#1| (-560 (-791))))) (-1951 ((|#1| $) 53)) (-1898 (($ (-586 |#1|)) 42)) (-4149 ((|#1| $) 63)) (-1662 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4229)))) (-1530 (((-108) $ $) 20 (|has| |#1| (-1012)))) (-3474 (((-706) $) 6 (|has| $ (-6 -4229)))))
-(((-229 |#1|) (-1195) (-1118)) (T -229))
-((-1302 (*1 *1) (-12 (-4 *1 (-229 *2)) (-4 *2 (-1118)))) (-1302 (*1 *1 *2) (-12 (-5 *2 (-586 *3)) (-4 *3 (-1118)) (-4 *1 (-229 *3)))) (-4146 (*1 *2 *1) (-12 (-4 *1 (-229 *3)) (-4 *3 (-1118)) (-5 *2 (-706)))) (-2938 (*1 *2 *1) (-12 (-4 *1 (-229 *2)) (-4 *2 (-1118)))) (-1951 (*1 *2 *1) (-12 (-4 *1 (-229 *2)) (-4 *2 (-1118)))) (-1759 (*1 *2 *2 *1) (-12 (-4 *1 (-229 *2)) (-4 *2 (-1118)))) (-2037 (*1 *2 *2 *1) (-12 (-4 *1 (-229 *2)) (-4 *2 (-1118)))) (-2496 (*1 *2 *1) (-12 (-4 *1 (-229 *2)) (-4 *2 (-1118)))) (-3100 (*1 *2 *1) (-12 (-4 *1 (-229 *2)) (-4 *2 (-1118)))) (-2447 (*1 *1 *1) (-12 (-4 *1 (-229 *2)) (-4 *2 (-1118)))))
-(-13 (-1031 |t#1|) (-919 |t#1|) (-10 -8 (-15 -1302 ($)) (-15 -1302 ($ (-586 |t#1|))) (-15 -4146 ((-706) $)) (-15 -2938 (|t#1| $)) (-15 -1951 (|t#1| $)) (-15 -1759 (|t#1| |t#1| $)) (-15 -2037 (|t#1| |t#1| $)) (-15 -2496 (|t#1| $)) (-15 -3100 (|t#1| $)) (-15 -2447 ($ $))))
-(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1012)) ((-560 (-791)) -3700 (|has| |#1| (-1012)) (|has| |#1| (-560 (-791)))) ((-283 |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))) ((-459 |#1|) . T) ((-481 |#1| |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))) ((-919 |#1|) . T) ((-1012) |has| |#1| (-1012)) ((-1031 |#1|) . T) ((-1118) . T))
-((-3497 (((-1 (-871 (-201)) (-201) (-201)) (-1 (-871 (-201)) (-201) (-201)) (-1 (-201) (-201) (-201) (-201))) 139)) (-2951 (((-1043 (-201)) (-810 (-1 (-201) (-201) (-201))) (-1007 (-352)) (-1007 (-352))) 160) (((-1043 (-201)) (-810 (-1 (-201) (-201) (-201))) (-1007 (-352)) (-1007 (-352)) (-586 (-238))) 158) (((-1043 (-201)) (-1 (-871 (-201)) (-201) (-201)) (-1007 (-352)) (-1007 (-352))) 163) (((-1043 (-201)) (-1 (-871 (-201)) (-201) (-201)) (-1007 (-352)) (-1007 (-352)) (-586 (-238))) 159) (((-1043 (-201)) (-1 (-201) (-201) (-201)) (-1007 (-352)) (-1007 (-352))) 150) (((-1043 (-201)) (-1 (-201) (-201) (-201)) (-1007 (-352)) (-1007 (-352)) (-586 (-238))) 149) (((-1043 (-201)) (-1 (-871 (-201)) (-201)) (-1007 (-352))) 129) (((-1043 (-201)) (-1 (-871 (-201)) (-201)) (-1007 (-352)) (-586 (-238))) 127) (((-1043 (-201)) (-807 (-1 (-201) (-201))) (-1007 (-352))) 128) (((-1043 (-201)) (-807 (-1 (-201) (-201))) (-1007 (-352)) (-586 (-238))) 125)) (-2915 (((-1166) (-810 (-1 (-201) (-201) (-201))) (-1007 (-352)) (-1007 (-352))) 162) (((-1166) (-810 (-1 (-201) (-201) (-201))) (-1007 (-352)) (-1007 (-352)) (-586 (-238))) 161) (((-1166) (-1 (-871 (-201)) (-201) (-201)) (-1007 (-352)) (-1007 (-352))) 165) (((-1166) (-1 (-871 (-201)) (-201) (-201)) (-1007 (-352)) (-1007 (-352)) (-586 (-238))) 164) (((-1166) (-1 (-201) (-201) (-201)) (-1007 (-352)) (-1007 (-352))) 152) (((-1166) (-1 (-201) (-201) (-201)) (-1007 (-352)) (-1007 (-352)) (-586 (-238))) 151) (((-1166) (-1 (-871 (-201)) (-201)) (-1007 (-352))) 135) (((-1166) (-1 (-871 (-201)) (-201)) (-1007 (-352)) (-586 (-238))) 134) (((-1166) (-807 (-1 (-201) (-201))) (-1007 (-352))) 133) (((-1166) (-807 (-1 (-201) (-201))) (-1007 (-352)) (-586 (-238))) 132) (((-1165) (-805 (-1 (-201) (-201))) (-1007 (-352))) 99) (((-1165) (-805 (-1 (-201) (-201))) (-1007 (-352)) (-586 (-238))) 98) (((-1165) (-1 (-201) (-201)) (-1007 (-352))) 95) (((-1165) (-1 (-201) (-201)) (-1007 (-352)) (-586 (-238))) 94)))
-(((-230) (-10 -7 (-15 -2915 ((-1165) (-1 (-201) (-201)) (-1007 (-352)) (-586 (-238)))) (-15 -2915 ((-1165) (-1 (-201) (-201)) (-1007 (-352)))) (-15 -2915 ((-1165) (-805 (-1 (-201) (-201))) (-1007 (-352)) (-586 (-238)))) (-15 -2915 ((-1165) (-805 (-1 (-201) (-201))) (-1007 (-352)))) (-15 -2915 ((-1166) (-807 (-1 (-201) (-201))) (-1007 (-352)) (-586 (-238)))) (-15 -2915 ((-1166) (-807 (-1 (-201) (-201))) (-1007 (-352)))) (-15 -2915 ((-1166) (-1 (-871 (-201)) (-201)) (-1007 (-352)) (-586 (-238)))) (-15 -2915 ((-1166) (-1 (-871 (-201)) (-201)) (-1007 (-352)))) (-15 -2951 ((-1043 (-201)) (-807 (-1 (-201) (-201))) (-1007 (-352)) (-586 (-238)))) (-15 -2951 ((-1043 (-201)) (-807 (-1 (-201) (-201))) (-1007 (-352)))) (-15 -2951 ((-1043 (-201)) (-1 (-871 (-201)) (-201)) (-1007 (-352)) (-586 (-238)))) (-15 -2951 ((-1043 (-201)) (-1 (-871 (-201)) (-201)) (-1007 (-352)))) (-15 -2915 ((-1166) (-1 (-201) (-201) (-201)) (-1007 (-352)) (-1007 (-352)) (-586 (-238)))) (-15 -2915 ((-1166) (-1 (-201) (-201) (-201)) (-1007 (-352)) (-1007 (-352)))) (-15 -2951 ((-1043 (-201)) (-1 (-201) (-201) (-201)) (-1007 (-352)) (-1007 (-352)) (-586 (-238)))) (-15 -2951 ((-1043 (-201)) (-1 (-201) (-201) (-201)) (-1007 (-352)) (-1007 (-352)))) (-15 -2915 ((-1166) (-1 (-871 (-201)) (-201) (-201)) (-1007 (-352)) (-1007 (-352)) (-586 (-238)))) (-15 -2915 ((-1166) (-1 (-871 (-201)) (-201) (-201)) (-1007 (-352)) (-1007 (-352)))) (-15 -2951 ((-1043 (-201)) (-1 (-871 (-201)) (-201) (-201)) (-1007 (-352)) (-1007 (-352)) (-586 (-238)))) (-15 -2951 ((-1043 (-201)) (-1 (-871 (-201)) (-201) (-201)) (-1007 (-352)) (-1007 (-352)))) (-15 -2915 ((-1166) (-810 (-1 (-201) (-201) (-201))) (-1007 (-352)) (-1007 (-352)) (-586 (-238)))) (-15 -2915 ((-1166) (-810 (-1 (-201) (-201) (-201))) (-1007 (-352)) (-1007 (-352)))) (-15 -2951 ((-1043 (-201)) (-810 (-1 (-201) (-201) (-201))) (-1007 (-352)) (-1007 (-352)) (-586 (-238)))) (-15 -2951 ((-1043 (-201)) (-810 (-1 (-201) (-201) (-201))) (-1007 (-352)) (-1007 (-352)))) (-15 -3497 ((-1 (-871 (-201)) (-201) (-201)) (-1 (-871 (-201)) (-201) (-201)) (-1 (-201) (-201) (-201) (-201)))))) (T -230))
-((-3497 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-871 (-201)) (-201) (-201))) (-5 *3 (-1 (-201) (-201) (-201) (-201))) (-5 *1 (-230)))) (-2951 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-810 (-1 (-201) (-201) (-201)))) (-5 *4 (-1007 (-352))) (-5 *2 (-1043 (-201))) (-5 *1 (-230)))) (-2951 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-810 (-1 (-201) (-201) (-201)))) (-5 *4 (-1007 (-352))) (-5 *5 (-586 (-238))) (-5 *2 (-1043 (-201))) (-5 *1 (-230)))) (-2915 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-810 (-1 (-201) (-201) (-201)))) (-5 *4 (-1007 (-352))) (-5 *2 (-1166)) (-5 *1 (-230)))) (-2915 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-810 (-1 (-201) (-201) (-201)))) (-5 *4 (-1007 (-352))) (-5 *5 (-586 (-238))) (-5 *2 (-1166)) (-5 *1 (-230)))) (-2951 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-871 (-201)) (-201) (-201))) (-5 *4 (-1007 (-352))) (-5 *2 (-1043 (-201))) (-5 *1 (-230)))) (-2951 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-871 (-201)) (-201) (-201))) (-5 *4 (-1007 (-352))) (-5 *5 (-586 (-238))) (-5 *2 (-1043 (-201))) (-5 *1 (-230)))) (-2915 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-871 (-201)) (-201) (-201))) (-5 *4 (-1007 (-352))) (-5 *2 (-1166)) (-5 *1 (-230)))) (-2915 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-871 (-201)) (-201) (-201))) (-5 *4 (-1007 (-352))) (-5 *5 (-586 (-238))) (-5 *2 (-1166)) (-5 *1 (-230)))) (-2951 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-201) (-201) (-201))) (-5 *4 (-1007 (-352))) (-5 *2 (-1043 (-201))) (-5 *1 (-230)))) (-2951 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-201) (-201) (-201))) (-5 *4 (-1007 (-352))) (-5 *5 (-586 (-238))) (-5 *2 (-1043 (-201))) (-5 *1 (-230)))) (-2915 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-201) (-201) (-201))) (-5 *4 (-1007 (-352))) (-5 *2 (-1166)) (-5 *1 (-230)))) (-2915 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-201) (-201) (-201))) (-5 *4 (-1007 (-352))) (-5 *5 (-586 (-238))) (-5 *2 (-1166)) (-5 *1 (-230)))) (-2951 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-871 (-201)) (-201))) (-5 *4 (-1007 (-352))) (-5 *2 (-1043 (-201))) (-5 *1 (-230)))) (-2951 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-871 (-201)) (-201))) (-5 *4 (-1007 (-352))) (-5 *5 (-586 (-238))) (-5 *2 (-1043 (-201))) (-5 *1 (-230)))) (-2951 (*1 *2 *3 *4) (-12 (-5 *3 (-807 (-1 (-201) (-201)))) (-5 *4 (-1007 (-352))) (-5 *2 (-1043 (-201))) (-5 *1 (-230)))) (-2951 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-807 (-1 (-201) (-201)))) (-5 *4 (-1007 (-352))) (-5 *5 (-586 (-238))) (-5 *2 (-1043 (-201))) (-5 *1 (-230)))) (-2915 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-871 (-201)) (-201))) (-5 *4 (-1007 (-352))) (-5 *2 (-1166)) (-5 *1 (-230)))) (-2915 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-871 (-201)) (-201))) (-5 *4 (-1007 (-352))) (-5 *5 (-586 (-238))) (-5 *2 (-1166)) (-5 *1 (-230)))) (-2915 (*1 *2 *3 *4) (-12 (-5 *3 (-807 (-1 (-201) (-201)))) (-5 *4 (-1007 (-352))) (-5 *2 (-1166)) (-5 *1 (-230)))) (-2915 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-807 (-1 (-201) (-201)))) (-5 *4 (-1007 (-352))) (-5 *5 (-586 (-238))) (-5 *2 (-1166)) (-5 *1 (-230)))) (-2915 (*1 *2 *3 *4) (-12 (-5 *3 (-805 (-1 (-201) (-201)))) (-5 *4 (-1007 (-352))) (-5 *2 (-1165)) (-5 *1 (-230)))) (-2915 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-805 (-1 (-201) (-201)))) (-5 *4 (-1007 (-352))) (-5 *5 (-586 (-238))) (-5 *2 (-1165)) (-5 *1 (-230)))) (-2915 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-201) (-201))) (-5 *4 (-1007 (-352))) (-5 *2 (-1165)) (-5 *1 (-230)))) (-2915 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-201) (-201))) (-5 *4 (-1007 (-352))) (-5 *5 (-586 (-238))) (-5 *2 (-1165)) (-5 *1 (-230)))))
-(-10 -7 (-15 -2915 ((-1165) (-1 (-201) (-201)) (-1007 (-352)) (-586 (-238)))) (-15 -2915 ((-1165) (-1 (-201) (-201)) (-1007 (-352)))) (-15 -2915 ((-1165) (-805 (-1 (-201) (-201))) (-1007 (-352)) (-586 (-238)))) (-15 -2915 ((-1165) (-805 (-1 (-201) (-201))) (-1007 (-352)))) (-15 -2915 ((-1166) (-807 (-1 (-201) (-201))) (-1007 (-352)) (-586 (-238)))) (-15 -2915 ((-1166) (-807 (-1 (-201) (-201))) (-1007 (-352)))) (-15 -2915 ((-1166) (-1 (-871 (-201)) (-201)) (-1007 (-352)) (-586 (-238)))) (-15 -2915 ((-1166) (-1 (-871 (-201)) (-201)) (-1007 (-352)))) (-15 -2951 ((-1043 (-201)) (-807 (-1 (-201) (-201))) (-1007 (-352)) (-586 (-238)))) (-15 -2951 ((-1043 (-201)) (-807 (-1 (-201) (-201))) (-1007 (-352)))) (-15 -2951 ((-1043 (-201)) (-1 (-871 (-201)) (-201)) (-1007 (-352)) (-586 (-238)))) (-15 -2951 ((-1043 (-201)) (-1 (-871 (-201)) (-201)) (-1007 (-352)))) (-15 -2915 ((-1166) (-1 (-201) (-201) (-201)) (-1007 (-352)) (-1007 (-352)) (-586 (-238)))) (-15 -2915 ((-1166) (-1 (-201) (-201) (-201)) (-1007 (-352)) (-1007 (-352)))) (-15 -2951 ((-1043 (-201)) (-1 (-201) (-201) (-201)) (-1007 (-352)) (-1007 (-352)) (-586 (-238)))) (-15 -2951 ((-1043 (-201)) (-1 (-201) (-201) (-201)) (-1007 (-352)) (-1007 (-352)))) (-15 -2915 ((-1166) (-1 (-871 (-201)) (-201) (-201)) (-1007 (-352)) (-1007 (-352)) (-586 (-238)))) (-15 -2915 ((-1166) (-1 (-871 (-201)) (-201) (-201)) (-1007 (-352)) (-1007 (-352)))) (-15 -2951 ((-1043 (-201)) (-1 (-871 (-201)) (-201) (-201)) (-1007 (-352)) (-1007 (-352)) (-586 (-238)))) (-15 -2951 ((-1043 (-201)) (-1 (-871 (-201)) (-201) (-201)) (-1007 (-352)) (-1007 (-352)))) (-15 -2915 ((-1166) (-810 (-1 (-201) (-201) (-201))) (-1007 (-352)) (-1007 (-352)) (-586 (-238)))) (-15 -2915 ((-1166) (-810 (-1 (-201) (-201) (-201))) (-1007 (-352)) (-1007 (-352)))) (-15 -2951 ((-1043 (-201)) (-810 (-1 (-201) (-201) (-201))) (-1007 (-352)) (-1007 (-352)) (-586 (-238)))) (-15 -2951 ((-1043 (-201)) (-810 (-1 (-201) (-201) (-201))) (-1007 (-352)) (-1007 (-352)))) (-15 -3497 ((-1 (-871 (-201)) (-201) (-201)) (-1 (-871 (-201)) (-201) (-201)) (-1 (-201) (-201) (-201) (-201)))))
-((-2915 (((-1165) (-268 |#2|) (-1083) (-1083) (-586 (-238))) 93)))
-(((-231 |#1| |#2|) (-10 -7 (-15 -2915 ((-1165) (-268 |#2|) (-1083) (-1083) (-586 (-238))))) (-13 (-512) (-783) (-960 (-520))) (-403 |#1|)) (T -231))
-((-2915 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-268 *7)) (-5 *4 (-1083)) (-5 *5 (-586 (-238))) (-4 *7 (-403 *6)) (-4 *6 (-13 (-512) (-783) (-960 (-520)))) (-5 *2 (-1165)) (-5 *1 (-231 *6 *7)))))
-(-10 -7 (-15 -2915 ((-1165) (-268 |#2|) (-1083) (-1083) (-586 (-238)))))
-((-2189 (((-520) (-520)) 50)) (-1771 (((-520) (-520)) 51)) (-2117 (((-201) (-201)) 52)) (-2308 (((-1166) (-1 (-154 (-201)) (-154 (-201))) (-1007 (-201)) (-1007 (-201))) 49)) (-3199 (((-1166) (-1 (-154 (-201)) (-154 (-201))) (-1007 (-201)) (-1007 (-201)) (-108)) 47)))
-(((-232) (-10 -7 (-15 -3199 ((-1166) (-1 (-154 (-201)) (-154 (-201))) (-1007 (-201)) (-1007 (-201)) (-108))) (-15 -2308 ((-1166) (-1 (-154 (-201)) (-154 (-201))) (-1007 (-201)) (-1007 (-201)))) (-15 -2189 ((-520) (-520))) (-15 -1771 ((-520) (-520))) (-15 -2117 ((-201) (-201))))) (T -232))
-((-2117 (*1 *2 *2) (-12 (-5 *2 (-201)) (-5 *1 (-232)))) (-1771 (*1 *2 *2) (-12 (-5 *2 (-520)) (-5 *1 (-232)))) (-2189 (*1 *2 *2) (-12 (-5 *2 (-520)) (-5 *1 (-232)))) (-2308 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-154 (-201)) (-154 (-201)))) (-5 *4 (-1007 (-201))) (-5 *2 (-1166)) (-5 *1 (-232)))) (-3199 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-154 (-201)) (-154 (-201)))) (-5 *4 (-1007 (-201))) (-5 *5 (-108)) (-5 *2 (-1166)) (-5 *1 (-232)))))
-(-10 -7 (-15 -3199 ((-1166) (-1 (-154 (-201)) (-154 (-201))) (-1007 (-201)) (-1007 (-201)) (-108))) (-15 -2308 ((-1166) (-1 (-154 (-201)) (-154 (-201))) (-1007 (-201)) (-1007 (-201)))) (-15 -2189 ((-520) (-520))) (-15 -1771 ((-520) (-520))) (-15 -2117 ((-201) (-201))))
-((-2188 (((-1005 (-352)) (-1005 (-289 |#1|))) 16)))
-(((-233 |#1|) (-10 -7 (-15 -2188 ((-1005 (-352)) (-1005 (-289 |#1|))))) (-13 (-783) (-512) (-561 (-352)))) (T -233))
-((-2188 (*1 *2 *3) (-12 (-5 *3 (-1005 (-289 *4))) (-4 *4 (-13 (-783) (-512) (-561 (-352)))) (-5 *2 (-1005 (-352))) (-5 *1 (-233 *4)))))
-(-10 -7 (-15 -2188 ((-1005 (-352)) (-1005 (-289 |#1|)))))
-((-2951 (((-1043 (-201)) (-810 |#1|) (-1005 (-352)) (-1005 (-352))) 69) (((-1043 (-201)) (-810 |#1|) (-1005 (-352)) (-1005 (-352)) (-586 (-238))) 68) (((-1043 (-201)) |#1| (-1005 (-352)) (-1005 (-352))) 59) (((-1043 (-201)) |#1| (-1005 (-352)) (-1005 (-352)) (-586 (-238))) 58) (((-1043 (-201)) (-807 |#1|) (-1005 (-352))) 50) (((-1043 (-201)) (-807 |#1|) (-1005 (-352)) (-586 (-238))) 49)) (-2915 (((-1166) (-810 |#1|) (-1005 (-352)) (-1005 (-352))) 72) (((-1166) (-810 |#1|) (-1005 (-352)) (-1005 (-352)) (-586 (-238))) 71) (((-1166) |#1| (-1005 (-352)) (-1005 (-352))) 62) (((-1166) |#1| (-1005 (-352)) (-1005 (-352)) (-586 (-238))) 61) (((-1166) (-807 |#1|) (-1005 (-352))) 54) (((-1166) (-807 |#1|) (-1005 (-352)) (-586 (-238))) 53) (((-1165) (-805 |#1|) (-1005 (-352))) 41) (((-1165) (-805 |#1|) (-1005 (-352)) (-586 (-238))) 40) (((-1165) |#1| (-1005 (-352))) 33) (((-1165) |#1| (-1005 (-352)) (-586 (-238))) 32)))
-(((-234 |#1|) (-10 -7 (-15 -2915 ((-1165) |#1| (-1005 (-352)) (-586 (-238)))) (-15 -2915 ((-1165) |#1| (-1005 (-352)))) (-15 -2915 ((-1165) (-805 |#1|) (-1005 (-352)) (-586 (-238)))) (-15 -2915 ((-1165) (-805 |#1|) (-1005 (-352)))) (-15 -2915 ((-1166) (-807 |#1|) (-1005 (-352)) (-586 (-238)))) (-15 -2915 ((-1166) (-807 |#1|) (-1005 (-352)))) (-15 -2951 ((-1043 (-201)) (-807 |#1|) (-1005 (-352)) (-586 (-238)))) (-15 -2951 ((-1043 (-201)) (-807 |#1|) (-1005 (-352)))) (-15 -2915 ((-1166) |#1| (-1005 (-352)) (-1005 (-352)) (-586 (-238)))) (-15 -2915 ((-1166) |#1| (-1005 (-352)) (-1005 (-352)))) (-15 -2951 ((-1043 (-201)) |#1| (-1005 (-352)) (-1005 (-352)) (-586 (-238)))) (-15 -2951 ((-1043 (-201)) |#1| (-1005 (-352)) (-1005 (-352)))) (-15 -2915 ((-1166) (-810 |#1|) (-1005 (-352)) (-1005 (-352)) (-586 (-238)))) (-15 -2915 ((-1166) (-810 |#1|) (-1005 (-352)) (-1005 (-352)))) (-15 -2951 ((-1043 (-201)) (-810 |#1|) (-1005 (-352)) (-1005 (-352)) (-586 (-238)))) (-15 -2951 ((-1043 (-201)) (-810 |#1|) (-1005 (-352)) (-1005 (-352))))) (-13 (-561 (-496)) (-1012))) (T -234))
-((-2951 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-810 *5)) (-5 *4 (-1005 (-352))) (-4 *5 (-13 (-561 (-496)) (-1012))) (-5 *2 (-1043 (-201))) (-5 *1 (-234 *5)))) (-2951 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-810 *6)) (-5 *4 (-1005 (-352))) (-5 *5 (-586 (-238))) (-4 *6 (-13 (-561 (-496)) (-1012))) (-5 *2 (-1043 (-201))) (-5 *1 (-234 *6)))) (-2915 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-810 *5)) (-5 *4 (-1005 (-352))) (-4 *5 (-13 (-561 (-496)) (-1012))) (-5 *2 (-1166)) (-5 *1 (-234 *5)))) (-2915 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-810 *6)) (-5 *4 (-1005 (-352))) (-5 *5 (-586 (-238))) (-4 *6 (-13 (-561 (-496)) (-1012))) (-5 *2 (-1166)) (-5 *1 (-234 *6)))) (-2951 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1005 (-352))) (-5 *2 (-1043 (-201))) (-5 *1 (-234 *3)) (-4 *3 (-13 (-561 (-496)) (-1012))))) (-2951 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1005 (-352))) (-5 *5 (-586 (-238))) (-5 *2 (-1043 (-201))) (-5 *1 (-234 *3)) (-4 *3 (-13 (-561 (-496)) (-1012))))) (-2915 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1005 (-352))) (-5 *2 (-1166)) (-5 *1 (-234 *3)) (-4 *3 (-13 (-561 (-496)) (-1012))))) (-2915 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1005 (-352))) (-5 *5 (-586 (-238))) (-5 *2 (-1166)) (-5 *1 (-234 *3)) (-4 *3 (-13 (-561 (-496)) (-1012))))) (-2951 (*1 *2 *3 *4) (-12 (-5 *3 (-807 *5)) (-5 *4 (-1005 (-352))) (-4 *5 (-13 (-561 (-496)) (-1012))) (-5 *2 (-1043 (-201))) (-5 *1 (-234 *5)))) (-2951 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-807 *6)) (-5 *4 (-1005 (-352))) (-5 *5 (-586 (-238))) (-4 *6 (-13 (-561 (-496)) (-1012))) (-5 *2 (-1043 (-201))) (-5 *1 (-234 *6)))) (-2915 (*1 *2 *3 *4) (-12 (-5 *3 (-807 *5)) (-5 *4 (-1005 (-352))) (-4 *5 (-13 (-561 (-496)) (-1012))) (-5 *2 (-1166)) (-5 *1 (-234 *5)))) (-2915 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-807 *6)) (-5 *4 (-1005 (-352))) (-5 *5 (-586 (-238))) (-4 *6 (-13 (-561 (-496)) (-1012))) (-5 *2 (-1166)) (-5 *1 (-234 *6)))) (-2915 (*1 *2 *3 *4) (-12 (-5 *3 (-805 *5)) (-5 *4 (-1005 (-352))) (-4 *5 (-13 (-561 (-496)) (-1012))) (-5 *2 (-1165)) (-5 *1 (-234 *5)))) (-2915 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-805 *6)) (-5 *4 (-1005 (-352))) (-5 *5 (-586 (-238))) (-4 *6 (-13 (-561 (-496)) (-1012))) (-5 *2 (-1165)) (-5 *1 (-234 *6)))) (-2915 (*1 *2 *3 *4) (-12 (-5 *4 (-1005 (-352))) (-5 *2 (-1165)) (-5 *1 (-234 *3)) (-4 *3 (-13 (-561 (-496)) (-1012))))) (-2915 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1005 (-352))) (-5 *5 (-586 (-238))) (-5 *2 (-1165)) (-5 *1 (-234 *3)) (-4 *3 (-13 (-561 (-496)) (-1012))))))
-(-10 -7 (-15 -2915 ((-1165) |#1| (-1005 (-352)) (-586 (-238)))) (-15 -2915 ((-1165) |#1| (-1005 (-352)))) (-15 -2915 ((-1165) (-805 |#1|) (-1005 (-352)) (-586 (-238)))) (-15 -2915 ((-1165) (-805 |#1|) (-1005 (-352)))) (-15 -2915 ((-1166) (-807 |#1|) (-1005 (-352)) (-586 (-238)))) (-15 -2915 ((-1166) (-807 |#1|) (-1005 (-352)))) (-15 -2951 ((-1043 (-201)) (-807 |#1|) (-1005 (-352)) (-586 (-238)))) (-15 -2951 ((-1043 (-201)) (-807 |#1|) (-1005 (-352)))) (-15 -2915 ((-1166) |#1| (-1005 (-352)) (-1005 (-352)) (-586 (-238)))) (-15 -2915 ((-1166) |#1| (-1005 (-352)) (-1005 (-352)))) (-15 -2951 ((-1043 (-201)) |#1| (-1005 (-352)) (-1005 (-352)) (-586 (-238)))) (-15 -2951 ((-1043 (-201)) |#1| (-1005 (-352)) (-1005 (-352)))) (-15 -2915 ((-1166) (-810 |#1|) (-1005 (-352)) (-1005 (-352)) (-586 (-238)))) (-15 -2915 ((-1166) (-810 |#1|) (-1005 (-352)) (-1005 (-352)))) (-15 -2951 ((-1043 (-201)) (-810 |#1|) (-1005 (-352)) (-1005 (-352)) (-586 (-238)))) (-15 -2951 ((-1043 (-201)) (-810 |#1|) (-1005 (-352)) (-1005 (-352)))))
-((-2915 (((-1166) (-586 (-201)) (-586 (-201)) (-586 (-201)) (-586 (-238))) 21) (((-1166) (-586 (-201)) (-586 (-201)) (-586 (-201))) 22) (((-1165) (-586 (-871 (-201))) (-586 (-238))) 13) (((-1165) (-586 (-871 (-201)))) 14) (((-1165) (-586 (-201)) (-586 (-201)) (-586 (-238))) 18) (((-1165) (-586 (-201)) (-586 (-201))) 19)))
-(((-235) (-10 -7 (-15 -2915 ((-1165) (-586 (-201)) (-586 (-201)))) (-15 -2915 ((-1165) (-586 (-201)) (-586 (-201)) (-586 (-238)))) (-15 -2915 ((-1165) (-586 (-871 (-201))))) (-15 -2915 ((-1165) (-586 (-871 (-201))) (-586 (-238)))) (-15 -2915 ((-1166) (-586 (-201)) (-586 (-201)) (-586 (-201)))) (-15 -2915 ((-1166) (-586 (-201)) (-586 (-201)) (-586 (-201)) (-586 (-238)))))) (T -235))
-((-2915 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-586 (-201))) (-5 *4 (-586 (-238))) (-5 *2 (-1166)) (-5 *1 (-235)))) (-2915 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-586 (-201))) (-5 *2 (-1166)) (-5 *1 (-235)))) (-2915 (*1 *2 *3 *4) (-12 (-5 *3 (-586 (-871 (-201)))) (-5 *4 (-586 (-238))) (-5 *2 (-1165)) (-5 *1 (-235)))) (-2915 (*1 *2 *3) (-12 (-5 *3 (-586 (-871 (-201)))) (-5 *2 (-1165)) (-5 *1 (-235)))) (-2915 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-586 (-201))) (-5 *4 (-586 (-238))) (-5 *2 (-1165)) (-5 *1 (-235)))) (-2915 (*1 *2 *3 *3) (-12 (-5 *3 (-586 (-201))) (-5 *2 (-1165)) (-5 *1 (-235)))))
-(-10 -7 (-15 -2915 ((-1165) (-586 (-201)) (-586 (-201)))) (-15 -2915 ((-1165) (-586 (-201)) (-586 (-201)) (-586 (-238)))) (-15 -2915 ((-1165) (-586 (-871 (-201))))) (-15 -2915 ((-1165) (-586 (-871 (-201))) (-586 (-238)))) (-15 -2915 ((-1166) (-586 (-201)) (-586 (-201)) (-586 (-201)))) (-15 -2915 ((-1166) (-586 (-201)) (-586 (-201)) (-586 (-201)) (-586 (-238)))))
-((-1707 (((-2 (|:| |theta| (-201)) (|:| |phi| (-201)) (|:| -1640 (-201)) (|:| |scaleX| (-201)) (|:| |scaleY| (-201)) (|:| |scaleZ| (-201)) (|:| |deltaX| (-201)) (|:| |deltaY| (-201))) (-586 (-238)) (-2 (|:| |theta| (-201)) (|:| |phi| (-201)) (|:| -1640 (-201)) (|:| |scaleX| (-201)) (|:| |scaleY| (-201)) (|:| |scaleZ| (-201)) (|:| |deltaX| (-201)) (|:| |deltaY| (-201)))) 24)) (-3780 (((-849) (-586 (-238)) (-849)) 49)) (-4062 (((-849) (-586 (-238)) (-849)) 48)) (-1967 (((-586 (-352)) (-586 (-238)) (-586 (-352))) 65)) (-3859 (((-352) (-586 (-238)) (-352)) 55)) (-1396 (((-849) (-586 (-238)) (-849)) 50)) (-4003 (((-108) (-586 (-238)) (-108)) 26)) (-2950 (((-1066) (-586 (-238)) (-1066)) 19)) (-1781 (((-1066) (-586 (-238)) (-1066)) 25)) (-3563 (((-1043 (-201)) (-586 (-238))) 43)) (-2525 (((-586 (-1007 (-352))) (-586 (-238)) (-586 (-1007 (-352)))) 37)) (-2294 (((-802) (-586 (-238)) (-802)) 31)) (-3816 (((-802) (-586 (-238)) (-802)) 32)) (-2451 (((-1 (-871 (-201)) (-871 (-201))) (-586 (-238)) (-1 (-871 (-201)) (-871 (-201)))) 60)) (-1207 (((-108) (-586 (-238)) (-108)) 15)) (-3588 (((-108) (-586 (-238)) (-108)) 14)))
-(((-236) (-10 -7 (-15 -3588 ((-108) (-586 (-238)) (-108))) (-15 -1207 ((-108) (-586 (-238)) (-108))) (-15 -1707 ((-2 (|:| |theta| (-201)) (|:| |phi| (-201)) (|:| -1640 (-201)) (|:| |scaleX| (-201)) (|:| |scaleY| (-201)) (|:| |scaleZ| (-201)) (|:| |deltaX| (-201)) (|:| |deltaY| (-201))) (-586 (-238)) (-2 (|:| |theta| (-201)) (|:| |phi| (-201)) (|:| -1640 (-201)) (|:| |scaleX| (-201)) (|:| |scaleY| (-201)) (|:| |scaleZ| (-201)) (|:| |deltaX| (-201)) (|:| |deltaY| (-201))))) (-15 -2950 ((-1066) (-586 (-238)) (-1066))) (-15 -1781 ((-1066) (-586 (-238)) (-1066))) (-15 -4003 ((-108) (-586 (-238)) (-108))) (-15 -2294 ((-802) (-586 (-238)) (-802))) (-15 -3816 ((-802) (-586 (-238)) (-802))) (-15 -2525 ((-586 (-1007 (-352))) (-586 (-238)) (-586 (-1007 (-352))))) (-15 -4062 ((-849) (-586 (-238)) (-849))) (-15 -3780 ((-849) (-586 (-238)) (-849))) (-15 -3563 ((-1043 (-201)) (-586 (-238)))) (-15 -1396 ((-849) (-586 (-238)) (-849))) (-15 -3859 ((-352) (-586 (-238)) (-352))) (-15 -2451 ((-1 (-871 (-201)) (-871 (-201))) (-586 (-238)) (-1 (-871 (-201)) (-871 (-201))))) (-15 -1967 ((-586 (-352)) (-586 (-238)) (-586 (-352)))))) (T -236))
-((-1967 (*1 *2 *3 *2) (-12 (-5 *2 (-586 (-352))) (-5 *3 (-586 (-238))) (-5 *1 (-236)))) (-2451 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-871 (-201)) (-871 (-201)))) (-5 *3 (-586 (-238))) (-5 *1 (-236)))) (-3859 (*1 *2 *3 *2) (-12 (-5 *2 (-352)) (-5 *3 (-586 (-238))) (-5 *1 (-236)))) (-1396 (*1 *2 *3 *2) (-12 (-5 *2 (-849)) (-5 *3 (-586 (-238))) (-5 *1 (-236)))) (-3563 (*1 *2 *3) (-12 (-5 *3 (-586 (-238))) (-5 *2 (-1043 (-201))) (-5 *1 (-236)))) (-3780 (*1 *2 *3 *2) (-12 (-5 *2 (-849)) (-5 *3 (-586 (-238))) (-5 *1 (-236)))) (-4062 (*1 *2 *3 *2) (-12 (-5 *2 (-849)) (-5 *3 (-586 (-238))) (-5 *1 (-236)))) (-2525 (*1 *2 *3 *2) (-12 (-5 *2 (-586 (-1007 (-352)))) (-5 *3 (-586 (-238))) (-5 *1 (-236)))) (-3816 (*1 *2 *3 *2) (-12 (-5 *2 (-802)) (-5 *3 (-586 (-238))) (-5 *1 (-236)))) (-2294 (*1 *2 *3 *2) (-12 (-5 *2 (-802)) (-5 *3 (-586 (-238))) (-5 *1 (-236)))) (-4003 (*1 *2 *3 *2) (-12 (-5 *2 (-108)) (-5 *3 (-586 (-238))) (-5 *1 (-236)))) (-1781 (*1 *2 *3 *2) (-12 (-5 *2 (-1066)) (-5 *3 (-586 (-238))) (-5 *1 (-236)))) (-2950 (*1 *2 *3 *2) (-12 (-5 *2 (-1066)) (-5 *3 (-586 (-238))) (-5 *1 (-236)))) (-1707 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-201)) (|:| |phi| (-201)) (|:| -1640 (-201)) (|:| |scaleX| (-201)) (|:| |scaleY| (-201)) (|:| |scaleZ| (-201)) (|:| |deltaX| (-201)) (|:| |deltaY| (-201)))) (-5 *3 (-586 (-238))) (-5 *1 (-236)))) (-1207 (*1 *2 *3 *2) (-12 (-5 *2 (-108)) (-5 *3 (-586 (-238))) (-5 *1 (-236)))) (-3588 (*1 *2 *3 *2) (-12 (-5 *2 (-108)) (-5 *3 (-586 (-238))) (-5 *1 (-236)))))
-(-10 -7 (-15 -3588 ((-108) (-586 (-238)) (-108))) (-15 -1207 ((-108) (-586 (-238)) (-108))) (-15 -1707 ((-2 (|:| |theta| (-201)) (|:| |phi| (-201)) (|:| -1640 (-201)) (|:| |scaleX| (-201)) (|:| |scaleY| (-201)) (|:| |scaleZ| (-201)) (|:| |deltaX| (-201)) (|:| |deltaY| (-201))) (-586 (-238)) (-2 (|:| |theta| (-201)) (|:| |phi| (-201)) (|:| -1640 (-201)) (|:| |scaleX| (-201)) (|:| |scaleY| (-201)) (|:| |scaleZ| (-201)) (|:| |deltaX| (-201)) (|:| |deltaY| (-201))))) (-15 -2950 ((-1066) (-586 (-238)) (-1066))) (-15 -1781 ((-1066) (-586 (-238)) (-1066))) (-15 -4003 ((-108) (-586 (-238)) (-108))) (-15 -2294 ((-802) (-586 (-238)) (-802))) (-15 -3816 ((-802) (-586 (-238)) (-802))) (-15 -2525 ((-586 (-1007 (-352))) (-586 (-238)) (-586 (-1007 (-352))))) (-15 -4062 ((-849) (-586 (-238)) (-849))) (-15 -3780 ((-849) (-586 (-238)) (-849))) (-15 -3563 ((-1043 (-201)) (-586 (-238)))) (-15 -1396 ((-849) (-586 (-238)) (-849))) (-15 -3859 ((-352) (-586 (-238)) (-352))) (-15 -2451 ((-1 (-871 (-201)) (-871 (-201))) (-586 (-238)) (-1 (-871 (-201)) (-871 (-201))))) (-15 -1967 ((-586 (-352)) (-586 (-238)) (-586 (-352)))))
-((-3011 (((-3 |#1| "failed") (-586 (-238)) (-1083)) 17)))
-(((-237 |#1|) (-10 -7 (-15 -3011 ((-3 |#1| "failed") (-586 (-238)) (-1083)))) (-1118)) (T -237))
-((-3011 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-586 (-238))) (-5 *4 (-1083)) (-5 *1 (-237 *2)) (-4 *2 (-1118)))))
-(-10 -7 (-15 -3011 ((-3 |#1| "failed") (-586 (-238)) (-1083))))
-((-1414 (((-108) $ $) NIL)) (-1707 (($ (-2 (|:| |theta| (-201)) (|:| |phi| (-201)) (|:| -1640 (-201)) (|:| |scaleX| (-201)) (|:| |scaleY| (-201)) (|:| |scaleZ| (-201)) (|:| |deltaX| (-201)) (|:| |deltaY| (-201)))) 14)) (-3780 (($ (-849)) 70)) (-4062 (($ (-849)) 69)) (-4036 (($ (-586 (-352))) 76)) (-3859 (($ (-352)) 55)) (-1396 (($ (-849)) 71)) (-4003 (($ (-108)) 22)) (-2950 (($ (-1066)) 17)) (-1781 (($ (-1066)) 18)) (-3563 (($ (-1043 (-201))) 65)) (-2525 (($ (-586 (-1007 (-352)))) 61)) (-1667 (($ (-586 (-1007 (-352)))) 56) (($ (-586 (-1007 (-380 (-520))))) 60)) (-3739 (($ (-352)) 28) (($ (-802)) 32)) (-3768 (((-108) (-586 $) (-1083)) 85)) (-3011 (((-3 (-51) "failed") (-586 $) (-1083)) 87)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-3527 (($ (-352)) 33) (($ (-802)) 34)) (-3790 (($ (-1 (-871 (-201)) (-871 (-201)))) 54)) (-2451 (($ (-1 (-871 (-201)) (-871 (-201)))) 72)) (-3651 (($ (-1 (-201) (-201))) 38) (($ (-1 (-201) (-201) (-201))) 42) (($ (-1 (-201) (-201) (-201) (-201))) 46)) (-2188 (((-791) $) 81)) (-4027 (($ (-108)) 23) (($ (-586 (-1007 (-352)))) 50)) (-3588 (($ (-108)) 24)) (-1530 (((-108) $ $) 83)))
-(((-238) (-13 (-1012) (-10 -8 (-15 -3588 ($ (-108))) (-15 -4027 ($ (-108))) (-15 -1707 ($ (-2 (|:| |theta| (-201)) (|:| |phi| (-201)) (|:| -1640 (-201)) (|:| |scaleX| (-201)) (|:| |scaleY| (-201)) (|:| |scaleZ| (-201)) (|:| |deltaX| (-201)) (|:| |deltaY| (-201))))) (-15 -2950 ($ (-1066))) (-15 -1781 ($ (-1066))) (-15 -4003 ($ (-108))) (-15 -4027 ($ (-586 (-1007 (-352))))) (-15 -3790 ($ (-1 (-871 (-201)) (-871 (-201))))) (-15 -3739 ($ (-352))) (-15 -3739 ($ (-802))) (-15 -3527 ($ (-352))) (-15 -3527 ($ (-802))) (-15 -3651 ($ (-1 (-201) (-201)))) (-15 -3651 ($ (-1 (-201) (-201) (-201)))) (-15 -3651 ($ (-1 (-201) (-201) (-201) (-201)))) (-15 -3859 ($ (-352))) (-15 -1667 ($ (-586 (-1007 (-352))))) (-15 -1667 ($ (-586 (-1007 (-380 (-520)))))) (-15 -2525 ($ (-586 (-1007 (-352))))) (-15 -3563 ($ (-1043 (-201)))) (-15 -4062 ($ (-849))) (-15 -3780 ($ (-849))) (-15 -1396 ($ (-849))) (-15 -2451 ($ (-1 (-871 (-201)) (-871 (-201))))) (-15 -4036 ($ (-586 (-352)))) (-15 -3011 ((-3 (-51) "failed") (-586 $) (-1083))) (-15 -3768 ((-108) (-586 $) (-1083)))))) (T -238))
-((-3588 (*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-238)))) (-4027 (*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-238)))) (-1707 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-201)) (|:| |phi| (-201)) (|:| -1640 (-201)) (|:| |scaleX| (-201)) (|:| |scaleY| (-201)) (|:| |scaleZ| (-201)) (|:| |deltaX| (-201)) (|:| |deltaY| (-201)))) (-5 *1 (-238)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-1066)) (-5 *1 (-238)))) (-1781 (*1 *1 *2) (-12 (-5 *2 (-1066)) (-5 *1 (-238)))) (-4003 (*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-238)))) (-4027 (*1 *1 *2) (-12 (-5 *2 (-586 (-1007 (-352)))) (-5 *1 (-238)))) (-3790 (*1 *1 *2) (-12 (-5 *2 (-1 (-871 (-201)) (-871 (-201)))) (-5 *1 (-238)))) (-3739 (*1 *1 *2) (-12 (-5 *2 (-352)) (-5 *1 (-238)))) (-3739 (*1 *1 *2) (-12 (-5 *2 (-802)) (-5 *1 (-238)))) (-3527 (*1 *1 *2) (-12 (-5 *2 (-352)) (-5 *1 (-238)))) (-3527 (*1 *1 *2) (-12 (-5 *2 (-802)) (-5 *1 (-238)))) (-3651 (*1 *1 *2) (-12 (-5 *2 (-1 (-201) (-201))) (-5 *1 (-238)))) (-3651 (*1 *1 *2) (-12 (-5 *2 (-1 (-201) (-201) (-201))) (-5 *1 (-238)))) (-3651 (*1 *1 *2) (-12 (-5 *2 (-1 (-201) (-201) (-201) (-201))) (-5 *1 (-238)))) (-3859 (*1 *1 *2) (-12 (-5 *2 (-352)) (-5 *1 (-238)))) (-1667 (*1 *1 *2) (-12 (-5 *2 (-586 (-1007 (-352)))) (-5 *1 (-238)))) (-1667 (*1 *1 *2) (-12 (-5 *2 (-586 (-1007 (-380 (-520))))) (-5 *1 (-238)))) (-2525 (*1 *1 *2) (-12 (-5 *2 (-586 (-1007 (-352)))) (-5 *1 (-238)))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-1043 (-201))) (-5 *1 (-238)))) (-4062 (*1 *1 *2) (-12 (-5 *2 (-849)) (-5 *1 (-238)))) (-3780 (*1 *1 *2) (-12 (-5 *2 (-849)) (-5 *1 (-238)))) (-1396 (*1 *1 *2) (-12 (-5 *2 (-849)) (-5 *1 (-238)))) (-2451 (*1 *1 *2) (-12 (-5 *2 (-1 (-871 (-201)) (-871 (-201)))) (-5 *1 (-238)))) (-4036 (*1 *1 *2) (-12 (-5 *2 (-586 (-352))) (-5 *1 (-238)))) (-3011 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-586 (-238))) (-5 *4 (-1083)) (-5 *2 (-51)) (-5 *1 (-238)))) (-3768 (*1 *2 *3 *4) (-12 (-5 *3 (-586 (-238))) (-5 *4 (-1083)) (-5 *2 (-108)) (-5 *1 (-238)))))
-(-13 (-1012) (-10 -8 (-15 -3588 ($ (-108))) (-15 -4027 ($ (-108))) (-15 -1707 ($ (-2 (|:| |theta| (-201)) (|:| |phi| (-201)) (|:| -1640 (-201)) (|:| |scaleX| (-201)) (|:| |scaleY| (-201)) (|:| |scaleZ| (-201)) (|:| |deltaX| (-201)) (|:| |deltaY| (-201))))) (-15 -2950 ($ (-1066))) (-15 -1781 ($ (-1066))) (-15 -4003 ($ (-108))) (-15 -4027 ($ (-586 (-1007 (-352))))) (-15 -3790 ($ (-1 (-871 (-201)) (-871 (-201))))) (-15 -3739 ($ (-352))) (-15 -3739 ($ (-802))) (-15 -3527 ($ (-352))) (-15 -3527 ($ (-802))) (-15 -3651 ($ (-1 (-201) (-201)))) (-15 -3651 ($ (-1 (-201) (-201) (-201)))) (-15 -3651 ($ (-1 (-201) (-201) (-201) (-201)))) (-15 -3859 ($ (-352))) (-15 -1667 ($ (-586 (-1007 (-352))))) (-15 -1667 ($ (-586 (-1007 (-380 (-520)))))) (-15 -2525 ($ (-586 (-1007 (-352))))) (-15 -3563 ($ (-1043 (-201)))) (-15 -4062 ($ (-849))) (-15 -3780 ($ (-849))) (-15 -1396 ($ (-849))) (-15 -2451 ($ (-1 (-871 (-201)) (-871 (-201))))) (-15 -4036 ($ (-586 (-352)))) (-15 -3011 ((-3 (-51) "failed") (-586 $) (-1083))) (-15 -3768 ((-108) (-586 $) (-1083)))))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-3508 (((-586 (-706)) $) NIL) (((-586 (-706)) $ |#2|) NIL)) (-1785 (((-706) $) NIL) (((-706) $ |#2|) NIL)) (-4081 (((-586 |#3|) $) NIL)) (-1278 (((-1079 $) $ |#3|) NIL) (((-1079 |#1|) $) NIL)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) NIL (|has| |#1| (-512)))) (-2583 (($ $) NIL (|has| |#1| (-512)))) (-1671 (((-108) $) NIL (|has| |#1| (-512)))) (-3665 (((-706) $) NIL) (((-706) $ (-586 |#3|)) NIL)) (-1917 (((-3 $ "failed") $ $) NIL)) (-4119 (((-391 (-1079 $)) (-1079 $)) NIL (|has| |#1| (-837)))) (-3024 (($ $) NIL (|has| |#1| (-424)))) (-1507 (((-391 $) $) NIL (|has| |#1| (-424)))) (-3481 (((-3 (-586 (-1079 $)) "failed") (-586 (-1079 $)) (-1079 $)) NIL (|has| |#1| (-837)))) (-3863 (($ $) NIL)) (-3961 (($) NIL T CONST)) (-1296 (((-3 |#1| "failed") $) NIL) (((-3 (-380 (-520)) "failed") $) NIL (|has| |#1| (-960 (-380 (-520))))) (((-3 (-520) "failed") $) NIL (|has| |#1| (-960 (-520)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1035 |#1| |#2|) "failed") $) 20)) (-1482 ((|#1| $) NIL) (((-380 (-520)) $) NIL (|has| |#1| (-960 (-380 (-520))))) (((-520) $) NIL (|has| |#1| (-960 (-520)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1035 |#1| |#2|) $) NIL)) (-2413 (($ $ $ |#3|) NIL (|has| |#1| (-157)))) (-3150 (($ $) NIL)) (-2756 (((-626 (-520)) (-626 $)) NIL (|has| |#1| (-582 (-520)))) (((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 $) (-1164 $)) NIL (|has| |#1| (-582 (-520)))) (((-2 (|:| -3927 (-626 |#1|)) (|:| |vec| (-1164 |#1|))) (-626 $) (-1164 $)) NIL) (((-626 |#1|) (-626 $)) NIL)) (-1540 (((-3 $ "failed") $) NIL)) (-3923 (($ $) NIL (|has| |#1| (-424))) (($ $ |#3|) NIL (|has| |#1| (-424)))) (-3142 (((-586 $) $) NIL)) (-2036 (((-108) $) NIL (|has| |#1| (-837)))) (-3397 (($ $ |#1| (-492 |#3|) $) NIL)) (-1272 (((-817 (-352) $) $ (-820 (-352)) (-817 (-352) $)) NIL (-12 (|has| |#1| (-814 (-352))) (|has| |#3| (-814 (-352))))) (((-817 (-520) $) $ (-820 (-520)) (-817 (-520) $)) NIL (-12 (|has| |#1| (-814 (-520))) (|has| |#3| (-814 (-520)))))) (-3989 (((-706) $ |#2|) NIL) (((-706) $) 10)) (-1537 (((-108) $) NIL)) (-1315 (((-706) $) NIL)) (-4065 (($ (-1079 |#1|) |#3|) NIL) (($ (-1079 $) |#3|) NIL)) (-1992 (((-586 $) $) NIL)) (-3774 (((-108) $) NIL)) (-4039 (($ |#1| (-492 |#3|)) NIL) (($ $ |#3| (-706)) NIL) (($ $ (-586 |#3|) (-586 (-706))) NIL)) (-1910 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $ |#3|) NIL)) (-3562 (((-492 |#3|) $) NIL) (((-706) $ |#3|) NIL) (((-586 (-706)) $ (-586 |#3|)) NIL)) (-2809 (($ $ $) NIL (|has| |#1| (-783)))) (-2446 (($ $ $) NIL (|has| |#1| (-783)))) (-3295 (($ (-1 (-492 |#3|) (-492 |#3|)) $) NIL)) (-1389 (($ (-1 |#1| |#1|) $) NIL)) (-1676 (((-1 $ (-706)) |#2|) NIL) (((-1 $ (-706)) $) NIL (|has| |#1| (-209)))) (-3186 (((-3 |#3| "failed") $) NIL)) (-3123 (($ $) NIL)) (-3133 ((|#1| $) NIL)) (-1569 ((|#3| $) NIL)) (-2222 (($ (-586 $)) NIL (|has| |#1| (-424))) (($ $ $) NIL (|has| |#1| (-424)))) (-1239 (((-1066) $) NIL)) (-3365 (((-108) $) NIL)) (-3548 (((-3 (-586 $) "failed") $) NIL)) (-1205 (((-3 (-586 $) "failed") $) NIL)) (-2568 (((-3 (-2 (|:| |var| |#3|) (|:| -2647 (-706))) "failed") $) NIL)) (-1900 (($ $) NIL)) (-4142 (((-1030) $) NIL)) (-3103 (((-108) $) NIL)) (-3113 ((|#1| $) NIL)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) NIL (|has| |#1| (-424)))) (-2257 (($ (-586 $)) NIL (|has| |#1| (-424))) (($ $ $) NIL (|has| |#1| (-424)))) (-4133 (((-391 (-1079 $)) (-1079 $)) NIL (|has| |#1| (-837)))) (-2017 (((-391 (-1079 $)) (-1079 $)) NIL (|has| |#1| (-837)))) (-1916 (((-391 $) $) NIL (|has| |#1| (-837)))) (-2230 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-512))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-512)))) (-2286 (($ $ (-586 (-268 $))) NIL) (($ $ (-268 $)) NIL) (($ $ $ $) NIL) (($ $ (-586 $) (-586 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-586 |#3|) (-586 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-586 |#3|) (-586 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-209))) (($ $ (-586 |#2|) (-586 $)) NIL (|has| |#1| (-209))) (($ $ |#2| |#1|) NIL (|has| |#1| (-209))) (($ $ (-586 |#2|) (-586 |#1|)) NIL (|has| |#1| (-209)))) (-2732 (($ $ |#3|) NIL (|has| |#1| (-157)))) (-2155 (($ $ |#3|) NIL) (($ $ (-586 |#3|)) NIL) (($ $ |#3| (-706)) NIL) (($ $ (-586 |#3|) (-586 (-706))) NIL) (($ $) NIL (|has| |#1| (-209))) (($ $ (-706)) NIL (|has| |#1| (-209))) (($ $ (-1083)) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-586 (-1083))) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-1083) (-706)) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-586 (-1083)) (-586 (-706))) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-1 |#1| |#1|) (-706)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2557 (((-586 |#2|) $) NIL)) (-2528 (((-492 |#3|) $) NIL) (((-706) $ |#3|) NIL) (((-586 (-706)) $ (-586 |#3|)) NIL) (((-706) $ |#2|) NIL)) (-1429 (((-820 (-352)) $) NIL (-12 (|has| |#1| (-561 (-820 (-352)))) (|has| |#3| (-561 (-820 (-352)))))) (((-820 (-520)) $) NIL (-12 (|has| |#1| (-561 (-820 (-520)))) (|has| |#3| (-561 (-820 (-520)))))) (((-496) $) NIL (-12 (|has| |#1| (-561 (-496))) (|has| |#3| (-561 (-496)))))) (-1233 ((|#1| $) NIL (|has| |#1| (-424))) (($ $ |#3|) NIL (|has| |#1| (-424)))) (-3784 (((-3 (-1164 $) "failed") (-626 $)) NIL (-12 (|has| $ (-133)) (|has| |#1| (-837))))) (-2188 (((-791) $) NIL) (($ (-520)) NIL) (($ |#1|) 23) (($ |#3|) 22) (($ |#2|) NIL) (($ (-1035 |#1| |#2|)) 28) (($ (-380 (-520))) NIL (-3700 (|has| |#1| (-37 (-380 (-520)))) (|has| |#1| (-960 (-380 (-520)))))) (($ $) NIL (|has| |#1| (-512)))) (-4113 (((-586 |#1|) $) NIL)) (-3475 ((|#1| $ (-492 |#3|)) NIL) (($ $ |#3| (-706)) NIL) (($ $ (-586 |#3|) (-586 (-706))) NIL)) (-3796 (((-3 $ "failed") $) NIL (-3700 (-12 (|has| $ (-133)) (|has| |#1| (-837))) (|has| |#1| (-133))))) (-3251 (((-706)) NIL)) (-1782 (($ $ $ (-706)) NIL (|has| |#1| (-157)))) (-2559 (((-108) $ $) NIL (|has| |#1| (-512)))) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (-3560 (($) NIL T CONST)) (-3570 (($) NIL T CONST)) (-2211 (($ $ |#3|) NIL) (($ $ (-586 |#3|)) NIL) (($ $ |#3| (-706)) NIL) (($ $ (-586 |#3|) (-586 (-706))) NIL) (($ $) NIL (|has| |#1| (-209))) (($ $ (-706)) NIL (|has| |#1| (-209))) (($ $ (-1083)) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-586 (-1083))) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-1083) (-706)) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-586 (-1083)) (-586 (-706))) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-1 |#1| |#1|) (-706)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1573 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1557 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1530 (((-108) $ $) NIL)) (-1565 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1548 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1619 (($ $ |#1|) NIL (|has| |#1| (-336)))) (-1611 (($ $) NIL) (($ $ $) NIL)) (-1601 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) NIL) (($ $ (-380 (-520))) NIL (|has| |#1| (-37 (-380 (-520))))) (($ (-380 (-520)) $) NIL (|has| |#1| (-37 (-380 (-520))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-239 |#1| |#2| |#3|) (-13 (-228 |#1| |#2| |#3| (-492 |#3|)) (-960 (-1035 |#1| |#2|))) (-969) (-783) (-241 |#2|)) (T -239))
-NIL
-(-13 (-228 |#1| |#2| |#3| (-492 |#3|)) (-960 (-1035 |#1| |#2|)))
-((-1785 (((-706) $) 30)) (-1296 (((-3 |#2| "failed") $) 17)) (-1482 ((|#2| $) 27)) (-2155 (($ $) 12) (($ $ (-706)) 15)) (-2188 (((-791) $) 26) (($ |#2|) 10)) (-1530 (((-108) $ $) 20)) (-1548 (((-108) $ $) 29)))
-(((-240 |#1| |#2|) (-10 -8 (-15 -2155 (|#1| |#1| (-706))) (-15 -2155 (|#1| |#1|)) (-15 -1785 ((-706) |#1|)) (-15 -1482 (|#2| |#1|)) (-15 -1296 ((-3 |#2| "failed") |#1|)) (-15 -2188 (|#1| |#2|)) (-15 -1548 ((-108) |#1| |#1|)) (-15 -2188 ((-791) |#1|)) (-15 -1530 ((-108) |#1| |#1|))) (-241 |#2|) (-783)) (T -240))
-NIL
-(-10 -8 (-15 -2155 (|#1| |#1| (-706))) (-15 -2155 (|#1| |#1|)) (-15 -1785 ((-706) |#1|)) (-15 -1482 (|#2| |#1|)) (-15 -1296 ((-3 |#2| "failed") |#1|)) (-15 -2188 (|#1| |#2|)) (-15 -1548 ((-108) |#1| |#1|)) (-15 -2188 ((-791) |#1|)) (-15 -1530 ((-108) |#1| |#1|)))
-((-1414 (((-108) $ $) 7)) (-1785 (((-706) $) 22)) (-1610 ((|#1| $) 23)) (-1296 (((-3 |#1| "failed") $) 27)) (-1482 ((|#1| $) 26)) (-3989 (((-706) $) 24)) (-2809 (($ $ $) 13)) (-2446 (($ $ $) 14)) (-1676 (($ |#1| (-706)) 25)) (-1239 (((-1066) $) 9)) (-4142 (((-1030) $) 10)) (-2155 (($ $) 21) (($ $ (-706)) 20)) (-2188 (((-791) $) 11) (($ |#1|) 28)) (-1573 (((-108) $ $) 16)) (-1557 (((-108) $ $) 17)) (-1530 (((-108) $ $) 6)) (-1565 (((-108) $ $) 15)) (-1548 (((-108) $ $) 18)))
-(((-241 |#1|) (-1195) (-783)) (T -241))
-((-2188 (*1 *1 *2) (-12 (-4 *1 (-241 *2)) (-4 *2 (-783)))) (-1676 (*1 *1 *2 *3) (-12 (-5 *3 (-706)) (-4 *1 (-241 *2)) (-4 *2 (-783)))) (-3989 (*1 *2 *1) (-12 (-4 *1 (-241 *3)) (-4 *3 (-783)) (-5 *2 (-706)))) (-1610 (*1 *2 *1) (-12 (-4 *1 (-241 *2)) (-4 *2 (-783)))) (-1785 (*1 *2 *1) (-12 (-4 *1 (-241 *3)) (-4 *3 (-783)) (-5 *2 (-706)))) (-2155 (*1 *1 *1) (-12 (-4 *1 (-241 *2)) (-4 *2 (-783)))) (-2155 (*1 *1 *1 *2) (-12 (-5 *2 (-706)) (-4 *1 (-241 *3)) (-4 *3 (-783)))))
-(-13 (-783) (-960 |t#1|) (-10 -8 (-15 -1676 ($ |t#1| (-706))) (-15 -3989 ((-706) $)) (-15 -1610 (|t#1| $)) (-15 -1785 ((-706) $)) (-15 -2155 ($ $)) (-15 -2155 ($ $ (-706))) (-15 -2188 ($ |t#1|))))
-(((-97) . T) ((-560 (-791)) . T) ((-783) . T) ((-960 |#1|) . T) ((-1012) . T))
-((-4081 (((-586 (-1083)) (-2 (|:| |lfn| (-586 (-289 (-201)))) (|:| -3794 (-586 (-201))))) 40)) (-4097 (((-586 (-1083)) (-289 (-201)) (-706)) 79)) (-3147 (((-3 (-289 (-201)) "failed") (-289 (-201))) 50)) (-3246 (((-289 (-201)) (-289 (-201))) 65)) (-2705 (((-2 (|:| |fn| (-289 (-201))) (|:| -3794 (-586 (-201))) (|:| |lb| (-586 (-776 (-201)))) (|:| |cf| (-586 (-289 (-201)))) (|:| |ub| (-586 (-776 (-201))))) (-2 (|:| |fn| (-289 (-201))) (|:| -3794 (-586 (-201))) (|:| |lb| (-586 (-776 (-201)))) (|:| |cf| (-586 (-289 (-201)))) (|:| |ub| (-586 (-776 (-201)))))) 26)) (-3489 (((-108) (-586 (-289 (-201)))) 83)) (-4019 (((-108) (-289 (-201))) 24)) (-2949 (((-586 (-1066)) (-3 (|:| |noa| (-2 (|:| |fn| (-289 (-201))) (|:| -3794 (-586 (-201))) (|:| |lb| (-586 (-776 (-201)))) (|:| |cf| (-586 (-289 (-201)))) (|:| |ub| (-586 (-776 (-201)))))) (|:| |lsa| (-2 (|:| |lfn| (-586 (-289 (-201)))) (|:| -3794 (-586 (-201))))))) 105)) (-1572 (((-586 (-289 (-201))) (-586 (-289 (-201)))) 87)) (-4124 (((-586 (-289 (-201))) (-586 (-289 (-201)))) 85)) (-1789 (((-626 (-201)) (-586 (-289 (-201))) (-706)) 94)) (-3692 (((-108) (-289 (-201))) 20) (((-108) (-586 (-289 (-201)))) 84)) (-2658 (((-586 (-201)) (-586 (-776 (-201))) (-201)) 14)) (-3902 (((-352) (-2 (|:| |lfn| (-586 (-289 (-201)))) (|:| -3794 (-586 (-201))))) 100)) (-4152 (((-958) (-1083) (-958)) 33)))
-(((-242) (-10 -7 (-15 -2658 ((-586 (-201)) (-586 (-776 (-201))) (-201))) (-15 -2705 ((-2 (|:| |fn| (-289 (-201))) (|:| -3794 (-586 (-201))) (|:| |lb| (-586 (-776 (-201)))) (|:| |cf| (-586 (-289 (-201)))) (|:| |ub| (-586 (-776 (-201))))) (-2 (|:| |fn| (-289 (-201))) (|:| -3794 (-586 (-201))) (|:| |lb| (-586 (-776 (-201)))) (|:| |cf| (-586 (-289 (-201)))) (|:| |ub| (-586 (-776 (-201))))))) (-15 -3147 ((-3 (-289 (-201)) "failed") (-289 (-201)))) (-15 -3246 ((-289 (-201)) (-289 (-201)))) (-15 -3489 ((-108) (-586 (-289 (-201))))) (-15 -3692 ((-108) (-586 (-289 (-201))))) (-15 -3692 ((-108) (-289 (-201)))) (-15 -1789 ((-626 (-201)) (-586 (-289 (-201))) (-706))) (-15 -4124 ((-586 (-289 (-201))) (-586 (-289 (-201))))) (-15 -1572 ((-586 (-289 (-201))) (-586 (-289 (-201))))) (-15 -4019 ((-108) (-289 (-201)))) (-15 -4081 ((-586 (-1083)) (-2 (|:| |lfn| (-586 (-289 (-201)))) (|:| -3794 (-586 (-201)))))) (-15 -4097 ((-586 (-1083)) (-289 (-201)) (-706))) (-15 -4152 ((-958) (-1083) (-958))) (-15 -3902 ((-352) (-2 (|:| |lfn| (-586 (-289 (-201)))) (|:| -3794 (-586 (-201)))))) (-15 -2949 ((-586 (-1066)) (-3 (|:| |noa| (-2 (|:| |fn| (-289 (-201))) (|:| -3794 (-586 (-201))) (|:| |lb| (-586 (-776 (-201)))) (|:| |cf| (-586 (-289 (-201)))) (|:| |ub| (-586 (-776 (-201)))))) (|:| |lsa| (-2 (|:| |lfn| (-586 (-289 (-201)))) (|:| -3794 (-586 (-201)))))))))) (T -242))
-((-2949 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-289 (-201))) (|:| -3794 (-586 (-201))) (|:| |lb| (-586 (-776 (-201)))) (|:| |cf| (-586 (-289 (-201)))) (|:| |ub| (-586 (-776 (-201)))))) (|:| |lsa| (-2 (|:| |lfn| (-586 (-289 (-201)))) (|:| -3794 (-586 (-201))))))) (-5 *2 (-586 (-1066))) (-5 *1 (-242)))) (-3902 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-586 (-289 (-201)))) (|:| -3794 (-586 (-201))))) (-5 *2 (-352)) (-5 *1 (-242)))) (-4152 (*1 *2 *3 *2) (-12 (-5 *2 (-958)) (-5 *3 (-1083)) (-5 *1 (-242)))) (-4097 (*1 *2 *3 *4) (-12 (-5 *3 (-289 (-201))) (-5 *4 (-706)) (-5 *2 (-586 (-1083))) (-5 *1 (-242)))) (-4081 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-586 (-289 (-201)))) (|:| -3794 (-586 (-201))))) (-5 *2 (-586 (-1083))) (-5 *1 (-242)))) (-4019 (*1 *2 *3) (-12 (-5 *3 (-289 (-201))) (-5 *2 (-108)) (-5 *1 (-242)))) (-1572 (*1 *2 *2) (-12 (-5 *2 (-586 (-289 (-201)))) (-5 *1 (-242)))) (-4124 (*1 *2 *2) (-12 (-5 *2 (-586 (-289 (-201)))) (-5 *1 (-242)))) (-1789 (*1 *2 *3 *4) (-12 (-5 *3 (-586 (-289 (-201)))) (-5 *4 (-706)) (-5 *2 (-626 (-201))) (-5 *1 (-242)))) (-3692 (*1 *2 *3) (-12 (-5 *3 (-289 (-201))) (-5 *2 (-108)) (-5 *1 (-242)))) (-3692 (*1 *2 *3) (-12 (-5 *3 (-586 (-289 (-201)))) (-5 *2 (-108)) (-5 *1 (-242)))) (-3489 (*1 *2 *3) (-12 (-5 *3 (-586 (-289 (-201)))) (-5 *2 (-108)) (-5 *1 (-242)))) (-3246 (*1 *2 *2) (-12 (-5 *2 (-289 (-201))) (-5 *1 (-242)))) (-3147 (*1 *2 *2) (|partial| -12 (-5 *2 (-289 (-201))) (-5 *1 (-242)))) (-2705 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-289 (-201))) (|:| -3794 (-586 (-201))) (|:| |lb| (-586 (-776 (-201)))) (|:| |cf| (-586 (-289 (-201)))) (|:| |ub| (-586 (-776 (-201)))))) (-5 *1 (-242)))) (-2658 (*1 *2 *3 *4) (-12 (-5 *3 (-586 (-776 (-201)))) (-5 *4 (-201)) (-5 *2 (-586 *4)) (-5 *1 (-242)))))
-(-10 -7 (-15 -2658 ((-586 (-201)) (-586 (-776 (-201))) (-201))) (-15 -2705 ((-2 (|:| |fn| (-289 (-201))) (|:| -3794 (-586 (-201))) (|:| |lb| (-586 (-776 (-201)))) (|:| |cf| (-586 (-289 (-201)))) (|:| |ub| (-586 (-776 (-201))))) (-2 (|:| |fn| (-289 (-201))) (|:| -3794 (-586 (-201))) (|:| |lb| (-586 (-776 (-201)))) (|:| |cf| (-586 (-289 (-201)))) (|:| |ub| (-586 (-776 (-201))))))) (-15 -3147 ((-3 (-289 (-201)) "failed") (-289 (-201)))) (-15 -3246 ((-289 (-201)) (-289 (-201)))) (-15 -3489 ((-108) (-586 (-289 (-201))))) (-15 -3692 ((-108) (-586 (-289 (-201))))) (-15 -3692 ((-108) (-289 (-201)))) (-15 -1789 ((-626 (-201)) (-586 (-289 (-201))) (-706))) (-15 -4124 ((-586 (-289 (-201))) (-586 (-289 (-201))))) (-15 -1572 ((-586 (-289 (-201))) (-586 (-289 (-201))))) (-15 -4019 ((-108) (-289 (-201)))) (-15 -4081 ((-586 (-1083)) (-2 (|:| |lfn| (-586 (-289 (-201)))) (|:| -3794 (-586 (-201)))))) (-15 -4097 ((-586 (-1083)) (-289 (-201)) (-706))) (-15 -4152 ((-958) (-1083) (-958))) (-15 -3902 ((-352) (-2 (|:| |lfn| (-586 (-289 (-201)))) (|:| -3794 (-586 (-201)))))) (-15 -2949 ((-586 (-1066)) (-3 (|:| |noa| (-2 (|:| |fn| (-289 (-201))) (|:| -3794 (-586 (-201))) (|:| |lb| (-586 (-776 (-201)))) (|:| |cf| (-586 (-289 (-201)))) (|:| |ub| (-586 (-776 (-201)))))) (|:| |lsa| (-2 (|:| |lfn| (-586 (-289 (-201)))) (|:| -3794 (-586 (-201)))))))))
-((-1414 (((-108) $ $) NIL)) (-3070 (((-958) (-2 (|:| |lfn| (-586 (-289 (-201)))) (|:| -3794 (-586 (-201))))) NIL) (((-958) (-2 (|:| |fn| (-289 (-201))) (|:| -3794 (-586 (-201))) (|:| |lb| (-586 (-776 (-201)))) (|:| |cf| (-586 (-289 (-201)))) (|:| |ub| (-586 (-776 (-201)))))) 39)) (-1796 (((-2 (|:| -1796 (-352)) (|:| |explanations| (-1066))) (-981) (-2 (|:| |fn| (-289 (-201))) (|:| -3794 (-586 (-201))) (|:| |lb| (-586 (-776 (-201)))) (|:| |cf| (-586 (-289 (-201)))) (|:| |ub| (-586 (-776 (-201)))))) 20) (((-2 (|:| -1796 (-352)) (|:| |explanations| (-1066))) (-981) (-2 (|:| |lfn| (-586 (-289 (-201)))) (|:| -3794 (-586 (-201))))) NIL)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2188 (((-791) $) NIL)) (-1530 (((-108) $ $) NIL)))
-(((-243) (-772)) (T -243))
-NIL
-(-772)
-((-1414 (((-108) $ $) NIL)) (-3070 (((-958) (-2 (|:| |lfn| (-586 (-289 (-201)))) (|:| -3794 (-586 (-201))))) 54) (((-958) (-2 (|:| |fn| (-289 (-201))) (|:| -3794 (-586 (-201))) (|:| |lb| (-586 (-776 (-201)))) (|:| |cf| (-586 (-289 (-201)))) (|:| |ub| (-586 (-776 (-201)))))) 49)) (-1796 (((-2 (|:| -1796 (-352)) (|:| |explanations| (-1066))) (-981) (-2 (|:| |fn| (-289 (-201))) (|:| -3794 (-586 (-201))) (|:| |lb| (-586 (-776 (-201)))) (|:| |cf| (-586 (-289 (-201)))) (|:| |ub| (-586 (-776 (-201)))))) 29) (((-2 (|:| -1796 (-352)) (|:| |explanations| (-1066))) (-981) (-2 (|:| |lfn| (-586 (-289 (-201)))) (|:| -3794 (-586 (-201))))) 31)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2188 (((-791) $) NIL)) (-1530 (((-108) $ $) NIL)))
-(((-244) (-772)) (T -244))
-NIL
-(-772)
-((-1414 (((-108) $ $) NIL)) (-3070 (((-958) (-2 (|:| |lfn| (-586 (-289 (-201)))) (|:| -3794 (-586 (-201))))) 73) (((-958) (-2 (|:| |fn| (-289 (-201))) (|:| -3794 (-586 (-201))) (|:| |lb| (-586 (-776 (-201)))) (|:| |cf| (-586 (-289 (-201)))) (|:| |ub| (-586 (-776 (-201)))))) 69)) (-1796 (((-2 (|:| -1796 (-352)) (|:| |explanations| (-1066))) (-981) (-2 (|:| |fn| (-289 (-201))) (|:| -3794 (-586 (-201))) (|:| |lb| (-586 (-776 (-201)))) (|:| |cf| (-586 (-289 (-201)))) (|:| |ub| (-586 (-776 (-201)))))) 40) (((-2 (|:| -1796 (-352)) (|:| |explanations| (-1066))) (-981) (-2 (|:| |lfn| (-586 (-289 (-201)))) (|:| -3794 (-586 (-201))))) 51)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2188 (((-791) $) NIL)) (-1530 (((-108) $ $) NIL)))
-(((-245) (-772)) (T -245))
-NIL
-(-772)
-((-1414 (((-108) $ $) NIL)) (-3070 (((-958) (-2 (|:| |lfn| (-586 (-289 (-201)))) (|:| -3794 (-586 (-201))))) NIL) (((-958) (-2 (|:| |fn| (-289 (-201))) (|:| -3794 (-586 (-201))) (|:| |lb| (-586 (-776 (-201)))) (|:| |cf| (-586 (-289 (-201)))) (|:| |ub| (-586 (-776 (-201)))))) 48)) (-1796 (((-2 (|:| -1796 (-352)) (|:| |explanations| (-1066))) (-981) (-2 (|:| |fn| (-289 (-201))) (|:| -3794 (-586 (-201))) (|:| |lb| (-586 (-776 (-201)))) (|:| |cf| (-586 (-289 (-201)))) (|:| |ub| (-586 (-776 (-201)))))) 27) (((-2 (|:| -1796 (-352)) (|:| |explanations| (-1066))) (-981) (-2 (|:| |lfn| (-586 (-289 (-201)))) (|:| -3794 (-586 (-201))))) NIL)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2188 (((-791) $) NIL)) (-1530 (((-108) $ $) NIL)))
-(((-246) (-772)) (T -246))
-NIL
-(-772)
-((-1414 (((-108) $ $) NIL)) (-3070 (((-958) (-2 (|:| |lfn| (-586 (-289 (-201)))) (|:| -3794 (-586 (-201))))) NIL) (((-958) (-2 (|:| |fn| (-289 (-201))) (|:| -3794 (-586 (-201))) (|:| |lb| (-586 (-776 (-201)))) (|:| |cf| (-586 (-289 (-201)))) (|:| |ub| (-586 (-776 (-201)))))) 48)) (-1796 (((-2 (|:| -1796 (-352)) (|:| |explanations| (-1066))) (-981) (-2 (|:| |fn| (-289 (-201))) (|:| -3794 (-586 (-201))) (|:| |lb| (-586 (-776 (-201)))) (|:| |cf| (-586 (-289 (-201)))) (|:| |ub| (-586 (-776 (-201)))))) 23) (((-2 (|:| -1796 (-352)) (|:| |explanations| (-1066))) (-981) (-2 (|:| |lfn| (-586 (-289 (-201)))) (|:| -3794 (-586 (-201))))) NIL)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2188 (((-791) $) NIL)) (-1530 (((-108) $ $) NIL)))
-(((-247) (-772)) (T -247))
-NIL
-(-772)
-((-1414 (((-108) $ $) NIL)) (-3070 (((-958) (-2 (|:| |lfn| (-586 (-289 (-201)))) (|:| -3794 (-586 (-201))))) NIL) (((-958) (-2 (|:| |fn| (-289 (-201))) (|:| -3794 (-586 (-201))) (|:| |lb| (-586 (-776 (-201)))) (|:| |cf| (-586 (-289 (-201)))) (|:| |ub| (-586 (-776 (-201)))))) 69)) (-1796 (((-2 (|:| -1796 (-352)) (|:| |explanations| (-1066))) (-981) (-2 (|:| |fn| (-289 (-201))) (|:| -3794 (-586 (-201))) (|:| |lb| (-586 (-776 (-201)))) (|:| |cf| (-586 (-289 (-201)))) (|:| |ub| (-586 (-776 (-201)))))) 23) (((-2 (|:| -1796 (-352)) (|:| |explanations| (-1066))) (-981) (-2 (|:| |lfn| (-586 (-289 (-201)))) (|:| -3794 (-586 (-201))))) NIL)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2188 (((-791) $) NIL)) (-1530 (((-108) $ $) NIL)))
-(((-248) (-772)) (T -248))
-NIL
-(-772)
-((-1414 (((-108) $ $) NIL)) (-3070 (((-958) (-2 (|:| |lfn| (-586 (-289 (-201)))) (|:| -3794 (-586 (-201))))) NIL) (((-958) (-2 (|:| |fn| (-289 (-201))) (|:| -3794 (-586 (-201))) (|:| |lb| (-586 (-776 (-201)))) (|:| |cf| (-586 (-289 (-201)))) (|:| |ub| (-586 (-776 (-201)))))) 73)) (-1796 (((-2 (|:| -1796 (-352)) (|:| |explanations| (-1066))) (-981) (-2 (|:| |fn| (-289 (-201))) (|:| -3794 (-586 (-201))) (|:| |lb| (-586 (-776 (-201)))) (|:| |cf| (-586 (-289 (-201)))) (|:| |ub| (-586 (-776 (-201)))))) 19) (((-2 (|:| -1796 (-352)) (|:| |explanations| (-1066))) (-981) (-2 (|:| |lfn| (-586 (-289 (-201)))) (|:| -3794 (-586 (-201))))) NIL)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2188 (((-791) $) NIL)) (-1530 (((-108) $ $) NIL)))
-(((-249) (-772)) (T -249))
-NIL
-(-772)
-((-1414 (((-108) $ $) NIL)) (-2809 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-1762 (((-586 (-520)) $) 17)) (-2528 (((-706) $) 15)) (-2188 (((-791) $) 21) (($ (-586 (-520))) 13)) (-3216 (($ (-706)) 18)) (-1573 (((-108) $ $) NIL)) (-1557 (((-108) $ $) NIL)) (-1530 (((-108) $ $) 9)) (-1565 (((-108) $ $) NIL)) (-1548 (((-108) $ $) 11)))
-(((-250) (-13 (-783) (-10 -8 (-15 -2188 ($ (-586 (-520)))) (-15 -2528 ((-706) $)) (-15 -1762 ((-586 (-520)) $)) (-15 -3216 ($ (-706)))))) (T -250))
-((-2188 (*1 *1 *2) (-12 (-5 *2 (-586 (-520))) (-5 *1 (-250)))) (-2528 (*1 *2 *1) (-12 (-5 *2 (-706)) (-5 *1 (-250)))) (-1762 (*1 *2 *1) (-12 (-5 *2 (-586 (-520))) (-5 *1 (-250)))) (-3216 (*1 *1 *2) (-12 (-5 *2 (-706)) (-5 *1 (-250)))))
-(-13 (-783) (-10 -8 (-15 -2188 ($ (-586 (-520)))) (-15 -2528 ((-706) $)) (-15 -1762 ((-586 (-520)) $)) (-15 -3216 ($ (-706)))))
-((-2903 ((|#2| |#2|) 77)) (-2768 ((|#2| |#2|) 65)) (-2093 (((-3 |#2| "failed") |#2| (-586 (-2 (|:| |func| |#2|) (|:| |pole| (-108))))) 116)) (-2879 ((|#2| |#2|) 75)) (-2745 ((|#2| |#2|) 63)) (-2925 ((|#2| |#2|) 79)) (-2789 ((|#2| |#2|) 67)) (-2833 ((|#2|) 46)) (-3877 (((-110) (-110)) 95)) (-1252 ((|#2| |#2|) 61)) (-3203 (((-108) |#2|) 134)) (-1890 ((|#2| |#2|) 180)) (-3380 ((|#2| |#2|) 156)) (-2335 ((|#2|) 59)) (-2109 ((|#2|) 58)) (-1889 ((|#2| |#2|) 176)) (-2744 ((|#2| |#2|) 152)) (-3703 ((|#2| |#2|) 184)) (-3306 ((|#2| |#2|) 160)) (-2479 ((|#2| |#2|) 148)) (-3478 ((|#2| |#2|) 150)) (-4042 ((|#2| |#2|) 186)) (-1246 ((|#2| |#2|) 162)) (-2494 ((|#2| |#2|) 182)) (-2361 ((|#2| |#2|) 158)) (-3611 ((|#2| |#2|) 178)) (-3419 ((|#2| |#2|) 154)) (-3325 ((|#2| |#2|) 192)) (-1648 ((|#2| |#2|) 168)) (-3353 ((|#2| |#2|) 188)) (-3876 ((|#2| |#2|) 164)) (-2912 ((|#2| |#2|) 196)) (-2110 ((|#2| |#2|) 172)) (-2307 ((|#2| |#2|) 198)) (-2599 ((|#2| |#2|) 174)) (-3793 ((|#2| |#2|) 194)) (-1773 ((|#2| |#2|) 170)) (-3120 ((|#2| |#2|) 190)) (-1624 ((|#2| |#2|) 166)) (-3260 ((|#2| |#2|) 62)) (-1737 ((|#2| |#2|) 80)) (-2799 ((|#2| |#2|) 68)) (-2914 ((|#2| |#2|) 78)) (-2779 ((|#2| |#2|) 66)) (-2891 ((|#2| |#2|) 76)) (-2757 ((|#2| |#2|) 64)) (-1373 (((-108) (-110)) 93)) (-1758 ((|#2| |#2|) 83)) (-2831 ((|#2| |#2|) 71)) (-1744 ((|#2| |#2|) 81)) (-2810 ((|#2| |#2|) 69)) (-1775 ((|#2| |#2|) 85)) (-2855 ((|#2| |#2|) 73)) (-3915 ((|#2| |#2|) 86)) (-2867 ((|#2| |#2|) 74)) (-1767 ((|#2| |#2|) 84)) (-2843 ((|#2| |#2|) 72)) (-1751 ((|#2| |#2|) 82)) (-2820 ((|#2| |#2|) 70)))
-(((-251 |#1| |#2|) (-10 -7 (-15 -3260 (|#2| |#2|)) (-15 -1252 (|#2| |#2|)) (-15 -2745 (|#2| |#2|)) (-15 -2757 (|#2| |#2|)) (-15 -2768 (|#2| |#2|)) (-15 -2779 (|#2| |#2|)) (-15 -2789 (|#2| |#2|)) (-15 -2799 (|#2| |#2|)) (-15 -2810 (|#2| |#2|)) (-15 -2820 (|#2| |#2|)) (-15 -2831 (|#2| |#2|)) (-15 -2843 (|#2| |#2|)) (-15 -2855 (|#2| |#2|)) (-15 -2867 (|#2| |#2|)) (-15 -2879 (|#2| |#2|)) (-15 -2891 (|#2| |#2|)) (-15 -2903 (|#2| |#2|)) (-15 -2914 (|#2| |#2|)) (-15 -2925 (|#2| |#2|)) (-15 -1737 (|#2| |#2|)) (-15 -1744 (|#2| |#2|)) (-15 -1751 (|#2| |#2|)) (-15 -1758 (|#2| |#2|)) (-15 -1767 (|#2| |#2|)) (-15 -1775 (|#2| |#2|)) (-15 -3915 (|#2| |#2|)) (-15 -2833 (|#2|)) (-15 -1373 ((-108) (-110))) (-15 -3877 ((-110) (-110))) (-15 -2109 (|#2|)) (-15 -2335 (|#2|)) (-15 -3478 (|#2| |#2|)) (-15 -2479 (|#2| |#2|)) (-15 -2744 (|#2| |#2|)) (-15 -3419 (|#2| |#2|)) (-15 -3380 (|#2| |#2|)) (-15 -2361 (|#2| |#2|)) (-15 -3306 (|#2| |#2|)) (-15 -1246 (|#2| |#2|)) (-15 -3876 (|#2| |#2|)) (-15 -1624 (|#2| |#2|)) (-15 -1648 (|#2| |#2|)) (-15 -1773 (|#2| |#2|)) (-15 -2110 (|#2| |#2|)) (-15 -2599 (|#2| |#2|)) (-15 -1889 (|#2| |#2|)) (-15 -3611 (|#2| |#2|)) (-15 -1890 (|#2| |#2|)) (-15 -2494 (|#2| |#2|)) (-15 -3703 (|#2| |#2|)) (-15 -4042 (|#2| |#2|)) (-15 -3353 (|#2| |#2|)) (-15 -3120 (|#2| |#2|)) (-15 -3325 (|#2| |#2|)) (-15 -3793 (|#2| |#2|)) (-15 -2912 (|#2| |#2|)) (-15 -2307 (|#2| |#2|)) (-15 -2093 ((-3 |#2| "failed") |#2| (-586 (-2 (|:| |func| |#2|) (|:| |pole| (-108)))))) (-15 -3203 ((-108) |#2|))) (-13 (-783) (-512)) (-13 (-403 |#1|) (-926))) (T -251))
-((-3203 (*1 *2 *3) (-12 (-4 *4 (-13 (-783) (-512))) (-5 *2 (-108)) (-5 *1 (-251 *4 *3)) (-4 *3 (-13 (-403 *4) (-926))))) (-2093 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-586 (-2 (|:| |func| *2) (|:| |pole| (-108))))) (-4 *2 (-13 (-403 *4) (-926))) (-4 *4 (-13 (-783) (-512))) (-5 *1 (-251 *4 *2)))) (-2307 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-403 *3) (-926))))) (-2912 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-403 *3) (-926))))) (-3793 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-403 *3) (-926))))) (-3325 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-403 *3) (-926))))) (-3120 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-403 *3) (-926))))) (-3353 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-403 *3) (-926))))) (-4042 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-403 *3) (-926))))) (-3703 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-403 *3) (-926))))) (-2494 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-403 *3) (-926))))) (-1890 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-403 *3) (-926))))) (-3611 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-403 *3) (-926))))) (-1889 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-403 *3) (-926))))) (-2599 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-403 *3) (-926))))) (-2110 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-403 *3) (-926))))) (-1773 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-403 *3) (-926))))) (-1648 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-403 *3) (-926))))) (-1624 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-403 *3) (-926))))) (-3876 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-403 *3) (-926))))) (-1246 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-403 *3) (-926))))) (-3306 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-403 *3) (-926))))) (-2361 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-403 *3) (-926))))) (-3380 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-403 *3) (-926))))) (-3419 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-403 *3) (-926))))) (-2744 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-403 *3) (-926))))) (-2479 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-403 *3) (-926))))) (-3478 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-403 *3) (-926))))) (-2335 (*1 *2) (-12 (-4 *2 (-13 (-403 *3) (-926))) (-5 *1 (-251 *3 *2)) (-4 *3 (-13 (-783) (-512))))) (-2109 (*1 *2) (-12 (-4 *2 (-13 (-403 *3) (-926))) (-5 *1 (-251 *3 *2)) (-4 *3 (-13 (-783) (-512))))) (-3877 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *4)) (-4 *4 (-13 (-403 *3) (-926))))) (-1373 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *4 (-13 (-783) (-512))) (-5 *2 (-108)) (-5 *1 (-251 *4 *5)) (-4 *5 (-13 (-403 *4) (-926))))) (-2833 (*1 *2) (-12 (-4 *2 (-13 (-403 *3) (-926))) (-5 *1 (-251 *3 *2)) (-4 *3 (-13 (-783) (-512))))) (-3915 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-403 *3) (-926))))) (-1775 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-403 *3) (-926))))) (-1767 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-403 *3) (-926))))) (-1758 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-403 *3) (-926))))) (-1751 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-403 *3) (-926))))) (-1744 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-403 *3) (-926))))) (-1737 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-403 *3) (-926))))) (-2925 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-403 *3) (-926))))) (-2914 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-403 *3) (-926))))) (-2903 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-403 *3) (-926))))) (-2891 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-403 *3) (-926))))) (-2879 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-403 *3) (-926))))) (-2867 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-403 *3) (-926))))) (-2855 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-403 *3) (-926))))) (-2843 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-403 *3) (-926))))) (-2831 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-403 *3) (-926))))) (-2820 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-403 *3) (-926))))) (-2810 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-403 *3) (-926))))) (-2799 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-403 *3) (-926))))) (-2789 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-403 *3) (-926))))) (-2779 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-403 *3) (-926))))) (-2768 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-403 *3) (-926))))) (-2757 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-403 *3) (-926))))) (-2745 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-403 *3) (-926))))) (-1252 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-403 *3) (-926))))) (-3260 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2)) (-4 *2 (-13 (-403 *3) (-926))))))
-(-10 -7 (-15 -3260 (|#2| |#2|)) (-15 -1252 (|#2| |#2|)) (-15 -2745 (|#2| |#2|)) (-15 -2757 (|#2| |#2|)) (-15 -2768 (|#2| |#2|)) (-15 -2779 (|#2| |#2|)) (-15 -2789 (|#2| |#2|)) (-15 -2799 (|#2| |#2|)) (-15 -2810 (|#2| |#2|)) (-15 -2820 (|#2| |#2|)) (-15 -2831 (|#2| |#2|)) (-15 -2843 (|#2| |#2|)) (-15 -2855 (|#2| |#2|)) (-15 -2867 (|#2| |#2|)) (-15 -2879 (|#2| |#2|)) (-15 -2891 (|#2| |#2|)) (-15 -2903 (|#2| |#2|)) (-15 -2914 (|#2| |#2|)) (-15 -2925 (|#2| |#2|)) (-15 -1737 (|#2| |#2|)) (-15 -1744 (|#2| |#2|)) (-15 -1751 (|#2| |#2|)) (-15 -1758 (|#2| |#2|)) (-15 -1767 (|#2| |#2|)) (-15 -1775 (|#2| |#2|)) (-15 -3915 (|#2| |#2|)) (-15 -2833 (|#2|)) (-15 -1373 ((-108) (-110))) (-15 -3877 ((-110) (-110))) (-15 -2109 (|#2|)) (-15 -2335 (|#2|)) (-15 -3478 (|#2| |#2|)) (-15 -2479 (|#2| |#2|)) (-15 -2744 (|#2| |#2|)) (-15 -3419 (|#2| |#2|)) (-15 -3380 (|#2| |#2|)) (-15 -2361 (|#2| |#2|)) (-15 -3306 (|#2| |#2|)) (-15 -1246 (|#2| |#2|)) (-15 -3876 (|#2| |#2|)) (-15 -1624 (|#2| |#2|)) (-15 -1648 (|#2| |#2|)) (-15 -1773 (|#2| |#2|)) (-15 -2110 (|#2| |#2|)) (-15 -2599 (|#2| |#2|)) (-15 -1889 (|#2| |#2|)) (-15 -3611 (|#2| |#2|)) (-15 -1890 (|#2| |#2|)) (-15 -2494 (|#2| |#2|)) (-15 -3703 (|#2| |#2|)) (-15 -4042 (|#2| |#2|)) (-15 -3353 (|#2| |#2|)) (-15 -3120 (|#2| |#2|)) (-15 -3325 (|#2| |#2|)) (-15 -3793 (|#2| |#2|)) (-15 -2912 (|#2| |#2|)) (-15 -2307 (|#2| |#2|)) (-15 -2093 ((-3 |#2| "failed") |#2| (-586 (-2 (|:| |func| |#2|) (|:| |pole| (-108)))))) (-15 -3203 ((-108) |#2|)))
-((-2863 (((-3 |#2| "failed") (-586 (-559 |#2|)) |#2| (-1083)) 133)) (-3226 ((|#2| (-380 (-520)) |#2|) 50)) (-1259 ((|#2| |#2| (-559 |#2|)) 126)) (-2975 (((-2 (|:| |func| |#2|) (|:| |kers| (-586 (-559 |#2|))) (|:| |vals| (-586 |#2|))) |#2| (-1083)) 125)) (-2729 ((|#2| |#2| (-1083)) 19) ((|#2| |#2|) 22)) (-2593 ((|#2| |#2| (-1083)) 139) ((|#2| |#2|) 137)))
-(((-252 |#1| |#2|) (-10 -7 (-15 -2593 (|#2| |#2|)) (-15 -2593 (|#2| |#2| (-1083))) (-15 -2975 ((-2 (|:| |func| |#2|) (|:| |kers| (-586 (-559 |#2|))) (|:| |vals| (-586 |#2|))) |#2| (-1083))) (-15 -2729 (|#2| |#2|)) (-15 -2729 (|#2| |#2| (-1083))) (-15 -2863 ((-3 |#2| "failed") (-586 (-559 |#2|)) |#2| (-1083))) (-15 -1259 (|#2| |#2| (-559 |#2|))) (-15 -3226 (|#2| (-380 (-520)) |#2|))) (-13 (-512) (-783) (-960 (-520)) (-582 (-520))) (-13 (-27) (-1104) (-403 |#1|))) (T -252))
-((-3226 (*1 *2 *3 *2) (-12 (-5 *3 (-380 (-520))) (-4 *4 (-13 (-512) (-783) (-960 (-520)) (-582 (-520)))) (-5 *1 (-252 *4 *2)) (-4 *2 (-13 (-27) (-1104) (-403 *4))))) (-1259 (*1 *2 *2 *3) (-12 (-5 *3 (-559 *2)) (-4 *2 (-13 (-27) (-1104) (-403 *4))) (-4 *4 (-13 (-512) (-783) (-960 (-520)) (-582 (-520)))) (-5 *1 (-252 *4 *2)))) (-2863 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-586 (-559 *2))) (-5 *4 (-1083)) (-4 *2 (-13 (-27) (-1104) (-403 *5))) (-4 *5 (-13 (-512) (-783) (-960 (-520)) (-582 (-520)))) (-5 *1 (-252 *5 *2)))) (-2729 (*1 *2 *2 *3) (-12 (-5 *3 (-1083)) (-4 *4 (-13 (-512) (-783) (-960 (-520)) (-582 (-520)))) (-5 *1 (-252 *4 *2)) (-4 *2 (-13 (-27) (-1104) (-403 *4))))) (-2729 (*1 *2 *2) (-12 (-4 *3 (-13 (-512) (-783) (-960 (-520)) (-582 (-520)))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-27) (-1104) (-403 *3))))) (-2975 (*1 *2 *3 *4) (-12 (-5 *4 (-1083)) (-4 *5 (-13 (-512) (-783) (-960 (-520)) (-582 (-520)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-586 (-559 *3))) (|:| |vals| (-586 *3)))) (-5 *1 (-252 *5 *3)) (-4 *3 (-13 (-27) (-1104) (-403 *5))))) (-2593 (*1 *2 *2 *3) (-12 (-5 *3 (-1083)) (-4 *4 (-13 (-512) (-783) (-960 (-520)) (-582 (-520)))) (-5 *1 (-252 *4 *2)) (-4 *2 (-13 (-27) (-1104) (-403 *4))))) (-2593 (*1 *2 *2) (-12 (-4 *3 (-13 (-512) (-783) (-960 (-520)) (-582 (-520)))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-27) (-1104) (-403 *3))))))
-(-10 -7 (-15 -2593 (|#2| |#2|)) (-15 -2593 (|#2| |#2| (-1083))) (-15 -2975 ((-2 (|:| |func| |#2|) (|:| |kers| (-586 (-559 |#2|))) (|:| |vals| (-586 |#2|))) |#2| (-1083))) (-15 -2729 (|#2| |#2|)) (-15 -2729 (|#2| |#2| (-1083))) (-15 -2863 ((-3 |#2| "failed") (-586 (-559 |#2|)) |#2| (-1083))) (-15 -1259 (|#2| |#2| (-559 |#2|))) (-15 -3226 (|#2| (-380 (-520)) |#2|)))
-((-1307 (((-3 |#3| "failed") |#3|) 110)) (-2903 ((|#3| |#3|) 131)) (-1722 (((-3 |#3| "failed") |#3|) 82)) (-2768 ((|#3| |#3|) 121)) (-3057 (((-3 |#3| "failed") |#3|) 58)) (-2879 ((|#3| |#3|) 129)) (-1433 (((-3 |#3| "failed") |#3|) 46)) (-2745 ((|#3| |#3|) 119)) (-4025 (((-3 |#3| "failed") |#3|) 112)) (-2925 ((|#3| |#3|) 133)) (-2277 (((-3 |#3| "failed") |#3|) 84)) (-2789 ((|#3| |#3|) 123)) (-2420 (((-3 |#3| "failed") |#3| (-706)) 36)) (-4126 (((-3 |#3| "failed") |#3|) 74)) (-1252 ((|#3| |#3|) 118)) (-4054 (((-3 |#3| "failed") |#3|) 44)) (-3260 ((|#3| |#3|) 117)) (-3065 (((-3 |#3| "failed") |#3|) 113)) (-1737 ((|#3| |#3|) 134)) (-1984 (((-3 |#3| "failed") |#3|) 85)) (-2799 ((|#3| |#3|) 124)) (-3277 (((-3 |#3| "failed") |#3|) 111)) (-2914 ((|#3| |#3|) 132)) (-2004 (((-3 |#3| "failed") |#3|) 83)) (-2779 ((|#3| |#3|) 122)) (-3025 (((-3 |#3| "failed") |#3|) 60)) (-2891 ((|#3| |#3|) 130)) (-2003 (((-3 |#3| "failed") |#3|) 48)) (-2757 ((|#3| |#3|) 120)) (-1455 (((-3 |#3| "failed") |#3|) 66)) (-1758 ((|#3| |#3|) 137)) (-2631 (((-3 |#3| "failed") |#3|) 104)) (-2831 ((|#3| |#3|) 142)) (-2480 (((-3 |#3| "failed") |#3|) 62)) (-1744 ((|#3| |#3|) 135)) (-2163 (((-3 |#3| "failed") |#3|) 50)) (-2810 ((|#3| |#3|) 125)) (-1923 (((-3 |#3| "failed") |#3|) 70)) (-1775 ((|#3| |#3|) 139)) (-3418 (((-3 |#3| "failed") |#3|) 54)) (-2855 ((|#3| |#3|) 127)) (-2192 (((-3 |#3| "failed") |#3|) 72)) (-3915 ((|#3| |#3|) 140)) (-3480 (((-3 |#3| "failed") |#3|) 56)) (-2867 ((|#3| |#3|) 128)) (-3458 (((-3 |#3| "failed") |#3|) 68)) (-1767 ((|#3| |#3|) 138)) (-3187 (((-3 |#3| "failed") |#3|) 107)) (-2843 ((|#3| |#3|) 143)) (-3358 (((-3 |#3| "failed") |#3|) 64)) (-1751 ((|#3| |#3|) 136)) (-3624 (((-3 |#3| "failed") |#3|) 52)) (-2820 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-380 (-520))) 40 (|has| |#1| (-336)))))
-(((-253 |#1| |#2| |#3|) (-13 (-908 |#3|) (-10 -7 (IF (|has| |#1| (-336)) (-15 ** (|#3| |#3| (-380 (-520)))) |%noBranch|) (-15 -3260 (|#3| |#3|)) (-15 -1252 (|#3| |#3|)) (-15 -2745 (|#3| |#3|)) (-15 -2757 (|#3| |#3|)) (-15 -2768 (|#3| |#3|)) (-15 -2779 (|#3| |#3|)) (-15 -2789 (|#3| |#3|)) (-15 -2799 (|#3| |#3|)) (-15 -2810 (|#3| |#3|)) (-15 -2820 (|#3| |#3|)) (-15 -2831 (|#3| |#3|)) (-15 -2843 (|#3| |#3|)) (-15 -2855 (|#3| |#3|)) (-15 -2867 (|#3| |#3|)) (-15 -2879 (|#3| |#3|)) (-15 -2891 (|#3| |#3|)) (-15 -2903 (|#3| |#3|)) (-15 -2914 (|#3| |#3|)) (-15 -2925 (|#3| |#3|)) (-15 -1737 (|#3| |#3|)) (-15 -1744 (|#3| |#3|)) (-15 -1751 (|#3| |#3|)) (-15 -1758 (|#3| |#3|)) (-15 -1767 (|#3| |#3|)) (-15 -1775 (|#3| |#3|)) (-15 -3915 (|#3| |#3|)))) (-37 (-380 (-520))) (-1155 |#1|) (-1126 |#1| |#2|)) (T -253))
-((** (*1 *2 *2 *3) (-12 (-5 *3 (-380 (-520))) (-4 *4 (-336)) (-4 *4 (-37 *3)) (-4 *5 (-1155 *4)) (-5 *1 (-253 *4 *5 *2)) (-4 *2 (-1126 *4 *5)))) (-3260 (*1 *2 *2) (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1155 *3)) (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1126 *3 *4)))) (-1252 (*1 *2 *2) (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1155 *3)) (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1126 *3 *4)))) (-2745 (*1 *2 *2) (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1155 *3)) (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1126 *3 *4)))) (-2757 (*1 *2 *2) (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1155 *3)) (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1126 *3 *4)))) (-2768 (*1 *2 *2) (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1155 *3)) (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1126 *3 *4)))) (-2779 (*1 *2 *2) (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1155 *3)) (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1126 *3 *4)))) (-2789 (*1 *2 *2) (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1155 *3)) (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1126 *3 *4)))) (-2799 (*1 *2 *2) (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1155 *3)) (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1126 *3 *4)))) (-2810 (*1 *2 *2) (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1155 *3)) (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1126 *3 *4)))) (-2820 (*1 *2 *2) (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1155 *3)) (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1126 *3 *4)))) (-2831 (*1 *2 *2) (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1155 *3)) (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1126 *3 *4)))) (-2843 (*1 *2 *2) (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1155 *3)) (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1126 *3 *4)))) (-2855 (*1 *2 *2) (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1155 *3)) (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1126 *3 *4)))) (-2867 (*1 *2 *2) (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1155 *3)) (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1126 *3 *4)))) (-2879 (*1 *2 *2) (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1155 *3)) (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1126 *3 *4)))) (-2891 (*1 *2 *2) (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1155 *3)) (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1126 *3 *4)))) (-2903 (*1 *2 *2) (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1155 *3)) (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1126 *3 *4)))) (-2914 (*1 *2 *2) (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1155 *3)) (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1126 *3 *4)))) (-2925 (*1 *2 *2) (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1155 *3)) (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1126 *3 *4)))) (-1737 (*1 *2 *2) (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1155 *3)) (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1126 *3 *4)))) (-1744 (*1 *2 *2) (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1155 *3)) (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1126 *3 *4)))) (-1751 (*1 *2 *2) (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1155 *3)) (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1126 *3 *4)))) (-1758 (*1 *2 *2) (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1155 *3)) (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1126 *3 *4)))) (-1767 (*1 *2 *2) (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1155 *3)) (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1126 *3 *4)))) (-1775 (*1 *2 *2) (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1155 *3)) (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1126 *3 *4)))) (-3915 (*1 *2 *2) (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1155 *3)) (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1126 *3 *4)))))
-(-13 (-908 |#3|) (-10 -7 (IF (|has| |#1| (-336)) (-15 ** (|#3| |#3| (-380 (-520)))) |%noBranch|) (-15 -3260 (|#3| |#3|)) (-15 -1252 (|#3| |#3|)) (-15 -2745 (|#3| |#3|)) (-15 -2757 (|#3| |#3|)) (-15 -2768 (|#3| |#3|)) (-15 -2779 (|#3| |#3|)) (-15 -2789 (|#3| |#3|)) (-15 -2799 (|#3| |#3|)) (-15 -2810 (|#3| |#3|)) (-15 -2820 (|#3| |#3|)) (-15 -2831 (|#3| |#3|)) (-15 -2843 (|#3| |#3|)) (-15 -2855 (|#3| |#3|)) (-15 -2867 (|#3| |#3|)) (-15 -2879 (|#3| |#3|)) (-15 -2891 (|#3| |#3|)) (-15 -2903 (|#3| |#3|)) (-15 -2914 (|#3| |#3|)) (-15 -2925 (|#3| |#3|)) (-15 -1737 (|#3| |#3|)) (-15 -1744 (|#3| |#3|)) (-15 -1751 (|#3| |#3|)) (-15 -1758 (|#3| |#3|)) (-15 -1767 (|#3| |#3|)) (-15 -1775 (|#3| |#3|)) (-15 -3915 (|#3| |#3|))))
-((-1307 (((-3 |#3| "failed") |#3|) 66)) (-2903 ((|#3| |#3|) 133)) (-1722 (((-3 |#3| "failed") |#3|) 50)) (-2768 ((|#3| |#3|) 121)) (-3057 (((-3 |#3| "failed") |#3|) 62)) (-2879 ((|#3| |#3|) 131)) (-1433 (((-3 |#3| "failed") |#3|) 46)) (-2745 ((|#3| |#3|) 119)) (-4025 (((-3 |#3| "failed") |#3|) 70)) (-2925 ((|#3| |#3|) 135)) (-2277 (((-3 |#3| "failed") |#3|) 54)) (-2789 ((|#3| |#3|) 123)) (-2420 (((-3 |#3| "failed") |#3| (-706)) 35)) (-4126 (((-3 |#3| "failed") |#3|) 44)) (-1252 ((|#3| |#3|) 112)) (-4054 (((-3 |#3| "failed") |#3|) 42)) (-3260 ((|#3| |#3|) 118)) (-3065 (((-3 |#3| "failed") |#3|) 72)) (-1737 ((|#3| |#3|) 136)) (-1984 (((-3 |#3| "failed") |#3|) 56)) (-2799 ((|#3| |#3|) 124)) (-3277 (((-3 |#3| "failed") |#3|) 68)) (-2914 ((|#3| |#3|) 134)) (-2004 (((-3 |#3| "failed") |#3|) 52)) (-2779 ((|#3| |#3|) 122)) (-3025 (((-3 |#3| "failed") |#3|) 64)) (-2891 ((|#3| |#3|) 132)) (-2003 (((-3 |#3| "failed") |#3|) 48)) (-2757 ((|#3| |#3|) 120)) (-1455 (((-3 |#3| "failed") |#3|) 78)) (-1758 ((|#3| |#3|) 139)) (-2631 (((-3 |#3| "failed") |#3|) 58)) (-2831 ((|#3| |#3|) 127)) (-2480 (((-3 |#3| "failed") |#3|) 74)) (-1744 ((|#3| |#3|) 137)) (-2163 (((-3 |#3| "failed") |#3|) 102)) (-2810 ((|#3| |#3|) 125)) (-1923 (((-3 |#3| "failed") |#3|) 82)) (-1775 ((|#3| |#3|) 141)) (-3418 (((-3 |#3| "failed") |#3|) 109)) (-2855 ((|#3| |#3|) 129)) (-2192 (((-3 |#3| "failed") |#3|) 84)) (-3915 ((|#3| |#3|) 142)) (-3480 (((-3 |#3| "failed") |#3|) 111)) (-2867 ((|#3| |#3|) 130)) (-3458 (((-3 |#3| "failed") |#3|) 80)) (-1767 ((|#3| |#3|) 140)) (-3187 (((-3 |#3| "failed") |#3|) 60)) (-2843 ((|#3| |#3|) 128)) (-3358 (((-3 |#3| "failed") |#3|) 76)) (-1751 ((|#3| |#3|) 138)) (-3624 (((-3 |#3| "failed") |#3|) 105)) (-2820 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-380 (-520))) 40 (|has| |#1| (-336)))))
-(((-254 |#1| |#2| |#3| |#4|) (-13 (-908 |#3|) (-10 -7 (IF (|has| |#1| (-336)) (-15 ** (|#3| |#3| (-380 (-520)))) |%noBranch|) (-15 -3260 (|#3| |#3|)) (-15 -1252 (|#3| |#3|)) (-15 -2745 (|#3| |#3|)) (-15 -2757 (|#3| |#3|)) (-15 -2768 (|#3| |#3|)) (-15 -2779 (|#3| |#3|)) (-15 -2789 (|#3| |#3|)) (-15 -2799 (|#3| |#3|)) (-15 -2810 (|#3| |#3|)) (-15 -2820 (|#3| |#3|)) (-15 -2831 (|#3| |#3|)) (-15 -2843 (|#3| |#3|)) (-15 -2855 (|#3| |#3|)) (-15 -2867 (|#3| |#3|)) (-15 -2879 (|#3| |#3|)) (-15 -2891 (|#3| |#3|)) (-15 -2903 (|#3| |#3|)) (-15 -2914 (|#3| |#3|)) (-15 -2925 (|#3| |#3|)) (-15 -1737 (|#3| |#3|)) (-15 -1744 (|#3| |#3|)) (-15 -1751 (|#3| |#3|)) (-15 -1758 (|#3| |#3|)) (-15 -1767 (|#3| |#3|)) (-15 -1775 (|#3| |#3|)) (-15 -3915 (|#3| |#3|)))) (-37 (-380 (-520))) (-1124 |#1|) (-1147 |#1| |#2|) (-908 |#2|)) (T -254))
-((** (*1 *2 *2 *3) (-12 (-5 *3 (-380 (-520))) (-4 *4 (-336)) (-4 *4 (-37 *3)) (-4 *5 (-1124 *4)) (-5 *1 (-254 *4 *5 *2 *6)) (-4 *2 (-1147 *4 *5)) (-4 *6 (-908 *5)))) (-3260 (*1 *2 *2) (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1124 *3)) (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1147 *3 *4)) (-4 *5 (-908 *4)))) (-1252 (*1 *2 *2) (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1124 *3)) (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1147 *3 *4)) (-4 *5 (-908 *4)))) (-2745 (*1 *2 *2) (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1124 *3)) (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1147 *3 *4)) (-4 *5 (-908 *4)))) (-2757 (*1 *2 *2) (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1124 *3)) (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1147 *3 *4)) (-4 *5 (-908 *4)))) (-2768 (*1 *2 *2) (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1124 *3)) (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1147 *3 *4)) (-4 *5 (-908 *4)))) (-2779 (*1 *2 *2) (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1124 *3)) (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1147 *3 *4)) (-4 *5 (-908 *4)))) (-2789 (*1 *2 *2) (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1124 *3)) (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1147 *3 *4)) (-4 *5 (-908 *4)))) (-2799 (*1 *2 *2) (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1124 *3)) (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1147 *3 *4)) (-4 *5 (-908 *4)))) (-2810 (*1 *2 *2) (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1124 *3)) (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1147 *3 *4)) (-4 *5 (-908 *4)))) (-2820 (*1 *2 *2) (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1124 *3)) (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1147 *3 *4)) (-4 *5 (-908 *4)))) (-2831 (*1 *2 *2) (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1124 *3)) (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1147 *3 *4)) (-4 *5 (-908 *4)))) (-2843 (*1 *2 *2) (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1124 *3)) (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1147 *3 *4)) (-4 *5 (-908 *4)))) (-2855 (*1 *2 *2) (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1124 *3)) (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1147 *3 *4)) (-4 *5 (-908 *4)))) (-2867 (*1 *2 *2) (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1124 *3)) (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1147 *3 *4)) (-4 *5 (-908 *4)))) (-2879 (*1 *2 *2) (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1124 *3)) (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1147 *3 *4)) (-4 *5 (-908 *4)))) (-2891 (*1 *2 *2) (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1124 *3)) (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1147 *3 *4)) (-4 *5 (-908 *4)))) (-2903 (*1 *2 *2) (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1124 *3)) (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1147 *3 *4)) (-4 *5 (-908 *4)))) (-2914 (*1 *2 *2) (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1124 *3)) (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1147 *3 *4)) (-4 *5 (-908 *4)))) (-2925 (*1 *2 *2) (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1124 *3)) (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1147 *3 *4)) (-4 *5 (-908 *4)))) (-1737 (*1 *2 *2) (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1124 *3)) (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1147 *3 *4)) (-4 *5 (-908 *4)))) (-1744 (*1 *2 *2) (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1124 *3)) (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1147 *3 *4)) (-4 *5 (-908 *4)))) (-1751 (*1 *2 *2) (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1124 *3)) (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1147 *3 *4)) (-4 *5 (-908 *4)))) (-1758 (*1 *2 *2) (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1124 *3)) (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1147 *3 *4)) (-4 *5 (-908 *4)))) (-1767 (*1 *2 *2) (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1124 *3)) (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1147 *3 *4)) (-4 *5 (-908 *4)))) (-1775 (*1 *2 *2) (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1124 *3)) (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1147 *3 *4)) (-4 *5 (-908 *4)))) (-3915 (*1 *2 *2) (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1124 *3)) (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1147 *3 *4)) (-4 *5 (-908 *4)))))
-(-13 (-908 |#3|) (-10 -7 (IF (|has| |#1| (-336)) (-15 ** (|#3| |#3| (-380 (-520)))) |%noBranch|) (-15 -3260 (|#3| |#3|)) (-15 -1252 (|#3| |#3|)) (-15 -2745 (|#3| |#3|)) (-15 -2757 (|#3| |#3|)) (-15 -2768 (|#3| |#3|)) (-15 -2779 (|#3| |#3|)) (-15 -2789 (|#3| |#3|)) (-15 -2799 (|#3| |#3|)) (-15 -2810 (|#3| |#3|)) (-15 -2820 (|#3| |#3|)) (-15 -2831 (|#3| |#3|)) (-15 -2843 (|#3| |#3|)) (-15 -2855 (|#3| |#3|)) (-15 -2867 (|#3| |#3|)) (-15 -2879 (|#3| |#3|)) (-15 -2891 (|#3| |#3|)) (-15 -2903 (|#3| |#3|)) (-15 -2914 (|#3| |#3|)) (-15 -2925 (|#3| |#3|)) (-15 -1737 (|#3| |#3|)) (-15 -1744 (|#3| |#3|)) (-15 -1751 (|#3| |#3|)) (-15 -1758 (|#3| |#3|)) (-15 -1767 (|#3| |#3|)) (-15 -1775 (|#3| |#3|)) (-15 -3915 (|#3| |#3|))))
-((-1627 (($ (-1 (-108) |#2|) $) 23)) (-2331 (($ $) 36)) (-3766 (($ (-1 (-108) |#2|) $) NIL) (($ |#2| $) 34)) (-1421 (($ |#2| $) 31) (($ (-1 (-108) |#2|) $) 17)) (-3235 (($ (-1 (-108) |#2| |#2|) $ $) NIL) (($ $ $) 40)) (-1659 (($ |#2| $ (-520)) 19) (($ $ $ (-520)) 21)) (-3690 (($ $ (-520)) 11) (($ $ (-1131 (-520))) 14)) (-2251 (($ $ |#2|) 29) (($ $ $) NIL)) (-4156 (($ $ |#2|) 28) (($ |#2| $) NIL) (($ $ $) 25) (($ (-586 $)) NIL)))
-(((-255 |#1| |#2|) (-10 -8 (-15 -3235 (|#1| |#1| |#1|)) (-15 -3766 (|#1| |#2| |#1|)) (-15 -3235 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -3766 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2251 (|#1| |#1| |#1|)) (-15 -2251 (|#1| |#1| |#2|)) (-15 -1659 (|#1| |#1| |#1| (-520))) (-15 -1659 (|#1| |#2| |#1| (-520))) (-15 -3690 (|#1| |#1| (-1131 (-520)))) (-15 -3690 (|#1| |#1| (-520))) (-15 -4156 (|#1| (-586 |#1|))) (-15 -4156 (|#1| |#1| |#1|)) (-15 -4156 (|#1| |#2| |#1|)) (-15 -4156 (|#1| |#1| |#2|)) (-15 -1421 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -1627 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -1421 (|#1| |#2| |#1|)) (-15 -2331 (|#1| |#1|))) (-256 |#2|) (-1118)) (T -255))
-NIL
-(-10 -8 (-15 -3235 (|#1| |#1| |#1|)) (-15 -3766 (|#1| |#2| |#1|)) (-15 -3235 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -3766 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2251 (|#1| |#1| |#1|)) (-15 -2251 (|#1| |#1| |#2|)) (-15 -1659 (|#1| |#1| |#1| (-520))) (-15 -1659 (|#1| |#2| |#1| (-520))) (-15 -3690 (|#1| |#1| (-1131 (-520)))) (-15 -3690 (|#1| |#1| (-520))) (-15 -4156 (|#1| (-586 |#1|))) (-15 -4156 (|#1| |#1| |#1|)) (-15 -4156 (|#1| |#2| |#1|)) (-15 -4156 (|#1| |#1| |#2|)) (-15 -1421 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -1627 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -1421 (|#1| |#2| |#1|)) (-15 -2331 (|#1| |#1|)))
-((-1414 (((-108) $ $) 19 (|has| |#1| (-1012)))) (-1476 (((-1169) $ (-520) (-520)) 40 (|has| $ (-6 -4230)))) (-2063 (((-108) $ (-706)) 8)) (-2377 ((|#1| $ (-520) |#1|) 52 (|has| $ (-6 -4230))) ((|#1| $ (-1131 (-520)) |#1|) 58 (|has| $ (-6 -4230)))) (-1817 (($ (-1 (-108) |#1|) $) 85)) (-1627 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4229)))) (-3961 (($) 7 T CONST)) (-3667 (($ $) 83 (|has| |#1| (-1012)))) (-2331 (($ $) 78 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-3766 (($ (-1 (-108) |#1|) $) 89) (($ |#1| $) 84 (|has| |#1| (-1012)))) (-1421 (($ |#1| $) 77 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4229)))) (-3856 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4229))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4229)))) (-3846 ((|#1| $ (-520) |#1|) 53 (|has| $ (-6 -4230)))) (-3623 ((|#1| $ (-520)) 51)) (-3828 (((-586 |#1|) $) 30 (|has| $ (-6 -4229)))) (-1810 (($ (-706) |#1|) 69)) (-3027 (((-108) $ (-706)) 9)) (-2567 (((-520) $) 43 (|has| (-520) (-783)))) (-3235 (($ (-1 (-108) |#1| |#1|) $ $) 86) (($ $ $) 82 (|has| |#1| (-783)))) (-3702 (((-586 |#1|) $) 29 (|has| $ (-6 -4229)))) (-2422 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-1752 (((-520) $) 44 (|has| (-520) (-783)))) (-3830 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-1390 (((-108) $ (-706)) 10)) (-1239 (((-1066) $) 22 (|has| |#1| (-1012)))) (-3618 (($ |#1| $ (-520)) 88) (($ $ $ (-520)) 87)) (-1659 (($ |#1| $ (-520)) 60) (($ $ $ (-520)) 59)) (-3622 (((-586 (-520)) $) 46)) (-2603 (((-108) (-520) $) 47)) (-4142 (((-1030) $) 21 (|has| |#1| (-1012)))) (-2293 ((|#1| $) 42 (|has| (-520) (-783)))) (-2985 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-2936 (($ $ |#1|) 41 (|has| $ (-6 -4230)))) (-4155 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 |#1|))) 26 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-268 |#1|)) 25 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-586 |#1|) (-586 |#1|)) 23 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))) (-2533 (((-108) $ $) 14)) (-2094 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-1523 (((-586 |#1|) $) 48)) (-4018 (((-108) $) 11)) (-2238 (($) 12)) (-2543 ((|#1| $ (-520) |#1|) 50) ((|#1| $ (-520)) 49) (($ $ (-1131 (-520))) 63)) (-4185 (($ $ (-520)) 91) (($ $ (-1131 (-520))) 90)) (-3690 (($ $ (-520)) 62) (($ $ (-1131 (-520))) 61)) (-4159 (((-706) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4229))) (((-706) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-2403 (($ $) 13)) (-1429 (((-496) $) 79 (|has| |#1| (-561 (-496))))) (-2200 (($ (-586 |#1|)) 70)) (-2251 (($ $ |#1|) 93) (($ $ $) 92)) (-4156 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-586 $)) 65)) (-2188 (((-791) $) 18 (|has| |#1| (-560 (-791))))) (-1662 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4229)))) (-1530 (((-108) $ $) 20 (|has| |#1| (-1012)))) (-3474 (((-706) $) 6 (|has| $ (-6 -4229)))))
-(((-256 |#1|) (-1195) (-1118)) (T -256))
-((-2251 (*1 *1 *1 *2) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1118)))) (-2251 (*1 *1 *1 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1118)))) (-4185 (*1 *1 *1 *2) (-12 (-5 *2 (-520)) (-4 *1 (-256 *3)) (-4 *3 (-1118)))) (-4185 (*1 *1 *1 *2) (-12 (-5 *2 (-1131 (-520))) (-4 *1 (-256 *3)) (-4 *3 (-1118)))) (-3766 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-256 *3)) (-4 *3 (-1118)))) (-3618 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-520)) (-4 *1 (-256 *2)) (-4 *2 (-1118)))) (-3618 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-520)) (-4 *1 (-256 *3)) (-4 *3 (-1118)))) (-3235 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-256 *3)) (-4 *3 (-1118)))) (-1817 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-256 *3)) (-4 *3 (-1118)))) (-3766 (*1 *1 *2 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1118)) (-4 *2 (-1012)))) (-3667 (*1 *1 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1118)) (-4 *2 (-1012)))) (-3235 (*1 *1 *1 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1118)) (-4 *2 (-783)))))
-(-13 (-591 |t#1|) (-10 -8 (-6 -4230) (-15 -2251 ($ $ |t#1|)) (-15 -2251 ($ $ $)) (-15 -4185 ($ $ (-520))) (-15 -4185 ($ $ (-1131 (-520)))) (-15 -3766 ($ (-1 (-108) |t#1|) $)) (-15 -3618 ($ |t#1| $ (-520))) (-15 -3618 ($ $ $ (-520))) (-15 -3235 ($ (-1 (-108) |t#1| |t#1|) $ $)) (-15 -1817 ($ (-1 (-108) |t#1|) $)) (IF (|has| |t#1| (-1012)) (PROGN (-15 -3766 ($ |t#1| $)) (-15 -3667 ($ $))) |%noBranch|) (IF (|has| |t#1| (-783)) (-15 -3235 ($ $ $)) |%noBranch|)))
-(((-33) . T) ((-97) |has| |#1| (-1012)) ((-560 (-791)) -3700 (|has| |#1| (-1012)) (|has| |#1| (-560 (-791)))) ((-139 |#1|) . T) ((-561 (-496)) |has| |#1| (-561 (-496))) ((-260 #0=(-520) |#1|) . T) ((-262 #0# |#1|) . T) ((-283 |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))) ((-459 |#1|) . T) ((-553 #0# |#1|) . T) ((-481 |#1| |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))) ((-591 |#1|) . T) ((-1012) |has| |#1| (-1012)) ((-1118) . T))
+((-1415 (((-108) $ $) NIL)) (-2670 (($ (-521)) 13) (($ $ $) 14)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2189 (((-792) $) 17)) (-1531 (((-108) $ $) 9)))
+(((-147) (-13 (-1013) (-10 -8 (-15 -2670 ($ (-521))) (-15 -2670 ($ $ $))))) (T -147))
+((-2670 (*1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-147)))) (-2670 (*1 *1 *1 *1) (-5 *1 (-147))))
+(-13 (-1013) (-10 -8 (-15 -2670 ($ (-521))) (-15 -2670 ($ $ $))))
+((-2727 (((-110) (-1084)) 97)))
+(((-148) (-10 -7 (-15 -2727 ((-110) (-1084))))) (T -148))
+((-2727 (*1 *2 *3) (-12 (-5 *3 (-1084)) (-5 *2 (-110)) (-5 *1 (-148)))))
+(-10 -7 (-15 -2727 ((-110) (-1084))))
+((-3866 ((|#3| |#3|) 20)))
+(((-149 |#1| |#2| |#3|) (-10 -7 (-15 -3866 (|#3| |#3|))) (-970) (-1141 |#1|) (-1141 |#2|)) (T -149))
+((-3866 (*1 *2 *2) (-12 (-4 *3 (-970)) (-4 *4 (-1141 *3)) (-5 *1 (-149 *3 *4 *2)) (-4 *2 (-1141 *4)))))
+(-10 -7 (-15 -3866 (|#3| |#3|)))
+((-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) 216)) (-1865 ((|#2| $) 96)) (-2904 (($ $) 243)) (-2769 (($ $) 237)) (-2569 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) 40)) (-2880 (($ $) 241)) (-2746 (($ $) 235)) (-1297 (((-3 (-521) "failed") $) NIL) (((-3 (-381 (-521)) "failed") $) NIL) (((-3 |#2| "failed") $) 140)) (-1483 (((-521) $) NIL) (((-381 (-521)) $) NIL) ((|#2| $) 138)) (-2277 (($ $ $) 221)) (-3279 (((-627 (-521)) (-627 $)) NIL) (((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL) (((-2 (|:| -1201 (-627 |#2|)) (|:| |vec| (-1165 |#2|))) (-627 $) (-1165 $)) 154) (((-627 |#2|) (-627 $)) 148)) (-3859 (($ (-1080 |#2|)) 119) (((-3 $ "failed") (-381 (-1080 |#2|))) NIL)) (-1257 (((-3 $ "failed") $) 208)) (-1521 (((-3 (-381 (-521)) "failed") $) 198)) (-3190 (((-108) $) 193)) (-2082 (((-381 (-521)) $) 196)) (-3162 (((-850)) 89)) (-2253 (($ $ $) 223)) (-3775 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 259)) (-2834 (($) 232)) (-3427 (((-818 (-521) $) $ (-821 (-521)) (-818 (-521) $)) 185) (((-818 (-353) $) $ (-821 (-353)) (-818 (-353) $)) 190)) (-3930 ((|#2| $) 94)) (-3548 (((-1080 |#2|) $) 121)) (-1390 (($ (-1 |#2| |#2|) $) 102)) (-1253 (($ $) 234)) (-3844 (((-1080 |#2|) $) 120)) (-3095 (($ $) 201)) (-3146 (($) 97)) (-1912 (((-392 (-1080 $)) (-1080 $)) 88)) (-2165 (((-392 (-1080 $)) (-1080 $)) 57)) (-2230 (((-3 $ "failed") $ |#2|) 203) (((-3 $ "failed") $ $) 206)) (-3261 (($ $) 233)) (-4196 (((-707) $) 218)) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) 227)) (-4010 ((|#2| (-1165 $)) NIL) ((|#2|) 91)) (-2156 (($ $ (-1 |#2| |#2|) (-707)) NIL) (($ $ (-1 |#2| |#2|)) 113) (($ $ (-587 (-1084)) (-587 (-707))) NIL) (($ $ (-1084) (-707)) NIL) (($ $ (-587 (-1084))) NIL) (($ $ (-1084)) NIL) (($ $ (-707)) NIL) (($ $) NIL)) (-2879 (((-1080 |#2|)) 114)) (-2892 (($ $) 242)) (-2758 (($ $) 236)) (-2234 (((-1165 |#2|) $ (-1165 $)) 127) (((-627 |#2|) (-1165 $) (-1165 $)) NIL) (((-1165 |#2|) $) 110) (((-627 |#2|) (-1165 $)) NIL)) (-1430 (((-1165 |#2|) $) NIL) (($ (-1165 |#2|)) NIL) (((-1080 |#2|) $) NIL) (($ (-1080 |#2|)) NIL) (((-821 (-521)) $) 176) (((-821 (-353)) $) 180) (((-154 (-353)) $) 166) (((-154 (-202)) $) 161) (((-497) $) 172)) (-1223 (($ $) 98)) (-2189 (((-792) $) 137) (($ (-521)) NIL) (($ |#2|) NIL) (($ (-381 (-521))) NIL) (($ $) NIL)) (-3110 (((-1080 |#2|) $) 23)) (-3846 (((-707)) 100)) (-1759 (($ $) 246)) (-2832 (($ $) 240)) (-1745 (($ $) 244)) (-2811 (($ $) 238)) (-3503 ((|#2| $) 231)) (-1752 (($ $) 245)) (-2821 (($ $) 239)) (-3304 (($ $) 156)) (-1531 (((-108) $ $) 104)) (-1549 (((-108) $ $) 192)) (-1612 (($ $) 106) (($ $ $) NIL)) (-1602 (($ $ $) 105)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-381 (-521))) 265) (($ $ $) NIL) (($ $ (-521)) NIL)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) 112) (($ $ $) 141) (($ $ |#2|) NIL) (($ |#2| $) 108) (($ (-381 (-521)) $) NIL) (($ $ (-381 (-521))) NIL)))
+(((-150 |#1| |#2|) (-10 -8 (-15 -2156 (|#1| |#1|)) (-15 -2156 (|#1| |#1| (-707))) (-15 -2189 (|#1| |#1|)) (-15 -2230 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3847 ((-2 (|:| -3689 |#1|) (|:| -4220 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2156 (|#1| |#1| (-1084))) (-15 -2156 (|#1| |#1| (-587 (-1084)))) (-15 -2156 (|#1| |#1| (-1084) (-707))) (-15 -2156 (|#1| |#1| (-587 (-1084)) (-587 (-707)))) (-15 -4196 ((-707) |#1|)) (-15 -1830 ((-2 (|:| -3727 |#1|) (|:| -3820 |#1|)) |#1| |#1|)) (-15 -2253 (|#1| |#1| |#1|)) (-15 -2277 (|#1| |#1| |#1|)) (-15 -3095 (|#1| |#1|)) (-15 ** (|#1| |#1| (-521))) (-15 * (|#1| |#1| (-381 (-521)))) (-15 * (|#1| (-381 (-521)) |#1|)) (-15 -2189 (|#1| (-381 (-521)))) (-15 -1549 ((-108) |#1| |#1|)) (-15 -1430 ((-497) |#1|)) (-15 -1430 ((-154 (-202)) |#1|)) (-15 -1430 ((-154 (-353)) |#1|)) (-15 -2769 (|#1| |#1|)) (-15 -2746 (|#1| |#1|)) (-15 -2758 (|#1| |#1|)) (-15 -2821 (|#1| |#1|)) (-15 -2811 (|#1| |#1|)) (-15 -2832 (|#1| |#1|)) (-15 -2892 (|#1| |#1|)) (-15 -2880 (|#1| |#1|)) (-15 -2904 (|#1| |#1|)) (-15 -1752 (|#1| |#1|)) (-15 -1745 (|#1| |#1|)) (-15 -1759 (|#1| |#1|)) (-15 -1253 (|#1| |#1|)) (-15 -3261 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2834 (|#1|)) (-15 ** (|#1| |#1| (-381 (-521)))) (-15 -2165 ((-392 (-1080 |#1|)) (-1080 |#1|))) (-15 -1912 ((-392 (-1080 |#1|)) (-1080 |#1|))) (-15 -2569 ((-3 (-587 (-1080 |#1|)) "failed") (-587 (-1080 |#1|)) (-1080 |#1|))) (-15 -1521 ((-3 (-381 (-521)) "failed") |#1|)) (-15 -2082 ((-381 (-521)) |#1|)) (-15 -3190 ((-108) |#1|)) (-15 -3775 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3503 (|#2| |#1|)) (-15 -3304 (|#1| |#1|)) (-15 -2230 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1223 (|#1| |#1|)) (-15 -3146 (|#1|)) (-15 -1430 ((-821 (-353)) |#1|)) (-15 -1430 ((-821 (-521)) |#1|)) (-15 -3427 ((-818 (-353) |#1|) |#1| (-821 (-353)) (-818 (-353) |#1|))) (-15 -3427 ((-818 (-521) |#1|) |#1| (-821 (-521)) (-818 (-521) |#1|))) (-15 -1390 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2156 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2156 (|#1| |#1| (-1 |#2| |#2|) (-707))) (-15 -3859 ((-3 |#1| "failed") (-381 (-1080 |#2|)))) (-15 -3844 ((-1080 |#2|) |#1|)) (-15 -1430 (|#1| (-1080 |#2|))) (-15 -3859 (|#1| (-1080 |#2|))) (-15 -2879 ((-1080 |#2|))) (-15 -3279 ((-627 |#2|) (-627 |#1|))) (-15 -3279 ((-2 (|:| -1201 (-627 |#2|)) (|:| |vec| (-1165 |#2|))) (-627 |#1|) (-1165 |#1|))) (-15 -3279 ((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 |#1|) (-1165 |#1|))) (-15 -3279 ((-627 (-521)) (-627 |#1|))) (-15 -1483 (|#2| |#1|)) (-15 -1297 ((-3 |#2| "failed") |#1|)) (-15 -1297 ((-3 (-381 (-521)) "failed") |#1|)) (-15 -1483 ((-381 (-521)) |#1|)) (-15 -1297 ((-3 (-521) "failed") |#1|)) (-15 -1483 ((-521) |#1|)) (-15 -1430 ((-1080 |#2|) |#1|)) (-15 -4010 (|#2|)) (-15 -1430 (|#1| (-1165 |#2|))) (-15 -1430 ((-1165 |#2|) |#1|)) (-15 -2234 ((-627 |#2|) (-1165 |#1|))) (-15 -2234 ((-1165 |#2|) |#1|)) (-15 -3548 ((-1080 |#2|) |#1|)) (-15 -3110 ((-1080 |#2|) |#1|)) (-15 -4010 (|#2| (-1165 |#1|))) (-15 -2234 ((-627 |#2|) (-1165 |#1|) (-1165 |#1|))) (-15 -2234 ((-1165 |#2|) |#1| (-1165 |#1|))) (-15 -3930 (|#2| |#1|)) (-15 -1865 (|#2| |#1|)) (-15 -3162 ((-850))) (-15 -2189 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2189 (|#1| (-521))) (-15 -3846 ((-707))) (-15 ** (|#1| |#1| (-707))) (-15 -1257 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-850))) (-15 * (|#1| (-521) |#1|)) (-15 -1612 (|#1| |#1| |#1|)) (-15 -1612 (|#1| |#1|)) (-15 * (|#1| (-707) |#1|)) (-15 * (|#1| (-850) |#1|)) (-15 -1602 (|#1| |#1| |#1|)) (-15 -2189 ((-792) |#1|)) (-15 -1531 ((-108) |#1| |#1|))) (-151 |#2|) (-157)) (T -150))
+((-3846 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-707)) (-5 *1 (-150 *3 *4)) (-4 *3 (-151 *4)))) (-3162 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-850)) (-5 *1 (-150 *3 *4)) (-4 *3 (-151 *4)))) (-4010 (*1 *2) (-12 (-4 *2 (-157)) (-5 *1 (-150 *3 *2)) (-4 *3 (-151 *2)))) (-2879 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-1080 *4)) (-5 *1 (-150 *3 *4)) (-4 *3 (-151 *4)))))
+(-10 -8 (-15 -2156 (|#1| |#1|)) (-15 -2156 (|#1| |#1| (-707))) (-15 -2189 (|#1| |#1|)) (-15 -2230 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3847 ((-2 (|:| -3689 |#1|) (|:| -4220 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2156 (|#1| |#1| (-1084))) (-15 -2156 (|#1| |#1| (-587 (-1084)))) (-15 -2156 (|#1| |#1| (-1084) (-707))) (-15 -2156 (|#1| |#1| (-587 (-1084)) (-587 (-707)))) (-15 -4196 ((-707) |#1|)) (-15 -1830 ((-2 (|:| -3727 |#1|) (|:| -3820 |#1|)) |#1| |#1|)) (-15 -2253 (|#1| |#1| |#1|)) (-15 -2277 (|#1| |#1| |#1|)) (-15 -3095 (|#1| |#1|)) (-15 ** (|#1| |#1| (-521))) (-15 * (|#1| |#1| (-381 (-521)))) (-15 * (|#1| (-381 (-521)) |#1|)) (-15 -2189 (|#1| (-381 (-521)))) (-15 -1549 ((-108) |#1| |#1|)) (-15 -1430 ((-497) |#1|)) (-15 -1430 ((-154 (-202)) |#1|)) (-15 -1430 ((-154 (-353)) |#1|)) (-15 -2769 (|#1| |#1|)) (-15 -2746 (|#1| |#1|)) (-15 -2758 (|#1| |#1|)) (-15 -2821 (|#1| |#1|)) (-15 -2811 (|#1| |#1|)) (-15 -2832 (|#1| |#1|)) (-15 -2892 (|#1| |#1|)) (-15 -2880 (|#1| |#1|)) (-15 -2904 (|#1| |#1|)) (-15 -1752 (|#1| |#1|)) (-15 -1745 (|#1| |#1|)) (-15 -1759 (|#1| |#1|)) (-15 -1253 (|#1| |#1|)) (-15 -3261 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2834 (|#1|)) (-15 ** (|#1| |#1| (-381 (-521)))) (-15 -2165 ((-392 (-1080 |#1|)) (-1080 |#1|))) (-15 -1912 ((-392 (-1080 |#1|)) (-1080 |#1|))) (-15 -2569 ((-3 (-587 (-1080 |#1|)) "failed") (-587 (-1080 |#1|)) (-1080 |#1|))) (-15 -1521 ((-3 (-381 (-521)) "failed") |#1|)) (-15 -2082 ((-381 (-521)) |#1|)) (-15 -3190 ((-108) |#1|)) (-15 -3775 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3503 (|#2| |#1|)) (-15 -3304 (|#1| |#1|)) (-15 -2230 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1223 (|#1| |#1|)) (-15 -3146 (|#1|)) (-15 -1430 ((-821 (-353)) |#1|)) (-15 -1430 ((-821 (-521)) |#1|)) (-15 -3427 ((-818 (-353) |#1|) |#1| (-821 (-353)) (-818 (-353) |#1|))) (-15 -3427 ((-818 (-521) |#1|) |#1| (-821 (-521)) (-818 (-521) |#1|))) (-15 -1390 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2156 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2156 (|#1| |#1| (-1 |#2| |#2|) (-707))) (-15 -3859 ((-3 |#1| "failed") (-381 (-1080 |#2|)))) (-15 -3844 ((-1080 |#2|) |#1|)) (-15 -1430 (|#1| (-1080 |#2|))) (-15 -3859 (|#1| (-1080 |#2|))) (-15 -2879 ((-1080 |#2|))) (-15 -3279 ((-627 |#2|) (-627 |#1|))) (-15 -3279 ((-2 (|:| -1201 (-627 |#2|)) (|:| |vec| (-1165 |#2|))) (-627 |#1|) (-1165 |#1|))) (-15 -3279 ((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 |#1|) (-1165 |#1|))) (-15 -3279 ((-627 (-521)) (-627 |#1|))) (-15 -1483 (|#2| |#1|)) (-15 -1297 ((-3 |#2| "failed") |#1|)) (-15 -1297 ((-3 (-381 (-521)) "failed") |#1|)) (-15 -1483 ((-381 (-521)) |#1|)) (-15 -1297 ((-3 (-521) "failed") |#1|)) (-15 -1483 ((-521) |#1|)) (-15 -1430 ((-1080 |#2|) |#1|)) (-15 -4010 (|#2|)) (-15 -1430 (|#1| (-1165 |#2|))) (-15 -1430 ((-1165 |#2|) |#1|)) (-15 -2234 ((-627 |#2|) (-1165 |#1|))) (-15 -2234 ((-1165 |#2|) |#1|)) (-15 -3548 ((-1080 |#2|) |#1|)) (-15 -3110 ((-1080 |#2|) |#1|)) (-15 -4010 (|#2| (-1165 |#1|))) (-15 -2234 ((-627 |#2|) (-1165 |#1|) (-1165 |#1|))) (-15 -2234 ((-1165 |#2|) |#1| (-1165 |#1|))) (-15 -3930 (|#2| |#1|)) (-15 -1865 (|#2| |#1|)) (-15 -3162 ((-850))) (-15 -2189 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2189 (|#1| (-521))) (-15 -3846 ((-707))) (-15 ** (|#1| |#1| (-707))) (-15 -1257 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-850))) (-15 * (|#1| (-521) |#1|)) (-15 -1612 (|#1| |#1| |#1|)) (-15 -1612 (|#1| |#1|)) (-15 * (|#1| (-707) |#1|)) (-15 * (|#1| (-850) |#1|)) (-15 -1602 (|#1| |#1| |#1|)) (-15 -2189 ((-792) |#1|)) (-15 -1531 ((-108) |#1| |#1|)))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) 93 (-3703 (|has| |#1| (-513)) (-12 (|has| |#1| (-282)) (|has| |#1| (-838)))))) (-2559 (($ $) 94 (-3703 (|has| |#1| (-513)) (-12 (|has| |#1| (-282)) (|has| |#1| (-838)))))) (-1733 (((-108) $) 96 (-3703 (|has| |#1| (-513)) (-12 (|has| |#1| (-282)) (|has| |#1| (-838)))))) (-3214 (((-627 |#1|) (-1165 $)) 46) (((-627 |#1|)) 61)) (-1865 ((|#1| $) 52)) (-2904 (($ $) 228 (|has| |#1| (-1105)))) (-2769 (($ $) 211 (|has| |#1| (-1105)))) (-1340 (((-1093 (-850) (-707)) (-521)) 147 (|has| |#1| (-323)))) (-1232 (((-3 $ "failed") $ $) 19)) (-2598 (((-392 (-1080 $)) (-1080 $)) 242 (-12 (|has| |#1| (-282)) (|has| |#1| (-838))))) (-3063 (($ $) 113 (-3703 (-12 (|has| |#1| (-282)) (|has| |#1| (-838))) (|has| |#1| (-337))))) (-3358 (((-392 $) $) 114 (-3703 (-12 (|has| |#1| (-282)) (|has| |#1| (-838))) (|has| |#1| (-337))))) (-1927 (($ $) 241 (-12 (|has| |#1| (-927)) (|has| |#1| (-1105))))) (-2569 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) 245 (-12 (|has| |#1| (-282)) (|has| |#1| (-838))))) (-1389 (((-108) $ $) 104 (|has| |#1| (-282)))) (-1630 (((-707)) 87 (|has| |#1| (-342)))) (-2880 (($ $) 227 (|has| |#1| (-1105)))) (-2746 (($ $) 212 (|has| |#1| (-1105)))) (-2926 (($ $) 226 (|has| |#1| (-1105)))) (-2790 (($ $) 213 (|has| |#1| (-1105)))) (-2547 (($) 17 T CONST)) (-1297 (((-3 (-521) "failed") $) 169 (|has| |#1| (-961 (-521)))) (((-3 (-381 (-521)) "failed") $) 167 (|has| |#1| (-961 (-381 (-521))))) (((-3 |#1| "failed") $) 166)) (-1483 (((-521) $) 170 (|has| |#1| (-961 (-521)))) (((-381 (-521)) $) 168 (|has| |#1| (-961 (-381 (-521))))) ((|#1| $) 165)) (-4083 (($ (-1165 |#1|) (-1165 $)) 48) (($ (-1165 |#1|)) 64)) (-1864 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| |#1| (-323)))) (-2277 (($ $ $) 108 (|has| |#1| (-282)))) (-3499 (((-627 |#1|) $ (-1165 $)) 53) (((-627 |#1|) $) 59)) (-3279 (((-627 (-521)) (-627 $)) 164 (|has| |#1| (-583 (-521)))) (((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) 163 (|has| |#1| (-583 (-521)))) (((-2 (|:| -1201 (-627 |#1|)) (|:| |vec| (-1165 |#1|))) (-627 $) (-1165 $)) 162) (((-627 |#1|) (-627 $)) 161)) (-3859 (($ (-1080 |#1|)) 158) (((-3 $ "failed") (-381 (-1080 |#1|))) 155 (|has| |#1| (-337)))) (-1257 (((-3 $ "failed") $) 34)) (-1935 ((|#1| $) 253)) (-1521 (((-3 (-381 (-521)) "failed") $) 246 (|has| |#1| (-506)))) (-3190 (((-108) $) 248 (|has| |#1| (-506)))) (-2082 (((-381 (-521)) $) 247 (|has| |#1| (-506)))) (-3162 (((-850)) 54)) (-3250 (($) 90 (|has| |#1| (-342)))) (-2253 (($ $ $) 107 (|has| |#1| (-282)))) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) 102 (|has| |#1| (-282)))) (-2103 (($) 149 (|has| |#1| (-323)))) (-2371 (((-108) $) 150 (|has| |#1| (-323)))) (-2833 (($ $ (-707)) 141 (|has| |#1| (-323))) (($ $) 140 (|has| |#1| (-323)))) (-2710 (((-108) $) 115 (-3703 (-12 (|has| |#1| (-282)) (|has| |#1| (-838))) (|has| |#1| (-337))))) (-3775 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 249 (-12 (|has| |#1| (-979)) (|has| |#1| (-1105))))) (-2834 (($) 238 (|has| |#1| (-1105)))) (-3427 (((-818 (-521) $) $ (-821 (-521)) (-818 (-521) $)) 261 (|has| |#1| (-815 (-521)))) (((-818 (-353) $) $ (-821 (-353)) (-818 (-353) $)) 260 (|has| |#1| (-815 (-353))))) (-2733 (((-850) $) 152 (|has| |#1| (-323))) (((-770 (-850)) $) 138 (|has| |#1| (-323)))) (-3996 (((-108) $) 31)) (-3407 (($ $ (-521)) 240 (-12 (|has| |#1| (-927)) (|has| |#1| (-1105))))) (-3930 ((|#1| $) 51)) (-3842 (((-3 $ "failed") $) 142 (|has| |#1| (-323)))) (-1546 (((-3 (-587 $) "failed") (-587 $) $) 111 (|has| |#1| (-282)))) (-3548 (((-1080 |#1|) $) 44 (|has| |#1| (-337)))) (-2810 (($ $ $) 207 (|has| |#1| (-784)))) (-2446 (($ $ $) 206 (|has| |#1| (-784)))) (-1390 (($ (-1 |#1| |#1|) $) 262)) (-2715 (((-850) $) 89 (|has| |#1| (-342)))) (-1253 (($ $) 235 (|has| |#1| (-1105)))) (-3844 (((-1080 |#1|) $) 156)) (-2223 (($ (-587 $)) 100 (-3703 (|has| |#1| (-282)) (-12 (|has| |#1| (-282)) (|has| |#1| (-838))))) (($ $ $) 99 (-3703 (|has| |#1| (-282)) (-12 (|has| |#1| (-282)) (|has| |#1| (-838)))))) (-3688 (((-1067) $) 9)) (-3095 (($ $) 116 (|has| |#1| (-337)))) (-3797 (($) 143 (|has| |#1| (-323)) CONST)) (-2716 (($ (-850)) 88 (|has| |#1| (-342)))) (-3146 (($) 257)) (-1948 ((|#1| $) 254)) (-4147 (((-1031) $) 10)) (-1383 (($) 160)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) 101 (-3703 (|has| |#1| (-282)) (-12 (|has| |#1| (-282)) (|has| |#1| (-838)))))) (-2258 (($ (-587 $)) 98 (-3703 (|has| |#1| (-282)) (-12 (|has| |#1| (-282)) (|has| |#1| (-838))))) (($ $ $) 97 (-3703 (|has| |#1| (-282)) (-12 (|has| |#1| (-282)) (|has| |#1| (-838)))))) (-3040 (((-587 (-2 (|:| -1916 (-521)) (|:| -2997 (-521))))) 146 (|has| |#1| (-323)))) (-1912 (((-392 (-1080 $)) (-1080 $)) 244 (-12 (|has| |#1| (-282)) (|has| |#1| (-838))))) (-2165 (((-392 (-1080 $)) (-1080 $)) 243 (-12 (|has| |#1| (-282)) (|has| |#1| (-838))))) (-1916 (((-392 $) $) 112 (-3703 (-12 (|has| |#1| (-282)) (|has| |#1| (-838))) (|has| |#1| (-337))))) (-1962 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-282))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) 109 (|has| |#1| (-282)))) (-2230 (((-3 $ "failed") $ |#1|) 252 (|has| |#1| (-513))) (((-3 $ "failed") $ $) 92 (-3703 (|has| |#1| (-513)) (-12 (|has| |#1| (-282)) (|has| |#1| (-838)))))) (-3854 (((-3 (-587 $) "failed") (-587 $) $) 103 (|has| |#1| (-282)))) (-3261 (($ $) 236 (|has| |#1| (-1105)))) (-2288 (($ $ (-587 |#1|) (-587 |#1|)) 268 (|has| |#1| (-284 |#1|))) (($ $ |#1| |#1|) 267 (|has| |#1| (-284 |#1|))) (($ $ (-269 |#1|)) 266 (|has| |#1| (-284 |#1|))) (($ $ (-587 (-269 |#1|))) 265 (|has| |#1| (-284 |#1|))) (($ $ (-587 (-1084)) (-587 |#1|)) 264 (|has| |#1| (-482 (-1084) |#1|))) (($ $ (-1084) |#1|) 263 (|has| |#1| (-482 (-1084) |#1|)))) (-4196 (((-707) $) 105 (|has| |#1| (-282)))) (-2544 (($ $ |#1|) 269 (|has| |#1| (-261 |#1| |#1|)))) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) 106 (|has| |#1| (-282)))) (-4010 ((|#1| (-1165 $)) 47) ((|#1|) 60)) (-4067 (((-707) $) 151 (|has| |#1| (-323))) (((-3 (-707) "failed") $ $) 139 (|has| |#1| (-323)))) (-2156 (($ $ (-1 |#1| |#1|) (-707)) 123) (($ $ (-1 |#1| |#1|)) 122) (($ $ (-587 (-1084)) (-587 (-707))) 130 (|has| |#1| (-829 (-1084)))) (($ $ (-1084) (-707)) 131 (|has| |#1| (-829 (-1084)))) (($ $ (-587 (-1084))) 132 (|has| |#1| (-829 (-1084)))) (($ $ (-1084)) 133 (|has| |#1| (-829 (-1084)))) (($ $ (-707)) 135 (-3703 (-4009 (|has| |#1| (-337)) (|has| |#1| (-210))) (|has| |#1| (-210)) (-4009 (|has| |#1| (-210)) (|has| |#1| (-337))))) (($ $) 137 (-3703 (-4009 (|has| |#1| (-337)) (|has| |#1| (-210))) (|has| |#1| (-210)) (-4009 (|has| |#1| (-210)) (|has| |#1| (-337)))))) (-3089 (((-627 |#1|) (-1165 $) (-1 |#1| |#1|)) 154 (|has| |#1| (-337)))) (-2879 (((-1080 |#1|)) 159)) (-1738 (($ $) 225 (|has| |#1| (-1105)))) (-2800 (($ $) 214 (|has| |#1| (-1105)))) (-1204 (($) 148 (|has| |#1| (-323)))) (-2915 (($ $) 224 (|has| |#1| (-1105)))) (-2780 (($ $) 215 (|has| |#1| (-1105)))) (-2892 (($ $) 223 (|has| |#1| (-1105)))) (-2758 (($ $) 216 (|has| |#1| (-1105)))) (-2234 (((-1165 |#1|) $ (-1165 $)) 50) (((-627 |#1|) (-1165 $) (-1165 $)) 49) (((-1165 |#1|) $) 66) (((-627 |#1|) (-1165 $)) 65)) (-1430 (((-1165 |#1|) $) 63) (($ (-1165 |#1|)) 62) (((-1080 |#1|) $) 171) (($ (-1080 |#1|)) 157) (((-821 (-521)) $) 259 (|has| |#1| (-562 (-821 (-521))))) (((-821 (-353)) $) 258 (|has| |#1| (-562 (-821 (-353))))) (((-154 (-353)) $) 210 (|has| |#1| (-946))) (((-154 (-202)) $) 209 (|has| |#1| (-946))) (((-497) $) 208 (|has| |#1| (-562 (-497))))) (-1223 (($ $) 256)) (-2944 (((-3 (-1165 $) "failed") (-627 $)) 145 (-3703 (-4009 (|has| $ (-133)) (-12 (|has| |#1| (-282)) (|has| |#1| (-838)))) (|has| |#1| (-323))))) (-3905 (($ |#1| |#1|) 255)) (-2189 (((-792) $) 11) (($ (-521)) 28) (($ |#1|) 37) (($ (-381 (-521))) 86 (-3703 (|has| |#1| (-337)) (|has| |#1| (-961 (-381 (-521)))))) (($ $) 91 (-3703 (|has| |#1| (-513)) (-12 (|has| |#1| (-282)) (|has| |#1| (-838)))))) (-1671 (($ $) 144 (|has| |#1| (-323))) (((-3 $ "failed") $) 43 (-3703 (-4009 (|has| $ (-133)) (-12 (|has| |#1| (-282)) (|has| |#1| (-838)))) (|has| |#1| (-133))))) (-3110 (((-1080 |#1|) $) 45)) (-3846 (((-707)) 29)) (-2470 (((-1165 $)) 67)) (-1759 (($ $) 234 (|has| |#1| (-1105)))) (-2832 (($ $) 222 (|has| |#1| (-1105)))) (-4210 (((-108) $ $) 95 (-3703 (|has| |#1| (-513)) (-12 (|has| |#1| (-282)) (|has| |#1| (-838)))))) (-1745 (($ $) 233 (|has| |#1| (-1105)))) (-2811 (($ $) 221 (|has| |#1| (-1105)))) (-1776 (($ $) 232 (|has| |#1| (-1105)))) (-2856 (($ $) 220 (|has| |#1| (-1105)))) (-3503 ((|#1| $) 250 (|has| |#1| (-1105)))) (-3919 (($ $) 231 (|has| |#1| (-1105)))) (-2868 (($ $) 219 (|has| |#1| (-1105)))) (-1768 (($ $) 230 (|has| |#1| (-1105)))) (-2844 (($ $) 218 (|has| |#1| (-1105)))) (-1752 (($ $) 229 (|has| |#1| (-1105)))) (-2821 (($ $) 217 (|has| |#1| (-1105)))) (-3304 (($ $) 251 (|has| |#1| (-979)))) (-3505 (($ $ (-850)) 26) (($ $ (-707)) 33) (($ $ (-521)) 117 (|has| |#1| (-337)))) (-3561 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-2212 (($ $ (-1 |#1| |#1|) (-707)) 125) (($ $ (-1 |#1| |#1|)) 124) (($ $ (-587 (-1084)) (-587 (-707))) 126 (|has| |#1| (-829 (-1084)))) (($ $ (-1084) (-707)) 127 (|has| |#1| (-829 (-1084)))) (($ $ (-587 (-1084))) 128 (|has| |#1| (-829 (-1084)))) (($ $ (-1084)) 129 (|has| |#1| (-829 (-1084)))) (($ $ (-707)) 134 (-3703 (-4009 (|has| |#1| (-337)) (|has| |#1| (-210))) (|has| |#1| (-210)) (-4009 (|has| |#1| (-210)) (|has| |#1| (-337))))) (($ $) 136 (-3703 (-4009 (|has| |#1| (-337)) (|has| |#1| (-210))) (|has| |#1| (-210)) (-4009 (|has| |#1| (-210)) (|has| |#1| (-337)))))) (-1574 (((-108) $ $) 204 (|has| |#1| (-784)))) (-1558 (((-108) $ $) 203 (|has| |#1| (-784)))) (-1531 (((-108) $ $) 6)) (-1566 (((-108) $ $) 205 (|has| |#1| (-784)))) (-1549 (((-108) $ $) 202 (|has| |#1| (-784)))) (-1620 (($ $ $) 121 (|has| |#1| (-337)))) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-707)) 32) (($ $ (-381 (-521))) 239 (-12 (|has| |#1| (-927)) (|has| |#1| (-1105)))) (($ $ $) 237 (|has| |#1| (-1105))) (($ $ (-521)) 118 (|has| |#1| (-337)))) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ (-381 (-521)) $) 120 (|has| |#1| (-337))) (($ $ (-381 (-521))) 119 (|has| |#1| (-337)))))
+(((-151 |#1|) (-1196) (-157)) (T -151))
+((-3930 (*1 *2 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157)))) (-3146 (*1 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157)))) (-1223 (*1 *1 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157)))) (-3905 (*1 *1 *2 *2) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157)))) (-1948 (*1 *2 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157)))) (-1935 (*1 *2 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157)))) (-2230 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-151 *2)) (-4 *2 (-157)) (-4 *2 (-513)))) (-3304 (*1 *1 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157)) (-4 *2 (-979)))) (-3503 (*1 *2 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157)) (-4 *2 (-1105)))) (-3775 (*1 *2 *1) (-12 (-4 *1 (-151 *3)) (-4 *3 (-157)) (-4 *3 (-979)) (-4 *3 (-1105)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3190 (*1 *2 *1) (-12 (-4 *1 (-151 *3)) (-4 *3 (-157)) (-4 *3 (-506)) (-5 *2 (-108)))) (-2082 (*1 *2 *1) (-12 (-4 *1 (-151 *3)) (-4 *3 (-157)) (-4 *3 (-506)) (-5 *2 (-381 (-521))))) (-1521 (*1 *2 *1) (|partial| -12 (-4 *1 (-151 *3)) (-4 *3 (-157)) (-4 *3 (-506)) (-5 *2 (-381 (-521))))))
+(-13 (-661 |t#1| (-1080 |t#1|)) (-385 |t#1|) (-208 |t#1|) (-312 |t#1|) (-374 |t#1|) (-813 |t#1|) (-351 |t#1|) (-157) (-10 -8 (-6 -3905) (-15 -3146 ($)) (-15 -1223 ($ $)) (-15 -3905 ($ |t#1| |t#1|)) (-15 -1948 (|t#1| $)) (-15 -1935 (|t#1| $)) (-15 -3930 (|t#1| $)) (IF (|has| |t#1| (-784)) (-6 (-784)) |%noBranch|) (IF (|has| |t#1| (-513)) (PROGN (-6 (-513)) (-15 -2230 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-282)) (-6 (-282)) |%noBranch|) (IF (|has| |t#1| (-6 -4232)) (-6 -4232) |%noBranch|) (IF (|has| |t#1| (-6 -4229)) (-6 -4229) |%noBranch|) (IF (|has| |t#1| (-337)) (-6 (-337)) |%noBranch|) (IF (|has| |t#1| (-562 (-497))) (-6 (-562 (-497))) |%noBranch|) (IF (|has| |t#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |t#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |t#1| (-946)) (PROGN (-6 (-562 (-154 (-202)))) (-6 (-562 (-154 (-353))))) |%noBranch|) (IF (|has| |t#1| (-979)) (-15 -3304 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1105)) (PROGN (-6 (-1105)) (-15 -3503 (|t#1| $)) (IF (|has| |t#1| (-927)) (-6 (-927)) |%noBranch|) (IF (|has| |t#1| (-979)) (-15 -3775 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-506)) (PROGN (-15 -3190 ((-108) $)) (-15 -2082 ((-381 (-521)) $)) (-15 -1521 ((-3 (-381 (-521)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-838)) (IF (|has| |t#1| (-282)) (-6 (-838)) |%noBranch|) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-381 (-521))) -3703 (|has| |#1| (-323)) (|has| |#1| (-337))) ((-37 |#1|) . T) ((-37 $) -3703 (|has| |#1| (-513)) (|has| |#1| (-323)) (|has| |#1| (-337)) (|has| |#1| (-282))) ((-34) |has| |#1| (-1105)) ((-91) |has| |#1| (-1105)) ((-97) . T) ((-107 #0# #0#) -3703 (|has| |#1| (-323)) (|has| |#1| (-337))) ((-107 |#1| |#1|) . T) ((-107 $ $) . T) ((-124) . T) ((-133) -3703 (|has| |#1| (-323)) (|has| |#1| (-133))) ((-135) |has| |#1| (-135)) ((-561 (-792)) . T) ((-157) . T) ((-562 (-154 (-202))) |has| |#1| (-946)) ((-562 (-154 (-353))) |has| |#1| (-946)) ((-562 (-497)) |has| |#1| (-562 (-497))) ((-562 (-821 (-353))) |has| |#1| (-562 (-821 (-353)))) ((-562 (-821 (-521))) |has| |#1| (-562 (-821 (-521)))) ((-562 #1=(-1080 |#1|)) . T) ((-208 |#1|) . T) ((-210) -3703 (|has| |#1| (-323)) (|has| |#1| (-210))) ((-220) -3703 (|has| |#1| (-323)) (|has| |#1| (-337))) ((-259) |has| |#1| (-1105)) ((-261 |#1| $) |has| |#1| (-261 |#1| |#1|)) ((-265) -3703 (|has| |#1| (-513)) (|has| |#1| (-323)) (|has| |#1| (-337)) (|has| |#1| (-282))) ((-282) -3703 (|has| |#1| (-323)) (|has| |#1| (-337)) (|has| |#1| (-282))) ((-284 |#1|) |has| |#1| (-284 |#1|)) ((-337) -3703 (|has| |#1| (-323)) (|has| |#1| (-337))) ((-376) |has| |#1| (-323)) ((-342) -3703 (|has| |#1| (-342)) (|has| |#1| (-323))) ((-323) |has| |#1| (-323)) ((-344 |#1| #1#) . T) ((-383 |#1| #1#) . T) ((-312 |#1|) . T) ((-351 |#1|) . T) ((-374 |#1|) . T) ((-385 |#1|) . T) ((-425) -3703 (|has| |#1| (-323)) (|has| |#1| (-337)) (|has| |#1| (-282))) ((-462) |has| |#1| (-1105)) ((-482 (-1084) |#1|) |has| |#1| (-482 (-1084) |#1|)) ((-482 |#1| |#1|) |has| |#1| (-284 |#1|)) ((-513) -3703 (|has| |#1| (-513)) (|has| |#1| (-323)) (|has| |#1| (-337)) (|has| |#1| (-282))) ((-589 #0#) -3703 (|has| |#1| (-323)) (|has| |#1| (-337))) ((-589 |#1|) . T) ((-589 $) . T) ((-583 (-521)) |has| |#1| (-583 (-521))) ((-583 |#1|) . T) ((-654 #0#) -3703 (|has| |#1| (-323)) (|has| |#1| (-337))) ((-654 |#1|) . T) ((-654 $) -3703 (|has| |#1| (-513)) (|has| |#1| (-323)) (|has| |#1| (-337)) (|has| |#1| (-282))) ((-661 |#1| #1#) . T) ((-663) . T) ((-784) |has| |#1| (-784)) ((-829 (-1084)) |has| |#1| (-829 (-1084))) ((-815 (-353)) |has| |#1| (-815 (-353))) ((-815 (-521)) |has| |#1| (-815 (-521))) ((-813 |#1|) . T) ((-838) -12 (|has| |#1| (-282)) (|has| |#1| (-838))) ((-849) -3703 (|has| |#1| (-323)) (|has| |#1| (-337)) (|has| |#1| (-282))) ((-927) -12 (|has| |#1| (-927)) (|has| |#1| (-1105))) ((-961 (-381 (-521))) |has| |#1| (-961 (-381 (-521)))) ((-961 (-521)) |has| |#1| (-961 (-521))) ((-961 |#1|) . T) ((-976 #0#) -3703 (|has| |#1| (-323)) (|has| |#1| (-337))) ((-976 |#1|) . T) ((-976 $) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T) ((-1060) |has| |#1| (-323)) ((-1105) |has| |#1| (-1105)) ((-1108) |has| |#1| (-1105)) ((-1119) . T) ((-1123) -3703 (|has| |#1| (-323)) (|has| |#1| (-337)) (-12 (|has| |#1| (-282)) (|has| |#1| (-838)))))
+((-1916 (((-392 |#2|) |#2|) 63)))
+(((-152 |#1| |#2|) (-10 -7 (-15 -1916 ((-392 |#2|) |#2|))) (-282) (-1141 (-154 |#1|))) (T -152))
+((-1916 (*1 *2 *3) (-12 (-4 *4 (-282)) (-5 *2 (-392 *3)) (-5 *1 (-152 *4 *3)) (-4 *3 (-1141 (-154 *4))))))
+(-10 -7 (-15 -1916 ((-392 |#2|) |#2|)))
+((-1390 (((-154 |#2|) (-1 |#2| |#1|) (-154 |#1|)) 14)))
+(((-153 |#1| |#2|) (-10 -7 (-15 -1390 ((-154 |#2|) (-1 |#2| |#1|) (-154 |#1|)))) (-157) (-157)) (T -153))
+((-1390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-154 *5)) (-4 *5 (-157)) (-4 *6 (-157)) (-5 *2 (-154 *6)) (-5 *1 (-153 *5 *6)))))
+(-10 -7 (-15 -1390 ((-154 |#2|) (-1 |#2| |#1|) (-154 |#1|))))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) 33)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) NIL (-3703 (-12 (|has| |#1| (-282)) (|has| |#1| (-838))) (|has| |#1| (-513))))) (-2559 (($ $) NIL (-3703 (-12 (|has| |#1| (-282)) (|has| |#1| (-838))) (|has| |#1| (-513))))) (-1733 (((-108) $) NIL (-3703 (-12 (|has| |#1| (-282)) (|has| |#1| (-838))) (|has| |#1| (-513))))) (-3214 (((-627 |#1|) (-1165 $)) NIL) (((-627 |#1|)) NIL)) (-1865 ((|#1| $) NIL)) (-2904 (($ $) NIL (|has| |#1| (-1105)))) (-2769 (($ $) NIL (|has| |#1| (-1105)))) (-1340 (((-1093 (-850) (-707)) (-521)) NIL (|has| |#1| (-323)))) (-1232 (((-3 $ "failed") $ $) NIL)) (-2598 (((-392 (-1080 $)) (-1080 $)) NIL (-12 (|has| |#1| (-282)) (|has| |#1| (-838))))) (-3063 (($ $) NIL (-3703 (-12 (|has| |#1| (-282)) (|has| |#1| (-838))) (|has| |#1| (-337))))) (-3358 (((-392 $) $) NIL (-3703 (-12 (|has| |#1| (-282)) (|has| |#1| (-838))) (|has| |#1| (-337))))) (-1927 (($ $) NIL (-12 (|has| |#1| (-927)) (|has| |#1| (-1105))))) (-2569 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) NIL (-12 (|has| |#1| (-282)) (|has| |#1| (-838))))) (-1389 (((-108) $ $) NIL (|has| |#1| (-282)))) (-1630 (((-707)) NIL (|has| |#1| (-342)))) (-2880 (($ $) NIL (|has| |#1| (-1105)))) (-2746 (($ $) NIL (|has| |#1| (-1105)))) (-2926 (($ $) NIL (|has| |#1| (-1105)))) (-2790 (($ $) NIL (|has| |#1| (-1105)))) (-2547 (($) NIL T CONST)) (-1297 (((-3 (-521) "failed") $) NIL (|has| |#1| (-961 (-521)))) (((-3 (-381 (-521)) "failed") $) NIL (|has| |#1| (-961 (-381 (-521))))) (((-3 |#1| "failed") $) NIL)) (-1483 (((-521) $) NIL (|has| |#1| (-961 (-521)))) (((-381 (-521)) $) NIL (|has| |#1| (-961 (-381 (-521))))) ((|#1| $) NIL)) (-4083 (($ (-1165 |#1|) (-1165 $)) NIL) (($ (-1165 |#1|)) NIL)) (-1864 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-323)))) (-2277 (($ $ $) NIL (|has| |#1| (-282)))) (-3499 (((-627 |#1|) $ (-1165 $)) NIL) (((-627 |#1|) $) NIL)) (-3279 (((-627 (-521)) (-627 $)) NIL (|has| |#1| (-583 (-521)))) (((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (|has| |#1| (-583 (-521)))) (((-2 (|:| -1201 (-627 |#1|)) (|:| |vec| (-1165 |#1|))) (-627 $) (-1165 $)) NIL) (((-627 |#1|) (-627 $)) NIL)) (-3859 (($ (-1080 |#1|)) NIL) (((-3 $ "failed") (-381 (-1080 |#1|))) NIL (|has| |#1| (-337)))) (-1257 (((-3 $ "failed") $) NIL)) (-1935 ((|#1| $) 13)) (-1521 (((-3 (-381 (-521)) "failed") $) NIL (|has| |#1| (-506)))) (-3190 (((-108) $) NIL (|has| |#1| (-506)))) (-2082 (((-381 (-521)) $) NIL (|has| |#1| (-506)))) (-3162 (((-850)) NIL)) (-3250 (($) NIL (|has| |#1| (-342)))) (-2253 (($ $ $) NIL (|has| |#1| (-282)))) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) NIL (|has| |#1| (-282)))) (-2103 (($) NIL (|has| |#1| (-323)))) (-2371 (((-108) $) NIL (|has| |#1| (-323)))) (-2833 (($ $ (-707)) NIL (|has| |#1| (-323))) (($ $) NIL (|has| |#1| (-323)))) (-2710 (((-108) $) NIL (-3703 (-12 (|has| |#1| (-282)) (|has| |#1| (-838))) (|has| |#1| (-337))))) (-3775 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-979)) (|has| |#1| (-1105))))) (-2834 (($) NIL (|has| |#1| (-1105)))) (-3427 (((-818 (-521) $) $ (-821 (-521)) (-818 (-521) $)) NIL (|has| |#1| (-815 (-521)))) (((-818 (-353) $) $ (-821 (-353)) (-818 (-353) $)) NIL (|has| |#1| (-815 (-353))))) (-2733 (((-850) $) NIL (|has| |#1| (-323))) (((-770 (-850)) $) NIL (|has| |#1| (-323)))) (-3996 (((-108) $) 35)) (-3407 (($ $ (-521)) NIL (-12 (|has| |#1| (-927)) (|has| |#1| (-1105))))) (-3930 ((|#1| $) 46)) (-3842 (((-3 $ "failed") $) NIL (|has| |#1| (-323)))) (-1546 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| |#1| (-282)))) (-3548 (((-1080 |#1|) $) NIL (|has| |#1| (-337)))) (-2810 (($ $ $) NIL (|has| |#1| (-784)))) (-2446 (($ $ $) NIL (|has| |#1| (-784)))) (-1390 (($ (-1 |#1| |#1|) $) NIL)) (-2715 (((-850) $) NIL (|has| |#1| (-342)))) (-1253 (($ $) NIL (|has| |#1| (-1105)))) (-3844 (((-1080 |#1|) $) NIL)) (-2223 (($ (-587 $)) NIL (|has| |#1| (-282))) (($ $ $) NIL (|has| |#1| (-282)))) (-3688 (((-1067) $) NIL)) (-3095 (($ $) NIL (|has| |#1| (-337)))) (-3797 (($) NIL (|has| |#1| (-323)) CONST)) (-2716 (($ (-850)) NIL (|has| |#1| (-342)))) (-3146 (($) NIL)) (-1948 ((|#1| $) 15)) (-4147 (((-1031) $) NIL)) (-1383 (($) NIL)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) NIL (|has| |#1| (-282)))) (-2258 (($ (-587 $)) NIL (|has| |#1| (-282))) (($ $ $) NIL (|has| |#1| (-282)))) (-3040 (((-587 (-2 (|:| -1916 (-521)) (|:| -2997 (-521))))) NIL (|has| |#1| (-323)))) (-1912 (((-392 (-1080 $)) (-1080 $)) NIL (-12 (|has| |#1| (-282)) (|has| |#1| (-838))))) (-2165 (((-392 (-1080 $)) (-1080 $)) NIL (-12 (|has| |#1| (-282)) (|has| |#1| (-838))))) (-1916 (((-392 $) $) NIL (-3703 (-12 (|has| |#1| (-282)) (|has| |#1| (-838))) (|has| |#1| (-337))))) (-1962 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-282))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL (|has| |#1| (-282)))) (-2230 (((-3 $ "failed") $ |#1|) 44 (|has| |#1| (-513))) (((-3 $ "failed") $ $) 47 (-3703 (-12 (|has| |#1| (-282)) (|has| |#1| (-838))) (|has| |#1| (-513))))) (-3854 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| |#1| (-282)))) (-3261 (($ $) NIL (|has| |#1| (-1105)))) (-2288 (($ $ (-587 |#1|) (-587 |#1|)) NIL (|has| |#1| (-284 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-284 |#1|))) (($ $ (-269 |#1|)) NIL (|has| |#1| (-284 |#1|))) (($ $ (-587 (-269 |#1|))) NIL (|has| |#1| (-284 |#1|))) (($ $ (-587 (-1084)) (-587 |#1|)) NIL (|has| |#1| (-482 (-1084) |#1|))) (($ $ (-1084) |#1|) NIL (|has| |#1| (-482 (-1084) |#1|)))) (-4196 (((-707) $) NIL (|has| |#1| (-282)))) (-2544 (($ $ |#1|) NIL (|has| |#1| (-261 |#1| |#1|)))) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) NIL (|has| |#1| (-282)))) (-4010 ((|#1| (-1165 $)) NIL) ((|#1|) NIL)) (-4067 (((-707) $) NIL (|has| |#1| (-323))) (((-3 (-707) "failed") $ $) NIL (|has| |#1| (-323)))) (-2156 (($ $ (-1 |#1| |#1|) (-707)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-1084)) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-707)) NIL (|has| |#1| (-210))) (($ $) NIL (|has| |#1| (-210)))) (-3089 (((-627 |#1|) (-1165 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-337)))) (-2879 (((-1080 |#1|)) NIL)) (-1738 (($ $) NIL (|has| |#1| (-1105)))) (-2800 (($ $) NIL (|has| |#1| (-1105)))) (-1204 (($) NIL (|has| |#1| (-323)))) (-2915 (($ $) NIL (|has| |#1| (-1105)))) (-2780 (($ $) NIL (|has| |#1| (-1105)))) (-2892 (($ $) NIL (|has| |#1| (-1105)))) (-2758 (($ $) NIL (|has| |#1| (-1105)))) (-2234 (((-1165 |#1|) $ (-1165 $)) NIL) (((-627 |#1|) (-1165 $) (-1165 $)) NIL) (((-1165 |#1|) $) NIL) (((-627 |#1|) (-1165 $)) NIL)) (-1430 (((-1165 |#1|) $) NIL) (($ (-1165 |#1|)) NIL) (((-1080 |#1|) $) NIL) (($ (-1080 |#1|)) NIL) (((-821 (-521)) $) NIL (|has| |#1| (-562 (-821 (-521))))) (((-821 (-353)) $) NIL (|has| |#1| (-562 (-821 (-353))))) (((-154 (-353)) $) NIL (|has| |#1| (-946))) (((-154 (-202)) $) NIL (|has| |#1| (-946))) (((-497) $) NIL (|has| |#1| (-562 (-497))))) (-1223 (($ $) 45)) (-2944 (((-3 (-1165 $) "failed") (-627 $)) NIL (-3703 (-12 (|has| $ (-133)) (|has| |#1| (-282)) (|has| |#1| (-838))) (|has| |#1| (-323))))) (-3905 (($ |#1| |#1|) 37)) (-2189 (((-792) $) NIL) (($ (-521)) NIL) (($ |#1|) 36) (($ (-381 (-521))) NIL (-3703 (|has| |#1| (-337)) (|has| |#1| (-961 (-381 (-521)))))) (($ $) NIL (-3703 (-12 (|has| |#1| (-282)) (|has| |#1| (-838))) (|has| |#1| (-513))))) (-1671 (($ $) NIL (|has| |#1| (-323))) (((-3 $ "failed") $) NIL (-3703 (-12 (|has| $ (-133)) (|has| |#1| (-282)) (|has| |#1| (-838))) (|has| |#1| (-133))))) (-3110 (((-1080 |#1|) $) NIL)) (-3846 (((-707)) NIL)) (-2470 (((-1165 $)) NIL)) (-1759 (($ $) NIL (|has| |#1| (-1105)))) (-2832 (($ $) NIL (|has| |#1| (-1105)))) (-4210 (((-108) $ $) NIL (-3703 (-12 (|has| |#1| (-282)) (|has| |#1| (-838))) (|has| |#1| (-513))))) (-1745 (($ $) NIL (|has| |#1| (-1105)))) (-2811 (($ $) NIL (|has| |#1| (-1105)))) (-1776 (($ $) NIL (|has| |#1| (-1105)))) (-2856 (($ $) NIL (|has| |#1| (-1105)))) (-3503 ((|#1| $) NIL (|has| |#1| (-1105)))) (-3919 (($ $) NIL (|has| |#1| (-1105)))) (-2868 (($ $) NIL (|has| |#1| (-1105)))) (-1768 (($ $) NIL (|has| |#1| (-1105)))) (-2844 (($ $) NIL (|has| |#1| (-1105)))) (-1752 (($ $) NIL (|has| |#1| (-1105)))) (-2821 (($ $) NIL (|has| |#1| (-1105)))) (-3304 (($ $) NIL (|has| |#1| (-979)))) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL (|has| |#1| (-337)))) (-3561 (($) 28 T CONST)) (-3572 (($) 30 T CONST)) (-2287 (((-1067) $) 23 (|has| |#1| (-765))) (((-1067) $ (-108)) 25 (|has| |#1| (-765))) (((-1170) (-759) $) 26 (|has| |#1| (-765))) (((-1170) (-759) $ (-108)) 27 (|has| |#1| (-765)))) (-2212 (($ $ (-1 |#1| |#1|) (-707)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-1084)) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-707)) NIL (|has| |#1| (-210))) (($ $) NIL (|has| |#1| (-210)))) (-1574 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1558 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1549 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1620 (($ $ $) NIL (|has| |#1| (-337)))) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) 39)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-381 (-521))) NIL (-12 (|has| |#1| (-927)) (|has| |#1| (-1105)))) (($ $ $) NIL (|has| |#1| (-1105))) (($ $ (-521)) NIL (|has| |#1| (-337)))) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) 42) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-381 (-521)) $) NIL (|has| |#1| (-337))) (($ $ (-381 (-521))) NIL (|has| |#1| (-337)))))
+(((-154 |#1|) (-13 (-151 |#1|) (-10 -7 (IF (|has| |#1| (-765)) (-6 (-765)) |%noBranch|))) (-157)) (T -154))
+NIL
+(-13 (-151 |#1|) (-10 -7 (IF (|has| |#1| (-765)) (-6 (-765)) |%noBranch|)))
+((-1430 (((-821 |#1|) |#3|) 22)))
+(((-155 |#1| |#2| |#3|) (-10 -7 (-15 -1430 ((-821 |#1|) |#3|))) (-1013) (-13 (-562 (-821 |#1|)) (-157)) (-151 |#2|)) (T -155))
+((-1430 (*1 *2 *3) (-12 (-4 *5 (-13 (-562 *2) (-157))) (-5 *2 (-821 *4)) (-5 *1 (-155 *4 *5 *3)) (-4 *4 (-1013)) (-4 *3 (-151 *5)))))
+(-10 -7 (-15 -1430 ((-821 |#1|) |#3|)))
+((-1415 (((-108) $ $) NIL)) (-3804 (((-108) $) 9)) (-3262 (((-108) $ (-108)) 11)) (-1811 (($) 12)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2404 (($ $) 13)) (-2189 (((-792) $) 17)) (-2797 (((-108) $) 8)) (-1650 (((-108) $ (-108)) 10)) (-1531 (((-108) $ $) NIL)))
+(((-156) (-13 (-1013) (-10 -8 (-15 -1811 ($)) (-15 -2797 ((-108) $)) (-15 -3804 ((-108) $)) (-15 -1650 ((-108) $ (-108))) (-15 -3262 ((-108) $ (-108))) (-15 -2404 ($ $))))) (T -156))
+((-1811 (*1 *1) (-5 *1 (-156))) (-2797 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-156)))) (-3804 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-156)))) (-1650 (*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-156)))) (-3262 (*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-156)))) (-2404 (*1 *1 *1) (-5 *1 (-156))))
+(-13 (-1013) (-10 -8 (-15 -1811 ($)) (-15 -2797 ((-108) $)) (-15 -3804 ((-108) $)) (-15 -1650 ((-108) $ (-108))) (-15 -3262 ((-108) $ (-108))) (-15 -2404 ($ $))))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-1232 (((-3 $ "failed") $ $) 19)) (-2547 (($) 17 T CONST)) (-1257 (((-3 $ "failed") $) 34)) (-3996 (((-108) $) 31)) (-3688 (((-1067) $) 9)) (-4147 (((-1031) $) 10)) (-2189 (((-792) $) 11) (($ (-521)) 28)) (-3846 (((-707)) 29)) (-3505 (($ $ (-850)) 26) (($ $ (-707)) 33)) (-3561 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-707)) 32)) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24)))
+(((-157) (-1196)) (T -157))
+NIL
+(-13 (-970) (-107 $ $) (-10 -7 (-6 (-4235 "*"))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-561 (-792)) . T) ((-589 $) . T) ((-663) . T) ((-976 $) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-2086 ((|#1| $) 75)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-2559 (($ $) NIL)) (-1733 (((-108) $) NIL)) (-1232 (((-3 $ "failed") $ $) NIL)) (-3063 (($ $) NIL)) (-3358 (((-392 $) $) NIL)) (-1389 (((-108) $ $) NIL)) (-2547 (($) NIL T CONST)) (-2277 (($ $ $) NIL)) (-4066 (($ $) 19)) (-3398 (($ |#1| (-1065 |#1|)) 48)) (-1257 (((-3 $ "failed") $) 117)) (-2253 (($ $ $) NIL)) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) NIL)) (-2710 (((-108) $) NIL)) (-2852 (((-1065 |#1|) $) 82)) (-3716 (((-1065 |#1|) $) 79)) (-2778 (((-1065 |#1|) $) 80)) (-3996 (((-108) $) NIL)) (-1437 (((-1065 |#1|) $) 88)) (-1546 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-2223 (($ (-587 $)) NIL) (($ $ $) NIL)) (-3688 (((-1067) $) NIL)) (-3095 (($ $) NIL)) (-4147 (((-1031) $) NIL)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) NIL)) (-2258 (($ (-587 $)) NIL) (($ $ $) NIL)) (-1916 (((-392 $) $) NIL)) (-1962 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL)) (-2447 (($ $ (-521)) 91)) (-2230 (((-3 $ "failed") $ $) NIL)) (-3854 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-4196 (((-707) $) NIL)) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) NIL)) (-2124 (((-1065 |#1|) $) 89)) (-1404 (((-1065 (-381 |#1|)) $) 13)) (-2554 (($ (-381 |#1|)) 17) (($ |#1| (-1065 |#1|) (-1065 |#1|)) 38)) (-3448 (($ $) 93)) (-2189 (((-792) $) 127) (($ (-521)) 51) (($ |#1|) 52) (($ (-381 |#1|)) 36) (($ (-381 (-521))) NIL) (($ $) NIL)) (-3846 (((-707)) 64)) (-4210 (((-108) $ $) NIL)) (-1895 (((-1065 (-381 |#1|)) $) 18)) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (-3561 (($) 25 T CONST)) (-3572 (($) 28 T CONST)) (-1531 (((-108) $ $) 35)) (-1620 (($ $ $) 115)) (-1612 (($ $) 106) (($ $ $) 103)) (-1602 (($ $ $) 101)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) 113) (($ $ $) 108) (($ $ |#1|) NIL) (($ |#1| $) 110) (($ (-381 |#1|) $) 111) (($ $ (-381 |#1|)) NIL) (($ (-381 (-521)) $) NIL) (($ $ (-381 (-521))) NIL)))
+(((-158 |#1|) (-13 (-37 |#1|) (-37 (-381 |#1|)) (-337) (-10 -8 (-15 -2554 ($ (-381 |#1|))) (-15 -2554 ($ |#1| (-1065 |#1|) (-1065 |#1|))) (-15 -3398 ($ |#1| (-1065 |#1|))) (-15 -3716 ((-1065 |#1|) $)) (-15 -2778 ((-1065 |#1|) $)) (-15 -2852 ((-1065 |#1|) $)) (-15 -2086 (|#1| $)) (-15 -4066 ($ $)) (-15 -1895 ((-1065 (-381 |#1|)) $)) (-15 -1404 ((-1065 (-381 |#1|)) $)) (-15 -1437 ((-1065 |#1|) $)) (-15 -2124 ((-1065 |#1|) $)) (-15 -2447 ($ $ (-521))) (-15 -3448 ($ $)))) (-282)) (T -158))
+((-2554 (*1 *1 *2) (-12 (-5 *2 (-381 *3)) (-4 *3 (-282)) (-5 *1 (-158 *3)))) (-2554 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1065 *2)) (-4 *2 (-282)) (-5 *1 (-158 *2)))) (-3398 (*1 *1 *2 *3) (-12 (-5 *3 (-1065 *2)) (-4 *2 (-282)) (-5 *1 (-158 *2)))) (-3716 (*1 *2 *1) (-12 (-5 *2 (-1065 *3)) (-5 *1 (-158 *3)) (-4 *3 (-282)))) (-2778 (*1 *2 *1) (-12 (-5 *2 (-1065 *3)) (-5 *1 (-158 *3)) (-4 *3 (-282)))) (-2852 (*1 *2 *1) (-12 (-5 *2 (-1065 *3)) (-5 *1 (-158 *3)) (-4 *3 (-282)))) (-2086 (*1 *2 *1) (-12 (-5 *1 (-158 *2)) (-4 *2 (-282)))) (-4066 (*1 *1 *1) (-12 (-5 *1 (-158 *2)) (-4 *2 (-282)))) (-1895 (*1 *2 *1) (-12 (-5 *2 (-1065 (-381 *3))) (-5 *1 (-158 *3)) (-4 *3 (-282)))) (-1404 (*1 *2 *1) (-12 (-5 *2 (-1065 (-381 *3))) (-5 *1 (-158 *3)) (-4 *3 (-282)))) (-1437 (*1 *2 *1) (-12 (-5 *2 (-1065 *3)) (-5 *1 (-158 *3)) (-4 *3 (-282)))) (-2124 (*1 *2 *1) (-12 (-5 *2 (-1065 *3)) (-5 *1 (-158 *3)) (-4 *3 (-282)))) (-2447 (*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-158 *3)) (-4 *3 (-282)))) (-3448 (*1 *1 *1) (-12 (-5 *1 (-158 *2)) (-4 *2 (-282)))))
+(-13 (-37 |#1|) (-37 (-381 |#1|)) (-337) (-10 -8 (-15 -2554 ($ (-381 |#1|))) (-15 -2554 ($ |#1| (-1065 |#1|) (-1065 |#1|))) (-15 -3398 ($ |#1| (-1065 |#1|))) (-15 -3716 ((-1065 |#1|) $)) (-15 -2778 ((-1065 |#1|) $)) (-15 -2852 ((-1065 |#1|) $)) (-15 -2086 (|#1| $)) (-15 -4066 ($ $)) (-15 -1895 ((-1065 (-381 |#1|)) $)) (-15 -1404 ((-1065 (-381 |#1|)) $)) (-15 -1437 ((-1065 |#1|) $)) (-15 -2124 ((-1065 |#1|) $)) (-15 -2447 ($ $ (-521))) (-15 -3448 ($ $))))
+((-1857 (($ (-104) $) 13)) (-2346 (((-3 (-104) "failed") (-1084) $) 12)) (-2189 (((-792) $) 16)) (-1631 (((-587 (-104)) $) 7)))
+(((-159) (-13 (-561 (-792)) (-10 -8 (-15 -1631 ((-587 (-104)) $)) (-15 -1857 ($ (-104) $)) (-15 -2346 ((-3 (-104) "failed") (-1084) $))))) (T -159))
+((-1631 (*1 *2 *1) (-12 (-5 *2 (-587 (-104))) (-5 *1 (-159)))) (-1857 (*1 *1 *2 *1) (-12 (-5 *2 (-104)) (-5 *1 (-159)))) (-2346 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1084)) (-5 *2 (-104)) (-5 *1 (-159)))))
+(-13 (-561 (-792)) (-10 -8 (-15 -1631 ((-587 (-104)) $)) (-15 -1857 ($ (-104) $)) (-15 -2346 ((-3 (-104) "failed") (-1084) $))))
+((-1467 (((-1 (-872 |#1|) (-872 |#1|)) |#1|) 40)) (-1443 (((-872 |#1|) (-872 |#1|)) 19)) (-3078 (((-1 (-872 |#1|) (-872 |#1|)) |#1|) 36)) (-2551 (((-872 |#1|) (-872 |#1|)) 17)) (-2954 (((-872 |#1|) (-872 |#1|)) 25)) (-3598 (((-872 |#1|) (-872 |#1|)) 24)) (-3239 (((-872 |#1|) (-872 |#1|)) 23)) (-1442 (((-1 (-872 |#1|) (-872 |#1|)) |#1|) 37)) (-3145 (((-1 (-872 |#1|) (-872 |#1|)) |#1|) 35)) (-1963 (((-1 (-872 |#1|) (-872 |#1|)) |#1|) 34)) (-1757 (((-872 |#1|) (-872 |#1|)) 18)) (-1872 (((-1 (-872 |#1|) (-872 |#1|)) |#1| |#1|) 43)) (-3489 (((-872 |#1|) (-872 |#1|)) 8)) (-1315 (((-1 (-872 |#1|) (-872 |#1|)) |#1|) 39)) (-3808 (((-1 (-872 |#1|) (-872 |#1|)) |#1|) 38)))
+(((-160 |#1|) (-10 -7 (-15 -3489 ((-872 |#1|) (-872 |#1|))) (-15 -2551 ((-872 |#1|) (-872 |#1|))) (-15 -1757 ((-872 |#1|) (-872 |#1|))) (-15 -1443 ((-872 |#1|) (-872 |#1|))) (-15 -3239 ((-872 |#1|) (-872 |#1|))) (-15 -3598 ((-872 |#1|) (-872 |#1|))) (-15 -2954 ((-872 |#1|) (-872 |#1|))) (-15 -1963 ((-1 (-872 |#1|) (-872 |#1|)) |#1|)) (-15 -3145 ((-1 (-872 |#1|) (-872 |#1|)) |#1|)) (-15 -3078 ((-1 (-872 |#1|) (-872 |#1|)) |#1|)) (-15 -1442 ((-1 (-872 |#1|) (-872 |#1|)) |#1|)) (-15 -3808 ((-1 (-872 |#1|) (-872 |#1|)) |#1|)) (-15 -1315 ((-1 (-872 |#1|) (-872 |#1|)) |#1|)) (-15 -1467 ((-1 (-872 |#1|) (-872 |#1|)) |#1|)) (-15 -1872 ((-1 (-872 |#1|) (-872 |#1|)) |#1| |#1|))) (-13 (-337) (-1105) (-927))) (T -160))
+((-1872 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-872 *3) (-872 *3))) (-5 *1 (-160 *3)) (-4 *3 (-13 (-337) (-1105) (-927))))) (-1467 (*1 *2 *3) (-12 (-5 *2 (-1 (-872 *3) (-872 *3))) (-5 *1 (-160 *3)) (-4 *3 (-13 (-337) (-1105) (-927))))) (-1315 (*1 *2 *3) (-12 (-5 *2 (-1 (-872 *3) (-872 *3))) (-5 *1 (-160 *3)) (-4 *3 (-13 (-337) (-1105) (-927))))) (-3808 (*1 *2 *3) (-12 (-5 *2 (-1 (-872 *3) (-872 *3))) (-5 *1 (-160 *3)) (-4 *3 (-13 (-337) (-1105) (-927))))) (-1442 (*1 *2 *3) (-12 (-5 *2 (-1 (-872 *3) (-872 *3))) (-5 *1 (-160 *3)) (-4 *3 (-13 (-337) (-1105) (-927))))) (-3078 (*1 *2 *3) (-12 (-5 *2 (-1 (-872 *3) (-872 *3))) (-5 *1 (-160 *3)) (-4 *3 (-13 (-337) (-1105) (-927))))) (-3145 (*1 *2 *3) (-12 (-5 *2 (-1 (-872 *3) (-872 *3))) (-5 *1 (-160 *3)) (-4 *3 (-13 (-337) (-1105) (-927))))) (-1963 (*1 *2 *3) (-12 (-5 *2 (-1 (-872 *3) (-872 *3))) (-5 *1 (-160 *3)) (-4 *3 (-13 (-337) (-1105) (-927))))) (-2954 (*1 *2 *2) (-12 (-5 *2 (-872 *3)) (-4 *3 (-13 (-337) (-1105) (-927))) (-5 *1 (-160 *3)))) (-3598 (*1 *2 *2) (-12 (-5 *2 (-872 *3)) (-4 *3 (-13 (-337) (-1105) (-927))) (-5 *1 (-160 *3)))) (-3239 (*1 *2 *2) (-12 (-5 *2 (-872 *3)) (-4 *3 (-13 (-337) (-1105) (-927))) (-5 *1 (-160 *3)))) (-1443 (*1 *2 *2) (-12 (-5 *2 (-872 *3)) (-4 *3 (-13 (-337) (-1105) (-927))) (-5 *1 (-160 *3)))) (-1757 (*1 *2 *2) (-12 (-5 *2 (-872 *3)) (-4 *3 (-13 (-337) (-1105) (-927))) (-5 *1 (-160 *3)))) (-2551 (*1 *2 *2) (-12 (-5 *2 (-872 *3)) (-4 *3 (-13 (-337) (-1105) (-927))) (-5 *1 (-160 *3)))) (-3489 (*1 *2 *2) (-12 (-5 *2 (-872 *3)) (-4 *3 (-13 (-337) (-1105) (-927))) (-5 *1 (-160 *3)))))
+(-10 -7 (-15 -3489 ((-872 |#1|) (-872 |#1|))) (-15 -2551 ((-872 |#1|) (-872 |#1|))) (-15 -1757 ((-872 |#1|) (-872 |#1|))) (-15 -1443 ((-872 |#1|) (-872 |#1|))) (-15 -3239 ((-872 |#1|) (-872 |#1|))) (-15 -3598 ((-872 |#1|) (-872 |#1|))) (-15 -2954 ((-872 |#1|) (-872 |#1|))) (-15 -1963 ((-1 (-872 |#1|) (-872 |#1|)) |#1|)) (-15 -3145 ((-1 (-872 |#1|) (-872 |#1|)) |#1|)) (-15 -3078 ((-1 (-872 |#1|) (-872 |#1|)) |#1|)) (-15 -1442 ((-1 (-872 |#1|) (-872 |#1|)) |#1|)) (-15 -3808 ((-1 (-872 |#1|) (-872 |#1|)) |#1|)) (-15 -1315 ((-1 (-872 |#1|) (-872 |#1|)) |#1|)) (-15 -1467 ((-1 (-872 |#1|) (-872 |#1|)) |#1|)) (-15 -1872 ((-1 (-872 |#1|) (-872 |#1|)) |#1| |#1|)))
+((-3110 ((|#2| |#3|) 27)))
+(((-161 |#1| |#2| |#3|) (-10 -7 (-15 -3110 (|#2| |#3|))) (-157) (-1141 |#1|) (-661 |#1| |#2|)) (T -161))
+((-3110 (*1 *2 *3) (-12 (-4 *4 (-157)) (-4 *2 (-1141 *4)) (-5 *1 (-161 *4 *2 *3)) (-4 *3 (-661 *4 *2)))))
+(-10 -7 (-15 -3110 (|#2| |#3|)))
+((-3427 (((-818 |#1| |#3|) |#3| (-821 |#1|) (-818 |#1| |#3|)) 47 (|has| (-881 |#2|) (-815 |#1|)))))
+(((-162 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-881 |#2|) (-815 |#1|)) (-15 -3427 ((-818 |#1| |#3|) |#3| (-821 |#1|) (-818 |#1| |#3|))) |%noBranch|)) (-1013) (-13 (-815 |#1|) (-157)) (-151 |#2|)) (T -162))
+((-3427 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-818 *5 *3)) (-5 *4 (-821 *5)) (-4 *5 (-1013)) (-4 *3 (-151 *6)) (-4 (-881 *6) (-815 *5)) (-4 *6 (-13 (-815 *5) (-157))) (-5 *1 (-162 *5 *6 *3)))))
+(-10 -7 (IF (|has| (-881 |#2|) (-815 |#1|)) (-15 -3427 ((-818 |#1| |#3|) |#3| (-821 |#1|) (-818 |#1| |#3|))) |%noBranch|))
+((-3293 (((-587 |#1|) (-587 |#1|) |#1|) 36)) (-3535 (((-587 |#1|) |#1| (-587 |#1|)) 19)) (-3837 (((-587 |#1|) (-587 (-587 |#1|)) (-587 |#1|)) 31) ((|#1| (-587 |#1|) (-587 |#1|)) 29)))
+(((-163 |#1|) (-10 -7 (-15 -3535 ((-587 |#1|) |#1| (-587 |#1|))) (-15 -3837 (|#1| (-587 |#1|) (-587 |#1|))) (-15 -3837 ((-587 |#1|) (-587 (-587 |#1|)) (-587 |#1|))) (-15 -3293 ((-587 |#1|) (-587 |#1|) |#1|))) (-282)) (T -163))
+((-3293 (*1 *2 *2 *3) (-12 (-5 *2 (-587 *3)) (-4 *3 (-282)) (-5 *1 (-163 *3)))) (-3837 (*1 *2 *3 *2) (-12 (-5 *3 (-587 (-587 *4))) (-5 *2 (-587 *4)) (-4 *4 (-282)) (-5 *1 (-163 *4)))) (-3837 (*1 *2 *3 *3) (-12 (-5 *3 (-587 *2)) (-5 *1 (-163 *2)) (-4 *2 (-282)))) (-3535 (*1 *2 *3 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-282)) (-5 *1 (-163 *3)))))
+(-10 -7 (-15 -3535 ((-587 |#1|) |#1| (-587 |#1|))) (-15 -3837 (|#1| (-587 |#1|) (-587 |#1|))) (-15 -3837 ((-587 |#1|) (-587 (-587 |#1|)) (-587 |#1|))) (-15 -3293 ((-587 |#1|) (-587 |#1|) |#1|)))
+((-1493 (((-2 (|:| |start| |#2|) (|:| -1514 (-392 |#2|))) |#2|) 61)) (-3314 ((|#1| |#1|) 54)) (-2591 (((-154 |#1|) |#2|) 83)) (-2745 ((|#1| |#2|) 123) ((|#1| |#2| |#1|) 81)) (-2130 ((|#2| |#2|) 82)) (-2756 (((-392 |#2|) |#2| |#1|) 113) (((-392 |#2|) |#2| |#1| (-108)) 80)) (-3930 ((|#1| |#2|) 112)) (-2420 ((|#2| |#2|) 119)) (-1916 (((-392 |#2|) |#2|) 134) (((-392 |#2|) |#2| |#1|) 32) (((-392 |#2|) |#2| |#1| (-108)) 133)) (-3379 (((-587 (-2 (|:| -1514 (-587 |#2|)) (|:| -2968 |#1|))) |#2| |#2|) 132) (((-587 (-2 (|:| -1514 (-587 |#2|)) (|:| -2968 |#1|))) |#2| |#2| (-108)) 75)) (-3332 (((-587 (-154 |#1|)) |#2| |#1|) 40) (((-587 (-154 |#1|)) |#2|) 41)))
+(((-164 |#1| |#2|) (-10 -7 (-15 -3332 ((-587 (-154 |#1|)) |#2|)) (-15 -3332 ((-587 (-154 |#1|)) |#2| |#1|)) (-15 -3379 ((-587 (-2 (|:| -1514 (-587 |#2|)) (|:| -2968 |#1|))) |#2| |#2| (-108))) (-15 -3379 ((-587 (-2 (|:| -1514 (-587 |#2|)) (|:| -2968 |#1|))) |#2| |#2|)) (-15 -1916 ((-392 |#2|) |#2| |#1| (-108))) (-15 -1916 ((-392 |#2|) |#2| |#1|)) (-15 -1916 ((-392 |#2|) |#2|)) (-15 -2420 (|#2| |#2|)) (-15 -3930 (|#1| |#2|)) (-15 -2756 ((-392 |#2|) |#2| |#1| (-108))) (-15 -2756 ((-392 |#2|) |#2| |#1|)) (-15 -2130 (|#2| |#2|)) (-15 -2745 (|#1| |#2| |#1|)) (-15 -2745 (|#1| |#2|)) (-15 -2591 ((-154 |#1|) |#2|)) (-15 -3314 (|#1| |#1|)) (-15 -1493 ((-2 (|:| |start| |#2|) (|:| -1514 (-392 |#2|))) |#2|))) (-13 (-337) (-782)) (-1141 (-154 |#1|))) (T -164))
+((-1493 (*1 *2 *3) (-12 (-4 *4 (-13 (-337) (-782))) (-5 *2 (-2 (|:| |start| *3) (|:| -1514 (-392 *3)))) (-5 *1 (-164 *4 *3)) (-4 *3 (-1141 (-154 *4))))) (-3314 (*1 *2 *2) (-12 (-4 *2 (-13 (-337) (-782))) (-5 *1 (-164 *2 *3)) (-4 *3 (-1141 (-154 *2))))) (-2591 (*1 *2 *3) (-12 (-5 *2 (-154 *4)) (-5 *1 (-164 *4 *3)) (-4 *4 (-13 (-337) (-782))) (-4 *3 (-1141 *2)))) (-2745 (*1 *2 *3) (-12 (-4 *2 (-13 (-337) (-782))) (-5 *1 (-164 *2 *3)) (-4 *3 (-1141 (-154 *2))))) (-2745 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-337) (-782))) (-5 *1 (-164 *2 *3)) (-4 *3 (-1141 (-154 *2))))) (-2130 (*1 *2 *2) (-12 (-4 *3 (-13 (-337) (-782))) (-5 *1 (-164 *3 *2)) (-4 *2 (-1141 (-154 *3))))) (-2756 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-337) (-782))) (-5 *2 (-392 *3)) (-5 *1 (-164 *4 *3)) (-4 *3 (-1141 (-154 *4))))) (-2756 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-108)) (-4 *4 (-13 (-337) (-782))) (-5 *2 (-392 *3)) (-5 *1 (-164 *4 *3)) (-4 *3 (-1141 (-154 *4))))) (-3930 (*1 *2 *3) (-12 (-4 *2 (-13 (-337) (-782))) (-5 *1 (-164 *2 *3)) (-4 *3 (-1141 (-154 *2))))) (-2420 (*1 *2 *2) (-12 (-4 *3 (-13 (-337) (-782))) (-5 *1 (-164 *3 *2)) (-4 *2 (-1141 (-154 *3))))) (-1916 (*1 *2 *3) (-12 (-4 *4 (-13 (-337) (-782))) (-5 *2 (-392 *3)) (-5 *1 (-164 *4 *3)) (-4 *3 (-1141 (-154 *4))))) (-1916 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-337) (-782))) (-5 *2 (-392 *3)) (-5 *1 (-164 *4 *3)) (-4 *3 (-1141 (-154 *4))))) (-1916 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-108)) (-4 *4 (-13 (-337) (-782))) (-5 *2 (-392 *3)) (-5 *1 (-164 *4 *3)) (-4 *3 (-1141 (-154 *4))))) (-3379 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-337) (-782))) (-5 *2 (-587 (-2 (|:| -1514 (-587 *3)) (|:| -2968 *4)))) (-5 *1 (-164 *4 *3)) (-4 *3 (-1141 (-154 *4))))) (-3379 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-337) (-782))) (-5 *2 (-587 (-2 (|:| -1514 (-587 *3)) (|:| -2968 *5)))) (-5 *1 (-164 *5 *3)) (-4 *3 (-1141 (-154 *5))))) (-3332 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-337) (-782))) (-5 *2 (-587 (-154 *4))) (-5 *1 (-164 *4 *3)) (-4 *3 (-1141 (-154 *4))))) (-3332 (*1 *2 *3) (-12 (-4 *4 (-13 (-337) (-782))) (-5 *2 (-587 (-154 *4))) (-5 *1 (-164 *4 *3)) (-4 *3 (-1141 (-154 *4))))))
+(-10 -7 (-15 -3332 ((-587 (-154 |#1|)) |#2|)) (-15 -3332 ((-587 (-154 |#1|)) |#2| |#1|)) (-15 -3379 ((-587 (-2 (|:| -1514 (-587 |#2|)) (|:| -2968 |#1|))) |#2| |#2| (-108))) (-15 -3379 ((-587 (-2 (|:| -1514 (-587 |#2|)) (|:| -2968 |#1|))) |#2| |#2|)) (-15 -1916 ((-392 |#2|) |#2| |#1| (-108))) (-15 -1916 ((-392 |#2|) |#2| |#1|)) (-15 -1916 ((-392 |#2|) |#2|)) (-15 -2420 (|#2| |#2|)) (-15 -3930 (|#1| |#2|)) (-15 -2756 ((-392 |#2|) |#2| |#1| (-108))) (-15 -2756 ((-392 |#2|) |#2| |#1|)) (-15 -2130 (|#2| |#2|)) (-15 -2745 (|#1| |#2| |#1|)) (-15 -2745 (|#1| |#2|)) (-15 -2591 ((-154 |#1|) |#2|)) (-15 -3314 (|#1| |#1|)) (-15 -1493 ((-2 (|:| |start| |#2|) (|:| -1514 (-392 |#2|))) |#2|)))
+((-2568 (((-3 |#2| "failed") |#2|) 14)) (-1529 (((-707) |#2|) 16)) (-3139 ((|#2| |#2| |#2|) 18)))
+(((-165 |#1| |#2|) (-10 -7 (-15 -2568 ((-3 |#2| "failed") |#2|)) (-15 -1529 ((-707) |#2|)) (-15 -3139 (|#2| |#2| |#2|))) (-1119) (-614 |#1|)) (T -165))
+((-3139 (*1 *2 *2 *2) (-12 (-4 *3 (-1119)) (-5 *1 (-165 *3 *2)) (-4 *2 (-614 *3)))) (-1529 (*1 *2 *3) (-12 (-4 *4 (-1119)) (-5 *2 (-707)) (-5 *1 (-165 *4 *3)) (-4 *3 (-614 *4)))) (-2568 (*1 *2 *2) (|partial| -12 (-4 *3 (-1119)) (-5 *1 (-165 *3 *2)) (-4 *2 (-614 *3)))))
+(-10 -7 (-15 -2568 ((-3 |#2| "failed") |#2|)) (-15 -1529 ((-707) |#2|)) (-15 -3139 (|#2| |#2| |#2|)))
+((-3603 (((-1084) $) 9)) (-2189 (((-792) $) 13)) (-3885 (((-587 (-1089)) $) 11)))
+(((-166) (-13 (-561 (-792)) (-10 -8 (-15 -3603 ((-1084) $)) (-15 -3885 ((-587 (-1089)) $))))) (T -166))
+((-3603 (*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-166)))) (-3885 (*1 *2 *1) (-12 (-5 *2 (-587 (-1089))) (-5 *1 (-166)))))
+(-13 (-561 (-792)) (-10 -8 (-15 -3603 ((-1084) $)) (-15 -3885 ((-587 (-1089)) $))))
+((-3694 ((|#2| |#2|) 28)) (-1459 (((-108) |#2|) 19)) (-1935 (((-290 |#1|) |#2|) 12)) (-1948 (((-290 |#1|) |#2|) 14)) (-1388 ((|#2| |#2| (-1084)) 68) ((|#2| |#2|) 69)) (-1582 (((-154 (-290 |#1|)) |#2|) 9)) (-1433 ((|#2| |#2| (-1084)) 65) ((|#2| |#2|) 58)))
+(((-167 |#1| |#2|) (-10 -7 (-15 -1388 (|#2| |#2|)) (-15 -1388 (|#2| |#2| (-1084))) (-15 -1433 (|#2| |#2|)) (-15 -1433 (|#2| |#2| (-1084))) (-15 -1935 ((-290 |#1|) |#2|)) (-15 -1948 ((-290 |#1|) |#2|)) (-15 -1459 ((-108) |#2|)) (-15 -3694 (|#2| |#2|)) (-15 -1582 ((-154 (-290 |#1|)) |#2|))) (-13 (-513) (-784) (-961 (-521))) (-13 (-27) (-1105) (-404 (-154 |#1|)))) (T -167))
+((-1582 (*1 *2 *3) (-12 (-4 *4 (-13 (-513) (-784) (-961 (-521)))) (-5 *2 (-154 (-290 *4))) (-5 *1 (-167 *4 *3)) (-4 *3 (-13 (-27) (-1105) (-404 (-154 *4)))))) (-3694 (*1 *2 *2) (-12 (-4 *3 (-13 (-513) (-784) (-961 (-521)))) (-5 *1 (-167 *3 *2)) (-4 *2 (-13 (-27) (-1105) (-404 (-154 *3)))))) (-1459 (*1 *2 *3) (-12 (-4 *4 (-13 (-513) (-784) (-961 (-521)))) (-5 *2 (-108)) (-5 *1 (-167 *4 *3)) (-4 *3 (-13 (-27) (-1105) (-404 (-154 *4)))))) (-1948 (*1 *2 *3) (-12 (-4 *4 (-13 (-513) (-784) (-961 (-521)))) (-5 *2 (-290 *4)) (-5 *1 (-167 *4 *3)) (-4 *3 (-13 (-27) (-1105) (-404 (-154 *4)))))) (-1935 (*1 *2 *3) (-12 (-4 *4 (-13 (-513) (-784) (-961 (-521)))) (-5 *2 (-290 *4)) (-5 *1 (-167 *4 *3)) (-4 *3 (-13 (-27) (-1105) (-404 (-154 *4)))))) (-1433 (*1 *2 *2 *3) (-12 (-5 *3 (-1084)) (-4 *4 (-13 (-513) (-784) (-961 (-521)))) (-5 *1 (-167 *4 *2)) (-4 *2 (-13 (-27) (-1105) (-404 (-154 *4)))))) (-1433 (*1 *2 *2) (-12 (-4 *3 (-13 (-513) (-784) (-961 (-521)))) (-5 *1 (-167 *3 *2)) (-4 *2 (-13 (-27) (-1105) (-404 (-154 *3)))))) (-1388 (*1 *2 *2 *3) (-12 (-5 *3 (-1084)) (-4 *4 (-13 (-513) (-784) (-961 (-521)))) (-5 *1 (-167 *4 *2)) (-4 *2 (-13 (-27) (-1105) (-404 (-154 *4)))))) (-1388 (*1 *2 *2) (-12 (-4 *3 (-13 (-513) (-784) (-961 (-521)))) (-5 *1 (-167 *3 *2)) (-4 *2 (-13 (-27) (-1105) (-404 (-154 *3)))))))
+(-10 -7 (-15 -1388 (|#2| |#2|)) (-15 -1388 (|#2| |#2| (-1084))) (-15 -1433 (|#2| |#2|)) (-15 -1433 (|#2| |#2| (-1084))) (-15 -1935 ((-290 |#1|) |#2|)) (-15 -1948 ((-290 |#1|) |#2|)) (-15 -1459 ((-108) |#2|)) (-15 -3694 (|#2| |#2|)) (-15 -1582 ((-154 (-290 |#1|)) |#2|)))
+((-3255 (((-1165 (-627 (-881 |#1|))) (-1165 (-627 |#1|))) 22)) (-2189 (((-1165 (-627 (-381 (-881 |#1|)))) (-1165 (-627 |#1|))) 30)))
+(((-168 |#1|) (-10 -7 (-15 -3255 ((-1165 (-627 (-881 |#1|))) (-1165 (-627 |#1|)))) (-15 -2189 ((-1165 (-627 (-381 (-881 |#1|)))) (-1165 (-627 |#1|))))) (-157)) (T -168))
+((-2189 (*1 *2 *3) (-12 (-5 *3 (-1165 (-627 *4))) (-4 *4 (-157)) (-5 *2 (-1165 (-627 (-381 (-881 *4))))) (-5 *1 (-168 *4)))) (-3255 (*1 *2 *3) (-12 (-5 *3 (-1165 (-627 *4))) (-4 *4 (-157)) (-5 *2 (-1165 (-627 (-881 *4)))) (-5 *1 (-168 *4)))))
+(-10 -7 (-15 -3255 ((-1165 (-627 (-881 |#1|))) (-1165 (-627 |#1|)))) (-15 -2189 ((-1165 (-627 (-381 (-881 |#1|)))) (-1165 (-627 |#1|)))))
+((-2889 (((-1086 (-381 (-521))) (-1086 (-381 (-521))) (-1086 (-381 (-521)))) 66)) (-2625 (((-1086 (-381 (-521))) (-587 (-521)) (-587 (-521))) 74)) (-1613 (((-1086 (-381 (-521))) (-521)) 40)) (-3956 (((-1086 (-381 (-521))) (-521)) 52)) (-2288 (((-381 (-521)) (-1086 (-381 (-521)))) 62)) (-2913 (((-1086 (-381 (-521))) (-521)) 32)) (-3515 (((-1086 (-381 (-521))) (-521)) 48)) (-3725 (((-1086 (-381 (-521))) (-521)) 46)) (-1753 (((-1086 (-381 (-521))) (-1086 (-381 (-521))) (-1086 (-381 (-521)))) 60)) (-3448 (((-1086 (-381 (-521))) (-521)) 25)) (-2106 (((-381 (-521)) (-1086 (-381 (-521))) (-1086 (-381 (-521)))) 64)) (-2365 (((-1086 (-381 (-521))) (-521)) 30)) (-1334 (((-1086 (-381 (-521))) (-587 (-521))) 71)))
+(((-169) (-10 -7 (-15 -3448 ((-1086 (-381 (-521))) (-521))) (-15 -1613 ((-1086 (-381 (-521))) (-521))) (-15 -2913 ((-1086 (-381 (-521))) (-521))) (-15 -2365 ((-1086 (-381 (-521))) (-521))) (-15 -3725 ((-1086 (-381 (-521))) (-521))) (-15 -3515 ((-1086 (-381 (-521))) (-521))) (-15 -3956 ((-1086 (-381 (-521))) (-521))) (-15 -2106 ((-381 (-521)) (-1086 (-381 (-521))) (-1086 (-381 (-521))))) (-15 -1753 ((-1086 (-381 (-521))) (-1086 (-381 (-521))) (-1086 (-381 (-521))))) (-15 -2288 ((-381 (-521)) (-1086 (-381 (-521))))) (-15 -2889 ((-1086 (-381 (-521))) (-1086 (-381 (-521))) (-1086 (-381 (-521))))) (-15 -1334 ((-1086 (-381 (-521))) (-587 (-521)))) (-15 -2625 ((-1086 (-381 (-521))) (-587 (-521)) (-587 (-521)))))) (T -169))
+((-2625 (*1 *2 *3 *3) (-12 (-5 *3 (-587 (-521))) (-5 *2 (-1086 (-381 (-521)))) (-5 *1 (-169)))) (-1334 (*1 *2 *3) (-12 (-5 *3 (-587 (-521))) (-5 *2 (-1086 (-381 (-521)))) (-5 *1 (-169)))) (-2889 (*1 *2 *2 *2) (-12 (-5 *2 (-1086 (-381 (-521)))) (-5 *1 (-169)))) (-2288 (*1 *2 *3) (-12 (-5 *3 (-1086 (-381 (-521)))) (-5 *2 (-381 (-521))) (-5 *1 (-169)))) (-1753 (*1 *2 *2 *2) (-12 (-5 *2 (-1086 (-381 (-521)))) (-5 *1 (-169)))) (-2106 (*1 *2 *3 *3) (-12 (-5 *3 (-1086 (-381 (-521)))) (-5 *2 (-381 (-521))) (-5 *1 (-169)))) (-3956 (*1 *2 *3) (-12 (-5 *2 (-1086 (-381 (-521)))) (-5 *1 (-169)) (-5 *3 (-521)))) (-3515 (*1 *2 *3) (-12 (-5 *2 (-1086 (-381 (-521)))) (-5 *1 (-169)) (-5 *3 (-521)))) (-3725 (*1 *2 *3) (-12 (-5 *2 (-1086 (-381 (-521)))) (-5 *1 (-169)) (-5 *3 (-521)))) (-2365 (*1 *2 *3) (-12 (-5 *2 (-1086 (-381 (-521)))) (-5 *1 (-169)) (-5 *3 (-521)))) (-2913 (*1 *2 *3) (-12 (-5 *2 (-1086 (-381 (-521)))) (-5 *1 (-169)) (-5 *3 (-521)))) (-1613 (*1 *2 *3) (-12 (-5 *2 (-1086 (-381 (-521)))) (-5 *1 (-169)) (-5 *3 (-521)))) (-3448 (*1 *2 *3) (-12 (-5 *2 (-1086 (-381 (-521)))) (-5 *1 (-169)) (-5 *3 (-521)))))
+(-10 -7 (-15 -3448 ((-1086 (-381 (-521))) (-521))) (-15 -1613 ((-1086 (-381 (-521))) (-521))) (-15 -2913 ((-1086 (-381 (-521))) (-521))) (-15 -2365 ((-1086 (-381 (-521))) (-521))) (-15 -3725 ((-1086 (-381 (-521))) (-521))) (-15 -3515 ((-1086 (-381 (-521))) (-521))) (-15 -3956 ((-1086 (-381 (-521))) (-521))) (-15 -2106 ((-381 (-521)) (-1086 (-381 (-521))) (-1086 (-381 (-521))))) (-15 -1753 ((-1086 (-381 (-521))) (-1086 (-381 (-521))) (-1086 (-381 (-521))))) (-15 -2288 ((-381 (-521)) (-1086 (-381 (-521))))) (-15 -2889 ((-1086 (-381 (-521))) (-1086 (-381 (-521))) (-1086 (-381 (-521))))) (-15 -1334 ((-1086 (-381 (-521))) (-587 (-521)))) (-15 -2625 ((-1086 (-381 (-521))) (-587 (-521)) (-587 (-521)))))
+((-1370 (((-392 (-1080 (-521))) (-521)) 28)) (-2896 (((-587 (-1080 (-521))) (-521)) 23)) (-2557 (((-1080 (-521)) (-521)) 21)))
+(((-170) (-10 -7 (-15 -2896 ((-587 (-1080 (-521))) (-521))) (-15 -2557 ((-1080 (-521)) (-521))) (-15 -1370 ((-392 (-1080 (-521))) (-521))))) (T -170))
+((-1370 (*1 *2 *3) (-12 (-5 *2 (-392 (-1080 (-521)))) (-5 *1 (-170)) (-5 *3 (-521)))) (-2557 (*1 *2 *3) (-12 (-5 *2 (-1080 (-521))) (-5 *1 (-170)) (-5 *3 (-521)))) (-2896 (*1 *2 *3) (-12 (-5 *2 (-587 (-1080 (-521)))) (-5 *1 (-170)) (-5 *3 (-521)))))
+(-10 -7 (-15 -2896 ((-587 (-1080 (-521))) (-521))) (-15 -2557 ((-1080 (-521)) (-521))) (-15 -1370 ((-392 (-1080 (-521))) (-521))))
+((-3487 (((-1065 (-202)) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 101)) (-1813 (((-587 (-1067)) (-1065 (-202))) NIL)) (-2334 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 77)) (-2478 (((-587 (-202)) (-290 (-202)) (-1084) (-1008 (-777 (-202)))) NIL)) (-2019 (((-587 (-1067)) (-587 (-202))) NIL)) (-1584 (((-202) (-1008 (-777 (-202)))) 22)) (-3346 (((-202) (-1008 (-777 (-202)))) 23)) (-3021 (((-353) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 93)) (-1413 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 40)) (-1975 (((-1067) (-202)) NIL)) (-2660 (((-1067) (-587 (-1067))) 19)) (-2791 (((-959) (-1084) (-1084) (-959)) 12)))
+(((-171) (-10 -7 (-15 -2334 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -1413 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -1584 ((-202) (-1008 (-777 (-202))))) (-15 -3346 ((-202) (-1008 (-777 (-202))))) (-15 -3021 ((-353) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -2478 ((-587 (-202)) (-290 (-202)) (-1084) (-1008 (-777 (-202))))) (-15 -3487 ((-1065 (-202)) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -1975 ((-1067) (-202))) (-15 -2019 ((-587 (-1067)) (-587 (-202)))) (-15 -1813 ((-587 (-1067)) (-1065 (-202)))) (-15 -2660 ((-1067) (-587 (-1067)))) (-15 -2791 ((-959) (-1084) (-1084) (-959))))) (T -171))
+((-2791 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-959)) (-5 *3 (-1084)) (-5 *1 (-171)))) (-2660 (*1 *2 *3) (-12 (-5 *3 (-587 (-1067))) (-5 *2 (-1067)) (-5 *1 (-171)))) (-1813 (*1 *2 *3) (-12 (-5 *3 (-1065 (-202))) (-5 *2 (-587 (-1067))) (-5 *1 (-171)))) (-2019 (*1 *2 *3) (-12 (-5 *3 (-587 (-202))) (-5 *2 (-587 (-1067))) (-5 *1 (-171)))) (-1975 (*1 *2 *3) (-12 (-5 *3 (-202)) (-5 *2 (-1067)) (-5 *1 (-171)))) (-3487 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-1065 (-202))) (-5 *1 (-171)))) (-2478 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-290 (-202))) (-5 *4 (-1084)) (-5 *5 (-1008 (-777 (-202)))) (-5 *2 (-587 (-202))) (-5 *1 (-171)))) (-3021 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-353)) (-5 *1 (-171)))) (-3346 (*1 *2 *3) (-12 (-5 *3 (-1008 (-777 (-202)))) (-5 *2 (-202)) (-5 *1 (-171)))) (-1584 (*1 *2 *3) (-12 (-5 *3 (-1008 (-777 (-202)))) (-5 *2 (-202)) (-5 *1 (-171)))) (-1413 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-171)))) (-2334 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-171)))))
+(-10 -7 (-15 -2334 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -1413 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -1584 ((-202) (-1008 (-777 (-202))))) (-15 -3346 ((-202) (-1008 (-777 (-202))))) (-15 -3021 ((-353) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -2478 ((-587 (-202)) (-290 (-202)) (-1084) (-1008 (-777 (-202))))) (-15 -3487 ((-1065 (-202)) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -1975 ((-1067) (-202))) (-15 -2019 ((-587 (-1067)) (-587 (-202)))) (-15 -1813 ((-587 (-1067)) (-1065 (-202)))) (-15 -2660 ((-1067) (-587 (-1067)))) (-15 -2791 ((-959) (-1084) (-1084) (-959))))
+((-1415 (((-108) $ $) NIL)) (-3618 (((-959) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-959)) 53) (((-959) (-2 (|:| |fn| (-290 (-202))) (|:| -2442 (-587 (-1008 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-959)) NIL)) (-1797 (((-2 (|:| -1797 (-353)) (|:| |explanations| (-1067)) (|:| |extra| (-959))) (-982) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 28) (((-2 (|:| -1797 (-353)) (|:| |explanations| (-1067)) (|:| |extra| (-959))) (-982) (-2 (|:| |fn| (-290 (-202))) (|:| -2442 (-587 (-1008 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) NIL)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2189 (((-792) $) NIL)) (-1531 (((-108) $ $) NIL)))
+(((-172) (-723)) (T -172))
+NIL
+(-723)
+((-1415 (((-108) $ $) NIL)) (-3618 (((-959) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-959)) 58) (((-959) (-2 (|:| |fn| (-290 (-202))) (|:| -2442 (-587 (-1008 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-959)) NIL)) (-1797 (((-2 (|:| -1797 (-353)) (|:| |explanations| (-1067)) (|:| |extra| (-959))) (-982) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 37) (((-2 (|:| -1797 (-353)) (|:| |explanations| (-1067)) (|:| |extra| (-959))) (-982) (-2 (|:| |fn| (-290 (-202))) (|:| -2442 (-587 (-1008 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) NIL)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2189 (((-792) $) NIL)) (-1531 (((-108) $ $) NIL)))
+(((-173) (-723)) (T -173))
+NIL
+(-723)
+((-1415 (((-108) $ $) NIL)) (-3618 (((-959) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-959)) 67) (((-959) (-2 (|:| |fn| (-290 (-202))) (|:| -2442 (-587 (-1008 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-959)) NIL)) (-1797 (((-2 (|:| -1797 (-353)) (|:| |explanations| (-1067)) (|:| |extra| (-959))) (-982) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 36) (((-2 (|:| -1797 (-353)) (|:| |explanations| (-1067)) (|:| |extra| (-959))) (-982) (-2 (|:| |fn| (-290 (-202))) (|:| -2442 (-587 (-1008 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) NIL)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2189 (((-792) $) NIL)) (-1531 (((-108) $ $) NIL)))
+(((-174) (-723)) (T -174))
+NIL
+(-723)
+((-1415 (((-108) $ $) NIL)) (-3618 (((-959) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-959)) 54) (((-959) (-2 (|:| |fn| (-290 (-202))) (|:| -2442 (-587 (-1008 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-959)) NIL)) (-1797 (((-2 (|:| -1797 (-353)) (|:| |explanations| (-1067)) (|:| |extra| (-959))) (-982) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 30) (((-2 (|:| -1797 (-353)) (|:| |explanations| (-1067)) (|:| |extra| (-959))) (-982) (-2 (|:| |fn| (-290 (-202))) (|:| -2442 (-587 (-1008 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) NIL)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2189 (((-792) $) NIL)) (-1531 (((-108) $ $) NIL)))
+(((-175) (-723)) (T -175))
+NIL
+(-723)
+((-1415 (((-108) $ $) NIL)) (-3618 (((-959) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-959)) 65) (((-959) (-2 (|:| |fn| (-290 (-202))) (|:| -2442 (-587 (-1008 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-959)) NIL)) (-1797 (((-2 (|:| -1797 (-353)) (|:| |explanations| (-1067)) (|:| |extra| (-959))) (-982) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 35) (((-2 (|:| -1797 (-353)) (|:| |explanations| (-1067)) (|:| |extra| (-959))) (-982) (-2 (|:| |fn| (-290 (-202))) (|:| -2442 (-587 (-1008 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) NIL)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2189 (((-792) $) NIL)) (-1531 (((-108) $ $) NIL)))
+(((-176) (-723)) (T -176))
+NIL
+(-723)
+((-1415 (((-108) $ $) NIL)) (-3618 (((-959) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-959)) 71) (((-959) (-2 (|:| |fn| (-290 (-202))) (|:| -2442 (-587 (-1008 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-959)) NIL)) (-1797 (((-2 (|:| -1797 (-353)) (|:| |explanations| (-1067)) (|:| |extra| (-959))) (-982) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 33) (((-2 (|:| -1797 (-353)) (|:| |explanations| (-1067)) (|:| |extra| (-959))) (-982) (-2 (|:| |fn| (-290 (-202))) (|:| -2442 (-587 (-1008 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) NIL)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2189 (((-792) $) NIL)) (-1531 (((-108) $ $) NIL)))
+(((-177) (-723)) (T -177))
+NIL
+(-723)
+((-1415 (((-108) $ $) NIL)) (-3618 (((-959) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-959)) 78) (((-959) (-2 (|:| |fn| (-290 (-202))) (|:| -2442 (-587 (-1008 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-959)) NIL)) (-1797 (((-2 (|:| -1797 (-353)) (|:| |explanations| (-1067)) (|:| |extra| (-959))) (-982) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 43) (((-2 (|:| -1797 (-353)) (|:| |explanations| (-1067)) (|:| |extra| (-959))) (-982) (-2 (|:| |fn| (-290 (-202))) (|:| -2442 (-587 (-1008 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) NIL)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2189 (((-792) $) NIL)) (-1531 (((-108) $ $) NIL)))
+(((-178) (-723)) (T -178))
+NIL
+(-723)
+((-1415 (((-108) $ $) NIL)) (-3618 (((-959) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-959)) 68) (((-959) (-2 (|:| |fn| (-290 (-202))) (|:| -2442 (-587 (-1008 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-959)) NIL)) (-1797 (((-2 (|:| -1797 (-353)) (|:| |explanations| (-1067)) (|:| |extra| (-959))) (-982) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 37) (((-2 (|:| -1797 (-353)) (|:| |explanations| (-1067)) (|:| |extra| (-959))) (-982) (-2 (|:| |fn| (-290 (-202))) (|:| -2442 (-587 (-1008 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) NIL)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2189 (((-792) $) NIL)) (-1531 (((-108) $ $) NIL)))
+(((-179) (-723)) (T -179))
+NIL
+(-723)
+((-1415 (((-108) $ $) NIL)) (-3618 (((-959) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-959)) NIL) (((-959) (-2 (|:| |fn| (-290 (-202))) (|:| -2442 (-587 (-1008 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-959)) 62)) (-1797 (((-2 (|:| -1797 (-353)) (|:| |explanations| (-1067)) (|:| |extra| (-959))) (-982) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) NIL) (((-2 (|:| -1797 (-353)) (|:| |explanations| (-1067)) (|:| |extra| (-959))) (-982) (-2 (|:| |fn| (-290 (-202))) (|:| -2442 (-587 (-1008 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 29)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2189 (((-792) $) NIL)) (-1531 (((-108) $ $) NIL)))
+(((-180) (-723)) (T -180))
+NIL
+(-723)
+((-1415 (((-108) $ $) NIL)) (-3618 (((-959) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-959)) NIL) (((-959) (-2 (|:| |fn| (-290 (-202))) (|:| -2442 (-587 (-1008 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-959)) 60)) (-1797 (((-2 (|:| -1797 (-353)) (|:| |explanations| (-1067)) (|:| |extra| (-959))) (-982) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) NIL) (((-2 (|:| -1797 (-353)) (|:| |explanations| (-1067)) (|:| |extra| (-959))) (-982) (-2 (|:| |fn| (-290 (-202))) (|:| -2442 (-587 (-1008 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 32)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2189 (((-792) $) NIL)) (-1531 (((-108) $ $) NIL)))
+(((-181) (-723)) (T -181))
+NIL
+(-723)
+((-1415 (((-108) $ $) NIL)) (-3618 (((-959) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-959)) 89) (((-959) (-2 (|:| |fn| (-290 (-202))) (|:| -2442 (-587 (-1008 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-959)) NIL)) (-1797 (((-2 (|:| -1797 (-353)) (|:| |explanations| (-1067)) (|:| |extra| (-959))) (-982) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 77) (((-2 (|:| -1797 (-353)) (|:| |explanations| (-1067)) (|:| |extra| (-959))) (-982) (-2 (|:| |fn| (-290 (-202))) (|:| -2442 (-587 (-1008 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) NIL)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2189 (((-792) $) NIL)) (-1531 (((-108) $ $) NIL)))
+(((-182) (-723)) (T -182))
+NIL
+(-723)
+((-2713 (((-3 (-2 (|:| -1419 (-110)) (|:| |w| (-202))) "failed") (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 81)) (-3059 (((-521) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 39)) (-2109 (((-3 (-587 (-202)) "failed") (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 69)))
+(((-183) (-10 -7 (-15 -2713 ((-3 (-2 (|:| -1419 (-110)) (|:| |w| (-202))) "failed") (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -2109 ((-3 (-587 (-202)) "failed") (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -3059 ((-521) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))))) (T -183))
+((-3059 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-521)) (-5 *1 (-183)))) (-2109 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-587 (-202))) (-5 *1 (-183)))) (-2713 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-2 (|:| -1419 (-110)) (|:| |w| (-202)))) (-5 *1 (-183)))))
+(-10 -7 (-15 -2713 ((-3 (-2 (|:| -1419 (-110)) (|:| |w| (-202))) "failed") (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -2109 ((-3 (-587 (-202)) "failed") (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -3059 ((-521) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))))
+((-2558 (((-353) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 37)) (-2373 (((-2 (|:| |stiffnessFactor| (-353)) (|:| |stabilityFactor| (-353))) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 128)) (-2224 (((-2 (|:| |stiffnessFactor| (-353)) (|:| |stabilityFactor| (-353))) (-627 (-290 (-202)))) 88)) (-2636 (((-353) (-627 (-290 (-202)))) 111)) (-2921 (((-627 (-290 (-202))) (-1165 (-290 (-202))) (-587 (-1084))) 108)) (-2028 (((-353) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 26)) (-2924 (((-353) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 42)) (-2288 (((-627 (-290 (-202))) (-627 (-290 (-202))) (-587 (-1084)) (-1165 (-290 (-202)))) 100)) (-3718 (((-353) (-353) (-587 (-353))) 105) (((-353) (-353) (-353)) 103)) (-4136 (((-353) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 33)))
+(((-184) (-10 -7 (-15 -3718 ((-353) (-353) (-353))) (-15 -3718 ((-353) (-353) (-587 (-353)))) (-15 -2636 ((-353) (-627 (-290 (-202))))) (-15 -2921 ((-627 (-290 (-202))) (-1165 (-290 (-202))) (-587 (-1084)))) (-15 -2288 ((-627 (-290 (-202))) (-627 (-290 (-202))) (-587 (-1084)) (-1165 (-290 (-202))))) (-15 -2224 ((-2 (|:| |stiffnessFactor| (-353)) (|:| |stabilityFactor| (-353))) (-627 (-290 (-202))))) (-15 -2373 ((-2 (|:| |stiffnessFactor| (-353)) (|:| |stabilityFactor| (-353))) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -2558 ((-353) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -2924 ((-353) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -4136 ((-353) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -2028 ((-353) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))))) (T -184))
+((-2028 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-353)) (-5 *1 (-184)))) (-4136 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-353)) (-5 *1 (-184)))) (-2924 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-353)) (-5 *1 (-184)))) (-2558 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-353)) (-5 *1 (-184)))) (-2373 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-353)) (|:| |stabilityFactor| (-353)))) (-5 *1 (-184)))) (-2224 (*1 *2 *3) (-12 (-5 *3 (-627 (-290 (-202)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-353)) (|:| |stabilityFactor| (-353)))) (-5 *1 (-184)))) (-2288 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-627 (-290 (-202)))) (-5 *3 (-587 (-1084))) (-5 *4 (-1165 (-290 (-202)))) (-5 *1 (-184)))) (-2921 (*1 *2 *3 *4) (-12 (-5 *3 (-1165 (-290 (-202)))) (-5 *4 (-587 (-1084))) (-5 *2 (-627 (-290 (-202)))) (-5 *1 (-184)))) (-2636 (*1 *2 *3) (-12 (-5 *3 (-627 (-290 (-202)))) (-5 *2 (-353)) (-5 *1 (-184)))) (-3718 (*1 *2 *2 *3) (-12 (-5 *3 (-587 (-353))) (-5 *2 (-353)) (-5 *1 (-184)))) (-3718 (*1 *2 *2 *2) (-12 (-5 *2 (-353)) (-5 *1 (-184)))))
+(-10 -7 (-15 -3718 ((-353) (-353) (-353))) (-15 -3718 ((-353) (-353) (-587 (-353)))) (-15 -2636 ((-353) (-627 (-290 (-202))))) (-15 -2921 ((-627 (-290 (-202))) (-1165 (-290 (-202))) (-587 (-1084)))) (-15 -2288 ((-627 (-290 (-202))) (-627 (-290 (-202))) (-587 (-1084)) (-1165 (-290 (-202))))) (-15 -2224 ((-2 (|:| |stiffnessFactor| (-353)) (|:| |stabilityFactor| (-353))) (-627 (-290 (-202))))) (-15 -2373 ((-2 (|:| |stiffnessFactor| (-353)) (|:| |stabilityFactor| (-353))) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -2558 ((-353) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -2924 ((-353) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -4136 ((-353) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -2028 ((-353) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))))
+((-1415 (((-108) $ $) NIL)) (-1797 (((-2 (|:| -1797 (-353)) (|:| |explanations| (-1067))) (-982) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 37)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2189 (((-792) $) NIL)) (-3569 (((-959) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 60)) (-1531 (((-108) $ $) NIL)))
+(((-185) (-737)) (T -185))
+NIL
+(-737)
+((-1415 (((-108) $ $) NIL)) (-1797 (((-2 (|:| -1797 (-353)) (|:| |explanations| (-1067))) (-982) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 37)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2189 (((-792) $) NIL)) (-3569 (((-959) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 60)) (-1531 (((-108) $ $) NIL)))
+(((-186) (-737)) (T -186))
+NIL
+(-737)
+((-1415 (((-108) $ $) NIL)) (-1797 (((-2 (|:| -1797 (-353)) (|:| |explanations| (-1067))) (-982) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 36)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2189 (((-792) $) NIL)) (-3569 (((-959) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 64)) (-1531 (((-108) $ $) NIL)))
+(((-187) (-737)) (T -187))
+NIL
+(-737)
+((-1415 (((-108) $ $) NIL)) (-1797 (((-2 (|:| -1797 (-353)) (|:| |explanations| (-1067))) (-982) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 42)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2189 (((-792) $) NIL)) (-3569 (((-959) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 73)) (-1531 (((-108) $ $) NIL)))
+(((-188) (-737)) (T -188))
+NIL
+(-737)
+((-4101 (((-587 (-1084)) (-1084) (-707)) 22)) (-1945 (((-290 (-202)) (-290 (-202))) 29)) (-2873 (((-108) (-2 (|:| |pde| (-587 (-290 (-202)))) (|:| |constraints| (-587 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-707)) (|:| |boundaryType| (-521)) (|:| |dStart| (-627 (-202))) (|:| |dFinish| (-627 (-202)))))) (|:| |f| (-587 (-587 (-290 (-202))))) (|:| |st| (-1067)) (|:| |tol| (-202)))) 67)) (-1274 (((-108) (-202) (-202) (-587 (-290 (-202)))) 43)))
+(((-189) (-10 -7 (-15 -4101 ((-587 (-1084)) (-1084) (-707))) (-15 -1945 ((-290 (-202)) (-290 (-202)))) (-15 -1274 ((-108) (-202) (-202) (-587 (-290 (-202))))) (-15 -2873 ((-108) (-2 (|:| |pde| (-587 (-290 (-202)))) (|:| |constraints| (-587 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-707)) (|:| |boundaryType| (-521)) (|:| |dStart| (-627 (-202))) (|:| |dFinish| (-627 (-202)))))) (|:| |f| (-587 (-587 (-290 (-202))))) (|:| |st| (-1067)) (|:| |tol| (-202))))))) (T -189))
+((-2873 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-587 (-290 (-202)))) (|:| |constraints| (-587 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-707)) (|:| |boundaryType| (-521)) (|:| |dStart| (-627 (-202))) (|:| |dFinish| (-627 (-202)))))) (|:| |f| (-587 (-587 (-290 (-202))))) (|:| |st| (-1067)) (|:| |tol| (-202)))) (-5 *2 (-108)) (-5 *1 (-189)))) (-1274 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-587 (-290 (-202)))) (-5 *3 (-202)) (-5 *2 (-108)) (-5 *1 (-189)))) (-1945 (*1 *2 *2) (-12 (-5 *2 (-290 (-202))) (-5 *1 (-189)))) (-4101 (*1 *2 *3 *4) (-12 (-5 *4 (-707)) (-5 *2 (-587 (-1084))) (-5 *1 (-189)) (-5 *3 (-1084)))))
+(-10 -7 (-15 -4101 ((-587 (-1084)) (-1084) (-707))) (-15 -1945 ((-290 (-202)) (-290 (-202)))) (-15 -1274 ((-108) (-202) (-202) (-587 (-290 (-202))))) (-15 -2873 ((-108) (-2 (|:| |pde| (-587 (-290 (-202)))) (|:| |constraints| (-587 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-707)) (|:| |boundaryType| (-521)) (|:| |dStart| (-627 (-202))) (|:| |dFinish| (-627 (-202)))))) (|:| |f| (-587 (-587 (-290 (-202))))) (|:| |st| (-1067)) (|:| |tol| (-202))))))
+((-1415 (((-108) $ $) NIL)) (-1797 (((-2 (|:| -1797 (-353)) (|:| |explanations| (-1067))) (-982) (-2 (|:| |pde| (-587 (-290 (-202)))) (|:| |constraints| (-587 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-707)) (|:| |boundaryType| (-521)) (|:| |dStart| (-627 (-202))) (|:| |dFinish| (-627 (-202)))))) (|:| |f| (-587 (-587 (-290 (-202))))) (|:| |st| (-1067)) (|:| |tol| (-202)))) 17)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2189 (((-792) $) NIL)) (-1226 (((-959) (-2 (|:| |pde| (-587 (-290 (-202)))) (|:| |constraints| (-587 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-707)) (|:| |boundaryType| (-521)) (|:| |dStart| (-627 (-202))) (|:| |dFinish| (-627 (-202)))))) (|:| |f| (-587 (-587 (-290 (-202))))) (|:| |st| (-1067)) (|:| |tol| (-202)))) 55)) (-1531 (((-108) $ $) NIL)))
+(((-190) (-824)) (T -190))
+NIL
+(-824)
+((-1415 (((-108) $ $) NIL)) (-1797 (((-2 (|:| -1797 (-353)) (|:| |explanations| (-1067))) (-982) (-2 (|:| |pde| (-587 (-290 (-202)))) (|:| |constraints| (-587 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-707)) (|:| |boundaryType| (-521)) (|:| |dStart| (-627 (-202))) (|:| |dFinish| (-627 (-202)))))) (|:| |f| (-587 (-587 (-290 (-202))))) (|:| |st| (-1067)) (|:| |tol| (-202)))) 12)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2189 (((-792) $) NIL)) (-1226 (((-959) (-2 (|:| |pde| (-587 (-290 (-202)))) (|:| |constraints| (-587 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-707)) (|:| |boundaryType| (-521)) (|:| |dStart| (-627 (-202))) (|:| |dFinish| (-627 (-202)))))) (|:| |f| (-587 (-587 (-290 (-202))))) (|:| |st| (-1067)) (|:| |tol| (-202)))) NIL)) (-1531 (((-108) $ $) NIL)))
+(((-191) (-824)) (T -191))
+NIL
+(-824)
+((-1415 (((-108) $ $) NIL)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-3971 (((-1170) $) 36) (((-1170) $ (-850) (-850)) 38)) (-2544 (($ $ (-915)) 19) (((-222 (-1067)) $ (-1084)) 15)) (-1678 (((-1170) $) 34)) (-2189 (((-792) $) 31) (($ (-587 |#1|)) 8)) (-1531 (((-108) $ $) NIL)) (-1612 (($ $ $) 27)) (-1602 (($ $ $) 22)))
+(((-192 |#1|) (-13 (-1013) (-10 -8 (-15 -2544 ($ $ (-915))) (-15 -2544 ((-222 (-1067)) $ (-1084))) (-15 -1602 ($ $ $)) (-15 -1612 ($ $ $)) (-15 -2189 ($ (-587 |#1|))) (-15 -1678 ((-1170) $)) (-15 -3971 ((-1170) $)) (-15 -3971 ((-1170) $ (-850) (-850))))) (-13 (-784) (-10 -8 (-15 -2544 ((-1067) $ (-1084))) (-15 -1678 ((-1170) $)) (-15 -3971 ((-1170) $))))) (T -192))
+((-2544 (*1 *1 *1 *2) (-12 (-5 *2 (-915)) (-5 *1 (-192 *3)) (-4 *3 (-13 (-784) (-10 -8 (-15 -2544 ((-1067) $ (-1084))) (-15 -1678 ((-1170) $)) (-15 -3971 ((-1170) $))))))) (-2544 (*1 *2 *1 *3) (-12 (-5 *3 (-1084)) (-5 *2 (-222 (-1067))) (-5 *1 (-192 *4)) (-4 *4 (-13 (-784) (-10 -8 (-15 -2544 ((-1067) $ *3)) (-15 -1678 ((-1170) $)) (-15 -3971 ((-1170) $))))))) (-1602 (*1 *1 *1 *1) (-12 (-5 *1 (-192 *2)) (-4 *2 (-13 (-784) (-10 -8 (-15 -2544 ((-1067) $ (-1084))) (-15 -1678 ((-1170) $)) (-15 -3971 ((-1170) $))))))) (-1612 (*1 *1 *1 *1) (-12 (-5 *1 (-192 *2)) (-4 *2 (-13 (-784) (-10 -8 (-15 -2544 ((-1067) $ (-1084))) (-15 -1678 ((-1170) $)) (-15 -3971 ((-1170) $))))))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-13 (-784) (-10 -8 (-15 -2544 ((-1067) $ (-1084))) (-15 -1678 ((-1170) $)) (-15 -3971 ((-1170) $))))) (-5 *1 (-192 *3)))) (-1678 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-192 *3)) (-4 *3 (-13 (-784) (-10 -8 (-15 -2544 ((-1067) $ (-1084))) (-15 -1678 (*2 $)) (-15 -3971 (*2 $))))))) (-3971 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-192 *3)) (-4 *3 (-13 (-784) (-10 -8 (-15 -2544 ((-1067) $ (-1084))) (-15 -1678 (*2 $)) (-15 -3971 (*2 $))))))) (-3971 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1170)) (-5 *1 (-192 *4)) (-4 *4 (-13 (-784) (-10 -8 (-15 -2544 ((-1067) $ (-1084))) (-15 -1678 (*2 $)) (-15 -3971 (*2 $))))))))
+(-13 (-1013) (-10 -8 (-15 -2544 ($ $ (-915))) (-15 -2544 ((-222 (-1067)) $ (-1084))) (-15 -1602 ($ $ $)) (-15 -1612 ($ $ $)) (-15 -2189 ($ (-587 |#1|))) (-15 -1678 ((-1170) $)) (-15 -3971 ((-1170) $)) (-15 -3971 ((-1170) $ (-850) (-850)))))
+((-4187 ((|#2| |#4| (-1 |#2| |#2|)) 46)))
+(((-193 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4187 (|#2| |#4| (-1 |#2| |#2|)))) (-337) (-1141 |#1|) (-1141 (-381 |#2|)) (-316 |#1| |#2| |#3|)) (T -193))
+((-4187 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-337)) (-4 *6 (-1141 (-381 *2))) (-4 *2 (-1141 *5)) (-5 *1 (-193 *5 *2 *6 *3)) (-4 *3 (-316 *5 *2 *6)))))
+(-10 -7 (-15 -4187 (|#2| |#4| (-1 |#2| |#2|))))
+((-3835 ((|#2| |#2| (-707) |#2|) 41)) (-2499 ((|#2| |#2| (-707) |#2|) 37)) (-3166 (((-587 |#2|) (-587 (-2 (|:| |deg| (-707)) (|:| -2576 |#2|)))) 57)) (-3431 (((-587 (-2 (|:| |deg| (-707)) (|:| -2576 |#2|))) |#2|) 52)) (-1750 (((-108) |#2|) 49)) (-3168 (((-392 |#2|) |#2|) 76)) (-1916 (((-392 |#2|) |#2|) 75)) (-2985 ((|#2| |#2| (-707) |#2|) 35)) (-2342 (((-2 (|:| |cont| |#1|) (|:| -1514 (-587 (-2 (|:| |irr| |#2|) (|:| -2132 (-521)))))) |#2| (-108)) 68)))
+(((-194 |#1| |#2|) (-10 -7 (-15 -1916 ((-392 |#2|) |#2|)) (-15 -3168 ((-392 |#2|) |#2|)) (-15 -2342 ((-2 (|:| |cont| |#1|) (|:| -1514 (-587 (-2 (|:| |irr| |#2|) (|:| -2132 (-521)))))) |#2| (-108))) (-15 -3431 ((-587 (-2 (|:| |deg| (-707)) (|:| -2576 |#2|))) |#2|)) (-15 -3166 ((-587 |#2|) (-587 (-2 (|:| |deg| (-707)) (|:| -2576 |#2|))))) (-15 -2985 (|#2| |#2| (-707) |#2|)) (-15 -2499 (|#2| |#2| (-707) |#2|)) (-15 -3835 (|#2| |#2| (-707) |#2|)) (-15 -1750 ((-108) |#2|))) (-323) (-1141 |#1|)) (T -194))
+((-1750 (*1 *2 *3) (-12 (-4 *4 (-323)) (-5 *2 (-108)) (-5 *1 (-194 *4 *3)) (-4 *3 (-1141 *4)))) (-3835 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-707)) (-4 *4 (-323)) (-5 *1 (-194 *4 *2)) (-4 *2 (-1141 *4)))) (-2499 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-707)) (-4 *4 (-323)) (-5 *1 (-194 *4 *2)) (-4 *2 (-1141 *4)))) (-2985 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-707)) (-4 *4 (-323)) (-5 *1 (-194 *4 *2)) (-4 *2 (-1141 *4)))) (-3166 (*1 *2 *3) (-12 (-5 *3 (-587 (-2 (|:| |deg| (-707)) (|:| -2576 *5)))) (-4 *5 (-1141 *4)) (-4 *4 (-323)) (-5 *2 (-587 *5)) (-5 *1 (-194 *4 *5)))) (-3431 (*1 *2 *3) (-12 (-4 *4 (-323)) (-5 *2 (-587 (-2 (|:| |deg| (-707)) (|:| -2576 *3)))) (-5 *1 (-194 *4 *3)) (-4 *3 (-1141 *4)))) (-2342 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-323)) (-5 *2 (-2 (|:| |cont| *5) (|:| -1514 (-587 (-2 (|:| |irr| *3) (|:| -2132 (-521))))))) (-5 *1 (-194 *5 *3)) (-4 *3 (-1141 *5)))) (-3168 (*1 *2 *3) (-12 (-4 *4 (-323)) (-5 *2 (-392 *3)) (-5 *1 (-194 *4 *3)) (-4 *3 (-1141 *4)))) (-1916 (*1 *2 *3) (-12 (-4 *4 (-323)) (-5 *2 (-392 *3)) (-5 *1 (-194 *4 *3)) (-4 *3 (-1141 *4)))))
+(-10 -7 (-15 -1916 ((-392 |#2|) |#2|)) (-15 -3168 ((-392 |#2|) |#2|)) (-15 -2342 ((-2 (|:| |cont| |#1|) (|:| -1514 (-587 (-2 (|:| |irr| |#2|) (|:| -2132 (-521)))))) |#2| (-108))) (-15 -3431 ((-587 (-2 (|:| |deg| (-707)) (|:| -2576 |#2|))) |#2|)) (-15 -3166 ((-587 |#2|) (-587 (-2 (|:| |deg| (-707)) (|:| -2576 |#2|))))) (-15 -2985 (|#2| |#2| (-707) |#2|)) (-15 -2499 (|#2| |#2| (-707) |#2|)) (-15 -3835 (|#2| |#2| (-707) |#2|)) (-15 -1750 ((-108) |#2|)))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-2086 (((-521) $) NIL (|has| (-521) (-282)))) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-2559 (($ $) NIL)) (-1733 (((-108) $) NIL)) (-1232 (((-3 $ "failed") $ $) NIL)) (-2598 (((-392 (-1080 $)) (-1080 $)) NIL (|has| (-521) (-838)))) (-3063 (($ $) NIL)) (-3358 (((-392 $) $) NIL)) (-2569 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) NIL (|has| (-521) (-838)))) (-1389 (((-108) $ $) NIL)) (-1606 (((-521) $) NIL (|has| (-521) (-757)))) (-2547 (($) NIL T CONST)) (-1297 (((-3 (-521) "failed") $) NIL) (((-3 (-1084) "failed") $) NIL (|has| (-521) (-961 (-1084)))) (((-3 (-381 (-521)) "failed") $) NIL (|has| (-521) (-961 (-521)))) (((-3 (-521) "failed") $) NIL (|has| (-521) (-961 (-521))))) (-1483 (((-521) $) NIL) (((-1084) $) NIL (|has| (-521) (-961 (-1084)))) (((-381 (-521)) $) NIL (|has| (-521) (-961 (-521)))) (((-521) $) NIL (|has| (-521) (-961 (-521))))) (-2277 (($ $ $) NIL)) (-3279 (((-627 (-521)) (-627 $)) NIL (|has| (-521) (-583 (-521)))) (((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (|has| (-521) (-583 (-521)))) (((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL) (((-627 (-521)) (-627 $)) NIL)) (-1257 (((-3 $ "failed") $) NIL)) (-3250 (($) NIL (|has| (-521) (-506)))) (-2253 (($ $ $) NIL)) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) NIL)) (-2710 (((-108) $) NIL)) (-3951 (((-108) $) NIL (|has| (-521) (-757)))) (-3427 (((-818 (-521) $) $ (-821 (-521)) (-818 (-521) $)) NIL (|has| (-521) (-815 (-521)))) (((-818 (-353) $) $ (-821 (-353)) (-818 (-353) $)) NIL (|has| (-521) (-815 (-353))))) (-3996 (((-108) $) NIL)) (-3257 (($ $) NIL)) (-2801 (((-521) $) NIL)) (-3842 (((-3 $ "failed") $) NIL (|has| (-521) (-1060)))) (-2210 (((-108) $) NIL (|has| (-521) (-757)))) (-1546 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-2810 (($ $ $) NIL (|has| (-521) (-784)))) (-2446 (($ $ $) NIL (|has| (-521) (-784)))) (-1390 (($ (-1 (-521) (-521)) $) NIL)) (-2223 (($ $ $) NIL) (($ (-587 $)) NIL)) (-3688 (((-1067) $) NIL)) (-3095 (($ $) NIL)) (-3797 (($) NIL (|has| (-521) (-1060)) CONST)) (-4147 (((-1031) $) NIL)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) NIL)) (-2258 (($ $ $) NIL) (($ (-587 $)) NIL)) (-2850 (($ $) NIL (|has| (-521) (-282))) (((-381 (-521)) $) NIL)) (-2567 (((-521) $) NIL (|has| (-521) (-506)))) (-1912 (((-392 (-1080 $)) (-1080 $)) NIL (|has| (-521) (-838)))) (-2165 (((-392 (-1080 $)) (-1080 $)) NIL (|has| (-521) (-838)))) (-1916 (((-392 $) $) NIL)) (-1962 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2230 (((-3 $ "failed") $ $) NIL)) (-3854 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-2288 (($ $ (-587 (-521)) (-587 (-521))) NIL (|has| (-521) (-284 (-521)))) (($ $ (-521) (-521)) NIL (|has| (-521) (-284 (-521)))) (($ $ (-269 (-521))) NIL (|has| (-521) (-284 (-521)))) (($ $ (-587 (-269 (-521)))) NIL (|has| (-521) (-284 (-521)))) (($ $ (-587 (-1084)) (-587 (-521))) NIL (|has| (-521) (-482 (-1084) (-521)))) (($ $ (-1084) (-521)) NIL (|has| (-521) (-482 (-1084) (-521))))) (-4196 (((-707) $) NIL)) (-2544 (($ $ (-521)) NIL (|has| (-521) (-261 (-521) (-521))))) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) NIL)) (-2156 (($ $) NIL (|has| (-521) (-210))) (($ $ (-707)) NIL (|has| (-521) (-210))) (($ $ (-1084)) NIL (|has| (-521) (-829 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| (-521) (-829 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| (-521) (-829 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| (-521) (-829 (-1084)))) (($ $ (-1 (-521) (-521)) (-707)) NIL) (($ $ (-1 (-521) (-521))) NIL)) (-4142 (($ $) NIL)) (-2812 (((-521) $) NIL)) (-1564 (($ (-381 (-521))) 8)) (-1430 (((-821 (-521)) $) NIL (|has| (-521) (-562 (-821 (-521))))) (((-821 (-353)) $) NIL (|has| (-521) (-562 (-821 (-353))))) (((-497) $) NIL (|has| (-521) (-562 (-497)))) (((-353) $) NIL (|has| (-521) (-946))) (((-202) $) NIL (|has| (-521) (-946)))) (-2944 (((-3 (-1165 $) "failed") (-627 $)) NIL (-12 (|has| $ (-133)) (|has| (-521) (-838))))) (-2189 (((-792) $) NIL) (($ (-521)) NIL) (($ $) NIL) (($ (-381 (-521))) 7) (($ (-521)) NIL) (($ (-1084)) NIL (|has| (-521) (-961 (-1084)))) (((-381 (-521)) $) NIL) (((-929 10) $) 9)) (-1671 (((-3 $ "failed") $) NIL (-3703 (-12 (|has| $ (-133)) (|has| (-521) (-838))) (|has| (-521) (-133))))) (-3846 (((-707)) NIL)) (-2382 (((-521) $) NIL (|has| (-521) (-506)))) (-4210 (((-108) $ $) NIL)) (-3304 (($ $) NIL (|has| (-521) (-757)))) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (-3561 (($) NIL T CONST)) (-3572 (($) NIL T CONST)) (-2212 (($ $) NIL (|has| (-521) (-210))) (($ $ (-707)) NIL (|has| (-521) (-210))) (($ $ (-1084)) NIL (|has| (-521) (-829 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| (-521) (-829 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| (-521) (-829 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| (-521) (-829 (-1084)))) (($ $ (-1 (-521) (-521)) (-707)) NIL) (($ $ (-1 (-521) (-521))) NIL)) (-1574 (((-108) $ $) NIL (|has| (-521) (-784)))) (-1558 (((-108) $ $) NIL (|has| (-521) (-784)))) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL (|has| (-521) (-784)))) (-1549 (((-108) $ $) NIL (|has| (-521) (-784)))) (-1620 (($ $ $) NIL) (($ (-521) (-521)) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ (-381 (-521))) NIL) (($ (-381 (-521)) $) NIL) (($ (-521) $) NIL) (($ $ (-521)) NIL)))
+(((-195) (-13 (-918 (-521)) (-10 -8 (-15 -2189 ((-381 (-521)) $)) (-15 -2189 ((-929 10) $)) (-15 -2850 ((-381 (-521)) $)) (-15 -1564 ($ (-381 (-521))))))) (T -195))
+((-2189 (*1 *2 *1) (-12 (-5 *2 (-381 (-521))) (-5 *1 (-195)))) (-2189 (*1 *2 *1) (-12 (-5 *2 (-929 10)) (-5 *1 (-195)))) (-2850 (*1 *2 *1) (-12 (-5 *2 (-381 (-521))) (-5 *1 (-195)))) (-1564 (*1 *1 *2) (-12 (-5 *2 (-381 (-521))) (-5 *1 (-195)))))
+(-13 (-918 (-521)) (-10 -8 (-15 -2189 ((-381 (-521)) $)) (-15 -2189 ((-929 10) $)) (-15 -2850 ((-381 (-521)) $)) (-15 -1564 ($ (-381 (-521))))))
+((-2184 (((-3 (|:| |f1| (-777 |#2|)) (|:| |f2| (-587 (-777 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1006 (-777 |#2|)) (-1067)) 27) (((-3 (|:| |f1| (-777 |#2|)) (|:| |f2| (-587 (-777 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1006 (-777 |#2|))) 23)) (-1308 (((-3 (|:| |f1| (-777 |#2|)) (|:| |f2| (-587 (-777 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1084) (-777 |#2|) (-777 |#2|) (-108)) 16)))
+(((-196 |#1| |#2|) (-10 -7 (-15 -2184 ((-3 (|:| |f1| (-777 |#2|)) (|:| |f2| (-587 (-777 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1006 (-777 |#2|)))) (-15 -2184 ((-3 (|:| |f1| (-777 |#2|)) (|:| |f2| (-587 (-777 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1006 (-777 |#2|)) (-1067))) (-15 -1308 ((-3 (|:| |f1| (-777 |#2|)) (|:| |f2| (-587 (-777 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1084) (-777 |#2|) (-777 |#2|) (-108)))) (-13 (-282) (-784) (-135) (-961 (-521)) (-583 (-521))) (-13 (-1105) (-887) (-29 |#1|))) (T -196))
+((-1308 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1084)) (-5 *6 (-108)) (-4 *7 (-13 (-282) (-784) (-135) (-961 (-521)) (-583 (-521)))) (-4 *3 (-13 (-1105) (-887) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-777 *3)) (|:| |f2| (-587 (-777 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-196 *7 *3)) (-5 *5 (-777 *3)))) (-2184 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1006 (-777 *3))) (-5 *5 (-1067)) (-4 *3 (-13 (-1105) (-887) (-29 *6))) (-4 *6 (-13 (-282) (-784) (-135) (-961 (-521)) (-583 (-521)))) (-5 *2 (-3 (|:| |f1| (-777 *3)) (|:| |f2| (-587 (-777 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-196 *6 *3)))) (-2184 (*1 *2 *3 *4) (-12 (-5 *4 (-1006 (-777 *3))) (-4 *3 (-13 (-1105) (-887) (-29 *5))) (-4 *5 (-13 (-282) (-784) (-135) (-961 (-521)) (-583 (-521)))) (-5 *2 (-3 (|:| |f1| (-777 *3)) (|:| |f2| (-587 (-777 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-196 *5 *3)))))
+(-10 -7 (-15 -2184 ((-3 (|:| |f1| (-777 |#2|)) (|:| |f2| (-587 (-777 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1006 (-777 |#2|)))) (-15 -2184 ((-3 (|:| |f1| (-777 |#2|)) (|:| |f2| (-587 (-777 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1006 (-777 |#2|)) (-1067))) (-15 -1308 ((-3 (|:| |f1| (-777 |#2|)) (|:| |f2| (-587 (-777 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1084) (-777 |#2|) (-777 |#2|) (-108))))
+((-2184 (((-3 (|:| |f1| (-777 (-290 |#1|))) (|:| |f2| (-587 (-777 (-290 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-381 (-881 |#1|)) (-1006 (-777 (-381 (-881 |#1|)))) (-1067)) 44) (((-3 (|:| |f1| (-777 (-290 |#1|))) (|:| |f2| (-587 (-777 (-290 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-381 (-881 |#1|)) (-1006 (-777 (-381 (-881 |#1|))))) 41) (((-3 (|:| |f1| (-777 (-290 |#1|))) (|:| |f2| (-587 (-777 (-290 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-381 (-881 |#1|)) (-1006 (-777 (-290 |#1|))) (-1067)) 45) (((-3 (|:| |f1| (-777 (-290 |#1|))) (|:| |f2| (-587 (-777 (-290 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-381 (-881 |#1|)) (-1006 (-777 (-290 |#1|)))) 17)))
+(((-197 |#1|) (-10 -7 (-15 -2184 ((-3 (|:| |f1| (-777 (-290 |#1|))) (|:| |f2| (-587 (-777 (-290 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-381 (-881 |#1|)) (-1006 (-777 (-290 |#1|))))) (-15 -2184 ((-3 (|:| |f1| (-777 (-290 |#1|))) (|:| |f2| (-587 (-777 (-290 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-381 (-881 |#1|)) (-1006 (-777 (-290 |#1|))) (-1067))) (-15 -2184 ((-3 (|:| |f1| (-777 (-290 |#1|))) (|:| |f2| (-587 (-777 (-290 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-381 (-881 |#1|)) (-1006 (-777 (-381 (-881 |#1|)))))) (-15 -2184 ((-3 (|:| |f1| (-777 (-290 |#1|))) (|:| |f2| (-587 (-777 (-290 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-381 (-881 |#1|)) (-1006 (-777 (-381 (-881 |#1|)))) (-1067)))) (-13 (-282) (-784) (-135) (-961 (-521)) (-583 (-521)))) (T -197))
+((-2184 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1006 (-777 (-381 (-881 *6))))) (-5 *5 (-1067)) (-5 *3 (-381 (-881 *6))) (-4 *6 (-13 (-282) (-784) (-135) (-961 (-521)) (-583 (-521)))) (-5 *2 (-3 (|:| |f1| (-777 (-290 *6))) (|:| |f2| (-587 (-777 (-290 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-197 *6)))) (-2184 (*1 *2 *3 *4) (-12 (-5 *4 (-1006 (-777 (-381 (-881 *5))))) (-5 *3 (-381 (-881 *5))) (-4 *5 (-13 (-282) (-784) (-135) (-961 (-521)) (-583 (-521)))) (-5 *2 (-3 (|:| |f1| (-777 (-290 *5))) (|:| |f2| (-587 (-777 (-290 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-197 *5)))) (-2184 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-381 (-881 *6))) (-5 *4 (-1006 (-777 (-290 *6)))) (-5 *5 (-1067)) (-4 *6 (-13 (-282) (-784) (-135) (-961 (-521)) (-583 (-521)))) (-5 *2 (-3 (|:| |f1| (-777 (-290 *6))) (|:| |f2| (-587 (-777 (-290 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-197 *6)))) (-2184 (*1 *2 *3 *4) (-12 (-5 *3 (-381 (-881 *5))) (-5 *4 (-1006 (-777 (-290 *5)))) (-4 *5 (-13 (-282) (-784) (-135) (-961 (-521)) (-583 (-521)))) (-5 *2 (-3 (|:| |f1| (-777 (-290 *5))) (|:| |f2| (-587 (-777 (-290 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-197 *5)))))
+(-10 -7 (-15 -2184 ((-3 (|:| |f1| (-777 (-290 |#1|))) (|:| |f2| (-587 (-777 (-290 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-381 (-881 |#1|)) (-1006 (-777 (-290 |#1|))))) (-15 -2184 ((-3 (|:| |f1| (-777 (-290 |#1|))) (|:| |f2| (-587 (-777 (-290 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-381 (-881 |#1|)) (-1006 (-777 (-290 |#1|))) (-1067))) (-15 -2184 ((-3 (|:| |f1| (-777 (-290 |#1|))) (|:| |f2| (-587 (-777 (-290 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-381 (-881 |#1|)) (-1006 (-777 (-381 (-881 |#1|)))))) (-15 -2184 ((-3 (|:| |f1| (-777 (-290 |#1|))) (|:| |f2| (-587 (-777 (-290 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-381 (-881 |#1|)) (-1006 (-777 (-381 (-881 |#1|)))) (-1067))))
+((-3859 (((-2 (|:| -3736 (-1080 |#1|)) (|:| |deg| (-850))) (-1080 |#1|)) 21)) (-1604 (((-587 (-290 |#2|)) (-290 |#2|) (-850)) 43)))
+(((-198 |#1| |#2|) (-10 -7 (-15 -3859 ((-2 (|:| -3736 (-1080 |#1|)) (|:| |deg| (-850))) (-1080 |#1|))) (-15 -1604 ((-587 (-290 |#2|)) (-290 |#2|) (-850)))) (-970) (-13 (-513) (-784))) (T -198))
+((-1604 (*1 *2 *3 *4) (-12 (-5 *4 (-850)) (-4 *6 (-13 (-513) (-784))) (-5 *2 (-587 (-290 *6))) (-5 *1 (-198 *5 *6)) (-5 *3 (-290 *6)) (-4 *5 (-970)))) (-3859 (*1 *2 *3) (-12 (-4 *4 (-970)) (-5 *2 (-2 (|:| -3736 (-1080 *4)) (|:| |deg| (-850)))) (-5 *1 (-198 *4 *5)) (-5 *3 (-1080 *4)) (-4 *5 (-13 (-513) (-784))))))
+(-10 -7 (-15 -3859 ((-2 (|:| -3736 (-1080 |#1|)) (|:| |deg| (-850))) (-1080 |#1|))) (-15 -1604 ((-587 (-290 |#2|)) (-290 |#2|) (-850))))
+((-1415 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-1527 ((|#1| $) NIL)) (-1354 ((|#1| $) 25)) (-2978 (((-108) $ (-707)) NIL)) (-2547 (($) NIL T CONST)) (-3030 (($ $) NIL)) (-3081 (($ $) 31)) (-2037 ((|#1| |#1| $) NIL)) (-1322 ((|#1| $) NIL)) (-3831 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-2139 (((-108) $ (-707)) NIL)) (-3757 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-2221 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-3833 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#1| |#1|) $) NIL)) (-3574 (((-108) $ (-707)) NIL)) (-2516 (((-707) $) NIL)) (-3688 (((-1067) $) NIL (|has| |#1| (-1013)))) (-2511 ((|#1| $) NIL)) (-1971 ((|#1| |#1| $) 28)) (-2794 ((|#1| |#1| $) 30)) (-3373 (($ |#1| $) NIL)) (-4150 (((-707) $) 27)) (-4147 (((-1031) $) NIL (|has| |#1| (-1013)))) (-1664 ((|#1| $) NIL)) (-4166 ((|#1| $) 26)) (-1817 ((|#1| $) 24)) (-2166 ((|#1| $) NIL)) (-1789 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 |#1|))) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-2488 (((-108) $ $) NIL)) (-2983 ((|#1| |#1| $) NIL)) (-3462 (((-108) $) 9)) (-4024 (($) NIL)) (-1815 ((|#1| $) NIL)) (-4011 (($) NIL) (($ (-587 |#1|)) 16)) (-1252 (((-707) $) NIL)) (-4163 (((-707) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (((-707) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2404 (($ $) NIL)) (-2189 (((-792) $) NIL (|has| |#1| (-561 (-792))))) (-2265 ((|#1| $) 13)) (-4091 (($ (-587 |#1|)) NIL)) (-3009 ((|#1| $) NIL)) (-3049 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-1531 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3475 (((-707) $) NIL (|has| $ (-6 -4233)))))
+(((-199 |#1|) (-13 (-230 |#1|) (-10 -8 (-15 -4011 ($ (-587 |#1|))))) (-1013)) (T -199))
+((-4011 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1013)) (-5 *1 (-199 *3)))))
+(-13 (-230 |#1|) (-10 -8 (-15 -4011 ($ (-587 |#1|)))))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-3589 (($ (-290 |#1|)) 23)) (-1232 (((-3 $ "failed") $ $) NIL)) (-2547 (($) NIL T CONST)) (-1423 (((-108) $) NIL)) (-1297 (((-3 (-290 |#1|) "failed") $) NIL)) (-1483 (((-290 |#1|) $) NIL)) (-3152 (($ $) 31)) (-1257 (((-3 $ "failed") $) NIL)) (-3996 (((-108) $) NIL)) (-1390 (($ (-1 (-290 |#1|) (-290 |#1|)) $) NIL)) (-3135 (((-290 |#1|) $) NIL)) (-1952 (($ $) 30)) (-3688 (((-1067) $) NIL)) (-3408 (((-108) $) NIL)) (-4147 (((-1031) $) NIL)) (-1383 (($ (-707)) NIL)) (-4001 (($ $) 32)) (-1994 (((-521) $) NIL)) (-2189 (((-792) $) 57) (($ (-521)) NIL) (($ (-290 |#1|)) NIL)) (-3800 (((-290 |#1|) $ $) NIL)) (-3846 (((-707)) NIL)) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (-3561 (($) 25 T CONST)) (-3572 (($) 50 T CONST)) (-1531 (((-108) $ $) 28)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) 19)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) 24) (($ (-290 |#1|) $) 18)))
+(((-200 |#1| |#2|) (-13 (-565 (-290 |#1|)) (-961 (-290 |#1|)) (-10 -8 (-15 -3135 ((-290 |#1|) $)) (-15 -1952 ($ $)) (-15 -3152 ($ $)) (-15 -3800 ((-290 |#1|) $ $)) (-15 -1383 ($ (-707))) (-15 -3408 ((-108) $)) (-15 -1423 ((-108) $)) (-15 -1994 ((-521) $)) (-15 -1390 ($ (-1 (-290 |#1|) (-290 |#1|)) $)) (-15 -3589 ($ (-290 |#1|))) (-15 -4001 ($ $)))) (-13 (-970) (-784)) (-587 (-1084))) (T -200))
+((-3135 (*1 *2 *1) (-12 (-5 *2 (-290 *3)) (-5 *1 (-200 *3 *4)) (-4 *3 (-13 (-970) (-784))) (-14 *4 (-587 (-1084))))) (-1952 (*1 *1 *1) (-12 (-5 *1 (-200 *2 *3)) (-4 *2 (-13 (-970) (-784))) (-14 *3 (-587 (-1084))))) (-3152 (*1 *1 *1) (-12 (-5 *1 (-200 *2 *3)) (-4 *2 (-13 (-970) (-784))) (-14 *3 (-587 (-1084))))) (-3800 (*1 *2 *1 *1) (-12 (-5 *2 (-290 *3)) (-5 *1 (-200 *3 *4)) (-4 *3 (-13 (-970) (-784))) (-14 *4 (-587 (-1084))))) (-1383 (*1 *1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-200 *3 *4)) (-4 *3 (-13 (-970) (-784))) (-14 *4 (-587 (-1084))))) (-3408 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-200 *3 *4)) (-4 *3 (-13 (-970) (-784))) (-14 *4 (-587 (-1084))))) (-1423 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-200 *3 *4)) (-4 *3 (-13 (-970) (-784))) (-14 *4 (-587 (-1084))))) (-1994 (*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-200 *3 *4)) (-4 *3 (-13 (-970) (-784))) (-14 *4 (-587 (-1084))))) (-1390 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-290 *3) (-290 *3))) (-4 *3 (-13 (-970) (-784))) (-5 *1 (-200 *3 *4)) (-14 *4 (-587 (-1084))))) (-3589 (*1 *1 *2) (-12 (-5 *2 (-290 *3)) (-4 *3 (-13 (-970) (-784))) (-5 *1 (-200 *3 *4)) (-14 *4 (-587 (-1084))))) (-4001 (*1 *1 *1) (-12 (-5 *1 (-200 *2 *3)) (-4 *2 (-13 (-970) (-784))) (-14 *3 (-587 (-1084))))))
+(-13 (-565 (-290 |#1|)) (-961 (-290 |#1|)) (-10 -8 (-15 -3135 ((-290 |#1|) $)) (-15 -1952 ($ $)) (-15 -3152 ($ $)) (-15 -3800 ((-290 |#1|) $ $)) (-15 -1383 ($ (-707))) (-15 -3408 ((-108) $)) (-15 -1423 ((-108) $)) (-15 -1994 ((-521) $)) (-15 -1390 ($ (-1 (-290 |#1|) (-290 |#1|)) $)) (-15 -3589 ($ (-290 |#1|))) (-15 -4001 ($ $))))
+((-1969 (((-108) (-1067)) 22)) (-2566 (((-3 (-777 |#2|) "failed") (-560 |#2|) |#2| (-777 |#2|) (-777 |#2|) (-108)) 32)) (-2271 (((-3 (-108) "failed") (-1080 |#2|) (-777 |#2|) (-777 |#2|) (-108)) 73) (((-3 (-108) "failed") (-881 |#1|) (-1084) (-777 |#2|) (-777 |#2|) (-108)) 74)))
+(((-201 |#1| |#2|) (-10 -7 (-15 -1969 ((-108) (-1067))) (-15 -2566 ((-3 (-777 |#2|) "failed") (-560 |#2|) |#2| (-777 |#2|) (-777 |#2|) (-108))) (-15 -2271 ((-3 (-108) "failed") (-881 |#1|) (-1084) (-777 |#2|) (-777 |#2|) (-108))) (-15 -2271 ((-3 (-108) "failed") (-1080 |#2|) (-777 |#2|) (-777 |#2|) (-108)))) (-13 (-425) (-784) (-961 (-521)) (-583 (-521))) (-13 (-1105) (-29 |#1|))) (T -201))
+((-2271 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-108)) (-5 *3 (-1080 *6)) (-5 *4 (-777 *6)) (-4 *6 (-13 (-1105) (-29 *5))) (-4 *5 (-13 (-425) (-784) (-961 (-521)) (-583 (-521)))) (-5 *1 (-201 *5 *6)))) (-2271 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-108)) (-5 *3 (-881 *6)) (-5 *4 (-1084)) (-5 *5 (-777 *7)) (-4 *6 (-13 (-425) (-784) (-961 (-521)) (-583 (-521)))) (-4 *7 (-13 (-1105) (-29 *6))) (-5 *1 (-201 *6 *7)))) (-2566 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-777 *4)) (-5 *3 (-560 *4)) (-5 *5 (-108)) (-4 *4 (-13 (-1105) (-29 *6))) (-4 *6 (-13 (-425) (-784) (-961 (-521)) (-583 (-521)))) (-5 *1 (-201 *6 *4)))) (-1969 (*1 *2 *3) (-12 (-5 *3 (-1067)) (-4 *4 (-13 (-425) (-784) (-961 (-521)) (-583 (-521)))) (-5 *2 (-108)) (-5 *1 (-201 *4 *5)) (-4 *5 (-13 (-1105) (-29 *4))))))
+(-10 -7 (-15 -1969 ((-108) (-1067))) (-15 -2566 ((-3 (-777 |#2|) "failed") (-560 |#2|) |#2| (-777 |#2|) (-777 |#2|) (-108))) (-15 -2271 ((-3 (-108) "failed") (-881 |#1|) (-1084) (-777 |#2|) (-777 |#2|) (-108))) (-15 -2271 ((-3 (-108) "failed") (-1080 |#2|) (-777 |#2|) (-777 |#2|) (-108))))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) 89)) (-2086 (((-521) $) 99)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-2559 (($ $) NIL)) (-1733 (((-108) $) NIL)) (-2977 (($ $) NIL)) (-2904 (($ $) 77)) (-2769 (($ $) 65)) (-1232 (((-3 $ "failed") $ $) NIL)) (-3063 (($ $) NIL)) (-3358 (((-392 $) $) NIL)) (-1927 (($ $) 56)) (-1389 (((-108) $ $) NIL)) (-2880 (($ $) 75)) (-2746 (($ $) 63)) (-1606 (((-521) $) 116)) (-2926 (($ $) 80)) (-2790 (($ $) 67)) (-2547 (($) NIL T CONST)) (-1218 (($ $) NIL)) (-1297 (((-3 (-521) "failed") $) 115) (((-3 (-381 (-521)) "failed") $) 112)) (-1483 (((-521) $) 113) (((-381 (-521)) $) 110)) (-2277 (($ $ $) NIL)) (-1257 (((-3 $ "failed") $) 92)) (-3321 (((-381 (-521)) $ (-707)) 108) (((-381 (-521)) $ (-707) (-707)) 107)) (-2253 (($ $ $) NIL)) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) NIL)) (-2710 (((-108) $) NIL)) (-2173 (((-850)) 29) (((-850) (-850)) NIL (|has| $ (-6 -4224)))) (-3951 (((-108) $) NIL)) (-2834 (($) 39)) (-3427 (((-818 (-353) $) $ (-821 (-353)) (-818 (-353) $)) NIL)) (-2733 (((-521) $) 35)) (-3996 (((-108) $) NIL)) (-3407 (($ $ (-521)) NIL)) (-3930 (($ $) NIL)) (-2210 (((-108) $) 88)) (-1546 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-2810 (($ $ $) 53) (($) 34 (-12 (-2400 (|has| $ (-6 -4216))) (-2400 (|has| $ (-6 -4224)))))) (-2446 (($ $ $) 52) (($) 33 (-12 (-2400 (|has| $ (-6 -4216))) (-2400 (|has| $ (-6 -4224)))))) (-3352 (((-521) $) 27)) (-3880 (($ $) 30)) (-1444 (($ $) 57)) (-1253 (($ $) 62)) (-2223 (($ $ $) NIL) (($ (-587 $)) NIL)) (-3688 (((-1067) $) NIL)) (-3095 (($ $) NIL)) (-1492 (((-850) (-521)) NIL (|has| $ (-6 -4224)))) (-4147 (((-1031) $) NIL) (((-521) $) 90)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) NIL)) (-2258 (($ $ $) NIL) (($ (-587 $)) NIL)) (-2850 (($ $) NIL)) (-2567 (($ $) NIL)) (-3068 (($ (-521) (-521)) NIL) (($ (-521) (-521) (-850)) 100)) (-1916 (((-392 $) $) NIL)) (-1962 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2230 (((-3 $ "failed") $ $) NIL)) (-3854 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-2997 (((-521) $) 28)) (-3474 (($) 38)) (-3261 (($ $) 61)) (-4196 (((-707) $) NIL)) (-2964 (((-1067) (-1067)) 8)) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) NIL)) (-4151 (((-850)) NIL) (((-850) (-850)) NIL (|has| $ (-6 -4224)))) (-2156 (($ $ (-707)) NIL) (($ $) 93)) (-1276 (((-850) (-521)) NIL (|has| $ (-6 -4224)))) (-1738 (($ $) 78)) (-2800 (($ $) 68)) (-2915 (($ $) 79)) (-2780 (($ $) 66)) (-2892 (($ $) 76)) (-2758 (($ $) 64)) (-1430 (((-353) $) 104) (((-202) $) 101) (((-821 (-353)) $) NIL) (((-497) $) 45)) (-2189 (((-792) $) 42) (($ (-521)) 60) (($ $) NIL) (($ (-381 (-521))) NIL) (($ (-521)) 60) (($ (-381 (-521))) NIL)) (-3846 (((-707)) NIL)) (-2382 (($ $) NIL)) (-2703 (((-850)) 32) (((-850) (-850)) NIL (|has| $ (-6 -4224)))) (-3351 (((-850)) 25)) (-1759 (($ $) 83)) (-2832 (($ $) 71) (($ $ $) 109)) (-4210 (((-108) $ $) NIL)) (-1745 (($ $) 81)) (-2811 (($ $) 69)) (-1776 (($ $) 86)) (-2856 (($ $) 74)) (-3919 (($ $) 84)) (-2868 (($ $) 72)) (-1768 (($ $) 85)) (-2844 (($ $) 73)) (-1752 (($ $) 82)) (-2821 (($ $) 70)) (-3304 (($ $) 117)) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (-3561 (($) 36 T CONST)) (-3572 (($) 37 T CONST)) (-2287 (((-1067) $) 19) (((-1067) $ (-108)) 21) (((-1170) (-759) $) 22) (((-1170) (-759) $ (-108)) 23)) (-3181 (($ $) 96)) (-2212 (($ $ (-707)) NIL) (($ $) NIL)) (-1829 (($ $ $) 98)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) 54)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 46)) (-1620 (($ $ $) 87) (($ $ (-521)) 55)) (-1612 (($ $) 47) (($ $ $) 49)) (-1602 (($ $ $) 48)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) 58) (($ $ (-381 (-521))) 128) (($ $ $) 59)) (* (($ (-850) $) 31) (($ (-707) $) NIL) (($ (-521) $) 51) (($ $ $) 50) (($ $ (-381 (-521))) NIL) (($ (-381 (-521)) $) NIL)))
+(((-202) (-13 (-378) (-210) (-765) (-1105) (-562 (-497)) (-10 -8 (-15 -1620 ($ $ (-521))) (-15 ** ($ $ $)) (-15 -3474 ($)) (-15 -4147 ((-521) $)) (-15 -3880 ($ $)) (-15 -1444 ($ $)) (-15 -2832 ($ $ $)) (-15 -3181 ($ $)) (-15 -1829 ($ $ $)) (-15 -2964 ((-1067) (-1067))) (-15 -3321 ((-381 (-521)) $ (-707))) (-15 -3321 ((-381 (-521)) $ (-707) (-707)))))) (T -202))
+((** (*1 *1 *1 *1) (-5 *1 (-202))) (-1620 (*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-202)))) (-3474 (*1 *1) (-5 *1 (-202))) (-4147 (*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-202)))) (-3880 (*1 *1 *1) (-5 *1 (-202))) (-1444 (*1 *1 *1) (-5 *1 (-202))) (-2832 (*1 *1 *1 *1) (-5 *1 (-202))) (-3181 (*1 *1 *1) (-5 *1 (-202))) (-1829 (*1 *1 *1 *1) (-5 *1 (-202))) (-2964 (*1 *2 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-202)))) (-3321 (*1 *2 *1 *3) (-12 (-5 *3 (-707)) (-5 *2 (-381 (-521))) (-5 *1 (-202)))) (-3321 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-707)) (-5 *2 (-381 (-521))) (-5 *1 (-202)))))
+(-13 (-378) (-210) (-765) (-1105) (-562 (-497)) (-10 -8 (-15 -1620 ($ $ (-521))) (-15 ** ($ $ $)) (-15 -3474 ($)) (-15 -4147 ((-521) $)) (-15 -3880 ($ $)) (-15 -1444 ($ $)) (-15 -2832 ($ $ $)) (-15 -3181 ($ $)) (-15 -1829 ($ $ $)) (-15 -2964 ((-1067) (-1067))) (-15 -3321 ((-381 (-521)) $ (-707))) (-15 -3321 ((-381 (-521)) $ (-707) (-707)))))
+((-2607 (((-154 (-202)) (-707) (-154 (-202))) 11) (((-202) (-707) (-202)) 12)) (-1591 (((-154 (-202)) (-154 (-202))) 13) (((-202) (-202)) 14)) (-3278 (((-154 (-202)) (-154 (-202)) (-154 (-202))) 19) (((-202) (-202) (-202)) 22)) (-2960 (((-154 (-202)) (-154 (-202))) 25) (((-202) (-202)) 24)) (-2205 (((-154 (-202)) (-154 (-202)) (-154 (-202))) 43) (((-202) (-202) (-202)) 35)) (-1882 (((-154 (-202)) (-154 (-202)) (-154 (-202))) 48) (((-202) (-202) (-202)) 45)) (-1847 (((-154 (-202)) (-154 (-202)) (-154 (-202))) 15) (((-202) (-202) (-202)) 16)) (-3879 (((-154 (-202)) (-154 (-202)) (-154 (-202))) 17) (((-202) (-202) (-202)) 18)) (-2264 (((-154 (-202)) (-154 (-202))) 60) (((-202) (-202)) 59)) (-3774 (((-202) (-202)) 54) (((-154 (-202)) (-154 (-202))) 58)) (-3181 (((-154 (-202)) (-154 (-202))) 7) (((-202) (-202)) 9)) (-1829 (((-154 (-202)) (-154 (-202)) (-154 (-202))) 30) (((-202) (-202) (-202)) 26)))
+(((-203) (-10 -7 (-15 -3181 ((-202) (-202))) (-15 -3181 ((-154 (-202)) (-154 (-202)))) (-15 -1829 ((-202) (-202) (-202))) (-15 -1829 ((-154 (-202)) (-154 (-202)) (-154 (-202)))) (-15 -1591 ((-202) (-202))) (-15 -1591 ((-154 (-202)) (-154 (-202)))) (-15 -2960 ((-202) (-202))) (-15 -2960 ((-154 (-202)) (-154 (-202)))) (-15 -2607 ((-202) (-707) (-202))) (-15 -2607 ((-154 (-202)) (-707) (-154 (-202)))) (-15 -1847 ((-202) (-202) (-202))) (-15 -1847 ((-154 (-202)) (-154 (-202)) (-154 (-202)))) (-15 -2205 ((-202) (-202) (-202))) (-15 -2205 ((-154 (-202)) (-154 (-202)) (-154 (-202)))) (-15 -3879 ((-202) (-202) (-202))) (-15 -3879 ((-154 (-202)) (-154 (-202)) (-154 (-202)))) (-15 -1882 ((-202) (-202) (-202))) (-15 -1882 ((-154 (-202)) (-154 (-202)) (-154 (-202)))) (-15 -3774 ((-154 (-202)) (-154 (-202)))) (-15 -3774 ((-202) (-202))) (-15 -2264 ((-202) (-202))) (-15 -2264 ((-154 (-202)) (-154 (-202)))) (-15 -3278 ((-202) (-202) (-202))) (-15 -3278 ((-154 (-202)) (-154 (-202)) (-154 (-202)))))) (T -203))
+((-3278 (*1 *2 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203)))) (-3278 (*1 *2 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203)))) (-2264 (*1 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203)))) (-2264 (*1 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203)))) (-3774 (*1 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203)))) (-3774 (*1 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203)))) (-1882 (*1 *2 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203)))) (-1882 (*1 *2 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203)))) (-3879 (*1 *2 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203)))) (-3879 (*1 *2 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203)))) (-2205 (*1 *2 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203)))) (-2205 (*1 *2 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203)))) (-1847 (*1 *2 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203)))) (-1847 (*1 *2 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203)))) (-2607 (*1 *2 *3 *2) (-12 (-5 *2 (-154 (-202))) (-5 *3 (-707)) (-5 *1 (-203)))) (-2607 (*1 *2 *3 *2) (-12 (-5 *2 (-202)) (-5 *3 (-707)) (-5 *1 (-203)))) (-2960 (*1 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203)))) (-2960 (*1 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203)))) (-1591 (*1 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203)))) (-1591 (*1 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203)))) (-1829 (*1 *2 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203)))) (-1829 (*1 *2 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203)))) (-3181 (*1 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203)))) (-3181 (*1 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203)))))
+(-10 -7 (-15 -3181 ((-202) (-202))) (-15 -3181 ((-154 (-202)) (-154 (-202)))) (-15 -1829 ((-202) (-202) (-202))) (-15 -1829 ((-154 (-202)) (-154 (-202)) (-154 (-202)))) (-15 -1591 ((-202) (-202))) (-15 -1591 ((-154 (-202)) (-154 (-202)))) (-15 -2960 ((-202) (-202))) (-15 -2960 ((-154 (-202)) (-154 (-202)))) (-15 -2607 ((-202) (-707) (-202))) (-15 -2607 ((-154 (-202)) (-707) (-154 (-202)))) (-15 -1847 ((-202) (-202) (-202))) (-15 -1847 ((-154 (-202)) (-154 (-202)) (-154 (-202)))) (-15 -2205 ((-202) (-202) (-202))) (-15 -2205 ((-154 (-202)) (-154 (-202)) (-154 (-202)))) (-15 -3879 ((-202) (-202) (-202))) (-15 -3879 ((-154 (-202)) (-154 (-202)) (-154 (-202)))) (-15 -1882 ((-202) (-202) (-202))) (-15 -1882 ((-154 (-202)) (-154 (-202)) (-154 (-202)))) (-15 -3774 ((-154 (-202)) (-154 (-202)))) (-15 -3774 ((-202) (-202))) (-15 -2264 ((-202) (-202))) (-15 -2264 ((-154 (-202)) (-154 (-202)))) (-15 -3278 ((-202) (-202) (-202))) (-15 -3278 ((-154 (-202)) (-154 (-202)) (-154 (-202)))))
+((-1415 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3478 (($ (-707) (-707)) NIL)) (-3836 (($ $ $) NIL)) (-1304 (($ (-1165 |#1|)) NIL) (($ $) NIL)) (-2467 (($ |#1| |#1| |#1|) 32)) (-2304 (((-108) $) NIL)) (-2594 (($ $ (-521) (-521)) NIL)) (-3215 (($ $ (-521) (-521)) NIL)) (-3729 (($ $ (-521) (-521) (-521) (-521)) NIL)) (-1534 (($ $) NIL)) (-2825 (((-108) $) NIL)) (-2978 (((-108) $ (-707)) NIL)) (-2157 (($ $ (-521) (-521) $) NIL)) (-2378 ((|#1| $ (-521) (-521) |#1|) NIL) (($ $ (-587 (-521)) (-587 (-521)) $) NIL)) (-1816 (($ $ (-521) (-1165 |#1|)) NIL)) (-3520 (($ $ (-521) (-1165 |#1|)) NIL)) (-2428 (($ |#1| |#1| |#1|) 31)) (-3480 (($ (-707) |#1|) NIL)) (-2547 (($) NIL T CONST)) (-1311 (($ $) NIL (|has| |#1| (-282)))) (-2672 (((-1165 |#1|) $ (-521)) NIL)) (-1215 (($ |#1|) 30)) (-2995 (($ |#1|) 29)) (-1248 (($ |#1|) 28)) (-3162 (((-707) $) NIL (|has| |#1| (-513)))) (-3849 ((|#1| $ (-521) (-521) |#1|) NIL)) (-3626 ((|#1| $ (-521) (-521)) NIL)) (-3831 (((-587 |#1|) $) NIL)) (-2097 (((-707) $) NIL (|has| |#1| (-513)))) (-3445 (((-587 (-1165 |#1|)) $) NIL (|has| |#1| (-513)))) (-1410 (((-707) $) NIL)) (-1811 (($ (-707) (-707) |#1|) NIL)) (-1421 (((-707) $) NIL)) (-2139 (((-108) $ (-707)) NIL)) (-2274 ((|#1| $) NIL (|has| |#1| (-6 (-4235 "*"))))) (-2690 (((-521) $) NIL)) (-3222 (((-521) $) NIL)) (-3757 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-2221 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2207 (((-521) $) NIL)) (-2684 (((-521) $) NIL)) (-1365 (($ (-587 (-587 |#1|))) 10)) (-3833 (($ (-1 |#1| |#1|) $) NIL)) (-1390 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1858 (((-587 (-587 |#1|)) $) NIL)) (-3574 (((-108) $ (-707)) NIL)) (-3688 (((-1067) $) NIL (|has| |#1| (-1013)))) (-3841 (((-3 $ "failed") $) NIL (|has| |#1| (-337)))) (-4137 (($) 11)) (-4097 (($ $ $) NIL)) (-4147 (((-1031) $) NIL (|has| |#1| (-1013)))) (-3016 (($ $ |#1|) NIL)) (-2230 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-513)))) (-1789 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 |#1|))) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-2488 (((-108) $ $) NIL)) (-3462 (((-108) $) NIL)) (-4024 (($) NIL)) (-2544 ((|#1| $ (-521) (-521)) NIL) ((|#1| $ (-521) (-521) |#1|) NIL) (($ $ (-587 (-521)) (-587 (-521))) NIL)) (-2349 (($ (-587 |#1|)) NIL) (($ (-587 $)) NIL)) (-1222 (((-108) $) NIL)) (-3805 ((|#1| $) NIL (|has| |#1| (-6 (-4235 "*"))))) (-4163 (((-707) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (((-707) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2404 (($ $) NIL)) (-3187 (((-1165 |#1|) $ (-521)) NIL)) (-2189 (($ (-1165 |#1|)) NIL) (((-792) $) NIL (|has| |#1| (-561 (-792))))) (-3049 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2169 (((-108) $) NIL)) (-1531 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-1620 (($ $ |#1|) NIL (|has| |#1| (-337)))) (-1612 (($ $ $) NIL) (($ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-707)) NIL) (($ $ (-521)) NIL (|has| |#1| (-337)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-521) $) NIL) (((-1165 |#1|) $ (-1165 |#1|)) 14) (((-1165 |#1|) (-1165 |#1|) $) NIL) (((-872 |#1|) $ (-872 |#1|)) 20)) (-3475 (((-707) $) NIL (|has| $ (-6 -4233)))))
+(((-204 |#1|) (-13 (-625 |#1| (-1165 |#1|) (-1165 |#1|)) (-10 -8 (-15 * ((-872 |#1|) $ (-872 |#1|))) (-15 -4137 ($)) (-15 -1248 ($ |#1|)) (-15 -2995 ($ |#1|)) (-15 -1215 ($ |#1|)) (-15 -2428 ($ |#1| |#1| |#1|)) (-15 -2467 ($ |#1| |#1| |#1|)))) (-13 (-337) (-1105))) (T -204))
+((* (*1 *2 *1 *2) (-12 (-5 *2 (-872 *3)) (-4 *3 (-13 (-337) (-1105))) (-5 *1 (-204 *3)))) (-4137 (*1 *1) (-12 (-5 *1 (-204 *2)) (-4 *2 (-13 (-337) (-1105))))) (-1248 (*1 *1 *2) (-12 (-5 *1 (-204 *2)) (-4 *2 (-13 (-337) (-1105))))) (-2995 (*1 *1 *2) (-12 (-5 *1 (-204 *2)) (-4 *2 (-13 (-337) (-1105))))) (-1215 (*1 *1 *2) (-12 (-5 *1 (-204 *2)) (-4 *2 (-13 (-337) (-1105))))) (-2428 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-204 *2)) (-4 *2 (-13 (-337) (-1105))))) (-2467 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-204 *2)) (-4 *2 (-13 (-337) (-1105))))))
+(-13 (-625 |#1| (-1165 |#1|) (-1165 |#1|)) (-10 -8 (-15 * ((-872 |#1|) $ (-872 |#1|))) (-15 -4137 ($)) (-15 -1248 ($ |#1|)) (-15 -2995 ($ |#1|)) (-15 -1215 ($ |#1|)) (-15 -2428 ($ |#1| |#1| |#1|)) (-15 -2467 ($ |#1| |#1| |#1|))))
+((-4098 (($ (-1 (-108) |#2|) $) 16)) (-3023 (($ |#2| $) NIL) (($ (-1 (-108) |#2|) $) 24)) (-1784 (($) NIL) (($ (-587 |#2|)) 11)) (-1531 (((-108) $ $) 22)))
+(((-205 |#1| |#2|) (-10 -8 (-15 -4098 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3023 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3023 (|#1| |#2| |#1|)) (-15 -1784 (|#1| (-587 |#2|))) (-15 -1784 (|#1|)) (-15 -1531 ((-108) |#1| |#1|))) (-206 |#2|) (-1013)) (T -205))
+NIL
+(-10 -8 (-15 -4098 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3023 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3023 (|#1| |#2| |#1|)) (-15 -1784 (|#1| (-587 |#2|))) (-15 -1784 (|#1|)) (-15 -1531 ((-108) |#1| |#1|)))
+((-1415 (((-108) $ $) 19 (|has| |#1| (-1013)))) (-2978 (((-108) $ (-707)) 8)) (-4098 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4233)))) (-1628 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4233)))) (-2547 (($) 7 T CONST)) (-2332 (($ $) 58 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-3023 (($ |#1| $) 47 (|has| $ (-6 -4233))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4233)))) (-1422 (($ |#1| $) 57 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4233)))) (-3859 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4233)))) (-3831 (((-587 |#1|) $) 30 (|has| $ (-6 -4233)))) (-2139 (((-108) $ (-707)) 9)) (-3757 (((-587 |#1|) $) 29 (|has| $ (-6 -4233)))) (-2221 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-3833 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#1| |#1|) $) 35)) (-3574 (((-108) $ (-707)) 10)) (-3688 (((-1067) $) 22 (|has| |#1| (-1013)))) (-2511 ((|#1| $) 39)) (-3373 (($ |#1| $) 40)) (-4147 (((-1031) $) 21 (|has| |#1| (-1013)))) (-3620 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-2166 ((|#1| $) 41)) (-1789 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 |#1|))) 26 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) 25 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) 23 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-2488 (((-108) $ $) 14)) (-3462 (((-108) $) 11)) (-4024 (($) 12)) (-1784 (($) 49) (($ (-587 |#1|)) 48)) (-4163 (((-707) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4233))) (((-707) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-2404 (($ $) 13)) (-1430 (((-497) $) 59 (|has| |#1| (-562 (-497))))) (-2201 (($ (-587 |#1|)) 50)) (-2189 (((-792) $) 18 (|has| |#1| (-561 (-792))))) (-4091 (($ (-587 |#1|)) 42)) (-3049 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4233)))) (-1531 (((-108) $ $) 20 (|has| |#1| (-1013)))) (-3475 (((-707) $) 6 (|has| $ (-6 -4233)))))
+(((-206 |#1|) (-1196) (-1013)) (T -206))
+NIL
+(-13 (-212 |t#1|))
+(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1013)) ((-561 (-792)) -3703 (|has| |#1| (-1013)) (|has| |#1| (-561 (-792)))) ((-139 |#1|) . T) ((-562 (-497)) |has| |#1| (-562 (-497))) ((-212 |#1|) . T) ((-284 |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-460 |#1|) . T) ((-482 |#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-1013) |has| |#1| (-1013)) ((-1119) . T))
+((-2156 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-707)) 11) (($ $ (-587 (-1084)) (-587 (-707))) NIL) (($ $ (-1084) (-707)) NIL) (($ $ (-587 (-1084))) NIL) (($ $ (-1084)) 19) (($ $ (-707)) NIL) (($ $) 16)) (-2212 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-707)) 14) (($ $ (-587 (-1084)) (-587 (-707))) NIL) (($ $ (-1084) (-707)) NIL) (($ $ (-587 (-1084))) NIL) (($ $ (-1084)) NIL) (($ $ (-707)) NIL) (($ $) NIL)))
+(((-207 |#1| |#2|) (-10 -8 (-15 -2156 (|#1| |#1|)) (-15 -2212 (|#1| |#1|)) (-15 -2156 (|#1| |#1| (-707))) (-15 -2212 (|#1| |#1| (-707))) (-15 -2156 (|#1| |#1| (-1084))) (-15 -2156 (|#1| |#1| (-587 (-1084)))) (-15 -2156 (|#1| |#1| (-1084) (-707))) (-15 -2156 (|#1| |#1| (-587 (-1084)) (-587 (-707)))) (-15 -2212 (|#1| |#1| (-1084))) (-15 -2212 (|#1| |#1| (-587 (-1084)))) (-15 -2212 (|#1| |#1| (-1084) (-707))) (-15 -2212 (|#1| |#1| (-587 (-1084)) (-587 (-707)))) (-15 -2212 (|#1| |#1| (-1 |#2| |#2|) (-707))) (-15 -2212 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2156 (|#1| |#1| (-1 |#2| |#2|) (-707))) (-15 -2156 (|#1| |#1| (-1 |#2| |#2|)))) (-208 |#2|) (-970)) (T -207))
+NIL
+(-10 -8 (-15 -2156 (|#1| |#1|)) (-15 -2212 (|#1| |#1|)) (-15 -2156 (|#1| |#1| (-707))) (-15 -2212 (|#1| |#1| (-707))) (-15 -2156 (|#1| |#1| (-1084))) (-15 -2156 (|#1| |#1| (-587 (-1084)))) (-15 -2156 (|#1| |#1| (-1084) (-707))) (-15 -2156 (|#1| |#1| (-587 (-1084)) (-587 (-707)))) (-15 -2212 (|#1| |#1| (-1084))) (-15 -2212 (|#1| |#1| (-587 (-1084)))) (-15 -2212 (|#1| |#1| (-1084) (-707))) (-15 -2212 (|#1| |#1| (-587 (-1084)) (-587 (-707)))) (-15 -2212 (|#1| |#1| (-1 |#2| |#2|) (-707))) (-15 -2212 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2156 (|#1| |#1| (-1 |#2| |#2|) (-707))) (-15 -2156 (|#1| |#1| (-1 |#2| |#2|))))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-1232 (((-3 $ "failed") $ $) 19)) (-2547 (($) 17 T CONST)) (-1257 (((-3 $ "failed") $) 34)) (-3996 (((-108) $) 31)) (-3688 (((-1067) $) 9)) (-4147 (((-1031) $) 10)) (-2156 (($ $ (-1 |#1| |#1|)) 52) (($ $ (-1 |#1| |#1|) (-707)) 51) (($ $ (-587 (-1084)) (-587 (-707))) 44 (|has| |#1| (-829 (-1084)))) (($ $ (-1084) (-707)) 43 (|has| |#1| (-829 (-1084)))) (($ $ (-587 (-1084))) 42 (|has| |#1| (-829 (-1084)))) (($ $ (-1084)) 41 (|has| |#1| (-829 (-1084)))) (($ $ (-707)) 39 (|has| |#1| (-210))) (($ $) 37 (|has| |#1| (-210)))) (-2189 (((-792) $) 11) (($ (-521)) 28)) (-3846 (((-707)) 29)) (-3505 (($ $ (-850)) 26) (($ $ (-707)) 33)) (-3561 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-2212 (($ $ (-1 |#1| |#1|)) 50) (($ $ (-1 |#1| |#1|) (-707)) 49) (($ $ (-587 (-1084)) (-587 (-707))) 48 (|has| |#1| (-829 (-1084)))) (($ $ (-1084) (-707)) 47 (|has| |#1| (-829 (-1084)))) (($ $ (-587 (-1084))) 46 (|has| |#1| (-829 (-1084)))) (($ $ (-1084)) 45 (|has| |#1| (-829 (-1084)))) (($ $ (-707)) 40 (|has| |#1| (-210))) (($ $) 38 (|has| |#1| (-210)))) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-707)) 32)) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24)))
+(((-208 |#1|) (-1196) (-970)) (T -208))
+((-2156 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-208 *3)) (-4 *3 (-970)))) (-2156 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-707)) (-4 *1 (-208 *4)) (-4 *4 (-970)))) (-2212 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-208 *3)) (-4 *3 (-970)))) (-2212 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-707)) (-4 *1 (-208 *4)) (-4 *4 (-970)))))
+(-13 (-970) (-10 -8 (-15 -2156 ($ $ (-1 |t#1| |t#1|))) (-15 -2156 ($ $ (-1 |t#1| |t#1|) (-707))) (-15 -2212 ($ $ (-1 |t#1| |t#1|))) (-15 -2212 ($ $ (-1 |t#1| |t#1|) (-707))) (IF (|has| |t#1| (-210)) (-6 (-210)) |%noBranch|) (IF (|has| |t#1| (-829 (-1084))) (-6 (-829 (-1084))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-561 (-792)) . T) ((-210) |has| |#1| (-210)) ((-589 $) . T) ((-663) . T) ((-829 (-1084)) |has| |#1| (-829 (-1084))) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T))
+((-2156 (($ $) NIL) (($ $ (-707)) 10)) (-2212 (($ $) 8) (($ $ (-707)) 12)))
+(((-209 |#1|) (-10 -8 (-15 -2212 (|#1| |#1| (-707))) (-15 -2156 (|#1| |#1| (-707))) (-15 -2212 (|#1| |#1|)) (-15 -2156 (|#1| |#1|))) (-210)) (T -209))
+NIL
+(-10 -8 (-15 -2212 (|#1| |#1| (-707))) (-15 -2156 (|#1| |#1| (-707))) (-15 -2212 (|#1| |#1|)) (-15 -2156 (|#1| |#1|)))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-1232 (((-3 $ "failed") $ $) 19)) (-2547 (($) 17 T CONST)) (-1257 (((-3 $ "failed") $) 34)) (-3996 (((-108) $) 31)) (-3688 (((-1067) $) 9)) (-4147 (((-1031) $) 10)) (-2156 (($ $) 38) (($ $ (-707)) 36)) (-2189 (((-792) $) 11) (($ (-521)) 28)) (-3846 (((-707)) 29)) (-3505 (($ $ (-850)) 26) (($ $ (-707)) 33)) (-3561 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-2212 (($ $) 37) (($ $ (-707)) 35)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-707)) 32)) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24)))
+(((-210) (-1196)) (T -210))
+((-2156 (*1 *1 *1) (-4 *1 (-210))) (-2212 (*1 *1 *1) (-4 *1 (-210))) (-2156 (*1 *1 *1 *2) (-12 (-4 *1 (-210)) (-5 *2 (-707)))) (-2212 (*1 *1 *1 *2) (-12 (-4 *1 (-210)) (-5 *2 (-707)))))
+(-13 (-970) (-10 -8 (-15 -2156 ($ $)) (-15 -2212 ($ $)) (-15 -2156 ($ $ (-707))) (-15 -2212 ($ $ (-707)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-561 (-792)) . T) ((-589 $) . T) ((-663) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T))
+((-1784 (($) 12) (($ (-587 |#2|)) NIL)) (-2404 (($ $) 14)) (-2201 (($ (-587 |#2|)) 10)) (-2189 (((-792) $) 21)))
+(((-211 |#1| |#2|) (-10 -8 (-15 -2189 ((-792) |#1|)) (-15 -1784 (|#1| (-587 |#2|))) (-15 -1784 (|#1|)) (-15 -2201 (|#1| (-587 |#2|))) (-15 -2404 (|#1| |#1|))) (-212 |#2|) (-1013)) (T -211))
+NIL
+(-10 -8 (-15 -2189 ((-792) |#1|)) (-15 -1784 (|#1| (-587 |#2|))) (-15 -1784 (|#1|)) (-15 -2201 (|#1| (-587 |#2|))) (-15 -2404 (|#1| |#1|)))
+((-1415 (((-108) $ $) 19 (|has| |#1| (-1013)))) (-2978 (((-108) $ (-707)) 8)) (-4098 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4233)))) (-1628 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4233)))) (-2547 (($) 7 T CONST)) (-2332 (($ $) 58 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-3023 (($ |#1| $) 47 (|has| $ (-6 -4233))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4233)))) (-1422 (($ |#1| $) 57 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4233)))) (-3859 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4233)))) (-3831 (((-587 |#1|) $) 30 (|has| $ (-6 -4233)))) (-2139 (((-108) $ (-707)) 9)) (-3757 (((-587 |#1|) $) 29 (|has| $ (-6 -4233)))) (-2221 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-3833 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#1| |#1|) $) 35)) (-3574 (((-108) $ (-707)) 10)) (-3688 (((-1067) $) 22 (|has| |#1| (-1013)))) (-2511 ((|#1| $) 39)) (-3373 (($ |#1| $) 40)) (-4147 (((-1031) $) 21 (|has| |#1| (-1013)))) (-3620 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-2166 ((|#1| $) 41)) (-1789 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 |#1|))) 26 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) 25 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) 23 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-2488 (((-108) $ $) 14)) (-3462 (((-108) $) 11)) (-4024 (($) 12)) (-1784 (($) 49) (($ (-587 |#1|)) 48)) (-4163 (((-707) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4233))) (((-707) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-2404 (($ $) 13)) (-1430 (((-497) $) 59 (|has| |#1| (-562 (-497))))) (-2201 (($ (-587 |#1|)) 50)) (-2189 (((-792) $) 18 (|has| |#1| (-561 (-792))))) (-4091 (($ (-587 |#1|)) 42)) (-3049 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4233)))) (-1531 (((-108) $ $) 20 (|has| |#1| (-1013)))) (-3475 (((-707) $) 6 (|has| $ (-6 -4233)))))
+(((-212 |#1|) (-1196) (-1013)) (T -212))
+((-1784 (*1 *1) (-12 (-4 *1 (-212 *2)) (-4 *2 (-1013)))) (-1784 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1013)) (-4 *1 (-212 *3)))) (-3023 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4233)) (-4 *1 (-212 *2)) (-4 *2 (-1013)))) (-3023 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4233)) (-4 *1 (-212 *3)) (-4 *3 (-1013)))) (-4098 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4233)) (-4 *1 (-212 *3)) (-4 *3 (-1013)))))
+(-13 (-102 |t#1|) (-139 |t#1|) (-10 -8 (-15 -1784 ($)) (-15 -1784 ($ (-587 |t#1|))) (IF (|has| $ (-6 -4233)) (PROGN (-15 -3023 ($ |t#1| $)) (-15 -3023 ($ (-1 (-108) |t#1|) $)) (-15 -4098 ($ (-1 (-108) |t#1|) $))) |%noBranch|)))
+(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1013)) ((-561 (-792)) -3703 (|has| |#1| (-1013)) (|has| |#1| (-561 (-792)))) ((-139 |#1|) . T) ((-562 (-497)) |has| |#1| (-562 (-497))) ((-284 |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-460 |#1|) . T) ((-482 |#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-1013) |has| |#1| (-1013)) ((-1119) . T))
+((-2509 (((-2 (|:| |varOrder| (-587 (-1084))) (|:| |inhom| (-3 (-587 (-1165 (-707))) "failed")) (|:| |hom| (-587 (-1165 (-707))))) (-269 (-881 (-521)))) 25)))
+(((-213) (-10 -7 (-15 -2509 ((-2 (|:| |varOrder| (-587 (-1084))) (|:| |inhom| (-3 (-587 (-1165 (-707))) "failed")) (|:| |hom| (-587 (-1165 (-707))))) (-269 (-881 (-521))))))) (T -213))
+((-2509 (*1 *2 *3) (-12 (-5 *3 (-269 (-881 (-521)))) (-5 *2 (-2 (|:| |varOrder| (-587 (-1084))) (|:| |inhom| (-3 (-587 (-1165 (-707))) "failed")) (|:| |hom| (-587 (-1165 (-707)))))) (-5 *1 (-213)))))
+(-10 -7 (-15 -2509 ((-2 (|:| |varOrder| (-587 (-1084))) (|:| |inhom| (-3 (-587 (-1165 (-707))) "failed")) (|:| |hom| (-587 (-1165 (-707))))) (-269 (-881 (-521))))))
+((-1630 (((-707)) 51)) (-3279 (((-2 (|:| -1201 (-627 |#3|)) (|:| |vec| (-1165 |#3|))) (-627 $) (-1165 $)) 49) (((-627 |#3|) (-627 $)) 41) (((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL) (((-627 (-521)) (-627 $)) NIL)) (-2359 (((-126)) 57)) (-2156 (($ $ (-1 |#3| |#3|) (-707)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-587 (-1084)) (-587 (-707))) NIL) (($ $ (-1084) (-707)) NIL) (($ $ (-587 (-1084))) NIL) (($ $ (-1084)) NIL) (($ $ (-707)) NIL) (($ $) NIL)) (-2189 (((-1165 |#3|) $) NIL) (($ |#3|) NIL) (((-792) $) NIL) (($ (-521)) 12) (($ (-381 (-521))) NIL)) (-3846 (((-707)) 15)) (-1620 (($ $ |#3|) 54)))
+(((-214 |#1| |#2| |#3|) (-10 -8 (-15 -2189 (|#1| (-381 (-521)))) (-15 -2189 (|#1| (-521))) (-15 -2189 ((-792) |#1|)) (-15 -3846 ((-707))) (-15 -2156 (|#1| |#1|)) (-15 -2156 (|#1| |#1| (-707))) (-15 -2156 (|#1| |#1| (-1084))) (-15 -2156 (|#1| |#1| (-587 (-1084)))) (-15 -2156 (|#1| |#1| (-1084) (-707))) (-15 -2156 (|#1| |#1| (-587 (-1084)) (-587 (-707)))) (-15 -3279 ((-627 (-521)) (-627 |#1|))) (-15 -3279 ((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 |#1|) (-1165 |#1|))) (-15 -2189 (|#1| |#3|)) (-15 -2156 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2156 (|#1| |#1| (-1 |#3| |#3|) (-707))) (-15 -3279 ((-627 |#3|) (-627 |#1|))) (-15 -3279 ((-2 (|:| -1201 (-627 |#3|)) (|:| |vec| (-1165 |#3|))) (-627 |#1|) (-1165 |#1|))) (-15 -1630 ((-707))) (-15 -1620 (|#1| |#1| |#3|)) (-15 -2359 ((-126))) (-15 -2189 ((-1165 |#3|) |#1|))) (-215 |#2| |#3|) (-707) (-1119)) (T -214))
+((-2359 (*1 *2) (-12 (-14 *4 (-707)) (-4 *5 (-1119)) (-5 *2 (-126)) (-5 *1 (-214 *3 *4 *5)) (-4 *3 (-215 *4 *5)))) (-1630 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1119)) (-5 *2 (-707)) (-5 *1 (-214 *3 *4 *5)) (-4 *3 (-215 *4 *5)))) (-3846 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1119)) (-5 *2 (-707)) (-5 *1 (-214 *3 *4 *5)) (-4 *3 (-215 *4 *5)))))
+(-10 -8 (-15 -2189 (|#1| (-381 (-521)))) (-15 -2189 (|#1| (-521))) (-15 -2189 ((-792) |#1|)) (-15 -3846 ((-707))) (-15 -2156 (|#1| |#1|)) (-15 -2156 (|#1| |#1| (-707))) (-15 -2156 (|#1| |#1| (-1084))) (-15 -2156 (|#1| |#1| (-587 (-1084)))) (-15 -2156 (|#1| |#1| (-1084) (-707))) (-15 -2156 (|#1| |#1| (-587 (-1084)) (-587 (-707)))) (-15 -3279 ((-627 (-521)) (-627 |#1|))) (-15 -3279 ((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 |#1|) (-1165 |#1|))) (-15 -2189 (|#1| |#3|)) (-15 -2156 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2156 (|#1| |#1| (-1 |#3| |#3|) (-707))) (-15 -3279 ((-627 |#3|) (-627 |#1|))) (-15 -3279 ((-2 (|:| -1201 (-627 |#3|)) (|:| |vec| (-1165 |#3|))) (-627 |#1|) (-1165 |#1|))) (-15 -1630 ((-707))) (-15 -1620 (|#1| |#1| |#3|)) (-15 -2359 ((-126))) (-15 -2189 ((-1165 |#3|) |#1|)))
+((-1415 (((-108) $ $) 19 (|has| |#2| (-1013)))) (-2220 (((-108) $) 72 (|has| |#2| (-124)))) (-2720 (($ (-850)) 127 (|has| |#2| (-970)))) (-1903 (((-1170) $ (-521) (-521)) 40 (|has| $ (-6 -4234)))) (-2641 (($ $ $) 123 (|has| |#2| (-729)))) (-1232 (((-3 $ "failed") $ $) 74 (|has| |#2| (-124)))) (-2978 (((-108) $ (-707)) 8)) (-1630 (((-707)) 109 (|has| |#2| (-342)))) (-1606 (((-521) $) 121 (|has| |#2| (-782)))) (-2378 ((|#2| $ (-521) |#2|) 52 (|has| $ (-6 -4234)))) (-2547 (($) 7 T CONST)) (-1297 (((-3 (-521) "failed") $) 67 (-4009 (|has| |#2| (-961 (-521))) (|has| |#2| (-1013)))) (((-3 (-381 (-521)) "failed") $) 64 (-4009 (|has| |#2| (-961 (-381 (-521)))) (|has| |#2| (-1013)))) (((-3 |#2| "failed") $) 61 (|has| |#2| (-1013)))) (-1483 (((-521) $) 68 (-4009 (|has| |#2| (-961 (-521))) (|has| |#2| (-1013)))) (((-381 (-521)) $) 65 (-4009 (|has| |#2| (-961 (-381 (-521)))) (|has| |#2| (-1013)))) ((|#2| $) 60 (|has| |#2| (-1013)))) (-3279 (((-627 (-521)) (-627 $)) 108 (-4009 (|has| |#2| (-583 (-521))) (|has| |#2| (-970)))) (((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) 107 (-4009 (|has| |#2| (-583 (-521))) (|has| |#2| (-970)))) (((-2 (|:| -1201 (-627 |#2|)) (|:| |vec| (-1165 |#2|))) (-627 $) (-1165 $)) 106 (|has| |#2| (-970))) (((-627 |#2|) (-627 $)) 105 (|has| |#2| (-970)))) (-1257 (((-3 $ "failed") $) 99 (|has| |#2| (-970)))) (-3250 (($) 112 (|has| |#2| (-342)))) (-3849 ((|#2| $ (-521) |#2|) 53 (|has| $ (-6 -4234)))) (-3626 ((|#2| $ (-521)) 51)) (-3951 (((-108) $) 119 (|has| |#2| (-782)))) (-3831 (((-587 |#2|) $) 30 (|has| $ (-6 -4233)))) (-3996 (((-108) $) 102 (|has| |#2| (-970)))) (-2210 (((-108) $) 120 (|has| |#2| (-782)))) (-2139 (((-108) $ (-707)) 9)) (-2826 (((-521) $) 43 (|has| (-521) (-784)))) (-2810 (($ $ $) 118 (-3703 (|has| |#2| (-782)) (|has| |#2| (-729))))) (-3757 (((-587 |#2|) $) 29 (|has| $ (-6 -4233)))) (-2221 (((-108) |#2| $) 27 (-12 (|has| |#2| (-1013)) (|has| $ (-6 -4233))))) (-2597 (((-521) $) 44 (|has| (-521) (-784)))) (-2446 (($ $ $) 117 (-3703 (|has| |#2| (-782)) (|has| |#2| (-729))))) (-3833 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#2| |#2|) $) 35)) (-2715 (((-850) $) 111 (|has| |#2| (-342)))) (-3574 (((-108) $ (-707)) 10)) (-3688 (((-1067) $) 22 (|has| |#2| (-1013)))) (-1668 (((-587 (-521)) $) 46)) (-2941 (((-108) (-521) $) 47)) (-2716 (($ (-850)) 110 (|has| |#2| (-342)))) (-4147 (((-1031) $) 21 (|has| |#2| (-1013)))) (-2293 ((|#2| $) 42 (|has| (-521) (-784)))) (-3016 (($ $ |#2|) 41 (|has| $ (-6 -4234)))) (-1789 (((-108) (-1 (-108) |#2|) $) 32 (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 |#2|))) 26 (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ (-269 |#2|)) 25 (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ (-587 |#2|) (-587 |#2|)) 23 (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))))) (-2488 (((-108) $ $) 14)) (-3821 (((-108) |#2| $) 45 (-12 (|has| $ (-6 -4233)) (|has| |#2| (-1013))))) (-2489 (((-587 |#2|) $) 48)) (-3462 (((-108) $) 11)) (-4024 (($) 12)) (-2544 ((|#2| $ (-521) |#2|) 50) ((|#2| $ (-521)) 49)) (-1231 ((|#2| $ $) 126 (|has| |#2| (-970)))) (-1961 (($ (-1165 |#2|)) 128)) (-2359 (((-126)) 125 (|has| |#2| (-337)))) (-2156 (($ $) 92 (-4009 (|has| |#2| (-210)) (|has| |#2| (-970)))) (($ $ (-707)) 90 (-4009 (|has| |#2| (-210)) (|has| |#2| (-970)))) (($ $ (-1084)) 88 (-4009 (|has| |#2| (-829 (-1084))) (|has| |#2| (-970)))) (($ $ (-587 (-1084))) 87 (-4009 (|has| |#2| (-829 (-1084))) (|has| |#2| (-970)))) (($ $ (-1084) (-707)) 86 (-4009 (|has| |#2| (-829 (-1084))) (|has| |#2| (-970)))) (($ $ (-587 (-1084)) (-587 (-707))) 85 (-4009 (|has| |#2| (-829 (-1084))) (|has| |#2| (-970)))) (($ $ (-1 |#2| |#2|) (-707)) 78 (|has| |#2| (-970))) (($ $ (-1 |#2| |#2|)) 77 (|has| |#2| (-970)))) (-4163 (((-707) (-1 (-108) |#2|) $) 31 (|has| $ (-6 -4233))) (((-707) |#2| $) 28 (-12 (|has| |#2| (-1013)) (|has| $ (-6 -4233))))) (-2404 (($ $) 13)) (-2189 (((-1165 |#2|) $) 129) (($ (-521)) 66 (-3703 (-4009 (|has| |#2| (-961 (-521))) (|has| |#2| (-1013))) (|has| |#2| (-970)))) (($ (-381 (-521))) 63 (-4009 (|has| |#2| (-961 (-381 (-521)))) (|has| |#2| (-1013)))) (($ |#2|) 62 (|has| |#2| (-1013))) (((-792) $) 18 (|has| |#2| (-561 (-792))))) (-3846 (((-707)) 104 (|has| |#2| (-970)))) (-3049 (((-108) (-1 (-108) |#2|) $) 33 (|has| $ (-6 -4233)))) (-3304 (($ $) 122 (|has| |#2| (-782)))) (-3505 (($ $ (-707)) 100 (|has| |#2| (-970))) (($ $ (-850)) 96 (|has| |#2| (-970)))) (-3561 (($) 71 (|has| |#2| (-124)) CONST)) (-3572 (($) 103 (|has| |#2| (-970)) CONST)) (-2212 (($ $) 91 (-4009 (|has| |#2| (-210)) (|has| |#2| (-970)))) (($ $ (-707)) 89 (-4009 (|has| |#2| (-210)) (|has| |#2| (-970)))) (($ $ (-1084)) 84 (-4009 (|has| |#2| (-829 (-1084))) (|has| |#2| (-970)))) (($ $ (-587 (-1084))) 83 (-4009 (|has| |#2| (-829 (-1084))) (|has| |#2| (-970)))) (($ $ (-1084) (-707)) 82 (-4009 (|has| |#2| (-829 (-1084))) (|has| |#2| (-970)))) (($ $ (-587 (-1084)) (-587 (-707))) 81 (-4009 (|has| |#2| (-829 (-1084))) (|has| |#2| (-970)))) (($ $ (-1 |#2| |#2|) (-707)) 80 (|has| |#2| (-970))) (($ $ (-1 |#2| |#2|)) 79 (|has| |#2| (-970)))) (-1574 (((-108) $ $) 115 (-3703 (|has| |#2| (-782)) (|has| |#2| (-729))))) (-1558 (((-108) $ $) 114 (-3703 (|has| |#2| (-782)) (|has| |#2| (-729))))) (-1531 (((-108) $ $) 20 (|has| |#2| (-1013)))) (-1566 (((-108) $ $) 116 (-3703 (|has| |#2| (-782)) (|has| |#2| (-729))))) (-1549 (((-108) $ $) 113 (-3703 (|has| |#2| (-782)) (|has| |#2| (-729))))) (-1620 (($ $ |#2|) 124 (|has| |#2| (-337)))) (-1612 (($ $ $) 94 (|has| |#2| (-970))) (($ $) 93 (|has| |#2| (-970)))) (-1602 (($ $ $) 69 (|has| |#2| (-25)))) (** (($ $ (-707)) 101 (|has| |#2| (-970))) (($ $ (-850)) 97 (|has| |#2| (-970)))) (* (($ $ $) 98 (|has| |#2| (-970))) (($ (-521) $) 95 (|has| |#2| (-970))) (($ $ |#2|) 76 (|has| |#2| (-663))) (($ |#2| $) 75 (|has| |#2| (-663))) (($ (-707) $) 73 (|has| |#2| (-124))) (($ (-850) $) 70 (|has| |#2| (-25)))) (-3475 (((-707) $) 6 (|has| $ (-6 -4233)))))
+(((-215 |#1| |#2|) (-1196) (-707) (-1119)) (T -215))
+((-1961 (*1 *1 *2) (-12 (-5 *2 (-1165 *4)) (-4 *4 (-1119)) (-4 *1 (-215 *3 *4)))) (-2720 (*1 *1 *2) (-12 (-5 *2 (-850)) (-4 *1 (-215 *3 *4)) (-4 *4 (-970)) (-4 *4 (-1119)))) (-1231 (*1 *2 *1 *1) (-12 (-4 *1 (-215 *3 *2)) (-4 *2 (-1119)) (-4 *2 (-970)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-215 *3 *2)) (-4 *2 (-1119)) (-4 *2 (-663)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-215 *3 *2)) (-4 *2 (-1119)) (-4 *2 (-663)))))
+(-13 (-554 (-521) |t#2|) (-561 (-1165 |t#2|)) (-10 -8 (-6 -4233) (-15 -1961 ($ (-1165 |t#2|))) (IF (|has| |t#2| (-1013)) (-6 (-385 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-970)) (PROGN (-6 (-107 |t#2| |t#2|)) (-6 (-208 |t#2|)) (-6 (-351 |t#2|)) (-15 -2720 ($ (-850))) (-15 -1231 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-124)) (-6 (-124)) |%noBranch|) (IF (|has| |t#2| (-663)) (PROGN (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-342)) (-6 (-342)) |%noBranch|) (IF (|has| |t#2| (-157)) (PROGN (-6 (-37 |t#2|)) (-6 (-157))) |%noBranch|) (IF (|has| |t#2| (-6 -4230)) (-6 -4230) |%noBranch|) (IF (|has| |t#2| (-782)) (-6 (-782)) |%noBranch|) (IF (|has| |t#2| (-729)) (-6 (-729)) |%noBranch|) (IF (|has| |t#2| (-337)) (-6 (-1172 |t#2|)) |%noBranch|)))
+(((-21) -3703 (|has| |#2| (-970)) (|has| |#2| (-782)) (|has| |#2| (-337)) (|has| |#2| (-157))) ((-23) -3703 (|has| |#2| (-970)) (|has| |#2| (-782)) (|has| |#2| (-729)) (|has| |#2| (-337)) (|has| |#2| (-157)) (|has| |#2| (-124))) ((-25) -3703 (|has| |#2| (-970)) (|has| |#2| (-782)) (|has| |#2| (-729)) (|has| |#2| (-337)) (|has| |#2| (-157)) (|has| |#2| (-124)) (|has| |#2| (-25))) ((-33) . T) ((-37 |#2|) |has| |#2| (-157)) ((-97) -3703 (|has| |#2| (-1013)) (|has| |#2| (-970)) (|has| |#2| (-782)) (|has| |#2| (-729)) (|has| |#2| (-342)) (|has| |#2| (-337)) (|has| |#2| (-157)) (|has| |#2| (-124)) (|has| |#2| (-25))) ((-107 |#2| |#2|) -3703 (|has| |#2| (-970)) (|has| |#2| (-337)) (|has| |#2| (-157))) ((-107 $ $) |has| |#2| (-157)) ((-124) -3703 (|has| |#2| (-970)) (|has| |#2| (-782)) (|has| |#2| (-729)) (|has| |#2| (-337)) (|has| |#2| (-157)) (|has| |#2| (-124))) ((-561 (-792)) -3703 (|has| |#2| (-1013)) (|has| |#2| (-970)) (|has| |#2| (-782)) (|has| |#2| (-729)) (|has| |#2| (-342)) (|has| |#2| (-337)) (|has| |#2| (-157)) (|has| |#2| (-561 (-792))) (|has| |#2| (-124)) (|has| |#2| (-25))) ((-561 (-1165 |#2|)) . T) ((-157) |has| |#2| (-157)) ((-208 |#2|) |has| |#2| (-970)) ((-210) -12 (|has| |#2| (-210)) (|has| |#2| (-970))) ((-261 #0=(-521) |#2|) . T) ((-263 #0# |#2|) . T) ((-284 |#2|) -12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))) ((-342) |has| |#2| (-342)) ((-351 |#2|) |has| |#2| (-970)) ((-385 |#2|) |has| |#2| (-1013)) ((-460 |#2|) . T) ((-554 #0# |#2|) . T) ((-482 |#2| |#2|) -12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))) ((-589 |#2|) -3703 (|has| |#2| (-970)) (|has| |#2| (-337)) (|has| |#2| (-157))) ((-589 $) -3703 (|has| |#2| (-970)) (|has| |#2| (-782)) (|has| |#2| (-157))) ((-583 (-521)) -12 (|has| |#2| (-583 (-521))) (|has| |#2| (-970))) ((-583 |#2|) |has| |#2| (-970)) ((-654 |#2|) -3703 (|has| |#2| (-337)) (|has| |#2| (-157))) ((-663) -3703 (|has| |#2| (-970)) (|has| |#2| (-782)) (|has| |#2| (-157))) ((-727) |has| |#2| (-782)) ((-728) -3703 (|has| |#2| (-782)) (|has| |#2| (-729))) ((-729) |has| |#2| (-729)) ((-730) -3703 (|has| |#2| (-782)) (|has| |#2| (-729))) ((-732) -3703 (|has| |#2| (-782)) (|has| |#2| (-729))) ((-782) |has| |#2| (-782)) ((-784) -3703 (|has| |#2| (-782)) (|has| |#2| (-729))) ((-829 (-1084)) -12 (|has| |#2| (-829 (-1084))) (|has| |#2| (-970))) ((-961 (-381 (-521))) -12 (|has| |#2| (-961 (-381 (-521)))) (|has| |#2| (-1013))) ((-961 (-521)) -12 (|has| |#2| (-961 (-521))) (|has| |#2| (-1013))) ((-961 |#2|) |has| |#2| (-1013)) ((-976 |#2|) -3703 (|has| |#2| (-970)) (|has| |#2| (-337)) (|has| |#2| (-157))) ((-976 $) |has| |#2| (-157)) ((-970) -3703 (|has| |#2| (-970)) (|has| |#2| (-782)) (|has| |#2| (-157))) ((-977) -3703 (|has| |#2| (-970)) (|has| |#2| (-782)) (|has| |#2| (-157))) ((-1025) -3703 (|has| |#2| (-970)) (|has| |#2| (-782)) (|has| |#2| (-157))) ((-1013) -3703 (|has| |#2| (-1013)) (|has| |#2| (-970)) (|has| |#2| (-782)) (|has| |#2| (-729)) (|has| |#2| (-342)) (|has| |#2| (-337)) (|has| |#2| (-157)) (|has| |#2| (-124)) (|has| |#2| (-25))) ((-1119) . T) ((-1172 |#2|) |has| |#2| (-337)))
+((-3126 (((-217 |#1| |#3|) (-1 |#3| |#2| |#3|) (-217 |#1| |#2|) |#3|) 21)) (-3859 ((|#3| (-1 |#3| |#2| |#3|) (-217 |#1| |#2|) |#3|) 23)) (-1390 (((-217 |#1| |#3|) (-1 |#3| |#2|) (-217 |#1| |#2|)) 18)))
+(((-216 |#1| |#2| |#3|) (-10 -7 (-15 -3126 ((-217 |#1| |#3|) (-1 |#3| |#2| |#3|) (-217 |#1| |#2|) |#3|)) (-15 -3859 (|#3| (-1 |#3| |#2| |#3|) (-217 |#1| |#2|) |#3|)) (-15 -1390 ((-217 |#1| |#3|) (-1 |#3| |#2|) (-217 |#1| |#2|)))) (-707) (-1119) (-1119)) (T -216))
+((-1390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-217 *5 *6)) (-14 *5 (-707)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-217 *5 *7)) (-5 *1 (-216 *5 *6 *7)))) (-3859 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-217 *5 *6)) (-14 *5 (-707)) (-4 *6 (-1119)) (-4 *2 (-1119)) (-5 *1 (-216 *5 *6 *2)))) (-3126 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-217 *6 *7)) (-14 *6 (-707)) (-4 *7 (-1119)) (-4 *5 (-1119)) (-5 *2 (-217 *6 *5)) (-5 *1 (-216 *6 *7 *5)))))
+(-10 -7 (-15 -3126 ((-217 |#1| |#3|) (-1 |#3| |#2| |#3|) (-217 |#1| |#2|) |#3|)) (-15 -3859 (|#3| (-1 |#3| |#2| |#3|) (-217 |#1| |#2|) |#3|)) (-15 -1390 ((-217 |#1| |#3|) (-1 |#3| |#2|) (-217 |#1| |#2|))))
+((-1415 (((-108) $ $) NIL (|has| |#2| (-1013)))) (-2220 (((-108) $) NIL (|has| |#2| (-124)))) (-2720 (($ (-850)) 56 (|has| |#2| (-970)))) (-1903 (((-1170) $ (-521) (-521)) NIL (|has| $ (-6 -4234)))) (-2641 (($ $ $) 60 (|has| |#2| (-729)))) (-1232 (((-3 $ "failed") $ $) 48 (|has| |#2| (-124)))) (-2978 (((-108) $ (-707)) 17)) (-1630 (((-707)) NIL (|has| |#2| (-342)))) (-1606 (((-521) $) NIL (|has| |#2| (-782)))) (-2378 ((|#2| $ (-521) |#2|) NIL (|has| $ (-6 -4234)))) (-2547 (($) NIL T CONST)) (-1297 (((-3 (-521) "failed") $) NIL (-12 (|has| |#2| (-961 (-521))) (|has| |#2| (-1013)))) (((-3 (-381 (-521)) "failed") $) NIL (-12 (|has| |#2| (-961 (-381 (-521)))) (|has| |#2| (-1013)))) (((-3 |#2| "failed") $) 29 (|has| |#2| (-1013)))) (-1483 (((-521) $) NIL (-12 (|has| |#2| (-961 (-521))) (|has| |#2| (-1013)))) (((-381 (-521)) $) NIL (-12 (|has| |#2| (-961 (-381 (-521)))) (|has| |#2| (-1013)))) ((|#2| $) 27 (|has| |#2| (-1013)))) (-3279 (((-627 (-521)) (-627 $)) NIL (-12 (|has| |#2| (-583 (-521))) (|has| |#2| (-970)))) (((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (-12 (|has| |#2| (-583 (-521))) (|has| |#2| (-970)))) (((-2 (|:| -1201 (-627 |#2|)) (|:| |vec| (-1165 |#2|))) (-627 $) (-1165 $)) NIL (|has| |#2| (-970))) (((-627 |#2|) (-627 $)) NIL (|has| |#2| (-970)))) (-1257 (((-3 $ "failed") $) 53 (|has| |#2| (-970)))) (-3250 (($) NIL (|has| |#2| (-342)))) (-3849 ((|#2| $ (-521) |#2|) NIL (|has| $ (-6 -4234)))) (-3626 ((|#2| $ (-521)) 51)) (-3951 (((-108) $) NIL (|has| |#2| (-782)))) (-3831 (((-587 |#2|) $) 15 (|has| $ (-6 -4233)))) (-3996 (((-108) $) NIL (|has| |#2| (-970)))) (-2210 (((-108) $) NIL (|has| |#2| (-782)))) (-2139 (((-108) $ (-707)) NIL)) (-2826 (((-521) $) 20 (|has| (-521) (-784)))) (-2810 (($ $ $) NIL (-3703 (|has| |#2| (-729)) (|has| |#2| (-782))))) (-3757 (((-587 |#2|) $) NIL (|has| $ (-6 -4233)))) (-2221 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#2| (-1013))))) (-2597 (((-521) $) 50 (|has| (-521) (-784)))) (-2446 (($ $ $) NIL (-3703 (|has| |#2| (-729)) (|has| |#2| (-782))))) (-3833 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#2| |#2|) $) 41)) (-2715 (((-850) $) NIL (|has| |#2| (-342)))) (-3574 (((-108) $ (-707)) NIL)) (-3688 (((-1067) $) NIL (|has| |#2| (-1013)))) (-1668 (((-587 (-521)) $) NIL)) (-2941 (((-108) (-521) $) NIL)) (-2716 (($ (-850)) NIL (|has| |#2| (-342)))) (-4147 (((-1031) $) NIL (|has| |#2| (-1013)))) (-2293 ((|#2| $) NIL (|has| (-521) (-784)))) (-3016 (($ $ |#2|) NIL (|has| $ (-6 -4234)))) (-1789 (((-108) (-1 (-108) |#2|) $) 24 (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 |#2|))) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ (-269 |#2|)) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ (-587 |#2|) (-587 |#2|)) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))))) (-2488 (((-108) $ $) NIL)) (-3821 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#2| (-1013))))) (-2489 (((-587 |#2|) $) NIL)) (-3462 (((-108) $) NIL)) (-4024 (($) NIL)) (-2544 ((|#2| $ (-521) |#2|) NIL) ((|#2| $ (-521)) 21)) (-1231 ((|#2| $ $) NIL (|has| |#2| (-970)))) (-1961 (($ (-1165 |#2|)) 18)) (-2359 (((-126)) NIL (|has| |#2| (-337)))) (-2156 (($ $) NIL (-12 (|has| |#2| (-210)) (|has| |#2| (-970)))) (($ $ (-707)) NIL (-12 (|has| |#2| (-210)) (|has| |#2| (-970)))) (($ $ (-1084)) NIL (-12 (|has| |#2| (-829 (-1084))) (|has| |#2| (-970)))) (($ $ (-587 (-1084))) NIL (-12 (|has| |#2| (-829 (-1084))) (|has| |#2| (-970)))) (($ $ (-1084) (-707)) NIL (-12 (|has| |#2| (-829 (-1084))) (|has| |#2| (-970)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (-12 (|has| |#2| (-829 (-1084))) (|has| |#2| (-970)))) (($ $ (-1 |#2| |#2|) (-707)) NIL (|has| |#2| (-970))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-970)))) (-4163 (((-707) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4233))) (((-707) |#2| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#2| (-1013))))) (-2404 (($ $) NIL)) (-2189 (((-1165 |#2|) $) 10) (($ (-521)) NIL (-3703 (-12 (|has| |#2| (-961 (-521))) (|has| |#2| (-1013))) (|has| |#2| (-970)))) (($ (-381 (-521))) NIL (-12 (|has| |#2| (-961 (-381 (-521)))) (|has| |#2| (-1013)))) (($ |#2|) 13 (|has| |#2| (-1013))) (((-792) $) NIL (|has| |#2| (-561 (-792))))) (-3846 (((-707)) NIL (|has| |#2| (-970)))) (-3049 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4233)))) (-3304 (($ $) NIL (|has| |#2| (-782)))) (-3505 (($ $ (-707)) NIL (|has| |#2| (-970))) (($ $ (-850)) NIL (|has| |#2| (-970)))) (-3561 (($) 35 (|has| |#2| (-124)) CONST)) (-3572 (($) 38 (|has| |#2| (-970)) CONST)) (-2212 (($ $) NIL (-12 (|has| |#2| (-210)) (|has| |#2| (-970)))) (($ $ (-707)) NIL (-12 (|has| |#2| (-210)) (|has| |#2| (-970)))) (($ $ (-1084)) NIL (-12 (|has| |#2| (-829 (-1084))) (|has| |#2| (-970)))) (($ $ (-587 (-1084))) NIL (-12 (|has| |#2| (-829 (-1084))) (|has| |#2| (-970)))) (($ $ (-1084) (-707)) NIL (-12 (|has| |#2| (-829 (-1084))) (|has| |#2| (-970)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (-12 (|has| |#2| (-829 (-1084))) (|has| |#2| (-970)))) (($ $ (-1 |#2| |#2|) (-707)) NIL (|has| |#2| (-970))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-970)))) (-1574 (((-108) $ $) NIL (-3703 (|has| |#2| (-729)) (|has| |#2| (-782))))) (-1558 (((-108) $ $) NIL (-3703 (|has| |#2| (-729)) (|has| |#2| (-782))))) (-1531 (((-108) $ $) 26 (|has| |#2| (-1013)))) (-1566 (((-108) $ $) NIL (-3703 (|has| |#2| (-729)) (|has| |#2| (-782))))) (-1549 (((-108) $ $) 58 (-3703 (|has| |#2| (-729)) (|has| |#2| (-782))))) (-1620 (($ $ |#2|) NIL (|has| |#2| (-337)))) (-1612 (($ $ $) NIL (|has| |#2| (-970))) (($ $) NIL (|has| |#2| (-970)))) (-1602 (($ $ $) 33 (|has| |#2| (-25)))) (** (($ $ (-707)) NIL (|has| |#2| (-970))) (($ $ (-850)) NIL (|has| |#2| (-970)))) (* (($ $ $) 49 (|has| |#2| (-970))) (($ (-521) $) NIL (|has| |#2| (-970))) (($ $ |#2|) 42 (|has| |#2| (-663))) (($ |#2| $) 43 (|has| |#2| (-663))) (($ (-707) $) NIL (|has| |#2| (-124))) (($ (-850) $) NIL (|has| |#2| (-25)))) (-3475 (((-707) $) NIL (|has| $ (-6 -4233)))))
+(((-217 |#1| |#2|) (-215 |#1| |#2|) (-707) (-1119)) (T -217))
+NIL
+(-215 |#1| |#2|)
+((-2822 (((-521) (-587 (-1067))) 24) (((-521) (-1067)) 19)) (-2457 (((-1170) (-587 (-1067))) 29) (((-1170) (-1067)) 28)) (-3311 (((-1067)) 14)) (-2069 (((-1067) (-521) (-1067)) 16)) (-1893 (((-587 (-1067)) (-587 (-1067)) (-521) (-1067)) 25) (((-1067) (-1067) (-521) (-1067)) 23)) (-2240 (((-587 (-1067)) (-587 (-1067))) 13) (((-587 (-1067)) (-1067)) 11)))
+(((-218) (-10 -7 (-15 -2240 ((-587 (-1067)) (-1067))) (-15 -2240 ((-587 (-1067)) (-587 (-1067)))) (-15 -3311 ((-1067))) (-15 -2069 ((-1067) (-521) (-1067))) (-15 -1893 ((-1067) (-1067) (-521) (-1067))) (-15 -1893 ((-587 (-1067)) (-587 (-1067)) (-521) (-1067))) (-15 -2457 ((-1170) (-1067))) (-15 -2457 ((-1170) (-587 (-1067)))) (-15 -2822 ((-521) (-1067))) (-15 -2822 ((-521) (-587 (-1067)))))) (T -218))
+((-2822 (*1 *2 *3) (-12 (-5 *3 (-587 (-1067))) (-5 *2 (-521)) (-5 *1 (-218)))) (-2822 (*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-521)) (-5 *1 (-218)))) (-2457 (*1 *2 *3) (-12 (-5 *3 (-587 (-1067))) (-5 *2 (-1170)) (-5 *1 (-218)))) (-2457 (*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-218)))) (-1893 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-587 (-1067))) (-5 *3 (-521)) (-5 *4 (-1067)) (-5 *1 (-218)))) (-1893 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1067)) (-5 *3 (-521)) (-5 *1 (-218)))) (-2069 (*1 *2 *3 *2) (-12 (-5 *2 (-1067)) (-5 *3 (-521)) (-5 *1 (-218)))) (-3311 (*1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-218)))) (-2240 (*1 *2 *2) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-218)))) (-2240 (*1 *2 *3) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-218)) (-5 *3 (-1067)))))
+(-10 -7 (-15 -2240 ((-587 (-1067)) (-1067))) (-15 -2240 ((-587 (-1067)) (-587 (-1067)))) (-15 -3311 ((-1067))) (-15 -2069 ((-1067) (-521) (-1067))) (-15 -1893 ((-1067) (-1067) (-521) (-1067))) (-15 -1893 ((-587 (-1067)) (-587 (-1067)) (-521) (-1067))) (-15 -2457 ((-1170) (-1067))) (-15 -2457 ((-1170) (-587 (-1067)))) (-15 -2822 ((-521) (-1067))) (-15 -2822 ((-521) (-587 (-1067)))))
+((-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) 9)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) 18)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ (-381 (-521)) $) 25) (($ $ (-381 (-521))) NIL)))
+(((-219 |#1|) (-10 -8 (-15 -3505 (|#1| |#1| (-521))) (-15 ** (|#1| |#1| (-521))) (-15 * (|#1| |#1| (-381 (-521)))) (-15 * (|#1| (-381 (-521)) |#1|)) (-15 ** (|#1| |#1| (-707))) (-15 -3505 (|#1| |#1| (-707))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-850))) (-15 -3505 (|#1| |#1| (-850))) (-15 * (|#1| (-521) |#1|)) (-15 * (|#1| (-707) |#1|)) (-15 * (|#1| (-850) |#1|))) (-220)) (T -219))
+NIL
+(-10 -8 (-15 -3505 (|#1| |#1| (-521))) (-15 ** (|#1| |#1| (-521))) (-15 * (|#1| |#1| (-381 (-521)))) (-15 * (|#1| (-381 (-521)) |#1|)) (-15 ** (|#1| |#1| (-707))) (-15 -3505 (|#1| |#1| (-707))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-850))) (-15 -3505 (|#1| |#1| (-850))) (-15 * (|#1| (-521) |#1|)) (-15 * (|#1| (-707) |#1|)) (-15 * (|#1| (-850) |#1|)))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-1232 (((-3 $ "failed") $ $) 19)) (-2547 (($) 17 T CONST)) (-1257 (((-3 $ "failed") $) 34)) (-3996 (((-108) $) 31)) (-3688 (((-1067) $) 9)) (-3095 (($ $) 39)) (-4147 (((-1031) $) 10)) (-2189 (((-792) $) 11) (($ (-521)) 28) (($ (-381 (-521))) 44)) (-3846 (((-707)) 29)) (-3505 (($ $ (-850)) 26) (($ $ (-707)) 33) (($ $ (-521)) 40)) (-3561 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-707)) 32) (($ $ (-521)) 41)) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ (-381 (-521)) $) 43) (($ $ (-381 (-521))) 42)))
+(((-220) (-1196)) (T -220))
+((** (*1 *1 *1 *2) (-12 (-4 *1 (-220)) (-5 *2 (-521)))) (-3505 (*1 *1 *1 *2) (-12 (-4 *1 (-220)) (-5 *2 (-521)))) (-3095 (*1 *1 *1) (-4 *1 (-220))))
+(-13 (-265) (-37 (-381 (-521))) (-10 -8 (-15 ** ($ $ (-521))) (-15 -3505 ($ $ (-521))) (-15 -3095 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-381 (-521))) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-124) . T) ((-561 (-792)) . T) ((-265) . T) ((-589 #0#) . T) ((-589 $) . T) ((-654 #0#) . T) ((-663) . T) ((-976 #0#) . T) ((-976 $) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T))
+((-1415 (((-108) $ $) 19 (|has| |#1| (-1013)))) (-3430 ((|#1| $) 48)) (-3830 (($ $) 57)) (-2978 (((-108) $ (-707)) 8)) (-2300 ((|#1| $ |#1|) 39 (|has| $ (-6 -4234)))) (-1227 (($ $ $) 53 (|has| $ (-6 -4234)))) (-4154 (($ $ $) 52 (|has| $ (-6 -4234)))) (-2378 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4234)))) (-2675 (($ $ (-587 $)) 41 (|has| $ (-6 -4234)))) (-2547 (($) 7 T CONST)) (-3458 (($ $) 56)) (-3831 (((-587 |#1|) $) 30 (|has| $ (-6 -4233)))) (-3186 (((-587 $) $) 50)) (-3651 (((-108) $ $) 42 (|has| |#1| (-1013)))) (-3616 (($ $) 55)) (-2139 (((-108) $ (-707)) 9)) (-3757 (((-587 |#1|) $) 29 (|has| $ (-6 -4233)))) (-2221 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-3833 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#1| |#1|) $) 35)) (-3574 (((-108) $ (-707)) 10)) (-1278 (((-587 |#1|) $) 45)) (-2229 (((-108) $) 49)) (-3688 (((-1067) $) 22 (|has| |#1| (-1013)))) (-1441 ((|#1| $) 59)) (-3236 (($ $) 58)) (-4147 (((-1031) $) 21 (|has| |#1| (-1013)))) (-1789 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 |#1|))) 26 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) 25 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) 23 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-2488 (((-108) $ $) 14)) (-3462 (((-108) $) 11)) (-4024 (($) 12)) (-2544 ((|#1| $ "value") 47)) (-2931 (((-521) $ $) 44)) (-2406 (((-108) $) 46)) (-4163 (((-707) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4233))) (((-707) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-2404 (($ $) 13)) (-3980 (($ $ $) 54 (|has| $ (-6 -4234)))) (-2189 (((-792) $) 18 (|has| |#1| (-561 (-792))))) (-3098 (((-587 $) $) 51)) (-2294 (((-108) $ $) 43 (|has| |#1| (-1013)))) (-3049 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4233)))) (-1531 (((-108) $ $) 20 (|has| |#1| (-1013)))) (-3475 (((-707) $) 6 (|has| $ (-6 -4233)))))
+(((-221 |#1|) (-1196) (-1119)) (T -221))
+((-1441 (*1 *2 *1) (-12 (-4 *1 (-221 *2)) (-4 *2 (-1119)))) (-3236 (*1 *1 *1) (-12 (-4 *1 (-221 *2)) (-4 *2 (-1119)))) (-3830 (*1 *1 *1) (-12 (-4 *1 (-221 *2)) (-4 *2 (-1119)))) (-3458 (*1 *1 *1) (-12 (-4 *1 (-221 *2)) (-4 *2 (-1119)))) (-3616 (*1 *1 *1) (-12 (-4 *1 (-221 *2)) (-4 *2 (-1119)))) (-3980 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4234)) (-4 *1 (-221 *2)) (-4 *2 (-1119)))) (-1227 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4234)) (-4 *1 (-221 *2)) (-4 *2 (-1119)))) (-4154 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4234)) (-4 *1 (-221 *2)) (-4 *2 (-1119)))))
+(-13 (-935 |t#1|) (-10 -8 (-15 -1441 (|t#1| $)) (-15 -3236 ($ $)) (-15 -3830 ($ $)) (-15 -3458 ($ $)) (-15 -3616 ($ $)) (IF (|has| $ (-6 -4234)) (PROGN (-15 -3980 ($ $ $)) (-15 -1227 ($ $ $)) (-15 -4154 ($ $ $))) |%noBranch|)))
+(((-33) . T) ((-97) |has| |#1| (-1013)) ((-561 (-792)) -3703 (|has| |#1| (-1013)) (|has| |#1| (-561 (-792)))) ((-284 |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-460 |#1|) . T) ((-482 |#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-935 |#1|) . T) ((-1013) |has| |#1| (-1013)) ((-1119) . T))
+((-1415 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3430 ((|#1| $) NIL)) (-2092 ((|#1| $) NIL)) (-3830 (($ $) NIL)) (-1903 (((-1170) $ (-521) (-521)) NIL (|has| $ (-6 -4234)))) (-3861 (($ $ (-521)) NIL (|has| $ (-6 -4234)))) (-1505 (((-108) $) NIL (|has| |#1| (-784))) (((-108) (-1 (-108) |#1| |#1|) $) NIL)) (-1621 (($ $) NIL (-12 (|has| $ (-6 -4234)) (|has| |#1| (-784)))) (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4234)))) (-3211 (($ $) 10 (|has| |#1| (-784))) (($ (-1 (-108) |#1| |#1|) $) NIL)) (-2978 (((-108) $ (-707)) NIL)) (-2300 ((|#1| $ |#1|) NIL (|has| $ (-6 -4234)))) (-3739 (($ $ $) NIL (|has| $ (-6 -4234)))) (-1509 ((|#1| $ |#1|) NIL (|has| $ (-6 -4234)))) (-3977 ((|#1| $ |#1|) NIL (|has| $ (-6 -4234)))) (-2378 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4234))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4234))) (($ $ "rest" $) NIL (|has| $ (-6 -4234))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4234))) ((|#1| $ (-1132 (-521)) |#1|) NIL (|has| $ (-6 -4234))) ((|#1| $ (-521) |#1|) NIL (|has| $ (-6 -4234)))) (-2675 (($ $ (-587 $)) NIL (|has| $ (-6 -4234)))) (-4098 (($ (-1 (-108) |#1|) $) NIL)) (-1628 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2080 ((|#1| $) NIL)) (-2547 (($) NIL T CONST)) (-3081 (($ $) NIL (|has| $ (-6 -4234)))) (-1862 (($ $) NIL)) (-2306 (($ $) NIL) (($ $ (-707)) NIL)) (-2468 (($ $) NIL (|has| |#1| (-1013)))) (-2332 (($ $) 7 (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-3023 (($ |#1| $) NIL (|has| |#1| (-1013))) (($ (-1 (-108) |#1|) $) NIL)) (-1422 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-3859 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-3849 ((|#1| $ (-521) |#1|) NIL (|has| $ (-6 -4234)))) (-3626 ((|#1| $ (-521)) NIL)) (-1368 (((-108) $) NIL)) (-3233 (((-521) |#1| $ (-521)) NIL (|has| |#1| (-1013))) (((-521) |#1| $) NIL (|has| |#1| (-1013))) (((-521) (-1 (-108) |#1|) $) NIL)) (-3831 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-3186 (((-587 $) $) NIL)) (-3651 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-1811 (($ (-707) |#1|) NIL)) (-2139 (((-108) $ (-707)) NIL)) (-2826 (((-521) $) NIL (|has| (-521) (-784)))) (-2810 (($ $ $) NIL (|has| |#1| (-784)))) (-3220 (($ $ $) NIL (|has| |#1| (-784))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-1318 (($ $ $) NIL (|has| |#1| (-784))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-3757 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-2221 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2597 (((-521) $) NIL (|has| (-521) (-784)))) (-2446 (($ $ $) NIL (|has| |#1| (-784)))) (-3833 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1580 (($ |#1|) NIL)) (-3574 (((-108) $ (-707)) NIL)) (-1278 (((-587 |#1|) $) NIL)) (-2229 (((-108) $) NIL)) (-3688 (((-1067) $) NIL (|has| |#1| (-1013)))) (-1441 ((|#1| $) NIL) (($ $ (-707)) NIL)) (-3373 (($ $ $ (-521)) NIL) (($ |#1| $ (-521)) NIL)) (-1659 (($ $ $ (-521)) NIL) (($ |#1| $ (-521)) NIL)) (-1668 (((-587 (-521)) $) NIL)) (-2941 (((-108) (-521) $) NIL)) (-4147 (((-1031) $) NIL (|has| |#1| (-1013)))) (-2293 ((|#1| $) NIL) (($ $ (-707)) NIL)) (-3620 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-3016 (($ $ |#1|) NIL (|has| $ (-6 -4234)))) (-3924 (((-108) $) NIL)) (-1789 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 |#1|))) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-2488 (((-108) $ $) NIL)) (-3821 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2489 (((-587 |#1|) $) NIL)) (-3462 (((-108) $) NIL)) (-4024 (($) NIL)) (-2544 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1132 (-521))) NIL) ((|#1| $ (-521)) NIL) ((|#1| $ (-521) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-707) $ "count") 16)) (-2931 (((-521) $ $) NIL)) (-2859 (($ $ (-1132 (-521))) NIL) (($ $ (-521)) NIL)) (-3691 (($ $ (-1132 (-521))) NIL) (($ $ (-521)) NIL)) (-3320 (($ (-587 |#1|)) 22)) (-2406 (((-108) $) NIL)) (-3207 (($ $) NIL)) (-2262 (($ $) NIL (|has| $ (-6 -4234)))) (-3083 (((-707) $) NIL)) (-3717 (($ $) NIL)) (-4163 (((-707) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (((-707) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-1497 (($ $ $ (-521)) NIL (|has| $ (-6 -4234)))) (-2404 (($ $) NIL)) (-1430 (((-497) $) NIL (|has| |#1| (-562 (-497))))) (-2201 (($ (-587 |#1|)) NIL)) (-3980 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4159 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-587 $)) NIL) (($ $ |#1|) NIL)) (-2189 (($ (-587 |#1|)) 17) (((-587 |#1|) $) 18) (((-792) $) 21 (|has| |#1| (-561 (-792))))) (-3098 (((-587 $) $) NIL)) (-2294 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3049 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-1574 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1558 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1531 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-1566 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1549 (((-108) $ $) NIL (|has| |#1| (-784)))) (-3475 (((-707) $) 14 (|has| $ (-6 -4233)))))
+(((-222 |#1|) (-13 (-607 |#1|) (-10 -8 (-15 -2189 ($ (-587 |#1|))) (-15 -2189 ((-587 |#1|) $)) (-15 -3320 ($ (-587 |#1|))) (-15 -2544 ($ $ "unique")) (-15 -2544 ($ $ "sort")) (-15 -2544 ((-707) $ "count")))) (-784)) (T -222))
+((-2189 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-784)) (-5 *1 (-222 *3)))) (-2189 (*1 *2 *1) (-12 (-5 *2 (-587 *3)) (-5 *1 (-222 *3)) (-4 *3 (-784)))) (-3320 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-784)) (-5 *1 (-222 *3)))) (-2544 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-222 *3)) (-4 *3 (-784)))) (-2544 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-222 *3)) (-4 *3 (-784)))) (-2544 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-707)) (-5 *1 (-222 *4)) (-4 *4 (-784)))))
+(-13 (-607 |#1|) (-10 -8 (-15 -2189 ($ (-587 |#1|))) (-15 -2189 ((-587 |#1|) $)) (-15 -3320 ($ (-587 |#1|))) (-15 -2544 ($ $ "unique")) (-15 -2544 ($ $ "sort")) (-15 -2544 ((-707) $ "count"))))
+((-3874 (((-3 (-707) "failed") |#1| |#1| (-707)) 27)))
+(((-223 |#1|) (-10 -7 (-15 -3874 ((-3 (-707) "failed") |#1| |#1| (-707)))) (-13 (-663) (-342) (-10 -7 (-15 ** (|#1| |#1| (-521)))))) (T -223))
+((-3874 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-707)) (-4 *3 (-13 (-663) (-342) (-10 -7 (-15 ** (*3 *3 (-521)))))) (-5 *1 (-223 *3)))))
+(-10 -7 (-15 -3874 ((-3 (-707) "failed") |#1| |#1| (-707))))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-4084 (((-587 (-794 |#1|)) $) NIL)) (-1280 (((-1080 $) $ (-794 |#1|)) NIL) (((-1080 |#2|) $) NIL)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) NIL (|has| |#2| (-513)))) (-2559 (($ $) NIL (|has| |#2| (-513)))) (-1733 (((-108) $) NIL (|has| |#2| (-513)))) (-2256 (((-707) $) NIL) (((-707) $ (-587 (-794 |#1|))) NIL)) (-1232 (((-3 $ "failed") $ $) NIL)) (-2598 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#2| (-838)))) (-3063 (($ $) NIL (|has| |#2| (-425)))) (-3358 (((-392 $) $) NIL (|has| |#2| (-425)))) (-2569 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) NIL (|has| |#2| (-838)))) (-2547 (($) NIL T CONST)) (-1297 (((-3 |#2| "failed") $) NIL) (((-3 (-381 (-521)) "failed") $) NIL (|has| |#2| (-961 (-381 (-521))))) (((-3 (-521) "failed") $) NIL (|has| |#2| (-961 (-521)))) (((-3 (-794 |#1|) "failed") $) NIL)) (-1483 ((|#2| $) NIL) (((-381 (-521)) $) NIL (|has| |#2| (-961 (-381 (-521))))) (((-521) $) NIL (|has| |#2| (-961 (-521)))) (((-794 |#1|) $) NIL)) (-2114 (($ $ $ (-794 |#1|)) NIL (|has| |#2| (-157)))) (-4197 (($ $ (-587 (-521))) NIL)) (-3152 (($ $) NIL)) (-3279 (((-627 (-521)) (-627 $)) NIL (|has| |#2| (-583 (-521)))) (((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (|has| |#2| (-583 (-521)))) (((-2 (|:| -1201 (-627 |#2|)) (|:| |vec| (-1165 |#2|))) (-627 $) (-1165 $)) NIL) (((-627 |#2|) (-627 $)) NIL)) (-1257 (((-3 $ "failed") $) NIL)) (-3666 (($ $) NIL (|has| |#2| (-425))) (($ $ (-794 |#1|)) NIL (|has| |#2| (-425)))) (-3144 (((-587 $) $) NIL)) (-2710 (((-108) $) NIL (|has| |#2| (-838)))) (-3528 (($ $ |#2| (-217 (-3475 |#1|) (-707)) $) NIL)) (-3427 (((-818 (-353) $) $ (-821 (-353)) (-818 (-353) $)) NIL (-12 (|has| (-794 |#1|) (-815 (-353))) (|has| |#2| (-815 (-353))))) (((-818 (-521) $) $ (-821 (-521)) (-818 (-521) $)) NIL (-12 (|has| (-794 |#1|) (-815 (-521))) (|has| |#2| (-815 (-521)))))) (-3996 (((-108) $) NIL)) (-2678 (((-707) $) NIL)) (-4069 (($ (-1080 |#2|) (-794 |#1|)) NIL) (($ (-1080 $) (-794 |#1|)) NIL)) (-2959 (((-587 $) $) NIL)) (-3649 (((-108) $) NIL)) (-4043 (($ |#2| (-217 (-3475 |#1|) (-707))) NIL) (($ $ (-794 |#1|) (-707)) NIL) (($ $ (-587 (-794 |#1|)) (-587 (-707))) NIL)) (-1450 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $ (-794 |#1|)) NIL)) (-3273 (((-217 (-3475 |#1|) (-707)) $) NIL) (((-707) $ (-794 |#1|)) NIL) (((-587 (-707)) $ (-587 (-794 |#1|))) NIL)) (-2810 (($ $ $) NIL (|has| |#2| (-784)))) (-2446 (($ $ $) NIL (|has| |#2| (-784)))) (-3285 (($ (-1 (-217 (-3475 |#1|) (-707)) (-217 (-3475 |#1|) (-707))) $) NIL)) (-1390 (($ (-1 |#2| |#2|) $) NIL)) (-2477 (((-3 (-794 |#1|) "failed") $) NIL)) (-3125 (($ $) NIL)) (-3135 ((|#2| $) NIL)) (-2223 (($ (-587 $)) NIL (|has| |#2| (-425))) (($ $ $) NIL (|has| |#2| (-425)))) (-3688 (((-1067) $) NIL)) (-1617 (((-3 (-587 $) "failed") $) NIL)) (-3177 (((-3 (-587 $) "failed") $) NIL)) (-3979 (((-3 (-2 (|:| |var| (-794 |#1|)) (|:| -2997 (-707))) "failed") $) NIL)) (-4147 (((-1031) $) NIL)) (-3105 (((-108) $) NIL)) (-3115 ((|#2| $) NIL)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) NIL (|has| |#2| (-425)))) (-2258 (($ (-587 $)) NIL (|has| |#2| (-425))) (($ $ $) NIL (|has| |#2| (-425)))) (-1912 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#2| (-838)))) (-2165 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#2| (-838)))) (-1916 (((-392 $) $) NIL (|has| |#2| (-838)))) (-2230 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-513))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-513)))) (-2288 (($ $ (-587 (-269 $))) NIL) (($ $ (-269 $)) NIL) (($ $ $ $) NIL) (($ $ (-587 $) (-587 $)) NIL) (($ $ (-794 |#1|) |#2|) NIL) (($ $ (-587 (-794 |#1|)) (-587 |#2|)) NIL) (($ $ (-794 |#1|) $) NIL) (($ $ (-587 (-794 |#1|)) (-587 $)) NIL)) (-4010 (($ $ (-794 |#1|)) NIL (|has| |#2| (-157)))) (-2156 (($ $ (-794 |#1|)) NIL) (($ $ (-587 (-794 |#1|))) NIL) (($ $ (-794 |#1|) (-707)) NIL) (($ $ (-587 (-794 |#1|)) (-587 (-707))) NIL)) (-1994 (((-217 (-3475 |#1|) (-707)) $) NIL) (((-707) $ (-794 |#1|)) NIL) (((-587 (-707)) $ (-587 (-794 |#1|))) NIL)) (-1430 (((-821 (-353)) $) NIL (-12 (|has| (-794 |#1|) (-562 (-821 (-353)))) (|has| |#2| (-562 (-821 (-353)))))) (((-821 (-521)) $) NIL (-12 (|has| (-794 |#1|) (-562 (-821 (-521)))) (|has| |#2| (-562 (-821 (-521)))))) (((-497) $) NIL (-12 (|has| (-794 |#1|) (-562 (-497))) (|has| |#2| (-562 (-497)))))) (-2403 ((|#2| $) NIL (|has| |#2| (-425))) (($ $ (-794 |#1|)) NIL (|has| |#2| (-425)))) (-2944 (((-3 (-1165 $) "failed") (-627 $)) NIL (-12 (|has| $ (-133)) (|has| |#2| (-838))))) (-2189 (((-792) $) NIL) (($ (-521)) NIL) (($ |#2|) NIL) (($ (-794 |#1|)) NIL) (($ (-381 (-521))) NIL (-3703 (|has| |#2| (-37 (-381 (-521)))) (|has| |#2| (-961 (-381 (-521)))))) (($ $) NIL (|has| |#2| (-513)))) (-1259 (((-587 |#2|) $) NIL)) (-3800 ((|#2| $ (-217 (-3475 |#1|) (-707))) NIL) (($ $ (-794 |#1|) (-707)) NIL) (($ $ (-587 (-794 |#1|)) (-587 (-707))) NIL)) (-1671 (((-3 $ "failed") $) NIL (-3703 (-12 (|has| $ (-133)) (|has| |#2| (-838))) (|has| |#2| (-133))))) (-3846 (((-707)) NIL)) (-1547 (($ $ $ (-707)) NIL (|has| |#2| (-157)))) (-4210 (((-108) $ $) NIL (|has| |#2| (-513)))) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (-3561 (($) NIL T CONST)) (-3572 (($) NIL T CONST)) (-2212 (($ $ (-794 |#1|)) NIL) (($ $ (-587 (-794 |#1|))) NIL) (($ $ (-794 |#1|) (-707)) NIL) (($ $ (-587 (-794 |#1|)) (-587 (-707))) NIL)) (-1574 (((-108) $ $) NIL (|has| |#2| (-784)))) (-1558 (((-108) $ $) NIL (|has| |#2| (-784)))) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL (|has| |#2| (-784)))) (-1549 (((-108) $ $) NIL (|has| |#2| (-784)))) (-1620 (($ $ |#2|) NIL (|has| |#2| (-337)))) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ (-381 (-521))) NIL (|has| |#2| (-37 (-381 (-521))))) (($ (-381 (-521)) $) NIL (|has| |#2| (-37 (-381 (-521))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-224 |#1| |#2|) (-13 (-878 |#2| (-217 (-3475 |#1|) (-707)) (-794 |#1|)) (-10 -8 (-15 -4197 ($ $ (-587 (-521)))))) (-587 (-1084)) (-970)) (T -224))
+((-4197 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-521))) (-5 *1 (-224 *3 *4)) (-14 *3 (-587 (-1084))) (-4 *4 (-970)))))
+(-13 (-878 |#2| (-217 (-3475 |#1|) (-707)) (-794 |#1|)) (-10 -8 (-15 -4197 ($ $ (-587 (-521))))))
+((-1295 (((-1170) $) 12)) (-3026 (((-166) $) 9)) (-2998 (($ (-166)) 10)) (-2189 (((-792) $) 7)))
+(((-225) (-13 (-561 (-792)) (-10 -8 (-15 -3026 ((-166) $)) (-15 -2998 ($ (-166))) (-15 -1295 ((-1170) $))))) (T -225))
+((-3026 (*1 *2 *1) (-12 (-5 *2 (-166)) (-5 *1 (-225)))) (-2998 (*1 *1 *2) (-12 (-5 *2 (-166)) (-5 *1 (-225)))) (-1295 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-225)))))
+(-13 (-561 (-792)) (-10 -8 (-15 -3026 ((-166) $)) (-15 -2998 ($ (-166))) (-15 -1295 ((-1170) $))))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-2720 (($ (-850)) NIL (|has| |#4| (-970)))) (-1903 (((-1170) $ (-521) (-521)) NIL (|has| $ (-6 -4234)))) (-2641 (($ $ $) NIL (|has| |#4| (-729)))) (-1232 (((-3 $ "failed") $ $) NIL)) (-2978 (((-108) $ (-707)) NIL)) (-1630 (((-707)) NIL (|has| |#4| (-342)))) (-1606 (((-521) $) NIL (|has| |#4| (-782)))) (-2378 ((|#4| $ (-521) |#4|) NIL (|has| $ (-6 -4234)))) (-2547 (($) NIL T CONST)) (-1297 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1013))) (((-3 (-521) "failed") $) NIL (-12 (|has| |#4| (-961 (-521))) (|has| |#4| (-1013)))) (((-3 (-381 (-521)) "failed") $) NIL (-12 (|has| |#4| (-961 (-381 (-521)))) (|has| |#4| (-1013))))) (-1483 ((|#4| $) NIL (|has| |#4| (-1013))) (((-521) $) NIL (-12 (|has| |#4| (-961 (-521))) (|has| |#4| (-1013)))) (((-381 (-521)) $) NIL (-12 (|has| |#4| (-961 (-381 (-521)))) (|has| |#4| (-1013))))) (-3279 (((-2 (|:| -1201 (-627 |#4|)) (|:| |vec| (-1165 |#4|))) (-627 $) (-1165 $)) NIL (|has| |#4| (-970))) (((-627 |#4|) (-627 $)) NIL (|has| |#4| (-970))) (((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (-12 (|has| |#4| (-583 (-521))) (|has| |#4| (-970)))) (((-627 (-521)) (-627 $)) NIL (-12 (|has| |#4| (-583 (-521))) (|has| |#4| (-970))))) (-1257 (((-3 $ "failed") $) NIL (|has| |#4| (-970)))) (-3250 (($) NIL (|has| |#4| (-342)))) (-3849 ((|#4| $ (-521) |#4|) NIL (|has| $ (-6 -4234)))) (-3626 ((|#4| $ (-521)) NIL)) (-3951 (((-108) $) NIL (|has| |#4| (-782)))) (-3831 (((-587 |#4|) $) NIL (|has| $ (-6 -4233)))) (-3996 (((-108) $) NIL (|has| |#4| (-970)))) (-2210 (((-108) $) NIL (|has| |#4| (-782)))) (-2139 (((-108) $ (-707)) NIL)) (-2826 (((-521) $) NIL (|has| (-521) (-784)))) (-2810 (($ $ $) NIL (-3703 (|has| |#4| (-729)) (|has| |#4| (-782))))) (-3757 (((-587 |#4|) $) NIL (|has| $ (-6 -4233)))) (-2221 (((-108) |#4| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#4| (-1013))))) (-2597 (((-521) $) NIL (|has| (-521) (-784)))) (-2446 (($ $ $) NIL (-3703 (|has| |#4| (-729)) (|has| |#4| (-782))))) (-3833 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#4| |#4|) $) NIL)) (-2715 (((-850) $) NIL (|has| |#4| (-342)))) (-3574 (((-108) $ (-707)) NIL)) (-3688 (((-1067) $) NIL)) (-1668 (((-587 (-521)) $) NIL)) (-2941 (((-108) (-521) $) NIL)) (-2716 (($ (-850)) NIL (|has| |#4| (-342)))) (-4147 (((-1031) $) NIL)) (-2293 ((|#4| $) NIL (|has| (-521) (-784)))) (-3016 (($ $ |#4|) NIL (|has| $ (-6 -4234)))) (-1789 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 |#4|))) NIL (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013)))) (($ $ (-269 |#4|)) NIL (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013)))) (($ $ (-587 |#4|) (-587 |#4|)) NIL (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013))))) (-2488 (((-108) $ $) NIL)) (-3821 (((-108) |#4| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#4| (-1013))))) (-2489 (((-587 |#4|) $) NIL)) (-3462 (((-108) $) NIL)) (-4024 (($) NIL)) (-2544 ((|#4| $ (-521) |#4|) NIL) ((|#4| $ (-521)) 12)) (-1231 ((|#4| $ $) NIL (|has| |#4| (-970)))) (-1961 (($ (-1165 |#4|)) NIL)) (-2359 (((-126)) NIL (|has| |#4| (-337)))) (-2156 (($ $ (-1 |#4| |#4|) (-707)) NIL (|has| |#4| (-970))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-970))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (-12 (|has| |#4| (-829 (-1084))) (|has| |#4| (-970)))) (($ $ (-1084) (-707)) NIL (-12 (|has| |#4| (-829 (-1084))) (|has| |#4| (-970)))) (($ $ (-587 (-1084))) NIL (-12 (|has| |#4| (-829 (-1084))) (|has| |#4| (-970)))) (($ $ (-1084)) NIL (-12 (|has| |#4| (-829 (-1084))) (|has| |#4| (-970)))) (($ $ (-707)) NIL (-12 (|has| |#4| (-210)) (|has| |#4| (-970)))) (($ $) NIL (-12 (|has| |#4| (-210)) (|has| |#4| (-970))))) (-4163 (((-707) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4233))) (((-707) |#4| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#4| (-1013))))) (-2404 (($ $) NIL)) (-2189 (((-1165 |#4|) $) NIL) (((-792) $) NIL) (($ |#4|) NIL (|has| |#4| (-1013))) (($ (-521)) NIL (-3703 (-12 (|has| |#4| (-961 (-521))) (|has| |#4| (-1013))) (|has| |#4| (-970)))) (($ (-381 (-521))) NIL (-12 (|has| |#4| (-961 (-381 (-521)))) (|has| |#4| (-1013))))) (-3846 (((-707)) NIL (|has| |#4| (-970)))) (-3049 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4233)))) (-3304 (($ $) NIL (|has| |#4| (-782)))) (-3505 (($ $ (-707)) NIL (|has| |#4| (-970))) (($ $ (-850)) NIL (|has| |#4| (-970)))) (-3561 (($) NIL T CONST)) (-3572 (($) NIL (|has| |#4| (-970)) CONST)) (-2212 (($ $ (-1 |#4| |#4|) (-707)) NIL (|has| |#4| (-970))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-970))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (-12 (|has| |#4| (-829 (-1084))) (|has| |#4| (-970)))) (($ $ (-1084) (-707)) NIL (-12 (|has| |#4| (-829 (-1084))) (|has| |#4| (-970)))) (($ $ (-587 (-1084))) NIL (-12 (|has| |#4| (-829 (-1084))) (|has| |#4| (-970)))) (($ $ (-1084)) NIL (-12 (|has| |#4| (-829 (-1084))) (|has| |#4| (-970)))) (($ $ (-707)) NIL (-12 (|has| |#4| (-210)) (|has| |#4| (-970)))) (($ $) NIL (-12 (|has| |#4| (-210)) (|has| |#4| (-970))))) (-1574 (((-108) $ $) NIL (-3703 (|has| |#4| (-729)) (|has| |#4| (-782))))) (-1558 (((-108) $ $) NIL (-3703 (|has| |#4| (-729)) (|has| |#4| (-782))))) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL (-3703 (|has| |#4| (-729)) (|has| |#4| (-782))))) (-1549 (((-108) $ $) NIL (-3703 (|has| |#4| (-729)) (|has| |#4| (-782))))) (-1620 (($ $ |#4|) NIL (|has| |#4| (-337)))) (-1612 (($ $ $) NIL) (($ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-707)) NIL (|has| |#4| (-970))) (($ $ (-850)) NIL (|has| |#4| (-970)))) (* (($ |#2| $) 14) (($ (-521) $) NIL) (($ (-707) $) NIL) (($ (-850) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-663))) (($ |#4| $) NIL (|has| |#4| (-663))) (($ $ $) NIL (|has| |#4| (-970)))) (-3475 (((-707) $) NIL (|has| $ (-6 -4233)))))
+(((-226 |#1| |#2| |#3| |#4|) (-13 (-215 |#1| |#4|) (-589 |#2|) (-589 |#3|)) (-850) (-970) (-1034 |#1| |#2| (-217 |#1| |#2|) (-217 |#1| |#2|)) (-589 |#2|)) (T -226))
+NIL
+(-13 (-215 |#1| |#4|) (-589 |#2|) (-589 |#3|))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-2720 (($ (-850)) NIL (|has| |#3| (-970)))) (-1903 (((-1170) $ (-521) (-521)) NIL (|has| $ (-6 -4234)))) (-2641 (($ $ $) NIL (|has| |#3| (-729)))) (-1232 (((-3 $ "failed") $ $) NIL)) (-2978 (((-108) $ (-707)) NIL)) (-1630 (((-707)) NIL (|has| |#3| (-342)))) (-1606 (((-521) $) NIL (|has| |#3| (-782)))) (-2378 ((|#3| $ (-521) |#3|) NIL (|has| $ (-6 -4234)))) (-2547 (($) NIL T CONST)) (-1297 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1013))) (((-3 (-521) "failed") $) NIL (-12 (|has| |#3| (-961 (-521))) (|has| |#3| (-1013)))) (((-3 (-381 (-521)) "failed") $) NIL (-12 (|has| |#3| (-961 (-381 (-521)))) (|has| |#3| (-1013))))) (-1483 ((|#3| $) NIL (|has| |#3| (-1013))) (((-521) $) NIL (-12 (|has| |#3| (-961 (-521))) (|has| |#3| (-1013)))) (((-381 (-521)) $) NIL (-12 (|has| |#3| (-961 (-381 (-521)))) (|has| |#3| (-1013))))) (-3279 (((-2 (|:| -1201 (-627 |#3|)) (|:| |vec| (-1165 |#3|))) (-627 $) (-1165 $)) NIL (|has| |#3| (-970))) (((-627 |#3|) (-627 $)) NIL (|has| |#3| (-970))) (((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (-12 (|has| |#3| (-583 (-521))) (|has| |#3| (-970)))) (((-627 (-521)) (-627 $)) NIL (-12 (|has| |#3| (-583 (-521))) (|has| |#3| (-970))))) (-1257 (((-3 $ "failed") $) NIL (|has| |#3| (-970)))) (-3250 (($) NIL (|has| |#3| (-342)))) (-3849 ((|#3| $ (-521) |#3|) NIL (|has| $ (-6 -4234)))) (-3626 ((|#3| $ (-521)) NIL)) (-3951 (((-108) $) NIL (|has| |#3| (-782)))) (-3831 (((-587 |#3|) $) NIL (|has| $ (-6 -4233)))) (-3996 (((-108) $) NIL (|has| |#3| (-970)))) (-2210 (((-108) $) NIL (|has| |#3| (-782)))) (-2139 (((-108) $ (-707)) NIL)) (-2826 (((-521) $) NIL (|has| (-521) (-784)))) (-2810 (($ $ $) NIL (-3703 (|has| |#3| (-729)) (|has| |#3| (-782))))) (-3757 (((-587 |#3|) $) NIL (|has| $ (-6 -4233)))) (-2221 (((-108) |#3| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#3| (-1013))))) (-2597 (((-521) $) NIL (|has| (-521) (-784)))) (-2446 (($ $ $) NIL (-3703 (|has| |#3| (-729)) (|has| |#3| (-782))))) (-3833 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#3| |#3|) $) NIL)) (-2715 (((-850) $) NIL (|has| |#3| (-342)))) (-3574 (((-108) $ (-707)) NIL)) (-3688 (((-1067) $) NIL)) (-1668 (((-587 (-521)) $) NIL)) (-2941 (((-108) (-521) $) NIL)) (-2716 (($ (-850)) NIL (|has| |#3| (-342)))) (-4147 (((-1031) $) NIL)) (-2293 ((|#3| $) NIL (|has| (-521) (-784)))) (-3016 (($ $ |#3|) NIL (|has| $ (-6 -4234)))) (-1789 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 |#3|))) NIL (-12 (|has| |#3| (-284 |#3|)) (|has| |#3| (-1013)))) (($ $ (-269 |#3|)) NIL (-12 (|has| |#3| (-284 |#3|)) (|has| |#3| (-1013)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-284 |#3|)) (|has| |#3| (-1013)))) (($ $ (-587 |#3|) (-587 |#3|)) NIL (-12 (|has| |#3| (-284 |#3|)) (|has| |#3| (-1013))))) (-2488 (((-108) $ $) NIL)) (-3821 (((-108) |#3| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#3| (-1013))))) (-2489 (((-587 |#3|) $) NIL)) (-3462 (((-108) $) NIL)) (-4024 (($) NIL)) (-2544 ((|#3| $ (-521) |#3|) NIL) ((|#3| $ (-521)) 11)) (-1231 ((|#3| $ $) NIL (|has| |#3| (-970)))) (-1961 (($ (-1165 |#3|)) NIL)) (-2359 (((-126)) NIL (|has| |#3| (-337)))) (-2156 (($ $ (-1 |#3| |#3|) (-707)) NIL (|has| |#3| (-970))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-970))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (-12 (|has| |#3| (-829 (-1084))) (|has| |#3| (-970)))) (($ $ (-1084) (-707)) NIL (-12 (|has| |#3| (-829 (-1084))) (|has| |#3| (-970)))) (($ $ (-587 (-1084))) NIL (-12 (|has| |#3| (-829 (-1084))) (|has| |#3| (-970)))) (($ $ (-1084)) NIL (-12 (|has| |#3| (-829 (-1084))) (|has| |#3| (-970)))) (($ $ (-707)) NIL (-12 (|has| |#3| (-210)) (|has| |#3| (-970)))) (($ $) NIL (-12 (|has| |#3| (-210)) (|has| |#3| (-970))))) (-4163 (((-707) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4233))) (((-707) |#3| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#3| (-1013))))) (-2404 (($ $) NIL)) (-2189 (((-1165 |#3|) $) NIL) (((-792) $) NIL) (($ |#3|) NIL (|has| |#3| (-1013))) (($ (-521)) NIL (-3703 (-12 (|has| |#3| (-961 (-521))) (|has| |#3| (-1013))) (|has| |#3| (-970)))) (($ (-381 (-521))) NIL (-12 (|has| |#3| (-961 (-381 (-521)))) (|has| |#3| (-1013))))) (-3846 (((-707)) NIL (|has| |#3| (-970)))) (-3049 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4233)))) (-3304 (($ $) NIL (|has| |#3| (-782)))) (-3505 (($ $ (-707)) NIL (|has| |#3| (-970))) (($ $ (-850)) NIL (|has| |#3| (-970)))) (-3561 (($) NIL T CONST)) (-3572 (($) NIL (|has| |#3| (-970)) CONST)) (-2212 (($ $ (-1 |#3| |#3|) (-707)) NIL (|has| |#3| (-970))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-970))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (-12 (|has| |#3| (-829 (-1084))) (|has| |#3| (-970)))) (($ $ (-1084) (-707)) NIL (-12 (|has| |#3| (-829 (-1084))) (|has| |#3| (-970)))) (($ $ (-587 (-1084))) NIL (-12 (|has| |#3| (-829 (-1084))) (|has| |#3| (-970)))) (($ $ (-1084)) NIL (-12 (|has| |#3| (-829 (-1084))) (|has| |#3| (-970)))) (($ $ (-707)) NIL (-12 (|has| |#3| (-210)) (|has| |#3| (-970)))) (($ $) NIL (-12 (|has| |#3| (-210)) (|has| |#3| (-970))))) (-1574 (((-108) $ $) NIL (-3703 (|has| |#3| (-729)) (|has| |#3| (-782))))) (-1558 (((-108) $ $) NIL (-3703 (|has| |#3| (-729)) (|has| |#3| (-782))))) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL (-3703 (|has| |#3| (-729)) (|has| |#3| (-782))))) (-1549 (((-108) $ $) NIL (-3703 (|has| |#3| (-729)) (|has| |#3| (-782))))) (-1620 (($ $ |#3|) NIL (|has| |#3| (-337)))) (-1612 (($ $ $) NIL) (($ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-707)) NIL (|has| |#3| (-970))) (($ $ (-850)) NIL (|has| |#3| (-970)))) (* (($ |#2| $) 13) (($ (-521) $) NIL) (($ (-707) $) NIL) (($ (-850) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-663))) (($ |#3| $) NIL (|has| |#3| (-663))) (($ $ $) NIL (|has| |#3| (-970)))) (-3475 (((-707) $) NIL (|has| $ (-6 -4233)))))
+(((-227 |#1| |#2| |#3|) (-13 (-215 |#1| |#3|) (-589 |#2|)) (-707) (-970) (-589 |#2|)) (T -227))
+NIL
+(-13 (-215 |#1| |#3|) (-589 |#2|))
+((-3531 (((-587 (-707)) $) 47) (((-587 (-707)) $ |#3|) 50)) (-1758 (((-707) $) 49) (((-707) $ |#3|) 52)) (-4108 (($ $) 65)) (-1297 (((-3 |#2| "failed") $) NIL) (((-3 (-381 (-521)) "failed") $) NIL) (((-3 (-521) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 72)) (-2733 (((-707) $ |#3|) 39) (((-707) $) 36)) (-3992 (((-1 $ (-707)) |#3|) 15) (((-1 $ (-707)) $) 77)) (-1570 ((|#4| $) 58)) (-2010 (((-108) $) 56)) (-1901 (($ $) 64)) (-2288 (($ $ (-587 (-269 $))) 96) (($ $ (-269 $)) NIL) (($ $ $ $) NIL) (($ $ (-587 $) (-587 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-587 |#4|) (-587 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-587 |#4|) (-587 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-587 |#3|) (-587 $)) 89) (($ $ |#3| |#2|) NIL) (($ $ (-587 |#3|) (-587 |#2|)) 84)) (-2156 (($ $ |#4|) NIL) (($ $ (-587 |#4|)) NIL) (($ $ |#4| (-707)) NIL) (($ $ (-587 |#4|) (-587 (-707))) NIL) (($ $) NIL) (($ $ (-707)) NIL) (($ $ (-1084)) NIL) (($ $ (-587 (-1084))) NIL) (($ $ (-1084) (-707)) NIL) (($ $ (-587 (-1084)) (-587 (-707))) NIL) (($ $ (-1 |#2| |#2|) (-707)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-3865 (((-587 |#3|) $) 75)) (-1994 ((|#5| $) NIL) (((-707) $ |#4|) NIL) (((-587 (-707)) $ (-587 |#4|)) NIL) (((-707) $ |#3|) 44)) (-2189 (((-792) $) NIL) (($ (-521)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 67) (($ (-381 (-521))) NIL) (($ $) NIL)))
+(((-228 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2189 (|#1| |#1|)) (-15 -2189 (|#1| (-381 (-521)))) (-15 -2288 (|#1| |#1| (-587 |#3|) (-587 |#2|))) (-15 -2288 (|#1| |#1| |#3| |#2|)) (-15 -2288 (|#1| |#1| (-587 |#3|) (-587 |#1|))) (-15 -2288 (|#1| |#1| |#3| |#1|)) (-15 -3992 ((-1 |#1| (-707)) |#1|)) (-15 -4108 (|#1| |#1|)) (-15 -1901 (|#1| |#1|)) (-15 -1570 (|#4| |#1|)) (-15 -2010 ((-108) |#1|)) (-15 -1758 ((-707) |#1| |#3|)) (-15 -3531 ((-587 (-707)) |#1| |#3|)) (-15 -1758 ((-707) |#1|)) (-15 -3531 ((-587 (-707)) |#1|)) (-15 -1994 ((-707) |#1| |#3|)) (-15 -2733 ((-707) |#1|)) (-15 -2733 ((-707) |#1| |#3|)) (-15 -3865 ((-587 |#3|) |#1|)) (-15 -3992 ((-1 |#1| (-707)) |#3|)) (-15 -1297 ((-3 |#3| "failed") |#1|)) (-15 -2189 (|#1| |#3|)) (-15 -2156 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2156 (|#1| |#1| (-1 |#2| |#2|) (-707))) (-15 -2156 (|#1| |#1| (-587 (-1084)) (-587 (-707)))) (-15 -2156 (|#1| |#1| (-1084) (-707))) (-15 -2156 (|#1| |#1| (-587 (-1084)))) (-15 -2156 (|#1| |#1| (-1084))) (-15 -2156 (|#1| |#1| (-707))) (-15 -2156 (|#1| |#1|)) (-15 -1994 ((-587 (-707)) |#1| (-587 |#4|))) (-15 -1994 ((-707) |#1| |#4|)) (-15 -1297 ((-3 |#4| "failed") |#1|)) (-15 -2189 (|#1| |#4|)) (-15 -2288 (|#1| |#1| (-587 |#4|) (-587 |#1|))) (-15 -2288 (|#1| |#1| |#4| |#1|)) (-15 -2288 (|#1| |#1| (-587 |#4|) (-587 |#2|))) (-15 -2288 (|#1| |#1| |#4| |#2|)) (-15 -2288 (|#1| |#1| (-587 |#1|) (-587 |#1|))) (-15 -2288 (|#1| |#1| |#1| |#1|)) (-15 -2288 (|#1| |#1| (-269 |#1|))) (-15 -2288 (|#1| |#1| (-587 (-269 |#1|)))) (-15 -1994 (|#5| |#1|)) (-15 -1297 ((-3 (-521) "failed") |#1|)) (-15 -1297 ((-3 (-381 (-521)) "failed") |#1|)) (-15 -2189 (|#1| |#2|)) (-15 -1297 ((-3 |#2| "failed") |#1|)) (-15 -2156 (|#1| |#1| (-587 |#4|) (-587 (-707)))) (-15 -2156 (|#1| |#1| |#4| (-707))) (-15 -2156 (|#1| |#1| (-587 |#4|))) (-15 -2156 (|#1| |#1| |#4|)) (-15 -2189 (|#1| (-521))) (-15 -2189 ((-792) |#1|))) (-229 |#2| |#3| |#4| |#5|) (-970) (-784) (-242 |#3|) (-729)) (T -228))
+NIL
+(-10 -8 (-15 -2189 (|#1| |#1|)) (-15 -2189 (|#1| (-381 (-521)))) (-15 -2288 (|#1| |#1| (-587 |#3|) (-587 |#2|))) (-15 -2288 (|#1| |#1| |#3| |#2|)) (-15 -2288 (|#1| |#1| (-587 |#3|) (-587 |#1|))) (-15 -2288 (|#1| |#1| |#3| |#1|)) (-15 -3992 ((-1 |#1| (-707)) |#1|)) (-15 -4108 (|#1| |#1|)) (-15 -1901 (|#1| |#1|)) (-15 -1570 (|#4| |#1|)) (-15 -2010 ((-108) |#1|)) (-15 -1758 ((-707) |#1| |#3|)) (-15 -3531 ((-587 (-707)) |#1| |#3|)) (-15 -1758 ((-707) |#1|)) (-15 -3531 ((-587 (-707)) |#1|)) (-15 -1994 ((-707) |#1| |#3|)) (-15 -2733 ((-707) |#1|)) (-15 -2733 ((-707) |#1| |#3|)) (-15 -3865 ((-587 |#3|) |#1|)) (-15 -3992 ((-1 |#1| (-707)) |#3|)) (-15 -1297 ((-3 |#3| "failed") |#1|)) (-15 -2189 (|#1| |#3|)) (-15 -2156 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2156 (|#1| |#1| (-1 |#2| |#2|) (-707))) (-15 -2156 (|#1| |#1| (-587 (-1084)) (-587 (-707)))) (-15 -2156 (|#1| |#1| (-1084) (-707))) (-15 -2156 (|#1| |#1| (-587 (-1084)))) (-15 -2156 (|#1| |#1| (-1084))) (-15 -2156 (|#1| |#1| (-707))) (-15 -2156 (|#1| |#1|)) (-15 -1994 ((-587 (-707)) |#1| (-587 |#4|))) (-15 -1994 ((-707) |#1| |#4|)) (-15 -1297 ((-3 |#4| "failed") |#1|)) (-15 -2189 (|#1| |#4|)) (-15 -2288 (|#1| |#1| (-587 |#4|) (-587 |#1|))) (-15 -2288 (|#1| |#1| |#4| |#1|)) (-15 -2288 (|#1| |#1| (-587 |#4|) (-587 |#2|))) (-15 -2288 (|#1| |#1| |#4| |#2|)) (-15 -2288 (|#1| |#1| (-587 |#1|) (-587 |#1|))) (-15 -2288 (|#1| |#1| |#1| |#1|)) (-15 -2288 (|#1| |#1| (-269 |#1|))) (-15 -2288 (|#1| |#1| (-587 (-269 |#1|)))) (-15 -1994 (|#5| |#1|)) (-15 -1297 ((-3 (-521) "failed") |#1|)) (-15 -1297 ((-3 (-381 (-521)) "failed") |#1|)) (-15 -2189 (|#1| |#2|)) (-15 -1297 ((-3 |#2| "failed") |#1|)) (-15 -2156 (|#1| |#1| (-587 |#4|) (-587 (-707)))) (-15 -2156 (|#1| |#1| |#4| (-707))) (-15 -2156 (|#1| |#1| (-587 |#4|))) (-15 -2156 (|#1| |#1| |#4|)) (-15 -2189 (|#1| (-521))) (-15 -2189 ((-792) |#1|)))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-3531 (((-587 (-707)) $) 214) (((-587 (-707)) $ |#2|) 212)) (-1758 (((-707) $) 213) (((-707) $ |#2|) 211)) (-4084 (((-587 |#3|) $) 110)) (-1280 (((-1080 $) $ |#3|) 125) (((-1080 |#1|) $) 124)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) 87 (|has| |#1| (-513)))) (-2559 (($ $) 88 (|has| |#1| (-513)))) (-1733 (((-108) $) 90 (|has| |#1| (-513)))) (-2256 (((-707) $) 112) (((-707) $ (-587 |#3|)) 111)) (-1232 (((-3 $ "failed") $ $) 19)) (-2598 (((-392 (-1080 $)) (-1080 $)) 100 (|has| |#1| (-838)))) (-3063 (($ $) 98 (|has| |#1| (-425)))) (-3358 (((-392 $) $) 97 (|has| |#1| (-425)))) (-2569 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) 103 (|has| |#1| (-838)))) (-4108 (($ $) 207)) (-2547 (($) 17 T CONST)) (-1297 (((-3 |#1| "failed") $) 164) (((-3 (-381 (-521)) "failed") $) 162 (|has| |#1| (-961 (-381 (-521))))) (((-3 (-521) "failed") $) 160 (|has| |#1| (-961 (-521)))) (((-3 |#3| "failed") $) 136) (((-3 |#2| "failed") $) 221)) (-1483 ((|#1| $) 165) (((-381 (-521)) $) 161 (|has| |#1| (-961 (-381 (-521))))) (((-521) $) 159 (|has| |#1| (-961 (-521)))) ((|#3| $) 135) ((|#2| $) 220)) (-2114 (($ $ $ |#3|) 108 (|has| |#1| (-157)))) (-3152 (($ $) 154)) (-3279 (((-627 (-521)) (-627 $)) 134 (|has| |#1| (-583 (-521)))) (((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) 133 (|has| |#1| (-583 (-521)))) (((-2 (|:| -1201 (-627 |#1|)) (|:| |vec| (-1165 |#1|))) (-627 $) (-1165 $)) 132) (((-627 |#1|) (-627 $)) 131)) (-1257 (((-3 $ "failed") $) 34)) (-3666 (($ $) 176 (|has| |#1| (-425))) (($ $ |#3|) 105 (|has| |#1| (-425)))) (-3144 (((-587 $) $) 109)) (-2710 (((-108) $) 96 (|has| |#1| (-838)))) (-3528 (($ $ |#1| |#4| $) 172)) (-3427 (((-818 (-353) $) $ (-821 (-353)) (-818 (-353) $)) 84 (-12 (|has| |#3| (-815 (-353))) (|has| |#1| (-815 (-353))))) (((-818 (-521) $) $ (-821 (-521)) (-818 (-521) $)) 83 (-12 (|has| |#3| (-815 (-521))) (|has| |#1| (-815 (-521)))))) (-2733 (((-707) $ |#2|) 217) (((-707) $) 216)) (-3996 (((-108) $) 31)) (-2678 (((-707) $) 169)) (-4069 (($ (-1080 |#1|) |#3|) 117) (($ (-1080 $) |#3|) 116)) (-2959 (((-587 $) $) 126)) (-3649 (((-108) $) 152)) (-4043 (($ |#1| |#4|) 153) (($ $ |#3| (-707)) 119) (($ $ (-587 |#3|) (-587 (-707))) 118)) (-1450 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $ |#3|) 120)) (-3273 ((|#4| $) 170) (((-707) $ |#3|) 122) (((-587 (-707)) $ (-587 |#3|)) 121)) (-2810 (($ $ $) 79 (|has| |#1| (-784)))) (-2446 (($ $ $) 78 (|has| |#1| (-784)))) (-3285 (($ (-1 |#4| |#4|) $) 171)) (-1390 (($ (-1 |#1| |#1|) $) 151)) (-3992 (((-1 $ (-707)) |#2|) 219) (((-1 $ (-707)) $) 206 (|has| |#1| (-210)))) (-2477 (((-3 |#3| "failed") $) 123)) (-3125 (($ $) 149)) (-3135 ((|#1| $) 148)) (-1570 ((|#3| $) 209)) (-2223 (($ (-587 $)) 94 (|has| |#1| (-425))) (($ $ $) 93 (|has| |#1| (-425)))) (-3688 (((-1067) $) 9)) (-2010 (((-108) $) 210)) (-1617 (((-3 (-587 $) "failed") $) 114)) (-3177 (((-3 (-587 $) "failed") $) 115)) (-3979 (((-3 (-2 (|:| |var| |#3|) (|:| -2997 (-707))) "failed") $) 113)) (-1901 (($ $) 208)) (-4147 (((-1031) $) 10)) (-3105 (((-108) $) 166)) (-3115 ((|#1| $) 167)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) 95 (|has| |#1| (-425)))) (-2258 (($ (-587 $)) 92 (|has| |#1| (-425))) (($ $ $) 91 (|has| |#1| (-425)))) (-1912 (((-392 (-1080 $)) (-1080 $)) 102 (|has| |#1| (-838)))) (-2165 (((-392 (-1080 $)) (-1080 $)) 101 (|has| |#1| (-838)))) (-1916 (((-392 $) $) 99 (|has| |#1| (-838)))) (-2230 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-513))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-513)))) (-2288 (($ $ (-587 (-269 $))) 145) (($ $ (-269 $)) 144) (($ $ $ $) 143) (($ $ (-587 $) (-587 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-587 |#3|) (-587 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-587 |#3|) (-587 $)) 138) (($ $ |#2| $) 205 (|has| |#1| (-210))) (($ $ (-587 |#2|) (-587 $)) 204 (|has| |#1| (-210))) (($ $ |#2| |#1|) 203 (|has| |#1| (-210))) (($ $ (-587 |#2|) (-587 |#1|)) 202 (|has| |#1| (-210)))) (-4010 (($ $ |#3|) 107 (|has| |#1| (-157)))) (-2156 (($ $ |#3|) 42) (($ $ (-587 |#3|)) 41) (($ $ |#3| (-707)) 40) (($ $ (-587 |#3|) (-587 (-707))) 39) (($ $) 238 (|has| |#1| (-210))) (($ $ (-707)) 236 (|has| |#1| (-210))) (($ $ (-1084)) 234 (|has| |#1| (-829 (-1084)))) (($ $ (-587 (-1084))) 233 (|has| |#1| (-829 (-1084)))) (($ $ (-1084) (-707)) 232 (|has| |#1| (-829 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) 231 (|has| |#1| (-829 (-1084)))) (($ $ (-1 |#1| |#1|) (-707)) 224) (($ $ (-1 |#1| |#1|)) 223)) (-3865 (((-587 |#2|) $) 218)) (-1994 ((|#4| $) 150) (((-707) $ |#3|) 130) (((-587 (-707)) $ (-587 |#3|)) 129) (((-707) $ |#2|) 215)) (-1430 (((-821 (-353)) $) 82 (-12 (|has| |#3| (-562 (-821 (-353)))) (|has| |#1| (-562 (-821 (-353)))))) (((-821 (-521)) $) 81 (-12 (|has| |#3| (-562 (-821 (-521)))) (|has| |#1| (-562 (-821 (-521)))))) (((-497) $) 80 (-12 (|has| |#3| (-562 (-497))) (|has| |#1| (-562 (-497)))))) (-2403 ((|#1| $) 175 (|has| |#1| (-425))) (($ $ |#3|) 106 (|has| |#1| (-425)))) (-2944 (((-3 (-1165 $) "failed") (-627 $)) 104 (-4009 (|has| $ (-133)) (|has| |#1| (-838))))) (-2189 (((-792) $) 11) (($ (-521)) 28) (($ |#1|) 163) (($ |#3|) 137) (($ |#2|) 222) (($ (-381 (-521))) 72 (-3703 (|has| |#1| (-961 (-381 (-521)))) (|has| |#1| (-37 (-381 (-521)))))) (($ $) 85 (|has| |#1| (-513)))) (-1259 (((-587 |#1|) $) 168)) (-3800 ((|#1| $ |#4|) 155) (($ $ |#3| (-707)) 128) (($ $ (-587 |#3|) (-587 (-707))) 127)) (-1671 (((-3 $ "failed") $) 73 (-3703 (-4009 (|has| $ (-133)) (|has| |#1| (-838))) (|has| |#1| (-133))))) (-3846 (((-707)) 29)) (-1547 (($ $ $ (-707)) 173 (|has| |#1| (-157)))) (-4210 (((-108) $ $) 89 (|has| |#1| (-513)))) (-3505 (($ $ (-850)) 26) (($ $ (-707)) 33)) (-3561 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-2212 (($ $ |#3|) 38) (($ $ (-587 |#3|)) 37) (($ $ |#3| (-707)) 36) (($ $ (-587 |#3|) (-587 (-707))) 35) (($ $) 237 (|has| |#1| (-210))) (($ $ (-707)) 235 (|has| |#1| (-210))) (($ $ (-1084)) 230 (|has| |#1| (-829 (-1084)))) (($ $ (-587 (-1084))) 229 (|has| |#1| (-829 (-1084)))) (($ $ (-1084) (-707)) 228 (|has| |#1| (-829 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) 227 (|has| |#1| (-829 (-1084)))) (($ $ (-1 |#1| |#1|) (-707)) 226) (($ $ (-1 |#1| |#1|)) 225)) (-1574 (((-108) $ $) 76 (|has| |#1| (-784)))) (-1558 (((-108) $ $) 75 (|has| |#1| (-784)))) (-1531 (((-108) $ $) 6)) (-1566 (((-108) $ $) 77 (|has| |#1| (-784)))) (-1549 (((-108) $ $) 74 (|has| |#1| (-784)))) (-1620 (($ $ |#1|) 156 (|has| |#1| (-337)))) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-707)) 32)) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ $ (-381 (-521))) 158 (|has| |#1| (-37 (-381 (-521))))) (($ (-381 (-521)) $) 157 (|has| |#1| (-37 (-381 (-521))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
+(((-229 |#1| |#2| |#3| |#4|) (-1196) (-970) (-784) (-242 |t#2|) (-729)) (T -229))
+((-3992 (*1 *2 *3) (-12 (-4 *4 (-970)) (-4 *3 (-784)) (-4 *5 (-242 *3)) (-4 *6 (-729)) (-5 *2 (-1 *1 (-707))) (-4 *1 (-229 *4 *3 *5 *6)))) (-3865 (*1 *2 *1) (-12 (-4 *1 (-229 *3 *4 *5 *6)) (-4 *3 (-970)) (-4 *4 (-784)) (-4 *5 (-242 *4)) (-4 *6 (-729)) (-5 *2 (-587 *4)))) (-2733 (*1 *2 *1 *3) (-12 (-4 *1 (-229 *4 *3 *5 *6)) (-4 *4 (-970)) (-4 *3 (-784)) (-4 *5 (-242 *3)) (-4 *6 (-729)) (-5 *2 (-707)))) (-2733 (*1 *2 *1) (-12 (-4 *1 (-229 *3 *4 *5 *6)) (-4 *3 (-970)) (-4 *4 (-784)) (-4 *5 (-242 *4)) (-4 *6 (-729)) (-5 *2 (-707)))) (-1994 (*1 *2 *1 *3) (-12 (-4 *1 (-229 *4 *3 *5 *6)) (-4 *4 (-970)) (-4 *3 (-784)) (-4 *5 (-242 *3)) (-4 *6 (-729)) (-5 *2 (-707)))) (-3531 (*1 *2 *1) (-12 (-4 *1 (-229 *3 *4 *5 *6)) (-4 *3 (-970)) (-4 *4 (-784)) (-4 *5 (-242 *4)) (-4 *6 (-729)) (-5 *2 (-587 (-707))))) (-1758 (*1 *2 *1) (-12 (-4 *1 (-229 *3 *4 *5 *6)) (-4 *3 (-970)) (-4 *4 (-784)) (-4 *5 (-242 *4)) (-4 *6 (-729)) (-5 *2 (-707)))) (-3531 (*1 *2 *1 *3) (-12 (-4 *1 (-229 *4 *3 *5 *6)) (-4 *4 (-970)) (-4 *3 (-784)) (-4 *5 (-242 *3)) (-4 *6 (-729)) (-5 *2 (-587 (-707))))) (-1758 (*1 *2 *1 *3) (-12 (-4 *1 (-229 *4 *3 *5 *6)) (-4 *4 (-970)) (-4 *3 (-784)) (-4 *5 (-242 *3)) (-4 *6 (-729)) (-5 *2 (-707)))) (-2010 (*1 *2 *1) (-12 (-4 *1 (-229 *3 *4 *5 *6)) (-4 *3 (-970)) (-4 *4 (-784)) (-4 *5 (-242 *4)) (-4 *6 (-729)) (-5 *2 (-108)))) (-1570 (*1 *2 *1) (-12 (-4 *1 (-229 *3 *4 *2 *5)) (-4 *3 (-970)) (-4 *4 (-784)) (-4 *5 (-729)) (-4 *2 (-242 *4)))) (-1901 (*1 *1 *1) (-12 (-4 *1 (-229 *2 *3 *4 *5)) (-4 *2 (-970)) (-4 *3 (-784)) (-4 *4 (-242 *3)) (-4 *5 (-729)))) (-4108 (*1 *1 *1) (-12 (-4 *1 (-229 *2 *3 *4 *5)) (-4 *2 (-970)) (-4 *3 (-784)) (-4 *4 (-242 *3)) (-4 *5 (-729)))) (-3992 (*1 *2 *1) (-12 (-4 *3 (-210)) (-4 *3 (-970)) (-4 *4 (-784)) (-4 *5 (-242 *4)) (-4 *6 (-729)) (-5 *2 (-1 *1 (-707))) (-4 *1 (-229 *3 *4 *5 *6)))))
+(-13 (-878 |t#1| |t#4| |t#3|) (-208 |t#1|) (-961 |t#2|) (-10 -8 (-15 -3992 ((-1 $ (-707)) |t#2|)) (-15 -3865 ((-587 |t#2|) $)) (-15 -2733 ((-707) $ |t#2|)) (-15 -2733 ((-707) $)) (-15 -1994 ((-707) $ |t#2|)) (-15 -3531 ((-587 (-707)) $)) (-15 -1758 ((-707) $)) (-15 -3531 ((-587 (-707)) $ |t#2|)) (-15 -1758 ((-707) $ |t#2|)) (-15 -2010 ((-108) $)) (-15 -1570 (|t#3| $)) (-15 -1901 ($ $)) (-15 -4108 ($ $)) (IF (|has| |t#1| (-210)) (PROGN (-6 (-482 |t#2| |t#1|)) (-6 (-482 |t#2| $)) (-6 (-284 $)) (-15 -3992 ((-1 $ (-707)) $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| |#4|) . T) ((-25) . T) ((-37 #0=(-381 (-521))) |has| |#1| (-37 (-381 (-521)))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) -3703 (|has| |#1| (-838)) (|has| |#1| (-513)) (|has| |#1| (-425))) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-381 (-521)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3703 (|has| |#1| (-838)) (|has| |#1| (-513)) (|has| |#1| (-425)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-561 (-792)) . T) ((-157) -3703 (|has| |#1| (-838)) (|has| |#1| (-513)) (|has| |#1| (-425)) (|has| |#1| (-157))) ((-562 (-497)) -12 (|has| |#1| (-562 (-497))) (|has| |#3| (-562 (-497)))) ((-562 (-821 (-353))) -12 (|has| |#1| (-562 (-821 (-353)))) (|has| |#3| (-562 (-821 (-353))))) ((-562 (-821 (-521))) -12 (|has| |#1| (-562 (-821 (-521)))) (|has| |#3| (-562 (-821 (-521))))) ((-208 |#1|) . T) ((-210) |has| |#1| (-210)) ((-265) -3703 (|has| |#1| (-838)) (|has| |#1| (-513)) (|has| |#1| (-425))) ((-284 $) . T) ((-300 |#1| |#4|) . T) ((-351 |#1|) . T) ((-385 |#1|) . T) ((-425) -3703 (|has| |#1| (-838)) (|has| |#1| (-425))) ((-482 |#2| |#1|) |has| |#1| (-210)) ((-482 |#2| $) |has| |#1| (-210)) ((-482 |#3| |#1|) . T) ((-482 |#3| $) . T) ((-482 $ $) . T) ((-513) -3703 (|has| |#1| (-838)) (|has| |#1| (-513)) (|has| |#1| (-425))) ((-589 #0#) |has| |#1| (-37 (-381 (-521)))) ((-589 |#1|) . T) ((-589 $) . T) ((-583 (-521)) |has| |#1| (-583 (-521))) ((-583 |#1|) . T) ((-654 #0#) |has| |#1| (-37 (-381 (-521)))) ((-654 |#1|) |has| |#1| (-157)) ((-654 $) -3703 (|has| |#1| (-838)) (|has| |#1| (-513)) (|has| |#1| (-425))) ((-663) . T) ((-784) |has| |#1| (-784)) ((-829 (-1084)) |has| |#1| (-829 (-1084))) ((-829 |#3|) . T) ((-815 (-353)) -12 (|has| |#1| (-815 (-353))) (|has| |#3| (-815 (-353)))) ((-815 (-521)) -12 (|has| |#1| (-815 (-521))) (|has| |#3| (-815 (-521)))) ((-878 |#1| |#4| |#3|) . T) ((-838) |has| |#1| (-838)) ((-961 (-381 (-521))) |has| |#1| (-961 (-381 (-521)))) ((-961 (-521)) |has| |#1| (-961 (-521))) ((-961 |#1|) . T) ((-961 |#2|) . T) ((-961 |#3|) . T) ((-976 #0#) |has| |#1| (-37 (-381 (-521)))) ((-976 |#1|) . T) ((-976 $) -3703 (|has| |#1| (-838)) (|has| |#1| (-513)) (|has| |#1| (-425)) (|has| |#1| (-157))) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T) ((-1123) |has| |#1| (-838)))
+((-1415 (((-108) $ $) 19 (|has| |#1| (-1013)))) (-1527 ((|#1| $) 54)) (-1354 ((|#1| $) 44)) (-2978 (((-108) $ (-707)) 8)) (-2547 (($) 7 T CONST)) (-3030 (($ $) 60)) (-3081 (($ $) 48)) (-2037 ((|#1| |#1| $) 46)) (-1322 ((|#1| $) 45)) (-3831 (((-587 |#1|) $) 30 (|has| $ (-6 -4233)))) (-2139 (((-108) $ (-707)) 9)) (-3757 (((-587 |#1|) $) 29 (|has| $ (-6 -4233)))) (-2221 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-3833 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#1| |#1|) $) 35)) (-3574 (((-108) $ (-707)) 10)) (-2516 (((-707) $) 61)) (-3688 (((-1067) $) 22 (|has| |#1| (-1013)))) (-2511 ((|#1| $) 39)) (-1971 ((|#1| |#1| $) 52)) (-2794 ((|#1| |#1| $) 51)) (-3373 (($ |#1| $) 40)) (-4150 (((-707) $) 55)) (-4147 (((-1031) $) 21 (|has| |#1| (-1013)))) (-1664 ((|#1| $) 62)) (-4166 ((|#1| $) 50)) (-1817 ((|#1| $) 49)) (-2166 ((|#1| $) 41)) (-1789 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 |#1|))) 26 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) 25 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) 23 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-2488 (((-108) $ $) 14)) (-2983 ((|#1| |#1| $) 58)) (-3462 (((-108) $) 11)) (-4024 (($) 12)) (-1815 ((|#1| $) 59)) (-4011 (($) 57) (($ (-587 |#1|)) 56)) (-1252 (((-707) $) 43)) (-4163 (((-707) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4233))) (((-707) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-2404 (($ $) 13)) (-2189 (((-792) $) 18 (|has| |#1| (-561 (-792))))) (-2265 ((|#1| $) 53)) (-4091 (($ (-587 |#1|)) 42)) (-3009 ((|#1| $) 63)) (-3049 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4233)))) (-1531 (((-108) $ $) 20 (|has| |#1| (-1013)))) (-3475 (((-707) $) 6 (|has| $ (-6 -4233)))))
+(((-230 |#1|) (-1196) (-1119)) (T -230))
+((-4011 (*1 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1119)))) (-4011 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1119)) (-4 *1 (-230 *3)))) (-4150 (*1 *2 *1) (-12 (-4 *1 (-230 *3)) (-4 *3 (-1119)) (-5 *2 (-707)))) (-1527 (*1 *2 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1119)))) (-2265 (*1 *2 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1119)))) (-1971 (*1 *2 *2 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1119)))) (-2794 (*1 *2 *2 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1119)))) (-4166 (*1 *2 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1119)))) (-1817 (*1 *2 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1119)))) (-3081 (*1 *1 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1119)))))
+(-13 (-1032 |t#1|) (-920 |t#1|) (-10 -8 (-15 -4011 ($)) (-15 -4011 ($ (-587 |t#1|))) (-15 -4150 ((-707) $)) (-15 -1527 (|t#1| $)) (-15 -2265 (|t#1| $)) (-15 -1971 (|t#1| |t#1| $)) (-15 -2794 (|t#1| |t#1| $)) (-15 -4166 (|t#1| $)) (-15 -1817 (|t#1| $)) (-15 -3081 ($ $))))
+(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1013)) ((-561 (-792)) -3703 (|has| |#1| (-1013)) (|has| |#1| (-561 (-792)))) ((-284 |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-460 |#1|) . T) ((-482 |#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-920 |#1|) . T) ((-1013) |has| |#1| (-1013)) ((-1032 |#1|) . T) ((-1119) . T))
+((-1888 (((-1 (-872 (-202)) (-202) (-202)) (-1 (-872 (-202)) (-202) (-202)) (-1 (-202) (-202) (-202) (-202))) 139)) (-2952 (((-1044 (-202)) (-811 (-1 (-202) (-202) (-202))) (-1008 (-353)) (-1008 (-353))) 160) (((-1044 (-202)) (-811 (-1 (-202) (-202) (-202))) (-1008 (-353)) (-1008 (-353)) (-587 (-239))) 158) (((-1044 (-202)) (-1 (-872 (-202)) (-202) (-202)) (-1008 (-353)) (-1008 (-353))) 163) (((-1044 (-202)) (-1 (-872 (-202)) (-202) (-202)) (-1008 (-353)) (-1008 (-353)) (-587 (-239))) 159) (((-1044 (-202)) (-1 (-202) (-202) (-202)) (-1008 (-353)) (-1008 (-353))) 150) (((-1044 (-202)) (-1 (-202) (-202) (-202)) (-1008 (-353)) (-1008 (-353)) (-587 (-239))) 149) (((-1044 (-202)) (-1 (-872 (-202)) (-202)) (-1008 (-353))) 129) (((-1044 (-202)) (-1 (-872 (-202)) (-202)) (-1008 (-353)) (-587 (-239))) 127) (((-1044 (-202)) (-808 (-1 (-202) (-202))) (-1008 (-353))) 128) (((-1044 (-202)) (-808 (-1 (-202) (-202))) (-1008 (-353)) (-587 (-239))) 125)) (-2916 (((-1167) (-811 (-1 (-202) (-202) (-202))) (-1008 (-353)) (-1008 (-353))) 162) (((-1167) (-811 (-1 (-202) (-202) (-202))) (-1008 (-353)) (-1008 (-353)) (-587 (-239))) 161) (((-1167) (-1 (-872 (-202)) (-202) (-202)) (-1008 (-353)) (-1008 (-353))) 165) (((-1167) (-1 (-872 (-202)) (-202) (-202)) (-1008 (-353)) (-1008 (-353)) (-587 (-239))) 164) (((-1167) (-1 (-202) (-202) (-202)) (-1008 (-353)) (-1008 (-353))) 152) (((-1167) (-1 (-202) (-202) (-202)) (-1008 (-353)) (-1008 (-353)) (-587 (-239))) 151) (((-1167) (-1 (-872 (-202)) (-202)) (-1008 (-353))) 135) (((-1167) (-1 (-872 (-202)) (-202)) (-1008 (-353)) (-587 (-239))) 134) (((-1167) (-808 (-1 (-202) (-202))) (-1008 (-353))) 133) (((-1167) (-808 (-1 (-202) (-202))) (-1008 (-353)) (-587 (-239))) 132) (((-1166) (-806 (-1 (-202) (-202))) (-1008 (-353))) 99) (((-1166) (-806 (-1 (-202) (-202))) (-1008 (-353)) (-587 (-239))) 98) (((-1166) (-1 (-202) (-202)) (-1008 (-353))) 95) (((-1166) (-1 (-202) (-202)) (-1008 (-353)) (-587 (-239))) 94)))
+(((-231) (-10 -7 (-15 -2916 ((-1166) (-1 (-202) (-202)) (-1008 (-353)) (-587 (-239)))) (-15 -2916 ((-1166) (-1 (-202) (-202)) (-1008 (-353)))) (-15 -2916 ((-1166) (-806 (-1 (-202) (-202))) (-1008 (-353)) (-587 (-239)))) (-15 -2916 ((-1166) (-806 (-1 (-202) (-202))) (-1008 (-353)))) (-15 -2916 ((-1167) (-808 (-1 (-202) (-202))) (-1008 (-353)) (-587 (-239)))) (-15 -2916 ((-1167) (-808 (-1 (-202) (-202))) (-1008 (-353)))) (-15 -2916 ((-1167) (-1 (-872 (-202)) (-202)) (-1008 (-353)) (-587 (-239)))) (-15 -2916 ((-1167) (-1 (-872 (-202)) (-202)) (-1008 (-353)))) (-15 -2952 ((-1044 (-202)) (-808 (-1 (-202) (-202))) (-1008 (-353)) (-587 (-239)))) (-15 -2952 ((-1044 (-202)) (-808 (-1 (-202) (-202))) (-1008 (-353)))) (-15 -2952 ((-1044 (-202)) (-1 (-872 (-202)) (-202)) (-1008 (-353)) (-587 (-239)))) (-15 -2952 ((-1044 (-202)) (-1 (-872 (-202)) (-202)) (-1008 (-353)))) (-15 -2916 ((-1167) (-1 (-202) (-202) (-202)) (-1008 (-353)) (-1008 (-353)) (-587 (-239)))) (-15 -2916 ((-1167) (-1 (-202) (-202) (-202)) (-1008 (-353)) (-1008 (-353)))) (-15 -2952 ((-1044 (-202)) (-1 (-202) (-202) (-202)) (-1008 (-353)) (-1008 (-353)) (-587 (-239)))) (-15 -2952 ((-1044 (-202)) (-1 (-202) (-202) (-202)) (-1008 (-353)) (-1008 (-353)))) (-15 -2916 ((-1167) (-1 (-872 (-202)) (-202) (-202)) (-1008 (-353)) (-1008 (-353)) (-587 (-239)))) (-15 -2916 ((-1167) (-1 (-872 (-202)) (-202) (-202)) (-1008 (-353)) (-1008 (-353)))) (-15 -2952 ((-1044 (-202)) (-1 (-872 (-202)) (-202) (-202)) (-1008 (-353)) (-1008 (-353)) (-587 (-239)))) (-15 -2952 ((-1044 (-202)) (-1 (-872 (-202)) (-202) (-202)) (-1008 (-353)) (-1008 (-353)))) (-15 -2916 ((-1167) (-811 (-1 (-202) (-202) (-202))) (-1008 (-353)) (-1008 (-353)) (-587 (-239)))) (-15 -2916 ((-1167) (-811 (-1 (-202) (-202) (-202))) (-1008 (-353)) (-1008 (-353)))) (-15 -2952 ((-1044 (-202)) (-811 (-1 (-202) (-202) (-202))) (-1008 (-353)) (-1008 (-353)) (-587 (-239)))) (-15 -2952 ((-1044 (-202)) (-811 (-1 (-202) (-202) (-202))) (-1008 (-353)) (-1008 (-353)))) (-15 -1888 ((-1 (-872 (-202)) (-202) (-202)) (-1 (-872 (-202)) (-202) (-202)) (-1 (-202) (-202) (-202) (-202)))))) (T -231))
+((-1888 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-872 (-202)) (-202) (-202))) (-5 *3 (-1 (-202) (-202) (-202) (-202))) (-5 *1 (-231)))) (-2952 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-811 (-1 (-202) (-202) (-202)))) (-5 *4 (-1008 (-353))) (-5 *2 (-1044 (-202))) (-5 *1 (-231)))) (-2952 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-811 (-1 (-202) (-202) (-202)))) (-5 *4 (-1008 (-353))) (-5 *5 (-587 (-239))) (-5 *2 (-1044 (-202))) (-5 *1 (-231)))) (-2916 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-811 (-1 (-202) (-202) (-202)))) (-5 *4 (-1008 (-353))) (-5 *2 (-1167)) (-5 *1 (-231)))) (-2916 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-811 (-1 (-202) (-202) (-202)))) (-5 *4 (-1008 (-353))) (-5 *5 (-587 (-239))) (-5 *2 (-1167)) (-5 *1 (-231)))) (-2952 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-872 (-202)) (-202) (-202))) (-5 *4 (-1008 (-353))) (-5 *2 (-1044 (-202))) (-5 *1 (-231)))) (-2952 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-872 (-202)) (-202) (-202))) (-5 *4 (-1008 (-353))) (-5 *5 (-587 (-239))) (-5 *2 (-1044 (-202))) (-5 *1 (-231)))) (-2916 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-872 (-202)) (-202) (-202))) (-5 *4 (-1008 (-353))) (-5 *2 (-1167)) (-5 *1 (-231)))) (-2916 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-872 (-202)) (-202) (-202))) (-5 *4 (-1008 (-353))) (-5 *5 (-587 (-239))) (-5 *2 (-1167)) (-5 *1 (-231)))) (-2952 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-202) (-202) (-202))) (-5 *4 (-1008 (-353))) (-5 *2 (-1044 (-202))) (-5 *1 (-231)))) (-2952 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-202) (-202) (-202))) (-5 *4 (-1008 (-353))) (-5 *5 (-587 (-239))) (-5 *2 (-1044 (-202))) (-5 *1 (-231)))) (-2916 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-202) (-202) (-202))) (-5 *4 (-1008 (-353))) (-5 *2 (-1167)) (-5 *1 (-231)))) (-2916 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-202) (-202) (-202))) (-5 *4 (-1008 (-353))) (-5 *5 (-587 (-239))) (-5 *2 (-1167)) (-5 *1 (-231)))) (-2952 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-872 (-202)) (-202))) (-5 *4 (-1008 (-353))) (-5 *2 (-1044 (-202))) (-5 *1 (-231)))) (-2952 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-872 (-202)) (-202))) (-5 *4 (-1008 (-353))) (-5 *5 (-587 (-239))) (-5 *2 (-1044 (-202))) (-5 *1 (-231)))) (-2952 (*1 *2 *3 *4) (-12 (-5 *3 (-808 (-1 (-202) (-202)))) (-5 *4 (-1008 (-353))) (-5 *2 (-1044 (-202))) (-5 *1 (-231)))) (-2952 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-808 (-1 (-202) (-202)))) (-5 *4 (-1008 (-353))) (-5 *5 (-587 (-239))) (-5 *2 (-1044 (-202))) (-5 *1 (-231)))) (-2916 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-872 (-202)) (-202))) (-5 *4 (-1008 (-353))) (-5 *2 (-1167)) (-5 *1 (-231)))) (-2916 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-872 (-202)) (-202))) (-5 *4 (-1008 (-353))) (-5 *5 (-587 (-239))) (-5 *2 (-1167)) (-5 *1 (-231)))) (-2916 (*1 *2 *3 *4) (-12 (-5 *3 (-808 (-1 (-202) (-202)))) (-5 *4 (-1008 (-353))) (-5 *2 (-1167)) (-5 *1 (-231)))) (-2916 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-808 (-1 (-202) (-202)))) (-5 *4 (-1008 (-353))) (-5 *5 (-587 (-239))) (-5 *2 (-1167)) (-5 *1 (-231)))) (-2916 (*1 *2 *3 *4) (-12 (-5 *3 (-806 (-1 (-202) (-202)))) (-5 *4 (-1008 (-353))) (-5 *2 (-1166)) (-5 *1 (-231)))) (-2916 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-806 (-1 (-202) (-202)))) (-5 *4 (-1008 (-353))) (-5 *5 (-587 (-239))) (-5 *2 (-1166)) (-5 *1 (-231)))) (-2916 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-202) (-202))) (-5 *4 (-1008 (-353))) (-5 *2 (-1166)) (-5 *1 (-231)))) (-2916 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-202) (-202))) (-5 *4 (-1008 (-353))) (-5 *5 (-587 (-239))) (-5 *2 (-1166)) (-5 *1 (-231)))))
+(-10 -7 (-15 -2916 ((-1166) (-1 (-202) (-202)) (-1008 (-353)) (-587 (-239)))) (-15 -2916 ((-1166) (-1 (-202) (-202)) (-1008 (-353)))) (-15 -2916 ((-1166) (-806 (-1 (-202) (-202))) (-1008 (-353)) (-587 (-239)))) (-15 -2916 ((-1166) (-806 (-1 (-202) (-202))) (-1008 (-353)))) (-15 -2916 ((-1167) (-808 (-1 (-202) (-202))) (-1008 (-353)) (-587 (-239)))) (-15 -2916 ((-1167) (-808 (-1 (-202) (-202))) (-1008 (-353)))) (-15 -2916 ((-1167) (-1 (-872 (-202)) (-202)) (-1008 (-353)) (-587 (-239)))) (-15 -2916 ((-1167) (-1 (-872 (-202)) (-202)) (-1008 (-353)))) (-15 -2952 ((-1044 (-202)) (-808 (-1 (-202) (-202))) (-1008 (-353)) (-587 (-239)))) (-15 -2952 ((-1044 (-202)) (-808 (-1 (-202) (-202))) (-1008 (-353)))) (-15 -2952 ((-1044 (-202)) (-1 (-872 (-202)) (-202)) (-1008 (-353)) (-587 (-239)))) (-15 -2952 ((-1044 (-202)) (-1 (-872 (-202)) (-202)) (-1008 (-353)))) (-15 -2916 ((-1167) (-1 (-202) (-202) (-202)) (-1008 (-353)) (-1008 (-353)) (-587 (-239)))) (-15 -2916 ((-1167) (-1 (-202) (-202) (-202)) (-1008 (-353)) (-1008 (-353)))) (-15 -2952 ((-1044 (-202)) (-1 (-202) (-202) (-202)) (-1008 (-353)) (-1008 (-353)) (-587 (-239)))) (-15 -2952 ((-1044 (-202)) (-1 (-202) (-202) (-202)) (-1008 (-353)) (-1008 (-353)))) (-15 -2916 ((-1167) (-1 (-872 (-202)) (-202) (-202)) (-1008 (-353)) (-1008 (-353)) (-587 (-239)))) (-15 -2916 ((-1167) (-1 (-872 (-202)) (-202) (-202)) (-1008 (-353)) (-1008 (-353)))) (-15 -2952 ((-1044 (-202)) (-1 (-872 (-202)) (-202) (-202)) (-1008 (-353)) (-1008 (-353)) (-587 (-239)))) (-15 -2952 ((-1044 (-202)) (-1 (-872 (-202)) (-202) (-202)) (-1008 (-353)) (-1008 (-353)))) (-15 -2916 ((-1167) (-811 (-1 (-202) (-202) (-202))) (-1008 (-353)) (-1008 (-353)) (-587 (-239)))) (-15 -2916 ((-1167) (-811 (-1 (-202) (-202) (-202))) (-1008 (-353)) (-1008 (-353)))) (-15 -2952 ((-1044 (-202)) (-811 (-1 (-202) (-202) (-202))) (-1008 (-353)) (-1008 (-353)) (-587 (-239)))) (-15 -2952 ((-1044 (-202)) (-811 (-1 (-202) (-202) (-202))) (-1008 (-353)) (-1008 (-353)))) (-15 -1888 ((-1 (-872 (-202)) (-202) (-202)) (-1 (-872 (-202)) (-202) (-202)) (-1 (-202) (-202) (-202) (-202)))))
+((-2916 (((-1166) (-269 |#2|) (-1084) (-1084) (-587 (-239))) 93)))
+(((-232 |#1| |#2|) (-10 -7 (-15 -2916 ((-1166) (-269 |#2|) (-1084) (-1084) (-587 (-239))))) (-13 (-513) (-784) (-961 (-521))) (-404 |#1|)) (T -232))
+((-2916 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-269 *7)) (-5 *4 (-1084)) (-5 *5 (-587 (-239))) (-4 *7 (-404 *6)) (-4 *6 (-13 (-513) (-784) (-961 (-521)))) (-5 *2 (-1166)) (-5 *1 (-232 *6 *7)))))
+(-10 -7 (-15 -2916 ((-1166) (-269 |#2|) (-1084) (-1084) (-587 (-239)))))
+((-2871 (((-521) (-521)) 50)) (-1262 (((-521) (-521)) 51)) (-2504 (((-202) (-202)) 52)) (-4076 (((-1167) (-1 (-154 (-202)) (-154 (-202))) (-1008 (-202)) (-1008 (-202))) 49)) (-3274 (((-1167) (-1 (-154 (-202)) (-154 (-202))) (-1008 (-202)) (-1008 (-202)) (-108)) 47)))
+(((-233) (-10 -7 (-15 -3274 ((-1167) (-1 (-154 (-202)) (-154 (-202))) (-1008 (-202)) (-1008 (-202)) (-108))) (-15 -4076 ((-1167) (-1 (-154 (-202)) (-154 (-202))) (-1008 (-202)) (-1008 (-202)))) (-15 -2871 ((-521) (-521))) (-15 -1262 ((-521) (-521))) (-15 -2504 ((-202) (-202))))) (T -233))
+((-2504 (*1 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-233)))) (-1262 (*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-233)))) (-2871 (*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-233)))) (-4076 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-154 (-202)) (-154 (-202)))) (-5 *4 (-1008 (-202))) (-5 *2 (-1167)) (-5 *1 (-233)))) (-3274 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-154 (-202)) (-154 (-202)))) (-5 *4 (-1008 (-202))) (-5 *5 (-108)) (-5 *2 (-1167)) (-5 *1 (-233)))))
+(-10 -7 (-15 -3274 ((-1167) (-1 (-154 (-202)) (-154 (-202))) (-1008 (-202)) (-1008 (-202)) (-108))) (-15 -4076 ((-1167) (-1 (-154 (-202)) (-154 (-202))) (-1008 (-202)) (-1008 (-202)))) (-15 -2871 ((-521) (-521))) (-15 -1262 ((-521) (-521))) (-15 -2504 ((-202) (-202))))
+((-2189 (((-1006 (-353)) (-1006 (-290 |#1|))) 16)))
+(((-234 |#1|) (-10 -7 (-15 -2189 ((-1006 (-353)) (-1006 (-290 |#1|))))) (-13 (-784) (-513) (-562 (-353)))) (T -234))
+((-2189 (*1 *2 *3) (-12 (-5 *3 (-1006 (-290 *4))) (-4 *4 (-13 (-784) (-513) (-562 (-353)))) (-5 *2 (-1006 (-353))) (-5 *1 (-234 *4)))))
+(-10 -7 (-15 -2189 ((-1006 (-353)) (-1006 (-290 |#1|)))))
+((-2952 (((-1044 (-202)) (-811 |#1|) (-1006 (-353)) (-1006 (-353))) 69) (((-1044 (-202)) (-811 |#1|) (-1006 (-353)) (-1006 (-353)) (-587 (-239))) 68) (((-1044 (-202)) |#1| (-1006 (-353)) (-1006 (-353))) 59) (((-1044 (-202)) |#1| (-1006 (-353)) (-1006 (-353)) (-587 (-239))) 58) (((-1044 (-202)) (-808 |#1|) (-1006 (-353))) 50) (((-1044 (-202)) (-808 |#1|) (-1006 (-353)) (-587 (-239))) 49)) (-2916 (((-1167) (-811 |#1|) (-1006 (-353)) (-1006 (-353))) 72) (((-1167) (-811 |#1|) (-1006 (-353)) (-1006 (-353)) (-587 (-239))) 71) (((-1167) |#1| (-1006 (-353)) (-1006 (-353))) 62) (((-1167) |#1| (-1006 (-353)) (-1006 (-353)) (-587 (-239))) 61) (((-1167) (-808 |#1|) (-1006 (-353))) 54) (((-1167) (-808 |#1|) (-1006 (-353)) (-587 (-239))) 53) (((-1166) (-806 |#1|) (-1006 (-353))) 41) (((-1166) (-806 |#1|) (-1006 (-353)) (-587 (-239))) 40) (((-1166) |#1| (-1006 (-353))) 33) (((-1166) |#1| (-1006 (-353)) (-587 (-239))) 32)))
+(((-235 |#1|) (-10 -7 (-15 -2916 ((-1166) |#1| (-1006 (-353)) (-587 (-239)))) (-15 -2916 ((-1166) |#1| (-1006 (-353)))) (-15 -2916 ((-1166) (-806 |#1|) (-1006 (-353)) (-587 (-239)))) (-15 -2916 ((-1166) (-806 |#1|) (-1006 (-353)))) (-15 -2916 ((-1167) (-808 |#1|) (-1006 (-353)) (-587 (-239)))) (-15 -2916 ((-1167) (-808 |#1|) (-1006 (-353)))) (-15 -2952 ((-1044 (-202)) (-808 |#1|) (-1006 (-353)) (-587 (-239)))) (-15 -2952 ((-1044 (-202)) (-808 |#1|) (-1006 (-353)))) (-15 -2916 ((-1167) |#1| (-1006 (-353)) (-1006 (-353)) (-587 (-239)))) (-15 -2916 ((-1167) |#1| (-1006 (-353)) (-1006 (-353)))) (-15 -2952 ((-1044 (-202)) |#1| (-1006 (-353)) (-1006 (-353)) (-587 (-239)))) (-15 -2952 ((-1044 (-202)) |#1| (-1006 (-353)) (-1006 (-353)))) (-15 -2916 ((-1167) (-811 |#1|) (-1006 (-353)) (-1006 (-353)) (-587 (-239)))) (-15 -2916 ((-1167) (-811 |#1|) (-1006 (-353)) (-1006 (-353)))) (-15 -2952 ((-1044 (-202)) (-811 |#1|) (-1006 (-353)) (-1006 (-353)) (-587 (-239)))) (-15 -2952 ((-1044 (-202)) (-811 |#1|) (-1006 (-353)) (-1006 (-353))))) (-13 (-562 (-497)) (-1013))) (T -235))
+((-2952 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-811 *5)) (-5 *4 (-1006 (-353))) (-4 *5 (-13 (-562 (-497)) (-1013))) (-5 *2 (-1044 (-202))) (-5 *1 (-235 *5)))) (-2952 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-811 *6)) (-5 *4 (-1006 (-353))) (-5 *5 (-587 (-239))) (-4 *6 (-13 (-562 (-497)) (-1013))) (-5 *2 (-1044 (-202))) (-5 *1 (-235 *6)))) (-2916 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-811 *5)) (-5 *4 (-1006 (-353))) (-4 *5 (-13 (-562 (-497)) (-1013))) (-5 *2 (-1167)) (-5 *1 (-235 *5)))) (-2916 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-811 *6)) (-5 *4 (-1006 (-353))) (-5 *5 (-587 (-239))) (-4 *6 (-13 (-562 (-497)) (-1013))) (-5 *2 (-1167)) (-5 *1 (-235 *6)))) (-2952 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1006 (-353))) (-5 *2 (-1044 (-202))) (-5 *1 (-235 *3)) (-4 *3 (-13 (-562 (-497)) (-1013))))) (-2952 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1006 (-353))) (-5 *5 (-587 (-239))) (-5 *2 (-1044 (-202))) (-5 *1 (-235 *3)) (-4 *3 (-13 (-562 (-497)) (-1013))))) (-2916 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1006 (-353))) (-5 *2 (-1167)) (-5 *1 (-235 *3)) (-4 *3 (-13 (-562 (-497)) (-1013))))) (-2916 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1006 (-353))) (-5 *5 (-587 (-239))) (-5 *2 (-1167)) (-5 *1 (-235 *3)) (-4 *3 (-13 (-562 (-497)) (-1013))))) (-2952 (*1 *2 *3 *4) (-12 (-5 *3 (-808 *5)) (-5 *4 (-1006 (-353))) (-4 *5 (-13 (-562 (-497)) (-1013))) (-5 *2 (-1044 (-202))) (-5 *1 (-235 *5)))) (-2952 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-808 *6)) (-5 *4 (-1006 (-353))) (-5 *5 (-587 (-239))) (-4 *6 (-13 (-562 (-497)) (-1013))) (-5 *2 (-1044 (-202))) (-5 *1 (-235 *6)))) (-2916 (*1 *2 *3 *4) (-12 (-5 *3 (-808 *5)) (-5 *4 (-1006 (-353))) (-4 *5 (-13 (-562 (-497)) (-1013))) (-5 *2 (-1167)) (-5 *1 (-235 *5)))) (-2916 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-808 *6)) (-5 *4 (-1006 (-353))) (-5 *5 (-587 (-239))) (-4 *6 (-13 (-562 (-497)) (-1013))) (-5 *2 (-1167)) (-5 *1 (-235 *6)))) (-2916 (*1 *2 *3 *4) (-12 (-5 *3 (-806 *5)) (-5 *4 (-1006 (-353))) (-4 *5 (-13 (-562 (-497)) (-1013))) (-5 *2 (-1166)) (-5 *1 (-235 *5)))) (-2916 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-806 *6)) (-5 *4 (-1006 (-353))) (-5 *5 (-587 (-239))) (-4 *6 (-13 (-562 (-497)) (-1013))) (-5 *2 (-1166)) (-5 *1 (-235 *6)))) (-2916 (*1 *2 *3 *4) (-12 (-5 *4 (-1006 (-353))) (-5 *2 (-1166)) (-5 *1 (-235 *3)) (-4 *3 (-13 (-562 (-497)) (-1013))))) (-2916 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1006 (-353))) (-5 *5 (-587 (-239))) (-5 *2 (-1166)) (-5 *1 (-235 *3)) (-4 *3 (-13 (-562 (-497)) (-1013))))))
+(-10 -7 (-15 -2916 ((-1166) |#1| (-1006 (-353)) (-587 (-239)))) (-15 -2916 ((-1166) |#1| (-1006 (-353)))) (-15 -2916 ((-1166) (-806 |#1|) (-1006 (-353)) (-587 (-239)))) (-15 -2916 ((-1166) (-806 |#1|) (-1006 (-353)))) (-15 -2916 ((-1167) (-808 |#1|) (-1006 (-353)) (-587 (-239)))) (-15 -2916 ((-1167) (-808 |#1|) (-1006 (-353)))) (-15 -2952 ((-1044 (-202)) (-808 |#1|) (-1006 (-353)) (-587 (-239)))) (-15 -2952 ((-1044 (-202)) (-808 |#1|) (-1006 (-353)))) (-15 -2916 ((-1167) |#1| (-1006 (-353)) (-1006 (-353)) (-587 (-239)))) (-15 -2916 ((-1167) |#1| (-1006 (-353)) (-1006 (-353)))) (-15 -2952 ((-1044 (-202)) |#1| (-1006 (-353)) (-1006 (-353)) (-587 (-239)))) (-15 -2952 ((-1044 (-202)) |#1| (-1006 (-353)) (-1006 (-353)))) (-15 -2916 ((-1167) (-811 |#1|) (-1006 (-353)) (-1006 (-353)) (-587 (-239)))) (-15 -2916 ((-1167) (-811 |#1|) (-1006 (-353)) (-1006 (-353)))) (-15 -2952 ((-1044 (-202)) (-811 |#1|) (-1006 (-353)) (-1006 (-353)) (-587 (-239)))) (-15 -2952 ((-1044 (-202)) (-811 |#1|) (-1006 (-353)) (-1006 (-353)))))
+((-2916 (((-1167) (-587 (-202)) (-587 (-202)) (-587 (-202)) (-587 (-239))) 21) (((-1167) (-587 (-202)) (-587 (-202)) (-587 (-202))) 22) (((-1166) (-587 (-872 (-202))) (-587 (-239))) 13) (((-1166) (-587 (-872 (-202)))) 14) (((-1166) (-587 (-202)) (-587 (-202)) (-587 (-239))) 18) (((-1166) (-587 (-202)) (-587 (-202))) 19)))
+(((-236) (-10 -7 (-15 -2916 ((-1166) (-587 (-202)) (-587 (-202)))) (-15 -2916 ((-1166) (-587 (-202)) (-587 (-202)) (-587 (-239)))) (-15 -2916 ((-1166) (-587 (-872 (-202))))) (-15 -2916 ((-1166) (-587 (-872 (-202))) (-587 (-239)))) (-15 -2916 ((-1167) (-587 (-202)) (-587 (-202)) (-587 (-202)))) (-15 -2916 ((-1167) (-587 (-202)) (-587 (-202)) (-587 (-202)) (-587 (-239)))))) (T -236))
+((-2916 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-587 (-202))) (-5 *4 (-587 (-239))) (-5 *2 (-1167)) (-5 *1 (-236)))) (-2916 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-587 (-202))) (-5 *2 (-1167)) (-5 *1 (-236)))) (-2916 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-872 (-202)))) (-5 *4 (-587 (-239))) (-5 *2 (-1166)) (-5 *1 (-236)))) (-2916 (*1 *2 *3) (-12 (-5 *3 (-587 (-872 (-202)))) (-5 *2 (-1166)) (-5 *1 (-236)))) (-2916 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-587 (-202))) (-5 *4 (-587 (-239))) (-5 *2 (-1166)) (-5 *1 (-236)))) (-2916 (*1 *2 *3 *3) (-12 (-5 *3 (-587 (-202))) (-5 *2 (-1166)) (-5 *1 (-236)))))
+(-10 -7 (-15 -2916 ((-1166) (-587 (-202)) (-587 (-202)))) (-15 -2916 ((-1166) (-587 (-202)) (-587 (-202)) (-587 (-239)))) (-15 -2916 ((-1166) (-587 (-872 (-202))))) (-15 -2916 ((-1166) (-587 (-872 (-202))) (-587 (-239)))) (-15 -2916 ((-1167) (-587 (-202)) (-587 (-202)) (-587 (-202)))) (-15 -2916 ((-1167) (-587 (-202)) (-587 (-202)) (-587 (-202)) (-587 (-239)))))
+((-4044 (((-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -2428 (-202)) (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202))) (-587 (-239)) (-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -2428 (-202)) (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202)))) 24)) (-2519 (((-850) (-587 (-239)) (-850)) 49)) (-3778 (((-850) (-587 (-239)) (-850)) 48)) (-1968 (((-587 (-353)) (-587 (-239)) (-587 (-353))) 65)) (-3637 (((-353) (-587 (-239)) (-353)) 55)) (-3383 (((-850) (-587 (-239)) (-850)) 50)) (-3913 (((-108) (-587 (-239)) (-108)) 26)) (-2951 (((-1067) (-587 (-239)) (-1067)) 19)) (-1465 (((-1067) (-587 (-239)) (-1067)) 25)) (-3338 (((-1044 (-202)) (-587 (-239))) 43)) (-2925 (((-587 (-1008 (-353))) (-587 (-239)) (-587 (-1008 (-353)))) 37)) (-1973 (((-803) (-587 (-239)) (-803)) 31)) (-2247 (((-803) (-587 (-239)) (-803)) 32)) (-1741 (((-1 (-872 (-202)) (-872 (-202))) (-587 (-239)) (-1 (-872 (-202)) (-872 (-202)))) 60)) (-3297 (((-108) (-587 (-239)) (-108)) 15)) (-1674 (((-108) (-587 (-239)) (-108)) 14)))
+(((-237) (-10 -7 (-15 -1674 ((-108) (-587 (-239)) (-108))) (-15 -3297 ((-108) (-587 (-239)) (-108))) (-15 -4044 ((-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -2428 (-202)) (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202))) (-587 (-239)) (-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -2428 (-202)) (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202))))) (-15 -2951 ((-1067) (-587 (-239)) (-1067))) (-15 -1465 ((-1067) (-587 (-239)) (-1067))) (-15 -3913 ((-108) (-587 (-239)) (-108))) (-15 -1973 ((-803) (-587 (-239)) (-803))) (-15 -2247 ((-803) (-587 (-239)) (-803))) (-15 -2925 ((-587 (-1008 (-353))) (-587 (-239)) (-587 (-1008 (-353))))) (-15 -3778 ((-850) (-587 (-239)) (-850))) (-15 -2519 ((-850) (-587 (-239)) (-850))) (-15 -3338 ((-1044 (-202)) (-587 (-239)))) (-15 -3383 ((-850) (-587 (-239)) (-850))) (-15 -3637 ((-353) (-587 (-239)) (-353))) (-15 -1741 ((-1 (-872 (-202)) (-872 (-202))) (-587 (-239)) (-1 (-872 (-202)) (-872 (-202))))) (-15 -1968 ((-587 (-353)) (-587 (-239)) (-587 (-353)))))) (T -237))
+((-1968 (*1 *2 *3 *2) (-12 (-5 *2 (-587 (-353))) (-5 *3 (-587 (-239))) (-5 *1 (-237)))) (-1741 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-872 (-202)) (-872 (-202)))) (-5 *3 (-587 (-239))) (-5 *1 (-237)))) (-3637 (*1 *2 *3 *2) (-12 (-5 *2 (-353)) (-5 *3 (-587 (-239))) (-5 *1 (-237)))) (-3383 (*1 *2 *3 *2) (-12 (-5 *2 (-850)) (-5 *3 (-587 (-239))) (-5 *1 (-237)))) (-3338 (*1 *2 *3) (-12 (-5 *3 (-587 (-239))) (-5 *2 (-1044 (-202))) (-5 *1 (-237)))) (-2519 (*1 *2 *3 *2) (-12 (-5 *2 (-850)) (-5 *3 (-587 (-239))) (-5 *1 (-237)))) (-3778 (*1 *2 *3 *2) (-12 (-5 *2 (-850)) (-5 *3 (-587 (-239))) (-5 *1 (-237)))) (-2925 (*1 *2 *3 *2) (-12 (-5 *2 (-587 (-1008 (-353)))) (-5 *3 (-587 (-239))) (-5 *1 (-237)))) (-2247 (*1 *2 *3 *2) (-12 (-5 *2 (-803)) (-5 *3 (-587 (-239))) (-5 *1 (-237)))) (-1973 (*1 *2 *3 *2) (-12 (-5 *2 (-803)) (-5 *3 (-587 (-239))) (-5 *1 (-237)))) (-3913 (*1 *2 *3 *2) (-12 (-5 *2 (-108)) (-5 *3 (-587 (-239))) (-5 *1 (-237)))) (-1465 (*1 *2 *3 *2) (-12 (-5 *2 (-1067)) (-5 *3 (-587 (-239))) (-5 *1 (-237)))) (-2951 (*1 *2 *3 *2) (-12 (-5 *2 (-1067)) (-5 *3 (-587 (-239))) (-5 *1 (-237)))) (-4044 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -2428 (-202)) (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202)))) (-5 *3 (-587 (-239))) (-5 *1 (-237)))) (-3297 (*1 *2 *3 *2) (-12 (-5 *2 (-108)) (-5 *3 (-587 (-239))) (-5 *1 (-237)))) (-1674 (*1 *2 *3 *2) (-12 (-5 *2 (-108)) (-5 *3 (-587 (-239))) (-5 *1 (-237)))))
+(-10 -7 (-15 -1674 ((-108) (-587 (-239)) (-108))) (-15 -3297 ((-108) (-587 (-239)) (-108))) (-15 -4044 ((-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -2428 (-202)) (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202))) (-587 (-239)) (-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -2428 (-202)) (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202))))) (-15 -2951 ((-1067) (-587 (-239)) (-1067))) (-15 -1465 ((-1067) (-587 (-239)) (-1067))) (-15 -3913 ((-108) (-587 (-239)) (-108))) (-15 -1973 ((-803) (-587 (-239)) (-803))) (-15 -2247 ((-803) (-587 (-239)) (-803))) (-15 -2925 ((-587 (-1008 (-353))) (-587 (-239)) (-587 (-1008 (-353))))) (-15 -3778 ((-850) (-587 (-239)) (-850))) (-15 -2519 ((-850) (-587 (-239)) (-850))) (-15 -3338 ((-1044 (-202)) (-587 (-239)))) (-15 -3383 ((-850) (-587 (-239)) (-850))) (-15 -3637 ((-353) (-587 (-239)) (-353))) (-15 -1741 ((-1 (-872 (-202)) (-872 (-202))) (-587 (-239)) (-1 (-872 (-202)) (-872 (-202))))) (-15 -1968 ((-587 (-353)) (-587 (-239)) (-587 (-353)))))
+((-3014 (((-3 |#1| "failed") (-587 (-239)) (-1084)) 17)))
+(((-238 |#1|) (-10 -7 (-15 -3014 ((-3 |#1| "failed") (-587 (-239)) (-1084)))) (-1119)) (T -238))
+((-3014 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-587 (-239))) (-5 *4 (-1084)) (-5 *1 (-238 *2)) (-4 *2 (-1119)))))
+(-10 -7 (-15 -3014 ((-3 |#1| "failed") (-587 (-239)) (-1084))))
+((-1415 (((-108) $ $) NIL)) (-4044 (($ (-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -2428 (-202)) (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202)))) 14)) (-2519 (($ (-850)) 70)) (-3778 (($ (-850)) 69)) (-3689 (($ (-587 (-353))) 76)) (-3637 (($ (-353)) 55)) (-3383 (($ (-850)) 71)) (-3913 (($ (-108)) 22)) (-2951 (($ (-1067)) 17)) (-1465 (($ (-1067)) 18)) (-3338 (($ (-1044 (-202))) 65)) (-2925 (($ (-587 (-1008 (-353)))) 61)) (-2442 (($ (-587 (-1008 (-353)))) 56) (($ (-587 (-1008 (-381 (-521))))) 60)) (-3238 (($ (-353)) 28) (($ (-803)) 32)) (-1989 (((-108) (-587 $) (-1084)) 85)) (-3014 (((-3 (-51) "failed") (-587 $) (-1084)) 87)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-4204 (($ (-353)) 33) (($ (-803)) 34)) (-2234 (($ (-1 (-872 (-202)) (-872 (-202)))) 54)) (-1741 (($ (-1 (-872 (-202)) (-872 (-202)))) 72)) (-2319 (($ (-1 (-202) (-202))) 38) (($ (-1 (-202) (-202) (-202))) 42) (($ (-1 (-202) (-202) (-202) (-202))) 46)) (-2189 (((-792) $) 81)) (-4194 (($ (-108)) 23) (($ (-587 (-1008 (-353)))) 50)) (-1674 (($ (-108)) 24)) (-1531 (((-108) $ $) 83)))
+(((-239) (-13 (-1013) (-10 -8 (-15 -1674 ($ (-108))) (-15 -4194 ($ (-108))) (-15 -4044 ($ (-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -2428 (-202)) (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202))))) (-15 -2951 ($ (-1067))) (-15 -1465 ($ (-1067))) (-15 -3913 ($ (-108))) (-15 -4194 ($ (-587 (-1008 (-353))))) (-15 -2234 ($ (-1 (-872 (-202)) (-872 (-202))))) (-15 -3238 ($ (-353))) (-15 -3238 ($ (-803))) (-15 -4204 ($ (-353))) (-15 -4204 ($ (-803))) (-15 -2319 ($ (-1 (-202) (-202)))) (-15 -2319 ($ (-1 (-202) (-202) (-202)))) (-15 -2319 ($ (-1 (-202) (-202) (-202) (-202)))) (-15 -3637 ($ (-353))) (-15 -2442 ($ (-587 (-1008 (-353))))) (-15 -2442 ($ (-587 (-1008 (-381 (-521)))))) (-15 -2925 ($ (-587 (-1008 (-353))))) (-15 -3338 ($ (-1044 (-202)))) (-15 -3778 ($ (-850))) (-15 -2519 ($ (-850))) (-15 -3383 ($ (-850))) (-15 -1741 ($ (-1 (-872 (-202)) (-872 (-202))))) (-15 -3689 ($ (-587 (-353)))) (-15 -3014 ((-3 (-51) "failed") (-587 $) (-1084))) (-15 -1989 ((-108) (-587 $) (-1084)))))) (T -239))
+((-1674 (*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-239)))) (-4194 (*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-239)))) (-4044 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -2428 (-202)) (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202)))) (-5 *1 (-239)))) (-2951 (*1 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-239)))) (-1465 (*1 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-239)))) (-3913 (*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-239)))) (-4194 (*1 *1 *2) (-12 (-5 *2 (-587 (-1008 (-353)))) (-5 *1 (-239)))) (-2234 (*1 *1 *2) (-12 (-5 *2 (-1 (-872 (-202)) (-872 (-202)))) (-5 *1 (-239)))) (-3238 (*1 *1 *2) (-12 (-5 *2 (-353)) (-5 *1 (-239)))) (-3238 (*1 *1 *2) (-12 (-5 *2 (-803)) (-5 *1 (-239)))) (-4204 (*1 *1 *2) (-12 (-5 *2 (-353)) (-5 *1 (-239)))) (-4204 (*1 *1 *2) (-12 (-5 *2 (-803)) (-5 *1 (-239)))) (-2319 (*1 *1 *2) (-12 (-5 *2 (-1 (-202) (-202))) (-5 *1 (-239)))) (-2319 (*1 *1 *2) (-12 (-5 *2 (-1 (-202) (-202) (-202))) (-5 *1 (-239)))) (-2319 (*1 *1 *2) (-12 (-5 *2 (-1 (-202) (-202) (-202) (-202))) (-5 *1 (-239)))) (-3637 (*1 *1 *2) (-12 (-5 *2 (-353)) (-5 *1 (-239)))) (-2442 (*1 *1 *2) (-12 (-5 *2 (-587 (-1008 (-353)))) (-5 *1 (-239)))) (-2442 (*1 *1 *2) (-12 (-5 *2 (-587 (-1008 (-381 (-521))))) (-5 *1 (-239)))) (-2925 (*1 *1 *2) (-12 (-5 *2 (-587 (-1008 (-353)))) (-5 *1 (-239)))) (-3338 (*1 *1 *2) (-12 (-5 *2 (-1044 (-202))) (-5 *1 (-239)))) (-3778 (*1 *1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-239)))) (-2519 (*1 *1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-239)))) (-3383 (*1 *1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-239)))) (-1741 (*1 *1 *2) (-12 (-5 *2 (-1 (-872 (-202)) (-872 (-202)))) (-5 *1 (-239)))) (-3689 (*1 *1 *2) (-12 (-5 *2 (-587 (-353))) (-5 *1 (-239)))) (-3014 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-587 (-239))) (-5 *4 (-1084)) (-5 *2 (-51)) (-5 *1 (-239)))) (-1989 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-239))) (-5 *4 (-1084)) (-5 *2 (-108)) (-5 *1 (-239)))))
+(-13 (-1013) (-10 -8 (-15 -1674 ($ (-108))) (-15 -4194 ($ (-108))) (-15 -4044 ($ (-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -2428 (-202)) (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202))))) (-15 -2951 ($ (-1067))) (-15 -1465 ($ (-1067))) (-15 -3913 ($ (-108))) (-15 -4194 ($ (-587 (-1008 (-353))))) (-15 -2234 ($ (-1 (-872 (-202)) (-872 (-202))))) (-15 -3238 ($ (-353))) (-15 -3238 ($ (-803))) (-15 -4204 ($ (-353))) (-15 -4204 ($ (-803))) (-15 -2319 ($ (-1 (-202) (-202)))) (-15 -2319 ($ (-1 (-202) (-202) (-202)))) (-15 -2319 ($ (-1 (-202) (-202) (-202) (-202)))) (-15 -3637 ($ (-353))) (-15 -2442 ($ (-587 (-1008 (-353))))) (-15 -2442 ($ (-587 (-1008 (-381 (-521)))))) (-15 -2925 ($ (-587 (-1008 (-353))))) (-15 -3338 ($ (-1044 (-202)))) (-15 -3778 ($ (-850))) (-15 -2519 ($ (-850))) (-15 -3383 ($ (-850))) (-15 -1741 ($ (-1 (-872 (-202)) (-872 (-202))))) (-15 -3689 ($ (-587 (-353)))) (-15 -3014 ((-3 (-51) "failed") (-587 $) (-1084))) (-15 -1989 ((-108) (-587 $) (-1084)))))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-3531 (((-587 (-707)) $) NIL) (((-587 (-707)) $ |#2|) NIL)) (-1758 (((-707) $) NIL) (((-707) $ |#2|) NIL)) (-4084 (((-587 |#3|) $) NIL)) (-1280 (((-1080 $) $ |#3|) NIL) (((-1080 |#1|) $) NIL)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) NIL (|has| |#1| (-513)))) (-2559 (($ $) NIL (|has| |#1| (-513)))) (-1733 (((-108) $) NIL (|has| |#1| (-513)))) (-2256 (((-707) $) NIL) (((-707) $ (-587 |#3|)) NIL)) (-1232 (((-3 $ "failed") $ $) NIL)) (-2598 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#1| (-838)))) (-3063 (($ $) NIL (|has| |#1| (-425)))) (-3358 (((-392 $) $) NIL (|has| |#1| (-425)))) (-2569 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) NIL (|has| |#1| (-838)))) (-4108 (($ $) NIL)) (-2547 (($) NIL T CONST)) (-1297 (((-3 |#1| "failed") $) NIL) (((-3 (-381 (-521)) "failed") $) NIL (|has| |#1| (-961 (-381 (-521))))) (((-3 (-521) "failed") $) NIL (|has| |#1| (-961 (-521)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1036 |#1| |#2|) "failed") $) 20)) (-1483 ((|#1| $) NIL) (((-381 (-521)) $) NIL (|has| |#1| (-961 (-381 (-521))))) (((-521) $) NIL (|has| |#1| (-961 (-521)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1036 |#1| |#2|) $) NIL)) (-2114 (($ $ $ |#3|) NIL (|has| |#1| (-157)))) (-3152 (($ $) NIL)) (-3279 (((-627 (-521)) (-627 $)) NIL (|has| |#1| (-583 (-521)))) (((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (|has| |#1| (-583 (-521)))) (((-2 (|:| -1201 (-627 |#1|)) (|:| |vec| (-1165 |#1|))) (-627 $) (-1165 $)) NIL) (((-627 |#1|) (-627 $)) NIL)) (-1257 (((-3 $ "failed") $) NIL)) (-3666 (($ $) NIL (|has| |#1| (-425))) (($ $ |#3|) NIL (|has| |#1| (-425)))) (-3144 (((-587 $) $) NIL)) (-2710 (((-108) $) NIL (|has| |#1| (-838)))) (-3528 (($ $ |#1| (-493 |#3|) $) NIL)) (-3427 (((-818 (-353) $) $ (-821 (-353)) (-818 (-353) $)) NIL (-12 (|has| |#1| (-815 (-353))) (|has| |#3| (-815 (-353))))) (((-818 (-521) $) $ (-821 (-521)) (-818 (-521) $)) NIL (-12 (|has| |#1| (-815 (-521))) (|has| |#3| (-815 (-521)))))) (-2733 (((-707) $ |#2|) NIL) (((-707) $) 10)) (-3996 (((-108) $) NIL)) (-2678 (((-707) $) NIL)) (-4069 (($ (-1080 |#1|) |#3|) NIL) (($ (-1080 $) |#3|) NIL)) (-2959 (((-587 $) $) NIL)) (-3649 (((-108) $) NIL)) (-4043 (($ |#1| (-493 |#3|)) NIL) (($ $ |#3| (-707)) NIL) (($ $ (-587 |#3|) (-587 (-707))) NIL)) (-1450 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $ |#3|) NIL)) (-3273 (((-493 |#3|) $) NIL) (((-707) $ |#3|) NIL) (((-587 (-707)) $ (-587 |#3|)) NIL)) (-2810 (($ $ $) NIL (|has| |#1| (-784)))) (-2446 (($ $ $) NIL (|has| |#1| (-784)))) (-3285 (($ (-1 (-493 |#3|) (-493 |#3|)) $) NIL)) (-1390 (($ (-1 |#1| |#1|) $) NIL)) (-3992 (((-1 $ (-707)) |#2|) NIL) (((-1 $ (-707)) $) NIL (|has| |#1| (-210)))) (-2477 (((-3 |#3| "failed") $) NIL)) (-3125 (($ $) NIL)) (-3135 ((|#1| $) NIL)) (-1570 ((|#3| $) NIL)) (-2223 (($ (-587 $)) NIL (|has| |#1| (-425))) (($ $ $) NIL (|has| |#1| (-425)))) (-3688 (((-1067) $) NIL)) (-2010 (((-108) $) NIL)) (-1617 (((-3 (-587 $) "failed") $) NIL)) (-3177 (((-3 (-587 $) "failed") $) NIL)) (-3979 (((-3 (-2 (|:| |var| |#3|) (|:| -2997 (-707))) "failed") $) NIL)) (-1901 (($ $) NIL)) (-4147 (((-1031) $) NIL)) (-3105 (((-108) $) NIL)) (-3115 ((|#1| $) NIL)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) NIL (|has| |#1| (-425)))) (-2258 (($ (-587 $)) NIL (|has| |#1| (-425))) (($ $ $) NIL (|has| |#1| (-425)))) (-1912 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#1| (-838)))) (-2165 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#1| (-838)))) (-1916 (((-392 $) $) NIL (|has| |#1| (-838)))) (-2230 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-513))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-513)))) (-2288 (($ $ (-587 (-269 $))) NIL) (($ $ (-269 $)) NIL) (($ $ $ $) NIL) (($ $ (-587 $) (-587 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-587 |#3|) (-587 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-587 |#3|) (-587 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-210))) (($ $ (-587 |#2|) (-587 $)) NIL (|has| |#1| (-210))) (($ $ |#2| |#1|) NIL (|has| |#1| (-210))) (($ $ (-587 |#2|) (-587 |#1|)) NIL (|has| |#1| (-210)))) (-4010 (($ $ |#3|) NIL (|has| |#1| (-157)))) (-2156 (($ $ |#3|) NIL) (($ $ (-587 |#3|)) NIL) (($ $ |#3| (-707)) NIL) (($ $ (-587 |#3|) (-587 (-707))) NIL) (($ $) NIL (|has| |#1| (-210))) (($ $ (-707)) NIL (|has| |#1| (-210))) (($ $ (-1084)) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-1 |#1| |#1|) (-707)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3865 (((-587 |#2|) $) NIL)) (-1994 (((-493 |#3|) $) NIL) (((-707) $ |#3|) NIL) (((-587 (-707)) $ (-587 |#3|)) NIL) (((-707) $ |#2|) NIL)) (-1430 (((-821 (-353)) $) NIL (-12 (|has| |#1| (-562 (-821 (-353)))) (|has| |#3| (-562 (-821 (-353)))))) (((-821 (-521)) $) NIL (-12 (|has| |#1| (-562 (-821 (-521)))) (|has| |#3| (-562 (-821 (-521)))))) (((-497) $) NIL (-12 (|has| |#1| (-562 (-497))) (|has| |#3| (-562 (-497)))))) (-2403 ((|#1| $) NIL (|has| |#1| (-425))) (($ $ |#3|) NIL (|has| |#1| (-425)))) (-2944 (((-3 (-1165 $) "failed") (-627 $)) NIL (-12 (|has| $ (-133)) (|has| |#1| (-838))))) (-2189 (((-792) $) NIL) (($ (-521)) NIL) (($ |#1|) 23) (($ |#3|) 22) (($ |#2|) NIL) (($ (-1036 |#1| |#2|)) 28) (($ (-381 (-521))) NIL (-3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-961 (-381 (-521)))))) (($ $) NIL (|has| |#1| (-513)))) (-1259 (((-587 |#1|) $) NIL)) (-3800 ((|#1| $ (-493 |#3|)) NIL) (($ $ |#3| (-707)) NIL) (($ $ (-587 |#3|) (-587 (-707))) NIL)) (-1671 (((-3 $ "failed") $) NIL (-3703 (-12 (|has| $ (-133)) (|has| |#1| (-838))) (|has| |#1| (-133))))) (-3846 (((-707)) NIL)) (-1547 (($ $ $ (-707)) NIL (|has| |#1| (-157)))) (-4210 (((-108) $ $) NIL (|has| |#1| (-513)))) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (-3561 (($) NIL T CONST)) (-3572 (($) NIL T CONST)) (-2212 (($ $ |#3|) NIL) (($ $ (-587 |#3|)) NIL) (($ $ |#3| (-707)) NIL) (($ $ (-587 |#3|) (-587 (-707))) NIL) (($ $) NIL (|has| |#1| (-210))) (($ $ (-707)) NIL (|has| |#1| (-210))) (($ $ (-1084)) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-1 |#1| |#1|) (-707)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1574 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1558 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1549 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1620 (($ $ |#1|) NIL (|has| |#1| (-337)))) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ (-381 (-521))) NIL (|has| |#1| (-37 (-381 (-521))))) (($ (-381 (-521)) $) NIL (|has| |#1| (-37 (-381 (-521))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-240 |#1| |#2| |#3|) (-13 (-229 |#1| |#2| |#3| (-493 |#3|)) (-961 (-1036 |#1| |#2|))) (-970) (-784) (-242 |#2|)) (T -240))
+NIL
+(-13 (-229 |#1| |#2| |#3| (-493 |#3|)) (-961 (-1036 |#1| |#2|)))
+((-1758 (((-707) $) 30)) (-1297 (((-3 |#2| "failed") $) 17)) (-1483 ((|#2| $) 27)) (-2156 (($ $) 12) (($ $ (-707)) 15)) (-2189 (((-792) $) 26) (($ |#2|) 10)) (-1531 (((-108) $ $) 20)) (-1549 (((-108) $ $) 29)))
+(((-241 |#1| |#2|) (-10 -8 (-15 -2156 (|#1| |#1| (-707))) (-15 -2156 (|#1| |#1|)) (-15 -1758 ((-707) |#1|)) (-15 -1483 (|#2| |#1|)) (-15 -1297 ((-3 |#2| "failed") |#1|)) (-15 -2189 (|#1| |#2|)) (-15 -1549 ((-108) |#1| |#1|)) (-15 -2189 ((-792) |#1|)) (-15 -1531 ((-108) |#1| |#1|))) (-242 |#2|) (-784)) (T -241))
+NIL
+(-10 -8 (-15 -2156 (|#1| |#1| (-707))) (-15 -2156 (|#1| |#1|)) (-15 -1758 ((-707) |#1|)) (-15 -1483 (|#2| |#1|)) (-15 -1297 ((-3 |#2| "failed") |#1|)) (-15 -2189 (|#1| |#2|)) (-15 -1549 ((-108) |#1| |#1|)) (-15 -2189 ((-792) |#1|)) (-15 -1531 ((-108) |#1| |#1|)))
+((-1415 (((-108) $ $) 7)) (-1758 (((-707) $) 22)) (-1611 ((|#1| $) 23)) (-1297 (((-3 |#1| "failed") $) 27)) (-1483 ((|#1| $) 26)) (-2733 (((-707) $) 24)) (-2810 (($ $ $) 13)) (-2446 (($ $ $) 14)) (-3992 (($ |#1| (-707)) 25)) (-3688 (((-1067) $) 9)) (-4147 (((-1031) $) 10)) (-2156 (($ $) 21) (($ $ (-707)) 20)) (-2189 (((-792) $) 11) (($ |#1|) 28)) (-1574 (((-108) $ $) 16)) (-1558 (((-108) $ $) 17)) (-1531 (((-108) $ $) 6)) (-1566 (((-108) $ $) 15)) (-1549 (((-108) $ $) 18)))
+(((-242 |#1|) (-1196) (-784)) (T -242))
+((-2189 (*1 *1 *2) (-12 (-4 *1 (-242 *2)) (-4 *2 (-784)))) (-3992 (*1 *1 *2 *3) (-12 (-5 *3 (-707)) (-4 *1 (-242 *2)) (-4 *2 (-784)))) (-2733 (*1 *2 *1) (-12 (-4 *1 (-242 *3)) (-4 *3 (-784)) (-5 *2 (-707)))) (-1611 (*1 *2 *1) (-12 (-4 *1 (-242 *2)) (-4 *2 (-784)))) (-1758 (*1 *2 *1) (-12 (-4 *1 (-242 *3)) (-4 *3 (-784)) (-5 *2 (-707)))) (-2156 (*1 *1 *1) (-12 (-4 *1 (-242 *2)) (-4 *2 (-784)))) (-2156 (*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-4 *1 (-242 *3)) (-4 *3 (-784)))))
+(-13 (-784) (-961 |t#1|) (-10 -8 (-15 -3992 ($ |t#1| (-707))) (-15 -2733 ((-707) $)) (-15 -1611 (|t#1| $)) (-15 -1758 ((-707) $)) (-15 -2156 ($ $)) (-15 -2156 ($ $ (-707))) (-15 -2189 ($ |t#1|))))
+(((-97) . T) ((-561 (-792)) . T) ((-784) . T) ((-961 |#1|) . T) ((-1013) . T))
+((-4084 (((-587 (-1084)) (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202))))) 40)) (-4101 (((-587 (-1084)) (-290 (-202)) (-707)) 79)) (-4040 (((-3 (-290 (-202)) "failed") (-290 (-202))) 50)) (-1687 (((-290 (-202)) (-290 (-202))) 65)) (-2462 (((-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-777 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-777 (-202))))) (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-777 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-777 (-202)))))) 26)) (-2280 (((-108) (-587 (-290 (-202)))) 83)) (-2706 (((-108) (-290 (-202))) 24)) (-3175 (((-587 (-1067)) (-3 (|:| |noa| (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-777 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-777 (-202)))))) (|:| |lsa| (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202))))))) 105)) (-1397 (((-587 (-290 (-202))) (-587 (-290 (-202)))) 87)) (-3042 (((-587 (-290 (-202))) (-587 (-290 (-202)))) 85)) (-3080 (((-627 (-202)) (-587 (-290 (-202))) (-707)) 94)) (-1879 (((-108) (-290 (-202))) 20) (((-108) (-587 (-290 (-202)))) 84)) (-2208 (((-587 (-202)) (-587 (-777 (-202))) (-202)) 14)) (-4102 (((-353) (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202))))) 100)) (-3276 (((-959) (-1084) (-959)) 33)))
+(((-243) (-10 -7 (-15 -2208 ((-587 (-202)) (-587 (-777 (-202))) (-202))) (-15 -2462 ((-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-777 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-777 (-202))))) (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-777 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-777 (-202))))))) (-15 -4040 ((-3 (-290 (-202)) "failed") (-290 (-202)))) (-15 -1687 ((-290 (-202)) (-290 (-202)))) (-15 -2280 ((-108) (-587 (-290 (-202))))) (-15 -1879 ((-108) (-587 (-290 (-202))))) (-15 -1879 ((-108) (-290 (-202)))) (-15 -3080 ((-627 (-202)) (-587 (-290 (-202))) (-707))) (-15 -3042 ((-587 (-290 (-202))) (-587 (-290 (-202))))) (-15 -1397 ((-587 (-290 (-202))) (-587 (-290 (-202))))) (-15 -2706 ((-108) (-290 (-202)))) (-15 -4084 ((-587 (-1084)) (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202)))))) (-15 -4101 ((-587 (-1084)) (-290 (-202)) (-707))) (-15 -3276 ((-959) (-1084) (-959))) (-15 -4102 ((-353) (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202)))))) (-15 -3175 ((-587 (-1067)) (-3 (|:| |noa| (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-777 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-777 (-202)))))) (|:| |lsa| (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202)))))))))) (T -243))
+((-3175 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-777 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-777 (-202)))))) (|:| |lsa| (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202))))))) (-5 *2 (-587 (-1067))) (-5 *1 (-243)))) (-4102 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202))))) (-5 *2 (-353)) (-5 *1 (-243)))) (-3276 (*1 *2 *3 *2) (-12 (-5 *2 (-959)) (-5 *3 (-1084)) (-5 *1 (-243)))) (-4101 (*1 *2 *3 *4) (-12 (-5 *3 (-290 (-202))) (-5 *4 (-707)) (-5 *2 (-587 (-1084))) (-5 *1 (-243)))) (-4084 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202))))) (-5 *2 (-587 (-1084))) (-5 *1 (-243)))) (-2706 (*1 *2 *3) (-12 (-5 *3 (-290 (-202))) (-5 *2 (-108)) (-5 *1 (-243)))) (-1397 (*1 *2 *2) (-12 (-5 *2 (-587 (-290 (-202)))) (-5 *1 (-243)))) (-3042 (*1 *2 *2) (-12 (-5 *2 (-587 (-290 (-202)))) (-5 *1 (-243)))) (-3080 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-290 (-202)))) (-5 *4 (-707)) (-5 *2 (-627 (-202))) (-5 *1 (-243)))) (-1879 (*1 *2 *3) (-12 (-5 *3 (-290 (-202))) (-5 *2 (-108)) (-5 *1 (-243)))) (-1879 (*1 *2 *3) (-12 (-5 *3 (-587 (-290 (-202)))) (-5 *2 (-108)) (-5 *1 (-243)))) (-2280 (*1 *2 *3) (-12 (-5 *3 (-587 (-290 (-202)))) (-5 *2 (-108)) (-5 *1 (-243)))) (-1687 (*1 *2 *2) (-12 (-5 *2 (-290 (-202))) (-5 *1 (-243)))) (-4040 (*1 *2 *2) (|partial| -12 (-5 *2 (-290 (-202))) (-5 *1 (-243)))) (-2462 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-777 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-777 (-202)))))) (-5 *1 (-243)))) (-2208 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-777 (-202)))) (-5 *4 (-202)) (-5 *2 (-587 *4)) (-5 *1 (-243)))))
+(-10 -7 (-15 -2208 ((-587 (-202)) (-587 (-777 (-202))) (-202))) (-15 -2462 ((-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-777 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-777 (-202))))) (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-777 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-777 (-202))))))) (-15 -4040 ((-3 (-290 (-202)) "failed") (-290 (-202)))) (-15 -1687 ((-290 (-202)) (-290 (-202)))) (-15 -2280 ((-108) (-587 (-290 (-202))))) (-15 -1879 ((-108) (-587 (-290 (-202))))) (-15 -1879 ((-108) (-290 (-202)))) (-15 -3080 ((-627 (-202)) (-587 (-290 (-202))) (-707))) (-15 -3042 ((-587 (-290 (-202))) (-587 (-290 (-202))))) (-15 -1397 ((-587 (-290 (-202))) (-587 (-290 (-202))))) (-15 -2706 ((-108) (-290 (-202)))) (-15 -4084 ((-587 (-1084)) (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202)))))) (-15 -4101 ((-587 (-1084)) (-290 (-202)) (-707))) (-15 -3276 ((-959) (-1084) (-959))) (-15 -4102 ((-353) (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202)))))) (-15 -3175 ((-587 (-1067)) (-3 (|:| |noa| (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-777 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-777 (-202)))))) (|:| |lsa| (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202)))))))))
+((-1415 (((-108) $ $) NIL)) (-1635 (((-959) (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202))))) NIL) (((-959) (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-777 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-777 (-202)))))) 39)) (-1797 (((-2 (|:| -1797 (-353)) (|:| |explanations| (-1067))) (-982) (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-777 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-777 (-202)))))) 20) (((-2 (|:| -1797 (-353)) (|:| |explanations| (-1067))) (-982) (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202))))) NIL)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2189 (((-792) $) NIL)) (-1531 (((-108) $ $) NIL)))
+(((-244) (-773)) (T -244))
+NIL
+(-773)
+((-1415 (((-108) $ $) NIL)) (-1635 (((-959) (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202))))) 54) (((-959) (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-777 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-777 (-202)))))) 49)) (-1797 (((-2 (|:| -1797 (-353)) (|:| |explanations| (-1067))) (-982) (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-777 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-777 (-202)))))) 29) (((-2 (|:| -1797 (-353)) (|:| |explanations| (-1067))) (-982) (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202))))) 31)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2189 (((-792) $) NIL)) (-1531 (((-108) $ $) NIL)))
+(((-245) (-773)) (T -245))
+NIL
+(-773)
+((-1415 (((-108) $ $) NIL)) (-1635 (((-959) (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202))))) 73) (((-959) (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-777 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-777 (-202)))))) 69)) (-1797 (((-2 (|:| -1797 (-353)) (|:| |explanations| (-1067))) (-982) (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-777 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-777 (-202)))))) 40) (((-2 (|:| -1797 (-353)) (|:| |explanations| (-1067))) (-982) (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202))))) 51)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2189 (((-792) $) NIL)) (-1531 (((-108) $ $) NIL)))
+(((-246) (-773)) (T -246))
+NIL
+(-773)
+((-1415 (((-108) $ $) NIL)) (-1635 (((-959) (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202))))) NIL) (((-959) (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-777 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-777 (-202)))))) 48)) (-1797 (((-2 (|:| -1797 (-353)) (|:| |explanations| (-1067))) (-982) (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-777 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-777 (-202)))))) 27) (((-2 (|:| -1797 (-353)) (|:| |explanations| (-1067))) (-982) (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202))))) NIL)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2189 (((-792) $) NIL)) (-1531 (((-108) $ $) NIL)))
+(((-247) (-773)) (T -247))
+NIL
+(-773)
+((-1415 (((-108) $ $) NIL)) (-1635 (((-959) (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202))))) NIL) (((-959) (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-777 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-777 (-202)))))) 48)) (-1797 (((-2 (|:| -1797 (-353)) (|:| |explanations| (-1067))) (-982) (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-777 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-777 (-202)))))) 23) (((-2 (|:| -1797 (-353)) (|:| |explanations| (-1067))) (-982) (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202))))) NIL)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2189 (((-792) $) NIL)) (-1531 (((-108) $ $) NIL)))
+(((-248) (-773)) (T -248))
+NIL
+(-773)
+((-1415 (((-108) $ $) NIL)) (-1635 (((-959) (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202))))) NIL) (((-959) (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-777 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-777 (-202)))))) 69)) (-1797 (((-2 (|:| -1797 (-353)) (|:| |explanations| (-1067))) (-982) (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-777 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-777 (-202)))))) 23) (((-2 (|:| -1797 (-353)) (|:| |explanations| (-1067))) (-982) (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202))))) NIL)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2189 (((-792) $) NIL)) (-1531 (((-108) $ $) NIL)))
+(((-249) (-773)) (T -249))
+NIL
+(-773)
+((-1415 (((-108) $ $) NIL)) (-1635 (((-959) (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202))))) NIL) (((-959) (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-777 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-777 (-202)))))) 73)) (-1797 (((-2 (|:| -1797 (-353)) (|:| |explanations| (-1067))) (-982) (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-777 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-777 (-202)))))) 19) (((-2 (|:| -1797 (-353)) (|:| |explanations| (-1067))) (-982) (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202))))) NIL)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2189 (((-792) $) NIL)) (-1531 (((-108) $ $) NIL)))
+(((-250) (-773)) (T -250))
+NIL
+(-773)
+((-1415 (((-108) $ $) NIL)) (-2810 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2202 (((-587 (-521)) $) 17)) (-1994 (((-707) $) 15)) (-2189 (((-792) $) 21) (($ (-587 (-521))) 13)) (-1576 (($ (-707)) 18)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) 9)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 11)))
+(((-251) (-13 (-784) (-10 -8 (-15 -2189 ($ (-587 (-521)))) (-15 -1994 ((-707) $)) (-15 -2202 ((-587 (-521)) $)) (-15 -1576 ($ (-707)))))) (T -251))
+((-2189 (*1 *1 *2) (-12 (-5 *2 (-587 (-521))) (-5 *1 (-251)))) (-1994 (*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-251)))) (-2202 (*1 *2 *1) (-12 (-5 *2 (-587 (-521))) (-5 *1 (-251)))) (-1576 (*1 *1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-251)))))
+(-13 (-784) (-10 -8 (-15 -2189 ($ (-587 (-521)))) (-15 -1994 ((-707) $)) (-15 -2202 ((-587 (-521)) $)) (-15 -1576 ($ (-707)))))
+((-2904 ((|#2| |#2|) 77)) (-2769 ((|#2| |#2|) 65)) (-3085 (((-3 |#2| "failed") |#2| (-587 (-2 (|:| |func| |#2|) (|:| |pole| (-108))))) 116)) (-2880 ((|#2| |#2|) 75)) (-2746 ((|#2| |#2|) 63)) (-2926 ((|#2| |#2|) 79)) (-2790 ((|#2| |#2|) 67)) (-2834 ((|#2|) 46)) (-2727 (((-110) (-110)) 95)) (-1253 ((|#2| |#2|) 61)) (-3621 (((-108) |#2|) 134)) (-2381 ((|#2| |#2|) 180)) (-2933 ((|#2| |#2|) 156)) (-2336 ((|#2|) 59)) (-2966 ((|#2|) 58)) (-2296 ((|#2| |#2|) 176)) (-1755 ((|#2| |#2|) 152)) (-3957 ((|#2| |#2|) 184)) (-2369 ((|#2| |#2|) 160)) (-1932 ((|#2| |#2|) 148)) (-3981 ((|#2| |#2|) 150)) (-3900 ((|#2| |#2|) 186)) (-3323 ((|#2| |#2|) 162)) (-1807 ((|#2| |#2|) 182)) (-1691 ((|#2| |#2|) 158)) (-2345 ((|#2| |#2|) 178)) (-2351 ((|#2| |#2|) 154)) (-1851 ((|#2| |#2|) 192)) (-3998 ((|#2| |#2|) 168)) (-2592 ((|#2| |#2|) 188)) (-2642 ((|#2| |#2|) 164)) (-1590 ((|#2| |#2|) 196)) (-3043 ((|#2| |#2|) 172)) (-3906 ((|#2| |#2|) 198)) (-3625 ((|#2| |#2|) 174)) (-1424 ((|#2| |#2|) 194)) (-2640 ((|#2| |#2|) 170)) (-3914 ((|#2| |#2|) 190)) (-3491 ((|#2| |#2|) 166)) (-3261 ((|#2| |#2|) 62)) (-1738 ((|#2| |#2|) 80)) (-2800 ((|#2| |#2|) 68)) (-2915 ((|#2| |#2|) 78)) (-2780 ((|#2| |#2|) 66)) (-2892 ((|#2| |#2|) 76)) (-2758 ((|#2| |#2|) 64)) (-1455 (((-108) (-110)) 93)) (-1759 ((|#2| |#2|) 83)) (-2832 ((|#2| |#2|) 71)) (-1745 ((|#2| |#2|) 81)) (-2811 ((|#2| |#2|) 69)) (-1776 ((|#2| |#2|) 85)) (-2856 ((|#2| |#2|) 73)) (-3919 ((|#2| |#2|) 86)) (-2868 ((|#2| |#2|) 74)) (-1768 ((|#2| |#2|) 84)) (-2844 ((|#2| |#2|) 72)) (-1752 ((|#2| |#2|) 82)) (-2821 ((|#2| |#2|) 70)))
+(((-252 |#1| |#2|) (-10 -7 (-15 -3261 (|#2| |#2|)) (-15 -1253 (|#2| |#2|)) (-15 -2746 (|#2| |#2|)) (-15 -2758 (|#2| |#2|)) (-15 -2769 (|#2| |#2|)) (-15 -2780 (|#2| |#2|)) (-15 -2790 (|#2| |#2|)) (-15 -2800 (|#2| |#2|)) (-15 -2811 (|#2| |#2|)) (-15 -2821 (|#2| |#2|)) (-15 -2832 (|#2| |#2|)) (-15 -2844 (|#2| |#2|)) (-15 -2856 (|#2| |#2|)) (-15 -2868 (|#2| |#2|)) (-15 -2880 (|#2| |#2|)) (-15 -2892 (|#2| |#2|)) (-15 -2904 (|#2| |#2|)) (-15 -2915 (|#2| |#2|)) (-15 -2926 (|#2| |#2|)) (-15 -1738 (|#2| |#2|)) (-15 -1745 (|#2| |#2|)) (-15 -1752 (|#2| |#2|)) (-15 -1759 (|#2| |#2|)) (-15 -1768 (|#2| |#2|)) (-15 -1776 (|#2| |#2|)) (-15 -3919 (|#2| |#2|)) (-15 -2834 (|#2|)) (-15 -1455 ((-108) (-110))) (-15 -2727 ((-110) (-110))) (-15 -2966 (|#2|)) (-15 -2336 (|#2|)) (-15 -3981 (|#2| |#2|)) (-15 -1932 (|#2| |#2|)) (-15 -1755 (|#2| |#2|)) (-15 -2351 (|#2| |#2|)) (-15 -2933 (|#2| |#2|)) (-15 -1691 (|#2| |#2|)) (-15 -2369 (|#2| |#2|)) (-15 -3323 (|#2| |#2|)) (-15 -2642 (|#2| |#2|)) (-15 -3491 (|#2| |#2|)) (-15 -3998 (|#2| |#2|)) (-15 -2640 (|#2| |#2|)) (-15 -3043 (|#2| |#2|)) (-15 -3625 (|#2| |#2|)) (-15 -2296 (|#2| |#2|)) (-15 -2345 (|#2| |#2|)) (-15 -2381 (|#2| |#2|)) (-15 -1807 (|#2| |#2|)) (-15 -3957 (|#2| |#2|)) (-15 -3900 (|#2| |#2|)) (-15 -2592 (|#2| |#2|)) (-15 -3914 (|#2| |#2|)) (-15 -1851 (|#2| |#2|)) (-15 -1424 (|#2| |#2|)) (-15 -1590 (|#2| |#2|)) (-15 -3906 (|#2| |#2|)) (-15 -3085 ((-3 |#2| "failed") |#2| (-587 (-2 (|:| |func| |#2|) (|:| |pole| (-108)))))) (-15 -3621 ((-108) |#2|))) (-13 (-784) (-513)) (-13 (-404 |#1|) (-927))) (T -252))
+((-3621 (*1 *2 *3) (-12 (-4 *4 (-13 (-784) (-513))) (-5 *2 (-108)) (-5 *1 (-252 *4 *3)) (-4 *3 (-13 (-404 *4) (-927))))) (-3085 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-587 (-2 (|:| |func| *2) (|:| |pole| (-108))))) (-4 *2 (-13 (-404 *4) (-927))) (-4 *4 (-13 (-784) (-513))) (-5 *1 (-252 *4 *2)))) (-3906 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-1590 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-1424 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-1851 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-3914 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-2592 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-3900 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-3957 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-1807 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-2381 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-2345 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-2296 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-3625 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-3043 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-2640 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-3998 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-3491 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-2642 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-3323 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-2369 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-1691 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-2933 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-2351 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-1755 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-1932 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-3981 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-2336 (*1 *2) (-12 (-4 *2 (-13 (-404 *3) (-927))) (-5 *1 (-252 *3 *2)) (-4 *3 (-13 (-784) (-513))))) (-2966 (*1 *2) (-12 (-4 *2 (-13 (-404 *3) (-927))) (-5 *1 (-252 *3 *2)) (-4 *3 (-13 (-784) (-513))))) (-2727 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *4)) (-4 *4 (-13 (-404 *3) (-927))))) (-1455 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *4 (-13 (-784) (-513))) (-5 *2 (-108)) (-5 *1 (-252 *4 *5)) (-4 *5 (-13 (-404 *4) (-927))))) (-2834 (*1 *2) (-12 (-4 *2 (-13 (-404 *3) (-927))) (-5 *1 (-252 *3 *2)) (-4 *3 (-13 (-784) (-513))))) (-3919 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-1776 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-1768 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-1759 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-1752 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-1745 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-1738 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-2926 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-2915 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-2904 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-2892 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-2880 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-2868 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-2856 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-2844 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-2832 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-2821 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-2811 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-2800 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-2790 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-2780 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-2769 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-2758 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-2746 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-1253 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-3261 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))))
+(-10 -7 (-15 -3261 (|#2| |#2|)) (-15 -1253 (|#2| |#2|)) (-15 -2746 (|#2| |#2|)) (-15 -2758 (|#2| |#2|)) (-15 -2769 (|#2| |#2|)) (-15 -2780 (|#2| |#2|)) (-15 -2790 (|#2| |#2|)) (-15 -2800 (|#2| |#2|)) (-15 -2811 (|#2| |#2|)) (-15 -2821 (|#2| |#2|)) (-15 -2832 (|#2| |#2|)) (-15 -2844 (|#2| |#2|)) (-15 -2856 (|#2| |#2|)) (-15 -2868 (|#2| |#2|)) (-15 -2880 (|#2| |#2|)) (-15 -2892 (|#2| |#2|)) (-15 -2904 (|#2| |#2|)) (-15 -2915 (|#2| |#2|)) (-15 -2926 (|#2| |#2|)) (-15 -1738 (|#2| |#2|)) (-15 -1745 (|#2| |#2|)) (-15 -1752 (|#2| |#2|)) (-15 -1759 (|#2| |#2|)) (-15 -1768 (|#2| |#2|)) (-15 -1776 (|#2| |#2|)) (-15 -3919 (|#2| |#2|)) (-15 -2834 (|#2|)) (-15 -1455 ((-108) (-110))) (-15 -2727 ((-110) (-110))) (-15 -2966 (|#2|)) (-15 -2336 (|#2|)) (-15 -3981 (|#2| |#2|)) (-15 -1932 (|#2| |#2|)) (-15 -1755 (|#2| |#2|)) (-15 -2351 (|#2| |#2|)) (-15 -2933 (|#2| |#2|)) (-15 -1691 (|#2| |#2|)) (-15 -2369 (|#2| |#2|)) (-15 -3323 (|#2| |#2|)) (-15 -2642 (|#2| |#2|)) (-15 -3491 (|#2| |#2|)) (-15 -3998 (|#2| |#2|)) (-15 -2640 (|#2| |#2|)) (-15 -3043 (|#2| |#2|)) (-15 -3625 (|#2| |#2|)) (-15 -2296 (|#2| |#2|)) (-15 -2345 (|#2| |#2|)) (-15 -2381 (|#2| |#2|)) (-15 -1807 (|#2| |#2|)) (-15 -3957 (|#2| |#2|)) (-15 -3900 (|#2| |#2|)) (-15 -2592 (|#2| |#2|)) (-15 -3914 (|#2| |#2|)) (-15 -1851 (|#2| |#2|)) (-15 -1424 (|#2| |#2|)) (-15 -1590 (|#2| |#2|)) (-15 -3906 (|#2| |#2|)) (-15 -3085 ((-3 |#2| "failed") |#2| (-587 (-2 (|:| |func| |#2|) (|:| |pole| (-108)))))) (-15 -3621 ((-108) |#2|)))
+((-1438 (((-3 |#2| "failed") (-587 (-560 |#2|)) |#2| (-1084)) 133)) (-3247 ((|#2| (-381 (-521)) |#2|) 50)) (-2434 ((|#2| |#2| (-560 |#2|)) 126)) (-3674 (((-2 (|:| |func| |#2|) (|:| |kers| (-587 (-560 |#2|))) (|:| |vals| (-587 |#2|))) |#2| (-1084)) 125)) (-3617 ((|#2| |#2| (-1084)) 19) ((|#2| |#2|) 22)) (-3244 ((|#2| |#2| (-1084)) 139) ((|#2| |#2|) 137)))
+(((-253 |#1| |#2|) (-10 -7 (-15 -3244 (|#2| |#2|)) (-15 -3244 (|#2| |#2| (-1084))) (-15 -3674 ((-2 (|:| |func| |#2|) (|:| |kers| (-587 (-560 |#2|))) (|:| |vals| (-587 |#2|))) |#2| (-1084))) (-15 -3617 (|#2| |#2|)) (-15 -3617 (|#2| |#2| (-1084))) (-15 -1438 ((-3 |#2| "failed") (-587 (-560 |#2|)) |#2| (-1084))) (-15 -2434 (|#2| |#2| (-560 |#2|))) (-15 -3247 (|#2| (-381 (-521)) |#2|))) (-13 (-513) (-784) (-961 (-521)) (-583 (-521))) (-13 (-27) (-1105) (-404 |#1|))) (T -253))
+((-3247 (*1 *2 *3 *2) (-12 (-5 *3 (-381 (-521))) (-4 *4 (-13 (-513) (-784) (-961 (-521)) (-583 (-521)))) (-5 *1 (-253 *4 *2)) (-4 *2 (-13 (-27) (-1105) (-404 *4))))) (-2434 (*1 *2 *2 *3) (-12 (-5 *3 (-560 *2)) (-4 *2 (-13 (-27) (-1105) (-404 *4))) (-4 *4 (-13 (-513) (-784) (-961 (-521)) (-583 (-521)))) (-5 *1 (-253 *4 *2)))) (-1438 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-587 (-560 *2))) (-5 *4 (-1084)) (-4 *2 (-13 (-27) (-1105) (-404 *5))) (-4 *5 (-13 (-513) (-784) (-961 (-521)) (-583 (-521)))) (-5 *1 (-253 *5 *2)))) (-3617 (*1 *2 *2 *3) (-12 (-5 *3 (-1084)) (-4 *4 (-13 (-513) (-784) (-961 (-521)) (-583 (-521)))) (-5 *1 (-253 *4 *2)) (-4 *2 (-13 (-27) (-1105) (-404 *4))))) (-3617 (*1 *2 *2) (-12 (-4 *3 (-13 (-513) (-784) (-961 (-521)) (-583 (-521)))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-27) (-1105) (-404 *3))))) (-3674 (*1 *2 *3 *4) (-12 (-5 *4 (-1084)) (-4 *5 (-13 (-513) (-784) (-961 (-521)) (-583 (-521)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-587 (-560 *3))) (|:| |vals| (-587 *3)))) (-5 *1 (-253 *5 *3)) (-4 *3 (-13 (-27) (-1105) (-404 *5))))) (-3244 (*1 *2 *2 *3) (-12 (-5 *3 (-1084)) (-4 *4 (-13 (-513) (-784) (-961 (-521)) (-583 (-521)))) (-5 *1 (-253 *4 *2)) (-4 *2 (-13 (-27) (-1105) (-404 *4))))) (-3244 (*1 *2 *2) (-12 (-4 *3 (-13 (-513) (-784) (-961 (-521)) (-583 (-521)))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-27) (-1105) (-404 *3))))))
+(-10 -7 (-15 -3244 (|#2| |#2|)) (-15 -3244 (|#2| |#2| (-1084))) (-15 -3674 ((-2 (|:| |func| |#2|) (|:| |kers| (-587 (-560 |#2|))) (|:| |vals| (-587 |#2|))) |#2| (-1084))) (-15 -3617 (|#2| |#2|)) (-15 -3617 (|#2| |#2| (-1084))) (-15 -1438 ((-3 |#2| "failed") (-587 (-560 |#2|)) |#2| (-1084))) (-15 -2434 (|#2| |#2| (-560 |#2|))) (-15 -3247 (|#2| (-381 (-521)) |#2|)))
+((-3197 (((-3 |#3| "failed") |#3|) 110)) (-2904 ((|#3| |#3|) 131)) (-1839 (((-3 |#3| "failed") |#3|) 82)) (-2769 ((|#3| |#3|) 121)) (-4006 (((-3 |#3| "failed") |#3|) 58)) (-2880 ((|#3| |#3|) 129)) (-3762 (((-3 |#3| "failed") |#3|) 46)) (-2746 ((|#3| |#3|) 119)) (-2112 (((-3 |#3| "failed") |#3|) 112)) (-2926 ((|#3| |#3|) 133)) (-2450 (((-3 |#3| "failed") |#3|) 84)) (-2790 ((|#3| |#3|) 123)) (-2066 (((-3 |#3| "failed") |#3| (-707)) 36)) (-2206 (((-3 |#3| "failed") |#3|) 74)) (-1253 ((|#3| |#3|) 118)) (-1982 (((-3 |#3| "failed") |#3|) 44)) (-3261 ((|#3| |#3|) 117)) (-2972 (((-3 |#3| "failed") |#3|) 113)) (-1738 ((|#3| |#3|) 134)) (-4184 (((-3 |#3| "failed") |#3|) 85)) (-2800 ((|#3| |#3|) 124)) (-2498 (((-3 |#3| "failed") |#3|) 111)) (-2915 ((|#3| |#3|) 132)) (-3773 (((-3 |#3| "failed") |#3|) 83)) (-2780 ((|#3| |#3|) 122)) (-3142 (((-3 |#3| "failed") |#3|) 60)) (-2892 ((|#3| |#3|) 130)) (-3685 (((-3 |#3| "failed") |#3|) 48)) (-2758 ((|#3| |#3|) 120)) (-1471 (((-3 |#3| "failed") |#3|) 66)) (-1759 ((|#3| |#3|) 137)) (-3824 (((-3 |#3| "failed") |#3|) 104)) (-2832 ((|#3| |#3|) 142)) (-2059 (((-3 |#3| "failed") |#3|) 62)) (-1745 ((|#3| |#3|) 135)) (-2574 (((-3 |#3| "failed") |#3|) 50)) (-2811 ((|#3| |#3|) 125)) (-2699 (((-3 |#3| "failed") |#3|) 70)) (-1776 ((|#3| |#3|) 139)) (-1551 (((-3 |#3| "failed") |#3|) 54)) (-2856 ((|#3| |#3|) 127)) (-1911 (((-3 |#3| "failed") |#3|) 72)) (-3919 ((|#3| |#3|) 140)) (-1303 (((-3 |#3| "failed") |#3|) 56)) (-2868 ((|#3| |#3|) 128)) (-2533 (((-3 |#3| "failed") |#3|) 68)) (-1768 ((|#3| |#3|) 138)) (-1456 (((-3 |#3| "failed") |#3|) 107)) (-2844 ((|#3| |#3|) 143)) (-1929 (((-3 |#3| "failed") |#3|) 64)) (-1752 ((|#3| |#3|) 136)) (-3316 (((-3 |#3| "failed") |#3|) 52)) (-2821 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-381 (-521))) 40 (|has| |#1| (-337)))))
+(((-254 |#1| |#2| |#3|) (-13 (-909 |#3|) (-10 -7 (IF (|has| |#1| (-337)) (-15 ** (|#3| |#3| (-381 (-521)))) |%noBranch|) (-15 -3261 (|#3| |#3|)) (-15 -1253 (|#3| |#3|)) (-15 -2746 (|#3| |#3|)) (-15 -2758 (|#3| |#3|)) (-15 -2769 (|#3| |#3|)) (-15 -2780 (|#3| |#3|)) (-15 -2790 (|#3| |#3|)) (-15 -2800 (|#3| |#3|)) (-15 -2811 (|#3| |#3|)) (-15 -2821 (|#3| |#3|)) (-15 -2832 (|#3| |#3|)) (-15 -2844 (|#3| |#3|)) (-15 -2856 (|#3| |#3|)) (-15 -2868 (|#3| |#3|)) (-15 -2880 (|#3| |#3|)) (-15 -2892 (|#3| |#3|)) (-15 -2904 (|#3| |#3|)) (-15 -2915 (|#3| |#3|)) (-15 -2926 (|#3| |#3|)) (-15 -1738 (|#3| |#3|)) (-15 -1745 (|#3| |#3|)) (-15 -1752 (|#3| |#3|)) (-15 -1759 (|#3| |#3|)) (-15 -1768 (|#3| |#3|)) (-15 -1776 (|#3| |#3|)) (-15 -3919 (|#3| |#3|)))) (-37 (-381 (-521))) (-1156 |#1|) (-1127 |#1| |#2|)) (T -254))
+((** (*1 *2 *2 *3) (-12 (-5 *3 (-381 (-521))) (-4 *4 (-337)) (-4 *4 (-37 *3)) (-4 *5 (-1156 *4)) (-5 *1 (-254 *4 *5 *2)) (-4 *2 (-1127 *4 *5)))) (-3261 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4)))) (-1253 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4)))) (-2746 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4)))) (-2758 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4)))) (-2769 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4)))) (-2780 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4)))) (-2790 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4)))) (-2800 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4)))) (-2811 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4)))) (-2821 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4)))) (-2832 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4)))) (-2844 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4)))) (-2856 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4)))) (-2868 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4)))) (-2880 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4)))) (-2892 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4)))) (-2904 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4)))) (-2915 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4)))) (-2926 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4)))) (-1738 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4)))) (-1745 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4)))) (-1752 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4)))) (-1759 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4)))) (-1768 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4)))) (-1776 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4)))) (-3919 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4)))))
+(-13 (-909 |#3|) (-10 -7 (IF (|has| |#1| (-337)) (-15 ** (|#3| |#3| (-381 (-521)))) |%noBranch|) (-15 -3261 (|#3| |#3|)) (-15 -1253 (|#3| |#3|)) (-15 -2746 (|#3| |#3|)) (-15 -2758 (|#3| |#3|)) (-15 -2769 (|#3| |#3|)) (-15 -2780 (|#3| |#3|)) (-15 -2790 (|#3| |#3|)) (-15 -2800 (|#3| |#3|)) (-15 -2811 (|#3| |#3|)) (-15 -2821 (|#3| |#3|)) (-15 -2832 (|#3| |#3|)) (-15 -2844 (|#3| |#3|)) (-15 -2856 (|#3| |#3|)) (-15 -2868 (|#3| |#3|)) (-15 -2880 (|#3| |#3|)) (-15 -2892 (|#3| |#3|)) (-15 -2904 (|#3| |#3|)) (-15 -2915 (|#3| |#3|)) (-15 -2926 (|#3| |#3|)) (-15 -1738 (|#3| |#3|)) (-15 -1745 (|#3| |#3|)) (-15 -1752 (|#3| |#3|)) (-15 -1759 (|#3| |#3|)) (-15 -1768 (|#3| |#3|)) (-15 -1776 (|#3| |#3|)) (-15 -3919 (|#3| |#3|))))
+((-3197 (((-3 |#3| "failed") |#3|) 66)) (-2904 ((|#3| |#3|) 133)) (-1839 (((-3 |#3| "failed") |#3|) 50)) (-2769 ((|#3| |#3|) 121)) (-4006 (((-3 |#3| "failed") |#3|) 62)) (-2880 ((|#3| |#3|) 131)) (-3762 (((-3 |#3| "failed") |#3|) 46)) (-2746 ((|#3| |#3|) 119)) (-2112 (((-3 |#3| "failed") |#3|) 70)) (-2926 ((|#3| |#3|) 135)) (-2450 (((-3 |#3| "failed") |#3|) 54)) (-2790 ((|#3| |#3|) 123)) (-2066 (((-3 |#3| "failed") |#3| (-707)) 35)) (-2206 (((-3 |#3| "failed") |#3|) 44)) (-1253 ((|#3| |#3|) 112)) (-1982 (((-3 |#3| "failed") |#3|) 42)) (-3261 ((|#3| |#3|) 118)) (-2972 (((-3 |#3| "failed") |#3|) 72)) (-1738 ((|#3| |#3|) 136)) (-4184 (((-3 |#3| "failed") |#3|) 56)) (-2800 ((|#3| |#3|) 124)) (-2498 (((-3 |#3| "failed") |#3|) 68)) (-2915 ((|#3| |#3|) 134)) (-3773 (((-3 |#3| "failed") |#3|) 52)) (-2780 ((|#3| |#3|) 122)) (-3142 (((-3 |#3| "failed") |#3|) 64)) (-2892 ((|#3| |#3|) 132)) (-3685 (((-3 |#3| "failed") |#3|) 48)) (-2758 ((|#3| |#3|) 120)) (-1471 (((-3 |#3| "failed") |#3|) 78)) (-1759 ((|#3| |#3|) 139)) (-3824 (((-3 |#3| "failed") |#3|) 58)) (-2832 ((|#3| |#3|) 127)) (-2059 (((-3 |#3| "failed") |#3|) 74)) (-1745 ((|#3| |#3|) 137)) (-2574 (((-3 |#3| "failed") |#3|) 102)) (-2811 ((|#3| |#3|) 125)) (-2699 (((-3 |#3| "failed") |#3|) 82)) (-1776 ((|#3| |#3|) 141)) (-1551 (((-3 |#3| "failed") |#3|) 109)) (-2856 ((|#3| |#3|) 129)) (-1911 (((-3 |#3| "failed") |#3|) 84)) (-3919 ((|#3| |#3|) 142)) (-1303 (((-3 |#3| "failed") |#3|) 111)) (-2868 ((|#3| |#3|) 130)) (-2533 (((-3 |#3| "failed") |#3|) 80)) (-1768 ((|#3| |#3|) 140)) (-1456 (((-3 |#3| "failed") |#3|) 60)) (-2844 ((|#3| |#3|) 128)) (-1929 (((-3 |#3| "failed") |#3|) 76)) (-1752 ((|#3| |#3|) 138)) (-3316 (((-3 |#3| "failed") |#3|) 105)) (-2821 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-381 (-521))) 40 (|has| |#1| (-337)))))
+(((-255 |#1| |#2| |#3| |#4|) (-13 (-909 |#3|) (-10 -7 (IF (|has| |#1| (-337)) (-15 ** (|#3| |#3| (-381 (-521)))) |%noBranch|) (-15 -3261 (|#3| |#3|)) (-15 -1253 (|#3| |#3|)) (-15 -2746 (|#3| |#3|)) (-15 -2758 (|#3| |#3|)) (-15 -2769 (|#3| |#3|)) (-15 -2780 (|#3| |#3|)) (-15 -2790 (|#3| |#3|)) (-15 -2800 (|#3| |#3|)) (-15 -2811 (|#3| |#3|)) (-15 -2821 (|#3| |#3|)) (-15 -2832 (|#3| |#3|)) (-15 -2844 (|#3| |#3|)) (-15 -2856 (|#3| |#3|)) (-15 -2868 (|#3| |#3|)) (-15 -2880 (|#3| |#3|)) (-15 -2892 (|#3| |#3|)) (-15 -2904 (|#3| |#3|)) (-15 -2915 (|#3| |#3|)) (-15 -2926 (|#3| |#3|)) (-15 -1738 (|#3| |#3|)) (-15 -1745 (|#3| |#3|)) (-15 -1752 (|#3| |#3|)) (-15 -1759 (|#3| |#3|)) (-15 -1768 (|#3| |#3|)) (-15 -1776 (|#3| |#3|)) (-15 -3919 (|#3| |#3|)))) (-37 (-381 (-521))) (-1125 |#1|) (-1148 |#1| |#2|) (-909 |#2|)) (T -255))
+((** (*1 *2 *2 *3) (-12 (-5 *3 (-381 (-521))) (-4 *4 (-337)) (-4 *4 (-37 *3)) (-4 *5 (-1125 *4)) (-5 *1 (-255 *4 *5 *2 *6)) (-4 *2 (-1148 *4 *5)) (-4 *6 (-909 *5)))) (-3261 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4)))) (-1253 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4)))) (-2746 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4)))) (-2758 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4)))) (-2769 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4)))) (-2780 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4)))) (-2790 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4)))) (-2800 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4)))) (-2811 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4)))) (-2821 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4)))) (-2832 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4)))) (-2844 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4)))) (-2856 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4)))) (-2868 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4)))) (-2880 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4)))) (-2892 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4)))) (-2904 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4)))) (-2915 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4)))) (-2926 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4)))) (-1738 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4)))) (-1745 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4)))) (-1752 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4)))) (-1759 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4)))) (-1768 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4)))) (-1776 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4)))) (-3919 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4)))))
+(-13 (-909 |#3|) (-10 -7 (IF (|has| |#1| (-337)) (-15 ** (|#3| |#3| (-381 (-521)))) |%noBranch|) (-15 -3261 (|#3| |#3|)) (-15 -1253 (|#3| |#3|)) (-15 -2746 (|#3| |#3|)) (-15 -2758 (|#3| |#3|)) (-15 -2769 (|#3| |#3|)) (-15 -2780 (|#3| |#3|)) (-15 -2790 (|#3| |#3|)) (-15 -2800 (|#3| |#3|)) (-15 -2811 (|#3| |#3|)) (-15 -2821 (|#3| |#3|)) (-15 -2832 (|#3| |#3|)) (-15 -2844 (|#3| |#3|)) (-15 -2856 (|#3| |#3|)) (-15 -2868 (|#3| |#3|)) (-15 -2880 (|#3| |#3|)) (-15 -2892 (|#3| |#3|)) (-15 -2904 (|#3| |#3|)) (-15 -2915 (|#3| |#3|)) (-15 -2926 (|#3| |#3|)) (-15 -1738 (|#3| |#3|)) (-15 -1745 (|#3| |#3|)) (-15 -1752 (|#3| |#3|)) (-15 -1759 (|#3| |#3|)) (-15 -1768 (|#3| |#3|)) (-15 -1776 (|#3| |#3|)) (-15 -3919 (|#3| |#3|))))
+((-1628 (($ (-1 (-108) |#2|) $) 23)) (-2332 (($ $) 36)) (-3023 (($ (-1 (-108) |#2|) $) NIL) (($ |#2| $) 34)) (-1422 (($ |#2| $) 31) (($ (-1 (-108) |#2|) $) 17)) (-3220 (($ (-1 (-108) |#2| |#2|) $ $) NIL) (($ $ $) 40)) (-1659 (($ |#2| $ (-521)) 19) (($ $ $ (-521)) 21)) (-3691 (($ $ (-521)) 11) (($ $ (-1132 (-521))) 14)) (-3980 (($ $ |#2|) 29) (($ $ $) NIL)) (-4159 (($ $ |#2|) 28) (($ |#2| $) NIL) (($ $ $) 25) (($ (-587 $)) NIL)))
+(((-256 |#1| |#2|) (-10 -8 (-15 -3220 (|#1| |#1| |#1|)) (-15 -3023 (|#1| |#2| |#1|)) (-15 -3220 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -3023 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3980 (|#1| |#1| |#1|)) (-15 -3980 (|#1| |#1| |#2|)) (-15 -1659 (|#1| |#1| |#1| (-521))) (-15 -1659 (|#1| |#2| |#1| (-521))) (-15 -3691 (|#1| |#1| (-1132 (-521)))) (-15 -3691 (|#1| |#1| (-521))) (-15 -4159 (|#1| (-587 |#1|))) (-15 -4159 (|#1| |#1| |#1|)) (-15 -4159 (|#1| |#2| |#1|)) (-15 -4159 (|#1| |#1| |#2|)) (-15 -1422 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -1628 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -1422 (|#1| |#2| |#1|)) (-15 -2332 (|#1| |#1|))) (-257 |#2|) (-1119)) (T -256))
+NIL
+(-10 -8 (-15 -3220 (|#1| |#1| |#1|)) (-15 -3023 (|#1| |#2| |#1|)) (-15 -3220 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -3023 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3980 (|#1| |#1| |#1|)) (-15 -3980 (|#1| |#1| |#2|)) (-15 -1659 (|#1| |#1| |#1| (-521))) (-15 -1659 (|#1| |#2| |#1| (-521))) (-15 -3691 (|#1| |#1| (-1132 (-521)))) (-15 -3691 (|#1| |#1| (-521))) (-15 -4159 (|#1| (-587 |#1|))) (-15 -4159 (|#1| |#1| |#1|)) (-15 -4159 (|#1| |#2| |#1|)) (-15 -4159 (|#1| |#1| |#2|)) (-15 -1422 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -1628 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -1422 (|#1| |#2| |#1|)) (-15 -2332 (|#1| |#1|)))
+((-1415 (((-108) $ $) 19 (|has| |#1| (-1013)))) (-1903 (((-1170) $ (-521) (-521)) 40 (|has| $ (-6 -4234)))) (-2978 (((-108) $ (-707)) 8)) (-2378 ((|#1| $ (-521) |#1|) 52 (|has| $ (-6 -4234))) ((|#1| $ (-1132 (-521)) |#1|) 58 (|has| $ (-6 -4234)))) (-4098 (($ (-1 (-108) |#1|) $) 85)) (-1628 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4233)))) (-2547 (($) 7 T CONST)) (-2468 (($ $) 83 (|has| |#1| (-1013)))) (-2332 (($ $) 78 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-3023 (($ (-1 (-108) |#1|) $) 89) (($ |#1| $) 84 (|has| |#1| (-1013)))) (-1422 (($ |#1| $) 77 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4233)))) (-3859 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4233)))) (-3849 ((|#1| $ (-521) |#1|) 53 (|has| $ (-6 -4234)))) (-3626 ((|#1| $ (-521)) 51)) (-3831 (((-587 |#1|) $) 30 (|has| $ (-6 -4233)))) (-1811 (($ (-707) |#1|) 69)) (-2139 (((-108) $ (-707)) 9)) (-2826 (((-521) $) 43 (|has| (-521) (-784)))) (-3220 (($ (-1 (-108) |#1| |#1|) $ $) 86) (($ $ $) 82 (|has| |#1| (-784)))) (-3757 (((-587 |#1|) $) 29 (|has| $ (-6 -4233)))) (-2221 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-2597 (((-521) $) 44 (|has| (-521) (-784)))) (-3833 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3574 (((-108) $ (-707)) 10)) (-3688 (((-1067) $) 22 (|has| |#1| (-1013)))) (-3373 (($ |#1| $ (-521)) 88) (($ $ $ (-521)) 87)) (-1659 (($ |#1| $ (-521)) 60) (($ $ $ (-521)) 59)) (-1668 (((-587 (-521)) $) 46)) (-2941 (((-108) (-521) $) 47)) (-4147 (((-1031) $) 21 (|has| |#1| (-1013)))) (-2293 ((|#1| $) 42 (|has| (-521) (-784)))) (-3620 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-3016 (($ $ |#1|) 41 (|has| $ (-6 -4234)))) (-1789 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 |#1|))) 26 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) 25 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) 23 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-2488 (((-108) $ $) 14)) (-3821 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2489 (((-587 |#1|) $) 48)) (-3462 (((-108) $) 11)) (-4024 (($) 12)) (-2544 ((|#1| $ (-521) |#1|) 50) ((|#1| $ (-521)) 49) (($ $ (-1132 (-521))) 63)) (-2859 (($ $ (-521)) 91) (($ $ (-1132 (-521))) 90)) (-3691 (($ $ (-521)) 62) (($ $ (-1132 (-521))) 61)) (-4163 (((-707) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4233))) (((-707) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-2404 (($ $) 13)) (-1430 (((-497) $) 79 (|has| |#1| (-562 (-497))))) (-2201 (($ (-587 |#1|)) 70)) (-3980 (($ $ |#1|) 93) (($ $ $) 92)) (-4159 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-587 $)) 65)) (-2189 (((-792) $) 18 (|has| |#1| (-561 (-792))))) (-3049 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4233)))) (-1531 (((-108) $ $) 20 (|has| |#1| (-1013)))) (-3475 (((-707) $) 6 (|has| $ (-6 -4233)))))
+(((-257 |#1|) (-1196) (-1119)) (T -257))
+((-3980 (*1 *1 *1 *2) (-12 (-4 *1 (-257 *2)) (-4 *2 (-1119)))) (-3980 (*1 *1 *1 *1) (-12 (-4 *1 (-257 *2)) (-4 *2 (-1119)))) (-2859 (*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-4 *1 (-257 *3)) (-4 *3 (-1119)))) (-2859 (*1 *1 *1 *2) (-12 (-5 *2 (-1132 (-521))) (-4 *1 (-257 *3)) (-4 *3 (-1119)))) (-3023 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-257 *3)) (-4 *3 (-1119)))) (-3373 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-521)) (-4 *1 (-257 *2)) (-4 *2 (-1119)))) (-3373 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-521)) (-4 *1 (-257 *3)) (-4 *3 (-1119)))) (-3220 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-257 *3)) (-4 *3 (-1119)))) (-4098 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-257 *3)) (-4 *3 (-1119)))) (-3023 (*1 *1 *2 *1) (-12 (-4 *1 (-257 *2)) (-4 *2 (-1119)) (-4 *2 (-1013)))) (-2468 (*1 *1 *1) (-12 (-4 *1 (-257 *2)) (-4 *2 (-1119)) (-4 *2 (-1013)))) (-3220 (*1 *1 *1 *1) (-12 (-4 *1 (-257 *2)) (-4 *2 (-1119)) (-4 *2 (-784)))))
+(-13 (-592 |t#1|) (-10 -8 (-6 -4234) (-15 -3980 ($ $ |t#1|)) (-15 -3980 ($ $ $)) (-15 -2859 ($ $ (-521))) (-15 -2859 ($ $ (-1132 (-521)))) (-15 -3023 ($ (-1 (-108) |t#1|) $)) (-15 -3373 ($ |t#1| $ (-521))) (-15 -3373 ($ $ $ (-521))) (-15 -3220 ($ (-1 (-108) |t#1| |t#1|) $ $)) (-15 -4098 ($ (-1 (-108) |t#1|) $)) (IF (|has| |t#1| (-1013)) (PROGN (-15 -3023 ($ |t#1| $)) (-15 -2468 ($ $))) |%noBranch|) (IF (|has| |t#1| (-784)) (-15 -3220 ($ $ $)) |%noBranch|)))
+(((-33) . T) ((-97) |has| |#1| (-1013)) ((-561 (-792)) -3703 (|has| |#1| (-1013)) (|has| |#1| (-561 (-792)))) ((-139 |#1|) . T) ((-562 (-497)) |has| |#1| (-562 (-497))) ((-261 #0=(-521) |#1|) . T) ((-263 #0# |#1|) . T) ((-284 |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-460 |#1|) . T) ((-554 #0# |#1|) . T) ((-482 |#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-592 |#1|) . T) ((-1013) |has| |#1| (-1013)) ((-1119) . T))
((** (($ $ $) 10)))
-(((-257 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-258)) (T -257))
+(((-258 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-259)) (T -258))
NIL
(-10 -8 (-15 ** (|#1| |#1| |#1|)))
-((-1252 (($ $) 6)) (-3260 (($ $) 7)) (** (($ $ $) 8)))
-(((-258) (-1195)) (T -258))
-((** (*1 *1 *1 *1) (-4 *1 (-258))) (-3260 (*1 *1 *1) (-4 *1 (-258))) (-1252 (*1 *1 *1) (-4 *1 (-258))))
-(-13 (-10 -8 (-15 -1252 ($ $)) (-15 -3260 ($ $)) (-15 ** ($ $ $))))
-((-2702 (((-586 (-1064 |#1|)) (-1064 |#1|) |#1|) 35)) (-4088 ((|#2| |#2| |#1|) 38)) (-2639 ((|#2| |#2| |#1|) 40)) (-2594 ((|#2| |#2| |#1|) 39)))
-(((-259 |#1| |#2|) (-10 -7 (-15 -4088 (|#2| |#2| |#1|)) (-15 -2594 (|#2| |#2| |#1|)) (-15 -2639 (|#2| |#2| |#1|)) (-15 -2702 ((-586 (-1064 |#1|)) (-1064 |#1|) |#1|))) (-336) (-1155 |#1|)) (T -259))
-((-2702 (*1 *2 *3 *4) (-12 (-4 *4 (-336)) (-5 *2 (-586 (-1064 *4))) (-5 *1 (-259 *4 *5)) (-5 *3 (-1064 *4)) (-4 *5 (-1155 *4)))) (-2639 (*1 *2 *2 *3) (-12 (-4 *3 (-336)) (-5 *1 (-259 *3 *2)) (-4 *2 (-1155 *3)))) (-2594 (*1 *2 *2 *3) (-12 (-4 *3 (-336)) (-5 *1 (-259 *3 *2)) (-4 *2 (-1155 *3)))) (-4088 (*1 *2 *2 *3) (-12 (-4 *3 (-336)) (-5 *1 (-259 *3 *2)) (-4 *2 (-1155 *3)))))
-(-10 -7 (-15 -4088 (|#2| |#2| |#1|)) (-15 -2594 (|#2| |#2| |#1|)) (-15 -2639 (|#2| |#2| |#1|)) (-15 -2702 ((-586 (-1064 |#1|)) (-1064 |#1|) |#1|)))
-((-2543 ((|#2| $ |#1|) 6)))
-(((-260 |#1| |#2|) (-1195) (-1012) (-1118)) (T -260))
-((-2543 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1118)))))
-(-13 (-10 -8 (-15 -2543 (|t#2| $ |t#1|))))
-((-3846 ((|#3| $ |#2| |#3|) 12)) (-3623 ((|#3| $ |#2|) 10)))
-(((-261 |#1| |#2| |#3|) (-10 -8 (-15 -3846 (|#3| |#1| |#2| |#3|)) (-15 -3623 (|#3| |#1| |#2|))) (-262 |#2| |#3|) (-1012) (-1118)) (T -261))
-NIL
-(-10 -8 (-15 -3846 (|#3| |#1| |#2| |#3|)) (-15 -3623 (|#3| |#1| |#2|)))
-((-2377 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4230)))) (-3846 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4230)))) (-3623 ((|#2| $ |#1|) 11)) (-2543 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12)))
-(((-262 |#1| |#2|) (-1195) (-1012) (-1118)) (T -262))
-((-2543 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-262 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1118)))) (-3623 (*1 *2 *1 *3) (-12 (-4 *1 (-262 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1118)))) (-2377 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4230)) (-4 *1 (-262 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1118)))) (-3846 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4230)) (-4 *1 (-262 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1118)))))
-(-13 (-260 |t#1| |t#2|) (-10 -8 (-15 -2543 (|t#2| $ |t#1| |t#2|)) (-15 -3623 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4230)) (PROGN (-15 -2377 (|t#2| $ |t#1| |t#2|)) (-15 -3846 (|t#2| $ |t#1| |t#2|))) |%noBranch|)))
-(((-260 |#1| |#2|) . T))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) 35)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) 40)) (-2583 (($ $) 38)) (-1671 (((-108) $) NIL)) (-1917 (((-3 $ "failed") $ $) NIL)) (-1327 (((-108) $ $) NIL)) (-3961 (($) NIL T CONST)) (-2276 (($ $ $) 33)) (-3856 (($ |#2| |#3|) 19)) (-1540 (((-3 $ "failed") $) NIL)) (-2253 (($ $ $) NIL)) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) NIL)) (-1537 (((-108) $) NIL)) (-3188 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-3178 ((|#3| $) NIL)) (-2222 (($ $ $) NIL) (($ (-586 $)) NIL)) (-1239 (((-1066) $) NIL)) (-3093 (($ $) 20)) (-4142 (((-1030) $) NIL)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) NIL)) (-2257 (($ $ $) NIL) (($ (-586 $)) NIL)) (-1283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2230 (((-3 $ "failed") $ $) NIL)) (-2608 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-1290 (((-3 $ "failed") $ $) NIL)) (-3704 (((-706) $) 34)) (-2543 ((|#2| $ |#2|) 42)) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) 24)) (-2188 (((-791) $) NIL) (($ (-520)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-3251 (((-706)) NIL)) (-2559 (((-108) $ $) NIL)) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (-3560 (($) 29 T CONST)) (-3570 (($) 36 T CONST)) (-1530 (((-108) $ $) NIL)) (-1611 (($ $) NIL) (($ $ $) NIL)) (-1601 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) 37)))
-(((-263 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-281) (-10 -8 (-15 -3178 (|#3| $)) (-15 -2188 (|#2| $)) (-15 -3856 ($ |#2| |#3|)) (-15 -1290 ((-3 $ "failed") $ $)) (-15 -1540 ((-3 $ "failed") $)) (-15 -3093 ($ $)) (-15 -2543 (|#2| $ |#2|)))) (-157) (-1140 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -263))
-((-1540 (*1 *1 *1) (|partial| -12 (-4 *2 (-157)) (-5 *1 (-263 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1140 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3178 (*1 *2 *1) (-12 (-4 *3 (-157)) (-4 *2 (-23)) (-5 *1 (-263 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1140 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-2188 (*1 *2 *1) (-12 (-4 *2 (-1140 *3)) (-5 *1 (-263 *3 *2 *4 *5 *6 *7)) (-4 *3 (-157)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-3856 (*1 *1 *2 *3) (-12 (-4 *4 (-157)) (-5 *1 (-263 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1140 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1290 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-157)) (-5 *1 (-263 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1140 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3093 (*1 *1 *1) (-12 (-4 *2 (-157)) (-5 *1 (-263 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1140 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2543 (*1 *2 *1 *2) (-12 (-4 *3 (-157)) (-5 *1 (-263 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1140 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))))
-(-13 (-281) (-10 -8 (-15 -3178 (|#3| $)) (-15 -2188 (|#2| $)) (-15 -3856 ($ |#2| |#3|)) (-15 -1290 ((-3 $ "failed") $ $)) (-15 -1540 ((-3 $ "failed") $)) (-15 -3093 ($ $)) (-15 -2543 (|#2| $ |#2|))))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-1917 (((-3 $ "failed") $ $) 19)) (-3961 (($) 17 T CONST)) (-1540 (((-3 $ "failed") $) 34)) (-1537 (((-108) $) 31)) (-1239 (((-1066) $) 9)) (-4142 (((-1030) $) 10)) (-2188 (((-791) $) 11) (($ (-520)) 28)) (-3251 (((-706)) 29)) (-3504 (($ $ (-849)) 26) (($ $ (-706)) 33)) (-3560 (($) 18 T CONST)) (-3570 (($) 30 T CONST)) (-1530 (((-108) $ $) 6)) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-706)) 32)) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ $ $) 24)))
-(((-264) (-1195)) (T -264))
-NIL
-(-13 (-969) (-107 $ $) (-10 -7 (-6 -4222)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-560 (-791)) . T) ((-588 $) . T) ((-662) . T) ((-975 $) . T) ((-969) . T) ((-976) . T) ((-1024) . T) ((-1012) . T))
-((-2659 (($ (-1083) (-1083) (-1016) $) 15)) (-2764 (($ (-1083) (-586 (-730)) $) 19)) (-2864 (((-586 (-999)) $) 8)) (-2969 (((-3 (-1016) "failed") (-1083) (-1083) $) 14)) (-1875 (((-3 (-586 (-730)) "failed") (-1083) $) 17)) (-2238 (($) 6)) (-3981 (($) 20)) (-2188 (((-791) $) 24)) (-1976 (($) 21)))
-(((-265) (-13 (-560 (-791)) (-10 -8 (-15 -2238 ($)) (-15 -2864 ((-586 (-999)) $)) (-15 -2969 ((-3 (-1016) "failed") (-1083) (-1083) $)) (-15 -2659 ($ (-1083) (-1083) (-1016) $)) (-15 -1875 ((-3 (-586 (-730)) "failed") (-1083) $)) (-15 -2764 ($ (-1083) (-586 (-730)) $)) (-15 -3981 ($)) (-15 -1976 ($))))) (T -265))
-((-2238 (*1 *1) (-5 *1 (-265))) (-2864 (*1 *2 *1) (-12 (-5 *2 (-586 (-999))) (-5 *1 (-265)))) (-2969 (*1 *2 *3 *3 *1) (|partial| -12 (-5 *3 (-1083)) (-5 *2 (-1016)) (-5 *1 (-265)))) (-2659 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-1083)) (-5 *3 (-1016)) (-5 *1 (-265)))) (-1875 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1083)) (-5 *2 (-586 (-730))) (-5 *1 (-265)))) (-2764 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1083)) (-5 *3 (-586 (-730))) (-5 *1 (-265)))) (-3981 (*1 *1) (-5 *1 (-265))) (-1976 (*1 *1) (-5 *1 (-265))))
-(-13 (-560 (-791)) (-10 -8 (-15 -2238 ($)) (-15 -2864 ((-586 (-999)) $)) (-15 -2969 ((-3 (-1016) "failed") (-1083) (-1083) $)) (-15 -2659 ($ (-1083) (-1083) (-1016) $)) (-15 -1875 ((-3 (-586 (-730)) "failed") (-1083) $)) (-15 -2764 ($ (-1083) (-586 (-730)) $)) (-15 -3981 ($)) (-15 -1976 ($))))
-((-3576 (((-586 (-2 (|:| |eigval| (-3 (-380 (-880 |#1|)) (-1073 (-1083) (-880 |#1|)))) (|:| |geneigvec| (-586 (-626 (-380 (-880 |#1|))))))) (-626 (-380 (-880 |#1|)))) 84)) (-1335 (((-586 (-626 (-380 (-880 |#1|)))) (-2 (|:| |eigval| (-3 (-380 (-880 |#1|)) (-1073 (-1083) (-880 |#1|)))) (|:| |eigmult| (-706)) (|:| |eigvec| (-586 (-626 (-380 (-880 |#1|)))))) (-626 (-380 (-880 |#1|)))) 79) (((-586 (-626 (-380 (-880 |#1|)))) (-3 (-380 (-880 |#1|)) (-1073 (-1083) (-880 |#1|))) (-626 (-380 (-880 |#1|))) (-706) (-706)) 37)) (-1742 (((-586 (-2 (|:| |eigval| (-3 (-380 (-880 |#1|)) (-1073 (-1083) (-880 |#1|)))) (|:| |eigmult| (-706)) (|:| |eigvec| (-586 (-626 (-380 (-880 |#1|))))))) (-626 (-380 (-880 |#1|)))) 81)) (-2942 (((-586 (-626 (-380 (-880 |#1|)))) (-3 (-380 (-880 |#1|)) (-1073 (-1083) (-880 |#1|))) (-626 (-380 (-880 |#1|)))) 61)) (-3229 (((-586 (-3 (-380 (-880 |#1|)) (-1073 (-1083) (-880 |#1|)))) (-626 (-380 (-880 |#1|)))) 60)) (-2948 (((-880 |#1|) (-626 (-380 (-880 |#1|)))) 48) (((-880 |#1|) (-626 (-380 (-880 |#1|))) (-1083)) 49)))
-(((-266 |#1|) (-10 -7 (-15 -2948 ((-880 |#1|) (-626 (-380 (-880 |#1|))) (-1083))) (-15 -2948 ((-880 |#1|) (-626 (-380 (-880 |#1|))))) (-15 -3229 ((-586 (-3 (-380 (-880 |#1|)) (-1073 (-1083) (-880 |#1|)))) (-626 (-380 (-880 |#1|))))) (-15 -2942 ((-586 (-626 (-380 (-880 |#1|)))) (-3 (-380 (-880 |#1|)) (-1073 (-1083) (-880 |#1|))) (-626 (-380 (-880 |#1|))))) (-15 -1335 ((-586 (-626 (-380 (-880 |#1|)))) (-3 (-380 (-880 |#1|)) (-1073 (-1083) (-880 |#1|))) (-626 (-380 (-880 |#1|))) (-706) (-706))) (-15 -1335 ((-586 (-626 (-380 (-880 |#1|)))) (-2 (|:| |eigval| (-3 (-380 (-880 |#1|)) (-1073 (-1083) (-880 |#1|)))) (|:| |eigmult| (-706)) (|:| |eigvec| (-586 (-626 (-380 (-880 |#1|)))))) (-626 (-380 (-880 |#1|))))) (-15 -3576 ((-586 (-2 (|:| |eigval| (-3 (-380 (-880 |#1|)) (-1073 (-1083) (-880 |#1|)))) (|:| |geneigvec| (-586 (-626 (-380 (-880 |#1|))))))) (-626 (-380 (-880 |#1|))))) (-15 -1742 ((-586 (-2 (|:| |eigval| (-3 (-380 (-880 |#1|)) (-1073 (-1083) (-880 |#1|)))) (|:| |eigmult| (-706)) (|:| |eigvec| (-586 (-626 (-380 (-880 |#1|))))))) (-626 (-380 (-880 |#1|)))))) (-424)) (T -266))
-((-1742 (*1 *2 *3) (-12 (-4 *4 (-424)) (-5 *2 (-586 (-2 (|:| |eigval| (-3 (-380 (-880 *4)) (-1073 (-1083) (-880 *4)))) (|:| |eigmult| (-706)) (|:| |eigvec| (-586 (-626 (-380 (-880 *4)))))))) (-5 *1 (-266 *4)) (-5 *3 (-626 (-380 (-880 *4)))))) (-3576 (*1 *2 *3) (-12 (-4 *4 (-424)) (-5 *2 (-586 (-2 (|:| |eigval| (-3 (-380 (-880 *4)) (-1073 (-1083) (-880 *4)))) (|:| |geneigvec| (-586 (-626 (-380 (-880 *4)))))))) (-5 *1 (-266 *4)) (-5 *3 (-626 (-380 (-880 *4)))))) (-1335 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-380 (-880 *5)) (-1073 (-1083) (-880 *5)))) (|:| |eigmult| (-706)) (|:| |eigvec| (-586 *4)))) (-4 *5 (-424)) (-5 *2 (-586 (-626 (-380 (-880 *5))))) (-5 *1 (-266 *5)) (-5 *4 (-626 (-380 (-880 *5)))))) (-1335 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-380 (-880 *6)) (-1073 (-1083) (-880 *6)))) (-5 *5 (-706)) (-4 *6 (-424)) (-5 *2 (-586 (-626 (-380 (-880 *6))))) (-5 *1 (-266 *6)) (-5 *4 (-626 (-380 (-880 *6)))))) (-2942 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-380 (-880 *5)) (-1073 (-1083) (-880 *5)))) (-4 *5 (-424)) (-5 *2 (-586 (-626 (-380 (-880 *5))))) (-5 *1 (-266 *5)) (-5 *4 (-626 (-380 (-880 *5)))))) (-3229 (*1 *2 *3) (-12 (-5 *3 (-626 (-380 (-880 *4)))) (-4 *4 (-424)) (-5 *2 (-586 (-3 (-380 (-880 *4)) (-1073 (-1083) (-880 *4))))) (-5 *1 (-266 *4)))) (-2948 (*1 *2 *3) (-12 (-5 *3 (-626 (-380 (-880 *4)))) (-5 *2 (-880 *4)) (-5 *1 (-266 *4)) (-4 *4 (-424)))) (-2948 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-380 (-880 *5)))) (-5 *4 (-1083)) (-5 *2 (-880 *5)) (-5 *1 (-266 *5)) (-4 *5 (-424)))))
-(-10 -7 (-15 -2948 ((-880 |#1|) (-626 (-380 (-880 |#1|))) (-1083))) (-15 -2948 ((-880 |#1|) (-626 (-380 (-880 |#1|))))) (-15 -3229 ((-586 (-3 (-380 (-880 |#1|)) (-1073 (-1083) (-880 |#1|)))) (-626 (-380 (-880 |#1|))))) (-15 -2942 ((-586 (-626 (-380 (-880 |#1|)))) (-3 (-380 (-880 |#1|)) (-1073 (-1083) (-880 |#1|))) (-626 (-380 (-880 |#1|))))) (-15 -1335 ((-586 (-626 (-380 (-880 |#1|)))) (-3 (-380 (-880 |#1|)) (-1073 (-1083) (-880 |#1|))) (-626 (-380 (-880 |#1|))) (-706) (-706))) (-15 -1335 ((-586 (-626 (-380 (-880 |#1|)))) (-2 (|:| |eigval| (-3 (-380 (-880 |#1|)) (-1073 (-1083) (-880 |#1|)))) (|:| |eigmult| (-706)) (|:| |eigvec| (-586 (-626 (-380 (-880 |#1|)))))) (-626 (-380 (-880 |#1|))))) (-15 -3576 ((-586 (-2 (|:| |eigval| (-3 (-380 (-880 |#1|)) (-1073 (-1083) (-880 |#1|)))) (|:| |geneigvec| (-586 (-626 (-380 (-880 |#1|))))))) (-626 (-380 (-880 |#1|))))) (-15 -1742 ((-586 (-2 (|:| |eigval| (-3 (-380 (-880 |#1|)) (-1073 (-1083) (-880 |#1|)))) (|:| |eigmult| (-706)) (|:| |eigvec| (-586 (-626 (-380 (-880 |#1|))))))) (-626 (-380 (-880 |#1|))))))
-((-1389 (((-268 |#2|) (-1 |#2| |#1|) (-268 |#1|)) 14)))
-(((-267 |#1| |#2|) (-10 -7 (-15 -1389 ((-268 |#2|) (-1 |#2| |#1|) (-268 |#1|)))) (-1118) (-1118)) (T -267))
-((-1389 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-268 *5)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-5 *2 (-268 *6)) (-5 *1 (-267 *5 *6)))))
-(-10 -7 (-15 -1389 ((-268 |#2|) (-1 |#2| |#1|) (-268 |#1|))))
-((-1414 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-2906 (((-108) $) NIL (|has| |#1| (-21)))) (-4063 (($ $) 22)) (-1917 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3299 (($ $ $) 93 (|has| |#1| (-276)))) (-3961 (($) NIL (-3700 (|has| |#1| (-21)) (|has| |#1| (-662))) CONST)) (-3543 (($ $) 8 (|has| |#1| (-21)))) (-3807 (((-3 $ "failed") $) 68 (|has| |#1| (-662)))) (-3595 ((|#1| $) 21)) (-1540 (((-3 $ "failed") $) 66 (|has| |#1| (-662)))) (-1537 (((-108) $) NIL (|has| |#1| (-662)))) (-1389 (($ (-1 |#1| |#1|) $) 24)) (-3586 ((|#1| $) 9)) (-1445 (($ $) 57 (|has| |#1| (-21)))) (-2021 (((-3 $ "failed") $) 67 (|has| |#1| (-662)))) (-1239 (((-1066) $) NIL (|has| |#1| (-1012)))) (-3093 (($ $) 70 (-3700 (|has| |#1| (-336)) (|has| |#1| (-445))))) (-4142 (((-1030) $) NIL (|has| |#1| (-1012)))) (-1312 (((-586 $) $) 19 (|has| |#1| (-512)))) (-2286 (($ $ $) 34 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-586 $)) 37 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-1083) |#1|) 27 (|has| |#1| (-481 (-1083) |#1|))) (($ $ (-586 (-1083)) (-586 |#1|)) 31 (|has| |#1| (-481 (-1083) |#1|)))) (-1607 (($ |#1| |#1|) 17)) (-1556 (((-126)) 88 (|has| |#1| (-336)))) (-2155 (($ $ (-586 (-1083)) (-586 (-706))) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-1083) (-706)) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-586 (-1083))) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-1083)) 85 (|has| |#1| (-828 (-1083))))) (-2945 (($ $ $) NIL (|has| |#1| (-445)))) (-3607 (($ $ $) NIL (|has| |#1| (-445)))) (-2188 (($ (-520)) NIL (|has| |#1| (-969))) (((-108) $) 45 (|has| |#1| (-1012))) (((-791) $) 44 (|has| |#1| (-1012)))) (-3251 (((-706)) 73 (|has| |#1| (-969)))) (-3504 (($ $ (-520)) NIL (|has| |#1| (-445))) (($ $ (-706)) NIL (|has| |#1| (-662))) (($ $ (-849)) NIL (|has| |#1| (-1024)))) (-3560 (($) 55 (|has| |#1| (-21)) CONST)) (-3570 (($) 63 (|has| |#1| (-662)) CONST)) (-2211 (($ $ (-586 (-1083)) (-586 (-706))) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-1083) (-706)) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-586 (-1083))) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-1083)) NIL (|has| |#1| (-828 (-1083))))) (-1530 (($ |#1| |#1|) 20) (((-108) $ $) 40 (|has| |#1| (-1012)))) (-1619 (($ $ |#1|) NIL (|has| |#1| (-336))) (($ $ $) 90 (-3700 (|has| |#1| (-336)) (|has| |#1| (-445))))) (-1611 (($ |#1| $) 53 (|has| |#1| (-21))) (($ $ |#1|) 54 (|has| |#1| (-21))) (($ $ $) 52 (|has| |#1| (-21))) (($ $) 51 (|has| |#1| (-21)))) (-1601 (($ |#1| $) 48 (|has| |#1| (-25))) (($ $ |#1|) 49 (|has| |#1| (-25))) (($ $ $) 47 (|has| |#1| (-25)))) (** (($ $ (-520)) NIL (|has| |#1| (-445))) (($ $ (-706)) NIL (|has| |#1| (-662))) (($ $ (-849)) NIL (|has| |#1| (-1024)))) (* (($ $ |#1|) 61 (|has| |#1| (-1024))) (($ |#1| $) 60 (|has| |#1| (-1024))) (($ $ $) 59 (|has| |#1| (-1024))) (($ (-520) $) 76 (|has| |#1| (-21))) (($ (-706) $) NIL (|has| |#1| (-21))) (($ (-849) $) NIL (|has| |#1| (-25)))))
-(((-268 |#1|) (-13 (-1118) (-10 -8 (-15 -1530 ($ |#1| |#1|)) (-15 -1607 ($ |#1| |#1|)) (-15 -4063 ($ $)) (-15 -3586 (|#1| $)) (-15 -3595 (|#1| $)) (-15 -1389 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-481 (-1083) |#1|)) (-6 (-481 (-1083) |#1|)) |%noBranch|) (IF (|has| |#1| (-1012)) (PROGN (-6 (-1012)) (-6 (-560 (-108))) (IF (|has| |#1| (-283 |#1|)) (PROGN (-15 -2286 ($ $ $)) (-15 -2286 ($ $ (-586 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -1601 ($ |#1| $)) (-15 -1601 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1445 ($ $)) (-15 -3543 ($ $)) (-15 -1611 ($ |#1| $)) (-15 -1611 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1024)) (PROGN (-6 (-1024)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-662)) (PROGN (-6 (-662)) (-15 -2021 ((-3 $ "failed") $)) (-15 -3807 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-445)) (PROGN (-6 (-445)) (-15 -2021 ((-3 $ "failed") $)) (-15 -3807 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-969)) (PROGN (-6 (-969)) (-6 (-107 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-157)) (-6 (-653 |#1|)) |%noBranch|) (IF (|has| |#1| (-512)) (-15 -1312 ((-586 $) $)) |%noBranch|) (IF (|has| |#1| (-828 (-1083))) (-6 (-828 (-1083))) |%noBranch|) (IF (|has| |#1| (-336)) (PROGN (-6 (-1171 |#1|)) (-15 -1619 ($ $ $)) (-15 -3093 ($ $))) |%noBranch|) (IF (|has| |#1| (-276)) (-15 -3299 ($ $ $)) |%noBranch|))) (-1118)) (T -268))
-((-1530 (*1 *1 *2 *2) (-12 (-5 *1 (-268 *2)) (-4 *2 (-1118)))) (-1607 (*1 *1 *2 *2) (-12 (-5 *1 (-268 *2)) (-4 *2 (-1118)))) (-4063 (*1 *1 *1) (-12 (-5 *1 (-268 *2)) (-4 *2 (-1118)))) (-3586 (*1 *2 *1) (-12 (-5 *1 (-268 *2)) (-4 *2 (-1118)))) (-3595 (*1 *2 *1) (-12 (-5 *1 (-268 *2)) (-4 *2 (-1118)))) (-1389 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1118)) (-5 *1 (-268 *3)))) (-2286 (*1 *1 *1 *1) (-12 (-4 *2 (-283 *2)) (-4 *2 (-1012)) (-4 *2 (-1118)) (-5 *1 (-268 *2)))) (-2286 (*1 *1 *1 *2) (-12 (-5 *2 (-586 (-268 *3))) (-4 *3 (-283 *3)) (-4 *3 (-1012)) (-4 *3 (-1118)) (-5 *1 (-268 *3)))) (-1601 (*1 *1 *2 *1) (-12 (-5 *1 (-268 *2)) (-4 *2 (-25)) (-4 *2 (-1118)))) (-1601 (*1 *1 *1 *2) (-12 (-5 *1 (-268 *2)) (-4 *2 (-25)) (-4 *2 (-1118)))) (-1445 (*1 *1 *1) (-12 (-5 *1 (-268 *2)) (-4 *2 (-21)) (-4 *2 (-1118)))) (-3543 (*1 *1 *1) (-12 (-5 *1 (-268 *2)) (-4 *2 (-21)) (-4 *2 (-1118)))) (-1611 (*1 *1 *2 *1) (-12 (-5 *1 (-268 *2)) (-4 *2 (-21)) (-4 *2 (-1118)))) (-1611 (*1 *1 *1 *2) (-12 (-5 *1 (-268 *2)) (-4 *2 (-21)) (-4 *2 (-1118)))) (-2021 (*1 *1 *1) (|partial| -12 (-5 *1 (-268 *2)) (-4 *2 (-662)) (-4 *2 (-1118)))) (-3807 (*1 *1 *1) (|partial| -12 (-5 *1 (-268 *2)) (-4 *2 (-662)) (-4 *2 (-1118)))) (-1312 (*1 *2 *1) (-12 (-5 *2 (-586 (-268 *3))) (-5 *1 (-268 *3)) (-4 *3 (-512)) (-4 *3 (-1118)))) (-3299 (*1 *1 *1 *1) (-12 (-5 *1 (-268 *2)) (-4 *2 (-276)) (-4 *2 (-1118)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-268 *2)) (-4 *2 (-1024)) (-4 *2 (-1118)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-268 *2)) (-4 *2 (-1024)) (-4 *2 (-1118)))) (-1619 (*1 *1 *1 *1) (-3700 (-12 (-5 *1 (-268 *2)) (-4 *2 (-336)) (-4 *2 (-1118))) (-12 (-5 *1 (-268 *2)) (-4 *2 (-445)) (-4 *2 (-1118))))) (-3093 (*1 *1 *1) (-3700 (-12 (-5 *1 (-268 *2)) (-4 *2 (-336)) (-4 *2 (-1118))) (-12 (-5 *1 (-268 *2)) (-4 *2 (-445)) (-4 *2 (-1118))))))
-(-13 (-1118) (-10 -8 (-15 -1530 ($ |#1| |#1|)) (-15 -1607 ($ |#1| |#1|)) (-15 -4063 ($ $)) (-15 -3586 (|#1| $)) (-15 -3595 (|#1| $)) (-15 -1389 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-481 (-1083) |#1|)) (-6 (-481 (-1083) |#1|)) |%noBranch|) (IF (|has| |#1| (-1012)) (PROGN (-6 (-1012)) (-6 (-560 (-108))) (IF (|has| |#1| (-283 |#1|)) (PROGN (-15 -2286 ($ $ $)) (-15 -2286 ($ $ (-586 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -1601 ($ |#1| $)) (-15 -1601 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1445 ($ $)) (-15 -3543 ($ $)) (-15 -1611 ($ |#1| $)) (-15 -1611 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1024)) (PROGN (-6 (-1024)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-662)) (PROGN (-6 (-662)) (-15 -2021 ((-3 $ "failed") $)) (-15 -3807 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-445)) (PROGN (-6 (-445)) (-15 -2021 ((-3 $ "failed") $)) (-15 -3807 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-969)) (PROGN (-6 (-969)) (-6 (-107 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-157)) (-6 (-653 |#1|)) |%noBranch|) (IF (|has| |#1| (-512)) (-15 -1312 ((-586 $) $)) |%noBranch|) (IF (|has| |#1| (-828 (-1083))) (-6 (-828 (-1083))) |%noBranch|) (IF (|has| |#1| (-336)) (PROGN (-6 (-1171 |#1|)) (-15 -1619 ($ $ $)) (-15 -3093 ($ $))) |%noBranch|) (IF (|has| |#1| (-276)) (-15 -3299 ($ $ $)) |%noBranch|)))
-((-1414 (((-108) $ $) NIL (-3700 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)) (|has| |#2| (-1012))))) (-1799 (($) NIL) (($ (-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) NIL)) (-1476 (((-1169) $ |#1| |#1|) NIL (|has| $ (-6 -4230)))) (-2063 (((-108) $ (-706)) NIL)) (-2377 ((|#2| $ |#1| |#2|) NIL)) (-1817 (($ (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4229)))) (-1627 (($ (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4229)))) (-2747 (((-3 |#2| "failed") |#1| $) NIL)) (-3961 (($) NIL T CONST)) (-2331 (($ $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012))))) (-3766 (($ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) NIL (|has| $ (-6 -4229))) (($ (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4229))) (((-3 |#2| "failed") |#1| $) NIL)) (-1421 (($ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (($ (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4229)))) (-3856 (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) NIL (-12 (|has| $ (-6 -4229)) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) NIL (|has| $ (-6 -4229))) (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4229)))) (-3846 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4230)))) (-3623 ((|#2| $ |#1|) NIL)) (-3828 (((-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4229))) (((-586 |#2|) $) NIL (|has| $ (-6 -4229)))) (-3027 (((-108) $ (-706)) NIL)) (-2567 ((|#1| $) NIL (|has| |#1| (-783)))) (-3702 (((-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4229))) (((-586 |#2|) $) NIL (|has| $ (-6 -4229)))) (-2422 (((-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#2| (-1012))))) (-1752 ((|#1| $) NIL (|has| |#1| (-783)))) (-3830 (($ (-1 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4230))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4230)))) (-1389 (($ (-1 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1390 (((-108) $ (-706)) NIL)) (-1239 (((-1066) $) NIL (-3700 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)) (|has| |#2| (-1012))))) (-2960 (((-586 |#1|) $) NIL)) (-1612 (((-108) |#1| $) NIL)) (-3351 (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) NIL)) (-3618 (($ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) NIL)) (-3622 (((-586 |#1|) $) NIL)) (-2603 (((-108) |#1| $) NIL)) (-4142 (((-1030) $) NIL (-3700 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)) (|has| |#2| (-1012))))) (-2293 ((|#2| $) NIL (|has| |#1| (-783)))) (-2985 (((-3 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) "failed") (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL)) (-2936 (($ $ |#2|) NIL (|has| $ (-6 -4230)))) (-3345 (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) NIL)) (-4155 (((-108) (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4229))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))))) NIL (-12 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-283 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (($ $ (-268 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) NIL (-12 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-283 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (($ $ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) NIL (-12 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-283 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (($ $ (-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) (-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) NIL (-12 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-283 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (($ $ (-586 |#2|) (-586 |#2|)) NIL (-12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012)))) (($ $ (-268 |#2|)) NIL (-12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012)))) (($ $ (-586 (-268 |#2|))) NIL (-12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012))))) (-2533 (((-108) $ $) NIL)) (-2094 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#2| (-1012))))) (-1523 (((-586 |#2|) $) NIL)) (-4018 (((-108) $) NIL)) (-2238 (($) NIL)) (-2543 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1645 (($) NIL) (($ (-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) NIL)) (-4159 (((-706) (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4229))) (((-706) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (((-706) |#2| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#2| (-1012)))) (((-706) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4229)))) (-2403 (($ $) NIL)) (-1429 (((-496) $) NIL (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-561 (-496))))) (-2200 (($ (-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) NIL)) (-2188 (((-791) $) NIL (-3700 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-560 (-791))) (|has| |#2| (-560 (-791)))))) (-1898 (($ (-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) NIL)) (-1662 (((-108) (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4229))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4229)))) (-1530 (((-108) $ $) NIL (-3700 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)) (|has| |#2| (-1012))))) (-3474 (((-706) $) NIL (|has| $ (-6 -4229)))))
-(((-269 |#1| |#2|) (-13 (-1095 |#1| |#2|) (-10 -7 (-6 -4229))) (-1012) (-1012)) (T -269))
-NIL
-(-13 (-1095 |#1| |#2|) (-10 -7 (-6 -4229)))
-((-2967 (((-285) (-1066) (-586 (-1066))) 16) (((-285) (-1066) (-1066)) 15) (((-285) (-586 (-1066))) 14) (((-285) (-1066)) 12)))
-(((-270) (-10 -7 (-15 -2967 ((-285) (-1066))) (-15 -2967 ((-285) (-586 (-1066)))) (-15 -2967 ((-285) (-1066) (-1066))) (-15 -2967 ((-285) (-1066) (-586 (-1066)))))) (T -270))
-((-2967 (*1 *2 *3 *4) (-12 (-5 *4 (-586 (-1066))) (-5 *3 (-1066)) (-5 *2 (-285)) (-5 *1 (-270)))) (-2967 (*1 *2 *3 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-285)) (-5 *1 (-270)))) (-2967 (*1 *2 *3) (-12 (-5 *3 (-586 (-1066))) (-5 *2 (-285)) (-5 *1 (-270)))) (-2967 (*1 *2 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-285)) (-5 *1 (-270)))))
-(-10 -7 (-15 -2967 ((-285) (-1066))) (-15 -2967 ((-285) (-586 (-1066)))) (-15 -2967 ((-285) (-1066) (-1066))) (-15 -2967 ((-285) (-1066) (-586 (-1066)))))
-((-1389 ((|#2| (-1 |#2| |#1|) (-1066) (-559 |#1|)) 17)))
-(((-271 |#1| |#2|) (-10 -7 (-15 -1389 (|#2| (-1 |#2| |#1|) (-1066) (-559 |#1|)))) (-276) (-1118)) (T -271))
-((-1389 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1066)) (-5 *5 (-559 *6)) (-4 *6 (-276)) (-4 *2 (-1118)) (-5 *1 (-271 *6 *2)))))
-(-10 -7 (-15 -1389 (|#2| (-1 |#2| |#1|) (-1066) (-559 |#1|))))
-((-1389 ((|#2| (-1 |#2| |#1|) (-559 |#1|)) 17)))
-(((-272 |#1| |#2|) (-10 -7 (-15 -1389 (|#2| (-1 |#2| |#1|) (-559 |#1|)))) (-276) (-276)) (T -272))
-((-1389 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-559 *5)) (-4 *5 (-276)) (-4 *2 (-276)) (-5 *1 (-272 *5 *2)))))
-(-10 -7 (-15 -1389 (|#2| (-1 |#2| |#1|) (-559 |#1|))))
-((-2070 (((-108) (-201)) 10)))
-(((-273 |#1| |#2|) (-10 -7 (-15 -2070 ((-108) (-201)))) (-201) (-201)) (T -273))
-((-2070 (*1 *2 *3) (-12 (-5 *3 (-201)) (-5 *2 (-108)) (-5 *1 (-273 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
-(-10 -7 (-15 -2070 ((-108) (-201))))
-((-3953 (((-1064 (-201)) (-289 (-201)) (-586 (-1083)) (-1007 (-776 (-201)))) 88)) (-3565 (((-1064 (-201)) (-1164 (-289 (-201))) (-586 (-1083)) (-1007 (-776 (-201)))) 103) (((-1064 (-201)) (-289 (-201)) (-586 (-1083)) (-1007 (-776 (-201)))) 58)) (-1492 (((-586 (-1066)) (-1064 (-201))) NIL)) (-1790 (((-586 (-201)) (-289 (-201)) (-1083) (-1007 (-776 (-201)))) 55)) (-3037 (((-586 (-201)) (-880 (-380 (-520))) (-1083) (-1007 (-776 (-201)))) 47)) (-3359 (((-586 (-1066)) (-586 (-201))) NIL)) (-2281 (((-201) (-1007 (-776 (-201)))) 23)) (-1466 (((-201) (-1007 (-776 (-201)))) 24)) (-2930 (((-108) (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 51)) (-2125 (((-1066) (-201)) NIL)))
-(((-274) (-10 -7 (-15 -2281 ((-201) (-1007 (-776 (-201))))) (-15 -1466 ((-201) (-1007 (-776 (-201))))) (-15 -2930 ((-108) (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))) (-15 -1790 ((-586 (-201)) (-289 (-201)) (-1083) (-1007 (-776 (-201))))) (-15 -3953 ((-1064 (-201)) (-289 (-201)) (-586 (-1083)) (-1007 (-776 (-201))))) (-15 -3565 ((-1064 (-201)) (-289 (-201)) (-586 (-1083)) (-1007 (-776 (-201))))) (-15 -3565 ((-1064 (-201)) (-1164 (-289 (-201))) (-586 (-1083)) (-1007 (-776 (-201))))) (-15 -3037 ((-586 (-201)) (-880 (-380 (-520))) (-1083) (-1007 (-776 (-201))))) (-15 -2125 ((-1066) (-201))) (-15 -3359 ((-586 (-1066)) (-586 (-201)))) (-15 -1492 ((-586 (-1066)) (-1064 (-201)))))) (T -274))
-((-1492 (*1 *2 *3) (-12 (-5 *3 (-1064 (-201))) (-5 *2 (-586 (-1066))) (-5 *1 (-274)))) (-3359 (*1 *2 *3) (-12 (-5 *3 (-586 (-201))) (-5 *2 (-586 (-1066))) (-5 *1 (-274)))) (-2125 (*1 *2 *3) (-12 (-5 *3 (-201)) (-5 *2 (-1066)) (-5 *1 (-274)))) (-3037 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-880 (-380 (-520)))) (-5 *4 (-1083)) (-5 *5 (-1007 (-776 (-201)))) (-5 *2 (-586 (-201))) (-5 *1 (-274)))) (-3565 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1164 (-289 (-201)))) (-5 *4 (-586 (-1083))) (-5 *5 (-1007 (-776 (-201)))) (-5 *2 (-1064 (-201))) (-5 *1 (-274)))) (-3565 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-289 (-201))) (-5 *4 (-586 (-1083))) (-5 *5 (-1007 (-776 (-201)))) (-5 *2 (-1064 (-201))) (-5 *1 (-274)))) (-3953 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-289 (-201))) (-5 *4 (-586 (-1083))) (-5 *5 (-1007 (-776 (-201)))) (-5 *2 (-1064 (-201))) (-5 *1 (-274)))) (-1790 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-289 (-201))) (-5 *4 (-1083)) (-5 *5 (-1007 (-776 (-201)))) (-5 *2 (-586 (-201))) (-5 *1 (-274)))) (-2930 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (-5 *2 (-108)) (-5 *1 (-274)))) (-1466 (*1 *2 *3) (-12 (-5 *3 (-1007 (-776 (-201)))) (-5 *2 (-201)) (-5 *1 (-274)))) (-2281 (*1 *2 *3) (-12 (-5 *3 (-1007 (-776 (-201)))) (-5 *2 (-201)) (-5 *1 (-274)))))
-(-10 -7 (-15 -2281 ((-201) (-1007 (-776 (-201))))) (-15 -1466 ((-201) (-1007 (-776 (-201))))) (-15 -2930 ((-108) (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))) (-15 -1790 ((-586 (-201)) (-289 (-201)) (-1083) (-1007 (-776 (-201))))) (-15 -3953 ((-1064 (-201)) (-289 (-201)) (-586 (-1083)) (-1007 (-776 (-201))))) (-15 -3565 ((-1064 (-201)) (-289 (-201)) (-586 (-1083)) (-1007 (-776 (-201))))) (-15 -3565 ((-1064 (-201)) (-1164 (-289 (-201))) (-586 (-1083)) (-1007 (-776 (-201))))) (-15 -3037 ((-586 (-201)) (-880 (-380 (-520))) (-1083) (-1007 (-776 (-201))))) (-15 -2125 ((-1066) (-201))) (-15 -3359 ((-586 (-1066)) (-586 (-201)))) (-15 -1492 ((-586 (-1066)) (-1064 (-201)))))
-((-1883 (((-586 (-559 $)) $) 28)) (-3299 (($ $ (-268 $)) 81) (($ $ (-586 (-268 $))) 121) (($ $ (-586 (-559 $)) (-586 $)) NIL)) (-1296 (((-3 (-559 $) "failed") $) 111)) (-1482 (((-559 $) $) 110)) (-1255 (($ $) 19) (($ (-586 $)) 55)) (-3357 (((-586 (-110)) $) 37)) (-3877 (((-110) (-110)) 91)) (-2777 (((-108) $) 129)) (-1389 (($ (-1 $ $) (-559 $)) 89)) (-2690 (((-3 (-559 $) "failed") $) 93)) (-2904 (($ (-110) $) 61) (($ (-110) (-586 $)) 99)) (-1784 (((-108) $ (-110)) 115) (((-108) $ (-1083)) 114)) (-4146 (((-706) $) 45)) (-4134 (((-108) $ $) 59) (((-108) $ (-1083)) 50)) (-3615 (((-108) $) 127)) (-2286 (($ $ (-559 $) $) NIL) (($ $ (-586 (-559 $)) (-586 $)) NIL) (($ $ (-586 (-268 $))) 119) (($ $ (-268 $)) NIL) (($ $ $ $) NIL) (($ $ (-586 $) (-586 $)) NIL) (($ $ (-586 (-1083)) (-586 (-1 $ $))) 84) (($ $ (-586 (-1083)) (-586 (-1 $ (-586 $)))) NIL) (($ $ (-1083) (-1 $ (-586 $))) 69) (($ $ (-1083) (-1 $ $)) 75) (($ $ (-586 (-110)) (-586 (-1 $ $))) 83) (($ $ (-586 (-110)) (-586 (-1 $ (-586 $)))) 85) (($ $ (-110) (-1 $ (-586 $))) 71) (($ $ (-110) (-1 $ $)) 77)) (-2543 (($ (-110) $) 62) (($ (-110) $ $) 63) (($ (-110) $ $ $) 64) (($ (-110) $ $ $ $) 65) (($ (-110) (-586 $)) 107)) (-3453 (($ $) 52) (($ $ $) 117)) (-2319 (($ $) 17) (($ (-586 $)) 54)) (-1373 (((-108) (-110)) 22)))
-(((-275 |#1|) (-10 -8 (-15 -2777 ((-108) |#1|)) (-15 -3615 ((-108) |#1|)) (-15 -2286 (|#1| |#1| (-110) (-1 |#1| |#1|))) (-15 -2286 (|#1| |#1| (-110) (-1 |#1| (-586 |#1|)))) (-15 -2286 (|#1| |#1| (-586 (-110)) (-586 (-1 |#1| (-586 |#1|))))) (-15 -2286 (|#1| |#1| (-586 (-110)) (-586 (-1 |#1| |#1|)))) (-15 -2286 (|#1| |#1| (-1083) (-1 |#1| |#1|))) (-15 -2286 (|#1| |#1| (-1083) (-1 |#1| (-586 |#1|)))) (-15 -2286 (|#1| |#1| (-586 (-1083)) (-586 (-1 |#1| (-586 |#1|))))) (-15 -2286 (|#1| |#1| (-586 (-1083)) (-586 (-1 |#1| |#1|)))) (-15 -4134 ((-108) |#1| (-1083))) (-15 -4134 ((-108) |#1| |#1|)) (-15 -1389 (|#1| (-1 |#1| |#1|) (-559 |#1|))) (-15 -2904 (|#1| (-110) (-586 |#1|))) (-15 -2904 (|#1| (-110) |#1|)) (-15 -1784 ((-108) |#1| (-1083))) (-15 -1784 ((-108) |#1| (-110))) (-15 -1373 ((-108) (-110))) (-15 -3877 ((-110) (-110))) (-15 -3357 ((-586 (-110)) |#1|)) (-15 -1883 ((-586 (-559 |#1|)) |#1|)) (-15 -2690 ((-3 (-559 |#1|) "failed") |#1|)) (-15 -4146 ((-706) |#1|)) (-15 -3453 (|#1| |#1| |#1|)) (-15 -3453 (|#1| |#1|)) (-15 -1255 (|#1| (-586 |#1|))) (-15 -1255 (|#1| |#1|)) (-15 -2319 (|#1| (-586 |#1|))) (-15 -2319 (|#1| |#1|)) (-15 -3299 (|#1| |#1| (-586 (-559 |#1|)) (-586 |#1|))) (-15 -3299 (|#1| |#1| (-586 (-268 |#1|)))) (-15 -3299 (|#1| |#1| (-268 |#1|))) (-15 -2543 (|#1| (-110) (-586 |#1|))) (-15 -2543 (|#1| (-110) |#1| |#1| |#1| |#1|)) (-15 -2543 (|#1| (-110) |#1| |#1| |#1|)) (-15 -2543 (|#1| (-110) |#1| |#1|)) (-15 -2543 (|#1| (-110) |#1|)) (-15 -2286 (|#1| |#1| (-586 |#1|) (-586 |#1|))) (-15 -2286 (|#1| |#1| |#1| |#1|)) (-15 -2286 (|#1| |#1| (-268 |#1|))) (-15 -2286 (|#1| |#1| (-586 (-268 |#1|)))) (-15 -2286 (|#1| |#1| (-586 (-559 |#1|)) (-586 |#1|))) (-15 -2286 (|#1| |#1| (-559 |#1|) |#1|)) (-15 -1482 ((-559 |#1|) |#1|)) (-15 -1296 ((-3 (-559 |#1|) "failed") |#1|))) (-276)) (T -275))
-((-3877 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-275 *3)) (-4 *3 (-276)))) (-1373 (*1 *2 *3) (-12 (-5 *3 (-110)) (-5 *2 (-108)) (-5 *1 (-275 *4)) (-4 *4 (-276)))))
-(-10 -8 (-15 -2777 ((-108) |#1|)) (-15 -3615 ((-108) |#1|)) (-15 -2286 (|#1| |#1| (-110) (-1 |#1| |#1|))) (-15 -2286 (|#1| |#1| (-110) (-1 |#1| (-586 |#1|)))) (-15 -2286 (|#1| |#1| (-586 (-110)) (-586 (-1 |#1| (-586 |#1|))))) (-15 -2286 (|#1| |#1| (-586 (-110)) (-586 (-1 |#1| |#1|)))) (-15 -2286 (|#1| |#1| (-1083) (-1 |#1| |#1|))) (-15 -2286 (|#1| |#1| (-1083) (-1 |#1| (-586 |#1|)))) (-15 -2286 (|#1| |#1| (-586 (-1083)) (-586 (-1 |#1| (-586 |#1|))))) (-15 -2286 (|#1| |#1| (-586 (-1083)) (-586 (-1 |#1| |#1|)))) (-15 -4134 ((-108) |#1| (-1083))) (-15 -4134 ((-108) |#1| |#1|)) (-15 -1389 (|#1| (-1 |#1| |#1|) (-559 |#1|))) (-15 -2904 (|#1| (-110) (-586 |#1|))) (-15 -2904 (|#1| (-110) |#1|)) (-15 -1784 ((-108) |#1| (-1083))) (-15 -1784 ((-108) |#1| (-110))) (-15 -1373 ((-108) (-110))) (-15 -3877 ((-110) (-110))) (-15 -3357 ((-586 (-110)) |#1|)) (-15 -1883 ((-586 (-559 |#1|)) |#1|)) (-15 -2690 ((-3 (-559 |#1|) "failed") |#1|)) (-15 -4146 ((-706) |#1|)) (-15 -3453 (|#1| |#1| |#1|)) (-15 -3453 (|#1| |#1|)) (-15 -1255 (|#1| (-586 |#1|))) (-15 -1255 (|#1| |#1|)) (-15 -2319 (|#1| (-586 |#1|))) (-15 -2319 (|#1| |#1|)) (-15 -3299 (|#1| |#1| (-586 (-559 |#1|)) (-586 |#1|))) (-15 -3299 (|#1| |#1| (-586 (-268 |#1|)))) (-15 -3299 (|#1| |#1| (-268 |#1|))) (-15 -2543 (|#1| (-110) (-586 |#1|))) (-15 -2543 (|#1| (-110) |#1| |#1| |#1| |#1|)) (-15 -2543 (|#1| (-110) |#1| |#1| |#1|)) (-15 -2543 (|#1| (-110) |#1| |#1|)) (-15 -2543 (|#1| (-110) |#1|)) (-15 -2286 (|#1| |#1| (-586 |#1|) (-586 |#1|))) (-15 -2286 (|#1| |#1| |#1| |#1|)) (-15 -2286 (|#1| |#1| (-268 |#1|))) (-15 -2286 (|#1| |#1| (-586 (-268 |#1|)))) (-15 -2286 (|#1| |#1| (-586 (-559 |#1|)) (-586 |#1|))) (-15 -2286 (|#1| |#1| (-559 |#1|) |#1|)) (-15 -1482 ((-559 |#1|) |#1|)) (-15 -1296 ((-3 (-559 |#1|) "failed") |#1|)))
-((-1414 (((-108) $ $) 7)) (-1883 (((-586 (-559 $)) $) 44)) (-3299 (($ $ (-268 $)) 56) (($ $ (-586 (-268 $))) 55) (($ $ (-586 (-559 $)) (-586 $)) 54)) (-1296 (((-3 (-559 $) "failed") $) 69)) (-1482 (((-559 $) $) 68)) (-1255 (($ $) 51) (($ (-586 $)) 50)) (-3357 (((-586 (-110)) $) 43)) (-3877 (((-110) (-110)) 42)) (-2777 (((-108) $) 22 (|has| $ (-960 (-520))))) (-2433 (((-1079 $) (-559 $)) 25 (|has| $ (-969)))) (-2809 (($ $ $) 13)) (-2446 (($ $ $) 14)) (-1389 (($ (-1 $ $) (-559 $)) 36)) (-2690 (((-3 (-559 $) "failed") $) 46)) (-1239 (((-1066) $) 9)) (-1265 (((-586 (-559 $)) $) 45)) (-2904 (($ (-110) $) 38) (($ (-110) (-586 $)) 37)) (-1784 (((-108) $ (-110)) 40) (((-108) $ (-1083)) 39)) (-4146 (((-706) $) 47)) (-4142 (((-1030) $) 10)) (-4134 (((-108) $ $) 35) (((-108) $ (-1083)) 34)) (-3615 (((-108) $) 23 (|has| $ (-960 (-520))))) (-2286 (($ $ (-559 $) $) 67) (($ $ (-586 (-559 $)) (-586 $)) 66) (($ $ (-586 (-268 $))) 65) (($ $ (-268 $)) 64) (($ $ $ $) 63) (($ $ (-586 $) (-586 $)) 62) (($ $ (-586 (-1083)) (-586 (-1 $ $))) 33) (($ $ (-586 (-1083)) (-586 (-1 $ (-586 $)))) 32) (($ $ (-1083) (-1 $ (-586 $))) 31) (($ $ (-1083) (-1 $ $)) 30) (($ $ (-586 (-110)) (-586 (-1 $ $))) 29) (($ $ (-586 (-110)) (-586 (-1 $ (-586 $)))) 28) (($ $ (-110) (-1 $ (-586 $))) 27) (($ $ (-110) (-1 $ $)) 26)) (-2543 (($ (-110) $) 61) (($ (-110) $ $) 60) (($ (-110) $ $ $) 59) (($ (-110) $ $ $ $) 58) (($ (-110) (-586 $)) 57)) (-3453 (($ $) 49) (($ $ $) 48)) (-3484 (($ $) 24 (|has| $ (-969)))) (-2188 (((-791) $) 11) (($ (-559 $)) 70)) (-2319 (($ $) 53) (($ (-586 $)) 52)) (-1373 (((-108) (-110)) 41)) (-1573 (((-108) $ $) 16)) (-1557 (((-108) $ $) 17)) (-1530 (((-108) $ $) 6)) (-1565 (((-108) $ $) 15)) (-1548 (((-108) $ $) 18)))
-(((-276) (-1195)) (T -276))
-((-2543 (*1 *1 *2 *1) (-12 (-4 *1 (-276)) (-5 *2 (-110)))) (-2543 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-276)) (-5 *2 (-110)))) (-2543 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-276)) (-5 *2 (-110)))) (-2543 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-276)) (-5 *2 (-110)))) (-2543 (*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-586 *1)) (-4 *1 (-276)))) (-3299 (*1 *1 *1 *2) (-12 (-5 *2 (-268 *1)) (-4 *1 (-276)))) (-3299 (*1 *1 *1 *2) (-12 (-5 *2 (-586 (-268 *1))) (-4 *1 (-276)))) (-3299 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-586 (-559 *1))) (-5 *3 (-586 *1)) (-4 *1 (-276)))) (-2319 (*1 *1 *1) (-4 *1 (-276))) (-2319 (*1 *1 *2) (-12 (-5 *2 (-586 *1)) (-4 *1 (-276)))) (-1255 (*1 *1 *1) (-4 *1 (-276))) (-1255 (*1 *1 *2) (-12 (-5 *2 (-586 *1)) (-4 *1 (-276)))) (-3453 (*1 *1 *1) (-4 *1 (-276))) (-3453 (*1 *1 *1 *1) (-4 *1 (-276))) (-4146 (*1 *2 *1) (-12 (-4 *1 (-276)) (-5 *2 (-706)))) (-2690 (*1 *2 *1) (|partial| -12 (-5 *2 (-559 *1)) (-4 *1 (-276)))) (-1265 (*1 *2 *1) (-12 (-5 *2 (-586 (-559 *1))) (-4 *1 (-276)))) (-1883 (*1 *2 *1) (-12 (-5 *2 (-586 (-559 *1))) (-4 *1 (-276)))) (-3357 (*1 *2 *1) (-12 (-4 *1 (-276)) (-5 *2 (-586 (-110))))) (-3877 (*1 *2 *2) (-12 (-4 *1 (-276)) (-5 *2 (-110)))) (-1373 (*1 *2 *3) (-12 (-4 *1 (-276)) (-5 *3 (-110)) (-5 *2 (-108)))) (-1784 (*1 *2 *1 *3) (-12 (-4 *1 (-276)) (-5 *3 (-110)) (-5 *2 (-108)))) (-1784 (*1 *2 *1 *3) (-12 (-4 *1 (-276)) (-5 *3 (-1083)) (-5 *2 (-108)))) (-2904 (*1 *1 *2 *1) (-12 (-4 *1 (-276)) (-5 *2 (-110)))) (-2904 (*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-586 *1)) (-4 *1 (-276)))) (-1389 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-559 *1)) (-4 *1 (-276)))) (-4134 (*1 *2 *1 *1) (-12 (-4 *1 (-276)) (-5 *2 (-108)))) (-4134 (*1 *2 *1 *3) (-12 (-4 *1 (-276)) (-5 *3 (-1083)) (-5 *2 (-108)))) (-2286 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-586 (-1083))) (-5 *3 (-586 (-1 *1 *1))) (-4 *1 (-276)))) (-2286 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-586 (-1083))) (-5 *3 (-586 (-1 *1 (-586 *1)))) (-4 *1 (-276)))) (-2286 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1083)) (-5 *3 (-1 *1 (-586 *1))) (-4 *1 (-276)))) (-2286 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1083)) (-5 *3 (-1 *1 *1)) (-4 *1 (-276)))) (-2286 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-586 (-110))) (-5 *3 (-586 (-1 *1 *1))) (-4 *1 (-276)))) (-2286 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-586 (-110))) (-5 *3 (-586 (-1 *1 (-586 *1)))) (-4 *1 (-276)))) (-2286 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *1 (-586 *1))) (-4 *1 (-276)))) (-2286 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *1 *1)) (-4 *1 (-276)))) (-2433 (*1 *2 *3) (-12 (-5 *3 (-559 *1)) (-4 *1 (-969)) (-4 *1 (-276)) (-5 *2 (-1079 *1)))) (-3484 (*1 *1 *1) (-12 (-4 *1 (-969)) (-4 *1 (-276)))) (-3615 (*1 *2 *1) (-12 (-4 *1 (-960 (-520))) (-4 *1 (-276)) (-5 *2 (-108)))) (-2777 (*1 *2 *1) (-12 (-4 *1 (-960 (-520))) (-4 *1 (-276)) (-5 *2 (-108)))))
-(-13 (-783) (-960 (-559 $)) (-481 (-559 $) $) (-283 $) (-10 -8 (-15 -2543 ($ (-110) $)) (-15 -2543 ($ (-110) $ $)) (-15 -2543 ($ (-110) $ $ $)) (-15 -2543 ($ (-110) $ $ $ $)) (-15 -2543 ($ (-110) (-586 $))) (-15 -3299 ($ $ (-268 $))) (-15 -3299 ($ $ (-586 (-268 $)))) (-15 -3299 ($ $ (-586 (-559 $)) (-586 $))) (-15 -2319 ($ $)) (-15 -2319 ($ (-586 $))) (-15 -1255 ($ $)) (-15 -1255 ($ (-586 $))) (-15 -3453 ($ $)) (-15 -3453 ($ $ $)) (-15 -4146 ((-706) $)) (-15 -2690 ((-3 (-559 $) "failed") $)) (-15 -1265 ((-586 (-559 $)) $)) (-15 -1883 ((-586 (-559 $)) $)) (-15 -3357 ((-586 (-110)) $)) (-15 -3877 ((-110) (-110))) (-15 -1373 ((-108) (-110))) (-15 -1784 ((-108) $ (-110))) (-15 -1784 ((-108) $ (-1083))) (-15 -2904 ($ (-110) $)) (-15 -2904 ($ (-110) (-586 $))) (-15 -1389 ($ (-1 $ $) (-559 $))) (-15 -4134 ((-108) $ $)) (-15 -4134 ((-108) $ (-1083))) (-15 -2286 ($ $ (-586 (-1083)) (-586 (-1 $ $)))) (-15 -2286 ($ $ (-586 (-1083)) (-586 (-1 $ (-586 $))))) (-15 -2286 ($ $ (-1083) (-1 $ (-586 $)))) (-15 -2286 ($ $ (-1083) (-1 $ $))) (-15 -2286 ($ $ (-586 (-110)) (-586 (-1 $ $)))) (-15 -2286 ($ $ (-586 (-110)) (-586 (-1 $ (-586 $))))) (-15 -2286 ($ $ (-110) (-1 $ (-586 $)))) (-15 -2286 ($ $ (-110) (-1 $ $))) (IF (|has| $ (-969)) (PROGN (-15 -2433 ((-1079 $) (-559 $))) (-15 -3484 ($ $))) |%noBranch|) (IF (|has| $ (-960 (-520))) (PROGN (-15 -3615 ((-108) $)) (-15 -2777 ((-108) $))) |%noBranch|)))
-(((-97) . T) ((-560 (-791)) . T) ((-283 $) . T) ((-481 (-559 $) $) . T) ((-481 $ $) . T) ((-783) . T) ((-960 (-559 $)) . T) ((-1012) . T))
-((-2476 (((-586 |#1|) (-586 |#1|)) 10)))
-(((-277 |#1|) (-10 -7 (-15 -2476 ((-586 |#1|) (-586 |#1|)))) (-781)) (T -277))
-((-2476 (*1 *2 *2) (-12 (-5 *2 (-586 *3)) (-4 *3 (-781)) (-5 *1 (-277 *3)))))
-(-10 -7 (-15 -2476 ((-586 |#1|) (-586 |#1|))))
-((-1389 (((-626 |#2|) (-1 |#2| |#1|) (-626 |#1|)) 15)))
-(((-278 |#1| |#2|) (-10 -7 (-15 -1389 ((-626 |#2|) (-1 |#2| |#1|) (-626 |#1|)))) (-969) (-969)) (T -278))
-((-1389 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-626 *5)) (-4 *5 (-969)) (-4 *6 (-969)) (-5 *2 (-626 *6)) (-5 *1 (-278 *5 *6)))))
-(-10 -7 (-15 -1389 ((-626 |#2|) (-1 |#2| |#1|) (-626 |#1|))))
-((-3308 (((-1164 (-289 (-352))) (-1164 (-289 (-201)))) 105)) (-1491 (((-1007 (-776 (-201))) (-1007 (-776 (-352)))) 39)) (-1492 (((-586 (-1066)) (-1064 (-201))) 87)) (-2923 (((-289 (-352)) (-880 (-201))) 49)) (-1920 (((-201) (-880 (-201))) 45)) (-2563 (((-1066) (-352)) 167)) (-4060 (((-776 (-201)) (-776 (-352))) 33)) (-3234 (((-2 (|:| |additions| (-520)) (|:| |multiplications| (-520)) (|:| |exponentiations| (-520)) (|:| |functionCalls| (-520))) (-1164 (-289 (-201)))) 142)) (-2785 (((-958) (-2 (|:| -1796 (-352)) (|:| -2883 (-1066)) (|:| |explanations| (-586 (-1066))) (|:| |extra| (-958)))) 180) (((-958) (-2 (|:| -1796 (-352)) (|:| -2883 (-1066)) (|:| |explanations| (-586 (-1066))))) 178)) (-3927 (((-626 (-201)) (-586 (-201)) (-706)) 13)) (-2477 (((-1164 (-635)) (-586 (-201))) 94)) (-3359 (((-586 (-1066)) (-586 (-201))) 74)) (-4066 (((-3 (-289 (-201)) "failed") (-289 (-201))) 120)) (-2070 (((-108) (-201) (-1007 (-776 (-201)))) 109)) (-3044 (((-958) (-2 (|:| |stiffness| (-352)) (|:| |stability| (-352)) (|:| |expense| (-352)) (|:| |accuracy| (-352)) (|:| |intermediateResults| (-352)))) 198)) (-2281 (((-201) (-1007 (-776 (-201)))) 107)) (-1466 (((-201) (-1007 (-776 (-201)))) 108)) (-1494 (((-201) (-380 (-520))) 26)) (-1932 (((-1066) (-352)) 72)) (-3865 (((-201) (-352)) 17)) (-3902 (((-352) (-1164 (-289 (-201)))) 153)) (-2627 (((-289 (-201)) (-289 (-352))) 23)) (-2780 (((-380 (-520)) (-289 (-201))) 52)) (-3282 (((-289 (-380 (-520))) (-289 (-201))) 68)) (-1535 (((-289 (-352)) (-289 (-201))) 98)) (-1658 (((-201) (-289 (-201))) 53)) (-3287 (((-586 (-201)) (-586 (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520)))))) 63)) (-3466 (((-1007 (-776 (-201))) (-1007 (-776 (-201)))) 60)) (-2125 (((-1066) (-201)) 71)) (-2056 (((-635) (-201)) 90)) (-3074 (((-380 (-520)) (-201)) 54)) (-2829 (((-289 (-352)) (-201)) 48)) (-1429 (((-586 (-1007 (-776 (-201)))) (-586 (-1007 (-776 (-352))))) 42)) (-4156 (((-958) (-586 (-958))) 163) (((-958) (-958) (-958)) 160)) (-3083 (((-958) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1064 (-201))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1667 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 194)))
-(((-279) (-10 -7 (-15 -3865 ((-201) (-352))) (-15 -2627 ((-289 (-201)) (-289 (-352)))) (-15 -4060 ((-776 (-201)) (-776 (-352)))) (-15 -1491 ((-1007 (-776 (-201))) (-1007 (-776 (-352))))) (-15 -1429 ((-586 (-1007 (-776 (-201)))) (-586 (-1007 (-776 (-352)))))) (-15 -3074 ((-380 (-520)) (-201))) (-15 -2780 ((-380 (-520)) (-289 (-201)))) (-15 -1658 ((-201) (-289 (-201)))) (-15 -4066 ((-3 (-289 (-201)) "failed") (-289 (-201)))) (-15 -3902 ((-352) (-1164 (-289 (-201))))) (-15 -3234 ((-2 (|:| |additions| (-520)) (|:| |multiplications| (-520)) (|:| |exponentiations| (-520)) (|:| |functionCalls| (-520))) (-1164 (-289 (-201))))) (-15 -3282 ((-289 (-380 (-520))) (-289 (-201)))) (-15 -3466 ((-1007 (-776 (-201))) (-1007 (-776 (-201))))) (-15 -3287 ((-586 (-201)) (-586 (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520))))))) (-15 -2056 ((-635) (-201))) (-15 -2477 ((-1164 (-635)) (-586 (-201)))) (-15 -1535 ((-289 (-352)) (-289 (-201)))) (-15 -3308 ((-1164 (-289 (-352))) (-1164 (-289 (-201))))) (-15 -2070 ((-108) (-201) (-1007 (-776 (-201))))) (-15 -2125 ((-1066) (-201))) (-15 -1932 ((-1066) (-352))) (-15 -3359 ((-586 (-1066)) (-586 (-201)))) (-15 -1492 ((-586 (-1066)) (-1064 (-201)))) (-15 -2281 ((-201) (-1007 (-776 (-201))))) (-15 -1466 ((-201) (-1007 (-776 (-201))))) (-15 -4156 ((-958) (-958) (-958))) (-15 -4156 ((-958) (-586 (-958)))) (-15 -2563 ((-1066) (-352))) (-15 -2785 ((-958) (-2 (|:| -1796 (-352)) (|:| -2883 (-1066)) (|:| |explanations| (-586 (-1066)))))) (-15 -2785 ((-958) (-2 (|:| -1796 (-352)) (|:| -2883 (-1066)) (|:| |explanations| (-586 (-1066))) (|:| |extra| (-958))))) (-15 -3083 ((-958) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1064 (-201))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1667 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3044 ((-958) (-2 (|:| |stiffness| (-352)) (|:| |stability| (-352)) (|:| |expense| (-352)) (|:| |accuracy| (-352)) (|:| |intermediateResults| (-352))))) (-15 -2923 ((-289 (-352)) (-880 (-201)))) (-15 -1920 ((-201) (-880 (-201)))) (-15 -2829 ((-289 (-352)) (-201))) (-15 -1494 ((-201) (-380 (-520)))) (-15 -3927 ((-626 (-201)) (-586 (-201)) (-706))))) (T -279))
-((-3927 (*1 *2 *3 *4) (-12 (-5 *3 (-586 (-201))) (-5 *4 (-706)) (-5 *2 (-626 (-201))) (-5 *1 (-279)))) (-1494 (*1 *2 *3) (-12 (-5 *3 (-380 (-520))) (-5 *2 (-201)) (-5 *1 (-279)))) (-2829 (*1 *2 *3) (-12 (-5 *3 (-201)) (-5 *2 (-289 (-352))) (-5 *1 (-279)))) (-1920 (*1 *2 *3) (-12 (-5 *3 (-880 (-201))) (-5 *2 (-201)) (-5 *1 (-279)))) (-2923 (*1 *2 *3) (-12 (-5 *3 (-880 (-201))) (-5 *2 (-289 (-352))) (-5 *1 (-279)))) (-3044 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-352)) (|:| |stability| (-352)) (|:| |expense| (-352)) (|:| |accuracy| (-352)) (|:| |intermediateResults| (-352)))) (-5 *2 (-958)) (-5 *1 (-279)))) (-3083 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1064 (-201))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1667 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-958)) (-5 *1 (-279)))) (-2785 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1796 (-352)) (|:| -2883 (-1066)) (|:| |explanations| (-586 (-1066))) (|:| |extra| (-958)))) (-5 *2 (-958)) (-5 *1 (-279)))) (-2785 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1796 (-352)) (|:| -2883 (-1066)) (|:| |explanations| (-586 (-1066))))) (-5 *2 (-958)) (-5 *1 (-279)))) (-2563 (*1 *2 *3) (-12 (-5 *3 (-352)) (-5 *2 (-1066)) (-5 *1 (-279)))) (-4156 (*1 *2 *3) (-12 (-5 *3 (-586 (-958))) (-5 *2 (-958)) (-5 *1 (-279)))) (-4156 (*1 *2 *2 *2) (-12 (-5 *2 (-958)) (-5 *1 (-279)))) (-1466 (*1 *2 *3) (-12 (-5 *3 (-1007 (-776 (-201)))) (-5 *2 (-201)) (-5 *1 (-279)))) (-2281 (*1 *2 *3) (-12 (-5 *3 (-1007 (-776 (-201)))) (-5 *2 (-201)) (-5 *1 (-279)))) (-1492 (*1 *2 *3) (-12 (-5 *3 (-1064 (-201))) (-5 *2 (-586 (-1066))) (-5 *1 (-279)))) (-3359 (*1 *2 *3) (-12 (-5 *3 (-586 (-201))) (-5 *2 (-586 (-1066))) (-5 *1 (-279)))) (-1932 (*1 *2 *3) (-12 (-5 *3 (-352)) (-5 *2 (-1066)) (-5 *1 (-279)))) (-2125 (*1 *2 *3) (-12 (-5 *3 (-201)) (-5 *2 (-1066)) (-5 *1 (-279)))) (-2070 (*1 *2 *3 *4) (-12 (-5 *4 (-1007 (-776 (-201)))) (-5 *3 (-201)) (-5 *2 (-108)) (-5 *1 (-279)))) (-3308 (*1 *2 *3) (-12 (-5 *3 (-1164 (-289 (-201)))) (-5 *2 (-1164 (-289 (-352)))) (-5 *1 (-279)))) (-1535 (*1 *2 *3) (-12 (-5 *3 (-289 (-201))) (-5 *2 (-289 (-352))) (-5 *1 (-279)))) (-2477 (*1 *2 *3) (-12 (-5 *3 (-586 (-201))) (-5 *2 (-1164 (-635))) (-5 *1 (-279)))) (-2056 (*1 *2 *3) (-12 (-5 *3 (-201)) (-5 *2 (-635)) (-5 *1 (-279)))) (-3287 (*1 *2 *3) (-12 (-5 *3 (-586 (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520)))))) (-5 *2 (-586 (-201))) (-5 *1 (-279)))) (-3466 (*1 *2 *2) (-12 (-5 *2 (-1007 (-776 (-201)))) (-5 *1 (-279)))) (-3282 (*1 *2 *3) (-12 (-5 *3 (-289 (-201))) (-5 *2 (-289 (-380 (-520)))) (-5 *1 (-279)))) (-3234 (*1 *2 *3) (-12 (-5 *3 (-1164 (-289 (-201)))) (-5 *2 (-2 (|:| |additions| (-520)) (|:| |multiplications| (-520)) (|:| |exponentiations| (-520)) (|:| |functionCalls| (-520)))) (-5 *1 (-279)))) (-3902 (*1 *2 *3) (-12 (-5 *3 (-1164 (-289 (-201)))) (-5 *2 (-352)) (-5 *1 (-279)))) (-4066 (*1 *2 *2) (|partial| -12 (-5 *2 (-289 (-201))) (-5 *1 (-279)))) (-1658 (*1 *2 *3) (-12 (-5 *3 (-289 (-201))) (-5 *2 (-201)) (-5 *1 (-279)))) (-2780 (*1 *2 *3) (-12 (-5 *3 (-289 (-201))) (-5 *2 (-380 (-520))) (-5 *1 (-279)))) (-3074 (*1 *2 *3) (-12 (-5 *3 (-201)) (-5 *2 (-380 (-520))) (-5 *1 (-279)))) (-1429 (*1 *2 *3) (-12 (-5 *3 (-586 (-1007 (-776 (-352))))) (-5 *2 (-586 (-1007 (-776 (-201))))) (-5 *1 (-279)))) (-1491 (*1 *2 *3) (-12 (-5 *3 (-1007 (-776 (-352)))) (-5 *2 (-1007 (-776 (-201)))) (-5 *1 (-279)))) (-4060 (*1 *2 *3) (-12 (-5 *3 (-776 (-352))) (-5 *2 (-776 (-201))) (-5 *1 (-279)))) (-2627 (*1 *2 *3) (-12 (-5 *3 (-289 (-352))) (-5 *2 (-289 (-201))) (-5 *1 (-279)))) (-3865 (*1 *2 *3) (-12 (-5 *3 (-352)) (-5 *2 (-201)) (-5 *1 (-279)))))
-(-10 -7 (-15 -3865 ((-201) (-352))) (-15 -2627 ((-289 (-201)) (-289 (-352)))) (-15 -4060 ((-776 (-201)) (-776 (-352)))) (-15 -1491 ((-1007 (-776 (-201))) (-1007 (-776 (-352))))) (-15 -1429 ((-586 (-1007 (-776 (-201)))) (-586 (-1007 (-776 (-352)))))) (-15 -3074 ((-380 (-520)) (-201))) (-15 -2780 ((-380 (-520)) (-289 (-201)))) (-15 -1658 ((-201) (-289 (-201)))) (-15 -4066 ((-3 (-289 (-201)) "failed") (-289 (-201)))) (-15 -3902 ((-352) (-1164 (-289 (-201))))) (-15 -3234 ((-2 (|:| |additions| (-520)) (|:| |multiplications| (-520)) (|:| |exponentiations| (-520)) (|:| |functionCalls| (-520))) (-1164 (-289 (-201))))) (-15 -3282 ((-289 (-380 (-520))) (-289 (-201)))) (-15 -3466 ((-1007 (-776 (-201))) (-1007 (-776 (-201))))) (-15 -3287 ((-586 (-201)) (-586 (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520))))))) (-15 -2056 ((-635) (-201))) (-15 -2477 ((-1164 (-635)) (-586 (-201)))) (-15 -1535 ((-289 (-352)) (-289 (-201)))) (-15 -3308 ((-1164 (-289 (-352))) (-1164 (-289 (-201))))) (-15 -2070 ((-108) (-201) (-1007 (-776 (-201))))) (-15 -2125 ((-1066) (-201))) (-15 -1932 ((-1066) (-352))) (-15 -3359 ((-586 (-1066)) (-586 (-201)))) (-15 -1492 ((-586 (-1066)) (-1064 (-201)))) (-15 -2281 ((-201) (-1007 (-776 (-201))))) (-15 -1466 ((-201) (-1007 (-776 (-201))))) (-15 -4156 ((-958) (-958) (-958))) (-15 -4156 ((-958) (-586 (-958)))) (-15 -2563 ((-1066) (-352))) (-15 -2785 ((-958) (-2 (|:| -1796 (-352)) (|:| -2883 (-1066)) (|:| |explanations| (-586 (-1066)))))) (-15 -2785 ((-958) (-2 (|:| -1796 (-352)) (|:| -2883 (-1066)) (|:| |explanations| (-586 (-1066))) (|:| |extra| (-958))))) (-15 -3083 ((-958) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1064 (-201))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1667 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3044 ((-958) (-2 (|:| |stiffness| (-352)) (|:| |stability| (-352)) (|:| |expense| (-352)) (|:| |accuracy| (-352)) (|:| |intermediateResults| (-352))))) (-15 -2923 ((-289 (-352)) (-880 (-201)))) (-15 -1920 ((-201) (-880 (-201)))) (-15 -2829 ((-289 (-352)) (-201))) (-15 -1494 ((-201) (-380 (-520)))) (-15 -3927 ((-626 (-201)) (-586 (-201)) (-706))))
-((-1327 (((-108) $ $) 11)) (-2276 (($ $ $) 15)) (-2253 (($ $ $) 14)) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) 44)) (-3188 (((-3 (-586 $) "failed") (-586 $) $) 53)) (-2257 (($ $ $) 21) (($ (-586 $)) NIL)) (-1283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) 32) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 37)) (-2230 (((-3 $ "failed") $ $) 17)) (-2608 (((-3 (-586 $) "failed") (-586 $) $) 46)))
-(((-280 |#1|) (-10 -8 (-15 -3188 ((-3 (-586 |#1|) "failed") (-586 |#1|) |#1|)) (-15 -1283 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1283 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1382 |#1|)) |#1| |#1|)) (-15 -2276 (|#1| |#1| |#1|)) (-15 -2253 (|#1| |#1| |#1|)) (-15 -1327 ((-108) |#1| |#1|)) (-15 -2608 ((-3 (-586 |#1|) "failed") (-586 |#1|) |#1|)) (-15 -2917 ((-2 (|:| -2972 (-586 |#1|)) (|:| -1382 |#1|)) (-586 |#1|))) (-15 -2257 (|#1| (-586 |#1|))) (-15 -2257 (|#1| |#1| |#1|)) (-15 -2230 ((-3 |#1| "failed") |#1| |#1|))) (-281)) (T -280))
-NIL
-(-10 -8 (-15 -3188 ((-3 (-586 |#1|) "failed") (-586 |#1|) |#1|)) (-15 -1283 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1283 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1382 |#1|)) |#1| |#1|)) (-15 -2276 (|#1| |#1| |#1|)) (-15 -2253 (|#1| |#1| |#1|)) (-15 -1327 ((-108) |#1| |#1|)) (-15 -2608 ((-3 (-586 |#1|) "failed") (-586 |#1|) |#1|)) (-15 -2917 ((-2 (|:| -2972 (-586 |#1|)) (|:| -1382 |#1|)) (-586 |#1|))) (-15 -2257 (|#1| (-586 |#1|))) (-15 -2257 (|#1| |#1| |#1|)) (-15 -2230 ((-3 |#1| "failed") |#1| |#1|)))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) 41)) (-2583 (($ $) 40)) (-1671 (((-108) $) 38)) (-1917 (((-3 $ "failed") $ $) 19)) (-1327 (((-108) $ $) 59)) (-3961 (($) 17 T CONST)) (-2276 (($ $ $) 55)) (-1540 (((-3 $ "failed") $) 34)) (-2253 (($ $ $) 56)) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) 51)) (-1537 (((-108) $) 31)) (-3188 (((-3 (-586 $) "failed") (-586 $) $) 52)) (-2222 (($ $ $) 46) (($ (-586 $)) 45)) (-1239 (((-1066) $) 9)) (-4142 (((-1030) $) 10)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) 44)) (-2257 (($ $ $) 48) (($ (-586 $)) 47)) (-1283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2230 (((-3 $ "failed") $ $) 42)) (-2608 (((-3 (-586 $) "failed") (-586 $) $) 50)) (-3704 (((-706) $) 58)) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) 57)) (-2188 (((-791) $) 11) (($ (-520)) 28) (($ $) 43)) (-3251 (((-706)) 29)) (-2559 (((-108) $ $) 39)) (-3504 (($ $ (-849)) 26) (($ $ (-706)) 33)) (-3560 (($) 18 T CONST)) (-3570 (($) 30 T CONST)) (-1530 (((-108) $ $) 6)) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-706)) 32)) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ $ $) 24)))
-(((-281) (-1195)) (T -281))
-((-1327 (*1 *2 *1 *1) (-12 (-4 *1 (-281)) (-5 *2 (-108)))) (-3704 (*1 *2 *1) (-12 (-4 *1 (-281)) (-5 *2 (-706)))) (-2806 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2060 *1) (|:| -3753 *1))) (-4 *1 (-281)))) (-2253 (*1 *1 *1 *1) (-4 *1 (-281))) (-2276 (*1 *1 *1 *1) (-4 *1 (-281))) (-1283 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1382 *1))) (-4 *1 (-281)))) (-1283 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-281)))) (-3188 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-586 *1)) (-4 *1 (-281)))))
-(-13 (-848) (-10 -8 (-15 -1327 ((-108) $ $)) (-15 -3704 ((-706) $)) (-15 -2806 ((-2 (|:| -2060 $) (|:| -3753 $)) $ $)) (-15 -2253 ($ $ $)) (-15 -2276 ($ $ $)) (-15 -1283 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $)) (-15 -1283 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -3188 ((-3 (-586 $) "failed") (-586 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-560 (-791)) . T) ((-157) . T) ((-264) . T) ((-424) . T) ((-512) . T) ((-588 $) . T) ((-653 $) . T) ((-662) . T) ((-848) . T) ((-975 $) . T) ((-969) . T) ((-976) . T) ((-1024) . T) ((-1012) . T))
-((-2286 (($ $ (-586 |#2|) (-586 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-268 |#2|)) 11) (($ $ (-586 (-268 |#2|))) NIL)))
-(((-282 |#1| |#2|) (-10 -8 (-15 -2286 (|#1| |#1| (-586 (-268 |#2|)))) (-15 -2286 (|#1| |#1| (-268 |#2|))) (-15 -2286 (|#1| |#1| |#2| |#2|)) (-15 -2286 (|#1| |#1| (-586 |#2|) (-586 |#2|)))) (-283 |#2|) (-1012)) (T -282))
-NIL
-(-10 -8 (-15 -2286 (|#1| |#1| (-586 (-268 |#2|)))) (-15 -2286 (|#1| |#1| (-268 |#2|))) (-15 -2286 (|#1| |#1| |#2| |#2|)) (-15 -2286 (|#1| |#1| (-586 |#2|) (-586 |#2|))))
-((-2286 (($ $ (-586 |#1|) (-586 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-268 |#1|)) 11) (($ $ (-586 (-268 |#1|))) 10)))
-(((-283 |#1|) (-1195) (-1012)) (T -283))
-((-2286 (*1 *1 *1 *2) (-12 (-5 *2 (-268 *3)) (-4 *1 (-283 *3)) (-4 *3 (-1012)))) (-2286 (*1 *1 *1 *2) (-12 (-5 *2 (-586 (-268 *3))) (-4 *1 (-283 *3)) (-4 *3 (-1012)))))
-(-13 (-481 |t#1| |t#1|) (-10 -8 (-15 -2286 ($ $ (-268 |t#1|))) (-15 -2286 ($ $ (-586 (-268 |t#1|))))))
-(((-481 |#1| |#1|) . T))
-((-2286 ((|#1| (-1 |#1| (-520)) (-1085 (-380 (-520)))) 24)))
-(((-284 |#1|) (-10 -7 (-15 -2286 (|#1| (-1 |#1| (-520)) (-1085 (-380 (-520)))))) (-37 (-380 (-520)))) (T -284))
-((-2286 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-520))) (-5 *4 (-1085 (-380 (-520)))) (-5 *1 (-284 *2)) (-4 *2 (-37 (-380 (-520)))))))
-(-10 -7 (-15 -2286 (|#1| (-1 |#1| (-520)) (-1085 (-380 (-520))))))
-((-1414 (((-108) $ $) NIL)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2188 (((-791) $) 7)) (-1530 (((-108) $ $) 9)))
-(((-285) (-1012)) (T -285))
-NIL
-(-1012)
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) 62)) (-4040 (((-1150 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1150 |#1| |#2| |#3| |#4|) (-281)))) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) NIL)) (-2583 (($ $) NIL)) (-1671 (((-108) $) NIL)) (-1917 (((-3 $ "failed") $ $) NIL)) (-4119 (((-391 (-1079 $)) (-1079 $)) NIL (|has| (-1150 |#1| |#2| |#3| |#4|) (-837)))) (-3024 (($ $) NIL)) (-1507 (((-391 $) $) NIL)) (-3481 (((-3 (-586 (-1079 $)) "failed") (-586 (-1079 $)) (-1079 $)) NIL (|has| (-1150 |#1| |#2| |#3| |#4|) (-837)))) (-1327 (((-108) $ $) NIL)) (-2804 (((-520) $) NIL (|has| (-1150 |#1| |#2| |#3| |#4|) (-756)))) (-3961 (($) NIL T CONST)) (-1296 (((-3 (-1150 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1083) "failed") $) NIL (|has| (-1150 |#1| |#2| |#3| |#4|) (-960 (-1083)))) (((-3 (-380 (-520)) "failed") $) NIL (|has| (-1150 |#1| |#2| |#3| |#4|) (-960 (-520)))) (((-3 (-520) "failed") $) NIL (|has| (-1150 |#1| |#2| |#3| |#4|) (-960 (-520)))) (((-3 (-1149 |#2| |#3| |#4|) "failed") $) 24)) (-1482 (((-1150 |#1| |#2| |#3| |#4|) $) NIL) (((-1083) $) NIL (|has| (-1150 |#1| |#2| |#3| |#4|) (-960 (-1083)))) (((-380 (-520)) $) NIL (|has| (-1150 |#1| |#2| |#3| |#4|) (-960 (-520)))) (((-520) $) NIL (|has| (-1150 |#1| |#2| |#3| |#4|) (-960 (-520)))) (((-1149 |#2| |#3| |#4|) $) NIL)) (-2276 (($ $ $) NIL)) (-2756 (((-626 (-520)) (-626 $)) NIL (|has| (-1150 |#1| |#2| |#3| |#4|) (-582 (-520)))) (((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 $) (-1164 $)) NIL (|has| (-1150 |#1| |#2| |#3| |#4|) (-582 (-520)))) (((-2 (|:| -3927 (-626 (-1150 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1164 (-1150 |#1| |#2| |#3| |#4|)))) (-626 $) (-1164 $)) NIL) (((-626 (-1150 |#1| |#2| |#3| |#4|)) (-626 $)) NIL)) (-1540 (((-3 $ "failed") $) NIL)) (-3249 (($) NIL (|has| (-1150 |#1| |#2| |#3| |#4|) (-505)))) (-2253 (($ $ $) NIL)) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) NIL)) (-2036 (((-108) $) NIL)) (-2328 (((-108) $) NIL (|has| (-1150 |#1| |#2| |#3| |#4|) (-756)))) (-1272 (((-817 (-520) $) $ (-820 (-520)) (-817 (-520) $)) NIL (|has| (-1150 |#1| |#2| |#3| |#4|) (-814 (-520)))) (((-817 (-352) $) $ (-820 (-352)) (-817 (-352) $)) NIL (|has| (-1150 |#1| |#2| |#3| |#4|) (-814 (-352))))) (-1537 (((-108) $) NIL)) (-4115 (($ $) NIL)) (-2800 (((-1150 |#1| |#2| |#3| |#4|) $) 21)) (-1394 (((-3 $ "failed") $) NIL (|has| (-1150 |#1| |#2| |#3| |#4|) (-1059)))) (-3469 (((-108) $) NIL (|has| (-1150 |#1| |#2| |#3| |#4|) (-756)))) (-3188 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-2809 (($ $ $) NIL (|has| (-1150 |#1| |#2| |#3| |#4|) (-783)))) (-2446 (($ $ $) NIL (|has| (-1150 |#1| |#2| |#3| |#4|) (-783)))) (-1389 (($ (-1 (-1150 |#1| |#2| |#3| |#4|) (-1150 |#1| |#2| |#3| |#4|)) $) NIL)) (-3042 (((-3 (-776 |#2|) "failed") $) 76)) (-2222 (($ $ $) NIL) (($ (-586 $)) NIL)) (-1239 (((-1066) $) NIL)) (-3093 (($ $) NIL)) (-3794 (($) NIL (|has| (-1150 |#1| |#2| |#3| |#4|) (-1059)) CONST)) (-4142 (((-1030) $) NIL)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) NIL)) (-2257 (($ $ $) NIL) (($ (-586 $)) NIL)) (-4122 (($ $) NIL (|has| (-1150 |#1| |#2| |#3| |#4|) (-281)))) (-1626 (((-1150 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1150 |#1| |#2| |#3| |#4|) (-505)))) (-4133 (((-391 (-1079 $)) (-1079 $)) NIL (|has| (-1150 |#1| |#2| |#3| |#4|) (-837)))) (-2017 (((-391 (-1079 $)) (-1079 $)) NIL (|has| (-1150 |#1| |#2| |#3| |#4|) (-837)))) (-1916 (((-391 $) $) NIL)) (-1283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2230 (((-3 $ "failed") $ $) NIL)) (-2608 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-2286 (($ $ (-586 (-1150 |#1| |#2| |#3| |#4|)) (-586 (-1150 |#1| |#2| |#3| |#4|))) NIL (|has| (-1150 |#1| |#2| |#3| |#4|) (-283 (-1150 |#1| |#2| |#3| |#4|)))) (($ $ (-1150 |#1| |#2| |#3| |#4|) (-1150 |#1| |#2| |#3| |#4|)) NIL (|has| (-1150 |#1| |#2| |#3| |#4|) (-283 (-1150 |#1| |#2| |#3| |#4|)))) (($ $ (-268 (-1150 |#1| |#2| |#3| |#4|))) NIL (|has| (-1150 |#1| |#2| |#3| |#4|) (-283 (-1150 |#1| |#2| |#3| |#4|)))) (($ $ (-586 (-268 (-1150 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1150 |#1| |#2| |#3| |#4|) (-283 (-1150 |#1| |#2| |#3| |#4|)))) (($ $ (-586 (-1083)) (-586 (-1150 |#1| |#2| |#3| |#4|))) NIL (|has| (-1150 |#1| |#2| |#3| |#4|) (-481 (-1083) (-1150 |#1| |#2| |#3| |#4|)))) (($ $ (-1083) (-1150 |#1| |#2| |#3| |#4|)) NIL (|has| (-1150 |#1| |#2| |#3| |#4|) (-481 (-1083) (-1150 |#1| |#2| |#3| |#4|))))) (-3704 (((-706) $) NIL)) (-2543 (($ $ (-1150 |#1| |#2| |#3| |#4|)) NIL (|has| (-1150 |#1| |#2| |#3| |#4|) (-260 (-1150 |#1| |#2| |#3| |#4|) (-1150 |#1| |#2| |#3| |#4|))))) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) NIL)) (-2155 (($ $) NIL (|has| (-1150 |#1| |#2| |#3| |#4|) (-209))) (($ $ (-706)) NIL (|has| (-1150 |#1| |#2| |#3| |#4|) (-209))) (($ $ (-1083)) NIL (|has| (-1150 |#1| |#2| |#3| |#4|) (-828 (-1083)))) (($ $ (-586 (-1083))) NIL (|has| (-1150 |#1| |#2| |#3| |#4|) (-828 (-1083)))) (($ $ (-1083) (-706)) NIL (|has| (-1150 |#1| |#2| |#3| |#4|) (-828 (-1083)))) (($ $ (-586 (-1083)) (-586 (-706))) NIL (|has| (-1150 |#1| |#2| |#3| |#4|) (-828 (-1083)))) (($ $ (-1 (-1150 |#1| |#2| |#3| |#4|) (-1150 |#1| |#2| |#3| |#4|)) (-706)) NIL) (($ $ (-1 (-1150 |#1| |#2| |#3| |#4|) (-1150 |#1| |#2| |#3| |#4|))) NIL)) (-3556 (($ $) NIL)) (-2811 (((-1150 |#1| |#2| |#3| |#4|) $) 17)) (-1429 (((-820 (-520)) $) NIL (|has| (-1150 |#1| |#2| |#3| |#4|) (-561 (-820 (-520))))) (((-820 (-352)) $) NIL (|has| (-1150 |#1| |#2| |#3| |#4|) (-561 (-820 (-352))))) (((-496) $) NIL (|has| (-1150 |#1| |#2| |#3| |#4|) (-561 (-496)))) (((-352) $) NIL (|has| (-1150 |#1| |#2| |#3| |#4|) (-945))) (((-201) $) NIL (|has| (-1150 |#1| |#2| |#3| |#4|) (-945)))) (-3784 (((-3 (-1164 $) "failed") (-626 $)) NIL (-12 (|has| $ (-133)) (|has| (-1150 |#1| |#2| |#3| |#4|) (-837))))) (-2188 (((-791) $) NIL) (($ (-520)) NIL) (($ $) NIL) (($ (-380 (-520))) NIL) (($ (-1150 |#1| |#2| |#3| |#4|)) 28) (($ (-1083)) NIL (|has| (-1150 |#1| |#2| |#3| |#4|) (-960 (-1083)))) (($ (-1149 |#2| |#3| |#4|)) 36)) (-3796 (((-3 $ "failed") $) NIL (-3700 (-12 (|has| $ (-133)) (|has| (-1150 |#1| |#2| |#3| |#4|) (-837))) (|has| (-1150 |#1| |#2| |#3| |#4|) (-133))))) (-3251 (((-706)) NIL)) (-3370 (((-1150 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1150 |#1| |#2| |#3| |#4|) (-505)))) (-2559 (((-108) $ $) NIL)) (-2458 (($ $) NIL (|has| (-1150 |#1| |#2| |#3| |#4|) (-756)))) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL)) (-3560 (($) 41 T CONST)) (-3570 (($) NIL T CONST)) (-2211 (($ $) NIL (|has| (-1150 |#1| |#2| |#3| |#4|) (-209))) (($ $ (-706)) NIL (|has| (-1150 |#1| |#2| |#3| |#4|) (-209))) (($ $ (-1083)) NIL (|has| (-1150 |#1| |#2| |#3| |#4|) (-828 (-1083)))) (($ $ (-586 (-1083))) NIL (|has| (-1150 |#1| |#2| |#3| |#4|) (-828 (-1083)))) (($ $ (-1083) (-706)) NIL (|has| (-1150 |#1| |#2| |#3| |#4|) (-828 (-1083)))) (($ $ (-586 (-1083)) (-586 (-706))) NIL (|has| (-1150 |#1| |#2| |#3| |#4|) (-828 (-1083)))) (($ $ (-1 (-1150 |#1| |#2| |#3| |#4|) (-1150 |#1| |#2| |#3| |#4|)) (-706)) NIL) (($ $ (-1 (-1150 |#1| |#2| |#3| |#4|) (-1150 |#1| |#2| |#3| |#4|))) NIL)) (-1573 (((-108) $ $) NIL (|has| (-1150 |#1| |#2| |#3| |#4|) (-783)))) (-1557 (((-108) $ $) NIL (|has| (-1150 |#1| |#2| |#3| |#4|) (-783)))) (-1530 (((-108) $ $) NIL)) (-1565 (((-108) $ $) NIL (|has| (-1150 |#1| |#2| |#3| |#4|) (-783)))) (-1548 (((-108) $ $) NIL (|has| (-1150 |#1| |#2| |#3| |#4|) (-783)))) (-1619 (($ $ $) 33) (($ (-1150 |#1| |#2| |#3| |#4|) (-1150 |#1| |#2| |#3| |#4|)) 30)) (-1611 (($ $) NIL) (($ $ $) NIL)) (-1601 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) NIL) (($ $ (-380 (-520))) NIL) (($ (-380 (-520)) $) NIL) (($ (-1150 |#1| |#2| |#3| |#4|) $) 29) (($ $ (-1150 |#1| |#2| |#3| |#4|)) NIL)))
-(((-286 |#1| |#2| |#3| |#4|) (-13 (-917 (-1150 |#1| |#2| |#3| |#4|)) (-960 (-1149 |#2| |#3| |#4|)) (-10 -8 (-15 -3042 ((-3 (-776 |#2|) "failed") $)) (-15 -2188 ($ (-1149 |#2| |#3| |#4|))))) (-13 (-783) (-960 (-520)) (-582 (-520)) (-424)) (-13 (-27) (-1104) (-403 |#1|)) (-1083) |#2|) (T -286))
-((-2188 (*1 *1 *2) (-12 (-5 *2 (-1149 *4 *5 *6)) (-4 *4 (-13 (-27) (-1104) (-403 *3))) (-14 *5 (-1083)) (-14 *6 *4) (-4 *3 (-13 (-783) (-960 (-520)) (-582 (-520)) (-424))) (-5 *1 (-286 *3 *4 *5 *6)))) (-3042 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-783) (-960 (-520)) (-582 (-520)) (-424))) (-5 *2 (-776 *4)) (-5 *1 (-286 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1104) (-403 *3))) (-14 *5 (-1083)) (-14 *6 *4))))
-(-13 (-917 (-1150 |#1| |#2| |#3| |#4|)) (-960 (-1149 |#2| |#3| |#4|)) (-10 -8 (-15 -3042 ((-3 (-776 |#2|) "failed") $)) (-15 -2188 ($ (-1149 |#2| |#3| |#4|)))))
-((-1389 (((-289 |#2|) (-1 |#2| |#1|) (-289 |#1|)) 13)))
-(((-287 |#1| |#2|) (-10 -7 (-15 -1389 ((-289 |#2|) (-1 |#2| |#1|) (-289 |#1|)))) (-783) (-783)) (T -287))
-((-1389 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-289 *5)) (-4 *5 (-783)) (-4 *6 (-783)) (-5 *2 (-289 *6)) (-5 *1 (-287 *5 *6)))))
-(-10 -7 (-15 -1389 ((-289 |#2|) (-1 |#2| |#1|) (-289 |#1|))))
-((-3053 (((-51) |#2| (-268 |#2|) (-706)) 33) (((-51) |#2| (-268 |#2|)) 24) (((-51) |#2| (-706)) 28) (((-51) |#2|) 25) (((-51) (-1083)) 21)) (-2769 (((-51) |#2| (-268 |#2|) (-380 (-520))) 51) (((-51) |#2| (-268 |#2|)) 48) (((-51) |#2| (-380 (-520))) 50) (((-51) |#2|) 49) (((-51) (-1083)) 47)) (-3073 (((-51) |#2| (-268 |#2|) (-380 (-520))) 46) (((-51) |#2| (-268 |#2|)) 43) (((-51) |#2| (-380 (-520))) 45) (((-51) |#2|) 44) (((-51) (-1083)) 42)) (-3063 (((-51) |#2| (-268 |#2|) (-520)) 39) (((-51) |#2| (-268 |#2|)) 35) (((-51) |#2| (-520)) 38) (((-51) |#2|) 36) (((-51) (-1083)) 34)))
-(((-288 |#1| |#2|) (-10 -7 (-15 -3053 ((-51) (-1083))) (-15 -3053 ((-51) |#2|)) (-15 -3053 ((-51) |#2| (-706))) (-15 -3053 ((-51) |#2| (-268 |#2|))) (-15 -3053 ((-51) |#2| (-268 |#2|) (-706))) (-15 -3063 ((-51) (-1083))) (-15 -3063 ((-51) |#2|)) (-15 -3063 ((-51) |#2| (-520))) (-15 -3063 ((-51) |#2| (-268 |#2|))) (-15 -3063 ((-51) |#2| (-268 |#2|) (-520))) (-15 -3073 ((-51) (-1083))) (-15 -3073 ((-51) |#2|)) (-15 -3073 ((-51) |#2| (-380 (-520)))) (-15 -3073 ((-51) |#2| (-268 |#2|))) (-15 -3073 ((-51) |#2| (-268 |#2|) (-380 (-520)))) (-15 -2769 ((-51) (-1083))) (-15 -2769 ((-51) |#2|)) (-15 -2769 ((-51) |#2| (-380 (-520)))) (-15 -2769 ((-51) |#2| (-268 |#2|))) (-15 -2769 ((-51) |#2| (-268 |#2|) (-380 (-520))))) (-13 (-424) (-783) (-960 (-520)) (-582 (-520))) (-13 (-27) (-1104) (-403 |#1|))) (T -288))
-((-2769 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-268 *3)) (-5 *5 (-380 (-520))) (-4 *3 (-13 (-27) (-1104) (-403 *6))) (-4 *6 (-13 (-424) (-783) (-960 (-520)) (-582 (-520)))) (-5 *2 (-51)) (-5 *1 (-288 *6 *3)))) (-2769 (*1 *2 *3 *4) (-12 (-5 *4 (-268 *3)) (-4 *3 (-13 (-27) (-1104) (-403 *5))) (-4 *5 (-13 (-424) (-783) (-960 (-520)) (-582 (-520)))) (-5 *2 (-51)) (-5 *1 (-288 *5 *3)))) (-2769 (*1 *2 *3 *4) (-12 (-5 *4 (-380 (-520))) (-4 *5 (-13 (-424) (-783) (-960 (-520)) (-582 (-520)))) (-5 *2 (-51)) (-5 *1 (-288 *5 *3)) (-4 *3 (-13 (-27) (-1104) (-403 *5))))) (-2769 (*1 *2 *3) (-12 (-4 *4 (-13 (-424) (-783) (-960 (-520)) (-582 (-520)))) (-5 *2 (-51)) (-5 *1 (-288 *4 *3)) (-4 *3 (-13 (-27) (-1104) (-403 *4))))) (-2769 (*1 *2 *3) (-12 (-5 *3 (-1083)) (-4 *4 (-13 (-424) (-783) (-960 (-520)) (-582 (-520)))) (-5 *2 (-51)) (-5 *1 (-288 *4 *5)) (-4 *5 (-13 (-27) (-1104) (-403 *4))))) (-3073 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-268 *3)) (-5 *5 (-380 (-520))) (-4 *3 (-13 (-27) (-1104) (-403 *6))) (-4 *6 (-13 (-424) (-783) (-960 (-520)) (-582 (-520)))) (-5 *2 (-51)) (-5 *1 (-288 *6 *3)))) (-3073 (*1 *2 *3 *4) (-12 (-5 *4 (-268 *3)) (-4 *3 (-13 (-27) (-1104) (-403 *5))) (-4 *5 (-13 (-424) (-783) (-960 (-520)) (-582 (-520)))) (-5 *2 (-51)) (-5 *1 (-288 *5 *3)))) (-3073 (*1 *2 *3 *4) (-12 (-5 *4 (-380 (-520))) (-4 *5 (-13 (-424) (-783) (-960 (-520)) (-582 (-520)))) (-5 *2 (-51)) (-5 *1 (-288 *5 *3)) (-4 *3 (-13 (-27) (-1104) (-403 *5))))) (-3073 (*1 *2 *3) (-12 (-4 *4 (-13 (-424) (-783) (-960 (-520)) (-582 (-520)))) (-5 *2 (-51)) (-5 *1 (-288 *4 *3)) (-4 *3 (-13 (-27) (-1104) (-403 *4))))) (-3073 (*1 *2 *3) (-12 (-5 *3 (-1083)) (-4 *4 (-13 (-424) (-783) (-960 (-520)) (-582 (-520)))) (-5 *2 (-51)) (-5 *1 (-288 *4 *5)) (-4 *5 (-13 (-27) (-1104) (-403 *4))))) (-3063 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-268 *3)) (-4 *3 (-13 (-27) (-1104) (-403 *6))) (-4 *6 (-13 (-424) (-783) (-960 *5) (-582 *5))) (-5 *5 (-520)) (-5 *2 (-51)) (-5 *1 (-288 *6 *3)))) (-3063 (*1 *2 *3 *4) (-12 (-5 *4 (-268 *3)) (-4 *3 (-13 (-27) (-1104) (-403 *5))) (-4 *5 (-13 (-424) (-783) (-960 (-520)) (-582 (-520)))) (-5 *2 (-51)) (-5 *1 (-288 *5 *3)))) (-3063 (*1 *2 *3 *4) (-12 (-5 *4 (-520)) (-4 *5 (-13 (-424) (-783) (-960 *4) (-582 *4))) (-5 *2 (-51)) (-5 *1 (-288 *5 *3)) (-4 *3 (-13 (-27) (-1104) (-403 *5))))) (-3063 (*1 *2 *3) (-12 (-4 *4 (-13 (-424) (-783) (-960 (-520)) (-582 (-520)))) (-5 *2 (-51)) (-5 *1 (-288 *4 *3)) (-4 *3 (-13 (-27) (-1104) (-403 *4))))) (-3063 (*1 *2 *3) (-12 (-5 *3 (-1083)) (-4 *4 (-13 (-424) (-783) (-960 (-520)) (-582 (-520)))) (-5 *2 (-51)) (-5 *1 (-288 *4 *5)) (-4 *5 (-13 (-27) (-1104) (-403 *4))))) (-3053 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-268 *3)) (-5 *5 (-706)) (-4 *3 (-13 (-27) (-1104) (-403 *6))) (-4 *6 (-13 (-424) (-783) (-960 (-520)) (-582 (-520)))) (-5 *2 (-51)) (-5 *1 (-288 *6 *3)))) (-3053 (*1 *2 *3 *4) (-12 (-5 *4 (-268 *3)) (-4 *3 (-13 (-27) (-1104) (-403 *5))) (-4 *5 (-13 (-424) (-783) (-960 (-520)) (-582 (-520)))) (-5 *2 (-51)) (-5 *1 (-288 *5 *3)))) (-3053 (*1 *2 *3 *4) (-12 (-5 *4 (-706)) (-4 *5 (-13 (-424) (-783) (-960 (-520)) (-582 (-520)))) (-5 *2 (-51)) (-5 *1 (-288 *5 *3)) (-4 *3 (-13 (-27) (-1104) (-403 *5))))) (-3053 (*1 *2 *3) (-12 (-4 *4 (-13 (-424) (-783) (-960 (-520)) (-582 (-520)))) (-5 *2 (-51)) (-5 *1 (-288 *4 *3)) (-4 *3 (-13 (-27) (-1104) (-403 *4))))) (-3053 (*1 *2 *3) (-12 (-5 *3 (-1083)) (-4 *4 (-13 (-424) (-783) (-960 (-520)) (-582 (-520)))) (-5 *2 (-51)) (-5 *1 (-288 *4 *5)) (-4 *5 (-13 (-27) (-1104) (-403 *4))))))
-(-10 -7 (-15 -3053 ((-51) (-1083))) (-15 -3053 ((-51) |#2|)) (-15 -3053 ((-51) |#2| (-706))) (-15 -3053 ((-51) |#2| (-268 |#2|))) (-15 -3053 ((-51) |#2| (-268 |#2|) (-706))) (-15 -3063 ((-51) (-1083))) (-15 -3063 ((-51) |#2|)) (-15 -3063 ((-51) |#2| (-520))) (-15 -3063 ((-51) |#2| (-268 |#2|))) (-15 -3063 ((-51) |#2| (-268 |#2|) (-520))) (-15 -3073 ((-51) (-1083))) (-15 -3073 ((-51) |#2|)) (-15 -3073 ((-51) |#2| (-380 (-520)))) (-15 -3073 ((-51) |#2| (-268 |#2|))) (-15 -3073 ((-51) |#2| (-268 |#2|) (-380 (-520)))) (-15 -2769 ((-51) (-1083))) (-15 -2769 ((-51) |#2|)) (-15 -2769 ((-51) |#2| (-380 (-520)))) (-15 -2769 ((-51) |#2| (-268 |#2|))) (-15 -2769 ((-51) |#2| (-268 |#2|) (-380 (-520)))))
-((-1414 (((-108) $ $) NIL)) (-3953 (((-586 $) $ (-1083)) NIL (|has| |#1| (-512))) (((-586 $) $) NIL (|has| |#1| (-512))) (((-586 $) (-1079 $) (-1083)) NIL (|has| |#1| (-512))) (((-586 $) (-1079 $)) NIL (|has| |#1| (-512))) (((-586 $) (-880 $)) NIL (|has| |#1| (-512)))) (-2057 (($ $ (-1083)) NIL (|has| |#1| (-512))) (($ $) NIL (|has| |#1| (-512))) (($ (-1079 $) (-1083)) NIL (|has| |#1| (-512))) (($ (-1079 $)) NIL (|has| |#1| (-512))) (($ (-880 $)) NIL (|has| |#1| (-512)))) (-2906 (((-108) $) 27 (-3700 (|has| |#1| (-25)) (-12 (|has| |#1| (-582 (-520))) (|has| |#1| (-969)))))) (-4081 (((-586 (-1083)) $) 345)) (-1278 (((-380 (-1079 $)) $ (-559 $)) NIL (|has| |#1| (-512)))) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) NIL (|has| |#1| (-512)))) (-2583 (($ $) NIL (|has| |#1| (-512)))) (-1671 (((-108) $) NIL (|has| |#1| (-512)))) (-1883 (((-586 (-559 $)) $) NIL)) (-2903 (($ $) 154 (|has| |#1| (-512)))) (-2768 (($ $) 130 (|has| |#1| (-512)))) (-2651 (($ $ (-1005 $)) 215 (|has| |#1| (-512))) (($ $ (-1083)) 211 (|has| |#1| (-512)))) (-1917 (((-3 $ "failed") $ $) NIL (-3700 (|has| |#1| (-21)) (-12 (|has| |#1| (-582 (-520))) (|has| |#1| (-969)))))) (-3299 (($ $ (-268 $)) NIL) (($ $ (-586 (-268 $))) 361) (($ $ (-586 (-559 $)) (-586 $)) 404)) (-4119 (((-391 (-1079 $)) (-1079 $)) 289 (-12 (|has| |#1| (-424)) (|has| |#1| (-512))))) (-3024 (($ $) NIL (|has| |#1| (-512)))) (-1507 (((-391 $) $) NIL (|has| |#1| (-512)))) (-1927 (($ $) NIL (|has| |#1| (-512)))) (-1327 (((-108) $ $) NIL (|has| |#1| (-512)))) (-2879 (($ $) 150 (|has| |#1| (-512)))) (-2745 (($ $) 126 (|has| |#1| (-512)))) (-3694 (($ $ (-520)) 64 (|has| |#1| (-512)))) (-2925 (($ $) 158 (|has| |#1| (-512)))) (-2789 (($ $) 134 (|has| |#1| (-512)))) (-3961 (($) NIL (-3700 (|has| |#1| (-25)) (-12 (|has| |#1| (-582 (-520))) (|has| |#1| (-969))) (|has| |#1| (-1024))) CONST)) (-2150 (((-586 $) $ (-1083)) NIL (|has| |#1| (-512))) (((-586 $) $) NIL (|has| |#1| (-512))) (((-586 $) (-1079 $) (-1083)) NIL (|has| |#1| (-512))) (((-586 $) (-1079 $)) NIL (|has| |#1| (-512))) (((-586 $) (-880 $)) NIL (|has| |#1| (-512)))) (-2288 (($ $ (-1083)) NIL (|has| |#1| (-512))) (($ $) NIL (|has| |#1| (-512))) (($ (-1079 $) (-1083)) 117 (|has| |#1| (-512))) (($ (-1079 $)) NIL (|has| |#1| (-512))) (($ (-880 $)) NIL (|has| |#1| (-512)))) (-1296 (((-3 (-559 $) "failed") $) 17) (((-3 (-1083) "failed") $) NIL) (((-3 |#1| "failed") $) 413) (((-3 (-47) "failed") $) 318 (-12 (|has| |#1| (-512)) (|has| |#1| (-960 (-520))))) (((-3 (-520) "failed") $) NIL (|has| |#1| (-960 (-520)))) (((-3 (-380 (-880 |#1|)) "failed") $) NIL (|has| |#1| (-512))) (((-3 (-880 |#1|) "failed") $) NIL (|has| |#1| (-969))) (((-3 (-380 (-520)) "failed") $) 45 (-3700 (-12 (|has| |#1| (-512)) (|has| |#1| (-960 (-520)))) (|has| |#1| (-960 (-380 (-520))))))) (-1482 (((-559 $) $) 11) (((-1083) $) NIL) ((|#1| $) 395) (((-47) $) NIL (-12 (|has| |#1| (-512)) (|has| |#1| (-960 (-520))))) (((-520) $) NIL (|has| |#1| (-960 (-520)))) (((-380 (-880 |#1|)) $) NIL (|has| |#1| (-512))) (((-880 |#1|) $) NIL (|has| |#1| (-969))) (((-380 (-520)) $) 302 (-3700 (-12 (|has| |#1| (-512)) (|has| |#1| (-960 (-520)))) (|has| |#1| (-960 (-380 (-520))))))) (-2276 (($ $ $) NIL (|has| |#1| (-512)))) (-2756 (((-2 (|:| -3927 (-626 |#1|)) (|:| |vec| (-1164 |#1|))) (-626 $) (-1164 $)) 110 (|has| |#1| (-969))) (((-626 |#1|) (-626 $)) 102 (|has| |#1| (-969))) (((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 $) (-1164 $)) NIL (-12 (|has| |#1| (-582 (-520))) (|has| |#1| (-969)))) (((-626 (-520)) (-626 $)) NIL (-12 (|has| |#1| (-582 (-520))) (|has| |#1| (-969))))) (-3856 (($ $) 84 (|has| |#1| (-512)))) (-1540 (((-3 $ "failed") $) NIL (-3700 (-12 (|has| |#1| (-582 (-520))) (|has| |#1| (-969))) (|has| |#1| (-1024))))) (-2253 (($ $ $) NIL (|has| |#1| (-512)))) (-1700 (($ $ (-1005 $)) 219 (|has| |#1| (-512))) (($ $ (-1083)) 217 (|has| |#1| (-512)))) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) NIL (|has| |#1| (-512)))) (-2036 (((-108) $) NIL (|has| |#1| (-512)))) (-1443 (($ $ $) 185 (|has| |#1| (-512)))) (-2833 (($) 120 (|has| |#1| (-512)))) (-4151 (($ $ $) 205 (|has| |#1| (-512)))) (-1272 (((-817 (-520) $) $ (-820 (-520)) (-817 (-520) $)) 367 (|has| |#1| (-814 (-520)))) (((-817 (-352) $) $ (-820 (-352)) (-817 (-352) $)) 373 (|has| |#1| (-814 (-352))))) (-1255 (($ $) NIL) (($ (-586 $)) NIL)) (-3357 (((-586 (-110)) $) NIL)) (-3877 (((-110) (-110)) 260)) (-1537 (((-108) $) 25 (-3700 (-12 (|has| |#1| (-582 (-520))) (|has| |#1| (-969))) (|has| |#1| (-1024))))) (-2777 (((-108) $) NIL (|has| $ (-960 (-520))))) (-4115 (($ $) 66 (|has| |#1| (-969)))) (-2800 (((-1035 |#1| (-559 $)) $) 79 (|has| |#1| (-969)))) (-1901 (((-108) $) 46 (|has| |#1| (-512)))) (-2322 (($ $ (-520)) NIL (|has| |#1| (-512)))) (-3188 (((-3 (-586 $) "failed") (-586 $) $) NIL (|has| |#1| (-512)))) (-2433 (((-1079 $) (-559 $)) 261 (|has| $ (-969)))) (-2809 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-1389 (($ (-1 $ $) (-559 $)) 400)) (-2690 (((-3 (-559 $) "failed") $) NIL)) (-1252 (($ $) 124 (|has| |#1| (-512)))) (-3241 (($ $) 230 (|has| |#1| (-512)))) (-2222 (($ (-586 $)) NIL (|has| |#1| (-512))) (($ $ $) NIL (|has| |#1| (-512)))) (-1239 (((-1066) $) NIL)) (-1265 (((-586 (-559 $)) $) 48)) (-2904 (($ (-110) $) NIL) (($ (-110) (-586 $)) 405)) (-3548 (((-3 (-586 $) "failed") $) NIL (|has| |#1| (-1024)))) (-2090 (((-3 (-2 (|:| |val| $) (|:| -2647 (-520))) "failed") $) NIL (|has| |#1| (-969)))) (-1205 (((-3 (-586 $) "failed") $) 408 (|has| |#1| (-25)))) (-3929 (((-3 (-2 (|:| -2972 (-520)) (|:| |var| (-559 $))) "failed") $) 412 (|has| |#1| (-25)))) (-2568 (((-3 (-2 (|:| |var| (-559 $)) (|:| -2647 (-520))) "failed") $) NIL (|has| |#1| (-1024))) (((-3 (-2 (|:| |var| (-559 $)) (|:| -2647 (-520))) "failed") $ (-110)) NIL (|has| |#1| (-969))) (((-3 (-2 (|:| |var| (-559 $)) (|:| -2647 (-520))) "failed") $ (-1083)) NIL (|has| |#1| (-969)))) (-1784 (((-108) $ (-110)) NIL) (((-108) $ (-1083)) 52)) (-3093 (($ $) NIL (-3700 (|has| |#1| (-445)) (|has| |#1| (-512))))) (-2410 (($ $ (-1083)) 234 (|has| |#1| (-512))) (($ $ (-1005 $)) 236 (|has| |#1| (-512)))) (-4146 (((-706) $) NIL)) (-4142 (((-1030) $) NIL)) (-3103 (((-108) $) 43)) (-3113 ((|#1| $) NIL)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) 282 (|has| |#1| (-512)))) (-2257 (($ (-586 $)) NIL (|has| |#1| (-512))) (($ $ $) NIL (|has| |#1| (-512)))) (-4134 (((-108) $ $) NIL) (((-108) $ (-1083)) NIL)) (-1825 (($ $ (-1083)) 209 (|has| |#1| (-512))) (($ $) 207 (|has| |#1| (-512)))) (-2724 (($ $) 201 (|has| |#1| (-512)))) (-2017 (((-391 (-1079 $)) (-1079 $)) 287 (-12 (|has| |#1| (-424)) (|has| |#1| (-512))))) (-1916 (((-391 $) $) NIL (|has| |#1| (-512)))) (-1283 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-512))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) NIL (|has| |#1| (-512)))) (-2230 (((-3 $ "failed") $ $) NIL (|has| |#1| (-512)))) (-2608 (((-3 (-586 $) "failed") (-586 $) $) NIL (|has| |#1| (-512)))) (-3260 (($ $) 122 (|has| |#1| (-512)))) (-3615 (((-108) $) NIL (|has| $ (-960 (-520))))) (-2286 (($ $ (-559 $) $) NIL) (($ $ (-586 (-559 $)) (-586 $)) 399) (($ $ (-586 (-268 $))) NIL) (($ $ (-268 $)) NIL) (($ $ $ $) NIL) (($ $ (-586 $) (-586 $)) NIL) (($ $ (-586 (-1083)) (-586 (-1 $ $))) NIL) (($ $ (-586 (-1083)) (-586 (-1 $ (-586 $)))) NIL) (($ $ (-1083) (-1 $ (-586 $))) NIL) (($ $ (-1083) (-1 $ $)) NIL) (($ $ (-586 (-110)) (-586 (-1 $ $))) 355) (($ $ (-586 (-110)) (-586 (-1 $ (-586 $)))) NIL) (($ $ (-110) (-1 $ (-586 $))) NIL) (($ $ (-110) (-1 $ $)) NIL) (($ $ (-1083)) NIL (|has| |#1| (-561 (-496)))) (($ $ (-586 (-1083))) NIL (|has| |#1| (-561 (-496)))) (($ $) NIL (|has| |#1| (-561 (-496)))) (($ $ (-110) $ (-1083)) 343 (|has| |#1| (-561 (-496)))) (($ $ (-586 (-110)) (-586 $) (-1083)) 342 (|has| |#1| (-561 (-496)))) (($ $ (-586 (-1083)) (-586 (-706)) (-586 (-1 $ $))) NIL (|has| |#1| (-969))) (($ $ (-586 (-1083)) (-586 (-706)) (-586 (-1 $ (-586 $)))) NIL (|has| |#1| (-969))) (($ $ (-1083) (-706) (-1 $ (-586 $))) NIL (|has| |#1| (-969))) (($ $ (-1083) (-706) (-1 $ $)) NIL (|has| |#1| (-969)))) (-3704 (((-706) $) NIL (|has| |#1| (-512)))) (-2704 (($ $) 222 (|has| |#1| (-512)))) (-2543 (($ (-110) $) NIL) (($ (-110) $ $) NIL) (($ (-110) $ $ $) NIL) (($ (-110) $ $ $ $) NIL) (($ (-110) (-586 $)) NIL)) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) NIL (|has| |#1| (-512)))) (-3453 (($ $) NIL) (($ $ $) NIL)) (-2733 (($ $) 232 (|has| |#1| (-512)))) (-2899 (($ $) 183 (|has| |#1| (-512)))) (-2155 (($ $ (-586 (-1083)) (-586 (-706))) NIL (|has| |#1| (-969))) (($ $ (-1083) (-706)) NIL (|has| |#1| (-969))) (($ $ (-586 (-1083))) NIL (|has| |#1| (-969))) (($ $ (-1083)) NIL (|has| |#1| (-969)))) (-3556 (($ $) 67 (|has| |#1| (-512)))) (-2811 (((-1035 |#1| (-559 $)) $) 81 (|has| |#1| (-512)))) (-3484 (($ $) 300 (|has| $ (-969)))) (-1737 (($ $) 160 (|has| |#1| (-512)))) (-2799 (($ $) 136 (|has| |#1| (-512)))) (-2914 (($ $) 156 (|has| |#1| (-512)))) (-2779 (($ $) 132 (|has| |#1| (-512)))) (-2891 (($ $) 152 (|has| |#1| (-512)))) (-2757 (($ $) 128 (|has| |#1| (-512)))) (-1429 (((-820 (-520)) $) NIL (|has| |#1| (-561 (-820 (-520))))) (((-820 (-352)) $) NIL (|has| |#1| (-561 (-820 (-352))))) (($ (-391 $)) NIL (|has| |#1| (-512))) (((-496) $) 340 (|has| |#1| (-561 (-496))))) (-2945 (($ $ $) NIL (|has| |#1| (-445)))) (-3607 (($ $ $) NIL (|has| |#1| (-445)))) (-2188 (((-791) $) 398) (($ (-559 $)) 389) (($ (-1083)) 357) (($ |#1|) 319) (($ $) NIL (|has| |#1| (-512))) (($ (-47)) 294 (-12 (|has| |#1| (-512)) (|has| |#1| (-960 (-520))))) (($ (-1035 |#1| (-559 $))) 83 (|has| |#1| (-969))) (($ (-380 |#1|)) NIL (|has| |#1| (-512))) (($ (-880 (-380 |#1|))) NIL (|has| |#1| (-512))) (($ (-380 (-880 (-380 |#1|)))) NIL (|has| |#1| (-512))) (($ (-380 (-880 |#1|))) NIL (|has| |#1| (-512))) (($ (-880 |#1|)) NIL (|has| |#1| (-969))) (($ (-380 (-520))) NIL (-3700 (|has| |#1| (-512)) (|has| |#1| (-960 (-380 (-520)))))) (($ (-520)) 34 (-3700 (|has| |#1| (-960 (-520))) (|has| |#1| (-969))))) (-3796 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-3251 (((-706)) NIL (|has| |#1| (-969)))) (-2319 (($ $) NIL) (($ (-586 $)) NIL)) (-2586 (($ $ $) 203 (|has| |#1| (-512)))) (-2622 (($ $ $) 189 (|has| |#1| (-512)))) (-1757 (($ $ $) 193 (|has| |#1| (-512)))) (-2418 (($ $ $) 187 (|has| |#1| (-512)))) (-3838 (($ $ $) 191 (|has| |#1| (-512)))) (-1373 (((-108) (-110)) 9)) (-1758 (($ $) 166 (|has| |#1| (-512)))) (-2831 (($ $) 142 (|has| |#1| (-512)))) (-2559 (((-108) $ $) NIL (|has| |#1| (-512)))) (-1744 (($ $) 162 (|has| |#1| (-512)))) (-2810 (($ $) 138 (|has| |#1| (-512)))) (-1775 (($ $) 170 (|has| |#1| (-512)))) (-2855 (($ $) 146 (|has| |#1| (-512)))) (-1804 (($ (-1083) $) NIL) (($ (-1083) $ $) NIL) (($ (-1083) $ $ $) NIL) (($ (-1083) $ $ $ $) NIL) (($ (-1083) (-586 $)) NIL)) (-1699 (($ $) 197 (|has| |#1| (-512)))) (-1300 (($ $) 195 (|has| |#1| (-512)))) (-3915 (($ $) 172 (|has| |#1| (-512)))) (-2867 (($ $) 148 (|has| |#1| (-512)))) (-1767 (($ $) 168 (|has| |#1| (-512)))) (-2843 (($ $) 144 (|has| |#1| (-512)))) (-1751 (($ $) 164 (|has| |#1| (-512)))) (-2820 (($ $) 140 (|has| |#1| (-512)))) (-2458 (($ $) 175 (|has| |#1| (-512)))) (-3504 (($ $ (-520)) NIL (-3700 (|has| |#1| (-445)) (|has| |#1| (-512)))) (($ $ (-706)) NIL (-3700 (-12 (|has| |#1| (-582 (-520))) (|has| |#1| (-969))) (|has| |#1| (-1024)))) (($ $ (-849)) NIL (-3700 (-12 (|has| |#1| (-582 (-520))) (|has| |#1| (-969))) (|has| |#1| (-1024))))) (-3560 (($) 20 (-3700 (|has| |#1| (-25)) (-12 (|has| |#1| (-582 (-520))) (|has| |#1| (-969)))) CONST)) (-2048 (($ $) 226 (|has| |#1| (-512)))) (-3570 (($) 22 (-3700 (-12 (|has| |#1| (-582 (-520))) (|has| |#1| (-969))) (|has| |#1| (-1024))) CONST)) (-2551 (($ $) 177 (|has| |#1| (-512))) (($ $ $) 179 (|has| |#1| (-512)))) (-3818 (($ $) 224 (|has| |#1| (-512)))) (-2211 (($ $ (-586 (-1083)) (-586 (-706))) NIL (|has| |#1| (-969))) (($ $ (-1083) (-706)) NIL (|has| |#1| (-969))) (($ $ (-586 (-1083))) NIL (|has| |#1| (-969))) (($ $ (-1083)) NIL (|has| |#1| (-969)))) (-2184 (($ $) 228 (|has| |#1| (-512)))) (-1815 (($ $ $) 181 (|has| |#1| (-512)))) (-1573 (((-108) $ $) NIL)) (-1557 (((-108) $ $) NIL)) (-1530 (((-108) $ $) 76)) (-1565 (((-108) $ $) NIL)) (-1548 (((-108) $ $) 75)) (-1619 (($ (-1035 |#1| (-559 $)) (-1035 |#1| (-559 $))) 93 (|has| |#1| (-512))) (($ $ $) 42 (-3700 (|has| |#1| (-445)) (|has| |#1| (-512))))) (-1611 (($ $ $) 40 (-3700 (|has| |#1| (-21)) (-12 (|has| |#1| (-582 (-520))) (|has| |#1| (-969))))) (($ $) 29 (-3700 (|has| |#1| (-21)) (-12 (|has| |#1| (-582 (-520))) (|has| |#1| (-969)))))) (-1601 (($ $ $) 38 (-3700 (|has| |#1| (-25)) (-12 (|has| |#1| (-582 (-520))) (|has| |#1| (-969)))))) (** (($ $ $) 61 (|has| |#1| (-512))) (($ $ (-380 (-520))) 297 (|has| |#1| (-512))) (($ $ (-520)) 71 (-3700 (|has| |#1| (-445)) (|has| |#1| (-512)))) (($ $ (-706)) 68 (-3700 (-12 (|has| |#1| (-582 (-520))) (|has| |#1| (-969))) (|has| |#1| (-1024)))) (($ $ (-849)) 73 (-3700 (-12 (|has| |#1| (-582 (-520))) (|has| |#1| (-969))) (|has| |#1| (-1024))))) (* (($ (-380 (-520)) $) NIL (|has| |#1| (-512))) (($ $ (-380 (-520))) NIL (|has| |#1| (-512))) (($ |#1| $) NIL (|has| |#1| (-157))) (($ $ |#1|) NIL (|has| |#1| (-157))) (($ $ $) 36 (-3700 (-12 (|has| |#1| (-582 (-520))) (|has| |#1| (-969))) (|has| |#1| (-1024)))) (($ (-520) $) 32 (-3700 (|has| |#1| (-21)) (-12 (|has| |#1| (-582 (-520))) (|has| |#1| (-969))))) (($ (-706) $) NIL (-3700 (|has| |#1| (-25)) (-12 (|has| |#1| (-582 (-520))) (|has| |#1| (-969))))) (($ (-849) $) NIL (-3700 (|has| |#1| (-25)) (-12 (|has| |#1| (-582 (-520))) (|has| |#1| (-969)))))))
-(((-289 |#1|) (-13 (-403 |#1|) (-10 -8 (IF (|has| |#1| (-512)) (PROGN (-6 (-29 |#1|)) (-6 (-1104)) (-6 (-146)) (-6 (-572)) (-6 (-1047)) (-15 -3856 ($ $)) (-15 -1901 ((-108) $)) (-15 -3694 ($ $ (-520))) (IF (|has| |#1| (-424)) (PROGN (-15 -2017 ((-391 (-1079 $)) (-1079 $))) (-15 -4119 ((-391 (-1079 $)) (-1079 $)))) |%noBranch|) (IF (|has| |#1| (-960 (-520))) (-6 (-960 (-47))) |%noBranch|)) |%noBranch|))) (-783)) (T -289))
-((-3856 (*1 *1 *1) (-12 (-5 *1 (-289 *2)) (-4 *2 (-512)) (-4 *2 (-783)))) (-1901 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-289 *3)) (-4 *3 (-512)) (-4 *3 (-783)))) (-3694 (*1 *1 *1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-289 *3)) (-4 *3 (-512)) (-4 *3 (-783)))) (-2017 (*1 *2 *3) (-12 (-5 *2 (-391 (-1079 *1))) (-5 *1 (-289 *4)) (-5 *3 (-1079 *1)) (-4 *4 (-424)) (-4 *4 (-512)) (-4 *4 (-783)))) (-4119 (*1 *2 *3) (-12 (-5 *2 (-391 (-1079 *1))) (-5 *1 (-289 *4)) (-5 *3 (-1079 *1)) (-4 *4 (-424)) (-4 *4 (-512)) (-4 *4 (-783)))))
-(-13 (-403 |#1|) (-10 -8 (IF (|has| |#1| (-512)) (PROGN (-6 (-29 |#1|)) (-6 (-1104)) (-6 (-146)) (-6 (-572)) (-6 (-1047)) (-15 -3856 ($ $)) (-15 -1901 ((-108) $)) (-15 -3694 ($ $ (-520))) (IF (|has| |#1| (-424)) (PROGN (-15 -2017 ((-391 (-1079 $)) (-1079 $))) (-15 -4119 ((-391 (-1079 $)) (-1079 $)))) |%noBranch|) (IF (|has| |#1| (-960 (-520))) (-6 (-960 (-47))) |%noBranch|)) |%noBranch|)))
-((-4064 (((-51) |#2| (-110) (-268 |#2|) (-586 |#2|)) 86) (((-51) |#2| (-110) (-268 |#2|) (-268 |#2|)) 82) (((-51) |#2| (-110) (-268 |#2|) |#2|) 84) (((-51) (-268 |#2|) (-110) (-268 |#2|) |#2|) 85) (((-51) (-586 |#2|) (-586 (-110)) (-268 |#2|) (-586 (-268 |#2|))) 78) (((-51) (-586 |#2|) (-586 (-110)) (-268 |#2|) (-586 |#2|)) 80) (((-51) (-586 (-268 |#2|)) (-586 (-110)) (-268 |#2|) (-586 |#2|)) 81) (((-51) (-586 (-268 |#2|)) (-586 (-110)) (-268 |#2|) (-586 (-268 |#2|))) 79) (((-51) (-268 |#2|) (-110) (-268 |#2|) (-586 |#2|)) 87) (((-51) (-268 |#2|) (-110) (-268 |#2|) (-268 |#2|)) 83)))
-(((-290 |#1| |#2|) (-10 -7 (-15 -4064 ((-51) (-268 |#2|) (-110) (-268 |#2|) (-268 |#2|))) (-15 -4064 ((-51) (-268 |#2|) (-110) (-268 |#2|) (-586 |#2|))) (-15 -4064 ((-51) (-586 (-268 |#2|)) (-586 (-110)) (-268 |#2|) (-586 (-268 |#2|)))) (-15 -4064 ((-51) (-586 (-268 |#2|)) (-586 (-110)) (-268 |#2|) (-586 |#2|))) (-15 -4064 ((-51) (-586 |#2|) (-586 (-110)) (-268 |#2|) (-586 |#2|))) (-15 -4064 ((-51) (-586 |#2|) (-586 (-110)) (-268 |#2|) (-586 (-268 |#2|)))) (-15 -4064 ((-51) (-268 |#2|) (-110) (-268 |#2|) |#2|)) (-15 -4064 ((-51) |#2| (-110) (-268 |#2|) |#2|)) (-15 -4064 ((-51) |#2| (-110) (-268 |#2|) (-268 |#2|))) (-15 -4064 ((-51) |#2| (-110) (-268 |#2|) (-586 |#2|)))) (-13 (-783) (-512) (-561 (-496))) (-403 |#1|)) (T -290))
-((-4064 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-110)) (-5 *5 (-268 *3)) (-5 *6 (-586 *3)) (-4 *3 (-403 *7)) (-4 *7 (-13 (-783) (-512) (-561 (-496)))) (-5 *2 (-51)) (-5 *1 (-290 *7 *3)))) (-4064 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-110)) (-5 *5 (-268 *3)) (-4 *3 (-403 *6)) (-4 *6 (-13 (-783) (-512) (-561 (-496)))) (-5 *2 (-51)) (-5 *1 (-290 *6 *3)))) (-4064 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-110)) (-5 *5 (-268 *3)) (-4 *3 (-403 *6)) (-4 *6 (-13 (-783) (-512) (-561 (-496)))) (-5 *2 (-51)) (-5 *1 (-290 *6 *3)))) (-4064 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-268 *5)) (-5 *4 (-110)) (-4 *5 (-403 *6)) (-4 *6 (-13 (-783) (-512) (-561 (-496)))) (-5 *2 (-51)) (-5 *1 (-290 *6 *5)))) (-4064 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-586 *8)) (-5 *4 (-586 (-110))) (-5 *6 (-586 (-268 *8))) (-4 *8 (-403 *7)) (-5 *5 (-268 *8)) (-4 *7 (-13 (-783) (-512) (-561 (-496)))) (-5 *2 (-51)) (-5 *1 (-290 *7 *8)))) (-4064 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-586 *7)) (-5 *4 (-586 (-110))) (-5 *5 (-268 *7)) (-4 *7 (-403 *6)) (-4 *6 (-13 (-783) (-512) (-561 (-496)))) (-5 *2 (-51)) (-5 *1 (-290 *6 *7)))) (-4064 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-586 (-268 *8))) (-5 *4 (-586 (-110))) (-5 *5 (-268 *8)) (-5 *6 (-586 *8)) (-4 *8 (-403 *7)) (-4 *7 (-13 (-783) (-512) (-561 (-496)))) (-5 *2 (-51)) (-5 *1 (-290 *7 *8)))) (-4064 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-586 (-268 *7))) (-5 *4 (-586 (-110))) (-5 *5 (-268 *7)) (-4 *7 (-403 *6)) (-4 *6 (-13 (-783) (-512) (-561 (-496)))) (-5 *2 (-51)) (-5 *1 (-290 *6 *7)))) (-4064 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-268 *7)) (-5 *4 (-110)) (-5 *5 (-586 *7)) (-4 *7 (-403 *6)) (-4 *6 (-13 (-783) (-512) (-561 (-496)))) (-5 *2 (-51)) (-5 *1 (-290 *6 *7)))) (-4064 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-268 *6)) (-5 *4 (-110)) (-4 *6 (-403 *5)) (-4 *5 (-13 (-783) (-512) (-561 (-496)))) (-5 *2 (-51)) (-5 *1 (-290 *5 *6)))))
-(-10 -7 (-15 -4064 ((-51) (-268 |#2|) (-110) (-268 |#2|) (-268 |#2|))) (-15 -4064 ((-51) (-268 |#2|) (-110) (-268 |#2|) (-586 |#2|))) (-15 -4064 ((-51) (-586 (-268 |#2|)) (-586 (-110)) (-268 |#2|) (-586 (-268 |#2|)))) (-15 -4064 ((-51) (-586 (-268 |#2|)) (-586 (-110)) (-268 |#2|) (-586 |#2|))) (-15 -4064 ((-51) (-586 |#2|) (-586 (-110)) (-268 |#2|) (-586 |#2|))) (-15 -4064 ((-51) (-586 |#2|) (-586 (-110)) (-268 |#2|) (-586 (-268 |#2|)))) (-15 -4064 ((-51) (-268 |#2|) (-110) (-268 |#2|) |#2|)) (-15 -4064 ((-51) |#2| (-110) (-268 |#2|) |#2|)) (-15 -4064 ((-51) |#2| (-110) (-268 |#2|) (-268 |#2|))) (-15 -4064 ((-51) |#2| (-110) (-268 |#2|) (-586 |#2|))))
-((-1770 (((-1114 (-854)) (-289 (-520)) (-289 (-520)) (-289 (-520)) (-1 (-201) (-201)) (-1007 (-201)) (-201) (-520) (-1066)) 46) (((-1114 (-854)) (-289 (-520)) (-289 (-520)) (-289 (-520)) (-1 (-201) (-201)) (-1007 (-201)) (-201) (-520)) 47) (((-1114 (-854)) (-289 (-520)) (-289 (-520)) (-289 (-520)) (-1 (-201) (-201)) (-1007 (-201)) (-1 (-201) (-201)) (-520) (-1066)) 43) (((-1114 (-854)) (-289 (-520)) (-289 (-520)) (-289 (-520)) (-1 (-201) (-201)) (-1007 (-201)) (-1 (-201) (-201)) (-520)) 44)) (-3636 (((-1 (-201) (-201)) (-201)) 45)))
-(((-291) (-10 -7 (-15 -3636 ((-1 (-201) (-201)) (-201))) (-15 -1770 ((-1114 (-854)) (-289 (-520)) (-289 (-520)) (-289 (-520)) (-1 (-201) (-201)) (-1007 (-201)) (-1 (-201) (-201)) (-520))) (-15 -1770 ((-1114 (-854)) (-289 (-520)) (-289 (-520)) (-289 (-520)) (-1 (-201) (-201)) (-1007 (-201)) (-1 (-201) (-201)) (-520) (-1066))) (-15 -1770 ((-1114 (-854)) (-289 (-520)) (-289 (-520)) (-289 (-520)) (-1 (-201) (-201)) (-1007 (-201)) (-201) (-520))) (-15 -1770 ((-1114 (-854)) (-289 (-520)) (-289 (-520)) (-289 (-520)) (-1 (-201) (-201)) (-1007 (-201)) (-201) (-520) (-1066))))) (T -291))
-((-1770 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-289 (-520))) (-5 *4 (-1 (-201) (-201))) (-5 *5 (-1007 (-201))) (-5 *6 (-201)) (-5 *7 (-520)) (-5 *8 (-1066)) (-5 *2 (-1114 (-854))) (-5 *1 (-291)))) (-1770 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-289 (-520))) (-5 *4 (-1 (-201) (-201))) (-5 *5 (-1007 (-201))) (-5 *6 (-201)) (-5 *7 (-520)) (-5 *2 (-1114 (-854))) (-5 *1 (-291)))) (-1770 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-289 (-520))) (-5 *4 (-1 (-201) (-201))) (-5 *5 (-1007 (-201))) (-5 *6 (-520)) (-5 *7 (-1066)) (-5 *2 (-1114 (-854))) (-5 *1 (-291)))) (-1770 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-289 (-520))) (-5 *4 (-1 (-201) (-201))) (-5 *5 (-1007 (-201))) (-5 *6 (-520)) (-5 *2 (-1114 (-854))) (-5 *1 (-291)))) (-3636 (*1 *2 *3) (-12 (-5 *2 (-1 (-201) (-201))) (-5 *1 (-291)) (-5 *3 (-201)))))
-(-10 -7 (-15 -3636 ((-1 (-201) (-201)) (-201))) (-15 -1770 ((-1114 (-854)) (-289 (-520)) (-289 (-520)) (-289 (-520)) (-1 (-201) (-201)) (-1007 (-201)) (-1 (-201) (-201)) (-520))) (-15 -1770 ((-1114 (-854)) (-289 (-520)) (-289 (-520)) (-289 (-520)) (-1 (-201) (-201)) (-1007 (-201)) (-1 (-201) (-201)) (-520) (-1066))) (-15 -1770 ((-1114 (-854)) (-289 (-520)) (-289 (-520)) (-289 (-520)) (-1 (-201) (-201)) (-1007 (-201)) (-201) (-520))) (-15 -1770 ((-1114 (-854)) (-289 (-520)) (-289 (-520)) (-289 (-520)) (-1 (-201) (-201)) (-1007 (-201)) (-201) (-520) (-1066))))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) 24)) (-4081 (((-586 (-997)) $) NIL)) (-1610 (((-1083) $) NIL)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) NIL (|has| |#1| (-512)))) (-2583 (($ $) NIL (|has| |#1| (-512)))) (-1671 (((-108) $) NIL (|has| |#1| (-512)))) (-2406 (($ $ (-380 (-520))) NIL) (($ $ (-380 (-520)) (-380 (-520))) NIL)) (-2088 (((-1064 (-2 (|:| |k| (-380 (-520))) (|:| |c| |#1|))) $) 19)) (-2903 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2768 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-1917 (((-3 $ "failed") $ $) NIL)) (-3024 (($ $) NIL (|has| |#1| (-336)))) (-1507 (((-391 $) $) NIL (|has| |#1| (-336)))) (-1927 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-1327 (((-108) $ $) NIL (|has| |#1| (-336)))) (-2879 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2745 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2769 (($ (-706) (-1064 (-2 (|:| |k| (-380 (-520))) (|:| |c| |#1|)))) NIL)) (-2925 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2789 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-3961 (($) NIL T CONST)) (-2276 (($ $ $) NIL (|has| |#1| (-336)))) (-3150 (($ $) 31)) (-1540 (((-3 $ "failed") $) NIL)) (-2253 (($ $ $) NIL (|has| |#1| (-336)))) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) NIL (|has| |#1| (-336)))) (-2036 (((-108) $) NIL (|has| |#1| (-336)))) (-1342 (((-108) $) NIL)) (-2833 (($) NIL (|has| |#1| (-37 (-380 (-520)))))) (-3989 (((-380 (-520)) $) NIL) (((-380 (-520)) $ (-380 (-520))) 15)) (-1537 (((-108) $) NIL)) (-2322 (($ $ (-520)) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2371 (($ $ (-849)) NIL) (($ $ (-380 (-520))) NIL)) (-3188 (((-3 (-586 $) "failed") (-586 $) $) NIL (|has| |#1| (-336)))) (-3774 (((-108) $) NIL)) (-4039 (($ |#1| (-380 (-520))) NIL) (($ $ (-997) (-380 (-520))) NIL) (($ $ (-586 (-997)) (-586 (-380 (-520)))) NIL)) (-2809 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-1389 (($ (-1 |#1| |#1|) $) NIL)) (-1252 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-3123 (($ $) NIL)) (-3133 ((|#1| $) NIL)) (-2222 (($ (-586 $)) NIL (|has| |#1| (-336))) (($ $ $) NIL (|has| |#1| (-336)))) (-1239 (((-1066) $) NIL)) (-3093 (($ $) NIL (|has| |#1| (-336)))) (-3517 (($ $) NIL (|has| |#1| (-37 (-380 (-520))))) (($ $ (-1083)) NIL (-3700 (-12 (|has| |#1| (-15 -3517 (|#1| |#1| (-1083)))) (|has| |#1| (-15 -4081 ((-586 (-1083)) |#1|))) (|has| |#1| (-37 (-380 (-520))))) (-12 (|has| |#1| (-29 (-520))) (|has| |#1| (-37 (-380 (-520)))) (|has| |#1| (-886)) (|has| |#1| (-1104)))))) (-4142 (((-1030) $) NIL)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) NIL (|has| |#1| (-336)))) (-2257 (($ (-586 $)) NIL (|has| |#1| (-336))) (($ $ $) NIL (|has| |#1| (-336)))) (-1916 (((-391 $) $) NIL (|has| |#1| (-336)))) (-1283 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-336))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) NIL (|has| |#1| (-336)))) (-2116 (($ $ (-380 (-520))) NIL)) (-2230 (((-3 $ "failed") $ $) NIL (|has| |#1| (-512)))) (-2608 (((-3 (-586 $) "failed") (-586 $) $) NIL (|has| |#1| (-336)))) (-4084 (((-380 (-520)) $) 16)) (-3018 (($ (-1149 |#1| |#2| |#3|)) 11)) (-2647 (((-1149 |#1| |#2| |#3|) $) 12)) (-3260 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2286 (((-1064 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-380 (-520))))))) (-3704 (((-706) $) NIL (|has| |#1| (-336)))) (-2543 ((|#1| $ (-380 (-520))) NIL) (($ $ $) NIL (|has| (-380 (-520)) (-1024)))) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) NIL (|has| |#1| (-336)))) (-2155 (($ $ (-586 (-1083)) (-586 (-706))) NIL (-12 (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|))) (|has| |#1| (-828 (-1083))))) (($ $ (-1083) (-706)) NIL (-12 (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|))) (|has| |#1| (-828 (-1083))))) (($ $ (-586 (-1083))) NIL (-12 (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|))) (|has| |#1| (-828 (-1083))))) (($ $ (-1083)) NIL (-12 (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|))) (|has| |#1| (-828 (-1083))))) (($ $ (-706)) NIL (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|))))) (-2528 (((-380 (-520)) $) NIL)) (-1737 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2799 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2914 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2779 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2891 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2757 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2759 (($ $) 10)) (-2188 (((-791) $) 37) (($ (-520)) NIL) (($ |#1|) NIL (|has| |#1| (-157))) (($ (-380 (-520))) NIL (|has| |#1| (-37 (-380 (-520))))) (($ $) NIL (|has| |#1| (-512)))) (-3475 ((|#1| $ (-380 (-520))) 29)) (-3796 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-3251 (((-706)) NIL)) (-1892 ((|#1| $) NIL)) (-1758 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2831 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2559 (((-108) $ $) NIL (|has| |#1| (-512)))) (-1744 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2810 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-1775 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2855 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-3890 ((|#1| $ (-380 (-520))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-380 (-520))))) (|has| |#1| (-15 -2188 (|#1| (-1083))))))) (-3915 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2867 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-1767 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2843 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-1751 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2820 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL (|has| |#1| (-336)))) (-3560 (($) NIL T CONST)) (-3570 (($) NIL T CONST)) (-2211 (($ $ (-586 (-1083)) (-586 (-706))) NIL (-12 (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|))) (|has| |#1| (-828 (-1083))))) (($ $ (-1083) (-706)) NIL (-12 (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|))) (|has| |#1| (-828 (-1083))))) (($ $ (-586 (-1083))) NIL (-12 (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|))) (|has| |#1| (-828 (-1083))))) (($ $ (-1083)) NIL (-12 (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|))) (|has| |#1| (-828 (-1083))))) (($ $ (-706)) NIL (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|))))) (-1573 (((-108) $ $) NIL)) (-1557 (((-108) $ $) NIL)) (-1530 (((-108) $ $) 26)) (-1565 (((-108) $ $) NIL)) (-1548 (((-108) $ $) 32)) (-1619 (($ $ |#1|) NIL (|has| |#1| (-336))) (($ $ $) NIL (|has| |#1| (-336)))) (-1611 (($ $) NIL) (($ $ $) NIL)) (-1601 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL (|has| |#1| (-336))) (($ $ $) NIL (|has| |#1| (-37 (-380 (-520))))) (($ $ (-380 (-520))) NIL (|has| |#1| (-37 (-380 (-520)))))) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-380 (-520)) $) NIL (|has| |#1| (-37 (-380 (-520))))) (($ $ (-380 (-520))) NIL (|has| |#1| (-37 (-380 (-520)))))))
-(((-292 |#1| |#2| |#3|) (-13 (-1145 |#1|) (-727) (-10 -8 (-15 -3018 ($ (-1149 |#1| |#2| |#3|))) (-15 -2647 ((-1149 |#1| |#2| |#3|) $)) (-15 -4084 ((-380 (-520)) $)))) (-13 (-336) (-783)) (-1083) |#1|) (T -292))
-((-3018 (*1 *1 *2) (-12 (-5 *2 (-1149 *3 *4 *5)) (-4 *3 (-13 (-336) (-783))) (-14 *4 (-1083)) (-14 *5 *3) (-5 *1 (-292 *3 *4 *5)))) (-2647 (*1 *2 *1) (-12 (-5 *2 (-1149 *3 *4 *5)) (-5 *1 (-292 *3 *4 *5)) (-4 *3 (-13 (-336) (-783))) (-14 *4 (-1083)) (-14 *5 *3))) (-4084 (*1 *2 *1) (-12 (-5 *2 (-380 (-520))) (-5 *1 (-292 *3 *4 *5)) (-4 *3 (-13 (-336) (-783))) (-14 *4 (-1083)) (-14 *5 *3))))
-(-13 (-1145 |#1|) (-727) (-10 -8 (-15 -3018 ($ (-1149 |#1| |#2| |#3|))) (-15 -2647 ((-1149 |#1| |#2| |#3|) $)) (-15 -4084 ((-380 (-520)) $))))
-((-2322 (((-2 (|:| -2647 (-706)) (|:| -2972 |#1|) (|:| |radicand| (-586 |#1|))) (-391 |#1|) (-706)) 24)) (-1252 (((-586 (-2 (|:| -2972 (-706)) (|:| |logand| |#1|))) (-391 |#1|)) 28)))
-(((-293 |#1|) (-10 -7 (-15 -2322 ((-2 (|:| -2647 (-706)) (|:| -2972 |#1|) (|:| |radicand| (-586 |#1|))) (-391 |#1|) (-706))) (-15 -1252 ((-586 (-2 (|:| -2972 (-706)) (|:| |logand| |#1|))) (-391 |#1|)))) (-512)) (T -293))
-((-1252 (*1 *2 *3) (-12 (-5 *3 (-391 *4)) (-4 *4 (-512)) (-5 *2 (-586 (-2 (|:| -2972 (-706)) (|:| |logand| *4)))) (-5 *1 (-293 *4)))) (-2322 (*1 *2 *3 *4) (-12 (-5 *3 (-391 *5)) (-4 *5 (-512)) (-5 *2 (-2 (|:| -2647 (-706)) (|:| -2972 *5) (|:| |radicand| (-586 *5)))) (-5 *1 (-293 *5)) (-5 *4 (-706)))))
-(-10 -7 (-15 -2322 ((-2 (|:| -2647 (-706)) (|:| -2972 |#1|) (|:| |radicand| (-586 |#1|))) (-391 |#1|) (-706))) (-15 -1252 ((-586 (-2 (|:| -2972 (-706)) (|:| |logand| |#1|))) (-391 |#1|))))
-((-4081 (((-586 |#2|) (-1079 |#4|)) 43)) (-2233 ((|#3| (-520)) 46)) (-3198 (((-1079 |#4|) (-1079 |#3|)) 30)) (-2876 (((-1079 |#4|) (-1079 |#4|) (-520)) 56)) (-2875 (((-1079 |#3|) (-1079 |#4|)) 21)) (-2528 (((-586 (-706)) (-1079 |#4|) (-586 |#2|)) 40)) (-1439 (((-1079 |#3|) (-1079 |#4|) (-586 |#2|) (-586 |#3|)) 35)))
-(((-294 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1439 ((-1079 |#3|) (-1079 |#4|) (-586 |#2|) (-586 |#3|))) (-15 -2528 ((-586 (-706)) (-1079 |#4|) (-586 |#2|))) (-15 -4081 ((-586 |#2|) (-1079 |#4|))) (-15 -2875 ((-1079 |#3|) (-1079 |#4|))) (-15 -3198 ((-1079 |#4|) (-1079 |#3|))) (-15 -2876 ((-1079 |#4|) (-1079 |#4|) (-520))) (-15 -2233 (|#3| (-520)))) (-728) (-783) (-969) (-877 |#3| |#1| |#2|)) (T -294))
-((-2233 (*1 *2 *3) (-12 (-5 *3 (-520)) (-4 *4 (-728)) (-4 *5 (-783)) (-4 *2 (-969)) (-5 *1 (-294 *4 *5 *2 *6)) (-4 *6 (-877 *2 *4 *5)))) (-2876 (*1 *2 *2 *3) (-12 (-5 *2 (-1079 *7)) (-5 *3 (-520)) (-4 *7 (-877 *6 *4 *5)) (-4 *4 (-728)) (-4 *5 (-783)) (-4 *6 (-969)) (-5 *1 (-294 *4 *5 *6 *7)))) (-3198 (*1 *2 *3) (-12 (-5 *3 (-1079 *6)) (-4 *6 (-969)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *2 (-1079 *7)) (-5 *1 (-294 *4 *5 *6 *7)) (-4 *7 (-877 *6 *4 *5)))) (-2875 (*1 *2 *3) (-12 (-5 *3 (-1079 *7)) (-4 *7 (-877 *6 *4 *5)) (-4 *4 (-728)) (-4 *5 (-783)) (-4 *6 (-969)) (-5 *2 (-1079 *6)) (-5 *1 (-294 *4 *5 *6 *7)))) (-4081 (*1 *2 *3) (-12 (-5 *3 (-1079 *7)) (-4 *7 (-877 *6 *4 *5)) (-4 *4 (-728)) (-4 *5 (-783)) (-4 *6 (-969)) (-5 *2 (-586 *5)) (-5 *1 (-294 *4 *5 *6 *7)))) (-2528 (*1 *2 *3 *4) (-12 (-5 *3 (-1079 *8)) (-5 *4 (-586 *6)) (-4 *6 (-783)) (-4 *8 (-877 *7 *5 *6)) (-4 *5 (-728)) (-4 *7 (-969)) (-5 *2 (-586 (-706))) (-5 *1 (-294 *5 *6 *7 *8)))) (-1439 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1079 *9)) (-5 *4 (-586 *7)) (-5 *5 (-586 *8)) (-4 *7 (-783)) (-4 *8 (-969)) (-4 *9 (-877 *8 *6 *7)) (-4 *6 (-728)) (-5 *2 (-1079 *8)) (-5 *1 (-294 *6 *7 *8 *9)))))
-(-10 -7 (-15 -1439 ((-1079 |#3|) (-1079 |#4|) (-586 |#2|) (-586 |#3|))) (-15 -2528 ((-586 (-706)) (-1079 |#4|) (-586 |#2|))) (-15 -4081 ((-586 |#2|) (-1079 |#4|))) (-15 -2875 ((-1079 |#3|) (-1079 |#4|))) (-15 -3198 ((-1079 |#4|) (-1079 |#3|))) (-15 -2876 ((-1079 |#4|) (-1079 |#4|) (-520))) (-15 -2233 (|#3| (-520))))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) 14)) (-2088 (((-586 (-2 (|:| |gen| |#1|) (|:| -3260 (-520)))) $) 18)) (-1917 (((-3 $ "failed") $ $) NIL)) (-1628 (((-706) $) NIL)) (-3961 (($) NIL T CONST)) (-1296 (((-3 |#1| "failed") $) NIL)) (-1482 ((|#1| $) NIL)) (-3691 ((|#1| $ (-520)) NIL)) (-3701 (((-520) $ (-520)) NIL)) (-2809 (($ $ $) NIL (|has| |#1| (-783)))) (-2446 (($ $ $) NIL (|has| |#1| (-783)))) (-3151 (($ (-1 |#1| |#1|) $) NIL)) (-3367 (($ (-1 (-520) (-520)) $) 10)) (-1239 (((-1066) $) NIL)) (-1263 (($ $ $) NIL (|has| (-520) (-727)))) (-4142 (((-1030) $) NIL)) (-2188 (((-791) $) NIL) (($ |#1|) NIL)) (-3475 (((-520) |#1| $) NIL)) (-3560 (($) 15 T CONST)) (-1573 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1557 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1530 (((-108) $ $) NIL)) (-1565 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1548 (((-108) $ $) 21 (|has| |#1| (-783)))) (-1611 (($ $) 11) (($ $ $) 20)) (-1601 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ (-520)) NIL) (($ (-520) |#1|) 19)))
-(((-295 |#1|) (-13 (-21) (-653 (-520)) (-296 |#1| (-520)) (-10 -7 (IF (|has| |#1| (-783)) (-6 (-783)) |%noBranch|))) (-1012)) (T -295))
-NIL
-(-13 (-21) (-653 (-520)) (-296 |#1| (-520)) (-10 -7 (IF (|has| |#1| (-783)) (-6 (-783)) |%noBranch|)))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-2088 (((-586 (-2 (|:| |gen| |#1|) (|:| -3260 |#2|))) $) 27)) (-1917 (((-3 $ "failed") $ $) 19)) (-1628 (((-706) $) 28)) (-3961 (($) 17 T CONST)) (-1296 (((-3 |#1| "failed") $) 32)) (-1482 ((|#1| $) 31)) (-3691 ((|#1| $ (-520)) 25)) (-3701 ((|#2| $ (-520)) 26)) (-3151 (($ (-1 |#1| |#1|) $) 22)) (-3367 (($ (-1 |#2| |#2|) $) 23)) (-1239 (((-1066) $) 9)) (-1263 (($ $ $) 21 (|has| |#2| (-727)))) (-4142 (((-1030) $) 10)) (-2188 (((-791) $) 11) (($ |#1|) 33)) (-3475 ((|#2| |#1| $) 24)) (-3560 (($) 18 T CONST)) (-1530 (((-108) $ $) 6)) (-1601 (($ $ $) 14) (($ |#1| $) 30)) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ |#2| |#1|) 29)))
-(((-296 |#1| |#2|) (-1195) (-1012) (-124)) (T -296))
-((-1601 (*1 *1 *2 *1) (-12 (-4 *1 (-296 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-124)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-296 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-124)))) (-1628 (*1 *2 *1) (-12 (-4 *1 (-296 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-124)) (-5 *2 (-706)))) (-2088 (*1 *2 *1) (-12 (-4 *1 (-296 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-124)) (-5 *2 (-586 (-2 (|:| |gen| *3) (|:| -3260 *4)))))) (-3701 (*1 *2 *1 *3) (-12 (-5 *3 (-520)) (-4 *1 (-296 *4 *2)) (-4 *4 (-1012)) (-4 *2 (-124)))) (-3691 (*1 *2 *1 *3) (-12 (-5 *3 (-520)) (-4 *1 (-296 *2 *4)) (-4 *4 (-124)) (-4 *2 (-1012)))) (-3475 (*1 *2 *3 *1) (-12 (-4 *1 (-296 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-124)))) (-3367 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-296 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-124)))) (-3151 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-296 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-124)))) (-1263 (*1 *1 *1 *1) (-12 (-4 *1 (-296 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-124)) (-4 *3 (-727)))))
-(-13 (-124) (-960 |t#1|) (-10 -8 (-15 -1601 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -1628 ((-706) $)) (-15 -2088 ((-586 (-2 (|:| |gen| |t#1|) (|:| -3260 |t#2|))) $)) (-15 -3701 (|t#2| $ (-520))) (-15 -3691 (|t#1| $ (-520))) (-15 -3475 (|t#2| |t#1| $)) (-15 -3367 ($ (-1 |t#2| |t#2|) $)) (-15 -3151 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-727)) (-15 -1263 ($ $ $)) |%noBranch|)))
-(((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-560 (-791)) . T) ((-960 |#1|) . T) ((-1012) . T))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-2088 (((-586 (-2 (|:| |gen| |#1|) (|:| -3260 (-706)))) $) NIL)) (-1917 (((-3 $ "failed") $ $) NIL)) (-1628 (((-706) $) NIL)) (-3961 (($) NIL T CONST)) (-1296 (((-3 |#1| "failed") $) NIL)) (-1482 ((|#1| $) NIL)) (-3691 ((|#1| $ (-520)) NIL)) (-3701 (((-706) $ (-520)) NIL)) (-3151 (($ (-1 |#1| |#1|) $) NIL)) (-3367 (($ (-1 (-706) (-706)) $) NIL)) (-1239 (((-1066) $) NIL)) (-1263 (($ $ $) NIL (|has| (-706) (-727)))) (-4142 (((-1030) $) NIL)) (-2188 (((-791) $) NIL) (($ |#1|) NIL)) (-3475 (((-706) |#1| $) NIL)) (-3560 (($) NIL T CONST)) (-1530 (((-108) $ $) NIL)) (-1601 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-706) |#1|) NIL)))
-(((-297 |#1|) (-296 |#1| (-706)) (-1012)) (T -297))
-NIL
-(-296 |#1| (-706))
-((-3923 (($ $) 53)) (-3397 (($ $ |#2| |#3| $) 14)) (-3295 (($ (-1 |#3| |#3|) $) 35)) (-3103 (((-108) $) 27)) (-3113 ((|#2| $) 29)) (-2230 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 46)) (-1233 ((|#2| $) 49)) (-4113 (((-586 |#2|) $) 38)) (-1782 (($ $ $ (-706)) 23)) (-1619 (($ $ |#2|) 42)))
-(((-298 |#1| |#2| |#3|) (-10 -8 (-15 -3923 (|#1| |#1|)) (-15 -1233 (|#2| |#1|)) (-15 -2230 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1782 (|#1| |#1| |#1| (-706))) (-15 -3397 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3295 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4113 ((-586 |#2|) |#1|)) (-15 -3113 (|#2| |#1|)) (-15 -3103 ((-108) |#1|)) (-15 -2230 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1619 (|#1| |#1| |#2|))) (-299 |#2| |#3|) (-969) (-727)) (T -298))
-NIL
-(-10 -8 (-15 -3923 (|#1| |#1|)) (-15 -1233 (|#2| |#1|)) (-15 -2230 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1782 (|#1| |#1| |#1| (-706))) (-15 -3397 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3295 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4113 ((-586 |#2|) |#1|)) (-15 -3113 (|#2| |#1|)) (-15 -3103 ((-108) |#1|)) (-15 -2230 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1619 (|#1| |#1| |#2|)))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) 51 (|has| |#1| (-512)))) (-2583 (($ $) 52 (|has| |#1| (-512)))) (-1671 (((-108) $) 54 (|has| |#1| (-512)))) (-1917 (((-3 $ "failed") $ $) 19)) (-3961 (($) 17 T CONST)) (-1296 (((-3 (-520) "failed") $) 90 (|has| |#1| (-960 (-520)))) (((-3 (-380 (-520)) "failed") $) 88 (|has| |#1| (-960 (-380 (-520))))) (((-3 |#1| "failed") $) 87)) (-1482 (((-520) $) 91 (|has| |#1| (-960 (-520)))) (((-380 (-520)) $) 89 (|has| |#1| (-960 (-380 (-520))))) ((|#1| $) 86)) (-3150 (($ $) 60)) (-1540 (((-3 $ "failed") $) 34)) (-3923 (($ $) 75 (|has| |#1| (-424)))) (-3397 (($ $ |#1| |#2| $) 79)) (-1537 (((-108) $) 31)) (-1315 (((-706) $) 82)) (-3774 (((-108) $) 62)) (-4039 (($ |#1| |#2|) 61)) (-3562 ((|#2| $) 81)) (-3295 (($ (-1 |#2| |#2|) $) 80)) (-1389 (($ (-1 |#1| |#1|) $) 63)) (-3123 (($ $) 65)) (-3133 ((|#1| $) 66)) (-1239 (((-1066) $) 9)) (-4142 (((-1030) $) 10)) (-3103 (((-108) $) 85)) (-3113 ((|#1| $) 84)) (-2230 (((-3 $ "failed") $ $) 50 (|has| |#1| (-512))) (((-3 $ "failed") $ |#1|) 77 (|has| |#1| (-512)))) (-2528 ((|#2| $) 64)) (-1233 ((|#1| $) 76 (|has| |#1| (-424)))) (-2188 (((-791) $) 11) (($ (-520)) 28) (($ $) 49 (|has| |#1| (-512))) (($ |#1|) 47) (($ (-380 (-520))) 57 (-3700 (|has| |#1| (-960 (-380 (-520)))) (|has| |#1| (-37 (-380 (-520))))))) (-4113 (((-586 |#1|) $) 83)) (-3475 ((|#1| $ |#2|) 59)) (-3796 (((-3 $ "failed") $) 48 (|has| |#1| (-133)))) (-3251 (((-706)) 29)) (-1782 (($ $ $ (-706)) 78 (|has| |#1| (-157)))) (-2559 (((-108) $ $) 53 (|has| |#1| (-512)))) (-3504 (($ $ (-849)) 26) (($ $ (-706)) 33)) (-3560 (($) 18 T CONST)) (-3570 (($) 30 T CONST)) (-1530 (((-108) $ $) 6)) (-1619 (($ $ |#1|) 58 (|has| |#1| (-336)))) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-706)) 32)) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-380 (-520)) $) 56 (|has| |#1| (-37 (-380 (-520))))) (($ $ (-380 (-520))) 55 (|has| |#1| (-37 (-380 (-520)))))))
-(((-299 |#1| |#2|) (-1195) (-969) (-727)) (T -299))
-((-3103 (*1 *2 *1) (-12 (-4 *1 (-299 *3 *4)) (-4 *3 (-969)) (-4 *4 (-727)) (-5 *2 (-108)))) (-3113 (*1 *2 *1) (-12 (-4 *1 (-299 *2 *3)) (-4 *3 (-727)) (-4 *2 (-969)))) (-4113 (*1 *2 *1) (-12 (-4 *1 (-299 *3 *4)) (-4 *3 (-969)) (-4 *4 (-727)) (-5 *2 (-586 *3)))) (-1315 (*1 *2 *1) (-12 (-4 *1 (-299 *3 *4)) (-4 *3 (-969)) (-4 *4 (-727)) (-5 *2 (-706)))) (-3562 (*1 *2 *1) (-12 (-4 *1 (-299 *3 *2)) (-4 *3 (-969)) (-4 *2 (-727)))) (-3295 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-299 *3 *4)) (-4 *3 (-969)) (-4 *4 (-727)))) (-3397 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-299 *2 *3)) (-4 *2 (-969)) (-4 *3 (-727)))) (-1782 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-706)) (-4 *1 (-299 *3 *4)) (-4 *3 (-969)) (-4 *4 (-727)) (-4 *3 (-157)))) (-2230 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-299 *2 *3)) (-4 *2 (-969)) (-4 *3 (-727)) (-4 *2 (-512)))) (-1233 (*1 *2 *1) (-12 (-4 *1 (-299 *2 *3)) (-4 *3 (-727)) (-4 *2 (-969)) (-4 *2 (-424)))) (-3923 (*1 *1 *1) (-12 (-4 *1 (-299 *2 *3)) (-4 *2 (-969)) (-4 *3 (-727)) (-4 *2 (-424)))))
-(-13 (-46 |t#1| |t#2|) (-384 |t#1|) (-10 -8 (-15 -3103 ((-108) $)) (-15 -3113 (|t#1| $)) (-15 -4113 ((-586 |t#1|) $)) (-15 -1315 ((-706) $)) (-15 -3562 (|t#2| $)) (-15 -3295 ($ (-1 |t#2| |t#2|) $)) (-15 -3397 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-157)) (-15 -1782 ($ $ $ (-706))) |%noBranch|) (IF (|has| |t#1| (-512)) (-15 -2230 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-424)) (PROGN (-15 -1233 (|t#1| $)) (-15 -3923 ($ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-380 (-520))) |has| |#1| (-37 (-380 (-520)))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) |has| |#1| (-512)) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-380 (-520)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3700 (|has| |#1| (-512)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-560 (-791)) . T) ((-157) -3700 (|has| |#1| (-512)) (|has| |#1| (-157))) ((-264) |has| |#1| (-512)) ((-384 |#1|) . T) ((-512) |has| |#1| (-512)) ((-588 #0#) |has| |#1| (-37 (-380 (-520)))) ((-588 |#1|) . T) ((-588 $) . T) ((-653 #0#) |has| |#1| (-37 (-380 (-520)))) ((-653 |#1|) |has| |#1| (-157)) ((-653 $) |has| |#1| (-512)) ((-662) . T) ((-960 (-380 (-520))) |has| |#1| (-960 (-380 (-520)))) ((-960 (-520)) |has| |#1| (-960 (-520))) ((-960 |#1|) . T) ((-975 #0#) |has| |#1| (-37 (-380 (-520)))) ((-975 |#1|) . T) ((-975 $) -3700 (|has| |#1| (-512)) (|has| |#1| (-157))) ((-969) . T) ((-976) . T) ((-1024) . T) ((-1012) . T))
-((-1414 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-1476 (((-1169) $ (-520) (-520)) NIL (|has| $ (-6 -4230)))) (-4029 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-783)))) (-3587 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4230))) (($ $) NIL (-12 (|has| $ (-6 -4230)) (|has| |#1| (-783))))) (-3210 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-783)))) (-2063 (((-108) $ (-706)) NIL)) (-2162 (((-108) (-108)) NIL)) (-2377 ((|#1| $ (-520) |#1|) NIL (|has| $ (-6 -4230))) ((|#1| $ (-1131 (-520)) |#1|) NIL (|has| $ (-6 -4230)))) (-1817 (($ (-1 (-108) |#1|) $) NIL)) (-1627 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-3961 (($) NIL T CONST)) (-2447 (($ $) NIL (|has| $ (-6 -4230)))) (-1861 (($ $) NIL)) (-3667 (($ $) NIL (|has| |#1| (-1012)))) (-2331 (($ $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-3766 (($ |#1| $) NIL (|has| |#1| (-1012))) (($ (-1 (-108) |#1|) $) NIL)) (-1421 (($ |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-3856 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4229))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4229)))) (-3846 ((|#1| $ (-520) |#1|) NIL (|has| $ (-6 -4230)))) (-3623 ((|#1| $ (-520)) NIL)) (-3232 (((-520) (-1 (-108) |#1|) $) NIL) (((-520) |#1| $) NIL (|has| |#1| (-1012))) (((-520) |#1| $ (-520)) NIL (|has| |#1| (-1012)))) (-3033 (($ $ (-520)) NIL)) (-1681 (((-706) $) NIL)) (-3828 (((-586 |#1|) $) NIL (|has| $ (-6 -4229)))) (-1810 (($ (-706) |#1|) NIL)) (-3027 (((-108) $ (-706)) NIL)) (-2567 (((-520) $) NIL (|has| (-520) (-783)))) (-2809 (($ $ $) NIL (|has| |#1| (-783)))) (-3235 (($ $ $) NIL (|has| |#1| (-783))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-1819 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-783)))) (-3702 (((-586 |#1|) $) NIL (|has| $ (-6 -4229)))) (-2422 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-1752 (((-520) $) NIL (|has| (-520) (-783)))) (-2446 (($ $ $) NIL (|has| |#1| (-783)))) (-3830 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1390 (((-108) $ (-706)) NIL)) (-1239 (((-1066) $) NIL (|has| |#1| (-1012)))) (-3618 (($ $ $ (-520)) NIL) (($ |#1| $ (-520)) NIL)) (-1659 (($ |#1| $ (-520)) NIL) (($ $ $ (-520)) NIL)) (-3622 (((-586 (-520)) $) NIL)) (-2603 (((-108) (-520) $) NIL)) (-4142 (((-1030) $) NIL (|has| |#1| (-1012)))) (-1776 (($ (-586 |#1|)) NIL)) (-2293 ((|#1| $) NIL (|has| (-520) (-783)))) (-2985 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-2936 (($ $ |#1|) NIL (|has| $ (-6 -4230)))) (-4155 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 |#1|))) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-268 |#1|)) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-586 |#1|) (-586 |#1|)) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))) (-2533 (((-108) $ $) NIL)) (-2094 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-1523 (((-586 |#1|) $) NIL)) (-4018 (((-108) $) NIL)) (-2238 (($) NIL)) (-2543 ((|#1| $ (-520) |#1|) NIL) ((|#1| $ (-520)) NIL) (($ $ (-1131 (-520))) NIL)) (-4185 (($ $ (-1131 (-520))) NIL) (($ $ (-520)) NIL)) (-3690 (($ $ (-520)) NIL) (($ $ (-1131 (-520))) NIL)) (-4159 (((-706) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229))) (((-706) |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-1913 (($ $ $ (-520)) NIL (|has| $ (-6 -4230)))) (-2403 (($ $) NIL)) (-1429 (((-496) $) NIL (|has| |#1| (-561 (-496))))) (-2200 (($ (-586 |#1|)) NIL)) (-2251 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4156 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-586 $)) NIL)) (-2188 (((-791) $) NIL (|has| |#1| (-560 (-791))))) (-1662 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-1573 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1557 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1530 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-1565 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1548 (((-108) $ $) NIL (|has| |#1| (-783)))) (-3474 (((-706) $) NIL (|has| $ (-6 -4229)))))
-(((-300 |#1|) (-13 (-19 |#1|) (-256 |#1|) (-10 -8 (-15 -1776 ($ (-586 |#1|))) (-15 -1681 ((-706) $)) (-15 -3033 ($ $ (-520))) (-15 -2162 ((-108) (-108))))) (-1118)) (T -300))
-((-1776 (*1 *1 *2) (-12 (-5 *2 (-586 *3)) (-4 *3 (-1118)) (-5 *1 (-300 *3)))) (-1681 (*1 *2 *1) (-12 (-5 *2 (-706)) (-5 *1 (-300 *3)) (-4 *3 (-1118)))) (-3033 (*1 *1 *1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-300 *3)) (-4 *3 (-1118)))) (-2162 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-300 *3)) (-4 *3 (-1118)))))
-(-13 (-19 |#1|) (-256 |#1|) (-10 -8 (-15 -1776 ($ (-586 |#1|))) (-15 -1681 ((-706) $)) (-15 -3033 ($ $ (-520))) (-15 -2162 ((-108) (-108)))))
-((-3412 (((-108) $) 42)) (-2668 (((-706)) 22)) (-1864 ((|#2| $) 46) (($ $ (-849)) 103)) (-1628 (((-706)) 97)) (-3705 (($ (-1164 |#2|)) 20)) (-2740 (((-108) $) 115)) (-1434 ((|#2| $) 48) (($ $ (-849)) 101)) (-2034 (((-1079 |#2|) $) NIL) (((-1079 $) $ (-849)) 94)) (-3840 (((-1079 |#2|) $) 83)) (-1400 (((-1079 |#2|) $) 80) (((-3 (-1079 |#2|) "failed") $ $) 77)) (-3284 (($ $ (-1079 |#2|)) 53)) (-2206 (((-769 (-849))) 28) (((-849)) 43)) (-1556 (((-126)) 25)) (-2528 (((-769 (-849)) $) 30) (((-849) $) 116)) (-3642 (($) 109)) (-3790 (((-1164 |#2|) $) NIL) (((-626 |#2|) (-1164 $)) 39)) (-3796 (($ $) NIL) (((-3 $ "failed") $) 86)) (-3718 (((-108) $) 41)))
-(((-301 |#1| |#2|) (-10 -8 (-15 -3796 ((-3 |#1| "failed") |#1|)) (-15 -1628 ((-706))) (-15 -3796 (|#1| |#1|)) (-15 -1400 ((-3 (-1079 |#2|) "failed") |#1| |#1|)) (-15 -1400 ((-1079 |#2|) |#1|)) (-15 -3840 ((-1079 |#2|) |#1|)) (-15 -3284 (|#1| |#1| (-1079 |#2|))) (-15 -2740 ((-108) |#1|)) (-15 -3642 (|#1|)) (-15 -1864 (|#1| |#1| (-849))) (-15 -1434 (|#1| |#1| (-849))) (-15 -2034 ((-1079 |#1|) |#1| (-849))) (-15 -1864 (|#2| |#1|)) (-15 -1434 (|#2| |#1|)) (-15 -2528 ((-849) |#1|)) (-15 -2206 ((-849))) (-15 -2034 ((-1079 |#2|) |#1|)) (-15 -3705 (|#1| (-1164 |#2|))) (-15 -3790 ((-626 |#2|) (-1164 |#1|))) (-15 -3790 ((-1164 |#2|) |#1|)) (-15 -2668 ((-706))) (-15 -2206 ((-769 (-849)))) (-15 -2528 ((-769 (-849)) |#1|)) (-15 -3412 ((-108) |#1|)) (-15 -3718 ((-108) |#1|)) (-15 -1556 ((-126)))) (-302 |#2|) (-336)) (T -301))
-((-1556 (*1 *2) (-12 (-4 *4 (-336)) (-5 *2 (-126)) (-5 *1 (-301 *3 *4)) (-4 *3 (-302 *4)))) (-2206 (*1 *2) (-12 (-4 *4 (-336)) (-5 *2 (-769 (-849))) (-5 *1 (-301 *3 *4)) (-4 *3 (-302 *4)))) (-2668 (*1 *2) (-12 (-4 *4 (-336)) (-5 *2 (-706)) (-5 *1 (-301 *3 *4)) (-4 *3 (-302 *4)))) (-2206 (*1 *2) (-12 (-4 *4 (-336)) (-5 *2 (-849)) (-5 *1 (-301 *3 *4)) (-4 *3 (-302 *4)))) (-1628 (*1 *2) (-12 (-4 *4 (-336)) (-5 *2 (-706)) (-5 *1 (-301 *3 *4)) (-4 *3 (-302 *4)))))
-(-10 -8 (-15 -3796 ((-3 |#1| "failed") |#1|)) (-15 -1628 ((-706))) (-15 -3796 (|#1| |#1|)) (-15 -1400 ((-3 (-1079 |#2|) "failed") |#1| |#1|)) (-15 -1400 ((-1079 |#2|) |#1|)) (-15 -3840 ((-1079 |#2|) |#1|)) (-15 -3284 (|#1| |#1| (-1079 |#2|))) (-15 -2740 ((-108) |#1|)) (-15 -3642 (|#1|)) (-15 -1864 (|#1| |#1| (-849))) (-15 -1434 (|#1| |#1| (-849))) (-15 -2034 ((-1079 |#1|) |#1| (-849))) (-15 -1864 (|#2| |#1|)) (-15 -1434 (|#2| |#1|)) (-15 -2528 ((-849) |#1|)) (-15 -2206 ((-849))) (-15 -2034 ((-1079 |#2|) |#1|)) (-15 -3705 (|#1| (-1164 |#2|))) (-15 -3790 ((-626 |#2|) (-1164 |#1|))) (-15 -3790 ((-1164 |#2|) |#1|)) (-15 -2668 ((-706))) (-15 -2206 ((-769 (-849)))) (-15 -2528 ((-769 (-849)) |#1|)) (-15 -3412 ((-108) |#1|)) (-15 -3718 ((-108) |#1|)) (-15 -1556 ((-126))))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) 41)) (-2583 (($ $) 40)) (-1671 (((-108) $) 38)) (-3412 (((-108) $) 94)) (-2668 (((-706)) 90)) (-1864 ((|#1| $) 140) (($ $ (-849)) 137 (|has| |#1| (-341)))) (-1891 (((-1092 (-849) (-706)) (-520)) 122 (|has| |#1| (-341)))) (-1917 (((-3 $ "failed") $ $) 19)) (-3024 (($ $) 73)) (-1507 (((-391 $) $) 72)) (-1327 (((-108) $ $) 59)) (-1628 (((-706)) 112 (|has| |#1| (-341)))) (-3961 (($) 17 T CONST)) (-1296 (((-3 |#1| "failed") $) 101)) (-1482 ((|#1| $) 100)) (-3705 (($ (-1164 |#1|)) 146)) (-2654 (((-3 "prime" "polynomial" "normal" "cyclic")) 128 (|has| |#1| (-341)))) (-2276 (($ $ $) 55)) (-1540 (((-3 $ "failed") $) 34)) (-3249 (($) 109 (|has| |#1| (-341)))) (-2253 (($ $ $) 56)) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) 51)) (-2961 (($) 124 (|has| |#1| (-341)))) (-1855 (((-108) $) 125 (|has| |#1| (-341)))) (-1346 (($ $ (-706)) 87 (-3700 (|has| |#1| (-133)) (|has| |#1| (-341)))) (($ $) 86 (-3700 (|has| |#1| (-133)) (|has| |#1| (-341))))) (-2036 (((-108) $) 71)) (-3989 (((-849) $) 127 (|has| |#1| (-341))) (((-769 (-849)) $) 84 (-3700 (|has| |#1| (-133)) (|has| |#1| (-341))))) (-1537 (((-108) $) 31)) (-2645 (($) 135 (|has| |#1| (-341)))) (-2740 (((-108) $) 134 (|has| |#1| (-341)))) (-1434 ((|#1| $) 141) (($ $ (-849)) 138 (|has| |#1| (-341)))) (-1394 (((-3 $ "failed") $) 113 (|has| |#1| (-341)))) (-3188 (((-3 (-586 $) "failed") (-586 $) $) 52)) (-2034 (((-1079 |#1|) $) 145) (((-1079 $) $ (-849)) 139 (|has| |#1| (-341)))) (-3040 (((-849) $) 110 (|has| |#1| (-341)))) (-3840 (((-1079 |#1|) $) 131 (|has| |#1| (-341)))) (-1400 (((-1079 |#1|) $) 130 (|has| |#1| (-341))) (((-3 (-1079 |#1|) "failed") $ $) 129 (|has| |#1| (-341)))) (-3284 (($ $ (-1079 |#1|)) 132 (|has| |#1| (-341)))) (-2222 (($ $ $) 46) (($ (-586 $)) 45)) (-1239 (((-1066) $) 9)) (-3093 (($ $) 70)) (-3794 (($) 114 (|has| |#1| (-341)) CONST)) (-2716 (($ (-849)) 111 (|has| |#1| (-341)))) (-3304 (((-108) $) 93)) (-4142 (((-1030) $) 10)) (-1382 (($) 133 (|has| |#1| (-341)))) (-3653 (((-1079 $) (-1079 $) (-1079 $)) 44)) (-2257 (($ $ $) 48) (($ (-586 $)) 47)) (-1517 (((-586 (-2 (|:| -1916 (-520)) (|:| -2647 (-520))))) 121 (|has| |#1| (-341)))) (-1916 (((-391 $) $) 74)) (-2206 (((-769 (-849))) 91) (((-849)) 143)) (-1283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2230 (((-3 $ "failed") $ $) 42)) (-2608 (((-3 (-586 $) "failed") (-586 $) $) 50)) (-3704 (((-706) $) 58)) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) 57)) (-2062 (((-706) $) 126 (|has| |#1| (-341))) (((-3 (-706) "failed") $ $) 85 (-3700 (|has| |#1| (-133)) (|has| |#1| (-341))))) (-1556 (((-126)) 99)) (-2155 (($ $) 118 (|has| |#1| (-341))) (($ $ (-706)) 116 (|has| |#1| (-341)))) (-2528 (((-769 (-849)) $) 92) (((-849) $) 142)) (-3484 (((-1079 |#1|)) 144)) (-3864 (($) 123 (|has| |#1| (-341)))) (-3642 (($) 136 (|has| |#1| (-341)))) (-3790 (((-1164 |#1|) $) 148) (((-626 |#1|) (-1164 $)) 147)) (-3784 (((-3 (-1164 $) "failed") (-626 $)) 120 (|has| |#1| (-341)))) (-2188 (((-791) $) 11) (($ (-520)) 28) (($ $) 43) (($ (-380 (-520))) 65) (($ |#1|) 102)) (-3796 (($ $) 119 (|has| |#1| (-341))) (((-3 $ "failed") $) 83 (-3700 (|has| |#1| (-133)) (|has| |#1| (-341))))) (-3251 (((-706)) 29)) (-1831 (((-1164 $)) 150) (((-1164 $) (-849)) 149)) (-2559 (((-108) $ $) 39)) (-3718 (((-108) $) 95)) (-3504 (($ $ (-849)) 26) (($ $ (-706)) 33) (($ $ (-520)) 69)) (-3560 (($) 18 T CONST)) (-3570 (($) 30 T CONST)) (-3751 (($ $) 89 (|has| |#1| (-341))) (($ $ (-706)) 88 (|has| |#1| (-341)))) (-2211 (($ $) 117 (|has| |#1| (-341))) (($ $ (-706)) 115 (|has| |#1| (-341)))) (-1530 (((-108) $ $) 6)) (-1619 (($ $ $) 64) (($ $ |#1|) 98)) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-706)) 32) (($ $ (-520)) 68)) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ $ $) 24) (($ $ (-380 (-520))) 67) (($ (-380 (-520)) $) 66) (($ $ |#1|) 97) (($ |#1| $) 96)))
-(((-302 |#1|) (-1195) (-336)) (T -302))
-((-1831 (*1 *2) (-12 (-4 *3 (-336)) (-5 *2 (-1164 *1)) (-4 *1 (-302 *3)))) (-1831 (*1 *2 *3) (-12 (-5 *3 (-849)) (-4 *4 (-336)) (-5 *2 (-1164 *1)) (-4 *1 (-302 *4)))) (-3790 (*1 *2 *1) (-12 (-4 *1 (-302 *3)) (-4 *3 (-336)) (-5 *2 (-1164 *3)))) (-3790 (*1 *2 *3) (-12 (-5 *3 (-1164 *1)) (-4 *1 (-302 *4)) (-4 *4 (-336)) (-5 *2 (-626 *4)))) (-3705 (*1 *1 *2) (-12 (-5 *2 (-1164 *3)) (-4 *3 (-336)) (-4 *1 (-302 *3)))) (-2034 (*1 *2 *1) (-12 (-4 *1 (-302 *3)) (-4 *3 (-336)) (-5 *2 (-1079 *3)))) (-3484 (*1 *2) (-12 (-4 *1 (-302 *3)) (-4 *3 (-336)) (-5 *2 (-1079 *3)))) (-2206 (*1 *2) (-12 (-4 *1 (-302 *3)) (-4 *3 (-336)) (-5 *2 (-849)))) (-2528 (*1 *2 *1) (-12 (-4 *1 (-302 *3)) (-4 *3 (-336)) (-5 *2 (-849)))) (-1434 (*1 *2 *1) (-12 (-4 *1 (-302 *2)) (-4 *2 (-336)))) (-1864 (*1 *2 *1) (-12 (-4 *1 (-302 *2)) (-4 *2 (-336)))) (-2034 (*1 *2 *1 *3) (-12 (-5 *3 (-849)) (-4 *4 (-341)) (-4 *4 (-336)) (-5 *2 (-1079 *1)) (-4 *1 (-302 *4)))) (-1434 (*1 *1 *1 *2) (-12 (-5 *2 (-849)) (-4 *1 (-302 *3)) (-4 *3 (-336)) (-4 *3 (-341)))) (-1864 (*1 *1 *1 *2) (-12 (-5 *2 (-849)) (-4 *1 (-302 *3)) (-4 *3 (-336)) (-4 *3 (-341)))) (-3642 (*1 *1) (-12 (-4 *1 (-302 *2)) (-4 *2 (-341)) (-4 *2 (-336)))) (-2645 (*1 *1) (-12 (-4 *1 (-302 *2)) (-4 *2 (-341)) (-4 *2 (-336)))) (-2740 (*1 *2 *1) (-12 (-4 *1 (-302 *3)) (-4 *3 (-336)) (-4 *3 (-341)) (-5 *2 (-108)))) (-1382 (*1 *1) (-12 (-4 *1 (-302 *2)) (-4 *2 (-341)) (-4 *2 (-336)))) (-3284 (*1 *1 *1 *2) (-12 (-5 *2 (-1079 *3)) (-4 *3 (-341)) (-4 *1 (-302 *3)) (-4 *3 (-336)))) (-3840 (*1 *2 *1) (-12 (-4 *1 (-302 *3)) (-4 *3 (-336)) (-4 *3 (-341)) (-5 *2 (-1079 *3)))) (-1400 (*1 *2 *1) (-12 (-4 *1 (-302 *3)) (-4 *3 (-336)) (-4 *3 (-341)) (-5 *2 (-1079 *3)))) (-1400 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-302 *3)) (-4 *3 (-336)) (-4 *3 (-341)) (-5 *2 (-1079 *3)))))
-(-13 (-1181 |t#1|) (-960 |t#1|) (-10 -8 (-15 -1831 ((-1164 $))) (-15 -1831 ((-1164 $) (-849))) (-15 -3790 ((-1164 |t#1|) $)) (-15 -3790 ((-626 |t#1|) (-1164 $))) (-15 -3705 ($ (-1164 |t#1|))) (-15 -2034 ((-1079 |t#1|) $)) (-15 -3484 ((-1079 |t#1|))) (-15 -2206 ((-849))) (-15 -2528 ((-849) $)) (-15 -1434 (|t#1| $)) (-15 -1864 (|t#1| $)) (IF (|has| |t#1| (-341)) (PROGN (-6 (-322)) (-15 -2034 ((-1079 $) $ (-849))) (-15 -1434 ($ $ (-849))) (-15 -1864 ($ $ (-849))) (-15 -3642 ($)) (-15 -2645 ($)) (-15 -2740 ((-108) $)) (-15 -1382 ($)) (-15 -3284 ($ $ (-1079 |t#1|))) (-15 -3840 ((-1079 |t#1|) $)) (-15 -1400 ((-1079 |t#1|) $)) (-15 -1400 ((-3 (-1079 |t#1|) "failed") $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-380 (-520))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 |#1| |#1|) . T) ((-107 $ $) . T) ((-124) . T) ((-133) -3700 (|has| |#1| (-341)) (|has| |#1| (-133))) ((-135) |has| |#1| (-135)) ((-560 (-791)) . T) ((-157) . T) ((-209) |has| |#1| (-341)) ((-219) . T) ((-264) . T) ((-281) . T) ((-1181 |#1|) . T) ((-336) . T) ((-375) -3700 (|has| |#1| (-341)) (|has| |#1| (-133))) ((-341) |has| |#1| (-341)) ((-322) |has| |#1| (-341)) ((-424) . T) ((-512) . T) ((-588 #0#) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-653 #0#) . T) ((-653 |#1|) . T) ((-653 $) . T) ((-662) . T) ((-848) . T) ((-960 |#1|) . T) ((-975 #0#) . T) ((-975 |#1|) . T) ((-975 $) . T) ((-969) . T) ((-976) . T) ((-1024) . T) ((-1012) . T) ((-1059) |has| |#1| (-341)) ((-1122) . T) ((-1171 |#1|) . T))
-((-1414 (((-108) $ $) NIL)) (-2957 (($ (-1082) $) 88)) (-2752 (($) 76)) (-2992 (((-1030) (-1030)) 11)) (-3974 (($) 77)) (-4136 (($) 90) (($ (-289 (-635))) 96) (($ (-289 (-637))) 93) (($ (-289 (-630))) 99) (($ (-289 (-352))) 105) (($ (-289 (-520))) 102) (($ (-289 (-154 (-352)))) 108)) (-1922 (($ (-1082) $) 89)) (-2035 (($ (-586 (-791))) 79)) (-3979 (((-1169) $) 73)) (-4169 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 27)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-3486 (($ (-1030)) 45)) (-3782 (((-1016) $) 25)) (-2367 (($ (-1005 (-880 (-520))) $) 85) (($ (-1005 (-880 (-520))) (-880 (-520)) $) 86)) (-1363 (($ (-1030)) 87)) (-2585 (($ (-1082) $) 110) (($ (-1082) $ $) 111)) (-2538 (($ (-1083) (-586 (-1083))) 75)) (-1270 (($ (-1066)) 82) (($ (-586 (-1066))) 80)) (-2188 (((-791) $) 113)) (-2031 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1083)) (|:| |arrayIndex| (-586 (-880 (-520)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-108)) (|:| -1574 (-791)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1083)) (|:| |rand| (-791)) (|:| |ints2Floats?| (-108)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1082)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -4018 (-108)) (|:| -3429 (-2 (|:| |ints2Floats?| (-108)) (|:| -1574 (-791)))))) (|:| |blockBranch| (-586 $)) (|:| |commentBranch| (-586 (-1066))) (|:| |callBranch| (-1066)) (|:| |forBranch| (-2 (|:| -1667 (-1005 (-880 (-520)))) (|:| |span| (-880 (-520))) (|:| |body| $))) (|:| |labelBranch| (-1030)) (|:| |loopBranch| (-2 (|:| |switch| (-1082)) (|:| |body| $))) (|:| |commonBranch| (-2 (|:| -2883 (-1083)) (|:| |contents| (-586 (-1083))))) (|:| |printBranch| (-586 (-791)))) $) 37)) (-1830 (($ (-1066)) 182)) (-4135 (($ (-586 $)) 109)) (-3159 (($ (-1083) (-1066)) 115) (($ (-1083) (-289 (-637))) 155) (($ (-1083) (-289 (-635))) 156) (($ (-1083) (-289 (-630))) 157) (($ (-1083) (-626 (-637))) 118) (($ (-1083) (-626 (-635))) 121) (($ (-1083) (-626 (-630))) 124) (($ (-1083) (-1164 (-637))) 127) (($ (-1083) (-1164 (-635))) 130) (($ (-1083) (-1164 (-630))) 133) (($ (-1083) (-626 (-289 (-637)))) 136) (($ (-1083) (-626 (-289 (-635)))) 139) (($ (-1083) (-626 (-289 (-630)))) 142) (($ (-1083) (-1164 (-289 (-637)))) 145) (($ (-1083) (-1164 (-289 (-635)))) 148) (($ (-1083) (-1164 (-289 (-630)))) 151) (($ (-1083) (-586 (-880 (-520))) (-289 (-637))) 152) (($ (-1083) (-586 (-880 (-520))) (-289 (-635))) 153) (($ (-1083) (-586 (-880 (-520))) (-289 (-630))) 154) (($ (-1083) (-289 (-520))) 179) (($ (-1083) (-289 (-352))) 180) (($ (-1083) (-289 (-154 (-352)))) 181) (($ (-1083) (-626 (-289 (-520)))) 160) (($ (-1083) (-626 (-289 (-352)))) 163) (($ (-1083) (-626 (-289 (-154 (-352))))) 166) (($ (-1083) (-1164 (-289 (-520)))) 169) (($ (-1083) (-1164 (-289 (-352)))) 172) (($ (-1083) (-1164 (-289 (-154 (-352))))) 175) (($ (-1083) (-586 (-880 (-520))) (-289 (-520))) 176) (($ (-1083) (-586 (-880 (-520))) (-289 (-352))) 177) (($ (-1083) (-586 (-880 (-520))) (-289 (-154 (-352)))) 178)) (-1530 (((-108) $ $) NIL)))
-(((-303) (-13 (-1012) (-10 -8 (-15 -2188 ((-791) $)) (-15 -2367 ($ (-1005 (-880 (-520))) $)) (-15 -2367 ($ (-1005 (-880 (-520))) (-880 (-520)) $)) (-15 -2957 ($ (-1082) $)) (-15 -1922 ($ (-1082) $)) (-15 -3486 ($ (-1030))) (-15 -1363 ($ (-1030))) (-15 -1270 ($ (-1066))) (-15 -1270 ($ (-586 (-1066)))) (-15 -1830 ($ (-1066))) (-15 -4136 ($)) (-15 -4136 ($ (-289 (-635)))) (-15 -4136 ($ (-289 (-637)))) (-15 -4136 ($ (-289 (-630)))) (-15 -4136 ($ (-289 (-352)))) (-15 -4136 ($ (-289 (-520)))) (-15 -4136 ($ (-289 (-154 (-352))))) (-15 -2585 ($ (-1082) $)) (-15 -2585 ($ (-1082) $ $)) (-15 -3159 ($ (-1083) (-1066))) (-15 -3159 ($ (-1083) (-289 (-637)))) (-15 -3159 ($ (-1083) (-289 (-635)))) (-15 -3159 ($ (-1083) (-289 (-630)))) (-15 -3159 ($ (-1083) (-626 (-637)))) (-15 -3159 ($ (-1083) (-626 (-635)))) (-15 -3159 ($ (-1083) (-626 (-630)))) (-15 -3159 ($ (-1083) (-1164 (-637)))) (-15 -3159 ($ (-1083) (-1164 (-635)))) (-15 -3159 ($ (-1083) (-1164 (-630)))) (-15 -3159 ($ (-1083) (-626 (-289 (-637))))) (-15 -3159 ($ (-1083) (-626 (-289 (-635))))) (-15 -3159 ($ (-1083) (-626 (-289 (-630))))) (-15 -3159 ($ (-1083) (-1164 (-289 (-637))))) (-15 -3159 ($ (-1083) (-1164 (-289 (-635))))) (-15 -3159 ($ (-1083) (-1164 (-289 (-630))))) (-15 -3159 ($ (-1083) (-586 (-880 (-520))) (-289 (-637)))) (-15 -3159 ($ (-1083) (-586 (-880 (-520))) (-289 (-635)))) (-15 -3159 ($ (-1083) (-586 (-880 (-520))) (-289 (-630)))) (-15 -3159 ($ (-1083) (-289 (-520)))) (-15 -3159 ($ (-1083) (-289 (-352)))) (-15 -3159 ($ (-1083) (-289 (-154 (-352))))) (-15 -3159 ($ (-1083) (-626 (-289 (-520))))) (-15 -3159 ($ (-1083) (-626 (-289 (-352))))) (-15 -3159 ($ (-1083) (-626 (-289 (-154 (-352)))))) (-15 -3159 ($ (-1083) (-1164 (-289 (-520))))) (-15 -3159 ($ (-1083) (-1164 (-289 (-352))))) (-15 -3159 ($ (-1083) (-1164 (-289 (-154 (-352)))))) (-15 -3159 ($ (-1083) (-586 (-880 (-520))) (-289 (-520)))) (-15 -3159 ($ (-1083) (-586 (-880 (-520))) (-289 (-352)))) (-15 -3159 ($ (-1083) (-586 (-880 (-520))) (-289 (-154 (-352))))) (-15 -4135 ($ (-586 $))) (-15 -2752 ($)) (-15 -3974 ($)) (-15 -2035 ($ (-586 (-791)))) (-15 -2538 ($ (-1083) (-586 (-1083)))) (-15 -4169 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2031 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1083)) (|:| |arrayIndex| (-586 (-880 (-520)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-108)) (|:| -1574 (-791)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1083)) (|:| |rand| (-791)) (|:| |ints2Floats?| (-108)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1082)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -4018 (-108)) (|:| -3429 (-2 (|:| |ints2Floats?| (-108)) (|:| -1574 (-791)))))) (|:| |blockBranch| (-586 $)) (|:| |commentBranch| (-586 (-1066))) (|:| |callBranch| (-1066)) (|:| |forBranch| (-2 (|:| -1667 (-1005 (-880 (-520)))) (|:| |span| (-880 (-520))) (|:| |body| $))) (|:| |labelBranch| (-1030)) (|:| |loopBranch| (-2 (|:| |switch| (-1082)) (|:| |body| $))) (|:| |commonBranch| (-2 (|:| -2883 (-1083)) (|:| |contents| (-586 (-1083))))) (|:| |printBranch| (-586 (-791)))) $)) (-15 -3979 ((-1169) $)) (-15 -3782 ((-1016) $)) (-15 -2992 ((-1030) (-1030)))))) (T -303))
-((-2188 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-303)))) (-2367 (*1 *1 *2 *1) (-12 (-5 *2 (-1005 (-880 (-520)))) (-5 *1 (-303)))) (-2367 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1005 (-880 (-520)))) (-5 *3 (-880 (-520))) (-5 *1 (-303)))) (-2957 (*1 *1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-303)))) (-1922 (*1 *1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-303)))) (-3486 (*1 *1 *2) (-12 (-5 *2 (-1030)) (-5 *1 (-303)))) (-1363 (*1 *1 *2) (-12 (-5 *2 (-1030)) (-5 *1 (-303)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-1066)) (-5 *1 (-303)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-586 (-1066))) (-5 *1 (-303)))) (-1830 (*1 *1 *2) (-12 (-5 *2 (-1066)) (-5 *1 (-303)))) (-4136 (*1 *1) (-5 *1 (-303))) (-4136 (*1 *1 *2) (-12 (-5 *2 (-289 (-635))) (-5 *1 (-303)))) (-4136 (*1 *1 *2) (-12 (-5 *2 (-289 (-637))) (-5 *1 (-303)))) (-4136 (*1 *1 *2) (-12 (-5 *2 (-289 (-630))) (-5 *1 (-303)))) (-4136 (*1 *1 *2) (-12 (-5 *2 (-289 (-352))) (-5 *1 (-303)))) (-4136 (*1 *1 *2) (-12 (-5 *2 (-289 (-520))) (-5 *1 (-303)))) (-4136 (*1 *1 *2) (-12 (-5 *2 (-289 (-154 (-352)))) (-5 *1 (-303)))) (-2585 (*1 *1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-303)))) (-2585 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-303)))) (-3159 (*1 *1 *2 *3) (-12 (-5 *2 (-1083)) (-5 *3 (-1066)) (-5 *1 (-303)))) (-3159 (*1 *1 *2 *3) (-12 (-5 *2 (-1083)) (-5 *3 (-289 (-637))) (-5 *1 (-303)))) (-3159 (*1 *1 *2 *3) (-12 (-5 *2 (-1083)) (-5 *3 (-289 (-635))) (-5 *1 (-303)))) (-3159 (*1 *1 *2 *3) (-12 (-5 *2 (-1083)) (-5 *3 (-289 (-630))) (-5 *1 (-303)))) (-3159 (*1 *1 *2 *3) (-12 (-5 *2 (-1083)) (-5 *3 (-626 (-637))) (-5 *1 (-303)))) (-3159 (*1 *1 *2 *3) (-12 (-5 *2 (-1083)) (-5 *3 (-626 (-635))) (-5 *1 (-303)))) (-3159 (*1 *1 *2 *3) (-12 (-5 *2 (-1083)) (-5 *3 (-626 (-630))) (-5 *1 (-303)))) (-3159 (*1 *1 *2 *3) (-12 (-5 *2 (-1083)) (-5 *3 (-1164 (-637))) (-5 *1 (-303)))) (-3159 (*1 *1 *2 *3) (-12 (-5 *2 (-1083)) (-5 *3 (-1164 (-635))) (-5 *1 (-303)))) (-3159 (*1 *1 *2 *3) (-12 (-5 *2 (-1083)) (-5 *3 (-1164 (-630))) (-5 *1 (-303)))) (-3159 (*1 *1 *2 *3) (-12 (-5 *2 (-1083)) (-5 *3 (-626 (-289 (-637)))) (-5 *1 (-303)))) (-3159 (*1 *1 *2 *3) (-12 (-5 *2 (-1083)) (-5 *3 (-626 (-289 (-635)))) (-5 *1 (-303)))) (-3159 (*1 *1 *2 *3) (-12 (-5 *2 (-1083)) (-5 *3 (-626 (-289 (-630)))) (-5 *1 (-303)))) (-3159 (*1 *1 *2 *3) (-12 (-5 *2 (-1083)) (-5 *3 (-1164 (-289 (-637)))) (-5 *1 (-303)))) (-3159 (*1 *1 *2 *3) (-12 (-5 *2 (-1083)) (-5 *3 (-1164 (-289 (-635)))) (-5 *1 (-303)))) (-3159 (*1 *1 *2 *3) (-12 (-5 *2 (-1083)) (-5 *3 (-1164 (-289 (-630)))) (-5 *1 (-303)))) (-3159 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1083)) (-5 *3 (-586 (-880 (-520)))) (-5 *4 (-289 (-637))) (-5 *1 (-303)))) (-3159 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1083)) (-5 *3 (-586 (-880 (-520)))) (-5 *4 (-289 (-635))) (-5 *1 (-303)))) (-3159 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1083)) (-5 *3 (-586 (-880 (-520)))) (-5 *4 (-289 (-630))) (-5 *1 (-303)))) (-3159 (*1 *1 *2 *3) (-12 (-5 *2 (-1083)) (-5 *3 (-289 (-520))) (-5 *1 (-303)))) (-3159 (*1 *1 *2 *3) (-12 (-5 *2 (-1083)) (-5 *3 (-289 (-352))) (-5 *1 (-303)))) (-3159 (*1 *1 *2 *3) (-12 (-5 *2 (-1083)) (-5 *3 (-289 (-154 (-352)))) (-5 *1 (-303)))) (-3159 (*1 *1 *2 *3) (-12 (-5 *2 (-1083)) (-5 *3 (-626 (-289 (-520)))) (-5 *1 (-303)))) (-3159 (*1 *1 *2 *3) (-12 (-5 *2 (-1083)) (-5 *3 (-626 (-289 (-352)))) (-5 *1 (-303)))) (-3159 (*1 *1 *2 *3) (-12 (-5 *2 (-1083)) (-5 *3 (-626 (-289 (-154 (-352))))) (-5 *1 (-303)))) (-3159 (*1 *1 *2 *3) (-12 (-5 *2 (-1083)) (-5 *3 (-1164 (-289 (-520)))) (-5 *1 (-303)))) (-3159 (*1 *1 *2 *3) (-12 (-5 *2 (-1083)) (-5 *3 (-1164 (-289 (-352)))) (-5 *1 (-303)))) (-3159 (*1 *1 *2 *3) (-12 (-5 *2 (-1083)) (-5 *3 (-1164 (-289 (-154 (-352))))) (-5 *1 (-303)))) (-3159 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1083)) (-5 *3 (-586 (-880 (-520)))) (-5 *4 (-289 (-520))) (-5 *1 (-303)))) (-3159 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1083)) (-5 *3 (-586 (-880 (-520)))) (-5 *4 (-289 (-352))) (-5 *1 (-303)))) (-3159 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1083)) (-5 *3 (-586 (-880 (-520)))) (-5 *4 (-289 (-154 (-352)))) (-5 *1 (-303)))) (-4135 (*1 *1 *2) (-12 (-5 *2 (-586 (-303))) (-5 *1 (-303)))) (-2752 (*1 *1) (-5 *1 (-303))) (-3974 (*1 *1) (-5 *1 (-303))) (-2035 (*1 *1 *2) (-12 (-5 *2 (-586 (-791))) (-5 *1 (-303)))) (-2538 (*1 *1 *2 *3) (-12 (-5 *3 (-586 (-1083))) (-5 *2 (-1083)) (-5 *1 (-303)))) (-4169 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-303)))) (-2031 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1083)) (|:| |arrayIndex| (-586 (-880 (-520)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-108)) (|:| -1574 (-791)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1083)) (|:| |rand| (-791)) (|:| |ints2Floats?| (-108)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1082)) (|:| |thenClause| (-303)) (|:| |elseClause| (-303)))) (|:| |returnBranch| (-2 (|:| -4018 (-108)) (|:| -3429 (-2 (|:| |ints2Floats?| (-108)) (|:| -1574 (-791)))))) (|:| |blockBranch| (-586 (-303))) (|:| |commentBranch| (-586 (-1066))) (|:| |callBranch| (-1066)) (|:| |forBranch| (-2 (|:| -1667 (-1005 (-880 (-520)))) (|:| |span| (-880 (-520))) (|:| |body| (-303)))) (|:| |labelBranch| (-1030)) (|:| |loopBranch| (-2 (|:| |switch| (-1082)) (|:| |body| (-303)))) (|:| |commonBranch| (-2 (|:| -2883 (-1083)) (|:| |contents| (-586 (-1083))))) (|:| |printBranch| (-586 (-791))))) (-5 *1 (-303)))) (-3979 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-303)))) (-3782 (*1 *2 *1) (-12 (-5 *2 (-1016)) (-5 *1 (-303)))) (-2992 (*1 *2 *2) (-12 (-5 *2 (-1030)) (-5 *1 (-303)))))
-(-13 (-1012) (-10 -8 (-15 -2188 ((-791) $)) (-15 -2367 ($ (-1005 (-880 (-520))) $)) (-15 -2367 ($ (-1005 (-880 (-520))) (-880 (-520)) $)) (-15 -2957 ($ (-1082) $)) (-15 -1922 ($ (-1082) $)) (-15 -3486 ($ (-1030))) (-15 -1363 ($ (-1030))) (-15 -1270 ($ (-1066))) (-15 -1270 ($ (-586 (-1066)))) (-15 -1830 ($ (-1066))) (-15 -4136 ($)) (-15 -4136 ($ (-289 (-635)))) (-15 -4136 ($ (-289 (-637)))) (-15 -4136 ($ (-289 (-630)))) (-15 -4136 ($ (-289 (-352)))) (-15 -4136 ($ (-289 (-520)))) (-15 -4136 ($ (-289 (-154 (-352))))) (-15 -2585 ($ (-1082) $)) (-15 -2585 ($ (-1082) $ $)) (-15 -3159 ($ (-1083) (-1066))) (-15 -3159 ($ (-1083) (-289 (-637)))) (-15 -3159 ($ (-1083) (-289 (-635)))) (-15 -3159 ($ (-1083) (-289 (-630)))) (-15 -3159 ($ (-1083) (-626 (-637)))) (-15 -3159 ($ (-1083) (-626 (-635)))) (-15 -3159 ($ (-1083) (-626 (-630)))) (-15 -3159 ($ (-1083) (-1164 (-637)))) (-15 -3159 ($ (-1083) (-1164 (-635)))) (-15 -3159 ($ (-1083) (-1164 (-630)))) (-15 -3159 ($ (-1083) (-626 (-289 (-637))))) (-15 -3159 ($ (-1083) (-626 (-289 (-635))))) (-15 -3159 ($ (-1083) (-626 (-289 (-630))))) (-15 -3159 ($ (-1083) (-1164 (-289 (-637))))) (-15 -3159 ($ (-1083) (-1164 (-289 (-635))))) (-15 -3159 ($ (-1083) (-1164 (-289 (-630))))) (-15 -3159 ($ (-1083) (-586 (-880 (-520))) (-289 (-637)))) (-15 -3159 ($ (-1083) (-586 (-880 (-520))) (-289 (-635)))) (-15 -3159 ($ (-1083) (-586 (-880 (-520))) (-289 (-630)))) (-15 -3159 ($ (-1083) (-289 (-520)))) (-15 -3159 ($ (-1083) (-289 (-352)))) (-15 -3159 ($ (-1083) (-289 (-154 (-352))))) (-15 -3159 ($ (-1083) (-626 (-289 (-520))))) (-15 -3159 ($ (-1083) (-626 (-289 (-352))))) (-15 -3159 ($ (-1083) (-626 (-289 (-154 (-352)))))) (-15 -3159 ($ (-1083) (-1164 (-289 (-520))))) (-15 -3159 ($ (-1083) (-1164 (-289 (-352))))) (-15 -3159 ($ (-1083) (-1164 (-289 (-154 (-352)))))) (-15 -3159 ($ (-1083) (-586 (-880 (-520))) (-289 (-520)))) (-15 -3159 ($ (-1083) (-586 (-880 (-520))) (-289 (-352)))) (-15 -3159 ($ (-1083) (-586 (-880 (-520))) (-289 (-154 (-352))))) (-15 -4135 ($ (-586 $))) (-15 -2752 ($)) (-15 -3974 ($)) (-15 -2035 ($ (-586 (-791)))) (-15 -2538 ($ (-1083) (-586 (-1083)))) (-15 -4169 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2031 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1083)) (|:| |arrayIndex| (-586 (-880 (-520)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-108)) (|:| -1574 (-791)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1083)) (|:| |rand| (-791)) (|:| |ints2Floats?| (-108)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1082)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -4018 (-108)) (|:| -3429 (-2 (|:| |ints2Floats?| (-108)) (|:| -1574 (-791)))))) (|:| |blockBranch| (-586 $)) (|:| |commentBranch| (-586 (-1066))) (|:| |callBranch| (-1066)) (|:| |forBranch| (-2 (|:| -1667 (-1005 (-880 (-520)))) (|:| |span| (-880 (-520))) (|:| |body| $))) (|:| |labelBranch| (-1030)) (|:| |loopBranch| (-2 (|:| |switch| (-1082)) (|:| |body| $))) (|:| |commonBranch| (-2 (|:| -2883 (-1083)) (|:| |contents| (-586 (-1083))))) (|:| |printBranch| (-586 (-791)))) $)) (-15 -3979 ((-1169) $)) (-15 -3782 ((-1016) $)) (-15 -2992 ((-1030) (-1030)))))
-((-1414 (((-108) $ $) NIL)) (-4031 (((-108) $) 11)) (-2745 (($ |#1|) 8)) (-2809 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2757 (($ |#1|) 9)) (-2188 (((-791) $) 17)) (-3440 ((|#1| $) 12)) (-1573 (((-108) $ $) NIL)) (-1557 (((-108) $ $) NIL)) (-1530 (((-108) $ $) NIL)) (-1565 (((-108) $ $) NIL)) (-1548 (((-108) $ $) 19)))
-(((-304 |#1|) (-13 (-783) (-10 -8 (-15 -2745 ($ |#1|)) (-15 -2757 ($ |#1|)) (-15 -4031 ((-108) $)) (-15 -3440 (|#1| $)))) (-783)) (T -304))
-((-2745 (*1 *1 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-783)))) (-2757 (*1 *1 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-783)))) (-4031 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-304 *3)) (-4 *3 (-783)))) (-3440 (*1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-783)))))
-(-13 (-783) (-10 -8 (-15 -2745 ($ |#1|)) (-15 -2757 ($ |#1|)) (-15 -4031 ((-108) $)) (-15 -3440 (|#1| $))))
-((-1304 (((-303) (-1083) (-880 (-520))) 22)) (-2118 (((-303) (-1083) (-880 (-520))) 26)) (-2336 (((-303) (-1083) (-1005 (-880 (-520))) (-1005 (-880 (-520)))) 25) (((-303) (-1083) (-880 (-520)) (-880 (-520))) 23)) (-1995 (((-303) (-1083) (-880 (-520))) 30)))
-(((-305) (-10 -7 (-15 -1304 ((-303) (-1083) (-880 (-520)))) (-15 -2336 ((-303) (-1083) (-880 (-520)) (-880 (-520)))) (-15 -2336 ((-303) (-1083) (-1005 (-880 (-520))) (-1005 (-880 (-520))))) (-15 -2118 ((-303) (-1083) (-880 (-520)))) (-15 -1995 ((-303) (-1083) (-880 (-520)))))) (T -305))
-((-1995 (*1 *2 *3 *4) (-12 (-5 *3 (-1083)) (-5 *4 (-880 (-520))) (-5 *2 (-303)) (-5 *1 (-305)))) (-2118 (*1 *2 *3 *4) (-12 (-5 *3 (-1083)) (-5 *4 (-880 (-520))) (-5 *2 (-303)) (-5 *1 (-305)))) (-2336 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1083)) (-5 *4 (-1005 (-880 (-520)))) (-5 *2 (-303)) (-5 *1 (-305)))) (-2336 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1083)) (-5 *4 (-880 (-520))) (-5 *2 (-303)) (-5 *1 (-305)))) (-1304 (*1 *2 *3 *4) (-12 (-5 *3 (-1083)) (-5 *4 (-880 (-520))) (-5 *2 (-303)) (-5 *1 (-305)))))
-(-10 -7 (-15 -1304 ((-303) (-1083) (-880 (-520)))) (-15 -2336 ((-303) (-1083) (-880 (-520)) (-880 (-520)))) (-15 -2336 ((-303) (-1083) (-1005 (-880 (-520))) (-1005 (-880 (-520))))) (-15 -2118 ((-303) (-1083) (-880 (-520)))) (-15 -1995 ((-303) (-1083) (-880 (-520)))))
-((-1389 (((-309 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-309 |#1| |#2| |#3| |#4|)) 31)))
-(((-306 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1389 ((-309 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-309 |#1| |#2| |#3| |#4|)))) (-336) (-1140 |#1|) (-1140 (-380 |#2|)) (-315 |#1| |#2| |#3|) (-336) (-1140 |#5|) (-1140 (-380 |#6|)) (-315 |#5| |#6| |#7|)) (T -306))
-((-1389 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-309 *5 *6 *7 *8)) (-4 *5 (-336)) (-4 *6 (-1140 *5)) (-4 *7 (-1140 (-380 *6))) (-4 *8 (-315 *5 *6 *7)) (-4 *9 (-336)) (-4 *10 (-1140 *9)) (-4 *11 (-1140 (-380 *10))) (-5 *2 (-309 *9 *10 *11 *12)) (-5 *1 (-306 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-315 *9 *10 *11)))))
-(-10 -7 (-15 -1389 ((-309 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-309 |#1| |#2| |#3| |#4|))))
-((-2669 (((-108) $) 14)))
-(((-307 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2669 ((-108) |#1|))) (-308 |#2| |#3| |#4| |#5|) (-336) (-1140 |#2|) (-1140 (-380 |#3|)) (-315 |#2| |#3| |#4|)) (T -307))
-NIL
-(-10 -8 (-15 -2669 ((-108) |#1|)))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-1917 (((-3 $ "failed") $ $) 19)) (-3961 (($) 17 T CONST)) (-3856 (($ $) 26)) (-2669 (((-108) $) 25)) (-1239 (((-1066) $) 9)) (-1273 (((-386 |#2| (-380 |#2|) |#3| |#4|) $) 32)) (-4142 (((-1030) $) 10)) (-1382 (((-3 |#4| "failed") $) 24)) (-2058 (($ (-386 |#2| (-380 |#2|) |#3| |#4|)) 31) (($ |#4|) 30) (($ |#1| |#1|) 29) (($ |#1| |#1| (-520)) 28) (($ |#4| |#2| |#2| |#2| |#1|) 23)) (-2699 (((-2 (|:| -1780 (-386 |#2| (-380 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 27)) (-2188 (((-791) $) 11)) (-3560 (($) 18 T CONST)) (-1530 (((-108) $ $) 6)) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20)))
-(((-308 |#1| |#2| |#3| |#4|) (-1195) (-336) (-1140 |t#1|) (-1140 (-380 |t#2|)) (-315 |t#1| |t#2| |t#3|)) (T -308))
-((-1273 (*1 *2 *1) (-12 (-4 *1 (-308 *3 *4 *5 *6)) (-4 *3 (-336)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-380 *4))) (-4 *6 (-315 *3 *4 *5)) (-5 *2 (-386 *4 (-380 *4) *5 *6)))) (-2058 (*1 *1 *2) (-12 (-5 *2 (-386 *4 (-380 *4) *5 *6)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-380 *4))) (-4 *6 (-315 *3 *4 *5)) (-4 *3 (-336)) (-4 *1 (-308 *3 *4 *5 *6)))) (-2058 (*1 *1 *2) (-12 (-4 *3 (-336)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-380 *4))) (-4 *1 (-308 *3 *4 *5 *2)) (-4 *2 (-315 *3 *4 *5)))) (-2058 (*1 *1 *2 *2) (-12 (-4 *2 (-336)) (-4 *3 (-1140 *2)) (-4 *4 (-1140 (-380 *3))) (-4 *1 (-308 *2 *3 *4 *5)) (-4 *5 (-315 *2 *3 *4)))) (-2058 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-520)) (-4 *2 (-336)) (-4 *4 (-1140 *2)) (-4 *5 (-1140 (-380 *4))) (-4 *1 (-308 *2 *4 *5 *6)) (-4 *6 (-315 *2 *4 *5)))) (-2699 (*1 *2 *1) (-12 (-4 *1 (-308 *3 *4 *5 *6)) (-4 *3 (-336)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-380 *4))) (-4 *6 (-315 *3 *4 *5)) (-5 *2 (-2 (|:| -1780 (-386 *4 (-380 *4) *5 *6)) (|:| |principalPart| *6))))) (-3856 (*1 *1 *1) (-12 (-4 *1 (-308 *2 *3 *4 *5)) (-4 *2 (-336)) (-4 *3 (-1140 *2)) (-4 *4 (-1140 (-380 *3))) (-4 *5 (-315 *2 *3 *4)))) (-2669 (*1 *2 *1) (-12 (-4 *1 (-308 *3 *4 *5 *6)) (-4 *3 (-336)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-380 *4))) (-4 *6 (-315 *3 *4 *5)) (-5 *2 (-108)))) (-1382 (*1 *2 *1) (|partial| -12 (-4 *1 (-308 *3 *4 *5 *2)) (-4 *3 (-336)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-380 *4))) (-4 *2 (-315 *3 *4 *5)))) (-2058 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-336)) (-4 *3 (-1140 *4)) (-4 *5 (-1140 (-380 *3))) (-4 *1 (-308 *4 *3 *5 *2)) (-4 *2 (-315 *4 *3 *5)))))
-(-13 (-21) (-10 -8 (-15 -1273 ((-386 |t#2| (-380 |t#2|) |t#3| |t#4|) $)) (-15 -2058 ($ (-386 |t#2| (-380 |t#2|) |t#3| |t#4|))) (-15 -2058 ($ |t#4|)) (-15 -2058 ($ |t#1| |t#1|)) (-15 -2058 ($ |t#1| |t#1| (-520))) (-15 -2699 ((-2 (|:| -1780 (-386 |t#2| (-380 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -3856 ($ $)) (-15 -2669 ((-108) $)) (-15 -1382 ((-3 |t#4| "failed") $)) (-15 -2058 ($ |t#4| |t#2| |t#2| |t#2| |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-560 (-791)) . T) ((-1012) . T))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-1917 (((-3 $ "failed") $ $) NIL)) (-3961 (($) NIL T CONST)) (-3856 (($ $) 32)) (-2669 (((-108) $) NIL)) (-1239 (((-1066) $) NIL)) (-3086 (((-1164 |#4|) $) 124)) (-1273 (((-386 |#2| (-380 |#2|) |#3| |#4|) $) 30)) (-4142 (((-1030) $) NIL)) (-1382 (((-3 |#4| "failed") $) 35)) (-1719 (((-1164 |#4|) $) 117)) (-2058 (($ (-386 |#2| (-380 |#2|) |#3| |#4|)) 40) (($ |#4|) 42) (($ |#1| |#1|) 44) (($ |#1| |#1| (-520)) 46) (($ |#4| |#2| |#2| |#2| |#1|) 48)) (-2699 (((-2 (|:| -1780 (-386 |#2| (-380 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 38)) (-2188 (((-791) $) 17)) (-3560 (($) 14 T CONST)) (-1530 (((-108) $ $) 20)) (-1611 (($ $) 27) (($ $ $) NIL)) (-1601 (($ $ $) 25)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) 23)))
-(((-309 |#1| |#2| |#3| |#4|) (-13 (-308 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1719 ((-1164 |#4|) $)) (-15 -3086 ((-1164 |#4|) $)))) (-336) (-1140 |#1|) (-1140 (-380 |#2|)) (-315 |#1| |#2| |#3|)) (T -309))
-((-1719 (*1 *2 *1) (-12 (-4 *3 (-336)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-380 *4))) (-5 *2 (-1164 *6)) (-5 *1 (-309 *3 *4 *5 *6)) (-4 *6 (-315 *3 *4 *5)))) (-3086 (*1 *2 *1) (-12 (-4 *3 (-336)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-380 *4))) (-5 *2 (-1164 *6)) (-5 *1 (-309 *3 *4 *5 *6)) (-4 *6 (-315 *3 *4 *5)))))
-(-13 (-308 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1719 ((-1164 |#4|) $)) (-15 -3086 ((-1164 |#4|) $))))
-((-2286 (($ $ (-1083) |#2|) NIL) (($ $ (-586 (-1083)) (-586 |#2|)) 18) (($ $ (-586 (-268 |#2|))) 14) (($ $ (-268 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-586 |#2|) (-586 |#2|)) NIL)) (-2543 (($ $ |#2|) 11)))
-(((-310 |#1| |#2|) (-10 -8 (-15 -2543 (|#1| |#1| |#2|)) (-15 -2286 (|#1| |#1| (-586 |#2|) (-586 |#2|))) (-15 -2286 (|#1| |#1| |#2| |#2|)) (-15 -2286 (|#1| |#1| (-268 |#2|))) (-15 -2286 (|#1| |#1| (-586 (-268 |#2|)))) (-15 -2286 (|#1| |#1| (-586 (-1083)) (-586 |#2|))) (-15 -2286 (|#1| |#1| (-1083) |#2|))) (-311 |#2|) (-1012)) (T -310))
-NIL
-(-10 -8 (-15 -2543 (|#1| |#1| |#2|)) (-15 -2286 (|#1| |#1| (-586 |#2|) (-586 |#2|))) (-15 -2286 (|#1| |#1| |#2| |#2|)) (-15 -2286 (|#1| |#1| (-268 |#2|))) (-15 -2286 (|#1| |#1| (-586 (-268 |#2|)))) (-15 -2286 (|#1| |#1| (-586 (-1083)) (-586 |#2|))) (-15 -2286 (|#1| |#1| (-1083) |#2|)))
-((-1389 (($ (-1 |#1| |#1|) $) 6)) (-2286 (($ $ (-1083) |#1|) 17 (|has| |#1| (-481 (-1083) |#1|))) (($ $ (-586 (-1083)) (-586 |#1|)) 16 (|has| |#1| (-481 (-1083) |#1|))) (($ $ (-586 (-268 |#1|))) 15 (|has| |#1| (-283 |#1|))) (($ $ (-268 |#1|)) 14 (|has| |#1| (-283 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-283 |#1|))) (($ $ (-586 |#1|) (-586 |#1|)) 12 (|has| |#1| (-283 |#1|)))) (-2543 (($ $ |#1|) 11 (|has| |#1| (-260 |#1| |#1|)))))
-(((-311 |#1|) (-1195) (-1012)) (T -311))
-((-1389 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-311 *3)) (-4 *3 (-1012)))))
-(-13 (-10 -8 (-15 -1389 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-260 |t#1| |t#1|)) (-6 (-260 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-283 |t#1|)) (-6 (-283 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-481 (-1083) |t#1|)) (-6 (-481 (-1083) |t#1|)) |%noBranch|)))
-(((-260 |#1| $) |has| |#1| (-260 |#1| |#1|)) ((-283 |#1|) |has| |#1| (-283 |#1|)) ((-481 (-1083) |#1|) |has| |#1| (-481 (-1083) |#1|)) ((-481 |#1| |#1|) |has| |#1| (-283 |#1|)))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-4081 (((-586 (-1083)) $) NIL)) (-1996 (((-108)) 88) (((-108) (-108)) 89)) (-1883 (((-586 (-559 $)) $) NIL)) (-2903 (($ $) NIL)) (-2768 (($ $) NIL)) (-1917 (((-3 $ "failed") $ $) NIL)) (-3299 (($ $ (-268 $)) NIL) (($ $ (-586 (-268 $))) NIL) (($ $ (-586 (-559 $)) (-586 $)) NIL)) (-1927 (($ $) NIL)) (-2879 (($ $) NIL)) (-2745 (($ $) NIL)) (-3961 (($) NIL T CONST)) (-1296 (((-3 (-559 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-289 |#3|)) 70) (((-3 $ "failed") (-1083)) 94) (((-3 $ "failed") (-289 (-520))) 57 (|has| |#3| (-960 (-520)))) (((-3 $ "failed") (-380 (-880 (-520)))) 63 (|has| |#3| (-960 (-520)))) (((-3 $ "failed") (-880 (-520))) 58 (|has| |#3| (-960 (-520)))) (((-3 $ "failed") (-289 (-352))) 75 (|has| |#3| (-960 (-352)))) (((-3 $ "failed") (-380 (-880 (-352)))) 81 (|has| |#3| (-960 (-352)))) (((-3 $ "failed") (-880 (-352))) 76 (|has| |#3| (-960 (-352))))) (-1482 (((-559 $) $) NIL) ((|#3| $) NIL) (($ (-289 |#3|)) 71) (($ (-1083)) 95) (($ (-289 (-520))) 59 (|has| |#3| (-960 (-520)))) (($ (-380 (-880 (-520)))) 64 (|has| |#3| (-960 (-520)))) (($ (-880 (-520))) 60 (|has| |#3| (-960 (-520)))) (($ (-289 (-352))) 77 (|has| |#3| (-960 (-352)))) (($ (-380 (-880 (-352)))) 82 (|has| |#3| (-960 (-352)))) (($ (-880 (-352))) 78 (|has| |#3| (-960 (-352))))) (-1540 (((-3 $ "failed") $) NIL)) (-2833 (($) 10)) (-1255 (($ $) NIL) (($ (-586 $)) NIL)) (-3357 (((-586 (-110)) $) NIL)) (-3877 (((-110) (-110)) NIL)) (-1537 (((-108) $) NIL)) (-2777 (((-108) $) NIL (|has| $ (-960 (-520))))) (-2433 (((-1079 $) (-559 $)) NIL (|has| $ (-969)))) (-2809 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-1389 (($ (-1 $ $) (-559 $)) NIL)) (-2690 (((-3 (-559 $) "failed") $) NIL)) (-1832 (($ $) 91)) (-1252 (($ $) NIL)) (-1239 (((-1066) $) NIL)) (-1265 (((-586 (-559 $)) $) NIL)) (-2904 (($ (-110) $) 90) (($ (-110) (-586 $)) NIL)) (-1784 (((-108) $ (-110)) NIL) (((-108) $ (-1083)) NIL)) (-4146 (((-706) $) NIL)) (-4142 (((-1030) $) NIL)) (-4134 (((-108) $ $) NIL) (((-108) $ (-1083)) NIL)) (-3260 (($ $) NIL)) (-3615 (((-108) $) NIL (|has| $ (-960 (-520))))) (-2286 (($ $ (-559 $) $) NIL) (($ $ (-586 (-559 $)) (-586 $)) NIL) (($ $ (-586 (-268 $))) NIL) (($ $ (-268 $)) NIL) (($ $ $ $) NIL) (($ $ (-586 $) (-586 $)) NIL) (($ $ (-586 (-1083)) (-586 (-1 $ $))) NIL) (($ $ (-586 (-1083)) (-586 (-1 $ (-586 $)))) NIL) (($ $ (-1083) (-1 $ (-586 $))) NIL) (($ $ (-1083) (-1 $ $)) NIL) (($ $ (-586 (-110)) (-586 (-1 $ $))) NIL) (($ $ (-586 (-110)) (-586 (-1 $ (-586 $)))) NIL) (($ $ (-110) (-1 $ (-586 $))) NIL) (($ $ (-110) (-1 $ $)) NIL)) (-2543 (($ (-110) $) NIL) (($ (-110) $ $) NIL) (($ (-110) $ $ $) NIL) (($ (-110) $ $ $ $) NIL) (($ (-110) (-586 $)) NIL)) (-3453 (($ $) NIL) (($ $ $) NIL)) (-2155 (($ $ (-586 (-1083)) (-586 (-706))) NIL) (($ $ (-1083) (-706)) NIL) (($ $ (-586 (-1083))) NIL) (($ $ (-1083)) NIL)) (-3484 (($ $) NIL (|has| $ (-969)))) (-2891 (($ $) NIL)) (-2757 (($ $) NIL)) (-2188 (((-791) $) NIL) (($ (-559 $)) NIL) (($ |#3|) NIL) (($ (-520)) NIL) (((-289 |#3|) $) 93)) (-3251 (((-706)) NIL)) (-2319 (($ $) NIL) (($ (-586 $)) NIL)) (-1373 (((-108) (-110)) NIL)) (-2831 (($ $) NIL)) (-2810 (($ $) NIL)) (-2820 (($ $) NIL)) (-2458 (($ $) NIL)) (-3504 (($ $ (-706)) NIL) (($ $ (-849)) NIL)) (-3560 (($) 92 T CONST)) (-3570 (($) 22 T CONST)) (-2211 (($ $ (-586 (-1083)) (-586 (-706))) NIL) (($ $ (-1083) (-706)) NIL) (($ $ (-586 (-1083))) NIL) (($ $ (-1083)) NIL)) (-1573 (((-108) $ $) NIL)) (-1557 (((-108) $ $) NIL)) (-1530 (((-108) $ $) NIL)) (-1565 (((-108) $ $) NIL)) (-1548 (((-108) $ $) NIL)) (-1611 (($ $ $) NIL) (($ $) NIL)) (-1601 (($ $ $) NIL)) (** (($ $ (-706)) NIL) (($ $ (-849)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-520) $) NIL) (($ (-706) $) NIL) (($ (-849) $) NIL)))
-(((-312 |#1| |#2| |#3|) (-13 (-276) (-37 |#3|) (-960 |#3|) (-828 (-1083)) (-10 -8 (-15 -1482 ($ (-289 |#3|))) (-15 -1296 ((-3 $ "failed") (-289 |#3|))) (-15 -1482 ($ (-1083))) (-15 -1296 ((-3 $ "failed") (-1083))) (-15 -2188 ((-289 |#3|) $)) (IF (|has| |#3| (-960 (-520))) (PROGN (-15 -1482 ($ (-289 (-520)))) (-15 -1296 ((-3 $ "failed") (-289 (-520)))) (-15 -1482 ($ (-380 (-880 (-520))))) (-15 -1296 ((-3 $ "failed") (-380 (-880 (-520))))) (-15 -1482 ($ (-880 (-520)))) (-15 -1296 ((-3 $ "failed") (-880 (-520))))) |%noBranch|) (IF (|has| |#3| (-960 (-352))) (PROGN (-15 -1482 ($ (-289 (-352)))) (-15 -1296 ((-3 $ "failed") (-289 (-352)))) (-15 -1482 ($ (-380 (-880 (-352))))) (-15 -1296 ((-3 $ "failed") (-380 (-880 (-352))))) (-15 -1482 ($ (-880 (-352)))) (-15 -1296 ((-3 $ "failed") (-880 (-352))))) |%noBranch|) (-15 -2458 ($ $)) (-15 -1927 ($ $)) (-15 -3260 ($ $)) (-15 -1252 ($ $)) (-15 -1832 ($ $)) (-15 -2745 ($ $)) (-15 -2757 ($ $)) (-15 -2768 ($ $)) (-15 -2810 ($ $)) (-15 -2820 ($ $)) (-15 -2831 ($ $)) (-15 -2879 ($ $)) (-15 -2891 ($ $)) (-15 -2903 ($ $)) (-15 -2833 ($)) (-15 -4081 ((-586 (-1083)) $)) (-15 -1996 ((-108))) (-15 -1996 ((-108) (-108))))) (-586 (-1083)) (-586 (-1083)) (-360)) (T -312))
-((-1482 (*1 *1 *2) (-12 (-5 *2 (-289 *5)) (-4 *5 (-360)) (-5 *1 (-312 *3 *4 *5)) (-14 *3 (-586 (-1083))) (-14 *4 (-586 (-1083))))) (-1296 (*1 *1 *2) (|partial| -12 (-5 *2 (-289 *5)) (-4 *5 (-360)) (-5 *1 (-312 *3 *4 *5)) (-14 *3 (-586 (-1083))) (-14 *4 (-586 (-1083))))) (-1482 (*1 *1 *2) (-12 (-5 *2 (-1083)) (-5 *1 (-312 *3 *4 *5)) (-14 *3 (-586 *2)) (-14 *4 (-586 *2)) (-4 *5 (-360)))) (-1296 (*1 *1 *2) (|partial| -12 (-5 *2 (-1083)) (-5 *1 (-312 *3 *4 *5)) (-14 *3 (-586 *2)) (-14 *4 (-586 *2)) (-4 *5 (-360)))) (-2188 (*1 *2 *1) (-12 (-5 *2 (-289 *5)) (-5 *1 (-312 *3 *4 *5)) (-14 *3 (-586 (-1083))) (-14 *4 (-586 (-1083))) (-4 *5 (-360)))) (-1482 (*1 *1 *2) (-12 (-5 *2 (-289 (-520))) (-5 *1 (-312 *3 *4 *5)) (-4 *5 (-960 (-520))) (-14 *3 (-586 (-1083))) (-14 *4 (-586 (-1083))) (-4 *5 (-360)))) (-1296 (*1 *1 *2) (|partial| -12 (-5 *2 (-289 (-520))) (-5 *1 (-312 *3 *4 *5)) (-4 *5 (-960 (-520))) (-14 *3 (-586 (-1083))) (-14 *4 (-586 (-1083))) (-4 *5 (-360)))) (-1482 (*1 *1 *2) (-12 (-5 *2 (-380 (-880 (-520)))) (-5 *1 (-312 *3 *4 *5)) (-4 *5 (-960 (-520))) (-14 *3 (-586 (-1083))) (-14 *4 (-586 (-1083))) (-4 *5 (-360)))) (-1296 (*1 *1 *2) (|partial| -12 (-5 *2 (-380 (-880 (-520)))) (-5 *1 (-312 *3 *4 *5)) (-4 *5 (-960 (-520))) (-14 *3 (-586 (-1083))) (-14 *4 (-586 (-1083))) (-4 *5 (-360)))) (-1482 (*1 *1 *2) (-12 (-5 *2 (-880 (-520))) (-5 *1 (-312 *3 *4 *5)) (-4 *5 (-960 (-520))) (-14 *3 (-586 (-1083))) (-14 *4 (-586 (-1083))) (-4 *5 (-360)))) (-1296 (*1 *1 *2) (|partial| -12 (-5 *2 (-880 (-520))) (-5 *1 (-312 *3 *4 *5)) (-4 *5 (-960 (-520))) (-14 *3 (-586 (-1083))) (-14 *4 (-586 (-1083))) (-4 *5 (-360)))) (-1482 (*1 *1 *2) (-12 (-5 *2 (-289 (-352))) (-5 *1 (-312 *3 *4 *5)) (-4 *5 (-960 (-352))) (-14 *3 (-586 (-1083))) (-14 *4 (-586 (-1083))) (-4 *5 (-360)))) (-1296 (*1 *1 *2) (|partial| -12 (-5 *2 (-289 (-352))) (-5 *1 (-312 *3 *4 *5)) (-4 *5 (-960 (-352))) (-14 *3 (-586 (-1083))) (-14 *4 (-586 (-1083))) (-4 *5 (-360)))) (-1482 (*1 *1 *2) (-12 (-5 *2 (-380 (-880 (-352)))) (-5 *1 (-312 *3 *4 *5)) (-4 *5 (-960 (-352))) (-14 *3 (-586 (-1083))) (-14 *4 (-586 (-1083))) (-4 *5 (-360)))) (-1296 (*1 *1 *2) (|partial| -12 (-5 *2 (-380 (-880 (-352)))) (-5 *1 (-312 *3 *4 *5)) (-4 *5 (-960 (-352))) (-14 *3 (-586 (-1083))) (-14 *4 (-586 (-1083))) (-4 *5 (-360)))) (-1482 (*1 *1 *2) (-12 (-5 *2 (-880 (-352))) (-5 *1 (-312 *3 *4 *5)) (-4 *5 (-960 (-352))) (-14 *3 (-586 (-1083))) (-14 *4 (-586 (-1083))) (-4 *5 (-360)))) (-1296 (*1 *1 *2) (|partial| -12 (-5 *2 (-880 (-352))) (-5 *1 (-312 *3 *4 *5)) (-4 *5 (-960 (-352))) (-14 *3 (-586 (-1083))) (-14 *4 (-586 (-1083))) (-4 *5 (-360)))) (-2458 (*1 *1 *1) (-12 (-5 *1 (-312 *2 *3 *4)) (-14 *2 (-586 (-1083))) (-14 *3 (-586 (-1083))) (-4 *4 (-360)))) (-1927 (*1 *1 *1) (-12 (-5 *1 (-312 *2 *3 *4)) (-14 *2 (-586 (-1083))) (-14 *3 (-586 (-1083))) (-4 *4 (-360)))) (-3260 (*1 *1 *1) (-12 (-5 *1 (-312 *2 *3 *4)) (-14 *2 (-586 (-1083))) (-14 *3 (-586 (-1083))) (-4 *4 (-360)))) (-1252 (*1 *1 *1) (-12 (-5 *1 (-312 *2 *3 *4)) (-14 *2 (-586 (-1083))) (-14 *3 (-586 (-1083))) (-4 *4 (-360)))) (-1832 (*1 *1 *1) (-12 (-5 *1 (-312 *2 *3 *4)) (-14 *2 (-586 (-1083))) (-14 *3 (-586 (-1083))) (-4 *4 (-360)))) (-2745 (*1 *1 *1) (-12 (-5 *1 (-312 *2 *3 *4)) (-14 *2 (-586 (-1083))) (-14 *3 (-586 (-1083))) (-4 *4 (-360)))) (-2757 (*1 *1 *1) (-12 (-5 *1 (-312 *2 *3 *4)) (-14 *2 (-586 (-1083))) (-14 *3 (-586 (-1083))) (-4 *4 (-360)))) (-2768 (*1 *1 *1) (-12 (-5 *1 (-312 *2 *3 *4)) (-14 *2 (-586 (-1083))) (-14 *3 (-586 (-1083))) (-4 *4 (-360)))) (-2810 (*1 *1 *1) (-12 (-5 *1 (-312 *2 *3 *4)) (-14 *2 (-586 (-1083))) (-14 *3 (-586 (-1083))) (-4 *4 (-360)))) (-2820 (*1 *1 *1) (-12 (-5 *1 (-312 *2 *3 *4)) (-14 *2 (-586 (-1083))) (-14 *3 (-586 (-1083))) (-4 *4 (-360)))) (-2831 (*1 *1 *1) (-12 (-5 *1 (-312 *2 *3 *4)) (-14 *2 (-586 (-1083))) (-14 *3 (-586 (-1083))) (-4 *4 (-360)))) (-2879 (*1 *1 *1) (-12 (-5 *1 (-312 *2 *3 *4)) (-14 *2 (-586 (-1083))) (-14 *3 (-586 (-1083))) (-4 *4 (-360)))) (-2891 (*1 *1 *1) (-12 (-5 *1 (-312 *2 *3 *4)) (-14 *2 (-586 (-1083))) (-14 *3 (-586 (-1083))) (-4 *4 (-360)))) (-2903 (*1 *1 *1) (-12 (-5 *1 (-312 *2 *3 *4)) (-14 *2 (-586 (-1083))) (-14 *3 (-586 (-1083))) (-4 *4 (-360)))) (-2833 (*1 *1) (-12 (-5 *1 (-312 *2 *3 *4)) (-14 *2 (-586 (-1083))) (-14 *3 (-586 (-1083))) (-4 *4 (-360)))) (-4081 (*1 *2 *1) (-12 (-5 *2 (-586 (-1083))) (-5 *1 (-312 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-360)))) (-1996 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-312 *3 *4 *5)) (-14 *3 (-586 (-1083))) (-14 *4 (-586 (-1083))) (-4 *5 (-360)))) (-1996 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-312 *3 *4 *5)) (-14 *3 (-586 (-1083))) (-14 *4 (-586 (-1083))) (-4 *5 (-360)))))
-(-13 (-276) (-37 |#3|) (-960 |#3|) (-828 (-1083)) (-10 -8 (-15 -1482 ($ (-289 |#3|))) (-15 -1296 ((-3 $ "failed") (-289 |#3|))) (-15 -1482 ($ (-1083))) (-15 -1296 ((-3 $ "failed") (-1083))) (-15 -2188 ((-289 |#3|) $)) (IF (|has| |#3| (-960 (-520))) (PROGN (-15 -1482 ($ (-289 (-520)))) (-15 -1296 ((-3 $ "failed") (-289 (-520)))) (-15 -1482 ($ (-380 (-880 (-520))))) (-15 -1296 ((-3 $ "failed") (-380 (-880 (-520))))) (-15 -1482 ($ (-880 (-520)))) (-15 -1296 ((-3 $ "failed") (-880 (-520))))) |%noBranch|) (IF (|has| |#3| (-960 (-352))) (PROGN (-15 -1482 ($ (-289 (-352)))) (-15 -1296 ((-3 $ "failed") (-289 (-352)))) (-15 -1482 ($ (-380 (-880 (-352))))) (-15 -1296 ((-3 $ "failed") (-380 (-880 (-352))))) (-15 -1482 ($ (-880 (-352)))) (-15 -1296 ((-3 $ "failed") (-880 (-352))))) |%noBranch|) (-15 -2458 ($ $)) (-15 -1927 ($ $)) (-15 -3260 ($ $)) (-15 -1252 ($ $)) (-15 -1832 ($ $)) (-15 -2745 ($ $)) (-15 -2757 ($ $)) (-15 -2768 ($ $)) (-15 -2810 ($ $)) (-15 -2820 ($ $)) (-15 -2831 ($ $)) (-15 -2879 ($ $)) (-15 -2891 ($ $)) (-15 -2903 ($ $)) (-15 -2833 ($)) (-15 -4081 ((-586 (-1083)) $)) (-15 -1996 ((-108))) (-15 -1996 ((-108) (-108)))))
-((-1389 ((|#8| (-1 |#5| |#1|) |#4|) 19)))
-(((-313 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1389 (|#8| (-1 |#5| |#1|) |#4|))) (-1122) (-1140 |#1|) (-1140 (-380 |#2|)) (-315 |#1| |#2| |#3|) (-1122) (-1140 |#5|) (-1140 (-380 |#6|)) (-315 |#5| |#6| |#7|)) (T -313))
-((-1389 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1122)) (-4 *8 (-1122)) (-4 *6 (-1140 *5)) (-4 *7 (-1140 (-380 *6))) (-4 *9 (-1140 *8)) (-4 *2 (-315 *8 *9 *10)) (-5 *1 (-313 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-315 *5 *6 *7)) (-4 *10 (-1140 (-380 *9))))))
-(-10 -7 (-15 -1389 (|#8| (-1 |#5| |#1|) |#4|)))
-((-3731 (((-2 (|:| |num| (-1164 |#3|)) (|:| |den| |#3|)) $) 38)) (-3705 (($ (-1164 (-380 |#3|)) (-1164 $)) NIL) (($ (-1164 (-380 |#3|))) NIL) (($ (-1164 |#3|) |#3|) 159)) (-2124 (((-1164 $) (-1164 $)) 143)) (-1925 (((-586 (-586 |#2|))) 116)) (-4072 (((-108) |#2| |#2|) 72)) (-3923 (($ $) 137)) (-2368 (((-706)) 31)) (-3245 (((-1164 $) (-1164 $)) 196)) (-2735 (((-586 (-880 |#2|)) (-1083)) 109)) (-2730 (((-108) $) 156)) (-2378 (((-108) $) 24) (((-108) $ |#2|) 29) (((-108) $ |#3|) 200)) (-2691 (((-3 |#3| "failed")) 49)) (-1822 (((-706)) 168)) (-2543 ((|#2| $ |#2| |#2|) 130)) (-2605 (((-3 |#3| "failed")) 67)) (-2155 (($ $ (-1 (-380 |#3|) (-380 |#3|)) (-706)) NIL) (($ $ (-1 (-380 |#3|) (-380 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 204) (($ $ (-586 (-1083)) (-586 (-706))) NIL) (($ $ (-1083) (-706)) NIL) (($ $ (-586 (-1083))) NIL) (($ $ (-1083)) NIL) (($ $ (-706)) NIL) (($ $) NIL)) (-2352 (((-1164 $) (-1164 $)) 149)) (-2934 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 65)) (-3982 (((-108)) 33)))
-(((-314 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2155 (|#1| |#1|)) (-15 -2155 (|#1| |#1| (-706))) (-15 -2155 (|#1| |#1| (-1083))) (-15 -2155 (|#1| |#1| (-586 (-1083)))) (-15 -2155 (|#1| |#1| (-1083) (-706))) (-15 -2155 (|#1| |#1| (-586 (-1083)) (-586 (-706)))) (-15 -1925 ((-586 (-586 |#2|)))) (-15 -2735 ((-586 (-880 |#2|)) (-1083))) (-15 -2934 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -2691 ((-3 |#3| "failed"))) (-15 -2605 ((-3 |#3| "failed"))) (-15 -2543 (|#2| |#1| |#2| |#2|)) (-15 -3923 (|#1| |#1|)) (-15 -3705 (|#1| (-1164 |#3|) |#3|)) (-15 -2155 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2378 ((-108) |#1| |#3|)) (-15 -2378 ((-108) |#1| |#2|)) (-15 -3731 ((-2 (|:| |num| (-1164 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -2124 ((-1164 |#1|) (-1164 |#1|))) (-15 -3245 ((-1164 |#1|) (-1164 |#1|))) (-15 -2352 ((-1164 |#1|) (-1164 |#1|))) (-15 -2378 ((-108) |#1|)) (-15 -2730 ((-108) |#1|)) (-15 -4072 ((-108) |#2| |#2|)) (-15 -3982 ((-108))) (-15 -1822 ((-706))) (-15 -2368 ((-706))) (-15 -2155 (|#1| |#1| (-1 (-380 |#3|) (-380 |#3|)))) (-15 -2155 (|#1| |#1| (-1 (-380 |#3|) (-380 |#3|)) (-706))) (-15 -3705 (|#1| (-1164 (-380 |#3|)))) (-15 -3705 (|#1| (-1164 (-380 |#3|)) (-1164 |#1|)))) (-315 |#2| |#3| |#4|) (-1122) (-1140 |#2|) (-1140 (-380 |#3|))) (T -314))
-((-2368 (*1 *2) (-12 (-4 *4 (-1122)) (-4 *5 (-1140 *4)) (-4 *6 (-1140 (-380 *5))) (-5 *2 (-706)) (-5 *1 (-314 *3 *4 *5 *6)) (-4 *3 (-315 *4 *5 *6)))) (-1822 (*1 *2) (-12 (-4 *4 (-1122)) (-4 *5 (-1140 *4)) (-4 *6 (-1140 (-380 *5))) (-5 *2 (-706)) (-5 *1 (-314 *3 *4 *5 *6)) (-4 *3 (-315 *4 *5 *6)))) (-3982 (*1 *2) (-12 (-4 *4 (-1122)) (-4 *5 (-1140 *4)) (-4 *6 (-1140 (-380 *5))) (-5 *2 (-108)) (-5 *1 (-314 *3 *4 *5 *6)) (-4 *3 (-315 *4 *5 *6)))) (-4072 (*1 *2 *3 *3) (-12 (-4 *3 (-1122)) (-4 *5 (-1140 *3)) (-4 *6 (-1140 (-380 *5))) (-5 *2 (-108)) (-5 *1 (-314 *4 *3 *5 *6)) (-4 *4 (-315 *3 *5 *6)))) (-2605 (*1 *2) (|partial| -12 (-4 *4 (-1122)) (-4 *5 (-1140 (-380 *2))) (-4 *2 (-1140 *4)) (-5 *1 (-314 *3 *4 *2 *5)) (-4 *3 (-315 *4 *2 *5)))) (-2691 (*1 *2) (|partial| -12 (-4 *4 (-1122)) (-4 *5 (-1140 (-380 *2))) (-4 *2 (-1140 *4)) (-5 *1 (-314 *3 *4 *2 *5)) (-4 *3 (-315 *4 *2 *5)))) (-2735 (*1 *2 *3) (-12 (-5 *3 (-1083)) (-4 *5 (-1122)) (-4 *6 (-1140 *5)) (-4 *7 (-1140 (-380 *6))) (-5 *2 (-586 (-880 *5))) (-5 *1 (-314 *4 *5 *6 *7)) (-4 *4 (-315 *5 *6 *7)))) (-1925 (*1 *2) (-12 (-4 *4 (-1122)) (-4 *5 (-1140 *4)) (-4 *6 (-1140 (-380 *5))) (-5 *2 (-586 (-586 *4))) (-5 *1 (-314 *3 *4 *5 *6)) (-4 *3 (-315 *4 *5 *6)))))
-(-10 -8 (-15 -2155 (|#1| |#1|)) (-15 -2155 (|#1| |#1| (-706))) (-15 -2155 (|#1| |#1| (-1083))) (-15 -2155 (|#1| |#1| (-586 (-1083)))) (-15 -2155 (|#1| |#1| (-1083) (-706))) (-15 -2155 (|#1| |#1| (-586 (-1083)) (-586 (-706)))) (-15 -1925 ((-586 (-586 |#2|)))) (-15 -2735 ((-586 (-880 |#2|)) (-1083))) (-15 -2934 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -2691 ((-3 |#3| "failed"))) (-15 -2605 ((-3 |#3| "failed"))) (-15 -2543 (|#2| |#1| |#2| |#2|)) (-15 -3923 (|#1| |#1|)) (-15 -3705 (|#1| (-1164 |#3|) |#3|)) (-15 -2155 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2378 ((-108) |#1| |#3|)) (-15 -2378 ((-108) |#1| |#2|)) (-15 -3731 ((-2 (|:| |num| (-1164 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -2124 ((-1164 |#1|) (-1164 |#1|))) (-15 -3245 ((-1164 |#1|) (-1164 |#1|))) (-15 -2352 ((-1164 |#1|) (-1164 |#1|))) (-15 -2378 ((-108) |#1|)) (-15 -2730 ((-108) |#1|)) (-15 -4072 ((-108) |#2| |#2|)) (-15 -3982 ((-108))) (-15 -1822 ((-706))) (-15 -2368 ((-706))) (-15 -2155 (|#1| |#1| (-1 (-380 |#3|) (-380 |#3|)))) (-15 -2155 (|#1| |#1| (-1 (-380 |#3|) (-380 |#3|)) (-706))) (-15 -3705 (|#1| (-1164 (-380 |#3|)))) (-15 -3705 (|#1| (-1164 (-380 |#3|)) (-1164 |#1|))))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-3731 (((-2 (|:| |num| (-1164 |#2|)) (|:| |den| |#2|)) $) 196)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) 93 (|has| (-380 |#2|) (-336)))) (-2583 (($ $) 94 (|has| (-380 |#2|) (-336)))) (-1671 (((-108) $) 96 (|has| (-380 |#2|) (-336)))) (-1405 (((-626 (-380 |#2|)) (-1164 $)) 46) (((-626 (-380 |#2|))) 61)) (-1864 (((-380 |#2|) $) 52)) (-1891 (((-1092 (-849) (-706)) (-520)) 147 (|has| (-380 |#2|) (-322)))) (-1917 (((-3 $ "failed") $ $) 19)) (-3024 (($ $) 113 (|has| (-380 |#2|) (-336)))) (-1507 (((-391 $) $) 114 (|has| (-380 |#2|) (-336)))) (-1327 (((-108) $ $) 104 (|has| (-380 |#2|) (-336)))) (-1628 (((-706)) 87 (|has| (-380 |#2|) (-341)))) (-3007 (((-108)) 213)) (-3530 (((-108) |#1|) 212) (((-108) |#2|) 211)) (-3961 (($) 17 T CONST)) (-1296 (((-3 (-520) "failed") $) 169 (|has| (-380 |#2|) (-960 (-520)))) (((-3 (-380 (-520)) "failed") $) 167 (|has| (-380 |#2|) (-960 (-380 (-520))))) (((-3 (-380 |#2|) "failed") $) 166)) (-1482 (((-520) $) 170 (|has| (-380 |#2|) (-960 (-520)))) (((-380 (-520)) $) 168 (|has| (-380 |#2|) (-960 (-380 (-520))))) (((-380 |#2|) $) 165)) (-3705 (($ (-1164 (-380 |#2|)) (-1164 $)) 48) (($ (-1164 (-380 |#2|))) 64) (($ (-1164 |#2|) |#2|) 189)) (-2654 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| (-380 |#2|) (-322)))) (-2276 (($ $ $) 108 (|has| (-380 |#2|) (-336)))) (-3604 (((-626 (-380 |#2|)) $ (-1164 $)) 53) (((-626 (-380 |#2|)) $) 59)) (-2756 (((-626 (-520)) (-626 $)) 164 (|has| (-380 |#2|) (-582 (-520)))) (((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 $) (-1164 $)) 163 (|has| (-380 |#2|) (-582 (-520)))) (((-2 (|:| -3927 (-626 (-380 |#2|))) (|:| |vec| (-1164 (-380 |#2|)))) (-626 $) (-1164 $)) 162) (((-626 (-380 |#2|)) (-626 $)) 161)) (-2124 (((-1164 $) (-1164 $)) 201)) (-3856 (($ |#3|) 158) (((-3 $ "failed") (-380 |#3|)) 155 (|has| (-380 |#2|) (-336)))) (-1540 (((-3 $ "failed") $) 34)) (-1925 (((-586 (-586 |#1|))) 182 (|has| |#1| (-341)))) (-4072 (((-108) |#1| |#1|) 217)) (-3160 (((-849)) 54)) (-3249 (($) 90 (|has| (-380 |#2|) (-341)))) (-4086 (((-108)) 210)) (-3381 (((-108) |#1|) 209) (((-108) |#2|) 208)) (-2253 (($ $ $) 107 (|has| (-380 |#2|) (-336)))) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) 102 (|has| (-380 |#2|) (-336)))) (-3923 (($ $) 188)) (-2961 (($) 149 (|has| (-380 |#2|) (-322)))) (-1855 (((-108) $) 150 (|has| (-380 |#2|) (-322)))) (-1346 (($ $ (-706)) 141 (|has| (-380 |#2|) (-322))) (($ $) 140 (|has| (-380 |#2|) (-322)))) (-2036 (((-108) $) 115 (|has| (-380 |#2|) (-336)))) (-3989 (((-849) $) 152 (|has| (-380 |#2|) (-322))) (((-769 (-849)) $) 138 (|has| (-380 |#2|) (-322)))) (-1537 (((-108) $) 31)) (-2368 (((-706)) 220)) (-3245 (((-1164 $) (-1164 $)) 202)) (-1434 (((-380 |#2|) $) 51)) (-2735 (((-586 (-880 |#1|)) (-1083)) 183 (|has| |#1| (-336)))) (-1394 (((-3 $ "failed") $) 142 (|has| (-380 |#2|) (-322)))) (-3188 (((-3 (-586 $) "failed") (-586 $) $) 111 (|has| (-380 |#2|) (-336)))) (-2034 ((|#3| $) 44 (|has| (-380 |#2|) (-336)))) (-3040 (((-849) $) 89 (|has| (-380 |#2|) (-341)))) (-3841 ((|#3| $) 156)) (-2222 (($ (-586 $)) 100 (|has| (-380 |#2|) (-336))) (($ $ $) 99 (|has| (-380 |#2|) (-336)))) (-1239 (((-1066) $) 9)) (-3252 (((-626 (-380 |#2|))) 197)) (-4137 (((-626 (-380 |#2|))) 199)) (-3093 (($ $) 116 (|has| (-380 |#2|) (-336)))) (-4183 (($ (-1164 |#2|) |#2|) 194)) (-3895 (((-626 (-380 |#2|))) 198)) (-3531 (((-626 (-380 |#2|))) 200)) (-2402 (((-2 (|:| |num| (-626 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 193)) (-3889 (((-2 (|:| |num| (-1164 |#2|)) (|:| |den| |#2|)) $) 195)) (-3442 (((-1164 $)) 206)) (-2323 (((-1164 $)) 207)) (-2730 (((-108) $) 205)) (-2378 (((-108) $) 204) (((-108) $ |#1|) 192) (((-108) $ |#2|) 191)) (-3794 (($) 143 (|has| (-380 |#2|) (-322)) CONST)) (-2716 (($ (-849)) 88 (|has| (-380 |#2|) (-341)))) (-2691 (((-3 |#2| "failed")) 185)) (-4142 (((-1030) $) 10)) (-1822 (((-706)) 219)) (-1382 (($) 160)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) 101 (|has| (-380 |#2|) (-336)))) (-2257 (($ (-586 $)) 98 (|has| (-380 |#2|) (-336))) (($ $ $) 97 (|has| (-380 |#2|) (-336)))) (-1517 (((-586 (-2 (|:| -1916 (-520)) (|:| -2647 (-520))))) 146 (|has| (-380 |#2|) (-322)))) (-1916 (((-391 $) $) 112 (|has| (-380 |#2|) (-336)))) (-1283 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| (-380 |#2|) (-336))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) 109 (|has| (-380 |#2|) (-336)))) (-2230 (((-3 $ "failed") $ $) 92 (|has| (-380 |#2|) (-336)))) (-2608 (((-3 (-586 $) "failed") (-586 $) $) 103 (|has| (-380 |#2|) (-336)))) (-3704 (((-706) $) 105 (|has| (-380 |#2|) (-336)))) (-2543 ((|#1| $ |#1| |#1|) 187)) (-2605 (((-3 |#2| "failed")) 186)) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) 106 (|has| (-380 |#2|) (-336)))) (-2732 (((-380 |#2|) (-1164 $)) 47) (((-380 |#2|)) 60)) (-2062 (((-706) $) 151 (|has| (-380 |#2|) (-322))) (((-3 (-706) "failed") $ $) 139 (|has| (-380 |#2|) (-322)))) (-2155 (($ $ (-1 (-380 |#2|) (-380 |#2|)) (-706)) 123 (|has| (-380 |#2|) (-336))) (($ $ (-1 (-380 |#2|) (-380 |#2|))) 122 (|has| (-380 |#2|) (-336))) (($ $ (-1 |#2| |#2|)) 190) (($ $ (-586 (-1083)) (-586 (-706))) 130 (-3700 (-4006 (|has| (-380 |#2|) (-336)) (|has| (-380 |#2|) (-828 (-1083)))) (-4006 (|has| (-380 |#2|) (-828 (-1083))) (|has| (-380 |#2|) (-336))))) (($ $ (-1083) (-706)) 131 (-3700 (-4006 (|has| (-380 |#2|) (-336)) (|has| (-380 |#2|) (-828 (-1083)))) (-4006 (|has| (-380 |#2|) (-828 (-1083))) (|has| (-380 |#2|) (-336))))) (($ $ (-586 (-1083))) 132 (-3700 (-4006 (|has| (-380 |#2|) (-336)) (|has| (-380 |#2|) (-828 (-1083)))) (-4006 (|has| (-380 |#2|) (-828 (-1083))) (|has| (-380 |#2|) (-336))))) (($ $ (-1083)) 133 (-3700 (-4006 (|has| (-380 |#2|) (-336)) (|has| (-380 |#2|) (-828 (-1083)))) (-4006 (|has| (-380 |#2|) (-828 (-1083))) (|has| (-380 |#2|) (-336))))) (($ $ (-706)) 135 (-3700 (-4006 (|has| (-380 |#2|) (-336)) (|has| (-380 |#2|) (-209))) (-4006 (|has| (-380 |#2|) (-209)) (|has| (-380 |#2|) (-336))) (|has| (-380 |#2|) (-322)))) (($ $) 137 (-3700 (-4006 (|has| (-380 |#2|) (-336)) (|has| (-380 |#2|) (-209))) (-4006 (|has| (-380 |#2|) (-209)) (|has| (-380 |#2|) (-336))) (|has| (-380 |#2|) (-322))))) (-3404 (((-626 (-380 |#2|)) (-1164 $) (-1 (-380 |#2|) (-380 |#2|))) 154 (|has| (-380 |#2|) (-336)))) (-3484 ((|#3|) 159)) (-3864 (($) 148 (|has| (-380 |#2|) (-322)))) (-3790 (((-1164 (-380 |#2|)) $ (-1164 $)) 50) (((-626 (-380 |#2|)) (-1164 $) (-1164 $)) 49) (((-1164 (-380 |#2|)) $) 66) (((-626 (-380 |#2|)) (-1164 $)) 65)) (-1429 (((-1164 (-380 |#2|)) $) 63) (($ (-1164 (-380 |#2|))) 62) ((|#3| $) 171) (($ |#3|) 157)) (-3784 (((-3 (-1164 $) "failed") (-626 $)) 145 (|has| (-380 |#2|) (-322)))) (-2352 (((-1164 $) (-1164 $)) 203)) (-2188 (((-791) $) 11) (($ (-520)) 28) (($ (-380 |#2|)) 37) (($ (-380 (-520))) 86 (-3700 (|has| (-380 |#2|) (-336)) (|has| (-380 |#2|) (-960 (-380 (-520)))))) (($ $) 91 (|has| (-380 |#2|) (-336)))) (-3796 (($ $) 144 (|has| (-380 |#2|) (-322))) (((-3 $ "failed") $) 43 (|has| (-380 |#2|) (-133)))) (-2948 ((|#3| $) 45)) (-3251 (((-706)) 29)) (-3128 (((-108)) 216)) (-2080 (((-108) |#1|) 215) (((-108) |#2|) 214)) (-1831 (((-1164 $)) 67)) (-2559 (((-108) $ $) 95 (|has| (-380 |#2|) (-336)))) (-2934 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 184)) (-3982 (((-108)) 218)) (-3504 (($ $ (-849)) 26) (($ $ (-706)) 33) (($ $ (-520)) 117 (|has| (-380 |#2|) (-336)))) (-3560 (($) 18 T CONST)) (-3570 (($) 30 T CONST)) (-2211 (($ $ (-1 (-380 |#2|) (-380 |#2|)) (-706)) 125 (|has| (-380 |#2|) (-336))) (($ $ (-1 (-380 |#2|) (-380 |#2|))) 124 (|has| (-380 |#2|) (-336))) (($ $ (-586 (-1083)) (-586 (-706))) 126 (-3700 (-4006 (|has| (-380 |#2|) (-336)) (|has| (-380 |#2|) (-828 (-1083)))) (-4006 (|has| (-380 |#2|) (-828 (-1083))) (|has| (-380 |#2|) (-336))))) (($ $ (-1083) (-706)) 127 (-3700 (-4006 (|has| (-380 |#2|) (-336)) (|has| (-380 |#2|) (-828 (-1083)))) (-4006 (|has| (-380 |#2|) (-828 (-1083))) (|has| (-380 |#2|) (-336))))) (($ $ (-586 (-1083))) 128 (-3700 (-4006 (|has| (-380 |#2|) (-336)) (|has| (-380 |#2|) (-828 (-1083)))) (-4006 (|has| (-380 |#2|) (-828 (-1083))) (|has| (-380 |#2|) (-336))))) (($ $ (-1083)) 129 (-3700 (-4006 (|has| (-380 |#2|) (-336)) (|has| (-380 |#2|) (-828 (-1083)))) (-4006 (|has| (-380 |#2|) (-828 (-1083))) (|has| (-380 |#2|) (-336))))) (($ $ (-706)) 134 (-3700 (-4006 (|has| (-380 |#2|) (-336)) (|has| (-380 |#2|) (-209))) (-4006 (|has| (-380 |#2|) (-209)) (|has| (-380 |#2|) (-336))) (|has| (-380 |#2|) (-322)))) (($ $) 136 (-3700 (-4006 (|has| (-380 |#2|) (-336)) (|has| (-380 |#2|) (-209))) (-4006 (|has| (-380 |#2|) (-209)) (|has| (-380 |#2|) (-336))) (|has| (-380 |#2|) (-322))))) (-1530 (((-108) $ $) 6)) (-1619 (($ $ $) 121 (|has| (-380 |#2|) (-336)))) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-706)) 32) (($ $ (-520)) 118 (|has| (-380 |#2|) (-336)))) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ $ $) 24) (($ $ (-380 |#2|)) 39) (($ (-380 |#2|) $) 38) (($ (-380 (-520)) $) 120 (|has| (-380 |#2|) (-336))) (($ $ (-380 (-520))) 119 (|has| (-380 |#2|) (-336)))))
-(((-315 |#1| |#2| |#3|) (-1195) (-1122) (-1140 |t#1|) (-1140 (-380 |t#2|))) (T -315))
-((-2368 (*1 *2) (-12 (-4 *1 (-315 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-380 *4))) (-5 *2 (-706)))) (-1822 (*1 *2) (-12 (-4 *1 (-315 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-380 *4))) (-5 *2 (-706)))) (-3982 (*1 *2) (-12 (-4 *1 (-315 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-380 *4))) (-5 *2 (-108)))) (-4072 (*1 *2 *3 *3) (-12 (-4 *1 (-315 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-380 *4))) (-5 *2 (-108)))) (-3128 (*1 *2) (-12 (-4 *1 (-315 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-380 *4))) (-5 *2 (-108)))) (-2080 (*1 *2 *3) (-12 (-4 *1 (-315 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-380 *4))) (-5 *2 (-108)))) (-2080 (*1 *2 *3) (-12 (-4 *1 (-315 *4 *3 *5)) (-4 *4 (-1122)) (-4 *3 (-1140 *4)) (-4 *5 (-1140 (-380 *3))) (-5 *2 (-108)))) (-3007 (*1 *2) (-12 (-4 *1 (-315 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-380 *4))) (-5 *2 (-108)))) (-3530 (*1 *2 *3) (-12 (-4 *1 (-315 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-380 *4))) (-5 *2 (-108)))) (-3530 (*1 *2 *3) (-12 (-4 *1 (-315 *4 *3 *5)) (-4 *4 (-1122)) (-4 *3 (-1140 *4)) (-4 *5 (-1140 (-380 *3))) (-5 *2 (-108)))) (-4086 (*1 *2) (-12 (-4 *1 (-315 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-380 *4))) (-5 *2 (-108)))) (-3381 (*1 *2 *3) (-12 (-4 *1 (-315 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-380 *4))) (-5 *2 (-108)))) (-3381 (*1 *2 *3) (-12 (-4 *1 (-315 *4 *3 *5)) (-4 *4 (-1122)) (-4 *3 (-1140 *4)) (-4 *5 (-1140 (-380 *3))) (-5 *2 (-108)))) (-2323 (*1 *2) (-12 (-4 *3 (-1122)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-380 *4))) (-5 *2 (-1164 *1)) (-4 *1 (-315 *3 *4 *5)))) (-3442 (*1 *2) (-12 (-4 *3 (-1122)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-380 *4))) (-5 *2 (-1164 *1)) (-4 *1 (-315 *3 *4 *5)))) (-2730 (*1 *2 *1) (-12 (-4 *1 (-315 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-380 *4))) (-5 *2 (-108)))) (-2378 (*1 *2 *1) (-12 (-4 *1 (-315 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-380 *4))) (-5 *2 (-108)))) (-2352 (*1 *2 *2) (-12 (-5 *2 (-1164 *1)) (-4 *1 (-315 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-380 *4))))) (-3245 (*1 *2 *2) (-12 (-5 *2 (-1164 *1)) (-4 *1 (-315 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-380 *4))))) (-2124 (*1 *2 *2) (-12 (-5 *2 (-1164 *1)) (-4 *1 (-315 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-380 *4))))) (-3531 (*1 *2) (-12 (-4 *1 (-315 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-380 *4))) (-5 *2 (-626 (-380 *4))))) (-4137 (*1 *2) (-12 (-4 *1 (-315 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-380 *4))) (-5 *2 (-626 (-380 *4))))) (-3895 (*1 *2) (-12 (-4 *1 (-315 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-380 *4))) (-5 *2 (-626 (-380 *4))))) (-3252 (*1 *2) (-12 (-4 *1 (-315 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-380 *4))) (-5 *2 (-626 (-380 *4))))) (-3731 (*1 *2 *1) (-12 (-4 *1 (-315 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-380 *4))) (-5 *2 (-2 (|:| |num| (-1164 *4)) (|:| |den| *4))))) (-3889 (*1 *2 *1) (-12 (-4 *1 (-315 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-380 *4))) (-5 *2 (-2 (|:| |num| (-1164 *4)) (|:| |den| *4))))) (-4183 (*1 *1 *2 *3) (-12 (-5 *2 (-1164 *3)) (-4 *3 (-1140 *4)) (-4 *4 (-1122)) (-4 *1 (-315 *4 *3 *5)) (-4 *5 (-1140 (-380 *3))))) (-2402 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-315 *4 *5 *6)) (-4 *4 (-1122)) (-4 *5 (-1140 *4)) (-4 *6 (-1140 (-380 *5))) (-5 *2 (-2 (|:| |num| (-626 *5)) (|:| |den| *5))))) (-2378 (*1 *2 *1 *3) (-12 (-4 *1 (-315 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-380 *4))) (-5 *2 (-108)))) (-2378 (*1 *2 *1 *3) (-12 (-4 *1 (-315 *4 *3 *5)) (-4 *4 (-1122)) (-4 *3 (-1140 *4)) (-4 *5 (-1140 (-380 *3))) (-5 *2 (-108)))) (-2155 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-315 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-380 *4))))) (-3705 (*1 *1 *2 *3) (-12 (-5 *2 (-1164 *3)) (-4 *3 (-1140 *4)) (-4 *4 (-1122)) (-4 *1 (-315 *4 *3 *5)) (-4 *5 (-1140 (-380 *3))))) (-3923 (*1 *1 *1) (-12 (-4 *1 (-315 *2 *3 *4)) (-4 *2 (-1122)) (-4 *3 (-1140 *2)) (-4 *4 (-1140 (-380 *3))))) (-2543 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-315 *2 *3 *4)) (-4 *2 (-1122)) (-4 *3 (-1140 *2)) (-4 *4 (-1140 (-380 *3))))) (-2605 (*1 *2) (|partial| -12 (-4 *1 (-315 *3 *2 *4)) (-4 *3 (-1122)) (-4 *4 (-1140 (-380 *2))) (-4 *2 (-1140 *3)))) (-2691 (*1 *2) (|partial| -12 (-4 *1 (-315 *3 *2 *4)) (-4 *3 (-1122)) (-4 *4 (-1140 (-380 *2))) (-4 *2 (-1140 *3)))) (-2934 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1140 *4)) (-4 *4 (-1122)) (-4 *6 (-1140 (-380 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-315 *4 *5 *6)))) (-2735 (*1 *2 *3) (-12 (-5 *3 (-1083)) (-4 *1 (-315 *4 *5 *6)) (-4 *4 (-1122)) (-4 *5 (-1140 *4)) (-4 *6 (-1140 (-380 *5))) (-4 *4 (-336)) (-5 *2 (-586 (-880 *4))))) (-1925 (*1 *2) (-12 (-4 *1 (-315 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-380 *4))) (-4 *3 (-341)) (-5 *2 (-586 (-586 *3))))))
-(-13 (-660 (-380 |t#2|) |t#3|) (-10 -8 (-15 -2368 ((-706))) (-15 -1822 ((-706))) (-15 -3982 ((-108))) (-15 -4072 ((-108) |t#1| |t#1|)) (-15 -3128 ((-108))) (-15 -2080 ((-108) |t#1|)) (-15 -2080 ((-108) |t#2|)) (-15 -3007 ((-108))) (-15 -3530 ((-108) |t#1|)) (-15 -3530 ((-108) |t#2|)) (-15 -4086 ((-108))) (-15 -3381 ((-108) |t#1|)) (-15 -3381 ((-108) |t#2|)) (-15 -2323 ((-1164 $))) (-15 -3442 ((-1164 $))) (-15 -2730 ((-108) $)) (-15 -2378 ((-108) $)) (-15 -2352 ((-1164 $) (-1164 $))) (-15 -3245 ((-1164 $) (-1164 $))) (-15 -2124 ((-1164 $) (-1164 $))) (-15 -3531 ((-626 (-380 |t#2|)))) (-15 -4137 ((-626 (-380 |t#2|)))) (-15 -3895 ((-626 (-380 |t#2|)))) (-15 -3252 ((-626 (-380 |t#2|)))) (-15 -3731 ((-2 (|:| |num| (-1164 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -3705 ($ (-1164 |t#2|) |t#2|)) (-15 -3889 ((-2 (|:| |num| (-1164 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -4183 ($ (-1164 |t#2|) |t#2|)) (-15 -2402 ((-2 (|:| |num| (-626 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -2378 ((-108) $ |t#1|)) (-15 -2378 ((-108) $ |t#2|)) (-15 -2155 ($ $ (-1 |t#2| |t#2|))) (-15 -3705 ($ (-1164 |t#2|) |t#2|)) (-15 -3923 ($ $)) (-15 -2543 (|t#1| $ |t#1| |t#1|)) (-15 -2605 ((-3 |t#2| "failed"))) (-15 -2691 ((-3 |t#2| "failed"))) (-15 -2934 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-336)) (-15 -2735 ((-586 (-880 |t#1|)) (-1083))) |%noBranch|) (IF (|has| |t#1| (-341)) (-15 -1925 ((-586 (-586 |t#1|)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-380 (-520))) -3700 (|has| (-380 |#2|) (-322)) (|has| (-380 |#2|) (-336))) ((-37 #1=(-380 |#2|)) . T) ((-37 $) -3700 (|has| (-380 |#2|) (-322)) (|has| (-380 |#2|) (-336))) ((-97) . T) ((-107 #0# #0#) -3700 (|has| (-380 |#2|) (-322)) (|has| (-380 |#2|) (-336))) ((-107 #1# #1#) . T) ((-107 $ $) . T) ((-124) . T) ((-133) -3700 (|has| (-380 |#2|) (-322)) (|has| (-380 |#2|) (-133))) ((-135) |has| (-380 |#2|) (-135)) ((-560 (-791)) . T) ((-157) . T) ((-561 |#3|) . T) ((-207 #1#) |has| (-380 |#2|) (-336)) ((-209) -3700 (|has| (-380 |#2|) (-322)) (-12 (|has| (-380 |#2|) (-209)) (|has| (-380 |#2|) (-336)))) ((-219) -3700 (|has| (-380 |#2|) (-322)) (|has| (-380 |#2|) (-336))) ((-264) -3700 (|has| (-380 |#2|) (-322)) (|has| (-380 |#2|) (-336))) ((-281) -3700 (|has| (-380 |#2|) (-322)) (|has| (-380 |#2|) (-336))) ((-336) -3700 (|has| (-380 |#2|) (-322)) (|has| (-380 |#2|) (-336))) ((-375) |has| (-380 |#2|) (-322)) ((-341) -3700 (|has| (-380 |#2|) (-341)) (|has| (-380 |#2|) (-322))) ((-322) |has| (-380 |#2|) (-322)) ((-343 #1# |#3|) . T) ((-382 #1# |#3|) . T) ((-350 #1#) . T) ((-384 #1#) . T) ((-424) -3700 (|has| (-380 |#2|) (-322)) (|has| (-380 |#2|) (-336))) ((-512) -3700 (|has| (-380 |#2|) (-322)) (|has| (-380 |#2|) (-336))) ((-588 #0#) -3700 (|has| (-380 |#2|) (-322)) (|has| (-380 |#2|) (-336))) ((-588 #1#) . T) ((-588 $) . T) ((-582 #1#) . T) ((-582 (-520)) |has| (-380 |#2|) (-582 (-520))) ((-653 #0#) -3700 (|has| (-380 |#2|) (-322)) (|has| (-380 |#2|) (-336))) ((-653 #1#) . T) ((-653 $) -3700 (|has| (-380 |#2|) (-322)) (|has| (-380 |#2|) (-336))) ((-660 #1# |#3|) . T) ((-662) . T) ((-828 (-1083)) -12 (|has| (-380 |#2|) (-336)) (|has| (-380 |#2|) (-828 (-1083)))) ((-848) -3700 (|has| (-380 |#2|) (-322)) (|has| (-380 |#2|) (-336))) ((-960 (-380 (-520))) |has| (-380 |#2|) (-960 (-380 (-520)))) ((-960 #1#) . T) ((-960 (-520)) |has| (-380 |#2|) (-960 (-520))) ((-975 #0#) -3700 (|has| (-380 |#2|) (-322)) (|has| (-380 |#2|) (-336))) ((-975 #1#) . T) ((-975 $) . T) ((-969) . T) ((-976) . T) ((-1024) . T) ((-1012) . T) ((-1059) |has| (-380 |#2|) (-322)) ((-1122) -3700 (|has| (-380 |#2|) (-322)) (|has| (-380 |#2|) (-336))))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) NIL)) (-2583 (($ $) NIL)) (-1671 (((-108) $) NIL)) (-3412 (((-108) $) NIL)) (-2668 (((-706)) NIL)) (-1864 (((-838 |#1|) $) NIL) (($ $ (-849)) NIL (|has| (-838 |#1|) (-341)))) (-1891 (((-1092 (-849) (-706)) (-520)) NIL (|has| (-838 |#1|) (-341)))) (-1917 (((-3 $ "failed") $ $) NIL)) (-3024 (($ $) NIL)) (-1507 (((-391 $) $) NIL)) (-1327 (((-108) $ $) NIL)) (-1628 (((-706)) NIL (|has| (-838 |#1|) (-341)))) (-3961 (($) NIL T CONST)) (-1296 (((-3 (-838 |#1|) "failed") $) NIL)) (-1482 (((-838 |#1|) $) NIL)) (-3705 (($ (-1164 (-838 |#1|))) NIL)) (-2654 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-838 |#1|) (-341)))) (-2276 (($ $ $) NIL)) (-1540 (((-3 $ "failed") $) NIL)) (-3249 (($) NIL (|has| (-838 |#1|) (-341)))) (-2253 (($ $ $) NIL)) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) NIL)) (-2961 (($) NIL (|has| (-838 |#1|) (-341)))) (-1855 (((-108) $) NIL (|has| (-838 |#1|) (-341)))) (-1346 (($ $ (-706)) NIL (-3700 (|has| (-838 |#1|) (-133)) (|has| (-838 |#1|) (-341)))) (($ $) NIL (-3700 (|has| (-838 |#1|) (-133)) (|has| (-838 |#1|) (-341))))) (-2036 (((-108) $) NIL)) (-3989 (((-849) $) NIL (|has| (-838 |#1|) (-341))) (((-769 (-849)) $) NIL (-3700 (|has| (-838 |#1|) (-133)) (|has| (-838 |#1|) (-341))))) (-1537 (((-108) $) NIL)) (-2645 (($) NIL (|has| (-838 |#1|) (-341)))) (-2740 (((-108) $) NIL (|has| (-838 |#1|) (-341)))) (-1434 (((-838 |#1|) $) NIL) (($ $ (-849)) NIL (|has| (-838 |#1|) (-341)))) (-1394 (((-3 $ "failed") $) NIL (|has| (-838 |#1|) (-341)))) (-3188 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-2034 (((-1079 (-838 |#1|)) $) NIL) (((-1079 $) $ (-849)) NIL (|has| (-838 |#1|) (-341)))) (-3040 (((-849) $) NIL (|has| (-838 |#1|) (-341)))) (-3840 (((-1079 (-838 |#1|)) $) NIL (|has| (-838 |#1|) (-341)))) (-1400 (((-1079 (-838 |#1|)) $) NIL (|has| (-838 |#1|) (-341))) (((-3 (-1079 (-838 |#1|)) "failed") $ $) NIL (|has| (-838 |#1|) (-341)))) (-3284 (($ $ (-1079 (-838 |#1|))) NIL (|has| (-838 |#1|) (-341)))) (-2222 (($ $ $) NIL) (($ (-586 $)) NIL)) (-1239 (((-1066) $) NIL)) (-3093 (($ $) NIL)) (-3794 (($) NIL (|has| (-838 |#1|) (-341)) CONST)) (-2716 (($ (-849)) NIL (|has| (-838 |#1|) (-341)))) (-3304 (((-108) $) NIL)) (-4142 (((-1030) $) NIL)) (-4106 (((-885 (-1030))) NIL)) (-1382 (($) NIL (|has| (-838 |#1|) (-341)))) (-3653 (((-1079 $) (-1079 $) (-1079 $)) NIL)) (-2257 (($ $ $) NIL) (($ (-586 $)) NIL)) (-1517 (((-586 (-2 (|:| -1916 (-520)) (|:| -2647 (-520))))) NIL (|has| (-838 |#1|) (-341)))) (-1916 (((-391 $) $) NIL)) (-2206 (((-769 (-849))) NIL) (((-849)) NIL)) (-1283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2230 (((-3 $ "failed") $ $) NIL)) (-2608 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-3704 (((-706) $) NIL)) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) NIL)) (-2062 (((-706) $) NIL (|has| (-838 |#1|) (-341))) (((-3 (-706) "failed") $ $) NIL (-3700 (|has| (-838 |#1|) (-133)) (|has| (-838 |#1|) (-341))))) (-1556 (((-126)) NIL)) (-2155 (($ $) NIL (|has| (-838 |#1|) (-341))) (($ $ (-706)) NIL (|has| (-838 |#1|) (-341)))) (-2528 (((-769 (-849)) $) NIL) (((-849) $) NIL)) (-3484 (((-1079 (-838 |#1|))) NIL)) (-3864 (($) NIL (|has| (-838 |#1|) (-341)))) (-3642 (($) NIL (|has| (-838 |#1|) (-341)))) (-3790 (((-1164 (-838 |#1|)) $) NIL) (((-626 (-838 |#1|)) (-1164 $)) NIL)) (-3784 (((-3 (-1164 $) "failed") (-626 $)) NIL (|has| (-838 |#1|) (-341)))) (-2188 (((-791) $) NIL) (($ (-520)) NIL) (($ $) NIL) (($ (-380 (-520))) NIL) (($ (-838 |#1|)) NIL)) (-3796 (($ $) NIL (|has| (-838 |#1|) (-341))) (((-3 $ "failed") $) NIL (-3700 (|has| (-838 |#1|) (-133)) (|has| (-838 |#1|) (-341))))) (-3251 (((-706)) NIL)) (-1831 (((-1164 $)) NIL) (((-1164 $) (-849)) NIL)) (-2559 (((-108) $ $) NIL)) (-3718 (((-108) $) NIL)) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL)) (-3560 (($) NIL T CONST)) (-3570 (($) NIL T CONST)) (-3751 (($ $) NIL (|has| (-838 |#1|) (-341))) (($ $ (-706)) NIL (|has| (-838 |#1|) (-341)))) (-2211 (($ $) NIL (|has| (-838 |#1|) (-341))) (($ $ (-706)) NIL (|has| (-838 |#1|) (-341)))) (-1530 (((-108) $ $) NIL)) (-1619 (($ $ $) NIL) (($ $ (-838 |#1|)) NIL)) (-1611 (($ $) NIL) (($ $ $) NIL)) (-1601 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) NIL) (($ $ (-380 (-520))) NIL) (($ (-380 (-520)) $) NIL) (($ $ (-838 |#1|)) NIL) (($ (-838 |#1|) $) NIL)))
-(((-316 |#1| |#2|) (-13 (-302 (-838 |#1|)) (-10 -7 (-15 -4106 ((-885 (-1030)))))) (-849) (-849)) (T -316))
-((-4106 (*1 *2) (-12 (-5 *2 (-885 (-1030))) (-5 *1 (-316 *3 *4)) (-14 *3 (-849)) (-14 *4 (-849)))))
-(-13 (-302 (-838 |#1|)) (-10 -7 (-15 -4106 ((-885 (-1030))))))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) 46)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) NIL)) (-2583 (($ $) NIL)) (-1671 (((-108) $) NIL)) (-3412 (((-108) $) NIL)) (-2668 (((-706)) NIL)) (-1864 ((|#1| $) NIL) (($ $ (-849)) NIL (|has| |#1| (-341)))) (-1891 (((-1092 (-849) (-706)) (-520)) 43 (|has| |#1| (-341)))) (-1917 (((-3 $ "failed") $ $) NIL)) (-3024 (($ $) NIL)) (-1507 (((-391 $) $) NIL)) (-1327 (((-108) $ $) NIL)) (-1628 (((-706)) NIL (|has| |#1| (-341)))) (-3961 (($) NIL T CONST)) (-1296 (((-3 |#1| "failed") $) 114)) (-1482 ((|#1| $) 85)) (-3705 (($ (-1164 |#1|)) 103)) (-2654 (((-3 "prime" "polynomial" "normal" "cyclic")) 94 (|has| |#1| (-341)))) (-2276 (($ $ $) NIL)) (-1540 (((-3 $ "failed") $) NIL)) (-3249 (($) 97 (|has| |#1| (-341)))) (-2253 (($ $ $) NIL)) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) NIL)) (-2961 (($) 129 (|has| |#1| (-341)))) (-1855 (((-108) $) 49 (|has| |#1| (-341)))) (-1346 (($ $ (-706)) NIL (-3700 (|has| |#1| (-133)) (|has| |#1| (-341)))) (($ $) NIL (-3700 (|has| |#1| (-133)) (|has| |#1| (-341))))) (-2036 (((-108) $) NIL)) (-3989 (((-849) $) 47 (|has| |#1| (-341))) (((-769 (-849)) $) NIL (-3700 (|has| |#1| (-133)) (|has| |#1| (-341))))) (-1537 (((-108) $) NIL)) (-2645 (($) 131 (|has| |#1| (-341)))) (-2740 (((-108) $) NIL (|has| |#1| (-341)))) (-1434 ((|#1| $) NIL) (($ $ (-849)) NIL (|has| |#1| (-341)))) (-1394 (((-3 $ "failed") $) NIL (|has| |#1| (-341)))) (-3188 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-2034 (((-1079 |#1|) $) 89) (((-1079 $) $ (-849)) NIL (|has| |#1| (-341)))) (-3040 (((-849) $) 139 (|has| |#1| (-341)))) (-3840 (((-1079 |#1|) $) NIL (|has| |#1| (-341)))) (-1400 (((-1079 |#1|) $) NIL (|has| |#1| (-341))) (((-3 (-1079 |#1|) "failed") $ $) NIL (|has| |#1| (-341)))) (-3284 (($ $ (-1079 |#1|)) NIL (|has| |#1| (-341)))) (-2222 (($ $ $) NIL) (($ (-586 $)) NIL)) (-1239 (((-1066) $) NIL)) (-3093 (($ $) 146)) (-3794 (($) NIL (|has| |#1| (-341)) CONST)) (-2716 (($ (-849)) 70 (|has| |#1| (-341)))) (-3304 (((-108) $) 117)) (-4142 (((-1030) $) NIL)) (-4106 (((-885 (-1030))) 44)) (-1382 (($) 127 (|has| |#1| (-341)))) (-3653 (((-1079 $) (-1079 $) (-1079 $)) NIL)) (-2257 (($ $ $) NIL) (($ (-586 $)) NIL)) (-1517 (((-586 (-2 (|:| -1916 (-520)) (|:| -2647 (-520))))) 92 (|has| |#1| (-341)))) (-1916 (((-391 $) $) NIL)) (-2206 (((-769 (-849))) 67) (((-849)) 68)) (-1283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2230 (((-3 $ "failed") $ $) NIL)) (-2608 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-3704 (((-706) $) NIL)) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) NIL)) (-2062 (((-706) $) 130 (|has| |#1| (-341))) (((-3 (-706) "failed") $ $) 124 (-3700 (|has| |#1| (-133)) (|has| |#1| (-341))))) (-1556 (((-126)) NIL)) (-2155 (($ $) NIL (|has| |#1| (-341))) (($ $ (-706)) NIL (|has| |#1| (-341)))) (-2528 (((-769 (-849)) $) NIL) (((-849) $) NIL)) (-3484 (((-1079 |#1|)) 95)) (-3864 (($) 128 (|has| |#1| (-341)))) (-3642 (($) 136 (|has| |#1| (-341)))) (-3790 (((-1164 |#1|) $) 59) (((-626 |#1|) (-1164 $)) NIL)) (-3784 (((-3 (-1164 $) "failed") (-626 $)) NIL (|has| |#1| (-341)))) (-2188 (((-791) $) 142) (($ (-520)) NIL) (($ $) NIL) (($ (-380 (-520))) NIL) (($ |#1|) 74)) (-3796 (($ $) NIL (|has| |#1| (-341))) (((-3 $ "failed") $) NIL (-3700 (|has| |#1| (-133)) (|has| |#1| (-341))))) (-3251 (((-706)) 138)) (-1831 (((-1164 $)) 116) (((-1164 $) (-849)) 72)) (-2559 (((-108) $ $) NIL)) (-3718 (((-108) $) NIL)) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL)) (-3560 (($) 32 T CONST)) (-3570 (($) 19 T CONST)) (-3751 (($ $) 80 (|has| |#1| (-341))) (($ $ (-706)) NIL (|has| |#1| (-341)))) (-2211 (($ $) NIL (|has| |#1| (-341))) (($ $ (-706)) NIL (|has| |#1| (-341)))) (-1530 (((-108) $ $) 48)) (-1619 (($ $ $) 144) (($ $ |#1|) 145)) (-1611 (($ $) 126) (($ $ $) NIL)) (-1601 (($ $ $) 61)) (** (($ $ (-849)) 148) (($ $ (-706)) 149) (($ $ (-520)) 147)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) 76) (($ $ $) 75) (($ $ (-380 (-520))) NIL) (($ (-380 (-520)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 143)))
-(((-317 |#1| |#2|) (-13 (-302 |#1|) (-10 -7 (-15 -4106 ((-885 (-1030)))))) (-322) (-1079 |#1|)) (T -317))
-((-4106 (*1 *2) (-12 (-5 *2 (-885 (-1030))) (-5 *1 (-317 *3 *4)) (-4 *3 (-322)) (-14 *4 (-1079 *3)))))
-(-13 (-302 |#1|) (-10 -7 (-15 -4106 ((-885 (-1030))))))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) NIL)) (-2583 (($ $) NIL)) (-1671 (((-108) $) NIL)) (-3412 (((-108) $) NIL)) (-2668 (((-706)) NIL)) (-1864 ((|#1| $) NIL) (($ $ (-849)) NIL (|has| |#1| (-341)))) (-1891 (((-1092 (-849) (-706)) (-520)) NIL (|has| |#1| (-341)))) (-1917 (((-3 $ "failed") $ $) NIL)) (-3024 (($ $) NIL)) (-1507 (((-391 $) $) NIL)) (-1327 (((-108) $ $) NIL)) (-1628 (((-706)) NIL (|has| |#1| (-341)))) (-3961 (($) NIL T CONST)) (-1296 (((-3 |#1| "failed") $) NIL)) (-1482 ((|#1| $) NIL)) (-3705 (($ (-1164 |#1|)) NIL)) (-2654 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-341)))) (-2276 (($ $ $) NIL)) (-1540 (((-3 $ "failed") $) NIL)) (-3249 (($) NIL (|has| |#1| (-341)))) (-2253 (($ $ $) NIL)) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) NIL)) (-2961 (($) NIL (|has| |#1| (-341)))) (-1855 (((-108) $) NIL (|has| |#1| (-341)))) (-1346 (($ $ (-706)) NIL (-3700 (|has| |#1| (-133)) (|has| |#1| (-341)))) (($ $) NIL (-3700 (|has| |#1| (-133)) (|has| |#1| (-341))))) (-2036 (((-108) $) NIL)) (-3989 (((-849) $) NIL (|has| |#1| (-341))) (((-769 (-849)) $) NIL (-3700 (|has| |#1| (-133)) (|has| |#1| (-341))))) (-1537 (((-108) $) NIL)) (-2645 (($) NIL (|has| |#1| (-341)))) (-2740 (((-108) $) NIL (|has| |#1| (-341)))) (-1434 ((|#1| $) NIL) (($ $ (-849)) NIL (|has| |#1| (-341)))) (-1394 (((-3 $ "failed") $) NIL (|has| |#1| (-341)))) (-3188 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-2034 (((-1079 |#1|) $) NIL) (((-1079 $) $ (-849)) NIL (|has| |#1| (-341)))) (-3040 (((-849) $) NIL (|has| |#1| (-341)))) (-3840 (((-1079 |#1|) $) NIL (|has| |#1| (-341)))) (-1400 (((-1079 |#1|) $) NIL (|has| |#1| (-341))) (((-3 (-1079 |#1|) "failed") $ $) NIL (|has| |#1| (-341)))) (-3284 (($ $ (-1079 |#1|)) NIL (|has| |#1| (-341)))) (-2222 (($ $ $) NIL) (($ (-586 $)) NIL)) (-1239 (((-1066) $) NIL)) (-3093 (($ $) NIL)) (-3794 (($) NIL (|has| |#1| (-341)) CONST)) (-2716 (($ (-849)) NIL (|has| |#1| (-341)))) (-3304 (((-108) $) NIL)) (-4142 (((-1030) $) NIL)) (-4106 (((-885 (-1030))) NIL)) (-1382 (($) NIL (|has| |#1| (-341)))) (-3653 (((-1079 $) (-1079 $) (-1079 $)) NIL)) (-2257 (($ $ $) NIL) (($ (-586 $)) NIL)) (-1517 (((-586 (-2 (|:| -1916 (-520)) (|:| -2647 (-520))))) NIL (|has| |#1| (-341)))) (-1916 (((-391 $) $) NIL)) (-2206 (((-769 (-849))) NIL) (((-849)) NIL)) (-1283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2230 (((-3 $ "failed") $ $) NIL)) (-2608 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-3704 (((-706) $) NIL)) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) NIL)) (-2062 (((-706) $) NIL (|has| |#1| (-341))) (((-3 (-706) "failed") $ $) NIL (-3700 (|has| |#1| (-133)) (|has| |#1| (-341))))) (-1556 (((-126)) NIL)) (-2155 (($ $) NIL (|has| |#1| (-341))) (($ $ (-706)) NIL (|has| |#1| (-341)))) (-2528 (((-769 (-849)) $) NIL) (((-849) $) NIL)) (-3484 (((-1079 |#1|)) NIL)) (-3864 (($) NIL (|has| |#1| (-341)))) (-3642 (($) NIL (|has| |#1| (-341)))) (-3790 (((-1164 |#1|) $) NIL) (((-626 |#1|) (-1164 $)) NIL)) (-3784 (((-3 (-1164 $) "failed") (-626 $)) NIL (|has| |#1| (-341)))) (-2188 (((-791) $) NIL) (($ (-520)) NIL) (($ $) NIL) (($ (-380 (-520))) NIL) (($ |#1|) NIL)) (-3796 (($ $) NIL (|has| |#1| (-341))) (((-3 $ "failed") $) NIL (-3700 (|has| |#1| (-133)) (|has| |#1| (-341))))) (-3251 (((-706)) NIL)) (-1831 (((-1164 $)) NIL) (((-1164 $) (-849)) NIL)) (-2559 (((-108) $ $) NIL)) (-3718 (((-108) $) NIL)) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL)) (-3560 (($) NIL T CONST)) (-3570 (($) NIL T CONST)) (-3751 (($ $) NIL (|has| |#1| (-341))) (($ $ (-706)) NIL (|has| |#1| (-341)))) (-2211 (($ $) NIL (|has| |#1| (-341))) (($ $ (-706)) NIL (|has| |#1| (-341)))) (-1530 (((-108) $ $) NIL)) (-1619 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1611 (($ $) NIL) (($ $ $) NIL)) (-1601 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) NIL) (($ $ (-380 (-520))) NIL) (($ (-380 (-520)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-318 |#1| |#2|) (-13 (-302 |#1|) (-10 -7 (-15 -4106 ((-885 (-1030)))))) (-322) (-849)) (T -318))
-((-4106 (*1 *2) (-12 (-5 *2 (-885 (-1030))) (-5 *1 (-318 *3 *4)) (-4 *3 (-322)) (-14 *4 (-849)))))
-(-13 (-302 |#1|) (-10 -7 (-15 -4106 ((-885 (-1030))))))
-((-2157 (((-706) (-1164 (-586 (-2 (|:| -3429 |#1|) (|:| -2716 (-1030)))))) 40)) (-4078 (((-885 (-1030)) (-1079 |#1|)) 85)) (-4206 (((-1164 (-586 (-2 (|:| -3429 |#1|) (|:| -2716 (-1030))))) (-1079 |#1|)) 78)) (-4093 (((-626 |#1|) (-1164 (-586 (-2 (|:| -3429 |#1|) (|:| -2716 (-1030)))))) 86)) (-1709 (((-3 (-1164 (-586 (-2 (|:| -3429 |#1|) (|:| -2716 (-1030))))) "failed") (-849)) 10)) (-2139 (((-3 (-1079 |#1|) (-1164 (-586 (-2 (|:| -3429 |#1|) (|:| -2716 (-1030)))))) (-849)) 15)))
-(((-319 |#1|) (-10 -7 (-15 -4078 ((-885 (-1030)) (-1079 |#1|))) (-15 -4206 ((-1164 (-586 (-2 (|:| -3429 |#1|) (|:| -2716 (-1030))))) (-1079 |#1|))) (-15 -4093 ((-626 |#1|) (-1164 (-586 (-2 (|:| -3429 |#1|) (|:| -2716 (-1030))))))) (-15 -2157 ((-706) (-1164 (-586 (-2 (|:| -3429 |#1|) (|:| -2716 (-1030))))))) (-15 -1709 ((-3 (-1164 (-586 (-2 (|:| -3429 |#1|) (|:| -2716 (-1030))))) "failed") (-849))) (-15 -2139 ((-3 (-1079 |#1|) (-1164 (-586 (-2 (|:| -3429 |#1|) (|:| -2716 (-1030)))))) (-849)))) (-322)) (T -319))
-((-2139 (*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-3 (-1079 *4) (-1164 (-586 (-2 (|:| -3429 *4) (|:| -2716 (-1030))))))) (-5 *1 (-319 *4)) (-4 *4 (-322)))) (-1709 (*1 *2 *3) (|partial| -12 (-5 *3 (-849)) (-5 *2 (-1164 (-586 (-2 (|:| -3429 *4) (|:| -2716 (-1030)))))) (-5 *1 (-319 *4)) (-4 *4 (-322)))) (-2157 (*1 *2 *3) (-12 (-5 *3 (-1164 (-586 (-2 (|:| -3429 *4) (|:| -2716 (-1030)))))) (-4 *4 (-322)) (-5 *2 (-706)) (-5 *1 (-319 *4)))) (-4093 (*1 *2 *3) (-12 (-5 *3 (-1164 (-586 (-2 (|:| -3429 *4) (|:| -2716 (-1030)))))) (-4 *4 (-322)) (-5 *2 (-626 *4)) (-5 *1 (-319 *4)))) (-4206 (*1 *2 *3) (-12 (-5 *3 (-1079 *4)) (-4 *4 (-322)) (-5 *2 (-1164 (-586 (-2 (|:| -3429 *4) (|:| -2716 (-1030)))))) (-5 *1 (-319 *4)))) (-4078 (*1 *2 *3) (-12 (-5 *3 (-1079 *4)) (-4 *4 (-322)) (-5 *2 (-885 (-1030))) (-5 *1 (-319 *4)))))
-(-10 -7 (-15 -4078 ((-885 (-1030)) (-1079 |#1|))) (-15 -4206 ((-1164 (-586 (-2 (|:| -3429 |#1|) (|:| -2716 (-1030))))) (-1079 |#1|))) (-15 -4093 ((-626 |#1|) (-1164 (-586 (-2 (|:| -3429 |#1|) (|:| -2716 (-1030))))))) (-15 -2157 ((-706) (-1164 (-586 (-2 (|:| -3429 |#1|) (|:| -2716 (-1030))))))) (-15 -1709 ((-3 (-1164 (-586 (-2 (|:| -3429 |#1|) (|:| -2716 (-1030))))) "failed") (-849))) (-15 -2139 ((-3 (-1079 |#1|) (-1164 (-586 (-2 (|:| -3429 |#1|) (|:| -2716 (-1030)))))) (-849))))
-((-2188 ((|#1| |#3|) 84) ((|#3| |#1|) 68)))
-(((-320 |#1| |#2| |#3|) (-10 -7 (-15 -2188 (|#3| |#1|)) (-15 -2188 (|#1| |#3|))) (-302 |#2|) (-322) (-302 |#2|)) (T -320))
-((-2188 (*1 *2 *3) (-12 (-4 *4 (-322)) (-4 *2 (-302 *4)) (-5 *1 (-320 *2 *4 *3)) (-4 *3 (-302 *4)))) (-2188 (*1 *2 *3) (-12 (-4 *4 (-322)) (-4 *2 (-302 *4)) (-5 *1 (-320 *3 *4 *2)) (-4 *3 (-302 *4)))))
-(-10 -7 (-15 -2188 (|#3| |#1|)) (-15 -2188 (|#1| |#3|)))
-((-1855 (((-108) $) 51)) (-3989 (((-769 (-849)) $) 21) (((-849) $) 52)) (-1394 (((-3 $ "failed") $) 16)) (-3794 (($) 9)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) 92)) (-2062 (((-3 (-706) "failed") $ $) 71) (((-706) $) 60)) (-2155 (($ $ (-706)) NIL) (($ $) 8)) (-3864 (($) 45)) (-3784 (((-3 (-1164 $) "failed") (-626 $)) 33)) (-3796 (((-3 $ "failed") $) 39) (($ $) 38)))
-(((-321 |#1|) (-10 -8 (-15 -3989 ((-849) |#1|)) (-15 -2062 ((-706) |#1|)) (-15 -1855 ((-108) |#1|)) (-15 -3864 (|#1|)) (-15 -3784 ((-3 (-1164 |#1|) "failed") (-626 |#1|))) (-15 -3796 (|#1| |#1|)) (-15 -2155 (|#1| |#1|)) (-15 -2155 (|#1| |#1| (-706))) (-15 -3794 (|#1|)) (-15 -1394 ((-3 |#1| "failed") |#1|)) (-15 -2062 ((-3 (-706) "failed") |#1| |#1|)) (-15 -3989 ((-769 (-849)) |#1|)) (-15 -3796 ((-3 |#1| "failed") |#1|)) (-15 -3653 ((-1079 |#1|) (-1079 |#1|) (-1079 |#1|)))) (-322)) (T -321))
-NIL
-(-10 -8 (-15 -3989 ((-849) |#1|)) (-15 -2062 ((-706) |#1|)) (-15 -1855 ((-108) |#1|)) (-15 -3864 (|#1|)) (-15 -3784 ((-3 (-1164 |#1|) "failed") (-626 |#1|))) (-15 -3796 (|#1| |#1|)) (-15 -2155 (|#1| |#1|)) (-15 -2155 (|#1| |#1| (-706))) (-15 -3794 (|#1|)) (-15 -1394 ((-3 |#1| "failed") |#1|)) (-15 -2062 ((-3 (-706) "failed") |#1| |#1|)) (-15 -3989 ((-769 (-849)) |#1|)) (-15 -3796 ((-3 |#1| "failed") |#1|)) (-15 -3653 ((-1079 |#1|) (-1079 |#1|) (-1079 |#1|))))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) 41)) (-2583 (($ $) 40)) (-1671 (((-108) $) 38)) (-1891 (((-1092 (-849) (-706)) (-520)) 93)) (-1917 (((-3 $ "failed") $ $) 19)) (-3024 (($ $) 73)) (-1507 (((-391 $) $) 72)) (-1327 (((-108) $ $) 59)) (-1628 (((-706)) 103)) (-3961 (($) 17 T CONST)) (-2654 (((-3 "prime" "polynomial" "normal" "cyclic")) 87)) (-2276 (($ $ $) 55)) (-1540 (((-3 $ "failed") $) 34)) (-3249 (($) 106)) (-2253 (($ $ $) 56)) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) 51)) (-2961 (($) 91)) (-1855 (((-108) $) 90)) (-1346 (($ $) 79) (($ $ (-706)) 78)) (-2036 (((-108) $) 71)) (-3989 (((-769 (-849)) $) 81) (((-849) $) 88)) (-1537 (((-108) $) 31)) (-1394 (((-3 $ "failed") $) 102)) (-3188 (((-3 (-586 $) "failed") (-586 $) $) 52)) (-3040 (((-849) $) 105)) (-2222 (($ $ $) 46) (($ (-586 $)) 45)) (-1239 (((-1066) $) 9)) (-3093 (($ $) 70)) (-3794 (($) 101 T CONST)) (-2716 (($ (-849)) 104)) (-4142 (((-1030) $) 10)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) 44)) (-2257 (($ $ $) 48) (($ (-586 $)) 47)) (-1517 (((-586 (-2 (|:| -1916 (-520)) (|:| -2647 (-520))))) 94)) (-1916 (((-391 $) $) 74)) (-1283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2230 (((-3 $ "failed") $ $) 42)) (-2608 (((-3 (-586 $) "failed") (-586 $) $) 50)) (-3704 (((-706) $) 58)) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) 57)) (-2062 (((-3 (-706) "failed") $ $) 80) (((-706) $) 89)) (-2155 (($ $ (-706)) 99) (($ $) 97)) (-3864 (($) 92)) (-3784 (((-3 (-1164 $) "failed") (-626 $)) 95)) (-2188 (((-791) $) 11) (($ (-520)) 28) (($ $) 43) (($ (-380 (-520))) 65)) (-3796 (((-3 $ "failed") $) 82) (($ $) 96)) (-3251 (((-706)) 29)) (-2559 (((-108) $ $) 39)) (-3504 (($ $ (-849)) 26) (($ $ (-706)) 33) (($ $ (-520)) 69)) (-3560 (($) 18 T CONST)) (-3570 (($) 30 T CONST)) (-2211 (($ $ (-706)) 100) (($ $) 98)) (-1530 (((-108) $ $) 6)) (-1619 (($ $ $) 64)) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-706)) 32) (($ $ (-520)) 68)) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ $ $) 24) (($ $ (-380 (-520))) 67) (($ (-380 (-520)) $) 66)))
-(((-322) (-1195)) (T -322))
-((-3796 (*1 *1 *1) (-4 *1 (-322))) (-3784 (*1 *2 *3) (|partial| -12 (-5 *3 (-626 *1)) (-4 *1 (-322)) (-5 *2 (-1164 *1)))) (-1517 (*1 *2) (-12 (-4 *1 (-322)) (-5 *2 (-586 (-2 (|:| -1916 (-520)) (|:| -2647 (-520))))))) (-1891 (*1 *2 *3) (-12 (-4 *1 (-322)) (-5 *3 (-520)) (-5 *2 (-1092 (-849) (-706))))) (-3864 (*1 *1) (-4 *1 (-322))) (-2961 (*1 *1) (-4 *1 (-322))) (-1855 (*1 *2 *1) (-12 (-4 *1 (-322)) (-5 *2 (-108)))) (-2062 (*1 *2 *1) (-12 (-4 *1 (-322)) (-5 *2 (-706)))) (-3989 (*1 *2 *1) (-12 (-4 *1 (-322)) (-5 *2 (-849)))) (-2654 (*1 *2) (-12 (-4 *1 (-322)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
-(-13 (-375) (-341) (-1059) (-209) (-10 -8 (-15 -3796 ($ $)) (-15 -3784 ((-3 (-1164 $) "failed") (-626 $))) (-15 -1517 ((-586 (-2 (|:| -1916 (-520)) (|:| -2647 (-520)))))) (-15 -1891 ((-1092 (-849) (-706)) (-520))) (-15 -3864 ($)) (-15 -2961 ($)) (-15 -1855 ((-108) $)) (-15 -2062 ((-706) $)) (-15 -3989 ((-849) $)) (-15 -2654 ((-3 "prime" "polynomial" "normal" "cyclic")))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-380 (-520))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-124) . T) ((-133) . T) ((-560 (-791)) . T) ((-157) . T) ((-209) . T) ((-219) . T) ((-264) . T) ((-281) . T) ((-336) . T) ((-375) . T) ((-341) . T) ((-424) . T) ((-512) . T) ((-588 #0#) . T) ((-588 $) . T) ((-653 #0#) . T) ((-653 $) . T) ((-662) . T) ((-848) . T) ((-975 #0#) . T) ((-975 $) . T) ((-969) . T) ((-976) . T) ((-1024) . T) ((-1012) . T) ((-1059) . T) ((-1122) . T))
-((-4182 (((-2 (|:| -1831 (-626 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-626 |#1|))) |#1|) 51)) (-2323 (((-2 (|:| -1831 (-626 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-626 |#1|)))) 49)))
-(((-323 |#1| |#2| |#3|) (-10 -7 (-15 -2323 ((-2 (|:| -1831 (-626 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-626 |#1|))))) (-15 -4182 ((-2 (|:| -1831 (-626 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-626 |#1|))) |#1|))) (-13 (-281) (-10 -8 (-15 -1507 ((-391 $) $)))) (-1140 |#1|) (-382 |#1| |#2|)) (T -323))
-((-4182 (*1 *2 *3) (-12 (-4 *3 (-13 (-281) (-10 -8 (-15 -1507 ((-391 $) $))))) (-4 *4 (-1140 *3)) (-5 *2 (-2 (|:| -1831 (-626 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-626 *3)))) (-5 *1 (-323 *3 *4 *5)) (-4 *5 (-382 *3 *4)))) (-2323 (*1 *2) (-12 (-4 *3 (-13 (-281) (-10 -8 (-15 -1507 ((-391 $) $))))) (-4 *4 (-1140 *3)) (-5 *2 (-2 (|:| -1831 (-626 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-626 *3)))) (-5 *1 (-323 *3 *4 *5)) (-4 *5 (-382 *3 *4)))))
-(-10 -7 (-15 -2323 ((-2 (|:| -1831 (-626 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-626 |#1|))))) (-15 -4182 ((-2 (|:| -1831 (-626 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-626 |#1|))) |#1|)))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) NIL)) (-2583 (($ $) NIL)) (-1671 (((-108) $) NIL)) (-3412 (((-108) $) NIL)) (-2668 (((-706)) NIL)) (-1864 (((-838 |#1|) $) NIL) (($ $ (-849)) NIL (|has| (-838 |#1|) (-341)))) (-1891 (((-1092 (-849) (-706)) (-520)) NIL (|has| (-838 |#1|) (-341)))) (-1917 (((-3 $ "failed") $ $) NIL)) (-3024 (($ $) NIL)) (-1507 (((-391 $) $) NIL)) (-2157 (((-706)) NIL)) (-1327 (((-108) $ $) NIL)) (-1628 (((-706)) NIL (|has| (-838 |#1|) (-341)))) (-3961 (($) NIL T CONST)) (-1296 (((-3 (-838 |#1|) "failed") $) NIL)) (-1482 (((-838 |#1|) $) NIL)) (-3705 (($ (-1164 (-838 |#1|))) NIL)) (-2654 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-838 |#1|) (-341)))) (-2276 (($ $ $) NIL)) (-1540 (((-3 $ "failed") $) NIL)) (-3249 (($) NIL (|has| (-838 |#1|) (-341)))) (-2253 (($ $ $) NIL)) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) NIL)) (-2961 (($) NIL (|has| (-838 |#1|) (-341)))) (-1855 (((-108) $) NIL (|has| (-838 |#1|) (-341)))) (-1346 (($ $ (-706)) NIL (-3700 (|has| (-838 |#1|) (-133)) (|has| (-838 |#1|) (-341)))) (($ $) NIL (-3700 (|has| (-838 |#1|) (-133)) (|has| (-838 |#1|) (-341))))) (-2036 (((-108) $) NIL)) (-3989 (((-849) $) NIL (|has| (-838 |#1|) (-341))) (((-769 (-849)) $) NIL (-3700 (|has| (-838 |#1|) (-133)) (|has| (-838 |#1|) (-341))))) (-1537 (((-108) $) NIL)) (-2645 (($) NIL (|has| (-838 |#1|) (-341)))) (-2740 (((-108) $) NIL (|has| (-838 |#1|) (-341)))) (-1434 (((-838 |#1|) $) NIL) (($ $ (-849)) NIL (|has| (-838 |#1|) (-341)))) (-1394 (((-3 $ "failed") $) NIL (|has| (-838 |#1|) (-341)))) (-3188 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-2034 (((-1079 (-838 |#1|)) $) NIL) (((-1079 $) $ (-849)) NIL (|has| (-838 |#1|) (-341)))) (-3040 (((-849) $) NIL (|has| (-838 |#1|) (-341)))) (-3840 (((-1079 (-838 |#1|)) $) NIL (|has| (-838 |#1|) (-341)))) (-1400 (((-1079 (-838 |#1|)) $) NIL (|has| (-838 |#1|) (-341))) (((-3 (-1079 (-838 |#1|)) "failed") $ $) NIL (|has| (-838 |#1|) (-341)))) (-3284 (($ $ (-1079 (-838 |#1|))) NIL (|has| (-838 |#1|) (-341)))) (-2222 (($ $ $) NIL) (($ (-586 $)) NIL)) (-1239 (((-1066) $) NIL)) (-3093 (($ $) NIL)) (-3794 (($) NIL (|has| (-838 |#1|) (-341)) CONST)) (-2716 (($ (-849)) NIL (|has| (-838 |#1|) (-341)))) (-3304 (((-108) $) NIL)) (-4142 (((-1030) $) NIL)) (-2736 (((-1164 (-586 (-2 (|:| -3429 (-838 |#1|)) (|:| -2716 (-1030)))))) NIL)) (-1495 (((-626 (-838 |#1|))) NIL)) (-1382 (($) NIL (|has| (-838 |#1|) (-341)))) (-3653 (((-1079 $) (-1079 $) (-1079 $)) NIL)) (-2257 (($ $ $) NIL) (($ (-586 $)) NIL)) (-1517 (((-586 (-2 (|:| -1916 (-520)) (|:| -2647 (-520))))) NIL (|has| (-838 |#1|) (-341)))) (-1916 (((-391 $) $) NIL)) (-2206 (((-769 (-849))) NIL) (((-849)) NIL)) (-1283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2230 (((-3 $ "failed") $ $) NIL)) (-2608 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-3704 (((-706) $) NIL)) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) NIL)) (-2062 (((-706) $) NIL (|has| (-838 |#1|) (-341))) (((-3 (-706) "failed") $ $) NIL (-3700 (|has| (-838 |#1|) (-133)) (|has| (-838 |#1|) (-341))))) (-1556 (((-126)) NIL)) (-2155 (($ $) NIL (|has| (-838 |#1|) (-341))) (($ $ (-706)) NIL (|has| (-838 |#1|) (-341)))) (-2528 (((-769 (-849)) $) NIL) (((-849) $) NIL)) (-3484 (((-1079 (-838 |#1|))) NIL)) (-3864 (($) NIL (|has| (-838 |#1|) (-341)))) (-3642 (($) NIL (|has| (-838 |#1|) (-341)))) (-3790 (((-1164 (-838 |#1|)) $) NIL) (((-626 (-838 |#1|)) (-1164 $)) NIL)) (-3784 (((-3 (-1164 $) "failed") (-626 $)) NIL (|has| (-838 |#1|) (-341)))) (-2188 (((-791) $) NIL) (($ (-520)) NIL) (($ $) NIL) (($ (-380 (-520))) NIL) (($ (-838 |#1|)) NIL)) (-3796 (($ $) NIL (|has| (-838 |#1|) (-341))) (((-3 $ "failed") $) NIL (-3700 (|has| (-838 |#1|) (-133)) (|has| (-838 |#1|) (-341))))) (-3251 (((-706)) NIL)) (-1831 (((-1164 $)) NIL) (((-1164 $) (-849)) NIL)) (-2559 (((-108) $ $) NIL)) (-3718 (((-108) $) NIL)) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL)) (-3560 (($) NIL T CONST)) (-3570 (($) NIL T CONST)) (-3751 (($ $) NIL (|has| (-838 |#1|) (-341))) (($ $ (-706)) NIL (|has| (-838 |#1|) (-341)))) (-2211 (($ $) NIL (|has| (-838 |#1|) (-341))) (($ $ (-706)) NIL (|has| (-838 |#1|) (-341)))) (-1530 (((-108) $ $) NIL)) (-1619 (($ $ $) NIL) (($ $ (-838 |#1|)) NIL)) (-1611 (($ $) NIL) (($ $ $) NIL)) (-1601 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) NIL) (($ $ (-380 (-520))) NIL) (($ (-380 (-520)) $) NIL) (($ $ (-838 |#1|)) NIL) (($ (-838 |#1|) $) NIL)))
-(((-324 |#1| |#2|) (-13 (-302 (-838 |#1|)) (-10 -7 (-15 -2736 ((-1164 (-586 (-2 (|:| -3429 (-838 |#1|)) (|:| -2716 (-1030))))))) (-15 -1495 ((-626 (-838 |#1|)))) (-15 -2157 ((-706))))) (-849) (-849)) (T -324))
-((-2736 (*1 *2) (-12 (-5 *2 (-1164 (-586 (-2 (|:| -3429 (-838 *3)) (|:| -2716 (-1030)))))) (-5 *1 (-324 *3 *4)) (-14 *3 (-849)) (-14 *4 (-849)))) (-1495 (*1 *2) (-12 (-5 *2 (-626 (-838 *3))) (-5 *1 (-324 *3 *4)) (-14 *3 (-849)) (-14 *4 (-849)))) (-2157 (*1 *2) (-12 (-5 *2 (-706)) (-5 *1 (-324 *3 *4)) (-14 *3 (-849)) (-14 *4 (-849)))))
-(-13 (-302 (-838 |#1|)) (-10 -7 (-15 -2736 ((-1164 (-586 (-2 (|:| -3429 (-838 |#1|)) (|:| -2716 (-1030))))))) (-15 -1495 ((-626 (-838 |#1|)))) (-15 -2157 ((-706)))))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) 75)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) NIL)) (-2583 (($ $) NIL)) (-1671 (((-108) $) NIL)) (-3412 (((-108) $) NIL)) (-2668 (((-706)) NIL)) (-1864 ((|#1| $) 93) (($ $ (-849)) 91 (|has| |#1| (-341)))) (-1891 (((-1092 (-849) (-706)) (-520)) 149 (|has| |#1| (-341)))) (-1917 (((-3 $ "failed") $ $) NIL)) (-3024 (($ $) NIL)) (-1507 (((-391 $) $) NIL)) (-2157 (((-706)) 90)) (-1327 (((-108) $ $) NIL)) (-1628 (((-706)) 163 (|has| |#1| (-341)))) (-3961 (($) NIL T CONST)) (-1296 (((-3 |#1| "failed") $) 112)) (-1482 ((|#1| $) 92)) (-3705 (($ (-1164 |#1|)) 56)) (-2654 (((-3 "prime" "polynomial" "normal" "cyclic")) 187 (|has| |#1| (-341)))) (-2276 (($ $ $) NIL)) (-1540 (((-3 $ "failed") $) NIL)) (-3249 (($) 159 (|has| |#1| (-341)))) (-2253 (($ $ $) NIL)) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) NIL)) (-2961 (($) 150 (|has| |#1| (-341)))) (-1855 (((-108) $) NIL (|has| |#1| (-341)))) (-1346 (($ $ (-706)) NIL (-3700 (|has| |#1| (-133)) (|has| |#1| (-341)))) (($ $) NIL (-3700 (|has| |#1| (-133)) (|has| |#1| (-341))))) (-2036 (((-108) $) NIL)) (-3989 (((-849) $) NIL (|has| |#1| (-341))) (((-769 (-849)) $) NIL (-3700 (|has| |#1| (-133)) (|has| |#1| (-341))))) (-1537 (((-108) $) NIL)) (-2645 (($) 98 (|has| |#1| (-341)))) (-2740 (((-108) $) 176 (|has| |#1| (-341)))) (-1434 ((|#1| $) 95) (($ $ (-849)) 94 (|has| |#1| (-341)))) (-1394 (((-3 $ "failed") $) NIL (|has| |#1| (-341)))) (-3188 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-2034 (((-1079 |#1|) $) 188) (((-1079 $) $ (-849)) NIL (|has| |#1| (-341)))) (-3040 (((-849) $) 134 (|has| |#1| (-341)))) (-3840 (((-1079 |#1|) $) 74 (|has| |#1| (-341)))) (-1400 (((-1079 |#1|) $) 71 (|has| |#1| (-341))) (((-3 (-1079 |#1|) "failed") $ $) 83 (|has| |#1| (-341)))) (-3284 (($ $ (-1079 |#1|)) 70 (|has| |#1| (-341)))) (-2222 (($ $ $) NIL) (($ (-586 $)) NIL)) (-1239 (((-1066) $) NIL)) (-3093 (($ $) 191)) (-3794 (($) NIL (|has| |#1| (-341)) CONST)) (-2716 (($ (-849)) 137 (|has| |#1| (-341)))) (-3304 (((-108) $) 108)) (-4142 (((-1030) $) NIL)) (-2736 (((-1164 (-586 (-2 (|:| -3429 |#1|) (|:| -2716 (-1030)))))) 84)) (-1495 (((-626 |#1|)) 88)) (-1382 (($) 97 (|has| |#1| (-341)))) (-3653 (((-1079 $) (-1079 $) (-1079 $)) NIL)) (-2257 (($ $ $) NIL) (($ (-586 $)) NIL)) (-1517 (((-586 (-2 (|:| -1916 (-520)) (|:| -2647 (-520))))) 151 (|has| |#1| (-341)))) (-1916 (((-391 $) $) NIL)) (-2206 (((-769 (-849))) NIL) (((-849)) 152)) (-1283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2230 (((-3 $ "failed") $ $) NIL)) (-2608 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-3704 (((-706) $) NIL)) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) NIL)) (-2062 (((-706) $) NIL (|has| |#1| (-341))) (((-3 (-706) "failed") $ $) NIL (-3700 (|has| |#1| (-133)) (|has| |#1| (-341))))) (-1556 (((-126)) NIL)) (-2155 (($ $) NIL (|has| |#1| (-341))) (($ $ (-706)) NIL (|has| |#1| (-341)))) (-2528 (((-769 (-849)) $) NIL) (((-849) $) 63)) (-3484 (((-1079 |#1|)) 153)) (-3864 (($) 133 (|has| |#1| (-341)))) (-3642 (($) NIL (|has| |#1| (-341)))) (-3790 (((-1164 |#1|) $) 106) (((-626 |#1|) (-1164 $)) NIL)) (-3784 (((-3 (-1164 $) "failed") (-626 $)) NIL (|has| |#1| (-341)))) (-2188 (((-791) $) 124) (($ (-520)) NIL) (($ $) NIL) (($ (-380 (-520))) NIL) (($ |#1|) 55)) (-3796 (($ $) NIL (|has| |#1| (-341))) (((-3 $ "failed") $) NIL (-3700 (|has| |#1| (-133)) (|has| |#1| (-341))))) (-3251 (((-706)) 157)) (-1831 (((-1164 $)) 173) (((-1164 $) (-849)) 101)) (-2559 (((-108) $ $) NIL)) (-3718 (((-108) $) NIL)) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL)) (-3560 (($) 29 T CONST)) (-3570 (($) 22 T CONST)) (-3751 (($ $) 107 (|has| |#1| (-341))) (($ $ (-706)) 99 (|has| |#1| (-341)))) (-2211 (($ $) NIL (|has| |#1| (-341))) (($ $ (-706)) NIL (|has| |#1| (-341)))) (-1530 (((-108) $ $) 59)) (-1619 (($ $ $) 104) (($ $ |#1|) 105)) (-1611 (($ $) 178) (($ $ $) 182)) (-1601 (($ $ $) 180)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) 138)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) 185) (($ $ $) 143) (($ $ (-380 (-520))) NIL) (($ (-380 (-520)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 103)))
-(((-325 |#1| |#2|) (-13 (-302 |#1|) (-10 -7 (-15 -2736 ((-1164 (-586 (-2 (|:| -3429 |#1|) (|:| -2716 (-1030))))))) (-15 -1495 ((-626 |#1|))) (-15 -2157 ((-706))))) (-322) (-3 (-1079 |#1|) (-1164 (-586 (-2 (|:| -3429 |#1|) (|:| -2716 (-1030))))))) (T -325))
-((-2736 (*1 *2) (-12 (-5 *2 (-1164 (-586 (-2 (|:| -3429 *3) (|:| -2716 (-1030)))))) (-5 *1 (-325 *3 *4)) (-4 *3 (-322)) (-14 *4 (-3 (-1079 *3) *2)))) (-1495 (*1 *2) (-12 (-5 *2 (-626 *3)) (-5 *1 (-325 *3 *4)) (-4 *3 (-322)) (-14 *4 (-3 (-1079 *3) (-1164 (-586 (-2 (|:| -3429 *3) (|:| -2716 (-1030))))))))) (-2157 (*1 *2) (-12 (-5 *2 (-706)) (-5 *1 (-325 *3 *4)) (-4 *3 (-322)) (-14 *4 (-3 (-1079 *3) (-1164 (-586 (-2 (|:| -3429 *3) (|:| -2716 (-1030))))))))))
-(-13 (-302 |#1|) (-10 -7 (-15 -2736 ((-1164 (-586 (-2 (|:| -3429 |#1|) (|:| -2716 (-1030))))))) (-15 -1495 ((-626 |#1|))) (-15 -2157 ((-706)))))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) NIL)) (-2583 (($ $) NIL)) (-1671 (((-108) $) NIL)) (-3412 (((-108) $) NIL)) (-2668 (((-706)) NIL)) (-1864 ((|#1| $) NIL) (($ $ (-849)) NIL (|has| |#1| (-341)))) (-1891 (((-1092 (-849) (-706)) (-520)) NIL (|has| |#1| (-341)))) (-1917 (((-3 $ "failed") $ $) NIL)) (-3024 (($ $) NIL)) (-1507 (((-391 $) $) NIL)) (-2157 (((-706)) NIL)) (-1327 (((-108) $ $) NIL)) (-1628 (((-706)) NIL (|has| |#1| (-341)))) (-3961 (($) NIL T CONST)) (-1296 (((-3 |#1| "failed") $) NIL)) (-1482 ((|#1| $) NIL)) (-3705 (($ (-1164 |#1|)) NIL)) (-2654 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-341)))) (-2276 (($ $ $) NIL)) (-1540 (((-3 $ "failed") $) NIL)) (-3249 (($) NIL (|has| |#1| (-341)))) (-2253 (($ $ $) NIL)) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) NIL)) (-2961 (($) NIL (|has| |#1| (-341)))) (-1855 (((-108) $) NIL (|has| |#1| (-341)))) (-1346 (($ $ (-706)) NIL (-3700 (|has| |#1| (-133)) (|has| |#1| (-341)))) (($ $) NIL (-3700 (|has| |#1| (-133)) (|has| |#1| (-341))))) (-2036 (((-108) $) NIL)) (-3989 (((-849) $) NIL (|has| |#1| (-341))) (((-769 (-849)) $) NIL (-3700 (|has| |#1| (-133)) (|has| |#1| (-341))))) (-1537 (((-108) $) NIL)) (-2645 (($) NIL (|has| |#1| (-341)))) (-2740 (((-108) $) NIL (|has| |#1| (-341)))) (-1434 ((|#1| $) NIL) (($ $ (-849)) NIL (|has| |#1| (-341)))) (-1394 (((-3 $ "failed") $) NIL (|has| |#1| (-341)))) (-3188 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-2034 (((-1079 |#1|) $) NIL) (((-1079 $) $ (-849)) NIL (|has| |#1| (-341)))) (-3040 (((-849) $) NIL (|has| |#1| (-341)))) (-3840 (((-1079 |#1|) $) NIL (|has| |#1| (-341)))) (-1400 (((-1079 |#1|) $) NIL (|has| |#1| (-341))) (((-3 (-1079 |#1|) "failed") $ $) NIL (|has| |#1| (-341)))) (-3284 (($ $ (-1079 |#1|)) NIL (|has| |#1| (-341)))) (-2222 (($ $ $) NIL) (($ (-586 $)) NIL)) (-1239 (((-1066) $) NIL)) (-3093 (($ $) NIL)) (-3794 (($) NIL (|has| |#1| (-341)) CONST)) (-2716 (($ (-849)) NIL (|has| |#1| (-341)))) (-3304 (((-108) $) NIL)) (-4142 (((-1030) $) NIL)) (-2736 (((-1164 (-586 (-2 (|:| -3429 |#1|) (|:| -2716 (-1030)))))) NIL)) (-1495 (((-626 |#1|)) NIL)) (-1382 (($) NIL (|has| |#1| (-341)))) (-3653 (((-1079 $) (-1079 $) (-1079 $)) NIL)) (-2257 (($ $ $) NIL) (($ (-586 $)) NIL)) (-1517 (((-586 (-2 (|:| -1916 (-520)) (|:| -2647 (-520))))) NIL (|has| |#1| (-341)))) (-1916 (((-391 $) $) NIL)) (-2206 (((-769 (-849))) NIL) (((-849)) NIL)) (-1283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2230 (((-3 $ "failed") $ $) NIL)) (-2608 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-3704 (((-706) $) NIL)) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) NIL)) (-2062 (((-706) $) NIL (|has| |#1| (-341))) (((-3 (-706) "failed") $ $) NIL (-3700 (|has| |#1| (-133)) (|has| |#1| (-341))))) (-1556 (((-126)) NIL)) (-2155 (($ $) NIL (|has| |#1| (-341))) (($ $ (-706)) NIL (|has| |#1| (-341)))) (-2528 (((-769 (-849)) $) NIL) (((-849) $) NIL)) (-3484 (((-1079 |#1|)) NIL)) (-3864 (($) NIL (|has| |#1| (-341)))) (-3642 (($) NIL (|has| |#1| (-341)))) (-3790 (((-1164 |#1|) $) NIL) (((-626 |#1|) (-1164 $)) NIL)) (-3784 (((-3 (-1164 $) "failed") (-626 $)) NIL (|has| |#1| (-341)))) (-2188 (((-791) $) NIL) (($ (-520)) NIL) (($ $) NIL) (($ (-380 (-520))) NIL) (($ |#1|) NIL)) (-3796 (($ $) NIL (|has| |#1| (-341))) (((-3 $ "failed") $) NIL (-3700 (|has| |#1| (-133)) (|has| |#1| (-341))))) (-3251 (((-706)) NIL)) (-1831 (((-1164 $)) NIL) (((-1164 $) (-849)) NIL)) (-2559 (((-108) $ $) NIL)) (-3718 (((-108) $) NIL)) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL)) (-3560 (($) NIL T CONST)) (-3570 (($) NIL T CONST)) (-3751 (($ $) NIL (|has| |#1| (-341))) (($ $ (-706)) NIL (|has| |#1| (-341)))) (-2211 (($ $) NIL (|has| |#1| (-341))) (($ $ (-706)) NIL (|has| |#1| (-341)))) (-1530 (((-108) $ $) NIL)) (-1619 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1611 (($ $) NIL) (($ $ $) NIL)) (-1601 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) NIL) (($ $ (-380 (-520))) NIL) (($ (-380 (-520)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-326 |#1| |#2|) (-13 (-302 |#1|) (-10 -7 (-15 -2736 ((-1164 (-586 (-2 (|:| -3429 |#1|) (|:| -2716 (-1030))))))) (-15 -1495 ((-626 |#1|))) (-15 -2157 ((-706))))) (-322) (-849)) (T -326))
-((-2736 (*1 *2) (-12 (-5 *2 (-1164 (-586 (-2 (|:| -3429 *3) (|:| -2716 (-1030)))))) (-5 *1 (-326 *3 *4)) (-4 *3 (-322)) (-14 *4 (-849)))) (-1495 (*1 *2) (-12 (-5 *2 (-626 *3)) (-5 *1 (-326 *3 *4)) (-4 *3 (-322)) (-14 *4 (-849)))) (-2157 (*1 *2) (-12 (-5 *2 (-706)) (-5 *1 (-326 *3 *4)) (-4 *3 (-322)) (-14 *4 (-849)))))
-(-13 (-302 |#1|) (-10 -7 (-15 -2736 ((-1164 (-586 (-2 (|:| -3429 |#1|) (|:| -2716 (-1030))))))) (-15 -1495 ((-626 |#1|))) (-15 -2157 ((-706)))))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) NIL)) (-2583 (($ $) NIL)) (-1671 (((-108) $) NIL)) (-3412 (((-108) $) NIL)) (-2668 (((-706)) NIL)) (-1864 (((-838 |#1|) $) NIL) (($ $ (-849)) NIL (|has| (-838 |#1|) (-341)))) (-1891 (((-1092 (-849) (-706)) (-520)) NIL (|has| (-838 |#1|) (-341)))) (-1917 (((-3 $ "failed") $ $) NIL)) (-3024 (($ $) NIL)) (-1507 (((-391 $) $) NIL)) (-1327 (((-108) $ $) NIL)) (-1628 (((-706)) NIL (|has| (-838 |#1|) (-341)))) (-3961 (($) NIL T CONST)) (-1296 (((-3 (-838 |#1|) "failed") $) NIL)) (-1482 (((-838 |#1|) $) NIL)) (-3705 (($ (-1164 (-838 |#1|))) NIL)) (-2654 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-838 |#1|) (-341)))) (-2276 (($ $ $) NIL)) (-1540 (((-3 $ "failed") $) NIL)) (-3249 (($) NIL (|has| (-838 |#1|) (-341)))) (-2253 (($ $ $) NIL)) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) NIL)) (-2961 (($) NIL (|has| (-838 |#1|) (-341)))) (-1855 (((-108) $) NIL (|has| (-838 |#1|) (-341)))) (-1346 (($ $ (-706)) NIL (-3700 (|has| (-838 |#1|) (-133)) (|has| (-838 |#1|) (-341)))) (($ $) NIL (-3700 (|has| (-838 |#1|) (-133)) (|has| (-838 |#1|) (-341))))) (-2036 (((-108) $) NIL)) (-3989 (((-849) $) NIL (|has| (-838 |#1|) (-341))) (((-769 (-849)) $) NIL (-3700 (|has| (-838 |#1|) (-133)) (|has| (-838 |#1|) (-341))))) (-1537 (((-108) $) NIL)) (-2645 (($) NIL (|has| (-838 |#1|) (-341)))) (-2740 (((-108) $) NIL (|has| (-838 |#1|) (-341)))) (-1434 (((-838 |#1|) $) NIL) (($ $ (-849)) NIL (|has| (-838 |#1|) (-341)))) (-1394 (((-3 $ "failed") $) NIL (|has| (-838 |#1|) (-341)))) (-3188 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-2034 (((-1079 (-838 |#1|)) $) NIL) (((-1079 $) $ (-849)) NIL (|has| (-838 |#1|) (-341)))) (-3040 (((-849) $) NIL (|has| (-838 |#1|) (-341)))) (-3840 (((-1079 (-838 |#1|)) $) NIL (|has| (-838 |#1|) (-341)))) (-1400 (((-1079 (-838 |#1|)) $) NIL (|has| (-838 |#1|) (-341))) (((-3 (-1079 (-838 |#1|)) "failed") $ $) NIL (|has| (-838 |#1|) (-341)))) (-3284 (($ $ (-1079 (-838 |#1|))) NIL (|has| (-838 |#1|) (-341)))) (-2222 (($ $ $) NIL) (($ (-586 $)) NIL)) (-1239 (((-1066) $) NIL)) (-3093 (($ $) NIL)) (-3794 (($) NIL (|has| (-838 |#1|) (-341)) CONST)) (-2716 (($ (-849)) NIL (|has| (-838 |#1|) (-341)))) (-3304 (((-108) $) NIL)) (-4142 (((-1030) $) NIL)) (-1382 (($) NIL (|has| (-838 |#1|) (-341)))) (-3653 (((-1079 $) (-1079 $) (-1079 $)) NIL)) (-2257 (($ $ $) NIL) (($ (-586 $)) NIL)) (-1517 (((-586 (-2 (|:| -1916 (-520)) (|:| -2647 (-520))))) NIL (|has| (-838 |#1|) (-341)))) (-1916 (((-391 $) $) NIL)) (-2206 (((-769 (-849))) NIL) (((-849)) NIL)) (-1283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2230 (((-3 $ "failed") $ $) NIL)) (-2608 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-3704 (((-706) $) NIL)) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) NIL)) (-2062 (((-706) $) NIL (|has| (-838 |#1|) (-341))) (((-3 (-706) "failed") $ $) NIL (-3700 (|has| (-838 |#1|) (-133)) (|has| (-838 |#1|) (-341))))) (-1556 (((-126)) NIL)) (-2155 (($ $) NIL (|has| (-838 |#1|) (-341))) (($ $ (-706)) NIL (|has| (-838 |#1|) (-341)))) (-2528 (((-769 (-849)) $) NIL) (((-849) $) NIL)) (-3484 (((-1079 (-838 |#1|))) NIL)) (-3864 (($) NIL (|has| (-838 |#1|) (-341)))) (-3642 (($) NIL (|has| (-838 |#1|) (-341)))) (-3790 (((-1164 (-838 |#1|)) $) NIL) (((-626 (-838 |#1|)) (-1164 $)) NIL)) (-3784 (((-3 (-1164 $) "failed") (-626 $)) NIL (|has| (-838 |#1|) (-341)))) (-2188 (((-791) $) NIL) (($ (-520)) NIL) (($ $) NIL) (($ (-380 (-520))) NIL) (($ (-838 |#1|)) NIL)) (-3796 (($ $) NIL (|has| (-838 |#1|) (-341))) (((-3 $ "failed") $) NIL (-3700 (|has| (-838 |#1|) (-133)) (|has| (-838 |#1|) (-341))))) (-3251 (((-706)) NIL)) (-1831 (((-1164 $)) NIL) (((-1164 $) (-849)) NIL)) (-2559 (((-108) $ $) NIL)) (-3718 (((-108) $) NIL)) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL)) (-3560 (($) NIL T CONST)) (-3570 (($) NIL T CONST)) (-3751 (($ $) NIL (|has| (-838 |#1|) (-341))) (($ $ (-706)) NIL (|has| (-838 |#1|) (-341)))) (-2211 (($ $) NIL (|has| (-838 |#1|) (-341))) (($ $ (-706)) NIL (|has| (-838 |#1|) (-341)))) (-1530 (((-108) $ $) NIL)) (-1619 (($ $ $) NIL) (($ $ (-838 |#1|)) NIL)) (-1611 (($ $) NIL) (($ $ $) NIL)) (-1601 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) NIL) (($ $ (-380 (-520))) NIL) (($ (-380 (-520)) $) NIL) (($ $ (-838 |#1|)) NIL) (($ (-838 |#1|) $) NIL)))
-(((-327 |#1| |#2|) (-302 (-838 |#1|)) (-849) (-849)) (T -327))
-NIL
-(-302 (-838 |#1|))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) NIL)) (-2583 (($ $) NIL)) (-1671 (((-108) $) NIL)) (-3412 (((-108) $) NIL)) (-2668 (((-706)) NIL)) (-1864 ((|#1| $) NIL) (($ $ (-849)) NIL (|has| |#1| (-341)))) (-1891 (((-1092 (-849) (-706)) (-520)) 119 (|has| |#1| (-341)))) (-1917 (((-3 $ "failed") $ $) NIL)) (-3024 (($ $) NIL)) (-1507 (((-391 $) $) NIL)) (-1327 (((-108) $ $) NIL)) (-1628 (((-706)) 139 (|has| |#1| (-341)))) (-3961 (($) NIL T CONST)) (-1296 (((-3 |#1| "failed") $) 91)) (-1482 ((|#1| $) 88)) (-3705 (($ (-1164 |#1|)) 83)) (-2654 (((-3 "prime" "polynomial" "normal" "cyclic")) 115 (|has| |#1| (-341)))) (-2276 (($ $ $) NIL)) (-1540 (((-3 $ "failed") $) NIL)) (-3249 (($) 80 (|has| |#1| (-341)))) (-2253 (($ $ $) NIL)) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) NIL)) (-2961 (($) 39 (|has| |#1| (-341)))) (-1855 (((-108) $) NIL (|has| |#1| (-341)))) (-1346 (($ $ (-706)) NIL (-3700 (|has| |#1| (-133)) (|has| |#1| (-341)))) (($ $) NIL (-3700 (|has| |#1| (-133)) (|has| |#1| (-341))))) (-2036 (((-108) $) NIL)) (-3989 (((-849) $) NIL (|has| |#1| (-341))) (((-769 (-849)) $) NIL (-3700 (|has| |#1| (-133)) (|has| |#1| (-341))))) (-1537 (((-108) $) NIL)) (-2645 (($) 120 (|has| |#1| (-341)))) (-2740 (((-108) $) 72 (|has| |#1| (-341)))) (-1434 ((|#1| $) 38) (($ $ (-849)) 40 (|has| |#1| (-341)))) (-1394 (((-3 $ "failed") $) NIL (|has| |#1| (-341)))) (-3188 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-2034 (((-1079 |#1|) $) 62) (((-1079 $) $ (-849)) NIL (|has| |#1| (-341)))) (-3040 (((-849) $) 95 (|has| |#1| (-341)))) (-3840 (((-1079 |#1|) $) NIL (|has| |#1| (-341)))) (-1400 (((-1079 |#1|) $) NIL (|has| |#1| (-341))) (((-3 (-1079 |#1|) "failed") $ $) NIL (|has| |#1| (-341)))) (-3284 (($ $ (-1079 |#1|)) NIL (|has| |#1| (-341)))) (-2222 (($ $ $) NIL) (($ (-586 $)) NIL)) (-1239 (((-1066) $) NIL)) (-3093 (($ $) NIL)) (-3794 (($) NIL (|has| |#1| (-341)) CONST)) (-2716 (($ (-849)) 93 (|has| |#1| (-341)))) (-3304 (((-108) $) 141)) (-4142 (((-1030) $) NIL)) (-1382 (($) 35 (|has| |#1| (-341)))) (-3653 (((-1079 $) (-1079 $) (-1079 $)) NIL)) (-2257 (($ $ $) NIL) (($ (-586 $)) NIL)) (-1517 (((-586 (-2 (|:| -1916 (-520)) (|:| -2647 (-520))))) 113 (|has| |#1| (-341)))) (-1916 (((-391 $) $) NIL)) (-2206 (((-769 (-849))) NIL) (((-849)) 138)) (-1283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2230 (((-3 $ "failed") $ $) NIL)) (-2608 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-3704 (((-706) $) NIL)) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) NIL)) (-2062 (((-706) $) NIL (|has| |#1| (-341))) (((-3 (-706) "failed") $ $) NIL (-3700 (|has| |#1| (-133)) (|has| |#1| (-341))))) (-1556 (((-126)) NIL)) (-2155 (($ $) NIL (|has| |#1| (-341))) (($ $ (-706)) NIL (|has| |#1| (-341)))) (-2528 (((-769 (-849)) $) NIL) (((-849) $) 56)) (-3484 (((-1079 |#1|)) 86)) (-3864 (($) 125 (|has| |#1| (-341)))) (-3642 (($) NIL (|has| |#1| (-341)))) (-3790 (((-1164 |#1|) $) 50) (((-626 |#1|) (-1164 $)) NIL)) (-3784 (((-3 (-1164 $) "failed") (-626 $)) NIL (|has| |#1| (-341)))) (-2188 (((-791) $) 137) (($ (-520)) NIL) (($ $) NIL) (($ (-380 (-520))) NIL) (($ |#1|) 85)) (-3796 (($ $) NIL (|has| |#1| (-341))) (((-3 $ "failed") $) NIL (-3700 (|has| |#1| (-133)) (|has| |#1| (-341))))) (-3251 (((-706)) 143)) (-1831 (((-1164 $)) 107) (((-1164 $) (-849)) 46)) (-2559 (((-108) $ $) NIL)) (-3718 (((-108) $) NIL)) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL)) (-3560 (($) 109 T CONST)) (-3570 (($) 31 T CONST)) (-3751 (($ $) 65 (|has| |#1| (-341))) (($ $ (-706)) NIL (|has| |#1| (-341)))) (-2211 (($ $) NIL (|has| |#1| (-341))) (($ $ (-706)) NIL (|has| |#1| (-341)))) (-1530 (((-108) $ $) 105)) (-1619 (($ $ $) 97) (($ $ |#1|) 98)) (-1611 (($ $) 78) (($ $ $) 103)) (-1601 (($ $ $) 101)) (** (($ $ (-849)) NIL) (($ $ (-706)) 41) (($ $ (-520)) 129)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) 76) (($ $ $) 53) (($ $ (-380 (-520))) NIL) (($ (-380 (-520)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 74)))
-(((-328 |#1| |#2|) (-302 |#1|) (-322) (-1079 |#1|)) (T -328))
-NIL
-(-302 |#1|)
-((-2746 ((|#1| (-1079 |#2|)) 51)))
-(((-329 |#1| |#2|) (-10 -7 (-15 -2746 (|#1| (-1079 |#2|)))) (-13 (-375) (-10 -7 (-15 -2188 (|#1| |#2|)) (-15 -3040 ((-849) |#1|)) (-15 -1831 ((-1164 |#1|) (-849))) (-15 -3751 (|#1| |#1|)))) (-322)) (T -329))
-((-2746 (*1 *2 *3) (-12 (-5 *3 (-1079 *4)) (-4 *4 (-322)) (-4 *2 (-13 (-375) (-10 -7 (-15 -2188 (*2 *4)) (-15 -3040 ((-849) *2)) (-15 -1831 ((-1164 *2) (-849))) (-15 -3751 (*2 *2))))) (-5 *1 (-329 *2 *4)))))
-(-10 -7 (-15 -2746 (|#1| (-1079 |#2|))))
-((-3473 (((-885 (-1079 |#1|)) (-1079 |#1|)) 37)) (-3249 (((-1079 |#1|) (-849) (-849)) 110) (((-1079 |#1|) (-849)) 109)) (-1855 (((-108) (-1079 |#1|)) 82)) (-2555 (((-849) (-849)) 72)) (-3402 (((-849) (-849)) 74)) (-2474 (((-849) (-849)) 70)) (-2740 (((-108) (-1079 |#1|)) 86)) (-2178 (((-3 (-1079 |#1|) "failed") (-1079 |#1|)) 98)) (-3019 (((-3 (-1079 |#1|) "failed") (-1079 |#1|)) 101)) (-2987 (((-3 (-1079 |#1|) "failed") (-1079 |#1|)) 100)) (-1533 (((-3 (-1079 |#1|) "failed") (-1079 |#1|)) 99)) (-2693 (((-3 (-1079 |#1|) "failed") (-1079 |#1|)) 95)) (-3660 (((-1079 |#1|) (-1079 |#1|)) 63)) (-2970 (((-1079 |#1|) (-849)) 104)) (-3110 (((-1079 |#1|) (-849)) 107)) (-2219 (((-1079 |#1|) (-849)) 106)) (-3822 (((-1079 |#1|) (-849)) 105)) (-3443 (((-1079 |#1|) (-849)) 102)))
-(((-330 |#1|) (-10 -7 (-15 -1855 ((-108) (-1079 |#1|))) (-15 -2740 ((-108) (-1079 |#1|))) (-15 -2474 ((-849) (-849))) (-15 -2555 ((-849) (-849))) (-15 -3402 ((-849) (-849))) (-15 -3443 ((-1079 |#1|) (-849))) (-15 -2970 ((-1079 |#1|) (-849))) (-15 -3822 ((-1079 |#1|) (-849))) (-15 -2219 ((-1079 |#1|) (-849))) (-15 -3110 ((-1079 |#1|) (-849))) (-15 -2693 ((-3 (-1079 |#1|) "failed") (-1079 |#1|))) (-15 -2178 ((-3 (-1079 |#1|) "failed") (-1079 |#1|))) (-15 -1533 ((-3 (-1079 |#1|) "failed") (-1079 |#1|))) (-15 -2987 ((-3 (-1079 |#1|) "failed") (-1079 |#1|))) (-15 -3019 ((-3 (-1079 |#1|) "failed") (-1079 |#1|))) (-15 -3249 ((-1079 |#1|) (-849))) (-15 -3249 ((-1079 |#1|) (-849) (-849))) (-15 -3660 ((-1079 |#1|) (-1079 |#1|))) (-15 -3473 ((-885 (-1079 |#1|)) (-1079 |#1|)))) (-322)) (T -330))
-((-3473 (*1 *2 *3) (-12 (-4 *4 (-322)) (-5 *2 (-885 (-1079 *4))) (-5 *1 (-330 *4)) (-5 *3 (-1079 *4)))) (-3660 (*1 *2 *2) (-12 (-5 *2 (-1079 *3)) (-4 *3 (-322)) (-5 *1 (-330 *3)))) (-3249 (*1 *2 *3 *3) (-12 (-5 *3 (-849)) (-5 *2 (-1079 *4)) (-5 *1 (-330 *4)) (-4 *4 (-322)))) (-3249 (*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-1079 *4)) (-5 *1 (-330 *4)) (-4 *4 (-322)))) (-3019 (*1 *2 *2) (|partial| -12 (-5 *2 (-1079 *3)) (-4 *3 (-322)) (-5 *1 (-330 *3)))) (-2987 (*1 *2 *2) (|partial| -12 (-5 *2 (-1079 *3)) (-4 *3 (-322)) (-5 *1 (-330 *3)))) (-1533 (*1 *2 *2) (|partial| -12 (-5 *2 (-1079 *3)) (-4 *3 (-322)) (-5 *1 (-330 *3)))) (-2178 (*1 *2 *2) (|partial| -12 (-5 *2 (-1079 *3)) (-4 *3 (-322)) (-5 *1 (-330 *3)))) (-2693 (*1 *2 *2) (|partial| -12 (-5 *2 (-1079 *3)) (-4 *3 (-322)) (-5 *1 (-330 *3)))) (-3110 (*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-1079 *4)) (-5 *1 (-330 *4)) (-4 *4 (-322)))) (-2219 (*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-1079 *4)) (-5 *1 (-330 *4)) (-4 *4 (-322)))) (-3822 (*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-1079 *4)) (-5 *1 (-330 *4)) (-4 *4 (-322)))) (-2970 (*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-1079 *4)) (-5 *1 (-330 *4)) (-4 *4 (-322)))) (-3443 (*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-1079 *4)) (-5 *1 (-330 *4)) (-4 *4 (-322)))) (-3402 (*1 *2 *2) (-12 (-5 *2 (-849)) (-5 *1 (-330 *3)) (-4 *3 (-322)))) (-2555 (*1 *2 *2) (-12 (-5 *2 (-849)) (-5 *1 (-330 *3)) (-4 *3 (-322)))) (-2474 (*1 *2 *2) (-12 (-5 *2 (-849)) (-5 *1 (-330 *3)) (-4 *3 (-322)))) (-2740 (*1 *2 *3) (-12 (-5 *3 (-1079 *4)) (-4 *4 (-322)) (-5 *2 (-108)) (-5 *1 (-330 *4)))) (-1855 (*1 *2 *3) (-12 (-5 *3 (-1079 *4)) (-4 *4 (-322)) (-5 *2 (-108)) (-5 *1 (-330 *4)))))
-(-10 -7 (-15 -1855 ((-108) (-1079 |#1|))) (-15 -2740 ((-108) (-1079 |#1|))) (-15 -2474 ((-849) (-849))) (-15 -2555 ((-849) (-849))) (-15 -3402 ((-849) (-849))) (-15 -3443 ((-1079 |#1|) (-849))) (-15 -2970 ((-1079 |#1|) (-849))) (-15 -3822 ((-1079 |#1|) (-849))) (-15 -2219 ((-1079 |#1|) (-849))) (-15 -3110 ((-1079 |#1|) (-849))) (-15 -2693 ((-3 (-1079 |#1|) "failed") (-1079 |#1|))) (-15 -2178 ((-3 (-1079 |#1|) "failed") (-1079 |#1|))) (-15 -1533 ((-3 (-1079 |#1|) "failed") (-1079 |#1|))) (-15 -2987 ((-3 (-1079 |#1|) "failed") (-1079 |#1|))) (-15 -3019 ((-3 (-1079 |#1|) "failed") (-1079 |#1|))) (-15 -3249 ((-1079 |#1|) (-849))) (-15 -3249 ((-1079 |#1|) (-849) (-849))) (-15 -3660 ((-1079 |#1|) (-1079 |#1|))) (-15 -3473 ((-885 (-1079 |#1|)) (-1079 |#1|))))
-((-3481 (((-3 (-586 |#3|) "failed") (-586 |#3|) |#3|) 34)))
-(((-331 |#1| |#2| |#3|) (-10 -7 (-15 -3481 ((-3 (-586 |#3|) "failed") (-586 |#3|) |#3|))) (-322) (-1140 |#1|) (-1140 |#2|)) (T -331))
-((-3481 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-586 *3)) (-4 *3 (-1140 *5)) (-4 *5 (-1140 *4)) (-4 *4 (-322)) (-5 *1 (-331 *4 *5 *3)))))
-(-10 -7 (-15 -3481 ((-3 (-586 |#3|) "failed") (-586 |#3|) |#3|)))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) NIL)) (-2583 (($ $) NIL)) (-1671 (((-108) $) NIL)) (-3412 (((-108) $) NIL)) (-2668 (((-706)) NIL)) (-1864 ((|#1| $) NIL) (($ $ (-849)) NIL (|has| |#1| (-341)))) (-1891 (((-1092 (-849) (-706)) (-520)) NIL (|has| |#1| (-341)))) (-1917 (((-3 $ "failed") $ $) NIL)) (-3024 (($ $) NIL)) (-1507 (((-391 $) $) NIL)) (-1327 (((-108) $ $) NIL)) (-1628 (((-706)) NIL (|has| |#1| (-341)))) (-3961 (($) NIL T CONST)) (-1296 (((-3 |#1| "failed") $) NIL)) (-1482 ((|#1| $) NIL)) (-3705 (($ (-1164 |#1|)) NIL)) (-2654 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-341)))) (-2276 (($ $ $) NIL)) (-1540 (((-3 $ "failed") $) NIL)) (-3249 (($) NIL (|has| |#1| (-341)))) (-2253 (($ $ $) NIL)) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) NIL)) (-2961 (($) NIL (|has| |#1| (-341)))) (-1855 (((-108) $) NIL (|has| |#1| (-341)))) (-1346 (($ $ (-706)) NIL (-3700 (|has| |#1| (-133)) (|has| |#1| (-341)))) (($ $) NIL (-3700 (|has| |#1| (-133)) (|has| |#1| (-341))))) (-2036 (((-108) $) NIL)) (-3989 (((-849) $) NIL (|has| |#1| (-341))) (((-769 (-849)) $) NIL (-3700 (|has| |#1| (-133)) (|has| |#1| (-341))))) (-1537 (((-108) $) NIL)) (-2645 (($) NIL (|has| |#1| (-341)))) (-2740 (((-108) $) NIL (|has| |#1| (-341)))) (-1434 ((|#1| $) NIL) (($ $ (-849)) NIL (|has| |#1| (-341)))) (-1394 (((-3 $ "failed") $) NIL (|has| |#1| (-341)))) (-3188 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-2034 (((-1079 |#1|) $) NIL) (((-1079 $) $ (-849)) NIL (|has| |#1| (-341)))) (-3040 (((-849) $) NIL (|has| |#1| (-341)))) (-3840 (((-1079 |#1|) $) NIL (|has| |#1| (-341)))) (-1400 (((-1079 |#1|) $) NIL (|has| |#1| (-341))) (((-3 (-1079 |#1|) "failed") $ $) NIL (|has| |#1| (-341)))) (-3284 (($ $ (-1079 |#1|)) NIL (|has| |#1| (-341)))) (-2222 (($ $ $) NIL) (($ (-586 $)) NIL)) (-1239 (((-1066) $) NIL)) (-3093 (($ $) NIL)) (-3794 (($) NIL (|has| |#1| (-341)) CONST)) (-2716 (($ (-849)) NIL (|has| |#1| (-341)))) (-3304 (((-108) $) NIL)) (-4142 (((-1030) $) NIL)) (-1382 (($) NIL (|has| |#1| (-341)))) (-3653 (((-1079 $) (-1079 $) (-1079 $)) NIL)) (-2257 (($ $ $) NIL) (($ (-586 $)) NIL)) (-1517 (((-586 (-2 (|:| -1916 (-520)) (|:| -2647 (-520))))) NIL (|has| |#1| (-341)))) (-1916 (((-391 $) $) NIL)) (-2206 (((-769 (-849))) NIL) (((-849)) NIL)) (-1283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2230 (((-3 $ "failed") $ $) NIL)) (-2608 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-3704 (((-706) $) NIL)) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) NIL)) (-2062 (((-706) $) NIL (|has| |#1| (-341))) (((-3 (-706) "failed") $ $) NIL (-3700 (|has| |#1| (-133)) (|has| |#1| (-341))))) (-1556 (((-126)) NIL)) (-2155 (($ $) NIL (|has| |#1| (-341))) (($ $ (-706)) NIL (|has| |#1| (-341)))) (-2528 (((-769 (-849)) $) NIL) (((-849) $) NIL)) (-3484 (((-1079 |#1|)) NIL)) (-3864 (($) NIL (|has| |#1| (-341)))) (-3642 (($) NIL (|has| |#1| (-341)))) (-3790 (((-1164 |#1|) $) NIL) (((-626 |#1|) (-1164 $)) NIL)) (-3784 (((-3 (-1164 $) "failed") (-626 $)) NIL (|has| |#1| (-341)))) (-2188 (((-791) $) NIL) (($ (-520)) NIL) (($ $) NIL) (($ (-380 (-520))) NIL) (($ |#1|) NIL)) (-3796 (($ $) NIL (|has| |#1| (-341))) (((-3 $ "failed") $) NIL (-3700 (|has| |#1| (-133)) (|has| |#1| (-341))))) (-3251 (((-706)) NIL)) (-1831 (((-1164 $)) NIL) (((-1164 $) (-849)) NIL)) (-2559 (((-108) $ $) NIL)) (-3718 (((-108) $) NIL)) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL)) (-3560 (($) NIL T CONST)) (-3570 (($) NIL T CONST)) (-3751 (($ $) NIL (|has| |#1| (-341))) (($ $ (-706)) NIL (|has| |#1| (-341)))) (-2211 (($ $) NIL (|has| |#1| (-341))) (($ $ (-706)) NIL (|has| |#1| (-341)))) (-1530 (((-108) $ $) NIL)) (-1619 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1611 (($ $) NIL) (($ $ $) NIL)) (-1601 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) NIL) (($ $ (-380 (-520))) NIL) (($ (-380 (-520)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-332 |#1| |#2|) (-302 |#1|) (-322) (-849)) (T -332))
-NIL
-(-302 |#1|)
-((-4058 (((-108) (-586 (-880 |#1|))) 32)) (-1859 (((-586 (-880 |#1|)) (-586 (-880 |#1|))) 43)) (-1268 (((-3 (-586 (-880 |#1|)) "failed") (-586 (-880 |#1|))) 39)))
-(((-333 |#1| |#2|) (-10 -7 (-15 -4058 ((-108) (-586 (-880 |#1|)))) (-15 -1268 ((-3 (-586 (-880 |#1|)) "failed") (-586 (-880 |#1|)))) (-15 -1859 ((-586 (-880 |#1|)) (-586 (-880 |#1|))))) (-424) (-586 (-1083))) (T -333))
-((-1859 (*1 *2 *2) (-12 (-5 *2 (-586 (-880 *3))) (-4 *3 (-424)) (-5 *1 (-333 *3 *4)) (-14 *4 (-586 (-1083))))) (-1268 (*1 *2 *2) (|partial| -12 (-5 *2 (-586 (-880 *3))) (-4 *3 (-424)) (-5 *1 (-333 *3 *4)) (-14 *4 (-586 (-1083))))) (-4058 (*1 *2 *3) (-12 (-5 *3 (-586 (-880 *4))) (-4 *4 (-424)) (-5 *2 (-108)) (-5 *1 (-333 *4 *5)) (-14 *5 (-586 (-1083))))))
-(-10 -7 (-15 -4058 ((-108) (-586 (-880 |#1|)))) (-15 -1268 ((-3 (-586 (-880 |#1|)) "failed") (-586 (-880 |#1|)))) (-15 -1859 ((-586 (-880 |#1|)) (-586 (-880 |#1|)))))
-((-1414 (((-108) $ $) NIL)) (-1628 (((-706) $) NIL)) (-3961 (($) NIL T CONST)) (-1296 (((-3 |#1| "failed") $) NIL)) (-1482 ((|#1| $) NIL)) (-1540 (((-3 $ "failed") $) NIL)) (-1537 (((-108) $) 14)) (-3691 ((|#1| $ (-520)) NIL)) (-2706 (((-520) $ (-520)) NIL)) (-3151 (($ (-1 |#1| |#1|) $) 32)) (-2457 (($ (-1 (-520) (-520)) $) 24)) (-1239 (((-1066) $) NIL)) (-3093 (($ $) 26)) (-4142 (((-1030) $) NIL)) (-3493 (((-586 (-2 (|:| |gen| |#1|) (|:| -3260 (-520)))) $) 28)) (-2945 (($ $ $) NIL)) (-3607 (($ $ $) NIL)) (-2188 (((-791) $) 38) (($ |#1|) NIL)) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL)) (-3570 (($) 9 T CONST)) (-1530 (((-108) $ $) NIL)) (-1619 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL) (($ |#1| (-520)) 17)) (* (($ $ $) 43) (($ |#1| $) 21) (($ $ |#1|) 19)))
-(((-334 |#1|) (-13 (-445) (-960 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-520))) (-15 -1628 ((-706) $)) (-15 -2706 ((-520) $ (-520))) (-15 -3691 (|#1| $ (-520))) (-15 -2457 ($ (-1 (-520) (-520)) $)) (-15 -3151 ($ (-1 |#1| |#1|) $)) (-15 -3493 ((-586 (-2 (|:| |gen| |#1|) (|:| -3260 (-520)))) $)))) (-1012)) (T -334))
-((* (*1 *1 *2 *1) (-12 (-5 *1 (-334 *2)) (-4 *2 (-1012)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-334 *2)) (-4 *2 (-1012)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-520)) (-5 *1 (-334 *2)) (-4 *2 (-1012)))) (-1628 (*1 *2 *1) (-12 (-5 *2 (-706)) (-5 *1 (-334 *3)) (-4 *3 (-1012)))) (-2706 (*1 *2 *1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-334 *3)) (-4 *3 (-1012)))) (-3691 (*1 *2 *1 *3) (-12 (-5 *3 (-520)) (-5 *1 (-334 *2)) (-4 *2 (-1012)))) (-2457 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-520) (-520))) (-5 *1 (-334 *3)) (-4 *3 (-1012)))) (-3151 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1012)) (-5 *1 (-334 *3)))) (-3493 (*1 *2 *1) (-12 (-5 *2 (-586 (-2 (|:| |gen| *3) (|:| -3260 (-520))))) (-5 *1 (-334 *3)) (-4 *3 (-1012)))))
-(-13 (-445) (-960 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-520))) (-15 -1628 ((-706) $)) (-15 -2706 ((-520) $ (-520))) (-15 -3691 (|#1| $ (-520))) (-15 -2457 ($ (-1 (-520) (-520)) $)) (-15 -3151 ($ (-1 |#1| |#1|) $)) (-15 -3493 ((-586 (-2 (|:| |gen| |#1|) (|:| -3260 (-520)))) $))))
-((-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) 13)) (-2583 (($ $) 14)) (-1507 (((-391 $) $) 30)) (-2036 (((-108) $) 26)) (-3093 (($ $) 19)) (-2257 (($ $ $) 23) (($ (-586 $)) NIL)) (-1916 (((-391 $) $) 31)) (-2230 (((-3 $ "failed") $ $) 22)) (-3704 (((-706) $) 25)) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) 35)) (-2559 (((-108) $ $) 16)) (-1619 (($ $ $) 33)))
-(((-335 |#1|) (-10 -8 (-15 -1619 (|#1| |#1| |#1|)) (-15 -3093 (|#1| |#1|)) (-15 -2036 ((-108) |#1|)) (-15 -1507 ((-391 |#1|) |#1|)) (-15 -1916 ((-391 |#1|) |#1|)) (-15 -2806 ((-2 (|:| -2060 |#1|) (|:| -3753 |#1|)) |#1| |#1|)) (-15 -3704 ((-706) |#1|)) (-15 -2257 (|#1| (-586 |#1|))) (-15 -2257 (|#1| |#1| |#1|)) (-15 -2559 ((-108) |#1| |#1|)) (-15 -2583 (|#1| |#1|)) (-15 -1240 ((-2 (|:| -4036 |#1|) (|:| -4216 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2230 ((-3 |#1| "failed") |#1| |#1|))) (-336)) (T -335))
-NIL
-(-10 -8 (-15 -1619 (|#1| |#1| |#1|)) (-15 -3093 (|#1| |#1|)) (-15 -2036 ((-108) |#1|)) (-15 -1507 ((-391 |#1|) |#1|)) (-15 -1916 ((-391 |#1|) |#1|)) (-15 -2806 ((-2 (|:| -2060 |#1|) (|:| -3753 |#1|)) |#1| |#1|)) (-15 -3704 ((-706) |#1|)) (-15 -2257 (|#1| (-586 |#1|))) (-15 -2257 (|#1| |#1| |#1|)) (-15 -2559 ((-108) |#1| |#1|)) (-15 -2583 (|#1| |#1|)) (-15 -1240 ((-2 (|:| -4036 |#1|) (|:| -4216 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2230 ((-3 |#1| "failed") |#1| |#1|)))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) 41)) (-2583 (($ $) 40)) (-1671 (((-108) $) 38)) (-1917 (((-3 $ "failed") $ $) 19)) (-3024 (($ $) 73)) (-1507 (((-391 $) $) 72)) (-1327 (((-108) $ $) 59)) (-3961 (($) 17 T CONST)) (-2276 (($ $ $) 55)) (-1540 (((-3 $ "failed") $) 34)) (-2253 (($ $ $) 56)) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) 51)) (-2036 (((-108) $) 71)) (-1537 (((-108) $) 31)) (-3188 (((-3 (-586 $) "failed") (-586 $) $) 52)) (-2222 (($ $ $) 46) (($ (-586 $)) 45)) (-1239 (((-1066) $) 9)) (-3093 (($ $) 70)) (-4142 (((-1030) $) 10)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) 44)) (-2257 (($ $ $) 48) (($ (-586 $)) 47)) (-1916 (((-391 $) $) 74)) (-1283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2230 (((-3 $ "failed") $ $) 42)) (-2608 (((-3 (-586 $) "failed") (-586 $) $) 50)) (-3704 (((-706) $) 58)) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) 57)) (-2188 (((-791) $) 11) (($ (-520)) 28) (($ $) 43) (($ (-380 (-520))) 65)) (-3251 (((-706)) 29)) (-2559 (((-108) $ $) 39)) (-3504 (($ $ (-849)) 26) (($ $ (-706)) 33) (($ $ (-520)) 69)) (-3560 (($) 18 T CONST)) (-3570 (($) 30 T CONST)) (-1530 (((-108) $ $) 6)) (-1619 (($ $ $) 64)) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-706)) 32) (($ $ (-520)) 68)) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ $ $) 24) (($ $ (-380 (-520))) 67) (($ (-380 (-520)) $) 66)))
-(((-336) (-1195)) (T -336))
-((-1619 (*1 *1 *1 *1) (-4 *1 (-336))))
-(-13 (-281) (-1122) (-219) (-10 -8 (-15 -1619 ($ $ $)) (-6 -4227) (-6 -4221)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-380 (-520))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-124) . T) ((-560 (-791)) . T) ((-157) . T) ((-219) . T) ((-264) . T) ((-281) . T) ((-424) . T) ((-512) . T) ((-588 #0#) . T) ((-588 $) . T) ((-653 #0#) . T) ((-653 $) . T) ((-662) . T) ((-848) . T) ((-975 #0#) . T) ((-975 $) . T) ((-969) . T) ((-976) . T) ((-1024) . T) ((-1012) . T) ((-1122) . T))
-((-1414 (((-108) $ $) 7)) (-1801 ((|#2| $ |#2|) 13)) (-2405 (($ $ (-1066)) 18)) (-1582 ((|#2| $) 14)) (-1543 (($ |#1|) 20) (($ |#1| (-1066)) 19)) (-2883 ((|#1| $) 16)) (-1239 (((-1066) $) 9)) (-3968 (((-1066) $) 15)) (-4142 (((-1030) $) 10)) (-2188 (((-791) $) 11)) (-1934 (($ $) 17)) (-1530 (((-108) $ $) 6)))
-(((-337 |#1| |#2|) (-1195) (-1012) (-1012)) (T -337))
-((-1543 (*1 *1 *2) (-12 (-4 *1 (-337 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1012)))) (-1543 (*1 *1 *2 *3) (-12 (-5 *3 (-1066)) (-4 *1 (-337 *2 *4)) (-4 *2 (-1012)) (-4 *4 (-1012)))) (-2405 (*1 *1 *1 *2) (-12 (-5 *2 (-1066)) (-4 *1 (-337 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)))) (-1934 (*1 *1 *1) (-12 (-4 *1 (-337 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1012)))) (-2883 (*1 *2 *1) (-12 (-4 *1 (-337 *2 *3)) (-4 *3 (-1012)) (-4 *2 (-1012)))) (-3968 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-5 *2 (-1066)))) (-1582 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1012)))) (-1801 (*1 *2 *1 *2) (-12 (-4 *1 (-337 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1012)))))
-(-13 (-1012) (-10 -8 (-15 -1543 ($ |t#1|)) (-15 -1543 ($ |t#1| (-1066))) (-15 -2405 ($ $ (-1066))) (-15 -1934 ($ $)) (-15 -2883 (|t#1| $)) (-15 -3968 ((-1066) $)) (-15 -1582 (|t#2| $)) (-15 -1801 (|t#2| $ |t#2|))))
-(((-97) . T) ((-560 (-791)) . T) ((-1012) . T))
-((-1414 (((-108) $ $) NIL)) (-1801 ((|#1| $ |#1|) 29)) (-2405 (($ $ (-1066)) 22)) (-1461 (((-3 |#1| "failed") $) 28)) (-1582 ((|#1| $) 26)) (-1543 (($ (-361)) 21) (($ (-361) (-1066)) 20)) (-2883 (((-361) $) 24)) (-1239 (((-1066) $) NIL)) (-3968 (((-1066) $) 25)) (-4142 (((-1030) $) NIL)) (-2188 (((-791) $) 19)) (-1934 (($ $) 23)) (-1530 (((-108) $ $) 18)))
-(((-338 |#1|) (-13 (-337 (-361) |#1|) (-10 -8 (-15 -1461 ((-3 |#1| "failed") $)))) (-1012)) (T -338))
-((-1461 (*1 *2 *1) (|partial| -12 (-5 *1 (-338 *2)) (-4 *2 (-1012)))))
-(-13 (-337 (-361) |#1|) (-10 -8 (-15 -1461 ((-3 |#1| "failed") $))))
-((-2284 (((-1164 (-626 |#2|)) (-1164 $)) 61)) (-3884 (((-626 |#2|) (-1164 $)) 119)) (-3193 ((|#2| $) 32)) (-3984 (((-626 |#2|) $ (-1164 $)) 123)) (-2473 (((-3 $ "failed") $) 75)) (-2996 ((|#2| $) 35)) (-1653 (((-1079 |#2|) $) 83)) (-1882 ((|#2| (-1164 $)) 106)) (-2913 (((-1079 |#2|) $) 28)) (-2539 (((-108)) 100)) (-3705 (($ (-1164 |#2|) (-1164 $)) 113)) (-1540 (((-3 $ "failed") $) 79)) (-2435 (((-108)) 95)) (-4208 (((-108)) 90)) (-3213 (((-108)) 53)) (-4024 (((-626 |#2|) (-1164 $)) 117)) (-4007 ((|#2| $) 31)) (-3775 (((-626 |#2|) $ (-1164 $)) 122)) (-1368 (((-3 $ "failed") $) 73)) (-2318 ((|#2| $) 34)) (-4108 (((-1079 |#2|) $) 82)) (-1526 ((|#2| (-1164 $)) 104)) (-2429 (((-1079 |#2|) $) 26)) (-3955 (((-108)) 99)) (-2260 (((-108)) 92)) (-4130 (((-108)) 51)) (-2684 (((-108)) 87)) (-2009 (((-108)) 101)) (-3790 (((-1164 |#2|) $ (-1164 $)) NIL) (((-626 |#2|) (-1164 $) (-1164 $)) 111)) (-3393 (((-108)) 97)) (-4094 (((-586 (-1164 |#2|))) 86)) (-3183 (((-108)) 98)) (-3977 (((-108)) 96)) (-2963 (((-108)) 46)) (-1314 (((-108)) 102)))
-(((-339 |#1| |#2|) (-10 -8 (-15 -1653 ((-1079 |#2|) |#1|)) (-15 -4108 ((-1079 |#2|) |#1|)) (-15 -4094 ((-586 (-1164 |#2|)))) (-15 -2473 ((-3 |#1| "failed") |#1|)) (-15 -1368 ((-3 |#1| "failed") |#1|)) (-15 -1540 ((-3 |#1| "failed") |#1|)) (-15 -4208 ((-108))) (-15 -2260 ((-108))) (-15 -2435 ((-108))) (-15 -4130 ((-108))) (-15 -3213 ((-108))) (-15 -2684 ((-108))) (-15 -1314 ((-108))) (-15 -2009 ((-108))) (-15 -2539 ((-108))) (-15 -3955 ((-108))) (-15 -2963 ((-108))) (-15 -3183 ((-108))) (-15 -3977 ((-108))) (-15 -3393 ((-108))) (-15 -2913 ((-1079 |#2|) |#1|)) (-15 -2429 ((-1079 |#2|) |#1|)) (-15 -3884 ((-626 |#2|) (-1164 |#1|))) (-15 -4024 ((-626 |#2|) (-1164 |#1|))) (-15 -1882 (|#2| (-1164 |#1|))) (-15 -1526 (|#2| (-1164 |#1|))) (-15 -3705 (|#1| (-1164 |#2|) (-1164 |#1|))) (-15 -3790 ((-626 |#2|) (-1164 |#1|) (-1164 |#1|))) (-15 -3790 ((-1164 |#2|) |#1| (-1164 |#1|))) (-15 -2996 (|#2| |#1|)) (-15 -2318 (|#2| |#1|)) (-15 -3193 (|#2| |#1|)) (-15 -4007 (|#2| |#1|)) (-15 -3984 ((-626 |#2|) |#1| (-1164 |#1|))) (-15 -3775 ((-626 |#2|) |#1| (-1164 |#1|))) (-15 -2284 ((-1164 (-626 |#2|)) (-1164 |#1|)))) (-340 |#2|) (-157)) (T -339))
-((-3393 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-339 *3 *4)) (-4 *3 (-340 *4)))) (-3977 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-339 *3 *4)) (-4 *3 (-340 *4)))) (-3183 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-339 *3 *4)) (-4 *3 (-340 *4)))) (-2963 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-339 *3 *4)) (-4 *3 (-340 *4)))) (-3955 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-339 *3 *4)) (-4 *3 (-340 *4)))) (-2539 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-339 *3 *4)) (-4 *3 (-340 *4)))) (-2009 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-339 *3 *4)) (-4 *3 (-340 *4)))) (-1314 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-339 *3 *4)) (-4 *3 (-340 *4)))) (-2684 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-339 *3 *4)) (-4 *3 (-340 *4)))) (-3213 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-339 *3 *4)) (-4 *3 (-340 *4)))) (-4130 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-339 *3 *4)) (-4 *3 (-340 *4)))) (-2435 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-339 *3 *4)) (-4 *3 (-340 *4)))) (-2260 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-339 *3 *4)) (-4 *3 (-340 *4)))) (-4208 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-339 *3 *4)) (-4 *3 (-340 *4)))) (-4094 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-586 (-1164 *4))) (-5 *1 (-339 *3 *4)) (-4 *3 (-340 *4)))))
-(-10 -8 (-15 -1653 ((-1079 |#2|) |#1|)) (-15 -4108 ((-1079 |#2|) |#1|)) (-15 -4094 ((-586 (-1164 |#2|)))) (-15 -2473 ((-3 |#1| "failed") |#1|)) (-15 -1368 ((-3 |#1| "failed") |#1|)) (-15 -1540 ((-3 |#1| "failed") |#1|)) (-15 -4208 ((-108))) (-15 -2260 ((-108))) (-15 -2435 ((-108))) (-15 -4130 ((-108))) (-15 -3213 ((-108))) (-15 -2684 ((-108))) (-15 -1314 ((-108))) (-15 -2009 ((-108))) (-15 -2539 ((-108))) (-15 -3955 ((-108))) (-15 -2963 ((-108))) (-15 -3183 ((-108))) (-15 -3977 ((-108))) (-15 -3393 ((-108))) (-15 -2913 ((-1079 |#2|) |#1|)) (-15 -2429 ((-1079 |#2|) |#1|)) (-15 -3884 ((-626 |#2|) (-1164 |#1|))) (-15 -4024 ((-626 |#2|) (-1164 |#1|))) (-15 -1882 (|#2| (-1164 |#1|))) (-15 -1526 (|#2| (-1164 |#1|))) (-15 -3705 (|#1| (-1164 |#2|) (-1164 |#1|))) (-15 -3790 ((-626 |#2|) (-1164 |#1|) (-1164 |#1|))) (-15 -3790 ((-1164 |#2|) |#1| (-1164 |#1|))) (-15 -2996 (|#2| |#1|)) (-15 -2318 (|#2| |#1|)) (-15 -3193 (|#2| |#1|)) (-15 -4007 (|#2| |#1|)) (-15 -3984 ((-626 |#2|) |#1| (-1164 |#1|))) (-15 -3775 ((-626 |#2|) |#1| (-1164 |#1|))) (-15 -2284 ((-1164 (-626 |#2|)) (-1164 |#1|))))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-4036 (((-3 $ "failed")) 37 (|has| |#1| (-512)))) (-1917 (((-3 $ "failed") $ $) 19)) (-2284 (((-1164 (-626 |#1|)) (-1164 $)) 78)) (-3976 (((-1164 $)) 81)) (-3961 (($) 17 T CONST)) (-3824 (((-3 (-2 (|:| |particular| $) (|:| -1831 (-586 $))) "failed")) 40 (|has| |#1| (-512)))) (-1606 (((-3 $ "failed")) 38 (|has| |#1| (-512)))) (-3884 (((-626 |#1|) (-1164 $)) 65)) (-3193 ((|#1| $) 74)) (-3984 (((-626 |#1|) $ (-1164 $)) 76)) (-2473 (((-3 $ "failed") $) 45 (|has| |#1| (-512)))) (-3918 (($ $ (-849)) 28)) (-2996 ((|#1| $) 72)) (-1653 (((-1079 |#1|) $) 42 (|has| |#1| (-512)))) (-1882 ((|#1| (-1164 $)) 67)) (-2913 (((-1079 |#1|) $) 63)) (-2539 (((-108)) 57)) (-3705 (($ (-1164 |#1|) (-1164 $)) 69)) (-1540 (((-3 $ "failed") $) 47 (|has| |#1| (-512)))) (-3160 (((-849)) 80)) (-1802 (((-108)) 54)) (-3273 (($ $ (-849)) 33)) (-2435 (((-108)) 50)) (-4208 (((-108)) 48)) (-3213 (((-108)) 52)) (-2790 (((-3 (-2 (|:| |particular| $) (|:| -1831 (-586 $))) "failed")) 41 (|has| |#1| (-512)))) (-3164 (((-3 $ "failed")) 39 (|has| |#1| (-512)))) (-4024 (((-626 |#1|) (-1164 $)) 66)) (-4007 ((|#1| $) 75)) (-3775 (((-626 |#1|) $ (-1164 $)) 77)) (-1368 (((-3 $ "failed") $) 46 (|has| |#1| (-512)))) (-2544 (($ $ (-849)) 29)) (-2318 ((|#1| $) 73)) (-4108 (((-1079 |#1|) $) 43 (|has| |#1| (-512)))) (-1526 ((|#1| (-1164 $)) 68)) (-2429 (((-1079 |#1|) $) 64)) (-3955 (((-108)) 58)) (-1239 (((-1066) $) 9)) (-2260 (((-108)) 49)) (-4130 (((-108)) 51)) (-2684 (((-108)) 53)) (-4142 (((-1030) $) 10)) (-2009 (((-108)) 56)) (-3790 (((-1164 |#1|) $ (-1164 $)) 71) (((-626 |#1|) (-1164 $) (-1164 $)) 70)) (-1894 (((-586 (-880 |#1|)) (-1164 $)) 79)) (-3607 (($ $ $) 25)) (-3393 (((-108)) 62)) (-2188 (((-791) $) 11)) (-4094 (((-586 (-1164 |#1|))) 44 (|has| |#1| (-512)))) (-2214 (($ $ $ $) 26)) (-3183 (((-108)) 60)) (-3710 (($ $ $) 24)) (-3977 (((-108)) 61)) (-2963 (((-108)) 59)) (-1314 (((-108)) 55)) (-3560 (($) 18 T CONST)) (-1530 (((-108) $ $) 6)) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (** (($ $ (-849)) 30)) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
-(((-340 |#1|) (-1195) (-157)) (T -340))
-((-3976 (*1 *2) (-12 (-4 *3 (-157)) (-5 *2 (-1164 *1)) (-4 *1 (-340 *3)))) (-3160 (*1 *2) (-12 (-4 *1 (-340 *3)) (-4 *3 (-157)) (-5 *2 (-849)))) (-1894 (*1 *2 *3) (-12 (-5 *3 (-1164 *1)) (-4 *1 (-340 *4)) (-4 *4 (-157)) (-5 *2 (-586 (-880 *4))))) (-2284 (*1 *2 *3) (-12 (-5 *3 (-1164 *1)) (-4 *1 (-340 *4)) (-4 *4 (-157)) (-5 *2 (-1164 (-626 *4))))) (-3775 (*1 *2 *1 *3) (-12 (-5 *3 (-1164 *1)) (-4 *1 (-340 *4)) (-4 *4 (-157)) (-5 *2 (-626 *4)))) (-3984 (*1 *2 *1 *3) (-12 (-5 *3 (-1164 *1)) (-4 *1 (-340 *4)) (-4 *4 (-157)) (-5 *2 (-626 *4)))) (-4007 (*1 *2 *1) (-12 (-4 *1 (-340 *2)) (-4 *2 (-157)))) (-3193 (*1 *2 *1) (-12 (-4 *1 (-340 *2)) (-4 *2 (-157)))) (-2318 (*1 *2 *1) (-12 (-4 *1 (-340 *2)) (-4 *2 (-157)))) (-2996 (*1 *2 *1) (-12 (-4 *1 (-340 *2)) (-4 *2 (-157)))) (-3790 (*1 *2 *1 *3) (-12 (-5 *3 (-1164 *1)) (-4 *1 (-340 *4)) (-4 *4 (-157)) (-5 *2 (-1164 *4)))) (-3790 (*1 *2 *3 *3) (-12 (-5 *3 (-1164 *1)) (-4 *1 (-340 *4)) (-4 *4 (-157)) (-5 *2 (-626 *4)))) (-3705 (*1 *1 *2 *3) (-12 (-5 *2 (-1164 *4)) (-5 *3 (-1164 *1)) (-4 *4 (-157)) (-4 *1 (-340 *4)))) (-1526 (*1 *2 *3) (-12 (-5 *3 (-1164 *1)) (-4 *1 (-340 *2)) (-4 *2 (-157)))) (-1882 (*1 *2 *3) (-12 (-5 *3 (-1164 *1)) (-4 *1 (-340 *2)) (-4 *2 (-157)))) (-4024 (*1 *2 *3) (-12 (-5 *3 (-1164 *1)) (-4 *1 (-340 *4)) (-4 *4 (-157)) (-5 *2 (-626 *4)))) (-3884 (*1 *2 *3) (-12 (-5 *3 (-1164 *1)) (-4 *1 (-340 *4)) (-4 *4 (-157)) (-5 *2 (-626 *4)))) (-2429 (*1 *2 *1) (-12 (-4 *1 (-340 *3)) (-4 *3 (-157)) (-5 *2 (-1079 *3)))) (-2913 (*1 *2 *1) (-12 (-4 *1 (-340 *3)) (-4 *3 (-157)) (-5 *2 (-1079 *3)))) (-3393 (*1 *2) (-12 (-4 *1 (-340 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-3977 (*1 *2) (-12 (-4 *1 (-340 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-3183 (*1 *2) (-12 (-4 *1 (-340 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-2963 (*1 *2) (-12 (-4 *1 (-340 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-3955 (*1 *2) (-12 (-4 *1 (-340 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-2539 (*1 *2) (-12 (-4 *1 (-340 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-2009 (*1 *2) (-12 (-4 *1 (-340 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-1314 (*1 *2) (-12 (-4 *1 (-340 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-1802 (*1 *2) (-12 (-4 *1 (-340 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-2684 (*1 *2) (-12 (-4 *1 (-340 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-3213 (*1 *2) (-12 (-4 *1 (-340 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-4130 (*1 *2) (-12 (-4 *1 (-340 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-2435 (*1 *2) (-12 (-4 *1 (-340 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-2260 (*1 *2) (-12 (-4 *1 (-340 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-4208 (*1 *2) (-12 (-4 *1 (-340 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-1540 (*1 *1 *1) (|partial| -12 (-4 *1 (-340 *2)) (-4 *2 (-157)) (-4 *2 (-512)))) (-1368 (*1 *1 *1) (|partial| -12 (-4 *1 (-340 *2)) (-4 *2 (-157)) (-4 *2 (-512)))) (-2473 (*1 *1 *1) (|partial| -12 (-4 *1 (-340 *2)) (-4 *2 (-157)) (-4 *2 (-512)))) (-4094 (*1 *2) (-12 (-4 *1 (-340 *3)) (-4 *3 (-157)) (-4 *3 (-512)) (-5 *2 (-586 (-1164 *3))))) (-4108 (*1 *2 *1) (-12 (-4 *1 (-340 *3)) (-4 *3 (-157)) (-4 *3 (-512)) (-5 *2 (-1079 *3)))) (-1653 (*1 *2 *1) (-12 (-4 *1 (-340 *3)) (-4 *3 (-157)) (-4 *3 (-512)) (-5 *2 (-1079 *3)))) (-2790 (*1 *2) (|partial| -12 (-4 *3 (-512)) (-4 *3 (-157)) (-5 *2 (-2 (|:| |particular| *1) (|:| -1831 (-586 *1)))) (-4 *1 (-340 *3)))) (-3824 (*1 *2) (|partial| -12 (-4 *3 (-512)) (-4 *3 (-157)) (-5 *2 (-2 (|:| |particular| *1) (|:| -1831 (-586 *1)))) (-4 *1 (-340 *3)))) (-3164 (*1 *1) (|partial| -12 (-4 *1 (-340 *2)) (-4 *2 (-512)) (-4 *2 (-157)))) (-1606 (*1 *1) (|partial| -12 (-4 *1 (-340 *2)) (-4 *2 (-512)) (-4 *2 (-157)))) (-4036 (*1 *1) (|partial| -12 (-4 *1 (-340 *2)) (-4 *2 (-512)) (-4 *2 (-157)))))
-(-13 (-680 |t#1|) (-10 -8 (-15 -3976 ((-1164 $))) (-15 -3160 ((-849))) (-15 -1894 ((-586 (-880 |t#1|)) (-1164 $))) (-15 -2284 ((-1164 (-626 |t#1|)) (-1164 $))) (-15 -3775 ((-626 |t#1|) $ (-1164 $))) (-15 -3984 ((-626 |t#1|) $ (-1164 $))) (-15 -4007 (|t#1| $)) (-15 -3193 (|t#1| $)) (-15 -2318 (|t#1| $)) (-15 -2996 (|t#1| $)) (-15 -3790 ((-1164 |t#1|) $ (-1164 $))) (-15 -3790 ((-626 |t#1|) (-1164 $) (-1164 $))) (-15 -3705 ($ (-1164 |t#1|) (-1164 $))) (-15 -1526 (|t#1| (-1164 $))) (-15 -1882 (|t#1| (-1164 $))) (-15 -4024 ((-626 |t#1|) (-1164 $))) (-15 -3884 ((-626 |t#1|) (-1164 $))) (-15 -2429 ((-1079 |t#1|) $)) (-15 -2913 ((-1079 |t#1|) $)) (-15 -3393 ((-108))) (-15 -3977 ((-108))) (-15 -3183 ((-108))) (-15 -2963 ((-108))) (-15 -3955 ((-108))) (-15 -2539 ((-108))) (-15 -2009 ((-108))) (-15 -1314 ((-108))) (-15 -1802 ((-108))) (-15 -2684 ((-108))) (-15 -3213 ((-108))) (-15 -4130 ((-108))) (-15 -2435 ((-108))) (-15 -2260 ((-108))) (-15 -4208 ((-108))) (IF (|has| |t#1| (-512)) (PROGN (-15 -1540 ((-3 $ "failed") $)) (-15 -1368 ((-3 $ "failed") $)) (-15 -2473 ((-3 $ "failed") $)) (-15 -4094 ((-586 (-1164 |t#1|)))) (-15 -4108 ((-1079 |t#1|) $)) (-15 -1653 ((-1079 |t#1|) $)) (-15 -2790 ((-3 (-2 (|:| |particular| $) (|:| -1831 (-586 $))) "failed"))) (-15 -3824 ((-3 (-2 (|:| |particular| $) (|:| -1831 (-586 $))) "failed"))) (-15 -3164 ((-3 $ "failed"))) (-15 -1606 ((-3 $ "failed"))) (-15 -4036 ((-3 $ "failed"))) (-6 -4226)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-560 (-791)) . T) ((-588 |#1|) . T) ((-653 |#1|) . T) ((-656) . T) ((-680 |#1|) . T) ((-697) . T) ((-975 |#1|) . T) ((-1012) . T))
-((-1414 (((-108) $ $) 7)) (-1628 (((-706)) 16)) (-3249 (($) 13)) (-3040 (((-849) $) 14)) (-1239 (((-1066) $) 9)) (-2716 (($ (-849)) 15)) (-4142 (((-1030) $) 10)) (-2188 (((-791) $) 11)) (-1530 (((-108) $ $) 6)))
-(((-341) (-1195)) (T -341))
-((-1628 (*1 *2) (-12 (-4 *1 (-341)) (-5 *2 (-706)))) (-2716 (*1 *1 *2) (-12 (-5 *2 (-849)) (-4 *1 (-341)))) (-3040 (*1 *2 *1) (-12 (-4 *1 (-341)) (-5 *2 (-849)))) (-3249 (*1 *1) (-4 *1 (-341))))
-(-13 (-1012) (-10 -8 (-15 -1628 ((-706))) (-15 -2716 ($ (-849))) (-15 -3040 ((-849) $)) (-15 -3249 ($))))
-(((-97) . T) ((-560 (-791)) . T) ((-1012) . T))
-((-1405 (((-626 |#2|) (-1164 $)) 40)) (-3705 (($ (-1164 |#2|) (-1164 $)) 35)) (-3604 (((-626 |#2|) $ (-1164 $)) 43)) (-2732 ((|#2| (-1164 $)) 13)) (-3790 (((-1164 |#2|) $ (-1164 $)) NIL) (((-626 |#2|) (-1164 $) (-1164 $)) 25)))
-(((-342 |#1| |#2| |#3|) (-10 -8 (-15 -1405 ((-626 |#2|) (-1164 |#1|))) (-15 -2732 (|#2| (-1164 |#1|))) (-15 -3705 (|#1| (-1164 |#2|) (-1164 |#1|))) (-15 -3790 ((-626 |#2|) (-1164 |#1|) (-1164 |#1|))) (-15 -3790 ((-1164 |#2|) |#1| (-1164 |#1|))) (-15 -3604 ((-626 |#2|) |#1| (-1164 |#1|)))) (-343 |#2| |#3|) (-157) (-1140 |#2|)) (T -342))
-NIL
-(-10 -8 (-15 -1405 ((-626 |#2|) (-1164 |#1|))) (-15 -2732 (|#2| (-1164 |#1|))) (-15 -3705 (|#1| (-1164 |#2|) (-1164 |#1|))) (-15 -3790 ((-626 |#2|) (-1164 |#1|) (-1164 |#1|))) (-15 -3790 ((-1164 |#2|) |#1| (-1164 |#1|))) (-15 -3604 ((-626 |#2|) |#1| (-1164 |#1|))))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-1405 (((-626 |#1|) (-1164 $)) 46)) (-1864 ((|#1| $) 52)) (-1917 (((-3 $ "failed") $ $) 19)) (-3961 (($) 17 T CONST)) (-3705 (($ (-1164 |#1|) (-1164 $)) 48)) (-3604 (((-626 |#1|) $ (-1164 $)) 53)) (-1540 (((-3 $ "failed") $) 34)) (-3160 (((-849)) 54)) (-1537 (((-108) $) 31)) (-1434 ((|#1| $) 51)) (-2034 ((|#2| $) 44 (|has| |#1| (-336)))) (-1239 (((-1066) $) 9)) (-4142 (((-1030) $) 10)) (-2732 ((|#1| (-1164 $)) 47)) (-3790 (((-1164 |#1|) $ (-1164 $)) 50) (((-626 |#1|) (-1164 $) (-1164 $)) 49)) (-2188 (((-791) $) 11) (($ (-520)) 28) (($ |#1|) 37)) (-3796 (((-3 $ "failed") $) 43 (|has| |#1| (-133)))) (-2948 ((|#2| $) 45)) (-3251 (((-706)) 29)) (-3504 (($ $ (-849)) 26) (($ $ (-706)) 33)) (-3560 (($) 18 T CONST)) (-3570 (($) 30 T CONST)) (-1530 (((-108) $ $) 6)) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-706)) 32)) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38)))
-(((-343 |#1| |#2|) (-1195) (-157) (-1140 |t#1|)) (T -343))
-((-3160 (*1 *2) (-12 (-4 *1 (-343 *3 *4)) (-4 *3 (-157)) (-4 *4 (-1140 *3)) (-5 *2 (-849)))) (-3604 (*1 *2 *1 *3) (-12 (-5 *3 (-1164 *1)) (-4 *1 (-343 *4 *5)) (-4 *4 (-157)) (-4 *5 (-1140 *4)) (-5 *2 (-626 *4)))) (-1864 (*1 *2 *1) (-12 (-4 *1 (-343 *2 *3)) (-4 *3 (-1140 *2)) (-4 *2 (-157)))) (-1434 (*1 *2 *1) (-12 (-4 *1 (-343 *2 *3)) (-4 *3 (-1140 *2)) (-4 *2 (-157)))) (-3790 (*1 *2 *1 *3) (-12 (-5 *3 (-1164 *1)) (-4 *1 (-343 *4 *5)) (-4 *4 (-157)) (-4 *5 (-1140 *4)) (-5 *2 (-1164 *4)))) (-3790 (*1 *2 *3 *3) (-12 (-5 *3 (-1164 *1)) (-4 *1 (-343 *4 *5)) (-4 *4 (-157)) (-4 *5 (-1140 *4)) (-5 *2 (-626 *4)))) (-3705 (*1 *1 *2 *3) (-12 (-5 *2 (-1164 *4)) (-5 *3 (-1164 *1)) (-4 *4 (-157)) (-4 *1 (-343 *4 *5)) (-4 *5 (-1140 *4)))) (-2732 (*1 *2 *3) (-12 (-5 *3 (-1164 *1)) (-4 *1 (-343 *2 *4)) (-4 *4 (-1140 *2)) (-4 *2 (-157)))) (-1405 (*1 *2 *3) (-12 (-5 *3 (-1164 *1)) (-4 *1 (-343 *4 *5)) (-4 *4 (-157)) (-4 *5 (-1140 *4)) (-5 *2 (-626 *4)))) (-2948 (*1 *2 *1) (-12 (-4 *1 (-343 *3 *2)) (-4 *3 (-157)) (-4 *2 (-1140 *3)))) (-2034 (*1 *2 *1) (-12 (-4 *1 (-343 *3 *2)) (-4 *3 (-157)) (-4 *3 (-336)) (-4 *2 (-1140 *3)))))
-(-13 (-37 |t#1|) (-10 -8 (-15 -3160 ((-849))) (-15 -3604 ((-626 |t#1|) $ (-1164 $))) (-15 -1864 (|t#1| $)) (-15 -1434 (|t#1| $)) (-15 -3790 ((-1164 |t#1|) $ (-1164 $))) (-15 -3790 ((-626 |t#1|) (-1164 $) (-1164 $))) (-15 -3705 ($ (-1164 |t#1|) (-1164 $))) (-15 -2732 (|t#1| (-1164 $))) (-15 -1405 ((-626 |t#1|) (-1164 $))) (-15 -2948 (|t#2| $)) (IF (|has| |t#1| (-336)) (-15 -2034 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |t#1| (-133)) (-6 (-133)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-560 (-791)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-653 |#1|) . T) ((-662) . T) ((-975 |#1|) . T) ((-969) . T) ((-976) . T) ((-1024) . T) ((-1012) . T))
-((-1404 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 23)) (-3856 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 15)) (-1389 ((|#4| (-1 |#3| |#1|) |#2|) 21)))
-(((-344 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1389 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3856 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1404 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1118) (-346 |#1|) (-1118) (-346 |#3|)) (T -344))
-((-1404 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1118)) (-4 *5 (-1118)) (-4 *2 (-346 *5)) (-5 *1 (-344 *6 *4 *5 *2)) (-4 *4 (-346 *6)))) (-3856 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1118)) (-4 *2 (-1118)) (-5 *1 (-344 *5 *4 *2 *6)) (-4 *4 (-346 *5)) (-4 *6 (-346 *2)))) (-1389 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *2 (-346 *6)) (-5 *1 (-344 *5 *4 *6 *2)) (-4 *4 (-346 *5)))))
-(-10 -7 (-15 -1389 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3856 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1404 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
-((-4029 (((-108) (-1 (-108) |#2| |#2|) $) NIL) (((-108) $) 18)) (-3587 (($ (-1 (-108) |#2| |#2|) $) NIL) (($ $) 28)) (-3210 (($ (-1 (-108) |#2| |#2|) $) 27) (($ $) 22)) (-1861 (($ $) 25)) (-3232 (((-520) (-1 (-108) |#2|) $) NIL) (((-520) |#2| $) 11) (((-520) |#2| $ (-520)) NIL)) (-1819 (($ (-1 (-108) |#2| |#2|) $ $) NIL) (($ $ $) 20)))
-(((-345 |#1| |#2|) (-10 -8 (-15 -3587 (|#1| |#1|)) (-15 -3587 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -4029 ((-108) |#1|)) (-15 -3210 (|#1| |#1|)) (-15 -1819 (|#1| |#1| |#1|)) (-15 -3232 ((-520) |#2| |#1| (-520))) (-15 -3232 ((-520) |#2| |#1|)) (-15 -3232 ((-520) (-1 (-108) |#2|) |#1|)) (-15 -4029 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -3210 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -1861 (|#1| |#1|)) (-15 -1819 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|))) (-346 |#2|) (-1118)) (T -345))
-NIL
-(-10 -8 (-15 -3587 (|#1| |#1|)) (-15 -3587 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -4029 ((-108) |#1|)) (-15 -3210 (|#1| |#1|)) (-15 -1819 (|#1| |#1| |#1|)) (-15 -3232 ((-520) |#2| |#1| (-520))) (-15 -3232 ((-520) |#2| |#1|)) (-15 -3232 ((-520) (-1 (-108) |#2|) |#1|)) (-15 -4029 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -3210 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -1861 (|#1| |#1|)) (-15 -1819 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)))
-((-1414 (((-108) $ $) 19 (|has| |#1| (-1012)))) (-1476 (((-1169) $ (-520) (-520)) 40 (|has| $ (-6 -4230)))) (-4029 (((-108) (-1 (-108) |#1| |#1|) $) 98) (((-108) $) 92 (|has| |#1| (-783)))) (-3587 (($ (-1 (-108) |#1| |#1|) $) 89 (|has| $ (-6 -4230))) (($ $) 88 (-12 (|has| |#1| (-783)) (|has| $ (-6 -4230))))) (-3210 (($ (-1 (-108) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-783)))) (-2063 (((-108) $ (-706)) 8)) (-2377 ((|#1| $ (-520) |#1|) 52 (|has| $ (-6 -4230))) ((|#1| $ (-1131 (-520)) |#1|) 58 (|has| $ (-6 -4230)))) (-1627 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4229)))) (-3961 (($) 7 T CONST)) (-2447 (($ $) 90 (|has| $ (-6 -4230)))) (-1861 (($ $) 100)) (-2331 (($ $) 78 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-1421 (($ |#1| $) 77 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4229)))) (-3856 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4229))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4229)))) (-3846 ((|#1| $ (-520) |#1|) 53 (|has| $ (-6 -4230)))) (-3623 ((|#1| $ (-520)) 51)) (-3232 (((-520) (-1 (-108) |#1|) $) 97) (((-520) |#1| $) 96 (|has| |#1| (-1012))) (((-520) |#1| $ (-520)) 95 (|has| |#1| (-1012)))) (-3828 (((-586 |#1|) $) 30 (|has| $ (-6 -4229)))) (-1810 (($ (-706) |#1|) 69)) (-3027 (((-108) $ (-706)) 9)) (-2567 (((-520) $) 43 (|has| (-520) (-783)))) (-2809 (($ $ $) 87 (|has| |#1| (-783)))) (-1819 (($ (-1 (-108) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-783)))) (-3702 (((-586 |#1|) $) 29 (|has| $ (-6 -4229)))) (-2422 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-1752 (((-520) $) 44 (|has| (-520) (-783)))) (-2446 (($ $ $) 86 (|has| |#1| (-783)))) (-3830 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-1390 (((-108) $ (-706)) 10)) (-1239 (((-1066) $) 22 (|has| |#1| (-1012)))) (-1659 (($ |#1| $ (-520)) 60) (($ $ $ (-520)) 59)) (-3622 (((-586 (-520)) $) 46)) (-2603 (((-108) (-520) $) 47)) (-4142 (((-1030) $) 21 (|has| |#1| (-1012)))) (-2293 ((|#1| $) 42 (|has| (-520) (-783)))) (-2985 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-2936 (($ $ |#1|) 41 (|has| $ (-6 -4230)))) (-4155 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 |#1|))) 26 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-268 |#1|)) 25 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-586 |#1|) (-586 |#1|)) 23 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))) (-2533 (((-108) $ $) 14)) (-2094 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-1523 (((-586 |#1|) $) 48)) (-4018 (((-108) $) 11)) (-2238 (($) 12)) (-2543 ((|#1| $ (-520) |#1|) 50) ((|#1| $ (-520)) 49) (($ $ (-1131 (-520))) 63)) (-3690 (($ $ (-520)) 62) (($ $ (-1131 (-520))) 61)) (-4159 (((-706) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4229))) (((-706) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-1913 (($ $ $ (-520)) 91 (|has| $ (-6 -4230)))) (-2403 (($ $) 13)) (-1429 (((-496) $) 79 (|has| |#1| (-561 (-496))))) (-2200 (($ (-586 |#1|)) 70)) (-4156 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-586 $)) 65)) (-2188 (((-791) $) 18 (|has| |#1| (-560 (-791))))) (-1662 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4229)))) (-1573 (((-108) $ $) 84 (|has| |#1| (-783)))) (-1557 (((-108) $ $) 83 (|has| |#1| (-783)))) (-1530 (((-108) $ $) 20 (|has| |#1| (-1012)))) (-1565 (((-108) $ $) 85 (|has| |#1| (-783)))) (-1548 (((-108) $ $) 82 (|has| |#1| (-783)))) (-3474 (((-706) $) 6 (|has| $ (-6 -4229)))))
-(((-346 |#1|) (-1195) (-1118)) (T -346))
-((-1819 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-346 *3)) (-4 *3 (-1118)))) (-1861 (*1 *1 *1) (-12 (-4 *1 (-346 *2)) (-4 *2 (-1118)))) (-3210 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-346 *3)) (-4 *3 (-1118)))) (-4029 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *1 (-346 *4)) (-4 *4 (-1118)) (-5 *2 (-108)))) (-3232 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-108) *4)) (-4 *1 (-346 *4)) (-4 *4 (-1118)) (-5 *2 (-520)))) (-3232 (*1 *2 *3 *1) (-12 (-4 *1 (-346 *3)) (-4 *3 (-1118)) (-4 *3 (-1012)) (-5 *2 (-520)))) (-3232 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-520)) (-4 *1 (-346 *3)) (-4 *3 (-1118)) (-4 *3 (-1012)))) (-1819 (*1 *1 *1 *1) (-12 (-4 *1 (-346 *2)) (-4 *2 (-1118)) (-4 *2 (-783)))) (-3210 (*1 *1 *1) (-12 (-4 *1 (-346 *2)) (-4 *2 (-1118)) (-4 *2 (-783)))) (-4029 (*1 *2 *1) (-12 (-4 *1 (-346 *3)) (-4 *3 (-1118)) (-4 *3 (-783)) (-5 *2 (-108)))) (-1913 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-520)) (|has| *1 (-6 -4230)) (-4 *1 (-346 *3)) (-4 *3 (-1118)))) (-2447 (*1 *1 *1) (-12 (|has| *1 (-6 -4230)) (-4 *1 (-346 *2)) (-4 *2 (-1118)))) (-3587 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3 *3)) (|has| *1 (-6 -4230)) (-4 *1 (-346 *3)) (-4 *3 (-1118)))) (-3587 (*1 *1 *1) (-12 (|has| *1 (-6 -4230)) (-4 *1 (-346 *2)) (-4 *2 (-1118)) (-4 *2 (-783)))))
-(-13 (-591 |t#1|) (-10 -8 (-6 -4229) (-15 -1819 ($ (-1 (-108) |t#1| |t#1|) $ $)) (-15 -1861 ($ $)) (-15 -3210 ($ (-1 (-108) |t#1| |t#1|) $)) (-15 -4029 ((-108) (-1 (-108) |t#1| |t#1|) $)) (-15 -3232 ((-520) (-1 (-108) |t#1|) $)) (IF (|has| |t#1| (-1012)) (PROGN (-15 -3232 ((-520) |t#1| $)) (-15 -3232 ((-520) |t#1| $ (-520)))) |%noBranch|) (IF (|has| |t#1| (-783)) (PROGN (-6 (-783)) (-15 -1819 ($ $ $)) (-15 -3210 ($ $)) (-15 -4029 ((-108) $))) |%noBranch|) (IF (|has| $ (-6 -4230)) (PROGN (-15 -1913 ($ $ $ (-520))) (-15 -2447 ($ $)) (-15 -3587 ($ (-1 (-108) |t#1| |t#1|) $)) (IF (|has| |t#1| (-783)) (-15 -3587 ($ $)) |%noBranch|)) |%noBranch|)))
-(((-33) . T) ((-97) -3700 (|has| |#1| (-1012)) (|has| |#1| (-783))) ((-560 (-791)) -3700 (|has| |#1| (-1012)) (|has| |#1| (-783)) (|has| |#1| (-560 (-791)))) ((-139 |#1|) . T) ((-561 (-496)) |has| |#1| (-561 (-496))) ((-260 #0=(-520) |#1|) . T) ((-262 #0# |#1|) . T) ((-283 |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))) ((-459 |#1|) . T) ((-553 #0# |#1|) . T) ((-481 |#1| |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))) ((-591 |#1|) . T) ((-783) |has| |#1| (-783)) ((-1012) -3700 (|has| |#1| (-1012)) (|has| |#1| (-783))) ((-1118) . T))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-4097 (((-586 |#1|) $) 32)) (-3131 (($ $ (-706)) 33)) (-1917 (((-3 $ "failed") $ $) 19)) (-3961 (($) 17 T CONST)) (-3140 (((-1186 |#1| |#2|) (-1186 |#1| |#2|) $) 36)) (-1355 (($ $) 34)) (-1204 (((-1186 |#1| |#2|) (-1186 |#1| |#2|) $) 37)) (-1239 (((-1066) $) 9)) (-4142 (((-1030) $) 10)) (-2286 (($ $ |#1| $) 31) (($ $ (-586 |#1|) (-586 $)) 30)) (-2528 (((-706) $) 38)) (-2200 (($ $ $) 29)) (-2188 (((-791) $) 11) (($ |#1|) 41) (((-1177 |#1| |#2|) $) 40) (((-1186 |#1| |#2|) $) 39)) (-2972 ((|#2| (-1186 |#1| |#2|) $) 42)) (-3560 (($) 18 T CONST)) (-2431 (($ (-611 |#1|)) 35)) (-1530 (((-108) $ $) 6)) (-1619 (($ $ |#2|) 28 (|has| |#2| (-336)))) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ |#2| $) 23) (($ $ |#2|) 26)))
-(((-347 |#1| |#2|) (-1195) (-783) (-157)) (T -347))
-((-2972 (*1 *2 *3 *1) (-12 (-5 *3 (-1186 *4 *2)) (-4 *1 (-347 *4 *2)) (-4 *4 (-783)) (-4 *2 (-157)))) (-2188 (*1 *1 *2) (-12 (-4 *1 (-347 *2 *3)) (-4 *2 (-783)) (-4 *3 (-157)))) (-2188 (*1 *2 *1) (-12 (-4 *1 (-347 *3 *4)) (-4 *3 (-783)) (-4 *4 (-157)) (-5 *2 (-1177 *3 *4)))) (-2188 (*1 *2 *1) (-12 (-4 *1 (-347 *3 *4)) (-4 *3 (-783)) (-4 *4 (-157)) (-5 *2 (-1186 *3 *4)))) (-2528 (*1 *2 *1) (-12 (-4 *1 (-347 *3 *4)) (-4 *3 (-783)) (-4 *4 (-157)) (-5 *2 (-706)))) (-1204 (*1 *2 *2 *1) (-12 (-5 *2 (-1186 *3 *4)) (-4 *1 (-347 *3 *4)) (-4 *3 (-783)) (-4 *4 (-157)))) (-3140 (*1 *2 *2 *1) (-12 (-5 *2 (-1186 *3 *4)) (-4 *1 (-347 *3 *4)) (-4 *3 (-783)) (-4 *4 (-157)))) (-2431 (*1 *1 *2) (-12 (-5 *2 (-611 *3)) (-4 *3 (-783)) (-4 *1 (-347 *3 *4)) (-4 *4 (-157)))) (-1355 (*1 *1 *1) (-12 (-4 *1 (-347 *2 *3)) (-4 *2 (-783)) (-4 *3 (-157)))) (-3131 (*1 *1 *1 *2) (-12 (-5 *2 (-706)) (-4 *1 (-347 *3 *4)) (-4 *3 (-783)) (-4 *4 (-157)))) (-4097 (*1 *2 *1) (-12 (-4 *1 (-347 *3 *4)) (-4 *3 (-783)) (-4 *4 (-157)) (-5 *2 (-586 *3)))) (-2286 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-347 *2 *3)) (-4 *2 (-783)) (-4 *3 (-157)))) (-2286 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-586 *4)) (-5 *3 (-586 *1)) (-4 *1 (-347 *4 *5)) (-4 *4 (-783)) (-4 *5 (-157)))))
-(-13 (-577 |t#2|) (-10 -8 (-15 -2972 (|t#2| (-1186 |t#1| |t#2|) $)) (-15 -2188 ($ |t#1|)) (-15 -2188 ((-1177 |t#1| |t#2|) $)) (-15 -2188 ((-1186 |t#1| |t#2|) $)) (-15 -2528 ((-706) $)) (-15 -1204 ((-1186 |t#1| |t#2|) (-1186 |t#1| |t#2|) $)) (-15 -3140 ((-1186 |t#1| |t#2|) (-1186 |t#1| |t#2|) $)) (-15 -2431 ($ (-611 |t#1|))) (-15 -1355 ($ $)) (-15 -3131 ($ $ (-706))) (-15 -4097 ((-586 |t#1|) $)) (-15 -2286 ($ $ |t#1| $)) (-15 -2286 ($ $ (-586 |t#1|) (-586 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#2| |#2|) . T) ((-124) . T) ((-560 (-791)) . T) ((-588 |#2|) . T) ((-577 |#2|) . T) ((-653 |#2|) . T) ((-975 |#2|) . T) ((-1012) . T))
-((-1902 ((|#2| (-1 (-108) |#1| |#1|) |#2|) 24)) (-1791 ((|#2| (-1 (-108) |#1| |#1|) |#2|) 12)) (-3454 ((|#2| (-1 (-108) |#1| |#1|) |#2|) 21)))
-(((-348 |#1| |#2|) (-10 -7 (-15 -1791 (|#2| (-1 (-108) |#1| |#1|) |#2|)) (-15 -3454 (|#2| (-1 (-108) |#1| |#1|) |#2|)) (-15 -1902 (|#2| (-1 (-108) |#1| |#1|) |#2|))) (-1118) (-13 (-346 |#1|) (-10 -7 (-6 -4230)))) (T -348))
-((-1902 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1118)) (-5 *1 (-348 *4 *2)) (-4 *2 (-13 (-346 *4) (-10 -7 (-6 -4230)))))) (-3454 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1118)) (-5 *1 (-348 *4 *2)) (-4 *2 (-13 (-346 *4) (-10 -7 (-6 -4230)))))) (-1791 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1118)) (-5 *1 (-348 *4 *2)) (-4 *2 (-13 (-346 *4) (-10 -7 (-6 -4230)))))))
-(-10 -7 (-15 -1791 (|#2| (-1 (-108) |#1| |#1|) |#2|)) (-15 -3454 (|#2| (-1 (-108) |#1| |#1|) |#2|)) (-15 -1902 (|#2| (-1 (-108) |#1| |#1|) |#2|)))
-((-2756 (((-626 |#2|) (-626 $)) NIL) (((-2 (|:| -3927 (-626 |#2|)) (|:| |vec| (-1164 |#2|))) (-626 $) (-1164 $)) NIL) (((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 $) (-1164 $)) 19) (((-626 (-520)) (-626 $)) 13)))
-(((-349 |#1| |#2|) (-10 -8 (-15 -2756 ((-626 (-520)) (-626 |#1|))) (-15 -2756 ((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 |#1|) (-1164 |#1|))) (-15 -2756 ((-2 (|:| -3927 (-626 |#2|)) (|:| |vec| (-1164 |#2|))) (-626 |#1|) (-1164 |#1|))) (-15 -2756 ((-626 |#2|) (-626 |#1|)))) (-350 |#2|) (-969)) (T -349))
-NIL
-(-10 -8 (-15 -2756 ((-626 (-520)) (-626 |#1|))) (-15 -2756 ((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 |#1|) (-1164 |#1|))) (-15 -2756 ((-2 (|:| -3927 (-626 |#2|)) (|:| |vec| (-1164 |#2|))) (-626 |#1|) (-1164 |#1|))) (-15 -2756 ((-626 |#2|) (-626 |#1|))))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-1917 (((-3 $ "failed") $ $) 19)) (-3961 (($) 17 T CONST)) (-2756 (((-626 |#1|) (-626 $)) 36) (((-2 (|:| -3927 (-626 |#1|)) (|:| |vec| (-1164 |#1|))) (-626 $) (-1164 $)) 35) (((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 $) (-1164 $)) 43 (|has| |#1| (-582 (-520)))) (((-626 (-520)) (-626 $)) 42 (|has| |#1| (-582 (-520))))) (-1540 (((-3 $ "failed") $) 34)) (-1537 (((-108) $) 31)) (-1239 (((-1066) $) 9)) (-4142 (((-1030) $) 10)) (-2188 (((-791) $) 11) (($ (-520)) 28)) (-3251 (((-706)) 29)) (-3504 (($ $ (-849)) 26) (($ $ (-706)) 33)) (-3560 (($) 18 T CONST)) (-3570 (($) 30 T CONST)) (-1530 (((-108) $ $) 6)) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-706)) 32)) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ $ $) 24)))
-(((-350 |#1|) (-1195) (-969)) (T -350))
-NIL
-(-13 (-582 |t#1|) (-10 -7 (IF (|has| |t#1| (-582 (-520))) (-6 (-582 (-520))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-560 (-791)) . T) ((-588 $) . T) ((-582 (-520)) |has| |#1| (-582 (-520))) ((-582 |#1|) . T) ((-662) . T) ((-969) . T) ((-976) . T) ((-1024) . T) ((-1012) . T))
-((-4116 (((-586 (-268 (-880 (-154 |#1|)))) (-268 (-380 (-880 (-154 (-520))))) |#1|) 50) (((-586 (-268 (-880 (-154 |#1|)))) (-380 (-880 (-154 (-520)))) |#1|) 49) (((-586 (-586 (-268 (-880 (-154 |#1|))))) (-586 (-268 (-380 (-880 (-154 (-520)))))) |#1|) 45) (((-586 (-586 (-268 (-880 (-154 |#1|))))) (-586 (-380 (-880 (-154 (-520))))) |#1|) 39)) (-1714 (((-586 (-586 (-154 |#1|))) (-586 (-380 (-880 (-154 (-520))))) (-586 (-1083)) |#1|) 27) (((-586 (-154 |#1|)) (-380 (-880 (-154 (-520)))) |#1|) 15)))
-(((-351 |#1|) (-10 -7 (-15 -4116 ((-586 (-586 (-268 (-880 (-154 |#1|))))) (-586 (-380 (-880 (-154 (-520))))) |#1|)) (-15 -4116 ((-586 (-586 (-268 (-880 (-154 |#1|))))) (-586 (-268 (-380 (-880 (-154 (-520)))))) |#1|)) (-15 -4116 ((-586 (-268 (-880 (-154 |#1|)))) (-380 (-880 (-154 (-520)))) |#1|)) (-15 -4116 ((-586 (-268 (-880 (-154 |#1|)))) (-268 (-380 (-880 (-154 (-520))))) |#1|)) (-15 -1714 ((-586 (-154 |#1|)) (-380 (-880 (-154 (-520)))) |#1|)) (-15 -1714 ((-586 (-586 (-154 |#1|))) (-586 (-380 (-880 (-154 (-520))))) (-586 (-1083)) |#1|))) (-13 (-336) (-781))) (T -351))
-((-1714 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-586 (-380 (-880 (-154 (-520)))))) (-5 *4 (-586 (-1083))) (-5 *2 (-586 (-586 (-154 *5)))) (-5 *1 (-351 *5)) (-4 *5 (-13 (-336) (-781))))) (-1714 (*1 *2 *3 *4) (-12 (-5 *3 (-380 (-880 (-154 (-520))))) (-5 *2 (-586 (-154 *4))) (-5 *1 (-351 *4)) (-4 *4 (-13 (-336) (-781))))) (-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-268 (-380 (-880 (-154 (-520)))))) (-5 *2 (-586 (-268 (-880 (-154 *4))))) (-5 *1 (-351 *4)) (-4 *4 (-13 (-336) (-781))))) (-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-380 (-880 (-154 (-520))))) (-5 *2 (-586 (-268 (-880 (-154 *4))))) (-5 *1 (-351 *4)) (-4 *4 (-13 (-336) (-781))))) (-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-586 (-268 (-380 (-880 (-154 (-520))))))) (-5 *2 (-586 (-586 (-268 (-880 (-154 *4)))))) (-5 *1 (-351 *4)) (-4 *4 (-13 (-336) (-781))))) (-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-586 (-380 (-880 (-154 (-520)))))) (-5 *2 (-586 (-586 (-268 (-880 (-154 *4)))))) (-5 *1 (-351 *4)) (-4 *4 (-13 (-336) (-781))))))
-(-10 -7 (-15 -4116 ((-586 (-586 (-268 (-880 (-154 |#1|))))) (-586 (-380 (-880 (-154 (-520))))) |#1|)) (-15 -4116 ((-586 (-586 (-268 (-880 (-154 |#1|))))) (-586 (-268 (-380 (-880 (-154 (-520)))))) |#1|)) (-15 -4116 ((-586 (-268 (-880 (-154 |#1|)))) (-380 (-880 (-154 (-520)))) |#1|)) (-15 -4116 ((-586 (-268 (-880 (-154 |#1|)))) (-268 (-380 (-880 (-154 (-520))))) |#1|)) (-15 -1714 ((-586 (-154 |#1|)) (-380 (-880 (-154 (-520)))) |#1|)) (-15 -1714 ((-586 (-586 (-154 |#1|))) (-586 (-380 (-880 (-154 (-520))))) (-586 (-1083)) |#1|)))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) 33)) (-4040 (((-520) $) 55)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) NIL)) (-2583 (($ $) NIL)) (-1671 (((-108) $) NIL)) (-2406 (($ $) 110)) (-2903 (($ $) 82)) (-2768 (($ $) 71)) (-1917 (((-3 $ "failed") $ $) NIL)) (-3024 (($ $) NIL)) (-1507 (((-391 $) $) NIL)) (-1927 (($ $) 44)) (-1327 (((-108) $ $) NIL)) (-2879 (($ $) 80)) (-2745 (($ $) 69)) (-2804 (((-520) $) 64)) (-1660 (($ $ (-520)) 62)) (-2925 (($ $) NIL)) (-2789 (($ $) NIL)) (-3961 (($) NIL T CONST)) (-1650 (($ $) 112)) (-1296 (((-3 (-520) "failed") $) 188) (((-3 (-380 (-520)) "failed") $) 184)) (-1482 (((-520) $) 186) (((-380 (-520)) $) 182)) (-2276 (($ $ $) NIL)) (-1708 (((-520) $ $) 102)) (-1540 (((-3 $ "failed") $) 114)) (-3438 (((-380 (-520)) $ (-706)) 189) (((-380 (-520)) $ (-706) (-706)) 181)) (-2253 (($ $ $) NIL)) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) NIL)) (-2036 (((-108) $) NIL)) (-2173 (((-849)) 73) (((-849) (-849)) 98 (|has| $ (-6 -4220)))) (-2328 (((-108) $) 106)) (-2833 (($) 40)) (-1272 (((-817 (-352) $) $ (-820 (-352)) (-817 (-352) $)) NIL)) (-3762 (((-1169) (-706)) 151)) (-4110 (((-1169)) 156) (((-1169) (-706)) 157)) (-3158 (((-1169)) 158) (((-1169) (-706)) 159)) (-3781 (((-1169)) 154) (((-1169) (-706)) 155)) (-3989 (((-520) $) 58)) (-1537 (((-108) $) 104)) (-2322 (($ $ (-520)) NIL)) (-2593 (($ $) 48)) (-1434 (($ $) NIL)) (-3469 (((-108) $) 35)) (-3188 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-2809 (($ $ $) NIL) (($) NIL (-12 (-2399 (|has| $ (-6 -4212))) (-2399 (|has| $ (-6 -4220)))))) (-2446 (($ $ $) NIL) (($) 99 (-12 (-2399 (|has| $ (-6 -4212))) (-2399 (|has| $ (-6 -4220)))))) (-3352 (((-520) $) 17)) (-3899 (($) 87) (($ $) 92)) (-1832 (($) 91) (($ $) 93)) (-1252 (($ $) 83)) (-2222 (($ $ $) NIL) (($ (-586 $)) NIL)) (-1239 (((-1066) $) NIL)) (-3093 (($ $) 116)) (-2344 (((-849) (-520)) 43 (|has| $ (-6 -4220)))) (-4142 (((-1030) $) NIL)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) NIL)) (-2257 (($ $ $) NIL) (($ (-586 $)) NIL)) (-4122 (($ $) 53)) (-1626 (($ $) 109)) (-3066 (($ (-520) (-520)) 107) (($ (-520) (-520) (-849)) 108)) (-1916 (((-391 $) $) NIL)) (-1283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2230 (((-3 $ "failed") $ $) NIL)) (-2608 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-2647 (((-520) $) 19)) (-2574 (($) 94)) (-3260 (($ $) 79)) (-3704 (((-706) $) NIL)) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) NIL)) (-2850 (((-849)) 100) (((-849) (-849)) 101 (|has| $ (-6 -4220)))) (-2155 (($ $ (-706)) NIL) (($ $) 115)) (-2298 (((-849) (-520)) 47 (|has| $ (-6 -4220)))) (-1737 (($ $) NIL)) (-2799 (($ $) NIL)) (-2914 (($ $) NIL)) (-2779 (($ $) NIL)) (-2891 (($ $) 81)) (-2757 (($ $) 70)) (-1429 (((-352) $) 174) (((-201) $) 176) (((-820 (-352)) $) NIL) (((-1066) $) 161) (((-496) $) 172) (($ (-201)) 180)) (-2188 (((-791) $) 163) (($ (-520)) 185) (($ $) NIL) (($ (-380 (-520))) NIL) (($ (-520)) 185) (($ (-380 (-520))) NIL) (((-201) $) 177)) (-3251 (((-706)) NIL)) (-3370 (($ $) 111)) (-1567 (((-849)) 54) (((-849) (-849)) 66 (|has| $ (-6 -4220)))) (-3349 (((-849)) 103)) (-1758 (($ $) 86)) (-2831 (($ $) 46) (($ $ $) 52)) (-2559 (((-108) $ $) NIL)) (-1744 (($ $) 84)) (-2810 (($ $) 37)) (-1775 (($ $) NIL)) (-2855 (($ $) NIL)) (-3915 (($ $) NIL)) (-2867 (($ $) NIL)) (-1767 (($ $) NIL)) (-2843 (($ $) NIL)) (-1751 (($ $) 85)) (-2820 (($ $) 49)) (-2458 (($ $) 51)) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL)) (-3560 (($) 34 T CONST)) (-3570 (($) 38 T CONST)) (-3610 (((-1066) $) 27) (((-1066) $ (-108)) 29) (((-1169) (-758) $) 30) (((-1169) (-758) $ (-108)) 31)) (-2211 (($ $ (-706)) NIL) (($ $) NIL)) (-1573 (((-108) $ $) NIL)) (-1557 (((-108) $ $) NIL)) (-1530 (((-108) $ $) 39)) (-1565 (((-108) $ $) NIL)) (-1548 (((-108) $ $) 42)) (-1619 (($ $ $) 45) (($ $ (-520)) 41)) (-1611 (($ $) 36) (($ $ $) 50)) (-1601 (($ $ $) 61)) (** (($ $ (-849)) 67) (($ $ (-706)) NIL) (($ $ (-520)) 88) (($ $ (-380 (-520))) 125) (($ $ $) 117)) (* (($ (-849) $) 65) (($ (-706) $) NIL) (($ (-520) $) 68) (($ $ $) 60) (($ $ (-380 (-520))) NIL) (($ (-380 (-520)) $) NIL)))
-(((-352) (-13 (-377) (-209) (-561 (-1066)) (-764) (-560 (-201)) (-1104) (-561 (-496)) (-10 -8 (-15 -1619 ($ $ (-520))) (-15 ** ($ $ $)) (-15 -2593 ($ $)) (-15 -1708 ((-520) $ $)) (-15 -1660 ($ $ (-520))) (-15 -3438 ((-380 (-520)) $ (-706))) (-15 -3438 ((-380 (-520)) $ (-706) (-706))) (-15 -3899 ($)) (-15 -1832 ($)) (-15 -2574 ($)) (-15 -2831 ($ $ $)) (-15 -3899 ($ $)) (-15 -1832 ($ $)) (-15 -1429 ($ (-201))) (-15 -3158 ((-1169))) (-15 -3158 ((-1169) (-706))) (-15 -3781 ((-1169))) (-15 -3781 ((-1169) (-706))) (-15 -4110 ((-1169))) (-15 -4110 ((-1169) (-706))) (-15 -3762 ((-1169) (-706))) (-6 -4220) (-6 -4212)))) (T -352))
-((** (*1 *1 *1 *1) (-5 *1 (-352))) (-1619 (*1 *1 *1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-352)))) (-2593 (*1 *1 *1) (-5 *1 (-352))) (-1708 (*1 *2 *1 *1) (-12 (-5 *2 (-520)) (-5 *1 (-352)))) (-1660 (*1 *1 *1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-352)))) (-3438 (*1 *2 *1 *3) (-12 (-5 *3 (-706)) (-5 *2 (-380 (-520))) (-5 *1 (-352)))) (-3438 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-706)) (-5 *2 (-380 (-520))) (-5 *1 (-352)))) (-3899 (*1 *1) (-5 *1 (-352))) (-1832 (*1 *1) (-5 *1 (-352))) (-2574 (*1 *1) (-5 *1 (-352))) (-2831 (*1 *1 *1 *1) (-5 *1 (-352))) (-3899 (*1 *1 *1) (-5 *1 (-352))) (-1832 (*1 *1 *1) (-5 *1 (-352))) (-1429 (*1 *1 *2) (-12 (-5 *2 (-201)) (-5 *1 (-352)))) (-3158 (*1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-352)))) (-3158 (*1 *2 *3) (-12 (-5 *3 (-706)) (-5 *2 (-1169)) (-5 *1 (-352)))) (-3781 (*1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-352)))) (-3781 (*1 *2 *3) (-12 (-5 *3 (-706)) (-5 *2 (-1169)) (-5 *1 (-352)))) (-4110 (*1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-352)))) (-4110 (*1 *2 *3) (-12 (-5 *3 (-706)) (-5 *2 (-1169)) (-5 *1 (-352)))) (-3762 (*1 *2 *3) (-12 (-5 *3 (-706)) (-5 *2 (-1169)) (-5 *1 (-352)))))
-(-13 (-377) (-209) (-561 (-1066)) (-764) (-560 (-201)) (-1104) (-561 (-496)) (-10 -8 (-15 -1619 ($ $ (-520))) (-15 ** ($ $ $)) (-15 -2593 ($ $)) (-15 -1708 ((-520) $ $)) (-15 -1660 ($ $ (-520))) (-15 -3438 ((-380 (-520)) $ (-706))) (-15 -3438 ((-380 (-520)) $ (-706) (-706))) (-15 -3899 ($)) (-15 -1832 ($)) (-15 -2574 ($)) (-15 -2831 ($ $ $)) (-15 -3899 ($ $)) (-15 -1832 ($ $)) (-15 -1429 ($ (-201))) (-15 -3158 ((-1169))) (-15 -3158 ((-1169) (-706))) (-15 -3781 ((-1169))) (-15 -3781 ((-1169) (-706))) (-15 -4110 ((-1169))) (-15 -4110 ((-1169) (-706))) (-15 -3762 ((-1169) (-706))) (-6 -4220) (-6 -4212)))
-((-3600 (((-586 (-268 (-880 |#1|))) (-268 (-380 (-880 (-520)))) |#1|) 46) (((-586 (-268 (-880 |#1|))) (-380 (-880 (-520))) |#1|) 45) (((-586 (-586 (-268 (-880 |#1|)))) (-586 (-268 (-380 (-880 (-520))))) |#1|) 41) (((-586 (-586 (-268 (-880 |#1|)))) (-586 (-380 (-880 (-520)))) |#1|) 35)) (-2572 (((-586 |#1|) (-380 (-880 (-520))) |#1|) 19) (((-586 (-586 |#1|)) (-586 (-380 (-880 (-520)))) (-586 (-1083)) |#1|) 30)))
-(((-353 |#1|) (-10 -7 (-15 -3600 ((-586 (-586 (-268 (-880 |#1|)))) (-586 (-380 (-880 (-520)))) |#1|)) (-15 -3600 ((-586 (-586 (-268 (-880 |#1|)))) (-586 (-268 (-380 (-880 (-520))))) |#1|)) (-15 -3600 ((-586 (-268 (-880 |#1|))) (-380 (-880 (-520))) |#1|)) (-15 -3600 ((-586 (-268 (-880 |#1|))) (-268 (-380 (-880 (-520)))) |#1|)) (-15 -2572 ((-586 (-586 |#1|)) (-586 (-380 (-880 (-520)))) (-586 (-1083)) |#1|)) (-15 -2572 ((-586 |#1|) (-380 (-880 (-520))) |#1|))) (-13 (-781) (-336))) (T -353))
-((-2572 (*1 *2 *3 *4) (-12 (-5 *3 (-380 (-880 (-520)))) (-5 *2 (-586 *4)) (-5 *1 (-353 *4)) (-4 *4 (-13 (-781) (-336))))) (-2572 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-586 (-380 (-880 (-520))))) (-5 *4 (-586 (-1083))) (-5 *2 (-586 (-586 *5))) (-5 *1 (-353 *5)) (-4 *5 (-13 (-781) (-336))))) (-3600 (*1 *2 *3 *4) (-12 (-5 *3 (-268 (-380 (-880 (-520))))) (-5 *2 (-586 (-268 (-880 *4)))) (-5 *1 (-353 *4)) (-4 *4 (-13 (-781) (-336))))) (-3600 (*1 *2 *3 *4) (-12 (-5 *3 (-380 (-880 (-520)))) (-5 *2 (-586 (-268 (-880 *4)))) (-5 *1 (-353 *4)) (-4 *4 (-13 (-781) (-336))))) (-3600 (*1 *2 *3 *4) (-12 (-5 *3 (-586 (-268 (-380 (-880 (-520)))))) (-5 *2 (-586 (-586 (-268 (-880 *4))))) (-5 *1 (-353 *4)) (-4 *4 (-13 (-781) (-336))))) (-3600 (*1 *2 *3 *4) (-12 (-5 *3 (-586 (-380 (-880 (-520))))) (-5 *2 (-586 (-586 (-268 (-880 *4))))) (-5 *1 (-353 *4)) (-4 *4 (-13 (-781) (-336))))))
-(-10 -7 (-15 -3600 ((-586 (-586 (-268 (-880 |#1|)))) (-586 (-380 (-880 (-520)))) |#1|)) (-15 -3600 ((-586 (-586 (-268 (-880 |#1|)))) (-586 (-268 (-380 (-880 (-520))))) |#1|)) (-15 -3600 ((-586 (-268 (-880 |#1|))) (-380 (-880 (-520))) |#1|)) (-15 -3600 ((-586 (-268 (-880 |#1|))) (-268 (-380 (-880 (-520)))) |#1|)) (-15 -2572 ((-586 (-586 |#1|)) (-586 (-380 (-880 (-520)))) (-586 (-1083)) |#1|)) (-15 -2572 ((-586 |#1|) (-380 (-880 (-520))) |#1|)))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-1917 (((-3 $ "failed") $ $) NIL)) (-3961 (($) NIL T CONST)) (-1296 (((-3 |#2| "failed") $) 25)) (-1482 ((|#2| $) 27)) (-3150 (($ $) NIL)) (-1315 (((-706) $) 10)) (-1992 (((-586 $) $) 20)) (-3774 (((-108) $) NIL)) (-2516 (($ |#2| |#1|) 18)) (-1389 (($ (-1 |#1| |#1|) $) NIL)) (-2432 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 14)) (-3123 ((|#2| $) 15)) (-3133 ((|#1| $) NIL)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2188 (((-791) $) 44) (($ |#2|) 26)) (-4113 (((-586 |#1|) $) 17)) (-3475 ((|#1| $ |#2|) 46)) (-3560 (($) 28 T CONST)) (-4164 (((-586 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 13)) (-1530 (((-108) $ $) NIL)) (-1611 (($ $) NIL) (($ $ $) NIL)) (-1601 (($ $ $) NIL)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ |#1| $) 31) (($ $ |#1|) 32) (($ |#1| |#2|) 34) (($ |#2| |#1|) 35)))
-(((-354 |#1| |#2|) (-13 (-355 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-969) (-783)) (T -354))
-((* (*1 *1 *2 *3) (-12 (-5 *1 (-354 *3 *2)) (-4 *3 (-969)) (-4 *2 (-783)))))
-(-13 (-355 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|))))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-1917 (((-3 $ "failed") $ $) 19)) (-3961 (($) 17 T CONST)) (-1296 (((-3 |#2| "failed") $) 44)) (-1482 ((|#2| $) 43)) (-3150 (($ $) 30)) (-1315 (((-706) $) 34)) (-1992 (((-586 $) $) 35)) (-3774 (((-108) $) 38)) (-2516 (($ |#2| |#1|) 39)) (-1389 (($ (-1 |#1| |#1|) $) 40)) (-2432 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 31)) (-3123 ((|#2| $) 33)) (-3133 ((|#1| $) 32)) (-1239 (((-1066) $) 9)) (-4142 (((-1030) $) 10)) (-2188 (((-791) $) 11) (($ |#2|) 45)) (-4113 (((-586 |#1|) $) 36)) (-3475 ((|#1| $ |#2|) 41)) (-3560 (($) 18 T CONST)) (-4164 (((-586 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 37)) (-1530 (((-108) $ $) 6)) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26) (($ |#1| |#2|) 42)))
-(((-355 |#1| |#2|) (-1195) (-969) (-1012)) (T -355))
-((* (*1 *1 *2 *3) (-12 (-4 *1 (-355 *2 *3)) (-4 *2 (-969)) (-4 *3 (-1012)))) (-3475 (*1 *2 *1 *3) (-12 (-4 *1 (-355 *2 *3)) (-4 *3 (-1012)) (-4 *2 (-969)))) (-1389 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-355 *3 *4)) (-4 *3 (-969)) (-4 *4 (-1012)))) (-2516 (*1 *1 *2 *3) (-12 (-4 *1 (-355 *3 *2)) (-4 *3 (-969)) (-4 *2 (-1012)))) (-3774 (*1 *2 *1) (-12 (-4 *1 (-355 *3 *4)) (-4 *3 (-969)) (-4 *4 (-1012)) (-5 *2 (-108)))) (-4164 (*1 *2 *1) (-12 (-4 *1 (-355 *3 *4)) (-4 *3 (-969)) (-4 *4 (-1012)) (-5 *2 (-586 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-4113 (*1 *2 *1) (-12 (-4 *1 (-355 *3 *4)) (-4 *3 (-969)) (-4 *4 (-1012)) (-5 *2 (-586 *3)))) (-1992 (*1 *2 *1) (-12 (-4 *3 (-969)) (-4 *4 (-1012)) (-5 *2 (-586 *1)) (-4 *1 (-355 *3 *4)))) (-1315 (*1 *2 *1) (-12 (-4 *1 (-355 *3 *4)) (-4 *3 (-969)) (-4 *4 (-1012)) (-5 *2 (-706)))) (-3123 (*1 *2 *1) (-12 (-4 *1 (-355 *3 *2)) (-4 *3 (-969)) (-4 *2 (-1012)))) (-3133 (*1 *2 *1) (-12 (-4 *1 (-355 *2 *3)) (-4 *3 (-1012)) (-4 *2 (-969)))) (-2432 (*1 *2 *1) (-12 (-4 *1 (-355 *3 *4)) (-4 *3 (-969)) (-4 *4 (-1012)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-3150 (*1 *1 *1) (-12 (-4 *1 (-355 *2 *3)) (-4 *2 (-969)) (-4 *3 (-1012)))))
-(-13 (-107 |t#1| |t#1|) (-960 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -3475 (|t#1| $ |t#2|)) (-15 -1389 ($ (-1 |t#1| |t#1|) $)) (-15 -2516 ($ |t#2| |t#1|)) (-15 -3774 ((-108) $)) (-15 -4164 ((-586 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -4113 ((-586 |t#1|) $)) (-15 -1992 ((-586 $) $)) (-15 -1315 ((-706) $)) (-15 -3123 (|t#2| $)) (-15 -3133 (|t#1| $)) (-15 -2432 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -3150 ($ $)) (IF (|has| |t#1| (-157)) (-6 (-653 |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-560 (-791)) . T) ((-588 |#1|) . T) ((-653 |#1|) |has| |#1| (-157)) ((-960 |#2|) . T) ((-975 |#1|) . T) ((-1012) . T))
-((-2008 (((-1169) $) 7)) (-2188 (((-791) $) 8) (($ (-626 (-635))) 14) (($ (-586 (-303))) 13) (($ (-303)) 12) (($ (-2 (|:| |localSymbols| (-1087)) (|:| -2031 (-586 (-303))))) 11)))
-(((-356) (-1195)) (T -356))
-((-2188 (*1 *1 *2) (-12 (-5 *2 (-626 (-635))) (-4 *1 (-356)))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-586 (-303))) (-4 *1 (-356)))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-303)) (-4 *1 (-356)))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1087)) (|:| -2031 (-586 (-303))))) (-4 *1 (-356)))))
-(-13 (-368) (-10 -8 (-15 -2188 ($ (-626 (-635)))) (-15 -2188 ($ (-586 (-303)))) (-15 -2188 ($ (-303))) (-15 -2188 ($ (-2 (|:| |localSymbols| (-1087)) (|:| -2031 (-586 (-303))))))))
-(((-560 (-791)) . T) ((-368) . T) ((-1118) . T))
-((-1296 (((-3 $ "failed") (-626 (-289 (-352)))) 21) (((-3 $ "failed") (-626 (-289 (-520)))) 19) (((-3 $ "failed") (-626 (-880 (-352)))) 17) (((-3 $ "failed") (-626 (-880 (-520)))) 15) (((-3 $ "failed") (-626 (-380 (-880 (-352))))) 13) (((-3 $ "failed") (-626 (-380 (-880 (-520))))) 11)) (-1482 (($ (-626 (-289 (-352)))) 22) (($ (-626 (-289 (-520)))) 20) (($ (-626 (-880 (-352)))) 18) (($ (-626 (-880 (-520)))) 16) (($ (-626 (-380 (-880 (-352))))) 14) (($ (-626 (-380 (-880 (-520))))) 12)) (-2008 (((-1169) $) 7)) (-2188 (((-791) $) 8) (($ (-586 (-303))) 25) (($ (-303)) 24) (($ (-2 (|:| |localSymbols| (-1087)) (|:| -2031 (-586 (-303))))) 23)))
-(((-357) (-1195)) (T -357))
-((-2188 (*1 *1 *2) (-12 (-5 *2 (-586 (-303))) (-4 *1 (-357)))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-303)) (-4 *1 (-357)))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1087)) (|:| -2031 (-586 (-303))))) (-4 *1 (-357)))) (-1482 (*1 *1 *2) (-12 (-5 *2 (-626 (-289 (-352)))) (-4 *1 (-357)))) (-1296 (*1 *1 *2) (|partial| -12 (-5 *2 (-626 (-289 (-352)))) (-4 *1 (-357)))) (-1482 (*1 *1 *2) (-12 (-5 *2 (-626 (-289 (-520)))) (-4 *1 (-357)))) (-1296 (*1 *1 *2) (|partial| -12 (-5 *2 (-626 (-289 (-520)))) (-4 *1 (-357)))) (-1482 (*1 *1 *2) (-12 (-5 *2 (-626 (-880 (-352)))) (-4 *1 (-357)))) (-1296 (*1 *1 *2) (|partial| -12 (-5 *2 (-626 (-880 (-352)))) (-4 *1 (-357)))) (-1482 (*1 *1 *2) (-12 (-5 *2 (-626 (-880 (-520)))) (-4 *1 (-357)))) (-1296 (*1 *1 *2) (|partial| -12 (-5 *2 (-626 (-880 (-520)))) (-4 *1 (-357)))) (-1482 (*1 *1 *2) (-12 (-5 *2 (-626 (-380 (-880 (-352))))) (-4 *1 (-357)))) (-1296 (*1 *1 *2) (|partial| -12 (-5 *2 (-626 (-380 (-880 (-352))))) (-4 *1 (-357)))) (-1482 (*1 *1 *2) (-12 (-5 *2 (-626 (-380 (-880 (-520))))) (-4 *1 (-357)))) (-1296 (*1 *1 *2) (|partial| -12 (-5 *2 (-626 (-380 (-880 (-520))))) (-4 *1 (-357)))))
-(-13 (-368) (-10 -8 (-15 -2188 ($ (-586 (-303)))) (-15 -2188 ($ (-303))) (-15 -2188 ($ (-2 (|:| |localSymbols| (-1087)) (|:| -2031 (-586 (-303)))))) (-15 -1482 ($ (-626 (-289 (-352))))) (-15 -1296 ((-3 $ "failed") (-626 (-289 (-352))))) (-15 -1482 ($ (-626 (-289 (-520))))) (-15 -1296 ((-3 $ "failed") (-626 (-289 (-520))))) (-15 -1482 ($ (-626 (-880 (-352))))) (-15 -1296 ((-3 $ "failed") (-626 (-880 (-352))))) (-15 -1482 ($ (-626 (-880 (-520))))) (-15 -1296 ((-3 $ "failed") (-626 (-880 (-520))))) (-15 -1482 ($ (-626 (-380 (-880 (-352)))))) (-15 -1296 ((-3 $ "failed") (-626 (-380 (-880 (-352)))))) (-15 -1482 ($ (-626 (-380 (-880 (-520)))))) (-15 -1296 ((-3 $ "failed") (-626 (-380 (-880 (-520))))))))
-(((-560 (-791)) . T) ((-368) . T) ((-1118) . T))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-1917 (((-3 $ "failed") $ $) NIL)) (-3961 (($) NIL T CONST)) (-3150 (($ $) NIL)) (-4039 (($ |#1| |#2|) NIL)) (-1389 (($ (-1 |#1| |#1|) $) NIL)) (-2851 ((|#2| $) NIL)) (-3133 ((|#1| $) NIL)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2188 (((-791) $) 28)) (-3560 (($) 12 T CONST)) (-1530 (((-108) $ $) NIL)) (-1611 (($ $) NIL) (($ $ $) NIL)) (-1601 (($ $ $) NIL)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ |#1| $) 16) (($ $ |#1|) 19)))
-(((-358 |#1| |#2|) (-13 (-107 |#1| |#1|) (-476 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-157)) (-6 (-653 |#1|)) |%noBranch|))) (-969) (-783)) (T -358))
-NIL
-(-13 (-107 |#1| |#1|) (-476 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-157)) (-6 (-653 |#1|)) |%noBranch|)))
-((-1414 (((-108) $ $) NIL)) (-1628 (((-706) $) 57)) (-3961 (($) NIL T CONST)) (-3140 (((-3 $ "failed") $ $) 59)) (-1296 (((-3 |#1| "failed") $) NIL)) (-1482 ((|#1| $) NIL)) (-1540 (((-3 $ "failed") $) NIL)) (-3291 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 53)) (-1537 (((-108) $) 14)) (-3691 ((|#1| $ (-520)) NIL)) (-2706 (((-706) $ (-520)) NIL)) (-2809 (($ $ $) NIL (|has| |#1| (-783)))) (-2446 (($ $ $) NIL (|has| |#1| (-783)))) (-3151 (($ (-1 |#1| |#1|) $) 37)) (-2457 (($ (-1 (-706) (-706)) $) 34)) (-1204 (((-3 $ "failed") $ $) 50)) (-1239 (((-1066) $) NIL)) (-2846 (($ $ $) 25)) (-3084 (($ $ $) 23)) (-4142 (((-1030) $) NIL)) (-3493 (((-586 (-2 (|:| |gen| |#1|) (|:| -3260 (-706)))) $) 31)) (-2806 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 56)) (-2188 (((-791) $) 21) (($ |#1|) NIL)) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (-3570 (($) 9 T CONST)) (-1573 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1557 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1530 (((-108) $ $) 41)) (-1565 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1548 (((-108) $ $) 61 (|has| |#1| (-783)))) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ |#1| (-706)) 40)) (* (($ $ $) 47) (($ |#1| $) 29) (($ $ |#1|) 27)))
-(((-359 |#1|) (-13 (-662) (-960 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-706))) (-15 -3084 ($ $ $)) (-15 -2846 ($ $ $)) (-15 -1204 ((-3 $ "failed") $ $)) (-15 -3140 ((-3 $ "failed") $ $)) (-15 -2806 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3291 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1628 ((-706) $)) (-15 -3493 ((-586 (-2 (|:| |gen| |#1|) (|:| -3260 (-706)))) $)) (-15 -2706 ((-706) $ (-520))) (-15 -3691 (|#1| $ (-520))) (-15 -2457 ($ (-1 (-706) (-706)) $)) (-15 -3151 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-783)) (-6 (-783)) |%noBranch|))) (-1012)) (T -359))
-((* (*1 *1 *2 *1) (-12 (-5 *1 (-359 *2)) (-4 *2 (-1012)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-359 *2)) (-4 *2 (-1012)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-706)) (-5 *1 (-359 *2)) (-4 *2 (-1012)))) (-3084 (*1 *1 *1 *1) (-12 (-5 *1 (-359 *2)) (-4 *2 (-1012)))) (-2846 (*1 *1 *1 *1) (-12 (-5 *1 (-359 *2)) (-4 *2 (-1012)))) (-1204 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-359 *2)) (-4 *2 (-1012)))) (-3140 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-359 *2)) (-4 *2 (-1012)))) (-2806 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-359 *3)) (|:| |rm| (-359 *3)))) (-5 *1 (-359 *3)) (-4 *3 (-1012)))) (-3291 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-359 *3)) (|:| |mm| (-359 *3)) (|:| |rm| (-359 *3)))) (-5 *1 (-359 *3)) (-4 *3 (-1012)))) (-1628 (*1 *2 *1) (-12 (-5 *2 (-706)) (-5 *1 (-359 *3)) (-4 *3 (-1012)))) (-3493 (*1 *2 *1) (-12 (-5 *2 (-586 (-2 (|:| |gen| *3) (|:| -3260 (-706))))) (-5 *1 (-359 *3)) (-4 *3 (-1012)))) (-2706 (*1 *2 *1 *3) (-12 (-5 *3 (-520)) (-5 *2 (-706)) (-5 *1 (-359 *4)) (-4 *4 (-1012)))) (-3691 (*1 *2 *1 *3) (-12 (-5 *3 (-520)) (-5 *1 (-359 *2)) (-4 *2 (-1012)))) (-2457 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-706) (-706))) (-5 *1 (-359 *3)) (-4 *3 (-1012)))) (-3151 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1012)) (-5 *1 (-359 *3)))))
-(-13 (-662) (-960 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-706))) (-15 -3084 ($ $ $)) (-15 -2846 ($ $ $)) (-15 -1204 ((-3 $ "failed") $ $)) (-15 -3140 ((-3 $ "failed") $ $)) (-15 -2806 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3291 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1628 ((-706) $)) (-15 -3493 ((-586 (-2 (|:| |gen| |#1|) (|:| -3260 (-706)))) $)) (-15 -2706 ((-706) $ (-520))) (-15 -3691 (|#1| $ (-520))) (-15 -2457 ($ (-1 (-706) (-706)) $)) (-15 -3151 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-783)) (-6 (-783)) |%noBranch|)))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) 41)) (-2583 (($ $) 40)) (-1671 (((-108) $) 38)) (-1917 (((-3 $ "failed") $ $) 19)) (-3961 (($) 17 T CONST)) (-1296 (((-3 (-520) "failed") $) 47)) (-1482 (((-520) $) 46)) (-1540 (((-3 $ "failed") $) 34)) (-1537 (((-108) $) 31)) (-2809 (($ $ $) 54)) (-2446 (($ $ $) 53)) (-1239 (((-1066) $) 9)) (-4142 (((-1030) $) 10)) (-2230 (((-3 $ "failed") $ $) 42)) (-2188 (((-791) $) 11) (($ (-520)) 28) (($ $) 43) (($ (-520)) 48)) (-3251 (((-706)) 29)) (-2559 (((-108) $ $) 39)) (-3504 (($ $ (-849)) 26) (($ $ (-706)) 33)) (-3560 (($) 18 T CONST)) (-3570 (($) 30 T CONST)) (-1573 (((-108) $ $) 51)) (-1557 (((-108) $ $) 50)) (-1530 (((-108) $ $) 6)) (-1565 (((-108) $ $) 52)) (-1548 (((-108) $ $) 49)) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-706)) 32)) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ $ $) 24)))
-(((-360) (-1195)) (T -360))
-NIL
-(-13 (-512) (-783) (-960 (-520)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-560 (-791)) . T) ((-157) . T) ((-264) . T) ((-512) . T) ((-588 $) . T) ((-653 $) . T) ((-662) . T) ((-783) . T) ((-960 (-520)) . T) ((-975 $) . T) ((-969) . T) ((-976) . T) ((-1024) . T) ((-1012) . T))
-((-1414 (((-108) $ $) NIL)) (-3546 (((-108) $) 20)) (-3001 (((-108) $) 19)) (-1810 (($ (-1066) (-1066) (-1066)) 21)) (-2883 (((-1066) $) 16)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2552 (($ (-1066) (-1066) (-1066)) 14)) (-1800 (((-1066) $) 17)) (-2932 (((-108) $) 18)) (-3118 (((-1066) $) 15)) (-2188 (((-791) $) 12) (($ (-1066)) 13) (((-1066) $) 9)) (-1530 (((-108) $ $) 7)))
-(((-361) (-362)) (T -361))
-NIL
-(-362)
-((-1414 (((-108) $ $) 7)) (-3546 (((-108) $) 14)) (-3001 (((-108) $) 15)) (-1810 (($ (-1066) (-1066) (-1066)) 13)) (-2883 (((-1066) $) 18)) (-1239 (((-1066) $) 9)) (-4142 (((-1030) $) 10)) (-2552 (($ (-1066) (-1066) (-1066)) 20)) (-1800 (((-1066) $) 17)) (-2932 (((-108) $) 16)) (-3118 (((-1066) $) 19)) (-2188 (((-791) $) 11) (($ (-1066)) 22) (((-1066) $) 21)) (-1530 (((-108) $ $) 6)))
-(((-362) (-1195)) (T -362))
-((-2188 (*1 *1 *2) (-12 (-5 *2 (-1066)) (-4 *1 (-362)))) (-2188 (*1 *2 *1) (-12 (-4 *1 (-362)) (-5 *2 (-1066)))) (-2552 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1066)) (-4 *1 (-362)))) (-3118 (*1 *2 *1) (-12 (-4 *1 (-362)) (-5 *2 (-1066)))) (-2883 (*1 *2 *1) (-12 (-4 *1 (-362)) (-5 *2 (-1066)))) (-1800 (*1 *2 *1) (-12 (-4 *1 (-362)) (-5 *2 (-1066)))) (-2932 (*1 *2 *1) (-12 (-4 *1 (-362)) (-5 *2 (-108)))) (-3001 (*1 *2 *1) (-12 (-4 *1 (-362)) (-5 *2 (-108)))) (-3546 (*1 *2 *1) (-12 (-4 *1 (-362)) (-5 *2 (-108)))) (-1810 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1066)) (-4 *1 (-362)))))
-(-13 (-1012) (-10 -8 (-15 -2188 ($ (-1066))) (-15 -2188 ((-1066) $)) (-15 -2552 ($ (-1066) (-1066) (-1066))) (-15 -3118 ((-1066) $)) (-15 -2883 ((-1066) $)) (-15 -1800 ((-1066) $)) (-15 -2932 ((-108) $)) (-15 -3001 ((-108) $)) (-15 -3546 ((-108) $)) (-15 -1810 ($ (-1066) (-1066) (-1066)))))
-(((-97) . T) ((-560 (-791)) . T) ((-1012) . T))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-1917 (((-3 $ "failed") $ $) NIL)) (-4020 (((-791) $) 50)) (-3961 (($) NIL T CONST)) (-3918 (($ $ (-849)) NIL)) (-3273 (($ $ (-849)) NIL)) (-2544 (($ $ (-849)) NIL)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-1382 (($ (-706)) 26)) (-1556 (((-706)) 15)) (-3514 (((-791) $) 52)) (-3607 (($ $ $) NIL)) (-2188 (((-791) $) NIL)) (-2214 (($ $ $ $) NIL)) (-3710 (($ $ $) NIL)) (-3560 (($) 20 T CONST)) (-1530 (((-108) $ $) 28)) (-1611 (($ $) 34) (($ $ $) 36)) (-1601 (($ $ $) 37)) (** (($ $ (-849)) NIL)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) 38) (($ $ |#3|) NIL) (($ |#3| $) 33)))
-(((-363 |#1| |#2| |#3|) (-13 (-680 |#3|) (-10 -8 (-15 -1556 ((-706))) (-15 -3514 ((-791) $)) (-15 -4020 ((-791) $)) (-15 -1382 ($ (-706))))) (-706) (-706) (-157)) (T -363))
-((-1556 (*1 *2) (-12 (-5 *2 (-706)) (-5 *1 (-363 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-157)))) (-3514 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-363 *3 *4 *5)) (-14 *3 (-706)) (-14 *4 (-706)) (-4 *5 (-157)))) (-4020 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-363 *3 *4 *5)) (-14 *3 (-706)) (-14 *4 (-706)) (-4 *5 (-157)))) (-1382 (*1 *1 *2) (-12 (-5 *2 (-706)) (-5 *1 (-363 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-157)))))
-(-13 (-680 |#3|) (-10 -8 (-15 -1556 ((-706))) (-15 -3514 ((-791) $)) (-15 -4020 ((-791) $)) (-15 -1382 ($ (-706)))))
-((-2880 (((-1066)) 10)) (-1562 (((-1055 (-1066))) 28)) (-1980 (((-1169) (-1066)) 25) (((-1169) (-361)) 24)) (-1994 (((-1169)) 26)) (-3281 (((-1055 (-1066))) 27)))
-(((-364) (-10 -7 (-15 -3281 ((-1055 (-1066)))) (-15 -1562 ((-1055 (-1066)))) (-15 -1994 ((-1169))) (-15 -1980 ((-1169) (-361))) (-15 -1980 ((-1169) (-1066))) (-15 -2880 ((-1066))))) (T -364))
-((-2880 (*1 *2) (-12 (-5 *2 (-1066)) (-5 *1 (-364)))) (-1980 (*1 *2 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-1169)) (-5 *1 (-364)))) (-1980 (*1 *2 *3) (-12 (-5 *3 (-361)) (-5 *2 (-1169)) (-5 *1 (-364)))) (-1994 (*1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-364)))) (-1562 (*1 *2) (-12 (-5 *2 (-1055 (-1066))) (-5 *1 (-364)))) (-3281 (*1 *2) (-12 (-5 *2 (-1055 (-1066))) (-5 *1 (-364)))))
-(-10 -7 (-15 -3281 ((-1055 (-1066)))) (-15 -1562 ((-1055 (-1066)))) (-15 -1994 ((-1169))) (-15 -1980 ((-1169) (-361))) (-15 -1980 ((-1169) (-1066))) (-15 -2880 ((-1066))))
-((-3989 (((-706) (-309 |#1| |#2| |#3| |#4|)) 16)))
-(((-365 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3989 ((-706) (-309 |#1| |#2| |#3| |#4|)))) (-13 (-341) (-336)) (-1140 |#1|) (-1140 (-380 |#2|)) (-315 |#1| |#2| |#3|)) (T -365))
-((-3989 (*1 *2 *3) (-12 (-5 *3 (-309 *4 *5 *6 *7)) (-4 *4 (-13 (-341) (-336))) (-4 *5 (-1140 *4)) (-4 *6 (-1140 (-380 *5))) (-4 *7 (-315 *4 *5 *6)) (-5 *2 (-706)) (-5 *1 (-365 *4 *5 *6 *7)))))
-(-10 -7 (-15 -3989 ((-706) (-309 |#1| |#2| |#3| |#4|))))
-((-2188 (((-367) |#1|) 11)))
-(((-366 |#1|) (-10 -7 (-15 -2188 ((-367) |#1|))) (-1012)) (T -366))
-((-2188 (*1 *2 *3) (-12 (-5 *2 (-367)) (-5 *1 (-366 *3)) (-4 *3 (-1012)))))
-(-10 -7 (-15 -2188 ((-367) |#1|)))
-((-1414 (((-108) $ $) NIL)) (-2369 (((-586 (-1066)) $ (-586 (-1066))) 37)) (-1325 (((-586 (-1066)) $ (-586 (-1066))) 38)) (-3920 (((-586 (-1066)) $ (-586 (-1066))) 39)) (-1223 (((-586 (-1066)) $) 34)) (-1810 (($) 23)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-1381 (((-586 (-1066)) $) 35)) (-3099 (((-586 (-1066)) $) 36)) (-1677 (((-1169) $ (-520)) 32) (((-1169) $) 33)) (-1429 (($ (-791) (-520)) 29)) (-2188 (((-791) $) 41) (($ (-791)) 25)) (-1530 (((-108) $ $) NIL)))
-(((-367) (-13 (-1012) (-10 -8 (-15 -2188 ($ (-791))) (-15 -1429 ($ (-791) (-520))) (-15 -1677 ((-1169) $ (-520))) (-15 -1677 ((-1169) $)) (-15 -3099 ((-586 (-1066)) $)) (-15 -1381 ((-586 (-1066)) $)) (-15 -1810 ($)) (-15 -1223 ((-586 (-1066)) $)) (-15 -3920 ((-586 (-1066)) $ (-586 (-1066)))) (-15 -1325 ((-586 (-1066)) $ (-586 (-1066)))) (-15 -2369 ((-586 (-1066)) $ (-586 (-1066))))))) (T -367))
-((-2188 (*1 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-367)))) (-1429 (*1 *1 *2 *3) (-12 (-5 *2 (-791)) (-5 *3 (-520)) (-5 *1 (-367)))) (-1677 (*1 *2 *1 *3) (-12 (-5 *3 (-520)) (-5 *2 (-1169)) (-5 *1 (-367)))) (-1677 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-367)))) (-3099 (*1 *2 *1) (-12 (-5 *2 (-586 (-1066))) (-5 *1 (-367)))) (-1381 (*1 *2 *1) (-12 (-5 *2 (-586 (-1066))) (-5 *1 (-367)))) (-1810 (*1 *1) (-5 *1 (-367))) (-1223 (*1 *2 *1) (-12 (-5 *2 (-586 (-1066))) (-5 *1 (-367)))) (-3920 (*1 *2 *1 *2) (-12 (-5 *2 (-586 (-1066))) (-5 *1 (-367)))) (-1325 (*1 *2 *1 *2) (-12 (-5 *2 (-586 (-1066))) (-5 *1 (-367)))) (-2369 (*1 *2 *1 *2) (-12 (-5 *2 (-586 (-1066))) (-5 *1 (-367)))))
-(-13 (-1012) (-10 -8 (-15 -2188 ($ (-791))) (-15 -1429 ($ (-791) (-520))) (-15 -1677 ((-1169) $ (-520))) (-15 -1677 ((-1169) $)) (-15 -3099 ((-586 (-1066)) $)) (-15 -1381 ((-586 (-1066)) $)) (-15 -1810 ($)) (-15 -1223 ((-586 (-1066)) $)) (-15 -3920 ((-586 (-1066)) $ (-586 (-1066)))) (-15 -1325 ((-586 (-1066)) $ (-586 (-1066)))) (-15 -2369 ((-586 (-1066)) $ (-586 (-1066))))))
-((-2008 (((-1169) $) 7)) (-2188 (((-791) $) 8)))
-(((-368) (-1195)) (T -368))
-((-2008 (*1 *2 *1) (-12 (-4 *1 (-368)) (-5 *2 (-1169)))))
-(-13 (-1118) (-560 (-791)) (-10 -8 (-15 -2008 ((-1169) $))))
-(((-560 (-791)) . T) ((-1118) . T))
-((-1296 (((-3 $ "failed") (-289 (-352))) 21) (((-3 $ "failed") (-289 (-520))) 19) (((-3 $ "failed") (-880 (-352))) 17) (((-3 $ "failed") (-880 (-520))) 15) (((-3 $ "failed") (-380 (-880 (-352)))) 13) (((-3 $ "failed") (-380 (-880 (-520)))) 11)) (-1482 (($ (-289 (-352))) 22) (($ (-289 (-520))) 20) (($ (-880 (-352))) 18) (($ (-880 (-520))) 16) (($ (-380 (-880 (-352)))) 14) (($ (-380 (-880 (-520)))) 12)) (-2008 (((-1169) $) 7)) (-2188 (((-791) $) 8) (($ (-586 (-303))) 25) (($ (-303)) 24) (($ (-2 (|:| |localSymbols| (-1087)) (|:| -2031 (-586 (-303))))) 23)))
-(((-369) (-1195)) (T -369))
-((-2188 (*1 *1 *2) (-12 (-5 *2 (-586 (-303))) (-4 *1 (-369)))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-303)) (-4 *1 (-369)))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1087)) (|:| -2031 (-586 (-303))))) (-4 *1 (-369)))) (-1482 (*1 *1 *2) (-12 (-5 *2 (-289 (-352))) (-4 *1 (-369)))) (-1296 (*1 *1 *2) (|partial| -12 (-5 *2 (-289 (-352))) (-4 *1 (-369)))) (-1482 (*1 *1 *2) (-12 (-5 *2 (-289 (-520))) (-4 *1 (-369)))) (-1296 (*1 *1 *2) (|partial| -12 (-5 *2 (-289 (-520))) (-4 *1 (-369)))) (-1482 (*1 *1 *2) (-12 (-5 *2 (-880 (-352))) (-4 *1 (-369)))) (-1296 (*1 *1 *2) (|partial| -12 (-5 *2 (-880 (-352))) (-4 *1 (-369)))) (-1482 (*1 *1 *2) (-12 (-5 *2 (-880 (-520))) (-4 *1 (-369)))) (-1296 (*1 *1 *2) (|partial| -12 (-5 *2 (-880 (-520))) (-4 *1 (-369)))) (-1482 (*1 *1 *2) (-12 (-5 *2 (-380 (-880 (-352)))) (-4 *1 (-369)))) (-1296 (*1 *1 *2) (|partial| -12 (-5 *2 (-380 (-880 (-352)))) (-4 *1 (-369)))) (-1482 (*1 *1 *2) (-12 (-5 *2 (-380 (-880 (-520)))) (-4 *1 (-369)))) (-1296 (*1 *1 *2) (|partial| -12 (-5 *2 (-380 (-880 (-520)))) (-4 *1 (-369)))))
-(-13 (-368) (-10 -8 (-15 -2188 ($ (-586 (-303)))) (-15 -2188 ($ (-303))) (-15 -2188 ($ (-2 (|:| |localSymbols| (-1087)) (|:| -2031 (-586 (-303)))))) (-15 -1482 ($ (-289 (-352)))) (-15 -1296 ((-3 $ "failed") (-289 (-352)))) (-15 -1482 ($ (-289 (-520)))) (-15 -1296 ((-3 $ "failed") (-289 (-520)))) (-15 -1482 ($ (-880 (-352)))) (-15 -1296 ((-3 $ "failed") (-880 (-352)))) (-15 -1482 ($ (-880 (-520)))) (-15 -1296 ((-3 $ "failed") (-880 (-520)))) (-15 -1482 ($ (-380 (-880 (-352))))) (-15 -1296 ((-3 $ "failed") (-380 (-880 (-352))))) (-15 -1482 ($ (-380 (-880 (-520))))) (-15 -1296 ((-3 $ "failed") (-380 (-880 (-520)))))))
-(((-560 (-791)) . T) ((-368) . T) ((-1118) . T))
-((-3259 (((-586 (-1066)) (-586 (-1066))) 8)) (-2008 (((-1169) (-361)) 27)) (-2548 (((-1016) (-1083) (-586 (-1083)) (-1086) (-586 (-1083))) 59) (((-1016) (-1083) (-586 (-3 (|:| |array| (-586 (-1083))) (|:| |scalar| (-1083)))) (-586 (-586 (-3 (|:| |array| (-586 (-1083))) (|:| |scalar| (-1083))))) (-586 (-1083)) (-1083)) 35) (((-1016) (-1083) (-586 (-3 (|:| |array| (-586 (-1083))) (|:| |scalar| (-1083)))) (-586 (-586 (-3 (|:| |array| (-586 (-1083))) (|:| |scalar| (-1083))))) (-586 (-1083))) 34)))
-(((-370) (-10 -7 (-15 -2548 ((-1016) (-1083) (-586 (-3 (|:| |array| (-586 (-1083))) (|:| |scalar| (-1083)))) (-586 (-586 (-3 (|:| |array| (-586 (-1083))) (|:| |scalar| (-1083))))) (-586 (-1083)))) (-15 -2548 ((-1016) (-1083) (-586 (-3 (|:| |array| (-586 (-1083))) (|:| |scalar| (-1083)))) (-586 (-586 (-3 (|:| |array| (-586 (-1083))) (|:| |scalar| (-1083))))) (-586 (-1083)) (-1083))) (-15 -2548 ((-1016) (-1083) (-586 (-1083)) (-1086) (-586 (-1083)))) (-15 -2008 ((-1169) (-361))) (-15 -3259 ((-586 (-1066)) (-586 (-1066)))))) (T -370))
-((-3259 (*1 *2 *2) (-12 (-5 *2 (-586 (-1066))) (-5 *1 (-370)))) (-2008 (*1 *2 *3) (-12 (-5 *3 (-361)) (-5 *2 (-1169)) (-5 *1 (-370)))) (-2548 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-586 (-1083))) (-5 *5 (-1086)) (-5 *3 (-1083)) (-5 *2 (-1016)) (-5 *1 (-370)))) (-2548 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-586 (-586 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-586 (-3 (|:| |array| (-586 *3)) (|:| |scalar| (-1083))))) (-5 *6 (-586 (-1083))) (-5 *3 (-1083)) (-5 *2 (-1016)) (-5 *1 (-370)))) (-2548 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-586 (-586 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-586 (-3 (|:| |array| (-586 *3)) (|:| |scalar| (-1083))))) (-5 *6 (-586 (-1083))) (-5 *3 (-1083)) (-5 *2 (-1016)) (-5 *1 (-370)))))
-(-10 -7 (-15 -2548 ((-1016) (-1083) (-586 (-3 (|:| |array| (-586 (-1083))) (|:| |scalar| (-1083)))) (-586 (-586 (-3 (|:| |array| (-586 (-1083))) (|:| |scalar| (-1083))))) (-586 (-1083)))) (-15 -2548 ((-1016) (-1083) (-586 (-3 (|:| |array| (-586 (-1083))) (|:| |scalar| (-1083)))) (-586 (-586 (-3 (|:| |array| (-586 (-1083))) (|:| |scalar| (-1083))))) (-586 (-1083)) (-1083))) (-15 -2548 ((-1016) (-1083) (-586 (-1083)) (-1086) (-586 (-1083)))) (-15 -2008 ((-1169) (-361))) (-15 -3259 ((-586 (-1066)) (-586 (-1066)))))
-((-2008 (((-1169) $) 37)) (-2188 (((-791) $) 89) (($ (-303)) 92) (($ (-586 (-303))) 91) (($ (-2 (|:| |localSymbols| (-1087)) (|:| -2031 (-586 (-303))))) 88) (($ (-289 (-637))) 52) (($ (-289 (-635))) 66) (($ (-289 (-630))) 78) (($ (-268 (-289 (-637)))) 62) (($ (-268 (-289 (-635)))) 74) (($ (-268 (-289 (-630)))) 86) (($ (-289 (-520))) 96) (($ (-289 (-352))) 108) (($ (-289 (-154 (-352)))) 120) (($ (-268 (-289 (-520)))) 104) (($ (-268 (-289 (-352)))) 116) (($ (-268 (-289 (-154 (-352))))) 128)))
-(((-371 |#1| |#2| |#3| |#4|) (-13 (-368) (-10 -8 (-15 -2188 ($ (-303))) (-15 -2188 ($ (-586 (-303)))) (-15 -2188 ($ (-2 (|:| |localSymbols| (-1087)) (|:| -2031 (-586 (-303)))))) (-15 -2188 ($ (-289 (-637)))) (-15 -2188 ($ (-289 (-635)))) (-15 -2188 ($ (-289 (-630)))) (-15 -2188 ($ (-268 (-289 (-637))))) (-15 -2188 ($ (-268 (-289 (-635))))) (-15 -2188 ($ (-268 (-289 (-630))))) (-15 -2188 ($ (-289 (-520)))) (-15 -2188 ($ (-289 (-352)))) (-15 -2188 ($ (-289 (-154 (-352))))) (-15 -2188 ($ (-268 (-289 (-520))))) (-15 -2188 ($ (-268 (-289 (-352))))) (-15 -2188 ($ (-268 (-289 (-154 (-352)))))))) (-1083) (-3 (|:| |fst| (-407)) (|:| -1365 "void")) (-586 (-1083)) (-1087)) (T -371))
-((-2188 (*1 *1 *2) (-12 (-5 *2 (-303)) (-5 *1 (-371 *3 *4 *5 *6)) (-14 *3 (-1083)) (-14 *4 (-3 (|:| |fst| (-407)) (|:| -1365 "void"))) (-14 *5 (-586 (-1083))) (-14 *6 (-1087)))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-586 (-303))) (-5 *1 (-371 *3 *4 *5 *6)) (-14 *3 (-1083)) (-14 *4 (-3 (|:| |fst| (-407)) (|:| -1365 "void"))) (-14 *5 (-586 (-1083))) (-14 *6 (-1087)))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1087)) (|:| -2031 (-586 (-303))))) (-5 *1 (-371 *3 *4 *5 *6)) (-14 *3 (-1083)) (-14 *4 (-3 (|:| |fst| (-407)) (|:| -1365 "void"))) (-14 *5 (-586 (-1083))) (-14 *6 (-1087)))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-289 (-637))) (-5 *1 (-371 *3 *4 *5 *6)) (-14 *3 (-1083)) (-14 *4 (-3 (|:| |fst| (-407)) (|:| -1365 "void"))) (-14 *5 (-586 (-1083))) (-14 *6 (-1087)))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-289 (-635))) (-5 *1 (-371 *3 *4 *5 *6)) (-14 *3 (-1083)) (-14 *4 (-3 (|:| |fst| (-407)) (|:| -1365 "void"))) (-14 *5 (-586 (-1083))) (-14 *6 (-1087)))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-289 (-630))) (-5 *1 (-371 *3 *4 *5 *6)) (-14 *3 (-1083)) (-14 *4 (-3 (|:| |fst| (-407)) (|:| -1365 "void"))) (-14 *5 (-586 (-1083))) (-14 *6 (-1087)))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-268 (-289 (-637)))) (-5 *1 (-371 *3 *4 *5 *6)) (-14 *3 (-1083)) (-14 *4 (-3 (|:| |fst| (-407)) (|:| -1365 "void"))) (-14 *5 (-586 (-1083))) (-14 *6 (-1087)))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-268 (-289 (-635)))) (-5 *1 (-371 *3 *4 *5 *6)) (-14 *3 (-1083)) (-14 *4 (-3 (|:| |fst| (-407)) (|:| -1365 "void"))) (-14 *5 (-586 (-1083))) (-14 *6 (-1087)))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-268 (-289 (-630)))) (-5 *1 (-371 *3 *4 *5 *6)) (-14 *3 (-1083)) (-14 *4 (-3 (|:| |fst| (-407)) (|:| -1365 "void"))) (-14 *5 (-586 (-1083))) (-14 *6 (-1087)))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-289 (-520))) (-5 *1 (-371 *3 *4 *5 *6)) (-14 *3 (-1083)) (-14 *4 (-3 (|:| |fst| (-407)) (|:| -1365 "void"))) (-14 *5 (-586 (-1083))) (-14 *6 (-1087)))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-289 (-352))) (-5 *1 (-371 *3 *4 *5 *6)) (-14 *3 (-1083)) (-14 *4 (-3 (|:| |fst| (-407)) (|:| -1365 "void"))) (-14 *5 (-586 (-1083))) (-14 *6 (-1087)))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-289 (-154 (-352)))) (-5 *1 (-371 *3 *4 *5 *6)) (-14 *3 (-1083)) (-14 *4 (-3 (|:| |fst| (-407)) (|:| -1365 "void"))) (-14 *5 (-586 (-1083))) (-14 *6 (-1087)))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-268 (-289 (-520)))) (-5 *1 (-371 *3 *4 *5 *6)) (-14 *3 (-1083)) (-14 *4 (-3 (|:| |fst| (-407)) (|:| -1365 "void"))) (-14 *5 (-586 (-1083))) (-14 *6 (-1087)))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-268 (-289 (-352)))) (-5 *1 (-371 *3 *4 *5 *6)) (-14 *3 (-1083)) (-14 *4 (-3 (|:| |fst| (-407)) (|:| -1365 "void"))) (-14 *5 (-586 (-1083))) (-14 *6 (-1087)))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-268 (-289 (-154 (-352))))) (-5 *1 (-371 *3 *4 *5 *6)) (-14 *3 (-1083)) (-14 *4 (-3 (|:| |fst| (-407)) (|:| -1365 "void"))) (-14 *5 (-586 (-1083))) (-14 *6 (-1087)))))
-(-13 (-368) (-10 -8 (-15 -2188 ($ (-303))) (-15 -2188 ($ (-586 (-303)))) (-15 -2188 ($ (-2 (|:| |localSymbols| (-1087)) (|:| -2031 (-586 (-303)))))) (-15 -2188 ($ (-289 (-637)))) (-15 -2188 ($ (-289 (-635)))) (-15 -2188 ($ (-289 (-630)))) (-15 -2188 ($ (-268 (-289 (-637))))) (-15 -2188 ($ (-268 (-289 (-635))))) (-15 -2188 ($ (-268 (-289 (-630))))) (-15 -2188 ($ (-289 (-520)))) (-15 -2188 ($ (-289 (-352)))) (-15 -2188 ($ (-289 (-154 (-352))))) (-15 -2188 ($ (-268 (-289 (-520))))) (-15 -2188 ($ (-268 (-289 (-352))))) (-15 -2188 ($ (-268 (-289 (-154 (-352))))))))
-((-1414 (((-108) $ $) NIL)) (-1356 ((|#2| $) 36)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2061 (($ (-380 |#2|)) 84)) (-2703 (((-586 (-2 (|:| -2647 (-706)) (|:| -1892 |#2|) (|:| |num| |#2|))) $) 37)) (-2155 (($ $) 32) (($ $ (-706)) 34)) (-1429 (((-380 |#2|) $) 46)) (-2200 (($ (-586 (-2 (|:| -2647 (-706)) (|:| -1892 |#2|) (|:| |num| |#2|)))) 31)) (-2188 (((-791) $) 120)) (-2211 (($ $) 33) (($ $ (-706)) 35)) (-1530 (((-108) $ $) NIL)) (-1601 (($ |#2| $) 39)))
-(((-372 |#1| |#2|) (-13 (-1012) (-561 (-380 |#2|)) (-10 -8 (-15 -1601 ($ |#2| $)) (-15 -2061 ($ (-380 |#2|))) (-15 -1356 (|#2| $)) (-15 -2703 ((-586 (-2 (|:| -2647 (-706)) (|:| -1892 |#2|) (|:| |num| |#2|))) $)) (-15 -2200 ($ (-586 (-2 (|:| -2647 (-706)) (|:| -1892 |#2|) (|:| |num| |#2|))))) (-15 -2155 ($ $)) (-15 -2211 ($ $)) (-15 -2155 ($ $ (-706))) (-15 -2211 ($ $ (-706))))) (-13 (-336) (-135)) (-1140 |#1|)) (T -372))
-((-1601 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-336) (-135))) (-5 *1 (-372 *3 *2)) (-4 *2 (-1140 *3)))) (-2061 (*1 *1 *2) (-12 (-5 *2 (-380 *4)) (-4 *4 (-1140 *3)) (-4 *3 (-13 (-336) (-135))) (-5 *1 (-372 *3 *4)))) (-1356 (*1 *2 *1) (-12 (-4 *2 (-1140 *3)) (-5 *1 (-372 *3 *2)) (-4 *3 (-13 (-336) (-135))))) (-2703 (*1 *2 *1) (-12 (-4 *3 (-13 (-336) (-135))) (-5 *2 (-586 (-2 (|:| -2647 (-706)) (|:| -1892 *4) (|:| |num| *4)))) (-5 *1 (-372 *3 *4)) (-4 *4 (-1140 *3)))) (-2200 (*1 *1 *2) (-12 (-5 *2 (-586 (-2 (|:| -2647 (-706)) (|:| -1892 *4) (|:| |num| *4)))) (-4 *4 (-1140 *3)) (-4 *3 (-13 (-336) (-135))) (-5 *1 (-372 *3 *4)))) (-2155 (*1 *1 *1) (-12 (-4 *2 (-13 (-336) (-135))) (-5 *1 (-372 *2 *3)) (-4 *3 (-1140 *2)))) (-2211 (*1 *1 *1) (-12 (-4 *2 (-13 (-336) (-135))) (-5 *1 (-372 *2 *3)) (-4 *3 (-1140 *2)))) (-2155 (*1 *1 *1 *2) (-12 (-5 *2 (-706)) (-4 *3 (-13 (-336) (-135))) (-5 *1 (-372 *3 *4)) (-4 *4 (-1140 *3)))) (-2211 (*1 *1 *1 *2) (-12 (-5 *2 (-706)) (-4 *3 (-13 (-336) (-135))) (-5 *1 (-372 *3 *4)) (-4 *4 (-1140 *3)))))
-(-13 (-1012) (-561 (-380 |#2|)) (-10 -8 (-15 -1601 ($ |#2| $)) (-15 -2061 ($ (-380 |#2|))) (-15 -1356 (|#2| $)) (-15 -2703 ((-586 (-2 (|:| -2647 (-706)) (|:| -1892 |#2|) (|:| |num| |#2|))) $)) (-15 -2200 ($ (-586 (-2 (|:| -2647 (-706)) (|:| -1892 |#2|) (|:| |num| |#2|))))) (-15 -2155 ($ $)) (-15 -2211 ($ $)) (-15 -2155 ($ $ (-706))) (-15 -2211 ($ $ (-706)))))
-((-1414 (((-108) $ $) 9 (-3700 (|has| |#1| (-814 (-520))) (|has| |#1| (-814 (-352)))))) (-1272 (((-817 (-352) $) $ (-820 (-352)) (-817 (-352) $)) 15 (|has| |#1| (-814 (-352)))) (((-817 (-520) $) $ (-820 (-520)) (-817 (-520) $)) 14 (|has| |#1| (-814 (-520))))) (-1239 (((-1066) $) 13 (-3700 (|has| |#1| (-814 (-520))) (|has| |#1| (-814 (-352)))))) (-4142 (((-1030) $) 12 (-3700 (|has| |#1| (-814 (-520))) (|has| |#1| (-814 (-352)))))) (-2188 (((-791) $) 11 (-3700 (|has| |#1| (-814 (-520))) (|has| |#1| (-814 (-352)))))) (-1530 (((-108) $ $) 10 (-3700 (|has| |#1| (-814 (-520))) (|has| |#1| (-814 (-352)))))))
-(((-373 |#1|) (-1195) (-1118)) (T -373))
-NIL
-(-13 (-1118) (-10 -7 (IF (|has| |t#1| (-814 (-520))) (-6 (-814 (-520))) |%noBranch|) (IF (|has| |t#1| (-814 (-352))) (-6 (-814 (-352))) |%noBranch|)))
-(((-97) -3700 (|has| |#1| (-814 (-520))) (|has| |#1| (-814 (-352)))) ((-560 (-791)) -3700 (|has| |#1| (-814 (-520))) (|has| |#1| (-814 (-352)))) ((-814 (-352)) |has| |#1| (-814 (-352))) ((-814 (-520)) |has| |#1| (-814 (-520))) ((-1012) -3700 (|has| |#1| (-814 (-520))) (|has| |#1| (-814 (-352)))) ((-1118) . T))
-((-1346 (($ $) 10) (($ $ (-706)) 11)))
-(((-374 |#1|) (-10 -8 (-15 -1346 (|#1| |#1| (-706))) (-15 -1346 (|#1| |#1|))) (-375)) (T -374))
-NIL
-(-10 -8 (-15 -1346 (|#1| |#1| (-706))) (-15 -1346 (|#1| |#1|)))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) 41)) (-2583 (($ $) 40)) (-1671 (((-108) $) 38)) (-1917 (((-3 $ "failed") $ $) 19)) (-3024 (($ $) 73)) (-1507 (((-391 $) $) 72)) (-1327 (((-108) $ $) 59)) (-3961 (($) 17 T CONST)) (-2276 (($ $ $) 55)) (-1540 (((-3 $ "failed") $) 34)) (-2253 (($ $ $) 56)) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) 51)) (-1346 (($ $) 79) (($ $ (-706)) 78)) (-2036 (((-108) $) 71)) (-3989 (((-769 (-849)) $) 81)) (-1537 (((-108) $) 31)) (-3188 (((-3 (-586 $) "failed") (-586 $) $) 52)) (-2222 (($ $ $) 46) (($ (-586 $)) 45)) (-1239 (((-1066) $) 9)) (-3093 (($ $) 70)) (-4142 (((-1030) $) 10)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) 44)) (-2257 (($ $ $) 48) (($ (-586 $)) 47)) (-1916 (((-391 $) $) 74)) (-1283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2230 (((-3 $ "failed") $ $) 42)) (-2608 (((-3 (-586 $) "failed") (-586 $) $) 50)) (-3704 (((-706) $) 58)) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) 57)) (-2062 (((-3 (-706) "failed") $ $) 80)) (-2188 (((-791) $) 11) (($ (-520)) 28) (($ $) 43) (($ (-380 (-520))) 65)) (-3796 (((-3 $ "failed") $) 82)) (-3251 (((-706)) 29)) (-2559 (((-108) $ $) 39)) (-3504 (($ $ (-849)) 26) (($ $ (-706)) 33) (($ $ (-520)) 69)) (-3560 (($) 18 T CONST)) (-3570 (($) 30 T CONST)) (-1530 (((-108) $ $) 6)) (-1619 (($ $ $) 64)) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-706)) 32) (($ $ (-520)) 68)) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ $ $) 24) (($ $ (-380 (-520))) 67) (($ (-380 (-520)) $) 66)))
-(((-375) (-1195)) (T -375))
-((-3989 (*1 *2 *1) (-12 (-4 *1 (-375)) (-5 *2 (-769 (-849))))) (-2062 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-375)) (-5 *2 (-706)))) (-1346 (*1 *1 *1) (-4 *1 (-375))) (-1346 (*1 *1 *1 *2) (-12 (-4 *1 (-375)) (-5 *2 (-706)))))
-(-13 (-336) (-133) (-10 -8 (-15 -3989 ((-769 (-849)) $)) (-15 -2062 ((-3 (-706) "failed") $ $)) (-15 -1346 ($ $)) (-15 -1346 ($ $ (-706)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-380 (-520))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-124) . T) ((-133) . T) ((-560 (-791)) . T) ((-157) . T) ((-219) . T) ((-264) . T) ((-281) . T) ((-336) . T) ((-424) . T) ((-512) . T) ((-588 #0#) . T) ((-588 $) . T) ((-653 #0#) . T) ((-653 $) . T) ((-662) . T) ((-848) . T) ((-975 #0#) . T) ((-975 $) . T) ((-969) . T) ((-976) . T) ((-1024) . T) ((-1012) . T) ((-1122) . T))
-((-3066 (($ (-520) (-520)) 11) (($ (-520) (-520) (-849)) NIL)) (-2850 (((-849)) 16) (((-849) (-849)) NIL)))
-(((-376 |#1|) (-10 -8 (-15 -2850 ((-849) (-849))) (-15 -2850 ((-849))) (-15 -3066 (|#1| (-520) (-520) (-849))) (-15 -3066 (|#1| (-520) (-520)))) (-377)) (T -376))
-((-2850 (*1 *2) (-12 (-5 *2 (-849)) (-5 *1 (-376 *3)) (-4 *3 (-377)))) (-2850 (*1 *2 *2) (-12 (-5 *2 (-849)) (-5 *1 (-376 *3)) (-4 *3 (-377)))))
-(-10 -8 (-15 -2850 ((-849) (-849))) (-15 -2850 ((-849))) (-15 -3066 (|#1| (-520) (-520) (-849))) (-15 -3066 (|#1| (-520) (-520))))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-4040 (((-520) $) 89)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) 41)) (-2583 (($ $) 40)) (-1671 (((-108) $) 38)) (-2406 (($ $) 87)) (-1917 (((-3 $ "failed") $ $) 19)) (-3024 (($ $) 73)) (-1507 (((-391 $) $) 72)) (-1927 (($ $) 97)) (-1327 (((-108) $ $) 59)) (-2804 (((-520) $) 114)) (-3961 (($) 17 T CONST)) (-1650 (($ $) 86)) (-1296 (((-3 (-520) "failed") $) 102) (((-3 (-380 (-520)) "failed") $) 99)) (-1482 (((-520) $) 101) (((-380 (-520)) $) 98)) (-2276 (($ $ $) 55)) (-1540 (((-3 $ "failed") $) 34)) (-2253 (($ $ $) 56)) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) 51)) (-2036 (((-108) $) 71)) (-2173 (((-849)) 130) (((-849) (-849)) 127 (|has| $ (-6 -4220)))) (-2328 (((-108) $) 112)) (-1272 (((-817 (-352) $) $ (-820 (-352)) (-817 (-352) $)) 93)) (-3989 (((-520) $) 136)) (-1537 (((-108) $) 31)) (-2322 (($ $ (-520)) 96)) (-1434 (($ $) 92)) (-3469 (((-108) $) 113)) (-3188 (((-3 (-586 $) "failed") (-586 $) $) 52)) (-2809 (($ $ $) 111) (($) 124 (-12 (-2399 (|has| $ (-6 -4220))) (-2399 (|has| $ (-6 -4212)))))) (-2446 (($ $ $) 110) (($) 123 (-12 (-2399 (|has| $ (-6 -4220))) (-2399 (|has| $ (-6 -4212)))))) (-3352 (((-520) $) 133)) (-2222 (($ $ $) 46) (($ (-586 $)) 45)) (-1239 (((-1066) $) 9)) (-3093 (($ $) 70)) (-2344 (((-849) (-520)) 126 (|has| $ (-6 -4220)))) (-4142 (((-1030) $) 10)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) 44)) (-2257 (($ $ $) 48) (($ (-586 $)) 47)) (-4122 (($ $) 88)) (-1626 (($ $) 90)) (-3066 (($ (-520) (-520)) 138) (($ (-520) (-520) (-849)) 137)) (-1916 (((-391 $) $) 74)) (-1283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2230 (((-3 $ "failed") $ $) 42)) (-2608 (((-3 (-586 $) "failed") (-586 $) $) 50)) (-2647 (((-520) $) 134)) (-3704 (((-706) $) 58)) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) 57)) (-2850 (((-849)) 131) (((-849) (-849)) 128 (|has| $ (-6 -4220)))) (-2298 (((-849) (-520)) 125 (|has| $ (-6 -4220)))) (-1429 (((-352) $) 105) (((-201) $) 104) (((-820 (-352)) $) 94)) (-2188 (((-791) $) 11) (($ (-520)) 28) (($ $) 43) (($ (-380 (-520))) 65) (($ (-520)) 103) (($ (-380 (-520))) 100)) (-3251 (((-706)) 29)) (-3370 (($ $) 91)) (-1567 (((-849)) 132) (((-849) (-849)) 129 (|has| $ (-6 -4220)))) (-3349 (((-849)) 135)) (-2559 (((-108) $ $) 39)) (-2458 (($ $) 115)) (-3504 (($ $ (-849)) 26) (($ $ (-706)) 33) (($ $ (-520)) 69)) (-3560 (($) 18 T CONST)) (-3570 (($) 30 T CONST)) (-1573 (((-108) $ $) 108)) (-1557 (((-108) $ $) 107)) (-1530 (((-108) $ $) 6)) (-1565 (((-108) $ $) 109)) (-1548 (((-108) $ $) 106)) (-1619 (($ $ $) 64)) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-706)) 32) (($ $ (-520)) 68) (($ $ (-380 (-520))) 95)) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ $ $) 24) (($ $ (-380 (-520))) 67) (($ (-380 (-520)) $) 66)))
-(((-377) (-1195)) (T -377))
-((-3066 (*1 *1 *2 *2) (-12 (-5 *2 (-520)) (-4 *1 (-377)))) (-3066 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-520)) (-5 *3 (-849)) (-4 *1 (-377)))) (-3989 (*1 *2 *1) (-12 (-4 *1 (-377)) (-5 *2 (-520)))) (-3349 (*1 *2) (-12 (-4 *1 (-377)) (-5 *2 (-849)))) (-2647 (*1 *2 *1) (-12 (-4 *1 (-377)) (-5 *2 (-520)))) (-3352 (*1 *2 *1) (-12 (-4 *1 (-377)) (-5 *2 (-520)))) (-1567 (*1 *2) (-12 (-4 *1 (-377)) (-5 *2 (-849)))) (-2850 (*1 *2) (-12 (-4 *1 (-377)) (-5 *2 (-849)))) (-2173 (*1 *2) (-12 (-4 *1 (-377)) (-5 *2 (-849)))) (-1567 (*1 *2 *2) (-12 (-5 *2 (-849)) (|has| *1 (-6 -4220)) (-4 *1 (-377)))) (-2850 (*1 *2 *2) (-12 (-5 *2 (-849)) (|has| *1 (-6 -4220)) (-4 *1 (-377)))) (-2173 (*1 *2 *2) (-12 (-5 *2 (-849)) (|has| *1 (-6 -4220)) (-4 *1 (-377)))) (-2344 (*1 *2 *3) (-12 (-5 *3 (-520)) (|has| *1 (-6 -4220)) (-4 *1 (-377)) (-5 *2 (-849)))) (-2298 (*1 *2 *3) (-12 (-5 *3 (-520)) (|has| *1 (-6 -4220)) (-4 *1 (-377)) (-5 *2 (-849)))) (-2809 (*1 *1) (-12 (-4 *1 (-377)) (-2399 (|has| *1 (-6 -4220))) (-2399 (|has| *1 (-6 -4212))))) (-2446 (*1 *1) (-12 (-4 *1 (-377)) (-2399 (|has| *1 (-6 -4220))) (-2399 (|has| *1 (-6 -4212))))))
-(-13 (-978) (-10 -8 (-6 -3890) (-15 -3066 ($ (-520) (-520))) (-15 -3066 ($ (-520) (-520) (-849))) (-15 -3989 ((-520) $)) (-15 -3349 ((-849))) (-15 -2647 ((-520) $)) (-15 -3352 ((-520) $)) (-15 -1567 ((-849))) (-15 -2850 ((-849))) (-15 -2173 ((-849))) (IF (|has| $ (-6 -4220)) (PROGN (-15 -1567 ((-849) (-849))) (-15 -2850 ((-849) (-849))) (-15 -2173 ((-849) (-849))) (-15 -2344 ((-849) (-520))) (-15 -2298 ((-849) (-520)))) |%noBranch|) (IF (|has| $ (-6 -4212)) |%noBranch| (IF (|has| $ (-6 -4220)) |%noBranch| (PROGN (-15 -2809 ($)) (-15 -2446 ($)))))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-380 (-520))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-124) . T) ((-135) . T) ((-560 (-791)) . T) ((-157) . T) ((-561 (-201)) . T) ((-561 (-352)) . T) ((-561 (-820 (-352))) . T) ((-219) . T) ((-264) . T) ((-281) . T) ((-336) . T) ((-424) . T) ((-512) . T) ((-588 #0#) . T) ((-588 $) . T) ((-653 #0#) . T) ((-653 $) . T) ((-662) . T) ((-726) . T) ((-727) . T) ((-729) . T) ((-731) . T) ((-781) . T) ((-783) . T) ((-814 (-352)) . T) ((-848) . T) ((-926) . T) ((-945) . T) ((-978) . T) ((-960 (-380 (-520))) . T) ((-960 (-520)) . T) ((-975 #0#) . T) ((-975 $) . T) ((-969) . T) ((-976) . T) ((-1024) . T) ((-1012) . T) ((-1122) . T))
-((-1389 (((-391 |#2|) (-1 |#2| |#1|) (-391 |#1|)) 20)))
-(((-378 |#1| |#2|) (-10 -7 (-15 -1389 ((-391 |#2|) (-1 |#2| |#1|) (-391 |#1|)))) (-512) (-512)) (T -378))
-((-1389 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-391 *5)) (-4 *5 (-512)) (-4 *6 (-512)) (-5 *2 (-391 *6)) (-5 *1 (-378 *5 *6)))))
-(-10 -7 (-15 -1389 ((-391 |#2|) (-1 |#2| |#1|) (-391 |#1|))))
-((-1389 (((-380 |#2|) (-1 |#2| |#1|) (-380 |#1|)) 13)))
-(((-379 |#1| |#2|) (-10 -7 (-15 -1389 ((-380 |#2|) (-1 |#2| |#1|) (-380 |#1|)))) (-512) (-512)) (T -379))
-((-1389 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-380 *5)) (-4 *5 (-512)) (-4 *6 (-512)) (-5 *2 (-380 *6)) (-5 *1 (-379 *5 *6)))))
-(-10 -7 (-15 -1389 ((-380 |#2|) (-1 |#2| |#1|) (-380 |#1|))))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) 13)) (-4040 ((|#1| $) 21 (|has| |#1| (-281)))) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) NIL)) (-2583 (($ $) NIL)) (-1671 (((-108) $) NIL)) (-1917 (((-3 $ "failed") $ $) NIL)) (-4119 (((-391 (-1079 $)) (-1079 $)) NIL (|has| |#1| (-837)))) (-3024 (($ $) NIL)) (-1507 (((-391 $) $) NIL)) (-3481 (((-3 (-586 (-1079 $)) "failed") (-586 (-1079 $)) (-1079 $)) NIL (|has| |#1| (-837)))) (-1327 (((-108) $ $) NIL)) (-2804 (((-520) $) NIL (|has| |#1| (-756)))) (-3961 (($) NIL T CONST)) (-1296 (((-3 |#1| "failed") $) 17) (((-3 (-1083) "failed") $) NIL (|has| |#1| (-960 (-1083)))) (((-3 (-380 (-520)) "failed") $) 70 (|has| |#1| (-960 (-520)))) (((-3 (-520) "failed") $) NIL (|has| |#1| (-960 (-520))))) (-1482 ((|#1| $) 15) (((-1083) $) NIL (|has| |#1| (-960 (-1083)))) (((-380 (-520)) $) 67 (|has| |#1| (-960 (-520)))) (((-520) $) NIL (|has| |#1| (-960 (-520))))) (-2276 (($ $ $) NIL)) (-2756 (((-626 (-520)) (-626 $)) NIL (|has| |#1| (-582 (-520)))) (((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 $) (-1164 $)) NIL (|has| |#1| (-582 (-520)))) (((-2 (|:| -3927 (-626 |#1|)) (|:| |vec| (-1164 |#1|))) (-626 $) (-1164 $)) NIL) (((-626 |#1|) (-626 $)) NIL)) (-1540 (((-3 $ "failed") $) 50)) (-3249 (($) NIL (|has| |#1| (-505)))) (-2253 (($ $ $) NIL)) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) NIL)) (-2036 (((-108) $) NIL)) (-2328 (((-108) $) NIL (|has| |#1| (-756)))) (-1272 (((-817 (-520) $) $ (-820 (-520)) (-817 (-520) $)) NIL (|has| |#1| (-814 (-520)))) (((-817 (-352) $) $ (-820 (-352)) (-817 (-352) $)) NIL (|has| |#1| (-814 (-352))))) (-1537 (((-108) $) 64)) (-4115 (($ $) NIL)) (-2800 ((|#1| $) 71)) (-1394 (((-3 $ "failed") $) NIL (|has| |#1| (-1059)))) (-3469 (((-108) $) NIL (|has| |#1| (-756)))) (-3188 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-2809 (($ $ $) NIL (|has| |#1| (-783)))) (-2446 (($ $ $) NIL (|has| |#1| (-783)))) (-1389 (($ (-1 |#1| |#1|) $) NIL)) (-2222 (($ $ $) NIL) (($ (-586 $)) NIL)) (-1239 (((-1066) $) NIL)) (-3093 (($ $) NIL)) (-3794 (($) NIL (|has| |#1| (-1059)) CONST)) (-4142 (((-1030) $) NIL)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) 97)) (-2257 (($ $ $) NIL) (($ (-586 $)) NIL)) (-4122 (($ $) NIL (|has| |#1| (-281)))) (-1626 ((|#1| $) 28 (|has| |#1| (-505)))) (-4133 (((-391 (-1079 $)) (-1079 $)) 133 (|has| |#1| (-837)))) (-2017 (((-391 (-1079 $)) (-1079 $)) 129 (|has| |#1| (-837)))) (-1916 (((-391 $) $) NIL)) (-1283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2230 (((-3 $ "failed") $ $) NIL)) (-2608 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-2286 (($ $ (-586 |#1|) (-586 |#1|)) NIL (|has| |#1| (-283 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-283 |#1|))) (($ $ (-268 |#1|)) NIL (|has| |#1| (-283 |#1|))) (($ $ (-586 (-268 |#1|))) NIL (|has| |#1| (-283 |#1|))) (($ $ (-586 (-1083)) (-586 |#1|)) NIL (|has| |#1| (-481 (-1083) |#1|))) (($ $ (-1083) |#1|) NIL (|has| |#1| (-481 (-1083) |#1|)))) (-3704 (((-706) $) NIL)) (-2543 (($ $ |#1|) NIL (|has| |#1| (-260 |#1| |#1|)))) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) NIL)) (-2155 (($ $) NIL (|has| |#1| (-209))) (($ $ (-706)) NIL (|has| |#1| (-209))) (($ $ (-1083)) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-586 (-1083))) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-1083) (-706)) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-586 (-1083)) (-586 (-706))) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-1 |#1| |#1|) (-706)) NIL) (($ $ (-1 |#1| |#1|)) 63)) (-3556 (($ $) NIL)) (-2811 ((|#1| $) 73)) (-1429 (((-820 (-520)) $) NIL (|has| |#1| (-561 (-820 (-520))))) (((-820 (-352)) $) NIL (|has| |#1| (-561 (-820 (-352))))) (((-496) $) NIL (|has| |#1| (-561 (-496)))) (((-352) $) NIL (|has| |#1| (-945))) (((-201) $) NIL (|has| |#1| (-945)))) (-3784 (((-3 (-1164 $) "failed") (-626 $)) 113 (-12 (|has| $ (-133)) (|has| |#1| (-837))))) (-2188 (((-791) $) NIL) (($ (-520)) NIL) (($ $) NIL) (($ (-380 (-520))) NIL) (($ |#1|) 10) (($ (-1083)) NIL (|has| |#1| (-960 (-1083))))) (-3796 (((-3 $ "failed") $) 99 (-3700 (-12 (|has| $ (-133)) (|has| |#1| (-837))) (|has| |#1| (-133))))) (-3251 (((-706)) 100)) (-3370 ((|#1| $) 26 (|has| |#1| (-505)))) (-2559 (((-108) $ $) NIL)) (-2458 (($ $) NIL (|has| |#1| (-756)))) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL)) (-3560 (($) 22 T CONST)) (-3570 (($) 8 T CONST)) (-3610 (((-1066) $) 43 (-12 (|has| |#1| (-505)) (|has| |#1| (-764)))) (((-1066) $ (-108)) 44 (-12 (|has| |#1| (-505)) (|has| |#1| (-764)))) (((-1169) (-758) $) 45 (-12 (|has| |#1| (-505)) (|has| |#1| (-764)))) (((-1169) (-758) $ (-108)) 46 (-12 (|has| |#1| (-505)) (|has| |#1| (-764))))) (-2211 (($ $) NIL (|has| |#1| (-209))) (($ $ (-706)) NIL (|has| |#1| (-209))) (($ $ (-1083)) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-586 (-1083))) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-1083) (-706)) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-586 (-1083)) (-586 (-706))) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-1 |#1| |#1|) (-706)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1573 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1557 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1530 (((-108) $ $) 56)) (-1565 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1548 (((-108) $ $) 24 (|has| |#1| (-783)))) (-1619 (($ $ $) 124) (($ |#1| |#1|) 52)) (-1611 (($ $) 25) (($ $ $) 55)) (-1601 (($ $ $) 53)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) 123)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) 60) (($ $ $) 57) (($ $ (-380 (-520))) NIL) (($ (-380 (-520)) $) NIL) (($ |#1| $) 61) (($ $ |#1|) 85)))
-(((-380 |#1|) (-13 (-917 |#1|) (-10 -7 (IF (|has| |#1| (-505)) (IF (|has| |#1| (-764)) (-6 (-764)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4216)) (IF (|has| |#1| (-424)) (IF (|has| |#1| (-6 -4227)) (-6 -4216) |%noBranch|) |%noBranch|) |%noBranch|))) (-512)) (T -380))
-NIL
-(-13 (-917 |#1|) (-10 -7 (IF (|has| |#1| (-505)) (IF (|has| |#1| (-764)) (-6 (-764)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4216)) (IF (|has| |#1| (-424)) (IF (|has| |#1| (-6 -4227)) (-6 -4216) |%noBranch|) |%noBranch|) |%noBranch|)))
-((-1405 (((-626 |#2|) (-1164 $)) NIL) (((-626 |#2|)) 18)) (-3705 (($ (-1164 |#2|) (-1164 $)) NIL) (($ (-1164 |#2|)) 26)) (-3604 (((-626 |#2|) $ (-1164 $)) NIL) (((-626 |#2|) $) 22)) (-2034 ((|#3| $) 59)) (-2732 ((|#2| (-1164 $)) NIL) ((|#2|) 20)) (-3790 (((-1164 |#2|) $ (-1164 $)) NIL) (((-626 |#2|) (-1164 $) (-1164 $)) NIL) (((-1164 |#2|) $) NIL) (((-626 |#2|) (-1164 $)) 24)) (-1429 (((-1164 |#2|) $) 11) (($ (-1164 |#2|)) 13)) (-2948 ((|#3| $) 51)))
-(((-381 |#1| |#2| |#3|) (-10 -8 (-15 -3604 ((-626 |#2|) |#1|)) (-15 -2732 (|#2|)) (-15 -1405 ((-626 |#2|))) (-15 -1429 (|#1| (-1164 |#2|))) (-15 -1429 ((-1164 |#2|) |#1|)) (-15 -3705 (|#1| (-1164 |#2|))) (-15 -3790 ((-626 |#2|) (-1164 |#1|))) (-15 -3790 ((-1164 |#2|) |#1|)) (-15 -2034 (|#3| |#1|)) (-15 -2948 (|#3| |#1|)) (-15 -1405 ((-626 |#2|) (-1164 |#1|))) (-15 -2732 (|#2| (-1164 |#1|))) (-15 -3705 (|#1| (-1164 |#2|) (-1164 |#1|))) (-15 -3790 ((-626 |#2|) (-1164 |#1|) (-1164 |#1|))) (-15 -3790 ((-1164 |#2|) |#1| (-1164 |#1|))) (-15 -3604 ((-626 |#2|) |#1| (-1164 |#1|)))) (-382 |#2| |#3|) (-157) (-1140 |#2|)) (T -381))
-((-1405 (*1 *2) (-12 (-4 *4 (-157)) (-4 *5 (-1140 *4)) (-5 *2 (-626 *4)) (-5 *1 (-381 *3 *4 *5)) (-4 *3 (-382 *4 *5)))) (-2732 (*1 *2) (-12 (-4 *4 (-1140 *2)) (-4 *2 (-157)) (-5 *1 (-381 *3 *2 *4)) (-4 *3 (-382 *2 *4)))))
-(-10 -8 (-15 -3604 ((-626 |#2|) |#1|)) (-15 -2732 (|#2|)) (-15 -1405 ((-626 |#2|))) (-15 -1429 (|#1| (-1164 |#2|))) (-15 -1429 ((-1164 |#2|) |#1|)) (-15 -3705 (|#1| (-1164 |#2|))) (-15 -3790 ((-626 |#2|) (-1164 |#1|))) (-15 -3790 ((-1164 |#2|) |#1|)) (-15 -2034 (|#3| |#1|)) (-15 -2948 (|#3| |#1|)) (-15 -1405 ((-626 |#2|) (-1164 |#1|))) (-15 -2732 (|#2| (-1164 |#1|))) (-15 -3705 (|#1| (-1164 |#2|) (-1164 |#1|))) (-15 -3790 ((-626 |#2|) (-1164 |#1|) (-1164 |#1|))) (-15 -3790 ((-1164 |#2|) |#1| (-1164 |#1|))) (-15 -3604 ((-626 |#2|) |#1| (-1164 |#1|))))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-1405 (((-626 |#1|) (-1164 $)) 46) (((-626 |#1|)) 61)) (-1864 ((|#1| $) 52)) (-1917 (((-3 $ "failed") $ $) 19)) (-3961 (($) 17 T CONST)) (-3705 (($ (-1164 |#1|) (-1164 $)) 48) (($ (-1164 |#1|)) 64)) (-3604 (((-626 |#1|) $ (-1164 $)) 53) (((-626 |#1|) $) 59)) (-1540 (((-3 $ "failed") $) 34)) (-3160 (((-849)) 54)) (-1537 (((-108) $) 31)) (-1434 ((|#1| $) 51)) (-2034 ((|#2| $) 44 (|has| |#1| (-336)))) (-1239 (((-1066) $) 9)) (-4142 (((-1030) $) 10)) (-2732 ((|#1| (-1164 $)) 47) ((|#1|) 60)) (-3790 (((-1164 |#1|) $ (-1164 $)) 50) (((-626 |#1|) (-1164 $) (-1164 $)) 49) (((-1164 |#1|) $) 66) (((-626 |#1|) (-1164 $)) 65)) (-1429 (((-1164 |#1|) $) 63) (($ (-1164 |#1|)) 62)) (-2188 (((-791) $) 11) (($ (-520)) 28) (($ |#1|) 37)) (-3796 (((-3 $ "failed") $) 43 (|has| |#1| (-133)))) (-2948 ((|#2| $) 45)) (-3251 (((-706)) 29)) (-1831 (((-1164 $)) 67)) (-3504 (($ $ (-849)) 26) (($ $ (-706)) 33)) (-3560 (($) 18 T CONST)) (-3570 (($) 30 T CONST)) (-1530 (((-108) $ $) 6)) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-706)) 32)) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38)))
-(((-382 |#1| |#2|) (-1195) (-157) (-1140 |t#1|)) (T -382))
-((-1831 (*1 *2) (-12 (-4 *3 (-157)) (-4 *4 (-1140 *3)) (-5 *2 (-1164 *1)) (-4 *1 (-382 *3 *4)))) (-3790 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-157)) (-4 *4 (-1140 *3)) (-5 *2 (-1164 *3)))) (-3790 (*1 *2 *3) (-12 (-5 *3 (-1164 *1)) (-4 *1 (-382 *4 *5)) (-4 *4 (-157)) (-4 *5 (-1140 *4)) (-5 *2 (-626 *4)))) (-3705 (*1 *1 *2) (-12 (-5 *2 (-1164 *3)) (-4 *3 (-157)) (-4 *1 (-382 *3 *4)) (-4 *4 (-1140 *3)))) (-1429 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-157)) (-4 *4 (-1140 *3)) (-5 *2 (-1164 *3)))) (-1429 (*1 *1 *2) (-12 (-5 *2 (-1164 *3)) (-4 *3 (-157)) (-4 *1 (-382 *3 *4)) (-4 *4 (-1140 *3)))) (-1405 (*1 *2) (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-157)) (-4 *4 (-1140 *3)) (-5 *2 (-626 *3)))) (-2732 (*1 *2) (-12 (-4 *1 (-382 *2 *3)) (-4 *3 (-1140 *2)) (-4 *2 (-157)))) (-3604 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-157)) (-4 *4 (-1140 *3)) (-5 *2 (-626 *3)))))
-(-13 (-343 |t#1| |t#2|) (-10 -8 (-15 -1831 ((-1164 $))) (-15 -3790 ((-1164 |t#1|) $)) (-15 -3790 ((-626 |t#1|) (-1164 $))) (-15 -3705 ($ (-1164 |t#1|))) (-15 -1429 ((-1164 |t#1|) $)) (-15 -1429 ($ (-1164 |t#1|))) (-15 -1405 ((-626 |t#1|))) (-15 -2732 (|t#1|)) (-15 -3604 ((-626 |t#1|) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-560 (-791)) . T) ((-343 |#1| |#2|) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-653 |#1|) . T) ((-662) . T) ((-975 |#1|) . T) ((-969) . T) ((-976) . T) ((-1024) . T) ((-1012) . T))
-((-1296 (((-3 |#2| "failed") $) NIL) (((-3 (-380 (-520)) "failed") $) 27) (((-3 (-520) "failed") $) 19)) (-1482 ((|#2| $) NIL) (((-380 (-520)) $) 24) (((-520) $) 14)) (-2188 (($ |#2|) NIL) (($ (-380 (-520))) 22) (($ (-520)) 11)))
-(((-383 |#1| |#2|) (-10 -8 (-15 -1482 ((-520) |#1|)) (-15 -1296 ((-3 (-520) "failed") |#1|)) (-15 -2188 (|#1| (-520))) (-15 -1482 ((-380 (-520)) |#1|)) (-15 -1296 ((-3 (-380 (-520)) "failed") |#1|)) (-15 -2188 (|#1| (-380 (-520)))) (-15 -2188 (|#1| |#2|)) (-15 -1296 ((-3 |#2| "failed") |#1|)) (-15 -1482 (|#2| |#1|))) (-384 |#2|) (-1118)) (T -383))
-NIL
-(-10 -8 (-15 -1482 ((-520) |#1|)) (-15 -1296 ((-3 (-520) "failed") |#1|)) (-15 -2188 (|#1| (-520))) (-15 -1482 ((-380 (-520)) |#1|)) (-15 -1296 ((-3 (-380 (-520)) "failed") |#1|)) (-15 -2188 (|#1| (-380 (-520)))) (-15 -2188 (|#1| |#2|)) (-15 -1296 ((-3 |#2| "failed") |#1|)) (-15 -1482 (|#2| |#1|)))
-((-1296 (((-3 |#1| "failed") $) 7) (((-3 (-380 (-520)) "failed") $) 16 (|has| |#1| (-960 (-380 (-520))))) (((-3 (-520) "failed") $) 13 (|has| |#1| (-960 (-520))))) (-1482 ((|#1| $) 8) (((-380 (-520)) $) 15 (|has| |#1| (-960 (-380 (-520))))) (((-520) $) 12 (|has| |#1| (-960 (-520))))) (-2188 (($ |#1|) 6) (($ (-380 (-520))) 17 (|has| |#1| (-960 (-380 (-520))))) (($ (-520)) 14 (|has| |#1| (-960 (-520))))))
-(((-384 |#1|) (-1195) (-1118)) (T -384))
-NIL
-(-13 (-960 |t#1|) (-10 -7 (IF (|has| |t#1| (-960 (-520))) (-6 (-960 (-520))) |%noBranch|) (IF (|has| |t#1| (-960 (-380 (-520)))) (-6 (-960 (-380 (-520)))) |%noBranch|)))
-(((-960 (-380 (-520))) |has| |#1| (-960 (-380 (-520)))) ((-960 (-520)) |has| |#1| (-960 (-520))) ((-960 |#1|) . T))
-((-1389 (((-386 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-386 |#1| |#2| |#3| |#4|)) 33)))
-(((-385 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1389 ((-386 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-386 |#1| |#2| |#3| |#4|)))) (-281) (-917 |#1|) (-1140 |#2|) (-13 (-382 |#2| |#3|) (-960 |#2|)) (-281) (-917 |#5|) (-1140 |#6|) (-13 (-382 |#6| |#7|) (-960 |#6|))) (T -385))
-((-1389 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-386 *5 *6 *7 *8)) (-4 *5 (-281)) (-4 *6 (-917 *5)) (-4 *7 (-1140 *6)) (-4 *8 (-13 (-382 *6 *7) (-960 *6))) (-4 *9 (-281)) (-4 *10 (-917 *9)) (-4 *11 (-1140 *10)) (-5 *2 (-386 *9 *10 *11 *12)) (-5 *1 (-385 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-382 *10 *11) (-960 *10))))))
-(-10 -7 (-15 -1389 ((-386 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-386 |#1| |#2| |#3| |#4|))))
-((-1414 (((-108) $ $) NIL)) (-3961 (($) NIL T CONST)) (-1540 (((-3 $ "failed") $) NIL)) (-1257 ((|#4| (-706) (-1164 |#4|)) 55)) (-1537 (((-108) $) NIL)) (-2800 (((-1164 |#4|) $) 17)) (-1434 ((|#2| $) 53)) (-2044 (($ $) 136)) (-1239 (((-1066) $) NIL)) (-3093 (($ $) 98)) (-1273 (($ (-1164 |#4|)) 97)) (-4142 (((-1030) $) NIL)) (-2811 ((|#1| $) 18)) (-2945 (($ $ $) NIL)) (-3607 (($ $ $) NIL)) (-2188 (((-791) $) 131)) (-1831 (((-1164 |#4|) $) 126)) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL)) (-3570 (($) 11 T CONST)) (-1530 (((-108) $ $) 39)) (-1619 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) 119)) (* (($ $ $) 118)))
-(((-386 |#1| |#2| |#3| |#4|) (-13 (-445) (-10 -8 (-15 -1273 ($ (-1164 |#4|))) (-15 -1831 ((-1164 |#4|) $)) (-15 -1434 (|#2| $)) (-15 -2800 ((-1164 |#4|) $)) (-15 -2811 (|#1| $)) (-15 -2044 ($ $)) (-15 -1257 (|#4| (-706) (-1164 |#4|))))) (-281) (-917 |#1|) (-1140 |#2|) (-13 (-382 |#2| |#3|) (-960 |#2|))) (T -386))
-((-1273 (*1 *1 *2) (-12 (-5 *2 (-1164 *6)) (-4 *6 (-13 (-382 *4 *5) (-960 *4))) (-4 *4 (-917 *3)) (-4 *5 (-1140 *4)) (-4 *3 (-281)) (-5 *1 (-386 *3 *4 *5 *6)))) (-1831 (*1 *2 *1) (-12 (-4 *3 (-281)) (-4 *4 (-917 *3)) (-4 *5 (-1140 *4)) (-5 *2 (-1164 *6)) (-5 *1 (-386 *3 *4 *5 *6)) (-4 *6 (-13 (-382 *4 *5) (-960 *4))))) (-1434 (*1 *2 *1) (-12 (-4 *4 (-1140 *2)) (-4 *2 (-917 *3)) (-5 *1 (-386 *3 *2 *4 *5)) (-4 *3 (-281)) (-4 *5 (-13 (-382 *2 *4) (-960 *2))))) (-2800 (*1 *2 *1) (-12 (-4 *3 (-281)) (-4 *4 (-917 *3)) (-4 *5 (-1140 *4)) (-5 *2 (-1164 *6)) (-5 *1 (-386 *3 *4 *5 *6)) (-4 *6 (-13 (-382 *4 *5) (-960 *4))))) (-2811 (*1 *2 *1) (-12 (-4 *3 (-917 *2)) (-4 *4 (-1140 *3)) (-4 *2 (-281)) (-5 *1 (-386 *2 *3 *4 *5)) (-4 *5 (-13 (-382 *3 *4) (-960 *3))))) (-2044 (*1 *1 *1) (-12 (-4 *2 (-281)) (-4 *3 (-917 *2)) (-4 *4 (-1140 *3)) (-5 *1 (-386 *2 *3 *4 *5)) (-4 *5 (-13 (-382 *3 *4) (-960 *3))))) (-1257 (*1 *2 *3 *4) (-12 (-5 *3 (-706)) (-5 *4 (-1164 *2)) (-4 *5 (-281)) (-4 *6 (-917 *5)) (-4 *2 (-13 (-382 *6 *7) (-960 *6))) (-5 *1 (-386 *5 *6 *7 *2)) (-4 *7 (-1140 *6)))))
-(-13 (-445) (-10 -8 (-15 -1273 ($ (-1164 |#4|))) (-15 -1831 ((-1164 |#4|) $)) (-15 -1434 (|#2| $)) (-15 -2800 ((-1164 |#4|) $)) (-15 -2811 (|#1| $)) (-15 -2044 ($ $)) (-15 -1257 (|#4| (-706) (-1164 |#4|)))))
-((-1414 (((-108) $ $) NIL)) (-3961 (($) NIL T CONST)) (-1540 (((-3 $ "failed") $) NIL)) (-1537 (((-108) $) NIL)) (-1434 ((|#2| $) 60)) (-3371 (($ (-1164 |#4|)) 25) (($ (-386 |#1| |#2| |#3| |#4|)) 75 (|has| |#4| (-960 |#2|)))) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2188 (((-791) $) 34)) (-1831 (((-1164 |#4|) $) 26)) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (-3570 (($) 23 T CONST)) (-1530 (((-108) $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (* (($ $ $) 72)))
-(((-387 |#1| |#2| |#3| |#4| |#5|) (-13 (-662) (-10 -8 (-15 -1831 ((-1164 |#4|) $)) (-15 -1434 (|#2| $)) (-15 -3371 ($ (-1164 |#4|))) (IF (|has| |#4| (-960 |#2|)) (-15 -3371 ($ (-386 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-281) (-917 |#1|) (-1140 |#2|) (-382 |#2| |#3|) (-1164 |#4|)) (T -387))
-((-1831 (*1 *2 *1) (-12 (-4 *3 (-281)) (-4 *4 (-917 *3)) (-4 *5 (-1140 *4)) (-5 *2 (-1164 *6)) (-5 *1 (-387 *3 *4 *5 *6 *7)) (-4 *6 (-382 *4 *5)) (-14 *7 *2))) (-1434 (*1 *2 *1) (-12 (-4 *4 (-1140 *2)) (-4 *2 (-917 *3)) (-5 *1 (-387 *3 *2 *4 *5 *6)) (-4 *3 (-281)) (-4 *5 (-382 *2 *4)) (-14 *6 (-1164 *5)))) (-3371 (*1 *1 *2) (-12 (-5 *2 (-1164 *6)) (-4 *6 (-382 *4 *5)) (-4 *4 (-917 *3)) (-4 *5 (-1140 *4)) (-4 *3 (-281)) (-5 *1 (-387 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-3371 (*1 *1 *2) (-12 (-5 *2 (-386 *3 *4 *5 *6)) (-4 *6 (-960 *4)) (-4 *3 (-281)) (-4 *4 (-917 *3)) (-4 *5 (-1140 *4)) (-4 *6 (-382 *4 *5)) (-14 *7 (-1164 *6)) (-5 *1 (-387 *3 *4 *5 *6 *7)))))
-(-13 (-662) (-10 -8 (-15 -1831 ((-1164 |#4|) $)) (-15 -1434 (|#2| $)) (-15 -3371 ($ (-1164 |#4|))) (IF (|has| |#4| (-960 |#2|)) (-15 -3371 ($ (-386 |#1| |#2| |#3| |#4|))) |%noBranch|)))
-((-1389 ((|#3| (-1 |#4| |#2|) |#1|) 26)))
-(((-388 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1389 (|#3| (-1 |#4| |#2|) |#1|))) (-390 |#2|) (-157) (-390 |#4|) (-157)) (T -388))
-((-1389 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-157)) (-4 *6 (-157)) (-4 *2 (-390 *6)) (-5 *1 (-388 *4 *5 *2 *6)) (-4 *4 (-390 *5)))))
-(-10 -7 (-15 -1389 (|#3| (-1 |#4| |#2|) |#1|)))
-((-4036 (((-3 $ "failed")) 85)) (-2284 (((-1164 (-626 |#2|)) (-1164 $)) NIL) (((-1164 (-626 |#2|))) 90)) (-3824 (((-3 (-2 (|:| |particular| $) (|:| -1831 (-586 $))) "failed")) 84)) (-1606 (((-3 $ "failed")) 83)) (-3884 (((-626 |#2|) (-1164 $)) NIL) (((-626 |#2|)) 101)) (-3984 (((-626 |#2|) $ (-1164 $)) NIL) (((-626 |#2|) $) 109)) (-3978 (((-1079 (-880 |#2|))) 54)) (-1882 ((|#2| (-1164 $)) NIL) ((|#2|) 105)) (-3705 (($ (-1164 |#2|) (-1164 $)) NIL) (($ (-1164 |#2|)) 112)) (-2790 (((-3 (-2 (|:| |particular| $) (|:| -1831 (-586 $))) "failed")) 82)) (-3164 (((-3 $ "failed")) 74)) (-4024 (((-626 |#2|) (-1164 $)) NIL) (((-626 |#2|)) 99)) (-3775 (((-626 |#2|) $ (-1164 $)) NIL) (((-626 |#2|) $) 107)) (-1589 (((-1079 (-880 |#2|))) 53)) (-1526 ((|#2| (-1164 $)) NIL) ((|#2|) 103)) (-3790 (((-1164 |#2|) $ (-1164 $)) NIL) (((-626 |#2|) (-1164 $) (-1164 $)) NIL) (((-1164 |#2|) $) NIL) (((-626 |#2|) (-1164 $)) 111)) (-1429 (((-1164 |#2|) $) 95) (($ (-1164 |#2|)) 97)) (-1894 (((-586 (-880 |#2|)) (-1164 $)) NIL) (((-586 (-880 |#2|))) 93)) (-1614 (($ (-626 |#2|) $) 89)))
-(((-389 |#1| |#2|) (-10 -8 (-15 -1614 (|#1| (-626 |#2|) |#1|)) (-15 -3978 ((-1079 (-880 |#2|)))) (-15 -1589 ((-1079 (-880 |#2|)))) (-15 -3984 ((-626 |#2|) |#1|)) (-15 -3775 ((-626 |#2|) |#1|)) (-15 -3884 ((-626 |#2|))) (-15 -4024 ((-626 |#2|))) (-15 -1882 (|#2|)) (-15 -1526 (|#2|)) (-15 -1429 (|#1| (-1164 |#2|))) (-15 -1429 ((-1164 |#2|) |#1|)) (-15 -3705 (|#1| (-1164 |#2|))) (-15 -1894 ((-586 (-880 |#2|)))) (-15 -2284 ((-1164 (-626 |#2|)))) (-15 -3790 ((-626 |#2|) (-1164 |#1|))) (-15 -3790 ((-1164 |#2|) |#1|)) (-15 -4036 ((-3 |#1| "failed"))) (-15 -1606 ((-3 |#1| "failed"))) (-15 -3164 ((-3 |#1| "failed"))) (-15 -3824 ((-3 (-2 (|:| |particular| |#1|) (|:| -1831 (-586 |#1|))) "failed"))) (-15 -2790 ((-3 (-2 (|:| |particular| |#1|) (|:| -1831 (-586 |#1|))) "failed"))) (-15 -3884 ((-626 |#2|) (-1164 |#1|))) (-15 -4024 ((-626 |#2|) (-1164 |#1|))) (-15 -1882 (|#2| (-1164 |#1|))) (-15 -1526 (|#2| (-1164 |#1|))) (-15 -3705 (|#1| (-1164 |#2|) (-1164 |#1|))) (-15 -3790 ((-626 |#2|) (-1164 |#1|) (-1164 |#1|))) (-15 -3790 ((-1164 |#2|) |#1| (-1164 |#1|))) (-15 -3984 ((-626 |#2|) |#1| (-1164 |#1|))) (-15 -3775 ((-626 |#2|) |#1| (-1164 |#1|))) (-15 -2284 ((-1164 (-626 |#2|)) (-1164 |#1|))) (-15 -1894 ((-586 (-880 |#2|)) (-1164 |#1|)))) (-390 |#2|) (-157)) (T -389))
-((-2284 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-1164 (-626 *4))) (-5 *1 (-389 *3 *4)) (-4 *3 (-390 *4)))) (-1894 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-586 (-880 *4))) (-5 *1 (-389 *3 *4)) (-4 *3 (-390 *4)))) (-1526 (*1 *2) (-12 (-4 *2 (-157)) (-5 *1 (-389 *3 *2)) (-4 *3 (-390 *2)))) (-1882 (*1 *2) (-12 (-4 *2 (-157)) (-5 *1 (-389 *3 *2)) (-4 *3 (-390 *2)))) (-4024 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-626 *4)) (-5 *1 (-389 *3 *4)) (-4 *3 (-390 *4)))) (-3884 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-626 *4)) (-5 *1 (-389 *3 *4)) (-4 *3 (-390 *4)))) (-1589 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-1079 (-880 *4))) (-5 *1 (-389 *3 *4)) (-4 *3 (-390 *4)))) (-3978 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-1079 (-880 *4))) (-5 *1 (-389 *3 *4)) (-4 *3 (-390 *4)))))
-(-10 -8 (-15 -1614 (|#1| (-626 |#2|) |#1|)) (-15 -3978 ((-1079 (-880 |#2|)))) (-15 -1589 ((-1079 (-880 |#2|)))) (-15 -3984 ((-626 |#2|) |#1|)) (-15 -3775 ((-626 |#2|) |#1|)) (-15 -3884 ((-626 |#2|))) (-15 -4024 ((-626 |#2|))) (-15 -1882 (|#2|)) (-15 -1526 (|#2|)) (-15 -1429 (|#1| (-1164 |#2|))) (-15 -1429 ((-1164 |#2|) |#1|)) (-15 -3705 (|#1| (-1164 |#2|))) (-15 -1894 ((-586 (-880 |#2|)))) (-15 -2284 ((-1164 (-626 |#2|)))) (-15 -3790 ((-626 |#2|) (-1164 |#1|))) (-15 -3790 ((-1164 |#2|) |#1|)) (-15 -4036 ((-3 |#1| "failed"))) (-15 -1606 ((-3 |#1| "failed"))) (-15 -3164 ((-3 |#1| "failed"))) (-15 -3824 ((-3 (-2 (|:| |particular| |#1|) (|:| -1831 (-586 |#1|))) "failed"))) (-15 -2790 ((-3 (-2 (|:| |particular| |#1|) (|:| -1831 (-586 |#1|))) "failed"))) (-15 -3884 ((-626 |#2|) (-1164 |#1|))) (-15 -4024 ((-626 |#2|) (-1164 |#1|))) (-15 -1882 (|#2| (-1164 |#1|))) (-15 -1526 (|#2| (-1164 |#1|))) (-15 -3705 (|#1| (-1164 |#2|) (-1164 |#1|))) (-15 -3790 ((-626 |#2|) (-1164 |#1|) (-1164 |#1|))) (-15 -3790 ((-1164 |#2|) |#1| (-1164 |#1|))) (-15 -3984 ((-626 |#2|) |#1| (-1164 |#1|))) (-15 -3775 ((-626 |#2|) |#1| (-1164 |#1|))) (-15 -2284 ((-1164 (-626 |#2|)) (-1164 |#1|))) (-15 -1894 ((-586 (-880 |#2|)) (-1164 |#1|))))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-4036 (((-3 $ "failed")) 37 (|has| |#1| (-512)))) (-1917 (((-3 $ "failed") $ $) 19)) (-2284 (((-1164 (-626 |#1|)) (-1164 $)) 78) (((-1164 (-626 |#1|))) 100)) (-3976 (((-1164 $)) 81)) (-3961 (($) 17 T CONST)) (-3824 (((-3 (-2 (|:| |particular| $) (|:| -1831 (-586 $))) "failed")) 40 (|has| |#1| (-512)))) (-1606 (((-3 $ "failed")) 38 (|has| |#1| (-512)))) (-3884 (((-626 |#1|) (-1164 $)) 65) (((-626 |#1|)) 92)) (-3193 ((|#1| $) 74)) (-3984 (((-626 |#1|) $ (-1164 $)) 76) (((-626 |#1|) $) 90)) (-2473 (((-3 $ "failed") $) 45 (|has| |#1| (-512)))) (-3978 (((-1079 (-880 |#1|))) 88 (|has| |#1| (-336)))) (-3918 (($ $ (-849)) 28)) (-2996 ((|#1| $) 72)) (-1653 (((-1079 |#1|) $) 42 (|has| |#1| (-512)))) (-1882 ((|#1| (-1164 $)) 67) ((|#1|) 94)) (-2913 (((-1079 |#1|) $) 63)) (-2539 (((-108)) 57)) (-3705 (($ (-1164 |#1|) (-1164 $)) 69) (($ (-1164 |#1|)) 98)) (-1540 (((-3 $ "failed") $) 47 (|has| |#1| (-512)))) (-3160 (((-849)) 80)) (-1802 (((-108)) 54)) (-3273 (($ $ (-849)) 33)) (-2435 (((-108)) 50)) (-4208 (((-108)) 48)) (-3213 (((-108)) 52)) (-2790 (((-3 (-2 (|:| |particular| $) (|:| -1831 (-586 $))) "failed")) 41 (|has| |#1| (-512)))) (-3164 (((-3 $ "failed")) 39 (|has| |#1| (-512)))) (-4024 (((-626 |#1|) (-1164 $)) 66) (((-626 |#1|)) 93)) (-4007 ((|#1| $) 75)) (-3775 (((-626 |#1|) $ (-1164 $)) 77) (((-626 |#1|) $) 91)) (-1368 (((-3 $ "failed") $) 46 (|has| |#1| (-512)))) (-1589 (((-1079 (-880 |#1|))) 89 (|has| |#1| (-336)))) (-2544 (($ $ (-849)) 29)) (-2318 ((|#1| $) 73)) (-4108 (((-1079 |#1|) $) 43 (|has| |#1| (-512)))) (-1526 ((|#1| (-1164 $)) 68) ((|#1|) 95)) (-2429 (((-1079 |#1|) $) 64)) (-3955 (((-108)) 58)) (-1239 (((-1066) $) 9)) (-2260 (((-108)) 49)) (-4130 (((-108)) 51)) (-2684 (((-108)) 53)) (-4142 (((-1030) $) 10)) (-2009 (((-108)) 56)) (-2543 ((|#1| $ (-520)) 101)) (-3790 (((-1164 |#1|) $ (-1164 $)) 71) (((-626 |#1|) (-1164 $) (-1164 $)) 70) (((-1164 |#1|) $) 103) (((-626 |#1|) (-1164 $)) 102)) (-1429 (((-1164 |#1|) $) 97) (($ (-1164 |#1|)) 96)) (-1894 (((-586 (-880 |#1|)) (-1164 $)) 79) (((-586 (-880 |#1|))) 99)) (-3607 (($ $ $) 25)) (-3393 (((-108)) 62)) (-2188 (((-791) $) 11)) (-1831 (((-1164 $)) 104)) (-4094 (((-586 (-1164 |#1|))) 44 (|has| |#1| (-512)))) (-2214 (($ $ $ $) 26)) (-3183 (((-108)) 60)) (-1614 (($ (-626 |#1|) $) 87)) (-3710 (($ $ $) 24)) (-3977 (((-108)) 61)) (-2963 (((-108)) 59)) (-1314 (((-108)) 55)) (-3560 (($) 18 T CONST)) (-1530 (((-108) $ $) 6)) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (** (($ $ (-849)) 30)) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
-(((-390 |#1|) (-1195) (-157)) (T -390))
-((-1831 (*1 *2) (-12 (-4 *3 (-157)) (-5 *2 (-1164 *1)) (-4 *1 (-390 *3)))) (-3790 (*1 *2 *1) (-12 (-4 *1 (-390 *3)) (-4 *3 (-157)) (-5 *2 (-1164 *3)))) (-3790 (*1 *2 *3) (-12 (-5 *3 (-1164 *1)) (-4 *1 (-390 *4)) (-4 *4 (-157)) (-5 *2 (-626 *4)))) (-2543 (*1 *2 *1 *3) (-12 (-5 *3 (-520)) (-4 *1 (-390 *2)) (-4 *2 (-157)))) (-2284 (*1 *2) (-12 (-4 *1 (-390 *3)) (-4 *3 (-157)) (-5 *2 (-1164 (-626 *3))))) (-1894 (*1 *2) (-12 (-4 *1 (-390 *3)) (-4 *3 (-157)) (-5 *2 (-586 (-880 *3))))) (-3705 (*1 *1 *2) (-12 (-5 *2 (-1164 *3)) (-4 *3 (-157)) (-4 *1 (-390 *3)))) (-1429 (*1 *2 *1) (-12 (-4 *1 (-390 *3)) (-4 *3 (-157)) (-5 *2 (-1164 *3)))) (-1429 (*1 *1 *2) (-12 (-5 *2 (-1164 *3)) (-4 *3 (-157)) (-4 *1 (-390 *3)))) (-1526 (*1 *2) (-12 (-4 *1 (-390 *2)) (-4 *2 (-157)))) (-1882 (*1 *2) (-12 (-4 *1 (-390 *2)) (-4 *2 (-157)))) (-4024 (*1 *2) (-12 (-4 *1 (-390 *3)) (-4 *3 (-157)) (-5 *2 (-626 *3)))) (-3884 (*1 *2) (-12 (-4 *1 (-390 *3)) (-4 *3 (-157)) (-5 *2 (-626 *3)))) (-3775 (*1 *2 *1) (-12 (-4 *1 (-390 *3)) (-4 *3 (-157)) (-5 *2 (-626 *3)))) (-3984 (*1 *2 *1) (-12 (-4 *1 (-390 *3)) (-4 *3 (-157)) (-5 *2 (-626 *3)))) (-1589 (*1 *2) (-12 (-4 *1 (-390 *3)) (-4 *3 (-157)) (-4 *3 (-336)) (-5 *2 (-1079 (-880 *3))))) (-3978 (*1 *2) (-12 (-4 *1 (-390 *3)) (-4 *3 (-157)) (-4 *3 (-336)) (-5 *2 (-1079 (-880 *3))))) (-1614 (*1 *1 *2 *1) (-12 (-5 *2 (-626 *3)) (-4 *1 (-390 *3)) (-4 *3 (-157)))))
-(-13 (-340 |t#1|) (-10 -8 (-15 -1831 ((-1164 $))) (-15 -3790 ((-1164 |t#1|) $)) (-15 -3790 ((-626 |t#1|) (-1164 $))) (-15 -2543 (|t#1| $ (-520))) (-15 -2284 ((-1164 (-626 |t#1|)))) (-15 -1894 ((-586 (-880 |t#1|)))) (-15 -3705 ($ (-1164 |t#1|))) (-15 -1429 ((-1164 |t#1|) $)) (-15 -1429 ($ (-1164 |t#1|))) (-15 -1526 (|t#1|)) (-15 -1882 (|t#1|)) (-15 -4024 ((-626 |t#1|))) (-15 -3884 ((-626 |t#1|))) (-15 -3775 ((-626 |t#1|) $)) (-15 -3984 ((-626 |t#1|) $)) (IF (|has| |t#1| (-336)) (PROGN (-15 -1589 ((-1079 (-880 |t#1|)))) (-15 -3978 ((-1079 (-880 |t#1|))))) |%noBranch|) (-15 -1614 ($ (-626 |t#1|) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-560 (-791)) . T) ((-340 |#1|) . T) ((-588 |#1|) . T) ((-653 |#1|) . T) ((-656) . T) ((-680 |#1|) . T) ((-697) . T) ((-975 |#1|) . T) ((-1012) . T))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) 41)) (-1372 (($ $) 56)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) 143)) (-2583 (($ $) NIL)) (-1671 (((-108) $) 35)) (-4036 ((|#1| $) 12)) (-1917 (((-3 $ "failed") $ $) NIL)) (-3024 (($ $) NIL (|has| |#1| (-1122)))) (-1507 (((-391 $) $) NIL (|has| |#1| (-1122)))) (-1585 (($ |#1| (-520)) 30)) (-3961 (($) NIL T CONST)) (-1296 (((-3 (-520) "failed") $) NIL (|has| |#1| (-960 (-520)))) (((-3 (-380 (-520)) "failed") $) NIL (|has| |#1| (-960 (-380 (-520))))) (((-3 |#1| "failed") $) 113)) (-1482 (((-520) $) NIL (|has| |#1| (-960 (-520)))) (((-380 (-520)) $) NIL (|has| |#1| (-960 (-380 (-520))))) ((|#1| $) 54)) (-1540 (((-3 $ "failed") $) 128)) (-2279 (((-3 (-380 (-520)) "failed") $) 62 (|has| |#1| (-505)))) (-1386 (((-108) $) 58 (|has| |#1| (-505)))) (-4055 (((-380 (-520)) $) 60 (|has| |#1| (-505)))) (-1997 (($ |#1| (-520)) 32)) (-2036 (((-108) $) 149 (|has| |#1| (-1122)))) (-1537 (((-108) $) 42)) (-1281 (((-706) $) 37)) (-1501 (((-3 "nil" "sqfr" "irred" "prime") $ (-520)) 134)) (-3691 ((|#1| $ (-520)) 133)) (-2068 (((-520) $ (-520)) 132)) (-4153 (($ |#1| (-520)) 29)) (-1389 (($ (-1 |#1| |#1|) $) 140)) (-2911 (($ |#1| (-586 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-520))))) 57)) (-2222 (($ (-586 $)) NIL (|has| |#1| (-424))) (($ $ $) NIL (|has| |#1| (-424)))) (-1239 (((-1066) $) NIL)) (-2676 (($ |#1| (-520)) 31)) (-4142 (((-1030) $) NIL)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) NIL (|has| |#1| (-424)))) (-2257 (($ (-586 $)) NIL (|has| |#1| (-424))) (($ $ $) 144 (|has| |#1| (-424)))) (-2534 (($ |#1| (-520) (-3 "nil" "sqfr" "irred" "prime")) 28)) (-3493 (((-586 (-2 (|:| -1916 |#1|) (|:| -2647 (-520)))) $) 53)) (-1202 (((-586 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-520)))) $) 11)) (-1916 (((-391 $) $) NIL (|has| |#1| (-1122)))) (-2230 (((-3 $ "failed") $ $) 135)) (-2647 (((-520) $) 129)) (-1603 ((|#1| $) 55)) (-2286 (($ $ (-586 |#1|) (-586 |#1|)) NIL (|has| |#1| (-283 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-283 |#1|))) (($ $ (-268 |#1|)) NIL (|has| |#1| (-283 |#1|))) (($ $ (-586 (-268 |#1|))) 77 (|has| |#1| (-283 |#1|))) (($ $ (-586 (-1083)) (-586 |#1|)) 82 (|has| |#1| (-481 (-1083) |#1|))) (($ $ (-1083) |#1|) NIL (|has| |#1| (-481 (-1083) |#1|))) (($ $ (-1083) $) NIL (|has| |#1| (-481 (-1083) $))) (($ $ (-586 (-1083)) (-586 $)) 83 (|has| |#1| (-481 (-1083) $))) (($ $ (-586 (-268 $))) 79 (|has| |#1| (-283 $))) (($ $ (-268 $)) NIL (|has| |#1| (-283 $))) (($ $ $ $) NIL (|has| |#1| (-283 $))) (($ $ (-586 $) (-586 $)) NIL (|has| |#1| (-283 $)))) (-2543 (($ $ |#1|) 69 (|has| |#1| (-260 |#1| |#1|))) (($ $ $) 70 (|has| |#1| (-260 $ $)))) (-2155 (($ $) NIL (|has| |#1| (-209))) (($ $ (-706)) NIL (|has| |#1| (-209))) (($ $ (-1083)) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-586 (-1083))) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-1083) (-706)) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-586 (-1083)) (-586 (-706))) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-1 |#1| |#1|) (-706)) NIL) (($ $ (-1 |#1| |#1|)) 139)) (-1429 (((-496) $) 26 (|has| |#1| (-561 (-496)))) (((-352) $) 89 (|has| |#1| (-945))) (((-201) $) 92 (|has| |#1| (-945)))) (-2188 (((-791) $) 111) (($ (-520)) 45) (($ $) NIL) (($ |#1|) 44) (($ (-380 (-520))) NIL (|has| |#1| (-960 (-380 (-520)))))) (-3251 (((-706)) 47)) (-2559 (((-108) $ $) NIL)) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (-3560 (($) 39 T CONST)) (-3570 (($) 38 T CONST)) (-2211 (($ $) NIL (|has| |#1| (-209))) (($ $ (-706)) NIL (|has| |#1| (-209))) (($ $ (-1083)) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-586 (-1083))) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-1083) (-706)) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-586 (-1083)) (-586 (-706))) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-1 |#1| |#1|) (-706)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1530 (((-108) $ $) 93)) (-1611 (($ $) 125) (($ $ $) NIL)) (-1601 (($ $ $) 137)) (** (($ $ (-849)) NIL) (($ $ (-706)) 99)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) 49) (($ $ $) 48) (($ |#1| $) 50) (($ $ |#1|) NIL)))
-(((-391 |#1|) (-13 (-512) (-207 |#1|) (-37 |#1|) (-311 |#1|) (-384 |#1|) (-10 -8 (-15 -1603 (|#1| $)) (-15 -2647 ((-520) $)) (-15 -2911 ($ |#1| (-586 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-520)))))) (-15 -1202 ((-586 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-520)))) $)) (-15 -4153 ($ |#1| (-520))) (-15 -3493 ((-586 (-2 (|:| -1916 |#1|) (|:| -2647 (-520)))) $)) (-15 -2676 ($ |#1| (-520))) (-15 -2068 ((-520) $ (-520))) (-15 -3691 (|#1| $ (-520))) (-15 -1501 ((-3 "nil" "sqfr" "irred" "prime") $ (-520))) (-15 -1281 ((-706) $)) (-15 -1997 ($ |#1| (-520))) (-15 -1585 ($ |#1| (-520))) (-15 -2534 ($ |#1| (-520) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -4036 (|#1| $)) (-15 -1372 ($ $)) (-15 -1389 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-424)) (-6 (-424)) |%noBranch|) (IF (|has| |#1| (-945)) (-6 (-945)) |%noBranch|) (IF (|has| |#1| (-1122)) (-6 (-1122)) |%noBranch|) (IF (|has| |#1| (-561 (-496))) (-6 (-561 (-496))) |%noBranch|) (IF (|has| |#1| (-505)) (PROGN (-15 -1386 ((-108) $)) (-15 -4055 ((-380 (-520)) $)) (-15 -2279 ((-3 (-380 (-520)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-260 $ $)) (-6 (-260 $ $)) |%noBranch|) (IF (|has| |#1| (-283 $)) (-6 (-283 $)) |%noBranch|) (IF (|has| |#1| (-481 (-1083) $)) (-6 (-481 (-1083) $)) |%noBranch|))) (-512)) (T -391))
-((-1389 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-512)) (-5 *1 (-391 *3)))) (-1603 (*1 *2 *1) (-12 (-5 *1 (-391 *2)) (-4 *2 (-512)))) (-2647 (*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-391 *3)) (-4 *3 (-512)))) (-2911 (*1 *1 *2 *3) (-12 (-5 *3 (-586 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-520))))) (-4 *2 (-512)) (-5 *1 (-391 *2)))) (-1202 (*1 *2 *1) (-12 (-5 *2 (-586 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-520))))) (-5 *1 (-391 *3)) (-4 *3 (-512)))) (-4153 (*1 *1 *2 *3) (-12 (-5 *3 (-520)) (-5 *1 (-391 *2)) (-4 *2 (-512)))) (-3493 (*1 *2 *1) (-12 (-5 *2 (-586 (-2 (|:| -1916 *3) (|:| -2647 (-520))))) (-5 *1 (-391 *3)) (-4 *3 (-512)))) (-2676 (*1 *1 *2 *3) (-12 (-5 *3 (-520)) (-5 *1 (-391 *2)) (-4 *2 (-512)))) (-2068 (*1 *2 *1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-391 *3)) (-4 *3 (-512)))) (-3691 (*1 *2 *1 *3) (-12 (-5 *3 (-520)) (-5 *1 (-391 *2)) (-4 *2 (-512)))) (-1501 (*1 *2 *1 *3) (-12 (-5 *3 (-520)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-391 *4)) (-4 *4 (-512)))) (-1281 (*1 *2 *1) (-12 (-5 *2 (-706)) (-5 *1 (-391 *3)) (-4 *3 (-512)))) (-1997 (*1 *1 *2 *3) (-12 (-5 *3 (-520)) (-5 *1 (-391 *2)) (-4 *2 (-512)))) (-1585 (*1 *1 *2 *3) (-12 (-5 *3 (-520)) (-5 *1 (-391 *2)) (-4 *2 (-512)))) (-2534 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-520)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-391 *2)) (-4 *2 (-512)))) (-4036 (*1 *2 *1) (-12 (-5 *1 (-391 *2)) (-4 *2 (-512)))) (-1372 (*1 *1 *1) (-12 (-5 *1 (-391 *2)) (-4 *2 (-512)))) (-1386 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-391 *3)) (-4 *3 (-505)) (-4 *3 (-512)))) (-4055 (*1 *2 *1) (-12 (-5 *2 (-380 (-520))) (-5 *1 (-391 *3)) (-4 *3 (-505)) (-4 *3 (-512)))) (-2279 (*1 *2 *1) (|partial| -12 (-5 *2 (-380 (-520))) (-5 *1 (-391 *3)) (-4 *3 (-505)) (-4 *3 (-512)))))
-(-13 (-512) (-207 |#1|) (-37 |#1|) (-311 |#1|) (-384 |#1|) (-10 -8 (-15 -1603 (|#1| $)) (-15 -2647 ((-520) $)) (-15 -2911 ($ |#1| (-586 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-520)))))) (-15 -1202 ((-586 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-520)))) $)) (-15 -4153 ($ |#1| (-520))) (-15 -3493 ((-586 (-2 (|:| -1916 |#1|) (|:| -2647 (-520)))) $)) (-15 -2676 ($ |#1| (-520))) (-15 -2068 ((-520) $ (-520))) (-15 -3691 (|#1| $ (-520))) (-15 -1501 ((-3 "nil" "sqfr" "irred" "prime") $ (-520))) (-15 -1281 ((-706) $)) (-15 -1997 ($ |#1| (-520))) (-15 -1585 ($ |#1| (-520))) (-15 -2534 ($ |#1| (-520) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -4036 (|#1| $)) (-15 -1372 ($ $)) (-15 -1389 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-424)) (-6 (-424)) |%noBranch|) (IF (|has| |#1| (-945)) (-6 (-945)) |%noBranch|) (IF (|has| |#1| (-1122)) (-6 (-1122)) |%noBranch|) (IF (|has| |#1| (-561 (-496))) (-6 (-561 (-496))) |%noBranch|) (IF (|has| |#1| (-505)) (PROGN (-15 -1386 ((-108) $)) (-15 -4055 ((-380 (-520)) $)) (-15 -2279 ((-3 (-380 (-520)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-260 $ $)) (-6 (-260 $ $)) |%noBranch|) (IF (|has| |#1| (-283 $)) (-6 (-283 $)) |%noBranch|) (IF (|has| |#1| (-481 (-1083) $)) (-6 (-481 (-1083) $)) |%noBranch|)))
-((-2469 (((-391 |#1|) (-391 |#1|) (-1 (-391 |#1|) |#1|)) 20)) (-2052 (((-391 |#1|) (-391 |#1|) (-391 |#1|)) 15)))
-(((-392 |#1|) (-10 -7 (-15 -2469 ((-391 |#1|) (-391 |#1|) (-1 (-391 |#1|) |#1|))) (-15 -2052 ((-391 |#1|) (-391 |#1|) (-391 |#1|)))) (-512)) (T -392))
-((-2052 (*1 *2 *2 *2) (-12 (-5 *2 (-391 *3)) (-4 *3 (-512)) (-5 *1 (-392 *3)))) (-2469 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-391 *4) *4)) (-4 *4 (-512)) (-5 *2 (-391 *4)) (-5 *1 (-392 *4)))))
-(-10 -7 (-15 -2469 ((-391 |#1|) (-391 |#1|) (-1 (-391 |#1|) |#1|))) (-15 -2052 ((-391 |#1|) (-391 |#1|) (-391 |#1|))))
-((-1678 ((|#2| |#2|) 161)) (-2700 (((-3 (|:| |%expansion| (-286 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1066)) (|:| |prob| (-1066))))) |#2| (-108)) 55)))
-(((-393 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2700 ((-3 (|:| |%expansion| (-286 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1066)) (|:| |prob| (-1066))))) |#2| (-108))) (-15 -1678 (|#2| |#2|))) (-13 (-424) (-783) (-960 (-520)) (-582 (-520))) (-13 (-27) (-1104) (-403 |#1|)) (-1083) |#2|) (T -393))
-((-1678 (*1 *2 *2) (-12 (-4 *3 (-13 (-424) (-783) (-960 (-520)) (-582 (-520)))) (-5 *1 (-393 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1104) (-403 *3))) (-14 *4 (-1083)) (-14 *5 *2))) (-2700 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-424) (-783) (-960 (-520)) (-582 (-520)))) (-5 *2 (-3 (|:| |%expansion| (-286 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1066)) (|:| |prob| (-1066)))))) (-5 *1 (-393 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1104) (-403 *5))) (-14 *6 (-1083)) (-14 *7 *3))))
-(-10 -7 (-15 -2700 ((-3 (|:| |%expansion| (-286 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1066)) (|:| |prob| (-1066))))) |#2| (-108))) (-15 -1678 (|#2| |#2|)))
-((-1389 ((|#4| (-1 |#3| |#1|) |#2|) 11)))
-(((-394 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1389 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-969) (-783)) (-403 |#1|) (-13 (-969) (-783)) (-403 |#3|)) (T -394))
-((-1389 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-969) (-783))) (-4 *6 (-13 (-969) (-783))) (-4 *2 (-403 *6)) (-5 *1 (-394 *5 *4 *6 *2)) (-4 *4 (-403 *5)))))
-(-10 -7 (-15 -1389 (|#4| (-1 |#3| |#1|) |#2|)))
-((-1678 ((|#2| |#2|) 88)) (-2635 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1066)) (|:| |prob| (-1066))))) |#2| (-108) (-1066)) 46)) (-1933 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1066)) (|:| |prob| (-1066))))) |#2| (-108) (-1066)) 153)))
-(((-395 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2635 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1066)) (|:| |prob| (-1066))))) |#2| (-108) (-1066))) (-15 -1933 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1066)) (|:| |prob| (-1066))))) |#2| (-108) (-1066))) (-15 -1678 (|#2| |#2|))) (-13 (-424) (-783) (-960 (-520)) (-582 (-520))) (-13 (-27) (-1104) (-403 |#1|) (-10 -8 (-15 -2188 ($ |#3|)))) (-781) (-13 (-1142 |#2| |#3|) (-336) (-1104) (-10 -8 (-15 -2155 ($ $)) (-15 -3517 ($ $)))) (-908 |#4|) (-1083)) (T -395))
-((-1678 (*1 *2 *2) (-12 (-4 *3 (-13 (-424) (-783) (-960 (-520)) (-582 (-520)))) (-4 *2 (-13 (-27) (-1104) (-403 *3) (-10 -8 (-15 -2188 ($ *4))))) (-4 *4 (-781)) (-4 *5 (-13 (-1142 *2 *4) (-336) (-1104) (-10 -8 (-15 -2155 ($ $)) (-15 -3517 ($ $))))) (-5 *1 (-395 *3 *2 *4 *5 *6 *7)) (-4 *6 (-908 *5)) (-14 *7 (-1083)))) (-1933 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-108)) (-4 *6 (-13 (-424) (-783) (-960 (-520)) (-582 (-520)))) (-4 *3 (-13 (-27) (-1104) (-403 *6) (-10 -8 (-15 -2188 ($ *7))))) (-4 *7 (-781)) (-4 *8 (-13 (-1142 *3 *7) (-336) (-1104) (-10 -8 (-15 -2155 ($ $)) (-15 -3517 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1066)) (|:| |prob| (-1066)))))) (-5 *1 (-395 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1066)) (-4 *9 (-908 *8)) (-14 *10 (-1083)))) (-2635 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-108)) (-4 *6 (-13 (-424) (-783) (-960 (-520)) (-582 (-520)))) (-4 *3 (-13 (-27) (-1104) (-403 *6) (-10 -8 (-15 -2188 ($ *7))))) (-4 *7 (-781)) (-4 *8 (-13 (-1142 *3 *7) (-336) (-1104) (-10 -8 (-15 -2155 ($ $)) (-15 -3517 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1066)) (|:| |prob| (-1066)))))) (-5 *1 (-395 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1066)) (-4 *9 (-908 *8)) (-14 *10 (-1083)))))
-(-10 -7 (-15 -2635 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1066)) (|:| |prob| (-1066))))) |#2| (-108) (-1066))) (-15 -1933 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1066)) (|:| |prob| (-1066))))) |#2| (-108) (-1066))) (-15 -1678 (|#2| |#2|)))
-((-1404 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-3856 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-1389 ((|#4| (-1 |#3| |#1|) |#2|) 17)))
-(((-396 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1389 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3856 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1404 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1012) (-398 |#1|) (-1012) (-398 |#3|)) (T -396))
-((-1404 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1012)) (-4 *5 (-1012)) (-4 *2 (-398 *5)) (-5 *1 (-396 *6 *4 *5 *2)) (-4 *4 (-398 *6)))) (-3856 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1012)) (-4 *2 (-1012)) (-5 *1 (-396 *5 *4 *2 *6)) (-4 *4 (-398 *5)) (-4 *6 (-398 *2)))) (-1389 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *2 (-398 *6)) (-5 *1 (-396 *5 *4 *6 *2)) (-4 *4 (-398 *5)))))
-(-10 -7 (-15 -1389 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3856 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1404 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
-((-2442 (($) 44)) (-2268 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 40)) (-1907 (($ $ $) 39)) (-3645 (((-108) $ $) 28)) (-1628 (((-706)) 47)) (-1763 (($ (-586 |#2|)) 20) (($) NIL)) (-3249 (($) 53)) (-2809 ((|#2| $) 61)) (-2446 ((|#2| $) 59)) (-3040 (((-849) $) 55)) (-2077 (($ $ $) 35)) (-2716 (($ (-849)) 50)) (-1397 (($ $ |#2|) NIL) (($ $ $) 38)) (-4159 (((-706) (-1 (-108) |#2|) $) NIL) (((-706) |#2| $) 26)) (-2200 (($ (-586 |#2|)) 24)) (-3881 (($ $) 46)) (-2188 (((-791) $) 33)) (-1436 (((-706) $) 21)) (-3386 (($ (-586 |#2|)) 19) (($) NIL)) (-1530 (((-108) $ $) 16)) (-1548 (((-108) $ $) 13)))
-(((-397 |#1| |#2|) (-10 -8 (-15 -1628 ((-706))) (-15 -2716 (|#1| (-849))) (-15 -3040 ((-849) |#1|)) (-15 -3249 (|#1|)) (-15 -2809 (|#2| |#1|)) (-15 -2446 (|#2| |#1|)) (-15 -2442 (|#1|)) (-15 -3881 (|#1| |#1|)) (-15 -1436 ((-706) |#1|)) (-15 -1530 ((-108) |#1| |#1|)) (-15 -2188 ((-791) |#1|)) (-15 -1548 ((-108) |#1| |#1|)) (-15 -3386 (|#1|)) (-15 -3386 (|#1| (-586 |#2|))) (-15 -1763 (|#1|)) (-15 -1763 (|#1| (-586 |#2|))) (-15 -2077 (|#1| |#1| |#1|)) (-15 -1397 (|#1| |#1| |#1|)) (-15 -1397 (|#1| |#1| |#2|)) (-15 -1907 (|#1| |#1| |#1|)) (-15 -3645 ((-108) |#1| |#1|)) (-15 -2268 (|#1| |#1| |#1|)) (-15 -2268 (|#1| |#1| |#2|)) (-15 -2268 (|#1| |#2| |#1|)) (-15 -2200 (|#1| (-586 |#2|))) (-15 -4159 ((-706) |#2| |#1|)) (-15 -4159 ((-706) (-1 (-108) |#2|) |#1|))) (-398 |#2|) (-1012)) (T -397))
-((-1628 (*1 *2) (-12 (-4 *4 (-1012)) (-5 *2 (-706)) (-5 *1 (-397 *3 *4)) (-4 *3 (-398 *4)))))
-(-10 -8 (-15 -1628 ((-706))) (-15 -2716 (|#1| (-849))) (-15 -3040 ((-849) |#1|)) (-15 -3249 (|#1|)) (-15 -2809 (|#2| |#1|)) (-15 -2446 (|#2| |#1|)) (-15 -2442 (|#1|)) (-15 -3881 (|#1| |#1|)) (-15 -1436 ((-706) |#1|)) (-15 -1530 ((-108) |#1| |#1|)) (-15 -2188 ((-791) |#1|)) (-15 -1548 ((-108) |#1| |#1|)) (-15 -3386 (|#1|)) (-15 -3386 (|#1| (-586 |#2|))) (-15 -1763 (|#1|)) (-15 -1763 (|#1| (-586 |#2|))) (-15 -2077 (|#1| |#1| |#1|)) (-15 -1397 (|#1| |#1| |#1|)) (-15 -1397 (|#1| |#1| |#2|)) (-15 -1907 (|#1| |#1| |#1|)) (-15 -3645 ((-108) |#1| |#1|)) (-15 -2268 (|#1| |#1| |#1|)) (-15 -2268 (|#1| |#1| |#2|)) (-15 -2268 (|#1| |#2| |#1|)) (-15 -2200 (|#1| (-586 |#2|))) (-15 -4159 ((-706) |#2| |#1|)) (-15 -4159 ((-706) (-1 (-108) |#2|) |#1|)))
-((-1414 (((-108) $ $) 19)) (-2442 (($) 67 (|has| |#1| (-341)))) (-2268 (($ |#1| $) 82) (($ $ |#1|) 81) (($ $ $) 80)) (-1907 (($ $ $) 78)) (-3645 (((-108) $ $) 79)) (-2063 (((-108) $ (-706)) 8)) (-1628 (((-706)) 61 (|has| |#1| (-341)))) (-1763 (($ (-586 |#1|)) 74) (($) 73)) (-1817 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4229)))) (-1627 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4229)))) (-3961 (($) 7 T CONST)) (-2331 (($ $) 58 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-3766 (($ |#1| $) 47 (|has| $ (-6 -4229))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4229)))) (-1421 (($ |#1| $) 57 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4229)))) (-3856 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4229))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4229)))) (-3249 (($) 64 (|has| |#1| (-341)))) (-3828 (((-586 |#1|) $) 30 (|has| $ (-6 -4229)))) (-3027 (((-108) $ (-706)) 9)) (-2809 ((|#1| $) 65 (|has| |#1| (-783)))) (-3702 (((-586 |#1|) $) 29 (|has| $ (-6 -4229)))) (-2422 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-2446 ((|#1| $) 66 (|has| |#1| (-783)))) (-3830 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#1| |#1|) $) 35)) (-3040 (((-849) $) 63 (|has| |#1| (-341)))) (-1390 (((-108) $ (-706)) 10)) (-1239 (((-1066) $) 22)) (-2077 (($ $ $) 75)) (-3351 ((|#1| $) 39)) (-3618 (($ |#1| $) 40)) (-2716 (($ (-849)) 62 (|has| |#1| (-341)))) (-4142 (((-1030) $) 21)) (-2985 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-3345 ((|#1| $) 41)) (-4155 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 |#1|))) 26 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-268 |#1|)) 25 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-586 |#1|) (-586 |#1|)) 23 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))) (-2533 (((-108) $ $) 14)) (-4018 (((-108) $) 11)) (-2238 (($) 12)) (-1397 (($ $ |#1|) 77) (($ $ $) 76)) (-1645 (($) 49) (($ (-586 |#1|)) 48)) (-4159 (((-706) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4229))) (((-706) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-2403 (($ $) 13)) (-1429 (((-496) $) 59 (|has| |#1| (-561 (-496))))) (-2200 (($ (-586 |#1|)) 50)) (-3881 (($ $) 68 (|has| |#1| (-341)))) (-2188 (((-791) $) 18)) (-1436 (((-706) $) 69)) (-3386 (($ (-586 |#1|)) 72) (($) 71)) (-1898 (($ (-586 |#1|)) 42)) (-1662 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4229)))) (-1530 (((-108) $ $) 20)) (-1548 (((-108) $ $) 70)) (-3474 (((-706) $) 6 (|has| $ (-6 -4229)))))
-(((-398 |#1|) (-1195) (-1012)) (T -398))
-((-1436 (*1 *2 *1) (-12 (-4 *1 (-398 *3)) (-4 *3 (-1012)) (-5 *2 (-706)))) (-3881 (*1 *1 *1) (-12 (-4 *1 (-398 *2)) (-4 *2 (-1012)) (-4 *2 (-341)))) (-2442 (*1 *1) (-12 (-4 *1 (-398 *2)) (-4 *2 (-341)) (-4 *2 (-1012)))) (-2446 (*1 *2 *1) (-12 (-4 *1 (-398 *2)) (-4 *2 (-1012)) (-4 *2 (-783)))) (-2809 (*1 *2 *1) (-12 (-4 *1 (-398 *2)) (-4 *2 (-1012)) (-4 *2 (-783)))))
-(-13 (-205 |t#1|) (-1010 |t#1|) (-10 -8 (-6 -4229) (-15 -1436 ((-706) $)) (IF (|has| |t#1| (-341)) (PROGN (-6 (-341)) (-15 -3881 ($ $)) (-15 -2442 ($))) |%noBranch|) (IF (|has| |t#1| (-783)) (PROGN (-15 -2446 (|t#1| $)) (-15 -2809 (|t#1| $))) |%noBranch|)))
-(((-33) . T) ((-102 |#1|) . T) ((-97) . T) ((-560 (-791)) . T) ((-139 |#1|) . T) ((-561 (-496)) |has| |#1| (-561 (-496))) ((-205 |#1|) . T) ((-211 |#1|) . T) ((-283 |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))) ((-341) |has| |#1| (-341)) ((-459 |#1|) . T) ((-481 |#1| |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))) ((-1010 |#1|) . T) ((-1012) . T) ((-1118) . T))
-((-4080 (((-537 |#2|) |#2| (-1083)) 35)) (-2065 (((-537 |#2|) |#2| (-1083)) 19)) (-1729 ((|#2| |#2| (-1083)) 24)))
-(((-399 |#1| |#2|) (-10 -7 (-15 -2065 ((-537 |#2|) |#2| (-1083))) (-15 -4080 ((-537 |#2|) |#2| (-1083))) (-15 -1729 (|#2| |#2| (-1083)))) (-13 (-281) (-783) (-135) (-960 (-520)) (-582 (-520))) (-13 (-1104) (-29 |#1|))) (T -399))
-((-1729 (*1 *2 *2 *3) (-12 (-5 *3 (-1083)) (-4 *4 (-13 (-281) (-783) (-135) (-960 (-520)) (-582 (-520)))) (-5 *1 (-399 *4 *2)) (-4 *2 (-13 (-1104) (-29 *4))))) (-4080 (*1 *2 *3 *4) (-12 (-5 *4 (-1083)) (-4 *5 (-13 (-281) (-783) (-135) (-960 (-520)) (-582 (-520)))) (-5 *2 (-537 *3)) (-5 *1 (-399 *5 *3)) (-4 *3 (-13 (-1104) (-29 *5))))) (-2065 (*1 *2 *3 *4) (-12 (-5 *4 (-1083)) (-4 *5 (-13 (-281) (-783) (-135) (-960 (-520)) (-582 (-520)))) (-5 *2 (-537 *3)) (-5 *1 (-399 *5 *3)) (-4 *3 (-13 (-1104) (-29 *5))))))
-(-10 -7 (-15 -2065 ((-537 |#2|) |#2| (-1083))) (-15 -4080 ((-537 |#2|) |#2| (-1083))) (-15 -1729 (|#2| |#2| (-1083))))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-1917 (((-3 $ "failed") $ $) NIL)) (-3961 (($) NIL T CONST)) (-1540 (((-3 $ "failed") $) NIL)) (-1537 (((-108) $) NIL)) (-3254 (($ |#2| |#1|) 35)) (-3286 (($ |#2| |#1|) 33)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2188 (((-791) $) NIL) (($ (-520)) NIL) (($ |#1|) NIL) (($ (-304 |#2|)) 25)) (-3251 (((-706)) NIL)) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (-3560 (($) 10 T CONST)) (-3570 (($) 16 T CONST)) (-1530 (((-108) $ $) NIL)) (-1611 (($ $) NIL) (($ $ $) NIL)) (-1601 (($ $ $) 34)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) 36) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-400 |#1| |#2|) (-13 (-37 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4216)) (IF (|has| |#1| (-6 -4216)) (-6 -4216) |%noBranch|) |%noBranch|) (-15 -2188 ($ |#1|)) (-15 -2188 ($ (-304 |#2|))) (-15 -3254 ($ |#2| |#1|)) (-15 -3286 ($ |#2| |#1|)))) (-13 (-157) (-37 (-380 (-520)))) (-13 (-783) (-21))) (T -400))
-((-2188 (*1 *1 *2) (-12 (-5 *1 (-400 *2 *3)) (-4 *2 (-13 (-157) (-37 (-380 (-520))))) (-4 *3 (-13 (-783) (-21))))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-304 *4)) (-4 *4 (-13 (-783) (-21))) (-5 *1 (-400 *3 *4)) (-4 *3 (-13 (-157) (-37 (-380 (-520))))))) (-3254 (*1 *1 *2 *3) (-12 (-5 *1 (-400 *3 *2)) (-4 *3 (-13 (-157) (-37 (-380 (-520))))) (-4 *2 (-13 (-783) (-21))))) (-3286 (*1 *1 *2 *3) (-12 (-5 *1 (-400 *3 *2)) (-4 *3 (-13 (-157) (-37 (-380 (-520))))) (-4 *2 (-13 (-783) (-21))))))
-(-13 (-37 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4216)) (IF (|has| |#1| (-6 -4216)) (-6 -4216) |%noBranch|) |%noBranch|) (-15 -2188 ($ |#1|)) (-15 -2188 ($ (-304 |#2|))) (-15 -3254 ($ |#2| |#1|)) (-15 -3286 ($ |#2| |#1|))))
-((-3517 (((-3 |#2| (-586 |#2|)) |#2| (-1083)) 105)))
-(((-401 |#1| |#2|) (-10 -7 (-15 -3517 ((-3 |#2| (-586 |#2|)) |#2| (-1083)))) (-13 (-281) (-783) (-135) (-960 (-520)) (-582 (-520))) (-13 (-1104) (-886) (-29 |#1|))) (T -401))
-((-3517 (*1 *2 *3 *4) (-12 (-5 *4 (-1083)) (-4 *5 (-13 (-281) (-783) (-135) (-960 (-520)) (-582 (-520)))) (-5 *2 (-3 *3 (-586 *3))) (-5 *1 (-401 *5 *3)) (-4 *3 (-13 (-1104) (-886) (-29 *5))))))
-(-10 -7 (-15 -3517 ((-3 |#2| (-586 |#2|)) |#2| (-1083))))
-((-4081 (((-586 (-1083)) $) 72)) (-1278 (((-380 (-1079 $)) $ (-559 $)) 269)) (-3299 (($ $ (-268 $)) NIL) (($ $ (-586 (-268 $))) NIL) (($ $ (-586 (-559 $)) (-586 $)) 234)) (-1296 (((-3 (-559 $) "failed") $) NIL) (((-3 (-1083) "failed") $) 75) (((-3 (-520) "failed") $) NIL) (((-3 |#2| "failed") $) 230) (((-3 (-380 (-880 |#2|)) "failed") $) 320) (((-3 (-880 |#2|) "failed") $) 232) (((-3 (-380 (-520)) "failed") $) NIL)) (-1482 (((-559 $) $) NIL) (((-1083) $) 30) (((-520) $) NIL) ((|#2| $) 228) (((-380 (-880 |#2|)) $) 301) (((-880 |#2|) $) 229) (((-380 (-520)) $) NIL)) (-3877 (((-110) (-110)) 47)) (-4115 (($ $) 87)) (-2690 (((-3 (-559 $) "failed") $) 225)) (-1265 (((-586 (-559 $)) $) 226)) (-3548 (((-3 (-586 $) "failed") $) 244)) (-2090 (((-3 (-2 (|:| |val| $) (|:| -2647 (-520))) "failed") $) 251)) (-1205 (((-3 (-586 $) "failed") $) 242)) (-3929 (((-3 (-2 (|:| -2972 (-520)) (|:| |var| (-559 $))) "failed") $) 260)) (-2568 (((-3 (-2 (|:| |var| (-559 $)) (|:| -2647 (-520))) "failed") $) 248) (((-3 (-2 (|:| |var| (-559 $)) (|:| -2647 (-520))) "failed") $ (-110)) 215) (((-3 (-2 (|:| |var| (-559 $)) (|:| -2647 (-520))) "failed") $ (-1083)) 217)) (-3103 (((-108) $) 19)) (-3113 ((|#2| $) 21)) (-2286 (($ $ (-559 $) $) NIL) (($ $ (-586 (-559 $)) (-586 $)) 233) (($ $ (-586 (-268 $))) NIL) (($ $ (-268 $)) NIL) (($ $ $ $) NIL) (($ $ (-586 $) (-586 $)) NIL) (($ $ (-586 (-1083)) (-586 (-1 $ $))) NIL) (($ $ (-586 (-1083)) (-586 (-1 $ (-586 $)))) 96) (($ $ (-1083) (-1 $ (-586 $))) NIL) (($ $ (-1083) (-1 $ $)) NIL) (($ $ (-586 (-110)) (-586 (-1 $ $))) NIL) (($ $ (-586 (-110)) (-586 (-1 $ (-586 $)))) NIL) (($ $ (-110) (-1 $ (-586 $))) NIL) (($ $ (-110) (-1 $ $)) NIL) (($ $ (-1083)) 57) (($ $ (-586 (-1083))) 237) (($ $) 238) (($ $ (-110) $ (-1083)) 60) (($ $ (-586 (-110)) (-586 $) (-1083)) 67) (($ $ (-586 (-1083)) (-586 (-706)) (-586 (-1 $ $))) 107) (($ $ (-586 (-1083)) (-586 (-706)) (-586 (-1 $ (-586 $)))) 239) (($ $ (-1083) (-706) (-1 $ (-586 $))) 94) (($ $ (-1083) (-706) (-1 $ $)) 93)) (-2543 (($ (-110) $) NIL) (($ (-110) $ $) NIL) (($ (-110) $ $ $) NIL) (($ (-110) $ $ $ $) NIL) (($ (-110) (-586 $)) 106)) (-2155 (($ $ (-586 (-1083)) (-586 (-706))) NIL) (($ $ (-1083) (-706)) NIL) (($ $ (-586 (-1083))) NIL) (($ $ (-1083)) 235)) (-3556 (($ $) 280)) (-1429 (((-820 (-520)) $) 254) (((-820 (-352)) $) 257) (($ (-391 $)) 316) (((-496) $) NIL)) (-2188 (((-791) $) 236) (($ (-559 $)) 84) (($ (-1083)) 26) (($ |#2|) NIL) (($ (-1035 |#2| (-559 $))) NIL) (($ (-380 |#2|)) 285) (($ (-880 (-380 |#2|))) 325) (($ (-380 (-880 (-380 |#2|)))) 297) (($ (-380 (-880 |#2|))) 291) (($ $) NIL) (($ (-880 |#2|)) 184) (($ (-380 (-520))) 330) (($ (-520)) NIL)) (-3251 (((-706)) 79)) (-1373 (((-108) (-110)) 41)) (-1804 (($ (-1083) $) 33) (($ (-1083) $ $) 34) (($ (-1083) $ $ $) 35) (($ (-1083) $ $ $ $) 36) (($ (-1083) (-586 $)) 39)) (* (($ (-380 (-520)) $) NIL) (($ $ (-380 (-520))) NIL) (($ |#2| $) 262) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-520) $) NIL) (($ (-706) $) NIL) (($ (-849) $) NIL)))
-(((-402 |#1| |#2|) (-10 -8 (-15 * (|#1| (-849) |#1|)) (-15 * (|#1| (-706) |#1|)) (-15 * (|#1| (-520) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3251 ((-706))) (-15 -2188 (|#1| (-520))) (-15 -1482 ((-380 (-520)) |#1|)) (-15 -1296 ((-3 (-380 (-520)) "failed") |#1|)) (-15 -2188 (|#1| (-380 (-520)))) (-15 -1429 ((-496) |#1|)) (-15 -1482 ((-880 |#2|) |#1|)) (-15 -1296 ((-3 (-880 |#2|) "failed") |#1|)) (-15 -2188 (|#1| (-880 |#2|))) (-15 -2155 (|#1| |#1| (-1083))) (-15 -2155 (|#1| |#1| (-586 (-1083)))) (-15 -2155 (|#1| |#1| (-1083) (-706))) (-15 -2155 (|#1| |#1| (-586 (-1083)) (-586 (-706)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2188 (|#1| |#1|)) (-15 * (|#1| |#1| (-380 (-520)))) (-15 * (|#1| (-380 (-520)) |#1|)) (-15 -1482 ((-380 (-880 |#2|)) |#1|)) (-15 -1296 ((-3 (-380 (-880 |#2|)) "failed") |#1|)) (-15 -2188 (|#1| (-380 (-880 |#2|)))) (-15 -1278 ((-380 (-1079 |#1|)) |#1| (-559 |#1|))) (-15 -2188 (|#1| (-380 (-880 (-380 |#2|))))) (-15 -2188 (|#1| (-880 (-380 |#2|)))) (-15 -2188 (|#1| (-380 |#2|))) (-15 -3556 (|#1| |#1|)) (-15 -1429 (|#1| (-391 |#1|))) (-15 -2286 (|#1| |#1| (-1083) (-706) (-1 |#1| |#1|))) (-15 -2286 (|#1| |#1| (-1083) (-706) (-1 |#1| (-586 |#1|)))) (-15 -2286 (|#1| |#1| (-586 (-1083)) (-586 (-706)) (-586 (-1 |#1| (-586 |#1|))))) (-15 -2286 (|#1| |#1| (-586 (-1083)) (-586 (-706)) (-586 (-1 |#1| |#1|)))) (-15 -2090 ((-3 (-2 (|:| |val| |#1|) (|:| -2647 (-520))) "failed") |#1|)) (-15 -2568 ((-3 (-2 (|:| |var| (-559 |#1|)) (|:| -2647 (-520))) "failed") |#1| (-1083))) (-15 -2568 ((-3 (-2 (|:| |var| (-559 |#1|)) (|:| -2647 (-520))) "failed") |#1| (-110))) (-15 -4115 (|#1| |#1|)) (-15 -2188 (|#1| (-1035 |#2| (-559 |#1|)))) (-15 -3929 ((-3 (-2 (|:| -2972 (-520)) (|:| |var| (-559 |#1|))) "failed") |#1|)) (-15 -1205 ((-3 (-586 |#1|) "failed") |#1|)) (-15 -2568 ((-3 (-2 (|:| |var| (-559 |#1|)) (|:| -2647 (-520))) "failed") |#1|)) (-15 -3548 ((-3 (-586 |#1|) "failed") |#1|)) (-15 -2286 (|#1| |#1| (-586 (-110)) (-586 |#1|) (-1083))) (-15 -2286 (|#1| |#1| (-110) |#1| (-1083))) (-15 -2286 (|#1| |#1|)) (-15 -2286 (|#1| |#1| (-586 (-1083)))) (-15 -2286 (|#1| |#1| (-1083))) (-15 -1804 (|#1| (-1083) (-586 |#1|))) (-15 -1804 (|#1| (-1083) |#1| |#1| |#1| |#1|)) (-15 -1804 (|#1| (-1083) |#1| |#1| |#1|)) (-15 -1804 (|#1| (-1083) |#1| |#1|)) (-15 -1804 (|#1| (-1083) |#1|)) (-15 -4081 ((-586 (-1083)) |#1|)) (-15 -3113 (|#2| |#1|)) (-15 -3103 ((-108) |#1|)) (-15 -1482 (|#2| |#1|)) (-15 -1296 ((-3 |#2| "failed") |#1|)) (-15 -2188 (|#1| |#2|)) (-15 -1296 ((-3 (-520) "failed") |#1|)) (-15 -1482 ((-520) |#1|)) (-15 -1429 ((-820 (-352)) |#1|)) (-15 -1429 ((-820 (-520)) |#1|)) (-15 -1482 ((-1083) |#1|)) (-15 -1296 ((-3 (-1083) "failed") |#1|)) (-15 -2188 (|#1| (-1083))) (-15 -2286 (|#1| |#1| (-110) (-1 |#1| |#1|))) (-15 -2286 (|#1| |#1| (-110) (-1 |#1| (-586 |#1|)))) (-15 -2286 (|#1| |#1| (-586 (-110)) (-586 (-1 |#1| (-586 |#1|))))) (-15 -2286 (|#1| |#1| (-586 (-110)) (-586 (-1 |#1| |#1|)))) (-15 -2286 (|#1| |#1| (-1083) (-1 |#1| |#1|))) (-15 -2286 (|#1| |#1| (-1083) (-1 |#1| (-586 |#1|)))) (-15 -2286 (|#1| |#1| (-586 (-1083)) (-586 (-1 |#1| (-586 |#1|))))) (-15 -2286 (|#1| |#1| (-586 (-1083)) (-586 (-1 |#1| |#1|)))) (-15 -1373 ((-108) (-110))) (-15 -3877 ((-110) (-110))) (-15 -1265 ((-586 (-559 |#1|)) |#1|)) (-15 -2690 ((-3 (-559 |#1|) "failed") |#1|)) (-15 -3299 (|#1| |#1| (-586 (-559 |#1|)) (-586 |#1|))) (-15 -3299 (|#1| |#1| (-586 (-268 |#1|)))) (-15 -3299 (|#1| |#1| (-268 |#1|))) (-15 -2543 (|#1| (-110) (-586 |#1|))) (-15 -2543 (|#1| (-110) |#1| |#1| |#1| |#1|)) (-15 -2543 (|#1| (-110) |#1| |#1| |#1|)) (-15 -2543 (|#1| (-110) |#1| |#1|)) (-15 -2543 (|#1| (-110) |#1|)) (-15 -2286 (|#1| |#1| (-586 |#1|) (-586 |#1|))) (-15 -2286 (|#1| |#1| |#1| |#1|)) (-15 -2286 (|#1| |#1| (-268 |#1|))) (-15 -2286 (|#1| |#1| (-586 (-268 |#1|)))) (-15 -2286 (|#1| |#1| (-586 (-559 |#1|)) (-586 |#1|))) (-15 -2286 (|#1| |#1| (-559 |#1|) |#1|)) (-15 -1482 ((-559 |#1|) |#1|)) (-15 -1296 ((-3 (-559 |#1|) "failed") |#1|)) (-15 -2188 (|#1| (-559 |#1|))) (-15 -2188 ((-791) |#1|))) (-403 |#2|) (-783)) (T -402))
-((-3877 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *4 (-783)) (-5 *1 (-402 *3 *4)) (-4 *3 (-403 *4)))) (-1373 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *5 (-783)) (-5 *2 (-108)) (-5 *1 (-402 *4 *5)) (-4 *4 (-403 *5)))) (-3251 (*1 *2) (-12 (-4 *4 (-783)) (-5 *2 (-706)) (-5 *1 (-402 *3 *4)) (-4 *3 (-403 *4)))))
-(-10 -8 (-15 * (|#1| (-849) |#1|)) (-15 * (|#1| (-706) |#1|)) (-15 * (|#1| (-520) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3251 ((-706))) (-15 -2188 (|#1| (-520))) (-15 -1482 ((-380 (-520)) |#1|)) (-15 -1296 ((-3 (-380 (-520)) "failed") |#1|)) (-15 -2188 (|#1| (-380 (-520)))) (-15 -1429 ((-496) |#1|)) (-15 -1482 ((-880 |#2|) |#1|)) (-15 -1296 ((-3 (-880 |#2|) "failed") |#1|)) (-15 -2188 (|#1| (-880 |#2|))) (-15 -2155 (|#1| |#1| (-1083))) (-15 -2155 (|#1| |#1| (-586 (-1083)))) (-15 -2155 (|#1| |#1| (-1083) (-706))) (-15 -2155 (|#1| |#1| (-586 (-1083)) (-586 (-706)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2188 (|#1| |#1|)) (-15 * (|#1| |#1| (-380 (-520)))) (-15 * (|#1| (-380 (-520)) |#1|)) (-15 -1482 ((-380 (-880 |#2|)) |#1|)) (-15 -1296 ((-3 (-380 (-880 |#2|)) "failed") |#1|)) (-15 -2188 (|#1| (-380 (-880 |#2|)))) (-15 -1278 ((-380 (-1079 |#1|)) |#1| (-559 |#1|))) (-15 -2188 (|#1| (-380 (-880 (-380 |#2|))))) (-15 -2188 (|#1| (-880 (-380 |#2|)))) (-15 -2188 (|#1| (-380 |#2|))) (-15 -3556 (|#1| |#1|)) (-15 -1429 (|#1| (-391 |#1|))) (-15 -2286 (|#1| |#1| (-1083) (-706) (-1 |#1| |#1|))) (-15 -2286 (|#1| |#1| (-1083) (-706) (-1 |#1| (-586 |#1|)))) (-15 -2286 (|#1| |#1| (-586 (-1083)) (-586 (-706)) (-586 (-1 |#1| (-586 |#1|))))) (-15 -2286 (|#1| |#1| (-586 (-1083)) (-586 (-706)) (-586 (-1 |#1| |#1|)))) (-15 -2090 ((-3 (-2 (|:| |val| |#1|) (|:| -2647 (-520))) "failed") |#1|)) (-15 -2568 ((-3 (-2 (|:| |var| (-559 |#1|)) (|:| -2647 (-520))) "failed") |#1| (-1083))) (-15 -2568 ((-3 (-2 (|:| |var| (-559 |#1|)) (|:| -2647 (-520))) "failed") |#1| (-110))) (-15 -4115 (|#1| |#1|)) (-15 -2188 (|#1| (-1035 |#2| (-559 |#1|)))) (-15 -3929 ((-3 (-2 (|:| -2972 (-520)) (|:| |var| (-559 |#1|))) "failed") |#1|)) (-15 -1205 ((-3 (-586 |#1|) "failed") |#1|)) (-15 -2568 ((-3 (-2 (|:| |var| (-559 |#1|)) (|:| -2647 (-520))) "failed") |#1|)) (-15 -3548 ((-3 (-586 |#1|) "failed") |#1|)) (-15 -2286 (|#1| |#1| (-586 (-110)) (-586 |#1|) (-1083))) (-15 -2286 (|#1| |#1| (-110) |#1| (-1083))) (-15 -2286 (|#1| |#1|)) (-15 -2286 (|#1| |#1| (-586 (-1083)))) (-15 -2286 (|#1| |#1| (-1083))) (-15 -1804 (|#1| (-1083) (-586 |#1|))) (-15 -1804 (|#1| (-1083) |#1| |#1| |#1| |#1|)) (-15 -1804 (|#1| (-1083) |#1| |#1| |#1|)) (-15 -1804 (|#1| (-1083) |#1| |#1|)) (-15 -1804 (|#1| (-1083) |#1|)) (-15 -4081 ((-586 (-1083)) |#1|)) (-15 -3113 (|#2| |#1|)) (-15 -3103 ((-108) |#1|)) (-15 -1482 (|#2| |#1|)) (-15 -1296 ((-3 |#2| "failed") |#1|)) (-15 -2188 (|#1| |#2|)) (-15 -1296 ((-3 (-520) "failed") |#1|)) (-15 -1482 ((-520) |#1|)) (-15 -1429 ((-820 (-352)) |#1|)) (-15 -1429 ((-820 (-520)) |#1|)) (-15 -1482 ((-1083) |#1|)) (-15 -1296 ((-3 (-1083) "failed") |#1|)) (-15 -2188 (|#1| (-1083))) (-15 -2286 (|#1| |#1| (-110) (-1 |#1| |#1|))) (-15 -2286 (|#1| |#1| (-110) (-1 |#1| (-586 |#1|)))) (-15 -2286 (|#1| |#1| (-586 (-110)) (-586 (-1 |#1| (-586 |#1|))))) (-15 -2286 (|#1| |#1| (-586 (-110)) (-586 (-1 |#1| |#1|)))) (-15 -2286 (|#1| |#1| (-1083) (-1 |#1| |#1|))) (-15 -2286 (|#1| |#1| (-1083) (-1 |#1| (-586 |#1|)))) (-15 -2286 (|#1| |#1| (-586 (-1083)) (-586 (-1 |#1| (-586 |#1|))))) (-15 -2286 (|#1| |#1| (-586 (-1083)) (-586 (-1 |#1| |#1|)))) (-15 -1373 ((-108) (-110))) (-15 -3877 ((-110) (-110))) (-15 -1265 ((-586 (-559 |#1|)) |#1|)) (-15 -2690 ((-3 (-559 |#1|) "failed") |#1|)) (-15 -3299 (|#1| |#1| (-586 (-559 |#1|)) (-586 |#1|))) (-15 -3299 (|#1| |#1| (-586 (-268 |#1|)))) (-15 -3299 (|#1| |#1| (-268 |#1|))) (-15 -2543 (|#1| (-110) (-586 |#1|))) (-15 -2543 (|#1| (-110) |#1| |#1| |#1| |#1|)) (-15 -2543 (|#1| (-110) |#1| |#1| |#1|)) (-15 -2543 (|#1| (-110) |#1| |#1|)) (-15 -2543 (|#1| (-110) |#1|)) (-15 -2286 (|#1| |#1| (-586 |#1|) (-586 |#1|))) (-15 -2286 (|#1| |#1| |#1| |#1|)) (-15 -2286 (|#1| |#1| (-268 |#1|))) (-15 -2286 (|#1| |#1| (-586 (-268 |#1|)))) (-15 -2286 (|#1| |#1| (-586 (-559 |#1|)) (-586 |#1|))) (-15 -2286 (|#1| |#1| (-559 |#1|) |#1|)) (-15 -1482 ((-559 |#1|) |#1|)) (-15 -1296 ((-3 (-559 |#1|) "failed") |#1|)) (-15 -2188 (|#1| (-559 |#1|))) (-15 -2188 ((-791) |#1|)))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 116 (|has| |#1| (-25)))) (-4081 (((-586 (-1083)) $) 203)) (-1278 (((-380 (-1079 $)) $ (-559 $)) 171 (|has| |#1| (-512)))) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) 143 (|has| |#1| (-512)))) (-2583 (($ $) 144 (|has| |#1| (-512)))) (-1671 (((-108) $) 146 (|has| |#1| (-512)))) (-1883 (((-586 (-559 $)) $) 44)) (-1917 (((-3 $ "failed") $ $) 118 (|has| |#1| (-21)))) (-3299 (($ $ (-268 $)) 56) (($ $ (-586 (-268 $))) 55) (($ $ (-586 (-559 $)) (-586 $)) 54)) (-3024 (($ $) 163 (|has| |#1| (-512)))) (-1507 (((-391 $) $) 164 (|has| |#1| (-512)))) (-1327 (((-108) $ $) 154 (|has| |#1| (-512)))) (-3961 (($) 102 (-3700 (|has| |#1| (-1024)) (|has| |#1| (-25))) CONST)) (-1296 (((-3 (-559 $) "failed") $) 69) (((-3 (-1083) "failed") $) 216) (((-3 (-520) "failed") $) 209 (|has| |#1| (-960 (-520)))) (((-3 |#1| "failed") $) 207) (((-3 (-380 (-880 |#1|)) "failed") $) 169 (|has| |#1| (-512))) (((-3 (-880 |#1|) "failed") $) 123 (|has| |#1| (-969))) (((-3 (-380 (-520)) "failed") $) 95 (-3700 (-12 (|has| |#1| (-960 (-520))) (|has| |#1| (-512))) (|has| |#1| (-960 (-380 (-520))))))) (-1482 (((-559 $) $) 68) (((-1083) $) 215) (((-520) $) 210 (|has| |#1| (-960 (-520)))) ((|#1| $) 206) (((-380 (-880 |#1|)) $) 168 (|has| |#1| (-512))) (((-880 |#1|) $) 122 (|has| |#1| (-969))) (((-380 (-520)) $) 94 (-3700 (-12 (|has| |#1| (-960 (-520))) (|has| |#1| (-512))) (|has| |#1| (-960 (-380 (-520))))))) (-2276 (($ $ $) 158 (|has| |#1| (-512)))) (-2756 (((-626 (-520)) (-626 $)) 137 (-4006 (|has| |#1| (-582 (-520))) (|has| |#1| (-969)))) (((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 $) (-1164 $)) 136 (-4006 (|has| |#1| (-582 (-520))) (|has| |#1| (-969)))) (((-2 (|:| -3927 (-626 |#1|)) (|:| |vec| (-1164 |#1|))) (-626 $) (-1164 $)) 135 (|has| |#1| (-969))) (((-626 |#1|) (-626 $)) 134 (|has| |#1| (-969)))) (-1540 (((-3 $ "failed") $) 105 (|has| |#1| (-1024)))) (-2253 (($ $ $) 157 (|has| |#1| (-512)))) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) 152 (|has| |#1| (-512)))) (-2036 (((-108) $) 165 (|has| |#1| (-512)))) (-1272 (((-817 (-520) $) $ (-820 (-520)) (-817 (-520) $)) 212 (|has| |#1| (-814 (-520)))) (((-817 (-352) $) $ (-820 (-352)) (-817 (-352) $)) 211 (|has| |#1| (-814 (-352))))) (-1255 (($ $) 51) (($ (-586 $)) 50)) (-3357 (((-586 (-110)) $) 43)) (-3877 (((-110) (-110)) 42)) (-1537 (((-108) $) 103 (|has| |#1| (-1024)))) (-2777 (((-108) $) 22 (|has| $ (-960 (-520))))) (-4115 (($ $) 186 (|has| |#1| (-969)))) (-2800 (((-1035 |#1| (-559 $)) $) 187 (|has| |#1| (-969)))) (-3188 (((-3 (-586 $) "failed") (-586 $) $) 161 (|has| |#1| (-512)))) (-2433 (((-1079 $) (-559 $)) 25 (|has| $ (-969)))) (-2809 (($ $ $) 13)) (-2446 (($ $ $) 14)) (-1389 (($ (-1 $ $) (-559 $)) 36)) (-2690 (((-3 (-559 $) "failed") $) 46)) (-2222 (($ (-586 $)) 150 (|has| |#1| (-512))) (($ $ $) 149 (|has| |#1| (-512)))) (-1239 (((-1066) $) 9)) (-1265 (((-586 (-559 $)) $) 45)) (-2904 (($ (-110) $) 38) (($ (-110) (-586 $)) 37)) (-3548 (((-3 (-586 $) "failed") $) 192 (|has| |#1| (-1024)))) (-2090 (((-3 (-2 (|:| |val| $) (|:| -2647 (-520))) "failed") $) 183 (|has| |#1| (-969)))) (-1205 (((-3 (-586 $) "failed") $) 190 (|has| |#1| (-25)))) (-3929 (((-3 (-2 (|:| -2972 (-520)) (|:| |var| (-559 $))) "failed") $) 189 (|has| |#1| (-25)))) (-2568 (((-3 (-2 (|:| |var| (-559 $)) (|:| -2647 (-520))) "failed") $) 191 (|has| |#1| (-1024))) (((-3 (-2 (|:| |var| (-559 $)) (|:| -2647 (-520))) "failed") $ (-110)) 185 (|has| |#1| (-969))) (((-3 (-2 (|:| |var| (-559 $)) (|:| -2647 (-520))) "failed") $ (-1083)) 184 (|has| |#1| (-969)))) (-1784 (((-108) $ (-110)) 40) (((-108) $ (-1083)) 39)) (-3093 (($ $) 107 (-3700 (|has| |#1| (-445)) (|has| |#1| (-512))))) (-4146 (((-706) $) 47)) (-4142 (((-1030) $) 10)) (-3103 (((-108) $) 205)) (-3113 ((|#1| $) 204)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) 151 (|has| |#1| (-512)))) (-2257 (($ (-586 $)) 148 (|has| |#1| (-512))) (($ $ $) 147 (|has| |#1| (-512)))) (-4134 (((-108) $ $) 35) (((-108) $ (-1083)) 34)) (-1916 (((-391 $) $) 162 (|has| |#1| (-512)))) (-1283 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 160 (|has| |#1| (-512))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) 159 (|has| |#1| (-512)))) (-2230 (((-3 $ "failed") $ $) 142 (|has| |#1| (-512)))) (-2608 (((-3 (-586 $) "failed") (-586 $) $) 153 (|has| |#1| (-512)))) (-3615 (((-108) $) 23 (|has| $ (-960 (-520))))) (-2286 (($ $ (-559 $) $) 67) (($ $ (-586 (-559 $)) (-586 $)) 66) (($ $ (-586 (-268 $))) 65) (($ $ (-268 $)) 64) (($ $ $ $) 63) (($ $ (-586 $) (-586 $)) 62) (($ $ (-586 (-1083)) (-586 (-1 $ $))) 33) (($ $ (-586 (-1083)) (-586 (-1 $ (-586 $)))) 32) (($ $ (-1083) (-1 $ (-586 $))) 31) (($ $ (-1083) (-1 $ $)) 30) (($ $ (-586 (-110)) (-586 (-1 $ $))) 29) (($ $ (-586 (-110)) (-586 (-1 $ (-586 $)))) 28) (($ $ (-110) (-1 $ (-586 $))) 27) (($ $ (-110) (-1 $ $)) 26) (($ $ (-1083)) 197 (|has| |#1| (-561 (-496)))) (($ $ (-586 (-1083))) 196 (|has| |#1| (-561 (-496)))) (($ $) 195 (|has| |#1| (-561 (-496)))) (($ $ (-110) $ (-1083)) 194 (|has| |#1| (-561 (-496)))) (($ $ (-586 (-110)) (-586 $) (-1083)) 193 (|has| |#1| (-561 (-496)))) (($ $ (-586 (-1083)) (-586 (-706)) (-586 (-1 $ $))) 182 (|has| |#1| (-969))) (($ $ (-586 (-1083)) (-586 (-706)) (-586 (-1 $ (-586 $)))) 181 (|has| |#1| (-969))) (($ $ (-1083) (-706) (-1 $ (-586 $))) 180 (|has| |#1| (-969))) (($ $ (-1083) (-706) (-1 $ $)) 179 (|has| |#1| (-969)))) (-3704 (((-706) $) 155 (|has| |#1| (-512)))) (-2543 (($ (-110) $) 61) (($ (-110) $ $) 60) (($ (-110) $ $ $) 59) (($ (-110) $ $ $ $) 58) (($ (-110) (-586 $)) 57)) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) 156 (|has| |#1| (-512)))) (-3453 (($ $) 49) (($ $ $) 48)) (-2155 (($ $ (-586 (-1083)) (-586 (-706))) 128 (|has| |#1| (-969))) (($ $ (-1083) (-706)) 127 (|has| |#1| (-969))) (($ $ (-586 (-1083))) 126 (|has| |#1| (-969))) (($ $ (-1083)) 125 (|has| |#1| (-969)))) (-3556 (($ $) 176 (|has| |#1| (-512)))) (-2811 (((-1035 |#1| (-559 $)) $) 177 (|has| |#1| (-512)))) (-3484 (($ $) 24 (|has| $ (-969)))) (-1429 (((-820 (-520)) $) 214 (|has| |#1| (-561 (-820 (-520))))) (((-820 (-352)) $) 213 (|has| |#1| (-561 (-820 (-352))))) (($ (-391 $)) 178 (|has| |#1| (-512))) (((-496) $) 97 (|has| |#1| (-561 (-496))))) (-2945 (($ $ $) 111 (|has| |#1| (-445)))) (-3607 (($ $ $) 112 (|has| |#1| (-445)))) (-2188 (((-791) $) 11) (($ (-559 $)) 70) (($ (-1083)) 217) (($ |#1|) 208) (($ (-1035 |#1| (-559 $))) 188 (|has| |#1| (-969))) (($ (-380 |#1|)) 174 (|has| |#1| (-512))) (($ (-880 (-380 |#1|))) 173 (|has| |#1| (-512))) (($ (-380 (-880 (-380 |#1|)))) 172 (|has| |#1| (-512))) (($ (-380 (-880 |#1|))) 170 (|has| |#1| (-512))) (($ $) 141 (|has| |#1| (-512))) (($ (-880 |#1|)) 124 (|has| |#1| (-969))) (($ (-380 (-520))) 96 (-3700 (|has| |#1| (-512)) (-12 (|has| |#1| (-960 (-520))) (|has| |#1| (-512))) (|has| |#1| (-960 (-380 (-520)))))) (($ (-520)) 93 (-3700 (|has| |#1| (-969)) (|has| |#1| (-960 (-520)))))) (-3796 (((-3 $ "failed") $) 138 (|has| |#1| (-133)))) (-3251 (((-706)) 133 (|has| |#1| (-969)))) (-2319 (($ $) 53) (($ (-586 $)) 52)) (-1373 (((-108) (-110)) 41)) (-2559 (((-108) $ $) 145 (|has| |#1| (-512)))) (-1804 (($ (-1083) $) 202) (($ (-1083) $ $) 201) (($ (-1083) $ $ $) 200) (($ (-1083) $ $ $ $) 199) (($ (-1083) (-586 $)) 198)) (-3504 (($ $ (-520)) 110 (-3700 (|has| |#1| (-445)) (|has| |#1| (-512)))) (($ $ (-706)) 104 (|has| |#1| (-1024))) (($ $ (-849)) 100 (|has| |#1| (-1024)))) (-3560 (($) 115 (|has| |#1| (-25)) CONST)) (-3570 (($) 101 (|has| |#1| (-1024)) CONST)) (-2211 (($ $ (-586 (-1083)) (-586 (-706))) 132 (|has| |#1| (-969))) (($ $ (-1083) (-706)) 131 (|has| |#1| (-969))) (($ $ (-586 (-1083))) 130 (|has| |#1| (-969))) (($ $ (-1083)) 129 (|has| |#1| (-969)))) (-1573 (((-108) $ $) 16)) (-1557 (((-108) $ $) 17)) (-1530 (((-108) $ $) 6)) (-1565 (((-108) $ $) 15)) (-1548 (((-108) $ $) 18)) (-1619 (($ (-1035 |#1| (-559 $)) (-1035 |#1| (-559 $))) 175 (|has| |#1| (-512))) (($ $ $) 108 (-3700 (|has| |#1| (-445)) (|has| |#1| (-512))))) (-1611 (($ $ $) 120 (|has| |#1| (-21))) (($ $) 119 (|has| |#1| (-21)))) (-1601 (($ $ $) 113 (|has| |#1| (-25)))) (** (($ $ (-520)) 109 (-3700 (|has| |#1| (-445)) (|has| |#1| (-512)))) (($ $ (-706)) 106 (|has| |#1| (-1024))) (($ $ (-849)) 99 (|has| |#1| (-1024)))) (* (($ (-380 (-520)) $) 167 (|has| |#1| (-512))) (($ $ (-380 (-520))) 166 (|has| |#1| (-512))) (($ |#1| $) 140 (|has| |#1| (-157))) (($ $ |#1|) 139 (|has| |#1| (-157))) (($ (-520) $) 121 (|has| |#1| (-21))) (($ (-706) $) 117 (|has| |#1| (-25))) (($ (-849) $) 114 (|has| |#1| (-25))) (($ $ $) 98 (|has| |#1| (-1024)))))
-(((-403 |#1|) (-1195) (-783)) (T -403))
-((-3103 (*1 *2 *1) (-12 (-4 *1 (-403 *3)) (-4 *3 (-783)) (-5 *2 (-108)))) (-3113 (*1 *2 *1) (-12 (-4 *1 (-403 *2)) (-4 *2 (-783)))) (-4081 (*1 *2 *1) (-12 (-4 *1 (-403 *3)) (-4 *3 (-783)) (-5 *2 (-586 (-1083))))) (-1804 (*1 *1 *2 *1) (-12 (-5 *2 (-1083)) (-4 *1 (-403 *3)) (-4 *3 (-783)))) (-1804 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1083)) (-4 *1 (-403 *3)) (-4 *3 (-783)))) (-1804 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1083)) (-4 *1 (-403 *3)) (-4 *3 (-783)))) (-1804 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1083)) (-4 *1 (-403 *3)) (-4 *3 (-783)))) (-1804 (*1 *1 *2 *3) (-12 (-5 *2 (-1083)) (-5 *3 (-586 *1)) (-4 *1 (-403 *4)) (-4 *4 (-783)))) (-2286 (*1 *1 *1 *2) (-12 (-5 *2 (-1083)) (-4 *1 (-403 *3)) (-4 *3 (-783)) (-4 *3 (-561 (-496))))) (-2286 (*1 *1 *1 *2) (-12 (-5 *2 (-586 (-1083))) (-4 *1 (-403 *3)) (-4 *3 (-783)) (-4 *3 (-561 (-496))))) (-2286 (*1 *1 *1) (-12 (-4 *1 (-403 *2)) (-4 *2 (-783)) (-4 *2 (-561 (-496))))) (-2286 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1083)) (-4 *1 (-403 *4)) (-4 *4 (-783)) (-4 *4 (-561 (-496))))) (-2286 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-586 (-110))) (-5 *3 (-586 *1)) (-5 *4 (-1083)) (-4 *1 (-403 *5)) (-4 *5 (-783)) (-4 *5 (-561 (-496))))) (-3548 (*1 *2 *1) (|partial| -12 (-4 *3 (-1024)) (-4 *3 (-783)) (-5 *2 (-586 *1)) (-4 *1 (-403 *3)))) (-2568 (*1 *2 *1) (|partial| -12 (-4 *3 (-1024)) (-4 *3 (-783)) (-5 *2 (-2 (|:| |var| (-559 *1)) (|:| -2647 (-520)))) (-4 *1 (-403 *3)))) (-1205 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-783)) (-5 *2 (-586 *1)) (-4 *1 (-403 *3)))) (-3929 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-783)) (-5 *2 (-2 (|:| -2972 (-520)) (|:| |var| (-559 *1)))) (-4 *1 (-403 *3)))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-1035 *3 (-559 *1))) (-4 *3 (-969)) (-4 *3 (-783)) (-4 *1 (-403 *3)))) (-2800 (*1 *2 *1) (-12 (-4 *3 (-969)) (-4 *3 (-783)) (-5 *2 (-1035 *3 (-559 *1))) (-4 *1 (-403 *3)))) (-4115 (*1 *1 *1) (-12 (-4 *1 (-403 *2)) (-4 *2 (-783)) (-4 *2 (-969)))) (-2568 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-110)) (-4 *4 (-969)) (-4 *4 (-783)) (-5 *2 (-2 (|:| |var| (-559 *1)) (|:| -2647 (-520)))) (-4 *1 (-403 *4)))) (-2568 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1083)) (-4 *4 (-969)) (-4 *4 (-783)) (-5 *2 (-2 (|:| |var| (-559 *1)) (|:| -2647 (-520)))) (-4 *1 (-403 *4)))) (-2090 (*1 *2 *1) (|partial| -12 (-4 *3 (-969)) (-4 *3 (-783)) (-5 *2 (-2 (|:| |val| *1) (|:| -2647 (-520)))) (-4 *1 (-403 *3)))) (-2286 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-586 (-1083))) (-5 *3 (-586 (-706))) (-5 *4 (-586 (-1 *1 *1))) (-4 *1 (-403 *5)) (-4 *5 (-783)) (-4 *5 (-969)))) (-2286 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-586 (-1083))) (-5 *3 (-586 (-706))) (-5 *4 (-586 (-1 *1 (-586 *1)))) (-4 *1 (-403 *5)) (-4 *5 (-783)) (-4 *5 (-969)))) (-2286 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1083)) (-5 *3 (-706)) (-5 *4 (-1 *1 (-586 *1))) (-4 *1 (-403 *5)) (-4 *5 (-783)) (-4 *5 (-969)))) (-2286 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1083)) (-5 *3 (-706)) (-5 *4 (-1 *1 *1)) (-4 *1 (-403 *5)) (-4 *5 (-783)) (-4 *5 (-969)))) (-1429 (*1 *1 *2) (-12 (-5 *2 (-391 *1)) (-4 *1 (-403 *3)) (-4 *3 (-512)) (-4 *3 (-783)))) (-2811 (*1 *2 *1) (-12 (-4 *3 (-512)) (-4 *3 (-783)) (-5 *2 (-1035 *3 (-559 *1))) (-4 *1 (-403 *3)))) (-3556 (*1 *1 *1) (-12 (-4 *1 (-403 *2)) (-4 *2 (-783)) (-4 *2 (-512)))) (-1619 (*1 *1 *2 *2) (-12 (-5 *2 (-1035 *3 (-559 *1))) (-4 *3 (-512)) (-4 *3 (-783)) (-4 *1 (-403 *3)))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-380 *3)) (-4 *3 (-512)) (-4 *3 (-783)) (-4 *1 (-403 *3)))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-880 (-380 *3))) (-4 *3 (-512)) (-4 *3 (-783)) (-4 *1 (-403 *3)))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-380 (-880 (-380 *3)))) (-4 *3 (-512)) (-4 *3 (-783)) (-4 *1 (-403 *3)))) (-1278 (*1 *2 *1 *3) (-12 (-5 *3 (-559 *1)) (-4 *1 (-403 *4)) (-4 *4 (-783)) (-4 *4 (-512)) (-5 *2 (-380 (-1079 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-706)) (-4 *1 (-403 *3)) (-4 *3 (-783)) (-4 *3 (-1024)))))
-(-13 (-276) (-960 (-1083)) (-812 |t#1|) (-373 |t#1|) (-384 |t#1|) (-10 -8 (-15 -3103 ((-108) $)) (-15 -3113 (|t#1| $)) (-15 -4081 ((-586 (-1083)) $)) (-15 -1804 ($ (-1083) $)) (-15 -1804 ($ (-1083) $ $)) (-15 -1804 ($ (-1083) $ $ $)) (-15 -1804 ($ (-1083) $ $ $ $)) (-15 -1804 ($ (-1083) (-586 $))) (IF (|has| |t#1| (-561 (-496))) (PROGN (-6 (-561 (-496))) (-15 -2286 ($ $ (-1083))) (-15 -2286 ($ $ (-586 (-1083)))) (-15 -2286 ($ $)) (-15 -2286 ($ $ (-110) $ (-1083))) (-15 -2286 ($ $ (-586 (-110)) (-586 $) (-1083)))) |%noBranch|) (IF (|has| |t#1| (-1024)) (PROGN (-6 (-662)) (-15 ** ($ $ (-706))) (-15 -3548 ((-3 (-586 $) "failed") $)) (-15 -2568 ((-3 (-2 (|:| |var| (-559 $)) (|:| -2647 (-520))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-445)) (-6 (-445)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -1205 ((-3 (-586 $) "failed") $)) (-15 -3929 ((-3 (-2 (|:| -2972 (-520)) (|:| |var| (-559 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-969)) (PROGN (-6 (-969)) (-6 (-960 (-880 |t#1|))) (-6 (-828 (-1083))) (-6 (-350 |t#1|)) (-15 -2188 ($ (-1035 |t#1| (-559 $)))) (-15 -2800 ((-1035 |t#1| (-559 $)) $)) (-15 -4115 ($ $)) (-15 -2568 ((-3 (-2 (|:| |var| (-559 $)) (|:| -2647 (-520))) "failed") $ (-110))) (-15 -2568 ((-3 (-2 (|:| |var| (-559 $)) (|:| -2647 (-520))) "failed") $ (-1083))) (-15 -2090 ((-3 (-2 (|:| |val| $) (|:| -2647 (-520))) "failed") $)) (-15 -2286 ($ $ (-586 (-1083)) (-586 (-706)) (-586 (-1 $ $)))) (-15 -2286 ($ $ (-586 (-1083)) (-586 (-706)) (-586 (-1 $ (-586 $))))) (-15 -2286 ($ $ (-1083) (-706) (-1 $ (-586 $)))) (-15 -2286 ($ $ (-1083) (-706) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |t#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |t#1| (-157)) (-6 (-37 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-512)) (PROGN (-6 (-336)) (-6 (-960 (-380 (-880 |t#1|)))) (-15 -1429 ($ (-391 $))) (-15 -2811 ((-1035 |t#1| (-559 $)) $)) (-15 -3556 ($ $)) (-15 -1619 ($ (-1035 |t#1| (-559 $)) (-1035 |t#1| (-559 $)))) (-15 -2188 ($ (-380 |t#1|))) (-15 -2188 ($ (-880 (-380 |t#1|)))) (-15 -2188 ($ (-380 (-880 (-380 |t#1|))))) (-15 -1278 ((-380 (-1079 $)) $ (-559 $))) (IF (|has| |t#1| (-960 (-520))) (-6 (-960 (-380 (-520)))) |%noBranch|)) |%noBranch|)))
-(((-21) -3700 (|has| |#1| (-969)) (|has| |#1| (-512)) (|has| |#1| (-157)) (|has| |#1| (-135)) (|has| |#1| (-133)) (|has| |#1| (-21))) ((-23) -3700 (|has| |#1| (-969)) (|has| |#1| (-512)) (|has| |#1| (-157)) (|has| |#1| (-135)) (|has| |#1| (-133)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -3700 (|has| |#1| (-969)) (|has| |#1| (-512)) (|has| |#1| (-157)) (|has| |#1| (-135)) (|has| |#1| (-133)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-37 #0=(-380 (-520))) |has| |#1| (-512)) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) |has| |#1| (-512)) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-512)) ((-107 |#1| |#1|) |has| |#1| (-157)) ((-107 $ $) |has| |#1| (-512)) ((-124) -3700 (|has| |#1| (-969)) (|has| |#1| (-512)) (|has| |#1| (-157)) (|has| |#1| (-135)) (|has| |#1| (-133)) (|has| |#1| (-21))) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-560 (-791)) . T) ((-157) |has| |#1| (-512)) ((-561 (-496)) |has| |#1| (-561 (-496))) ((-561 (-820 (-352))) |has| |#1| (-561 (-820 (-352)))) ((-561 (-820 (-520))) |has| |#1| (-561 (-820 (-520)))) ((-219) |has| |#1| (-512)) ((-264) |has| |#1| (-512)) ((-281) |has| |#1| (-512)) ((-283 $) . T) ((-276) . T) ((-336) |has| |#1| (-512)) ((-350 |#1|) |has| |#1| (-969)) ((-373 |#1|) . T) ((-384 |#1|) . T) ((-424) |has| |#1| (-512)) ((-445) |has| |#1| (-445)) ((-481 (-559 $) $) . T) ((-481 $ $) . T) ((-512) |has| |#1| (-512)) ((-588 #0#) |has| |#1| (-512)) ((-588 |#1|) |has| |#1| (-157)) ((-588 $) -3700 (|has| |#1| (-969)) (|has| |#1| (-512)) (|has| |#1| (-157)) (|has| |#1| (-135)) (|has| |#1| (-133))) ((-582 (-520)) -12 (|has| |#1| (-582 (-520))) (|has| |#1| (-969))) ((-582 |#1|) |has| |#1| (-969)) ((-653 #0#) |has| |#1| (-512)) ((-653 |#1|) |has| |#1| (-157)) ((-653 $) |has| |#1| (-512)) ((-662) -3700 (|has| |#1| (-1024)) (|has| |#1| (-969)) (|has| |#1| (-512)) (|has| |#1| (-445)) (|has| |#1| (-157)) (|has| |#1| (-135)) (|has| |#1| (-133))) ((-783) . T) ((-828 (-1083)) |has| |#1| (-969)) ((-814 (-352)) |has| |#1| (-814 (-352))) ((-814 (-520)) |has| |#1| (-814 (-520))) ((-812 |#1|) . T) ((-848) |has| |#1| (-512)) ((-960 (-380 (-520))) -3700 (|has| |#1| (-960 (-380 (-520)))) (-12 (|has| |#1| (-512)) (|has| |#1| (-960 (-520))))) ((-960 (-380 (-880 |#1|))) |has| |#1| (-512)) ((-960 (-520)) |has| |#1| (-960 (-520))) ((-960 (-559 $)) . T) ((-960 (-880 |#1|)) |has| |#1| (-969)) ((-960 (-1083)) . T) ((-960 |#1|) . T) ((-975 #0#) |has| |#1| (-512)) ((-975 |#1|) |has| |#1| (-157)) ((-975 $) |has| |#1| (-512)) ((-969) -3700 (|has| |#1| (-969)) (|has| |#1| (-512)) (|has| |#1| (-157)) (|has| |#1| (-135)) (|has| |#1| (-133))) ((-976) -3700 (|has| |#1| (-969)) (|has| |#1| (-512)) (|has| |#1| (-157)) (|has| |#1| (-135)) (|has| |#1| (-133))) ((-1024) -3700 (|has| |#1| (-1024)) (|has| |#1| (-969)) (|has| |#1| (-512)) (|has| |#1| (-445)) (|has| |#1| (-157)) (|has| |#1| (-135)) (|has| |#1| (-133))) ((-1012) . T) ((-1118) . T) ((-1122) |has| |#1| (-512)))
-((-1443 ((|#2| |#2| |#2|) 33)) (-3877 (((-110) (-110)) 44)) (-3088 ((|#2| |#2|) 66)) (-2553 ((|#2| |#2|) 69)) (-2899 ((|#2| |#2|) 32)) (-2622 ((|#2| |#2| |#2|) 35)) (-1757 ((|#2| |#2| |#2|) 37)) (-2418 ((|#2| |#2| |#2|) 34)) (-3838 ((|#2| |#2| |#2|) 36)) (-1373 (((-108) (-110)) 42)) (-1699 ((|#2| |#2|) 39)) (-1300 ((|#2| |#2|) 38)) (-2458 ((|#2| |#2|) 27)) (-2551 ((|#2| |#2| |#2|) 30) ((|#2| |#2|) 28)) (-1815 ((|#2| |#2| |#2|) 31)))
-(((-404 |#1| |#2|) (-10 -7 (-15 -1373 ((-108) (-110))) (-15 -3877 ((-110) (-110))) (-15 -2458 (|#2| |#2|)) (-15 -2551 (|#2| |#2|)) (-15 -2551 (|#2| |#2| |#2|)) (-15 -1815 (|#2| |#2| |#2|)) (-15 -2899 (|#2| |#2|)) (-15 -1443 (|#2| |#2| |#2|)) (-15 -2418 (|#2| |#2| |#2|)) (-15 -2622 (|#2| |#2| |#2|)) (-15 -3838 (|#2| |#2| |#2|)) (-15 -1757 (|#2| |#2| |#2|)) (-15 -1300 (|#2| |#2|)) (-15 -1699 (|#2| |#2|)) (-15 -2553 (|#2| |#2|)) (-15 -3088 (|#2| |#2|))) (-13 (-783) (-512)) (-403 |#1|)) (T -404))
-((-3088 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-404 *3 *2)) (-4 *2 (-403 *3)))) (-2553 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-404 *3 *2)) (-4 *2 (-403 *3)))) (-1699 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-404 *3 *2)) (-4 *2 (-403 *3)))) (-1300 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-404 *3 *2)) (-4 *2 (-403 *3)))) (-1757 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-404 *3 *2)) (-4 *2 (-403 *3)))) (-3838 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-404 *3 *2)) (-4 *2 (-403 *3)))) (-2622 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-404 *3 *2)) (-4 *2 (-403 *3)))) (-2418 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-404 *3 *2)) (-4 *2 (-403 *3)))) (-1443 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-404 *3 *2)) (-4 *2 (-403 *3)))) (-2899 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-404 *3 *2)) (-4 *2 (-403 *3)))) (-1815 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-404 *3 *2)) (-4 *2 (-403 *3)))) (-2551 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-404 *3 *2)) (-4 *2 (-403 *3)))) (-2551 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-404 *3 *2)) (-4 *2 (-403 *3)))) (-2458 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-404 *3 *2)) (-4 *2 (-403 *3)))) (-3877 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *3 (-13 (-783) (-512))) (-5 *1 (-404 *3 *4)) (-4 *4 (-403 *3)))) (-1373 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *4 (-13 (-783) (-512))) (-5 *2 (-108)) (-5 *1 (-404 *4 *5)) (-4 *5 (-403 *4)))))
-(-10 -7 (-15 -1373 ((-108) (-110))) (-15 -3877 ((-110) (-110))) (-15 -2458 (|#2| |#2|)) (-15 -2551 (|#2| |#2|)) (-15 -2551 (|#2| |#2| |#2|)) (-15 -1815 (|#2| |#2| |#2|)) (-15 -2899 (|#2| |#2|)) (-15 -1443 (|#2| |#2| |#2|)) (-15 -2418 (|#2| |#2| |#2|)) (-15 -2622 (|#2| |#2| |#2|)) (-15 -3838 (|#2| |#2| |#2|)) (-15 -1757 (|#2| |#2| |#2|)) (-15 -1300 (|#2| |#2|)) (-15 -1699 (|#2| |#2|)) (-15 -2553 (|#2| |#2|)) (-15 -3088 (|#2| |#2|)))
-((-2961 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1079 |#2|)) (|:| |pol2| (-1079 |#2|)) (|:| |prim| (-1079 |#2|))) |#2| |#2|) 94 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-586 (-1079 |#2|))) (|:| |prim| (-1079 |#2|))) (-586 |#2|)) 58)))
-(((-405 |#1| |#2|) (-10 -7 (-15 -2961 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-586 (-1079 |#2|))) (|:| |prim| (-1079 |#2|))) (-586 |#2|))) (IF (|has| |#2| (-27)) (-15 -2961 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1079 |#2|)) (|:| |pol2| (-1079 |#2|)) (|:| |prim| (-1079 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-512) (-783) (-135)) (-403 |#1|)) (T -405))
-((-2961 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-512) (-783) (-135))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1079 *3)) (|:| |pol2| (-1079 *3)) (|:| |prim| (-1079 *3)))) (-5 *1 (-405 *4 *3)) (-4 *3 (-27)) (-4 *3 (-403 *4)))) (-2961 (*1 *2 *3) (-12 (-5 *3 (-586 *5)) (-4 *5 (-403 *4)) (-4 *4 (-13 (-512) (-783) (-135))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-586 (-1079 *5))) (|:| |prim| (-1079 *5)))) (-5 *1 (-405 *4 *5)))))
-(-10 -7 (-15 -2961 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-586 (-1079 |#2|))) (|:| |prim| (-1079 |#2|))) (-586 |#2|))) (IF (|has| |#2| (-27)) (-15 -2961 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1079 |#2|)) (|:| |pol2| (-1079 |#2|)) (|:| |prim| (-1079 |#2|))) |#2| |#2|)) |%noBranch|))
-((-3672 (((-1169)) 18)) (-3771 (((-1079 (-380 (-520))) |#2| (-559 |#2|)) 40) (((-380 (-520)) |#2|) 23)))
-(((-406 |#1| |#2|) (-10 -7 (-15 -3771 ((-380 (-520)) |#2|)) (-15 -3771 ((-1079 (-380 (-520))) |#2| (-559 |#2|))) (-15 -3672 ((-1169)))) (-13 (-783) (-512) (-960 (-520))) (-403 |#1|)) (T -406))
-((-3672 (*1 *2) (-12 (-4 *3 (-13 (-783) (-512) (-960 (-520)))) (-5 *2 (-1169)) (-5 *1 (-406 *3 *4)) (-4 *4 (-403 *3)))) (-3771 (*1 *2 *3 *4) (-12 (-5 *4 (-559 *3)) (-4 *3 (-403 *5)) (-4 *5 (-13 (-783) (-512) (-960 (-520)))) (-5 *2 (-1079 (-380 (-520)))) (-5 *1 (-406 *5 *3)))) (-3771 (*1 *2 *3) (-12 (-4 *4 (-13 (-783) (-512) (-960 (-520)))) (-5 *2 (-380 (-520))) (-5 *1 (-406 *4 *3)) (-4 *3 (-403 *4)))))
-(-10 -7 (-15 -3771 ((-380 (-520)) |#2|)) (-15 -3771 ((-1079 (-380 (-520))) |#2| (-559 |#2|))) (-15 -3672 ((-1169))))
-((-2685 (((-108) $) 28)) (-1954 (((-108) $) 30)) (-3447 (((-108) $) 31)) (-2927 (((-108) $) 34)) (-3165 (((-108) $) 29)) (-2203 (((-108) $) 33)) (-2188 (((-791) $) 18) (($ (-1066)) 27) (($ (-1083)) 23) (((-1083) $) 22) (((-1016) $) 21)) (-2411 (((-108) $) 32)) (-1530 (((-108) $ $) 15)))
-(((-407) (-13 (-560 (-791)) (-10 -8 (-15 -2188 ($ (-1066))) (-15 -2188 ($ (-1083))) (-15 -2188 ((-1083) $)) (-15 -2188 ((-1016) $)) (-15 -2685 ((-108) $)) (-15 -3165 ((-108) $)) (-15 -3447 ((-108) $)) (-15 -2203 ((-108) $)) (-15 -2927 ((-108) $)) (-15 -2411 ((-108) $)) (-15 -1954 ((-108) $)) (-15 -1530 ((-108) $ $))))) (T -407))
-((-2188 (*1 *1 *2) (-12 (-5 *2 (-1066)) (-5 *1 (-407)))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-1083)) (-5 *1 (-407)))) (-2188 (*1 *2 *1) (-12 (-5 *2 (-1083)) (-5 *1 (-407)))) (-2188 (*1 *2 *1) (-12 (-5 *2 (-1016)) (-5 *1 (-407)))) (-2685 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-407)))) (-3165 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-407)))) (-3447 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-407)))) (-2203 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-407)))) (-2927 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-407)))) (-2411 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-407)))) (-1954 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-407)))) (-1530 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-407)))))
-(-13 (-560 (-791)) (-10 -8 (-15 -2188 ($ (-1066))) (-15 -2188 ($ (-1083))) (-15 -2188 ((-1083) $)) (-15 -2188 ((-1016) $)) (-15 -2685 ((-108) $)) (-15 -3165 ((-108) $)) (-15 -3447 ((-108) $)) (-15 -2203 ((-108) $)) (-15 -2927 ((-108) $)) (-15 -2411 ((-108) $)) (-15 -1954 ((-108) $)) (-15 -1530 ((-108) $ $))))
-((-3988 (((-3 (-391 (-1079 (-380 (-520)))) "failed") |#3|) 69)) (-2255 (((-391 |#3|) |#3|) 33)) (-1839 (((-3 (-391 (-1079 (-47))) "failed") |#3|) 27 (|has| |#2| (-960 (-47))))) (-3883 (((-3 (|:| |overq| (-1079 (-380 (-520)))) (|:| |overan| (-1079 (-47))) (|:| -3076 (-108))) |#3|) 35)))
-(((-408 |#1| |#2| |#3|) (-10 -7 (-15 -2255 ((-391 |#3|) |#3|)) (-15 -3988 ((-3 (-391 (-1079 (-380 (-520)))) "failed") |#3|)) (-15 -3883 ((-3 (|:| |overq| (-1079 (-380 (-520)))) (|:| |overan| (-1079 (-47))) (|:| -3076 (-108))) |#3|)) (IF (|has| |#2| (-960 (-47))) (-15 -1839 ((-3 (-391 (-1079 (-47))) "failed") |#3|)) |%noBranch|)) (-13 (-512) (-783) (-960 (-520))) (-403 |#1|) (-1140 |#2|)) (T -408))
-((-1839 (*1 *2 *3) (|partial| -12 (-4 *5 (-960 (-47))) (-4 *4 (-13 (-512) (-783) (-960 (-520)))) (-4 *5 (-403 *4)) (-5 *2 (-391 (-1079 (-47)))) (-5 *1 (-408 *4 *5 *3)) (-4 *3 (-1140 *5)))) (-3883 (*1 *2 *3) (-12 (-4 *4 (-13 (-512) (-783) (-960 (-520)))) (-4 *5 (-403 *4)) (-5 *2 (-3 (|:| |overq| (-1079 (-380 (-520)))) (|:| |overan| (-1079 (-47))) (|:| -3076 (-108)))) (-5 *1 (-408 *4 *5 *3)) (-4 *3 (-1140 *5)))) (-3988 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-512) (-783) (-960 (-520)))) (-4 *5 (-403 *4)) (-5 *2 (-391 (-1079 (-380 (-520))))) (-5 *1 (-408 *4 *5 *3)) (-4 *3 (-1140 *5)))) (-2255 (*1 *2 *3) (-12 (-4 *4 (-13 (-512) (-783) (-960 (-520)))) (-4 *5 (-403 *4)) (-5 *2 (-391 *3)) (-5 *1 (-408 *4 *5 *3)) (-4 *3 (-1140 *5)))))
-(-10 -7 (-15 -2255 ((-391 |#3|) |#3|)) (-15 -3988 ((-3 (-391 (-1079 (-380 (-520)))) "failed") |#3|)) (-15 -3883 ((-3 (|:| |overq| (-1079 (-380 (-520)))) (|:| |overan| (-1079 (-47))) (|:| -3076 (-108))) |#3|)) (IF (|has| |#2| (-960 (-47))) (-15 -1839 ((-3 (-391 (-1079 (-47))) "failed") |#3|)) |%noBranch|))
-((-1414 (((-108) $ $) NIL)) (-1801 (((-1066) $ (-1066)) NIL)) (-2405 (($ $ (-1066)) NIL)) (-1582 (((-1066) $) NIL)) (-2212 (((-361) (-361) (-361)) 17) (((-361) (-361)) 15)) (-1543 (($ (-361)) NIL) (($ (-361) (-1066)) NIL)) (-2883 (((-361) $) NIL)) (-1239 (((-1066) $) NIL)) (-3968 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-1366 (((-1169) (-1066)) 9)) (-1295 (((-1169) (-1066)) 10)) (-1379 (((-1169)) 11)) (-2188 (((-791) $) NIL)) (-1934 (($ $) 35)) (-1530 (((-108) $ $) NIL)))
-(((-409) (-13 (-337 (-361) (-1066)) (-10 -7 (-15 -2212 ((-361) (-361) (-361))) (-15 -2212 ((-361) (-361))) (-15 -1366 ((-1169) (-1066))) (-15 -1295 ((-1169) (-1066))) (-15 -1379 ((-1169)))))) (T -409))
-((-2212 (*1 *2 *2 *2) (-12 (-5 *2 (-361)) (-5 *1 (-409)))) (-2212 (*1 *2 *2) (-12 (-5 *2 (-361)) (-5 *1 (-409)))) (-1366 (*1 *2 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-1169)) (-5 *1 (-409)))) (-1295 (*1 *2 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-1169)) (-5 *1 (-409)))) (-1379 (*1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-409)))))
-(-13 (-337 (-361) (-1066)) (-10 -7 (-15 -2212 ((-361) (-361) (-361))) (-15 -2212 ((-361) (-361))) (-15 -1366 ((-1169) (-1066))) (-15 -1295 ((-1169) (-1066))) (-15 -1379 ((-1169)))))
-((-1414 (((-108) $ $) NIL)) (-2099 (((-3 (|:| |fst| (-407)) (|:| -1365 "void")) $) 10)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-1874 (($) 31)) (-1486 (($) 37)) (-1415 (($) 33)) (-3869 (($) 35)) (-3317 (($) 32)) (-1496 (($) 34)) (-2038 (($) 36)) (-3192 (((-108) $) 8)) (-2592 (((-586 (-880 (-520))) $) 16)) (-2200 (($ (-3 (|:| |fst| (-407)) (|:| -1365 "void")) (-586 (-1083)) (-108)) 25) (($ (-3 (|:| |fst| (-407)) (|:| -1365 "void")) (-586 (-880 (-520))) (-108)) 26)) (-2188 (((-791) $) 21) (($ (-407)) 28)) (-1530 (((-108) $ $) NIL)))
-(((-410) (-13 (-1012) (-10 -8 (-15 -2188 ((-791) $)) (-15 -2188 ($ (-407))) (-15 -2099 ((-3 (|:| |fst| (-407)) (|:| -1365 "void")) $)) (-15 -2592 ((-586 (-880 (-520))) $)) (-15 -3192 ((-108) $)) (-15 -2200 ($ (-3 (|:| |fst| (-407)) (|:| -1365 "void")) (-586 (-1083)) (-108))) (-15 -2200 ($ (-3 (|:| |fst| (-407)) (|:| -1365 "void")) (-586 (-880 (-520))) (-108))) (-15 -1874 ($)) (-15 -3317 ($)) (-15 -1415 ($)) (-15 -1486 ($)) (-15 -1496 ($)) (-15 -3869 ($)) (-15 -2038 ($))))) (T -410))
-((-2188 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-410)))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-407)) (-5 *1 (-410)))) (-2099 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-407)) (|:| -1365 "void"))) (-5 *1 (-410)))) (-2592 (*1 *2 *1) (-12 (-5 *2 (-586 (-880 (-520)))) (-5 *1 (-410)))) (-3192 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-410)))) (-2200 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-407)) (|:| -1365 "void"))) (-5 *3 (-586 (-1083))) (-5 *4 (-108)) (-5 *1 (-410)))) (-2200 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-407)) (|:| -1365 "void"))) (-5 *3 (-586 (-880 (-520)))) (-5 *4 (-108)) (-5 *1 (-410)))) (-1874 (*1 *1) (-5 *1 (-410))) (-3317 (*1 *1) (-5 *1 (-410))) (-1415 (*1 *1) (-5 *1 (-410))) (-1486 (*1 *1) (-5 *1 (-410))) (-1496 (*1 *1) (-5 *1 (-410))) (-3869 (*1 *1) (-5 *1 (-410))) (-2038 (*1 *1) (-5 *1 (-410))))
-(-13 (-1012) (-10 -8 (-15 -2188 ((-791) $)) (-15 -2188 ($ (-407))) (-15 -2099 ((-3 (|:| |fst| (-407)) (|:| -1365 "void")) $)) (-15 -2592 ((-586 (-880 (-520))) $)) (-15 -3192 ((-108) $)) (-15 -2200 ($ (-3 (|:| |fst| (-407)) (|:| -1365 "void")) (-586 (-1083)) (-108))) (-15 -2200 ($ (-3 (|:| |fst| (-407)) (|:| -1365 "void")) (-586 (-880 (-520))) (-108))) (-15 -1874 ($)) (-15 -3317 ($)) (-15 -1415 ($)) (-15 -1486 ($)) (-15 -1496 ($)) (-15 -3869 ($)) (-15 -2038 ($))))
-((-1414 (((-108) $ $) NIL)) (-2883 (((-1083) $) 8)) (-1239 (((-1066) $) 16)) (-4142 (((-1030) $) NIL)) (-2188 (((-791) $) 11)) (-1530 (((-108) $ $) 13)))
-(((-411 |#1|) (-13 (-1012) (-10 -8 (-15 -2883 ((-1083) $)))) (-1083)) (T -411))
-((-2883 (*1 *2 *1) (-12 (-5 *2 (-1083)) (-5 *1 (-411 *3)) (-14 *3 *2))))
-(-13 (-1012) (-10 -8 (-15 -2883 ((-1083) $))))
-((-2008 (((-1169) $) 7)) (-2188 (((-791) $) 8) (($ (-1164 (-635))) 14) (($ (-586 (-303))) 13) (($ (-303)) 12) (($ (-2 (|:| |localSymbols| (-1087)) (|:| -2031 (-586 (-303))))) 11)))
-(((-412) (-1195)) (T -412))
-((-2188 (*1 *1 *2) (-12 (-5 *2 (-1164 (-635))) (-4 *1 (-412)))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-586 (-303))) (-4 *1 (-412)))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-303)) (-4 *1 (-412)))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1087)) (|:| -2031 (-586 (-303))))) (-4 *1 (-412)))))
-(-13 (-368) (-10 -8 (-15 -2188 ($ (-1164 (-635)))) (-15 -2188 ($ (-586 (-303)))) (-15 -2188 ($ (-303))) (-15 -2188 ($ (-2 (|:| |localSymbols| (-1087)) (|:| -2031 (-586 (-303))))))))
-(((-560 (-791)) . T) ((-368) . T) ((-1118) . T))
-((-1296 (((-3 $ "failed") (-1164 (-289 (-352)))) 21) (((-3 $ "failed") (-1164 (-289 (-520)))) 19) (((-3 $ "failed") (-1164 (-880 (-352)))) 17) (((-3 $ "failed") (-1164 (-880 (-520)))) 15) (((-3 $ "failed") (-1164 (-380 (-880 (-352))))) 13) (((-3 $ "failed") (-1164 (-380 (-880 (-520))))) 11)) (-1482 (($ (-1164 (-289 (-352)))) 22) (($ (-1164 (-289 (-520)))) 20) (($ (-1164 (-880 (-352)))) 18) (($ (-1164 (-880 (-520)))) 16) (($ (-1164 (-380 (-880 (-352))))) 14) (($ (-1164 (-380 (-880 (-520))))) 12)) (-2008 (((-1169) $) 7)) (-2188 (((-791) $) 8) (($ (-586 (-303))) 25) (($ (-303)) 24) (($ (-2 (|:| |localSymbols| (-1087)) (|:| -2031 (-586 (-303))))) 23)))
-(((-413) (-1195)) (T -413))
-((-2188 (*1 *1 *2) (-12 (-5 *2 (-586 (-303))) (-4 *1 (-413)))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-303)) (-4 *1 (-413)))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1087)) (|:| -2031 (-586 (-303))))) (-4 *1 (-413)))) (-1482 (*1 *1 *2) (-12 (-5 *2 (-1164 (-289 (-352)))) (-4 *1 (-413)))) (-1296 (*1 *1 *2) (|partial| -12 (-5 *2 (-1164 (-289 (-352)))) (-4 *1 (-413)))) (-1482 (*1 *1 *2) (-12 (-5 *2 (-1164 (-289 (-520)))) (-4 *1 (-413)))) (-1296 (*1 *1 *2) (|partial| -12 (-5 *2 (-1164 (-289 (-520)))) (-4 *1 (-413)))) (-1482 (*1 *1 *2) (-12 (-5 *2 (-1164 (-880 (-352)))) (-4 *1 (-413)))) (-1296 (*1 *1 *2) (|partial| -12 (-5 *2 (-1164 (-880 (-352)))) (-4 *1 (-413)))) (-1482 (*1 *1 *2) (-12 (-5 *2 (-1164 (-880 (-520)))) (-4 *1 (-413)))) (-1296 (*1 *1 *2) (|partial| -12 (-5 *2 (-1164 (-880 (-520)))) (-4 *1 (-413)))) (-1482 (*1 *1 *2) (-12 (-5 *2 (-1164 (-380 (-880 (-352))))) (-4 *1 (-413)))) (-1296 (*1 *1 *2) (|partial| -12 (-5 *2 (-1164 (-380 (-880 (-352))))) (-4 *1 (-413)))) (-1482 (*1 *1 *2) (-12 (-5 *2 (-1164 (-380 (-880 (-520))))) (-4 *1 (-413)))) (-1296 (*1 *1 *2) (|partial| -12 (-5 *2 (-1164 (-380 (-880 (-520))))) (-4 *1 (-413)))))
-(-13 (-368) (-10 -8 (-15 -2188 ($ (-586 (-303)))) (-15 -2188 ($ (-303))) (-15 -2188 ($ (-2 (|:| |localSymbols| (-1087)) (|:| -2031 (-586 (-303)))))) (-15 -1482 ($ (-1164 (-289 (-352))))) (-15 -1296 ((-3 $ "failed") (-1164 (-289 (-352))))) (-15 -1482 ($ (-1164 (-289 (-520))))) (-15 -1296 ((-3 $ "failed") (-1164 (-289 (-520))))) (-15 -1482 ($ (-1164 (-880 (-352))))) (-15 -1296 ((-3 $ "failed") (-1164 (-880 (-352))))) (-15 -1482 ($ (-1164 (-880 (-520))))) (-15 -1296 ((-3 $ "failed") (-1164 (-880 (-520))))) (-15 -1482 ($ (-1164 (-380 (-880 (-352)))))) (-15 -1296 ((-3 $ "failed") (-1164 (-380 (-880 (-352)))))) (-15 -1482 ($ (-1164 (-380 (-880 (-520)))))) (-15 -1296 ((-3 $ "failed") (-1164 (-380 (-880 (-520))))))))
-(((-560 (-791)) . T) ((-368) . T) ((-1118) . T))
-((-2064 (((-108)) 17)) (-3082 (((-108) (-108)) 18)) (-1745 (((-108)) 13)) (-1747 (((-108) (-108)) 14)) (-3376 (((-108)) 15)) (-2351 (((-108) (-108)) 16)) (-2822 (((-849) (-849)) 21) (((-849)) 20)) (-1281 (((-706) (-586 (-2 (|:| -1916 |#1|) (|:| -2528 (-520))))) 42)) (-1935 (((-849) (-849)) 23) (((-849)) 22)) (-1411 (((-2 (|:| -1551 (-520)) (|:| -3493 (-586 |#1|))) |#1|) 62)) (-2911 (((-391 |#1|) (-2 (|:| |contp| (-520)) (|:| -3493 (-586 (-2 (|:| |irr| |#1|) (|:| -2421 (-520))))))) 124)) (-1513 (((-2 (|:| |contp| (-520)) (|:| -3493 (-586 (-2 (|:| |irr| |#1|) (|:| -2421 (-520)))))) |#1| (-108)) 150)) (-3257 (((-391 |#1|) |#1| (-706) (-706)) 163) (((-391 |#1|) |#1| (-586 (-706)) (-706)) 160) (((-391 |#1|) |#1| (-586 (-706))) 162) (((-391 |#1|) |#1| (-706)) 161) (((-391 |#1|) |#1|) 159)) (-2186 (((-3 |#1| "failed") (-849) |#1| (-586 (-706)) (-706) (-108)) 165) (((-3 |#1| "failed") (-849) |#1| (-586 (-706)) (-706)) 166) (((-3 |#1| "failed") (-849) |#1| (-586 (-706))) 168) (((-3 |#1| "failed") (-849) |#1| (-706)) 167) (((-3 |#1| "failed") (-849) |#1|) 169)) (-1916 (((-391 |#1|) |#1| (-706) (-706)) 158) (((-391 |#1|) |#1| (-586 (-706)) (-706)) 154) (((-391 |#1|) |#1| (-586 (-706))) 156) (((-391 |#1|) |#1| (-706)) 155) (((-391 |#1|) |#1|) 153)) (-2384 (((-108) |#1|) 37)) (-1961 (((-673 (-706)) (-586 (-2 (|:| -1916 |#1|) (|:| -2528 (-520))))) 67)) (-4047 (((-2 (|:| |contp| (-520)) (|:| -3493 (-586 (-2 (|:| |irr| |#1|) (|:| -2421 (-520)))))) |#1| (-108) (-1014 (-706)) (-706)) 152)))
-(((-414 |#1|) (-10 -7 (-15 -2911 ((-391 |#1|) (-2 (|:| |contp| (-520)) (|:| -3493 (-586 (-2 (|:| |irr| |#1|) (|:| -2421 (-520)))))))) (-15 -1961 ((-673 (-706)) (-586 (-2 (|:| -1916 |#1|) (|:| -2528 (-520)))))) (-15 -1935 ((-849))) (-15 -1935 ((-849) (-849))) (-15 -2822 ((-849))) (-15 -2822 ((-849) (-849))) (-15 -1281 ((-706) (-586 (-2 (|:| -1916 |#1|) (|:| -2528 (-520)))))) (-15 -1411 ((-2 (|:| -1551 (-520)) (|:| -3493 (-586 |#1|))) |#1|)) (-15 -2064 ((-108))) (-15 -3082 ((-108) (-108))) (-15 -1745 ((-108))) (-15 -1747 ((-108) (-108))) (-15 -2384 ((-108) |#1|)) (-15 -3376 ((-108))) (-15 -2351 ((-108) (-108))) (-15 -1916 ((-391 |#1|) |#1|)) (-15 -1916 ((-391 |#1|) |#1| (-706))) (-15 -1916 ((-391 |#1|) |#1| (-586 (-706)))) (-15 -1916 ((-391 |#1|) |#1| (-586 (-706)) (-706))) (-15 -1916 ((-391 |#1|) |#1| (-706) (-706))) (-15 -3257 ((-391 |#1|) |#1|)) (-15 -3257 ((-391 |#1|) |#1| (-706))) (-15 -3257 ((-391 |#1|) |#1| (-586 (-706)))) (-15 -3257 ((-391 |#1|) |#1| (-586 (-706)) (-706))) (-15 -3257 ((-391 |#1|) |#1| (-706) (-706))) (-15 -2186 ((-3 |#1| "failed") (-849) |#1|)) (-15 -2186 ((-3 |#1| "failed") (-849) |#1| (-706))) (-15 -2186 ((-3 |#1| "failed") (-849) |#1| (-586 (-706)))) (-15 -2186 ((-3 |#1| "failed") (-849) |#1| (-586 (-706)) (-706))) (-15 -2186 ((-3 |#1| "failed") (-849) |#1| (-586 (-706)) (-706) (-108))) (-15 -1513 ((-2 (|:| |contp| (-520)) (|:| -3493 (-586 (-2 (|:| |irr| |#1|) (|:| -2421 (-520)))))) |#1| (-108))) (-15 -4047 ((-2 (|:| |contp| (-520)) (|:| -3493 (-586 (-2 (|:| |irr| |#1|) (|:| -2421 (-520)))))) |#1| (-108) (-1014 (-706)) (-706)))) (-1140 (-520))) (T -414))
-((-4047 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-108)) (-5 *5 (-1014 (-706))) (-5 *6 (-706)) (-5 *2 (-2 (|:| |contp| (-520)) (|:| -3493 (-586 (-2 (|:| |irr| *3) (|:| -2421 (-520))))))) (-5 *1 (-414 *3)) (-4 *3 (-1140 (-520))))) (-1513 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-5 *2 (-2 (|:| |contp| (-520)) (|:| -3493 (-586 (-2 (|:| |irr| *3) (|:| -2421 (-520))))))) (-5 *1 (-414 *3)) (-4 *3 (-1140 (-520))))) (-2186 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-849)) (-5 *4 (-586 (-706))) (-5 *5 (-706)) (-5 *6 (-108)) (-5 *1 (-414 *2)) (-4 *2 (-1140 (-520))))) (-2186 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-849)) (-5 *4 (-586 (-706))) (-5 *5 (-706)) (-5 *1 (-414 *2)) (-4 *2 (-1140 (-520))))) (-2186 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-849)) (-5 *4 (-586 (-706))) (-5 *1 (-414 *2)) (-4 *2 (-1140 (-520))))) (-2186 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-849)) (-5 *4 (-706)) (-5 *1 (-414 *2)) (-4 *2 (-1140 (-520))))) (-2186 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-849)) (-5 *1 (-414 *2)) (-4 *2 (-1140 (-520))))) (-3257 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-706)) (-5 *2 (-391 *3)) (-5 *1 (-414 *3)) (-4 *3 (-1140 (-520))))) (-3257 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-586 (-706))) (-5 *5 (-706)) (-5 *2 (-391 *3)) (-5 *1 (-414 *3)) (-4 *3 (-1140 (-520))))) (-3257 (*1 *2 *3 *4) (-12 (-5 *4 (-586 (-706))) (-5 *2 (-391 *3)) (-5 *1 (-414 *3)) (-4 *3 (-1140 (-520))))) (-3257 (*1 *2 *3 *4) (-12 (-5 *4 (-706)) (-5 *2 (-391 *3)) (-5 *1 (-414 *3)) (-4 *3 (-1140 (-520))))) (-3257 (*1 *2 *3) (-12 (-5 *2 (-391 *3)) (-5 *1 (-414 *3)) (-4 *3 (-1140 (-520))))) (-1916 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-706)) (-5 *2 (-391 *3)) (-5 *1 (-414 *3)) (-4 *3 (-1140 (-520))))) (-1916 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-586 (-706))) (-5 *5 (-706)) (-5 *2 (-391 *3)) (-5 *1 (-414 *3)) (-4 *3 (-1140 (-520))))) (-1916 (*1 *2 *3 *4) (-12 (-5 *4 (-586 (-706))) (-5 *2 (-391 *3)) (-5 *1 (-414 *3)) (-4 *3 (-1140 (-520))))) (-1916 (*1 *2 *3 *4) (-12 (-5 *4 (-706)) (-5 *2 (-391 *3)) (-5 *1 (-414 *3)) (-4 *3 (-1140 (-520))))) (-1916 (*1 *2 *3) (-12 (-5 *2 (-391 *3)) (-5 *1 (-414 *3)) (-4 *3 (-1140 (-520))))) (-2351 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-414 *3)) (-4 *3 (-1140 (-520))))) (-3376 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-414 *3)) (-4 *3 (-1140 (-520))))) (-2384 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-414 *3)) (-4 *3 (-1140 (-520))))) (-1747 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-414 *3)) (-4 *3 (-1140 (-520))))) (-1745 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-414 *3)) (-4 *3 (-1140 (-520))))) (-3082 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-414 *3)) (-4 *3 (-1140 (-520))))) (-2064 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-414 *3)) (-4 *3 (-1140 (-520))))) (-1411 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -1551 (-520)) (|:| -3493 (-586 *3)))) (-5 *1 (-414 *3)) (-4 *3 (-1140 (-520))))) (-1281 (*1 *2 *3) (-12 (-5 *3 (-586 (-2 (|:| -1916 *4) (|:| -2528 (-520))))) (-4 *4 (-1140 (-520))) (-5 *2 (-706)) (-5 *1 (-414 *4)))) (-2822 (*1 *2 *2) (-12 (-5 *2 (-849)) (-5 *1 (-414 *3)) (-4 *3 (-1140 (-520))))) (-2822 (*1 *2) (-12 (-5 *2 (-849)) (-5 *1 (-414 *3)) (-4 *3 (-1140 (-520))))) (-1935 (*1 *2 *2) (-12 (-5 *2 (-849)) (-5 *1 (-414 *3)) (-4 *3 (-1140 (-520))))) (-1935 (*1 *2) (-12 (-5 *2 (-849)) (-5 *1 (-414 *3)) (-4 *3 (-1140 (-520))))) (-1961 (*1 *2 *3) (-12 (-5 *3 (-586 (-2 (|:| -1916 *4) (|:| -2528 (-520))))) (-4 *4 (-1140 (-520))) (-5 *2 (-673 (-706))) (-5 *1 (-414 *4)))) (-2911 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-520)) (|:| -3493 (-586 (-2 (|:| |irr| *4) (|:| -2421 (-520))))))) (-4 *4 (-1140 (-520))) (-5 *2 (-391 *4)) (-5 *1 (-414 *4)))))
-(-10 -7 (-15 -2911 ((-391 |#1|) (-2 (|:| |contp| (-520)) (|:| -3493 (-586 (-2 (|:| |irr| |#1|) (|:| -2421 (-520)))))))) (-15 -1961 ((-673 (-706)) (-586 (-2 (|:| -1916 |#1|) (|:| -2528 (-520)))))) (-15 -1935 ((-849))) (-15 -1935 ((-849) (-849))) (-15 -2822 ((-849))) (-15 -2822 ((-849) (-849))) (-15 -1281 ((-706) (-586 (-2 (|:| -1916 |#1|) (|:| -2528 (-520)))))) (-15 -1411 ((-2 (|:| -1551 (-520)) (|:| -3493 (-586 |#1|))) |#1|)) (-15 -2064 ((-108))) (-15 -3082 ((-108) (-108))) (-15 -1745 ((-108))) (-15 -1747 ((-108) (-108))) (-15 -2384 ((-108) |#1|)) (-15 -3376 ((-108))) (-15 -2351 ((-108) (-108))) (-15 -1916 ((-391 |#1|) |#1|)) (-15 -1916 ((-391 |#1|) |#1| (-706))) (-15 -1916 ((-391 |#1|) |#1| (-586 (-706)))) (-15 -1916 ((-391 |#1|) |#1| (-586 (-706)) (-706))) (-15 -1916 ((-391 |#1|) |#1| (-706) (-706))) (-15 -3257 ((-391 |#1|) |#1|)) (-15 -3257 ((-391 |#1|) |#1| (-706))) (-15 -3257 ((-391 |#1|) |#1| (-586 (-706)))) (-15 -3257 ((-391 |#1|) |#1| (-586 (-706)) (-706))) (-15 -3257 ((-391 |#1|) |#1| (-706) (-706))) (-15 -2186 ((-3 |#1| "failed") (-849) |#1|)) (-15 -2186 ((-3 |#1| "failed") (-849) |#1| (-706))) (-15 -2186 ((-3 |#1| "failed") (-849) |#1| (-586 (-706)))) (-15 -2186 ((-3 |#1| "failed") (-849) |#1| (-586 (-706)) (-706))) (-15 -2186 ((-3 |#1| "failed") (-849) |#1| (-586 (-706)) (-706) (-108))) (-15 -1513 ((-2 (|:| |contp| (-520)) (|:| -3493 (-586 (-2 (|:| |irr| |#1|) (|:| -2421 (-520)))))) |#1| (-108))) (-15 -4047 ((-2 (|:| |contp| (-520)) (|:| -3493 (-586 (-2 (|:| |irr| |#1|) (|:| -2421 (-520)))))) |#1| (-108) (-1014 (-706)) (-706))))
-((-3361 (((-520) |#2|) 48) (((-520) |#2| (-706)) 47)) (-3092 (((-520) |#2|) 55)) (-3931 ((|#3| |#2|) 25)) (-1434 ((|#3| |#2| (-849)) 14)) (-2515 ((|#3| |#2|) 15)) (-1710 ((|#3| |#2|) 9)) (-4146 ((|#3| |#2|) 10)) (-4204 ((|#3| |#2| (-849)) 62) ((|#3| |#2|) 30)) (-3290 (((-520) |#2|) 57)))
-(((-415 |#1| |#2| |#3|) (-10 -7 (-15 -3290 ((-520) |#2|)) (-15 -4204 (|#3| |#2|)) (-15 -4204 (|#3| |#2| (-849))) (-15 -3092 ((-520) |#2|)) (-15 -3361 ((-520) |#2| (-706))) (-15 -3361 ((-520) |#2|)) (-15 -1434 (|#3| |#2| (-849))) (-15 -3931 (|#3| |#2|)) (-15 -1710 (|#3| |#2|)) (-15 -4146 (|#3| |#2|)) (-15 -2515 (|#3| |#2|))) (-969) (-1140 |#1|) (-13 (-377) (-960 |#1|) (-336) (-1104) (-258))) (T -415))
-((-2515 (*1 *2 *3) (-12 (-4 *4 (-969)) (-4 *2 (-13 (-377) (-960 *4) (-336) (-1104) (-258))) (-5 *1 (-415 *4 *3 *2)) (-4 *3 (-1140 *4)))) (-4146 (*1 *2 *3) (-12 (-4 *4 (-969)) (-4 *2 (-13 (-377) (-960 *4) (-336) (-1104) (-258))) (-5 *1 (-415 *4 *3 *2)) (-4 *3 (-1140 *4)))) (-1710 (*1 *2 *3) (-12 (-4 *4 (-969)) (-4 *2 (-13 (-377) (-960 *4) (-336) (-1104) (-258))) (-5 *1 (-415 *4 *3 *2)) (-4 *3 (-1140 *4)))) (-3931 (*1 *2 *3) (-12 (-4 *4 (-969)) (-4 *2 (-13 (-377) (-960 *4) (-336) (-1104) (-258))) (-5 *1 (-415 *4 *3 *2)) (-4 *3 (-1140 *4)))) (-1434 (*1 *2 *3 *4) (-12 (-5 *4 (-849)) (-4 *5 (-969)) (-4 *2 (-13 (-377) (-960 *5) (-336) (-1104) (-258))) (-5 *1 (-415 *5 *3 *2)) (-4 *3 (-1140 *5)))) (-3361 (*1 *2 *3) (-12 (-4 *4 (-969)) (-5 *2 (-520)) (-5 *1 (-415 *4 *3 *5)) (-4 *3 (-1140 *4)) (-4 *5 (-13 (-377) (-960 *4) (-336) (-1104) (-258))))) (-3361 (*1 *2 *3 *4) (-12 (-5 *4 (-706)) (-4 *5 (-969)) (-5 *2 (-520)) (-5 *1 (-415 *5 *3 *6)) (-4 *3 (-1140 *5)) (-4 *6 (-13 (-377) (-960 *5) (-336) (-1104) (-258))))) (-3092 (*1 *2 *3) (-12 (-4 *4 (-969)) (-5 *2 (-520)) (-5 *1 (-415 *4 *3 *5)) (-4 *3 (-1140 *4)) (-4 *5 (-13 (-377) (-960 *4) (-336) (-1104) (-258))))) (-4204 (*1 *2 *3 *4) (-12 (-5 *4 (-849)) (-4 *5 (-969)) (-4 *2 (-13 (-377) (-960 *5) (-336) (-1104) (-258))) (-5 *1 (-415 *5 *3 *2)) (-4 *3 (-1140 *5)))) (-4204 (*1 *2 *3) (-12 (-4 *4 (-969)) (-4 *2 (-13 (-377) (-960 *4) (-336) (-1104) (-258))) (-5 *1 (-415 *4 *3 *2)) (-4 *3 (-1140 *4)))) (-3290 (*1 *2 *3) (-12 (-4 *4 (-969)) (-5 *2 (-520)) (-5 *1 (-415 *4 *3 *5)) (-4 *3 (-1140 *4)) (-4 *5 (-13 (-377) (-960 *4) (-336) (-1104) (-258))))))
-(-10 -7 (-15 -3290 ((-520) |#2|)) (-15 -4204 (|#3| |#2|)) (-15 -4204 (|#3| |#2| (-849))) (-15 -3092 ((-520) |#2|)) (-15 -3361 ((-520) |#2| (-706))) (-15 -3361 ((-520) |#2|)) (-15 -1434 (|#3| |#2| (-849))) (-15 -3931 (|#3| |#2|)) (-15 -1710 (|#3| |#2|)) (-15 -4146 (|#3| |#2|)) (-15 -2515 (|#3| |#2|)))
-((-4131 ((|#2| (-1164 |#1|)) 36)) (-3547 ((|#2| |#2| |#1|) 49)) (-3518 ((|#2| |#2| |#1|) 41)) (-1861 ((|#2| |#2|) 38)) (-3174 (((-108) |#2|) 30)) (-2997 (((-586 |#2|) (-849) (-391 |#2|)) 16)) (-2186 ((|#2| (-849) (-391 |#2|)) 21)) (-1961 (((-673 (-706)) (-391 |#2|)) 25)))
-(((-416 |#1| |#2|) (-10 -7 (-15 -3174 ((-108) |#2|)) (-15 -4131 (|#2| (-1164 |#1|))) (-15 -1861 (|#2| |#2|)) (-15 -3518 (|#2| |#2| |#1|)) (-15 -3547 (|#2| |#2| |#1|)) (-15 -1961 ((-673 (-706)) (-391 |#2|))) (-15 -2186 (|#2| (-849) (-391 |#2|))) (-15 -2997 ((-586 |#2|) (-849) (-391 |#2|)))) (-969) (-1140 |#1|)) (T -416))
-((-2997 (*1 *2 *3 *4) (-12 (-5 *3 (-849)) (-5 *4 (-391 *6)) (-4 *6 (-1140 *5)) (-4 *5 (-969)) (-5 *2 (-586 *6)) (-5 *1 (-416 *5 *6)))) (-2186 (*1 *2 *3 *4) (-12 (-5 *3 (-849)) (-5 *4 (-391 *2)) (-4 *2 (-1140 *5)) (-5 *1 (-416 *5 *2)) (-4 *5 (-969)))) (-1961 (*1 *2 *3) (-12 (-5 *3 (-391 *5)) (-4 *5 (-1140 *4)) (-4 *4 (-969)) (-5 *2 (-673 (-706))) (-5 *1 (-416 *4 *5)))) (-3547 (*1 *2 *2 *3) (-12 (-4 *3 (-969)) (-5 *1 (-416 *3 *2)) (-4 *2 (-1140 *3)))) (-3518 (*1 *2 *2 *3) (-12 (-4 *3 (-969)) (-5 *1 (-416 *3 *2)) (-4 *2 (-1140 *3)))) (-1861 (*1 *2 *2) (-12 (-4 *3 (-969)) (-5 *1 (-416 *3 *2)) (-4 *2 (-1140 *3)))) (-4131 (*1 *2 *3) (-12 (-5 *3 (-1164 *4)) (-4 *4 (-969)) (-4 *2 (-1140 *4)) (-5 *1 (-416 *4 *2)))) (-3174 (*1 *2 *3) (-12 (-4 *4 (-969)) (-5 *2 (-108)) (-5 *1 (-416 *4 *3)) (-4 *3 (-1140 *4)))))
-(-10 -7 (-15 -3174 ((-108) |#2|)) (-15 -4131 (|#2| (-1164 |#1|))) (-15 -1861 (|#2| |#2|)) (-15 -3518 (|#2| |#2| |#1|)) (-15 -3547 (|#2| |#2| |#1|)) (-15 -1961 ((-673 (-706)) (-391 |#2|))) (-15 -2186 (|#2| (-849) (-391 |#2|))) (-15 -2997 ((-586 |#2|) (-849) (-391 |#2|))))
-((-4161 (((-706)) 41)) (-3776 (((-706)) 23 (|has| |#1| (-377))) (((-706) (-706)) 22 (|has| |#1| (-377)))) (-3925 (((-520) |#1|) 18 (|has| |#1| (-377)))) (-3172 (((-520) |#1|) 20 (|has| |#1| (-377)))) (-2379 (((-706)) 40) (((-706) (-706)) 39)) (-1914 ((|#1| (-706) (-520)) 29)) (-2481 (((-1169)) 43)))
-(((-417 |#1|) (-10 -7 (-15 -1914 (|#1| (-706) (-520))) (-15 -2379 ((-706) (-706))) (-15 -2379 ((-706))) (-15 -4161 ((-706))) (-15 -2481 ((-1169))) (IF (|has| |#1| (-377)) (PROGN (-15 -3172 ((-520) |#1|)) (-15 -3925 ((-520) |#1|)) (-15 -3776 ((-706) (-706))) (-15 -3776 ((-706)))) |%noBranch|)) (-969)) (T -417))
-((-3776 (*1 *2) (-12 (-5 *2 (-706)) (-5 *1 (-417 *3)) (-4 *3 (-377)) (-4 *3 (-969)))) (-3776 (*1 *2 *2) (-12 (-5 *2 (-706)) (-5 *1 (-417 *3)) (-4 *3 (-377)) (-4 *3 (-969)))) (-3925 (*1 *2 *3) (-12 (-5 *2 (-520)) (-5 *1 (-417 *3)) (-4 *3 (-377)) (-4 *3 (-969)))) (-3172 (*1 *2 *3) (-12 (-5 *2 (-520)) (-5 *1 (-417 *3)) (-4 *3 (-377)) (-4 *3 (-969)))) (-2481 (*1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-417 *3)) (-4 *3 (-969)))) (-4161 (*1 *2) (-12 (-5 *2 (-706)) (-5 *1 (-417 *3)) (-4 *3 (-969)))) (-2379 (*1 *2) (-12 (-5 *2 (-706)) (-5 *1 (-417 *3)) (-4 *3 (-969)))) (-2379 (*1 *2 *2) (-12 (-5 *2 (-706)) (-5 *1 (-417 *3)) (-4 *3 (-969)))) (-1914 (*1 *2 *3 *4) (-12 (-5 *3 (-706)) (-5 *4 (-520)) (-5 *1 (-417 *2)) (-4 *2 (-969)))))
-(-10 -7 (-15 -1914 (|#1| (-706) (-520))) (-15 -2379 ((-706) (-706))) (-15 -2379 ((-706))) (-15 -4161 ((-706))) (-15 -2481 ((-1169))) (IF (|has| |#1| (-377)) (PROGN (-15 -3172 ((-520) |#1|)) (-15 -3925 ((-520) |#1|)) (-15 -3776 ((-706) (-706))) (-15 -3776 ((-706)))) |%noBranch|))
-((-2387 (((-586 (-520)) (-520)) 59)) (-2036 (((-108) (-154 (-520))) 63)) (-1916 (((-391 (-154 (-520))) (-154 (-520))) 58)))
-(((-418) (-10 -7 (-15 -1916 ((-391 (-154 (-520))) (-154 (-520)))) (-15 -2387 ((-586 (-520)) (-520))) (-15 -2036 ((-108) (-154 (-520)))))) (T -418))
-((-2036 (*1 *2 *3) (-12 (-5 *3 (-154 (-520))) (-5 *2 (-108)) (-5 *1 (-418)))) (-2387 (*1 *2 *3) (-12 (-5 *2 (-586 (-520))) (-5 *1 (-418)) (-5 *3 (-520)))) (-1916 (*1 *2 *3) (-12 (-5 *2 (-391 (-154 (-520)))) (-5 *1 (-418)) (-5 *3 (-154 (-520))))))
-(-10 -7 (-15 -1916 ((-391 (-154 (-520))) (-154 (-520)))) (-15 -2387 ((-586 (-520)) (-520))) (-15 -2036 ((-108) (-154 (-520)))))
-((-2265 ((|#4| |#4| (-586 |#4|)) 59)) (-3171 (((-586 |#4|) (-586 |#4|) (-1066) (-1066)) 17) (((-586 |#4|) (-586 |#4|) (-1066)) 16) (((-586 |#4|) (-586 |#4|)) 11)))
-(((-419 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2265 (|#4| |#4| (-586 |#4|))) (-15 -3171 ((-586 |#4|) (-586 |#4|))) (-15 -3171 ((-586 |#4|) (-586 |#4|) (-1066))) (-15 -3171 ((-586 |#4|) (-586 |#4|) (-1066) (-1066)))) (-281) (-728) (-783) (-877 |#1| |#2| |#3|)) (T -419))
-((-3171 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-586 *7)) (-5 *3 (-1066)) (-4 *7 (-877 *4 *5 *6)) (-4 *4 (-281)) (-4 *5 (-728)) (-4 *6 (-783)) (-5 *1 (-419 *4 *5 *6 *7)))) (-3171 (*1 *2 *2 *3) (-12 (-5 *2 (-586 *7)) (-5 *3 (-1066)) (-4 *7 (-877 *4 *5 *6)) (-4 *4 (-281)) (-4 *5 (-728)) (-4 *6 (-783)) (-5 *1 (-419 *4 *5 *6 *7)))) (-3171 (*1 *2 *2) (-12 (-5 *2 (-586 *6)) (-4 *6 (-877 *3 *4 *5)) (-4 *3 (-281)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *1 (-419 *3 *4 *5 *6)))) (-2265 (*1 *2 *2 *3) (-12 (-5 *3 (-586 *2)) (-4 *2 (-877 *4 *5 *6)) (-4 *4 (-281)) (-4 *5 (-728)) (-4 *6 (-783)) (-5 *1 (-419 *4 *5 *6 *2)))))
-(-10 -7 (-15 -2265 (|#4| |#4| (-586 |#4|))) (-15 -3171 ((-586 |#4|) (-586 |#4|))) (-15 -3171 ((-586 |#4|) (-586 |#4|) (-1066))) (-15 -3171 ((-586 |#4|) (-586 |#4|) (-1066) (-1066))))
-((-3316 (((-586 (-586 |#4|)) (-586 |#4|) (-108)) 71) (((-586 (-586 |#4|)) (-586 |#4|)) 70) (((-586 (-586 |#4|)) (-586 |#4|) (-586 |#4|) (-108)) 64) (((-586 (-586 |#4|)) (-586 |#4|) (-586 |#4|)) 65)) (-1331 (((-586 (-586 |#4|)) (-586 |#4|) (-108)) 41) (((-586 (-586 |#4|)) (-586 |#4|)) 61)))
-(((-420 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1331 ((-586 (-586 |#4|)) (-586 |#4|))) (-15 -1331 ((-586 (-586 |#4|)) (-586 |#4|) (-108))) (-15 -3316 ((-586 (-586 |#4|)) (-586 |#4|) (-586 |#4|))) (-15 -3316 ((-586 (-586 |#4|)) (-586 |#4|) (-586 |#4|) (-108))) (-15 -3316 ((-586 (-586 |#4|)) (-586 |#4|))) (-15 -3316 ((-586 (-586 |#4|)) (-586 |#4|) (-108)))) (-13 (-281) (-135)) (-728) (-783) (-877 |#1| |#2| |#3|)) (T -420))
-((-3316 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-281) (-135))) (-4 *6 (-728)) (-4 *7 (-783)) (-4 *8 (-877 *5 *6 *7)) (-5 *2 (-586 (-586 *8))) (-5 *1 (-420 *5 *6 *7 *8)) (-5 *3 (-586 *8)))) (-3316 (*1 *2 *3) (-12 (-4 *4 (-13 (-281) (-135))) (-4 *5 (-728)) (-4 *6 (-783)) (-4 *7 (-877 *4 *5 *6)) (-5 *2 (-586 (-586 *7))) (-5 *1 (-420 *4 *5 *6 *7)) (-5 *3 (-586 *7)))) (-3316 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-281) (-135))) (-4 *6 (-728)) (-4 *7 (-783)) (-4 *8 (-877 *5 *6 *7)) (-5 *2 (-586 (-586 *8))) (-5 *1 (-420 *5 *6 *7 *8)) (-5 *3 (-586 *8)))) (-3316 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-281) (-135))) (-4 *5 (-728)) (-4 *6 (-783)) (-4 *7 (-877 *4 *5 *6)) (-5 *2 (-586 (-586 *7))) (-5 *1 (-420 *4 *5 *6 *7)) (-5 *3 (-586 *7)))) (-1331 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-281) (-135))) (-4 *6 (-728)) (-4 *7 (-783)) (-4 *8 (-877 *5 *6 *7)) (-5 *2 (-586 (-586 *8))) (-5 *1 (-420 *5 *6 *7 *8)) (-5 *3 (-586 *8)))) (-1331 (*1 *2 *3) (-12 (-4 *4 (-13 (-281) (-135))) (-4 *5 (-728)) (-4 *6 (-783)) (-4 *7 (-877 *4 *5 *6)) (-5 *2 (-586 (-586 *7))) (-5 *1 (-420 *4 *5 *6 *7)) (-5 *3 (-586 *7)))))
-(-10 -7 (-15 -1331 ((-586 (-586 |#4|)) (-586 |#4|))) (-15 -1331 ((-586 (-586 |#4|)) (-586 |#4|) (-108))) (-15 -3316 ((-586 (-586 |#4|)) (-586 |#4|) (-586 |#4|))) (-15 -3316 ((-586 (-586 |#4|)) (-586 |#4|) (-586 |#4|) (-108))) (-15 -3316 ((-586 (-586 |#4|)) (-586 |#4|))) (-15 -3316 ((-586 (-586 |#4|)) (-586 |#4|) (-108))))
-((-1985 (((-706) |#4|) 12)) (-4138 (((-586 (-2 (|:| |totdeg| (-706)) (|:| -3075 |#4|))) |#4| (-706) (-586 (-2 (|:| |totdeg| (-706)) (|:| -3075 |#4|)))) 31)) (-3269 (((-586 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-706)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-586 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-706)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-586 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-706)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 38)) (-3253 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-706)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 39)) (-1489 ((|#4| |#4| (-586 |#4|)) 40)) (-2290 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-586 |#4|)) 69)) (-2385 (((-1169) |#4|) 42)) (-1756 (((-1169) (-586 |#4|)) 51)) (-2529 (((-520) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-706)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-520) (-520) (-520)) 48)) (-2613 (((-1169) (-520)) 77)) (-3787 (((-586 |#4|) (-586 |#4|)) 75)) (-2606 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-706)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-706)) (|:| -3075 |#4|)) |#4| (-706)) 25)) (-3391 (((-520) |#4|) 76)) (-2711 ((|#4| |#4|) 29)) (-2570 (((-586 |#4|) (-586 |#4|) (-520) (-520)) 55)) (-3424 (((-520) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-706)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-520) (-520) (-520) (-520)) 87)) (-1769 (((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-706)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-706)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 16)) (-2667 (((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-706)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 58)) (-1426 (((-586 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-706)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-586 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-706)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 57)) (-3446 (((-586 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-706)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-586 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-706)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 36)) (-2546 (((-108) |#2| |#2|) 56)) (-4202 (((-586 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-706)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-586 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-706)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 37)) (-1919 (((-108) |#2| |#2| |#2| |#2|) 59)) (-3266 ((|#4| |#4| (-586 |#4|)) 70)))
-(((-421 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3266 (|#4| |#4| (-586 |#4|))) (-15 -1489 (|#4| |#4| (-586 |#4|))) (-15 -2570 ((-586 |#4|) (-586 |#4|) (-520) (-520))) (-15 -2667 ((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-706)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2546 ((-108) |#2| |#2|)) (-15 -1919 ((-108) |#2| |#2| |#2| |#2|)) (-15 -4202 ((-586 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-706)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-586 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-706)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3446 ((-586 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-706)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-586 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-706)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1426 ((-586 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-706)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-586 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-706)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2290 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-586 |#4|))) (-15 -2711 (|#4| |#4|)) (-15 -4138 ((-586 (-2 (|:| |totdeg| (-706)) (|:| -3075 |#4|))) |#4| (-706) (-586 (-2 (|:| |totdeg| (-706)) (|:| -3075 |#4|))))) (-15 -3253 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-706)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3269 ((-586 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-706)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-586 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-706)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-586 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-706)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3787 ((-586 |#4|) (-586 |#4|))) (-15 -3391 ((-520) |#4|)) (-15 -2385 ((-1169) |#4|)) (-15 -2529 ((-520) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-706)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-520) (-520) (-520))) (-15 -3424 ((-520) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-706)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-520) (-520) (-520) (-520))) (-15 -1756 ((-1169) (-586 |#4|))) (-15 -2613 ((-1169) (-520))) (-15 -1769 ((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-706)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-706)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2606 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-706)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-706)) (|:| -3075 |#4|)) |#4| (-706))) (-15 -1985 ((-706) |#4|))) (-424) (-728) (-783) (-877 |#1| |#2| |#3|)) (T -421))
-((-1985 (*1 *2 *3) (-12 (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-706)) (-5 *1 (-421 *4 *5 *6 *3)) (-4 *3 (-877 *4 *5 *6)))) (-2606 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-706)) (|:| -3075 *4))) (-5 *5 (-706)) (-4 *4 (-877 *6 *7 *8)) (-4 *6 (-424)) (-4 *7 (-728)) (-4 *8 (-783)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-421 *6 *7 *8 *4)))) (-1769 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-706)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-728)) (-4 *7 (-877 *4 *5 *6)) (-4 *4 (-424)) (-4 *6 (-783)) (-5 *2 (-108)) (-5 *1 (-421 *4 *5 *6 *7)))) (-2613 (*1 *2 *3) (-12 (-5 *3 (-520)) (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-1169)) (-5 *1 (-421 *4 *5 *6 *7)) (-4 *7 (-877 *4 *5 *6)))) (-1756 (*1 *2 *3) (-12 (-5 *3 (-586 *7)) (-4 *7 (-877 *4 *5 *6)) (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-1169)) (-5 *1 (-421 *4 *5 *6 *7)))) (-3424 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-520)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-706)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-728)) (-4 *4 (-877 *5 *6 *7)) (-4 *5 (-424)) (-4 *7 (-783)) (-5 *1 (-421 *5 *6 *7 *4)))) (-2529 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-520)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-706)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-728)) (-4 *4 (-877 *5 *6 *7)) (-4 *5 (-424)) (-4 *7 (-783)) (-5 *1 (-421 *5 *6 *7 *4)))) (-2385 (*1 *2 *3) (-12 (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-1169)) (-5 *1 (-421 *4 *5 *6 *3)) (-4 *3 (-877 *4 *5 *6)))) (-3391 (*1 *2 *3) (-12 (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-520)) (-5 *1 (-421 *4 *5 *6 *3)) (-4 *3 (-877 *4 *5 *6)))) (-3787 (*1 *2 *2) (-12 (-5 *2 (-586 *6)) (-4 *6 (-877 *3 *4 *5)) (-4 *3 (-424)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *1 (-421 *3 *4 *5 *6)))) (-3269 (*1 *2 *2 *2) (-12 (-5 *2 (-586 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-706)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-728)) (-4 *6 (-877 *3 *4 *5)) (-4 *3 (-424)) (-4 *5 (-783)) (-5 *1 (-421 *3 *4 *5 *6)))) (-3253 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-706)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-728)) (-4 *2 (-877 *4 *5 *6)) (-5 *1 (-421 *4 *5 *6 *2)) (-4 *4 (-424)) (-4 *6 (-783)))) (-4138 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-586 (-2 (|:| |totdeg| (-706)) (|:| -3075 *3)))) (-5 *4 (-706)) (-4 *3 (-877 *5 *6 *7)) (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783)) (-5 *1 (-421 *5 *6 *7 *3)))) (-2711 (*1 *2 *2) (-12 (-4 *3 (-424)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *1 (-421 *3 *4 *5 *2)) (-4 *2 (-877 *3 *4 *5)))) (-2290 (*1 *2 *3 *4) (-12 (-5 *4 (-586 *3)) (-4 *3 (-877 *5 *6 *7)) (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-421 *5 *6 *7 *3)))) (-1426 (*1 *2 *3 *2) (-12 (-5 *2 (-586 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-706)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-728)) (-4 *6 (-877 *4 *3 *5)) (-4 *4 (-424)) (-4 *5 (-783)) (-5 *1 (-421 *4 *3 *5 *6)))) (-3446 (*1 *2 *2) (-12 (-5 *2 (-586 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-706)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-728)) (-4 *6 (-877 *3 *4 *5)) (-4 *3 (-424)) (-4 *5 (-783)) (-5 *1 (-421 *3 *4 *5 *6)))) (-4202 (*1 *2 *3 *2) (-12 (-5 *2 (-586 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-706)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-728)) (-4 *3 (-877 *4 *5 *6)) (-4 *4 (-424)) (-4 *6 (-783)) (-5 *1 (-421 *4 *5 *6 *3)))) (-1919 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-424)) (-4 *3 (-728)) (-4 *5 (-783)) (-5 *2 (-108)) (-5 *1 (-421 *4 *3 *5 *6)) (-4 *6 (-877 *4 *3 *5)))) (-2546 (*1 *2 *3 *3) (-12 (-4 *4 (-424)) (-4 *3 (-728)) (-4 *5 (-783)) (-5 *2 (-108)) (-5 *1 (-421 *4 *3 *5 *6)) (-4 *6 (-877 *4 *3 *5)))) (-2667 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-706)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-728)) (-4 *7 (-877 *4 *5 *6)) (-4 *4 (-424)) (-4 *6 (-783)) (-5 *2 (-108)) (-5 *1 (-421 *4 *5 *6 *7)))) (-2570 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-586 *7)) (-5 *3 (-520)) (-4 *7 (-877 *4 *5 *6)) (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783)) (-5 *1 (-421 *4 *5 *6 *7)))) (-1489 (*1 *2 *2 *3) (-12 (-5 *3 (-586 *2)) (-4 *2 (-877 *4 *5 *6)) (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783)) (-5 *1 (-421 *4 *5 *6 *2)))) (-3266 (*1 *2 *2 *3) (-12 (-5 *3 (-586 *2)) (-4 *2 (-877 *4 *5 *6)) (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783)) (-5 *1 (-421 *4 *5 *6 *2)))))
-(-10 -7 (-15 -3266 (|#4| |#4| (-586 |#4|))) (-15 -1489 (|#4| |#4| (-586 |#4|))) (-15 -2570 ((-586 |#4|) (-586 |#4|) (-520) (-520))) (-15 -2667 ((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-706)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2546 ((-108) |#2| |#2|)) (-15 -1919 ((-108) |#2| |#2| |#2| |#2|)) (-15 -4202 ((-586 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-706)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-586 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-706)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3446 ((-586 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-706)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-586 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-706)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1426 ((-586 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-706)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-586 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-706)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2290 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-586 |#4|))) (-15 -2711 (|#4| |#4|)) (-15 -4138 ((-586 (-2 (|:| |totdeg| (-706)) (|:| -3075 |#4|))) |#4| (-706) (-586 (-2 (|:| |totdeg| (-706)) (|:| -3075 |#4|))))) (-15 -3253 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-706)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3269 ((-586 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-706)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-586 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-706)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-586 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-706)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3787 ((-586 |#4|) (-586 |#4|))) (-15 -3391 ((-520) |#4|)) (-15 -2385 ((-1169) |#4|)) (-15 -2529 ((-520) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-706)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-520) (-520) (-520))) (-15 -3424 ((-520) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-706)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-520) (-520) (-520) (-520))) (-15 -1756 ((-1169) (-586 |#4|))) (-15 -2613 ((-1169) (-520))) (-15 -1769 ((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-706)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-706)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2606 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-706)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-706)) (|:| -3075 |#4|)) |#4| (-706))) (-15 -1985 ((-706) |#4|)))
-((-3854 ((|#4| |#4| (-586 |#4|)) 22 (|has| |#1| (-336)))) (-1859 (((-586 |#4|) (-586 |#4|) (-1066) (-1066)) 42) (((-586 |#4|) (-586 |#4|) (-1066)) 41) (((-586 |#4|) (-586 |#4|)) 36)))
-(((-422 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1859 ((-586 |#4|) (-586 |#4|))) (-15 -1859 ((-586 |#4|) (-586 |#4|) (-1066))) (-15 -1859 ((-586 |#4|) (-586 |#4|) (-1066) (-1066))) (IF (|has| |#1| (-336)) (-15 -3854 (|#4| |#4| (-586 |#4|))) |%noBranch|)) (-424) (-728) (-783) (-877 |#1| |#2| |#3|)) (T -422))
-((-3854 (*1 *2 *2 *3) (-12 (-5 *3 (-586 *2)) (-4 *2 (-877 *4 *5 *6)) (-4 *4 (-336)) (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783)) (-5 *1 (-422 *4 *5 *6 *2)))) (-1859 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-586 *7)) (-5 *3 (-1066)) (-4 *7 (-877 *4 *5 *6)) (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783)) (-5 *1 (-422 *4 *5 *6 *7)))) (-1859 (*1 *2 *2 *3) (-12 (-5 *2 (-586 *7)) (-5 *3 (-1066)) (-4 *7 (-877 *4 *5 *6)) (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783)) (-5 *1 (-422 *4 *5 *6 *7)))) (-1859 (*1 *2 *2) (-12 (-5 *2 (-586 *6)) (-4 *6 (-877 *3 *4 *5)) (-4 *3 (-424)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *1 (-422 *3 *4 *5 *6)))))
-(-10 -7 (-15 -1859 ((-586 |#4|) (-586 |#4|))) (-15 -1859 ((-586 |#4|) (-586 |#4|) (-1066))) (-15 -1859 ((-586 |#4|) (-586 |#4|) (-1066) (-1066))) (IF (|has| |#1| (-336)) (-15 -3854 (|#4| |#4| (-586 |#4|))) |%noBranch|))
-((-2222 (($ $ $) 14) (($ (-586 $)) 21)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) 41)) (-2257 (($ $ $) NIL) (($ (-586 $)) 22)))
-(((-423 |#1|) (-10 -8 (-15 -3653 ((-1079 |#1|) (-1079 |#1|) (-1079 |#1|))) (-15 -2222 (|#1| (-586 |#1|))) (-15 -2222 (|#1| |#1| |#1|)) (-15 -2257 (|#1| (-586 |#1|))) (-15 -2257 (|#1| |#1| |#1|))) (-424)) (T -423))
-NIL
-(-10 -8 (-15 -3653 ((-1079 |#1|) (-1079 |#1|) (-1079 |#1|))) (-15 -2222 (|#1| (-586 |#1|))) (-15 -2222 (|#1| |#1| |#1|)) (-15 -2257 (|#1| (-586 |#1|))) (-15 -2257 (|#1| |#1| |#1|)))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) 41)) (-2583 (($ $) 40)) (-1671 (((-108) $) 38)) (-1917 (((-3 $ "failed") $ $) 19)) (-3961 (($) 17 T CONST)) (-1540 (((-3 $ "failed") $) 34)) (-1537 (((-108) $) 31)) (-2222 (($ $ $) 46) (($ (-586 $)) 45)) (-1239 (((-1066) $) 9)) (-4142 (((-1030) $) 10)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) 44)) (-2257 (($ $ $) 48) (($ (-586 $)) 47)) (-2230 (((-3 $ "failed") $ $) 42)) (-2188 (((-791) $) 11) (($ (-520)) 28) (($ $) 43)) (-3251 (((-706)) 29)) (-2559 (((-108) $ $) 39)) (-3504 (($ $ (-849)) 26) (($ $ (-706)) 33)) (-3560 (($) 18 T CONST)) (-3570 (($) 30 T CONST)) (-1530 (((-108) $ $) 6)) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-706)) 32)) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ $ $) 24)))
-(((-424) (-1195)) (T -424))
-((-2257 (*1 *1 *1 *1) (-4 *1 (-424))) (-2257 (*1 *1 *2) (-12 (-5 *2 (-586 *1)) (-4 *1 (-424)))) (-2222 (*1 *1 *1 *1) (-4 *1 (-424))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-586 *1)) (-4 *1 (-424)))) (-3653 (*1 *2 *2 *2) (-12 (-5 *2 (-1079 *1)) (-4 *1 (-424)))))
-(-13 (-512) (-10 -8 (-15 -2257 ($ $ $)) (-15 -2257 ($ (-586 $))) (-15 -2222 ($ $ $)) (-15 -2222 ($ (-586 $))) (-15 -3653 ((-1079 $) (-1079 $) (-1079 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-560 (-791)) . T) ((-157) . T) ((-264) . T) ((-512) . T) ((-588 $) . T) ((-653 $) . T) ((-662) . T) ((-975 $) . T) ((-969) . T) ((-976) . T) ((-1024) . T) ((-1012) . T))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-4036 (((-3 $ "failed")) NIL (|has| (-380 (-880 |#1|)) (-512)))) (-1917 (((-3 $ "failed") $ $) NIL)) (-2284 (((-1164 (-626 (-380 (-880 |#1|)))) (-1164 $)) NIL) (((-1164 (-626 (-380 (-880 |#1|))))) NIL)) (-3976 (((-1164 $)) NIL)) (-3961 (($) NIL T CONST)) (-3824 (((-3 (-2 (|:| |particular| $) (|:| -1831 (-586 $))) "failed")) NIL)) (-1606 (((-3 $ "failed")) NIL (|has| (-380 (-880 |#1|)) (-512)))) (-3884 (((-626 (-380 (-880 |#1|))) (-1164 $)) NIL) (((-626 (-380 (-880 |#1|)))) NIL)) (-3193 (((-380 (-880 |#1|)) $) NIL)) (-3984 (((-626 (-380 (-880 |#1|))) $ (-1164 $)) NIL) (((-626 (-380 (-880 |#1|))) $) NIL)) (-2473 (((-3 $ "failed") $) NIL (|has| (-380 (-880 |#1|)) (-512)))) (-3978 (((-1079 (-880 (-380 (-880 |#1|))))) NIL (|has| (-380 (-880 |#1|)) (-336))) (((-1079 (-380 (-880 |#1|)))) 79 (|has| |#1| (-512)))) (-3918 (($ $ (-849)) NIL)) (-2996 (((-380 (-880 |#1|)) $) NIL)) (-1653 (((-1079 (-380 (-880 |#1|))) $) 77 (|has| (-380 (-880 |#1|)) (-512)))) (-1882 (((-380 (-880 |#1|)) (-1164 $)) NIL) (((-380 (-880 |#1|))) NIL)) (-2913 (((-1079 (-380 (-880 |#1|))) $) NIL)) (-2539 (((-108)) NIL)) (-3705 (($ (-1164 (-380 (-880 |#1|))) (-1164 $)) 97) (($ (-1164 (-380 (-880 |#1|)))) NIL)) (-1540 (((-3 $ "failed") $) NIL (|has| (-380 (-880 |#1|)) (-512)))) (-3160 (((-849)) NIL)) (-1802 (((-108)) NIL)) (-3273 (($ $ (-849)) NIL)) (-2435 (((-108)) NIL)) (-4208 (((-108)) NIL)) (-3213 (((-108)) NIL)) (-2790 (((-3 (-2 (|:| |particular| $) (|:| -1831 (-586 $))) "failed")) NIL)) (-3164 (((-3 $ "failed")) NIL (|has| (-380 (-880 |#1|)) (-512)))) (-4024 (((-626 (-380 (-880 |#1|))) (-1164 $)) NIL) (((-626 (-380 (-880 |#1|)))) NIL)) (-4007 (((-380 (-880 |#1|)) $) NIL)) (-3775 (((-626 (-380 (-880 |#1|))) $ (-1164 $)) NIL) (((-626 (-380 (-880 |#1|))) $) NIL)) (-1368 (((-3 $ "failed") $) NIL (|has| (-380 (-880 |#1|)) (-512)))) (-1589 (((-1079 (-880 (-380 (-880 |#1|))))) NIL (|has| (-380 (-880 |#1|)) (-336))) (((-1079 (-380 (-880 |#1|)))) 78 (|has| |#1| (-512)))) (-2544 (($ $ (-849)) NIL)) (-2318 (((-380 (-880 |#1|)) $) NIL)) (-4108 (((-1079 (-380 (-880 |#1|))) $) 72 (|has| (-380 (-880 |#1|)) (-512)))) (-1526 (((-380 (-880 |#1|)) (-1164 $)) NIL) (((-380 (-880 |#1|))) NIL)) (-2429 (((-1079 (-380 (-880 |#1|))) $) NIL)) (-3955 (((-108)) NIL)) (-1239 (((-1066) $) NIL)) (-2260 (((-108)) NIL)) (-4130 (((-108)) NIL)) (-2684 (((-108)) NIL)) (-4142 (((-1030) $) NIL)) (-2924 (((-380 (-880 |#1|)) $ $) 66 (|has| |#1| (-512)))) (-3298 (((-380 (-880 |#1|)) $) 65 (|has| |#1| (-512)))) (-2301 (((-380 (-880 |#1|)) $) 89 (|has| |#1| (-512)))) (-1441 (((-1079 (-380 (-880 |#1|))) $) 83 (|has| |#1| (-512)))) (-3634 (((-380 (-880 |#1|))) 67 (|has| |#1| (-512)))) (-1720 (((-380 (-880 |#1|)) $ $) 54 (|has| |#1| (-512)))) (-2909 (((-380 (-880 |#1|)) $) 53 (|has| |#1| (-512)))) (-1715 (((-380 (-880 |#1|)) $) 88 (|has| |#1| (-512)))) (-3161 (((-1079 (-380 (-880 |#1|))) $) 82 (|has| |#1| (-512)))) (-3999 (((-380 (-880 |#1|))) 64 (|has| |#1| (-512)))) (-3236 (($) 95) (($ (-1083)) 101) (($ (-1164 (-1083))) 100) (($ (-1164 $)) 90) (($ (-1083) (-1164 $)) 99) (($ (-1164 (-1083)) (-1164 $)) 98)) (-2009 (((-108)) NIL)) (-2543 (((-380 (-880 |#1|)) $ (-520)) NIL)) (-3790 (((-1164 (-380 (-880 |#1|))) $ (-1164 $)) 92) (((-626 (-380 (-880 |#1|))) (-1164 $) (-1164 $)) NIL) (((-1164 (-380 (-880 |#1|))) $) 37) (((-626 (-380 (-880 |#1|))) (-1164 $)) NIL)) (-1429 (((-1164 (-380 (-880 |#1|))) $) NIL) (($ (-1164 (-380 (-880 |#1|)))) 34)) (-1894 (((-586 (-880 (-380 (-880 |#1|)))) (-1164 $)) NIL) (((-586 (-880 (-380 (-880 |#1|))))) NIL) (((-586 (-880 |#1|)) (-1164 $)) 93 (|has| |#1| (-512))) (((-586 (-880 |#1|))) 94 (|has| |#1| (-512)))) (-3607 (($ $ $) NIL)) (-3393 (((-108)) NIL)) (-2188 (((-791) $) NIL) (($ (-1164 (-380 (-880 |#1|)))) NIL)) (-1831 (((-1164 $)) 56)) (-4094 (((-586 (-1164 (-380 (-880 |#1|))))) NIL (|has| (-380 (-880 |#1|)) (-512)))) (-2214 (($ $ $ $) NIL)) (-3183 (((-108)) NIL)) (-1614 (($ (-626 (-380 (-880 |#1|))) $) NIL)) (-3710 (($ $ $) NIL)) (-3977 (((-108)) NIL)) (-2963 (((-108)) NIL)) (-1314 (((-108)) NIL)) (-3560 (($) NIL T CONST)) (-1530 (((-108) $ $) NIL)) (-1611 (($ $) NIL) (($ $ $) 91)) (-1601 (($ $ $) NIL)) (** (($ $ (-849)) NIL)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) 52) (($ $ (-380 (-880 |#1|))) NIL) (($ (-380 (-880 |#1|)) $) NIL) (($ (-1050 |#2| (-380 (-880 |#1|))) $) NIL)))
-(((-425 |#1| |#2| |#3| |#4|) (-13 (-390 (-380 (-880 |#1|))) (-588 (-1050 |#2| (-380 (-880 |#1|)))) (-10 -8 (-15 -2188 ($ (-1164 (-380 (-880 |#1|))))) (-15 -2790 ((-3 (-2 (|:| |particular| $) (|:| -1831 (-586 $))) "failed"))) (-15 -3824 ((-3 (-2 (|:| |particular| $) (|:| -1831 (-586 $))) "failed"))) (-15 -3236 ($)) (-15 -3236 ($ (-1083))) (-15 -3236 ($ (-1164 (-1083)))) (-15 -3236 ($ (-1164 $))) (-15 -3236 ($ (-1083) (-1164 $))) (-15 -3236 ($ (-1164 (-1083)) (-1164 $))) (IF (|has| |#1| (-512)) (PROGN (-15 -1589 ((-1079 (-380 (-880 |#1|))))) (-15 -3161 ((-1079 (-380 (-880 |#1|))) $)) (-15 -2909 ((-380 (-880 |#1|)) $)) (-15 -1715 ((-380 (-880 |#1|)) $)) (-15 -3978 ((-1079 (-380 (-880 |#1|))))) (-15 -1441 ((-1079 (-380 (-880 |#1|))) $)) (-15 -3298 ((-380 (-880 |#1|)) $)) (-15 -2301 ((-380 (-880 |#1|)) $)) (-15 -1720 ((-380 (-880 |#1|)) $ $)) (-15 -3999 ((-380 (-880 |#1|)))) (-15 -2924 ((-380 (-880 |#1|)) $ $)) (-15 -3634 ((-380 (-880 |#1|)))) (-15 -1894 ((-586 (-880 |#1|)) (-1164 $))) (-15 -1894 ((-586 (-880 |#1|))))) |%noBranch|))) (-157) (-849) (-586 (-1083)) (-1164 (-626 |#1|))) (T -425))
-((-2188 (*1 *1 *2) (-12 (-5 *2 (-1164 (-380 (-880 *3)))) (-4 *3 (-157)) (-14 *6 (-1164 (-626 *3))) (-5 *1 (-425 *3 *4 *5 *6)) (-14 *4 (-849)) (-14 *5 (-586 (-1083))))) (-2790 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-425 *3 *4 *5 *6)) (|:| -1831 (-586 (-425 *3 *4 *5 *6))))) (-5 *1 (-425 *3 *4 *5 *6)) (-4 *3 (-157)) (-14 *4 (-849)) (-14 *5 (-586 (-1083))) (-14 *6 (-1164 (-626 *3))))) (-3824 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-425 *3 *4 *5 *6)) (|:| -1831 (-586 (-425 *3 *4 *5 *6))))) (-5 *1 (-425 *3 *4 *5 *6)) (-4 *3 (-157)) (-14 *4 (-849)) (-14 *5 (-586 (-1083))) (-14 *6 (-1164 (-626 *3))))) (-3236 (*1 *1) (-12 (-5 *1 (-425 *2 *3 *4 *5)) (-4 *2 (-157)) (-14 *3 (-849)) (-14 *4 (-586 (-1083))) (-14 *5 (-1164 (-626 *2))))) (-3236 (*1 *1 *2) (-12 (-5 *2 (-1083)) (-5 *1 (-425 *3 *4 *5 *6)) (-4 *3 (-157)) (-14 *4 (-849)) (-14 *5 (-586 *2)) (-14 *6 (-1164 (-626 *3))))) (-3236 (*1 *1 *2) (-12 (-5 *2 (-1164 (-1083))) (-5 *1 (-425 *3 *4 *5 *6)) (-4 *3 (-157)) (-14 *4 (-849)) (-14 *5 (-586 (-1083))) (-14 *6 (-1164 (-626 *3))))) (-3236 (*1 *1 *2) (-12 (-5 *2 (-1164 (-425 *3 *4 *5 *6))) (-5 *1 (-425 *3 *4 *5 *6)) (-4 *3 (-157)) (-14 *4 (-849)) (-14 *5 (-586 (-1083))) (-14 *6 (-1164 (-626 *3))))) (-3236 (*1 *1 *2 *3) (-12 (-5 *2 (-1083)) (-5 *3 (-1164 (-425 *4 *5 *6 *7))) (-5 *1 (-425 *4 *5 *6 *7)) (-4 *4 (-157)) (-14 *5 (-849)) (-14 *6 (-586 *2)) (-14 *7 (-1164 (-626 *4))))) (-3236 (*1 *1 *2 *3) (-12 (-5 *2 (-1164 (-1083))) (-5 *3 (-1164 (-425 *4 *5 *6 *7))) (-5 *1 (-425 *4 *5 *6 *7)) (-4 *4 (-157)) (-14 *5 (-849)) (-14 *6 (-586 (-1083))) (-14 *7 (-1164 (-626 *4))))) (-1589 (*1 *2) (-12 (-5 *2 (-1079 (-380 (-880 *3)))) (-5 *1 (-425 *3 *4 *5 *6)) (-4 *3 (-512)) (-4 *3 (-157)) (-14 *4 (-849)) (-14 *5 (-586 (-1083))) (-14 *6 (-1164 (-626 *3))))) (-3161 (*1 *2 *1) (-12 (-5 *2 (-1079 (-380 (-880 *3)))) (-5 *1 (-425 *3 *4 *5 *6)) (-4 *3 (-512)) (-4 *3 (-157)) (-14 *4 (-849)) (-14 *5 (-586 (-1083))) (-14 *6 (-1164 (-626 *3))))) (-2909 (*1 *2 *1) (-12 (-5 *2 (-380 (-880 *3))) (-5 *1 (-425 *3 *4 *5 *6)) (-4 *3 (-512)) (-4 *3 (-157)) (-14 *4 (-849)) (-14 *5 (-586 (-1083))) (-14 *6 (-1164 (-626 *3))))) (-1715 (*1 *2 *1) (-12 (-5 *2 (-380 (-880 *3))) (-5 *1 (-425 *3 *4 *5 *6)) (-4 *3 (-512)) (-4 *3 (-157)) (-14 *4 (-849)) (-14 *5 (-586 (-1083))) (-14 *6 (-1164 (-626 *3))))) (-3978 (*1 *2) (-12 (-5 *2 (-1079 (-380 (-880 *3)))) (-5 *1 (-425 *3 *4 *5 *6)) (-4 *3 (-512)) (-4 *3 (-157)) (-14 *4 (-849)) (-14 *5 (-586 (-1083))) (-14 *6 (-1164 (-626 *3))))) (-1441 (*1 *2 *1) (-12 (-5 *2 (-1079 (-380 (-880 *3)))) (-5 *1 (-425 *3 *4 *5 *6)) (-4 *3 (-512)) (-4 *3 (-157)) (-14 *4 (-849)) (-14 *5 (-586 (-1083))) (-14 *6 (-1164 (-626 *3))))) (-3298 (*1 *2 *1) (-12 (-5 *2 (-380 (-880 *3))) (-5 *1 (-425 *3 *4 *5 *6)) (-4 *3 (-512)) (-4 *3 (-157)) (-14 *4 (-849)) (-14 *5 (-586 (-1083))) (-14 *6 (-1164 (-626 *3))))) (-2301 (*1 *2 *1) (-12 (-5 *2 (-380 (-880 *3))) (-5 *1 (-425 *3 *4 *5 *6)) (-4 *3 (-512)) (-4 *3 (-157)) (-14 *4 (-849)) (-14 *5 (-586 (-1083))) (-14 *6 (-1164 (-626 *3))))) (-1720 (*1 *2 *1 *1) (-12 (-5 *2 (-380 (-880 *3))) (-5 *1 (-425 *3 *4 *5 *6)) (-4 *3 (-512)) (-4 *3 (-157)) (-14 *4 (-849)) (-14 *5 (-586 (-1083))) (-14 *6 (-1164 (-626 *3))))) (-3999 (*1 *2) (-12 (-5 *2 (-380 (-880 *3))) (-5 *1 (-425 *3 *4 *5 *6)) (-4 *3 (-512)) (-4 *3 (-157)) (-14 *4 (-849)) (-14 *5 (-586 (-1083))) (-14 *6 (-1164 (-626 *3))))) (-2924 (*1 *2 *1 *1) (-12 (-5 *2 (-380 (-880 *3))) (-5 *1 (-425 *3 *4 *5 *6)) (-4 *3 (-512)) (-4 *3 (-157)) (-14 *4 (-849)) (-14 *5 (-586 (-1083))) (-14 *6 (-1164 (-626 *3))))) (-3634 (*1 *2) (-12 (-5 *2 (-380 (-880 *3))) (-5 *1 (-425 *3 *4 *5 *6)) (-4 *3 (-512)) (-4 *3 (-157)) (-14 *4 (-849)) (-14 *5 (-586 (-1083))) (-14 *6 (-1164 (-626 *3))))) (-1894 (*1 *2 *3) (-12 (-5 *3 (-1164 (-425 *4 *5 *6 *7))) (-5 *2 (-586 (-880 *4))) (-5 *1 (-425 *4 *5 *6 *7)) (-4 *4 (-512)) (-4 *4 (-157)) (-14 *5 (-849)) (-14 *6 (-586 (-1083))) (-14 *7 (-1164 (-626 *4))))) (-1894 (*1 *2) (-12 (-5 *2 (-586 (-880 *3))) (-5 *1 (-425 *3 *4 *5 *6)) (-4 *3 (-512)) (-4 *3 (-157)) (-14 *4 (-849)) (-14 *5 (-586 (-1083))) (-14 *6 (-1164 (-626 *3))))))
-(-13 (-390 (-380 (-880 |#1|))) (-588 (-1050 |#2| (-380 (-880 |#1|)))) (-10 -8 (-15 -2188 ($ (-1164 (-380 (-880 |#1|))))) (-15 -2790 ((-3 (-2 (|:| |particular| $) (|:| -1831 (-586 $))) "failed"))) (-15 -3824 ((-3 (-2 (|:| |particular| $) (|:| -1831 (-586 $))) "failed"))) (-15 -3236 ($)) (-15 -3236 ($ (-1083))) (-15 -3236 ($ (-1164 (-1083)))) (-15 -3236 ($ (-1164 $))) (-15 -3236 ($ (-1083) (-1164 $))) (-15 -3236 ($ (-1164 (-1083)) (-1164 $))) (IF (|has| |#1| (-512)) (PROGN (-15 -1589 ((-1079 (-380 (-880 |#1|))))) (-15 -3161 ((-1079 (-380 (-880 |#1|))) $)) (-15 -2909 ((-380 (-880 |#1|)) $)) (-15 -1715 ((-380 (-880 |#1|)) $)) (-15 -3978 ((-1079 (-380 (-880 |#1|))))) (-15 -1441 ((-1079 (-380 (-880 |#1|))) $)) (-15 -3298 ((-380 (-880 |#1|)) $)) (-15 -2301 ((-380 (-880 |#1|)) $)) (-15 -1720 ((-380 (-880 |#1|)) $ $)) (-15 -3999 ((-380 (-880 |#1|)))) (-15 -2924 ((-380 (-880 |#1|)) $ $)) (-15 -3634 ((-380 (-880 |#1|)))) (-15 -1894 ((-586 (-880 |#1|)) (-1164 $))) (-15 -1894 ((-586 (-880 |#1|))))) |%noBranch|)))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) 13)) (-4081 (((-586 (-793 |#1|)) $) 74)) (-1278 (((-1079 $) $ (-793 |#1|)) 46) (((-1079 |#2|) $) 116)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) NIL (|has| |#2| (-512)))) (-2583 (($ $) NIL (|has| |#2| (-512)))) (-1671 (((-108) $) NIL (|has| |#2| (-512)))) (-3665 (((-706) $) 21) (((-706) $ (-586 (-793 |#1|))) NIL)) (-1917 (((-3 $ "failed") $ $) NIL)) (-4119 (((-391 (-1079 $)) (-1079 $)) NIL (|has| |#2| (-837)))) (-3024 (($ $) NIL (|has| |#2| (-424)))) (-1507 (((-391 $) $) NIL (|has| |#2| (-424)))) (-3481 (((-3 (-586 (-1079 $)) "failed") (-586 (-1079 $)) (-1079 $)) NIL (|has| |#2| (-837)))) (-3961 (($) NIL T CONST)) (-1296 (((-3 |#2| "failed") $) 44) (((-3 (-380 (-520)) "failed") $) NIL (|has| |#2| (-960 (-380 (-520))))) (((-3 (-520) "failed") $) NIL (|has| |#2| (-960 (-520)))) (((-3 (-793 |#1|) "failed") $) NIL)) (-1482 ((|#2| $) 42) (((-380 (-520)) $) NIL (|has| |#2| (-960 (-380 (-520))))) (((-520) $) NIL (|has| |#2| (-960 (-520)))) (((-793 |#1|) $) NIL)) (-2413 (($ $ $ (-793 |#1|)) NIL (|has| |#2| (-157)))) (-1688 (($ $ (-586 (-520))) 79)) (-3150 (($ $) 68)) (-2756 (((-626 (-520)) (-626 $)) NIL (|has| |#2| (-582 (-520)))) (((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 $) (-1164 $)) NIL (|has| |#2| (-582 (-520)))) (((-2 (|:| -3927 (-626 |#2|)) (|:| |vec| (-1164 |#2|))) (-626 $) (-1164 $)) NIL) (((-626 |#2|) (-626 $)) NIL)) (-1540 (((-3 $ "failed") $) NIL)) (-3923 (($ $) NIL (|has| |#2| (-424))) (($ $ (-793 |#1|)) NIL (|has| |#2| (-424)))) (-3142 (((-586 $) $) NIL)) (-2036 (((-108) $) NIL (|has| |#2| (-837)))) (-3397 (($ $ |#2| |#3| $) NIL)) (-1272 (((-817 (-352) $) $ (-820 (-352)) (-817 (-352) $)) NIL (-12 (|has| (-793 |#1|) (-814 (-352))) (|has| |#2| (-814 (-352))))) (((-817 (-520) $) $ (-820 (-520)) (-817 (-520) $)) NIL (-12 (|has| (-793 |#1|) (-814 (-520))) (|has| |#2| (-814 (-520)))))) (-1537 (((-108) $) NIL)) (-1315 (((-706) $) 58)) (-4065 (($ (-1079 |#2|) (-793 |#1|)) 121) (($ (-1079 $) (-793 |#1|)) 52)) (-1992 (((-586 $) $) NIL)) (-3774 (((-108) $) 59)) (-4039 (($ |#2| |#3|) 28) (($ $ (-793 |#1|) (-706)) 30) (($ $ (-586 (-793 |#1|)) (-586 (-706))) NIL)) (-1910 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $ (-793 |#1|)) NIL)) (-3562 ((|#3| $) NIL) (((-706) $ (-793 |#1|)) 50) (((-586 (-706)) $ (-586 (-793 |#1|))) 57)) (-2809 (($ $ $) NIL (|has| |#2| (-783)))) (-2446 (($ $ $) NIL (|has| |#2| (-783)))) (-3295 (($ (-1 |#3| |#3|) $) NIL)) (-1389 (($ (-1 |#2| |#2|) $) NIL)) (-3186 (((-3 (-793 |#1|) "failed") $) 39)) (-3123 (($ $) NIL)) (-3133 ((|#2| $) 41)) (-2222 (($ (-586 $)) NIL (|has| |#2| (-424))) (($ $ $) NIL (|has| |#2| (-424)))) (-1239 (((-1066) $) NIL)) (-3548 (((-3 (-586 $) "failed") $) NIL)) (-1205 (((-3 (-586 $) "failed") $) NIL)) (-2568 (((-3 (-2 (|:| |var| (-793 |#1|)) (|:| -2647 (-706))) "failed") $) NIL)) (-4142 (((-1030) $) NIL)) (-3103 (((-108) $) 40)) (-3113 ((|#2| $) 114)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) NIL (|has| |#2| (-424)))) (-2257 (($ (-586 $)) NIL (|has| |#2| (-424))) (($ $ $) 126 (|has| |#2| (-424)))) (-4133 (((-391 (-1079 $)) (-1079 $)) NIL (|has| |#2| (-837)))) (-2017 (((-391 (-1079 $)) (-1079 $)) NIL (|has| |#2| (-837)))) (-1916 (((-391 $) $) NIL (|has| |#2| (-837)))) (-2230 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-512))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-512)))) (-2286 (($ $ (-586 (-268 $))) NIL) (($ $ (-268 $)) NIL) (($ $ $ $) NIL) (($ $ (-586 $) (-586 $)) NIL) (($ $ (-793 |#1|) |#2|) 86) (($ $ (-586 (-793 |#1|)) (-586 |#2|)) 89) (($ $ (-793 |#1|) $) 84) (($ $ (-586 (-793 |#1|)) (-586 $)) 105)) (-2732 (($ $ (-793 |#1|)) NIL (|has| |#2| (-157)))) (-2155 (($ $ (-793 |#1|)) 53) (($ $ (-586 (-793 |#1|))) NIL) (($ $ (-793 |#1|) (-706)) NIL) (($ $ (-586 (-793 |#1|)) (-586 (-706))) NIL)) (-2528 ((|#3| $) 67) (((-706) $ (-793 |#1|)) 37) (((-586 (-706)) $ (-586 (-793 |#1|))) 56)) (-1429 (((-820 (-352)) $) NIL (-12 (|has| (-793 |#1|) (-561 (-820 (-352)))) (|has| |#2| (-561 (-820 (-352)))))) (((-820 (-520)) $) NIL (-12 (|has| (-793 |#1|) (-561 (-820 (-520)))) (|has| |#2| (-561 (-820 (-520)))))) (((-496) $) NIL (-12 (|has| (-793 |#1|) (-561 (-496))) (|has| |#2| (-561 (-496)))))) (-1233 ((|#2| $) 123 (|has| |#2| (-424))) (($ $ (-793 |#1|)) NIL (|has| |#2| (-424)))) (-3784 (((-3 (-1164 $) "failed") (-626 $)) NIL (-12 (|has| $ (-133)) (|has| |#2| (-837))))) (-2188 (((-791) $) 142) (($ (-520)) NIL) (($ |#2|) 85) (($ (-793 |#1|)) 31) (($ (-380 (-520))) NIL (-3700 (|has| |#2| (-37 (-380 (-520)))) (|has| |#2| (-960 (-380 (-520)))))) (($ $) NIL (|has| |#2| (-512)))) (-4113 (((-586 |#2|) $) NIL)) (-3475 ((|#2| $ |#3|) NIL) (($ $ (-793 |#1|) (-706)) NIL) (($ $ (-586 (-793 |#1|)) (-586 (-706))) NIL)) (-3796 (((-3 $ "failed") $) NIL (-3700 (-12 (|has| $ (-133)) (|has| |#2| (-837))) (|has| |#2| (-133))))) (-3251 (((-706)) NIL)) (-1782 (($ $ $ (-706)) NIL (|has| |#2| (-157)))) (-2559 (((-108) $ $) NIL (|has| |#2| (-512)))) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (-3560 (($) 16 T CONST)) (-3570 (($) 25 T CONST)) (-2211 (($ $ (-793 |#1|)) NIL) (($ $ (-586 (-793 |#1|))) NIL) (($ $ (-793 |#1|) (-706)) NIL) (($ $ (-586 (-793 |#1|)) (-586 (-706))) NIL)) (-1573 (((-108) $ $) NIL (|has| |#2| (-783)))) (-1557 (((-108) $ $) NIL (|has| |#2| (-783)))) (-1530 (((-108) $ $) NIL)) (-1565 (((-108) $ $) NIL (|has| |#2| (-783)))) (-1548 (((-108) $ $) NIL (|has| |#2| (-783)))) (-1619 (($ $ |#2|) 64 (|has| |#2| (-336)))) (-1611 (($ $) NIL) (($ $ $) NIL)) (-1601 (($ $ $) 110)) (** (($ $ (-849)) NIL) (($ $ (-706)) 108)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) 29) (($ $ (-380 (-520))) NIL (|has| |#2| (-37 (-380 (-520))))) (($ (-380 (-520)) $) NIL (|has| |#2| (-37 (-380 (-520))))) (($ |#2| $) 63) (($ $ |#2|) NIL)))
-(((-426 |#1| |#2| |#3|) (-13 (-877 |#2| |#3| (-793 |#1|)) (-10 -8 (-15 -1688 ($ $ (-586 (-520)))))) (-586 (-1083)) (-969) (-214 (-3474 |#1|) (-706))) (T -426))
-((-1688 (*1 *1 *1 *2) (-12 (-5 *2 (-586 (-520))) (-14 *3 (-586 (-1083))) (-5 *1 (-426 *3 *4 *5)) (-4 *4 (-969)) (-4 *5 (-214 (-3474 *3) (-706))))))
-(-13 (-877 |#2| |#3| (-793 |#1|)) (-10 -8 (-15 -1688 ($ $ (-586 (-520))))))
-((-2860 (((-108) |#1| (-586 |#2|)) 66)) (-1783 (((-3 (-1164 (-586 |#2|)) "failed") (-706) |#1| (-586 |#2|)) 75)) (-1528 (((-3 (-586 |#2|) "failed") |#2| |#1| (-1164 (-586 |#2|))) 77)) (-2742 ((|#2| |#2| |#1|) 28)) (-3631 (((-706) |#2| (-586 |#2|)) 20)))
-(((-427 |#1| |#2|) (-10 -7 (-15 -2742 (|#2| |#2| |#1|)) (-15 -3631 ((-706) |#2| (-586 |#2|))) (-15 -1783 ((-3 (-1164 (-586 |#2|)) "failed") (-706) |#1| (-586 |#2|))) (-15 -1528 ((-3 (-586 |#2|) "failed") |#2| |#1| (-1164 (-586 |#2|)))) (-15 -2860 ((-108) |#1| (-586 |#2|)))) (-281) (-1140 |#1|)) (T -427))
-((-2860 (*1 *2 *3 *4) (-12 (-5 *4 (-586 *5)) (-4 *5 (-1140 *3)) (-4 *3 (-281)) (-5 *2 (-108)) (-5 *1 (-427 *3 *5)))) (-1528 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1164 (-586 *3))) (-4 *4 (-281)) (-5 *2 (-586 *3)) (-5 *1 (-427 *4 *3)) (-4 *3 (-1140 *4)))) (-1783 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-706)) (-4 *4 (-281)) (-4 *6 (-1140 *4)) (-5 *2 (-1164 (-586 *6))) (-5 *1 (-427 *4 *6)) (-5 *5 (-586 *6)))) (-3631 (*1 *2 *3 *4) (-12 (-5 *4 (-586 *3)) (-4 *3 (-1140 *5)) (-4 *5 (-281)) (-5 *2 (-706)) (-5 *1 (-427 *5 *3)))) (-2742 (*1 *2 *2 *3) (-12 (-4 *3 (-281)) (-5 *1 (-427 *3 *2)) (-4 *2 (-1140 *3)))))
-(-10 -7 (-15 -2742 (|#2| |#2| |#1|)) (-15 -3631 ((-706) |#2| (-586 |#2|))) (-15 -1783 ((-3 (-1164 (-586 |#2|)) "failed") (-706) |#1| (-586 |#2|))) (-15 -1528 ((-3 (-586 |#2|) "failed") |#2| |#1| (-1164 (-586 |#2|)))) (-15 -2860 ((-108) |#1| (-586 |#2|))))
-((-1916 (((-391 |#5|) |#5|) 24)))
-(((-428 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1916 ((-391 |#5|) |#5|))) (-13 (-783) (-10 -8 (-15 -1429 ((-1083) $)) (-15 -1610 ((-3 $ "failed") (-1083))))) (-728) (-512) (-512) (-877 |#4| |#2| |#1|)) (T -428))
-((-1916 (*1 *2 *3) (-12 (-4 *4 (-13 (-783) (-10 -8 (-15 -1429 ((-1083) $)) (-15 -1610 ((-3 $ "failed") (-1083)))))) (-4 *5 (-728)) (-4 *7 (-512)) (-5 *2 (-391 *3)) (-5 *1 (-428 *4 *5 *6 *7 *3)) (-4 *6 (-512)) (-4 *3 (-877 *7 *5 *4)))))
-(-10 -7 (-15 -1916 ((-391 |#5|) |#5|)))
-((-1210 ((|#3|) 36)) (-3653 (((-1079 |#4|) (-1079 |#4|) (-1079 |#4|)) 32)))
-(((-429 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3653 ((-1079 |#4|) (-1079 |#4|) (-1079 |#4|))) (-15 -1210 (|#3|))) (-728) (-783) (-837) (-877 |#3| |#1| |#2|)) (T -429))
-((-1210 (*1 *2) (-12 (-4 *3 (-728)) (-4 *4 (-783)) (-4 *2 (-837)) (-5 *1 (-429 *3 *4 *2 *5)) (-4 *5 (-877 *2 *3 *4)))) (-3653 (*1 *2 *2 *2) (-12 (-5 *2 (-1079 *6)) (-4 *6 (-877 *5 *3 *4)) (-4 *3 (-728)) (-4 *4 (-783)) (-4 *5 (-837)) (-5 *1 (-429 *3 *4 *5 *6)))))
-(-10 -7 (-15 -3653 ((-1079 |#4|) (-1079 |#4|) (-1079 |#4|))) (-15 -1210 (|#3|)))
-((-1916 (((-391 (-1079 |#1|)) (-1079 |#1|)) 41)))
-(((-430 |#1|) (-10 -7 (-15 -1916 ((-391 (-1079 |#1|)) (-1079 |#1|)))) (-281)) (T -430))
-((-1916 (*1 *2 *3) (-12 (-4 *4 (-281)) (-5 *2 (-391 (-1079 *4))) (-5 *1 (-430 *4)) (-5 *3 (-1079 *4)))))
-(-10 -7 (-15 -1916 ((-391 (-1079 |#1|)) (-1079 |#1|))))
-((-3053 (((-51) |#2| (-1083) (-268 |#2|) (-1131 (-706))) 42) (((-51) (-1 |#2| (-520)) (-268 |#2|) (-1131 (-706))) 41) (((-51) |#2| (-1083) (-268 |#2|)) 35) (((-51) (-1 |#2| (-520)) (-268 |#2|)) 27)) (-2769 (((-51) |#2| (-1083) (-268 |#2|) (-1131 (-380 (-520))) (-380 (-520))) 80) (((-51) (-1 |#2| (-380 (-520))) (-268 |#2|) (-1131 (-380 (-520))) (-380 (-520))) 79) (((-51) |#2| (-1083) (-268 |#2|) (-1131 (-520))) 78) (((-51) (-1 |#2| (-520)) (-268 |#2|) (-1131 (-520))) 77) (((-51) |#2| (-1083) (-268 |#2|)) 72) (((-51) (-1 |#2| (-520)) (-268 |#2|)) 71)) (-3073 (((-51) |#2| (-1083) (-268 |#2|) (-1131 (-380 (-520))) (-380 (-520))) 66) (((-51) (-1 |#2| (-380 (-520))) (-268 |#2|) (-1131 (-380 (-520))) (-380 (-520))) 64)) (-3063 (((-51) |#2| (-1083) (-268 |#2|) (-1131 (-520))) 48) (((-51) (-1 |#2| (-520)) (-268 |#2|) (-1131 (-520))) 47)))
-(((-431 |#1| |#2|) (-10 -7 (-15 -3053 ((-51) (-1 |#2| (-520)) (-268 |#2|))) (-15 -3053 ((-51) |#2| (-1083) (-268 |#2|))) (-15 -3053 ((-51) (-1 |#2| (-520)) (-268 |#2|) (-1131 (-706)))) (-15 -3053 ((-51) |#2| (-1083) (-268 |#2|) (-1131 (-706)))) (-15 -3063 ((-51) (-1 |#2| (-520)) (-268 |#2|) (-1131 (-520)))) (-15 -3063 ((-51) |#2| (-1083) (-268 |#2|) (-1131 (-520)))) (-15 -3073 ((-51) (-1 |#2| (-380 (-520))) (-268 |#2|) (-1131 (-380 (-520))) (-380 (-520)))) (-15 -3073 ((-51) |#2| (-1083) (-268 |#2|) (-1131 (-380 (-520))) (-380 (-520)))) (-15 -2769 ((-51) (-1 |#2| (-520)) (-268 |#2|))) (-15 -2769 ((-51) |#2| (-1083) (-268 |#2|))) (-15 -2769 ((-51) (-1 |#2| (-520)) (-268 |#2|) (-1131 (-520)))) (-15 -2769 ((-51) |#2| (-1083) (-268 |#2|) (-1131 (-520)))) (-15 -2769 ((-51) (-1 |#2| (-380 (-520))) (-268 |#2|) (-1131 (-380 (-520))) (-380 (-520)))) (-15 -2769 ((-51) |#2| (-1083) (-268 |#2|) (-1131 (-380 (-520))) (-380 (-520))))) (-13 (-512) (-783) (-960 (-520)) (-582 (-520))) (-13 (-27) (-1104) (-403 |#1|))) (T -431))
-((-2769 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1083)) (-5 *5 (-268 *3)) (-5 *6 (-1131 (-380 (-520)))) (-5 *7 (-380 (-520))) (-4 *3 (-13 (-27) (-1104) (-403 *8))) (-4 *8 (-13 (-512) (-783) (-960 (-520)) (-582 (-520)))) (-5 *2 (-51)) (-5 *1 (-431 *8 *3)))) (-2769 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-380 (-520)))) (-5 *4 (-268 *8)) (-5 *5 (-1131 (-380 (-520)))) (-5 *6 (-380 (-520))) (-4 *8 (-13 (-27) (-1104) (-403 *7))) (-4 *7 (-13 (-512) (-783) (-960 (-520)) (-582 (-520)))) (-5 *2 (-51)) (-5 *1 (-431 *7 *8)))) (-2769 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1083)) (-5 *5 (-268 *3)) (-5 *6 (-1131 (-520))) (-4 *3 (-13 (-27) (-1104) (-403 *7))) (-4 *7 (-13 (-512) (-783) (-960 (-520)) (-582 (-520)))) (-5 *2 (-51)) (-5 *1 (-431 *7 *3)))) (-2769 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-520))) (-5 *4 (-268 *7)) (-5 *5 (-1131 (-520))) (-4 *7 (-13 (-27) (-1104) (-403 *6))) (-4 *6 (-13 (-512) (-783) (-960 (-520)) (-582 (-520)))) (-5 *2 (-51)) (-5 *1 (-431 *6 *7)))) (-2769 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1083)) (-5 *5 (-268 *3)) (-4 *3 (-13 (-27) (-1104) (-403 *6))) (-4 *6 (-13 (-512) (-783) (-960 (-520)) (-582 (-520)))) (-5 *2 (-51)) (-5 *1 (-431 *6 *3)))) (-2769 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-520))) (-5 *4 (-268 *6)) (-4 *6 (-13 (-27) (-1104) (-403 *5))) (-4 *5 (-13 (-512) (-783) (-960 (-520)) (-582 (-520)))) (-5 *2 (-51)) (-5 *1 (-431 *5 *6)))) (-3073 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1083)) (-5 *5 (-268 *3)) (-5 *6 (-1131 (-380 (-520)))) (-5 *7 (-380 (-520))) (-4 *3 (-13 (-27) (-1104) (-403 *8))) (-4 *8 (-13 (-512) (-783) (-960 (-520)) (-582 (-520)))) (-5 *2 (-51)) (-5 *1 (-431 *8 *3)))) (-3073 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-380 (-520)))) (-5 *4 (-268 *8)) (-5 *5 (-1131 (-380 (-520)))) (-5 *6 (-380 (-520))) (-4 *8 (-13 (-27) (-1104) (-403 *7))) (-4 *7 (-13 (-512) (-783) (-960 (-520)) (-582 (-520)))) (-5 *2 (-51)) (-5 *1 (-431 *7 *8)))) (-3063 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1083)) (-5 *5 (-268 *3)) (-5 *6 (-1131 (-520))) (-4 *3 (-13 (-27) (-1104) (-403 *7))) (-4 *7 (-13 (-512) (-783) (-960 (-520)) (-582 (-520)))) (-5 *2 (-51)) (-5 *1 (-431 *7 *3)))) (-3063 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-520))) (-5 *4 (-268 *7)) (-5 *5 (-1131 (-520))) (-4 *7 (-13 (-27) (-1104) (-403 *6))) (-4 *6 (-13 (-512) (-783) (-960 (-520)) (-582 (-520)))) (-5 *2 (-51)) (-5 *1 (-431 *6 *7)))) (-3053 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1083)) (-5 *5 (-268 *3)) (-5 *6 (-1131 (-706))) (-4 *3 (-13 (-27) (-1104) (-403 *7))) (-4 *7 (-13 (-512) (-783) (-960 (-520)) (-582 (-520)))) (-5 *2 (-51)) (-5 *1 (-431 *7 *3)))) (-3053 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-520))) (-5 *4 (-268 *7)) (-5 *5 (-1131 (-706))) (-4 *7 (-13 (-27) (-1104) (-403 *6))) (-4 *6 (-13 (-512) (-783) (-960 (-520)) (-582 (-520)))) (-5 *2 (-51)) (-5 *1 (-431 *6 *7)))) (-3053 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1083)) (-5 *5 (-268 *3)) (-4 *3 (-13 (-27) (-1104) (-403 *6))) (-4 *6 (-13 (-512) (-783) (-960 (-520)) (-582 (-520)))) (-5 *2 (-51)) (-5 *1 (-431 *6 *3)))) (-3053 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-520))) (-5 *4 (-268 *6)) (-4 *6 (-13 (-27) (-1104) (-403 *5))) (-4 *5 (-13 (-512) (-783) (-960 (-520)) (-582 (-520)))) (-5 *2 (-51)) (-5 *1 (-431 *5 *6)))))
-(-10 -7 (-15 -3053 ((-51) (-1 |#2| (-520)) (-268 |#2|))) (-15 -3053 ((-51) |#2| (-1083) (-268 |#2|))) (-15 -3053 ((-51) (-1 |#2| (-520)) (-268 |#2|) (-1131 (-706)))) (-15 -3053 ((-51) |#2| (-1083) (-268 |#2|) (-1131 (-706)))) (-15 -3063 ((-51) (-1 |#2| (-520)) (-268 |#2|) (-1131 (-520)))) (-15 -3063 ((-51) |#2| (-1083) (-268 |#2|) (-1131 (-520)))) (-15 -3073 ((-51) (-1 |#2| (-380 (-520))) (-268 |#2|) (-1131 (-380 (-520))) (-380 (-520)))) (-15 -3073 ((-51) |#2| (-1083) (-268 |#2|) (-1131 (-380 (-520))) (-380 (-520)))) (-15 -2769 ((-51) (-1 |#2| (-520)) (-268 |#2|))) (-15 -2769 ((-51) |#2| (-1083) (-268 |#2|))) (-15 -2769 ((-51) (-1 |#2| (-520)) (-268 |#2|) (-1131 (-520)))) (-15 -2769 ((-51) |#2| (-1083) (-268 |#2|) (-1131 (-520)))) (-15 -2769 ((-51) (-1 |#2| (-380 (-520))) (-268 |#2|) (-1131 (-380 (-520))) (-380 (-520)))) (-15 -2769 ((-51) |#2| (-1083) (-268 |#2|) (-1131 (-380 (-520))) (-380 (-520)))))
-((-2742 ((|#2| |#2| |#1|) 15)) (-3414 (((-586 |#2|) |#2| (-586 |#2|) |#1| (-849)) 69)) (-3904 (((-2 (|:| |plist| (-586 |#2|)) (|:| |modulo| |#1|)) |#2| (-586 |#2|) |#1| (-849)) 60)))
-(((-432 |#1| |#2|) (-10 -7 (-15 -3904 ((-2 (|:| |plist| (-586 |#2|)) (|:| |modulo| |#1|)) |#2| (-586 |#2|) |#1| (-849))) (-15 -3414 ((-586 |#2|) |#2| (-586 |#2|) |#1| (-849))) (-15 -2742 (|#2| |#2| |#1|))) (-281) (-1140 |#1|)) (T -432))
-((-2742 (*1 *2 *2 *3) (-12 (-4 *3 (-281)) (-5 *1 (-432 *3 *2)) (-4 *2 (-1140 *3)))) (-3414 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-586 *3)) (-5 *5 (-849)) (-4 *3 (-1140 *4)) (-4 *4 (-281)) (-5 *1 (-432 *4 *3)))) (-3904 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-849)) (-4 *5 (-281)) (-4 *3 (-1140 *5)) (-5 *2 (-2 (|:| |plist| (-586 *3)) (|:| |modulo| *5))) (-5 *1 (-432 *5 *3)) (-5 *4 (-586 *3)))))
-(-10 -7 (-15 -3904 ((-2 (|:| |plist| (-586 |#2|)) (|:| |modulo| |#1|)) |#2| (-586 |#2|) |#1| (-849))) (-15 -3414 ((-586 |#2|) |#2| (-586 |#2|) |#1| (-849))) (-15 -2742 (|#2| |#2| |#1|)))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) 28)) (-4121 (($ |#3|) 25)) (-1917 (((-3 $ "failed") $ $) NIL)) (-3961 (($) NIL T CONST)) (-3150 (($ $) 32)) (-2067 (($ |#2| |#4| $) 33)) (-4039 (($ |#2| (-649 |#3| |#4| |#5|)) 24)) (-3123 (((-649 |#3| |#4| |#5|) $) 15)) (-3360 ((|#3| $) 19)) (-1407 ((|#4| $) 17)) (-3133 ((|#2| $) 29)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2188 (((-791) $) NIL)) (-3603 (($ |#2| |#3| |#4|) 26)) (-3560 (($) 36 T CONST)) (-1530 (((-108) $ $) NIL)) (-1611 (($ $) NIL) (($ $ $) NIL)) (-1601 (($ $ $) 34)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-433 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-653 |#6|) (-653 |#2|) (-10 -8 (-15 -3133 (|#2| $)) (-15 -3123 ((-649 |#3| |#4| |#5|) $)) (-15 -1407 (|#4| $)) (-15 -3360 (|#3| $)) (-15 -3150 ($ $)) (-15 -4039 ($ |#2| (-649 |#3| |#4| |#5|))) (-15 -4121 ($ |#3|)) (-15 -3603 ($ |#2| |#3| |#4|)) (-15 -2067 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-586 (-1083)) (-157) (-783) (-214 (-3474 |#1|) (-706)) (-1 (-108) (-2 (|:| -2716 |#3|) (|:| -2647 |#4|)) (-2 (|:| -2716 |#3|) (|:| -2647 |#4|))) (-877 |#2| |#4| (-793 |#1|))) (T -433))
-((* (*1 *1 *2 *1) (-12 (-14 *3 (-586 (-1083))) (-4 *4 (-157)) (-4 *6 (-214 (-3474 *3) (-706))) (-14 *7 (-1 (-108) (-2 (|:| -2716 *5) (|:| -2647 *6)) (-2 (|:| -2716 *5) (|:| -2647 *6)))) (-5 *1 (-433 *3 *4 *5 *6 *7 *2)) (-4 *5 (-783)) (-4 *2 (-877 *4 *6 (-793 *3))))) (-3133 (*1 *2 *1) (-12 (-14 *3 (-586 (-1083))) (-4 *5 (-214 (-3474 *3) (-706))) (-14 *6 (-1 (-108) (-2 (|:| -2716 *4) (|:| -2647 *5)) (-2 (|:| -2716 *4) (|:| -2647 *5)))) (-4 *2 (-157)) (-5 *1 (-433 *3 *2 *4 *5 *6 *7)) (-4 *4 (-783)) (-4 *7 (-877 *2 *5 (-793 *3))))) (-3123 (*1 *2 *1) (-12 (-14 *3 (-586 (-1083))) (-4 *4 (-157)) (-4 *6 (-214 (-3474 *3) (-706))) (-14 *7 (-1 (-108) (-2 (|:| -2716 *5) (|:| -2647 *6)) (-2 (|:| -2716 *5) (|:| -2647 *6)))) (-5 *2 (-649 *5 *6 *7)) (-5 *1 (-433 *3 *4 *5 *6 *7 *8)) (-4 *5 (-783)) (-4 *8 (-877 *4 *6 (-793 *3))))) (-1407 (*1 *2 *1) (-12 (-14 *3 (-586 (-1083))) (-4 *4 (-157)) (-14 *6 (-1 (-108) (-2 (|:| -2716 *5) (|:| -2647 *2)) (-2 (|:| -2716 *5) (|:| -2647 *2)))) (-4 *2 (-214 (-3474 *3) (-706))) (-5 *1 (-433 *3 *4 *5 *2 *6 *7)) (-4 *5 (-783)) (-4 *7 (-877 *4 *2 (-793 *3))))) (-3360 (*1 *2 *1) (-12 (-14 *3 (-586 (-1083))) (-4 *4 (-157)) (-4 *5 (-214 (-3474 *3) (-706))) (-14 *6 (-1 (-108) (-2 (|:| -2716 *2) (|:| -2647 *5)) (-2 (|:| -2716 *2) (|:| -2647 *5)))) (-4 *2 (-783)) (-5 *1 (-433 *3 *4 *2 *5 *6 *7)) (-4 *7 (-877 *4 *5 (-793 *3))))) (-3150 (*1 *1 *1) (-12 (-14 *2 (-586 (-1083))) (-4 *3 (-157)) (-4 *5 (-214 (-3474 *2) (-706))) (-14 *6 (-1 (-108) (-2 (|:| -2716 *4) (|:| -2647 *5)) (-2 (|:| -2716 *4) (|:| -2647 *5)))) (-5 *1 (-433 *2 *3 *4 *5 *6 *7)) (-4 *4 (-783)) (-4 *7 (-877 *3 *5 (-793 *2))))) (-4039 (*1 *1 *2 *3) (-12 (-5 *3 (-649 *5 *6 *7)) (-4 *5 (-783)) (-4 *6 (-214 (-3474 *4) (-706))) (-14 *7 (-1 (-108) (-2 (|:| -2716 *5) (|:| -2647 *6)) (-2 (|:| -2716 *5) (|:| -2647 *6)))) (-14 *4 (-586 (-1083))) (-4 *2 (-157)) (-5 *1 (-433 *4 *2 *5 *6 *7 *8)) (-4 *8 (-877 *2 *6 (-793 *4))))) (-4121 (*1 *1 *2) (-12 (-14 *3 (-586 (-1083))) (-4 *4 (-157)) (-4 *5 (-214 (-3474 *3) (-706))) (-14 *6 (-1 (-108) (-2 (|:| -2716 *2) (|:| -2647 *5)) (-2 (|:| -2716 *2) (|:| -2647 *5)))) (-5 *1 (-433 *3 *4 *2 *5 *6 *7)) (-4 *2 (-783)) (-4 *7 (-877 *4 *5 (-793 *3))))) (-3603 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-586 (-1083))) (-4 *2 (-157)) (-4 *4 (-214 (-3474 *5) (-706))) (-14 *6 (-1 (-108) (-2 (|:| -2716 *3) (|:| -2647 *4)) (-2 (|:| -2716 *3) (|:| -2647 *4)))) (-5 *1 (-433 *5 *2 *3 *4 *6 *7)) (-4 *3 (-783)) (-4 *7 (-877 *2 *4 (-793 *5))))) (-2067 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-586 (-1083))) (-4 *2 (-157)) (-4 *3 (-214 (-3474 *4) (-706))) (-14 *6 (-1 (-108) (-2 (|:| -2716 *5) (|:| -2647 *3)) (-2 (|:| -2716 *5) (|:| -2647 *3)))) (-5 *1 (-433 *4 *2 *5 *3 *6 *7)) (-4 *5 (-783)) (-4 *7 (-877 *2 *3 (-793 *4))))))
-(-13 (-653 |#6|) (-653 |#2|) (-10 -8 (-15 -3133 (|#2| $)) (-15 -3123 ((-649 |#3| |#4| |#5|) $)) (-15 -1407 (|#4| $)) (-15 -3360 (|#3| $)) (-15 -3150 ($ $)) (-15 -4039 ($ |#2| (-649 |#3| |#4| |#5|))) (-15 -4121 ($ |#3|)) (-15 -3603 ($ |#2| |#3| |#4|)) (-15 -2067 ($ |#2| |#4| $)) (-15 * ($ |#6| $))))
-((-3366 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 35)))
-(((-434 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3366 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-728) (-783) (-512) (-877 |#3| |#1| |#2|) (-13 (-960 (-380 (-520))) (-336) (-10 -8 (-15 -2188 ($ |#4|)) (-15 -2800 (|#4| $)) (-15 -2811 (|#4| $))))) (T -434))
-((-3366 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-783)) (-4 *5 (-728)) (-4 *6 (-512)) (-4 *7 (-877 *6 *5 *3)) (-5 *1 (-434 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-960 (-380 (-520))) (-336) (-10 -8 (-15 -2188 ($ *7)) (-15 -2800 (*7 $)) (-15 -2811 (*7 $))))))))
-(-10 -7 (-15 -3366 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|))))
-((-1414 (((-108) $ $) NIL)) (-4081 (((-586 |#3|) $) 41)) (-2373 (((-108) $) NIL)) (-1937 (((-108) $) NIL (|has| |#1| (-512)))) (-3210 (((-2 (|:| |under| $) (|:| -1626 $) (|:| |upper| $)) $ |#3|) NIL)) (-2063 (((-108) $ (-706)) NIL)) (-1627 (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4229)))) (-3961 (($) NIL T CONST)) (-2215 (((-108) $) NIL (|has| |#1| (-512)))) (-3078 (((-108) $ $) NIL (|has| |#1| (-512)))) (-3675 (((-108) $ $) NIL (|has| |#1| (-512)))) (-2786 (((-108) $) NIL (|has| |#1| (-512)))) (-4167 (((-586 |#4|) (-586 |#4|) $) NIL (|has| |#1| (-512)))) (-3415 (((-586 |#4|) (-586 |#4|) $) NIL (|has| |#1| (-512)))) (-1296 (((-3 $ "failed") (-586 |#4|)) 47)) (-1482 (($ (-586 |#4|)) NIL)) (-2331 (($ $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#4| (-1012))))) (-1421 (($ |#4| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#4| (-1012)))) (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4229)))) (-3753 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-512)))) (-3856 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4229)) (|has| |#4| (-1012)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4229))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4229)))) (-3828 (((-586 |#4|) $) 18 (|has| $ (-6 -4229)))) (-3871 ((|#3| $) 45)) (-3027 (((-108) $ (-706)) NIL)) (-3702 (((-586 |#4|) $) 14 (|has| $ (-6 -4229)))) (-2422 (((-108) |#4| $) 26 (-12 (|has| $ (-6 -4229)) (|has| |#4| (-1012))))) (-3830 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#4| |#4|) $) 21)) (-2602 (((-586 |#3|) $) NIL)) (-3394 (((-108) |#3| $) NIL)) (-1390 (((-108) $ (-706)) NIL)) (-1239 (((-1066) $) NIL)) (-2130 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-512)))) (-4142 (((-1030) $) NIL)) (-2985 (((-3 |#4| "failed") (-1 (-108) |#4|) $) NIL)) (-4155 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 |#4|) (-586 |#4|)) NIL (-12 (|has| |#4| (-283 |#4|)) (|has| |#4| (-1012)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-283 |#4|)) (|has| |#4| (-1012)))) (($ $ (-268 |#4|)) NIL (-12 (|has| |#4| (-283 |#4|)) (|has| |#4| (-1012)))) (($ $ (-586 (-268 |#4|))) NIL (-12 (|has| |#4| (-283 |#4|)) (|has| |#4| (-1012))))) (-2533 (((-108) $ $) NIL)) (-4018 (((-108) $) 39)) (-2238 (($) 17)) (-4159 (((-706) |#4| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#4| (-1012)))) (((-706) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4229)))) (-2403 (($ $) 16)) (-1429 (((-496) $) NIL (|has| |#4| (-561 (-496)))) (($ (-586 |#4|)) 49)) (-2200 (($ (-586 |#4|)) 13)) (-3399 (($ $ |#3|) NIL)) (-4067 (($ $ |#3|) NIL)) (-2513 (($ $ |#3|) NIL)) (-2188 (((-791) $) 38) (((-586 |#4|) $) 48)) (-1662 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4229)))) (-1530 (((-108) $ $) 30)) (-3474 (((-706) $) NIL (|has| $ (-6 -4229)))))
-(((-435 |#1| |#2| |#3| |#4|) (-13 (-901 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1429 ($ (-586 |#4|))) (-6 -4229) (-6 -4230))) (-969) (-728) (-783) (-983 |#1| |#2| |#3|)) (T -435))
-((-1429 (*1 *1 *2) (-12 (-5 *2 (-586 *6)) (-4 *6 (-983 *3 *4 *5)) (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *1 (-435 *3 *4 *5 *6)))))
-(-13 (-901 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1429 ($ (-586 |#4|))) (-6 -4229) (-6 -4230)))
-((-3560 (($) 11)) (-3570 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16)))
-(((-436 |#1| |#2| |#3|) (-10 -8 (-15 -3570 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3560 (|#1|))) (-437 |#2| |#3|) (-157) (-23)) (T -436))
-NIL
-(-10 -8 (-15 -3570 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3560 (|#1|)))
-((-1414 (((-108) $ $) 7)) (-1296 (((-3 |#1| "failed") $) 26)) (-1482 ((|#1| $) 25)) (-1700 (($ $ $) 23)) (-1239 (((-1066) $) 9)) (-4142 (((-1030) $) 10)) (-2528 ((|#2| $) 19)) (-2188 (((-791) $) 11) (($ |#1|) 27)) (-3560 (($) 18 T CONST)) (-3570 (($) 24 T CONST)) (-1530 (((-108) $ $) 6)) (-1611 (($ $) 15) (($ $ $) 13)) (-1601 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16)))
-(((-437 |#1| |#2|) (-1195) (-157) (-23)) (T -437))
-((-3570 (*1 *1) (-12 (-4 *1 (-437 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23)))) (-1700 (*1 *1 *1 *1) (-12 (-4 *1 (-437 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23)))))
-(-13 (-442 |t#1| |t#2|) (-960 |t#1|) (-10 -8 (-15 (-3570) ($) -2675) (-15 -1700 ($ $ $))))
-(((-97) . T) ((-560 (-791)) . T) ((-442 |#1| |#2|) . T) ((-960 |#1|) . T) ((-1012) . T))
-((-3320 (((-1164 (-1164 (-520))) (-1164 (-1164 (-520))) (-849)) 18)) (-2673 (((-1164 (-1164 (-520))) (-849)) 16)))
-(((-438) (-10 -7 (-15 -3320 ((-1164 (-1164 (-520))) (-1164 (-1164 (-520))) (-849))) (-15 -2673 ((-1164 (-1164 (-520))) (-849))))) (T -438))
-((-2673 (*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-1164 (-1164 (-520)))) (-5 *1 (-438)))) (-3320 (*1 *2 *2 *3) (-12 (-5 *2 (-1164 (-1164 (-520)))) (-5 *3 (-849)) (-5 *1 (-438)))))
-(-10 -7 (-15 -3320 ((-1164 (-1164 (-520))) (-1164 (-1164 (-520))) (-849))) (-15 -2673 ((-1164 (-1164 (-520))) (-849))))
-((-3268 (((-520) (-520)) 30) (((-520)) 22)) (-2204 (((-520) (-520)) 26) (((-520)) 18)) (-2165 (((-520) (-520)) 28) (((-520)) 20)) (-2324 (((-108) (-108)) 12) (((-108)) 10)) (-2935 (((-108) (-108)) 11) (((-108)) 9)) (-3588 (((-108) (-108)) 24) (((-108)) 15)))
-(((-439) (-10 -7 (-15 -2935 ((-108))) (-15 -2324 ((-108))) (-15 -2935 ((-108) (-108))) (-15 -2324 ((-108) (-108))) (-15 -3588 ((-108))) (-15 -2165 ((-520))) (-15 -2204 ((-520))) (-15 -3268 ((-520))) (-15 -3588 ((-108) (-108))) (-15 -2165 ((-520) (-520))) (-15 -2204 ((-520) (-520))) (-15 -3268 ((-520) (-520))))) (T -439))
-((-3268 (*1 *2 *2) (-12 (-5 *2 (-520)) (-5 *1 (-439)))) (-2204 (*1 *2 *2) (-12 (-5 *2 (-520)) (-5 *1 (-439)))) (-2165 (*1 *2 *2) (-12 (-5 *2 (-520)) (-5 *1 (-439)))) (-3588 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-439)))) (-3268 (*1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-439)))) (-2204 (*1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-439)))) (-2165 (*1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-439)))) (-3588 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-439)))) (-2324 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-439)))) (-2935 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-439)))) (-2324 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-439)))) (-2935 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-439)))))
-(-10 -7 (-15 -2935 ((-108))) (-15 -2324 ((-108))) (-15 -2935 ((-108) (-108))) (-15 -2324 ((-108) (-108))) (-15 -3588 ((-108))) (-15 -2165 ((-520))) (-15 -2204 ((-520))) (-15 -3268 ((-520))) (-15 -3588 ((-108) (-108))) (-15 -2165 ((-520) (-520))) (-15 -2204 ((-520) (-520))) (-15 -3268 ((-520) (-520))))
-((-1414 (((-108) $ $) NIL)) (-1967 (((-586 (-352)) $) 27) (((-586 (-352)) $ (-586 (-352))) 91)) (-2525 (((-586 (-1007 (-352))) $) 14) (((-586 (-1007 (-352))) $ (-586 (-1007 (-352)))) 88)) (-3312 (((-586 (-586 (-871 (-201)))) (-586 (-586 (-871 (-201)))) (-586 (-802))) 42)) (-2151 (((-586 (-586 (-871 (-201)))) $) 84)) (-2734 (((-1169) $ (-871 (-201)) (-802)) 104)) (-3148 (($ $) 83) (($ (-586 (-586 (-871 (-201))))) 94) (($ (-586 (-586 (-871 (-201)))) (-586 (-802)) (-586 (-802)) (-586 (-849))) 93) (($ (-586 (-586 (-871 (-201)))) (-586 (-802)) (-586 (-802)) (-586 (-849)) (-586 (-238))) 95)) (-1239 (((-1066) $) NIL)) (-2526 (((-520) $) 66)) (-4142 (((-1030) $) NIL)) (-2971 (($) 92)) (-2246 (((-586 (-201)) (-586 (-586 (-871 (-201))))) 52)) (-3058 (((-1169) $ (-586 (-871 (-201))) (-802) (-802) (-849)) 98) (((-1169) $ (-871 (-201))) 100) (((-1169) $ (-871 (-201)) (-802) (-802) (-849)) 99)) (-2188 (((-791) $) 110) (($ (-586 (-586 (-871 (-201))))) 105)) (-1220 (((-1169) $ (-871 (-201))) 103)) (-1530 (((-108) $ $) NIL)))
-(((-440) (-13 (-1012) (-10 -8 (-15 -2971 ($)) (-15 -3148 ($ $)) (-15 -3148 ($ (-586 (-586 (-871 (-201)))))) (-15 -3148 ($ (-586 (-586 (-871 (-201)))) (-586 (-802)) (-586 (-802)) (-586 (-849)))) (-15 -3148 ($ (-586 (-586 (-871 (-201)))) (-586 (-802)) (-586 (-802)) (-586 (-849)) (-586 (-238)))) (-15 -2151 ((-586 (-586 (-871 (-201)))) $)) (-15 -2526 ((-520) $)) (-15 -2525 ((-586 (-1007 (-352))) $)) (-15 -2525 ((-586 (-1007 (-352))) $ (-586 (-1007 (-352))))) (-15 -1967 ((-586 (-352)) $)) (-15 -1967 ((-586 (-352)) $ (-586 (-352)))) (-15 -3058 ((-1169) $ (-586 (-871 (-201))) (-802) (-802) (-849))) (-15 -3058 ((-1169) $ (-871 (-201)))) (-15 -3058 ((-1169) $ (-871 (-201)) (-802) (-802) (-849))) (-15 -1220 ((-1169) $ (-871 (-201)))) (-15 -2734 ((-1169) $ (-871 (-201)) (-802))) (-15 -2188 ($ (-586 (-586 (-871 (-201)))))) (-15 -2188 ((-791) $)) (-15 -3312 ((-586 (-586 (-871 (-201)))) (-586 (-586 (-871 (-201)))) (-586 (-802)))) (-15 -2246 ((-586 (-201)) (-586 (-586 (-871 (-201))))))))) (T -440))
-((-2188 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-440)))) (-2971 (*1 *1) (-5 *1 (-440))) (-3148 (*1 *1 *1) (-5 *1 (-440))) (-3148 (*1 *1 *2) (-12 (-5 *2 (-586 (-586 (-871 (-201))))) (-5 *1 (-440)))) (-3148 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-586 (-586 (-871 (-201))))) (-5 *3 (-586 (-802))) (-5 *4 (-586 (-849))) (-5 *1 (-440)))) (-3148 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-586 (-586 (-871 (-201))))) (-5 *3 (-586 (-802))) (-5 *4 (-586 (-849))) (-5 *5 (-586 (-238))) (-5 *1 (-440)))) (-2151 (*1 *2 *1) (-12 (-5 *2 (-586 (-586 (-871 (-201))))) (-5 *1 (-440)))) (-2526 (*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-440)))) (-2525 (*1 *2 *1) (-12 (-5 *2 (-586 (-1007 (-352)))) (-5 *1 (-440)))) (-2525 (*1 *2 *1 *2) (-12 (-5 *2 (-586 (-1007 (-352)))) (-5 *1 (-440)))) (-1967 (*1 *2 *1) (-12 (-5 *2 (-586 (-352))) (-5 *1 (-440)))) (-1967 (*1 *2 *1 *2) (-12 (-5 *2 (-586 (-352))) (-5 *1 (-440)))) (-3058 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-586 (-871 (-201)))) (-5 *4 (-802)) (-5 *5 (-849)) (-5 *2 (-1169)) (-5 *1 (-440)))) (-3058 (*1 *2 *1 *3) (-12 (-5 *3 (-871 (-201))) (-5 *2 (-1169)) (-5 *1 (-440)))) (-3058 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-871 (-201))) (-5 *4 (-802)) (-5 *5 (-849)) (-5 *2 (-1169)) (-5 *1 (-440)))) (-1220 (*1 *2 *1 *3) (-12 (-5 *3 (-871 (-201))) (-5 *2 (-1169)) (-5 *1 (-440)))) (-2734 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-871 (-201))) (-5 *4 (-802)) (-5 *2 (-1169)) (-5 *1 (-440)))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-586 (-586 (-871 (-201))))) (-5 *1 (-440)))) (-3312 (*1 *2 *2 *3) (-12 (-5 *2 (-586 (-586 (-871 (-201))))) (-5 *3 (-586 (-802))) (-5 *1 (-440)))) (-2246 (*1 *2 *3) (-12 (-5 *3 (-586 (-586 (-871 (-201))))) (-5 *2 (-586 (-201))) (-5 *1 (-440)))))
-(-13 (-1012) (-10 -8 (-15 -2971 ($)) (-15 -3148 ($ $)) (-15 -3148 ($ (-586 (-586 (-871 (-201)))))) (-15 -3148 ($ (-586 (-586 (-871 (-201)))) (-586 (-802)) (-586 (-802)) (-586 (-849)))) (-15 -3148 ($ (-586 (-586 (-871 (-201)))) (-586 (-802)) (-586 (-802)) (-586 (-849)) (-586 (-238)))) (-15 -2151 ((-586 (-586 (-871 (-201)))) $)) (-15 -2526 ((-520) $)) (-15 -2525 ((-586 (-1007 (-352))) $)) (-15 -2525 ((-586 (-1007 (-352))) $ (-586 (-1007 (-352))))) (-15 -1967 ((-586 (-352)) $)) (-15 -1967 ((-586 (-352)) $ (-586 (-352)))) (-15 -3058 ((-1169) $ (-586 (-871 (-201))) (-802) (-802) (-849))) (-15 -3058 ((-1169) $ (-871 (-201)))) (-15 -3058 ((-1169) $ (-871 (-201)) (-802) (-802) (-849))) (-15 -1220 ((-1169) $ (-871 (-201)))) (-15 -2734 ((-1169) $ (-871 (-201)) (-802))) (-15 -2188 ($ (-586 (-586 (-871 (-201)))))) (-15 -2188 ((-791) $)) (-15 -3312 ((-586 (-586 (-871 (-201)))) (-586 (-586 (-871 (-201)))) (-586 (-802)))) (-15 -2246 ((-586 (-201)) (-586 (-586 (-871 (-201))))))))
-((-1611 (($ $) NIL) (($ $ $) 11)))
-(((-441 |#1| |#2| |#3|) (-10 -8 (-15 -1611 (|#1| |#1| |#1|)) (-15 -1611 (|#1| |#1|))) (-442 |#2| |#3|) (-157) (-23)) (T -441))
-NIL
-(-10 -8 (-15 -1611 (|#1| |#1| |#1|)) (-15 -1611 (|#1| |#1|)))
-((-1414 (((-108) $ $) 7)) (-1239 (((-1066) $) 9)) (-4142 (((-1030) $) 10)) (-2528 ((|#2| $) 19)) (-2188 (((-791) $) 11)) (-3560 (($) 18 T CONST)) (-1530 (((-108) $ $) 6)) (-1611 (($ $) 15) (($ $ $) 13)) (-1601 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16)))
-(((-442 |#1| |#2|) (-1195) (-157) (-23)) (T -442))
-((-2528 (*1 *2 *1) (-12 (-4 *1 (-442 *3 *2)) (-4 *3 (-157)) (-4 *2 (-23)))) (-3560 (*1 *1) (-12 (-4 *1 (-442 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-442 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-442 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23)))) (-1611 (*1 *1 *1) (-12 (-4 *1 (-442 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23)))) (-1601 (*1 *1 *1 *1) (-12 (-4 *1 (-442 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23)))) (-1611 (*1 *1 *1 *1) (-12 (-4 *1 (-442 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23)))))
-(-13 (-1012) (-10 -8 (-15 -2528 (|t#2| $)) (-15 (-3560) ($) -2675) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -1611 ($ $)) (-15 -1601 ($ $ $)) (-15 -1611 ($ $ $))))
-(((-97) . T) ((-560 (-791)) . T) ((-1012) . T))
-((-3461 (((-3 (-586 (-452 |#1| |#2|)) "failed") (-586 (-452 |#1| |#2|)) (-586 (-793 |#1|))) 90)) (-1510 (((-586 (-586 (-223 |#1| |#2|))) (-586 (-223 |#1| |#2|)) (-586 (-793 |#1|))) 88)) (-1682 (((-2 (|:| |dpolys| (-586 (-223 |#1| |#2|))) (|:| |coords| (-586 (-520)))) (-586 (-223 |#1| |#2|)) (-586 (-793 |#1|))) 58)))
-(((-443 |#1| |#2| |#3|) (-10 -7 (-15 -1510 ((-586 (-586 (-223 |#1| |#2|))) (-586 (-223 |#1| |#2|)) (-586 (-793 |#1|)))) (-15 -3461 ((-3 (-586 (-452 |#1| |#2|)) "failed") (-586 (-452 |#1| |#2|)) (-586 (-793 |#1|)))) (-15 -1682 ((-2 (|:| |dpolys| (-586 (-223 |#1| |#2|))) (|:| |coords| (-586 (-520)))) (-586 (-223 |#1| |#2|)) (-586 (-793 |#1|))))) (-586 (-1083)) (-424) (-424)) (T -443))
-((-1682 (*1 *2 *3 *4) (-12 (-5 *4 (-586 (-793 *5))) (-14 *5 (-586 (-1083))) (-4 *6 (-424)) (-5 *2 (-2 (|:| |dpolys| (-586 (-223 *5 *6))) (|:| |coords| (-586 (-520))))) (-5 *1 (-443 *5 *6 *7)) (-5 *3 (-586 (-223 *5 *6))) (-4 *7 (-424)))) (-3461 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-586 (-452 *4 *5))) (-5 *3 (-586 (-793 *4))) (-14 *4 (-586 (-1083))) (-4 *5 (-424)) (-5 *1 (-443 *4 *5 *6)) (-4 *6 (-424)))) (-1510 (*1 *2 *3 *4) (-12 (-5 *4 (-586 (-793 *5))) (-14 *5 (-586 (-1083))) (-4 *6 (-424)) (-5 *2 (-586 (-586 (-223 *5 *6)))) (-5 *1 (-443 *5 *6 *7)) (-5 *3 (-586 (-223 *5 *6))) (-4 *7 (-424)))))
-(-10 -7 (-15 -1510 ((-586 (-586 (-223 |#1| |#2|))) (-586 (-223 |#1| |#2|)) (-586 (-793 |#1|)))) (-15 -3461 ((-3 (-586 (-452 |#1| |#2|)) "failed") (-586 (-452 |#1| |#2|)) (-586 (-793 |#1|)))) (-15 -1682 ((-2 (|:| |dpolys| (-586 (-223 |#1| |#2|))) (|:| |coords| (-586 (-520)))) (-586 (-223 |#1| |#2|)) (-586 (-793 |#1|)))))
-((-1540 (((-3 $ "failed") $) 11)) (-2945 (($ $ $) 20)) (-3607 (($ $ $) 21)) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) 14)) (-1619 (($ $ $) 9)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) 19)))
-(((-444 |#1|) (-10 -8 (-15 -3607 (|#1| |#1| |#1|)) (-15 -2945 (|#1| |#1| |#1|)) (-15 -3504 (|#1| |#1| (-520))) (-15 ** (|#1| |#1| (-520))) (-15 -1619 (|#1| |#1| |#1|)) (-15 -1540 ((-3 |#1| "failed") |#1|)) (-15 -3504 (|#1| |#1| (-706))) (-15 ** (|#1| |#1| (-706))) (-15 -3504 (|#1| |#1| (-849))) (-15 ** (|#1| |#1| (-849)))) (-445)) (T -444))
-NIL
-(-10 -8 (-15 -3607 (|#1| |#1| |#1|)) (-15 -2945 (|#1| |#1| |#1|)) (-15 -3504 (|#1| |#1| (-520))) (-15 ** (|#1| |#1| (-520))) (-15 -1619 (|#1| |#1| |#1|)) (-15 -1540 ((-3 |#1| "failed") |#1|)) (-15 -3504 (|#1| |#1| (-706))) (-15 ** (|#1| |#1| (-706))) (-15 -3504 (|#1| |#1| (-849))) (-15 ** (|#1| |#1| (-849))))
-((-1414 (((-108) $ $) 7)) (-3961 (($) 20 T CONST)) (-1540 (((-3 $ "failed") $) 16)) (-1537 (((-108) $) 19)) (-1239 (((-1066) $) 9)) (-3093 (($ $) 27)) (-4142 (((-1030) $) 10)) (-2945 (($ $ $) 23)) (-3607 (($ $ $) 22)) (-2188 (((-791) $) 11)) (-3504 (($ $ (-849)) 13) (($ $ (-706)) 17) (($ $ (-520)) 24)) (-3570 (($) 21 T CONST)) (-1530 (((-108) $ $) 6)) (-1619 (($ $ $) 26)) (** (($ $ (-849)) 14) (($ $ (-706)) 18) (($ $ (-520)) 25)) (* (($ $ $) 15)))
-(((-445) (-1195)) (T -445))
-((-3093 (*1 *1 *1) (-4 *1 (-445))) (-1619 (*1 *1 *1 *1) (-4 *1 (-445))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-445)) (-5 *2 (-520)))) (-3504 (*1 *1 *1 *2) (-12 (-4 *1 (-445)) (-5 *2 (-520)))) (-2945 (*1 *1 *1 *1) (-4 *1 (-445))) (-3607 (*1 *1 *1 *1) (-4 *1 (-445))))
-(-13 (-662) (-10 -8 (-15 -3093 ($ $)) (-15 -1619 ($ $ $)) (-15 ** ($ $ (-520))) (-15 -3504 ($ $ (-520))) (-6 -4226) (-15 -2945 ($ $ $)) (-15 -3607 ($ $ $))))
-(((-97) . T) ((-560 (-791)) . T) ((-662) . T) ((-1024) . T) ((-1012) . T))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-4081 (((-586 (-997)) $) NIL)) (-1610 (((-1083) $) 17)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) NIL (|has| |#1| (-512)))) (-2583 (($ $) NIL (|has| |#1| (-512)))) (-1671 (((-108) $) NIL (|has| |#1| (-512)))) (-2406 (($ $ (-380 (-520))) NIL) (($ $ (-380 (-520)) (-380 (-520))) NIL)) (-2088 (((-1064 (-2 (|:| |k| (-380 (-520))) (|:| |c| |#1|))) $) NIL)) (-2903 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2768 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-1917 (((-3 $ "failed") $ $) NIL)) (-3024 (($ $) NIL (|has| |#1| (-336)))) (-1507 (((-391 $) $) NIL (|has| |#1| (-336)))) (-1927 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-1327 (((-108) $ $) NIL (|has| |#1| (-336)))) (-2879 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2745 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2769 (($ (-706) (-1064 (-2 (|:| |k| (-380 (-520))) (|:| |c| |#1|)))) NIL)) (-2925 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2789 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-3961 (($) NIL T CONST)) (-2276 (($ $ $) NIL (|has| |#1| (-336)))) (-3150 (($ $) NIL)) (-1540 (((-3 $ "failed") $) NIL)) (-2253 (($ $ $) NIL (|has| |#1| (-336)))) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) NIL (|has| |#1| (-336)))) (-2036 (((-108) $) NIL (|has| |#1| (-336)))) (-1342 (((-108) $) NIL)) (-2833 (($) NIL (|has| |#1| (-37 (-380 (-520)))))) (-3989 (((-380 (-520)) $) NIL) (((-380 (-520)) $ (-380 (-520))) NIL)) (-1537 (((-108) $) NIL)) (-2322 (($ $ (-520)) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2371 (($ $ (-849)) NIL) (($ $ (-380 (-520))) NIL)) (-3188 (((-3 (-586 $) "failed") (-586 $) $) NIL (|has| |#1| (-336)))) (-3774 (((-108) $) NIL)) (-4039 (($ |#1| (-380 (-520))) NIL) (($ $ (-997) (-380 (-520))) NIL) (($ $ (-586 (-997)) (-586 (-380 (-520)))) NIL)) (-1389 (($ (-1 |#1| |#1|) $) 22)) (-1252 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-3123 (($ $) NIL)) (-3133 ((|#1| $) NIL)) (-2222 (($ (-586 $)) NIL (|has| |#1| (-336))) (($ $ $) NIL (|has| |#1| (-336)))) (-1239 (((-1066) $) NIL)) (-3093 (($ $) NIL (|has| |#1| (-336)))) (-3517 (($ $) 26 (|has| |#1| (-37 (-380 (-520))))) (($ $ (-1083)) 33 (-3700 (-12 (|has| |#1| (-15 -3517 (|#1| |#1| (-1083)))) (|has| |#1| (-15 -4081 ((-586 (-1083)) |#1|))) (|has| |#1| (-37 (-380 (-520))))) (-12 (|has| |#1| (-29 (-520))) (|has| |#1| (-37 (-380 (-520)))) (|has| |#1| (-886)) (|has| |#1| (-1104))))) (($ $ (-1160 |#2|)) 27 (|has| |#1| (-37 (-380 (-520)))))) (-4142 (((-1030) $) NIL)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) NIL (|has| |#1| (-336)))) (-2257 (($ (-586 $)) NIL (|has| |#1| (-336))) (($ $ $) NIL (|has| |#1| (-336)))) (-1916 (((-391 $) $) NIL (|has| |#1| (-336)))) (-1283 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-336))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) NIL (|has| |#1| (-336)))) (-2116 (($ $ (-380 (-520))) NIL)) (-2230 (((-3 $ "failed") $ $) NIL (|has| |#1| (-512)))) (-2608 (((-3 (-586 $) "failed") (-586 $) $) NIL (|has| |#1| (-336)))) (-3260 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2286 (((-1064 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-380 (-520))))))) (-3704 (((-706) $) NIL (|has| |#1| (-336)))) (-2543 ((|#1| $ (-380 (-520))) NIL) (($ $ $) NIL (|has| (-380 (-520)) (-1024)))) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) NIL (|has| |#1| (-336)))) (-2155 (($ $ (-586 (-1083)) (-586 (-706))) NIL (-12 (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|))) (|has| |#1| (-828 (-1083))))) (($ $ (-1083) (-706)) NIL (-12 (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|))) (|has| |#1| (-828 (-1083))))) (($ $ (-586 (-1083))) NIL (-12 (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|))) (|has| |#1| (-828 (-1083))))) (($ $ (-1083)) 25 (-12 (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|))) (|has| |#1| (-828 (-1083))))) (($ $ (-706)) NIL (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|)))) (($ $) 13 (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|)))) (($ $ (-1160 |#2|)) 15)) (-2528 (((-380 (-520)) $) NIL)) (-1737 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2799 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2914 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2779 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2891 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2757 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2759 (($ $) NIL)) (-2188 (((-791) $) NIL) (($ (-520)) NIL) (($ |#1|) NIL (|has| |#1| (-157))) (($ (-1160 |#2|)) NIL) (($ (-1149 |#1| |#2| |#3|)) 9) (($ (-380 (-520))) NIL (|has| |#1| (-37 (-380 (-520))))) (($ $) NIL (|has| |#1| (-512)))) (-3475 ((|#1| $ (-380 (-520))) NIL)) (-3796 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-3251 (((-706)) NIL)) (-1892 ((|#1| $) 18)) (-1758 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2831 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2559 (((-108) $ $) NIL (|has| |#1| (-512)))) (-1744 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2810 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-1775 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2855 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-3890 ((|#1| $ (-380 (-520))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-380 (-520))))) (|has| |#1| (-15 -2188 (|#1| (-1083))))))) (-3915 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2867 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-1767 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2843 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-1751 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2820 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL (|has| |#1| (-336)))) (-3560 (($) NIL T CONST)) (-3570 (($) NIL T CONST)) (-2211 (($ $ (-586 (-1083)) (-586 (-706))) NIL (-12 (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|))) (|has| |#1| (-828 (-1083))))) (($ $ (-1083) (-706)) NIL (-12 (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|))) (|has| |#1| (-828 (-1083))))) (($ $ (-586 (-1083))) NIL (-12 (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|))) (|has| |#1| (-828 (-1083))))) (($ $ (-1083)) NIL (-12 (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|))) (|has| |#1| (-828 (-1083))))) (($ $ (-706)) NIL (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|))))) (-1530 (((-108) $ $) NIL)) (-1619 (($ $ |#1|) NIL (|has| |#1| (-336))) (($ $ $) NIL (|has| |#1| (-336)))) (-1611 (($ $) NIL) (($ $ $) 24)) (-1601 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL (|has| |#1| (-336))) (($ $ $) NIL (|has| |#1| (-37 (-380 (-520))))) (($ $ (-380 (-520))) NIL (|has| |#1| (-37 (-380 (-520)))))) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 23) (($ (-380 (-520)) $) NIL (|has| |#1| (-37 (-380 (-520))))) (($ $ (-380 (-520))) NIL (|has| |#1| (-37 (-380 (-520)))))))
-(((-446 |#1| |#2| |#3|) (-13 (-1145 |#1|) (-10 -8 (-15 -2188 ($ (-1160 |#2|))) (-15 -2188 ($ (-1149 |#1| |#2| |#3|))) (-15 -2155 ($ $ (-1160 |#2|))) (IF (|has| |#1| (-37 (-380 (-520)))) (-15 -3517 ($ $ (-1160 |#2|))) |%noBranch|))) (-969) (-1083) |#1|) (T -446))
-((-2188 (*1 *1 *2) (-12 (-5 *2 (-1160 *4)) (-14 *4 (-1083)) (-5 *1 (-446 *3 *4 *5)) (-4 *3 (-969)) (-14 *5 *3))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-1149 *3 *4 *5)) (-4 *3 (-969)) (-14 *4 (-1083)) (-14 *5 *3) (-5 *1 (-446 *3 *4 *5)))) (-2155 (*1 *1 *1 *2) (-12 (-5 *2 (-1160 *4)) (-14 *4 (-1083)) (-5 *1 (-446 *3 *4 *5)) (-4 *3 (-969)) (-14 *5 *3))) (-3517 (*1 *1 *1 *2) (-12 (-5 *2 (-1160 *4)) (-14 *4 (-1083)) (-5 *1 (-446 *3 *4 *5)) (-4 *3 (-37 (-380 (-520)))) (-4 *3 (-969)) (-14 *5 *3))))
-(-13 (-1145 |#1|) (-10 -8 (-15 -2188 ($ (-1160 |#2|))) (-15 -2188 ($ (-1149 |#1| |#2| |#3|))) (-15 -2155 ($ $ (-1160 |#2|))) (IF (|has| |#1| (-37 (-380 (-520)))) (-15 -3517 ($ $ (-1160 |#2|))) |%noBranch|)))
-((-1414 (((-108) $ $) NIL (-3700 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)) (|has| |#2| (-1012))))) (-1799 (($) NIL) (($ (-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) NIL)) (-1476 (((-1169) $ |#1| |#1|) NIL (|has| $ (-6 -4230)))) (-2063 (((-108) $ (-706)) NIL)) (-2377 ((|#2| $ |#1| |#2|) 18)) (-1817 (($ (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4229)))) (-1627 (($ (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4229)))) (-2747 (((-3 |#2| "failed") |#1| $) 19)) (-3961 (($) NIL T CONST)) (-2331 (($ $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012))))) (-3766 (($ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) NIL (|has| $ (-6 -4229))) (($ (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4229))) (((-3 |#2| "failed") |#1| $) 16)) (-1421 (($ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (($ (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4229)))) (-3856 (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) NIL (-12 (|has| $ (-6 -4229)) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) NIL (|has| $ (-6 -4229))) (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4229)))) (-3846 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4230)))) (-3623 ((|#2| $ |#1|) NIL)) (-3828 (((-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4229))) (((-586 |#2|) $) NIL (|has| $ (-6 -4229)))) (-3027 (((-108) $ (-706)) NIL)) (-2567 ((|#1| $) NIL (|has| |#1| (-783)))) (-3702 (((-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4229))) (((-586 |#2|) $) NIL (|has| $ (-6 -4229)))) (-2422 (((-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#2| (-1012))))) (-1752 ((|#1| $) NIL (|has| |#1| (-783)))) (-3830 (($ (-1 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4230))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4230)))) (-1389 (($ (-1 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1390 (((-108) $ (-706)) NIL)) (-1239 (((-1066) $) NIL (-3700 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)) (|has| |#2| (-1012))))) (-2960 (((-586 |#1|) $) NIL)) (-1612 (((-108) |#1| $) NIL)) (-3351 (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) NIL)) (-3618 (($ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) NIL)) (-3622 (((-586 |#1|) $) NIL)) (-2603 (((-108) |#1| $) NIL)) (-4142 (((-1030) $) NIL (-3700 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)) (|has| |#2| (-1012))))) (-2293 ((|#2| $) NIL (|has| |#1| (-783)))) (-2985 (((-3 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) "failed") (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL)) (-2936 (($ $ |#2|) NIL (|has| $ (-6 -4230)))) (-3345 (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) NIL)) (-4155 (((-108) (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4229))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))))) NIL (-12 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-283 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (($ $ (-268 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) NIL (-12 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-283 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (($ $ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) NIL (-12 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-283 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (($ $ (-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) (-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) NIL (-12 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-283 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (($ $ (-586 |#2|) (-586 |#2|)) NIL (-12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012)))) (($ $ (-268 |#2|)) NIL (-12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012)))) (($ $ (-586 (-268 |#2|))) NIL (-12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012))))) (-2533 (((-108) $ $) NIL)) (-2094 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#2| (-1012))))) (-1523 (((-586 |#2|) $) NIL)) (-4018 (((-108) $) NIL)) (-2238 (($) NIL)) (-2543 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-1645 (($) NIL) (($ (-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) NIL)) (-4159 (((-706) (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4229))) (((-706) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (((-706) |#2| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#2| (-1012)))) (((-706) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4229)))) (-2403 (($ $) NIL)) (-1429 (((-496) $) NIL (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-561 (-496))))) (-2200 (($ (-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) NIL)) (-2188 (((-791) $) NIL (-3700 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-560 (-791))) (|has| |#2| (-560 (-791)))))) (-1898 (($ (-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) NIL)) (-1662 (((-108) (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4229))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4229)))) (-1530 (((-108) $ $) NIL (-3700 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)) (|has| |#2| (-1012))))) (-3474 (((-706) $) NIL (|has| $ (-6 -4229)))))
-(((-447 |#1| |#2| |#3| |#4|) (-1095 |#1| |#2|) (-1012) (-1012) (-1095 |#1| |#2|) |#2|) (T -447))
-NIL
-(-1095 |#1| |#2|)
-((-1414 (((-108) $ $) NIL)) (-3769 (((-586 (-2 (|:| -1649 $) (|:| -1543 (-586 |#4|)))) (-586 |#4|)) NIL)) (-3767 (((-586 $) (-586 |#4|)) NIL)) (-4081 (((-586 |#3|) $) NIL)) (-2373 (((-108) $) NIL)) (-1937 (((-108) $) NIL (|has| |#1| (-512)))) (-3804 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3954 ((|#4| |#4| $) NIL)) (-3210 (((-2 (|:| |under| $) (|:| -1626 $) (|:| |upper| $)) $ |#3|) NIL)) (-2063 (((-108) $ (-706)) NIL)) (-1627 (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4229))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3961 (($) NIL T CONST)) (-2215 (((-108) $) 26 (|has| |#1| (-512)))) (-3078 (((-108) $ $) NIL (|has| |#1| (-512)))) (-3675 (((-108) $ $) NIL (|has| |#1| (-512)))) (-2786 (((-108) $) NIL (|has| |#1| (-512)))) (-2589 (((-586 |#4|) (-586 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-4167 (((-586 |#4|) (-586 |#4|) $) NIL (|has| |#1| (-512)))) (-3415 (((-586 |#4|) (-586 |#4|) $) NIL (|has| |#1| (-512)))) (-1296 (((-3 $ "failed") (-586 |#4|)) NIL)) (-1482 (($ (-586 |#4|)) NIL)) (-2305 (((-3 $ "failed") $) 39)) (-1618 ((|#4| |#4| $) NIL)) (-2331 (($ $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#4| (-1012))))) (-1421 (($ |#4| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#4| (-1012)))) (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4229)))) (-3753 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-512)))) (-3738 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) NIL)) (-2762 ((|#4| |#4| $) NIL)) (-3856 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4229)) (|has| |#4| (-1012)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4229))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4229))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-2025 (((-2 (|:| -1649 (-586 |#4|)) (|:| -1543 (-586 |#4|))) $) NIL)) (-3828 (((-586 |#4|) $) 16 (|has| $ (-6 -4229)))) (-2311 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3871 ((|#3| $) 33)) (-3027 (((-108) $ (-706)) NIL)) (-3702 (((-586 |#4|) $) 17 (|has| $ (-6 -4229)))) (-2422 (((-108) |#4| $) 25 (-12 (|has| $ (-6 -4229)) (|has| |#4| (-1012))))) (-3830 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#4| |#4|) $) 21)) (-2602 (((-586 |#3|) $) NIL)) (-3394 (((-108) |#3| $) NIL)) (-1390 (((-108) $ (-706)) NIL)) (-1239 (((-1066) $) NIL)) (-1440 (((-3 |#4| "failed") $) 37)) (-2623 (((-586 |#4|) $) NIL)) (-2428 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2778 ((|#4| |#4| $) NIL)) (-3444 (((-108) $ $) NIL)) (-2130 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-512)))) (-1322 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3499 ((|#4| |#4| $) NIL)) (-4142 (((-1030) $) NIL)) (-2293 (((-3 |#4| "failed") $) 35)) (-2985 (((-3 |#4| "failed") (-1 (-108) |#4|) $) NIL)) (-2885 (((-3 $ "failed") $ |#4|) 47)) (-2116 (($ $ |#4|) NIL)) (-4155 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 |#4|) (-586 |#4|)) NIL (-12 (|has| |#4| (-283 |#4|)) (|has| |#4| (-1012)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-283 |#4|)) (|has| |#4| (-1012)))) (($ $ (-268 |#4|)) NIL (-12 (|has| |#4| (-283 |#4|)) (|has| |#4| (-1012)))) (($ $ (-586 (-268 |#4|))) NIL (-12 (|has| |#4| (-283 |#4|)) (|has| |#4| (-1012))))) (-2533 (((-108) $ $) NIL)) (-4018 (((-108) $) 15)) (-2238 (($) 13)) (-2528 (((-706) $) NIL)) (-4159 (((-706) |#4| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#4| (-1012)))) (((-706) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4229)))) (-2403 (($ $) 12)) (-1429 (((-496) $) NIL (|has| |#4| (-561 (-496))))) (-2200 (($ (-586 |#4|)) 20)) (-3399 (($ $ |#3|) 42)) (-4067 (($ $ |#3|) 44)) (-3932 (($ $) NIL)) (-2513 (($ $ |#3|) NIL)) (-2188 (((-791) $) 31) (((-586 |#4|) $) 40)) (-3898 (((-706) $) NIL (|has| |#3| (-341)))) (-1652 (((-3 (-2 (|:| |bas| $) (|:| -1353 (-586 |#4|))) "failed") (-586 |#4|) (-1 (-108) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1353 (-586 |#4|))) "failed") (-586 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-3146 (((-108) $ (-1 (-108) |#4| (-586 |#4|))) NIL)) (-1662 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4229)))) (-1600 (((-586 |#3|) $) NIL)) (-3718 (((-108) |#3| $) NIL)) (-1530 (((-108) $ $) NIL)) (-3474 (((-706) $) NIL (|has| $ (-6 -4229)))))
-(((-448 |#1| |#2| |#3| |#4|) (-1112 |#1| |#2| |#3| |#4|) (-512) (-728) (-783) (-983 |#1| |#2| |#3|)) (T -448))
-NIL
-(-1112 |#1| |#2| |#3| |#4|)
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) NIL)) (-2583 (($ $) NIL)) (-1671 (((-108) $) NIL)) (-1917 (((-3 $ "failed") $ $) NIL)) (-3024 (($ $) NIL)) (-1507 (((-391 $) $) NIL)) (-1327 (((-108) $ $) NIL)) (-3961 (($) NIL T CONST)) (-1296 (((-3 (-520) "failed") $) NIL) (((-3 (-380 (-520)) "failed") $) NIL)) (-1482 (((-520) $) NIL) (((-380 (-520)) $) NIL)) (-2276 (($ $ $) NIL)) (-1540 (((-3 $ "failed") $) NIL)) (-2253 (($ $ $) NIL)) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) NIL)) (-2036 (((-108) $) NIL)) (-2833 (($) 18)) (-1537 (((-108) $) NIL)) (-3188 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-2222 (($ $ $) NIL) (($ (-586 $)) NIL)) (-1239 (((-1066) $) NIL)) (-3093 (($ $) NIL)) (-4142 (((-1030) $) NIL)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) NIL)) (-2257 (($ $ $) NIL) (($ (-586 $)) NIL)) (-1916 (((-391 $) $) NIL)) (-1283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2230 (((-3 $ "failed") $ $) NIL)) (-2608 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-3704 (((-706) $) NIL)) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) NIL)) (-1429 (((-352) $) 22) (((-201) $) 25) (((-380 (-1079 (-520))) $) 19) (((-496) $) 53)) (-2188 (((-791) $) 51) (($ (-520)) NIL) (($ $) NIL) (($ (-380 (-520))) NIL) (((-201) $) 24) (((-352) $) 21)) (-3251 (((-706)) NIL)) (-2559 (((-108) $ $) NIL)) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL)) (-3560 (($) 36 T CONST)) (-3570 (($) 11 T CONST)) (-1530 (((-108) $ $) NIL)) (-1619 (($ $ $) NIL)) (-1611 (($ $) NIL) (($ $ $) NIL)) (-1601 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) NIL) (($ $ (-380 (-520))) NIL) (($ (-380 (-520)) $) NIL)))
-(((-449) (-13 (-336) (-135) (-960 (-520)) (-960 (-380 (-520))) (-945) (-560 (-201)) (-560 (-352)) (-561 (-380 (-1079 (-520)))) (-561 (-496)) (-10 -8 (-15 -2833 ($))))) (T -449))
-((-2833 (*1 *1) (-5 *1 (-449))))
-(-13 (-336) (-135) (-960 (-520)) (-960 (-380 (-520))) (-945) (-560 (-201)) (-560 (-352)) (-561 (-380 (-1079 (-520)))) (-561 (-496)) (-10 -8 (-15 -2833 ($))))
-((-1414 (((-108) $ $) NIL (-3700 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)) (|has| |#2| (-1012))))) (-1799 (($) NIL) (($ (-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) NIL)) (-1476 (((-1169) $ |#1| |#1|) NIL (|has| $ (-6 -4230)))) (-2063 (((-108) $ (-706)) NIL)) (-2377 ((|#2| $ |#1| |#2|) 16)) (-1817 (($ (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4229)))) (-1627 (($ (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4229)))) (-2747 (((-3 |#2| "failed") |#1| $) 20)) (-3961 (($) NIL T CONST)) (-2331 (($ $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012))))) (-3766 (($ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) NIL (|has| $ (-6 -4229))) (($ (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4229))) (((-3 |#2| "failed") |#1| $) 18)) (-1421 (($ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (($ (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4229)))) (-3856 (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) NIL (-12 (|has| $ (-6 -4229)) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) NIL (|has| $ (-6 -4229))) (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4229)))) (-3846 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4230)))) (-3623 ((|#2| $ |#1|) NIL)) (-3828 (((-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4229))) (((-586 |#2|) $) NIL (|has| $ (-6 -4229)))) (-3027 (((-108) $ (-706)) NIL)) (-2567 ((|#1| $) NIL (|has| |#1| (-783)))) (-3702 (((-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4229))) (((-586 |#2|) $) NIL (|has| $ (-6 -4229)))) (-2422 (((-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#2| (-1012))))) (-1752 ((|#1| $) NIL (|has| |#1| (-783)))) (-3830 (($ (-1 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4230))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4230)))) (-1389 (($ (-1 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1390 (((-108) $ (-706)) NIL)) (-1239 (((-1066) $) NIL (-3700 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)) (|has| |#2| (-1012))))) (-2960 (((-586 |#1|) $) 13)) (-1612 (((-108) |#1| $) NIL)) (-3351 (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) NIL)) (-3618 (($ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) NIL)) (-3622 (((-586 |#1|) $) NIL)) (-2603 (((-108) |#1| $) NIL)) (-4142 (((-1030) $) NIL (-3700 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)) (|has| |#2| (-1012))))) (-2293 ((|#2| $) NIL (|has| |#1| (-783)))) (-2985 (((-3 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) "failed") (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL)) (-2936 (($ $ |#2|) NIL (|has| $ (-6 -4230)))) (-3345 (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) NIL)) (-4155 (((-108) (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4229))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))))) NIL (-12 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-283 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (($ $ (-268 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) NIL (-12 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-283 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (($ $ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) NIL (-12 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-283 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (($ $ (-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) (-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) NIL (-12 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-283 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (($ $ (-586 |#2|) (-586 |#2|)) NIL (-12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012)))) (($ $ (-268 |#2|)) NIL (-12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012)))) (($ $ (-586 (-268 |#2|))) NIL (-12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012))))) (-2533 (((-108) $ $) NIL)) (-2094 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#2| (-1012))))) (-1523 (((-586 |#2|) $) NIL)) (-4018 (((-108) $) NIL)) (-2238 (($) 19)) (-2543 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1645 (($) NIL) (($ (-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) NIL)) (-4159 (((-706) (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4229))) (((-706) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (((-706) |#2| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#2| (-1012)))) (((-706) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4229)))) (-2403 (($ $) NIL)) (-1429 (((-496) $) NIL (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-561 (-496))))) (-2200 (($ (-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) NIL)) (-2188 (((-791) $) NIL (-3700 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-560 (-791))) (|has| |#2| (-560 (-791)))))) (-1898 (($ (-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) NIL)) (-1662 (((-108) (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4229))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4229)))) (-1530 (((-108) $ $) 11 (-3700 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)) (|has| |#2| (-1012))))) (-3474 (((-706) $) 15 (|has| $ (-6 -4229)))))
-(((-450 |#1| |#2| |#3|) (-13 (-1095 |#1| |#2|) (-10 -7 (-6 -4229))) (-1012) (-1012) (-1066)) (T -450))
-NIL
-(-13 (-1095 |#1| |#2|) (-10 -7 (-6 -4229)))
-((-2213 (((-520) (-520) (-520)) 7)) (-1680 (((-108) (-520) (-520) (-520) (-520)) 11)) (-1576 (((-1164 (-586 (-520))) (-706) (-706)) 23)))
-(((-451) (-10 -7 (-15 -2213 ((-520) (-520) (-520))) (-15 -1680 ((-108) (-520) (-520) (-520) (-520))) (-15 -1576 ((-1164 (-586 (-520))) (-706) (-706))))) (T -451))
-((-1576 (*1 *2 *3 *3) (-12 (-5 *3 (-706)) (-5 *2 (-1164 (-586 (-520)))) (-5 *1 (-451)))) (-1680 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-520)) (-5 *2 (-108)) (-5 *1 (-451)))) (-2213 (*1 *2 *2 *2) (-12 (-5 *2 (-520)) (-5 *1 (-451)))))
-(-10 -7 (-15 -2213 ((-520) (-520) (-520))) (-15 -1680 ((-108) (-520) (-520) (-520) (-520))) (-15 -1576 ((-1164 (-586 (-520))) (-706) (-706))))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-4081 (((-586 (-793 |#1|)) $) NIL)) (-1278 (((-1079 $) $ (-793 |#1|)) NIL) (((-1079 |#2|) $) NIL)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) NIL (|has| |#2| (-512)))) (-2583 (($ $) NIL (|has| |#2| (-512)))) (-1671 (((-108) $) NIL (|has| |#2| (-512)))) (-3665 (((-706) $) NIL) (((-706) $ (-586 (-793 |#1|))) NIL)) (-1917 (((-3 $ "failed") $ $) NIL)) (-4119 (((-391 (-1079 $)) (-1079 $)) NIL (|has| |#2| (-837)))) (-3024 (($ $) NIL (|has| |#2| (-424)))) (-1507 (((-391 $) $) NIL (|has| |#2| (-424)))) (-3481 (((-3 (-586 (-1079 $)) "failed") (-586 (-1079 $)) (-1079 $)) NIL (|has| |#2| (-837)))) (-3961 (($) NIL T CONST)) (-1296 (((-3 |#2| "failed") $) NIL) (((-3 (-380 (-520)) "failed") $) NIL (|has| |#2| (-960 (-380 (-520))))) (((-3 (-520) "failed") $) NIL (|has| |#2| (-960 (-520)))) (((-3 (-793 |#1|) "failed") $) NIL)) (-1482 ((|#2| $) NIL) (((-380 (-520)) $) NIL (|has| |#2| (-960 (-380 (-520))))) (((-520) $) NIL (|has| |#2| (-960 (-520)))) (((-793 |#1|) $) NIL)) (-2413 (($ $ $ (-793 |#1|)) NIL (|has| |#2| (-157)))) (-1688 (($ $ (-586 (-520))) NIL)) (-3150 (($ $) NIL)) (-2756 (((-626 (-520)) (-626 $)) NIL (|has| |#2| (-582 (-520)))) (((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 $) (-1164 $)) NIL (|has| |#2| (-582 (-520)))) (((-2 (|:| -3927 (-626 |#2|)) (|:| |vec| (-1164 |#2|))) (-626 $) (-1164 $)) NIL) (((-626 |#2|) (-626 $)) NIL)) (-1540 (((-3 $ "failed") $) NIL)) (-3923 (($ $) NIL (|has| |#2| (-424))) (($ $ (-793 |#1|)) NIL (|has| |#2| (-424)))) (-3142 (((-586 $) $) NIL)) (-2036 (((-108) $) NIL (|has| |#2| (-837)))) (-3397 (($ $ |#2| (-453 (-3474 |#1|) (-706)) $) NIL)) (-1272 (((-817 (-352) $) $ (-820 (-352)) (-817 (-352) $)) NIL (-12 (|has| (-793 |#1|) (-814 (-352))) (|has| |#2| (-814 (-352))))) (((-817 (-520) $) $ (-820 (-520)) (-817 (-520) $)) NIL (-12 (|has| (-793 |#1|) (-814 (-520))) (|has| |#2| (-814 (-520)))))) (-1537 (((-108) $) NIL)) (-1315 (((-706) $) NIL)) (-4065 (($ (-1079 |#2|) (-793 |#1|)) NIL) (($ (-1079 $) (-793 |#1|)) NIL)) (-1992 (((-586 $) $) NIL)) (-3774 (((-108) $) NIL)) (-4039 (($ |#2| (-453 (-3474 |#1|) (-706))) NIL) (($ $ (-793 |#1|) (-706)) NIL) (($ $ (-586 (-793 |#1|)) (-586 (-706))) NIL)) (-1910 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $ (-793 |#1|)) NIL)) (-3562 (((-453 (-3474 |#1|) (-706)) $) NIL) (((-706) $ (-793 |#1|)) NIL) (((-586 (-706)) $ (-586 (-793 |#1|))) NIL)) (-2809 (($ $ $) NIL (|has| |#2| (-783)))) (-2446 (($ $ $) NIL (|has| |#2| (-783)))) (-3295 (($ (-1 (-453 (-3474 |#1|) (-706)) (-453 (-3474 |#1|) (-706))) $) NIL)) (-1389 (($ (-1 |#2| |#2|) $) NIL)) (-3186 (((-3 (-793 |#1|) "failed") $) NIL)) (-3123 (($ $) NIL)) (-3133 ((|#2| $) NIL)) (-2222 (($ (-586 $)) NIL (|has| |#2| (-424))) (($ $ $) NIL (|has| |#2| (-424)))) (-1239 (((-1066) $) NIL)) (-3548 (((-3 (-586 $) "failed") $) NIL)) (-1205 (((-3 (-586 $) "failed") $) NIL)) (-2568 (((-3 (-2 (|:| |var| (-793 |#1|)) (|:| -2647 (-706))) "failed") $) NIL)) (-4142 (((-1030) $) NIL)) (-3103 (((-108) $) NIL)) (-3113 ((|#2| $) NIL)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) NIL (|has| |#2| (-424)))) (-2257 (($ (-586 $)) NIL (|has| |#2| (-424))) (($ $ $) NIL (|has| |#2| (-424)))) (-4133 (((-391 (-1079 $)) (-1079 $)) NIL (|has| |#2| (-837)))) (-2017 (((-391 (-1079 $)) (-1079 $)) NIL (|has| |#2| (-837)))) (-1916 (((-391 $) $) NIL (|has| |#2| (-837)))) (-2230 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-512))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-512)))) (-2286 (($ $ (-586 (-268 $))) NIL) (($ $ (-268 $)) NIL) (($ $ $ $) NIL) (($ $ (-586 $) (-586 $)) NIL) (($ $ (-793 |#1|) |#2|) NIL) (($ $ (-586 (-793 |#1|)) (-586 |#2|)) NIL) (($ $ (-793 |#1|) $) NIL) (($ $ (-586 (-793 |#1|)) (-586 $)) NIL)) (-2732 (($ $ (-793 |#1|)) NIL (|has| |#2| (-157)))) (-2155 (($ $ (-793 |#1|)) NIL) (($ $ (-586 (-793 |#1|))) NIL) (($ $ (-793 |#1|) (-706)) NIL) (($ $ (-586 (-793 |#1|)) (-586 (-706))) NIL)) (-2528 (((-453 (-3474 |#1|) (-706)) $) NIL) (((-706) $ (-793 |#1|)) NIL) (((-586 (-706)) $ (-586 (-793 |#1|))) NIL)) (-1429 (((-820 (-352)) $) NIL (-12 (|has| (-793 |#1|) (-561 (-820 (-352)))) (|has| |#2| (-561 (-820 (-352)))))) (((-820 (-520)) $) NIL (-12 (|has| (-793 |#1|) (-561 (-820 (-520)))) (|has| |#2| (-561 (-820 (-520)))))) (((-496) $) NIL (-12 (|has| (-793 |#1|) (-561 (-496))) (|has| |#2| (-561 (-496)))))) (-1233 ((|#2| $) NIL (|has| |#2| (-424))) (($ $ (-793 |#1|)) NIL (|has| |#2| (-424)))) (-3784 (((-3 (-1164 $) "failed") (-626 $)) NIL (-12 (|has| $ (-133)) (|has| |#2| (-837))))) (-2188 (((-791) $) NIL) (($ (-520)) NIL) (($ |#2|) NIL) (($ (-793 |#1|)) NIL) (($ (-380 (-520))) NIL (-3700 (|has| |#2| (-37 (-380 (-520)))) (|has| |#2| (-960 (-380 (-520)))))) (($ $) NIL (|has| |#2| (-512)))) (-4113 (((-586 |#2|) $) NIL)) (-3475 ((|#2| $ (-453 (-3474 |#1|) (-706))) NIL) (($ $ (-793 |#1|) (-706)) NIL) (($ $ (-586 (-793 |#1|)) (-586 (-706))) NIL)) (-3796 (((-3 $ "failed") $) NIL (-3700 (-12 (|has| $ (-133)) (|has| |#2| (-837))) (|has| |#2| (-133))))) (-3251 (((-706)) NIL)) (-1782 (($ $ $ (-706)) NIL (|has| |#2| (-157)))) (-2559 (((-108) $ $) NIL (|has| |#2| (-512)))) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (-3560 (($) NIL T CONST)) (-3570 (($) NIL T CONST)) (-2211 (($ $ (-793 |#1|)) NIL) (($ $ (-586 (-793 |#1|))) NIL) (($ $ (-793 |#1|) (-706)) NIL) (($ $ (-586 (-793 |#1|)) (-586 (-706))) NIL)) (-1573 (((-108) $ $) NIL (|has| |#2| (-783)))) (-1557 (((-108) $ $) NIL (|has| |#2| (-783)))) (-1530 (((-108) $ $) NIL)) (-1565 (((-108) $ $) NIL (|has| |#2| (-783)))) (-1548 (((-108) $ $) NIL (|has| |#2| (-783)))) (-1619 (($ $ |#2|) NIL (|has| |#2| (-336)))) (-1611 (($ $) NIL) (($ $ $) NIL)) (-1601 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) NIL) (($ $ (-380 (-520))) NIL (|has| |#2| (-37 (-380 (-520))))) (($ (-380 (-520)) $) NIL (|has| |#2| (-37 (-380 (-520))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-452 |#1| |#2|) (-13 (-877 |#2| (-453 (-3474 |#1|) (-706)) (-793 |#1|)) (-10 -8 (-15 -1688 ($ $ (-586 (-520)))))) (-586 (-1083)) (-969)) (T -452))
-((-1688 (*1 *1 *1 *2) (-12 (-5 *2 (-586 (-520))) (-5 *1 (-452 *3 *4)) (-14 *3 (-586 (-1083))) (-4 *4 (-969)))))
-(-13 (-877 |#2| (-453 (-3474 |#1|) (-706)) (-793 |#1|)) (-10 -8 (-15 -1688 ($ $ (-586 (-520))))))
-((-1414 (((-108) $ $) NIL (|has| |#2| (-1012)))) (-2906 (((-108) $) NIL (|has| |#2| (-124)))) (-4121 (($ (-849)) NIL (|has| |#2| (-969)))) (-1476 (((-1169) $ (-520) (-520)) NIL (|has| $ (-6 -4230)))) (-1224 (($ $ $) NIL (|has| |#2| (-728)))) (-1917 (((-3 $ "failed") $ $) NIL (|has| |#2| (-124)))) (-2063 (((-108) $ (-706)) NIL)) (-1628 (((-706)) NIL (|has| |#2| (-341)))) (-2804 (((-520) $) NIL (|has| |#2| (-781)))) (-2377 ((|#2| $ (-520) |#2|) NIL (|has| $ (-6 -4230)))) (-3961 (($) NIL T CONST)) (-1296 (((-3 (-520) "failed") $) NIL (-12 (|has| |#2| (-960 (-520))) (|has| |#2| (-1012)))) (((-3 (-380 (-520)) "failed") $) NIL (-12 (|has| |#2| (-960 (-380 (-520)))) (|has| |#2| (-1012)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1012)))) (-1482 (((-520) $) NIL (-12 (|has| |#2| (-960 (-520))) (|has| |#2| (-1012)))) (((-380 (-520)) $) NIL (-12 (|has| |#2| (-960 (-380 (-520)))) (|has| |#2| (-1012)))) ((|#2| $) NIL (|has| |#2| (-1012)))) (-2756 (((-626 (-520)) (-626 $)) NIL (-12 (|has| |#2| (-582 (-520))) (|has| |#2| (-969)))) (((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 $) (-1164 $)) NIL (-12 (|has| |#2| (-582 (-520))) (|has| |#2| (-969)))) (((-2 (|:| -3927 (-626 |#2|)) (|:| |vec| (-1164 |#2|))) (-626 $) (-1164 $)) NIL (|has| |#2| (-969))) (((-626 |#2|) (-626 $)) NIL (|has| |#2| (-969)))) (-1540 (((-3 $ "failed") $) NIL (|has| |#2| (-969)))) (-3249 (($) NIL (|has| |#2| (-341)))) (-3846 ((|#2| $ (-520) |#2|) NIL (|has| $ (-6 -4230)))) (-3623 ((|#2| $ (-520)) 11)) (-2328 (((-108) $) NIL (|has| |#2| (-781)))) (-3828 (((-586 |#2|) $) NIL (|has| $ (-6 -4229)))) (-1537 (((-108) $) NIL (|has| |#2| (-969)))) (-3469 (((-108) $) NIL (|has| |#2| (-781)))) (-3027 (((-108) $ (-706)) NIL)) (-2567 (((-520) $) NIL (|has| (-520) (-783)))) (-2809 (($ $ $) NIL (-3700 (|has| |#2| (-728)) (|has| |#2| (-781))))) (-3702 (((-586 |#2|) $) NIL (|has| $ (-6 -4229)))) (-2422 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#2| (-1012))))) (-1752 (((-520) $) NIL (|has| (-520) (-783)))) (-2446 (($ $ $) NIL (-3700 (|has| |#2| (-728)) (|has| |#2| (-781))))) (-3830 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#2| |#2|) $) NIL)) (-3040 (((-849) $) NIL (|has| |#2| (-341)))) (-1390 (((-108) $ (-706)) NIL)) (-1239 (((-1066) $) NIL (|has| |#2| (-1012)))) (-3622 (((-586 (-520)) $) NIL)) (-2603 (((-108) (-520) $) NIL)) (-2716 (($ (-849)) NIL (|has| |#2| (-341)))) (-4142 (((-1030) $) NIL (|has| |#2| (-1012)))) (-2293 ((|#2| $) NIL (|has| (-520) (-783)))) (-2936 (($ $ |#2|) NIL (|has| $ (-6 -4230)))) (-4155 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 |#2|))) NIL (-12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012)))) (($ $ (-268 |#2|)) NIL (-12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012)))) (($ $ (-586 |#2|) (-586 |#2|)) NIL (-12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012))))) (-2533 (((-108) $ $) NIL)) (-2094 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#2| (-1012))))) (-1523 (((-586 |#2|) $) NIL)) (-4018 (((-108) $) NIL)) (-2238 (($) NIL)) (-2543 ((|#2| $ (-520) |#2|) NIL) ((|#2| $ (-520)) NIL)) (-3639 ((|#2| $ $) NIL (|has| |#2| (-969)))) (-1960 (($ (-1164 |#2|)) NIL)) (-1556 (((-126)) NIL (|has| |#2| (-336)))) (-2155 (($ $) NIL (-12 (|has| |#2| (-209)) (|has| |#2| (-969)))) (($ $ (-706)) NIL (-12 (|has| |#2| (-209)) (|has| |#2| (-969)))) (($ $ (-1083)) NIL (-12 (|has| |#2| (-828 (-1083))) (|has| |#2| (-969)))) (($ $ (-586 (-1083))) NIL (-12 (|has| |#2| (-828 (-1083))) (|has| |#2| (-969)))) (($ $ (-1083) (-706)) NIL (-12 (|has| |#2| (-828 (-1083))) (|has| |#2| (-969)))) (($ $ (-586 (-1083)) (-586 (-706))) NIL (-12 (|has| |#2| (-828 (-1083))) (|has| |#2| (-969)))) (($ $ (-1 |#2| |#2|) (-706)) NIL (|has| |#2| (-969))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-969)))) (-4159 (((-706) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4229))) (((-706) |#2| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#2| (-1012))))) (-2403 (($ $) NIL)) (-2188 (((-1164 |#2|) $) NIL) (($ (-520)) NIL (-3700 (-12 (|has| |#2| (-960 (-520))) (|has| |#2| (-1012))) (|has| |#2| (-969)))) (($ (-380 (-520))) NIL (-12 (|has| |#2| (-960 (-380 (-520)))) (|has| |#2| (-1012)))) (($ |#2|) NIL (|has| |#2| (-1012))) (((-791) $) NIL (|has| |#2| (-560 (-791))))) (-3251 (((-706)) NIL (|has| |#2| (-969)))) (-1662 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4229)))) (-2458 (($ $) NIL (|has| |#2| (-781)))) (-3504 (($ $ (-706)) NIL (|has| |#2| (-969))) (($ $ (-849)) NIL (|has| |#2| (-969)))) (-3560 (($) NIL (|has| |#2| (-124)) CONST)) (-3570 (($) NIL (|has| |#2| (-969)) CONST)) (-2211 (($ $) NIL (-12 (|has| |#2| (-209)) (|has| |#2| (-969)))) (($ $ (-706)) NIL (-12 (|has| |#2| (-209)) (|has| |#2| (-969)))) (($ $ (-1083)) NIL (-12 (|has| |#2| (-828 (-1083))) (|has| |#2| (-969)))) (($ $ (-586 (-1083))) NIL (-12 (|has| |#2| (-828 (-1083))) (|has| |#2| (-969)))) (($ $ (-1083) (-706)) NIL (-12 (|has| |#2| (-828 (-1083))) (|has| |#2| (-969)))) (($ $ (-586 (-1083)) (-586 (-706))) NIL (-12 (|has| |#2| (-828 (-1083))) (|has| |#2| (-969)))) (($ $ (-1 |#2| |#2|) (-706)) NIL (|has| |#2| (-969))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-969)))) (-1573 (((-108) $ $) NIL (-3700 (|has| |#2| (-728)) (|has| |#2| (-781))))) (-1557 (((-108) $ $) NIL (-3700 (|has| |#2| (-728)) (|has| |#2| (-781))))) (-1530 (((-108) $ $) NIL (|has| |#2| (-1012)))) (-1565 (((-108) $ $) NIL (-3700 (|has| |#2| (-728)) (|has| |#2| (-781))))) (-1548 (((-108) $ $) 15 (-3700 (|has| |#2| (-728)) (|has| |#2| (-781))))) (-1619 (($ $ |#2|) NIL (|has| |#2| (-336)))) (-1611 (($ $ $) NIL (|has| |#2| (-969))) (($ $) NIL (|has| |#2| (-969)))) (-1601 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-706)) NIL (|has| |#2| (-969))) (($ $ (-849)) NIL (|has| |#2| (-969)))) (* (($ $ $) NIL (|has| |#2| (-969))) (($ (-520) $) NIL (|has| |#2| (-969))) (($ $ |#2|) NIL (|has| |#2| (-662))) (($ |#2| $) NIL (|has| |#2| (-662))) (($ (-706) $) NIL (|has| |#2| (-124))) (($ (-849) $) NIL (|has| |#2| (-25)))) (-3474 (((-706) $) NIL (|has| $ (-6 -4229)))))
-(((-453 |#1| |#2|) (-214 |#1| |#2|) (-706) (-728)) (T -453))
-NIL
-(-214 |#1| |#2|)
-((-1414 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-2063 (((-108) $ (-706)) NIL)) (-3961 (($) NIL T CONST)) (-3828 (((-586 |#1|) $) NIL (|has| $ (-6 -4229)))) (-3027 (((-108) $ (-706)) NIL)) (-3235 (($ $ $) 32)) (-1819 (($ $ $) 31)) (-3702 (((-586 |#1|) $) NIL (|has| $ (-6 -4229)))) (-2422 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-2446 ((|#1| $) 26)) (-3830 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#1| |#1|) $) NIL)) (-1390 (((-108) $ (-706)) NIL)) (-1239 (((-1066) $) NIL (|has| |#1| (-1012)))) (-3351 ((|#1| $) 27)) (-3618 (($ |#1| $) 10)) (-1376 (($ (-586 |#1|)) 12)) (-4142 (((-1030) $) NIL (|has| |#1| (-1012)))) (-3345 ((|#1| $) 23)) (-4155 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 |#1|))) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-268 |#1|)) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-586 |#1|) (-586 |#1|)) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))) (-2533 (((-108) $ $) NIL)) (-4018 (((-108) $) NIL)) (-2238 (($) 9)) (-4159 (((-706) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229))) (((-706) |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-2403 (($ $) NIL)) (-2188 (((-791) $) NIL (|has| |#1| (-560 (-791))))) (-1898 (($ (-586 |#1|)) 29)) (-1662 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-1530 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-3474 (((-706) $) 21 (|has| $ (-6 -4229)))))
-(((-454 |#1|) (-13 (-894 |#1|) (-10 -8 (-15 -1376 ($ (-586 |#1|))))) (-783)) (T -454))
-((-1376 (*1 *1 *2) (-12 (-5 *2 (-586 *3)) (-4 *3 (-783)) (-5 *1 (-454 *3)))))
-(-13 (-894 |#1|) (-10 -8 (-15 -1376 ($ (-586 |#1|)))))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-1917 (((-3 $ "failed") $ $) NIL)) (-3961 (($) NIL T CONST)) (-3856 (($ $) 69)) (-2669 (((-108) $) NIL)) (-1239 (((-1066) $) NIL)) (-1273 (((-386 |#2| (-380 |#2|) |#3| |#4|) $) 43)) (-4142 (((-1030) $) NIL)) (-1382 (((-3 |#4| "failed") $) 105)) (-2058 (($ (-386 |#2| (-380 |#2|) |#3| |#4|)) 76) (($ |#4|) 32) (($ |#1| |#1|) 113) (($ |#1| |#1| (-520)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 125)) (-2699 (((-2 (|:| -1780 (-386 |#2| (-380 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 45)) (-2188 (((-791) $) 100)) (-3560 (($) 33 T CONST)) (-1530 (((-108) $ $) 107)) (-1611 (($ $) 72) (($ $ $) NIL)) (-1601 (($ $ $) 70)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) 73)))
-(((-455 |#1| |#2| |#3| |#4|) (-308 |#1| |#2| |#3| |#4|) (-336) (-1140 |#1|) (-1140 (-380 |#2|)) (-315 |#1| |#2| |#3|)) (T -455))
-NIL
-(-308 |#1| |#2| |#3| |#4|)
-((-3821 (((-520) (-586 (-520))) 30)) (-1333 ((|#1| (-586 |#1|)) 56)) (-3211 (((-586 |#1|) (-586 |#1|)) 57)) (-1475 (((-586 |#1|) (-586 |#1|)) 59)) (-2257 ((|#1| (-586 |#1|)) 58)) (-1233 (((-586 (-520)) (-586 |#1|)) 33)))
-(((-456 |#1|) (-10 -7 (-15 -2257 (|#1| (-586 |#1|))) (-15 -1333 (|#1| (-586 |#1|))) (-15 -1475 ((-586 |#1|) (-586 |#1|))) (-15 -3211 ((-586 |#1|) (-586 |#1|))) (-15 -1233 ((-586 (-520)) (-586 |#1|))) (-15 -3821 ((-520) (-586 (-520))))) (-1140 (-520))) (T -456))
-((-3821 (*1 *2 *3) (-12 (-5 *3 (-586 (-520))) (-5 *2 (-520)) (-5 *1 (-456 *4)) (-4 *4 (-1140 *2)))) (-1233 (*1 *2 *3) (-12 (-5 *3 (-586 *4)) (-4 *4 (-1140 (-520))) (-5 *2 (-586 (-520))) (-5 *1 (-456 *4)))) (-3211 (*1 *2 *2) (-12 (-5 *2 (-586 *3)) (-4 *3 (-1140 (-520))) (-5 *1 (-456 *3)))) (-1475 (*1 *2 *2) (-12 (-5 *2 (-586 *3)) (-4 *3 (-1140 (-520))) (-5 *1 (-456 *3)))) (-1333 (*1 *2 *3) (-12 (-5 *3 (-586 *2)) (-5 *1 (-456 *2)) (-4 *2 (-1140 (-520))))) (-2257 (*1 *2 *3) (-12 (-5 *3 (-586 *2)) (-5 *1 (-456 *2)) (-4 *2 (-1140 (-520))))))
-(-10 -7 (-15 -2257 (|#1| (-586 |#1|))) (-15 -1333 (|#1| (-586 |#1|))) (-15 -1475 ((-586 |#1|) (-586 |#1|))) (-15 -3211 ((-586 |#1|) (-586 |#1|))) (-15 -1233 ((-586 (-520)) (-586 |#1|))) (-15 -3821 ((-520) (-586 (-520)))))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-4040 (((-520) $) NIL (|has| (-520) (-281)))) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) NIL)) (-2583 (($ $) NIL)) (-1671 (((-108) $) NIL)) (-1917 (((-3 $ "failed") $ $) NIL)) (-4119 (((-391 (-1079 $)) (-1079 $)) NIL (|has| (-520) (-837)))) (-3024 (($ $) NIL)) (-1507 (((-391 $) $) NIL)) (-3481 (((-3 (-586 (-1079 $)) "failed") (-586 (-1079 $)) (-1079 $)) NIL (|has| (-520) (-837)))) (-1327 (((-108) $ $) NIL)) (-2804 (((-520) $) NIL (|has| (-520) (-756)))) (-3961 (($) NIL T CONST)) (-1296 (((-3 (-520) "failed") $) NIL) (((-3 (-1083) "failed") $) NIL (|has| (-520) (-960 (-1083)))) (((-3 (-380 (-520)) "failed") $) NIL (|has| (-520) (-960 (-520)))) (((-3 (-520) "failed") $) NIL (|has| (-520) (-960 (-520))))) (-1482 (((-520) $) NIL) (((-1083) $) NIL (|has| (-520) (-960 (-1083)))) (((-380 (-520)) $) NIL (|has| (-520) (-960 (-520)))) (((-520) $) NIL (|has| (-520) (-960 (-520))))) (-2276 (($ $ $) NIL)) (-2756 (((-626 (-520)) (-626 $)) NIL (|has| (-520) (-582 (-520)))) (((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 $) (-1164 $)) NIL (|has| (-520) (-582 (-520)))) (((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 $) (-1164 $)) NIL) (((-626 (-520)) (-626 $)) NIL)) (-1540 (((-3 $ "failed") $) NIL)) (-3249 (($) NIL (|has| (-520) (-505)))) (-2253 (($ $ $) NIL)) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) NIL)) (-2036 (((-108) $) NIL)) (-2328 (((-108) $) NIL (|has| (-520) (-756)))) (-1272 (((-817 (-520) $) $ (-820 (-520)) (-817 (-520) $)) NIL (|has| (-520) (-814 (-520)))) (((-817 (-352) $) $ (-820 (-352)) (-817 (-352) $)) NIL (|has| (-520) (-814 (-352))))) (-1537 (((-108) $) NIL)) (-4115 (($ $) NIL)) (-2800 (((-520) $) NIL)) (-1394 (((-3 $ "failed") $) NIL (|has| (-520) (-1059)))) (-3469 (((-108) $) NIL (|has| (-520) (-756)))) (-3188 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-2809 (($ $ $) NIL (|has| (-520) (-783)))) (-2446 (($ $ $) NIL (|has| (-520) (-783)))) (-1389 (($ (-1 (-520) (-520)) $) NIL)) (-2222 (($ $ $) NIL) (($ (-586 $)) NIL)) (-1239 (((-1066) $) NIL)) (-3093 (($ $) NIL)) (-3794 (($) NIL (|has| (-520) (-1059)) CONST)) (-1212 (($ (-380 (-520))) 8)) (-4142 (((-1030) $) NIL)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) NIL)) (-2257 (($ $ $) NIL) (($ (-586 $)) NIL)) (-4122 (($ $) NIL (|has| (-520) (-281))) (((-380 (-520)) $) NIL)) (-1626 (((-520) $) NIL (|has| (-520) (-505)))) (-4133 (((-391 (-1079 $)) (-1079 $)) NIL (|has| (-520) (-837)))) (-2017 (((-391 (-1079 $)) (-1079 $)) NIL (|has| (-520) (-837)))) (-1916 (((-391 $) $) NIL)) (-1283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2230 (((-3 $ "failed") $ $) NIL)) (-2608 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-2286 (($ $ (-586 (-520)) (-586 (-520))) NIL (|has| (-520) (-283 (-520)))) (($ $ (-520) (-520)) NIL (|has| (-520) (-283 (-520)))) (($ $ (-268 (-520))) NIL (|has| (-520) (-283 (-520)))) (($ $ (-586 (-268 (-520)))) NIL (|has| (-520) (-283 (-520)))) (($ $ (-586 (-1083)) (-586 (-520))) NIL (|has| (-520) (-481 (-1083) (-520)))) (($ $ (-1083) (-520)) NIL (|has| (-520) (-481 (-1083) (-520))))) (-3704 (((-706) $) NIL)) (-2543 (($ $ (-520)) NIL (|has| (-520) (-260 (-520) (-520))))) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) NIL)) (-2155 (($ $) NIL (|has| (-520) (-209))) (($ $ (-706)) NIL (|has| (-520) (-209))) (($ $ (-1083)) NIL (|has| (-520) (-828 (-1083)))) (($ $ (-586 (-1083))) NIL (|has| (-520) (-828 (-1083)))) (($ $ (-1083) (-706)) NIL (|has| (-520) (-828 (-1083)))) (($ $ (-586 (-1083)) (-586 (-706))) NIL (|has| (-520) (-828 (-1083)))) (($ $ (-1 (-520) (-520)) (-706)) NIL) (($ $ (-1 (-520) (-520))) NIL)) (-3556 (($ $) NIL)) (-2811 (((-520) $) NIL)) (-1429 (((-820 (-520)) $) NIL (|has| (-520) (-561 (-820 (-520))))) (((-820 (-352)) $) NIL (|has| (-520) (-561 (-820 (-352))))) (((-496) $) NIL (|has| (-520) (-561 (-496)))) (((-352) $) NIL (|has| (-520) (-945))) (((-201) $) NIL (|has| (-520) (-945)))) (-3784 (((-3 (-1164 $) "failed") (-626 $)) NIL (-12 (|has| $ (-133)) (|has| (-520) (-837))))) (-2188 (((-791) $) NIL) (($ (-520)) NIL) (($ $) NIL) (($ (-380 (-520))) 7) (($ (-520)) NIL) (($ (-1083)) NIL (|has| (-520) (-960 (-1083)))) (((-380 (-520)) $) NIL) (((-928 16) $) 9)) (-3796 (((-3 $ "failed") $) NIL (-3700 (-12 (|has| $ (-133)) (|has| (-520) (-837))) (|has| (-520) (-133))))) (-3251 (((-706)) NIL)) (-3370 (((-520) $) NIL (|has| (-520) (-505)))) (-2559 (((-108) $ $) NIL)) (-2458 (($ $) NIL (|has| (-520) (-756)))) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL)) (-3560 (($) NIL T CONST)) (-3570 (($) NIL T CONST)) (-2211 (($ $) NIL (|has| (-520) (-209))) (($ $ (-706)) NIL (|has| (-520) (-209))) (($ $ (-1083)) NIL (|has| (-520) (-828 (-1083)))) (($ $ (-586 (-1083))) NIL (|has| (-520) (-828 (-1083)))) (($ $ (-1083) (-706)) NIL (|has| (-520) (-828 (-1083)))) (($ $ (-586 (-1083)) (-586 (-706))) NIL (|has| (-520) (-828 (-1083)))) (($ $ (-1 (-520) (-520)) (-706)) NIL) (($ $ (-1 (-520) (-520))) NIL)) (-1573 (((-108) $ $) NIL (|has| (-520) (-783)))) (-1557 (((-108) $ $) NIL (|has| (-520) (-783)))) (-1530 (((-108) $ $) NIL)) (-1565 (((-108) $ $) NIL (|has| (-520) (-783)))) (-1548 (((-108) $ $) NIL (|has| (-520) (-783)))) (-1619 (($ $ $) NIL) (($ (-520) (-520)) NIL)) (-1611 (($ $) NIL) (($ $ $) NIL)) (-1601 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) NIL) (($ $ (-380 (-520))) NIL) (($ (-380 (-520)) $) NIL) (($ (-520) $) NIL) (($ $ (-520)) NIL)))
-(((-457) (-13 (-917 (-520)) (-10 -8 (-15 -2188 ((-380 (-520)) $)) (-15 -2188 ((-928 16) $)) (-15 -4122 ((-380 (-520)) $)) (-15 -1212 ($ (-380 (-520))))))) (T -457))
-((-2188 (*1 *2 *1) (-12 (-5 *2 (-380 (-520))) (-5 *1 (-457)))) (-2188 (*1 *2 *1) (-12 (-5 *2 (-928 16)) (-5 *1 (-457)))) (-4122 (*1 *2 *1) (-12 (-5 *2 (-380 (-520))) (-5 *1 (-457)))) (-1212 (*1 *1 *2) (-12 (-5 *2 (-380 (-520))) (-5 *1 (-457)))))
-(-13 (-917 (-520)) (-10 -8 (-15 -2188 ((-380 (-520)) $)) (-15 -2188 ((-928 16) $)) (-15 -4122 ((-380 (-520)) $)) (-15 -1212 ($ (-380 (-520))))))
-((-3702 (((-586 |#2|) $) 22)) (-2422 (((-108) |#2| $) 27)) (-4155 (((-108) (-1 (-108) |#2|) $) 20)) (-2286 (($ $ (-586 (-268 |#2|))) 12) (($ $ (-268 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-586 |#2|) (-586 |#2|)) NIL)) (-4159 (((-706) (-1 (-108) |#2|) $) 21) (((-706) |#2| $) 25)) (-2188 (((-791) $) 36)) (-1662 (((-108) (-1 (-108) |#2|) $) 19)) (-1530 (((-108) $ $) 30)) (-3474 (((-706) $) 16)))
-(((-458 |#1| |#2|) (-10 -8 (-15 -2188 ((-791) |#1|)) (-15 -1530 ((-108) |#1| |#1|)) (-15 -2286 (|#1| |#1| (-586 |#2|) (-586 |#2|))) (-15 -2286 (|#1| |#1| |#2| |#2|)) (-15 -2286 (|#1| |#1| (-268 |#2|))) (-15 -2286 (|#1| |#1| (-586 (-268 |#2|)))) (-15 -2422 ((-108) |#2| |#1|)) (-15 -4159 ((-706) |#2| |#1|)) (-15 -3702 ((-586 |#2|) |#1|)) (-15 -4159 ((-706) (-1 (-108) |#2|) |#1|)) (-15 -4155 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -1662 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3474 ((-706) |#1|))) (-459 |#2|) (-1118)) (T -458))
-NIL
-(-10 -8 (-15 -2188 ((-791) |#1|)) (-15 -1530 ((-108) |#1| |#1|)) (-15 -2286 (|#1| |#1| (-586 |#2|) (-586 |#2|))) (-15 -2286 (|#1| |#1| |#2| |#2|)) (-15 -2286 (|#1| |#1| (-268 |#2|))) (-15 -2286 (|#1| |#1| (-586 (-268 |#2|)))) (-15 -2422 ((-108) |#2| |#1|)) (-15 -4159 ((-706) |#2| |#1|)) (-15 -3702 ((-586 |#2|) |#1|)) (-15 -4159 ((-706) (-1 (-108) |#2|) |#1|)) (-15 -4155 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -1662 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3474 ((-706) |#1|)))
-((-1414 (((-108) $ $) 19 (|has| |#1| (-1012)))) (-2063 (((-108) $ (-706)) 8)) (-3961 (($) 7 T CONST)) (-3828 (((-586 |#1|) $) 30 (|has| $ (-6 -4229)))) (-3027 (((-108) $ (-706)) 9)) (-3702 (((-586 |#1|) $) 29 (|has| $ (-6 -4229)))) (-2422 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-3830 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#1| |#1|) $) 35)) (-1390 (((-108) $ (-706)) 10)) (-1239 (((-1066) $) 22 (|has| |#1| (-1012)))) (-4142 (((-1030) $) 21 (|has| |#1| (-1012)))) (-4155 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 |#1|))) 26 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-268 |#1|)) 25 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-586 |#1|) (-586 |#1|)) 23 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))) (-2533 (((-108) $ $) 14)) (-4018 (((-108) $) 11)) (-2238 (($) 12)) (-4159 (((-706) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4229))) (((-706) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-2403 (($ $) 13)) (-2188 (((-791) $) 18 (|has| |#1| (-560 (-791))))) (-1662 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4229)))) (-1530 (((-108) $ $) 20 (|has| |#1| (-1012)))) (-3474 (((-706) $) 6 (|has| $ (-6 -4229)))))
-(((-459 |#1|) (-1195) (-1118)) (T -459))
-((-1389 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-459 *3)) (-4 *3 (-1118)))) (-3830 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4230)) (-4 *1 (-459 *3)) (-4 *3 (-1118)))) (-1662 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4229)) (-4 *1 (-459 *4)) (-4 *4 (-1118)) (-5 *2 (-108)))) (-4155 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4229)) (-4 *1 (-459 *4)) (-4 *4 (-1118)) (-5 *2 (-108)))) (-4159 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4229)) (-4 *1 (-459 *4)) (-4 *4 (-1118)) (-5 *2 (-706)))) (-3828 (*1 *2 *1) (-12 (|has| *1 (-6 -4229)) (-4 *1 (-459 *3)) (-4 *3 (-1118)) (-5 *2 (-586 *3)))) (-3702 (*1 *2 *1) (-12 (|has| *1 (-6 -4229)) (-4 *1 (-459 *3)) (-4 *3 (-1118)) (-5 *2 (-586 *3)))) (-4159 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4229)) (-4 *1 (-459 *3)) (-4 *3 (-1118)) (-4 *3 (-1012)) (-5 *2 (-706)))) (-2422 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4229)) (-4 *1 (-459 *3)) (-4 *3 (-1118)) (-4 *3 (-1012)) (-5 *2 (-108)))))
-(-13 (-33) (-10 -8 (IF (|has| |t#1| (-560 (-791))) (-6 (-560 (-791))) |%noBranch|) (IF (|has| |t#1| (-1012)) (-6 (-1012)) |%noBranch|) (IF (|has| |t#1| (-1012)) (IF (|has| |t#1| (-283 |t#1|)) (-6 (-283 |t#1|)) |%noBranch|) |%noBranch|) (-15 -1389 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4230)) (-15 -3830 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4229)) (PROGN (-15 -1662 ((-108) (-1 (-108) |t#1|) $)) (-15 -4155 ((-108) (-1 (-108) |t#1|) $)) (-15 -4159 ((-706) (-1 (-108) |t#1|) $)) (-15 -3828 ((-586 |t#1|) $)) (-15 -3702 ((-586 |t#1|) $)) (IF (|has| |t#1| (-1012)) (PROGN (-15 -4159 ((-706) |t#1| $)) (-15 -2422 ((-108) |t#1| $))) |%noBranch|)) |%noBranch|)))
-(((-33) . T) ((-97) |has| |#1| (-1012)) ((-560 (-791)) -3700 (|has| |#1| (-1012)) (|has| |#1| (-560 (-791)))) ((-283 |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))) ((-481 |#1| |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))) ((-1012) |has| |#1| (-1012)) ((-1118) . T))
-((-2903 (($ $) 15)) (-2879 (($ $) 24)) (-2925 (($ $) 12)) (-1737 (($ $) 10)) (-2914 (($ $) 17)) (-2891 (($ $) 22)))
-(((-460 |#1|) (-10 -8 (-15 -2891 (|#1| |#1|)) (-15 -2914 (|#1| |#1|)) (-15 -1737 (|#1| |#1|)) (-15 -2925 (|#1| |#1|)) (-15 -2879 (|#1| |#1|)) (-15 -2903 (|#1| |#1|))) (-461)) (T -460))
-NIL
-(-10 -8 (-15 -2891 (|#1| |#1|)) (-15 -2914 (|#1| |#1|)) (-15 -1737 (|#1| |#1|)) (-15 -2925 (|#1| |#1|)) (-15 -2879 (|#1| |#1|)) (-15 -2903 (|#1| |#1|)))
-((-2903 (($ $) 11)) (-2879 (($ $) 10)) (-2925 (($ $) 9)) (-1737 (($ $) 8)) (-2914 (($ $) 7)) (-2891 (($ $) 6)))
-(((-461) (-1195)) (T -461))
-((-2903 (*1 *1 *1) (-4 *1 (-461))) (-2879 (*1 *1 *1) (-4 *1 (-461))) (-2925 (*1 *1 *1) (-4 *1 (-461))) (-1737 (*1 *1 *1) (-4 *1 (-461))) (-2914 (*1 *1 *1) (-4 *1 (-461))) (-2891 (*1 *1 *1) (-4 *1 (-461))))
-(-13 (-10 -8 (-15 -2891 ($ $)) (-15 -2914 ($ $)) (-15 -1737 ($ $)) (-15 -2925 ($ $)) (-15 -2879 ($ $)) (-15 -2903 ($ $))))
-((-1916 (((-391 |#4|) |#4| (-1 (-391 |#2|) |#2|)) 42)))
-(((-462 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1916 ((-391 |#4|) |#4| (-1 (-391 |#2|) |#2|)))) (-336) (-1140 |#1|) (-13 (-336) (-135) (-660 |#1| |#2|)) (-1140 |#3|)) (T -462))
-((-1916 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-391 *6) *6)) (-4 *6 (-1140 *5)) (-4 *5 (-336)) (-4 *7 (-13 (-336) (-135) (-660 *5 *6))) (-5 *2 (-391 *3)) (-5 *1 (-462 *5 *6 *7 *3)) (-4 *3 (-1140 *7)))))
-(-10 -7 (-15 -1916 ((-391 |#4|) |#4| (-1 (-391 |#2|) |#2|))))
-((-1414 (((-108) $ $) NIL)) (-3953 (((-586 $) (-1079 $) (-1083)) NIL) (((-586 $) (-1079 $)) NIL) (((-586 $) (-880 $)) NIL)) (-2057 (($ (-1079 $) (-1083)) NIL) (($ (-1079 $)) NIL) (($ (-880 $)) NIL)) (-2906 (((-108) $) 37)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) NIL)) (-2583 (($ $) NIL)) (-1671 (((-108) $) NIL)) (-3680 (((-108) $ $) 63)) (-1883 (((-586 (-559 $)) $) 47)) (-1917 (((-3 $ "failed") $ $) NIL)) (-3299 (($ $ (-268 $)) NIL) (($ $ (-586 (-268 $))) NIL) (($ $ (-586 (-559 $)) (-586 $)) NIL)) (-3024 (($ $) NIL)) (-1507 (((-391 $) $) NIL)) (-1927 (($ $) NIL)) (-1327 (((-108) $ $) NIL)) (-3961 (($) NIL T CONST)) (-2150 (((-586 $) (-1079 $) (-1083)) NIL) (((-586 $) (-1079 $)) NIL) (((-586 $) (-880 $)) NIL)) (-2288 (($ (-1079 $) (-1083)) NIL) (($ (-1079 $)) NIL) (($ (-880 $)) NIL)) (-1296 (((-3 (-559 $) "failed") $) NIL) (((-3 (-520) "failed") $) NIL) (((-3 (-380 (-520)) "failed") $) NIL)) (-1482 (((-559 $) $) NIL) (((-520) $) NIL) (((-380 (-520)) $) 49)) (-2276 (($ $ $) NIL)) (-2756 (((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 $) (-1164 $)) NIL) (((-626 (-520)) (-626 $)) NIL) (((-2 (|:| -3927 (-626 (-380 (-520)))) (|:| |vec| (-1164 (-380 (-520))))) (-626 $) (-1164 $)) NIL) (((-626 (-380 (-520))) (-626 $)) NIL)) (-3856 (($ $) NIL)) (-1540 (((-3 $ "failed") $) NIL)) (-2253 (($ $ $) NIL)) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) NIL)) (-2036 (((-108) $) NIL)) (-1255 (($ $) NIL) (($ (-586 $)) NIL)) (-3357 (((-586 (-110)) $) NIL)) (-3877 (((-110) (-110)) NIL)) (-1537 (((-108) $) 40)) (-2777 (((-108) $) NIL (|has| $ (-960 (-520))))) (-2800 (((-1035 (-520) (-559 $)) $) 35)) (-2322 (($ $ (-520)) NIL)) (-1434 (((-1079 $) (-1079 $) (-559 $)) 78) (((-1079 $) (-1079 $) (-586 (-559 $))) 54) (($ $ (-559 $)) 67) (($ $ (-586 (-559 $))) 68)) (-3188 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-2433 (((-1079 $) (-559 $)) 65 (|has| $ (-969)))) (-2809 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-1389 (($ (-1 $ $) (-559 $)) NIL)) (-2690 (((-3 (-559 $) "failed") $) NIL)) (-2222 (($ (-586 $)) NIL) (($ $ $) NIL)) (-1239 (((-1066) $) NIL)) (-1265 (((-586 (-559 $)) $) NIL)) (-2904 (($ (-110) $) NIL) (($ (-110) (-586 $)) NIL)) (-1784 (((-108) $ (-110)) NIL) (((-108) $ (-1083)) NIL)) (-3093 (($ $) NIL)) (-4146 (((-706) $) NIL)) (-4142 (((-1030) $) NIL)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) NIL)) (-2257 (($ (-586 $)) NIL) (($ $ $) NIL)) (-4134 (((-108) $ $) NIL) (((-108) $ (-1083)) NIL)) (-1916 (((-391 $) $) NIL)) (-1283 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) NIL)) (-2230 (((-3 $ "failed") $ $) NIL)) (-2608 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-3615 (((-108) $) NIL (|has| $ (-960 (-520))))) (-2286 (($ $ (-559 $) $) NIL) (($ $ (-586 (-559 $)) (-586 $)) NIL) (($ $ (-586 (-268 $))) NIL) (($ $ (-268 $)) NIL) (($ $ $ $) NIL) (($ $ (-586 $) (-586 $)) NIL) (($ $ (-586 (-1083)) (-586 (-1 $ $))) NIL) (($ $ (-586 (-1083)) (-586 (-1 $ (-586 $)))) NIL) (($ $ (-1083) (-1 $ (-586 $))) NIL) (($ $ (-1083) (-1 $ $)) NIL) (($ $ (-586 (-110)) (-586 (-1 $ $))) NIL) (($ $ (-586 (-110)) (-586 (-1 $ (-586 $)))) NIL) (($ $ (-110) (-1 $ (-586 $))) NIL) (($ $ (-110) (-1 $ $)) NIL)) (-3704 (((-706) $) NIL)) (-2543 (($ (-110) $) NIL) (($ (-110) $ $) NIL) (($ (-110) $ $ $) NIL) (($ (-110) $ $ $ $) NIL) (($ (-110) (-586 $)) NIL)) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) NIL)) (-3453 (($ $) NIL) (($ $ $) NIL)) (-2155 (($ $ (-706)) NIL) (($ $) 34)) (-2811 (((-1035 (-520) (-559 $)) $) 18)) (-3484 (($ $) NIL (|has| $ (-969)))) (-1429 (((-352) $) 92) (((-201) $) 100) (((-154 (-352)) $) 108)) (-2188 (((-791) $) NIL) (($ (-559 $)) NIL) (($ (-380 (-520))) NIL) (($ $) NIL) (($ (-520)) NIL) (($ (-1035 (-520) (-559 $))) 19)) (-3251 (((-706)) NIL)) (-2319 (($ $) NIL) (($ (-586 $)) NIL)) (-1373 (((-108) (-110)) 84)) (-2559 (((-108) $ $) NIL)) (-3504 (($ $ (-520)) NIL) (($ $ (-706)) NIL) (($ $ (-849)) NIL)) (-3560 (($) 9 T CONST)) (-3570 (($) 20 T CONST)) (-2211 (($ $ (-706)) NIL) (($ $) NIL)) (-1573 (((-108) $ $) NIL)) (-1557 (((-108) $ $) NIL)) (-1530 (((-108) $ $) 22)) (-1565 (((-108) $ $) NIL)) (-1548 (((-108) $ $) NIL)) (-1619 (($ $ $) 42)) (-1611 (($ $ $) NIL) (($ $) NIL)) (-1601 (($ $ $) NIL)) (** (($ $ (-380 (-520))) NIL) (($ $ (-520)) 45) (($ $ (-706)) NIL) (($ $ (-849)) NIL)) (* (($ (-380 (-520)) $) NIL) (($ $ (-380 (-520))) NIL) (($ $ $) 25) (($ (-520) $) NIL) (($ (-706) $) NIL) (($ (-849) $) NIL)))
-(((-463) (-13 (-276) (-27) (-960 (-520)) (-960 (-380 (-520))) (-582 (-520)) (-945) (-582 (-380 (-520))) (-135) (-561 (-154 (-352))) (-209) (-10 -8 (-15 -2188 ($ (-1035 (-520) (-559 $)))) (-15 -2800 ((-1035 (-520) (-559 $)) $)) (-15 -2811 ((-1035 (-520) (-559 $)) $)) (-15 -3856 ($ $)) (-15 -3680 ((-108) $ $)) (-15 -1434 ((-1079 $) (-1079 $) (-559 $))) (-15 -1434 ((-1079 $) (-1079 $) (-586 (-559 $)))) (-15 -1434 ($ $ (-559 $))) (-15 -1434 ($ $ (-586 (-559 $))))))) (T -463))
-((-2188 (*1 *1 *2) (-12 (-5 *2 (-1035 (-520) (-559 (-463)))) (-5 *1 (-463)))) (-2800 (*1 *2 *1) (-12 (-5 *2 (-1035 (-520) (-559 (-463)))) (-5 *1 (-463)))) (-2811 (*1 *2 *1) (-12 (-5 *2 (-1035 (-520) (-559 (-463)))) (-5 *1 (-463)))) (-3856 (*1 *1 *1) (-5 *1 (-463))) (-3680 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-463)))) (-1434 (*1 *2 *2 *3) (-12 (-5 *2 (-1079 (-463))) (-5 *3 (-559 (-463))) (-5 *1 (-463)))) (-1434 (*1 *2 *2 *3) (-12 (-5 *2 (-1079 (-463))) (-5 *3 (-586 (-559 (-463)))) (-5 *1 (-463)))) (-1434 (*1 *1 *1 *2) (-12 (-5 *2 (-559 (-463))) (-5 *1 (-463)))) (-1434 (*1 *1 *1 *2) (-12 (-5 *2 (-586 (-559 (-463)))) (-5 *1 (-463)))))
-(-13 (-276) (-27) (-960 (-520)) (-960 (-380 (-520))) (-582 (-520)) (-945) (-582 (-380 (-520))) (-135) (-561 (-154 (-352))) (-209) (-10 -8 (-15 -2188 ($ (-1035 (-520) (-559 $)))) (-15 -2800 ((-1035 (-520) (-559 $)) $)) (-15 -2811 ((-1035 (-520) (-559 $)) $)) (-15 -3856 ($ $)) (-15 -3680 ((-108) $ $)) (-15 -1434 ((-1079 $) (-1079 $) (-559 $))) (-15 -1434 ((-1079 $) (-1079 $) (-586 (-559 $)))) (-15 -1434 ($ $ (-559 $))) (-15 -1434 ($ $ (-586 (-559 $))))))
-((-1414 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-1476 (((-1169) $ (-520) (-520)) NIL (|has| $ (-6 -4230)))) (-4029 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-783)))) (-3587 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4230))) (($ $) NIL (-12 (|has| $ (-6 -4230)) (|has| |#1| (-783))))) (-3210 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-783)))) (-2063 (((-108) $ (-706)) NIL)) (-2377 ((|#1| $ (-520) |#1|) 25 (|has| $ (-6 -4230))) ((|#1| $ (-1131 (-520)) |#1|) NIL (|has| $ (-6 -4230)))) (-1627 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-3961 (($) NIL T CONST)) (-2447 (($ $) NIL (|has| $ (-6 -4230)))) (-1861 (($ $) NIL)) (-2331 (($ $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-1421 (($ |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-3856 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4229))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4229)))) (-3846 ((|#1| $ (-520) |#1|) 22 (|has| $ (-6 -4230)))) (-3623 ((|#1| $ (-520)) 21)) (-3232 (((-520) (-1 (-108) |#1|) $) NIL) (((-520) |#1| $) NIL (|has| |#1| (-1012))) (((-520) |#1| $ (-520)) NIL (|has| |#1| (-1012)))) (-3828 (((-586 |#1|) $) NIL (|has| $ (-6 -4229)))) (-1810 (($ (-706) |#1|) 14)) (-3027 (((-108) $ (-706)) NIL)) (-2567 (((-520) $) 12 (|has| (-520) (-783)))) (-2809 (($ $ $) NIL (|has| |#1| (-783)))) (-1819 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-783)))) (-3702 (((-586 |#1|) $) NIL (|has| $ (-6 -4229)))) (-2422 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-1752 (((-520) $) 23 (|has| (-520) (-783)))) (-2446 (($ $ $) NIL (|has| |#1| (-783)))) (-3830 (($ (-1 |#1| |#1|) $) 16 (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#1| |#1|) $) 17) (($ (-1 |#1| |#1| |#1|) $ $) 19)) (-1390 (((-108) $ (-706)) NIL)) (-1239 (((-1066) $) NIL (|has| |#1| (-1012)))) (-1659 (($ |#1| $ (-520)) NIL) (($ $ $ (-520)) NIL)) (-3622 (((-586 (-520)) $) NIL)) (-2603 (((-108) (-520) $) NIL)) (-4142 (((-1030) $) NIL (|has| |#1| (-1012)))) (-2293 ((|#1| $) NIL (|has| (-520) (-783)))) (-2985 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-2936 (($ $ |#1|) 10 (|has| $ (-6 -4230)))) (-4155 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 |#1|))) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-268 |#1|)) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-586 |#1|) (-586 |#1|)) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))) (-2533 (((-108) $ $) NIL)) (-2094 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-1523 (((-586 |#1|) $) NIL)) (-4018 (((-108) $) NIL)) (-2238 (($) 13)) (-2543 ((|#1| $ (-520) |#1|) NIL) ((|#1| $ (-520)) 24) (($ $ (-1131 (-520))) NIL)) (-3690 (($ $ (-520)) NIL) (($ $ (-1131 (-520))) NIL)) (-4159 (((-706) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229))) (((-706) |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-1913 (($ $ $ (-520)) NIL (|has| $ (-6 -4230)))) (-2403 (($ $) NIL)) (-1429 (((-496) $) NIL (|has| |#1| (-561 (-496))))) (-2200 (($ (-586 |#1|)) NIL)) (-4156 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-586 $)) NIL)) (-2188 (((-791) $) NIL (|has| |#1| (-560 (-791))))) (-1662 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-1573 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1557 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1530 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-1565 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1548 (((-108) $ $) NIL (|has| |#1| (-783)))) (-3474 (((-706) $) 9 (|has| $ (-6 -4229)))))
-(((-464 |#1| |#2|) (-19 |#1|) (-1118) (-520)) (T -464))
+((-1253 (($ $) 6)) (-3261 (($ $) 7)) (** (($ $ $) 8)))
+(((-259) (-1196)) (T -259))
+((** (*1 *1 *1 *1) (-4 *1 (-259))) (-3261 (*1 *1 *1) (-4 *1 (-259))) (-1253 (*1 *1 *1) (-4 *1 (-259))))
+(-13 (-10 -8 (-15 -1253 ($ $)) (-15 -3261 ($ $)) (-15 ** ($ $ $))))
+((-2226 (((-587 (-1065 |#1|)) (-1065 |#1|) |#1|) 35)) (-3759 ((|#2| |#2| |#1|) 38)) (-3468 ((|#2| |#2| |#1|) 40)) (-2595 ((|#2| |#2| |#1|) 39)))
+(((-260 |#1| |#2|) (-10 -7 (-15 -3759 (|#2| |#2| |#1|)) (-15 -2595 (|#2| |#2| |#1|)) (-15 -3468 (|#2| |#2| |#1|)) (-15 -2226 ((-587 (-1065 |#1|)) (-1065 |#1|) |#1|))) (-337) (-1156 |#1|)) (T -260))
+((-2226 (*1 *2 *3 *4) (-12 (-4 *4 (-337)) (-5 *2 (-587 (-1065 *4))) (-5 *1 (-260 *4 *5)) (-5 *3 (-1065 *4)) (-4 *5 (-1156 *4)))) (-3468 (*1 *2 *2 *3) (-12 (-4 *3 (-337)) (-5 *1 (-260 *3 *2)) (-4 *2 (-1156 *3)))) (-2595 (*1 *2 *2 *3) (-12 (-4 *3 (-337)) (-5 *1 (-260 *3 *2)) (-4 *2 (-1156 *3)))) (-3759 (*1 *2 *2 *3) (-12 (-4 *3 (-337)) (-5 *1 (-260 *3 *2)) (-4 *2 (-1156 *3)))))
+(-10 -7 (-15 -3759 (|#2| |#2| |#1|)) (-15 -2595 (|#2| |#2| |#1|)) (-15 -3468 (|#2| |#2| |#1|)) (-15 -2226 ((-587 (-1065 |#1|)) (-1065 |#1|) |#1|)))
+((-2544 ((|#2| $ |#1|) 6)))
+(((-261 |#1| |#2|) (-1196) (-1013) (-1119)) (T -261))
+((-2544 (*1 *2 *1 *3) (-12 (-4 *1 (-261 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1119)))))
+(-13 (-10 -8 (-15 -2544 (|t#2| $ |t#1|))))
+((-3849 ((|#3| $ |#2| |#3|) 12)) (-3626 ((|#3| $ |#2|) 10)))
+(((-262 |#1| |#2| |#3|) (-10 -8 (-15 -3849 (|#3| |#1| |#2| |#3|)) (-15 -3626 (|#3| |#1| |#2|))) (-263 |#2| |#3|) (-1013) (-1119)) (T -262))
+NIL
+(-10 -8 (-15 -3849 (|#3| |#1| |#2| |#3|)) (-15 -3626 (|#3| |#1| |#2|)))
+((-2378 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4234)))) (-3849 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4234)))) (-3626 ((|#2| $ |#1|) 11)) (-2544 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12)))
+(((-263 |#1| |#2|) (-1196) (-1013) (-1119)) (T -263))
+((-2544 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-263 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1119)))) (-3626 (*1 *2 *1 *3) (-12 (-4 *1 (-263 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1119)))) (-2378 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4234)) (-4 *1 (-263 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1119)))) (-3849 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4234)) (-4 *1 (-263 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1119)))))
+(-13 (-261 |t#1| |t#2|) (-10 -8 (-15 -2544 (|t#2| $ |t#1| |t#2|)) (-15 -3626 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4234)) (PROGN (-15 -2378 (|t#2| $ |t#1| |t#2|)) (-15 -3849 (|t#2| $ |t#1| |t#2|))) |%noBranch|)))
+(((-261 |#1| |#2|) . T))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) 35)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) 40)) (-2559 (($ $) 38)) (-1733 (((-108) $) NIL)) (-1232 (((-3 $ "failed") $ $) NIL)) (-1389 (((-108) $ $) NIL)) (-2547 (($) NIL T CONST)) (-2277 (($ $ $) 33)) (-3859 (($ |#2| |#3|) 19)) (-1257 (((-3 $ "failed") $) NIL)) (-2253 (($ $ $) NIL)) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) NIL)) (-3996 (((-108) $) NIL)) (-1546 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-2704 ((|#3| $) NIL)) (-2223 (($ $ $) NIL) (($ (-587 $)) NIL)) (-3688 (((-1067) $) NIL)) (-3095 (($ $) 20)) (-4147 (((-1031) $) NIL)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) NIL)) (-2258 (($ $ $) NIL) (($ (-587 $)) NIL)) (-1962 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2230 (((-3 $ "failed") $ $) NIL)) (-3854 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-1396 (((-3 $ "failed") $ $) NIL)) (-4196 (((-707) $) 34)) (-2544 ((|#2| $ |#2|) 42)) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) 24)) (-2189 (((-792) $) NIL) (($ (-521)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-3846 (((-707)) NIL)) (-4210 (((-108) $ $) NIL)) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (-3561 (($) 29 T CONST)) (-3572 (($) 36 T CONST)) (-1531 (((-108) $ $) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) 37)))
+(((-264 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-282) (-10 -8 (-15 -2704 (|#3| $)) (-15 -2189 (|#2| $)) (-15 -3859 ($ |#2| |#3|)) (-15 -1396 ((-3 $ "failed") $ $)) (-15 -1257 ((-3 $ "failed") $)) (-15 -3095 ($ $)) (-15 -2544 (|#2| $ |#2|)))) (-157) (-1141 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -264))
+((-1257 (*1 *1 *1) (|partial| -12 (-4 *2 (-157)) (-5 *1 (-264 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1141 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2704 (*1 *2 *1) (-12 (-4 *3 (-157)) (-4 *2 (-23)) (-5 *1 (-264 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1141 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-2189 (*1 *2 *1) (-12 (-4 *2 (-1141 *3)) (-5 *1 (-264 *3 *2 *4 *5 *6 *7)) (-4 *3 (-157)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-3859 (*1 *1 *2 *3) (-12 (-4 *4 (-157)) (-5 *1 (-264 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1141 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1396 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-157)) (-5 *1 (-264 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1141 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3095 (*1 *1 *1) (-12 (-4 *2 (-157)) (-5 *1 (-264 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1141 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2544 (*1 *2 *1 *2) (-12 (-4 *3 (-157)) (-5 *1 (-264 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1141 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))))
+(-13 (-282) (-10 -8 (-15 -2704 (|#3| $)) (-15 -2189 (|#2| $)) (-15 -3859 ($ |#2| |#3|)) (-15 -1396 ((-3 $ "failed") $ $)) (-15 -1257 ((-3 $ "failed") $)) (-15 -3095 ($ $)) (-15 -2544 (|#2| $ |#2|))))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-1232 (((-3 $ "failed") $ $) 19)) (-2547 (($) 17 T CONST)) (-1257 (((-3 $ "failed") $) 34)) (-3996 (((-108) $) 31)) (-3688 (((-1067) $) 9)) (-4147 (((-1031) $) 10)) (-2189 (((-792) $) 11) (($ (-521)) 28)) (-3846 (((-707)) 29)) (-3505 (($ $ (-850)) 26) (($ $ (-707)) 33)) (-3561 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-707)) 32)) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24)))
+(((-265) (-1196)) (T -265))
+NIL
+(-13 (-970) (-107 $ $) (-10 -7 (-6 -4226)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-561 (-792)) . T) ((-589 $) . T) ((-663) . T) ((-976 $) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T))
+((-2290 (($ (-1084) (-1084) (-1017) $) 15)) (-2070 (($ (-1084) (-587 (-731)) $) 19)) (-4080 (((-587 (-1000)) $) 8)) (-2374 (((-3 (-1017) "failed") (-1084) (-1084) $) 14)) (-3986 (((-3 (-587 (-731)) "failed") (-1084) $) 17)) (-4024 (($) 6)) (-3985 (($) 20)) (-2189 (((-792) $) 24)) (-3593 (($) 21)))
+(((-266) (-13 (-561 (-792)) (-10 -8 (-15 -4024 ($)) (-15 -4080 ((-587 (-1000)) $)) (-15 -2374 ((-3 (-1017) "failed") (-1084) (-1084) $)) (-15 -2290 ($ (-1084) (-1084) (-1017) $)) (-15 -3986 ((-3 (-587 (-731)) "failed") (-1084) $)) (-15 -2070 ($ (-1084) (-587 (-731)) $)) (-15 -3985 ($)) (-15 -3593 ($))))) (T -266))
+((-4024 (*1 *1) (-5 *1 (-266))) (-4080 (*1 *2 *1) (-12 (-5 *2 (-587 (-1000))) (-5 *1 (-266)))) (-2374 (*1 *2 *3 *3 *1) (|partial| -12 (-5 *3 (-1084)) (-5 *2 (-1017)) (-5 *1 (-266)))) (-2290 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-1084)) (-5 *3 (-1017)) (-5 *1 (-266)))) (-3986 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1084)) (-5 *2 (-587 (-731))) (-5 *1 (-266)))) (-2070 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1084)) (-5 *3 (-587 (-731))) (-5 *1 (-266)))) (-3985 (*1 *1) (-5 *1 (-266))) (-3593 (*1 *1) (-5 *1 (-266))))
+(-13 (-561 (-792)) (-10 -8 (-15 -4024 ($)) (-15 -4080 ((-587 (-1000)) $)) (-15 -2374 ((-3 (-1017) "failed") (-1084) (-1084) $)) (-15 -2290 ($ (-1084) (-1084) (-1017) $)) (-15 -3986 ((-3 (-587 (-731)) "failed") (-1084) $)) (-15 -2070 ($ (-1084) (-587 (-731)) $)) (-15 -3985 ($)) (-15 -3593 ($))))
+((-1996 (((-587 (-2 (|:| |eigval| (-3 (-381 (-881 |#1|)) (-1074 (-1084) (-881 |#1|)))) (|:| |geneigvec| (-587 (-627 (-381 (-881 |#1|))))))) (-627 (-381 (-881 |#1|)))) 84)) (-3719 (((-587 (-627 (-381 (-881 |#1|)))) (-2 (|:| |eigval| (-3 (-381 (-881 |#1|)) (-1074 (-1084) (-881 |#1|)))) (|:| |eigmult| (-707)) (|:| |eigvec| (-587 (-627 (-381 (-881 |#1|)))))) (-627 (-381 (-881 |#1|)))) 79) (((-587 (-627 (-381 (-881 |#1|)))) (-3 (-381 (-881 |#1|)) (-1074 (-1084) (-881 |#1|))) (-627 (-381 (-881 |#1|))) (-707) (-707)) 37)) (-2423 (((-587 (-2 (|:| |eigval| (-3 (-381 (-881 |#1|)) (-1074 (-1084) (-881 |#1|)))) (|:| |eigmult| (-707)) (|:| |eigvec| (-587 (-627 (-381 (-881 |#1|))))))) (-627 (-381 (-881 |#1|)))) 81)) (-3663 (((-587 (-627 (-381 (-881 |#1|)))) (-3 (-381 (-881 |#1|)) (-1074 (-1084) (-881 |#1|))) (-627 (-381 (-881 |#1|)))) 61)) (-3817 (((-587 (-3 (-381 (-881 |#1|)) (-1074 (-1084) (-881 |#1|)))) (-627 (-381 (-881 |#1|)))) 60)) (-3110 (((-881 |#1|) (-627 (-381 (-881 |#1|)))) 48) (((-881 |#1|) (-627 (-381 (-881 |#1|))) (-1084)) 49)))
+(((-267 |#1|) (-10 -7 (-15 -3110 ((-881 |#1|) (-627 (-381 (-881 |#1|))) (-1084))) (-15 -3110 ((-881 |#1|) (-627 (-381 (-881 |#1|))))) (-15 -3817 ((-587 (-3 (-381 (-881 |#1|)) (-1074 (-1084) (-881 |#1|)))) (-627 (-381 (-881 |#1|))))) (-15 -3663 ((-587 (-627 (-381 (-881 |#1|)))) (-3 (-381 (-881 |#1|)) (-1074 (-1084) (-881 |#1|))) (-627 (-381 (-881 |#1|))))) (-15 -3719 ((-587 (-627 (-381 (-881 |#1|)))) (-3 (-381 (-881 |#1|)) (-1074 (-1084) (-881 |#1|))) (-627 (-381 (-881 |#1|))) (-707) (-707))) (-15 -3719 ((-587 (-627 (-381 (-881 |#1|)))) (-2 (|:| |eigval| (-3 (-381 (-881 |#1|)) (-1074 (-1084) (-881 |#1|)))) (|:| |eigmult| (-707)) (|:| |eigvec| (-587 (-627 (-381 (-881 |#1|)))))) (-627 (-381 (-881 |#1|))))) (-15 -1996 ((-587 (-2 (|:| |eigval| (-3 (-381 (-881 |#1|)) (-1074 (-1084) (-881 |#1|)))) (|:| |geneigvec| (-587 (-627 (-381 (-881 |#1|))))))) (-627 (-381 (-881 |#1|))))) (-15 -2423 ((-587 (-2 (|:| |eigval| (-3 (-381 (-881 |#1|)) (-1074 (-1084) (-881 |#1|)))) (|:| |eigmult| (-707)) (|:| |eigvec| (-587 (-627 (-381 (-881 |#1|))))))) (-627 (-381 (-881 |#1|)))))) (-425)) (T -267))
+((-2423 (*1 *2 *3) (-12 (-4 *4 (-425)) (-5 *2 (-587 (-2 (|:| |eigval| (-3 (-381 (-881 *4)) (-1074 (-1084) (-881 *4)))) (|:| |eigmult| (-707)) (|:| |eigvec| (-587 (-627 (-381 (-881 *4)))))))) (-5 *1 (-267 *4)) (-5 *3 (-627 (-381 (-881 *4)))))) (-1996 (*1 *2 *3) (-12 (-4 *4 (-425)) (-5 *2 (-587 (-2 (|:| |eigval| (-3 (-381 (-881 *4)) (-1074 (-1084) (-881 *4)))) (|:| |geneigvec| (-587 (-627 (-381 (-881 *4)))))))) (-5 *1 (-267 *4)) (-5 *3 (-627 (-381 (-881 *4)))))) (-3719 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-381 (-881 *5)) (-1074 (-1084) (-881 *5)))) (|:| |eigmult| (-707)) (|:| |eigvec| (-587 *4)))) (-4 *5 (-425)) (-5 *2 (-587 (-627 (-381 (-881 *5))))) (-5 *1 (-267 *5)) (-5 *4 (-627 (-381 (-881 *5)))))) (-3719 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-381 (-881 *6)) (-1074 (-1084) (-881 *6)))) (-5 *5 (-707)) (-4 *6 (-425)) (-5 *2 (-587 (-627 (-381 (-881 *6))))) (-5 *1 (-267 *6)) (-5 *4 (-627 (-381 (-881 *6)))))) (-3663 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-381 (-881 *5)) (-1074 (-1084) (-881 *5)))) (-4 *5 (-425)) (-5 *2 (-587 (-627 (-381 (-881 *5))))) (-5 *1 (-267 *5)) (-5 *4 (-627 (-381 (-881 *5)))))) (-3817 (*1 *2 *3) (-12 (-5 *3 (-627 (-381 (-881 *4)))) (-4 *4 (-425)) (-5 *2 (-587 (-3 (-381 (-881 *4)) (-1074 (-1084) (-881 *4))))) (-5 *1 (-267 *4)))) (-3110 (*1 *2 *3) (-12 (-5 *3 (-627 (-381 (-881 *4)))) (-5 *2 (-881 *4)) (-5 *1 (-267 *4)) (-4 *4 (-425)))) (-3110 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-381 (-881 *5)))) (-5 *4 (-1084)) (-5 *2 (-881 *5)) (-5 *1 (-267 *5)) (-4 *5 (-425)))))
+(-10 -7 (-15 -3110 ((-881 |#1|) (-627 (-381 (-881 |#1|))) (-1084))) (-15 -3110 ((-881 |#1|) (-627 (-381 (-881 |#1|))))) (-15 -3817 ((-587 (-3 (-381 (-881 |#1|)) (-1074 (-1084) (-881 |#1|)))) (-627 (-381 (-881 |#1|))))) (-15 -3663 ((-587 (-627 (-381 (-881 |#1|)))) (-3 (-381 (-881 |#1|)) (-1074 (-1084) (-881 |#1|))) (-627 (-381 (-881 |#1|))))) (-15 -3719 ((-587 (-627 (-381 (-881 |#1|)))) (-3 (-381 (-881 |#1|)) (-1074 (-1084) (-881 |#1|))) (-627 (-381 (-881 |#1|))) (-707) (-707))) (-15 -3719 ((-587 (-627 (-381 (-881 |#1|)))) (-2 (|:| |eigval| (-3 (-381 (-881 |#1|)) (-1074 (-1084) (-881 |#1|)))) (|:| |eigmult| (-707)) (|:| |eigvec| (-587 (-627 (-381 (-881 |#1|)))))) (-627 (-381 (-881 |#1|))))) (-15 -1996 ((-587 (-2 (|:| |eigval| (-3 (-381 (-881 |#1|)) (-1074 (-1084) (-881 |#1|)))) (|:| |geneigvec| (-587 (-627 (-381 (-881 |#1|))))))) (-627 (-381 (-881 |#1|))))) (-15 -2423 ((-587 (-2 (|:| |eigval| (-3 (-381 (-881 |#1|)) (-1074 (-1084) (-881 |#1|)))) (|:| |eigmult| (-707)) (|:| |eigvec| (-587 (-627 (-381 (-881 |#1|))))))) (-627 (-381 (-881 |#1|))))))
+((-1390 (((-269 |#2|) (-1 |#2| |#1|) (-269 |#1|)) 14)))
+(((-268 |#1| |#2|) (-10 -7 (-15 -1390 ((-269 |#2|) (-1 |#2| |#1|) (-269 |#1|)))) (-1119) (-1119)) (T -268))
+((-1390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-269 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-269 *6)) (-5 *1 (-268 *5 *6)))))
+(-10 -7 (-15 -1390 ((-269 |#2|) (-1 |#2| |#1|) (-269 |#1|))))
+((-1415 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-2220 (((-108) $) NIL (|has| |#1| (-21)))) (-3866 (($ $) 22)) (-1232 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3300 (($ $ $) 93 (|has| |#1| (-277)))) (-2547 (($) NIL (-3703 (|has| |#1| (-21)) (|has| |#1| (-663))) CONST)) (-1763 (($ $) 8 (|has| |#1| (-21)))) (-3516 (((-3 $ "failed") $) 68 (|has| |#1| (-663)))) (-3597 ((|#1| $) 21)) (-1257 (((-3 $ "failed") $) 66 (|has| |#1| (-663)))) (-3996 (((-108) $) NIL (|has| |#1| (-663)))) (-1390 (($ (-1 |#1| |#1|) $) 24)) (-3588 ((|#1| $) 9)) (-2725 (($ $) 57 (|has| |#1| (-21)))) (-1474 (((-3 $ "failed") $) 67 (|has| |#1| (-663)))) (-3688 (((-1067) $) NIL (|has| |#1| (-1013)))) (-3095 (($ $) 70 (-3703 (|has| |#1| (-337)) (|has| |#1| (-446))))) (-4147 (((-1031) $) NIL (|has| |#1| (-1013)))) (-3547 (((-587 $) $) 19 (|has| |#1| (-513)))) (-2288 (($ $ $) 34 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 $)) 37 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-1084) |#1|) 27 (|has| |#1| (-482 (-1084) |#1|))) (($ $ (-587 (-1084)) (-587 |#1|)) 31 (|has| |#1| (-482 (-1084) |#1|)))) (-1608 (($ |#1| |#1|) 17)) (-2359 (((-126)) 88 (|has| |#1| (-337)))) (-2156 (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-1084)) 85 (|has| |#1| (-829 (-1084))))) (-1223 (($ $ $) NIL (|has| |#1| (-446)))) (-2674 (($ $ $) NIL (|has| |#1| (-446)))) (-2189 (($ (-521)) NIL (|has| |#1| (-970))) (((-108) $) 45 (|has| |#1| (-1013))) (((-792) $) 44 (|has| |#1| (-1013)))) (-3846 (((-707)) 73 (|has| |#1| (-970)))) (-3505 (($ $ (-521)) NIL (|has| |#1| (-446))) (($ $ (-707)) NIL (|has| |#1| (-663))) (($ $ (-850)) NIL (|has| |#1| (-1025)))) (-3561 (($) 55 (|has| |#1| (-21)) CONST)) (-3572 (($) 63 (|has| |#1| (-663)) CONST)) (-2212 (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-1084)) NIL (|has| |#1| (-829 (-1084))))) (-1531 (($ |#1| |#1|) 20) (((-108) $ $) 40 (|has| |#1| (-1013)))) (-1620 (($ $ |#1|) NIL (|has| |#1| (-337))) (($ $ $) 90 (-3703 (|has| |#1| (-337)) (|has| |#1| (-446))))) (-1612 (($ |#1| $) 53 (|has| |#1| (-21))) (($ $ |#1|) 54 (|has| |#1| (-21))) (($ $ $) 52 (|has| |#1| (-21))) (($ $) 51 (|has| |#1| (-21)))) (-1602 (($ |#1| $) 48 (|has| |#1| (-25))) (($ $ |#1|) 49 (|has| |#1| (-25))) (($ $ $) 47 (|has| |#1| (-25)))) (** (($ $ (-521)) NIL (|has| |#1| (-446))) (($ $ (-707)) NIL (|has| |#1| (-663))) (($ $ (-850)) NIL (|has| |#1| (-1025)))) (* (($ $ |#1|) 61 (|has| |#1| (-1025))) (($ |#1| $) 60 (|has| |#1| (-1025))) (($ $ $) 59 (|has| |#1| (-1025))) (($ (-521) $) 76 (|has| |#1| (-21))) (($ (-707) $) NIL (|has| |#1| (-21))) (($ (-850) $) NIL (|has| |#1| (-25)))))
+(((-269 |#1|) (-13 (-1119) (-10 -8 (-15 -1531 ($ |#1| |#1|)) (-15 -1608 ($ |#1| |#1|)) (-15 -3866 ($ $)) (-15 -3588 (|#1| $)) (-15 -3597 (|#1| $)) (-15 -1390 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-482 (-1084) |#1|)) (-6 (-482 (-1084) |#1|)) |%noBranch|) (IF (|has| |#1| (-1013)) (PROGN (-6 (-1013)) (-6 (-561 (-108))) (IF (|has| |#1| (-284 |#1|)) (PROGN (-15 -2288 ($ $ $)) (-15 -2288 ($ $ (-587 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -1602 ($ |#1| $)) (-15 -1602 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -2725 ($ $)) (-15 -1763 ($ $)) (-15 -1612 ($ |#1| $)) (-15 -1612 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1025)) (PROGN (-6 (-1025)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-663)) (PROGN (-6 (-663)) (-15 -1474 ((-3 $ "failed") $)) (-15 -3516 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-446)) (PROGN (-6 (-446)) (-15 -1474 ((-3 $ "failed") $)) (-15 -3516 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-970)) (PROGN (-6 (-970)) (-6 (-107 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-157)) (-6 (-654 |#1|)) |%noBranch|) (IF (|has| |#1| (-513)) (-15 -3547 ((-587 $) $)) |%noBranch|) (IF (|has| |#1| (-829 (-1084))) (-6 (-829 (-1084))) |%noBranch|) (IF (|has| |#1| (-337)) (PROGN (-6 (-1172 |#1|)) (-15 -1620 ($ $ $)) (-15 -3095 ($ $))) |%noBranch|) (IF (|has| |#1| (-277)) (-15 -3300 ($ $ $)) |%noBranch|))) (-1119)) (T -269))
+((-1531 (*1 *1 *2 *2) (-12 (-5 *1 (-269 *2)) (-4 *2 (-1119)))) (-1608 (*1 *1 *2 *2) (-12 (-5 *1 (-269 *2)) (-4 *2 (-1119)))) (-3866 (*1 *1 *1) (-12 (-5 *1 (-269 *2)) (-4 *2 (-1119)))) (-3588 (*1 *2 *1) (-12 (-5 *1 (-269 *2)) (-4 *2 (-1119)))) (-3597 (*1 *2 *1) (-12 (-5 *1 (-269 *2)) (-4 *2 (-1119)))) (-1390 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1119)) (-5 *1 (-269 *3)))) (-2288 (*1 *1 *1 *1) (-12 (-4 *2 (-284 *2)) (-4 *2 (-1013)) (-4 *2 (-1119)) (-5 *1 (-269 *2)))) (-2288 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-269 *3))) (-4 *3 (-284 *3)) (-4 *3 (-1013)) (-4 *3 (-1119)) (-5 *1 (-269 *3)))) (-1602 (*1 *1 *2 *1) (-12 (-5 *1 (-269 *2)) (-4 *2 (-25)) (-4 *2 (-1119)))) (-1602 (*1 *1 *1 *2) (-12 (-5 *1 (-269 *2)) (-4 *2 (-25)) (-4 *2 (-1119)))) (-2725 (*1 *1 *1) (-12 (-5 *1 (-269 *2)) (-4 *2 (-21)) (-4 *2 (-1119)))) (-1763 (*1 *1 *1) (-12 (-5 *1 (-269 *2)) (-4 *2 (-21)) (-4 *2 (-1119)))) (-1612 (*1 *1 *2 *1) (-12 (-5 *1 (-269 *2)) (-4 *2 (-21)) (-4 *2 (-1119)))) (-1612 (*1 *1 *1 *2) (-12 (-5 *1 (-269 *2)) (-4 *2 (-21)) (-4 *2 (-1119)))) (-1474 (*1 *1 *1) (|partial| -12 (-5 *1 (-269 *2)) (-4 *2 (-663)) (-4 *2 (-1119)))) (-3516 (*1 *1 *1) (|partial| -12 (-5 *1 (-269 *2)) (-4 *2 (-663)) (-4 *2 (-1119)))) (-3547 (*1 *2 *1) (-12 (-5 *2 (-587 (-269 *3))) (-5 *1 (-269 *3)) (-4 *3 (-513)) (-4 *3 (-1119)))) (-3300 (*1 *1 *1 *1) (-12 (-5 *1 (-269 *2)) (-4 *2 (-277)) (-4 *2 (-1119)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-269 *2)) (-4 *2 (-1025)) (-4 *2 (-1119)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-269 *2)) (-4 *2 (-1025)) (-4 *2 (-1119)))) (-1620 (*1 *1 *1 *1) (-3703 (-12 (-5 *1 (-269 *2)) (-4 *2 (-337)) (-4 *2 (-1119))) (-12 (-5 *1 (-269 *2)) (-4 *2 (-446)) (-4 *2 (-1119))))) (-3095 (*1 *1 *1) (-3703 (-12 (-5 *1 (-269 *2)) (-4 *2 (-337)) (-4 *2 (-1119))) (-12 (-5 *1 (-269 *2)) (-4 *2 (-446)) (-4 *2 (-1119))))))
+(-13 (-1119) (-10 -8 (-15 -1531 ($ |#1| |#1|)) (-15 -1608 ($ |#1| |#1|)) (-15 -3866 ($ $)) (-15 -3588 (|#1| $)) (-15 -3597 (|#1| $)) (-15 -1390 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-482 (-1084) |#1|)) (-6 (-482 (-1084) |#1|)) |%noBranch|) (IF (|has| |#1| (-1013)) (PROGN (-6 (-1013)) (-6 (-561 (-108))) (IF (|has| |#1| (-284 |#1|)) (PROGN (-15 -2288 ($ $ $)) (-15 -2288 ($ $ (-587 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -1602 ($ |#1| $)) (-15 -1602 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -2725 ($ $)) (-15 -1763 ($ $)) (-15 -1612 ($ |#1| $)) (-15 -1612 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1025)) (PROGN (-6 (-1025)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-663)) (PROGN (-6 (-663)) (-15 -1474 ((-3 $ "failed") $)) (-15 -3516 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-446)) (PROGN (-6 (-446)) (-15 -1474 ((-3 $ "failed") $)) (-15 -3516 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-970)) (PROGN (-6 (-970)) (-6 (-107 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-157)) (-6 (-654 |#1|)) |%noBranch|) (IF (|has| |#1| (-513)) (-15 -3547 ((-587 $) $)) |%noBranch|) (IF (|has| |#1| (-829 (-1084))) (-6 (-829 (-1084))) |%noBranch|) (IF (|has| |#1| (-337)) (PROGN (-6 (-1172 |#1|)) (-15 -1620 ($ $ $)) (-15 -3095 ($ $))) |%noBranch|) (IF (|has| |#1| (-277)) (-15 -3300 ($ $ $)) |%noBranch|)))
+((-1415 (((-108) $ $) NIL (-3703 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)) (|has| |#2| (-1013))))) (-1800 (($) NIL) (($ (-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) NIL)) (-1903 (((-1170) $ |#1| |#1|) NIL (|has| $ (-6 -4234)))) (-2978 (((-108) $ (-707)) NIL)) (-2378 ((|#2| $ |#1| |#2|) NIL)) (-4098 (($ (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4233)))) (-1628 (($ (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4233)))) (-2748 (((-3 |#2| "failed") |#1| $) NIL)) (-2547 (($) NIL T CONST)) (-2332 (($ $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013))))) (-3023 (($ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) NIL (|has| $ (-6 -4233))) (($ (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-3 |#2| "failed") |#1| $) NIL)) (-1422 (($ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (($ (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4233)))) (-3859 (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) NIL (|has| $ (-6 -4233))) (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4233)))) (-3849 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4234)))) (-3626 ((|#2| $ |#1|) NIL)) (-3831 (((-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-587 |#2|) $) NIL (|has| $ (-6 -4233)))) (-2139 (((-108) $ (-707)) NIL)) (-2826 ((|#1| $) NIL (|has| |#1| (-784)))) (-3757 (((-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-587 |#2|) $) NIL (|has| $ (-6 -4233)))) (-2221 (((-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#2| (-1013))))) (-2597 ((|#1| $) NIL (|has| |#1| (-784)))) (-3833 (($ (-1 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4234))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4234)))) (-1390 (($ (-1 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3574 (((-108) $ (-707)) NIL)) (-3688 (((-1067) $) NIL (-3703 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)) (|has| |#2| (-1013))))) (-2961 (((-587 |#1|) $) NIL)) (-2781 (((-108) |#1| $) NIL)) (-2511 (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) NIL)) (-3373 (($ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) NIL)) (-1668 (((-587 |#1|) $) NIL)) (-2941 (((-108) |#1| $) NIL)) (-4147 (((-1031) $) NIL (-3703 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)) (|has| |#2| (-1013))))) (-2293 ((|#2| $) NIL (|has| |#1| (-784)))) (-3620 (((-3 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) "failed") (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL)) (-3016 (($ $ |#2|) NIL (|has| $ (-6 -4234)))) (-2166 (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) NIL)) (-1789 (((-108) (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))))) NIL (-12 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-284 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (($ $ (-269 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) NIL (-12 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-284 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (($ $ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) NIL (-12 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-284 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (($ $ (-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) (-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) NIL (-12 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-284 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (($ $ (-587 |#2|) (-587 |#2|)) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ (-269 |#2|)) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ (-587 (-269 |#2|))) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))))) (-2488 (((-108) $ $) NIL)) (-3821 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#2| (-1013))))) (-2489 (((-587 |#2|) $) NIL)) (-3462 (((-108) $) NIL)) (-4024 (($) NIL)) (-2544 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1784 (($) NIL) (($ (-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) NIL)) (-4163 (((-707) (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-707) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (((-707) |#2| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#2| (-1013)))) (((-707) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4233)))) (-2404 (($ $) NIL)) (-1430 (((-497) $) NIL (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-562 (-497))))) (-2201 (($ (-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) NIL)) (-2189 (((-792) $) NIL (-3703 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-561 (-792))) (|has| |#2| (-561 (-792)))))) (-4091 (($ (-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) NIL)) (-3049 (((-108) (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4233)))) (-1531 (((-108) $ $) NIL (-3703 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)) (|has| |#2| (-1013))))) (-3475 (((-707) $) NIL (|has| $ (-6 -4233)))))
+(((-270 |#1| |#2|) (-13 (-1096 |#1| |#2|) (-10 -7 (-6 -4233))) (-1013) (-1013)) (T -270))
+NIL
+(-13 (-1096 |#1| |#2|) (-10 -7 (-6 -4233)))
+((-2968 (((-286) (-1067) (-587 (-1067))) 16) (((-286) (-1067) (-1067)) 15) (((-286) (-587 (-1067))) 14) (((-286) (-1067)) 12)))
+(((-271) (-10 -7 (-15 -2968 ((-286) (-1067))) (-15 -2968 ((-286) (-587 (-1067)))) (-15 -2968 ((-286) (-1067) (-1067))) (-15 -2968 ((-286) (-1067) (-587 (-1067)))))) (T -271))
+((-2968 (*1 *2 *3 *4) (-12 (-5 *4 (-587 (-1067))) (-5 *3 (-1067)) (-5 *2 (-286)) (-5 *1 (-271)))) (-2968 (*1 *2 *3 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-286)) (-5 *1 (-271)))) (-2968 (*1 *2 *3) (-12 (-5 *3 (-587 (-1067))) (-5 *2 (-286)) (-5 *1 (-271)))) (-2968 (*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-286)) (-5 *1 (-271)))))
+(-10 -7 (-15 -2968 ((-286) (-1067))) (-15 -2968 ((-286) (-587 (-1067)))) (-15 -2968 ((-286) (-1067) (-1067))) (-15 -2968 ((-286) (-1067) (-587 (-1067)))))
+((-1390 ((|#2| (-1 |#2| |#1|) (-1067) (-560 |#1|)) 17)))
+(((-272 |#1| |#2|) (-10 -7 (-15 -1390 (|#2| (-1 |#2| |#1|) (-1067) (-560 |#1|)))) (-277) (-1119)) (T -272))
+((-1390 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1067)) (-5 *5 (-560 *6)) (-4 *6 (-277)) (-4 *2 (-1119)) (-5 *1 (-272 *6 *2)))))
+(-10 -7 (-15 -1390 (|#2| (-1 |#2| |#1|) (-1067) (-560 |#1|))))
+((-1390 ((|#2| (-1 |#2| |#1|) (-560 |#1|)) 17)))
+(((-273 |#1| |#2|) (-10 -7 (-15 -1390 (|#2| (-1 |#2| |#1|) (-560 |#1|)))) (-277) (-277)) (T -273))
+((-1390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-560 *5)) (-4 *5 (-277)) (-4 *2 (-277)) (-5 *1 (-273 *5 *2)))))
+(-10 -7 (-15 -1390 (|#2| (-1 |#2| |#1|) (-560 |#1|))))
+((-1844 (((-108) (-202)) 10)))
+(((-274 |#1| |#2|) (-10 -7 (-15 -1844 ((-108) (-202)))) (-202) (-202)) (T -274))
+((-1844 (*1 *2 *3) (-12 (-5 *3 (-202)) (-5 *2 (-108)) (-5 *1 (-274 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
+(-10 -7 (-15 -1844 ((-108) (-202))))
+((-3102 (((-1065 (-202)) (-290 (-202)) (-587 (-1084)) (-1008 (-777 (-202)))) 88)) (-3487 (((-1065 (-202)) (-1165 (-290 (-202))) (-587 (-1084)) (-1008 (-777 (-202)))) 103) (((-1065 (-202)) (-290 (-202)) (-587 (-1084)) (-1008 (-777 (-202)))) 58)) (-1813 (((-587 (-1067)) (-1065 (-202))) NIL)) (-2478 (((-587 (-202)) (-290 (-202)) (-1084) (-1008 (-777 (-202)))) 55)) (-2864 (((-587 (-202)) (-881 (-381 (-521))) (-1084) (-1008 (-777 (-202)))) 47)) (-2019 (((-587 (-1067)) (-587 (-202))) NIL)) (-1584 (((-202) (-1008 (-777 (-202)))) 23)) (-3346 (((-202) (-1008 (-777 (-202)))) 24)) (-1598 (((-108) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 51)) (-1975 (((-1067) (-202)) NIL)))
+(((-275) (-10 -7 (-15 -1584 ((-202) (-1008 (-777 (-202))))) (-15 -3346 ((-202) (-1008 (-777 (-202))))) (-15 -1598 ((-108) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -2478 ((-587 (-202)) (-290 (-202)) (-1084) (-1008 (-777 (-202))))) (-15 -3102 ((-1065 (-202)) (-290 (-202)) (-587 (-1084)) (-1008 (-777 (-202))))) (-15 -3487 ((-1065 (-202)) (-290 (-202)) (-587 (-1084)) (-1008 (-777 (-202))))) (-15 -3487 ((-1065 (-202)) (-1165 (-290 (-202))) (-587 (-1084)) (-1008 (-777 (-202))))) (-15 -2864 ((-587 (-202)) (-881 (-381 (-521))) (-1084) (-1008 (-777 (-202))))) (-15 -1975 ((-1067) (-202))) (-15 -2019 ((-587 (-1067)) (-587 (-202)))) (-15 -1813 ((-587 (-1067)) (-1065 (-202)))))) (T -275))
+((-1813 (*1 *2 *3) (-12 (-5 *3 (-1065 (-202))) (-5 *2 (-587 (-1067))) (-5 *1 (-275)))) (-2019 (*1 *2 *3) (-12 (-5 *3 (-587 (-202))) (-5 *2 (-587 (-1067))) (-5 *1 (-275)))) (-1975 (*1 *2 *3) (-12 (-5 *3 (-202)) (-5 *2 (-1067)) (-5 *1 (-275)))) (-2864 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-881 (-381 (-521)))) (-5 *4 (-1084)) (-5 *5 (-1008 (-777 (-202)))) (-5 *2 (-587 (-202))) (-5 *1 (-275)))) (-3487 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1165 (-290 (-202)))) (-5 *4 (-587 (-1084))) (-5 *5 (-1008 (-777 (-202)))) (-5 *2 (-1065 (-202))) (-5 *1 (-275)))) (-3487 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-290 (-202))) (-5 *4 (-587 (-1084))) (-5 *5 (-1008 (-777 (-202)))) (-5 *2 (-1065 (-202))) (-5 *1 (-275)))) (-3102 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-290 (-202))) (-5 *4 (-587 (-1084))) (-5 *5 (-1008 (-777 (-202)))) (-5 *2 (-1065 (-202))) (-5 *1 (-275)))) (-2478 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-290 (-202))) (-5 *4 (-1084)) (-5 *5 (-1008 (-777 (-202)))) (-5 *2 (-587 (-202))) (-5 *1 (-275)))) (-1598 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-108)) (-5 *1 (-275)))) (-3346 (*1 *2 *3) (-12 (-5 *3 (-1008 (-777 (-202)))) (-5 *2 (-202)) (-5 *1 (-275)))) (-1584 (*1 *2 *3) (-12 (-5 *3 (-1008 (-777 (-202)))) (-5 *2 (-202)) (-5 *1 (-275)))))
+(-10 -7 (-15 -1584 ((-202) (-1008 (-777 (-202))))) (-15 -3346 ((-202) (-1008 (-777 (-202))))) (-15 -1598 ((-108) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -2478 ((-587 (-202)) (-290 (-202)) (-1084) (-1008 (-777 (-202))))) (-15 -3102 ((-1065 (-202)) (-290 (-202)) (-587 (-1084)) (-1008 (-777 (-202))))) (-15 -3487 ((-1065 (-202)) (-290 (-202)) (-587 (-1084)) (-1008 (-777 (-202))))) (-15 -3487 ((-1065 (-202)) (-1165 (-290 (-202))) (-587 (-1084)) (-1008 (-777 (-202))))) (-15 -2864 ((-587 (-202)) (-881 (-381 (-521))) (-1084) (-1008 (-777 (-202))))) (-15 -1975 ((-1067) (-202))) (-15 -2019 ((-587 (-1067)) (-587 (-202)))) (-15 -1813 ((-587 (-1067)) (-1065 (-202)))))
+((-1884 (((-587 (-560 $)) $) 28)) (-3300 (($ $ (-269 $)) 81) (($ $ (-587 (-269 $))) 121) (($ $ (-587 (-560 $)) (-587 $)) NIL)) (-1297 (((-3 (-560 $) "failed") $) 111)) (-1483 (((-560 $) $) 110)) (-3072 (($ $) 19) (($ (-587 $)) 55)) (-1833 (((-587 (-110)) $) 37)) (-2727 (((-110) (-110)) 91)) (-1255 (((-108) $) 129)) (-1390 (($ (-1 $ $) (-560 $)) 89)) (-2018 (((-3 (-560 $) "failed") $) 93)) (-2905 (($ (-110) $) 61) (($ (-110) (-587 $)) 99)) (-1705 (((-108) $ (-110)) 115) (((-108) $ (-1084)) 114)) (-4150 (((-707) $) 45)) (-3899 (((-108) $ $) 59) (((-108) $ (-1084)) 50)) (-3550 (((-108) $) 127)) (-2288 (($ $ (-560 $) $) NIL) (($ $ (-587 (-560 $)) (-587 $)) NIL) (($ $ (-587 (-269 $))) 119) (($ $ (-269 $)) NIL) (($ $ $ $) NIL) (($ $ (-587 $) (-587 $)) NIL) (($ $ (-587 (-1084)) (-587 (-1 $ $))) 84) (($ $ (-587 (-1084)) (-587 (-1 $ (-587 $)))) NIL) (($ $ (-1084) (-1 $ (-587 $))) 69) (($ $ (-1084) (-1 $ $)) 75) (($ $ (-587 (-110)) (-587 (-1 $ $))) 83) (($ $ (-587 (-110)) (-587 (-1 $ (-587 $)))) 85) (($ $ (-110) (-1 $ (-587 $))) 71) (($ $ (-110) (-1 $ $)) 77)) (-2544 (($ (-110) $) 62) (($ (-110) $ $) 63) (($ (-110) $ $ $) 64) (($ (-110) $ $ $ $) 65) (($ (-110) (-587 $)) 107)) (-4016 (($ $) 52) (($ $ $) 117)) (-2320 (($ $) 17) (($ (-587 $)) 54)) (-1455 (((-108) (-110)) 22)))
+(((-276 |#1|) (-10 -8 (-15 -1255 ((-108) |#1|)) (-15 -3550 ((-108) |#1|)) (-15 -2288 (|#1| |#1| (-110) (-1 |#1| |#1|))) (-15 -2288 (|#1| |#1| (-110) (-1 |#1| (-587 |#1|)))) (-15 -2288 (|#1| |#1| (-587 (-110)) (-587 (-1 |#1| (-587 |#1|))))) (-15 -2288 (|#1| |#1| (-587 (-110)) (-587 (-1 |#1| |#1|)))) (-15 -2288 (|#1| |#1| (-1084) (-1 |#1| |#1|))) (-15 -2288 (|#1| |#1| (-1084) (-1 |#1| (-587 |#1|)))) (-15 -2288 (|#1| |#1| (-587 (-1084)) (-587 (-1 |#1| (-587 |#1|))))) (-15 -2288 (|#1| |#1| (-587 (-1084)) (-587 (-1 |#1| |#1|)))) (-15 -3899 ((-108) |#1| (-1084))) (-15 -3899 ((-108) |#1| |#1|)) (-15 -1390 (|#1| (-1 |#1| |#1|) (-560 |#1|))) (-15 -2905 (|#1| (-110) (-587 |#1|))) (-15 -2905 (|#1| (-110) |#1|)) (-15 -1705 ((-108) |#1| (-1084))) (-15 -1705 ((-108) |#1| (-110))) (-15 -1455 ((-108) (-110))) (-15 -2727 ((-110) (-110))) (-15 -1833 ((-587 (-110)) |#1|)) (-15 -1884 ((-587 (-560 |#1|)) |#1|)) (-15 -2018 ((-3 (-560 |#1|) "failed") |#1|)) (-15 -4150 ((-707) |#1|)) (-15 -4016 (|#1| |#1| |#1|)) (-15 -4016 (|#1| |#1|)) (-15 -3072 (|#1| (-587 |#1|))) (-15 -3072 (|#1| |#1|)) (-15 -2320 (|#1| (-587 |#1|))) (-15 -2320 (|#1| |#1|)) (-15 -3300 (|#1| |#1| (-587 (-560 |#1|)) (-587 |#1|))) (-15 -3300 (|#1| |#1| (-587 (-269 |#1|)))) (-15 -3300 (|#1| |#1| (-269 |#1|))) (-15 -2544 (|#1| (-110) (-587 |#1|))) (-15 -2544 (|#1| (-110) |#1| |#1| |#1| |#1|)) (-15 -2544 (|#1| (-110) |#1| |#1| |#1|)) (-15 -2544 (|#1| (-110) |#1| |#1|)) (-15 -2544 (|#1| (-110) |#1|)) (-15 -2288 (|#1| |#1| (-587 |#1|) (-587 |#1|))) (-15 -2288 (|#1| |#1| |#1| |#1|)) (-15 -2288 (|#1| |#1| (-269 |#1|))) (-15 -2288 (|#1| |#1| (-587 (-269 |#1|)))) (-15 -2288 (|#1| |#1| (-587 (-560 |#1|)) (-587 |#1|))) (-15 -2288 (|#1| |#1| (-560 |#1|) |#1|)) (-15 -1483 ((-560 |#1|) |#1|)) (-15 -1297 ((-3 (-560 |#1|) "failed") |#1|))) (-277)) (T -276))
+((-2727 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-276 *3)) (-4 *3 (-277)))) (-1455 (*1 *2 *3) (-12 (-5 *3 (-110)) (-5 *2 (-108)) (-5 *1 (-276 *4)) (-4 *4 (-277)))))
+(-10 -8 (-15 -1255 ((-108) |#1|)) (-15 -3550 ((-108) |#1|)) (-15 -2288 (|#1| |#1| (-110) (-1 |#1| |#1|))) (-15 -2288 (|#1| |#1| (-110) (-1 |#1| (-587 |#1|)))) (-15 -2288 (|#1| |#1| (-587 (-110)) (-587 (-1 |#1| (-587 |#1|))))) (-15 -2288 (|#1| |#1| (-587 (-110)) (-587 (-1 |#1| |#1|)))) (-15 -2288 (|#1| |#1| (-1084) (-1 |#1| |#1|))) (-15 -2288 (|#1| |#1| (-1084) (-1 |#1| (-587 |#1|)))) (-15 -2288 (|#1| |#1| (-587 (-1084)) (-587 (-1 |#1| (-587 |#1|))))) (-15 -2288 (|#1| |#1| (-587 (-1084)) (-587 (-1 |#1| |#1|)))) (-15 -3899 ((-108) |#1| (-1084))) (-15 -3899 ((-108) |#1| |#1|)) (-15 -1390 (|#1| (-1 |#1| |#1|) (-560 |#1|))) (-15 -2905 (|#1| (-110) (-587 |#1|))) (-15 -2905 (|#1| (-110) |#1|)) (-15 -1705 ((-108) |#1| (-1084))) (-15 -1705 ((-108) |#1| (-110))) (-15 -1455 ((-108) (-110))) (-15 -2727 ((-110) (-110))) (-15 -1833 ((-587 (-110)) |#1|)) (-15 -1884 ((-587 (-560 |#1|)) |#1|)) (-15 -2018 ((-3 (-560 |#1|) "failed") |#1|)) (-15 -4150 ((-707) |#1|)) (-15 -4016 (|#1| |#1| |#1|)) (-15 -4016 (|#1| |#1|)) (-15 -3072 (|#1| (-587 |#1|))) (-15 -3072 (|#1| |#1|)) (-15 -2320 (|#1| (-587 |#1|))) (-15 -2320 (|#1| |#1|)) (-15 -3300 (|#1| |#1| (-587 (-560 |#1|)) (-587 |#1|))) (-15 -3300 (|#1| |#1| (-587 (-269 |#1|)))) (-15 -3300 (|#1| |#1| (-269 |#1|))) (-15 -2544 (|#1| (-110) (-587 |#1|))) (-15 -2544 (|#1| (-110) |#1| |#1| |#1| |#1|)) (-15 -2544 (|#1| (-110) |#1| |#1| |#1|)) (-15 -2544 (|#1| (-110) |#1| |#1|)) (-15 -2544 (|#1| (-110) |#1|)) (-15 -2288 (|#1| |#1| (-587 |#1|) (-587 |#1|))) (-15 -2288 (|#1| |#1| |#1| |#1|)) (-15 -2288 (|#1| |#1| (-269 |#1|))) (-15 -2288 (|#1| |#1| (-587 (-269 |#1|)))) (-15 -2288 (|#1| |#1| (-587 (-560 |#1|)) (-587 |#1|))) (-15 -2288 (|#1| |#1| (-560 |#1|) |#1|)) (-15 -1483 ((-560 |#1|) |#1|)) (-15 -1297 ((-3 (-560 |#1|) "failed") |#1|)))
+((-1415 (((-108) $ $) 7)) (-1884 (((-587 (-560 $)) $) 44)) (-3300 (($ $ (-269 $)) 56) (($ $ (-587 (-269 $))) 55) (($ $ (-587 (-560 $)) (-587 $)) 54)) (-1297 (((-3 (-560 $) "failed") $) 69)) (-1483 (((-560 $) $) 68)) (-3072 (($ $) 51) (($ (-587 $)) 50)) (-1833 (((-587 (-110)) $) 43)) (-2727 (((-110) (-110)) 42)) (-1255 (((-108) $) 22 (|has| $ (-961 (-521))))) (-2527 (((-1080 $) (-560 $)) 25 (|has| $ (-970)))) (-2810 (($ $ $) 13)) (-2446 (($ $ $) 14)) (-1390 (($ (-1 $ $) (-560 $)) 36)) (-2018 (((-3 (-560 $) "failed") $) 46)) (-3688 (((-1067) $) 9)) (-1266 (((-587 (-560 $)) $) 45)) (-2905 (($ (-110) $) 38) (($ (-110) (-587 $)) 37)) (-1705 (((-108) $ (-110)) 40) (((-108) $ (-1084)) 39)) (-4150 (((-707) $) 47)) (-4147 (((-1031) $) 10)) (-3899 (((-108) $ $) 35) (((-108) $ (-1084)) 34)) (-3550 (((-108) $) 23 (|has| $ (-961 (-521))))) (-2288 (($ $ (-560 $) $) 67) (($ $ (-587 (-560 $)) (-587 $)) 66) (($ $ (-587 (-269 $))) 65) (($ $ (-269 $)) 64) (($ $ $ $) 63) (($ $ (-587 $) (-587 $)) 62) (($ $ (-587 (-1084)) (-587 (-1 $ $))) 33) (($ $ (-587 (-1084)) (-587 (-1 $ (-587 $)))) 32) (($ $ (-1084) (-1 $ (-587 $))) 31) (($ $ (-1084) (-1 $ $)) 30) (($ $ (-587 (-110)) (-587 (-1 $ $))) 29) (($ $ (-587 (-110)) (-587 (-1 $ (-587 $)))) 28) (($ $ (-110) (-1 $ (-587 $))) 27) (($ $ (-110) (-1 $ $)) 26)) (-2544 (($ (-110) $) 61) (($ (-110) $ $) 60) (($ (-110) $ $ $) 59) (($ (-110) $ $ $ $) 58) (($ (-110) (-587 $)) 57)) (-4016 (($ $) 49) (($ $ $) 48)) (-2879 (($ $) 24 (|has| $ (-970)))) (-2189 (((-792) $) 11) (($ (-560 $)) 70)) (-2320 (($ $) 53) (($ (-587 $)) 52)) (-1455 (((-108) (-110)) 41)) (-1574 (((-108) $ $) 16)) (-1558 (((-108) $ $) 17)) (-1531 (((-108) $ $) 6)) (-1566 (((-108) $ $) 15)) (-1549 (((-108) $ $) 18)))
+(((-277) (-1196)) (T -277))
+((-2544 (*1 *1 *2 *1) (-12 (-4 *1 (-277)) (-5 *2 (-110)))) (-2544 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-277)) (-5 *2 (-110)))) (-2544 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-277)) (-5 *2 (-110)))) (-2544 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-277)) (-5 *2 (-110)))) (-2544 (*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-587 *1)) (-4 *1 (-277)))) (-3300 (*1 *1 *1 *2) (-12 (-5 *2 (-269 *1)) (-4 *1 (-277)))) (-3300 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-269 *1))) (-4 *1 (-277)))) (-3300 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-587 (-560 *1))) (-5 *3 (-587 *1)) (-4 *1 (-277)))) (-2320 (*1 *1 *1) (-4 *1 (-277))) (-2320 (*1 *1 *2) (-12 (-5 *2 (-587 *1)) (-4 *1 (-277)))) (-3072 (*1 *1 *1) (-4 *1 (-277))) (-3072 (*1 *1 *2) (-12 (-5 *2 (-587 *1)) (-4 *1 (-277)))) (-4016 (*1 *1 *1) (-4 *1 (-277))) (-4016 (*1 *1 *1 *1) (-4 *1 (-277))) (-4150 (*1 *2 *1) (-12 (-4 *1 (-277)) (-5 *2 (-707)))) (-2018 (*1 *2 *1) (|partial| -12 (-5 *2 (-560 *1)) (-4 *1 (-277)))) (-1266 (*1 *2 *1) (-12 (-5 *2 (-587 (-560 *1))) (-4 *1 (-277)))) (-1884 (*1 *2 *1) (-12 (-5 *2 (-587 (-560 *1))) (-4 *1 (-277)))) (-1833 (*1 *2 *1) (-12 (-4 *1 (-277)) (-5 *2 (-587 (-110))))) (-2727 (*1 *2 *2) (-12 (-4 *1 (-277)) (-5 *2 (-110)))) (-1455 (*1 *2 *3) (-12 (-4 *1 (-277)) (-5 *3 (-110)) (-5 *2 (-108)))) (-1705 (*1 *2 *1 *3) (-12 (-4 *1 (-277)) (-5 *3 (-110)) (-5 *2 (-108)))) (-1705 (*1 *2 *1 *3) (-12 (-4 *1 (-277)) (-5 *3 (-1084)) (-5 *2 (-108)))) (-2905 (*1 *1 *2 *1) (-12 (-4 *1 (-277)) (-5 *2 (-110)))) (-2905 (*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-587 *1)) (-4 *1 (-277)))) (-1390 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-560 *1)) (-4 *1 (-277)))) (-3899 (*1 *2 *1 *1) (-12 (-4 *1 (-277)) (-5 *2 (-108)))) (-3899 (*1 *2 *1 *3) (-12 (-4 *1 (-277)) (-5 *3 (-1084)) (-5 *2 (-108)))) (-2288 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-587 (-1084))) (-5 *3 (-587 (-1 *1 *1))) (-4 *1 (-277)))) (-2288 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-587 (-1084))) (-5 *3 (-587 (-1 *1 (-587 *1)))) (-4 *1 (-277)))) (-2288 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-1 *1 (-587 *1))) (-4 *1 (-277)))) (-2288 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-1 *1 *1)) (-4 *1 (-277)))) (-2288 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-587 (-110))) (-5 *3 (-587 (-1 *1 *1))) (-4 *1 (-277)))) (-2288 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-587 (-110))) (-5 *3 (-587 (-1 *1 (-587 *1)))) (-4 *1 (-277)))) (-2288 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *1 (-587 *1))) (-4 *1 (-277)))) (-2288 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *1 *1)) (-4 *1 (-277)))) (-2527 (*1 *2 *3) (-12 (-5 *3 (-560 *1)) (-4 *1 (-970)) (-4 *1 (-277)) (-5 *2 (-1080 *1)))) (-2879 (*1 *1 *1) (-12 (-4 *1 (-970)) (-4 *1 (-277)))) (-3550 (*1 *2 *1) (-12 (-4 *1 (-961 (-521))) (-4 *1 (-277)) (-5 *2 (-108)))) (-1255 (*1 *2 *1) (-12 (-4 *1 (-961 (-521))) (-4 *1 (-277)) (-5 *2 (-108)))))
+(-13 (-784) (-961 (-560 $)) (-482 (-560 $) $) (-284 $) (-10 -8 (-15 -2544 ($ (-110) $)) (-15 -2544 ($ (-110) $ $)) (-15 -2544 ($ (-110) $ $ $)) (-15 -2544 ($ (-110) $ $ $ $)) (-15 -2544 ($ (-110) (-587 $))) (-15 -3300 ($ $ (-269 $))) (-15 -3300 ($ $ (-587 (-269 $)))) (-15 -3300 ($ $ (-587 (-560 $)) (-587 $))) (-15 -2320 ($ $)) (-15 -2320 ($ (-587 $))) (-15 -3072 ($ $)) (-15 -3072 ($ (-587 $))) (-15 -4016 ($ $)) (-15 -4016 ($ $ $)) (-15 -4150 ((-707) $)) (-15 -2018 ((-3 (-560 $) "failed") $)) (-15 -1266 ((-587 (-560 $)) $)) (-15 -1884 ((-587 (-560 $)) $)) (-15 -1833 ((-587 (-110)) $)) (-15 -2727 ((-110) (-110))) (-15 -1455 ((-108) (-110))) (-15 -1705 ((-108) $ (-110))) (-15 -1705 ((-108) $ (-1084))) (-15 -2905 ($ (-110) $)) (-15 -2905 ($ (-110) (-587 $))) (-15 -1390 ($ (-1 $ $) (-560 $))) (-15 -3899 ((-108) $ $)) (-15 -3899 ((-108) $ (-1084))) (-15 -2288 ($ $ (-587 (-1084)) (-587 (-1 $ $)))) (-15 -2288 ($ $ (-587 (-1084)) (-587 (-1 $ (-587 $))))) (-15 -2288 ($ $ (-1084) (-1 $ (-587 $)))) (-15 -2288 ($ $ (-1084) (-1 $ $))) (-15 -2288 ($ $ (-587 (-110)) (-587 (-1 $ $)))) (-15 -2288 ($ $ (-587 (-110)) (-587 (-1 $ (-587 $))))) (-15 -2288 ($ $ (-110) (-1 $ (-587 $)))) (-15 -2288 ($ $ (-110) (-1 $ $))) (IF (|has| $ (-970)) (PROGN (-15 -2527 ((-1080 $) (-560 $))) (-15 -2879 ($ $))) |%noBranch|) (IF (|has| $ (-961 (-521))) (PROGN (-15 -3550 ((-108) $)) (-15 -1255 ((-108) $))) |%noBranch|)))
+(((-97) . T) ((-561 (-792)) . T) ((-284 $) . T) ((-482 (-560 $) $) . T) ((-482 $ $) . T) ((-784) . T) ((-961 (-560 $)) . T) ((-1013) . T))
+((-3419 (((-587 |#1|) (-587 |#1|)) 10)))
+(((-278 |#1|) (-10 -7 (-15 -3419 ((-587 |#1|) (-587 |#1|)))) (-782)) (T -278))
+((-3419 (*1 *2 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-782)) (-5 *1 (-278 *3)))))
+(-10 -7 (-15 -3419 ((-587 |#1|) (-587 |#1|))))
+((-1390 (((-627 |#2|) (-1 |#2| |#1|) (-627 |#1|)) 15)))
+(((-279 |#1| |#2|) (-10 -7 (-15 -1390 ((-627 |#2|) (-1 |#2| |#1|) (-627 |#1|)))) (-970) (-970)) (T -279))
+((-1390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-627 *5)) (-4 *5 (-970)) (-4 *6 (-970)) (-5 *2 (-627 *6)) (-5 *1 (-279 *5 *6)))))
+(-10 -7 (-15 -1390 ((-627 |#2|) (-1 |#2| |#1|) (-627 |#1|))))
+((-1669 (((-1165 (-290 (-353))) (-1165 (-290 (-202)))) 105)) (-1742 (((-1008 (-777 (-202))) (-1008 (-777 (-353)))) 39)) (-1813 (((-587 (-1067)) (-1065 (-202))) 87)) (-2694 (((-290 (-353)) (-881 (-202))) 49)) (-1258 (((-202) (-881 (-202))) 45)) (-3194 (((-1067) (-353)) 167)) (-3602 (((-777 (-202)) (-777 (-353))) 33)) (-3124 (((-2 (|:| |additions| (-521)) (|:| |multiplications| (-521)) (|:| |exponentiations| (-521)) (|:| |functionCalls| (-521))) (-1165 (-290 (-202)))) 142)) (-1321 (((-959) (-2 (|:| -1797 (-353)) (|:| -2884 (-1067)) (|:| |explanations| (-587 (-1067))) (|:| |extra| (-959)))) 180) (((-959) (-2 (|:| -1797 (-353)) (|:| -2884 (-1067)) (|:| |explanations| (-587 (-1067))))) 178)) (-1201 (((-627 (-202)) (-587 (-202)) (-707)) 13)) (-3494 (((-1165 (-636)) (-587 (-202))) 94)) (-2019 (((-587 (-1067)) (-587 (-202))) 74)) (-4071 (((-3 (-290 (-202)) "failed") (-290 (-202))) 120)) (-1844 (((-108) (-202) (-1008 (-777 (-202)))) 109)) (-3003 (((-959) (-2 (|:| |stiffness| (-353)) (|:| |stability| (-353)) (|:| |expense| (-353)) (|:| |accuracy| (-353)) (|:| |intermediateResults| (-353)))) 198)) (-1584 (((-202) (-1008 (-777 (-202)))) 107)) (-3346 (((-202) (-1008 (-777 (-202)))) 108)) (-3812 (((-202) (-381 (-521))) 26)) (-2081 (((-1067) (-353)) 72)) (-1291 (((-202) (-353)) 17)) (-4102 (((-353) (-1165 (-290 (-202)))) 153)) (-1525 (((-290 (-202)) (-290 (-353))) 23)) (-1677 (((-381 (-521)) (-290 (-202))) 52)) (-1707 (((-290 (-381 (-521))) (-290 (-202))) 68)) (-3959 (((-290 (-353)) (-290 (-202))) 98)) (-2804 (((-202) (-290 (-202))) 53)) (-3867 (((-587 (-202)) (-587 (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521)))))) 63)) (-2040 (((-1008 (-777 (-202))) (-1008 (-777 (-202)))) 60)) (-1975 (((-1067) (-202)) 71)) (-3397 (((-636) (-202)) 90)) (-1835 (((-381 (-521)) (-202)) 54)) (-3413 (((-290 (-353)) (-202)) 48)) (-1430 (((-587 (-1008 (-777 (-202)))) (-587 (-1008 (-777 (-353))))) 42)) (-4159 (((-959) (-587 (-959))) 163) (((-959) (-959) (-959)) 160)) (-3498 (((-959) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1065 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2442 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 194)))
+(((-280) (-10 -7 (-15 -1291 ((-202) (-353))) (-15 -1525 ((-290 (-202)) (-290 (-353)))) (-15 -3602 ((-777 (-202)) (-777 (-353)))) (-15 -1742 ((-1008 (-777 (-202))) (-1008 (-777 (-353))))) (-15 -1430 ((-587 (-1008 (-777 (-202)))) (-587 (-1008 (-777 (-353)))))) (-15 -1835 ((-381 (-521)) (-202))) (-15 -1677 ((-381 (-521)) (-290 (-202)))) (-15 -2804 ((-202) (-290 (-202)))) (-15 -4071 ((-3 (-290 (-202)) "failed") (-290 (-202)))) (-15 -4102 ((-353) (-1165 (-290 (-202))))) (-15 -3124 ((-2 (|:| |additions| (-521)) (|:| |multiplications| (-521)) (|:| |exponentiations| (-521)) (|:| |functionCalls| (-521))) (-1165 (-290 (-202))))) (-15 -1707 ((-290 (-381 (-521))) (-290 (-202)))) (-15 -2040 ((-1008 (-777 (-202))) (-1008 (-777 (-202))))) (-15 -3867 ((-587 (-202)) (-587 (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521))))))) (-15 -3397 ((-636) (-202))) (-15 -3494 ((-1165 (-636)) (-587 (-202)))) (-15 -3959 ((-290 (-353)) (-290 (-202)))) (-15 -1669 ((-1165 (-290 (-353))) (-1165 (-290 (-202))))) (-15 -1844 ((-108) (-202) (-1008 (-777 (-202))))) (-15 -1975 ((-1067) (-202))) (-15 -2081 ((-1067) (-353))) (-15 -2019 ((-587 (-1067)) (-587 (-202)))) (-15 -1813 ((-587 (-1067)) (-1065 (-202)))) (-15 -1584 ((-202) (-1008 (-777 (-202))))) (-15 -3346 ((-202) (-1008 (-777 (-202))))) (-15 -4159 ((-959) (-959) (-959))) (-15 -4159 ((-959) (-587 (-959)))) (-15 -3194 ((-1067) (-353))) (-15 -1321 ((-959) (-2 (|:| -1797 (-353)) (|:| -2884 (-1067)) (|:| |explanations| (-587 (-1067)))))) (-15 -1321 ((-959) (-2 (|:| -1797 (-353)) (|:| -2884 (-1067)) (|:| |explanations| (-587 (-1067))) (|:| |extra| (-959))))) (-15 -3498 ((-959) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1065 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2442 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3003 ((-959) (-2 (|:| |stiffness| (-353)) (|:| |stability| (-353)) (|:| |expense| (-353)) (|:| |accuracy| (-353)) (|:| |intermediateResults| (-353))))) (-15 -2694 ((-290 (-353)) (-881 (-202)))) (-15 -1258 ((-202) (-881 (-202)))) (-15 -3413 ((-290 (-353)) (-202))) (-15 -3812 ((-202) (-381 (-521)))) (-15 -1201 ((-627 (-202)) (-587 (-202)) (-707))))) (T -280))
+((-1201 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-202))) (-5 *4 (-707)) (-5 *2 (-627 (-202))) (-5 *1 (-280)))) (-3812 (*1 *2 *3) (-12 (-5 *3 (-381 (-521))) (-5 *2 (-202)) (-5 *1 (-280)))) (-3413 (*1 *2 *3) (-12 (-5 *3 (-202)) (-5 *2 (-290 (-353))) (-5 *1 (-280)))) (-1258 (*1 *2 *3) (-12 (-5 *3 (-881 (-202))) (-5 *2 (-202)) (-5 *1 (-280)))) (-2694 (*1 *2 *3) (-12 (-5 *3 (-881 (-202))) (-5 *2 (-290 (-353))) (-5 *1 (-280)))) (-3003 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-353)) (|:| |stability| (-353)) (|:| |expense| (-353)) (|:| |accuracy| (-353)) (|:| |intermediateResults| (-353)))) (-5 *2 (-959)) (-5 *1 (-280)))) (-3498 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1065 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2442 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-959)) (-5 *1 (-280)))) (-1321 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1797 (-353)) (|:| -2884 (-1067)) (|:| |explanations| (-587 (-1067))) (|:| |extra| (-959)))) (-5 *2 (-959)) (-5 *1 (-280)))) (-1321 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1797 (-353)) (|:| -2884 (-1067)) (|:| |explanations| (-587 (-1067))))) (-5 *2 (-959)) (-5 *1 (-280)))) (-3194 (*1 *2 *3) (-12 (-5 *3 (-353)) (-5 *2 (-1067)) (-5 *1 (-280)))) (-4159 (*1 *2 *3) (-12 (-5 *3 (-587 (-959))) (-5 *2 (-959)) (-5 *1 (-280)))) (-4159 (*1 *2 *2 *2) (-12 (-5 *2 (-959)) (-5 *1 (-280)))) (-3346 (*1 *2 *3) (-12 (-5 *3 (-1008 (-777 (-202)))) (-5 *2 (-202)) (-5 *1 (-280)))) (-1584 (*1 *2 *3) (-12 (-5 *3 (-1008 (-777 (-202)))) (-5 *2 (-202)) (-5 *1 (-280)))) (-1813 (*1 *2 *3) (-12 (-5 *3 (-1065 (-202))) (-5 *2 (-587 (-1067))) (-5 *1 (-280)))) (-2019 (*1 *2 *3) (-12 (-5 *3 (-587 (-202))) (-5 *2 (-587 (-1067))) (-5 *1 (-280)))) (-2081 (*1 *2 *3) (-12 (-5 *3 (-353)) (-5 *2 (-1067)) (-5 *1 (-280)))) (-1975 (*1 *2 *3) (-12 (-5 *3 (-202)) (-5 *2 (-1067)) (-5 *1 (-280)))) (-1844 (*1 *2 *3 *4) (-12 (-5 *4 (-1008 (-777 (-202)))) (-5 *3 (-202)) (-5 *2 (-108)) (-5 *1 (-280)))) (-1669 (*1 *2 *3) (-12 (-5 *3 (-1165 (-290 (-202)))) (-5 *2 (-1165 (-290 (-353)))) (-5 *1 (-280)))) (-3959 (*1 *2 *3) (-12 (-5 *3 (-290 (-202))) (-5 *2 (-290 (-353))) (-5 *1 (-280)))) (-3494 (*1 *2 *3) (-12 (-5 *3 (-587 (-202))) (-5 *2 (-1165 (-636))) (-5 *1 (-280)))) (-3397 (*1 *2 *3) (-12 (-5 *3 (-202)) (-5 *2 (-636)) (-5 *1 (-280)))) (-3867 (*1 *2 *3) (-12 (-5 *3 (-587 (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521)))))) (-5 *2 (-587 (-202))) (-5 *1 (-280)))) (-2040 (*1 *2 *2) (-12 (-5 *2 (-1008 (-777 (-202)))) (-5 *1 (-280)))) (-1707 (*1 *2 *3) (-12 (-5 *3 (-290 (-202))) (-5 *2 (-290 (-381 (-521)))) (-5 *1 (-280)))) (-3124 (*1 *2 *3) (-12 (-5 *3 (-1165 (-290 (-202)))) (-5 *2 (-2 (|:| |additions| (-521)) (|:| |multiplications| (-521)) (|:| |exponentiations| (-521)) (|:| |functionCalls| (-521)))) (-5 *1 (-280)))) (-4102 (*1 *2 *3) (-12 (-5 *3 (-1165 (-290 (-202)))) (-5 *2 (-353)) (-5 *1 (-280)))) (-4071 (*1 *2 *2) (|partial| -12 (-5 *2 (-290 (-202))) (-5 *1 (-280)))) (-2804 (*1 *2 *3) (-12 (-5 *3 (-290 (-202))) (-5 *2 (-202)) (-5 *1 (-280)))) (-1677 (*1 *2 *3) (-12 (-5 *3 (-290 (-202))) (-5 *2 (-381 (-521))) (-5 *1 (-280)))) (-1835 (*1 *2 *3) (-12 (-5 *3 (-202)) (-5 *2 (-381 (-521))) (-5 *1 (-280)))) (-1430 (*1 *2 *3) (-12 (-5 *3 (-587 (-1008 (-777 (-353))))) (-5 *2 (-587 (-1008 (-777 (-202))))) (-5 *1 (-280)))) (-1742 (*1 *2 *3) (-12 (-5 *3 (-1008 (-777 (-353)))) (-5 *2 (-1008 (-777 (-202)))) (-5 *1 (-280)))) (-3602 (*1 *2 *3) (-12 (-5 *3 (-777 (-353))) (-5 *2 (-777 (-202))) (-5 *1 (-280)))) (-1525 (*1 *2 *3) (-12 (-5 *3 (-290 (-353))) (-5 *2 (-290 (-202))) (-5 *1 (-280)))) (-1291 (*1 *2 *3) (-12 (-5 *3 (-353)) (-5 *2 (-202)) (-5 *1 (-280)))))
+(-10 -7 (-15 -1291 ((-202) (-353))) (-15 -1525 ((-290 (-202)) (-290 (-353)))) (-15 -3602 ((-777 (-202)) (-777 (-353)))) (-15 -1742 ((-1008 (-777 (-202))) (-1008 (-777 (-353))))) (-15 -1430 ((-587 (-1008 (-777 (-202)))) (-587 (-1008 (-777 (-353)))))) (-15 -1835 ((-381 (-521)) (-202))) (-15 -1677 ((-381 (-521)) (-290 (-202)))) (-15 -2804 ((-202) (-290 (-202)))) (-15 -4071 ((-3 (-290 (-202)) "failed") (-290 (-202)))) (-15 -4102 ((-353) (-1165 (-290 (-202))))) (-15 -3124 ((-2 (|:| |additions| (-521)) (|:| |multiplications| (-521)) (|:| |exponentiations| (-521)) (|:| |functionCalls| (-521))) (-1165 (-290 (-202))))) (-15 -1707 ((-290 (-381 (-521))) (-290 (-202)))) (-15 -2040 ((-1008 (-777 (-202))) (-1008 (-777 (-202))))) (-15 -3867 ((-587 (-202)) (-587 (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521))))))) (-15 -3397 ((-636) (-202))) (-15 -3494 ((-1165 (-636)) (-587 (-202)))) (-15 -3959 ((-290 (-353)) (-290 (-202)))) (-15 -1669 ((-1165 (-290 (-353))) (-1165 (-290 (-202))))) (-15 -1844 ((-108) (-202) (-1008 (-777 (-202))))) (-15 -1975 ((-1067) (-202))) (-15 -2081 ((-1067) (-353))) (-15 -2019 ((-587 (-1067)) (-587 (-202)))) (-15 -1813 ((-587 (-1067)) (-1065 (-202)))) (-15 -1584 ((-202) (-1008 (-777 (-202))))) (-15 -3346 ((-202) (-1008 (-777 (-202))))) (-15 -4159 ((-959) (-959) (-959))) (-15 -4159 ((-959) (-587 (-959)))) (-15 -3194 ((-1067) (-353))) (-15 -1321 ((-959) (-2 (|:| -1797 (-353)) (|:| -2884 (-1067)) (|:| |explanations| (-587 (-1067)))))) (-15 -1321 ((-959) (-2 (|:| -1797 (-353)) (|:| -2884 (-1067)) (|:| |explanations| (-587 (-1067))) (|:| |extra| (-959))))) (-15 -3498 ((-959) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1065 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2442 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3003 ((-959) (-2 (|:| |stiffness| (-353)) (|:| |stability| (-353)) (|:| |expense| (-353)) (|:| |accuracy| (-353)) (|:| |intermediateResults| (-353))))) (-15 -2694 ((-290 (-353)) (-881 (-202)))) (-15 -1258 ((-202) (-881 (-202)))) (-15 -3413 ((-290 (-353)) (-202))) (-15 -3812 ((-202) (-381 (-521)))) (-15 -1201 ((-627 (-202)) (-587 (-202)) (-707))))
+((-1389 (((-108) $ $) 11)) (-2277 (($ $ $) 15)) (-2253 (($ $ $) 14)) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) 44)) (-1546 (((-3 (-587 $) "failed") (-587 $) $) 53)) (-2258 (($ $ $) 21) (($ (-587 $)) NIL)) (-1962 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) 32) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 37)) (-2230 (((-3 $ "failed") $ $) 17)) (-3854 (((-3 (-587 $) "failed") (-587 $) $) 46)))
+(((-281 |#1|) (-10 -8 (-15 -1546 ((-3 (-587 |#1|) "failed") (-587 |#1|) |#1|)) (-15 -1962 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1962 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1383 |#1|)) |#1| |#1|)) (-15 -2277 (|#1| |#1| |#1|)) (-15 -2253 (|#1| |#1| |#1|)) (-15 -1389 ((-108) |#1| |#1|)) (-15 -3854 ((-3 (-587 |#1|) "failed") (-587 |#1|) |#1|)) (-15 -3780 ((-2 (|:| -2973 (-587 |#1|)) (|:| -1383 |#1|)) (-587 |#1|))) (-15 -2258 (|#1| (-587 |#1|))) (-15 -2258 (|#1| |#1| |#1|)) (-15 -2230 ((-3 |#1| "failed") |#1| |#1|))) (-282)) (T -281))
+NIL
+(-10 -8 (-15 -1546 ((-3 (-587 |#1|) "failed") (-587 |#1|) |#1|)) (-15 -1962 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1962 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1383 |#1|)) |#1| |#1|)) (-15 -2277 (|#1| |#1| |#1|)) (-15 -2253 (|#1| |#1| |#1|)) (-15 -1389 ((-108) |#1| |#1|)) (-15 -3854 ((-3 (-587 |#1|) "failed") (-587 |#1|) |#1|)) (-15 -3780 ((-2 (|:| -2973 (-587 |#1|)) (|:| -1383 |#1|)) (-587 |#1|))) (-15 -2258 (|#1| (-587 |#1|))) (-15 -2258 (|#1| |#1| |#1|)) (-15 -2230 ((-3 |#1| "failed") |#1| |#1|)))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) 41)) (-2559 (($ $) 40)) (-1733 (((-108) $) 38)) (-1232 (((-3 $ "failed") $ $) 19)) (-1389 (((-108) $ $) 59)) (-2547 (($) 17 T CONST)) (-2277 (($ $ $) 55)) (-1257 (((-3 $ "failed") $) 34)) (-2253 (($ $ $) 56)) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) 51)) (-3996 (((-108) $) 31)) (-1546 (((-3 (-587 $) "failed") (-587 $) $) 52)) (-2223 (($ $ $) 46) (($ (-587 $)) 45)) (-3688 (((-1067) $) 9)) (-4147 (((-1031) $) 10)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) 44)) (-2258 (($ $ $) 48) (($ (-587 $)) 47)) (-1962 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2230 (((-3 $ "failed") $ $) 42)) (-3854 (((-3 (-587 $) "failed") (-587 $) $) 50)) (-4196 (((-707) $) 58)) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) 57)) (-2189 (((-792) $) 11) (($ (-521)) 28) (($ $) 43)) (-3846 (((-707)) 29)) (-4210 (((-108) $ $) 39)) (-3505 (($ $ (-850)) 26) (($ $ (-707)) 33)) (-3561 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-707)) 32)) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24)))
+(((-282) (-1196)) (T -282))
+((-1389 (*1 *2 *1 *1) (-12 (-4 *1 (-282)) (-5 *2 (-108)))) (-4196 (*1 *2 *1) (-12 (-4 *1 (-282)) (-5 *2 (-707)))) (-1830 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3727 *1) (|:| -3820 *1))) (-4 *1 (-282)))) (-2253 (*1 *1 *1 *1) (-4 *1 (-282))) (-2277 (*1 *1 *1 *1) (-4 *1 (-282))) (-1962 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1383 *1))) (-4 *1 (-282)))) (-1962 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-282)))) (-1546 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-587 *1)) (-4 *1 (-282)))))
+(-13 (-849) (-10 -8 (-15 -1389 ((-108) $ $)) (-15 -4196 ((-707) $)) (-15 -1830 ((-2 (|:| -3727 $) (|:| -3820 $)) $ $)) (-15 -2253 ($ $ $)) (-15 -2277 ($ $ $)) (-15 -1962 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $)) (-15 -1962 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1546 ((-3 (-587 $) "failed") (-587 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-561 (-792)) . T) ((-157) . T) ((-265) . T) ((-425) . T) ((-513) . T) ((-589 $) . T) ((-654 $) . T) ((-663) . T) ((-849) . T) ((-976 $) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T))
+((-2288 (($ $ (-587 |#2|) (-587 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-269 |#2|)) 11) (($ $ (-587 (-269 |#2|))) NIL)))
+(((-283 |#1| |#2|) (-10 -8 (-15 -2288 (|#1| |#1| (-587 (-269 |#2|)))) (-15 -2288 (|#1| |#1| (-269 |#2|))) (-15 -2288 (|#1| |#1| |#2| |#2|)) (-15 -2288 (|#1| |#1| (-587 |#2|) (-587 |#2|)))) (-284 |#2|) (-1013)) (T -283))
+NIL
+(-10 -8 (-15 -2288 (|#1| |#1| (-587 (-269 |#2|)))) (-15 -2288 (|#1| |#1| (-269 |#2|))) (-15 -2288 (|#1| |#1| |#2| |#2|)) (-15 -2288 (|#1| |#1| (-587 |#2|) (-587 |#2|))))
+((-2288 (($ $ (-587 |#1|) (-587 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-269 |#1|)) 11) (($ $ (-587 (-269 |#1|))) 10)))
+(((-284 |#1|) (-1196) (-1013)) (T -284))
+((-2288 (*1 *1 *1 *2) (-12 (-5 *2 (-269 *3)) (-4 *1 (-284 *3)) (-4 *3 (-1013)))) (-2288 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-269 *3))) (-4 *1 (-284 *3)) (-4 *3 (-1013)))))
+(-13 (-482 |t#1| |t#1|) (-10 -8 (-15 -2288 ($ $ (-269 |t#1|))) (-15 -2288 ($ $ (-587 (-269 |t#1|))))))
+(((-482 |#1| |#1|) . T))
+((-2288 ((|#1| (-1 |#1| (-521)) (-1086 (-381 (-521)))) 24)))
+(((-285 |#1|) (-10 -7 (-15 -2288 (|#1| (-1 |#1| (-521)) (-1086 (-381 (-521)))))) (-37 (-381 (-521)))) (T -285))
+((-2288 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-521))) (-5 *4 (-1086 (-381 (-521)))) (-5 *1 (-285 *2)) (-4 *2 (-37 (-381 (-521)))))))
+(-10 -7 (-15 -2288 (|#1| (-1 |#1| (-521)) (-1086 (-381 (-521))))))
+((-1415 (((-108) $ $) NIL)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2189 (((-792) $) 7)) (-1531 (((-108) $ $) 9)))
+(((-286) (-1013)) (T -286))
+NIL
+(-1013)
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) 62)) (-2086 (((-1151 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-282)))) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-2559 (($ $) NIL)) (-1733 (((-108) $) NIL)) (-1232 (((-3 $ "failed") $ $) NIL)) (-2598 (((-392 (-1080 $)) (-1080 $)) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-838)))) (-3063 (($ $) NIL)) (-3358 (((-392 $) $) NIL)) (-2569 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-838)))) (-1389 (((-108) $ $) NIL)) (-1606 (((-521) $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-757)))) (-2547 (($) NIL T CONST)) (-1297 (((-3 (-1151 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1084) "failed") $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-961 (-1084)))) (((-3 (-381 (-521)) "failed") $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-961 (-521)))) (((-3 (-521) "failed") $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-961 (-521)))) (((-3 (-1150 |#2| |#3| |#4|) "failed") $) 24)) (-1483 (((-1151 |#1| |#2| |#3| |#4|) $) NIL) (((-1084) $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-961 (-1084)))) (((-381 (-521)) $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-961 (-521)))) (((-521) $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-961 (-521)))) (((-1150 |#2| |#3| |#4|) $) NIL)) (-2277 (($ $ $) NIL)) (-3279 (((-627 (-521)) (-627 $)) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-583 (-521)))) (((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-583 (-521)))) (((-2 (|:| -1201 (-627 (-1151 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1165 (-1151 |#1| |#2| |#3| |#4|)))) (-627 $) (-1165 $)) NIL) (((-627 (-1151 |#1| |#2| |#3| |#4|)) (-627 $)) NIL)) (-1257 (((-3 $ "failed") $) NIL)) (-3250 (($) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-506)))) (-2253 (($ $ $) NIL)) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) NIL)) (-2710 (((-108) $) NIL)) (-3951 (((-108) $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-757)))) (-3427 (((-818 (-521) $) $ (-821 (-521)) (-818 (-521) $)) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-815 (-521)))) (((-818 (-353) $) $ (-821 (-353)) (-818 (-353) $)) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-815 (-353))))) (-3996 (((-108) $) NIL)) (-3257 (($ $) NIL)) (-2801 (((-1151 |#1| |#2| |#3| |#4|) $) 21)) (-3842 (((-3 $ "failed") $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-1060)))) (-2210 (((-108) $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-757)))) (-1546 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-2810 (($ $ $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-784)))) (-2446 (($ $ $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-784)))) (-1390 (($ (-1 (-1151 |#1| |#2| |#3| |#4|) (-1151 |#1| |#2| |#3| |#4|)) $) NIL)) (-2936 (((-3 (-777 |#2|) "failed") $) 76)) (-2223 (($ $ $) NIL) (($ (-587 $)) NIL)) (-3688 (((-1067) $) NIL)) (-3095 (($ $) NIL)) (-3797 (($) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-1060)) CONST)) (-4147 (((-1031) $) NIL)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) NIL)) (-2258 (($ $ $) NIL) (($ (-587 $)) NIL)) (-2850 (($ $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-282)))) (-2567 (((-1151 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-506)))) (-1912 (((-392 (-1080 $)) (-1080 $)) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-838)))) (-2165 (((-392 (-1080 $)) (-1080 $)) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-838)))) (-1916 (((-392 $) $) NIL)) (-1962 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2230 (((-3 $ "failed") $ $) NIL)) (-3854 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-2288 (($ $ (-587 (-1151 |#1| |#2| |#3| |#4|)) (-587 (-1151 |#1| |#2| |#3| |#4|))) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-284 (-1151 |#1| |#2| |#3| |#4|)))) (($ $ (-1151 |#1| |#2| |#3| |#4|) (-1151 |#1| |#2| |#3| |#4|)) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-284 (-1151 |#1| |#2| |#3| |#4|)))) (($ $ (-269 (-1151 |#1| |#2| |#3| |#4|))) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-284 (-1151 |#1| |#2| |#3| |#4|)))) (($ $ (-587 (-269 (-1151 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-284 (-1151 |#1| |#2| |#3| |#4|)))) (($ $ (-587 (-1084)) (-587 (-1151 |#1| |#2| |#3| |#4|))) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-482 (-1084) (-1151 |#1| |#2| |#3| |#4|)))) (($ $ (-1084) (-1151 |#1| |#2| |#3| |#4|)) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-482 (-1084) (-1151 |#1| |#2| |#3| |#4|))))) (-4196 (((-707) $) NIL)) (-2544 (($ $ (-1151 |#1| |#2| |#3| |#4|)) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-261 (-1151 |#1| |#2| |#3| |#4|) (-1151 |#1| |#2| |#3| |#4|))))) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) NIL)) (-2156 (($ $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-210))) (($ $ (-707)) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-210))) (($ $ (-1084)) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-829 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-829 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-829 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-829 (-1084)))) (($ $ (-1 (-1151 |#1| |#2| |#3| |#4|) (-1151 |#1| |#2| |#3| |#4|)) (-707)) NIL) (($ $ (-1 (-1151 |#1| |#2| |#3| |#4|) (-1151 |#1| |#2| |#3| |#4|))) NIL)) (-4142 (($ $) NIL)) (-2812 (((-1151 |#1| |#2| |#3| |#4|) $) 17)) (-1430 (((-821 (-521)) $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-562 (-821 (-521))))) (((-821 (-353)) $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-562 (-821 (-353))))) (((-497) $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-562 (-497)))) (((-353) $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-946))) (((-202) $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-946)))) (-2944 (((-3 (-1165 $) "failed") (-627 $)) NIL (-12 (|has| $ (-133)) (|has| (-1151 |#1| |#2| |#3| |#4|) (-838))))) (-2189 (((-792) $) NIL) (($ (-521)) NIL) (($ $) NIL) (($ (-381 (-521))) NIL) (($ (-1151 |#1| |#2| |#3| |#4|)) 28) (($ (-1084)) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-961 (-1084)))) (($ (-1150 |#2| |#3| |#4|)) 36)) (-1671 (((-3 $ "failed") $) NIL (-3703 (-12 (|has| $ (-133)) (|has| (-1151 |#1| |#2| |#3| |#4|) (-838))) (|has| (-1151 |#1| |#2| |#3| |#4|) (-133))))) (-3846 (((-707)) NIL)) (-2382 (((-1151 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-506)))) (-4210 (((-108) $ $) NIL)) (-3304 (($ $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-757)))) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (-3561 (($) 41 T CONST)) (-3572 (($) NIL T CONST)) (-2212 (($ $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-210))) (($ $ (-707)) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-210))) (($ $ (-1084)) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-829 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-829 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-829 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-829 (-1084)))) (($ $ (-1 (-1151 |#1| |#2| |#3| |#4|) (-1151 |#1| |#2| |#3| |#4|)) (-707)) NIL) (($ $ (-1 (-1151 |#1| |#2| |#3| |#4|) (-1151 |#1| |#2| |#3| |#4|))) NIL)) (-1574 (((-108) $ $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-784)))) (-1558 (((-108) $ $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-784)))) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-784)))) (-1549 (((-108) $ $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-784)))) (-1620 (($ $ $) 33) (($ (-1151 |#1| |#2| |#3| |#4|) (-1151 |#1| |#2| |#3| |#4|)) 30)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ (-381 (-521))) NIL) (($ (-381 (-521)) $) NIL) (($ (-1151 |#1| |#2| |#3| |#4|) $) 29) (($ $ (-1151 |#1| |#2| |#3| |#4|)) NIL)))
+(((-287 |#1| |#2| |#3| |#4|) (-13 (-918 (-1151 |#1| |#2| |#3| |#4|)) (-961 (-1150 |#2| |#3| |#4|)) (-10 -8 (-15 -2936 ((-3 (-777 |#2|) "failed") $)) (-15 -2189 ($ (-1150 |#2| |#3| |#4|))))) (-13 (-784) (-961 (-521)) (-583 (-521)) (-425)) (-13 (-27) (-1105) (-404 |#1|)) (-1084) |#2|) (T -287))
+((-2189 (*1 *1 *2) (-12 (-5 *2 (-1150 *4 *5 *6)) (-4 *4 (-13 (-27) (-1105) (-404 *3))) (-14 *5 (-1084)) (-14 *6 *4) (-4 *3 (-13 (-784) (-961 (-521)) (-583 (-521)) (-425))) (-5 *1 (-287 *3 *4 *5 *6)))) (-2936 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-784) (-961 (-521)) (-583 (-521)) (-425))) (-5 *2 (-777 *4)) (-5 *1 (-287 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1105) (-404 *3))) (-14 *5 (-1084)) (-14 *6 *4))))
+(-13 (-918 (-1151 |#1| |#2| |#3| |#4|)) (-961 (-1150 |#2| |#3| |#4|)) (-10 -8 (-15 -2936 ((-3 (-777 |#2|) "failed") $)) (-15 -2189 ($ (-1150 |#2| |#3| |#4|)))))
+((-1390 (((-290 |#2|) (-1 |#2| |#1|) (-290 |#1|)) 13)))
+(((-288 |#1| |#2|) (-10 -7 (-15 -1390 ((-290 |#2|) (-1 |#2| |#1|) (-290 |#1|)))) (-784) (-784)) (T -288))
+((-1390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-290 *5)) (-4 *5 (-784)) (-4 *6 (-784)) (-5 *2 (-290 *6)) (-5 *1 (-288 *5 *6)))))
+(-10 -7 (-15 -1390 ((-290 |#2|) (-1 |#2| |#1|) (-290 |#1|))))
+((-3055 (((-51) |#2| (-269 |#2|) (-707)) 33) (((-51) |#2| (-269 |#2|)) 24) (((-51) |#2| (-707)) 28) (((-51) |#2|) 25) (((-51) (-1084)) 21)) (-2770 (((-51) |#2| (-269 |#2|) (-381 (-521))) 51) (((-51) |#2| (-269 |#2|)) 48) (((-51) |#2| (-381 (-521))) 50) (((-51) |#2|) 49) (((-51) (-1084)) 47)) (-3075 (((-51) |#2| (-269 |#2|) (-381 (-521))) 46) (((-51) |#2| (-269 |#2|)) 43) (((-51) |#2| (-381 (-521))) 45) (((-51) |#2|) 44) (((-51) (-1084)) 42)) (-3065 (((-51) |#2| (-269 |#2|) (-521)) 39) (((-51) |#2| (-269 |#2|)) 35) (((-51) |#2| (-521)) 38) (((-51) |#2|) 36) (((-51) (-1084)) 34)))
+(((-289 |#1| |#2|) (-10 -7 (-15 -3055 ((-51) (-1084))) (-15 -3055 ((-51) |#2|)) (-15 -3055 ((-51) |#2| (-707))) (-15 -3055 ((-51) |#2| (-269 |#2|))) (-15 -3055 ((-51) |#2| (-269 |#2|) (-707))) (-15 -3065 ((-51) (-1084))) (-15 -3065 ((-51) |#2|)) (-15 -3065 ((-51) |#2| (-521))) (-15 -3065 ((-51) |#2| (-269 |#2|))) (-15 -3065 ((-51) |#2| (-269 |#2|) (-521))) (-15 -3075 ((-51) (-1084))) (-15 -3075 ((-51) |#2|)) (-15 -3075 ((-51) |#2| (-381 (-521)))) (-15 -3075 ((-51) |#2| (-269 |#2|))) (-15 -3075 ((-51) |#2| (-269 |#2|) (-381 (-521)))) (-15 -2770 ((-51) (-1084))) (-15 -2770 ((-51) |#2|)) (-15 -2770 ((-51) |#2| (-381 (-521)))) (-15 -2770 ((-51) |#2| (-269 |#2|))) (-15 -2770 ((-51) |#2| (-269 |#2|) (-381 (-521))))) (-13 (-425) (-784) (-961 (-521)) (-583 (-521))) (-13 (-27) (-1105) (-404 |#1|))) (T -289))
+((-2770 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-269 *3)) (-5 *5 (-381 (-521))) (-4 *3 (-13 (-27) (-1105) (-404 *6))) (-4 *6 (-13 (-425) (-784) (-961 (-521)) (-583 (-521)))) (-5 *2 (-51)) (-5 *1 (-289 *6 *3)))) (-2770 (*1 *2 *3 *4) (-12 (-5 *4 (-269 *3)) (-4 *3 (-13 (-27) (-1105) (-404 *5))) (-4 *5 (-13 (-425) (-784) (-961 (-521)) (-583 (-521)))) (-5 *2 (-51)) (-5 *1 (-289 *5 *3)))) (-2770 (*1 *2 *3 *4) (-12 (-5 *4 (-381 (-521))) (-4 *5 (-13 (-425) (-784) (-961 (-521)) (-583 (-521)))) (-5 *2 (-51)) (-5 *1 (-289 *5 *3)) (-4 *3 (-13 (-27) (-1105) (-404 *5))))) (-2770 (*1 *2 *3) (-12 (-4 *4 (-13 (-425) (-784) (-961 (-521)) (-583 (-521)))) (-5 *2 (-51)) (-5 *1 (-289 *4 *3)) (-4 *3 (-13 (-27) (-1105) (-404 *4))))) (-2770 (*1 *2 *3) (-12 (-5 *3 (-1084)) (-4 *4 (-13 (-425) (-784) (-961 (-521)) (-583 (-521)))) (-5 *2 (-51)) (-5 *1 (-289 *4 *5)) (-4 *5 (-13 (-27) (-1105) (-404 *4))))) (-3075 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-269 *3)) (-5 *5 (-381 (-521))) (-4 *3 (-13 (-27) (-1105) (-404 *6))) (-4 *6 (-13 (-425) (-784) (-961 (-521)) (-583 (-521)))) (-5 *2 (-51)) (-5 *1 (-289 *6 *3)))) (-3075 (*1 *2 *3 *4) (-12 (-5 *4 (-269 *3)) (-4 *3 (-13 (-27) (-1105) (-404 *5))) (-4 *5 (-13 (-425) (-784) (-961 (-521)) (-583 (-521)))) (-5 *2 (-51)) (-5 *1 (-289 *5 *3)))) (-3075 (*1 *2 *3 *4) (-12 (-5 *4 (-381 (-521))) (-4 *5 (-13 (-425) (-784) (-961 (-521)) (-583 (-521)))) (-5 *2 (-51)) (-5 *1 (-289 *5 *3)) (-4 *3 (-13 (-27) (-1105) (-404 *5))))) (-3075 (*1 *2 *3) (-12 (-4 *4 (-13 (-425) (-784) (-961 (-521)) (-583 (-521)))) (-5 *2 (-51)) (-5 *1 (-289 *4 *3)) (-4 *3 (-13 (-27) (-1105) (-404 *4))))) (-3075 (*1 *2 *3) (-12 (-5 *3 (-1084)) (-4 *4 (-13 (-425) (-784) (-961 (-521)) (-583 (-521)))) (-5 *2 (-51)) (-5 *1 (-289 *4 *5)) (-4 *5 (-13 (-27) (-1105) (-404 *4))))) (-3065 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-269 *3)) (-4 *3 (-13 (-27) (-1105) (-404 *6))) (-4 *6 (-13 (-425) (-784) (-961 *5) (-583 *5))) (-5 *5 (-521)) (-5 *2 (-51)) (-5 *1 (-289 *6 *3)))) (-3065 (*1 *2 *3 *4) (-12 (-5 *4 (-269 *3)) (-4 *3 (-13 (-27) (-1105) (-404 *5))) (-4 *5 (-13 (-425) (-784) (-961 (-521)) (-583 (-521)))) (-5 *2 (-51)) (-5 *1 (-289 *5 *3)))) (-3065 (*1 *2 *3 *4) (-12 (-5 *4 (-521)) (-4 *5 (-13 (-425) (-784) (-961 *4) (-583 *4))) (-5 *2 (-51)) (-5 *1 (-289 *5 *3)) (-4 *3 (-13 (-27) (-1105) (-404 *5))))) (-3065 (*1 *2 *3) (-12 (-4 *4 (-13 (-425) (-784) (-961 (-521)) (-583 (-521)))) (-5 *2 (-51)) (-5 *1 (-289 *4 *3)) (-4 *3 (-13 (-27) (-1105) (-404 *4))))) (-3065 (*1 *2 *3) (-12 (-5 *3 (-1084)) (-4 *4 (-13 (-425) (-784) (-961 (-521)) (-583 (-521)))) (-5 *2 (-51)) (-5 *1 (-289 *4 *5)) (-4 *5 (-13 (-27) (-1105) (-404 *4))))) (-3055 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-269 *3)) (-5 *5 (-707)) (-4 *3 (-13 (-27) (-1105) (-404 *6))) (-4 *6 (-13 (-425) (-784) (-961 (-521)) (-583 (-521)))) (-5 *2 (-51)) (-5 *1 (-289 *6 *3)))) (-3055 (*1 *2 *3 *4) (-12 (-5 *4 (-269 *3)) (-4 *3 (-13 (-27) (-1105) (-404 *5))) (-4 *5 (-13 (-425) (-784) (-961 (-521)) (-583 (-521)))) (-5 *2 (-51)) (-5 *1 (-289 *5 *3)))) (-3055 (*1 *2 *3 *4) (-12 (-5 *4 (-707)) (-4 *5 (-13 (-425) (-784) (-961 (-521)) (-583 (-521)))) (-5 *2 (-51)) (-5 *1 (-289 *5 *3)) (-4 *3 (-13 (-27) (-1105) (-404 *5))))) (-3055 (*1 *2 *3) (-12 (-4 *4 (-13 (-425) (-784) (-961 (-521)) (-583 (-521)))) (-5 *2 (-51)) (-5 *1 (-289 *4 *3)) (-4 *3 (-13 (-27) (-1105) (-404 *4))))) (-3055 (*1 *2 *3) (-12 (-5 *3 (-1084)) (-4 *4 (-13 (-425) (-784) (-961 (-521)) (-583 (-521)))) (-5 *2 (-51)) (-5 *1 (-289 *4 *5)) (-4 *5 (-13 (-27) (-1105) (-404 *4))))))
+(-10 -7 (-15 -3055 ((-51) (-1084))) (-15 -3055 ((-51) |#2|)) (-15 -3055 ((-51) |#2| (-707))) (-15 -3055 ((-51) |#2| (-269 |#2|))) (-15 -3055 ((-51) |#2| (-269 |#2|) (-707))) (-15 -3065 ((-51) (-1084))) (-15 -3065 ((-51) |#2|)) (-15 -3065 ((-51) |#2| (-521))) (-15 -3065 ((-51) |#2| (-269 |#2|))) (-15 -3065 ((-51) |#2| (-269 |#2|) (-521))) (-15 -3075 ((-51) (-1084))) (-15 -3075 ((-51) |#2|)) (-15 -3075 ((-51) |#2| (-381 (-521)))) (-15 -3075 ((-51) |#2| (-269 |#2|))) (-15 -3075 ((-51) |#2| (-269 |#2|) (-381 (-521)))) (-15 -2770 ((-51) (-1084))) (-15 -2770 ((-51) |#2|)) (-15 -2770 ((-51) |#2| (-381 (-521)))) (-15 -2770 ((-51) |#2| (-269 |#2|))) (-15 -2770 ((-51) |#2| (-269 |#2|) (-381 (-521)))))
+((-1415 (((-108) $ $) NIL)) (-3102 (((-587 $) $ (-1084)) NIL (|has| |#1| (-513))) (((-587 $) $) NIL (|has| |#1| (-513))) (((-587 $) (-1080 $) (-1084)) NIL (|has| |#1| (-513))) (((-587 $) (-1080 $)) NIL (|has| |#1| (-513))) (((-587 $) (-881 $)) NIL (|has| |#1| (-513)))) (-3485 (($ $ (-1084)) NIL (|has| |#1| (-513))) (($ $) NIL (|has| |#1| (-513))) (($ (-1080 $) (-1084)) NIL (|has| |#1| (-513))) (($ (-1080 $)) NIL (|has| |#1| (-513))) (($ (-881 $)) NIL (|has| |#1| (-513)))) (-2220 (((-108) $) 27 (-3703 (|has| |#1| (-25)) (-12 (|has| |#1| (-583 (-521))) (|has| |#1| (-970)))))) (-4084 (((-587 (-1084)) $) 345)) (-1280 (((-381 (-1080 $)) $ (-560 $)) NIL (|has| |#1| (-513)))) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) NIL (|has| |#1| (-513)))) (-2559 (($ $) NIL (|has| |#1| (-513)))) (-1733 (((-108) $) NIL (|has| |#1| (-513)))) (-1884 (((-587 (-560 $)) $) NIL)) (-2904 (($ $) 154 (|has| |#1| (-513)))) (-2769 (($ $) 130 (|has| |#1| (-513)))) (-3361 (($ $ (-1006 $)) 215 (|has| |#1| (-513))) (($ $ (-1084)) 211 (|has| |#1| (-513)))) (-1232 (((-3 $ "failed") $ $) NIL (-3703 (|has| |#1| (-21)) (-12 (|has| |#1| (-583 (-521))) (|has| |#1| (-970)))))) (-3300 (($ $ (-269 $)) NIL) (($ $ (-587 (-269 $))) 361) (($ $ (-587 (-560 $)) (-587 $)) 404)) (-2598 (((-392 (-1080 $)) (-1080 $)) 289 (-12 (|has| |#1| (-425)) (|has| |#1| (-513))))) (-3063 (($ $) NIL (|has| |#1| (-513)))) (-3358 (((-392 $) $) NIL (|has| |#1| (-513)))) (-1927 (($ $) NIL (|has| |#1| (-513)))) (-1389 (((-108) $ $) NIL (|has| |#1| (-513)))) (-2880 (($ $) 150 (|has| |#1| (-513)))) (-2746 (($ $) 126 (|has| |#1| (-513)))) (-3886 (($ $ (-521)) 64 (|has| |#1| (-513)))) (-2926 (($ $) 158 (|has| |#1| (-513)))) (-2790 (($ $) 134 (|has| |#1| (-513)))) (-2547 (($) NIL (-3703 (|has| |#1| (-25)) (-12 (|has| |#1| (-583 (-521))) (|has| |#1| (-970))) (|has| |#1| (-1025))) CONST)) (-2270 (((-587 $) $ (-1084)) NIL (|has| |#1| (-513))) (((-587 $) $) NIL (|has| |#1| (-513))) (((-587 $) (-1080 $) (-1084)) NIL (|has| |#1| (-513))) (((-587 $) (-1080 $)) NIL (|has| |#1| (-513))) (((-587 $) (-881 $)) NIL (|has| |#1| (-513)))) (-2590 (($ $ (-1084)) NIL (|has| |#1| (-513))) (($ $) NIL (|has| |#1| (-513))) (($ (-1080 $) (-1084)) 117 (|has| |#1| (-513))) (($ (-1080 $)) NIL (|has| |#1| (-513))) (($ (-881 $)) NIL (|has| |#1| (-513)))) (-1297 (((-3 (-560 $) "failed") $) 17) (((-3 (-1084) "failed") $) NIL) (((-3 |#1| "failed") $) 413) (((-3 (-47) "failed") $) 318 (-12 (|has| |#1| (-513)) (|has| |#1| (-961 (-521))))) (((-3 (-521) "failed") $) NIL (|has| |#1| (-961 (-521)))) (((-3 (-381 (-881 |#1|)) "failed") $) NIL (|has| |#1| (-513))) (((-3 (-881 |#1|) "failed") $) NIL (|has| |#1| (-970))) (((-3 (-381 (-521)) "failed") $) 45 (-3703 (-12 (|has| |#1| (-513)) (|has| |#1| (-961 (-521)))) (|has| |#1| (-961 (-381 (-521))))))) (-1483 (((-560 $) $) 11) (((-1084) $) NIL) ((|#1| $) 395) (((-47) $) NIL (-12 (|has| |#1| (-513)) (|has| |#1| (-961 (-521))))) (((-521) $) NIL (|has| |#1| (-961 (-521)))) (((-381 (-881 |#1|)) $) NIL (|has| |#1| (-513))) (((-881 |#1|) $) NIL (|has| |#1| (-970))) (((-381 (-521)) $) 302 (-3703 (-12 (|has| |#1| (-513)) (|has| |#1| (-961 (-521)))) (|has| |#1| (-961 (-381 (-521))))))) (-2277 (($ $ $) NIL (|has| |#1| (-513)))) (-3279 (((-2 (|:| -1201 (-627 |#1|)) (|:| |vec| (-1165 |#1|))) (-627 $) (-1165 $)) 110 (|has| |#1| (-970))) (((-627 |#1|) (-627 $)) 102 (|has| |#1| (-970))) (((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (-12 (|has| |#1| (-583 (-521))) (|has| |#1| (-970)))) (((-627 (-521)) (-627 $)) NIL (-12 (|has| |#1| (-583 (-521))) (|has| |#1| (-970))))) (-3859 (($ $) 84 (|has| |#1| (-513)))) (-1257 (((-3 $ "failed") $) NIL (-3703 (-12 (|has| |#1| (-583 (-521))) (|has| |#1| (-970))) (|has| |#1| (-1025))))) (-2253 (($ $ $) NIL (|has| |#1| (-513)))) (-2339 (($ $ (-1006 $)) 219 (|has| |#1| (-513))) (($ $ (-1084)) 217 (|has| |#1| (-513)))) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) NIL (|has| |#1| (-513)))) (-2710 (((-108) $) NIL (|has| |#1| (-513)))) (-2607 (($ $ $) 185 (|has| |#1| (-513)))) (-2834 (($) 120 (|has| |#1| (-513)))) (-3189 (($ $ $) 205 (|has| |#1| (-513)))) (-3427 (((-818 (-521) $) $ (-821 (-521)) (-818 (-521) $)) 367 (|has| |#1| (-815 (-521)))) (((-818 (-353) $) $ (-821 (-353)) (-818 (-353) $)) 373 (|has| |#1| (-815 (-353))))) (-3072 (($ $) NIL) (($ (-587 $)) NIL)) (-1833 (((-587 (-110)) $) NIL)) (-2727 (((-110) (-110)) 260)) (-3996 (((-108) $) 25 (-3703 (-12 (|has| |#1| (-583 (-521))) (|has| |#1| (-970))) (|has| |#1| (-1025))))) (-1255 (((-108) $) NIL (|has| $ (-961 (-521))))) (-3257 (($ $) 66 (|has| |#1| (-970)))) (-2801 (((-1036 |#1| (-560 $)) $) 79 (|has| |#1| (-970)))) (-1331 (((-108) $) 46 (|has| |#1| (-513)))) (-3407 (($ $ (-521)) NIL (|has| |#1| (-513)))) (-1546 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| |#1| (-513)))) (-2527 (((-1080 $) (-560 $)) 261 (|has| $ (-970)))) (-2810 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-1390 (($ (-1 $ $) (-560 $)) 400)) (-2018 (((-3 (-560 $) "failed") $) NIL)) (-1253 (($ $) 124 (|has| |#1| (-513)))) (-3242 (($ $) 230 (|has| |#1| (-513)))) (-2223 (($ (-587 $)) NIL (|has| |#1| (-513))) (($ $ $) NIL (|has| |#1| (-513)))) (-3688 (((-1067) $) NIL)) (-1266 (((-587 (-560 $)) $) 48)) (-2905 (($ (-110) $) NIL) (($ (-110) (-587 $)) 405)) (-1617 (((-3 (-587 $) "failed") $) NIL (|has| |#1| (-1025)))) (-1928 (((-3 (-2 (|:| |val| $) (|:| -2997 (-521))) "failed") $) NIL (|has| |#1| (-970)))) (-3177 (((-3 (-587 $) "failed") $) 408 (|has| |#1| (-25)))) (-3267 (((-3 (-2 (|:| -2973 (-521)) (|:| |var| (-560 $))) "failed") $) 412 (|has| |#1| (-25)))) (-3979 (((-3 (-2 (|:| |var| (-560 $)) (|:| -2997 (-521))) "failed") $) NIL (|has| |#1| (-1025))) (((-3 (-2 (|:| |var| (-560 $)) (|:| -2997 (-521))) "failed") $ (-110)) NIL (|has| |#1| (-970))) (((-3 (-2 (|:| |var| (-560 $)) (|:| -2997 (-521))) "failed") $ (-1084)) NIL (|has| |#1| (-970)))) (-1705 (((-108) $ (-110)) NIL) (((-108) $ (-1084)) 52)) (-3095 (($ $) NIL (-3703 (|has| |#1| (-446)) (|has| |#1| (-513))))) (-2337 (($ $ (-1084)) 234 (|has| |#1| (-513))) (($ $ (-1006 $)) 236 (|has| |#1| (-513)))) (-4150 (((-707) $) NIL)) (-4147 (((-1031) $) NIL)) (-3105 (((-108) $) 43)) (-3115 ((|#1| $) NIL)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) 282 (|has| |#1| (-513)))) (-2258 (($ (-587 $)) NIL (|has| |#1| (-513))) (($ $ $) NIL (|has| |#1| (-513)))) (-3899 (((-108) $ $) NIL) (((-108) $ (-1084)) NIL)) (-3013 (($ $ (-1084)) 209 (|has| |#1| (-513))) (($ $) 207 (|has| |#1| (-513)))) (-3210 (($ $) 201 (|has| |#1| (-513)))) (-2165 (((-392 (-1080 $)) (-1080 $)) 287 (-12 (|has| |#1| (-425)) (|has| |#1| (-513))))) (-1916 (((-392 $) $) NIL (|has| |#1| (-513)))) (-1962 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-513))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL (|has| |#1| (-513)))) (-2230 (((-3 $ "failed") $ $) NIL (|has| |#1| (-513)))) (-3854 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| |#1| (-513)))) (-3261 (($ $) 122 (|has| |#1| (-513)))) (-3550 (((-108) $) NIL (|has| $ (-961 (-521))))) (-2288 (($ $ (-560 $) $) NIL) (($ $ (-587 (-560 $)) (-587 $)) 399) (($ $ (-587 (-269 $))) NIL) (($ $ (-269 $)) NIL) (($ $ $ $) NIL) (($ $ (-587 $) (-587 $)) NIL) (($ $ (-587 (-1084)) (-587 (-1 $ $))) NIL) (($ $ (-587 (-1084)) (-587 (-1 $ (-587 $)))) NIL) (($ $ (-1084) (-1 $ (-587 $))) NIL) (($ $ (-1084) (-1 $ $)) NIL) (($ $ (-587 (-110)) (-587 (-1 $ $))) 355) (($ $ (-587 (-110)) (-587 (-1 $ (-587 $)))) NIL) (($ $ (-110) (-1 $ (-587 $))) NIL) (($ $ (-110) (-1 $ $)) NIL) (($ $ (-1084)) NIL (|has| |#1| (-562 (-497)))) (($ $ (-587 (-1084))) NIL (|has| |#1| (-562 (-497)))) (($ $) NIL (|has| |#1| (-562 (-497)))) (($ $ (-110) $ (-1084)) 343 (|has| |#1| (-562 (-497)))) (($ $ (-587 (-110)) (-587 $) (-1084)) 342 (|has| |#1| (-562 (-497)))) (($ $ (-587 (-1084)) (-587 (-707)) (-587 (-1 $ $))) NIL (|has| |#1| (-970))) (($ $ (-587 (-1084)) (-587 (-707)) (-587 (-1 $ (-587 $)))) NIL (|has| |#1| (-970))) (($ $ (-1084) (-707) (-1 $ (-587 $))) NIL (|has| |#1| (-970))) (($ $ (-1084) (-707) (-1 $ $)) NIL (|has| |#1| (-970)))) (-4196 (((-707) $) NIL (|has| |#1| (-513)))) (-2705 (($ $) 222 (|has| |#1| (-513)))) (-2544 (($ (-110) $) NIL) (($ (-110) $ $) NIL) (($ (-110) $ $ $) NIL) (($ (-110) $ $ $ $) NIL) (($ (-110) (-587 $)) NIL)) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) NIL (|has| |#1| (-513)))) (-4016 (($ $) NIL) (($ $ $) NIL)) (-2734 (($ $) 232 (|has| |#1| (-513)))) (-2960 (($ $) 183 (|has| |#1| (-513)))) (-2156 (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| |#1| (-970))) (($ $ (-1084) (-707)) NIL (|has| |#1| (-970))) (($ $ (-587 (-1084))) NIL (|has| |#1| (-970))) (($ $ (-1084)) NIL (|has| |#1| (-970)))) (-4142 (($ $) 67 (|has| |#1| (-513)))) (-2812 (((-1036 |#1| (-560 $)) $) 81 (|has| |#1| (-513)))) (-2879 (($ $) 300 (|has| $ (-970)))) (-1738 (($ $) 160 (|has| |#1| (-513)))) (-2800 (($ $) 136 (|has| |#1| (-513)))) (-2915 (($ $) 156 (|has| |#1| (-513)))) (-2780 (($ $) 132 (|has| |#1| (-513)))) (-2892 (($ $) 152 (|has| |#1| (-513)))) (-2758 (($ $) 128 (|has| |#1| (-513)))) (-1430 (((-821 (-521)) $) NIL (|has| |#1| (-562 (-821 (-521))))) (((-821 (-353)) $) NIL (|has| |#1| (-562 (-821 (-353))))) (($ (-392 $)) NIL (|has| |#1| (-513))) (((-497) $) 340 (|has| |#1| (-562 (-497))))) (-1223 (($ $ $) NIL (|has| |#1| (-446)))) (-2674 (($ $ $) NIL (|has| |#1| (-446)))) (-2189 (((-792) $) 398) (($ (-560 $)) 389) (($ (-1084)) 357) (($ |#1|) 319) (($ $) NIL (|has| |#1| (-513))) (($ (-47)) 294 (-12 (|has| |#1| (-513)) (|has| |#1| (-961 (-521))))) (($ (-1036 |#1| (-560 $))) 83 (|has| |#1| (-970))) (($ (-381 |#1|)) NIL (|has| |#1| (-513))) (($ (-881 (-381 |#1|))) NIL (|has| |#1| (-513))) (($ (-381 (-881 (-381 |#1|)))) NIL (|has| |#1| (-513))) (($ (-381 (-881 |#1|))) NIL (|has| |#1| (-513))) (($ (-881 |#1|)) NIL (|has| |#1| (-970))) (($ (-381 (-521))) NIL (-3703 (|has| |#1| (-513)) (|has| |#1| (-961 (-381 (-521)))))) (($ (-521)) 34 (-3703 (|has| |#1| (-961 (-521))) (|has| |#1| (-970))))) (-1671 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-3846 (((-707)) NIL (|has| |#1| (-970)))) (-2320 (($ $) NIL) (($ (-587 $)) NIL)) (-2712 (($ $ $) 203 (|has| |#1| (-513)))) (-2205 (($ $ $) 189 (|has| |#1| (-513)))) (-1882 (($ $ $) 193 (|has| |#1| (-513)))) (-1847 (($ $ $) 187 (|has| |#1| (-513)))) (-3879 (($ $ $) 191 (|has| |#1| (-513)))) (-1455 (((-108) (-110)) 9)) (-1759 (($ $) 166 (|has| |#1| (-513)))) (-2832 (($ $) 142 (|has| |#1| (-513)))) (-4210 (((-108) $ $) NIL (|has| |#1| (-513)))) (-1745 (($ $) 162 (|has| |#1| (-513)))) (-2811 (($ $) 138 (|has| |#1| (-513)))) (-1776 (($ $) 170 (|has| |#1| (-513)))) (-2856 (($ $) 146 (|has| |#1| (-513)))) (-1805 (($ (-1084) $) NIL) (($ (-1084) $ $) NIL) (($ (-1084) $ $ $) NIL) (($ (-1084) $ $ $ $) NIL) (($ (-1084) (-587 $)) NIL)) (-2264 (($ $) 197 (|has| |#1| (-513)))) (-3774 (($ $) 195 (|has| |#1| (-513)))) (-3919 (($ $) 172 (|has| |#1| (-513)))) (-2868 (($ $) 148 (|has| |#1| (-513)))) (-1768 (($ $) 168 (|has| |#1| (-513)))) (-2844 (($ $) 144 (|has| |#1| (-513)))) (-1752 (($ $) 164 (|has| |#1| (-513)))) (-2821 (($ $) 140 (|has| |#1| (-513)))) (-3304 (($ $) 175 (|has| |#1| (-513)))) (-3505 (($ $ (-521)) NIL (-3703 (|has| |#1| (-446)) (|has| |#1| (-513)))) (($ $ (-707)) NIL (-3703 (-12 (|has| |#1| (-583 (-521))) (|has| |#1| (-970))) (|has| |#1| (-1025)))) (($ $ (-850)) NIL (-3703 (-12 (|has| |#1| (-583 (-521))) (|has| |#1| (-970))) (|has| |#1| (-1025))))) (-3561 (($) 20 (-3703 (|has| |#1| (-25)) (-12 (|has| |#1| (-583 (-521))) (|has| |#1| (-970)))) CONST)) (-1762 (($ $) 226 (|has| |#1| (-513)))) (-3572 (($) 22 (-3703 (-12 (|has| |#1| (-583 (-521))) (|has| |#1| (-970))) (|has| |#1| (-1025))) CONST)) (-3181 (($ $) 177 (|has| |#1| (-513))) (($ $ $) 179 (|has| |#1| (-513)))) (-2522 (($ $) 224 (|has| |#1| (-513)))) (-2212 (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| |#1| (-970))) (($ $ (-1084) (-707)) NIL (|has| |#1| (-970))) (($ $ (-587 (-1084))) NIL (|has| |#1| (-970))) (($ $ (-1084)) NIL (|has| |#1| (-970)))) (-1217 (($ $) 228 (|has| |#1| (-513)))) (-1829 (($ $ $) 181 (|has| |#1| (-513)))) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) 76)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 75)) (-1620 (($ (-1036 |#1| (-560 $)) (-1036 |#1| (-560 $))) 93 (|has| |#1| (-513))) (($ $ $) 42 (-3703 (|has| |#1| (-446)) (|has| |#1| (-513))))) (-1612 (($ $ $) 40 (-3703 (|has| |#1| (-21)) (-12 (|has| |#1| (-583 (-521))) (|has| |#1| (-970))))) (($ $) 29 (-3703 (|has| |#1| (-21)) (-12 (|has| |#1| (-583 (-521))) (|has| |#1| (-970)))))) (-1602 (($ $ $) 38 (-3703 (|has| |#1| (-25)) (-12 (|has| |#1| (-583 (-521))) (|has| |#1| (-970)))))) (** (($ $ $) 61 (|has| |#1| (-513))) (($ $ (-381 (-521))) 297 (|has| |#1| (-513))) (($ $ (-521)) 71 (-3703 (|has| |#1| (-446)) (|has| |#1| (-513)))) (($ $ (-707)) 68 (-3703 (-12 (|has| |#1| (-583 (-521))) (|has| |#1| (-970))) (|has| |#1| (-1025)))) (($ $ (-850)) 73 (-3703 (-12 (|has| |#1| (-583 (-521))) (|has| |#1| (-970))) (|has| |#1| (-1025))))) (* (($ (-381 (-521)) $) NIL (|has| |#1| (-513))) (($ $ (-381 (-521))) NIL (|has| |#1| (-513))) (($ |#1| $) NIL (|has| |#1| (-157))) (($ $ |#1|) NIL (|has| |#1| (-157))) (($ $ $) 36 (-3703 (-12 (|has| |#1| (-583 (-521))) (|has| |#1| (-970))) (|has| |#1| (-1025)))) (($ (-521) $) 32 (-3703 (|has| |#1| (-21)) (-12 (|has| |#1| (-583 (-521))) (|has| |#1| (-970))))) (($ (-707) $) NIL (-3703 (|has| |#1| (-25)) (-12 (|has| |#1| (-583 (-521))) (|has| |#1| (-970))))) (($ (-850) $) NIL (-3703 (|has| |#1| (-25)) (-12 (|has| |#1| (-583 (-521))) (|has| |#1| (-970)))))))
+(((-290 |#1|) (-13 (-404 |#1|) (-10 -8 (IF (|has| |#1| (-513)) (PROGN (-6 (-29 |#1|)) (-6 (-1105)) (-6 (-146)) (-6 (-573)) (-6 (-1048)) (-15 -3859 ($ $)) (-15 -1331 ((-108) $)) (-15 -3886 ($ $ (-521))) (IF (|has| |#1| (-425)) (PROGN (-15 -2165 ((-392 (-1080 $)) (-1080 $))) (-15 -2598 ((-392 (-1080 $)) (-1080 $)))) |%noBranch|) (IF (|has| |#1| (-961 (-521))) (-6 (-961 (-47))) |%noBranch|)) |%noBranch|))) (-784)) (T -290))
+((-3859 (*1 *1 *1) (-12 (-5 *1 (-290 *2)) (-4 *2 (-513)) (-4 *2 (-784)))) (-1331 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-290 *3)) (-4 *3 (-513)) (-4 *3 (-784)))) (-3886 (*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-290 *3)) (-4 *3 (-513)) (-4 *3 (-784)))) (-2165 (*1 *2 *3) (-12 (-5 *2 (-392 (-1080 *1))) (-5 *1 (-290 *4)) (-5 *3 (-1080 *1)) (-4 *4 (-425)) (-4 *4 (-513)) (-4 *4 (-784)))) (-2598 (*1 *2 *3) (-12 (-5 *2 (-392 (-1080 *1))) (-5 *1 (-290 *4)) (-5 *3 (-1080 *1)) (-4 *4 (-425)) (-4 *4 (-513)) (-4 *4 (-784)))))
+(-13 (-404 |#1|) (-10 -8 (IF (|has| |#1| (-513)) (PROGN (-6 (-29 |#1|)) (-6 (-1105)) (-6 (-146)) (-6 (-573)) (-6 (-1048)) (-15 -3859 ($ $)) (-15 -1331 ((-108) $)) (-15 -3886 ($ $ (-521))) (IF (|has| |#1| (-425)) (PROGN (-15 -2165 ((-392 (-1080 $)) (-1080 $))) (-15 -2598 ((-392 (-1080 $)) (-1080 $)))) |%noBranch|) (IF (|has| |#1| (-961 (-521))) (-6 (-961 (-47))) |%noBranch|)) |%noBranch|)))
+((-3945 (((-51) |#2| (-110) (-269 |#2|) (-587 |#2|)) 86) (((-51) |#2| (-110) (-269 |#2|) (-269 |#2|)) 82) (((-51) |#2| (-110) (-269 |#2|) |#2|) 84) (((-51) (-269 |#2|) (-110) (-269 |#2|) |#2|) 85) (((-51) (-587 |#2|) (-587 (-110)) (-269 |#2|) (-587 (-269 |#2|))) 78) (((-51) (-587 |#2|) (-587 (-110)) (-269 |#2|) (-587 |#2|)) 80) (((-51) (-587 (-269 |#2|)) (-587 (-110)) (-269 |#2|) (-587 |#2|)) 81) (((-51) (-587 (-269 |#2|)) (-587 (-110)) (-269 |#2|) (-587 (-269 |#2|))) 79) (((-51) (-269 |#2|) (-110) (-269 |#2|) (-587 |#2|)) 87) (((-51) (-269 |#2|) (-110) (-269 |#2|) (-269 |#2|)) 83)))
+(((-291 |#1| |#2|) (-10 -7 (-15 -3945 ((-51) (-269 |#2|) (-110) (-269 |#2|) (-269 |#2|))) (-15 -3945 ((-51) (-269 |#2|) (-110) (-269 |#2|) (-587 |#2|))) (-15 -3945 ((-51) (-587 (-269 |#2|)) (-587 (-110)) (-269 |#2|) (-587 (-269 |#2|)))) (-15 -3945 ((-51) (-587 (-269 |#2|)) (-587 (-110)) (-269 |#2|) (-587 |#2|))) (-15 -3945 ((-51) (-587 |#2|) (-587 (-110)) (-269 |#2|) (-587 |#2|))) (-15 -3945 ((-51) (-587 |#2|) (-587 (-110)) (-269 |#2|) (-587 (-269 |#2|)))) (-15 -3945 ((-51) (-269 |#2|) (-110) (-269 |#2|) |#2|)) (-15 -3945 ((-51) |#2| (-110) (-269 |#2|) |#2|)) (-15 -3945 ((-51) |#2| (-110) (-269 |#2|) (-269 |#2|))) (-15 -3945 ((-51) |#2| (-110) (-269 |#2|) (-587 |#2|)))) (-13 (-784) (-513) (-562 (-497))) (-404 |#1|)) (T -291))
+((-3945 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-110)) (-5 *5 (-269 *3)) (-5 *6 (-587 *3)) (-4 *3 (-404 *7)) (-4 *7 (-13 (-784) (-513) (-562 (-497)))) (-5 *2 (-51)) (-5 *1 (-291 *7 *3)))) (-3945 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-110)) (-5 *5 (-269 *3)) (-4 *3 (-404 *6)) (-4 *6 (-13 (-784) (-513) (-562 (-497)))) (-5 *2 (-51)) (-5 *1 (-291 *6 *3)))) (-3945 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-110)) (-5 *5 (-269 *3)) (-4 *3 (-404 *6)) (-4 *6 (-13 (-784) (-513) (-562 (-497)))) (-5 *2 (-51)) (-5 *1 (-291 *6 *3)))) (-3945 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-269 *5)) (-5 *4 (-110)) (-4 *5 (-404 *6)) (-4 *6 (-13 (-784) (-513) (-562 (-497)))) (-5 *2 (-51)) (-5 *1 (-291 *6 *5)))) (-3945 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-587 *8)) (-5 *4 (-587 (-110))) (-5 *6 (-587 (-269 *8))) (-4 *8 (-404 *7)) (-5 *5 (-269 *8)) (-4 *7 (-13 (-784) (-513) (-562 (-497)))) (-5 *2 (-51)) (-5 *1 (-291 *7 *8)))) (-3945 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-587 *7)) (-5 *4 (-587 (-110))) (-5 *5 (-269 *7)) (-4 *7 (-404 *6)) (-4 *6 (-13 (-784) (-513) (-562 (-497)))) (-5 *2 (-51)) (-5 *1 (-291 *6 *7)))) (-3945 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-587 (-269 *8))) (-5 *4 (-587 (-110))) (-5 *5 (-269 *8)) (-5 *6 (-587 *8)) (-4 *8 (-404 *7)) (-4 *7 (-13 (-784) (-513) (-562 (-497)))) (-5 *2 (-51)) (-5 *1 (-291 *7 *8)))) (-3945 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-587 (-269 *7))) (-5 *4 (-587 (-110))) (-5 *5 (-269 *7)) (-4 *7 (-404 *6)) (-4 *6 (-13 (-784) (-513) (-562 (-497)))) (-5 *2 (-51)) (-5 *1 (-291 *6 *7)))) (-3945 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-269 *7)) (-5 *4 (-110)) (-5 *5 (-587 *7)) (-4 *7 (-404 *6)) (-4 *6 (-13 (-784) (-513) (-562 (-497)))) (-5 *2 (-51)) (-5 *1 (-291 *6 *7)))) (-3945 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-269 *6)) (-5 *4 (-110)) (-4 *6 (-404 *5)) (-4 *5 (-13 (-784) (-513) (-562 (-497)))) (-5 *2 (-51)) (-5 *1 (-291 *5 *6)))))
+(-10 -7 (-15 -3945 ((-51) (-269 |#2|) (-110) (-269 |#2|) (-269 |#2|))) (-15 -3945 ((-51) (-269 |#2|) (-110) (-269 |#2|) (-587 |#2|))) (-15 -3945 ((-51) (-587 (-269 |#2|)) (-587 (-110)) (-269 |#2|) (-587 (-269 |#2|)))) (-15 -3945 ((-51) (-587 (-269 |#2|)) (-587 (-110)) (-269 |#2|) (-587 |#2|))) (-15 -3945 ((-51) (-587 |#2|) (-587 (-110)) (-269 |#2|) (-587 |#2|))) (-15 -3945 ((-51) (-587 |#2|) (-587 (-110)) (-269 |#2|) (-587 (-269 |#2|)))) (-15 -3945 ((-51) (-269 |#2|) (-110) (-269 |#2|) |#2|)) (-15 -3945 ((-51) |#2| (-110) (-269 |#2|) |#2|)) (-15 -3945 ((-51) |#2| (-110) (-269 |#2|) (-269 |#2|))) (-15 -3945 ((-51) |#2| (-110) (-269 |#2|) (-587 |#2|))))
+((-4113 (((-1115 (-855)) (-290 (-521)) (-290 (-521)) (-290 (-521)) (-1 (-202) (-202)) (-1008 (-202)) (-202) (-521) (-1067)) 46) (((-1115 (-855)) (-290 (-521)) (-290 (-521)) (-290 (-521)) (-1 (-202) (-202)) (-1008 (-202)) (-202) (-521)) 47) (((-1115 (-855)) (-290 (-521)) (-290 (-521)) (-290 (-521)) (-1 (-202) (-202)) (-1008 (-202)) (-1 (-202) (-202)) (-521) (-1067)) 43) (((-1115 (-855)) (-290 (-521)) (-290 (-521)) (-290 (-521)) (-1 (-202) (-202)) (-1008 (-202)) (-1 (-202) (-202)) (-521)) 44)) (-4172 (((-1 (-202) (-202)) (-202)) 45)))
+(((-292) (-10 -7 (-15 -4172 ((-1 (-202) (-202)) (-202))) (-15 -4113 ((-1115 (-855)) (-290 (-521)) (-290 (-521)) (-290 (-521)) (-1 (-202) (-202)) (-1008 (-202)) (-1 (-202) (-202)) (-521))) (-15 -4113 ((-1115 (-855)) (-290 (-521)) (-290 (-521)) (-290 (-521)) (-1 (-202) (-202)) (-1008 (-202)) (-1 (-202) (-202)) (-521) (-1067))) (-15 -4113 ((-1115 (-855)) (-290 (-521)) (-290 (-521)) (-290 (-521)) (-1 (-202) (-202)) (-1008 (-202)) (-202) (-521))) (-15 -4113 ((-1115 (-855)) (-290 (-521)) (-290 (-521)) (-290 (-521)) (-1 (-202) (-202)) (-1008 (-202)) (-202) (-521) (-1067))))) (T -292))
+((-4113 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-290 (-521))) (-5 *4 (-1 (-202) (-202))) (-5 *5 (-1008 (-202))) (-5 *6 (-202)) (-5 *7 (-521)) (-5 *8 (-1067)) (-5 *2 (-1115 (-855))) (-5 *1 (-292)))) (-4113 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-290 (-521))) (-5 *4 (-1 (-202) (-202))) (-5 *5 (-1008 (-202))) (-5 *6 (-202)) (-5 *7 (-521)) (-5 *2 (-1115 (-855))) (-5 *1 (-292)))) (-4113 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-290 (-521))) (-5 *4 (-1 (-202) (-202))) (-5 *5 (-1008 (-202))) (-5 *6 (-521)) (-5 *7 (-1067)) (-5 *2 (-1115 (-855))) (-5 *1 (-292)))) (-4113 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-290 (-521))) (-5 *4 (-1 (-202) (-202))) (-5 *5 (-1008 (-202))) (-5 *6 (-521)) (-5 *2 (-1115 (-855))) (-5 *1 (-292)))) (-4172 (*1 *2 *3) (-12 (-5 *2 (-1 (-202) (-202))) (-5 *1 (-292)) (-5 *3 (-202)))))
+(-10 -7 (-15 -4172 ((-1 (-202) (-202)) (-202))) (-15 -4113 ((-1115 (-855)) (-290 (-521)) (-290 (-521)) (-290 (-521)) (-1 (-202) (-202)) (-1008 (-202)) (-1 (-202) (-202)) (-521))) (-15 -4113 ((-1115 (-855)) (-290 (-521)) (-290 (-521)) (-290 (-521)) (-1 (-202) (-202)) (-1008 (-202)) (-1 (-202) (-202)) (-521) (-1067))) (-15 -4113 ((-1115 (-855)) (-290 (-521)) (-290 (-521)) (-290 (-521)) (-1 (-202) (-202)) (-1008 (-202)) (-202) (-521))) (-15 -4113 ((-1115 (-855)) (-290 (-521)) (-290 (-521)) (-290 (-521)) (-1 (-202) (-202)) (-1008 (-202)) (-202) (-521) (-1067))))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) 24)) (-4084 (((-587 (-998)) $) NIL)) (-1611 (((-1084) $) NIL)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) NIL (|has| |#1| (-513)))) (-2559 (($ $) NIL (|has| |#1| (-513)))) (-1733 (((-108) $) NIL (|has| |#1| (-513)))) (-2977 (($ $ (-381 (-521))) NIL) (($ $ (-381 (-521)) (-381 (-521))) NIL)) (-3423 (((-1065 (-2 (|:| |k| (-381 (-521))) (|:| |c| |#1|))) $) 19)) (-2904 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2769 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-1232 (((-3 $ "failed") $ $) NIL)) (-3063 (($ $) NIL (|has| |#1| (-337)))) (-3358 (((-392 $) $) NIL (|has| |#1| (-337)))) (-1927 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-1389 (((-108) $ $) NIL (|has| |#1| (-337)))) (-2880 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2746 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2770 (($ (-707) (-1065 (-2 (|:| |k| (-381 (-521))) (|:| |c| |#1|)))) NIL)) (-2926 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2790 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2547 (($) NIL T CONST)) (-2277 (($ $ $) NIL (|has| |#1| (-337)))) (-3152 (($ $) 31)) (-1257 (((-3 $ "failed") $) NIL)) (-2253 (($ $ $) NIL (|has| |#1| (-337)))) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) NIL (|has| |#1| (-337)))) (-2710 (((-108) $) NIL (|has| |#1| (-337)))) (-1325 (((-108) $) NIL)) (-2834 (($) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2733 (((-381 (-521)) $) NIL) (((-381 (-521)) $ (-381 (-521))) 15)) (-3996 (((-108) $) NIL)) (-3407 (($ $ (-521)) NIL (|has| |#1| (-37 (-381 (-521)))))) (-1993 (($ $ (-850)) NIL) (($ $ (-381 (-521))) NIL)) (-1546 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| |#1| (-337)))) (-3649 (((-108) $) NIL)) (-4043 (($ |#1| (-381 (-521))) NIL) (($ $ (-998) (-381 (-521))) NIL) (($ $ (-587 (-998)) (-587 (-381 (-521)))) NIL)) (-2810 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-1390 (($ (-1 |#1| |#1|) $) NIL)) (-1253 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3125 (($ $) NIL)) (-3135 ((|#1| $) NIL)) (-2223 (($ (-587 $)) NIL (|has| |#1| (-337))) (($ $ $) NIL (|has| |#1| (-337)))) (-3688 (((-1067) $) NIL)) (-3095 (($ $) NIL (|has| |#1| (-337)))) (-2184 (($ $) NIL (|has| |#1| (-37 (-381 (-521))))) (($ $ (-1084)) NIL (-3703 (-12 (|has| |#1| (-15 -2184 (|#1| |#1| (-1084)))) (|has| |#1| (-15 -4084 ((-587 (-1084)) |#1|))) (|has| |#1| (-37 (-381 (-521))))) (-12 (|has| |#1| (-29 (-521))) (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-887)) (|has| |#1| (-1105)))))) (-4147 (((-1031) $) NIL)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) NIL (|has| |#1| (-337)))) (-2258 (($ (-587 $)) NIL (|has| |#1| (-337))) (($ $ $) NIL (|has| |#1| (-337)))) (-1916 (((-392 $) $) NIL (|has| |#1| (-337)))) (-1962 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-337))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL (|has| |#1| (-337)))) (-2447 (($ $ (-381 (-521))) NIL)) (-2230 (((-3 $ "failed") $ $) NIL (|has| |#1| (-513)))) (-3854 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| |#1| (-337)))) (-2315 (((-381 (-521)) $) 16)) (-1327 (($ (-1150 |#1| |#2| |#3|)) 11)) (-2997 (((-1150 |#1| |#2| |#3|) $) 12)) (-3261 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2288 (((-1065 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-381 (-521))))))) (-4196 (((-707) $) NIL (|has| |#1| (-337)))) (-2544 ((|#1| $ (-381 (-521))) NIL) (($ $ $) NIL (|has| (-381 (-521)) (-1025)))) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) NIL (|has| |#1| (-337)))) (-2156 (($ $ (-587 (-1084)) (-587 (-707))) NIL (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-829 (-1084))))) (($ $ (-1084) (-707)) NIL (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-829 (-1084))))) (($ $ (-587 (-1084))) NIL (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-829 (-1084))))) (($ $ (-1084)) NIL (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-829 (-1084))))) (($ $ (-707)) NIL (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))))) (-1994 (((-381 (-521)) $) NIL)) (-1738 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2800 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2915 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2780 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2892 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2758 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3448 (($ $) 10)) (-2189 (((-792) $) 37) (($ (-521)) NIL) (($ |#1|) NIL (|has| |#1| (-157))) (($ (-381 (-521))) NIL (|has| |#1| (-37 (-381 (-521))))) (($ $) NIL (|has| |#1| (-513)))) (-3800 ((|#1| $ (-381 (-521))) 29)) (-1671 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-3846 (((-707)) NIL)) (-1893 ((|#1| $) NIL)) (-1759 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2832 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-4210 (((-108) $ $) NIL (|has| |#1| (-513)))) (-1745 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2811 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-1776 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2856 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3894 ((|#1| $ (-381 (-521))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-381 (-521))))) (|has| |#1| (-15 -2189 (|#1| (-1084))))))) (-3919 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2868 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-1768 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2844 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-1752 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2821 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL (|has| |#1| (-337)))) (-3561 (($) NIL T CONST)) (-3572 (($) NIL T CONST)) (-2212 (($ $ (-587 (-1084)) (-587 (-707))) NIL (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-829 (-1084))))) (($ $ (-1084) (-707)) NIL (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-829 (-1084))))) (($ $ (-587 (-1084))) NIL (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-829 (-1084))))) (($ $ (-1084)) NIL (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-829 (-1084))))) (($ $ (-707)) NIL (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))))) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) 26)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 32)) (-1620 (($ $ |#1|) NIL (|has| |#1| (-337))) (($ $ $) NIL (|has| |#1| (-337)))) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL (|has| |#1| (-337))) (($ $ $) NIL (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) NIL (|has| |#1| (-37 (-381 (-521)))))) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-381 (-521)) $) NIL (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) NIL (|has| |#1| (-37 (-381 (-521)))))))
+(((-293 |#1| |#2| |#3|) (-13 (-1146 |#1|) (-728) (-10 -8 (-15 -1327 ($ (-1150 |#1| |#2| |#3|))) (-15 -2997 ((-1150 |#1| |#2| |#3|) $)) (-15 -2315 ((-381 (-521)) $)))) (-13 (-337) (-784)) (-1084) |#1|) (T -293))
+((-1327 (*1 *1 *2) (-12 (-5 *2 (-1150 *3 *4 *5)) (-4 *3 (-13 (-337) (-784))) (-14 *4 (-1084)) (-14 *5 *3) (-5 *1 (-293 *3 *4 *5)))) (-2997 (*1 *2 *1) (-12 (-5 *2 (-1150 *3 *4 *5)) (-5 *1 (-293 *3 *4 *5)) (-4 *3 (-13 (-337) (-784))) (-14 *4 (-1084)) (-14 *5 *3))) (-2315 (*1 *2 *1) (-12 (-5 *2 (-381 (-521))) (-5 *1 (-293 *3 *4 *5)) (-4 *3 (-13 (-337) (-784))) (-14 *4 (-1084)) (-14 *5 *3))))
+(-13 (-1146 |#1|) (-728) (-10 -8 (-15 -1327 ($ (-1150 |#1| |#2| |#3|))) (-15 -2997 ((-1150 |#1| |#2| |#3|) $)) (-15 -2315 ((-381 (-521)) $))))
+((-3407 (((-2 (|:| -2997 (-707)) (|:| -2973 |#1|) (|:| |radicand| (-587 |#1|))) (-392 |#1|) (-707)) 24)) (-1253 (((-587 (-2 (|:| -2973 (-707)) (|:| |logand| |#1|))) (-392 |#1|)) 28)))
+(((-294 |#1|) (-10 -7 (-15 -3407 ((-2 (|:| -2997 (-707)) (|:| -2973 |#1|) (|:| |radicand| (-587 |#1|))) (-392 |#1|) (-707))) (-15 -1253 ((-587 (-2 (|:| -2973 (-707)) (|:| |logand| |#1|))) (-392 |#1|)))) (-513)) (T -294))
+((-1253 (*1 *2 *3) (-12 (-5 *3 (-392 *4)) (-4 *4 (-513)) (-5 *2 (-587 (-2 (|:| -2973 (-707)) (|:| |logand| *4)))) (-5 *1 (-294 *4)))) (-3407 (*1 *2 *3 *4) (-12 (-5 *3 (-392 *5)) (-4 *5 (-513)) (-5 *2 (-2 (|:| -2997 (-707)) (|:| -2973 *5) (|:| |radicand| (-587 *5)))) (-5 *1 (-294 *5)) (-5 *4 (-707)))))
+(-10 -7 (-15 -3407 ((-2 (|:| -2997 (-707)) (|:| -2973 |#1|) (|:| |radicand| (-587 |#1|))) (-392 |#1|) (-707))) (-15 -1253 ((-587 (-2 (|:| -2973 (-707)) (|:| |logand| |#1|))) (-392 |#1|))))
+((-4084 (((-587 |#2|) (-1080 |#4|)) 43)) (-1773 ((|#3| (-521)) 46)) (-3169 (((-1080 |#4|) (-1080 |#3|)) 30)) (-2634 (((-1080 |#4|) (-1080 |#4|) (-521)) 56)) (-1371 (((-1080 |#3|) (-1080 |#4|)) 21)) (-1994 (((-587 (-707)) (-1080 |#4|) (-587 |#2|)) 40)) (-3390 (((-1080 |#3|) (-1080 |#4|) (-587 |#2|) (-587 |#3|)) 35)))
+(((-295 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3390 ((-1080 |#3|) (-1080 |#4|) (-587 |#2|) (-587 |#3|))) (-15 -1994 ((-587 (-707)) (-1080 |#4|) (-587 |#2|))) (-15 -4084 ((-587 |#2|) (-1080 |#4|))) (-15 -1371 ((-1080 |#3|) (-1080 |#4|))) (-15 -3169 ((-1080 |#4|) (-1080 |#3|))) (-15 -2634 ((-1080 |#4|) (-1080 |#4|) (-521))) (-15 -1773 (|#3| (-521)))) (-729) (-784) (-970) (-878 |#3| |#1| |#2|)) (T -295))
+((-1773 (*1 *2 *3) (-12 (-5 *3 (-521)) (-4 *4 (-729)) (-4 *5 (-784)) (-4 *2 (-970)) (-5 *1 (-295 *4 *5 *2 *6)) (-4 *6 (-878 *2 *4 *5)))) (-2634 (*1 *2 *2 *3) (-12 (-5 *2 (-1080 *7)) (-5 *3 (-521)) (-4 *7 (-878 *6 *4 *5)) (-4 *4 (-729)) (-4 *5 (-784)) (-4 *6 (-970)) (-5 *1 (-295 *4 *5 *6 *7)))) (-3169 (*1 *2 *3) (-12 (-5 *3 (-1080 *6)) (-4 *6 (-970)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *2 (-1080 *7)) (-5 *1 (-295 *4 *5 *6 *7)) (-4 *7 (-878 *6 *4 *5)))) (-1371 (*1 *2 *3) (-12 (-5 *3 (-1080 *7)) (-4 *7 (-878 *6 *4 *5)) (-4 *4 (-729)) (-4 *5 (-784)) (-4 *6 (-970)) (-5 *2 (-1080 *6)) (-5 *1 (-295 *4 *5 *6 *7)))) (-4084 (*1 *2 *3) (-12 (-5 *3 (-1080 *7)) (-4 *7 (-878 *6 *4 *5)) (-4 *4 (-729)) (-4 *5 (-784)) (-4 *6 (-970)) (-5 *2 (-587 *5)) (-5 *1 (-295 *4 *5 *6 *7)))) (-1994 (*1 *2 *3 *4) (-12 (-5 *3 (-1080 *8)) (-5 *4 (-587 *6)) (-4 *6 (-784)) (-4 *8 (-878 *7 *5 *6)) (-4 *5 (-729)) (-4 *7 (-970)) (-5 *2 (-587 (-707))) (-5 *1 (-295 *5 *6 *7 *8)))) (-3390 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1080 *9)) (-5 *4 (-587 *7)) (-5 *5 (-587 *8)) (-4 *7 (-784)) (-4 *8 (-970)) (-4 *9 (-878 *8 *6 *7)) (-4 *6 (-729)) (-5 *2 (-1080 *8)) (-5 *1 (-295 *6 *7 *8 *9)))))
+(-10 -7 (-15 -3390 ((-1080 |#3|) (-1080 |#4|) (-587 |#2|) (-587 |#3|))) (-15 -1994 ((-587 (-707)) (-1080 |#4|) (-587 |#2|))) (-15 -4084 ((-587 |#2|) (-1080 |#4|))) (-15 -1371 ((-1080 |#3|) (-1080 |#4|))) (-15 -3169 ((-1080 |#4|) (-1080 |#3|))) (-15 -2634 ((-1080 |#4|) (-1080 |#4|) (-521))) (-15 -1773 (|#3| (-521))))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) 14)) (-3423 (((-587 (-2 (|:| |gen| |#1|) (|:| -3261 (-521)))) $) 18)) (-1232 (((-3 $ "failed") $ $) NIL)) (-1630 (((-707) $) NIL)) (-2547 (($) NIL T CONST)) (-1297 (((-3 |#1| "failed") $) NIL)) (-1483 ((|#1| $) NIL)) (-1785 ((|#1| $ (-521)) NIL)) (-3605 (((-521) $ (-521)) NIL)) (-2810 (($ $ $) NIL (|has| |#1| (-784)))) (-2446 (($ $ $) NIL (|has| |#1| (-784)))) (-2502 (($ (-1 |#1| |#1|) $) NIL)) (-2190 (($ (-1 (-521) (-521)) $) 10)) (-3688 (((-1067) $) NIL)) (-1717 (($ $ $) NIL (|has| (-521) (-728)))) (-4147 (((-1031) $) NIL)) (-2189 (((-792) $) NIL) (($ |#1|) NIL)) (-3800 (((-521) |#1| $) NIL)) (-3561 (($) 15 T CONST)) (-1574 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1558 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1549 (((-108) $ $) 21 (|has| |#1| (-784)))) (-1612 (($ $) 11) (($ $ $) 20)) (-1602 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ (-521)) NIL) (($ (-521) |#1|) 19)))
+(((-296 |#1|) (-13 (-21) (-654 (-521)) (-297 |#1| (-521)) (-10 -7 (IF (|has| |#1| (-784)) (-6 (-784)) |%noBranch|))) (-1013)) (T -296))
+NIL
+(-13 (-21) (-654 (-521)) (-297 |#1| (-521)) (-10 -7 (IF (|has| |#1| (-784)) (-6 (-784)) |%noBranch|)))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-3423 (((-587 (-2 (|:| |gen| |#1|) (|:| -3261 |#2|))) $) 27)) (-1232 (((-3 $ "failed") $ $) 19)) (-1630 (((-707) $) 28)) (-2547 (($) 17 T CONST)) (-1297 (((-3 |#1| "failed") $) 32)) (-1483 ((|#1| $) 31)) (-1785 ((|#1| $ (-521)) 25)) (-3605 ((|#2| $ (-521)) 26)) (-2502 (($ (-1 |#1| |#1|) $) 22)) (-2190 (($ (-1 |#2| |#2|) $) 23)) (-3688 (((-1067) $) 9)) (-1717 (($ $ $) 21 (|has| |#2| (-728)))) (-4147 (((-1031) $) 10)) (-2189 (((-792) $) 11) (($ |#1|) 33)) (-3800 ((|#2| |#1| $) 24)) (-3561 (($) 18 T CONST)) (-1531 (((-108) $ $) 6)) (-1602 (($ $ $) 14) (($ |#1| $) 30)) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ |#2| |#1|) 29)))
+(((-297 |#1| |#2|) (-1196) (-1013) (-124)) (T -297))
+((-1602 (*1 *1 *2 *1) (-12 (-4 *1 (-297 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-124)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-297 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-124)))) (-1630 (*1 *2 *1) (-12 (-4 *1 (-297 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-124)) (-5 *2 (-707)))) (-3423 (*1 *2 *1) (-12 (-4 *1 (-297 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-124)) (-5 *2 (-587 (-2 (|:| |gen| *3) (|:| -3261 *4)))))) (-3605 (*1 *2 *1 *3) (-12 (-5 *3 (-521)) (-4 *1 (-297 *4 *2)) (-4 *4 (-1013)) (-4 *2 (-124)))) (-1785 (*1 *2 *1 *3) (-12 (-5 *3 (-521)) (-4 *1 (-297 *2 *4)) (-4 *4 (-124)) (-4 *2 (-1013)))) (-3800 (*1 *2 *3 *1) (-12 (-4 *1 (-297 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-124)))) (-2190 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-297 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-124)))) (-2502 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-297 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-124)))) (-1717 (*1 *1 *1 *1) (-12 (-4 *1 (-297 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-124)) (-4 *3 (-728)))))
+(-13 (-124) (-961 |t#1|) (-10 -8 (-15 -1602 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -1630 ((-707) $)) (-15 -3423 ((-587 (-2 (|:| |gen| |t#1|) (|:| -3261 |t#2|))) $)) (-15 -3605 (|t#2| $ (-521))) (-15 -1785 (|t#1| $ (-521))) (-15 -3800 (|t#2| |t#1| $)) (-15 -2190 ($ (-1 |t#2| |t#2|) $)) (-15 -2502 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-728)) (-15 -1717 ($ $ $)) |%noBranch|)))
+(((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-561 (-792)) . T) ((-961 |#1|) . T) ((-1013) . T))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-3423 (((-587 (-2 (|:| |gen| |#1|) (|:| -3261 (-707)))) $) NIL)) (-1232 (((-3 $ "failed") $ $) NIL)) (-1630 (((-707) $) NIL)) (-2547 (($) NIL T CONST)) (-1297 (((-3 |#1| "failed") $) NIL)) (-1483 ((|#1| $) NIL)) (-1785 ((|#1| $ (-521)) NIL)) (-3605 (((-707) $ (-521)) NIL)) (-2502 (($ (-1 |#1| |#1|) $) NIL)) (-2190 (($ (-1 (-707) (-707)) $) NIL)) (-3688 (((-1067) $) NIL)) (-1717 (($ $ $) NIL (|has| (-707) (-728)))) (-4147 (((-1031) $) NIL)) (-2189 (((-792) $) NIL) (($ |#1|) NIL)) (-3800 (((-707) |#1| $) NIL)) (-3561 (($) NIL T CONST)) (-1531 (((-108) $ $) NIL)) (-1602 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-707) |#1|) NIL)))
+(((-298 |#1|) (-297 |#1| (-707)) (-1013)) (T -298))
+NIL
+(-297 |#1| (-707))
+((-3666 (($ $) 53)) (-3528 (($ $ |#2| |#3| $) 14)) (-3285 (($ (-1 |#3| |#3|) $) 35)) (-3105 (((-108) $) 27)) (-3115 ((|#2| $) 29)) (-2230 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 46)) (-2403 ((|#2| $) 49)) (-1259 (((-587 |#2|) $) 38)) (-1547 (($ $ $ (-707)) 23)) (-1620 (($ $ |#2|) 42)))
+(((-299 |#1| |#2| |#3|) (-10 -8 (-15 -3666 (|#1| |#1|)) (-15 -2403 (|#2| |#1|)) (-15 -2230 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1547 (|#1| |#1| |#1| (-707))) (-15 -3528 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3285 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1259 ((-587 |#2|) |#1|)) (-15 -3115 (|#2| |#1|)) (-15 -3105 ((-108) |#1|)) (-15 -2230 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1620 (|#1| |#1| |#2|))) (-300 |#2| |#3|) (-970) (-728)) (T -299))
+NIL
+(-10 -8 (-15 -3666 (|#1| |#1|)) (-15 -2403 (|#2| |#1|)) (-15 -2230 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1547 (|#1| |#1| |#1| (-707))) (-15 -3528 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3285 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1259 ((-587 |#2|) |#1|)) (-15 -3115 (|#2| |#1|)) (-15 -3105 ((-108) |#1|)) (-15 -2230 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1620 (|#1| |#1| |#2|)))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) 51 (|has| |#1| (-513)))) (-2559 (($ $) 52 (|has| |#1| (-513)))) (-1733 (((-108) $) 54 (|has| |#1| (-513)))) (-1232 (((-3 $ "failed") $ $) 19)) (-2547 (($) 17 T CONST)) (-1297 (((-3 (-521) "failed") $) 90 (|has| |#1| (-961 (-521)))) (((-3 (-381 (-521)) "failed") $) 88 (|has| |#1| (-961 (-381 (-521))))) (((-3 |#1| "failed") $) 87)) (-1483 (((-521) $) 91 (|has| |#1| (-961 (-521)))) (((-381 (-521)) $) 89 (|has| |#1| (-961 (-381 (-521))))) ((|#1| $) 86)) (-3152 (($ $) 60)) (-1257 (((-3 $ "failed") $) 34)) (-3666 (($ $) 75 (|has| |#1| (-425)))) (-3528 (($ $ |#1| |#2| $) 79)) (-3996 (((-108) $) 31)) (-2678 (((-707) $) 82)) (-3649 (((-108) $) 62)) (-4043 (($ |#1| |#2|) 61)) (-3273 ((|#2| $) 81)) (-3285 (($ (-1 |#2| |#2|) $) 80)) (-1390 (($ (-1 |#1| |#1|) $) 63)) (-3125 (($ $) 65)) (-3135 ((|#1| $) 66)) (-3688 (((-1067) $) 9)) (-4147 (((-1031) $) 10)) (-3105 (((-108) $) 85)) (-3115 ((|#1| $) 84)) (-2230 (((-3 $ "failed") $ $) 50 (|has| |#1| (-513))) (((-3 $ "failed") $ |#1|) 77 (|has| |#1| (-513)))) (-1994 ((|#2| $) 64)) (-2403 ((|#1| $) 76 (|has| |#1| (-425)))) (-2189 (((-792) $) 11) (($ (-521)) 28) (($ $) 49 (|has| |#1| (-513))) (($ |#1|) 47) (($ (-381 (-521))) 57 (-3703 (|has| |#1| (-961 (-381 (-521)))) (|has| |#1| (-37 (-381 (-521))))))) (-1259 (((-587 |#1|) $) 83)) (-3800 ((|#1| $ |#2|) 59)) (-1671 (((-3 $ "failed") $) 48 (|has| |#1| (-133)))) (-3846 (((-707)) 29)) (-1547 (($ $ $ (-707)) 78 (|has| |#1| (-157)))) (-4210 (((-108) $ $) 53 (|has| |#1| (-513)))) (-3505 (($ $ (-850)) 26) (($ $ (-707)) 33)) (-3561 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-1531 (((-108) $ $) 6)) (-1620 (($ $ |#1|) 58 (|has| |#1| (-337)))) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-707)) 32)) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-381 (-521)) $) 56 (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) 55 (|has| |#1| (-37 (-381 (-521)))))))
+(((-300 |#1| |#2|) (-1196) (-970) (-728)) (T -300))
+((-3105 (*1 *2 *1) (-12 (-4 *1 (-300 *3 *4)) (-4 *3 (-970)) (-4 *4 (-728)) (-5 *2 (-108)))) (-3115 (*1 *2 *1) (-12 (-4 *1 (-300 *2 *3)) (-4 *3 (-728)) (-4 *2 (-970)))) (-1259 (*1 *2 *1) (-12 (-4 *1 (-300 *3 *4)) (-4 *3 (-970)) (-4 *4 (-728)) (-5 *2 (-587 *3)))) (-2678 (*1 *2 *1) (-12 (-4 *1 (-300 *3 *4)) (-4 *3 (-970)) (-4 *4 (-728)) (-5 *2 (-707)))) (-3273 (*1 *2 *1) (-12 (-4 *1 (-300 *3 *2)) (-4 *3 (-970)) (-4 *2 (-728)))) (-3285 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-300 *3 *4)) (-4 *3 (-970)) (-4 *4 (-728)))) (-3528 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-300 *2 *3)) (-4 *2 (-970)) (-4 *3 (-728)))) (-1547 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-707)) (-4 *1 (-300 *3 *4)) (-4 *3 (-970)) (-4 *4 (-728)) (-4 *3 (-157)))) (-2230 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-300 *2 *3)) (-4 *2 (-970)) (-4 *3 (-728)) (-4 *2 (-513)))) (-2403 (*1 *2 *1) (-12 (-4 *1 (-300 *2 *3)) (-4 *3 (-728)) (-4 *2 (-970)) (-4 *2 (-425)))) (-3666 (*1 *1 *1) (-12 (-4 *1 (-300 *2 *3)) (-4 *2 (-970)) (-4 *3 (-728)) (-4 *2 (-425)))))
+(-13 (-46 |t#1| |t#2|) (-385 |t#1|) (-10 -8 (-15 -3105 ((-108) $)) (-15 -3115 (|t#1| $)) (-15 -1259 ((-587 |t#1|) $)) (-15 -2678 ((-707) $)) (-15 -3273 (|t#2| $)) (-15 -3285 ($ (-1 |t#2| |t#2|) $)) (-15 -3528 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-157)) (-15 -1547 ($ $ $ (-707))) |%noBranch|) (IF (|has| |t#1| (-513)) (-15 -2230 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-425)) (PROGN (-15 -2403 (|t#1| $)) (-15 -3666 ($ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-381 (-521))) |has| |#1| (-37 (-381 (-521)))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) |has| |#1| (-513)) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-381 (-521)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3703 (|has| |#1| (-513)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-561 (-792)) . T) ((-157) -3703 (|has| |#1| (-513)) (|has| |#1| (-157))) ((-265) |has| |#1| (-513)) ((-385 |#1|) . T) ((-513) |has| |#1| (-513)) ((-589 #0#) |has| |#1| (-37 (-381 (-521)))) ((-589 |#1|) . T) ((-589 $) . T) ((-654 #0#) |has| |#1| (-37 (-381 (-521)))) ((-654 |#1|) |has| |#1| (-157)) ((-654 $) |has| |#1| (-513)) ((-663) . T) ((-961 (-381 (-521))) |has| |#1| (-961 (-381 (-521)))) ((-961 (-521)) |has| |#1| (-961 (-521))) ((-961 |#1|) . T) ((-976 #0#) |has| |#1| (-37 (-381 (-521)))) ((-976 |#1|) . T) ((-976 $) -3703 (|has| |#1| (-513)) (|has| |#1| (-157))) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T))
+((-1415 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-1903 (((-1170) $ (-521) (-521)) NIL (|has| $ (-6 -4234)))) (-1505 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-784)))) (-1621 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4234))) (($ $) NIL (-12 (|has| $ (-6 -4234)) (|has| |#1| (-784))))) (-3211 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-784)))) (-2978 (((-108) $ (-707)) NIL)) (-2506 (((-108) (-108)) NIL)) (-2378 ((|#1| $ (-521) |#1|) NIL (|has| $ (-6 -4234))) ((|#1| $ (-1132 (-521)) |#1|) NIL (|has| $ (-6 -4234)))) (-4098 (($ (-1 (-108) |#1|) $) NIL)) (-1628 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2547 (($) NIL T CONST)) (-3081 (($ $) NIL (|has| $ (-6 -4234)))) (-1862 (($ $) NIL)) (-2468 (($ $) NIL (|has| |#1| (-1013)))) (-2332 (($ $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-3023 (($ |#1| $) NIL (|has| |#1| (-1013))) (($ (-1 (-108) |#1|) $) NIL)) (-1422 (($ |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-3859 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4233)))) (-3849 ((|#1| $ (-521) |#1|) NIL (|has| $ (-6 -4234)))) (-3626 ((|#1| $ (-521)) NIL)) (-3233 (((-521) (-1 (-108) |#1|) $) NIL) (((-521) |#1| $) NIL (|has| |#1| (-1013))) (((-521) |#1| $ (-521)) NIL (|has| |#1| (-1013)))) (-2493 (($ $ (-521)) NIL)) (-3417 (((-707) $) NIL)) (-3831 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-1811 (($ (-707) |#1|) NIL)) (-2139 (((-108) $ (-707)) NIL)) (-2826 (((-521) $) NIL (|has| (-521) (-784)))) (-2810 (($ $ $) NIL (|has| |#1| (-784)))) (-3220 (($ $ $) NIL (|has| |#1| (-784))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-1318 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-784)))) (-3757 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-2221 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2597 (((-521) $) NIL (|has| (-521) (-784)))) (-2446 (($ $ $) NIL (|has| |#1| (-784)))) (-3833 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3574 (((-108) $ (-707)) NIL)) (-3688 (((-1067) $) NIL (|has| |#1| (-1013)))) (-3373 (($ $ $ (-521)) NIL) (($ |#1| $ (-521)) NIL)) (-1659 (($ |#1| $ (-521)) NIL) (($ $ $ (-521)) NIL)) (-1668 (((-587 (-521)) $) NIL)) (-2941 (((-108) (-521) $) NIL)) (-4147 (((-1031) $) NIL (|has| |#1| (-1013)))) (-2854 (($ (-587 |#1|)) NIL)) (-2293 ((|#1| $) NIL (|has| (-521) (-784)))) (-3620 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-3016 (($ $ |#1|) NIL (|has| $ (-6 -4234)))) (-1789 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 |#1|))) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-2488 (((-108) $ $) NIL)) (-3821 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2489 (((-587 |#1|) $) NIL)) (-3462 (((-108) $) NIL)) (-4024 (($) NIL)) (-2544 ((|#1| $ (-521) |#1|) NIL) ((|#1| $ (-521)) NIL) (($ $ (-1132 (-521))) NIL)) (-2859 (($ $ (-1132 (-521))) NIL) (($ $ (-521)) NIL)) (-3691 (($ $ (-521)) NIL) (($ $ (-1132 (-521))) NIL)) (-4163 (((-707) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (((-707) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-1497 (($ $ $ (-521)) NIL (|has| $ (-6 -4234)))) (-2404 (($ $) NIL)) (-1430 (((-497) $) NIL (|has| |#1| (-562 (-497))))) (-2201 (($ (-587 |#1|)) NIL)) (-3980 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4159 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-587 $)) NIL)) (-2189 (((-792) $) NIL (|has| |#1| (-561 (-792))))) (-3049 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-1574 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1558 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1531 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-1566 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1549 (((-108) $ $) NIL (|has| |#1| (-784)))) (-3475 (((-707) $) NIL (|has| $ (-6 -4233)))))
+(((-301 |#1|) (-13 (-19 |#1|) (-257 |#1|) (-10 -8 (-15 -2854 ($ (-587 |#1|))) (-15 -3417 ((-707) $)) (-15 -2493 ($ $ (-521))) (-15 -2506 ((-108) (-108))))) (-1119)) (T -301))
+((-2854 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1119)) (-5 *1 (-301 *3)))) (-3417 (*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-301 *3)) (-4 *3 (-1119)))) (-2493 (*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-301 *3)) (-4 *3 (-1119)))) (-2506 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-301 *3)) (-4 *3 (-1119)))))
+(-13 (-19 |#1|) (-257 |#1|) (-10 -8 (-15 -2854 ($ (-587 |#1|))) (-15 -3417 ((-707) $)) (-15 -2493 ($ $ (-521))) (-15 -2506 ((-108) (-108)))))
+((-1779 (((-108) $) 42)) (-3471 (((-707)) 22)) (-1865 ((|#2| $) 46) (($ $ (-850)) 103)) (-1630 (((-707)) 97)) (-4083 (($ (-1165 |#2|)) 20)) (-1279 (((-108) $) 115)) (-3930 ((|#2| $) 48) (($ $ (-850)) 101)) (-3548 (((-1080 |#2|) $) NIL) (((-1080 $) $ (-850)) 94)) (-4179 (((-1080 |#2|) $) 83)) (-2728 (((-1080 |#2|) $) 80) (((-3 (-1080 |#2|) "failed") $ $) 77)) (-1818 (($ $ (-1080 |#2|)) 53)) (-4178 (((-770 (-850))) 28) (((-850)) 43)) (-2359 (((-126)) 25)) (-1994 (((-770 (-850)) $) 30) (((-850) $) 116)) (-2677 (($) 109)) (-2234 (((-1165 |#2|) $) NIL) (((-627 |#2|) (-1165 $)) 39)) (-1671 (($ $) NIL) (((-3 $ "failed") $) 86)) (-2154 (((-108) $) 41)))
+(((-302 |#1| |#2|) (-10 -8 (-15 -1671 ((-3 |#1| "failed") |#1|)) (-15 -1630 ((-707))) (-15 -1671 (|#1| |#1|)) (-15 -2728 ((-3 (-1080 |#2|) "failed") |#1| |#1|)) (-15 -2728 ((-1080 |#2|) |#1|)) (-15 -4179 ((-1080 |#2|) |#1|)) (-15 -1818 (|#1| |#1| (-1080 |#2|))) (-15 -1279 ((-108) |#1|)) (-15 -2677 (|#1|)) (-15 -1865 (|#1| |#1| (-850))) (-15 -3930 (|#1| |#1| (-850))) (-15 -3548 ((-1080 |#1|) |#1| (-850))) (-15 -1865 (|#2| |#1|)) (-15 -3930 (|#2| |#1|)) (-15 -1994 ((-850) |#1|)) (-15 -4178 ((-850))) (-15 -3548 ((-1080 |#2|) |#1|)) (-15 -4083 (|#1| (-1165 |#2|))) (-15 -2234 ((-627 |#2|) (-1165 |#1|))) (-15 -2234 ((-1165 |#2|) |#1|)) (-15 -3471 ((-707))) (-15 -4178 ((-770 (-850)))) (-15 -1994 ((-770 (-850)) |#1|)) (-15 -1779 ((-108) |#1|)) (-15 -2154 ((-108) |#1|)) (-15 -2359 ((-126)))) (-303 |#2|) (-337)) (T -302))
+((-2359 (*1 *2) (-12 (-4 *4 (-337)) (-5 *2 (-126)) (-5 *1 (-302 *3 *4)) (-4 *3 (-303 *4)))) (-4178 (*1 *2) (-12 (-4 *4 (-337)) (-5 *2 (-770 (-850))) (-5 *1 (-302 *3 *4)) (-4 *3 (-303 *4)))) (-3471 (*1 *2) (-12 (-4 *4 (-337)) (-5 *2 (-707)) (-5 *1 (-302 *3 *4)) (-4 *3 (-303 *4)))) (-4178 (*1 *2) (-12 (-4 *4 (-337)) (-5 *2 (-850)) (-5 *1 (-302 *3 *4)) (-4 *3 (-303 *4)))) (-1630 (*1 *2) (-12 (-4 *4 (-337)) (-5 *2 (-707)) (-5 *1 (-302 *3 *4)) (-4 *3 (-303 *4)))))
+(-10 -8 (-15 -1671 ((-3 |#1| "failed") |#1|)) (-15 -1630 ((-707))) (-15 -1671 (|#1| |#1|)) (-15 -2728 ((-3 (-1080 |#2|) "failed") |#1| |#1|)) (-15 -2728 ((-1080 |#2|) |#1|)) (-15 -4179 ((-1080 |#2|) |#1|)) (-15 -1818 (|#1| |#1| (-1080 |#2|))) (-15 -1279 ((-108) |#1|)) (-15 -2677 (|#1|)) (-15 -1865 (|#1| |#1| (-850))) (-15 -3930 (|#1| |#1| (-850))) (-15 -3548 ((-1080 |#1|) |#1| (-850))) (-15 -1865 (|#2| |#1|)) (-15 -3930 (|#2| |#1|)) (-15 -1994 ((-850) |#1|)) (-15 -4178 ((-850))) (-15 -3548 ((-1080 |#2|) |#1|)) (-15 -4083 (|#1| (-1165 |#2|))) (-15 -2234 ((-627 |#2|) (-1165 |#1|))) (-15 -2234 ((-1165 |#2|) |#1|)) (-15 -3471 ((-707))) (-15 -4178 ((-770 (-850)))) (-15 -1994 ((-770 (-850)) |#1|)) (-15 -1779 ((-108) |#1|)) (-15 -2154 ((-108) |#1|)) (-15 -2359 ((-126))))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) 41)) (-2559 (($ $) 40)) (-1733 (((-108) $) 38)) (-1779 (((-108) $) 94)) (-3471 (((-707)) 90)) (-1865 ((|#1| $) 140) (($ $ (-850)) 137 (|has| |#1| (-342)))) (-1340 (((-1093 (-850) (-707)) (-521)) 122 (|has| |#1| (-342)))) (-1232 (((-3 $ "failed") $ $) 19)) (-3063 (($ $) 73)) (-3358 (((-392 $) $) 72)) (-1389 (((-108) $ $) 59)) (-1630 (((-707)) 112 (|has| |#1| (-342)))) (-2547 (($) 17 T CONST)) (-1297 (((-3 |#1| "failed") $) 101)) (-1483 ((|#1| $) 100)) (-4083 (($ (-1165 |#1|)) 146)) (-1864 (((-3 "prime" "polynomial" "normal" "cyclic")) 128 (|has| |#1| (-342)))) (-2277 (($ $ $) 55)) (-1257 (((-3 $ "failed") $) 34)) (-3250 (($) 109 (|has| |#1| (-342)))) (-2253 (($ $ $) 56)) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) 51)) (-2103 (($) 124 (|has| |#1| (-342)))) (-2371 (((-108) $) 125 (|has| |#1| (-342)))) (-2833 (($ $ (-707)) 87 (-3703 (|has| |#1| (-133)) (|has| |#1| (-342)))) (($ $) 86 (-3703 (|has| |#1| (-133)) (|has| |#1| (-342))))) (-2710 (((-108) $) 71)) (-2733 (((-850) $) 127 (|has| |#1| (-342))) (((-770 (-850)) $) 84 (-3703 (|has| |#1| (-133)) (|has| |#1| (-342))))) (-3996 (((-108) $) 31)) (-3958 (($) 135 (|has| |#1| (-342)))) (-1279 (((-108) $) 134 (|has| |#1| (-342)))) (-3930 ((|#1| $) 141) (($ $ (-850)) 138 (|has| |#1| (-342)))) (-3842 (((-3 $ "failed") $) 113 (|has| |#1| (-342)))) (-1546 (((-3 (-587 $) "failed") (-587 $) $) 52)) (-3548 (((-1080 |#1|) $) 145) (((-1080 $) $ (-850)) 139 (|has| |#1| (-342)))) (-2715 (((-850) $) 110 (|has| |#1| (-342)))) (-4179 (((-1080 |#1|) $) 131 (|has| |#1| (-342)))) (-2728 (((-1080 |#1|) $) 130 (|has| |#1| (-342))) (((-3 (-1080 |#1|) "failed") $ $) 129 (|has| |#1| (-342)))) (-1818 (($ $ (-1080 |#1|)) 132 (|has| |#1| (-342)))) (-2223 (($ $ $) 46) (($ (-587 $)) 45)) (-3688 (((-1067) $) 9)) (-3095 (($ $) 70)) (-3797 (($) 114 (|has| |#1| (-342)) CONST)) (-2716 (($ (-850)) 111 (|has| |#1| (-342)))) (-2218 (((-108) $) 93)) (-4147 (((-1031) $) 10)) (-1383 (($) 133 (|has| |#1| (-342)))) (-2513 (((-1080 $) (-1080 $) (-1080 $)) 44)) (-2258 (($ $ $) 48) (($ (-587 $)) 47)) (-3040 (((-587 (-2 (|:| -1916 (-521)) (|:| -2997 (-521))))) 121 (|has| |#1| (-342)))) (-1916 (((-392 $) $) 74)) (-4178 (((-770 (-850))) 91) (((-850)) 143)) (-1962 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2230 (((-3 $ "failed") $ $) 42)) (-3854 (((-3 (-587 $) "failed") (-587 $) $) 50)) (-4196 (((-707) $) 58)) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) 57)) (-4067 (((-707) $) 126 (|has| |#1| (-342))) (((-3 (-707) "failed") $ $) 85 (-3703 (|has| |#1| (-133)) (|has| |#1| (-342))))) (-2359 (((-126)) 99)) (-2156 (($ $) 118 (|has| |#1| (-342))) (($ $ (-707)) 116 (|has| |#1| (-342)))) (-1994 (((-770 (-850)) $) 92) (((-850) $) 142)) (-2879 (((-1080 |#1|)) 144)) (-1204 (($) 123 (|has| |#1| (-342)))) (-2677 (($) 136 (|has| |#1| (-342)))) (-2234 (((-1165 |#1|) $) 148) (((-627 |#1|) (-1165 $)) 147)) (-2944 (((-3 (-1165 $) "failed") (-627 $)) 120 (|has| |#1| (-342)))) (-2189 (((-792) $) 11) (($ (-521)) 28) (($ $) 43) (($ (-381 (-521))) 65) (($ |#1|) 102)) (-1671 (($ $) 119 (|has| |#1| (-342))) (((-3 $ "failed") $) 83 (-3703 (|has| |#1| (-133)) (|has| |#1| (-342))))) (-3846 (((-707)) 29)) (-2470 (((-1165 $)) 150) (((-1165 $) (-850)) 149)) (-4210 (((-108) $ $) 39)) (-2154 (((-108) $) 95)) (-3505 (($ $ (-850)) 26) (($ $ (-707)) 33) (($ $ (-521)) 69)) (-3561 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-3654 (($ $) 89 (|has| |#1| (-342))) (($ $ (-707)) 88 (|has| |#1| (-342)))) (-2212 (($ $) 117 (|has| |#1| (-342))) (($ $ (-707)) 115 (|has| |#1| (-342)))) (-1531 (((-108) $ $) 6)) (-1620 (($ $ $) 64) (($ $ |#1|) 98)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-707)) 32) (($ $ (-521)) 68)) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ $ (-381 (-521))) 67) (($ (-381 (-521)) $) 66) (($ $ |#1|) 97) (($ |#1| $) 96)))
+(((-303 |#1|) (-1196) (-337)) (T -303))
+((-2470 (*1 *2) (-12 (-4 *3 (-337)) (-5 *2 (-1165 *1)) (-4 *1 (-303 *3)))) (-2470 (*1 *2 *3) (-12 (-5 *3 (-850)) (-4 *4 (-337)) (-5 *2 (-1165 *1)) (-4 *1 (-303 *4)))) (-2234 (*1 *2 *1) (-12 (-4 *1 (-303 *3)) (-4 *3 (-337)) (-5 *2 (-1165 *3)))) (-2234 (*1 *2 *3) (-12 (-5 *3 (-1165 *1)) (-4 *1 (-303 *4)) (-4 *4 (-337)) (-5 *2 (-627 *4)))) (-4083 (*1 *1 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-337)) (-4 *1 (-303 *3)))) (-3548 (*1 *2 *1) (-12 (-4 *1 (-303 *3)) (-4 *3 (-337)) (-5 *2 (-1080 *3)))) (-2879 (*1 *2) (-12 (-4 *1 (-303 *3)) (-4 *3 (-337)) (-5 *2 (-1080 *3)))) (-4178 (*1 *2) (-12 (-4 *1 (-303 *3)) (-4 *3 (-337)) (-5 *2 (-850)))) (-1994 (*1 *2 *1) (-12 (-4 *1 (-303 *3)) (-4 *3 (-337)) (-5 *2 (-850)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-303 *2)) (-4 *2 (-337)))) (-1865 (*1 *2 *1) (-12 (-4 *1 (-303 *2)) (-4 *2 (-337)))) (-3548 (*1 *2 *1 *3) (-12 (-5 *3 (-850)) (-4 *4 (-342)) (-4 *4 (-337)) (-5 *2 (-1080 *1)) (-4 *1 (-303 *4)))) (-3930 (*1 *1 *1 *2) (-12 (-5 *2 (-850)) (-4 *1 (-303 *3)) (-4 *3 (-337)) (-4 *3 (-342)))) (-1865 (*1 *1 *1 *2) (-12 (-5 *2 (-850)) (-4 *1 (-303 *3)) (-4 *3 (-337)) (-4 *3 (-342)))) (-2677 (*1 *1) (-12 (-4 *1 (-303 *2)) (-4 *2 (-342)) (-4 *2 (-337)))) (-3958 (*1 *1) (-12 (-4 *1 (-303 *2)) (-4 *2 (-342)) (-4 *2 (-337)))) (-1279 (*1 *2 *1) (-12 (-4 *1 (-303 *3)) (-4 *3 (-337)) (-4 *3 (-342)) (-5 *2 (-108)))) (-1383 (*1 *1) (-12 (-4 *1 (-303 *2)) (-4 *2 (-342)) (-4 *2 (-337)))) (-1818 (*1 *1 *1 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-342)) (-4 *1 (-303 *3)) (-4 *3 (-337)))) (-4179 (*1 *2 *1) (-12 (-4 *1 (-303 *3)) (-4 *3 (-337)) (-4 *3 (-342)) (-5 *2 (-1080 *3)))) (-2728 (*1 *2 *1) (-12 (-4 *1 (-303 *3)) (-4 *3 (-337)) (-4 *3 (-342)) (-5 *2 (-1080 *3)))) (-2728 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-303 *3)) (-4 *3 (-337)) (-4 *3 (-342)) (-5 *2 (-1080 *3)))))
+(-13 (-1182 |t#1|) (-961 |t#1|) (-10 -8 (-15 -2470 ((-1165 $))) (-15 -2470 ((-1165 $) (-850))) (-15 -2234 ((-1165 |t#1|) $)) (-15 -2234 ((-627 |t#1|) (-1165 $))) (-15 -4083 ($ (-1165 |t#1|))) (-15 -3548 ((-1080 |t#1|) $)) (-15 -2879 ((-1080 |t#1|))) (-15 -4178 ((-850))) (-15 -1994 ((-850) $)) (-15 -3930 (|t#1| $)) (-15 -1865 (|t#1| $)) (IF (|has| |t#1| (-342)) (PROGN (-6 (-323)) (-15 -3548 ((-1080 $) $ (-850))) (-15 -3930 ($ $ (-850))) (-15 -1865 ($ $ (-850))) (-15 -2677 ($)) (-15 -3958 ($)) (-15 -1279 ((-108) $)) (-15 -1383 ($)) (-15 -1818 ($ $ (-1080 |t#1|))) (-15 -4179 ((-1080 |t#1|) $)) (-15 -2728 ((-1080 |t#1|) $)) (-15 -2728 ((-3 (-1080 |t#1|) "failed") $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-381 (-521))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 |#1| |#1|) . T) ((-107 $ $) . T) ((-124) . T) ((-133) -3703 (|has| |#1| (-342)) (|has| |#1| (-133))) ((-135) |has| |#1| (-135)) ((-561 (-792)) . T) ((-157) . T) ((-210) |has| |#1| (-342)) ((-220) . T) ((-265) . T) ((-282) . T) ((-1182 |#1|) . T) ((-337) . T) ((-376) -3703 (|has| |#1| (-342)) (|has| |#1| (-133))) ((-342) |has| |#1| (-342)) ((-323) |has| |#1| (-342)) ((-425) . T) ((-513) . T) ((-589 #0#) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-654 #0#) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-663) . T) ((-849) . T) ((-961 |#1|) . T) ((-976 #0#) . T) ((-976 |#1|) . T) ((-976 $) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T) ((-1060) |has| |#1| (-342)) ((-1123) . T) ((-1172 |#1|) . T))
+((-1415 (((-108) $ $) NIL)) (-3949 (($ (-1083) $) 88)) (-2753 (($) 76)) (-1376 (((-1031) (-1031)) 11)) (-3970 (($) 77)) (-1300 (($) 90) (($ (-290 (-636))) 96) (($ (-290 (-638))) 93) (($ (-290 (-631))) 99) (($ (-290 (-353))) 105) (($ (-290 (-521))) 102) (($ (-290 (-154 (-353)))) 108)) (-2606 (($ (-1083) $) 89)) (-2571 (($ (-587 (-792))) 79)) (-1599 (((-1170) $) 73)) (-4173 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 27)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-3036 (($ (-1031)) 45)) (-2736 (((-1017) $) 25)) (-1260 (($ (-1006 (-881 (-521))) $) 85) (($ (-1006 (-881 (-521))) (-881 (-521)) $) 86)) (-1364 (($ (-1031)) 87)) (-2586 (($ (-1083) $) 110) (($ (-1083) $ $) 111)) (-2540 (($ (-1084) (-587 (-1084))) 75)) (-1271 (($ (-1067)) 82) (($ (-587 (-1067))) 80)) (-2189 (((-792) $) 113)) (-2032 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1084)) (|:| |arrayIndex| (-587 (-881 (-521)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-108)) (|:| -1575 (-792)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1084)) (|:| |rand| (-792)) (|:| |ints2Floats?| (-108)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1083)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3462 (-108)) (|:| -3430 (-2 (|:| |ints2Floats?| (-108)) (|:| -1575 (-792)))))) (|:| |blockBranch| (-587 $)) (|:| |commentBranch| (-587 (-1067))) (|:| |callBranch| (-1067)) (|:| |forBranch| (-2 (|:| -2442 (-1006 (-881 (-521)))) (|:| |span| (-881 (-521))) (|:| |body| $))) (|:| |labelBranch| (-1031)) (|:| |loopBranch| (-2 (|:| |switch| (-1083)) (|:| |body| $))) (|:| |commonBranch| (-2 (|:| -2884 (-1084)) (|:| |contents| (-587 (-1084))))) (|:| |printBranch| (-587 (-792)))) $) 37)) (-1831 (($ (-1067)) 182)) (-4120 (($ (-587 $)) 109)) (-1896 (($ (-1084) (-1067)) 115) (($ (-1084) (-290 (-638))) 155) (($ (-1084) (-290 (-636))) 156) (($ (-1084) (-290 (-631))) 157) (($ (-1084) (-627 (-638))) 118) (($ (-1084) (-627 (-636))) 121) (($ (-1084) (-627 (-631))) 124) (($ (-1084) (-1165 (-638))) 127) (($ (-1084) (-1165 (-636))) 130) (($ (-1084) (-1165 (-631))) 133) (($ (-1084) (-627 (-290 (-638)))) 136) (($ (-1084) (-627 (-290 (-636)))) 139) (($ (-1084) (-627 (-290 (-631)))) 142) (($ (-1084) (-1165 (-290 (-638)))) 145) (($ (-1084) (-1165 (-290 (-636)))) 148) (($ (-1084) (-1165 (-290 (-631)))) 151) (($ (-1084) (-587 (-881 (-521))) (-290 (-638))) 152) (($ (-1084) (-587 (-881 (-521))) (-290 (-636))) 153) (($ (-1084) (-587 (-881 (-521))) (-290 (-631))) 154) (($ (-1084) (-290 (-521))) 179) (($ (-1084) (-290 (-353))) 180) (($ (-1084) (-290 (-154 (-353)))) 181) (($ (-1084) (-627 (-290 (-521)))) 160) (($ (-1084) (-627 (-290 (-353)))) 163) (($ (-1084) (-627 (-290 (-154 (-353))))) 166) (($ (-1084) (-1165 (-290 (-521)))) 169) (($ (-1084) (-1165 (-290 (-353)))) 172) (($ (-1084) (-1165 (-290 (-154 (-353))))) 175) (($ (-1084) (-587 (-881 (-521))) (-290 (-521))) 176) (($ (-1084) (-587 (-881 (-521))) (-290 (-353))) 177) (($ (-1084) (-587 (-881 (-521))) (-290 (-154 (-353)))) 178)) (-1531 (((-108) $ $) NIL)))
+(((-304) (-13 (-1013) (-10 -8 (-15 -2189 ((-792) $)) (-15 -1260 ($ (-1006 (-881 (-521))) $)) (-15 -1260 ($ (-1006 (-881 (-521))) (-881 (-521)) $)) (-15 -3949 ($ (-1083) $)) (-15 -2606 ($ (-1083) $)) (-15 -3036 ($ (-1031))) (-15 -1364 ($ (-1031))) (-15 -1271 ($ (-1067))) (-15 -1271 ($ (-587 (-1067)))) (-15 -1831 ($ (-1067))) (-15 -1300 ($)) (-15 -1300 ($ (-290 (-636)))) (-15 -1300 ($ (-290 (-638)))) (-15 -1300 ($ (-290 (-631)))) (-15 -1300 ($ (-290 (-353)))) (-15 -1300 ($ (-290 (-521)))) (-15 -1300 ($ (-290 (-154 (-353))))) (-15 -2586 ($ (-1083) $)) (-15 -2586 ($ (-1083) $ $)) (-15 -1896 ($ (-1084) (-1067))) (-15 -1896 ($ (-1084) (-290 (-638)))) (-15 -1896 ($ (-1084) (-290 (-636)))) (-15 -1896 ($ (-1084) (-290 (-631)))) (-15 -1896 ($ (-1084) (-627 (-638)))) (-15 -1896 ($ (-1084) (-627 (-636)))) (-15 -1896 ($ (-1084) (-627 (-631)))) (-15 -1896 ($ (-1084) (-1165 (-638)))) (-15 -1896 ($ (-1084) (-1165 (-636)))) (-15 -1896 ($ (-1084) (-1165 (-631)))) (-15 -1896 ($ (-1084) (-627 (-290 (-638))))) (-15 -1896 ($ (-1084) (-627 (-290 (-636))))) (-15 -1896 ($ (-1084) (-627 (-290 (-631))))) (-15 -1896 ($ (-1084) (-1165 (-290 (-638))))) (-15 -1896 ($ (-1084) (-1165 (-290 (-636))))) (-15 -1896 ($ (-1084) (-1165 (-290 (-631))))) (-15 -1896 ($ (-1084) (-587 (-881 (-521))) (-290 (-638)))) (-15 -1896 ($ (-1084) (-587 (-881 (-521))) (-290 (-636)))) (-15 -1896 ($ (-1084) (-587 (-881 (-521))) (-290 (-631)))) (-15 -1896 ($ (-1084) (-290 (-521)))) (-15 -1896 ($ (-1084) (-290 (-353)))) (-15 -1896 ($ (-1084) (-290 (-154 (-353))))) (-15 -1896 ($ (-1084) (-627 (-290 (-521))))) (-15 -1896 ($ (-1084) (-627 (-290 (-353))))) (-15 -1896 ($ (-1084) (-627 (-290 (-154 (-353)))))) (-15 -1896 ($ (-1084) (-1165 (-290 (-521))))) (-15 -1896 ($ (-1084) (-1165 (-290 (-353))))) (-15 -1896 ($ (-1084) (-1165 (-290 (-154 (-353)))))) (-15 -1896 ($ (-1084) (-587 (-881 (-521))) (-290 (-521)))) (-15 -1896 ($ (-1084) (-587 (-881 (-521))) (-290 (-353)))) (-15 -1896 ($ (-1084) (-587 (-881 (-521))) (-290 (-154 (-353))))) (-15 -4120 ($ (-587 $))) (-15 -2753 ($)) (-15 -3970 ($)) (-15 -2571 ($ (-587 (-792)))) (-15 -2540 ($ (-1084) (-587 (-1084)))) (-15 -4173 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2032 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1084)) (|:| |arrayIndex| (-587 (-881 (-521)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-108)) (|:| -1575 (-792)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1084)) (|:| |rand| (-792)) (|:| |ints2Floats?| (-108)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1083)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3462 (-108)) (|:| -3430 (-2 (|:| |ints2Floats?| (-108)) (|:| -1575 (-792)))))) (|:| |blockBranch| (-587 $)) (|:| |commentBranch| (-587 (-1067))) (|:| |callBranch| (-1067)) (|:| |forBranch| (-2 (|:| -2442 (-1006 (-881 (-521)))) (|:| |span| (-881 (-521))) (|:| |body| $))) (|:| |labelBranch| (-1031)) (|:| |loopBranch| (-2 (|:| |switch| (-1083)) (|:| |body| $))) (|:| |commonBranch| (-2 (|:| -2884 (-1084)) (|:| |contents| (-587 (-1084))))) (|:| |printBranch| (-587 (-792)))) $)) (-15 -1599 ((-1170) $)) (-15 -2736 ((-1017) $)) (-15 -1376 ((-1031) (-1031)))))) (T -304))
+((-2189 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-304)))) (-1260 (*1 *1 *2 *1) (-12 (-5 *2 (-1006 (-881 (-521)))) (-5 *1 (-304)))) (-1260 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1006 (-881 (-521)))) (-5 *3 (-881 (-521))) (-5 *1 (-304)))) (-3949 (*1 *1 *2 *1) (-12 (-5 *2 (-1083)) (-5 *1 (-304)))) (-2606 (*1 *1 *2 *1) (-12 (-5 *2 (-1083)) (-5 *1 (-304)))) (-3036 (*1 *1 *2) (-12 (-5 *2 (-1031)) (-5 *1 (-304)))) (-1364 (*1 *1 *2) (-12 (-5 *2 (-1031)) (-5 *1 (-304)))) (-1271 (*1 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-304)))) (-1271 (*1 *1 *2) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-304)))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-304)))) (-1300 (*1 *1) (-5 *1 (-304))) (-1300 (*1 *1 *2) (-12 (-5 *2 (-290 (-636))) (-5 *1 (-304)))) (-1300 (*1 *1 *2) (-12 (-5 *2 (-290 (-638))) (-5 *1 (-304)))) (-1300 (*1 *1 *2) (-12 (-5 *2 (-290 (-631))) (-5 *1 (-304)))) (-1300 (*1 *1 *2) (-12 (-5 *2 (-290 (-353))) (-5 *1 (-304)))) (-1300 (*1 *1 *2) (-12 (-5 *2 (-290 (-521))) (-5 *1 (-304)))) (-1300 (*1 *1 *2) (-12 (-5 *2 (-290 (-154 (-353)))) (-5 *1 (-304)))) (-2586 (*1 *1 *2 *1) (-12 (-5 *2 (-1083)) (-5 *1 (-304)))) (-2586 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1083)) (-5 *1 (-304)))) (-1896 (*1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-1067)) (-5 *1 (-304)))) (-1896 (*1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-290 (-638))) (-5 *1 (-304)))) (-1896 (*1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-290 (-636))) (-5 *1 (-304)))) (-1896 (*1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-290 (-631))) (-5 *1 (-304)))) (-1896 (*1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-627 (-638))) (-5 *1 (-304)))) (-1896 (*1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-627 (-636))) (-5 *1 (-304)))) (-1896 (*1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-627 (-631))) (-5 *1 (-304)))) (-1896 (*1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-1165 (-638))) (-5 *1 (-304)))) (-1896 (*1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-1165 (-636))) (-5 *1 (-304)))) (-1896 (*1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-1165 (-631))) (-5 *1 (-304)))) (-1896 (*1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-627 (-290 (-638)))) (-5 *1 (-304)))) (-1896 (*1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-627 (-290 (-636)))) (-5 *1 (-304)))) (-1896 (*1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-627 (-290 (-631)))) (-5 *1 (-304)))) (-1896 (*1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-1165 (-290 (-638)))) (-5 *1 (-304)))) (-1896 (*1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-1165 (-290 (-636)))) (-5 *1 (-304)))) (-1896 (*1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-1165 (-290 (-631)))) (-5 *1 (-304)))) (-1896 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1084)) (-5 *3 (-587 (-881 (-521)))) (-5 *4 (-290 (-638))) (-5 *1 (-304)))) (-1896 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1084)) (-5 *3 (-587 (-881 (-521)))) (-5 *4 (-290 (-636))) (-5 *1 (-304)))) (-1896 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1084)) (-5 *3 (-587 (-881 (-521)))) (-5 *4 (-290 (-631))) (-5 *1 (-304)))) (-1896 (*1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-290 (-521))) (-5 *1 (-304)))) (-1896 (*1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-290 (-353))) (-5 *1 (-304)))) (-1896 (*1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-290 (-154 (-353)))) (-5 *1 (-304)))) (-1896 (*1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-627 (-290 (-521)))) (-5 *1 (-304)))) (-1896 (*1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-627 (-290 (-353)))) (-5 *1 (-304)))) (-1896 (*1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-627 (-290 (-154 (-353))))) (-5 *1 (-304)))) (-1896 (*1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-1165 (-290 (-521)))) (-5 *1 (-304)))) (-1896 (*1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-1165 (-290 (-353)))) (-5 *1 (-304)))) (-1896 (*1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-1165 (-290 (-154 (-353))))) (-5 *1 (-304)))) (-1896 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1084)) (-5 *3 (-587 (-881 (-521)))) (-5 *4 (-290 (-521))) (-5 *1 (-304)))) (-1896 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1084)) (-5 *3 (-587 (-881 (-521)))) (-5 *4 (-290 (-353))) (-5 *1 (-304)))) (-1896 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1084)) (-5 *3 (-587 (-881 (-521)))) (-5 *4 (-290 (-154 (-353)))) (-5 *1 (-304)))) (-4120 (*1 *1 *2) (-12 (-5 *2 (-587 (-304))) (-5 *1 (-304)))) (-2753 (*1 *1) (-5 *1 (-304))) (-3970 (*1 *1) (-5 *1 (-304))) (-2571 (*1 *1 *2) (-12 (-5 *2 (-587 (-792))) (-5 *1 (-304)))) (-2540 (*1 *1 *2 *3) (-12 (-5 *3 (-587 (-1084))) (-5 *2 (-1084)) (-5 *1 (-304)))) (-4173 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-304)))) (-2032 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1084)) (|:| |arrayIndex| (-587 (-881 (-521)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-108)) (|:| -1575 (-792)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1084)) (|:| |rand| (-792)) (|:| |ints2Floats?| (-108)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1083)) (|:| |thenClause| (-304)) (|:| |elseClause| (-304)))) (|:| |returnBranch| (-2 (|:| -3462 (-108)) (|:| -3430 (-2 (|:| |ints2Floats?| (-108)) (|:| -1575 (-792)))))) (|:| |blockBranch| (-587 (-304))) (|:| |commentBranch| (-587 (-1067))) (|:| |callBranch| (-1067)) (|:| |forBranch| (-2 (|:| -2442 (-1006 (-881 (-521)))) (|:| |span| (-881 (-521))) (|:| |body| (-304)))) (|:| |labelBranch| (-1031)) (|:| |loopBranch| (-2 (|:| |switch| (-1083)) (|:| |body| (-304)))) (|:| |commonBranch| (-2 (|:| -2884 (-1084)) (|:| |contents| (-587 (-1084))))) (|:| |printBranch| (-587 (-792))))) (-5 *1 (-304)))) (-1599 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-304)))) (-2736 (*1 *2 *1) (-12 (-5 *2 (-1017)) (-5 *1 (-304)))) (-1376 (*1 *2 *2) (-12 (-5 *2 (-1031)) (-5 *1 (-304)))))
+(-13 (-1013) (-10 -8 (-15 -2189 ((-792) $)) (-15 -1260 ($ (-1006 (-881 (-521))) $)) (-15 -1260 ($ (-1006 (-881 (-521))) (-881 (-521)) $)) (-15 -3949 ($ (-1083) $)) (-15 -2606 ($ (-1083) $)) (-15 -3036 ($ (-1031))) (-15 -1364 ($ (-1031))) (-15 -1271 ($ (-1067))) (-15 -1271 ($ (-587 (-1067)))) (-15 -1831 ($ (-1067))) (-15 -1300 ($)) (-15 -1300 ($ (-290 (-636)))) (-15 -1300 ($ (-290 (-638)))) (-15 -1300 ($ (-290 (-631)))) (-15 -1300 ($ (-290 (-353)))) (-15 -1300 ($ (-290 (-521)))) (-15 -1300 ($ (-290 (-154 (-353))))) (-15 -2586 ($ (-1083) $)) (-15 -2586 ($ (-1083) $ $)) (-15 -1896 ($ (-1084) (-1067))) (-15 -1896 ($ (-1084) (-290 (-638)))) (-15 -1896 ($ (-1084) (-290 (-636)))) (-15 -1896 ($ (-1084) (-290 (-631)))) (-15 -1896 ($ (-1084) (-627 (-638)))) (-15 -1896 ($ (-1084) (-627 (-636)))) (-15 -1896 ($ (-1084) (-627 (-631)))) (-15 -1896 ($ (-1084) (-1165 (-638)))) (-15 -1896 ($ (-1084) (-1165 (-636)))) (-15 -1896 ($ (-1084) (-1165 (-631)))) (-15 -1896 ($ (-1084) (-627 (-290 (-638))))) (-15 -1896 ($ (-1084) (-627 (-290 (-636))))) (-15 -1896 ($ (-1084) (-627 (-290 (-631))))) (-15 -1896 ($ (-1084) (-1165 (-290 (-638))))) (-15 -1896 ($ (-1084) (-1165 (-290 (-636))))) (-15 -1896 ($ (-1084) (-1165 (-290 (-631))))) (-15 -1896 ($ (-1084) (-587 (-881 (-521))) (-290 (-638)))) (-15 -1896 ($ (-1084) (-587 (-881 (-521))) (-290 (-636)))) (-15 -1896 ($ (-1084) (-587 (-881 (-521))) (-290 (-631)))) (-15 -1896 ($ (-1084) (-290 (-521)))) (-15 -1896 ($ (-1084) (-290 (-353)))) (-15 -1896 ($ (-1084) (-290 (-154 (-353))))) (-15 -1896 ($ (-1084) (-627 (-290 (-521))))) (-15 -1896 ($ (-1084) (-627 (-290 (-353))))) (-15 -1896 ($ (-1084) (-627 (-290 (-154 (-353)))))) (-15 -1896 ($ (-1084) (-1165 (-290 (-521))))) (-15 -1896 ($ (-1084) (-1165 (-290 (-353))))) (-15 -1896 ($ (-1084) (-1165 (-290 (-154 (-353)))))) (-15 -1896 ($ (-1084) (-587 (-881 (-521))) (-290 (-521)))) (-15 -1896 ($ (-1084) (-587 (-881 (-521))) (-290 (-353)))) (-15 -1896 ($ (-1084) (-587 (-881 (-521))) (-290 (-154 (-353))))) (-15 -4120 ($ (-587 $))) (-15 -2753 ($)) (-15 -3970 ($)) (-15 -2571 ($ (-587 (-792)))) (-15 -2540 ($ (-1084) (-587 (-1084)))) (-15 -4173 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2032 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1084)) (|:| |arrayIndex| (-587 (-881 (-521)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-108)) (|:| -1575 (-792)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1084)) (|:| |rand| (-792)) (|:| |ints2Floats?| (-108)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1083)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3462 (-108)) (|:| -3430 (-2 (|:| |ints2Floats?| (-108)) (|:| -1575 (-792)))))) (|:| |blockBranch| (-587 $)) (|:| |commentBranch| (-587 (-1067))) (|:| |callBranch| (-1067)) (|:| |forBranch| (-2 (|:| -2442 (-1006 (-881 (-521)))) (|:| |span| (-881 (-521))) (|:| |body| $))) (|:| |labelBranch| (-1031)) (|:| |loopBranch| (-2 (|:| |switch| (-1083)) (|:| |body| $))) (|:| |commonBranch| (-2 (|:| -2884 (-1084)) (|:| |contents| (-587 (-1084))))) (|:| |printBranch| (-587 (-792)))) $)) (-15 -1599 ((-1170) $)) (-15 -2736 ((-1017) $)) (-15 -1376 ((-1031) (-1031)))))
+((-1415 (((-108) $ $) NIL)) (-2385 (((-108) $) 11)) (-2746 (($ |#1|) 8)) (-2810 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2758 (($ |#1|) 9)) (-2189 (((-792) $) 17)) (-3503 ((|#1| $) 12)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 19)))
+(((-305 |#1|) (-13 (-784) (-10 -8 (-15 -2746 ($ |#1|)) (-15 -2758 ($ |#1|)) (-15 -2385 ((-108) $)) (-15 -3503 (|#1| $)))) (-784)) (T -305))
+((-2746 (*1 *1 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-784)))) (-2758 (*1 *1 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-784)))) (-2385 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-305 *3)) (-4 *3 (-784)))) (-3503 (*1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-784)))))
+(-13 (-784) (-10 -8 (-15 -2746 ($ |#1|)) (-15 -2758 ($ |#1|)) (-15 -2385 ((-108) $)) (-15 -3503 (|#1| $))))
+((-1216 (((-304) (-1084) (-881 (-521))) 22)) (-2501 (((-304) (-1084) (-881 (-521))) 26)) (-2452 (((-304) (-1084) (-1006 (-881 (-521))) (-1006 (-881 (-521)))) 25) (((-304) (-1084) (-881 (-521)) (-881 (-521))) 23)) (-1923 (((-304) (-1084) (-881 (-521))) 30)))
+(((-306) (-10 -7 (-15 -1216 ((-304) (-1084) (-881 (-521)))) (-15 -2452 ((-304) (-1084) (-881 (-521)) (-881 (-521)))) (-15 -2452 ((-304) (-1084) (-1006 (-881 (-521))) (-1006 (-881 (-521))))) (-15 -2501 ((-304) (-1084) (-881 (-521)))) (-15 -1923 ((-304) (-1084) (-881 (-521)))))) (T -306))
+((-1923 (*1 *2 *3 *4) (-12 (-5 *3 (-1084)) (-5 *4 (-881 (-521))) (-5 *2 (-304)) (-5 *1 (-306)))) (-2501 (*1 *2 *3 *4) (-12 (-5 *3 (-1084)) (-5 *4 (-881 (-521))) (-5 *2 (-304)) (-5 *1 (-306)))) (-2452 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1084)) (-5 *4 (-1006 (-881 (-521)))) (-5 *2 (-304)) (-5 *1 (-306)))) (-2452 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1084)) (-5 *4 (-881 (-521))) (-5 *2 (-304)) (-5 *1 (-306)))) (-1216 (*1 *2 *3 *4) (-12 (-5 *3 (-1084)) (-5 *4 (-881 (-521))) (-5 *2 (-304)) (-5 *1 (-306)))))
+(-10 -7 (-15 -1216 ((-304) (-1084) (-881 (-521)))) (-15 -2452 ((-304) (-1084) (-881 (-521)) (-881 (-521)))) (-15 -2452 ((-304) (-1084) (-1006 (-881 (-521))) (-1006 (-881 (-521))))) (-15 -2501 ((-304) (-1084) (-881 (-521)))) (-15 -1923 ((-304) (-1084) (-881 (-521)))))
+((-1390 (((-310 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-310 |#1| |#2| |#3| |#4|)) 31)))
+(((-307 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1390 ((-310 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-310 |#1| |#2| |#3| |#4|)))) (-337) (-1141 |#1|) (-1141 (-381 |#2|)) (-316 |#1| |#2| |#3|) (-337) (-1141 |#5|) (-1141 (-381 |#6|)) (-316 |#5| |#6| |#7|)) (T -307))
+((-1390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-310 *5 *6 *7 *8)) (-4 *5 (-337)) (-4 *6 (-1141 *5)) (-4 *7 (-1141 (-381 *6))) (-4 *8 (-316 *5 *6 *7)) (-4 *9 (-337)) (-4 *10 (-1141 *9)) (-4 *11 (-1141 (-381 *10))) (-5 *2 (-310 *9 *10 *11 *12)) (-5 *1 (-307 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-316 *9 *10 *11)))))
+(-10 -7 (-15 -1390 ((-310 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-310 |#1| |#2| |#3| |#4|))))
+((-3539 (((-108) $) 14)))
+(((-308 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3539 ((-108) |#1|))) (-309 |#2| |#3| |#4| |#5|) (-337) (-1141 |#2|) (-1141 (-381 |#3|)) (-316 |#2| |#3| |#4|)) (T -308))
+NIL
+(-10 -8 (-15 -3539 ((-108) |#1|)))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-1232 (((-3 $ "failed") $ $) 19)) (-2547 (($) 17 T CONST)) (-3859 (($ $) 26)) (-3539 (((-108) $) 25)) (-3688 (((-1067) $) 9)) (-3563 (((-387 |#2| (-381 |#2|) |#3| |#4|) $) 32)) (-4147 (((-1031) $) 10)) (-1383 (((-3 |#4| "failed") $) 24)) (-3280 (($ (-387 |#2| (-381 |#2|) |#3| |#4|)) 31) (($ |#4|) 30) (($ |#1| |#1|) 29) (($ |#1| |#1| (-521)) 28) (($ |#4| |#2| |#2| |#2| |#1|) 23)) (-3686 (((-2 (|:| -1781 (-387 |#2| (-381 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 27)) (-2189 (((-792) $) 11)) (-3561 (($) 18 T CONST)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20)))
+(((-309 |#1| |#2| |#3| |#4|) (-1196) (-337) (-1141 |t#1|) (-1141 (-381 |t#2|)) (-316 |t#1| |t#2| |t#3|)) (T -309))
+((-3563 (*1 *2 *1) (-12 (-4 *1 (-309 *3 *4 *5 *6)) (-4 *3 (-337)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4))) (-4 *6 (-316 *3 *4 *5)) (-5 *2 (-387 *4 (-381 *4) *5 *6)))) (-3280 (*1 *1 *2) (-12 (-5 *2 (-387 *4 (-381 *4) *5 *6)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4))) (-4 *6 (-316 *3 *4 *5)) (-4 *3 (-337)) (-4 *1 (-309 *3 *4 *5 *6)))) (-3280 (*1 *1 *2) (-12 (-4 *3 (-337)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4))) (-4 *1 (-309 *3 *4 *5 *2)) (-4 *2 (-316 *3 *4 *5)))) (-3280 (*1 *1 *2 *2) (-12 (-4 *2 (-337)) (-4 *3 (-1141 *2)) (-4 *4 (-1141 (-381 *3))) (-4 *1 (-309 *2 *3 *4 *5)) (-4 *5 (-316 *2 *3 *4)))) (-3280 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-521)) (-4 *2 (-337)) (-4 *4 (-1141 *2)) (-4 *5 (-1141 (-381 *4))) (-4 *1 (-309 *2 *4 *5 *6)) (-4 *6 (-316 *2 *4 *5)))) (-3686 (*1 *2 *1) (-12 (-4 *1 (-309 *3 *4 *5 *6)) (-4 *3 (-337)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4))) (-4 *6 (-316 *3 *4 *5)) (-5 *2 (-2 (|:| -1781 (-387 *4 (-381 *4) *5 *6)) (|:| |principalPart| *6))))) (-3859 (*1 *1 *1) (-12 (-4 *1 (-309 *2 *3 *4 *5)) (-4 *2 (-337)) (-4 *3 (-1141 *2)) (-4 *4 (-1141 (-381 *3))) (-4 *5 (-316 *2 *3 *4)))) (-3539 (*1 *2 *1) (-12 (-4 *1 (-309 *3 *4 *5 *6)) (-4 *3 (-337)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4))) (-4 *6 (-316 *3 *4 *5)) (-5 *2 (-108)))) (-1383 (*1 *2 *1) (|partial| -12 (-4 *1 (-309 *3 *4 *5 *2)) (-4 *3 (-337)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4))) (-4 *2 (-316 *3 *4 *5)))) (-3280 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-337)) (-4 *3 (-1141 *4)) (-4 *5 (-1141 (-381 *3))) (-4 *1 (-309 *4 *3 *5 *2)) (-4 *2 (-316 *4 *3 *5)))))
+(-13 (-21) (-10 -8 (-15 -3563 ((-387 |t#2| (-381 |t#2|) |t#3| |t#4|) $)) (-15 -3280 ($ (-387 |t#2| (-381 |t#2|) |t#3| |t#4|))) (-15 -3280 ($ |t#4|)) (-15 -3280 ($ |t#1| |t#1|)) (-15 -3280 ($ |t#1| |t#1| (-521))) (-15 -3686 ((-2 (|:| -1781 (-387 |t#2| (-381 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -3859 ($ $)) (-15 -3539 ((-108) $)) (-15 -1383 ((-3 |t#4| "failed") $)) (-15 -3280 ($ |t#4| |t#2| |t#2| |t#2| |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-561 (-792)) . T) ((-1013) . T))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-1232 (((-3 $ "failed") $ $) NIL)) (-2547 (($) NIL T CONST)) (-3859 (($ $) 32)) (-3539 (((-108) $) NIL)) (-3688 (((-1067) $) NIL)) (-3931 (((-1165 |#4|) $) 124)) (-3563 (((-387 |#2| (-381 |#2|) |#3| |#4|) $) 30)) (-4147 (((-1031) $) NIL)) (-1383 (((-3 |#4| "failed") $) 35)) (-1808 (((-1165 |#4|) $) 117)) (-3280 (($ (-387 |#2| (-381 |#2|) |#3| |#4|)) 40) (($ |#4|) 42) (($ |#1| |#1|) 44) (($ |#1| |#1| (-521)) 46) (($ |#4| |#2| |#2| |#2| |#1|) 48)) (-3686 (((-2 (|:| -1781 (-387 |#2| (-381 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 38)) (-2189 (((-792) $) 17)) (-3561 (($) 14 T CONST)) (-1531 (((-108) $ $) 20)) (-1612 (($ $) 27) (($ $ $) NIL)) (-1602 (($ $ $) 25)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) 23)))
+(((-310 |#1| |#2| |#3| |#4|) (-13 (-309 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1808 ((-1165 |#4|) $)) (-15 -3931 ((-1165 |#4|) $)))) (-337) (-1141 |#1|) (-1141 (-381 |#2|)) (-316 |#1| |#2| |#3|)) (T -310))
+((-1808 (*1 *2 *1) (-12 (-4 *3 (-337)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4))) (-5 *2 (-1165 *6)) (-5 *1 (-310 *3 *4 *5 *6)) (-4 *6 (-316 *3 *4 *5)))) (-3931 (*1 *2 *1) (-12 (-4 *3 (-337)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4))) (-5 *2 (-1165 *6)) (-5 *1 (-310 *3 *4 *5 *6)) (-4 *6 (-316 *3 *4 *5)))))
+(-13 (-309 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1808 ((-1165 |#4|) $)) (-15 -3931 ((-1165 |#4|) $))))
+((-2288 (($ $ (-1084) |#2|) NIL) (($ $ (-587 (-1084)) (-587 |#2|)) 18) (($ $ (-587 (-269 |#2|))) 14) (($ $ (-269 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-587 |#2|) (-587 |#2|)) NIL)) (-2544 (($ $ |#2|) 11)))
+(((-311 |#1| |#2|) (-10 -8 (-15 -2544 (|#1| |#1| |#2|)) (-15 -2288 (|#1| |#1| (-587 |#2|) (-587 |#2|))) (-15 -2288 (|#1| |#1| |#2| |#2|)) (-15 -2288 (|#1| |#1| (-269 |#2|))) (-15 -2288 (|#1| |#1| (-587 (-269 |#2|)))) (-15 -2288 (|#1| |#1| (-587 (-1084)) (-587 |#2|))) (-15 -2288 (|#1| |#1| (-1084) |#2|))) (-312 |#2|) (-1013)) (T -311))
+NIL
+(-10 -8 (-15 -2544 (|#1| |#1| |#2|)) (-15 -2288 (|#1| |#1| (-587 |#2|) (-587 |#2|))) (-15 -2288 (|#1| |#1| |#2| |#2|)) (-15 -2288 (|#1| |#1| (-269 |#2|))) (-15 -2288 (|#1| |#1| (-587 (-269 |#2|)))) (-15 -2288 (|#1| |#1| (-587 (-1084)) (-587 |#2|))) (-15 -2288 (|#1| |#1| (-1084) |#2|)))
+((-1390 (($ (-1 |#1| |#1|) $) 6)) (-2288 (($ $ (-1084) |#1|) 17 (|has| |#1| (-482 (-1084) |#1|))) (($ $ (-587 (-1084)) (-587 |#1|)) 16 (|has| |#1| (-482 (-1084) |#1|))) (($ $ (-587 (-269 |#1|))) 15 (|has| |#1| (-284 |#1|))) (($ $ (-269 |#1|)) 14 (|has| |#1| (-284 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-284 |#1|))) (($ $ (-587 |#1|) (-587 |#1|)) 12 (|has| |#1| (-284 |#1|)))) (-2544 (($ $ |#1|) 11 (|has| |#1| (-261 |#1| |#1|)))))
+(((-312 |#1|) (-1196) (-1013)) (T -312))
+((-1390 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-312 *3)) (-4 *3 (-1013)))))
+(-13 (-10 -8 (-15 -1390 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-261 |t#1| |t#1|)) (-6 (-261 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-284 |t#1|)) (-6 (-284 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-482 (-1084) |t#1|)) (-6 (-482 (-1084) |t#1|)) |%noBranch|)))
+(((-261 |#1| $) |has| |#1| (-261 |#1| |#1|)) ((-284 |#1|) |has| |#1| (-284 |#1|)) ((-482 (-1084) |#1|) |has| |#1| (-482 (-1084) |#1|)) ((-482 |#1| |#1|) |has| |#1| (-284 |#1|)))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-4084 (((-587 (-1084)) $) NIL)) (-2053 (((-108)) 88) (((-108) (-108)) 89)) (-1884 (((-587 (-560 $)) $) NIL)) (-2904 (($ $) NIL)) (-2769 (($ $) NIL)) (-1232 (((-3 $ "failed") $ $) NIL)) (-3300 (($ $ (-269 $)) NIL) (($ $ (-587 (-269 $))) NIL) (($ $ (-587 (-560 $)) (-587 $)) NIL)) (-1927 (($ $) NIL)) (-2880 (($ $) NIL)) (-2746 (($ $) NIL)) (-2547 (($) NIL T CONST)) (-1297 (((-3 (-560 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-290 |#3|)) 70) (((-3 $ "failed") (-1084)) 94) (((-3 $ "failed") (-290 (-521))) 57 (|has| |#3| (-961 (-521)))) (((-3 $ "failed") (-381 (-881 (-521)))) 63 (|has| |#3| (-961 (-521)))) (((-3 $ "failed") (-881 (-521))) 58 (|has| |#3| (-961 (-521)))) (((-3 $ "failed") (-290 (-353))) 75 (|has| |#3| (-961 (-353)))) (((-3 $ "failed") (-381 (-881 (-353)))) 81 (|has| |#3| (-961 (-353)))) (((-3 $ "failed") (-881 (-353))) 76 (|has| |#3| (-961 (-353))))) (-1483 (((-560 $) $) NIL) ((|#3| $) NIL) (($ (-290 |#3|)) 71) (($ (-1084)) 95) (($ (-290 (-521))) 59 (|has| |#3| (-961 (-521)))) (($ (-381 (-881 (-521)))) 64 (|has| |#3| (-961 (-521)))) (($ (-881 (-521))) 60 (|has| |#3| (-961 (-521)))) (($ (-290 (-353))) 77 (|has| |#3| (-961 (-353)))) (($ (-381 (-881 (-353)))) 82 (|has| |#3| (-961 (-353)))) (($ (-881 (-353))) 78 (|has| |#3| (-961 (-353))))) (-1257 (((-3 $ "failed") $) NIL)) (-2834 (($) 10)) (-3072 (($ $) NIL) (($ (-587 $)) NIL)) (-1833 (((-587 (-110)) $) NIL)) (-2727 (((-110) (-110)) NIL)) (-3996 (((-108) $) NIL)) (-1255 (((-108) $) NIL (|has| $ (-961 (-521))))) (-2527 (((-1080 $) (-560 $)) NIL (|has| $ (-970)))) (-2810 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-1390 (($ (-1 $ $) (-560 $)) NIL)) (-2018 (((-3 (-560 $) "failed") $) NIL)) (-1444 (($ $) 91)) (-1253 (($ $) NIL)) (-3688 (((-1067) $) NIL)) (-1266 (((-587 (-560 $)) $) NIL)) (-2905 (($ (-110) $) 90) (($ (-110) (-587 $)) NIL)) (-1705 (((-108) $ (-110)) NIL) (((-108) $ (-1084)) NIL)) (-4150 (((-707) $) NIL)) (-4147 (((-1031) $) NIL)) (-3899 (((-108) $ $) NIL) (((-108) $ (-1084)) NIL)) (-3261 (($ $) NIL)) (-3550 (((-108) $) NIL (|has| $ (-961 (-521))))) (-2288 (($ $ (-560 $) $) NIL) (($ $ (-587 (-560 $)) (-587 $)) NIL) (($ $ (-587 (-269 $))) NIL) (($ $ (-269 $)) NIL) (($ $ $ $) NIL) (($ $ (-587 $) (-587 $)) NIL) (($ $ (-587 (-1084)) (-587 (-1 $ $))) NIL) (($ $ (-587 (-1084)) (-587 (-1 $ (-587 $)))) NIL) (($ $ (-1084) (-1 $ (-587 $))) NIL) (($ $ (-1084) (-1 $ $)) NIL) (($ $ (-587 (-110)) (-587 (-1 $ $))) NIL) (($ $ (-587 (-110)) (-587 (-1 $ (-587 $)))) NIL) (($ $ (-110) (-1 $ (-587 $))) NIL) (($ $ (-110) (-1 $ $)) NIL)) (-2544 (($ (-110) $) NIL) (($ (-110) $ $) NIL) (($ (-110) $ $ $) NIL) (($ (-110) $ $ $ $) NIL) (($ (-110) (-587 $)) NIL)) (-4016 (($ $) NIL) (($ $ $) NIL)) (-2156 (($ $ (-587 (-1084)) (-587 (-707))) NIL) (($ $ (-1084) (-707)) NIL) (($ $ (-587 (-1084))) NIL) (($ $ (-1084)) NIL)) (-2879 (($ $) NIL (|has| $ (-970)))) (-2892 (($ $) NIL)) (-2758 (($ $) NIL)) (-2189 (((-792) $) NIL) (($ (-560 $)) NIL) (($ |#3|) NIL) (($ (-521)) NIL) (((-290 |#3|) $) 93)) (-3846 (((-707)) NIL)) (-2320 (($ $) NIL) (($ (-587 $)) NIL)) (-1455 (((-108) (-110)) NIL)) (-2832 (($ $) NIL)) (-2811 (($ $) NIL)) (-2821 (($ $) NIL)) (-3304 (($ $) NIL)) (-3505 (($ $ (-707)) NIL) (($ $ (-850)) NIL)) (-3561 (($) 92 T CONST)) (-3572 (($) 22 T CONST)) (-2212 (($ $ (-587 (-1084)) (-587 (-707))) NIL) (($ $ (-1084) (-707)) NIL) (($ $ (-587 (-1084))) NIL) (($ $ (-1084)) NIL)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) NIL)) (-1612 (($ $ $) NIL) (($ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-707)) NIL) (($ $ (-850)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-521) $) NIL) (($ (-707) $) NIL) (($ (-850) $) NIL)))
+(((-313 |#1| |#2| |#3|) (-13 (-277) (-37 |#3|) (-961 |#3|) (-829 (-1084)) (-10 -8 (-15 -1483 ($ (-290 |#3|))) (-15 -1297 ((-3 $ "failed") (-290 |#3|))) (-15 -1483 ($ (-1084))) (-15 -1297 ((-3 $ "failed") (-1084))) (-15 -2189 ((-290 |#3|) $)) (IF (|has| |#3| (-961 (-521))) (PROGN (-15 -1483 ($ (-290 (-521)))) (-15 -1297 ((-3 $ "failed") (-290 (-521)))) (-15 -1483 ($ (-381 (-881 (-521))))) (-15 -1297 ((-3 $ "failed") (-381 (-881 (-521))))) (-15 -1483 ($ (-881 (-521)))) (-15 -1297 ((-3 $ "failed") (-881 (-521))))) |%noBranch|) (IF (|has| |#3| (-961 (-353))) (PROGN (-15 -1483 ($ (-290 (-353)))) (-15 -1297 ((-3 $ "failed") (-290 (-353)))) (-15 -1483 ($ (-381 (-881 (-353))))) (-15 -1297 ((-3 $ "failed") (-381 (-881 (-353))))) (-15 -1483 ($ (-881 (-353)))) (-15 -1297 ((-3 $ "failed") (-881 (-353))))) |%noBranch|) (-15 -3304 ($ $)) (-15 -1927 ($ $)) (-15 -3261 ($ $)) (-15 -1253 ($ $)) (-15 -1444 ($ $)) (-15 -2746 ($ $)) (-15 -2758 ($ $)) (-15 -2769 ($ $)) (-15 -2811 ($ $)) (-15 -2821 ($ $)) (-15 -2832 ($ $)) (-15 -2880 ($ $)) (-15 -2892 ($ $)) (-15 -2904 ($ $)) (-15 -2834 ($)) (-15 -4084 ((-587 (-1084)) $)) (-15 -2053 ((-108))) (-15 -2053 ((-108) (-108))))) (-587 (-1084)) (-587 (-1084)) (-361)) (T -313))
+((-1483 (*1 *1 *2) (-12 (-5 *2 (-290 *5)) (-4 *5 (-361)) (-5 *1 (-313 *3 *4 *5)) (-14 *3 (-587 (-1084))) (-14 *4 (-587 (-1084))))) (-1297 (*1 *1 *2) (|partial| -12 (-5 *2 (-290 *5)) (-4 *5 (-361)) (-5 *1 (-313 *3 *4 *5)) (-14 *3 (-587 (-1084))) (-14 *4 (-587 (-1084))))) (-1483 (*1 *1 *2) (-12 (-5 *2 (-1084)) (-5 *1 (-313 *3 *4 *5)) (-14 *3 (-587 *2)) (-14 *4 (-587 *2)) (-4 *5 (-361)))) (-1297 (*1 *1 *2) (|partial| -12 (-5 *2 (-1084)) (-5 *1 (-313 *3 *4 *5)) (-14 *3 (-587 *2)) (-14 *4 (-587 *2)) (-4 *5 (-361)))) (-2189 (*1 *2 *1) (-12 (-5 *2 (-290 *5)) (-5 *1 (-313 *3 *4 *5)) (-14 *3 (-587 (-1084))) (-14 *4 (-587 (-1084))) (-4 *5 (-361)))) (-1483 (*1 *1 *2) (-12 (-5 *2 (-290 (-521))) (-5 *1 (-313 *3 *4 *5)) (-4 *5 (-961 (-521))) (-14 *3 (-587 (-1084))) (-14 *4 (-587 (-1084))) (-4 *5 (-361)))) (-1297 (*1 *1 *2) (|partial| -12 (-5 *2 (-290 (-521))) (-5 *1 (-313 *3 *4 *5)) (-4 *5 (-961 (-521))) (-14 *3 (-587 (-1084))) (-14 *4 (-587 (-1084))) (-4 *5 (-361)))) (-1483 (*1 *1 *2) (-12 (-5 *2 (-381 (-881 (-521)))) (-5 *1 (-313 *3 *4 *5)) (-4 *5 (-961 (-521))) (-14 *3 (-587 (-1084))) (-14 *4 (-587 (-1084))) (-4 *5 (-361)))) (-1297 (*1 *1 *2) (|partial| -12 (-5 *2 (-381 (-881 (-521)))) (-5 *1 (-313 *3 *4 *5)) (-4 *5 (-961 (-521))) (-14 *3 (-587 (-1084))) (-14 *4 (-587 (-1084))) (-4 *5 (-361)))) (-1483 (*1 *1 *2) (-12 (-5 *2 (-881 (-521))) (-5 *1 (-313 *3 *4 *5)) (-4 *5 (-961 (-521))) (-14 *3 (-587 (-1084))) (-14 *4 (-587 (-1084))) (-4 *5 (-361)))) (-1297 (*1 *1 *2) (|partial| -12 (-5 *2 (-881 (-521))) (-5 *1 (-313 *3 *4 *5)) (-4 *5 (-961 (-521))) (-14 *3 (-587 (-1084))) (-14 *4 (-587 (-1084))) (-4 *5 (-361)))) (-1483 (*1 *1 *2) (-12 (-5 *2 (-290 (-353))) (-5 *1 (-313 *3 *4 *5)) (-4 *5 (-961 (-353))) (-14 *3 (-587 (-1084))) (-14 *4 (-587 (-1084))) (-4 *5 (-361)))) (-1297 (*1 *1 *2) (|partial| -12 (-5 *2 (-290 (-353))) (-5 *1 (-313 *3 *4 *5)) (-4 *5 (-961 (-353))) (-14 *3 (-587 (-1084))) (-14 *4 (-587 (-1084))) (-4 *5 (-361)))) (-1483 (*1 *1 *2) (-12 (-5 *2 (-381 (-881 (-353)))) (-5 *1 (-313 *3 *4 *5)) (-4 *5 (-961 (-353))) (-14 *3 (-587 (-1084))) (-14 *4 (-587 (-1084))) (-4 *5 (-361)))) (-1297 (*1 *1 *2) (|partial| -12 (-5 *2 (-381 (-881 (-353)))) (-5 *1 (-313 *3 *4 *5)) (-4 *5 (-961 (-353))) (-14 *3 (-587 (-1084))) (-14 *4 (-587 (-1084))) (-4 *5 (-361)))) (-1483 (*1 *1 *2) (-12 (-5 *2 (-881 (-353))) (-5 *1 (-313 *3 *4 *5)) (-4 *5 (-961 (-353))) (-14 *3 (-587 (-1084))) (-14 *4 (-587 (-1084))) (-4 *5 (-361)))) (-1297 (*1 *1 *2) (|partial| -12 (-5 *2 (-881 (-353))) (-5 *1 (-313 *3 *4 *5)) (-4 *5 (-961 (-353))) (-14 *3 (-587 (-1084))) (-14 *4 (-587 (-1084))) (-4 *5 (-361)))) (-3304 (*1 *1 *1) (-12 (-5 *1 (-313 *2 *3 *4)) (-14 *2 (-587 (-1084))) (-14 *3 (-587 (-1084))) (-4 *4 (-361)))) (-1927 (*1 *1 *1) (-12 (-5 *1 (-313 *2 *3 *4)) (-14 *2 (-587 (-1084))) (-14 *3 (-587 (-1084))) (-4 *4 (-361)))) (-3261 (*1 *1 *1) (-12 (-5 *1 (-313 *2 *3 *4)) (-14 *2 (-587 (-1084))) (-14 *3 (-587 (-1084))) (-4 *4 (-361)))) (-1253 (*1 *1 *1) (-12 (-5 *1 (-313 *2 *3 *4)) (-14 *2 (-587 (-1084))) (-14 *3 (-587 (-1084))) (-4 *4 (-361)))) (-1444 (*1 *1 *1) (-12 (-5 *1 (-313 *2 *3 *4)) (-14 *2 (-587 (-1084))) (-14 *3 (-587 (-1084))) (-4 *4 (-361)))) (-2746 (*1 *1 *1) (-12 (-5 *1 (-313 *2 *3 *4)) (-14 *2 (-587 (-1084))) (-14 *3 (-587 (-1084))) (-4 *4 (-361)))) (-2758 (*1 *1 *1) (-12 (-5 *1 (-313 *2 *3 *4)) (-14 *2 (-587 (-1084))) (-14 *3 (-587 (-1084))) (-4 *4 (-361)))) (-2769 (*1 *1 *1) (-12 (-5 *1 (-313 *2 *3 *4)) (-14 *2 (-587 (-1084))) (-14 *3 (-587 (-1084))) (-4 *4 (-361)))) (-2811 (*1 *1 *1) (-12 (-5 *1 (-313 *2 *3 *4)) (-14 *2 (-587 (-1084))) (-14 *3 (-587 (-1084))) (-4 *4 (-361)))) (-2821 (*1 *1 *1) (-12 (-5 *1 (-313 *2 *3 *4)) (-14 *2 (-587 (-1084))) (-14 *3 (-587 (-1084))) (-4 *4 (-361)))) (-2832 (*1 *1 *1) (-12 (-5 *1 (-313 *2 *3 *4)) (-14 *2 (-587 (-1084))) (-14 *3 (-587 (-1084))) (-4 *4 (-361)))) (-2880 (*1 *1 *1) (-12 (-5 *1 (-313 *2 *3 *4)) (-14 *2 (-587 (-1084))) (-14 *3 (-587 (-1084))) (-4 *4 (-361)))) (-2892 (*1 *1 *1) (-12 (-5 *1 (-313 *2 *3 *4)) (-14 *2 (-587 (-1084))) (-14 *3 (-587 (-1084))) (-4 *4 (-361)))) (-2904 (*1 *1 *1) (-12 (-5 *1 (-313 *2 *3 *4)) (-14 *2 (-587 (-1084))) (-14 *3 (-587 (-1084))) (-4 *4 (-361)))) (-2834 (*1 *1) (-12 (-5 *1 (-313 *2 *3 *4)) (-14 *2 (-587 (-1084))) (-14 *3 (-587 (-1084))) (-4 *4 (-361)))) (-4084 (*1 *2 *1) (-12 (-5 *2 (-587 (-1084))) (-5 *1 (-313 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-361)))) (-2053 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-313 *3 *4 *5)) (-14 *3 (-587 (-1084))) (-14 *4 (-587 (-1084))) (-4 *5 (-361)))) (-2053 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-313 *3 *4 *5)) (-14 *3 (-587 (-1084))) (-14 *4 (-587 (-1084))) (-4 *5 (-361)))))
+(-13 (-277) (-37 |#3|) (-961 |#3|) (-829 (-1084)) (-10 -8 (-15 -1483 ($ (-290 |#3|))) (-15 -1297 ((-3 $ "failed") (-290 |#3|))) (-15 -1483 ($ (-1084))) (-15 -1297 ((-3 $ "failed") (-1084))) (-15 -2189 ((-290 |#3|) $)) (IF (|has| |#3| (-961 (-521))) (PROGN (-15 -1483 ($ (-290 (-521)))) (-15 -1297 ((-3 $ "failed") (-290 (-521)))) (-15 -1483 ($ (-381 (-881 (-521))))) (-15 -1297 ((-3 $ "failed") (-381 (-881 (-521))))) (-15 -1483 ($ (-881 (-521)))) (-15 -1297 ((-3 $ "failed") (-881 (-521))))) |%noBranch|) (IF (|has| |#3| (-961 (-353))) (PROGN (-15 -1483 ($ (-290 (-353)))) (-15 -1297 ((-3 $ "failed") (-290 (-353)))) (-15 -1483 ($ (-381 (-881 (-353))))) (-15 -1297 ((-3 $ "failed") (-381 (-881 (-353))))) (-15 -1483 ($ (-881 (-353)))) (-15 -1297 ((-3 $ "failed") (-881 (-353))))) |%noBranch|) (-15 -3304 ($ $)) (-15 -1927 ($ $)) (-15 -3261 ($ $)) (-15 -1253 ($ $)) (-15 -1444 ($ $)) (-15 -2746 ($ $)) (-15 -2758 ($ $)) (-15 -2769 ($ $)) (-15 -2811 ($ $)) (-15 -2821 ($ $)) (-15 -2832 ($ $)) (-15 -2880 ($ $)) (-15 -2892 ($ $)) (-15 -2904 ($ $)) (-15 -2834 ($)) (-15 -4084 ((-587 (-1084)) $)) (-15 -2053 ((-108))) (-15 -2053 ((-108) (-108)))))
+((-1390 ((|#8| (-1 |#5| |#1|) |#4|) 19)))
+(((-314 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1390 (|#8| (-1 |#5| |#1|) |#4|))) (-1123) (-1141 |#1|) (-1141 (-381 |#2|)) (-316 |#1| |#2| |#3|) (-1123) (-1141 |#5|) (-1141 (-381 |#6|)) (-316 |#5| |#6| |#7|)) (T -314))
+((-1390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1123)) (-4 *8 (-1123)) (-4 *6 (-1141 *5)) (-4 *7 (-1141 (-381 *6))) (-4 *9 (-1141 *8)) (-4 *2 (-316 *8 *9 *10)) (-5 *1 (-314 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-316 *5 *6 *7)) (-4 *10 (-1141 (-381 *9))))))
+(-10 -7 (-15 -1390 (|#8| (-1 |#5| |#1|) |#4|)))
+((-3698 (((-2 (|:| |num| (-1165 |#3|)) (|:| |den| |#3|)) $) 38)) (-4083 (($ (-1165 (-381 |#3|)) (-1165 $)) NIL) (($ (-1165 (-381 |#3|))) NIL) (($ (-1165 |#3|) |#3|) 159)) (-1886 (((-1165 $) (-1165 $)) 143)) (-2805 (((-587 (-587 |#2|))) 116)) (-2608 (((-108) |#2| |#2|) 72)) (-3666 (($ $) 137)) (-1489 (((-707)) 31)) (-1638 (((-1165 $) (-1165 $)) 196)) (-4107 (((-587 (-881 |#2|)) (-1084)) 109)) (-3722 (((-108) $) 156)) (-1596 (((-108) $) 24) (((-108) $ |#2|) 29) (((-108) $ |#3|) 200)) (-1403 (((-3 |#3| "failed")) 49)) (-2695 (((-707)) 168)) (-2544 ((|#2| $ |#2| |#2|) 130)) (-1963 (((-3 |#3| "failed")) 67)) (-2156 (($ $ (-1 (-381 |#3|) (-381 |#3|)) (-707)) NIL) (($ $ (-1 (-381 |#3|) (-381 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 204) (($ $ (-587 (-1084)) (-587 (-707))) NIL) (($ $ (-1084) (-707)) NIL) (($ $ (-587 (-1084))) NIL) (($ $ (-1084)) NIL) (($ $ (-707)) NIL) (($ $) NIL)) (-3966 (((-1165 $) (-1165 $)) 149)) (-3700 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 65)) (-3643 (((-108)) 33)))
+(((-315 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2156 (|#1| |#1|)) (-15 -2156 (|#1| |#1| (-707))) (-15 -2156 (|#1| |#1| (-1084))) (-15 -2156 (|#1| |#1| (-587 (-1084)))) (-15 -2156 (|#1| |#1| (-1084) (-707))) (-15 -2156 (|#1| |#1| (-587 (-1084)) (-587 (-707)))) (-15 -2805 ((-587 (-587 |#2|)))) (-15 -4107 ((-587 (-881 |#2|)) (-1084))) (-15 -3700 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1403 ((-3 |#3| "failed"))) (-15 -1963 ((-3 |#3| "failed"))) (-15 -2544 (|#2| |#1| |#2| |#2|)) (-15 -3666 (|#1| |#1|)) (-15 -4083 (|#1| (-1165 |#3|) |#3|)) (-15 -2156 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1596 ((-108) |#1| |#3|)) (-15 -1596 ((-108) |#1| |#2|)) (-15 -3698 ((-2 (|:| |num| (-1165 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1886 ((-1165 |#1|) (-1165 |#1|))) (-15 -1638 ((-1165 |#1|) (-1165 |#1|))) (-15 -3966 ((-1165 |#1|) (-1165 |#1|))) (-15 -1596 ((-108) |#1|)) (-15 -3722 ((-108) |#1|)) (-15 -2608 ((-108) |#2| |#2|)) (-15 -3643 ((-108))) (-15 -2695 ((-707))) (-15 -1489 ((-707))) (-15 -2156 (|#1| |#1| (-1 (-381 |#3|) (-381 |#3|)))) (-15 -2156 (|#1| |#1| (-1 (-381 |#3|) (-381 |#3|)) (-707))) (-15 -4083 (|#1| (-1165 (-381 |#3|)))) (-15 -4083 (|#1| (-1165 (-381 |#3|)) (-1165 |#1|)))) (-316 |#2| |#3| |#4|) (-1123) (-1141 |#2|) (-1141 (-381 |#3|))) (T -315))
+((-1489 (*1 *2) (-12 (-4 *4 (-1123)) (-4 *5 (-1141 *4)) (-4 *6 (-1141 (-381 *5))) (-5 *2 (-707)) (-5 *1 (-315 *3 *4 *5 *6)) (-4 *3 (-316 *4 *5 *6)))) (-2695 (*1 *2) (-12 (-4 *4 (-1123)) (-4 *5 (-1141 *4)) (-4 *6 (-1141 (-381 *5))) (-5 *2 (-707)) (-5 *1 (-315 *3 *4 *5 *6)) (-4 *3 (-316 *4 *5 *6)))) (-3643 (*1 *2) (-12 (-4 *4 (-1123)) (-4 *5 (-1141 *4)) (-4 *6 (-1141 (-381 *5))) (-5 *2 (-108)) (-5 *1 (-315 *3 *4 *5 *6)) (-4 *3 (-316 *4 *5 *6)))) (-2608 (*1 *2 *3 *3) (-12 (-4 *3 (-1123)) (-4 *5 (-1141 *3)) (-4 *6 (-1141 (-381 *5))) (-5 *2 (-108)) (-5 *1 (-315 *4 *3 *5 *6)) (-4 *4 (-316 *3 *5 *6)))) (-1963 (*1 *2) (|partial| -12 (-4 *4 (-1123)) (-4 *5 (-1141 (-381 *2))) (-4 *2 (-1141 *4)) (-5 *1 (-315 *3 *4 *2 *5)) (-4 *3 (-316 *4 *2 *5)))) (-1403 (*1 *2) (|partial| -12 (-4 *4 (-1123)) (-4 *5 (-1141 (-381 *2))) (-4 *2 (-1141 *4)) (-5 *1 (-315 *3 *4 *2 *5)) (-4 *3 (-316 *4 *2 *5)))) (-4107 (*1 *2 *3) (-12 (-5 *3 (-1084)) (-4 *5 (-1123)) (-4 *6 (-1141 *5)) (-4 *7 (-1141 (-381 *6))) (-5 *2 (-587 (-881 *5))) (-5 *1 (-315 *4 *5 *6 *7)) (-4 *4 (-316 *5 *6 *7)))) (-2805 (*1 *2) (-12 (-4 *4 (-1123)) (-4 *5 (-1141 *4)) (-4 *6 (-1141 (-381 *5))) (-5 *2 (-587 (-587 *4))) (-5 *1 (-315 *3 *4 *5 *6)) (-4 *3 (-316 *4 *5 *6)))))
+(-10 -8 (-15 -2156 (|#1| |#1|)) (-15 -2156 (|#1| |#1| (-707))) (-15 -2156 (|#1| |#1| (-1084))) (-15 -2156 (|#1| |#1| (-587 (-1084)))) (-15 -2156 (|#1| |#1| (-1084) (-707))) (-15 -2156 (|#1| |#1| (-587 (-1084)) (-587 (-707)))) (-15 -2805 ((-587 (-587 |#2|)))) (-15 -4107 ((-587 (-881 |#2|)) (-1084))) (-15 -3700 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1403 ((-3 |#3| "failed"))) (-15 -1963 ((-3 |#3| "failed"))) (-15 -2544 (|#2| |#1| |#2| |#2|)) (-15 -3666 (|#1| |#1|)) (-15 -4083 (|#1| (-1165 |#3|) |#3|)) (-15 -2156 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1596 ((-108) |#1| |#3|)) (-15 -1596 ((-108) |#1| |#2|)) (-15 -3698 ((-2 (|:| |num| (-1165 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1886 ((-1165 |#1|) (-1165 |#1|))) (-15 -1638 ((-1165 |#1|) (-1165 |#1|))) (-15 -3966 ((-1165 |#1|) (-1165 |#1|))) (-15 -1596 ((-108) |#1|)) (-15 -3722 ((-108) |#1|)) (-15 -2608 ((-108) |#2| |#2|)) (-15 -3643 ((-108))) (-15 -2695 ((-707))) (-15 -1489 ((-707))) (-15 -2156 (|#1| |#1| (-1 (-381 |#3|) (-381 |#3|)))) (-15 -2156 (|#1| |#1| (-1 (-381 |#3|) (-381 |#3|)) (-707))) (-15 -4083 (|#1| (-1165 (-381 |#3|)))) (-15 -4083 (|#1| (-1165 (-381 |#3|)) (-1165 |#1|))))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-3698 (((-2 (|:| |num| (-1165 |#2|)) (|:| |den| |#2|)) $) 196)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) 93 (|has| (-381 |#2|) (-337)))) (-2559 (($ $) 94 (|has| (-381 |#2|) (-337)))) (-1733 (((-108) $) 96 (|has| (-381 |#2|) (-337)))) (-3214 (((-627 (-381 |#2|)) (-1165 $)) 46) (((-627 (-381 |#2|))) 61)) (-1865 (((-381 |#2|) $) 52)) (-1340 (((-1093 (-850) (-707)) (-521)) 147 (|has| (-381 |#2|) (-323)))) (-1232 (((-3 $ "failed") $ $) 19)) (-3063 (($ $) 113 (|has| (-381 |#2|) (-337)))) (-3358 (((-392 $) $) 114 (|has| (-381 |#2|) (-337)))) (-1389 (((-108) $ $) 104 (|has| (-381 |#2|) (-337)))) (-1630 (((-707)) 87 (|has| (-381 |#2|) (-342)))) (-3792 (((-108)) 213)) (-3453 (((-108) |#1|) 212) (((-108) |#2|) 211)) (-2547 (($) 17 T CONST)) (-1297 (((-3 (-521) "failed") $) 169 (|has| (-381 |#2|) (-961 (-521)))) (((-3 (-381 (-521)) "failed") $) 167 (|has| (-381 |#2|) (-961 (-381 (-521))))) (((-3 (-381 |#2|) "failed") $) 166)) (-1483 (((-521) $) 170 (|has| (-381 |#2|) (-961 (-521)))) (((-381 (-521)) $) 168 (|has| (-381 |#2|) (-961 (-381 (-521))))) (((-381 |#2|) $) 165)) (-4083 (($ (-1165 (-381 |#2|)) (-1165 $)) 48) (($ (-1165 (-381 |#2|))) 64) (($ (-1165 |#2|) |#2|) 189)) (-1864 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| (-381 |#2|) (-323)))) (-2277 (($ $ $) 108 (|has| (-381 |#2|) (-337)))) (-3499 (((-627 (-381 |#2|)) $ (-1165 $)) 53) (((-627 (-381 |#2|)) $) 59)) (-3279 (((-627 (-521)) (-627 $)) 164 (|has| (-381 |#2|) (-583 (-521)))) (((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) 163 (|has| (-381 |#2|) (-583 (-521)))) (((-2 (|:| -1201 (-627 (-381 |#2|))) (|:| |vec| (-1165 (-381 |#2|)))) (-627 $) (-1165 $)) 162) (((-627 (-381 |#2|)) (-627 $)) 161)) (-1886 (((-1165 $) (-1165 $)) 201)) (-3859 (($ |#3|) 158) (((-3 $ "failed") (-381 |#3|)) 155 (|has| (-381 |#2|) (-337)))) (-1257 (((-3 $ "failed") $) 34)) (-2805 (((-587 (-587 |#1|))) 182 (|has| |#1| (-342)))) (-2608 (((-108) |#1| |#1|) 217)) (-3162 (((-850)) 54)) (-3250 (($) 90 (|has| (-381 |#2|) (-342)))) (-3607 (((-108)) 210)) (-3024 (((-108) |#1|) 209) (((-108) |#2|) 208)) (-2253 (($ $ $) 107 (|has| (-381 |#2|) (-337)))) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) 102 (|has| (-381 |#2|) (-337)))) (-3666 (($ $) 188)) (-2103 (($) 149 (|has| (-381 |#2|) (-323)))) (-2371 (((-108) $) 150 (|has| (-381 |#2|) (-323)))) (-2833 (($ $ (-707)) 141 (|has| (-381 |#2|) (-323))) (($ $) 140 (|has| (-381 |#2|) (-323)))) (-2710 (((-108) $) 115 (|has| (-381 |#2|) (-337)))) (-2733 (((-850) $) 152 (|has| (-381 |#2|) (-323))) (((-770 (-850)) $) 138 (|has| (-381 |#2|) (-323)))) (-3996 (((-108) $) 31)) (-1489 (((-707)) 220)) (-1638 (((-1165 $) (-1165 $)) 202)) (-3930 (((-381 |#2|) $) 51)) (-4107 (((-587 (-881 |#1|)) (-1084)) 183 (|has| |#1| (-337)))) (-3842 (((-3 $ "failed") $) 142 (|has| (-381 |#2|) (-323)))) (-1546 (((-3 (-587 $) "failed") (-587 $) $) 111 (|has| (-381 |#2|) (-337)))) (-3548 ((|#3| $) 44 (|has| (-381 |#2|) (-337)))) (-2715 (((-850) $) 89 (|has| (-381 |#2|) (-342)))) (-3844 ((|#3| $) 156)) (-2223 (($ (-587 $)) 100 (|has| (-381 |#2|) (-337))) (($ $ $) 99 (|has| (-381 |#2|) (-337)))) (-3688 (((-1067) $) 9)) (-3940 (((-627 (-381 |#2|))) 197)) (-3204 (((-627 (-381 |#2|))) 199)) (-3095 (($ $) 116 (|has| (-381 |#2|) (-337)))) (-2696 (($ (-1165 |#2|) |#2|) 194)) (-1760 (((-627 (-381 |#2|))) 198)) (-3205 (((-627 (-381 |#2|))) 200)) (-2022 (((-2 (|:| |num| (-627 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 193)) (-1447 (((-2 (|:| |num| (-1165 |#2|)) (|:| |den| |#2|)) $) 195)) (-1942 (((-1165 $)) 206)) (-3545 (((-1165 $)) 207)) (-3722 (((-108) $) 205)) (-1596 (((-108) $) 204) (((-108) $ |#1|) 192) (((-108) $ |#2|) 191)) (-3797 (($) 143 (|has| (-381 |#2|) (-323)) CONST)) (-2716 (($ (-850)) 88 (|has| (-381 |#2|) (-342)))) (-1403 (((-3 |#2| "failed")) 185)) (-4147 (((-1031) $) 10)) (-2695 (((-707)) 219)) (-1383 (($) 160)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) 101 (|has| (-381 |#2|) (-337)))) (-2258 (($ (-587 $)) 98 (|has| (-381 |#2|) (-337))) (($ $ $) 97 (|has| (-381 |#2|) (-337)))) (-3040 (((-587 (-2 (|:| -1916 (-521)) (|:| -2997 (-521))))) 146 (|has| (-381 |#2|) (-323)))) (-1916 (((-392 $) $) 112 (|has| (-381 |#2|) (-337)))) (-1962 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| (-381 |#2|) (-337))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) 109 (|has| (-381 |#2|) (-337)))) (-2230 (((-3 $ "failed") $ $) 92 (|has| (-381 |#2|) (-337)))) (-3854 (((-3 (-587 $) "failed") (-587 $) $) 103 (|has| (-381 |#2|) (-337)))) (-4196 (((-707) $) 105 (|has| (-381 |#2|) (-337)))) (-2544 ((|#1| $ |#1| |#1|) 187)) (-1963 (((-3 |#2| "failed")) 186)) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) 106 (|has| (-381 |#2|) (-337)))) (-4010 (((-381 |#2|) (-1165 $)) 47) (((-381 |#2|)) 60)) (-4067 (((-707) $) 151 (|has| (-381 |#2|) (-323))) (((-3 (-707) "failed") $ $) 139 (|has| (-381 |#2|) (-323)))) (-2156 (($ $ (-1 (-381 |#2|) (-381 |#2|)) (-707)) 123 (|has| (-381 |#2|) (-337))) (($ $ (-1 (-381 |#2|) (-381 |#2|))) 122 (|has| (-381 |#2|) (-337))) (($ $ (-1 |#2| |#2|)) 190) (($ $ (-587 (-1084)) (-587 (-707))) 130 (-3703 (-4009 (|has| (-381 |#2|) (-337)) (|has| (-381 |#2|) (-829 (-1084)))) (-4009 (|has| (-381 |#2|) (-829 (-1084))) (|has| (-381 |#2|) (-337))))) (($ $ (-1084) (-707)) 131 (-3703 (-4009 (|has| (-381 |#2|) (-337)) (|has| (-381 |#2|) (-829 (-1084)))) (-4009 (|has| (-381 |#2|) (-829 (-1084))) (|has| (-381 |#2|) (-337))))) (($ $ (-587 (-1084))) 132 (-3703 (-4009 (|has| (-381 |#2|) (-337)) (|has| (-381 |#2|) (-829 (-1084)))) (-4009 (|has| (-381 |#2|) (-829 (-1084))) (|has| (-381 |#2|) (-337))))) (($ $ (-1084)) 133 (-3703 (-4009 (|has| (-381 |#2|) (-337)) (|has| (-381 |#2|) (-829 (-1084)))) (-4009 (|has| (-381 |#2|) (-829 (-1084))) (|has| (-381 |#2|) (-337))))) (($ $ (-707)) 135 (-3703 (-4009 (|has| (-381 |#2|) (-337)) (|has| (-381 |#2|) (-210))) (-4009 (|has| (-381 |#2|) (-210)) (|has| (-381 |#2|) (-337))) (|has| (-381 |#2|) (-323)))) (($ $) 137 (-3703 (-4009 (|has| (-381 |#2|) (-337)) (|has| (-381 |#2|) (-210))) (-4009 (|has| (-381 |#2|) (-210)) (|has| (-381 |#2|) (-337))) (|has| (-381 |#2|) (-323))))) (-3089 (((-627 (-381 |#2|)) (-1165 $) (-1 (-381 |#2|) (-381 |#2|))) 154 (|has| (-381 |#2|) (-337)))) (-2879 ((|#3|) 159)) (-1204 (($) 148 (|has| (-381 |#2|) (-323)))) (-2234 (((-1165 (-381 |#2|)) $ (-1165 $)) 50) (((-627 (-381 |#2|)) (-1165 $) (-1165 $)) 49) (((-1165 (-381 |#2|)) $) 66) (((-627 (-381 |#2|)) (-1165 $)) 65)) (-1430 (((-1165 (-381 |#2|)) $) 63) (($ (-1165 (-381 |#2|))) 62) ((|#3| $) 171) (($ |#3|) 157)) (-2944 (((-3 (-1165 $) "failed") (-627 $)) 145 (|has| (-381 |#2|) (-323)))) (-3966 (((-1165 $) (-1165 $)) 203)) (-2189 (((-792) $) 11) (($ (-521)) 28) (($ (-381 |#2|)) 37) (($ (-381 (-521))) 86 (-3703 (|has| (-381 |#2|) (-337)) (|has| (-381 |#2|) (-961 (-381 (-521)))))) (($ $) 91 (|has| (-381 |#2|) (-337)))) (-1671 (($ $) 144 (|has| (-381 |#2|) (-323))) (((-3 $ "failed") $) 43 (|has| (-381 |#2|) (-133)))) (-3110 ((|#3| $) 45)) (-3846 (((-707)) 29)) (-3377 (((-108)) 216)) (-3622 (((-108) |#1|) 215) (((-108) |#2|) 214)) (-2470 (((-1165 $)) 67)) (-4210 (((-108) $ $) 95 (|has| (-381 |#2|) (-337)))) (-3700 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 184)) (-3643 (((-108)) 218)) (-3505 (($ $ (-850)) 26) (($ $ (-707)) 33) (($ $ (-521)) 117 (|has| (-381 |#2|) (-337)))) (-3561 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-2212 (($ $ (-1 (-381 |#2|) (-381 |#2|)) (-707)) 125 (|has| (-381 |#2|) (-337))) (($ $ (-1 (-381 |#2|) (-381 |#2|))) 124 (|has| (-381 |#2|) (-337))) (($ $ (-587 (-1084)) (-587 (-707))) 126 (-3703 (-4009 (|has| (-381 |#2|) (-337)) (|has| (-381 |#2|) (-829 (-1084)))) (-4009 (|has| (-381 |#2|) (-829 (-1084))) (|has| (-381 |#2|) (-337))))) (($ $ (-1084) (-707)) 127 (-3703 (-4009 (|has| (-381 |#2|) (-337)) (|has| (-381 |#2|) (-829 (-1084)))) (-4009 (|has| (-381 |#2|) (-829 (-1084))) (|has| (-381 |#2|) (-337))))) (($ $ (-587 (-1084))) 128 (-3703 (-4009 (|has| (-381 |#2|) (-337)) (|has| (-381 |#2|) (-829 (-1084)))) (-4009 (|has| (-381 |#2|) (-829 (-1084))) (|has| (-381 |#2|) (-337))))) (($ $ (-1084)) 129 (-3703 (-4009 (|has| (-381 |#2|) (-337)) (|has| (-381 |#2|) (-829 (-1084)))) (-4009 (|has| (-381 |#2|) (-829 (-1084))) (|has| (-381 |#2|) (-337))))) (($ $ (-707)) 134 (-3703 (-4009 (|has| (-381 |#2|) (-337)) (|has| (-381 |#2|) (-210))) (-4009 (|has| (-381 |#2|) (-210)) (|has| (-381 |#2|) (-337))) (|has| (-381 |#2|) (-323)))) (($ $) 136 (-3703 (-4009 (|has| (-381 |#2|) (-337)) (|has| (-381 |#2|) (-210))) (-4009 (|has| (-381 |#2|) (-210)) (|has| (-381 |#2|) (-337))) (|has| (-381 |#2|) (-323))))) (-1531 (((-108) $ $) 6)) (-1620 (($ $ $) 121 (|has| (-381 |#2|) (-337)))) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-707)) 32) (($ $ (-521)) 118 (|has| (-381 |#2|) (-337)))) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ $ (-381 |#2|)) 39) (($ (-381 |#2|) $) 38) (($ (-381 (-521)) $) 120 (|has| (-381 |#2|) (-337))) (($ $ (-381 (-521))) 119 (|has| (-381 |#2|) (-337)))))
+(((-316 |#1| |#2| |#3|) (-1196) (-1123) (-1141 |t#1|) (-1141 (-381 |t#2|))) (T -316))
+((-1489 (*1 *2) (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4))) (-5 *2 (-707)))) (-2695 (*1 *2) (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4))) (-5 *2 (-707)))) (-3643 (*1 *2) (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4))) (-5 *2 (-108)))) (-2608 (*1 *2 *3 *3) (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4))) (-5 *2 (-108)))) (-3377 (*1 *2) (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4))) (-5 *2 (-108)))) (-3622 (*1 *2 *3) (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4))) (-5 *2 (-108)))) (-3622 (*1 *2 *3) (-12 (-4 *1 (-316 *4 *3 *5)) (-4 *4 (-1123)) (-4 *3 (-1141 *4)) (-4 *5 (-1141 (-381 *3))) (-5 *2 (-108)))) (-3792 (*1 *2) (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4))) (-5 *2 (-108)))) (-3453 (*1 *2 *3) (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4))) (-5 *2 (-108)))) (-3453 (*1 *2 *3) (-12 (-4 *1 (-316 *4 *3 *5)) (-4 *4 (-1123)) (-4 *3 (-1141 *4)) (-4 *5 (-1141 (-381 *3))) (-5 *2 (-108)))) (-3607 (*1 *2) (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4))) (-5 *2 (-108)))) (-3024 (*1 *2 *3) (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4))) (-5 *2 (-108)))) (-3024 (*1 *2 *3) (-12 (-4 *1 (-316 *4 *3 *5)) (-4 *4 (-1123)) (-4 *3 (-1141 *4)) (-4 *5 (-1141 (-381 *3))) (-5 *2 (-108)))) (-3545 (*1 *2) (-12 (-4 *3 (-1123)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4))) (-5 *2 (-1165 *1)) (-4 *1 (-316 *3 *4 *5)))) (-1942 (*1 *2) (-12 (-4 *3 (-1123)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4))) (-5 *2 (-1165 *1)) (-4 *1 (-316 *3 *4 *5)))) (-3722 (*1 *2 *1) (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4))) (-5 *2 (-108)))) (-1596 (*1 *2 *1) (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4))) (-5 *2 (-108)))) (-3966 (*1 *2 *2) (-12 (-5 *2 (-1165 *1)) (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4))))) (-1638 (*1 *2 *2) (-12 (-5 *2 (-1165 *1)) (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4))))) (-1886 (*1 *2 *2) (-12 (-5 *2 (-1165 *1)) (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4))))) (-3205 (*1 *2) (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4))) (-5 *2 (-627 (-381 *4))))) (-3204 (*1 *2) (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4))) (-5 *2 (-627 (-381 *4))))) (-1760 (*1 *2) (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4))) (-5 *2 (-627 (-381 *4))))) (-3940 (*1 *2) (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4))) (-5 *2 (-627 (-381 *4))))) (-3698 (*1 *2 *1) (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4))) (-5 *2 (-2 (|:| |num| (-1165 *4)) (|:| |den| *4))))) (-1447 (*1 *2 *1) (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4))) (-5 *2 (-2 (|:| |num| (-1165 *4)) (|:| |den| *4))))) (-2696 (*1 *1 *2 *3) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1141 *4)) (-4 *4 (-1123)) (-4 *1 (-316 *4 *3 *5)) (-4 *5 (-1141 (-381 *3))))) (-2022 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-316 *4 *5 *6)) (-4 *4 (-1123)) (-4 *5 (-1141 *4)) (-4 *6 (-1141 (-381 *5))) (-5 *2 (-2 (|:| |num| (-627 *5)) (|:| |den| *5))))) (-1596 (*1 *2 *1 *3) (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4))) (-5 *2 (-108)))) (-1596 (*1 *2 *1 *3) (-12 (-4 *1 (-316 *4 *3 *5)) (-4 *4 (-1123)) (-4 *3 (-1141 *4)) (-4 *5 (-1141 (-381 *3))) (-5 *2 (-108)))) (-2156 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4))))) (-4083 (*1 *1 *2 *3) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1141 *4)) (-4 *4 (-1123)) (-4 *1 (-316 *4 *3 *5)) (-4 *5 (-1141 (-381 *3))))) (-3666 (*1 *1 *1) (-12 (-4 *1 (-316 *2 *3 *4)) (-4 *2 (-1123)) (-4 *3 (-1141 *2)) (-4 *4 (-1141 (-381 *3))))) (-2544 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-316 *2 *3 *4)) (-4 *2 (-1123)) (-4 *3 (-1141 *2)) (-4 *4 (-1141 (-381 *3))))) (-1963 (*1 *2) (|partial| -12 (-4 *1 (-316 *3 *2 *4)) (-4 *3 (-1123)) (-4 *4 (-1141 (-381 *2))) (-4 *2 (-1141 *3)))) (-1403 (*1 *2) (|partial| -12 (-4 *1 (-316 *3 *2 *4)) (-4 *3 (-1123)) (-4 *4 (-1141 (-381 *2))) (-4 *2 (-1141 *3)))) (-3700 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1141 *4)) (-4 *4 (-1123)) (-4 *6 (-1141 (-381 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-316 *4 *5 *6)))) (-4107 (*1 *2 *3) (-12 (-5 *3 (-1084)) (-4 *1 (-316 *4 *5 *6)) (-4 *4 (-1123)) (-4 *5 (-1141 *4)) (-4 *6 (-1141 (-381 *5))) (-4 *4 (-337)) (-5 *2 (-587 (-881 *4))))) (-2805 (*1 *2) (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4))) (-4 *3 (-342)) (-5 *2 (-587 (-587 *3))))))
+(-13 (-661 (-381 |t#2|) |t#3|) (-10 -8 (-15 -1489 ((-707))) (-15 -2695 ((-707))) (-15 -3643 ((-108))) (-15 -2608 ((-108) |t#1| |t#1|)) (-15 -3377 ((-108))) (-15 -3622 ((-108) |t#1|)) (-15 -3622 ((-108) |t#2|)) (-15 -3792 ((-108))) (-15 -3453 ((-108) |t#1|)) (-15 -3453 ((-108) |t#2|)) (-15 -3607 ((-108))) (-15 -3024 ((-108) |t#1|)) (-15 -3024 ((-108) |t#2|)) (-15 -3545 ((-1165 $))) (-15 -1942 ((-1165 $))) (-15 -3722 ((-108) $)) (-15 -1596 ((-108) $)) (-15 -3966 ((-1165 $) (-1165 $))) (-15 -1638 ((-1165 $) (-1165 $))) (-15 -1886 ((-1165 $) (-1165 $))) (-15 -3205 ((-627 (-381 |t#2|)))) (-15 -3204 ((-627 (-381 |t#2|)))) (-15 -1760 ((-627 (-381 |t#2|)))) (-15 -3940 ((-627 (-381 |t#2|)))) (-15 -3698 ((-2 (|:| |num| (-1165 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -4083 ($ (-1165 |t#2|) |t#2|)) (-15 -1447 ((-2 (|:| |num| (-1165 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2696 ($ (-1165 |t#2|) |t#2|)) (-15 -2022 ((-2 (|:| |num| (-627 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -1596 ((-108) $ |t#1|)) (-15 -1596 ((-108) $ |t#2|)) (-15 -2156 ($ $ (-1 |t#2| |t#2|))) (-15 -4083 ($ (-1165 |t#2|) |t#2|)) (-15 -3666 ($ $)) (-15 -2544 (|t#1| $ |t#1| |t#1|)) (-15 -1963 ((-3 |t#2| "failed"))) (-15 -1403 ((-3 |t#2| "failed"))) (-15 -3700 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-337)) (-15 -4107 ((-587 (-881 |t#1|)) (-1084))) |%noBranch|) (IF (|has| |t#1| (-342)) (-15 -2805 ((-587 (-587 |t#1|)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-381 (-521))) -3703 (|has| (-381 |#2|) (-323)) (|has| (-381 |#2|) (-337))) ((-37 #1=(-381 |#2|)) . T) ((-37 $) -3703 (|has| (-381 |#2|) (-323)) (|has| (-381 |#2|) (-337))) ((-97) . T) ((-107 #0# #0#) -3703 (|has| (-381 |#2|) (-323)) (|has| (-381 |#2|) (-337))) ((-107 #1# #1#) . T) ((-107 $ $) . T) ((-124) . T) ((-133) -3703 (|has| (-381 |#2|) (-323)) (|has| (-381 |#2|) (-133))) ((-135) |has| (-381 |#2|) (-135)) ((-561 (-792)) . T) ((-157) . T) ((-562 |#3|) . T) ((-208 #1#) |has| (-381 |#2|) (-337)) ((-210) -3703 (|has| (-381 |#2|) (-323)) (-12 (|has| (-381 |#2|) (-210)) (|has| (-381 |#2|) (-337)))) ((-220) -3703 (|has| (-381 |#2|) (-323)) (|has| (-381 |#2|) (-337))) ((-265) -3703 (|has| (-381 |#2|) (-323)) (|has| (-381 |#2|) (-337))) ((-282) -3703 (|has| (-381 |#2|) (-323)) (|has| (-381 |#2|) (-337))) ((-337) -3703 (|has| (-381 |#2|) (-323)) (|has| (-381 |#2|) (-337))) ((-376) |has| (-381 |#2|) (-323)) ((-342) -3703 (|has| (-381 |#2|) (-342)) (|has| (-381 |#2|) (-323))) ((-323) |has| (-381 |#2|) (-323)) ((-344 #1# |#3|) . T) ((-383 #1# |#3|) . T) ((-351 #1#) . T) ((-385 #1#) . T) ((-425) -3703 (|has| (-381 |#2|) (-323)) (|has| (-381 |#2|) (-337))) ((-513) -3703 (|has| (-381 |#2|) (-323)) (|has| (-381 |#2|) (-337))) ((-589 #0#) -3703 (|has| (-381 |#2|) (-323)) (|has| (-381 |#2|) (-337))) ((-589 #1#) . T) ((-589 $) . T) ((-583 #1#) . T) ((-583 (-521)) |has| (-381 |#2|) (-583 (-521))) ((-654 #0#) -3703 (|has| (-381 |#2|) (-323)) (|has| (-381 |#2|) (-337))) ((-654 #1#) . T) ((-654 $) -3703 (|has| (-381 |#2|) (-323)) (|has| (-381 |#2|) (-337))) ((-661 #1# |#3|) . T) ((-663) . T) ((-829 (-1084)) -12 (|has| (-381 |#2|) (-337)) (|has| (-381 |#2|) (-829 (-1084)))) ((-849) -3703 (|has| (-381 |#2|) (-323)) (|has| (-381 |#2|) (-337))) ((-961 (-381 (-521))) |has| (-381 |#2|) (-961 (-381 (-521)))) ((-961 #1#) . T) ((-961 (-521)) |has| (-381 |#2|) (-961 (-521))) ((-976 #0#) -3703 (|has| (-381 |#2|) (-323)) (|has| (-381 |#2|) (-337))) ((-976 #1#) . T) ((-976 $) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T) ((-1060) |has| (-381 |#2|) (-323)) ((-1123) -3703 (|has| (-381 |#2|) (-323)) (|has| (-381 |#2|) (-337))))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-2559 (($ $) NIL)) (-1733 (((-108) $) NIL)) (-1779 (((-108) $) NIL)) (-3471 (((-707)) NIL)) (-1865 (((-839 |#1|) $) NIL) (($ $ (-850)) NIL (|has| (-839 |#1|) (-342)))) (-1340 (((-1093 (-850) (-707)) (-521)) NIL (|has| (-839 |#1|) (-342)))) (-1232 (((-3 $ "failed") $ $) NIL)) (-3063 (($ $) NIL)) (-3358 (((-392 $) $) NIL)) (-1389 (((-108) $ $) NIL)) (-1630 (((-707)) NIL (|has| (-839 |#1|) (-342)))) (-2547 (($) NIL T CONST)) (-1297 (((-3 (-839 |#1|) "failed") $) NIL)) (-1483 (((-839 |#1|) $) NIL)) (-4083 (($ (-1165 (-839 |#1|))) NIL)) (-1864 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-839 |#1|) (-342)))) (-2277 (($ $ $) NIL)) (-1257 (((-3 $ "failed") $) NIL)) (-3250 (($) NIL (|has| (-839 |#1|) (-342)))) (-2253 (($ $ $) NIL)) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) NIL)) (-2103 (($) NIL (|has| (-839 |#1|) (-342)))) (-2371 (((-108) $) NIL (|has| (-839 |#1|) (-342)))) (-2833 (($ $ (-707)) NIL (-3703 (|has| (-839 |#1|) (-133)) (|has| (-839 |#1|) (-342)))) (($ $) NIL (-3703 (|has| (-839 |#1|) (-133)) (|has| (-839 |#1|) (-342))))) (-2710 (((-108) $) NIL)) (-2733 (((-850) $) NIL (|has| (-839 |#1|) (-342))) (((-770 (-850)) $) NIL (-3703 (|has| (-839 |#1|) (-133)) (|has| (-839 |#1|) (-342))))) (-3996 (((-108) $) NIL)) (-3958 (($) NIL (|has| (-839 |#1|) (-342)))) (-1279 (((-108) $) NIL (|has| (-839 |#1|) (-342)))) (-3930 (((-839 |#1|) $) NIL) (($ $ (-850)) NIL (|has| (-839 |#1|) (-342)))) (-3842 (((-3 $ "failed") $) NIL (|has| (-839 |#1|) (-342)))) (-1546 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-3548 (((-1080 (-839 |#1|)) $) NIL) (((-1080 $) $ (-850)) NIL (|has| (-839 |#1|) (-342)))) (-2715 (((-850) $) NIL (|has| (-839 |#1|) (-342)))) (-4179 (((-1080 (-839 |#1|)) $) NIL (|has| (-839 |#1|) (-342)))) (-2728 (((-1080 (-839 |#1|)) $) NIL (|has| (-839 |#1|) (-342))) (((-3 (-1080 (-839 |#1|)) "failed") $ $) NIL (|has| (-839 |#1|) (-342)))) (-1818 (($ $ (-1080 (-839 |#1|))) NIL (|has| (-839 |#1|) (-342)))) (-2223 (($ $ $) NIL) (($ (-587 $)) NIL)) (-3688 (((-1067) $) NIL)) (-3095 (($ $) NIL)) (-3797 (($) NIL (|has| (-839 |#1|) (-342)) CONST)) (-2716 (($ (-850)) NIL (|has| (-839 |#1|) (-342)))) (-2218 (((-108) $) NIL)) (-4147 (((-1031) $) NIL)) (-1530 (((-886 (-1031))) NIL)) (-1383 (($) NIL (|has| (-839 |#1|) (-342)))) (-2513 (((-1080 $) (-1080 $) (-1080 $)) NIL)) (-2258 (($ $ $) NIL) (($ (-587 $)) NIL)) (-3040 (((-587 (-2 (|:| -1916 (-521)) (|:| -2997 (-521))))) NIL (|has| (-839 |#1|) (-342)))) (-1916 (((-392 $) $) NIL)) (-4178 (((-770 (-850))) NIL) (((-850)) NIL)) (-1962 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2230 (((-3 $ "failed") $ $) NIL)) (-3854 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-4196 (((-707) $) NIL)) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) NIL)) (-4067 (((-707) $) NIL (|has| (-839 |#1|) (-342))) (((-3 (-707) "failed") $ $) NIL (-3703 (|has| (-839 |#1|) (-133)) (|has| (-839 |#1|) (-342))))) (-2359 (((-126)) NIL)) (-2156 (($ $) NIL (|has| (-839 |#1|) (-342))) (($ $ (-707)) NIL (|has| (-839 |#1|) (-342)))) (-1994 (((-770 (-850)) $) NIL) (((-850) $) NIL)) (-2879 (((-1080 (-839 |#1|))) NIL)) (-1204 (($) NIL (|has| (-839 |#1|) (-342)))) (-2677 (($) NIL (|has| (-839 |#1|) (-342)))) (-2234 (((-1165 (-839 |#1|)) $) NIL) (((-627 (-839 |#1|)) (-1165 $)) NIL)) (-2944 (((-3 (-1165 $) "failed") (-627 $)) NIL (|has| (-839 |#1|) (-342)))) (-2189 (((-792) $) NIL) (($ (-521)) NIL) (($ $) NIL) (($ (-381 (-521))) NIL) (($ (-839 |#1|)) NIL)) (-1671 (($ $) NIL (|has| (-839 |#1|) (-342))) (((-3 $ "failed") $) NIL (-3703 (|has| (-839 |#1|) (-133)) (|has| (-839 |#1|) (-342))))) (-3846 (((-707)) NIL)) (-2470 (((-1165 $)) NIL) (((-1165 $) (-850)) NIL)) (-4210 (((-108) $ $) NIL)) (-2154 (((-108) $) NIL)) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (-3561 (($) NIL T CONST)) (-3572 (($) NIL T CONST)) (-3654 (($ $) NIL (|has| (-839 |#1|) (-342))) (($ $ (-707)) NIL (|has| (-839 |#1|) (-342)))) (-2212 (($ $) NIL (|has| (-839 |#1|) (-342))) (($ $ (-707)) NIL (|has| (-839 |#1|) (-342)))) (-1531 (((-108) $ $) NIL)) (-1620 (($ $ $) NIL) (($ $ (-839 |#1|)) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ (-381 (-521))) NIL) (($ (-381 (-521)) $) NIL) (($ $ (-839 |#1|)) NIL) (($ (-839 |#1|) $) NIL)))
+(((-317 |#1| |#2|) (-13 (-303 (-839 |#1|)) (-10 -7 (-15 -1530 ((-886 (-1031)))))) (-850) (-850)) (T -317))
+((-1530 (*1 *2) (-12 (-5 *2 (-886 (-1031))) (-5 *1 (-317 *3 *4)) (-14 *3 (-850)) (-14 *4 (-850)))))
+(-13 (-303 (-839 |#1|)) (-10 -7 (-15 -1530 ((-886 (-1031))))))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) 46)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-2559 (($ $) NIL)) (-1733 (((-108) $) NIL)) (-1779 (((-108) $) NIL)) (-3471 (((-707)) NIL)) (-1865 ((|#1| $) NIL) (($ $ (-850)) NIL (|has| |#1| (-342)))) (-1340 (((-1093 (-850) (-707)) (-521)) 43 (|has| |#1| (-342)))) (-1232 (((-3 $ "failed") $ $) NIL)) (-3063 (($ $) NIL)) (-3358 (((-392 $) $) NIL)) (-1389 (((-108) $ $) NIL)) (-1630 (((-707)) NIL (|has| |#1| (-342)))) (-2547 (($) NIL T CONST)) (-1297 (((-3 |#1| "failed") $) 114)) (-1483 ((|#1| $) 85)) (-4083 (($ (-1165 |#1|)) 103)) (-1864 (((-3 "prime" "polynomial" "normal" "cyclic")) 94 (|has| |#1| (-342)))) (-2277 (($ $ $) NIL)) (-1257 (((-3 $ "failed") $) NIL)) (-3250 (($) 97 (|has| |#1| (-342)))) (-2253 (($ $ $) NIL)) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) NIL)) (-2103 (($) 129 (|has| |#1| (-342)))) (-2371 (((-108) $) 49 (|has| |#1| (-342)))) (-2833 (($ $ (-707)) NIL (-3703 (|has| |#1| (-133)) (|has| |#1| (-342)))) (($ $) NIL (-3703 (|has| |#1| (-133)) (|has| |#1| (-342))))) (-2710 (((-108) $) NIL)) (-2733 (((-850) $) 47 (|has| |#1| (-342))) (((-770 (-850)) $) NIL (-3703 (|has| |#1| (-133)) (|has| |#1| (-342))))) (-3996 (((-108) $) NIL)) (-3958 (($) 131 (|has| |#1| (-342)))) (-1279 (((-108) $) NIL (|has| |#1| (-342)))) (-3930 ((|#1| $) NIL) (($ $ (-850)) NIL (|has| |#1| (-342)))) (-3842 (((-3 $ "failed") $) NIL (|has| |#1| (-342)))) (-1546 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-3548 (((-1080 |#1|) $) 89) (((-1080 $) $ (-850)) NIL (|has| |#1| (-342)))) (-2715 (((-850) $) 139 (|has| |#1| (-342)))) (-4179 (((-1080 |#1|) $) NIL (|has| |#1| (-342)))) (-2728 (((-1080 |#1|) $) NIL (|has| |#1| (-342))) (((-3 (-1080 |#1|) "failed") $ $) NIL (|has| |#1| (-342)))) (-1818 (($ $ (-1080 |#1|)) NIL (|has| |#1| (-342)))) (-2223 (($ $ $) NIL) (($ (-587 $)) NIL)) (-3688 (((-1067) $) NIL)) (-3095 (($ $) 146)) (-3797 (($) NIL (|has| |#1| (-342)) CONST)) (-2716 (($ (-850)) 70 (|has| |#1| (-342)))) (-2218 (((-108) $) 117)) (-4147 (((-1031) $) NIL)) (-1530 (((-886 (-1031))) 44)) (-1383 (($) 127 (|has| |#1| (-342)))) (-2513 (((-1080 $) (-1080 $) (-1080 $)) NIL)) (-2258 (($ $ $) NIL) (($ (-587 $)) NIL)) (-3040 (((-587 (-2 (|:| -1916 (-521)) (|:| -2997 (-521))))) 92 (|has| |#1| (-342)))) (-1916 (((-392 $) $) NIL)) (-4178 (((-770 (-850))) 67) (((-850)) 68)) (-1962 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2230 (((-3 $ "failed") $ $) NIL)) (-3854 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-4196 (((-707) $) NIL)) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) NIL)) (-4067 (((-707) $) 130 (|has| |#1| (-342))) (((-3 (-707) "failed") $ $) 124 (-3703 (|has| |#1| (-133)) (|has| |#1| (-342))))) (-2359 (((-126)) NIL)) (-2156 (($ $) NIL (|has| |#1| (-342))) (($ $ (-707)) NIL (|has| |#1| (-342)))) (-1994 (((-770 (-850)) $) NIL) (((-850) $) NIL)) (-2879 (((-1080 |#1|)) 95)) (-1204 (($) 128 (|has| |#1| (-342)))) (-2677 (($) 136 (|has| |#1| (-342)))) (-2234 (((-1165 |#1|) $) 59) (((-627 |#1|) (-1165 $)) NIL)) (-2944 (((-3 (-1165 $) "failed") (-627 $)) NIL (|has| |#1| (-342)))) (-2189 (((-792) $) 142) (($ (-521)) NIL) (($ $) NIL) (($ (-381 (-521))) NIL) (($ |#1|) 74)) (-1671 (($ $) NIL (|has| |#1| (-342))) (((-3 $ "failed") $) NIL (-3703 (|has| |#1| (-133)) (|has| |#1| (-342))))) (-3846 (((-707)) 138)) (-2470 (((-1165 $)) 116) (((-1165 $) (-850)) 72)) (-4210 (((-108) $ $) NIL)) (-2154 (((-108) $) NIL)) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (-3561 (($) 32 T CONST)) (-3572 (($) 19 T CONST)) (-3654 (($ $) 80 (|has| |#1| (-342))) (($ $ (-707)) NIL (|has| |#1| (-342)))) (-2212 (($ $) NIL (|has| |#1| (-342))) (($ $ (-707)) NIL (|has| |#1| (-342)))) (-1531 (((-108) $ $) 48)) (-1620 (($ $ $) 144) (($ $ |#1|) 145)) (-1612 (($ $) 126) (($ $ $) NIL)) (-1602 (($ $ $) 61)) (** (($ $ (-850)) 148) (($ $ (-707)) 149) (($ $ (-521)) 147)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) 76) (($ $ $) 75) (($ $ (-381 (-521))) NIL) (($ (-381 (-521)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 143)))
+(((-318 |#1| |#2|) (-13 (-303 |#1|) (-10 -7 (-15 -1530 ((-886 (-1031)))))) (-323) (-1080 |#1|)) (T -318))
+((-1530 (*1 *2) (-12 (-5 *2 (-886 (-1031))) (-5 *1 (-318 *3 *4)) (-4 *3 (-323)) (-14 *4 (-1080 *3)))))
+(-13 (-303 |#1|) (-10 -7 (-15 -1530 ((-886 (-1031))))))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-2559 (($ $) NIL)) (-1733 (((-108) $) NIL)) (-1779 (((-108) $) NIL)) (-3471 (((-707)) NIL)) (-1865 ((|#1| $) NIL) (($ $ (-850)) NIL (|has| |#1| (-342)))) (-1340 (((-1093 (-850) (-707)) (-521)) NIL (|has| |#1| (-342)))) (-1232 (((-3 $ "failed") $ $) NIL)) (-3063 (($ $) NIL)) (-3358 (((-392 $) $) NIL)) (-1389 (((-108) $ $) NIL)) (-1630 (((-707)) NIL (|has| |#1| (-342)))) (-2547 (($) NIL T CONST)) (-1297 (((-3 |#1| "failed") $) NIL)) (-1483 ((|#1| $) NIL)) (-4083 (($ (-1165 |#1|)) NIL)) (-1864 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-342)))) (-2277 (($ $ $) NIL)) (-1257 (((-3 $ "failed") $) NIL)) (-3250 (($) NIL (|has| |#1| (-342)))) (-2253 (($ $ $) NIL)) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) NIL)) (-2103 (($) NIL (|has| |#1| (-342)))) (-2371 (((-108) $) NIL (|has| |#1| (-342)))) (-2833 (($ $ (-707)) NIL (-3703 (|has| |#1| (-133)) (|has| |#1| (-342)))) (($ $) NIL (-3703 (|has| |#1| (-133)) (|has| |#1| (-342))))) (-2710 (((-108) $) NIL)) (-2733 (((-850) $) NIL (|has| |#1| (-342))) (((-770 (-850)) $) NIL (-3703 (|has| |#1| (-133)) (|has| |#1| (-342))))) (-3996 (((-108) $) NIL)) (-3958 (($) NIL (|has| |#1| (-342)))) (-1279 (((-108) $) NIL (|has| |#1| (-342)))) (-3930 ((|#1| $) NIL) (($ $ (-850)) NIL (|has| |#1| (-342)))) (-3842 (((-3 $ "failed") $) NIL (|has| |#1| (-342)))) (-1546 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-3548 (((-1080 |#1|) $) NIL) (((-1080 $) $ (-850)) NIL (|has| |#1| (-342)))) (-2715 (((-850) $) NIL (|has| |#1| (-342)))) (-4179 (((-1080 |#1|) $) NIL (|has| |#1| (-342)))) (-2728 (((-1080 |#1|) $) NIL (|has| |#1| (-342))) (((-3 (-1080 |#1|) "failed") $ $) NIL (|has| |#1| (-342)))) (-1818 (($ $ (-1080 |#1|)) NIL (|has| |#1| (-342)))) (-2223 (($ $ $) NIL) (($ (-587 $)) NIL)) (-3688 (((-1067) $) NIL)) (-3095 (($ $) NIL)) (-3797 (($) NIL (|has| |#1| (-342)) CONST)) (-2716 (($ (-850)) NIL (|has| |#1| (-342)))) (-2218 (((-108) $) NIL)) (-4147 (((-1031) $) NIL)) (-1530 (((-886 (-1031))) NIL)) (-1383 (($) NIL (|has| |#1| (-342)))) (-2513 (((-1080 $) (-1080 $) (-1080 $)) NIL)) (-2258 (($ $ $) NIL) (($ (-587 $)) NIL)) (-3040 (((-587 (-2 (|:| -1916 (-521)) (|:| -2997 (-521))))) NIL (|has| |#1| (-342)))) (-1916 (((-392 $) $) NIL)) (-4178 (((-770 (-850))) NIL) (((-850)) NIL)) (-1962 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2230 (((-3 $ "failed") $ $) NIL)) (-3854 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-4196 (((-707) $) NIL)) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) NIL)) (-4067 (((-707) $) NIL (|has| |#1| (-342))) (((-3 (-707) "failed") $ $) NIL (-3703 (|has| |#1| (-133)) (|has| |#1| (-342))))) (-2359 (((-126)) NIL)) (-2156 (($ $) NIL (|has| |#1| (-342))) (($ $ (-707)) NIL (|has| |#1| (-342)))) (-1994 (((-770 (-850)) $) NIL) (((-850) $) NIL)) (-2879 (((-1080 |#1|)) NIL)) (-1204 (($) NIL (|has| |#1| (-342)))) (-2677 (($) NIL (|has| |#1| (-342)))) (-2234 (((-1165 |#1|) $) NIL) (((-627 |#1|) (-1165 $)) NIL)) (-2944 (((-3 (-1165 $) "failed") (-627 $)) NIL (|has| |#1| (-342)))) (-2189 (((-792) $) NIL) (($ (-521)) NIL) (($ $) NIL) (($ (-381 (-521))) NIL) (($ |#1|) NIL)) (-1671 (($ $) NIL (|has| |#1| (-342))) (((-3 $ "failed") $) NIL (-3703 (|has| |#1| (-133)) (|has| |#1| (-342))))) (-3846 (((-707)) NIL)) (-2470 (((-1165 $)) NIL) (((-1165 $) (-850)) NIL)) (-4210 (((-108) $ $) NIL)) (-2154 (((-108) $) NIL)) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (-3561 (($) NIL T CONST)) (-3572 (($) NIL T CONST)) (-3654 (($ $) NIL (|has| |#1| (-342))) (($ $ (-707)) NIL (|has| |#1| (-342)))) (-2212 (($ $) NIL (|has| |#1| (-342))) (($ $ (-707)) NIL (|has| |#1| (-342)))) (-1531 (((-108) $ $) NIL)) (-1620 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ (-381 (-521))) NIL) (($ (-381 (-521)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-319 |#1| |#2|) (-13 (-303 |#1|) (-10 -7 (-15 -1530 ((-886 (-1031)))))) (-323) (-850)) (T -319))
+((-1530 (*1 *2) (-12 (-5 *2 (-886 (-1031))) (-5 *1 (-319 *3 *4)) (-4 *3 (-323)) (-14 *4 (-850)))))
+(-13 (-303 |#1|) (-10 -7 (-15 -1530 ((-886 (-1031))))))
+((-3893 (((-707) (-1165 (-587 (-2 (|:| -3430 |#1|) (|:| -2716 (-1031)))))) 40)) (-1866 (((-886 (-1031)) (-1080 |#1|)) 85)) (-4167 (((-1165 (-587 (-2 (|:| -3430 |#1|) (|:| -2716 (-1031))))) (-1080 |#1|)) 78)) (-1313 (((-627 |#1|) (-1165 (-587 (-2 (|:| -3430 |#1|) (|:| -2716 (-1031)))))) 86)) (-1264 (((-3 (-1165 (-587 (-2 (|:| -3430 |#1|) (|:| -2716 (-1031))))) "failed") (-850)) 10)) (-3148 (((-3 (-1080 |#1|) (-1165 (-587 (-2 (|:| -3430 |#1|) (|:| -2716 (-1031)))))) (-850)) 15)))
+(((-320 |#1|) (-10 -7 (-15 -1866 ((-886 (-1031)) (-1080 |#1|))) (-15 -4167 ((-1165 (-587 (-2 (|:| -3430 |#1|) (|:| -2716 (-1031))))) (-1080 |#1|))) (-15 -1313 ((-627 |#1|) (-1165 (-587 (-2 (|:| -3430 |#1|) (|:| -2716 (-1031))))))) (-15 -3893 ((-707) (-1165 (-587 (-2 (|:| -3430 |#1|) (|:| -2716 (-1031))))))) (-15 -1264 ((-3 (-1165 (-587 (-2 (|:| -3430 |#1|) (|:| -2716 (-1031))))) "failed") (-850))) (-15 -3148 ((-3 (-1080 |#1|) (-1165 (-587 (-2 (|:| -3430 |#1|) (|:| -2716 (-1031)))))) (-850)))) (-323)) (T -320))
+((-3148 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-3 (-1080 *4) (-1165 (-587 (-2 (|:| -3430 *4) (|:| -2716 (-1031))))))) (-5 *1 (-320 *4)) (-4 *4 (-323)))) (-1264 (*1 *2 *3) (|partial| -12 (-5 *3 (-850)) (-5 *2 (-1165 (-587 (-2 (|:| -3430 *4) (|:| -2716 (-1031)))))) (-5 *1 (-320 *4)) (-4 *4 (-323)))) (-3893 (*1 *2 *3) (-12 (-5 *3 (-1165 (-587 (-2 (|:| -3430 *4) (|:| -2716 (-1031)))))) (-4 *4 (-323)) (-5 *2 (-707)) (-5 *1 (-320 *4)))) (-1313 (*1 *2 *3) (-12 (-5 *3 (-1165 (-587 (-2 (|:| -3430 *4) (|:| -2716 (-1031)))))) (-4 *4 (-323)) (-5 *2 (-627 *4)) (-5 *1 (-320 *4)))) (-4167 (*1 *2 *3) (-12 (-5 *3 (-1080 *4)) (-4 *4 (-323)) (-5 *2 (-1165 (-587 (-2 (|:| -3430 *4) (|:| -2716 (-1031)))))) (-5 *1 (-320 *4)))) (-1866 (*1 *2 *3) (-12 (-5 *3 (-1080 *4)) (-4 *4 (-323)) (-5 *2 (-886 (-1031))) (-5 *1 (-320 *4)))))
+(-10 -7 (-15 -1866 ((-886 (-1031)) (-1080 |#1|))) (-15 -4167 ((-1165 (-587 (-2 (|:| -3430 |#1|) (|:| -2716 (-1031))))) (-1080 |#1|))) (-15 -1313 ((-627 |#1|) (-1165 (-587 (-2 (|:| -3430 |#1|) (|:| -2716 (-1031))))))) (-15 -3893 ((-707) (-1165 (-587 (-2 (|:| -3430 |#1|) (|:| -2716 (-1031))))))) (-15 -1264 ((-3 (-1165 (-587 (-2 (|:| -3430 |#1|) (|:| -2716 (-1031))))) "failed") (-850))) (-15 -3148 ((-3 (-1080 |#1|) (-1165 (-587 (-2 (|:| -3430 |#1|) (|:| -2716 (-1031)))))) (-850))))
+((-2189 ((|#1| |#3|) 84) ((|#3| |#1|) 68)))
+(((-321 |#1| |#2| |#3|) (-10 -7 (-15 -2189 (|#3| |#1|)) (-15 -2189 (|#1| |#3|))) (-303 |#2|) (-323) (-303 |#2|)) (T -321))
+((-2189 (*1 *2 *3) (-12 (-4 *4 (-323)) (-4 *2 (-303 *4)) (-5 *1 (-321 *2 *4 *3)) (-4 *3 (-303 *4)))) (-2189 (*1 *2 *3) (-12 (-4 *4 (-323)) (-4 *2 (-303 *4)) (-5 *1 (-321 *3 *4 *2)) (-4 *3 (-303 *4)))))
+(-10 -7 (-15 -2189 (|#3| |#1|)) (-15 -2189 (|#1| |#3|)))
+((-2371 (((-108) $) 51)) (-2733 (((-770 (-850)) $) 21) (((-850) $) 52)) (-3842 (((-3 $ "failed") $) 16)) (-3797 (($) 9)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) 92)) (-4067 (((-3 (-707) "failed") $ $) 71) (((-707) $) 60)) (-2156 (($ $ (-707)) NIL) (($ $) 8)) (-1204 (($) 45)) (-2944 (((-3 (-1165 $) "failed") (-627 $)) 33)) (-1671 (((-3 $ "failed") $) 39) (($ $) 38)))
+(((-322 |#1|) (-10 -8 (-15 -2733 ((-850) |#1|)) (-15 -4067 ((-707) |#1|)) (-15 -2371 ((-108) |#1|)) (-15 -1204 (|#1|)) (-15 -2944 ((-3 (-1165 |#1|) "failed") (-627 |#1|))) (-15 -1671 (|#1| |#1|)) (-15 -2156 (|#1| |#1|)) (-15 -2156 (|#1| |#1| (-707))) (-15 -3797 (|#1|)) (-15 -3842 ((-3 |#1| "failed") |#1|)) (-15 -4067 ((-3 (-707) "failed") |#1| |#1|)) (-15 -2733 ((-770 (-850)) |#1|)) (-15 -1671 ((-3 |#1| "failed") |#1|)) (-15 -2513 ((-1080 |#1|) (-1080 |#1|) (-1080 |#1|)))) (-323)) (T -322))
+NIL
+(-10 -8 (-15 -2733 ((-850) |#1|)) (-15 -4067 ((-707) |#1|)) (-15 -2371 ((-108) |#1|)) (-15 -1204 (|#1|)) (-15 -2944 ((-3 (-1165 |#1|) "failed") (-627 |#1|))) (-15 -1671 (|#1| |#1|)) (-15 -2156 (|#1| |#1|)) (-15 -2156 (|#1| |#1| (-707))) (-15 -3797 (|#1|)) (-15 -3842 ((-3 |#1| "failed") |#1|)) (-15 -4067 ((-3 (-707) "failed") |#1| |#1|)) (-15 -2733 ((-770 (-850)) |#1|)) (-15 -1671 ((-3 |#1| "failed") |#1|)) (-15 -2513 ((-1080 |#1|) (-1080 |#1|) (-1080 |#1|))))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) 41)) (-2559 (($ $) 40)) (-1733 (((-108) $) 38)) (-1340 (((-1093 (-850) (-707)) (-521)) 93)) (-1232 (((-3 $ "failed") $ $) 19)) (-3063 (($ $) 73)) (-3358 (((-392 $) $) 72)) (-1389 (((-108) $ $) 59)) (-1630 (((-707)) 103)) (-2547 (($) 17 T CONST)) (-1864 (((-3 "prime" "polynomial" "normal" "cyclic")) 87)) (-2277 (($ $ $) 55)) (-1257 (((-3 $ "failed") $) 34)) (-3250 (($) 106)) (-2253 (($ $ $) 56)) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) 51)) (-2103 (($) 91)) (-2371 (((-108) $) 90)) (-2833 (($ $) 79) (($ $ (-707)) 78)) (-2710 (((-108) $) 71)) (-2733 (((-770 (-850)) $) 81) (((-850) $) 88)) (-3996 (((-108) $) 31)) (-3842 (((-3 $ "failed") $) 102)) (-1546 (((-3 (-587 $) "failed") (-587 $) $) 52)) (-2715 (((-850) $) 105)) (-2223 (($ $ $) 46) (($ (-587 $)) 45)) (-3688 (((-1067) $) 9)) (-3095 (($ $) 70)) (-3797 (($) 101 T CONST)) (-2716 (($ (-850)) 104)) (-4147 (((-1031) $) 10)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) 44)) (-2258 (($ $ $) 48) (($ (-587 $)) 47)) (-3040 (((-587 (-2 (|:| -1916 (-521)) (|:| -2997 (-521))))) 94)) (-1916 (((-392 $) $) 74)) (-1962 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2230 (((-3 $ "failed") $ $) 42)) (-3854 (((-3 (-587 $) "failed") (-587 $) $) 50)) (-4196 (((-707) $) 58)) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) 57)) (-4067 (((-3 (-707) "failed") $ $) 80) (((-707) $) 89)) (-2156 (($ $ (-707)) 99) (($ $) 97)) (-1204 (($) 92)) (-2944 (((-3 (-1165 $) "failed") (-627 $)) 95)) (-2189 (((-792) $) 11) (($ (-521)) 28) (($ $) 43) (($ (-381 (-521))) 65)) (-1671 (((-3 $ "failed") $) 82) (($ $) 96)) (-3846 (((-707)) 29)) (-4210 (((-108) $ $) 39)) (-3505 (($ $ (-850)) 26) (($ $ (-707)) 33) (($ $ (-521)) 69)) (-3561 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-2212 (($ $ (-707)) 100) (($ $) 98)) (-1531 (((-108) $ $) 6)) (-1620 (($ $ $) 64)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-707)) 32) (($ $ (-521)) 68)) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ $ (-381 (-521))) 67) (($ (-381 (-521)) $) 66)))
+(((-323) (-1196)) (T -323))
+((-1671 (*1 *1 *1) (-4 *1 (-323))) (-2944 (*1 *2 *3) (|partial| -12 (-5 *3 (-627 *1)) (-4 *1 (-323)) (-5 *2 (-1165 *1)))) (-3040 (*1 *2) (-12 (-4 *1 (-323)) (-5 *2 (-587 (-2 (|:| -1916 (-521)) (|:| -2997 (-521))))))) (-1340 (*1 *2 *3) (-12 (-4 *1 (-323)) (-5 *3 (-521)) (-5 *2 (-1093 (-850) (-707))))) (-1204 (*1 *1) (-4 *1 (-323))) (-2103 (*1 *1) (-4 *1 (-323))) (-2371 (*1 *2 *1) (-12 (-4 *1 (-323)) (-5 *2 (-108)))) (-4067 (*1 *2 *1) (-12 (-4 *1 (-323)) (-5 *2 (-707)))) (-2733 (*1 *2 *1) (-12 (-4 *1 (-323)) (-5 *2 (-850)))) (-1864 (*1 *2) (-12 (-4 *1 (-323)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
+(-13 (-376) (-342) (-1060) (-210) (-10 -8 (-15 -1671 ($ $)) (-15 -2944 ((-3 (-1165 $) "failed") (-627 $))) (-15 -3040 ((-587 (-2 (|:| -1916 (-521)) (|:| -2997 (-521)))))) (-15 -1340 ((-1093 (-850) (-707)) (-521))) (-15 -1204 ($)) (-15 -2103 ($)) (-15 -2371 ((-108) $)) (-15 -4067 ((-707) $)) (-15 -2733 ((-850) $)) (-15 -1864 ((-3 "prime" "polynomial" "normal" "cyclic")))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-381 (-521))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-124) . T) ((-133) . T) ((-561 (-792)) . T) ((-157) . T) ((-210) . T) ((-220) . T) ((-265) . T) ((-282) . T) ((-337) . T) ((-376) . T) ((-342) . T) ((-425) . T) ((-513) . T) ((-589 #0#) . T) ((-589 $) . T) ((-654 #0#) . T) ((-654 $) . T) ((-663) . T) ((-849) . T) ((-976 #0#) . T) ((-976 $) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T) ((-1060) . T) ((-1123) . T))
+((-2615 (((-2 (|:| -2470 (-627 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-627 |#1|))) |#1|) 51)) (-3545 (((-2 (|:| -2470 (-627 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-627 |#1|)))) 49)))
+(((-324 |#1| |#2| |#3|) (-10 -7 (-15 -3545 ((-2 (|:| -2470 (-627 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-627 |#1|))))) (-15 -2615 ((-2 (|:| -2470 (-627 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-627 |#1|))) |#1|))) (-13 (-282) (-10 -8 (-15 -3358 ((-392 $) $)))) (-1141 |#1|) (-383 |#1| |#2|)) (T -324))
+((-2615 (*1 *2 *3) (-12 (-4 *3 (-13 (-282) (-10 -8 (-15 -3358 ((-392 $) $))))) (-4 *4 (-1141 *3)) (-5 *2 (-2 (|:| -2470 (-627 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-627 *3)))) (-5 *1 (-324 *3 *4 *5)) (-4 *5 (-383 *3 *4)))) (-3545 (*1 *2) (-12 (-4 *3 (-13 (-282) (-10 -8 (-15 -3358 ((-392 $) $))))) (-4 *4 (-1141 *3)) (-5 *2 (-2 (|:| -2470 (-627 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-627 *3)))) (-5 *1 (-324 *3 *4 *5)) (-4 *5 (-383 *3 *4)))))
+(-10 -7 (-15 -3545 ((-2 (|:| -2470 (-627 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-627 |#1|))))) (-15 -2615 ((-2 (|:| -2470 (-627 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-627 |#1|))) |#1|)))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-2559 (($ $) NIL)) (-1733 (((-108) $) NIL)) (-1779 (((-108) $) NIL)) (-3471 (((-707)) NIL)) (-1865 (((-839 |#1|) $) NIL) (($ $ (-850)) NIL (|has| (-839 |#1|) (-342)))) (-1340 (((-1093 (-850) (-707)) (-521)) NIL (|has| (-839 |#1|) (-342)))) (-1232 (((-3 $ "failed") $ $) NIL)) (-3063 (($ $) NIL)) (-3358 (((-392 $) $) NIL)) (-3893 (((-707)) NIL)) (-1389 (((-108) $ $) NIL)) (-1630 (((-707)) NIL (|has| (-839 |#1|) (-342)))) (-2547 (($) NIL T CONST)) (-1297 (((-3 (-839 |#1|) "failed") $) NIL)) (-1483 (((-839 |#1|) $) NIL)) (-4083 (($ (-1165 (-839 |#1|))) NIL)) (-1864 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-839 |#1|) (-342)))) (-2277 (($ $ $) NIL)) (-1257 (((-3 $ "failed") $) NIL)) (-3250 (($) NIL (|has| (-839 |#1|) (-342)))) (-2253 (($ $ $) NIL)) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) NIL)) (-2103 (($) NIL (|has| (-839 |#1|) (-342)))) (-2371 (((-108) $) NIL (|has| (-839 |#1|) (-342)))) (-2833 (($ $ (-707)) NIL (-3703 (|has| (-839 |#1|) (-133)) (|has| (-839 |#1|) (-342)))) (($ $) NIL (-3703 (|has| (-839 |#1|) (-133)) (|has| (-839 |#1|) (-342))))) (-2710 (((-108) $) NIL)) (-2733 (((-850) $) NIL (|has| (-839 |#1|) (-342))) (((-770 (-850)) $) NIL (-3703 (|has| (-839 |#1|) (-133)) (|has| (-839 |#1|) (-342))))) (-3996 (((-108) $) NIL)) (-3958 (($) NIL (|has| (-839 |#1|) (-342)))) (-1279 (((-108) $) NIL (|has| (-839 |#1|) (-342)))) (-3930 (((-839 |#1|) $) NIL) (($ $ (-850)) NIL (|has| (-839 |#1|) (-342)))) (-3842 (((-3 $ "failed") $) NIL (|has| (-839 |#1|) (-342)))) (-1546 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-3548 (((-1080 (-839 |#1|)) $) NIL) (((-1080 $) $ (-850)) NIL (|has| (-839 |#1|) (-342)))) (-2715 (((-850) $) NIL (|has| (-839 |#1|) (-342)))) (-4179 (((-1080 (-839 |#1|)) $) NIL (|has| (-839 |#1|) (-342)))) (-2728 (((-1080 (-839 |#1|)) $) NIL (|has| (-839 |#1|) (-342))) (((-3 (-1080 (-839 |#1|)) "failed") $ $) NIL (|has| (-839 |#1|) (-342)))) (-1818 (($ $ (-1080 (-839 |#1|))) NIL (|has| (-839 |#1|) (-342)))) (-2223 (($ $ $) NIL) (($ (-587 $)) NIL)) (-3688 (((-1067) $) NIL)) (-3095 (($ $) NIL)) (-3797 (($) NIL (|has| (-839 |#1|) (-342)) CONST)) (-2716 (($ (-850)) NIL (|has| (-839 |#1|) (-342)))) (-2218 (((-108) $) NIL)) (-4147 (((-1031) $) NIL)) (-1241 (((-1165 (-587 (-2 (|:| -3430 (-839 |#1|)) (|:| -2716 (-1031)))))) NIL)) (-3953 (((-627 (-839 |#1|))) NIL)) (-1383 (($) NIL (|has| (-839 |#1|) (-342)))) (-2513 (((-1080 $) (-1080 $) (-1080 $)) NIL)) (-2258 (($ $ $) NIL) (($ (-587 $)) NIL)) (-3040 (((-587 (-2 (|:| -1916 (-521)) (|:| -2997 (-521))))) NIL (|has| (-839 |#1|) (-342)))) (-1916 (((-392 $) $) NIL)) (-4178 (((-770 (-850))) NIL) (((-850)) NIL)) (-1962 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2230 (((-3 $ "failed") $ $) NIL)) (-3854 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-4196 (((-707) $) NIL)) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) NIL)) (-4067 (((-707) $) NIL (|has| (-839 |#1|) (-342))) (((-3 (-707) "failed") $ $) NIL (-3703 (|has| (-839 |#1|) (-133)) (|has| (-839 |#1|) (-342))))) (-2359 (((-126)) NIL)) (-2156 (($ $) NIL (|has| (-839 |#1|) (-342))) (($ $ (-707)) NIL (|has| (-839 |#1|) (-342)))) (-1994 (((-770 (-850)) $) NIL) (((-850) $) NIL)) (-2879 (((-1080 (-839 |#1|))) NIL)) (-1204 (($) NIL (|has| (-839 |#1|) (-342)))) (-2677 (($) NIL (|has| (-839 |#1|) (-342)))) (-2234 (((-1165 (-839 |#1|)) $) NIL) (((-627 (-839 |#1|)) (-1165 $)) NIL)) (-2944 (((-3 (-1165 $) "failed") (-627 $)) NIL (|has| (-839 |#1|) (-342)))) (-2189 (((-792) $) NIL) (($ (-521)) NIL) (($ $) NIL) (($ (-381 (-521))) NIL) (($ (-839 |#1|)) NIL)) (-1671 (($ $) NIL (|has| (-839 |#1|) (-342))) (((-3 $ "failed") $) NIL (-3703 (|has| (-839 |#1|) (-133)) (|has| (-839 |#1|) (-342))))) (-3846 (((-707)) NIL)) (-2470 (((-1165 $)) NIL) (((-1165 $) (-850)) NIL)) (-4210 (((-108) $ $) NIL)) (-2154 (((-108) $) NIL)) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (-3561 (($) NIL T CONST)) (-3572 (($) NIL T CONST)) (-3654 (($ $) NIL (|has| (-839 |#1|) (-342))) (($ $ (-707)) NIL (|has| (-839 |#1|) (-342)))) (-2212 (($ $) NIL (|has| (-839 |#1|) (-342))) (($ $ (-707)) NIL (|has| (-839 |#1|) (-342)))) (-1531 (((-108) $ $) NIL)) (-1620 (($ $ $) NIL) (($ $ (-839 |#1|)) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ (-381 (-521))) NIL) (($ (-381 (-521)) $) NIL) (($ $ (-839 |#1|)) NIL) (($ (-839 |#1|) $) NIL)))
+(((-325 |#1| |#2|) (-13 (-303 (-839 |#1|)) (-10 -7 (-15 -1241 ((-1165 (-587 (-2 (|:| -3430 (-839 |#1|)) (|:| -2716 (-1031))))))) (-15 -3953 ((-627 (-839 |#1|)))) (-15 -3893 ((-707))))) (-850) (-850)) (T -325))
+((-1241 (*1 *2) (-12 (-5 *2 (-1165 (-587 (-2 (|:| -3430 (-839 *3)) (|:| -2716 (-1031)))))) (-5 *1 (-325 *3 *4)) (-14 *3 (-850)) (-14 *4 (-850)))) (-3953 (*1 *2) (-12 (-5 *2 (-627 (-839 *3))) (-5 *1 (-325 *3 *4)) (-14 *3 (-850)) (-14 *4 (-850)))) (-3893 (*1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-325 *3 *4)) (-14 *3 (-850)) (-14 *4 (-850)))))
+(-13 (-303 (-839 |#1|)) (-10 -7 (-15 -1241 ((-1165 (-587 (-2 (|:| -3430 (-839 |#1|)) (|:| -2716 (-1031))))))) (-15 -3953 ((-627 (-839 |#1|)))) (-15 -3893 ((-707)))))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) 75)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-2559 (($ $) NIL)) (-1733 (((-108) $) NIL)) (-1779 (((-108) $) NIL)) (-3471 (((-707)) NIL)) (-1865 ((|#1| $) 93) (($ $ (-850)) 91 (|has| |#1| (-342)))) (-1340 (((-1093 (-850) (-707)) (-521)) 149 (|has| |#1| (-342)))) (-1232 (((-3 $ "failed") $ $) NIL)) (-3063 (($ $) NIL)) (-3358 (((-392 $) $) NIL)) (-3893 (((-707)) 90)) (-1389 (((-108) $ $) NIL)) (-1630 (((-707)) 163 (|has| |#1| (-342)))) (-2547 (($) NIL T CONST)) (-1297 (((-3 |#1| "failed") $) 112)) (-1483 ((|#1| $) 92)) (-4083 (($ (-1165 |#1|)) 56)) (-1864 (((-3 "prime" "polynomial" "normal" "cyclic")) 187 (|has| |#1| (-342)))) (-2277 (($ $ $) NIL)) (-1257 (((-3 $ "failed") $) NIL)) (-3250 (($) 159 (|has| |#1| (-342)))) (-2253 (($ $ $) NIL)) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) NIL)) (-2103 (($) 150 (|has| |#1| (-342)))) (-2371 (((-108) $) NIL (|has| |#1| (-342)))) (-2833 (($ $ (-707)) NIL (-3703 (|has| |#1| (-133)) (|has| |#1| (-342)))) (($ $) NIL (-3703 (|has| |#1| (-133)) (|has| |#1| (-342))))) (-2710 (((-108) $) NIL)) (-2733 (((-850) $) NIL (|has| |#1| (-342))) (((-770 (-850)) $) NIL (-3703 (|has| |#1| (-133)) (|has| |#1| (-342))))) (-3996 (((-108) $) NIL)) (-3958 (($) 98 (|has| |#1| (-342)))) (-1279 (((-108) $) 176 (|has| |#1| (-342)))) (-3930 ((|#1| $) 95) (($ $ (-850)) 94 (|has| |#1| (-342)))) (-3842 (((-3 $ "failed") $) NIL (|has| |#1| (-342)))) (-1546 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-3548 (((-1080 |#1|) $) 188) (((-1080 $) $ (-850)) NIL (|has| |#1| (-342)))) (-2715 (((-850) $) 134 (|has| |#1| (-342)))) (-4179 (((-1080 |#1|) $) 74 (|has| |#1| (-342)))) (-2728 (((-1080 |#1|) $) 71 (|has| |#1| (-342))) (((-3 (-1080 |#1|) "failed") $ $) 83 (|has| |#1| (-342)))) (-1818 (($ $ (-1080 |#1|)) 70 (|has| |#1| (-342)))) (-2223 (($ $ $) NIL) (($ (-587 $)) NIL)) (-3688 (((-1067) $) NIL)) (-3095 (($ $) 191)) (-3797 (($) NIL (|has| |#1| (-342)) CONST)) (-2716 (($ (-850)) 137 (|has| |#1| (-342)))) (-2218 (((-108) $) 108)) (-4147 (((-1031) $) NIL)) (-1241 (((-1165 (-587 (-2 (|:| -3430 |#1|) (|:| -2716 (-1031)))))) 84)) (-3953 (((-627 |#1|)) 88)) (-1383 (($) 97 (|has| |#1| (-342)))) (-2513 (((-1080 $) (-1080 $) (-1080 $)) NIL)) (-2258 (($ $ $) NIL) (($ (-587 $)) NIL)) (-3040 (((-587 (-2 (|:| -1916 (-521)) (|:| -2997 (-521))))) 151 (|has| |#1| (-342)))) (-1916 (((-392 $) $) NIL)) (-4178 (((-770 (-850))) NIL) (((-850)) 152)) (-1962 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2230 (((-3 $ "failed") $ $) NIL)) (-3854 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-4196 (((-707) $) NIL)) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) NIL)) (-4067 (((-707) $) NIL (|has| |#1| (-342))) (((-3 (-707) "failed") $ $) NIL (-3703 (|has| |#1| (-133)) (|has| |#1| (-342))))) (-2359 (((-126)) NIL)) (-2156 (($ $) NIL (|has| |#1| (-342))) (($ $ (-707)) NIL (|has| |#1| (-342)))) (-1994 (((-770 (-850)) $) NIL) (((-850) $) 63)) (-2879 (((-1080 |#1|)) 153)) (-1204 (($) 133 (|has| |#1| (-342)))) (-2677 (($) NIL (|has| |#1| (-342)))) (-2234 (((-1165 |#1|) $) 106) (((-627 |#1|) (-1165 $)) NIL)) (-2944 (((-3 (-1165 $) "failed") (-627 $)) NIL (|has| |#1| (-342)))) (-2189 (((-792) $) 124) (($ (-521)) NIL) (($ $) NIL) (($ (-381 (-521))) NIL) (($ |#1|) 55)) (-1671 (($ $) NIL (|has| |#1| (-342))) (((-3 $ "failed") $) NIL (-3703 (|has| |#1| (-133)) (|has| |#1| (-342))))) (-3846 (((-707)) 157)) (-2470 (((-1165 $)) 173) (((-1165 $) (-850)) 101)) (-4210 (((-108) $ $) NIL)) (-2154 (((-108) $) NIL)) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (-3561 (($) 29 T CONST)) (-3572 (($) 22 T CONST)) (-3654 (($ $) 107 (|has| |#1| (-342))) (($ $ (-707)) 99 (|has| |#1| (-342)))) (-2212 (($ $) NIL (|has| |#1| (-342))) (($ $ (-707)) NIL (|has| |#1| (-342)))) (-1531 (((-108) $ $) 59)) (-1620 (($ $ $) 104) (($ $ |#1|) 105)) (-1612 (($ $) 178) (($ $ $) 182)) (-1602 (($ $ $) 180)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) 138)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) 185) (($ $ $) 143) (($ $ (-381 (-521))) NIL) (($ (-381 (-521)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 103)))
+(((-326 |#1| |#2|) (-13 (-303 |#1|) (-10 -7 (-15 -1241 ((-1165 (-587 (-2 (|:| -3430 |#1|) (|:| -2716 (-1031))))))) (-15 -3953 ((-627 |#1|))) (-15 -3893 ((-707))))) (-323) (-3 (-1080 |#1|) (-1165 (-587 (-2 (|:| -3430 |#1|) (|:| -2716 (-1031))))))) (T -326))
+((-1241 (*1 *2) (-12 (-5 *2 (-1165 (-587 (-2 (|:| -3430 *3) (|:| -2716 (-1031)))))) (-5 *1 (-326 *3 *4)) (-4 *3 (-323)) (-14 *4 (-3 (-1080 *3) *2)))) (-3953 (*1 *2) (-12 (-5 *2 (-627 *3)) (-5 *1 (-326 *3 *4)) (-4 *3 (-323)) (-14 *4 (-3 (-1080 *3) (-1165 (-587 (-2 (|:| -3430 *3) (|:| -2716 (-1031))))))))) (-3893 (*1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-326 *3 *4)) (-4 *3 (-323)) (-14 *4 (-3 (-1080 *3) (-1165 (-587 (-2 (|:| -3430 *3) (|:| -2716 (-1031))))))))))
+(-13 (-303 |#1|) (-10 -7 (-15 -1241 ((-1165 (-587 (-2 (|:| -3430 |#1|) (|:| -2716 (-1031))))))) (-15 -3953 ((-627 |#1|))) (-15 -3893 ((-707)))))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-2559 (($ $) NIL)) (-1733 (((-108) $) NIL)) (-1779 (((-108) $) NIL)) (-3471 (((-707)) NIL)) (-1865 ((|#1| $) NIL) (($ $ (-850)) NIL (|has| |#1| (-342)))) (-1340 (((-1093 (-850) (-707)) (-521)) NIL (|has| |#1| (-342)))) (-1232 (((-3 $ "failed") $ $) NIL)) (-3063 (($ $) NIL)) (-3358 (((-392 $) $) NIL)) (-3893 (((-707)) NIL)) (-1389 (((-108) $ $) NIL)) (-1630 (((-707)) NIL (|has| |#1| (-342)))) (-2547 (($) NIL T CONST)) (-1297 (((-3 |#1| "failed") $) NIL)) (-1483 ((|#1| $) NIL)) (-4083 (($ (-1165 |#1|)) NIL)) (-1864 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-342)))) (-2277 (($ $ $) NIL)) (-1257 (((-3 $ "failed") $) NIL)) (-3250 (($) NIL (|has| |#1| (-342)))) (-2253 (($ $ $) NIL)) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) NIL)) (-2103 (($) NIL (|has| |#1| (-342)))) (-2371 (((-108) $) NIL (|has| |#1| (-342)))) (-2833 (($ $ (-707)) NIL (-3703 (|has| |#1| (-133)) (|has| |#1| (-342)))) (($ $) NIL (-3703 (|has| |#1| (-133)) (|has| |#1| (-342))))) (-2710 (((-108) $) NIL)) (-2733 (((-850) $) NIL (|has| |#1| (-342))) (((-770 (-850)) $) NIL (-3703 (|has| |#1| (-133)) (|has| |#1| (-342))))) (-3996 (((-108) $) NIL)) (-3958 (($) NIL (|has| |#1| (-342)))) (-1279 (((-108) $) NIL (|has| |#1| (-342)))) (-3930 ((|#1| $) NIL) (($ $ (-850)) NIL (|has| |#1| (-342)))) (-3842 (((-3 $ "failed") $) NIL (|has| |#1| (-342)))) (-1546 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-3548 (((-1080 |#1|) $) NIL) (((-1080 $) $ (-850)) NIL (|has| |#1| (-342)))) (-2715 (((-850) $) NIL (|has| |#1| (-342)))) (-4179 (((-1080 |#1|) $) NIL (|has| |#1| (-342)))) (-2728 (((-1080 |#1|) $) NIL (|has| |#1| (-342))) (((-3 (-1080 |#1|) "failed") $ $) NIL (|has| |#1| (-342)))) (-1818 (($ $ (-1080 |#1|)) NIL (|has| |#1| (-342)))) (-2223 (($ $ $) NIL) (($ (-587 $)) NIL)) (-3688 (((-1067) $) NIL)) (-3095 (($ $) NIL)) (-3797 (($) NIL (|has| |#1| (-342)) CONST)) (-2716 (($ (-850)) NIL (|has| |#1| (-342)))) (-2218 (((-108) $) NIL)) (-4147 (((-1031) $) NIL)) (-1241 (((-1165 (-587 (-2 (|:| -3430 |#1|) (|:| -2716 (-1031)))))) NIL)) (-3953 (((-627 |#1|)) NIL)) (-1383 (($) NIL (|has| |#1| (-342)))) (-2513 (((-1080 $) (-1080 $) (-1080 $)) NIL)) (-2258 (($ $ $) NIL) (($ (-587 $)) NIL)) (-3040 (((-587 (-2 (|:| -1916 (-521)) (|:| -2997 (-521))))) NIL (|has| |#1| (-342)))) (-1916 (((-392 $) $) NIL)) (-4178 (((-770 (-850))) NIL) (((-850)) NIL)) (-1962 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2230 (((-3 $ "failed") $ $) NIL)) (-3854 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-4196 (((-707) $) NIL)) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) NIL)) (-4067 (((-707) $) NIL (|has| |#1| (-342))) (((-3 (-707) "failed") $ $) NIL (-3703 (|has| |#1| (-133)) (|has| |#1| (-342))))) (-2359 (((-126)) NIL)) (-2156 (($ $) NIL (|has| |#1| (-342))) (($ $ (-707)) NIL (|has| |#1| (-342)))) (-1994 (((-770 (-850)) $) NIL) (((-850) $) NIL)) (-2879 (((-1080 |#1|)) NIL)) (-1204 (($) NIL (|has| |#1| (-342)))) (-2677 (($) NIL (|has| |#1| (-342)))) (-2234 (((-1165 |#1|) $) NIL) (((-627 |#1|) (-1165 $)) NIL)) (-2944 (((-3 (-1165 $) "failed") (-627 $)) NIL (|has| |#1| (-342)))) (-2189 (((-792) $) NIL) (($ (-521)) NIL) (($ $) NIL) (($ (-381 (-521))) NIL) (($ |#1|) NIL)) (-1671 (($ $) NIL (|has| |#1| (-342))) (((-3 $ "failed") $) NIL (-3703 (|has| |#1| (-133)) (|has| |#1| (-342))))) (-3846 (((-707)) NIL)) (-2470 (((-1165 $)) NIL) (((-1165 $) (-850)) NIL)) (-4210 (((-108) $ $) NIL)) (-2154 (((-108) $) NIL)) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (-3561 (($) NIL T CONST)) (-3572 (($) NIL T CONST)) (-3654 (($ $) NIL (|has| |#1| (-342))) (($ $ (-707)) NIL (|has| |#1| (-342)))) (-2212 (($ $) NIL (|has| |#1| (-342))) (($ $ (-707)) NIL (|has| |#1| (-342)))) (-1531 (((-108) $ $) NIL)) (-1620 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ (-381 (-521))) NIL) (($ (-381 (-521)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-327 |#1| |#2|) (-13 (-303 |#1|) (-10 -7 (-15 -1241 ((-1165 (-587 (-2 (|:| -3430 |#1|) (|:| -2716 (-1031))))))) (-15 -3953 ((-627 |#1|))) (-15 -3893 ((-707))))) (-323) (-850)) (T -327))
+((-1241 (*1 *2) (-12 (-5 *2 (-1165 (-587 (-2 (|:| -3430 *3) (|:| -2716 (-1031)))))) (-5 *1 (-327 *3 *4)) (-4 *3 (-323)) (-14 *4 (-850)))) (-3953 (*1 *2) (-12 (-5 *2 (-627 *3)) (-5 *1 (-327 *3 *4)) (-4 *3 (-323)) (-14 *4 (-850)))) (-3893 (*1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-327 *3 *4)) (-4 *3 (-323)) (-14 *4 (-850)))))
+(-13 (-303 |#1|) (-10 -7 (-15 -1241 ((-1165 (-587 (-2 (|:| -3430 |#1|) (|:| -2716 (-1031))))))) (-15 -3953 ((-627 |#1|))) (-15 -3893 ((-707)))))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-2559 (($ $) NIL)) (-1733 (((-108) $) NIL)) (-1779 (((-108) $) NIL)) (-3471 (((-707)) NIL)) (-1865 (((-839 |#1|) $) NIL) (($ $ (-850)) NIL (|has| (-839 |#1|) (-342)))) (-1340 (((-1093 (-850) (-707)) (-521)) NIL (|has| (-839 |#1|) (-342)))) (-1232 (((-3 $ "failed") $ $) NIL)) (-3063 (($ $) NIL)) (-3358 (((-392 $) $) NIL)) (-1389 (((-108) $ $) NIL)) (-1630 (((-707)) NIL (|has| (-839 |#1|) (-342)))) (-2547 (($) NIL T CONST)) (-1297 (((-3 (-839 |#1|) "failed") $) NIL)) (-1483 (((-839 |#1|) $) NIL)) (-4083 (($ (-1165 (-839 |#1|))) NIL)) (-1864 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-839 |#1|) (-342)))) (-2277 (($ $ $) NIL)) (-1257 (((-3 $ "failed") $) NIL)) (-3250 (($) NIL (|has| (-839 |#1|) (-342)))) (-2253 (($ $ $) NIL)) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) NIL)) (-2103 (($) NIL (|has| (-839 |#1|) (-342)))) (-2371 (((-108) $) NIL (|has| (-839 |#1|) (-342)))) (-2833 (($ $ (-707)) NIL (-3703 (|has| (-839 |#1|) (-133)) (|has| (-839 |#1|) (-342)))) (($ $) NIL (-3703 (|has| (-839 |#1|) (-133)) (|has| (-839 |#1|) (-342))))) (-2710 (((-108) $) NIL)) (-2733 (((-850) $) NIL (|has| (-839 |#1|) (-342))) (((-770 (-850)) $) NIL (-3703 (|has| (-839 |#1|) (-133)) (|has| (-839 |#1|) (-342))))) (-3996 (((-108) $) NIL)) (-3958 (($) NIL (|has| (-839 |#1|) (-342)))) (-1279 (((-108) $) NIL (|has| (-839 |#1|) (-342)))) (-3930 (((-839 |#1|) $) NIL) (($ $ (-850)) NIL (|has| (-839 |#1|) (-342)))) (-3842 (((-3 $ "failed") $) NIL (|has| (-839 |#1|) (-342)))) (-1546 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-3548 (((-1080 (-839 |#1|)) $) NIL) (((-1080 $) $ (-850)) NIL (|has| (-839 |#1|) (-342)))) (-2715 (((-850) $) NIL (|has| (-839 |#1|) (-342)))) (-4179 (((-1080 (-839 |#1|)) $) NIL (|has| (-839 |#1|) (-342)))) (-2728 (((-1080 (-839 |#1|)) $) NIL (|has| (-839 |#1|) (-342))) (((-3 (-1080 (-839 |#1|)) "failed") $ $) NIL (|has| (-839 |#1|) (-342)))) (-1818 (($ $ (-1080 (-839 |#1|))) NIL (|has| (-839 |#1|) (-342)))) (-2223 (($ $ $) NIL) (($ (-587 $)) NIL)) (-3688 (((-1067) $) NIL)) (-3095 (($ $) NIL)) (-3797 (($) NIL (|has| (-839 |#1|) (-342)) CONST)) (-2716 (($ (-850)) NIL (|has| (-839 |#1|) (-342)))) (-2218 (((-108) $) NIL)) (-4147 (((-1031) $) NIL)) (-1383 (($) NIL (|has| (-839 |#1|) (-342)))) (-2513 (((-1080 $) (-1080 $) (-1080 $)) NIL)) (-2258 (($ $ $) NIL) (($ (-587 $)) NIL)) (-3040 (((-587 (-2 (|:| -1916 (-521)) (|:| -2997 (-521))))) NIL (|has| (-839 |#1|) (-342)))) (-1916 (((-392 $) $) NIL)) (-4178 (((-770 (-850))) NIL) (((-850)) NIL)) (-1962 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2230 (((-3 $ "failed") $ $) NIL)) (-3854 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-4196 (((-707) $) NIL)) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) NIL)) (-4067 (((-707) $) NIL (|has| (-839 |#1|) (-342))) (((-3 (-707) "failed") $ $) NIL (-3703 (|has| (-839 |#1|) (-133)) (|has| (-839 |#1|) (-342))))) (-2359 (((-126)) NIL)) (-2156 (($ $) NIL (|has| (-839 |#1|) (-342))) (($ $ (-707)) NIL (|has| (-839 |#1|) (-342)))) (-1994 (((-770 (-850)) $) NIL) (((-850) $) NIL)) (-2879 (((-1080 (-839 |#1|))) NIL)) (-1204 (($) NIL (|has| (-839 |#1|) (-342)))) (-2677 (($) NIL (|has| (-839 |#1|) (-342)))) (-2234 (((-1165 (-839 |#1|)) $) NIL) (((-627 (-839 |#1|)) (-1165 $)) NIL)) (-2944 (((-3 (-1165 $) "failed") (-627 $)) NIL (|has| (-839 |#1|) (-342)))) (-2189 (((-792) $) NIL) (($ (-521)) NIL) (($ $) NIL) (($ (-381 (-521))) NIL) (($ (-839 |#1|)) NIL)) (-1671 (($ $) NIL (|has| (-839 |#1|) (-342))) (((-3 $ "failed") $) NIL (-3703 (|has| (-839 |#1|) (-133)) (|has| (-839 |#1|) (-342))))) (-3846 (((-707)) NIL)) (-2470 (((-1165 $)) NIL) (((-1165 $) (-850)) NIL)) (-4210 (((-108) $ $) NIL)) (-2154 (((-108) $) NIL)) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (-3561 (($) NIL T CONST)) (-3572 (($) NIL T CONST)) (-3654 (($ $) NIL (|has| (-839 |#1|) (-342))) (($ $ (-707)) NIL (|has| (-839 |#1|) (-342)))) (-2212 (($ $) NIL (|has| (-839 |#1|) (-342))) (($ $ (-707)) NIL (|has| (-839 |#1|) (-342)))) (-1531 (((-108) $ $) NIL)) (-1620 (($ $ $) NIL) (($ $ (-839 |#1|)) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ (-381 (-521))) NIL) (($ (-381 (-521)) $) NIL) (($ $ (-839 |#1|)) NIL) (($ (-839 |#1|) $) NIL)))
+(((-328 |#1| |#2|) (-303 (-839 |#1|)) (-850) (-850)) (T -328))
+NIL
+(-303 (-839 |#1|))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-2559 (($ $) NIL)) (-1733 (((-108) $) NIL)) (-1779 (((-108) $) NIL)) (-3471 (((-707)) NIL)) (-1865 ((|#1| $) NIL) (($ $ (-850)) NIL (|has| |#1| (-342)))) (-1340 (((-1093 (-850) (-707)) (-521)) 119 (|has| |#1| (-342)))) (-1232 (((-3 $ "failed") $ $) NIL)) (-3063 (($ $) NIL)) (-3358 (((-392 $) $) NIL)) (-1389 (((-108) $ $) NIL)) (-1630 (((-707)) 139 (|has| |#1| (-342)))) (-2547 (($) NIL T CONST)) (-1297 (((-3 |#1| "failed") $) 91)) (-1483 ((|#1| $) 88)) (-4083 (($ (-1165 |#1|)) 83)) (-1864 (((-3 "prime" "polynomial" "normal" "cyclic")) 115 (|has| |#1| (-342)))) (-2277 (($ $ $) NIL)) (-1257 (((-3 $ "failed") $) NIL)) (-3250 (($) 80 (|has| |#1| (-342)))) (-2253 (($ $ $) NIL)) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) NIL)) (-2103 (($) 39 (|has| |#1| (-342)))) (-2371 (((-108) $) NIL (|has| |#1| (-342)))) (-2833 (($ $ (-707)) NIL (-3703 (|has| |#1| (-133)) (|has| |#1| (-342)))) (($ $) NIL (-3703 (|has| |#1| (-133)) (|has| |#1| (-342))))) (-2710 (((-108) $) NIL)) (-2733 (((-850) $) NIL (|has| |#1| (-342))) (((-770 (-850)) $) NIL (-3703 (|has| |#1| (-133)) (|has| |#1| (-342))))) (-3996 (((-108) $) NIL)) (-3958 (($) 120 (|has| |#1| (-342)))) (-1279 (((-108) $) 72 (|has| |#1| (-342)))) (-3930 ((|#1| $) 38) (($ $ (-850)) 40 (|has| |#1| (-342)))) (-3842 (((-3 $ "failed") $) NIL (|has| |#1| (-342)))) (-1546 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-3548 (((-1080 |#1|) $) 62) (((-1080 $) $ (-850)) NIL (|has| |#1| (-342)))) (-2715 (((-850) $) 95 (|has| |#1| (-342)))) (-4179 (((-1080 |#1|) $) NIL (|has| |#1| (-342)))) (-2728 (((-1080 |#1|) $) NIL (|has| |#1| (-342))) (((-3 (-1080 |#1|) "failed") $ $) NIL (|has| |#1| (-342)))) (-1818 (($ $ (-1080 |#1|)) NIL (|has| |#1| (-342)))) (-2223 (($ $ $) NIL) (($ (-587 $)) NIL)) (-3688 (((-1067) $) NIL)) (-3095 (($ $) NIL)) (-3797 (($) NIL (|has| |#1| (-342)) CONST)) (-2716 (($ (-850)) 93 (|has| |#1| (-342)))) (-2218 (((-108) $) 141)) (-4147 (((-1031) $) NIL)) (-1383 (($) 35 (|has| |#1| (-342)))) (-2513 (((-1080 $) (-1080 $) (-1080 $)) NIL)) (-2258 (($ $ $) NIL) (($ (-587 $)) NIL)) (-3040 (((-587 (-2 (|:| -1916 (-521)) (|:| -2997 (-521))))) 113 (|has| |#1| (-342)))) (-1916 (((-392 $) $) NIL)) (-4178 (((-770 (-850))) NIL) (((-850)) 138)) (-1962 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2230 (((-3 $ "failed") $ $) NIL)) (-3854 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-4196 (((-707) $) NIL)) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) NIL)) (-4067 (((-707) $) NIL (|has| |#1| (-342))) (((-3 (-707) "failed") $ $) NIL (-3703 (|has| |#1| (-133)) (|has| |#1| (-342))))) (-2359 (((-126)) NIL)) (-2156 (($ $) NIL (|has| |#1| (-342))) (($ $ (-707)) NIL (|has| |#1| (-342)))) (-1994 (((-770 (-850)) $) NIL) (((-850) $) 56)) (-2879 (((-1080 |#1|)) 86)) (-1204 (($) 125 (|has| |#1| (-342)))) (-2677 (($) NIL (|has| |#1| (-342)))) (-2234 (((-1165 |#1|) $) 50) (((-627 |#1|) (-1165 $)) NIL)) (-2944 (((-3 (-1165 $) "failed") (-627 $)) NIL (|has| |#1| (-342)))) (-2189 (((-792) $) 137) (($ (-521)) NIL) (($ $) NIL) (($ (-381 (-521))) NIL) (($ |#1|) 85)) (-1671 (($ $) NIL (|has| |#1| (-342))) (((-3 $ "failed") $) NIL (-3703 (|has| |#1| (-133)) (|has| |#1| (-342))))) (-3846 (((-707)) 143)) (-2470 (((-1165 $)) 107) (((-1165 $) (-850)) 46)) (-4210 (((-108) $ $) NIL)) (-2154 (((-108) $) NIL)) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (-3561 (($) 109 T CONST)) (-3572 (($) 31 T CONST)) (-3654 (($ $) 65 (|has| |#1| (-342))) (($ $ (-707)) NIL (|has| |#1| (-342)))) (-2212 (($ $) NIL (|has| |#1| (-342))) (($ $ (-707)) NIL (|has| |#1| (-342)))) (-1531 (((-108) $ $) 105)) (-1620 (($ $ $) 97) (($ $ |#1|) 98)) (-1612 (($ $) 78) (($ $ $) 103)) (-1602 (($ $ $) 101)) (** (($ $ (-850)) NIL) (($ $ (-707)) 41) (($ $ (-521)) 129)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) 76) (($ $ $) 53) (($ $ (-381 (-521))) NIL) (($ (-381 (-521)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 74)))
+(((-329 |#1| |#2|) (-303 |#1|) (-323) (-1080 |#1|)) (T -329))
+NIL
+(-303 |#1|)
+((-1777 ((|#1| (-1080 |#2|)) 51)))
+(((-330 |#1| |#2|) (-10 -7 (-15 -1777 (|#1| (-1080 |#2|)))) (-13 (-376) (-10 -7 (-15 -2189 (|#1| |#2|)) (-15 -2715 ((-850) |#1|)) (-15 -2470 ((-1165 |#1|) (-850))) (-15 -3654 (|#1| |#1|)))) (-323)) (T -330))
+((-1777 (*1 *2 *3) (-12 (-5 *3 (-1080 *4)) (-4 *4 (-323)) (-4 *2 (-13 (-376) (-10 -7 (-15 -2189 (*2 *4)) (-15 -2715 ((-850) *2)) (-15 -2470 ((-1165 *2) (-850))) (-15 -3654 (*2 *2))))) (-5 *1 (-330 *2 *4)))))
+(-10 -7 (-15 -1777 (|#1| (-1080 |#2|))))
+((-3660 (((-886 (-1080 |#1|)) (-1080 |#1|)) 37)) (-3250 (((-1080 |#1|) (-850) (-850)) 110) (((-1080 |#1|) (-850)) 109)) (-2371 (((-108) (-1080 |#1|)) 82)) (-3544 (((-850) (-850)) 72)) (-4128 (((-850) (-850)) 74)) (-3254 (((-850) (-850)) 70)) (-1279 (((-108) (-1080 |#1|)) 86)) (-2425 (((-3 (-1080 |#1|) "failed") (-1080 |#1|)) 98)) (-2572 (((-3 (-1080 |#1|) "failed") (-1080 |#1|)) 101)) (-1998 (((-3 (-1080 |#1|) "failed") (-1080 |#1|)) 100)) (-3752 (((-3 (-1080 |#1|) "failed") (-1080 |#1|)) 99)) (-1555 (((-3 (-1080 |#1|) "failed") (-1080 |#1|)) 95)) (-2999 (((-1080 |#1|) (-1080 |#1|)) 63)) (-2648 (((-1080 |#1|) (-850)) 104)) (-2151 (((-1080 |#1|) (-850)) 107)) (-1852 (((-1080 |#1|) (-850)) 106)) (-1821 (((-1080 |#1|) (-850)) 105)) (-2034 (((-1080 |#1|) (-850)) 102)))
+(((-331 |#1|) (-10 -7 (-15 -2371 ((-108) (-1080 |#1|))) (-15 -1279 ((-108) (-1080 |#1|))) (-15 -3254 ((-850) (-850))) (-15 -3544 ((-850) (-850))) (-15 -4128 ((-850) (-850))) (-15 -2034 ((-1080 |#1|) (-850))) (-15 -2648 ((-1080 |#1|) (-850))) (-15 -1821 ((-1080 |#1|) (-850))) (-15 -1852 ((-1080 |#1|) (-850))) (-15 -2151 ((-1080 |#1|) (-850))) (-15 -1555 ((-3 (-1080 |#1|) "failed") (-1080 |#1|))) (-15 -2425 ((-3 (-1080 |#1|) "failed") (-1080 |#1|))) (-15 -3752 ((-3 (-1080 |#1|) "failed") (-1080 |#1|))) (-15 -1998 ((-3 (-1080 |#1|) "failed") (-1080 |#1|))) (-15 -2572 ((-3 (-1080 |#1|) "failed") (-1080 |#1|))) (-15 -3250 ((-1080 |#1|) (-850))) (-15 -3250 ((-1080 |#1|) (-850) (-850))) (-15 -2999 ((-1080 |#1|) (-1080 |#1|))) (-15 -3660 ((-886 (-1080 |#1|)) (-1080 |#1|)))) (-323)) (T -331))
+((-3660 (*1 *2 *3) (-12 (-4 *4 (-323)) (-5 *2 (-886 (-1080 *4))) (-5 *1 (-331 *4)) (-5 *3 (-1080 *4)))) (-2999 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-323)) (-5 *1 (-331 *3)))) (-3250 (*1 *2 *3 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1080 *4)) (-5 *1 (-331 *4)) (-4 *4 (-323)))) (-3250 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1080 *4)) (-5 *1 (-331 *4)) (-4 *4 (-323)))) (-2572 (*1 *2 *2) (|partial| -12 (-5 *2 (-1080 *3)) (-4 *3 (-323)) (-5 *1 (-331 *3)))) (-1998 (*1 *2 *2) (|partial| -12 (-5 *2 (-1080 *3)) (-4 *3 (-323)) (-5 *1 (-331 *3)))) (-3752 (*1 *2 *2) (|partial| -12 (-5 *2 (-1080 *3)) (-4 *3 (-323)) (-5 *1 (-331 *3)))) (-2425 (*1 *2 *2) (|partial| -12 (-5 *2 (-1080 *3)) (-4 *3 (-323)) (-5 *1 (-331 *3)))) (-1555 (*1 *2 *2) (|partial| -12 (-5 *2 (-1080 *3)) (-4 *3 (-323)) (-5 *1 (-331 *3)))) (-2151 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1080 *4)) (-5 *1 (-331 *4)) (-4 *4 (-323)))) (-1852 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1080 *4)) (-5 *1 (-331 *4)) (-4 *4 (-323)))) (-1821 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1080 *4)) (-5 *1 (-331 *4)) (-4 *4 (-323)))) (-2648 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1080 *4)) (-5 *1 (-331 *4)) (-4 *4 (-323)))) (-2034 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1080 *4)) (-5 *1 (-331 *4)) (-4 *4 (-323)))) (-4128 (*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-331 *3)) (-4 *3 (-323)))) (-3544 (*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-331 *3)) (-4 *3 (-323)))) (-3254 (*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-331 *3)) (-4 *3 (-323)))) (-1279 (*1 *2 *3) (-12 (-5 *3 (-1080 *4)) (-4 *4 (-323)) (-5 *2 (-108)) (-5 *1 (-331 *4)))) (-2371 (*1 *2 *3) (-12 (-5 *3 (-1080 *4)) (-4 *4 (-323)) (-5 *2 (-108)) (-5 *1 (-331 *4)))))
+(-10 -7 (-15 -2371 ((-108) (-1080 |#1|))) (-15 -1279 ((-108) (-1080 |#1|))) (-15 -3254 ((-850) (-850))) (-15 -3544 ((-850) (-850))) (-15 -4128 ((-850) (-850))) (-15 -2034 ((-1080 |#1|) (-850))) (-15 -2648 ((-1080 |#1|) (-850))) (-15 -1821 ((-1080 |#1|) (-850))) (-15 -1852 ((-1080 |#1|) (-850))) (-15 -2151 ((-1080 |#1|) (-850))) (-15 -1555 ((-3 (-1080 |#1|) "failed") (-1080 |#1|))) (-15 -2425 ((-3 (-1080 |#1|) "failed") (-1080 |#1|))) (-15 -3752 ((-3 (-1080 |#1|) "failed") (-1080 |#1|))) (-15 -1998 ((-3 (-1080 |#1|) "failed") (-1080 |#1|))) (-15 -2572 ((-3 (-1080 |#1|) "failed") (-1080 |#1|))) (-15 -3250 ((-1080 |#1|) (-850))) (-15 -3250 ((-1080 |#1|) (-850) (-850))) (-15 -2999 ((-1080 |#1|) (-1080 |#1|))) (-15 -3660 ((-886 (-1080 |#1|)) (-1080 |#1|))))
+((-2569 (((-3 (-587 |#3|) "failed") (-587 |#3|) |#3|) 34)))
+(((-332 |#1| |#2| |#3|) (-10 -7 (-15 -2569 ((-3 (-587 |#3|) "failed") (-587 |#3|) |#3|))) (-323) (-1141 |#1|) (-1141 |#2|)) (T -332))
+((-2569 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-587 *3)) (-4 *3 (-1141 *5)) (-4 *5 (-1141 *4)) (-4 *4 (-323)) (-5 *1 (-332 *4 *5 *3)))))
+(-10 -7 (-15 -2569 ((-3 (-587 |#3|) "failed") (-587 |#3|) |#3|)))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-2559 (($ $) NIL)) (-1733 (((-108) $) NIL)) (-1779 (((-108) $) NIL)) (-3471 (((-707)) NIL)) (-1865 ((|#1| $) NIL) (($ $ (-850)) NIL (|has| |#1| (-342)))) (-1340 (((-1093 (-850) (-707)) (-521)) NIL (|has| |#1| (-342)))) (-1232 (((-3 $ "failed") $ $) NIL)) (-3063 (($ $) NIL)) (-3358 (((-392 $) $) NIL)) (-1389 (((-108) $ $) NIL)) (-1630 (((-707)) NIL (|has| |#1| (-342)))) (-2547 (($) NIL T CONST)) (-1297 (((-3 |#1| "failed") $) NIL)) (-1483 ((|#1| $) NIL)) (-4083 (($ (-1165 |#1|)) NIL)) (-1864 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-342)))) (-2277 (($ $ $) NIL)) (-1257 (((-3 $ "failed") $) NIL)) (-3250 (($) NIL (|has| |#1| (-342)))) (-2253 (($ $ $) NIL)) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) NIL)) (-2103 (($) NIL (|has| |#1| (-342)))) (-2371 (((-108) $) NIL (|has| |#1| (-342)))) (-2833 (($ $ (-707)) NIL (-3703 (|has| |#1| (-133)) (|has| |#1| (-342)))) (($ $) NIL (-3703 (|has| |#1| (-133)) (|has| |#1| (-342))))) (-2710 (((-108) $) NIL)) (-2733 (((-850) $) NIL (|has| |#1| (-342))) (((-770 (-850)) $) NIL (-3703 (|has| |#1| (-133)) (|has| |#1| (-342))))) (-3996 (((-108) $) NIL)) (-3958 (($) NIL (|has| |#1| (-342)))) (-1279 (((-108) $) NIL (|has| |#1| (-342)))) (-3930 ((|#1| $) NIL) (($ $ (-850)) NIL (|has| |#1| (-342)))) (-3842 (((-3 $ "failed") $) NIL (|has| |#1| (-342)))) (-1546 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-3548 (((-1080 |#1|) $) NIL) (((-1080 $) $ (-850)) NIL (|has| |#1| (-342)))) (-2715 (((-850) $) NIL (|has| |#1| (-342)))) (-4179 (((-1080 |#1|) $) NIL (|has| |#1| (-342)))) (-2728 (((-1080 |#1|) $) NIL (|has| |#1| (-342))) (((-3 (-1080 |#1|) "failed") $ $) NIL (|has| |#1| (-342)))) (-1818 (($ $ (-1080 |#1|)) NIL (|has| |#1| (-342)))) (-2223 (($ $ $) NIL) (($ (-587 $)) NIL)) (-3688 (((-1067) $) NIL)) (-3095 (($ $) NIL)) (-3797 (($) NIL (|has| |#1| (-342)) CONST)) (-2716 (($ (-850)) NIL (|has| |#1| (-342)))) (-2218 (((-108) $) NIL)) (-4147 (((-1031) $) NIL)) (-1383 (($) NIL (|has| |#1| (-342)))) (-2513 (((-1080 $) (-1080 $) (-1080 $)) NIL)) (-2258 (($ $ $) NIL) (($ (-587 $)) NIL)) (-3040 (((-587 (-2 (|:| -1916 (-521)) (|:| -2997 (-521))))) NIL (|has| |#1| (-342)))) (-1916 (((-392 $) $) NIL)) (-4178 (((-770 (-850))) NIL) (((-850)) NIL)) (-1962 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2230 (((-3 $ "failed") $ $) NIL)) (-3854 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-4196 (((-707) $) NIL)) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) NIL)) (-4067 (((-707) $) NIL (|has| |#1| (-342))) (((-3 (-707) "failed") $ $) NIL (-3703 (|has| |#1| (-133)) (|has| |#1| (-342))))) (-2359 (((-126)) NIL)) (-2156 (($ $) NIL (|has| |#1| (-342))) (($ $ (-707)) NIL (|has| |#1| (-342)))) (-1994 (((-770 (-850)) $) NIL) (((-850) $) NIL)) (-2879 (((-1080 |#1|)) NIL)) (-1204 (($) NIL (|has| |#1| (-342)))) (-2677 (($) NIL (|has| |#1| (-342)))) (-2234 (((-1165 |#1|) $) NIL) (((-627 |#1|) (-1165 $)) NIL)) (-2944 (((-3 (-1165 $) "failed") (-627 $)) NIL (|has| |#1| (-342)))) (-2189 (((-792) $) NIL) (($ (-521)) NIL) (($ $) NIL) (($ (-381 (-521))) NIL) (($ |#1|) NIL)) (-1671 (($ $) NIL (|has| |#1| (-342))) (((-3 $ "failed") $) NIL (-3703 (|has| |#1| (-133)) (|has| |#1| (-342))))) (-3846 (((-707)) NIL)) (-2470 (((-1165 $)) NIL) (((-1165 $) (-850)) NIL)) (-4210 (((-108) $ $) NIL)) (-2154 (((-108) $) NIL)) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (-3561 (($) NIL T CONST)) (-3572 (($) NIL T CONST)) (-3654 (($ $) NIL (|has| |#1| (-342))) (($ $ (-707)) NIL (|has| |#1| (-342)))) (-2212 (($ $) NIL (|has| |#1| (-342))) (($ $ (-707)) NIL (|has| |#1| (-342)))) (-1531 (((-108) $ $) NIL)) (-1620 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ (-381 (-521))) NIL) (($ (-381 (-521)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-333 |#1| |#2|) (-303 |#1|) (-323) (-850)) (T -333))
+NIL
+(-303 |#1|)
+((-2321 (((-108) (-587 (-881 |#1|))) 32)) (-1676 (((-587 (-881 |#1|)) (-587 (-881 |#1|))) 43)) (-1254 (((-3 (-587 (-881 |#1|)) "failed") (-587 (-881 |#1|))) 39)))
+(((-334 |#1| |#2|) (-10 -7 (-15 -2321 ((-108) (-587 (-881 |#1|)))) (-15 -1254 ((-3 (-587 (-881 |#1|)) "failed") (-587 (-881 |#1|)))) (-15 -1676 ((-587 (-881 |#1|)) (-587 (-881 |#1|))))) (-425) (-587 (-1084))) (T -334))
+((-1676 (*1 *2 *2) (-12 (-5 *2 (-587 (-881 *3))) (-4 *3 (-425)) (-5 *1 (-334 *3 *4)) (-14 *4 (-587 (-1084))))) (-1254 (*1 *2 *2) (|partial| -12 (-5 *2 (-587 (-881 *3))) (-4 *3 (-425)) (-5 *1 (-334 *3 *4)) (-14 *4 (-587 (-1084))))) (-2321 (*1 *2 *3) (-12 (-5 *3 (-587 (-881 *4))) (-4 *4 (-425)) (-5 *2 (-108)) (-5 *1 (-334 *4 *5)) (-14 *5 (-587 (-1084))))))
+(-10 -7 (-15 -2321 ((-108) (-587 (-881 |#1|)))) (-15 -1254 ((-3 (-587 (-881 |#1|)) "failed") (-587 (-881 |#1|)))) (-15 -1676 ((-587 (-881 |#1|)) (-587 (-881 |#1|)))))
+((-1415 (((-108) $ $) NIL)) (-1630 (((-707) $) NIL)) (-2547 (($) NIL T CONST)) (-1297 (((-3 |#1| "failed") $) NIL)) (-1483 ((|#1| $) NIL)) (-1257 (((-3 $ "failed") $) NIL)) (-3996 (((-108) $) 14)) (-1785 ((|#1| $ (-521)) NIL)) (-3695 (((-521) $ (-521)) NIL)) (-2502 (($ (-1 |#1| |#1|) $) 32)) (-1384 (($ (-1 (-521) (-521)) $) 24)) (-3688 (((-1067) $) NIL)) (-3095 (($ $) 26)) (-4147 (((-1031) $) NIL)) (-1514 (((-587 (-2 (|:| |gen| |#1|) (|:| -3261 (-521)))) $) 28)) (-1223 (($ $ $) NIL)) (-2674 (($ $ $) NIL)) (-2189 (((-792) $) 38) (($ |#1|) NIL)) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (-3572 (($) 9 T CONST)) (-1531 (((-108) $ $) NIL)) (-1620 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL) (($ |#1| (-521)) 17)) (* (($ $ $) 43) (($ |#1| $) 21) (($ $ |#1|) 19)))
+(((-335 |#1|) (-13 (-446) (-961 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-521))) (-15 -1630 ((-707) $)) (-15 -3695 ((-521) $ (-521))) (-15 -1785 (|#1| $ (-521))) (-15 -1384 ($ (-1 (-521) (-521)) $)) (-15 -2502 ($ (-1 |#1| |#1|) $)) (-15 -1514 ((-587 (-2 (|:| |gen| |#1|) (|:| -3261 (-521)))) $)))) (-1013)) (T -335))
+((* (*1 *1 *2 *1) (-12 (-5 *1 (-335 *2)) (-4 *2 (-1013)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-335 *2)) (-4 *2 (-1013)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-521)) (-5 *1 (-335 *2)) (-4 *2 (-1013)))) (-1630 (*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-335 *3)) (-4 *3 (-1013)))) (-3695 (*1 *2 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-335 *3)) (-4 *3 (-1013)))) (-1785 (*1 *2 *1 *3) (-12 (-5 *3 (-521)) (-5 *1 (-335 *2)) (-4 *2 (-1013)))) (-1384 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-521) (-521))) (-5 *1 (-335 *3)) (-4 *3 (-1013)))) (-2502 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1013)) (-5 *1 (-335 *3)))) (-1514 (*1 *2 *1) (-12 (-5 *2 (-587 (-2 (|:| |gen| *3) (|:| -3261 (-521))))) (-5 *1 (-335 *3)) (-4 *3 (-1013)))))
+(-13 (-446) (-961 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-521))) (-15 -1630 ((-707) $)) (-15 -3695 ((-521) $ (-521))) (-15 -1785 (|#1| $ (-521))) (-15 -1384 ($ (-1 (-521) (-521)) $)) (-15 -2502 ($ (-1 |#1| |#1|) $)) (-15 -1514 ((-587 (-2 (|:| |gen| |#1|) (|:| -3261 (-521)))) $))))
+((-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) 13)) (-2559 (($ $) 14)) (-3358 (((-392 $) $) 30)) (-2710 (((-108) $) 26)) (-3095 (($ $) 19)) (-2258 (($ $ $) 23) (($ (-587 $)) NIL)) (-1916 (((-392 $) $) 31)) (-2230 (((-3 $ "failed") $ $) 22)) (-4196 (((-707) $) 25)) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) 35)) (-4210 (((-108) $ $) 16)) (-1620 (($ $ $) 33)))
+(((-336 |#1|) (-10 -8 (-15 -1620 (|#1| |#1| |#1|)) (-15 -3095 (|#1| |#1|)) (-15 -2710 ((-108) |#1|)) (-15 -3358 ((-392 |#1|) |#1|)) (-15 -1916 ((-392 |#1|) |#1|)) (-15 -1830 ((-2 (|:| -3727 |#1|) (|:| -3820 |#1|)) |#1| |#1|)) (-15 -4196 ((-707) |#1|)) (-15 -2258 (|#1| (-587 |#1|))) (-15 -2258 (|#1| |#1| |#1|)) (-15 -4210 ((-108) |#1| |#1|)) (-15 -2559 (|#1| |#1|)) (-15 -3847 ((-2 (|:| -3689 |#1|) (|:| -4220 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2230 ((-3 |#1| "failed") |#1| |#1|))) (-337)) (T -336))
+NIL
+(-10 -8 (-15 -1620 (|#1| |#1| |#1|)) (-15 -3095 (|#1| |#1|)) (-15 -2710 ((-108) |#1|)) (-15 -3358 ((-392 |#1|) |#1|)) (-15 -1916 ((-392 |#1|) |#1|)) (-15 -1830 ((-2 (|:| -3727 |#1|) (|:| -3820 |#1|)) |#1| |#1|)) (-15 -4196 ((-707) |#1|)) (-15 -2258 (|#1| (-587 |#1|))) (-15 -2258 (|#1| |#1| |#1|)) (-15 -4210 ((-108) |#1| |#1|)) (-15 -2559 (|#1| |#1|)) (-15 -3847 ((-2 (|:| -3689 |#1|) (|:| -4220 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2230 ((-3 |#1| "failed") |#1| |#1|)))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) 41)) (-2559 (($ $) 40)) (-1733 (((-108) $) 38)) (-1232 (((-3 $ "failed") $ $) 19)) (-3063 (($ $) 73)) (-3358 (((-392 $) $) 72)) (-1389 (((-108) $ $) 59)) (-2547 (($) 17 T CONST)) (-2277 (($ $ $) 55)) (-1257 (((-3 $ "failed") $) 34)) (-2253 (($ $ $) 56)) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) 51)) (-2710 (((-108) $) 71)) (-3996 (((-108) $) 31)) (-1546 (((-3 (-587 $) "failed") (-587 $) $) 52)) (-2223 (($ $ $) 46) (($ (-587 $)) 45)) (-3688 (((-1067) $) 9)) (-3095 (($ $) 70)) (-4147 (((-1031) $) 10)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) 44)) (-2258 (($ $ $) 48) (($ (-587 $)) 47)) (-1916 (((-392 $) $) 74)) (-1962 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2230 (((-3 $ "failed") $ $) 42)) (-3854 (((-3 (-587 $) "failed") (-587 $) $) 50)) (-4196 (((-707) $) 58)) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) 57)) (-2189 (((-792) $) 11) (($ (-521)) 28) (($ $) 43) (($ (-381 (-521))) 65)) (-3846 (((-707)) 29)) (-4210 (((-108) $ $) 39)) (-3505 (($ $ (-850)) 26) (($ $ (-707)) 33) (($ $ (-521)) 69)) (-3561 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-1531 (((-108) $ $) 6)) (-1620 (($ $ $) 64)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-707)) 32) (($ $ (-521)) 68)) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ $ (-381 (-521))) 67) (($ (-381 (-521)) $) 66)))
+(((-337) (-1196)) (T -337))
+((-1620 (*1 *1 *1 *1) (-4 *1 (-337))))
+(-13 (-282) (-1123) (-220) (-10 -8 (-15 -1620 ($ $ $)) (-6 -4231) (-6 -4225)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-381 (-521))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-124) . T) ((-561 (-792)) . T) ((-157) . T) ((-220) . T) ((-265) . T) ((-282) . T) ((-425) . T) ((-513) . T) ((-589 #0#) . T) ((-589 $) . T) ((-654 #0#) . T) ((-654 $) . T) ((-663) . T) ((-849) . T) ((-976 #0#) . T) ((-976 $) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T) ((-1123) . T))
+((-1415 (((-108) $ $) 7)) (-4169 ((|#2| $ |#2|) 13)) (-2837 (($ $ (-1067)) 18)) (-1791 ((|#2| $) 14)) (-1544 (($ |#1|) 20) (($ |#1| (-1067)) 19)) (-2884 ((|#1| $) 16)) (-3688 (((-1067) $) 9)) (-1914 (((-1067) $) 15)) (-4147 (((-1031) $) 10)) (-2189 (((-792) $) 11)) (-2259 (($ $) 17)) (-1531 (((-108) $ $) 6)))
+(((-338 |#1| |#2|) (-1196) (-1013) (-1013)) (T -338))
+((-1544 (*1 *1 *2) (-12 (-4 *1 (-338 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))) (-1544 (*1 *1 *2 *3) (-12 (-5 *3 (-1067)) (-4 *1 (-338 *2 *4)) (-4 *2 (-1013)) (-4 *4 (-1013)))) (-2837 (*1 *1 *1 *2) (-12 (-5 *2 (-1067)) (-4 *1 (-338 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))) (-2259 (*1 *1 *1) (-12 (-4 *1 (-338 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))) (-2884 (*1 *2 *1) (-12 (-4 *1 (-338 *2 *3)) (-4 *3 (-1013)) (-4 *2 (-1013)))) (-1914 (*1 *2 *1) (-12 (-4 *1 (-338 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-5 *2 (-1067)))) (-1791 (*1 *2 *1) (-12 (-4 *1 (-338 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013)))) (-4169 (*1 *2 *1 *2) (-12 (-4 *1 (-338 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013)))))
+(-13 (-1013) (-10 -8 (-15 -1544 ($ |t#1|)) (-15 -1544 ($ |t#1| (-1067))) (-15 -2837 ($ $ (-1067))) (-15 -2259 ($ $)) (-15 -2884 (|t#1| $)) (-15 -1914 ((-1067) $)) (-15 -1791 (|t#2| $)) (-15 -4169 (|t#2| $ |t#2|))))
+(((-97) . T) ((-561 (-792)) . T) ((-1013) . T))
+((-1415 (((-108) $ $) NIL)) (-4169 ((|#1| $ |#1|) 29)) (-2837 (($ $ (-1067)) 22)) (-3937 (((-3 |#1| "failed") $) 28)) (-1791 ((|#1| $) 26)) (-1544 (($ (-362)) 21) (($ (-362) (-1067)) 20)) (-2884 (((-362) $) 24)) (-3688 (((-1067) $) NIL)) (-1914 (((-1067) $) 25)) (-4147 (((-1031) $) NIL)) (-2189 (((-792) $) 19)) (-2259 (($ $) 23)) (-1531 (((-108) $ $) 18)))
+(((-339 |#1|) (-13 (-338 (-362) |#1|) (-10 -8 (-15 -3937 ((-3 |#1| "failed") $)))) (-1013)) (T -339))
+((-3937 (*1 *2 *1) (|partial| -12 (-5 *1 (-339 *2)) (-4 *2 (-1013)))))
+(-13 (-338 (-362) |#1|) (-10 -8 (-15 -3937 ((-3 |#1| "failed") $))))
+((-3359 (((-1165 (-627 |#2|)) (-1165 $)) 61)) (-2168 (((-627 |#2|) (-1165 $)) 119)) (-3783 ((|#2| $) 32)) (-3907 (((-627 |#2|) $ (-1165 $)) 123)) (-3176 (((-3 $ "failed") $) 75)) (-3333 ((|#2| $) 35)) (-3330 (((-1080 |#2|) $) 83)) (-3518 ((|#2| (-1165 $)) 106)) (-2370 (((-1080 |#2|) $) 28)) (-1208 (((-108)) 100)) (-4083 (($ (-1165 |#2|) (-1165 $)) 113)) (-1257 (((-3 $ "failed") $) 79)) (-2760 (((-108)) 95)) (-1344 (((-108)) 90)) (-2383 (((-108)) 53)) (-1786 (((-627 |#2|) (-1165 $)) 117)) (-2627 ((|#2| $) 31)) (-3734 (((-627 |#2|) $ (-1165 $)) 122)) (-2652 (((-3 $ "failed") $) 73)) (-1332 ((|#2| $) 34)) (-1729 (((-1080 |#2|) $) 82)) (-1586 ((|#2| (-1165 $)) 104)) (-3888 (((-1080 |#2|) $) 26)) (-2118 (((-108)) 99)) (-4045 (((-108)) 92)) (-1560 (((-108)) 51)) (-1381 (((-108)) 87)) (-1242 (((-108)) 101)) (-2234 (((-1165 |#2|) $ (-1165 $)) NIL) (((-627 |#2|) (-1165 $) (-1165 $)) 111)) (-3160 (((-108)) 97)) (-2578 (((-587 (-1165 |#2|))) 86)) (-2057 (((-108)) 98)) (-1453 (((-108)) 96)) (-3987 (((-108)) 46)) (-2596 (((-108)) 102)))
+(((-340 |#1| |#2|) (-10 -8 (-15 -3330 ((-1080 |#2|) |#1|)) (-15 -1729 ((-1080 |#2|) |#1|)) (-15 -2578 ((-587 (-1165 |#2|)))) (-15 -3176 ((-3 |#1| "failed") |#1|)) (-15 -2652 ((-3 |#1| "failed") |#1|)) (-15 -1257 ((-3 |#1| "failed") |#1|)) (-15 -1344 ((-108))) (-15 -4045 ((-108))) (-15 -2760 ((-108))) (-15 -1560 ((-108))) (-15 -2383 ((-108))) (-15 -1381 ((-108))) (-15 -2596 ((-108))) (-15 -1242 ((-108))) (-15 -1208 ((-108))) (-15 -2118 ((-108))) (-15 -3987 ((-108))) (-15 -2057 ((-108))) (-15 -1453 ((-108))) (-15 -3160 ((-108))) (-15 -2370 ((-1080 |#2|) |#1|)) (-15 -3888 ((-1080 |#2|) |#1|)) (-15 -2168 ((-627 |#2|) (-1165 |#1|))) (-15 -1786 ((-627 |#2|) (-1165 |#1|))) (-15 -3518 (|#2| (-1165 |#1|))) (-15 -1586 (|#2| (-1165 |#1|))) (-15 -4083 (|#1| (-1165 |#2|) (-1165 |#1|))) (-15 -2234 ((-627 |#2|) (-1165 |#1|) (-1165 |#1|))) (-15 -2234 ((-1165 |#2|) |#1| (-1165 |#1|))) (-15 -3333 (|#2| |#1|)) (-15 -1332 (|#2| |#1|)) (-15 -3783 (|#2| |#1|)) (-15 -2627 (|#2| |#1|)) (-15 -3907 ((-627 |#2|) |#1| (-1165 |#1|))) (-15 -3734 ((-627 |#2|) |#1| (-1165 |#1|))) (-15 -3359 ((-1165 (-627 |#2|)) (-1165 |#1|)))) (-341 |#2|) (-157)) (T -340))
+((-3160 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) (-1453 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) (-2057 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) (-3987 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) (-2118 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) (-1208 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) (-1242 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) (-2596 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) (-1381 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) (-2383 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) (-1560 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) (-2760 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) (-4045 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) (-1344 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) (-2578 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-587 (-1165 *4))) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))))
+(-10 -8 (-15 -3330 ((-1080 |#2|) |#1|)) (-15 -1729 ((-1080 |#2|) |#1|)) (-15 -2578 ((-587 (-1165 |#2|)))) (-15 -3176 ((-3 |#1| "failed") |#1|)) (-15 -2652 ((-3 |#1| "failed") |#1|)) (-15 -1257 ((-3 |#1| "failed") |#1|)) (-15 -1344 ((-108))) (-15 -4045 ((-108))) (-15 -2760 ((-108))) (-15 -1560 ((-108))) (-15 -2383 ((-108))) (-15 -1381 ((-108))) (-15 -2596 ((-108))) (-15 -1242 ((-108))) (-15 -1208 ((-108))) (-15 -2118 ((-108))) (-15 -3987 ((-108))) (-15 -2057 ((-108))) (-15 -1453 ((-108))) (-15 -3160 ((-108))) (-15 -2370 ((-1080 |#2|) |#1|)) (-15 -3888 ((-1080 |#2|) |#1|)) (-15 -2168 ((-627 |#2|) (-1165 |#1|))) (-15 -1786 ((-627 |#2|) (-1165 |#1|))) (-15 -3518 (|#2| (-1165 |#1|))) (-15 -1586 (|#2| (-1165 |#1|))) (-15 -4083 (|#1| (-1165 |#2|) (-1165 |#1|))) (-15 -2234 ((-627 |#2|) (-1165 |#1|) (-1165 |#1|))) (-15 -2234 ((-1165 |#2|) |#1| (-1165 |#1|))) (-15 -3333 (|#2| |#1|)) (-15 -1332 (|#2| |#1|)) (-15 -3783 (|#2| |#1|)) (-15 -2627 (|#2| |#1|)) (-15 -3907 ((-627 |#2|) |#1| (-1165 |#1|))) (-15 -3734 ((-627 |#2|) |#1| (-1165 |#1|))) (-15 -3359 ((-1165 (-627 |#2|)) (-1165 |#1|))))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-3689 (((-3 $ "failed")) 37 (|has| |#1| (-513)))) (-1232 (((-3 $ "failed") $ $) 19)) (-3359 (((-1165 (-627 |#1|)) (-1165 $)) 78)) (-1386 (((-1165 $)) 81)) (-2547 (($) 17 T CONST)) (-3758 (((-3 (-2 (|:| |particular| $) (|:| -2470 (-587 $))) "failed")) 40 (|has| |#1| (-513)))) (-3167 (((-3 $ "failed")) 38 (|has| |#1| (-513)))) (-2168 (((-627 |#1|) (-1165 $)) 65)) (-3783 ((|#1| $) 74)) (-3907 (((-627 |#1|) $ (-1165 $)) 76)) (-3176 (((-3 $ "failed") $) 45 (|has| |#1| (-513)))) (-3047 (($ $ (-850)) 28)) (-3333 ((|#1| $) 72)) (-3330 (((-1080 |#1|) $) 42 (|has| |#1| (-513)))) (-3518 ((|#1| (-1165 $)) 67)) (-2370 (((-1080 |#1|) $) 63)) (-1208 (((-108)) 57)) (-4083 (($ (-1165 |#1|) (-1165 $)) 69)) (-1257 (((-3 $ "failed") $) 47 (|has| |#1| (-513)))) (-3162 (((-850)) 80)) (-3856 (((-108)) 54)) (-2049 (($ $ (-850)) 33)) (-2760 (((-108)) 50)) (-1344 (((-108)) 48)) (-2383 (((-108)) 52)) (-3524 (((-3 (-2 (|:| |particular| $) (|:| -2470 (-587 $))) "failed")) 41 (|has| |#1| (-513)))) (-2172 (((-3 $ "failed")) 39 (|has| |#1| (-513)))) (-1786 (((-627 |#1|) (-1165 $)) 66)) (-2627 ((|#1| $) 75)) (-3734 (((-627 |#1|) $ (-1165 $)) 77)) (-2652 (((-3 $ "failed") $) 46 (|has| |#1| (-513)))) (-2830 (($ $ (-850)) 29)) (-1332 ((|#1| $) 73)) (-1729 (((-1080 |#1|) $) 43 (|has| |#1| (-513)))) (-1586 ((|#1| (-1165 $)) 68)) (-3888 (((-1080 |#1|) $) 64)) (-2118 (((-108)) 58)) (-3688 (((-1067) $) 9)) (-4045 (((-108)) 49)) (-1560 (((-108)) 51)) (-1381 (((-108)) 53)) (-4147 (((-1031) $) 10)) (-1242 (((-108)) 56)) (-2234 (((-1165 |#1|) $ (-1165 $)) 71) (((-627 |#1|) (-1165 $) (-1165 $)) 70)) (-3557 (((-587 (-881 |#1|)) (-1165 $)) 79)) (-2674 (($ $ $) 25)) (-3160 (((-108)) 62)) (-2189 (((-792) $) 11)) (-2578 (((-587 (-1165 |#1|))) 44 (|has| |#1| (-513)))) (-2922 (($ $ $ $) 26)) (-2057 (((-108)) 60)) (-2464 (($ $ $) 24)) (-1453 (((-108)) 61)) (-3987 (((-108)) 59)) (-2596 (((-108)) 55)) (-3561 (($) 18 T CONST)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 30)) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
+(((-341 |#1|) (-1196) (-157)) (T -341))
+((-1386 (*1 *2) (-12 (-4 *3 (-157)) (-5 *2 (-1165 *1)) (-4 *1 (-341 *3)))) (-3162 (*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-5 *2 (-850)))) (-3557 (*1 *2 *3) (-12 (-5 *3 (-1165 *1)) (-4 *1 (-341 *4)) (-4 *4 (-157)) (-5 *2 (-587 (-881 *4))))) (-3359 (*1 *2 *3) (-12 (-5 *3 (-1165 *1)) (-4 *1 (-341 *4)) (-4 *4 (-157)) (-5 *2 (-1165 (-627 *4))))) (-3734 (*1 *2 *1 *3) (-12 (-5 *3 (-1165 *1)) (-4 *1 (-341 *4)) (-4 *4 (-157)) (-5 *2 (-627 *4)))) (-3907 (*1 *2 *1 *3) (-12 (-5 *3 (-1165 *1)) (-4 *1 (-341 *4)) (-4 *4 (-157)) (-5 *2 (-627 *4)))) (-2627 (*1 *2 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-157)))) (-3783 (*1 *2 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-157)))) (-1332 (*1 *2 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-157)))) (-3333 (*1 *2 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-157)))) (-2234 (*1 *2 *1 *3) (-12 (-5 *3 (-1165 *1)) (-4 *1 (-341 *4)) (-4 *4 (-157)) (-5 *2 (-1165 *4)))) (-2234 (*1 *2 *3 *3) (-12 (-5 *3 (-1165 *1)) (-4 *1 (-341 *4)) (-4 *4 (-157)) (-5 *2 (-627 *4)))) (-4083 (*1 *1 *2 *3) (-12 (-5 *2 (-1165 *4)) (-5 *3 (-1165 *1)) (-4 *4 (-157)) (-4 *1 (-341 *4)))) (-1586 (*1 *2 *3) (-12 (-5 *3 (-1165 *1)) (-4 *1 (-341 *2)) (-4 *2 (-157)))) (-3518 (*1 *2 *3) (-12 (-5 *3 (-1165 *1)) (-4 *1 (-341 *2)) (-4 *2 (-157)))) (-1786 (*1 *2 *3) (-12 (-5 *3 (-1165 *1)) (-4 *1 (-341 *4)) (-4 *4 (-157)) (-5 *2 (-627 *4)))) (-2168 (*1 *2 *3) (-12 (-5 *3 (-1165 *1)) (-4 *1 (-341 *4)) (-4 *4 (-157)) (-5 *2 (-627 *4)))) (-3888 (*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-5 *2 (-1080 *3)))) (-2370 (*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-5 *2 (-1080 *3)))) (-3160 (*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-1453 (*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-2057 (*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-3987 (*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-2118 (*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-1208 (*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-1242 (*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-2596 (*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-3856 (*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-1381 (*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-2383 (*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-1560 (*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-2760 (*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-4045 (*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-1344 (*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-1257 (*1 *1 *1) (|partial| -12 (-4 *1 (-341 *2)) (-4 *2 (-157)) (-4 *2 (-513)))) (-2652 (*1 *1 *1) (|partial| -12 (-4 *1 (-341 *2)) (-4 *2 (-157)) (-4 *2 (-513)))) (-3176 (*1 *1 *1) (|partial| -12 (-4 *1 (-341 *2)) (-4 *2 (-157)) (-4 *2 (-513)))) (-2578 (*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-4 *3 (-513)) (-5 *2 (-587 (-1165 *3))))) (-1729 (*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-4 *3 (-513)) (-5 *2 (-1080 *3)))) (-3330 (*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-4 *3 (-513)) (-5 *2 (-1080 *3)))) (-3524 (*1 *2) (|partial| -12 (-4 *3 (-513)) (-4 *3 (-157)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2470 (-587 *1)))) (-4 *1 (-341 *3)))) (-3758 (*1 *2) (|partial| -12 (-4 *3 (-513)) (-4 *3 (-157)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2470 (-587 *1)))) (-4 *1 (-341 *3)))) (-2172 (*1 *1) (|partial| -12 (-4 *1 (-341 *2)) (-4 *2 (-513)) (-4 *2 (-157)))) (-3167 (*1 *1) (|partial| -12 (-4 *1 (-341 *2)) (-4 *2 (-513)) (-4 *2 (-157)))) (-3689 (*1 *1) (|partial| -12 (-4 *1 (-341 *2)) (-4 *2 (-513)) (-4 *2 (-157)))))
+(-13 (-681 |t#1|) (-10 -8 (-15 -1386 ((-1165 $))) (-15 -3162 ((-850))) (-15 -3557 ((-587 (-881 |t#1|)) (-1165 $))) (-15 -3359 ((-1165 (-627 |t#1|)) (-1165 $))) (-15 -3734 ((-627 |t#1|) $ (-1165 $))) (-15 -3907 ((-627 |t#1|) $ (-1165 $))) (-15 -2627 (|t#1| $)) (-15 -3783 (|t#1| $)) (-15 -1332 (|t#1| $)) (-15 -3333 (|t#1| $)) (-15 -2234 ((-1165 |t#1|) $ (-1165 $))) (-15 -2234 ((-627 |t#1|) (-1165 $) (-1165 $))) (-15 -4083 ($ (-1165 |t#1|) (-1165 $))) (-15 -1586 (|t#1| (-1165 $))) (-15 -3518 (|t#1| (-1165 $))) (-15 -1786 ((-627 |t#1|) (-1165 $))) (-15 -2168 ((-627 |t#1|) (-1165 $))) (-15 -3888 ((-1080 |t#1|) $)) (-15 -2370 ((-1080 |t#1|) $)) (-15 -3160 ((-108))) (-15 -1453 ((-108))) (-15 -2057 ((-108))) (-15 -3987 ((-108))) (-15 -2118 ((-108))) (-15 -1208 ((-108))) (-15 -1242 ((-108))) (-15 -2596 ((-108))) (-15 -3856 ((-108))) (-15 -1381 ((-108))) (-15 -2383 ((-108))) (-15 -1560 ((-108))) (-15 -2760 ((-108))) (-15 -4045 ((-108))) (-15 -1344 ((-108))) (IF (|has| |t#1| (-513)) (PROGN (-15 -1257 ((-3 $ "failed") $)) (-15 -2652 ((-3 $ "failed") $)) (-15 -3176 ((-3 $ "failed") $)) (-15 -2578 ((-587 (-1165 |t#1|)))) (-15 -1729 ((-1080 |t#1|) $)) (-15 -3330 ((-1080 |t#1|) $)) (-15 -3524 ((-3 (-2 (|:| |particular| $) (|:| -2470 (-587 $))) "failed"))) (-15 -3758 ((-3 (-2 (|:| |particular| $) (|:| -2470 (-587 $))) "failed"))) (-15 -2172 ((-3 $ "failed"))) (-15 -3167 ((-3 $ "failed"))) (-15 -3689 ((-3 $ "failed"))) (-6 -4230)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-561 (-792)) . T) ((-589 |#1|) . T) ((-654 |#1|) . T) ((-657) . T) ((-681 |#1|) . T) ((-698) . T) ((-976 |#1|) . T) ((-1013) . T))
+((-1415 (((-108) $ $) 7)) (-1630 (((-707)) 16)) (-3250 (($) 13)) (-2715 (((-850) $) 14)) (-3688 (((-1067) $) 9)) (-2716 (($ (-850)) 15)) (-4147 (((-1031) $) 10)) (-2189 (((-792) $) 11)) (-1531 (((-108) $ $) 6)))
+(((-342) (-1196)) (T -342))
+((-1630 (*1 *2) (-12 (-4 *1 (-342)) (-5 *2 (-707)))) (-2716 (*1 *1 *2) (-12 (-5 *2 (-850)) (-4 *1 (-342)))) (-2715 (*1 *2 *1) (-12 (-4 *1 (-342)) (-5 *2 (-850)))) (-3250 (*1 *1) (-4 *1 (-342))))
+(-13 (-1013) (-10 -8 (-15 -1630 ((-707))) (-15 -2716 ($ (-850))) (-15 -2715 ((-850) $)) (-15 -3250 ($))))
+(((-97) . T) ((-561 (-792)) . T) ((-1013) . T))
+((-3214 (((-627 |#2|) (-1165 $)) 40)) (-4083 (($ (-1165 |#2|) (-1165 $)) 35)) (-3499 (((-627 |#2|) $ (-1165 $)) 43)) (-4010 ((|#2| (-1165 $)) 13)) (-2234 (((-1165 |#2|) $ (-1165 $)) NIL) (((-627 |#2|) (-1165 $) (-1165 $)) 25)))
+(((-343 |#1| |#2| |#3|) (-10 -8 (-15 -3214 ((-627 |#2|) (-1165 |#1|))) (-15 -4010 (|#2| (-1165 |#1|))) (-15 -4083 (|#1| (-1165 |#2|) (-1165 |#1|))) (-15 -2234 ((-627 |#2|) (-1165 |#1|) (-1165 |#1|))) (-15 -2234 ((-1165 |#2|) |#1| (-1165 |#1|))) (-15 -3499 ((-627 |#2|) |#1| (-1165 |#1|)))) (-344 |#2| |#3|) (-157) (-1141 |#2|)) (T -343))
+NIL
+(-10 -8 (-15 -3214 ((-627 |#2|) (-1165 |#1|))) (-15 -4010 (|#2| (-1165 |#1|))) (-15 -4083 (|#1| (-1165 |#2|) (-1165 |#1|))) (-15 -2234 ((-627 |#2|) (-1165 |#1|) (-1165 |#1|))) (-15 -2234 ((-1165 |#2|) |#1| (-1165 |#1|))) (-15 -3499 ((-627 |#2|) |#1| (-1165 |#1|))))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-3214 (((-627 |#1|) (-1165 $)) 46)) (-1865 ((|#1| $) 52)) (-1232 (((-3 $ "failed") $ $) 19)) (-2547 (($) 17 T CONST)) (-4083 (($ (-1165 |#1|) (-1165 $)) 48)) (-3499 (((-627 |#1|) $ (-1165 $)) 53)) (-1257 (((-3 $ "failed") $) 34)) (-3162 (((-850)) 54)) (-3996 (((-108) $) 31)) (-3930 ((|#1| $) 51)) (-3548 ((|#2| $) 44 (|has| |#1| (-337)))) (-3688 (((-1067) $) 9)) (-4147 (((-1031) $) 10)) (-4010 ((|#1| (-1165 $)) 47)) (-2234 (((-1165 |#1|) $ (-1165 $)) 50) (((-627 |#1|) (-1165 $) (-1165 $)) 49)) (-2189 (((-792) $) 11) (($ (-521)) 28) (($ |#1|) 37)) (-1671 (((-3 $ "failed") $) 43 (|has| |#1| (-133)))) (-3110 ((|#2| $) 45)) (-3846 (((-707)) 29)) (-3505 (($ $ (-850)) 26) (($ $ (-707)) 33)) (-3561 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-707)) 32)) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38)))
+(((-344 |#1| |#2|) (-1196) (-157) (-1141 |t#1|)) (T -344))
+((-3162 (*1 *2) (-12 (-4 *1 (-344 *3 *4)) (-4 *3 (-157)) (-4 *4 (-1141 *3)) (-5 *2 (-850)))) (-3499 (*1 *2 *1 *3) (-12 (-5 *3 (-1165 *1)) (-4 *1 (-344 *4 *5)) (-4 *4 (-157)) (-4 *5 (-1141 *4)) (-5 *2 (-627 *4)))) (-1865 (*1 *2 *1) (-12 (-4 *1 (-344 *2 *3)) (-4 *3 (-1141 *2)) (-4 *2 (-157)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-344 *2 *3)) (-4 *3 (-1141 *2)) (-4 *2 (-157)))) (-2234 (*1 *2 *1 *3) (-12 (-5 *3 (-1165 *1)) (-4 *1 (-344 *4 *5)) (-4 *4 (-157)) (-4 *5 (-1141 *4)) (-5 *2 (-1165 *4)))) (-2234 (*1 *2 *3 *3) (-12 (-5 *3 (-1165 *1)) (-4 *1 (-344 *4 *5)) (-4 *4 (-157)) (-4 *5 (-1141 *4)) (-5 *2 (-627 *4)))) (-4083 (*1 *1 *2 *3) (-12 (-5 *2 (-1165 *4)) (-5 *3 (-1165 *1)) (-4 *4 (-157)) (-4 *1 (-344 *4 *5)) (-4 *5 (-1141 *4)))) (-4010 (*1 *2 *3) (-12 (-5 *3 (-1165 *1)) (-4 *1 (-344 *2 *4)) (-4 *4 (-1141 *2)) (-4 *2 (-157)))) (-3214 (*1 *2 *3) (-12 (-5 *3 (-1165 *1)) (-4 *1 (-344 *4 *5)) (-4 *4 (-157)) (-4 *5 (-1141 *4)) (-5 *2 (-627 *4)))) (-3110 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *2)) (-4 *3 (-157)) (-4 *2 (-1141 *3)))) (-3548 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *2)) (-4 *3 (-157)) (-4 *3 (-337)) (-4 *2 (-1141 *3)))))
+(-13 (-37 |t#1|) (-10 -8 (-15 -3162 ((-850))) (-15 -3499 ((-627 |t#1|) $ (-1165 $))) (-15 -1865 (|t#1| $)) (-15 -3930 (|t#1| $)) (-15 -2234 ((-1165 |t#1|) $ (-1165 $))) (-15 -2234 ((-627 |t#1|) (-1165 $) (-1165 $))) (-15 -4083 ($ (-1165 |t#1|) (-1165 $))) (-15 -4010 (|t#1| (-1165 $))) (-15 -3214 ((-627 |t#1|) (-1165 $))) (-15 -3110 (|t#2| $)) (IF (|has| |t#1| (-337)) (-15 -3548 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |t#1| (-133)) (-6 (-133)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-561 (-792)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-654 |#1|) . T) ((-663) . T) ((-976 |#1|) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T))
+((-3126 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 23)) (-3859 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 15)) (-1390 ((|#4| (-1 |#3| |#1|) |#2|) 21)))
+(((-345 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1390 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3859 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3126 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1119) (-347 |#1|) (-1119) (-347 |#3|)) (T -345))
+((-3126 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1119)) (-4 *5 (-1119)) (-4 *2 (-347 *5)) (-5 *1 (-345 *6 *4 *5 *2)) (-4 *4 (-347 *6)))) (-3859 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1119)) (-4 *2 (-1119)) (-5 *1 (-345 *5 *4 *2 *6)) (-4 *4 (-347 *5)) (-4 *6 (-347 *2)))) (-1390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *2 (-347 *6)) (-5 *1 (-345 *5 *4 *6 *2)) (-4 *4 (-347 *5)))))
+(-10 -7 (-15 -1390 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3859 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3126 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
+((-1505 (((-108) (-1 (-108) |#2| |#2|) $) NIL) (((-108) $) 18)) (-1621 (($ (-1 (-108) |#2| |#2|) $) NIL) (($ $) 28)) (-3211 (($ (-1 (-108) |#2| |#2|) $) 27) (($ $) 22)) (-1862 (($ $) 25)) (-3233 (((-521) (-1 (-108) |#2|) $) NIL) (((-521) |#2| $) 11) (((-521) |#2| $ (-521)) NIL)) (-1318 (($ (-1 (-108) |#2| |#2|) $ $) NIL) (($ $ $) 20)))
+(((-346 |#1| |#2|) (-10 -8 (-15 -1621 (|#1| |#1|)) (-15 -1621 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -1505 ((-108) |#1|)) (-15 -3211 (|#1| |#1|)) (-15 -1318 (|#1| |#1| |#1|)) (-15 -3233 ((-521) |#2| |#1| (-521))) (-15 -3233 ((-521) |#2| |#1|)) (-15 -3233 ((-521) (-1 (-108) |#2|) |#1|)) (-15 -1505 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -3211 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -1862 (|#1| |#1|)) (-15 -1318 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|))) (-347 |#2|) (-1119)) (T -346))
+NIL
+(-10 -8 (-15 -1621 (|#1| |#1|)) (-15 -1621 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -1505 ((-108) |#1|)) (-15 -3211 (|#1| |#1|)) (-15 -1318 (|#1| |#1| |#1|)) (-15 -3233 ((-521) |#2| |#1| (-521))) (-15 -3233 ((-521) |#2| |#1|)) (-15 -3233 ((-521) (-1 (-108) |#2|) |#1|)) (-15 -1505 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -3211 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -1862 (|#1| |#1|)) (-15 -1318 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)))
+((-1415 (((-108) $ $) 19 (|has| |#1| (-1013)))) (-1903 (((-1170) $ (-521) (-521)) 40 (|has| $ (-6 -4234)))) (-1505 (((-108) (-1 (-108) |#1| |#1|) $) 98) (((-108) $) 92 (|has| |#1| (-784)))) (-1621 (($ (-1 (-108) |#1| |#1|) $) 89 (|has| $ (-6 -4234))) (($ $) 88 (-12 (|has| |#1| (-784)) (|has| $ (-6 -4234))))) (-3211 (($ (-1 (-108) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-784)))) (-2978 (((-108) $ (-707)) 8)) (-2378 ((|#1| $ (-521) |#1|) 52 (|has| $ (-6 -4234))) ((|#1| $ (-1132 (-521)) |#1|) 58 (|has| $ (-6 -4234)))) (-1628 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4233)))) (-2547 (($) 7 T CONST)) (-3081 (($ $) 90 (|has| $ (-6 -4234)))) (-1862 (($ $) 100)) (-2332 (($ $) 78 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-1422 (($ |#1| $) 77 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4233)))) (-3859 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4233)))) (-3849 ((|#1| $ (-521) |#1|) 53 (|has| $ (-6 -4234)))) (-3626 ((|#1| $ (-521)) 51)) (-3233 (((-521) (-1 (-108) |#1|) $) 97) (((-521) |#1| $) 96 (|has| |#1| (-1013))) (((-521) |#1| $ (-521)) 95 (|has| |#1| (-1013)))) (-3831 (((-587 |#1|) $) 30 (|has| $ (-6 -4233)))) (-1811 (($ (-707) |#1|) 69)) (-2139 (((-108) $ (-707)) 9)) (-2826 (((-521) $) 43 (|has| (-521) (-784)))) (-2810 (($ $ $) 87 (|has| |#1| (-784)))) (-1318 (($ (-1 (-108) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-784)))) (-3757 (((-587 |#1|) $) 29 (|has| $ (-6 -4233)))) (-2221 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-2597 (((-521) $) 44 (|has| (-521) (-784)))) (-2446 (($ $ $) 86 (|has| |#1| (-784)))) (-3833 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3574 (((-108) $ (-707)) 10)) (-3688 (((-1067) $) 22 (|has| |#1| (-1013)))) (-1659 (($ |#1| $ (-521)) 60) (($ $ $ (-521)) 59)) (-1668 (((-587 (-521)) $) 46)) (-2941 (((-108) (-521) $) 47)) (-4147 (((-1031) $) 21 (|has| |#1| (-1013)))) (-2293 ((|#1| $) 42 (|has| (-521) (-784)))) (-3620 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-3016 (($ $ |#1|) 41 (|has| $ (-6 -4234)))) (-1789 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 |#1|))) 26 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) 25 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) 23 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-2488 (((-108) $ $) 14)) (-3821 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2489 (((-587 |#1|) $) 48)) (-3462 (((-108) $) 11)) (-4024 (($) 12)) (-2544 ((|#1| $ (-521) |#1|) 50) ((|#1| $ (-521)) 49) (($ $ (-1132 (-521))) 63)) (-3691 (($ $ (-521)) 62) (($ $ (-1132 (-521))) 61)) (-4163 (((-707) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4233))) (((-707) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-1497 (($ $ $ (-521)) 91 (|has| $ (-6 -4234)))) (-2404 (($ $) 13)) (-1430 (((-497) $) 79 (|has| |#1| (-562 (-497))))) (-2201 (($ (-587 |#1|)) 70)) (-4159 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-587 $)) 65)) (-2189 (((-792) $) 18 (|has| |#1| (-561 (-792))))) (-3049 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4233)))) (-1574 (((-108) $ $) 84 (|has| |#1| (-784)))) (-1558 (((-108) $ $) 83 (|has| |#1| (-784)))) (-1531 (((-108) $ $) 20 (|has| |#1| (-1013)))) (-1566 (((-108) $ $) 85 (|has| |#1| (-784)))) (-1549 (((-108) $ $) 82 (|has| |#1| (-784)))) (-3475 (((-707) $) 6 (|has| $ (-6 -4233)))))
+(((-347 |#1|) (-1196) (-1119)) (T -347))
+((-1318 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-347 *3)) (-4 *3 (-1119)))) (-1862 (*1 *1 *1) (-12 (-4 *1 (-347 *2)) (-4 *2 (-1119)))) (-3211 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-347 *3)) (-4 *3 (-1119)))) (-1505 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *1 (-347 *4)) (-4 *4 (-1119)) (-5 *2 (-108)))) (-3233 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-108) *4)) (-4 *1 (-347 *4)) (-4 *4 (-1119)) (-5 *2 (-521)))) (-3233 (*1 *2 *3 *1) (-12 (-4 *1 (-347 *3)) (-4 *3 (-1119)) (-4 *3 (-1013)) (-5 *2 (-521)))) (-3233 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-521)) (-4 *1 (-347 *3)) (-4 *3 (-1119)) (-4 *3 (-1013)))) (-1318 (*1 *1 *1 *1) (-12 (-4 *1 (-347 *2)) (-4 *2 (-1119)) (-4 *2 (-784)))) (-3211 (*1 *1 *1) (-12 (-4 *1 (-347 *2)) (-4 *2 (-1119)) (-4 *2 (-784)))) (-1505 (*1 *2 *1) (-12 (-4 *1 (-347 *3)) (-4 *3 (-1119)) (-4 *3 (-784)) (-5 *2 (-108)))) (-1497 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-521)) (|has| *1 (-6 -4234)) (-4 *1 (-347 *3)) (-4 *3 (-1119)))) (-3081 (*1 *1 *1) (-12 (|has| *1 (-6 -4234)) (-4 *1 (-347 *2)) (-4 *2 (-1119)))) (-1621 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3 *3)) (|has| *1 (-6 -4234)) (-4 *1 (-347 *3)) (-4 *3 (-1119)))) (-1621 (*1 *1 *1) (-12 (|has| *1 (-6 -4234)) (-4 *1 (-347 *2)) (-4 *2 (-1119)) (-4 *2 (-784)))))
+(-13 (-592 |t#1|) (-10 -8 (-6 -4233) (-15 -1318 ($ (-1 (-108) |t#1| |t#1|) $ $)) (-15 -1862 ($ $)) (-15 -3211 ($ (-1 (-108) |t#1| |t#1|) $)) (-15 -1505 ((-108) (-1 (-108) |t#1| |t#1|) $)) (-15 -3233 ((-521) (-1 (-108) |t#1|) $)) (IF (|has| |t#1| (-1013)) (PROGN (-15 -3233 ((-521) |t#1| $)) (-15 -3233 ((-521) |t#1| $ (-521)))) |%noBranch|) (IF (|has| |t#1| (-784)) (PROGN (-6 (-784)) (-15 -1318 ($ $ $)) (-15 -3211 ($ $)) (-15 -1505 ((-108) $))) |%noBranch|) (IF (|has| $ (-6 -4234)) (PROGN (-15 -1497 ($ $ $ (-521))) (-15 -3081 ($ $)) (-15 -1621 ($ (-1 (-108) |t#1| |t#1|) $)) (IF (|has| |t#1| (-784)) (-15 -1621 ($ $)) |%noBranch|)) |%noBranch|)))
+(((-33) . T) ((-97) -3703 (|has| |#1| (-1013)) (|has| |#1| (-784))) ((-561 (-792)) -3703 (|has| |#1| (-1013)) (|has| |#1| (-784)) (|has| |#1| (-561 (-792)))) ((-139 |#1|) . T) ((-562 (-497)) |has| |#1| (-562 (-497))) ((-261 #0=(-521) |#1|) . T) ((-263 #0# |#1|) . T) ((-284 |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-460 |#1|) . T) ((-554 #0# |#1|) . T) ((-482 |#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-592 |#1|) . T) ((-784) |has| |#1| (-784)) ((-1013) -3703 (|has| |#1| (-1013)) (|has| |#1| (-784))) ((-1119) . T))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-4101 (((-587 |#1|) $) 32)) (-1806 (($ $ (-707)) 33)) (-1232 (((-3 $ "failed") $ $) 19)) (-2547 (($) 17 T CONST)) (-3634 (((-1187 |#1| |#2|) (-1187 |#1| |#2|) $) 36)) (-2239 (($ $) 34)) (-3111 (((-1187 |#1| |#2|) (-1187 |#1| |#2|) $) 37)) (-3688 (((-1067) $) 9)) (-4147 (((-1031) $) 10)) (-2288 (($ $ |#1| $) 31) (($ $ (-587 |#1|) (-587 $)) 30)) (-1994 (((-707) $) 38)) (-2201 (($ $ $) 29)) (-2189 (((-792) $) 11) (($ |#1|) 41) (((-1178 |#1| |#2|) $) 40) (((-1187 |#1| |#2|) $) 39)) (-2973 ((|#2| (-1187 |#1| |#2|) $) 42)) (-3561 (($) 18 T CONST)) (-4121 (($ (-612 |#1|)) 35)) (-1531 (((-108) $ $) 6)) (-1620 (($ $ |#2|) 28 (|has| |#2| (-337)))) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ |#2| $) 23) (($ $ |#2|) 26)))
+(((-348 |#1| |#2|) (-1196) (-784) (-157)) (T -348))
+((-2973 (*1 *2 *3 *1) (-12 (-5 *3 (-1187 *4 *2)) (-4 *1 (-348 *4 *2)) (-4 *4 (-784)) (-4 *2 (-157)))) (-2189 (*1 *1 *2) (-12 (-4 *1 (-348 *2 *3)) (-4 *2 (-784)) (-4 *3 (-157)))) (-2189 (*1 *2 *1) (-12 (-4 *1 (-348 *3 *4)) (-4 *3 (-784)) (-4 *4 (-157)) (-5 *2 (-1178 *3 *4)))) (-2189 (*1 *2 *1) (-12 (-4 *1 (-348 *3 *4)) (-4 *3 (-784)) (-4 *4 (-157)) (-5 *2 (-1187 *3 *4)))) (-1994 (*1 *2 *1) (-12 (-4 *1 (-348 *3 *4)) (-4 *3 (-784)) (-4 *4 (-157)) (-5 *2 (-707)))) (-3111 (*1 *2 *2 *1) (-12 (-5 *2 (-1187 *3 *4)) (-4 *1 (-348 *3 *4)) (-4 *3 (-784)) (-4 *4 (-157)))) (-3634 (*1 *2 *2 *1) (-12 (-5 *2 (-1187 *3 *4)) (-4 *1 (-348 *3 *4)) (-4 *3 (-784)) (-4 *4 (-157)))) (-4121 (*1 *1 *2) (-12 (-5 *2 (-612 *3)) (-4 *3 (-784)) (-4 *1 (-348 *3 *4)) (-4 *4 (-157)))) (-2239 (*1 *1 *1) (-12 (-4 *1 (-348 *2 *3)) (-4 *2 (-784)) (-4 *3 (-157)))) (-1806 (*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-4 *1 (-348 *3 *4)) (-4 *3 (-784)) (-4 *4 (-157)))) (-4101 (*1 *2 *1) (-12 (-4 *1 (-348 *3 *4)) (-4 *3 (-784)) (-4 *4 (-157)) (-5 *2 (-587 *3)))) (-2288 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-348 *2 *3)) (-4 *2 (-784)) (-4 *3 (-157)))) (-2288 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-587 *4)) (-5 *3 (-587 *1)) (-4 *1 (-348 *4 *5)) (-4 *4 (-784)) (-4 *5 (-157)))))
+(-13 (-578 |t#2|) (-10 -8 (-15 -2973 (|t#2| (-1187 |t#1| |t#2|) $)) (-15 -2189 ($ |t#1|)) (-15 -2189 ((-1178 |t#1| |t#2|) $)) (-15 -2189 ((-1187 |t#1| |t#2|) $)) (-15 -1994 ((-707) $)) (-15 -3111 ((-1187 |t#1| |t#2|) (-1187 |t#1| |t#2|) $)) (-15 -3634 ((-1187 |t#1| |t#2|) (-1187 |t#1| |t#2|) $)) (-15 -4121 ($ (-612 |t#1|))) (-15 -2239 ($ $)) (-15 -1806 ($ $ (-707))) (-15 -4101 ((-587 |t#1|) $)) (-15 -2288 ($ $ |t#1| $)) (-15 -2288 ($ $ (-587 |t#1|) (-587 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#2| |#2|) . T) ((-124) . T) ((-561 (-792)) . T) ((-589 |#2|) . T) ((-578 |#2|) . T) ((-654 |#2|) . T) ((-976 |#2|) . T) ((-1013) . T))
+((-1685 ((|#2| (-1 (-108) |#1| |#1|) |#2|) 24)) (-3200 ((|#2| (-1 (-108) |#1| |#1|) |#2|) 12)) (-4082 ((|#2| (-1 (-108) |#1| |#1|) |#2|) 21)))
+(((-349 |#1| |#2|) (-10 -7 (-15 -3200 (|#2| (-1 (-108) |#1| |#1|) |#2|)) (-15 -4082 (|#2| (-1 (-108) |#1| |#1|) |#2|)) (-15 -1685 (|#2| (-1 (-108) |#1| |#1|) |#2|))) (-1119) (-13 (-347 |#1|) (-10 -7 (-6 -4234)))) (T -349))
+((-1685 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1119)) (-5 *1 (-349 *4 *2)) (-4 *2 (-13 (-347 *4) (-10 -7 (-6 -4234)))))) (-4082 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1119)) (-5 *1 (-349 *4 *2)) (-4 *2 (-13 (-347 *4) (-10 -7 (-6 -4234)))))) (-3200 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1119)) (-5 *1 (-349 *4 *2)) (-4 *2 (-13 (-347 *4) (-10 -7 (-6 -4234)))))))
+(-10 -7 (-15 -3200 (|#2| (-1 (-108) |#1| |#1|) |#2|)) (-15 -4082 (|#2| (-1 (-108) |#1| |#1|) |#2|)) (-15 -1685 (|#2| (-1 (-108) |#1| |#1|) |#2|)))
+((-3279 (((-627 |#2|) (-627 $)) NIL) (((-2 (|:| -1201 (-627 |#2|)) (|:| |vec| (-1165 |#2|))) (-627 $) (-1165 $)) NIL) (((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) 19) (((-627 (-521)) (-627 $)) 13)))
+(((-350 |#1| |#2|) (-10 -8 (-15 -3279 ((-627 (-521)) (-627 |#1|))) (-15 -3279 ((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 |#1|) (-1165 |#1|))) (-15 -3279 ((-2 (|:| -1201 (-627 |#2|)) (|:| |vec| (-1165 |#2|))) (-627 |#1|) (-1165 |#1|))) (-15 -3279 ((-627 |#2|) (-627 |#1|)))) (-351 |#2|) (-970)) (T -350))
+NIL
+(-10 -8 (-15 -3279 ((-627 (-521)) (-627 |#1|))) (-15 -3279 ((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 |#1|) (-1165 |#1|))) (-15 -3279 ((-2 (|:| -1201 (-627 |#2|)) (|:| |vec| (-1165 |#2|))) (-627 |#1|) (-1165 |#1|))) (-15 -3279 ((-627 |#2|) (-627 |#1|))))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-1232 (((-3 $ "failed") $ $) 19)) (-2547 (($) 17 T CONST)) (-3279 (((-627 |#1|) (-627 $)) 36) (((-2 (|:| -1201 (-627 |#1|)) (|:| |vec| (-1165 |#1|))) (-627 $) (-1165 $)) 35) (((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) 43 (|has| |#1| (-583 (-521)))) (((-627 (-521)) (-627 $)) 42 (|has| |#1| (-583 (-521))))) (-1257 (((-3 $ "failed") $) 34)) (-3996 (((-108) $) 31)) (-3688 (((-1067) $) 9)) (-4147 (((-1031) $) 10)) (-2189 (((-792) $) 11) (($ (-521)) 28)) (-3846 (((-707)) 29)) (-3505 (($ $ (-850)) 26) (($ $ (-707)) 33)) (-3561 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-707)) 32)) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24)))
+(((-351 |#1|) (-1196) (-970)) (T -351))
+NIL
+(-13 (-583 |t#1|) (-10 -7 (IF (|has| |t#1| (-583 (-521))) (-6 (-583 (-521))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-561 (-792)) . T) ((-589 $) . T) ((-583 (-521)) |has| |#1| (-583 (-521))) ((-583 |#1|) . T) ((-663) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T))
+((-3369 (((-587 (-269 (-881 (-154 |#1|)))) (-269 (-381 (-881 (-154 (-521))))) |#1|) 50) (((-587 (-269 (-881 (-154 |#1|)))) (-381 (-881 (-154 (-521)))) |#1|) 49) (((-587 (-587 (-269 (-881 (-154 |#1|))))) (-587 (-269 (-381 (-881 (-154 (-521)))))) |#1|) 45) (((-587 (-587 (-269 (-881 (-154 |#1|))))) (-587 (-381 (-881 (-154 (-521))))) |#1|) 39)) (-3183 (((-587 (-587 (-154 |#1|))) (-587 (-381 (-881 (-154 (-521))))) (-587 (-1084)) |#1|) 27) (((-587 (-154 |#1|)) (-381 (-881 (-154 (-521)))) |#1|) 15)))
+(((-352 |#1|) (-10 -7 (-15 -3369 ((-587 (-587 (-269 (-881 (-154 |#1|))))) (-587 (-381 (-881 (-154 (-521))))) |#1|)) (-15 -3369 ((-587 (-587 (-269 (-881 (-154 |#1|))))) (-587 (-269 (-381 (-881 (-154 (-521)))))) |#1|)) (-15 -3369 ((-587 (-269 (-881 (-154 |#1|)))) (-381 (-881 (-154 (-521)))) |#1|)) (-15 -3369 ((-587 (-269 (-881 (-154 |#1|)))) (-269 (-381 (-881 (-154 (-521))))) |#1|)) (-15 -3183 ((-587 (-154 |#1|)) (-381 (-881 (-154 (-521)))) |#1|)) (-15 -3183 ((-587 (-587 (-154 |#1|))) (-587 (-381 (-881 (-154 (-521))))) (-587 (-1084)) |#1|))) (-13 (-337) (-782))) (T -352))
+((-3183 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-587 (-381 (-881 (-154 (-521)))))) (-5 *4 (-587 (-1084))) (-5 *2 (-587 (-587 (-154 *5)))) (-5 *1 (-352 *5)) (-4 *5 (-13 (-337) (-782))))) (-3183 (*1 *2 *3 *4) (-12 (-5 *3 (-381 (-881 (-154 (-521))))) (-5 *2 (-587 (-154 *4))) (-5 *1 (-352 *4)) (-4 *4 (-13 (-337) (-782))))) (-3369 (*1 *2 *3 *4) (-12 (-5 *3 (-269 (-381 (-881 (-154 (-521)))))) (-5 *2 (-587 (-269 (-881 (-154 *4))))) (-5 *1 (-352 *4)) (-4 *4 (-13 (-337) (-782))))) (-3369 (*1 *2 *3 *4) (-12 (-5 *3 (-381 (-881 (-154 (-521))))) (-5 *2 (-587 (-269 (-881 (-154 *4))))) (-5 *1 (-352 *4)) (-4 *4 (-13 (-337) (-782))))) (-3369 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-269 (-381 (-881 (-154 (-521))))))) (-5 *2 (-587 (-587 (-269 (-881 (-154 *4)))))) (-5 *1 (-352 *4)) (-4 *4 (-13 (-337) (-782))))) (-3369 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-381 (-881 (-154 (-521)))))) (-5 *2 (-587 (-587 (-269 (-881 (-154 *4)))))) (-5 *1 (-352 *4)) (-4 *4 (-13 (-337) (-782))))))
+(-10 -7 (-15 -3369 ((-587 (-587 (-269 (-881 (-154 |#1|))))) (-587 (-381 (-881 (-154 (-521))))) |#1|)) (-15 -3369 ((-587 (-587 (-269 (-881 (-154 |#1|))))) (-587 (-269 (-381 (-881 (-154 (-521)))))) |#1|)) (-15 -3369 ((-587 (-269 (-881 (-154 |#1|)))) (-381 (-881 (-154 (-521)))) |#1|)) (-15 -3369 ((-587 (-269 (-881 (-154 |#1|)))) (-269 (-381 (-881 (-154 (-521))))) |#1|)) (-15 -3183 ((-587 (-154 |#1|)) (-381 (-881 (-154 (-521)))) |#1|)) (-15 -3183 ((-587 (-587 (-154 |#1|))) (-587 (-381 (-881 (-154 (-521))))) (-587 (-1084)) |#1|)))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) 33)) (-2086 (((-521) $) 55)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-2559 (($ $) NIL)) (-1733 (((-108) $) NIL)) (-2977 (($ $) 110)) (-2904 (($ $) 82)) (-2769 (($ $) 71)) (-1232 (((-3 $ "failed") $ $) NIL)) (-3063 (($ $) NIL)) (-3358 (((-392 $) $) NIL)) (-1927 (($ $) 44)) (-1389 (((-108) $ $) NIL)) (-2880 (($ $) 80)) (-2746 (($ $) 69)) (-1606 (((-521) $) 64)) (-1662 (($ $ (-521)) 62)) (-2926 (($ $) NIL)) (-2790 (($ $) NIL)) (-2547 (($) NIL T CONST)) (-1218 (($ $) 112)) (-1297 (((-3 (-521) "failed") $) 188) (((-3 (-381 (-521)) "failed") $) 184)) (-1483 (((-521) $) 186) (((-381 (-521)) $) 182)) (-2277 (($ $ $) NIL)) (-4181 (((-521) $ $) 102)) (-1257 (((-3 $ "failed") $) 114)) (-3321 (((-381 (-521)) $ (-707)) 189) (((-381 (-521)) $ (-707) (-707)) 181)) (-2253 (($ $ $) NIL)) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) NIL)) (-2710 (((-108) $) NIL)) (-2173 (((-850)) 73) (((-850) (-850)) 98 (|has| $ (-6 -4224)))) (-3951 (((-108) $) 106)) (-2834 (($) 40)) (-3427 (((-818 (-353) $) $ (-821 (-353)) (-818 (-353) $)) NIL)) (-2649 (((-1170) (-707)) 151)) (-3750 (((-1170)) 156) (((-1170) (-707)) 157)) (-3000 (((-1170)) 158) (((-1170) (-707)) 159)) (-2614 (((-1170)) 154) (((-1170) (-707)) 155)) (-2733 (((-521) $) 58)) (-3996 (((-108) $) 104)) (-3407 (($ $ (-521)) NIL)) (-3244 (($ $) 48)) (-3930 (($ $) NIL)) (-2210 (((-108) $) 35)) (-1546 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-2810 (($ $ $) NIL) (($) NIL (-12 (-2400 (|has| $ (-6 -4216))) (-2400 (|has| $ (-6 -4224)))))) (-2446 (($ $ $) NIL) (($) 99 (-12 (-2400 (|has| $ (-6 -4216))) (-2400 (|has| $ (-6 -4224)))))) (-3352 (((-521) $) 17)) (-3880 (($) 87) (($ $) 92)) (-1444 (($) 91) (($ $) 93)) (-1253 (($ $) 83)) (-2223 (($ $ $) NIL) (($ (-587 $)) NIL)) (-3688 (((-1067) $) NIL)) (-3095 (($ $) 116)) (-1492 (((-850) (-521)) 43 (|has| $ (-6 -4224)))) (-4147 (((-1031) $) NIL)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) NIL)) (-2258 (($ $ $) NIL) (($ (-587 $)) NIL)) (-2850 (($ $) 53)) (-2567 (($ $) 109)) (-3068 (($ (-521) (-521)) 107) (($ (-521) (-521) (-850)) 108)) (-1916 (((-392 $) $) NIL)) (-1962 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2230 (((-3 $ "failed") $ $) NIL)) (-3854 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-2997 (((-521) $) 19)) (-3474 (($) 94)) (-3261 (($ $) 79)) (-4196 (((-707) $) NIL)) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) NIL)) (-4151 (((-850)) 100) (((-850) (-850)) 101 (|has| $ (-6 -4224)))) (-2156 (($ $ (-707)) NIL) (($ $) 115)) (-1276 (((-850) (-521)) 47 (|has| $ (-6 -4224)))) (-1738 (($ $) NIL)) (-2800 (($ $) NIL)) (-2915 (($ $) NIL)) (-2780 (($ $) NIL)) (-2892 (($ $) 81)) (-2758 (($ $) 70)) (-1430 (((-353) $) 174) (((-202) $) 176) (((-821 (-353)) $) NIL) (((-1067) $) 161) (((-497) $) 172) (($ (-202)) 180)) (-2189 (((-792) $) 163) (($ (-521)) 185) (($ $) NIL) (($ (-381 (-521))) NIL) (($ (-521)) 185) (($ (-381 (-521))) NIL) (((-202) $) 177)) (-3846 (((-707)) NIL)) (-2382 (($ $) 111)) (-2703 (((-850)) 54) (((-850) (-850)) 66 (|has| $ (-6 -4224)))) (-3351 (((-850)) 103)) (-1759 (($ $) 86)) (-2832 (($ $) 46) (($ $ $) 52)) (-4210 (((-108) $ $) NIL)) (-1745 (($ $) 84)) (-2811 (($ $) 37)) (-1776 (($ $) NIL)) (-2856 (($ $) NIL)) (-3919 (($ $) NIL)) (-2868 (($ $) NIL)) (-1768 (($ $) NIL)) (-2844 (($ $) NIL)) (-1752 (($ $) 85)) (-2821 (($ $) 49)) (-3304 (($ $) 51)) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (-3561 (($) 34 T CONST)) (-3572 (($) 38 T CONST)) (-2287 (((-1067) $) 27) (((-1067) $ (-108)) 29) (((-1170) (-759) $) 30) (((-1170) (-759) $ (-108)) 31)) (-2212 (($ $ (-707)) NIL) (($ $) NIL)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) 39)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 42)) (-1620 (($ $ $) 45) (($ $ (-521)) 41)) (-1612 (($ $) 36) (($ $ $) 50)) (-1602 (($ $ $) 61)) (** (($ $ (-850)) 67) (($ $ (-707)) NIL) (($ $ (-521)) 88) (($ $ (-381 (-521))) 125) (($ $ $) 117)) (* (($ (-850) $) 65) (($ (-707) $) NIL) (($ (-521) $) 68) (($ $ $) 60) (($ $ (-381 (-521))) NIL) (($ (-381 (-521)) $) NIL)))
+(((-353) (-13 (-378) (-210) (-562 (-1067)) (-765) (-561 (-202)) (-1105) (-562 (-497)) (-10 -8 (-15 -1620 ($ $ (-521))) (-15 ** ($ $ $)) (-15 -3244 ($ $)) (-15 -4181 ((-521) $ $)) (-15 -1662 ($ $ (-521))) (-15 -3321 ((-381 (-521)) $ (-707))) (-15 -3321 ((-381 (-521)) $ (-707) (-707))) (-15 -3880 ($)) (-15 -1444 ($)) (-15 -3474 ($)) (-15 -2832 ($ $ $)) (-15 -3880 ($ $)) (-15 -1444 ($ $)) (-15 -1430 ($ (-202))) (-15 -3000 ((-1170))) (-15 -3000 ((-1170) (-707))) (-15 -2614 ((-1170))) (-15 -2614 ((-1170) (-707))) (-15 -3750 ((-1170))) (-15 -3750 ((-1170) (-707))) (-15 -2649 ((-1170) (-707))) (-6 -4224) (-6 -4216)))) (T -353))
+((** (*1 *1 *1 *1) (-5 *1 (-353))) (-1620 (*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-353)))) (-3244 (*1 *1 *1) (-5 *1 (-353))) (-4181 (*1 *2 *1 *1) (-12 (-5 *2 (-521)) (-5 *1 (-353)))) (-1662 (*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-353)))) (-3321 (*1 *2 *1 *3) (-12 (-5 *3 (-707)) (-5 *2 (-381 (-521))) (-5 *1 (-353)))) (-3321 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-707)) (-5 *2 (-381 (-521))) (-5 *1 (-353)))) (-3880 (*1 *1) (-5 *1 (-353))) (-1444 (*1 *1) (-5 *1 (-353))) (-3474 (*1 *1) (-5 *1 (-353))) (-2832 (*1 *1 *1 *1) (-5 *1 (-353))) (-3880 (*1 *1 *1) (-5 *1 (-353))) (-1444 (*1 *1 *1) (-5 *1 (-353))) (-1430 (*1 *1 *2) (-12 (-5 *2 (-202)) (-5 *1 (-353)))) (-3000 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-353)))) (-3000 (*1 *2 *3) (-12 (-5 *3 (-707)) (-5 *2 (-1170)) (-5 *1 (-353)))) (-2614 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-353)))) (-2614 (*1 *2 *3) (-12 (-5 *3 (-707)) (-5 *2 (-1170)) (-5 *1 (-353)))) (-3750 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-353)))) (-3750 (*1 *2 *3) (-12 (-5 *3 (-707)) (-5 *2 (-1170)) (-5 *1 (-353)))) (-2649 (*1 *2 *3) (-12 (-5 *3 (-707)) (-5 *2 (-1170)) (-5 *1 (-353)))))
+(-13 (-378) (-210) (-562 (-1067)) (-765) (-561 (-202)) (-1105) (-562 (-497)) (-10 -8 (-15 -1620 ($ $ (-521))) (-15 ** ($ $ $)) (-15 -3244 ($ $)) (-15 -4181 ((-521) $ $)) (-15 -1662 ($ $ (-521))) (-15 -3321 ((-381 (-521)) $ (-707))) (-15 -3321 ((-381 (-521)) $ (-707) (-707))) (-15 -3880 ($)) (-15 -1444 ($)) (-15 -3474 ($)) (-15 -2832 ($ $ $)) (-15 -3880 ($ $)) (-15 -1444 ($ $)) (-15 -1430 ($ (-202))) (-15 -3000 ((-1170))) (-15 -3000 ((-1170) (-707))) (-15 -2614 ((-1170))) (-15 -2614 ((-1170) (-707))) (-15 -3750 ((-1170))) (-15 -3750 ((-1170) (-707))) (-15 -2649 ((-1170) (-707))) (-6 -4224) (-6 -4216)))
+((-3182 (((-587 (-269 (-881 |#1|))) (-269 (-381 (-881 (-521)))) |#1|) 46) (((-587 (-269 (-881 |#1|))) (-381 (-881 (-521))) |#1|) 45) (((-587 (-587 (-269 (-881 |#1|)))) (-587 (-269 (-381 (-881 (-521))))) |#1|) 41) (((-587 (-587 (-269 (-881 |#1|)))) (-587 (-381 (-881 (-521)))) |#1|) 35)) (-3292 (((-587 |#1|) (-381 (-881 (-521))) |#1|) 19) (((-587 (-587 |#1|)) (-587 (-381 (-881 (-521)))) (-587 (-1084)) |#1|) 30)))
+(((-354 |#1|) (-10 -7 (-15 -3182 ((-587 (-587 (-269 (-881 |#1|)))) (-587 (-381 (-881 (-521)))) |#1|)) (-15 -3182 ((-587 (-587 (-269 (-881 |#1|)))) (-587 (-269 (-381 (-881 (-521))))) |#1|)) (-15 -3182 ((-587 (-269 (-881 |#1|))) (-381 (-881 (-521))) |#1|)) (-15 -3182 ((-587 (-269 (-881 |#1|))) (-269 (-381 (-881 (-521)))) |#1|)) (-15 -3292 ((-587 (-587 |#1|)) (-587 (-381 (-881 (-521)))) (-587 (-1084)) |#1|)) (-15 -3292 ((-587 |#1|) (-381 (-881 (-521))) |#1|))) (-13 (-782) (-337))) (T -354))
+((-3292 (*1 *2 *3 *4) (-12 (-5 *3 (-381 (-881 (-521)))) (-5 *2 (-587 *4)) (-5 *1 (-354 *4)) (-4 *4 (-13 (-782) (-337))))) (-3292 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-587 (-381 (-881 (-521))))) (-5 *4 (-587 (-1084))) (-5 *2 (-587 (-587 *5))) (-5 *1 (-354 *5)) (-4 *5 (-13 (-782) (-337))))) (-3182 (*1 *2 *3 *4) (-12 (-5 *3 (-269 (-381 (-881 (-521))))) (-5 *2 (-587 (-269 (-881 *4)))) (-5 *1 (-354 *4)) (-4 *4 (-13 (-782) (-337))))) (-3182 (*1 *2 *3 *4) (-12 (-5 *3 (-381 (-881 (-521)))) (-5 *2 (-587 (-269 (-881 *4)))) (-5 *1 (-354 *4)) (-4 *4 (-13 (-782) (-337))))) (-3182 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-269 (-381 (-881 (-521)))))) (-5 *2 (-587 (-587 (-269 (-881 *4))))) (-5 *1 (-354 *4)) (-4 *4 (-13 (-782) (-337))))) (-3182 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-381 (-881 (-521))))) (-5 *2 (-587 (-587 (-269 (-881 *4))))) (-5 *1 (-354 *4)) (-4 *4 (-13 (-782) (-337))))))
+(-10 -7 (-15 -3182 ((-587 (-587 (-269 (-881 |#1|)))) (-587 (-381 (-881 (-521)))) |#1|)) (-15 -3182 ((-587 (-587 (-269 (-881 |#1|)))) (-587 (-269 (-381 (-881 (-521))))) |#1|)) (-15 -3182 ((-587 (-269 (-881 |#1|))) (-381 (-881 (-521))) |#1|)) (-15 -3182 ((-587 (-269 (-881 |#1|))) (-269 (-381 (-881 (-521)))) |#1|)) (-15 -3292 ((-587 (-587 |#1|)) (-587 (-381 (-881 (-521)))) (-587 (-1084)) |#1|)) (-15 -3292 ((-587 |#1|) (-381 (-881 (-521))) |#1|)))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-1232 (((-3 $ "failed") $ $) NIL)) (-2547 (($) NIL T CONST)) (-1297 (((-3 |#2| "failed") $) 25)) (-1483 ((|#2| $) 27)) (-3152 (($ $) NIL)) (-2678 (((-707) $) 10)) (-2959 (((-587 $) $) 20)) (-3649 (((-108) $) NIL)) (-2517 (($ |#2| |#1|) 18)) (-1390 (($ (-1 |#1| |#1|) $) NIL)) (-1267 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 14)) (-3125 ((|#2| $) 15)) (-3135 ((|#1| $) NIL)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2189 (((-792) $) 44) (($ |#2|) 26)) (-1259 (((-587 |#1|) $) 17)) (-3800 ((|#1| $ |#2|) 46)) (-3561 (($) 28 T CONST)) (-2352 (((-587 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 13)) (-1531 (((-108) $ $) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ |#1| $) 31) (($ $ |#1|) 32) (($ |#1| |#2|) 34) (($ |#2| |#1|) 35)))
+(((-355 |#1| |#2|) (-13 (-356 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-970) (-784)) (T -355))
+((* (*1 *1 *2 *3) (-12 (-5 *1 (-355 *3 *2)) (-4 *3 (-970)) (-4 *2 (-784)))))
+(-13 (-356 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|))))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-1232 (((-3 $ "failed") $ $) 19)) (-2547 (($) 17 T CONST)) (-1297 (((-3 |#2| "failed") $) 44)) (-1483 ((|#2| $) 43)) (-3152 (($ $) 30)) (-2678 (((-707) $) 34)) (-2959 (((-587 $) $) 35)) (-3649 (((-108) $) 38)) (-2517 (($ |#2| |#1|) 39)) (-1390 (($ (-1 |#1| |#1|) $) 40)) (-1267 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 31)) (-3125 ((|#2| $) 33)) (-3135 ((|#1| $) 32)) (-3688 (((-1067) $) 9)) (-4147 (((-1031) $) 10)) (-2189 (((-792) $) 11) (($ |#2|) 45)) (-1259 (((-587 |#1|) $) 36)) (-3800 ((|#1| $ |#2|) 41)) (-3561 (($) 18 T CONST)) (-2352 (((-587 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 37)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26) (($ |#1| |#2|) 42)))
+(((-356 |#1| |#2|) (-1196) (-970) (-1013)) (T -356))
+((* (*1 *1 *2 *3) (-12 (-4 *1 (-356 *2 *3)) (-4 *2 (-970)) (-4 *3 (-1013)))) (-3800 (*1 *2 *1 *3) (-12 (-4 *1 (-356 *2 *3)) (-4 *3 (-1013)) (-4 *2 (-970)))) (-1390 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-356 *3 *4)) (-4 *3 (-970)) (-4 *4 (-1013)))) (-2517 (*1 *1 *2 *3) (-12 (-4 *1 (-356 *3 *2)) (-4 *3 (-970)) (-4 *2 (-1013)))) (-3649 (*1 *2 *1) (-12 (-4 *1 (-356 *3 *4)) (-4 *3 (-970)) (-4 *4 (-1013)) (-5 *2 (-108)))) (-2352 (*1 *2 *1) (-12 (-4 *1 (-356 *3 *4)) (-4 *3 (-970)) (-4 *4 (-1013)) (-5 *2 (-587 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1259 (*1 *2 *1) (-12 (-4 *1 (-356 *3 *4)) (-4 *3 (-970)) (-4 *4 (-1013)) (-5 *2 (-587 *3)))) (-2959 (*1 *2 *1) (-12 (-4 *3 (-970)) (-4 *4 (-1013)) (-5 *2 (-587 *1)) (-4 *1 (-356 *3 *4)))) (-2678 (*1 *2 *1) (-12 (-4 *1 (-356 *3 *4)) (-4 *3 (-970)) (-4 *4 (-1013)) (-5 *2 (-707)))) (-3125 (*1 *2 *1) (-12 (-4 *1 (-356 *3 *2)) (-4 *3 (-970)) (-4 *2 (-1013)))) (-3135 (*1 *2 *1) (-12 (-4 *1 (-356 *2 *3)) (-4 *3 (-1013)) (-4 *2 (-970)))) (-1267 (*1 *2 *1) (-12 (-4 *1 (-356 *3 *4)) (-4 *3 (-970)) (-4 *4 (-1013)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-3152 (*1 *1 *1) (-12 (-4 *1 (-356 *2 *3)) (-4 *2 (-970)) (-4 *3 (-1013)))))
+(-13 (-107 |t#1| |t#1|) (-961 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -3800 (|t#1| $ |t#2|)) (-15 -1390 ($ (-1 |t#1| |t#1|) $)) (-15 -2517 ($ |t#2| |t#1|)) (-15 -3649 ((-108) $)) (-15 -2352 ((-587 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1259 ((-587 |t#1|) $)) (-15 -2959 ((-587 $) $)) (-15 -2678 ((-707) $)) (-15 -3125 (|t#2| $)) (-15 -3135 (|t#1| $)) (-15 -1267 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -3152 ($ $)) (IF (|has| |t#1| (-157)) (-6 (-654 |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-561 (-792)) . T) ((-589 |#1|) . T) ((-654 |#1|) |has| |#1| (-157)) ((-961 |#2|) . T) ((-976 |#1|) . T) ((-1013) . T))
+((-2009 (((-1170) $) 7)) (-2189 (((-792) $) 8) (($ (-627 (-636))) 14) (($ (-587 (-304))) 13) (($ (-304)) 12) (($ (-2 (|:| |localSymbols| (-1088)) (|:| -2032 (-587 (-304))))) 11)))
+(((-357) (-1196)) (T -357))
+((-2189 (*1 *1 *2) (-12 (-5 *2 (-627 (-636))) (-4 *1 (-357)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-587 (-304))) (-4 *1 (-357)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-304)) (-4 *1 (-357)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1088)) (|:| -2032 (-587 (-304))))) (-4 *1 (-357)))))
+(-13 (-369) (-10 -8 (-15 -2189 ($ (-627 (-636)))) (-15 -2189 ($ (-587 (-304)))) (-15 -2189 ($ (-304))) (-15 -2189 ($ (-2 (|:| |localSymbols| (-1088)) (|:| -2032 (-587 (-304))))))))
+(((-561 (-792)) . T) ((-369) . T) ((-1119) . T))
+((-1297 (((-3 $ "failed") (-627 (-290 (-353)))) 21) (((-3 $ "failed") (-627 (-290 (-521)))) 19) (((-3 $ "failed") (-627 (-881 (-353)))) 17) (((-3 $ "failed") (-627 (-881 (-521)))) 15) (((-3 $ "failed") (-627 (-381 (-881 (-353))))) 13) (((-3 $ "failed") (-627 (-381 (-881 (-521))))) 11)) (-1483 (($ (-627 (-290 (-353)))) 22) (($ (-627 (-290 (-521)))) 20) (($ (-627 (-881 (-353)))) 18) (($ (-627 (-881 (-521)))) 16) (($ (-627 (-381 (-881 (-353))))) 14) (($ (-627 (-381 (-881 (-521))))) 12)) (-2009 (((-1170) $) 7)) (-2189 (((-792) $) 8) (($ (-587 (-304))) 25) (($ (-304)) 24) (($ (-2 (|:| |localSymbols| (-1088)) (|:| -2032 (-587 (-304))))) 23)))
+(((-358) (-1196)) (T -358))
+((-2189 (*1 *1 *2) (-12 (-5 *2 (-587 (-304))) (-4 *1 (-358)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-304)) (-4 *1 (-358)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1088)) (|:| -2032 (-587 (-304))))) (-4 *1 (-358)))) (-1483 (*1 *1 *2) (-12 (-5 *2 (-627 (-290 (-353)))) (-4 *1 (-358)))) (-1297 (*1 *1 *2) (|partial| -12 (-5 *2 (-627 (-290 (-353)))) (-4 *1 (-358)))) (-1483 (*1 *1 *2) (-12 (-5 *2 (-627 (-290 (-521)))) (-4 *1 (-358)))) (-1297 (*1 *1 *2) (|partial| -12 (-5 *2 (-627 (-290 (-521)))) (-4 *1 (-358)))) (-1483 (*1 *1 *2) (-12 (-5 *2 (-627 (-881 (-353)))) (-4 *1 (-358)))) (-1297 (*1 *1 *2) (|partial| -12 (-5 *2 (-627 (-881 (-353)))) (-4 *1 (-358)))) (-1483 (*1 *1 *2) (-12 (-5 *2 (-627 (-881 (-521)))) (-4 *1 (-358)))) (-1297 (*1 *1 *2) (|partial| -12 (-5 *2 (-627 (-881 (-521)))) (-4 *1 (-358)))) (-1483 (*1 *1 *2) (-12 (-5 *2 (-627 (-381 (-881 (-353))))) (-4 *1 (-358)))) (-1297 (*1 *1 *2) (|partial| -12 (-5 *2 (-627 (-381 (-881 (-353))))) (-4 *1 (-358)))) (-1483 (*1 *1 *2) (-12 (-5 *2 (-627 (-381 (-881 (-521))))) (-4 *1 (-358)))) (-1297 (*1 *1 *2) (|partial| -12 (-5 *2 (-627 (-381 (-881 (-521))))) (-4 *1 (-358)))))
+(-13 (-369) (-10 -8 (-15 -2189 ($ (-587 (-304)))) (-15 -2189 ($ (-304))) (-15 -2189 ($ (-2 (|:| |localSymbols| (-1088)) (|:| -2032 (-587 (-304)))))) (-15 -1483 ($ (-627 (-290 (-353))))) (-15 -1297 ((-3 $ "failed") (-627 (-290 (-353))))) (-15 -1483 ($ (-627 (-290 (-521))))) (-15 -1297 ((-3 $ "failed") (-627 (-290 (-521))))) (-15 -1483 ($ (-627 (-881 (-353))))) (-15 -1297 ((-3 $ "failed") (-627 (-881 (-353))))) (-15 -1483 ($ (-627 (-881 (-521))))) (-15 -1297 ((-3 $ "failed") (-627 (-881 (-521))))) (-15 -1483 ($ (-627 (-381 (-881 (-353)))))) (-15 -1297 ((-3 $ "failed") (-627 (-381 (-881 (-353)))))) (-15 -1483 ($ (-627 (-381 (-881 (-521)))))) (-15 -1297 ((-3 $ "failed") (-627 (-381 (-881 (-521))))))))
+(((-561 (-792)) . T) ((-369) . T) ((-1119) . T))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-1232 (((-3 $ "failed") $ $) NIL)) (-2547 (($) NIL T CONST)) (-3152 (($ $) NIL)) (-4043 (($ |#1| |#2|) NIL)) (-1390 (($ (-1 |#1| |#1|) $) NIL)) (-1240 ((|#2| $) NIL)) (-3135 ((|#1| $) NIL)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2189 (((-792) $) 28)) (-3561 (($) 12 T CONST)) (-1531 (((-108) $ $) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ |#1| $) 16) (($ $ |#1|) 19)))
+(((-359 |#1| |#2|) (-13 (-107 |#1| |#1|) (-477 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-157)) (-6 (-654 |#1|)) |%noBranch|))) (-970) (-784)) (T -359))
+NIL
+(-13 (-107 |#1| |#1|) (-477 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-157)) (-6 (-654 |#1|)) |%noBranch|)))
+((-1415 (((-108) $ $) NIL)) (-1630 (((-707) $) 57)) (-2547 (($) NIL T CONST)) (-3634 (((-3 $ "failed") $ $) 59)) (-1297 (((-3 |#1| "failed") $) NIL)) (-1483 ((|#1| $) NIL)) (-1257 (((-3 $ "failed") $) NIL)) (-1298 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 53)) (-3996 (((-108) $) 14)) (-1785 ((|#1| $ (-521)) NIL)) (-3695 (((-707) $ (-521)) NIL)) (-2810 (($ $ $) NIL (|has| |#1| (-784)))) (-2446 (($ $ $) NIL (|has| |#1| (-784)))) (-2502 (($ (-1 |#1| |#1|) $) 37)) (-1384 (($ (-1 (-707) (-707)) $) 34)) (-3111 (((-3 $ "failed") $ $) 50)) (-3688 (((-1067) $) NIL)) (-3580 (($ $ $) 25)) (-3583 (($ $ $) 23)) (-4147 (((-1031) $) NIL)) (-1514 (((-587 (-2 (|:| |gen| |#1|) (|:| -3261 (-707)))) $) 31)) (-1830 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 56)) (-2189 (((-792) $) 21) (($ |#1|) NIL)) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (-3572 (($) 9 T CONST)) (-1574 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1558 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1531 (((-108) $ $) 41)) (-1566 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1549 (((-108) $ $) 61 (|has| |#1| (-784)))) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ |#1| (-707)) 40)) (* (($ $ $) 47) (($ |#1| $) 29) (($ $ |#1|) 27)))
+(((-360 |#1|) (-13 (-663) (-961 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-707))) (-15 -3583 ($ $ $)) (-15 -3580 ($ $ $)) (-15 -3111 ((-3 $ "failed") $ $)) (-15 -3634 ((-3 $ "failed") $ $)) (-15 -1830 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1298 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1630 ((-707) $)) (-15 -1514 ((-587 (-2 (|:| |gen| |#1|) (|:| -3261 (-707)))) $)) (-15 -3695 ((-707) $ (-521))) (-15 -1785 (|#1| $ (-521))) (-15 -1384 ($ (-1 (-707) (-707)) $)) (-15 -2502 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-784)) (-6 (-784)) |%noBranch|))) (-1013)) (T -360))
+((* (*1 *1 *2 *1) (-12 (-5 *1 (-360 *2)) (-4 *2 (-1013)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-360 *2)) (-4 *2 (-1013)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-707)) (-5 *1 (-360 *2)) (-4 *2 (-1013)))) (-3583 (*1 *1 *1 *1) (-12 (-5 *1 (-360 *2)) (-4 *2 (-1013)))) (-3580 (*1 *1 *1 *1) (-12 (-5 *1 (-360 *2)) (-4 *2 (-1013)))) (-3111 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-360 *2)) (-4 *2 (-1013)))) (-3634 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-360 *2)) (-4 *2 (-1013)))) (-1830 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-360 *3)) (|:| |rm| (-360 *3)))) (-5 *1 (-360 *3)) (-4 *3 (-1013)))) (-1298 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-360 *3)) (|:| |mm| (-360 *3)) (|:| |rm| (-360 *3)))) (-5 *1 (-360 *3)) (-4 *3 (-1013)))) (-1630 (*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-360 *3)) (-4 *3 (-1013)))) (-1514 (*1 *2 *1) (-12 (-5 *2 (-587 (-2 (|:| |gen| *3) (|:| -3261 (-707))))) (-5 *1 (-360 *3)) (-4 *3 (-1013)))) (-3695 (*1 *2 *1 *3) (-12 (-5 *3 (-521)) (-5 *2 (-707)) (-5 *1 (-360 *4)) (-4 *4 (-1013)))) (-1785 (*1 *2 *1 *3) (-12 (-5 *3 (-521)) (-5 *1 (-360 *2)) (-4 *2 (-1013)))) (-1384 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-707) (-707))) (-5 *1 (-360 *3)) (-4 *3 (-1013)))) (-2502 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1013)) (-5 *1 (-360 *3)))))
+(-13 (-663) (-961 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-707))) (-15 -3583 ($ $ $)) (-15 -3580 ($ $ $)) (-15 -3111 ((-3 $ "failed") $ $)) (-15 -3634 ((-3 $ "failed") $ $)) (-15 -1830 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1298 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1630 ((-707) $)) (-15 -1514 ((-587 (-2 (|:| |gen| |#1|) (|:| -3261 (-707)))) $)) (-15 -3695 ((-707) $ (-521))) (-15 -1785 (|#1| $ (-521))) (-15 -1384 ($ (-1 (-707) (-707)) $)) (-15 -2502 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-784)) (-6 (-784)) |%noBranch|)))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) 41)) (-2559 (($ $) 40)) (-1733 (((-108) $) 38)) (-1232 (((-3 $ "failed") $ $) 19)) (-2547 (($) 17 T CONST)) (-1297 (((-3 (-521) "failed") $) 47)) (-1483 (((-521) $) 46)) (-1257 (((-3 $ "failed") $) 34)) (-3996 (((-108) $) 31)) (-2810 (($ $ $) 54)) (-2446 (($ $ $) 53)) (-3688 (((-1067) $) 9)) (-4147 (((-1031) $) 10)) (-2230 (((-3 $ "failed") $ $) 42)) (-2189 (((-792) $) 11) (($ (-521)) 28) (($ $) 43) (($ (-521)) 48)) (-3846 (((-707)) 29)) (-4210 (((-108) $ $) 39)) (-3505 (($ $ (-850)) 26) (($ $ (-707)) 33)) (-3561 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-1574 (((-108) $ $) 51)) (-1558 (((-108) $ $) 50)) (-1531 (((-108) $ $) 6)) (-1566 (((-108) $ $) 52)) (-1549 (((-108) $ $) 49)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-707)) 32)) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24)))
+(((-361) (-1196)) (T -361))
+NIL
+(-13 (-513) (-784) (-961 (-521)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-561 (-792)) . T) ((-157) . T) ((-265) . T) ((-513) . T) ((-589 $) . T) ((-654 $) . T) ((-663) . T) ((-784) . T) ((-961 (-521)) . T) ((-976 $) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T))
+((-1415 (((-108) $ $) NIL)) (-1473 (((-108) $) 20)) (-3283 (((-108) $) 19)) (-1811 (($ (-1067) (-1067) (-1067)) 21)) (-2884 (((-1067) $) 16)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2553 (($ (-1067) (-1067) (-1067)) 14)) (-3946 (((-1067) $) 17)) (-1734 (((-108) $) 18)) (-3118 (((-1067) $) 15)) (-2189 (((-792) $) 12) (($ (-1067)) 13) (((-1067) $) 9)) (-1531 (((-108) $ $) 7)))
+(((-362) (-363)) (T -362))
+NIL
+(-363)
+((-1415 (((-108) $ $) 7)) (-1473 (((-108) $) 14)) (-3283 (((-108) $) 15)) (-1811 (($ (-1067) (-1067) (-1067)) 13)) (-2884 (((-1067) $) 18)) (-3688 (((-1067) $) 9)) (-4147 (((-1031) $) 10)) (-2553 (($ (-1067) (-1067) (-1067)) 20)) (-3946 (((-1067) $) 17)) (-1734 (((-108) $) 16)) (-3118 (((-1067) $) 19)) (-2189 (((-792) $) 11) (($ (-1067)) 22) (((-1067) $) 21)) (-1531 (((-108) $ $) 6)))
+(((-363) (-1196)) (T -363))
+((-2189 (*1 *1 *2) (-12 (-5 *2 (-1067)) (-4 *1 (-363)))) (-2189 (*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-1067)))) (-2553 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1067)) (-4 *1 (-363)))) (-3118 (*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-1067)))) (-2884 (*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-1067)))) (-3946 (*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-1067)))) (-1734 (*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-108)))) (-3283 (*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-108)))) (-1473 (*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-108)))) (-1811 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1067)) (-4 *1 (-363)))))
+(-13 (-1013) (-10 -8 (-15 -2189 ($ (-1067))) (-15 -2189 ((-1067) $)) (-15 -2553 ($ (-1067) (-1067) (-1067))) (-15 -3118 ((-1067) $)) (-15 -2884 ((-1067) $)) (-15 -3946 ((-1067) $)) (-15 -1734 ((-108) $)) (-15 -3283 ((-108) $)) (-15 -1473 ((-108) $)) (-15 -1811 ($ (-1067) (-1067) (-1067)))))
+(((-97) . T) ((-561 (-792)) . T) ((-1013) . T))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-1232 (((-3 $ "failed") $ $) NIL)) (-2795 (((-792) $) 50)) (-2547 (($) NIL T CONST)) (-3047 (($ $ (-850)) NIL)) (-2049 (($ $ (-850)) NIL)) (-2830 (($ $ (-850)) NIL)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-1383 (($ (-707)) 26)) (-2359 (((-707)) 15)) (-2920 (((-792) $) 52)) (-2674 (($ $ $) NIL)) (-2189 (((-792) $) NIL)) (-2922 (($ $ $ $) NIL)) (-2464 (($ $ $) NIL)) (-3561 (($) 20 T CONST)) (-1531 (((-108) $ $) 28)) (-1612 (($ $) 34) (($ $ $) 36)) (-1602 (($ $ $) 37)) (** (($ $ (-850)) NIL)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) 38) (($ $ |#3|) NIL) (($ |#3| $) 33)))
+(((-364 |#1| |#2| |#3|) (-13 (-681 |#3|) (-10 -8 (-15 -2359 ((-707))) (-15 -2920 ((-792) $)) (-15 -2795 ((-792) $)) (-15 -1383 ($ (-707))))) (-707) (-707) (-157)) (T -364))
+((-2359 (*1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-364 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-157)))) (-2920 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-364 *3 *4 *5)) (-14 *3 (-707)) (-14 *4 (-707)) (-4 *5 (-157)))) (-2795 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-364 *3 *4 *5)) (-14 *3 (-707)) (-14 *4 (-707)) (-4 *5 (-157)))) (-1383 (*1 *1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-364 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-157)))))
+(-13 (-681 |#3|) (-10 -8 (-15 -2359 ((-707))) (-15 -2920 ((-792) $)) (-15 -2795 ((-792) $)) (-15 -1383 ($ (-707)))))
+((-2929 (((-1067)) 10)) (-4046 (((-1056 (-1067))) 28)) (-1981 (((-1170) (-1067)) 25) (((-1170) (-362)) 24)) (-1995 (((-1170)) 26)) (-1648 (((-1056 (-1067))) 27)))
+(((-365) (-10 -7 (-15 -1648 ((-1056 (-1067)))) (-15 -4046 ((-1056 (-1067)))) (-15 -1995 ((-1170))) (-15 -1981 ((-1170) (-362))) (-15 -1981 ((-1170) (-1067))) (-15 -2929 ((-1067))))) (T -365))
+((-2929 (*1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-365)))) (-1981 (*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-365)))) (-1981 (*1 *2 *3) (-12 (-5 *3 (-362)) (-5 *2 (-1170)) (-5 *1 (-365)))) (-1995 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-365)))) (-4046 (*1 *2) (-12 (-5 *2 (-1056 (-1067))) (-5 *1 (-365)))) (-1648 (*1 *2) (-12 (-5 *2 (-1056 (-1067))) (-5 *1 (-365)))))
+(-10 -7 (-15 -1648 ((-1056 (-1067)))) (-15 -4046 ((-1056 (-1067)))) (-15 -1995 ((-1170))) (-15 -1981 ((-1170) (-362))) (-15 -1981 ((-1170) (-1067))) (-15 -2929 ((-1067))))
+((-2733 (((-707) (-310 |#1| |#2| |#3| |#4|)) 16)))
+(((-366 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2733 ((-707) (-310 |#1| |#2| |#3| |#4|)))) (-13 (-342) (-337)) (-1141 |#1|) (-1141 (-381 |#2|)) (-316 |#1| |#2| |#3|)) (T -366))
+((-2733 (*1 *2 *3) (-12 (-5 *3 (-310 *4 *5 *6 *7)) (-4 *4 (-13 (-342) (-337))) (-4 *5 (-1141 *4)) (-4 *6 (-1141 (-381 *5))) (-4 *7 (-316 *4 *5 *6)) (-5 *2 (-707)) (-5 *1 (-366 *4 *5 *6 *7)))))
+(-10 -7 (-15 -2733 ((-707) (-310 |#1| |#2| |#3| |#4|))))
+((-2189 (((-368) |#1|) 11)))
+(((-367 |#1|) (-10 -7 (-15 -2189 ((-368) |#1|))) (-1013)) (T -367))
+((-2189 (*1 *2 *3) (-12 (-5 *2 (-368)) (-5 *1 (-367 *3)) (-4 *3 (-1013)))))
+(-10 -7 (-15 -2189 ((-368) |#1|)))
+((-1415 (((-108) $ $) NIL)) (-1541 (((-587 (-1067)) $ (-587 (-1067))) 37)) (-2309 (((-587 (-1067)) $ (-587 (-1067))) 38)) (-1369 (((-587 (-1067)) $ (-587 (-1067))) 39)) (-2561 (((-587 (-1067)) $) 34)) (-1811 (($) 23)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-1382 (((-587 (-1067)) $) 35)) (-1740 (((-587 (-1067)) $) 36)) (-1678 (((-1170) $ (-521)) 32) (((-1170) $) 33)) (-1430 (($ (-792) (-521)) 29)) (-2189 (((-792) $) 41) (($ (-792)) 25)) (-1531 (((-108) $ $) NIL)))
+(((-368) (-13 (-1013) (-10 -8 (-15 -2189 ($ (-792))) (-15 -1430 ($ (-792) (-521))) (-15 -1678 ((-1170) $ (-521))) (-15 -1678 ((-1170) $)) (-15 -1740 ((-587 (-1067)) $)) (-15 -1382 ((-587 (-1067)) $)) (-15 -1811 ($)) (-15 -2561 ((-587 (-1067)) $)) (-15 -1369 ((-587 (-1067)) $ (-587 (-1067)))) (-15 -2309 ((-587 (-1067)) $ (-587 (-1067)))) (-15 -1541 ((-587 (-1067)) $ (-587 (-1067))))))) (T -368))
+((-2189 (*1 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-368)))) (-1430 (*1 *1 *2 *3) (-12 (-5 *2 (-792)) (-5 *3 (-521)) (-5 *1 (-368)))) (-1678 (*1 *2 *1 *3) (-12 (-5 *3 (-521)) (-5 *2 (-1170)) (-5 *1 (-368)))) (-1678 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-368)))) (-1740 (*1 *2 *1) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-368)))) (-1382 (*1 *2 *1) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-368)))) (-1811 (*1 *1) (-5 *1 (-368))) (-2561 (*1 *2 *1) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-368)))) (-1369 (*1 *2 *1 *2) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-368)))) (-2309 (*1 *2 *1 *2) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-368)))) (-1541 (*1 *2 *1 *2) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-368)))))
+(-13 (-1013) (-10 -8 (-15 -2189 ($ (-792))) (-15 -1430 ($ (-792) (-521))) (-15 -1678 ((-1170) $ (-521))) (-15 -1678 ((-1170) $)) (-15 -1740 ((-587 (-1067)) $)) (-15 -1382 ((-587 (-1067)) $)) (-15 -1811 ($)) (-15 -2561 ((-587 (-1067)) $)) (-15 -1369 ((-587 (-1067)) $ (-587 (-1067)))) (-15 -2309 ((-587 (-1067)) $ (-587 (-1067)))) (-15 -1541 ((-587 (-1067)) $ (-587 (-1067))))))
+((-2009 (((-1170) $) 7)) (-2189 (((-792) $) 8)))
+(((-369) (-1196)) (T -369))
+((-2009 (*1 *2 *1) (-12 (-4 *1 (-369)) (-5 *2 (-1170)))))
+(-13 (-1119) (-561 (-792)) (-10 -8 (-15 -2009 ((-1170) $))))
+(((-561 (-792)) . T) ((-1119) . T))
+((-1297 (((-3 $ "failed") (-290 (-353))) 21) (((-3 $ "failed") (-290 (-521))) 19) (((-3 $ "failed") (-881 (-353))) 17) (((-3 $ "failed") (-881 (-521))) 15) (((-3 $ "failed") (-381 (-881 (-353)))) 13) (((-3 $ "failed") (-381 (-881 (-521)))) 11)) (-1483 (($ (-290 (-353))) 22) (($ (-290 (-521))) 20) (($ (-881 (-353))) 18) (($ (-881 (-521))) 16) (($ (-381 (-881 (-353)))) 14) (($ (-381 (-881 (-521)))) 12)) (-2009 (((-1170) $) 7)) (-2189 (((-792) $) 8) (($ (-587 (-304))) 25) (($ (-304)) 24) (($ (-2 (|:| |localSymbols| (-1088)) (|:| -2032 (-587 (-304))))) 23)))
+(((-370) (-1196)) (T -370))
+((-2189 (*1 *1 *2) (-12 (-5 *2 (-587 (-304))) (-4 *1 (-370)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-304)) (-4 *1 (-370)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1088)) (|:| -2032 (-587 (-304))))) (-4 *1 (-370)))) (-1483 (*1 *1 *2) (-12 (-5 *2 (-290 (-353))) (-4 *1 (-370)))) (-1297 (*1 *1 *2) (|partial| -12 (-5 *2 (-290 (-353))) (-4 *1 (-370)))) (-1483 (*1 *1 *2) (-12 (-5 *2 (-290 (-521))) (-4 *1 (-370)))) (-1297 (*1 *1 *2) (|partial| -12 (-5 *2 (-290 (-521))) (-4 *1 (-370)))) (-1483 (*1 *1 *2) (-12 (-5 *2 (-881 (-353))) (-4 *1 (-370)))) (-1297 (*1 *1 *2) (|partial| -12 (-5 *2 (-881 (-353))) (-4 *1 (-370)))) (-1483 (*1 *1 *2) (-12 (-5 *2 (-881 (-521))) (-4 *1 (-370)))) (-1297 (*1 *1 *2) (|partial| -12 (-5 *2 (-881 (-521))) (-4 *1 (-370)))) (-1483 (*1 *1 *2) (-12 (-5 *2 (-381 (-881 (-353)))) (-4 *1 (-370)))) (-1297 (*1 *1 *2) (|partial| -12 (-5 *2 (-381 (-881 (-353)))) (-4 *1 (-370)))) (-1483 (*1 *1 *2) (-12 (-5 *2 (-381 (-881 (-521)))) (-4 *1 (-370)))) (-1297 (*1 *1 *2) (|partial| -12 (-5 *2 (-381 (-881 (-521)))) (-4 *1 (-370)))))
+(-13 (-369) (-10 -8 (-15 -2189 ($ (-587 (-304)))) (-15 -2189 ($ (-304))) (-15 -2189 ($ (-2 (|:| |localSymbols| (-1088)) (|:| -2032 (-587 (-304)))))) (-15 -1483 ($ (-290 (-353)))) (-15 -1297 ((-3 $ "failed") (-290 (-353)))) (-15 -1483 ($ (-290 (-521)))) (-15 -1297 ((-3 $ "failed") (-290 (-521)))) (-15 -1483 ($ (-881 (-353)))) (-15 -1297 ((-3 $ "failed") (-881 (-353)))) (-15 -1483 ($ (-881 (-521)))) (-15 -1297 ((-3 $ "failed") (-881 (-521)))) (-15 -1483 ($ (-381 (-881 (-353))))) (-15 -1297 ((-3 $ "failed") (-381 (-881 (-353))))) (-15 -1483 ($ (-381 (-881 (-521))))) (-15 -1297 ((-3 $ "failed") (-381 (-881 (-521)))))))
+(((-561 (-792)) . T) ((-369) . T) ((-1119) . T))
+((-3306 (((-587 (-1067)) (-587 (-1067))) 8)) (-2009 (((-1170) (-362)) 27)) (-3787 (((-1017) (-1084) (-587 (-1084)) (-1087) (-587 (-1084))) 59) (((-1017) (-1084) (-587 (-3 (|:| |array| (-587 (-1084))) (|:| |scalar| (-1084)))) (-587 (-587 (-3 (|:| |array| (-587 (-1084))) (|:| |scalar| (-1084))))) (-587 (-1084)) (-1084)) 35) (((-1017) (-1084) (-587 (-3 (|:| |array| (-587 (-1084))) (|:| |scalar| (-1084)))) (-587 (-587 (-3 (|:| |array| (-587 (-1084))) (|:| |scalar| (-1084))))) (-587 (-1084))) 34)))
+(((-371) (-10 -7 (-15 -3787 ((-1017) (-1084) (-587 (-3 (|:| |array| (-587 (-1084))) (|:| |scalar| (-1084)))) (-587 (-587 (-3 (|:| |array| (-587 (-1084))) (|:| |scalar| (-1084))))) (-587 (-1084)))) (-15 -3787 ((-1017) (-1084) (-587 (-3 (|:| |array| (-587 (-1084))) (|:| |scalar| (-1084)))) (-587 (-587 (-3 (|:| |array| (-587 (-1084))) (|:| |scalar| (-1084))))) (-587 (-1084)) (-1084))) (-15 -3787 ((-1017) (-1084) (-587 (-1084)) (-1087) (-587 (-1084)))) (-15 -2009 ((-1170) (-362))) (-15 -3306 ((-587 (-1067)) (-587 (-1067)))))) (T -371))
+((-3306 (*1 *2 *2) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-371)))) (-2009 (*1 *2 *3) (-12 (-5 *3 (-362)) (-5 *2 (-1170)) (-5 *1 (-371)))) (-3787 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-587 (-1084))) (-5 *5 (-1087)) (-5 *3 (-1084)) (-5 *2 (-1017)) (-5 *1 (-371)))) (-3787 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-587 (-587 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-587 (-3 (|:| |array| (-587 *3)) (|:| |scalar| (-1084))))) (-5 *6 (-587 (-1084))) (-5 *3 (-1084)) (-5 *2 (-1017)) (-5 *1 (-371)))) (-3787 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-587 (-587 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-587 (-3 (|:| |array| (-587 *3)) (|:| |scalar| (-1084))))) (-5 *6 (-587 (-1084))) (-5 *3 (-1084)) (-5 *2 (-1017)) (-5 *1 (-371)))))
+(-10 -7 (-15 -3787 ((-1017) (-1084) (-587 (-3 (|:| |array| (-587 (-1084))) (|:| |scalar| (-1084)))) (-587 (-587 (-3 (|:| |array| (-587 (-1084))) (|:| |scalar| (-1084))))) (-587 (-1084)))) (-15 -3787 ((-1017) (-1084) (-587 (-3 (|:| |array| (-587 (-1084))) (|:| |scalar| (-1084)))) (-587 (-587 (-3 (|:| |array| (-587 (-1084))) (|:| |scalar| (-1084))))) (-587 (-1084)) (-1084))) (-15 -3787 ((-1017) (-1084) (-587 (-1084)) (-1087) (-587 (-1084)))) (-15 -2009 ((-1170) (-362))) (-15 -3306 ((-587 (-1067)) (-587 (-1067)))))
+((-2009 (((-1170) $) 37)) (-2189 (((-792) $) 89) (($ (-304)) 92) (($ (-587 (-304))) 91) (($ (-2 (|:| |localSymbols| (-1088)) (|:| -2032 (-587 (-304))))) 88) (($ (-290 (-638))) 52) (($ (-290 (-636))) 66) (($ (-290 (-631))) 78) (($ (-269 (-290 (-638)))) 62) (($ (-269 (-290 (-636)))) 74) (($ (-269 (-290 (-631)))) 86) (($ (-290 (-521))) 96) (($ (-290 (-353))) 108) (($ (-290 (-154 (-353)))) 120) (($ (-269 (-290 (-521)))) 104) (($ (-269 (-290 (-353)))) 116) (($ (-269 (-290 (-154 (-353))))) 128)))
+(((-372 |#1| |#2| |#3| |#4|) (-13 (-369) (-10 -8 (-15 -2189 ($ (-304))) (-15 -2189 ($ (-587 (-304)))) (-15 -2189 ($ (-2 (|:| |localSymbols| (-1088)) (|:| -2032 (-587 (-304)))))) (-15 -2189 ($ (-290 (-638)))) (-15 -2189 ($ (-290 (-636)))) (-15 -2189 ($ (-290 (-631)))) (-15 -2189 ($ (-269 (-290 (-638))))) (-15 -2189 ($ (-269 (-290 (-636))))) (-15 -2189 ($ (-269 (-290 (-631))))) (-15 -2189 ($ (-290 (-521)))) (-15 -2189 ($ (-290 (-353)))) (-15 -2189 ($ (-290 (-154 (-353))))) (-15 -2189 ($ (-269 (-290 (-521))))) (-15 -2189 ($ (-269 (-290 (-353))))) (-15 -2189 ($ (-269 (-290 (-154 (-353)))))))) (-1084) (-3 (|:| |fst| (-408)) (|:| -1366 "void")) (-587 (-1084)) (-1088)) (T -372))
+((-2189 (*1 *1 *2) (-12 (-5 *2 (-304)) (-5 *1 (-372 *3 *4 *5 *6)) (-14 *3 (-1084)) (-14 *4 (-3 (|:| |fst| (-408)) (|:| -1366 "void"))) (-14 *5 (-587 (-1084))) (-14 *6 (-1088)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-587 (-304))) (-5 *1 (-372 *3 *4 *5 *6)) (-14 *3 (-1084)) (-14 *4 (-3 (|:| |fst| (-408)) (|:| -1366 "void"))) (-14 *5 (-587 (-1084))) (-14 *6 (-1088)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1088)) (|:| -2032 (-587 (-304))))) (-5 *1 (-372 *3 *4 *5 *6)) (-14 *3 (-1084)) (-14 *4 (-3 (|:| |fst| (-408)) (|:| -1366 "void"))) (-14 *5 (-587 (-1084))) (-14 *6 (-1088)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-290 (-638))) (-5 *1 (-372 *3 *4 *5 *6)) (-14 *3 (-1084)) (-14 *4 (-3 (|:| |fst| (-408)) (|:| -1366 "void"))) (-14 *5 (-587 (-1084))) (-14 *6 (-1088)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-290 (-636))) (-5 *1 (-372 *3 *4 *5 *6)) (-14 *3 (-1084)) (-14 *4 (-3 (|:| |fst| (-408)) (|:| -1366 "void"))) (-14 *5 (-587 (-1084))) (-14 *6 (-1088)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-290 (-631))) (-5 *1 (-372 *3 *4 *5 *6)) (-14 *3 (-1084)) (-14 *4 (-3 (|:| |fst| (-408)) (|:| -1366 "void"))) (-14 *5 (-587 (-1084))) (-14 *6 (-1088)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-269 (-290 (-638)))) (-5 *1 (-372 *3 *4 *5 *6)) (-14 *3 (-1084)) (-14 *4 (-3 (|:| |fst| (-408)) (|:| -1366 "void"))) (-14 *5 (-587 (-1084))) (-14 *6 (-1088)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-269 (-290 (-636)))) (-5 *1 (-372 *3 *4 *5 *6)) (-14 *3 (-1084)) (-14 *4 (-3 (|:| |fst| (-408)) (|:| -1366 "void"))) (-14 *5 (-587 (-1084))) (-14 *6 (-1088)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-269 (-290 (-631)))) (-5 *1 (-372 *3 *4 *5 *6)) (-14 *3 (-1084)) (-14 *4 (-3 (|:| |fst| (-408)) (|:| -1366 "void"))) (-14 *5 (-587 (-1084))) (-14 *6 (-1088)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-290 (-521))) (-5 *1 (-372 *3 *4 *5 *6)) (-14 *3 (-1084)) (-14 *4 (-3 (|:| |fst| (-408)) (|:| -1366 "void"))) (-14 *5 (-587 (-1084))) (-14 *6 (-1088)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-290 (-353))) (-5 *1 (-372 *3 *4 *5 *6)) (-14 *3 (-1084)) (-14 *4 (-3 (|:| |fst| (-408)) (|:| -1366 "void"))) (-14 *5 (-587 (-1084))) (-14 *6 (-1088)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-290 (-154 (-353)))) (-5 *1 (-372 *3 *4 *5 *6)) (-14 *3 (-1084)) (-14 *4 (-3 (|:| |fst| (-408)) (|:| -1366 "void"))) (-14 *5 (-587 (-1084))) (-14 *6 (-1088)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-269 (-290 (-521)))) (-5 *1 (-372 *3 *4 *5 *6)) (-14 *3 (-1084)) (-14 *4 (-3 (|:| |fst| (-408)) (|:| -1366 "void"))) (-14 *5 (-587 (-1084))) (-14 *6 (-1088)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-269 (-290 (-353)))) (-5 *1 (-372 *3 *4 *5 *6)) (-14 *3 (-1084)) (-14 *4 (-3 (|:| |fst| (-408)) (|:| -1366 "void"))) (-14 *5 (-587 (-1084))) (-14 *6 (-1088)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-269 (-290 (-154 (-353))))) (-5 *1 (-372 *3 *4 *5 *6)) (-14 *3 (-1084)) (-14 *4 (-3 (|:| |fst| (-408)) (|:| -1366 "void"))) (-14 *5 (-587 (-1084))) (-14 *6 (-1088)))))
+(-13 (-369) (-10 -8 (-15 -2189 ($ (-304))) (-15 -2189 ($ (-587 (-304)))) (-15 -2189 ($ (-2 (|:| |localSymbols| (-1088)) (|:| -2032 (-587 (-304)))))) (-15 -2189 ($ (-290 (-638)))) (-15 -2189 ($ (-290 (-636)))) (-15 -2189 ($ (-290 (-631)))) (-15 -2189 ($ (-269 (-290 (-638))))) (-15 -2189 ($ (-269 (-290 (-636))))) (-15 -2189 ($ (-269 (-290 (-631))))) (-15 -2189 ($ (-290 (-521)))) (-15 -2189 ($ (-290 (-353)))) (-15 -2189 ($ (-290 (-154 (-353))))) (-15 -2189 ($ (-269 (-290 (-521))))) (-15 -2189 ($ (-269 (-290 (-353))))) (-15 -2189 ($ (-269 (-290 (-154 (-353))))))))
+((-1415 (((-108) $ $) NIL)) (-2297 ((|#2| $) 36)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-3920 (($ (-381 |#2|)) 84)) (-2347 (((-587 (-2 (|:| -2997 (-707)) (|:| -1893 |#2|) (|:| |num| |#2|))) $) 37)) (-2156 (($ $) 32) (($ $ (-707)) 34)) (-1430 (((-381 |#2|) $) 46)) (-2201 (($ (-587 (-2 (|:| -2997 (-707)) (|:| -1893 |#2|) (|:| |num| |#2|)))) 31)) (-2189 (((-792) $) 120)) (-2212 (($ $) 33) (($ $ (-707)) 35)) (-1531 (((-108) $ $) NIL)) (-1602 (($ |#2| $) 39)))
+(((-373 |#1| |#2|) (-13 (-1013) (-562 (-381 |#2|)) (-10 -8 (-15 -1602 ($ |#2| $)) (-15 -3920 ($ (-381 |#2|))) (-15 -2297 (|#2| $)) (-15 -2347 ((-587 (-2 (|:| -2997 (-707)) (|:| -1893 |#2|) (|:| |num| |#2|))) $)) (-15 -2201 ($ (-587 (-2 (|:| -2997 (-707)) (|:| -1893 |#2|) (|:| |num| |#2|))))) (-15 -2156 ($ $)) (-15 -2212 ($ $)) (-15 -2156 ($ $ (-707))) (-15 -2212 ($ $ (-707))))) (-13 (-337) (-135)) (-1141 |#1|)) (T -373))
+((-1602 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-337) (-135))) (-5 *1 (-373 *3 *2)) (-4 *2 (-1141 *3)))) (-3920 (*1 *1 *2) (-12 (-5 *2 (-381 *4)) (-4 *4 (-1141 *3)) (-4 *3 (-13 (-337) (-135))) (-5 *1 (-373 *3 *4)))) (-2297 (*1 *2 *1) (-12 (-4 *2 (-1141 *3)) (-5 *1 (-373 *3 *2)) (-4 *3 (-13 (-337) (-135))))) (-2347 (*1 *2 *1) (-12 (-4 *3 (-13 (-337) (-135))) (-5 *2 (-587 (-2 (|:| -2997 (-707)) (|:| -1893 *4) (|:| |num| *4)))) (-5 *1 (-373 *3 *4)) (-4 *4 (-1141 *3)))) (-2201 (*1 *1 *2) (-12 (-5 *2 (-587 (-2 (|:| -2997 (-707)) (|:| -1893 *4) (|:| |num| *4)))) (-4 *4 (-1141 *3)) (-4 *3 (-13 (-337) (-135))) (-5 *1 (-373 *3 *4)))) (-2156 (*1 *1 *1) (-12 (-4 *2 (-13 (-337) (-135))) (-5 *1 (-373 *2 *3)) (-4 *3 (-1141 *2)))) (-2212 (*1 *1 *1) (-12 (-4 *2 (-13 (-337) (-135))) (-5 *1 (-373 *2 *3)) (-4 *3 (-1141 *2)))) (-2156 (*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-4 *3 (-13 (-337) (-135))) (-5 *1 (-373 *3 *4)) (-4 *4 (-1141 *3)))) (-2212 (*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-4 *3 (-13 (-337) (-135))) (-5 *1 (-373 *3 *4)) (-4 *4 (-1141 *3)))))
+(-13 (-1013) (-562 (-381 |#2|)) (-10 -8 (-15 -1602 ($ |#2| $)) (-15 -3920 ($ (-381 |#2|))) (-15 -2297 (|#2| $)) (-15 -2347 ((-587 (-2 (|:| -2997 (-707)) (|:| -1893 |#2|) (|:| |num| |#2|))) $)) (-15 -2201 ($ (-587 (-2 (|:| -2997 (-707)) (|:| -1893 |#2|) (|:| |num| |#2|))))) (-15 -2156 ($ $)) (-15 -2212 ($ $)) (-15 -2156 ($ $ (-707))) (-15 -2212 ($ $ (-707)))))
+((-1415 (((-108) $ $) 9 (-3703 (|has| |#1| (-815 (-521))) (|has| |#1| (-815 (-353)))))) (-3427 (((-818 (-353) $) $ (-821 (-353)) (-818 (-353) $)) 15 (|has| |#1| (-815 (-353)))) (((-818 (-521) $) $ (-821 (-521)) (-818 (-521) $)) 14 (|has| |#1| (-815 (-521))))) (-3688 (((-1067) $) 13 (-3703 (|has| |#1| (-815 (-521))) (|has| |#1| (-815 (-353)))))) (-4147 (((-1031) $) 12 (-3703 (|has| |#1| (-815 (-521))) (|has| |#1| (-815 (-353)))))) (-2189 (((-792) $) 11 (-3703 (|has| |#1| (-815 (-521))) (|has| |#1| (-815 (-353)))))) (-1531 (((-108) $ $) 10 (-3703 (|has| |#1| (-815 (-521))) (|has| |#1| (-815 (-353)))))))
+(((-374 |#1|) (-1196) (-1119)) (T -374))
+NIL
+(-13 (-1119) (-10 -7 (IF (|has| |t#1| (-815 (-521))) (-6 (-815 (-521))) |%noBranch|) (IF (|has| |t#1| (-815 (-353))) (-6 (-815 (-353))) |%noBranch|)))
+(((-97) -3703 (|has| |#1| (-815 (-521))) (|has| |#1| (-815 (-353)))) ((-561 (-792)) -3703 (|has| |#1| (-815 (-521))) (|has| |#1| (-815 (-353)))) ((-815 (-353)) |has| |#1| (-815 (-353))) ((-815 (-521)) |has| |#1| (-815 (-521))) ((-1013) -3703 (|has| |#1| (-815 (-521))) (|has| |#1| (-815 (-353)))) ((-1119) . T))
+((-2833 (($ $) 10) (($ $ (-707)) 11)))
+(((-375 |#1|) (-10 -8 (-15 -2833 (|#1| |#1| (-707))) (-15 -2833 (|#1| |#1|))) (-376)) (T -375))
+NIL
+(-10 -8 (-15 -2833 (|#1| |#1| (-707))) (-15 -2833 (|#1| |#1|)))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) 41)) (-2559 (($ $) 40)) (-1733 (((-108) $) 38)) (-1232 (((-3 $ "failed") $ $) 19)) (-3063 (($ $) 73)) (-3358 (((-392 $) $) 72)) (-1389 (((-108) $ $) 59)) (-2547 (($) 17 T CONST)) (-2277 (($ $ $) 55)) (-1257 (((-3 $ "failed") $) 34)) (-2253 (($ $ $) 56)) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) 51)) (-2833 (($ $) 79) (($ $ (-707)) 78)) (-2710 (((-108) $) 71)) (-2733 (((-770 (-850)) $) 81)) (-3996 (((-108) $) 31)) (-1546 (((-3 (-587 $) "failed") (-587 $) $) 52)) (-2223 (($ $ $) 46) (($ (-587 $)) 45)) (-3688 (((-1067) $) 9)) (-3095 (($ $) 70)) (-4147 (((-1031) $) 10)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) 44)) (-2258 (($ $ $) 48) (($ (-587 $)) 47)) (-1916 (((-392 $) $) 74)) (-1962 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2230 (((-3 $ "failed") $ $) 42)) (-3854 (((-3 (-587 $) "failed") (-587 $) $) 50)) (-4196 (((-707) $) 58)) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) 57)) (-4067 (((-3 (-707) "failed") $ $) 80)) (-2189 (((-792) $) 11) (($ (-521)) 28) (($ $) 43) (($ (-381 (-521))) 65)) (-1671 (((-3 $ "failed") $) 82)) (-3846 (((-707)) 29)) (-4210 (((-108) $ $) 39)) (-3505 (($ $ (-850)) 26) (($ $ (-707)) 33) (($ $ (-521)) 69)) (-3561 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-1531 (((-108) $ $) 6)) (-1620 (($ $ $) 64)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-707)) 32) (($ $ (-521)) 68)) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ $ (-381 (-521))) 67) (($ (-381 (-521)) $) 66)))
+(((-376) (-1196)) (T -376))
+((-2733 (*1 *2 *1) (-12 (-4 *1 (-376)) (-5 *2 (-770 (-850))))) (-4067 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-376)) (-5 *2 (-707)))) (-2833 (*1 *1 *1) (-4 *1 (-376))) (-2833 (*1 *1 *1 *2) (-12 (-4 *1 (-376)) (-5 *2 (-707)))))
+(-13 (-337) (-133) (-10 -8 (-15 -2733 ((-770 (-850)) $)) (-15 -4067 ((-3 (-707) "failed") $ $)) (-15 -2833 ($ $)) (-15 -2833 ($ $ (-707)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-381 (-521))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-124) . T) ((-133) . T) ((-561 (-792)) . T) ((-157) . T) ((-220) . T) ((-265) . T) ((-282) . T) ((-337) . T) ((-425) . T) ((-513) . T) ((-589 #0#) . T) ((-589 $) . T) ((-654 #0#) . T) ((-654 $) . T) ((-663) . T) ((-849) . T) ((-976 #0#) . T) ((-976 $) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T) ((-1123) . T))
+((-3068 (($ (-521) (-521)) 11) (($ (-521) (-521) (-850)) NIL)) (-4151 (((-850)) 16) (((-850) (-850)) NIL)))
+(((-377 |#1|) (-10 -8 (-15 -4151 ((-850) (-850))) (-15 -4151 ((-850))) (-15 -3068 (|#1| (-521) (-521) (-850))) (-15 -3068 (|#1| (-521) (-521)))) (-378)) (T -377))
+((-4151 (*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-377 *3)) (-4 *3 (-378)))) (-4151 (*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-377 *3)) (-4 *3 (-378)))))
+(-10 -8 (-15 -4151 ((-850) (-850))) (-15 -4151 ((-850))) (-15 -3068 (|#1| (-521) (-521) (-850))) (-15 -3068 (|#1| (-521) (-521))))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-2086 (((-521) $) 89)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) 41)) (-2559 (($ $) 40)) (-1733 (((-108) $) 38)) (-2977 (($ $) 87)) (-1232 (((-3 $ "failed") $ $) 19)) (-3063 (($ $) 73)) (-3358 (((-392 $) $) 72)) (-1927 (($ $) 97)) (-1389 (((-108) $ $) 59)) (-1606 (((-521) $) 114)) (-2547 (($) 17 T CONST)) (-1218 (($ $) 86)) (-1297 (((-3 (-521) "failed") $) 102) (((-3 (-381 (-521)) "failed") $) 99)) (-1483 (((-521) $) 101) (((-381 (-521)) $) 98)) (-2277 (($ $ $) 55)) (-1257 (((-3 $ "failed") $) 34)) (-2253 (($ $ $) 56)) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) 51)) (-2710 (((-108) $) 71)) (-2173 (((-850)) 130) (((-850) (-850)) 127 (|has| $ (-6 -4224)))) (-3951 (((-108) $) 112)) (-3427 (((-818 (-353) $) $ (-821 (-353)) (-818 (-353) $)) 93)) (-2733 (((-521) $) 136)) (-3996 (((-108) $) 31)) (-3407 (($ $ (-521)) 96)) (-3930 (($ $) 92)) (-2210 (((-108) $) 113)) (-1546 (((-3 (-587 $) "failed") (-587 $) $) 52)) (-2810 (($ $ $) 111) (($) 124 (-12 (-2400 (|has| $ (-6 -4224))) (-2400 (|has| $ (-6 -4216)))))) (-2446 (($ $ $) 110) (($) 123 (-12 (-2400 (|has| $ (-6 -4224))) (-2400 (|has| $ (-6 -4216)))))) (-3352 (((-521) $) 133)) (-2223 (($ $ $) 46) (($ (-587 $)) 45)) (-3688 (((-1067) $) 9)) (-3095 (($ $) 70)) (-1492 (((-850) (-521)) 126 (|has| $ (-6 -4224)))) (-4147 (((-1031) $) 10)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) 44)) (-2258 (($ $ $) 48) (($ (-587 $)) 47)) (-2850 (($ $) 88)) (-2567 (($ $) 90)) (-3068 (($ (-521) (-521)) 138) (($ (-521) (-521) (-850)) 137)) (-1916 (((-392 $) $) 74)) (-1962 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2230 (((-3 $ "failed") $ $) 42)) (-3854 (((-3 (-587 $) "failed") (-587 $) $) 50)) (-2997 (((-521) $) 134)) (-4196 (((-707) $) 58)) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) 57)) (-4151 (((-850)) 131) (((-850) (-850)) 128 (|has| $ (-6 -4224)))) (-1276 (((-850) (-521)) 125 (|has| $ (-6 -4224)))) (-1430 (((-353) $) 105) (((-202) $) 104) (((-821 (-353)) $) 94)) (-2189 (((-792) $) 11) (($ (-521)) 28) (($ $) 43) (($ (-381 (-521))) 65) (($ (-521)) 103) (($ (-381 (-521))) 100)) (-3846 (((-707)) 29)) (-2382 (($ $) 91)) (-2703 (((-850)) 132) (((-850) (-850)) 129 (|has| $ (-6 -4224)))) (-3351 (((-850)) 135)) (-4210 (((-108) $ $) 39)) (-3304 (($ $) 115)) (-3505 (($ $ (-850)) 26) (($ $ (-707)) 33) (($ $ (-521)) 69)) (-3561 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-1574 (((-108) $ $) 108)) (-1558 (((-108) $ $) 107)) (-1531 (((-108) $ $) 6)) (-1566 (((-108) $ $) 109)) (-1549 (((-108) $ $) 106)) (-1620 (($ $ $) 64)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-707)) 32) (($ $ (-521)) 68) (($ $ (-381 (-521))) 95)) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ $ (-381 (-521))) 67) (($ (-381 (-521)) $) 66)))
+(((-378) (-1196)) (T -378))
+((-3068 (*1 *1 *2 *2) (-12 (-5 *2 (-521)) (-4 *1 (-378)))) (-3068 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-521)) (-5 *3 (-850)) (-4 *1 (-378)))) (-2733 (*1 *2 *1) (-12 (-4 *1 (-378)) (-5 *2 (-521)))) (-3351 (*1 *2) (-12 (-4 *1 (-378)) (-5 *2 (-850)))) (-2997 (*1 *2 *1) (-12 (-4 *1 (-378)) (-5 *2 (-521)))) (-3352 (*1 *2 *1) (-12 (-4 *1 (-378)) (-5 *2 (-521)))) (-2703 (*1 *2) (-12 (-4 *1 (-378)) (-5 *2 (-850)))) (-4151 (*1 *2) (-12 (-4 *1 (-378)) (-5 *2 (-850)))) (-2173 (*1 *2) (-12 (-4 *1 (-378)) (-5 *2 (-850)))) (-2703 (*1 *2 *2) (-12 (-5 *2 (-850)) (|has| *1 (-6 -4224)) (-4 *1 (-378)))) (-4151 (*1 *2 *2) (-12 (-5 *2 (-850)) (|has| *1 (-6 -4224)) (-4 *1 (-378)))) (-2173 (*1 *2 *2) (-12 (-5 *2 (-850)) (|has| *1 (-6 -4224)) (-4 *1 (-378)))) (-1492 (*1 *2 *3) (-12 (-5 *3 (-521)) (|has| *1 (-6 -4224)) (-4 *1 (-378)) (-5 *2 (-850)))) (-1276 (*1 *2 *3) (-12 (-5 *3 (-521)) (|has| *1 (-6 -4224)) (-4 *1 (-378)) (-5 *2 (-850)))) (-2810 (*1 *1) (-12 (-4 *1 (-378)) (-2400 (|has| *1 (-6 -4224))) (-2400 (|has| *1 (-6 -4216))))) (-2446 (*1 *1) (-12 (-4 *1 (-378)) (-2400 (|has| *1 (-6 -4224))) (-2400 (|has| *1 (-6 -4216))))))
+(-13 (-979) (-10 -8 (-6 -3894) (-15 -3068 ($ (-521) (-521))) (-15 -3068 ($ (-521) (-521) (-850))) (-15 -2733 ((-521) $)) (-15 -3351 ((-850))) (-15 -2997 ((-521) $)) (-15 -3352 ((-521) $)) (-15 -2703 ((-850))) (-15 -4151 ((-850))) (-15 -2173 ((-850))) (IF (|has| $ (-6 -4224)) (PROGN (-15 -2703 ((-850) (-850))) (-15 -4151 ((-850) (-850))) (-15 -2173 ((-850) (-850))) (-15 -1492 ((-850) (-521))) (-15 -1276 ((-850) (-521)))) |%noBranch|) (IF (|has| $ (-6 -4216)) |%noBranch| (IF (|has| $ (-6 -4224)) |%noBranch| (PROGN (-15 -2810 ($)) (-15 -2446 ($)))))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-381 (-521))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-124) . T) ((-135) . T) ((-561 (-792)) . T) ((-157) . T) ((-562 (-202)) . T) ((-562 (-353)) . T) ((-562 (-821 (-353))) . T) ((-220) . T) ((-265) . T) ((-282) . T) ((-337) . T) ((-425) . T) ((-513) . T) ((-589 #0#) . T) ((-589 $) . T) ((-654 #0#) . T) ((-654 $) . T) ((-663) . T) ((-727) . T) ((-728) . T) ((-730) . T) ((-732) . T) ((-782) . T) ((-784) . T) ((-815 (-353)) . T) ((-849) . T) ((-927) . T) ((-946) . T) ((-979) . T) ((-961 (-381 (-521))) . T) ((-961 (-521)) . T) ((-976 #0#) . T) ((-976 $) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T) ((-1123) . T))
+((-1390 (((-392 |#2|) (-1 |#2| |#1|) (-392 |#1|)) 20)))
+(((-379 |#1| |#2|) (-10 -7 (-15 -1390 ((-392 |#2|) (-1 |#2| |#1|) (-392 |#1|)))) (-513) (-513)) (T -379))
+((-1390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-392 *5)) (-4 *5 (-513)) (-4 *6 (-513)) (-5 *2 (-392 *6)) (-5 *1 (-379 *5 *6)))))
+(-10 -7 (-15 -1390 ((-392 |#2|) (-1 |#2| |#1|) (-392 |#1|))))
+((-1390 (((-381 |#2|) (-1 |#2| |#1|) (-381 |#1|)) 13)))
+(((-380 |#1| |#2|) (-10 -7 (-15 -1390 ((-381 |#2|) (-1 |#2| |#1|) (-381 |#1|)))) (-513) (-513)) (T -380))
+((-1390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-381 *5)) (-4 *5 (-513)) (-4 *6 (-513)) (-5 *2 (-381 *6)) (-5 *1 (-380 *5 *6)))))
+(-10 -7 (-15 -1390 ((-381 |#2|) (-1 |#2| |#1|) (-381 |#1|))))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) 13)) (-2086 ((|#1| $) 21 (|has| |#1| (-282)))) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-2559 (($ $) NIL)) (-1733 (((-108) $) NIL)) (-1232 (((-3 $ "failed") $ $) NIL)) (-2598 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#1| (-838)))) (-3063 (($ $) NIL)) (-3358 (((-392 $) $) NIL)) (-2569 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) NIL (|has| |#1| (-838)))) (-1389 (((-108) $ $) NIL)) (-1606 (((-521) $) NIL (|has| |#1| (-757)))) (-2547 (($) NIL T CONST)) (-1297 (((-3 |#1| "failed") $) 17) (((-3 (-1084) "failed") $) NIL (|has| |#1| (-961 (-1084)))) (((-3 (-381 (-521)) "failed") $) 70 (|has| |#1| (-961 (-521)))) (((-3 (-521) "failed") $) NIL (|has| |#1| (-961 (-521))))) (-1483 ((|#1| $) 15) (((-1084) $) NIL (|has| |#1| (-961 (-1084)))) (((-381 (-521)) $) 67 (|has| |#1| (-961 (-521)))) (((-521) $) NIL (|has| |#1| (-961 (-521))))) (-2277 (($ $ $) NIL)) (-3279 (((-627 (-521)) (-627 $)) NIL (|has| |#1| (-583 (-521)))) (((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (|has| |#1| (-583 (-521)))) (((-2 (|:| -1201 (-627 |#1|)) (|:| |vec| (-1165 |#1|))) (-627 $) (-1165 $)) NIL) (((-627 |#1|) (-627 $)) NIL)) (-1257 (((-3 $ "failed") $) 50)) (-3250 (($) NIL (|has| |#1| (-506)))) (-2253 (($ $ $) NIL)) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) NIL)) (-2710 (((-108) $) NIL)) (-3951 (((-108) $) NIL (|has| |#1| (-757)))) (-3427 (((-818 (-521) $) $ (-821 (-521)) (-818 (-521) $)) NIL (|has| |#1| (-815 (-521)))) (((-818 (-353) $) $ (-821 (-353)) (-818 (-353) $)) NIL (|has| |#1| (-815 (-353))))) (-3996 (((-108) $) 64)) (-3257 (($ $) NIL)) (-2801 ((|#1| $) 71)) (-3842 (((-3 $ "failed") $) NIL (|has| |#1| (-1060)))) (-2210 (((-108) $) NIL (|has| |#1| (-757)))) (-1546 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-2810 (($ $ $) NIL (|has| |#1| (-784)))) (-2446 (($ $ $) NIL (|has| |#1| (-784)))) (-1390 (($ (-1 |#1| |#1|) $) NIL)) (-2223 (($ $ $) NIL) (($ (-587 $)) NIL)) (-3688 (((-1067) $) NIL)) (-3095 (($ $) NIL)) (-3797 (($) NIL (|has| |#1| (-1060)) CONST)) (-4147 (((-1031) $) NIL)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) 97)) (-2258 (($ $ $) NIL) (($ (-587 $)) NIL)) (-2850 (($ $) NIL (|has| |#1| (-282)))) (-2567 ((|#1| $) 28 (|has| |#1| (-506)))) (-1912 (((-392 (-1080 $)) (-1080 $)) 133 (|has| |#1| (-838)))) (-2165 (((-392 (-1080 $)) (-1080 $)) 129 (|has| |#1| (-838)))) (-1916 (((-392 $) $) NIL)) (-1962 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2230 (((-3 $ "failed") $ $) NIL)) (-3854 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-2288 (($ $ (-587 |#1|) (-587 |#1|)) NIL (|has| |#1| (-284 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-284 |#1|))) (($ $ (-269 |#1|)) NIL (|has| |#1| (-284 |#1|))) (($ $ (-587 (-269 |#1|))) NIL (|has| |#1| (-284 |#1|))) (($ $ (-587 (-1084)) (-587 |#1|)) NIL (|has| |#1| (-482 (-1084) |#1|))) (($ $ (-1084) |#1|) NIL (|has| |#1| (-482 (-1084) |#1|)))) (-4196 (((-707) $) NIL)) (-2544 (($ $ |#1|) NIL (|has| |#1| (-261 |#1| |#1|)))) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) NIL)) (-2156 (($ $) NIL (|has| |#1| (-210))) (($ $ (-707)) NIL (|has| |#1| (-210))) (($ $ (-1084)) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-1 |#1| |#1|) (-707)) NIL) (($ $ (-1 |#1| |#1|)) 63)) (-4142 (($ $) NIL)) (-2812 ((|#1| $) 73)) (-1430 (((-821 (-521)) $) NIL (|has| |#1| (-562 (-821 (-521))))) (((-821 (-353)) $) NIL (|has| |#1| (-562 (-821 (-353))))) (((-497) $) NIL (|has| |#1| (-562 (-497)))) (((-353) $) NIL (|has| |#1| (-946))) (((-202) $) NIL (|has| |#1| (-946)))) (-2944 (((-3 (-1165 $) "failed") (-627 $)) 113 (-12 (|has| $ (-133)) (|has| |#1| (-838))))) (-2189 (((-792) $) NIL) (($ (-521)) NIL) (($ $) NIL) (($ (-381 (-521))) NIL) (($ |#1|) 10) (($ (-1084)) NIL (|has| |#1| (-961 (-1084))))) (-1671 (((-3 $ "failed") $) 99 (-3703 (-12 (|has| $ (-133)) (|has| |#1| (-838))) (|has| |#1| (-133))))) (-3846 (((-707)) 100)) (-2382 ((|#1| $) 26 (|has| |#1| (-506)))) (-4210 (((-108) $ $) NIL)) (-3304 (($ $) NIL (|has| |#1| (-757)))) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (-3561 (($) 22 T CONST)) (-3572 (($) 8 T CONST)) (-2287 (((-1067) $) 43 (-12 (|has| |#1| (-506)) (|has| |#1| (-765)))) (((-1067) $ (-108)) 44 (-12 (|has| |#1| (-506)) (|has| |#1| (-765)))) (((-1170) (-759) $) 45 (-12 (|has| |#1| (-506)) (|has| |#1| (-765)))) (((-1170) (-759) $ (-108)) 46 (-12 (|has| |#1| (-506)) (|has| |#1| (-765))))) (-2212 (($ $) NIL (|has| |#1| (-210))) (($ $ (-707)) NIL (|has| |#1| (-210))) (($ $ (-1084)) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-1 |#1| |#1|) (-707)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1574 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1558 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1531 (((-108) $ $) 56)) (-1566 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1549 (((-108) $ $) 24 (|has| |#1| (-784)))) (-1620 (($ $ $) 124) (($ |#1| |#1|) 52)) (-1612 (($ $) 25) (($ $ $) 55)) (-1602 (($ $ $) 53)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) 123)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) 60) (($ $ $) 57) (($ $ (-381 (-521))) NIL) (($ (-381 (-521)) $) NIL) (($ |#1| $) 61) (($ $ |#1|) 85)))
+(((-381 |#1|) (-13 (-918 |#1|) (-10 -7 (IF (|has| |#1| (-506)) (IF (|has| |#1| (-765)) (-6 (-765)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4220)) (IF (|has| |#1| (-425)) (IF (|has| |#1| (-6 -4231)) (-6 -4220) |%noBranch|) |%noBranch|) |%noBranch|))) (-513)) (T -381))
+NIL
+(-13 (-918 |#1|) (-10 -7 (IF (|has| |#1| (-506)) (IF (|has| |#1| (-765)) (-6 (-765)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4220)) (IF (|has| |#1| (-425)) (IF (|has| |#1| (-6 -4231)) (-6 -4220) |%noBranch|) |%noBranch|) |%noBranch|)))
+((-3214 (((-627 |#2|) (-1165 $)) NIL) (((-627 |#2|)) 18)) (-4083 (($ (-1165 |#2|) (-1165 $)) NIL) (($ (-1165 |#2|)) 26)) (-3499 (((-627 |#2|) $ (-1165 $)) NIL) (((-627 |#2|) $) 22)) (-3548 ((|#3| $) 59)) (-4010 ((|#2| (-1165 $)) NIL) ((|#2|) 20)) (-2234 (((-1165 |#2|) $ (-1165 $)) NIL) (((-627 |#2|) (-1165 $) (-1165 $)) NIL) (((-1165 |#2|) $) NIL) (((-627 |#2|) (-1165 $)) 24)) (-1430 (((-1165 |#2|) $) 11) (($ (-1165 |#2|)) 13)) (-3110 ((|#3| $) 51)))
+(((-382 |#1| |#2| |#3|) (-10 -8 (-15 -3499 ((-627 |#2|) |#1|)) (-15 -4010 (|#2|)) (-15 -3214 ((-627 |#2|))) (-15 -1430 (|#1| (-1165 |#2|))) (-15 -1430 ((-1165 |#2|) |#1|)) (-15 -4083 (|#1| (-1165 |#2|))) (-15 -2234 ((-627 |#2|) (-1165 |#1|))) (-15 -2234 ((-1165 |#2|) |#1|)) (-15 -3548 (|#3| |#1|)) (-15 -3110 (|#3| |#1|)) (-15 -3214 ((-627 |#2|) (-1165 |#1|))) (-15 -4010 (|#2| (-1165 |#1|))) (-15 -4083 (|#1| (-1165 |#2|) (-1165 |#1|))) (-15 -2234 ((-627 |#2|) (-1165 |#1|) (-1165 |#1|))) (-15 -2234 ((-1165 |#2|) |#1| (-1165 |#1|))) (-15 -3499 ((-627 |#2|) |#1| (-1165 |#1|)))) (-383 |#2| |#3|) (-157) (-1141 |#2|)) (T -382))
+((-3214 (*1 *2) (-12 (-4 *4 (-157)) (-4 *5 (-1141 *4)) (-5 *2 (-627 *4)) (-5 *1 (-382 *3 *4 *5)) (-4 *3 (-383 *4 *5)))) (-4010 (*1 *2) (-12 (-4 *4 (-1141 *2)) (-4 *2 (-157)) (-5 *1 (-382 *3 *2 *4)) (-4 *3 (-383 *2 *4)))))
+(-10 -8 (-15 -3499 ((-627 |#2|) |#1|)) (-15 -4010 (|#2|)) (-15 -3214 ((-627 |#2|))) (-15 -1430 (|#1| (-1165 |#2|))) (-15 -1430 ((-1165 |#2|) |#1|)) (-15 -4083 (|#1| (-1165 |#2|))) (-15 -2234 ((-627 |#2|) (-1165 |#1|))) (-15 -2234 ((-1165 |#2|) |#1|)) (-15 -3548 (|#3| |#1|)) (-15 -3110 (|#3| |#1|)) (-15 -3214 ((-627 |#2|) (-1165 |#1|))) (-15 -4010 (|#2| (-1165 |#1|))) (-15 -4083 (|#1| (-1165 |#2|) (-1165 |#1|))) (-15 -2234 ((-627 |#2|) (-1165 |#1|) (-1165 |#1|))) (-15 -2234 ((-1165 |#2|) |#1| (-1165 |#1|))) (-15 -3499 ((-627 |#2|) |#1| (-1165 |#1|))))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-3214 (((-627 |#1|) (-1165 $)) 46) (((-627 |#1|)) 61)) (-1865 ((|#1| $) 52)) (-1232 (((-3 $ "failed") $ $) 19)) (-2547 (($) 17 T CONST)) (-4083 (($ (-1165 |#1|) (-1165 $)) 48) (($ (-1165 |#1|)) 64)) (-3499 (((-627 |#1|) $ (-1165 $)) 53) (((-627 |#1|) $) 59)) (-1257 (((-3 $ "failed") $) 34)) (-3162 (((-850)) 54)) (-3996 (((-108) $) 31)) (-3930 ((|#1| $) 51)) (-3548 ((|#2| $) 44 (|has| |#1| (-337)))) (-3688 (((-1067) $) 9)) (-4147 (((-1031) $) 10)) (-4010 ((|#1| (-1165 $)) 47) ((|#1|) 60)) (-2234 (((-1165 |#1|) $ (-1165 $)) 50) (((-627 |#1|) (-1165 $) (-1165 $)) 49) (((-1165 |#1|) $) 66) (((-627 |#1|) (-1165 $)) 65)) (-1430 (((-1165 |#1|) $) 63) (($ (-1165 |#1|)) 62)) (-2189 (((-792) $) 11) (($ (-521)) 28) (($ |#1|) 37)) (-1671 (((-3 $ "failed") $) 43 (|has| |#1| (-133)))) (-3110 ((|#2| $) 45)) (-3846 (((-707)) 29)) (-2470 (((-1165 $)) 67)) (-3505 (($ $ (-850)) 26) (($ $ (-707)) 33)) (-3561 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-707)) 32)) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38)))
+(((-383 |#1| |#2|) (-1196) (-157) (-1141 |t#1|)) (T -383))
+((-2470 (*1 *2) (-12 (-4 *3 (-157)) (-4 *4 (-1141 *3)) (-5 *2 (-1165 *1)) (-4 *1 (-383 *3 *4)))) (-2234 (*1 *2 *1) (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-157)) (-4 *4 (-1141 *3)) (-5 *2 (-1165 *3)))) (-2234 (*1 *2 *3) (-12 (-5 *3 (-1165 *1)) (-4 *1 (-383 *4 *5)) (-4 *4 (-157)) (-4 *5 (-1141 *4)) (-5 *2 (-627 *4)))) (-4083 (*1 *1 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-157)) (-4 *1 (-383 *3 *4)) (-4 *4 (-1141 *3)))) (-1430 (*1 *2 *1) (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-157)) (-4 *4 (-1141 *3)) (-5 *2 (-1165 *3)))) (-1430 (*1 *1 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-157)) (-4 *1 (-383 *3 *4)) (-4 *4 (-1141 *3)))) (-3214 (*1 *2) (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-157)) (-4 *4 (-1141 *3)) (-5 *2 (-627 *3)))) (-4010 (*1 *2) (-12 (-4 *1 (-383 *2 *3)) (-4 *3 (-1141 *2)) (-4 *2 (-157)))) (-3499 (*1 *2 *1) (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-157)) (-4 *4 (-1141 *3)) (-5 *2 (-627 *3)))))
+(-13 (-344 |t#1| |t#2|) (-10 -8 (-15 -2470 ((-1165 $))) (-15 -2234 ((-1165 |t#1|) $)) (-15 -2234 ((-627 |t#1|) (-1165 $))) (-15 -4083 ($ (-1165 |t#1|))) (-15 -1430 ((-1165 |t#1|) $)) (-15 -1430 ($ (-1165 |t#1|))) (-15 -3214 ((-627 |t#1|))) (-15 -4010 (|t#1|)) (-15 -3499 ((-627 |t#1|) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-561 (-792)) . T) ((-344 |#1| |#2|) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-654 |#1|) . T) ((-663) . T) ((-976 |#1|) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T))
+((-1297 (((-3 |#2| "failed") $) NIL) (((-3 (-381 (-521)) "failed") $) 27) (((-3 (-521) "failed") $) 19)) (-1483 ((|#2| $) NIL) (((-381 (-521)) $) 24) (((-521) $) 14)) (-2189 (($ |#2|) NIL) (($ (-381 (-521))) 22) (($ (-521)) 11)))
+(((-384 |#1| |#2|) (-10 -8 (-15 -1483 ((-521) |#1|)) (-15 -1297 ((-3 (-521) "failed") |#1|)) (-15 -2189 (|#1| (-521))) (-15 -1483 ((-381 (-521)) |#1|)) (-15 -1297 ((-3 (-381 (-521)) "failed") |#1|)) (-15 -2189 (|#1| (-381 (-521)))) (-15 -2189 (|#1| |#2|)) (-15 -1297 ((-3 |#2| "failed") |#1|)) (-15 -1483 (|#2| |#1|))) (-385 |#2|) (-1119)) (T -384))
+NIL
+(-10 -8 (-15 -1483 ((-521) |#1|)) (-15 -1297 ((-3 (-521) "failed") |#1|)) (-15 -2189 (|#1| (-521))) (-15 -1483 ((-381 (-521)) |#1|)) (-15 -1297 ((-3 (-381 (-521)) "failed") |#1|)) (-15 -2189 (|#1| (-381 (-521)))) (-15 -2189 (|#1| |#2|)) (-15 -1297 ((-3 |#2| "failed") |#1|)) (-15 -1483 (|#2| |#1|)))
+((-1297 (((-3 |#1| "failed") $) 7) (((-3 (-381 (-521)) "failed") $) 16 (|has| |#1| (-961 (-381 (-521))))) (((-3 (-521) "failed") $) 13 (|has| |#1| (-961 (-521))))) (-1483 ((|#1| $) 8) (((-381 (-521)) $) 15 (|has| |#1| (-961 (-381 (-521))))) (((-521) $) 12 (|has| |#1| (-961 (-521))))) (-2189 (($ |#1|) 6) (($ (-381 (-521))) 17 (|has| |#1| (-961 (-381 (-521))))) (($ (-521)) 14 (|has| |#1| (-961 (-521))))))
+(((-385 |#1|) (-1196) (-1119)) (T -385))
+NIL
+(-13 (-961 |t#1|) (-10 -7 (IF (|has| |t#1| (-961 (-521))) (-6 (-961 (-521))) |%noBranch|) (IF (|has| |t#1| (-961 (-381 (-521)))) (-6 (-961 (-381 (-521)))) |%noBranch|)))
+(((-961 (-381 (-521))) |has| |#1| (-961 (-381 (-521)))) ((-961 (-521)) |has| |#1| (-961 (-521))) ((-961 |#1|) . T))
+((-1390 (((-387 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-387 |#1| |#2| |#3| |#4|)) 33)))
+(((-386 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1390 ((-387 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-387 |#1| |#2| |#3| |#4|)))) (-282) (-918 |#1|) (-1141 |#2|) (-13 (-383 |#2| |#3|) (-961 |#2|)) (-282) (-918 |#5|) (-1141 |#6|) (-13 (-383 |#6| |#7|) (-961 |#6|))) (T -386))
+((-1390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-387 *5 *6 *7 *8)) (-4 *5 (-282)) (-4 *6 (-918 *5)) (-4 *7 (-1141 *6)) (-4 *8 (-13 (-383 *6 *7) (-961 *6))) (-4 *9 (-282)) (-4 *10 (-918 *9)) (-4 *11 (-1141 *10)) (-5 *2 (-387 *9 *10 *11 *12)) (-5 *1 (-386 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-383 *10 *11) (-961 *10))))))
+(-10 -7 (-15 -1390 ((-387 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-387 |#1| |#2| |#3| |#4|))))
+((-1415 (((-108) $ $) NIL)) (-2547 (($) NIL T CONST)) (-1257 (((-3 $ "failed") $) NIL)) (-2128 ((|#4| (-707) (-1165 |#4|)) 55)) (-3996 (((-108) $) NIL)) (-2801 (((-1165 |#4|) $) 17)) (-3930 ((|#2| $) 53)) (-1431 (($ $) 136)) (-3688 (((-1067) $) NIL)) (-3095 (($ $) 98)) (-3563 (($ (-1165 |#4|)) 97)) (-4147 (((-1031) $) NIL)) (-2812 ((|#1| $) 18)) (-1223 (($ $ $) NIL)) (-2674 (($ $ $) NIL)) (-2189 (((-792) $) 131)) (-2470 (((-1165 |#4|) $) 126)) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (-3572 (($) 11 T CONST)) (-1531 (((-108) $ $) 39)) (-1620 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) 119)) (* (($ $ $) 118)))
+(((-387 |#1| |#2| |#3| |#4|) (-13 (-446) (-10 -8 (-15 -3563 ($ (-1165 |#4|))) (-15 -2470 ((-1165 |#4|) $)) (-15 -3930 (|#2| $)) (-15 -2801 ((-1165 |#4|) $)) (-15 -2812 (|#1| $)) (-15 -1431 ($ $)) (-15 -2128 (|#4| (-707) (-1165 |#4|))))) (-282) (-918 |#1|) (-1141 |#2|) (-13 (-383 |#2| |#3|) (-961 |#2|))) (T -387))
+((-3563 (*1 *1 *2) (-12 (-5 *2 (-1165 *6)) (-4 *6 (-13 (-383 *4 *5) (-961 *4))) (-4 *4 (-918 *3)) (-4 *5 (-1141 *4)) (-4 *3 (-282)) (-5 *1 (-387 *3 *4 *5 *6)))) (-2470 (*1 *2 *1) (-12 (-4 *3 (-282)) (-4 *4 (-918 *3)) (-4 *5 (-1141 *4)) (-5 *2 (-1165 *6)) (-5 *1 (-387 *3 *4 *5 *6)) (-4 *6 (-13 (-383 *4 *5) (-961 *4))))) (-3930 (*1 *2 *1) (-12 (-4 *4 (-1141 *2)) (-4 *2 (-918 *3)) (-5 *1 (-387 *3 *2 *4 *5)) (-4 *3 (-282)) (-4 *5 (-13 (-383 *2 *4) (-961 *2))))) (-2801 (*1 *2 *1) (-12 (-4 *3 (-282)) (-4 *4 (-918 *3)) (-4 *5 (-1141 *4)) (-5 *2 (-1165 *6)) (-5 *1 (-387 *3 *4 *5 *6)) (-4 *6 (-13 (-383 *4 *5) (-961 *4))))) (-2812 (*1 *2 *1) (-12 (-4 *3 (-918 *2)) (-4 *4 (-1141 *3)) (-4 *2 (-282)) (-5 *1 (-387 *2 *3 *4 *5)) (-4 *5 (-13 (-383 *3 *4) (-961 *3))))) (-1431 (*1 *1 *1) (-12 (-4 *2 (-282)) (-4 *3 (-918 *2)) (-4 *4 (-1141 *3)) (-5 *1 (-387 *2 *3 *4 *5)) (-4 *5 (-13 (-383 *3 *4) (-961 *3))))) (-2128 (*1 *2 *3 *4) (-12 (-5 *3 (-707)) (-5 *4 (-1165 *2)) (-4 *5 (-282)) (-4 *6 (-918 *5)) (-4 *2 (-13 (-383 *6 *7) (-961 *6))) (-5 *1 (-387 *5 *6 *7 *2)) (-4 *7 (-1141 *6)))))
+(-13 (-446) (-10 -8 (-15 -3563 ($ (-1165 |#4|))) (-15 -2470 ((-1165 |#4|) $)) (-15 -3930 (|#2| $)) (-15 -2801 ((-1165 |#4|) $)) (-15 -2812 (|#1| $)) (-15 -1431 ($ $)) (-15 -2128 (|#4| (-707) (-1165 |#4|)))))
+((-1415 (((-108) $ $) NIL)) (-2547 (($) NIL T CONST)) (-1257 (((-3 $ "failed") $) NIL)) (-3996 (((-108) $) NIL)) (-3930 ((|#2| $) 60)) (-2497 (($ (-1165 |#4|)) 25) (($ (-387 |#1| |#2| |#3| |#4|)) 75 (|has| |#4| (-961 |#2|)))) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2189 (((-792) $) 34)) (-2470 (((-1165 |#4|) $) 26)) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (-3572 (($) 23 T CONST)) (-1531 (((-108) $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (* (($ $ $) 72)))
+(((-388 |#1| |#2| |#3| |#4| |#5|) (-13 (-663) (-10 -8 (-15 -2470 ((-1165 |#4|) $)) (-15 -3930 (|#2| $)) (-15 -2497 ($ (-1165 |#4|))) (IF (|has| |#4| (-961 |#2|)) (-15 -2497 ($ (-387 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-282) (-918 |#1|) (-1141 |#2|) (-383 |#2| |#3|) (-1165 |#4|)) (T -388))
+((-2470 (*1 *2 *1) (-12 (-4 *3 (-282)) (-4 *4 (-918 *3)) (-4 *5 (-1141 *4)) (-5 *2 (-1165 *6)) (-5 *1 (-388 *3 *4 *5 *6 *7)) (-4 *6 (-383 *4 *5)) (-14 *7 *2))) (-3930 (*1 *2 *1) (-12 (-4 *4 (-1141 *2)) (-4 *2 (-918 *3)) (-5 *1 (-388 *3 *2 *4 *5 *6)) (-4 *3 (-282)) (-4 *5 (-383 *2 *4)) (-14 *6 (-1165 *5)))) (-2497 (*1 *1 *2) (-12 (-5 *2 (-1165 *6)) (-4 *6 (-383 *4 *5)) (-4 *4 (-918 *3)) (-4 *5 (-1141 *4)) (-4 *3 (-282)) (-5 *1 (-388 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-2497 (*1 *1 *2) (-12 (-5 *2 (-387 *3 *4 *5 *6)) (-4 *6 (-961 *4)) (-4 *3 (-282)) (-4 *4 (-918 *3)) (-4 *5 (-1141 *4)) (-4 *6 (-383 *4 *5)) (-14 *7 (-1165 *6)) (-5 *1 (-388 *3 *4 *5 *6 *7)))))
+(-13 (-663) (-10 -8 (-15 -2470 ((-1165 |#4|) $)) (-15 -3930 (|#2| $)) (-15 -2497 ($ (-1165 |#4|))) (IF (|has| |#4| (-961 |#2|)) (-15 -2497 ($ (-387 |#1| |#2| |#3| |#4|))) |%noBranch|)))
+((-1390 ((|#3| (-1 |#4| |#2|) |#1|) 26)))
+(((-389 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1390 (|#3| (-1 |#4| |#2|) |#1|))) (-391 |#2|) (-157) (-391 |#4|) (-157)) (T -389))
+((-1390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-157)) (-4 *6 (-157)) (-4 *2 (-391 *6)) (-5 *1 (-389 *4 *5 *2 *6)) (-4 *4 (-391 *5)))))
+(-10 -7 (-15 -1390 (|#3| (-1 |#4| |#2|) |#1|)))
+((-3689 (((-3 $ "failed")) 85)) (-3359 (((-1165 (-627 |#2|)) (-1165 $)) NIL) (((-1165 (-627 |#2|))) 90)) (-3758 (((-3 (-2 (|:| |particular| $) (|:| -2470 (-587 $))) "failed")) 84)) (-3167 (((-3 $ "failed")) 83)) (-2168 (((-627 |#2|) (-1165 $)) NIL) (((-627 |#2|)) 101)) (-3907 (((-627 |#2|) $ (-1165 $)) NIL) (((-627 |#2|) $) 109)) (-1528 (((-1080 (-881 |#2|))) 54)) (-3518 ((|#2| (-1165 $)) NIL) ((|#2|) 105)) (-4083 (($ (-1165 |#2|) (-1165 $)) NIL) (($ (-1165 |#2|)) 112)) (-3524 (((-3 (-2 (|:| |particular| $) (|:| -2470 (-587 $))) "failed")) 82)) (-2172 (((-3 $ "failed")) 74)) (-1786 (((-627 |#2|) (-1165 $)) NIL) (((-627 |#2|)) 99)) (-3734 (((-627 |#2|) $ (-1165 $)) NIL) (((-627 |#2|) $) 107)) (-1519 (((-1080 (-881 |#2|))) 53)) (-1586 ((|#2| (-1165 $)) NIL) ((|#2|) 103)) (-2234 (((-1165 |#2|) $ (-1165 $)) NIL) (((-627 |#2|) (-1165 $) (-1165 $)) NIL) (((-1165 |#2|) $) NIL) (((-627 |#2|) (-1165 $)) 111)) (-1430 (((-1165 |#2|) $) 95) (($ (-1165 |#2|)) 97)) (-3557 (((-587 (-881 |#2|)) (-1165 $)) NIL) (((-587 (-881 |#2|))) 93)) (-1616 (($ (-627 |#2|) $) 89)))
+(((-390 |#1| |#2|) (-10 -8 (-15 -1616 (|#1| (-627 |#2|) |#1|)) (-15 -1528 ((-1080 (-881 |#2|)))) (-15 -1519 ((-1080 (-881 |#2|)))) (-15 -3907 ((-627 |#2|) |#1|)) (-15 -3734 ((-627 |#2|) |#1|)) (-15 -2168 ((-627 |#2|))) (-15 -1786 ((-627 |#2|))) (-15 -3518 (|#2|)) (-15 -1586 (|#2|)) (-15 -1430 (|#1| (-1165 |#2|))) (-15 -1430 ((-1165 |#2|) |#1|)) (-15 -4083 (|#1| (-1165 |#2|))) (-15 -3557 ((-587 (-881 |#2|)))) (-15 -3359 ((-1165 (-627 |#2|)))) (-15 -2234 ((-627 |#2|) (-1165 |#1|))) (-15 -2234 ((-1165 |#2|) |#1|)) (-15 -3689 ((-3 |#1| "failed"))) (-15 -3167 ((-3 |#1| "failed"))) (-15 -2172 ((-3 |#1| "failed"))) (-15 -3758 ((-3 (-2 (|:| |particular| |#1|) (|:| -2470 (-587 |#1|))) "failed"))) (-15 -3524 ((-3 (-2 (|:| |particular| |#1|) (|:| -2470 (-587 |#1|))) "failed"))) (-15 -2168 ((-627 |#2|) (-1165 |#1|))) (-15 -1786 ((-627 |#2|) (-1165 |#1|))) (-15 -3518 (|#2| (-1165 |#1|))) (-15 -1586 (|#2| (-1165 |#1|))) (-15 -4083 (|#1| (-1165 |#2|) (-1165 |#1|))) (-15 -2234 ((-627 |#2|) (-1165 |#1|) (-1165 |#1|))) (-15 -2234 ((-1165 |#2|) |#1| (-1165 |#1|))) (-15 -3907 ((-627 |#2|) |#1| (-1165 |#1|))) (-15 -3734 ((-627 |#2|) |#1| (-1165 |#1|))) (-15 -3359 ((-1165 (-627 |#2|)) (-1165 |#1|))) (-15 -3557 ((-587 (-881 |#2|)) (-1165 |#1|)))) (-391 |#2|) (-157)) (T -390))
+((-3359 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-1165 (-627 *4))) (-5 *1 (-390 *3 *4)) (-4 *3 (-391 *4)))) (-3557 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-587 (-881 *4))) (-5 *1 (-390 *3 *4)) (-4 *3 (-391 *4)))) (-1586 (*1 *2) (-12 (-4 *2 (-157)) (-5 *1 (-390 *3 *2)) (-4 *3 (-391 *2)))) (-3518 (*1 *2) (-12 (-4 *2 (-157)) (-5 *1 (-390 *3 *2)) (-4 *3 (-391 *2)))) (-1786 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-627 *4)) (-5 *1 (-390 *3 *4)) (-4 *3 (-391 *4)))) (-2168 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-627 *4)) (-5 *1 (-390 *3 *4)) (-4 *3 (-391 *4)))) (-1519 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-1080 (-881 *4))) (-5 *1 (-390 *3 *4)) (-4 *3 (-391 *4)))) (-1528 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-1080 (-881 *4))) (-5 *1 (-390 *3 *4)) (-4 *3 (-391 *4)))))
+(-10 -8 (-15 -1616 (|#1| (-627 |#2|) |#1|)) (-15 -1528 ((-1080 (-881 |#2|)))) (-15 -1519 ((-1080 (-881 |#2|)))) (-15 -3907 ((-627 |#2|) |#1|)) (-15 -3734 ((-627 |#2|) |#1|)) (-15 -2168 ((-627 |#2|))) (-15 -1786 ((-627 |#2|))) (-15 -3518 (|#2|)) (-15 -1586 (|#2|)) (-15 -1430 (|#1| (-1165 |#2|))) (-15 -1430 ((-1165 |#2|) |#1|)) (-15 -4083 (|#1| (-1165 |#2|))) (-15 -3557 ((-587 (-881 |#2|)))) (-15 -3359 ((-1165 (-627 |#2|)))) (-15 -2234 ((-627 |#2|) (-1165 |#1|))) (-15 -2234 ((-1165 |#2|) |#1|)) (-15 -3689 ((-3 |#1| "failed"))) (-15 -3167 ((-3 |#1| "failed"))) (-15 -2172 ((-3 |#1| "failed"))) (-15 -3758 ((-3 (-2 (|:| |particular| |#1|) (|:| -2470 (-587 |#1|))) "failed"))) (-15 -3524 ((-3 (-2 (|:| |particular| |#1|) (|:| -2470 (-587 |#1|))) "failed"))) (-15 -2168 ((-627 |#2|) (-1165 |#1|))) (-15 -1786 ((-627 |#2|) (-1165 |#1|))) (-15 -3518 (|#2| (-1165 |#1|))) (-15 -1586 (|#2| (-1165 |#1|))) (-15 -4083 (|#1| (-1165 |#2|) (-1165 |#1|))) (-15 -2234 ((-627 |#2|) (-1165 |#1|) (-1165 |#1|))) (-15 -2234 ((-1165 |#2|) |#1| (-1165 |#1|))) (-15 -3907 ((-627 |#2|) |#1| (-1165 |#1|))) (-15 -3734 ((-627 |#2|) |#1| (-1165 |#1|))) (-15 -3359 ((-1165 (-627 |#2|)) (-1165 |#1|))) (-15 -3557 ((-587 (-881 |#2|)) (-1165 |#1|))))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-3689 (((-3 $ "failed")) 37 (|has| |#1| (-513)))) (-1232 (((-3 $ "failed") $ $) 19)) (-3359 (((-1165 (-627 |#1|)) (-1165 $)) 78) (((-1165 (-627 |#1|))) 100)) (-1386 (((-1165 $)) 81)) (-2547 (($) 17 T CONST)) (-3758 (((-3 (-2 (|:| |particular| $) (|:| -2470 (-587 $))) "failed")) 40 (|has| |#1| (-513)))) (-3167 (((-3 $ "failed")) 38 (|has| |#1| (-513)))) (-2168 (((-627 |#1|) (-1165 $)) 65) (((-627 |#1|)) 92)) (-3783 ((|#1| $) 74)) (-3907 (((-627 |#1|) $ (-1165 $)) 76) (((-627 |#1|) $) 90)) (-3176 (((-3 $ "failed") $) 45 (|has| |#1| (-513)))) (-1528 (((-1080 (-881 |#1|))) 88 (|has| |#1| (-337)))) (-3047 (($ $ (-850)) 28)) (-3333 ((|#1| $) 72)) (-3330 (((-1080 |#1|) $) 42 (|has| |#1| (-513)))) (-3518 ((|#1| (-1165 $)) 67) ((|#1|) 94)) (-2370 (((-1080 |#1|) $) 63)) (-1208 (((-108)) 57)) (-4083 (($ (-1165 |#1|) (-1165 $)) 69) (($ (-1165 |#1|)) 98)) (-1257 (((-3 $ "failed") $) 47 (|has| |#1| (-513)))) (-3162 (((-850)) 80)) (-3856 (((-108)) 54)) (-2049 (($ $ (-850)) 33)) (-2760 (((-108)) 50)) (-1344 (((-108)) 48)) (-2383 (((-108)) 52)) (-3524 (((-3 (-2 (|:| |particular| $) (|:| -2470 (-587 $))) "failed")) 41 (|has| |#1| (-513)))) (-2172 (((-3 $ "failed")) 39 (|has| |#1| (-513)))) (-1786 (((-627 |#1|) (-1165 $)) 66) (((-627 |#1|)) 93)) (-2627 ((|#1| $) 75)) (-3734 (((-627 |#1|) $ (-1165 $)) 77) (((-627 |#1|) $) 91)) (-2652 (((-3 $ "failed") $) 46 (|has| |#1| (-513)))) (-1519 (((-1080 (-881 |#1|))) 89 (|has| |#1| (-337)))) (-2830 (($ $ (-850)) 29)) (-1332 ((|#1| $) 73)) (-1729 (((-1080 |#1|) $) 43 (|has| |#1| (-513)))) (-1586 ((|#1| (-1165 $)) 68) ((|#1|) 95)) (-3888 (((-1080 |#1|) $) 64)) (-2118 (((-108)) 58)) (-3688 (((-1067) $) 9)) (-4045 (((-108)) 49)) (-1560 (((-108)) 51)) (-1381 (((-108)) 53)) (-4147 (((-1031) $) 10)) (-1242 (((-108)) 56)) (-2544 ((|#1| $ (-521)) 101)) (-2234 (((-1165 |#1|) $ (-1165 $)) 71) (((-627 |#1|) (-1165 $) (-1165 $)) 70) (((-1165 |#1|) $) 103) (((-627 |#1|) (-1165 $)) 102)) (-1430 (((-1165 |#1|) $) 97) (($ (-1165 |#1|)) 96)) (-3557 (((-587 (-881 |#1|)) (-1165 $)) 79) (((-587 (-881 |#1|))) 99)) (-2674 (($ $ $) 25)) (-3160 (((-108)) 62)) (-2189 (((-792) $) 11)) (-2470 (((-1165 $)) 104)) (-2578 (((-587 (-1165 |#1|))) 44 (|has| |#1| (-513)))) (-2922 (($ $ $ $) 26)) (-2057 (((-108)) 60)) (-1616 (($ (-627 |#1|) $) 87)) (-2464 (($ $ $) 24)) (-1453 (((-108)) 61)) (-3987 (((-108)) 59)) (-2596 (((-108)) 55)) (-3561 (($) 18 T CONST)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 30)) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
+(((-391 |#1|) (-1196) (-157)) (T -391))
+((-2470 (*1 *2) (-12 (-4 *3 (-157)) (-5 *2 (-1165 *1)) (-4 *1 (-391 *3)))) (-2234 (*1 *2 *1) (-12 (-4 *1 (-391 *3)) (-4 *3 (-157)) (-5 *2 (-1165 *3)))) (-2234 (*1 *2 *3) (-12 (-5 *3 (-1165 *1)) (-4 *1 (-391 *4)) (-4 *4 (-157)) (-5 *2 (-627 *4)))) (-2544 (*1 *2 *1 *3) (-12 (-5 *3 (-521)) (-4 *1 (-391 *2)) (-4 *2 (-157)))) (-3359 (*1 *2) (-12 (-4 *1 (-391 *3)) (-4 *3 (-157)) (-5 *2 (-1165 (-627 *3))))) (-3557 (*1 *2) (-12 (-4 *1 (-391 *3)) (-4 *3 (-157)) (-5 *2 (-587 (-881 *3))))) (-4083 (*1 *1 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-157)) (-4 *1 (-391 *3)))) (-1430 (*1 *2 *1) (-12 (-4 *1 (-391 *3)) (-4 *3 (-157)) (-5 *2 (-1165 *3)))) (-1430 (*1 *1 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-157)) (-4 *1 (-391 *3)))) (-1586 (*1 *2) (-12 (-4 *1 (-391 *2)) (-4 *2 (-157)))) (-3518 (*1 *2) (-12 (-4 *1 (-391 *2)) (-4 *2 (-157)))) (-1786 (*1 *2) (-12 (-4 *1 (-391 *3)) (-4 *3 (-157)) (-5 *2 (-627 *3)))) (-2168 (*1 *2) (-12 (-4 *1 (-391 *3)) (-4 *3 (-157)) (-5 *2 (-627 *3)))) (-3734 (*1 *2 *1) (-12 (-4 *1 (-391 *3)) (-4 *3 (-157)) (-5 *2 (-627 *3)))) (-3907 (*1 *2 *1) (-12 (-4 *1 (-391 *3)) (-4 *3 (-157)) (-5 *2 (-627 *3)))) (-1519 (*1 *2) (-12 (-4 *1 (-391 *3)) (-4 *3 (-157)) (-4 *3 (-337)) (-5 *2 (-1080 (-881 *3))))) (-1528 (*1 *2) (-12 (-4 *1 (-391 *3)) (-4 *3 (-157)) (-4 *3 (-337)) (-5 *2 (-1080 (-881 *3))))) (-1616 (*1 *1 *2 *1) (-12 (-5 *2 (-627 *3)) (-4 *1 (-391 *3)) (-4 *3 (-157)))))
+(-13 (-341 |t#1|) (-10 -8 (-15 -2470 ((-1165 $))) (-15 -2234 ((-1165 |t#1|) $)) (-15 -2234 ((-627 |t#1|) (-1165 $))) (-15 -2544 (|t#1| $ (-521))) (-15 -3359 ((-1165 (-627 |t#1|)))) (-15 -3557 ((-587 (-881 |t#1|)))) (-15 -4083 ($ (-1165 |t#1|))) (-15 -1430 ((-1165 |t#1|) $)) (-15 -1430 ($ (-1165 |t#1|))) (-15 -1586 (|t#1|)) (-15 -3518 (|t#1|)) (-15 -1786 ((-627 |t#1|))) (-15 -2168 ((-627 |t#1|))) (-15 -3734 ((-627 |t#1|) $)) (-15 -3907 ((-627 |t#1|) $)) (IF (|has| |t#1| (-337)) (PROGN (-15 -1519 ((-1080 (-881 |t#1|)))) (-15 -1528 ((-1080 (-881 |t#1|))))) |%noBranch|) (-15 -1616 ($ (-627 |t#1|) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-561 (-792)) . T) ((-341 |#1|) . T) ((-589 |#1|) . T) ((-654 |#1|) . T) ((-657) . T) ((-681 |#1|) . T) ((-698) . T) ((-976 |#1|) . T) ((-1013) . T))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) 41)) (-3076 (($ $) 56)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) 143)) (-2559 (($ $) NIL)) (-1733 (((-108) $) 35)) (-3689 ((|#1| $) 12)) (-1232 (((-3 $ "failed") $ $) NIL)) (-3063 (($ $) NIL (|has| |#1| (-1123)))) (-3358 (((-392 $) $) NIL (|has| |#1| (-1123)))) (-3776 (($ |#1| (-521)) 30)) (-2547 (($) NIL T CONST)) (-1297 (((-3 (-521) "failed") $) NIL (|has| |#1| (-961 (-521)))) (((-3 (-381 (-521)) "failed") $) NIL (|has| |#1| (-961 (-381 (-521))))) (((-3 |#1| "failed") $) 113)) (-1483 (((-521) $) NIL (|has| |#1| (-961 (-521)))) (((-381 (-521)) $) NIL (|has| |#1| (-961 (-381 (-521))))) ((|#1| $) 54)) (-1257 (((-3 $ "failed") $) 128)) (-1521 (((-3 (-381 (-521)) "failed") $) 62 (|has| |#1| (-506)))) (-3190 (((-108) $) 58 (|has| |#1| (-506)))) (-2082 (((-381 (-521)) $) 60 (|has| |#1| (-506)))) (-2122 (($ |#1| (-521)) 32)) (-2710 (((-108) $) 149 (|has| |#1| (-1123)))) (-3996 (((-108) $) 42)) (-2969 (((-707) $) 37)) (-3157 (((-3 "nil" "sqfr" "irred" "prime") $ (-521)) 134)) (-1785 ((|#1| $ (-521)) 133)) (-3443 (((-521) $ (-521)) 132)) (-3372 (($ |#1| (-521)) 29)) (-1390 (($ (-1 |#1| |#1|) $) 140)) (-1520 (($ |#1| (-587 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-521))))) 57)) (-2223 (($ (-587 $)) NIL (|has| |#1| (-425))) (($ $ $) NIL (|has| |#1| (-425)))) (-3688 (((-1067) $) NIL)) (-2906 (($ |#1| (-521)) 31)) (-4147 (((-1031) $) NIL)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) NIL (|has| |#1| (-425)))) (-2258 (($ (-587 $)) NIL (|has| |#1| (-425))) (($ $ $) 144 (|has| |#1| (-425)))) (-3756 (($ |#1| (-521) (-3 "nil" "sqfr" "irred" "prime")) 28)) (-1514 (((-587 (-2 (|:| -1916 |#1|) (|:| -2997 (-521)))) $) 53)) (-4206 (((-587 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-521)))) $) 11)) (-1916 (((-392 $) $) NIL (|has| |#1| (-1123)))) (-2230 (((-3 $ "failed") $ $) 135)) (-2997 (((-521) $) 129)) (-1604 ((|#1| $) 55)) (-2288 (($ $ (-587 |#1|) (-587 |#1|)) NIL (|has| |#1| (-284 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-284 |#1|))) (($ $ (-269 |#1|)) NIL (|has| |#1| (-284 |#1|))) (($ $ (-587 (-269 |#1|))) 77 (|has| |#1| (-284 |#1|))) (($ $ (-587 (-1084)) (-587 |#1|)) 82 (|has| |#1| (-482 (-1084) |#1|))) (($ $ (-1084) |#1|) NIL (|has| |#1| (-482 (-1084) |#1|))) (($ $ (-1084) $) NIL (|has| |#1| (-482 (-1084) $))) (($ $ (-587 (-1084)) (-587 $)) 83 (|has| |#1| (-482 (-1084) $))) (($ $ (-587 (-269 $))) 79 (|has| |#1| (-284 $))) (($ $ (-269 $)) NIL (|has| |#1| (-284 $))) (($ $ $ $) NIL (|has| |#1| (-284 $))) (($ $ (-587 $) (-587 $)) NIL (|has| |#1| (-284 $)))) (-2544 (($ $ |#1|) 69 (|has| |#1| (-261 |#1| |#1|))) (($ $ $) 70 (|has| |#1| (-261 $ $)))) (-2156 (($ $) NIL (|has| |#1| (-210))) (($ $ (-707)) NIL (|has| |#1| (-210))) (($ $ (-1084)) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-1 |#1| |#1|) (-707)) NIL) (($ $ (-1 |#1| |#1|)) 139)) (-1430 (((-497) $) 26 (|has| |#1| (-562 (-497)))) (((-353) $) 89 (|has| |#1| (-946))) (((-202) $) 92 (|has| |#1| (-946)))) (-2189 (((-792) $) 111) (($ (-521)) 45) (($ $) NIL) (($ |#1|) 44) (($ (-381 (-521))) NIL (|has| |#1| (-961 (-381 (-521)))))) (-3846 (((-707)) 47)) (-4210 (((-108) $ $) NIL)) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (-3561 (($) 39 T CONST)) (-3572 (($) 38 T CONST)) (-2212 (($ $) NIL (|has| |#1| (-210))) (($ $ (-707)) NIL (|has| |#1| (-210))) (($ $ (-1084)) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-1 |#1| |#1|) (-707)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1531 (((-108) $ $) 93)) (-1612 (($ $) 125) (($ $ $) NIL)) (-1602 (($ $ $) 137)) (** (($ $ (-850)) NIL) (($ $ (-707)) 99)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) 49) (($ $ $) 48) (($ |#1| $) 50) (($ $ |#1|) NIL)))
+(((-392 |#1|) (-13 (-513) (-208 |#1|) (-37 |#1|) (-312 |#1|) (-385 |#1|) (-10 -8 (-15 -1604 (|#1| $)) (-15 -2997 ((-521) $)) (-15 -1520 ($ |#1| (-587 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-521)))))) (-15 -4206 ((-587 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-521)))) $)) (-15 -3372 ($ |#1| (-521))) (-15 -1514 ((-587 (-2 (|:| -1916 |#1|) (|:| -2997 (-521)))) $)) (-15 -2906 ($ |#1| (-521))) (-15 -3443 ((-521) $ (-521))) (-15 -1785 (|#1| $ (-521))) (-15 -3157 ((-3 "nil" "sqfr" "irred" "prime") $ (-521))) (-15 -2969 ((-707) $)) (-15 -2122 ($ |#1| (-521))) (-15 -3776 ($ |#1| (-521))) (-15 -3756 ($ |#1| (-521) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3689 (|#1| $)) (-15 -3076 ($ $)) (-15 -1390 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-425)) (-6 (-425)) |%noBranch|) (IF (|has| |#1| (-946)) (-6 (-946)) |%noBranch|) (IF (|has| |#1| (-1123)) (-6 (-1123)) |%noBranch|) (IF (|has| |#1| (-562 (-497))) (-6 (-562 (-497))) |%noBranch|) (IF (|has| |#1| (-506)) (PROGN (-15 -3190 ((-108) $)) (-15 -2082 ((-381 (-521)) $)) (-15 -1521 ((-3 (-381 (-521)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-261 $ $)) (-6 (-261 $ $)) |%noBranch|) (IF (|has| |#1| (-284 $)) (-6 (-284 $)) |%noBranch|) (IF (|has| |#1| (-482 (-1084) $)) (-6 (-482 (-1084) $)) |%noBranch|))) (-513)) (T -392))
+((-1390 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-513)) (-5 *1 (-392 *3)))) (-1604 (*1 *2 *1) (-12 (-5 *1 (-392 *2)) (-4 *2 (-513)))) (-2997 (*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-392 *3)) (-4 *3 (-513)))) (-1520 (*1 *1 *2 *3) (-12 (-5 *3 (-587 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-521))))) (-4 *2 (-513)) (-5 *1 (-392 *2)))) (-4206 (*1 *2 *1) (-12 (-5 *2 (-587 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-521))))) (-5 *1 (-392 *3)) (-4 *3 (-513)))) (-3372 (*1 *1 *2 *3) (-12 (-5 *3 (-521)) (-5 *1 (-392 *2)) (-4 *2 (-513)))) (-1514 (*1 *2 *1) (-12 (-5 *2 (-587 (-2 (|:| -1916 *3) (|:| -2997 (-521))))) (-5 *1 (-392 *3)) (-4 *3 (-513)))) (-2906 (*1 *1 *2 *3) (-12 (-5 *3 (-521)) (-5 *1 (-392 *2)) (-4 *2 (-513)))) (-3443 (*1 *2 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-392 *3)) (-4 *3 (-513)))) (-1785 (*1 *2 *1 *3) (-12 (-5 *3 (-521)) (-5 *1 (-392 *2)) (-4 *2 (-513)))) (-3157 (*1 *2 *1 *3) (-12 (-5 *3 (-521)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-392 *4)) (-4 *4 (-513)))) (-2969 (*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-392 *3)) (-4 *3 (-513)))) (-2122 (*1 *1 *2 *3) (-12 (-5 *3 (-521)) (-5 *1 (-392 *2)) (-4 *2 (-513)))) (-3776 (*1 *1 *2 *3) (-12 (-5 *3 (-521)) (-5 *1 (-392 *2)) (-4 *2 (-513)))) (-3756 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-521)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-392 *2)) (-4 *2 (-513)))) (-3689 (*1 *2 *1) (-12 (-5 *1 (-392 *2)) (-4 *2 (-513)))) (-3076 (*1 *1 *1) (-12 (-5 *1 (-392 *2)) (-4 *2 (-513)))) (-3190 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-392 *3)) (-4 *3 (-506)) (-4 *3 (-513)))) (-2082 (*1 *2 *1) (-12 (-5 *2 (-381 (-521))) (-5 *1 (-392 *3)) (-4 *3 (-506)) (-4 *3 (-513)))) (-1521 (*1 *2 *1) (|partial| -12 (-5 *2 (-381 (-521))) (-5 *1 (-392 *3)) (-4 *3 (-506)) (-4 *3 (-513)))))
+(-13 (-513) (-208 |#1|) (-37 |#1|) (-312 |#1|) (-385 |#1|) (-10 -8 (-15 -1604 (|#1| $)) (-15 -2997 ((-521) $)) (-15 -1520 ($ |#1| (-587 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-521)))))) (-15 -4206 ((-587 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-521)))) $)) (-15 -3372 ($ |#1| (-521))) (-15 -1514 ((-587 (-2 (|:| -1916 |#1|) (|:| -2997 (-521)))) $)) (-15 -2906 ($ |#1| (-521))) (-15 -3443 ((-521) $ (-521))) (-15 -1785 (|#1| $ (-521))) (-15 -3157 ((-3 "nil" "sqfr" "irred" "prime") $ (-521))) (-15 -2969 ((-707) $)) (-15 -2122 ($ |#1| (-521))) (-15 -3776 ($ |#1| (-521))) (-15 -3756 ($ |#1| (-521) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3689 (|#1| $)) (-15 -3076 ($ $)) (-15 -1390 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-425)) (-6 (-425)) |%noBranch|) (IF (|has| |#1| (-946)) (-6 (-946)) |%noBranch|) (IF (|has| |#1| (-1123)) (-6 (-1123)) |%noBranch|) (IF (|has| |#1| (-562 (-497))) (-6 (-562 (-497))) |%noBranch|) (IF (|has| |#1| (-506)) (PROGN (-15 -3190 ((-108) $)) (-15 -2082 ((-381 (-521)) $)) (-15 -1521 ((-3 (-381 (-521)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-261 $ $)) (-6 (-261 $ $)) |%noBranch|) (IF (|has| |#1| (-284 $)) (-6 (-284 $)) |%noBranch|) (IF (|has| |#1| (-482 (-1084) $)) (-6 (-482 (-1084) $)) |%noBranch|)))
+((-3161 (((-392 |#1|) (-392 |#1|) (-1 (-392 |#1|) |#1|)) 20)) (-4020 (((-392 |#1|) (-392 |#1|) (-392 |#1|)) 15)))
+(((-393 |#1|) (-10 -7 (-15 -3161 ((-392 |#1|) (-392 |#1|) (-1 (-392 |#1|) |#1|))) (-15 -4020 ((-392 |#1|) (-392 |#1|) (-392 |#1|)))) (-513)) (T -393))
+((-4020 (*1 *2 *2 *2) (-12 (-5 *2 (-392 *3)) (-4 *3 (-513)) (-5 *1 (-393 *3)))) (-3161 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-392 *4) *4)) (-4 *4 (-513)) (-5 *2 (-392 *4)) (-5 *1 (-393 *4)))))
+(-10 -7 (-15 -3161 ((-392 |#1|) (-392 |#1|) (-1 (-392 |#1|) |#1|))) (-15 -4020 ((-392 |#1|) (-392 |#1|) (-392 |#1|))))
+((-1239 ((|#2| |#2|) 161)) (-2071 (((-3 (|:| |%expansion| (-287 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1067)) (|:| |prob| (-1067))))) |#2| (-108)) 55)))
+(((-394 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2071 ((-3 (|:| |%expansion| (-287 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1067)) (|:| |prob| (-1067))))) |#2| (-108))) (-15 -1239 (|#2| |#2|))) (-13 (-425) (-784) (-961 (-521)) (-583 (-521))) (-13 (-27) (-1105) (-404 |#1|)) (-1084) |#2|) (T -394))
+((-1239 (*1 *2 *2) (-12 (-4 *3 (-13 (-425) (-784) (-961 (-521)) (-583 (-521)))) (-5 *1 (-394 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1105) (-404 *3))) (-14 *4 (-1084)) (-14 *5 *2))) (-2071 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-425) (-784) (-961 (-521)) (-583 (-521)))) (-5 *2 (-3 (|:| |%expansion| (-287 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1067)) (|:| |prob| (-1067)))))) (-5 *1 (-394 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1105) (-404 *5))) (-14 *6 (-1084)) (-14 *7 *3))))
+(-10 -7 (-15 -2071 ((-3 (|:| |%expansion| (-287 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1067)) (|:| |prob| (-1067))))) |#2| (-108))) (-15 -1239 (|#2| |#2|)))
+((-1390 ((|#4| (-1 |#3| |#1|) |#2|) 11)))
+(((-395 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1390 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-970) (-784)) (-404 |#1|) (-13 (-970) (-784)) (-404 |#3|)) (T -395))
+((-1390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-970) (-784))) (-4 *6 (-13 (-970) (-784))) (-4 *2 (-404 *6)) (-5 *1 (-395 *5 *4 *6 *2)) (-4 *4 (-404 *5)))))
+(-10 -7 (-15 -1390 (|#4| (-1 |#3| |#1|) |#2|)))
+((-1239 ((|#2| |#2|) 88)) (-3286 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1067)) (|:| |prob| (-1067))))) |#2| (-108) (-1067)) 46)) (-2179 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1067)) (|:| |prob| (-1067))))) |#2| (-108) (-1067)) 153)))
+(((-396 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3286 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1067)) (|:| |prob| (-1067))))) |#2| (-108) (-1067))) (-15 -2179 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1067)) (|:| |prob| (-1067))))) |#2| (-108) (-1067))) (-15 -1239 (|#2| |#2|))) (-13 (-425) (-784) (-961 (-521)) (-583 (-521))) (-13 (-27) (-1105) (-404 |#1|) (-10 -8 (-15 -2189 ($ |#3|)))) (-782) (-13 (-1143 |#2| |#3|) (-337) (-1105) (-10 -8 (-15 -2156 ($ $)) (-15 -2184 ($ $)))) (-909 |#4|) (-1084)) (T -396))
+((-1239 (*1 *2 *2) (-12 (-4 *3 (-13 (-425) (-784) (-961 (-521)) (-583 (-521)))) (-4 *2 (-13 (-27) (-1105) (-404 *3) (-10 -8 (-15 -2189 ($ *4))))) (-4 *4 (-782)) (-4 *5 (-13 (-1143 *2 *4) (-337) (-1105) (-10 -8 (-15 -2156 ($ $)) (-15 -2184 ($ $))))) (-5 *1 (-396 *3 *2 *4 *5 *6 *7)) (-4 *6 (-909 *5)) (-14 *7 (-1084)))) (-2179 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-108)) (-4 *6 (-13 (-425) (-784) (-961 (-521)) (-583 (-521)))) (-4 *3 (-13 (-27) (-1105) (-404 *6) (-10 -8 (-15 -2189 ($ *7))))) (-4 *7 (-782)) (-4 *8 (-13 (-1143 *3 *7) (-337) (-1105) (-10 -8 (-15 -2156 ($ $)) (-15 -2184 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1067)) (|:| |prob| (-1067)))))) (-5 *1 (-396 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1067)) (-4 *9 (-909 *8)) (-14 *10 (-1084)))) (-3286 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-108)) (-4 *6 (-13 (-425) (-784) (-961 (-521)) (-583 (-521)))) (-4 *3 (-13 (-27) (-1105) (-404 *6) (-10 -8 (-15 -2189 ($ *7))))) (-4 *7 (-782)) (-4 *8 (-13 (-1143 *3 *7) (-337) (-1105) (-10 -8 (-15 -2156 ($ $)) (-15 -2184 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1067)) (|:| |prob| (-1067)))))) (-5 *1 (-396 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1067)) (-4 *9 (-909 *8)) (-14 *10 (-1084)))))
+(-10 -7 (-15 -3286 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1067)) (|:| |prob| (-1067))))) |#2| (-108) (-1067))) (-15 -2179 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1067)) (|:| |prob| (-1067))))) |#2| (-108) (-1067))) (-15 -1239 (|#2| |#2|)))
+((-3126 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-3859 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-1390 ((|#4| (-1 |#3| |#1|) |#2|) 17)))
+(((-397 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1390 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3859 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3126 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1013) (-399 |#1|) (-1013) (-399 |#3|)) (T -397))
+((-3126 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1013)) (-4 *5 (-1013)) (-4 *2 (-399 *5)) (-5 *1 (-397 *6 *4 *5 *2)) (-4 *4 (-399 *6)))) (-3859 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1013)) (-4 *2 (-1013)) (-5 *1 (-397 *5 *4 *2 *6)) (-4 *4 (-399 *5)) (-4 *6 (-399 *2)))) (-1390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-399 *6)) (-5 *1 (-397 *5 *4 *6 *2)) (-4 *4 (-399 *5)))))
+(-10 -7 (-15 -1390 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3859 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3126 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
+((-1609 (($) 44)) (-2269 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 40)) (-1953 (($ $ $) 39)) (-2976 (((-108) $ $) 28)) (-1630 (((-707)) 47)) (-1764 (($ (-587 |#2|)) 20) (($) NIL)) (-3250 (($) 53)) (-2810 ((|#2| $) 61)) (-2446 ((|#2| $) 59)) (-2715 (((-850) $) 55)) (-1660 (($ $ $) 35)) (-2716 (($ (-850)) 50)) (-3130 (($ $ |#2|) NIL) (($ $ $) 38)) (-4163 (((-707) (-1 (-108) |#2|) $) NIL) (((-707) |#2| $) 26)) (-2201 (($ (-587 |#2|)) 24)) (-3060 (($ $) 46)) (-2189 (((-792) $) 33)) (-1282 (((-707) $) 21)) (-3387 (($ (-587 |#2|)) 19) (($) NIL)) (-1531 (((-108) $ $) 16)) (-1549 (((-108) $ $) 13)))
+(((-398 |#1| |#2|) (-10 -8 (-15 -1630 ((-707))) (-15 -2716 (|#1| (-850))) (-15 -2715 ((-850) |#1|)) (-15 -3250 (|#1|)) (-15 -2810 (|#2| |#1|)) (-15 -2446 (|#2| |#1|)) (-15 -1609 (|#1|)) (-15 -3060 (|#1| |#1|)) (-15 -1282 ((-707) |#1|)) (-15 -1531 ((-108) |#1| |#1|)) (-15 -2189 ((-792) |#1|)) (-15 -1549 ((-108) |#1| |#1|)) (-15 -3387 (|#1|)) (-15 -3387 (|#1| (-587 |#2|))) (-15 -1764 (|#1|)) (-15 -1764 (|#1| (-587 |#2|))) (-15 -1660 (|#1| |#1| |#1|)) (-15 -3130 (|#1| |#1| |#1|)) (-15 -3130 (|#1| |#1| |#2|)) (-15 -1953 (|#1| |#1| |#1|)) (-15 -2976 ((-108) |#1| |#1|)) (-15 -2269 (|#1| |#1| |#1|)) (-15 -2269 (|#1| |#1| |#2|)) (-15 -2269 (|#1| |#2| |#1|)) (-15 -2201 (|#1| (-587 |#2|))) (-15 -4163 ((-707) |#2| |#1|)) (-15 -4163 ((-707) (-1 (-108) |#2|) |#1|))) (-399 |#2|) (-1013)) (T -398))
+((-1630 (*1 *2) (-12 (-4 *4 (-1013)) (-5 *2 (-707)) (-5 *1 (-398 *3 *4)) (-4 *3 (-399 *4)))))
+(-10 -8 (-15 -1630 ((-707))) (-15 -2716 (|#1| (-850))) (-15 -2715 ((-850) |#1|)) (-15 -3250 (|#1|)) (-15 -2810 (|#2| |#1|)) (-15 -2446 (|#2| |#1|)) (-15 -1609 (|#1|)) (-15 -3060 (|#1| |#1|)) (-15 -1282 ((-707) |#1|)) (-15 -1531 ((-108) |#1| |#1|)) (-15 -2189 ((-792) |#1|)) (-15 -1549 ((-108) |#1| |#1|)) (-15 -3387 (|#1|)) (-15 -3387 (|#1| (-587 |#2|))) (-15 -1764 (|#1|)) (-15 -1764 (|#1| (-587 |#2|))) (-15 -1660 (|#1| |#1| |#1|)) (-15 -3130 (|#1| |#1| |#1|)) (-15 -3130 (|#1| |#1| |#2|)) (-15 -1953 (|#1| |#1| |#1|)) (-15 -2976 ((-108) |#1| |#1|)) (-15 -2269 (|#1| |#1| |#1|)) (-15 -2269 (|#1| |#1| |#2|)) (-15 -2269 (|#1| |#2| |#1|)) (-15 -2201 (|#1| (-587 |#2|))) (-15 -4163 ((-707) |#2| |#1|)) (-15 -4163 ((-707) (-1 (-108) |#2|) |#1|)))
+((-1415 (((-108) $ $) 19)) (-1609 (($) 67 (|has| |#1| (-342)))) (-2269 (($ |#1| $) 82) (($ $ |#1|) 81) (($ $ $) 80)) (-1953 (($ $ $) 78)) (-2976 (((-108) $ $) 79)) (-2978 (((-108) $ (-707)) 8)) (-1630 (((-707)) 61 (|has| |#1| (-342)))) (-1764 (($ (-587 |#1|)) 74) (($) 73)) (-4098 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4233)))) (-1628 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4233)))) (-2547 (($) 7 T CONST)) (-2332 (($ $) 58 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-3023 (($ |#1| $) 47 (|has| $ (-6 -4233))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4233)))) (-1422 (($ |#1| $) 57 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4233)))) (-3859 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4233)))) (-3250 (($) 64 (|has| |#1| (-342)))) (-3831 (((-587 |#1|) $) 30 (|has| $ (-6 -4233)))) (-2139 (((-108) $ (-707)) 9)) (-2810 ((|#1| $) 65 (|has| |#1| (-784)))) (-3757 (((-587 |#1|) $) 29 (|has| $ (-6 -4233)))) (-2221 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-2446 ((|#1| $) 66 (|has| |#1| (-784)))) (-3833 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#1| |#1|) $) 35)) (-2715 (((-850) $) 63 (|has| |#1| (-342)))) (-3574 (((-108) $ (-707)) 10)) (-3688 (((-1067) $) 22)) (-1660 (($ $ $) 75)) (-2511 ((|#1| $) 39)) (-3373 (($ |#1| $) 40)) (-2716 (($ (-850)) 62 (|has| |#1| (-342)))) (-4147 (((-1031) $) 21)) (-3620 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-2166 ((|#1| $) 41)) (-1789 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 |#1|))) 26 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) 25 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) 23 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-2488 (((-108) $ $) 14)) (-3462 (((-108) $) 11)) (-4024 (($) 12)) (-3130 (($ $ |#1|) 77) (($ $ $) 76)) (-1784 (($) 49) (($ (-587 |#1|)) 48)) (-4163 (((-707) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4233))) (((-707) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-2404 (($ $) 13)) (-1430 (((-497) $) 59 (|has| |#1| (-562 (-497))))) (-2201 (($ (-587 |#1|)) 50)) (-3060 (($ $) 68 (|has| |#1| (-342)))) (-2189 (((-792) $) 18)) (-1282 (((-707) $) 69)) (-3387 (($ (-587 |#1|)) 72) (($) 71)) (-4091 (($ (-587 |#1|)) 42)) (-3049 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4233)))) (-1531 (((-108) $ $) 20)) (-1549 (((-108) $ $) 70)) (-3475 (((-707) $) 6 (|has| $ (-6 -4233)))))
+(((-399 |#1|) (-1196) (-1013)) (T -399))
+((-1282 (*1 *2 *1) (-12 (-4 *1 (-399 *3)) (-4 *3 (-1013)) (-5 *2 (-707)))) (-3060 (*1 *1 *1) (-12 (-4 *1 (-399 *2)) (-4 *2 (-1013)) (-4 *2 (-342)))) (-1609 (*1 *1) (-12 (-4 *1 (-399 *2)) (-4 *2 (-342)) (-4 *2 (-1013)))) (-2446 (*1 *2 *1) (-12 (-4 *1 (-399 *2)) (-4 *2 (-1013)) (-4 *2 (-784)))) (-2810 (*1 *2 *1) (-12 (-4 *1 (-399 *2)) (-4 *2 (-1013)) (-4 *2 (-784)))))
+(-13 (-206 |t#1|) (-1011 |t#1|) (-10 -8 (-6 -4233) (-15 -1282 ((-707) $)) (IF (|has| |t#1| (-342)) (PROGN (-6 (-342)) (-15 -3060 ($ $)) (-15 -1609 ($))) |%noBranch|) (IF (|has| |t#1| (-784)) (PROGN (-15 -2446 (|t#1| $)) (-15 -2810 (|t#1| $))) |%noBranch|)))
+(((-33) . T) ((-102 |#1|) . T) ((-97) . T) ((-561 (-792)) . T) ((-139 |#1|) . T) ((-562 (-497)) |has| |#1| (-562 (-497))) ((-206 |#1|) . T) ((-212 |#1|) . T) ((-284 |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-342) |has| |#1| (-342)) ((-460 |#1|) . T) ((-482 |#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-1011 |#1|) . T) ((-1013) . T) ((-1119) . T))
+((-2075 (((-538 |#2|) |#2| (-1084)) 35)) (-3170 (((-538 |#2|) |#2| (-1084)) 19)) (-2580 ((|#2| |#2| (-1084)) 24)))
+(((-400 |#1| |#2|) (-10 -7 (-15 -3170 ((-538 |#2|) |#2| (-1084))) (-15 -2075 ((-538 |#2|) |#2| (-1084))) (-15 -2580 (|#2| |#2| (-1084)))) (-13 (-282) (-784) (-135) (-961 (-521)) (-583 (-521))) (-13 (-1105) (-29 |#1|))) (T -400))
+((-2580 (*1 *2 *2 *3) (-12 (-5 *3 (-1084)) (-4 *4 (-13 (-282) (-784) (-135) (-961 (-521)) (-583 (-521)))) (-5 *1 (-400 *4 *2)) (-4 *2 (-13 (-1105) (-29 *4))))) (-2075 (*1 *2 *3 *4) (-12 (-5 *4 (-1084)) (-4 *5 (-13 (-282) (-784) (-135) (-961 (-521)) (-583 (-521)))) (-5 *2 (-538 *3)) (-5 *1 (-400 *5 *3)) (-4 *3 (-13 (-1105) (-29 *5))))) (-3170 (*1 *2 *3 *4) (-12 (-5 *4 (-1084)) (-4 *5 (-13 (-282) (-784) (-135) (-961 (-521)) (-583 (-521)))) (-5 *2 (-538 *3)) (-5 *1 (-400 *5 *3)) (-4 *3 (-13 (-1105) (-29 *5))))))
+(-10 -7 (-15 -3170 ((-538 |#2|) |#2| (-1084))) (-15 -2075 ((-538 |#2|) |#2| (-1084))) (-15 -2580 (|#2| |#2| (-1084))))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-1232 (((-3 $ "failed") $ $) NIL)) (-2547 (($) NIL T CONST)) (-1257 (((-3 $ "failed") $) NIL)) (-3996 (((-108) $) NIL)) (-4191 (($ |#2| |#1|) 35)) (-3765 (($ |#2| |#1|) 33)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2189 (((-792) $) NIL) (($ (-521)) NIL) (($ |#1|) NIL) (($ (-305 |#2|)) 25)) (-3846 (((-707)) NIL)) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (-3561 (($) 10 T CONST)) (-3572 (($) 16 T CONST)) (-1531 (((-108) $ $) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) 34)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) 36) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-401 |#1| |#2|) (-13 (-37 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4220)) (IF (|has| |#1| (-6 -4220)) (-6 -4220) |%noBranch|) |%noBranch|) (-15 -2189 ($ |#1|)) (-15 -2189 ($ (-305 |#2|))) (-15 -4191 ($ |#2| |#1|)) (-15 -3765 ($ |#2| |#1|)))) (-13 (-157) (-37 (-381 (-521)))) (-13 (-784) (-21))) (T -401))
+((-2189 (*1 *1 *2) (-12 (-5 *1 (-401 *2 *3)) (-4 *2 (-13 (-157) (-37 (-381 (-521))))) (-4 *3 (-13 (-784) (-21))))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-305 *4)) (-4 *4 (-13 (-784) (-21))) (-5 *1 (-401 *3 *4)) (-4 *3 (-13 (-157) (-37 (-381 (-521))))))) (-4191 (*1 *1 *2 *3) (-12 (-5 *1 (-401 *3 *2)) (-4 *3 (-13 (-157) (-37 (-381 (-521))))) (-4 *2 (-13 (-784) (-21))))) (-3765 (*1 *1 *2 *3) (-12 (-5 *1 (-401 *3 *2)) (-4 *3 (-13 (-157) (-37 (-381 (-521))))) (-4 *2 (-13 (-784) (-21))))))
+(-13 (-37 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4220)) (IF (|has| |#1| (-6 -4220)) (-6 -4220) |%noBranch|) |%noBranch|) (-15 -2189 ($ |#1|)) (-15 -2189 ($ (-305 |#2|))) (-15 -4191 ($ |#2| |#1|)) (-15 -3765 ($ |#2| |#1|))))
+((-2184 (((-3 |#2| (-587 |#2|)) |#2| (-1084)) 105)))
+(((-402 |#1| |#2|) (-10 -7 (-15 -2184 ((-3 |#2| (-587 |#2|)) |#2| (-1084)))) (-13 (-282) (-784) (-135) (-961 (-521)) (-583 (-521))) (-13 (-1105) (-887) (-29 |#1|))) (T -402))
+((-2184 (*1 *2 *3 *4) (-12 (-5 *4 (-1084)) (-4 *5 (-13 (-282) (-784) (-135) (-961 (-521)) (-583 (-521)))) (-5 *2 (-3 *3 (-587 *3))) (-5 *1 (-402 *5 *3)) (-4 *3 (-13 (-1105) (-887) (-29 *5))))))
+(-10 -7 (-15 -2184 ((-3 |#2| (-587 |#2|)) |#2| (-1084))))
+((-4084 (((-587 (-1084)) $) 72)) (-1280 (((-381 (-1080 $)) $ (-560 $)) 269)) (-3300 (($ $ (-269 $)) NIL) (($ $ (-587 (-269 $))) NIL) (($ $ (-587 (-560 $)) (-587 $)) 234)) (-1297 (((-3 (-560 $) "failed") $) NIL) (((-3 (-1084) "failed") $) 75) (((-3 (-521) "failed") $) NIL) (((-3 |#2| "failed") $) 230) (((-3 (-381 (-881 |#2|)) "failed") $) 320) (((-3 (-881 |#2|) "failed") $) 232) (((-3 (-381 (-521)) "failed") $) NIL)) (-1483 (((-560 $) $) NIL) (((-1084) $) 30) (((-521) $) NIL) ((|#2| $) 228) (((-381 (-881 |#2|)) $) 301) (((-881 |#2|) $) 229) (((-381 (-521)) $) NIL)) (-2727 (((-110) (-110)) 47)) (-3257 (($ $) 87)) (-2018 (((-3 (-560 $) "failed") $) 225)) (-1266 (((-587 (-560 $)) $) 226)) (-1617 (((-3 (-587 $) "failed") $) 244)) (-1928 (((-3 (-2 (|:| |val| $) (|:| -2997 (-521))) "failed") $) 251)) (-3177 (((-3 (-587 $) "failed") $) 242)) (-3267 (((-3 (-2 (|:| -2973 (-521)) (|:| |var| (-560 $))) "failed") $) 260)) (-3979 (((-3 (-2 (|:| |var| (-560 $)) (|:| -2997 (-521))) "failed") $) 248) (((-3 (-2 (|:| |var| (-560 $)) (|:| -2997 (-521))) "failed") $ (-110)) 215) (((-3 (-2 (|:| |var| (-560 $)) (|:| -2997 (-521))) "failed") $ (-1084)) 217)) (-3105 (((-108) $) 19)) (-3115 ((|#2| $) 21)) (-2288 (($ $ (-560 $) $) NIL) (($ $ (-587 (-560 $)) (-587 $)) 233) (($ $ (-587 (-269 $))) NIL) (($ $ (-269 $)) NIL) (($ $ $ $) NIL) (($ $ (-587 $) (-587 $)) NIL) (($ $ (-587 (-1084)) (-587 (-1 $ $))) NIL) (($ $ (-587 (-1084)) (-587 (-1 $ (-587 $)))) 96) (($ $ (-1084) (-1 $ (-587 $))) NIL) (($ $ (-1084) (-1 $ $)) NIL) (($ $ (-587 (-110)) (-587 (-1 $ $))) NIL) (($ $ (-587 (-110)) (-587 (-1 $ (-587 $)))) NIL) (($ $ (-110) (-1 $ (-587 $))) NIL) (($ $ (-110) (-1 $ $)) NIL) (($ $ (-1084)) 57) (($ $ (-587 (-1084))) 237) (($ $) 238) (($ $ (-110) $ (-1084)) 60) (($ $ (-587 (-110)) (-587 $) (-1084)) 67) (($ $ (-587 (-1084)) (-587 (-707)) (-587 (-1 $ $))) 107) (($ $ (-587 (-1084)) (-587 (-707)) (-587 (-1 $ (-587 $)))) 239) (($ $ (-1084) (-707) (-1 $ (-587 $))) 94) (($ $ (-1084) (-707) (-1 $ $)) 93)) (-2544 (($ (-110) $) NIL) (($ (-110) $ $) NIL) (($ (-110) $ $ $) NIL) (($ (-110) $ $ $ $) NIL) (($ (-110) (-587 $)) 106)) (-2156 (($ $ (-587 (-1084)) (-587 (-707))) NIL) (($ $ (-1084) (-707)) NIL) (($ $ (-587 (-1084))) NIL) (($ $ (-1084)) 235)) (-4142 (($ $) 280)) (-1430 (((-821 (-521)) $) 254) (((-821 (-353)) $) 257) (($ (-392 $)) 316) (((-497) $) NIL)) (-2189 (((-792) $) 236) (($ (-560 $)) 84) (($ (-1084)) 26) (($ |#2|) NIL) (($ (-1036 |#2| (-560 $))) NIL) (($ (-381 |#2|)) 285) (($ (-881 (-381 |#2|))) 325) (($ (-381 (-881 (-381 |#2|)))) 297) (($ (-381 (-881 |#2|))) 291) (($ $) NIL) (($ (-881 |#2|)) 184) (($ (-381 (-521))) 330) (($ (-521)) NIL)) (-3846 (((-707)) 79)) (-1455 (((-108) (-110)) 41)) (-1805 (($ (-1084) $) 33) (($ (-1084) $ $) 34) (($ (-1084) $ $ $) 35) (($ (-1084) $ $ $ $) 36) (($ (-1084) (-587 $)) 39)) (* (($ (-381 (-521)) $) NIL) (($ $ (-381 (-521))) NIL) (($ |#2| $) 262) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-521) $) NIL) (($ (-707) $) NIL) (($ (-850) $) NIL)))
+(((-403 |#1| |#2|) (-10 -8 (-15 * (|#1| (-850) |#1|)) (-15 * (|#1| (-707) |#1|)) (-15 * (|#1| (-521) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3846 ((-707))) (-15 -2189 (|#1| (-521))) (-15 -1483 ((-381 (-521)) |#1|)) (-15 -1297 ((-3 (-381 (-521)) "failed") |#1|)) (-15 -2189 (|#1| (-381 (-521)))) (-15 -1430 ((-497) |#1|)) (-15 -1483 ((-881 |#2|) |#1|)) (-15 -1297 ((-3 (-881 |#2|) "failed") |#1|)) (-15 -2189 (|#1| (-881 |#2|))) (-15 -2156 (|#1| |#1| (-1084))) (-15 -2156 (|#1| |#1| (-587 (-1084)))) (-15 -2156 (|#1| |#1| (-1084) (-707))) (-15 -2156 (|#1| |#1| (-587 (-1084)) (-587 (-707)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2189 (|#1| |#1|)) (-15 * (|#1| |#1| (-381 (-521)))) (-15 * (|#1| (-381 (-521)) |#1|)) (-15 -1483 ((-381 (-881 |#2|)) |#1|)) (-15 -1297 ((-3 (-381 (-881 |#2|)) "failed") |#1|)) (-15 -2189 (|#1| (-381 (-881 |#2|)))) (-15 -1280 ((-381 (-1080 |#1|)) |#1| (-560 |#1|))) (-15 -2189 (|#1| (-381 (-881 (-381 |#2|))))) (-15 -2189 (|#1| (-881 (-381 |#2|)))) (-15 -2189 (|#1| (-381 |#2|))) (-15 -4142 (|#1| |#1|)) (-15 -1430 (|#1| (-392 |#1|))) (-15 -2288 (|#1| |#1| (-1084) (-707) (-1 |#1| |#1|))) (-15 -2288 (|#1| |#1| (-1084) (-707) (-1 |#1| (-587 |#1|)))) (-15 -2288 (|#1| |#1| (-587 (-1084)) (-587 (-707)) (-587 (-1 |#1| (-587 |#1|))))) (-15 -2288 (|#1| |#1| (-587 (-1084)) (-587 (-707)) (-587 (-1 |#1| |#1|)))) (-15 -1928 ((-3 (-2 (|:| |val| |#1|) (|:| -2997 (-521))) "failed") |#1|)) (-15 -3979 ((-3 (-2 (|:| |var| (-560 |#1|)) (|:| -2997 (-521))) "failed") |#1| (-1084))) (-15 -3979 ((-3 (-2 (|:| |var| (-560 |#1|)) (|:| -2997 (-521))) "failed") |#1| (-110))) (-15 -3257 (|#1| |#1|)) (-15 -2189 (|#1| (-1036 |#2| (-560 |#1|)))) (-15 -3267 ((-3 (-2 (|:| -2973 (-521)) (|:| |var| (-560 |#1|))) "failed") |#1|)) (-15 -3177 ((-3 (-587 |#1|) "failed") |#1|)) (-15 -3979 ((-3 (-2 (|:| |var| (-560 |#1|)) (|:| -2997 (-521))) "failed") |#1|)) (-15 -1617 ((-3 (-587 |#1|) "failed") |#1|)) (-15 -2288 (|#1| |#1| (-587 (-110)) (-587 |#1|) (-1084))) (-15 -2288 (|#1| |#1| (-110) |#1| (-1084))) (-15 -2288 (|#1| |#1|)) (-15 -2288 (|#1| |#1| (-587 (-1084)))) (-15 -2288 (|#1| |#1| (-1084))) (-15 -1805 (|#1| (-1084) (-587 |#1|))) (-15 -1805 (|#1| (-1084) |#1| |#1| |#1| |#1|)) (-15 -1805 (|#1| (-1084) |#1| |#1| |#1|)) (-15 -1805 (|#1| (-1084) |#1| |#1|)) (-15 -1805 (|#1| (-1084) |#1|)) (-15 -4084 ((-587 (-1084)) |#1|)) (-15 -3115 (|#2| |#1|)) (-15 -3105 ((-108) |#1|)) (-15 -1483 (|#2| |#1|)) (-15 -1297 ((-3 |#2| "failed") |#1|)) (-15 -2189 (|#1| |#2|)) (-15 -1297 ((-3 (-521) "failed") |#1|)) (-15 -1483 ((-521) |#1|)) (-15 -1430 ((-821 (-353)) |#1|)) (-15 -1430 ((-821 (-521)) |#1|)) (-15 -1483 ((-1084) |#1|)) (-15 -1297 ((-3 (-1084) "failed") |#1|)) (-15 -2189 (|#1| (-1084))) (-15 -2288 (|#1| |#1| (-110) (-1 |#1| |#1|))) (-15 -2288 (|#1| |#1| (-110) (-1 |#1| (-587 |#1|)))) (-15 -2288 (|#1| |#1| (-587 (-110)) (-587 (-1 |#1| (-587 |#1|))))) (-15 -2288 (|#1| |#1| (-587 (-110)) (-587 (-1 |#1| |#1|)))) (-15 -2288 (|#1| |#1| (-1084) (-1 |#1| |#1|))) (-15 -2288 (|#1| |#1| (-1084) (-1 |#1| (-587 |#1|)))) (-15 -2288 (|#1| |#1| (-587 (-1084)) (-587 (-1 |#1| (-587 |#1|))))) (-15 -2288 (|#1| |#1| (-587 (-1084)) (-587 (-1 |#1| |#1|)))) (-15 -1455 ((-108) (-110))) (-15 -2727 ((-110) (-110))) (-15 -1266 ((-587 (-560 |#1|)) |#1|)) (-15 -2018 ((-3 (-560 |#1|) "failed") |#1|)) (-15 -3300 (|#1| |#1| (-587 (-560 |#1|)) (-587 |#1|))) (-15 -3300 (|#1| |#1| (-587 (-269 |#1|)))) (-15 -3300 (|#1| |#1| (-269 |#1|))) (-15 -2544 (|#1| (-110) (-587 |#1|))) (-15 -2544 (|#1| (-110) |#1| |#1| |#1| |#1|)) (-15 -2544 (|#1| (-110) |#1| |#1| |#1|)) (-15 -2544 (|#1| (-110) |#1| |#1|)) (-15 -2544 (|#1| (-110) |#1|)) (-15 -2288 (|#1| |#1| (-587 |#1|) (-587 |#1|))) (-15 -2288 (|#1| |#1| |#1| |#1|)) (-15 -2288 (|#1| |#1| (-269 |#1|))) (-15 -2288 (|#1| |#1| (-587 (-269 |#1|)))) (-15 -2288 (|#1| |#1| (-587 (-560 |#1|)) (-587 |#1|))) (-15 -2288 (|#1| |#1| (-560 |#1|) |#1|)) (-15 -1483 ((-560 |#1|) |#1|)) (-15 -1297 ((-3 (-560 |#1|) "failed") |#1|)) (-15 -2189 (|#1| (-560 |#1|))) (-15 -2189 ((-792) |#1|))) (-404 |#2|) (-784)) (T -403))
+((-2727 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *4 (-784)) (-5 *1 (-403 *3 *4)) (-4 *3 (-404 *4)))) (-1455 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *5 (-784)) (-5 *2 (-108)) (-5 *1 (-403 *4 *5)) (-4 *4 (-404 *5)))) (-3846 (*1 *2) (-12 (-4 *4 (-784)) (-5 *2 (-707)) (-5 *1 (-403 *3 *4)) (-4 *3 (-404 *4)))))
+(-10 -8 (-15 * (|#1| (-850) |#1|)) (-15 * (|#1| (-707) |#1|)) (-15 * (|#1| (-521) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3846 ((-707))) (-15 -2189 (|#1| (-521))) (-15 -1483 ((-381 (-521)) |#1|)) (-15 -1297 ((-3 (-381 (-521)) "failed") |#1|)) (-15 -2189 (|#1| (-381 (-521)))) (-15 -1430 ((-497) |#1|)) (-15 -1483 ((-881 |#2|) |#1|)) (-15 -1297 ((-3 (-881 |#2|) "failed") |#1|)) (-15 -2189 (|#1| (-881 |#2|))) (-15 -2156 (|#1| |#1| (-1084))) (-15 -2156 (|#1| |#1| (-587 (-1084)))) (-15 -2156 (|#1| |#1| (-1084) (-707))) (-15 -2156 (|#1| |#1| (-587 (-1084)) (-587 (-707)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2189 (|#1| |#1|)) (-15 * (|#1| |#1| (-381 (-521)))) (-15 * (|#1| (-381 (-521)) |#1|)) (-15 -1483 ((-381 (-881 |#2|)) |#1|)) (-15 -1297 ((-3 (-381 (-881 |#2|)) "failed") |#1|)) (-15 -2189 (|#1| (-381 (-881 |#2|)))) (-15 -1280 ((-381 (-1080 |#1|)) |#1| (-560 |#1|))) (-15 -2189 (|#1| (-381 (-881 (-381 |#2|))))) (-15 -2189 (|#1| (-881 (-381 |#2|)))) (-15 -2189 (|#1| (-381 |#2|))) (-15 -4142 (|#1| |#1|)) (-15 -1430 (|#1| (-392 |#1|))) (-15 -2288 (|#1| |#1| (-1084) (-707) (-1 |#1| |#1|))) (-15 -2288 (|#1| |#1| (-1084) (-707) (-1 |#1| (-587 |#1|)))) (-15 -2288 (|#1| |#1| (-587 (-1084)) (-587 (-707)) (-587 (-1 |#1| (-587 |#1|))))) (-15 -2288 (|#1| |#1| (-587 (-1084)) (-587 (-707)) (-587 (-1 |#1| |#1|)))) (-15 -1928 ((-3 (-2 (|:| |val| |#1|) (|:| -2997 (-521))) "failed") |#1|)) (-15 -3979 ((-3 (-2 (|:| |var| (-560 |#1|)) (|:| -2997 (-521))) "failed") |#1| (-1084))) (-15 -3979 ((-3 (-2 (|:| |var| (-560 |#1|)) (|:| -2997 (-521))) "failed") |#1| (-110))) (-15 -3257 (|#1| |#1|)) (-15 -2189 (|#1| (-1036 |#2| (-560 |#1|)))) (-15 -3267 ((-3 (-2 (|:| -2973 (-521)) (|:| |var| (-560 |#1|))) "failed") |#1|)) (-15 -3177 ((-3 (-587 |#1|) "failed") |#1|)) (-15 -3979 ((-3 (-2 (|:| |var| (-560 |#1|)) (|:| -2997 (-521))) "failed") |#1|)) (-15 -1617 ((-3 (-587 |#1|) "failed") |#1|)) (-15 -2288 (|#1| |#1| (-587 (-110)) (-587 |#1|) (-1084))) (-15 -2288 (|#1| |#1| (-110) |#1| (-1084))) (-15 -2288 (|#1| |#1|)) (-15 -2288 (|#1| |#1| (-587 (-1084)))) (-15 -2288 (|#1| |#1| (-1084))) (-15 -1805 (|#1| (-1084) (-587 |#1|))) (-15 -1805 (|#1| (-1084) |#1| |#1| |#1| |#1|)) (-15 -1805 (|#1| (-1084) |#1| |#1| |#1|)) (-15 -1805 (|#1| (-1084) |#1| |#1|)) (-15 -1805 (|#1| (-1084) |#1|)) (-15 -4084 ((-587 (-1084)) |#1|)) (-15 -3115 (|#2| |#1|)) (-15 -3105 ((-108) |#1|)) (-15 -1483 (|#2| |#1|)) (-15 -1297 ((-3 |#2| "failed") |#1|)) (-15 -2189 (|#1| |#2|)) (-15 -1297 ((-3 (-521) "failed") |#1|)) (-15 -1483 ((-521) |#1|)) (-15 -1430 ((-821 (-353)) |#1|)) (-15 -1430 ((-821 (-521)) |#1|)) (-15 -1483 ((-1084) |#1|)) (-15 -1297 ((-3 (-1084) "failed") |#1|)) (-15 -2189 (|#1| (-1084))) (-15 -2288 (|#1| |#1| (-110) (-1 |#1| |#1|))) (-15 -2288 (|#1| |#1| (-110) (-1 |#1| (-587 |#1|)))) (-15 -2288 (|#1| |#1| (-587 (-110)) (-587 (-1 |#1| (-587 |#1|))))) (-15 -2288 (|#1| |#1| (-587 (-110)) (-587 (-1 |#1| |#1|)))) (-15 -2288 (|#1| |#1| (-1084) (-1 |#1| |#1|))) (-15 -2288 (|#1| |#1| (-1084) (-1 |#1| (-587 |#1|)))) (-15 -2288 (|#1| |#1| (-587 (-1084)) (-587 (-1 |#1| (-587 |#1|))))) (-15 -2288 (|#1| |#1| (-587 (-1084)) (-587 (-1 |#1| |#1|)))) (-15 -1455 ((-108) (-110))) (-15 -2727 ((-110) (-110))) (-15 -1266 ((-587 (-560 |#1|)) |#1|)) (-15 -2018 ((-3 (-560 |#1|) "failed") |#1|)) (-15 -3300 (|#1| |#1| (-587 (-560 |#1|)) (-587 |#1|))) (-15 -3300 (|#1| |#1| (-587 (-269 |#1|)))) (-15 -3300 (|#1| |#1| (-269 |#1|))) (-15 -2544 (|#1| (-110) (-587 |#1|))) (-15 -2544 (|#1| (-110) |#1| |#1| |#1| |#1|)) (-15 -2544 (|#1| (-110) |#1| |#1| |#1|)) (-15 -2544 (|#1| (-110) |#1| |#1|)) (-15 -2544 (|#1| (-110) |#1|)) (-15 -2288 (|#1| |#1| (-587 |#1|) (-587 |#1|))) (-15 -2288 (|#1| |#1| |#1| |#1|)) (-15 -2288 (|#1| |#1| (-269 |#1|))) (-15 -2288 (|#1| |#1| (-587 (-269 |#1|)))) (-15 -2288 (|#1| |#1| (-587 (-560 |#1|)) (-587 |#1|))) (-15 -2288 (|#1| |#1| (-560 |#1|) |#1|)) (-15 -1483 ((-560 |#1|) |#1|)) (-15 -1297 ((-3 (-560 |#1|) "failed") |#1|)) (-15 -2189 (|#1| (-560 |#1|))) (-15 -2189 ((-792) |#1|)))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 116 (|has| |#1| (-25)))) (-4084 (((-587 (-1084)) $) 203)) (-1280 (((-381 (-1080 $)) $ (-560 $)) 171 (|has| |#1| (-513)))) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) 143 (|has| |#1| (-513)))) (-2559 (($ $) 144 (|has| |#1| (-513)))) (-1733 (((-108) $) 146 (|has| |#1| (-513)))) (-1884 (((-587 (-560 $)) $) 44)) (-1232 (((-3 $ "failed") $ $) 118 (|has| |#1| (-21)))) (-3300 (($ $ (-269 $)) 56) (($ $ (-587 (-269 $))) 55) (($ $ (-587 (-560 $)) (-587 $)) 54)) (-3063 (($ $) 163 (|has| |#1| (-513)))) (-3358 (((-392 $) $) 164 (|has| |#1| (-513)))) (-1389 (((-108) $ $) 154 (|has| |#1| (-513)))) (-2547 (($) 102 (-3703 (|has| |#1| (-1025)) (|has| |#1| (-25))) CONST)) (-1297 (((-3 (-560 $) "failed") $) 69) (((-3 (-1084) "failed") $) 216) (((-3 (-521) "failed") $) 209 (|has| |#1| (-961 (-521)))) (((-3 |#1| "failed") $) 207) (((-3 (-381 (-881 |#1|)) "failed") $) 169 (|has| |#1| (-513))) (((-3 (-881 |#1|) "failed") $) 123 (|has| |#1| (-970))) (((-3 (-381 (-521)) "failed") $) 95 (-3703 (-12 (|has| |#1| (-961 (-521))) (|has| |#1| (-513))) (|has| |#1| (-961 (-381 (-521))))))) (-1483 (((-560 $) $) 68) (((-1084) $) 215) (((-521) $) 210 (|has| |#1| (-961 (-521)))) ((|#1| $) 206) (((-381 (-881 |#1|)) $) 168 (|has| |#1| (-513))) (((-881 |#1|) $) 122 (|has| |#1| (-970))) (((-381 (-521)) $) 94 (-3703 (-12 (|has| |#1| (-961 (-521))) (|has| |#1| (-513))) (|has| |#1| (-961 (-381 (-521))))))) (-2277 (($ $ $) 158 (|has| |#1| (-513)))) (-3279 (((-627 (-521)) (-627 $)) 137 (-4009 (|has| |#1| (-583 (-521))) (|has| |#1| (-970)))) (((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) 136 (-4009 (|has| |#1| (-583 (-521))) (|has| |#1| (-970)))) (((-2 (|:| -1201 (-627 |#1|)) (|:| |vec| (-1165 |#1|))) (-627 $) (-1165 $)) 135 (|has| |#1| (-970))) (((-627 |#1|) (-627 $)) 134 (|has| |#1| (-970)))) (-1257 (((-3 $ "failed") $) 105 (|has| |#1| (-1025)))) (-2253 (($ $ $) 157 (|has| |#1| (-513)))) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) 152 (|has| |#1| (-513)))) (-2710 (((-108) $) 165 (|has| |#1| (-513)))) (-3427 (((-818 (-521) $) $ (-821 (-521)) (-818 (-521) $)) 212 (|has| |#1| (-815 (-521)))) (((-818 (-353) $) $ (-821 (-353)) (-818 (-353) $)) 211 (|has| |#1| (-815 (-353))))) (-3072 (($ $) 51) (($ (-587 $)) 50)) (-1833 (((-587 (-110)) $) 43)) (-2727 (((-110) (-110)) 42)) (-3996 (((-108) $) 103 (|has| |#1| (-1025)))) (-1255 (((-108) $) 22 (|has| $ (-961 (-521))))) (-3257 (($ $) 186 (|has| |#1| (-970)))) (-2801 (((-1036 |#1| (-560 $)) $) 187 (|has| |#1| (-970)))) (-1546 (((-3 (-587 $) "failed") (-587 $) $) 161 (|has| |#1| (-513)))) (-2527 (((-1080 $) (-560 $)) 25 (|has| $ (-970)))) (-2810 (($ $ $) 13)) (-2446 (($ $ $) 14)) (-1390 (($ (-1 $ $) (-560 $)) 36)) (-2018 (((-3 (-560 $) "failed") $) 46)) (-2223 (($ (-587 $)) 150 (|has| |#1| (-513))) (($ $ $) 149 (|has| |#1| (-513)))) (-3688 (((-1067) $) 9)) (-1266 (((-587 (-560 $)) $) 45)) (-2905 (($ (-110) $) 38) (($ (-110) (-587 $)) 37)) (-1617 (((-3 (-587 $) "failed") $) 192 (|has| |#1| (-1025)))) (-1928 (((-3 (-2 (|:| |val| $) (|:| -2997 (-521))) "failed") $) 183 (|has| |#1| (-970)))) (-3177 (((-3 (-587 $) "failed") $) 190 (|has| |#1| (-25)))) (-3267 (((-3 (-2 (|:| -2973 (-521)) (|:| |var| (-560 $))) "failed") $) 189 (|has| |#1| (-25)))) (-3979 (((-3 (-2 (|:| |var| (-560 $)) (|:| -2997 (-521))) "failed") $) 191 (|has| |#1| (-1025))) (((-3 (-2 (|:| |var| (-560 $)) (|:| -2997 (-521))) "failed") $ (-110)) 185 (|has| |#1| (-970))) (((-3 (-2 (|:| |var| (-560 $)) (|:| -2997 (-521))) "failed") $ (-1084)) 184 (|has| |#1| (-970)))) (-1705 (((-108) $ (-110)) 40) (((-108) $ (-1084)) 39)) (-3095 (($ $) 107 (-3703 (|has| |#1| (-446)) (|has| |#1| (-513))))) (-4150 (((-707) $) 47)) (-4147 (((-1031) $) 10)) (-3105 (((-108) $) 205)) (-3115 ((|#1| $) 204)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) 151 (|has| |#1| (-513)))) (-2258 (($ (-587 $)) 148 (|has| |#1| (-513))) (($ $ $) 147 (|has| |#1| (-513)))) (-3899 (((-108) $ $) 35) (((-108) $ (-1084)) 34)) (-1916 (((-392 $) $) 162 (|has| |#1| (-513)))) (-1962 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 160 (|has| |#1| (-513))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) 159 (|has| |#1| (-513)))) (-2230 (((-3 $ "failed") $ $) 142 (|has| |#1| (-513)))) (-3854 (((-3 (-587 $) "failed") (-587 $) $) 153 (|has| |#1| (-513)))) (-3550 (((-108) $) 23 (|has| $ (-961 (-521))))) (-2288 (($ $ (-560 $) $) 67) (($ $ (-587 (-560 $)) (-587 $)) 66) (($ $ (-587 (-269 $))) 65) (($ $ (-269 $)) 64) (($ $ $ $) 63) (($ $ (-587 $) (-587 $)) 62) (($ $ (-587 (-1084)) (-587 (-1 $ $))) 33) (($ $ (-587 (-1084)) (-587 (-1 $ (-587 $)))) 32) (($ $ (-1084) (-1 $ (-587 $))) 31) (($ $ (-1084) (-1 $ $)) 30) (($ $ (-587 (-110)) (-587 (-1 $ $))) 29) (($ $ (-587 (-110)) (-587 (-1 $ (-587 $)))) 28) (($ $ (-110) (-1 $ (-587 $))) 27) (($ $ (-110) (-1 $ $)) 26) (($ $ (-1084)) 197 (|has| |#1| (-562 (-497)))) (($ $ (-587 (-1084))) 196 (|has| |#1| (-562 (-497)))) (($ $) 195 (|has| |#1| (-562 (-497)))) (($ $ (-110) $ (-1084)) 194 (|has| |#1| (-562 (-497)))) (($ $ (-587 (-110)) (-587 $) (-1084)) 193 (|has| |#1| (-562 (-497)))) (($ $ (-587 (-1084)) (-587 (-707)) (-587 (-1 $ $))) 182 (|has| |#1| (-970))) (($ $ (-587 (-1084)) (-587 (-707)) (-587 (-1 $ (-587 $)))) 181 (|has| |#1| (-970))) (($ $ (-1084) (-707) (-1 $ (-587 $))) 180 (|has| |#1| (-970))) (($ $ (-1084) (-707) (-1 $ $)) 179 (|has| |#1| (-970)))) (-4196 (((-707) $) 155 (|has| |#1| (-513)))) (-2544 (($ (-110) $) 61) (($ (-110) $ $) 60) (($ (-110) $ $ $) 59) (($ (-110) $ $ $ $) 58) (($ (-110) (-587 $)) 57)) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) 156 (|has| |#1| (-513)))) (-4016 (($ $) 49) (($ $ $) 48)) (-2156 (($ $ (-587 (-1084)) (-587 (-707))) 128 (|has| |#1| (-970))) (($ $ (-1084) (-707)) 127 (|has| |#1| (-970))) (($ $ (-587 (-1084))) 126 (|has| |#1| (-970))) (($ $ (-1084)) 125 (|has| |#1| (-970)))) (-4142 (($ $) 176 (|has| |#1| (-513)))) (-2812 (((-1036 |#1| (-560 $)) $) 177 (|has| |#1| (-513)))) (-2879 (($ $) 24 (|has| $ (-970)))) (-1430 (((-821 (-521)) $) 214 (|has| |#1| (-562 (-821 (-521))))) (((-821 (-353)) $) 213 (|has| |#1| (-562 (-821 (-353))))) (($ (-392 $)) 178 (|has| |#1| (-513))) (((-497) $) 97 (|has| |#1| (-562 (-497))))) (-1223 (($ $ $) 111 (|has| |#1| (-446)))) (-2674 (($ $ $) 112 (|has| |#1| (-446)))) (-2189 (((-792) $) 11) (($ (-560 $)) 70) (($ (-1084)) 217) (($ |#1|) 208) (($ (-1036 |#1| (-560 $))) 188 (|has| |#1| (-970))) (($ (-381 |#1|)) 174 (|has| |#1| (-513))) (($ (-881 (-381 |#1|))) 173 (|has| |#1| (-513))) (($ (-381 (-881 (-381 |#1|)))) 172 (|has| |#1| (-513))) (($ (-381 (-881 |#1|))) 170 (|has| |#1| (-513))) (($ $) 141 (|has| |#1| (-513))) (($ (-881 |#1|)) 124 (|has| |#1| (-970))) (($ (-381 (-521))) 96 (-3703 (|has| |#1| (-513)) (-12 (|has| |#1| (-961 (-521))) (|has| |#1| (-513))) (|has| |#1| (-961 (-381 (-521)))))) (($ (-521)) 93 (-3703 (|has| |#1| (-970)) (|has| |#1| (-961 (-521)))))) (-1671 (((-3 $ "failed") $) 138 (|has| |#1| (-133)))) (-3846 (((-707)) 133 (|has| |#1| (-970)))) (-2320 (($ $) 53) (($ (-587 $)) 52)) (-1455 (((-108) (-110)) 41)) (-4210 (((-108) $ $) 145 (|has| |#1| (-513)))) (-1805 (($ (-1084) $) 202) (($ (-1084) $ $) 201) (($ (-1084) $ $ $) 200) (($ (-1084) $ $ $ $) 199) (($ (-1084) (-587 $)) 198)) (-3505 (($ $ (-521)) 110 (-3703 (|has| |#1| (-446)) (|has| |#1| (-513)))) (($ $ (-707)) 104 (|has| |#1| (-1025))) (($ $ (-850)) 100 (|has| |#1| (-1025)))) (-3561 (($) 115 (|has| |#1| (-25)) CONST)) (-3572 (($) 101 (|has| |#1| (-1025)) CONST)) (-2212 (($ $ (-587 (-1084)) (-587 (-707))) 132 (|has| |#1| (-970))) (($ $ (-1084) (-707)) 131 (|has| |#1| (-970))) (($ $ (-587 (-1084))) 130 (|has| |#1| (-970))) (($ $ (-1084)) 129 (|has| |#1| (-970)))) (-1574 (((-108) $ $) 16)) (-1558 (((-108) $ $) 17)) (-1531 (((-108) $ $) 6)) (-1566 (((-108) $ $) 15)) (-1549 (((-108) $ $) 18)) (-1620 (($ (-1036 |#1| (-560 $)) (-1036 |#1| (-560 $))) 175 (|has| |#1| (-513))) (($ $ $) 108 (-3703 (|has| |#1| (-446)) (|has| |#1| (-513))))) (-1612 (($ $ $) 120 (|has| |#1| (-21))) (($ $) 119 (|has| |#1| (-21)))) (-1602 (($ $ $) 113 (|has| |#1| (-25)))) (** (($ $ (-521)) 109 (-3703 (|has| |#1| (-446)) (|has| |#1| (-513)))) (($ $ (-707)) 106 (|has| |#1| (-1025))) (($ $ (-850)) 99 (|has| |#1| (-1025)))) (* (($ (-381 (-521)) $) 167 (|has| |#1| (-513))) (($ $ (-381 (-521))) 166 (|has| |#1| (-513))) (($ |#1| $) 140 (|has| |#1| (-157))) (($ $ |#1|) 139 (|has| |#1| (-157))) (($ (-521) $) 121 (|has| |#1| (-21))) (($ (-707) $) 117 (|has| |#1| (-25))) (($ (-850) $) 114 (|has| |#1| (-25))) (($ $ $) 98 (|has| |#1| (-1025)))))
+(((-404 |#1|) (-1196) (-784)) (T -404))
+((-3105 (*1 *2 *1) (-12 (-4 *1 (-404 *3)) (-4 *3 (-784)) (-5 *2 (-108)))) (-3115 (*1 *2 *1) (-12 (-4 *1 (-404 *2)) (-4 *2 (-784)))) (-4084 (*1 *2 *1) (-12 (-4 *1 (-404 *3)) (-4 *3 (-784)) (-5 *2 (-587 (-1084))))) (-1805 (*1 *1 *2 *1) (-12 (-5 *2 (-1084)) (-4 *1 (-404 *3)) (-4 *3 (-784)))) (-1805 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1084)) (-4 *1 (-404 *3)) (-4 *3 (-784)))) (-1805 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1084)) (-4 *1 (-404 *3)) (-4 *3 (-784)))) (-1805 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1084)) (-4 *1 (-404 *3)) (-4 *3 (-784)))) (-1805 (*1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-587 *1)) (-4 *1 (-404 *4)) (-4 *4 (-784)))) (-2288 (*1 *1 *1 *2) (-12 (-5 *2 (-1084)) (-4 *1 (-404 *3)) (-4 *3 (-784)) (-4 *3 (-562 (-497))))) (-2288 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-1084))) (-4 *1 (-404 *3)) (-4 *3 (-784)) (-4 *3 (-562 (-497))))) (-2288 (*1 *1 *1) (-12 (-4 *1 (-404 *2)) (-4 *2 (-784)) (-4 *2 (-562 (-497))))) (-2288 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1084)) (-4 *1 (-404 *4)) (-4 *4 (-784)) (-4 *4 (-562 (-497))))) (-2288 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-587 (-110))) (-5 *3 (-587 *1)) (-5 *4 (-1084)) (-4 *1 (-404 *5)) (-4 *5 (-784)) (-4 *5 (-562 (-497))))) (-1617 (*1 *2 *1) (|partial| -12 (-4 *3 (-1025)) (-4 *3 (-784)) (-5 *2 (-587 *1)) (-4 *1 (-404 *3)))) (-3979 (*1 *2 *1) (|partial| -12 (-4 *3 (-1025)) (-4 *3 (-784)) (-5 *2 (-2 (|:| |var| (-560 *1)) (|:| -2997 (-521)))) (-4 *1 (-404 *3)))) (-3177 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-784)) (-5 *2 (-587 *1)) (-4 *1 (-404 *3)))) (-3267 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-784)) (-5 *2 (-2 (|:| -2973 (-521)) (|:| |var| (-560 *1)))) (-4 *1 (-404 *3)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-1036 *3 (-560 *1))) (-4 *3 (-970)) (-4 *3 (-784)) (-4 *1 (-404 *3)))) (-2801 (*1 *2 *1) (-12 (-4 *3 (-970)) (-4 *3 (-784)) (-5 *2 (-1036 *3 (-560 *1))) (-4 *1 (-404 *3)))) (-3257 (*1 *1 *1) (-12 (-4 *1 (-404 *2)) (-4 *2 (-784)) (-4 *2 (-970)))) (-3979 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-110)) (-4 *4 (-970)) (-4 *4 (-784)) (-5 *2 (-2 (|:| |var| (-560 *1)) (|:| -2997 (-521)))) (-4 *1 (-404 *4)))) (-3979 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1084)) (-4 *4 (-970)) (-4 *4 (-784)) (-5 *2 (-2 (|:| |var| (-560 *1)) (|:| -2997 (-521)))) (-4 *1 (-404 *4)))) (-1928 (*1 *2 *1) (|partial| -12 (-4 *3 (-970)) (-4 *3 (-784)) (-5 *2 (-2 (|:| |val| *1) (|:| -2997 (-521)))) (-4 *1 (-404 *3)))) (-2288 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-587 (-1084))) (-5 *3 (-587 (-707))) (-5 *4 (-587 (-1 *1 *1))) (-4 *1 (-404 *5)) (-4 *5 (-784)) (-4 *5 (-970)))) (-2288 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-587 (-1084))) (-5 *3 (-587 (-707))) (-5 *4 (-587 (-1 *1 (-587 *1)))) (-4 *1 (-404 *5)) (-4 *5 (-784)) (-4 *5 (-970)))) (-2288 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1084)) (-5 *3 (-707)) (-5 *4 (-1 *1 (-587 *1))) (-4 *1 (-404 *5)) (-4 *5 (-784)) (-4 *5 (-970)))) (-2288 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1084)) (-5 *3 (-707)) (-5 *4 (-1 *1 *1)) (-4 *1 (-404 *5)) (-4 *5 (-784)) (-4 *5 (-970)))) (-1430 (*1 *1 *2) (-12 (-5 *2 (-392 *1)) (-4 *1 (-404 *3)) (-4 *3 (-513)) (-4 *3 (-784)))) (-2812 (*1 *2 *1) (-12 (-4 *3 (-513)) (-4 *3 (-784)) (-5 *2 (-1036 *3 (-560 *1))) (-4 *1 (-404 *3)))) (-4142 (*1 *1 *1) (-12 (-4 *1 (-404 *2)) (-4 *2 (-784)) (-4 *2 (-513)))) (-1620 (*1 *1 *2 *2) (-12 (-5 *2 (-1036 *3 (-560 *1))) (-4 *3 (-513)) (-4 *3 (-784)) (-4 *1 (-404 *3)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-381 *3)) (-4 *3 (-513)) (-4 *3 (-784)) (-4 *1 (-404 *3)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-881 (-381 *3))) (-4 *3 (-513)) (-4 *3 (-784)) (-4 *1 (-404 *3)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-381 (-881 (-381 *3)))) (-4 *3 (-513)) (-4 *3 (-784)) (-4 *1 (-404 *3)))) (-1280 (*1 *2 *1 *3) (-12 (-5 *3 (-560 *1)) (-4 *1 (-404 *4)) (-4 *4 (-784)) (-4 *4 (-513)) (-5 *2 (-381 (-1080 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-4 *1 (-404 *3)) (-4 *3 (-784)) (-4 *3 (-1025)))))
+(-13 (-277) (-961 (-1084)) (-813 |t#1|) (-374 |t#1|) (-385 |t#1|) (-10 -8 (-15 -3105 ((-108) $)) (-15 -3115 (|t#1| $)) (-15 -4084 ((-587 (-1084)) $)) (-15 -1805 ($ (-1084) $)) (-15 -1805 ($ (-1084) $ $)) (-15 -1805 ($ (-1084) $ $ $)) (-15 -1805 ($ (-1084) $ $ $ $)) (-15 -1805 ($ (-1084) (-587 $))) (IF (|has| |t#1| (-562 (-497))) (PROGN (-6 (-562 (-497))) (-15 -2288 ($ $ (-1084))) (-15 -2288 ($ $ (-587 (-1084)))) (-15 -2288 ($ $)) (-15 -2288 ($ $ (-110) $ (-1084))) (-15 -2288 ($ $ (-587 (-110)) (-587 $) (-1084)))) |%noBranch|) (IF (|has| |t#1| (-1025)) (PROGN (-6 (-663)) (-15 ** ($ $ (-707))) (-15 -1617 ((-3 (-587 $) "failed") $)) (-15 -3979 ((-3 (-2 (|:| |var| (-560 $)) (|:| -2997 (-521))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-446)) (-6 (-446)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -3177 ((-3 (-587 $) "failed") $)) (-15 -3267 ((-3 (-2 (|:| -2973 (-521)) (|:| |var| (-560 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-970)) (PROGN (-6 (-970)) (-6 (-961 (-881 |t#1|))) (-6 (-829 (-1084))) (-6 (-351 |t#1|)) (-15 -2189 ($ (-1036 |t#1| (-560 $)))) (-15 -2801 ((-1036 |t#1| (-560 $)) $)) (-15 -3257 ($ $)) (-15 -3979 ((-3 (-2 (|:| |var| (-560 $)) (|:| -2997 (-521))) "failed") $ (-110))) (-15 -3979 ((-3 (-2 (|:| |var| (-560 $)) (|:| -2997 (-521))) "failed") $ (-1084))) (-15 -1928 ((-3 (-2 (|:| |val| $) (|:| -2997 (-521))) "failed") $)) (-15 -2288 ($ $ (-587 (-1084)) (-587 (-707)) (-587 (-1 $ $)))) (-15 -2288 ($ $ (-587 (-1084)) (-587 (-707)) (-587 (-1 $ (-587 $))))) (-15 -2288 ($ $ (-1084) (-707) (-1 $ (-587 $)))) (-15 -2288 ($ $ (-1084) (-707) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |t#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |t#1| (-157)) (-6 (-37 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-513)) (PROGN (-6 (-337)) (-6 (-961 (-381 (-881 |t#1|)))) (-15 -1430 ($ (-392 $))) (-15 -2812 ((-1036 |t#1| (-560 $)) $)) (-15 -4142 ($ $)) (-15 -1620 ($ (-1036 |t#1| (-560 $)) (-1036 |t#1| (-560 $)))) (-15 -2189 ($ (-381 |t#1|))) (-15 -2189 ($ (-881 (-381 |t#1|)))) (-15 -2189 ($ (-381 (-881 (-381 |t#1|))))) (-15 -1280 ((-381 (-1080 $)) $ (-560 $))) (IF (|has| |t#1| (-961 (-521))) (-6 (-961 (-381 (-521)))) |%noBranch|)) |%noBranch|)))
+(((-21) -3703 (|has| |#1| (-970)) (|has| |#1| (-513)) (|has| |#1| (-157)) (|has| |#1| (-135)) (|has| |#1| (-133)) (|has| |#1| (-21))) ((-23) -3703 (|has| |#1| (-970)) (|has| |#1| (-513)) (|has| |#1| (-157)) (|has| |#1| (-135)) (|has| |#1| (-133)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -3703 (|has| |#1| (-970)) (|has| |#1| (-513)) (|has| |#1| (-157)) (|has| |#1| (-135)) (|has| |#1| (-133)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-37 #0=(-381 (-521))) |has| |#1| (-513)) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) |has| |#1| (-513)) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-513)) ((-107 |#1| |#1|) |has| |#1| (-157)) ((-107 $ $) |has| |#1| (-513)) ((-124) -3703 (|has| |#1| (-970)) (|has| |#1| (-513)) (|has| |#1| (-157)) (|has| |#1| (-135)) (|has| |#1| (-133)) (|has| |#1| (-21))) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-561 (-792)) . T) ((-157) |has| |#1| (-513)) ((-562 (-497)) |has| |#1| (-562 (-497))) ((-562 (-821 (-353))) |has| |#1| (-562 (-821 (-353)))) ((-562 (-821 (-521))) |has| |#1| (-562 (-821 (-521)))) ((-220) |has| |#1| (-513)) ((-265) |has| |#1| (-513)) ((-282) |has| |#1| (-513)) ((-284 $) . T) ((-277) . T) ((-337) |has| |#1| (-513)) ((-351 |#1|) |has| |#1| (-970)) ((-374 |#1|) . T) ((-385 |#1|) . T) ((-425) |has| |#1| (-513)) ((-446) |has| |#1| (-446)) ((-482 (-560 $) $) . T) ((-482 $ $) . T) ((-513) |has| |#1| (-513)) ((-589 #0#) |has| |#1| (-513)) ((-589 |#1|) |has| |#1| (-157)) ((-589 $) -3703 (|has| |#1| (-970)) (|has| |#1| (-513)) (|has| |#1| (-157)) (|has| |#1| (-135)) (|has| |#1| (-133))) ((-583 (-521)) -12 (|has| |#1| (-583 (-521))) (|has| |#1| (-970))) ((-583 |#1|) |has| |#1| (-970)) ((-654 #0#) |has| |#1| (-513)) ((-654 |#1|) |has| |#1| (-157)) ((-654 $) |has| |#1| (-513)) ((-663) -3703 (|has| |#1| (-1025)) (|has| |#1| (-970)) (|has| |#1| (-513)) (|has| |#1| (-446)) (|has| |#1| (-157)) (|has| |#1| (-135)) (|has| |#1| (-133))) ((-784) . T) ((-829 (-1084)) |has| |#1| (-970)) ((-815 (-353)) |has| |#1| (-815 (-353))) ((-815 (-521)) |has| |#1| (-815 (-521))) ((-813 |#1|) . T) ((-849) |has| |#1| (-513)) ((-961 (-381 (-521))) -3703 (|has| |#1| (-961 (-381 (-521)))) (-12 (|has| |#1| (-513)) (|has| |#1| (-961 (-521))))) ((-961 (-381 (-881 |#1|))) |has| |#1| (-513)) ((-961 (-521)) |has| |#1| (-961 (-521))) ((-961 (-560 $)) . T) ((-961 (-881 |#1|)) |has| |#1| (-970)) ((-961 (-1084)) . T) ((-961 |#1|) . T) ((-976 #0#) |has| |#1| (-513)) ((-976 |#1|) |has| |#1| (-157)) ((-976 $) |has| |#1| (-513)) ((-970) -3703 (|has| |#1| (-970)) (|has| |#1| (-513)) (|has| |#1| (-157)) (|has| |#1| (-135)) (|has| |#1| (-133))) ((-977) -3703 (|has| |#1| (-970)) (|has| |#1| (-513)) (|has| |#1| (-157)) (|has| |#1| (-135)) (|has| |#1| (-133))) ((-1025) -3703 (|has| |#1| (-1025)) (|has| |#1| (-970)) (|has| |#1| (-513)) (|has| |#1| (-446)) (|has| |#1| (-157)) (|has| |#1| (-135)) (|has| |#1| (-133))) ((-1013) . T) ((-1119) . T) ((-1123) |has| |#1| (-513)))
+((-2607 ((|#2| |#2| |#2|) 33)) (-2727 (((-110) (-110)) 44)) (-3871 ((|#2| |#2|) 66)) (-2650 ((|#2| |#2|) 69)) (-2960 ((|#2| |#2|) 32)) (-2205 ((|#2| |#2| |#2|) 35)) (-1882 ((|#2| |#2| |#2|) 37)) (-1847 ((|#2| |#2| |#2|) 34)) (-3879 ((|#2| |#2| |#2|) 36)) (-1455 (((-108) (-110)) 42)) (-2264 ((|#2| |#2|) 39)) (-3774 ((|#2| |#2|) 38)) (-3304 ((|#2| |#2|) 27)) (-3181 ((|#2| |#2| |#2|) 30) ((|#2| |#2|) 28)) (-1829 ((|#2| |#2| |#2|) 31)))
+(((-405 |#1| |#2|) (-10 -7 (-15 -1455 ((-108) (-110))) (-15 -2727 ((-110) (-110))) (-15 -3304 (|#2| |#2|)) (-15 -3181 (|#2| |#2|)) (-15 -3181 (|#2| |#2| |#2|)) (-15 -1829 (|#2| |#2| |#2|)) (-15 -2960 (|#2| |#2|)) (-15 -2607 (|#2| |#2| |#2|)) (-15 -1847 (|#2| |#2| |#2|)) (-15 -2205 (|#2| |#2| |#2|)) (-15 -3879 (|#2| |#2| |#2|)) (-15 -1882 (|#2| |#2| |#2|)) (-15 -3774 (|#2| |#2|)) (-15 -2264 (|#2| |#2|)) (-15 -2650 (|#2| |#2|)) (-15 -3871 (|#2| |#2|))) (-13 (-784) (-513)) (-404 |#1|)) (T -405))
+((-3871 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-405 *3 *2)) (-4 *2 (-404 *3)))) (-2650 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-405 *3 *2)) (-4 *2 (-404 *3)))) (-2264 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-405 *3 *2)) (-4 *2 (-404 *3)))) (-3774 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-405 *3 *2)) (-4 *2 (-404 *3)))) (-1882 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-405 *3 *2)) (-4 *2 (-404 *3)))) (-3879 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-405 *3 *2)) (-4 *2 (-404 *3)))) (-2205 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-405 *3 *2)) (-4 *2 (-404 *3)))) (-1847 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-405 *3 *2)) (-4 *2 (-404 *3)))) (-2607 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-405 *3 *2)) (-4 *2 (-404 *3)))) (-2960 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-405 *3 *2)) (-4 *2 (-404 *3)))) (-1829 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-405 *3 *2)) (-4 *2 (-404 *3)))) (-3181 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-405 *3 *2)) (-4 *2 (-404 *3)))) (-3181 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-405 *3 *2)) (-4 *2 (-404 *3)))) (-3304 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-405 *3 *2)) (-4 *2 (-404 *3)))) (-2727 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *3 (-13 (-784) (-513))) (-5 *1 (-405 *3 *4)) (-4 *4 (-404 *3)))) (-1455 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *4 (-13 (-784) (-513))) (-5 *2 (-108)) (-5 *1 (-405 *4 *5)) (-4 *5 (-404 *4)))))
+(-10 -7 (-15 -1455 ((-108) (-110))) (-15 -2727 ((-110) (-110))) (-15 -3304 (|#2| |#2|)) (-15 -3181 (|#2| |#2|)) (-15 -3181 (|#2| |#2| |#2|)) (-15 -1829 (|#2| |#2| |#2|)) (-15 -2960 (|#2| |#2|)) (-15 -2607 (|#2| |#2| |#2|)) (-15 -1847 (|#2| |#2| |#2|)) (-15 -2205 (|#2| |#2| |#2|)) (-15 -3879 (|#2| |#2| |#2|)) (-15 -1882 (|#2| |#2| |#2|)) (-15 -3774 (|#2| |#2|)) (-15 -2264 (|#2| |#2|)) (-15 -2650 (|#2| |#2|)) (-15 -3871 (|#2| |#2|)))
+((-2103 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1080 |#2|)) (|:| |pol2| (-1080 |#2|)) (|:| |prim| (-1080 |#2|))) |#2| |#2|) 94 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-587 (-1080 |#2|))) (|:| |prim| (-1080 |#2|))) (-587 |#2|)) 58)))
+(((-406 |#1| |#2|) (-10 -7 (-15 -2103 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-587 (-1080 |#2|))) (|:| |prim| (-1080 |#2|))) (-587 |#2|))) (IF (|has| |#2| (-27)) (-15 -2103 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1080 |#2|)) (|:| |pol2| (-1080 |#2|)) (|:| |prim| (-1080 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-513) (-784) (-135)) (-404 |#1|)) (T -406))
+((-2103 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-513) (-784) (-135))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1080 *3)) (|:| |pol2| (-1080 *3)) (|:| |prim| (-1080 *3)))) (-5 *1 (-406 *4 *3)) (-4 *3 (-27)) (-4 *3 (-404 *4)))) (-2103 (*1 *2 *3) (-12 (-5 *3 (-587 *5)) (-4 *5 (-404 *4)) (-4 *4 (-13 (-513) (-784) (-135))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-587 (-1080 *5))) (|:| |prim| (-1080 *5)))) (-5 *1 (-406 *4 *5)))))
+(-10 -7 (-15 -2103 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-587 (-1080 |#2|))) (|:| |prim| (-1080 |#2|))) (-587 |#2|))) (IF (|has| |#2| (-27)) (-15 -2103 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1080 |#2|)) (|:| |pol2| (-1080 |#2|)) (|:| |prim| (-1080 |#2|))) |#2| |#2|)) |%noBranch|))
+((-2472 (((-1170)) 18)) (-2255 (((-1080 (-381 (-521))) |#2| (-560 |#2|)) 40) (((-381 (-521)) |#2|) 23)))
+(((-407 |#1| |#2|) (-10 -7 (-15 -2255 ((-381 (-521)) |#2|)) (-15 -2255 ((-1080 (-381 (-521))) |#2| (-560 |#2|))) (-15 -2472 ((-1170)))) (-13 (-784) (-513) (-961 (-521))) (-404 |#1|)) (T -407))
+((-2472 (*1 *2) (-12 (-4 *3 (-13 (-784) (-513) (-961 (-521)))) (-5 *2 (-1170)) (-5 *1 (-407 *3 *4)) (-4 *4 (-404 *3)))) (-2255 (*1 *2 *3 *4) (-12 (-5 *4 (-560 *3)) (-4 *3 (-404 *5)) (-4 *5 (-13 (-784) (-513) (-961 (-521)))) (-5 *2 (-1080 (-381 (-521)))) (-5 *1 (-407 *5 *3)))) (-2255 (*1 *2 *3) (-12 (-4 *4 (-13 (-784) (-513) (-961 (-521)))) (-5 *2 (-381 (-521))) (-5 *1 (-407 *4 *3)) (-4 *3 (-404 *4)))))
+(-10 -7 (-15 -2255 ((-381 (-521)) |#2|)) (-15 -2255 ((-1080 (-381 (-521))) |#2| (-560 |#2|))) (-15 -2472 ((-1170))))
+((-1459 (((-108) $) 28)) (-3538 (((-108) $) 30)) (-2392 (((-108) $) 31)) (-3037 (((-108) $) 34)) (-2244 (((-108) $) 29)) (-1836 (((-108) $) 33)) (-2189 (((-792) $) 18) (($ (-1067)) 27) (($ (-1084)) 23) (((-1084) $) 22) (((-1017) $) 21)) (-2482 (((-108) $) 32)) (-1531 (((-108) $ $) 15)))
+(((-408) (-13 (-561 (-792)) (-10 -8 (-15 -2189 ($ (-1067))) (-15 -2189 ($ (-1084))) (-15 -2189 ((-1084) $)) (-15 -2189 ((-1017) $)) (-15 -1459 ((-108) $)) (-15 -2244 ((-108) $)) (-15 -2392 ((-108) $)) (-15 -1836 ((-108) $)) (-15 -3037 ((-108) $)) (-15 -2482 ((-108) $)) (-15 -3538 ((-108) $)) (-15 -1531 ((-108) $ $))))) (T -408))
+((-2189 (*1 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-408)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-1084)) (-5 *1 (-408)))) (-2189 (*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-408)))) (-2189 (*1 *2 *1) (-12 (-5 *2 (-1017)) (-5 *1 (-408)))) (-1459 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-408)))) (-2244 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-408)))) (-2392 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-408)))) (-1836 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-408)))) (-3037 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-408)))) (-2482 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-408)))) (-3538 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-408)))) (-1531 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-408)))))
+(-13 (-561 (-792)) (-10 -8 (-15 -2189 ($ (-1067))) (-15 -2189 ($ (-1084))) (-15 -2189 ((-1084) $)) (-15 -2189 ((-1017) $)) (-15 -1459 ((-108) $)) (-15 -2244 ((-108) $)) (-15 -2392 ((-108) $)) (-15 -1836 ((-108) $)) (-15 -3037 ((-108) $)) (-15 -2482 ((-108) $)) (-15 -3538 ((-108) $)) (-15 -1531 ((-108) $ $))))
+((-2602 (((-3 (-392 (-1080 (-381 (-521)))) "failed") |#3|) 69)) (-3088 (((-392 |#3|) |#3|) 33)) (-3942 (((-3 (-392 (-1080 (-47))) "failed") |#3|) 27 (|has| |#2| (-961 (-47))))) (-2058 (((-3 (|:| |overq| (-1080 (-381 (-521)))) (|:| |overan| (-1080 (-47))) (|:| -3079 (-108))) |#3|) 35)))
+(((-409 |#1| |#2| |#3|) (-10 -7 (-15 -3088 ((-392 |#3|) |#3|)) (-15 -2602 ((-3 (-392 (-1080 (-381 (-521)))) "failed") |#3|)) (-15 -2058 ((-3 (|:| |overq| (-1080 (-381 (-521)))) (|:| |overan| (-1080 (-47))) (|:| -3079 (-108))) |#3|)) (IF (|has| |#2| (-961 (-47))) (-15 -3942 ((-3 (-392 (-1080 (-47))) "failed") |#3|)) |%noBranch|)) (-13 (-513) (-784) (-961 (-521))) (-404 |#1|) (-1141 |#2|)) (T -409))
+((-3942 (*1 *2 *3) (|partial| -12 (-4 *5 (-961 (-47))) (-4 *4 (-13 (-513) (-784) (-961 (-521)))) (-4 *5 (-404 *4)) (-5 *2 (-392 (-1080 (-47)))) (-5 *1 (-409 *4 *5 *3)) (-4 *3 (-1141 *5)))) (-2058 (*1 *2 *3) (-12 (-4 *4 (-13 (-513) (-784) (-961 (-521)))) (-4 *5 (-404 *4)) (-5 *2 (-3 (|:| |overq| (-1080 (-381 (-521)))) (|:| |overan| (-1080 (-47))) (|:| -3079 (-108)))) (-5 *1 (-409 *4 *5 *3)) (-4 *3 (-1141 *5)))) (-2602 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-513) (-784) (-961 (-521)))) (-4 *5 (-404 *4)) (-5 *2 (-392 (-1080 (-381 (-521))))) (-5 *1 (-409 *4 *5 *3)) (-4 *3 (-1141 *5)))) (-3088 (*1 *2 *3) (-12 (-4 *4 (-13 (-513) (-784) (-961 (-521)))) (-4 *5 (-404 *4)) (-5 *2 (-392 *3)) (-5 *1 (-409 *4 *5 *3)) (-4 *3 (-1141 *5)))))
+(-10 -7 (-15 -3088 ((-392 |#3|) |#3|)) (-15 -2602 ((-3 (-392 (-1080 (-381 (-521)))) "failed") |#3|)) (-15 -2058 ((-3 (|:| |overq| (-1080 (-381 (-521)))) (|:| |overan| (-1080 (-47))) (|:| -3079 (-108))) |#3|)) (IF (|has| |#2| (-961 (-47))) (-15 -3942 ((-3 (-392 (-1080 (-47))) "failed") |#3|)) |%noBranch|))
+((-1415 (((-108) $ $) NIL)) (-4169 (((-1067) $ (-1067)) NIL)) (-2837 (($ $ (-1067)) NIL)) (-1791 (((-1067) $) NIL)) (-2682 (((-362) (-362) (-362)) 17) (((-362) (-362)) 15)) (-1544 (($ (-362)) NIL) (($ (-362) (-1067)) NIL)) (-2884 (((-362) $) NIL)) (-3688 (((-1067) $) NIL)) (-1914 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-1275 (((-1170) (-1067)) 9)) (-1653 (((-1170) (-1067)) 10)) (-1848 (((-1170)) 11)) (-2189 (((-792) $) NIL)) (-2259 (($ $) 35)) (-1531 (((-108) $ $) NIL)))
+(((-410) (-13 (-338 (-362) (-1067)) (-10 -7 (-15 -2682 ((-362) (-362) (-362))) (-15 -2682 ((-362) (-362))) (-15 -1275 ((-1170) (-1067))) (-15 -1653 ((-1170) (-1067))) (-15 -1848 ((-1170)))))) (T -410))
+((-2682 (*1 *2 *2 *2) (-12 (-5 *2 (-362)) (-5 *1 (-410)))) (-2682 (*1 *2 *2) (-12 (-5 *2 (-362)) (-5 *1 (-410)))) (-1275 (*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-410)))) (-1653 (*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-410)))) (-1848 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-410)))))
+(-13 (-338 (-362) (-1067)) (-10 -7 (-15 -2682 ((-362) (-362) (-362))) (-15 -2682 ((-362) (-362))) (-15 -1275 ((-1170) (-1067))) (-15 -1653 ((-1170) (-1067))) (-15 -1848 ((-1170)))))
+((-1415 (((-108) $ $) NIL)) (-1853 (((-3 (|:| |fst| (-408)) (|:| -1366 "void")) $) 10)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-3850 (($) 31)) (-1501 (($) 37)) (-2767 (($) 33)) (-3313 (($) 35)) (-3331 (($) 32)) (-4062 (($) 34)) (-2937 (($) 36)) (-1859 (((-108) $) 8)) (-3172 (((-587 (-881 (-521))) $) 16)) (-2201 (($ (-3 (|:| |fst| (-408)) (|:| -1366 "void")) (-587 (-1084)) (-108)) 25) (($ (-3 (|:| |fst| (-408)) (|:| -1366 "void")) (-587 (-881 (-521))) (-108)) 26)) (-2189 (((-792) $) 21) (($ (-408)) 28)) (-1531 (((-108) $ $) NIL)))
+(((-411) (-13 (-1013) (-10 -8 (-15 -2189 ((-792) $)) (-15 -2189 ($ (-408))) (-15 -1853 ((-3 (|:| |fst| (-408)) (|:| -1366 "void")) $)) (-15 -3172 ((-587 (-881 (-521))) $)) (-15 -1859 ((-108) $)) (-15 -2201 ($ (-3 (|:| |fst| (-408)) (|:| -1366 "void")) (-587 (-1084)) (-108))) (-15 -2201 ($ (-3 (|:| |fst| (-408)) (|:| -1366 "void")) (-587 (-881 (-521))) (-108))) (-15 -3850 ($)) (-15 -3331 ($)) (-15 -2767 ($)) (-15 -1501 ($)) (-15 -4062 ($)) (-15 -3313 ($)) (-15 -2937 ($))))) (T -411))
+((-2189 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-411)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-408)) (-5 *1 (-411)))) (-1853 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-408)) (|:| -1366 "void"))) (-5 *1 (-411)))) (-3172 (*1 *2 *1) (-12 (-5 *2 (-587 (-881 (-521)))) (-5 *1 (-411)))) (-1859 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-411)))) (-2201 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-408)) (|:| -1366 "void"))) (-5 *3 (-587 (-1084))) (-5 *4 (-108)) (-5 *1 (-411)))) (-2201 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-408)) (|:| -1366 "void"))) (-5 *3 (-587 (-881 (-521)))) (-5 *4 (-108)) (-5 *1 (-411)))) (-3850 (*1 *1) (-5 *1 (-411))) (-3331 (*1 *1) (-5 *1 (-411))) (-2767 (*1 *1) (-5 *1 (-411))) (-1501 (*1 *1) (-5 *1 (-411))) (-4062 (*1 *1) (-5 *1 (-411))) (-3313 (*1 *1) (-5 *1 (-411))) (-2937 (*1 *1) (-5 *1 (-411))))
+(-13 (-1013) (-10 -8 (-15 -2189 ((-792) $)) (-15 -2189 ($ (-408))) (-15 -1853 ((-3 (|:| |fst| (-408)) (|:| -1366 "void")) $)) (-15 -3172 ((-587 (-881 (-521))) $)) (-15 -1859 ((-108) $)) (-15 -2201 ($ (-3 (|:| |fst| (-408)) (|:| -1366 "void")) (-587 (-1084)) (-108))) (-15 -2201 ($ (-3 (|:| |fst| (-408)) (|:| -1366 "void")) (-587 (-881 (-521))) (-108))) (-15 -3850 ($)) (-15 -3331 ($)) (-15 -2767 ($)) (-15 -1501 ($)) (-15 -4062 ($)) (-15 -3313 ($)) (-15 -2937 ($))))
+((-1415 (((-108) $ $) NIL)) (-2884 (((-1084) $) 8)) (-3688 (((-1067) $) 16)) (-4147 (((-1031) $) NIL)) (-2189 (((-792) $) 11)) (-1531 (((-108) $ $) 13)))
+(((-412 |#1|) (-13 (-1013) (-10 -8 (-15 -2884 ((-1084) $)))) (-1084)) (T -412))
+((-2884 (*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-412 *3)) (-14 *3 *2))))
+(-13 (-1013) (-10 -8 (-15 -2884 ((-1084) $))))
+((-2009 (((-1170) $) 7)) (-2189 (((-792) $) 8) (($ (-1165 (-636))) 14) (($ (-587 (-304))) 13) (($ (-304)) 12) (($ (-2 (|:| |localSymbols| (-1088)) (|:| -2032 (-587 (-304))))) 11)))
+(((-413) (-1196)) (T -413))
+((-2189 (*1 *1 *2) (-12 (-5 *2 (-1165 (-636))) (-4 *1 (-413)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-587 (-304))) (-4 *1 (-413)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-304)) (-4 *1 (-413)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1088)) (|:| -2032 (-587 (-304))))) (-4 *1 (-413)))))
+(-13 (-369) (-10 -8 (-15 -2189 ($ (-1165 (-636)))) (-15 -2189 ($ (-587 (-304)))) (-15 -2189 ($ (-304))) (-15 -2189 ($ (-2 (|:| |localSymbols| (-1088)) (|:| -2032 (-587 (-304))))))))
+(((-561 (-792)) . T) ((-369) . T) ((-1119) . T))
+((-1297 (((-3 $ "failed") (-1165 (-290 (-353)))) 21) (((-3 $ "failed") (-1165 (-290 (-521)))) 19) (((-3 $ "failed") (-1165 (-881 (-353)))) 17) (((-3 $ "failed") (-1165 (-881 (-521)))) 15) (((-3 $ "failed") (-1165 (-381 (-881 (-353))))) 13) (((-3 $ "failed") (-1165 (-381 (-881 (-521))))) 11)) (-1483 (($ (-1165 (-290 (-353)))) 22) (($ (-1165 (-290 (-521)))) 20) (($ (-1165 (-881 (-353)))) 18) (($ (-1165 (-881 (-521)))) 16) (($ (-1165 (-381 (-881 (-353))))) 14) (($ (-1165 (-381 (-881 (-521))))) 12)) (-2009 (((-1170) $) 7)) (-2189 (((-792) $) 8) (($ (-587 (-304))) 25) (($ (-304)) 24) (($ (-2 (|:| |localSymbols| (-1088)) (|:| -2032 (-587 (-304))))) 23)))
+(((-414) (-1196)) (T -414))
+((-2189 (*1 *1 *2) (-12 (-5 *2 (-587 (-304))) (-4 *1 (-414)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-304)) (-4 *1 (-414)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1088)) (|:| -2032 (-587 (-304))))) (-4 *1 (-414)))) (-1483 (*1 *1 *2) (-12 (-5 *2 (-1165 (-290 (-353)))) (-4 *1 (-414)))) (-1297 (*1 *1 *2) (|partial| -12 (-5 *2 (-1165 (-290 (-353)))) (-4 *1 (-414)))) (-1483 (*1 *1 *2) (-12 (-5 *2 (-1165 (-290 (-521)))) (-4 *1 (-414)))) (-1297 (*1 *1 *2) (|partial| -12 (-5 *2 (-1165 (-290 (-521)))) (-4 *1 (-414)))) (-1483 (*1 *1 *2) (-12 (-5 *2 (-1165 (-881 (-353)))) (-4 *1 (-414)))) (-1297 (*1 *1 *2) (|partial| -12 (-5 *2 (-1165 (-881 (-353)))) (-4 *1 (-414)))) (-1483 (*1 *1 *2) (-12 (-5 *2 (-1165 (-881 (-521)))) (-4 *1 (-414)))) (-1297 (*1 *1 *2) (|partial| -12 (-5 *2 (-1165 (-881 (-521)))) (-4 *1 (-414)))) (-1483 (*1 *1 *2) (-12 (-5 *2 (-1165 (-381 (-881 (-353))))) (-4 *1 (-414)))) (-1297 (*1 *1 *2) (|partial| -12 (-5 *2 (-1165 (-381 (-881 (-353))))) (-4 *1 (-414)))) (-1483 (*1 *1 *2) (-12 (-5 *2 (-1165 (-381 (-881 (-521))))) (-4 *1 (-414)))) (-1297 (*1 *1 *2) (|partial| -12 (-5 *2 (-1165 (-381 (-881 (-521))))) (-4 *1 (-414)))))
+(-13 (-369) (-10 -8 (-15 -2189 ($ (-587 (-304)))) (-15 -2189 ($ (-304))) (-15 -2189 ($ (-2 (|:| |localSymbols| (-1088)) (|:| -2032 (-587 (-304)))))) (-15 -1483 ($ (-1165 (-290 (-353))))) (-15 -1297 ((-3 $ "failed") (-1165 (-290 (-353))))) (-15 -1483 ($ (-1165 (-290 (-521))))) (-15 -1297 ((-3 $ "failed") (-1165 (-290 (-521))))) (-15 -1483 ($ (-1165 (-881 (-353))))) (-15 -1297 ((-3 $ "failed") (-1165 (-881 (-353))))) (-15 -1483 ($ (-1165 (-881 (-521))))) (-15 -1297 ((-3 $ "failed") (-1165 (-881 (-521))))) (-15 -1483 ($ (-1165 (-381 (-881 (-353)))))) (-15 -1297 ((-3 $ "failed") (-1165 (-381 (-881 (-353)))))) (-15 -1483 ($ (-1165 (-381 (-881 (-521)))))) (-15 -1297 ((-3 $ "failed") (-1165 (-381 (-881 (-521))))))))
+(((-561 (-792)) . T) ((-369) . T) ((-1119) . T))
+((-3064 (((-108)) 17)) (-1399 (((-108) (-108)) 18)) (-2484 (((-108)) 13)) (-2637 (((-108) (-108)) 14)) (-1336 (((-108)) 15)) (-3823 (((-108) (-108)) 16)) (-4015 (((-850) (-850)) 21) (((-850)) 20)) (-2969 (((-707) (-587 (-2 (|:| -1916 |#1|) (|:| -1994 (-521))))) 42)) (-2356 (((-850) (-850)) 23) (((-850)) 22)) (-3594 (((-2 (|:| -1999 (-521)) (|:| -1514 (-587 |#1|))) |#1|) 62)) (-1520 (((-392 |#1|) (-2 (|:| |contp| (-521)) (|:| -1514 (-587 (-2 (|:| |irr| |#1|) (|:| -2132 (-521))))))) 124)) (-2708 (((-2 (|:| |contp| (-521)) (|:| -1514 (-587 (-2 (|:| |irr| |#1|) (|:| -2132 (-521)))))) |#1| (-108)) 150)) (-3168 (((-392 |#1|) |#1| (-707) (-707)) 163) (((-392 |#1|) |#1| (-587 (-707)) (-707)) 160) (((-392 |#1|) |#1| (-587 (-707))) 162) (((-392 |#1|) |#1| (-707)) 161) (((-392 |#1|) |#1|) 159)) (-2623 (((-3 |#1| "failed") (-850) |#1| (-587 (-707)) (-707) (-108)) 165) (((-3 |#1| "failed") (-850) |#1| (-587 (-707)) (-707)) 166) (((-3 |#1| "failed") (-850) |#1| (-587 (-707))) 168) (((-3 |#1| "failed") (-850) |#1| (-707)) 167) (((-3 |#1| "failed") (-850) |#1|) 169)) (-1916 (((-392 |#1|) |#1| (-707) (-707)) 158) (((-392 |#1|) |#1| (-587 (-707)) (-707)) 154) (((-392 |#1|) |#1| (-587 (-707))) 156) (((-392 |#1|) |#1| (-707)) 155) (((-392 |#1|) |#1|) 153)) (-1681 (((-108) |#1|) 37)) (-3015 (((-674 (-707)) (-587 (-2 (|:| -1916 |#1|) (|:| -1994 (-521))))) 67)) (-3119 (((-2 (|:| |contp| (-521)) (|:| -1514 (-587 (-2 (|:| |irr| |#1|) (|:| -2132 (-521)))))) |#1| (-108) (-1015 (-707)) (-707)) 152)))
+(((-415 |#1|) (-10 -7 (-15 -1520 ((-392 |#1|) (-2 (|:| |contp| (-521)) (|:| -1514 (-587 (-2 (|:| |irr| |#1|) (|:| -2132 (-521)))))))) (-15 -3015 ((-674 (-707)) (-587 (-2 (|:| -1916 |#1|) (|:| -1994 (-521)))))) (-15 -2356 ((-850))) (-15 -2356 ((-850) (-850))) (-15 -4015 ((-850))) (-15 -4015 ((-850) (-850))) (-15 -2969 ((-707) (-587 (-2 (|:| -1916 |#1|) (|:| -1994 (-521)))))) (-15 -3594 ((-2 (|:| -1999 (-521)) (|:| -1514 (-587 |#1|))) |#1|)) (-15 -3064 ((-108))) (-15 -1399 ((-108) (-108))) (-15 -2484 ((-108))) (-15 -2637 ((-108) (-108))) (-15 -1681 ((-108) |#1|)) (-15 -1336 ((-108))) (-15 -3823 ((-108) (-108))) (-15 -1916 ((-392 |#1|) |#1|)) (-15 -1916 ((-392 |#1|) |#1| (-707))) (-15 -1916 ((-392 |#1|) |#1| (-587 (-707)))) (-15 -1916 ((-392 |#1|) |#1| (-587 (-707)) (-707))) (-15 -1916 ((-392 |#1|) |#1| (-707) (-707))) (-15 -3168 ((-392 |#1|) |#1|)) (-15 -3168 ((-392 |#1|) |#1| (-707))) (-15 -3168 ((-392 |#1|) |#1| (-587 (-707)))) (-15 -3168 ((-392 |#1|) |#1| (-587 (-707)) (-707))) (-15 -3168 ((-392 |#1|) |#1| (-707) (-707))) (-15 -2623 ((-3 |#1| "failed") (-850) |#1|)) (-15 -2623 ((-3 |#1| "failed") (-850) |#1| (-707))) (-15 -2623 ((-3 |#1| "failed") (-850) |#1| (-587 (-707)))) (-15 -2623 ((-3 |#1| "failed") (-850) |#1| (-587 (-707)) (-707))) (-15 -2623 ((-3 |#1| "failed") (-850) |#1| (-587 (-707)) (-707) (-108))) (-15 -2708 ((-2 (|:| |contp| (-521)) (|:| -1514 (-587 (-2 (|:| |irr| |#1|) (|:| -2132 (-521)))))) |#1| (-108))) (-15 -3119 ((-2 (|:| |contp| (-521)) (|:| -1514 (-587 (-2 (|:| |irr| |#1|) (|:| -2132 (-521)))))) |#1| (-108) (-1015 (-707)) (-707)))) (-1141 (-521))) (T -415))
+((-3119 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-108)) (-5 *5 (-1015 (-707))) (-5 *6 (-707)) (-5 *2 (-2 (|:| |contp| (-521)) (|:| -1514 (-587 (-2 (|:| |irr| *3) (|:| -2132 (-521))))))) (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521))))) (-2708 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-5 *2 (-2 (|:| |contp| (-521)) (|:| -1514 (-587 (-2 (|:| |irr| *3) (|:| -2132 (-521))))))) (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521))))) (-2623 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-850)) (-5 *4 (-587 (-707))) (-5 *5 (-707)) (-5 *6 (-108)) (-5 *1 (-415 *2)) (-4 *2 (-1141 (-521))))) (-2623 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-850)) (-5 *4 (-587 (-707))) (-5 *5 (-707)) (-5 *1 (-415 *2)) (-4 *2 (-1141 (-521))))) (-2623 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-850)) (-5 *4 (-587 (-707))) (-5 *1 (-415 *2)) (-4 *2 (-1141 (-521))))) (-2623 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-850)) (-5 *4 (-707)) (-5 *1 (-415 *2)) (-4 *2 (-1141 (-521))))) (-2623 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-850)) (-5 *1 (-415 *2)) (-4 *2 (-1141 (-521))))) (-3168 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-707)) (-5 *2 (-392 *3)) (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521))))) (-3168 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-587 (-707))) (-5 *5 (-707)) (-5 *2 (-392 *3)) (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521))))) (-3168 (*1 *2 *3 *4) (-12 (-5 *4 (-587 (-707))) (-5 *2 (-392 *3)) (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521))))) (-3168 (*1 *2 *3 *4) (-12 (-5 *4 (-707)) (-5 *2 (-392 *3)) (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521))))) (-3168 (*1 *2 *3) (-12 (-5 *2 (-392 *3)) (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521))))) (-1916 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-707)) (-5 *2 (-392 *3)) (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521))))) (-1916 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-587 (-707))) (-5 *5 (-707)) (-5 *2 (-392 *3)) (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521))))) (-1916 (*1 *2 *3 *4) (-12 (-5 *4 (-587 (-707))) (-5 *2 (-392 *3)) (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521))))) (-1916 (*1 *2 *3 *4) (-12 (-5 *4 (-707)) (-5 *2 (-392 *3)) (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521))))) (-1916 (*1 *2 *3) (-12 (-5 *2 (-392 *3)) (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521))))) (-3823 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521))))) (-1336 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521))))) (-1681 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521))))) (-2637 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521))))) (-2484 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521))))) (-1399 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521))))) (-3064 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521))))) (-3594 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -1999 (-521)) (|:| -1514 (-587 *3)))) (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521))))) (-2969 (*1 *2 *3) (-12 (-5 *3 (-587 (-2 (|:| -1916 *4) (|:| -1994 (-521))))) (-4 *4 (-1141 (-521))) (-5 *2 (-707)) (-5 *1 (-415 *4)))) (-4015 (*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521))))) (-4015 (*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521))))) (-2356 (*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521))))) (-2356 (*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521))))) (-3015 (*1 *2 *3) (-12 (-5 *3 (-587 (-2 (|:| -1916 *4) (|:| -1994 (-521))))) (-4 *4 (-1141 (-521))) (-5 *2 (-674 (-707))) (-5 *1 (-415 *4)))) (-1520 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-521)) (|:| -1514 (-587 (-2 (|:| |irr| *4) (|:| -2132 (-521))))))) (-4 *4 (-1141 (-521))) (-5 *2 (-392 *4)) (-5 *1 (-415 *4)))))
+(-10 -7 (-15 -1520 ((-392 |#1|) (-2 (|:| |contp| (-521)) (|:| -1514 (-587 (-2 (|:| |irr| |#1|) (|:| -2132 (-521)))))))) (-15 -3015 ((-674 (-707)) (-587 (-2 (|:| -1916 |#1|) (|:| -1994 (-521)))))) (-15 -2356 ((-850))) (-15 -2356 ((-850) (-850))) (-15 -4015 ((-850))) (-15 -4015 ((-850) (-850))) (-15 -2969 ((-707) (-587 (-2 (|:| -1916 |#1|) (|:| -1994 (-521)))))) (-15 -3594 ((-2 (|:| -1999 (-521)) (|:| -1514 (-587 |#1|))) |#1|)) (-15 -3064 ((-108))) (-15 -1399 ((-108) (-108))) (-15 -2484 ((-108))) (-15 -2637 ((-108) (-108))) (-15 -1681 ((-108) |#1|)) (-15 -1336 ((-108))) (-15 -3823 ((-108) (-108))) (-15 -1916 ((-392 |#1|) |#1|)) (-15 -1916 ((-392 |#1|) |#1| (-707))) (-15 -1916 ((-392 |#1|) |#1| (-587 (-707)))) (-15 -1916 ((-392 |#1|) |#1| (-587 (-707)) (-707))) (-15 -1916 ((-392 |#1|) |#1| (-707) (-707))) (-15 -3168 ((-392 |#1|) |#1|)) (-15 -3168 ((-392 |#1|) |#1| (-707))) (-15 -3168 ((-392 |#1|) |#1| (-587 (-707)))) (-15 -3168 ((-392 |#1|) |#1| (-587 (-707)) (-707))) (-15 -3168 ((-392 |#1|) |#1| (-707) (-707))) (-15 -2623 ((-3 |#1| "failed") (-850) |#1|)) (-15 -2623 ((-3 |#1| "failed") (-850) |#1| (-707))) (-15 -2623 ((-3 |#1| "failed") (-850) |#1| (-587 (-707)))) (-15 -2623 ((-3 |#1| "failed") (-850) |#1| (-587 (-707)) (-707))) (-15 -2623 ((-3 |#1| "failed") (-850) |#1| (-587 (-707)) (-707) (-108))) (-15 -2708 ((-2 (|:| |contp| (-521)) (|:| -1514 (-587 (-2 (|:| |irr| |#1|) (|:| -2132 (-521)))))) |#1| (-108))) (-15 -3119 ((-2 (|:| |contp| (-521)) (|:| -1514 (-587 (-2 (|:| |irr| |#1|) (|:| -2132 (-521)))))) |#1| (-108) (-1015 (-707)) (-707))))
+((-2974 (((-521) |#2|) 48) (((-521) |#2| (-707)) 47)) (-3418 (((-521) |#2|) 55)) (-1695 ((|#3| |#2|) 25)) (-3930 ((|#3| |#2| (-850)) 14)) (-2516 ((|#3| |#2|) 15)) (-1374 ((|#3| |#2|) 9)) (-4150 ((|#3| |#2|) 10)) (-3922 ((|#3| |#2| (-850)) 62) ((|#3| |#2|) 30)) (-4200 (((-521) |#2|) 57)))
+(((-416 |#1| |#2| |#3|) (-10 -7 (-15 -4200 ((-521) |#2|)) (-15 -3922 (|#3| |#2|)) (-15 -3922 (|#3| |#2| (-850))) (-15 -3418 ((-521) |#2|)) (-15 -2974 ((-521) |#2| (-707))) (-15 -2974 ((-521) |#2|)) (-15 -3930 (|#3| |#2| (-850))) (-15 -1695 (|#3| |#2|)) (-15 -1374 (|#3| |#2|)) (-15 -4150 (|#3| |#2|)) (-15 -2516 (|#3| |#2|))) (-970) (-1141 |#1|) (-13 (-378) (-961 |#1|) (-337) (-1105) (-259))) (T -416))
+((-2516 (*1 *2 *3) (-12 (-4 *4 (-970)) (-4 *2 (-13 (-378) (-961 *4) (-337) (-1105) (-259))) (-5 *1 (-416 *4 *3 *2)) (-4 *3 (-1141 *4)))) (-4150 (*1 *2 *3) (-12 (-4 *4 (-970)) (-4 *2 (-13 (-378) (-961 *4) (-337) (-1105) (-259))) (-5 *1 (-416 *4 *3 *2)) (-4 *3 (-1141 *4)))) (-1374 (*1 *2 *3) (-12 (-4 *4 (-970)) (-4 *2 (-13 (-378) (-961 *4) (-337) (-1105) (-259))) (-5 *1 (-416 *4 *3 *2)) (-4 *3 (-1141 *4)))) (-1695 (*1 *2 *3) (-12 (-4 *4 (-970)) (-4 *2 (-13 (-378) (-961 *4) (-337) (-1105) (-259))) (-5 *1 (-416 *4 *3 *2)) (-4 *3 (-1141 *4)))) (-3930 (*1 *2 *3 *4) (-12 (-5 *4 (-850)) (-4 *5 (-970)) (-4 *2 (-13 (-378) (-961 *5) (-337) (-1105) (-259))) (-5 *1 (-416 *5 *3 *2)) (-4 *3 (-1141 *5)))) (-2974 (*1 *2 *3) (-12 (-4 *4 (-970)) (-5 *2 (-521)) (-5 *1 (-416 *4 *3 *5)) (-4 *3 (-1141 *4)) (-4 *5 (-13 (-378) (-961 *4) (-337) (-1105) (-259))))) (-2974 (*1 *2 *3 *4) (-12 (-5 *4 (-707)) (-4 *5 (-970)) (-5 *2 (-521)) (-5 *1 (-416 *5 *3 *6)) (-4 *3 (-1141 *5)) (-4 *6 (-13 (-378) (-961 *5) (-337) (-1105) (-259))))) (-3418 (*1 *2 *3) (-12 (-4 *4 (-970)) (-5 *2 (-521)) (-5 *1 (-416 *4 *3 *5)) (-4 *3 (-1141 *4)) (-4 *5 (-13 (-378) (-961 *4) (-337) (-1105) (-259))))) (-3922 (*1 *2 *3 *4) (-12 (-5 *4 (-850)) (-4 *5 (-970)) (-4 *2 (-13 (-378) (-961 *5) (-337) (-1105) (-259))) (-5 *1 (-416 *5 *3 *2)) (-4 *3 (-1141 *5)))) (-3922 (*1 *2 *3) (-12 (-4 *4 (-970)) (-4 *2 (-13 (-378) (-961 *4) (-337) (-1105) (-259))) (-5 *1 (-416 *4 *3 *2)) (-4 *3 (-1141 *4)))) (-4200 (*1 *2 *3) (-12 (-4 *4 (-970)) (-5 *2 (-521)) (-5 *1 (-416 *4 *3 *5)) (-4 *3 (-1141 *4)) (-4 *5 (-13 (-378) (-961 *4) (-337) (-1105) (-259))))))
+(-10 -7 (-15 -4200 ((-521) |#2|)) (-15 -3922 (|#3| |#2|)) (-15 -3922 (|#3| |#2| (-850))) (-15 -3418 ((-521) |#2|)) (-15 -2974 ((-521) |#2| (-707))) (-15 -2974 ((-521) |#2|)) (-15 -3930 (|#3| |#2| (-850))) (-15 -1695 (|#3| |#2|)) (-15 -1374 (|#3| |#2|)) (-15 -4150 (|#3| |#2|)) (-15 -2516 (|#3| |#2|)))
+((-1657 ((|#2| (-1165 |#1|)) 36)) (-1545 ((|#2| |#2| |#1|) 49)) (-2282 ((|#2| |#2| |#1|) 41)) (-1862 ((|#2| |#2|) 38)) (-1205 (((-108) |#2|) 30)) (-4027 (((-587 |#2|) (-850) (-392 |#2|)) 16)) (-2623 ((|#2| (-850) (-392 |#2|)) 21)) (-3015 (((-674 (-707)) (-392 |#2|)) 25)))
+(((-417 |#1| |#2|) (-10 -7 (-15 -1205 ((-108) |#2|)) (-15 -1657 (|#2| (-1165 |#1|))) (-15 -1862 (|#2| |#2|)) (-15 -2282 (|#2| |#2| |#1|)) (-15 -1545 (|#2| |#2| |#1|)) (-15 -3015 ((-674 (-707)) (-392 |#2|))) (-15 -2623 (|#2| (-850) (-392 |#2|))) (-15 -4027 ((-587 |#2|) (-850) (-392 |#2|)))) (-970) (-1141 |#1|)) (T -417))
+((-4027 (*1 *2 *3 *4) (-12 (-5 *3 (-850)) (-5 *4 (-392 *6)) (-4 *6 (-1141 *5)) (-4 *5 (-970)) (-5 *2 (-587 *6)) (-5 *1 (-417 *5 *6)))) (-2623 (*1 *2 *3 *4) (-12 (-5 *3 (-850)) (-5 *4 (-392 *2)) (-4 *2 (-1141 *5)) (-5 *1 (-417 *5 *2)) (-4 *5 (-970)))) (-3015 (*1 *2 *3) (-12 (-5 *3 (-392 *5)) (-4 *5 (-1141 *4)) (-4 *4 (-970)) (-5 *2 (-674 (-707))) (-5 *1 (-417 *4 *5)))) (-1545 (*1 *2 *2 *3) (-12 (-4 *3 (-970)) (-5 *1 (-417 *3 *2)) (-4 *2 (-1141 *3)))) (-2282 (*1 *2 *2 *3) (-12 (-4 *3 (-970)) (-5 *1 (-417 *3 *2)) (-4 *2 (-1141 *3)))) (-1862 (*1 *2 *2) (-12 (-4 *3 (-970)) (-5 *1 (-417 *3 *2)) (-4 *2 (-1141 *3)))) (-1657 (*1 *2 *3) (-12 (-5 *3 (-1165 *4)) (-4 *4 (-970)) (-4 *2 (-1141 *4)) (-5 *1 (-417 *4 *2)))) (-1205 (*1 *2 *3) (-12 (-4 *4 (-970)) (-5 *2 (-108)) (-5 *1 (-417 *4 *3)) (-4 *3 (-1141 *4)))))
+(-10 -7 (-15 -1205 ((-108) |#2|)) (-15 -1657 (|#2| (-1165 |#1|))) (-15 -1862 (|#2| |#2|)) (-15 -2282 (|#2| |#2| |#1|)) (-15 -1545 (|#2| |#2| |#1|)) (-15 -3015 ((-674 (-707)) (-392 |#2|))) (-15 -2623 (|#2| (-850) (-392 |#2|))) (-15 -4027 ((-587 |#2|) (-850) (-392 |#2|))))
+((-2121 (((-707)) 41)) (-3845 (((-707)) 23 (|has| |#1| (-378))) (((-707) (-707)) 22 (|has| |#1| (-378)))) (-3404 (((-521) |#1|) 18 (|has| |#1| (-378)))) (-4063 (((-521) |#1|) 20 (|has| |#1| (-378)))) (-2657 (((-707)) 40) (((-707) (-707)) 39)) (-1579 ((|#1| (-707) (-521)) 29)) (-2125 (((-1170)) 43)))
+(((-418 |#1|) (-10 -7 (-15 -1579 (|#1| (-707) (-521))) (-15 -2657 ((-707) (-707))) (-15 -2657 ((-707))) (-15 -2121 ((-707))) (-15 -2125 ((-1170))) (IF (|has| |#1| (-378)) (PROGN (-15 -4063 ((-521) |#1|)) (-15 -3404 ((-521) |#1|)) (-15 -3845 ((-707) (-707))) (-15 -3845 ((-707)))) |%noBranch|)) (-970)) (T -418))
+((-3845 (*1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-418 *3)) (-4 *3 (-378)) (-4 *3 (-970)))) (-3845 (*1 *2 *2) (-12 (-5 *2 (-707)) (-5 *1 (-418 *3)) (-4 *3 (-378)) (-4 *3 (-970)))) (-3404 (*1 *2 *3) (-12 (-5 *2 (-521)) (-5 *1 (-418 *3)) (-4 *3 (-378)) (-4 *3 (-970)))) (-4063 (*1 *2 *3) (-12 (-5 *2 (-521)) (-5 *1 (-418 *3)) (-4 *3 (-378)) (-4 *3 (-970)))) (-2125 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-418 *3)) (-4 *3 (-970)))) (-2121 (*1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-418 *3)) (-4 *3 (-970)))) (-2657 (*1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-418 *3)) (-4 *3 (-970)))) (-2657 (*1 *2 *2) (-12 (-5 *2 (-707)) (-5 *1 (-418 *3)) (-4 *3 (-970)))) (-1579 (*1 *2 *3 *4) (-12 (-5 *3 (-707)) (-5 *4 (-521)) (-5 *1 (-418 *2)) (-4 *2 (-970)))))
+(-10 -7 (-15 -1579 (|#1| (-707) (-521))) (-15 -2657 ((-707) (-707))) (-15 -2657 ((-707))) (-15 -2121 ((-707))) (-15 -2125 ((-1170))) (IF (|has| |#1| (-378)) (PROGN (-15 -4063 ((-521) |#1|)) (-15 -3404 ((-521) |#1|)) (-15 -3845 ((-707) (-707))) (-15 -3845 ((-707)))) |%noBranch|))
+((-3827 (((-587 (-521)) (-521)) 59)) (-2710 (((-108) (-154 (-521))) 63)) (-1916 (((-392 (-154 (-521))) (-154 (-521))) 58)))
+(((-419) (-10 -7 (-15 -1916 ((-392 (-154 (-521))) (-154 (-521)))) (-15 -3827 ((-587 (-521)) (-521))) (-15 -2710 ((-108) (-154 (-521)))))) (T -419))
+((-2710 (*1 *2 *3) (-12 (-5 *3 (-154 (-521))) (-5 *2 (-108)) (-5 *1 (-419)))) (-3827 (*1 *2 *3) (-12 (-5 *2 (-587 (-521))) (-5 *1 (-419)) (-5 *3 (-521)))) (-1916 (*1 *2 *3) (-12 (-5 *2 (-392 (-154 (-521)))) (-5 *1 (-419)) (-5 *3 (-154 (-521))))))
+(-10 -7 (-15 -1916 ((-392 (-154 (-521))) (-154 (-521)))) (-15 -3827 ((-587 (-521)) (-521))) (-15 -2710 ((-108) (-154 (-521)))))
+((-3269 ((|#4| |#4| (-587 |#4|)) 59)) (-3941 (((-587 |#4|) (-587 |#4|) (-1067) (-1067)) 17) (((-587 |#4|) (-587 |#4|) (-1067)) 16) (((-587 |#4|) (-587 |#4|)) 11)))
+(((-420 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3269 (|#4| |#4| (-587 |#4|))) (-15 -3941 ((-587 |#4|) (-587 |#4|))) (-15 -3941 ((-587 |#4|) (-587 |#4|) (-1067))) (-15 -3941 ((-587 |#4|) (-587 |#4|) (-1067) (-1067)))) (-282) (-729) (-784) (-878 |#1| |#2| |#3|)) (T -420))
+((-3941 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-587 *7)) (-5 *3 (-1067)) (-4 *7 (-878 *4 *5 *6)) (-4 *4 (-282)) (-4 *5 (-729)) (-4 *6 (-784)) (-5 *1 (-420 *4 *5 *6 *7)))) (-3941 (*1 *2 *2 *3) (-12 (-5 *2 (-587 *7)) (-5 *3 (-1067)) (-4 *7 (-878 *4 *5 *6)) (-4 *4 (-282)) (-4 *5 (-729)) (-4 *6 (-784)) (-5 *1 (-420 *4 *5 *6 *7)))) (-3941 (*1 *2 *2) (-12 (-5 *2 (-587 *6)) (-4 *6 (-878 *3 *4 *5)) (-4 *3 (-282)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *1 (-420 *3 *4 *5 *6)))) (-3269 (*1 *2 *2 *3) (-12 (-5 *3 (-587 *2)) (-4 *2 (-878 *4 *5 *6)) (-4 *4 (-282)) (-4 *5 (-729)) (-4 *6 (-784)) (-5 *1 (-420 *4 *5 *6 *2)))))
+(-10 -7 (-15 -3269 (|#4| |#4| (-587 |#4|))) (-15 -3941 ((-587 |#4|) (-587 |#4|))) (-15 -3941 ((-587 |#4|) (-587 |#4|) (-1067))) (-15 -3941 ((-587 |#4|) (-587 |#4|) (-1067) (-1067))))
+((-3258 (((-587 (-587 |#4|)) (-587 |#4|) (-108)) 71) (((-587 (-587 |#4|)) (-587 |#4|)) 70) (((-587 (-587 |#4|)) (-587 |#4|) (-587 |#4|) (-108)) 64) (((-587 (-587 |#4|)) (-587 |#4|) (-587 |#4|)) 65)) (-1665 (((-587 (-587 |#4|)) (-587 |#4|) (-108)) 41) (((-587 (-587 |#4|)) (-587 |#4|)) 61)))
+(((-421 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1665 ((-587 (-587 |#4|)) (-587 |#4|))) (-15 -1665 ((-587 (-587 |#4|)) (-587 |#4|) (-108))) (-15 -3258 ((-587 (-587 |#4|)) (-587 |#4|) (-587 |#4|))) (-15 -3258 ((-587 (-587 |#4|)) (-587 |#4|) (-587 |#4|) (-108))) (-15 -3258 ((-587 (-587 |#4|)) (-587 |#4|))) (-15 -3258 ((-587 (-587 |#4|)) (-587 |#4|) (-108)))) (-13 (-282) (-135)) (-729) (-784) (-878 |#1| |#2| |#3|)) (T -421))
+((-3258 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-282) (-135))) (-4 *6 (-729)) (-4 *7 (-784)) (-4 *8 (-878 *5 *6 *7)) (-5 *2 (-587 (-587 *8))) (-5 *1 (-421 *5 *6 *7 *8)) (-5 *3 (-587 *8)))) (-3258 (*1 *2 *3) (-12 (-4 *4 (-13 (-282) (-135))) (-4 *5 (-729)) (-4 *6 (-784)) (-4 *7 (-878 *4 *5 *6)) (-5 *2 (-587 (-587 *7))) (-5 *1 (-421 *4 *5 *6 *7)) (-5 *3 (-587 *7)))) (-3258 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-282) (-135))) (-4 *6 (-729)) (-4 *7 (-784)) (-4 *8 (-878 *5 *6 *7)) (-5 *2 (-587 (-587 *8))) (-5 *1 (-421 *5 *6 *7 *8)) (-5 *3 (-587 *8)))) (-3258 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-282) (-135))) (-4 *5 (-729)) (-4 *6 (-784)) (-4 *7 (-878 *4 *5 *6)) (-5 *2 (-587 (-587 *7))) (-5 *1 (-421 *4 *5 *6 *7)) (-5 *3 (-587 *7)))) (-1665 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-282) (-135))) (-4 *6 (-729)) (-4 *7 (-784)) (-4 *8 (-878 *5 *6 *7)) (-5 *2 (-587 (-587 *8))) (-5 *1 (-421 *5 *6 *7 *8)) (-5 *3 (-587 *8)))) (-1665 (*1 *2 *3) (-12 (-4 *4 (-13 (-282) (-135))) (-4 *5 (-729)) (-4 *6 (-784)) (-4 *7 (-878 *4 *5 *6)) (-5 *2 (-587 (-587 *7))) (-5 *1 (-421 *4 *5 *6 *7)) (-5 *3 (-587 *7)))))
+(-10 -7 (-15 -1665 ((-587 (-587 |#4|)) (-587 |#4|))) (-15 -1665 ((-587 (-587 |#4|)) (-587 |#4|) (-108))) (-15 -3258 ((-587 (-587 |#4|)) (-587 |#4|) (-587 |#4|))) (-15 -3258 ((-587 (-587 |#4|)) (-587 |#4|) (-587 |#4|) (-108))) (-15 -3258 ((-587 (-587 |#4|)) (-587 |#4|))) (-15 -3258 ((-587 (-587 |#4|)) (-587 |#4|) (-108))))
+((-1261 (((-707) |#4|) 12)) (-3327 (((-587 (-2 (|:| |totdeg| (-707)) (|:| -3736 |#4|))) |#4| (-707) (-587 (-2 (|:| |totdeg| (-707)) (|:| -3736 |#4|)))) 31)) (-2881 (((-587 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-587 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-587 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 38)) (-4077 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 39)) (-1633 ((|#4| |#4| (-587 |#4|)) 40)) (-2815 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-587 |#4|)) 69)) (-1792 (((-1170) |#4|) 42)) (-3017 (((-1170) (-587 |#4|)) 51)) (-2134 (((-521) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-521) (-521) (-521)) 48)) (-2663 (((-1170) (-521)) 77)) (-3028 (((-587 |#4|) (-587 |#4|)) 75)) (-2430 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-707)) (|:| -3736 |#4|)) |#4| (-707)) 25)) (-3004 (((-521) |#4|) 76)) (-2245 ((|#4| |#4|) 29)) (-1708 (((-587 |#4|) (-587 |#4|) (-521) (-521)) 55)) (-2276 (((-521) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-521) (-521) (-521) (-521)) 87)) (-3961 (((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 16)) (-3400 (((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 58)) (-1434 (((-587 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-587 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 57)) (-2308 (((-587 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-587 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 36)) (-3046 (((-108) |#2| |#2|) 56)) (-3740 (((-587 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-587 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 37)) (-4161 (((-108) |#2| |#2| |#2| |#2|) 59)) (-2632 ((|#4| |#4| (-587 |#4|)) 70)))
+(((-422 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2632 (|#4| |#4| (-587 |#4|))) (-15 -1633 (|#4| |#4| (-587 |#4|))) (-15 -1708 ((-587 |#4|) (-587 |#4|) (-521) (-521))) (-15 -3400 ((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3046 ((-108) |#2| |#2|)) (-15 -4161 ((-108) |#2| |#2| |#2| |#2|)) (-15 -3740 ((-587 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-587 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2308 ((-587 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-587 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1434 ((-587 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-587 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2815 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-587 |#4|))) (-15 -2245 (|#4| |#4|)) (-15 -3327 ((-587 (-2 (|:| |totdeg| (-707)) (|:| -3736 |#4|))) |#4| (-707) (-587 (-2 (|:| |totdeg| (-707)) (|:| -3736 |#4|))))) (-15 -4077 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2881 ((-587 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-587 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-587 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3028 ((-587 |#4|) (-587 |#4|))) (-15 -3004 ((-521) |#4|)) (-15 -1792 ((-1170) |#4|)) (-15 -2134 ((-521) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-521) (-521) (-521))) (-15 -2276 ((-521) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-521) (-521) (-521) (-521))) (-15 -3017 ((-1170) (-587 |#4|))) (-15 -2663 ((-1170) (-521))) (-15 -3961 ((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2430 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-707)) (|:| -3736 |#4|)) |#4| (-707))) (-15 -1261 ((-707) |#4|))) (-425) (-729) (-784) (-878 |#1| |#2| |#3|)) (T -422))
+((-1261 (*1 *2 *3) (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-707)) (-5 *1 (-422 *4 *5 *6 *3)) (-4 *3 (-878 *4 *5 *6)))) (-2430 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-707)) (|:| -3736 *4))) (-5 *5 (-707)) (-4 *4 (-878 *6 *7 *8)) (-4 *6 (-425)) (-4 *7 (-729)) (-4 *8 (-784)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-422 *6 *7 *8 *4)))) (-3961 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-707)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-729)) (-4 *7 (-878 *4 *5 *6)) (-4 *4 (-425)) (-4 *6 (-784)) (-5 *2 (-108)) (-5 *1 (-422 *4 *5 *6 *7)))) (-2663 (*1 *2 *3) (-12 (-5 *3 (-521)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-1170)) (-5 *1 (-422 *4 *5 *6 *7)) (-4 *7 (-878 *4 *5 *6)))) (-3017 (*1 *2 *3) (-12 (-5 *3 (-587 *7)) (-4 *7 (-878 *4 *5 *6)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-1170)) (-5 *1 (-422 *4 *5 *6 *7)))) (-2276 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-521)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-707)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-729)) (-4 *4 (-878 *5 *6 *7)) (-4 *5 (-425)) (-4 *7 (-784)) (-5 *1 (-422 *5 *6 *7 *4)))) (-2134 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-521)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-707)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-729)) (-4 *4 (-878 *5 *6 *7)) (-4 *5 (-425)) (-4 *7 (-784)) (-5 *1 (-422 *5 *6 *7 *4)))) (-1792 (*1 *2 *3) (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-1170)) (-5 *1 (-422 *4 *5 *6 *3)) (-4 *3 (-878 *4 *5 *6)))) (-3004 (*1 *2 *3) (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-521)) (-5 *1 (-422 *4 *5 *6 *3)) (-4 *3 (-878 *4 *5 *6)))) (-3028 (*1 *2 *2) (-12 (-5 *2 (-587 *6)) (-4 *6 (-878 *3 *4 *5)) (-4 *3 (-425)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *1 (-422 *3 *4 *5 *6)))) (-2881 (*1 *2 *2 *2) (-12 (-5 *2 (-587 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-707)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-729)) (-4 *6 (-878 *3 *4 *5)) (-4 *3 (-425)) (-4 *5 (-784)) (-5 *1 (-422 *3 *4 *5 *6)))) (-4077 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-707)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-729)) (-4 *2 (-878 *4 *5 *6)) (-5 *1 (-422 *4 *5 *6 *2)) (-4 *4 (-425)) (-4 *6 (-784)))) (-3327 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-587 (-2 (|:| |totdeg| (-707)) (|:| -3736 *3)))) (-5 *4 (-707)) (-4 *3 (-878 *5 *6 *7)) (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784)) (-5 *1 (-422 *5 *6 *7 *3)))) (-2245 (*1 *2 *2) (-12 (-4 *3 (-425)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *1 (-422 *3 *4 *5 *2)) (-4 *2 (-878 *3 *4 *5)))) (-2815 (*1 *2 *3 *4) (-12 (-5 *4 (-587 *3)) (-4 *3 (-878 *5 *6 *7)) (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-422 *5 *6 *7 *3)))) (-1434 (*1 *2 *3 *2) (-12 (-5 *2 (-587 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-707)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-729)) (-4 *6 (-878 *4 *3 *5)) (-4 *4 (-425)) (-4 *5 (-784)) (-5 *1 (-422 *4 *3 *5 *6)))) (-2308 (*1 *2 *2) (-12 (-5 *2 (-587 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-707)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-729)) (-4 *6 (-878 *3 *4 *5)) (-4 *3 (-425)) (-4 *5 (-784)) (-5 *1 (-422 *3 *4 *5 *6)))) (-3740 (*1 *2 *3 *2) (-12 (-5 *2 (-587 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-707)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-729)) (-4 *3 (-878 *4 *5 *6)) (-4 *4 (-425)) (-4 *6 (-784)) (-5 *1 (-422 *4 *5 *6 *3)))) (-4161 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-425)) (-4 *3 (-729)) (-4 *5 (-784)) (-5 *2 (-108)) (-5 *1 (-422 *4 *3 *5 *6)) (-4 *6 (-878 *4 *3 *5)))) (-3046 (*1 *2 *3 *3) (-12 (-4 *4 (-425)) (-4 *3 (-729)) (-4 *5 (-784)) (-5 *2 (-108)) (-5 *1 (-422 *4 *3 *5 *6)) (-4 *6 (-878 *4 *3 *5)))) (-3400 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-707)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-729)) (-4 *7 (-878 *4 *5 *6)) (-4 *4 (-425)) (-4 *6 (-784)) (-5 *2 (-108)) (-5 *1 (-422 *4 *5 *6 *7)))) (-1708 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-587 *7)) (-5 *3 (-521)) (-4 *7 (-878 *4 *5 *6)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784)) (-5 *1 (-422 *4 *5 *6 *7)))) (-1633 (*1 *2 *2 *3) (-12 (-5 *3 (-587 *2)) (-4 *2 (-878 *4 *5 *6)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784)) (-5 *1 (-422 *4 *5 *6 *2)))) (-2632 (*1 *2 *2 *3) (-12 (-5 *3 (-587 *2)) (-4 *2 (-878 *4 *5 *6)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784)) (-5 *1 (-422 *4 *5 *6 *2)))))
+(-10 -7 (-15 -2632 (|#4| |#4| (-587 |#4|))) (-15 -1633 (|#4| |#4| (-587 |#4|))) (-15 -1708 ((-587 |#4|) (-587 |#4|) (-521) (-521))) (-15 -3400 ((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3046 ((-108) |#2| |#2|)) (-15 -4161 ((-108) |#2| |#2| |#2| |#2|)) (-15 -3740 ((-587 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-587 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2308 ((-587 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-587 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1434 ((-587 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-587 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2815 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-587 |#4|))) (-15 -2245 (|#4| |#4|)) (-15 -3327 ((-587 (-2 (|:| |totdeg| (-707)) (|:| -3736 |#4|))) |#4| (-707) (-587 (-2 (|:| |totdeg| (-707)) (|:| -3736 |#4|))))) (-15 -4077 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2881 ((-587 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-587 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-587 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3028 ((-587 |#4|) (-587 |#4|))) (-15 -3004 ((-521) |#4|)) (-15 -1792 ((-1170) |#4|)) (-15 -2134 ((-521) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-521) (-521) (-521))) (-15 -2276 ((-521) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-521) (-521) (-521) (-521))) (-15 -3017 ((-1170) (-587 |#4|))) (-15 -2663 ((-1170) (-521))) (-15 -3961 ((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2430 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-707)) (|:| -3736 |#4|)) |#4| (-707))) (-15 -1261 ((-707) |#4|)))
+((-2175 ((|#4| |#4| (-587 |#4|)) 22 (|has| |#1| (-337)))) (-1676 (((-587 |#4|) (-587 |#4|) (-1067) (-1067)) 42) (((-587 |#4|) (-587 |#4|) (-1067)) 41) (((-587 |#4|) (-587 |#4|)) 36)))
+(((-423 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1676 ((-587 |#4|) (-587 |#4|))) (-15 -1676 ((-587 |#4|) (-587 |#4|) (-1067))) (-15 -1676 ((-587 |#4|) (-587 |#4|) (-1067) (-1067))) (IF (|has| |#1| (-337)) (-15 -2175 (|#4| |#4| (-587 |#4|))) |%noBranch|)) (-425) (-729) (-784) (-878 |#1| |#2| |#3|)) (T -423))
+((-2175 (*1 *2 *2 *3) (-12 (-5 *3 (-587 *2)) (-4 *2 (-878 *4 *5 *6)) (-4 *4 (-337)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784)) (-5 *1 (-423 *4 *5 *6 *2)))) (-1676 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-587 *7)) (-5 *3 (-1067)) (-4 *7 (-878 *4 *5 *6)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784)) (-5 *1 (-423 *4 *5 *6 *7)))) (-1676 (*1 *2 *2 *3) (-12 (-5 *2 (-587 *7)) (-5 *3 (-1067)) (-4 *7 (-878 *4 *5 *6)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784)) (-5 *1 (-423 *4 *5 *6 *7)))) (-1676 (*1 *2 *2) (-12 (-5 *2 (-587 *6)) (-4 *6 (-878 *3 *4 *5)) (-4 *3 (-425)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *1 (-423 *3 *4 *5 *6)))))
+(-10 -7 (-15 -1676 ((-587 |#4|) (-587 |#4|))) (-15 -1676 ((-587 |#4|) (-587 |#4|) (-1067))) (-15 -1676 ((-587 |#4|) (-587 |#4|) (-1067) (-1067))) (IF (|has| |#1| (-337)) (-15 -2175 (|#4| |#4| (-587 |#4|))) |%noBranch|))
+((-2223 (($ $ $) 14) (($ (-587 $)) 21)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) 41)) (-2258 (($ $ $) NIL) (($ (-587 $)) 22)))
+(((-424 |#1|) (-10 -8 (-15 -2513 ((-1080 |#1|) (-1080 |#1|) (-1080 |#1|))) (-15 -2223 (|#1| (-587 |#1|))) (-15 -2223 (|#1| |#1| |#1|)) (-15 -2258 (|#1| (-587 |#1|))) (-15 -2258 (|#1| |#1| |#1|))) (-425)) (T -424))
+NIL
+(-10 -8 (-15 -2513 ((-1080 |#1|) (-1080 |#1|) (-1080 |#1|))) (-15 -2223 (|#1| (-587 |#1|))) (-15 -2223 (|#1| |#1| |#1|)) (-15 -2258 (|#1| (-587 |#1|))) (-15 -2258 (|#1| |#1| |#1|)))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) 41)) (-2559 (($ $) 40)) (-1733 (((-108) $) 38)) (-1232 (((-3 $ "failed") $ $) 19)) (-2547 (($) 17 T CONST)) (-1257 (((-3 $ "failed") $) 34)) (-3996 (((-108) $) 31)) (-2223 (($ $ $) 46) (($ (-587 $)) 45)) (-3688 (((-1067) $) 9)) (-4147 (((-1031) $) 10)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) 44)) (-2258 (($ $ $) 48) (($ (-587 $)) 47)) (-2230 (((-3 $ "failed") $ $) 42)) (-2189 (((-792) $) 11) (($ (-521)) 28) (($ $) 43)) (-3846 (((-707)) 29)) (-4210 (((-108) $ $) 39)) (-3505 (($ $ (-850)) 26) (($ $ (-707)) 33)) (-3561 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-707)) 32)) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24)))
+(((-425) (-1196)) (T -425))
+((-2258 (*1 *1 *1 *1) (-4 *1 (-425))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-587 *1)) (-4 *1 (-425)))) (-2223 (*1 *1 *1 *1) (-4 *1 (-425))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-587 *1)) (-4 *1 (-425)))) (-2513 (*1 *2 *2 *2) (-12 (-5 *2 (-1080 *1)) (-4 *1 (-425)))))
+(-13 (-513) (-10 -8 (-15 -2258 ($ $ $)) (-15 -2258 ($ (-587 $))) (-15 -2223 ($ $ $)) (-15 -2223 ($ (-587 $))) (-15 -2513 ((-1080 $) (-1080 $) (-1080 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-561 (-792)) . T) ((-157) . T) ((-265) . T) ((-513) . T) ((-589 $) . T) ((-654 $) . T) ((-663) . T) ((-976 $) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-3689 (((-3 $ "failed")) NIL (|has| (-381 (-881 |#1|)) (-513)))) (-1232 (((-3 $ "failed") $ $) NIL)) (-3359 (((-1165 (-627 (-381 (-881 |#1|)))) (-1165 $)) NIL) (((-1165 (-627 (-381 (-881 |#1|))))) NIL)) (-1386 (((-1165 $)) NIL)) (-2547 (($) NIL T CONST)) (-3758 (((-3 (-2 (|:| |particular| $) (|:| -2470 (-587 $))) "failed")) NIL)) (-3167 (((-3 $ "failed")) NIL (|has| (-381 (-881 |#1|)) (-513)))) (-2168 (((-627 (-381 (-881 |#1|))) (-1165 $)) NIL) (((-627 (-381 (-881 |#1|)))) NIL)) (-3783 (((-381 (-881 |#1|)) $) NIL)) (-3907 (((-627 (-381 (-881 |#1|))) $ (-1165 $)) NIL) (((-627 (-381 (-881 |#1|))) $) NIL)) (-3176 (((-3 $ "failed") $) NIL (|has| (-381 (-881 |#1|)) (-513)))) (-1528 (((-1080 (-881 (-381 (-881 |#1|))))) NIL (|has| (-381 (-881 |#1|)) (-337))) (((-1080 (-381 (-881 |#1|)))) 79 (|has| |#1| (-513)))) (-3047 (($ $ (-850)) NIL)) (-3333 (((-381 (-881 |#1|)) $) NIL)) (-3330 (((-1080 (-381 (-881 |#1|))) $) 77 (|has| (-381 (-881 |#1|)) (-513)))) (-3518 (((-381 (-881 |#1|)) (-1165 $)) NIL) (((-381 (-881 |#1|))) NIL)) (-2370 (((-1080 (-381 (-881 |#1|))) $) NIL)) (-1208 (((-108)) NIL)) (-4083 (($ (-1165 (-381 (-881 |#1|))) (-1165 $)) 97) (($ (-1165 (-381 (-881 |#1|)))) NIL)) (-1257 (((-3 $ "failed") $) NIL (|has| (-381 (-881 |#1|)) (-513)))) (-3162 (((-850)) NIL)) (-3856 (((-108)) NIL)) (-2049 (($ $ (-850)) NIL)) (-2760 (((-108)) NIL)) (-1344 (((-108)) NIL)) (-2383 (((-108)) NIL)) (-3524 (((-3 (-2 (|:| |particular| $) (|:| -2470 (-587 $))) "failed")) NIL)) (-2172 (((-3 $ "failed")) NIL (|has| (-381 (-881 |#1|)) (-513)))) (-1786 (((-627 (-381 (-881 |#1|))) (-1165 $)) NIL) (((-627 (-381 (-881 |#1|)))) NIL)) (-2627 (((-381 (-881 |#1|)) $) NIL)) (-3734 (((-627 (-381 (-881 |#1|))) $ (-1165 $)) NIL) (((-627 (-381 (-881 |#1|))) $) NIL)) (-2652 (((-3 $ "failed") $) NIL (|has| (-381 (-881 |#1|)) (-513)))) (-1519 (((-1080 (-881 (-381 (-881 |#1|))))) NIL (|has| (-381 (-881 |#1|)) (-337))) (((-1080 (-381 (-881 |#1|)))) 78 (|has| |#1| (-513)))) (-2830 (($ $ (-850)) NIL)) (-1332 (((-381 (-881 |#1|)) $) NIL)) (-1729 (((-1080 (-381 (-881 |#1|))) $) 72 (|has| (-381 (-881 |#1|)) (-513)))) (-1586 (((-381 (-881 |#1|)) (-1165 $)) NIL) (((-381 (-881 |#1|))) NIL)) (-3888 (((-1080 (-381 (-881 |#1|))) $) NIL)) (-2118 (((-108)) NIL)) (-3688 (((-1067) $) NIL)) (-4045 (((-108)) NIL)) (-1560 (((-108)) NIL)) (-1381 (((-108)) NIL)) (-4147 (((-1031) $) NIL)) (-2819 (((-381 (-881 |#1|)) $ $) 66 (|has| |#1| (-513)))) (-3525 (((-381 (-881 |#1|)) $) 65 (|has| |#1| (-513)))) (-3461 (((-381 (-881 |#1|)) $) 89 (|has| |#1| (-513)))) (-3488 (((-1080 (-381 (-881 |#1|))) $) 83 (|has| |#1| (-513)))) (-1552 (((-381 (-881 |#1|))) 67 (|has| |#1| (-513)))) (-1451 (((-381 (-881 |#1|)) $ $) 54 (|has| |#1| (-513)))) (-1393 (((-381 (-881 |#1|)) $) 53 (|has| |#1| (-513)))) (-2007 (((-381 (-881 |#1|)) $) 88 (|has| |#1| (-513)))) (-2002 (((-1080 (-381 (-881 |#1|))) $) 82 (|has| |#1| (-513)))) (-1743 (((-381 (-881 |#1|))) 64 (|has| |#1| (-513)))) (-3302 (($) 95) (($ (-1084)) 101) (($ (-1165 (-1084))) 100) (($ (-1165 $)) 90) (($ (-1084) (-1165 $)) 99) (($ (-1165 (-1084)) (-1165 $)) 98)) (-1242 (((-108)) NIL)) (-2544 (((-381 (-881 |#1|)) $ (-521)) NIL)) (-2234 (((-1165 (-381 (-881 |#1|))) $ (-1165 $)) 92) (((-627 (-381 (-881 |#1|))) (-1165 $) (-1165 $)) NIL) (((-1165 (-381 (-881 |#1|))) $) 37) (((-627 (-381 (-881 |#1|))) (-1165 $)) NIL)) (-1430 (((-1165 (-381 (-881 |#1|))) $) NIL) (($ (-1165 (-381 (-881 |#1|)))) 34)) (-3557 (((-587 (-881 (-381 (-881 |#1|)))) (-1165 $)) NIL) (((-587 (-881 (-381 (-881 |#1|))))) NIL) (((-587 (-881 |#1|)) (-1165 $)) 93 (|has| |#1| (-513))) (((-587 (-881 |#1|))) 94 (|has| |#1| (-513)))) (-2674 (($ $ $) NIL)) (-3160 (((-108)) NIL)) (-2189 (((-792) $) NIL) (($ (-1165 (-381 (-881 |#1|)))) NIL)) (-2470 (((-1165 $)) 56)) (-2578 (((-587 (-1165 (-381 (-881 |#1|))))) NIL (|has| (-381 (-881 |#1|)) (-513)))) (-2922 (($ $ $ $) NIL)) (-2057 (((-108)) NIL)) (-1616 (($ (-627 (-381 (-881 |#1|))) $) NIL)) (-2464 (($ $ $) NIL)) (-1453 (((-108)) NIL)) (-3987 (((-108)) NIL)) (-2596 (((-108)) NIL)) (-3561 (($) NIL T CONST)) (-1531 (((-108) $ $) NIL)) (-1612 (($ $) NIL) (($ $ $) 91)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) 52) (($ $ (-381 (-881 |#1|))) NIL) (($ (-381 (-881 |#1|)) $) NIL) (($ (-1051 |#2| (-381 (-881 |#1|))) $) NIL)))
+(((-426 |#1| |#2| |#3| |#4|) (-13 (-391 (-381 (-881 |#1|))) (-589 (-1051 |#2| (-381 (-881 |#1|)))) (-10 -8 (-15 -2189 ($ (-1165 (-381 (-881 |#1|))))) (-15 -3524 ((-3 (-2 (|:| |particular| $) (|:| -2470 (-587 $))) "failed"))) (-15 -3758 ((-3 (-2 (|:| |particular| $) (|:| -2470 (-587 $))) "failed"))) (-15 -3302 ($)) (-15 -3302 ($ (-1084))) (-15 -3302 ($ (-1165 (-1084)))) (-15 -3302 ($ (-1165 $))) (-15 -3302 ($ (-1084) (-1165 $))) (-15 -3302 ($ (-1165 (-1084)) (-1165 $))) (IF (|has| |#1| (-513)) (PROGN (-15 -1519 ((-1080 (-381 (-881 |#1|))))) (-15 -2002 ((-1080 (-381 (-881 |#1|))) $)) (-15 -1393 ((-381 (-881 |#1|)) $)) (-15 -2007 ((-381 (-881 |#1|)) $)) (-15 -1528 ((-1080 (-381 (-881 |#1|))))) (-15 -3488 ((-1080 (-381 (-881 |#1|))) $)) (-15 -3525 ((-381 (-881 |#1|)) $)) (-15 -3461 ((-381 (-881 |#1|)) $)) (-15 -1451 ((-381 (-881 |#1|)) $ $)) (-15 -1743 ((-381 (-881 |#1|)))) (-15 -2819 ((-381 (-881 |#1|)) $ $)) (-15 -1552 ((-381 (-881 |#1|)))) (-15 -3557 ((-587 (-881 |#1|)) (-1165 $))) (-15 -3557 ((-587 (-881 |#1|))))) |%noBranch|))) (-157) (-850) (-587 (-1084)) (-1165 (-627 |#1|))) (T -426))
+((-2189 (*1 *1 *2) (-12 (-5 *2 (-1165 (-381 (-881 *3)))) (-4 *3 (-157)) (-14 *6 (-1165 (-627 *3))) (-5 *1 (-426 *3 *4 *5 *6)) (-14 *4 (-850)) (-14 *5 (-587 (-1084))))) (-3524 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-426 *3 *4 *5 *6)) (|:| -2470 (-587 (-426 *3 *4 *5 *6))))) (-5 *1 (-426 *3 *4 *5 *6)) (-4 *3 (-157)) (-14 *4 (-850)) (-14 *5 (-587 (-1084))) (-14 *6 (-1165 (-627 *3))))) (-3758 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-426 *3 *4 *5 *6)) (|:| -2470 (-587 (-426 *3 *4 *5 *6))))) (-5 *1 (-426 *3 *4 *5 *6)) (-4 *3 (-157)) (-14 *4 (-850)) (-14 *5 (-587 (-1084))) (-14 *6 (-1165 (-627 *3))))) (-3302 (*1 *1) (-12 (-5 *1 (-426 *2 *3 *4 *5)) (-4 *2 (-157)) (-14 *3 (-850)) (-14 *4 (-587 (-1084))) (-14 *5 (-1165 (-627 *2))))) (-3302 (*1 *1 *2) (-12 (-5 *2 (-1084)) (-5 *1 (-426 *3 *4 *5 *6)) (-4 *3 (-157)) (-14 *4 (-850)) (-14 *5 (-587 *2)) (-14 *6 (-1165 (-627 *3))))) (-3302 (*1 *1 *2) (-12 (-5 *2 (-1165 (-1084))) (-5 *1 (-426 *3 *4 *5 *6)) (-4 *3 (-157)) (-14 *4 (-850)) (-14 *5 (-587 (-1084))) (-14 *6 (-1165 (-627 *3))))) (-3302 (*1 *1 *2) (-12 (-5 *2 (-1165 (-426 *3 *4 *5 *6))) (-5 *1 (-426 *3 *4 *5 *6)) (-4 *3 (-157)) (-14 *4 (-850)) (-14 *5 (-587 (-1084))) (-14 *6 (-1165 (-627 *3))))) (-3302 (*1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-1165 (-426 *4 *5 *6 *7))) (-5 *1 (-426 *4 *5 *6 *7)) (-4 *4 (-157)) (-14 *5 (-850)) (-14 *6 (-587 *2)) (-14 *7 (-1165 (-627 *4))))) (-3302 (*1 *1 *2 *3) (-12 (-5 *2 (-1165 (-1084))) (-5 *3 (-1165 (-426 *4 *5 *6 *7))) (-5 *1 (-426 *4 *5 *6 *7)) (-4 *4 (-157)) (-14 *5 (-850)) (-14 *6 (-587 (-1084))) (-14 *7 (-1165 (-627 *4))))) (-1519 (*1 *2) (-12 (-5 *2 (-1080 (-381 (-881 *3)))) (-5 *1 (-426 *3 *4 *5 *6)) (-4 *3 (-513)) (-4 *3 (-157)) (-14 *4 (-850)) (-14 *5 (-587 (-1084))) (-14 *6 (-1165 (-627 *3))))) (-2002 (*1 *2 *1) (-12 (-5 *2 (-1080 (-381 (-881 *3)))) (-5 *1 (-426 *3 *4 *5 *6)) (-4 *3 (-513)) (-4 *3 (-157)) (-14 *4 (-850)) (-14 *5 (-587 (-1084))) (-14 *6 (-1165 (-627 *3))))) (-1393 (*1 *2 *1) (-12 (-5 *2 (-381 (-881 *3))) (-5 *1 (-426 *3 *4 *5 *6)) (-4 *3 (-513)) (-4 *3 (-157)) (-14 *4 (-850)) (-14 *5 (-587 (-1084))) (-14 *6 (-1165 (-627 *3))))) (-2007 (*1 *2 *1) (-12 (-5 *2 (-381 (-881 *3))) (-5 *1 (-426 *3 *4 *5 *6)) (-4 *3 (-513)) (-4 *3 (-157)) (-14 *4 (-850)) (-14 *5 (-587 (-1084))) (-14 *6 (-1165 (-627 *3))))) (-1528 (*1 *2) (-12 (-5 *2 (-1080 (-381 (-881 *3)))) (-5 *1 (-426 *3 *4 *5 *6)) (-4 *3 (-513)) (-4 *3 (-157)) (-14 *4 (-850)) (-14 *5 (-587 (-1084))) (-14 *6 (-1165 (-627 *3))))) (-3488 (*1 *2 *1) (-12 (-5 *2 (-1080 (-381 (-881 *3)))) (-5 *1 (-426 *3 *4 *5 *6)) (-4 *3 (-513)) (-4 *3 (-157)) (-14 *4 (-850)) (-14 *5 (-587 (-1084))) (-14 *6 (-1165 (-627 *3))))) (-3525 (*1 *2 *1) (-12 (-5 *2 (-381 (-881 *3))) (-5 *1 (-426 *3 *4 *5 *6)) (-4 *3 (-513)) (-4 *3 (-157)) (-14 *4 (-850)) (-14 *5 (-587 (-1084))) (-14 *6 (-1165 (-627 *3))))) (-3461 (*1 *2 *1) (-12 (-5 *2 (-381 (-881 *3))) (-5 *1 (-426 *3 *4 *5 *6)) (-4 *3 (-513)) (-4 *3 (-157)) (-14 *4 (-850)) (-14 *5 (-587 (-1084))) (-14 *6 (-1165 (-627 *3))))) (-1451 (*1 *2 *1 *1) (-12 (-5 *2 (-381 (-881 *3))) (-5 *1 (-426 *3 *4 *5 *6)) (-4 *3 (-513)) (-4 *3 (-157)) (-14 *4 (-850)) (-14 *5 (-587 (-1084))) (-14 *6 (-1165 (-627 *3))))) (-1743 (*1 *2) (-12 (-5 *2 (-381 (-881 *3))) (-5 *1 (-426 *3 *4 *5 *6)) (-4 *3 (-513)) (-4 *3 (-157)) (-14 *4 (-850)) (-14 *5 (-587 (-1084))) (-14 *6 (-1165 (-627 *3))))) (-2819 (*1 *2 *1 *1) (-12 (-5 *2 (-381 (-881 *3))) (-5 *1 (-426 *3 *4 *5 *6)) (-4 *3 (-513)) (-4 *3 (-157)) (-14 *4 (-850)) (-14 *5 (-587 (-1084))) (-14 *6 (-1165 (-627 *3))))) (-1552 (*1 *2) (-12 (-5 *2 (-381 (-881 *3))) (-5 *1 (-426 *3 *4 *5 *6)) (-4 *3 (-513)) (-4 *3 (-157)) (-14 *4 (-850)) (-14 *5 (-587 (-1084))) (-14 *6 (-1165 (-627 *3))))) (-3557 (*1 *2 *3) (-12 (-5 *3 (-1165 (-426 *4 *5 *6 *7))) (-5 *2 (-587 (-881 *4))) (-5 *1 (-426 *4 *5 *6 *7)) (-4 *4 (-513)) (-4 *4 (-157)) (-14 *5 (-850)) (-14 *6 (-587 (-1084))) (-14 *7 (-1165 (-627 *4))))) (-3557 (*1 *2) (-12 (-5 *2 (-587 (-881 *3))) (-5 *1 (-426 *3 *4 *5 *6)) (-4 *3 (-513)) (-4 *3 (-157)) (-14 *4 (-850)) (-14 *5 (-587 (-1084))) (-14 *6 (-1165 (-627 *3))))))
+(-13 (-391 (-381 (-881 |#1|))) (-589 (-1051 |#2| (-381 (-881 |#1|)))) (-10 -8 (-15 -2189 ($ (-1165 (-381 (-881 |#1|))))) (-15 -3524 ((-3 (-2 (|:| |particular| $) (|:| -2470 (-587 $))) "failed"))) (-15 -3758 ((-3 (-2 (|:| |particular| $) (|:| -2470 (-587 $))) "failed"))) (-15 -3302 ($)) (-15 -3302 ($ (-1084))) (-15 -3302 ($ (-1165 (-1084)))) (-15 -3302 ($ (-1165 $))) (-15 -3302 ($ (-1084) (-1165 $))) (-15 -3302 ($ (-1165 (-1084)) (-1165 $))) (IF (|has| |#1| (-513)) (PROGN (-15 -1519 ((-1080 (-381 (-881 |#1|))))) (-15 -2002 ((-1080 (-381 (-881 |#1|))) $)) (-15 -1393 ((-381 (-881 |#1|)) $)) (-15 -2007 ((-381 (-881 |#1|)) $)) (-15 -1528 ((-1080 (-381 (-881 |#1|))))) (-15 -3488 ((-1080 (-381 (-881 |#1|))) $)) (-15 -3525 ((-381 (-881 |#1|)) $)) (-15 -3461 ((-381 (-881 |#1|)) $)) (-15 -1451 ((-381 (-881 |#1|)) $ $)) (-15 -1743 ((-381 (-881 |#1|)))) (-15 -2819 ((-381 (-881 |#1|)) $ $)) (-15 -1552 ((-381 (-881 |#1|)))) (-15 -3557 ((-587 (-881 |#1|)) (-1165 $))) (-15 -3557 ((-587 (-881 |#1|))))) |%noBranch|)))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) 13)) (-4084 (((-587 (-794 |#1|)) $) 74)) (-1280 (((-1080 $) $ (-794 |#1|)) 46) (((-1080 |#2|) $) 116)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) NIL (|has| |#2| (-513)))) (-2559 (($ $) NIL (|has| |#2| (-513)))) (-1733 (((-108) $) NIL (|has| |#2| (-513)))) (-2256 (((-707) $) 21) (((-707) $ (-587 (-794 |#1|))) NIL)) (-1232 (((-3 $ "failed") $ $) NIL)) (-2598 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#2| (-838)))) (-3063 (($ $) NIL (|has| |#2| (-425)))) (-3358 (((-392 $) $) NIL (|has| |#2| (-425)))) (-2569 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) NIL (|has| |#2| (-838)))) (-2547 (($) NIL T CONST)) (-1297 (((-3 |#2| "failed") $) 44) (((-3 (-381 (-521)) "failed") $) NIL (|has| |#2| (-961 (-381 (-521))))) (((-3 (-521) "failed") $) NIL (|has| |#2| (-961 (-521)))) (((-3 (-794 |#1|) "failed") $) NIL)) (-1483 ((|#2| $) 42) (((-381 (-521)) $) NIL (|has| |#2| (-961 (-381 (-521))))) (((-521) $) NIL (|has| |#2| (-961 (-521)))) (((-794 |#1|) $) NIL)) (-2114 (($ $ $ (-794 |#1|)) NIL (|has| |#2| (-157)))) (-4197 (($ $ (-587 (-521))) 79)) (-3152 (($ $) 68)) (-3279 (((-627 (-521)) (-627 $)) NIL (|has| |#2| (-583 (-521)))) (((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (|has| |#2| (-583 (-521)))) (((-2 (|:| -1201 (-627 |#2|)) (|:| |vec| (-1165 |#2|))) (-627 $) (-1165 $)) NIL) (((-627 |#2|) (-627 $)) NIL)) (-1257 (((-3 $ "failed") $) NIL)) (-3666 (($ $) NIL (|has| |#2| (-425))) (($ $ (-794 |#1|)) NIL (|has| |#2| (-425)))) (-3144 (((-587 $) $) NIL)) (-2710 (((-108) $) NIL (|has| |#2| (-838)))) (-3528 (($ $ |#2| |#3| $) NIL)) (-3427 (((-818 (-353) $) $ (-821 (-353)) (-818 (-353) $)) NIL (-12 (|has| (-794 |#1|) (-815 (-353))) (|has| |#2| (-815 (-353))))) (((-818 (-521) $) $ (-821 (-521)) (-818 (-521) $)) NIL (-12 (|has| (-794 |#1|) (-815 (-521))) (|has| |#2| (-815 (-521)))))) (-3996 (((-108) $) NIL)) (-2678 (((-707) $) 58)) (-4069 (($ (-1080 |#2|) (-794 |#1|)) 121) (($ (-1080 $) (-794 |#1|)) 52)) (-2959 (((-587 $) $) NIL)) (-3649 (((-108) $) 59)) (-4043 (($ |#2| |#3|) 28) (($ $ (-794 |#1|) (-707)) 30) (($ $ (-587 (-794 |#1|)) (-587 (-707))) NIL)) (-1450 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $ (-794 |#1|)) NIL)) (-3273 ((|#3| $) NIL) (((-707) $ (-794 |#1|)) 50) (((-587 (-707)) $ (-587 (-794 |#1|))) 57)) (-2810 (($ $ $) NIL (|has| |#2| (-784)))) (-2446 (($ $ $) NIL (|has| |#2| (-784)))) (-3285 (($ (-1 |#3| |#3|) $) NIL)) (-1390 (($ (-1 |#2| |#2|) $) NIL)) (-2477 (((-3 (-794 |#1|) "failed") $) 39)) (-3125 (($ $) NIL)) (-3135 ((|#2| $) 41)) (-2223 (($ (-587 $)) NIL (|has| |#2| (-425))) (($ $ $) NIL (|has| |#2| (-425)))) (-3688 (((-1067) $) NIL)) (-1617 (((-3 (-587 $) "failed") $) NIL)) (-3177 (((-3 (-587 $) "failed") $) NIL)) (-3979 (((-3 (-2 (|:| |var| (-794 |#1|)) (|:| -2997 (-707))) "failed") $) NIL)) (-4147 (((-1031) $) NIL)) (-3105 (((-108) $) 40)) (-3115 ((|#2| $) 114)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) NIL (|has| |#2| (-425)))) (-2258 (($ (-587 $)) NIL (|has| |#2| (-425))) (($ $ $) 126 (|has| |#2| (-425)))) (-1912 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#2| (-838)))) (-2165 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#2| (-838)))) (-1916 (((-392 $) $) NIL (|has| |#2| (-838)))) (-2230 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-513))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-513)))) (-2288 (($ $ (-587 (-269 $))) NIL) (($ $ (-269 $)) NIL) (($ $ $ $) NIL) (($ $ (-587 $) (-587 $)) NIL) (($ $ (-794 |#1|) |#2|) 86) (($ $ (-587 (-794 |#1|)) (-587 |#2|)) 89) (($ $ (-794 |#1|) $) 84) (($ $ (-587 (-794 |#1|)) (-587 $)) 105)) (-4010 (($ $ (-794 |#1|)) NIL (|has| |#2| (-157)))) (-2156 (($ $ (-794 |#1|)) 53) (($ $ (-587 (-794 |#1|))) NIL) (($ $ (-794 |#1|) (-707)) NIL) (($ $ (-587 (-794 |#1|)) (-587 (-707))) NIL)) (-1994 ((|#3| $) 67) (((-707) $ (-794 |#1|)) 37) (((-587 (-707)) $ (-587 (-794 |#1|))) 56)) (-1430 (((-821 (-353)) $) NIL (-12 (|has| (-794 |#1|) (-562 (-821 (-353)))) (|has| |#2| (-562 (-821 (-353)))))) (((-821 (-521)) $) NIL (-12 (|has| (-794 |#1|) (-562 (-821 (-521)))) (|has| |#2| (-562 (-821 (-521)))))) (((-497) $) NIL (-12 (|has| (-794 |#1|) (-562 (-497))) (|has| |#2| (-562 (-497)))))) (-2403 ((|#2| $) 123 (|has| |#2| (-425))) (($ $ (-794 |#1|)) NIL (|has| |#2| (-425)))) (-2944 (((-3 (-1165 $) "failed") (-627 $)) NIL (-12 (|has| $ (-133)) (|has| |#2| (-838))))) (-2189 (((-792) $) 142) (($ (-521)) NIL) (($ |#2|) 85) (($ (-794 |#1|)) 31) (($ (-381 (-521))) NIL (-3703 (|has| |#2| (-37 (-381 (-521)))) (|has| |#2| (-961 (-381 (-521)))))) (($ $) NIL (|has| |#2| (-513)))) (-1259 (((-587 |#2|) $) NIL)) (-3800 ((|#2| $ |#3|) NIL) (($ $ (-794 |#1|) (-707)) NIL) (($ $ (-587 (-794 |#1|)) (-587 (-707))) NIL)) (-1671 (((-3 $ "failed") $) NIL (-3703 (-12 (|has| $ (-133)) (|has| |#2| (-838))) (|has| |#2| (-133))))) (-3846 (((-707)) NIL)) (-1547 (($ $ $ (-707)) NIL (|has| |#2| (-157)))) (-4210 (((-108) $ $) NIL (|has| |#2| (-513)))) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (-3561 (($) 16 T CONST)) (-3572 (($) 25 T CONST)) (-2212 (($ $ (-794 |#1|)) NIL) (($ $ (-587 (-794 |#1|))) NIL) (($ $ (-794 |#1|) (-707)) NIL) (($ $ (-587 (-794 |#1|)) (-587 (-707))) NIL)) (-1574 (((-108) $ $) NIL (|has| |#2| (-784)))) (-1558 (((-108) $ $) NIL (|has| |#2| (-784)))) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL (|has| |#2| (-784)))) (-1549 (((-108) $ $) NIL (|has| |#2| (-784)))) (-1620 (($ $ |#2|) 64 (|has| |#2| (-337)))) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) 110)) (** (($ $ (-850)) NIL) (($ $ (-707)) 108)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) 29) (($ $ (-381 (-521))) NIL (|has| |#2| (-37 (-381 (-521))))) (($ (-381 (-521)) $) NIL (|has| |#2| (-37 (-381 (-521))))) (($ |#2| $) 63) (($ $ |#2|) NIL)))
+(((-427 |#1| |#2| |#3|) (-13 (-878 |#2| |#3| (-794 |#1|)) (-10 -8 (-15 -4197 ($ $ (-587 (-521)))))) (-587 (-1084)) (-970) (-215 (-3475 |#1|) (-707))) (T -427))
+((-4197 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-521))) (-14 *3 (-587 (-1084))) (-5 *1 (-427 *3 *4 *5)) (-4 *4 (-970)) (-4 *5 (-215 (-3475 *3) (-707))))))
+(-13 (-878 |#2| |#3| (-794 |#1|)) (-10 -8 (-15 -4197 ($ $ (-587 (-521))))))
+((-1939 (((-108) |#1| (-587 |#2|)) 66)) (-1625 (((-3 (-1165 (-587 |#2|)) "failed") (-707) |#1| (-587 |#2|)) 75)) (-1699 (((-3 (-587 |#2|) "failed") |#2| |#1| (-1165 (-587 |#2|))) 77)) (-2633 ((|#2| |#2| |#1|) 28)) (-1827 (((-707) |#2| (-587 |#2|)) 20)))
+(((-428 |#1| |#2|) (-10 -7 (-15 -2633 (|#2| |#2| |#1|)) (-15 -1827 ((-707) |#2| (-587 |#2|))) (-15 -1625 ((-3 (-1165 (-587 |#2|)) "failed") (-707) |#1| (-587 |#2|))) (-15 -1699 ((-3 (-587 |#2|) "failed") |#2| |#1| (-1165 (-587 |#2|)))) (-15 -1939 ((-108) |#1| (-587 |#2|)))) (-282) (-1141 |#1|)) (T -428))
+((-1939 (*1 *2 *3 *4) (-12 (-5 *4 (-587 *5)) (-4 *5 (-1141 *3)) (-4 *3 (-282)) (-5 *2 (-108)) (-5 *1 (-428 *3 *5)))) (-1699 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1165 (-587 *3))) (-4 *4 (-282)) (-5 *2 (-587 *3)) (-5 *1 (-428 *4 *3)) (-4 *3 (-1141 *4)))) (-1625 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-707)) (-4 *4 (-282)) (-4 *6 (-1141 *4)) (-5 *2 (-1165 (-587 *6))) (-5 *1 (-428 *4 *6)) (-5 *5 (-587 *6)))) (-1827 (*1 *2 *3 *4) (-12 (-5 *4 (-587 *3)) (-4 *3 (-1141 *5)) (-4 *5 (-282)) (-5 *2 (-707)) (-5 *1 (-428 *5 *3)))) (-2633 (*1 *2 *2 *3) (-12 (-4 *3 (-282)) (-5 *1 (-428 *3 *2)) (-4 *2 (-1141 *3)))))
+(-10 -7 (-15 -2633 (|#2| |#2| |#1|)) (-15 -1827 ((-707) |#2| (-587 |#2|))) (-15 -1625 ((-3 (-1165 (-587 |#2|)) "failed") (-707) |#1| (-587 |#2|))) (-15 -1699 ((-3 (-587 |#2|) "failed") |#2| |#1| (-1165 (-587 |#2|)))) (-15 -1939 ((-108) |#1| (-587 |#2|))))
+((-1916 (((-392 |#5|) |#5|) 24)))
+(((-429 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1916 ((-392 |#5|) |#5|))) (-13 (-784) (-10 -8 (-15 -1430 ((-1084) $)) (-15 -1611 ((-3 $ "failed") (-1084))))) (-729) (-513) (-513) (-878 |#4| |#2| |#1|)) (T -429))
+((-1916 (*1 *2 *3) (-12 (-4 *4 (-13 (-784) (-10 -8 (-15 -1430 ((-1084) $)) (-15 -1611 ((-3 $ "failed") (-1084)))))) (-4 *5 (-729)) (-4 *7 (-513)) (-5 *2 (-392 *3)) (-5 *1 (-429 *4 *5 *6 *7 *3)) (-4 *6 (-513)) (-4 *3 (-878 *7 *5 *4)))))
+(-10 -7 (-15 -1916 ((-392 |#5|) |#5|)))
+((-3523 ((|#3|) 36)) (-2513 (((-1080 |#4|) (-1080 |#4|) (-1080 |#4|)) 32)))
+(((-430 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2513 ((-1080 |#4|) (-1080 |#4|) (-1080 |#4|))) (-15 -3523 (|#3|))) (-729) (-784) (-838) (-878 |#3| |#1| |#2|)) (T -430))
+((-3523 (*1 *2) (-12 (-4 *3 (-729)) (-4 *4 (-784)) (-4 *2 (-838)) (-5 *1 (-430 *3 *4 *2 *5)) (-4 *5 (-878 *2 *3 *4)))) (-2513 (*1 *2 *2 *2) (-12 (-5 *2 (-1080 *6)) (-4 *6 (-878 *5 *3 *4)) (-4 *3 (-729)) (-4 *4 (-784)) (-4 *5 (-838)) (-5 *1 (-430 *3 *4 *5 *6)))))
+(-10 -7 (-15 -2513 ((-1080 |#4|) (-1080 |#4|) (-1080 |#4|))) (-15 -3523 (|#3|)))
+((-1916 (((-392 (-1080 |#1|)) (-1080 |#1|)) 41)))
+(((-431 |#1|) (-10 -7 (-15 -1916 ((-392 (-1080 |#1|)) (-1080 |#1|)))) (-282)) (T -431))
+((-1916 (*1 *2 *3) (-12 (-4 *4 (-282)) (-5 *2 (-392 (-1080 *4))) (-5 *1 (-431 *4)) (-5 *3 (-1080 *4)))))
+(-10 -7 (-15 -1916 ((-392 (-1080 |#1|)) (-1080 |#1|))))
+((-3055 (((-51) |#2| (-1084) (-269 |#2|) (-1132 (-707))) 42) (((-51) (-1 |#2| (-521)) (-269 |#2|) (-1132 (-707))) 41) (((-51) |#2| (-1084) (-269 |#2|)) 35) (((-51) (-1 |#2| (-521)) (-269 |#2|)) 27)) (-2770 (((-51) |#2| (-1084) (-269 |#2|) (-1132 (-381 (-521))) (-381 (-521))) 80) (((-51) (-1 |#2| (-381 (-521))) (-269 |#2|) (-1132 (-381 (-521))) (-381 (-521))) 79) (((-51) |#2| (-1084) (-269 |#2|) (-1132 (-521))) 78) (((-51) (-1 |#2| (-521)) (-269 |#2|) (-1132 (-521))) 77) (((-51) |#2| (-1084) (-269 |#2|)) 72) (((-51) (-1 |#2| (-521)) (-269 |#2|)) 71)) (-3075 (((-51) |#2| (-1084) (-269 |#2|) (-1132 (-381 (-521))) (-381 (-521))) 66) (((-51) (-1 |#2| (-381 (-521))) (-269 |#2|) (-1132 (-381 (-521))) (-381 (-521))) 64)) (-3065 (((-51) |#2| (-1084) (-269 |#2|) (-1132 (-521))) 48) (((-51) (-1 |#2| (-521)) (-269 |#2|) (-1132 (-521))) 47)))
+(((-432 |#1| |#2|) (-10 -7 (-15 -3055 ((-51) (-1 |#2| (-521)) (-269 |#2|))) (-15 -3055 ((-51) |#2| (-1084) (-269 |#2|))) (-15 -3055 ((-51) (-1 |#2| (-521)) (-269 |#2|) (-1132 (-707)))) (-15 -3055 ((-51) |#2| (-1084) (-269 |#2|) (-1132 (-707)))) (-15 -3065 ((-51) (-1 |#2| (-521)) (-269 |#2|) (-1132 (-521)))) (-15 -3065 ((-51) |#2| (-1084) (-269 |#2|) (-1132 (-521)))) (-15 -3075 ((-51) (-1 |#2| (-381 (-521))) (-269 |#2|) (-1132 (-381 (-521))) (-381 (-521)))) (-15 -3075 ((-51) |#2| (-1084) (-269 |#2|) (-1132 (-381 (-521))) (-381 (-521)))) (-15 -2770 ((-51) (-1 |#2| (-521)) (-269 |#2|))) (-15 -2770 ((-51) |#2| (-1084) (-269 |#2|))) (-15 -2770 ((-51) (-1 |#2| (-521)) (-269 |#2|) (-1132 (-521)))) (-15 -2770 ((-51) |#2| (-1084) (-269 |#2|) (-1132 (-521)))) (-15 -2770 ((-51) (-1 |#2| (-381 (-521))) (-269 |#2|) (-1132 (-381 (-521))) (-381 (-521)))) (-15 -2770 ((-51) |#2| (-1084) (-269 |#2|) (-1132 (-381 (-521))) (-381 (-521))))) (-13 (-513) (-784) (-961 (-521)) (-583 (-521))) (-13 (-27) (-1105) (-404 |#1|))) (T -432))
+((-2770 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1084)) (-5 *5 (-269 *3)) (-5 *6 (-1132 (-381 (-521)))) (-5 *7 (-381 (-521))) (-4 *3 (-13 (-27) (-1105) (-404 *8))) (-4 *8 (-13 (-513) (-784) (-961 (-521)) (-583 (-521)))) (-5 *2 (-51)) (-5 *1 (-432 *8 *3)))) (-2770 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-381 (-521)))) (-5 *4 (-269 *8)) (-5 *5 (-1132 (-381 (-521)))) (-5 *6 (-381 (-521))) (-4 *8 (-13 (-27) (-1105) (-404 *7))) (-4 *7 (-13 (-513) (-784) (-961 (-521)) (-583 (-521)))) (-5 *2 (-51)) (-5 *1 (-432 *7 *8)))) (-2770 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1084)) (-5 *5 (-269 *3)) (-5 *6 (-1132 (-521))) (-4 *3 (-13 (-27) (-1105) (-404 *7))) (-4 *7 (-13 (-513) (-784) (-961 (-521)) (-583 (-521)))) (-5 *2 (-51)) (-5 *1 (-432 *7 *3)))) (-2770 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-521))) (-5 *4 (-269 *7)) (-5 *5 (-1132 (-521))) (-4 *7 (-13 (-27) (-1105) (-404 *6))) (-4 *6 (-13 (-513) (-784) (-961 (-521)) (-583 (-521)))) (-5 *2 (-51)) (-5 *1 (-432 *6 *7)))) (-2770 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1084)) (-5 *5 (-269 *3)) (-4 *3 (-13 (-27) (-1105) (-404 *6))) (-4 *6 (-13 (-513) (-784) (-961 (-521)) (-583 (-521)))) (-5 *2 (-51)) (-5 *1 (-432 *6 *3)))) (-2770 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-521))) (-5 *4 (-269 *6)) (-4 *6 (-13 (-27) (-1105) (-404 *5))) (-4 *5 (-13 (-513) (-784) (-961 (-521)) (-583 (-521)))) (-5 *2 (-51)) (-5 *1 (-432 *5 *6)))) (-3075 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1084)) (-5 *5 (-269 *3)) (-5 *6 (-1132 (-381 (-521)))) (-5 *7 (-381 (-521))) (-4 *3 (-13 (-27) (-1105) (-404 *8))) (-4 *8 (-13 (-513) (-784) (-961 (-521)) (-583 (-521)))) (-5 *2 (-51)) (-5 *1 (-432 *8 *3)))) (-3075 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-381 (-521)))) (-5 *4 (-269 *8)) (-5 *5 (-1132 (-381 (-521)))) (-5 *6 (-381 (-521))) (-4 *8 (-13 (-27) (-1105) (-404 *7))) (-4 *7 (-13 (-513) (-784) (-961 (-521)) (-583 (-521)))) (-5 *2 (-51)) (-5 *1 (-432 *7 *8)))) (-3065 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1084)) (-5 *5 (-269 *3)) (-5 *6 (-1132 (-521))) (-4 *3 (-13 (-27) (-1105) (-404 *7))) (-4 *7 (-13 (-513) (-784) (-961 (-521)) (-583 (-521)))) (-5 *2 (-51)) (-5 *1 (-432 *7 *3)))) (-3065 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-521))) (-5 *4 (-269 *7)) (-5 *5 (-1132 (-521))) (-4 *7 (-13 (-27) (-1105) (-404 *6))) (-4 *6 (-13 (-513) (-784) (-961 (-521)) (-583 (-521)))) (-5 *2 (-51)) (-5 *1 (-432 *6 *7)))) (-3055 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1084)) (-5 *5 (-269 *3)) (-5 *6 (-1132 (-707))) (-4 *3 (-13 (-27) (-1105) (-404 *7))) (-4 *7 (-13 (-513) (-784) (-961 (-521)) (-583 (-521)))) (-5 *2 (-51)) (-5 *1 (-432 *7 *3)))) (-3055 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-521))) (-5 *4 (-269 *7)) (-5 *5 (-1132 (-707))) (-4 *7 (-13 (-27) (-1105) (-404 *6))) (-4 *6 (-13 (-513) (-784) (-961 (-521)) (-583 (-521)))) (-5 *2 (-51)) (-5 *1 (-432 *6 *7)))) (-3055 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1084)) (-5 *5 (-269 *3)) (-4 *3 (-13 (-27) (-1105) (-404 *6))) (-4 *6 (-13 (-513) (-784) (-961 (-521)) (-583 (-521)))) (-5 *2 (-51)) (-5 *1 (-432 *6 *3)))) (-3055 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-521))) (-5 *4 (-269 *6)) (-4 *6 (-13 (-27) (-1105) (-404 *5))) (-4 *5 (-13 (-513) (-784) (-961 (-521)) (-583 (-521)))) (-5 *2 (-51)) (-5 *1 (-432 *5 *6)))))
+(-10 -7 (-15 -3055 ((-51) (-1 |#2| (-521)) (-269 |#2|))) (-15 -3055 ((-51) |#2| (-1084) (-269 |#2|))) (-15 -3055 ((-51) (-1 |#2| (-521)) (-269 |#2|) (-1132 (-707)))) (-15 -3055 ((-51) |#2| (-1084) (-269 |#2|) (-1132 (-707)))) (-15 -3065 ((-51) (-1 |#2| (-521)) (-269 |#2|) (-1132 (-521)))) (-15 -3065 ((-51) |#2| (-1084) (-269 |#2|) (-1132 (-521)))) (-15 -3075 ((-51) (-1 |#2| (-381 (-521))) (-269 |#2|) (-1132 (-381 (-521))) (-381 (-521)))) (-15 -3075 ((-51) |#2| (-1084) (-269 |#2|) (-1132 (-381 (-521))) (-381 (-521)))) (-15 -2770 ((-51) (-1 |#2| (-521)) (-269 |#2|))) (-15 -2770 ((-51) |#2| (-1084) (-269 |#2|))) (-15 -2770 ((-51) (-1 |#2| (-521)) (-269 |#2|) (-1132 (-521)))) (-15 -2770 ((-51) |#2| (-1084) (-269 |#2|) (-1132 (-521)))) (-15 -2770 ((-51) (-1 |#2| (-381 (-521))) (-269 |#2|) (-1132 (-381 (-521))) (-381 (-521)))) (-15 -2770 ((-51) |#2| (-1084) (-269 |#2|) (-1132 (-381 (-521))) (-381 (-521)))))
+((-2633 ((|#2| |#2| |#1|) 15)) (-4003 (((-587 |#2|) |#2| (-587 |#2|) |#1| (-850)) 69)) (-1309 (((-2 (|:| |plist| (-587 |#2|)) (|:| |modulo| |#1|)) |#2| (-587 |#2|) |#1| (-850)) 60)))
+(((-433 |#1| |#2|) (-10 -7 (-15 -1309 ((-2 (|:| |plist| (-587 |#2|)) (|:| |modulo| |#1|)) |#2| (-587 |#2|) |#1| (-850))) (-15 -4003 ((-587 |#2|) |#2| (-587 |#2|) |#1| (-850))) (-15 -2633 (|#2| |#2| |#1|))) (-282) (-1141 |#1|)) (T -433))
+((-2633 (*1 *2 *2 *3) (-12 (-4 *3 (-282)) (-5 *1 (-433 *3 *2)) (-4 *2 (-1141 *3)))) (-4003 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-587 *3)) (-5 *5 (-850)) (-4 *3 (-1141 *4)) (-4 *4 (-282)) (-5 *1 (-433 *4 *3)))) (-1309 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-850)) (-4 *5 (-282)) (-4 *3 (-1141 *5)) (-5 *2 (-2 (|:| |plist| (-587 *3)) (|:| |modulo| *5))) (-5 *1 (-433 *5 *3)) (-5 *4 (-587 *3)))))
+(-10 -7 (-15 -1309 ((-2 (|:| |plist| (-587 |#2|)) (|:| |modulo| |#1|)) |#2| (-587 |#2|) |#1| (-850))) (-15 -4003 ((-587 |#2|) |#2| (-587 |#2|) |#1| (-850))) (-15 -2633 (|#2| |#2| |#1|)))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) 28)) (-2720 (($ |#3|) 25)) (-1232 (((-3 $ "failed") $ $) NIL)) (-2547 (($) NIL T CONST)) (-3152 (($ $) 32)) (-3342 (($ |#2| |#4| $) 33)) (-4043 (($ |#2| (-650 |#3| |#4| |#5|)) 24)) (-3125 (((-650 |#3| |#4| |#5|) $) 15)) (-2110 ((|#3| $) 19)) (-3355 ((|#4| $) 17)) (-3135 ((|#2| $) 29)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2189 (((-792) $) NIL)) (-3426 (($ |#2| |#3| |#4|) 26)) (-3561 (($) 36 T CONST)) (-1531 (((-108) $ $) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) 34)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-434 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-654 |#6|) (-654 |#2|) (-10 -8 (-15 -3135 (|#2| $)) (-15 -3125 ((-650 |#3| |#4| |#5|) $)) (-15 -3355 (|#4| $)) (-15 -2110 (|#3| $)) (-15 -3152 ($ $)) (-15 -4043 ($ |#2| (-650 |#3| |#4| |#5|))) (-15 -2720 ($ |#3|)) (-15 -3426 ($ |#2| |#3| |#4|)) (-15 -3342 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-587 (-1084)) (-157) (-784) (-215 (-3475 |#1|) (-707)) (-1 (-108) (-2 (|:| -2716 |#3|) (|:| -2997 |#4|)) (-2 (|:| -2716 |#3|) (|:| -2997 |#4|))) (-878 |#2| |#4| (-794 |#1|))) (T -434))
+((* (*1 *1 *2 *1) (-12 (-14 *3 (-587 (-1084))) (-4 *4 (-157)) (-4 *6 (-215 (-3475 *3) (-707))) (-14 *7 (-1 (-108) (-2 (|:| -2716 *5) (|:| -2997 *6)) (-2 (|:| -2716 *5) (|:| -2997 *6)))) (-5 *1 (-434 *3 *4 *5 *6 *7 *2)) (-4 *5 (-784)) (-4 *2 (-878 *4 *6 (-794 *3))))) (-3135 (*1 *2 *1) (-12 (-14 *3 (-587 (-1084))) (-4 *5 (-215 (-3475 *3) (-707))) (-14 *6 (-1 (-108) (-2 (|:| -2716 *4) (|:| -2997 *5)) (-2 (|:| -2716 *4) (|:| -2997 *5)))) (-4 *2 (-157)) (-5 *1 (-434 *3 *2 *4 *5 *6 *7)) (-4 *4 (-784)) (-4 *7 (-878 *2 *5 (-794 *3))))) (-3125 (*1 *2 *1) (-12 (-14 *3 (-587 (-1084))) (-4 *4 (-157)) (-4 *6 (-215 (-3475 *3) (-707))) (-14 *7 (-1 (-108) (-2 (|:| -2716 *5) (|:| -2997 *6)) (-2 (|:| -2716 *5) (|:| -2997 *6)))) (-5 *2 (-650 *5 *6 *7)) (-5 *1 (-434 *3 *4 *5 *6 *7 *8)) (-4 *5 (-784)) (-4 *8 (-878 *4 *6 (-794 *3))))) (-3355 (*1 *2 *1) (-12 (-14 *3 (-587 (-1084))) (-4 *4 (-157)) (-14 *6 (-1 (-108) (-2 (|:| -2716 *5) (|:| -2997 *2)) (-2 (|:| -2716 *5) (|:| -2997 *2)))) (-4 *2 (-215 (-3475 *3) (-707))) (-5 *1 (-434 *3 *4 *5 *2 *6 *7)) (-4 *5 (-784)) (-4 *7 (-878 *4 *2 (-794 *3))))) (-2110 (*1 *2 *1) (-12 (-14 *3 (-587 (-1084))) (-4 *4 (-157)) (-4 *5 (-215 (-3475 *3) (-707))) (-14 *6 (-1 (-108) (-2 (|:| -2716 *2) (|:| -2997 *5)) (-2 (|:| -2716 *2) (|:| -2997 *5)))) (-4 *2 (-784)) (-5 *1 (-434 *3 *4 *2 *5 *6 *7)) (-4 *7 (-878 *4 *5 (-794 *3))))) (-3152 (*1 *1 *1) (-12 (-14 *2 (-587 (-1084))) (-4 *3 (-157)) (-4 *5 (-215 (-3475 *2) (-707))) (-14 *6 (-1 (-108) (-2 (|:| -2716 *4) (|:| -2997 *5)) (-2 (|:| -2716 *4) (|:| -2997 *5)))) (-5 *1 (-434 *2 *3 *4 *5 *6 *7)) (-4 *4 (-784)) (-4 *7 (-878 *3 *5 (-794 *2))))) (-4043 (*1 *1 *2 *3) (-12 (-5 *3 (-650 *5 *6 *7)) (-4 *5 (-784)) (-4 *6 (-215 (-3475 *4) (-707))) (-14 *7 (-1 (-108) (-2 (|:| -2716 *5) (|:| -2997 *6)) (-2 (|:| -2716 *5) (|:| -2997 *6)))) (-14 *4 (-587 (-1084))) (-4 *2 (-157)) (-5 *1 (-434 *4 *2 *5 *6 *7 *8)) (-4 *8 (-878 *2 *6 (-794 *4))))) (-2720 (*1 *1 *2) (-12 (-14 *3 (-587 (-1084))) (-4 *4 (-157)) (-4 *5 (-215 (-3475 *3) (-707))) (-14 *6 (-1 (-108) (-2 (|:| -2716 *2) (|:| -2997 *5)) (-2 (|:| -2716 *2) (|:| -2997 *5)))) (-5 *1 (-434 *3 *4 *2 *5 *6 *7)) (-4 *2 (-784)) (-4 *7 (-878 *4 *5 (-794 *3))))) (-3426 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-587 (-1084))) (-4 *2 (-157)) (-4 *4 (-215 (-3475 *5) (-707))) (-14 *6 (-1 (-108) (-2 (|:| -2716 *3) (|:| -2997 *4)) (-2 (|:| -2716 *3) (|:| -2997 *4)))) (-5 *1 (-434 *5 *2 *3 *4 *6 *7)) (-4 *3 (-784)) (-4 *7 (-878 *2 *4 (-794 *5))))) (-3342 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-587 (-1084))) (-4 *2 (-157)) (-4 *3 (-215 (-3475 *4) (-707))) (-14 *6 (-1 (-108) (-2 (|:| -2716 *5) (|:| -2997 *3)) (-2 (|:| -2716 *5) (|:| -2997 *3)))) (-5 *1 (-434 *4 *2 *5 *3 *6 *7)) (-4 *5 (-784)) (-4 *7 (-878 *2 *3 (-794 *4))))))
+(-13 (-654 |#6|) (-654 |#2|) (-10 -8 (-15 -3135 (|#2| $)) (-15 -3125 ((-650 |#3| |#4| |#5|) $)) (-15 -3355 (|#4| $)) (-15 -2110 (|#3| $)) (-15 -3152 ($ $)) (-15 -4043 ($ |#2| (-650 |#3| |#4| |#5|))) (-15 -2720 ($ |#3|)) (-15 -3426 ($ |#2| |#3| |#4|)) (-15 -3342 ($ |#2| |#4| $)) (-15 * ($ |#6| $))))
+((-2107 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 35)))
+(((-435 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2107 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-729) (-784) (-513) (-878 |#3| |#1| |#2|) (-13 (-961 (-381 (-521))) (-337) (-10 -8 (-15 -2189 ($ |#4|)) (-15 -2801 (|#4| $)) (-15 -2812 (|#4| $))))) (T -435))
+((-2107 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-784)) (-4 *5 (-729)) (-4 *6 (-513)) (-4 *7 (-878 *6 *5 *3)) (-5 *1 (-435 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-961 (-381 (-521))) (-337) (-10 -8 (-15 -2189 ($ *7)) (-15 -2801 (*7 $)) (-15 -2812 (*7 $))))))))
+(-10 -7 (-15 -2107 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|))))
+((-1415 (((-108) $ $) NIL)) (-4084 (((-587 |#3|) $) 41)) (-3898 (((-108) $) NIL)) (-2466 (((-108) $) NIL (|has| |#1| (-513)))) (-3211 (((-2 (|:| |under| $) (|:| -2567 $) (|:| |upper| $)) $ |#3|) NIL)) (-2978 (((-108) $ (-707)) NIL)) (-1628 (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4233)))) (-2547 (($) NIL T CONST)) (-3035 (((-108) $) NIL (|has| |#1| (-513)))) (-3091 (((-108) $ $) NIL (|has| |#1| (-513)))) (-3882 (((-108) $ $) NIL (|has| |#1| (-513)))) (-3237 (((-108) $) NIL (|has| |#1| (-513)))) (-3799 (((-587 |#4|) (-587 |#4|) $) NIL (|has| |#1| (-513)))) (-4183 (((-587 |#4|) (-587 |#4|) $) NIL (|has| |#1| (-513)))) (-1297 (((-3 $ "failed") (-587 |#4|)) 47)) (-1483 (($ (-587 |#4|)) NIL)) (-2332 (($ $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#4| (-1013))))) (-1422 (($ |#4| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#4| (-1013)))) (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4233)))) (-3820 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-513)))) (-3859 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4233)) (|has| |#4| (-1013)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4233))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4233)))) (-3831 (((-587 |#4|) $) 18 (|has| $ (-6 -4233)))) (-3464 ((|#3| $) 45)) (-2139 (((-108) $ (-707)) NIL)) (-3757 (((-587 |#4|) $) 14 (|has| $ (-6 -4233)))) (-2221 (((-108) |#4| $) 26 (-12 (|has| $ (-6 -4233)) (|has| |#4| (-1013))))) (-3833 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#4| |#4|) $) 21)) (-2820 (((-587 |#3|) $) NIL)) (-2639 (((-108) |#3| $) NIL)) (-3574 (((-108) $ (-707)) NIL)) (-3688 (((-1067) $) NIL)) (-1341 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-513)))) (-4147 (((-1031) $) NIL)) (-3620 (((-3 |#4| "failed") (-1 (-108) |#4|) $) NIL)) (-1789 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 |#4|) (-587 |#4|)) NIL (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013)))) (($ $ (-269 |#4|)) NIL (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013)))) (($ $ (-587 (-269 |#4|))) NIL (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013))))) (-2488 (((-108) $ $) NIL)) (-3462 (((-108) $) 39)) (-4024 (($) 17)) (-4163 (((-707) |#4| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#4| (-1013)))) (((-707) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4233)))) (-2404 (($ $) 16)) (-1430 (((-497) $) NIL (|has| |#4| (-562 (-497)))) (($ (-587 |#4|)) 49)) (-2201 (($ (-587 |#4|)) 13)) (-3883 (($ $ |#3|) NIL)) (-4029 (($ $ |#3|) NIL)) (-3318 (($ $ |#3|) NIL)) (-2189 (((-792) $) 38) (((-587 |#4|) $) 48)) (-3049 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4233)))) (-1531 (((-108) $ $) 30)) (-3475 (((-707) $) NIL (|has| $ (-6 -4233)))))
+(((-436 |#1| |#2| |#3| |#4|) (-13 (-902 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1430 ($ (-587 |#4|))) (-6 -4233) (-6 -4234))) (-970) (-729) (-784) (-984 |#1| |#2| |#3|)) (T -436))
+((-1430 (*1 *1 *2) (-12 (-5 *2 (-587 *6)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *1 (-436 *3 *4 *5 *6)))))
+(-13 (-902 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1430 ($ (-587 |#4|))) (-6 -4233) (-6 -4234)))
+((-3561 (($) 11)) (-3572 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16)))
+(((-437 |#1| |#2| |#3|) (-10 -8 (-15 -3572 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3561 (|#1|))) (-438 |#2| |#3|) (-157) (-23)) (T -437))
+NIL
+(-10 -8 (-15 -3572 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3561 (|#1|)))
+((-1415 (((-108) $ $) 7)) (-1297 (((-3 |#1| "failed") $) 26)) (-1483 ((|#1| $) 25)) (-2339 (($ $ $) 23)) (-3688 (((-1067) $) 9)) (-4147 (((-1031) $) 10)) (-1994 ((|#2| $) 19)) (-2189 (((-792) $) 11) (($ |#1|) 27)) (-3561 (($) 18 T CONST)) (-3572 (($) 24 T CONST)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 15) (($ $ $) 13)) (-1602 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16)))
+(((-438 |#1| |#2|) (-1196) (-157) (-23)) (T -438))
+((-3572 (*1 *1) (-12 (-4 *1 (-438 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23)))) (-2339 (*1 *1 *1 *1) (-12 (-4 *1 (-438 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23)))))
+(-13 (-443 |t#1| |t#2|) (-961 |t#1|) (-10 -8 (-15 (-3572) ($) -2676) (-15 -2339 ($ $ $))))
+(((-97) . T) ((-561 (-792)) . T) ((-443 |#1| |#2|) . T) ((-961 |#1|) . T) ((-1013) . T))
+((-3154 (((-1165 (-1165 (-521))) (-1165 (-1165 (-521))) (-850)) 18)) (-2737 (((-1165 (-1165 (-521))) (-850)) 16)))
+(((-439) (-10 -7 (-15 -3154 ((-1165 (-1165 (-521))) (-1165 (-1165 (-521))) (-850))) (-15 -2737 ((-1165 (-1165 (-521))) (-850))))) (T -439))
+((-2737 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1165 (-1165 (-521)))) (-5 *1 (-439)))) (-3154 (*1 *2 *2 *3) (-12 (-5 *2 (-1165 (-1165 (-521)))) (-5 *3 (-850)) (-5 *1 (-439)))))
+(-10 -7 (-15 -3154 ((-1165 (-1165 (-521))) (-1165 (-1165 (-521))) (-850))) (-15 -2737 ((-1165 (-1165 (-521))) (-850))))
+((-2793 (((-521) (-521)) 30) (((-521)) 22)) (-3801 (((-521) (-521)) 26) (((-521)) 18)) (-2731 (((-521) (-521)) 28) (((-521)) 20)) (-3627 (((-108) (-108)) 12) (((-108)) 10)) (-3814 (((-108) (-108)) 11) (((-108)) 9)) (-1674 (((-108) (-108)) 24) (((-108)) 15)))
+(((-440) (-10 -7 (-15 -3814 ((-108))) (-15 -3627 ((-108))) (-15 -3814 ((-108) (-108))) (-15 -3627 ((-108) (-108))) (-15 -1674 ((-108))) (-15 -2731 ((-521))) (-15 -3801 ((-521))) (-15 -2793 ((-521))) (-15 -1674 ((-108) (-108))) (-15 -2731 ((-521) (-521))) (-15 -3801 ((-521) (-521))) (-15 -2793 ((-521) (-521))))) (T -440))
+((-2793 (*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-440)))) (-3801 (*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-440)))) (-2731 (*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-440)))) (-1674 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-440)))) (-2793 (*1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-440)))) (-3801 (*1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-440)))) (-2731 (*1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-440)))) (-1674 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-440)))) (-3627 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-440)))) (-3814 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-440)))) (-3627 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-440)))) (-3814 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-440)))))
+(-10 -7 (-15 -3814 ((-108))) (-15 -3627 ((-108))) (-15 -3814 ((-108) (-108))) (-15 -3627 ((-108) (-108))) (-15 -1674 ((-108))) (-15 -2731 ((-521))) (-15 -3801 ((-521))) (-15 -2793 ((-521))) (-15 -1674 ((-108) (-108))) (-15 -2731 ((-521) (-521))) (-15 -3801 ((-521) (-521))) (-15 -2793 ((-521) (-521))))
+((-1415 (((-108) $ $) NIL)) (-1968 (((-587 (-353)) $) 27) (((-587 (-353)) $ (-587 (-353))) 91)) (-2925 (((-587 (-1008 (-353))) $) 14) (((-587 (-1008 (-353))) $ (-587 (-1008 (-353)))) 88)) (-3382 (((-587 (-587 (-872 (-202)))) (-587 (-587 (-872 (-202)))) (-587 (-803))) 42)) (-2357 (((-587 (-587 (-872 (-202)))) $) 84)) (-2735 (((-1170) $ (-872 (-202)) (-803)) 104)) (-4129 (($ $) 83) (($ (-587 (-587 (-872 (-202))))) 94) (($ (-587 (-587 (-872 (-202)))) (-587 (-803)) (-587 (-803)) (-587 (-850))) 93) (($ (-587 (-587 (-872 (-202)))) (-587 (-803)) (-587 (-803)) (-587 (-850)) (-587 (-239))) 95)) (-3688 (((-1067) $) NIL)) (-2529 (((-521) $) 66)) (-4147 (((-1031) $) NIL)) (-3473 (($) 92)) (-3291 (((-587 (-202)) (-587 (-587 (-872 (-202))))) 52)) (-4138 (((-1170) $ (-587 (-872 (-202))) (-803) (-803) (-850)) 98) (((-1170) $ (-872 (-202))) 100) (((-1170) $ (-872 (-202)) (-803) (-803) (-850)) 99)) (-2189 (((-792) $) 110) (($ (-587 (-587 (-872 (-202))))) 105)) (-3374 (((-1170) $ (-872 (-202))) 103)) (-1531 (((-108) $ $) NIL)))
+(((-441) (-13 (-1013) (-10 -8 (-15 -3473 ($)) (-15 -4129 ($ $)) (-15 -4129 ($ (-587 (-587 (-872 (-202)))))) (-15 -4129 ($ (-587 (-587 (-872 (-202)))) (-587 (-803)) (-587 (-803)) (-587 (-850)))) (-15 -4129 ($ (-587 (-587 (-872 (-202)))) (-587 (-803)) (-587 (-803)) (-587 (-850)) (-587 (-239)))) (-15 -2357 ((-587 (-587 (-872 (-202)))) $)) (-15 -2529 ((-521) $)) (-15 -2925 ((-587 (-1008 (-353))) $)) (-15 -2925 ((-587 (-1008 (-353))) $ (-587 (-1008 (-353))))) (-15 -1968 ((-587 (-353)) $)) (-15 -1968 ((-587 (-353)) $ (-587 (-353)))) (-15 -4138 ((-1170) $ (-587 (-872 (-202))) (-803) (-803) (-850))) (-15 -4138 ((-1170) $ (-872 (-202)))) (-15 -4138 ((-1170) $ (-872 (-202)) (-803) (-803) (-850))) (-15 -3374 ((-1170) $ (-872 (-202)))) (-15 -2735 ((-1170) $ (-872 (-202)) (-803))) (-15 -2189 ($ (-587 (-587 (-872 (-202)))))) (-15 -2189 ((-792) $)) (-15 -3382 ((-587 (-587 (-872 (-202)))) (-587 (-587 (-872 (-202)))) (-587 (-803)))) (-15 -3291 ((-587 (-202)) (-587 (-587 (-872 (-202))))))))) (T -441))
+((-2189 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-441)))) (-3473 (*1 *1) (-5 *1 (-441))) (-4129 (*1 *1 *1) (-5 *1 (-441))) (-4129 (*1 *1 *2) (-12 (-5 *2 (-587 (-587 (-872 (-202))))) (-5 *1 (-441)))) (-4129 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-587 (-587 (-872 (-202))))) (-5 *3 (-587 (-803))) (-5 *4 (-587 (-850))) (-5 *1 (-441)))) (-4129 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-587 (-587 (-872 (-202))))) (-5 *3 (-587 (-803))) (-5 *4 (-587 (-850))) (-5 *5 (-587 (-239))) (-5 *1 (-441)))) (-2357 (*1 *2 *1) (-12 (-5 *2 (-587 (-587 (-872 (-202))))) (-5 *1 (-441)))) (-2529 (*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-441)))) (-2925 (*1 *2 *1) (-12 (-5 *2 (-587 (-1008 (-353)))) (-5 *1 (-441)))) (-2925 (*1 *2 *1 *2) (-12 (-5 *2 (-587 (-1008 (-353)))) (-5 *1 (-441)))) (-1968 (*1 *2 *1) (-12 (-5 *2 (-587 (-353))) (-5 *1 (-441)))) (-1968 (*1 *2 *1 *2) (-12 (-5 *2 (-587 (-353))) (-5 *1 (-441)))) (-4138 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-587 (-872 (-202)))) (-5 *4 (-803)) (-5 *5 (-850)) (-5 *2 (-1170)) (-5 *1 (-441)))) (-4138 (*1 *2 *1 *3) (-12 (-5 *3 (-872 (-202))) (-5 *2 (-1170)) (-5 *1 (-441)))) (-4138 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-872 (-202))) (-5 *4 (-803)) (-5 *5 (-850)) (-5 *2 (-1170)) (-5 *1 (-441)))) (-3374 (*1 *2 *1 *3) (-12 (-5 *3 (-872 (-202))) (-5 *2 (-1170)) (-5 *1 (-441)))) (-2735 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-872 (-202))) (-5 *4 (-803)) (-5 *2 (-1170)) (-5 *1 (-441)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-587 (-587 (-872 (-202))))) (-5 *1 (-441)))) (-3382 (*1 *2 *2 *3) (-12 (-5 *2 (-587 (-587 (-872 (-202))))) (-5 *3 (-587 (-803))) (-5 *1 (-441)))) (-3291 (*1 *2 *3) (-12 (-5 *3 (-587 (-587 (-872 (-202))))) (-5 *2 (-587 (-202))) (-5 *1 (-441)))))
+(-13 (-1013) (-10 -8 (-15 -3473 ($)) (-15 -4129 ($ $)) (-15 -4129 ($ (-587 (-587 (-872 (-202)))))) (-15 -4129 ($ (-587 (-587 (-872 (-202)))) (-587 (-803)) (-587 (-803)) (-587 (-850)))) (-15 -4129 ($ (-587 (-587 (-872 (-202)))) (-587 (-803)) (-587 (-803)) (-587 (-850)) (-587 (-239)))) (-15 -2357 ((-587 (-587 (-872 (-202)))) $)) (-15 -2529 ((-521) $)) (-15 -2925 ((-587 (-1008 (-353))) $)) (-15 -2925 ((-587 (-1008 (-353))) $ (-587 (-1008 (-353))))) (-15 -1968 ((-587 (-353)) $)) (-15 -1968 ((-587 (-353)) $ (-587 (-353)))) (-15 -4138 ((-1170) $ (-587 (-872 (-202))) (-803) (-803) (-850))) (-15 -4138 ((-1170) $ (-872 (-202)))) (-15 -4138 ((-1170) $ (-872 (-202)) (-803) (-803) (-850))) (-15 -3374 ((-1170) $ (-872 (-202)))) (-15 -2735 ((-1170) $ (-872 (-202)) (-803))) (-15 -2189 ($ (-587 (-587 (-872 (-202)))))) (-15 -2189 ((-792) $)) (-15 -3382 ((-587 (-587 (-872 (-202)))) (-587 (-587 (-872 (-202)))) (-587 (-803)))) (-15 -3291 ((-587 (-202)) (-587 (-587 (-872 (-202))))))))
+((-1612 (($ $) NIL) (($ $ $) 11)))
+(((-442 |#1| |#2| |#3|) (-10 -8 (-15 -1612 (|#1| |#1| |#1|)) (-15 -1612 (|#1| |#1|))) (-443 |#2| |#3|) (-157) (-23)) (T -442))
+NIL
+(-10 -8 (-15 -1612 (|#1| |#1| |#1|)) (-15 -1612 (|#1| |#1|)))
+((-1415 (((-108) $ $) 7)) (-3688 (((-1067) $) 9)) (-4147 (((-1031) $) 10)) (-1994 ((|#2| $) 19)) (-2189 (((-792) $) 11)) (-3561 (($) 18 T CONST)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 15) (($ $ $) 13)) (-1602 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16)))
+(((-443 |#1| |#2|) (-1196) (-157) (-23)) (T -443))
+((-1994 (*1 *2 *1) (-12 (-4 *1 (-443 *3 *2)) (-4 *3 (-157)) (-4 *2 (-23)))) (-3561 (*1 *1) (-12 (-4 *1 (-443 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-443 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-443 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23)))) (-1612 (*1 *1 *1) (-12 (-4 *1 (-443 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23)))) (-1602 (*1 *1 *1 *1) (-12 (-4 *1 (-443 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23)))) (-1612 (*1 *1 *1 *1) (-12 (-4 *1 (-443 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23)))))
+(-13 (-1013) (-10 -8 (-15 -1994 (|t#2| $)) (-15 (-3561) ($) -2676) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -1612 ($ $)) (-15 -1602 ($ $ $)) (-15 -1612 ($ $ $))))
+(((-97) . T) ((-561 (-792)) . T) ((-1013) . T))
+((-2755 (((-3 (-587 (-453 |#1| |#2|)) "failed") (-587 (-453 |#1| |#2|)) (-587 (-794 |#1|))) 90)) (-3576 (((-587 (-587 (-224 |#1| |#2|))) (-587 (-224 |#1| |#2|)) (-587 (-794 |#1|))) 88)) (-3553 (((-2 (|:| |dpolys| (-587 (-224 |#1| |#2|))) (|:| |coords| (-587 (-521)))) (-587 (-224 |#1| |#2|)) (-587 (-794 |#1|))) 58)))
+(((-444 |#1| |#2| |#3|) (-10 -7 (-15 -3576 ((-587 (-587 (-224 |#1| |#2|))) (-587 (-224 |#1| |#2|)) (-587 (-794 |#1|)))) (-15 -2755 ((-3 (-587 (-453 |#1| |#2|)) "failed") (-587 (-453 |#1| |#2|)) (-587 (-794 |#1|)))) (-15 -3553 ((-2 (|:| |dpolys| (-587 (-224 |#1| |#2|))) (|:| |coords| (-587 (-521)))) (-587 (-224 |#1| |#2|)) (-587 (-794 |#1|))))) (-587 (-1084)) (-425) (-425)) (T -444))
+((-3553 (*1 *2 *3 *4) (-12 (-5 *4 (-587 (-794 *5))) (-14 *5 (-587 (-1084))) (-4 *6 (-425)) (-5 *2 (-2 (|:| |dpolys| (-587 (-224 *5 *6))) (|:| |coords| (-587 (-521))))) (-5 *1 (-444 *5 *6 *7)) (-5 *3 (-587 (-224 *5 *6))) (-4 *7 (-425)))) (-2755 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-587 (-453 *4 *5))) (-5 *3 (-587 (-794 *4))) (-14 *4 (-587 (-1084))) (-4 *5 (-425)) (-5 *1 (-444 *4 *5 *6)) (-4 *6 (-425)))) (-3576 (*1 *2 *3 *4) (-12 (-5 *4 (-587 (-794 *5))) (-14 *5 (-587 (-1084))) (-4 *6 (-425)) (-5 *2 (-587 (-587 (-224 *5 *6)))) (-5 *1 (-444 *5 *6 *7)) (-5 *3 (-587 (-224 *5 *6))) (-4 *7 (-425)))))
+(-10 -7 (-15 -3576 ((-587 (-587 (-224 |#1| |#2|))) (-587 (-224 |#1| |#2|)) (-587 (-794 |#1|)))) (-15 -2755 ((-3 (-587 (-453 |#1| |#2|)) "failed") (-587 (-453 |#1| |#2|)) (-587 (-794 |#1|)))) (-15 -3553 ((-2 (|:| |dpolys| (-587 (-224 |#1| |#2|))) (|:| |coords| (-587 (-521)))) (-587 (-224 |#1| |#2|)) (-587 (-794 |#1|)))))
+((-1257 (((-3 $ "failed") $) 11)) (-1223 (($ $ $) 20)) (-2674 (($ $ $) 21)) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) 14)) (-1620 (($ $ $) 9)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) 19)))
+(((-445 |#1|) (-10 -8 (-15 -2674 (|#1| |#1| |#1|)) (-15 -1223 (|#1| |#1| |#1|)) (-15 -3505 (|#1| |#1| (-521))) (-15 ** (|#1| |#1| (-521))) (-15 -1620 (|#1| |#1| |#1|)) (-15 -1257 ((-3 |#1| "failed") |#1|)) (-15 -3505 (|#1| |#1| (-707))) (-15 ** (|#1| |#1| (-707))) (-15 -3505 (|#1| |#1| (-850))) (-15 ** (|#1| |#1| (-850)))) (-446)) (T -445))
+NIL
+(-10 -8 (-15 -2674 (|#1| |#1| |#1|)) (-15 -1223 (|#1| |#1| |#1|)) (-15 -3505 (|#1| |#1| (-521))) (-15 ** (|#1| |#1| (-521))) (-15 -1620 (|#1| |#1| |#1|)) (-15 -1257 ((-3 |#1| "failed") |#1|)) (-15 -3505 (|#1| |#1| (-707))) (-15 ** (|#1| |#1| (-707))) (-15 -3505 (|#1| |#1| (-850))) (-15 ** (|#1| |#1| (-850))))
+((-1415 (((-108) $ $) 7)) (-2547 (($) 20 T CONST)) (-1257 (((-3 $ "failed") $) 16)) (-3996 (((-108) $) 19)) (-3688 (((-1067) $) 9)) (-3095 (($ $) 27)) (-4147 (((-1031) $) 10)) (-1223 (($ $ $) 23)) (-2674 (($ $ $) 22)) (-2189 (((-792) $) 11)) (-3505 (($ $ (-850)) 13) (($ $ (-707)) 17) (($ $ (-521)) 24)) (-3572 (($) 21 T CONST)) (-1531 (((-108) $ $) 6)) (-1620 (($ $ $) 26)) (** (($ $ (-850)) 14) (($ $ (-707)) 18) (($ $ (-521)) 25)) (* (($ $ $) 15)))
+(((-446) (-1196)) (T -446))
+((-3095 (*1 *1 *1) (-4 *1 (-446))) (-1620 (*1 *1 *1 *1) (-4 *1 (-446))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-446)) (-5 *2 (-521)))) (-3505 (*1 *1 *1 *2) (-12 (-4 *1 (-446)) (-5 *2 (-521)))) (-1223 (*1 *1 *1 *1) (-4 *1 (-446))) (-2674 (*1 *1 *1 *1) (-4 *1 (-446))))
+(-13 (-663) (-10 -8 (-15 -3095 ($ $)) (-15 -1620 ($ $ $)) (-15 ** ($ $ (-521))) (-15 -3505 ($ $ (-521))) (-6 -4230) (-15 -1223 ($ $ $)) (-15 -2674 ($ $ $))))
+(((-97) . T) ((-561 (-792)) . T) ((-663) . T) ((-1025) . T) ((-1013) . T))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-4084 (((-587 (-998)) $) NIL)) (-1611 (((-1084) $) 17)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) NIL (|has| |#1| (-513)))) (-2559 (($ $) NIL (|has| |#1| (-513)))) (-1733 (((-108) $) NIL (|has| |#1| (-513)))) (-2977 (($ $ (-381 (-521))) NIL) (($ $ (-381 (-521)) (-381 (-521))) NIL)) (-3423 (((-1065 (-2 (|:| |k| (-381 (-521))) (|:| |c| |#1|))) $) NIL)) (-2904 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2769 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-1232 (((-3 $ "failed") $ $) NIL)) (-3063 (($ $) NIL (|has| |#1| (-337)))) (-3358 (((-392 $) $) NIL (|has| |#1| (-337)))) (-1927 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-1389 (((-108) $ $) NIL (|has| |#1| (-337)))) (-2880 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2746 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2770 (($ (-707) (-1065 (-2 (|:| |k| (-381 (-521))) (|:| |c| |#1|)))) NIL)) (-2926 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2790 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2547 (($) NIL T CONST)) (-2277 (($ $ $) NIL (|has| |#1| (-337)))) (-3152 (($ $) NIL)) (-1257 (((-3 $ "failed") $) NIL)) (-2253 (($ $ $) NIL (|has| |#1| (-337)))) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) NIL (|has| |#1| (-337)))) (-2710 (((-108) $) NIL (|has| |#1| (-337)))) (-1325 (((-108) $) NIL)) (-2834 (($) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2733 (((-381 (-521)) $) NIL) (((-381 (-521)) $ (-381 (-521))) NIL)) (-3996 (((-108) $) NIL)) (-3407 (($ $ (-521)) NIL (|has| |#1| (-37 (-381 (-521)))))) (-1993 (($ $ (-850)) NIL) (($ $ (-381 (-521))) NIL)) (-1546 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| |#1| (-337)))) (-3649 (((-108) $) NIL)) (-4043 (($ |#1| (-381 (-521))) NIL) (($ $ (-998) (-381 (-521))) NIL) (($ $ (-587 (-998)) (-587 (-381 (-521)))) NIL)) (-1390 (($ (-1 |#1| |#1|) $) 22)) (-1253 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3125 (($ $) NIL)) (-3135 ((|#1| $) NIL)) (-2223 (($ (-587 $)) NIL (|has| |#1| (-337))) (($ $ $) NIL (|has| |#1| (-337)))) (-3688 (((-1067) $) NIL)) (-3095 (($ $) NIL (|has| |#1| (-337)))) (-2184 (($ $) 26 (|has| |#1| (-37 (-381 (-521))))) (($ $ (-1084)) 33 (-3703 (-12 (|has| |#1| (-15 -2184 (|#1| |#1| (-1084)))) (|has| |#1| (-15 -4084 ((-587 (-1084)) |#1|))) (|has| |#1| (-37 (-381 (-521))))) (-12 (|has| |#1| (-29 (-521))) (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-887)) (|has| |#1| (-1105))))) (($ $ (-1161 |#2|)) 27 (|has| |#1| (-37 (-381 (-521)))))) (-4147 (((-1031) $) NIL)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) NIL (|has| |#1| (-337)))) (-2258 (($ (-587 $)) NIL (|has| |#1| (-337))) (($ $ $) NIL (|has| |#1| (-337)))) (-1916 (((-392 $) $) NIL (|has| |#1| (-337)))) (-1962 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-337))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL (|has| |#1| (-337)))) (-2447 (($ $ (-381 (-521))) NIL)) (-2230 (((-3 $ "failed") $ $) NIL (|has| |#1| (-513)))) (-3854 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| |#1| (-337)))) (-3261 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2288 (((-1065 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-381 (-521))))))) (-4196 (((-707) $) NIL (|has| |#1| (-337)))) (-2544 ((|#1| $ (-381 (-521))) NIL) (($ $ $) NIL (|has| (-381 (-521)) (-1025)))) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) NIL (|has| |#1| (-337)))) (-2156 (($ $ (-587 (-1084)) (-587 (-707))) NIL (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-829 (-1084))))) (($ $ (-1084) (-707)) NIL (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-829 (-1084))))) (($ $ (-587 (-1084))) NIL (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-829 (-1084))))) (($ $ (-1084)) 25 (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-829 (-1084))))) (($ $ (-707)) NIL (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|)))) (($ $) 13 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|)))) (($ $ (-1161 |#2|)) 15)) (-1994 (((-381 (-521)) $) NIL)) (-1738 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2800 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2915 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2780 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2892 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2758 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3448 (($ $) NIL)) (-2189 (((-792) $) NIL) (($ (-521)) NIL) (($ |#1|) NIL (|has| |#1| (-157))) (($ (-1161 |#2|)) NIL) (($ (-1150 |#1| |#2| |#3|)) 9) (($ (-381 (-521))) NIL (|has| |#1| (-37 (-381 (-521))))) (($ $) NIL (|has| |#1| (-513)))) (-3800 ((|#1| $ (-381 (-521))) NIL)) (-1671 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-3846 (((-707)) NIL)) (-1893 ((|#1| $) 18)) (-1759 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2832 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-4210 (((-108) $ $) NIL (|has| |#1| (-513)))) (-1745 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2811 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-1776 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2856 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3894 ((|#1| $ (-381 (-521))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-381 (-521))))) (|has| |#1| (-15 -2189 (|#1| (-1084))))))) (-3919 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2868 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-1768 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2844 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-1752 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2821 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL (|has| |#1| (-337)))) (-3561 (($) NIL T CONST)) (-3572 (($) NIL T CONST)) (-2212 (($ $ (-587 (-1084)) (-587 (-707))) NIL (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-829 (-1084))))) (($ $ (-1084) (-707)) NIL (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-829 (-1084))))) (($ $ (-587 (-1084))) NIL (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-829 (-1084))))) (($ $ (-1084)) NIL (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-829 (-1084))))) (($ $ (-707)) NIL (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))))) (-1531 (((-108) $ $) NIL)) (-1620 (($ $ |#1|) NIL (|has| |#1| (-337))) (($ $ $) NIL (|has| |#1| (-337)))) (-1612 (($ $) NIL) (($ $ $) 24)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL (|has| |#1| (-337))) (($ $ $) NIL (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) NIL (|has| |#1| (-37 (-381 (-521)))))) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 23) (($ (-381 (-521)) $) NIL (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) NIL (|has| |#1| (-37 (-381 (-521)))))))
+(((-447 |#1| |#2| |#3|) (-13 (-1146 |#1|) (-10 -8 (-15 -2189 ($ (-1161 |#2|))) (-15 -2189 ($ (-1150 |#1| |#2| |#3|))) (-15 -2156 ($ $ (-1161 |#2|))) (IF (|has| |#1| (-37 (-381 (-521)))) (-15 -2184 ($ $ (-1161 |#2|))) |%noBranch|))) (-970) (-1084) |#1|) (T -447))
+((-2189 (*1 *1 *2) (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-447 *3 *4 *5)) (-4 *3 (-970)) (-14 *5 *3))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-1150 *3 *4 *5)) (-4 *3 (-970)) (-14 *4 (-1084)) (-14 *5 *3) (-5 *1 (-447 *3 *4 *5)))) (-2156 (*1 *1 *1 *2) (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-447 *3 *4 *5)) (-4 *3 (-970)) (-14 *5 *3))) (-2184 (*1 *1 *1 *2) (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-447 *3 *4 *5)) (-4 *3 (-37 (-381 (-521)))) (-4 *3 (-970)) (-14 *5 *3))))
+(-13 (-1146 |#1|) (-10 -8 (-15 -2189 ($ (-1161 |#2|))) (-15 -2189 ($ (-1150 |#1| |#2| |#3|))) (-15 -2156 ($ $ (-1161 |#2|))) (IF (|has| |#1| (-37 (-381 (-521)))) (-15 -2184 ($ $ (-1161 |#2|))) |%noBranch|)))
+((-1415 (((-108) $ $) NIL (-3703 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)) (|has| |#2| (-1013))))) (-1800 (($) NIL) (($ (-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) NIL)) (-1903 (((-1170) $ |#1| |#1|) NIL (|has| $ (-6 -4234)))) (-2978 (((-108) $ (-707)) NIL)) (-2378 ((|#2| $ |#1| |#2|) 18)) (-4098 (($ (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4233)))) (-1628 (($ (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4233)))) (-2748 (((-3 |#2| "failed") |#1| $) 19)) (-2547 (($) NIL T CONST)) (-2332 (($ $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013))))) (-3023 (($ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) NIL (|has| $ (-6 -4233))) (($ (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-3 |#2| "failed") |#1| $) 16)) (-1422 (($ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (($ (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4233)))) (-3859 (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) NIL (|has| $ (-6 -4233))) (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4233)))) (-3849 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4234)))) (-3626 ((|#2| $ |#1|) NIL)) (-3831 (((-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-587 |#2|) $) NIL (|has| $ (-6 -4233)))) (-2139 (((-108) $ (-707)) NIL)) (-2826 ((|#1| $) NIL (|has| |#1| (-784)))) (-3757 (((-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-587 |#2|) $) NIL (|has| $ (-6 -4233)))) (-2221 (((-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#2| (-1013))))) (-2597 ((|#1| $) NIL (|has| |#1| (-784)))) (-3833 (($ (-1 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4234))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4234)))) (-1390 (($ (-1 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3574 (((-108) $ (-707)) NIL)) (-3688 (((-1067) $) NIL (-3703 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)) (|has| |#2| (-1013))))) (-2961 (((-587 |#1|) $) NIL)) (-2781 (((-108) |#1| $) NIL)) (-2511 (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) NIL)) (-3373 (($ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) NIL)) (-1668 (((-587 |#1|) $) NIL)) (-2941 (((-108) |#1| $) NIL)) (-4147 (((-1031) $) NIL (-3703 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)) (|has| |#2| (-1013))))) (-2293 ((|#2| $) NIL (|has| |#1| (-784)))) (-3620 (((-3 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) "failed") (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL)) (-3016 (($ $ |#2|) NIL (|has| $ (-6 -4234)))) (-2166 (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) NIL)) (-1789 (((-108) (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))))) NIL (-12 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-284 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (($ $ (-269 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) NIL (-12 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-284 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (($ $ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) NIL (-12 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-284 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (($ $ (-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) (-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) NIL (-12 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-284 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (($ $ (-587 |#2|) (-587 |#2|)) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ (-269 |#2|)) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ (-587 (-269 |#2|))) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))))) (-2488 (((-108) $ $) NIL)) (-3821 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#2| (-1013))))) (-2489 (((-587 |#2|) $) NIL)) (-3462 (((-108) $) NIL)) (-4024 (($) NIL)) (-2544 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-1784 (($) NIL) (($ (-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) NIL)) (-4163 (((-707) (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-707) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (((-707) |#2| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#2| (-1013)))) (((-707) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4233)))) (-2404 (($ $) NIL)) (-1430 (((-497) $) NIL (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-562 (-497))))) (-2201 (($ (-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) NIL)) (-2189 (((-792) $) NIL (-3703 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-561 (-792))) (|has| |#2| (-561 (-792)))))) (-4091 (($ (-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) NIL)) (-3049 (((-108) (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4233)))) (-1531 (((-108) $ $) NIL (-3703 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)) (|has| |#2| (-1013))))) (-3475 (((-707) $) NIL (|has| $ (-6 -4233)))))
+(((-448 |#1| |#2| |#3| |#4|) (-1096 |#1| |#2|) (-1013) (-1013) (-1096 |#1| |#2|) |#2|) (T -448))
+NIL
+(-1096 |#1| |#2|)
+((-1415 (((-108) $ $) NIL)) (-2113 (((-587 (-2 (|:| -1650 $) (|:| -1544 (-587 |#4|)))) (-587 |#4|)) NIL)) (-1906 (((-587 $) (-587 |#4|)) NIL)) (-4084 (((-587 |#3|) $) NIL)) (-3898 (((-108) $) NIL)) (-2466 (((-108) $) NIL (|has| |#1| (-513)))) (-3199 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2015 ((|#4| |#4| $) NIL)) (-3211 (((-2 (|:| |under| $) (|:| -2567 $) (|:| |upper| $)) $ |#3|) NIL)) (-2978 (((-108) $ (-707)) NIL)) (-1628 (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4233))) (((-3 |#4| "failed") $ |#3|) NIL)) (-2547 (($) NIL T CONST)) (-3035 (((-108) $) 26 (|has| |#1| (-513)))) (-3091 (((-108) $ $) NIL (|has| |#1| (-513)))) (-3882 (((-108) $ $) NIL (|has| |#1| (-513)))) (-3237 (((-108) $) NIL (|has| |#1| (-513)))) (-2990 (((-587 |#4|) (-587 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-3799 (((-587 |#4|) (-587 |#4|) $) NIL (|has| |#1| (-513)))) (-4183 (((-587 |#4|) (-587 |#4|) $) NIL (|has| |#1| (-513)))) (-1297 (((-3 $ "failed") (-587 |#4|)) NIL)) (-1483 (($ (-587 |#4|)) NIL)) (-2306 (((-3 $ "failed") $) 39)) (-1761 ((|#4| |#4| $) NIL)) (-2332 (($ $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#4| (-1013))))) (-1422 (($ |#4| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#4| (-1013)))) (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4233)))) (-3820 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-513)))) (-3156 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) NIL)) (-1970 ((|#4| |#4| $) NIL)) (-3859 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4233)) (|has| |#4| (-1013)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4233))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4233))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-3726 (((-2 (|:| -1650 (-587 |#4|)) (|:| -1544 (-587 |#4|))) $) NIL)) (-3831 (((-587 |#4|) $) 16 (|has| $ (-6 -4233)))) (-3266 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3464 ((|#3| $) 33)) (-2139 (((-108) $ (-707)) NIL)) (-3757 (((-587 |#4|) $) 17 (|has| $ (-6 -4233)))) (-2221 (((-108) |#4| $) 25 (-12 (|has| $ (-6 -4233)) (|has| |#4| (-1013))))) (-3833 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#4| |#4|) $) 21)) (-2820 (((-587 |#3|) $) NIL)) (-2639 (((-108) |#3| $) NIL)) (-3574 (((-108) $ (-707)) NIL)) (-3688 (((-1067) $) NIL)) (-1441 (((-3 |#4| "failed") $) 37)) (-2323 (((-587 |#4|) $) NIL)) (-3786 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-1347 ((|#4| |#4| $) NIL)) (-2146 (((-108) $ $) NIL)) (-1341 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-513)))) (-1972 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-4065 ((|#4| |#4| $) NIL)) (-4147 (((-1031) $) NIL)) (-2293 (((-3 |#4| "failed") $) 35)) (-3620 (((-3 |#4| "failed") (-1 (-108) |#4|) $) NIL)) (-2001 (((-3 $ "failed") $ |#4|) 47)) (-2447 (($ $ |#4|) NIL)) (-1789 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 |#4|) (-587 |#4|)) NIL (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013)))) (($ $ (-269 |#4|)) NIL (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013)))) (($ $ (-587 (-269 |#4|))) NIL (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013))))) (-2488 (((-108) $ $) NIL)) (-3462 (((-108) $) 15)) (-4024 (($) 13)) (-1994 (((-707) $) NIL)) (-4163 (((-707) |#4| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#4| (-1013)))) (((-707) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4233)))) (-2404 (($ $) 12)) (-1430 (((-497) $) NIL (|has| |#4| (-562 (-497))))) (-2201 (($ (-587 |#4|)) 20)) (-3883 (($ $ |#3|) 42)) (-4029 (($ $ |#3|) 44)) (-3173 (($ $) NIL)) (-3318 (($ $ |#3|) NIL)) (-2189 (((-792) $) 31) (((-587 |#4|) $) 40)) (-3781 (((-707) $) NIL (|has| |#3| (-342)))) (-3234 (((-3 (-2 (|:| |bas| $) (|:| -1354 (-587 |#4|))) "failed") (-587 |#4|) (-1 (-108) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1354 (-587 |#4|))) "failed") (-587 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-3960 (((-108) $ (-1 (-108) |#4| (-587 |#4|))) NIL)) (-3049 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4233)))) (-4099 (((-587 |#3|) $) NIL)) (-2154 (((-108) |#3| $) NIL)) (-1531 (((-108) $ $) NIL)) (-3475 (((-707) $) NIL (|has| $ (-6 -4233)))))
+(((-449 |#1| |#2| |#3| |#4|) (-1113 |#1| |#2| |#3| |#4|) (-513) (-729) (-784) (-984 |#1| |#2| |#3|)) (T -449))
+NIL
+(-1113 |#1| |#2| |#3| |#4|)
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-2559 (($ $) NIL)) (-1733 (((-108) $) NIL)) (-1232 (((-3 $ "failed") $ $) NIL)) (-3063 (($ $) NIL)) (-3358 (((-392 $) $) NIL)) (-1389 (((-108) $ $) NIL)) (-2547 (($) NIL T CONST)) (-1297 (((-3 (-521) "failed") $) NIL) (((-3 (-381 (-521)) "failed") $) NIL)) (-1483 (((-521) $) NIL) (((-381 (-521)) $) NIL)) (-2277 (($ $ $) NIL)) (-1257 (((-3 $ "failed") $) NIL)) (-2253 (($ $ $) NIL)) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) NIL)) (-2710 (((-108) $) NIL)) (-2834 (($) 18)) (-3996 (((-108) $) NIL)) (-1546 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-2223 (($ $ $) NIL) (($ (-587 $)) NIL)) (-3688 (((-1067) $) NIL)) (-3095 (($ $) NIL)) (-4147 (((-1031) $) NIL)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) NIL)) (-2258 (($ $ $) NIL) (($ (-587 $)) NIL)) (-1916 (((-392 $) $) NIL)) (-1962 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2230 (((-3 $ "failed") $ $) NIL)) (-3854 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-4196 (((-707) $) NIL)) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) NIL)) (-1430 (((-353) $) 22) (((-202) $) 25) (((-381 (-1080 (-521))) $) 19) (((-497) $) 53)) (-2189 (((-792) $) 51) (($ (-521)) NIL) (($ $) NIL) (($ (-381 (-521))) NIL) (((-202) $) 24) (((-353) $) 21)) (-3846 (((-707)) NIL)) (-4210 (((-108) $ $) NIL)) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (-3561 (($) 36 T CONST)) (-3572 (($) 11 T CONST)) (-1531 (((-108) $ $) NIL)) (-1620 (($ $ $) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ (-381 (-521))) NIL) (($ (-381 (-521)) $) NIL)))
+(((-450) (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521))) (-946) (-561 (-202)) (-561 (-353)) (-562 (-381 (-1080 (-521)))) (-562 (-497)) (-10 -8 (-15 -2834 ($))))) (T -450))
+((-2834 (*1 *1) (-5 *1 (-450))))
+(-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521))) (-946) (-561 (-202)) (-561 (-353)) (-562 (-381 (-1080 (-521)))) (-562 (-497)) (-10 -8 (-15 -2834 ($))))
+((-1415 (((-108) $ $) NIL (-3703 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)) (|has| |#2| (-1013))))) (-1800 (($) NIL) (($ (-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) NIL)) (-1903 (((-1170) $ |#1| |#1|) NIL (|has| $ (-6 -4234)))) (-2978 (((-108) $ (-707)) NIL)) (-2378 ((|#2| $ |#1| |#2|) 16)) (-4098 (($ (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4233)))) (-1628 (($ (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4233)))) (-2748 (((-3 |#2| "failed") |#1| $) 20)) (-2547 (($) NIL T CONST)) (-2332 (($ $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013))))) (-3023 (($ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) NIL (|has| $ (-6 -4233))) (($ (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-3 |#2| "failed") |#1| $) 18)) (-1422 (($ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (($ (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4233)))) (-3859 (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) NIL (|has| $ (-6 -4233))) (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4233)))) (-3849 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4234)))) (-3626 ((|#2| $ |#1|) NIL)) (-3831 (((-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-587 |#2|) $) NIL (|has| $ (-6 -4233)))) (-2139 (((-108) $ (-707)) NIL)) (-2826 ((|#1| $) NIL (|has| |#1| (-784)))) (-3757 (((-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-587 |#2|) $) NIL (|has| $ (-6 -4233)))) (-2221 (((-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#2| (-1013))))) (-2597 ((|#1| $) NIL (|has| |#1| (-784)))) (-3833 (($ (-1 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4234))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4234)))) (-1390 (($ (-1 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3574 (((-108) $ (-707)) NIL)) (-3688 (((-1067) $) NIL (-3703 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)) (|has| |#2| (-1013))))) (-2961 (((-587 |#1|) $) 13)) (-2781 (((-108) |#1| $) NIL)) (-2511 (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) NIL)) (-3373 (($ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) NIL)) (-1668 (((-587 |#1|) $) NIL)) (-2941 (((-108) |#1| $) NIL)) (-4147 (((-1031) $) NIL (-3703 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)) (|has| |#2| (-1013))))) (-2293 ((|#2| $) NIL (|has| |#1| (-784)))) (-3620 (((-3 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) "failed") (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL)) (-3016 (($ $ |#2|) NIL (|has| $ (-6 -4234)))) (-2166 (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) NIL)) (-1789 (((-108) (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))))) NIL (-12 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-284 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (($ $ (-269 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) NIL (-12 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-284 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (($ $ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) NIL (-12 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-284 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (($ $ (-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) (-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) NIL (-12 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-284 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (($ $ (-587 |#2|) (-587 |#2|)) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ (-269 |#2|)) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ (-587 (-269 |#2|))) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))))) (-2488 (((-108) $ $) NIL)) (-3821 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#2| (-1013))))) (-2489 (((-587 |#2|) $) NIL)) (-3462 (((-108) $) NIL)) (-4024 (($) 19)) (-2544 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1784 (($) NIL) (($ (-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) NIL)) (-4163 (((-707) (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-707) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (((-707) |#2| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#2| (-1013)))) (((-707) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4233)))) (-2404 (($ $) NIL)) (-1430 (((-497) $) NIL (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-562 (-497))))) (-2201 (($ (-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) NIL)) (-2189 (((-792) $) NIL (-3703 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-561 (-792))) (|has| |#2| (-561 (-792)))))) (-4091 (($ (-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) NIL)) (-3049 (((-108) (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4233)))) (-1531 (((-108) $ $) 11 (-3703 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)) (|has| |#2| (-1013))))) (-3475 (((-707) $) 15 (|has| $ (-6 -4233)))))
+(((-451 |#1| |#2| |#3|) (-13 (-1096 |#1| |#2|) (-10 -7 (-6 -4233))) (-1013) (-1013) (-1067)) (T -451))
+NIL
+(-13 (-1096 |#1| |#2|) (-10 -7 (-6 -4233)))
+((-2796 (((-521) (-521) (-521)) 7)) (-3295 (((-108) (-521) (-521) (-521) (-521)) 11)) (-1578 (((-1165 (-587 (-521))) (-707) (-707)) 23)))
+(((-452) (-10 -7 (-15 -2796 ((-521) (-521) (-521))) (-15 -3295 ((-108) (-521) (-521) (-521) (-521))) (-15 -1578 ((-1165 (-587 (-521))) (-707) (-707))))) (T -452))
+((-1578 (*1 *2 *3 *3) (-12 (-5 *3 (-707)) (-5 *2 (-1165 (-587 (-521)))) (-5 *1 (-452)))) (-3295 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-521)) (-5 *2 (-108)) (-5 *1 (-452)))) (-2796 (*1 *2 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-452)))))
+(-10 -7 (-15 -2796 ((-521) (-521) (-521))) (-15 -3295 ((-108) (-521) (-521) (-521) (-521))) (-15 -1578 ((-1165 (-587 (-521))) (-707) (-707))))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-4084 (((-587 (-794 |#1|)) $) NIL)) (-1280 (((-1080 $) $ (-794 |#1|)) NIL) (((-1080 |#2|) $) NIL)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) NIL (|has| |#2| (-513)))) (-2559 (($ $) NIL (|has| |#2| (-513)))) (-1733 (((-108) $) NIL (|has| |#2| (-513)))) (-2256 (((-707) $) NIL) (((-707) $ (-587 (-794 |#1|))) NIL)) (-1232 (((-3 $ "failed") $ $) NIL)) (-2598 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#2| (-838)))) (-3063 (($ $) NIL (|has| |#2| (-425)))) (-3358 (((-392 $) $) NIL (|has| |#2| (-425)))) (-2569 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) NIL (|has| |#2| (-838)))) (-2547 (($) NIL T CONST)) (-1297 (((-3 |#2| "failed") $) NIL) (((-3 (-381 (-521)) "failed") $) NIL (|has| |#2| (-961 (-381 (-521))))) (((-3 (-521) "failed") $) NIL (|has| |#2| (-961 (-521)))) (((-3 (-794 |#1|) "failed") $) NIL)) (-1483 ((|#2| $) NIL) (((-381 (-521)) $) NIL (|has| |#2| (-961 (-381 (-521))))) (((-521) $) NIL (|has| |#2| (-961 (-521)))) (((-794 |#1|) $) NIL)) (-2114 (($ $ $ (-794 |#1|)) NIL (|has| |#2| (-157)))) (-4197 (($ $ (-587 (-521))) NIL)) (-3152 (($ $) NIL)) (-3279 (((-627 (-521)) (-627 $)) NIL (|has| |#2| (-583 (-521)))) (((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (|has| |#2| (-583 (-521)))) (((-2 (|:| -1201 (-627 |#2|)) (|:| |vec| (-1165 |#2|))) (-627 $) (-1165 $)) NIL) (((-627 |#2|) (-627 $)) NIL)) (-1257 (((-3 $ "failed") $) NIL)) (-3666 (($ $) NIL (|has| |#2| (-425))) (($ $ (-794 |#1|)) NIL (|has| |#2| (-425)))) (-3144 (((-587 $) $) NIL)) (-2710 (((-108) $) NIL (|has| |#2| (-838)))) (-3528 (($ $ |#2| (-454 (-3475 |#1|) (-707)) $) NIL)) (-3427 (((-818 (-353) $) $ (-821 (-353)) (-818 (-353) $)) NIL (-12 (|has| (-794 |#1|) (-815 (-353))) (|has| |#2| (-815 (-353))))) (((-818 (-521) $) $ (-821 (-521)) (-818 (-521) $)) NIL (-12 (|has| (-794 |#1|) (-815 (-521))) (|has| |#2| (-815 (-521)))))) (-3996 (((-108) $) NIL)) (-2678 (((-707) $) NIL)) (-4069 (($ (-1080 |#2|) (-794 |#1|)) NIL) (($ (-1080 $) (-794 |#1|)) NIL)) (-2959 (((-587 $) $) NIL)) (-3649 (((-108) $) NIL)) (-4043 (($ |#2| (-454 (-3475 |#1|) (-707))) NIL) (($ $ (-794 |#1|) (-707)) NIL) (($ $ (-587 (-794 |#1|)) (-587 (-707))) NIL)) (-1450 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $ (-794 |#1|)) NIL)) (-3273 (((-454 (-3475 |#1|) (-707)) $) NIL) (((-707) $ (-794 |#1|)) NIL) (((-587 (-707)) $ (-587 (-794 |#1|))) NIL)) (-2810 (($ $ $) NIL (|has| |#2| (-784)))) (-2446 (($ $ $) NIL (|has| |#2| (-784)))) (-3285 (($ (-1 (-454 (-3475 |#1|) (-707)) (-454 (-3475 |#1|) (-707))) $) NIL)) (-1390 (($ (-1 |#2| |#2|) $) NIL)) (-2477 (((-3 (-794 |#1|) "failed") $) NIL)) (-3125 (($ $) NIL)) (-3135 ((|#2| $) NIL)) (-2223 (($ (-587 $)) NIL (|has| |#2| (-425))) (($ $ $) NIL (|has| |#2| (-425)))) (-3688 (((-1067) $) NIL)) (-1617 (((-3 (-587 $) "failed") $) NIL)) (-3177 (((-3 (-587 $) "failed") $) NIL)) (-3979 (((-3 (-2 (|:| |var| (-794 |#1|)) (|:| -2997 (-707))) "failed") $) NIL)) (-4147 (((-1031) $) NIL)) (-3105 (((-108) $) NIL)) (-3115 ((|#2| $) NIL)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) NIL (|has| |#2| (-425)))) (-2258 (($ (-587 $)) NIL (|has| |#2| (-425))) (($ $ $) NIL (|has| |#2| (-425)))) (-1912 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#2| (-838)))) (-2165 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#2| (-838)))) (-1916 (((-392 $) $) NIL (|has| |#2| (-838)))) (-2230 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-513))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-513)))) (-2288 (($ $ (-587 (-269 $))) NIL) (($ $ (-269 $)) NIL) (($ $ $ $) NIL) (($ $ (-587 $) (-587 $)) NIL) (($ $ (-794 |#1|) |#2|) NIL) (($ $ (-587 (-794 |#1|)) (-587 |#2|)) NIL) (($ $ (-794 |#1|) $) NIL) (($ $ (-587 (-794 |#1|)) (-587 $)) NIL)) (-4010 (($ $ (-794 |#1|)) NIL (|has| |#2| (-157)))) (-2156 (($ $ (-794 |#1|)) NIL) (($ $ (-587 (-794 |#1|))) NIL) (($ $ (-794 |#1|) (-707)) NIL) (($ $ (-587 (-794 |#1|)) (-587 (-707))) NIL)) (-1994 (((-454 (-3475 |#1|) (-707)) $) NIL) (((-707) $ (-794 |#1|)) NIL) (((-587 (-707)) $ (-587 (-794 |#1|))) NIL)) (-1430 (((-821 (-353)) $) NIL (-12 (|has| (-794 |#1|) (-562 (-821 (-353)))) (|has| |#2| (-562 (-821 (-353)))))) (((-821 (-521)) $) NIL (-12 (|has| (-794 |#1|) (-562 (-821 (-521)))) (|has| |#2| (-562 (-821 (-521)))))) (((-497) $) NIL (-12 (|has| (-794 |#1|) (-562 (-497))) (|has| |#2| (-562 (-497)))))) (-2403 ((|#2| $) NIL (|has| |#2| (-425))) (($ $ (-794 |#1|)) NIL (|has| |#2| (-425)))) (-2944 (((-3 (-1165 $) "failed") (-627 $)) NIL (-12 (|has| $ (-133)) (|has| |#2| (-838))))) (-2189 (((-792) $) NIL) (($ (-521)) NIL) (($ |#2|) NIL) (($ (-794 |#1|)) NIL) (($ (-381 (-521))) NIL (-3703 (|has| |#2| (-37 (-381 (-521)))) (|has| |#2| (-961 (-381 (-521)))))) (($ $) NIL (|has| |#2| (-513)))) (-1259 (((-587 |#2|) $) NIL)) (-3800 ((|#2| $ (-454 (-3475 |#1|) (-707))) NIL) (($ $ (-794 |#1|) (-707)) NIL) (($ $ (-587 (-794 |#1|)) (-587 (-707))) NIL)) (-1671 (((-3 $ "failed") $) NIL (-3703 (-12 (|has| $ (-133)) (|has| |#2| (-838))) (|has| |#2| (-133))))) (-3846 (((-707)) NIL)) (-1547 (($ $ $ (-707)) NIL (|has| |#2| (-157)))) (-4210 (((-108) $ $) NIL (|has| |#2| (-513)))) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (-3561 (($) NIL T CONST)) (-3572 (($) NIL T CONST)) (-2212 (($ $ (-794 |#1|)) NIL) (($ $ (-587 (-794 |#1|))) NIL) (($ $ (-794 |#1|) (-707)) NIL) (($ $ (-587 (-794 |#1|)) (-587 (-707))) NIL)) (-1574 (((-108) $ $) NIL (|has| |#2| (-784)))) (-1558 (((-108) $ $) NIL (|has| |#2| (-784)))) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL (|has| |#2| (-784)))) (-1549 (((-108) $ $) NIL (|has| |#2| (-784)))) (-1620 (($ $ |#2|) NIL (|has| |#2| (-337)))) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ (-381 (-521))) NIL (|has| |#2| (-37 (-381 (-521))))) (($ (-381 (-521)) $) NIL (|has| |#2| (-37 (-381 (-521))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-453 |#1| |#2|) (-13 (-878 |#2| (-454 (-3475 |#1|) (-707)) (-794 |#1|)) (-10 -8 (-15 -4197 ($ $ (-587 (-521)))))) (-587 (-1084)) (-970)) (T -453))
+((-4197 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-521))) (-5 *1 (-453 *3 *4)) (-14 *3 (-587 (-1084))) (-4 *4 (-970)))))
+(-13 (-878 |#2| (-454 (-3475 |#1|) (-707)) (-794 |#1|)) (-10 -8 (-15 -4197 ($ $ (-587 (-521))))))
+((-1415 (((-108) $ $) NIL (|has| |#2| (-1013)))) (-2220 (((-108) $) NIL (|has| |#2| (-124)))) (-2720 (($ (-850)) NIL (|has| |#2| (-970)))) (-1903 (((-1170) $ (-521) (-521)) NIL (|has| $ (-6 -4234)))) (-2641 (($ $ $) NIL (|has| |#2| (-729)))) (-1232 (((-3 $ "failed") $ $) NIL (|has| |#2| (-124)))) (-2978 (((-108) $ (-707)) NIL)) (-1630 (((-707)) NIL (|has| |#2| (-342)))) (-1606 (((-521) $) NIL (|has| |#2| (-782)))) (-2378 ((|#2| $ (-521) |#2|) NIL (|has| $ (-6 -4234)))) (-2547 (($) NIL T CONST)) (-1297 (((-3 (-521) "failed") $) NIL (-12 (|has| |#2| (-961 (-521))) (|has| |#2| (-1013)))) (((-3 (-381 (-521)) "failed") $) NIL (-12 (|has| |#2| (-961 (-381 (-521)))) (|has| |#2| (-1013)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1013)))) (-1483 (((-521) $) NIL (-12 (|has| |#2| (-961 (-521))) (|has| |#2| (-1013)))) (((-381 (-521)) $) NIL (-12 (|has| |#2| (-961 (-381 (-521)))) (|has| |#2| (-1013)))) ((|#2| $) NIL (|has| |#2| (-1013)))) (-3279 (((-627 (-521)) (-627 $)) NIL (-12 (|has| |#2| (-583 (-521))) (|has| |#2| (-970)))) (((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (-12 (|has| |#2| (-583 (-521))) (|has| |#2| (-970)))) (((-2 (|:| -1201 (-627 |#2|)) (|:| |vec| (-1165 |#2|))) (-627 $) (-1165 $)) NIL (|has| |#2| (-970))) (((-627 |#2|) (-627 $)) NIL (|has| |#2| (-970)))) (-1257 (((-3 $ "failed") $) NIL (|has| |#2| (-970)))) (-3250 (($) NIL (|has| |#2| (-342)))) (-3849 ((|#2| $ (-521) |#2|) NIL (|has| $ (-6 -4234)))) (-3626 ((|#2| $ (-521)) 11)) (-3951 (((-108) $) NIL (|has| |#2| (-782)))) (-3831 (((-587 |#2|) $) NIL (|has| $ (-6 -4233)))) (-3996 (((-108) $) NIL (|has| |#2| (-970)))) (-2210 (((-108) $) NIL (|has| |#2| (-782)))) (-2139 (((-108) $ (-707)) NIL)) (-2826 (((-521) $) NIL (|has| (-521) (-784)))) (-2810 (($ $ $) NIL (-3703 (|has| |#2| (-729)) (|has| |#2| (-782))))) (-3757 (((-587 |#2|) $) NIL (|has| $ (-6 -4233)))) (-2221 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#2| (-1013))))) (-2597 (((-521) $) NIL (|has| (-521) (-784)))) (-2446 (($ $ $) NIL (-3703 (|has| |#2| (-729)) (|has| |#2| (-782))))) (-3833 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#2| |#2|) $) NIL)) (-2715 (((-850) $) NIL (|has| |#2| (-342)))) (-3574 (((-108) $ (-707)) NIL)) (-3688 (((-1067) $) NIL (|has| |#2| (-1013)))) (-1668 (((-587 (-521)) $) NIL)) (-2941 (((-108) (-521) $) NIL)) (-2716 (($ (-850)) NIL (|has| |#2| (-342)))) (-4147 (((-1031) $) NIL (|has| |#2| (-1013)))) (-2293 ((|#2| $) NIL (|has| (-521) (-784)))) (-3016 (($ $ |#2|) NIL (|has| $ (-6 -4234)))) (-1789 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 |#2|))) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ (-269 |#2|)) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ (-587 |#2|) (-587 |#2|)) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))))) (-2488 (((-108) $ $) NIL)) (-3821 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#2| (-1013))))) (-2489 (((-587 |#2|) $) NIL)) (-3462 (((-108) $) NIL)) (-4024 (($) NIL)) (-2544 ((|#2| $ (-521) |#2|) NIL) ((|#2| $ (-521)) NIL)) (-1231 ((|#2| $ $) NIL (|has| |#2| (-970)))) (-1961 (($ (-1165 |#2|)) NIL)) (-2359 (((-126)) NIL (|has| |#2| (-337)))) (-2156 (($ $) NIL (-12 (|has| |#2| (-210)) (|has| |#2| (-970)))) (($ $ (-707)) NIL (-12 (|has| |#2| (-210)) (|has| |#2| (-970)))) (($ $ (-1084)) NIL (-12 (|has| |#2| (-829 (-1084))) (|has| |#2| (-970)))) (($ $ (-587 (-1084))) NIL (-12 (|has| |#2| (-829 (-1084))) (|has| |#2| (-970)))) (($ $ (-1084) (-707)) NIL (-12 (|has| |#2| (-829 (-1084))) (|has| |#2| (-970)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (-12 (|has| |#2| (-829 (-1084))) (|has| |#2| (-970)))) (($ $ (-1 |#2| |#2|) (-707)) NIL (|has| |#2| (-970))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-970)))) (-4163 (((-707) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4233))) (((-707) |#2| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#2| (-1013))))) (-2404 (($ $) NIL)) (-2189 (((-1165 |#2|) $) NIL) (($ (-521)) NIL (-3703 (-12 (|has| |#2| (-961 (-521))) (|has| |#2| (-1013))) (|has| |#2| (-970)))) (($ (-381 (-521))) NIL (-12 (|has| |#2| (-961 (-381 (-521)))) (|has| |#2| (-1013)))) (($ |#2|) NIL (|has| |#2| (-1013))) (((-792) $) NIL (|has| |#2| (-561 (-792))))) (-3846 (((-707)) NIL (|has| |#2| (-970)))) (-3049 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4233)))) (-3304 (($ $) NIL (|has| |#2| (-782)))) (-3505 (($ $ (-707)) NIL (|has| |#2| (-970))) (($ $ (-850)) NIL (|has| |#2| (-970)))) (-3561 (($) NIL (|has| |#2| (-124)) CONST)) (-3572 (($) NIL (|has| |#2| (-970)) CONST)) (-2212 (($ $) NIL (-12 (|has| |#2| (-210)) (|has| |#2| (-970)))) (($ $ (-707)) NIL (-12 (|has| |#2| (-210)) (|has| |#2| (-970)))) (($ $ (-1084)) NIL (-12 (|has| |#2| (-829 (-1084))) (|has| |#2| (-970)))) (($ $ (-587 (-1084))) NIL (-12 (|has| |#2| (-829 (-1084))) (|has| |#2| (-970)))) (($ $ (-1084) (-707)) NIL (-12 (|has| |#2| (-829 (-1084))) (|has| |#2| (-970)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (-12 (|has| |#2| (-829 (-1084))) (|has| |#2| (-970)))) (($ $ (-1 |#2| |#2|) (-707)) NIL (|has| |#2| (-970))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-970)))) (-1574 (((-108) $ $) NIL (-3703 (|has| |#2| (-729)) (|has| |#2| (-782))))) (-1558 (((-108) $ $) NIL (-3703 (|has| |#2| (-729)) (|has| |#2| (-782))))) (-1531 (((-108) $ $) NIL (|has| |#2| (-1013)))) (-1566 (((-108) $ $) NIL (-3703 (|has| |#2| (-729)) (|has| |#2| (-782))))) (-1549 (((-108) $ $) 15 (-3703 (|has| |#2| (-729)) (|has| |#2| (-782))))) (-1620 (($ $ |#2|) NIL (|has| |#2| (-337)))) (-1612 (($ $ $) NIL (|has| |#2| (-970))) (($ $) NIL (|has| |#2| (-970)))) (-1602 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-707)) NIL (|has| |#2| (-970))) (($ $ (-850)) NIL (|has| |#2| (-970)))) (* (($ $ $) NIL (|has| |#2| (-970))) (($ (-521) $) NIL (|has| |#2| (-970))) (($ $ |#2|) NIL (|has| |#2| (-663))) (($ |#2| $) NIL (|has| |#2| (-663))) (($ (-707) $) NIL (|has| |#2| (-124))) (($ (-850) $) NIL (|has| |#2| (-25)))) (-3475 (((-707) $) NIL (|has| $ (-6 -4233)))))
+(((-454 |#1| |#2|) (-215 |#1| |#2|) (-707) (-729)) (T -454))
+NIL
+(-215 |#1| |#2|)
+((-1415 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-2978 (((-108) $ (-707)) NIL)) (-2547 (($) NIL T CONST)) (-3831 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-2139 (((-108) $ (-707)) NIL)) (-3220 (($ $ $) 32)) (-1318 (($ $ $) 31)) (-3757 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-2221 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2446 ((|#1| $) 26)) (-3833 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#1| |#1|) $) NIL)) (-3574 (((-108) $ (-707)) NIL)) (-3688 (((-1067) $) NIL (|has| |#1| (-1013)))) (-2511 ((|#1| $) 27)) (-3373 (($ |#1| $) 10)) (-1682 (($ (-587 |#1|)) 12)) (-4147 (((-1031) $) NIL (|has| |#1| (-1013)))) (-2166 ((|#1| $) 23)) (-1789 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 |#1|))) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-2488 (((-108) $ $) NIL)) (-3462 (((-108) $) NIL)) (-4024 (($) 9)) (-4163 (((-707) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (((-707) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2404 (($ $) NIL)) (-2189 (((-792) $) NIL (|has| |#1| (-561 (-792))))) (-4091 (($ (-587 |#1|)) 29)) (-3049 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-1531 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3475 (((-707) $) 21 (|has| $ (-6 -4233)))))
+(((-455 |#1|) (-13 (-895 |#1|) (-10 -8 (-15 -1682 ($ (-587 |#1|))))) (-784)) (T -455))
+((-1682 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-784)) (-5 *1 (-455 *3)))))
+(-13 (-895 |#1|) (-10 -8 (-15 -1682 ($ (-587 |#1|)))))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-1232 (((-3 $ "failed") $ $) NIL)) (-2547 (($) NIL T CONST)) (-3859 (($ $) 69)) (-3539 (((-108) $) NIL)) (-3688 (((-1067) $) NIL)) (-3563 (((-387 |#2| (-381 |#2|) |#3| |#4|) $) 43)) (-4147 (((-1031) $) NIL)) (-1383 (((-3 |#4| "failed") $) 105)) (-3280 (($ (-387 |#2| (-381 |#2|) |#3| |#4|)) 76) (($ |#4|) 32) (($ |#1| |#1|) 113) (($ |#1| |#1| (-521)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 125)) (-3686 (((-2 (|:| -1781 (-387 |#2| (-381 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 45)) (-2189 (((-792) $) 100)) (-3561 (($) 33 T CONST)) (-1531 (((-108) $ $) 107)) (-1612 (($ $) 72) (($ $ $) NIL)) (-1602 (($ $ $) 70)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) 73)))
+(((-456 |#1| |#2| |#3| |#4|) (-309 |#1| |#2| |#3| |#4|) (-337) (-1141 |#1|) (-1141 (-381 |#2|)) (-316 |#1| |#2| |#3|)) (T -456))
+NIL
+(-309 |#1| |#2| |#3| |#4|)
+((-1701 (((-521) (-587 (-521))) 30)) (-1778 ((|#1| (-587 |#1|)) 56)) (-2085 (((-587 |#1|) (-587 |#1|)) 57)) (-3022 (((-587 |#1|) (-587 |#1|)) 59)) (-2258 ((|#1| (-587 |#1|)) 58)) (-2403 (((-587 (-521)) (-587 |#1|)) 33)))
+(((-457 |#1|) (-10 -7 (-15 -2258 (|#1| (-587 |#1|))) (-15 -1778 (|#1| (-587 |#1|))) (-15 -3022 ((-587 |#1|) (-587 |#1|))) (-15 -2085 ((-587 |#1|) (-587 |#1|))) (-15 -2403 ((-587 (-521)) (-587 |#1|))) (-15 -1701 ((-521) (-587 (-521))))) (-1141 (-521))) (T -457))
+((-1701 (*1 *2 *3) (-12 (-5 *3 (-587 (-521))) (-5 *2 (-521)) (-5 *1 (-457 *4)) (-4 *4 (-1141 *2)))) (-2403 (*1 *2 *3) (-12 (-5 *3 (-587 *4)) (-4 *4 (-1141 (-521))) (-5 *2 (-587 (-521))) (-5 *1 (-457 *4)))) (-2085 (*1 *2 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1141 (-521))) (-5 *1 (-457 *3)))) (-3022 (*1 *2 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1141 (-521))) (-5 *1 (-457 *3)))) (-1778 (*1 *2 *3) (-12 (-5 *3 (-587 *2)) (-5 *1 (-457 *2)) (-4 *2 (-1141 (-521))))) (-2258 (*1 *2 *3) (-12 (-5 *3 (-587 *2)) (-5 *1 (-457 *2)) (-4 *2 (-1141 (-521))))))
+(-10 -7 (-15 -2258 (|#1| (-587 |#1|))) (-15 -1778 (|#1| (-587 |#1|))) (-15 -3022 ((-587 |#1|) (-587 |#1|))) (-15 -2085 ((-587 |#1|) (-587 |#1|))) (-15 -2403 ((-587 (-521)) (-587 |#1|))) (-15 -1701 ((-521) (-587 (-521)))))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-2086 (((-521) $) NIL (|has| (-521) (-282)))) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-2559 (($ $) NIL)) (-1733 (((-108) $) NIL)) (-1232 (((-3 $ "failed") $ $) NIL)) (-2598 (((-392 (-1080 $)) (-1080 $)) NIL (|has| (-521) (-838)))) (-3063 (($ $) NIL)) (-3358 (((-392 $) $) NIL)) (-2569 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) NIL (|has| (-521) (-838)))) (-1389 (((-108) $ $) NIL)) (-1606 (((-521) $) NIL (|has| (-521) (-757)))) (-2547 (($) NIL T CONST)) (-1297 (((-3 (-521) "failed") $) NIL) (((-3 (-1084) "failed") $) NIL (|has| (-521) (-961 (-1084)))) (((-3 (-381 (-521)) "failed") $) NIL (|has| (-521) (-961 (-521)))) (((-3 (-521) "failed") $) NIL (|has| (-521) (-961 (-521))))) (-1483 (((-521) $) NIL) (((-1084) $) NIL (|has| (-521) (-961 (-1084)))) (((-381 (-521)) $) NIL (|has| (-521) (-961 (-521)))) (((-521) $) NIL (|has| (-521) (-961 (-521))))) (-2277 (($ $ $) NIL)) (-3279 (((-627 (-521)) (-627 $)) NIL (|has| (-521) (-583 (-521)))) (((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (|has| (-521) (-583 (-521)))) (((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL) (((-627 (-521)) (-627 $)) NIL)) (-1257 (((-3 $ "failed") $) NIL)) (-3250 (($) NIL (|has| (-521) (-506)))) (-2253 (($ $ $) NIL)) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) NIL)) (-2710 (((-108) $) NIL)) (-3951 (((-108) $) NIL (|has| (-521) (-757)))) (-3427 (((-818 (-521) $) $ (-821 (-521)) (-818 (-521) $)) NIL (|has| (-521) (-815 (-521)))) (((-818 (-353) $) $ (-821 (-353)) (-818 (-353) $)) NIL (|has| (-521) (-815 (-353))))) (-3996 (((-108) $) NIL)) (-3257 (($ $) NIL)) (-2801 (((-521) $) NIL)) (-3842 (((-3 $ "failed") $) NIL (|has| (-521) (-1060)))) (-2210 (((-108) $) NIL (|has| (-521) (-757)))) (-1546 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-2810 (($ $ $) NIL (|has| (-521) (-784)))) (-2446 (($ $ $) NIL (|has| (-521) (-784)))) (-1390 (($ (-1 (-521) (-521)) $) NIL)) (-2223 (($ $ $) NIL) (($ (-587 $)) NIL)) (-3688 (((-1067) $) NIL)) (-3095 (($ $) NIL)) (-3797 (($) NIL (|has| (-521) (-1060)) CONST)) (-3895 (($ (-381 (-521))) 8)) (-4147 (((-1031) $) NIL)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) NIL)) (-2258 (($ $ $) NIL) (($ (-587 $)) NIL)) (-2850 (($ $) NIL (|has| (-521) (-282))) (((-381 (-521)) $) NIL)) (-2567 (((-521) $) NIL (|has| (-521) (-506)))) (-1912 (((-392 (-1080 $)) (-1080 $)) NIL (|has| (-521) (-838)))) (-2165 (((-392 (-1080 $)) (-1080 $)) NIL (|has| (-521) (-838)))) (-1916 (((-392 $) $) NIL)) (-1962 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2230 (((-3 $ "failed") $ $) NIL)) (-3854 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-2288 (($ $ (-587 (-521)) (-587 (-521))) NIL (|has| (-521) (-284 (-521)))) (($ $ (-521) (-521)) NIL (|has| (-521) (-284 (-521)))) (($ $ (-269 (-521))) NIL (|has| (-521) (-284 (-521)))) (($ $ (-587 (-269 (-521)))) NIL (|has| (-521) (-284 (-521)))) (($ $ (-587 (-1084)) (-587 (-521))) NIL (|has| (-521) (-482 (-1084) (-521)))) (($ $ (-1084) (-521)) NIL (|has| (-521) (-482 (-1084) (-521))))) (-4196 (((-707) $) NIL)) (-2544 (($ $ (-521)) NIL (|has| (-521) (-261 (-521) (-521))))) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) NIL)) (-2156 (($ $) NIL (|has| (-521) (-210))) (($ $ (-707)) NIL (|has| (-521) (-210))) (($ $ (-1084)) NIL (|has| (-521) (-829 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| (-521) (-829 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| (-521) (-829 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| (-521) (-829 (-1084)))) (($ $ (-1 (-521) (-521)) (-707)) NIL) (($ $ (-1 (-521) (-521))) NIL)) (-4142 (($ $) NIL)) (-2812 (((-521) $) NIL)) (-1430 (((-821 (-521)) $) NIL (|has| (-521) (-562 (-821 (-521))))) (((-821 (-353)) $) NIL (|has| (-521) (-562 (-821 (-353))))) (((-497) $) NIL (|has| (-521) (-562 (-497)))) (((-353) $) NIL (|has| (-521) (-946))) (((-202) $) NIL (|has| (-521) (-946)))) (-2944 (((-3 (-1165 $) "failed") (-627 $)) NIL (-12 (|has| $ (-133)) (|has| (-521) (-838))))) (-2189 (((-792) $) NIL) (($ (-521)) NIL) (($ $) NIL) (($ (-381 (-521))) 7) (($ (-521)) NIL) (($ (-1084)) NIL (|has| (-521) (-961 (-1084)))) (((-381 (-521)) $) NIL) (((-929 16) $) 9)) (-1671 (((-3 $ "failed") $) NIL (-3703 (-12 (|has| $ (-133)) (|has| (-521) (-838))) (|has| (-521) (-133))))) (-3846 (((-707)) NIL)) (-2382 (((-521) $) NIL (|has| (-521) (-506)))) (-4210 (((-108) $ $) NIL)) (-3304 (($ $) NIL (|has| (-521) (-757)))) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (-3561 (($) NIL T CONST)) (-3572 (($) NIL T CONST)) (-2212 (($ $) NIL (|has| (-521) (-210))) (($ $ (-707)) NIL (|has| (-521) (-210))) (($ $ (-1084)) NIL (|has| (-521) (-829 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| (-521) (-829 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| (-521) (-829 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| (-521) (-829 (-1084)))) (($ $ (-1 (-521) (-521)) (-707)) NIL) (($ $ (-1 (-521) (-521))) NIL)) (-1574 (((-108) $ $) NIL (|has| (-521) (-784)))) (-1558 (((-108) $ $) NIL (|has| (-521) (-784)))) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL (|has| (-521) (-784)))) (-1549 (((-108) $ $) NIL (|has| (-521) (-784)))) (-1620 (($ $ $) NIL) (($ (-521) (-521)) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ (-381 (-521))) NIL) (($ (-381 (-521)) $) NIL) (($ (-521) $) NIL) (($ $ (-521)) NIL)))
+(((-458) (-13 (-918 (-521)) (-10 -8 (-15 -2189 ((-381 (-521)) $)) (-15 -2189 ((-929 16) $)) (-15 -2850 ((-381 (-521)) $)) (-15 -3895 ($ (-381 (-521))))))) (T -458))
+((-2189 (*1 *2 *1) (-12 (-5 *2 (-381 (-521))) (-5 *1 (-458)))) (-2189 (*1 *2 *1) (-12 (-5 *2 (-929 16)) (-5 *1 (-458)))) (-2850 (*1 *2 *1) (-12 (-5 *2 (-381 (-521))) (-5 *1 (-458)))) (-3895 (*1 *1 *2) (-12 (-5 *2 (-381 (-521))) (-5 *1 (-458)))))
+(-13 (-918 (-521)) (-10 -8 (-15 -2189 ((-381 (-521)) $)) (-15 -2189 ((-929 16) $)) (-15 -2850 ((-381 (-521)) $)) (-15 -3895 ($ (-381 (-521))))))
+((-3757 (((-587 |#2|) $) 22)) (-2221 (((-108) |#2| $) 27)) (-1789 (((-108) (-1 (-108) |#2|) $) 20)) (-2288 (($ $ (-587 (-269 |#2|))) 12) (($ $ (-269 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-587 |#2|) (-587 |#2|)) NIL)) (-4163 (((-707) (-1 (-108) |#2|) $) 21) (((-707) |#2| $) 25)) (-2189 (((-792) $) 36)) (-3049 (((-108) (-1 (-108) |#2|) $) 19)) (-1531 (((-108) $ $) 30)) (-3475 (((-707) $) 16)))
+(((-459 |#1| |#2|) (-10 -8 (-15 -2189 ((-792) |#1|)) (-15 -1531 ((-108) |#1| |#1|)) (-15 -2288 (|#1| |#1| (-587 |#2|) (-587 |#2|))) (-15 -2288 (|#1| |#1| |#2| |#2|)) (-15 -2288 (|#1| |#1| (-269 |#2|))) (-15 -2288 (|#1| |#1| (-587 (-269 |#2|)))) (-15 -2221 ((-108) |#2| |#1|)) (-15 -4163 ((-707) |#2| |#1|)) (-15 -3757 ((-587 |#2|) |#1|)) (-15 -4163 ((-707) (-1 (-108) |#2|) |#1|)) (-15 -1789 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3049 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3475 ((-707) |#1|))) (-460 |#2|) (-1119)) (T -459))
+NIL
+(-10 -8 (-15 -2189 ((-792) |#1|)) (-15 -1531 ((-108) |#1| |#1|)) (-15 -2288 (|#1| |#1| (-587 |#2|) (-587 |#2|))) (-15 -2288 (|#1| |#1| |#2| |#2|)) (-15 -2288 (|#1| |#1| (-269 |#2|))) (-15 -2288 (|#1| |#1| (-587 (-269 |#2|)))) (-15 -2221 ((-108) |#2| |#1|)) (-15 -4163 ((-707) |#2| |#1|)) (-15 -3757 ((-587 |#2|) |#1|)) (-15 -4163 ((-707) (-1 (-108) |#2|) |#1|)) (-15 -1789 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3049 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3475 ((-707) |#1|)))
+((-1415 (((-108) $ $) 19 (|has| |#1| (-1013)))) (-2978 (((-108) $ (-707)) 8)) (-2547 (($) 7 T CONST)) (-3831 (((-587 |#1|) $) 30 (|has| $ (-6 -4233)))) (-2139 (((-108) $ (-707)) 9)) (-3757 (((-587 |#1|) $) 29 (|has| $ (-6 -4233)))) (-2221 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-3833 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#1| |#1|) $) 35)) (-3574 (((-108) $ (-707)) 10)) (-3688 (((-1067) $) 22 (|has| |#1| (-1013)))) (-4147 (((-1031) $) 21 (|has| |#1| (-1013)))) (-1789 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 |#1|))) 26 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) 25 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) 23 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-2488 (((-108) $ $) 14)) (-3462 (((-108) $) 11)) (-4024 (($) 12)) (-4163 (((-707) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4233))) (((-707) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-2404 (($ $) 13)) (-2189 (((-792) $) 18 (|has| |#1| (-561 (-792))))) (-3049 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4233)))) (-1531 (((-108) $ $) 20 (|has| |#1| (-1013)))) (-3475 (((-707) $) 6 (|has| $ (-6 -4233)))))
+(((-460 |#1|) (-1196) (-1119)) (T -460))
+((-1390 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-460 *3)) (-4 *3 (-1119)))) (-3833 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4234)) (-4 *1 (-460 *3)) (-4 *3 (-1119)))) (-3049 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4233)) (-4 *1 (-460 *4)) (-4 *4 (-1119)) (-5 *2 (-108)))) (-1789 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4233)) (-4 *1 (-460 *4)) (-4 *4 (-1119)) (-5 *2 (-108)))) (-4163 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4233)) (-4 *1 (-460 *4)) (-4 *4 (-1119)) (-5 *2 (-707)))) (-3831 (*1 *2 *1) (-12 (|has| *1 (-6 -4233)) (-4 *1 (-460 *3)) (-4 *3 (-1119)) (-5 *2 (-587 *3)))) (-3757 (*1 *2 *1) (-12 (|has| *1 (-6 -4233)) (-4 *1 (-460 *3)) (-4 *3 (-1119)) (-5 *2 (-587 *3)))) (-4163 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4233)) (-4 *1 (-460 *3)) (-4 *3 (-1119)) (-4 *3 (-1013)) (-5 *2 (-707)))) (-2221 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4233)) (-4 *1 (-460 *3)) (-4 *3 (-1119)) (-4 *3 (-1013)) (-5 *2 (-108)))))
+(-13 (-33) (-10 -8 (IF (|has| |t#1| (-561 (-792))) (-6 (-561 (-792))) |%noBranch|) (IF (|has| |t#1| (-1013)) (-6 (-1013)) |%noBranch|) (IF (|has| |t#1| (-1013)) (IF (|has| |t#1| (-284 |t#1|)) (-6 (-284 |t#1|)) |%noBranch|) |%noBranch|) (-15 -1390 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4234)) (-15 -3833 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4233)) (PROGN (-15 -3049 ((-108) (-1 (-108) |t#1|) $)) (-15 -1789 ((-108) (-1 (-108) |t#1|) $)) (-15 -4163 ((-707) (-1 (-108) |t#1|) $)) (-15 -3831 ((-587 |t#1|) $)) (-15 -3757 ((-587 |t#1|) $)) (IF (|has| |t#1| (-1013)) (PROGN (-15 -4163 ((-707) |t#1| $)) (-15 -2221 ((-108) |t#1| $))) |%noBranch|)) |%noBranch|)))
+(((-33) . T) ((-97) |has| |#1| (-1013)) ((-561 (-792)) -3703 (|has| |#1| (-1013)) (|has| |#1| (-561 (-792)))) ((-284 |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-482 |#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-1013) |has| |#1| (-1013)) ((-1119) . T))
+((-2904 (($ $) 15)) (-2880 (($ $) 24)) (-2926 (($ $) 12)) (-1738 (($ $) 10)) (-2915 (($ $) 17)) (-2892 (($ $) 22)))
+(((-461 |#1|) (-10 -8 (-15 -2892 (|#1| |#1|)) (-15 -2915 (|#1| |#1|)) (-15 -1738 (|#1| |#1|)) (-15 -2926 (|#1| |#1|)) (-15 -2880 (|#1| |#1|)) (-15 -2904 (|#1| |#1|))) (-462)) (T -461))
+NIL
+(-10 -8 (-15 -2892 (|#1| |#1|)) (-15 -2915 (|#1| |#1|)) (-15 -1738 (|#1| |#1|)) (-15 -2926 (|#1| |#1|)) (-15 -2880 (|#1| |#1|)) (-15 -2904 (|#1| |#1|)))
+((-2904 (($ $) 11)) (-2880 (($ $) 10)) (-2926 (($ $) 9)) (-1738 (($ $) 8)) (-2915 (($ $) 7)) (-2892 (($ $) 6)))
+(((-462) (-1196)) (T -462))
+((-2904 (*1 *1 *1) (-4 *1 (-462))) (-2880 (*1 *1 *1) (-4 *1 (-462))) (-2926 (*1 *1 *1) (-4 *1 (-462))) (-1738 (*1 *1 *1) (-4 *1 (-462))) (-2915 (*1 *1 *1) (-4 *1 (-462))) (-2892 (*1 *1 *1) (-4 *1 (-462))))
+(-13 (-10 -8 (-15 -2892 ($ $)) (-15 -2915 ($ $)) (-15 -1738 ($ $)) (-15 -2926 ($ $)) (-15 -2880 ($ $)) (-15 -2904 ($ $))))
+((-1916 (((-392 |#4|) |#4| (-1 (-392 |#2|) |#2|)) 42)))
+(((-463 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1916 ((-392 |#4|) |#4| (-1 (-392 |#2|) |#2|)))) (-337) (-1141 |#1|) (-13 (-337) (-135) (-661 |#1| |#2|)) (-1141 |#3|)) (T -463))
+((-1916 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-392 *6) *6)) (-4 *6 (-1141 *5)) (-4 *5 (-337)) (-4 *7 (-13 (-337) (-135) (-661 *5 *6))) (-5 *2 (-392 *3)) (-5 *1 (-463 *5 *6 *7 *3)) (-4 *3 (-1141 *7)))))
+(-10 -7 (-15 -1916 ((-392 |#4|) |#4| (-1 (-392 |#2|) |#2|))))
+((-1415 (((-108) $ $) NIL)) (-3102 (((-587 $) (-1080 $) (-1084)) NIL) (((-587 $) (-1080 $)) NIL) (((-587 $) (-881 $)) NIL)) (-3485 (($ (-1080 $) (-1084)) NIL) (($ (-1080 $)) NIL) (($ (-881 $)) NIL)) (-2220 (((-108) $) 37)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-2559 (($ $) NIL)) (-1733 (((-108) $) NIL)) (-2685 (((-108) $ $) 63)) (-1884 (((-587 (-560 $)) $) 47)) (-1232 (((-3 $ "failed") $ $) NIL)) (-3300 (($ $ (-269 $)) NIL) (($ $ (-587 (-269 $))) NIL) (($ $ (-587 (-560 $)) (-587 $)) NIL)) (-3063 (($ $) NIL)) (-3358 (((-392 $) $) NIL)) (-1927 (($ $) NIL)) (-1389 (((-108) $ $) NIL)) (-2547 (($) NIL T CONST)) (-2270 (((-587 $) (-1080 $) (-1084)) NIL) (((-587 $) (-1080 $)) NIL) (((-587 $) (-881 $)) NIL)) (-2590 (($ (-1080 $) (-1084)) NIL) (($ (-1080 $)) NIL) (($ (-881 $)) NIL)) (-1297 (((-3 (-560 $) "failed") $) NIL) (((-3 (-521) "failed") $) NIL) (((-3 (-381 (-521)) "failed") $) NIL)) (-1483 (((-560 $) $) NIL) (((-521) $) NIL) (((-381 (-521)) $) 49)) (-2277 (($ $ $) NIL)) (-3279 (((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL) (((-627 (-521)) (-627 $)) NIL) (((-2 (|:| -1201 (-627 (-381 (-521)))) (|:| |vec| (-1165 (-381 (-521))))) (-627 $) (-1165 $)) NIL) (((-627 (-381 (-521))) (-627 $)) NIL)) (-3859 (($ $) NIL)) (-1257 (((-3 $ "failed") $) NIL)) (-2253 (($ $ $) NIL)) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) NIL)) (-2710 (((-108) $) NIL)) (-3072 (($ $) NIL) (($ (-587 $)) NIL)) (-1833 (((-587 (-110)) $) NIL)) (-2727 (((-110) (-110)) NIL)) (-3996 (((-108) $) 40)) (-1255 (((-108) $) NIL (|has| $ (-961 (-521))))) (-2801 (((-1036 (-521) (-560 $)) $) 35)) (-3407 (($ $ (-521)) NIL)) (-3930 (((-1080 $) (-1080 $) (-560 $)) 78) (((-1080 $) (-1080 $) (-587 (-560 $))) 54) (($ $ (-560 $)) 67) (($ $ (-587 (-560 $))) 68)) (-1546 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-2527 (((-1080 $) (-560 $)) 65 (|has| $ (-970)))) (-2810 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-1390 (($ (-1 $ $) (-560 $)) NIL)) (-2018 (((-3 (-560 $) "failed") $) NIL)) (-2223 (($ (-587 $)) NIL) (($ $ $) NIL)) (-3688 (((-1067) $) NIL)) (-1266 (((-587 (-560 $)) $) NIL)) (-2905 (($ (-110) $) NIL) (($ (-110) (-587 $)) NIL)) (-1705 (((-108) $ (-110)) NIL) (((-108) $ (-1084)) NIL)) (-3095 (($ $) NIL)) (-4150 (((-707) $) NIL)) (-4147 (((-1031) $) NIL)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) NIL)) (-2258 (($ (-587 $)) NIL) (($ $ $) NIL)) (-3899 (((-108) $ $) NIL) (((-108) $ (-1084)) NIL)) (-1916 (((-392 $) $) NIL)) (-1962 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL)) (-2230 (((-3 $ "failed") $ $) NIL)) (-3854 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-3550 (((-108) $) NIL (|has| $ (-961 (-521))))) (-2288 (($ $ (-560 $) $) NIL) (($ $ (-587 (-560 $)) (-587 $)) NIL) (($ $ (-587 (-269 $))) NIL) (($ $ (-269 $)) NIL) (($ $ $ $) NIL) (($ $ (-587 $) (-587 $)) NIL) (($ $ (-587 (-1084)) (-587 (-1 $ $))) NIL) (($ $ (-587 (-1084)) (-587 (-1 $ (-587 $)))) NIL) (($ $ (-1084) (-1 $ (-587 $))) NIL) (($ $ (-1084) (-1 $ $)) NIL) (($ $ (-587 (-110)) (-587 (-1 $ $))) NIL) (($ $ (-587 (-110)) (-587 (-1 $ (-587 $)))) NIL) (($ $ (-110) (-1 $ (-587 $))) NIL) (($ $ (-110) (-1 $ $)) NIL)) (-4196 (((-707) $) NIL)) (-2544 (($ (-110) $) NIL) (($ (-110) $ $) NIL) (($ (-110) $ $ $) NIL) (($ (-110) $ $ $ $) NIL) (($ (-110) (-587 $)) NIL)) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) NIL)) (-4016 (($ $) NIL) (($ $ $) NIL)) (-2156 (($ $ (-707)) NIL) (($ $) 34)) (-2812 (((-1036 (-521) (-560 $)) $) 18)) (-2879 (($ $) NIL (|has| $ (-970)))) (-1430 (((-353) $) 92) (((-202) $) 100) (((-154 (-353)) $) 108)) (-2189 (((-792) $) NIL) (($ (-560 $)) NIL) (($ (-381 (-521))) NIL) (($ $) NIL) (($ (-521)) NIL) (($ (-1036 (-521) (-560 $))) 19)) (-3846 (((-707)) NIL)) (-2320 (($ $) NIL) (($ (-587 $)) NIL)) (-1455 (((-108) (-110)) 84)) (-4210 (((-108) $ $) NIL)) (-3505 (($ $ (-521)) NIL) (($ $ (-707)) NIL) (($ $ (-850)) NIL)) (-3561 (($) 9 T CONST)) (-3572 (($) 20 T CONST)) (-2212 (($ $ (-707)) NIL) (($ $) NIL)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) 22)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) NIL)) (-1620 (($ $ $) 42)) (-1612 (($ $ $) NIL) (($ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-381 (-521))) NIL) (($ $ (-521)) 45) (($ $ (-707)) NIL) (($ $ (-850)) NIL)) (* (($ (-381 (-521)) $) NIL) (($ $ (-381 (-521))) NIL) (($ $ $) 25) (($ (-521) $) NIL) (($ (-707) $) NIL) (($ (-850) $) NIL)))
+(((-464) (-13 (-277) (-27) (-961 (-521)) (-961 (-381 (-521))) (-583 (-521)) (-946) (-583 (-381 (-521))) (-135) (-562 (-154 (-353))) (-210) (-10 -8 (-15 -2189 ($ (-1036 (-521) (-560 $)))) (-15 -2801 ((-1036 (-521) (-560 $)) $)) (-15 -2812 ((-1036 (-521) (-560 $)) $)) (-15 -3859 ($ $)) (-15 -2685 ((-108) $ $)) (-15 -3930 ((-1080 $) (-1080 $) (-560 $))) (-15 -3930 ((-1080 $) (-1080 $) (-587 (-560 $)))) (-15 -3930 ($ $ (-560 $))) (-15 -3930 ($ $ (-587 (-560 $))))))) (T -464))
+((-2189 (*1 *1 *2) (-12 (-5 *2 (-1036 (-521) (-560 (-464)))) (-5 *1 (-464)))) (-2801 (*1 *2 *1) (-12 (-5 *2 (-1036 (-521) (-560 (-464)))) (-5 *1 (-464)))) (-2812 (*1 *2 *1) (-12 (-5 *2 (-1036 (-521) (-560 (-464)))) (-5 *1 (-464)))) (-3859 (*1 *1 *1) (-5 *1 (-464))) (-2685 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-464)))) (-3930 (*1 *2 *2 *3) (-12 (-5 *2 (-1080 (-464))) (-5 *3 (-560 (-464))) (-5 *1 (-464)))) (-3930 (*1 *2 *2 *3) (-12 (-5 *2 (-1080 (-464))) (-5 *3 (-587 (-560 (-464)))) (-5 *1 (-464)))) (-3930 (*1 *1 *1 *2) (-12 (-5 *2 (-560 (-464))) (-5 *1 (-464)))) (-3930 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-560 (-464)))) (-5 *1 (-464)))))
+(-13 (-277) (-27) (-961 (-521)) (-961 (-381 (-521))) (-583 (-521)) (-946) (-583 (-381 (-521))) (-135) (-562 (-154 (-353))) (-210) (-10 -8 (-15 -2189 ($ (-1036 (-521) (-560 $)))) (-15 -2801 ((-1036 (-521) (-560 $)) $)) (-15 -2812 ((-1036 (-521) (-560 $)) $)) (-15 -3859 ($ $)) (-15 -2685 ((-108) $ $)) (-15 -3930 ((-1080 $) (-1080 $) (-560 $))) (-15 -3930 ((-1080 $) (-1080 $) (-587 (-560 $)))) (-15 -3930 ($ $ (-560 $))) (-15 -3930 ($ $ (-587 (-560 $))))))
+((-1415 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-1903 (((-1170) $ (-521) (-521)) NIL (|has| $ (-6 -4234)))) (-1505 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-784)))) (-1621 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4234))) (($ $) NIL (-12 (|has| $ (-6 -4234)) (|has| |#1| (-784))))) (-3211 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-784)))) (-2978 (((-108) $ (-707)) NIL)) (-2378 ((|#1| $ (-521) |#1|) 25 (|has| $ (-6 -4234))) ((|#1| $ (-1132 (-521)) |#1|) NIL (|has| $ (-6 -4234)))) (-1628 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2547 (($) NIL T CONST)) (-3081 (($ $) NIL (|has| $ (-6 -4234)))) (-1862 (($ $) NIL)) (-2332 (($ $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-1422 (($ |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-3859 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4233)))) (-3849 ((|#1| $ (-521) |#1|) 22 (|has| $ (-6 -4234)))) (-3626 ((|#1| $ (-521)) 21)) (-3233 (((-521) (-1 (-108) |#1|) $) NIL) (((-521) |#1| $) NIL (|has| |#1| (-1013))) (((-521) |#1| $ (-521)) NIL (|has| |#1| (-1013)))) (-3831 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-1811 (($ (-707) |#1|) 14)) (-2139 (((-108) $ (-707)) NIL)) (-2826 (((-521) $) 12 (|has| (-521) (-784)))) (-2810 (($ $ $) NIL (|has| |#1| (-784)))) (-1318 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-784)))) (-3757 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-2221 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2597 (((-521) $) 23 (|has| (-521) (-784)))) (-2446 (($ $ $) NIL (|has| |#1| (-784)))) (-3833 (($ (-1 |#1| |#1|) $) 16 (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#1| |#1|) $) 17) (($ (-1 |#1| |#1| |#1|) $ $) 19)) (-3574 (((-108) $ (-707)) NIL)) (-3688 (((-1067) $) NIL (|has| |#1| (-1013)))) (-1659 (($ |#1| $ (-521)) NIL) (($ $ $ (-521)) NIL)) (-1668 (((-587 (-521)) $) NIL)) (-2941 (((-108) (-521) $) NIL)) (-4147 (((-1031) $) NIL (|has| |#1| (-1013)))) (-2293 ((|#1| $) NIL (|has| (-521) (-784)))) (-3620 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-3016 (($ $ |#1|) 10 (|has| $ (-6 -4234)))) (-1789 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 |#1|))) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-2488 (((-108) $ $) NIL)) (-3821 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2489 (((-587 |#1|) $) NIL)) (-3462 (((-108) $) NIL)) (-4024 (($) 13)) (-2544 ((|#1| $ (-521) |#1|) NIL) ((|#1| $ (-521)) 24) (($ $ (-1132 (-521))) NIL)) (-3691 (($ $ (-521)) NIL) (($ $ (-1132 (-521))) NIL)) (-4163 (((-707) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (((-707) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-1497 (($ $ $ (-521)) NIL (|has| $ (-6 -4234)))) (-2404 (($ $) NIL)) (-1430 (((-497) $) NIL (|has| |#1| (-562 (-497))))) (-2201 (($ (-587 |#1|)) NIL)) (-4159 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-587 $)) NIL)) (-2189 (((-792) $) NIL (|has| |#1| (-561 (-792))))) (-3049 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-1574 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1558 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1531 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-1566 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1549 (((-108) $ $) NIL (|has| |#1| (-784)))) (-3475 (((-707) $) 9 (|has| $ (-6 -4233)))))
+(((-465 |#1| |#2|) (-19 |#1|) (-1119) (-521)) (T -465))
NIL
(-19 |#1|)
-((-1414 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-2063 (((-108) $ (-706)) NIL)) (-2377 ((|#1| $ (-520) (-520) |#1|) NIL)) (-2145 (($ $ (-520) (-464 |#1| |#3|)) NIL)) (-3834 (($ $ (-520) (-464 |#1| |#2|)) NIL)) (-3961 (($) NIL T CONST)) (-2120 (((-464 |#1| |#3|) $ (-520)) NIL)) (-3846 ((|#1| $ (-520) (-520) |#1|) NIL)) (-3623 ((|#1| $ (-520) (-520)) NIL)) (-3828 (((-586 |#1|) $) NIL)) (-1409 (((-706) $) NIL)) (-1810 (($ (-706) (-706) |#1|) NIL)) (-1420 (((-706) $) NIL)) (-3027 (((-108) $ (-706)) NIL)) (-2289 (((-520) $) NIL)) (-1867 (((-520) $) NIL)) (-3702 (((-586 |#1|) $) NIL (|has| $ (-6 -4229)))) (-2422 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-1888 (((-520) $) NIL)) (-2982 (((-520) $) NIL)) (-3830 (($ (-1 |#1| |#1|) $) NIL)) (-1389 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1390 (((-108) $ (-706)) NIL)) (-1239 (((-1066) $) NIL (|has| |#1| (-1012)))) (-4142 (((-1030) $) NIL (|has| |#1| (-1012)))) (-2936 (($ $ |#1|) NIL)) (-4155 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 |#1|))) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-268 |#1|)) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-586 |#1|) (-586 |#1|)) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))) (-2533 (((-108) $ $) NIL)) (-4018 (((-108) $) NIL)) (-2238 (($) NIL)) (-2543 ((|#1| $ (-520) (-520)) NIL) ((|#1| $ (-520) (-520) |#1|) NIL)) (-4159 (((-706) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229))) (((-706) |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-2403 (($ $) NIL)) (-2460 (((-464 |#1| |#2|) $ (-520)) NIL)) (-2188 (((-791) $) NIL (|has| |#1| (-560 (-791))))) (-1662 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-1530 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-3474 (((-706) $) NIL (|has| $ (-6 -4229)))))
-(((-465 |#1| |#2| |#3|) (-55 |#1| (-464 |#1| |#3|) (-464 |#1| |#2|)) (-1118) (-520) (-520)) (T -465))
-NIL
-(-55 |#1| (-464 |#1| |#3|) (-464 |#1| |#2|))
-((-1794 (((-586 (-2 (|:| -1831 (-626 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-626 |#2|)))) (-2 (|:| -1831 (-626 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-626 |#2|))) (-706) (-706)) 27)) (-1202 (((-586 (-1079 |#1|)) |#1| (-706) (-706) (-706)) 34)) (-3055 (((-2 (|:| -1831 (-626 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-626 |#2|))) (-586 |#3|) (-586 (-2 (|:| -1831 (-626 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-626 |#2|)))) (-706)) 84)))
-(((-466 |#1| |#2| |#3|) (-10 -7 (-15 -1202 ((-586 (-1079 |#1|)) |#1| (-706) (-706) (-706))) (-15 -1794 ((-586 (-2 (|:| -1831 (-626 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-626 |#2|)))) (-2 (|:| -1831 (-626 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-626 |#2|))) (-706) (-706))) (-15 -3055 ((-2 (|:| -1831 (-626 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-626 |#2|))) (-586 |#3|) (-586 (-2 (|:| -1831 (-626 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-626 |#2|)))) (-706)))) (-322) (-1140 |#1|) (-1140 |#2|)) (T -466))
-((-3055 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-586 *8)) (-5 *4 (-586 (-2 (|:| -1831 (-626 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-626 *7))))) (-5 *5 (-706)) (-4 *8 (-1140 *7)) (-4 *7 (-1140 *6)) (-4 *6 (-322)) (-5 *2 (-2 (|:| -1831 (-626 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-626 *7)))) (-5 *1 (-466 *6 *7 *8)))) (-1794 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-706)) (-4 *5 (-322)) (-4 *6 (-1140 *5)) (-5 *2 (-586 (-2 (|:| -1831 (-626 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-626 *6))))) (-5 *1 (-466 *5 *6 *7)) (-5 *3 (-2 (|:| -1831 (-626 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-626 *6)))) (-4 *7 (-1140 *6)))) (-1202 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-706)) (-4 *3 (-322)) (-4 *5 (-1140 *3)) (-5 *2 (-586 (-1079 *3))) (-5 *1 (-466 *3 *5 *6)) (-4 *6 (-1140 *5)))))
-(-10 -7 (-15 -1202 ((-586 (-1079 |#1|)) |#1| (-706) (-706) (-706))) (-15 -1794 ((-586 (-2 (|:| -1831 (-626 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-626 |#2|)))) (-2 (|:| -1831 (-626 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-626 |#2|))) (-706) (-706))) (-15 -3055 ((-2 (|:| -1831 (-626 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-626 |#2|))) (-586 |#3|) (-586 (-2 (|:| -1831 (-626 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-626 |#2|)))) (-706))))
-((-2943 (((-2 (|:| -1831 (-626 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-626 |#1|))) (-2 (|:| -1831 (-626 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-626 |#1|))) (-2 (|:| -1831 (-626 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-626 |#1|)))) 60)) (-2807 ((|#1| (-626 |#1|) |#1| (-706)) 25)) (-3017 (((-706) (-706) (-706)) 30)) (-1665 (((-626 |#1|) (-626 |#1|) (-626 |#1|)) 42)) (-1644 (((-626 |#1|) (-626 |#1|) (-626 |#1|) |#1|) 50) (((-626 |#1|) (-626 |#1|) (-626 |#1|)) 47)) (-3930 ((|#1| (-626 |#1|) (-626 |#1|) |#1| (-520)) 29)) (-3182 ((|#1| (-626 |#1|)) 18)))
-(((-467 |#1| |#2| |#3|) (-10 -7 (-15 -3182 (|#1| (-626 |#1|))) (-15 -2807 (|#1| (-626 |#1|) |#1| (-706))) (-15 -3930 (|#1| (-626 |#1|) (-626 |#1|) |#1| (-520))) (-15 -3017 ((-706) (-706) (-706))) (-15 -1644 ((-626 |#1|) (-626 |#1|) (-626 |#1|))) (-15 -1644 ((-626 |#1|) (-626 |#1|) (-626 |#1|) |#1|)) (-15 -1665 ((-626 |#1|) (-626 |#1|) (-626 |#1|))) (-15 -2943 ((-2 (|:| -1831 (-626 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-626 |#1|))) (-2 (|:| -1831 (-626 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-626 |#1|))) (-2 (|:| -1831 (-626 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-626 |#1|)))))) (-13 (-281) (-10 -8 (-15 -1507 ((-391 $) $)))) (-1140 |#1|) (-382 |#1| |#2|)) (T -467))
-((-2943 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -1831 (-626 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-626 *3)))) (-4 *3 (-13 (-281) (-10 -8 (-15 -1507 ((-391 $) $))))) (-4 *4 (-1140 *3)) (-5 *1 (-467 *3 *4 *5)) (-4 *5 (-382 *3 *4)))) (-1665 (*1 *2 *2 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-13 (-281) (-10 -8 (-15 -1507 ((-391 $) $))))) (-4 *4 (-1140 *3)) (-5 *1 (-467 *3 *4 *5)) (-4 *5 (-382 *3 *4)))) (-1644 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-626 *3)) (-4 *3 (-13 (-281) (-10 -8 (-15 -1507 ((-391 $) $))))) (-4 *4 (-1140 *3)) (-5 *1 (-467 *3 *4 *5)) (-4 *5 (-382 *3 *4)))) (-1644 (*1 *2 *2 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-13 (-281) (-10 -8 (-15 -1507 ((-391 $) $))))) (-4 *4 (-1140 *3)) (-5 *1 (-467 *3 *4 *5)) (-4 *5 (-382 *3 *4)))) (-3017 (*1 *2 *2 *2) (-12 (-5 *2 (-706)) (-4 *3 (-13 (-281) (-10 -8 (-15 -1507 ((-391 $) $))))) (-4 *4 (-1140 *3)) (-5 *1 (-467 *3 *4 *5)) (-4 *5 (-382 *3 *4)))) (-3930 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-626 *2)) (-5 *4 (-520)) (-4 *2 (-13 (-281) (-10 -8 (-15 -1507 ((-391 $) $))))) (-4 *5 (-1140 *2)) (-5 *1 (-467 *2 *5 *6)) (-4 *6 (-382 *2 *5)))) (-2807 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-626 *2)) (-5 *4 (-706)) (-4 *2 (-13 (-281) (-10 -8 (-15 -1507 ((-391 $) $))))) (-4 *5 (-1140 *2)) (-5 *1 (-467 *2 *5 *6)) (-4 *6 (-382 *2 *5)))) (-3182 (*1 *2 *3) (-12 (-5 *3 (-626 *2)) (-4 *4 (-1140 *2)) (-4 *2 (-13 (-281) (-10 -8 (-15 -1507 ((-391 $) $))))) (-5 *1 (-467 *2 *4 *5)) (-4 *5 (-382 *2 *4)))))
-(-10 -7 (-15 -3182 (|#1| (-626 |#1|))) (-15 -2807 (|#1| (-626 |#1|) |#1| (-706))) (-15 -3930 (|#1| (-626 |#1|) (-626 |#1|) |#1| (-520))) (-15 -3017 ((-706) (-706) (-706))) (-15 -1644 ((-626 |#1|) (-626 |#1|) (-626 |#1|))) (-15 -1644 ((-626 |#1|) (-626 |#1|) (-626 |#1|) |#1|)) (-15 -1665 ((-626 |#1|) (-626 |#1|) (-626 |#1|))) (-15 -2943 ((-2 (|:| -1831 (-626 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-626 |#1|))) (-2 (|:| -1831 (-626 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-626 |#1|))) (-2 (|:| -1831 (-626 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-626 |#1|))))))
-((-1414 (((-108) $ $) NIL)) (-1499 (($ $) NIL)) (-3343 (($ $ $) 35)) (-1476 (((-1169) $ (-520) (-520)) NIL (|has| $ (-6 -4230)))) (-4029 (((-108) $) NIL (|has| (-108) (-783))) (((-108) (-1 (-108) (-108) (-108)) $) NIL)) (-3587 (($ $) NIL (-12 (|has| $ (-6 -4230)) (|has| (-108) (-783)))) (($ (-1 (-108) (-108) (-108)) $) NIL (|has| $ (-6 -4230)))) (-3210 (($ $) NIL (|has| (-108) (-783))) (($ (-1 (-108) (-108) (-108)) $) NIL)) (-2063 (((-108) $ (-706)) NIL)) (-2377 (((-108) $ (-1131 (-520)) (-108)) NIL (|has| $ (-6 -4230))) (((-108) $ (-520) (-108)) 36 (|has| $ (-6 -4230)))) (-1627 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4229)))) (-3961 (($) NIL T CONST)) (-2447 (($ $) NIL (|has| $ (-6 -4230)))) (-1861 (($ $) NIL)) (-2331 (($ $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-108) (-1012))))) (-1421 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4229))) (($ (-108) $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-108) (-1012))))) (-3856 (((-108) (-1 (-108) (-108) (-108)) $) NIL (|has| $ (-6 -4229))) (((-108) (-1 (-108) (-108) (-108)) $ (-108)) NIL (|has| $ (-6 -4229))) (((-108) (-1 (-108) (-108) (-108)) $ (-108) (-108)) NIL (-12 (|has| $ (-6 -4229)) (|has| (-108) (-1012))))) (-3846 (((-108) $ (-520) (-108)) NIL (|has| $ (-6 -4230)))) (-3623 (((-108) $ (-520)) NIL)) (-3232 (((-520) (-108) $ (-520)) NIL (|has| (-108) (-1012))) (((-520) (-108) $) NIL (|has| (-108) (-1012))) (((-520) (-1 (-108) (-108)) $) NIL)) (-3828 (((-586 (-108)) $) NIL (|has| $ (-6 -4229)))) (-3991 (($ $ $) 33)) (-2399 (($ $) NIL)) (-3476 (($ $ $) NIL)) (-1810 (($ (-706) (-108)) 23)) (-2626 (($ $ $) NIL)) (-3027 (((-108) $ (-706)) NIL)) (-2567 (((-520) $) 8 (|has| (-520) (-783)))) (-2809 (($ $ $) NIL)) (-1819 (($ $ $) NIL (|has| (-108) (-783))) (($ (-1 (-108) (-108) (-108)) $ $) NIL)) (-3702 (((-586 (-108)) $) NIL (|has| $ (-6 -4229)))) (-2422 (((-108) (-108) $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-108) (-1012))))) (-1752 (((-520) $) NIL (|has| (-520) (-783)))) (-2446 (($ $ $) NIL)) (-3830 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4230)))) (-1389 (($ (-1 (-108) (-108) (-108)) $ $) 30) (($ (-1 (-108) (-108)) $) NIL)) (-1390 (((-108) $ (-706)) NIL)) (-1239 (((-1066) $) NIL)) (-1659 (($ $ $ (-520)) NIL) (($ (-108) $ (-520)) NIL)) (-3622 (((-586 (-520)) $) NIL)) (-2603 (((-108) (-520) $) NIL)) (-4142 (((-1030) $) NIL)) (-2293 (((-108) $) NIL (|has| (-520) (-783)))) (-2985 (((-3 (-108) "failed") (-1 (-108) (-108)) $) NIL)) (-2936 (($ $ (-108)) NIL (|has| $ (-6 -4230)))) (-4155 (((-108) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-108)) (-586 (-108))) NIL (-12 (|has| (-108) (-283 (-108))) (|has| (-108) (-1012)))) (($ $ (-108) (-108)) NIL (-12 (|has| (-108) (-283 (-108))) (|has| (-108) (-1012)))) (($ $ (-268 (-108))) NIL (-12 (|has| (-108) (-283 (-108))) (|has| (-108) (-1012)))) (($ $ (-586 (-268 (-108)))) NIL (-12 (|has| (-108) (-283 (-108))) (|has| (-108) (-1012))))) (-2533 (((-108) $ $) NIL)) (-2094 (((-108) (-108) $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-108) (-1012))))) (-1523 (((-586 (-108)) $) NIL)) (-4018 (((-108) $) NIL)) (-2238 (($) 24)) (-2543 (($ $ (-1131 (-520))) NIL) (((-108) $ (-520)) 18) (((-108) $ (-520) (-108)) NIL)) (-3690 (($ $ (-1131 (-520))) NIL) (($ $ (-520)) NIL)) (-4159 (((-706) (-108) $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-108) (-1012)))) (((-706) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4229)))) (-1913 (($ $ $ (-520)) NIL (|has| $ (-6 -4230)))) (-2403 (($ $) 25)) (-1429 (((-496) $) NIL (|has| (-108) (-561 (-496))))) (-2200 (($ (-586 (-108))) NIL)) (-4156 (($ (-586 $)) NIL) (($ $ $) NIL) (($ (-108) $) NIL) (($ $ (-108)) NIL)) (-2188 (((-791) $) 22)) (-1662 (((-108) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4229)))) (-4006 (($ $ $) 31)) (-3504 (($ $) NIL)) (-2763 (($ $ $) NIL)) (-3500 (($ $ $) 39)) (-3511 (($ $) 37)) (-3492 (($ $ $) 38)) (-1573 (((-108) $ $) NIL)) (-1557 (((-108) $ $) NIL)) (-1530 (((-108) $ $) 26)) (-1565 (((-108) $ $) NIL)) (-1548 (((-108) $ $) 27)) (-2321 (($ $ $) NIL)) (-3474 (((-706) $) 10 (|has| $ (-6 -4229)))))
-(((-468 |#1|) (-13 (-119) (-10 -8 (-15 -3511 ($ $)) (-15 -3500 ($ $ $)) (-15 -3492 ($ $ $)))) (-520)) (T -468))
-((-3511 (*1 *1 *1) (-12 (-5 *1 (-468 *2)) (-14 *2 (-520)))) (-3500 (*1 *1 *1 *1) (-12 (-5 *1 (-468 *2)) (-14 *2 (-520)))) (-3492 (*1 *1 *1 *1) (-12 (-5 *1 (-468 *2)) (-14 *2 (-520)))))
-(-13 (-119) (-10 -8 (-15 -3511 ($ $)) (-15 -3500 ($ $ $)) (-15 -3492 ($ $ $))))
-((-3664 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1079 |#4|)) 35)) (-2562 (((-1079 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1079 |#4|)) 22)) (-3608 (((-3 (-626 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-626 (-1079 |#4|))) 46)) (-1840 (((-1079 (-1079 |#4|)) (-1 |#4| |#1|) |#3|) 55)))
-(((-469 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2562 (|#2| (-1 |#1| |#4|) (-1079 |#4|))) (-15 -2562 ((-1079 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3664 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1079 |#4|))) (-15 -3608 ((-3 (-626 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-626 (-1079 |#4|)))) (-15 -1840 ((-1079 (-1079 |#4|)) (-1 |#4| |#1|) |#3|))) (-969) (-1140 |#1|) (-1140 |#2|) (-969)) (T -469))
-((-1840 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-969)) (-4 *7 (-969)) (-4 *6 (-1140 *5)) (-5 *2 (-1079 (-1079 *7))) (-5 *1 (-469 *5 *6 *4 *7)) (-4 *4 (-1140 *6)))) (-3608 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-626 (-1079 *8))) (-4 *5 (-969)) (-4 *8 (-969)) (-4 *6 (-1140 *5)) (-5 *2 (-626 *6)) (-5 *1 (-469 *5 *6 *7 *8)) (-4 *7 (-1140 *6)))) (-3664 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1079 *7)) (-4 *5 (-969)) (-4 *7 (-969)) (-4 *2 (-1140 *5)) (-5 *1 (-469 *5 *2 *6 *7)) (-4 *6 (-1140 *2)))) (-2562 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-969)) (-4 *7 (-969)) (-4 *4 (-1140 *5)) (-5 *2 (-1079 *7)) (-5 *1 (-469 *5 *4 *6 *7)) (-4 *6 (-1140 *4)))) (-2562 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1079 *7)) (-4 *5 (-969)) (-4 *7 (-969)) (-4 *2 (-1140 *5)) (-5 *1 (-469 *5 *2 *6 *7)) (-4 *6 (-1140 *2)))))
-(-10 -7 (-15 -2562 (|#2| (-1 |#1| |#4|) (-1079 |#4|))) (-15 -2562 ((-1079 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3664 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1079 |#4|))) (-15 -3608 ((-3 (-626 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-626 (-1079 |#4|)))) (-15 -1840 ((-1079 (-1079 |#4|)) (-1 |#4| |#1|) |#3|)))
-((-1414 (((-108) $ $) NIL)) (-2809 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-3288 (((-1169) $) 18)) (-2543 (((-1066) $ (-1083)) 22)) (-1677 (((-1169) $) 14)) (-2188 (((-791) $) 20) (($ (-1066)) 19)) (-1573 (((-108) $ $) NIL)) (-1557 (((-108) $ $) NIL)) (-1530 (((-108) $ $) 8)) (-1565 (((-108) $ $) NIL)) (-1548 (((-108) $ $) 7)))
-(((-470) (-13 (-783) (-10 -8 (-15 -2543 ((-1066) $ (-1083))) (-15 -1677 ((-1169) $)) (-15 -3288 ((-1169) $)) (-15 -2188 ($ (-1066)))))) (T -470))
-((-2543 (*1 *2 *1 *3) (-12 (-5 *3 (-1083)) (-5 *2 (-1066)) (-5 *1 (-470)))) (-1677 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-470)))) (-3288 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-470)))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-1066)) (-5 *1 (-470)))))
-(-13 (-783) (-10 -8 (-15 -2543 ((-1066) $ (-1083))) (-15 -1677 ((-1169) $)) (-15 -3288 ((-1169) $)) (-15 -2188 ($ (-1066)))))
-((-3029 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-2412 ((|#1| |#4|) 10)) (-1387 ((|#3| |#4|) 17)))
-(((-471 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2412 (|#1| |#4|)) (-15 -1387 (|#3| |#4|)) (-15 -3029 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-512) (-917 |#1|) (-346 |#1|) (-346 |#2|)) (T -471))
-((-3029 (*1 *2 *3) (-12 (-4 *4 (-512)) (-4 *5 (-917 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-471 *4 *5 *6 *3)) (-4 *6 (-346 *4)) (-4 *3 (-346 *5)))) (-1387 (*1 *2 *3) (-12 (-4 *4 (-512)) (-4 *5 (-917 *4)) (-4 *2 (-346 *4)) (-5 *1 (-471 *4 *5 *2 *3)) (-4 *3 (-346 *5)))) (-2412 (*1 *2 *3) (-12 (-4 *4 (-917 *2)) (-4 *2 (-512)) (-5 *1 (-471 *2 *4 *5 *3)) (-4 *5 (-346 *2)) (-4 *3 (-346 *4)))))
-(-10 -7 (-15 -2412 (|#1| |#4|)) (-15 -1387 (|#3| |#4|)) (-15 -3029 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|)))
-((-1414 (((-108) $ $) NIL)) (-1978 (((-108) $ (-586 |#3|)) 103) (((-108) $) 104)) (-2906 (((-108) $) 146)) (-2424 (($ $ |#4|) 95) (($ $ |#4| (-586 |#3|)) 99)) (-3026 (((-1073 (-586 (-880 |#1|)) (-586 (-268 (-880 |#1|)))) (-586 |#4|)) 139 (|has| |#3| (-561 (-1083))))) (-2060 (($ $ $) 89) (($ $ |#4|) 87)) (-1537 (((-108) $) 145)) (-3054 (($ $) 107)) (-1239 (((-1066) $) NIL)) (-2077 (($ $ $) 81) (($ (-586 $)) 83)) (-1214 (((-108) |#4| $) 106)) (-2070 (((-108) $ $) 70)) (-1273 (($ (-586 |#4|)) 88)) (-4142 (((-1030) $) NIL)) (-3572 (($ (-586 |#4|)) 143)) (-3502 (((-108) $) 144)) (-1859 (($ $) 72)) (-1664 (((-586 |#4|) $) 56)) (-3713 (((-2 (|:| |mval| (-626 |#1|)) (|:| |invmval| (-626 |#1|)) (|:| |genIdeal| $)) $ (-586 |#3|)) NIL)) (-1518 (((-108) |#4| $) 75)) (-1556 (((-520) $ (-586 |#3|)) 108) (((-520) $) 109)) (-2188 (((-791) $) 142) (($ (-586 |#4|)) 84)) (-2137 (($ (-2 (|:| |mval| (-626 |#1|)) (|:| |invmval| (-626 |#1|)) (|:| |genIdeal| $))) NIL)) (-1530 (((-108) $ $) 71)) (-1601 (($ $ $) 91)) (** (($ $ (-706)) 94)) (* (($ $ $) 93)))
-(((-472 |#1| |#2| |#3| |#4|) (-13 (-1012) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-706))) (-15 -1601 ($ $ $)) (-15 -1537 ((-108) $)) (-15 -2906 ((-108) $)) (-15 -1518 ((-108) |#4| $)) (-15 -2070 ((-108) $ $)) (-15 -1214 ((-108) |#4| $)) (-15 -1978 ((-108) $ (-586 |#3|))) (-15 -1978 ((-108) $)) (-15 -2077 ($ $ $)) (-15 -2077 ($ (-586 $))) (-15 -2060 ($ $ $)) (-15 -2060 ($ $ |#4|)) (-15 -1859 ($ $)) (-15 -3713 ((-2 (|:| |mval| (-626 |#1|)) (|:| |invmval| (-626 |#1|)) (|:| |genIdeal| $)) $ (-586 |#3|))) (-15 -2137 ($ (-2 (|:| |mval| (-626 |#1|)) (|:| |invmval| (-626 |#1|)) (|:| |genIdeal| $)))) (-15 -1556 ((-520) $ (-586 |#3|))) (-15 -1556 ((-520) $)) (-15 -3054 ($ $)) (-15 -1273 ($ (-586 |#4|))) (-15 -3572 ($ (-586 |#4|))) (-15 -3502 ((-108) $)) (-15 -1664 ((-586 |#4|) $)) (-15 -2188 ($ (-586 |#4|))) (-15 -2424 ($ $ |#4|)) (-15 -2424 ($ $ |#4| (-586 |#3|))) (IF (|has| |#3| (-561 (-1083))) (-15 -3026 ((-1073 (-586 (-880 |#1|)) (-586 (-268 (-880 |#1|)))) (-586 |#4|))) |%noBranch|))) (-336) (-728) (-783) (-877 |#1| |#2| |#3|)) (T -472))
-((* (*1 *1 *1 *1) (-12 (-4 *2 (-336)) (-4 *3 (-728)) (-4 *4 (-783)) (-5 *1 (-472 *2 *3 *4 *5)) (-4 *5 (-877 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-706)) (-4 *3 (-336)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *1 (-472 *3 *4 *5 *6)) (-4 *6 (-877 *3 *4 *5)))) (-1601 (*1 *1 *1 *1) (-12 (-4 *2 (-336)) (-4 *3 (-728)) (-4 *4 (-783)) (-5 *1 (-472 *2 *3 *4 *5)) (-4 *5 (-877 *2 *3 *4)))) (-1537 (*1 *2 *1) (-12 (-4 *3 (-336)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *2 (-108)) (-5 *1 (-472 *3 *4 *5 *6)) (-4 *6 (-877 *3 *4 *5)))) (-2906 (*1 *2 *1) (-12 (-4 *3 (-336)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *2 (-108)) (-5 *1 (-472 *3 *4 *5 *6)) (-4 *6 (-877 *3 *4 *5)))) (-1518 (*1 *2 *3 *1) (-12 (-4 *4 (-336)) (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-108)) (-5 *1 (-472 *4 *5 *6 *3)) (-4 *3 (-877 *4 *5 *6)))) (-2070 (*1 *2 *1 *1) (-12 (-4 *3 (-336)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *2 (-108)) (-5 *1 (-472 *3 *4 *5 *6)) (-4 *6 (-877 *3 *4 *5)))) (-1214 (*1 *2 *3 *1) (-12 (-4 *4 (-336)) (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-108)) (-5 *1 (-472 *4 *5 *6 *3)) (-4 *3 (-877 *4 *5 *6)))) (-1978 (*1 *2 *1 *3) (-12 (-5 *3 (-586 *6)) (-4 *6 (-783)) (-4 *4 (-336)) (-4 *5 (-728)) (-5 *2 (-108)) (-5 *1 (-472 *4 *5 *6 *7)) (-4 *7 (-877 *4 *5 *6)))) (-1978 (*1 *2 *1) (-12 (-4 *3 (-336)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *2 (-108)) (-5 *1 (-472 *3 *4 *5 *6)) (-4 *6 (-877 *3 *4 *5)))) (-2077 (*1 *1 *1 *1) (-12 (-4 *2 (-336)) (-4 *3 (-728)) (-4 *4 (-783)) (-5 *1 (-472 *2 *3 *4 *5)) (-4 *5 (-877 *2 *3 *4)))) (-2077 (*1 *1 *2) (-12 (-5 *2 (-586 (-472 *3 *4 *5 *6))) (-4 *3 (-336)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *1 (-472 *3 *4 *5 *6)) (-4 *6 (-877 *3 *4 *5)))) (-2060 (*1 *1 *1 *1) (-12 (-4 *2 (-336)) (-4 *3 (-728)) (-4 *4 (-783)) (-5 *1 (-472 *2 *3 *4 *5)) (-4 *5 (-877 *2 *3 *4)))) (-2060 (*1 *1 *1 *2) (-12 (-4 *3 (-336)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *1 (-472 *3 *4 *5 *2)) (-4 *2 (-877 *3 *4 *5)))) (-1859 (*1 *1 *1) (-12 (-4 *2 (-336)) (-4 *3 (-728)) (-4 *4 (-783)) (-5 *1 (-472 *2 *3 *4 *5)) (-4 *5 (-877 *2 *3 *4)))) (-3713 (*1 *2 *1 *3) (-12 (-5 *3 (-586 *6)) (-4 *6 (-783)) (-4 *4 (-336)) (-4 *5 (-728)) (-5 *2 (-2 (|:| |mval| (-626 *4)) (|:| |invmval| (-626 *4)) (|:| |genIdeal| (-472 *4 *5 *6 *7)))) (-5 *1 (-472 *4 *5 *6 *7)) (-4 *7 (-877 *4 *5 *6)))) (-2137 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-626 *3)) (|:| |invmval| (-626 *3)) (|:| |genIdeal| (-472 *3 *4 *5 *6)))) (-4 *3 (-336)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *1 (-472 *3 *4 *5 *6)) (-4 *6 (-877 *3 *4 *5)))) (-1556 (*1 *2 *1 *3) (-12 (-5 *3 (-586 *6)) (-4 *6 (-783)) (-4 *4 (-336)) (-4 *5 (-728)) (-5 *2 (-520)) (-5 *1 (-472 *4 *5 *6 *7)) (-4 *7 (-877 *4 *5 *6)))) (-1556 (*1 *2 *1) (-12 (-4 *3 (-336)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *2 (-520)) (-5 *1 (-472 *3 *4 *5 *6)) (-4 *6 (-877 *3 *4 *5)))) (-3054 (*1 *1 *1) (-12 (-4 *2 (-336)) (-4 *3 (-728)) (-4 *4 (-783)) (-5 *1 (-472 *2 *3 *4 *5)) (-4 *5 (-877 *2 *3 *4)))) (-1273 (*1 *1 *2) (-12 (-5 *2 (-586 *6)) (-4 *6 (-877 *3 *4 *5)) (-4 *3 (-336)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *1 (-472 *3 *4 *5 *6)))) (-3572 (*1 *1 *2) (-12 (-5 *2 (-586 *6)) (-4 *6 (-877 *3 *4 *5)) (-4 *3 (-336)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *1 (-472 *3 *4 *5 *6)))) (-3502 (*1 *2 *1) (-12 (-4 *3 (-336)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *2 (-108)) (-5 *1 (-472 *3 *4 *5 *6)) (-4 *6 (-877 *3 *4 *5)))) (-1664 (*1 *2 *1) (-12 (-4 *3 (-336)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *2 (-586 *6)) (-5 *1 (-472 *3 *4 *5 *6)) (-4 *6 (-877 *3 *4 *5)))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-586 *6)) (-4 *6 (-877 *3 *4 *5)) (-4 *3 (-336)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *1 (-472 *3 *4 *5 *6)))) (-2424 (*1 *1 *1 *2) (-12 (-4 *3 (-336)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *1 (-472 *3 *4 *5 *2)) (-4 *2 (-877 *3 *4 *5)))) (-2424 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-586 *6)) (-4 *6 (-783)) (-4 *4 (-336)) (-4 *5 (-728)) (-5 *1 (-472 *4 *5 *6 *2)) (-4 *2 (-877 *4 *5 *6)))) (-3026 (*1 *2 *3) (-12 (-5 *3 (-586 *7)) (-4 *7 (-877 *4 *5 *6)) (-4 *6 (-561 (-1083))) (-4 *4 (-336)) (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-1073 (-586 (-880 *4)) (-586 (-268 (-880 *4))))) (-5 *1 (-472 *4 *5 *6 *7)))))
-(-13 (-1012) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-706))) (-15 -1601 ($ $ $)) (-15 -1537 ((-108) $)) (-15 -2906 ((-108) $)) (-15 -1518 ((-108) |#4| $)) (-15 -2070 ((-108) $ $)) (-15 -1214 ((-108) |#4| $)) (-15 -1978 ((-108) $ (-586 |#3|))) (-15 -1978 ((-108) $)) (-15 -2077 ($ $ $)) (-15 -2077 ($ (-586 $))) (-15 -2060 ($ $ $)) (-15 -2060 ($ $ |#4|)) (-15 -1859 ($ $)) (-15 -3713 ((-2 (|:| |mval| (-626 |#1|)) (|:| |invmval| (-626 |#1|)) (|:| |genIdeal| $)) $ (-586 |#3|))) (-15 -2137 ($ (-2 (|:| |mval| (-626 |#1|)) (|:| |invmval| (-626 |#1|)) (|:| |genIdeal| $)))) (-15 -1556 ((-520) $ (-586 |#3|))) (-15 -1556 ((-520) $)) (-15 -3054 ($ $)) (-15 -1273 ($ (-586 |#4|))) (-15 -3572 ($ (-586 |#4|))) (-15 -3502 ((-108) $)) (-15 -1664 ((-586 |#4|) $)) (-15 -2188 ($ (-586 |#4|))) (-15 -2424 ($ $ |#4|)) (-15 -2424 ($ $ |#4| (-586 |#3|))) (IF (|has| |#3| (-561 (-1083))) (-15 -3026 ((-1073 (-586 (-880 |#1|)) (-586 (-268 (-880 |#1|)))) (-586 |#4|))) |%noBranch|)))
-((-1970 (((-108) (-472 (-380 (-520)) (-216 |#2| (-706)) (-793 |#1|) (-223 |#1| (-380 (-520))))) 146)) (-2492 (((-108) (-472 (-380 (-520)) (-216 |#2| (-706)) (-793 |#1|) (-223 |#1| (-380 (-520))))) 147)) (-2396 (((-472 (-380 (-520)) (-216 |#2| (-706)) (-793 |#1|) (-223 |#1| (-380 (-520)))) (-472 (-380 (-520)) (-216 |#2| (-706)) (-793 |#1|) (-223 |#1| (-380 (-520))))) 105)) (-2036 (((-108) (-472 (-380 (-520)) (-216 |#2| (-706)) (-793 |#1|) (-223 |#1| (-380 (-520))))) NIL)) (-3941 (((-586 (-472 (-380 (-520)) (-216 |#2| (-706)) (-793 |#1|) (-223 |#1| (-380 (-520))))) (-472 (-380 (-520)) (-216 |#2| (-706)) (-793 |#1|) (-223 |#1| (-380 (-520))))) 149)) (-2095 (((-472 (-380 (-520)) (-216 |#2| (-706)) (-793 |#1|) (-223 |#1| (-380 (-520)))) (-472 (-380 (-520)) (-216 |#2| (-706)) (-793 |#1|) (-223 |#1| (-380 (-520)))) (-586 (-793 |#1|))) 161)))
-(((-473 |#1| |#2|) (-10 -7 (-15 -1970 ((-108) (-472 (-380 (-520)) (-216 |#2| (-706)) (-793 |#1|) (-223 |#1| (-380 (-520)))))) (-15 -2492 ((-108) (-472 (-380 (-520)) (-216 |#2| (-706)) (-793 |#1|) (-223 |#1| (-380 (-520)))))) (-15 -2036 ((-108) (-472 (-380 (-520)) (-216 |#2| (-706)) (-793 |#1|) (-223 |#1| (-380 (-520)))))) (-15 -2396 ((-472 (-380 (-520)) (-216 |#2| (-706)) (-793 |#1|) (-223 |#1| (-380 (-520)))) (-472 (-380 (-520)) (-216 |#2| (-706)) (-793 |#1|) (-223 |#1| (-380 (-520)))))) (-15 -3941 ((-586 (-472 (-380 (-520)) (-216 |#2| (-706)) (-793 |#1|) (-223 |#1| (-380 (-520))))) (-472 (-380 (-520)) (-216 |#2| (-706)) (-793 |#1|) (-223 |#1| (-380 (-520)))))) (-15 -2095 ((-472 (-380 (-520)) (-216 |#2| (-706)) (-793 |#1|) (-223 |#1| (-380 (-520)))) (-472 (-380 (-520)) (-216 |#2| (-706)) (-793 |#1|) (-223 |#1| (-380 (-520)))) (-586 (-793 |#1|))))) (-586 (-1083)) (-706)) (T -473))
-((-2095 (*1 *2 *2 *3) (-12 (-5 *2 (-472 (-380 (-520)) (-216 *5 (-706)) (-793 *4) (-223 *4 (-380 (-520))))) (-5 *3 (-586 (-793 *4))) (-14 *4 (-586 (-1083))) (-14 *5 (-706)) (-5 *1 (-473 *4 *5)))) (-3941 (*1 *2 *3) (-12 (-14 *4 (-586 (-1083))) (-14 *5 (-706)) (-5 *2 (-586 (-472 (-380 (-520)) (-216 *5 (-706)) (-793 *4) (-223 *4 (-380 (-520)))))) (-5 *1 (-473 *4 *5)) (-5 *3 (-472 (-380 (-520)) (-216 *5 (-706)) (-793 *4) (-223 *4 (-380 (-520))))))) (-2396 (*1 *2 *2) (-12 (-5 *2 (-472 (-380 (-520)) (-216 *4 (-706)) (-793 *3) (-223 *3 (-380 (-520))))) (-14 *3 (-586 (-1083))) (-14 *4 (-706)) (-5 *1 (-473 *3 *4)))) (-2036 (*1 *2 *3) (-12 (-5 *3 (-472 (-380 (-520)) (-216 *5 (-706)) (-793 *4) (-223 *4 (-380 (-520))))) (-14 *4 (-586 (-1083))) (-14 *5 (-706)) (-5 *2 (-108)) (-5 *1 (-473 *4 *5)))) (-2492 (*1 *2 *3) (-12 (-5 *3 (-472 (-380 (-520)) (-216 *5 (-706)) (-793 *4) (-223 *4 (-380 (-520))))) (-14 *4 (-586 (-1083))) (-14 *5 (-706)) (-5 *2 (-108)) (-5 *1 (-473 *4 *5)))) (-1970 (*1 *2 *3) (-12 (-5 *3 (-472 (-380 (-520)) (-216 *5 (-706)) (-793 *4) (-223 *4 (-380 (-520))))) (-14 *4 (-586 (-1083))) (-14 *5 (-706)) (-5 *2 (-108)) (-5 *1 (-473 *4 *5)))))
-(-10 -7 (-15 -1970 ((-108) (-472 (-380 (-520)) (-216 |#2| (-706)) (-793 |#1|) (-223 |#1| (-380 (-520)))))) (-15 -2492 ((-108) (-472 (-380 (-520)) (-216 |#2| (-706)) (-793 |#1|) (-223 |#1| (-380 (-520)))))) (-15 -2036 ((-108) (-472 (-380 (-520)) (-216 |#2| (-706)) (-793 |#1|) (-223 |#1| (-380 (-520)))))) (-15 -2396 ((-472 (-380 (-520)) (-216 |#2| (-706)) (-793 |#1|) (-223 |#1| (-380 (-520)))) (-472 (-380 (-520)) (-216 |#2| (-706)) (-793 |#1|) (-223 |#1| (-380 (-520)))))) (-15 -3941 ((-586 (-472 (-380 (-520)) (-216 |#2| (-706)) (-793 |#1|) (-223 |#1| (-380 (-520))))) (-472 (-380 (-520)) (-216 |#2| (-706)) (-793 |#1|) (-223 |#1| (-380 (-520)))))) (-15 -2095 ((-472 (-380 (-520)) (-216 |#2| (-706)) (-793 |#1|) (-223 |#1| (-380 (-520)))) (-472 (-380 (-520)) (-216 |#2| (-706)) (-793 |#1|) (-223 |#1| (-380 (-520)))) (-586 (-793 |#1|)))))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-1917 (((-3 $ "failed") $ $) NIL)) (-3961 (($) NIL T CONST)) (-3150 (($ $) NIL)) (-4039 (($ |#1| |#2|) NIL)) (-1389 (($ (-1 |#1| |#1|) $) NIL)) (-2851 ((|#2| $) NIL)) (-3133 ((|#1| $) NIL)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2188 (((-791) $) NIL)) (-3560 (($) 12 T CONST)) (-1530 (((-108) $ $) NIL)) (-1611 (($ $) 11) (($ $ $) 24)) (-1601 (($ $ $) NIL)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) 19)))
-(((-474 |#1| |#2|) (-13 (-21) (-476 |#1| |#2|)) (-21) (-783)) (T -474))
-NIL
-(-13 (-21) (-476 |#1| |#2|))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) 12)) (-3961 (($) NIL T CONST)) (-3150 (($ $) 27)) (-4039 (($ |#1| |#2|) 24)) (-1389 (($ (-1 |#1| |#1|) $) 26)) (-2851 ((|#2| $) NIL)) (-3133 ((|#1| $) 28)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2188 (((-791) $) NIL)) (-3560 (($) 10 T CONST)) (-1530 (((-108) $ $) NIL)) (-1601 (($ $ $) 18)) (* (($ (-849) $) NIL) (($ (-706) $) 23)))
-(((-475 |#1| |#2|) (-13 (-23) (-476 |#1| |#2|)) (-23) (-783)) (T -475))
-NIL
-(-13 (-23) (-476 |#1| |#2|))
-((-1414 (((-108) $ $) 7)) (-3150 (($ $) 13)) (-4039 (($ |#1| |#2|) 16)) (-1389 (($ (-1 |#1| |#1|) $) 17)) (-2851 ((|#2| $) 14)) (-3133 ((|#1| $) 15)) (-1239 (((-1066) $) 9)) (-4142 (((-1030) $) 10)) (-2188 (((-791) $) 11)) (-1530 (((-108) $ $) 6)))
-(((-476 |#1| |#2|) (-1195) (-1012) (-783)) (T -476))
-((-1389 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-476 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-783)))) (-4039 (*1 *1 *2 *3) (-12 (-4 *1 (-476 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-783)))) (-3133 (*1 *2 *1) (-12 (-4 *1 (-476 *2 *3)) (-4 *3 (-783)) (-4 *2 (-1012)))) (-2851 (*1 *2 *1) (-12 (-4 *1 (-476 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-783)))) (-3150 (*1 *1 *1) (-12 (-4 *1 (-476 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-783)))))
-(-13 (-1012) (-10 -8 (-15 -1389 ($ (-1 |t#1| |t#1|) $)) (-15 -4039 ($ |t#1| |t#2|)) (-15 -3133 (|t#1| $)) (-15 -2851 (|t#2| $)) (-15 -3150 ($ $))))
-(((-97) . T) ((-560 (-791)) . T) ((-1012) . T))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-3961 (($) NIL T CONST)) (-3150 (($ $) NIL)) (-4039 (($ |#1| |#2|) NIL)) (-2809 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-1389 (($ (-1 |#1| |#1|) $) NIL)) (-2851 ((|#2| $) NIL)) (-3133 ((|#1| $) NIL)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2188 (((-791) $) NIL)) (-3560 (($) NIL T CONST)) (-1573 (((-108) $ $) NIL)) (-1557 (((-108) $ $) NIL)) (-1530 (((-108) $ $) NIL)) (-1565 (((-108) $ $) NIL)) (-1548 (((-108) $ $) 13)) (-1601 (($ $ $) NIL)) (* (($ (-706) $) NIL) (($ (-849) $) NIL)))
-(((-477 |#1| |#2|) (-13 (-727) (-476 |#1| |#2|)) (-727) (-783)) (T -477))
-NIL
-(-13 (-727) (-476 |#1| |#2|))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-1224 (($ $ $) 16)) (-1917 (((-3 $ "failed") $ $) 13)) (-3961 (($) NIL T CONST)) (-3150 (($ $) NIL)) (-4039 (($ |#1| |#2|) NIL)) (-2809 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-1389 (($ (-1 |#1| |#1|) $) NIL)) (-2851 ((|#2| $) NIL)) (-3133 ((|#1| $) NIL)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2188 (((-791) $) NIL)) (-3560 (($) NIL T CONST)) (-1573 (((-108) $ $) NIL)) (-1557 (((-108) $ $) NIL)) (-1530 (((-108) $ $) NIL)) (-1565 (((-108) $ $) NIL)) (-1548 (((-108) $ $) NIL)) (-1601 (($ $ $) NIL)) (* (($ (-706) $) NIL) (($ (-849) $) NIL)))
-(((-478 |#1| |#2|) (-13 (-728) (-476 |#1| |#2|)) (-728) (-783)) (T -478))
-NIL
-(-13 (-728) (-476 |#1| |#2|))
-((-1414 (((-108) $ $) NIL)) (-3150 (($ $) 25)) (-4039 (($ |#1| |#2|) 22)) (-1389 (($ (-1 |#1| |#1|) $) 24)) (-2851 ((|#2| $) 27)) (-3133 ((|#1| $) 26)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2188 (((-791) $) 21)) (-1530 (((-108) $ $) 14)))
-(((-479 |#1| |#2|) (-476 |#1| |#2|) (-1012) (-783)) (T -479))
-NIL
-(-476 |#1| |#2|)
-((-2286 (($ $ (-586 |#2|) (-586 |#3|)) NIL) (($ $ |#2| |#3|) 12)))
-(((-480 |#1| |#2| |#3|) (-10 -8 (-15 -2286 (|#1| |#1| |#2| |#3|)) (-15 -2286 (|#1| |#1| (-586 |#2|) (-586 |#3|)))) (-481 |#2| |#3|) (-1012) (-1118)) (T -480))
-NIL
-(-10 -8 (-15 -2286 (|#1| |#1| |#2| |#3|)) (-15 -2286 (|#1| |#1| (-586 |#2|) (-586 |#3|))))
-((-2286 (($ $ (-586 |#1|) (-586 |#2|)) 7) (($ $ |#1| |#2|) 6)))
-(((-481 |#1| |#2|) (-1195) (-1012) (-1118)) (T -481))
-((-2286 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-586 *4)) (-5 *3 (-586 *5)) (-4 *1 (-481 *4 *5)) (-4 *4 (-1012)) (-4 *5 (-1118)))) (-2286 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-481 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1118)))))
-(-13 (-10 -8 (-15 -2286 ($ $ |t#1| |t#2|)) (-15 -2286 ($ $ (-586 |t#1|) (-586 |t#2|)))))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) 16)) (-2088 (((-586 (-2 (|:| |gen| |#1|) (|:| -3260 |#2|))) $) 18)) (-1917 (((-3 $ "failed") $ $) NIL)) (-1628 (((-706) $) NIL)) (-3961 (($) NIL T CONST)) (-1296 (((-3 |#1| "failed") $) NIL)) (-1482 ((|#1| $) NIL)) (-3691 ((|#1| $ (-520)) 23)) (-3701 ((|#2| $ (-520)) 21)) (-3151 (($ (-1 |#1| |#1|) $) 46)) (-3367 (($ (-1 |#2| |#2|) $) 43)) (-1239 (((-1066) $) NIL)) (-1263 (($ $ $) 53 (|has| |#2| (-727)))) (-4142 (((-1030) $) NIL)) (-2188 (((-791) $) 42) (($ |#1|) NIL)) (-3475 ((|#2| |#1| $) 49)) (-3560 (($) 11 T CONST)) (-1530 (((-108) $ $) 29)) (-1601 (($ $ $) 27) (($ |#1| $) 25)) (* (($ (-849) $) NIL) (($ (-706) $) 36) (($ |#2| |#1|) 31)))
-(((-482 |#1| |#2| |#3|) (-296 |#1| |#2|) (-1012) (-124) |#2|) (T -482))
-NIL
-(-296 |#1| |#2|)
-((-1414 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-1476 (((-1169) $ (-520) (-520)) NIL (|has| $ (-6 -4230)))) (-4029 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-783)))) (-3587 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4230))) (($ $) NIL (-12 (|has| $ (-6 -4230)) (|has| |#1| (-783))))) (-3210 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-783)))) (-2063 (((-108) $ (-706)) NIL)) (-2162 (((-108) (-108)) 24)) (-2377 ((|#1| $ (-520) |#1|) 27 (|has| $ (-6 -4230))) ((|#1| $ (-1131 (-520)) |#1|) NIL (|has| $ (-6 -4230)))) (-1817 (($ (-1 (-108) |#1|) $) 51)) (-1627 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-3961 (($) NIL T CONST)) (-2447 (($ $) NIL (|has| $ (-6 -4230)))) (-1861 (($ $) NIL)) (-3667 (($ $) 55 (|has| |#1| (-1012)))) (-2331 (($ $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-3766 (($ |#1| $) NIL (|has| |#1| (-1012))) (($ (-1 (-108) |#1|) $) 43)) (-1421 (($ |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-3856 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4229))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4229)))) (-3846 ((|#1| $ (-520) |#1|) NIL (|has| $ (-6 -4230)))) (-3623 ((|#1| $ (-520)) NIL)) (-3232 (((-520) (-1 (-108) |#1|) $) NIL) (((-520) |#1| $) NIL (|has| |#1| (-1012))) (((-520) |#1| $ (-520)) NIL (|has| |#1| (-1012)))) (-3033 (($ $ (-520)) 13)) (-1681 (((-706) $) 11)) (-3828 (((-586 |#1|) $) NIL (|has| $ (-6 -4229)))) (-1810 (($ (-706) |#1|) 22)) (-3027 (((-108) $ (-706)) NIL)) (-2567 (((-520) $) 20 (|has| (-520) (-783)))) (-2809 (($ $ $) NIL (|has| |#1| (-783)))) (-3235 (($ $ $) NIL (|has| |#1| (-783))) (($ (-1 (-108) |#1| |#1|) $ $) 34)) (-1819 (($ (-1 (-108) |#1| |#1|) $ $) 35) (($ $ $) NIL (|has| |#1| (-783)))) (-3702 (((-586 |#1|) $) NIL (|has| $ (-6 -4229)))) (-2422 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-1752 (((-520) $) 19 (|has| (-520) (-783)))) (-2446 (($ $ $) NIL (|has| |#1| (-783)))) (-3830 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1390 (((-108) $ (-706)) NIL)) (-1239 (((-1066) $) NIL (|has| |#1| (-1012)))) (-3618 (($ $ $ (-520)) 50) (($ |#1| $ (-520)) 36)) (-1659 (($ |#1| $ (-520)) NIL) (($ $ $ (-520)) NIL)) (-3622 (((-586 (-520)) $) NIL)) (-2603 (((-108) (-520) $) NIL)) (-4142 (((-1030) $) NIL (|has| |#1| (-1012)))) (-1776 (($ (-586 |#1|)) 28)) (-2293 ((|#1| $) NIL (|has| (-520) (-783)))) (-2985 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-2936 (($ $ |#1|) 18 (|has| $ (-6 -4230)))) (-4155 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 |#1|))) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-268 |#1|)) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-586 |#1|) (-586 |#1|)) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))) (-2533 (((-108) $ $) 39)) (-2094 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-1523 (((-586 |#1|) $) NIL)) (-4018 (((-108) $) NIL)) (-2238 (($) 14)) (-2543 ((|#1| $ (-520) |#1|) NIL) ((|#1| $ (-520)) 32) (($ $ (-1131 (-520))) NIL)) (-4185 (($ $ (-1131 (-520))) 49) (($ $ (-520)) 44)) (-3690 (($ $ (-520)) NIL) (($ $ (-1131 (-520))) NIL)) (-4159 (((-706) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229))) (((-706) |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-1913 (($ $ $ (-520)) 40 (|has| $ (-6 -4230)))) (-2403 (($ $) 31)) (-1429 (((-496) $) NIL (|has| |#1| (-561 (-496))))) (-2200 (($ (-586 |#1|)) NIL)) (-2251 (($ $ $) 41) (($ $ |#1|) 38)) (-4156 (($ $ |#1|) NIL) (($ |#1| $) 37) (($ $ $) NIL) (($ (-586 $)) NIL)) (-2188 (((-791) $) NIL (|has| |#1| (-560 (-791))))) (-1662 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-1573 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1557 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1530 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-1565 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1548 (((-108) $ $) NIL (|has| |#1| (-783)))) (-3474 (((-706) $) 15 (|has| $ (-6 -4229)))))
-(((-483 |#1| |#2|) (-13 (-19 |#1|) (-256 |#1|) (-10 -8 (-15 -1776 ($ (-586 |#1|))) (-15 -1681 ((-706) $)) (-15 -3033 ($ $ (-520))) (-15 -2162 ((-108) (-108))))) (-1118) (-520)) (T -483))
-((-1776 (*1 *1 *2) (-12 (-5 *2 (-586 *3)) (-4 *3 (-1118)) (-5 *1 (-483 *3 *4)) (-14 *4 (-520)))) (-1681 (*1 *2 *1) (-12 (-5 *2 (-706)) (-5 *1 (-483 *3 *4)) (-4 *3 (-1118)) (-14 *4 (-520)))) (-3033 (*1 *1 *1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-483 *3 *4)) (-4 *3 (-1118)) (-14 *4 *2))) (-2162 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-483 *3 *4)) (-4 *3 (-1118)) (-14 *4 (-520)))))
-(-13 (-19 |#1|) (-256 |#1|) (-10 -8 (-15 -1776 ($ (-586 |#1|))) (-15 -1681 ((-706) $)) (-15 -3033 ($ $ (-520))) (-15 -2162 ((-108) (-108)))))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) NIL)) (-2583 (($ $) NIL)) (-1671 (((-108) $) NIL)) (-3412 (((-108) $) NIL)) (-2668 (((-706)) NIL)) (-1864 (((-533 |#1|) $) NIL) (($ $ (-849)) NIL (|has| (-533 |#1|) (-341)))) (-1891 (((-1092 (-849) (-706)) (-520)) NIL (|has| (-533 |#1|) (-341)))) (-1917 (((-3 $ "failed") $ $) NIL)) (-3024 (($ $) NIL)) (-1507 (((-391 $) $) NIL)) (-1327 (((-108) $ $) NIL)) (-1628 (((-706)) NIL (|has| (-533 |#1|) (-341)))) (-3961 (($) NIL T CONST)) (-1296 (((-3 (-533 |#1|) "failed") $) NIL)) (-1482 (((-533 |#1|) $) NIL)) (-3705 (($ (-1164 (-533 |#1|))) NIL)) (-2654 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-533 |#1|) (-341)))) (-2276 (($ $ $) NIL)) (-1540 (((-3 $ "failed") $) NIL)) (-3249 (($) NIL (|has| (-533 |#1|) (-341)))) (-2253 (($ $ $) NIL)) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) NIL)) (-2961 (($) NIL (|has| (-533 |#1|) (-341)))) (-1855 (((-108) $) NIL (|has| (-533 |#1|) (-341)))) (-1346 (($ $ (-706)) NIL (-3700 (|has| (-533 |#1|) (-133)) (|has| (-533 |#1|) (-341)))) (($ $) NIL (-3700 (|has| (-533 |#1|) (-133)) (|has| (-533 |#1|) (-341))))) (-2036 (((-108) $) NIL)) (-3989 (((-849) $) NIL (|has| (-533 |#1|) (-341))) (((-769 (-849)) $) NIL (-3700 (|has| (-533 |#1|) (-133)) (|has| (-533 |#1|) (-341))))) (-1537 (((-108) $) NIL)) (-2645 (($) NIL (|has| (-533 |#1|) (-341)))) (-2740 (((-108) $) NIL (|has| (-533 |#1|) (-341)))) (-1434 (((-533 |#1|) $) NIL) (($ $ (-849)) NIL (|has| (-533 |#1|) (-341)))) (-1394 (((-3 $ "failed") $) NIL (|has| (-533 |#1|) (-341)))) (-3188 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-2034 (((-1079 (-533 |#1|)) $) NIL) (((-1079 $) $ (-849)) NIL (|has| (-533 |#1|) (-341)))) (-3040 (((-849) $) NIL (|has| (-533 |#1|) (-341)))) (-3840 (((-1079 (-533 |#1|)) $) NIL (|has| (-533 |#1|) (-341)))) (-1400 (((-1079 (-533 |#1|)) $) NIL (|has| (-533 |#1|) (-341))) (((-3 (-1079 (-533 |#1|)) "failed") $ $) NIL (|has| (-533 |#1|) (-341)))) (-3284 (($ $ (-1079 (-533 |#1|))) NIL (|has| (-533 |#1|) (-341)))) (-2222 (($ $ $) NIL) (($ (-586 $)) NIL)) (-1239 (((-1066) $) NIL)) (-3093 (($ $) NIL)) (-3794 (($) NIL (|has| (-533 |#1|) (-341)) CONST)) (-2716 (($ (-849)) NIL (|has| (-533 |#1|) (-341)))) (-3304 (((-108) $) NIL)) (-4142 (((-1030) $) NIL)) (-1382 (($) NIL (|has| (-533 |#1|) (-341)))) (-3653 (((-1079 $) (-1079 $) (-1079 $)) NIL)) (-2257 (($ $ $) NIL) (($ (-586 $)) NIL)) (-1517 (((-586 (-2 (|:| -1916 (-520)) (|:| -2647 (-520))))) NIL (|has| (-533 |#1|) (-341)))) (-1916 (((-391 $) $) NIL)) (-2206 (((-769 (-849))) NIL) (((-849)) NIL)) (-1283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2230 (((-3 $ "failed") $ $) NIL)) (-2608 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-3704 (((-706) $) NIL)) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) NIL)) (-2062 (((-706) $) NIL (|has| (-533 |#1|) (-341))) (((-3 (-706) "failed") $ $) NIL (-3700 (|has| (-533 |#1|) (-133)) (|has| (-533 |#1|) (-341))))) (-1556 (((-126)) NIL)) (-2155 (($ $) NIL (|has| (-533 |#1|) (-341))) (($ $ (-706)) NIL (|has| (-533 |#1|) (-341)))) (-2528 (((-769 (-849)) $) NIL) (((-849) $) NIL)) (-3484 (((-1079 (-533 |#1|))) NIL)) (-3864 (($) NIL (|has| (-533 |#1|) (-341)))) (-3642 (($) NIL (|has| (-533 |#1|) (-341)))) (-3790 (((-1164 (-533 |#1|)) $) NIL) (((-626 (-533 |#1|)) (-1164 $)) NIL)) (-3784 (((-3 (-1164 $) "failed") (-626 $)) NIL (|has| (-533 |#1|) (-341)))) (-2188 (((-791) $) NIL) (($ (-520)) NIL) (($ $) NIL) (($ (-380 (-520))) NIL) (($ (-533 |#1|)) NIL)) (-3796 (($ $) NIL (|has| (-533 |#1|) (-341))) (((-3 $ "failed") $) NIL (-3700 (|has| (-533 |#1|) (-133)) (|has| (-533 |#1|) (-341))))) (-3251 (((-706)) NIL)) (-1831 (((-1164 $)) NIL) (((-1164 $) (-849)) NIL)) (-2559 (((-108) $ $) NIL)) (-3718 (((-108) $) NIL)) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL)) (-3560 (($) NIL T CONST)) (-3570 (($) NIL T CONST)) (-3751 (($ $) NIL (|has| (-533 |#1|) (-341))) (($ $ (-706)) NIL (|has| (-533 |#1|) (-341)))) (-2211 (($ $) NIL (|has| (-533 |#1|) (-341))) (($ $ (-706)) NIL (|has| (-533 |#1|) (-341)))) (-1530 (((-108) $ $) NIL)) (-1619 (($ $ $) NIL) (($ $ (-533 |#1|)) NIL)) (-1611 (($ $) NIL) (($ $ $) NIL)) (-1601 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) NIL) (($ $ (-380 (-520))) NIL) (($ (-380 (-520)) $) NIL) (($ $ (-533 |#1|)) NIL) (($ (-533 |#1|) $) NIL)))
-(((-484 |#1| |#2|) (-302 (-533 |#1|)) (-849) (-849)) (T -484))
-NIL
-(-302 (-533 |#1|))
-((-1414 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-2063 (((-108) $ (-706)) NIL)) (-2377 ((|#1| $ (-520) (-520) |#1|) 33)) (-2145 (($ $ (-520) |#4|) NIL)) (-3834 (($ $ (-520) |#5|) NIL)) (-3961 (($) NIL T CONST)) (-2120 ((|#4| $ (-520)) NIL)) (-3846 ((|#1| $ (-520) (-520) |#1|) 32)) (-3623 ((|#1| $ (-520) (-520)) 30)) (-3828 (((-586 |#1|) $) NIL)) (-1409 (((-706) $) 26)) (-1810 (($ (-706) (-706) |#1|) 23)) (-1420 (((-706) $) 28)) (-3027 (((-108) $ (-706)) NIL)) (-2289 (((-520) $) 24)) (-1867 (((-520) $) 25)) (-3702 (((-586 |#1|) $) NIL (|has| $ (-6 -4229)))) (-2422 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-1888 (((-520) $) 27)) (-2982 (((-520) $) 29)) (-3830 (($ (-1 |#1| |#1|) $) NIL)) (-1389 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1390 (((-108) $ (-706)) NIL)) (-1239 (((-1066) $) 36 (|has| |#1| (-1012)))) (-4142 (((-1030) $) NIL (|has| |#1| (-1012)))) (-2936 (($ $ |#1|) NIL)) (-4155 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 |#1|))) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-268 |#1|)) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-586 |#1|) (-586 |#1|)) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))) (-2533 (((-108) $ $) NIL)) (-4018 (((-108) $) 14)) (-2238 (($) 15)) (-2543 ((|#1| $ (-520) (-520)) 31) ((|#1| $ (-520) (-520) |#1|) NIL)) (-4159 (((-706) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229))) (((-706) |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-2403 (($ $) NIL)) (-2460 ((|#5| $ (-520)) NIL)) (-2188 (((-791) $) NIL (|has| |#1| (-560 (-791))))) (-1662 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-1530 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-3474 (((-706) $) NIL (|has| $ (-6 -4229)))))
-(((-485 |#1| |#2| |#3| |#4| |#5|) (-55 |#1| |#4| |#5|) (-1118) (-520) (-520) (-346 |#1|) (-346 |#1|)) (T -485))
+((-1415 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-2978 (((-108) $ (-707)) NIL)) (-2378 ((|#1| $ (-521) (-521) |#1|) NIL)) (-1816 (($ $ (-521) (-465 |#1| |#3|)) NIL)) (-3520 (($ $ (-521) (-465 |#1| |#2|)) NIL)) (-2547 (($) NIL T CONST)) (-2672 (((-465 |#1| |#3|) $ (-521)) NIL)) (-3849 ((|#1| $ (-521) (-521) |#1|) NIL)) (-3626 ((|#1| $ (-521) (-521)) NIL)) (-3831 (((-587 |#1|) $) NIL)) (-1410 (((-707) $) NIL)) (-1811 (($ (-707) (-707) |#1|) NIL)) (-1421 (((-707) $) NIL)) (-2139 (((-108) $ (-707)) NIL)) (-2690 (((-521) $) NIL)) (-3222 (((-521) $) NIL)) (-3757 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-2221 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2207 (((-521) $) NIL)) (-2684 (((-521) $) NIL)) (-3833 (($ (-1 |#1| |#1|) $) NIL)) (-1390 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3574 (((-108) $ (-707)) NIL)) (-3688 (((-1067) $) NIL (|has| |#1| (-1013)))) (-4147 (((-1031) $) NIL (|has| |#1| (-1013)))) (-3016 (($ $ |#1|) NIL)) (-1789 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 |#1|))) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-2488 (((-108) $ $) NIL)) (-3462 (((-108) $) NIL)) (-4024 (($) NIL)) (-2544 ((|#1| $ (-521) (-521)) NIL) ((|#1| $ (-521) (-521) |#1|) NIL)) (-4163 (((-707) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (((-707) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2404 (($ $) NIL)) (-3187 (((-465 |#1| |#2|) $ (-521)) NIL)) (-2189 (((-792) $) NIL (|has| |#1| (-561 (-792))))) (-3049 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-1531 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3475 (((-707) $) NIL (|has| $ (-6 -4233)))))
+(((-466 |#1| |#2| |#3|) (-55 |#1| (-465 |#1| |#3|) (-465 |#1| |#2|)) (-1119) (-521) (-521)) (T -466))
+NIL
+(-55 |#1| (-465 |#1| |#3|) (-465 |#1| |#2|))
+((-3510 (((-587 (-2 (|:| -2470 (-627 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-627 |#2|)))) (-2 (|:| -2470 (-627 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-627 |#2|))) (-707) (-707)) 27)) (-4206 (((-587 (-1080 |#1|)) |#1| (-707) (-707) (-707)) 34)) (-3837 (((-2 (|:| -2470 (-627 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-627 |#2|))) (-587 |#3|) (-587 (-2 (|:| -2470 (-627 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-627 |#2|)))) (-707)) 84)))
+(((-467 |#1| |#2| |#3|) (-10 -7 (-15 -4206 ((-587 (-1080 |#1|)) |#1| (-707) (-707) (-707))) (-15 -3510 ((-587 (-2 (|:| -2470 (-627 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-627 |#2|)))) (-2 (|:| -2470 (-627 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-627 |#2|))) (-707) (-707))) (-15 -3837 ((-2 (|:| -2470 (-627 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-627 |#2|))) (-587 |#3|) (-587 (-2 (|:| -2470 (-627 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-627 |#2|)))) (-707)))) (-323) (-1141 |#1|) (-1141 |#2|)) (T -467))
+((-3837 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-587 *8)) (-5 *4 (-587 (-2 (|:| -2470 (-627 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-627 *7))))) (-5 *5 (-707)) (-4 *8 (-1141 *7)) (-4 *7 (-1141 *6)) (-4 *6 (-323)) (-5 *2 (-2 (|:| -2470 (-627 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-627 *7)))) (-5 *1 (-467 *6 *7 *8)))) (-3510 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-707)) (-4 *5 (-323)) (-4 *6 (-1141 *5)) (-5 *2 (-587 (-2 (|:| -2470 (-627 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-627 *6))))) (-5 *1 (-467 *5 *6 *7)) (-5 *3 (-2 (|:| -2470 (-627 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-627 *6)))) (-4 *7 (-1141 *6)))) (-4206 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-707)) (-4 *3 (-323)) (-4 *5 (-1141 *3)) (-5 *2 (-587 (-1080 *3))) (-5 *1 (-467 *3 *5 *6)) (-4 *6 (-1141 *5)))))
+(-10 -7 (-15 -4206 ((-587 (-1080 |#1|)) |#1| (-707) (-707) (-707))) (-15 -3510 ((-587 (-2 (|:| -2470 (-627 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-627 |#2|)))) (-2 (|:| -2470 (-627 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-627 |#2|))) (-707) (-707))) (-15 -3837 ((-2 (|:| -2470 (-627 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-627 |#2|))) (-587 |#3|) (-587 (-2 (|:| -2470 (-627 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-627 |#2|)))) (-707))))
+((-3896 (((-2 (|:| -2470 (-627 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-627 |#1|))) (-2 (|:| -2470 (-627 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-627 |#1|))) (-2 (|:| -2470 (-627 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-627 |#1|)))) 60)) (-3771 ((|#1| (-627 |#1|) |#1| (-707)) 25)) (-1206 (((-707) (-707) (-707)) 30)) (-2299 (((-627 |#1|) (-627 |#1|) (-627 |#1|)) 42)) (-1697 (((-627 |#1|) (-627 |#1|) (-627 |#1|) |#1|) 50) (((-627 |#1|) (-627 |#1|) (-627 |#1|)) 47)) (-3340 ((|#1| (-627 |#1|) (-627 |#1|) |#1| (-521)) 29)) (-1930 ((|#1| (-627 |#1|)) 18)))
+(((-468 |#1| |#2| |#3|) (-10 -7 (-15 -1930 (|#1| (-627 |#1|))) (-15 -3771 (|#1| (-627 |#1|) |#1| (-707))) (-15 -3340 (|#1| (-627 |#1|) (-627 |#1|) |#1| (-521))) (-15 -1206 ((-707) (-707) (-707))) (-15 -1697 ((-627 |#1|) (-627 |#1|) (-627 |#1|))) (-15 -1697 ((-627 |#1|) (-627 |#1|) (-627 |#1|) |#1|)) (-15 -2299 ((-627 |#1|) (-627 |#1|) (-627 |#1|))) (-15 -3896 ((-2 (|:| -2470 (-627 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-627 |#1|))) (-2 (|:| -2470 (-627 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-627 |#1|))) (-2 (|:| -2470 (-627 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-627 |#1|)))))) (-13 (-282) (-10 -8 (-15 -3358 ((-392 $) $)))) (-1141 |#1|) (-383 |#1| |#2|)) (T -468))
+((-3896 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2470 (-627 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-627 *3)))) (-4 *3 (-13 (-282) (-10 -8 (-15 -3358 ((-392 $) $))))) (-4 *4 (-1141 *3)) (-5 *1 (-468 *3 *4 *5)) (-4 *5 (-383 *3 *4)))) (-2299 (*1 *2 *2 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-13 (-282) (-10 -8 (-15 -3358 ((-392 $) $))))) (-4 *4 (-1141 *3)) (-5 *1 (-468 *3 *4 *5)) (-4 *5 (-383 *3 *4)))) (-1697 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-627 *3)) (-4 *3 (-13 (-282) (-10 -8 (-15 -3358 ((-392 $) $))))) (-4 *4 (-1141 *3)) (-5 *1 (-468 *3 *4 *5)) (-4 *5 (-383 *3 *4)))) (-1697 (*1 *2 *2 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-13 (-282) (-10 -8 (-15 -3358 ((-392 $) $))))) (-4 *4 (-1141 *3)) (-5 *1 (-468 *3 *4 *5)) (-4 *5 (-383 *3 *4)))) (-1206 (*1 *2 *2 *2) (-12 (-5 *2 (-707)) (-4 *3 (-13 (-282) (-10 -8 (-15 -3358 ((-392 $) $))))) (-4 *4 (-1141 *3)) (-5 *1 (-468 *3 *4 *5)) (-4 *5 (-383 *3 *4)))) (-3340 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-627 *2)) (-5 *4 (-521)) (-4 *2 (-13 (-282) (-10 -8 (-15 -3358 ((-392 $) $))))) (-4 *5 (-1141 *2)) (-5 *1 (-468 *2 *5 *6)) (-4 *6 (-383 *2 *5)))) (-3771 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-627 *2)) (-5 *4 (-707)) (-4 *2 (-13 (-282) (-10 -8 (-15 -3358 ((-392 $) $))))) (-4 *5 (-1141 *2)) (-5 *1 (-468 *2 *5 *6)) (-4 *6 (-383 *2 *5)))) (-1930 (*1 *2 *3) (-12 (-5 *3 (-627 *2)) (-4 *4 (-1141 *2)) (-4 *2 (-13 (-282) (-10 -8 (-15 -3358 ((-392 $) $))))) (-5 *1 (-468 *2 *4 *5)) (-4 *5 (-383 *2 *4)))))
+(-10 -7 (-15 -1930 (|#1| (-627 |#1|))) (-15 -3771 (|#1| (-627 |#1|) |#1| (-707))) (-15 -3340 (|#1| (-627 |#1|) (-627 |#1|) |#1| (-521))) (-15 -1206 ((-707) (-707) (-707))) (-15 -1697 ((-627 |#1|) (-627 |#1|) (-627 |#1|))) (-15 -1697 ((-627 |#1|) (-627 |#1|) (-627 |#1|) |#1|)) (-15 -2299 ((-627 |#1|) (-627 |#1|) (-627 |#1|))) (-15 -3896 ((-2 (|:| -2470 (-627 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-627 |#1|))) (-2 (|:| -2470 (-627 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-627 |#1|))) (-2 (|:| -2470 (-627 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-627 |#1|))))))
+((-1415 (((-108) $ $) NIL)) (-1500 (($ $) NIL)) (-3344 (($ $ $) 35)) (-1903 (((-1170) $ (-521) (-521)) NIL (|has| $ (-6 -4234)))) (-1505 (((-108) $) NIL (|has| (-108) (-784))) (((-108) (-1 (-108) (-108) (-108)) $) NIL)) (-1621 (($ $) NIL (-12 (|has| $ (-6 -4234)) (|has| (-108) (-784)))) (($ (-1 (-108) (-108) (-108)) $) NIL (|has| $ (-6 -4234)))) (-3211 (($ $) NIL (|has| (-108) (-784))) (($ (-1 (-108) (-108) (-108)) $) NIL)) (-2978 (((-108) $ (-707)) NIL)) (-2378 (((-108) $ (-1132 (-521)) (-108)) NIL (|has| $ (-6 -4234))) (((-108) $ (-521) (-108)) 36 (|has| $ (-6 -4234)))) (-1628 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4233)))) (-2547 (($) NIL T CONST)) (-3081 (($ $) NIL (|has| $ (-6 -4234)))) (-1862 (($ $) NIL)) (-2332 (($ $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-108) (-1013))))) (-1422 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4233))) (($ (-108) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-108) (-1013))))) (-3859 (((-108) (-1 (-108) (-108) (-108)) $) NIL (|has| $ (-6 -4233))) (((-108) (-1 (-108) (-108) (-108)) $ (-108)) NIL (|has| $ (-6 -4233))) (((-108) (-1 (-108) (-108) (-108)) $ (-108) (-108)) NIL (-12 (|has| $ (-6 -4233)) (|has| (-108) (-1013))))) (-3849 (((-108) $ (-521) (-108)) NIL (|has| $ (-6 -4234)))) (-3626 (((-108) $ (-521)) NIL)) (-3233 (((-521) (-108) $ (-521)) NIL (|has| (-108) (-1013))) (((-521) (-108) $) NIL (|has| (-108) (-1013))) (((-521) (-1 (-108) (-108)) $) NIL)) (-3831 (((-587 (-108)) $) NIL (|has| $ (-6 -4233)))) (-3994 (($ $ $) 33)) (-2400 (($ $) NIL)) (-3872 (($ $ $) NIL)) (-1811 (($ (-707) (-108)) 23)) (-2538 (($ $ $) NIL)) (-2139 (((-108) $ (-707)) NIL)) (-2826 (((-521) $) 8 (|has| (-521) (-784)))) (-2810 (($ $ $) NIL)) (-1318 (($ $ $) NIL (|has| (-108) (-784))) (($ (-1 (-108) (-108) (-108)) $ $) NIL)) (-3757 (((-587 (-108)) $) NIL (|has| $ (-6 -4233)))) (-2221 (((-108) (-108) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-108) (-1013))))) (-2597 (((-521) $) NIL (|has| (-521) (-784)))) (-2446 (($ $ $) NIL)) (-3833 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4234)))) (-1390 (($ (-1 (-108) (-108) (-108)) $ $) 30) (($ (-1 (-108) (-108)) $) NIL)) (-3574 (((-108) $ (-707)) NIL)) (-3688 (((-1067) $) NIL)) (-1659 (($ $ $ (-521)) NIL) (($ (-108) $ (-521)) NIL)) (-1668 (((-587 (-521)) $) NIL)) (-2941 (((-108) (-521) $) NIL)) (-4147 (((-1031) $) NIL)) (-2293 (((-108) $) NIL (|has| (-521) (-784)))) (-3620 (((-3 (-108) "failed") (-1 (-108) (-108)) $) NIL)) (-3016 (($ $ (-108)) NIL (|has| $ (-6 -4234)))) (-1789 (((-108) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-108)) (-587 (-108))) NIL (-12 (|has| (-108) (-284 (-108))) (|has| (-108) (-1013)))) (($ $ (-108) (-108)) NIL (-12 (|has| (-108) (-284 (-108))) (|has| (-108) (-1013)))) (($ $ (-269 (-108))) NIL (-12 (|has| (-108) (-284 (-108))) (|has| (-108) (-1013)))) (($ $ (-587 (-269 (-108)))) NIL (-12 (|has| (-108) (-284 (-108))) (|has| (-108) (-1013))))) (-2488 (((-108) $ $) NIL)) (-3821 (((-108) (-108) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-108) (-1013))))) (-2489 (((-587 (-108)) $) NIL)) (-3462 (((-108) $) NIL)) (-4024 (($) 24)) (-2544 (($ $ (-1132 (-521))) NIL) (((-108) $ (-521)) 18) (((-108) $ (-521) (-108)) NIL)) (-3691 (($ $ (-1132 (-521))) NIL) (($ $ (-521)) NIL)) (-4163 (((-707) (-108) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-108) (-1013)))) (((-707) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4233)))) (-1497 (($ $ $ (-521)) NIL (|has| $ (-6 -4234)))) (-2404 (($ $) 25)) (-1430 (((-497) $) NIL (|has| (-108) (-562 (-497))))) (-2201 (($ (-587 (-108))) NIL)) (-4159 (($ (-587 $)) NIL) (($ $ $) NIL) (($ (-108) $) NIL) (($ $ (-108)) NIL)) (-2189 (((-792) $) 22)) (-3049 (((-108) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4233)))) (-4009 (($ $ $) 31)) (-3505 (($ $) NIL)) (-2764 (($ $ $) NIL)) (-3501 (($ $ $) 39)) (-3512 (($ $) 37)) (-3493 (($ $ $) 38)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) 26)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 27)) (-2322 (($ $ $) NIL)) (-3475 (((-707) $) 10 (|has| $ (-6 -4233)))))
+(((-469 |#1|) (-13 (-119) (-10 -8 (-15 -3512 ($ $)) (-15 -3501 ($ $ $)) (-15 -3493 ($ $ $)))) (-521)) (T -469))
+((-3512 (*1 *1 *1) (-12 (-5 *1 (-469 *2)) (-14 *2 (-521)))) (-3501 (*1 *1 *1 *1) (-12 (-5 *1 (-469 *2)) (-14 *2 (-521)))) (-3493 (*1 *1 *1 *1) (-12 (-5 *1 (-469 *2)) (-14 *2 (-521)))))
+(-13 (-119) (-10 -8 (-15 -3512 ($ $)) (-15 -3501 ($ $ $)) (-15 -3493 ($ $ $))))
+((-2164 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1080 |#4|)) 35)) (-3436 (((-1080 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1080 |#4|)) 22)) (-2026 (((-3 (-627 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-627 (-1080 |#4|))) 46)) (-4110 (((-1080 (-1080 |#4|)) (-1 |#4| |#1|) |#3|) 55)))
+(((-470 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3436 (|#2| (-1 |#1| |#4|) (-1080 |#4|))) (-15 -3436 ((-1080 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2164 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1080 |#4|))) (-15 -2026 ((-3 (-627 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-627 (-1080 |#4|)))) (-15 -4110 ((-1080 (-1080 |#4|)) (-1 |#4| |#1|) |#3|))) (-970) (-1141 |#1|) (-1141 |#2|) (-970)) (T -470))
+((-4110 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-970)) (-4 *7 (-970)) (-4 *6 (-1141 *5)) (-5 *2 (-1080 (-1080 *7))) (-5 *1 (-470 *5 *6 *4 *7)) (-4 *4 (-1141 *6)))) (-2026 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-627 (-1080 *8))) (-4 *5 (-970)) (-4 *8 (-970)) (-4 *6 (-1141 *5)) (-5 *2 (-627 *6)) (-5 *1 (-470 *5 *6 *7 *8)) (-4 *7 (-1141 *6)))) (-2164 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1080 *7)) (-4 *5 (-970)) (-4 *7 (-970)) (-4 *2 (-1141 *5)) (-5 *1 (-470 *5 *2 *6 *7)) (-4 *6 (-1141 *2)))) (-3436 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-970)) (-4 *7 (-970)) (-4 *4 (-1141 *5)) (-5 *2 (-1080 *7)) (-5 *1 (-470 *5 *4 *6 *7)) (-4 *6 (-1141 *4)))) (-3436 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1080 *7)) (-4 *5 (-970)) (-4 *7 (-970)) (-4 *2 (-1141 *5)) (-5 *1 (-470 *5 *2 *6 *7)) (-4 *6 (-1141 *2)))))
+(-10 -7 (-15 -3436 (|#2| (-1 |#1| |#4|) (-1080 |#4|))) (-15 -3436 ((-1080 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2164 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1080 |#4|))) (-15 -2026 ((-3 (-627 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-627 (-1080 |#4|)))) (-15 -4110 ((-1080 (-1080 |#4|)) (-1 |#4| |#1|) |#3|)))
+((-1415 (((-108) $ $) NIL)) (-2810 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-3971 (((-1170) $) 18)) (-2544 (((-1067) $ (-1084)) 22)) (-1678 (((-1170) $) 14)) (-2189 (((-792) $) 20) (($ (-1067)) 19)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) 8)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 7)))
+(((-471) (-13 (-784) (-10 -8 (-15 -2544 ((-1067) $ (-1084))) (-15 -1678 ((-1170) $)) (-15 -3971 ((-1170) $)) (-15 -2189 ($ (-1067)))))) (T -471))
+((-2544 (*1 *2 *1 *3) (-12 (-5 *3 (-1084)) (-5 *2 (-1067)) (-5 *1 (-471)))) (-1678 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-471)))) (-3971 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-471)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-471)))))
+(-13 (-784) (-10 -8 (-15 -2544 ((-1067) $ (-1084))) (-15 -1678 ((-1170) $)) (-15 -3971 ((-1170) $)) (-15 -2189 ($ (-1067)))))
+((-2338 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-1452 ((|#1| |#4|) 10)) (-2673 ((|#3| |#4|) 17)))
+(((-472 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1452 (|#1| |#4|)) (-15 -2673 (|#3| |#4|)) (-15 -2338 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-513) (-918 |#1|) (-347 |#1|) (-347 |#2|)) (T -472))
+((-2338 (*1 *2 *3) (-12 (-4 *4 (-513)) (-4 *5 (-918 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-472 *4 *5 *6 *3)) (-4 *6 (-347 *4)) (-4 *3 (-347 *5)))) (-2673 (*1 *2 *3) (-12 (-4 *4 (-513)) (-4 *5 (-918 *4)) (-4 *2 (-347 *4)) (-5 *1 (-472 *4 *5 *2 *3)) (-4 *3 (-347 *5)))) (-1452 (*1 *2 *3) (-12 (-4 *4 (-918 *2)) (-4 *2 (-513)) (-5 *1 (-472 *2 *4 *5 *3)) (-4 *5 (-347 *2)) (-4 *3 (-347 *4)))))
+(-10 -7 (-15 -1452 (|#1| |#4|)) (-15 -2673 (|#3| |#4|)) (-15 -2338 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|)))
+((-1415 (((-108) $ $) NIL)) (-3754 (((-108) $ (-587 |#3|)) 103) (((-108) $) 104)) (-2220 (((-108) $) 146)) (-2375 (($ $ |#4|) 95) (($ $ |#4| (-587 |#3|)) 99)) (-2035 (((-1074 (-587 (-881 |#1|)) (-587 (-269 (-881 |#1|)))) (-587 |#4|)) 139 (|has| |#3| (-562 (-1084))))) (-3727 (($ $ $) 89) (($ $ |#4|) 87)) (-3996 (((-108) $) 145)) (-3667 (($ $) 107)) (-3688 (((-1067) $) NIL)) (-1660 (($ $ $) 81) (($ (-587 $)) 83)) (-4118 (((-108) |#4| $) 106)) (-1844 (((-108) $ $) 70)) (-3563 (($ (-587 |#4|)) 88)) (-4147 (((-1031) $) NIL)) (-2847 (($ (-587 |#4|)) 143)) (-1207 (((-108) $) 144)) (-1676 (($ $) 72)) (-2150 (((-587 |#4|) $) 56)) (-3818 (((-2 (|:| |mval| (-627 |#1|)) (|:| |invmval| (-627 |#1|)) (|:| |genIdeal| $)) $ (-587 |#3|)) NIL)) (-1921 (((-108) |#4| $) 75)) (-2359 (((-521) $ (-587 |#3|)) 108) (((-521) $) 109)) (-2189 (((-792) $) 142) (($ (-587 |#4|)) 84)) (-4205 (($ (-2 (|:| |mval| (-627 |#1|)) (|:| |invmval| (-627 |#1|)) (|:| |genIdeal| $))) NIL)) (-1531 (((-108) $ $) 71)) (-1602 (($ $ $) 91)) (** (($ $ (-707)) 94)) (* (($ $ $) 93)))
+(((-473 |#1| |#2| |#3| |#4|) (-13 (-1013) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-707))) (-15 -1602 ($ $ $)) (-15 -3996 ((-108) $)) (-15 -2220 ((-108) $)) (-15 -1921 ((-108) |#4| $)) (-15 -1844 ((-108) $ $)) (-15 -4118 ((-108) |#4| $)) (-15 -3754 ((-108) $ (-587 |#3|))) (-15 -3754 ((-108) $)) (-15 -1660 ($ $ $)) (-15 -1660 ($ (-587 $))) (-15 -3727 ($ $ $)) (-15 -3727 ($ $ |#4|)) (-15 -1676 ($ $)) (-15 -3818 ((-2 (|:| |mval| (-627 |#1|)) (|:| |invmval| (-627 |#1|)) (|:| |genIdeal| $)) $ (-587 |#3|))) (-15 -4205 ($ (-2 (|:| |mval| (-627 |#1|)) (|:| |invmval| (-627 |#1|)) (|:| |genIdeal| $)))) (-15 -2359 ((-521) $ (-587 |#3|))) (-15 -2359 ((-521) $)) (-15 -3667 ($ $)) (-15 -3563 ($ (-587 |#4|))) (-15 -2847 ($ (-587 |#4|))) (-15 -1207 ((-108) $)) (-15 -2150 ((-587 |#4|) $)) (-15 -2189 ($ (-587 |#4|))) (-15 -2375 ($ $ |#4|)) (-15 -2375 ($ $ |#4| (-587 |#3|))) (IF (|has| |#3| (-562 (-1084))) (-15 -2035 ((-1074 (-587 (-881 |#1|)) (-587 (-269 (-881 |#1|)))) (-587 |#4|))) |%noBranch|))) (-337) (-729) (-784) (-878 |#1| |#2| |#3|)) (T -473))
+((* (*1 *1 *1 *1) (-12 (-4 *2 (-337)) (-4 *3 (-729)) (-4 *4 (-784)) (-5 *1 (-473 *2 *3 *4 *5)) (-4 *5 (-878 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-4 *3 (-337)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *1 (-473 *3 *4 *5 *6)) (-4 *6 (-878 *3 *4 *5)))) (-1602 (*1 *1 *1 *1) (-12 (-4 *2 (-337)) (-4 *3 (-729)) (-4 *4 (-784)) (-5 *1 (-473 *2 *3 *4 *5)) (-4 *5 (-878 *2 *3 *4)))) (-3996 (*1 *2 *1) (-12 (-4 *3 (-337)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *2 (-108)) (-5 *1 (-473 *3 *4 *5 *6)) (-4 *6 (-878 *3 *4 *5)))) (-2220 (*1 *2 *1) (-12 (-4 *3 (-337)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *2 (-108)) (-5 *1 (-473 *3 *4 *5 *6)) (-4 *6 (-878 *3 *4 *5)))) (-1921 (*1 *2 *3 *1) (-12 (-4 *4 (-337)) (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-108)) (-5 *1 (-473 *4 *5 *6 *3)) (-4 *3 (-878 *4 *5 *6)))) (-1844 (*1 *2 *1 *1) (-12 (-4 *3 (-337)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *2 (-108)) (-5 *1 (-473 *3 *4 *5 *6)) (-4 *6 (-878 *3 *4 *5)))) (-4118 (*1 *2 *3 *1) (-12 (-4 *4 (-337)) (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-108)) (-5 *1 (-473 *4 *5 *6 *3)) (-4 *3 (-878 *4 *5 *6)))) (-3754 (*1 *2 *1 *3) (-12 (-5 *3 (-587 *6)) (-4 *6 (-784)) (-4 *4 (-337)) (-4 *5 (-729)) (-5 *2 (-108)) (-5 *1 (-473 *4 *5 *6 *7)) (-4 *7 (-878 *4 *5 *6)))) (-3754 (*1 *2 *1) (-12 (-4 *3 (-337)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *2 (-108)) (-5 *1 (-473 *3 *4 *5 *6)) (-4 *6 (-878 *3 *4 *5)))) (-1660 (*1 *1 *1 *1) (-12 (-4 *2 (-337)) (-4 *3 (-729)) (-4 *4 (-784)) (-5 *1 (-473 *2 *3 *4 *5)) (-4 *5 (-878 *2 *3 *4)))) (-1660 (*1 *1 *2) (-12 (-5 *2 (-587 (-473 *3 *4 *5 *6))) (-4 *3 (-337)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *1 (-473 *3 *4 *5 *6)) (-4 *6 (-878 *3 *4 *5)))) (-3727 (*1 *1 *1 *1) (-12 (-4 *2 (-337)) (-4 *3 (-729)) (-4 *4 (-784)) (-5 *1 (-473 *2 *3 *4 *5)) (-4 *5 (-878 *2 *3 *4)))) (-3727 (*1 *1 *1 *2) (-12 (-4 *3 (-337)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *1 (-473 *3 *4 *5 *2)) (-4 *2 (-878 *3 *4 *5)))) (-1676 (*1 *1 *1) (-12 (-4 *2 (-337)) (-4 *3 (-729)) (-4 *4 (-784)) (-5 *1 (-473 *2 *3 *4 *5)) (-4 *5 (-878 *2 *3 *4)))) (-3818 (*1 *2 *1 *3) (-12 (-5 *3 (-587 *6)) (-4 *6 (-784)) (-4 *4 (-337)) (-4 *5 (-729)) (-5 *2 (-2 (|:| |mval| (-627 *4)) (|:| |invmval| (-627 *4)) (|:| |genIdeal| (-473 *4 *5 *6 *7)))) (-5 *1 (-473 *4 *5 *6 *7)) (-4 *7 (-878 *4 *5 *6)))) (-4205 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-627 *3)) (|:| |invmval| (-627 *3)) (|:| |genIdeal| (-473 *3 *4 *5 *6)))) (-4 *3 (-337)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *1 (-473 *3 *4 *5 *6)) (-4 *6 (-878 *3 *4 *5)))) (-2359 (*1 *2 *1 *3) (-12 (-5 *3 (-587 *6)) (-4 *6 (-784)) (-4 *4 (-337)) (-4 *5 (-729)) (-5 *2 (-521)) (-5 *1 (-473 *4 *5 *6 *7)) (-4 *7 (-878 *4 *5 *6)))) (-2359 (*1 *2 *1) (-12 (-4 *3 (-337)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *2 (-521)) (-5 *1 (-473 *3 *4 *5 *6)) (-4 *6 (-878 *3 *4 *5)))) (-3667 (*1 *1 *1) (-12 (-4 *2 (-337)) (-4 *3 (-729)) (-4 *4 (-784)) (-5 *1 (-473 *2 *3 *4 *5)) (-4 *5 (-878 *2 *3 *4)))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-587 *6)) (-4 *6 (-878 *3 *4 *5)) (-4 *3 (-337)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *1 (-473 *3 *4 *5 *6)))) (-2847 (*1 *1 *2) (-12 (-5 *2 (-587 *6)) (-4 *6 (-878 *3 *4 *5)) (-4 *3 (-337)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *1 (-473 *3 *4 *5 *6)))) (-1207 (*1 *2 *1) (-12 (-4 *3 (-337)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *2 (-108)) (-5 *1 (-473 *3 *4 *5 *6)) (-4 *6 (-878 *3 *4 *5)))) (-2150 (*1 *2 *1) (-12 (-4 *3 (-337)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *2 (-587 *6)) (-5 *1 (-473 *3 *4 *5 *6)) (-4 *6 (-878 *3 *4 *5)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-587 *6)) (-4 *6 (-878 *3 *4 *5)) (-4 *3 (-337)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *1 (-473 *3 *4 *5 *6)))) (-2375 (*1 *1 *1 *2) (-12 (-4 *3 (-337)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *1 (-473 *3 *4 *5 *2)) (-4 *2 (-878 *3 *4 *5)))) (-2375 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-587 *6)) (-4 *6 (-784)) (-4 *4 (-337)) (-4 *5 (-729)) (-5 *1 (-473 *4 *5 *6 *2)) (-4 *2 (-878 *4 *5 *6)))) (-2035 (*1 *2 *3) (-12 (-5 *3 (-587 *7)) (-4 *7 (-878 *4 *5 *6)) (-4 *6 (-562 (-1084))) (-4 *4 (-337)) (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-1074 (-587 (-881 *4)) (-587 (-269 (-881 *4))))) (-5 *1 (-473 *4 *5 *6 *7)))))
+(-13 (-1013) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-707))) (-15 -1602 ($ $ $)) (-15 -3996 ((-108) $)) (-15 -2220 ((-108) $)) (-15 -1921 ((-108) |#4| $)) (-15 -1844 ((-108) $ $)) (-15 -4118 ((-108) |#4| $)) (-15 -3754 ((-108) $ (-587 |#3|))) (-15 -3754 ((-108) $)) (-15 -1660 ($ $ $)) (-15 -1660 ($ (-587 $))) (-15 -3727 ($ $ $)) (-15 -3727 ($ $ |#4|)) (-15 -1676 ($ $)) (-15 -3818 ((-2 (|:| |mval| (-627 |#1|)) (|:| |invmval| (-627 |#1|)) (|:| |genIdeal| $)) $ (-587 |#3|))) (-15 -4205 ($ (-2 (|:| |mval| (-627 |#1|)) (|:| |invmval| (-627 |#1|)) (|:| |genIdeal| $)))) (-15 -2359 ((-521) $ (-587 |#3|))) (-15 -2359 ((-521) $)) (-15 -3667 ($ $)) (-15 -3563 ($ (-587 |#4|))) (-15 -2847 ($ (-587 |#4|))) (-15 -1207 ((-108) $)) (-15 -2150 ((-587 |#4|) $)) (-15 -2189 ($ (-587 |#4|))) (-15 -2375 ($ $ |#4|)) (-15 -2375 ($ $ |#4| (-587 |#3|))) (IF (|has| |#3| (-562 (-1084))) (-15 -2035 ((-1074 (-587 (-881 |#1|)) (-587 (-269 (-881 |#1|)))) (-587 |#4|))) |%noBranch|)))
+((-1955 (((-108) (-473 (-381 (-521)) (-217 |#2| (-707)) (-794 |#1|) (-224 |#1| (-381 (-521))))) 146)) (-4021 (((-108) (-473 (-381 (-521)) (-217 |#2| (-707)) (-794 |#1|) (-224 |#1| (-381 (-521))))) 147)) (-2397 (((-473 (-381 (-521)) (-217 |#2| (-707)) (-794 |#1|) (-224 |#1| (-381 (-521)))) (-473 (-381 (-521)) (-217 |#2| (-707)) (-794 |#1|) (-224 |#1| (-381 (-521))))) 105)) (-2710 (((-108) (-473 (-381 (-521)) (-217 |#2| (-707)) (-794 |#1|) (-224 |#1| (-381 (-521))))) NIL)) (-3315 (((-587 (-473 (-381 (-521)) (-217 |#2| (-707)) (-794 |#1|) (-224 |#1| (-381 (-521))))) (-473 (-381 (-521)) (-217 |#2| (-707)) (-794 |#1|) (-224 |#1| (-381 (-521))))) 149)) (-1420 (((-473 (-381 (-521)) (-217 |#2| (-707)) (-794 |#1|) (-224 |#1| (-381 (-521)))) (-473 (-381 (-521)) (-217 |#2| (-707)) (-794 |#1|) (-224 |#1| (-381 (-521)))) (-587 (-794 |#1|))) 161)))
+(((-474 |#1| |#2|) (-10 -7 (-15 -1955 ((-108) (-473 (-381 (-521)) (-217 |#2| (-707)) (-794 |#1|) (-224 |#1| (-381 (-521)))))) (-15 -4021 ((-108) (-473 (-381 (-521)) (-217 |#2| (-707)) (-794 |#1|) (-224 |#1| (-381 (-521)))))) (-15 -2710 ((-108) (-473 (-381 (-521)) (-217 |#2| (-707)) (-794 |#1|) (-224 |#1| (-381 (-521)))))) (-15 -2397 ((-473 (-381 (-521)) (-217 |#2| (-707)) (-794 |#1|) (-224 |#1| (-381 (-521)))) (-473 (-381 (-521)) (-217 |#2| (-707)) (-794 |#1|) (-224 |#1| (-381 (-521)))))) (-15 -3315 ((-587 (-473 (-381 (-521)) (-217 |#2| (-707)) (-794 |#1|) (-224 |#1| (-381 (-521))))) (-473 (-381 (-521)) (-217 |#2| (-707)) (-794 |#1|) (-224 |#1| (-381 (-521)))))) (-15 -1420 ((-473 (-381 (-521)) (-217 |#2| (-707)) (-794 |#1|) (-224 |#1| (-381 (-521)))) (-473 (-381 (-521)) (-217 |#2| (-707)) (-794 |#1|) (-224 |#1| (-381 (-521)))) (-587 (-794 |#1|))))) (-587 (-1084)) (-707)) (T -474))
+((-1420 (*1 *2 *2 *3) (-12 (-5 *2 (-473 (-381 (-521)) (-217 *5 (-707)) (-794 *4) (-224 *4 (-381 (-521))))) (-5 *3 (-587 (-794 *4))) (-14 *4 (-587 (-1084))) (-14 *5 (-707)) (-5 *1 (-474 *4 *5)))) (-3315 (*1 *2 *3) (-12 (-14 *4 (-587 (-1084))) (-14 *5 (-707)) (-5 *2 (-587 (-473 (-381 (-521)) (-217 *5 (-707)) (-794 *4) (-224 *4 (-381 (-521)))))) (-5 *1 (-474 *4 *5)) (-5 *3 (-473 (-381 (-521)) (-217 *5 (-707)) (-794 *4) (-224 *4 (-381 (-521))))))) (-2397 (*1 *2 *2) (-12 (-5 *2 (-473 (-381 (-521)) (-217 *4 (-707)) (-794 *3) (-224 *3 (-381 (-521))))) (-14 *3 (-587 (-1084))) (-14 *4 (-707)) (-5 *1 (-474 *3 *4)))) (-2710 (*1 *2 *3) (-12 (-5 *3 (-473 (-381 (-521)) (-217 *5 (-707)) (-794 *4) (-224 *4 (-381 (-521))))) (-14 *4 (-587 (-1084))) (-14 *5 (-707)) (-5 *2 (-108)) (-5 *1 (-474 *4 *5)))) (-4021 (*1 *2 *3) (-12 (-5 *3 (-473 (-381 (-521)) (-217 *5 (-707)) (-794 *4) (-224 *4 (-381 (-521))))) (-14 *4 (-587 (-1084))) (-14 *5 (-707)) (-5 *2 (-108)) (-5 *1 (-474 *4 *5)))) (-1955 (*1 *2 *3) (-12 (-5 *3 (-473 (-381 (-521)) (-217 *5 (-707)) (-794 *4) (-224 *4 (-381 (-521))))) (-14 *4 (-587 (-1084))) (-14 *5 (-707)) (-5 *2 (-108)) (-5 *1 (-474 *4 *5)))))
+(-10 -7 (-15 -1955 ((-108) (-473 (-381 (-521)) (-217 |#2| (-707)) (-794 |#1|) (-224 |#1| (-381 (-521)))))) (-15 -4021 ((-108) (-473 (-381 (-521)) (-217 |#2| (-707)) (-794 |#1|) (-224 |#1| (-381 (-521)))))) (-15 -2710 ((-108) (-473 (-381 (-521)) (-217 |#2| (-707)) (-794 |#1|) (-224 |#1| (-381 (-521)))))) (-15 -2397 ((-473 (-381 (-521)) (-217 |#2| (-707)) (-794 |#1|) (-224 |#1| (-381 (-521)))) (-473 (-381 (-521)) (-217 |#2| (-707)) (-794 |#1|) (-224 |#1| (-381 (-521)))))) (-15 -3315 ((-587 (-473 (-381 (-521)) (-217 |#2| (-707)) (-794 |#1|) (-224 |#1| (-381 (-521))))) (-473 (-381 (-521)) (-217 |#2| (-707)) (-794 |#1|) (-224 |#1| (-381 (-521)))))) (-15 -1420 ((-473 (-381 (-521)) (-217 |#2| (-707)) (-794 |#1|) (-224 |#1| (-381 (-521)))) (-473 (-381 (-521)) (-217 |#2| (-707)) (-794 |#1|) (-224 |#1| (-381 (-521)))) (-587 (-794 |#1|)))))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-1232 (((-3 $ "failed") $ $) NIL)) (-2547 (($) NIL T CONST)) (-3152 (($ $) NIL)) (-4043 (($ |#1| |#2|) NIL)) (-1390 (($ (-1 |#1| |#1|) $) NIL)) (-1240 ((|#2| $) NIL)) (-3135 ((|#1| $) NIL)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2189 (((-792) $) NIL)) (-3561 (($) 12 T CONST)) (-1531 (((-108) $ $) NIL)) (-1612 (($ $) 11) (($ $ $) 24)) (-1602 (($ $ $) NIL)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) 19)))
+(((-475 |#1| |#2|) (-13 (-21) (-477 |#1| |#2|)) (-21) (-784)) (T -475))
+NIL
+(-13 (-21) (-477 |#1| |#2|))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) 12)) (-2547 (($) NIL T CONST)) (-3152 (($ $) 27)) (-4043 (($ |#1| |#2|) 24)) (-1390 (($ (-1 |#1| |#1|) $) 26)) (-1240 ((|#2| $) NIL)) (-3135 ((|#1| $) 28)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2189 (((-792) $) NIL)) (-3561 (($) 10 T CONST)) (-1531 (((-108) $ $) NIL)) (-1602 (($ $ $) 18)) (* (($ (-850) $) NIL) (($ (-707) $) 23)))
+(((-476 |#1| |#2|) (-13 (-23) (-477 |#1| |#2|)) (-23) (-784)) (T -476))
+NIL
+(-13 (-23) (-477 |#1| |#2|))
+((-1415 (((-108) $ $) 7)) (-3152 (($ $) 13)) (-4043 (($ |#1| |#2|) 16)) (-1390 (($ (-1 |#1| |#1|) $) 17)) (-1240 ((|#2| $) 14)) (-3135 ((|#1| $) 15)) (-3688 (((-1067) $) 9)) (-4147 (((-1031) $) 10)) (-2189 (((-792) $) 11)) (-1531 (((-108) $ $) 6)))
+(((-477 |#1| |#2|) (-1196) (-1013) (-784)) (T -477))
+((-1390 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-477 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-784)))) (-4043 (*1 *1 *2 *3) (-12 (-4 *1 (-477 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-784)))) (-3135 (*1 *2 *1) (-12 (-4 *1 (-477 *2 *3)) (-4 *3 (-784)) (-4 *2 (-1013)))) (-1240 (*1 *2 *1) (-12 (-4 *1 (-477 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-784)))) (-3152 (*1 *1 *1) (-12 (-4 *1 (-477 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-784)))))
+(-13 (-1013) (-10 -8 (-15 -1390 ($ (-1 |t#1| |t#1|) $)) (-15 -4043 ($ |t#1| |t#2|)) (-15 -3135 (|t#1| $)) (-15 -1240 (|t#2| $)) (-15 -3152 ($ $))))
+(((-97) . T) ((-561 (-792)) . T) ((-1013) . T))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-2547 (($) NIL T CONST)) (-3152 (($ $) NIL)) (-4043 (($ |#1| |#2|) NIL)) (-2810 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-1390 (($ (-1 |#1| |#1|) $) NIL)) (-1240 ((|#2| $) NIL)) (-3135 ((|#1| $) NIL)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2189 (((-792) $) NIL)) (-3561 (($) NIL T CONST)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 13)) (-1602 (($ $ $) NIL)) (* (($ (-707) $) NIL) (($ (-850) $) NIL)))
+(((-478 |#1| |#2|) (-13 (-728) (-477 |#1| |#2|)) (-728) (-784)) (T -478))
+NIL
+(-13 (-728) (-477 |#1| |#2|))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-2641 (($ $ $) 16)) (-1232 (((-3 $ "failed") $ $) 13)) (-2547 (($) NIL T CONST)) (-3152 (($ $) NIL)) (-4043 (($ |#1| |#2|) NIL)) (-2810 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-1390 (($ (-1 |#1| |#1|) $) NIL)) (-1240 ((|#2| $) NIL)) (-3135 ((|#1| $) NIL)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2189 (((-792) $) NIL)) (-3561 (($) NIL T CONST)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) NIL)) (-1602 (($ $ $) NIL)) (* (($ (-707) $) NIL) (($ (-850) $) NIL)))
+(((-479 |#1| |#2|) (-13 (-729) (-477 |#1| |#2|)) (-729) (-784)) (T -479))
+NIL
+(-13 (-729) (-477 |#1| |#2|))
+((-1415 (((-108) $ $) NIL)) (-3152 (($ $) 25)) (-4043 (($ |#1| |#2|) 22)) (-1390 (($ (-1 |#1| |#1|) $) 24)) (-1240 ((|#2| $) 27)) (-3135 ((|#1| $) 26)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2189 (((-792) $) 21)) (-1531 (((-108) $ $) 14)))
+(((-480 |#1| |#2|) (-477 |#1| |#2|) (-1013) (-784)) (T -480))
+NIL
+(-477 |#1| |#2|)
+((-2288 (($ $ (-587 |#2|) (-587 |#3|)) NIL) (($ $ |#2| |#3|) 12)))
+(((-481 |#1| |#2| |#3|) (-10 -8 (-15 -2288 (|#1| |#1| |#2| |#3|)) (-15 -2288 (|#1| |#1| (-587 |#2|) (-587 |#3|)))) (-482 |#2| |#3|) (-1013) (-1119)) (T -481))
+NIL
+(-10 -8 (-15 -2288 (|#1| |#1| |#2| |#3|)) (-15 -2288 (|#1| |#1| (-587 |#2|) (-587 |#3|))))
+((-2288 (($ $ (-587 |#1|) (-587 |#2|)) 7) (($ $ |#1| |#2|) 6)))
+(((-482 |#1| |#2|) (-1196) (-1013) (-1119)) (T -482))
+((-2288 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-587 *4)) (-5 *3 (-587 *5)) (-4 *1 (-482 *4 *5)) (-4 *4 (-1013)) (-4 *5 (-1119)))) (-2288 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1119)))))
+(-13 (-10 -8 (-15 -2288 ($ $ |t#1| |t#2|)) (-15 -2288 ($ $ (-587 |t#1|) (-587 |t#2|)))))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) 16)) (-3423 (((-587 (-2 (|:| |gen| |#1|) (|:| -3261 |#2|))) $) 18)) (-1232 (((-3 $ "failed") $ $) NIL)) (-1630 (((-707) $) NIL)) (-2547 (($) NIL T CONST)) (-1297 (((-3 |#1| "failed") $) NIL)) (-1483 ((|#1| $) NIL)) (-1785 ((|#1| $ (-521)) 23)) (-3605 ((|#2| $ (-521)) 21)) (-2502 (($ (-1 |#1| |#1|) $) 46)) (-2190 (($ (-1 |#2| |#2|) $) 43)) (-3688 (((-1067) $) NIL)) (-1717 (($ $ $) 53 (|has| |#2| (-728)))) (-4147 (((-1031) $) NIL)) (-2189 (((-792) $) 42) (($ |#1|) NIL)) (-3800 ((|#2| |#1| $) 49)) (-3561 (($) 11 T CONST)) (-1531 (((-108) $ $) 29)) (-1602 (($ $ $) 27) (($ |#1| $) 25)) (* (($ (-850) $) NIL) (($ (-707) $) 36) (($ |#2| |#1|) 31)))
+(((-483 |#1| |#2| |#3|) (-297 |#1| |#2|) (-1013) (-124) |#2|) (T -483))
+NIL
+(-297 |#1| |#2|)
+((-1415 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-1903 (((-1170) $ (-521) (-521)) NIL (|has| $ (-6 -4234)))) (-1505 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-784)))) (-1621 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4234))) (($ $) NIL (-12 (|has| $ (-6 -4234)) (|has| |#1| (-784))))) (-3211 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-784)))) (-2978 (((-108) $ (-707)) NIL)) (-2506 (((-108) (-108)) 24)) (-2378 ((|#1| $ (-521) |#1|) 27 (|has| $ (-6 -4234))) ((|#1| $ (-1132 (-521)) |#1|) NIL (|has| $ (-6 -4234)))) (-4098 (($ (-1 (-108) |#1|) $) 51)) (-1628 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2547 (($) NIL T CONST)) (-3081 (($ $) NIL (|has| $ (-6 -4234)))) (-1862 (($ $) NIL)) (-2468 (($ $) 55 (|has| |#1| (-1013)))) (-2332 (($ $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-3023 (($ |#1| $) NIL (|has| |#1| (-1013))) (($ (-1 (-108) |#1|) $) 43)) (-1422 (($ |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-3859 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4233)))) (-3849 ((|#1| $ (-521) |#1|) NIL (|has| $ (-6 -4234)))) (-3626 ((|#1| $ (-521)) NIL)) (-3233 (((-521) (-1 (-108) |#1|) $) NIL) (((-521) |#1| $) NIL (|has| |#1| (-1013))) (((-521) |#1| $ (-521)) NIL (|has| |#1| (-1013)))) (-2493 (($ $ (-521)) 13)) (-3417 (((-707) $) 11)) (-3831 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-1811 (($ (-707) |#1|) 22)) (-2139 (((-108) $ (-707)) NIL)) (-2826 (((-521) $) 20 (|has| (-521) (-784)))) (-2810 (($ $ $) NIL (|has| |#1| (-784)))) (-3220 (($ $ $) NIL (|has| |#1| (-784))) (($ (-1 (-108) |#1| |#1|) $ $) 34)) (-1318 (($ (-1 (-108) |#1| |#1|) $ $) 35) (($ $ $) NIL (|has| |#1| (-784)))) (-3757 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-2221 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2597 (((-521) $) 19 (|has| (-521) (-784)))) (-2446 (($ $ $) NIL (|has| |#1| (-784)))) (-3833 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3574 (((-108) $ (-707)) NIL)) (-3688 (((-1067) $) NIL (|has| |#1| (-1013)))) (-3373 (($ $ $ (-521)) 50) (($ |#1| $ (-521)) 36)) (-1659 (($ |#1| $ (-521)) NIL) (($ $ $ (-521)) NIL)) (-1668 (((-587 (-521)) $) NIL)) (-2941 (((-108) (-521) $) NIL)) (-4147 (((-1031) $) NIL (|has| |#1| (-1013)))) (-2854 (($ (-587 |#1|)) 28)) (-2293 ((|#1| $) NIL (|has| (-521) (-784)))) (-3620 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-3016 (($ $ |#1|) 18 (|has| $ (-6 -4234)))) (-1789 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 |#1|))) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-2488 (((-108) $ $) 39)) (-3821 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2489 (((-587 |#1|) $) NIL)) (-3462 (((-108) $) NIL)) (-4024 (($) 14)) (-2544 ((|#1| $ (-521) |#1|) NIL) ((|#1| $ (-521)) 32) (($ $ (-1132 (-521))) NIL)) (-2859 (($ $ (-1132 (-521))) 49) (($ $ (-521)) 44)) (-3691 (($ $ (-521)) NIL) (($ $ (-1132 (-521))) NIL)) (-4163 (((-707) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (((-707) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-1497 (($ $ $ (-521)) 40 (|has| $ (-6 -4234)))) (-2404 (($ $) 31)) (-1430 (((-497) $) NIL (|has| |#1| (-562 (-497))))) (-2201 (($ (-587 |#1|)) NIL)) (-3980 (($ $ $) 41) (($ $ |#1|) 38)) (-4159 (($ $ |#1|) NIL) (($ |#1| $) 37) (($ $ $) NIL) (($ (-587 $)) NIL)) (-2189 (((-792) $) NIL (|has| |#1| (-561 (-792))))) (-3049 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-1574 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1558 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1531 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-1566 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1549 (((-108) $ $) NIL (|has| |#1| (-784)))) (-3475 (((-707) $) 15 (|has| $ (-6 -4233)))))
+(((-484 |#1| |#2|) (-13 (-19 |#1|) (-257 |#1|) (-10 -8 (-15 -2854 ($ (-587 |#1|))) (-15 -3417 ((-707) $)) (-15 -2493 ($ $ (-521))) (-15 -2506 ((-108) (-108))))) (-1119) (-521)) (T -484))
+((-2854 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1119)) (-5 *1 (-484 *3 *4)) (-14 *4 (-521)))) (-3417 (*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-484 *3 *4)) (-4 *3 (-1119)) (-14 *4 (-521)))) (-2493 (*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-484 *3 *4)) (-4 *3 (-1119)) (-14 *4 *2))) (-2506 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-484 *3 *4)) (-4 *3 (-1119)) (-14 *4 (-521)))))
+(-13 (-19 |#1|) (-257 |#1|) (-10 -8 (-15 -2854 ($ (-587 |#1|))) (-15 -3417 ((-707) $)) (-15 -2493 ($ $ (-521))) (-15 -2506 ((-108) (-108)))))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-2559 (($ $) NIL)) (-1733 (((-108) $) NIL)) (-1779 (((-108) $) NIL)) (-3471 (((-707)) NIL)) (-1865 (((-534 |#1|) $) NIL) (($ $ (-850)) NIL (|has| (-534 |#1|) (-342)))) (-1340 (((-1093 (-850) (-707)) (-521)) NIL (|has| (-534 |#1|) (-342)))) (-1232 (((-3 $ "failed") $ $) NIL)) (-3063 (($ $) NIL)) (-3358 (((-392 $) $) NIL)) (-1389 (((-108) $ $) NIL)) (-1630 (((-707)) NIL (|has| (-534 |#1|) (-342)))) (-2547 (($) NIL T CONST)) (-1297 (((-3 (-534 |#1|) "failed") $) NIL)) (-1483 (((-534 |#1|) $) NIL)) (-4083 (($ (-1165 (-534 |#1|))) NIL)) (-1864 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-534 |#1|) (-342)))) (-2277 (($ $ $) NIL)) (-1257 (((-3 $ "failed") $) NIL)) (-3250 (($) NIL (|has| (-534 |#1|) (-342)))) (-2253 (($ $ $) NIL)) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) NIL)) (-2103 (($) NIL (|has| (-534 |#1|) (-342)))) (-2371 (((-108) $) NIL (|has| (-534 |#1|) (-342)))) (-2833 (($ $ (-707)) NIL (-3703 (|has| (-534 |#1|) (-133)) (|has| (-534 |#1|) (-342)))) (($ $) NIL (-3703 (|has| (-534 |#1|) (-133)) (|has| (-534 |#1|) (-342))))) (-2710 (((-108) $) NIL)) (-2733 (((-850) $) NIL (|has| (-534 |#1|) (-342))) (((-770 (-850)) $) NIL (-3703 (|has| (-534 |#1|) (-133)) (|has| (-534 |#1|) (-342))))) (-3996 (((-108) $) NIL)) (-3958 (($) NIL (|has| (-534 |#1|) (-342)))) (-1279 (((-108) $) NIL (|has| (-534 |#1|) (-342)))) (-3930 (((-534 |#1|) $) NIL) (($ $ (-850)) NIL (|has| (-534 |#1|) (-342)))) (-3842 (((-3 $ "failed") $) NIL (|has| (-534 |#1|) (-342)))) (-1546 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-3548 (((-1080 (-534 |#1|)) $) NIL) (((-1080 $) $ (-850)) NIL (|has| (-534 |#1|) (-342)))) (-2715 (((-850) $) NIL (|has| (-534 |#1|) (-342)))) (-4179 (((-1080 (-534 |#1|)) $) NIL (|has| (-534 |#1|) (-342)))) (-2728 (((-1080 (-534 |#1|)) $) NIL (|has| (-534 |#1|) (-342))) (((-3 (-1080 (-534 |#1|)) "failed") $ $) NIL (|has| (-534 |#1|) (-342)))) (-1818 (($ $ (-1080 (-534 |#1|))) NIL (|has| (-534 |#1|) (-342)))) (-2223 (($ $ $) NIL) (($ (-587 $)) NIL)) (-3688 (((-1067) $) NIL)) (-3095 (($ $) NIL)) (-3797 (($) NIL (|has| (-534 |#1|) (-342)) CONST)) (-2716 (($ (-850)) NIL (|has| (-534 |#1|) (-342)))) (-2218 (((-108) $) NIL)) (-4147 (((-1031) $) NIL)) (-1383 (($) NIL (|has| (-534 |#1|) (-342)))) (-2513 (((-1080 $) (-1080 $) (-1080 $)) NIL)) (-2258 (($ $ $) NIL) (($ (-587 $)) NIL)) (-3040 (((-587 (-2 (|:| -1916 (-521)) (|:| -2997 (-521))))) NIL (|has| (-534 |#1|) (-342)))) (-1916 (((-392 $) $) NIL)) (-4178 (((-770 (-850))) NIL) (((-850)) NIL)) (-1962 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2230 (((-3 $ "failed") $ $) NIL)) (-3854 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-4196 (((-707) $) NIL)) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) NIL)) (-4067 (((-707) $) NIL (|has| (-534 |#1|) (-342))) (((-3 (-707) "failed") $ $) NIL (-3703 (|has| (-534 |#1|) (-133)) (|has| (-534 |#1|) (-342))))) (-2359 (((-126)) NIL)) (-2156 (($ $) NIL (|has| (-534 |#1|) (-342))) (($ $ (-707)) NIL (|has| (-534 |#1|) (-342)))) (-1994 (((-770 (-850)) $) NIL) (((-850) $) NIL)) (-2879 (((-1080 (-534 |#1|))) NIL)) (-1204 (($) NIL (|has| (-534 |#1|) (-342)))) (-2677 (($) NIL (|has| (-534 |#1|) (-342)))) (-2234 (((-1165 (-534 |#1|)) $) NIL) (((-627 (-534 |#1|)) (-1165 $)) NIL)) (-2944 (((-3 (-1165 $) "failed") (-627 $)) NIL (|has| (-534 |#1|) (-342)))) (-2189 (((-792) $) NIL) (($ (-521)) NIL) (($ $) NIL) (($ (-381 (-521))) NIL) (($ (-534 |#1|)) NIL)) (-1671 (($ $) NIL (|has| (-534 |#1|) (-342))) (((-3 $ "failed") $) NIL (-3703 (|has| (-534 |#1|) (-133)) (|has| (-534 |#1|) (-342))))) (-3846 (((-707)) NIL)) (-2470 (((-1165 $)) NIL) (((-1165 $) (-850)) NIL)) (-4210 (((-108) $ $) NIL)) (-2154 (((-108) $) NIL)) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (-3561 (($) NIL T CONST)) (-3572 (($) NIL T CONST)) (-3654 (($ $) NIL (|has| (-534 |#1|) (-342))) (($ $ (-707)) NIL (|has| (-534 |#1|) (-342)))) (-2212 (($ $) NIL (|has| (-534 |#1|) (-342))) (($ $ (-707)) NIL (|has| (-534 |#1|) (-342)))) (-1531 (((-108) $ $) NIL)) (-1620 (($ $ $) NIL) (($ $ (-534 |#1|)) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ (-381 (-521))) NIL) (($ (-381 (-521)) $) NIL) (($ $ (-534 |#1|)) NIL) (($ (-534 |#1|) $) NIL)))
+(((-485 |#1| |#2|) (-303 (-534 |#1|)) (-850) (-850)) (T -485))
+NIL
+(-303 (-534 |#1|))
+((-1415 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-2978 (((-108) $ (-707)) NIL)) (-2378 ((|#1| $ (-521) (-521) |#1|) 33)) (-1816 (($ $ (-521) |#4|) NIL)) (-3520 (($ $ (-521) |#5|) NIL)) (-2547 (($) NIL T CONST)) (-2672 ((|#4| $ (-521)) NIL)) (-3849 ((|#1| $ (-521) (-521) |#1|) 32)) (-3626 ((|#1| $ (-521) (-521)) 30)) (-3831 (((-587 |#1|) $) NIL)) (-1410 (((-707) $) 26)) (-1811 (($ (-707) (-707) |#1|) 23)) (-1421 (((-707) $) 28)) (-2139 (((-108) $ (-707)) NIL)) (-2690 (((-521) $) 24)) (-3222 (((-521) $) 25)) (-3757 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-2221 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2207 (((-521) $) 27)) (-2684 (((-521) $) 29)) (-3833 (($ (-1 |#1| |#1|) $) NIL)) (-1390 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3574 (((-108) $ (-707)) NIL)) (-3688 (((-1067) $) 36 (|has| |#1| (-1013)))) (-4147 (((-1031) $) NIL (|has| |#1| (-1013)))) (-3016 (($ $ |#1|) NIL)) (-1789 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 |#1|))) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-2488 (((-108) $ $) NIL)) (-3462 (((-108) $) 14)) (-4024 (($) 15)) (-2544 ((|#1| $ (-521) (-521)) 31) ((|#1| $ (-521) (-521) |#1|) NIL)) (-4163 (((-707) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (((-707) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2404 (($ $) NIL)) (-3187 ((|#5| $ (-521)) NIL)) (-2189 (((-792) $) NIL (|has| |#1| (-561 (-792))))) (-3049 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-1531 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3475 (((-707) $) NIL (|has| $ (-6 -4233)))))
+(((-486 |#1| |#2| |#3| |#4| |#5|) (-55 |#1| |#4| |#5|) (-1119) (-521) (-521) (-347 |#1|) (-347 |#1|)) (T -486))
NIL
(-55 |#1| |#4| |#5|)
-((-1414 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-3429 ((|#1| $) NIL)) (-2091 ((|#1| $) NIL)) (-3827 (($ $) NIL)) (-1476 (((-1169) $ (-520) (-520)) NIL (|has| $ (-6 -4230)))) (-1198 (($ $ (-520)) 58 (|has| $ (-6 -4230)))) (-4029 (((-108) $) NIL (|has| |#1| (-783))) (((-108) (-1 (-108) |#1| |#1|) $) NIL)) (-3587 (($ $) NIL (-12 (|has| $ (-6 -4230)) (|has| |#1| (-783)))) (($ (-1 (-108) |#1| |#1|) $) 56 (|has| $ (-6 -4230)))) (-3210 (($ $) NIL (|has| |#1| (-783))) (($ (-1 (-108) |#1| |#1|) $) NIL)) (-2063 (((-108) $ (-706)) NIL)) (-2888 ((|#1| $ |#1|) NIL (|has| $ (-6 -4230)))) (-2719 (($ $ $) 23 (|has| $ (-6 -4230)))) (-3819 ((|#1| $ |#1|) NIL (|has| $ (-6 -4230)))) (-1598 ((|#1| $ |#1|) 21 (|has| $ (-6 -4230)))) (-2377 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4230))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4230))) (($ $ "rest" $) 24 (|has| $ (-6 -4230))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4230))) ((|#1| $ (-1131 (-520)) |#1|) NIL (|has| $ (-6 -4230))) ((|#1| $ (-520) |#1|) NIL (|has| $ (-6 -4230)))) (-3061 (($ $ (-586 $)) NIL (|has| $ (-6 -4230)))) (-1817 (($ (-1 (-108) |#1|) $) NIL)) (-1627 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-2079 ((|#1| $) NIL)) (-3961 (($) NIL T CONST)) (-2447 (($ $) 28 (|has| $ (-6 -4230)))) (-1861 (($ $) 29)) (-2305 (($ $) 18) (($ $ (-706)) 32)) (-3667 (($ $) 54 (|has| |#1| (-1012)))) (-2331 (($ $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-3766 (($ |#1| $) NIL (|has| |#1| (-1012))) (($ (-1 (-108) |#1|) $) NIL)) (-1421 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-3856 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4229))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4229))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-3846 ((|#1| $ (-520) |#1|) NIL (|has| $ (-6 -4230)))) (-3623 ((|#1| $ (-520)) NIL)) (-3928 (((-108) $) NIL)) (-3232 (((-520) |#1| $ (-520)) NIL (|has| |#1| (-1012))) (((-520) |#1| $) NIL (|has| |#1| (-1012))) (((-520) (-1 (-108) |#1|) $) NIL)) (-3828 (((-586 |#1|) $) 27 (|has| $ (-6 -4229)))) (-3405 (((-586 $) $) NIL)) (-1885 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-1810 (($ (-706) |#1|) NIL)) (-3027 (((-108) $ (-706)) NIL)) (-2567 (((-520) $) 31 (|has| (-520) (-783)))) (-2809 (($ $ $) NIL (|has| |#1| (-783)))) (-3235 (($ $ $) NIL (|has| |#1| (-783))) (($ (-1 (-108) |#1| |#1|) $ $) 57)) (-1819 (($ $ $) NIL (|has| |#1| (-783))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-3702 (((-586 |#1|) $) NIL (|has| $ (-6 -4229)))) (-2422 (((-108) |#1| $) 52 (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-1752 (((-520) $) NIL (|has| (-520) (-783)))) (-2446 (($ $ $) NIL (|has| |#1| (-783)))) (-3830 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1578 (($ |#1|) NIL)) (-1390 (((-108) $ (-706)) NIL)) (-1277 (((-586 |#1|) $) NIL)) (-1740 (((-108) $) NIL)) (-1239 (((-1066) $) 51 (|has| |#1| (-1012)))) (-1440 ((|#1| $) NIL) (($ $ (-706)) NIL)) (-3618 (($ $ $ (-520)) NIL) (($ |#1| $ (-520)) NIL)) (-1659 (($ $ $ (-520)) NIL) (($ |#1| $ (-520)) NIL)) (-3622 (((-586 (-520)) $) NIL)) (-2603 (((-108) (-520) $) NIL)) (-4142 (((-1030) $) NIL (|has| |#1| (-1012)))) (-2293 ((|#1| $) 13) (($ $ (-706)) NIL)) (-2985 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-2936 (($ $ |#1|) NIL (|has| $ (-6 -4230)))) (-1392 (((-108) $) NIL)) (-4155 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 |#1|))) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-268 |#1|)) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-586 |#1|) (-586 |#1|)) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))) (-2533 (((-108) $ $) 12)) (-2094 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-1523 (((-586 |#1|) $) NIL)) (-4018 (((-108) $) 17)) (-2238 (($) 16)) (-2543 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1131 (-520))) NIL) ((|#1| $ (-520)) NIL) ((|#1| $ (-520) |#1|) NIL)) (-3765 (((-520) $ $) NIL)) (-4185 (($ $ (-1131 (-520))) NIL) (($ $ (-520)) NIL)) (-3690 (($ $ (-1131 (-520))) NIL) (($ $ (-520)) NIL)) (-1975 (((-108) $) 34)) (-3436 (($ $) NIL)) (-1521 (($ $) NIL (|has| $ (-6 -4230)))) (-3341 (((-706) $) NIL)) (-1696 (($ $) 36)) (-4159 (((-706) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229))) (((-706) |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-1913 (($ $ $ (-520)) NIL (|has| $ (-6 -4230)))) (-2403 (($ $) 35)) (-1429 (((-496) $) NIL (|has| |#1| (-561 (-496))))) (-2200 (($ (-586 |#1|)) 26)) (-2251 (($ $ $) 53) (($ $ |#1|) NIL)) (-4156 (($ $ $) NIL) (($ |#1| $) 10) (($ (-586 $)) NIL) (($ $ |#1|) NIL)) (-2188 (((-791) $) 46 (|has| |#1| (-560 (-791))))) (-2438 (((-586 $) $) NIL)) (-1639 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-1662 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-1573 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1557 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1530 (((-108) $ $) 48 (|has| |#1| (-1012)))) (-1565 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1548 (((-108) $ $) NIL (|has| |#1| (-783)))) (-3474 (((-706) $) 9 (|has| $ (-6 -4229)))))
-(((-486 |#1| |#2|) (-606 |#1|) (-1118) (-520)) (T -486))
-NIL
-(-606 |#1|)
-((-2085 ((|#4| |#4|) 26)) (-3160 (((-706) |#4|) 31)) (-2621 (((-706) |#4|) 32)) (-1408 (((-586 |#3|) |#4|) 38 (|has| |#3| (-6 -4230)))) (-1675 (((-3 |#4| "failed") |#4|) 48)) (-1880 ((|#4| |#4|) 41)) (-4145 ((|#1| |#4|) 40)))
-(((-487 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2085 (|#4| |#4|)) (-15 -3160 ((-706) |#4|)) (-15 -2621 ((-706) |#4|)) (IF (|has| |#3| (-6 -4230)) (-15 -1408 ((-586 |#3|) |#4|)) |%noBranch|) (-15 -4145 (|#1| |#4|)) (-15 -1880 (|#4| |#4|)) (-15 -1675 ((-3 |#4| "failed") |#4|))) (-336) (-346 |#1|) (-346 |#1|) (-624 |#1| |#2| |#3|)) (T -487))
-((-1675 (*1 *2 *2) (|partial| -12 (-4 *3 (-336)) (-4 *4 (-346 *3)) (-4 *5 (-346 *3)) (-5 *1 (-487 *3 *4 *5 *2)) (-4 *2 (-624 *3 *4 *5)))) (-1880 (*1 *2 *2) (-12 (-4 *3 (-336)) (-4 *4 (-346 *3)) (-4 *5 (-346 *3)) (-5 *1 (-487 *3 *4 *5 *2)) (-4 *2 (-624 *3 *4 *5)))) (-4145 (*1 *2 *3) (-12 (-4 *4 (-346 *2)) (-4 *5 (-346 *2)) (-4 *2 (-336)) (-5 *1 (-487 *2 *4 *5 *3)) (-4 *3 (-624 *2 *4 *5)))) (-1408 (*1 *2 *3) (-12 (|has| *6 (-6 -4230)) (-4 *4 (-336)) (-4 *5 (-346 *4)) (-4 *6 (-346 *4)) (-5 *2 (-586 *6)) (-5 *1 (-487 *4 *5 *6 *3)) (-4 *3 (-624 *4 *5 *6)))) (-2621 (*1 *2 *3) (-12 (-4 *4 (-336)) (-4 *5 (-346 *4)) (-4 *6 (-346 *4)) (-5 *2 (-706)) (-5 *1 (-487 *4 *5 *6 *3)) (-4 *3 (-624 *4 *5 *6)))) (-3160 (*1 *2 *3) (-12 (-4 *4 (-336)) (-4 *5 (-346 *4)) (-4 *6 (-346 *4)) (-5 *2 (-706)) (-5 *1 (-487 *4 *5 *6 *3)) (-4 *3 (-624 *4 *5 *6)))) (-2085 (*1 *2 *2) (-12 (-4 *3 (-336)) (-4 *4 (-346 *3)) (-4 *5 (-346 *3)) (-5 *1 (-487 *3 *4 *5 *2)) (-4 *2 (-624 *3 *4 *5)))))
-(-10 -7 (-15 -2085 (|#4| |#4|)) (-15 -3160 ((-706) |#4|)) (-15 -2621 ((-706) |#4|)) (IF (|has| |#3| (-6 -4230)) (-15 -1408 ((-586 |#3|) |#4|)) |%noBranch|) (-15 -4145 (|#1| |#4|)) (-15 -1880 (|#4| |#4|)) (-15 -1675 ((-3 |#4| "failed") |#4|)))
-((-2085 ((|#8| |#4|) 20)) (-1408 (((-586 |#3|) |#4|) 29 (|has| |#7| (-6 -4230)))) (-1675 (((-3 |#8| "failed") |#4|) 23)))
-(((-488 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2085 (|#8| |#4|)) (-15 -1675 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4230)) (-15 -1408 ((-586 |#3|) |#4|)) |%noBranch|)) (-512) (-346 |#1|) (-346 |#1|) (-624 |#1| |#2| |#3|) (-917 |#1|) (-346 |#5|) (-346 |#5|) (-624 |#5| |#6| |#7|)) (T -488))
-((-1408 (*1 *2 *3) (-12 (|has| *9 (-6 -4230)) (-4 *4 (-512)) (-4 *5 (-346 *4)) (-4 *6 (-346 *4)) (-4 *7 (-917 *4)) (-4 *8 (-346 *7)) (-4 *9 (-346 *7)) (-5 *2 (-586 *6)) (-5 *1 (-488 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-624 *4 *5 *6)) (-4 *10 (-624 *7 *8 *9)))) (-1675 (*1 *2 *3) (|partial| -12 (-4 *4 (-512)) (-4 *5 (-346 *4)) (-4 *6 (-346 *4)) (-4 *7 (-917 *4)) (-4 *2 (-624 *7 *8 *9)) (-5 *1 (-488 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-624 *4 *5 *6)) (-4 *8 (-346 *7)) (-4 *9 (-346 *7)))) (-2085 (*1 *2 *3) (-12 (-4 *4 (-512)) (-4 *5 (-346 *4)) (-4 *6 (-346 *4)) (-4 *7 (-917 *4)) (-4 *2 (-624 *7 *8 *9)) (-5 *1 (-488 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-624 *4 *5 *6)) (-4 *8 (-346 *7)) (-4 *9 (-346 *7)))))
-(-10 -7 (-15 -2085 (|#8| |#4|)) (-15 -1675 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4230)) (-15 -1408 ((-586 |#3|) |#4|)) |%noBranch|))
-((-1414 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-3477 (($ (-706) (-706)) NIL)) (-1472 (($ $ $) NIL)) (-1305 (($ (-551 |#1| |#3|)) NIL) (($ $) NIL)) (-2340 (((-108) $) NIL)) (-1566 (($ $ (-520) (-520)) 12)) (-1465 (($ $ (-520) (-520)) NIL)) (-3408 (($ $ (-520) (-520) (-520) (-520)) NIL)) (-3012 (($ $) NIL)) (-2878 (((-108) $) NIL)) (-2063 (((-108) $ (-706)) NIL)) (-4056 (($ $ (-520) (-520) $) NIL)) (-2377 ((|#1| $ (-520) (-520) |#1|) NIL) (($ $ (-586 (-520)) (-586 (-520)) $) NIL)) (-2145 (($ $ (-520) (-551 |#1| |#3|)) NIL)) (-3834 (($ $ (-520) (-551 |#1| |#2|)) NIL)) (-1311 (($ (-706) |#1|) NIL)) (-3961 (($) NIL T CONST)) (-2085 (($ $) 19 (|has| |#1| (-281)))) (-2120 (((-551 |#1| |#3|) $ (-520)) NIL)) (-3160 (((-706) $) 22 (|has| |#1| (-512)))) (-3846 ((|#1| $ (-520) (-520) |#1|) NIL)) (-3623 ((|#1| $ (-520) (-520)) NIL)) (-3828 (((-586 |#1|) $) NIL)) (-2621 (((-706) $) 24 (|has| |#1| (-512)))) (-1408 (((-586 (-551 |#1| |#2|)) $) 27 (|has| |#1| (-512)))) (-1409 (((-706) $) NIL)) (-1810 (($ (-706) (-706) |#1|) NIL)) (-1420 (((-706) $) NIL)) (-3027 (((-108) $ (-706)) NIL)) (-3346 ((|#1| $) 17 (|has| |#1| (-6 (-4231 "*"))))) (-2289 (((-520) $) 10)) (-1867 (((-520) $) NIL)) (-3702 (((-586 |#1|) $) NIL (|has| $ (-6 -4229)))) (-2422 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-1888 (((-520) $) 11)) (-2982 (((-520) $) NIL)) (-1364 (($ (-586 (-586 |#1|))) NIL)) (-3830 (($ (-1 |#1| |#1|) $) NIL)) (-1389 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3464 (((-586 (-586 |#1|)) $) NIL)) (-1390 (((-108) $ (-706)) NIL)) (-1239 (((-1066) $) NIL (|has| |#1| (-1012)))) (-1675 (((-3 $ "failed") $) 31 (|has| |#1| (-336)))) (-4112 (($ $ $) NIL)) (-4142 (((-1030) $) NIL (|has| |#1| (-1012)))) (-2936 (($ $ |#1|) NIL)) (-2230 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-512)))) (-4155 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 |#1|))) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-268 |#1|)) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-586 |#1|) (-586 |#1|)) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))) (-2533 (((-108) $ $) NIL)) (-4018 (((-108) $) NIL)) (-2238 (($) NIL)) (-2543 ((|#1| $ (-520) (-520)) NIL) ((|#1| $ (-520) (-520) |#1|) NIL) (($ $ (-586 (-520)) (-586 (-520))) NIL)) (-2115 (($ (-586 |#1|)) NIL) (($ (-586 $)) NIL)) (-3149 (((-108) $) NIL)) (-4145 ((|#1| $) 15 (|has| |#1| (-6 (-4231 "*"))))) (-4159 (((-706) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229))) (((-706) |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-2403 (($ $) NIL)) (-2460 (((-551 |#1| |#2|) $ (-520)) NIL)) (-2188 (($ (-551 |#1| |#2|)) NIL) (((-791) $) NIL (|has| |#1| (-560 (-791))))) (-1662 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-3669 (((-108) $) NIL)) (-1530 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-1619 (($ $ |#1|) NIL (|has| |#1| (-336)))) (-1611 (($ $ $) NIL) (($ $) NIL)) (-1601 (($ $ $) NIL)) (** (($ $ (-706)) NIL) (($ $ (-520)) NIL (|has| |#1| (-336)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-520) $) NIL) (((-551 |#1| |#2|) $ (-551 |#1| |#2|)) NIL) (((-551 |#1| |#3|) (-551 |#1| |#3|) $) NIL)) (-3474 (((-706) $) NIL (|has| $ (-6 -4229)))))
-(((-489 |#1| |#2| |#3|) (-624 |#1| (-551 |#1| |#3|) (-551 |#1| |#2|)) (-969) (-520) (-520)) (T -489))
-NIL
-(-624 |#1| (-551 |#1| |#3|) (-551 |#1| |#2|))
-((-1904 (((-1079 |#1|) (-706)) 75)) (-1864 (((-1164 |#1|) (-1164 |#1|) (-849)) 68)) (-2291 (((-1169) (-1164 (-586 (-2 (|:| -3429 |#1|) (|:| -2716 (-1030))))) |#1|) 83)) (-1856 (((-1164 |#1|) (-1164 |#1|) (-706)) 36)) (-3249 (((-1164 |#1|) (-849)) 70)) (-1452 (((-1164 |#1|) (-1164 |#1|) (-520)) 24)) (-3075 (((-1079 |#1|) (-1164 |#1|)) 76)) (-2645 (((-1164 |#1|) (-849)) 94)) (-2740 (((-108) (-1164 |#1|)) 79)) (-1434 (((-1164 |#1|) (-1164 |#1|) (-849)) 61)) (-2034 (((-1079 |#1|) (-1164 |#1|)) 88)) (-3040 (((-849) (-1164 |#1|)) 58)) (-3093 (((-1164 |#1|) (-1164 |#1|)) 30)) (-2716 (((-1164 |#1|) (-849) (-849)) 96)) (-4032 (((-1164 |#1|) (-1164 |#1|) (-1030) (-1030)) 23)) (-4188 (((-1164 |#1|) (-1164 |#1|) (-706) (-1030)) 37)) (-1831 (((-1164 (-1164 |#1|)) (-849)) 93)) (-1619 (((-1164 |#1|) (-1164 |#1|) (-1164 |#1|)) 80)) (** (((-1164 |#1|) (-1164 |#1|) (-520)) 45)) (* (((-1164 |#1|) (-1164 |#1|) (-1164 |#1|)) 25)))
-(((-490 |#1|) (-10 -7 (-15 -2291 ((-1169) (-1164 (-586 (-2 (|:| -3429 |#1|) (|:| -2716 (-1030))))) |#1|)) (-15 -3249 ((-1164 |#1|) (-849))) (-15 -2716 ((-1164 |#1|) (-849) (-849))) (-15 -3075 ((-1079 |#1|) (-1164 |#1|))) (-15 -1904 ((-1079 |#1|) (-706))) (-15 -4188 ((-1164 |#1|) (-1164 |#1|) (-706) (-1030))) (-15 -1856 ((-1164 |#1|) (-1164 |#1|) (-706))) (-15 -4032 ((-1164 |#1|) (-1164 |#1|) (-1030) (-1030))) (-15 -1452 ((-1164 |#1|) (-1164 |#1|) (-520))) (-15 ** ((-1164 |#1|) (-1164 |#1|) (-520))) (-15 * ((-1164 |#1|) (-1164 |#1|) (-1164 |#1|))) (-15 -1619 ((-1164 |#1|) (-1164 |#1|) (-1164 |#1|))) (-15 -1434 ((-1164 |#1|) (-1164 |#1|) (-849))) (-15 -1864 ((-1164 |#1|) (-1164 |#1|) (-849))) (-15 -3093 ((-1164 |#1|) (-1164 |#1|))) (-15 -3040 ((-849) (-1164 |#1|))) (-15 -2740 ((-108) (-1164 |#1|))) (-15 -1831 ((-1164 (-1164 |#1|)) (-849))) (-15 -2645 ((-1164 |#1|) (-849))) (-15 -2034 ((-1079 |#1|) (-1164 |#1|)))) (-322)) (T -490))
-((-2034 (*1 *2 *3) (-12 (-5 *3 (-1164 *4)) (-4 *4 (-322)) (-5 *2 (-1079 *4)) (-5 *1 (-490 *4)))) (-2645 (*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-1164 *4)) (-5 *1 (-490 *4)) (-4 *4 (-322)))) (-1831 (*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-1164 (-1164 *4))) (-5 *1 (-490 *4)) (-4 *4 (-322)))) (-2740 (*1 *2 *3) (-12 (-5 *3 (-1164 *4)) (-4 *4 (-322)) (-5 *2 (-108)) (-5 *1 (-490 *4)))) (-3040 (*1 *2 *3) (-12 (-5 *3 (-1164 *4)) (-4 *4 (-322)) (-5 *2 (-849)) (-5 *1 (-490 *4)))) (-3093 (*1 *2 *2) (-12 (-5 *2 (-1164 *3)) (-4 *3 (-322)) (-5 *1 (-490 *3)))) (-1864 (*1 *2 *2 *3) (-12 (-5 *2 (-1164 *4)) (-5 *3 (-849)) (-4 *4 (-322)) (-5 *1 (-490 *4)))) (-1434 (*1 *2 *2 *3) (-12 (-5 *2 (-1164 *4)) (-5 *3 (-849)) (-4 *4 (-322)) (-5 *1 (-490 *4)))) (-1619 (*1 *2 *2 *2) (-12 (-5 *2 (-1164 *3)) (-4 *3 (-322)) (-5 *1 (-490 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1164 *3)) (-4 *3 (-322)) (-5 *1 (-490 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1164 *4)) (-5 *3 (-520)) (-4 *4 (-322)) (-5 *1 (-490 *4)))) (-1452 (*1 *2 *2 *3) (-12 (-5 *2 (-1164 *4)) (-5 *3 (-520)) (-4 *4 (-322)) (-5 *1 (-490 *4)))) (-4032 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1164 *4)) (-5 *3 (-1030)) (-4 *4 (-322)) (-5 *1 (-490 *4)))) (-1856 (*1 *2 *2 *3) (-12 (-5 *2 (-1164 *4)) (-5 *3 (-706)) (-4 *4 (-322)) (-5 *1 (-490 *4)))) (-4188 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1164 *5)) (-5 *3 (-706)) (-5 *4 (-1030)) (-4 *5 (-322)) (-5 *1 (-490 *5)))) (-1904 (*1 *2 *3) (-12 (-5 *3 (-706)) (-5 *2 (-1079 *4)) (-5 *1 (-490 *4)) (-4 *4 (-322)))) (-3075 (*1 *2 *3) (-12 (-5 *3 (-1164 *4)) (-4 *4 (-322)) (-5 *2 (-1079 *4)) (-5 *1 (-490 *4)))) (-2716 (*1 *2 *3 *3) (-12 (-5 *3 (-849)) (-5 *2 (-1164 *4)) (-5 *1 (-490 *4)) (-4 *4 (-322)))) (-3249 (*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-1164 *4)) (-5 *1 (-490 *4)) (-4 *4 (-322)))) (-2291 (*1 *2 *3 *4) (-12 (-5 *3 (-1164 (-586 (-2 (|:| -3429 *4) (|:| -2716 (-1030)))))) (-4 *4 (-322)) (-5 *2 (-1169)) (-5 *1 (-490 *4)))))
-(-10 -7 (-15 -2291 ((-1169) (-1164 (-586 (-2 (|:| -3429 |#1|) (|:| -2716 (-1030))))) |#1|)) (-15 -3249 ((-1164 |#1|) (-849))) (-15 -2716 ((-1164 |#1|) (-849) (-849))) (-15 -3075 ((-1079 |#1|) (-1164 |#1|))) (-15 -1904 ((-1079 |#1|) (-706))) (-15 -4188 ((-1164 |#1|) (-1164 |#1|) (-706) (-1030))) (-15 -1856 ((-1164 |#1|) (-1164 |#1|) (-706))) (-15 -4032 ((-1164 |#1|) (-1164 |#1|) (-1030) (-1030))) (-15 -1452 ((-1164 |#1|) (-1164 |#1|) (-520))) (-15 ** ((-1164 |#1|) (-1164 |#1|) (-520))) (-15 * ((-1164 |#1|) (-1164 |#1|) (-1164 |#1|))) (-15 -1619 ((-1164 |#1|) (-1164 |#1|) (-1164 |#1|))) (-15 -1434 ((-1164 |#1|) (-1164 |#1|) (-849))) (-15 -1864 ((-1164 |#1|) (-1164 |#1|) (-849))) (-15 -3093 ((-1164 |#1|) (-1164 |#1|))) (-15 -3040 ((-849) (-1164 |#1|))) (-15 -2740 ((-108) (-1164 |#1|))) (-15 -1831 ((-1164 (-1164 |#1|)) (-849))) (-15 -2645 ((-1164 |#1|) (-849))) (-15 -2034 ((-1079 |#1|) (-1164 |#1|))))
-((-1592 (((-1 |#1| |#1|) |#1|) 11)) (-1847 (((-1 |#1| |#1|)) 10)))
-(((-491 |#1|) (-10 -7 (-15 -1847 ((-1 |#1| |#1|))) (-15 -1592 ((-1 |#1| |#1|) |#1|))) (-13 (-662) (-25))) (T -491))
-((-1592 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-491 *3)) (-4 *3 (-13 (-662) (-25))))) (-1847 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-491 *3)) (-4 *3 (-13 (-662) (-25))))))
-(-10 -7 (-15 -1847 ((-1 |#1| |#1|))) (-15 -1592 ((-1 |#1| |#1|) |#1|)))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-1224 (($ $ $) NIL)) (-1917 (((-3 $ "failed") $ $) NIL)) (-3961 (($) NIL T CONST)) (-3150 (($ $) NIL)) (-4039 (($ (-706) |#1|) NIL)) (-2809 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-1389 (($ (-1 (-706) (-706)) $) NIL)) (-2851 ((|#1| $) NIL)) (-3133 (((-706) $) NIL)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2188 (((-791) $) 20)) (-3560 (($) NIL T CONST)) (-1573 (((-108) $ $) NIL)) (-1557 (((-108) $ $) NIL)) (-1530 (((-108) $ $) NIL)) (-1565 (((-108) $ $) NIL)) (-1548 (((-108) $ $) NIL)) (-1601 (($ $ $) NIL)) (* (($ (-706) $) NIL) (($ (-849) $) NIL)))
-(((-492 |#1|) (-13 (-728) (-476 (-706) |#1|)) (-783)) (T -492))
-NIL
-(-13 (-728) (-476 (-706) |#1|))
-((-2999 (((-586 |#2|) (-1079 |#1|) |#3|) 83)) (-2054 (((-586 (-2 (|:| |outval| |#2|) (|:| |outmult| (-520)) (|:| |outvect| (-586 (-626 |#2|))))) (-626 |#1|) |#3| (-1 (-391 (-1079 |#1|)) (-1079 |#1|))) 99)) (-1275 (((-1079 |#1|) (-626 |#1|)) 95)))
-(((-493 |#1| |#2| |#3|) (-10 -7 (-15 -1275 ((-1079 |#1|) (-626 |#1|))) (-15 -2999 ((-586 |#2|) (-1079 |#1|) |#3|)) (-15 -2054 ((-586 (-2 (|:| |outval| |#2|) (|:| |outmult| (-520)) (|:| |outvect| (-586 (-626 |#2|))))) (-626 |#1|) |#3| (-1 (-391 (-1079 |#1|)) (-1079 |#1|))))) (-336) (-336) (-13 (-336) (-781))) (T -493))
-((-2054 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-626 *6)) (-5 *5 (-1 (-391 (-1079 *6)) (-1079 *6))) (-4 *6 (-336)) (-5 *2 (-586 (-2 (|:| |outval| *7) (|:| |outmult| (-520)) (|:| |outvect| (-586 (-626 *7)))))) (-5 *1 (-493 *6 *7 *4)) (-4 *7 (-336)) (-4 *4 (-13 (-336) (-781))))) (-2999 (*1 *2 *3 *4) (-12 (-5 *3 (-1079 *5)) (-4 *5 (-336)) (-5 *2 (-586 *6)) (-5 *1 (-493 *5 *6 *4)) (-4 *6 (-336)) (-4 *4 (-13 (-336) (-781))))) (-1275 (*1 *2 *3) (-12 (-5 *3 (-626 *4)) (-4 *4 (-336)) (-5 *2 (-1079 *4)) (-5 *1 (-493 *4 *5 *6)) (-4 *5 (-336)) (-4 *6 (-13 (-336) (-781))))))
-(-10 -7 (-15 -1275 ((-1079 |#1|) (-626 |#1|))) (-15 -2999 ((-586 |#2|) (-1079 |#1|) |#3|)) (-15 -2054 ((-586 (-2 (|:| |outval| |#2|) (|:| |outmult| (-520)) (|:| |outvect| (-586 (-626 |#2|))))) (-626 |#1|) |#3| (-1 (-391 (-1079 |#1|)) (-1079 |#1|)))))
-((-2868 (((-776 (-520))) 11)) (-2881 (((-776 (-520))) 13)) (-2844 (((-769 (-520))) 8)))
-(((-494) (-10 -7 (-15 -2844 ((-769 (-520)))) (-15 -2868 ((-776 (-520)))) (-15 -2881 ((-776 (-520)))))) (T -494))
-((-2881 (*1 *2) (-12 (-5 *2 (-776 (-520))) (-5 *1 (-494)))) (-2868 (*1 *2) (-12 (-5 *2 (-776 (-520))) (-5 *1 (-494)))) (-2844 (*1 *2) (-12 (-5 *2 (-769 (-520))) (-5 *1 (-494)))))
-(-10 -7 (-15 -2844 ((-769 (-520)))) (-15 -2868 ((-776 (-520)))) (-15 -2881 ((-776 (-520)))))
-((-3625 (((-496) (-1083)) 15)) (-1561 ((|#1| (-496)) 20)))
-(((-495 |#1|) (-10 -7 (-15 -3625 ((-496) (-1083))) (-15 -1561 (|#1| (-496)))) (-1118)) (T -495))
-((-1561 (*1 *2 *3) (-12 (-5 *3 (-496)) (-5 *1 (-495 *2)) (-4 *2 (-1118)))) (-3625 (*1 *2 *3) (-12 (-5 *3 (-1083)) (-5 *2 (-496)) (-5 *1 (-495 *4)) (-4 *4 (-1118)))))
-(-10 -7 (-15 -3625 ((-496) (-1083))) (-15 -1561 (|#1| (-496))))
-((-1414 (((-108) $ $) NIL)) (-2832 (((-1066) $) 46)) (-3525 (((-108) $) 43)) (-1488 (((-1083) $) 44)) (-1732 (((-108) $) 41)) (-1505 (((-1066) $) 42)) (-1348 (((-108) $) NIL)) (-2505 (((-108) $) NIL)) (-1230 (((-108) $) NIL)) (-1239 (((-1066) $) NIL)) (-1284 (($ $ (-586 (-1083))) 20)) (-1561 (((-51) $) 22)) (-3447 (((-108) $) NIL)) (-1506 (((-520) $) NIL)) (-4142 (((-1030) $) NIL)) (-2092 (($ $ (-586 (-1083)) (-1083)) 58)) (-2919 (((-108) $) NIL)) (-3066 (((-201) $) NIL)) (-3853 (($ $) 38)) (-1574 (((-791) $) NIL)) (-3190 (((-108) $ $) NIL)) (-2543 (($ $ (-520)) NIL) (($ $ (-586 (-520))) NIL)) (-1988 (((-586 $) $) 28)) (-1232 (((-1083) (-586 $)) 47)) (-1429 (($ (-586 $)) 51) (($ (-1066)) NIL) (($ (-1083)) 18) (($ (-520)) 8) (($ (-201)) 25) (($ (-791)) NIL) (((-1016) $) 11) (($ (-1016)) 12)) (-1779 (((-1083) (-1083) (-586 $)) 50)) (-2188 (((-791) $) NIL)) (-3206 (($ $) 49)) (-3194 (($ $) 48)) (-2755 (($ $ (-586 $)) 55)) (-3452 (((-108) $) 27)) (-3560 (($) 9 T CONST)) (-3570 (($) 10 T CONST)) (-1530 (((-108) $ $) 59)) (-1619 (($ $ $) 64)) (-1601 (($ $ $) 60)) (** (($ $ (-706)) 63) (($ $ (-520)) 62)) (* (($ $ $) 61)) (-3474 (((-520) $) NIL)))
-(((-496) (-13 (-1015 (-1066) (-1083) (-520) (-201) (-791)) (-561 (-1016)) (-10 -8 (-15 -1561 ((-51) $)) (-15 -1429 ($ (-1016))) (-15 -2755 ($ $ (-586 $))) (-15 -2092 ($ $ (-586 (-1083)) (-1083))) (-15 -1284 ($ $ (-586 (-1083)))) (-15 -1601 ($ $ $)) (-15 * ($ $ $)) (-15 -1619 ($ $ $)) (-15 ** ($ $ (-706))) (-15 ** ($ $ (-520))) (-15 0 ($) -2675) (-15 1 ($) -2675) (-15 -3853 ($ $)) (-15 -2832 ((-1066) $)) (-15 -1232 ((-1083) (-586 $))) (-15 -1779 ((-1083) (-1083) (-586 $)))))) (T -496))
-((-1561 (*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-496)))) (-1429 (*1 *1 *2) (-12 (-5 *2 (-1016)) (-5 *1 (-496)))) (-2755 (*1 *1 *1 *2) (-12 (-5 *2 (-586 (-496))) (-5 *1 (-496)))) (-2092 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-586 (-1083))) (-5 *3 (-1083)) (-5 *1 (-496)))) (-1284 (*1 *1 *1 *2) (-12 (-5 *2 (-586 (-1083))) (-5 *1 (-496)))) (-1601 (*1 *1 *1 *1) (-5 *1 (-496))) (* (*1 *1 *1 *1) (-5 *1 (-496))) (-1619 (*1 *1 *1 *1) (-5 *1 (-496))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-706)) (-5 *1 (-496)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-496)))) (-3560 (*1 *1) (-5 *1 (-496))) (-3570 (*1 *1) (-5 *1 (-496))) (-3853 (*1 *1 *1) (-5 *1 (-496))) (-2832 (*1 *2 *1) (-12 (-5 *2 (-1066)) (-5 *1 (-496)))) (-1232 (*1 *2 *3) (-12 (-5 *3 (-586 (-496))) (-5 *2 (-1083)) (-5 *1 (-496)))) (-1779 (*1 *2 *2 *3) (-12 (-5 *2 (-1083)) (-5 *3 (-586 (-496))) (-5 *1 (-496)))))
-(-13 (-1015 (-1066) (-1083) (-520) (-201) (-791)) (-561 (-1016)) (-10 -8 (-15 -1561 ((-51) $)) (-15 -1429 ($ (-1016))) (-15 -2755 ($ $ (-586 $))) (-15 -2092 ($ $ (-586 (-1083)) (-1083))) (-15 -1284 ($ $ (-586 (-1083)))) (-15 -1601 ($ $ $)) (-15 * ($ $ $)) (-15 -1619 ($ $ $)) (-15 ** ($ $ (-706))) (-15 ** ($ $ (-520))) (-15 (-3560) ($) -2675) (-15 (-3570) ($) -2675) (-15 -3853 ($ $)) (-15 -2832 ((-1066) $)) (-15 -1232 ((-1083) (-586 $))) (-15 -1779 ((-1083) (-1083) (-586 $)))))
-((-3302 ((|#2| |#2|) 17)) (-2176 ((|#2| |#2|) 13)) (-1262 ((|#2| |#2| (-520) (-520)) 20)) (-1449 ((|#2| |#2|) 15)))
-(((-497 |#1| |#2|) (-10 -7 (-15 -2176 (|#2| |#2|)) (-15 -1449 (|#2| |#2|)) (-15 -3302 (|#2| |#2|)) (-15 -1262 (|#2| |#2| (-520) (-520)))) (-13 (-512) (-135)) (-1155 |#1|)) (T -497))
-((-1262 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-520)) (-4 *4 (-13 (-512) (-135))) (-5 *1 (-497 *4 *2)) (-4 *2 (-1155 *4)))) (-3302 (*1 *2 *2) (-12 (-4 *3 (-13 (-512) (-135))) (-5 *1 (-497 *3 *2)) (-4 *2 (-1155 *3)))) (-1449 (*1 *2 *2) (-12 (-4 *3 (-13 (-512) (-135))) (-5 *1 (-497 *3 *2)) (-4 *2 (-1155 *3)))) (-2176 (*1 *2 *2) (-12 (-4 *3 (-13 (-512) (-135))) (-5 *1 (-497 *3 *2)) (-4 *2 (-1155 *3)))))
-(-10 -7 (-15 -2176 (|#2| |#2|)) (-15 -1449 (|#2| |#2|)) (-15 -3302 (|#2| |#2|)) (-15 -1262 (|#2| |#2| (-520) (-520))))
-((-2573 (((-586 (-268 (-880 |#2|))) (-586 |#2|) (-586 (-1083))) 32)) (-3112 (((-586 |#2|) (-880 |#1|) |#3|) 53) (((-586 |#2|) (-1079 |#1|) |#3|) 52)) (-2624 (((-586 (-586 |#2|)) (-586 (-880 |#1|)) (-586 (-880 |#1|)) (-586 (-1083)) |#3|) 87)))
-(((-498 |#1| |#2| |#3|) (-10 -7 (-15 -3112 ((-586 |#2|) (-1079 |#1|) |#3|)) (-15 -3112 ((-586 |#2|) (-880 |#1|) |#3|)) (-15 -2624 ((-586 (-586 |#2|)) (-586 (-880 |#1|)) (-586 (-880 |#1|)) (-586 (-1083)) |#3|)) (-15 -2573 ((-586 (-268 (-880 |#2|))) (-586 |#2|) (-586 (-1083))))) (-424) (-336) (-13 (-336) (-781))) (T -498))
-((-2573 (*1 *2 *3 *4) (-12 (-5 *3 (-586 *6)) (-5 *4 (-586 (-1083))) (-4 *6 (-336)) (-5 *2 (-586 (-268 (-880 *6)))) (-5 *1 (-498 *5 *6 *7)) (-4 *5 (-424)) (-4 *7 (-13 (-336) (-781))))) (-2624 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-586 (-880 *6))) (-5 *4 (-586 (-1083))) (-4 *6 (-424)) (-5 *2 (-586 (-586 *7))) (-5 *1 (-498 *6 *7 *5)) (-4 *7 (-336)) (-4 *5 (-13 (-336) (-781))))) (-3112 (*1 *2 *3 *4) (-12 (-5 *3 (-880 *5)) (-4 *5 (-424)) (-5 *2 (-586 *6)) (-5 *1 (-498 *5 *6 *4)) (-4 *6 (-336)) (-4 *4 (-13 (-336) (-781))))) (-3112 (*1 *2 *3 *4) (-12 (-5 *3 (-1079 *5)) (-4 *5 (-424)) (-5 *2 (-586 *6)) (-5 *1 (-498 *5 *6 *4)) (-4 *6 (-336)) (-4 *4 (-13 (-336) (-781))))))
-(-10 -7 (-15 -3112 ((-586 |#2|) (-1079 |#1|) |#3|)) (-15 -3112 ((-586 |#2|) (-880 |#1|) |#3|)) (-15 -2624 ((-586 (-586 |#2|)) (-586 (-880 |#1|)) (-586 (-880 |#1|)) (-586 (-1083)) |#3|)) (-15 -2573 ((-586 (-268 (-880 |#2|))) (-586 |#2|) (-586 (-1083)))))
-((-2742 ((|#2| |#2| |#1|) 17)) (-3335 ((|#2| (-586 |#2|)) 27)) (-1786 ((|#2| (-586 |#2|)) 46)))
-(((-499 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3335 (|#2| (-586 |#2|))) (-15 -1786 (|#2| (-586 |#2|))) (-15 -2742 (|#2| |#2| |#1|))) (-281) (-1140 |#1|) |#1| (-1 |#1| |#1| (-706))) (T -499))
-((-2742 (*1 *2 *2 *3) (-12 (-4 *3 (-281)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-706))) (-5 *1 (-499 *3 *2 *4 *5)) (-4 *2 (-1140 *3)))) (-1786 (*1 *2 *3) (-12 (-5 *3 (-586 *2)) (-4 *2 (-1140 *4)) (-5 *1 (-499 *4 *2 *5 *6)) (-4 *4 (-281)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-706))))) (-3335 (*1 *2 *3) (-12 (-5 *3 (-586 *2)) (-4 *2 (-1140 *4)) (-5 *1 (-499 *4 *2 *5 *6)) (-4 *4 (-281)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-706))))))
-(-10 -7 (-15 -3335 (|#2| (-586 |#2|))) (-15 -1786 (|#2| (-586 |#2|))) (-15 -2742 (|#2| |#2| |#1|)))
-((-1916 (((-391 (-1079 |#4|)) (-1079 |#4|) (-1 (-391 (-1079 |#3|)) (-1079 |#3|))) 79) (((-391 |#4|) |#4| (-1 (-391 (-1079 |#3|)) (-1079 |#3|))) 166)))
-(((-500 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1916 ((-391 |#4|) |#4| (-1 (-391 (-1079 |#3|)) (-1079 |#3|)))) (-15 -1916 ((-391 (-1079 |#4|)) (-1079 |#4|) (-1 (-391 (-1079 |#3|)) (-1079 |#3|))))) (-783) (-728) (-13 (-281) (-135)) (-877 |#3| |#2| |#1|)) (T -500))
-((-1916 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-391 (-1079 *7)) (-1079 *7))) (-4 *7 (-13 (-281) (-135))) (-4 *5 (-783)) (-4 *6 (-728)) (-4 *8 (-877 *7 *6 *5)) (-5 *2 (-391 (-1079 *8))) (-5 *1 (-500 *5 *6 *7 *8)) (-5 *3 (-1079 *8)))) (-1916 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-391 (-1079 *7)) (-1079 *7))) (-4 *7 (-13 (-281) (-135))) (-4 *5 (-783)) (-4 *6 (-728)) (-5 *2 (-391 *3)) (-5 *1 (-500 *5 *6 *7 *3)) (-4 *3 (-877 *7 *6 *5)))))
-(-10 -7 (-15 -1916 ((-391 |#4|) |#4| (-1 (-391 (-1079 |#3|)) (-1079 |#3|)))) (-15 -1916 ((-391 (-1079 |#4|)) (-1079 |#4|) (-1 (-391 (-1079 |#3|)) (-1079 |#3|)))))
-((-3302 ((|#4| |#4|) 74)) (-2176 ((|#4| |#4|) 70)) (-1262 ((|#4| |#4| (-520) (-520)) 76)) (-1449 ((|#4| |#4|) 72)))
-(((-501 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2176 (|#4| |#4|)) (-15 -1449 (|#4| |#4|)) (-15 -3302 (|#4| |#4|)) (-15 -1262 (|#4| |#4| (-520) (-520)))) (-13 (-336) (-341) (-561 (-520))) (-1140 |#1|) (-660 |#1| |#2|) (-1155 |#3|)) (T -501))
-((-1262 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-520)) (-4 *4 (-13 (-336) (-341) (-561 *3))) (-4 *5 (-1140 *4)) (-4 *6 (-660 *4 *5)) (-5 *1 (-501 *4 *5 *6 *2)) (-4 *2 (-1155 *6)))) (-3302 (*1 *2 *2) (-12 (-4 *3 (-13 (-336) (-341) (-561 (-520)))) (-4 *4 (-1140 *3)) (-4 *5 (-660 *3 *4)) (-5 *1 (-501 *3 *4 *5 *2)) (-4 *2 (-1155 *5)))) (-1449 (*1 *2 *2) (-12 (-4 *3 (-13 (-336) (-341) (-561 (-520)))) (-4 *4 (-1140 *3)) (-4 *5 (-660 *3 *4)) (-5 *1 (-501 *3 *4 *5 *2)) (-4 *2 (-1155 *5)))) (-2176 (*1 *2 *2) (-12 (-4 *3 (-13 (-336) (-341) (-561 (-520)))) (-4 *4 (-1140 *3)) (-4 *5 (-660 *3 *4)) (-5 *1 (-501 *3 *4 *5 *2)) (-4 *2 (-1155 *5)))))
-(-10 -7 (-15 -2176 (|#4| |#4|)) (-15 -1449 (|#4| |#4|)) (-15 -3302 (|#4| |#4|)) (-15 -1262 (|#4| |#4| (-520) (-520))))
-((-3302 ((|#2| |#2|) 27)) (-2176 ((|#2| |#2|) 23)) (-1262 ((|#2| |#2| (-520) (-520)) 29)) (-1449 ((|#2| |#2|) 25)))
-(((-502 |#1| |#2|) (-10 -7 (-15 -2176 (|#2| |#2|)) (-15 -1449 (|#2| |#2|)) (-15 -3302 (|#2| |#2|)) (-15 -1262 (|#2| |#2| (-520) (-520)))) (-13 (-336) (-341) (-561 (-520))) (-1155 |#1|)) (T -502))
-((-1262 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-520)) (-4 *4 (-13 (-336) (-341) (-561 *3))) (-5 *1 (-502 *4 *2)) (-4 *2 (-1155 *4)))) (-3302 (*1 *2 *2) (-12 (-4 *3 (-13 (-336) (-341) (-561 (-520)))) (-5 *1 (-502 *3 *2)) (-4 *2 (-1155 *3)))) (-1449 (*1 *2 *2) (-12 (-4 *3 (-13 (-336) (-341) (-561 (-520)))) (-5 *1 (-502 *3 *2)) (-4 *2 (-1155 *3)))) (-2176 (*1 *2 *2) (-12 (-4 *3 (-13 (-336) (-341) (-561 (-520)))) (-5 *1 (-502 *3 *2)) (-4 *2 (-1155 *3)))))
-(-10 -7 (-15 -2176 (|#2| |#2|)) (-15 -1449 (|#2| |#2|)) (-15 -3302 (|#2| |#2|)) (-15 -1262 (|#2| |#2| (-520) (-520))))
-((-2296 (((-3 (-520) "failed") |#2| |#1| (-1 (-3 (-520) "failed") |#1|)) 14) (((-3 (-520) "failed") |#2| |#1| (-520) (-1 (-3 (-520) "failed") |#1|)) 13) (((-3 (-520) "failed") |#2| (-520) (-1 (-3 (-520) "failed") |#1|)) 26)))
-(((-503 |#1| |#2|) (-10 -7 (-15 -2296 ((-3 (-520) "failed") |#2| (-520) (-1 (-3 (-520) "failed") |#1|))) (-15 -2296 ((-3 (-520) "failed") |#2| |#1| (-520) (-1 (-3 (-520) "failed") |#1|))) (-15 -2296 ((-3 (-520) "failed") |#2| |#1| (-1 (-3 (-520) "failed") |#1|)))) (-969) (-1140 |#1|)) (T -503))
-((-2296 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-520) "failed") *4)) (-4 *4 (-969)) (-5 *2 (-520)) (-5 *1 (-503 *4 *3)) (-4 *3 (-1140 *4)))) (-2296 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-520) "failed") *4)) (-4 *4 (-969)) (-5 *2 (-520)) (-5 *1 (-503 *4 *3)) (-4 *3 (-1140 *4)))) (-2296 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-520) "failed") *5)) (-4 *5 (-969)) (-5 *2 (-520)) (-5 *1 (-503 *5 *3)) (-4 *3 (-1140 *5)))))
-(-10 -7 (-15 -2296 ((-3 (-520) "failed") |#2| (-520) (-1 (-3 (-520) "failed") |#1|))) (-15 -2296 ((-3 (-520) "failed") |#2| |#1| (-520) (-1 (-3 (-520) "failed") |#1|))) (-15 -2296 ((-3 (-520) "failed") |#2| |#1| (-1 (-3 (-520) "failed") |#1|))))
-((-3942 (($ $ $) 79)) (-1507 (((-391 $) $) 47)) (-1296 (((-3 (-520) "failed") $) 59)) (-1482 (((-520) $) 37)) (-2279 (((-3 (-380 (-520)) "failed") $) 74)) (-1386 (((-108) $) 24)) (-4055 (((-380 (-520)) $) 72)) (-2036 (((-108) $) 50)) (-3028 (($ $ $ $) 86)) (-2328 (((-108) $) 16)) (-4151 (($ $ $) 57)) (-1272 (((-817 (-520) $) $ (-820 (-520)) (-817 (-520) $)) 69)) (-1394 (((-3 $ "failed") $) 64)) (-3886 (($ $) 23)) (-1527 (($ $ $) 84)) (-3794 (($) 60)) (-2724 (($ $) 53)) (-1916 (((-391 $) $) 45)) (-3615 (((-108) $) 14)) (-3704 (((-706) $) 28)) (-2155 (($ $ (-706)) NIL) (($ $) 10)) (-2403 (($ $) 17)) (-1429 (((-520) $) NIL) (((-496) $) 36) (((-820 (-520)) $) 40) (((-352) $) 31) (((-201) $) 33)) (-3251 (((-706)) 8)) (-3801 (((-108) $ $) 20)) (-2586 (($ $ $) 55)))
-(((-504 |#1|) (-10 -8 (-15 -1527 (|#1| |#1| |#1|)) (-15 -3028 (|#1| |#1| |#1| |#1|)) (-15 -3886 (|#1| |#1|)) (-15 -2403 (|#1| |#1|)) (-15 -2279 ((-3 (-380 (-520)) "failed") |#1|)) (-15 -4055 ((-380 (-520)) |#1|)) (-15 -1386 ((-108) |#1|)) (-15 -3942 (|#1| |#1| |#1|)) (-15 -3801 ((-108) |#1| |#1|)) (-15 -3615 ((-108) |#1|)) (-15 -3794 (|#1|)) (-15 -1394 ((-3 |#1| "failed") |#1|)) (-15 -1429 ((-201) |#1|)) (-15 -1429 ((-352) |#1|)) (-15 -4151 (|#1| |#1| |#1|)) (-15 -2724 (|#1| |#1|)) (-15 -2586 (|#1| |#1| |#1|)) (-15 -1272 ((-817 (-520) |#1|) |#1| (-820 (-520)) (-817 (-520) |#1|))) (-15 -1429 ((-820 (-520)) |#1|)) (-15 -1429 ((-496) |#1|)) (-15 -1482 ((-520) |#1|)) (-15 -1296 ((-3 (-520) "failed") |#1|)) (-15 -1429 ((-520) |#1|)) (-15 -2155 (|#1| |#1|)) (-15 -2155 (|#1| |#1| (-706))) (-15 -2328 ((-108) |#1|)) (-15 -3704 ((-706) |#1|)) (-15 -1916 ((-391 |#1|) |#1|)) (-15 -1507 ((-391 |#1|) |#1|)) (-15 -2036 ((-108) |#1|)) (-15 -3251 ((-706)))) (-505)) (T -504))
-((-3251 (*1 *2) (-12 (-5 *2 (-706)) (-5 *1 (-504 *3)) (-4 *3 (-505)))))
-(-10 -8 (-15 -1527 (|#1| |#1| |#1|)) (-15 -3028 (|#1| |#1| |#1| |#1|)) (-15 -3886 (|#1| |#1|)) (-15 -2403 (|#1| |#1|)) (-15 -2279 ((-3 (-380 (-520)) "failed") |#1|)) (-15 -4055 ((-380 (-520)) |#1|)) (-15 -1386 ((-108) |#1|)) (-15 -3942 (|#1| |#1| |#1|)) (-15 -3801 ((-108) |#1| |#1|)) (-15 -3615 ((-108) |#1|)) (-15 -3794 (|#1|)) (-15 -1394 ((-3 |#1| "failed") |#1|)) (-15 -1429 ((-201) |#1|)) (-15 -1429 ((-352) |#1|)) (-15 -4151 (|#1| |#1| |#1|)) (-15 -2724 (|#1| |#1|)) (-15 -2586 (|#1| |#1| |#1|)) (-15 -1272 ((-817 (-520) |#1|) |#1| (-820 (-520)) (-817 (-520) |#1|))) (-15 -1429 ((-820 (-520)) |#1|)) (-15 -1429 ((-496) |#1|)) (-15 -1482 ((-520) |#1|)) (-15 -1296 ((-3 (-520) "failed") |#1|)) (-15 -1429 ((-520) |#1|)) (-15 -2155 (|#1| |#1|)) (-15 -2155 (|#1| |#1| (-706))) (-15 -2328 ((-108) |#1|)) (-15 -3704 ((-706) |#1|)) (-15 -1916 ((-391 |#1|) |#1|)) (-15 -1507 ((-391 |#1|) |#1|)) (-15 -2036 ((-108) |#1|)) (-15 -3251 ((-706))))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) 41)) (-2583 (($ $) 40)) (-1671 (((-108) $) 38)) (-3942 (($ $ $) 85)) (-1917 (((-3 $ "failed") $ $) 19)) (-2372 (($ $ $ $) 73)) (-3024 (($ $) 51)) (-1507 (((-391 $) $) 52)) (-1327 (((-108) $ $) 125)) (-2804 (((-520) $) 114)) (-1660 (($ $ $) 88)) (-3961 (($) 17 T CONST)) (-1296 (((-3 (-520) "failed") $) 106)) (-1482 (((-520) $) 105)) (-2276 (($ $ $) 129)) (-2756 (((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 $) (-1164 $)) 104) (((-626 (-520)) (-626 $)) 103)) (-1540 (((-3 $ "failed") $) 34)) (-2279 (((-3 (-380 (-520)) "failed") $) 82)) (-1386 (((-108) $) 84)) (-4055 (((-380 (-520)) $) 83)) (-3249 (($) 81) (($ $) 80)) (-2253 (($ $ $) 128)) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) 123)) (-2036 (((-108) $) 53)) (-3028 (($ $ $ $) 71)) (-3708 (($ $ $) 86)) (-2328 (((-108) $) 116)) (-4151 (($ $ $) 97)) (-1272 (((-817 (-520) $) $ (-820 (-520)) (-817 (-520) $)) 100)) (-1537 (((-108) $) 31)) (-2777 (((-108) $) 92)) (-1394 (((-3 $ "failed") $) 94)) (-3469 (((-108) $) 115)) (-3188 (((-3 (-586 $) "failed") (-586 $) $) 132)) (-3368 (($ $ $ $) 72)) (-2809 (($ $ $) 117)) (-2446 (($ $ $) 118)) (-3886 (($ $) 75)) (-2515 (($ $) 89)) (-2222 (($ $ $) 46) (($ (-586 $)) 45)) (-1239 (((-1066) $) 9)) (-1527 (($ $ $) 70)) (-3794 (($) 93 T CONST)) (-2952 (($ $) 77)) (-4142 (((-1030) $) 10) (($ $) 79)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) 44)) (-2257 (($ $ $) 48) (($ (-586 $)) 47)) (-2724 (($ $) 98)) (-1916 (((-391 $) $) 50)) (-1283 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 131) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) 130)) (-2230 (((-3 $ "failed") $ $) 42)) (-2608 (((-3 (-586 $) "failed") (-586 $) $) 124)) (-3615 (((-108) $) 91)) (-3704 (((-706) $) 126)) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) 127)) (-2155 (($ $ (-706)) 111) (($ $) 109)) (-3047 (($ $) 76)) (-2403 (($ $) 78)) (-1429 (((-520) $) 108) (((-496) $) 102) (((-820 (-520)) $) 101) (((-352) $) 96) (((-201) $) 95)) (-2188 (((-791) $) 11) (($ (-520)) 28) (($ $) 43) (($ (-520)) 107)) (-3251 (((-706)) 29)) (-3801 (((-108) $ $) 87)) (-2586 (($ $ $) 99)) (-3349 (($) 90)) (-2559 (((-108) $ $) 39)) (-2642 (($ $ $ $) 74)) (-2458 (($ $) 113)) (-3504 (($ $ (-849)) 26) (($ $ (-706)) 33)) (-3560 (($) 18 T CONST)) (-3570 (($) 30 T CONST)) (-2211 (($ $ (-706)) 112) (($ $) 110)) (-1573 (((-108) $ $) 120)) (-1557 (((-108) $ $) 121)) (-1530 (((-108) $ $) 6)) (-1565 (((-108) $ $) 119)) (-1548 (((-108) $ $) 122)) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-706)) 32)) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ $ $) 24)))
-(((-505) (-1195)) (T -505))
-((-2777 (*1 *2 *1) (-12 (-4 *1 (-505)) (-5 *2 (-108)))) (-3615 (*1 *2 *1) (-12 (-4 *1 (-505)) (-5 *2 (-108)))) (-3349 (*1 *1) (-4 *1 (-505))) (-2515 (*1 *1 *1) (-4 *1 (-505))) (-1660 (*1 *1 *1 *1) (-4 *1 (-505))) (-3801 (*1 *2 *1 *1) (-12 (-4 *1 (-505)) (-5 *2 (-108)))) (-3708 (*1 *1 *1 *1) (-4 *1 (-505))) (-3942 (*1 *1 *1 *1) (-4 *1 (-505))) (-1386 (*1 *2 *1) (-12 (-4 *1 (-505)) (-5 *2 (-108)))) (-4055 (*1 *2 *1) (-12 (-4 *1 (-505)) (-5 *2 (-380 (-520))))) (-2279 (*1 *2 *1) (|partial| -12 (-4 *1 (-505)) (-5 *2 (-380 (-520))))) (-3249 (*1 *1) (-4 *1 (-505))) (-3249 (*1 *1 *1) (-4 *1 (-505))) (-4142 (*1 *1 *1) (-4 *1 (-505))) (-2403 (*1 *1 *1) (-4 *1 (-505))) (-2952 (*1 *1 *1) (-4 *1 (-505))) (-3047 (*1 *1 *1) (-4 *1 (-505))) (-3886 (*1 *1 *1) (-4 *1 (-505))) (-2642 (*1 *1 *1 *1 *1) (-4 *1 (-505))) (-2372 (*1 *1 *1 *1 *1) (-4 *1 (-505))) (-3368 (*1 *1 *1 *1 *1) (-4 *1 (-505))) (-3028 (*1 *1 *1 *1 *1) (-4 *1 (-505))) (-1527 (*1 *1 *1 *1) (-4 *1 (-505))))
-(-13 (-1122) (-281) (-756) (-209) (-561 (-520)) (-960 (-520)) (-582 (-520)) (-561 (-496)) (-561 (-820 (-520))) (-814 (-520)) (-131) (-945) (-135) (-1059) (-10 -8 (-15 -2777 ((-108) $)) (-15 -3615 ((-108) $)) (-6 -4228) (-15 -3349 ($)) (-15 -2515 ($ $)) (-15 -1660 ($ $ $)) (-15 -3801 ((-108) $ $)) (-15 -3708 ($ $ $)) (-15 -3942 ($ $ $)) (-15 -1386 ((-108) $)) (-15 -4055 ((-380 (-520)) $)) (-15 -2279 ((-3 (-380 (-520)) "failed") $)) (-15 -3249 ($)) (-15 -3249 ($ $)) (-15 -4142 ($ $)) (-15 -2403 ($ $)) (-15 -2952 ($ $)) (-15 -3047 ($ $)) (-15 -3886 ($ $)) (-15 -2642 ($ $ $ $)) (-15 -2372 ($ $ $ $)) (-15 -3368 ($ $ $ $)) (-15 -3028 ($ $ $ $)) (-15 -1527 ($ $ $)) (-6 -4227)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-135) . T) ((-560 (-791)) . T) ((-131) . T) ((-157) . T) ((-561 (-201)) . T) ((-561 (-352)) . T) ((-561 (-496)) . T) ((-561 (-520)) . T) ((-561 (-820 (-520))) . T) ((-209) . T) ((-264) . T) ((-281) . T) ((-424) . T) ((-512) . T) ((-588 $) . T) ((-582 (-520)) . T) ((-653 $) . T) ((-662) . T) ((-726) . T) ((-727) . T) ((-729) . T) ((-731) . T) ((-756) . T) ((-781) . T) ((-783) . T) ((-814 (-520)) . T) ((-848) . T) ((-945) . T) ((-960 (-520)) . T) ((-975 $) . T) ((-969) . T) ((-976) . T) ((-1024) . T) ((-1012) . T) ((-1059) . T) ((-1122) . T))
-((-1414 (((-108) $ $) NIL (-3700 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)) (|has| |#2| (-1012))))) (-1799 (($) NIL) (($ (-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) NIL)) (-1476 (((-1169) $ |#1| |#1|) NIL (|has| $ (-6 -4230)))) (-2063 (((-108) $ (-706)) NIL)) (-2377 ((|#2| $ |#1| |#2|) NIL)) (-1817 (($ (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4229)))) (-1627 (($ (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4229)))) (-2747 (((-3 |#2| "failed") |#1| $) NIL)) (-3961 (($) NIL T CONST)) (-2331 (($ $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012))))) (-3766 (($ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) NIL (|has| $ (-6 -4229))) (($ (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4229))) (((-3 |#2| "failed") |#1| $) NIL)) (-1421 (($ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (($ (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4229)))) (-3856 (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) NIL (-12 (|has| $ (-6 -4229)) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) NIL (|has| $ (-6 -4229))) (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4229)))) (-3846 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4230)))) (-3623 ((|#2| $ |#1|) NIL)) (-3828 (((-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4229))) (((-586 |#2|) $) NIL (|has| $ (-6 -4229)))) (-3027 (((-108) $ (-706)) NIL)) (-2567 ((|#1| $) NIL (|has| |#1| (-783)))) (-3702 (((-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4229))) (((-586 |#2|) $) NIL (|has| $ (-6 -4229)))) (-2422 (((-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#2| (-1012))))) (-1752 ((|#1| $) NIL (|has| |#1| (-783)))) (-3830 (($ (-1 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4230))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4230)))) (-1389 (($ (-1 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1390 (((-108) $ (-706)) NIL)) (-1239 (((-1066) $) NIL (-3700 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)) (|has| |#2| (-1012))))) (-2960 (((-586 |#1|) $) NIL)) (-1612 (((-108) |#1| $) NIL)) (-3351 (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) NIL)) (-3618 (($ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) NIL)) (-3622 (((-586 |#1|) $) NIL)) (-2603 (((-108) |#1| $) NIL)) (-4142 (((-1030) $) NIL (-3700 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)) (|has| |#2| (-1012))))) (-2293 ((|#2| $) NIL (|has| |#1| (-783)))) (-2985 (((-3 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) "failed") (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL)) (-2936 (($ $ |#2|) NIL (|has| $ (-6 -4230)))) (-3345 (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) NIL)) (-4155 (((-108) (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4229))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))))) NIL (-12 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-283 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (($ $ (-268 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) NIL (-12 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-283 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (($ $ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) NIL (-12 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-283 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (($ $ (-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) (-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) NIL (-12 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-283 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (($ $ (-586 |#2|) (-586 |#2|)) NIL (-12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012)))) (($ $ (-268 |#2|)) NIL (-12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012)))) (($ $ (-586 (-268 |#2|))) NIL (-12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012))))) (-2533 (((-108) $ $) NIL)) (-2094 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#2| (-1012))))) (-1523 (((-586 |#2|) $) NIL)) (-4018 (((-108) $) NIL)) (-2238 (($) NIL)) (-2543 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1645 (($) NIL) (($ (-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) NIL)) (-4159 (((-706) (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4229))) (((-706) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (((-706) |#2| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#2| (-1012)))) (((-706) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4229)))) (-2403 (($ $) NIL)) (-1429 (((-496) $) NIL (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-561 (-496))))) (-2200 (($ (-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) NIL)) (-2188 (((-791) $) NIL (-3700 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-560 (-791))) (|has| |#2| (-560 (-791)))))) (-1898 (($ (-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) NIL)) (-1662 (((-108) (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4229))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4229)))) (-1530 (((-108) $ $) NIL (-3700 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)) (|has| |#2| (-1012))))) (-3474 (((-706) $) NIL (|has| $ (-6 -4229)))))
-(((-506 |#1| |#2| |#3|) (-13 (-1095 |#1| |#2|) (-10 -7 (-6 -4229))) (-1012) (-1012) (-13 (-1095 |#1| |#2|) (-10 -7 (-6 -4229)))) (T -506))
-NIL
-(-13 (-1095 |#1| |#2|) (-10 -7 (-6 -4229)))
-((-2907 (((-537 |#2|) |#2| (-559 |#2|) (-559 |#2|) (-1 (-1079 |#2|) (-1079 |#2|))) 49)))
-(((-507 |#1| |#2|) (-10 -7 (-15 -2907 ((-537 |#2|) |#2| (-559 |#2|) (-559 |#2|) (-1 (-1079 |#2|) (-1079 |#2|))))) (-13 (-783) (-512)) (-13 (-27) (-403 |#1|))) (T -507))
-((-2907 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-559 *3)) (-5 *5 (-1 (-1079 *3) (-1079 *3))) (-4 *3 (-13 (-27) (-403 *6))) (-4 *6 (-13 (-783) (-512))) (-5 *2 (-537 *3)) (-5 *1 (-507 *6 *3)))))
-(-10 -7 (-15 -2907 ((-537 |#2|) |#2| (-559 |#2|) (-559 |#2|) (-1 (-1079 |#2|) (-1079 |#2|)))))
-((-2132 (((-537 |#5|) |#5| (-1 |#3| |#3|)) 195)) (-4140 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 191)) (-3908 (((-537 |#5|) |#5| (-1 |#3| |#3|)) 198)))
-(((-508 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3908 ((-537 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2132 ((-537 |#5|) |#5| (-1 |#3| |#3|))) (-15 -4140 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-783) (-512) (-960 (-520))) (-13 (-27) (-403 |#1|)) (-1140 |#2|) (-1140 (-380 |#3|)) (-315 |#2| |#3| |#4|)) (T -508))
-((-4140 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1140 *5)) (-4 *5 (-13 (-27) (-403 *4))) (-4 *4 (-13 (-783) (-512) (-960 (-520)))) (-4 *7 (-1140 (-380 *6))) (-5 *1 (-508 *4 *5 *6 *7 *2)) (-4 *2 (-315 *5 *6 *7)))) (-2132 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1140 *6)) (-4 *6 (-13 (-27) (-403 *5))) (-4 *5 (-13 (-783) (-512) (-960 (-520)))) (-4 *8 (-1140 (-380 *7))) (-5 *2 (-537 *3)) (-5 *1 (-508 *5 *6 *7 *8 *3)) (-4 *3 (-315 *6 *7 *8)))) (-3908 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1140 *6)) (-4 *6 (-13 (-27) (-403 *5))) (-4 *5 (-13 (-783) (-512) (-960 (-520)))) (-4 *8 (-1140 (-380 *7))) (-5 *2 (-537 *3)) (-5 *1 (-508 *5 *6 *7 *8 *3)) (-4 *3 (-315 *6 *7 *8)))))
-(-10 -7 (-15 -3908 ((-537 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2132 ((-537 |#5|) |#5| (-1 |#3| |#3|))) (-15 -4140 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|))))
-((-3214 (((-108) (-520) (-520)) 10)) (-1292 (((-520) (-520)) 7)) (-1337 (((-520) (-520) (-520)) 8)))
-(((-509) (-10 -7 (-15 -1292 ((-520) (-520))) (-15 -1337 ((-520) (-520) (-520))) (-15 -3214 ((-108) (-520) (-520))))) (T -509))
-((-3214 (*1 *2 *3 *3) (-12 (-5 *3 (-520)) (-5 *2 (-108)) (-5 *1 (-509)))) (-1337 (*1 *2 *2 *2) (-12 (-5 *2 (-520)) (-5 *1 (-509)))) (-1292 (*1 *2 *2) (-12 (-5 *2 (-520)) (-5 *1 (-509)))))
-(-10 -7 (-15 -1292 ((-520) (-520))) (-15 -1337 ((-520) (-520) (-520))) (-15 -3214 ((-108) (-520) (-520))))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-2644 ((|#1| $) 61)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) 41)) (-2583 (($ $) 40)) (-1671 (((-108) $) 38)) (-2903 (($ $) 91)) (-2768 (($ $) 74)) (-1224 ((|#1| $) 62)) (-1917 (((-3 $ "failed") $ $) 19)) (-1927 (($ $) 73)) (-2879 (($ $) 90)) (-2745 (($ $) 75)) (-2925 (($ $) 89)) (-2789 (($ $) 76)) (-3961 (($) 17 T CONST)) (-1296 (((-3 (-520) "failed") $) 69)) (-1482 (((-520) $) 68)) (-1540 (((-3 $ "failed") $) 34)) (-2805 (($ |#1| |#1|) 66)) (-2328 (((-108) $) 60)) (-2833 (($) 101)) (-1537 (((-108) $) 31)) (-2322 (($ $ (-520)) 72)) (-3469 (((-108) $) 59)) (-2809 (($ $ $) 107)) (-2446 (($ $ $) 106)) (-1252 (($ $) 98)) (-2222 (($ $ $) 46) (($ (-586 $)) 45)) (-1239 (((-1066) $) 9)) (-4189 (($ |#1| |#1|) 67) (($ |#1|) 65) (($ (-380 (-520))) 64)) (-2662 ((|#1| $) 63)) (-4142 (((-1030) $) 10)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) 44)) (-2257 (($ $ $) 48) (($ (-586 $)) 47)) (-2230 (((-3 $ "failed") $ $) 42)) (-3260 (($ $) 99)) (-1737 (($ $) 88)) (-2799 (($ $) 77)) (-2914 (($ $) 87)) (-2779 (($ $) 78)) (-2891 (($ $) 86)) (-2757 (($ $) 79)) (-2172 (((-108) $ |#1|) 58)) (-2188 (((-791) $) 11) (($ (-520)) 28) (($ $) 43) (($ (-520)) 70)) (-3251 (((-706)) 29)) (-1758 (($ $) 97)) (-2831 (($ $) 85)) (-2559 (((-108) $ $) 39)) (-1744 (($ $) 96)) (-2810 (($ $) 84)) (-1775 (($ $) 95)) (-2855 (($ $) 83)) (-3915 (($ $) 94)) (-2867 (($ $) 82)) (-1767 (($ $) 93)) (-2843 (($ $) 81)) (-1751 (($ $) 92)) (-2820 (($ $) 80)) (-3504 (($ $ (-849)) 26) (($ $ (-706)) 33)) (-3560 (($) 18 T CONST)) (-3570 (($) 30 T CONST)) (-1573 (((-108) $ $) 104)) (-1557 (((-108) $ $) 103)) (-1530 (((-108) $ $) 6)) (-1565 (((-108) $ $) 105)) (-1548 (((-108) $ $) 102)) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-706)) 32) (($ $ $) 100) (($ $ (-380 (-520))) 71)) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ $ $) 24)))
-(((-510 |#1|) (-1195) (-13 (-377) (-1104))) (T -510))
-((-4189 (*1 *1 *2 *2) (-12 (-4 *1 (-510 *2)) (-4 *2 (-13 (-377) (-1104))))) (-2805 (*1 *1 *2 *2) (-12 (-4 *1 (-510 *2)) (-4 *2 (-13 (-377) (-1104))))) (-4189 (*1 *1 *2) (-12 (-4 *1 (-510 *2)) (-4 *2 (-13 (-377) (-1104))))) (-4189 (*1 *1 *2) (-12 (-5 *2 (-380 (-520))) (-4 *1 (-510 *3)) (-4 *3 (-13 (-377) (-1104))))) (-2662 (*1 *2 *1) (-12 (-4 *1 (-510 *2)) (-4 *2 (-13 (-377) (-1104))))) (-1224 (*1 *2 *1) (-12 (-4 *1 (-510 *2)) (-4 *2 (-13 (-377) (-1104))))) (-2644 (*1 *2 *1) (-12 (-4 *1 (-510 *2)) (-4 *2 (-13 (-377) (-1104))))) (-2328 (*1 *2 *1) (-12 (-4 *1 (-510 *3)) (-4 *3 (-13 (-377) (-1104))) (-5 *2 (-108)))) (-3469 (*1 *2 *1) (-12 (-4 *1 (-510 *3)) (-4 *3 (-13 (-377) (-1104))) (-5 *2 (-108)))) (-2172 (*1 *2 *1 *3) (-12 (-4 *1 (-510 *3)) (-4 *3 (-13 (-377) (-1104))) (-5 *2 (-108)))))
-(-13 (-424) (-783) (-1104) (-926) (-960 (-520)) (-10 -8 (-6 -3890) (-15 -4189 ($ |t#1| |t#1|)) (-15 -2805 ($ |t#1| |t#1|)) (-15 -4189 ($ |t#1|)) (-15 -4189 ($ (-380 (-520)))) (-15 -2662 (|t#1| $)) (-15 -1224 (|t#1| $)) (-15 -2644 (|t#1| $)) (-15 -2328 ((-108) $)) (-15 -3469 ((-108) $)) (-15 -2172 ((-108) $ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-34) . T) ((-91) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-560 (-791)) . T) ((-157) . T) ((-258) . T) ((-264) . T) ((-424) . T) ((-461) . T) ((-512) . T) ((-588 $) . T) ((-653 $) . T) ((-662) . T) ((-783) . T) ((-926) . T) ((-960 (-520)) . T) ((-975 $) . T) ((-969) . T) ((-976) . T) ((-1024) . T) ((-1012) . T) ((-1104) . T) ((-1107) . T))
-((-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) 9)) (-2583 (($ $) 11)) (-1671 (((-108) $) 18)) (-1540 (((-3 $ "failed") $) 16)) (-2559 (((-108) $ $) 20)))
-(((-511 |#1|) (-10 -8 (-15 -1671 ((-108) |#1|)) (-15 -2559 ((-108) |#1| |#1|)) (-15 -2583 (|#1| |#1|)) (-15 -1240 ((-2 (|:| -4036 |#1|) (|:| -4216 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1540 ((-3 |#1| "failed") |#1|))) (-512)) (T -511))
-NIL
-(-10 -8 (-15 -1671 ((-108) |#1|)) (-15 -2559 ((-108) |#1| |#1|)) (-15 -2583 (|#1| |#1|)) (-15 -1240 ((-2 (|:| -4036 |#1|) (|:| -4216 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1540 ((-3 |#1| "failed") |#1|)))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) 41)) (-2583 (($ $) 40)) (-1671 (((-108) $) 38)) (-1917 (((-3 $ "failed") $ $) 19)) (-3961 (($) 17 T CONST)) (-1540 (((-3 $ "failed") $) 34)) (-1537 (((-108) $) 31)) (-1239 (((-1066) $) 9)) (-4142 (((-1030) $) 10)) (-2230 (((-3 $ "failed") $ $) 42)) (-2188 (((-791) $) 11) (($ (-520)) 28) (($ $) 43)) (-3251 (((-706)) 29)) (-2559 (((-108) $ $) 39)) (-3504 (($ $ (-849)) 26) (($ $ (-706)) 33)) (-3560 (($) 18 T CONST)) (-3570 (($) 30 T CONST)) (-1530 (((-108) $ $) 6)) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-706)) 32)) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ $ $) 24)))
-(((-512) (-1195)) (T -512))
-((-2230 (*1 *1 *1 *1) (|partial| -4 *1 (-512))) (-1240 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -4036 *1) (|:| -4216 *1) (|:| |associate| *1))) (-4 *1 (-512)))) (-2583 (*1 *1 *1) (-4 *1 (-512))) (-2559 (*1 *2 *1 *1) (-12 (-4 *1 (-512)) (-5 *2 (-108)))) (-1671 (*1 *2 *1) (-12 (-4 *1 (-512)) (-5 *2 (-108)))))
-(-13 (-157) (-37 $) (-264) (-10 -8 (-15 -2230 ((-3 $ "failed") $ $)) (-15 -1240 ((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $)) (-15 -2583 ($ $)) (-15 -2559 ((-108) $ $)) (-15 -1671 ((-108) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-560 (-791)) . T) ((-157) . T) ((-264) . T) ((-588 $) . T) ((-653 $) . T) ((-662) . T) ((-975 $) . T) ((-969) . T) ((-976) . T) ((-1024) . T) ((-1012) . T))
-((-2510 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-586 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1083) (-586 |#2|)) 35)) (-1218 (((-537 |#2|) |#2| (-1083)) 58)) (-1813 (((-3 |#2| "failed") |#2| (-1083)) 149)) (-3121 (((-3 (-2 (|:| -4016 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1083) (-559 |#2|) (-586 (-559 |#2|))) 152)) (-2801 (((-3 (-2 (|:| -4016 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1083) |#2|) 38)))
-(((-513 |#1| |#2|) (-10 -7 (-15 -2801 ((-3 (-2 (|:| -4016 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1083) |#2|)) (-15 -2510 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-586 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1083) (-586 |#2|))) (-15 -1813 ((-3 |#2| "failed") |#2| (-1083))) (-15 -1218 ((-537 |#2|) |#2| (-1083))) (-15 -3121 ((-3 (-2 (|:| -4016 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1083) (-559 |#2|) (-586 (-559 |#2|))))) (-13 (-424) (-783) (-135) (-960 (-520)) (-582 (-520))) (-13 (-27) (-1104) (-403 |#1|))) (T -513))
-((-3121 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1083)) (-5 *6 (-586 (-559 *3))) (-5 *5 (-559 *3)) (-4 *3 (-13 (-27) (-1104) (-403 *7))) (-4 *7 (-13 (-424) (-783) (-135) (-960 (-520)) (-582 (-520)))) (-5 *2 (-2 (|:| -4016 *3) (|:| |coeff| *3))) (-5 *1 (-513 *7 *3)))) (-1218 (*1 *2 *3 *4) (-12 (-5 *4 (-1083)) (-4 *5 (-13 (-424) (-783) (-135) (-960 (-520)) (-582 (-520)))) (-5 *2 (-537 *3)) (-5 *1 (-513 *5 *3)) (-4 *3 (-13 (-27) (-1104) (-403 *5))))) (-1813 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1083)) (-4 *4 (-13 (-424) (-783) (-135) (-960 (-520)) (-582 (-520)))) (-5 *1 (-513 *4 *2)) (-4 *2 (-13 (-27) (-1104) (-403 *4))))) (-2510 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1083)) (-5 *5 (-586 *3)) (-4 *3 (-13 (-27) (-1104) (-403 *6))) (-4 *6 (-13 (-424) (-783) (-135) (-960 (-520)) (-582 (-520)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-586 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-513 *6 *3)))) (-2801 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1083)) (-4 *5 (-13 (-424) (-783) (-135) (-960 (-520)) (-582 (-520)))) (-5 *2 (-2 (|:| -4016 *3) (|:| |coeff| *3))) (-5 *1 (-513 *5 *3)) (-4 *3 (-13 (-27) (-1104) (-403 *5))))))
-(-10 -7 (-15 -2801 ((-3 (-2 (|:| -4016 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1083) |#2|)) (-15 -2510 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-586 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1083) (-586 |#2|))) (-15 -1813 ((-3 |#2| "failed") |#2| (-1083))) (-15 -1218 ((-537 |#2|) |#2| (-1083))) (-15 -3121 ((-3 (-2 (|:| -4016 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1083) (-559 |#2|) (-586 (-559 |#2|)))))
-((-1507 (((-391 |#1|) |#1|) 18)) (-1916 (((-391 |#1|) |#1|) 33)) (-3798 (((-3 |#1| "failed") |#1|) 44)) (-1473 (((-391 |#1|) |#1|) 51)))
-(((-514 |#1|) (-10 -7 (-15 -1916 ((-391 |#1|) |#1|)) (-15 -1507 ((-391 |#1|) |#1|)) (-15 -1473 ((-391 |#1|) |#1|)) (-15 -3798 ((-3 |#1| "failed") |#1|))) (-505)) (T -514))
-((-3798 (*1 *2 *2) (|partial| -12 (-5 *1 (-514 *2)) (-4 *2 (-505)))) (-1473 (*1 *2 *3) (-12 (-5 *2 (-391 *3)) (-5 *1 (-514 *3)) (-4 *3 (-505)))) (-1507 (*1 *2 *3) (-12 (-5 *2 (-391 *3)) (-5 *1 (-514 *3)) (-4 *3 (-505)))) (-1916 (*1 *2 *3) (-12 (-5 *2 (-391 *3)) (-5 *1 (-514 *3)) (-4 *3 (-505)))))
-(-10 -7 (-15 -1916 ((-391 |#1|) |#1|)) (-15 -1507 ((-391 |#1|) |#1|)) (-15 -1473 ((-391 |#1|) |#1|)) (-15 -3798 ((-3 |#1| "failed") |#1|)))
-((-1326 (($) 9)) (-1318 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1064 (-201))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1667 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 29)) (-2960 (((-586 (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) $) 26)) (-3618 (($ (-2 (|:| -2526 (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (|:| -3043 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1064 (-201))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1667 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 23)) (-2838 (($ (-586 (-2 (|:| -2526 (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (|:| -3043 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1064 (-201))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1667 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 21)) (-3043 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1064 (-201))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1667 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 33)) (-1523 (((-586 (-2 (|:| -2526 (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (|:| -3043 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1064 (-201))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1667 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 31)) (-2921 (((-1169)) 12)))
-(((-515) (-10 -8 (-15 -1326 ($)) (-15 -2921 ((-1169))) (-15 -2960 ((-586 (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) $)) (-15 -2838 ($ (-586 (-2 (|:| -2526 (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (|:| -3043 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1064 (-201))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1667 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3618 ($ (-2 (|:| -2526 (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (|:| -3043 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1064 (-201))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1667 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1318 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1064 (-201))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1667 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))) (-15 -1523 ((-586 (-2 (|:| -2526 (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (|:| -3043 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1064 (-201))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1667 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -3043 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1064 (-201))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1667 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))))) (T -515))
-((-3043 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1064 (-201))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1667 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-515)))) (-1523 (*1 *2 *1) (-12 (-5 *2 (-586 (-2 (|:| -2526 (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (|:| -3043 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1064 (-201))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1667 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-515)))) (-1318 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1064 (-201))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1667 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-515)))) (-3618 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2526 (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (|:| -3043 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1064 (-201))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1667 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-515)))) (-2838 (*1 *1 *2) (-12 (-5 *2 (-586 (-2 (|:| -2526 (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (|:| -3043 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1064 (-201))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1667 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-515)))) (-2960 (*1 *2 *1) (-12 (-5 *2 (-586 (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))) (-5 *1 (-515)))) (-2921 (*1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-515)))) (-1326 (*1 *1) (-5 *1 (-515))))
-(-10 -8 (-15 -1326 ($)) (-15 -2921 ((-1169))) (-15 -2960 ((-586 (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) $)) (-15 -2838 ($ (-586 (-2 (|:| -2526 (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (|:| -3043 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1064 (-201))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1667 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3618 ($ (-2 (|:| -2526 (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (|:| -3043 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1064 (-201))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1667 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1318 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1064 (-201))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1667 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))) (-15 -1523 ((-586 (-2 (|:| -2526 (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (|:| -3043 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1064 (-201))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1667 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -3043 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1064 (-201))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1667 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))))
-((-1278 (((-1079 (-380 (-1079 |#2|))) |#2| (-559 |#2|) (-559 |#2|) (-1079 |#2|)) 28)) (-2741 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-586 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-559 |#2|) (-559 |#2|) (-586 |#2|) (-559 |#2|) |#2| (-380 (-1079 |#2|))) 96) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-586 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-559 |#2|) (-559 |#2|) (-586 |#2|) |#2| (-1079 |#2|)) 106)) (-1918 (((-537 |#2|) |#2| (-559 |#2|) (-559 |#2|) (-559 |#2|) |#2| (-380 (-1079 |#2|))) 78) (((-537 |#2|) |#2| (-559 |#2|) (-559 |#2|) |#2| (-1079 |#2|)) 50)) (-2436 (((-3 (-2 (|:| -4016 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-559 |#2|) (-559 |#2|) |#2| (-559 |#2|) |#2| (-380 (-1079 |#2|))) 85) (((-3 (-2 (|:| -4016 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-559 |#2|) (-559 |#2|) |#2| |#2| (-1079 |#2|)) 105)) (-2105 (((-3 |#2| "failed") |#2| |#2| (-559 |#2|) (-559 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1083)) (-559 |#2|) |#2| (-380 (-1079 |#2|))) 101) (((-3 |#2| "failed") |#2| |#2| (-559 |#2|) (-559 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1083)) |#2| (-1079 |#2|)) 107)) (-1723 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1831 (-586 |#2|))) |#3| |#2| (-559 |#2|) (-559 |#2|) (-559 |#2|) |#2| (-380 (-1079 |#2|))) 124 (|has| |#3| (-596 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1831 (-586 |#2|))) |#3| |#2| (-559 |#2|) (-559 |#2|) |#2| (-1079 |#2|)) 123 (|has| |#3| (-596 |#2|)))) (-4065 ((|#2| (-1079 (-380 (-1079 |#2|))) (-559 |#2|) |#2|) 48)) (-3841 (((-1079 (-380 (-1079 |#2|))) (-1079 |#2|) (-559 |#2|)) 27)))
-(((-516 |#1| |#2| |#3|) (-10 -7 (-15 -1918 ((-537 |#2|) |#2| (-559 |#2|) (-559 |#2|) |#2| (-1079 |#2|))) (-15 -1918 ((-537 |#2|) |#2| (-559 |#2|) (-559 |#2|) (-559 |#2|) |#2| (-380 (-1079 |#2|)))) (-15 -2436 ((-3 (-2 (|:| -4016 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-559 |#2|) (-559 |#2|) |#2| |#2| (-1079 |#2|))) (-15 -2436 ((-3 (-2 (|:| -4016 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-559 |#2|) (-559 |#2|) |#2| (-559 |#2|) |#2| (-380 (-1079 |#2|)))) (-15 -2741 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-586 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-559 |#2|) (-559 |#2|) (-586 |#2|) |#2| (-1079 |#2|))) (-15 -2741 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-586 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-559 |#2|) (-559 |#2|) (-586 |#2|) (-559 |#2|) |#2| (-380 (-1079 |#2|)))) (-15 -2105 ((-3 |#2| "failed") |#2| |#2| (-559 |#2|) (-559 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1083)) |#2| (-1079 |#2|))) (-15 -2105 ((-3 |#2| "failed") |#2| |#2| (-559 |#2|) (-559 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1083)) (-559 |#2|) |#2| (-380 (-1079 |#2|)))) (-15 -1278 ((-1079 (-380 (-1079 |#2|))) |#2| (-559 |#2|) (-559 |#2|) (-1079 |#2|))) (-15 -4065 (|#2| (-1079 (-380 (-1079 |#2|))) (-559 |#2|) |#2|)) (-15 -3841 ((-1079 (-380 (-1079 |#2|))) (-1079 |#2|) (-559 |#2|))) (IF (|has| |#3| (-596 |#2|)) (PROGN (-15 -1723 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1831 (-586 |#2|))) |#3| |#2| (-559 |#2|) (-559 |#2|) |#2| (-1079 |#2|))) (-15 -1723 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1831 (-586 |#2|))) |#3| |#2| (-559 |#2|) (-559 |#2|) (-559 |#2|) |#2| (-380 (-1079 |#2|))))) |%noBranch|)) (-13 (-424) (-960 (-520)) (-783) (-135) (-582 (-520))) (-13 (-403 |#1|) (-27) (-1104)) (-1012)) (T -516))
-((-1723 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-559 *4)) (-5 *6 (-380 (-1079 *4))) (-4 *4 (-13 (-403 *7) (-27) (-1104))) (-4 *7 (-13 (-424) (-960 (-520)) (-783) (-135) (-582 (-520)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1831 (-586 *4)))) (-5 *1 (-516 *7 *4 *3)) (-4 *3 (-596 *4)) (-4 *3 (-1012)))) (-1723 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-559 *4)) (-5 *6 (-1079 *4)) (-4 *4 (-13 (-403 *7) (-27) (-1104))) (-4 *7 (-13 (-424) (-960 (-520)) (-783) (-135) (-582 (-520)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1831 (-586 *4)))) (-5 *1 (-516 *7 *4 *3)) (-4 *3 (-596 *4)) (-4 *3 (-1012)))) (-3841 (*1 *2 *3 *4) (-12 (-5 *4 (-559 *6)) (-4 *6 (-13 (-403 *5) (-27) (-1104))) (-4 *5 (-13 (-424) (-960 (-520)) (-783) (-135) (-582 (-520)))) (-5 *2 (-1079 (-380 (-1079 *6)))) (-5 *1 (-516 *5 *6 *7)) (-5 *3 (-1079 *6)) (-4 *7 (-1012)))) (-4065 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1079 (-380 (-1079 *2)))) (-5 *4 (-559 *2)) (-4 *2 (-13 (-403 *5) (-27) (-1104))) (-4 *5 (-13 (-424) (-960 (-520)) (-783) (-135) (-582 (-520)))) (-5 *1 (-516 *5 *2 *6)) (-4 *6 (-1012)))) (-1278 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-559 *3)) (-4 *3 (-13 (-403 *6) (-27) (-1104))) (-4 *6 (-13 (-424) (-960 (-520)) (-783) (-135) (-582 (-520)))) (-5 *2 (-1079 (-380 (-1079 *3)))) (-5 *1 (-516 *6 *3 *7)) (-5 *5 (-1079 *3)) (-4 *7 (-1012)))) (-2105 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-559 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1083))) (-5 *5 (-380 (-1079 *2))) (-4 *2 (-13 (-403 *6) (-27) (-1104))) (-4 *6 (-13 (-424) (-960 (-520)) (-783) (-135) (-582 (-520)))) (-5 *1 (-516 *6 *2 *7)) (-4 *7 (-1012)))) (-2105 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-559 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1083))) (-5 *5 (-1079 *2)) (-4 *2 (-13 (-403 *6) (-27) (-1104))) (-4 *6 (-13 (-424) (-960 (-520)) (-783) (-135) (-582 (-520)))) (-5 *1 (-516 *6 *2 *7)) (-4 *7 (-1012)))) (-2741 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-559 *3)) (-5 *5 (-586 *3)) (-5 *6 (-380 (-1079 *3))) (-4 *3 (-13 (-403 *7) (-27) (-1104))) (-4 *7 (-13 (-424) (-960 (-520)) (-783) (-135) (-582 (-520)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-586 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-516 *7 *3 *8)) (-4 *8 (-1012)))) (-2741 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-559 *3)) (-5 *5 (-586 *3)) (-5 *6 (-1079 *3)) (-4 *3 (-13 (-403 *7) (-27) (-1104))) (-4 *7 (-13 (-424) (-960 (-520)) (-783) (-135) (-582 (-520)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-586 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-516 *7 *3 *8)) (-4 *8 (-1012)))) (-2436 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-559 *3)) (-5 *5 (-380 (-1079 *3))) (-4 *3 (-13 (-403 *6) (-27) (-1104))) (-4 *6 (-13 (-424) (-960 (-520)) (-783) (-135) (-582 (-520)))) (-5 *2 (-2 (|:| -4016 *3) (|:| |coeff| *3))) (-5 *1 (-516 *6 *3 *7)) (-4 *7 (-1012)))) (-2436 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-559 *3)) (-5 *5 (-1079 *3)) (-4 *3 (-13 (-403 *6) (-27) (-1104))) (-4 *6 (-13 (-424) (-960 (-520)) (-783) (-135) (-582 (-520)))) (-5 *2 (-2 (|:| -4016 *3) (|:| |coeff| *3))) (-5 *1 (-516 *6 *3 *7)) (-4 *7 (-1012)))) (-1918 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-559 *3)) (-5 *5 (-380 (-1079 *3))) (-4 *3 (-13 (-403 *6) (-27) (-1104))) (-4 *6 (-13 (-424) (-960 (-520)) (-783) (-135) (-582 (-520)))) (-5 *2 (-537 *3)) (-5 *1 (-516 *6 *3 *7)) (-4 *7 (-1012)))) (-1918 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-559 *3)) (-5 *5 (-1079 *3)) (-4 *3 (-13 (-403 *6) (-27) (-1104))) (-4 *6 (-13 (-424) (-960 (-520)) (-783) (-135) (-582 (-520)))) (-5 *2 (-537 *3)) (-5 *1 (-516 *6 *3 *7)) (-4 *7 (-1012)))))
-(-10 -7 (-15 -1918 ((-537 |#2|) |#2| (-559 |#2|) (-559 |#2|) |#2| (-1079 |#2|))) (-15 -1918 ((-537 |#2|) |#2| (-559 |#2|) (-559 |#2|) (-559 |#2|) |#2| (-380 (-1079 |#2|)))) (-15 -2436 ((-3 (-2 (|:| -4016 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-559 |#2|) (-559 |#2|) |#2| |#2| (-1079 |#2|))) (-15 -2436 ((-3 (-2 (|:| -4016 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-559 |#2|) (-559 |#2|) |#2| (-559 |#2|) |#2| (-380 (-1079 |#2|)))) (-15 -2741 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-586 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-559 |#2|) (-559 |#2|) (-586 |#2|) |#2| (-1079 |#2|))) (-15 -2741 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-586 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-559 |#2|) (-559 |#2|) (-586 |#2|) (-559 |#2|) |#2| (-380 (-1079 |#2|)))) (-15 -2105 ((-3 |#2| "failed") |#2| |#2| (-559 |#2|) (-559 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1083)) |#2| (-1079 |#2|))) (-15 -2105 ((-3 |#2| "failed") |#2| |#2| (-559 |#2|) (-559 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1083)) (-559 |#2|) |#2| (-380 (-1079 |#2|)))) (-15 -1278 ((-1079 (-380 (-1079 |#2|))) |#2| (-559 |#2|) (-559 |#2|) (-1079 |#2|))) (-15 -4065 (|#2| (-1079 (-380 (-1079 |#2|))) (-559 |#2|) |#2|)) (-15 -3841 ((-1079 (-380 (-1079 |#2|))) (-1079 |#2|) (-559 |#2|))) (IF (|has| |#3| (-596 |#2|)) (PROGN (-15 -1723 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1831 (-586 |#2|))) |#3| |#2| (-559 |#2|) (-559 |#2|) |#2| (-1079 |#2|))) (-15 -1723 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1831 (-586 |#2|))) |#3| |#2| (-559 |#2|) (-559 |#2|) (-559 |#2|) |#2| (-380 (-1079 |#2|))))) |%noBranch|))
-((-2282 (((-520) (-520) (-706)) 66)) (-4165 (((-520) (-520)) 65)) (-3649 (((-520) (-520)) 64)) (-1536 (((-520) (-520)) 69)) (-1843 (((-520) (-520) (-520)) 49)) (-1814 (((-520) (-520) (-520)) 46)) (-1641 (((-380 (-520)) (-520)) 20)) (-3318 (((-520) (-520)) 21)) (-3592 (((-520) (-520)) 58)) (-2154 (((-520) (-520)) 32)) (-2540 (((-586 (-520)) (-520)) 63)) (-3055 (((-520) (-520) (-520) (-520) (-520)) 44)) (-3340 (((-380 (-520)) (-520)) 41)))
-(((-517) (-10 -7 (-15 -3340 ((-380 (-520)) (-520))) (-15 -3055 ((-520) (-520) (-520) (-520) (-520))) (-15 -2540 ((-586 (-520)) (-520))) (-15 -2154 ((-520) (-520))) (-15 -3592 ((-520) (-520))) (-15 -3318 ((-520) (-520))) (-15 -1641 ((-380 (-520)) (-520))) (-15 -1814 ((-520) (-520) (-520))) (-15 -1843 ((-520) (-520) (-520))) (-15 -1536 ((-520) (-520))) (-15 -3649 ((-520) (-520))) (-15 -4165 ((-520) (-520))) (-15 -2282 ((-520) (-520) (-706))))) (T -517))
-((-2282 (*1 *2 *2 *3) (-12 (-5 *2 (-520)) (-5 *3 (-706)) (-5 *1 (-517)))) (-4165 (*1 *2 *2) (-12 (-5 *2 (-520)) (-5 *1 (-517)))) (-3649 (*1 *2 *2) (-12 (-5 *2 (-520)) (-5 *1 (-517)))) (-1536 (*1 *2 *2) (-12 (-5 *2 (-520)) (-5 *1 (-517)))) (-1843 (*1 *2 *2 *2) (-12 (-5 *2 (-520)) (-5 *1 (-517)))) (-1814 (*1 *2 *2 *2) (-12 (-5 *2 (-520)) (-5 *1 (-517)))) (-1641 (*1 *2 *3) (-12 (-5 *2 (-380 (-520))) (-5 *1 (-517)) (-5 *3 (-520)))) (-3318 (*1 *2 *2) (-12 (-5 *2 (-520)) (-5 *1 (-517)))) (-3592 (*1 *2 *2) (-12 (-5 *2 (-520)) (-5 *1 (-517)))) (-2154 (*1 *2 *2) (-12 (-5 *2 (-520)) (-5 *1 (-517)))) (-2540 (*1 *2 *3) (-12 (-5 *2 (-586 (-520))) (-5 *1 (-517)) (-5 *3 (-520)))) (-3055 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-520)) (-5 *1 (-517)))) (-3340 (*1 *2 *3) (-12 (-5 *2 (-380 (-520))) (-5 *1 (-517)) (-5 *3 (-520)))))
-(-10 -7 (-15 -3340 ((-380 (-520)) (-520))) (-15 -3055 ((-520) (-520) (-520) (-520) (-520))) (-15 -2540 ((-586 (-520)) (-520))) (-15 -2154 ((-520) (-520))) (-15 -3592 ((-520) (-520))) (-15 -3318 ((-520) (-520))) (-15 -1641 ((-380 (-520)) (-520))) (-15 -1814 ((-520) (-520) (-520))) (-15 -1843 ((-520) (-520) (-520))) (-15 -1536 ((-520) (-520))) (-15 -3649 ((-520) (-520))) (-15 -4165 ((-520) (-520))) (-15 -2282 ((-520) (-520) (-706))))
-((-1909 (((-2 (|:| |answer| |#4|) (|:| -3829 |#4|)) |#4| (-1 |#2| |#2|)) 52)))
-(((-518 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1909 ((-2 (|:| |answer| |#4|) (|:| -3829 |#4|)) |#4| (-1 |#2| |#2|)))) (-336) (-1140 |#1|) (-1140 (-380 |#2|)) (-315 |#1| |#2| |#3|)) (T -518))
-((-1909 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1140 *5)) (-4 *5 (-336)) (-4 *7 (-1140 (-380 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -3829 *3))) (-5 *1 (-518 *5 *6 *7 *3)) (-4 *3 (-315 *5 *6 *7)))))
-(-10 -7 (-15 -1909 ((-2 (|:| |answer| |#4|) (|:| -3829 |#4|)) |#4| (-1 |#2| |#2|))))
-((-1909 (((-2 (|:| |answer| (-380 |#2|)) (|:| -3829 (-380 |#2|)) (|:| |specpart| (-380 |#2|)) (|:| |polypart| |#2|)) (-380 |#2|) (-1 |#2| |#2|)) 18)))
-(((-519 |#1| |#2|) (-10 -7 (-15 -1909 ((-2 (|:| |answer| (-380 |#2|)) (|:| -3829 (-380 |#2|)) (|:| |specpart| (-380 |#2|)) (|:| |polypart| |#2|)) (-380 |#2|) (-1 |#2| |#2|)))) (-336) (-1140 |#1|)) (T -519))
-((-1909 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1140 *5)) (-4 *5 (-336)) (-5 *2 (-2 (|:| |answer| (-380 *6)) (|:| -3829 (-380 *6)) (|:| |specpart| (-380 *6)) (|:| |polypart| *6))) (-5 *1 (-519 *5 *6)) (-5 *3 (-380 *6)))))
-(-10 -7 (-15 -1909 ((-2 (|:| |answer| (-380 |#2|)) (|:| -3829 (-380 |#2|)) (|:| |specpart| (-380 |#2|)) (|:| |polypart| |#2|)) (-380 |#2|) (-1 |#2| |#2|))))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) 25)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) 86)) (-2583 (($ $) 87)) (-1671 (((-108) $) NIL)) (-3942 (($ $ $) NIL)) (-1917 (((-3 $ "failed") $ $) NIL)) (-2372 (($ $ $ $) 42)) (-3024 (($ $) NIL)) (-1507 (((-391 $) $) NIL)) (-1327 (((-108) $ $) NIL)) (-2804 (((-520) $) NIL)) (-1660 (($ $ $) 80)) (-3961 (($) NIL T CONST)) (-1296 (((-3 (-520) "failed") $) NIL)) (-1482 (((-520) $) NIL)) (-2276 (($ $ $) 79)) (-2756 (((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 $) (-1164 $)) 60) (((-626 (-520)) (-626 $)) 57)) (-1540 (((-3 $ "failed") $) 83)) (-2279 (((-3 (-380 (-520)) "failed") $) NIL)) (-1386 (((-108) $) NIL)) (-4055 (((-380 (-520)) $) NIL)) (-3249 (($) 62) (($ $) 63)) (-2253 (($ $ $) 78)) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) NIL)) (-2036 (((-108) $) NIL)) (-3028 (($ $ $ $) NIL)) (-3708 (($ $ $) 54)) (-2328 (((-108) $) NIL)) (-4151 (($ $ $) NIL)) (-1272 (((-817 (-520) $) $ (-820 (-520)) (-817 (-520) $)) NIL)) (-1537 (((-108) $) 26)) (-2777 (((-108) $) 73)) (-1394 (((-3 $ "failed") $) NIL)) (-3469 (((-108) $) 34)) (-3188 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-3368 (($ $ $ $) 43)) (-2809 (($ $ $) 75)) (-2446 (($ $ $) 74)) (-3886 (($ $) NIL)) (-2515 (($ $) 40)) (-2222 (($ $ $) NIL) (($ (-586 $)) NIL)) (-1239 (((-1066) $) 53)) (-1527 (($ $ $) NIL)) (-3794 (($) NIL T CONST)) (-2952 (($ $) 31)) (-4142 (((-1030) $) NIL) (($ $) 33)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) 117)) (-2257 (($ $ $) 84) (($ (-586 $)) NIL)) (-2724 (($ $) NIL)) (-1916 (((-391 $) $) 103)) (-1283 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) NIL)) (-2230 (((-3 $ "failed") $ $) 82)) (-2608 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-3615 (((-108) $) NIL)) (-3704 (((-706) $) NIL)) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) 77)) (-2155 (($ $ (-706)) NIL) (($ $) NIL)) (-3047 (($ $) 32)) (-2403 (($ $) 30)) (-1429 (((-520) $) 39) (((-496) $) 51) (((-820 (-520)) $) NIL) (((-352) $) 46) (((-201) $) 48) (((-1066) $) 52)) (-2188 (((-791) $) 37) (($ (-520)) 38) (($ $) NIL) (($ (-520)) 38)) (-3251 (((-706)) NIL)) (-3801 (((-108) $ $) NIL)) (-2586 (($ $ $) NIL)) (-3349 (($) 29)) (-2559 (((-108) $ $) NIL)) (-2642 (($ $ $ $) 41)) (-2458 (($ $) 61)) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (-3560 (($) 27 T CONST)) (-3570 (($) 28 T CONST)) (-3610 (((-1066) $) 20) (((-1066) $ (-108)) 22) (((-1169) (-758) $) 23) (((-1169) (-758) $ (-108)) 24)) (-2211 (($ $ (-706)) NIL) (($ $) NIL)) (-1573 (((-108) $ $) NIL)) (-1557 (((-108) $ $) NIL)) (-1530 (((-108) $ $) 64)) (-1565 (((-108) $ $) NIL)) (-1548 (((-108) $ $) 65)) (-1611 (($ $) 66) (($ $ $) 68)) (-1601 (($ $ $) 67)) (** (($ $ (-849)) NIL) (($ $ (-706)) 72)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) 70) (($ $ $) 69)))
-(((-520) (-13 (-505) (-561 (-1066)) (-764) (-10 -8 (-15 -3249 ($ $)) (-6 -4216) (-6 -4221) (-6 -4217) (-6 -4211)))) (T -520))
-((-3249 (*1 *1 *1) (-5 *1 (-520))))
-(-13 (-505) (-561 (-1066)) (-764) (-10 -8 (-15 -3249 ($ $)) (-6 -4216) (-6 -4221) (-6 -4217) (-6 -4211)))
-((-1796 (((-2 (|:| -1796 (-352)) (|:| -2883 (-1066)) (|:| |explanations| (-586 (-1066))) (|:| |extra| (-958))) (-704) (-981)) 103) (((-2 (|:| -1796 (-352)) (|:| -2883 (-1066)) (|:| |explanations| (-586 (-1066))) (|:| |extra| (-958))) (-704)) 105)) (-3517 (((-3 (-958) "failed") (-289 (-352)) (-1005 (-776 (-352))) (-1083)) 168) (((-3 (-958) "failed") (-289 (-352)) (-1005 (-776 (-352))) (-1066)) 167) (((-958) (-289 (-352)) (-586 (-1007 (-776 (-352)))) (-352) (-352) (-981)) 173) (((-958) (-289 (-352)) (-586 (-1007 (-776 (-352)))) (-352) (-352)) 174) (((-958) (-289 (-352)) (-586 (-1007 (-776 (-352)))) (-352)) 175) (((-958) (-289 (-352)) (-586 (-1007 (-776 (-352))))) 176) (((-958) (-289 (-352)) (-1007 (-776 (-352)))) 163) (((-958) (-289 (-352)) (-1007 (-776 (-352))) (-352)) 162) (((-958) (-289 (-352)) (-1007 (-776 (-352))) (-352) (-352)) 158) (((-958) (-704)) 150) (((-958) (-289 (-352)) (-1007 (-776 (-352))) (-352) (-352) (-981)) 157)))
-(((-521) (-10 -7 (-15 -3517 ((-958) (-289 (-352)) (-1007 (-776 (-352))) (-352) (-352) (-981))) (-15 -3517 ((-958) (-704))) (-15 -3517 ((-958) (-289 (-352)) (-1007 (-776 (-352))) (-352) (-352))) (-15 -3517 ((-958) (-289 (-352)) (-1007 (-776 (-352))) (-352))) (-15 -3517 ((-958) (-289 (-352)) (-1007 (-776 (-352))))) (-15 -3517 ((-958) (-289 (-352)) (-586 (-1007 (-776 (-352)))))) (-15 -3517 ((-958) (-289 (-352)) (-586 (-1007 (-776 (-352)))) (-352))) (-15 -3517 ((-958) (-289 (-352)) (-586 (-1007 (-776 (-352)))) (-352) (-352))) (-15 -3517 ((-958) (-289 (-352)) (-586 (-1007 (-776 (-352)))) (-352) (-352) (-981))) (-15 -1796 ((-2 (|:| -1796 (-352)) (|:| -2883 (-1066)) (|:| |explanations| (-586 (-1066))) (|:| |extra| (-958))) (-704))) (-15 -1796 ((-2 (|:| -1796 (-352)) (|:| -2883 (-1066)) (|:| |explanations| (-586 (-1066))) (|:| |extra| (-958))) (-704) (-981))) (-15 -3517 ((-3 (-958) "failed") (-289 (-352)) (-1005 (-776 (-352))) (-1066))) (-15 -3517 ((-3 (-958) "failed") (-289 (-352)) (-1005 (-776 (-352))) (-1083))))) (T -521))
-((-3517 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-289 (-352))) (-5 *4 (-1005 (-776 (-352)))) (-5 *5 (-1083)) (-5 *2 (-958)) (-5 *1 (-521)))) (-3517 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-289 (-352))) (-5 *4 (-1005 (-776 (-352)))) (-5 *5 (-1066)) (-5 *2 (-958)) (-5 *1 (-521)))) (-1796 (*1 *2 *3 *4) (-12 (-5 *3 (-704)) (-5 *4 (-981)) (-5 *2 (-2 (|:| -1796 (-352)) (|:| -2883 (-1066)) (|:| |explanations| (-586 (-1066))) (|:| |extra| (-958)))) (-5 *1 (-521)))) (-1796 (*1 *2 *3) (-12 (-5 *3 (-704)) (-5 *2 (-2 (|:| -1796 (-352)) (|:| -2883 (-1066)) (|:| |explanations| (-586 (-1066))) (|:| |extra| (-958)))) (-5 *1 (-521)))) (-3517 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-289 (-352))) (-5 *4 (-586 (-1007 (-776 (-352))))) (-5 *5 (-352)) (-5 *6 (-981)) (-5 *2 (-958)) (-5 *1 (-521)))) (-3517 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-289 (-352))) (-5 *4 (-586 (-1007 (-776 (-352))))) (-5 *5 (-352)) (-5 *2 (-958)) (-5 *1 (-521)))) (-3517 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-289 (-352))) (-5 *4 (-586 (-1007 (-776 (-352))))) (-5 *5 (-352)) (-5 *2 (-958)) (-5 *1 (-521)))) (-3517 (*1 *2 *3 *4) (-12 (-5 *3 (-289 (-352))) (-5 *4 (-586 (-1007 (-776 (-352))))) (-5 *2 (-958)) (-5 *1 (-521)))) (-3517 (*1 *2 *3 *4) (-12 (-5 *3 (-289 (-352))) (-5 *4 (-1007 (-776 (-352)))) (-5 *2 (-958)) (-5 *1 (-521)))) (-3517 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-289 (-352))) (-5 *4 (-1007 (-776 (-352)))) (-5 *5 (-352)) (-5 *2 (-958)) (-5 *1 (-521)))) (-3517 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-289 (-352))) (-5 *4 (-1007 (-776 (-352)))) (-5 *5 (-352)) (-5 *2 (-958)) (-5 *1 (-521)))) (-3517 (*1 *2 *3) (-12 (-5 *3 (-704)) (-5 *2 (-958)) (-5 *1 (-521)))) (-3517 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-289 (-352))) (-5 *4 (-1007 (-776 (-352)))) (-5 *5 (-352)) (-5 *6 (-981)) (-5 *2 (-958)) (-5 *1 (-521)))))
-(-10 -7 (-15 -3517 ((-958) (-289 (-352)) (-1007 (-776 (-352))) (-352) (-352) (-981))) (-15 -3517 ((-958) (-704))) (-15 -3517 ((-958) (-289 (-352)) (-1007 (-776 (-352))) (-352) (-352))) (-15 -3517 ((-958) (-289 (-352)) (-1007 (-776 (-352))) (-352))) (-15 -3517 ((-958) (-289 (-352)) (-1007 (-776 (-352))))) (-15 -3517 ((-958) (-289 (-352)) (-586 (-1007 (-776 (-352)))))) (-15 -3517 ((-958) (-289 (-352)) (-586 (-1007 (-776 (-352)))) (-352))) (-15 -3517 ((-958) (-289 (-352)) (-586 (-1007 (-776 (-352)))) (-352) (-352))) (-15 -3517 ((-958) (-289 (-352)) (-586 (-1007 (-776 (-352)))) (-352) (-352) (-981))) (-15 -1796 ((-2 (|:| -1796 (-352)) (|:| -2883 (-1066)) (|:| |explanations| (-586 (-1066))) (|:| |extra| (-958))) (-704))) (-15 -1796 ((-2 (|:| -1796 (-352)) (|:| -2883 (-1066)) (|:| |explanations| (-586 (-1066))) (|:| |extra| (-958))) (-704) (-981))) (-15 -3517 ((-3 (-958) "failed") (-289 (-352)) (-1005 (-776 (-352))) (-1066))) (-15 -3517 ((-3 (-958) "failed") (-289 (-352)) (-1005 (-776 (-352))) (-1083))))
-((-2454 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-586 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-559 |#2|) (-559 |#2|) (-586 |#2|)) 181)) (-1702 (((-537 |#2|) |#2| (-559 |#2|) (-559 |#2|)) 99)) (-1956 (((-3 (-2 (|:| -4016 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-559 |#2|) (-559 |#2|) |#2|) 177)) (-1833 (((-3 |#2| "failed") |#2| |#2| |#2| (-559 |#2|) (-559 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1083))) 186)) (-2628 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1831 (-586 |#2|))) |#3| |#2| (-559 |#2|) (-559 |#2|) (-1083)) 194 (|has| |#3| (-596 |#2|)))))
-(((-522 |#1| |#2| |#3|) (-10 -7 (-15 -1702 ((-537 |#2|) |#2| (-559 |#2|) (-559 |#2|))) (-15 -1956 ((-3 (-2 (|:| -4016 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-559 |#2|) (-559 |#2|) |#2|)) (-15 -2454 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-586 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-559 |#2|) (-559 |#2|) (-586 |#2|))) (-15 -1833 ((-3 |#2| "failed") |#2| |#2| |#2| (-559 |#2|) (-559 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1083)))) (IF (|has| |#3| (-596 |#2|)) (-15 -2628 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1831 (-586 |#2|))) |#3| |#2| (-559 |#2|) (-559 |#2|) (-1083))) |%noBranch|)) (-13 (-424) (-960 (-520)) (-783) (-135) (-582 (-520))) (-13 (-403 |#1|) (-27) (-1104)) (-1012)) (T -522))
-((-2628 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-559 *4)) (-5 *6 (-1083)) (-4 *4 (-13 (-403 *7) (-27) (-1104))) (-4 *7 (-13 (-424) (-960 (-520)) (-783) (-135) (-582 (-520)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1831 (-586 *4)))) (-5 *1 (-522 *7 *4 *3)) (-4 *3 (-596 *4)) (-4 *3 (-1012)))) (-1833 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-559 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1083))) (-4 *2 (-13 (-403 *5) (-27) (-1104))) (-4 *5 (-13 (-424) (-960 (-520)) (-783) (-135) (-582 (-520)))) (-5 *1 (-522 *5 *2 *6)) (-4 *6 (-1012)))) (-2454 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-559 *3)) (-5 *5 (-586 *3)) (-4 *3 (-13 (-403 *6) (-27) (-1104))) (-4 *6 (-13 (-424) (-960 (-520)) (-783) (-135) (-582 (-520)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-586 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-522 *6 *3 *7)) (-4 *7 (-1012)))) (-1956 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-559 *3)) (-4 *3 (-13 (-403 *5) (-27) (-1104))) (-4 *5 (-13 (-424) (-960 (-520)) (-783) (-135) (-582 (-520)))) (-5 *2 (-2 (|:| -4016 *3) (|:| |coeff| *3))) (-5 *1 (-522 *5 *3 *6)) (-4 *6 (-1012)))) (-1702 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-559 *3)) (-4 *3 (-13 (-403 *5) (-27) (-1104))) (-4 *5 (-13 (-424) (-960 (-520)) (-783) (-135) (-582 (-520)))) (-5 *2 (-537 *3)) (-5 *1 (-522 *5 *3 *6)) (-4 *6 (-1012)))))
-(-10 -7 (-15 -1702 ((-537 |#2|) |#2| (-559 |#2|) (-559 |#2|))) (-15 -1956 ((-3 (-2 (|:| -4016 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-559 |#2|) (-559 |#2|) |#2|)) (-15 -2454 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-586 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-559 |#2|) (-559 |#2|) (-586 |#2|))) (-15 -1833 ((-3 |#2| "failed") |#2| |#2| |#2| (-559 |#2|) (-559 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1083)))) (IF (|has| |#3| (-596 |#2|)) (-15 -2628 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1831 (-586 |#2|))) |#3| |#2| (-559 |#2|) (-559 |#2|) (-1083))) |%noBranch|))
-((-3220 (((-2 (|:| -2011 |#2|) (|:| |nconst| |#2|)) |#2| (-1083)) 62)) (-2267 (((-3 |#2| "failed") |#2| (-1083) (-776 |#2|) (-776 |#2|)) 159 (-12 (|has| |#2| (-1047)) (|has| |#1| (-561 (-820 (-520)))) (|has| |#1| (-814 (-520))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1083)) 133 (-12 (|has| |#2| (-572)) (|has| |#1| (-561 (-820 (-520)))) (|has| |#1| (-814 (-520)))))) (-3534 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1083)) 142 (-12 (|has| |#2| (-572)) (|has| |#1| (-561 (-820 (-520)))) (|has| |#1| (-814 (-520)))))))
-(((-523 |#1| |#2|) (-10 -7 (-15 -3220 ((-2 (|:| -2011 |#2|) (|:| |nconst| |#2|)) |#2| (-1083))) (IF (|has| |#1| (-561 (-820 (-520)))) (IF (|has| |#1| (-814 (-520))) (PROGN (IF (|has| |#2| (-572)) (PROGN (-15 -3534 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1083))) (-15 -2267 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1083)))) |%noBranch|) (IF (|has| |#2| (-1047)) (-15 -2267 ((-3 |#2| "failed") |#2| (-1083) (-776 |#2|) (-776 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-783) (-960 (-520)) (-424) (-582 (-520))) (-13 (-27) (-1104) (-403 |#1|))) (T -523))
-((-2267 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1083)) (-5 *4 (-776 *2)) (-4 *2 (-1047)) (-4 *2 (-13 (-27) (-1104) (-403 *5))) (-4 *5 (-561 (-820 (-520)))) (-4 *5 (-814 (-520))) (-4 *5 (-13 (-783) (-960 (-520)) (-424) (-582 (-520)))) (-5 *1 (-523 *5 *2)))) (-2267 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1083)) (-4 *5 (-561 (-820 (-520)))) (-4 *5 (-814 (-520))) (-4 *5 (-13 (-783) (-960 (-520)) (-424) (-582 (-520)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-523 *5 *3)) (-4 *3 (-572)) (-4 *3 (-13 (-27) (-1104) (-403 *5))))) (-3534 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1083)) (-4 *5 (-561 (-820 (-520)))) (-4 *5 (-814 (-520))) (-4 *5 (-13 (-783) (-960 (-520)) (-424) (-582 (-520)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-523 *5 *3)) (-4 *3 (-572)) (-4 *3 (-13 (-27) (-1104) (-403 *5))))) (-3220 (*1 *2 *3 *4) (-12 (-5 *4 (-1083)) (-4 *5 (-13 (-783) (-960 (-520)) (-424) (-582 (-520)))) (-5 *2 (-2 (|:| -2011 *3) (|:| |nconst| *3))) (-5 *1 (-523 *5 *3)) (-4 *3 (-13 (-27) (-1104) (-403 *5))))))
-(-10 -7 (-15 -3220 ((-2 (|:| -2011 |#2|) (|:| |nconst| |#2|)) |#2| (-1083))) (IF (|has| |#1| (-561 (-820 (-520)))) (IF (|has| |#1| (-814 (-520))) (PROGN (IF (|has| |#2| (-572)) (PROGN (-15 -3534 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1083))) (-15 -2267 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1083)))) |%noBranch|) (IF (|has| |#2| (-1047)) (-15 -2267 ((-3 |#2| "failed") |#2| (-1083) (-776 |#2|) (-776 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|))
-((-4186 (((-3 (-2 (|:| |mainpart| (-380 |#2|)) (|:| |limitedlogs| (-586 (-2 (|:| |coeff| (-380 |#2|)) (|:| |logand| (-380 |#2|)))))) "failed") (-380 |#2|) (-586 (-380 |#2|))) 39)) (-3517 (((-537 (-380 |#2|)) (-380 |#2|)) 27)) (-1357 (((-3 (-380 |#2|) "failed") (-380 |#2|)) 16)) (-3909 (((-3 (-2 (|:| -4016 (-380 |#2|)) (|:| |coeff| (-380 |#2|))) "failed") (-380 |#2|) (-380 |#2|)) 46)))
-(((-524 |#1| |#2|) (-10 -7 (-15 -3517 ((-537 (-380 |#2|)) (-380 |#2|))) (-15 -1357 ((-3 (-380 |#2|) "failed") (-380 |#2|))) (-15 -3909 ((-3 (-2 (|:| -4016 (-380 |#2|)) (|:| |coeff| (-380 |#2|))) "failed") (-380 |#2|) (-380 |#2|))) (-15 -4186 ((-3 (-2 (|:| |mainpart| (-380 |#2|)) (|:| |limitedlogs| (-586 (-2 (|:| |coeff| (-380 |#2|)) (|:| |logand| (-380 |#2|)))))) "failed") (-380 |#2|) (-586 (-380 |#2|))))) (-13 (-336) (-135) (-960 (-520))) (-1140 |#1|)) (T -524))
-((-4186 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-586 (-380 *6))) (-5 *3 (-380 *6)) (-4 *6 (-1140 *5)) (-4 *5 (-13 (-336) (-135) (-960 (-520)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-586 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-524 *5 *6)))) (-3909 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-336) (-135) (-960 (-520)))) (-4 *5 (-1140 *4)) (-5 *2 (-2 (|:| -4016 (-380 *5)) (|:| |coeff| (-380 *5)))) (-5 *1 (-524 *4 *5)) (-5 *3 (-380 *5)))) (-1357 (*1 *2 *2) (|partial| -12 (-5 *2 (-380 *4)) (-4 *4 (-1140 *3)) (-4 *3 (-13 (-336) (-135) (-960 (-520)))) (-5 *1 (-524 *3 *4)))) (-3517 (*1 *2 *3) (-12 (-4 *4 (-13 (-336) (-135) (-960 (-520)))) (-4 *5 (-1140 *4)) (-5 *2 (-537 (-380 *5))) (-5 *1 (-524 *4 *5)) (-5 *3 (-380 *5)))))
-(-10 -7 (-15 -3517 ((-537 (-380 |#2|)) (-380 |#2|))) (-15 -1357 ((-3 (-380 |#2|) "failed") (-380 |#2|))) (-15 -3909 ((-3 (-2 (|:| -4016 (-380 |#2|)) (|:| |coeff| (-380 |#2|))) "failed") (-380 |#2|) (-380 |#2|))) (-15 -4186 ((-3 (-2 (|:| |mainpart| (-380 |#2|)) (|:| |limitedlogs| (-586 (-2 (|:| |coeff| (-380 |#2|)) (|:| |logand| (-380 |#2|)))))) "failed") (-380 |#2|) (-586 (-380 |#2|)))))
-((-1236 (((-3 (-520) "failed") |#1|) 14)) (-3447 (((-108) |#1|) 13)) (-1506 (((-520) |#1|) 9)))
-(((-525 |#1|) (-10 -7 (-15 -1506 ((-520) |#1|)) (-15 -3447 ((-108) |#1|)) (-15 -1236 ((-3 (-520) "failed") |#1|))) (-960 (-520))) (T -525))
-((-1236 (*1 *2 *3) (|partial| -12 (-5 *2 (-520)) (-5 *1 (-525 *3)) (-4 *3 (-960 *2)))) (-3447 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-525 *3)) (-4 *3 (-960 (-520))))) (-1506 (*1 *2 *3) (-12 (-5 *2 (-520)) (-5 *1 (-525 *3)) (-4 *3 (-960 *2)))))
-(-10 -7 (-15 -1506 ((-520) |#1|)) (-15 -3447 ((-108) |#1|)) (-15 -1236 ((-3 (-520) "failed") |#1|)))
-((-1468 (((-3 (-2 (|:| |mainpart| (-380 (-880 |#1|))) (|:| |limitedlogs| (-586 (-2 (|:| |coeff| (-380 (-880 |#1|))) (|:| |logand| (-380 (-880 |#1|))))))) "failed") (-380 (-880 |#1|)) (-1083) (-586 (-380 (-880 |#1|)))) 43)) (-2065 (((-537 (-380 (-880 |#1|))) (-380 (-880 |#1|)) (-1083)) 25)) (-1288 (((-3 (-380 (-880 |#1|)) "failed") (-380 (-880 |#1|)) (-1083)) 20)) (-4160 (((-3 (-2 (|:| -4016 (-380 (-880 |#1|))) (|:| |coeff| (-380 (-880 |#1|)))) "failed") (-380 (-880 |#1|)) (-1083) (-380 (-880 |#1|))) 32)))
-(((-526 |#1|) (-10 -7 (-15 -2065 ((-537 (-380 (-880 |#1|))) (-380 (-880 |#1|)) (-1083))) (-15 -1288 ((-3 (-380 (-880 |#1|)) "failed") (-380 (-880 |#1|)) (-1083))) (-15 -1468 ((-3 (-2 (|:| |mainpart| (-380 (-880 |#1|))) (|:| |limitedlogs| (-586 (-2 (|:| |coeff| (-380 (-880 |#1|))) (|:| |logand| (-380 (-880 |#1|))))))) "failed") (-380 (-880 |#1|)) (-1083) (-586 (-380 (-880 |#1|))))) (-15 -4160 ((-3 (-2 (|:| -4016 (-380 (-880 |#1|))) (|:| |coeff| (-380 (-880 |#1|)))) "failed") (-380 (-880 |#1|)) (-1083) (-380 (-880 |#1|))))) (-13 (-512) (-960 (-520)) (-135))) (T -526))
-((-4160 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1083)) (-4 *5 (-13 (-512) (-960 (-520)) (-135))) (-5 *2 (-2 (|:| -4016 (-380 (-880 *5))) (|:| |coeff| (-380 (-880 *5))))) (-5 *1 (-526 *5)) (-5 *3 (-380 (-880 *5))))) (-1468 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1083)) (-5 *5 (-586 (-380 (-880 *6)))) (-5 *3 (-380 (-880 *6))) (-4 *6 (-13 (-512) (-960 (-520)) (-135))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-586 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-526 *6)))) (-1288 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-380 (-880 *4))) (-5 *3 (-1083)) (-4 *4 (-13 (-512) (-960 (-520)) (-135))) (-5 *1 (-526 *4)))) (-2065 (*1 *2 *3 *4) (-12 (-5 *4 (-1083)) (-4 *5 (-13 (-512) (-960 (-520)) (-135))) (-5 *2 (-537 (-380 (-880 *5)))) (-5 *1 (-526 *5)) (-5 *3 (-380 (-880 *5))))))
-(-10 -7 (-15 -2065 ((-537 (-380 (-880 |#1|))) (-380 (-880 |#1|)) (-1083))) (-15 -1288 ((-3 (-380 (-880 |#1|)) "failed") (-380 (-880 |#1|)) (-1083))) (-15 -1468 ((-3 (-2 (|:| |mainpart| (-380 (-880 |#1|))) (|:| |limitedlogs| (-586 (-2 (|:| |coeff| (-380 (-880 |#1|))) (|:| |logand| (-380 (-880 |#1|))))))) "failed") (-380 (-880 |#1|)) (-1083) (-586 (-380 (-880 |#1|))))) (-15 -4160 ((-3 (-2 (|:| -4016 (-380 (-880 |#1|))) (|:| |coeff| (-380 (-880 |#1|)))) "failed") (-380 (-880 |#1|)) (-1083) (-380 (-880 |#1|)))))
-((-1414 (((-108) $ $) 59)) (-2906 (((-108) $) 36)) (-2644 ((|#1| $) 30)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) NIL)) (-2583 (($ $) NIL)) (-1671 (((-108) $) 63)) (-2903 (($ $) 123)) (-2768 (($ $) 103)) (-1224 ((|#1| $) 28)) (-1917 (((-3 $ "failed") $ $) NIL)) (-1927 (($ $) NIL)) (-2879 (($ $) 125)) (-2745 (($ $) 99)) (-2925 (($ $) 127)) (-2789 (($ $) 107)) (-3961 (($) NIL T CONST)) (-1296 (((-3 (-520) "failed") $) 78)) (-1482 (((-520) $) 80)) (-1540 (((-3 $ "failed") $) 62)) (-2805 (($ |#1| |#1|) 26)) (-2328 (((-108) $) 33)) (-2833 (($) 89)) (-1537 (((-108) $) 43)) (-2322 (($ $ (-520)) NIL)) (-3469 (((-108) $) 34)) (-2809 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-1252 (($ $) 91)) (-2222 (($ $ $) NIL) (($ (-586 $)) NIL)) (-1239 (((-1066) $) NIL)) (-4189 (($ |#1| |#1|) 20) (($ |#1|) 25) (($ (-380 (-520))) 77)) (-2662 ((|#1| $) 27)) (-4142 (((-1030) $) NIL)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) NIL)) (-2257 (($ $ $) 65) (($ (-586 $)) NIL)) (-2230 (((-3 $ "failed") $ $) 64)) (-3260 (($ $) 93)) (-1737 (($ $) 131)) (-2799 (($ $) 105)) (-2914 (($ $) 133)) (-2779 (($ $) 109)) (-2891 (($ $) 129)) (-2757 (($ $) 101)) (-2172 (((-108) $ |#1|) 31)) (-2188 (((-791) $) 85) (($ (-520)) 67) (($ $) NIL) (($ (-520)) 67)) (-3251 (((-706)) 87)) (-1758 (($ $) 145)) (-2831 (($ $) 115)) (-2559 (((-108) $ $) NIL)) (-1744 (($ $) 143)) (-2810 (($ $) 111)) (-1775 (($ $) 141)) (-2855 (($ $) 121)) (-3915 (($ $) 139)) (-2867 (($ $) 119)) (-1767 (($ $) 137)) (-2843 (($ $) 117)) (-1751 (($ $) 135)) (-2820 (($ $) 113)) (-3504 (($ $ (-849)) 55) (($ $ (-706)) NIL)) (-3560 (($) 21 T CONST)) (-3570 (($) 10 T CONST)) (-1573 (((-108) $ $) NIL)) (-1557 (((-108) $ $) NIL)) (-1530 (((-108) $ $) 37)) (-1565 (((-108) $ $) NIL)) (-1548 (((-108) $ $) 35)) (-1611 (($ $) 41) (($ $ $) 42)) (-1601 (($ $ $) 40)) (** (($ $ (-849)) 54) (($ $ (-706)) NIL) (($ $ $) 95) (($ $ (-380 (-520))) 147)) (* (($ (-849) $) 51) (($ (-706) $) NIL) (($ (-520) $) 50) (($ $ $) 48)))
-(((-527 |#1|) (-510 |#1|) (-13 (-377) (-1104))) (T -527))
-NIL
-(-510 |#1|)
-((-3481 (((-3 (-586 (-1079 (-520))) "failed") (-586 (-1079 (-520))) (-1079 (-520))) 24)))
-(((-528) (-10 -7 (-15 -3481 ((-3 (-586 (-1079 (-520))) "failed") (-586 (-1079 (-520))) (-1079 (-520)))))) (T -528))
-((-3481 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-586 (-1079 (-520)))) (-5 *3 (-1079 (-520))) (-5 *1 (-528)))))
-(-10 -7 (-15 -3481 ((-3 (-586 (-1079 (-520))) "failed") (-586 (-1079 (-520))) (-1079 (-520)))))
-((-3905 (((-586 (-559 |#2|)) (-586 (-559 |#2|)) (-1083)) 18)) (-1803 (((-586 (-559 |#2|)) (-586 |#2|) (-1083)) 23)) (-2268 (((-586 (-559 |#2|)) (-586 (-559 |#2|)) (-586 (-559 |#2|))) 10)) (-1979 ((|#2| |#2| (-1083)) 52 (|has| |#1| (-512)))) (-2370 ((|#2| |#2| (-1083)) 77 (-12 (|has| |#2| (-258)) (|has| |#1| (-424))))) (-4095 (((-559 |#2|) (-559 |#2|) (-586 (-559 |#2|)) (-1083)) 25)) (-2536 (((-559 |#2|) (-586 (-559 |#2|))) 24)) (-2714 (((-537 |#2|) |#2| (-1083) (-1 (-537 |#2|) |#2| (-1083)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1083))) 101 (-12 (|has| |#2| (-258)) (|has| |#2| (-572)) (|has| |#2| (-960 (-1083))) (|has| |#1| (-561 (-820 (-520)))) (|has| |#1| (-424)) (|has| |#1| (-814 (-520)))))))
-(((-529 |#1| |#2|) (-10 -7 (-15 -3905 ((-586 (-559 |#2|)) (-586 (-559 |#2|)) (-1083))) (-15 -2536 ((-559 |#2|) (-586 (-559 |#2|)))) (-15 -4095 ((-559 |#2|) (-559 |#2|) (-586 (-559 |#2|)) (-1083))) (-15 -2268 ((-586 (-559 |#2|)) (-586 (-559 |#2|)) (-586 (-559 |#2|)))) (-15 -1803 ((-586 (-559 |#2|)) (-586 |#2|) (-1083))) (IF (|has| |#1| (-512)) (-15 -1979 (|#2| |#2| (-1083))) |%noBranch|) (IF (|has| |#1| (-424)) (IF (|has| |#2| (-258)) (PROGN (-15 -2370 (|#2| |#2| (-1083))) (IF (|has| |#1| (-561 (-820 (-520)))) (IF (|has| |#1| (-814 (-520))) (IF (|has| |#2| (-572)) (IF (|has| |#2| (-960 (-1083))) (-15 -2714 ((-537 |#2|) |#2| (-1083) (-1 (-537 |#2|) |#2| (-1083)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1083)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-783) (-403 |#1|)) (T -529))
-((-2714 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-537 *3) *3 (-1083))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1083))) (-4 *3 (-258)) (-4 *3 (-572)) (-4 *3 (-960 *4)) (-4 *3 (-403 *7)) (-5 *4 (-1083)) (-4 *7 (-561 (-820 (-520)))) (-4 *7 (-424)) (-4 *7 (-814 (-520))) (-4 *7 (-783)) (-5 *2 (-537 *3)) (-5 *1 (-529 *7 *3)))) (-2370 (*1 *2 *2 *3) (-12 (-5 *3 (-1083)) (-4 *4 (-424)) (-4 *4 (-783)) (-5 *1 (-529 *4 *2)) (-4 *2 (-258)) (-4 *2 (-403 *4)))) (-1979 (*1 *2 *2 *3) (-12 (-5 *3 (-1083)) (-4 *4 (-512)) (-4 *4 (-783)) (-5 *1 (-529 *4 *2)) (-4 *2 (-403 *4)))) (-1803 (*1 *2 *3 *4) (-12 (-5 *3 (-586 *6)) (-5 *4 (-1083)) (-4 *6 (-403 *5)) (-4 *5 (-783)) (-5 *2 (-586 (-559 *6))) (-5 *1 (-529 *5 *6)))) (-2268 (*1 *2 *2 *2) (-12 (-5 *2 (-586 (-559 *4))) (-4 *4 (-403 *3)) (-4 *3 (-783)) (-5 *1 (-529 *3 *4)))) (-4095 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-586 (-559 *6))) (-5 *4 (-1083)) (-5 *2 (-559 *6)) (-4 *6 (-403 *5)) (-4 *5 (-783)) (-5 *1 (-529 *5 *6)))) (-2536 (*1 *2 *3) (-12 (-5 *3 (-586 (-559 *5))) (-4 *4 (-783)) (-5 *2 (-559 *5)) (-5 *1 (-529 *4 *5)) (-4 *5 (-403 *4)))) (-3905 (*1 *2 *2 *3) (-12 (-5 *2 (-586 (-559 *5))) (-5 *3 (-1083)) (-4 *5 (-403 *4)) (-4 *4 (-783)) (-5 *1 (-529 *4 *5)))))
-(-10 -7 (-15 -3905 ((-586 (-559 |#2|)) (-586 (-559 |#2|)) (-1083))) (-15 -2536 ((-559 |#2|) (-586 (-559 |#2|)))) (-15 -4095 ((-559 |#2|) (-559 |#2|) (-586 (-559 |#2|)) (-1083))) (-15 -2268 ((-586 (-559 |#2|)) (-586 (-559 |#2|)) (-586 (-559 |#2|)))) (-15 -1803 ((-586 (-559 |#2|)) (-586 |#2|) (-1083))) (IF (|has| |#1| (-512)) (-15 -1979 (|#2| |#2| (-1083))) |%noBranch|) (IF (|has| |#1| (-424)) (IF (|has| |#2| (-258)) (PROGN (-15 -2370 (|#2| |#2| (-1083))) (IF (|has| |#1| (-561 (-820 (-520)))) (IF (|has| |#1| (-814 (-520))) (IF (|has| |#2| (-572)) (IF (|has| |#2| (-960 (-1083))) (-15 -2714 ((-537 |#2|) |#2| (-1083) (-1 (-537 |#2|) |#2| (-1083)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1083)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|))
-((-1412 (((-2 (|:| |answer| (-537 (-380 |#2|))) (|:| |a0| |#1|)) (-380 |#2|) (-1 |#2| |#2|) (-1 (-3 (-586 |#1|) "failed") (-520) |#1| |#1|)) 168)) (-2816 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-380 |#2|)) (|:| |limitedlogs| (-586 (-2 (|:| |coeff| (-380 |#2|)) (|:| |logand| (-380 |#2|))))))) (|:| |a0| |#1|)) "failed") (-380 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4016 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-586 (-380 |#2|))) 144)) (-1477 (((-3 (-2 (|:| |mainpart| (-380 |#2|)) (|:| |limitedlogs| (-586 (-2 (|:| |coeff| (-380 |#2|)) (|:| |logand| (-380 |#2|)))))) "failed") (-380 |#2|) (-1 |#2| |#2|) (-586 (-380 |#2|))) 141)) (-1725 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -4016 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 130)) (-3271 (((-2 (|:| |answer| (-537 (-380 |#2|))) (|:| |a0| |#1|)) (-380 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4016 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 154)) (-2407 (((-3 (-2 (|:| -4016 (-380 |#2|)) (|:| |coeff| (-380 |#2|))) "failed") (-380 |#2|) (-1 |#2| |#2|) (-380 |#2|)) 171)) (-3313 (((-3 (-2 (|:| |answer| (-380 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -4016 (-380 |#2|)) (|:| |coeff| (-380 |#2|))) "failed") (-380 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4016 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-380 |#2|)) 174)) (-2045 (((-2 (|:| |ir| (-537 (-380 |#2|))) (|:| |specpart| (-380 |#2|)) (|:| |polypart| |#2|)) (-380 |#2|) (-1 |#2| |#2|)) 82)) (-2187 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 89)) (-1811 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-380 |#2|)) (|:| |limitedlogs| (-586 (-2 (|:| |coeff| (-380 |#2|)) (|:| |logand| (-380 |#2|))))))) (|:| |a0| |#1|)) "failed") (-380 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1924 |#1|) (|:| |sol?| (-108))) (-520) |#1|) (-586 (-380 |#2|))) 148)) (-1478 (((-3 (-567 |#1| |#2|) "failed") (-567 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1924 |#1|) (|:| |sol?| (-108))) (-520) |#1|)) 134)) (-3279 (((-2 (|:| |answer| (-537 (-380 |#2|))) (|:| |a0| |#1|)) (-380 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1924 |#1|) (|:| |sol?| (-108))) (-520) |#1|)) 158)) (-1716 (((-3 (-2 (|:| |answer| (-380 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -4016 (-380 |#2|)) (|:| |coeff| (-380 |#2|))) "failed") (-380 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1924 |#1|) (|:| |sol?| (-108))) (-520) |#1|) (-380 |#2|)) 179)))
-(((-530 |#1| |#2|) (-10 -7 (-15 -3271 ((-2 (|:| |answer| (-537 (-380 |#2|))) (|:| |a0| |#1|)) (-380 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4016 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -3279 ((-2 (|:| |answer| (-537 (-380 |#2|))) (|:| |a0| |#1|)) (-380 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1924 |#1|) (|:| |sol?| (-108))) (-520) |#1|))) (-15 -1412 ((-2 (|:| |answer| (-537 (-380 |#2|))) (|:| |a0| |#1|)) (-380 |#2|) (-1 |#2| |#2|) (-1 (-3 (-586 |#1|) "failed") (-520) |#1| |#1|))) (-15 -3313 ((-3 (-2 (|:| |answer| (-380 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -4016 (-380 |#2|)) (|:| |coeff| (-380 |#2|))) "failed") (-380 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4016 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-380 |#2|))) (-15 -1716 ((-3 (-2 (|:| |answer| (-380 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -4016 (-380 |#2|)) (|:| |coeff| (-380 |#2|))) "failed") (-380 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1924 |#1|) (|:| |sol?| (-108))) (-520) |#1|) (-380 |#2|))) (-15 -2816 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-380 |#2|)) (|:| |limitedlogs| (-586 (-2 (|:| |coeff| (-380 |#2|)) (|:| |logand| (-380 |#2|))))))) (|:| |a0| |#1|)) "failed") (-380 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4016 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-586 (-380 |#2|)))) (-15 -1811 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-380 |#2|)) (|:| |limitedlogs| (-586 (-2 (|:| |coeff| (-380 |#2|)) (|:| |logand| (-380 |#2|))))))) (|:| |a0| |#1|)) "failed") (-380 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1924 |#1|) (|:| |sol?| (-108))) (-520) |#1|) (-586 (-380 |#2|)))) (-15 -2407 ((-3 (-2 (|:| -4016 (-380 |#2|)) (|:| |coeff| (-380 |#2|))) "failed") (-380 |#2|) (-1 |#2| |#2|) (-380 |#2|))) (-15 -1477 ((-3 (-2 (|:| |mainpart| (-380 |#2|)) (|:| |limitedlogs| (-586 (-2 (|:| |coeff| (-380 |#2|)) (|:| |logand| (-380 |#2|)))))) "failed") (-380 |#2|) (-1 |#2| |#2|) (-586 (-380 |#2|)))) (-15 -1725 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -4016 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -1478 ((-3 (-567 |#1| |#2|) "failed") (-567 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1924 |#1|) (|:| |sol?| (-108))) (-520) |#1|))) (-15 -2045 ((-2 (|:| |ir| (-537 (-380 |#2|))) (|:| |specpart| (-380 |#2|)) (|:| |polypart| |#2|)) (-380 |#2|) (-1 |#2| |#2|))) (-15 -2187 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-336) (-1140 |#1|)) (T -530))
-((-2187 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1140 *5)) (-4 *5 (-336)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-530 *5 *3)))) (-2045 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1140 *5)) (-4 *5 (-336)) (-5 *2 (-2 (|:| |ir| (-537 (-380 *6))) (|:| |specpart| (-380 *6)) (|:| |polypart| *6))) (-5 *1 (-530 *5 *6)) (-5 *3 (-380 *6)))) (-1478 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-567 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -1924 *4) (|:| |sol?| (-108))) (-520) *4)) (-4 *4 (-336)) (-4 *5 (-1140 *4)) (-5 *1 (-530 *4 *5)))) (-1725 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -4016 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-336)) (-5 *1 (-530 *4 *2)) (-4 *2 (-1140 *4)))) (-1477 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-586 (-380 *7))) (-4 *7 (-1140 *6)) (-5 *3 (-380 *7)) (-4 *6 (-336)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-586 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-530 *6 *7)))) (-2407 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1140 *5)) (-4 *5 (-336)) (-5 *2 (-2 (|:| -4016 (-380 *6)) (|:| |coeff| (-380 *6)))) (-5 *1 (-530 *5 *6)) (-5 *3 (-380 *6)))) (-1811 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -1924 *7) (|:| |sol?| (-108))) (-520) *7)) (-5 *6 (-586 (-380 *8))) (-4 *7 (-336)) (-4 *8 (-1140 *7)) (-5 *3 (-380 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-586 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-530 *7 *8)))) (-2816 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -4016 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-586 (-380 *8))) (-4 *7 (-336)) (-4 *8 (-1140 *7)) (-5 *3 (-380 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-586 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-530 *7 *8)))) (-1716 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -1924 *6) (|:| |sol?| (-108))) (-520) *6)) (-4 *6 (-336)) (-4 *7 (-1140 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-380 *7)) (|:| |a0| *6)) (-2 (|:| -4016 (-380 *7)) (|:| |coeff| (-380 *7))) "failed")) (-5 *1 (-530 *6 *7)) (-5 *3 (-380 *7)))) (-3313 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -4016 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-336)) (-4 *7 (-1140 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-380 *7)) (|:| |a0| *6)) (-2 (|:| -4016 (-380 *7)) (|:| |coeff| (-380 *7))) "failed")) (-5 *1 (-530 *6 *7)) (-5 *3 (-380 *7)))) (-1412 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-586 *6) "failed") (-520) *6 *6)) (-4 *6 (-336)) (-4 *7 (-1140 *6)) (-5 *2 (-2 (|:| |answer| (-537 (-380 *7))) (|:| |a0| *6))) (-5 *1 (-530 *6 *7)) (-5 *3 (-380 *7)))) (-3279 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -1924 *6) (|:| |sol?| (-108))) (-520) *6)) (-4 *6 (-336)) (-4 *7 (-1140 *6)) (-5 *2 (-2 (|:| |answer| (-537 (-380 *7))) (|:| |a0| *6))) (-5 *1 (-530 *6 *7)) (-5 *3 (-380 *7)))) (-3271 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -4016 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-336)) (-4 *7 (-1140 *6)) (-5 *2 (-2 (|:| |answer| (-537 (-380 *7))) (|:| |a0| *6))) (-5 *1 (-530 *6 *7)) (-5 *3 (-380 *7)))))
-(-10 -7 (-15 -3271 ((-2 (|:| |answer| (-537 (-380 |#2|))) (|:| |a0| |#1|)) (-380 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4016 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -3279 ((-2 (|:| |answer| (-537 (-380 |#2|))) (|:| |a0| |#1|)) (-380 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1924 |#1|) (|:| |sol?| (-108))) (-520) |#1|))) (-15 -1412 ((-2 (|:| |answer| (-537 (-380 |#2|))) (|:| |a0| |#1|)) (-380 |#2|) (-1 |#2| |#2|) (-1 (-3 (-586 |#1|) "failed") (-520) |#1| |#1|))) (-15 -3313 ((-3 (-2 (|:| |answer| (-380 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -4016 (-380 |#2|)) (|:| |coeff| (-380 |#2|))) "failed") (-380 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4016 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-380 |#2|))) (-15 -1716 ((-3 (-2 (|:| |answer| (-380 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -4016 (-380 |#2|)) (|:| |coeff| (-380 |#2|))) "failed") (-380 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1924 |#1|) (|:| |sol?| (-108))) (-520) |#1|) (-380 |#2|))) (-15 -2816 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-380 |#2|)) (|:| |limitedlogs| (-586 (-2 (|:| |coeff| (-380 |#2|)) (|:| |logand| (-380 |#2|))))))) (|:| |a0| |#1|)) "failed") (-380 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4016 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-586 (-380 |#2|)))) (-15 -1811 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-380 |#2|)) (|:| |limitedlogs| (-586 (-2 (|:| |coeff| (-380 |#2|)) (|:| |logand| (-380 |#2|))))))) (|:| |a0| |#1|)) "failed") (-380 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1924 |#1|) (|:| |sol?| (-108))) (-520) |#1|) (-586 (-380 |#2|)))) (-15 -2407 ((-3 (-2 (|:| -4016 (-380 |#2|)) (|:| |coeff| (-380 |#2|))) "failed") (-380 |#2|) (-1 |#2| |#2|) (-380 |#2|))) (-15 -1477 ((-3 (-2 (|:| |mainpart| (-380 |#2|)) (|:| |limitedlogs| (-586 (-2 (|:| |coeff| (-380 |#2|)) (|:| |logand| (-380 |#2|)))))) "failed") (-380 |#2|) (-1 |#2| |#2|) (-586 (-380 |#2|)))) (-15 -1725 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -4016 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -1478 ((-3 (-567 |#1| |#2|) "failed") (-567 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1924 |#1|) (|:| |sol?| (-108))) (-520) |#1|))) (-15 -2045 ((-2 (|:| |ir| (-537 (-380 |#2|))) (|:| |specpart| (-380 |#2|)) (|:| |polypart| |#2|)) (-380 |#2|) (-1 |#2| |#2|))) (-15 -2187 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|))))
-((-1764 (((-3 |#2| "failed") |#2| (-1083) (-1083)) 10)))
-(((-531 |#1| |#2|) (-10 -7 (-15 -1764 ((-3 |#2| "failed") |#2| (-1083) (-1083)))) (-13 (-281) (-783) (-135) (-960 (-520)) (-582 (-520))) (-13 (-1104) (-886) (-1047) (-29 |#1|))) (T -531))
-((-1764 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1083)) (-4 *4 (-13 (-281) (-783) (-135) (-960 (-520)) (-582 (-520)))) (-5 *1 (-531 *4 *2)) (-4 *2 (-13 (-1104) (-886) (-1047) (-29 *4))))))
-(-10 -7 (-15 -1764 ((-3 |#2| "failed") |#2| (-1083) (-1083))))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) NIL)) (-2583 (($ $) NIL)) (-1671 (((-108) $) NIL)) (-1917 (((-3 $ "failed") $ $) NIL)) (-1927 (($ $ (-520)) 65)) (-1327 (((-108) $ $) NIL)) (-3961 (($) NIL T CONST)) (-2918 (($ (-1079 (-520)) (-520)) 71)) (-2276 (($ $ $) NIL)) (-1540 (((-3 $ "failed") $) 57)) (-2944 (($ $) 33)) (-2253 (($ $ $) NIL)) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) NIL)) (-3989 (((-706) $) 15)) (-1537 (((-108) $) NIL)) (-3188 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-3178 (((-520)) 27)) (-1581 (((-520) $) 31)) (-2222 (($ $ $) NIL) (($ (-586 $)) NIL)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) NIL)) (-2257 (($ $ $) NIL) (($ (-586 $)) NIL)) (-1283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2116 (($ $ (-520)) 21)) (-2230 (((-3 $ "failed") $ $) 58)) (-2608 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-3704 (((-706) $) 16)) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) 60)) (-2850 (((-1064 (-520)) $) 18)) (-2759 (($ $) 23)) (-2188 (((-791) $) 86) (($ (-520)) 51) (($ $) NIL)) (-3251 (((-706)) 14)) (-2559 (((-108) $ $) NIL)) (-3890 (((-520) $ (-520)) 35)) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (-3560 (($) 34 T CONST)) (-3570 (($) 19 T CONST)) (-1530 (((-108) $ $) 38)) (-1611 (($ $) 50) (($ $ $) 36)) (-1601 (($ $ $) 49)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) 53) (($ $ $) 54)))
-(((-532 |#1| |#2|) (-797 |#1|) (-520) (-108)) (T -532))
-NIL
-(-797 |#1|)
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) 18)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) NIL)) (-2583 (($ $) NIL)) (-1671 (((-108) $) NIL)) (-3412 (((-108) $) NIL)) (-2668 (((-706)) NIL)) (-1864 (($ $ (-849)) NIL (|has| $ (-341))) (($ $) NIL)) (-1891 (((-1092 (-849) (-706)) (-520)) 47)) (-1917 (((-3 $ "failed") $ $) NIL)) (-3024 (($ $) NIL)) (-1507 (((-391 $) $) NIL)) (-1327 (((-108) $ $) NIL)) (-1628 (((-706)) NIL)) (-3961 (($) NIL T CONST)) (-1296 (((-3 $ "failed") $) 75)) (-1482 (($ $) 74)) (-3705 (($ (-1164 $)) 73)) (-2654 (((-3 "prime" "polynomial" "normal" "cyclic")) 42)) (-2276 (($ $ $) NIL)) (-1540 (((-3 $ "failed") $) 30)) (-3249 (($) NIL)) (-2253 (($ $ $) NIL)) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) NIL)) (-2961 (($) 49)) (-1855 (((-108) $) NIL)) (-1346 (($ $) NIL) (($ $ (-706)) NIL)) (-2036 (((-108) $) NIL)) (-3989 (((-769 (-849)) $) NIL) (((-849) $) NIL)) (-1537 (((-108) $) NIL)) (-2645 (($) 35 (|has| $ (-341)))) (-2740 (((-108) $) NIL (|has| $ (-341)))) (-1434 (($ $ (-849)) NIL (|has| $ (-341))) (($ $) NIL)) (-1394 (((-3 $ "failed") $) NIL)) (-3188 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-2034 (((-1079 $) $ (-849)) NIL (|has| $ (-341))) (((-1079 $) $) 83)) (-3040 (((-849) $) 55)) (-3840 (((-1079 $) $) NIL (|has| $ (-341)))) (-1400 (((-3 (-1079 $) "failed") $ $) NIL (|has| $ (-341))) (((-1079 $) $) NIL (|has| $ (-341)))) (-3284 (($ $ (-1079 $)) NIL (|has| $ (-341)))) (-2222 (($ $ $) NIL) (($ (-586 $)) NIL)) (-1239 (((-1066) $) NIL)) (-3093 (($ $) NIL)) (-3794 (($) NIL T CONST)) (-2716 (($ (-849)) 48)) (-3304 (((-108) $) 67)) (-4142 (((-1030) $) NIL)) (-1382 (($) 16 (|has| $ (-341)))) (-3653 (((-1079 $) (-1079 $) (-1079 $)) NIL)) (-2257 (($ $ $) NIL) (($ (-586 $)) NIL)) (-1517 (((-586 (-2 (|:| -1916 (-520)) (|:| -2647 (-520))))) 40)) (-1916 (((-391 $) $) NIL)) (-2206 (((-849)) 66) (((-769 (-849))) NIL)) (-1283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2230 (((-3 $ "failed") $ $) NIL)) (-2608 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-3704 (((-706) $) NIL)) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) NIL)) (-2062 (((-3 (-706) "failed") $ $) NIL) (((-706) $) NIL)) (-1556 (((-126)) NIL)) (-2155 (($ $ (-706)) NIL) (($ $) NIL)) (-2528 (((-849) $) 65) (((-769 (-849)) $) NIL)) (-3484 (((-1079 $)) 82)) (-3864 (($) 54)) (-3642 (($) 36 (|has| $ (-341)))) (-3790 (((-626 $) (-1164 $)) NIL) (((-1164 $) $) 71)) (-1429 (((-520) $) 26)) (-3784 (((-3 (-1164 $) "failed") (-626 $)) NIL)) (-2188 (((-791) $) NIL) (($ (-520)) 28) (($ $) NIL) (($ (-380 (-520))) NIL)) (-3796 (((-3 $ "failed") $) NIL) (($ $) 84)) (-3251 (((-706)) 37)) (-1831 (((-1164 $) (-849)) 77) (((-1164 $)) 76)) (-2559 (((-108) $ $) NIL)) (-3718 (((-108) $) NIL)) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL)) (-3560 (($) 19 T CONST)) (-3570 (($) 15 T CONST)) (-3751 (($ $ (-706)) NIL (|has| $ (-341))) (($ $) NIL (|has| $ (-341)))) (-2211 (($ $ (-706)) NIL) (($ $) NIL)) (-1530 (((-108) $ $) NIL)) (-1619 (($ $ $) NIL)) (-1611 (($ $) NIL) (($ $ $) NIL)) (-1601 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) 24)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) 61) (($ $ (-380 (-520))) NIL) (($ (-380 (-520)) $) NIL)))
-(((-533 |#1|) (-13 (-322) (-302 $) (-561 (-520))) (-849)) (T -533))
-NIL
-(-13 (-322) (-302 $) (-561 (-520)))
-((-2472 (((-1169) (-1066)) 10)))
-(((-534) (-10 -7 (-15 -2472 ((-1169) (-1066))))) (T -534))
-((-2472 (*1 *2 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-1169)) (-5 *1 (-534)))))
-(-10 -7 (-15 -2472 ((-1169) (-1066))))
-((-3175 (((-537 |#2|) (-537 |#2|)) 38)) (-1603 (((-586 |#2|) (-537 |#2|)) 40)) (-3579 ((|#2| (-537 |#2|)) 47)))
-(((-535 |#1| |#2|) (-10 -7 (-15 -3175 ((-537 |#2|) (-537 |#2|))) (-15 -1603 ((-586 |#2|) (-537 |#2|))) (-15 -3579 (|#2| (-537 |#2|)))) (-13 (-424) (-960 (-520)) (-783) (-582 (-520))) (-13 (-29 |#1|) (-1104))) (T -535))
-((-3579 (*1 *2 *3) (-12 (-5 *3 (-537 *2)) (-4 *2 (-13 (-29 *4) (-1104))) (-5 *1 (-535 *4 *2)) (-4 *4 (-13 (-424) (-960 (-520)) (-783) (-582 (-520)))))) (-1603 (*1 *2 *3) (-12 (-5 *3 (-537 *5)) (-4 *5 (-13 (-29 *4) (-1104))) (-4 *4 (-13 (-424) (-960 (-520)) (-783) (-582 (-520)))) (-5 *2 (-586 *5)) (-5 *1 (-535 *4 *5)))) (-3175 (*1 *2 *2) (-12 (-5 *2 (-537 *4)) (-4 *4 (-13 (-29 *3) (-1104))) (-4 *3 (-13 (-424) (-960 (-520)) (-783) (-582 (-520)))) (-5 *1 (-535 *3 *4)))))
-(-10 -7 (-15 -3175 ((-537 |#2|) (-537 |#2|))) (-15 -1603 ((-586 |#2|) (-537 |#2|))) (-15 -3579 (|#2| (-537 |#2|))))
-((-1389 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-586 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-586 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 38) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -4016 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -4016 |#1|) (|:| |coeff| |#1|)) "failed")) 31) (((-537 |#2|) (-1 |#2| |#1|) (-537 |#1|)) 26)))
-(((-536 |#1| |#2|) (-10 -7 (-15 -1389 ((-537 |#2|) (-1 |#2| |#1|) (-537 |#1|))) (-15 -1389 ((-3 (-2 (|:| -4016 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -4016 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -1389 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -1389 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-586 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-586 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-336) (-336)) (T -536))
-((-1389 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-586 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-336)) (-4 *6 (-336)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-586 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-536 *5 *6)))) (-1389 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-336)) (-4 *2 (-336)) (-5 *1 (-536 *5 *2)))) (-1389 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -4016 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-336)) (-4 *6 (-336)) (-5 *2 (-2 (|:| -4016 *6) (|:| |coeff| *6))) (-5 *1 (-536 *5 *6)))) (-1389 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-537 *5)) (-4 *5 (-336)) (-4 *6 (-336)) (-5 *2 (-537 *6)) (-5 *1 (-536 *5 *6)))))
-(-10 -7 (-15 -1389 ((-537 |#2|) (-1 |#2| |#1|) (-537 |#1|))) (-15 -1389 ((-3 (-2 (|:| -4016 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -4016 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -1389 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -1389 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-586 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-586 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed"))))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-1917 (((-3 $ "failed") $ $) NIL)) (-3961 (($) NIL T CONST)) (-1296 (((-3 |#1| "failed") $) 69)) (-1482 ((|#1| $) NIL)) (-4016 ((|#1| $) 24)) (-3091 (((-586 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 26)) (-2220 (($ |#1| (-586 (-2 (|:| |scalar| (-380 (-520))) (|:| |coeff| (-1079 |#1|)) (|:| |logand| (-1079 |#1|)))) (-586 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 22)) (-3829 (((-586 (-2 (|:| |scalar| (-380 (-520))) (|:| |coeff| (-1079 |#1|)) (|:| |logand| (-1079 |#1|)))) $) 25)) (-1239 (((-1066) $) NIL)) (-2410 (($ |#1| |#1|) 32) (($ |#1| (-1083)) 43 (|has| |#1| (-960 (-1083))))) (-4142 (((-1030) $) NIL)) (-1549 (((-108) $) 28)) (-2155 ((|#1| $ (-1 |#1| |#1|)) 81) ((|#1| $ (-1083)) 82 (|has| |#1| (-828 (-1083))))) (-2188 (((-791) $) 96) (($ |#1|) 23)) (-3560 (($) 16 T CONST)) (-1530 (((-108) $ $) NIL)) (-1611 (($ $) 15) (($ $ $) NIL)) (-1601 (($ $ $) 78)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) 14) (($ (-380 (-520)) $) 35) (($ $ (-380 (-520))) NIL)))
-(((-537 |#1|) (-13 (-653 (-380 (-520))) (-960 |#1|) (-10 -8 (-15 -2220 ($ |#1| (-586 (-2 (|:| |scalar| (-380 (-520))) (|:| |coeff| (-1079 |#1|)) (|:| |logand| (-1079 |#1|)))) (-586 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -4016 (|#1| $)) (-15 -3829 ((-586 (-2 (|:| |scalar| (-380 (-520))) (|:| |coeff| (-1079 |#1|)) (|:| |logand| (-1079 |#1|)))) $)) (-15 -3091 ((-586 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -1549 ((-108) $)) (-15 -2410 ($ |#1| |#1|)) (-15 -2155 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-828 (-1083))) (-15 -2155 (|#1| $ (-1083))) |%noBranch|) (IF (|has| |#1| (-960 (-1083))) (-15 -2410 ($ |#1| (-1083))) |%noBranch|))) (-336)) (T -537))
-((-2220 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-586 (-2 (|:| |scalar| (-380 (-520))) (|:| |coeff| (-1079 *2)) (|:| |logand| (-1079 *2))))) (-5 *4 (-586 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-336)) (-5 *1 (-537 *2)))) (-4016 (*1 *2 *1) (-12 (-5 *1 (-537 *2)) (-4 *2 (-336)))) (-3829 (*1 *2 *1) (-12 (-5 *2 (-586 (-2 (|:| |scalar| (-380 (-520))) (|:| |coeff| (-1079 *3)) (|:| |logand| (-1079 *3))))) (-5 *1 (-537 *3)) (-4 *3 (-336)))) (-3091 (*1 *2 *1) (-12 (-5 *2 (-586 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-537 *3)) (-4 *3 (-336)))) (-1549 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-537 *3)) (-4 *3 (-336)))) (-2410 (*1 *1 *2 *2) (-12 (-5 *1 (-537 *2)) (-4 *2 (-336)))) (-2155 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-537 *2)) (-4 *2 (-336)))) (-2155 (*1 *2 *1 *3) (-12 (-4 *2 (-336)) (-4 *2 (-828 *3)) (-5 *1 (-537 *2)) (-5 *3 (-1083)))) (-2410 (*1 *1 *2 *3) (-12 (-5 *3 (-1083)) (-5 *1 (-537 *2)) (-4 *2 (-960 *3)) (-4 *2 (-336)))))
-(-13 (-653 (-380 (-520))) (-960 |#1|) (-10 -8 (-15 -2220 ($ |#1| (-586 (-2 (|:| |scalar| (-380 (-520))) (|:| |coeff| (-1079 |#1|)) (|:| |logand| (-1079 |#1|)))) (-586 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -4016 (|#1| $)) (-15 -3829 ((-586 (-2 (|:| |scalar| (-380 (-520))) (|:| |coeff| (-1079 |#1|)) (|:| |logand| (-1079 |#1|)))) $)) (-15 -3091 ((-586 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -1549 ((-108) $)) (-15 -2410 ($ |#1| |#1|)) (-15 -2155 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-828 (-1083))) (-15 -2155 (|#1| $ (-1083))) |%noBranch|) (IF (|has| |#1| (-960 (-1083))) (-15 -2410 ($ |#1| (-1083))) |%noBranch|)))
-((-1846 (((-108) |#1|) 16)) (-2391 (((-3 |#1| "failed") |#1|) 14)) (-2518 (((-2 (|:| -3349 |#1|) (|:| -2647 (-706))) |#1|) 31) (((-3 |#1| "failed") |#1| (-706)) 18)) (-2015 (((-108) |#1| (-706)) 19)) (-2180 ((|#1| |#1|) 32)) (-3985 ((|#1| |#1| (-706)) 34)))
-(((-538 |#1|) (-10 -7 (-15 -2015 ((-108) |#1| (-706))) (-15 -2518 ((-3 |#1| "failed") |#1| (-706))) (-15 -2518 ((-2 (|:| -3349 |#1|) (|:| -2647 (-706))) |#1|)) (-15 -3985 (|#1| |#1| (-706))) (-15 -1846 ((-108) |#1|)) (-15 -2391 ((-3 |#1| "failed") |#1|)) (-15 -2180 (|#1| |#1|))) (-505)) (T -538))
-((-2180 (*1 *2 *2) (-12 (-5 *1 (-538 *2)) (-4 *2 (-505)))) (-2391 (*1 *2 *2) (|partial| -12 (-5 *1 (-538 *2)) (-4 *2 (-505)))) (-1846 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-538 *3)) (-4 *3 (-505)))) (-3985 (*1 *2 *2 *3) (-12 (-5 *3 (-706)) (-5 *1 (-538 *2)) (-4 *2 (-505)))) (-2518 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3349 *3) (|:| -2647 (-706)))) (-5 *1 (-538 *3)) (-4 *3 (-505)))) (-2518 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-706)) (-5 *1 (-538 *2)) (-4 *2 (-505)))) (-2015 (*1 *2 *3 *4) (-12 (-5 *4 (-706)) (-5 *2 (-108)) (-5 *1 (-538 *3)) (-4 *3 (-505)))))
-(-10 -7 (-15 -2015 ((-108) |#1| (-706))) (-15 -2518 ((-3 |#1| "failed") |#1| (-706))) (-15 -2518 ((-2 (|:| -3349 |#1|) (|:| -2647 (-706))) |#1|)) (-15 -3985 (|#1| |#1| (-706))) (-15 -1846 ((-108) |#1|)) (-15 -2391 ((-3 |#1| "failed") |#1|)) (-15 -2180 (|#1| |#1|)))
-((-2953 (((-1079 |#1|) (-849)) 27)))
-(((-539 |#1|) (-10 -7 (-15 -2953 ((-1079 |#1|) (-849)))) (-322)) (T -539))
-((-2953 (*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-1079 *4)) (-5 *1 (-539 *4)) (-4 *4 (-322)))))
-(-10 -7 (-15 -2953 ((-1079 |#1|) (-849))))
-((-3175 (((-537 (-380 (-880 |#1|))) (-537 (-380 (-880 |#1|)))) 26)) (-3517 (((-3 (-289 |#1|) (-586 (-289 |#1|))) (-380 (-880 |#1|)) (-1083)) 32 (|has| |#1| (-135)))) (-1603 (((-586 (-289 |#1|)) (-537 (-380 (-880 |#1|)))) 18)) (-1729 (((-289 |#1|) (-380 (-880 |#1|)) (-1083)) 30 (|has| |#1| (-135)))) (-3579 (((-289 |#1|) (-537 (-380 (-880 |#1|)))) 20)))
-(((-540 |#1|) (-10 -7 (-15 -3175 ((-537 (-380 (-880 |#1|))) (-537 (-380 (-880 |#1|))))) (-15 -1603 ((-586 (-289 |#1|)) (-537 (-380 (-880 |#1|))))) (-15 -3579 ((-289 |#1|) (-537 (-380 (-880 |#1|))))) (IF (|has| |#1| (-135)) (PROGN (-15 -3517 ((-3 (-289 |#1|) (-586 (-289 |#1|))) (-380 (-880 |#1|)) (-1083))) (-15 -1729 ((-289 |#1|) (-380 (-880 |#1|)) (-1083)))) |%noBranch|)) (-13 (-424) (-960 (-520)) (-783) (-582 (-520)))) (T -540))
-((-1729 (*1 *2 *3 *4) (-12 (-5 *3 (-380 (-880 *5))) (-5 *4 (-1083)) (-4 *5 (-135)) (-4 *5 (-13 (-424) (-960 (-520)) (-783) (-582 (-520)))) (-5 *2 (-289 *5)) (-5 *1 (-540 *5)))) (-3517 (*1 *2 *3 *4) (-12 (-5 *3 (-380 (-880 *5))) (-5 *4 (-1083)) (-4 *5 (-135)) (-4 *5 (-13 (-424) (-960 (-520)) (-783) (-582 (-520)))) (-5 *2 (-3 (-289 *5) (-586 (-289 *5)))) (-5 *1 (-540 *5)))) (-3579 (*1 *2 *3) (-12 (-5 *3 (-537 (-380 (-880 *4)))) (-4 *4 (-13 (-424) (-960 (-520)) (-783) (-582 (-520)))) (-5 *2 (-289 *4)) (-5 *1 (-540 *4)))) (-1603 (*1 *2 *3) (-12 (-5 *3 (-537 (-380 (-880 *4)))) (-4 *4 (-13 (-424) (-960 (-520)) (-783) (-582 (-520)))) (-5 *2 (-586 (-289 *4))) (-5 *1 (-540 *4)))) (-3175 (*1 *2 *2) (-12 (-5 *2 (-537 (-380 (-880 *3)))) (-4 *3 (-13 (-424) (-960 (-520)) (-783) (-582 (-520)))) (-5 *1 (-540 *3)))))
-(-10 -7 (-15 -3175 ((-537 (-380 (-880 |#1|))) (-537 (-380 (-880 |#1|))))) (-15 -1603 ((-586 (-289 |#1|)) (-537 (-380 (-880 |#1|))))) (-15 -3579 ((-289 |#1|) (-537 (-380 (-880 |#1|))))) (IF (|has| |#1| (-135)) (PROGN (-15 -3517 ((-3 (-289 |#1|) (-586 (-289 |#1|))) (-380 (-880 |#1|)) (-1083))) (-15 -1729 ((-289 |#1|) (-380 (-880 |#1|)) (-1083)))) |%noBranch|))
-((-3582 (((-586 (-626 (-520))) (-586 (-520)) (-586 (-833 (-520)))) 46) (((-586 (-626 (-520))) (-586 (-520))) 47) (((-626 (-520)) (-586 (-520)) (-833 (-520))) 42)) (-1559 (((-706) (-586 (-520))) 40)))
-(((-541) (-10 -7 (-15 -1559 ((-706) (-586 (-520)))) (-15 -3582 ((-626 (-520)) (-586 (-520)) (-833 (-520)))) (-15 -3582 ((-586 (-626 (-520))) (-586 (-520)))) (-15 -3582 ((-586 (-626 (-520))) (-586 (-520)) (-586 (-833 (-520))))))) (T -541))
-((-3582 (*1 *2 *3 *4) (-12 (-5 *3 (-586 (-520))) (-5 *4 (-586 (-833 (-520)))) (-5 *2 (-586 (-626 (-520)))) (-5 *1 (-541)))) (-3582 (*1 *2 *3) (-12 (-5 *3 (-586 (-520))) (-5 *2 (-586 (-626 (-520)))) (-5 *1 (-541)))) (-3582 (*1 *2 *3 *4) (-12 (-5 *3 (-586 (-520))) (-5 *4 (-833 (-520))) (-5 *2 (-626 (-520))) (-5 *1 (-541)))) (-1559 (*1 *2 *3) (-12 (-5 *3 (-586 (-520))) (-5 *2 (-706)) (-5 *1 (-541)))))
-(-10 -7 (-15 -1559 ((-706) (-586 (-520)))) (-15 -3582 ((-626 (-520)) (-586 (-520)) (-833 (-520)))) (-15 -3582 ((-586 (-626 (-520))) (-586 (-520)))) (-15 -3582 ((-586 (-626 (-520))) (-586 (-520)) (-586 (-833 (-520))))))
-((-2018 (((-586 |#5|) |#5| (-108)) 73)) (-2947 (((-108) |#5| (-586 |#5|)) 30)))
-(((-542 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2018 ((-586 |#5|) |#5| (-108))) (-15 -2947 ((-108) |#5| (-586 |#5|)))) (-13 (-281) (-135)) (-728) (-783) (-983 |#1| |#2| |#3|) (-1021 |#1| |#2| |#3| |#4|)) (T -542))
-((-2947 (*1 *2 *3 *4) (-12 (-5 *4 (-586 *3)) (-4 *3 (-1021 *5 *6 *7 *8)) (-4 *5 (-13 (-281) (-135))) (-4 *6 (-728)) (-4 *7 (-783)) (-4 *8 (-983 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-542 *5 *6 *7 *8 *3)))) (-2018 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-281) (-135))) (-4 *6 (-728)) (-4 *7 (-783)) (-4 *8 (-983 *5 *6 *7)) (-5 *2 (-586 *3)) (-5 *1 (-542 *5 *6 *7 *8 *3)) (-4 *3 (-1021 *5 *6 *7 *8)))))
-(-10 -7 (-15 -2018 ((-586 |#5|) |#5| (-108))) (-15 -2947 ((-108) |#5| (-586 |#5|))))
-((-1414 (((-108) $ $) NIL (|has| (-132) (-1012)))) (-4176 (($ $) 34)) (-2209 (($ $) NIL)) (-1734 (($ $ (-132)) NIL) (($ $ (-129)) NIL)) (-1476 (((-1169) $ (-520) (-520)) NIL (|has| $ (-6 -4230)))) (-3761 (((-108) $ $) 51)) (-3736 (((-108) $ $ (-520)) 46)) (-3175 (((-586 $) $ (-132)) 60) (((-586 $) $ (-129)) 61)) (-4029 (((-108) (-1 (-108) (-132) (-132)) $) NIL) (((-108) $) NIL (|has| (-132) (-783)))) (-3587 (($ (-1 (-108) (-132) (-132)) $) NIL (|has| $ (-6 -4230))) (($ $) NIL (-12 (|has| $ (-6 -4230)) (|has| (-132) (-783))))) (-3210 (($ (-1 (-108) (-132) (-132)) $) NIL) (($ $) NIL (|has| (-132) (-783)))) (-2063 (((-108) $ (-706)) NIL)) (-2377 (((-132) $ (-520) (-132)) 45 (|has| $ (-6 -4230))) (((-132) $ (-1131 (-520)) (-132)) NIL (|has| $ (-6 -4230)))) (-1627 (($ (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4229)))) (-3961 (($) NIL T CONST)) (-2845 (($ $ (-132)) 64) (($ $ (-129)) 65)) (-2447 (($ $) NIL (|has| $ (-6 -4230)))) (-1861 (($ $) NIL)) (-2514 (($ $ (-1131 (-520)) $) 44)) (-2331 (($ $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-132) (-1012))))) (-1421 (($ (-132) $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-132) (-1012)))) (($ (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4229)))) (-3856 (((-132) (-1 (-132) (-132) (-132)) $ (-132) (-132)) NIL (-12 (|has| $ (-6 -4229)) (|has| (-132) (-1012)))) (((-132) (-1 (-132) (-132) (-132)) $ (-132)) NIL (|has| $ (-6 -4229))) (((-132) (-1 (-132) (-132) (-132)) $) NIL (|has| $ (-6 -4229)))) (-3846 (((-132) $ (-520) (-132)) NIL (|has| $ (-6 -4230)))) (-3623 (((-132) $ (-520)) NIL)) (-3785 (((-108) $ $) 71)) (-3232 (((-520) (-1 (-108) (-132)) $) NIL) (((-520) (-132) $) NIL (|has| (-132) (-1012))) (((-520) (-132) $ (-520)) 48 (|has| (-132) (-1012))) (((-520) $ $ (-520)) 47) (((-520) (-129) $ (-520)) 50)) (-3828 (((-586 (-132)) $) NIL (|has| $ (-6 -4229)))) (-1810 (($ (-706) (-132)) 9)) (-3027 (((-108) $ (-706)) NIL)) (-2567 (((-520) $) 28 (|has| (-520) (-783)))) (-2809 (($ $ $) NIL (|has| (-132) (-783)))) (-1819 (($ (-1 (-108) (-132) (-132)) $ $) NIL) (($ $ $) NIL (|has| (-132) (-783)))) (-3702 (((-586 (-132)) $) NIL (|has| $ (-6 -4229)))) (-2422 (((-108) (-132) $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-132) (-1012))))) (-1752 (((-520) $) 42 (|has| (-520) (-783)))) (-2446 (($ $ $) NIL (|has| (-132) (-783)))) (-1453 (((-108) $ $ (-132)) 72)) (-4139 (((-706) $ $ (-132)) 70)) (-3830 (($ (-1 (-132) (-132)) $) 33 (|has| $ (-6 -4230)))) (-1389 (($ (-1 (-132) (-132)) $) NIL) (($ (-1 (-132) (-132) (-132)) $ $) NIL)) (-1826 (($ $) 37)) (-3002 (($ $) NIL)) (-1390 (((-108) $ (-706)) NIL)) (-2857 (($ $ (-132)) 62) (($ $ (-129)) 63)) (-1239 (((-1066) $) 38 (|has| (-132) (-1012)))) (-1659 (($ (-132) $ (-520)) NIL) (($ $ $ (-520)) 23)) (-3622 (((-586 (-520)) $) NIL)) (-2603 (((-108) (-520) $) NIL)) (-4142 (((-520) $) 69) (((-1030) $) NIL (|has| (-132) (-1012)))) (-2293 (((-132) $) NIL (|has| (-520) (-783)))) (-2985 (((-3 (-132) "failed") (-1 (-108) (-132)) $) NIL)) (-2936 (($ $ (-132)) NIL (|has| $ (-6 -4230)))) (-4155 (((-108) (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 (-132)))) NIL (-12 (|has| (-132) (-283 (-132))) (|has| (-132) (-1012)))) (($ $ (-268 (-132))) NIL (-12 (|has| (-132) (-283 (-132))) (|has| (-132) (-1012)))) (($ $ (-132) (-132)) NIL (-12 (|has| (-132) (-283 (-132))) (|has| (-132) (-1012)))) (($ $ (-586 (-132)) (-586 (-132))) NIL (-12 (|has| (-132) (-283 (-132))) (|has| (-132) (-1012))))) (-2533 (((-108) $ $) NIL)) (-2094 (((-108) (-132) $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-132) (-1012))))) (-1523 (((-586 (-132)) $) NIL)) (-4018 (((-108) $) 12)) (-2238 (($) 10)) (-2543 (((-132) $ (-520) (-132)) NIL) (((-132) $ (-520)) 52) (($ $ (-1131 (-520))) 21) (($ $ $) NIL)) (-3690 (($ $ (-520)) NIL) (($ $ (-1131 (-520))) NIL)) (-4159 (((-706) (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4229))) (((-706) (-132) $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-132) (-1012))))) (-1913 (($ $ $ (-520)) 66 (|has| $ (-6 -4230)))) (-2403 (($ $) 17)) (-1429 (((-496) $) NIL (|has| (-132) (-561 (-496))))) (-2200 (($ (-586 (-132))) NIL)) (-4156 (($ $ (-132)) NIL) (($ (-132) $) NIL) (($ $ $) 16) (($ (-586 $)) 67)) (-2188 (($ (-132)) NIL) (((-791) $) 27 (|has| (-132) (-560 (-791))))) (-1662 (((-108) (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4229)))) (-1573 (((-108) $ $) NIL (|has| (-132) (-783)))) (-1557 (((-108) $ $) NIL (|has| (-132) (-783)))) (-1530 (((-108) $ $) 14 (|has| (-132) (-1012)))) (-1565 (((-108) $ $) NIL (|has| (-132) (-783)))) (-1548 (((-108) $ $) 15 (|has| (-132) (-783)))) (-3474 (((-706) $) 13 (|has| $ (-6 -4229)))))
-(((-543 |#1|) (-13 (-1052) (-10 -8 (-15 -4142 ((-520) $)))) (-520)) (T -543))
-((-4142 (*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-543 *3)) (-14 *3 *2))))
-(-13 (-1052) (-10 -8 (-15 -4142 ((-520) $))))
-((-3512 (((-2 (|:| |num| |#4|) (|:| |den| (-520))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-520))) |#4| |#2| (-1007 |#4|)) 32)))
-(((-544 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3512 ((-2 (|:| |num| |#4|) (|:| |den| (-520))) |#4| |#2| (-1007 |#4|))) (-15 -3512 ((-2 (|:| |num| |#4|) (|:| |den| (-520))) |#4| |#2|))) (-728) (-783) (-512) (-877 |#3| |#1| |#2|)) (T -544))
-((-3512 (*1 *2 *3 *4) (-12 (-4 *5 (-728)) (-4 *4 (-783)) (-4 *6 (-512)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-520)))) (-5 *1 (-544 *5 *4 *6 *3)) (-4 *3 (-877 *6 *5 *4)))) (-3512 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1007 *3)) (-4 *3 (-877 *7 *6 *4)) (-4 *6 (-728)) (-4 *4 (-783)) (-4 *7 (-512)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-520)))) (-5 *1 (-544 *6 *4 *7 *3)))))
-(-10 -7 (-15 -3512 ((-2 (|:| |num| |#4|) (|:| |den| (-520))) |#4| |#2| (-1007 |#4|))) (-15 -3512 ((-2 (|:| |num| |#4|) (|:| |den| (-520))) |#4| |#2|)))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) 63)) (-4081 (((-586 (-997)) $) NIL)) (-1610 (((-1083) $) NIL)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) NIL (|has| |#1| (-512)))) (-2583 (($ $) NIL (|has| |#1| (-512)))) (-1671 (((-108) $) NIL (|has| |#1| (-512)))) (-2406 (($ $ (-520)) 54) (($ $ (-520) (-520)) 55)) (-2088 (((-1064 (-2 (|:| |k| (-520)) (|:| |c| |#1|))) $) 60)) (-1887 (($ $) 100)) (-1917 (((-3 $ "failed") $ $) NIL)) (-4005 (((-791) (-1064 (-2 (|:| |k| (-520)) (|:| |c| |#1|))) (-949 (-776 (-520))) (-1083) |#1| (-380 (-520))) 215)) (-2769 (($ (-1064 (-2 (|:| |k| (-520)) (|:| |c| |#1|)))) 34)) (-3961 (($) NIL T CONST)) (-3150 (($ $) NIL)) (-1540 (((-3 $ "failed") $) NIL)) (-1342 (((-108) $) NIL)) (-3989 (((-520) $) 58) (((-520) $ (-520)) 59)) (-1537 (((-108) $) NIL)) (-2371 (($ $ (-849)) 76)) (-1306 (($ (-1 |#1| (-520)) $) 73)) (-3774 (((-108) $) 25)) (-4039 (($ |#1| (-520)) 22) (($ $ (-997) (-520)) NIL) (($ $ (-586 (-997)) (-586 (-520))) NIL)) (-1389 (($ (-1 |#1| |#1|) $) 67)) (-2692 (($ (-949 (-776 (-520))) (-1064 (-2 (|:| |k| (-520)) (|:| |c| |#1|)))) 11)) (-3123 (($ $) NIL)) (-3133 ((|#1| $) NIL)) (-1239 (((-1066) $) NIL)) (-3517 (($ $) 112 (|has| |#1| (-37 (-380 (-520)))))) (-3218 (((-3 $ "failed") $ $ (-108)) 99)) (-2795 (($ $ $) 108)) (-4142 (((-1030) $) NIL)) (-3593 (((-1064 (-2 (|:| |k| (-520)) (|:| |c| |#1|))) $) 13)) (-2796 (((-949 (-776 (-520))) $) 12)) (-2116 (($ $ (-520)) 45)) (-2230 (((-3 $ "failed") $ $) NIL (|has| |#1| (-512)))) (-2286 (((-1064 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-520)))))) (-2543 ((|#1| $ (-520)) 57) (($ $ $) NIL (|has| (-520) (-1024)))) (-2155 (($ $ (-586 (-1083)) (-586 (-706))) NIL (-12 (|has| |#1| (-15 * (|#1| (-520) |#1|))) (|has| |#1| (-828 (-1083))))) (($ $ (-1083) (-706)) NIL (-12 (|has| |#1| (-15 * (|#1| (-520) |#1|))) (|has| |#1| (-828 (-1083))))) (($ $ (-586 (-1083))) NIL (-12 (|has| |#1| (-15 * (|#1| (-520) |#1|))) (|has| |#1| (-828 (-1083))))) (($ $ (-1083)) NIL (-12 (|has| |#1| (-15 * (|#1| (-520) |#1|))) (|has| |#1| (-828 (-1083))))) (($ $ (-706)) NIL (|has| |#1| (-15 * (|#1| (-520) |#1|)))) (($ $) 70 (|has| |#1| (-15 * (|#1| (-520) |#1|))))) (-2528 (((-520) $) NIL)) (-2759 (($ $) 46)) (-2188 (((-791) $) NIL) (($ (-520)) 28) (($ (-380 (-520))) NIL (|has| |#1| (-37 (-380 (-520))))) (($ $) NIL (|has| |#1| (-512))) (($ |#1|) 27 (|has| |#1| (-157)))) (-3475 ((|#1| $ (-520)) 56)) (-3796 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-3251 (((-706)) 37)) (-1892 ((|#1| $) NIL)) (-1428 (($ $) 180 (|has| |#1| (-37 (-380 (-520)))))) (-2339 (($ $) 156 (|has| |#1| (-37 (-380 (-520)))))) (-2053 (($ $) 177 (|has| |#1| (-37 (-380 (-520)))))) (-1860 (($ $) 153 (|has| |#1| (-37 (-380 (-520)))))) (-3487 (($ $) 182 (|has| |#1| (-37 (-380 (-520)))))) (-4107 (($ $) 159 (|has| |#1| (-37 (-380 (-520)))))) (-3255 (($ $ (-380 (-520))) 146 (|has| |#1| (-37 (-380 (-520)))))) (-1498 (($ $ |#1|) 121 (|has| |#1| (-37 (-380 (-520)))))) (-3706 (($ $) 150 (|has| |#1| (-37 (-380 (-520)))))) (-3917 (($ $) 148 (|has| |#1| (-37 (-380 (-520)))))) (-2078 (($ $) 183 (|has| |#1| (-37 (-380 (-520)))))) (-3577 (($ $) 160 (|has| |#1| (-37 (-380 (-520)))))) (-2081 (($ $) 181 (|has| |#1| (-37 (-380 (-520)))))) (-3540 (($ $) 158 (|has| |#1| (-37 (-380 (-520)))))) (-2783 (($ $) 178 (|has| |#1| (-37 (-380 (-520)))))) (-1998 (($ $) 154 (|has| |#1| (-37 (-380 (-520)))))) (-2006 (($ $) 188 (|has| |#1| (-37 (-380 (-520)))))) (-2119 (($ $) 168 (|has| |#1| (-37 (-380 (-520)))))) (-3933 (($ $) 185 (|has| |#1| (-37 (-380 (-520)))))) (-1511 (($ $) 163 (|has| |#1| (-37 (-380 (-520)))))) (-3421 (($ $) 192 (|has| |#1| (-37 (-380 (-520)))))) (-1512 (($ $) 172 (|has| |#1| (-37 (-380 (-520)))))) (-2337 (($ $) 194 (|has| |#1| (-37 (-380 (-520)))))) (-1208 (($ $) 174 (|has| |#1| (-37 (-380 (-520)))))) (-2106 (($ $) 190 (|has| |#1| (-37 (-380 (-520)))))) (-1323 (($ $) 170 (|has| |#1| (-37 (-380 (-520)))))) (-2283 (($ $) 187 (|has| |#1| (-37 (-380 (-520)))))) (-2292 (($ $) 166 (|has| |#1| (-37 (-380 (-520)))))) (-2559 (((-108) $ $) NIL (|has| |#1| (-512)))) (-3890 ((|#1| $ (-520)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-520)))) (|has| |#1| (-15 -2188 (|#1| (-1083))))))) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (-3560 (($) 29 T CONST)) (-3570 (($) 38 T CONST)) (-2211 (($ $ (-586 (-1083)) (-586 (-706))) NIL (-12 (|has| |#1| (-15 * (|#1| (-520) |#1|))) (|has| |#1| (-828 (-1083))))) (($ $ (-1083) (-706)) NIL (-12 (|has| |#1| (-15 * (|#1| (-520) |#1|))) (|has| |#1| (-828 (-1083))))) (($ $ (-586 (-1083))) NIL (-12 (|has| |#1| (-15 * (|#1| (-520) |#1|))) (|has| |#1| (-828 (-1083))))) (($ $ (-1083)) NIL (-12 (|has| |#1| (-15 * (|#1| (-520) |#1|))) (|has| |#1| (-828 (-1083))))) (($ $ (-706)) NIL (|has| |#1| (-15 * (|#1| (-520) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-520) |#1|))))) (-1530 (((-108) $ $) 65)) (-1619 (($ $ |#1|) NIL (|has| |#1| (-336)))) (-1611 (($ $) 84) (($ $ $) 64)) (-1601 (($ $ $) 81)) (** (($ $ (-849)) NIL) (($ $ (-706)) 103)) (* (($ (-849) $) 89) (($ (-706) $) 87) (($ (-520) $) 85) (($ $ $) 95) (($ $ |#1|) NIL) (($ |#1| $) 115) (($ (-380 (-520)) $) NIL (|has| |#1| (-37 (-380 (-520))))) (($ $ (-380 (-520))) NIL (|has| |#1| (-37 (-380 (-520)))))))
-(((-545 |#1|) (-13 (-1142 |#1| (-520)) (-10 -8 (-15 -2692 ($ (-949 (-776 (-520))) (-1064 (-2 (|:| |k| (-520)) (|:| |c| |#1|))))) (-15 -2796 ((-949 (-776 (-520))) $)) (-15 -3593 ((-1064 (-2 (|:| |k| (-520)) (|:| |c| |#1|))) $)) (-15 -2769 ($ (-1064 (-2 (|:| |k| (-520)) (|:| |c| |#1|))))) (-15 -3774 ((-108) $)) (-15 -1306 ($ (-1 |#1| (-520)) $)) (-15 -3218 ((-3 $ "failed") $ $ (-108))) (-15 -1887 ($ $)) (-15 -2795 ($ $ $)) (-15 -4005 ((-791) (-1064 (-2 (|:| |k| (-520)) (|:| |c| |#1|))) (-949 (-776 (-520))) (-1083) |#1| (-380 (-520)))) (IF (|has| |#1| (-37 (-380 (-520)))) (PROGN (-15 -3517 ($ $)) (-15 -1498 ($ $ |#1|)) (-15 -3255 ($ $ (-380 (-520)))) (-15 -3917 ($ $)) (-15 -3706 ($ $)) (-15 -1860 ($ $)) (-15 -1998 ($ $)) (-15 -2339 ($ $)) (-15 -3540 ($ $)) (-15 -4107 ($ $)) (-15 -3577 ($ $)) (-15 -1511 ($ $)) (-15 -2292 ($ $)) (-15 -2119 ($ $)) (-15 -1323 ($ $)) (-15 -1512 ($ $)) (-15 -1208 ($ $)) (-15 -2053 ($ $)) (-15 -2783 ($ $)) (-15 -1428 ($ $)) (-15 -2081 ($ $)) (-15 -3487 ($ $)) (-15 -2078 ($ $)) (-15 -3933 ($ $)) (-15 -2283 ($ $)) (-15 -2006 ($ $)) (-15 -2106 ($ $)) (-15 -3421 ($ $)) (-15 -2337 ($ $))) |%noBranch|))) (-969)) (T -545))
-((-3774 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-545 *3)) (-4 *3 (-969)))) (-2692 (*1 *1 *2 *3) (-12 (-5 *2 (-949 (-776 (-520)))) (-5 *3 (-1064 (-2 (|:| |k| (-520)) (|:| |c| *4)))) (-4 *4 (-969)) (-5 *1 (-545 *4)))) (-2796 (*1 *2 *1) (-12 (-5 *2 (-949 (-776 (-520)))) (-5 *1 (-545 *3)) (-4 *3 (-969)))) (-3593 (*1 *2 *1) (-12 (-5 *2 (-1064 (-2 (|:| |k| (-520)) (|:| |c| *3)))) (-5 *1 (-545 *3)) (-4 *3 (-969)))) (-2769 (*1 *1 *2) (-12 (-5 *2 (-1064 (-2 (|:| |k| (-520)) (|:| |c| *3)))) (-4 *3 (-969)) (-5 *1 (-545 *3)))) (-1306 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-520))) (-4 *3 (-969)) (-5 *1 (-545 *3)))) (-3218 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-108)) (-5 *1 (-545 *3)) (-4 *3 (-969)))) (-1887 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-969)))) (-2795 (*1 *1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-969)))) (-4005 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1064 (-2 (|:| |k| (-520)) (|:| |c| *6)))) (-5 *4 (-949 (-776 (-520)))) (-5 *5 (-1083)) (-5 *7 (-380 (-520))) (-4 *6 (-969)) (-5 *2 (-791)) (-5 *1 (-545 *6)))) (-3517 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-37 (-380 (-520)))) (-4 *2 (-969)))) (-1498 (*1 *1 *1 *2) (-12 (-5 *1 (-545 *2)) (-4 *2 (-37 (-380 (-520)))) (-4 *2 (-969)))) (-3255 (*1 *1 *1 *2) (-12 (-5 *2 (-380 (-520))) (-5 *1 (-545 *3)) (-4 *3 (-37 *2)) (-4 *3 (-969)))) (-3917 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-37 (-380 (-520)))) (-4 *2 (-969)))) (-3706 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-37 (-380 (-520)))) (-4 *2 (-969)))) (-1860 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-37 (-380 (-520)))) (-4 *2 (-969)))) (-1998 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-37 (-380 (-520)))) (-4 *2 (-969)))) (-2339 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-37 (-380 (-520)))) (-4 *2 (-969)))) (-3540 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-37 (-380 (-520)))) (-4 *2 (-969)))) (-4107 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-37 (-380 (-520)))) (-4 *2 (-969)))) (-3577 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-37 (-380 (-520)))) (-4 *2 (-969)))) (-1511 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-37 (-380 (-520)))) (-4 *2 (-969)))) (-2292 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-37 (-380 (-520)))) (-4 *2 (-969)))) (-2119 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-37 (-380 (-520)))) (-4 *2 (-969)))) (-1323 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-37 (-380 (-520)))) (-4 *2 (-969)))) (-1512 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-37 (-380 (-520)))) (-4 *2 (-969)))) (-1208 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-37 (-380 (-520)))) (-4 *2 (-969)))) (-2053 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-37 (-380 (-520)))) (-4 *2 (-969)))) (-2783 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-37 (-380 (-520)))) (-4 *2 (-969)))) (-1428 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-37 (-380 (-520)))) (-4 *2 (-969)))) (-2081 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-37 (-380 (-520)))) (-4 *2 (-969)))) (-3487 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-37 (-380 (-520)))) (-4 *2 (-969)))) (-2078 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-37 (-380 (-520)))) (-4 *2 (-969)))) (-3933 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-37 (-380 (-520)))) (-4 *2 (-969)))) (-2283 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-37 (-380 (-520)))) (-4 *2 (-969)))) (-2006 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-37 (-380 (-520)))) (-4 *2 (-969)))) (-2106 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-37 (-380 (-520)))) (-4 *2 (-969)))) (-3421 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-37 (-380 (-520)))) (-4 *2 (-969)))) (-2337 (*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-37 (-380 (-520)))) (-4 *2 (-969)))))
-(-13 (-1142 |#1| (-520)) (-10 -8 (-15 -2692 ($ (-949 (-776 (-520))) (-1064 (-2 (|:| |k| (-520)) (|:| |c| |#1|))))) (-15 -2796 ((-949 (-776 (-520))) $)) (-15 -3593 ((-1064 (-2 (|:| |k| (-520)) (|:| |c| |#1|))) $)) (-15 -2769 ($ (-1064 (-2 (|:| |k| (-520)) (|:| |c| |#1|))))) (-15 -3774 ((-108) $)) (-15 -1306 ($ (-1 |#1| (-520)) $)) (-15 -3218 ((-3 $ "failed") $ $ (-108))) (-15 -1887 ($ $)) (-15 -2795 ($ $ $)) (-15 -4005 ((-791) (-1064 (-2 (|:| |k| (-520)) (|:| |c| |#1|))) (-949 (-776 (-520))) (-1083) |#1| (-380 (-520)))) (IF (|has| |#1| (-37 (-380 (-520)))) (PROGN (-15 -3517 ($ $)) (-15 -1498 ($ $ |#1|)) (-15 -3255 ($ $ (-380 (-520)))) (-15 -3917 ($ $)) (-15 -3706 ($ $)) (-15 -1860 ($ $)) (-15 -1998 ($ $)) (-15 -2339 ($ $)) (-15 -3540 ($ $)) (-15 -4107 ($ $)) (-15 -3577 ($ $)) (-15 -1511 ($ $)) (-15 -2292 ($ $)) (-15 -2119 ($ $)) (-15 -1323 ($ $)) (-15 -1512 ($ $)) (-15 -1208 ($ $)) (-15 -2053 ($ $)) (-15 -2783 ($ $)) (-15 -1428 ($ $)) (-15 -2081 ($ $)) (-15 -3487 ($ $)) (-15 -2078 ($ $)) (-15 -3933 ($ $)) (-15 -2283 ($ $)) (-15 -2006 ($ $)) (-15 -2106 ($ $)) (-15 -3421 ($ $)) (-15 -2337 ($ $))) |%noBranch|)))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) NIL (|has| |#1| (-512)))) (-2583 (($ $) NIL (|has| |#1| (-512)))) (-1671 (((-108) $) NIL (|has| |#1| (-512)))) (-1917 (((-3 $ "failed") $ $) NIL)) (-2769 (($ (-1064 |#1|)) 9)) (-3961 (($) NIL T CONST)) (-1540 (((-3 $ "failed") $) 42)) (-1342 (((-108) $) 52)) (-3989 (((-706) $) 55) (((-706) $ (-706)) 54)) (-1537 (((-108) $) NIL)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2230 (((-3 $ "failed") $ $) 44 (|has| |#1| (-512)))) (-2188 (((-791) $) NIL) (($ (-520)) NIL) (($ $) NIL (|has| |#1| (-512)))) (-4113 (((-1064 |#1|) $) 23)) (-3251 (((-706)) 51)) (-2559 (((-108) $ $) NIL (|has| |#1| (-512)))) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (-3560 (($) 10 T CONST)) (-3570 (($) 14 T CONST)) (-1530 (((-108) $ $) 22)) (-1611 (($ $) 30) (($ $ $) 16)) (-1601 (($ $ $) 25)) (** (($ $ (-849)) NIL) (($ $ (-706)) 49)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) 34) (($ $ $) 28) (($ |#1| $) 37) (($ $ |#1|) 38) (($ $ (-520)) 36)))
-(((-546 |#1|) (-13 (-969) (-10 -8 (-15 -4113 ((-1064 |#1|) $)) (-15 -2769 ($ (-1064 |#1|))) (-15 -1342 ((-108) $)) (-15 -3989 ((-706) $)) (-15 -3989 ((-706) $ (-706))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-520))) (IF (|has| |#1| (-512)) (-6 (-512)) |%noBranch|))) (-969)) (T -546))
-((-4113 (*1 *2 *1) (-12 (-5 *2 (-1064 *3)) (-5 *1 (-546 *3)) (-4 *3 (-969)))) (-2769 (*1 *1 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-969)) (-5 *1 (-546 *3)))) (-1342 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-546 *3)) (-4 *3 (-969)))) (-3989 (*1 *2 *1) (-12 (-5 *2 (-706)) (-5 *1 (-546 *3)) (-4 *3 (-969)))) (-3989 (*1 *2 *1 *2) (-12 (-5 *2 (-706)) (-5 *1 (-546 *3)) (-4 *3 (-969)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-546 *2)) (-4 *2 (-969)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-546 *2)) (-4 *2 (-969)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-546 *3)) (-4 *3 (-969)))))
-(-13 (-969) (-10 -8 (-15 -4113 ((-1064 |#1|) $)) (-15 -2769 ($ (-1064 |#1|))) (-15 -1342 ((-108) $)) (-15 -3989 ((-706) $)) (-15 -3989 ((-706) $ (-706))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-520))) (IF (|has| |#1| (-512)) (-6 (-512)) |%noBranch|)))
-((-1389 (((-550 |#2|) (-1 |#2| |#1|) (-550 |#1|)) 15)))
-(((-547 |#1| |#2|) (-10 -7 (-15 -1389 ((-550 |#2|) (-1 |#2| |#1|) (-550 |#1|)))) (-1118) (-1118)) (T -547))
-((-1389 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-550 *5)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-5 *2 (-550 *6)) (-5 *1 (-547 *5 *6)))))
-(-10 -7 (-15 -1389 ((-550 |#2|) (-1 |#2| |#1|) (-550 |#1|))))
-((-1389 (((-1064 |#3|) (-1 |#3| |#1| |#2|) (-550 |#1|) (-1064 |#2|)) 20) (((-1064 |#3|) (-1 |#3| |#1| |#2|) (-1064 |#1|) (-550 |#2|)) 19) (((-550 |#3|) (-1 |#3| |#1| |#2|) (-550 |#1|) (-550 |#2|)) 18)))
-(((-548 |#1| |#2| |#3|) (-10 -7 (-15 -1389 ((-550 |#3|) (-1 |#3| |#1| |#2|) (-550 |#1|) (-550 |#2|))) (-15 -1389 ((-1064 |#3|) (-1 |#3| |#1| |#2|) (-1064 |#1|) (-550 |#2|))) (-15 -1389 ((-1064 |#3|) (-1 |#3| |#1| |#2|) (-550 |#1|) (-1064 |#2|)))) (-1118) (-1118) (-1118)) (T -548))
-((-1389 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-550 *6)) (-5 *5 (-1064 *7)) (-4 *6 (-1118)) (-4 *7 (-1118)) (-4 *8 (-1118)) (-5 *2 (-1064 *8)) (-5 *1 (-548 *6 *7 *8)))) (-1389 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1064 *6)) (-5 *5 (-550 *7)) (-4 *6 (-1118)) (-4 *7 (-1118)) (-4 *8 (-1118)) (-5 *2 (-1064 *8)) (-5 *1 (-548 *6 *7 *8)))) (-1389 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-550 *6)) (-5 *5 (-550 *7)) (-4 *6 (-1118)) (-4 *7 (-1118)) (-4 *8 (-1118)) (-5 *2 (-550 *8)) (-5 *1 (-548 *6 *7 *8)))))
-(-10 -7 (-15 -1389 ((-550 |#3|) (-1 |#3| |#1| |#2|) (-550 |#1|) (-550 |#2|))) (-15 -1389 ((-1064 |#3|) (-1 |#3| |#1| |#2|) (-1064 |#1|) (-550 |#2|))) (-15 -1389 ((-1064 |#3|) (-1 |#3| |#1| |#2|) (-550 |#1|) (-1064 |#2|))))
-((-3643 ((|#3| |#3| (-586 (-559 |#3|)) (-586 (-1083))) 55)) (-3094 (((-154 |#2|) |#3|) 116)) (-4098 ((|#3| (-154 |#2|)) 43)) (-3526 ((|#2| |#3|) 19)) (-1858 ((|#3| |#2|) 32)))
-(((-549 |#1| |#2| |#3|) (-10 -7 (-15 -4098 (|#3| (-154 |#2|))) (-15 -3526 (|#2| |#3|)) (-15 -1858 (|#3| |#2|)) (-15 -3094 ((-154 |#2|) |#3|)) (-15 -3643 (|#3| |#3| (-586 (-559 |#3|)) (-586 (-1083))))) (-13 (-512) (-783)) (-13 (-403 |#1|) (-926) (-1104)) (-13 (-403 (-154 |#1|)) (-926) (-1104))) (T -549))
-((-3643 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-586 (-559 *2))) (-5 *4 (-586 (-1083))) (-4 *2 (-13 (-403 (-154 *5)) (-926) (-1104))) (-4 *5 (-13 (-512) (-783))) (-5 *1 (-549 *5 *6 *2)) (-4 *6 (-13 (-403 *5) (-926) (-1104))))) (-3094 (*1 *2 *3) (-12 (-4 *4 (-13 (-512) (-783))) (-5 *2 (-154 *5)) (-5 *1 (-549 *4 *5 *3)) (-4 *5 (-13 (-403 *4) (-926) (-1104))) (-4 *3 (-13 (-403 (-154 *4)) (-926) (-1104))))) (-1858 (*1 *2 *3) (-12 (-4 *4 (-13 (-512) (-783))) (-4 *2 (-13 (-403 (-154 *4)) (-926) (-1104))) (-5 *1 (-549 *4 *3 *2)) (-4 *3 (-13 (-403 *4) (-926) (-1104))))) (-3526 (*1 *2 *3) (-12 (-4 *4 (-13 (-512) (-783))) (-4 *2 (-13 (-403 *4) (-926) (-1104))) (-5 *1 (-549 *4 *2 *3)) (-4 *3 (-13 (-403 (-154 *4)) (-926) (-1104))))) (-4098 (*1 *2 *3) (-12 (-5 *3 (-154 *5)) (-4 *5 (-13 (-403 *4) (-926) (-1104))) (-4 *4 (-13 (-512) (-783))) (-4 *2 (-13 (-403 (-154 *4)) (-926) (-1104))) (-5 *1 (-549 *4 *5 *2)))))
-(-10 -7 (-15 -4098 (|#3| (-154 |#2|))) (-15 -3526 (|#2| |#3|)) (-15 -1858 (|#3| |#2|)) (-15 -3094 ((-154 |#2|) |#3|)) (-15 -3643 (|#3| |#3| (-586 (-559 |#3|)) (-586 (-1083)))))
-((-1627 (($ (-1 (-108) |#1|) $) 16)) (-1389 (($ (-1 |#1| |#1|) $) NIL)) (-1576 (($ (-1 |#1| |#1|) |#1|) 9)) (-1613 (($ (-1 (-108) |#1|) $) 12)) (-1621 (($ (-1 (-108) |#1|) $) 14)) (-2200 (((-1064 |#1|) $) 17)) (-2188 (((-791) $) NIL)))
-(((-550 |#1|) (-13 (-560 (-791)) (-10 -8 (-15 -1389 ($ (-1 |#1| |#1|) $)) (-15 -1613 ($ (-1 (-108) |#1|) $)) (-15 -1621 ($ (-1 (-108) |#1|) $)) (-15 -1627 ($ (-1 (-108) |#1|) $)) (-15 -1576 ($ (-1 |#1| |#1|) |#1|)) (-15 -2200 ((-1064 |#1|) $)))) (-1118)) (T -550))
-((-1389 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1118)) (-5 *1 (-550 *3)))) (-1613 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1118)) (-5 *1 (-550 *3)))) (-1621 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1118)) (-5 *1 (-550 *3)))) (-1627 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1118)) (-5 *1 (-550 *3)))) (-1576 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1118)) (-5 *1 (-550 *3)))) (-2200 (*1 *2 *1) (-12 (-5 *2 (-1064 *3)) (-5 *1 (-550 *3)) (-4 *3 (-1118)))))
-(-13 (-560 (-791)) (-10 -8 (-15 -1389 ($ (-1 |#1| |#1|) $)) (-15 -1613 ($ (-1 (-108) |#1|) $)) (-15 -1621 ($ (-1 (-108) |#1|) $)) (-15 -1627 ($ (-1 (-108) |#1|) $)) (-15 -1576 ($ (-1 |#1| |#1|) |#1|)) (-15 -2200 ((-1064 |#1|) $))))
-((-1414 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-3477 (($ (-706)) NIL (|has| |#1| (-23)))) (-1476 (((-1169) $ (-520) (-520)) NIL (|has| $ (-6 -4230)))) (-4029 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-783)))) (-3587 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4230))) (($ $) NIL (-12 (|has| $ (-6 -4230)) (|has| |#1| (-783))))) (-3210 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-783)))) (-2063 (((-108) $ (-706)) NIL)) (-2377 ((|#1| $ (-520) |#1|) NIL (|has| $ (-6 -4230))) ((|#1| $ (-1131 (-520)) |#1|) NIL (|has| $ (-6 -4230)))) (-1627 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-3961 (($) NIL T CONST)) (-2447 (($ $) NIL (|has| $ (-6 -4230)))) (-1861 (($ $) NIL)) (-2331 (($ $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-1421 (($ |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-3856 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4229))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4229)))) (-3846 ((|#1| $ (-520) |#1|) NIL (|has| $ (-6 -4230)))) (-3623 ((|#1| $ (-520)) NIL)) (-3232 (((-520) (-1 (-108) |#1|) $) NIL) (((-520) |#1| $) NIL (|has| |#1| (-1012))) (((-520) |#1| $ (-520)) NIL (|has| |#1| (-1012)))) (-3828 (((-586 |#1|) $) NIL (|has| $ (-6 -4229)))) (-3948 (((-626 |#1|) $ $) NIL (|has| |#1| (-969)))) (-1810 (($ (-706) |#1|) NIL)) (-3027 (((-108) $ (-706)) NIL)) (-2567 (((-520) $) NIL (|has| (-520) (-783)))) (-2809 (($ $ $) NIL (|has| |#1| (-783)))) (-1819 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-783)))) (-3702 (((-586 |#1|) $) NIL (|has| $ (-6 -4229)))) (-2422 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-1752 (((-520) $) NIL (|has| (-520) (-783)))) (-2446 (($ $ $) NIL (|has| |#1| (-783)))) (-3830 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3224 ((|#1| $) NIL (-12 (|has| |#1| (-926)) (|has| |#1| (-969))))) (-1390 (((-108) $ (-706)) NIL)) (-2515 ((|#1| $) NIL (-12 (|has| |#1| (-926)) (|has| |#1| (-969))))) (-1239 (((-1066) $) NIL (|has| |#1| (-1012)))) (-1659 (($ |#1| $ (-520)) NIL) (($ $ $ (-520)) NIL)) (-3622 (((-586 (-520)) $) NIL)) (-2603 (((-108) (-520) $) NIL)) (-4142 (((-1030) $) NIL (|has| |#1| (-1012)))) (-2293 ((|#1| $) NIL (|has| (-520) (-783)))) (-2985 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-2936 (($ $ |#1|) NIL (|has| $ (-6 -4230)))) (-4155 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 |#1|))) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-268 |#1|)) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-586 |#1|) (-586 |#1|)) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))) (-2533 (((-108) $ $) NIL)) (-2094 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-1523 (((-586 |#1|) $) NIL)) (-4018 (((-108) $) NIL)) (-2238 (($) NIL)) (-2543 ((|#1| $ (-520) |#1|) NIL) ((|#1| $ (-520)) NIL) (($ $ (-1131 (-520))) NIL)) (-3639 ((|#1| $ $) NIL (|has| |#1| (-969)))) (-3690 (($ $ (-520)) NIL) (($ $ (-1131 (-520))) NIL)) (-1480 (($ $ $) NIL (|has| |#1| (-969)))) (-4159 (((-706) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229))) (((-706) |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-1913 (($ $ $ (-520)) NIL (|has| $ (-6 -4230)))) (-2403 (($ $) NIL)) (-1429 (((-496) $) NIL (|has| |#1| (-561 (-496))))) (-2200 (($ (-586 |#1|)) NIL)) (-4156 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-586 $)) NIL)) (-2188 (((-791) $) NIL (|has| |#1| (-560 (-791))))) (-1662 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-1573 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1557 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1530 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-1565 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1548 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1611 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1601 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-520) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-662))) (($ $ |#1|) NIL (|has| |#1| (-662)))) (-3474 (((-706) $) NIL (|has| $ (-6 -4229)))))
-(((-551 |#1| |#2|) (-1162 |#1|) (-1118) (-520)) (T -551))
-NIL
-(-1162 |#1|)
-((-1476 (((-1169) $ |#2| |#2|) 36)) (-2567 ((|#2| $) 23)) (-1752 ((|#2| $) 21)) (-3830 (($ (-1 |#3| |#3|) $) 32)) (-1389 (($ (-1 |#3| |#3|) $) 30)) (-2293 ((|#3| $) 26)) (-2936 (($ $ |#3|) 33)) (-2094 (((-108) |#3| $) 17)) (-1523 (((-586 |#3|) $) 15)) (-2543 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL)))
-(((-552 |#1| |#2| |#3|) (-10 -8 (-15 -1476 ((-1169) |#1| |#2| |#2|)) (-15 -2936 (|#1| |#1| |#3|)) (-15 -2293 (|#3| |#1|)) (-15 -2567 (|#2| |#1|)) (-15 -1752 (|#2| |#1|)) (-15 -2094 ((-108) |#3| |#1|)) (-15 -1523 ((-586 |#3|) |#1|)) (-15 -2543 (|#3| |#1| |#2|)) (-15 -2543 (|#3| |#1| |#2| |#3|)) (-15 -3830 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1389 (|#1| (-1 |#3| |#3|) |#1|))) (-553 |#2| |#3|) (-1012) (-1118)) (T -552))
-NIL
-(-10 -8 (-15 -1476 ((-1169) |#1| |#2| |#2|)) (-15 -2936 (|#1| |#1| |#3|)) (-15 -2293 (|#3| |#1|)) (-15 -2567 (|#2| |#1|)) (-15 -1752 (|#2| |#1|)) (-15 -2094 ((-108) |#3| |#1|)) (-15 -1523 ((-586 |#3|) |#1|)) (-15 -2543 (|#3| |#1| |#2|)) (-15 -2543 (|#3| |#1| |#2| |#3|)) (-15 -3830 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1389 (|#1| (-1 |#3| |#3|) |#1|)))
-((-1414 (((-108) $ $) 19 (|has| |#2| (-1012)))) (-1476 (((-1169) $ |#1| |#1|) 40 (|has| $ (-6 -4230)))) (-2063 (((-108) $ (-706)) 8)) (-2377 ((|#2| $ |#1| |#2|) 52 (|has| $ (-6 -4230)))) (-3961 (($) 7 T CONST)) (-3846 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4230)))) (-3623 ((|#2| $ |#1|) 51)) (-3828 (((-586 |#2|) $) 30 (|has| $ (-6 -4229)))) (-3027 (((-108) $ (-706)) 9)) (-2567 ((|#1| $) 43 (|has| |#1| (-783)))) (-3702 (((-586 |#2|) $) 29 (|has| $ (-6 -4229)))) (-2422 (((-108) |#2| $) 27 (-12 (|has| |#2| (-1012)) (|has| $ (-6 -4229))))) (-1752 ((|#1| $) 44 (|has| |#1| (-783)))) (-3830 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#2| |#2|) $) 35)) (-1390 (((-108) $ (-706)) 10)) (-1239 (((-1066) $) 22 (|has| |#2| (-1012)))) (-3622 (((-586 |#1|) $) 46)) (-2603 (((-108) |#1| $) 47)) (-4142 (((-1030) $) 21 (|has| |#2| (-1012)))) (-2293 ((|#2| $) 42 (|has| |#1| (-783)))) (-2936 (($ $ |#2|) 41 (|has| $ (-6 -4230)))) (-4155 (((-108) (-1 (-108) |#2|) $) 32 (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 |#2|))) 26 (-12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012)))) (($ $ (-268 |#2|)) 25 (-12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012)))) (($ $ (-586 |#2|) (-586 |#2|)) 23 (-12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012))))) (-2533 (((-108) $ $) 14)) (-2094 (((-108) |#2| $) 45 (-12 (|has| $ (-6 -4229)) (|has| |#2| (-1012))))) (-1523 (((-586 |#2|) $) 48)) (-4018 (((-108) $) 11)) (-2238 (($) 12)) (-2543 ((|#2| $ |#1| |#2|) 50) ((|#2| $ |#1|) 49)) (-4159 (((-706) (-1 (-108) |#2|) $) 31 (|has| $ (-6 -4229))) (((-706) |#2| $) 28 (-12 (|has| |#2| (-1012)) (|has| $ (-6 -4229))))) (-2403 (($ $) 13)) (-2188 (((-791) $) 18 (|has| |#2| (-560 (-791))))) (-1662 (((-108) (-1 (-108) |#2|) $) 33 (|has| $ (-6 -4229)))) (-1530 (((-108) $ $) 20 (|has| |#2| (-1012)))) (-3474 (((-706) $) 6 (|has| $ (-6 -4229)))))
-(((-553 |#1| |#2|) (-1195) (-1012) (-1118)) (T -553))
-((-1523 (*1 *2 *1) (-12 (-4 *1 (-553 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1118)) (-5 *2 (-586 *4)))) (-2603 (*1 *2 *3 *1) (-12 (-4 *1 (-553 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1118)) (-5 *2 (-108)))) (-3622 (*1 *2 *1) (-12 (-4 *1 (-553 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1118)) (-5 *2 (-586 *3)))) (-2094 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4229)) (-4 *1 (-553 *4 *3)) (-4 *4 (-1012)) (-4 *3 (-1118)) (-4 *3 (-1012)) (-5 *2 (-108)))) (-1752 (*1 *2 *1) (-12 (-4 *1 (-553 *2 *3)) (-4 *3 (-1118)) (-4 *2 (-1012)) (-4 *2 (-783)))) (-2567 (*1 *2 *1) (-12 (-4 *1 (-553 *2 *3)) (-4 *3 (-1118)) (-4 *2 (-1012)) (-4 *2 (-783)))) (-2293 (*1 *2 *1) (-12 (-4 *1 (-553 *3 *2)) (-4 *3 (-1012)) (-4 *3 (-783)) (-4 *2 (-1118)))) (-2936 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4230)) (-4 *1 (-553 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1118)))) (-1476 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4230)) (-4 *1 (-553 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1118)) (-5 *2 (-1169)))))
-(-13 (-459 |t#2|) (-262 |t#1| |t#2|) (-10 -8 (-15 -1523 ((-586 |t#2|) $)) (-15 -2603 ((-108) |t#1| $)) (-15 -3622 ((-586 |t#1|) $)) (IF (|has| |t#2| (-1012)) (IF (|has| $ (-6 -4229)) (-15 -2094 ((-108) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-783)) (PROGN (-15 -1752 (|t#1| $)) (-15 -2567 (|t#1| $)) (-15 -2293 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4230)) (PROGN (-15 -2936 ($ $ |t#2|)) (-15 -1476 ((-1169) $ |t#1| |t#1|))) |%noBranch|)))
-(((-33) . T) ((-97) |has| |#2| (-1012)) ((-560 (-791)) -3700 (|has| |#2| (-1012)) (|has| |#2| (-560 (-791)))) ((-260 |#1| |#2|) . T) ((-262 |#1| |#2|) . T) ((-283 |#2|) -12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012))) ((-459 |#2|) . T) ((-481 |#2| |#2|) -12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012))) ((-1012) |has| |#2| (-1012)) ((-1118) . T))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-4036 (((-3 $ "failed")) NIL (-3700 (-12 (|has| |#2| (-340 |#1|)) (|has| |#1| (-512))) (-12 (|has| |#2| (-390 |#1|)) (|has| |#1| (-512)))))) (-1917 (((-3 $ "failed") $ $) NIL)) (-2284 (((-1164 (-626 |#1|))) NIL (|has| |#2| (-390 |#1|))) (((-1164 (-626 |#1|)) (-1164 $)) NIL (|has| |#2| (-340 |#1|)))) (-3976 (((-1164 $)) NIL (|has| |#2| (-340 |#1|)))) (-3961 (($) NIL T CONST)) (-3824 (((-3 (-2 (|:| |particular| $) (|:| -1831 (-586 $))) "failed")) NIL (-3700 (-12 (|has| |#2| (-340 |#1|)) (|has| |#1| (-512))) (-12 (|has| |#2| (-390 |#1|)) (|has| |#1| (-512)))))) (-1606 (((-3 $ "failed")) NIL (-3700 (-12 (|has| |#2| (-340 |#1|)) (|has| |#1| (-512))) (-12 (|has| |#2| (-390 |#1|)) (|has| |#1| (-512)))))) (-3884 (((-626 |#1|)) NIL (|has| |#2| (-390 |#1|))) (((-626 |#1|) (-1164 $)) NIL (|has| |#2| (-340 |#1|)))) (-3193 ((|#1| $) NIL (|has| |#2| (-340 |#1|)))) (-3984 (((-626 |#1|) $) NIL (|has| |#2| (-390 |#1|))) (((-626 |#1|) $ (-1164 $)) NIL (|has| |#2| (-340 |#1|)))) (-2473 (((-3 $ "failed") $) NIL (-3700 (-12 (|has| |#2| (-340 |#1|)) (|has| |#1| (-512))) (-12 (|has| |#2| (-390 |#1|)) (|has| |#1| (-512)))))) (-3978 (((-1079 (-880 |#1|))) NIL (-12 (|has| |#2| (-390 |#1|)) (|has| |#1| (-336))))) (-3918 (($ $ (-849)) NIL)) (-2996 ((|#1| $) NIL (|has| |#2| (-340 |#1|)))) (-1653 (((-1079 |#1|) $) NIL (-3700 (-12 (|has| |#2| (-340 |#1|)) (|has| |#1| (-512))) (-12 (|has| |#2| (-390 |#1|)) (|has| |#1| (-512)))))) (-1882 ((|#1|) NIL (|has| |#2| (-390 |#1|))) ((|#1| (-1164 $)) NIL (|has| |#2| (-340 |#1|)))) (-2913 (((-1079 |#1|) $) NIL (|has| |#2| (-340 |#1|)))) (-2539 (((-108)) NIL (|has| |#2| (-340 |#1|)))) (-3705 (($ (-1164 |#1|)) NIL (|has| |#2| (-390 |#1|))) (($ (-1164 |#1|) (-1164 $)) NIL (|has| |#2| (-340 |#1|)))) (-1540 (((-3 $ "failed") $) NIL (-3700 (-12 (|has| |#2| (-340 |#1|)) (|has| |#1| (-512))) (-12 (|has| |#2| (-390 |#1|)) (|has| |#1| (-512)))))) (-3160 (((-849)) NIL (|has| |#2| (-340 |#1|)))) (-1802 (((-108)) NIL (|has| |#2| (-340 |#1|)))) (-3273 (($ $ (-849)) NIL)) (-2435 (((-108)) NIL (|has| |#2| (-340 |#1|)))) (-4208 (((-108)) NIL (|has| |#2| (-340 |#1|)))) (-3213 (((-108)) NIL (|has| |#2| (-340 |#1|)))) (-2790 (((-3 (-2 (|:| |particular| $) (|:| -1831 (-586 $))) "failed")) NIL (-3700 (-12 (|has| |#2| (-340 |#1|)) (|has| |#1| (-512))) (-12 (|has| |#2| (-390 |#1|)) (|has| |#1| (-512)))))) (-3164 (((-3 $ "failed")) NIL (-3700 (-12 (|has| |#2| (-340 |#1|)) (|has| |#1| (-512))) (-12 (|has| |#2| (-390 |#1|)) (|has| |#1| (-512)))))) (-4024 (((-626 |#1|)) NIL (|has| |#2| (-390 |#1|))) (((-626 |#1|) (-1164 $)) NIL (|has| |#2| (-340 |#1|)))) (-4007 ((|#1| $) NIL (|has| |#2| (-340 |#1|)))) (-3775 (((-626 |#1|) $) NIL (|has| |#2| (-390 |#1|))) (((-626 |#1|) $ (-1164 $)) NIL (|has| |#2| (-340 |#1|)))) (-1368 (((-3 $ "failed") $) NIL (-3700 (-12 (|has| |#2| (-340 |#1|)) (|has| |#1| (-512))) (-12 (|has| |#2| (-390 |#1|)) (|has| |#1| (-512)))))) (-1589 (((-1079 (-880 |#1|))) NIL (-12 (|has| |#2| (-390 |#1|)) (|has| |#1| (-336))))) (-2544 (($ $ (-849)) NIL)) (-2318 ((|#1| $) NIL (|has| |#2| (-340 |#1|)))) (-4108 (((-1079 |#1|) $) NIL (-3700 (-12 (|has| |#2| (-340 |#1|)) (|has| |#1| (-512))) (-12 (|has| |#2| (-390 |#1|)) (|has| |#1| (-512)))))) (-1526 ((|#1|) NIL (|has| |#2| (-390 |#1|))) ((|#1| (-1164 $)) NIL (|has| |#2| (-340 |#1|)))) (-2429 (((-1079 |#1|) $) NIL (|has| |#2| (-340 |#1|)))) (-3955 (((-108)) NIL (|has| |#2| (-340 |#1|)))) (-1239 (((-1066) $) NIL)) (-2260 (((-108)) NIL (|has| |#2| (-340 |#1|)))) (-4130 (((-108)) NIL (|has| |#2| (-340 |#1|)))) (-2684 (((-108)) NIL (|has| |#2| (-340 |#1|)))) (-4142 (((-1030) $) NIL)) (-2009 (((-108)) NIL (|has| |#2| (-340 |#1|)))) (-2543 ((|#1| $ (-520)) NIL (|has| |#2| (-390 |#1|)))) (-3790 (((-626 |#1|) (-1164 $)) NIL (|has| |#2| (-390 |#1|))) (((-1164 |#1|) $) NIL (|has| |#2| (-390 |#1|))) (((-626 |#1|) (-1164 $) (-1164 $)) NIL (|has| |#2| (-340 |#1|))) (((-1164 |#1|) $ (-1164 $)) NIL (|has| |#2| (-340 |#1|)))) (-1429 (($ (-1164 |#1|)) NIL (|has| |#2| (-390 |#1|))) (((-1164 |#1|) $) NIL (|has| |#2| (-390 |#1|)))) (-1894 (((-586 (-880 |#1|))) NIL (|has| |#2| (-390 |#1|))) (((-586 (-880 |#1|)) (-1164 $)) NIL (|has| |#2| (-340 |#1|)))) (-3607 (($ $ $) NIL)) (-3393 (((-108)) NIL (|has| |#2| (-340 |#1|)))) (-2188 (((-791) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-1831 (((-1164 $)) NIL (|has| |#2| (-390 |#1|)))) (-4094 (((-586 (-1164 |#1|))) NIL (-3700 (-12 (|has| |#2| (-340 |#1|)) (|has| |#1| (-512))) (-12 (|has| |#2| (-390 |#1|)) (|has| |#1| (-512)))))) (-2214 (($ $ $ $) NIL)) (-3183 (((-108)) NIL (|has| |#2| (-340 |#1|)))) (-1614 (($ (-626 |#1|) $) NIL (|has| |#2| (-390 |#1|)))) (-3710 (($ $ $) NIL)) (-3977 (((-108)) NIL (|has| |#2| (-340 |#1|)))) (-2963 (((-108)) NIL (|has| |#2| (-340 |#1|)))) (-1314 (((-108)) NIL (|has| |#2| (-340 |#1|)))) (-3560 (($) NIL T CONST)) (-1530 (((-108) $ $) NIL)) (-1611 (($ $) NIL) (($ $ $) NIL)) (-1601 (($ $ $) NIL)) (** (($ $ (-849)) 24)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL)))
-(((-554 |#1| |#2|) (-13 (-680 |#1|) (-560 |#2|) (-10 -8 (-15 -2188 ($ |#2|)) (IF (|has| |#2| (-390 |#1|)) (-6 (-390 |#1|)) |%noBranch|) (IF (|has| |#2| (-340 |#1|)) (-6 (-340 |#1|)) |%noBranch|))) (-157) (-680 |#1|)) (T -554))
-((-2188 (*1 *1 *2) (-12 (-4 *3 (-157)) (-5 *1 (-554 *3 *2)) (-4 *2 (-680 *3)))))
-(-13 (-680 |#1|) (-560 |#2|) (-10 -8 (-15 -2188 ($ |#2|)) (IF (|has| |#2| (-390 |#1|)) (-6 (-390 |#1|)) |%noBranch|) (IF (|has| |#2| (-340 |#1|)) (-6 (-340 |#1|)) |%noBranch|)))
-((-1414 (((-108) $ $) NIL)) (-1801 (((-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) $ (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|))) 32)) (-1799 (($ (-586 (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)))) NIL) (($) NIL)) (-1476 (((-1169) $ (-1066) (-1066)) NIL (|has| $ (-6 -4230)))) (-2063 (((-108) $ (-706)) NIL)) (-2377 ((|#1| $ (-1066) |#1|) 42)) (-1817 (($ (-1 (-108) (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|))) $) NIL (|has| $ (-6 -4229)))) (-1627 (($ (-1 (-108) (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|))) $) NIL (|has| $ (-6 -4229)))) (-2747 (((-3 |#1| "failed") (-1066) $) 45)) (-3961 (($) NIL T CONST)) (-2405 (($ $ (-1066)) 24)) (-2331 (($ $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (-1012))))) (-3766 (((-3 |#1| "failed") (-1066) $) 46) (($ (-1 (-108) (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|))) $) NIL (|has| $ (-6 -4229))) (($ (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) $) NIL (|has| $ (-6 -4229)))) (-1421 (($ (-1 (-108) (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|))) $) NIL (|has| $ (-6 -4229))) (($ (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (-1012))))) (-3856 (((-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (-1 (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|))) $) NIL (|has| $ (-6 -4229))) (((-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (-1 (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|))) $ (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|))) NIL (|has| $ (-6 -4229))) (((-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (-1 (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|))) $ (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|))) NIL (-12 (|has| $ (-6 -4229)) (|has| (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (-1012))))) (-1582 (((-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) $) 31)) (-3846 ((|#1| $ (-1066) |#1|) NIL (|has| $ (-6 -4230)))) (-3623 ((|#1| $ (-1066)) NIL)) (-3828 (((-586 |#1|) $) NIL (|has| $ (-6 -4229))) (((-586 (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|))) $) NIL (|has| $ (-6 -4229)))) (-4017 (($ $) 47)) (-1543 (($ (-361)) 22) (($ (-361) (-1066)) 21)) (-2883 (((-361) $) 33)) (-3027 (((-108) $ (-706)) NIL)) (-2567 (((-1066) $) NIL (|has| (-1066) (-783)))) (-3702 (((-586 |#1|) $) NIL (|has| $ (-6 -4229))) (((-586 (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|))) $) NIL (|has| $ (-6 -4229)))) (-2422 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012)))) (((-108) (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (-1012))))) (-1752 (((-1066) $) NIL (|has| (-1066) (-783)))) (-3830 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4230))) (($ (-1 (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|))) $) NIL (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|))) $) NIL)) (-1390 (((-108) $ (-706)) NIL)) (-1239 (((-1066) $) NIL)) (-2960 (((-586 (-1066)) $) 38)) (-1612 (((-108) (-1066) $) NIL)) (-3968 (((-1066) $) 34)) (-3351 (((-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) $) NIL)) (-3618 (($ (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) $) NIL)) (-3622 (((-586 (-1066)) $) NIL)) (-2603 (((-108) (-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2293 ((|#1| $) NIL (|has| (-1066) (-783)))) (-2985 (((-3 (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) "failed") (-1 (-108) (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|))) $) NIL)) (-2936 (($ $ |#1|) NIL (|has| $ (-6 -4230)))) (-3345 (((-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) $) NIL)) (-4155 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229))) (((-108) (-1 (-108) (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|))) $) NIL (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 |#1|))) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-268 |#1|)) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-586 |#1|) (-586 |#1|)) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-586 (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|))) (-586 (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)))) NIL (-12 (|has| (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (-283 (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)))) (|has| (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (-1012)))) (($ $ (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|))) NIL (-12 (|has| (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (-283 (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)))) (|has| (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (-1012)))) (($ $ (-268 (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)))) NIL (-12 (|has| (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (-283 (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)))) (|has| (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (-1012)))) (($ $ (-586 (-268 (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|))))) NIL (-12 (|has| (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (-283 (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)))) (|has| (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (-1012))))) (-2533 (((-108) $ $) NIL)) (-2094 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-1523 (((-586 |#1|) $) NIL)) (-4018 (((-108) $) NIL)) (-2238 (($) 36)) (-2543 ((|#1| $ (-1066) |#1|) NIL) ((|#1| $ (-1066)) 41)) (-1645 (($ (-586 (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)))) NIL) (($) NIL)) (-4159 (((-706) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229))) (((-706) |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012)))) (((-706) (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (-1012)))) (((-706) (-1 (-108) (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|))) $) NIL (|has| $ (-6 -4229)))) (-2403 (($ $) NIL)) (-1429 (((-496) $) NIL (|has| (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (-561 (-496))))) (-2200 (($ (-586 (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)))) NIL)) (-2188 (((-791) $) 20)) (-1934 (($ $) 25)) (-1898 (($ (-586 (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)))) NIL)) (-1662 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229))) (((-108) (-1 (-108) (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|))) $) NIL (|has| $ (-6 -4229)))) (-1530 (((-108) $ $) 19)) (-3474 (((-706) $) 40 (|has| $ (-6 -4229)))))
-(((-555 |#1|) (-13 (-337 (-361) (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|))) (-1095 (-1066) |#1|) (-10 -8 (-6 -4229) (-15 -4017 ($ $)))) (-1012)) (T -555))
-((-4017 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-1012)))))
-(-13 (-337 (-361) (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|))) (-1095 (-1066) |#1|) (-10 -8 (-6 -4229) (-15 -4017 ($ $))))
-((-2422 (((-108) (-2 (|:| -2526 |#2|) (|:| -3043 |#3|)) $) 15)) (-2960 (((-586 |#2|) $) 19)) (-1612 (((-108) |#2| $) 12)))
-(((-556 |#1| |#2| |#3|) (-10 -8 (-15 -2960 ((-586 |#2|) |#1|)) (-15 -1612 ((-108) |#2| |#1|)) (-15 -2422 ((-108) (-2 (|:| -2526 |#2|) (|:| -3043 |#3|)) |#1|))) (-557 |#2| |#3|) (-1012) (-1012)) (T -556))
-NIL
-(-10 -8 (-15 -2960 ((-586 |#2|) |#1|)) (-15 -1612 ((-108) |#2| |#1|)) (-15 -2422 ((-108) (-2 (|:| -2526 |#2|) (|:| -3043 |#3|)) |#1|)))
-((-1414 (((-108) $ $) 19 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (-2063 (((-108) $ (-706)) 8)) (-1817 (($ (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) 45 (|has| $ (-6 -4229)))) (-1627 (($ (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) 55 (|has| $ (-6 -4229)))) (-2747 (((-3 |#2| "failed") |#1| $) 61)) (-3961 (($) 7 T CONST)) (-2331 (($ $) 58 (-12 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)) (|has| $ (-6 -4229))))) (-3766 (($ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) 47 (|has| $ (-6 -4229))) (($ (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) 46 (|has| $ (-6 -4229))) (((-3 |#2| "failed") |#1| $) 62)) (-1421 (($ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)) (|has| $ (-6 -4229)))) (($ (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) 54 (|has| $ (-6 -4229)))) (-3856 (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) 56 (-12 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)) (|has| $ (-6 -4229)))) (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) 53 (|has| $ (-6 -4229))) (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) 52 (|has| $ (-6 -4229)))) (-3828 (((-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) 30 (|has| $ (-6 -4229)))) (-3027 (((-108) $ (-706)) 9)) (-3702 (((-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) 29 (|has| $ (-6 -4229)))) (-2422 (((-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)) (|has| $ (-6 -4229))))) (-3830 (($ (-1 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) 34 (|has| $ (-6 -4230)))) (-1389 (($ (-1 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) 35)) (-1390 (((-108) $ (-706)) 10)) (-1239 (((-1066) $) 22 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (-2960 (((-586 |#1|) $) 63)) (-1612 (((-108) |#1| $) 64)) (-3351 (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) 39)) (-3618 (($ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) 40)) (-4142 (((-1030) $) 21 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (-2985 (((-3 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) "failed") (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) 51)) (-3345 (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) 41)) (-4155 (((-108) (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) 32 (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))))) 26 (-12 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-283 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (($ $ (-268 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) 25 (-12 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-283 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (($ $ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) 24 (-12 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-283 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (($ $ (-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) (-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) 23 (-12 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-283 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012))))) (-2533 (((-108) $ $) 14)) (-4018 (((-108) $) 11)) (-2238 (($) 12)) (-1645 (($) 49) (($ (-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) 48)) (-4159 (((-706) (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) 31 (|has| $ (-6 -4229))) (((-706) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)) (|has| $ (-6 -4229))))) (-2403 (($ $) 13)) (-1429 (((-496) $) 59 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-561 (-496))))) (-2200 (($ (-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) 50)) (-2188 (((-791) $) 18 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-560 (-791))))) (-1898 (($ (-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) 42)) (-1662 (((-108) (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) 33 (|has| $ (-6 -4229)))) (-1530 (((-108) $ $) 20 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (-3474 (((-706) $) 6 (|has| $ (-6 -4229)))))
-(((-557 |#1| |#2|) (-1195) (-1012) (-1012)) (T -557))
-((-1612 (*1 *2 *3 *1) (-12 (-4 *1 (-557 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-5 *2 (-108)))) (-2960 (*1 *2 *1) (-12 (-4 *1 (-557 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-5 *2 (-586 *3)))) (-3766 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-557 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1012)))) (-2747 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-557 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1012)))))
-(-13 (-205 (-2 (|:| -2526 |t#1|) (|:| -3043 |t#2|))) (-10 -8 (-15 -1612 ((-108) |t#1| $)) (-15 -2960 ((-586 |t#1|) $)) (-15 -3766 ((-3 |t#2| "failed") |t#1| $)) (-15 -2747 ((-3 |t#2| "failed") |t#1| $))))
-(((-33) . T) ((-102 #0=(-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) . T) ((-97) |has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)) ((-560 (-791)) -3700 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-560 (-791)))) ((-139 #0#) . T) ((-561 (-496)) |has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-561 (-496))) ((-205 #0#) . T) ((-211 #0#) . T) ((-283 #0#) -12 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-283 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012))) ((-459 #0#) . T) ((-481 #0# #0#) -12 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-283 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012))) ((-1012) |has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)) ((-1118) . T))
-((-2275 (((-559 |#2|) |#1|) 15)) (-2231 (((-3 |#1| "failed") (-559 |#2|)) 19)))
-(((-558 |#1| |#2|) (-10 -7 (-15 -2275 ((-559 |#2|) |#1|)) (-15 -2231 ((-3 |#1| "failed") (-559 |#2|)))) (-783) (-783)) (T -558))
-((-2231 (*1 *2 *3) (|partial| -12 (-5 *3 (-559 *4)) (-4 *4 (-783)) (-4 *2 (-783)) (-5 *1 (-558 *2 *4)))) (-2275 (*1 *2 *3) (-12 (-5 *2 (-559 *4)) (-5 *1 (-558 *3 *4)) (-4 *3 (-783)) (-4 *4 (-783)))))
-(-10 -7 (-15 -2275 ((-559 |#2|) |#1|)) (-15 -2231 ((-3 |#1| "failed") (-559 |#2|))))
-((-1414 (((-108) $ $) NIL)) (-1388 (((-3 (-1083) "failed") $) 36)) (-2500 (((-1169) $ (-706)) 26)) (-3232 (((-706) $) 25)) (-3877 (((-110) $) 12)) (-2883 (((-1083) $) 20)) (-2809 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-1239 (((-1066) $) NIL)) (-2904 (($ (-110) (-586 |#1|) (-706)) 30) (($ (-1083)) 31)) (-1784 (((-108) $ (-110)) 18) (((-108) $ (-1083)) 16)) (-4146 (((-706) $) 22)) (-4142 (((-1030) $) NIL)) (-1429 (((-820 (-520)) $) 69 (|has| |#1| (-561 (-820 (-520))))) (((-820 (-352)) $) 75 (|has| |#1| (-561 (-820 (-352))))) (((-496) $) 62 (|has| |#1| (-561 (-496))))) (-2188 (((-791) $) 51)) (-3440 (((-586 |#1|) $) 24)) (-1573 (((-108) $ $) NIL)) (-1557 (((-108) $ $) NIL)) (-1530 (((-108) $ $) 39)) (-1565 (((-108) $ $) NIL)) (-1548 (((-108) $ $) 40)))
-(((-559 |#1|) (-13 (-125) (-812 |#1|) (-10 -8 (-15 -2883 ((-1083) $)) (-15 -3877 ((-110) $)) (-15 -3440 ((-586 |#1|) $)) (-15 -4146 ((-706) $)) (-15 -2904 ($ (-110) (-586 |#1|) (-706))) (-15 -2904 ($ (-1083))) (-15 -1388 ((-3 (-1083) "failed") $)) (-15 -1784 ((-108) $ (-110))) (-15 -1784 ((-108) $ (-1083))) (IF (|has| |#1| (-561 (-496))) (-6 (-561 (-496))) |%noBranch|))) (-783)) (T -559))
-((-2883 (*1 *2 *1) (-12 (-5 *2 (-1083)) (-5 *1 (-559 *3)) (-4 *3 (-783)))) (-3877 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-559 *3)) (-4 *3 (-783)))) (-3440 (*1 *2 *1) (-12 (-5 *2 (-586 *3)) (-5 *1 (-559 *3)) (-4 *3 (-783)))) (-4146 (*1 *2 *1) (-12 (-5 *2 (-706)) (-5 *1 (-559 *3)) (-4 *3 (-783)))) (-2904 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-110)) (-5 *3 (-586 *5)) (-5 *4 (-706)) (-4 *5 (-783)) (-5 *1 (-559 *5)))) (-2904 (*1 *1 *2) (-12 (-5 *2 (-1083)) (-5 *1 (-559 *3)) (-4 *3 (-783)))) (-1388 (*1 *2 *1) (|partial| -12 (-5 *2 (-1083)) (-5 *1 (-559 *3)) (-4 *3 (-783)))) (-1784 (*1 *2 *1 *3) (-12 (-5 *3 (-110)) (-5 *2 (-108)) (-5 *1 (-559 *4)) (-4 *4 (-783)))) (-1784 (*1 *2 *1 *3) (-12 (-5 *3 (-1083)) (-5 *2 (-108)) (-5 *1 (-559 *4)) (-4 *4 (-783)))))
-(-13 (-125) (-812 |#1|) (-10 -8 (-15 -2883 ((-1083) $)) (-15 -3877 ((-110) $)) (-15 -3440 ((-586 |#1|) $)) (-15 -4146 ((-706) $)) (-15 -2904 ($ (-110) (-586 |#1|) (-706))) (-15 -2904 ($ (-1083))) (-15 -1388 ((-3 (-1083) "failed") $)) (-15 -1784 ((-108) $ (-110))) (-15 -1784 ((-108) $ (-1083))) (IF (|has| |#1| (-561 (-496))) (-6 (-561 (-496))) |%noBranch|)))
-((-2188 ((|#1| $) 6)))
-(((-560 |#1|) (-1195) (-1118)) (T -560))
-((-2188 (*1 *2 *1) (-12 (-4 *1 (-560 *2)) (-4 *2 (-1118)))))
-(-13 (-10 -8 (-15 -2188 (|t#1| $))))
-((-1429 ((|#1| $) 6)))
-(((-561 |#1|) (-1195) (-1118)) (T -561))
-((-1429 (*1 *2 *1) (-12 (-4 *1 (-561 *2)) (-4 *2 (-1118)))))
-(-13 (-10 -8 (-15 -1429 (|t#1| $))))
-((-1698 (((-3 (-1079 (-380 |#2|)) "failed") (-380 |#2|) (-380 |#2|) (-380 |#2|) (-1 (-391 |#2|) |#2|)) 13) (((-3 (-1079 (-380 |#2|)) "failed") (-380 |#2|) (-380 |#2|) (-380 |#2|)) 14)))
-(((-562 |#1| |#2|) (-10 -7 (-15 -1698 ((-3 (-1079 (-380 |#2|)) "failed") (-380 |#2|) (-380 |#2|) (-380 |#2|))) (-15 -1698 ((-3 (-1079 (-380 |#2|)) "failed") (-380 |#2|) (-380 |#2|) (-380 |#2|) (-1 (-391 |#2|) |#2|)))) (-13 (-135) (-27) (-960 (-520)) (-960 (-380 (-520)))) (-1140 |#1|)) (T -562))
-((-1698 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-391 *6) *6)) (-4 *6 (-1140 *5)) (-4 *5 (-13 (-135) (-27) (-960 (-520)) (-960 (-380 (-520))))) (-5 *2 (-1079 (-380 *6))) (-5 *1 (-562 *5 *6)) (-5 *3 (-380 *6)))) (-1698 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-135) (-27) (-960 (-520)) (-960 (-380 (-520))))) (-4 *5 (-1140 *4)) (-5 *2 (-1079 (-380 *5))) (-5 *1 (-562 *4 *5)) (-5 *3 (-380 *5)))))
-(-10 -7 (-15 -1698 ((-3 (-1079 (-380 |#2|)) "failed") (-380 |#2|) (-380 |#2|) (-380 |#2|))) (-15 -1698 ((-3 (-1079 (-380 |#2|)) "failed") (-380 |#2|) (-380 |#2|) (-380 |#2|) (-1 (-391 |#2|) |#2|))))
-((-2188 (((-791) $) NIL) (($ (-520)) NIL) (($ |#2|) 10)))
-(((-563 |#1| |#2|) (-10 -8 (-15 -2188 (|#1| |#2|)) (-15 -2188 (|#1| (-520))) (-15 -2188 ((-791) |#1|))) (-564 |#2|) (-969)) (T -563))
-NIL
-(-10 -8 (-15 -2188 (|#1| |#2|)) (-15 -2188 (|#1| (-520))) (-15 -2188 ((-791) |#1|)))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-1917 (((-3 $ "failed") $ $) 19)) (-3961 (($) 17 T CONST)) (-1540 (((-3 $ "failed") $) 34)) (-1537 (((-108) $) 31)) (-1239 (((-1066) $) 9)) (-4142 (((-1030) $) 10)) (-2188 (((-791) $) 11) (($ (-520)) 28) (($ |#1|) 36)) (-3251 (((-706)) 29)) (-3504 (($ $ (-849)) 26) (($ $ (-706)) 33)) (-3560 (($) 18 T CONST)) (-3570 (($) 30 T CONST)) (-1530 (((-108) $ $) 6)) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-706)) 32)) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ $ $) 24) (($ |#1| $) 37)))
-(((-564 |#1|) (-1195) (-969)) (T -564))
-((-2188 (*1 *1 *2) (-12 (-4 *1 (-564 *2)) (-4 *2 (-969)))))
-(-13 (-969) (-588 |t#1|) (-10 -8 (-15 -2188 ($ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-560 (-791)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-662) . T) ((-969) . T) ((-976) . T) ((-1024) . T) ((-1012) . T))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-1917 (((-3 $ "failed") $ $) NIL)) (-2804 (((-520) $) NIL (|has| |#1| (-781)))) (-3961 (($) NIL T CONST)) (-1540 (((-3 $ "failed") $) NIL)) (-2328 (((-108) $) NIL (|has| |#1| (-781)))) (-1537 (((-108) $) NIL)) (-2800 ((|#1| $) 13)) (-3469 (((-108) $) NIL (|has| |#1| (-781)))) (-2809 (($ $ $) NIL (|has| |#1| (-781)))) (-2446 (($ $ $) NIL (|has| |#1| (-781)))) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2811 ((|#3| $) 15)) (-2188 (((-791) $) NIL) (($ (-520)) NIL) (($ |#2|) NIL)) (-3251 (((-706)) 20)) (-2458 (($ $) NIL (|has| |#1| (-781)))) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (-3560 (($) NIL T CONST)) (-3570 (($) 12 T CONST)) (-1573 (((-108) $ $) NIL (|has| |#1| (-781)))) (-1557 (((-108) $ $) NIL (|has| |#1| (-781)))) (-1530 (((-108) $ $) NIL)) (-1565 (((-108) $ $) NIL (|has| |#1| (-781)))) (-1548 (((-108) $ $) NIL (|has| |#1| (-781)))) (-1619 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-1611 (($ $) NIL) (($ $ $) NIL)) (-1601 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-565 |#1| |#2| |#3|) (-13 (-37 |#2|) (-10 -8 (IF (|has| |#1| (-781)) (-6 (-781)) |%noBranch|) (-15 -1619 ($ $ |#3|)) (-15 -1619 ($ |#1| |#3|)) (-15 -2800 (|#1| $)) (-15 -2811 (|#3| $)))) (-37 |#2|) (-157) (|SubsetCategory| (-662) |#2|)) (T -565))
-((-1619 (*1 *1 *1 *2) (-12 (-4 *4 (-157)) (-5 *1 (-565 *3 *4 *2)) (-4 *3 (-37 *4)) (-4 *2 (|SubsetCategory| (-662) *4)))) (-1619 (*1 *1 *2 *3) (-12 (-4 *4 (-157)) (-5 *1 (-565 *2 *4 *3)) (-4 *2 (-37 *4)) (-4 *3 (|SubsetCategory| (-662) *4)))) (-2800 (*1 *2 *1) (-12 (-4 *3 (-157)) (-4 *2 (-37 *3)) (-5 *1 (-565 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-662) *3)))) (-2811 (*1 *2 *1) (-12 (-4 *4 (-157)) (-4 *2 (|SubsetCategory| (-662) *4)) (-5 *1 (-565 *3 *4 *2)) (-4 *3 (-37 *4)))))
-(-13 (-37 |#2|) (-10 -8 (IF (|has| |#1| (-781)) (-6 (-781)) |%noBranch|) (-15 -1619 ($ $ |#3|)) (-15 -1619 ($ |#1| |#3|)) (-15 -2800 (|#1| $)) (-15 -2811 (|#3| $))))
-((-2182 ((|#2| |#2| (-1083) (-1083)) 18)))
-(((-566 |#1| |#2|) (-10 -7 (-15 -2182 (|#2| |#2| (-1083) (-1083)))) (-13 (-281) (-783) (-135) (-960 (-520)) (-582 (-520))) (-13 (-1104) (-886) (-29 |#1|))) (T -566))
-((-2182 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1083)) (-4 *4 (-13 (-281) (-783) (-135) (-960 (-520)) (-582 (-520)))) (-5 *1 (-566 *4 *2)) (-4 *2 (-13 (-1104) (-886) (-29 *4))))))
-(-10 -7 (-15 -2182 (|#2| |#2| (-1083) (-1083))))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) 52)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) NIL)) (-2583 (($ $) NIL)) (-1671 (((-108) $) NIL)) (-1753 ((|#1| $) 49)) (-1917 (((-3 $ "failed") $ $) NIL)) (-1327 (((-108) $ $) NIL (|has| |#1| (-336)))) (-1285 (((-2 (|:| -1356 $) (|:| -2703 (-380 |#2|))) (-380 |#2|)) 97 (|has| |#1| (-336)))) (-3961 (($) NIL T CONST)) (-1296 (((-3 (-520) "failed") $) NIL (|has| |#1| (-960 (-520)))) (((-3 (-380 (-520)) "failed") $) NIL (|has| |#1| (-960 (-380 (-520))))) (((-3 |#1| "failed") $) 85) (((-3 |#2| "failed") $) 82)) (-1482 (((-520) $) NIL (|has| |#1| (-960 (-520)))) (((-380 (-520)) $) NIL (|has| |#1| (-960 (-380 (-520))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-2276 (($ $ $) NIL (|has| |#1| (-336)))) (-3150 (($ $) 24)) (-1540 (((-3 $ "failed") $) 76)) (-2253 (($ $ $) NIL (|has| |#1| (-336)))) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) NIL (|has| |#1| (-336)))) (-3989 (((-520) $) 19)) (-1537 (((-108) $) NIL)) (-3188 (((-3 (-586 $) "failed") (-586 $) $) NIL (|has| |#1| (-336)))) (-3774 (((-108) $) 36)) (-4039 (($ |#1| (-520)) 21)) (-3133 ((|#1| $) 51)) (-2222 (($ (-586 $)) NIL (|has| |#1| (-336))) (($ $ $) NIL (|has| |#1| (-336)))) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) NIL (|has| |#1| (-336)))) (-2257 (($ (-586 $)) NIL (|has| |#1| (-336))) (($ $ $) 87 (|has| |#1| (-336)))) (-1283 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 100 (|has| |#1| (-336))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) NIL (|has| |#1| (-336)))) (-2230 (((-3 $ "failed") $ $) 80)) (-2608 (((-3 (-586 $) "failed") (-586 $) $) NIL (|has| |#1| (-336)))) (-3704 (((-706) $) 99 (|has| |#1| (-336)))) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) 98 (|has| |#1| (-336)))) (-2155 (($ $ (-1 |#2| |#2|)) 67) (($ $ (-1 |#2| |#2|) (-706)) NIL) (($ $ (-586 (-1083)) (-586 (-706))) NIL (|has| |#2| (-828 (-1083)))) (($ $ (-1083) (-706)) NIL (|has| |#2| (-828 (-1083)))) (($ $ (-586 (-1083))) NIL (|has| |#2| (-828 (-1083)))) (($ $ (-1083)) NIL (|has| |#2| (-828 (-1083)))) (($ $ (-706)) NIL (|has| |#2| (-209))) (($ $) NIL (|has| |#2| (-209)))) (-2528 (((-520) $) 34)) (-1429 (((-380 |#2|) $) 42)) (-2188 (((-791) $) 63) (($ (-520)) 32) (($ $) NIL) (($ (-380 (-520))) NIL (|has| |#1| (-960 (-380 (-520))))) (($ |#1|) 31) (($ |#2|) 22)) (-3475 ((|#1| $ (-520)) 64)) (-3796 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-3251 (((-706)) 29)) (-2559 (((-108) $ $) NIL)) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (-3560 (($) 9 T CONST)) (-3570 (($) 12 T CONST)) (-2211 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-706)) NIL) (($ $ (-586 (-1083)) (-586 (-706))) NIL (|has| |#2| (-828 (-1083)))) (($ $ (-1083) (-706)) NIL (|has| |#2| (-828 (-1083)))) (($ $ (-586 (-1083))) NIL (|has| |#2| (-828 (-1083)))) (($ $ (-1083)) NIL (|has| |#2| (-828 (-1083)))) (($ $ (-706)) NIL (|has| |#2| (-209))) (($ $) NIL (|has| |#2| (-209)))) (-1530 (((-108) $ $) 17)) (-1611 (($ $) 46) (($ $ $) NIL)) (-1601 (($ $ $) 77)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) 26) (($ $ $) 44)))
-(((-567 |#1| |#2|) (-13 (-207 |#2|) (-512) (-561 (-380 |#2|)) (-384 |#1|) (-960 |#2|) (-10 -8 (-15 -3774 ((-108) $)) (-15 -2528 ((-520) $)) (-15 -3989 ((-520) $)) (-15 -3150 ($ $)) (-15 -3133 (|#1| $)) (-15 -1753 (|#1| $)) (-15 -3475 (|#1| $ (-520))) (-15 -4039 ($ |#1| (-520))) (IF (|has| |#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |#1| (-336)) (PROGN (-6 (-281)) (-15 -1285 ((-2 (|:| -1356 $) (|:| -2703 (-380 |#2|))) (-380 |#2|)))) |%noBranch|))) (-512) (-1140 |#1|)) (T -567))
-((-3774 (*1 *2 *1) (-12 (-4 *3 (-512)) (-5 *2 (-108)) (-5 *1 (-567 *3 *4)) (-4 *4 (-1140 *3)))) (-2528 (*1 *2 *1) (-12 (-4 *3 (-512)) (-5 *2 (-520)) (-5 *1 (-567 *3 *4)) (-4 *4 (-1140 *3)))) (-3989 (*1 *2 *1) (-12 (-4 *3 (-512)) (-5 *2 (-520)) (-5 *1 (-567 *3 *4)) (-4 *4 (-1140 *3)))) (-3150 (*1 *1 *1) (-12 (-4 *2 (-512)) (-5 *1 (-567 *2 *3)) (-4 *3 (-1140 *2)))) (-3133 (*1 *2 *1) (-12 (-4 *2 (-512)) (-5 *1 (-567 *2 *3)) (-4 *3 (-1140 *2)))) (-1753 (*1 *2 *1) (-12 (-4 *2 (-512)) (-5 *1 (-567 *2 *3)) (-4 *3 (-1140 *2)))) (-3475 (*1 *2 *1 *3) (-12 (-5 *3 (-520)) (-4 *2 (-512)) (-5 *1 (-567 *2 *4)) (-4 *4 (-1140 *2)))) (-4039 (*1 *1 *2 *3) (-12 (-5 *3 (-520)) (-4 *2 (-512)) (-5 *1 (-567 *2 *4)) (-4 *4 (-1140 *2)))) (-1285 (*1 *2 *3) (-12 (-4 *4 (-336)) (-4 *4 (-512)) (-4 *5 (-1140 *4)) (-5 *2 (-2 (|:| -1356 (-567 *4 *5)) (|:| -2703 (-380 *5)))) (-5 *1 (-567 *4 *5)) (-5 *3 (-380 *5)))))
-(-13 (-207 |#2|) (-512) (-561 (-380 |#2|)) (-384 |#1|) (-960 |#2|) (-10 -8 (-15 -3774 ((-108) $)) (-15 -2528 ((-520) $)) (-15 -3989 ((-520) $)) (-15 -3150 ($ $)) (-15 -3133 (|#1| $)) (-15 -1753 (|#1| $)) (-15 -3475 (|#1| $ (-520))) (-15 -4039 ($ |#1| (-520))) (IF (|has| |#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |#1| (-336)) (PROGN (-6 (-281)) (-15 -1285 ((-2 (|:| -1356 $) (|:| -2703 (-380 |#2|))) (-380 |#2|)))) |%noBranch|)))
-((-3767 (((-586 |#6|) (-586 |#4|) (-108)) 47)) (-2560 ((|#6| |#6|) 40)))
-(((-568 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2560 (|#6| |#6|)) (-15 -3767 ((-586 |#6|) (-586 |#4|) (-108)))) (-424) (-728) (-783) (-983 |#1| |#2| |#3|) (-988 |#1| |#2| |#3| |#4|) (-1021 |#1| |#2| |#3| |#4|)) (T -568))
-((-3767 (*1 *2 *3 *4) (-12 (-5 *3 (-586 *8)) (-5 *4 (-108)) (-4 *8 (-983 *5 *6 *7)) (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783)) (-5 *2 (-586 *10)) (-5 *1 (-568 *5 *6 *7 *8 *9 *10)) (-4 *9 (-988 *5 *6 *7 *8)) (-4 *10 (-1021 *5 *6 *7 *8)))) (-2560 (*1 *2 *2) (-12 (-4 *3 (-424)) (-4 *4 (-728)) (-4 *5 (-783)) (-4 *6 (-983 *3 *4 *5)) (-5 *1 (-568 *3 *4 *5 *6 *7 *2)) (-4 *7 (-988 *3 *4 *5 *6)) (-4 *2 (-1021 *3 *4 *5 *6)))))
-(-10 -7 (-15 -2560 (|#6| |#6|)) (-15 -3767 ((-586 |#6|) (-586 |#4|) (-108))))
-((-2039 (((-108) |#3| (-706) (-586 |#3|)) 23)) (-1529 (((-3 (-2 (|:| |polfac| (-586 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-586 (-1079 |#3|)))) "failed") |#3| (-586 (-1079 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3493 (-586 (-2 (|:| |irr| |#4|) (|:| -2421 (-520)))))) (-586 |#3|) (-586 |#1|) (-586 |#3|)) 52)))
-(((-569 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2039 ((-108) |#3| (-706) (-586 |#3|))) (-15 -1529 ((-3 (-2 (|:| |polfac| (-586 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-586 (-1079 |#3|)))) "failed") |#3| (-586 (-1079 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3493 (-586 (-2 (|:| |irr| |#4|) (|:| -2421 (-520)))))) (-586 |#3|) (-586 |#1|) (-586 |#3|)))) (-783) (-728) (-281) (-877 |#3| |#2| |#1|)) (T -569))
-((-1529 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -3493 (-586 (-2 (|:| |irr| *10) (|:| -2421 (-520))))))) (-5 *6 (-586 *3)) (-5 *7 (-586 *8)) (-4 *8 (-783)) (-4 *3 (-281)) (-4 *10 (-877 *3 *9 *8)) (-4 *9 (-728)) (-5 *2 (-2 (|:| |polfac| (-586 *10)) (|:| |correct| *3) (|:| |corrfact| (-586 (-1079 *3))))) (-5 *1 (-569 *8 *9 *3 *10)) (-5 *4 (-586 (-1079 *3))))) (-2039 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-706)) (-5 *5 (-586 *3)) (-4 *3 (-281)) (-4 *6 (-783)) (-4 *7 (-728)) (-5 *2 (-108)) (-5 *1 (-569 *6 *7 *3 *8)) (-4 *8 (-877 *3 *7 *6)))))
-(-10 -7 (-15 -2039 ((-108) |#3| (-706) (-586 |#3|))) (-15 -1529 ((-3 (-2 (|:| |polfac| (-586 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-586 (-1079 |#3|)))) "failed") |#3| (-586 (-1079 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3493 (-586 (-2 (|:| |irr| |#4|) (|:| -2421 (-520)))))) (-586 |#3|) (-586 |#1|) (-586 |#3|))))
-((-1414 (((-108) $ $) NIL)) (-4097 (((-586 |#1|) $) NIL)) (-3961 (($) NIL T CONST)) (-1540 (((-3 $ "failed") $) NIL)) (-1537 (((-108) $) NIL)) (-1355 (($ $) 67)) (-1252 (((-604 |#1| |#2|) $) 52)) (-1239 (((-1066) $) NIL)) (-3093 (($ $) 70)) (-2872 (((-586 (-268 |#2|)) $ $) 33)) (-4142 (((-1030) $) NIL)) (-3260 (($ (-604 |#1| |#2|)) 48)) (-2945 (($ $ $) NIL)) (-3607 (($ $ $) NIL)) (-2188 (((-791) $) 58) (((-1177 |#1| |#2|) $) NIL) (((-1182 |#1| |#2|) $) 66)) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL)) (-3570 (($) 53 T CONST)) (-2019 (((-586 (-2 (|:| |k| (-611 |#1|)) (|:| |c| |#2|))) $) 31)) (-3538 (((-586 (-604 |#1| |#2|)) (-586 |#1|)) 65)) (-4164 (((-586 (-2 (|:| |k| (-821 |#1|)) (|:| |c| |#2|))) $) 36)) (-1530 (((-108) $ $) 54)) (-1619 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL)) (* (($ $ $) 44)))
-(((-570 |#1| |#2| |#3|) (-13 (-445) (-10 -8 (-15 -3260 ($ (-604 |#1| |#2|))) (-15 -1252 ((-604 |#1| |#2|) $)) (-15 -4164 ((-586 (-2 (|:| |k| (-821 |#1|)) (|:| |c| |#2|))) $)) (-15 -2188 ((-1177 |#1| |#2|) $)) (-15 -2188 ((-1182 |#1| |#2|) $)) (-15 -1355 ($ $)) (-15 -4097 ((-586 |#1|) $)) (-15 -3538 ((-586 (-604 |#1| |#2|)) (-586 |#1|))) (-15 -2019 ((-586 (-2 (|:| |k| (-611 |#1|)) (|:| |c| |#2|))) $)) (-15 -2872 ((-586 (-268 |#2|)) $ $)))) (-783) (-13 (-157) (-653 (-380 (-520)))) (-849)) (T -570))
-((-3260 (*1 *1 *2) (-12 (-5 *2 (-604 *3 *4)) (-4 *3 (-783)) (-4 *4 (-13 (-157) (-653 (-380 (-520))))) (-5 *1 (-570 *3 *4 *5)) (-14 *5 (-849)))) (-1252 (*1 *2 *1) (-12 (-5 *2 (-604 *3 *4)) (-5 *1 (-570 *3 *4 *5)) (-4 *3 (-783)) (-4 *4 (-13 (-157) (-653 (-380 (-520))))) (-14 *5 (-849)))) (-4164 (*1 *2 *1) (-12 (-5 *2 (-586 (-2 (|:| |k| (-821 *3)) (|:| |c| *4)))) (-5 *1 (-570 *3 *4 *5)) (-4 *3 (-783)) (-4 *4 (-13 (-157) (-653 (-380 (-520))))) (-14 *5 (-849)))) (-2188 (*1 *2 *1) (-12 (-5 *2 (-1177 *3 *4)) (-5 *1 (-570 *3 *4 *5)) (-4 *3 (-783)) (-4 *4 (-13 (-157) (-653 (-380 (-520))))) (-14 *5 (-849)))) (-2188 (*1 *2 *1) (-12 (-5 *2 (-1182 *3 *4)) (-5 *1 (-570 *3 *4 *5)) (-4 *3 (-783)) (-4 *4 (-13 (-157) (-653 (-380 (-520))))) (-14 *5 (-849)))) (-1355 (*1 *1 *1) (-12 (-5 *1 (-570 *2 *3 *4)) (-4 *2 (-783)) (-4 *3 (-13 (-157) (-653 (-380 (-520))))) (-14 *4 (-849)))) (-4097 (*1 *2 *1) (-12 (-5 *2 (-586 *3)) (-5 *1 (-570 *3 *4 *5)) (-4 *3 (-783)) (-4 *4 (-13 (-157) (-653 (-380 (-520))))) (-14 *5 (-849)))) (-3538 (*1 *2 *3) (-12 (-5 *3 (-586 *4)) (-4 *4 (-783)) (-5 *2 (-586 (-604 *4 *5))) (-5 *1 (-570 *4 *5 *6)) (-4 *5 (-13 (-157) (-653 (-380 (-520))))) (-14 *6 (-849)))) (-2019 (*1 *2 *1) (-12 (-5 *2 (-586 (-2 (|:| |k| (-611 *3)) (|:| |c| *4)))) (-5 *1 (-570 *3 *4 *5)) (-4 *3 (-783)) (-4 *4 (-13 (-157) (-653 (-380 (-520))))) (-14 *5 (-849)))) (-2872 (*1 *2 *1 *1) (-12 (-5 *2 (-586 (-268 *4))) (-5 *1 (-570 *3 *4 *5)) (-4 *3 (-783)) (-4 *4 (-13 (-157) (-653 (-380 (-520))))) (-14 *5 (-849)))))
-(-13 (-445) (-10 -8 (-15 -3260 ($ (-604 |#1| |#2|))) (-15 -1252 ((-604 |#1| |#2|) $)) (-15 -4164 ((-586 (-2 (|:| |k| (-821 |#1|)) (|:| |c| |#2|))) $)) (-15 -2188 ((-1177 |#1| |#2|) $)) (-15 -2188 ((-1182 |#1| |#2|) $)) (-15 -1355 ($ $)) (-15 -4097 ((-586 |#1|) $)) (-15 -3538 ((-586 (-604 |#1| |#2|)) (-586 |#1|))) (-15 -2019 ((-586 (-2 (|:| |k| (-611 |#1|)) (|:| |c| |#2|))) $)) (-15 -2872 ((-586 (-268 |#2|)) $ $))))
-((-3767 (((-586 (-1054 |#1| (-492 (-793 |#2|)) (-793 |#2|) (-715 |#1| (-793 |#2|)))) (-586 (-715 |#1| (-793 |#2|))) (-108)) 71) (((-586 (-966 |#1| |#2|)) (-586 (-715 |#1| (-793 |#2|))) (-108)) 57)) (-4058 (((-108) (-586 (-715 |#1| (-793 |#2|)))) 22)) (-3986 (((-586 (-1054 |#1| (-492 (-793 |#2|)) (-793 |#2|) (-715 |#1| (-793 |#2|)))) (-586 (-715 |#1| (-793 |#2|))) (-108)) 70)) (-3362 (((-586 (-966 |#1| |#2|)) (-586 (-715 |#1| (-793 |#2|))) (-108)) 56)) (-1859 (((-586 (-715 |#1| (-793 |#2|))) (-586 (-715 |#1| (-793 |#2|)))) 26)) (-1268 (((-3 (-586 (-715 |#1| (-793 |#2|))) "failed") (-586 (-715 |#1| (-793 |#2|)))) 25)))
-(((-571 |#1| |#2|) (-10 -7 (-15 -4058 ((-108) (-586 (-715 |#1| (-793 |#2|))))) (-15 -1268 ((-3 (-586 (-715 |#1| (-793 |#2|))) "failed") (-586 (-715 |#1| (-793 |#2|))))) (-15 -1859 ((-586 (-715 |#1| (-793 |#2|))) (-586 (-715 |#1| (-793 |#2|))))) (-15 -3362 ((-586 (-966 |#1| |#2|)) (-586 (-715 |#1| (-793 |#2|))) (-108))) (-15 -3986 ((-586 (-1054 |#1| (-492 (-793 |#2|)) (-793 |#2|) (-715 |#1| (-793 |#2|)))) (-586 (-715 |#1| (-793 |#2|))) (-108))) (-15 -3767 ((-586 (-966 |#1| |#2|)) (-586 (-715 |#1| (-793 |#2|))) (-108))) (-15 -3767 ((-586 (-1054 |#1| (-492 (-793 |#2|)) (-793 |#2|) (-715 |#1| (-793 |#2|)))) (-586 (-715 |#1| (-793 |#2|))) (-108)))) (-424) (-586 (-1083))) (T -571))
-((-3767 (*1 *2 *3 *4) (-12 (-5 *3 (-586 (-715 *5 (-793 *6)))) (-5 *4 (-108)) (-4 *5 (-424)) (-14 *6 (-586 (-1083))) (-5 *2 (-586 (-1054 *5 (-492 (-793 *6)) (-793 *6) (-715 *5 (-793 *6))))) (-5 *1 (-571 *5 *6)))) (-3767 (*1 *2 *3 *4) (-12 (-5 *3 (-586 (-715 *5 (-793 *6)))) (-5 *4 (-108)) (-4 *5 (-424)) (-14 *6 (-586 (-1083))) (-5 *2 (-586 (-966 *5 *6))) (-5 *1 (-571 *5 *6)))) (-3986 (*1 *2 *3 *4) (-12 (-5 *3 (-586 (-715 *5 (-793 *6)))) (-5 *4 (-108)) (-4 *5 (-424)) (-14 *6 (-586 (-1083))) (-5 *2 (-586 (-1054 *5 (-492 (-793 *6)) (-793 *6) (-715 *5 (-793 *6))))) (-5 *1 (-571 *5 *6)))) (-3362 (*1 *2 *3 *4) (-12 (-5 *3 (-586 (-715 *5 (-793 *6)))) (-5 *4 (-108)) (-4 *5 (-424)) (-14 *6 (-586 (-1083))) (-5 *2 (-586 (-966 *5 *6))) (-5 *1 (-571 *5 *6)))) (-1859 (*1 *2 *2) (-12 (-5 *2 (-586 (-715 *3 (-793 *4)))) (-4 *3 (-424)) (-14 *4 (-586 (-1083))) (-5 *1 (-571 *3 *4)))) (-1268 (*1 *2 *2) (|partial| -12 (-5 *2 (-586 (-715 *3 (-793 *4)))) (-4 *3 (-424)) (-14 *4 (-586 (-1083))) (-5 *1 (-571 *3 *4)))) (-4058 (*1 *2 *3) (-12 (-5 *3 (-586 (-715 *4 (-793 *5)))) (-4 *4 (-424)) (-14 *5 (-586 (-1083))) (-5 *2 (-108)) (-5 *1 (-571 *4 *5)))))
-(-10 -7 (-15 -4058 ((-108) (-586 (-715 |#1| (-793 |#2|))))) (-15 -1268 ((-3 (-586 (-715 |#1| (-793 |#2|))) "failed") (-586 (-715 |#1| (-793 |#2|))))) (-15 -1859 ((-586 (-715 |#1| (-793 |#2|))) (-586 (-715 |#1| (-793 |#2|))))) (-15 -3362 ((-586 (-966 |#1| |#2|)) (-586 (-715 |#1| (-793 |#2|))) (-108))) (-15 -3986 ((-586 (-1054 |#1| (-492 (-793 |#2|)) (-793 |#2|) (-715 |#1| (-793 |#2|)))) (-586 (-715 |#1| (-793 |#2|))) (-108))) (-15 -3767 ((-586 (-966 |#1| |#2|)) (-586 (-715 |#1| (-793 |#2|))) (-108))) (-15 -3767 ((-586 (-1054 |#1| (-492 (-793 |#2|)) (-793 |#2|) (-715 |#1| (-793 |#2|)))) (-586 (-715 |#1| (-793 |#2|))) (-108))))
-((-2903 (($ $) 38)) (-2768 (($ $) 21)) (-2879 (($ $) 37)) (-2745 (($ $) 22)) (-2925 (($ $) 36)) (-2789 (($ $) 23)) (-2833 (($) 48)) (-1252 (($ $) 45)) (-3241 (($ $) 17)) (-2410 (($ $ (-1005 $)) 7) (($ $ (-1083)) 6)) (-3260 (($ $) 46)) (-2704 (($ $) 15)) (-2733 (($ $) 16)) (-1737 (($ $) 35)) (-2799 (($ $) 24)) (-2914 (($ $) 34)) (-2779 (($ $) 25)) (-2891 (($ $) 33)) (-2757 (($ $) 26)) (-1758 (($ $) 44)) (-2831 (($ $) 32)) (-1744 (($ $) 43)) (-2810 (($ $) 31)) (-1775 (($ $) 42)) (-2855 (($ $) 30)) (-3915 (($ $) 41)) (-2867 (($ $) 29)) (-1767 (($ $) 40)) (-2843 (($ $) 28)) (-1751 (($ $) 39)) (-2820 (($ $) 27)) (-2048 (($ $) 19)) (-3818 (($ $) 20)) (-2184 (($ $) 18)) (** (($ $ $) 47)))
-(((-572) (-1195)) (T -572))
-((-3818 (*1 *1 *1) (-4 *1 (-572))) (-2048 (*1 *1 *1) (-4 *1 (-572))) (-2184 (*1 *1 *1) (-4 *1 (-572))) (-3241 (*1 *1 *1) (-4 *1 (-572))) (-2733 (*1 *1 *1) (-4 *1 (-572))) (-2704 (*1 *1 *1) (-4 *1 (-572))))
-(-13 (-886) (-1104) (-10 -8 (-15 -3818 ($ $)) (-15 -2048 ($ $)) (-15 -2184 ($ $)) (-15 -3241 ($ $)) (-15 -2733 ($ $)) (-15 -2704 ($ $))))
-(((-34) . T) ((-91) . T) ((-258) . T) ((-461) . T) ((-886) . T) ((-1104) . T) ((-1107) . T))
-((-3877 (((-110) (-110)) 83)) (-3241 ((|#2| |#2|) 30)) (-2410 ((|#2| |#2| (-1005 |#2|)) 79) ((|#2| |#2| (-1083)) 52)) (-2704 ((|#2| |#2|) 29)) (-2733 ((|#2| |#2|) 31)) (-1373 (((-108) (-110)) 34)) (-2048 ((|#2| |#2|) 26)) (-3818 ((|#2| |#2|) 28)) (-2184 ((|#2| |#2|) 27)))
-(((-573 |#1| |#2|) (-10 -7 (-15 -1373 ((-108) (-110))) (-15 -3877 ((-110) (-110))) (-15 -3818 (|#2| |#2|)) (-15 -2048 (|#2| |#2|)) (-15 -2184 (|#2| |#2|)) (-15 -3241 (|#2| |#2|)) (-15 -2704 (|#2| |#2|)) (-15 -2733 (|#2| |#2|)) (-15 -2410 (|#2| |#2| (-1083))) (-15 -2410 (|#2| |#2| (-1005 |#2|)))) (-13 (-783) (-512)) (-13 (-403 |#1|) (-926) (-1104))) (T -573))
-((-2410 (*1 *2 *2 *3) (-12 (-5 *3 (-1005 *2)) (-4 *2 (-13 (-403 *4) (-926) (-1104))) (-4 *4 (-13 (-783) (-512))) (-5 *1 (-573 *4 *2)))) (-2410 (*1 *2 *2 *3) (-12 (-5 *3 (-1083)) (-4 *4 (-13 (-783) (-512))) (-5 *1 (-573 *4 *2)) (-4 *2 (-13 (-403 *4) (-926) (-1104))))) (-2733 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-573 *3 *2)) (-4 *2 (-13 (-403 *3) (-926) (-1104))))) (-2704 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-573 *3 *2)) (-4 *2 (-13 (-403 *3) (-926) (-1104))))) (-3241 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-573 *3 *2)) (-4 *2 (-13 (-403 *3) (-926) (-1104))))) (-2184 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-573 *3 *2)) (-4 *2 (-13 (-403 *3) (-926) (-1104))))) (-2048 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-573 *3 *2)) (-4 *2 (-13 (-403 *3) (-926) (-1104))))) (-3818 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-573 *3 *2)) (-4 *2 (-13 (-403 *3) (-926) (-1104))))) (-3877 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *3 (-13 (-783) (-512))) (-5 *1 (-573 *3 *4)) (-4 *4 (-13 (-403 *3) (-926) (-1104))))) (-1373 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *4 (-13 (-783) (-512))) (-5 *2 (-108)) (-5 *1 (-573 *4 *5)) (-4 *5 (-13 (-403 *4) (-926) (-1104))))))
-(-10 -7 (-15 -1373 ((-108) (-110))) (-15 -3877 ((-110) (-110))) (-15 -3818 (|#2| |#2|)) (-15 -2048 (|#2| |#2|)) (-15 -2184 (|#2| |#2|)) (-15 -3241 (|#2| |#2|)) (-15 -2704 (|#2| |#2|)) (-15 -2733 (|#2| |#2|)) (-15 -2410 (|#2| |#2| (-1083))) (-15 -2410 (|#2| |#2| (-1005 |#2|))))
-((-3648 (((-452 |#1| |#2|) (-223 |#1| |#2|)) 53)) (-2229 (((-586 (-223 |#1| |#2|)) (-586 (-452 |#1| |#2|))) 68)) (-3274 (((-452 |#1| |#2|) (-586 (-452 |#1| |#2|)) (-793 |#1|)) 70) (((-452 |#1| |#2|) (-586 (-452 |#1| |#2|)) (-586 (-452 |#1| |#2|)) (-793 |#1|)) 69)) (-3398 (((-2 (|:| |gblist| (-586 (-223 |#1| |#2|))) (|:| |gvlist| (-586 (-520)))) (-586 (-452 |#1| |#2|))) 106)) (-2766 (((-586 (-452 |#1| |#2|)) (-793 |#1|) (-586 (-452 |#1| |#2|)) (-586 (-452 |#1| |#2|))) 83)) (-3719 (((-2 (|:| |glbase| (-586 (-223 |#1| |#2|))) (|:| |glval| (-586 (-520)))) (-586 (-223 |#1| |#2|))) 117)) (-2451 (((-1164 |#2|) (-452 |#1| |#2|) (-586 (-452 |#1| |#2|))) 58)) (-2681 (((-586 (-452 |#1| |#2|)) (-586 (-452 |#1| |#2|))) 39)) (-3212 (((-223 |#1| |#2|) (-223 |#1| |#2|) (-586 (-223 |#1| |#2|))) 49)) (-3155 (((-223 |#1| |#2|) (-586 |#2|) (-223 |#1| |#2|) (-586 (-223 |#1| |#2|))) 90)))
-(((-574 |#1| |#2|) (-10 -7 (-15 -3398 ((-2 (|:| |gblist| (-586 (-223 |#1| |#2|))) (|:| |gvlist| (-586 (-520)))) (-586 (-452 |#1| |#2|)))) (-15 -3719 ((-2 (|:| |glbase| (-586 (-223 |#1| |#2|))) (|:| |glval| (-586 (-520)))) (-586 (-223 |#1| |#2|)))) (-15 -2229 ((-586 (-223 |#1| |#2|)) (-586 (-452 |#1| |#2|)))) (-15 -3274 ((-452 |#1| |#2|) (-586 (-452 |#1| |#2|)) (-586 (-452 |#1| |#2|)) (-793 |#1|))) (-15 -3274 ((-452 |#1| |#2|) (-586 (-452 |#1| |#2|)) (-793 |#1|))) (-15 -2681 ((-586 (-452 |#1| |#2|)) (-586 (-452 |#1| |#2|)))) (-15 -2451 ((-1164 |#2|) (-452 |#1| |#2|) (-586 (-452 |#1| |#2|)))) (-15 -3155 ((-223 |#1| |#2|) (-586 |#2|) (-223 |#1| |#2|) (-586 (-223 |#1| |#2|)))) (-15 -2766 ((-586 (-452 |#1| |#2|)) (-793 |#1|) (-586 (-452 |#1| |#2|)) (-586 (-452 |#1| |#2|)))) (-15 -3212 ((-223 |#1| |#2|) (-223 |#1| |#2|) (-586 (-223 |#1| |#2|)))) (-15 -3648 ((-452 |#1| |#2|) (-223 |#1| |#2|)))) (-586 (-1083)) (-424)) (T -574))
-((-3648 (*1 *2 *3) (-12 (-5 *3 (-223 *4 *5)) (-14 *4 (-586 (-1083))) (-4 *5 (-424)) (-5 *2 (-452 *4 *5)) (-5 *1 (-574 *4 *5)))) (-3212 (*1 *2 *2 *3) (-12 (-5 *3 (-586 (-223 *4 *5))) (-5 *2 (-223 *4 *5)) (-14 *4 (-586 (-1083))) (-4 *5 (-424)) (-5 *1 (-574 *4 *5)))) (-2766 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-586 (-452 *4 *5))) (-5 *3 (-793 *4)) (-14 *4 (-586 (-1083))) (-4 *5 (-424)) (-5 *1 (-574 *4 *5)))) (-3155 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-586 *6)) (-5 *4 (-586 (-223 *5 *6))) (-4 *6 (-424)) (-5 *2 (-223 *5 *6)) (-14 *5 (-586 (-1083))) (-5 *1 (-574 *5 *6)))) (-2451 (*1 *2 *3 *4) (-12 (-5 *4 (-586 (-452 *5 *6))) (-5 *3 (-452 *5 *6)) (-14 *5 (-586 (-1083))) (-4 *6 (-424)) (-5 *2 (-1164 *6)) (-5 *1 (-574 *5 *6)))) (-2681 (*1 *2 *2) (-12 (-5 *2 (-586 (-452 *3 *4))) (-14 *3 (-586 (-1083))) (-4 *4 (-424)) (-5 *1 (-574 *3 *4)))) (-3274 (*1 *2 *3 *4) (-12 (-5 *3 (-586 (-452 *5 *6))) (-5 *4 (-793 *5)) (-14 *5 (-586 (-1083))) (-5 *2 (-452 *5 *6)) (-5 *1 (-574 *5 *6)) (-4 *6 (-424)))) (-3274 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-586 (-452 *5 *6))) (-5 *4 (-793 *5)) (-14 *5 (-586 (-1083))) (-5 *2 (-452 *5 *6)) (-5 *1 (-574 *5 *6)) (-4 *6 (-424)))) (-2229 (*1 *2 *3) (-12 (-5 *3 (-586 (-452 *4 *5))) (-14 *4 (-586 (-1083))) (-4 *5 (-424)) (-5 *2 (-586 (-223 *4 *5))) (-5 *1 (-574 *4 *5)))) (-3719 (*1 *2 *3) (-12 (-14 *4 (-586 (-1083))) (-4 *5 (-424)) (-5 *2 (-2 (|:| |glbase| (-586 (-223 *4 *5))) (|:| |glval| (-586 (-520))))) (-5 *1 (-574 *4 *5)) (-5 *3 (-586 (-223 *4 *5))))) (-3398 (*1 *2 *3) (-12 (-5 *3 (-586 (-452 *4 *5))) (-14 *4 (-586 (-1083))) (-4 *5 (-424)) (-5 *2 (-2 (|:| |gblist| (-586 (-223 *4 *5))) (|:| |gvlist| (-586 (-520))))) (-5 *1 (-574 *4 *5)))))
-(-10 -7 (-15 -3398 ((-2 (|:| |gblist| (-586 (-223 |#1| |#2|))) (|:| |gvlist| (-586 (-520)))) (-586 (-452 |#1| |#2|)))) (-15 -3719 ((-2 (|:| |glbase| (-586 (-223 |#1| |#2|))) (|:| |glval| (-586 (-520)))) (-586 (-223 |#1| |#2|)))) (-15 -2229 ((-586 (-223 |#1| |#2|)) (-586 (-452 |#1| |#2|)))) (-15 -3274 ((-452 |#1| |#2|) (-586 (-452 |#1| |#2|)) (-586 (-452 |#1| |#2|)) (-793 |#1|))) (-15 -3274 ((-452 |#1| |#2|) (-586 (-452 |#1| |#2|)) (-793 |#1|))) (-15 -2681 ((-586 (-452 |#1| |#2|)) (-586 (-452 |#1| |#2|)))) (-15 -2451 ((-1164 |#2|) (-452 |#1| |#2|) (-586 (-452 |#1| |#2|)))) (-15 -3155 ((-223 |#1| |#2|) (-586 |#2|) (-223 |#1| |#2|) (-586 (-223 |#1| |#2|)))) (-15 -2766 ((-586 (-452 |#1| |#2|)) (-793 |#1|) (-586 (-452 |#1| |#2|)) (-586 (-452 |#1| |#2|)))) (-15 -3212 ((-223 |#1| |#2|) (-223 |#1| |#2|) (-586 (-223 |#1| |#2|)))) (-15 -3648 ((-452 |#1| |#2|) (-223 |#1| |#2|))))
-((-1414 (((-108) $ $) NIL (-3700 (|has| (-51) (-1012)) (|has| (-2 (|:| -2526 (-1066)) (|:| -3043 (-51))) (-1012))))) (-1799 (($) NIL) (($ (-586 (-2 (|:| -2526 (-1066)) (|:| -3043 (-51))))) NIL)) (-1476 (((-1169) $ (-1066) (-1066)) NIL (|has| $ (-6 -4230)))) (-2063 (((-108) $ (-706)) NIL)) (-2377 (((-51) $ (-1066) (-51)) 16) (((-51) $ (-1083) (-51)) 17)) (-1817 (($ (-1 (-108) (-2 (|:| -2526 (-1066)) (|:| -3043 (-51)))) $) NIL (|has| $ (-6 -4229)))) (-1627 (($ (-1 (-108) (-2 (|:| -2526 (-1066)) (|:| -3043 (-51)))) $) NIL (|has| $ (-6 -4229)))) (-2747 (((-3 (-51) "failed") (-1066) $) NIL)) (-3961 (($) NIL T CONST)) (-2331 (($ $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-2 (|:| -2526 (-1066)) (|:| -3043 (-51))) (-1012))))) (-3766 (($ (-2 (|:| -2526 (-1066)) (|:| -3043 (-51))) $) NIL (|has| $ (-6 -4229))) (($ (-1 (-108) (-2 (|:| -2526 (-1066)) (|:| -3043 (-51)))) $) NIL (|has| $ (-6 -4229))) (((-3 (-51) "failed") (-1066) $) NIL)) (-1421 (($ (-2 (|:| -2526 (-1066)) (|:| -3043 (-51))) $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-2 (|:| -2526 (-1066)) (|:| -3043 (-51))) (-1012)))) (($ (-1 (-108) (-2 (|:| -2526 (-1066)) (|:| -3043 (-51)))) $) NIL (|has| $ (-6 -4229)))) (-3856 (((-2 (|:| -2526 (-1066)) (|:| -3043 (-51))) (-1 (-2 (|:| -2526 (-1066)) (|:| -3043 (-51))) (-2 (|:| -2526 (-1066)) (|:| -3043 (-51))) (-2 (|:| -2526 (-1066)) (|:| -3043 (-51)))) $ (-2 (|:| -2526 (-1066)) (|:| -3043 (-51))) (-2 (|:| -2526 (-1066)) (|:| -3043 (-51)))) NIL (-12 (|has| $ (-6 -4229)) (|has| (-2 (|:| -2526 (-1066)) (|:| -3043 (-51))) (-1012)))) (((-2 (|:| -2526 (-1066)) (|:| -3043 (-51))) (-1 (-2 (|:| -2526 (-1066)) (|:| -3043 (-51))) (-2 (|:| -2526 (-1066)) (|:| -3043 (-51))) (-2 (|:| -2526 (-1066)) (|:| -3043 (-51)))) $ (-2 (|:| -2526 (-1066)) (|:| -3043 (-51)))) NIL (|has| $ (-6 -4229))) (((-2 (|:| -2526 (-1066)) (|:| -3043 (-51))) (-1 (-2 (|:| -2526 (-1066)) (|:| -3043 (-51))) (-2 (|:| -2526 (-1066)) (|:| -3043 (-51))) (-2 (|:| -2526 (-1066)) (|:| -3043 (-51)))) $) NIL (|has| $ (-6 -4229)))) (-3846 (((-51) $ (-1066) (-51)) NIL (|has| $ (-6 -4230)))) (-3623 (((-51) $ (-1066)) NIL)) (-3828 (((-586 (-2 (|:| -2526 (-1066)) (|:| -3043 (-51)))) $) NIL (|has| $ (-6 -4229))) (((-586 (-51)) $) NIL (|has| $ (-6 -4229)))) (-4017 (($ $) NIL)) (-3027 (((-108) $ (-706)) NIL)) (-2567 (((-1066) $) NIL (|has| (-1066) (-783)))) (-3702 (((-586 (-2 (|:| -2526 (-1066)) (|:| -3043 (-51)))) $) NIL (|has| $ (-6 -4229))) (((-586 (-51)) $) NIL (|has| $ (-6 -4229)))) (-2422 (((-108) (-2 (|:| -2526 (-1066)) (|:| -3043 (-51))) $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-2 (|:| -2526 (-1066)) (|:| -3043 (-51))) (-1012)))) (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-51) (-1012))))) (-1752 (((-1066) $) NIL (|has| (-1066) (-783)))) (-3830 (($ (-1 (-2 (|:| -2526 (-1066)) (|:| -3043 (-51))) (-2 (|:| -2526 (-1066)) (|:| -3043 (-51)))) $) NIL (|has| $ (-6 -4230))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4230)))) (-1389 (($ (-1 (-2 (|:| -2526 (-1066)) (|:| -3043 (-51))) (-2 (|:| -2526 (-1066)) (|:| -3043 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-1726 (($ (-361)) 9)) (-1390 (((-108) $ (-706)) NIL)) (-1239 (((-1066) $) NIL (-3700 (|has| (-51) (-1012)) (|has| (-2 (|:| -2526 (-1066)) (|:| -3043 (-51))) (-1012))))) (-2960 (((-586 (-1066)) $) NIL)) (-1612 (((-108) (-1066) $) NIL)) (-3351 (((-2 (|:| -2526 (-1066)) (|:| -3043 (-51))) $) NIL)) (-3618 (($ (-2 (|:| -2526 (-1066)) (|:| -3043 (-51))) $) NIL)) (-3622 (((-586 (-1066)) $) NIL)) (-2603 (((-108) (-1066) $) NIL)) (-4142 (((-1030) $) NIL (-3700 (|has| (-51) (-1012)) (|has| (-2 (|:| -2526 (-1066)) (|:| -3043 (-51))) (-1012))))) (-2293 (((-51) $) NIL (|has| (-1066) (-783)))) (-2985 (((-3 (-2 (|:| -2526 (-1066)) (|:| -3043 (-51))) "failed") (-1 (-108) (-2 (|:| -2526 (-1066)) (|:| -3043 (-51)))) $) NIL)) (-2936 (($ $ (-51)) NIL (|has| $ (-6 -4230)))) (-3345 (((-2 (|:| -2526 (-1066)) (|:| -3043 (-51))) $) NIL)) (-4155 (((-108) (-1 (-108) (-2 (|:| -2526 (-1066)) (|:| -3043 (-51)))) $) NIL (|has| $ (-6 -4229))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 (-2 (|:| -2526 (-1066)) (|:| -3043 (-51)))))) NIL (-12 (|has| (-2 (|:| -2526 (-1066)) (|:| -3043 (-51))) (-283 (-2 (|:| -2526 (-1066)) (|:| -3043 (-51))))) (|has| (-2 (|:| -2526 (-1066)) (|:| -3043 (-51))) (-1012)))) (($ $ (-268 (-2 (|:| -2526 (-1066)) (|:| -3043 (-51))))) NIL (-12 (|has| (-2 (|:| -2526 (-1066)) (|:| -3043 (-51))) (-283 (-2 (|:| -2526 (-1066)) (|:| -3043 (-51))))) (|has| (-2 (|:| -2526 (-1066)) (|:| -3043 (-51))) (-1012)))) (($ $ (-2 (|:| -2526 (-1066)) (|:| -3043 (-51))) (-2 (|:| -2526 (-1066)) (|:| -3043 (-51)))) NIL (-12 (|has| (-2 (|:| -2526 (-1066)) (|:| -3043 (-51))) (-283 (-2 (|:| -2526 (-1066)) (|:| -3043 (-51))))) (|has| (-2 (|:| -2526 (-1066)) (|:| -3043 (-51))) (-1012)))) (($ $ (-586 (-2 (|:| -2526 (-1066)) (|:| -3043 (-51)))) (-586 (-2 (|:| -2526 (-1066)) (|:| -3043 (-51))))) NIL (-12 (|has| (-2 (|:| -2526 (-1066)) (|:| -3043 (-51))) (-283 (-2 (|:| -2526 (-1066)) (|:| -3043 (-51))))) (|has| (-2 (|:| -2526 (-1066)) (|:| -3043 (-51))) (-1012)))) (($ $ (-586 (-51)) (-586 (-51))) NIL (-12 (|has| (-51) (-283 (-51))) (|has| (-51) (-1012)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-283 (-51))) (|has| (-51) (-1012)))) (($ $ (-268 (-51))) NIL (-12 (|has| (-51) (-283 (-51))) (|has| (-51) (-1012)))) (($ $ (-586 (-268 (-51)))) NIL (-12 (|has| (-51) (-283 (-51))) (|has| (-51) (-1012))))) (-2533 (((-108) $ $) NIL)) (-2094 (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-51) (-1012))))) (-1523 (((-586 (-51)) $) NIL)) (-4018 (((-108) $) NIL)) (-2238 (($) NIL)) (-2543 (((-51) $ (-1066)) 14) (((-51) $ (-1066) (-51)) NIL) (((-51) $ (-1083)) 15)) (-1645 (($) NIL) (($ (-586 (-2 (|:| -2526 (-1066)) (|:| -3043 (-51))))) NIL)) (-4159 (((-706) (-1 (-108) (-2 (|:| -2526 (-1066)) (|:| -3043 (-51)))) $) NIL (|has| $ (-6 -4229))) (((-706) (-2 (|:| -2526 (-1066)) (|:| -3043 (-51))) $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-2 (|:| -2526 (-1066)) (|:| -3043 (-51))) (-1012)))) (((-706) (-51) $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-51) (-1012)))) (((-706) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4229)))) (-2403 (($ $) NIL)) (-1429 (((-496) $) NIL (|has| (-2 (|:| -2526 (-1066)) (|:| -3043 (-51))) (-561 (-496))))) (-2200 (($ (-586 (-2 (|:| -2526 (-1066)) (|:| -3043 (-51))))) NIL)) (-2188 (((-791) $) NIL (-3700 (|has| (-51) (-560 (-791))) (|has| (-2 (|:| -2526 (-1066)) (|:| -3043 (-51))) (-560 (-791)))))) (-1898 (($ (-586 (-2 (|:| -2526 (-1066)) (|:| -3043 (-51))))) NIL)) (-1662 (((-108) (-1 (-108) (-2 (|:| -2526 (-1066)) (|:| -3043 (-51)))) $) NIL (|has| $ (-6 -4229))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4229)))) (-1530 (((-108) $ $) NIL (-3700 (|has| (-51) (-1012)) (|has| (-2 (|:| -2526 (-1066)) (|:| -3043 (-51))) (-1012))))) (-3474 (((-706) $) NIL (|has| $ (-6 -4229)))))
-(((-575) (-13 (-1095 (-1066) (-51)) (-10 -8 (-15 -1726 ($ (-361))) (-15 -4017 ($ $)) (-15 -2543 ((-51) $ (-1083))) (-15 -2377 ((-51) $ (-1083) (-51)))))) (T -575))
-((-1726 (*1 *1 *2) (-12 (-5 *2 (-361)) (-5 *1 (-575)))) (-4017 (*1 *1 *1) (-5 *1 (-575))) (-2543 (*1 *2 *1 *3) (-12 (-5 *3 (-1083)) (-5 *2 (-51)) (-5 *1 (-575)))) (-2377 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1083)) (-5 *1 (-575)))))
-(-13 (-1095 (-1066) (-51)) (-10 -8 (-15 -1726 ($ (-361))) (-15 -4017 ($ $)) (-15 -2543 ((-51) $ (-1083))) (-15 -2377 ((-51) $ (-1083) (-51)))))
-((-1619 (($ $ |#2|) 10)))
-(((-576 |#1| |#2|) (-10 -8 (-15 -1619 (|#1| |#1| |#2|))) (-577 |#2|) (-157)) (T -576))
-NIL
-(-10 -8 (-15 -1619 (|#1| |#1| |#2|)))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-1917 (((-3 $ "failed") $ $) 19)) (-3961 (($) 17 T CONST)) (-1239 (((-1066) $) 9)) (-4142 (((-1030) $) 10)) (-2200 (($ $ $) 29)) (-2188 (((-791) $) 11)) (-3560 (($) 18 T CONST)) (-1530 (((-108) $ $) 6)) (-1619 (($ $ |#1|) 28 (|has| |#1| (-336)))) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
-(((-577 |#1|) (-1195) (-157)) (T -577))
-((-2200 (*1 *1 *1 *1) (-12 (-4 *1 (-577 *2)) (-4 *2 (-157)))) (-1619 (*1 *1 *1 *2) (-12 (-4 *1 (-577 *2)) (-4 *2 (-157)) (-4 *2 (-336)))))
-(-13 (-653 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -2200 ($ $ $)) (IF (|has| |t#1| (-336)) (-15 -1619 ($ $ |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-560 (-791)) . T) ((-588 |#1|) . T) ((-653 |#1|) . T) ((-975 |#1|) . T) ((-1012) . T))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-4036 (((-3 $ "failed")) NIL (-3700 (-12 (|has| |#2| (-340 |#1|)) (|has| |#1| (-512))) (-12 (|has| |#2| (-390 |#1|)) (|has| |#1| (-512)))))) (-1917 (((-3 $ "failed") $ $) NIL)) (-2284 (((-1164 (-626 |#1|))) NIL (|has| |#2| (-390 |#1|))) (((-1164 (-626 |#1|)) (-1164 $)) NIL (|has| |#2| (-340 |#1|)))) (-3976 (((-1164 $)) NIL (|has| |#2| (-340 |#1|)))) (-3961 (($) NIL T CONST)) (-3824 (((-3 (-2 (|:| |particular| $) (|:| -1831 (-586 $))) "failed")) NIL (-3700 (-12 (|has| |#2| (-340 |#1|)) (|has| |#1| (-512))) (-12 (|has| |#2| (-390 |#1|)) (|has| |#1| (-512)))))) (-1606 (((-3 $ "failed")) NIL (-3700 (-12 (|has| |#2| (-340 |#1|)) (|has| |#1| (-512))) (-12 (|has| |#2| (-390 |#1|)) (|has| |#1| (-512)))))) (-3884 (((-626 |#1|)) NIL (|has| |#2| (-390 |#1|))) (((-626 |#1|) (-1164 $)) NIL (|has| |#2| (-340 |#1|)))) (-3193 ((|#1| $) NIL (|has| |#2| (-340 |#1|)))) (-3984 (((-626 |#1|) $) NIL (|has| |#2| (-390 |#1|))) (((-626 |#1|) $ (-1164 $)) NIL (|has| |#2| (-340 |#1|)))) (-2473 (((-3 $ "failed") $) NIL (-3700 (-12 (|has| |#2| (-340 |#1|)) (|has| |#1| (-512))) (-12 (|has| |#2| (-390 |#1|)) (|has| |#1| (-512)))))) (-3978 (((-1079 (-880 |#1|))) NIL (-12 (|has| |#2| (-390 |#1|)) (|has| |#1| (-336))))) (-3918 (($ $ (-849)) NIL)) (-2996 ((|#1| $) NIL (|has| |#2| (-340 |#1|)))) (-1653 (((-1079 |#1|) $) NIL (-3700 (-12 (|has| |#2| (-340 |#1|)) (|has| |#1| (-512))) (-12 (|has| |#2| (-390 |#1|)) (|has| |#1| (-512)))))) (-1882 ((|#1|) NIL (|has| |#2| (-390 |#1|))) ((|#1| (-1164 $)) NIL (|has| |#2| (-340 |#1|)))) (-2913 (((-1079 |#1|) $) NIL (|has| |#2| (-340 |#1|)))) (-2539 (((-108)) NIL (|has| |#2| (-340 |#1|)))) (-3705 (($ (-1164 |#1|)) NIL (|has| |#2| (-390 |#1|))) (($ (-1164 |#1|) (-1164 $)) NIL (|has| |#2| (-340 |#1|)))) (-1540 (((-3 $ "failed") $) NIL (-3700 (-12 (|has| |#2| (-340 |#1|)) (|has| |#1| (-512))) (-12 (|has| |#2| (-390 |#1|)) (|has| |#1| (-512)))))) (-3160 (((-849)) NIL (|has| |#2| (-340 |#1|)))) (-1802 (((-108)) NIL (|has| |#2| (-340 |#1|)))) (-3273 (($ $ (-849)) NIL)) (-2435 (((-108)) NIL (|has| |#2| (-340 |#1|)))) (-4208 (((-108)) NIL (|has| |#2| (-340 |#1|)))) (-3213 (((-108)) NIL (|has| |#2| (-340 |#1|)))) (-2790 (((-3 (-2 (|:| |particular| $) (|:| -1831 (-586 $))) "failed")) NIL (-3700 (-12 (|has| |#2| (-340 |#1|)) (|has| |#1| (-512))) (-12 (|has| |#2| (-390 |#1|)) (|has| |#1| (-512)))))) (-3164 (((-3 $ "failed")) NIL (-3700 (-12 (|has| |#2| (-340 |#1|)) (|has| |#1| (-512))) (-12 (|has| |#2| (-390 |#1|)) (|has| |#1| (-512)))))) (-4024 (((-626 |#1|)) NIL (|has| |#2| (-390 |#1|))) (((-626 |#1|) (-1164 $)) NIL (|has| |#2| (-340 |#1|)))) (-4007 ((|#1| $) NIL (|has| |#2| (-340 |#1|)))) (-3775 (((-626 |#1|) $) NIL (|has| |#2| (-390 |#1|))) (((-626 |#1|) $ (-1164 $)) NIL (|has| |#2| (-340 |#1|)))) (-1368 (((-3 $ "failed") $) NIL (-3700 (-12 (|has| |#2| (-340 |#1|)) (|has| |#1| (-512))) (-12 (|has| |#2| (-390 |#1|)) (|has| |#1| (-512)))))) (-1589 (((-1079 (-880 |#1|))) NIL (-12 (|has| |#2| (-390 |#1|)) (|has| |#1| (-336))))) (-2544 (($ $ (-849)) NIL)) (-2318 ((|#1| $) NIL (|has| |#2| (-340 |#1|)))) (-4108 (((-1079 |#1|) $) NIL (-3700 (-12 (|has| |#2| (-340 |#1|)) (|has| |#1| (-512))) (-12 (|has| |#2| (-390 |#1|)) (|has| |#1| (-512)))))) (-1526 ((|#1|) NIL (|has| |#2| (-390 |#1|))) ((|#1| (-1164 $)) NIL (|has| |#2| (-340 |#1|)))) (-2429 (((-1079 |#1|) $) NIL (|has| |#2| (-340 |#1|)))) (-3955 (((-108)) NIL (|has| |#2| (-340 |#1|)))) (-1239 (((-1066) $) NIL)) (-2260 (((-108)) NIL (|has| |#2| (-340 |#1|)))) (-4130 (((-108)) NIL (|has| |#2| (-340 |#1|)))) (-2684 (((-108)) NIL (|has| |#2| (-340 |#1|)))) (-4142 (((-1030) $) NIL)) (-2009 (((-108)) NIL (|has| |#2| (-340 |#1|)))) (-2543 ((|#1| $ (-520)) NIL (|has| |#2| (-390 |#1|)))) (-3790 (((-626 |#1|) (-1164 $)) NIL (|has| |#2| (-390 |#1|))) (((-1164 |#1|) $) NIL (|has| |#2| (-390 |#1|))) (((-626 |#1|) (-1164 $) (-1164 $)) NIL (|has| |#2| (-340 |#1|))) (((-1164 |#1|) $ (-1164 $)) NIL (|has| |#2| (-340 |#1|)))) (-1429 (($ (-1164 |#1|)) NIL (|has| |#2| (-390 |#1|))) (((-1164 |#1|) $) NIL (|has| |#2| (-390 |#1|)))) (-1894 (((-586 (-880 |#1|))) NIL (|has| |#2| (-390 |#1|))) (((-586 (-880 |#1|)) (-1164 $)) NIL (|has| |#2| (-340 |#1|)))) (-3607 (($ $ $) NIL)) (-3393 (((-108)) NIL (|has| |#2| (-340 |#1|)))) (-2188 (((-791) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-1831 (((-1164 $)) NIL (|has| |#2| (-390 |#1|)))) (-4094 (((-586 (-1164 |#1|))) NIL (-3700 (-12 (|has| |#2| (-340 |#1|)) (|has| |#1| (-512))) (-12 (|has| |#2| (-390 |#1|)) (|has| |#1| (-512)))))) (-2214 (($ $ $ $) NIL)) (-3183 (((-108)) NIL (|has| |#2| (-340 |#1|)))) (-1614 (($ (-626 |#1|) $) NIL (|has| |#2| (-390 |#1|)))) (-3710 (($ $ $) NIL)) (-3977 (((-108)) NIL (|has| |#2| (-340 |#1|)))) (-2963 (((-108)) NIL (|has| |#2| (-340 |#1|)))) (-1314 (((-108)) NIL (|has| |#2| (-340 |#1|)))) (-3560 (($) 15 T CONST)) (-1530 (((-108) $ $) NIL)) (-1611 (($ $) NIL) (($ $ $) NIL)) (-1601 (($ $ $) NIL)) (** (($ $ (-849)) 17)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-578 |#1| |#2|) (-13 (-680 |#1|) (-560 |#2|) (-10 -8 (-15 -2188 ($ |#2|)) (IF (|has| |#2| (-390 |#1|)) (-6 (-390 |#1|)) |%noBranch|) (IF (|has| |#2| (-340 |#1|)) (-6 (-340 |#1|)) |%noBranch|))) (-157) (-680 |#1|)) (T -578))
-((-2188 (*1 *1 *2) (-12 (-4 *3 (-157)) (-5 *1 (-578 *3 *2)) (-4 *2 (-680 *3)))))
-(-13 (-680 |#1|) (-560 |#2|) (-10 -8 (-15 -2188 ($ |#2|)) (IF (|has| |#2| (-390 |#1|)) (-6 (-390 |#1|)) |%noBranch|) (IF (|has| |#2| (-340 |#1|)) (-6 (-340 |#1|)) |%noBranch|)))
-((-2374 (((-3 (-776 |#2|) "failed") |#2| (-268 |#2|) (-1066)) 78) (((-3 (-776 |#2|) (-2 (|:| |leftHandLimit| (-3 (-776 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-776 |#2|) "failed"))) "failed") |#2| (-268 (-776 |#2|))) 100)) (-2082 (((-3 (-769 |#2|) "failed") |#2| (-268 (-769 |#2|))) 105)))
-(((-579 |#1| |#2|) (-10 -7 (-15 -2374 ((-3 (-776 |#2|) (-2 (|:| |leftHandLimit| (-3 (-776 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-776 |#2|) "failed"))) "failed") |#2| (-268 (-776 |#2|)))) (-15 -2082 ((-3 (-769 |#2|) "failed") |#2| (-268 (-769 |#2|)))) (-15 -2374 ((-3 (-776 |#2|) "failed") |#2| (-268 |#2|) (-1066)))) (-13 (-424) (-783) (-960 (-520)) (-582 (-520))) (-13 (-27) (-1104) (-403 |#1|))) (T -579))
-((-2374 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-268 *3)) (-5 *5 (-1066)) (-4 *3 (-13 (-27) (-1104) (-403 *6))) (-4 *6 (-13 (-424) (-783) (-960 (-520)) (-582 (-520)))) (-5 *2 (-776 *3)) (-5 *1 (-579 *6 *3)))) (-2082 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-268 (-769 *3))) (-4 *5 (-13 (-424) (-783) (-960 (-520)) (-582 (-520)))) (-5 *2 (-769 *3)) (-5 *1 (-579 *5 *3)) (-4 *3 (-13 (-27) (-1104) (-403 *5))))) (-2374 (*1 *2 *3 *4) (-12 (-5 *4 (-268 (-776 *3))) (-4 *3 (-13 (-27) (-1104) (-403 *5))) (-4 *5 (-13 (-424) (-783) (-960 (-520)) (-582 (-520)))) (-5 *2 (-3 (-776 *3) (-2 (|:| |leftHandLimit| (-3 (-776 *3) "failed")) (|:| |rightHandLimit| (-3 (-776 *3) "failed"))) "failed")) (-5 *1 (-579 *5 *3)))))
-(-10 -7 (-15 -2374 ((-3 (-776 |#2|) (-2 (|:| |leftHandLimit| (-3 (-776 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-776 |#2|) "failed"))) "failed") |#2| (-268 (-776 |#2|)))) (-15 -2082 ((-3 (-769 |#2|) "failed") |#2| (-268 (-769 |#2|)))) (-15 -2374 ((-3 (-776 |#2|) "failed") |#2| (-268 |#2|) (-1066))))
-((-2374 (((-3 (-776 (-380 (-880 |#1|))) "failed") (-380 (-880 |#1|)) (-268 (-380 (-880 |#1|))) (-1066)) 79) (((-3 (-776 (-380 (-880 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-776 (-380 (-880 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-776 (-380 (-880 |#1|))) "failed"))) "failed") (-380 (-880 |#1|)) (-268 (-380 (-880 |#1|)))) 18) (((-3 (-776 (-380 (-880 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-776 (-380 (-880 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-776 (-380 (-880 |#1|))) "failed"))) "failed") (-380 (-880 |#1|)) (-268 (-776 (-880 |#1|)))) 34)) (-2082 (((-769 (-380 (-880 |#1|))) (-380 (-880 |#1|)) (-268 (-380 (-880 |#1|)))) 21) (((-769 (-380 (-880 |#1|))) (-380 (-880 |#1|)) (-268 (-769 (-880 |#1|)))) 42)))
-(((-580 |#1|) (-10 -7 (-15 -2374 ((-3 (-776 (-380 (-880 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-776 (-380 (-880 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-776 (-380 (-880 |#1|))) "failed"))) "failed") (-380 (-880 |#1|)) (-268 (-776 (-880 |#1|))))) (-15 -2374 ((-3 (-776 (-380 (-880 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-776 (-380 (-880 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-776 (-380 (-880 |#1|))) "failed"))) "failed") (-380 (-880 |#1|)) (-268 (-380 (-880 |#1|))))) (-15 -2082 ((-769 (-380 (-880 |#1|))) (-380 (-880 |#1|)) (-268 (-769 (-880 |#1|))))) (-15 -2082 ((-769 (-380 (-880 |#1|))) (-380 (-880 |#1|)) (-268 (-380 (-880 |#1|))))) (-15 -2374 ((-3 (-776 (-380 (-880 |#1|))) "failed") (-380 (-880 |#1|)) (-268 (-380 (-880 |#1|))) (-1066)))) (-424)) (T -580))
-((-2374 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-268 (-380 (-880 *6)))) (-5 *5 (-1066)) (-5 *3 (-380 (-880 *6))) (-4 *6 (-424)) (-5 *2 (-776 *3)) (-5 *1 (-580 *6)))) (-2082 (*1 *2 *3 *4) (-12 (-5 *4 (-268 (-380 (-880 *5)))) (-5 *3 (-380 (-880 *5))) (-4 *5 (-424)) (-5 *2 (-769 *3)) (-5 *1 (-580 *5)))) (-2082 (*1 *2 *3 *4) (-12 (-5 *4 (-268 (-769 (-880 *5)))) (-4 *5 (-424)) (-5 *2 (-769 (-380 (-880 *5)))) (-5 *1 (-580 *5)) (-5 *3 (-380 (-880 *5))))) (-2374 (*1 *2 *3 *4) (-12 (-5 *4 (-268 (-380 (-880 *5)))) (-5 *3 (-380 (-880 *5))) (-4 *5 (-424)) (-5 *2 (-3 (-776 *3) (-2 (|:| |leftHandLimit| (-3 (-776 *3) "failed")) (|:| |rightHandLimit| (-3 (-776 *3) "failed"))) "failed")) (-5 *1 (-580 *5)))) (-2374 (*1 *2 *3 *4) (-12 (-5 *4 (-268 (-776 (-880 *5)))) (-4 *5 (-424)) (-5 *2 (-3 (-776 (-380 (-880 *5))) (-2 (|:| |leftHandLimit| (-3 (-776 (-380 (-880 *5))) "failed")) (|:| |rightHandLimit| (-3 (-776 (-380 (-880 *5))) "failed"))) "failed")) (-5 *1 (-580 *5)) (-5 *3 (-380 (-880 *5))))))
-(-10 -7 (-15 -2374 ((-3 (-776 (-380 (-880 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-776 (-380 (-880 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-776 (-380 (-880 |#1|))) "failed"))) "failed") (-380 (-880 |#1|)) (-268 (-776 (-880 |#1|))))) (-15 -2374 ((-3 (-776 (-380 (-880 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-776 (-380 (-880 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-776 (-380 (-880 |#1|))) "failed"))) "failed") (-380 (-880 |#1|)) (-268 (-380 (-880 |#1|))))) (-15 -2082 ((-769 (-380 (-880 |#1|))) (-380 (-880 |#1|)) (-268 (-769 (-880 |#1|))))) (-15 -2082 ((-769 (-380 (-880 |#1|))) (-380 (-880 |#1|)) (-268 (-380 (-880 |#1|))))) (-15 -2374 ((-3 (-776 (-380 (-880 |#1|))) "failed") (-380 (-880 |#1|)) (-268 (-380 (-880 |#1|))) (-1066))))
-((-2715 (((-3 (-1164 (-380 |#1|)) "failed") (-1164 |#2|) |#2|) 57 (-2399 (|has| |#1| (-336)))) (((-3 (-1164 |#1|) "failed") (-1164 |#2|) |#2|) 42 (|has| |#1| (-336)))) (-1972 (((-108) (-1164 |#2|)) 30)) (-2414 (((-3 (-1164 |#1|) "failed") (-1164 |#2|)) 33)))
-(((-581 |#1| |#2|) (-10 -7 (-15 -1972 ((-108) (-1164 |#2|))) (-15 -2414 ((-3 (-1164 |#1|) "failed") (-1164 |#2|))) (IF (|has| |#1| (-336)) (-15 -2715 ((-3 (-1164 |#1|) "failed") (-1164 |#2|) |#2|)) (-15 -2715 ((-3 (-1164 (-380 |#1|)) "failed") (-1164 |#2|) |#2|)))) (-512) (-582 |#1|)) (T -581))
-((-2715 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1164 *4)) (-4 *4 (-582 *5)) (-2399 (-4 *5 (-336))) (-4 *5 (-512)) (-5 *2 (-1164 (-380 *5))) (-5 *1 (-581 *5 *4)))) (-2715 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1164 *4)) (-4 *4 (-582 *5)) (-4 *5 (-336)) (-4 *5 (-512)) (-5 *2 (-1164 *5)) (-5 *1 (-581 *5 *4)))) (-2414 (*1 *2 *3) (|partial| -12 (-5 *3 (-1164 *5)) (-4 *5 (-582 *4)) (-4 *4 (-512)) (-5 *2 (-1164 *4)) (-5 *1 (-581 *4 *5)))) (-1972 (*1 *2 *3) (-12 (-5 *3 (-1164 *5)) (-4 *5 (-582 *4)) (-4 *4 (-512)) (-5 *2 (-108)) (-5 *1 (-581 *4 *5)))))
-(-10 -7 (-15 -1972 ((-108) (-1164 |#2|))) (-15 -2414 ((-3 (-1164 |#1|) "failed") (-1164 |#2|))) (IF (|has| |#1| (-336)) (-15 -2715 ((-3 (-1164 |#1|) "failed") (-1164 |#2|) |#2|)) (-15 -2715 ((-3 (-1164 (-380 |#1|)) "failed") (-1164 |#2|) |#2|))))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-1917 (((-3 $ "failed") $ $) 19)) (-3961 (($) 17 T CONST)) (-2756 (((-626 |#1|) (-626 $)) 36) (((-2 (|:| -3927 (-626 |#1|)) (|:| |vec| (-1164 |#1|))) (-626 $) (-1164 $)) 35)) (-1540 (((-3 $ "failed") $) 34)) (-1537 (((-108) $) 31)) (-1239 (((-1066) $) 9)) (-4142 (((-1030) $) 10)) (-2188 (((-791) $) 11) (($ (-520)) 28)) (-3251 (((-706)) 29)) (-3504 (($ $ (-849)) 26) (($ $ (-706)) 33)) (-3560 (($) 18 T CONST)) (-3570 (($) 30 T CONST)) (-1530 (((-108) $ $) 6)) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-706)) 32)) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ $ $) 24)))
-(((-582 |#1|) (-1195) (-969)) (T -582))
-((-2756 (*1 *2 *3) (-12 (-5 *3 (-626 *1)) (-4 *1 (-582 *4)) (-4 *4 (-969)) (-5 *2 (-626 *4)))) (-2756 (*1 *2 *3 *4) (-12 (-5 *3 (-626 *1)) (-5 *4 (-1164 *1)) (-4 *1 (-582 *5)) (-4 *5 (-969)) (-5 *2 (-2 (|:| -3927 (-626 *5)) (|:| |vec| (-1164 *5)))))))
-(-13 (-969) (-10 -8 (-15 -2756 ((-626 |t#1|) (-626 $))) (-15 -2756 ((-2 (|:| -3927 (-626 |t#1|)) (|:| |vec| (-1164 |t#1|))) (-626 $) (-1164 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-560 (-791)) . T) ((-588 $) . T) ((-662) . T) ((-969) . T) ((-976) . T) ((-1024) . T) ((-1012) . T))
-((-4139 ((|#2| (-586 |#1|) (-586 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-586 |#1|) (-586 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-586 |#1|) (-586 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-586 |#1|) (-586 |#2|) |#2|) 17) ((|#2| (-586 |#1|) (-586 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-586 |#1|) (-586 |#2|)) 12)))
-(((-583 |#1| |#2|) (-10 -7 (-15 -4139 ((-1 |#2| |#1|) (-586 |#1|) (-586 |#2|))) (-15 -4139 (|#2| (-586 |#1|) (-586 |#2|) |#1|)) (-15 -4139 ((-1 |#2| |#1|) (-586 |#1|) (-586 |#2|) |#2|)) (-15 -4139 (|#2| (-586 |#1|) (-586 |#2|) |#1| |#2|)) (-15 -4139 ((-1 |#2| |#1|) (-586 |#1|) (-586 |#2|) (-1 |#2| |#1|))) (-15 -4139 (|#2| (-586 |#1|) (-586 |#2|) |#1| (-1 |#2| |#1|)))) (-1012) (-1118)) (T -583))
-((-4139 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-586 *5)) (-5 *4 (-586 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1012)) (-4 *2 (-1118)) (-5 *1 (-583 *5 *2)))) (-4139 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-586 *5)) (-5 *4 (-586 *6)) (-4 *5 (-1012)) (-4 *6 (-1118)) (-5 *1 (-583 *5 *6)))) (-4139 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-586 *5)) (-5 *4 (-586 *2)) (-4 *5 (-1012)) (-4 *2 (-1118)) (-5 *1 (-583 *5 *2)))) (-4139 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-586 *6)) (-5 *4 (-586 *5)) (-4 *6 (-1012)) (-4 *5 (-1118)) (-5 *2 (-1 *5 *6)) (-5 *1 (-583 *6 *5)))) (-4139 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-586 *5)) (-5 *4 (-586 *2)) (-4 *5 (-1012)) (-4 *2 (-1118)) (-5 *1 (-583 *5 *2)))) (-4139 (*1 *2 *3 *4) (-12 (-5 *3 (-586 *5)) (-5 *4 (-586 *6)) (-4 *5 (-1012)) (-4 *6 (-1118)) (-5 *2 (-1 *6 *5)) (-5 *1 (-583 *5 *6)))))
-(-10 -7 (-15 -4139 ((-1 |#2| |#1|) (-586 |#1|) (-586 |#2|))) (-15 -4139 (|#2| (-586 |#1|) (-586 |#2|) |#1|)) (-15 -4139 ((-1 |#2| |#1|) (-586 |#1|) (-586 |#2|) |#2|)) (-15 -4139 (|#2| (-586 |#1|) (-586 |#2|) |#1| |#2|)) (-15 -4139 ((-1 |#2| |#1|) (-586 |#1|) (-586 |#2|) (-1 |#2| |#1|))) (-15 -4139 (|#2| (-586 |#1|) (-586 |#2|) |#1| (-1 |#2| |#1|))))
-((-1404 (((-586 |#2|) (-1 |#2| |#1| |#2|) (-586 |#1|) |#2|) 16)) (-3856 ((|#2| (-1 |#2| |#1| |#2|) (-586 |#1|) |#2|) 18)) (-1389 (((-586 |#2|) (-1 |#2| |#1|) (-586 |#1|)) 13)))
-(((-584 |#1| |#2|) (-10 -7 (-15 -1404 ((-586 |#2|) (-1 |#2| |#1| |#2|) (-586 |#1|) |#2|)) (-15 -3856 (|#2| (-1 |#2| |#1| |#2|) (-586 |#1|) |#2|)) (-15 -1389 ((-586 |#2|) (-1 |#2| |#1|) (-586 |#1|)))) (-1118) (-1118)) (T -584))
-((-1389 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-586 *5)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-5 *2 (-586 *6)) (-5 *1 (-584 *5 *6)))) (-3856 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-586 *5)) (-4 *5 (-1118)) (-4 *2 (-1118)) (-5 *1 (-584 *5 *2)))) (-1404 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-586 *6)) (-4 *6 (-1118)) (-4 *5 (-1118)) (-5 *2 (-586 *5)) (-5 *1 (-584 *6 *5)))))
-(-10 -7 (-15 -1404 ((-586 |#2|) (-1 |#2| |#1| |#2|) (-586 |#1|) |#2|)) (-15 -3856 (|#2| (-1 |#2| |#1| |#2|) (-586 |#1|) |#2|)) (-15 -1389 ((-586 |#2|) (-1 |#2| |#1|) (-586 |#1|))))
-((-1389 (((-586 |#3|) (-1 |#3| |#1| |#2|) (-586 |#1|) (-586 |#2|)) 13)))
-(((-585 |#1| |#2| |#3|) (-10 -7 (-15 -1389 ((-586 |#3|) (-1 |#3| |#1| |#2|) (-586 |#1|) (-586 |#2|)))) (-1118) (-1118) (-1118)) (T -585))
-((-1389 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-586 *6)) (-5 *5 (-586 *7)) (-4 *6 (-1118)) (-4 *7 (-1118)) (-4 *8 (-1118)) (-5 *2 (-586 *8)) (-5 *1 (-585 *6 *7 *8)))))
-(-10 -7 (-15 -1389 ((-586 |#3|) (-1 |#3| |#1| |#2|) (-586 |#1|) (-586 |#2|))))
-((-1414 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-3429 ((|#1| $) NIL)) (-2091 ((|#1| $) NIL)) (-3827 (($ $) NIL)) (-1476 (((-1169) $ (-520) (-520)) NIL (|has| $ (-6 -4230)))) (-1198 (($ $ (-520)) NIL (|has| $ (-6 -4230)))) (-4029 (((-108) $) NIL (|has| |#1| (-783))) (((-108) (-1 (-108) |#1| |#1|) $) NIL)) (-3587 (($ $) NIL (-12 (|has| $ (-6 -4230)) (|has| |#1| (-783)))) (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4230)))) (-3210 (($ $) NIL (|has| |#1| (-783))) (($ (-1 (-108) |#1| |#1|) $) NIL)) (-2063 (((-108) $ (-706)) NIL)) (-2888 ((|#1| $ |#1|) NIL (|has| $ (-6 -4230)))) (-2719 (($ $ $) NIL (|has| $ (-6 -4230)))) (-3819 ((|#1| $ |#1|) NIL (|has| $ (-6 -4230)))) (-1598 ((|#1| $ |#1|) NIL (|has| $ (-6 -4230)))) (-2377 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4230))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4230))) (($ $ "rest" $) NIL (|has| $ (-6 -4230))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4230))) ((|#1| $ (-1131 (-520)) |#1|) NIL (|has| $ (-6 -4230))) ((|#1| $ (-520) |#1|) NIL (|has| $ (-6 -4230)))) (-3061 (($ $ (-586 $)) NIL (|has| $ (-6 -4230)))) (-1604 (($ $ $) 32 (|has| |#1| (-1012)))) (-1593 (($ $ $) 34 (|has| |#1| (-1012)))) (-1587 (($ $ $) 37 (|has| |#1| (-1012)))) (-1817 (($ (-1 (-108) |#1|) $) NIL)) (-1627 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-2079 ((|#1| $) NIL)) (-3961 (($) NIL T CONST)) (-2447 (($ $) NIL (|has| $ (-6 -4230)))) (-1861 (($ $) NIL)) (-2305 (($ $) NIL) (($ $ (-706)) NIL)) (-3667 (($ $) NIL (|has| |#1| (-1012)))) (-2331 (($ $) 31 (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-3766 (($ |#1| $) NIL (|has| |#1| (-1012))) (($ (-1 (-108) |#1|) $) NIL)) (-1421 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-3856 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4229))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4229))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-3846 ((|#1| $ (-520) |#1|) NIL (|has| $ (-6 -4230)))) (-3623 ((|#1| $ (-520)) NIL)) (-3928 (((-108) $) NIL)) (-3232 (((-520) |#1| $ (-520)) NIL (|has| |#1| (-1012))) (((-520) |#1| $) NIL (|has| |#1| (-1012))) (((-520) (-1 (-108) |#1|) $) NIL)) (-3828 (((-586 |#1|) $) NIL (|has| $ (-6 -4229)))) (-1503 (((-108) $) 9)) (-3405 (((-586 $) $) NIL)) (-1885 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-2046 (($) 7)) (-1810 (($ (-706) |#1|) NIL)) (-3027 (((-108) $ (-706)) NIL)) (-2567 (((-520) $) NIL (|has| (-520) (-783)))) (-2809 (($ $ $) NIL (|has| |#1| (-783)))) (-3235 (($ $ $) NIL (|has| |#1| (-783))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-1819 (($ $ $) NIL (|has| |#1| (-783))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-3702 (((-586 |#1|) $) NIL (|has| $ (-6 -4229)))) (-2422 (((-108) |#1| $) 33 (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-1752 (((-520) $) NIL (|has| (-520) (-783)))) (-2446 (($ $ $) NIL (|has| |#1| (-783)))) (-3830 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1578 (($ |#1|) NIL)) (-1390 (((-108) $ (-706)) NIL)) (-1277 (((-586 |#1|) $) NIL)) (-1740 (((-108) $) NIL)) (-1239 (((-1066) $) NIL (|has| |#1| (-1012)))) (-1440 ((|#1| $) NIL) (($ $ (-706)) NIL)) (-3618 (($ $ $ (-520)) NIL) (($ |#1| $ (-520)) NIL)) (-1659 (($ $ $ (-520)) NIL) (($ |#1| $ (-520)) NIL)) (-3622 (((-586 (-520)) $) NIL)) (-2603 (((-108) (-520) $) NIL)) (-4142 (((-1030) $) NIL (|has| |#1| (-1012)))) (-2293 ((|#1| $) NIL) (($ $ (-706)) NIL)) (-2985 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-2936 (($ $ |#1|) NIL (|has| $ (-6 -4230)))) (-1392 (((-108) $) NIL)) (-4155 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 |#1|))) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-268 |#1|)) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-586 |#1|) (-586 |#1|)) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))) (-2533 (((-108) $ $) NIL)) (-2094 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-1523 (((-586 |#1|) $) NIL)) (-4018 (((-108) $) NIL)) (-2238 (($) NIL)) (-2543 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1131 (-520))) NIL) ((|#1| $ (-520)) 36) ((|#1| $ (-520) |#1|) NIL)) (-3765 (((-520) $ $) NIL)) (-4185 (($ $ (-1131 (-520))) NIL) (($ $ (-520)) NIL)) (-3690 (($ $ (-1131 (-520))) NIL) (($ $ (-520)) NIL)) (-1975 (((-108) $) NIL)) (-3436 (($ $) NIL)) (-1521 (($ $) NIL (|has| $ (-6 -4230)))) (-3341 (((-706) $) NIL)) (-1696 (($ $) NIL)) (-4159 (((-706) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229))) (((-706) |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-1913 (($ $ $ (-520)) NIL (|has| $ (-6 -4230)))) (-2403 (($ $) NIL)) (-1429 (((-496) $) 45 (|has| |#1| (-561 (-496))))) (-2200 (($ (-586 |#1|)) NIL)) (-3434 (($ |#1| $) 10)) (-2251 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4156 (($ $ $) 30) (($ |#1| $) NIL) (($ (-586 $)) NIL) (($ $ |#1|) NIL)) (-2188 (((-791) $) NIL (|has| |#1| (-560 (-791))))) (-2438 (((-586 $) $) NIL)) (-1639 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-3673 (($ $ $) 11)) (-1662 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-3610 (((-1066) $) 26 (|has| |#1| (-764))) (((-1066) $ (-108)) 27 (|has| |#1| (-764))) (((-1169) (-758) $) 28 (|has| |#1| (-764))) (((-1169) (-758) $ (-108)) 29 (|has| |#1| (-764)))) (-1573 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1557 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1530 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-1565 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1548 (((-108) $ $) NIL (|has| |#1| (-783)))) (-3474 (((-706) $) NIL (|has| $ (-6 -4229)))))
-(((-586 |#1|) (-13 (-606 |#1|) (-10 -8 (-15 -2046 ($)) (-15 -1503 ((-108) $)) (-15 -3434 ($ |#1| $)) (-15 -3673 ($ $ $)) (IF (|has| |#1| (-1012)) (PROGN (-15 -1604 ($ $ $)) (-15 -1593 ($ $ $)) (-15 -1587 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-764)) (-6 (-764)) |%noBranch|))) (-1118)) (T -586))
-((-2046 (*1 *1) (-12 (-5 *1 (-586 *2)) (-4 *2 (-1118)))) (-1503 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-586 *3)) (-4 *3 (-1118)))) (-3434 (*1 *1 *2 *1) (-12 (-5 *1 (-586 *2)) (-4 *2 (-1118)))) (-3673 (*1 *1 *1 *1) (-12 (-5 *1 (-586 *2)) (-4 *2 (-1118)))) (-1604 (*1 *1 *1 *1) (-12 (-5 *1 (-586 *2)) (-4 *2 (-1012)) (-4 *2 (-1118)))) (-1593 (*1 *1 *1 *1) (-12 (-5 *1 (-586 *2)) (-4 *2 (-1012)) (-4 *2 (-1118)))) (-1587 (*1 *1 *1 *1) (-12 (-5 *1 (-586 *2)) (-4 *2 (-1012)) (-4 *2 (-1118)))))
-(-13 (-606 |#1|) (-10 -8 (-15 -2046 ($)) (-15 -1503 ((-108) $)) (-15 -3434 ($ |#1| $)) (-15 -3673 ($ $ $)) (IF (|has| |#1| (-1012)) (PROGN (-15 -1604 ($ $ $)) (-15 -1593 ($ $ $)) (-15 -1587 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-764)) (-6 (-764)) |%noBranch|)))
-((-1414 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-2316 (($ |#1| |#1| $) 43)) (-2063 (((-108) $ (-706)) NIL)) (-1817 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4229)))) (-1627 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-3961 (($) NIL T CONST)) (-3667 (($ $) 45)) (-2331 (($ $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-3766 (($ |#1| $) 52 (|has| $ (-6 -4229))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4229)))) (-1421 (($ |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-3856 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4229))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4229)))) (-3828 (((-586 |#1|) $) 9 (|has| $ (-6 -4229)))) (-3027 (((-108) $ (-706)) NIL)) (-3702 (((-586 |#1|) $) NIL (|has| $ (-6 -4229)))) (-2422 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-3830 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#1| |#1|) $) 37)) (-1390 (((-108) $ (-706)) NIL)) (-1239 (((-1066) $) NIL (|has| |#1| (-1012)))) (-3351 ((|#1| $) 46)) (-3618 (($ |#1| $) 26) (($ |#1| $ (-706)) 42)) (-4142 (((-1030) $) NIL (|has| |#1| (-1012)))) (-2985 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-3345 ((|#1| $) 48)) (-4155 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 |#1|))) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-268 |#1|)) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-586 |#1|) (-586 |#1|)) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))) (-2533 (((-108) $ $) NIL)) (-4018 (((-108) $) 21)) (-2238 (($) 25)) (-1690 (((-108) $) 50)) (-3305 (((-586 (-2 (|:| -3043 |#1|) (|:| -4159 (-706)))) $) 59)) (-1645 (($) 23) (($ (-586 |#1|)) 18)) (-4159 (((-706) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229))) (((-706) |#1| $) 56 (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-2403 (($ $) 19)) (-1429 (((-496) $) 34 (|has| |#1| (-561 (-496))))) (-2200 (($ (-586 |#1|)) NIL)) (-2188 (((-791) $) 14 (|has| |#1| (-560 (-791))))) (-1898 (($ (-586 |#1|)) 22)) (-1662 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-1530 (((-108) $ $) 61 (|has| |#1| (-1012)))) (-3474 (((-706) $) 16 (|has| $ (-6 -4229)))))
-(((-587 |#1|) (-13 (-631 |#1|) (-10 -8 (-6 -4229) (-15 -1690 ((-108) $)) (-15 -2316 ($ |#1| |#1| $)))) (-1012)) (T -587))
-((-1690 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-587 *3)) (-4 *3 (-1012)))) (-2316 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-587 *2)) (-4 *2 (-1012)))))
-(-13 (-631 |#1|) (-10 -8 (-6 -4229) (-15 -1690 ((-108) $)) (-15 -2316 ($ |#1| |#1| $))))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-1917 (((-3 $ "failed") $ $) 19)) (-3961 (($) 17 T CONST)) (-1239 (((-1066) $) 9)) (-4142 (((-1030) $) 10)) (-2188 (((-791) $) 11)) (-3560 (($) 18 T CONST)) (-1530 (((-108) $ $) 6)) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ |#1| $) 23)))
-(((-588 |#1|) (-1195) (-976)) (T -588))
-((* (*1 *1 *2 *1) (-12 (-4 *1 (-588 *2)) (-4 *2 (-976)))))
+((-1415 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3430 ((|#1| $) NIL)) (-2092 ((|#1| $) NIL)) (-3830 (($ $) NIL)) (-1903 (((-1170) $ (-521) (-521)) NIL (|has| $ (-6 -4234)))) (-3861 (($ $ (-521)) 58 (|has| $ (-6 -4234)))) (-1505 (((-108) $) NIL (|has| |#1| (-784))) (((-108) (-1 (-108) |#1| |#1|) $) NIL)) (-1621 (($ $) NIL (-12 (|has| $ (-6 -4234)) (|has| |#1| (-784)))) (($ (-1 (-108) |#1| |#1|) $) 56 (|has| $ (-6 -4234)))) (-3211 (($ $) NIL (|has| |#1| (-784))) (($ (-1 (-108) |#1| |#1|) $) NIL)) (-2978 (((-108) $ (-707)) NIL)) (-2300 ((|#1| $ |#1|) NIL (|has| $ (-6 -4234)))) (-3739 (($ $ $) 23 (|has| $ (-6 -4234)))) (-1509 ((|#1| $ |#1|) NIL (|has| $ (-6 -4234)))) (-3977 ((|#1| $ |#1|) 21 (|has| $ (-6 -4234)))) (-2378 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4234))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4234))) (($ $ "rest" $) 24 (|has| $ (-6 -4234))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4234))) ((|#1| $ (-1132 (-521)) |#1|) NIL (|has| $ (-6 -4234))) ((|#1| $ (-521) |#1|) NIL (|has| $ (-6 -4234)))) (-2675 (($ $ (-587 $)) NIL (|has| $ (-6 -4234)))) (-4098 (($ (-1 (-108) |#1|) $) NIL)) (-1628 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2080 ((|#1| $) NIL)) (-2547 (($) NIL T CONST)) (-3081 (($ $) 28 (|has| $ (-6 -4234)))) (-1862 (($ $) 29)) (-2306 (($ $) 18) (($ $ (-707)) 32)) (-2468 (($ $) 54 (|has| |#1| (-1013)))) (-2332 (($ $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-3023 (($ |#1| $) NIL (|has| |#1| (-1013))) (($ (-1 (-108) |#1|) $) NIL)) (-1422 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-3859 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-3849 ((|#1| $ (-521) |#1|) NIL (|has| $ (-6 -4234)))) (-3626 ((|#1| $ (-521)) NIL)) (-1368 (((-108) $) NIL)) (-3233 (((-521) |#1| $ (-521)) NIL (|has| |#1| (-1013))) (((-521) |#1| $) NIL (|has| |#1| (-1013))) (((-521) (-1 (-108) |#1|) $) NIL)) (-3831 (((-587 |#1|) $) 27 (|has| $ (-6 -4233)))) (-3186 (((-587 $) $) NIL)) (-3651 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-1811 (($ (-707) |#1|) NIL)) (-2139 (((-108) $ (-707)) NIL)) (-2826 (((-521) $) 31 (|has| (-521) (-784)))) (-2810 (($ $ $) NIL (|has| |#1| (-784)))) (-3220 (($ $ $) NIL (|has| |#1| (-784))) (($ (-1 (-108) |#1| |#1|) $ $) 57)) (-1318 (($ $ $) NIL (|has| |#1| (-784))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-3757 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-2221 (((-108) |#1| $) 52 (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2597 (((-521) $) NIL (|has| (-521) (-784)))) (-2446 (($ $ $) NIL (|has| |#1| (-784)))) (-3833 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1580 (($ |#1|) NIL)) (-3574 (((-108) $ (-707)) NIL)) (-1278 (((-587 |#1|) $) NIL)) (-2229 (((-108) $) NIL)) (-3688 (((-1067) $) 51 (|has| |#1| (-1013)))) (-1441 ((|#1| $) NIL) (($ $ (-707)) NIL)) (-3373 (($ $ $ (-521)) NIL) (($ |#1| $ (-521)) NIL)) (-1659 (($ $ $ (-521)) NIL) (($ |#1| $ (-521)) NIL)) (-1668 (((-587 (-521)) $) NIL)) (-2941 (((-108) (-521) $) NIL)) (-4147 (((-1031) $) NIL (|has| |#1| (-1013)))) (-2293 ((|#1| $) 13) (($ $ (-707)) NIL)) (-3620 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-3016 (($ $ |#1|) NIL (|has| $ (-6 -4234)))) (-3924 (((-108) $) NIL)) (-1789 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 |#1|))) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-2488 (((-108) $ $) 12)) (-3821 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2489 (((-587 |#1|) $) NIL)) (-3462 (((-108) $) 17)) (-4024 (($) 16)) (-2544 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1132 (-521))) NIL) ((|#1| $ (-521)) NIL) ((|#1| $ (-521) |#1|) NIL)) (-2931 (((-521) $ $) NIL)) (-2859 (($ $ (-1132 (-521))) NIL) (($ $ (-521)) NIL)) (-3691 (($ $ (-1132 (-521))) NIL) (($ $ (-521)) NIL)) (-2406 (((-108) $) 34)) (-3207 (($ $) NIL)) (-2262 (($ $) NIL (|has| $ (-6 -4234)))) (-3083 (((-707) $) NIL)) (-3717 (($ $) 36)) (-4163 (((-707) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (((-707) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-1497 (($ $ $ (-521)) NIL (|has| $ (-6 -4234)))) (-2404 (($ $) 35)) (-1430 (((-497) $) NIL (|has| |#1| (-562 (-497))))) (-2201 (($ (-587 |#1|)) 26)) (-3980 (($ $ $) 53) (($ $ |#1|) NIL)) (-4159 (($ $ $) NIL) (($ |#1| $) 10) (($ (-587 $)) NIL) (($ $ |#1|) NIL)) (-2189 (((-792) $) 46 (|has| |#1| (-561 (-792))))) (-3098 (((-587 $) $) NIL)) (-2294 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3049 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-1574 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1558 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1531 (((-108) $ $) 48 (|has| |#1| (-1013)))) (-1566 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1549 (((-108) $ $) NIL (|has| |#1| (-784)))) (-3475 (((-707) $) 9 (|has| $ (-6 -4233)))))
+(((-487 |#1| |#2|) (-607 |#1|) (-1119) (-521)) (T -487))
+NIL
+(-607 |#1|)
+((-1311 ((|#4| |#4|) 26)) (-3162 (((-707) |#4|) 31)) (-2097 (((-707) |#4|) 32)) (-3445 (((-587 |#3|) |#4|) 38 (|has| |#3| (-6 -4234)))) (-3841 (((-3 |#4| "failed") |#4|) 48)) (-3309 ((|#4| |#4|) 41)) (-3805 ((|#1| |#4|) 40)))
+(((-488 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1311 (|#4| |#4|)) (-15 -3162 ((-707) |#4|)) (-15 -2097 ((-707) |#4|)) (IF (|has| |#3| (-6 -4234)) (-15 -3445 ((-587 |#3|) |#4|)) |%noBranch|) (-15 -3805 (|#1| |#4|)) (-15 -3309 (|#4| |#4|)) (-15 -3841 ((-3 |#4| "failed") |#4|))) (-337) (-347 |#1|) (-347 |#1|) (-625 |#1| |#2| |#3|)) (T -488))
+((-3841 (*1 *2 *2) (|partial| -12 (-4 *3 (-337)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)) (-5 *1 (-488 *3 *4 *5 *2)) (-4 *2 (-625 *3 *4 *5)))) (-3309 (*1 *2 *2) (-12 (-4 *3 (-337)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)) (-5 *1 (-488 *3 *4 *5 *2)) (-4 *2 (-625 *3 *4 *5)))) (-3805 (*1 *2 *3) (-12 (-4 *4 (-347 *2)) (-4 *5 (-347 *2)) (-4 *2 (-337)) (-5 *1 (-488 *2 *4 *5 *3)) (-4 *3 (-625 *2 *4 *5)))) (-3445 (*1 *2 *3) (-12 (|has| *6 (-6 -4234)) (-4 *4 (-337)) (-4 *5 (-347 *4)) (-4 *6 (-347 *4)) (-5 *2 (-587 *6)) (-5 *1 (-488 *4 *5 *6 *3)) (-4 *3 (-625 *4 *5 *6)))) (-2097 (*1 *2 *3) (-12 (-4 *4 (-337)) (-4 *5 (-347 *4)) (-4 *6 (-347 *4)) (-5 *2 (-707)) (-5 *1 (-488 *4 *5 *6 *3)) (-4 *3 (-625 *4 *5 *6)))) (-3162 (*1 *2 *3) (-12 (-4 *4 (-337)) (-4 *5 (-347 *4)) (-4 *6 (-347 *4)) (-5 *2 (-707)) (-5 *1 (-488 *4 *5 *6 *3)) (-4 *3 (-625 *4 *5 *6)))) (-1311 (*1 *2 *2) (-12 (-4 *3 (-337)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)) (-5 *1 (-488 *3 *4 *5 *2)) (-4 *2 (-625 *3 *4 *5)))))
+(-10 -7 (-15 -1311 (|#4| |#4|)) (-15 -3162 ((-707) |#4|)) (-15 -2097 ((-707) |#4|)) (IF (|has| |#3| (-6 -4234)) (-15 -3445 ((-587 |#3|) |#4|)) |%noBranch|) (-15 -3805 (|#1| |#4|)) (-15 -3309 (|#4| |#4|)) (-15 -3841 ((-3 |#4| "failed") |#4|)))
+((-1311 ((|#8| |#4|) 20)) (-3445 (((-587 |#3|) |#4|) 29 (|has| |#7| (-6 -4234)))) (-3841 (((-3 |#8| "failed") |#4|) 23)))
+(((-489 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1311 (|#8| |#4|)) (-15 -3841 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4234)) (-15 -3445 ((-587 |#3|) |#4|)) |%noBranch|)) (-513) (-347 |#1|) (-347 |#1|) (-625 |#1| |#2| |#3|) (-918 |#1|) (-347 |#5|) (-347 |#5|) (-625 |#5| |#6| |#7|)) (T -489))
+((-3445 (*1 *2 *3) (-12 (|has| *9 (-6 -4234)) (-4 *4 (-513)) (-4 *5 (-347 *4)) (-4 *6 (-347 *4)) (-4 *7 (-918 *4)) (-4 *8 (-347 *7)) (-4 *9 (-347 *7)) (-5 *2 (-587 *6)) (-5 *1 (-489 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-625 *4 *5 *6)) (-4 *10 (-625 *7 *8 *9)))) (-3841 (*1 *2 *3) (|partial| -12 (-4 *4 (-513)) (-4 *5 (-347 *4)) (-4 *6 (-347 *4)) (-4 *7 (-918 *4)) (-4 *2 (-625 *7 *8 *9)) (-5 *1 (-489 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-625 *4 *5 *6)) (-4 *8 (-347 *7)) (-4 *9 (-347 *7)))) (-1311 (*1 *2 *3) (-12 (-4 *4 (-513)) (-4 *5 (-347 *4)) (-4 *6 (-347 *4)) (-4 *7 (-918 *4)) (-4 *2 (-625 *7 *8 *9)) (-5 *1 (-489 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-625 *4 *5 *6)) (-4 *8 (-347 *7)) (-4 *9 (-347 *7)))))
+(-10 -7 (-15 -1311 (|#8| |#4|)) (-15 -3841 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4234)) (-15 -3445 ((-587 |#3|) |#4|)) |%noBranch|))
+((-1415 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3478 (($ (-707) (-707)) NIL)) (-3836 (($ $ $) NIL)) (-1304 (($ (-552 |#1| |#3|)) NIL) (($ $) NIL)) (-2304 (((-108) $) NIL)) (-2594 (($ $ (-521) (-521)) 12)) (-3215 (($ $ (-521) (-521)) NIL)) (-3729 (($ $ (-521) (-521) (-521) (-521)) NIL)) (-1534 (($ $) NIL)) (-2825 (((-108) $) NIL)) (-2978 (((-108) $ (-707)) NIL)) (-2157 (($ $ (-521) (-521) $) NIL)) (-2378 ((|#1| $ (-521) (-521) |#1|) NIL) (($ $ (-587 (-521)) (-587 (-521)) $) NIL)) (-1816 (($ $ (-521) (-552 |#1| |#3|)) NIL)) (-3520 (($ $ (-521) (-552 |#1| |#2|)) NIL)) (-3480 (($ (-707) |#1|) NIL)) (-2547 (($) NIL T CONST)) (-1311 (($ $) 19 (|has| |#1| (-282)))) (-2672 (((-552 |#1| |#3|) $ (-521)) NIL)) (-3162 (((-707) $) 22 (|has| |#1| (-513)))) (-3849 ((|#1| $ (-521) (-521) |#1|) NIL)) (-3626 ((|#1| $ (-521) (-521)) NIL)) (-3831 (((-587 |#1|) $) NIL)) (-2097 (((-707) $) 24 (|has| |#1| (-513)))) (-3445 (((-587 (-552 |#1| |#2|)) $) 27 (|has| |#1| (-513)))) (-1410 (((-707) $) NIL)) (-1811 (($ (-707) (-707) |#1|) NIL)) (-1421 (((-707) $) NIL)) (-2139 (((-108) $ (-707)) NIL)) (-2274 ((|#1| $) 17 (|has| |#1| (-6 (-4235 "*"))))) (-2690 (((-521) $) 10)) (-3222 (((-521) $) NIL)) (-3757 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-2221 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2207 (((-521) $) 11)) (-2684 (((-521) $) NIL)) (-1365 (($ (-587 (-587 |#1|))) NIL)) (-3833 (($ (-1 |#1| |#1|) $) NIL)) (-1390 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1858 (((-587 (-587 |#1|)) $) NIL)) (-3574 (((-108) $ (-707)) NIL)) (-3688 (((-1067) $) NIL (|has| |#1| (-1013)))) (-3841 (((-3 $ "failed") $) 31 (|has| |#1| (-337)))) (-4097 (($ $ $) NIL)) (-4147 (((-1031) $) NIL (|has| |#1| (-1013)))) (-3016 (($ $ |#1|) NIL)) (-2230 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-513)))) (-1789 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 |#1|))) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-2488 (((-108) $ $) NIL)) (-3462 (((-108) $) NIL)) (-4024 (($) NIL)) (-2544 ((|#1| $ (-521) (-521)) NIL) ((|#1| $ (-521) (-521) |#1|) NIL) (($ $ (-587 (-521)) (-587 (-521))) NIL)) (-2349 (($ (-587 |#1|)) NIL) (($ (-587 $)) NIL)) (-1222 (((-108) $) NIL)) (-3805 ((|#1| $) 15 (|has| |#1| (-6 (-4235 "*"))))) (-4163 (((-707) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (((-707) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2404 (($ $) NIL)) (-3187 (((-552 |#1| |#2|) $ (-521)) NIL)) (-2189 (($ (-552 |#1| |#2|)) NIL) (((-792) $) NIL (|has| |#1| (-561 (-792))))) (-3049 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2169 (((-108) $) NIL)) (-1531 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-1620 (($ $ |#1|) NIL (|has| |#1| (-337)))) (-1612 (($ $ $) NIL) (($ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-707)) NIL) (($ $ (-521)) NIL (|has| |#1| (-337)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-521) $) NIL) (((-552 |#1| |#2|) $ (-552 |#1| |#2|)) NIL) (((-552 |#1| |#3|) (-552 |#1| |#3|) $) NIL)) (-3475 (((-707) $) NIL (|has| $ (-6 -4233)))))
+(((-490 |#1| |#2| |#3|) (-625 |#1| (-552 |#1| |#3|) (-552 |#1| |#2|)) (-970) (-521) (-521)) (T -490))
+NIL
+(-625 |#1| (-552 |#1| |#3|) (-552 |#1| |#2|))
+((-3433 (((-1080 |#1|) (-707)) 75)) (-1865 (((-1165 |#1|) (-1165 |#1|) (-850)) 68)) (-2956 (((-1170) (-1165 (-587 (-2 (|:| -3430 |#1|) (|:| -2716 (-1031))))) |#1|) 83)) (-2505 (((-1165 |#1|) (-1165 |#1|) (-707)) 36)) (-3250 (((-1165 |#1|) (-850)) 70)) (-2360 (((-1165 |#1|) (-1165 |#1|) (-521)) 24)) (-3736 (((-1080 |#1|) (-1165 |#1|)) 76)) (-3958 (((-1165 |#1|) (-850)) 94)) (-1279 (((-108) (-1165 |#1|)) 79)) (-3930 (((-1165 |#1|) (-1165 |#1|) (-850)) 61)) (-3548 (((-1080 |#1|) (-1165 |#1|)) 88)) (-2715 (((-850) (-1165 |#1|)) 58)) (-3095 (((-1165 |#1|) (-1165 |#1|)) 30)) (-2716 (((-1165 |#1|) (-850) (-850)) 96)) (-2659 (((-1165 |#1|) (-1165 |#1|) (-1031) (-1031)) 23)) (-1910 (((-1165 |#1|) (-1165 |#1|) (-707) (-1031)) 37)) (-2470 (((-1165 (-1165 |#1|)) (-850)) 93)) (-1620 (((-1165 |#1|) (-1165 |#1|) (-1165 |#1|)) 80)) (** (((-1165 |#1|) (-1165 |#1|) (-521)) 45)) (* (((-1165 |#1|) (-1165 |#1|) (-1165 |#1|)) 25)))
+(((-491 |#1|) (-10 -7 (-15 -2956 ((-1170) (-1165 (-587 (-2 (|:| -3430 |#1|) (|:| -2716 (-1031))))) |#1|)) (-15 -3250 ((-1165 |#1|) (-850))) (-15 -2716 ((-1165 |#1|) (-850) (-850))) (-15 -3736 ((-1080 |#1|) (-1165 |#1|))) (-15 -3433 ((-1080 |#1|) (-707))) (-15 -1910 ((-1165 |#1|) (-1165 |#1|) (-707) (-1031))) (-15 -2505 ((-1165 |#1|) (-1165 |#1|) (-707))) (-15 -2659 ((-1165 |#1|) (-1165 |#1|) (-1031) (-1031))) (-15 -2360 ((-1165 |#1|) (-1165 |#1|) (-521))) (-15 ** ((-1165 |#1|) (-1165 |#1|) (-521))) (-15 * ((-1165 |#1|) (-1165 |#1|) (-1165 |#1|))) (-15 -1620 ((-1165 |#1|) (-1165 |#1|) (-1165 |#1|))) (-15 -3930 ((-1165 |#1|) (-1165 |#1|) (-850))) (-15 -1865 ((-1165 |#1|) (-1165 |#1|) (-850))) (-15 -3095 ((-1165 |#1|) (-1165 |#1|))) (-15 -2715 ((-850) (-1165 |#1|))) (-15 -1279 ((-108) (-1165 |#1|))) (-15 -2470 ((-1165 (-1165 |#1|)) (-850))) (-15 -3958 ((-1165 |#1|) (-850))) (-15 -3548 ((-1080 |#1|) (-1165 |#1|)))) (-323)) (T -491))
+((-3548 (*1 *2 *3) (-12 (-5 *3 (-1165 *4)) (-4 *4 (-323)) (-5 *2 (-1080 *4)) (-5 *1 (-491 *4)))) (-3958 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1165 *4)) (-5 *1 (-491 *4)) (-4 *4 (-323)))) (-2470 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1165 (-1165 *4))) (-5 *1 (-491 *4)) (-4 *4 (-323)))) (-1279 (*1 *2 *3) (-12 (-5 *3 (-1165 *4)) (-4 *4 (-323)) (-5 *2 (-108)) (-5 *1 (-491 *4)))) (-2715 (*1 *2 *3) (-12 (-5 *3 (-1165 *4)) (-4 *4 (-323)) (-5 *2 (-850)) (-5 *1 (-491 *4)))) (-3095 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-323)) (-5 *1 (-491 *3)))) (-1865 (*1 *2 *2 *3) (-12 (-5 *2 (-1165 *4)) (-5 *3 (-850)) (-4 *4 (-323)) (-5 *1 (-491 *4)))) (-3930 (*1 *2 *2 *3) (-12 (-5 *2 (-1165 *4)) (-5 *3 (-850)) (-4 *4 (-323)) (-5 *1 (-491 *4)))) (-1620 (*1 *2 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-323)) (-5 *1 (-491 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-323)) (-5 *1 (-491 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1165 *4)) (-5 *3 (-521)) (-4 *4 (-323)) (-5 *1 (-491 *4)))) (-2360 (*1 *2 *2 *3) (-12 (-5 *2 (-1165 *4)) (-5 *3 (-521)) (-4 *4 (-323)) (-5 *1 (-491 *4)))) (-2659 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1165 *4)) (-5 *3 (-1031)) (-4 *4 (-323)) (-5 *1 (-491 *4)))) (-2505 (*1 *2 *2 *3) (-12 (-5 *2 (-1165 *4)) (-5 *3 (-707)) (-4 *4 (-323)) (-5 *1 (-491 *4)))) (-1910 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1165 *5)) (-5 *3 (-707)) (-5 *4 (-1031)) (-4 *5 (-323)) (-5 *1 (-491 *5)))) (-3433 (*1 *2 *3) (-12 (-5 *3 (-707)) (-5 *2 (-1080 *4)) (-5 *1 (-491 *4)) (-4 *4 (-323)))) (-3736 (*1 *2 *3) (-12 (-5 *3 (-1165 *4)) (-4 *4 (-323)) (-5 *2 (-1080 *4)) (-5 *1 (-491 *4)))) (-2716 (*1 *2 *3 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1165 *4)) (-5 *1 (-491 *4)) (-4 *4 (-323)))) (-3250 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1165 *4)) (-5 *1 (-491 *4)) (-4 *4 (-323)))) (-2956 (*1 *2 *3 *4) (-12 (-5 *3 (-1165 (-587 (-2 (|:| -3430 *4) (|:| -2716 (-1031)))))) (-4 *4 (-323)) (-5 *2 (-1170)) (-5 *1 (-491 *4)))))
+(-10 -7 (-15 -2956 ((-1170) (-1165 (-587 (-2 (|:| -3430 |#1|) (|:| -2716 (-1031))))) |#1|)) (-15 -3250 ((-1165 |#1|) (-850))) (-15 -2716 ((-1165 |#1|) (-850) (-850))) (-15 -3736 ((-1080 |#1|) (-1165 |#1|))) (-15 -3433 ((-1080 |#1|) (-707))) (-15 -1910 ((-1165 |#1|) (-1165 |#1|) (-707) (-1031))) (-15 -2505 ((-1165 |#1|) (-1165 |#1|) (-707))) (-15 -2659 ((-1165 |#1|) (-1165 |#1|) (-1031) (-1031))) (-15 -2360 ((-1165 |#1|) (-1165 |#1|) (-521))) (-15 ** ((-1165 |#1|) (-1165 |#1|) (-521))) (-15 * ((-1165 |#1|) (-1165 |#1|) (-1165 |#1|))) (-15 -1620 ((-1165 |#1|) (-1165 |#1|) (-1165 |#1|))) (-15 -3930 ((-1165 |#1|) (-1165 |#1|) (-850))) (-15 -1865 ((-1165 |#1|) (-1165 |#1|) (-850))) (-15 -3095 ((-1165 |#1|) (-1165 |#1|))) (-15 -2715 ((-850) (-1165 |#1|))) (-15 -1279 ((-108) (-1165 |#1|))) (-15 -2470 ((-1165 (-1165 |#1|)) (-850))) (-15 -3958 ((-1165 |#1|) (-850))) (-15 -3548 ((-1080 |#1|) (-1165 |#1|))))
+((-1594 (((-1 |#1| |#1|) |#1|) 11)) (-3630 (((-1 |#1| |#1|)) 10)))
+(((-492 |#1|) (-10 -7 (-15 -3630 ((-1 |#1| |#1|))) (-15 -1594 ((-1 |#1| |#1|) |#1|))) (-13 (-663) (-25))) (T -492))
+((-1594 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-492 *3)) (-4 *3 (-13 (-663) (-25))))) (-3630 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-492 *3)) (-4 *3 (-13 (-663) (-25))))))
+(-10 -7 (-15 -3630 ((-1 |#1| |#1|))) (-15 -1594 ((-1 |#1| |#1|) |#1|)))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-2641 (($ $ $) NIL)) (-1232 (((-3 $ "failed") $ $) NIL)) (-2547 (($) NIL T CONST)) (-3152 (($ $) NIL)) (-4043 (($ (-707) |#1|) NIL)) (-2810 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-1390 (($ (-1 (-707) (-707)) $) NIL)) (-1240 ((|#1| $) NIL)) (-3135 (((-707) $) NIL)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2189 (((-792) $) 20)) (-3561 (($) NIL T CONST)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) NIL)) (-1602 (($ $ $) NIL)) (* (($ (-707) $) NIL) (($ (-850) $) NIL)))
+(((-493 |#1|) (-13 (-729) (-477 (-707) |#1|)) (-784)) (T -493))
+NIL
+(-13 (-729) (-477 (-707) |#1|))
+((-1277 (((-587 |#2|) (-1080 |#1|) |#3|) 83)) (-1375 (((-587 (-2 (|:| |outval| |#2|) (|:| |outmult| (-521)) (|:| |outvect| (-587 (-627 |#2|))))) (-627 |#1|) |#3| (-1 (-392 (-1080 |#1|)) (-1080 |#1|))) 99)) (-2549 (((-1080 |#1|) (-627 |#1|)) 95)))
+(((-494 |#1| |#2| |#3|) (-10 -7 (-15 -2549 ((-1080 |#1|) (-627 |#1|))) (-15 -1277 ((-587 |#2|) (-1080 |#1|) |#3|)) (-15 -1375 ((-587 (-2 (|:| |outval| |#2|) (|:| |outmult| (-521)) (|:| |outvect| (-587 (-627 |#2|))))) (-627 |#1|) |#3| (-1 (-392 (-1080 |#1|)) (-1080 |#1|))))) (-337) (-337) (-13 (-337) (-782))) (T -494))
+((-1375 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-627 *6)) (-5 *5 (-1 (-392 (-1080 *6)) (-1080 *6))) (-4 *6 (-337)) (-5 *2 (-587 (-2 (|:| |outval| *7) (|:| |outmult| (-521)) (|:| |outvect| (-587 (-627 *7)))))) (-5 *1 (-494 *6 *7 *4)) (-4 *7 (-337)) (-4 *4 (-13 (-337) (-782))))) (-1277 (*1 *2 *3 *4) (-12 (-5 *3 (-1080 *5)) (-4 *5 (-337)) (-5 *2 (-587 *6)) (-5 *1 (-494 *5 *6 *4)) (-4 *6 (-337)) (-4 *4 (-13 (-337) (-782))))) (-2549 (*1 *2 *3) (-12 (-5 *3 (-627 *4)) (-4 *4 (-337)) (-5 *2 (-1080 *4)) (-5 *1 (-494 *4 *5 *6)) (-4 *5 (-337)) (-4 *6 (-13 (-337) (-782))))))
+(-10 -7 (-15 -2549 ((-1080 |#1|) (-627 |#1|))) (-15 -1277 ((-587 |#2|) (-1080 |#1|) |#3|)) (-15 -1375 ((-587 (-2 (|:| |outval| |#2|) (|:| |outmult| (-521)) (|:| |outvect| (-587 (-627 |#2|))))) (-627 |#1|) |#3| (-1 (-392 (-1080 |#1|)) (-1080 |#1|)))))
+((-2869 (((-777 (-521))) 11)) (-2882 (((-777 (-521))) 13)) (-2845 (((-770 (-521))) 8)))
+(((-495) (-10 -7 (-15 -2845 ((-770 (-521)))) (-15 -2869 ((-777 (-521)))) (-15 -2882 ((-777 (-521)))))) (T -495))
+((-2882 (*1 *2) (-12 (-5 *2 (-777 (-521))) (-5 *1 (-495)))) (-2869 (*1 *2) (-12 (-5 *2 (-777 (-521))) (-5 *1 (-495)))) (-2845 (*1 *2) (-12 (-5 *2 (-770 (-521))) (-5 *1 (-495)))))
+(-10 -7 (-15 -2845 ((-770 (-521)))) (-15 -2869 ((-777 (-521)))) (-15 -2882 ((-777 (-521)))))
+((-3412 (((-497) (-1084)) 15)) (-1562 ((|#1| (-497)) 20)))
+(((-496 |#1|) (-10 -7 (-15 -3412 ((-497) (-1084))) (-15 -1562 (|#1| (-497)))) (-1119)) (T -496))
+((-1562 (*1 *2 *3) (-12 (-5 *3 (-497)) (-5 *1 (-496 *2)) (-4 *2 (-1119)))) (-3412 (*1 *2 *3) (-12 (-5 *3 (-1084)) (-5 *2 (-497)) (-5 *1 (-496 *4)) (-4 *4 (-1119)))))
+(-10 -7 (-15 -3412 ((-497) (-1084))) (-15 -1562 (|#1| (-497))))
+((-1415 (((-108) $ $) NIL)) (-1822 (((-1067) $) 46)) (-3870 (((-108) $) 43)) (-1488 (((-1084) $) 44)) (-2862 (((-108) $) 41)) (-1507 (((-1067) $) 42)) (-2994 (((-108) $) NIL)) (-3794 (((-108) $) NIL)) (-2144 (((-108) $) NIL)) (-3688 (((-1067) $) NIL)) (-1284 (($ $ (-587 (-1084))) 20)) (-1562 (((-51) $) 22)) (-2392 (((-108) $) NIL)) (-1508 (((-521) $) NIL)) (-4147 (((-1031) $) NIL)) (-2093 (($ $ (-587 (-1084)) (-1084)) 58)) (-4089 (((-108) $) NIL)) (-3068 (((-202) $) NIL)) (-3857 (($ $) 38)) (-1575 (((-792) $) NIL)) (-3192 (((-108) $ $) NIL)) (-2544 (($ $ (-521)) NIL) (($ $ (-587 (-521))) NIL)) (-1992 (((-587 $) $) 28)) (-1233 (((-1084) (-587 $)) 47)) (-1430 (($ (-587 $)) 51) (($ (-1067)) NIL) (($ (-1084)) 18) (($ (-521)) 8) (($ (-202)) 25) (($ (-792)) NIL) (((-1017) $) 11) (($ (-1017)) 12)) (-1780 (((-1084) (-1084) (-587 $)) 50)) (-2189 (((-792) $) NIL)) (-3206 (($ $) 49)) (-3195 (($ $) 48)) (-3216 (($ $ (-587 $)) 55)) (-3934 (((-108) $) 27)) (-3561 (($) 9 T CONST)) (-3572 (($) 10 T CONST)) (-1531 (((-108) $ $) 59)) (-1620 (($ $ $) 64)) (-1602 (($ $ $) 60)) (** (($ $ (-707)) 63) (($ $ (-521)) 62)) (* (($ $ $) 61)) (-3475 (((-521) $) NIL)))
+(((-497) (-13 (-1016 (-1067) (-1084) (-521) (-202) (-792)) (-562 (-1017)) (-10 -8 (-15 -1562 ((-51) $)) (-15 -1430 ($ (-1017))) (-15 -3216 ($ $ (-587 $))) (-15 -2093 ($ $ (-587 (-1084)) (-1084))) (-15 -1284 ($ $ (-587 (-1084)))) (-15 -1602 ($ $ $)) (-15 * ($ $ $)) (-15 -1620 ($ $ $)) (-15 ** ($ $ (-707))) (-15 ** ($ $ (-521))) (-15 0 ($) -2676) (-15 1 ($) -2676) (-15 -3857 ($ $)) (-15 -1822 ((-1067) $)) (-15 -1233 ((-1084) (-587 $))) (-15 -1780 ((-1084) (-1084) (-587 $)))))) (T -497))
+((-1562 (*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-497)))) (-1430 (*1 *1 *2) (-12 (-5 *2 (-1017)) (-5 *1 (-497)))) (-3216 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-497))) (-5 *1 (-497)))) (-2093 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-587 (-1084))) (-5 *3 (-1084)) (-5 *1 (-497)))) (-1284 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-1084))) (-5 *1 (-497)))) (-1602 (*1 *1 *1 *1) (-5 *1 (-497))) (* (*1 *1 *1 *1) (-5 *1 (-497))) (-1620 (*1 *1 *1 *1) (-5 *1 (-497))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-497)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-497)))) (-3561 (*1 *1) (-5 *1 (-497))) (-3572 (*1 *1) (-5 *1 (-497))) (-3857 (*1 *1 *1) (-5 *1 (-497))) (-1822 (*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-497)))) (-1233 (*1 *2 *3) (-12 (-5 *3 (-587 (-497))) (-5 *2 (-1084)) (-5 *1 (-497)))) (-1780 (*1 *2 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-587 (-497))) (-5 *1 (-497)))))
+(-13 (-1016 (-1067) (-1084) (-521) (-202) (-792)) (-562 (-1017)) (-10 -8 (-15 -1562 ((-51) $)) (-15 -1430 ($ (-1017))) (-15 -3216 ($ $ (-587 $))) (-15 -2093 ($ $ (-587 (-1084)) (-1084))) (-15 -1284 ($ $ (-587 (-1084)))) (-15 -1602 ($ $ $)) (-15 * ($ $ $)) (-15 -1620 ($ $ $)) (-15 ** ($ $ (-707))) (-15 ** ($ $ (-521))) (-15 (-3561) ($) -2676) (-15 (-3572) ($) -2676) (-15 -3857 ($ $)) (-15 -1822 ((-1067) $)) (-15 -1233 ((-1084) (-587 $))) (-15 -1780 ((-1084) (-1084) (-587 $)))))
+((-1960 ((|#2| |#2|) 17)) (-2267 ((|#2| |#2|) 13)) (-1637 ((|#2| |#2| (-521) (-521)) 20)) (-3122 ((|#2| |#2|) 15)))
+(((-498 |#1| |#2|) (-10 -7 (-15 -2267 (|#2| |#2|)) (-15 -3122 (|#2| |#2|)) (-15 -1960 (|#2| |#2|)) (-15 -1637 (|#2| |#2| (-521) (-521)))) (-13 (-513) (-135)) (-1156 |#1|)) (T -498))
+((-1637 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-521)) (-4 *4 (-13 (-513) (-135))) (-5 *1 (-498 *4 *2)) (-4 *2 (-1156 *4)))) (-1960 (*1 *2 *2) (-12 (-4 *3 (-13 (-513) (-135))) (-5 *1 (-498 *3 *2)) (-4 *2 (-1156 *3)))) (-3122 (*1 *2 *2) (-12 (-4 *3 (-13 (-513) (-135))) (-5 *1 (-498 *3 *2)) (-4 *2 (-1156 *3)))) (-2267 (*1 *2 *2) (-12 (-4 *3 (-13 (-513) (-135))) (-5 *1 (-498 *3 *2)) (-4 *2 (-1156 *3)))))
+(-10 -7 (-15 -2267 (|#2| |#2|)) (-15 -3122 (|#2| |#2|)) (-15 -1960 (|#2| |#2|)) (-15 -1637 (|#2| |#2| (-521) (-521))))
+((-3381 (((-587 (-269 (-881 |#2|))) (-587 |#2|) (-587 (-1084))) 32)) (-2313 (((-587 |#2|) (-881 |#1|) |#3|) 53) (((-587 |#2|) (-1080 |#1|) |#3|) 52)) (-2443 (((-587 (-587 |#2|)) (-587 (-881 |#1|)) (-587 (-881 |#1|)) (-587 (-1084)) |#3|) 87)))
+(((-499 |#1| |#2| |#3|) (-10 -7 (-15 -2313 ((-587 |#2|) (-1080 |#1|) |#3|)) (-15 -2313 ((-587 |#2|) (-881 |#1|) |#3|)) (-15 -2443 ((-587 (-587 |#2|)) (-587 (-881 |#1|)) (-587 (-881 |#1|)) (-587 (-1084)) |#3|)) (-15 -3381 ((-587 (-269 (-881 |#2|))) (-587 |#2|) (-587 (-1084))))) (-425) (-337) (-13 (-337) (-782))) (T -499))
+((-3381 (*1 *2 *3 *4) (-12 (-5 *3 (-587 *6)) (-5 *4 (-587 (-1084))) (-4 *6 (-337)) (-5 *2 (-587 (-269 (-881 *6)))) (-5 *1 (-499 *5 *6 *7)) (-4 *5 (-425)) (-4 *7 (-13 (-337) (-782))))) (-2443 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-587 (-881 *6))) (-5 *4 (-587 (-1084))) (-4 *6 (-425)) (-5 *2 (-587 (-587 *7))) (-5 *1 (-499 *6 *7 *5)) (-4 *7 (-337)) (-4 *5 (-13 (-337) (-782))))) (-2313 (*1 *2 *3 *4) (-12 (-5 *3 (-881 *5)) (-4 *5 (-425)) (-5 *2 (-587 *6)) (-5 *1 (-499 *5 *6 *4)) (-4 *6 (-337)) (-4 *4 (-13 (-337) (-782))))) (-2313 (*1 *2 *3 *4) (-12 (-5 *3 (-1080 *5)) (-4 *5 (-425)) (-5 *2 (-587 *6)) (-5 *1 (-499 *5 *6 *4)) (-4 *6 (-337)) (-4 *4 (-13 (-337) (-782))))))
+(-10 -7 (-15 -2313 ((-587 |#2|) (-1080 |#1|) |#3|)) (-15 -2313 ((-587 |#2|) (-881 |#1|) |#3|)) (-15 -2443 ((-587 (-587 |#2|)) (-587 (-881 |#1|)) (-587 (-881 |#1|)) (-587 (-1084)) |#3|)) (-15 -3381 ((-587 (-269 (-881 |#2|))) (-587 |#2|) (-587 (-1084)))))
+((-2633 ((|#2| |#2| |#1|) 17)) (-2616 ((|#2| (-587 |#2|)) 27)) (-1860 ((|#2| (-587 |#2|)) 46)))
+(((-500 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2616 (|#2| (-587 |#2|))) (-15 -1860 (|#2| (-587 |#2|))) (-15 -2633 (|#2| |#2| |#1|))) (-282) (-1141 |#1|) |#1| (-1 |#1| |#1| (-707))) (T -500))
+((-2633 (*1 *2 *2 *3) (-12 (-4 *3 (-282)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-707))) (-5 *1 (-500 *3 *2 *4 *5)) (-4 *2 (-1141 *3)))) (-1860 (*1 *2 *3) (-12 (-5 *3 (-587 *2)) (-4 *2 (-1141 *4)) (-5 *1 (-500 *4 *2 *5 *6)) (-4 *4 (-282)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-707))))) (-2616 (*1 *2 *3) (-12 (-5 *3 (-587 *2)) (-4 *2 (-1141 *4)) (-5 *1 (-500 *4 *2 *5 *6)) (-4 *4 (-282)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-707))))))
+(-10 -7 (-15 -2616 (|#2| (-587 |#2|))) (-15 -1860 (|#2| (-587 |#2|))) (-15 -2633 (|#2| |#2| |#1|)))
+((-1916 (((-392 (-1080 |#4|)) (-1080 |#4|) (-1 (-392 (-1080 |#3|)) (-1080 |#3|))) 79) (((-392 |#4|) |#4| (-1 (-392 (-1080 |#3|)) (-1080 |#3|))) 166)))
+(((-501 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1916 ((-392 |#4|) |#4| (-1 (-392 (-1080 |#3|)) (-1080 |#3|)))) (-15 -1916 ((-392 (-1080 |#4|)) (-1080 |#4|) (-1 (-392 (-1080 |#3|)) (-1080 |#3|))))) (-784) (-729) (-13 (-282) (-135)) (-878 |#3| |#2| |#1|)) (T -501))
+((-1916 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-392 (-1080 *7)) (-1080 *7))) (-4 *7 (-13 (-282) (-135))) (-4 *5 (-784)) (-4 *6 (-729)) (-4 *8 (-878 *7 *6 *5)) (-5 *2 (-392 (-1080 *8))) (-5 *1 (-501 *5 *6 *7 *8)) (-5 *3 (-1080 *8)))) (-1916 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-392 (-1080 *7)) (-1080 *7))) (-4 *7 (-13 (-282) (-135))) (-4 *5 (-784)) (-4 *6 (-729)) (-5 *2 (-392 *3)) (-5 *1 (-501 *5 *6 *7 *3)) (-4 *3 (-878 *7 *6 *5)))))
+(-10 -7 (-15 -1916 ((-392 |#4|) |#4| (-1 (-392 (-1080 |#3|)) (-1080 |#3|)))) (-15 -1916 ((-392 (-1080 |#4|)) (-1080 |#4|) (-1 (-392 (-1080 |#3|)) (-1080 |#3|)))))
+((-1960 ((|#4| |#4|) 74)) (-2267 ((|#4| |#4|) 70)) (-1637 ((|#4| |#4| (-521) (-521)) 76)) (-3122 ((|#4| |#4|) 72)))
+(((-502 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2267 (|#4| |#4|)) (-15 -3122 (|#4| |#4|)) (-15 -1960 (|#4| |#4|)) (-15 -1637 (|#4| |#4| (-521) (-521)))) (-13 (-337) (-342) (-562 (-521))) (-1141 |#1|) (-661 |#1| |#2|) (-1156 |#3|)) (T -502))
+((-1637 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-521)) (-4 *4 (-13 (-337) (-342) (-562 *3))) (-4 *5 (-1141 *4)) (-4 *6 (-661 *4 *5)) (-5 *1 (-502 *4 *5 *6 *2)) (-4 *2 (-1156 *6)))) (-1960 (*1 *2 *2) (-12 (-4 *3 (-13 (-337) (-342) (-562 (-521)))) (-4 *4 (-1141 *3)) (-4 *5 (-661 *3 *4)) (-5 *1 (-502 *3 *4 *5 *2)) (-4 *2 (-1156 *5)))) (-3122 (*1 *2 *2) (-12 (-4 *3 (-13 (-337) (-342) (-562 (-521)))) (-4 *4 (-1141 *3)) (-4 *5 (-661 *3 *4)) (-5 *1 (-502 *3 *4 *5 *2)) (-4 *2 (-1156 *5)))) (-2267 (*1 *2 *2) (-12 (-4 *3 (-13 (-337) (-342) (-562 (-521)))) (-4 *4 (-1141 *3)) (-4 *5 (-661 *3 *4)) (-5 *1 (-502 *3 *4 *5 *2)) (-4 *2 (-1156 *5)))))
+(-10 -7 (-15 -2267 (|#4| |#4|)) (-15 -3122 (|#4| |#4|)) (-15 -1960 (|#4| |#4|)) (-15 -1637 (|#4| |#4| (-521) (-521))))
+((-1960 ((|#2| |#2|) 27)) (-2267 ((|#2| |#2|) 23)) (-1637 ((|#2| |#2| (-521) (-521)) 29)) (-3122 ((|#2| |#2|) 25)))
+(((-503 |#1| |#2|) (-10 -7 (-15 -2267 (|#2| |#2|)) (-15 -3122 (|#2| |#2|)) (-15 -1960 (|#2| |#2|)) (-15 -1637 (|#2| |#2| (-521) (-521)))) (-13 (-337) (-342) (-562 (-521))) (-1156 |#1|)) (T -503))
+((-1637 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-521)) (-4 *4 (-13 (-337) (-342) (-562 *3))) (-5 *1 (-503 *4 *2)) (-4 *2 (-1156 *4)))) (-1960 (*1 *2 *2) (-12 (-4 *3 (-13 (-337) (-342) (-562 (-521)))) (-5 *1 (-503 *3 *2)) (-4 *2 (-1156 *3)))) (-3122 (*1 *2 *2) (-12 (-4 *3 (-13 (-337) (-342) (-562 (-521)))) (-5 *1 (-503 *3 *2)) (-4 *2 (-1156 *3)))) (-2267 (*1 *2 *2) (-12 (-4 *3 (-13 (-337) (-342) (-562 (-521)))) (-5 *1 (-503 *3 *2)) (-4 *2 (-1156 *3)))))
+(-10 -7 (-15 -2267 (|#2| |#2|)) (-15 -3122 (|#2| |#2|)) (-15 -1960 (|#2| |#2|)) (-15 -1637 (|#2| |#2| (-521) (-521))))
+((-2311 (((-3 (-521) "failed") |#2| |#1| (-1 (-3 (-521) "failed") |#1|)) 14) (((-3 (-521) "failed") |#2| |#1| (-521) (-1 (-3 (-521) "failed") |#1|)) 13) (((-3 (-521) "failed") |#2| (-521) (-1 (-3 (-521) "failed") |#1|)) 26)))
+(((-504 |#1| |#2|) (-10 -7 (-15 -2311 ((-3 (-521) "failed") |#2| (-521) (-1 (-3 (-521) "failed") |#1|))) (-15 -2311 ((-3 (-521) "failed") |#2| |#1| (-521) (-1 (-3 (-521) "failed") |#1|))) (-15 -2311 ((-3 (-521) "failed") |#2| |#1| (-1 (-3 (-521) "failed") |#1|)))) (-970) (-1141 |#1|)) (T -504))
+((-2311 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-521) "failed") *4)) (-4 *4 (-970)) (-5 *2 (-521)) (-5 *1 (-504 *4 *3)) (-4 *3 (-1141 *4)))) (-2311 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-521) "failed") *4)) (-4 *4 (-970)) (-5 *2 (-521)) (-5 *1 (-504 *4 *3)) (-4 *3 (-1141 *4)))) (-2311 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-521) "failed") *5)) (-4 *5 (-970)) (-5 *2 (-521)) (-5 *1 (-504 *5 *3)) (-4 *3 (-1141 *5)))))
+(-10 -7 (-15 -2311 ((-3 (-521) "failed") |#2| (-521) (-1 (-3 (-521) "failed") |#1|))) (-15 -2311 ((-3 (-521) "failed") |#2| |#1| (-521) (-1 (-3 (-521) "failed") |#1|))) (-15 -2311 ((-3 (-521) "failed") |#2| |#1| (-1 (-3 (-521) "failed") |#1|))))
+((-3929 (($ $ $) 79)) (-3358 (((-392 $) $) 47)) (-1297 (((-3 (-521) "failed") $) 59)) (-1483 (((-521) $) 37)) (-1521 (((-3 (-381 (-521)) "failed") $) 74)) (-3190 (((-108) $) 24)) (-2082 (((-381 (-521)) $) 72)) (-2710 (((-108) $) 50)) (-2213 (($ $ $ $) 86)) (-3951 (((-108) $) 16)) (-3189 (($ $ $) 57)) (-3427 (((-818 (-521) $) $ (-821 (-521)) (-818 (-521) $)) 69)) (-3842 (((-3 $ "failed") $) 64)) (-3890 (($ $) 23)) (-1642 (($ $ $) 84)) (-3797 (($) 60)) (-3210 (($ $) 53)) (-1916 (((-392 $) $) 45)) (-3550 (((-108) $) 14)) (-4196 (((-707) $) 28)) (-2156 (($ $ (-707)) NIL) (($ $) 10)) (-2404 (($ $) 17)) (-1430 (((-521) $) NIL) (((-497) $) 36) (((-821 (-521)) $) 40) (((-353) $) 31) (((-202) $) 33)) (-3846 (((-707)) 8)) (-3968 (((-108) $ $) 20)) (-2712 (($ $ $) 55)))
+(((-505 |#1|) (-10 -8 (-15 -1642 (|#1| |#1| |#1|)) (-15 -2213 (|#1| |#1| |#1| |#1|)) (-15 -3890 (|#1| |#1|)) (-15 -2404 (|#1| |#1|)) (-15 -1521 ((-3 (-381 (-521)) "failed") |#1|)) (-15 -2082 ((-381 (-521)) |#1|)) (-15 -3190 ((-108) |#1|)) (-15 -3929 (|#1| |#1| |#1|)) (-15 -3968 ((-108) |#1| |#1|)) (-15 -3550 ((-108) |#1|)) (-15 -3797 (|#1|)) (-15 -3842 ((-3 |#1| "failed") |#1|)) (-15 -1430 ((-202) |#1|)) (-15 -1430 ((-353) |#1|)) (-15 -3189 (|#1| |#1| |#1|)) (-15 -3210 (|#1| |#1|)) (-15 -2712 (|#1| |#1| |#1|)) (-15 -3427 ((-818 (-521) |#1|) |#1| (-821 (-521)) (-818 (-521) |#1|))) (-15 -1430 ((-821 (-521)) |#1|)) (-15 -1430 ((-497) |#1|)) (-15 -1483 ((-521) |#1|)) (-15 -1297 ((-3 (-521) "failed") |#1|)) (-15 -1430 ((-521) |#1|)) (-15 -2156 (|#1| |#1|)) (-15 -2156 (|#1| |#1| (-707))) (-15 -3951 ((-108) |#1|)) (-15 -4196 ((-707) |#1|)) (-15 -1916 ((-392 |#1|) |#1|)) (-15 -3358 ((-392 |#1|) |#1|)) (-15 -2710 ((-108) |#1|)) (-15 -3846 ((-707)))) (-506)) (T -505))
+((-3846 (*1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-505 *3)) (-4 *3 (-506)))))
+(-10 -8 (-15 -1642 (|#1| |#1| |#1|)) (-15 -2213 (|#1| |#1| |#1| |#1|)) (-15 -3890 (|#1| |#1|)) (-15 -2404 (|#1| |#1|)) (-15 -1521 ((-3 (-381 (-521)) "failed") |#1|)) (-15 -2082 ((-381 (-521)) |#1|)) (-15 -3190 ((-108) |#1|)) (-15 -3929 (|#1| |#1| |#1|)) (-15 -3968 ((-108) |#1| |#1|)) (-15 -3550 ((-108) |#1|)) (-15 -3797 (|#1|)) (-15 -3842 ((-3 |#1| "failed") |#1|)) (-15 -1430 ((-202) |#1|)) (-15 -1430 ((-353) |#1|)) (-15 -3189 (|#1| |#1| |#1|)) (-15 -3210 (|#1| |#1|)) (-15 -2712 (|#1| |#1| |#1|)) (-15 -3427 ((-818 (-521) |#1|) |#1| (-821 (-521)) (-818 (-521) |#1|))) (-15 -1430 ((-821 (-521)) |#1|)) (-15 -1430 ((-497) |#1|)) (-15 -1483 ((-521) |#1|)) (-15 -1297 ((-3 (-521) "failed") |#1|)) (-15 -1430 ((-521) |#1|)) (-15 -2156 (|#1| |#1|)) (-15 -2156 (|#1| |#1| (-707))) (-15 -3951 ((-108) |#1|)) (-15 -4196 ((-707) |#1|)) (-15 -1916 ((-392 |#1|) |#1|)) (-15 -3358 ((-392 |#1|) |#1|)) (-15 -2710 ((-108) |#1|)) (-15 -3846 ((-707))))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) 41)) (-2559 (($ $) 40)) (-1733 (((-108) $) 38)) (-3929 (($ $ $) 85)) (-1232 (((-3 $ "failed") $ $) 19)) (-3106 (($ $ $ $) 73)) (-3063 (($ $) 51)) (-3358 (((-392 $) $) 52)) (-1389 (((-108) $ $) 125)) (-1606 (((-521) $) 114)) (-1662 (($ $ $) 88)) (-2547 (($) 17 T CONST)) (-1297 (((-3 (-521) "failed") $) 106)) (-1483 (((-521) $) 105)) (-2277 (($ $ $) 129)) (-3279 (((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) 104) (((-627 (-521)) (-627 $)) 103)) (-1257 (((-3 $ "failed") $) 34)) (-1521 (((-3 (-381 (-521)) "failed") $) 82)) (-3190 (((-108) $) 84)) (-2082 (((-381 (-521)) $) 83)) (-3250 (($) 81) (($ $) 80)) (-2253 (($ $ $) 128)) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) 123)) (-2710 (((-108) $) 53)) (-2213 (($ $ $ $) 71)) (-3158 (($ $ $) 86)) (-3951 (((-108) $) 116)) (-3189 (($ $ $) 97)) (-3427 (((-818 (-521) $) $ (-821 (-521)) (-818 (-521) $)) 100)) (-3996 (((-108) $) 31)) (-1255 (((-108) $) 92)) (-3842 (((-3 $ "failed") $) 94)) (-2210 (((-108) $) 115)) (-1546 (((-3 (-587 $) "failed") (-587 $) $) 132)) (-2283 (($ $ $ $) 72)) (-2810 (($ $ $) 117)) (-2446 (($ $ $) 118)) (-3890 (($ $) 75)) (-2516 (($ $) 89)) (-2223 (($ $ $) 46) (($ (-587 $)) 45)) (-3688 (((-1067) $) 9)) (-1642 (($ $ $) 70)) (-3797 (($) 93 T CONST)) (-2953 (($ $) 77)) (-4147 (((-1031) $) 10) (($ $) 79)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) 44)) (-2258 (($ $ $) 48) (($ (-587 $)) 47)) (-3210 (($ $) 98)) (-1916 (((-392 $) $) 50)) (-1962 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 131) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) 130)) (-2230 (((-3 $ "failed") $ $) 42)) (-3854 (((-3 (-587 $) "failed") (-587 $) $) 124)) (-3550 (((-108) $) 91)) (-4196 (((-707) $) 126)) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) 127)) (-2156 (($ $ (-707)) 111) (($ $) 109)) (-3052 (($ $) 76)) (-2404 (($ $) 78)) (-1430 (((-521) $) 108) (((-497) $) 102) (((-821 (-521)) $) 101) (((-353) $) 96) (((-202) $) 95)) (-2189 (((-792) $) 11) (($ (-521)) 28) (($ $) 43) (($ (-521)) 107)) (-3846 (((-707)) 29)) (-3968 (((-108) $ $) 87)) (-2712 (($ $ $) 99)) (-3351 (($) 90)) (-4210 (((-108) $ $) 39)) (-3631 (($ $ $ $) 74)) (-3304 (($ $) 113)) (-3505 (($ $ (-850)) 26) (($ $ (-707)) 33)) (-3561 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-2212 (($ $ (-707)) 112) (($ $) 110)) (-1574 (((-108) $ $) 120)) (-1558 (((-108) $ $) 121)) (-1531 (((-108) $ $) 6)) (-1566 (((-108) $ $) 119)) (-1549 (((-108) $ $) 122)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-707)) 32)) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24)))
+(((-506) (-1196)) (T -506))
+((-1255 (*1 *2 *1) (-12 (-4 *1 (-506)) (-5 *2 (-108)))) (-3550 (*1 *2 *1) (-12 (-4 *1 (-506)) (-5 *2 (-108)))) (-3351 (*1 *1) (-4 *1 (-506))) (-2516 (*1 *1 *1) (-4 *1 (-506))) (-1662 (*1 *1 *1 *1) (-4 *1 (-506))) (-3968 (*1 *2 *1 *1) (-12 (-4 *1 (-506)) (-5 *2 (-108)))) (-3158 (*1 *1 *1 *1) (-4 *1 (-506))) (-3929 (*1 *1 *1 *1) (-4 *1 (-506))) (-3190 (*1 *2 *1) (-12 (-4 *1 (-506)) (-5 *2 (-108)))) (-2082 (*1 *2 *1) (-12 (-4 *1 (-506)) (-5 *2 (-381 (-521))))) (-1521 (*1 *2 *1) (|partial| -12 (-4 *1 (-506)) (-5 *2 (-381 (-521))))) (-3250 (*1 *1) (-4 *1 (-506))) (-3250 (*1 *1 *1) (-4 *1 (-506))) (-4147 (*1 *1 *1) (-4 *1 (-506))) (-2404 (*1 *1 *1) (-4 *1 (-506))) (-2953 (*1 *1 *1) (-4 *1 (-506))) (-3052 (*1 *1 *1) (-4 *1 (-506))) (-3890 (*1 *1 *1) (-4 *1 (-506))) (-3631 (*1 *1 *1 *1 *1) (-4 *1 (-506))) (-3106 (*1 *1 *1 *1 *1) (-4 *1 (-506))) (-2283 (*1 *1 *1 *1 *1) (-4 *1 (-506))) (-2213 (*1 *1 *1 *1 *1) (-4 *1 (-506))) (-1642 (*1 *1 *1 *1) (-4 *1 (-506))))
+(-13 (-1123) (-282) (-757) (-210) (-562 (-521)) (-961 (-521)) (-583 (-521)) (-562 (-497)) (-562 (-821 (-521))) (-815 (-521)) (-131) (-946) (-135) (-1060) (-10 -8 (-15 -1255 ((-108) $)) (-15 -3550 ((-108) $)) (-6 -4232) (-15 -3351 ($)) (-15 -2516 ($ $)) (-15 -1662 ($ $ $)) (-15 -3968 ((-108) $ $)) (-15 -3158 ($ $ $)) (-15 -3929 ($ $ $)) (-15 -3190 ((-108) $)) (-15 -2082 ((-381 (-521)) $)) (-15 -1521 ((-3 (-381 (-521)) "failed") $)) (-15 -3250 ($)) (-15 -3250 ($ $)) (-15 -4147 ($ $)) (-15 -2404 ($ $)) (-15 -2953 ($ $)) (-15 -3052 ($ $)) (-15 -3890 ($ $)) (-15 -3631 ($ $ $ $)) (-15 -3106 ($ $ $ $)) (-15 -2283 ($ $ $ $)) (-15 -2213 ($ $ $ $)) (-15 -1642 ($ $ $)) (-6 -4231)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-135) . T) ((-561 (-792)) . T) ((-131) . T) ((-157) . T) ((-562 (-202)) . T) ((-562 (-353)) . T) ((-562 (-497)) . T) ((-562 (-521)) . T) ((-562 (-821 (-521))) . T) ((-210) . T) ((-265) . T) ((-282) . T) ((-425) . T) ((-513) . T) ((-589 $) . T) ((-583 (-521)) . T) ((-654 $) . T) ((-663) . T) ((-727) . T) ((-728) . T) ((-730) . T) ((-732) . T) ((-757) . T) ((-782) . T) ((-784) . T) ((-815 (-521)) . T) ((-849) . T) ((-946) . T) ((-961 (-521)) . T) ((-976 $) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T) ((-1060) . T) ((-1123) . T))
+((-1415 (((-108) $ $) NIL (-3703 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)) (|has| |#2| (-1013))))) (-1800 (($) NIL) (($ (-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) NIL)) (-1903 (((-1170) $ |#1| |#1|) NIL (|has| $ (-6 -4234)))) (-2978 (((-108) $ (-707)) NIL)) (-2378 ((|#2| $ |#1| |#2|) NIL)) (-4098 (($ (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4233)))) (-1628 (($ (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4233)))) (-2748 (((-3 |#2| "failed") |#1| $) NIL)) (-2547 (($) NIL T CONST)) (-2332 (($ $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013))))) (-3023 (($ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) NIL (|has| $ (-6 -4233))) (($ (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-3 |#2| "failed") |#1| $) NIL)) (-1422 (($ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (($ (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4233)))) (-3859 (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) NIL (|has| $ (-6 -4233))) (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4233)))) (-3849 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4234)))) (-3626 ((|#2| $ |#1|) NIL)) (-3831 (((-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-587 |#2|) $) NIL (|has| $ (-6 -4233)))) (-2139 (((-108) $ (-707)) NIL)) (-2826 ((|#1| $) NIL (|has| |#1| (-784)))) (-3757 (((-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-587 |#2|) $) NIL (|has| $ (-6 -4233)))) (-2221 (((-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#2| (-1013))))) (-2597 ((|#1| $) NIL (|has| |#1| (-784)))) (-3833 (($ (-1 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4234))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4234)))) (-1390 (($ (-1 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3574 (((-108) $ (-707)) NIL)) (-3688 (((-1067) $) NIL (-3703 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)) (|has| |#2| (-1013))))) (-2961 (((-587 |#1|) $) NIL)) (-2781 (((-108) |#1| $) NIL)) (-2511 (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) NIL)) (-3373 (($ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) NIL)) (-1668 (((-587 |#1|) $) NIL)) (-2941 (((-108) |#1| $) NIL)) (-4147 (((-1031) $) NIL (-3703 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)) (|has| |#2| (-1013))))) (-2293 ((|#2| $) NIL (|has| |#1| (-784)))) (-3620 (((-3 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) "failed") (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL)) (-3016 (($ $ |#2|) NIL (|has| $ (-6 -4234)))) (-2166 (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) NIL)) (-1789 (((-108) (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))))) NIL (-12 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-284 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (($ $ (-269 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) NIL (-12 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-284 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (($ $ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) NIL (-12 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-284 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (($ $ (-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) (-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) NIL (-12 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-284 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (($ $ (-587 |#2|) (-587 |#2|)) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ (-269 |#2|)) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ (-587 (-269 |#2|))) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))))) (-2488 (((-108) $ $) NIL)) (-3821 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#2| (-1013))))) (-2489 (((-587 |#2|) $) NIL)) (-3462 (((-108) $) NIL)) (-4024 (($) NIL)) (-2544 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1784 (($) NIL) (($ (-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) NIL)) (-4163 (((-707) (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-707) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (((-707) |#2| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#2| (-1013)))) (((-707) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4233)))) (-2404 (($ $) NIL)) (-1430 (((-497) $) NIL (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-562 (-497))))) (-2201 (($ (-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) NIL)) (-2189 (((-792) $) NIL (-3703 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-561 (-792))) (|has| |#2| (-561 (-792)))))) (-4091 (($ (-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) NIL)) (-3049 (((-108) (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4233)))) (-1531 (((-108) $ $) NIL (-3703 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)) (|has| |#2| (-1013))))) (-3475 (((-707) $) NIL (|has| $ (-6 -4233)))))
+(((-507 |#1| |#2| |#3|) (-13 (-1096 |#1| |#2|) (-10 -7 (-6 -4233))) (-1013) (-1013) (-13 (-1096 |#1| |#2|) (-10 -7 (-6 -4233)))) (T -507))
+NIL
+(-13 (-1096 |#1| |#2|) (-10 -7 (-6 -4233)))
+((-2330 (((-538 |#2|) |#2| (-560 |#2|) (-560 |#2|) (-1 (-1080 |#2|) (-1080 |#2|))) 49)))
+(((-508 |#1| |#2|) (-10 -7 (-15 -2330 ((-538 |#2|) |#2| (-560 |#2|) (-560 |#2|) (-1 (-1080 |#2|) (-1080 |#2|))))) (-13 (-784) (-513)) (-13 (-27) (-404 |#1|))) (T -508))
+((-2330 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-560 *3)) (-5 *5 (-1 (-1080 *3) (-1080 *3))) (-4 *3 (-13 (-27) (-404 *6))) (-4 *6 (-13 (-784) (-513))) (-5 *2 (-538 *3)) (-5 *1 (-508 *6 *3)))))
+(-10 -7 (-15 -2330 ((-538 |#2|) |#2| (-560 |#2|) (-560 |#2|) (-1 (-1080 |#2|) (-1080 |#2|)))))
+((-3596 (((-538 |#5|) |#5| (-1 |#3| |#3|)) 195)) (-3477 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 191)) (-3384 (((-538 |#5|) |#5| (-1 |#3| |#3|)) 198)))
+(((-509 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3384 ((-538 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3596 ((-538 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3477 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-784) (-513) (-961 (-521))) (-13 (-27) (-404 |#1|)) (-1141 |#2|) (-1141 (-381 |#3|)) (-316 |#2| |#3| |#4|)) (T -509))
+((-3477 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1141 *5)) (-4 *5 (-13 (-27) (-404 *4))) (-4 *4 (-13 (-784) (-513) (-961 (-521)))) (-4 *7 (-1141 (-381 *6))) (-5 *1 (-509 *4 *5 *6 *7 *2)) (-4 *2 (-316 *5 *6 *7)))) (-3596 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1141 *6)) (-4 *6 (-13 (-27) (-404 *5))) (-4 *5 (-13 (-784) (-513) (-961 (-521)))) (-4 *8 (-1141 (-381 *7))) (-5 *2 (-538 *3)) (-5 *1 (-509 *5 *6 *7 *8 *3)) (-4 *3 (-316 *6 *7 *8)))) (-3384 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1141 *6)) (-4 *6 (-13 (-27) (-404 *5))) (-4 *5 (-13 (-784) (-513) (-961 (-521)))) (-4 *8 (-1141 (-381 *7))) (-5 *2 (-538 *3)) (-5 *1 (-509 *5 *6 *7 *8 *3)) (-4 *3 (-316 *6 *7 *8)))))
+(-10 -7 (-15 -3384 ((-538 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3596 ((-538 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3477 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|))))
+((-2512 (((-108) (-521) (-521)) 10)) (-1536 (((-521) (-521)) 7)) (-3711 (((-521) (-521) (-521)) 8)))
+(((-510) (-10 -7 (-15 -1536 ((-521) (-521))) (-15 -3711 ((-521) (-521) (-521))) (-15 -2512 ((-108) (-521) (-521))))) (T -510))
+((-2512 (*1 *2 *3 *3) (-12 (-5 *3 (-521)) (-5 *2 (-108)) (-5 *1 (-510)))) (-3711 (*1 *2 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-510)))) (-1536 (*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-510)))))
+(-10 -7 (-15 -1536 ((-521) (-521))) (-15 -3711 ((-521) (-521) (-521))) (-15 -2512 ((-108) (-521) (-521))))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-2644 ((|#1| $) 61)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) 41)) (-2559 (($ $) 40)) (-1733 (((-108) $) 38)) (-2904 (($ $) 91)) (-2769 (($ $) 74)) (-2641 ((|#1| $) 62)) (-1232 (((-3 $ "failed") $ $) 19)) (-1927 (($ $) 73)) (-2880 (($ $) 90)) (-2746 (($ $) 75)) (-2926 (($ $) 89)) (-2790 (($ $) 76)) (-2547 (($) 17 T CONST)) (-1297 (((-3 (-521) "failed") $) 69)) (-1483 (((-521) $) 68)) (-1257 (((-3 $ "failed") $) 34)) (-1709 (($ |#1| |#1|) 66)) (-3951 (((-108) $) 60)) (-2834 (($) 101)) (-3996 (((-108) $) 31)) (-3407 (($ $ (-521)) 72)) (-2210 (((-108) $) 59)) (-2810 (($ $ $) 107)) (-2446 (($ $ $) 106)) (-1253 (($ $) 98)) (-2223 (($ $ $) 46) (($ (-587 $)) 45)) (-3688 (((-1067) $) 9)) (-2024 (($ |#1| |#1|) 67) (($ |#1|) 65) (($ (-381 (-521))) 64)) (-2618 ((|#1| $) 63)) (-4147 (((-1031) $) 10)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) 44)) (-2258 (($ $ $) 48) (($ (-587 $)) 47)) (-2230 (((-3 $ "failed") $ $) 42)) (-3261 (($ $) 99)) (-1738 (($ $) 88)) (-2800 (($ $) 77)) (-2915 (($ $) 87)) (-2780 (($ $) 78)) (-2892 (($ $) 86)) (-2758 (($ $) 79)) (-2186 (((-108) $ |#1|) 58)) (-2189 (((-792) $) 11) (($ (-521)) 28) (($ $) 43) (($ (-521)) 70)) (-3846 (((-707)) 29)) (-1759 (($ $) 97)) (-2832 (($ $) 85)) (-4210 (((-108) $ $) 39)) (-1745 (($ $) 96)) (-2811 (($ $) 84)) (-1776 (($ $) 95)) (-2856 (($ $) 83)) (-3919 (($ $) 94)) (-2868 (($ $) 82)) (-1768 (($ $) 93)) (-2844 (($ $) 81)) (-1752 (($ $) 92)) (-2821 (($ $) 80)) (-3505 (($ $ (-850)) 26) (($ $ (-707)) 33)) (-3561 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-1574 (((-108) $ $) 104)) (-1558 (((-108) $ $) 103)) (-1531 (((-108) $ $) 6)) (-1566 (((-108) $ $) 105)) (-1549 (((-108) $ $) 102)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-707)) 32) (($ $ $) 100) (($ $ (-381 (-521))) 71)) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24)))
+(((-511 |#1|) (-1196) (-13 (-378) (-1105))) (T -511))
+((-2024 (*1 *1 *2 *2) (-12 (-4 *1 (-511 *2)) (-4 *2 (-13 (-378) (-1105))))) (-1709 (*1 *1 *2 *2) (-12 (-4 *1 (-511 *2)) (-4 *2 (-13 (-378) (-1105))))) (-2024 (*1 *1 *2) (-12 (-4 *1 (-511 *2)) (-4 *2 (-13 (-378) (-1105))))) (-2024 (*1 *1 *2) (-12 (-5 *2 (-381 (-521))) (-4 *1 (-511 *3)) (-4 *3 (-13 (-378) (-1105))))) (-2618 (*1 *2 *1) (-12 (-4 *1 (-511 *2)) (-4 *2 (-13 (-378) (-1105))))) (-2641 (*1 *2 *1) (-12 (-4 *1 (-511 *2)) (-4 *2 (-13 (-378) (-1105))))) (-2644 (*1 *2 *1) (-12 (-4 *1 (-511 *2)) (-4 *2 (-13 (-378) (-1105))))) (-3951 (*1 *2 *1) (-12 (-4 *1 (-511 *3)) (-4 *3 (-13 (-378) (-1105))) (-5 *2 (-108)))) (-2210 (*1 *2 *1) (-12 (-4 *1 (-511 *3)) (-4 *3 (-13 (-378) (-1105))) (-5 *2 (-108)))) (-2186 (*1 *2 *1 *3) (-12 (-4 *1 (-511 *3)) (-4 *3 (-13 (-378) (-1105))) (-5 *2 (-108)))))
+(-13 (-425) (-784) (-1105) (-927) (-961 (-521)) (-10 -8 (-6 -3894) (-15 -2024 ($ |t#1| |t#1|)) (-15 -1709 ($ |t#1| |t#1|)) (-15 -2024 ($ |t#1|)) (-15 -2024 ($ (-381 (-521)))) (-15 -2618 (|t#1| $)) (-15 -2641 (|t#1| $)) (-15 -2644 (|t#1| $)) (-15 -3951 ((-108) $)) (-15 -2210 ((-108) $)) (-15 -2186 ((-108) $ |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-34) . T) ((-91) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-561 (-792)) . T) ((-157) . T) ((-259) . T) ((-265) . T) ((-425) . T) ((-462) . T) ((-513) . T) ((-589 $) . T) ((-654 $) . T) ((-663) . T) ((-784) . T) ((-927) . T) ((-961 (-521)) . T) ((-976 $) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T) ((-1105) . T) ((-1108) . T))
+((-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) 9)) (-2559 (($ $) 11)) (-1733 (((-108) $) 18)) (-1257 (((-3 $ "failed") $) 16)) (-4210 (((-108) $ $) 20)))
+(((-512 |#1|) (-10 -8 (-15 -1733 ((-108) |#1|)) (-15 -4210 ((-108) |#1| |#1|)) (-15 -2559 (|#1| |#1|)) (-15 -3847 ((-2 (|:| -3689 |#1|) (|:| -4220 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1257 ((-3 |#1| "failed") |#1|))) (-513)) (T -512))
+NIL
+(-10 -8 (-15 -1733 ((-108) |#1|)) (-15 -4210 ((-108) |#1| |#1|)) (-15 -2559 (|#1| |#1|)) (-15 -3847 ((-2 (|:| -3689 |#1|) (|:| -4220 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1257 ((-3 |#1| "failed") |#1|)))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) 41)) (-2559 (($ $) 40)) (-1733 (((-108) $) 38)) (-1232 (((-3 $ "failed") $ $) 19)) (-2547 (($) 17 T CONST)) (-1257 (((-3 $ "failed") $) 34)) (-3996 (((-108) $) 31)) (-3688 (((-1067) $) 9)) (-4147 (((-1031) $) 10)) (-2230 (((-3 $ "failed") $ $) 42)) (-2189 (((-792) $) 11) (($ (-521)) 28) (($ $) 43)) (-3846 (((-707)) 29)) (-4210 (((-108) $ $) 39)) (-3505 (($ $ (-850)) 26) (($ $ (-707)) 33)) (-3561 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-707)) 32)) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24)))
+(((-513) (-1196)) (T -513))
+((-2230 (*1 *1 *1 *1) (|partial| -4 *1 (-513))) (-3847 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3689 *1) (|:| -4220 *1) (|:| |associate| *1))) (-4 *1 (-513)))) (-2559 (*1 *1 *1) (-4 *1 (-513))) (-4210 (*1 *2 *1 *1) (-12 (-4 *1 (-513)) (-5 *2 (-108)))) (-1733 (*1 *2 *1) (-12 (-4 *1 (-513)) (-5 *2 (-108)))))
+(-13 (-157) (-37 $) (-265) (-10 -8 (-15 -2230 ((-3 $ "failed") $ $)) (-15 -3847 ((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $)) (-15 -2559 ($ $)) (-15 -4210 ((-108) $ $)) (-15 -1733 ((-108) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-561 (-792)) . T) ((-157) . T) ((-265) . T) ((-589 $) . T) ((-654 $) . T) ((-663) . T) ((-976 $) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T))
+((-1317 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1084) (-587 |#2|)) 35)) (-3228 (((-538 |#2|) |#2| (-1084)) 58)) (-4033 (((-3 |#2| "failed") |#2| (-1084)) 149)) (-4035 (((-3 (-2 (|:| -3100 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1084) (-560 |#2|) (-587 (-560 |#2|))) 152)) (-2391 (((-3 (-2 (|:| -3100 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1084) |#2|) 38)))
+(((-514 |#1| |#2|) (-10 -7 (-15 -2391 ((-3 (-2 (|:| -3100 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1084) |#2|)) (-15 -1317 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1084) (-587 |#2|))) (-15 -4033 ((-3 |#2| "failed") |#2| (-1084))) (-15 -3228 ((-538 |#2|) |#2| (-1084))) (-15 -4035 ((-3 (-2 (|:| -3100 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1084) (-560 |#2|) (-587 (-560 |#2|))))) (-13 (-425) (-784) (-135) (-961 (-521)) (-583 (-521))) (-13 (-27) (-1105) (-404 |#1|))) (T -514))
+((-4035 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1084)) (-5 *6 (-587 (-560 *3))) (-5 *5 (-560 *3)) (-4 *3 (-13 (-27) (-1105) (-404 *7))) (-4 *7 (-13 (-425) (-784) (-135) (-961 (-521)) (-583 (-521)))) (-5 *2 (-2 (|:| -3100 *3) (|:| |coeff| *3))) (-5 *1 (-514 *7 *3)))) (-3228 (*1 *2 *3 *4) (-12 (-5 *4 (-1084)) (-4 *5 (-13 (-425) (-784) (-135) (-961 (-521)) (-583 (-521)))) (-5 *2 (-538 *3)) (-5 *1 (-514 *5 *3)) (-4 *3 (-13 (-27) (-1105) (-404 *5))))) (-4033 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1084)) (-4 *4 (-13 (-425) (-784) (-135) (-961 (-521)) (-583 (-521)))) (-5 *1 (-514 *4 *2)) (-4 *2 (-13 (-27) (-1105) (-404 *4))))) (-1317 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1084)) (-5 *5 (-587 *3)) (-4 *3 (-13 (-27) (-1105) (-404 *6))) (-4 *6 (-13 (-425) (-784) (-135) (-961 (-521)) (-583 (-521)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-514 *6 *3)))) (-2391 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1084)) (-4 *5 (-13 (-425) (-784) (-135) (-961 (-521)) (-583 (-521)))) (-5 *2 (-2 (|:| -3100 *3) (|:| |coeff| *3))) (-5 *1 (-514 *5 *3)) (-4 *3 (-13 (-27) (-1105) (-404 *5))))))
+(-10 -7 (-15 -2391 ((-3 (-2 (|:| -3100 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1084) |#2|)) (-15 -1317 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1084) (-587 |#2|))) (-15 -4033 ((-3 |#2| "failed") |#2| (-1084))) (-15 -3228 ((-538 |#2|) |#2| (-1084))) (-15 -4035 ((-3 (-2 (|:| -3100 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1084) (-560 |#2|) (-587 (-560 |#2|)))))
+((-3358 (((-392 |#1|) |#1|) 18)) (-1916 (((-392 |#1|) |#1|) 33)) (-1878 (((-3 |#1| "failed") |#1|) 44)) (-2787 (((-392 |#1|) |#1|) 51)))
+(((-515 |#1|) (-10 -7 (-15 -1916 ((-392 |#1|) |#1|)) (-15 -3358 ((-392 |#1|) |#1|)) (-15 -2787 ((-392 |#1|) |#1|)) (-15 -1878 ((-3 |#1| "failed") |#1|))) (-506)) (T -515))
+((-1878 (*1 *2 *2) (|partial| -12 (-5 *1 (-515 *2)) (-4 *2 (-506)))) (-2787 (*1 *2 *3) (-12 (-5 *2 (-392 *3)) (-5 *1 (-515 *3)) (-4 *3 (-506)))) (-3358 (*1 *2 *3) (-12 (-5 *2 (-392 *3)) (-5 *1 (-515 *3)) (-4 *3 (-506)))) (-1916 (*1 *2 *3) (-12 (-5 *2 (-392 *3)) (-5 *1 (-515 *3)) (-4 *3 (-506)))))
+(-10 -7 (-15 -1916 ((-392 |#1|) |#1|)) (-15 -3358 ((-392 |#1|) |#1|)) (-15 -2787 ((-392 |#1|) |#1|)) (-15 -1878 ((-3 |#1| "failed") |#1|)))
+((-2432 (($) 9)) (-1319 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1065 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2442 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 29)) (-2961 (((-587 (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) $) 26)) (-3373 (($ (-2 (|:| -2529 (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3045 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1065 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2442 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 23)) (-2162 (($ (-587 (-2 (|:| -2529 (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3045 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1065 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2442 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 21)) (-3045 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1065 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2442 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 33)) (-2489 (((-587 (-2 (|:| -2529 (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3045 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1065 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2442 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 31)) (-1345 (((-1170)) 12)))
+(((-516) (-10 -8 (-15 -2432 ($)) (-15 -1345 ((-1170))) (-15 -2961 ((-587 (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) $)) (-15 -2162 ($ (-587 (-2 (|:| -2529 (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3045 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1065 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2442 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3373 ($ (-2 (|:| -2529 (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3045 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1065 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2442 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1319 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1065 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2442 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -2489 ((-587 (-2 (|:| -2529 (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3045 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1065 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2442 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -3045 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1065 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2442 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))))) (T -516))
+((-3045 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1065 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2442 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-516)))) (-2489 (*1 *2 *1) (-12 (-5 *2 (-587 (-2 (|:| -2529 (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3045 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1065 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2442 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-516)))) (-1319 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1065 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2442 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-516)))) (-3373 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2529 (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3045 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1065 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2442 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-516)))) (-2162 (*1 *1 *2) (-12 (-5 *2 (-587 (-2 (|:| -2529 (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3045 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1065 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2442 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-516)))) (-2961 (*1 *2 *1) (-12 (-5 *2 (-587 (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-5 *1 (-516)))) (-1345 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-516)))) (-2432 (*1 *1) (-5 *1 (-516))))
+(-10 -8 (-15 -2432 ($)) (-15 -1345 ((-1170))) (-15 -2961 ((-587 (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) $)) (-15 -2162 ($ (-587 (-2 (|:| -2529 (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3045 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1065 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2442 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3373 ($ (-2 (|:| -2529 (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3045 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1065 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2442 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1319 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1065 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2442 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -2489 ((-587 (-2 (|:| -2529 (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3045 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1065 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2442 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -3045 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1065 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2442 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))))
+((-1280 (((-1080 (-381 (-1080 |#2|))) |#2| (-560 |#2|) (-560 |#2|) (-1080 |#2|)) 28)) (-2545 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-560 |#2|) (-560 |#2|) (-587 |#2|) (-560 |#2|) |#2| (-381 (-1080 |#2|))) 96) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-560 |#2|) (-560 |#2|) (-587 |#2|) |#2| (-1080 |#2|)) 106)) (-4038 (((-538 |#2|) |#2| (-560 |#2|) (-560 |#2|) (-560 |#2|) |#2| (-381 (-1080 |#2|))) 78) (((-538 |#2|) |#2| (-560 |#2|) (-560 |#2|) |#2| (-1080 |#2|)) 50)) (-2878 (((-3 (-2 (|:| -3100 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-560 |#2|) (-560 |#2|) |#2| (-560 |#2|) |#2| (-381 (-1080 |#2|))) 85) (((-3 (-2 (|:| -3100 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-560 |#2|) (-560 |#2|) |#2| |#2| (-1080 |#2|)) 105)) (-2589 (((-3 |#2| "failed") |#2| |#2| (-560 |#2|) (-560 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1084)) (-560 |#2|) |#2| (-381 (-1080 |#2|))) 101) (((-3 |#2| "failed") |#2| |#2| (-560 |#2|) (-560 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1084)) |#2| (-1080 |#2|)) 107)) (-4139 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2470 (-587 |#2|))) |#3| |#2| (-560 |#2|) (-560 |#2|) (-560 |#2|) |#2| (-381 (-1080 |#2|))) 124 (|has| |#3| (-597 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2470 (-587 |#2|))) |#3| |#2| (-560 |#2|) (-560 |#2|) |#2| (-1080 |#2|)) 123 (|has| |#3| (-597 |#2|)))) (-4069 ((|#2| (-1080 (-381 (-1080 |#2|))) (-560 |#2|) |#2|) 48)) (-3844 (((-1080 (-381 (-1080 |#2|))) (-1080 |#2|) (-560 |#2|)) 27)))
+(((-517 |#1| |#2| |#3|) (-10 -7 (-15 -4038 ((-538 |#2|) |#2| (-560 |#2|) (-560 |#2|) |#2| (-1080 |#2|))) (-15 -4038 ((-538 |#2|) |#2| (-560 |#2|) (-560 |#2|) (-560 |#2|) |#2| (-381 (-1080 |#2|)))) (-15 -2878 ((-3 (-2 (|:| -3100 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-560 |#2|) (-560 |#2|) |#2| |#2| (-1080 |#2|))) (-15 -2878 ((-3 (-2 (|:| -3100 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-560 |#2|) (-560 |#2|) |#2| (-560 |#2|) |#2| (-381 (-1080 |#2|)))) (-15 -2545 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-560 |#2|) (-560 |#2|) (-587 |#2|) |#2| (-1080 |#2|))) (-15 -2545 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-560 |#2|) (-560 |#2|) (-587 |#2|) (-560 |#2|) |#2| (-381 (-1080 |#2|)))) (-15 -2589 ((-3 |#2| "failed") |#2| |#2| (-560 |#2|) (-560 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1084)) |#2| (-1080 |#2|))) (-15 -2589 ((-3 |#2| "failed") |#2| |#2| (-560 |#2|) (-560 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1084)) (-560 |#2|) |#2| (-381 (-1080 |#2|)))) (-15 -1280 ((-1080 (-381 (-1080 |#2|))) |#2| (-560 |#2|) (-560 |#2|) (-1080 |#2|))) (-15 -4069 (|#2| (-1080 (-381 (-1080 |#2|))) (-560 |#2|) |#2|)) (-15 -3844 ((-1080 (-381 (-1080 |#2|))) (-1080 |#2|) (-560 |#2|))) (IF (|has| |#3| (-597 |#2|)) (PROGN (-15 -4139 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2470 (-587 |#2|))) |#3| |#2| (-560 |#2|) (-560 |#2|) |#2| (-1080 |#2|))) (-15 -4139 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2470 (-587 |#2|))) |#3| |#2| (-560 |#2|) (-560 |#2|) (-560 |#2|) |#2| (-381 (-1080 |#2|))))) |%noBranch|)) (-13 (-425) (-961 (-521)) (-784) (-135) (-583 (-521))) (-13 (-404 |#1|) (-27) (-1105)) (-1013)) (T -517))
+((-4139 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-560 *4)) (-5 *6 (-381 (-1080 *4))) (-4 *4 (-13 (-404 *7) (-27) (-1105))) (-4 *7 (-13 (-425) (-961 (-521)) (-784) (-135) (-583 (-521)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2470 (-587 *4)))) (-5 *1 (-517 *7 *4 *3)) (-4 *3 (-597 *4)) (-4 *3 (-1013)))) (-4139 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-560 *4)) (-5 *6 (-1080 *4)) (-4 *4 (-13 (-404 *7) (-27) (-1105))) (-4 *7 (-13 (-425) (-961 (-521)) (-784) (-135) (-583 (-521)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2470 (-587 *4)))) (-5 *1 (-517 *7 *4 *3)) (-4 *3 (-597 *4)) (-4 *3 (-1013)))) (-3844 (*1 *2 *3 *4) (-12 (-5 *4 (-560 *6)) (-4 *6 (-13 (-404 *5) (-27) (-1105))) (-4 *5 (-13 (-425) (-961 (-521)) (-784) (-135) (-583 (-521)))) (-5 *2 (-1080 (-381 (-1080 *6)))) (-5 *1 (-517 *5 *6 *7)) (-5 *3 (-1080 *6)) (-4 *7 (-1013)))) (-4069 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1080 (-381 (-1080 *2)))) (-5 *4 (-560 *2)) (-4 *2 (-13 (-404 *5) (-27) (-1105))) (-4 *5 (-13 (-425) (-961 (-521)) (-784) (-135) (-583 (-521)))) (-5 *1 (-517 *5 *2 *6)) (-4 *6 (-1013)))) (-1280 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-560 *3)) (-4 *3 (-13 (-404 *6) (-27) (-1105))) (-4 *6 (-13 (-425) (-961 (-521)) (-784) (-135) (-583 (-521)))) (-5 *2 (-1080 (-381 (-1080 *3)))) (-5 *1 (-517 *6 *3 *7)) (-5 *5 (-1080 *3)) (-4 *7 (-1013)))) (-2589 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-560 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1084))) (-5 *5 (-381 (-1080 *2))) (-4 *2 (-13 (-404 *6) (-27) (-1105))) (-4 *6 (-13 (-425) (-961 (-521)) (-784) (-135) (-583 (-521)))) (-5 *1 (-517 *6 *2 *7)) (-4 *7 (-1013)))) (-2589 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-560 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1084))) (-5 *5 (-1080 *2)) (-4 *2 (-13 (-404 *6) (-27) (-1105))) (-4 *6 (-13 (-425) (-961 (-521)) (-784) (-135) (-583 (-521)))) (-5 *1 (-517 *6 *2 *7)) (-4 *7 (-1013)))) (-2545 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-560 *3)) (-5 *5 (-587 *3)) (-5 *6 (-381 (-1080 *3))) (-4 *3 (-13 (-404 *7) (-27) (-1105))) (-4 *7 (-13 (-425) (-961 (-521)) (-784) (-135) (-583 (-521)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-517 *7 *3 *8)) (-4 *8 (-1013)))) (-2545 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-560 *3)) (-5 *5 (-587 *3)) (-5 *6 (-1080 *3)) (-4 *3 (-13 (-404 *7) (-27) (-1105))) (-4 *7 (-13 (-425) (-961 (-521)) (-784) (-135) (-583 (-521)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-517 *7 *3 *8)) (-4 *8 (-1013)))) (-2878 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-560 *3)) (-5 *5 (-381 (-1080 *3))) (-4 *3 (-13 (-404 *6) (-27) (-1105))) (-4 *6 (-13 (-425) (-961 (-521)) (-784) (-135) (-583 (-521)))) (-5 *2 (-2 (|:| -3100 *3) (|:| |coeff| *3))) (-5 *1 (-517 *6 *3 *7)) (-4 *7 (-1013)))) (-2878 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-560 *3)) (-5 *5 (-1080 *3)) (-4 *3 (-13 (-404 *6) (-27) (-1105))) (-4 *6 (-13 (-425) (-961 (-521)) (-784) (-135) (-583 (-521)))) (-5 *2 (-2 (|:| -3100 *3) (|:| |coeff| *3))) (-5 *1 (-517 *6 *3 *7)) (-4 *7 (-1013)))) (-4038 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-560 *3)) (-5 *5 (-381 (-1080 *3))) (-4 *3 (-13 (-404 *6) (-27) (-1105))) (-4 *6 (-13 (-425) (-961 (-521)) (-784) (-135) (-583 (-521)))) (-5 *2 (-538 *3)) (-5 *1 (-517 *6 *3 *7)) (-4 *7 (-1013)))) (-4038 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-560 *3)) (-5 *5 (-1080 *3)) (-4 *3 (-13 (-404 *6) (-27) (-1105))) (-4 *6 (-13 (-425) (-961 (-521)) (-784) (-135) (-583 (-521)))) (-5 *2 (-538 *3)) (-5 *1 (-517 *6 *3 *7)) (-4 *7 (-1013)))))
+(-10 -7 (-15 -4038 ((-538 |#2|) |#2| (-560 |#2|) (-560 |#2|) |#2| (-1080 |#2|))) (-15 -4038 ((-538 |#2|) |#2| (-560 |#2|) (-560 |#2|) (-560 |#2|) |#2| (-381 (-1080 |#2|)))) (-15 -2878 ((-3 (-2 (|:| -3100 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-560 |#2|) (-560 |#2|) |#2| |#2| (-1080 |#2|))) (-15 -2878 ((-3 (-2 (|:| -3100 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-560 |#2|) (-560 |#2|) |#2| (-560 |#2|) |#2| (-381 (-1080 |#2|)))) (-15 -2545 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-560 |#2|) (-560 |#2|) (-587 |#2|) |#2| (-1080 |#2|))) (-15 -2545 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-560 |#2|) (-560 |#2|) (-587 |#2|) (-560 |#2|) |#2| (-381 (-1080 |#2|)))) (-15 -2589 ((-3 |#2| "failed") |#2| |#2| (-560 |#2|) (-560 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1084)) |#2| (-1080 |#2|))) (-15 -2589 ((-3 |#2| "failed") |#2| |#2| (-560 |#2|) (-560 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1084)) (-560 |#2|) |#2| (-381 (-1080 |#2|)))) (-15 -1280 ((-1080 (-381 (-1080 |#2|))) |#2| (-560 |#2|) (-560 |#2|) (-1080 |#2|))) (-15 -4069 (|#2| (-1080 (-381 (-1080 |#2|))) (-560 |#2|) |#2|)) (-15 -3844 ((-1080 (-381 (-1080 |#2|))) (-1080 |#2|) (-560 |#2|))) (IF (|has| |#3| (-597 |#2|)) (PROGN (-15 -4139 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2470 (-587 |#2|))) |#3| |#2| (-560 |#2|) (-560 |#2|) |#2| (-1080 |#2|))) (-15 -4139 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2470 (-587 |#2|))) |#3| |#2| (-560 |#2|) (-560 |#2|) (-560 |#2|) |#2| (-381 (-1080 |#2|))))) |%noBranch|))
+((-1703 (((-521) (-521) (-707)) 66)) (-3575 (((-521) (-521)) 65)) (-2160 (((-521) (-521)) 64)) (-4072 (((-521) (-521)) 69)) (-3299 (((-521) (-521) (-521)) 49)) (-1731 (((-521) (-521) (-521)) 46)) (-2503 (((-381 (-521)) (-521)) 20)) (-1688 (((-521) (-521)) 21)) (-3728 (((-521) (-521)) 58)) (-3743 (((-521) (-521)) 32)) (-1355 (((-587 (-521)) (-521)) 63)) (-3837 (((-521) (-521) (-521) (-521) (-521)) 44)) (-2996 (((-381 (-521)) (-521)) 41)))
+(((-518) (-10 -7 (-15 -2996 ((-381 (-521)) (-521))) (-15 -3837 ((-521) (-521) (-521) (-521) (-521))) (-15 -1355 ((-587 (-521)) (-521))) (-15 -3743 ((-521) (-521))) (-15 -3728 ((-521) (-521))) (-15 -1688 ((-521) (-521))) (-15 -2503 ((-381 (-521)) (-521))) (-15 -1731 ((-521) (-521) (-521))) (-15 -3299 ((-521) (-521) (-521))) (-15 -4072 ((-521) (-521))) (-15 -2160 ((-521) (-521))) (-15 -3575 ((-521) (-521))) (-15 -1703 ((-521) (-521) (-707))))) (T -518))
+((-1703 (*1 *2 *2 *3) (-12 (-5 *2 (-521)) (-5 *3 (-707)) (-5 *1 (-518)))) (-3575 (*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-518)))) (-2160 (*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-518)))) (-4072 (*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-518)))) (-3299 (*1 *2 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-518)))) (-1731 (*1 *2 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-518)))) (-2503 (*1 *2 *3) (-12 (-5 *2 (-381 (-521))) (-5 *1 (-518)) (-5 *3 (-521)))) (-1688 (*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-518)))) (-3728 (*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-518)))) (-3743 (*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-518)))) (-1355 (*1 *2 *3) (-12 (-5 *2 (-587 (-521))) (-5 *1 (-518)) (-5 *3 (-521)))) (-3837 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-518)))) (-2996 (*1 *2 *3) (-12 (-5 *2 (-381 (-521))) (-5 *1 (-518)) (-5 *3 (-521)))))
+(-10 -7 (-15 -2996 ((-381 (-521)) (-521))) (-15 -3837 ((-521) (-521) (-521) (-521) (-521))) (-15 -1355 ((-587 (-521)) (-521))) (-15 -3743 ((-521) (-521))) (-15 -3728 ((-521) (-521))) (-15 -1688 ((-521) (-521))) (-15 -2503 ((-381 (-521)) (-521))) (-15 -1731 ((-521) (-521) (-521))) (-15 -3299 ((-521) (-521) (-521))) (-15 -4072 ((-521) (-521))) (-15 -2160 ((-521) (-521))) (-15 -3575 ((-521) (-521))) (-15 -1703 ((-521) (-521) (-707))))
+((-3868 (((-2 (|:| |answer| |#4|) (|:| -1357 |#4|)) |#4| (-1 |#2| |#2|)) 52)))
+(((-519 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3868 ((-2 (|:| |answer| |#4|) (|:| -1357 |#4|)) |#4| (-1 |#2| |#2|)))) (-337) (-1141 |#1|) (-1141 (-381 |#2|)) (-316 |#1| |#2| |#3|)) (T -519))
+((-3868 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1141 *5)) (-4 *5 (-337)) (-4 *7 (-1141 (-381 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -1357 *3))) (-5 *1 (-519 *5 *6 *7 *3)) (-4 *3 (-316 *5 *6 *7)))))
+(-10 -7 (-15 -3868 ((-2 (|:| |answer| |#4|) (|:| -1357 |#4|)) |#4| (-1 |#2| |#2|))))
+((-3868 (((-2 (|:| |answer| (-381 |#2|)) (|:| -1357 (-381 |#2|)) (|:| |specpart| (-381 |#2|)) (|:| |polypart| |#2|)) (-381 |#2|) (-1 |#2| |#2|)) 18)))
+(((-520 |#1| |#2|) (-10 -7 (-15 -3868 ((-2 (|:| |answer| (-381 |#2|)) (|:| -1357 (-381 |#2|)) (|:| |specpart| (-381 |#2|)) (|:| |polypart| |#2|)) (-381 |#2|) (-1 |#2| |#2|)))) (-337) (-1141 |#1|)) (T -520))
+((-3868 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1141 *5)) (-4 *5 (-337)) (-5 *2 (-2 (|:| |answer| (-381 *6)) (|:| -1357 (-381 *6)) (|:| |specpart| (-381 *6)) (|:| |polypart| *6))) (-5 *1 (-520 *5 *6)) (-5 *3 (-381 *6)))))
+(-10 -7 (-15 -3868 ((-2 (|:| |answer| (-381 |#2|)) (|:| -1357 (-381 |#2|)) (|:| |specpart| (-381 |#2|)) (|:| |polypart| |#2|)) (-381 |#2|) (-1 |#2| |#2|))))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) 25)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) 86)) (-2559 (($ $) 87)) (-1733 (((-108) $) NIL)) (-3929 (($ $ $) NIL)) (-1232 (((-3 $ "failed") $ $) NIL)) (-3106 (($ $ $ $) 42)) (-3063 (($ $) NIL)) (-3358 (((-392 $) $) NIL)) (-1389 (((-108) $ $) NIL)) (-1606 (((-521) $) NIL)) (-1662 (($ $ $) 80)) (-2547 (($) NIL T CONST)) (-1297 (((-3 (-521) "failed") $) NIL)) (-1483 (((-521) $) NIL)) (-2277 (($ $ $) 79)) (-3279 (((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) 60) (((-627 (-521)) (-627 $)) 57)) (-1257 (((-3 $ "failed") $) 83)) (-1521 (((-3 (-381 (-521)) "failed") $) NIL)) (-3190 (((-108) $) NIL)) (-2082 (((-381 (-521)) $) NIL)) (-3250 (($) 62) (($ $) 63)) (-2253 (($ $ $) 78)) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) NIL)) (-2710 (((-108) $) NIL)) (-2213 (($ $ $ $) NIL)) (-3158 (($ $ $) 54)) (-3951 (((-108) $) NIL)) (-3189 (($ $ $) NIL)) (-3427 (((-818 (-521) $) $ (-821 (-521)) (-818 (-521) $)) NIL)) (-3996 (((-108) $) 26)) (-1255 (((-108) $) 73)) (-3842 (((-3 $ "failed") $) NIL)) (-2210 (((-108) $) 34)) (-1546 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-2283 (($ $ $ $) 43)) (-2810 (($ $ $) 75)) (-2446 (($ $ $) 74)) (-3890 (($ $) NIL)) (-2516 (($ $) 40)) (-2223 (($ $ $) NIL) (($ (-587 $)) NIL)) (-3688 (((-1067) $) 53)) (-1642 (($ $ $) NIL)) (-3797 (($) NIL T CONST)) (-2953 (($ $) 31)) (-4147 (((-1031) $) NIL) (($ $) 33)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) 117)) (-2258 (($ $ $) 84) (($ (-587 $)) NIL)) (-3210 (($ $) NIL)) (-1916 (((-392 $) $) 103)) (-1962 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL)) (-2230 (((-3 $ "failed") $ $) 82)) (-3854 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-3550 (((-108) $) NIL)) (-4196 (((-707) $) NIL)) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) 77)) (-2156 (($ $ (-707)) NIL) (($ $) NIL)) (-3052 (($ $) 32)) (-2404 (($ $) 30)) (-1430 (((-521) $) 39) (((-497) $) 51) (((-821 (-521)) $) NIL) (((-353) $) 46) (((-202) $) 48) (((-1067) $) 52)) (-2189 (((-792) $) 37) (($ (-521)) 38) (($ $) NIL) (($ (-521)) 38)) (-3846 (((-707)) NIL)) (-3968 (((-108) $ $) NIL)) (-2712 (($ $ $) NIL)) (-3351 (($) 29)) (-4210 (((-108) $ $) NIL)) (-3631 (($ $ $ $) 41)) (-3304 (($ $) 61)) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (-3561 (($) 27 T CONST)) (-3572 (($) 28 T CONST)) (-2287 (((-1067) $) 20) (((-1067) $ (-108)) 22) (((-1170) (-759) $) 23) (((-1170) (-759) $ (-108)) 24)) (-2212 (($ $ (-707)) NIL) (($ $) NIL)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) 64)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 65)) (-1612 (($ $) 66) (($ $ $) 68)) (-1602 (($ $ $) 67)) (** (($ $ (-850)) NIL) (($ $ (-707)) 72)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) 70) (($ $ $) 69)))
+(((-521) (-13 (-506) (-562 (-1067)) (-765) (-10 -8 (-15 -3250 ($ $)) (-6 -4220) (-6 -4225) (-6 -4221) (-6 -4215)))) (T -521))
+((-3250 (*1 *1 *1) (-5 *1 (-521))))
+(-13 (-506) (-562 (-1067)) (-765) (-10 -8 (-15 -3250 ($ $)) (-6 -4220) (-6 -4225) (-6 -4221) (-6 -4215)))
+((-1797 (((-2 (|:| -1797 (-353)) (|:| -2884 (-1067)) (|:| |explanations| (-587 (-1067))) (|:| |extra| (-959))) (-705) (-982)) 103) (((-2 (|:| -1797 (-353)) (|:| -2884 (-1067)) (|:| |explanations| (-587 (-1067))) (|:| |extra| (-959))) (-705)) 105)) (-2184 (((-3 (-959) "failed") (-290 (-353)) (-1006 (-777 (-353))) (-1084)) 168) (((-3 (-959) "failed") (-290 (-353)) (-1006 (-777 (-353))) (-1067)) 167) (((-959) (-290 (-353)) (-587 (-1008 (-777 (-353)))) (-353) (-353) (-982)) 173) (((-959) (-290 (-353)) (-587 (-1008 (-777 (-353)))) (-353) (-353)) 174) (((-959) (-290 (-353)) (-587 (-1008 (-777 (-353)))) (-353)) 175) (((-959) (-290 (-353)) (-587 (-1008 (-777 (-353))))) 176) (((-959) (-290 (-353)) (-1008 (-777 (-353)))) 163) (((-959) (-290 (-353)) (-1008 (-777 (-353))) (-353)) 162) (((-959) (-290 (-353)) (-1008 (-777 (-353))) (-353) (-353)) 158) (((-959) (-705)) 150) (((-959) (-290 (-353)) (-1008 (-777 (-353))) (-353) (-353) (-982)) 157)))
+(((-522) (-10 -7 (-15 -2184 ((-959) (-290 (-353)) (-1008 (-777 (-353))) (-353) (-353) (-982))) (-15 -2184 ((-959) (-705))) (-15 -2184 ((-959) (-290 (-353)) (-1008 (-777 (-353))) (-353) (-353))) (-15 -2184 ((-959) (-290 (-353)) (-1008 (-777 (-353))) (-353))) (-15 -2184 ((-959) (-290 (-353)) (-1008 (-777 (-353))))) (-15 -2184 ((-959) (-290 (-353)) (-587 (-1008 (-777 (-353)))))) (-15 -2184 ((-959) (-290 (-353)) (-587 (-1008 (-777 (-353)))) (-353))) (-15 -2184 ((-959) (-290 (-353)) (-587 (-1008 (-777 (-353)))) (-353) (-353))) (-15 -2184 ((-959) (-290 (-353)) (-587 (-1008 (-777 (-353)))) (-353) (-353) (-982))) (-15 -1797 ((-2 (|:| -1797 (-353)) (|:| -2884 (-1067)) (|:| |explanations| (-587 (-1067))) (|:| |extra| (-959))) (-705))) (-15 -1797 ((-2 (|:| -1797 (-353)) (|:| -2884 (-1067)) (|:| |explanations| (-587 (-1067))) (|:| |extra| (-959))) (-705) (-982))) (-15 -2184 ((-3 (-959) "failed") (-290 (-353)) (-1006 (-777 (-353))) (-1067))) (-15 -2184 ((-3 (-959) "failed") (-290 (-353)) (-1006 (-777 (-353))) (-1084))))) (T -522))
+((-2184 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-290 (-353))) (-5 *4 (-1006 (-777 (-353)))) (-5 *5 (-1084)) (-5 *2 (-959)) (-5 *1 (-522)))) (-2184 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-290 (-353))) (-5 *4 (-1006 (-777 (-353)))) (-5 *5 (-1067)) (-5 *2 (-959)) (-5 *1 (-522)))) (-1797 (*1 *2 *3 *4) (-12 (-5 *3 (-705)) (-5 *4 (-982)) (-5 *2 (-2 (|:| -1797 (-353)) (|:| -2884 (-1067)) (|:| |explanations| (-587 (-1067))) (|:| |extra| (-959)))) (-5 *1 (-522)))) (-1797 (*1 *2 *3) (-12 (-5 *3 (-705)) (-5 *2 (-2 (|:| -1797 (-353)) (|:| -2884 (-1067)) (|:| |explanations| (-587 (-1067))) (|:| |extra| (-959)))) (-5 *1 (-522)))) (-2184 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-290 (-353))) (-5 *4 (-587 (-1008 (-777 (-353))))) (-5 *5 (-353)) (-5 *6 (-982)) (-5 *2 (-959)) (-5 *1 (-522)))) (-2184 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-290 (-353))) (-5 *4 (-587 (-1008 (-777 (-353))))) (-5 *5 (-353)) (-5 *2 (-959)) (-5 *1 (-522)))) (-2184 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-290 (-353))) (-5 *4 (-587 (-1008 (-777 (-353))))) (-5 *5 (-353)) (-5 *2 (-959)) (-5 *1 (-522)))) (-2184 (*1 *2 *3 *4) (-12 (-5 *3 (-290 (-353))) (-5 *4 (-587 (-1008 (-777 (-353))))) (-5 *2 (-959)) (-5 *1 (-522)))) (-2184 (*1 *2 *3 *4) (-12 (-5 *3 (-290 (-353))) (-5 *4 (-1008 (-777 (-353)))) (-5 *2 (-959)) (-5 *1 (-522)))) (-2184 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-290 (-353))) (-5 *4 (-1008 (-777 (-353)))) (-5 *5 (-353)) (-5 *2 (-959)) (-5 *1 (-522)))) (-2184 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-290 (-353))) (-5 *4 (-1008 (-777 (-353)))) (-5 *5 (-353)) (-5 *2 (-959)) (-5 *1 (-522)))) (-2184 (*1 *2 *3) (-12 (-5 *3 (-705)) (-5 *2 (-959)) (-5 *1 (-522)))) (-2184 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-290 (-353))) (-5 *4 (-1008 (-777 (-353)))) (-5 *5 (-353)) (-5 *6 (-982)) (-5 *2 (-959)) (-5 *1 (-522)))))
+(-10 -7 (-15 -2184 ((-959) (-290 (-353)) (-1008 (-777 (-353))) (-353) (-353) (-982))) (-15 -2184 ((-959) (-705))) (-15 -2184 ((-959) (-290 (-353)) (-1008 (-777 (-353))) (-353) (-353))) (-15 -2184 ((-959) (-290 (-353)) (-1008 (-777 (-353))) (-353))) (-15 -2184 ((-959) (-290 (-353)) (-1008 (-777 (-353))))) (-15 -2184 ((-959) (-290 (-353)) (-587 (-1008 (-777 (-353)))))) (-15 -2184 ((-959) (-290 (-353)) (-587 (-1008 (-777 (-353)))) (-353))) (-15 -2184 ((-959) (-290 (-353)) (-587 (-1008 (-777 (-353)))) (-353) (-353))) (-15 -2184 ((-959) (-290 (-353)) (-587 (-1008 (-777 (-353)))) (-353) (-353) (-982))) (-15 -1797 ((-2 (|:| -1797 (-353)) (|:| -2884 (-1067)) (|:| |explanations| (-587 (-1067))) (|:| |extra| (-959))) (-705))) (-15 -1797 ((-2 (|:| -1797 (-353)) (|:| -2884 (-1067)) (|:| |explanations| (-587 (-1067))) (|:| |extra| (-959))) (-705) (-982))) (-15 -2184 ((-3 (-959) "failed") (-290 (-353)) (-1006 (-777 (-353))) (-1067))) (-15 -2184 ((-3 (-959) "failed") (-290 (-353)) (-1006 (-777 (-353))) (-1084))))
+((-4047 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-560 |#2|) (-560 |#2|) (-587 |#2|)) 181)) (-1644 (((-538 |#2|) |#2| (-560 |#2|) (-560 |#2|)) 99)) (-3735 (((-3 (-2 (|:| -3100 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-560 |#2|) (-560 |#2|) |#2|) 177)) (-1556 (((-3 |#2| "failed") |#2| |#2| |#2| (-560 |#2|) (-560 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1084))) 186)) (-1623 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2470 (-587 |#2|))) |#3| |#2| (-560 |#2|) (-560 |#2|) (-1084)) 194 (|has| |#3| (-597 |#2|)))))
+(((-523 |#1| |#2| |#3|) (-10 -7 (-15 -1644 ((-538 |#2|) |#2| (-560 |#2|) (-560 |#2|))) (-15 -3735 ((-3 (-2 (|:| -3100 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-560 |#2|) (-560 |#2|) |#2|)) (-15 -4047 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-560 |#2|) (-560 |#2|) (-587 |#2|))) (-15 -1556 ((-3 |#2| "failed") |#2| |#2| |#2| (-560 |#2|) (-560 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1084)))) (IF (|has| |#3| (-597 |#2|)) (-15 -1623 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2470 (-587 |#2|))) |#3| |#2| (-560 |#2|) (-560 |#2|) (-1084))) |%noBranch|)) (-13 (-425) (-961 (-521)) (-784) (-135) (-583 (-521))) (-13 (-404 |#1|) (-27) (-1105)) (-1013)) (T -523))
+((-1623 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-560 *4)) (-5 *6 (-1084)) (-4 *4 (-13 (-404 *7) (-27) (-1105))) (-4 *7 (-13 (-425) (-961 (-521)) (-784) (-135) (-583 (-521)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2470 (-587 *4)))) (-5 *1 (-523 *7 *4 *3)) (-4 *3 (-597 *4)) (-4 *3 (-1013)))) (-1556 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-560 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1084))) (-4 *2 (-13 (-404 *5) (-27) (-1105))) (-4 *5 (-13 (-425) (-961 (-521)) (-784) (-135) (-583 (-521)))) (-5 *1 (-523 *5 *2 *6)) (-4 *6 (-1013)))) (-4047 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-560 *3)) (-5 *5 (-587 *3)) (-4 *3 (-13 (-404 *6) (-27) (-1105))) (-4 *6 (-13 (-425) (-961 (-521)) (-784) (-135) (-583 (-521)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-523 *6 *3 *7)) (-4 *7 (-1013)))) (-3735 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-560 *3)) (-4 *3 (-13 (-404 *5) (-27) (-1105))) (-4 *5 (-13 (-425) (-961 (-521)) (-784) (-135) (-583 (-521)))) (-5 *2 (-2 (|:| -3100 *3) (|:| |coeff| *3))) (-5 *1 (-523 *5 *3 *6)) (-4 *6 (-1013)))) (-1644 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-560 *3)) (-4 *3 (-13 (-404 *5) (-27) (-1105))) (-4 *5 (-13 (-425) (-961 (-521)) (-784) (-135) (-583 (-521)))) (-5 *2 (-538 *3)) (-5 *1 (-523 *5 *3 *6)) (-4 *6 (-1013)))))
+(-10 -7 (-15 -1644 ((-538 |#2|) |#2| (-560 |#2|) (-560 |#2|))) (-15 -3735 ((-3 (-2 (|:| -3100 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-560 |#2|) (-560 |#2|) |#2|)) (-15 -4047 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-560 |#2|) (-560 |#2|) (-587 |#2|))) (-15 -1556 ((-3 |#2| "failed") |#2| |#2| |#2| (-560 |#2|) (-560 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1084)))) (IF (|has| |#3| (-597 |#2|)) (-15 -1623 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2470 (-587 |#2|))) |#3| |#2| (-560 |#2|) (-560 |#2|) (-1084))) |%noBranch|))
+((-3912 (((-2 (|:| -2655 |#2|) (|:| |nconst| |#2|)) |#2| (-1084)) 62)) (-3437 (((-3 |#2| "failed") |#2| (-1084) (-777 |#2|) (-777 |#2|)) 159 (-12 (|has| |#2| (-1048)) (|has| |#1| (-562 (-821 (-521)))) (|has| |#1| (-815 (-521))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1084)) 133 (-12 (|has| |#2| (-573)) (|has| |#1| (-562 (-821 (-521)))) (|has| |#1| (-815 (-521)))))) (-3777 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1084)) 142 (-12 (|has| |#2| (-573)) (|has| |#1| (-562 (-821 (-521)))) (|has| |#1| (-815 (-521)))))))
+(((-524 |#1| |#2|) (-10 -7 (-15 -3912 ((-2 (|:| -2655 |#2|) (|:| |nconst| |#2|)) |#2| (-1084))) (IF (|has| |#1| (-562 (-821 (-521)))) (IF (|has| |#1| (-815 (-521))) (PROGN (IF (|has| |#2| (-573)) (PROGN (-15 -3777 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1084))) (-15 -3437 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1084)))) |%noBranch|) (IF (|has| |#2| (-1048)) (-15 -3437 ((-3 |#2| "failed") |#2| (-1084) (-777 |#2|) (-777 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-784) (-961 (-521)) (-425) (-583 (-521))) (-13 (-27) (-1105) (-404 |#1|))) (T -524))
+((-3437 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1084)) (-5 *4 (-777 *2)) (-4 *2 (-1048)) (-4 *2 (-13 (-27) (-1105) (-404 *5))) (-4 *5 (-562 (-821 (-521)))) (-4 *5 (-815 (-521))) (-4 *5 (-13 (-784) (-961 (-521)) (-425) (-583 (-521)))) (-5 *1 (-524 *5 *2)))) (-3437 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1084)) (-4 *5 (-562 (-821 (-521)))) (-4 *5 (-815 (-521))) (-4 *5 (-13 (-784) (-961 (-521)) (-425) (-583 (-521)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-524 *5 *3)) (-4 *3 (-573)) (-4 *3 (-13 (-27) (-1105) (-404 *5))))) (-3777 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1084)) (-4 *5 (-562 (-821 (-521)))) (-4 *5 (-815 (-521))) (-4 *5 (-13 (-784) (-961 (-521)) (-425) (-583 (-521)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-524 *5 *3)) (-4 *3 (-573)) (-4 *3 (-13 (-27) (-1105) (-404 *5))))) (-3912 (*1 *2 *3 *4) (-12 (-5 *4 (-1084)) (-4 *5 (-13 (-784) (-961 (-521)) (-425) (-583 (-521)))) (-5 *2 (-2 (|:| -2655 *3) (|:| |nconst| *3))) (-5 *1 (-524 *5 *3)) (-4 *3 (-13 (-27) (-1105) (-404 *5))))))
+(-10 -7 (-15 -3912 ((-2 (|:| -2655 |#2|) (|:| |nconst| |#2|)) |#2| (-1084))) (IF (|has| |#1| (-562 (-821 (-521)))) (IF (|has| |#1| (-815 (-521))) (PROGN (IF (|has| |#2| (-573)) (PROGN (-15 -3777 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1084))) (-15 -3437 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1084)))) |%noBranch|) (IF (|has| |#2| (-1048)) (-15 -3437 ((-3 |#2| "failed") |#2| (-1084) (-777 |#2|) (-777 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|))
+((-2943 (((-3 (-2 (|:| |mainpart| (-381 |#2|)) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| (-381 |#2|)) (|:| |logand| (-381 |#2|)))))) "failed") (-381 |#2|) (-587 (-381 |#2|))) 39)) (-2184 (((-538 (-381 |#2|)) (-381 |#2|)) 27)) (-2444 (((-3 (-381 |#2|) "failed") (-381 |#2|)) 16)) (-3460 (((-3 (-2 (|:| -3100 (-381 |#2|)) (|:| |coeff| (-381 |#2|))) "failed") (-381 |#2|) (-381 |#2|)) 46)))
+(((-525 |#1| |#2|) (-10 -7 (-15 -2184 ((-538 (-381 |#2|)) (-381 |#2|))) (-15 -2444 ((-3 (-381 |#2|) "failed") (-381 |#2|))) (-15 -3460 ((-3 (-2 (|:| -3100 (-381 |#2|)) (|:| |coeff| (-381 |#2|))) "failed") (-381 |#2|) (-381 |#2|))) (-15 -2943 ((-3 (-2 (|:| |mainpart| (-381 |#2|)) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| (-381 |#2|)) (|:| |logand| (-381 |#2|)))))) "failed") (-381 |#2|) (-587 (-381 |#2|))))) (-13 (-337) (-135) (-961 (-521))) (-1141 |#1|)) (T -525))
+((-2943 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-587 (-381 *6))) (-5 *3 (-381 *6)) (-4 *6 (-1141 *5)) (-4 *5 (-13 (-337) (-135) (-961 (-521)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-525 *5 *6)))) (-3460 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-337) (-135) (-961 (-521)))) (-4 *5 (-1141 *4)) (-5 *2 (-2 (|:| -3100 (-381 *5)) (|:| |coeff| (-381 *5)))) (-5 *1 (-525 *4 *5)) (-5 *3 (-381 *5)))) (-2444 (*1 *2 *2) (|partial| -12 (-5 *2 (-381 *4)) (-4 *4 (-1141 *3)) (-4 *3 (-13 (-337) (-135) (-961 (-521)))) (-5 *1 (-525 *3 *4)))) (-2184 (*1 *2 *3) (-12 (-4 *4 (-13 (-337) (-135) (-961 (-521)))) (-4 *5 (-1141 *4)) (-5 *2 (-538 (-381 *5))) (-5 *1 (-525 *4 *5)) (-5 *3 (-381 *5)))))
+(-10 -7 (-15 -2184 ((-538 (-381 |#2|)) (-381 |#2|))) (-15 -2444 ((-3 (-381 |#2|) "failed") (-381 |#2|))) (-15 -3460 ((-3 (-2 (|:| -3100 (-381 |#2|)) (|:| |coeff| (-381 |#2|))) "failed") (-381 |#2|) (-381 |#2|))) (-15 -2943 ((-3 (-2 (|:| |mainpart| (-381 |#2|)) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| (-381 |#2|)) (|:| |logand| (-381 |#2|)))))) "failed") (-381 |#2|) (-587 (-381 |#2|)))))
+((-1592 (((-3 (-521) "failed") |#1|) 14)) (-2392 (((-108) |#1|) 13)) (-1508 (((-521) |#1|) 9)))
+(((-526 |#1|) (-10 -7 (-15 -1508 ((-521) |#1|)) (-15 -2392 ((-108) |#1|)) (-15 -1592 ((-3 (-521) "failed") |#1|))) (-961 (-521))) (T -526))
+((-1592 (*1 *2 *3) (|partial| -12 (-5 *2 (-521)) (-5 *1 (-526 *3)) (-4 *3 (-961 *2)))) (-2392 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-526 *3)) (-4 *3 (-961 (-521))))) (-1508 (*1 *2 *3) (-12 (-5 *2 (-521)) (-5 *1 (-526 *3)) (-4 *3 (-961 *2)))))
+(-10 -7 (-15 -1508 ((-521) |#1|)) (-15 -2392 ((-108) |#1|)) (-15 -1592 ((-3 (-521) "failed") |#1|)))
+((-3231 (((-3 (-2 (|:| |mainpart| (-381 (-881 |#1|))) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| (-381 (-881 |#1|))) (|:| |logand| (-381 (-881 |#1|))))))) "failed") (-381 (-881 |#1|)) (-1084) (-587 (-381 (-881 |#1|)))) 43)) (-3170 (((-538 (-381 (-881 |#1|))) (-381 (-881 |#1|)) (-1084)) 25)) (-2353 (((-3 (-381 (-881 |#1|)) "failed") (-381 (-881 |#1|)) (-1084)) 20)) (-2029 (((-3 (-2 (|:| -3100 (-381 (-881 |#1|))) (|:| |coeff| (-381 (-881 |#1|)))) "failed") (-381 (-881 |#1|)) (-1084) (-381 (-881 |#1|))) 32)))
+(((-527 |#1|) (-10 -7 (-15 -3170 ((-538 (-381 (-881 |#1|))) (-381 (-881 |#1|)) (-1084))) (-15 -2353 ((-3 (-381 (-881 |#1|)) "failed") (-381 (-881 |#1|)) (-1084))) (-15 -3231 ((-3 (-2 (|:| |mainpart| (-381 (-881 |#1|))) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| (-381 (-881 |#1|))) (|:| |logand| (-381 (-881 |#1|))))))) "failed") (-381 (-881 |#1|)) (-1084) (-587 (-381 (-881 |#1|))))) (-15 -2029 ((-3 (-2 (|:| -3100 (-381 (-881 |#1|))) (|:| |coeff| (-381 (-881 |#1|)))) "failed") (-381 (-881 |#1|)) (-1084) (-381 (-881 |#1|))))) (-13 (-513) (-961 (-521)) (-135))) (T -527))
+((-2029 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1084)) (-4 *5 (-13 (-513) (-961 (-521)) (-135))) (-5 *2 (-2 (|:| -3100 (-381 (-881 *5))) (|:| |coeff| (-381 (-881 *5))))) (-5 *1 (-527 *5)) (-5 *3 (-381 (-881 *5))))) (-3231 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1084)) (-5 *5 (-587 (-381 (-881 *6)))) (-5 *3 (-381 (-881 *6))) (-4 *6 (-13 (-513) (-961 (-521)) (-135))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-527 *6)))) (-2353 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-381 (-881 *4))) (-5 *3 (-1084)) (-4 *4 (-13 (-513) (-961 (-521)) (-135))) (-5 *1 (-527 *4)))) (-3170 (*1 *2 *3 *4) (-12 (-5 *4 (-1084)) (-4 *5 (-13 (-513) (-961 (-521)) (-135))) (-5 *2 (-538 (-381 (-881 *5)))) (-5 *1 (-527 *5)) (-5 *3 (-381 (-881 *5))))))
+(-10 -7 (-15 -3170 ((-538 (-381 (-881 |#1|))) (-381 (-881 |#1|)) (-1084))) (-15 -2353 ((-3 (-381 (-881 |#1|)) "failed") (-381 (-881 |#1|)) (-1084))) (-15 -3231 ((-3 (-2 (|:| |mainpart| (-381 (-881 |#1|))) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| (-381 (-881 |#1|))) (|:| |logand| (-381 (-881 |#1|))))))) "failed") (-381 (-881 |#1|)) (-1084) (-587 (-381 (-881 |#1|))))) (-15 -2029 ((-3 (-2 (|:| -3100 (-381 (-881 |#1|))) (|:| |coeff| (-381 (-881 |#1|)))) "failed") (-381 (-881 |#1|)) (-1084) (-381 (-881 |#1|)))))
+((-1415 (((-108) $ $) 59)) (-2220 (((-108) $) 36)) (-2644 ((|#1| $) 30)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-2559 (($ $) NIL)) (-1733 (((-108) $) 63)) (-2904 (($ $) 123)) (-2769 (($ $) 103)) (-2641 ((|#1| $) 28)) (-1232 (((-3 $ "failed") $ $) NIL)) (-1927 (($ $) NIL)) (-2880 (($ $) 125)) (-2746 (($ $) 99)) (-2926 (($ $) 127)) (-2790 (($ $) 107)) (-2547 (($) NIL T CONST)) (-1297 (((-3 (-521) "failed") $) 78)) (-1483 (((-521) $) 80)) (-1257 (((-3 $ "failed") $) 62)) (-1709 (($ |#1| |#1|) 26)) (-3951 (((-108) $) 33)) (-2834 (($) 89)) (-3996 (((-108) $) 43)) (-3407 (($ $ (-521)) NIL)) (-2210 (((-108) $) 34)) (-2810 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-1253 (($ $) 91)) (-2223 (($ $ $) NIL) (($ (-587 $)) NIL)) (-3688 (((-1067) $) NIL)) (-2024 (($ |#1| |#1|) 20) (($ |#1|) 25) (($ (-381 (-521))) 77)) (-2618 ((|#1| $) 27)) (-4147 (((-1031) $) NIL)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) NIL)) (-2258 (($ $ $) 65) (($ (-587 $)) NIL)) (-2230 (((-3 $ "failed") $ $) 64)) (-3261 (($ $) 93)) (-1738 (($ $) 131)) (-2800 (($ $) 105)) (-2915 (($ $) 133)) (-2780 (($ $) 109)) (-2892 (($ $) 129)) (-2758 (($ $) 101)) (-2186 (((-108) $ |#1|) 31)) (-2189 (((-792) $) 85) (($ (-521)) 67) (($ $) NIL) (($ (-521)) 67)) (-3846 (((-707)) 87)) (-1759 (($ $) 145)) (-2832 (($ $) 115)) (-4210 (((-108) $ $) NIL)) (-1745 (($ $) 143)) (-2811 (($ $) 111)) (-1776 (($ $) 141)) (-2856 (($ $) 121)) (-3919 (($ $) 139)) (-2868 (($ $) 119)) (-1768 (($ $) 137)) (-2844 (($ $) 117)) (-1752 (($ $) 135)) (-2821 (($ $) 113)) (-3505 (($ $ (-850)) 55) (($ $ (-707)) NIL)) (-3561 (($) 21 T CONST)) (-3572 (($) 10 T CONST)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) 37)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 35)) (-1612 (($ $) 41) (($ $ $) 42)) (-1602 (($ $ $) 40)) (** (($ $ (-850)) 54) (($ $ (-707)) NIL) (($ $ $) 95) (($ $ (-381 (-521))) 147)) (* (($ (-850) $) 51) (($ (-707) $) NIL) (($ (-521) $) 50) (($ $ $) 48)))
+(((-528 |#1|) (-511 |#1|) (-13 (-378) (-1105))) (T -528))
+NIL
+(-511 |#1|)
+((-2569 (((-3 (-587 (-1080 (-521))) "failed") (-587 (-1080 (-521))) (-1080 (-521))) 24)))
+(((-529) (-10 -7 (-15 -2569 ((-3 (-587 (-1080 (-521))) "failed") (-587 (-1080 (-521))) (-1080 (-521)))))) (T -529))
+((-2569 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-587 (-1080 (-521)))) (-5 *3 (-1080 (-521))) (-5 *1 (-529)))))
+(-10 -7 (-15 -2569 ((-3 (-587 (-1080 (-521))) "failed") (-587 (-1080 (-521))) (-1080 (-521)))))
+((-3153 (((-587 (-560 |#2|)) (-587 (-560 |#2|)) (-1084)) 18)) (-4211 (((-587 (-560 |#2|)) (-587 |#2|) (-1084)) 23)) (-2269 (((-587 (-560 |#2|)) (-587 (-560 |#2|)) (-587 (-560 |#2|))) 10)) (-3852 ((|#2| |#2| (-1084)) 52 (|has| |#1| (-513)))) (-2362 ((|#2| |#2| (-1084)) 77 (-12 (|has| |#2| (-259)) (|has| |#1| (-425))))) (-2697 (((-560 |#2|) (-560 |#2|) (-587 (-560 |#2|)) (-1084)) 25)) (-3933 (((-560 |#2|) (-587 (-560 |#2|))) 24)) (-2855 (((-538 |#2|) |#2| (-1084) (-1 (-538 |#2|) |#2| (-1084)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1084))) 101 (-12 (|has| |#2| (-259)) (|has| |#2| (-573)) (|has| |#2| (-961 (-1084))) (|has| |#1| (-562 (-821 (-521)))) (|has| |#1| (-425)) (|has| |#1| (-815 (-521)))))))
+(((-530 |#1| |#2|) (-10 -7 (-15 -3153 ((-587 (-560 |#2|)) (-587 (-560 |#2|)) (-1084))) (-15 -3933 ((-560 |#2|) (-587 (-560 |#2|)))) (-15 -2697 ((-560 |#2|) (-560 |#2|) (-587 (-560 |#2|)) (-1084))) (-15 -2269 ((-587 (-560 |#2|)) (-587 (-560 |#2|)) (-587 (-560 |#2|)))) (-15 -4211 ((-587 (-560 |#2|)) (-587 |#2|) (-1084))) (IF (|has| |#1| (-513)) (-15 -3852 (|#2| |#2| (-1084))) |%noBranch|) (IF (|has| |#1| (-425)) (IF (|has| |#2| (-259)) (PROGN (-15 -2362 (|#2| |#2| (-1084))) (IF (|has| |#1| (-562 (-821 (-521)))) (IF (|has| |#1| (-815 (-521))) (IF (|has| |#2| (-573)) (IF (|has| |#2| (-961 (-1084))) (-15 -2855 ((-538 |#2|) |#2| (-1084) (-1 (-538 |#2|) |#2| (-1084)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1084)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-784) (-404 |#1|)) (T -530))
+((-2855 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-538 *3) *3 (-1084))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1084))) (-4 *3 (-259)) (-4 *3 (-573)) (-4 *3 (-961 *4)) (-4 *3 (-404 *7)) (-5 *4 (-1084)) (-4 *7 (-562 (-821 (-521)))) (-4 *7 (-425)) (-4 *7 (-815 (-521))) (-4 *7 (-784)) (-5 *2 (-538 *3)) (-5 *1 (-530 *7 *3)))) (-2362 (*1 *2 *2 *3) (-12 (-5 *3 (-1084)) (-4 *4 (-425)) (-4 *4 (-784)) (-5 *1 (-530 *4 *2)) (-4 *2 (-259)) (-4 *2 (-404 *4)))) (-3852 (*1 *2 *2 *3) (-12 (-5 *3 (-1084)) (-4 *4 (-513)) (-4 *4 (-784)) (-5 *1 (-530 *4 *2)) (-4 *2 (-404 *4)))) (-4211 (*1 *2 *3 *4) (-12 (-5 *3 (-587 *6)) (-5 *4 (-1084)) (-4 *6 (-404 *5)) (-4 *5 (-784)) (-5 *2 (-587 (-560 *6))) (-5 *1 (-530 *5 *6)))) (-2269 (*1 *2 *2 *2) (-12 (-5 *2 (-587 (-560 *4))) (-4 *4 (-404 *3)) (-4 *3 (-784)) (-5 *1 (-530 *3 *4)))) (-2697 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-587 (-560 *6))) (-5 *4 (-1084)) (-5 *2 (-560 *6)) (-4 *6 (-404 *5)) (-4 *5 (-784)) (-5 *1 (-530 *5 *6)))) (-3933 (*1 *2 *3) (-12 (-5 *3 (-587 (-560 *5))) (-4 *4 (-784)) (-5 *2 (-560 *5)) (-5 *1 (-530 *4 *5)) (-4 *5 (-404 *4)))) (-3153 (*1 *2 *2 *3) (-12 (-5 *2 (-587 (-560 *5))) (-5 *3 (-1084)) (-4 *5 (-404 *4)) (-4 *4 (-784)) (-5 *1 (-530 *4 *5)))))
+(-10 -7 (-15 -3153 ((-587 (-560 |#2|)) (-587 (-560 |#2|)) (-1084))) (-15 -3933 ((-560 |#2|) (-587 (-560 |#2|)))) (-15 -2697 ((-560 |#2|) (-560 |#2|) (-587 (-560 |#2|)) (-1084))) (-15 -2269 ((-587 (-560 |#2|)) (-587 (-560 |#2|)) (-587 (-560 |#2|)))) (-15 -4211 ((-587 (-560 |#2|)) (-587 |#2|) (-1084))) (IF (|has| |#1| (-513)) (-15 -3852 (|#2| |#2| (-1084))) |%noBranch|) (IF (|has| |#1| (-425)) (IF (|has| |#2| (-259)) (PROGN (-15 -2362 (|#2| |#2| (-1084))) (IF (|has| |#1| (-562 (-821 (-521)))) (IF (|has| |#1| (-815 (-521))) (IF (|has| |#2| (-573)) (IF (|has| |#2| (-961 (-1084))) (-15 -2855 ((-538 |#2|) |#2| (-1084) (-1 (-538 |#2|) |#2| (-1084)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1084)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|))
+((-2593 (((-2 (|:| |answer| (-538 (-381 |#2|))) (|:| |a0| |#1|)) (-381 |#2|) (-1 |#2| |#2|) (-1 (-3 (-587 |#1|) "failed") (-521) |#1| |#1|)) 168)) (-3529 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-381 |#2|)) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| (-381 |#2|)) (|:| |logand| (-381 |#2|))))))) (|:| |a0| |#1|)) "failed") (-381 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3100 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-587 (-381 |#2|))) 144)) (-2005 (((-3 (-2 (|:| |mainpart| (-381 |#2|)) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| (-381 |#2|)) (|:| |logand| (-381 |#2|)))))) "failed") (-381 |#2|) (-1 |#2| |#2|) (-587 (-381 |#2|))) 141)) (-4096 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3100 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 130)) (-3050 (((-2 (|:| |answer| (-538 (-381 |#2|))) (|:| |a0| |#1|)) (-381 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3100 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 154)) (-3112 (((-3 (-2 (|:| -3100 (-381 |#2|)) (|:| |coeff| (-381 |#2|))) "failed") (-381 |#2|) (-1 |#2| |#2|) (-381 |#2|)) 171)) (-4114 (((-3 (-2 (|:| |answer| (-381 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3100 (-381 |#2|)) (|:| |coeff| (-381 |#2|))) "failed") (-381 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3100 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-381 |#2|)) 174)) (-1542 (((-2 (|:| |ir| (-538 (-381 |#2|))) (|:| |specpart| (-381 |#2|)) (|:| |polypart| |#2|)) (-381 |#2|) (-1 |#2| |#2|)) 82)) (-2747 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 89)) (-3793 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-381 |#2|)) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| (-381 |#2|)) (|:| |logand| (-381 |#2|))))))) (|:| |a0| |#1|)) "failed") (-381 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1925 |#1|) (|:| |sol?| (-108))) (-521) |#1|) (-587 (-381 |#2|))) 148)) (-2102 (((-3 (-568 |#1| |#2|) "failed") (-568 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1925 |#1|) (|:| |sol?| (-108))) (-521) |#1|)) 134)) (-1523 (((-2 (|:| |answer| (-538 (-381 |#2|))) (|:| |a0| |#1|)) (-381 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1925 |#1|) (|:| |sol?| (-108))) (-521) |#1|)) 158)) (-3809 (((-3 (-2 (|:| |answer| (-381 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3100 (-381 |#2|)) (|:| |coeff| (-381 |#2|))) "failed") (-381 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1925 |#1|) (|:| |sol?| (-108))) (-521) |#1|) (-381 |#2|)) 179)))
+(((-531 |#1| |#2|) (-10 -7 (-15 -3050 ((-2 (|:| |answer| (-538 (-381 |#2|))) (|:| |a0| |#1|)) (-381 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3100 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -1523 ((-2 (|:| |answer| (-538 (-381 |#2|))) (|:| |a0| |#1|)) (-381 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1925 |#1|) (|:| |sol?| (-108))) (-521) |#1|))) (-15 -2593 ((-2 (|:| |answer| (-538 (-381 |#2|))) (|:| |a0| |#1|)) (-381 |#2|) (-1 |#2| |#2|) (-1 (-3 (-587 |#1|) "failed") (-521) |#1| |#1|))) (-15 -4114 ((-3 (-2 (|:| |answer| (-381 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3100 (-381 |#2|)) (|:| |coeff| (-381 |#2|))) "failed") (-381 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3100 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-381 |#2|))) (-15 -3809 ((-3 (-2 (|:| |answer| (-381 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3100 (-381 |#2|)) (|:| |coeff| (-381 |#2|))) "failed") (-381 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1925 |#1|) (|:| |sol?| (-108))) (-521) |#1|) (-381 |#2|))) (-15 -3529 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-381 |#2|)) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| (-381 |#2|)) (|:| |logand| (-381 |#2|))))))) (|:| |a0| |#1|)) "failed") (-381 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3100 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-587 (-381 |#2|)))) (-15 -3793 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-381 |#2|)) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| (-381 |#2|)) (|:| |logand| (-381 |#2|))))))) (|:| |a0| |#1|)) "failed") (-381 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1925 |#1|) (|:| |sol?| (-108))) (-521) |#1|) (-587 (-381 |#2|)))) (-15 -3112 ((-3 (-2 (|:| -3100 (-381 |#2|)) (|:| |coeff| (-381 |#2|))) "failed") (-381 |#2|) (-1 |#2| |#2|) (-381 |#2|))) (-15 -2005 ((-3 (-2 (|:| |mainpart| (-381 |#2|)) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| (-381 |#2|)) (|:| |logand| (-381 |#2|)))))) "failed") (-381 |#2|) (-1 |#2| |#2|) (-587 (-381 |#2|)))) (-15 -4096 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3100 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2102 ((-3 (-568 |#1| |#2|) "failed") (-568 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1925 |#1|) (|:| |sol?| (-108))) (-521) |#1|))) (-15 -1542 ((-2 (|:| |ir| (-538 (-381 |#2|))) (|:| |specpart| (-381 |#2|)) (|:| |polypart| |#2|)) (-381 |#2|) (-1 |#2| |#2|))) (-15 -2747 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-337) (-1141 |#1|)) (T -531))
+((-2747 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1141 *5)) (-4 *5 (-337)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-531 *5 *3)))) (-1542 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1141 *5)) (-4 *5 (-337)) (-5 *2 (-2 (|:| |ir| (-538 (-381 *6))) (|:| |specpart| (-381 *6)) (|:| |polypart| *6))) (-5 *1 (-531 *5 *6)) (-5 *3 (-381 *6)))) (-2102 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-568 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -1925 *4) (|:| |sol?| (-108))) (-521) *4)) (-4 *4 (-337)) (-4 *5 (-1141 *4)) (-5 *1 (-531 *4 *5)))) (-4096 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -3100 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-337)) (-5 *1 (-531 *4 *2)) (-4 *2 (-1141 *4)))) (-2005 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-587 (-381 *7))) (-4 *7 (-1141 *6)) (-5 *3 (-381 *7)) (-4 *6 (-337)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-531 *6 *7)))) (-3112 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1141 *5)) (-4 *5 (-337)) (-5 *2 (-2 (|:| -3100 (-381 *6)) (|:| |coeff| (-381 *6)))) (-5 *1 (-531 *5 *6)) (-5 *3 (-381 *6)))) (-3793 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -1925 *7) (|:| |sol?| (-108))) (-521) *7)) (-5 *6 (-587 (-381 *8))) (-4 *7 (-337)) (-4 *8 (-1141 *7)) (-5 *3 (-381 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-531 *7 *8)))) (-3529 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -3100 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-587 (-381 *8))) (-4 *7 (-337)) (-4 *8 (-1141 *7)) (-5 *3 (-381 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-531 *7 *8)))) (-3809 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -1925 *6) (|:| |sol?| (-108))) (-521) *6)) (-4 *6 (-337)) (-4 *7 (-1141 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-381 *7)) (|:| |a0| *6)) (-2 (|:| -3100 (-381 *7)) (|:| |coeff| (-381 *7))) "failed")) (-5 *1 (-531 *6 *7)) (-5 *3 (-381 *7)))) (-4114 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -3100 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-337)) (-4 *7 (-1141 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-381 *7)) (|:| |a0| *6)) (-2 (|:| -3100 (-381 *7)) (|:| |coeff| (-381 *7))) "failed")) (-5 *1 (-531 *6 *7)) (-5 *3 (-381 *7)))) (-2593 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-587 *6) "failed") (-521) *6 *6)) (-4 *6 (-337)) (-4 *7 (-1141 *6)) (-5 *2 (-2 (|:| |answer| (-538 (-381 *7))) (|:| |a0| *6))) (-5 *1 (-531 *6 *7)) (-5 *3 (-381 *7)))) (-1523 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -1925 *6) (|:| |sol?| (-108))) (-521) *6)) (-4 *6 (-337)) (-4 *7 (-1141 *6)) (-5 *2 (-2 (|:| |answer| (-538 (-381 *7))) (|:| |a0| *6))) (-5 *1 (-531 *6 *7)) (-5 *3 (-381 *7)))) (-3050 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -3100 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-337)) (-4 *7 (-1141 *6)) (-5 *2 (-2 (|:| |answer| (-538 (-381 *7))) (|:| |a0| *6))) (-5 *1 (-531 *6 *7)) (-5 *3 (-381 *7)))))
+(-10 -7 (-15 -3050 ((-2 (|:| |answer| (-538 (-381 |#2|))) (|:| |a0| |#1|)) (-381 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3100 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -1523 ((-2 (|:| |answer| (-538 (-381 |#2|))) (|:| |a0| |#1|)) (-381 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1925 |#1|) (|:| |sol?| (-108))) (-521) |#1|))) (-15 -2593 ((-2 (|:| |answer| (-538 (-381 |#2|))) (|:| |a0| |#1|)) (-381 |#2|) (-1 |#2| |#2|) (-1 (-3 (-587 |#1|) "failed") (-521) |#1| |#1|))) (-15 -4114 ((-3 (-2 (|:| |answer| (-381 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3100 (-381 |#2|)) (|:| |coeff| (-381 |#2|))) "failed") (-381 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3100 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-381 |#2|))) (-15 -3809 ((-3 (-2 (|:| |answer| (-381 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3100 (-381 |#2|)) (|:| |coeff| (-381 |#2|))) "failed") (-381 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1925 |#1|) (|:| |sol?| (-108))) (-521) |#1|) (-381 |#2|))) (-15 -3529 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-381 |#2|)) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| (-381 |#2|)) (|:| |logand| (-381 |#2|))))))) (|:| |a0| |#1|)) "failed") (-381 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3100 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-587 (-381 |#2|)))) (-15 -3793 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-381 |#2|)) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| (-381 |#2|)) (|:| |logand| (-381 |#2|))))))) (|:| |a0| |#1|)) "failed") (-381 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1925 |#1|) (|:| |sol?| (-108))) (-521) |#1|) (-587 (-381 |#2|)))) (-15 -3112 ((-3 (-2 (|:| -3100 (-381 |#2|)) (|:| |coeff| (-381 |#2|))) "failed") (-381 |#2|) (-1 |#2| |#2|) (-381 |#2|))) (-15 -2005 ((-3 (-2 (|:| |mainpart| (-381 |#2|)) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| (-381 |#2|)) (|:| |logand| (-381 |#2|)))))) "failed") (-381 |#2|) (-1 |#2| |#2|) (-587 (-381 |#2|)))) (-15 -4096 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3100 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2102 ((-3 (-568 |#1| |#2|) "failed") (-568 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1925 |#1|) (|:| |sol?| (-108))) (-521) |#1|))) (-15 -1542 ((-2 (|:| |ir| (-538 (-381 |#2|))) (|:| |specpart| (-381 |#2|)) (|:| |polypart| |#2|)) (-381 |#2|) (-1 |#2| |#2|))) (-15 -2747 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|))))
+((-2310 (((-3 |#2| "failed") |#2| (-1084) (-1084)) 10)))
+(((-532 |#1| |#2|) (-10 -7 (-15 -2310 ((-3 |#2| "failed") |#2| (-1084) (-1084)))) (-13 (-282) (-784) (-135) (-961 (-521)) (-583 (-521))) (-13 (-1105) (-887) (-1048) (-29 |#1|))) (T -532))
+((-2310 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1084)) (-4 *4 (-13 (-282) (-784) (-135) (-961 (-521)) (-583 (-521)))) (-5 *1 (-532 *4 *2)) (-4 *2 (-13 (-1105) (-887) (-1048) (-29 *4))))))
+(-10 -7 (-15 -2310 ((-3 |#2| "failed") |#2| (-1084) (-1084))))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-2559 (($ $) NIL)) (-1733 (((-108) $) NIL)) (-1232 (((-3 $ "failed") $ $) NIL)) (-1927 (($ $ (-521)) 65)) (-1389 (((-108) $ $) NIL)) (-2547 (($) NIL T CONST)) (-3948 (($ (-1080 (-521)) (-521)) 71)) (-2277 (($ $ $) NIL)) (-1257 (((-3 $ "failed") $) 57)) (-4018 (($ $) 33)) (-2253 (($ $ $) NIL)) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) NIL)) (-2733 (((-707) $) 15)) (-3996 (((-108) $) NIL)) (-1546 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-2704 (((-521)) 27)) (-1720 (((-521) $) 31)) (-2223 (($ $ $) NIL) (($ (-587 $)) NIL)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) NIL)) (-2258 (($ $ $) NIL) (($ (-587 $)) NIL)) (-1962 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2447 (($ $ (-521)) 21)) (-2230 (((-3 $ "failed") $ $) 58)) (-3854 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-4196 (((-707) $) 16)) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) 60)) (-4151 (((-1065 (-521)) $) 18)) (-3448 (($ $) 23)) (-2189 (((-792) $) 86) (($ (-521)) 51) (($ $) NIL)) (-3846 (((-707)) 14)) (-4210 (((-108) $ $) NIL)) (-3894 (((-521) $ (-521)) 35)) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (-3561 (($) 34 T CONST)) (-3572 (($) 19 T CONST)) (-1531 (((-108) $ $) 38)) (-1612 (($ $) 50) (($ $ $) 36)) (-1602 (($ $ $) 49)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) 53) (($ $ $) 54)))
+(((-533 |#1| |#2|) (-798 |#1|) (-521) (-108)) (T -533))
+NIL
+(-798 |#1|)
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) 18)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-2559 (($ $) NIL)) (-1733 (((-108) $) NIL)) (-1779 (((-108) $) NIL)) (-3471 (((-707)) NIL)) (-1865 (($ $ (-850)) NIL (|has| $ (-342))) (($ $) NIL)) (-1340 (((-1093 (-850) (-707)) (-521)) 47)) (-1232 (((-3 $ "failed") $ $) NIL)) (-3063 (($ $) NIL)) (-3358 (((-392 $) $) NIL)) (-1389 (((-108) $ $) NIL)) (-1630 (((-707)) NIL)) (-2547 (($) NIL T CONST)) (-1297 (((-3 $ "failed") $) 75)) (-1483 (($ $) 74)) (-4083 (($ (-1165 $)) 73)) (-1864 (((-3 "prime" "polynomial" "normal" "cyclic")) 42)) (-2277 (($ $ $) NIL)) (-1257 (((-3 $ "failed") $) 30)) (-3250 (($) NIL)) (-2253 (($ $ $) NIL)) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) NIL)) (-2103 (($) 49)) (-2371 (((-108) $) NIL)) (-2833 (($ $) NIL) (($ $ (-707)) NIL)) (-2710 (((-108) $) NIL)) (-2733 (((-770 (-850)) $) NIL) (((-850) $) NIL)) (-3996 (((-108) $) NIL)) (-3958 (($) 35 (|has| $ (-342)))) (-1279 (((-108) $) NIL (|has| $ (-342)))) (-3930 (($ $ (-850)) NIL (|has| $ (-342))) (($ $) NIL)) (-3842 (((-3 $ "failed") $) NIL)) (-1546 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-3548 (((-1080 $) $ (-850)) NIL (|has| $ (-342))) (((-1080 $) $) 83)) (-2715 (((-850) $) 55)) (-4179 (((-1080 $) $) NIL (|has| $ (-342)))) (-2728 (((-3 (-1080 $) "failed") $ $) NIL (|has| $ (-342))) (((-1080 $) $) NIL (|has| $ (-342)))) (-1818 (($ $ (-1080 $)) NIL (|has| $ (-342)))) (-2223 (($ $ $) NIL) (($ (-587 $)) NIL)) (-3688 (((-1067) $) NIL)) (-3095 (($ $) NIL)) (-3797 (($) NIL T CONST)) (-2716 (($ (-850)) 48)) (-2218 (((-108) $) 67)) (-4147 (((-1031) $) NIL)) (-1383 (($) 16 (|has| $ (-342)))) (-2513 (((-1080 $) (-1080 $) (-1080 $)) NIL)) (-2258 (($ $ $) NIL) (($ (-587 $)) NIL)) (-3040 (((-587 (-2 (|:| -1916 (-521)) (|:| -2997 (-521))))) 40)) (-1916 (((-392 $) $) NIL)) (-4178 (((-850)) 66) (((-770 (-850))) NIL)) (-1962 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2230 (((-3 $ "failed") $ $) NIL)) (-3854 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-4196 (((-707) $) NIL)) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) NIL)) (-4067 (((-3 (-707) "failed") $ $) NIL) (((-707) $) NIL)) (-2359 (((-126)) NIL)) (-2156 (($ $ (-707)) NIL) (($ $) NIL)) (-1994 (((-850) $) 65) (((-770 (-850)) $) NIL)) (-2879 (((-1080 $)) 82)) (-1204 (($) 54)) (-2677 (($) 36 (|has| $ (-342)))) (-2234 (((-627 $) (-1165 $)) NIL) (((-1165 $) $) 71)) (-1430 (((-521) $) 26)) (-2944 (((-3 (-1165 $) "failed") (-627 $)) NIL)) (-2189 (((-792) $) NIL) (($ (-521)) 28) (($ $) NIL) (($ (-381 (-521))) NIL)) (-1671 (((-3 $ "failed") $) NIL) (($ $) 84)) (-3846 (((-707)) 37)) (-2470 (((-1165 $) (-850)) 77) (((-1165 $)) 76)) (-4210 (((-108) $ $) NIL)) (-2154 (((-108) $) NIL)) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (-3561 (($) 19 T CONST)) (-3572 (($) 15 T CONST)) (-3654 (($ $ (-707)) NIL (|has| $ (-342))) (($ $) NIL (|has| $ (-342)))) (-2212 (($ $ (-707)) NIL) (($ $) NIL)) (-1531 (((-108) $ $) NIL)) (-1620 (($ $ $) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) 24)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) 61) (($ $ (-381 (-521))) NIL) (($ (-381 (-521)) $) NIL)))
+(((-534 |#1|) (-13 (-323) (-303 $) (-562 (-521))) (-850)) (T -534))
+NIL
+(-13 (-323) (-303 $) (-562 (-521)))
+((-3434 (((-1170) (-1067)) 10)))
+(((-535) (-10 -7 (-15 -3434 ((-1170) (-1067))))) (T -535))
+((-3434 (*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-535)))))
+(-10 -7 (-15 -3434 ((-1170) (-1067))))
+((-3604 (((-538 |#2|) (-538 |#2|)) 38)) (-1604 (((-587 |#2|) (-538 |#2|)) 40)) (-2348 ((|#2| (-538 |#2|)) 47)))
+(((-536 |#1| |#2|) (-10 -7 (-15 -3604 ((-538 |#2|) (-538 |#2|))) (-15 -1604 ((-587 |#2|) (-538 |#2|))) (-15 -2348 (|#2| (-538 |#2|)))) (-13 (-425) (-961 (-521)) (-784) (-583 (-521))) (-13 (-29 |#1|) (-1105))) (T -536))
+((-2348 (*1 *2 *3) (-12 (-5 *3 (-538 *2)) (-4 *2 (-13 (-29 *4) (-1105))) (-5 *1 (-536 *4 *2)) (-4 *4 (-13 (-425) (-961 (-521)) (-784) (-583 (-521)))))) (-1604 (*1 *2 *3) (-12 (-5 *3 (-538 *5)) (-4 *5 (-13 (-29 *4) (-1105))) (-4 *4 (-13 (-425) (-961 (-521)) (-784) (-583 (-521)))) (-5 *2 (-587 *5)) (-5 *1 (-536 *4 *5)))) (-3604 (*1 *2 *2) (-12 (-5 *2 (-538 *4)) (-4 *4 (-13 (-29 *3) (-1105))) (-4 *3 (-13 (-425) (-961 (-521)) (-784) (-583 (-521)))) (-5 *1 (-536 *3 *4)))))
+(-10 -7 (-15 -3604 ((-538 |#2|) (-538 |#2|))) (-15 -1604 ((-587 |#2|) (-538 |#2|))) (-15 -2348 (|#2| (-538 |#2|))))
+((-1390 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 38) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -3100 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3100 |#1|) (|:| |coeff| |#1|)) "failed")) 31) (((-538 |#2|) (-1 |#2| |#1|) (-538 |#1|)) 26)))
+(((-537 |#1| |#2|) (-10 -7 (-15 -1390 ((-538 |#2|) (-1 |#2| |#1|) (-538 |#1|))) (-15 -1390 ((-3 (-2 (|:| -3100 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3100 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -1390 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -1390 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-337) (-337)) (T -537))
+((-1390 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-337)) (-4 *6 (-337)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-537 *5 *6)))) (-1390 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-337)) (-4 *2 (-337)) (-5 *1 (-537 *5 *2)))) (-1390 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -3100 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-337)) (-4 *6 (-337)) (-5 *2 (-2 (|:| -3100 *6) (|:| |coeff| *6))) (-5 *1 (-537 *5 *6)))) (-1390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-538 *5)) (-4 *5 (-337)) (-4 *6 (-337)) (-5 *2 (-538 *6)) (-5 *1 (-537 *5 *6)))))
+(-10 -7 (-15 -1390 ((-538 |#2|) (-1 |#2| |#1|) (-538 |#1|))) (-15 -1390 ((-3 (-2 (|:| -3100 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3100 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -1390 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -1390 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed"))))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-1232 (((-3 $ "failed") $ $) NIL)) (-2547 (($) NIL T CONST)) (-1297 (((-3 |#1| "failed") $) 69)) (-1483 ((|#1| $) NIL)) (-3100 ((|#1| $) 24)) (-3150 (((-587 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 26)) (-3972 (($ |#1| (-587 (-2 (|:| |scalar| (-381 (-521))) (|:| |coeff| (-1080 |#1|)) (|:| |logand| (-1080 |#1|)))) (-587 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 22)) (-1357 (((-587 (-2 (|:| |scalar| (-381 (-521))) (|:| |coeff| (-1080 |#1|)) (|:| |logand| (-1080 |#1|)))) $) 25)) (-3688 (((-1067) $) NIL)) (-2337 (($ |#1| |#1|) 32) (($ |#1| (-1084)) 43 (|has| |#1| (-961 (-1084))))) (-4147 (((-1031) $) NIL)) (-3051 (((-108) $) 28)) (-2156 ((|#1| $ (-1 |#1| |#1|)) 81) ((|#1| $ (-1084)) 82 (|has| |#1| (-829 (-1084))))) (-2189 (((-792) $) 96) (($ |#1|) 23)) (-3561 (($) 16 T CONST)) (-1531 (((-108) $ $) NIL)) (-1612 (($ $) 15) (($ $ $) NIL)) (-1602 (($ $ $) 78)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) 14) (($ (-381 (-521)) $) 35) (($ $ (-381 (-521))) NIL)))
+(((-538 |#1|) (-13 (-654 (-381 (-521))) (-961 |#1|) (-10 -8 (-15 -3972 ($ |#1| (-587 (-2 (|:| |scalar| (-381 (-521))) (|:| |coeff| (-1080 |#1|)) (|:| |logand| (-1080 |#1|)))) (-587 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -3100 (|#1| $)) (-15 -1357 ((-587 (-2 (|:| |scalar| (-381 (-521))) (|:| |coeff| (-1080 |#1|)) (|:| |logand| (-1080 |#1|)))) $)) (-15 -3150 ((-587 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -3051 ((-108) $)) (-15 -2337 ($ |#1| |#1|)) (-15 -2156 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-829 (-1084))) (-15 -2156 (|#1| $ (-1084))) |%noBranch|) (IF (|has| |#1| (-961 (-1084))) (-15 -2337 ($ |#1| (-1084))) |%noBranch|))) (-337)) (T -538))
+((-3972 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-587 (-2 (|:| |scalar| (-381 (-521))) (|:| |coeff| (-1080 *2)) (|:| |logand| (-1080 *2))))) (-5 *4 (-587 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-337)) (-5 *1 (-538 *2)))) (-3100 (*1 *2 *1) (-12 (-5 *1 (-538 *2)) (-4 *2 (-337)))) (-1357 (*1 *2 *1) (-12 (-5 *2 (-587 (-2 (|:| |scalar| (-381 (-521))) (|:| |coeff| (-1080 *3)) (|:| |logand| (-1080 *3))))) (-5 *1 (-538 *3)) (-4 *3 (-337)))) (-3150 (*1 *2 *1) (-12 (-5 *2 (-587 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-538 *3)) (-4 *3 (-337)))) (-3051 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-538 *3)) (-4 *3 (-337)))) (-2337 (*1 *1 *2 *2) (-12 (-5 *1 (-538 *2)) (-4 *2 (-337)))) (-2156 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-538 *2)) (-4 *2 (-337)))) (-2156 (*1 *2 *1 *3) (-12 (-4 *2 (-337)) (-4 *2 (-829 *3)) (-5 *1 (-538 *2)) (-5 *3 (-1084)))) (-2337 (*1 *1 *2 *3) (-12 (-5 *3 (-1084)) (-5 *1 (-538 *2)) (-4 *2 (-961 *3)) (-4 *2 (-337)))))
+(-13 (-654 (-381 (-521))) (-961 |#1|) (-10 -8 (-15 -3972 ($ |#1| (-587 (-2 (|:| |scalar| (-381 (-521))) (|:| |coeff| (-1080 |#1|)) (|:| |logand| (-1080 |#1|)))) (-587 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -3100 (|#1| $)) (-15 -1357 ((-587 (-2 (|:| |scalar| (-381 (-521))) (|:| |coeff| (-1080 |#1|)) (|:| |logand| (-1080 |#1|)))) $)) (-15 -3150 ((-587 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -3051 ((-108) $)) (-15 -2337 ($ |#1| |#1|)) (-15 -2156 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-829 (-1084))) (-15 -2156 (|#1| $ (-1084))) |%noBranch|) (IF (|has| |#1| (-961 (-1084))) (-15 -2337 ($ |#1| (-1084))) |%noBranch|)))
+((-3496 (((-108) |#1|) 16)) (-1305 (((-3 |#1| "failed") |#1|) 14)) (-3467 (((-2 (|:| -3351 |#1|) (|:| -2997 (-707))) |#1|) 31) (((-3 |#1| "failed") |#1| (-707)) 18)) (-3086 (((-108) |#1| (-707)) 19)) (-3748 ((|#1| |#1|) 32)) (-4058 ((|#1| |#1| (-707)) 34)))
+(((-539 |#1|) (-10 -7 (-15 -3086 ((-108) |#1| (-707))) (-15 -3467 ((-3 |#1| "failed") |#1| (-707))) (-15 -3467 ((-2 (|:| -3351 |#1|) (|:| -2997 (-707))) |#1|)) (-15 -4058 (|#1| |#1| (-707))) (-15 -3496 ((-108) |#1|)) (-15 -1305 ((-3 |#1| "failed") |#1|)) (-15 -3748 (|#1| |#1|))) (-506)) (T -539))
+((-3748 (*1 *2 *2) (-12 (-5 *1 (-539 *2)) (-4 *2 (-506)))) (-1305 (*1 *2 *2) (|partial| -12 (-5 *1 (-539 *2)) (-4 *2 (-506)))) (-3496 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-539 *3)) (-4 *3 (-506)))) (-4058 (*1 *2 *2 *3) (-12 (-5 *3 (-707)) (-5 *1 (-539 *2)) (-4 *2 (-506)))) (-3467 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3351 *3) (|:| -2997 (-707)))) (-5 *1 (-539 *3)) (-4 *3 (-506)))) (-3467 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-707)) (-5 *1 (-539 *2)) (-4 *2 (-506)))) (-3086 (*1 *2 *3 *4) (-12 (-5 *4 (-707)) (-5 *2 (-108)) (-5 *1 (-539 *3)) (-4 *3 (-506)))))
+(-10 -7 (-15 -3086 ((-108) |#1| (-707))) (-15 -3467 ((-3 |#1| "failed") |#1| (-707))) (-15 -3467 ((-2 (|:| -3351 |#1|) (|:| -2997 (-707))) |#1|)) (-15 -4058 (|#1| |#1| (-707))) (-15 -3496 ((-108) |#1|)) (-15 -1305 ((-3 |#1| "failed") |#1|)) (-15 -3748 (|#1| |#1|)))
+((-3447 (((-1080 |#1|) (-850)) 27)))
+(((-540 |#1|) (-10 -7 (-15 -3447 ((-1080 |#1|) (-850)))) (-323)) (T -540))
+((-3447 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1080 *4)) (-5 *1 (-540 *4)) (-4 *4 (-323)))))
+(-10 -7 (-15 -3447 ((-1080 |#1|) (-850))))
+((-3604 (((-538 (-381 (-881 |#1|))) (-538 (-381 (-881 |#1|)))) 26)) (-2184 (((-3 (-290 |#1|) (-587 (-290 |#1|))) (-381 (-881 |#1|)) (-1084)) 32 (|has| |#1| (-135)))) (-1604 (((-587 (-290 |#1|)) (-538 (-381 (-881 |#1|)))) 18)) (-2580 (((-290 |#1|) (-381 (-881 |#1|)) (-1084)) 30 (|has| |#1| (-135)))) (-2348 (((-290 |#1|) (-538 (-381 (-881 |#1|)))) 20)))
+(((-541 |#1|) (-10 -7 (-15 -3604 ((-538 (-381 (-881 |#1|))) (-538 (-381 (-881 |#1|))))) (-15 -1604 ((-587 (-290 |#1|)) (-538 (-381 (-881 |#1|))))) (-15 -2348 ((-290 |#1|) (-538 (-381 (-881 |#1|))))) (IF (|has| |#1| (-135)) (PROGN (-15 -2184 ((-3 (-290 |#1|) (-587 (-290 |#1|))) (-381 (-881 |#1|)) (-1084))) (-15 -2580 ((-290 |#1|) (-381 (-881 |#1|)) (-1084)))) |%noBranch|)) (-13 (-425) (-961 (-521)) (-784) (-583 (-521)))) (T -541))
+((-2580 (*1 *2 *3 *4) (-12 (-5 *3 (-381 (-881 *5))) (-5 *4 (-1084)) (-4 *5 (-135)) (-4 *5 (-13 (-425) (-961 (-521)) (-784) (-583 (-521)))) (-5 *2 (-290 *5)) (-5 *1 (-541 *5)))) (-2184 (*1 *2 *3 *4) (-12 (-5 *3 (-381 (-881 *5))) (-5 *4 (-1084)) (-4 *5 (-135)) (-4 *5 (-13 (-425) (-961 (-521)) (-784) (-583 (-521)))) (-5 *2 (-3 (-290 *5) (-587 (-290 *5)))) (-5 *1 (-541 *5)))) (-2348 (*1 *2 *3) (-12 (-5 *3 (-538 (-381 (-881 *4)))) (-4 *4 (-13 (-425) (-961 (-521)) (-784) (-583 (-521)))) (-5 *2 (-290 *4)) (-5 *1 (-541 *4)))) (-1604 (*1 *2 *3) (-12 (-5 *3 (-538 (-381 (-881 *4)))) (-4 *4 (-13 (-425) (-961 (-521)) (-784) (-583 (-521)))) (-5 *2 (-587 (-290 *4))) (-5 *1 (-541 *4)))) (-3604 (*1 *2 *2) (-12 (-5 *2 (-538 (-381 (-881 *3)))) (-4 *3 (-13 (-425) (-961 (-521)) (-784) (-583 (-521)))) (-5 *1 (-541 *3)))))
+(-10 -7 (-15 -3604 ((-538 (-381 (-881 |#1|))) (-538 (-381 (-881 |#1|))))) (-15 -1604 ((-587 (-290 |#1|)) (-538 (-381 (-881 |#1|))))) (-15 -2348 ((-290 |#1|) (-538 (-381 (-881 |#1|))))) (IF (|has| |#1| (-135)) (PROGN (-15 -2184 ((-3 (-290 |#1|) (-587 (-290 |#1|))) (-381 (-881 |#1|)) (-1084))) (-15 -2580 ((-290 |#1|) (-381 (-881 |#1|)) (-1084)))) |%noBranch|))
+((-1476 (((-587 (-627 (-521))) (-587 (-521)) (-587 (-834 (-521)))) 46) (((-587 (-627 (-521))) (-587 (-521))) 47) (((-627 (-521)) (-587 (-521)) (-834 (-521))) 42)) (-3744 (((-707) (-587 (-521))) 40)))
+(((-542) (-10 -7 (-15 -3744 ((-707) (-587 (-521)))) (-15 -1476 ((-627 (-521)) (-587 (-521)) (-834 (-521)))) (-15 -1476 ((-587 (-627 (-521))) (-587 (-521)))) (-15 -1476 ((-587 (-627 (-521))) (-587 (-521)) (-587 (-834 (-521))))))) (T -542))
+((-1476 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-521))) (-5 *4 (-587 (-834 (-521)))) (-5 *2 (-587 (-627 (-521)))) (-5 *1 (-542)))) (-1476 (*1 *2 *3) (-12 (-5 *3 (-587 (-521))) (-5 *2 (-587 (-627 (-521)))) (-5 *1 (-542)))) (-1476 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-521))) (-5 *4 (-834 (-521))) (-5 *2 (-627 (-521))) (-5 *1 (-542)))) (-3744 (*1 *2 *3) (-12 (-5 *3 (-587 (-521))) (-5 *2 (-707)) (-5 *1 (-542)))))
+(-10 -7 (-15 -3744 ((-707) (-587 (-521)))) (-15 -1476 ((-627 (-521)) (-587 (-521)) (-834 (-521)))) (-15 -1476 ((-587 (-627 (-521))) (-587 (-521)))) (-15 -1476 ((-587 (-627 (-521))) (-587 (-521)) (-587 (-834 (-521))))))
+((-2318 (((-587 |#5|) |#5| (-108)) 73)) (-3362 (((-108) |#5| (-587 |#5|)) 30)))
+(((-543 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2318 ((-587 |#5|) |#5| (-108))) (-15 -3362 ((-108) |#5| (-587 |#5|)))) (-13 (-282) (-135)) (-729) (-784) (-984 |#1| |#2| |#3|) (-1022 |#1| |#2| |#3| |#4|)) (T -543))
+((-3362 (*1 *2 *3 *4) (-12 (-5 *4 (-587 *3)) (-4 *3 (-1022 *5 *6 *7 *8)) (-4 *5 (-13 (-282) (-135))) (-4 *6 (-729)) (-4 *7 (-784)) (-4 *8 (-984 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-543 *5 *6 *7 *8 *3)))) (-2318 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-282) (-135))) (-4 *6 (-729)) (-4 *7 (-784)) (-4 *8 (-984 *5 *6 *7)) (-5 *2 (-587 *3)) (-5 *1 (-543 *5 *6 *7 *8 *3)) (-4 *3 (-1022 *5 *6 *7 *8)))))
+(-10 -7 (-15 -2318 ((-587 |#5|) |#5| (-108))) (-15 -3362 ((-108) |#5| (-587 |#5|))))
+((-1415 (((-108) $ $) NIL (|has| (-132) (-1013)))) (-3281 (($ $) 34)) (-3307 (($ $) NIL)) (-3053 (($ $ (-132)) NIL) (($ $ (-129)) NIL)) (-1903 (((-1170) $ (-521) (-521)) NIL (|has| $ (-6 -4234)))) (-3763 (((-108) $ $) 51)) (-3738 (((-108) $ $ (-521)) 46)) (-3604 (((-587 $) $ (-132)) 60) (((-587 $) $ (-129)) 61)) (-1505 (((-108) (-1 (-108) (-132) (-132)) $) NIL) (((-108) $) NIL (|has| (-132) (-784)))) (-1621 (($ (-1 (-108) (-132) (-132)) $) NIL (|has| $ (-6 -4234))) (($ $) NIL (-12 (|has| $ (-6 -4234)) (|has| (-132) (-784))))) (-3211 (($ (-1 (-108) (-132) (-132)) $) NIL) (($ $) NIL (|has| (-132) (-784)))) (-2978 (((-108) $ (-707)) NIL)) (-2378 (((-132) $ (-521) (-132)) 45 (|has| $ (-6 -4234))) (((-132) $ (-1132 (-521)) (-132)) NIL (|has| $ (-6 -4234)))) (-1628 (($ (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4233)))) (-2547 (($) NIL T CONST)) (-2846 (($ $ (-132)) 64) (($ $ (-129)) 65)) (-3081 (($ $) NIL (|has| $ (-6 -4234)))) (-1862 (($ $) NIL)) (-2515 (($ $ (-1132 (-521)) $) 44)) (-2332 (($ $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-132) (-1013))))) (-1422 (($ (-132) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-132) (-1013)))) (($ (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4233)))) (-3859 (((-132) (-1 (-132) (-132) (-132)) $ (-132) (-132)) NIL (-12 (|has| $ (-6 -4233)) (|has| (-132) (-1013)))) (((-132) (-1 (-132) (-132) (-132)) $ (-132)) NIL (|has| $ (-6 -4233))) (((-132) (-1 (-132) (-132) (-132)) $) NIL (|has| $ (-6 -4233)))) (-3849 (((-132) $ (-521) (-132)) NIL (|has| $ (-6 -4234)))) (-3626 (((-132) $ (-521)) NIL)) (-3788 (((-108) $ $) 71)) (-3233 (((-521) (-1 (-108) (-132)) $) NIL) (((-521) (-132) $) NIL (|has| (-132) (-1013))) (((-521) (-132) $ (-521)) 48 (|has| (-132) (-1013))) (((-521) $ $ (-521)) 47) (((-521) (-129) $ (-521)) 50)) (-3831 (((-587 (-132)) $) NIL (|has| $ (-6 -4233)))) (-1811 (($ (-707) (-132)) 9)) (-2139 (((-108) $ (-707)) NIL)) (-2826 (((-521) $) 28 (|has| (-521) (-784)))) (-2810 (($ $ $) NIL (|has| (-132) (-784)))) (-1318 (($ (-1 (-108) (-132) (-132)) $ $) NIL) (($ $ $) NIL (|has| (-132) (-784)))) (-3757 (((-587 (-132)) $) NIL (|has| $ (-6 -4233)))) (-2221 (((-108) (-132) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-132) (-1013))))) (-2597 (((-521) $) 42 (|has| (-521) (-784)))) (-2446 (($ $ $) NIL (|has| (-132) (-784)))) (-1454 (((-108) $ $ (-132)) 72)) (-4143 (((-707) $ $ (-132)) 70)) (-3833 (($ (-1 (-132) (-132)) $) 33 (|has| $ (-6 -4234)))) (-1390 (($ (-1 (-132) (-132)) $) NIL) (($ (-1 (-132) (-132) (-132)) $ $) NIL)) (-1940 (($ $) 37)) (-3402 (($ $) NIL)) (-3574 (((-108) $ (-707)) NIL)) (-2858 (($ $ (-132)) 62) (($ $ (-129)) 63)) (-3688 (((-1067) $) 38 (|has| (-132) (-1013)))) (-1659 (($ (-132) $ (-521)) NIL) (($ $ $ (-521)) 23)) (-1668 (((-587 (-521)) $) NIL)) (-2941 (((-108) (-521) $) NIL)) (-4147 (((-521) $) 69) (((-1031) $) NIL (|has| (-132) (-1013)))) (-2293 (((-132) $) NIL (|has| (-521) (-784)))) (-3620 (((-3 (-132) "failed") (-1 (-108) (-132)) $) NIL)) (-3016 (($ $ (-132)) NIL (|has| $ (-6 -4234)))) (-1789 (((-108) (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 (-132)))) NIL (-12 (|has| (-132) (-284 (-132))) (|has| (-132) (-1013)))) (($ $ (-269 (-132))) NIL (-12 (|has| (-132) (-284 (-132))) (|has| (-132) (-1013)))) (($ $ (-132) (-132)) NIL (-12 (|has| (-132) (-284 (-132))) (|has| (-132) (-1013)))) (($ $ (-587 (-132)) (-587 (-132))) NIL (-12 (|has| (-132) (-284 (-132))) (|has| (-132) (-1013))))) (-2488 (((-108) $ $) NIL)) (-3821 (((-108) (-132) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-132) (-1013))))) (-2489 (((-587 (-132)) $) NIL)) (-3462 (((-108) $) 12)) (-4024 (($) 10)) (-2544 (((-132) $ (-521) (-132)) NIL) (((-132) $ (-521)) 52) (($ $ (-1132 (-521))) 21) (($ $ $) NIL)) (-3691 (($ $ (-521)) NIL) (($ $ (-1132 (-521))) NIL)) (-4163 (((-707) (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4233))) (((-707) (-132) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-132) (-1013))))) (-1497 (($ $ $ (-521)) 66 (|has| $ (-6 -4234)))) (-2404 (($ $) 17)) (-1430 (((-497) $) NIL (|has| (-132) (-562 (-497))))) (-2201 (($ (-587 (-132))) NIL)) (-4159 (($ $ (-132)) NIL) (($ (-132) $) NIL) (($ $ $) 16) (($ (-587 $)) 67)) (-2189 (($ (-132)) NIL) (((-792) $) 27 (|has| (-132) (-561 (-792))))) (-3049 (((-108) (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4233)))) (-1574 (((-108) $ $) NIL (|has| (-132) (-784)))) (-1558 (((-108) $ $) NIL (|has| (-132) (-784)))) (-1531 (((-108) $ $) 14 (|has| (-132) (-1013)))) (-1566 (((-108) $ $) NIL (|has| (-132) (-784)))) (-1549 (((-108) $ $) 15 (|has| (-132) (-784)))) (-3475 (((-707) $) 13 (|has| $ (-6 -4233)))))
+(((-544 |#1|) (-13 (-1053) (-10 -8 (-15 -4147 ((-521) $)))) (-521)) (T -544))
+((-4147 (*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-544 *3)) (-14 *3 *2))))
+(-13 (-1053) (-10 -8 (-15 -4147 ((-521) $))))
+((-3513 (((-2 (|:| |num| |#4|) (|:| |den| (-521))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-521))) |#4| |#2| (-1008 |#4|)) 32)))
+(((-545 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3513 ((-2 (|:| |num| |#4|) (|:| |den| (-521))) |#4| |#2| (-1008 |#4|))) (-15 -3513 ((-2 (|:| |num| |#4|) (|:| |den| (-521))) |#4| |#2|))) (-729) (-784) (-513) (-878 |#3| |#1| |#2|)) (T -545))
+((-3513 (*1 *2 *3 *4) (-12 (-4 *5 (-729)) (-4 *4 (-784)) (-4 *6 (-513)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-521)))) (-5 *1 (-545 *5 *4 *6 *3)) (-4 *3 (-878 *6 *5 *4)))) (-3513 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1008 *3)) (-4 *3 (-878 *7 *6 *4)) (-4 *6 (-729)) (-4 *4 (-784)) (-4 *7 (-513)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-521)))) (-5 *1 (-545 *6 *4 *7 *3)))))
+(-10 -7 (-15 -3513 ((-2 (|:| |num| |#4|) (|:| |den| (-521))) |#4| |#2| (-1008 |#4|))) (-15 -3513 ((-2 (|:| |num| |#4|) (|:| |den| (-521))) |#4| |#2|)))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) 63)) (-4084 (((-587 (-998)) $) NIL)) (-1611 (((-1084) $) NIL)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) NIL (|has| |#1| (-513)))) (-2559 (($ $) NIL (|has| |#1| (-513)))) (-1733 (((-108) $) NIL (|has| |#1| (-513)))) (-2977 (($ $ (-521)) 54) (($ $ (-521) (-521)) 55)) (-3423 (((-1065 (-2 (|:| |k| (-521)) (|:| |c| |#1|))) $) 60)) (-2045 (($ $) 100)) (-1232 (((-3 $ "failed") $ $) NIL)) (-3171 (((-792) (-1065 (-2 (|:| |k| (-521)) (|:| |c| |#1|))) (-950 (-777 (-521))) (-1084) |#1| (-381 (-521))) 215)) (-2770 (($ (-1065 (-2 (|:| |k| (-521)) (|:| |c| |#1|)))) 34)) (-2547 (($) NIL T CONST)) (-3152 (($ $) NIL)) (-1257 (((-3 $ "failed") $) NIL)) (-1325 (((-108) $) NIL)) (-2733 (((-521) $) 58) (((-521) $ (-521)) 59)) (-3996 (((-108) $) NIL)) (-1993 (($ $ (-850)) 76)) (-3131 (($ (-1 |#1| (-521)) $) 73)) (-3649 (((-108) $) 25)) (-4043 (($ |#1| (-521)) 22) (($ $ (-998) (-521)) NIL) (($ $ (-587 (-998)) (-587 (-521))) NIL)) (-1390 (($ (-1 |#1| |#1|) $) 67)) (-1484 (($ (-950 (-777 (-521))) (-1065 (-2 (|:| |k| (-521)) (|:| |c| |#1|)))) 11)) (-3125 (($ $) NIL)) (-3135 ((|#1| $) NIL)) (-3688 (((-1067) $) NIL)) (-2184 (($ $) 112 (|has| |#1| (-37 (-381 (-521)))))) (-1810 (((-3 $ "failed") $ $ (-108)) 99)) (-3019 (($ $ $) 108)) (-4147 (((-1031) $) NIL)) (-3819 (((-1065 (-2 (|:| |k| (-521)) (|:| |c| |#1|))) $) 13)) (-1956 (((-950 (-777 (-521))) $) 12)) (-2447 (($ $ (-521)) 45)) (-2230 (((-3 $ "failed") $ $) NIL (|has| |#1| (-513)))) (-2288 (((-1065 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-521)))))) (-2544 ((|#1| $ (-521)) 57) (($ $ $) NIL (|has| (-521) (-1025)))) (-2156 (($ $ (-587 (-1084)) (-587 (-707))) NIL (-12 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (|has| |#1| (-829 (-1084))))) (($ $ (-1084) (-707)) NIL (-12 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (|has| |#1| (-829 (-1084))))) (($ $ (-587 (-1084))) NIL (-12 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (|has| |#1| (-829 (-1084))))) (($ $ (-1084)) NIL (-12 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (|has| |#1| (-829 (-1084))))) (($ $ (-707)) NIL (|has| |#1| (-15 * (|#1| (-521) |#1|)))) (($ $) 70 (|has| |#1| (-15 * (|#1| (-521) |#1|))))) (-1994 (((-521) $) NIL)) (-3448 (($ $) 46)) (-2189 (((-792) $) NIL) (($ (-521)) 28) (($ (-381 (-521))) NIL (|has| |#1| (-37 (-381 (-521))))) (($ $) NIL (|has| |#1| (-513))) (($ |#1|) 27 (|has| |#1| (-157)))) (-3800 ((|#1| $ (-521)) 56)) (-1671 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-3846 (((-707)) 37)) (-1893 ((|#1| $) NIL)) (-1646 (($ $) 180 (|has| |#1| (-37 (-381 (-521)))))) (-1550 (($ $) 156 (|has| |#1| (-37 (-381 (-521)))))) (-1289 (($ $) 177 (|has| |#1| (-37 (-381 (-521)))))) (-1788 (($ $) 153 (|has| |#1| (-37 (-381 (-521)))))) (-1980 (($ $) 182 (|has| |#1| (-37 (-381 (-521)))))) (-1634 (($ $) 159 (|has| |#1| (-37 (-381 (-521)))))) (-1256 (($ $ (-381 (-521))) 146 (|has| |#1| (-37 (-381 (-521)))))) (-1268 (($ $ |#1|) 121 (|has| |#1| (-37 (-381 (-521)))))) (-1417 (($ $) 150 (|has| |#1| (-37 (-381 (-521)))))) (-2934 (($ $) 148 (|has| |#1| (-37 (-381 (-521)))))) (-1719 (($ $) 183 (|has| |#1| (-37 (-381 (-521)))))) (-2116 (($ $) 160 (|has| |#1| (-37 (-381 (-521)))))) (-2006 (($ $) 181 (|has| |#1| (-37 (-381 (-521)))))) (-3259 (($ $) 158 (|has| |#1| (-37 (-381 (-521)))))) (-3925 (($ $) 178 (|has| |#1| (-37 (-381 (-521)))))) (-2196 (($ $) 154 (|has| |#1| (-37 (-381 (-521)))))) (-4012 (($ $) 188 (|has| |#1| (-37 (-381 (-521)))))) (-2573 (($ $) 168 (|has| |#1| (-37 (-381 (-521)))))) (-1979 (($ $) 185 (|has| |#1| (-37 (-381 (-521)))))) (-2562 (($ $) 163 (|has| |#1| (-37 (-381 (-521)))))) (-2638 (($ $) 192 (|has| |#1| (-37 (-381 (-521)))))) (-2624 (($ $) 172 (|has| |#1| (-37 (-381 (-521)))))) (-1394 (($ $) 194 (|has| |#1| (-37 (-381 (-521)))))) (-3368 (($ $) 174 (|has| |#1| (-37 (-381 (-521)))))) (-2689 (($ $) 190 (|has| |#1| (-37 (-381 (-521)))))) (-2083 (($ $) 170 (|has| |#1| (-37 (-381 (-521)))))) (-3226 (($ $) 187 (|has| |#1| (-37 (-381 (-521)))))) (-3062 (($ $) 166 (|has| |#1| (-37 (-381 (-521)))))) (-4210 (((-108) $ $) NIL (|has| |#1| (-513)))) (-3894 ((|#1| $ (-521)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-521)))) (|has| |#1| (-15 -2189 (|#1| (-1084))))))) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (-3561 (($) 29 T CONST)) (-3572 (($) 38 T CONST)) (-2212 (($ $ (-587 (-1084)) (-587 (-707))) NIL (-12 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (|has| |#1| (-829 (-1084))))) (($ $ (-1084) (-707)) NIL (-12 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (|has| |#1| (-829 (-1084))))) (($ $ (-587 (-1084))) NIL (-12 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (|has| |#1| (-829 (-1084))))) (($ $ (-1084)) NIL (-12 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (|has| |#1| (-829 (-1084))))) (($ $ (-707)) NIL (|has| |#1| (-15 * (|#1| (-521) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-521) |#1|))))) (-1531 (((-108) $ $) 65)) (-1620 (($ $ |#1|) NIL (|has| |#1| (-337)))) (-1612 (($ $) 84) (($ $ $) 64)) (-1602 (($ $ $) 81)) (** (($ $ (-850)) NIL) (($ $ (-707)) 103)) (* (($ (-850) $) 89) (($ (-707) $) 87) (($ (-521) $) 85) (($ $ $) 95) (($ $ |#1|) NIL) (($ |#1| $) 115) (($ (-381 (-521)) $) NIL (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) NIL (|has| |#1| (-37 (-381 (-521)))))))
+(((-546 |#1|) (-13 (-1143 |#1| (-521)) (-10 -8 (-15 -1484 ($ (-950 (-777 (-521))) (-1065 (-2 (|:| |k| (-521)) (|:| |c| |#1|))))) (-15 -1956 ((-950 (-777 (-521))) $)) (-15 -3819 ((-1065 (-2 (|:| |k| (-521)) (|:| |c| |#1|))) $)) (-15 -2770 ($ (-1065 (-2 (|:| |k| (-521)) (|:| |c| |#1|))))) (-15 -3649 ((-108) $)) (-15 -3131 ($ (-1 |#1| (-521)) $)) (-15 -1810 ((-3 $ "failed") $ $ (-108))) (-15 -2045 ($ $)) (-15 -3019 ($ $ $)) (-15 -3171 ((-792) (-1065 (-2 (|:| |k| (-521)) (|:| |c| |#1|))) (-950 (-777 (-521))) (-1084) |#1| (-381 (-521)))) (IF (|has| |#1| (-37 (-381 (-521)))) (PROGN (-15 -2184 ($ $)) (-15 -1268 ($ $ |#1|)) (-15 -1256 ($ $ (-381 (-521)))) (-15 -2934 ($ $)) (-15 -1417 ($ $)) (-15 -1788 ($ $)) (-15 -2196 ($ $)) (-15 -1550 ($ $)) (-15 -3259 ($ $)) (-15 -1634 ($ $)) (-15 -2116 ($ $)) (-15 -2562 ($ $)) (-15 -3062 ($ $)) (-15 -2573 ($ $)) (-15 -2083 ($ $)) (-15 -2624 ($ $)) (-15 -3368 ($ $)) (-15 -1289 ($ $)) (-15 -3925 ($ $)) (-15 -1646 ($ $)) (-15 -2006 ($ $)) (-15 -1980 ($ $)) (-15 -1719 ($ $)) (-15 -1979 ($ $)) (-15 -3226 ($ $)) (-15 -4012 ($ $)) (-15 -2689 ($ $)) (-15 -2638 ($ $)) (-15 -1394 ($ $))) |%noBranch|))) (-970)) (T -546))
+((-3649 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-546 *3)) (-4 *3 (-970)))) (-1484 (*1 *1 *2 *3) (-12 (-5 *2 (-950 (-777 (-521)))) (-5 *3 (-1065 (-2 (|:| |k| (-521)) (|:| |c| *4)))) (-4 *4 (-970)) (-5 *1 (-546 *4)))) (-1956 (*1 *2 *1) (-12 (-5 *2 (-950 (-777 (-521)))) (-5 *1 (-546 *3)) (-4 *3 (-970)))) (-3819 (*1 *2 *1) (-12 (-5 *2 (-1065 (-2 (|:| |k| (-521)) (|:| |c| *3)))) (-5 *1 (-546 *3)) (-4 *3 (-970)))) (-2770 (*1 *1 *2) (-12 (-5 *2 (-1065 (-2 (|:| |k| (-521)) (|:| |c| *3)))) (-4 *3 (-970)) (-5 *1 (-546 *3)))) (-3131 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-521))) (-4 *3 (-970)) (-5 *1 (-546 *3)))) (-1810 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-108)) (-5 *1 (-546 *3)) (-4 *3 (-970)))) (-2045 (*1 *1 *1) (-12 (-5 *1 (-546 *2)) (-4 *2 (-970)))) (-3019 (*1 *1 *1 *1) (-12 (-5 *1 (-546 *2)) (-4 *2 (-970)))) (-3171 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1065 (-2 (|:| |k| (-521)) (|:| |c| *6)))) (-5 *4 (-950 (-777 (-521)))) (-5 *5 (-1084)) (-5 *7 (-381 (-521))) (-4 *6 (-970)) (-5 *2 (-792)) (-5 *1 (-546 *6)))) (-2184 (*1 *1 *1) (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))) (-1268 (*1 *1 *1 *2) (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))) (-1256 (*1 *1 *1 *2) (-12 (-5 *2 (-381 (-521))) (-5 *1 (-546 *3)) (-4 *3 (-37 *2)) (-4 *3 (-970)))) (-2934 (*1 *1 *1) (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))) (-1417 (*1 *1 *1) (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))) (-1788 (*1 *1 *1) (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))) (-2196 (*1 *1 *1) (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))) (-1550 (*1 *1 *1) (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))) (-3259 (*1 *1 *1) (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))) (-1634 (*1 *1 *1) (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))) (-2116 (*1 *1 *1) (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))) (-2562 (*1 *1 *1) (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))) (-3062 (*1 *1 *1) (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))) (-2573 (*1 *1 *1) (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))) (-2083 (*1 *1 *1) (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))) (-2624 (*1 *1 *1) (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))) (-3368 (*1 *1 *1) (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))) (-1289 (*1 *1 *1) (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))) (-3925 (*1 *1 *1) (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))) (-1646 (*1 *1 *1) (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))) (-2006 (*1 *1 *1) (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))) (-1980 (*1 *1 *1) (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))) (-1719 (*1 *1 *1) (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))) (-1979 (*1 *1 *1) (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))) (-3226 (*1 *1 *1) (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))) (-4012 (*1 *1 *1) (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))) (-2689 (*1 *1 *1) (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))) (-2638 (*1 *1 *1) (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))) (-1394 (*1 *1 *1) (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))))
+(-13 (-1143 |#1| (-521)) (-10 -8 (-15 -1484 ($ (-950 (-777 (-521))) (-1065 (-2 (|:| |k| (-521)) (|:| |c| |#1|))))) (-15 -1956 ((-950 (-777 (-521))) $)) (-15 -3819 ((-1065 (-2 (|:| |k| (-521)) (|:| |c| |#1|))) $)) (-15 -2770 ($ (-1065 (-2 (|:| |k| (-521)) (|:| |c| |#1|))))) (-15 -3649 ((-108) $)) (-15 -3131 ($ (-1 |#1| (-521)) $)) (-15 -1810 ((-3 $ "failed") $ $ (-108))) (-15 -2045 ($ $)) (-15 -3019 ($ $ $)) (-15 -3171 ((-792) (-1065 (-2 (|:| |k| (-521)) (|:| |c| |#1|))) (-950 (-777 (-521))) (-1084) |#1| (-381 (-521)))) (IF (|has| |#1| (-37 (-381 (-521)))) (PROGN (-15 -2184 ($ $)) (-15 -1268 ($ $ |#1|)) (-15 -1256 ($ $ (-381 (-521)))) (-15 -2934 ($ $)) (-15 -1417 ($ $)) (-15 -1788 ($ $)) (-15 -2196 ($ $)) (-15 -1550 ($ $)) (-15 -3259 ($ $)) (-15 -1634 ($ $)) (-15 -2116 ($ $)) (-15 -2562 ($ $)) (-15 -3062 ($ $)) (-15 -2573 ($ $)) (-15 -2083 ($ $)) (-15 -2624 ($ $)) (-15 -3368 ($ $)) (-15 -1289 ($ $)) (-15 -3925 ($ $)) (-15 -1646 ($ $)) (-15 -2006 ($ $)) (-15 -1980 ($ $)) (-15 -1719 ($ $)) (-15 -1979 ($ $)) (-15 -3226 ($ $)) (-15 -4012 ($ $)) (-15 -2689 ($ $)) (-15 -2638 ($ $)) (-15 -1394 ($ $))) |%noBranch|)))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) NIL (|has| |#1| (-513)))) (-2559 (($ $) NIL (|has| |#1| (-513)))) (-1733 (((-108) $) NIL (|has| |#1| (-513)))) (-1232 (((-3 $ "failed") $ $) NIL)) (-2770 (($ (-1065 |#1|)) 9)) (-2547 (($) NIL T CONST)) (-1257 (((-3 $ "failed") $) 42)) (-1325 (((-108) $) 52)) (-2733 (((-707) $) 55) (((-707) $ (-707)) 54)) (-3996 (((-108) $) NIL)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2230 (((-3 $ "failed") $ $) 44 (|has| |#1| (-513)))) (-2189 (((-792) $) NIL) (($ (-521)) NIL) (($ $) NIL (|has| |#1| (-513)))) (-1259 (((-1065 |#1|) $) 23)) (-3846 (((-707)) 51)) (-4210 (((-108) $ $) NIL (|has| |#1| (-513)))) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (-3561 (($) 10 T CONST)) (-3572 (($) 14 T CONST)) (-1531 (((-108) $ $) 22)) (-1612 (($ $) 30) (($ $ $) 16)) (-1602 (($ $ $) 25)) (** (($ $ (-850)) NIL) (($ $ (-707)) 49)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) 34) (($ $ $) 28) (($ |#1| $) 37) (($ $ |#1|) 38) (($ $ (-521)) 36)))
+(((-547 |#1|) (-13 (-970) (-10 -8 (-15 -1259 ((-1065 |#1|) $)) (-15 -2770 ($ (-1065 |#1|))) (-15 -1325 ((-108) $)) (-15 -2733 ((-707) $)) (-15 -2733 ((-707) $ (-707))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-521))) (IF (|has| |#1| (-513)) (-6 (-513)) |%noBranch|))) (-970)) (T -547))
+((-1259 (*1 *2 *1) (-12 (-5 *2 (-1065 *3)) (-5 *1 (-547 *3)) (-4 *3 (-970)))) (-2770 (*1 *1 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-5 *1 (-547 *3)))) (-1325 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-547 *3)) (-4 *3 (-970)))) (-2733 (*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-547 *3)) (-4 *3 (-970)))) (-2733 (*1 *2 *1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-547 *3)) (-4 *3 (-970)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-970)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-547 *2)) (-4 *2 (-970)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-547 *3)) (-4 *3 (-970)))))
+(-13 (-970) (-10 -8 (-15 -1259 ((-1065 |#1|) $)) (-15 -2770 ($ (-1065 |#1|))) (-15 -1325 ((-108) $)) (-15 -2733 ((-707) $)) (-15 -2733 ((-707) $ (-707))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-521))) (IF (|has| |#1| (-513)) (-6 (-513)) |%noBranch|)))
+((-1390 (((-551 |#2|) (-1 |#2| |#1|) (-551 |#1|)) 15)))
+(((-548 |#1| |#2|) (-10 -7 (-15 -1390 ((-551 |#2|) (-1 |#2| |#1|) (-551 |#1|)))) (-1119) (-1119)) (T -548))
+((-1390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-551 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-551 *6)) (-5 *1 (-548 *5 *6)))))
+(-10 -7 (-15 -1390 ((-551 |#2|) (-1 |#2| |#1|) (-551 |#1|))))
+((-1390 (((-1065 |#3|) (-1 |#3| |#1| |#2|) (-551 |#1|) (-1065 |#2|)) 20) (((-1065 |#3|) (-1 |#3| |#1| |#2|) (-1065 |#1|) (-551 |#2|)) 19) (((-551 |#3|) (-1 |#3| |#1| |#2|) (-551 |#1|) (-551 |#2|)) 18)))
+(((-549 |#1| |#2| |#3|) (-10 -7 (-15 -1390 ((-551 |#3|) (-1 |#3| |#1| |#2|) (-551 |#1|) (-551 |#2|))) (-15 -1390 ((-1065 |#3|) (-1 |#3| |#1| |#2|) (-1065 |#1|) (-551 |#2|))) (-15 -1390 ((-1065 |#3|) (-1 |#3| |#1| |#2|) (-551 |#1|) (-1065 |#2|)))) (-1119) (-1119) (-1119)) (T -549))
+((-1390 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-551 *6)) (-5 *5 (-1065 *7)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-4 *8 (-1119)) (-5 *2 (-1065 *8)) (-5 *1 (-549 *6 *7 *8)))) (-1390 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1065 *6)) (-5 *5 (-551 *7)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-4 *8 (-1119)) (-5 *2 (-1065 *8)) (-5 *1 (-549 *6 *7 *8)))) (-1390 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-551 *6)) (-5 *5 (-551 *7)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-4 *8 (-1119)) (-5 *2 (-551 *8)) (-5 *1 (-549 *6 *7 *8)))))
+(-10 -7 (-15 -1390 ((-551 |#3|) (-1 |#3| |#1| |#2|) (-551 |#1|) (-551 |#2|))) (-15 -1390 ((-1065 |#3|) (-1 |#3| |#1| |#2|) (-1065 |#1|) (-551 |#2|))) (-15 -1390 ((-1065 |#3|) (-1 |#3| |#1| |#2|) (-551 |#1|) (-1065 |#2|))))
+((-2771 ((|#3| |#3| (-587 (-560 |#3|)) (-587 (-1084))) 55)) (-2445 (((-154 |#2|) |#3|) 116)) (-2907 ((|#3| (-154 |#2|)) 43)) (-4074 ((|#2| |#3|) 19)) (-1587 ((|#3| |#2|) 32)))
+(((-550 |#1| |#2| |#3|) (-10 -7 (-15 -2907 (|#3| (-154 |#2|))) (-15 -4074 (|#2| |#3|)) (-15 -1587 (|#3| |#2|)) (-15 -2445 ((-154 |#2|) |#3|)) (-15 -2771 (|#3| |#3| (-587 (-560 |#3|)) (-587 (-1084))))) (-13 (-513) (-784)) (-13 (-404 |#1|) (-927) (-1105)) (-13 (-404 (-154 |#1|)) (-927) (-1105))) (T -550))
+((-2771 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-587 (-560 *2))) (-5 *4 (-587 (-1084))) (-4 *2 (-13 (-404 (-154 *5)) (-927) (-1105))) (-4 *5 (-13 (-513) (-784))) (-5 *1 (-550 *5 *6 *2)) (-4 *6 (-13 (-404 *5) (-927) (-1105))))) (-2445 (*1 *2 *3) (-12 (-4 *4 (-13 (-513) (-784))) (-5 *2 (-154 *5)) (-5 *1 (-550 *4 *5 *3)) (-4 *5 (-13 (-404 *4) (-927) (-1105))) (-4 *3 (-13 (-404 (-154 *4)) (-927) (-1105))))) (-1587 (*1 *2 *3) (-12 (-4 *4 (-13 (-513) (-784))) (-4 *2 (-13 (-404 (-154 *4)) (-927) (-1105))) (-5 *1 (-550 *4 *3 *2)) (-4 *3 (-13 (-404 *4) (-927) (-1105))))) (-4074 (*1 *2 *3) (-12 (-4 *4 (-13 (-513) (-784))) (-4 *2 (-13 (-404 *4) (-927) (-1105))) (-5 *1 (-550 *4 *2 *3)) (-4 *3 (-13 (-404 (-154 *4)) (-927) (-1105))))) (-2907 (*1 *2 *3) (-12 (-5 *3 (-154 *5)) (-4 *5 (-13 (-404 *4) (-927) (-1105))) (-4 *4 (-13 (-513) (-784))) (-4 *2 (-13 (-404 (-154 *4)) (-927) (-1105))) (-5 *1 (-550 *4 *5 *2)))))
+(-10 -7 (-15 -2907 (|#3| (-154 |#2|))) (-15 -4074 (|#2| |#3|)) (-15 -1587 (|#3| |#2|)) (-15 -2445 ((-154 |#2|) |#3|)) (-15 -2771 (|#3| |#3| (-587 (-560 |#3|)) (-587 (-1084)))))
+((-1628 (($ (-1 (-108) |#1|) $) 16)) (-1390 (($ (-1 |#1| |#1|) $) NIL)) (-1578 (($ (-1 |#1| |#1|) |#1|) 9)) (-1614 (($ (-1 (-108) |#1|) $) 12)) (-1622 (($ (-1 (-108) |#1|) $) 14)) (-2201 (((-1065 |#1|) $) 17)) (-2189 (((-792) $) NIL)))
+(((-551 |#1|) (-13 (-561 (-792)) (-10 -8 (-15 -1390 ($ (-1 |#1| |#1|) $)) (-15 -1614 ($ (-1 (-108) |#1|) $)) (-15 -1622 ($ (-1 (-108) |#1|) $)) (-15 -1628 ($ (-1 (-108) |#1|) $)) (-15 -1578 ($ (-1 |#1| |#1|) |#1|)) (-15 -2201 ((-1065 |#1|) $)))) (-1119)) (T -551))
+((-1390 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1119)) (-5 *1 (-551 *3)))) (-1614 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1119)) (-5 *1 (-551 *3)))) (-1622 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1119)) (-5 *1 (-551 *3)))) (-1628 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1119)) (-5 *1 (-551 *3)))) (-1578 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1119)) (-5 *1 (-551 *3)))) (-2201 (*1 *2 *1) (-12 (-5 *2 (-1065 *3)) (-5 *1 (-551 *3)) (-4 *3 (-1119)))))
+(-13 (-561 (-792)) (-10 -8 (-15 -1390 ($ (-1 |#1| |#1|) $)) (-15 -1614 ($ (-1 (-108) |#1|) $)) (-15 -1622 ($ (-1 (-108) |#1|) $)) (-15 -1628 ($ (-1 (-108) |#1|) $)) (-15 -1578 ($ (-1 |#1| |#1|) |#1|)) (-15 -2201 ((-1065 |#1|) $))))
+((-1415 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3478 (($ (-707)) NIL (|has| |#1| (-23)))) (-1903 (((-1170) $ (-521) (-521)) NIL (|has| $ (-6 -4234)))) (-1505 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-784)))) (-1621 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4234))) (($ $) NIL (-12 (|has| $ (-6 -4234)) (|has| |#1| (-784))))) (-3211 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-784)))) (-2978 (((-108) $ (-707)) NIL)) (-2378 ((|#1| $ (-521) |#1|) NIL (|has| $ (-6 -4234))) ((|#1| $ (-1132 (-521)) |#1|) NIL (|has| $ (-6 -4234)))) (-1628 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2547 (($) NIL T CONST)) (-3081 (($ $) NIL (|has| $ (-6 -4234)))) (-1862 (($ $) NIL)) (-2332 (($ $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-1422 (($ |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-3859 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4233)))) (-3849 ((|#1| $ (-521) |#1|) NIL (|has| $ (-6 -4234)))) (-3626 ((|#1| $ (-521)) NIL)) (-3233 (((-521) (-1 (-108) |#1|) $) NIL) (((-521) |#1| $) NIL (|has| |#1| (-1013))) (((-521) |#1| $ (-521)) NIL (|has| |#1| (-1013)))) (-3831 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-3952 (((-627 |#1|) $ $) NIL (|has| |#1| (-970)))) (-1811 (($ (-707) |#1|) NIL)) (-2139 (((-108) $ (-707)) NIL)) (-2826 (((-521) $) NIL (|has| (-521) (-784)))) (-2810 (($ $ $) NIL (|has| |#1| (-784)))) (-1318 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-784)))) (-3757 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-2221 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2597 (((-521) $) NIL (|has| (-521) (-784)))) (-2446 (($ $ $) NIL (|has| |#1| (-784)))) (-3833 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3366 ((|#1| $) NIL (-12 (|has| |#1| (-927)) (|has| |#1| (-970))))) (-3574 (((-108) $ (-707)) NIL)) (-2516 ((|#1| $) NIL (-12 (|has| |#1| (-927)) (|has| |#1| (-970))))) (-3688 (((-1067) $) NIL (|has| |#1| (-1013)))) (-1659 (($ |#1| $ (-521)) NIL) (($ $ $ (-521)) NIL)) (-1668 (((-587 (-521)) $) NIL)) (-2941 (((-108) (-521) $) NIL)) (-4147 (((-1031) $) NIL (|has| |#1| (-1013)))) (-2293 ((|#1| $) NIL (|has| (-521) (-784)))) (-3620 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-3016 (($ $ |#1|) NIL (|has| $ (-6 -4234)))) (-1789 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 |#1|))) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-2488 (((-108) $ $) NIL)) (-3821 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2489 (((-587 |#1|) $) NIL)) (-3462 (((-108) $) NIL)) (-4024 (($) NIL)) (-2544 ((|#1| $ (-521) |#1|) NIL) ((|#1| $ (-521)) NIL) (($ $ (-1132 (-521))) NIL)) (-1231 ((|#1| $ $) NIL (|has| |#1| (-970)))) (-3691 (($ $ (-521)) NIL) (($ $ (-1132 (-521))) NIL)) (-2292 (($ $ $) NIL (|has| |#1| (-970)))) (-4163 (((-707) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (((-707) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-1497 (($ $ $ (-521)) NIL (|has| $ (-6 -4234)))) (-2404 (($ $) NIL)) (-1430 (((-497) $) NIL (|has| |#1| (-562 (-497))))) (-2201 (($ (-587 |#1|)) NIL)) (-4159 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-587 $)) NIL)) (-2189 (((-792) $) NIL (|has| |#1| (-561 (-792))))) (-3049 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-1574 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1558 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1531 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-1566 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1549 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1612 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1602 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-521) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-663))) (($ $ |#1|) NIL (|has| |#1| (-663)))) (-3475 (((-707) $) NIL (|has| $ (-6 -4233)))))
+(((-552 |#1| |#2|) (-1163 |#1|) (-1119) (-521)) (T -552))
+NIL
+(-1163 |#1|)
+((-1903 (((-1170) $ |#2| |#2|) 36)) (-2826 ((|#2| $) 23)) (-2597 ((|#2| $) 21)) (-3833 (($ (-1 |#3| |#3|) $) 32)) (-1390 (($ (-1 |#3| |#3|) $) 30)) (-2293 ((|#3| $) 26)) (-3016 (($ $ |#3|) 33)) (-3821 (((-108) |#3| $) 17)) (-2489 (((-587 |#3|) $) 15)) (-2544 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL)))
+(((-553 |#1| |#2| |#3|) (-10 -8 (-15 -1903 ((-1170) |#1| |#2| |#2|)) (-15 -3016 (|#1| |#1| |#3|)) (-15 -2293 (|#3| |#1|)) (-15 -2826 (|#2| |#1|)) (-15 -2597 (|#2| |#1|)) (-15 -3821 ((-108) |#3| |#1|)) (-15 -2489 ((-587 |#3|) |#1|)) (-15 -2544 (|#3| |#1| |#2|)) (-15 -2544 (|#3| |#1| |#2| |#3|)) (-15 -3833 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1390 (|#1| (-1 |#3| |#3|) |#1|))) (-554 |#2| |#3|) (-1013) (-1119)) (T -553))
+NIL
+(-10 -8 (-15 -1903 ((-1170) |#1| |#2| |#2|)) (-15 -3016 (|#1| |#1| |#3|)) (-15 -2293 (|#3| |#1|)) (-15 -2826 (|#2| |#1|)) (-15 -2597 (|#2| |#1|)) (-15 -3821 ((-108) |#3| |#1|)) (-15 -2489 ((-587 |#3|) |#1|)) (-15 -2544 (|#3| |#1| |#2|)) (-15 -2544 (|#3| |#1| |#2| |#3|)) (-15 -3833 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1390 (|#1| (-1 |#3| |#3|) |#1|)))
+((-1415 (((-108) $ $) 19 (|has| |#2| (-1013)))) (-1903 (((-1170) $ |#1| |#1|) 40 (|has| $ (-6 -4234)))) (-2978 (((-108) $ (-707)) 8)) (-2378 ((|#2| $ |#1| |#2|) 52 (|has| $ (-6 -4234)))) (-2547 (($) 7 T CONST)) (-3849 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4234)))) (-3626 ((|#2| $ |#1|) 51)) (-3831 (((-587 |#2|) $) 30 (|has| $ (-6 -4233)))) (-2139 (((-108) $ (-707)) 9)) (-2826 ((|#1| $) 43 (|has| |#1| (-784)))) (-3757 (((-587 |#2|) $) 29 (|has| $ (-6 -4233)))) (-2221 (((-108) |#2| $) 27 (-12 (|has| |#2| (-1013)) (|has| $ (-6 -4233))))) (-2597 ((|#1| $) 44 (|has| |#1| (-784)))) (-3833 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#2| |#2|) $) 35)) (-3574 (((-108) $ (-707)) 10)) (-3688 (((-1067) $) 22 (|has| |#2| (-1013)))) (-1668 (((-587 |#1|) $) 46)) (-2941 (((-108) |#1| $) 47)) (-4147 (((-1031) $) 21 (|has| |#2| (-1013)))) (-2293 ((|#2| $) 42 (|has| |#1| (-784)))) (-3016 (($ $ |#2|) 41 (|has| $ (-6 -4234)))) (-1789 (((-108) (-1 (-108) |#2|) $) 32 (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 |#2|))) 26 (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ (-269 |#2|)) 25 (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ (-587 |#2|) (-587 |#2|)) 23 (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))))) (-2488 (((-108) $ $) 14)) (-3821 (((-108) |#2| $) 45 (-12 (|has| $ (-6 -4233)) (|has| |#2| (-1013))))) (-2489 (((-587 |#2|) $) 48)) (-3462 (((-108) $) 11)) (-4024 (($) 12)) (-2544 ((|#2| $ |#1| |#2|) 50) ((|#2| $ |#1|) 49)) (-4163 (((-707) (-1 (-108) |#2|) $) 31 (|has| $ (-6 -4233))) (((-707) |#2| $) 28 (-12 (|has| |#2| (-1013)) (|has| $ (-6 -4233))))) (-2404 (($ $) 13)) (-2189 (((-792) $) 18 (|has| |#2| (-561 (-792))))) (-3049 (((-108) (-1 (-108) |#2|) $) 33 (|has| $ (-6 -4233)))) (-1531 (((-108) $ $) 20 (|has| |#2| (-1013)))) (-3475 (((-707) $) 6 (|has| $ (-6 -4233)))))
+(((-554 |#1| |#2|) (-1196) (-1013) (-1119)) (T -554))
+((-2489 (*1 *2 *1) (-12 (-4 *1 (-554 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1119)) (-5 *2 (-587 *4)))) (-2941 (*1 *2 *3 *1) (-12 (-4 *1 (-554 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1119)) (-5 *2 (-108)))) (-1668 (*1 *2 *1) (-12 (-4 *1 (-554 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1119)) (-5 *2 (-587 *3)))) (-3821 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4233)) (-4 *1 (-554 *4 *3)) (-4 *4 (-1013)) (-4 *3 (-1119)) (-4 *3 (-1013)) (-5 *2 (-108)))) (-2597 (*1 *2 *1) (-12 (-4 *1 (-554 *2 *3)) (-4 *3 (-1119)) (-4 *2 (-1013)) (-4 *2 (-784)))) (-2826 (*1 *2 *1) (-12 (-4 *1 (-554 *2 *3)) (-4 *3 (-1119)) (-4 *2 (-1013)) (-4 *2 (-784)))) (-2293 (*1 *2 *1) (-12 (-4 *1 (-554 *3 *2)) (-4 *3 (-1013)) (-4 *3 (-784)) (-4 *2 (-1119)))) (-3016 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4234)) (-4 *1 (-554 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1119)))) (-1903 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4234)) (-4 *1 (-554 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1119)) (-5 *2 (-1170)))))
+(-13 (-460 |t#2|) (-263 |t#1| |t#2|) (-10 -8 (-15 -2489 ((-587 |t#2|) $)) (-15 -2941 ((-108) |t#1| $)) (-15 -1668 ((-587 |t#1|) $)) (IF (|has| |t#2| (-1013)) (IF (|has| $ (-6 -4233)) (-15 -3821 ((-108) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-784)) (PROGN (-15 -2597 (|t#1| $)) (-15 -2826 (|t#1| $)) (-15 -2293 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4234)) (PROGN (-15 -3016 ($ $ |t#2|)) (-15 -1903 ((-1170) $ |t#1| |t#1|))) |%noBranch|)))
+(((-33) . T) ((-97) |has| |#2| (-1013)) ((-561 (-792)) -3703 (|has| |#2| (-1013)) (|has| |#2| (-561 (-792)))) ((-261 |#1| |#2|) . T) ((-263 |#1| |#2|) . T) ((-284 |#2|) -12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))) ((-460 |#2|) . T) ((-482 |#2| |#2|) -12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))) ((-1013) |has| |#2| (-1013)) ((-1119) . T))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-3689 (((-3 $ "failed")) NIL (-3703 (-12 (|has| |#2| (-341 |#1|)) (|has| |#1| (-513))) (-12 (|has| |#2| (-391 |#1|)) (|has| |#1| (-513)))))) (-1232 (((-3 $ "failed") $ $) NIL)) (-3359 (((-1165 (-627 |#1|))) NIL (|has| |#2| (-391 |#1|))) (((-1165 (-627 |#1|)) (-1165 $)) NIL (|has| |#2| (-341 |#1|)))) (-1386 (((-1165 $)) NIL (|has| |#2| (-341 |#1|)))) (-2547 (($) NIL T CONST)) (-3758 (((-3 (-2 (|:| |particular| $) (|:| -2470 (-587 $))) "failed")) NIL (-3703 (-12 (|has| |#2| (-341 |#1|)) (|has| |#1| (-513))) (-12 (|has| |#2| (-391 |#1|)) (|has| |#1| (-513)))))) (-3167 (((-3 $ "failed")) NIL (-3703 (-12 (|has| |#2| (-341 |#1|)) (|has| |#1| (-513))) (-12 (|has| |#2| (-391 |#1|)) (|has| |#1| (-513)))))) (-2168 (((-627 |#1|)) NIL (|has| |#2| (-391 |#1|))) (((-627 |#1|) (-1165 $)) NIL (|has| |#2| (-341 |#1|)))) (-3783 ((|#1| $) NIL (|has| |#2| (-341 |#1|)))) (-3907 (((-627 |#1|) $) NIL (|has| |#2| (-391 |#1|))) (((-627 |#1|) $ (-1165 $)) NIL (|has| |#2| (-341 |#1|)))) (-3176 (((-3 $ "failed") $) NIL (-3703 (-12 (|has| |#2| (-341 |#1|)) (|has| |#1| (-513))) (-12 (|has| |#2| (-391 |#1|)) (|has| |#1| (-513)))))) (-1528 (((-1080 (-881 |#1|))) NIL (-12 (|has| |#2| (-391 |#1|)) (|has| |#1| (-337))))) (-3047 (($ $ (-850)) NIL)) (-3333 ((|#1| $) NIL (|has| |#2| (-341 |#1|)))) (-3330 (((-1080 |#1|) $) NIL (-3703 (-12 (|has| |#2| (-341 |#1|)) (|has| |#1| (-513))) (-12 (|has| |#2| (-391 |#1|)) (|has| |#1| (-513)))))) (-3518 ((|#1|) NIL (|has| |#2| (-391 |#1|))) ((|#1| (-1165 $)) NIL (|has| |#2| (-341 |#1|)))) (-2370 (((-1080 |#1|) $) NIL (|has| |#2| (-341 |#1|)))) (-1208 (((-108)) NIL (|has| |#2| (-341 |#1|)))) (-4083 (($ (-1165 |#1|)) NIL (|has| |#2| (-391 |#1|))) (($ (-1165 |#1|) (-1165 $)) NIL (|has| |#2| (-341 |#1|)))) (-1257 (((-3 $ "failed") $) NIL (-3703 (-12 (|has| |#2| (-341 |#1|)) (|has| |#1| (-513))) (-12 (|has| |#2| (-391 |#1|)) (|has| |#1| (-513)))))) (-3162 (((-850)) NIL (|has| |#2| (-341 |#1|)))) (-3856 (((-108)) NIL (|has| |#2| (-341 |#1|)))) (-2049 (($ $ (-850)) NIL)) (-2760 (((-108)) NIL (|has| |#2| (-341 |#1|)))) (-1344 (((-108)) NIL (|has| |#2| (-341 |#1|)))) (-2383 (((-108)) NIL (|has| |#2| (-341 |#1|)))) (-3524 (((-3 (-2 (|:| |particular| $) (|:| -2470 (-587 $))) "failed")) NIL (-3703 (-12 (|has| |#2| (-341 |#1|)) (|has| |#1| (-513))) (-12 (|has| |#2| (-391 |#1|)) (|has| |#1| (-513)))))) (-2172 (((-3 $ "failed")) NIL (-3703 (-12 (|has| |#2| (-341 |#1|)) (|has| |#1| (-513))) (-12 (|has| |#2| (-391 |#1|)) (|has| |#1| (-513)))))) (-1786 (((-627 |#1|)) NIL (|has| |#2| (-391 |#1|))) (((-627 |#1|) (-1165 $)) NIL (|has| |#2| (-341 |#1|)))) (-2627 ((|#1| $) NIL (|has| |#2| (-341 |#1|)))) (-3734 (((-627 |#1|) $) NIL (|has| |#2| (-391 |#1|))) (((-627 |#1|) $ (-1165 $)) NIL (|has| |#2| (-341 |#1|)))) (-2652 (((-3 $ "failed") $) NIL (-3703 (-12 (|has| |#2| (-341 |#1|)) (|has| |#1| (-513))) (-12 (|has| |#2| (-391 |#1|)) (|has| |#1| (-513)))))) (-1519 (((-1080 (-881 |#1|))) NIL (-12 (|has| |#2| (-391 |#1|)) (|has| |#1| (-337))))) (-2830 (($ $ (-850)) NIL)) (-1332 ((|#1| $) NIL (|has| |#2| (-341 |#1|)))) (-1729 (((-1080 |#1|) $) NIL (-3703 (-12 (|has| |#2| (-341 |#1|)) (|has| |#1| (-513))) (-12 (|has| |#2| (-391 |#1|)) (|has| |#1| (-513)))))) (-1586 ((|#1|) NIL (|has| |#2| (-391 |#1|))) ((|#1| (-1165 $)) NIL (|has| |#2| (-341 |#1|)))) (-3888 (((-1080 |#1|) $) NIL (|has| |#2| (-341 |#1|)))) (-2118 (((-108)) NIL (|has| |#2| (-341 |#1|)))) (-3688 (((-1067) $) NIL)) (-4045 (((-108)) NIL (|has| |#2| (-341 |#1|)))) (-1560 (((-108)) NIL (|has| |#2| (-341 |#1|)))) (-1381 (((-108)) NIL (|has| |#2| (-341 |#1|)))) (-4147 (((-1031) $) NIL)) (-1242 (((-108)) NIL (|has| |#2| (-341 |#1|)))) (-2544 ((|#1| $ (-521)) NIL (|has| |#2| (-391 |#1|)))) (-2234 (((-627 |#1|) (-1165 $)) NIL (|has| |#2| (-391 |#1|))) (((-1165 |#1|) $) NIL (|has| |#2| (-391 |#1|))) (((-627 |#1|) (-1165 $) (-1165 $)) NIL (|has| |#2| (-341 |#1|))) (((-1165 |#1|) $ (-1165 $)) NIL (|has| |#2| (-341 |#1|)))) (-1430 (($ (-1165 |#1|)) NIL (|has| |#2| (-391 |#1|))) (((-1165 |#1|) $) NIL (|has| |#2| (-391 |#1|)))) (-3557 (((-587 (-881 |#1|))) NIL (|has| |#2| (-391 |#1|))) (((-587 (-881 |#1|)) (-1165 $)) NIL (|has| |#2| (-341 |#1|)))) (-2674 (($ $ $) NIL)) (-3160 (((-108)) NIL (|has| |#2| (-341 |#1|)))) (-2189 (((-792) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-2470 (((-1165 $)) NIL (|has| |#2| (-391 |#1|)))) (-2578 (((-587 (-1165 |#1|))) NIL (-3703 (-12 (|has| |#2| (-341 |#1|)) (|has| |#1| (-513))) (-12 (|has| |#2| (-391 |#1|)) (|has| |#1| (-513)))))) (-2922 (($ $ $ $) NIL)) (-2057 (((-108)) NIL (|has| |#2| (-341 |#1|)))) (-1616 (($ (-627 |#1|) $) NIL (|has| |#2| (-391 |#1|)))) (-2464 (($ $ $) NIL)) (-1453 (((-108)) NIL (|has| |#2| (-341 |#1|)))) (-3987 (((-108)) NIL (|has| |#2| (-341 |#1|)))) (-2596 (((-108)) NIL (|has| |#2| (-341 |#1|)))) (-3561 (($) NIL T CONST)) (-1531 (((-108) $ $) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) 24)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL)))
+(((-555 |#1| |#2|) (-13 (-681 |#1|) (-561 |#2|) (-10 -8 (-15 -2189 ($ |#2|)) (IF (|has| |#2| (-391 |#1|)) (-6 (-391 |#1|)) |%noBranch|) (IF (|has| |#2| (-341 |#1|)) (-6 (-341 |#1|)) |%noBranch|))) (-157) (-681 |#1|)) (T -555))
+((-2189 (*1 *1 *2) (-12 (-4 *3 (-157)) (-5 *1 (-555 *3 *2)) (-4 *2 (-681 *3)))))
+(-13 (-681 |#1|) (-561 |#2|) (-10 -8 (-15 -2189 ($ |#2|)) (IF (|has| |#2| (-391 |#1|)) (-6 (-391 |#1|)) |%noBranch|) (IF (|has| |#2| (-341 |#1|)) (-6 (-341 |#1|)) |%noBranch|)))
+((-1415 (((-108) $ $) NIL)) (-4169 (((-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) $ (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|))) 32)) (-1800 (($ (-587 (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)))) NIL) (($) NIL)) (-1903 (((-1170) $ (-1067) (-1067)) NIL (|has| $ (-6 -4234)))) (-2978 (((-108) $ (-707)) NIL)) (-2378 ((|#1| $ (-1067) |#1|) 42)) (-4098 (($ (-1 (-108) (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|))) $) NIL (|has| $ (-6 -4233)))) (-1628 (($ (-1 (-108) (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|))) $) NIL (|has| $ (-6 -4233)))) (-2748 (((-3 |#1| "failed") (-1067) $) 45)) (-2547 (($) NIL T CONST)) (-2837 (($ $ (-1067)) 24)) (-2332 (($ $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (-1013))))) (-3023 (((-3 |#1| "failed") (-1067) $) 46) (($ (-1 (-108) (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|))) $) NIL (|has| $ (-6 -4233))) (($ (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) $) NIL (|has| $ (-6 -4233)))) (-1422 (($ (-1 (-108) (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|))) $) NIL (|has| $ (-6 -4233))) (($ (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (-1013))))) (-3859 (((-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (-1 (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|))) $) NIL (|has| $ (-6 -4233))) (((-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (-1 (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|))) $ (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|))) NIL (|has| $ (-6 -4233))) (((-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (-1 (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|))) $ (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|))) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (-1013))))) (-1791 (((-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) $) 31)) (-3849 ((|#1| $ (-1067) |#1|) NIL (|has| $ (-6 -4234)))) (-3626 ((|#1| $ (-1067)) NIL)) (-3831 (((-587 |#1|) $) NIL (|has| $ (-6 -4233))) (((-587 (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|))) $) NIL (|has| $ (-6 -4233)))) (-3208 (($ $) 47)) (-1544 (($ (-362)) 22) (($ (-362) (-1067)) 21)) (-2884 (((-362) $) 33)) (-2139 (((-108) $ (-707)) NIL)) (-2826 (((-1067) $) NIL (|has| (-1067) (-784)))) (-3757 (((-587 |#1|) $) NIL (|has| $ (-6 -4233))) (((-587 (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|))) $) NIL (|has| $ (-6 -4233)))) (-2221 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013)))) (((-108) (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (-1013))))) (-2597 (((-1067) $) NIL (|has| (-1067) (-784)))) (-3833 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4234))) (($ (-1 (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|))) $) NIL (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|))) $) NIL)) (-3574 (((-108) $ (-707)) NIL)) (-3688 (((-1067) $) NIL)) (-2961 (((-587 (-1067)) $) 38)) (-2781 (((-108) (-1067) $) NIL)) (-1914 (((-1067) $) 34)) (-2511 (((-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) $) NIL)) (-3373 (($ (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) $) NIL)) (-1668 (((-587 (-1067)) $) NIL)) (-2941 (((-108) (-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2293 ((|#1| $) NIL (|has| (-1067) (-784)))) (-3620 (((-3 (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) "failed") (-1 (-108) (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|))) $) NIL)) (-3016 (($ $ |#1|) NIL (|has| $ (-6 -4234)))) (-2166 (((-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) $) NIL)) (-1789 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (((-108) (-1 (-108) (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|))) $) NIL (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 |#1|))) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|))) (-587 (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)))) NIL (-12 (|has| (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (-284 (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)))) (|has| (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (-1013)))) (($ $ (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|))) NIL (-12 (|has| (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (-284 (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)))) (|has| (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (-1013)))) (($ $ (-269 (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)))) NIL (-12 (|has| (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (-284 (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)))) (|has| (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (-1013)))) (($ $ (-587 (-269 (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|))))) NIL (-12 (|has| (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (-284 (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)))) (|has| (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (-1013))))) (-2488 (((-108) $ $) NIL)) (-3821 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2489 (((-587 |#1|) $) NIL)) (-3462 (((-108) $) NIL)) (-4024 (($) 36)) (-2544 ((|#1| $ (-1067) |#1|) NIL) ((|#1| $ (-1067)) 41)) (-1784 (($ (-587 (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)))) NIL) (($) NIL)) (-4163 (((-707) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (((-707) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013)))) (((-707) (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (-1013)))) (((-707) (-1 (-108) (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|))) $) NIL (|has| $ (-6 -4233)))) (-2404 (($ $) NIL)) (-1430 (((-497) $) NIL (|has| (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (-562 (-497))))) (-2201 (($ (-587 (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)))) NIL)) (-2189 (((-792) $) 20)) (-2259 (($ $) 25)) (-4091 (($ (-587 (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)))) NIL)) (-3049 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (((-108) (-1 (-108) (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|))) $) NIL (|has| $ (-6 -4233)))) (-1531 (((-108) $ $) 19)) (-3475 (((-707) $) 40 (|has| $ (-6 -4233)))))
+(((-556 |#1|) (-13 (-338 (-362) (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|))) (-1096 (-1067) |#1|) (-10 -8 (-6 -4233) (-15 -3208 ($ $)))) (-1013)) (T -556))
+((-3208 (*1 *1 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-1013)))))
+(-13 (-338 (-362) (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|))) (-1096 (-1067) |#1|) (-10 -8 (-6 -4233) (-15 -3208 ($ $))))
+((-2221 (((-108) (-2 (|:| -2529 |#2|) (|:| -3045 |#3|)) $) 15)) (-2961 (((-587 |#2|) $) 19)) (-2781 (((-108) |#2| $) 12)))
+(((-557 |#1| |#2| |#3|) (-10 -8 (-15 -2961 ((-587 |#2|) |#1|)) (-15 -2781 ((-108) |#2| |#1|)) (-15 -2221 ((-108) (-2 (|:| -2529 |#2|) (|:| -3045 |#3|)) |#1|))) (-558 |#2| |#3|) (-1013) (-1013)) (T -557))
+NIL
+(-10 -8 (-15 -2961 ((-587 |#2|) |#1|)) (-15 -2781 ((-108) |#2| |#1|)) (-15 -2221 ((-108) (-2 (|:| -2529 |#2|) (|:| -3045 |#3|)) |#1|)))
+((-1415 (((-108) $ $) 19 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (-2978 (((-108) $ (-707)) 8)) (-4098 (($ (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) 45 (|has| $ (-6 -4233)))) (-1628 (($ (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) 55 (|has| $ (-6 -4233)))) (-2748 (((-3 |#2| "failed") |#1| $) 61)) (-2547 (($) 7 T CONST)) (-2332 (($ $) 58 (-12 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)) (|has| $ (-6 -4233))))) (-3023 (($ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) 47 (|has| $ (-6 -4233))) (($ (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) 46 (|has| $ (-6 -4233))) (((-3 |#2| "failed") |#1| $) 62)) (-1422 (($ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)) (|has| $ (-6 -4233)))) (($ (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) 54 (|has| $ (-6 -4233)))) (-3859 (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) 56 (-12 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)) (|has| $ (-6 -4233)))) (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) 53 (|has| $ (-6 -4233))) (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) 52 (|has| $ (-6 -4233)))) (-3831 (((-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) 30 (|has| $ (-6 -4233)))) (-2139 (((-108) $ (-707)) 9)) (-3757 (((-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) 29 (|has| $ (-6 -4233)))) (-2221 (((-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)) (|has| $ (-6 -4233))))) (-3833 (($ (-1 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) 34 (|has| $ (-6 -4234)))) (-1390 (($ (-1 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) 35)) (-3574 (((-108) $ (-707)) 10)) (-3688 (((-1067) $) 22 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (-2961 (((-587 |#1|) $) 63)) (-2781 (((-108) |#1| $) 64)) (-2511 (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) 39)) (-3373 (($ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) 40)) (-4147 (((-1031) $) 21 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (-3620 (((-3 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) "failed") (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) 51)) (-2166 (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) 41)) (-1789 (((-108) (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) 32 (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))))) 26 (-12 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-284 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (($ $ (-269 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) 25 (-12 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-284 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (($ $ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) 24 (-12 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-284 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (($ $ (-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) (-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) 23 (-12 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-284 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013))))) (-2488 (((-108) $ $) 14)) (-3462 (((-108) $) 11)) (-4024 (($) 12)) (-1784 (($) 49) (($ (-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) 48)) (-4163 (((-707) (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) 31 (|has| $ (-6 -4233))) (((-707) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)) (|has| $ (-6 -4233))))) (-2404 (($ $) 13)) (-1430 (((-497) $) 59 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-562 (-497))))) (-2201 (($ (-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) 50)) (-2189 (((-792) $) 18 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-561 (-792))))) (-4091 (($ (-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) 42)) (-3049 (((-108) (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) 33 (|has| $ (-6 -4233)))) (-1531 (((-108) $ $) 20 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (-3475 (((-707) $) 6 (|has| $ (-6 -4233)))))
+(((-558 |#1| |#2|) (-1196) (-1013) (-1013)) (T -558))
+((-2781 (*1 *2 *3 *1) (-12 (-4 *1 (-558 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-5 *2 (-108)))) (-2961 (*1 *2 *1) (-12 (-4 *1 (-558 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-5 *2 (-587 *3)))) (-3023 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-558 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013)))) (-2748 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-558 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013)))))
+(-13 (-206 (-2 (|:| -2529 |t#1|) (|:| -3045 |t#2|))) (-10 -8 (-15 -2781 ((-108) |t#1| $)) (-15 -2961 ((-587 |t#1|) $)) (-15 -3023 ((-3 |t#2| "failed") |t#1| $)) (-15 -2748 ((-3 |t#2| "failed") |t#1| $))))
+(((-33) . T) ((-102 #0=(-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) . T) ((-97) |has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)) ((-561 (-792)) -3703 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-561 (-792)))) ((-139 #0#) . T) ((-562 (-497)) |has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-562 (-497))) ((-206 #0#) . T) ((-212 #0#) . T) ((-284 #0#) -12 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-284 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013))) ((-460 #0#) . T) ((-482 #0# #0#) -12 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-284 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013))) ((-1013) |has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)) ((-1119) . T))
+((-2305 (((-560 |#2|) |#1|) 15)) (-1890 (((-3 |#1| "failed") (-560 |#2|)) 19)))
+(((-559 |#1| |#2|) (-10 -7 (-15 -2305 ((-560 |#2|) |#1|)) (-15 -1890 ((-3 |#1| "failed") (-560 |#2|)))) (-784) (-784)) (T -559))
+((-1890 (*1 *2 *3) (|partial| -12 (-5 *3 (-560 *4)) (-4 *4 (-784)) (-4 *2 (-784)) (-5 *1 (-559 *2 *4)))) (-2305 (*1 *2 *3) (-12 (-5 *2 (-560 *4)) (-5 *1 (-559 *3 *4)) (-4 *3 (-784)) (-4 *4 (-784)))))
+(-10 -7 (-15 -2305 ((-560 |#2|) |#1|)) (-15 -1890 ((-3 |#1| "failed") (-560 |#2|))))
+((-1415 (((-108) $ $) NIL)) (-1477 (((-3 (-1084) "failed") $) 36)) (-3380 (((-1170) $ (-707)) 26)) (-3233 (((-707) $) 25)) (-2727 (((-110) $) 12)) (-2884 (((-1084) $) 20)) (-2810 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-3688 (((-1067) $) NIL)) (-2905 (($ (-110) (-587 |#1|) (-707)) 30) (($ (-1084)) 31)) (-1705 (((-108) $ (-110)) 18) (((-108) $ (-1084)) 16)) (-4150 (((-707) $) 22)) (-4147 (((-1031) $) NIL)) (-1430 (((-821 (-521)) $) 69 (|has| |#1| (-562 (-821 (-521))))) (((-821 (-353)) $) 75 (|has| |#1| (-562 (-821 (-353))))) (((-497) $) 62 (|has| |#1| (-562 (-497))))) (-2189 (((-792) $) 51)) (-3503 (((-587 |#1|) $) 24)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) 39)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 40)))
+(((-560 |#1|) (-13 (-125) (-813 |#1|) (-10 -8 (-15 -2884 ((-1084) $)) (-15 -2727 ((-110) $)) (-15 -3503 ((-587 |#1|) $)) (-15 -4150 ((-707) $)) (-15 -2905 ($ (-110) (-587 |#1|) (-707))) (-15 -2905 ($ (-1084))) (-15 -1477 ((-3 (-1084) "failed") $)) (-15 -1705 ((-108) $ (-110))) (-15 -1705 ((-108) $ (-1084))) (IF (|has| |#1| (-562 (-497))) (-6 (-562 (-497))) |%noBranch|))) (-784)) (T -560))
+((-2884 (*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-560 *3)) (-4 *3 (-784)))) (-2727 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-560 *3)) (-4 *3 (-784)))) (-3503 (*1 *2 *1) (-12 (-5 *2 (-587 *3)) (-5 *1 (-560 *3)) (-4 *3 (-784)))) (-4150 (*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-560 *3)) (-4 *3 (-784)))) (-2905 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-110)) (-5 *3 (-587 *5)) (-5 *4 (-707)) (-4 *5 (-784)) (-5 *1 (-560 *5)))) (-2905 (*1 *1 *2) (-12 (-5 *2 (-1084)) (-5 *1 (-560 *3)) (-4 *3 (-784)))) (-1477 (*1 *2 *1) (|partial| -12 (-5 *2 (-1084)) (-5 *1 (-560 *3)) (-4 *3 (-784)))) (-1705 (*1 *2 *1 *3) (-12 (-5 *3 (-110)) (-5 *2 (-108)) (-5 *1 (-560 *4)) (-4 *4 (-784)))) (-1705 (*1 *2 *1 *3) (-12 (-5 *3 (-1084)) (-5 *2 (-108)) (-5 *1 (-560 *4)) (-4 *4 (-784)))))
+(-13 (-125) (-813 |#1|) (-10 -8 (-15 -2884 ((-1084) $)) (-15 -2727 ((-110) $)) (-15 -3503 ((-587 |#1|) $)) (-15 -4150 ((-707) $)) (-15 -2905 ($ (-110) (-587 |#1|) (-707))) (-15 -2905 ($ (-1084))) (-15 -1477 ((-3 (-1084) "failed") $)) (-15 -1705 ((-108) $ (-110))) (-15 -1705 ((-108) $ (-1084))) (IF (|has| |#1| (-562 (-497))) (-6 (-562 (-497))) |%noBranch|)))
+((-2189 ((|#1| $) 6)))
+(((-561 |#1|) (-1196) (-1119)) (T -561))
+((-2189 (*1 *2 *1) (-12 (-4 *1 (-561 *2)) (-4 *2 (-1119)))))
+(-13 (-10 -8 (-15 -2189 (|t#1| $))))
+((-1430 ((|#1| $) 6)))
+(((-562 |#1|) (-1196) (-1119)) (T -562))
+((-1430 (*1 *2 *1) (-12 (-4 *1 (-562 *2)) (-4 *2 (-1119)))))
+(-13 (-10 -8 (-15 -1430 (|t#1| $))))
+((-2094 (((-3 (-1080 (-381 |#2|)) "failed") (-381 |#2|) (-381 |#2|) (-381 |#2|) (-1 (-392 |#2|) |#2|)) 13) (((-3 (-1080 (-381 |#2|)) "failed") (-381 |#2|) (-381 |#2|) (-381 |#2|)) 14)))
+(((-563 |#1| |#2|) (-10 -7 (-15 -2094 ((-3 (-1080 (-381 |#2|)) "failed") (-381 |#2|) (-381 |#2|) (-381 |#2|))) (-15 -2094 ((-3 (-1080 (-381 |#2|)) "failed") (-381 |#2|) (-381 |#2|) (-381 |#2|) (-1 (-392 |#2|) |#2|)))) (-13 (-135) (-27) (-961 (-521)) (-961 (-381 (-521)))) (-1141 |#1|)) (T -563))
+((-2094 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-392 *6) *6)) (-4 *6 (-1141 *5)) (-4 *5 (-13 (-135) (-27) (-961 (-521)) (-961 (-381 (-521))))) (-5 *2 (-1080 (-381 *6))) (-5 *1 (-563 *5 *6)) (-5 *3 (-381 *6)))) (-2094 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-135) (-27) (-961 (-521)) (-961 (-381 (-521))))) (-4 *5 (-1141 *4)) (-5 *2 (-1080 (-381 *5))) (-5 *1 (-563 *4 *5)) (-5 *3 (-381 *5)))))
+(-10 -7 (-15 -2094 ((-3 (-1080 (-381 |#2|)) "failed") (-381 |#2|) (-381 |#2|) (-381 |#2|))) (-15 -2094 ((-3 (-1080 (-381 |#2|)) "failed") (-381 |#2|) (-381 |#2|) (-381 |#2|) (-1 (-392 |#2|) |#2|))))
+((-2189 (((-792) $) NIL) (($ (-521)) NIL) (($ |#2|) 10)))
+(((-564 |#1| |#2|) (-10 -8 (-15 -2189 (|#1| |#2|)) (-15 -2189 (|#1| (-521))) (-15 -2189 ((-792) |#1|))) (-565 |#2|) (-970)) (T -564))
+NIL
+(-10 -8 (-15 -2189 (|#1| |#2|)) (-15 -2189 (|#1| (-521))) (-15 -2189 ((-792) |#1|)))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-1232 (((-3 $ "failed") $ $) 19)) (-2547 (($) 17 T CONST)) (-1257 (((-3 $ "failed") $) 34)) (-3996 (((-108) $) 31)) (-3688 (((-1067) $) 9)) (-4147 (((-1031) $) 10)) (-2189 (((-792) $) 11) (($ (-521)) 28) (($ |#1|) 36)) (-3846 (((-707)) 29)) (-3505 (($ $ (-850)) 26) (($ $ (-707)) 33)) (-3561 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-707)) 32)) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ |#1| $) 37)))
+(((-565 |#1|) (-1196) (-970)) (T -565))
+((-2189 (*1 *1 *2) (-12 (-4 *1 (-565 *2)) (-4 *2 (-970)))))
+(-13 (-970) (-589 |t#1|) (-10 -8 (-15 -2189 ($ |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-561 (-792)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-663) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-1232 (((-3 $ "failed") $ $) NIL)) (-1606 (((-521) $) NIL (|has| |#1| (-782)))) (-2547 (($) NIL T CONST)) (-1257 (((-3 $ "failed") $) NIL)) (-3951 (((-108) $) NIL (|has| |#1| (-782)))) (-3996 (((-108) $) NIL)) (-2801 ((|#1| $) 13)) (-2210 (((-108) $) NIL (|has| |#1| (-782)))) (-2810 (($ $ $) NIL (|has| |#1| (-782)))) (-2446 (($ $ $) NIL (|has| |#1| (-782)))) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2812 ((|#3| $) 15)) (-2189 (((-792) $) NIL) (($ (-521)) NIL) (($ |#2|) NIL)) (-3846 (((-707)) 20)) (-3304 (($ $) NIL (|has| |#1| (-782)))) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (-3561 (($) NIL T CONST)) (-3572 (($) 12 T CONST)) (-1574 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1558 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1549 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1620 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-566 |#1| |#2| |#3|) (-13 (-37 |#2|) (-10 -8 (IF (|has| |#1| (-782)) (-6 (-782)) |%noBranch|) (-15 -1620 ($ $ |#3|)) (-15 -1620 ($ |#1| |#3|)) (-15 -2801 (|#1| $)) (-15 -2812 (|#3| $)))) (-37 |#2|) (-157) (|SubsetCategory| (-663) |#2|)) (T -566))
+((-1620 (*1 *1 *1 *2) (-12 (-4 *4 (-157)) (-5 *1 (-566 *3 *4 *2)) (-4 *3 (-37 *4)) (-4 *2 (|SubsetCategory| (-663) *4)))) (-1620 (*1 *1 *2 *3) (-12 (-4 *4 (-157)) (-5 *1 (-566 *2 *4 *3)) (-4 *2 (-37 *4)) (-4 *3 (|SubsetCategory| (-663) *4)))) (-2801 (*1 *2 *1) (-12 (-4 *3 (-157)) (-4 *2 (-37 *3)) (-5 *1 (-566 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-663) *3)))) (-2812 (*1 *2 *1) (-12 (-4 *4 (-157)) (-4 *2 (|SubsetCategory| (-663) *4)) (-5 *1 (-566 *3 *4 *2)) (-4 *3 (-37 *4)))))
+(-13 (-37 |#2|) (-10 -8 (IF (|has| |#1| (-782)) (-6 (-782)) |%noBranch|) (-15 -1620 ($ $ |#3|)) (-15 -1620 ($ |#1| |#3|)) (-15 -2801 (|#1| $)) (-15 -2812 (|#3| $))))
+((-3954 ((|#2| |#2| (-1084) (-1084)) 18)))
+(((-567 |#1| |#2|) (-10 -7 (-15 -3954 (|#2| |#2| (-1084) (-1084)))) (-13 (-282) (-784) (-135) (-961 (-521)) (-583 (-521))) (-13 (-1105) (-887) (-29 |#1|))) (T -567))
+((-3954 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1084)) (-4 *4 (-13 (-282) (-784) (-135) (-961 (-521)) (-583 (-521)))) (-5 *1 (-567 *4 *2)) (-4 *2 (-13 (-1105) (-887) (-29 *4))))))
+(-10 -7 (-15 -3954 (|#2| |#2| (-1084) (-1084))))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) 52)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-2559 (($ $) NIL)) (-1733 (((-108) $) NIL)) (-2726 ((|#1| $) 49)) (-1232 (((-3 $ "failed") $ $) NIL)) (-1389 (((-108) $ $) NIL (|has| |#1| (-337)))) (-2067 (((-2 (|:| -2297 $) (|:| -2347 (-381 |#2|))) (-381 |#2|)) 97 (|has| |#1| (-337)))) (-2547 (($) NIL T CONST)) (-1297 (((-3 (-521) "failed") $) NIL (|has| |#1| (-961 (-521)))) (((-3 (-381 (-521)) "failed") $) NIL (|has| |#1| (-961 (-381 (-521))))) (((-3 |#1| "failed") $) 85) (((-3 |#2| "failed") $) 82)) (-1483 (((-521) $) NIL (|has| |#1| (-961 (-521)))) (((-381 (-521)) $) NIL (|has| |#1| (-961 (-381 (-521))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-2277 (($ $ $) NIL (|has| |#1| (-337)))) (-3152 (($ $) 24)) (-1257 (((-3 $ "failed") $) 76)) (-2253 (($ $ $) NIL (|has| |#1| (-337)))) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) NIL (|has| |#1| (-337)))) (-2733 (((-521) $) 19)) (-3996 (((-108) $) NIL)) (-1546 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| |#1| (-337)))) (-3649 (((-108) $) 36)) (-4043 (($ |#1| (-521)) 21)) (-3135 ((|#1| $) 51)) (-2223 (($ (-587 $)) NIL (|has| |#1| (-337))) (($ $ $) NIL (|has| |#1| (-337)))) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) NIL (|has| |#1| (-337)))) (-2258 (($ (-587 $)) NIL (|has| |#1| (-337))) (($ $ $) 87 (|has| |#1| (-337)))) (-1962 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 100 (|has| |#1| (-337))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL (|has| |#1| (-337)))) (-2230 (((-3 $ "failed") $ $) 80)) (-3854 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| |#1| (-337)))) (-4196 (((-707) $) 99 (|has| |#1| (-337)))) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) 98 (|has| |#1| (-337)))) (-2156 (($ $ (-1 |#2| |#2|)) 67) (($ $ (-1 |#2| |#2|) (-707)) NIL) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| |#2| (-829 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| |#2| (-829 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| |#2| (-829 (-1084)))) (($ $ (-1084)) NIL (|has| |#2| (-829 (-1084)))) (($ $ (-707)) NIL (|has| |#2| (-210))) (($ $) NIL (|has| |#2| (-210)))) (-1994 (((-521) $) 34)) (-1430 (((-381 |#2|) $) 42)) (-2189 (((-792) $) 63) (($ (-521)) 32) (($ $) NIL) (($ (-381 (-521))) NIL (|has| |#1| (-961 (-381 (-521))))) (($ |#1|) 31) (($ |#2|) 22)) (-3800 ((|#1| $ (-521)) 64)) (-1671 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-3846 (((-707)) 29)) (-4210 (((-108) $ $) NIL)) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (-3561 (($) 9 T CONST)) (-3572 (($) 12 T CONST)) (-2212 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-707)) NIL) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| |#2| (-829 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| |#2| (-829 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| |#2| (-829 (-1084)))) (($ $ (-1084)) NIL (|has| |#2| (-829 (-1084)))) (($ $ (-707)) NIL (|has| |#2| (-210))) (($ $) NIL (|has| |#2| (-210)))) (-1531 (((-108) $ $) 17)) (-1612 (($ $) 46) (($ $ $) NIL)) (-1602 (($ $ $) 77)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) 26) (($ $ $) 44)))
+(((-568 |#1| |#2|) (-13 (-208 |#2|) (-513) (-562 (-381 |#2|)) (-385 |#1|) (-961 |#2|) (-10 -8 (-15 -3649 ((-108) $)) (-15 -1994 ((-521) $)) (-15 -2733 ((-521) $)) (-15 -3152 ($ $)) (-15 -3135 (|#1| $)) (-15 -2726 (|#1| $)) (-15 -3800 (|#1| $ (-521))) (-15 -4043 ($ |#1| (-521))) (IF (|has| |#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |#1| (-337)) (PROGN (-6 (-282)) (-15 -2067 ((-2 (|:| -2297 $) (|:| -2347 (-381 |#2|))) (-381 |#2|)))) |%noBranch|))) (-513) (-1141 |#1|)) (T -568))
+((-3649 (*1 *2 *1) (-12 (-4 *3 (-513)) (-5 *2 (-108)) (-5 *1 (-568 *3 *4)) (-4 *4 (-1141 *3)))) (-1994 (*1 *2 *1) (-12 (-4 *3 (-513)) (-5 *2 (-521)) (-5 *1 (-568 *3 *4)) (-4 *4 (-1141 *3)))) (-2733 (*1 *2 *1) (-12 (-4 *3 (-513)) (-5 *2 (-521)) (-5 *1 (-568 *3 *4)) (-4 *4 (-1141 *3)))) (-3152 (*1 *1 *1) (-12 (-4 *2 (-513)) (-5 *1 (-568 *2 *3)) (-4 *3 (-1141 *2)))) (-3135 (*1 *2 *1) (-12 (-4 *2 (-513)) (-5 *1 (-568 *2 *3)) (-4 *3 (-1141 *2)))) (-2726 (*1 *2 *1) (-12 (-4 *2 (-513)) (-5 *1 (-568 *2 *3)) (-4 *3 (-1141 *2)))) (-3800 (*1 *2 *1 *3) (-12 (-5 *3 (-521)) (-4 *2 (-513)) (-5 *1 (-568 *2 *4)) (-4 *4 (-1141 *2)))) (-4043 (*1 *1 *2 *3) (-12 (-5 *3 (-521)) (-4 *2 (-513)) (-5 *1 (-568 *2 *4)) (-4 *4 (-1141 *2)))) (-2067 (*1 *2 *3) (-12 (-4 *4 (-337)) (-4 *4 (-513)) (-4 *5 (-1141 *4)) (-5 *2 (-2 (|:| -2297 (-568 *4 *5)) (|:| -2347 (-381 *5)))) (-5 *1 (-568 *4 *5)) (-5 *3 (-381 *5)))))
+(-13 (-208 |#2|) (-513) (-562 (-381 |#2|)) (-385 |#1|) (-961 |#2|) (-10 -8 (-15 -3649 ((-108) $)) (-15 -1994 ((-521) $)) (-15 -2733 ((-521) $)) (-15 -3152 ($ $)) (-15 -3135 (|#1| $)) (-15 -2726 (|#1| $)) (-15 -3800 (|#1| $ (-521))) (-15 -4043 ($ |#1| (-521))) (IF (|has| |#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |#1| (-337)) (PROGN (-6 (-282)) (-15 -2067 ((-2 (|:| -2297 $) (|:| -2347 (-381 |#2|))) (-381 |#2|)))) |%noBranch|)))
+((-1906 (((-587 |#6|) (-587 |#4|) (-108)) 47)) (-4146 ((|#6| |#6|) 40)))
+(((-569 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4146 (|#6| |#6|)) (-15 -1906 ((-587 |#6|) (-587 |#4|) (-108)))) (-425) (-729) (-784) (-984 |#1| |#2| |#3|) (-989 |#1| |#2| |#3| |#4|) (-1022 |#1| |#2| |#3| |#4|)) (T -569))
+((-1906 (*1 *2 *3 *4) (-12 (-5 *3 (-587 *8)) (-5 *4 (-108)) (-4 *8 (-984 *5 *6 *7)) (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784)) (-5 *2 (-587 *10)) (-5 *1 (-569 *5 *6 *7 *8 *9 *10)) (-4 *9 (-989 *5 *6 *7 *8)) (-4 *10 (-1022 *5 *6 *7 *8)))) (-4146 (*1 *2 *2) (-12 (-4 *3 (-425)) (-4 *4 (-729)) (-4 *5 (-784)) (-4 *6 (-984 *3 *4 *5)) (-5 *1 (-569 *3 *4 *5 *6 *7 *2)) (-4 *7 (-989 *3 *4 *5 *6)) (-4 *2 (-1022 *3 *4 *5 *6)))))
+(-10 -7 (-15 -4146 (|#6| |#6|)) (-15 -1906 ((-587 |#6|) (-587 |#4|) (-108))))
+((-3092 (((-108) |#3| (-707) (-587 |#3|)) 23)) (-1746 (((-3 (-2 (|:| |polfac| (-587 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-587 (-1080 |#3|)))) "failed") |#3| (-587 (-1080 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1514 (-587 (-2 (|:| |irr| |#4|) (|:| -2132 (-521)))))) (-587 |#3|) (-587 |#1|) (-587 |#3|)) 52)))
+(((-570 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3092 ((-108) |#3| (-707) (-587 |#3|))) (-15 -1746 ((-3 (-2 (|:| |polfac| (-587 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-587 (-1080 |#3|)))) "failed") |#3| (-587 (-1080 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1514 (-587 (-2 (|:| |irr| |#4|) (|:| -2132 (-521)))))) (-587 |#3|) (-587 |#1|) (-587 |#3|)))) (-784) (-729) (-282) (-878 |#3| |#2| |#1|)) (T -570))
+((-1746 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -1514 (-587 (-2 (|:| |irr| *10) (|:| -2132 (-521))))))) (-5 *6 (-587 *3)) (-5 *7 (-587 *8)) (-4 *8 (-784)) (-4 *3 (-282)) (-4 *10 (-878 *3 *9 *8)) (-4 *9 (-729)) (-5 *2 (-2 (|:| |polfac| (-587 *10)) (|:| |correct| *3) (|:| |corrfact| (-587 (-1080 *3))))) (-5 *1 (-570 *8 *9 *3 *10)) (-5 *4 (-587 (-1080 *3))))) (-3092 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-707)) (-5 *5 (-587 *3)) (-4 *3 (-282)) (-4 *6 (-784)) (-4 *7 (-729)) (-5 *2 (-108)) (-5 *1 (-570 *6 *7 *3 *8)) (-4 *8 (-878 *3 *7 *6)))))
+(-10 -7 (-15 -3092 ((-108) |#3| (-707) (-587 |#3|))) (-15 -1746 ((-3 (-2 (|:| |polfac| (-587 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-587 (-1080 |#3|)))) "failed") |#3| (-587 (-1080 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1514 (-587 (-2 (|:| |irr| |#4|) (|:| -2132 (-521)))))) (-587 |#3|) (-587 |#1|) (-587 |#3|))))
+((-1415 (((-108) $ $) NIL)) (-4101 (((-587 |#1|) $) NIL)) (-2547 (($) NIL T CONST)) (-1257 (((-3 $ "failed") $) NIL)) (-3996 (((-108) $) NIL)) (-2239 (($ $) 67)) (-1253 (((-605 |#1| |#2|) $) 52)) (-3688 (((-1067) $) NIL)) (-3095 (($ $) 70)) (-4064 (((-587 (-269 |#2|)) $ $) 33)) (-4147 (((-1031) $) NIL)) (-3261 (($ (-605 |#1| |#2|)) 48)) (-1223 (($ $ $) NIL)) (-2674 (($ $ $) NIL)) (-2189 (((-792) $) 58) (((-1178 |#1| |#2|) $) NIL) (((-1183 |#1| |#2|) $) 66)) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (-3572 (($) 53 T CONST)) (-2439 (((-587 (-2 (|:| |k| (-612 |#1|)) (|:| |c| |#2|))) $) 31)) (-3094 (((-587 (-605 |#1| |#2|)) (-587 |#1|)) 65)) (-2352 (((-587 (-2 (|:| |k| (-822 |#1|)) (|:| |c| |#2|))) $) 36)) (-1531 (((-108) $ $) 54)) (-1620 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (* (($ $ $) 44)))
+(((-571 |#1| |#2| |#3|) (-13 (-446) (-10 -8 (-15 -3261 ($ (-605 |#1| |#2|))) (-15 -1253 ((-605 |#1| |#2|) $)) (-15 -2352 ((-587 (-2 (|:| |k| (-822 |#1|)) (|:| |c| |#2|))) $)) (-15 -2189 ((-1178 |#1| |#2|) $)) (-15 -2189 ((-1183 |#1| |#2|) $)) (-15 -2239 ($ $)) (-15 -4101 ((-587 |#1|) $)) (-15 -3094 ((-587 (-605 |#1| |#2|)) (-587 |#1|))) (-15 -2439 ((-587 (-2 (|:| |k| (-612 |#1|)) (|:| |c| |#2|))) $)) (-15 -4064 ((-587 (-269 |#2|)) $ $)))) (-784) (-13 (-157) (-654 (-381 (-521)))) (-850)) (T -571))
+((-3261 (*1 *1 *2) (-12 (-5 *2 (-605 *3 *4)) (-4 *3 (-784)) (-4 *4 (-13 (-157) (-654 (-381 (-521))))) (-5 *1 (-571 *3 *4 *5)) (-14 *5 (-850)))) (-1253 (*1 *2 *1) (-12 (-5 *2 (-605 *3 *4)) (-5 *1 (-571 *3 *4 *5)) (-4 *3 (-784)) (-4 *4 (-13 (-157) (-654 (-381 (-521))))) (-14 *5 (-850)))) (-2352 (*1 *2 *1) (-12 (-5 *2 (-587 (-2 (|:| |k| (-822 *3)) (|:| |c| *4)))) (-5 *1 (-571 *3 *4 *5)) (-4 *3 (-784)) (-4 *4 (-13 (-157) (-654 (-381 (-521))))) (-14 *5 (-850)))) (-2189 (*1 *2 *1) (-12 (-5 *2 (-1178 *3 *4)) (-5 *1 (-571 *3 *4 *5)) (-4 *3 (-784)) (-4 *4 (-13 (-157) (-654 (-381 (-521))))) (-14 *5 (-850)))) (-2189 (*1 *2 *1) (-12 (-5 *2 (-1183 *3 *4)) (-5 *1 (-571 *3 *4 *5)) (-4 *3 (-784)) (-4 *4 (-13 (-157) (-654 (-381 (-521))))) (-14 *5 (-850)))) (-2239 (*1 *1 *1) (-12 (-5 *1 (-571 *2 *3 *4)) (-4 *2 (-784)) (-4 *3 (-13 (-157) (-654 (-381 (-521))))) (-14 *4 (-850)))) (-4101 (*1 *2 *1) (-12 (-5 *2 (-587 *3)) (-5 *1 (-571 *3 *4 *5)) (-4 *3 (-784)) (-4 *4 (-13 (-157) (-654 (-381 (-521))))) (-14 *5 (-850)))) (-3094 (*1 *2 *3) (-12 (-5 *3 (-587 *4)) (-4 *4 (-784)) (-5 *2 (-587 (-605 *4 *5))) (-5 *1 (-571 *4 *5 *6)) (-4 *5 (-13 (-157) (-654 (-381 (-521))))) (-14 *6 (-850)))) (-2439 (*1 *2 *1) (-12 (-5 *2 (-587 (-2 (|:| |k| (-612 *3)) (|:| |c| *4)))) (-5 *1 (-571 *3 *4 *5)) (-4 *3 (-784)) (-4 *4 (-13 (-157) (-654 (-381 (-521))))) (-14 *5 (-850)))) (-4064 (*1 *2 *1 *1) (-12 (-5 *2 (-587 (-269 *4))) (-5 *1 (-571 *3 *4 *5)) (-4 *3 (-784)) (-4 *4 (-13 (-157) (-654 (-381 (-521))))) (-14 *5 (-850)))))
+(-13 (-446) (-10 -8 (-15 -3261 ($ (-605 |#1| |#2|))) (-15 -1253 ((-605 |#1| |#2|) $)) (-15 -2352 ((-587 (-2 (|:| |k| (-822 |#1|)) (|:| |c| |#2|))) $)) (-15 -2189 ((-1178 |#1| |#2|) $)) (-15 -2189 ((-1183 |#1| |#2|) $)) (-15 -2239 ($ $)) (-15 -4101 ((-587 |#1|) $)) (-15 -3094 ((-587 (-605 |#1| |#2|)) (-587 |#1|))) (-15 -2439 ((-587 (-2 (|:| |k| (-612 |#1|)) (|:| |c| |#2|))) $)) (-15 -4064 ((-587 (-269 |#2|)) $ $))))
+((-1906 (((-587 (-1055 |#1| (-493 (-794 |#2|)) (-794 |#2|) (-716 |#1| (-794 |#2|)))) (-587 (-716 |#1| (-794 |#2|))) (-108)) 71) (((-587 (-967 |#1| |#2|)) (-587 (-716 |#1| (-794 |#2|))) (-108)) 57)) (-2321 (((-108) (-587 (-716 |#1| (-794 |#2|)))) 22)) (-1234 (((-587 (-1055 |#1| (-493 (-794 |#2|)) (-794 |#2|) (-716 |#1| (-794 |#2|)))) (-587 (-716 |#1| (-794 |#2|))) (-108)) 70)) (-3061 (((-587 (-967 |#1| |#2|)) (-587 (-716 |#1| (-794 |#2|))) (-108)) 56)) (-1676 (((-587 (-716 |#1| (-794 |#2|))) (-587 (-716 |#1| (-794 |#2|)))) 26)) (-1254 (((-3 (-587 (-716 |#1| (-794 |#2|))) "failed") (-587 (-716 |#1| (-794 |#2|)))) 25)))
+(((-572 |#1| |#2|) (-10 -7 (-15 -2321 ((-108) (-587 (-716 |#1| (-794 |#2|))))) (-15 -1254 ((-3 (-587 (-716 |#1| (-794 |#2|))) "failed") (-587 (-716 |#1| (-794 |#2|))))) (-15 -1676 ((-587 (-716 |#1| (-794 |#2|))) (-587 (-716 |#1| (-794 |#2|))))) (-15 -3061 ((-587 (-967 |#1| |#2|)) (-587 (-716 |#1| (-794 |#2|))) (-108))) (-15 -1234 ((-587 (-1055 |#1| (-493 (-794 |#2|)) (-794 |#2|) (-716 |#1| (-794 |#2|)))) (-587 (-716 |#1| (-794 |#2|))) (-108))) (-15 -1906 ((-587 (-967 |#1| |#2|)) (-587 (-716 |#1| (-794 |#2|))) (-108))) (-15 -1906 ((-587 (-1055 |#1| (-493 (-794 |#2|)) (-794 |#2|) (-716 |#1| (-794 |#2|)))) (-587 (-716 |#1| (-794 |#2|))) (-108)))) (-425) (-587 (-1084))) (T -572))
+((-1906 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-716 *5 (-794 *6)))) (-5 *4 (-108)) (-4 *5 (-425)) (-14 *6 (-587 (-1084))) (-5 *2 (-587 (-1055 *5 (-493 (-794 *6)) (-794 *6) (-716 *5 (-794 *6))))) (-5 *1 (-572 *5 *6)))) (-1906 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-716 *5 (-794 *6)))) (-5 *4 (-108)) (-4 *5 (-425)) (-14 *6 (-587 (-1084))) (-5 *2 (-587 (-967 *5 *6))) (-5 *1 (-572 *5 *6)))) (-1234 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-716 *5 (-794 *6)))) (-5 *4 (-108)) (-4 *5 (-425)) (-14 *6 (-587 (-1084))) (-5 *2 (-587 (-1055 *5 (-493 (-794 *6)) (-794 *6) (-716 *5 (-794 *6))))) (-5 *1 (-572 *5 *6)))) (-3061 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-716 *5 (-794 *6)))) (-5 *4 (-108)) (-4 *5 (-425)) (-14 *6 (-587 (-1084))) (-5 *2 (-587 (-967 *5 *6))) (-5 *1 (-572 *5 *6)))) (-1676 (*1 *2 *2) (-12 (-5 *2 (-587 (-716 *3 (-794 *4)))) (-4 *3 (-425)) (-14 *4 (-587 (-1084))) (-5 *1 (-572 *3 *4)))) (-1254 (*1 *2 *2) (|partial| -12 (-5 *2 (-587 (-716 *3 (-794 *4)))) (-4 *3 (-425)) (-14 *4 (-587 (-1084))) (-5 *1 (-572 *3 *4)))) (-2321 (*1 *2 *3) (-12 (-5 *3 (-587 (-716 *4 (-794 *5)))) (-4 *4 (-425)) (-14 *5 (-587 (-1084))) (-5 *2 (-108)) (-5 *1 (-572 *4 *5)))))
+(-10 -7 (-15 -2321 ((-108) (-587 (-716 |#1| (-794 |#2|))))) (-15 -1254 ((-3 (-587 (-716 |#1| (-794 |#2|))) "failed") (-587 (-716 |#1| (-794 |#2|))))) (-15 -1676 ((-587 (-716 |#1| (-794 |#2|))) (-587 (-716 |#1| (-794 |#2|))))) (-15 -3061 ((-587 (-967 |#1| |#2|)) (-587 (-716 |#1| (-794 |#2|))) (-108))) (-15 -1234 ((-587 (-1055 |#1| (-493 (-794 |#2|)) (-794 |#2|) (-716 |#1| (-794 |#2|)))) (-587 (-716 |#1| (-794 |#2|))) (-108))) (-15 -1906 ((-587 (-967 |#1| |#2|)) (-587 (-716 |#1| (-794 |#2|))) (-108))) (-15 -1906 ((-587 (-1055 |#1| (-493 (-794 |#2|)) (-794 |#2|) (-716 |#1| (-794 |#2|)))) (-587 (-716 |#1| (-794 |#2|))) (-108))))
+((-2904 (($ $) 38)) (-2769 (($ $) 21)) (-2880 (($ $) 37)) (-2746 (($ $) 22)) (-2926 (($ $) 36)) (-2790 (($ $) 23)) (-2834 (($) 48)) (-1253 (($ $) 45)) (-3242 (($ $) 17)) (-2337 (($ $ (-1006 $)) 7) (($ $ (-1084)) 6)) (-3261 (($ $) 46)) (-2705 (($ $) 15)) (-2734 (($ $) 16)) (-1738 (($ $) 35)) (-2800 (($ $) 24)) (-2915 (($ $) 34)) (-2780 (($ $) 25)) (-2892 (($ $) 33)) (-2758 (($ $) 26)) (-1759 (($ $) 44)) (-2832 (($ $) 32)) (-1745 (($ $) 43)) (-2811 (($ $) 31)) (-1776 (($ $) 42)) (-2856 (($ $) 30)) (-3919 (($ $) 41)) (-2868 (($ $) 29)) (-1768 (($ $) 40)) (-2844 (($ $) 28)) (-1752 (($ $) 39)) (-2821 (($ $) 27)) (-1762 (($ $) 19)) (-2522 (($ $) 20)) (-1217 (($ $) 18)) (** (($ $ $) 47)))
+(((-573) (-1196)) (T -573))
+((-2522 (*1 *1 *1) (-4 *1 (-573))) (-1762 (*1 *1 *1) (-4 *1 (-573))) (-1217 (*1 *1 *1) (-4 *1 (-573))) (-3242 (*1 *1 *1) (-4 *1 (-573))) (-2734 (*1 *1 *1) (-4 *1 (-573))) (-2705 (*1 *1 *1) (-4 *1 (-573))))
+(-13 (-887) (-1105) (-10 -8 (-15 -2522 ($ $)) (-15 -1762 ($ $)) (-15 -1217 ($ $)) (-15 -3242 ($ $)) (-15 -2734 ($ $)) (-15 -2705 ($ $))))
+(((-34) . T) ((-91) . T) ((-259) . T) ((-462) . T) ((-887) . T) ((-1105) . T) ((-1108) . T))
+((-2727 (((-110) (-110)) 83)) (-3242 ((|#2| |#2|) 30)) (-2337 ((|#2| |#2| (-1006 |#2|)) 79) ((|#2| |#2| (-1084)) 52)) (-2705 ((|#2| |#2|) 29)) (-2734 ((|#2| |#2|) 31)) (-1455 (((-108) (-110)) 34)) (-1762 ((|#2| |#2|) 26)) (-2522 ((|#2| |#2|) 28)) (-1217 ((|#2| |#2|) 27)))
+(((-574 |#1| |#2|) (-10 -7 (-15 -1455 ((-108) (-110))) (-15 -2727 ((-110) (-110))) (-15 -2522 (|#2| |#2|)) (-15 -1762 (|#2| |#2|)) (-15 -1217 (|#2| |#2|)) (-15 -3242 (|#2| |#2|)) (-15 -2705 (|#2| |#2|)) (-15 -2734 (|#2| |#2|)) (-15 -2337 (|#2| |#2| (-1084))) (-15 -2337 (|#2| |#2| (-1006 |#2|)))) (-13 (-784) (-513)) (-13 (-404 |#1|) (-927) (-1105))) (T -574))
+((-2337 (*1 *2 *2 *3) (-12 (-5 *3 (-1006 *2)) (-4 *2 (-13 (-404 *4) (-927) (-1105))) (-4 *4 (-13 (-784) (-513))) (-5 *1 (-574 *4 *2)))) (-2337 (*1 *2 *2 *3) (-12 (-5 *3 (-1084)) (-4 *4 (-13 (-784) (-513))) (-5 *1 (-574 *4 *2)) (-4 *2 (-13 (-404 *4) (-927) (-1105))))) (-2734 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-574 *3 *2)) (-4 *2 (-13 (-404 *3) (-927) (-1105))))) (-2705 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-574 *3 *2)) (-4 *2 (-13 (-404 *3) (-927) (-1105))))) (-3242 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-574 *3 *2)) (-4 *2 (-13 (-404 *3) (-927) (-1105))))) (-1217 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-574 *3 *2)) (-4 *2 (-13 (-404 *3) (-927) (-1105))))) (-1762 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-574 *3 *2)) (-4 *2 (-13 (-404 *3) (-927) (-1105))))) (-2522 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-574 *3 *2)) (-4 *2 (-13 (-404 *3) (-927) (-1105))))) (-2727 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *3 (-13 (-784) (-513))) (-5 *1 (-574 *3 *4)) (-4 *4 (-13 (-404 *3) (-927) (-1105))))) (-1455 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *4 (-13 (-784) (-513))) (-5 *2 (-108)) (-5 *1 (-574 *4 *5)) (-4 *5 (-13 (-404 *4) (-927) (-1105))))))
+(-10 -7 (-15 -1455 ((-108) (-110))) (-15 -2727 ((-110) (-110))) (-15 -2522 (|#2| |#2|)) (-15 -1762 (|#2| |#2|)) (-15 -1217 (|#2| |#2|)) (-15 -3242 (|#2| |#2|)) (-15 -2705 (|#2| |#2|)) (-15 -2734 (|#2| |#2|)) (-15 -2337 (|#2| |#2| (-1084))) (-15 -2337 (|#2| |#2| (-1006 |#2|))))
+((-2060 (((-453 |#1| |#2|) (-224 |#1| |#2|)) 53)) (-1794 (((-587 (-224 |#1| |#2|)) (-587 (-453 |#1| |#2|))) 68)) (-2158 (((-453 |#1| |#2|) (-587 (-453 |#1| |#2|)) (-794 |#1|)) 70) (((-453 |#1| |#2|) (-587 (-453 |#1| |#2|)) (-587 (-453 |#1| |#2|)) (-794 |#1|)) 69)) (-3675 (((-2 (|:| |gblist| (-587 (-224 |#1| |#2|))) (|:| |gvlist| (-587 (-521)))) (-587 (-453 |#1| |#2|))) 106)) (-2248 (((-587 (-453 |#1| |#2|)) (-794 |#1|) (-587 (-453 |#1| |#2|)) (-587 (-453 |#1| |#2|))) 83)) (-4130 (((-2 (|:| |glbase| (-587 (-224 |#1| |#2|))) (|:| |glval| (-587 (-521)))) (-587 (-224 |#1| |#2|))) 117)) (-1741 (((-1165 |#2|) (-453 |#1| |#2|) (-587 (-453 |#1| |#2|))) 58)) (-2181 (((-587 (-453 |#1| |#2|)) (-587 (-453 |#1| |#2|))) 39)) (-2228 (((-224 |#1| |#2|) (-224 |#1| |#2|) (-587 (-224 |#1| |#2|))) 49)) (-2721 (((-224 |#1| |#2|) (-587 |#2|) (-224 |#1| |#2|) (-587 (-224 |#1| |#2|))) 90)))
+(((-575 |#1| |#2|) (-10 -7 (-15 -3675 ((-2 (|:| |gblist| (-587 (-224 |#1| |#2|))) (|:| |gvlist| (-587 (-521)))) (-587 (-453 |#1| |#2|)))) (-15 -4130 ((-2 (|:| |glbase| (-587 (-224 |#1| |#2|))) (|:| |glval| (-587 (-521)))) (-587 (-224 |#1| |#2|)))) (-15 -1794 ((-587 (-224 |#1| |#2|)) (-587 (-453 |#1| |#2|)))) (-15 -2158 ((-453 |#1| |#2|) (-587 (-453 |#1| |#2|)) (-587 (-453 |#1| |#2|)) (-794 |#1|))) (-15 -2158 ((-453 |#1| |#2|) (-587 (-453 |#1| |#2|)) (-794 |#1|))) (-15 -2181 ((-587 (-453 |#1| |#2|)) (-587 (-453 |#1| |#2|)))) (-15 -1741 ((-1165 |#2|) (-453 |#1| |#2|) (-587 (-453 |#1| |#2|)))) (-15 -2721 ((-224 |#1| |#2|) (-587 |#2|) (-224 |#1| |#2|) (-587 (-224 |#1| |#2|)))) (-15 -2248 ((-587 (-453 |#1| |#2|)) (-794 |#1|) (-587 (-453 |#1| |#2|)) (-587 (-453 |#1| |#2|)))) (-15 -2228 ((-224 |#1| |#2|) (-224 |#1| |#2|) (-587 (-224 |#1| |#2|)))) (-15 -2060 ((-453 |#1| |#2|) (-224 |#1| |#2|)))) (-587 (-1084)) (-425)) (T -575))
+((-2060 (*1 *2 *3) (-12 (-5 *3 (-224 *4 *5)) (-14 *4 (-587 (-1084))) (-4 *5 (-425)) (-5 *2 (-453 *4 *5)) (-5 *1 (-575 *4 *5)))) (-2228 (*1 *2 *2 *3) (-12 (-5 *3 (-587 (-224 *4 *5))) (-5 *2 (-224 *4 *5)) (-14 *4 (-587 (-1084))) (-4 *5 (-425)) (-5 *1 (-575 *4 *5)))) (-2248 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-587 (-453 *4 *5))) (-5 *3 (-794 *4)) (-14 *4 (-587 (-1084))) (-4 *5 (-425)) (-5 *1 (-575 *4 *5)))) (-2721 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-587 *6)) (-5 *4 (-587 (-224 *5 *6))) (-4 *6 (-425)) (-5 *2 (-224 *5 *6)) (-14 *5 (-587 (-1084))) (-5 *1 (-575 *5 *6)))) (-1741 (*1 *2 *3 *4) (-12 (-5 *4 (-587 (-453 *5 *6))) (-5 *3 (-453 *5 *6)) (-14 *5 (-587 (-1084))) (-4 *6 (-425)) (-5 *2 (-1165 *6)) (-5 *1 (-575 *5 *6)))) (-2181 (*1 *2 *2) (-12 (-5 *2 (-587 (-453 *3 *4))) (-14 *3 (-587 (-1084))) (-4 *4 (-425)) (-5 *1 (-575 *3 *4)))) (-2158 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-453 *5 *6))) (-5 *4 (-794 *5)) (-14 *5 (-587 (-1084))) (-5 *2 (-453 *5 *6)) (-5 *1 (-575 *5 *6)) (-4 *6 (-425)))) (-2158 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-587 (-453 *5 *6))) (-5 *4 (-794 *5)) (-14 *5 (-587 (-1084))) (-5 *2 (-453 *5 *6)) (-5 *1 (-575 *5 *6)) (-4 *6 (-425)))) (-1794 (*1 *2 *3) (-12 (-5 *3 (-587 (-453 *4 *5))) (-14 *4 (-587 (-1084))) (-4 *5 (-425)) (-5 *2 (-587 (-224 *4 *5))) (-5 *1 (-575 *4 *5)))) (-4130 (*1 *2 *3) (-12 (-14 *4 (-587 (-1084))) (-4 *5 (-425)) (-5 *2 (-2 (|:| |glbase| (-587 (-224 *4 *5))) (|:| |glval| (-587 (-521))))) (-5 *1 (-575 *4 *5)) (-5 *3 (-587 (-224 *4 *5))))) (-3675 (*1 *2 *3) (-12 (-5 *3 (-587 (-453 *4 *5))) (-14 *4 (-587 (-1084))) (-4 *5 (-425)) (-5 *2 (-2 (|:| |gblist| (-587 (-224 *4 *5))) (|:| |gvlist| (-587 (-521))))) (-5 *1 (-575 *4 *5)))))
+(-10 -7 (-15 -3675 ((-2 (|:| |gblist| (-587 (-224 |#1| |#2|))) (|:| |gvlist| (-587 (-521)))) (-587 (-453 |#1| |#2|)))) (-15 -4130 ((-2 (|:| |glbase| (-587 (-224 |#1| |#2|))) (|:| |glval| (-587 (-521)))) (-587 (-224 |#1| |#2|)))) (-15 -1794 ((-587 (-224 |#1| |#2|)) (-587 (-453 |#1| |#2|)))) (-15 -2158 ((-453 |#1| |#2|) (-587 (-453 |#1| |#2|)) (-587 (-453 |#1| |#2|)) (-794 |#1|))) (-15 -2158 ((-453 |#1| |#2|) (-587 (-453 |#1| |#2|)) (-794 |#1|))) (-15 -2181 ((-587 (-453 |#1| |#2|)) (-587 (-453 |#1| |#2|)))) (-15 -1741 ((-1165 |#2|) (-453 |#1| |#2|) (-587 (-453 |#1| |#2|)))) (-15 -2721 ((-224 |#1| |#2|) (-587 |#2|) (-224 |#1| |#2|) (-587 (-224 |#1| |#2|)))) (-15 -2248 ((-587 (-453 |#1| |#2|)) (-794 |#1|) (-587 (-453 |#1| |#2|)) (-587 (-453 |#1| |#2|)))) (-15 -2228 ((-224 |#1| |#2|) (-224 |#1| |#2|) (-587 (-224 |#1| |#2|)))) (-15 -2060 ((-453 |#1| |#2|) (-224 |#1| |#2|))))
+((-1415 (((-108) $ $) NIL (-3703 (|has| (-51) (-1013)) (|has| (-2 (|:| -2529 (-1067)) (|:| -3045 (-51))) (-1013))))) (-1800 (($) NIL) (($ (-587 (-2 (|:| -2529 (-1067)) (|:| -3045 (-51))))) NIL)) (-1903 (((-1170) $ (-1067) (-1067)) NIL (|has| $ (-6 -4234)))) (-2978 (((-108) $ (-707)) NIL)) (-2378 (((-51) $ (-1067) (-51)) 16) (((-51) $ (-1084) (-51)) 17)) (-4098 (($ (-1 (-108) (-2 (|:| -2529 (-1067)) (|:| -3045 (-51)))) $) NIL (|has| $ (-6 -4233)))) (-1628 (($ (-1 (-108) (-2 (|:| -2529 (-1067)) (|:| -3045 (-51)))) $) NIL (|has| $ (-6 -4233)))) (-2748 (((-3 (-51) "failed") (-1067) $) NIL)) (-2547 (($) NIL T CONST)) (-2332 (($ $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2529 (-1067)) (|:| -3045 (-51))) (-1013))))) (-3023 (($ (-2 (|:| -2529 (-1067)) (|:| -3045 (-51))) $) NIL (|has| $ (-6 -4233))) (($ (-1 (-108) (-2 (|:| -2529 (-1067)) (|:| -3045 (-51)))) $) NIL (|has| $ (-6 -4233))) (((-3 (-51) "failed") (-1067) $) NIL)) (-1422 (($ (-2 (|:| -2529 (-1067)) (|:| -3045 (-51))) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2529 (-1067)) (|:| -3045 (-51))) (-1013)))) (($ (-1 (-108) (-2 (|:| -2529 (-1067)) (|:| -3045 (-51)))) $) NIL (|has| $ (-6 -4233)))) (-3859 (((-2 (|:| -2529 (-1067)) (|:| -3045 (-51))) (-1 (-2 (|:| -2529 (-1067)) (|:| -3045 (-51))) (-2 (|:| -2529 (-1067)) (|:| -3045 (-51))) (-2 (|:| -2529 (-1067)) (|:| -3045 (-51)))) $ (-2 (|:| -2529 (-1067)) (|:| -3045 (-51))) (-2 (|:| -2529 (-1067)) (|:| -3045 (-51)))) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2529 (-1067)) (|:| -3045 (-51))) (-1013)))) (((-2 (|:| -2529 (-1067)) (|:| -3045 (-51))) (-1 (-2 (|:| -2529 (-1067)) (|:| -3045 (-51))) (-2 (|:| -2529 (-1067)) (|:| -3045 (-51))) (-2 (|:| -2529 (-1067)) (|:| -3045 (-51)))) $ (-2 (|:| -2529 (-1067)) (|:| -3045 (-51)))) NIL (|has| $ (-6 -4233))) (((-2 (|:| -2529 (-1067)) (|:| -3045 (-51))) (-1 (-2 (|:| -2529 (-1067)) (|:| -3045 (-51))) (-2 (|:| -2529 (-1067)) (|:| -3045 (-51))) (-2 (|:| -2529 (-1067)) (|:| -3045 (-51)))) $) NIL (|has| $ (-6 -4233)))) (-3849 (((-51) $ (-1067) (-51)) NIL (|has| $ (-6 -4234)))) (-3626 (((-51) $ (-1067)) NIL)) (-3831 (((-587 (-2 (|:| -2529 (-1067)) (|:| -3045 (-51)))) $) NIL (|has| $ (-6 -4233))) (((-587 (-51)) $) NIL (|has| $ (-6 -4233)))) (-3208 (($ $) NIL)) (-2139 (((-108) $ (-707)) NIL)) (-2826 (((-1067) $) NIL (|has| (-1067) (-784)))) (-3757 (((-587 (-2 (|:| -2529 (-1067)) (|:| -3045 (-51)))) $) NIL (|has| $ (-6 -4233))) (((-587 (-51)) $) NIL (|has| $ (-6 -4233)))) (-2221 (((-108) (-2 (|:| -2529 (-1067)) (|:| -3045 (-51))) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2529 (-1067)) (|:| -3045 (-51))) (-1013)))) (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-51) (-1013))))) (-2597 (((-1067) $) NIL (|has| (-1067) (-784)))) (-3833 (($ (-1 (-2 (|:| -2529 (-1067)) (|:| -3045 (-51))) (-2 (|:| -2529 (-1067)) (|:| -3045 (-51)))) $) NIL (|has| $ (-6 -4234))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4234)))) (-1390 (($ (-1 (-2 (|:| -2529 (-1067)) (|:| -3045 (-51))) (-2 (|:| -2529 (-1067)) (|:| -3045 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-1727 (($ (-362)) 9)) (-3574 (((-108) $ (-707)) NIL)) (-3688 (((-1067) $) NIL (-3703 (|has| (-51) (-1013)) (|has| (-2 (|:| -2529 (-1067)) (|:| -3045 (-51))) (-1013))))) (-2961 (((-587 (-1067)) $) NIL)) (-2781 (((-108) (-1067) $) NIL)) (-2511 (((-2 (|:| -2529 (-1067)) (|:| -3045 (-51))) $) NIL)) (-3373 (($ (-2 (|:| -2529 (-1067)) (|:| -3045 (-51))) $) NIL)) (-1668 (((-587 (-1067)) $) NIL)) (-2941 (((-108) (-1067) $) NIL)) (-4147 (((-1031) $) NIL (-3703 (|has| (-51) (-1013)) (|has| (-2 (|:| -2529 (-1067)) (|:| -3045 (-51))) (-1013))))) (-2293 (((-51) $) NIL (|has| (-1067) (-784)))) (-3620 (((-3 (-2 (|:| -2529 (-1067)) (|:| -3045 (-51))) "failed") (-1 (-108) (-2 (|:| -2529 (-1067)) (|:| -3045 (-51)))) $) NIL)) (-3016 (($ $ (-51)) NIL (|has| $ (-6 -4234)))) (-2166 (((-2 (|:| -2529 (-1067)) (|:| -3045 (-51))) $) NIL)) (-1789 (((-108) (-1 (-108) (-2 (|:| -2529 (-1067)) (|:| -3045 (-51)))) $) NIL (|has| $ (-6 -4233))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 (-2 (|:| -2529 (-1067)) (|:| -3045 (-51)))))) NIL (-12 (|has| (-2 (|:| -2529 (-1067)) (|:| -3045 (-51))) (-284 (-2 (|:| -2529 (-1067)) (|:| -3045 (-51))))) (|has| (-2 (|:| -2529 (-1067)) (|:| -3045 (-51))) (-1013)))) (($ $ (-269 (-2 (|:| -2529 (-1067)) (|:| -3045 (-51))))) NIL (-12 (|has| (-2 (|:| -2529 (-1067)) (|:| -3045 (-51))) (-284 (-2 (|:| -2529 (-1067)) (|:| -3045 (-51))))) (|has| (-2 (|:| -2529 (-1067)) (|:| -3045 (-51))) (-1013)))) (($ $ (-2 (|:| -2529 (-1067)) (|:| -3045 (-51))) (-2 (|:| -2529 (-1067)) (|:| -3045 (-51)))) NIL (-12 (|has| (-2 (|:| -2529 (-1067)) (|:| -3045 (-51))) (-284 (-2 (|:| -2529 (-1067)) (|:| -3045 (-51))))) (|has| (-2 (|:| -2529 (-1067)) (|:| -3045 (-51))) (-1013)))) (($ $ (-587 (-2 (|:| -2529 (-1067)) (|:| -3045 (-51)))) (-587 (-2 (|:| -2529 (-1067)) (|:| -3045 (-51))))) NIL (-12 (|has| (-2 (|:| -2529 (-1067)) (|:| -3045 (-51))) (-284 (-2 (|:| -2529 (-1067)) (|:| -3045 (-51))))) (|has| (-2 (|:| -2529 (-1067)) (|:| -3045 (-51))) (-1013)))) (($ $ (-587 (-51)) (-587 (-51))) NIL (-12 (|has| (-51) (-284 (-51))) (|has| (-51) (-1013)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-284 (-51))) (|has| (-51) (-1013)))) (($ $ (-269 (-51))) NIL (-12 (|has| (-51) (-284 (-51))) (|has| (-51) (-1013)))) (($ $ (-587 (-269 (-51)))) NIL (-12 (|has| (-51) (-284 (-51))) (|has| (-51) (-1013))))) (-2488 (((-108) $ $) NIL)) (-3821 (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-51) (-1013))))) (-2489 (((-587 (-51)) $) NIL)) (-3462 (((-108) $) NIL)) (-4024 (($) NIL)) (-2544 (((-51) $ (-1067)) 14) (((-51) $ (-1067) (-51)) NIL) (((-51) $ (-1084)) 15)) (-1784 (($) NIL) (($ (-587 (-2 (|:| -2529 (-1067)) (|:| -3045 (-51))))) NIL)) (-4163 (((-707) (-1 (-108) (-2 (|:| -2529 (-1067)) (|:| -3045 (-51)))) $) NIL (|has| $ (-6 -4233))) (((-707) (-2 (|:| -2529 (-1067)) (|:| -3045 (-51))) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2529 (-1067)) (|:| -3045 (-51))) (-1013)))) (((-707) (-51) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-51) (-1013)))) (((-707) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4233)))) (-2404 (($ $) NIL)) (-1430 (((-497) $) NIL (|has| (-2 (|:| -2529 (-1067)) (|:| -3045 (-51))) (-562 (-497))))) (-2201 (($ (-587 (-2 (|:| -2529 (-1067)) (|:| -3045 (-51))))) NIL)) (-2189 (((-792) $) NIL (-3703 (|has| (-51) (-561 (-792))) (|has| (-2 (|:| -2529 (-1067)) (|:| -3045 (-51))) (-561 (-792)))))) (-4091 (($ (-587 (-2 (|:| -2529 (-1067)) (|:| -3045 (-51))))) NIL)) (-3049 (((-108) (-1 (-108) (-2 (|:| -2529 (-1067)) (|:| -3045 (-51)))) $) NIL (|has| $ (-6 -4233))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4233)))) (-1531 (((-108) $ $) NIL (-3703 (|has| (-51) (-1013)) (|has| (-2 (|:| -2529 (-1067)) (|:| -3045 (-51))) (-1013))))) (-3475 (((-707) $) NIL (|has| $ (-6 -4233)))))
+(((-576) (-13 (-1096 (-1067) (-51)) (-10 -8 (-15 -1727 ($ (-362))) (-15 -3208 ($ $)) (-15 -2544 ((-51) $ (-1084))) (-15 -2378 ((-51) $ (-1084) (-51)))))) (T -576))
+((-1727 (*1 *1 *2) (-12 (-5 *2 (-362)) (-5 *1 (-576)))) (-3208 (*1 *1 *1) (-5 *1 (-576))) (-2544 (*1 *2 *1 *3) (-12 (-5 *3 (-1084)) (-5 *2 (-51)) (-5 *1 (-576)))) (-2378 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1084)) (-5 *1 (-576)))))
+(-13 (-1096 (-1067) (-51)) (-10 -8 (-15 -1727 ($ (-362))) (-15 -3208 ($ $)) (-15 -2544 ((-51) $ (-1084))) (-15 -2378 ((-51) $ (-1084) (-51)))))
+((-1620 (($ $ |#2|) 10)))
+(((-577 |#1| |#2|) (-10 -8 (-15 -1620 (|#1| |#1| |#2|))) (-578 |#2|) (-157)) (T -577))
+NIL
+(-10 -8 (-15 -1620 (|#1| |#1| |#2|)))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-1232 (((-3 $ "failed") $ $) 19)) (-2547 (($) 17 T CONST)) (-3688 (((-1067) $) 9)) (-4147 (((-1031) $) 10)) (-2201 (($ $ $) 29)) (-2189 (((-792) $) 11)) (-3561 (($) 18 T CONST)) (-1531 (((-108) $ $) 6)) (-1620 (($ $ |#1|) 28 (|has| |#1| (-337)))) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
+(((-578 |#1|) (-1196) (-157)) (T -578))
+((-2201 (*1 *1 *1 *1) (-12 (-4 *1 (-578 *2)) (-4 *2 (-157)))) (-1620 (*1 *1 *1 *2) (-12 (-4 *1 (-578 *2)) (-4 *2 (-157)) (-4 *2 (-337)))))
+(-13 (-654 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -2201 ($ $ $)) (IF (|has| |t#1| (-337)) (-15 -1620 ($ $ |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-561 (-792)) . T) ((-589 |#1|) . T) ((-654 |#1|) . T) ((-976 |#1|) . T) ((-1013) . T))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-3689 (((-3 $ "failed")) NIL (-3703 (-12 (|has| |#2| (-341 |#1|)) (|has| |#1| (-513))) (-12 (|has| |#2| (-391 |#1|)) (|has| |#1| (-513)))))) (-1232 (((-3 $ "failed") $ $) NIL)) (-3359 (((-1165 (-627 |#1|))) NIL (|has| |#2| (-391 |#1|))) (((-1165 (-627 |#1|)) (-1165 $)) NIL (|has| |#2| (-341 |#1|)))) (-1386 (((-1165 $)) NIL (|has| |#2| (-341 |#1|)))) (-2547 (($) NIL T CONST)) (-3758 (((-3 (-2 (|:| |particular| $) (|:| -2470 (-587 $))) "failed")) NIL (-3703 (-12 (|has| |#2| (-341 |#1|)) (|has| |#1| (-513))) (-12 (|has| |#2| (-391 |#1|)) (|has| |#1| (-513)))))) (-3167 (((-3 $ "failed")) NIL (-3703 (-12 (|has| |#2| (-341 |#1|)) (|has| |#1| (-513))) (-12 (|has| |#2| (-391 |#1|)) (|has| |#1| (-513)))))) (-2168 (((-627 |#1|)) NIL (|has| |#2| (-391 |#1|))) (((-627 |#1|) (-1165 $)) NIL (|has| |#2| (-341 |#1|)))) (-3783 ((|#1| $) NIL (|has| |#2| (-341 |#1|)))) (-3907 (((-627 |#1|) $) NIL (|has| |#2| (-391 |#1|))) (((-627 |#1|) $ (-1165 $)) NIL (|has| |#2| (-341 |#1|)))) (-3176 (((-3 $ "failed") $) NIL (-3703 (-12 (|has| |#2| (-341 |#1|)) (|has| |#1| (-513))) (-12 (|has| |#2| (-391 |#1|)) (|has| |#1| (-513)))))) (-1528 (((-1080 (-881 |#1|))) NIL (-12 (|has| |#2| (-391 |#1|)) (|has| |#1| (-337))))) (-3047 (($ $ (-850)) NIL)) (-3333 ((|#1| $) NIL (|has| |#2| (-341 |#1|)))) (-3330 (((-1080 |#1|) $) NIL (-3703 (-12 (|has| |#2| (-341 |#1|)) (|has| |#1| (-513))) (-12 (|has| |#2| (-391 |#1|)) (|has| |#1| (-513)))))) (-3518 ((|#1|) NIL (|has| |#2| (-391 |#1|))) ((|#1| (-1165 $)) NIL (|has| |#2| (-341 |#1|)))) (-2370 (((-1080 |#1|) $) NIL (|has| |#2| (-341 |#1|)))) (-1208 (((-108)) NIL (|has| |#2| (-341 |#1|)))) (-4083 (($ (-1165 |#1|)) NIL (|has| |#2| (-391 |#1|))) (($ (-1165 |#1|) (-1165 $)) NIL (|has| |#2| (-341 |#1|)))) (-1257 (((-3 $ "failed") $) NIL (-3703 (-12 (|has| |#2| (-341 |#1|)) (|has| |#1| (-513))) (-12 (|has| |#2| (-391 |#1|)) (|has| |#1| (-513)))))) (-3162 (((-850)) NIL (|has| |#2| (-341 |#1|)))) (-3856 (((-108)) NIL (|has| |#2| (-341 |#1|)))) (-2049 (($ $ (-850)) NIL)) (-2760 (((-108)) NIL (|has| |#2| (-341 |#1|)))) (-1344 (((-108)) NIL (|has| |#2| (-341 |#1|)))) (-2383 (((-108)) NIL (|has| |#2| (-341 |#1|)))) (-3524 (((-3 (-2 (|:| |particular| $) (|:| -2470 (-587 $))) "failed")) NIL (-3703 (-12 (|has| |#2| (-341 |#1|)) (|has| |#1| (-513))) (-12 (|has| |#2| (-391 |#1|)) (|has| |#1| (-513)))))) (-2172 (((-3 $ "failed")) NIL (-3703 (-12 (|has| |#2| (-341 |#1|)) (|has| |#1| (-513))) (-12 (|has| |#2| (-391 |#1|)) (|has| |#1| (-513)))))) (-1786 (((-627 |#1|)) NIL (|has| |#2| (-391 |#1|))) (((-627 |#1|) (-1165 $)) NIL (|has| |#2| (-341 |#1|)))) (-2627 ((|#1| $) NIL (|has| |#2| (-341 |#1|)))) (-3734 (((-627 |#1|) $) NIL (|has| |#2| (-391 |#1|))) (((-627 |#1|) $ (-1165 $)) NIL (|has| |#2| (-341 |#1|)))) (-2652 (((-3 $ "failed") $) NIL (-3703 (-12 (|has| |#2| (-341 |#1|)) (|has| |#1| (-513))) (-12 (|has| |#2| (-391 |#1|)) (|has| |#1| (-513)))))) (-1519 (((-1080 (-881 |#1|))) NIL (-12 (|has| |#2| (-391 |#1|)) (|has| |#1| (-337))))) (-2830 (($ $ (-850)) NIL)) (-1332 ((|#1| $) NIL (|has| |#2| (-341 |#1|)))) (-1729 (((-1080 |#1|) $) NIL (-3703 (-12 (|has| |#2| (-341 |#1|)) (|has| |#1| (-513))) (-12 (|has| |#2| (-391 |#1|)) (|has| |#1| (-513)))))) (-1586 ((|#1|) NIL (|has| |#2| (-391 |#1|))) ((|#1| (-1165 $)) NIL (|has| |#2| (-341 |#1|)))) (-3888 (((-1080 |#1|) $) NIL (|has| |#2| (-341 |#1|)))) (-2118 (((-108)) NIL (|has| |#2| (-341 |#1|)))) (-3688 (((-1067) $) NIL)) (-4045 (((-108)) NIL (|has| |#2| (-341 |#1|)))) (-1560 (((-108)) NIL (|has| |#2| (-341 |#1|)))) (-1381 (((-108)) NIL (|has| |#2| (-341 |#1|)))) (-4147 (((-1031) $) NIL)) (-1242 (((-108)) NIL (|has| |#2| (-341 |#1|)))) (-2544 ((|#1| $ (-521)) NIL (|has| |#2| (-391 |#1|)))) (-2234 (((-627 |#1|) (-1165 $)) NIL (|has| |#2| (-391 |#1|))) (((-1165 |#1|) $) NIL (|has| |#2| (-391 |#1|))) (((-627 |#1|) (-1165 $) (-1165 $)) NIL (|has| |#2| (-341 |#1|))) (((-1165 |#1|) $ (-1165 $)) NIL (|has| |#2| (-341 |#1|)))) (-1430 (($ (-1165 |#1|)) NIL (|has| |#2| (-391 |#1|))) (((-1165 |#1|) $) NIL (|has| |#2| (-391 |#1|)))) (-3557 (((-587 (-881 |#1|))) NIL (|has| |#2| (-391 |#1|))) (((-587 (-881 |#1|)) (-1165 $)) NIL (|has| |#2| (-341 |#1|)))) (-2674 (($ $ $) NIL)) (-3160 (((-108)) NIL (|has| |#2| (-341 |#1|)))) (-2189 (((-792) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-2470 (((-1165 $)) NIL (|has| |#2| (-391 |#1|)))) (-2578 (((-587 (-1165 |#1|))) NIL (-3703 (-12 (|has| |#2| (-341 |#1|)) (|has| |#1| (-513))) (-12 (|has| |#2| (-391 |#1|)) (|has| |#1| (-513)))))) (-2922 (($ $ $ $) NIL)) (-2057 (((-108)) NIL (|has| |#2| (-341 |#1|)))) (-1616 (($ (-627 |#1|) $) NIL (|has| |#2| (-391 |#1|)))) (-2464 (($ $ $) NIL)) (-1453 (((-108)) NIL (|has| |#2| (-341 |#1|)))) (-3987 (((-108)) NIL (|has| |#2| (-341 |#1|)))) (-2596 (((-108)) NIL (|has| |#2| (-341 |#1|)))) (-3561 (($) 15 T CONST)) (-1531 (((-108) $ $) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) 17)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-579 |#1| |#2|) (-13 (-681 |#1|) (-561 |#2|) (-10 -8 (-15 -2189 ($ |#2|)) (IF (|has| |#2| (-391 |#1|)) (-6 (-391 |#1|)) |%noBranch|) (IF (|has| |#2| (-341 |#1|)) (-6 (-341 |#1|)) |%noBranch|))) (-157) (-681 |#1|)) (T -579))
+((-2189 (*1 *1 *2) (-12 (-4 *3 (-157)) (-5 *1 (-579 *3 *2)) (-4 *2 (-681 *3)))))
+(-13 (-681 |#1|) (-561 |#2|) (-10 -8 (-15 -2189 ($ |#2|)) (IF (|has| |#2| (-391 |#1|)) (-6 (-391 |#1|)) |%noBranch|) (IF (|has| |#2| (-341 |#1|)) (-6 (-341 |#1|)) |%noBranch|)))
+((-1469 (((-3 (-777 |#2|) "failed") |#2| (-269 |#2|) (-1067)) 78) (((-3 (-777 |#2|) (-2 (|:| |leftHandLimit| (-3 (-777 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-777 |#2|) "failed"))) "failed") |#2| (-269 (-777 |#2|))) 100)) (-3363 (((-3 (-770 |#2|) "failed") |#2| (-269 (-770 |#2|))) 105)))
+(((-580 |#1| |#2|) (-10 -7 (-15 -1469 ((-3 (-777 |#2|) (-2 (|:| |leftHandLimit| (-3 (-777 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-777 |#2|) "failed"))) "failed") |#2| (-269 (-777 |#2|)))) (-15 -3363 ((-3 (-770 |#2|) "failed") |#2| (-269 (-770 |#2|)))) (-15 -1469 ((-3 (-777 |#2|) "failed") |#2| (-269 |#2|) (-1067)))) (-13 (-425) (-784) (-961 (-521)) (-583 (-521))) (-13 (-27) (-1105) (-404 |#1|))) (T -580))
+((-1469 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-269 *3)) (-5 *5 (-1067)) (-4 *3 (-13 (-27) (-1105) (-404 *6))) (-4 *6 (-13 (-425) (-784) (-961 (-521)) (-583 (-521)))) (-5 *2 (-777 *3)) (-5 *1 (-580 *6 *3)))) (-3363 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-269 (-770 *3))) (-4 *5 (-13 (-425) (-784) (-961 (-521)) (-583 (-521)))) (-5 *2 (-770 *3)) (-5 *1 (-580 *5 *3)) (-4 *3 (-13 (-27) (-1105) (-404 *5))))) (-1469 (*1 *2 *3 *4) (-12 (-5 *4 (-269 (-777 *3))) (-4 *3 (-13 (-27) (-1105) (-404 *5))) (-4 *5 (-13 (-425) (-784) (-961 (-521)) (-583 (-521)))) (-5 *2 (-3 (-777 *3) (-2 (|:| |leftHandLimit| (-3 (-777 *3) "failed")) (|:| |rightHandLimit| (-3 (-777 *3) "failed"))) "failed")) (-5 *1 (-580 *5 *3)))))
+(-10 -7 (-15 -1469 ((-3 (-777 |#2|) (-2 (|:| |leftHandLimit| (-3 (-777 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-777 |#2|) "failed"))) "failed") |#2| (-269 (-777 |#2|)))) (-15 -3363 ((-3 (-770 |#2|) "failed") |#2| (-269 (-770 |#2|)))) (-15 -1469 ((-3 (-777 |#2|) "failed") |#2| (-269 |#2|) (-1067))))
+((-1469 (((-3 (-777 (-381 (-881 |#1|))) "failed") (-381 (-881 |#1|)) (-269 (-381 (-881 |#1|))) (-1067)) 79) (((-3 (-777 (-381 (-881 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-777 (-381 (-881 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-777 (-381 (-881 |#1|))) "failed"))) "failed") (-381 (-881 |#1|)) (-269 (-381 (-881 |#1|)))) 18) (((-3 (-777 (-381 (-881 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-777 (-381 (-881 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-777 (-381 (-881 |#1|))) "failed"))) "failed") (-381 (-881 |#1|)) (-269 (-777 (-881 |#1|)))) 34)) (-3363 (((-770 (-381 (-881 |#1|))) (-381 (-881 |#1|)) (-269 (-381 (-881 |#1|)))) 21) (((-770 (-381 (-881 |#1|))) (-381 (-881 |#1|)) (-269 (-770 (-881 |#1|)))) 42)))
+(((-581 |#1|) (-10 -7 (-15 -1469 ((-3 (-777 (-381 (-881 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-777 (-381 (-881 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-777 (-381 (-881 |#1|))) "failed"))) "failed") (-381 (-881 |#1|)) (-269 (-777 (-881 |#1|))))) (-15 -1469 ((-3 (-777 (-381 (-881 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-777 (-381 (-881 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-777 (-381 (-881 |#1|))) "failed"))) "failed") (-381 (-881 |#1|)) (-269 (-381 (-881 |#1|))))) (-15 -3363 ((-770 (-381 (-881 |#1|))) (-381 (-881 |#1|)) (-269 (-770 (-881 |#1|))))) (-15 -3363 ((-770 (-381 (-881 |#1|))) (-381 (-881 |#1|)) (-269 (-381 (-881 |#1|))))) (-15 -1469 ((-3 (-777 (-381 (-881 |#1|))) "failed") (-381 (-881 |#1|)) (-269 (-381 (-881 |#1|))) (-1067)))) (-425)) (T -581))
+((-1469 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-269 (-381 (-881 *6)))) (-5 *5 (-1067)) (-5 *3 (-381 (-881 *6))) (-4 *6 (-425)) (-5 *2 (-777 *3)) (-5 *1 (-581 *6)))) (-3363 (*1 *2 *3 *4) (-12 (-5 *4 (-269 (-381 (-881 *5)))) (-5 *3 (-381 (-881 *5))) (-4 *5 (-425)) (-5 *2 (-770 *3)) (-5 *1 (-581 *5)))) (-3363 (*1 *2 *3 *4) (-12 (-5 *4 (-269 (-770 (-881 *5)))) (-4 *5 (-425)) (-5 *2 (-770 (-381 (-881 *5)))) (-5 *1 (-581 *5)) (-5 *3 (-381 (-881 *5))))) (-1469 (*1 *2 *3 *4) (-12 (-5 *4 (-269 (-381 (-881 *5)))) (-5 *3 (-381 (-881 *5))) (-4 *5 (-425)) (-5 *2 (-3 (-777 *3) (-2 (|:| |leftHandLimit| (-3 (-777 *3) "failed")) (|:| |rightHandLimit| (-3 (-777 *3) "failed"))) "failed")) (-5 *1 (-581 *5)))) (-1469 (*1 *2 *3 *4) (-12 (-5 *4 (-269 (-777 (-881 *5)))) (-4 *5 (-425)) (-5 *2 (-3 (-777 (-381 (-881 *5))) (-2 (|:| |leftHandLimit| (-3 (-777 (-381 (-881 *5))) "failed")) (|:| |rightHandLimit| (-3 (-777 (-381 (-881 *5))) "failed"))) "failed")) (-5 *1 (-581 *5)) (-5 *3 (-381 (-881 *5))))))
+(-10 -7 (-15 -1469 ((-3 (-777 (-381 (-881 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-777 (-381 (-881 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-777 (-381 (-881 |#1|))) "failed"))) "failed") (-381 (-881 |#1|)) (-269 (-777 (-881 |#1|))))) (-15 -1469 ((-3 (-777 (-381 (-881 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-777 (-381 (-881 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-777 (-381 (-881 |#1|))) "failed"))) "failed") (-381 (-881 |#1|)) (-269 (-381 (-881 |#1|))))) (-15 -3363 ((-770 (-381 (-881 |#1|))) (-381 (-881 |#1|)) (-269 (-770 (-881 |#1|))))) (-15 -3363 ((-770 (-381 (-881 |#1|))) (-381 (-881 |#1|)) (-269 (-381 (-881 |#1|))))) (-15 -1469 ((-3 (-777 (-381 (-881 |#1|))) "failed") (-381 (-881 |#1|)) (-269 (-381 (-881 |#1|))) (-1067))))
+((-2958 (((-3 (-1165 (-381 |#1|)) "failed") (-1165 |#2|) |#2|) 57 (-2400 (|has| |#1| (-337)))) (((-3 (-1165 |#1|) "failed") (-1165 |#2|) |#2|) 42 (|has| |#1| (-337)))) (-2135 (((-108) (-1165 |#2|)) 30)) (-2188 (((-3 (-1165 |#1|) "failed") (-1165 |#2|)) 33)))
+(((-582 |#1| |#2|) (-10 -7 (-15 -2135 ((-108) (-1165 |#2|))) (-15 -2188 ((-3 (-1165 |#1|) "failed") (-1165 |#2|))) (IF (|has| |#1| (-337)) (-15 -2958 ((-3 (-1165 |#1|) "failed") (-1165 |#2|) |#2|)) (-15 -2958 ((-3 (-1165 (-381 |#1|)) "failed") (-1165 |#2|) |#2|)))) (-513) (-583 |#1|)) (T -582))
+((-2958 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1165 *4)) (-4 *4 (-583 *5)) (-2400 (-4 *5 (-337))) (-4 *5 (-513)) (-5 *2 (-1165 (-381 *5))) (-5 *1 (-582 *5 *4)))) (-2958 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1165 *4)) (-4 *4 (-583 *5)) (-4 *5 (-337)) (-4 *5 (-513)) (-5 *2 (-1165 *5)) (-5 *1 (-582 *5 *4)))) (-2188 (*1 *2 *3) (|partial| -12 (-5 *3 (-1165 *5)) (-4 *5 (-583 *4)) (-4 *4 (-513)) (-5 *2 (-1165 *4)) (-5 *1 (-582 *4 *5)))) (-2135 (*1 *2 *3) (-12 (-5 *3 (-1165 *5)) (-4 *5 (-583 *4)) (-4 *4 (-513)) (-5 *2 (-108)) (-5 *1 (-582 *4 *5)))))
+(-10 -7 (-15 -2135 ((-108) (-1165 |#2|))) (-15 -2188 ((-3 (-1165 |#1|) "failed") (-1165 |#2|))) (IF (|has| |#1| (-337)) (-15 -2958 ((-3 (-1165 |#1|) "failed") (-1165 |#2|) |#2|)) (-15 -2958 ((-3 (-1165 (-381 |#1|)) "failed") (-1165 |#2|) |#2|))))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-1232 (((-3 $ "failed") $ $) 19)) (-2547 (($) 17 T CONST)) (-3279 (((-627 |#1|) (-627 $)) 36) (((-2 (|:| -1201 (-627 |#1|)) (|:| |vec| (-1165 |#1|))) (-627 $) (-1165 $)) 35)) (-1257 (((-3 $ "failed") $) 34)) (-3996 (((-108) $) 31)) (-3688 (((-1067) $) 9)) (-4147 (((-1031) $) 10)) (-2189 (((-792) $) 11) (($ (-521)) 28)) (-3846 (((-707)) 29)) (-3505 (($ $ (-850)) 26) (($ $ (-707)) 33)) (-3561 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-707)) 32)) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24)))
+(((-583 |#1|) (-1196) (-970)) (T -583))
+((-3279 (*1 *2 *3) (-12 (-5 *3 (-627 *1)) (-4 *1 (-583 *4)) (-4 *4 (-970)) (-5 *2 (-627 *4)))) (-3279 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *1)) (-5 *4 (-1165 *1)) (-4 *1 (-583 *5)) (-4 *5 (-970)) (-5 *2 (-2 (|:| -1201 (-627 *5)) (|:| |vec| (-1165 *5)))))))
+(-13 (-970) (-10 -8 (-15 -3279 ((-627 |t#1|) (-627 $))) (-15 -3279 ((-2 (|:| -1201 (-627 |t#1|)) (|:| |vec| (-1165 |t#1|))) (-627 $) (-1165 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-561 (-792)) . T) ((-589 $) . T) ((-663) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T))
+((-4143 ((|#2| (-587 |#1|) (-587 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-587 |#1|) (-587 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-587 |#1|) (-587 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-587 |#1|) (-587 |#2|) |#2|) 17) ((|#2| (-587 |#1|) (-587 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-587 |#1|) (-587 |#2|)) 12)))
+(((-584 |#1| |#2|) (-10 -7 (-15 -4143 ((-1 |#2| |#1|) (-587 |#1|) (-587 |#2|))) (-15 -4143 (|#2| (-587 |#1|) (-587 |#2|) |#1|)) (-15 -4143 ((-1 |#2| |#1|) (-587 |#1|) (-587 |#2|) |#2|)) (-15 -4143 (|#2| (-587 |#1|) (-587 |#2|) |#1| |#2|)) (-15 -4143 ((-1 |#2| |#1|) (-587 |#1|) (-587 |#2|) (-1 |#2| |#1|))) (-15 -4143 (|#2| (-587 |#1|) (-587 |#2|) |#1| (-1 |#2| |#1|)))) (-1013) (-1119)) (T -584))
+((-4143 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-587 *5)) (-5 *4 (-587 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1013)) (-4 *2 (-1119)) (-5 *1 (-584 *5 *2)))) (-4143 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-587 *5)) (-5 *4 (-587 *6)) (-4 *5 (-1013)) (-4 *6 (-1119)) (-5 *1 (-584 *5 *6)))) (-4143 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-587 *5)) (-5 *4 (-587 *2)) (-4 *5 (-1013)) (-4 *2 (-1119)) (-5 *1 (-584 *5 *2)))) (-4143 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-587 *6)) (-5 *4 (-587 *5)) (-4 *6 (-1013)) (-4 *5 (-1119)) (-5 *2 (-1 *5 *6)) (-5 *1 (-584 *6 *5)))) (-4143 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-587 *5)) (-5 *4 (-587 *2)) (-4 *5 (-1013)) (-4 *2 (-1119)) (-5 *1 (-584 *5 *2)))) (-4143 (*1 *2 *3 *4) (-12 (-5 *3 (-587 *5)) (-5 *4 (-587 *6)) (-4 *5 (-1013)) (-4 *6 (-1119)) (-5 *2 (-1 *6 *5)) (-5 *1 (-584 *5 *6)))))
+(-10 -7 (-15 -4143 ((-1 |#2| |#1|) (-587 |#1|) (-587 |#2|))) (-15 -4143 (|#2| (-587 |#1|) (-587 |#2|) |#1|)) (-15 -4143 ((-1 |#2| |#1|) (-587 |#1|) (-587 |#2|) |#2|)) (-15 -4143 (|#2| (-587 |#1|) (-587 |#2|) |#1| |#2|)) (-15 -4143 ((-1 |#2| |#1|) (-587 |#1|) (-587 |#2|) (-1 |#2| |#1|))) (-15 -4143 (|#2| (-587 |#1|) (-587 |#2|) |#1| (-1 |#2| |#1|))))
+((-3126 (((-587 |#2|) (-1 |#2| |#1| |#2|) (-587 |#1|) |#2|) 16)) (-3859 ((|#2| (-1 |#2| |#1| |#2|) (-587 |#1|) |#2|) 18)) (-1390 (((-587 |#2|) (-1 |#2| |#1|) (-587 |#1|)) 13)))
+(((-585 |#1| |#2|) (-10 -7 (-15 -3126 ((-587 |#2|) (-1 |#2| |#1| |#2|) (-587 |#1|) |#2|)) (-15 -3859 (|#2| (-1 |#2| |#1| |#2|) (-587 |#1|) |#2|)) (-15 -1390 ((-587 |#2|) (-1 |#2| |#1|) (-587 |#1|)))) (-1119) (-1119)) (T -585))
+((-1390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-587 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-587 *6)) (-5 *1 (-585 *5 *6)))) (-3859 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-587 *5)) (-4 *5 (-1119)) (-4 *2 (-1119)) (-5 *1 (-585 *5 *2)))) (-3126 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-587 *6)) (-4 *6 (-1119)) (-4 *5 (-1119)) (-5 *2 (-587 *5)) (-5 *1 (-585 *6 *5)))))
+(-10 -7 (-15 -3126 ((-587 |#2|) (-1 |#2| |#1| |#2|) (-587 |#1|) |#2|)) (-15 -3859 (|#2| (-1 |#2| |#1| |#2|) (-587 |#1|) |#2|)) (-15 -1390 ((-587 |#2|) (-1 |#2| |#1|) (-587 |#1|))))
+((-1390 (((-587 |#3|) (-1 |#3| |#1| |#2|) (-587 |#1|) (-587 |#2|)) 13)))
+(((-586 |#1| |#2| |#3|) (-10 -7 (-15 -1390 ((-587 |#3|) (-1 |#3| |#1| |#2|) (-587 |#1|) (-587 |#2|)))) (-1119) (-1119) (-1119)) (T -586))
+((-1390 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-587 *6)) (-5 *5 (-587 *7)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-4 *8 (-1119)) (-5 *2 (-587 *8)) (-5 *1 (-586 *6 *7 *8)))))
+(-10 -7 (-15 -1390 ((-587 |#3|) (-1 |#3| |#1| |#2|) (-587 |#1|) (-587 |#2|))))
+((-1415 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3430 ((|#1| $) NIL)) (-2092 ((|#1| $) NIL)) (-3830 (($ $) NIL)) (-1903 (((-1170) $ (-521) (-521)) NIL (|has| $ (-6 -4234)))) (-3861 (($ $ (-521)) NIL (|has| $ (-6 -4234)))) (-1505 (((-108) $) NIL (|has| |#1| (-784))) (((-108) (-1 (-108) |#1| |#1|) $) NIL)) (-1621 (($ $) NIL (-12 (|has| $ (-6 -4234)) (|has| |#1| (-784)))) (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4234)))) (-3211 (($ $) NIL (|has| |#1| (-784))) (($ (-1 (-108) |#1| |#1|) $) NIL)) (-2978 (((-108) $ (-707)) NIL)) (-2300 ((|#1| $ |#1|) NIL (|has| $ (-6 -4234)))) (-3739 (($ $ $) NIL (|has| $ (-6 -4234)))) (-1509 ((|#1| $ |#1|) NIL (|has| $ (-6 -4234)))) (-3977 ((|#1| $ |#1|) NIL (|has| $ (-6 -4234)))) (-2378 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4234))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4234))) (($ $ "rest" $) NIL (|has| $ (-6 -4234))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4234))) ((|#1| $ (-1132 (-521)) |#1|) NIL (|has| $ (-6 -4234))) ((|#1| $ (-521) |#1|) NIL (|has| $ (-6 -4234)))) (-2675 (($ $ (-587 $)) NIL (|has| $ (-6 -4234)))) (-1605 (($ $ $) 32 (|has| |#1| (-1013)))) (-1597 (($ $ $) 34 (|has| |#1| (-1013)))) (-1588 (($ $ $) 37 (|has| |#1| (-1013)))) (-4098 (($ (-1 (-108) |#1|) $) NIL)) (-1628 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2080 ((|#1| $) NIL)) (-2547 (($) NIL T CONST)) (-3081 (($ $) NIL (|has| $ (-6 -4234)))) (-1862 (($ $) NIL)) (-2306 (($ $) NIL) (($ $ (-707)) NIL)) (-2468 (($ $) NIL (|has| |#1| (-1013)))) (-2332 (($ $) 31 (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-3023 (($ |#1| $) NIL (|has| |#1| (-1013))) (($ (-1 (-108) |#1|) $) NIL)) (-1422 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-3859 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-3849 ((|#1| $ (-521) |#1|) NIL (|has| $ (-6 -4234)))) (-3626 ((|#1| $ (-521)) NIL)) (-1368 (((-108) $) NIL)) (-3233 (((-521) |#1| $ (-521)) NIL (|has| |#1| (-1013))) (((-521) |#1| $) NIL (|has| |#1| (-1013))) (((-521) (-1 (-108) |#1|) $) NIL)) (-3831 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-1506 (((-108) $) 9)) (-3186 (((-587 $) $) NIL)) (-3651 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-2046 (($) 7)) (-1811 (($ (-707) |#1|) NIL)) (-2139 (((-108) $ (-707)) NIL)) (-2826 (((-521) $) NIL (|has| (-521) (-784)))) (-2810 (($ $ $) NIL (|has| |#1| (-784)))) (-3220 (($ $ $) NIL (|has| |#1| (-784))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-1318 (($ $ $) NIL (|has| |#1| (-784))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-3757 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-2221 (((-108) |#1| $) 33 (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2597 (((-521) $) NIL (|has| (-521) (-784)))) (-2446 (($ $ $) NIL (|has| |#1| (-784)))) (-3833 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1580 (($ |#1|) NIL)) (-3574 (((-108) $ (-707)) NIL)) (-1278 (((-587 |#1|) $) NIL)) (-2229 (((-108) $) NIL)) (-3688 (((-1067) $) NIL (|has| |#1| (-1013)))) (-1441 ((|#1| $) NIL) (($ $ (-707)) NIL)) (-3373 (($ $ $ (-521)) NIL) (($ |#1| $ (-521)) NIL)) (-1659 (($ $ $ (-521)) NIL) (($ |#1| $ (-521)) NIL)) (-1668 (((-587 (-521)) $) NIL)) (-2941 (((-108) (-521) $) NIL)) (-4147 (((-1031) $) NIL (|has| |#1| (-1013)))) (-2293 ((|#1| $) NIL) (($ $ (-707)) NIL)) (-3620 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-3016 (($ $ |#1|) NIL (|has| $ (-6 -4234)))) (-3924 (((-108) $) NIL)) (-1789 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 |#1|))) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-2488 (((-108) $ $) NIL)) (-3821 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2489 (((-587 |#1|) $) NIL)) (-3462 (((-108) $) NIL)) (-4024 (($) NIL)) (-2544 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1132 (-521))) NIL) ((|#1| $ (-521)) 36) ((|#1| $ (-521) |#1|) NIL)) (-2931 (((-521) $ $) NIL)) (-2859 (($ $ (-1132 (-521))) NIL) (($ $ (-521)) NIL)) (-3691 (($ $ (-1132 (-521))) NIL) (($ $ (-521)) NIL)) (-2406 (((-108) $) NIL)) (-3207 (($ $) NIL)) (-2262 (($ $) NIL (|has| $ (-6 -4234)))) (-3083 (((-707) $) NIL)) (-3717 (($ $) NIL)) (-4163 (((-707) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (((-707) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-1497 (($ $ $ (-521)) NIL (|has| $ (-6 -4234)))) (-2404 (($ $) NIL)) (-1430 (((-497) $) 45 (|has| |#1| (-562 (-497))))) (-2201 (($ (-587 |#1|)) NIL)) (-3435 (($ |#1| $) 10)) (-3980 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4159 (($ $ $) 30) (($ |#1| $) NIL) (($ (-587 $)) NIL) (($ $ |#1|) NIL)) (-2189 (((-792) $) NIL (|has| |#1| (-561 (-792))))) (-3098 (((-587 $) $) NIL)) (-2294 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3676 (($ $ $) 11)) (-3049 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2287 (((-1067) $) 26 (|has| |#1| (-765))) (((-1067) $ (-108)) 27 (|has| |#1| (-765))) (((-1170) (-759) $) 28 (|has| |#1| (-765))) (((-1170) (-759) $ (-108)) 29 (|has| |#1| (-765)))) (-1574 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1558 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1531 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-1566 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1549 (((-108) $ $) NIL (|has| |#1| (-784)))) (-3475 (((-707) $) NIL (|has| $ (-6 -4233)))))
+(((-587 |#1|) (-13 (-607 |#1|) (-10 -8 (-15 -2046 ($)) (-15 -1506 ((-108) $)) (-15 -3435 ($ |#1| $)) (-15 -3676 ($ $ $)) (IF (|has| |#1| (-1013)) (PROGN (-15 -1605 ($ $ $)) (-15 -1597 ($ $ $)) (-15 -1588 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-765)) (-6 (-765)) |%noBranch|))) (-1119)) (T -587))
+((-2046 (*1 *1) (-12 (-5 *1 (-587 *2)) (-4 *2 (-1119)))) (-1506 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-587 *3)) (-4 *3 (-1119)))) (-3435 (*1 *1 *2 *1) (-12 (-5 *1 (-587 *2)) (-4 *2 (-1119)))) (-3676 (*1 *1 *1 *1) (-12 (-5 *1 (-587 *2)) (-4 *2 (-1119)))) (-1605 (*1 *1 *1 *1) (-12 (-5 *1 (-587 *2)) (-4 *2 (-1013)) (-4 *2 (-1119)))) (-1597 (*1 *1 *1 *1) (-12 (-5 *1 (-587 *2)) (-4 *2 (-1013)) (-4 *2 (-1119)))) (-1588 (*1 *1 *1 *1) (-12 (-5 *1 (-587 *2)) (-4 *2 (-1013)) (-4 *2 (-1119)))))
+(-13 (-607 |#1|) (-10 -8 (-15 -2046 ($)) (-15 -1506 ((-108) $)) (-15 -3435 ($ |#1| $)) (-15 -3676 ($ $ $)) (IF (|has| |#1| (-1013)) (PROGN (-15 -1605 ($ $ $)) (-15 -1597 ($ $ $)) (-15 -1588 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-765)) (-6 (-765)) |%noBranch|)))
+((-1415 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-2317 (($ |#1| |#1| $) 43)) (-2978 (((-108) $ (-707)) NIL)) (-4098 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4233)))) (-1628 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2547 (($) NIL T CONST)) (-2468 (($ $) 45)) (-2332 (($ $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-3023 (($ |#1| $) 52 (|has| $ (-6 -4233))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4233)))) (-1422 (($ |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-3859 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4233)))) (-3831 (((-587 |#1|) $) 9 (|has| $ (-6 -4233)))) (-2139 (((-108) $ (-707)) NIL)) (-3757 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-2221 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-3833 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#1| |#1|) $) 37)) (-3574 (((-108) $ (-707)) NIL)) (-3688 (((-1067) $) NIL (|has| |#1| (-1013)))) (-2511 ((|#1| $) 46)) (-3373 (($ |#1| $) 26) (($ |#1| $ (-707)) 42)) (-4147 (((-1031) $) NIL (|has| |#1| (-1013)))) (-3620 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-2166 ((|#1| $) 48)) (-1789 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 |#1|))) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-2488 (((-108) $ $) NIL)) (-3462 (((-108) $) 21)) (-4024 (($) 25)) (-2314 (((-108) $) 50)) (-2312 (((-587 (-2 (|:| -3045 |#1|) (|:| -4163 (-707)))) $) 59)) (-1784 (($) 23) (($ (-587 |#1|)) 18)) (-4163 (((-707) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (((-707) |#1| $) 56 (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2404 (($ $) 19)) (-1430 (((-497) $) 34 (|has| |#1| (-562 (-497))))) (-2201 (($ (-587 |#1|)) NIL)) (-2189 (((-792) $) 14 (|has| |#1| (-561 (-792))))) (-4091 (($ (-587 |#1|)) 22)) (-3049 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-1531 (((-108) $ $) 61 (|has| |#1| (-1013)))) (-3475 (((-707) $) 16 (|has| $ (-6 -4233)))))
+(((-588 |#1|) (-13 (-632 |#1|) (-10 -8 (-6 -4233) (-15 -2314 ((-108) $)) (-15 -2317 ($ |#1| |#1| $)))) (-1013)) (T -588))
+((-2314 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-588 *3)) (-4 *3 (-1013)))) (-2317 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-1013)))))
+(-13 (-632 |#1|) (-10 -8 (-6 -4233) (-15 -2314 ((-108) $)) (-15 -2317 ($ |#1| |#1| $))))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-1232 (((-3 $ "failed") $ $) 19)) (-2547 (($) 17 T CONST)) (-3688 (((-1067) $) 9)) (-4147 (((-1031) $) 10)) (-2189 (((-792) $) 11)) (-3561 (($) 18 T CONST)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ |#1| $) 23)))
+(((-589 |#1|) (-1196) (-977)) (T -589))
+((* (*1 *1 *2 *1) (-12 (-4 *1 (-589 *2)) (-4 *2 (-977)))))
(-13 (-21) (-10 -8 (-15 * ($ |t#1| $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-560 (-791)) . T) ((-1012) . T))
-((-1414 (((-108) $ $) NIL)) (-1628 (((-706) $) 15)) (-1520 (($ $ |#1|) 55)) (-2447 (($ $) 32)) (-1861 (($ $) 31)) (-1296 (((-3 |#1| "failed") $) 47)) (-1482 ((|#1| $) NIL)) (-2397 (($ |#1| |#2| $) 61) (($ $ $) 62)) (-2802 (((-791) $ (-1 (-791) (-791) (-791)) (-1 (-791) (-791) (-791)) (-520)) 45)) (-3691 ((|#1| $ (-520)) 30)) (-2706 ((|#2| $ (-520)) 29)) (-3151 (($ (-1 |#1| |#1|) $) 34)) (-2457 (($ (-1 |#2| |#2|) $) 38)) (-1694 (($) 10)) (-1926 (($ |#1| |#2|) 22)) (-1955 (($ (-586 (-2 (|:| |gen| |#1|) (|:| -3260 |#2|)))) 23)) (-3389 (((-586 (-2 (|:| |gen| |#1|) (|:| -3260 |#2|))) $) 13)) (-3926 (($ |#1| $) 56)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2084 (((-108) $ $) 58)) (-2188 (((-791) $) 19) (($ |#1|) 16)) (-1530 (((-108) $ $) 25)))
-(((-589 |#1| |#2| |#3|) (-13 (-1012) (-960 |#1|) (-10 -8 (-15 -2802 ((-791) $ (-1 (-791) (-791) (-791)) (-1 (-791) (-791) (-791)) (-520))) (-15 -3389 ((-586 (-2 (|:| |gen| |#1|) (|:| -3260 |#2|))) $)) (-15 -1926 ($ |#1| |#2|)) (-15 -1955 ($ (-586 (-2 (|:| |gen| |#1|) (|:| -3260 |#2|))))) (-15 -2706 (|#2| $ (-520))) (-15 -3691 (|#1| $ (-520))) (-15 -1861 ($ $)) (-15 -2447 ($ $)) (-15 -1628 ((-706) $)) (-15 -1694 ($)) (-15 -1520 ($ $ |#1|)) (-15 -3926 ($ |#1| $)) (-15 -2397 ($ |#1| |#2| $)) (-15 -2397 ($ $ $)) (-15 -2084 ((-108) $ $)) (-15 -2457 ($ (-1 |#2| |#2|) $)) (-15 -3151 ($ (-1 |#1| |#1|) $)))) (-1012) (-23) |#2|) (T -589))
-((-2802 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-791) (-791) (-791))) (-5 *4 (-520)) (-5 *2 (-791)) (-5 *1 (-589 *5 *6 *7)) (-4 *5 (-1012)) (-4 *6 (-23)) (-14 *7 *6))) (-3389 (*1 *2 *1) (-12 (-5 *2 (-586 (-2 (|:| |gen| *3) (|:| -3260 *4)))) (-5 *1 (-589 *3 *4 *5)) (-4 *3 (-1012)) (-4 *4 (-23)) (-14 *5 *4))) (-1926 (*1 *1 *2 *3) (-12 (-5 *1 (-589 *2 *3 *4)) (-4 *2 (-1012)) (-4 *3 (-23)) (-14 *4 *3))) (-1955 (*1 *1 *2) (-12 (-5 *2 (-586 (-2 (|:| |gen| *3) (|:| -3260 *4)))) (-4 *3 (-1012)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-589 *3 *4 *5)))) (-2706 (*1 *2 *1 *3) (-12 (-5 *3 (-520)) (-4 *2 (-23)) (-5 *1 (-589 *4 *2 *5)) (-4 *4 (-1012)) (-14 *5 *2))) (-3691 (*1 *2 *1 *3) (-12 (-5 *3 (-520)) (-4 *2 (-1012)) (-5 *1 (-589 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-1861 (*1 *1 *1) (-12 (-5 *1 (-589 *2 *3 *4)) (-4 *2 (-1012)) (-4 *3 (-23)) (-14 *4 *3))) (-2447 (*1 *1 *1) (-12 (-5 *1 (-589 *2 *3 *4)) (-4 *2 (-1012)) (-4 *3 (-23)) (-14 *4 *3))) (-1628 (*1 *2 *1) (-12 (-5 *2 (-706)) (-5 *1 (-589 *3 *4 *5)) (-4 *3 (-1012)) (-4 *4 (-23)) (-14 *5 *4))) (-1694 (*1 *1) (-12 (-5 *1 (-589 *2 *3 *4)) (-4 *2 (-1012)) (-4 *3 (-23)) (-14 *4 *3))) (-1520 (*1 *1 *1 *2) (-12 (-5 *1 (-589 *2 *3 *4)) (-4 *2 (-1012)) (-4 *3 (-23)) (-14 *4 *3))) (-3926 (*1 *1 *2 *1) (-12 (-5 *1 (-589 *2 *3 *4)) (-4 *2 (-1012)) (-4 *3 (-23)) (-14 *4 *3))) (-2397 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-589 *2 *3 *4)) (-4 *2 (-1012)) (-4 *3 (-23)) (-14 *4 *3))) (-2397 (*1 *1 *1 *1) (-12 (-5 *1 (-589 *2 *3 *4)) (-4 *2 (-1012)) (-4 *3 (-23)) (-14 *4 *3))) (-2084 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-589 *3 *4 *5)) (-4 *3 (-1012)) (-4 *4 (-23)) (-14 *5 *4))) (-2457 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-589 *3 *4 *5)) (-4 *3 (-1012)))) (-3151 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1012)) (-5 *1 (-589 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))))
-(-13 (-1012) (-960 |#1|) (-10 -8 (-15 -2802 ((-791) $ (-1 (-791) (-791) (-791)) (-1 (-791) (-791) (-791)) (-520))) (-15 -3389 ((-586 (-2 (|:| |gen| |#1|) (|:| -3260 |#2|))) $)) (-15 -1926 ($ |#1| |#2|)) (-15 -1955 ($ (-586 (-2 (|:| |gen| |#1|) (|:| -3260 |#2|))))) (-15 -2706 (|#2| $ (-520))) (-15 -3691 (|#1| $ (-520))) (-15 -1861 ($ $)) (-15 -2447 ($ $)) (-15 -1628 ((-706) $)) (-15 -1694 ($)) (-15 -1520 ($ $ |#1|)) (-15 -3926 ($ |#1| $)) (-15 -2397 ($ |#1| |#2| $)) (-15 -2397 ($ $ $)) (-15 -2084 ((-108) $ $)) (-15 -2457 ($ (-1 |#2| |#2|) $)) (-15 -3151 ($ (-1 |#1| |#1|) $))))
-((-1752 (((-520) $) 24)) (-1659 (($ |#2| $ (-520)) 22) (($ $ $ (-520)) NIL)) (-3622 (((-586 (-520)) $) 12)) (-2603 (((-108) (-520) $) 15)) (-4156 (($ $ |#2|) 19) (($ |#2| $) 20) (($ $ $) NIL) (($ (-586 $)) NIL)))
-(((-590 |#1| |#2|) (-10 -8 (-15 -1659 (|#1| |#1| |#1| (-520))) (-15 -1659 (|#1| |#2| |#1| (-520))) (-15 -4156 (|#1| (-586 |#1|))) (-15 -4156 (|#1| |#1| |#1|)) (-15 -4156 (|#1| |#2| |#1|)) (-15 -4156 (|#1| |#1| |#2|)) (-15 -1752 ((-520) |#1|)) (-15 -3622 ((-586 (-520)) |#1|)) (-15 -2603 ((-108) (-520) |#1|))) (-591 |#2|) (-1118)) (T -590))
-NIL
-(-10 -8 (-15 -1659 (|#1| |#1| |#1| (-520))) (-15 -1659 (|#1| |#2| |#1| (-520))) (-15 -4156 (|#1| (-586 |#1|))) (-15 -4156 (|#1| |#1| |#1|)) (-15 -4156 (|#1| |#2| |#1|)) (-15 -4156 (|#1| |#1| |#2|)) (-15 -1752 ((-520) |#1|)) (-15 -3622 ((-586 (-520)) |#1|)) (-15 -2603 ((-108) (-520) |#1|)))
-((-1414 (((-108) $ $) 19 (|has| |#1| (-1012)))) (-1476 (((-1169) $ (-520) (-520)) 40 (|has| $ (-6 -4230)))) (-2063 (((-108) $ (-706)) 8)) (-2377 ((|#1| $ (-520) |#1|) 52 (|has| $ (-6 -4230))) ((|#1| $ (-1131 (-520)) |#1|) 58 (|has| $ (-6 -4230)))) (-1627 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4229)))) (-3961 (($) 7 T CONST)) (-2331 (($ $) 78 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-1421 (($ |#1| $) 77 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4229)))) (-3856 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4229))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4229)))) (-3846 ((|#1| $ (-520) |#1|) 53 (|has| $ (-6 -4230)))) (-3623 ((|#1| $ (-520)) 51)) (-3828 (((-586 |#1|) $) 30 (|has| $ (-6 -4229)))) (-1810 (($ (-706) |#1|) 69)) (-3027 (((-108) $ (-706)) 9)) (-2567 (((-520) $) 43 (|has| (-520) (-783)))) (-3702 (((-586 |#1|) $) 29 (|has| $ (-6 -4229)))) (-2422 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-1752 (((-520) $) 44 (|has| (-520) (-783)))) (-3830 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-1390 (((-108) $ (-706)) 10)) (-1239 (((-1066) $) 22 (|has| |#1| (-1012)))) (-1659 (($ |#1| $ (-520)) 60) (($ $ $ (-520)) 59)) (-3622 (((-586 (-520)) $) 46)) (-2603 (((-108) (-520) $) 47)) (-4142 (((-1030) $) 21 (|has| |#1| (-1012)))) (-2293 ((|#1| $) 42 (|has| (-520) (-783)))) (-2985 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-2936 (($ $ |#1|) 41 (|has| $ (-6 -4230)))) (-4155 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 |#1|))) 26 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-268 |#1|)) 25 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-586 |#1|) (-586 |#1|)) 23 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))) (-2533 (((-108) $ $) 14)) (-2094 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-1523 (((-586 |#1|) $) 48)) (-4018 (((-108) $) 11)) (-2238 (($) 12)) (-2543 ((|#1| $ (-520) |#1|) 50) ((|#1| $ (-520)) 49) (($ $ (-1131 (-520))) 63)) (-3690 (($ $ (-520)) 62) (($ $ (-1131 (-520))) 61)) (-4159 (((-706) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4229))) (((-706) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-2403 (($ $) 13)) (-1429 (((-496) $) 79 (|has| |#1| (-561 (-496))))) (-2200 (($ (-586 |#1|)) 70)) (-4156 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-586 $)) 65)) (-2188 (((-791) $) 18 (|has| |#1| (-560 (-791))))) (-1662 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4229)))) (-1530 (((-108) $ $) 20 (|has| |#1| (-1012)))) (-3474 (((-706) $) 6 (|has| $ (-6 -4229)))))
-(((-591 |#1|) (-1195) (-1118)) (T -591))
-((-1810 (*1 *1 *2 *3) (-12 (-5 *2 (-706)) (-4 *1 (-591 *3)) (-4 *3 (-1118)))) (-4156 (*1 *1 *1 *2) (-12 (-4 *1 (-591 *2)) (-4 *2 (-1118)))) (-4156 (*1 *1 *2 *1) (-12 (-4 *1 (-591 *2)) (-4 *2 (-1118)))) (-4156 (*1 *1 *1 *1) (-12 (-4 *1 (-591 *2)) (-4 *2 (-1118)))) (-4156 (*1 *1 *2) (-12 (-5 *2 (-586 *1)) (-4 *1 (-591 *3)) (-4 *3 (-1118)))) (-1389 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-591 *3)) (-4 *3 (-1118)))) (-2543 (*1 *1 *1 *2) (-12 (-5 *2 (-1131 (-520))) (-4 *1 (-591 *3)) (-4 *3 (-1118)))) (-3690 (*1 *1 *1 *2) (-12 (-5 *2 (-520)) (-4 *1 (-591 *3)) (-4 *3 (-1118)))) (-3690 (*1 *1 *1 *2) (-12 (-5 *2 (-1131 (-520))) (-4 *1 (-591 *3)) (-4 *3 (-1118)))) (-1659 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-520)) (-4 *1 (-591 *2)) (-4 *2 (-1118)))) (-1659 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-520)) (-4 *1 (-591 *3)) (-4 *3 (-1118)))) (-2377 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1131 (-520))) (|has| *1 (-6 -4230)) (-4 *1 (-591 *2)) (-4 *2 (-1118)))))
-(-13 (-553 (-520) |t#1|) (-139 |t#1|) (-10 -8 (-15 -1810 ($ (-706) |t#1|)) (-15 -4156 ($ $ |t#1|)) (-15 -4156 ($ |t#1| $)) (-15 -4156 ($ $ $)) (-15 -4156 ($ (-586 $))) (-15 -1389 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2543 ($ $ (-1131 (-520)))) (-15 -3690 ($ $ (-520))) (-15 -3690 ($ $ (-1131 (-520)))) (-15 -1659 ($ |t#1| $ (-520))) (-15 -1659 ($ $ $ (-520))) (IF (|has| $ (-6 -4230)) (-15 -2377 (|t#1| $ (-1131 (-520)) |t#1|)) |%noBranch|)))
-(((-33) . T) ((-97) |has| |#1| (-1012)) ((-560 (-791)) -3700 (|has| |#1| (-1012)) (|has| |#1| (-560 (-791)))) ((-139 |#1|) . T) ((-561 (-496)) |has| |#1| (-561 (-496))) ((-260 #0=(-520) |#1|) . T) ((-262 #0# |#1|) . T) ((-283 |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))) ((-459 |#1|) . T) ((-553 #0# |#1|) . T) ((-481 |#1| |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))) ((-1012) |has| |#1| (-1012)) ((-1118) . T))
-((-3600 (((-3 |#2| "failed") |#3| |#2| (-1083) |#2| (-586 |#2|)) 160) (((-3 (-2 (|:| |particular| |#2|) (|:| -1831 (-586 |#2|))) "failed") |#3| |#2| (-1083)) 43)))
-(((-592 |#1| |#2| |#3|) (-10 -7 (-15 -3600 ((-3 (-2 (|:| |particular| |#2|) (|:| -1831 (-586 |#2|))) "failed") |#3| |#2| (-1083))) (-15 -3600 ((-3 |#2| "failed") |#3| |#2| (-1083) |#2| (-586 |#2|)))) (-13 (-783) (-281) (-960 (-520)) (-582 (-520)) (-135)) (-13 (-29 |#1|) (-1104) (-886)) (-596 |#2|)) (T -592))
-((-3600 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1083)) (-5 *5 (-586 *2)) (-4 *2 (-13 (-29 *6) (-1104) (-886))) (-4 *6 (-13 (-783) (-281) (-960 (-520)) (-582 (-520)) (-135))) (-5 *1 (-592 *6 *2 *3)) (-4 *3 (-596 *2)))) (-3600 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1083)) (-4 *6 (-13 (-783) (-281) (-960 (-520)) (-582 (-520)) (-135))) (-4 *4 (-13 (-29 *6) (-1104) (-886))) (-5 *2 (-2 (|:| |particular| *4) (|:| -1831 (-586 *4)))) (-5 *1 (-592 *6 *4 *3)) (-4 *3 (-596 *4)))))
-(-10 -7 (-15 -3600 ((-3 (-2 (|:| |particular| |#2|) (|:| -1831 (-586 |#2|))) "failed") |#3| |#2| (-1083))) (-15 -3600 ((-3 |#2| "failed") |#3| |#2| (-1083) |#2| (-586 |#2|))))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-3848 (($ $) NIL (|has| |#1| (-336)))) (-2252 (($ $ $) NIL (|has| |#1| (-336)))) (-1911 (($ $ (-706)) NIL (|has| |#1| (-336)))) (-1917 (((-3 $ "failed") $ $) NIL)) (-3961 (($) NIL T CONST)) (-2224 (($ $ $) NIL (|has| |#1| (-336)))) (-2604 (($ $ $) NIL (|has| |#1| (-336)))) (-1693 (($ $ $) NIL (|has| |#1| (-336)))) (-3633 (($ $ $) NIL (|has| |#1| (-336)))) (-1225 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) NIL (|has| |#1| (-336)))) (-2637 (((-3 $ "failed") $ $) NIL (|has| |#1| (-336)))) (-2455 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) NIL (|has| |#1| (-336)))) (-1296 (((-3 (-520) "failed") $) NIL (|has| |#1| (-960 (-520)))) (((-3 (-380 (-520)) "failed") $) NIL (|has| |#1| (-960 (-380 (-520))))) (((-3 |#1| "failed") $) NIL)) (-1482 (((-520) $) NIL (|has| |#1| (-960 (-520)))) (((-380 (-520)) $) NIL (|has| |#1| (-960 (-380 (-520))))) ((|#1| $) NIL)) (-3150 (($ $) NIL)) (-1540 (((-3 $ "failed") $) NIL)) (-3923 (($ $) NIL (|has| |#1| (-424)))) (-1537 (((-108) $) NIL)) (-4039 (($ |#1| (-706)) NIL)) (-1216 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) NIL (|has| |#1| (-512)))) (-1422 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) NIL (|has| |#1| (-512)))) (-3562 (((-706) $) NIL)) (-3602 (($ $ $) NIL (|has| |#1| (-336)))) (-3872 (($ $ $) NIL (|has| |#1| (-336)))) (-1983 (($ $ $) NIL (|has| |#1| (-336)))) (-3962 (($ $ $) NIL (|has| |#1| (-336)))) (-2475 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) NIL (|has| |#1| (-336)))) (-1724 (((-3 $ "failed") $ $) NIL (|has| |#1| (-336)))) (-3564 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) NIL (|has| |#1| (-336)))) (-3133 ((|#1| $) NIL)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2230 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-512)))) (-2543 ((|#1| $ |#1|) NIL)) (-2071 (($ $ $) NIL (|has| |#1| (-336)))) (-2528 (((-706) $) NIL)) (-1233 ((|#1| $) NIL (|has| |#1| (-424)))) (-2188 (((-791) $) NIL) (($ (-520)) NIL) (($ (-380 (-520))) NIL (|has| |#1| (-960 (-380 (-520))))) (($ |#1|) NIL)) (-4113 (((-586 |#1|) $) NIL)) (-3475 ((|#1| $ (-706)) NIL)) (-3251 (((-706)) NIL)) (-1614 ((|#1| $ |#1| |#1|) NIL)) (-1691 (($ $) NIL)) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (-3560 (($) NIL T CONST)) (-3570 (($) NIL T CONST)) (-2211 (($) NIL)) (-1530 (((-108) $ $) NIL)) (-1611 (($ $) NIL) (($ $ $) NIL)) (-1601 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-593 |#1|) (-596 |#1|) (-209)) (T -593))
-NIL
-(-596 |#1|)
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-3848 (($ $) NIL (|has| |#1| (-336)))) (-2252 (($ $ $) NIL (|has| |#1| (-336)))) (-1911 (($ $ (-706)) NIL (|has| |#1| (-336)))) (-1917 (((-3 $ "failed") $ $) NIL)) (-3961 (($) NIL T CONST)) (-2224 (($ $ $) NIL (|has| |#1| (-336)))) (-2604 (($ $ $) NIL (|has| |#1| (-336)))) (-1693 (($ $ $) NIL (|has| |#1| (-336)))) (-3633 (($ $ $) NIL (|has| |#1| (-336)))) (-1225 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) NIL (|has| |#1| (-336)))) (-2637 (((-3 $ "failed") $ $) NIL (|has| |#1| (-336)))) (-2455 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) NIL (|has| |#1| (-336)))) (-1296 (((-3 (-520) "failed") $) NIL (|has| |#1| (-960 (-520)))) (((-3 (-380 (-520)) "failed") $) NIL (|has| |#1| (-960 (-380 (-520))))) (((-3 |#1| "failed") $) NIL)) (-1482 (((-520) $) NIL (|has| |#1| (-960 (-520)))) (((-380 (-520)) $) NIL (|has| |#1| (-960 (-380 (-520))))) ((|#1| $) NIL)) (-3150 (($ $) NIL)) (-1540 (((-3 $ "failed") $) NIL)) (-3923 (($ $) NIL (|has| |#1| (-424)))) (-1537 (((-108) $) NIL)) (-4039 (($ |#1| (-706)) NIL)) (-1216 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) NIL (|has| |#1| (-512)))) (-1422 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) NIL (|has| |#1| (-512)))) (-3562 (((-706) $) NIL)) (-3602 (($ $ $) NIL (|has| |#1| (-336)))) (-3872 (($ $ $) NIL (|has| |#1| (-336)))) (-1983 (($ $ $) NIL (|has| |#1| (-336)))) (-3962 (($ $ $) NIL (|has| |#1| (-336)))) (-2475 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) NIL (|has| |#1| (-336)))) (-1724 (((-3 $ "failed") $ $) NIL (|has| |#1| (-336)))) (-3564 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) NIL (|has| |#1| (-336)))) (-3133 ((|#1| $) NIL)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2230 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-512)))) (-2543 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-2071 (($ $ $) NIL (|has| |#1| (-336)))) (-2528 (((-706) $) NIL)) (-1233 ((|#1| $) NIL (|has| |#1| (-424)))) (-2188 (((-791) $) NIL) (($ (-520)) NIL) (($ (-380 (-520))) NIL (|has| |#1| (-960 (-380 (-520))))) (($ |#1|) NIL)) (-4113 (((-586 |#1|) $) NIL)) (-3475 ((|#1| $ (-706)) NIL)) (-3251 (((-706)) NIL)) (-1614 ((|#1| $ |#1| |#1|) NIL)) (-1691 (($ $) NIL)) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (-3560 (($) NIL T CONST)) (-3570 (($) NIL T CONST)) (-2211 (($) NIL)) (-1530 (((-108) $ $) NIL)) (-1611 (($ $) NIL) (($ $ $) NIL)) (-1601 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-594 |#1| |#2|) (-13 (-596 |#1|) (-260 |#2| |#2|)) (-209) (-13 (-588 |#1|) (-10 -8 (-15 -2155 ($ $))))) (T -594))
-NIL
-(-13 (-596 |#1|) (-260 |#2| |#2|))
-((-3848 (($ $) 27)) (-1691 (($ $) 25)) (-2211 (($) 12)))
-(((-595 |#1| |#2|) (-10 -8 (-15 -3848 (|#1| |#1|)) (-15 -1691 (|#1| |#1|)) (-15 -2211 (|#1|))) (-596 |#2|) (-969)) (T -595))
-NIL
-(-10 -8 (-15 -3848 (|#1| |#1|)) (-15 -1691 (|#1| |#1|)) (-15 -2211 (|#1|)))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-3848 (($ $) 82 (|has| |#1| (-336)))) (-2252 (($ $ $) 84 (|has| |#1| (-336)))) (-1911 (($ $ (-706)) 83 (|has| |#1| (-336)))) (-1917 (((-3 $ "failed") $ $) 19)) (-3961 (($) 17 T CONST)) (-2224 (($ $ $) 45 (|has| |#1| (-336)))) (-2604 (($ $ $) 46 (|has| |#1| (-336)))) (-1693 (($ $ $) 48 (|has| |#1| (-336)))) (-3633 (($ $ $) 43 (|has| |#1| (-336)))) (-1225 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) 42 (|has| |#1| (-336)))) (-2637 (((-3 $ "failed") $ $) 44 (|has| |#1| (-336)))) (-2455 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) 47 (|has| |#1| (-336)))) (-1296 (((-3 (-520) "failed") $) 74 (|has| |#1| (-960 (-520)))) (((-3 (-380 (-520)) "failed") $) 72 (|has| |#1| (-960 (-380 (-520))))) (((-3 |#1| "failed") $) 69)) (-1482 (((-520) $) 75 (|has| |#1| (-960 (-520)))) (((-380 (-520)) $) 73 (|has| |#1| (-960 (-380 (-520))))) ((|#1| $) 68)) (-3150 (($ $) 64)) (-1540 (((-3 $ "failed") $) 34)) (-3923 (($ $) 55 (|has| |#1| (-424)))) (-1537 (((-108) $) 31)) (-4039 (($ |#1| (-706)) 62)) (-1216 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) 57 (|has| |#1| (-512)))) (-1422 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) 58 (|has| |#1| (-512)))) (-3562 (((-706) $) 66)) (-3602 (($ $ $) 52 (|has| |#1| (-336)))) (-3872 (($ $ $) 53 (|has| |#1| (-336)))) (-1983 (($ $ $) 41 (|has| |#1| (-336)))) (-3962 (($ $ $) 50 (|has| |#1| (-336)))) (-2475 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) 49 (|has| |#1| (-336)))) (-1724 (((-3 $ "failed") $ $) 51 (|has| |#1| (-336)))) (-3564 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) 54 (|has| |#1| (-336)))) (-3133 ((|#1| $) 65)) (-1239 (((-1066) $) 9)) (-4142 (((-1030) $) 10)) (-2230 (((-3 $ "failed") $ |#1|) 59 (|has| |#1| (-512)))) (-2543 ((|#1| $ |#1|) 87)) (-2071 (($ $ $) 81 (|has| |#1| (-336)))) (-2528 (((-706) $) 67)) (-1233 ((|#1| $) 56 (|has| |#1| (-424)))) (-2188 (((-791) $) 11) (($ (-520)) 28) (($ (-380 (-520))) 71 (|has| |#1| (-960 (-380 (-520))))) (($ |#1|) 70)) (-4113 (((-586 |#1|) $) 61)) (-3475 ((|#1| $ (-706)) 63)) (-3251 (((-706)) 29)) (-1614 ((|#1| $ |#1| |#1|) 60)) (-1691 (($ $) 85)) (-3504 (($ $ (-849)) 26) (($ $ (-706)) 33)) (-3560 (($) 18 T CONST)) (-3570 (($) 30 T CONST)) (-2211 (($) 86)) (-1530 (((-108) $ $) 6)) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-706)) 32)) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ $ $) 24) (($ $ |#1|) 77) (($ |#1| $) 76)))
-(((-596 |#1|) (-1195) (-969)) (T -596))
-((-2211 (*1 *1) (-12 (-4 *1 (-596 *2)) (-4 *2 (-969)))) (-1691 (*1 *1 *1) (-12 (-4 *1 (-596 *2)) (-4 *2 (-969)))) (-2252 (*1 *1 *1 *1) (-12 (-4 *1 (-596 *2)) (-4 *2 (-969)) (-4 *2 (-336)))) (-1911 (*1 *1 *1 *2) (-12 (-5 *2 (-706)) (-4 *1 (-596 *3)) (-4 *3 (-969)) (-4 *3 (-336)))) (-3848 (*1 *1 *1) (-12 (-4 *1 (-596 *2)) (-4 *2 (-969)) (-4 *2 (-336)))) (-2071 (*1 *1 *1 *1) (-12 (-4 *1 (-596 *2)) (-4 *2 (-969)) (-4 *2 (-336)))))
-(-13 (-785 |t#1|) (-260 |t#1| |t#1|) (-10 -8 (-15 -2211 ($)) (-15 -1691 ($ $)) (IF (|has| |t#1| (-336)) (PROGN (-15 -2252 ($ $ $)) (-15 -1911 ($ $ (-706))) (-15 -3848 ($ $)) (-15 -2071 ($ $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-157)) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-560 (-791)) . T) ((-260 |#1| |#1|) . T) ((-384 |#1|) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-653 |#1|) |has| |#1| (-157)) ((-662) . T) ((-960 (-380 (-520))) |has| |#1| (-960 (-380 (-520)))) ((-960 (-520)) |has| |#1| (-960 (-520))) ((-960 |#1|) . T) ((-975 |#1|) . T) ((-969) . T) ((-976) . T) ((-1024) . T) ((-1012) . T) ((-785 |#1|) . T))
-((-4043 (((-586 (-593 (-380 |#2|))) (-593 (-380 |#2|))) 73 (|has| |#1| (-27)))) (-1916 (((-586 (-593 (-380 |#2|))) (-593 (-380 |#2|))) 72 (|has| |#1| (-27))) (((-586 (-593 (-380 |#2|))) (-593 (-380 |#2|)) (-1 (-586 |#1|) |#2|)) 15)))
-(((-597 |#1| |#2|) (-10 -7 (-15 -1916 ((-586 (-593 (-380 |#2|))) (-593 (-380 |#2|)) (-1 (-586 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1916 ((-586 (-593 (-380 |#2|))) (-593 (-380 |#2|)))) (-15 -4043 ((-586 (-593 (-380 |#2|))) (-593 (-380 |#2|))))) |%noBranch|)) (-13 (-336) (-135) (-960 (-520)) (-960 (-380 (-520)))) (-1140 |#1|)) (T -597))
-((-4043 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-336) (-135) (-960 (-520)) (-960 (-380 (-520))))) (-4 *5 (-1140 *4)) (-5 *2 (-586 (-593 (-380 *5)))) (-5 *1 (-597 *4 *5)) (-5 *3 (-593 (-380 *5))))) (-1916 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-336) (-135) (-960 (-520)) (-960 (-380 (-520))))) (-4 *5 (-1140 *4)) (-5 *2 (-586 (-593 (-380 *5)))) (-5 *1 (-597 *4 *5)) (-5 *3 (-593 (-380 *5))))) (-1916 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-586 *5) *6)) (-4 *5 (-13 (-336) (-135) (-960 (-520)) (-960 (-380 (-520))))) (-4 *6 (-1140 *5)) (-5 *2 (-586 (-593 (-380 *6)))) (-5 *1 (-597 *5 *6)) (-5 *3 (-593 (-380 *6))))))
-(-10 -7 (-15 -1916 ((-586 (-593 (-380 |#2|))) (-593 (-380 |#2|)) (-1 (-586 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1916 ((-586 (-593 (-380 |#2|))) (-593 (-380 |#2|)))) (-15 -4043 ((-586 (-593 (-380 |#2|))) (-593 (-380 |#2|))))) |%noBranch|))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-3848 (($ $) NIL (|has| |#1| (-336)))) (-2252 (($ $ $) 28 (|has| |#1| (-336)))) (-1911 (($ $ (-706)) 31 (|has| |#1| (-336)))) (-1917 (((-3 $ "failed") $ $) NIL)) (-3961 (($) NIL T CONST)) (-2224 (($ $ $) NIL (|has| |#1| (-336)))) (-2604 (($ $ $) NIL (|has| |#1| (-336)))) (-1693 (($ $ $) NIL (|has| |#1| (-336)))) (-3633 (($ $ $) NIL (|has| |#1| (-336)))) (-1225 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) NIL (|has| |#1| (-336)))) (-2637 (((-3 $ "failed") $ $) NIL (|has| |#1| (-336)))) (-2455 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) NIL (|has| |#1| (-336)))) (-1296 (((-3 (-520) "failed") $) NIL (|has| |#1| (-960 (-520)))) (((-3 (-380 (-520)) "failed") $) NIL (|has| |#1| (-960 (-380 (-520))))) (((-3 |#1| "failed") $) NIL)) (-1482 (((-520) $) NIL (|has| |#1| (-960 (-520)))) (((-380 (-520)) $) NIL (|has| |#1| (-960 (-380 (-520))))) ((|#1| $) NIL)) (-3150 (($ $) NIL)) (-1540 (((-3 $ "failed") $) NIL)) (-3923 (($ $) NIL (|has| |#1| (-424)))) (-1537 (((-108) $) NIL)) (-4039 (($ |#1| (-706)) NIL)) (-1216 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) NIL (|has| |#1| (-512)))) (-1422 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) NIL (|has| |#1| (-512)))) (-3562 (((-706) $) NIL)) (-3602 (($ $ $) NIL (|has| |#1| (-336)))) (-3872 (($ $ $) NIL (|has| |#1| (-336)))) (-1983 (($ $ $) NIL (|has| |#1| (-336)))) (-3962 (($ $ $) NIL (|has| |#1| (-336)))) (-2475 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) NIL (|has| |#1| (-336)))) (-1724 (((-3 $ "failed") $ $) NIL (|has| |#1| (-336)))) (-3564 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) NIL (|has| |#1| (-336)))) (-3133 ((|#1| $) NIL)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2230 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-512)))) (-2543 ((|#1| $ |#1|) 24)) (-2071 (($ $ $) 33 (|has| |#1| (-336)))) (-2528 (((-706) $) NIL)) (-1233 ((|#1| $) NIL (|has| |#1| (-424)))) (-2188 (((-791) $) 20) (($ (-520)) NIL) (($ (-380 (-520))) NIL (|has| |#1| (-960 (-380 (-520))))) (($ |#1|) NIL)) (-4113 (((-586 |#1|) $) NIL)) (-3475 ((|#1| $ (-706)) NIL)) (-3251 (((-706)) NIL)) (-1614 ((|#1| $ |#1| |#1|) 23)) (-1691 (($ $) NIL)) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (-3560 (($) 21 T CONST)) (-3570 (($) 8 T CONST)) (-2211 (($) NIL)) (-1530 (((-108) $ $) NIL)) (-1611 (($ $) NIL) (($ $ $) NIL)) (-1601 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-598 |#1| |#2|) (-596 |#1|) (-969) (-1 |#1| |#1|)) (T -598))
-NIL
-(-596 |#1|)
-((-2252 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 60)) (-1911 ((|#2| |#2| (-706) (-1 |#1| |#1|)) 41)) (-2071 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 62)))
-(((-599 |#1| |#2|) (-10 -7 (-15 -2252 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -1911 (|#2| |#2| (-706) (-1 |#1| |#1|))) (-15 -2071 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-336) (-596 |#1|)) (T -599))
-((-2071 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-336)) (-5 *1 (-599 *4 *2)) (-4 *2 (-596 *4)))) (-1911 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-706)) (-5 *4 (-1 *5 *5)) (-4 *5 (-336)) (-5 *1 (-599 *5 *2)) (-4 *2 (-596 *5)))) (-2252 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-336)) (-5 *1 (-599 *4 *2)) (-4 *2 (-596 *4)))))
-(-10 -7 (-15 -2252 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -1911 (|#2| |#2| (-706) (-1 |#1| |#1|))) (-15 -2071 (|#2| |#2| |#2| (-1 |#1| |#1|))))
-((-2763 (($ $ $) 9)))
-(((-600 |#1|) (-10 -8 (-15 -2763 (|#1| |#1| |#1|))) (-601)) (T -600))
-NIL
-(-10 -8 (-15 -2763 (|#1| |#1| |#1|)))
-((-1414 (((-108) $ $) 7)) (-1499 (($ $) 10)) (-2763 (($ $ $) 8)) (-1530 (((-108) $ $) 6)) (-2321 (($ $ $) 9)))
-(((-601) (-1195)) (T -601))
-((-1499 (*1 *1 *1) (-4 *1 (-601))) (-2321 (*1 *1 *1 *1) (-4 *1 (-601))) (-2763 (*1 *1 *1 *1) (-4 *1 (-601))))
-(-13 (-97) (-10 -8 (-15 -1499 ($ $)) (-15 -2321 ($ $ $)) (-15 -2763 ($ $ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-561 (-792)) . T) ((-1013) . T))
+((-1415 (((-108) $ $) NIL)) (-1630 (((-707) $) 15)) (-2137 (($ $ |#1|) 55)) (-3081 (($ $) 32)) (-1862 (($ $) 31)) (-1297 (((-3 |#1| "failed") $) 47)) (-1483 ((|#1| $) NIL)) (-2398 (($ |#1| |#2| $) 61) (($ $ $) 62)) (-2531 (((-792) $ (-1 (-792) (-792) (-792)) (-1 (-792) (-792) (-792)) (-521)) 45)) (-1785 ((|#1| $ (-521)) 30)) (-3695 ((|#2| $ (-521)) 29)) (-2502 (($ (-1 |#1| |#1|) $) 34)) (-1384 (($ (-1 |#2| |#2|) $) 38)) (-3532 (($) 10)) (-2897 (($ |#1| |#2|) 22)) (-3636 (($ (-587 (-2 (|:| |gen| |#1|) (|:| -3261 |#2|)))) 23)) (-3687 (((-587 (-2 (|:| |gen| |#1|) (|:| -3261 |#2|))) $) 13)) (-4132 (($ |#1| $) 56)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-4202 (((-108) $ $) 58)) (-2189 (((-792) $) 19) (($ |#1|) 16)) (-1531 (((-108) $ $) 25)))
+(((-590 |#1| |#2| |#3|) (-13 (-1013) (-961 |#1|) (-10 -8 (-15 -2531 ((-792) $ (-1 (-792) (-792) (-792)) (-1 (-792) (-792) (-792)) (-521))) (-15 -3687 ((-587 (-2 (|:| |gen| |#1|) (|:| -3261 |#2|))) $)) (-15 -2897 ($ |#1| |#2|)) (-15 -3636 ($ (-587 (-2 (|:| |gen| |#1|) (|:| -3261 |#2|))))) (-15 -3695 (|#2| $ (-521))) (-15 -1785 (|#1| $ (-521))) (-15 -1862 ($ $)) (-15 -3081 ($ $)) (-15 -1630 ((-707) $)) (-15 -3532 ($)) (-15 -2137 ($ $ |#1|)) (-15 -4132 ($ |#1| $)) (-15 -2398 ($ |#1| |#2| $)) (-15 -2398 ($ $ $)) (-15 -4202 ((-108) $ $)) (-15 -1384 ($ (-1 |#2| |#2|) $)) (-15 -2502 ($ (-1 |#1| |#1|) $)))) (-1013) (-23) |#2|) (T -590))
+((-2531 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-792) (-792) (-792))) (-5 *4 (-521)) (-5 *2 (-792)) (-5 *1 (-590 *5 *6 *7)) (-4 *5 (-1013)) (-4 *6 (-23)) (-14 *7 *6))) (-3687 (*1 *2 *1) (-12 (-5 *2 (-587 (-2 (|:| |gen| *3) (|:| -3261 *4)))) (-5 *1 (-590 *3 *4 *5)) (-4 *3 (-1013)) (-4 *4 (-23)) (-14 *5 *4))) (-2897 (*1 *1 *2 *3) (-12 (-5 *1 (-590 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))) (-3636 (*1 *1 *2) (-12 (-5 *2 (-587 (-2 (|:| |gen| *3) (|:| -3261 *4)))) (-4 *3 (-1013)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-590 *3 *4 *5)))) (-3695 (*1 *2 *1 *3) (-12 (-5 *3 (-521)) (-4 *2 (-23)) (-5 *1 (-590 *4 *2 *5)) (-4 *4 (-1013)) (-14 *5 *2))) (-1785 (*1 *2 *1 *3) (-12 (-5 *3 (-521)) (-4 *2 (-1013)) (-5 *1 (-590 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-1862 (*1 *1 *1) (-12 (-5 *1 (-590 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))) (-3081 (*1 *1 *1) (-12 (-5 *1 (-590 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))) (-1630 (*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-590 *3 *4 *5)) (-4 *3 (-1013)) (-4 *4 (-23)) (-14 *5 *4))) (-3532 (*1 *1) (-12 (-5 *1 (-590 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))) (-2137 (*1 *1 *1 *2) (-12 (-5 *1 (-590 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))) (-4132 (*1 *1 *2 *1) (-12 (-5 *1 (-590 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))) (-2398 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-590 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))) (-2398 (*1 *1 *1 *1) (-12 (-5 *1 (-590 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))) (-4202 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-590 *3 *4 *5)) (-4 *3 (-1013)) (-4 *4 (-23)) (-14 *5 *4))) (-1384 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-590 *3 *4 *5)) (-4 *3 (-1013)))) (-2502 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1013)) (-5 *1 (-590 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))))
+(-13 (-1013) (-961 |#1|) (-10 -8 (-15 -2531 ((-792) $ (-1 (-792) (-792) (-792)) (-1 (-792) (-792) (-792)) (-521))) (-15 -3687 ((-587 (-2 (|:| |gen| |#1|) (|:| -3261 |#2|))) $)) (-15 -2897 ($ |#1| |#2|)) (-15 -3636 ($ (-587 (-2 (|:| |gen| |#1|) (|:| -3261 |#2|))))) (-15 -3695 (|#2| $ (-521))) (-15 -1785 (|#1| $ (-521))) (-15 -1862 ($ $)) (-15 -3081 ($ $)) (-15 -1630 ((-707) $)) (-15 -3532 ($)) (-15 -2137 ($ $ |#1|)) (-15 -4132 ($ |#1| $)) (-15 -2398 ($ |#1| |#2| $)) (-15 -2398 ($ $ $)) (-15 -4202 ((-108) $ $)) (-15 -1384 ($ (-1 |#2| |#2|) $)) (-15 -2502 ($ (-1 |#1| |#1|) $))))
+((-2597 (((-521) $) 24)) (-1659 (($ |#2| $ (-521)) 22) (($ $ $ (-521)) NIL)) (-1668 (((-587 (-521)) $) 12)) (-2941 (((-108) (-521) $) 15)) (-4159 (($ $ |#2|) 19) (($ |#2| $) 20) (($ $ $) NIL) (($ (-587 $)) NIL)))
+(((-591 |#1| |#2|) (-10 -8 (-15 -1659 (|#1| |#1| |#1| (-521))) (-15 -1659 (|#1| |#2| |#1| (-521))) (-15 -4159 (|#1| (-587 |#1|))) (-15 -4159 (|#1| |#1| |#1|)) (-15 -4159 (|#1| |#2| |#1|)) (-15 -4159 (|#1| |#1| |#2|)) (-15 -2597 ((-521) |#1|)) (-15 -1668 ((-587 (-521)) |#1|)) (-15 -2941 ((-108) (-521) |#1|))) (-592 |#2|) (-1119)) (T -591))
+NIL
+(-10 -8 (-15 -1659 (|#1| |#1| |#1| (-521))) (-15 -1659 (|#1| |#2| |#1| (-521))) (-15 -4159 (|#1| (-587 |#1|))) (-15 -4159 (|#1| |#1| |#1|)) (-15 -4159 (|#1| |#2| |#1|)) (-15 -4159 (|#1| |#1| |#2|)) (-15 -2597 ((-521) |#1|)) (-15 -1668 ((-587 (-521)) |#1|)) (-15 -2941 ((-108) (-521) |#1|)))
+((-1415 (((-108) $ $) 19 (|has| |#1| (-1013)))) (-1903 (((-1170) $ (-521) (-521)) 40 (|has| $ (-6 -4234)))) (-2978 (((-108) $ (-707)) 8)) (-2378 ((|#1| $ (-521) |#1|) 52 (|has| $ (-6 -4234))) ((|#1| $ (-1132 (-521)) |#1|) 58 (|has| $ (-6 -4234)))) (-1628 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4233)))) (-2547 (($) 7 T CONST)) (-2332 (($ $) 78 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-1422 (($ |#1| $) 77 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4233)))) (-3859 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4233)))) (-3849 ((|#1| $ (-521) |#1|) 53 (|has| $ (-6 -4234)))) (-3626 ((|#1| $ (-521)) 51)) (-3831 (((-587 |#1|) $) 30 (|has| $ (-6 -4233)))) (-1811 (($ (-707) |#1|) 69)) (-2139 (((-108) $ (-707)) 9)) (-2826 (((-521) $) 43 (|has| (-521) (-784)))) (-3757 (((-587 |#1|) $) 29 (|has| $ (-6 -4233)))) (-2221 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-2597 (((-521) $) 44 (|has| (-521) (-784)))) (-3833 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3574 (((-108) $ (-707)) 10)) (-3688 (((-1067) $) 22 (|has| |#1| (-1013)))) (-1659 (($ |#1| $ (-521)) 60) (($ $ $ (-521)) 59)) (-1668 (((-587 (-521)) $) 46)) (-2941 (((-108) (-521) $) 47)) (-4147 (((-1031) $) 21 (|has| |#1| (-1013)))) (-2293 ((|#1| $) 42 (|has| (-521) (-784)))) (-3620 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-3016 (($ $ |#1|) 41 (|has| $ (-6 -4234)))) (-1789 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 |#1|))) 26 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) 25 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) 23 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-2488 (((-108) $ $) 14)) (-3821 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2489 (((-587 |#1|) $) 48)) (-3462 (((-108) $) 11)) (-4024 (($) 12)) (-2544 ((|#1| $ (-521) |#1|) 50) ((|#1| $ (-521)) 49) (($ $ (-1132 (-521))) 63)) (-3691 (($ $ (-521)) 62) (($ $ (-1132 (-521))) 61)) (-4163 (((-707) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4233))) (((-707) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-2404 (($ $) 13)) (-1430 (((-497) $) 79 (|has| |#1| (-562 (-497))))) (-2201 (($ (-587 |#1|)) 70)) (-4159 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-587 $)) 65)) (-2189 (((-792) $) 18 (|has| |#1| (-561 (-792))))) (-3049 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4233)))) (-1531 (((-108) $ $) 20 (|has| |#1| (-1013)))) (-3475 (((-707) $) 6 (|has| $ (-6 -4233)))))
+(((-592 |#1|) (-1196) (-1119)) (T -592))
+((-1811 (*1 *1 *2 *3) (-12 (-5 *2 (-707)) (-4 *1 (-592 *3)) (-4 *3 (-1119)))) (-4159 (*1 *1 *1 *2) (-12 (-4 *1 (-592 *2)) (-4 *2 (-1119)))) (-4159 (*1 *1 *2 *1) (-12 (-4 *1 (-592 *2)) (-4 *2 (-1119)))) (-4159 (*1 *1 *1 *1) (-12 (-4 *1 (-592 *2)) (-4 *2 (-1119)))) (-4159 (*1 *1 *2) (-12 (-5 *2 (-587 *1)) (-4 *1 (-592 *3)) (-4 *3 (-1119)))) (-1390 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-592 *3)) (-4 *3 (-1119)))) (-2544 (*1 *1 *1 *2) (-12 (-5 *2 (-1132 (-521))) (-4 *1 (-592 *3)) (-4 *3 (-1119)))) (-3691 (*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-4 *1 (-592 *3)) (-4 *3 (-1119)))) (-3691 (*1 *1 *1 *2) (-12 (-5 *2 (-1132 (-521))) (-4 *1 (-592 *3)) (-4 *3 (-1119)))) (-1659 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-521)) (-4 *1 (-592 *2)) (-4 *2 (-1119)))) (-1659 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-521)) (-4 *1 (-592 *3)) (-4 *3 (-1119)))) (-2378 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1132 (-521))) (|has| *1 (-6 -4234)) (-4 *1 (-592 *2)) (-4 *2 (-1119)))))
+(-13 (-554 (-521) |t#1|) (-139 |t#1|) (-10 -8 (-15 -1811 ($ (-707) |t#1|)) (-15 -4159 ($ $ |t#1|)) (-15 -4159 ($ |t#1| $)) (-15 -4159 ($ $ $)) (-15 -4159 ($ (-587 $))) (-15 -1390 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2544 ($ $ (-1132 (-521)))) (-15 -3691 ($ $ (-521))) (-15 -3691 ($ $ (-1132 (-521)))) (-15 -1659 ($ |t#1| $ (-521))) (-15 -1659 ($ $ $ (-521))) (IF (|has| $ (-6 -4234)) (-15 -2378 (|t#1| $ (-1132 (-521)) |t#1|)) |%noBranch|)))
+(((-33) . T) ((-97) |has| |#1| (-1013)) ((-561 (-792)) -3703 (|has| |#1| (-1013)) (|has| |#1| (-561 (-792)))) ((-139 |#1|) . T) ((-562 (-497)) |has| |#1| (-562 (-497))) ((-261 #0=(-521) |#1|) . T) ((-263 #0# |#1|) . T) ((-284 |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-460 |#1|) . T) ((-554 #0# |#1|) . T) ((-482 |#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-1013) |has| |#1| (-1013)) ((-1119) . T))
+((-3182 (((-3 |#2| "failed") |#3| |#2| (-1084) |#2| (-587 |#2|)) 160) (((-3 (-2 (|:| |particular| |#2|) (|:| -2470 (-587 |#2|))) "failed") |#3| |#2| (-1084)) 43)))
+(((-593 |#1| |#2| |#3|) (-10 -7 (-15 -3182 ((-3 (-2 (|:| |particular| |#2|) (|:| -2470 (-587 |#2|))) "failed") |#3| |#2| (-1084))) (-15 -3182 ((-3 |#2| "failed") |#3| |#2| (-1084) |#2| (-587 |#2|)))) (-13 (-784) (-282) (-961 (-521)) (-583 (-521)) (-135)) (-13 (-29 |#1|) (-1105) (-887)) (-597 |#2|)) (T -593))
+((-3182 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1084)) (-5 *5 (-587 *2)) (-4 *2 (-13 (-29 *6) (-1105) (-887))) (-4 *6 (-13 (-784) (-282) (-961 (-521)) (-583 (-521)) (-135))) (-5 *1 (-593 *6 *2 *3)) (-4 *3 (-597 *2)))) (-3182 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1084)) (-4 *6 (-13 (-784) (-282) (-961 (-521)) (-583 (-521)) (-135))) (-4 *4 (-13 (-29 *6) (-1105) (-887))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2470 (-587 *4)))) (-5 *1 (-593 *6 *4 *3)) (-4 *3 (-597 *4)))))
+(-10 -7 (-15 -3182 ((-3 (-2 (|:| |particular| |#2|) (|:| -2470 (-587 |#2|))) "failed") |#3| |#2| (-1084))) (-15 -3182 ((-3 |#2| "failed") |#3| |#2| (-1084) |#2| (-587 |#2|))))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-3483 (($ $) NIL (|has| |#1| (-337)))) (-4122 (($ $ $) NIL (|has| |#1| (-337)))) (-4104 (($ $ (-707)) NIL (|has| |#1| (-337)))) (-1232 (((-3 $ "failed") $ $) NIL)) (-2547 (($) NIL T CONST)) (-1479 (($ $ $) NIL (|has| |#1| (-337)))) (-3067 (($ $ $) NIL (|has| |#1| (-337)))) (-3497 (($ $ $) NIL (|has| |#1| (-337)))) (-1481 (($ $ $) NIL (|has| |#1| (-337)))) (-2743 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL (|has| |#1| (-337)))) (-3198 (((-3 $ "failed") $ $) NIL (|has| |#1| (-337)))) (-1265 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) NIL (|has| |#1| (-337)))) (-1297 (((-3 (-521) "failed") $) NIL (|has| |#1| (-961 (-521)))) (((-3 (-381 (-521)) "failed") $) NIL (|has| |#1| (-961 (-381 (-521))))) (((-3 |#1| "failed") $) NIL)) (-1483 (((-521) $) NIL (|has| |#1| (-961 (-521)))) (((-381 (-521)) $) NIL (|has| |#1| (-961 (-381 (-521))))) ((|#1| $) NIL)) (-3152 (($ $) NIL)) (-1257 (((-3 $ "failed") $) NIL)) (-3666 (($ $) NIL (|has| |#1| (-425)))) (-3996 (((-108) $) NIL)) (-4043 (($ |#1| (-707)) NIL)) (-1329 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) NIL (|has| |#1| (-513)))) (-2068 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) NIL (|has| |#1| (-513)))) (-3273 (((-707) $) NIL)) (-3335 (($ $ $) NIL (|has| |#1| (-337)))) (-3530 (($ $ $) NIL (|has| |#1| (-337)))) (-4103 (($ $ $) NIL (|has| |#1| (-337)))) (-2532 (($ $ $) NIL (|has| |#1| (-337)))) (-3337 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL (|has| |#1| (-337)))) (-3999 (((-3 $ "failed") $ $) NIL (|has| |#1| (-337)))) (-3420 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) NIL (|has| |#1| (-337)))) (-3135 ((|#1| $) NIL)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2230 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-513)))) (-2544 ((|#1| $ |#1|) NIL)) (-1926 (($ $ $) NIL (|has| |#1| (-337)))) (-1994 (((-707) $) NIL)) (-2403 ((|#1| $) NIL (|has| |#1| (-425)))) (-2189 (((-792) $) NIL) (($ (-521)) NIL) (($ (-381 (-521))) NIL (|has| |#1| (-961 (-381 (-521))))) (($ |#1|) NIL)) (-1259 (((-587 |#1|) $) NIL)) (-3800 ((|#1| $ (-707)) NIL)) (-3846 (((-707)) NIL)) (-1616 ((|#1| $ |#1| |#1|) NIL)) (-2399 (($ $) NIL)) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (-3561 (($) NIL T CONST)) (-3572 (($) NIL T CONST)) (-2212 (($) NIL)) (-1531 (((-108) $ $) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-594 |#1|) (-597 |#1|) (-210)) (T -594))
+NIL
+(-597 |#1|)
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-3483 (($ $) NIL (|has| |#1| (-337)))) (-4122 (($ $ $) NIL (|has| |#1| (-337)))) (-4104 (($ $ (-707)) NIL (|has| |#1| (-337)))) (-1232 (((-3 $ "failed") $ $) NIL)) (-2547 (($) NIL T CONST)) (-1479 (($ $ $) NIL (|has| |#1| (-337)))) (-3067 (($ $ $) NIL (|has| |#1| (-337)))) (-3497 (($ $ $) NIL (|has| |#1| (-337)))) (-1481 (($ $ $) NIL (|has| |#1| (-337)))) (-2743 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL (|has| |#1| (-337)))) (-3198 (((-3 $ "failed") $ $) NIL (|has| |#1| (-337)))) (-1265 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) NIL (|has| |#1| (-337)))) (-1297 (((-3 (-521) "failed") $) NIL (|has| |#1| (-961 (-521)))) (((-3 (-381 (-521)) "failed") $) NIL (|has| |#1| (-961 (-381 (-521))))) (((-3 |#1| "failed") $) NIL)) (-1483 (((-521) $) NIL (|has| |#1| (-961 (-521)))) (((-381 (-521)) $) NIL (|has| |#1| (-961 (-381 (-521))))) ((|#1| $) NIL)) (-3152 (($ $) NIL)) (-1257 (((-3 $ "failed") $) NIL)) (-3666 (($ $) NIL (|has| |#1| (-425)))) (-3996 (((-108) $) NIL)) (-4043 (($ |#1| (-707)) NIL)) (-1329 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) NIL (|has| |#1| (-513)))) (-2068 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) NIL (|has| |#1| (-513)))) (-3273 (((-707) $) NIL)) (-3335 (($ $ $) NIL (|has| |#1| (-337)))) (-3530 (($ $ $) NIL (|has| |#1| (-337)))) (-4103 (($ $ $) NIL (|has| |#1| (-337)))) (-2532 (($ $ $) NIL (|has| |#1| (-337)))) (-3337 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL (|has| |#1| (-337)))) (-3999 (((-3 $ "failed") $ $) NIL (|has| |#1| (-337)))) (-3420 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) NIL (|has| |#1| (-337)))) (-3135 ((|#1| $) NIL)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2230 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-513)))) (-2544 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-1926 (($ $ $) NIL (|has| |#1| (-337)))) (-1994 (((-707) $) NIL)) (-2403 ((|#1| $) NIL (|has| |#1| (-425)))) (-2189 (((-792) $) NIL) (($ (-521)) NIL) (($ (-381 (-521))) NIL (|has| |#1| (-961 (-381 (-521))))) (($ |#1|) NIL)) (-1259 (((-587 |#1|) $) NIL)) (-3800 ((|#1| $ (-707)) NIL)) (-3846 (((-707)) NIL)) (-1616 ((|#1| $ |#1| |#1|) NIL)) (-2399 (($ $) NIL)) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (-3561 (($) NIL T CONST)) (-3572 (($) NIL T CONST)) (-2212 (($) NIL)) (-1531 (((-108) $ $) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-595 |#1| |#2|) (-13 (-597 |#1|) (-261 |#2| |#2|)) (-210) (-13 (-589 |#1|) (-10 -8 (-15 -2156 ($ $))))) (T -595))
+NIL
+(-13 (-597 |#1|) (-261 |#2| |#2|))
+((-3483 (($ $) 27)) (-2399 (($ $) 25)) (-2212 (($) 12)))
+(((-596 |#1| |#2|) (-10 -8 (-15 -3483 (|#1| |#1|)) (-15 -2399 (|#1| |#1|)) (-15 -2212 (|#1|))) (-597 |#2|) (-970)) (T -596))
+NIL
+(-10 -8 (-15 -3483 (|#1| |#1|)) (-15 -2399 (|#1| |#1|)) (-15 -2212 (|#1|)))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-3483 (($ $) 82 (|has| |#1| (-337)))) (-4122 (($ $ $) 84 (|has| |#1| (-337)))) (-4104 (($ $ (-707)) 83 (|has| |#1| (-337)))) (-1232 (((-3 $ "failed") $ $) 19)) (-2547 (($) 17 T CONST)) (-1479 (($ $ $) 45 (|has| |#1| (-337)))) (-3067 (($ $ $) 46 (|has| |#1| (-337)))) (-3497 (($ $ $) 48 (|has| |#1| (-337)))) (-1481 (($ $ $) 43 (|has| |#1| (-337)))) (-2743 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) 42 (|has| |#1| (-337)))) (-3198 (((-3 $ "failed") $ $) 44 (|has| |#1| (-337)))) (-1265 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) 47 (|has| |#1| (-337)))) (-1297 (((-3 (-521) "failed") $) 74 (|has| |#1| (-961 (-521)))) (((-3 (-381 (-521)) "failed") $) 72 (|has| |#1| (-961 (-381 (-521))))) (((-3 |#1| "failed") $) 69)) (-1483 (((-521) $) 75 (|has| |#1| (-961 (-521)))) (((-381 (-521)) $) 73 (|has| |#1| (-961 (-381 (-521))))) ((|#1| $) 68)) (-3152 (($ $) 64)) (-1257 (((-3 $ "failed") $) 34)) (-3666 (($ $) 55 (|has| |#1| (-425)))) (-3996 (((-108) $) 31)) (-4043 (($ |#1| (-707)) 62)) (-1329 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) 57 (|has| |#1| (-513)))) (-2068 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) 58 (|has| |#1| (-513)))) (-3273 (((-707) $) 66)) (-3335 (($ $ $) 52 (|has| |#1| (-337)))) (-3530 (($ $ $) 53 (|has| |#1| (-337)))) (-4103 (($ $ $) 41 (|has| |#1| (-337)))) (-2532 (($ $ $) 50 (|has| |#1| (-337)))) (-3337 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) 49 (|has| |#1| (-337)))) (-3999 (((-3 $ "failed") $ $) 51 (|has| |#1| (-337)))) (-3420 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) 54 (|has| |#1| (-337)))) (-3135 ((|#1| $) 65)) (-3688 (((-1067) $) 9)) (-4147 (((-1031) $) 10)) (-2230 (((-3 $ "failed") $ |#1|) 59 (|has| |#1| (-513)))) (-2544 ((|#1| $ |#1|) 87)) (-1926 (($ $ $) 81 (|has| |#1| (-337)))) (-1994 (((-707) $) 67)) (-2403 ((|#1| $) 56 (|has| |#1| (-425)))) (-2189 (((-792) $) 11) (($ (-521)) 28) (($ (-381 (-521))) 71 (|has| |#1| (-961 (-381 (-521))))) (($ |#1|) 70)) (-1259 (((-587 |#1|) $) 61)) (-3800 ((|#1| $ (-707)) 63)) (-3846 (((-707)) 29)) (-1616 ((|#1| $ |#1| |#1|) 60)) (-2399 (($ $) 85)) (-3505 (($ $ (-850)) 26) (($ $ (-707)) 33)) (-3561 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-2212 (($) 86)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-707)) 32)) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ $ |#1|) 77) (($ |#1| $) 76)))
+(((-597 |#1|) (-1196) (-970)) (T -597))
+((-2212 (*1 *1) (-12 (-4 *1 (-597 *2)) (-4 *2 (-970)))) (-2399 (*1 *1 *1) (-12 (-4 *1 (-597 *2)) (-4 *2 (-970)))) (-4122 (*1 *1 *1 *1) (-12 (-4 *1 (-597 *2)) (-4 *2 (-970)) (-4 *2 (-337)))) (-4104 (*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-4 *1 (-597 *3)) (-4 *3 (-970)) (-4 *3 (-337)))) (-3483 (*1 *1 *1) (-12 (-4 *1 (-597 *2)) (-4 *2 (-970)) (-4 *2 (-337)))) (-1926 (*1 *1 *1 *1) (-12 (-4 *1 (-597 *2)) (-4 *2 (-970)) (-4 *2 (-337)))))
+(-13 (-786 |t#1|) (-261 |t#1| |t#1|) (-10 -8 (-15 -2212 ($)) (-15 -2399 ($ $)) (IF (|has| |t#1| (-337)) (PROGN (-15 -4122 ($ $ $)) (-15 -4104 ($ $ (-707))) (-15 -3483 ($ $)) (-15 -1926 ($ $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-157)) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-561 (-792)) . T) ((-261 |#1| |#1|) . T) ((-385 |#1|) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-654 |#1|) |has| |#1| (-157)) ((-663) . T) ((-961 (-381 (-521))) |has| |#1| (-961 (-381 (-521)))) ((-961 (-521)) |has| |#1| (-961 (-521))) ((-961 |#1|) . T) ((-976 |#1|) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T) ((-786 |#1|) . T))
+((-4022 (((-587 (-594 (-381 |#2|))) (-594 (-381 |#2|))) 73 (|has| |#1| (-27)))) (-1916 (((-587 (-594 (-381 |#2|))) (-594 (-381 |#2|))) 72 (|has| |#1| (-27))) (((-587 (-594 (-381 |#2|))) (-594 (-381 |#2|)) (-1 (-587 |#1|) |#2|)) 15)))
+(((-598 |#1| |#2|) (-10 -7 (-15 -1916 ((-587 (-594 (-381 |#2|))) (-594 (-381 |#2|)) (-1 (-587 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1916 ((-587 (-594 (-381 |#2|))) (-594 (-381 |#2|)))) (-15 -4022 ((-587 (-594 (-381 |#2|))) (-594 (-381 |#2|))))) |%noBranch|)) (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521)))) (-1141 |#1|)) (T -598))
+((-4022 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521))))) (-4 *5 (-1141 *4)) (-5 *2 (-587 (-594 (-381 *5)))) (-5 *1 (-598 *4 *5)) (-5 *3 (-594 (-381 *5))))) (-1916 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521))))) (-4 *5 (-1141 *4)) (-5 *2 (-587 (-594 (-381 *5)))) (-5 *1 (-598 *4 *5)) (-5 *3 (-594 (-381 *5))))) (-1916 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-587 *5) *6)) (-4 *5 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521))))) (-4 *6 (-1141 *5)) (-5 *2 (-587 (-594 (-381 *6)))) (-5 *1 (-598 *5 *6)) (-5 *3 (-594 (-381 *6))))))
+(-10 -7 (-15 -1916 ((-587 (-594 (-381 |#2|))) (-594 (-381 |#2|)) (-1 (-587 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1916 ((-587 (-594 (-381 |#2|))) (-594 (-381 |#2|)))) (-15 -4022 ((-587 (-594 (-381 |#2|))) (-594 (-381 |#2|))))) |%noBranch|))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-3483 (($ $) NIL (|has| |#1| (-337)))) (-4122 (($ $ $) 28 (|has| |#1| (-337)))) (-4104 (($ $ (-707)) 31 (|has| |#1| (-337)))) (-1232 (((-3 $ "failed") $ $) NIL)) (-2547 (($) NIL T CONST)) (-1479 (($ $ $) NIL (|has| |#1| (-337)))) (-3067 (($ $ $) NIL (|has| |#1| (-337)))) (-3497 (($ $ $) NIL (|has| |#1| (-337)))) (-1481 (($ $ $) NIL (|has| |#1| (-337)))) (-2743 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL (|has| |#1| (-337)))) (-3198 (((-3 $ "failed") $ $) NIL (|has| |#1| (-337)))) (-1265 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) NIL (|has| |#1| (-337)))) (-1297 (((-3 (-521) "failed") $) NIL (|has| |#1| (-961 (-521)))) (((-3 (-381 (-521)) "failed") $) NIL (|has| |#1| (-961 (-381 (-521))))) (((-3 |#1| "failed") $) NIL)) (-1483 (((-521) $) NIL (|has| |#1| (-961 (-521)))) (((-381 (-521)) $) NIL (|has| |#1| (-961 (-381 (-521))))) ((|#1| $) NIL)) (-3152 (($ $) NIL)) (-1257 (((-3 $ "failed") $) NIL)) (-3666 (($ $) NIL (|has| |#1| (-425)))) (-3996 (((-108) $) NIL)) (-4043 (($ |#1| (-707)) NIL)) (-1329 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) NIL (|has| |#1| (-513)))) (-2068 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) NIL (|has| |#1| (-513)))) (-3273 (((-707) $) NIL)) (-3335 (($ $ $) NIL (|has| |#1| (-337)))) (-3530 (($ $ $) NIL (|has| |#1| (-337)))) (-4103 (($ $ $) NIL (|has| |#1| (-337)))) (-2532 (($ $ $) NIL (|has| |#1| (-337)))) (-3337 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL (|has| |#1| (-337)))) (-3999 (((-3 $ "failed") $ $) NIL (|has| |#1| (-337)))) (-3420 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) NIL (|has| |#1| (-337)))) (-3135 ((|#1| $) NIL)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2230 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-513)))) (-2544 ((|#1| $ |#1|) 24)) (-1926 (($ $ $) 33 (|has| |#1| (-337)))) (-1994 (((-707) $) NIL)) (-2403 ((|#1| $) NIL (|has| |#1| (-425)))) (-2189 (((-792) $) 20) (($ (-521)) NIL) (($ (-381 (-521))) NIL (|has| |#1| (-961 (-381 (-521))))) (($ |#1|) NIL)) (-1259 (((-587 |#1|) $) NIL)) (-3800 ((|#1| $ (-707)) NIL)) (-3846 (((-707)) NIL)) (-1616 ((|#1| $ |#1| |#1|) 23)) (-2399 (($ $) NIL)) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (-3561 (($) 21 T CONST)) (-3572 (($) 8 T CONST)) (-2212 (($) NIL)) (-1531 (((-108) $ $) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-599 |#1| |#2|) (-597 |#1|) (-970) (-1 |#1| |#1|)) (T -599))
+NIL
+(-597 |#1|)
+((-4122 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 60)) (-4104 ((|#2| |#2| (-707) (-1 |#1| |#1|)) 41)) (-1926 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 62)))
+(((-600 |#1| |#2|) (-10 -7 (-15 -4122 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -4104 (|#2| |#2| (-707) (-1 |#1| |#1|))) (-15 -1926 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-337) (-597 |#1|)) (T -600))
+((-1926 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-337)) (-5 *1 (-600 *4 *2)) (-4 *2 (-597 *4)))) (-4104 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-707)) (-5 *4 (-1 *5 *5)) (-4 *5 (-337)) (-5 *1 (-600 *5 *2)) (-4 *2 (-597 *5)))) (-4122 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-337)) (-5 *1 (-600 *4 *2)) (-4 *2 (-597 *4)))))
+(-10 -7 (-15 -4122 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -4104 (|#2| |#2| (-707) (-1 |#1| |#1|))) (-15 -1926 (|#2| |#2| |#2| (-1 |#1| |#1|))))
+((-2764 (($ $ $) 9)))
+(((-601 |#1|) (-10 -8 (-15 -2764 (|#1| |#1| |#1|))) (-602)) (T -601))
+NIL
+(-10 -8 (-15 -2764 (|#1| |#1| |#1|)))
+((-1415 (((-108) $ $) 7)) (-1500 (($ $) 10)) (-2764 (($ $ $) 8)) (-1531 (((-108) $ $) 6)) (-2322 (($ $ $) 9)))
+(((-602) (-1196)) (T -602))
+((-1500 (*1 *1 *1) (-4 *1 (-602))) (-2322 (*1 *1 *1 *1) (-4 *1 (-602))) (-2764 (*1 *1 *1 *1) (-4 *1 (-602))))
+(-13 (-97) (-10 -8 (-15 -1500 ($ $)) (-15 -2322 ($ $ $)) (-15 -2764 ($ $ $))))
(((-97) . T))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) 15)) (-1917 (((-3 $ "failed") $ $) NIL)) (-3961 (($) NIL T CONST)) (-2800 ((|#1| $) 21)) (-2809 (($ $ $) NIL (|has| |#1| (-726)))) (-2446 (($ $ $) NIL (|has| |#1| (-726)))) (-1239 (((-1066) $) 46)) (-4142 (((-1030) $) NIL)) (-2811 ((|#3| $) 22)) (-2188 (((-791) $) 42)) (-3560 (($) 10 T CONST)) (-1573 (((-108) $ $) NIL (|has| |#1| (-726)))) (-1557 (((-108) $ $) NIL (|has| |#1| (-726)))) (-1530 (((-108) $ $) 20)) (-1565 (((-108) $ $) NIL (|has| |#1| (-726)))) (-1548 (((-108) $ $) 24 (|has| |#1| (-726)))) (-1619 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-1611 (($ $) 17) (($ $ $) NIL)) (-1601 (($ $ $) 27)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL)))
-(((-602 |#1| |#2| |#3|) (-13 (-653 |#2|) (-10 -8 (IF (|has| |#1| (-726)) (-6 (-726)) |%noBranch|) (-15 -1619 ($ $ |#3|)) (-15 -1619 ($ |#1| |#3|)) (-15 -2800 (|#1| $)) (-15 -2811 (|#3| $)))) (-653 |#2|) (-157) (|SubsetCategory| (-662) |#2|)) (T -602))
-((-1619 (*1 *1 *1 *2) (-12 (-4 *4 (-157)) (-5 *1 (-602 *3 *4 *2)) (-4 *3 (-653 *4)) (-4 *2 (|SubsetCategory| (-662) *4)))) (-1619 (*1 *1 *2 *3) (-12 (-4 *4 (-157)) (-5 *1 (-602 *2 *4 *3)) (-4 *2 (-653 *4)) (-4 *3 (|SubsetCategory| (-662) *4)))) (-2800 (*1 *2 *1) (-12 (-4 *3 (-157)) (-4 *2 (-653 *3)) (-5 *1 (-602 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-662) *3)))) (-2811 (*1 *2 *1) (-12 (-4 *4 (-157)) (-4 *2 (|SubsetCategory| (-662) *4)) (-5 *1 (-602 *3 *4 *2)) (-4 *3 (-653 *4)))))
-(-13 (-653 |#2|) (-10 -8 (IF (|has| |#1| (-726)) (-6 (-726)) |%noBranch|) (-15 -1619 ($ $ |#3|)) (-15 -1619 ($ |#1| |#3|)) (-15 -2800 (|#1| $)) (-15 -2811 (|#3| $))))
-((-2682 (((-3 (-586 (-1079 |#1|)) "failed") (-586 (-1079 |#1|)) (-1079 |#1|)) 33)))
-(((-603 |#1|) (-10 -7 (-15 -2682 ((-3 (-586 (-1079 |#1|)) "failed") (-586 (-1079 |#1|)) (-1079 |#1|)))) (-837)) (T -603))
-((-2682 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-586 (-1079 *4))) (-5 *3 (-1079 *4)) (-4 *4 (-837)) (-5 *1 (-603 *4)))))
-(-10 -7 (-15 -2682 ((-3 (-586 (-1079 |#1|)) "failed") (-586 (-1079 |#1|)) (-1079 |#1|))))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-4097 (((-586 |#1|) $) 83)) (-3131 (($ $ (-706)) 91)) (-1917 (((-3 $ "failed") $ $) NIL)) (-3961 (($) NIL T CONST)) (-3140 (((-1186 |#1| |#2|) (-1186 |#1| |#2|) $) 48)) (-1296 (((-3 (-611 |#1|) "failed") $) NIL)) (-1482 (((-611 |#1|) $) NIL)) (-3150 (($ $) 90)) (-1315 (((-706) $) NIL)) (-1992 (((-586 $) $) NIL)) (-3774 (((-108) $) NIL)) (-2516 (($ (-611 |#1|) |#2|) 69)) (-1355 (($ $) 87)) (-1389 (($ (-1 |#2| |#2|) $) NIL)) (-1204 (((-1186 |#1| |#2|) (-1186 |#1| |#2|) $) 47)) (-2432 (((-2 (|:| |k| (-611 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3123 (((-611 |#1|) $) NIL)) (-3133 ((|#2| $) NIL)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2286 (($ $ |#1| $) 30) (($ $ (-586 |#1|) (-586 $)) 32)) (-2528 (((-706) $) 89)) (-2200 (($ $ $) 20) (($ (-611 |#1|) (-611 |#1|)) 78) (($ (-611 |#1|) $) 76) (($ $ (-611 |#1|)) 77)) (-2188 (((-791) $) NIL) (($ |#1|) 75) (((-1177 |#1| |#2|) $) 59) (((-1186 |#1| |#2|) $) 41) (($ (-611 |#1|)) 25)) (-4113 (((-586 |#2|) $) NIL)) (-3475 ((|#2| $ (-611 |#1|)) NIL)) (-2972 ((|#2| (-1186 |#1| |#2|) $) 43)) (-3560 (($) 23 T CONST)) (-4164 (((-586 (-2 (|:| |k| (-611 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3081 (((-3 $ "failed") (-1177 |#1| |#2|)) 61)) (-2431 (($ (-611 |#1|)) 14)) (-1530 (((-108) $ $) 44)) (-1619 (($ $ |#2|) NIL (|has| |#2| (-336)))) (-1611 (($ $) 67) (($ $ $) NIL)) (-1601 (($ $ $) 29)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ |#2| $) 28) (($ $ |#2|) NIL) (($ |#2| (-611 |#1|)) NIL)))
-(((-604 |#1| |#2|) (-13 (-347 |#1| |#2|) (-355 |#2| (-611 |#1|)) (-10 -8 (-15 -3081 ((-3 $ "failed") (-1177 |#1| |#2|))) (-15 -2200 ($ (-611 |#1|) (-611 |#1|))) (-15 -2200 ($ (-611 |#1|) $)) (-15 -2200 ($ $ (-611 |#1|))))) (-783) (-157)) (T -604))
-((-3081 (*1 *1 *2) (|partial| -12 (-5 *2 (-1177 *3 *4)) (-4 *3 (-783)) (-4 *4 (-157)) (-5 *1 (-604 *3 *4)))) (-2200 (*1 *1 *2 *2) (-12 (-5 *2 (-611 *3)) (-4 *3 (-783)) (-5 *1 (-604 *3 *4)) (-4 *4 (-157)))) (-2200 (*1 *1 *2 *1) (-12 (-5 *2 (-611 *3)) (-4 *3 (-783)) (-5 *1 (-604 *3 *4)) (-4 *4 (-157)))) (-2200 (*1 *1 *1 *2) (-12 (-5 *2 (-611 *3)) (-4 *3 (-783)) (-5 *1 (-604 *3 *4)) (-4 *4 (-157)))))
-(-13 (-347 |#1| |#2|) (-355 |#2| (-611 |#1|)) (-10 -8 (-15 -3081 ((-3 $ "failed") (-1177 |#1| |#2|))) (-15 -2200 ($ (-611 |#1|) (-611 |#1|))) (-15 -2200 ($ (-611 |#1|) $)) (-15 -2200 ($ $ (-611 |#1|)))))
-((-4029 (((-108) $) NIL) (((-108) (-1 (-108) |#2| |#2|) $) 50)) (-3587 (($ $) NIL) (($ (-1 (-108) |#2| |#2|) $) 11)) (-1817 (($ (-1 (-108) |#2|) $) 28)) (-2447 (($ $) 56)) (-3667 (($ $) 63)) (-3766 (($ |#2| $) NIL) (($ (-1 (-108) |#2|) $) 37)) (-3856 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 51) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 53)) (-3232 (((-520) |#2| $ (-520)) 61) (((-520) |#2| $) NIL) (((-520) (-1 (-108) |#2|) $) 47)) (-1810 (($ (-706) |#2|) 54)) (-3235 (($ $ $) NIL) (($ (-1 (-108) |#2| |#2|) $ $) 30)) (-1819 (($ $ $) NIL) (($ (-1 (-108) |#2| |#2|) $ $) 24)) (-1389 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 55)) (-1578 (($ |#2|) 14)) (-3618 (($ $ $ (-520)) 36) (($ |#2| $ (-520)) 34)) (-2985 (((-3 |#2| "failed") (-1 (-108) |#2|) $) 46)) (-4185 (($ $ (-1131 (-520))) 44) (($ $ (-520)) 38)) (-1913 (($ $ $ (-520)) 60)) (-2403 (($ $) 58)) (-1548 (((-108) $ $) 65)))
-(((-605 |#1| |#2|) (-10 -8 (-15 -1578 (|#1| |#2|)) (-15 -4185 (|#1| |#1| (-520))) (-15 -4185 (|#1| |#1| (-1131 (-520)))) (-15 -3766 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3618 (|#1| |#2| |#1| (-520))) (-15 -3618 (|#1| |#1| |#1| (-520))) (-15 -3235 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -1817 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3766 (|#1| |#2| |#1|)) (-15 -3667 (|#1| |#1|)) (-15 -3235 (|#1| |#1| |#1|)) (-15 -1819 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -4029 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -3232 ((-520) (-1 (-108) |#2|) |#1|)) (-15 -3232 ((-520) |#2| |#1|)) (-15 -3232 ((-520) |#2| |#1| (-520))) (-15 -1819 (|#1| |#1| |#1|)) (-15 -4029 ((-108) |#1|)) (-15 -1913 (|#1| |#1| |#1| (-520))) (-15 -2447 (|#1| |#1|)) (-15 -3587 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -3587 (|#1| |#1|)) (-15 -1548 ((-108) |#1| |#1|)) (-15 -3856 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3856 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3856 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2985 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -1810 (|#1| (-706) |#2|)) (-15 -1389 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1389 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2403 (|#1| |#1|))) (-606 |#2|) (-1118)) (T -605))
-NIL
-(-10 -8 (-15 -1578 (|#1| |#2|)) (-15 -4185 (|#1| |#1| (-520))) (-15 -4185 (|#1| |#1| (-1131 (-520)))) (-15 -3766 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3618 (|#1| |#2| |#1| (-520))) (-15 -3618 (|#1| |#1| |#1| (-520))) (-15 -3235 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -1817 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3766 (|#1| |#2| |#1|)) (-15 -3667 (|#1| |#1|)) (-15 -3235 (|#1| |#1| |#1|)) (-15 -1819 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -4029 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -3232 ((-520) (-1 (-108) |#2|) |#1|)) (-15 -3232 ((-520) |#2| |#1|)) (-15 -3232 ((-520) |#2| |#1| (-520))) (-15 -1819 (|#1| |#1| |#1|)) (-15 -4029 ((-108) |#1|)) (-15 -1913 (|#1| |#1| |#1| (-520))) (-15 -2447 (|#1| |#1|)) (-15 -3587 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -3587 (|#1| |#1|)) (-15 -1548 ((-108) |#1| |#1|)) (-15 -3856 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3856 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3856 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2985 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -1810 (|#1| (-706) |#2|)) (-15 -1389 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1389 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2403 (|#1| |#1|)))
-((-1414 (((-108) $ $) 19 (|has| |#1| (-1012)))) (-3429 ((|#1| $) 48)) (-2091 ((|#1| $) 65)) (-3827 (($ $) 67)) (-1476 (((-1169) $ (-520) (-520)) 97 (|has| $ (-6 -4230)))) (-1198 (($ $ (-520)) 52 (|has| $ (-6 -4230)))) (-4029 (((-108) $) 142 (|has| |#1| (-783))) (((-108) (-1 (-108) |#1| |#1|) $) 136)) (-3587 (($ $) 146 (-12 (|has| |#1| (-783)) (|has| $ (-6 -4230)))) (($ (-1 (-108) |#1| |#1|) $) 145 (|has| $ (-6 -4230)))) (-3210 (($ $) 141 (|has| |#1| (-783))) (($ (-1 (-108) |#1| |#1|) $) 135)) (-2063 (((-108) $ (-706)) 8)) (-2888 ((|#1| $ |#1|) 39 (|has| $ (-6 -4230)))) (-2719 (($ $ $) 56 (|has| $ (-6 -4230)))) (-3819 ((|#1| $ |#1|) 54 (|has| $ (-6 -4230)))) (-1598 ((|#1| $ |#1|) 58 (|has| $ (-6 -4230)))) (-2377 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4230))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4230))) (($ $ "rest" $) 55 (|has| $ (-6 -4230))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4230))) ((|#1| $ (-1131 (-520)) |#1|) 117 (|has| $ (-6 -4230))) ((|#1| $ (-520) |#1|) 86 (|has| $ (-6 -4230)))) (-3061 (($ $ (-586 $)) 41 (|has| $ (-6 -4230)))) (-1817 (($ (-1 (-108) |#1|) $) 129)) (-1627 (($ (-1 (-108) |#1|) $) 102 (|has| $ (-6 -4229)))) (-2079 ((|#1| $) 66)) (-3961 (($) 7 T CONST)) (-2447 (($ $) 144 (|has| $ (-6 -4230)))) (-1861 (($ $) 134)) (-2305 (($ $) 73) (($ $ (-706)) 71)) (-3667 (($ $) 131 (|has| |#1| (-1012)))) (-2331 (($ $) 99 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-3766 (($ |#1| $) 130 (|has| |#1| (-1012))) (($ (-1 (-108) |#1|) $) 125)) (-1421 (($ (-1 (-108) |#1|) $) 103 (|has| $ (-6 -4229))) (($ |#1| $) 100 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-3856 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4229))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4229))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-3846 ((|#1| $ (-520) |#1|) 85 (|has| $ (-6 -4230)))) (-3623 ((|#1| $ (-520)) 87)) (-3928 (((-108) $) 83)) (-3232 (((-520) |#1| $ (-520)) 139 (|has| |#1| (-1012))) (((-520) |#1| $) 138 (|has| |#1| (-1012))) (((-520) (-1 (-108) |#1|) $) 137)) (-3828 (((-586 |#1|) $) 30 (|has| $ (-6 -4229)))) (-3405 (((-586 $) $) 50)) (-1885 (((-108) $ $) 42 (|has| |#1| (-1012)))) (-1810 (($ (-706) |#1|) 108)) (-3027 (((-108) $ (-706)) 9)) (-2567 (((-520) $) 95 (|has| (-520) (-783)))) (-2809 (($ $ $) 147 (|has| |#1| (-783)))) (-3235 (($ $ $) 132 (|has| |#1| (-783))) (($ (-1 (-108) |#1| |#1|) $ $) 128)) (-1819 (($ $ $) 140 (|has| |#1| (-783))) (($ (-1 (-108) |#1| |#1|) $ $) 133)) (-3702 (((-586 |#1|) $) 29 (|has| $ (-6 -4229)))) (-2422 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-1752 (((-520) $) 94 (|has| (-520) (-783)))) (-2446 (($ $ $) 148 (|has| |#1| (-783)))) (-3830 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-1578 (($ |#1|) 122)) (-1390 (((-108) $ (-706)) 10)) (-1277 (((-586 |#1|) $) 45)) (-1740 (((-108) $) 49)) (-1239 (((-1066) $) 22 (|has| |#1| (-1012)))) (-1440 ((|#1| $) 70) (($ $ (-706)) 68)) (-3618 (($ $ $ (-520)) 127) (($ |#1| $ (-520)) 126)) (-1659 (($ $ $ (-520)) 116) (($ |#1| $ (-520)) 115)) (-3622 (((-586 (-520)) $) 92)) (-2603 (((-108) (-520) $) 91)) (-4142 (((-1030) $) 21 (|has| |#1| (-1012)))) (-2293 ((|#1| $) 76) (($ $ (-706)) 74)) (-2985 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 106)) (-2936 (($ $ |#1|) 96 (|has| $ (-6 -4230)))) (-1392 (((-108) $) 84)) (-4155 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 |#1|))) 26 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-268 |#1|)) 25 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-586 |#1|) (-586 |#1|)) 23 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))) (-2533 (((-108) $ $) 14)) (-2094 (((-108) |#1| $) 93 (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-1523 (((-586 |#1|) $) 90)) (-4018 (((-108) $) 11)) (-2238 (($) 12)) (-2543 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1131 (-520))) 112) ((|#1| $ (-520)) 89) ((|#1| $ (-520) |#1|) 88)) (-3765 (((-520) $ $) 44)) (-4185 (($ $ (-1131 (-520))) 124) (($ $ (-520)) 123)) (-3690 (($ $ (-1131 (-520))) 114) (($ $ (-520)) 113)) (-1975 (((-108) $) 46)) (-3436 (($ $) 62)) (-1521 (($ $) 59 (|has| $ (-6 -4230)))) (-3341 (((-706) $) 63)) (-1696 (($ $) 64)) (-4159 (((-706) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4229))) (((-706) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-1913 (($ $ $ (-520)) 143 (|has| $ (-6 -4230)))) (-2403 (($ $) 13)) (-1429 (((-496) $) 98 (|has| |#1| (-561 (-496))))) (-2200 (($ (-586 |#1|)) 107)) (-2251 (($ $ $) 61) (($ $ |#1|) 60)) (-4156 (($ $ $) 78) (($ |#1| $) 77) (($ (-586 $)) 110) (($ $ |#1|) 109)) (-2188 (((-791) $) 18 (|has| |#1| (-560 (-791))))) (-2438 (((-586 $) $) 51)) (-1639 (((-108) $ $) 43 (|has| |#1| (-1012)))) (-1662 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4229)))) (-1573 (((-108) $ $) 150 (|has| |#1| (-783)))) (-1557 (((-108) $ $) 151 (|has| |#1| (-783)))) (-1530 (((-108) $ $) 20 (|has| |#1| (-1012)))) (-1565 (((-108) $ $) 149 (|has| |#1| (-783)))) (-1548 (((-108) $ $) 152 (|has| |#1| (-783)))) (-3474 (((-706) $) 6 (|has| $ (-6 -4229)))))
-(((-606 |#1|) (-1195) (-1118)) (T -606))
-((-1578 (*1 *1 *2) (-12 (-4 *1 (-606 *2)) (-4 *2 (-1118)))))
-(-13 (-1057 |t#1|) (-346 |t#1|) (-256 |t#1|) (-10 -8 (-15 -1578 ($ |t#1|))))
-(((-33) . T) ((-97) -3700 (|has| |#1| (-1012)) (|has| |#1| (-783))) ((-560 (-791)) -3700 (|has| |#1| (-1012)) (|has| |#1| (-783)) (|has| |#1| (-560 (-791)))) ((-139 |#1|) . T) ((-561 (-496)) |has| |#1| (-561 (-496))) ((-260 #0=(-520) |#1|) . T) ((-262 #0# |#1|) . T) ((-283 |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))) ((-256 |#1|) . T) ((-346 |#1|) . T) ((-459 |#1|) . T) ((-553 #0# |#1|) . T) ((-481 |#1| |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))) ((-591 |#1|) . T) ((-783) |has| |#1| (-783)) ((-934 |#1|) . T) ((-1012) -3700 (|has| |#1| (-1012)) (|has| |#1| (-783))) ((-1057 |#1|) . T) ((-1118) . T) ((-1152 |#1|) . T))
-((-3600 (((-586 (-2 (|:| |particular| (-3 (-1164 |#1|) "failed")) (|:| -1831 (-586 (-1164 |#1|))))) (-586 (-586 |#1|)) (-586 (-1164 |#1|))) 21) (((-586 (-2 (|:| |particular| (-3 (-1164 |#1|) "failed")) (|:| -1831 (-586 (-1164 |#1|))))) (-626 |#1|) (-586 (-1164 |#1|))) 20) (((-2 (|:| |particular| (-3 (-1164 |#1|) "failed")) (|:| -1831 (-586 (-1164 |#1|)))) (-586 (-586 |#1|)) (-1164 |#1|)) 16) (((-2 (|:| |particular| (-3 (-1164 |#1|) "failed")) (|:| -1831 (-586 (-1164 |#1|)))) (-626 |#1|) (-1164 |#1|)) 13)) (-3160 (((-706) (-626 |#1|) (-1164 |#1|)) 29)) (-3839 (((-3 (-1164 |#1|) "failed") (-626 |#1|) (-1164 |#1|)) 23)) (-4028 (((-108) (-626 |#1|) (-1164 |#1|)) 26)))
-(((-607 |#1|) (-10 -7 (-15 -3600 ((-2 (|:| |particular| (-3 (-1164 |#1|) "failed")) (|:| -1831 (-586 (-1164 |#1|)))) (-626 |#1|) (-1164 |#1|))) (-15 -3600 ((-2 (|:| |particular| (-3 (-1164 |#1|) "failed")) (|:| -1831 (-586 (-1164 |#1|)))) (-586 (-586 |#1|)) (-1164 |#1|))) (-15 -3600 ((-586 (-2 (|:| |particular| (-3 (-1164 |#1|) "failed")) (|:| -1831 (-586 (-1164 |#1|))))) (-626 |#1|) (-586 (-1164 |#1|)))) (-15 -3600 ((-586 (-2 (|:| |particular| (-3 (-1164 |#1|) "failed")) (|:| -1831 (-586 (-1164 |#1|))))) (-586 (-586 |#1|)) (-586 (-1164 |#1|)))) (-15 -3839 ((-3 (-1164 |#1|) "failed") (-626 |#1|) (-1164 |#1|))) (-15 -4028 ((-108) (-626 |#1|) (-1164 |#1|))) (-15 -3160 ((-706) (-626 |#1|) (-1164 |#1|)))) (-336)) (T -607))
-((-3160 (*1 *2 *3 *4) (-12 (-5 *3 (-626 *5)) (-5 *4 (-1164 *5)) (-4 *5 (-336)) (-5 *2 (-706)) (-5 *1 (-607 *5)))) (-4028 (*1 *2 *3 *4) (-12 (-5 *3 (-626 *5)) (-5 *4 (-1164 *5)) (-4 *5 (-336)) (-5 *2 (-108)) (-5 *1 (-607 *5)))) (-3839 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1164 *4)) (-5 *3 (-626 *4)) (-4 *4 (-336)) (-5 *1 (-607 *4)))) (-3600 (*1 *2 *3 *4) (-12 (-5 *3 (-586 (-586 *5))) (-4 *5 (-336)) (-5 *2 (-586 (-2 (|:| |particular| (-3 (-1164 *5) "failed")) (|:| -1831 (-586 (-1164 *5)))))) (-5 *1 (-607 *5)) (-5 *4 (-586 (-1164 *5))))) (-3600 (*1 *2 *3 *4) (-12 (-5 *3 (-626 *5)) (-4 *5 (-336)) (-5 *2 (-586 (-2 (|:| |particular| (-3 (-1164 *5) "failed")) (|:| -1831 (-586 (-1164 *5)))))) (-5 *1 (-607 *5)) (-5 *4 (-586 (-1164 *5))))) (-3600 (*1 *2 *3 *4) (-12 (-5 *3 (-586 (-586 *5))) (-4 *5 (-336)) (-5 *2 (-2 (|:| |particular| (-3 (-1164 *5) "failed")) (|:| -1831 (-586 (-1164 *5))))) (-5 *1 (-607 *5)) (-5 *4 (-1164 *5)))) (-3600 (*1 *2 *3 *4) (-12 (-5 *3 (-626 *5)) (-4 *5 (-336)) (-5 *2 (-2 (|:| |particular| (-3 (-1164 *5) "failed")) (|:| -1831 (-586 (-1164 *5))))) (-5 *1 (-607 *5)) (-5 *4 (-1164 *5)))))
-(-10 -7 (-15 -3600 ((-2 (|:| |particular| (-3 (-1164 |#1|) "failed")) (|:| -1831 (-586 (-1164 |#1|)))) (-626 |#1|) (-1164 |#1|))) (-15 -3600 ((-2 (|:| |particular| (-3 (-1164 |#1|) "failed")) (|:| -1831 (-586 (-1164 |#1|)))) (-586 (-586 |#1|)) (-1164 |#1|))) (-15 -3600 ((-586 (-2 (|:| |particular| (-3 (-1164 |#1|) "failed")) (|:| -1831 (-586 (-1164 |#1|))))) (-626 |#1|) (-586 (-1164 |#1|)))) (-15 -3600 ((-586 (-2 (|:| |particular| (-3 (-1164 |#1|) "failed")) (|:| -1831 (-586 (-1164 |#1|))))) (-586 (-586 |#1|)) (-586 (-1164 |#1|)))) (-15 -3839 ((-3 (-1164 |#1|) "failed") (-626 |#1|) (-1164 |#1|))) (-15 -4028 ((-108) (-626 |#1|) (-1164 |#1|))) (-15 -3160 ((-706) (-626 |#1|) (-1164 |#1|))))
-((-3600 (((-586 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1831 (-586 |#3|)))) |#4| (-586 |#3|)) 47) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1831 (-586 |#3|))) |#4| |#3|) 45)) (-3160 (((-706) |#4| |#3|) 17)) (-3839 (((-3 |#3| "failed") |#4| |#3|) 20)) (-4028 (((-108) |#4| |#3|) 13)))
-(((-608 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3600 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1831 (-586 |#3|))) |#4| |#3|)) (-15 -3600 ((-586 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1831 (-586 |#3|)))) |#4| (-586 |#3|))) (-15 -3839 ((-3 |#3| "failed") |#4| |#3|)) (-15 -4028 ((-108) |#4| |#3|)) (-15 -3160 ((-706) |#4| |#3|))) (-336) (-13 (-346 |#1|) (-10 -7 (-6 -4230))) (-13 (-346 |#1|) (-10 -7 (-6 -4230))) (-624 |#1| |#2| |#3|)) (T -608))
-((-3160 (*1 *2 *3 *4) (-12 (-4 *5 (-336)) (-4 *6 (-13 (-346 *5) (-10 -7 (-6 -4230)))) (-4 *4 (-13 (-346 *5) (-10 -7 (-6 -4230)))) (-5 *2 (-706)) (-5 *1 (-608 *5 *6 *4 *3)) (-4 *3 (-624 *5 *6 *4)))) (-4028 (*1 *2 *3 *4) (-12 (-4 *5 (-336)) (-4 *6 (-13 (-346 *5) (-10 -7 (-6 -4230)))) (-4 *4 (-13 (-346 *5) (-10 -7 (-6 -4230)))) (-5 *2 (-108)) (-5 *1 (-608 *5 *6 *4 *3)) (-4 *3 (-624 *5 *6 *4)))) (-3839 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-336)) (-4 *5 (-13 (-346 *4) (-10 -7 (-6 -4230)))) (-4 *2 (-13 (-346 *4) (-10 -7 (-6 -4230)))) (-5 *1 (-608 *4 *5 *2 *3)) (-4 *3 (-624 *4 *5 *2)))) (-3600 (*1 *2 *3 *4) (-12 (-4 *5 (-336)) (-4 *6 (-13 (-346 *5) (-10 -7 (-6 -4230)))) (-4 *7 (-13 (-346 *5) (-10 -7 (-6 -4230)))) (-5 *2 (-586 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -1831 (-586 *7))))) (-5 *1 (-608 *5 *6 *7 *3)) (-5 *4 (-586 *7)) (-4 *3 (-624 *5 *6 *7)))) (-3600 (*1 *2 *3 *4) (-12 (-4 *5 (-336)) (-4 *6 (-13 (-346 *5) (-10 -7 (-6 -4230)))) (-4 *4 (-13 (-346 *5) (-10 -7 (-6 -4230)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1831 (-586 *4)))) (-5 *1 (-608 *5 *6 *4 *3)) (-4 *3 (-624 *5 *6 *4)))))
-(-10 -7 (-15 -3600 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1831 (-586 |#3|))) |#4| |#3|)) (-15 -3600 ((-586 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1831 (-586 |#3|)))) |#4| (-586 |#3|))) (-15 -3839 ((-3 |#3| "failed") |#4| |#3|)) (-15 -4028 ((-108) |#4| |#3|)) (-15 -3160 ((-706) |#4| |#3|)))
-((-2508 (((-2 (|:| |particular| (-3 (-1164 (-380 |#4|)) "failed")) (|:| -1831 (-586 (-1164 (-380 |#4|))))) (-586 |#4|) (-586 |#3|)) 45)))
-(((-609 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2508 ((-2 (|:| |particular| (-3 (-1164 (-380 |#4|)) "failed")) (|:| -1831 (-586 (-1164 (-380 |#4|))))) (-586 |#4|) (-586 |#3|)))) (-512) (-728) (-783) (-877 |#1| |#2| |#3|)) (T -609))
-((-2508 (*1 *2 *3 *4) (-12 (-5 *3 (-586 *8)) (-5 *4 (-586 *7)) (-4 *7 (-783)) (-4 *8 (-877 *5 *6 *7)) (-4 *5 (-512)) (-4 *6 (-728)) (-5 *2 (-2 (|:| |particular| (-3 (-1164 (-380 *8)) "failed")) (|:| -1831 (-586 (-1164 (-380 *8)))))) (-5 *1 (-609 *5 *6 *7 *8)))))
-(-10 -7 (-15 -2508 ((-2 (|:| |particular| (-3 (-1164 (-380 |#4|)) "failed")) (|:| -1831 (-586 (-1164 (-380 |#4|))))) (-586 |#4|) (-586 |#3|))))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-4036 (((-3 $ "failed")) NIL (|has| |#2| (-512)))) (-1864 ((|#2| $) NIL)) (-2340 (((-108) $) NIL)) (-1917 (((-3 $ "failed") $ $) NIL)) (-2284 (((-1164 (-626 |#2|))) NIL) (((-1164 (-626 |#2|)) (-1164 $)) NIL)) (-2878 (((-108) $) NIL)) (-3976 (((-1164 $)) 37)) (-2063 (((-108) $ (-706)) NIL)) (-1311 (($ |#2|) NIL)) (-3961 (($) NIL T CONST)) (-2085 (($ $) NIL (|has| |#2| (-281)))) (-2120 (((-216 |#1| |#2|) $ (-520)) NIL)) (-3824 (((-3 (-2 (|:| |particular| $) (|:| -1831 (-586 $))) "failed")) NIL (|has| |#2| (-512)))) (-1606 (((-3 $ "failed")) NIL (|has| |#2| (-512)))) (-3884 (((-626 |#2|)) NIL) (((-626 |#2|) (-1164 $)) NIL)) (-3193 ((|#2| $) NIL)) (-3984 (((-626 |#2|) $) NIL) (((-626 |#2|) $ (-1164 $)) NIL)) (-2473 (((-3 $ "failed") $) NIL (|has| |#2| (-512)))) (-3978 (((-1079 (-880 |#2|))) NIL (|has| |#2| (-336)))) (-3918 (($ $ (-849)) NIL)) (-2996 ((|#2| $) NIL)) (-1653 (((-1079 |#2|) $) NIL (|has| |#2| (-512)))) (-1882 ((|#2|) NIL) ((|#2| (-1164 $)) NIL)) (-2913 (((-1079 |#2|) $) NIL)) (-2539 (((-108)) NIL)) (-1296 (((-3 (-520) "failed") $) NIL (|has| |#2| (-960 (-520)))) (((-3 (-380 (-520)) "failed") $) NIL (|has| |#2| (-960 (-380 (-520))))) (((-3 |#2| "failed") $) NIL)) (-1482 (((-520) $) NIL (|has| |#2| (-960 (-520)))) (((-380 (-520)) $) NIL (|has| |#2| (-960 (-380 (-520))))) ((|#2| $) NIL)) (-3705 (($ (-1164 |#2|)) NIL) (($ (-1164 |#2|) (-1164 $)) NIL)) (-2756 (((-626 (-520)) (-626 $)) NIL (|has| |#2| (-582 (-520)))) (((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 $) (-1164 $)) NIL (|has| |#2| (-582 (-520)))) (((-2 (|:| -3927 (-626 |#2|)) (|:| |vec| (-1164 |#2|))) (-626 $) (-1164 $)) NIL) (((-626 |#2|) (-626 $)) NIL)) (-1540 (((-3 $ "failed") $) NIL)) (-3160 (((-706) $) NIL (|has| |#2| (-512))) (((-849)) 38)) (-3623 ((|#2| $ (-520) (-520)) NIL)) (-1802 (((-108)) NIL)) (-3273 (($ $ (-849)) NIL)) (-3828 (((-586 |#2|) $) NIL (|has| $ (-6 -4229)))) (-1537 (((-108) $) NIL)) (-2621 (((-706) $) NIL (|has| |#2| (-512)))) (-1408 (((-586 (-216 |#1| |#2|)) $) NIL (|has| |#2| (-512)))) (-1409 (((-706) $) NIL)) (-2435 (((-108)) NIL)) (-1420 (((-706) $) NIL)) (-3027 (((-108) $ (-706)) NIL)) (-3346 ((|#2| $) NIL (|has| |#2| (-6 (-4231 "*"))))) (-2289 (((-520) $) NIL)) (-1867 (((-520) $) NIL)) (-3702 (((-586 |#2|) $) NIL (|has| $ (-6 -4229)))) (-2422 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#2| (-1012))))) (-1888 (((-520) $) NIL)) (-2982 (((-520) $) NIL)) (-1364 (($ (-586 (-586 |#2|))) NIL)) (-3830 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3464 (((-586 (-586 |#2|)) $) NIL)) (-4208 (((-108)) NIL)) (-3213 (((-108)) NIL)) (-1390 (((-108) $ (-706)) NIL)) (-2790 (((-3 (-2 (|:| |particular| $) (|:| -1831 (-586 $))) "failed")) NIL (|has| |#2| (-512)))) (-3164 (((-3 $ "failed")) NIL (|has| |#2| (-512)))) (-4024 (((-626 |#2|)) NIL) (((-626 |#2|) (-1164 $)) NIL)) (-4007 ((|#2| $) NIL)) (-3775 (((-626 |#2|) $) NIL) (((-626 |#2|) $ (-1164 $)) NIL)) (-1368 (((-3 $ "failed") $) NIL (|has| |#2| (-512)))) (-1589 (((-1079 (-880 |#2|))) NIL (|has| |#2| (-336)))) (-2544 (($ $ (-849)) NIL)) (-2318 ((|#2| $) NIL)) (-4108 (((-1079 |#2|) $) NIL (|has| |#2| (-512)))) (-1526 ((|#2|) NIL) ((|#2| (-1164 $)) NIL)) (-2429 (((-1079 |#2|) $) NIL)) (-3955 (((-108)) NIL)) (-1239 (((-1066) $) NIL)) (-2260 (((-108)) NIL)) (-4130 (((-108)) NIL)) (-2684 (((-108)) NIL)) (-1675 (((-3 $ "failed") $) NIL (|has| |#2| (-336)))) (-4142 (((-1030) $) NIL)) (-2009 (((-108)) NIL)) (-2230 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-512)))) (-4155 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 |#2|))) NIL (-12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012)))) (($ $ (-268 |#2|)) NIL (-12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012)))) (($ $ (-586 |#2|) (-586 |#2|)) NIL (-12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012))))) (-2533 (((-108) $ $) NIL)) (-4018 (((-108) $) NIL)) (-2238 (($) NIL)) (-2543 ((|#2| $ (-520) (-520) |#2|) NIL) ((|#2| $ (-520) (-520)) 22) ((|#2| $ (-520)) NIL)) (-2155 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-706)) NIL) (($ $ (-586 (-1083)) (-586 (-706))) NIL (|has| |#2| (-828 (-1083)))) (($ $ (-1083) (-706)) NIL (|has| |#2| (-828 (-1083)))) (($ $ (-586 (-1083))) NIL (|has| |#2| (-828 (-1083)))) (($ $ (-1083)) NIL (|has| |#2| (-828 (-1083)))) (($ $ (-706)) NIL (|has| |#2| (-209))) (($ $) NIL (|has| |#2| (-209)))) (-3182 ((|#2| $) NIL)) (-2115 (($ (-586 |#2|)) NIL)) (-3149 (((-108) $) NIL)) (-1965 (((-216 |#1| |#2|) $) NIL)) (-4145 ((|#2| $) NIL (|has| |#2| (-6 (-4231 "*"))))) (-4159 (((-706) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4229))) (((-706) |#2| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#2| (-1012))))) (-2403 (($ $) NIL)) (-3790 (((-626 |#2|) (-1164 $)) NIL) (((-1164 |#2|) $) NIL) (((-626 |#2|) (-1164 $) (-1164 $)) NIL) (((-1164 |#2|) $ (-1164 $)) 25)) (-1429 (($ (-1164 |#2|)) NIL) (((-1164 |#2|) $) NIL)) (-1894 (((-586 (-880 |#2|))) NIL) (((-586 (-880 |#2|)) (-1164 $)) NIL)) (-3607 (($ $ $) NIL)) (-3393 (((-108)) NIL)) (-2460 (((-216 |#1| |#2|) $ (-520)) NIL)) (-2188 (((-791) $) NIL) (($ (-520)) NIL) (($ (-380 (-520))) NIL (|has| |#2| (-960 (-380 (-520))))) (($ |#2|) NIL) (((-626 |#2|) $) NIL)) (-3251 (((-706)) NIL)) (-1831 (((-1164 $)) 36)) (-4094 (((-586 (-1164 |#2|))) NIL (|has| |#2| (-512)))) (-2214 (($ $ $ $) NIL)) (-3183 (((-108)) NIL)) (-1614 (($ (-626 |#2|) $) NIL)) (-1662 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4229)))) (-3669 (((-108) $) NIL)) (-3710 (($ $ $) NIL)) (-3977 (((-108)) NIL)) (-2963 (((-108)) NIL)) (-1314 (((-108)) NIL)) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (-3560 (($) NIL T CONST)) (-3570 (($) NIL T CONST)) (-2211 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-706)) NIL) (($ $ (-586 (-1083)) (-586 (-706))) NIL (|has| |#2| (-828 (-1083)))) (($ $ (-1083) (-706)) NIL (|has| |#2| (-828 (-1083)))) (($ $ (-586 (-1083))) NIL (|has| |#2| (-828 (-1083)))) (($ $ (-1083)) NIL (|has| |#2| (-828 (-1083)))) (($ $ (-706)) NIL (|has| |#2| (-209))) (($ $) NIL (|has| |#2| (-209)))) (-1530 (((-108) $ $) NIL)) (-1619 (($ $ |#2|) NIL (|has| |#2| (-336)))) (-1611 (($ $) NIL) (($ $ $) NIL)) (-1601 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL (|has| |#2| (-336)))) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-216 |#1| |#2|) $ (-216 |#1| |#2|)) NIL) (((-216 |#1| |#2|) (-216 |#1| |#2|) $) NIL)) (-3474 (((-706) $) NIL (|has| $ (-6 -4229)))))
-(((-610 |#1| |#2|) (-13 (-1033 |#1| |#2| (-216 |#1| |#2|) (-216 |#1| |#2|)) (-560 (-626 |#2|)) (-390 |#2|)) (-849) (-157)) (T -610))
-NIL
-(-13 (-1033 |#1| |#2| (-216 |#1| |#2|) (-216 |#1| |#2|)) (-560 (-626 |#2|)) (-390 |#2|))
-((-1414 (((-108) $ $) NIL)) (-4097 (((-586 |#1|) $) NIL)) (-1924 (($ $) 51)) (-3242 (((-108) $) NIL)) (-1296 (((-3 |#1| "failed") $) NIL)) (-1482 ((|#1| $) NIL)) (-2809 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-2933 (((-3 $ "failed") (-755 |#1|)) 23)) (-2101 (((-108) (-755 |#1|)) 15)) (-3059 (($ (-755 |#1|)) 24)) (-1227 (((-108) $ $) 29)) (-2515 (((-849) $) 36)) (-1912 (($ $) NIL)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-1916 (((-586 $) (-755 |#1|)) 17)) (-2188 (((-791) $) 42) (($ |#1|) 33) (((-755 |#1|) $) 38) (((-615 |#1|) $) 43)) (-1812 (((-57 (-586 $)) (-586 |#1|) (-849)) 56)) (-2558 (((-586 $) (-586 |#1|) (-849)) 58)) (-1573 (((-108) $ $) NIL)) (-1557 (((-108) $ $) NIL)) (-1530 (((-108) $ $) 52)) (-1565 (((-108) $ $) NIL)) (-1548 (((-108) $ $) 37)))
-(((-611 |#1|) (-13 (-783) (-960 |#1|) (-10 -8 (-15 -3242 ((-108) $)) (-15 -1912 ($ $)) (-15 -1924 ($ $)) (-15 -2515 ((-849) $)) (-15 -1227 ((-108) $ $)) (-15 -2188 ((-755 |#1|) $)) (-15 -2188 ((-615 |#1|) $)) (-15 -1916 ((-586 $) (-755 |#1|))) (-15 -2101 ((-108) (-755 |#1|))) (-15 -3059 ($ (-755 |#1|))) (-15 -2933 ((-3 $ "failed") (-755 |#1|))) (-15 -4097 ((-586 |#1|) $)) (-15 -1812 ((-57 (-586 $)) (-586 |#1|) (-849))) (-15 -2558 ((-586 $) (-586 |#1|) (-849))))) (-783)) (T -611))
-((-3242 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-611 *3)) (-4 *3 (-783)))) (-1912 (*1 *1 *1) (-12 (-5 *1 (-611 *2)) (-4 *2 (-783)))) (-1924 (*1 *1 *1) (-12 (-5 *1 (-611 *2)) (-4 *2 (-783)))) (-2515 (*1 *2 *1) (-12 (-5 *2 (-849)) (-5 *1 (-611 *3)) (-4 *3 (-783)))) (-1227 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-611 *3)) (-4 *3 (-783)))) (-2188 (*1 *2 *1) (-12 (-5 *2 (-755 *3)) (-5 *1 (-611 *3)) (-4 *3 (-783)))) (-2188 (*1 *2 *1) (-12 (-5 *2 (-615 *3)) (-5 *1 (-611 *3)) (-4 *3 (-783)))) (-1916 (*1 *2 *3) (-12 (-5 *3 (-755 *4)) (-4 *4 (-783)) (-5 *2 (-586 (-611 *4))) (-5 *1 (-611 *4)))) (-2101 (*1 *2 *3) (-12 (-5 *3 (-755 *4)) (-4 *4 (-783)) (-5 *2 (-108)) (-5 *1 (-611 *4)))) (-3059 (*1 *1 *2) (-12 (-5 *2 (-755 *3)) (-4 *3 (-783)) (-5 *1 (-611 *3)))) (-2933 (*1 *1 *2) (|partial| -12 (-5 *2 (-755 *3)) (-4 *3 (-783)) (-5 *1 (-611 *3)))) (-4097 (*1 *2 *1) (-12 (-5 *2 (-586 *3)) (-5 *1 (-611 *3)) (-4 *3 (-783)))) (-1812 (*1 *2 *3 *4) (-12 (-5 *3 (-586 *5)) (-5 *4 (-849)) (-4 *5 (-783)) (-5 *2 (-57 (-586 (-611 *5)))) (-5 *1 (-611 *5)))) (-2558 (*1 *2 *3 *4) (-12 (-5 *3 (-586 *5)) (-5 *4 (-849)) (-4 *5 (-783)) (-5 *2 (-586 (-611 *5))) (-5 *1 (-611 *5)))))
-(-13 (-783) (-960 |#1|) (-10 -8 (-15 -3242 ((-108) $)) (-15 -1912 ($ $)) (-15 -1924 ($ $)) (-15 -2515 ((-849) $)) (-15 -1227 ((-108) $ $)) (-15 -2188 ((-755 |#1|) $)) (-15 -2188 ((-615 |#1|) $)) (-15 -1916 ((-586 $) (-755 |#1|))) (-15 -2101 ((-108) (-755 |#1|))) (-15 -3059 ($ (-755 |#1|))) (-15 -2933 ((-3 $ "failed") (-755 |#1|))) (-15 -4097 ((-586 |#1|) $)) (-15 -1812 ((-57 (-586 $)) (-586 |#1|) (-849))) (-15 -2558 ((-586 $) (-586 |#1|) (-849)))))
-((-3429 ((|#2| $) 76)) (-3827 (($ $) 96)) (-2063 (((-108) $ (-706)) 26)) (-2305 (($ $) 85) (($ $ (-706)) 88)) (-3928 (((-108) $) 97)) (-3405 (((-586 $) $) 72)) (-1885 (((-108) $ $) 71)) (-3027 (((-108) $ (-706)) 24)) (-2567 (((-520) $) 46)) (-1752 (((-520) $) 45)) (-1390 (((-108) $ (-706)) 22)) (-1740 (((-108) $) 74)) (-1440 ((|#2| $) 89) (($ $ (-706)) 92)) (-1659 (($ $ $ (-520)) 62) (($ |#2| $ (-520)) 61)) (-3622 (((-586 (-520)) $) 44)) (-2603 (((-108) (-520) $) 42)) (-2293 ((|#2| $) NIL) (($ $ (-706)) 84)) (-2116 (($ $ (-520)) 100)) (-1392 (((-108) $) 99)) (-4155 (((-108) (-1 (-108) |#2|) $) 32)) (-1523 (((-586 |#2|) $) 33)) (-2543 ((|#2| $ "value") NIL) ((|#2| $ "first") 83) (($ $ "rest") 87) ((|#2| $ "last") 95) (($ $ (-1131 (-520))) 58) ((|#2| $ (-520)) 40) ((|#2| $ (-520) |#2|) 41)) (-3765 (((-520) $ $) 70)) (-3690 (($ $ (-1131 (-520))) 57) (($ $ (-520)) 51)) (-1975 (((-108) $) 66)) (-3436 (($ $) 81)) (-3341 (((-706) $) 80)) (-1696 (($ $) 79)) (-2200 (($ (-586 |#2|)) 37)) (-2759 (($ $) 101)) (-2438 (((-586 $) $) 69)) (-1639 (((-108) $ $) 68)) (-1662 (((-108) (-1 (-108) |#2|) $) 31)) (-1530 (((-108) $ $) 18)) (-3474 (((-706) $) 29)))
-(((-612 |#1| |#2|) (-10 -8 (-15 -2759 (|#1| |#1|)) (-15 -2116 (|#1| |#1| (-520))) (-15 -3928 ((-108) |#1|)) (-15 -1392 ((-108) |#1|)) (-15 -2543 (|#2| |#1| (-520) |#2|)) (-15 -2543 (|#2| |#1| (-520))) (-15 -1523 ((-586 |#2|) |#1|)) (-15 -2603 ((-108) (-520) |#1|)) (-15 -3622 ((-586 (-520)) |#1|)) (-15 -1752 ((-520) |#1|)) (-15 -2567 ((-520) |#1|)) (-15 -2200 (|#1| (-586 |#2|))) (-15 -2543 (|#1| |#1| (-1131 (-520)))) (-15 -3690 (|#1| |#1| (-520))) (-15 -3690 (|#1| |#1| (-1131 (-520)))) (-15 -1659 (|#1| |#2| |#1| (-520))) (-15 -1659 (|#1| |#1| |#1| (-520))) (-15 -3436 (|#1| |#1|)) (-15 -3341 ((-706) |#1|)) (-15 -1696 (|#1| |#1|)) (-15 -3827 (|#1| |#1|)) (-15 -1440 (|#1| |#1| (-706))) (-15 -2543 (|#2| |#1| "last")) (-15 -1440 (|#2| |#1|)) (-15 -2305 (|#1| |#1| (-706))) (-15 -2543 (|#1| |#1| "rest")) (-15 -2305 (|#1| |#1|)) (-15 -2293 (|#1| |#1| (-706))) (-15 -2543 (|#2| |#1| "first")) (-15 -2293 (|#2| |#1|)) (-15 -1885 ((-108) |#1| |#1|)) (-15 -1639 ((-108) |#1| |#1|)) (-15 -3765 ((-520) |#1| |#1|)) (-15 -1975 ((-108) |#1|)) (-15 -2543 (|#2| |#1| "value")) (-15 -3429 (|#2| |#1|)) (-15 -1740 ((-108) |#1|)) (-15 -3405 ((-586 |#1|) |#1|)) (-15 -2438 ((-586 |#1|) |#1|)) (-15 -1530 ((-108) |#1| |#1|)) (-15 -4155 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -1662 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3474 ((-706) |#1|)) (-15 -2063 ((-108) |#1| (-706))) (-15 -3027 ((-108) |#1| (-706))) (-15 -1390 ((-108) |#1| (-706)))) (-613 |#2|) (-1118)) (T -612))
-NIL
-(-10 -8 (-15 -2759 (|#1| |#1|)) (-15 -2116 (|#1| |#1| (-520))) (-15 -3928 ((-108) |#1|)) (-15 -1392 ((-108) |#1|)) (-15 -2543 (|#2| |#1| (-520) |#2|)) (-15 -2543 (|#2| |#1| (-520))) (-15 -1523 ((-586 |#2|) |#1|)) (-15 -2603 ((-108) (-520) |#1|)) (-15 -3622 ((-586 (-520)) |#1|)) (-15 -1752 ((-520) |#1|)) (-15 -2567 ((-520) |#1|)) (-15 -2200 (|#1| (-586 |#2|))) (-15 -2543 (|#1| |#1| (-1131 (-520)))) (-15 -3690 (|#1| |#1| (-520))) (-15 -3690 (|#1| |#1| (-1131 (-520)))) (-15 -1659 (|#1| |#2| |#1| (-520))) (-15 -1659 (|#1| |#1| |#1| (-520))) (-15 -3436 (|#1| |#1|)) (-15 -3341 ((-706) |#1|)) (-15 -1696 (|#1| |#1|)) (-15 -3827 (|#1| |#1|)) (-15 -1440 (|#1| |#1| (-706))) (-15 -2543 (|#2| |#1| "last")) (-15 -1440 (|#2| |#1|)) (-15 -2305 (|#1| |#1| (-706))) (-15 -2543 (|#1| |#1| "rest")) (-15 -2305 (|#1| |#1|)) (-15 -2293 (|#1| |#1| (-706))) (-15 -2543 (|#2| |#1| "first")) (-15 -2293 (|#2| |#1|)) (-15 -1885 ((-108) |#1| |#1|)) (-15 -1639 ((-108) |#1| |#1|)) (-15 -3765 ((-520) |#1| |#1|)) (-15 -1975 ((-108) |#1|)) (-15 -2543 (|#2| |#1| "value")) (-15 -3429 (|#2| |#1|)) (-15 -1740 ((-108) |#1|)) (-15 -3405 ((-586 |#1|) |#1|)) (-15 -2438 ((-586 |#1|) |#1|)) (-15 -1530 ((-108) |#1| |#1|)) (-15 -4155 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -1662 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3474 ((-706) |#1|)) (-15 -2063 ((-108) |#1| (-706))) (-15 -3027 ((-108) |#1| (-706))) (-15 -1390 ((-108) |#1| (-706))))
-((-1414 (((-108) $ $) 19 (|has| |#1| (-1012)))) (-3429 ((|#1| $) 48)) (-2091 ((|#1| $) 65)) (-3827 (($ $) 67)) (-1476 (((-1169) $ (-520) (-520)) 97 (|has| $ (-6 -4230)))) (-1198 (($ $ (-520)) 52 (|has| $ (-6 -4230)))) (-2063 (((-108) $ (-706)) 8)) (-2888 ((|#1| $ |#1|) 39 (|has| $ (-6 -4230)))) (-2719 (($ $ $) 56 (|has| $ (-6 -4230)))) (-3819 ((|#1| $ |#1|) 54 (|has| $ (-6 -4230)))) (-1598 ((|#1| $ |#1|) 58 (|has| $ (-6 -4230)))) (-2377 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4230))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4230))) (($ $ "rest" $) 55 (|has| $ (-6 -4230))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4230))) ((|#1| $ (-1131 (-520)) |#1|) 117 (|has| $ (-6 -4230))) ((|#1| $ (-520) |#1|) 86 (|has| $ (-6 -4230)))) (-3061 (($ $ (-586 $)) 41 (|has| $ (-6 -4230)))) (-1627 (($ (-1 (-108) |#1|) $) 102)) (-2079 ((|#1| $) 66)) (-3961 (($) 7 T CONST)) (-2849 (($ $) 124)) (-2305 (($ $) 73) (($ $ (-706)) 71)) (-2331 (($ $) 99 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-1421 (($ |#1| $) 100 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229)))) (($ (-1 (-108) |#1|) $) 103)) (-3856 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4229))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4229))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-3846 ((|#1| $ (-520) |#1|) 85 (|has| $ (-6 -4230)))) (-3623 ((|#1| $ (-520)) 87)) (-3928 (((-108) $) 83)) (-3828 (((-586 |#1|) $) 30 (|has| $ (-6 -4229)))) (-3207 (((-706) $) 123)) (-3405 (((-586 $) $) 50)) (-1885 (((-108) $ $) 42 (|has| |#1| (-1012)))) (-1810 (($ (-706) |#1|) 108)) (-3027 (((-108) $ (-706)) 9)) (-2567 (((-520) $) 95 (|has| (-520) (-783)))) (-3702 (((-586 |#1|) $) 29 (|has| $ (-6 -4229)))) (-2422 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-1752 (((-520) $) 94 (|has| (-520) (-783)))) (-3830 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-1390 (((-108) $ (-706)) 10)) (-1277 (((-586 |#1|) $) 45)) (-1740 (((-108) $) 49)) (-2443 (($ $) 126)) (-2266 (((-108) $) 127)) (-1239 (((-1066) $) 22 (|has| |#1| (-1012)))) (-1440 ((|#1| $) 70) (($ $ (-706)) 68)) (-1659 (($ $ $ (-520)) 116) (($ |#1| $ (-520)) 115)) (-3622 (((-586 (-520)) $) 92)) (-2603 (((-108) (-520) $) 91)) (-4142 (((-1030) $) 21 (|has| |#1| (-1012)))) (-3885 ((|#1| $) 125)) (-2293 ((|#1| $) 76) (($ $ (-706)) 74)) (-2985 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 106)) (-2936 (($ $ |#1|) 96 (|has| $ (-6 -4230)))) (-2116 (($ $ (-520)) 122)) (-1392 (((-108) $) 84)) (-3549 (((-108) $) 128)) (-3952 (((-108) $) 129)) (-4155 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 |#1|))) 26 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-268 |#1|)) 25 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-586 |#1|) (-586 |#1|)) 23 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))) (-2533 (((-108) $ $) 14)) (-2094 (((-108) |#1| $) 93 (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-1523 (((-586 |#1|) $) 90)) (-4018 (((-108) $) 11)) (-2238 (($) 12)) (-2543 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1131 (-520))) 112) ((|#1| $ (-520)) 89) ((|#1| $ (-520) |#1|) 88)) (-3765 (((-520) $ $) 44)) (-3690 (($ $ (-1131 (-520))) 114) (($ $ (-520)) 113)) (-1975 (((-108) $) 46)) (-3436 (($ $) 62)) (-1521 (($ $) 59 (|has| $ (-6 -4230)))) (-3341 (((-706) $) 63)) (-1696 (($ $) 64)) (-4159 (((-706) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4229))) (((-706) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-2403 (($ $) 13)) (-1429 (((-496) $) 98 (|has| |#1| (-561 (-496))))) (-2200 (($ (-586 |#1|)) 107)) (-2251 (($ $ $) 61 (|has| $ (-6 -4230))) (($ $ |#1|) 60 (|has| $ (-6 -4230)))) (-4156 (($ $ $) 78) (($ |#1| $) 77) (($ (-586 $)) 110) (($ $ |#1|) 109)) (-2759 (($ $) 121)) (-2188 (((-791) $) 18 (|has| |#1| (-560 (-791))))) (-2438 (((-586 $) $) 51)) (-1639 (((-108) $ $) 43 (|has| |#1| (-1012)))) (-1662 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4229)))) (-1530 (((-108) $ $) 20 (|has| |#1| (-1012)))) (-3474 (((-706) $) 6 (|has| $ (-6 -4229)))))
-(((-613 |#1|) (-1195) (-1118)) (T -613))
-((-1421 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-613 *3)) (-4 *3 (-1118)))) (-1627 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-613 *3)) (-4 *3 (-1118)))) (-3952 (*1 *2 *1) (-12 (-4 *1 (-613 *3)) (-4 *3 (-1118)) (-5 *2 (-108)))) (-3549 (*1 *2 *1) (-12 (-4 *1 (-613 *3)) (-4 *3 (-1118)) (-5 *2 (-108)))) (-2266 (*1 *2 *1) (-12 (-4 *1 (-613 *3)) (-4 *3 (-1118)) (-5 *2 (-108)))) (-2443 (*1 *1 *1) (-12 (-4 *1 (-613 *2)) (-4 *2 (-1118)))) (-3885 (*1 *2 *1) (-12 (-4 *1 (-613 *2)) (-4 *2 (-1118)))) (-2849 (*1 *1 *1) (-12 (-4 *1 (-613 *2)) (-4 *2 (-1118)))) (-3207 (*1 *2 *1) (-12 (-4 *1 (-613 *3)) (-4 *3 (-1118)) (-5 *2 (-706)))) (-2116 (*1 *1 *1 *2) (-12 (-5 *2 (-520)) (-4 *1 (-613 *3)) (-4 *3 (-1118)))) (-2759 (*1 *1 *1) (-12 (-4 *1 (-613 *2)) (-4 *2 (-1118)))))
-(-13 (-1057 |t#1|) (-10 -8 (-15 -1421 ($ (-1 (-108) |t#1|) $)) (-15 -1627 ($ (-1 (-108) |t#1|) $)) (-15 -3952 ((-108) $)) (-15 -3549 ((-108) $)) (-15 -2266 ((-108) $)) (-15 -2443 ($ $)) (-15 -3885 (|t#1| $)) (-15 -2849 ($ $)) (-15 -3207 ((-706) $)) (-15 -2116 ($ $ (-520))) (-15 -2759 ($ $))))
-(((-33) . T) ((-97) |has| |#1| (-1012)) ((-560 (-791)) -3700 (|has| |#1| (-1012)) (|has| |#1| (-560 (-791)))) ((-139 |#1|) . T) ((-561 (-496)) |has| |#1| (-561 (-496))) ((-260 #0=(-520) |#1|) . T) ((-262 #0# |#1|) . T) ((-283 |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))) ((-459 |#1|) . T) ((-553 #0# |#1|) . T) ((-481 |#1| |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))) ((-591 |#1|) . T) ((-934 |#1|) . T) ((-1012) |has| |#1| (-1012)) ((-1057 |#1|) . T) ((-1118) . T) ((-1152 |#1|) . T))
-((-1414 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-2336 (($ (-706) (-706) (-706)) 34 (|has| |#1| (-969)))) (-2063 (((-108) $ (-706)) NIL)) (-1962 ((|#1| $ (-706) (-706) (-706) |#1|) 29)) (-3961 (($) NIL T CONST)) (-2397 (($ $ $) 38 (|has| |#1| (-969)))) (-3828 (((-586 |#1|) $) NIL (|has| $ (-6 -4229)))) (-3027 (((-108) $ (-706)) NIL)) (-3702 (((-586 |#1|) $) NIL (|has| $ (-6 -4229)))) (-2422 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-3189 (((-1164 (-706)) $) 10)) (-3758 (($ (-1083) $ $) 24)) (-3830 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#1| |#1|) $) NIL)) (-1390 (((-108) $ (-706)) NIL)) (-1239 (((-1066) $) NIL (|has| |#1| (-1012)))) (-1706 (($ (-706)) 36 (|has| |#1| (-969)))) (-4142 (((-1030) $) NIL (|has| |#1| (-1012)))) (-4155 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 |#1|))) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-268 |#1|)) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-586 |#1|) (-586 |#1|)) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))) (-2533 (((-108) $ $) NIL)) (-4018 (((-108) $) NIL)) (-2238 (($) NIL)) (-2543 ((|#1| $ (-706) (-706) (-706)) 27)) (-4159 (((-706) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229))) (((-706) |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-2403 (($ $) NIL)) (-2200 (($ (-586 (-586 (-586 |#1|)))) 45)) (-2188 (($ (-885 (-885 (-885 |#1|)))) 17) (((-885 (-885 (-885 |#1|))) $) 14) (((-791) $) NIL (|has| |#1| (-560 (-791))))) (-1662 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-1530 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-3474 (((-706) $) NIL (|has| $ (-6 -4229)))))
-(((-614 |#1|) (-13 (-459 |#1|) (-10 -8 (IF (|has| |#1| (-969)) (PROGN (-15 -2336 ($ (-706) (-706) (-706))) (-15 -1706 ($ (-706))) (-15 -2397 ($ $ $))) |%noBranch|) (-15 -2200 ($ (-586 (-586 (-586 |#1|))))) (-15 -2543 (|#1| $ (-706) (-706) (-706))) (-15 -1962 (|#1| $ (-706) (-706) (-706) |#1|)) (-15 -2188 ($ (-885 (-885 (-885 |#1|))))) (-15 -2188 ((-885 (-885 (-885 |#1|))) $)) (-15 -3758 ($ (-1083) $ $)) (-15 -3189 ((-1164 (-706)) $)))) (-1012)) (T -614))
-((-2336 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-706)) (-5 *1 (-614 *3)) (-4 *3 (-969)) (-4 *3 (-1012)))) (-1706 (*1 *1 *2) (-12 (-5 *2 (-706)) (-5 *1 (-614 *3)) (-4 *3 (-969)) (-4 *3 (-1012)))) (-2397 (*1 *1 *1 *1) (-12 (-5 *1 (-614 *2)) (-4 *2 (-969)) (-4 *2 (-1012)))) (-2200 (*1 *1 *2) (-12 (-5 *2 (-586 (-586 (-586 *3)))) (-4 *3 (-1012)) (-5 *1 (-614 *3)))) (-2543 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-706)) (-5 *1 (-614 *2)) (-4 *2 (-1012)))) (-1962 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-706)) (-5 *1 (-614 *2)) (-4 *2 (-1012)))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-885 (-885 (-885 *3)))) (-4 *3 (-1012)) (-5 *1 (-614 *3)))) (-2188 (*1 *2 *1) (-12 (-5 *2 (-885 (-885 (-885 *3)))) (-5 *1 (-614 *3)) (-4 *3 (-1012)))) (-3758 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1083)) (-5 *1 (-614 *3)) (-4 *3 (-1012)))) (-3189 (*1 *2 *1) (-12 (-5 *2 (-1164 (-706))) (-5 *1 (-614 *3)) (-4 *3 (-1012)))))
-(-13 (-459 |#1|) (-10 -8 (IF (|has| |#1| (-969)) (PROGN (-15 -2336 ($ (-706) (-706) (-706))) (-15 -1706 ($ (-706))) (-15 -2397 ($ $ $))) |%noBranch|) (-15 -2200 ($ (-586 (-586 (-586 |#1|))))) (-15 -2543 (|#1| $ (-706) (-706) (-706))) (-15 -1962 (|#1| $ (-706) (-706) (-706) |#1|)) (-15 -2188 ($ (-885 (-885 (-885 |#1|))))) (-15 -2188 ((-885 (-885 (-885 |#1|))) $)) (-15 -3758 ($ (-1083) $ $)) (-15 -3189 ((-1164 (-706)) $))))
-((-1414 (((-108) $ $) NIL)) (-4097 (((-586 |#1|) $) 14)) (-1924 (($ $) 18)) (-3242 (((-108) $) 19)) (-1296 (((-3 |#1| "failed") $) 22)) (-1482 ((|#1| $) 20)) (-2305 (($ $) 36)) (-1355 (($ $) 24)) (-2809 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-1227 (((-108) $ $) 42)) (-2515 (((-849) $) 38)) (-1912 (($ $) 17)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2293 ((|#1| $) 35)) (-2188 (((-791) $) 31) (($ |#1|) 23) (((-755 |#1|) $) 27)) (-1573 (((-108) $ $) NIL)) (-1557 (((-108) $ $) NIL)) (-1530 (((-108) $ $) 12)) (-1565 (((-108) $ $) NIL)) (-1548 (((-108) $ $) 40)) (* (($ $ $) 34)))
-(((-615 |#1|) (-13 (-783) (-960 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2188 ((-755 |#1|) $)) (-15 -2293 (|#1| $)) (-15 -1912 ($ $)) (-15 -2515 ((-849) $)) (-15 -1227 ((-108) $ $)) (-15 -1355 ($ $)) (-15 -2305 ($ $)) (-15 -3242 ((-108) $)) (-15 -1924 ($ $)) (-15 -4097 ((-586 |#1|) $)))) (-783)) (T -615))
-((* (*1 *1 *1 *1) (-12 (-5 *1 (-615 *2)) (-4 *2 (-783)))) (-2188 (*1 *2 *1) (-12 (-5 *2 (-755 *3)) (-5 *1 (-615 *3)) (-4 *3 (-783)))) (-2293 (*1 *2 *1) (-12 (-5 *1 (-615 *2)) (-4 *2 (-783)))) (-1912 (*1 *1 *1) (-12 (-5 *1 (-615 *2)) (-4 *2 (-783)))) (-2515 (*1 *2 *1) (-12 (-5 *2 (-849)) (-5 *1 (-615 *3)) (-4 *3 (-783)))) (-1227 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-615 *3)) (-4 *3 (-783)))) (-1355 (*1 *1 *1) (-12 (-5 *1 (-615 *2)) (-4 *2 (-783)))) (-2305 (*1 *1 *1) (-12 (-5 *1 (-615 *2)) (-4 *2 (-783)))) (-3242 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-615 *3)) (-4 *3 (-783)))) (-1924 (*1 *1 *1) (-12 (-5 *1 (-615 *2)) (-4 *2 (-783)))) (-4097 (*1 *2 *1) (-12 (-5 *2 (-586 *3)) (-5 *1 (-615 *3)) (-4 *3 (-783)))))
-(-13 (-783) (-960 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2188 ((-755 |#1|) $)) (-15 -2293 (|#1| $)) (-15 -1912 ($ $)) (-15 -2515 ((-849) $)) (-15 -1227 ((-108) $ $)) (-15 -1355 ($ $)) (-15 -2305 ($ $)) (-15 -3242 ((-108) $)) (-15 -1924 ($ $)) (-15 -4097 ((-586 |#1|) $))))
-((-2636 ((|#1| (-1 |#1| (-706) |#1|) (-706) |#1|) 11)) (-3201 ((|#1| (-1 |#1| |#1|) (-706) |#1|) 9)))
-(((-616 |#1|) (-10 -7 (-15 -3201 (|#1| (-1 |#1| |#1|) (-706) |#1|)) (-15 -2636 (|#1| (-1 |#1| (-706) |#1|) (-706) |#1|))) (-1012)) (T -616))
-((-2636 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-706) *2)) (-5 *4 (-706)) (-4 *2 (-1012)) (-5 *1 (-616 *2)))) (-3201 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-706)) (-4 *2 (-1012)) (-5 *1 (-616 *2)))))
-(-10 -7 (-15 -3201 (|#1| (-1 |#1| |#1|) (-706) |#1|)) (-15 -2636 (|#1| (-1 |#1| (-706) |#1|) (-706) |#1|)))
-((-4089 ((|#2| |#1| |#2|) 9)) (-4073 ((|#1| |#1| |#2|) 8)))
-(((-617 |#1| |#2|) (-10 -7 (-15 -4073 (|#1| |#1| |#2|)) (-15 -4089 (|#2| |#1| |#2|))) (-1012) (-1012)) (T -617))
-((-4089 (*1 *2 *3 *2) (-12 (-5 *1 (-617 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1012)))) (-4073 (*1 *2 *2 *3) (-12 (-5 *1 (-617 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1012)))))
-(-10 -7 (-15 -4073 (|#1| |#1| |#2|)) (-15 -4089 (|#2| |#1| |#2|)))
-((-3584 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11)))
-(((-618 |#1| |#2| |#3|) (-10 -7 (-15 -3584 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1012) (-1012) (-1012)) (T -618))
-((-3584 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *2 (-1012)) (-5 *1 (-618 *5 *6 *2)))))
-(-10 -7 (-15 -3584 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|)))
-((-2636 (((-1 |#1| (-706) |#1|) (-1 |#1| (-706) |#1|)) 23)) (-1805 (((-1 |#1|) |#1|) 8)) (-1780 ((|#1| |#1|) 16)) (-1903 (((-586 |#1|) (-1 (-586 |#1|) (-586 |#1|)) (-520)) 15) ((|#1| (-1 |#1| |#1|)) 11)) (-2188 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-706)) 20)))
-(((-619 |#1|) (-10 -7 (-15 -1805 ((-1 |#1|) |#1|)) (-15 -2188 ((-1 |#1|) |#1|)) (-15 -1903 (|#1| (-1 |#1| |#1|))) (-15 -1903 ((-586 |#1|) (-1 (-586 |#1|) (-586 |#1|)) (-520))) (-15 -1780 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-706))) (-15 -2636 ((-1 |#1| (-706) |#1|) (-1 |#1| (-706) |#1|)))) (-1012)) (T -619))
-((-2636 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-706) *3)) (-4 *3 (-1012)) (-5 *1 (-619 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-706)) (-4 *4 (-1012)) (-5 *1 (-619 *4)))) (-1780 (*1 *2 *2) (-12 (-5 *1 (-619 *2)) (-4 *2 (-1012)))) (-1903 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-586 *5) (-586 *5))) (-5 *4 (-520)) (-5 *2 (-586 *5)) (-5 *1 (-619 *5)) (-4 *5 (-1012)))) (-1903 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-619 *2)) (-4 *2 (-1012)))) (-2188 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-619 *3)) (-4 *3 (-1012)))) (-1805 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-619 *3)) (-4 *3 (-1012)))))
-(-10 -7 (-15 -1805 ((-1 |#1|) |#1|)) (-15 -2188 ((-1 |#1|) |#1|)) (-15 -1903 (|#1| (-1 |#1| |#1|))) (-15 -1903 ((-586 |#1|) (-1 (-586 |#1|) (-586 |#1|)) (-520))) (-15 -1780 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-706))) (-15 -2636 ((-1 |#1| (-706) |#1|) (-1 |#1| (-706) |#1|))))
-((-3666 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-2884 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-2675 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-2011 (((-1 |#2| |#1|) |#2|) 11)))
-(((-620 |#1| |#2|) (-10 -7 (-15 -2011 ((-1 |#2| |#1|) |#2|)) (-15 -2884 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2675 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -3666 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1012) (-1012)) (T -620))
-((-3666 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-5 *2 (-1 *5 *4)) (-5 *1 (-620 *4 *5)))) (-2675 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1012)) (-5 *2 (-1 *5 *4)) (-5 *1 (-620 *4 *5)) (-4 *4 (-1012)))) (-2884 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-5 *2 (-1 *5)) (-5 *1 (-620 *4 *5)))) (-2011 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-620 *4 *3)) (-4 *4 (-1012)) (-4 *3 (-1012)))))
-(-10 -7 (-15 -2011 ((-1 |#2| |#1|) |#2|)) (-15 -2884 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2675 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -3666 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|))))
-((-1351 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-1946 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-1427 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-3870 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-3460 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21)))
-(((-621 |#1| |#2| |#3|) (-10 -7 (-15 -1946 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -1427 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3870 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -3460 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -1351 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1012) (-1012) (-1012)) (T -621))
-((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-1 *7 *5)) (-5 *1 (-621 *5 *6 *7)))) (-1351 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-621 *4 *5 *6)))) (-3460 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-621 *4 *5 *6)) (-4 *4 (-1012)))) (-3870 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1012)) (-4 *6 (-1012)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-621 *4 *5 *6)) (-4 *5 (-1012)))) (-1427 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-5 *2 (-1 *6 *5)) (-5 *1 (-621 *4 *5 *6)))) (-1946 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1012)) (-4 *4 (-1012)) (-4 *6 (-1012)) (-5 *2 (-1 *6 *5)) (-5 *1 (-621 *5 *4 *6)))))
-(-10 -7 (-15 -1946 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -1427 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3870 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -3460 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -1351 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|))))
-((-3856 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-1389 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31)))
-(((-622 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1389 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -1389 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3856 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-969) (-346 |#1|) (-346 |#1|) (-624 |#1| |#2| |#3|) (-969) (-346 |#5|) (-346 |#5|) (-624 |#5| |#6| |#7|)) (T -622))
-((-3856 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-969)) (-4 *2 (-969)) (-4 *6 (-346 *5)) (-4 *7 (-346 *5)) (-4 *8 (-346 *2)) (-4 *9 (-346 *2)) (-5 *1 (-622 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-624 *5 *6 *7)) (-4 *10 (-624 *2 *8 *9)))) (-1389 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-969)) (-4 *8 (-969)) (-4 *6 (-346 *5)) (-4 *7 (-346 *5)) (-4 *2 (-624 *8 *9 *10)) (-5 *1 (-622 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-624 *5 *6 *7)) (-4 *9 (-346 *8)) (-4 *10 (-346 *8)))) (-1389 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-969)) (-4 *8 (-969)) (-4 *6 (-346 *5)) (-4 *7 (-346 *5)) (-4 *2 (-624 *8 *9 *10)) (-5 *1 (-622 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-624 *5 *6 *7)) (-4 *9 (-346 *8)) (-4 *10 (-346 *8)))))
-(-10 -7 (-15 -1389 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -1389 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3856 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|)))
-((-3477 (($ (-706) (-706)) 32)) (-1472 (($ $ $) 55)) (-1305 (($ |#3|) 51) (($ $) 52)) (-2340 (((-108) $) 27)) (-1566 (($ $ (-520) (-520)) 57)) (-1465 (($ $ (-520) (-520)) 58)) (-3408 (($ $ (-520) (-520) (-520) (-520)) 62)) (-3012 (($ $) 53)) (-2878 (((-108) $) 14)) (-4056 (($ $ (-520) (-520) $) 63)) (-2377 ((|#2| $ (-520) (-520) |#2|) NIL) (($ $ (-586 (-520)) (-586 (-520)) $) 61)) (-1311 (($ (-706) |#2|) 37)) (-1364 (($ (-586 (-586 |#2|))) 35)) (-3464 (((-586 (-586 |#2|)) $) 56)) (-4112 (($ $ $) 54)) (-2230 (((-3 $ "failed") $ |#2|) 90)) (-2543 ((|#2| $ (-520) (-520)) NIL) ((|#2| $ (-520) (-520) |#2|) NIL) (($ $ (-586 (-520)) (-586 (-520))) 60)) (-2115 (($ (-586 |#2|)) 39) (($ (-586 $)) 41)) (-3149 (((-108) $) 24)) (-2188 (($ |#4|) 46) (((-791) $) NIL)) (-3669 (((-108) $) 29)) (-1619 (($ $ |#2|) 92)) (-1611 (($ $ $) 67) (($ $) 70)) (-1601 (($ $ $) 65)) (** (($ $ (-706)) 79) (($ $ (-520)) 95)) (* (($ $ $) 76) (($ |#2| $) 72) (($ $ |#2|) 73) (($ (-520) $) 75) ((|#4| $ |#4|) 83) ((|#3| |#3| $) 87)))
-(((-623 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2188 ((-791) |#1|)) (-15 ** (|#1| |#1| (-520))) (-15 -1619 (|#1| |#1| |#2|)) (-15 -2230 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-706))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-520) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1611 (|#1| |#1|)) (-15 -1611 (|#1| |#1| |#1|)) (-15 -1601 (|#1| |#1| |#1|)) (-15 -4056 (|#1| |#1| (-520) (-520) |#1|)) (-15 -3408 (|#1| |#1| (-520) (-520) (-520) (-520))) (-15 -1465 (|#1| |#1| (-520) (-520))) (-15 -1566 (|#1| |#1| (-520) (-520))) (-15 -2377 (|#1| |#1| (-586 (-520)) (-586 (-520)) |#1|)) (-15 -2543 (|#1| |#1| (-586 (-520)) (-586 (-520)))) (-15 -3464 ((-586 (-586 |#2|)) |#1|)) (-15 -1472 (|#1| |#1| |#1|)) (-15 -4112 (|#1| |#1| |#1|)) (-15 -3012 (|#1| |#1|)) (-15 -1305 (|#1| |#1|)) (-15 -1305 (|#1| |#3|)) (-15 -2188 (|#1| |#4|)) (-15 -2115 (|#1| (-586 |#1|))) (-15 -2115 (|#1| (-586 |#2|))) (-15 -1311 (|#1| (-706) |#2|)) (-15 -1364 (|#1| (-586 (-586 |#2|)))) (-15 -3477 (|#1| (-706) (-706))) (-15 -3669 ((-108) |#1|)) (-15 -2340 ((-108) |#1|)) (-15 -3149 ((-108) |#1|)) (-15 -2878 ((-108) |#1|)) (-15 -2377 (|#2| |#1| (-520) (-520) |#2|)) (-15 -2543 (|#2| |#1| (-520) (-520) |#2|)) (-15 -2543 (|#2| |#1| (-520) (-520)))) (-624 |#2| |#3| |#4|) (-969) (-346 |#2|) (-346 |#2|)) (T -623))
-NIL
-(-10 -8 (-15 -2188 ((-791) |#1|)) (-15 ** (|#1| |#1| (-520))) (-15 -1619 (|#1| |#1| |#2|)) (-15 -2230 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-706))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-520) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1611 (|#1| |#1|)) (-15 -1611 (|#1| |#1| |#1|)) (-15 -1601 (|#1| |#1| |#1|)) (-15 -4056 (|#1| |#1| (-520) (-520) |#1|)) (-15 -3408 (|#1| |#1| (-520) (-520) (-520) (-520))) (-15 -1465 (|#1| |#1| (-520) (-520))) (-15 -1566 (|#1| |#1| (-520) (-520))) (-15 -2377 (|#1| |#1| (-586 (-520)) (-586 (-520)) |#1|)) (-15 -2543 (|#1| |#1| (-586 (-520)) (-586 (-520)))) (-15 -3464 ((-586 (-586 |#2|)) |#1|)) (-15 -1472 (|#1| |#1| |#1|)) (-15 -4112 (|#1| |#1| |#1|)) (-15 -3012 (|#1| |#1|)) (-15 -1305 (|#1| |#1|)) (-15 -1305 (|#1| |#3|)) (-15 -2188 (|#1| |#4|)) (-15 -2115 (|#1| (-586 |#1|))) (-15 -2115 (|#1| (-586 |#2|))) (-15 -1311 (|#1| (-706) |#2|)) (-15 -1364 (|#1| (-586 (-586 |#2|)))) (-15 -3477 (|#1| (-706) (-706))) (-15 -3669 ((-108) |#1|)) (-15 -2340 ((-108) |#1|)) (-15 -3149 ((-108) |#1|)) (-15 -2878 ((-108) |#1|)) (-15 -2377 (|#2| |#1| (-520) (-520) |#2|)) (-15 -2543 (|#2| |#1| (-520) (-520) |#2|)) (-15 -2543 (|#2| |#1| (-520) (-520))))
-((-1414 (((-108) $ $) 19 (|has| |#1| (-1012)))) (-3477 (($ (-706) (-706)) 97)) (-1472 (($ $ $) 87)) (-1305 (($ |#2|) 91) (($ $) 90)) (-2340 (((-108) $) 99)) (-1566 (($ $ (-520) (-520)) 83)) (-1465 (($ $ (-520) (-520)) 82)) (-3408 (($ $ (-520) (-520) (-520) (-520)) 81)) (-3012 (($ $) 89)) (-2878 (((-108) $) 101)) (-2063 (((-108) $ (-706)) 8)) (-4056 (($ $ (-520) (-520) $) 80)) (-2377 ((|#1| $ (-520) (-520) |#1|) 44) (($ $ (-586 (-520)) (-586 (-520)) $) 84)) (-2145 (($ $ (-520) |#2|) 42)) (-3834 (($ $ (-520) |#3|) 41)) (-1311 (($ (-706) |#1|) 95)) (-3961 (($) 7 T CONST)) (-2085 (($ $) 67 (|has| |#1| (-281)))) (-2120 ((|#2| $ (-520)) 46)) (-3160 (((-706) $) 66 (|has| |#1| (-512)))) (-3846 ((|#1| $ (-520) (-520) |#1|) 43)) (-3623 ((|#1| $ (-520) (-520)) 48)) (-3828 (((-586 |#1|) $) 30)) (-2621 (((-706) $) 65 (|has| |#1| (-512)))) (-1408 (((-586 |#3|) $) 64 (|has| |#1| (-512)))) (-1409 (((-706) $) 51)) (-1810 (($ (-706) (-706) |#1|) 57)) (-1420 (((-706) $) 50)) (-3027 (((-108) $ (-706)) 9)) (-3346 ((|#1| $) 62 (|has| |#1| (-6 (-4231 "*"))))) (-2289 (((-520) $) 55)) (-1867 (((-520) $) 53)) (-3702 (((-586 |#1|) $) 29 (|has| $ (-6 -4229)))) (-2422 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-1888 (((-520) $) 54)) (-2982 (((-520) $) 52)) (-1364 (($ (-586 (-586 |#1|))) 96)) (-3830 (($ (-1 |#1| |#1|) $) 34)) (-1389 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-3464 (((-586 (-586 |#1|)) $) 86)) (-1390 (((-108) $ (-706)) 10)) (-1239 (((-1066) $) 22 (|has| |#1| (-1012)))) (-1675 (((-3 $ "failed") $) 61 (|has| |#1| (-336)))) (-4112 (($ $ $) 88)) (-4142 (((-1030) $) 21 (|has| |#1| (-1012)))) (-2936 (($ $ |#1|) 56)) (-2230 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-512)))) (-4155 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 |#1|))) 26 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-268 |#1|)) 25 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-586 |#1|) (-586 |#1|)) 23 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))) (-2533 (((-108) $ $) 14)) (-4018 (((-108) $) 11)) (-2238 (($) 12)) (-2543 ((|#1| $ (-520) (-520)) 49) ((|#1| $ (-520) (-520) |#1|) 47) (($ $ (-586 (-520)) (-586 (-520))) 85)) (-2115 (($ (-586 |#1|)) 94) (($ (-586 $)) 93)) (-3149 (((-108) $) 100)) (-4145 ((|#1| $) 63 (|has| |#1| (-6 (-4231 "*"))))) (-4159 (((-706) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4229))) (((-706) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-2403 (($ $) 13)) (-2460 ((|#3| $ (-520)) 45)) (-2188 (($ |#3|) 92) (((-791) $) 18 (|has| |#1| (-560 (-791))))) (-1662 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4229)))) (-3669 (((-108) $) 98)) (-1530 (((-108) $ $) 20 (|has| |#1| (-1012)))) (-1619 (($ $ |#1|) 68 (|has| |#1| (-336)))) (-1611 (($ $ $) 78) (($ $) 77)) (-1601 (($ $ $) 79)) (** (($ $ (-706)) 70) (($ $ (-520)) 60 (|has| |#1| (-336)))) (* (($ $ $) 76) (($ |#1| $) 75) (($ $ |#1|) 74) (($ (-520) $) 73) ((|#3| $ |#3|) 72) ((|#2| |#2| $) 71)) (-3474 (((-706) $) 6 (|has| $ (-6 -4229)))))
-(((-624 |#1| |#2| |#3|) (-1195) (-969) (-346 |t#1|) (-346 |t#1|)) (T -624))
-((-2878 (*1 *2 *1) (-12 (-4 *1 (-624 *3 *4 *5)) (-4 *3 (-969)) (-4 *4 (-346 *3)) (-4 *5 (-346 *3)) (-5 *2 (-108)))) (-3149 (*1 *2 *1) (-12 (-4 *1 (-624 *3 *4 *5)) (-4 *3 (-969)) (-4 *4 (-346 *3)) (-4 *5 (-346 *3)) (-5 *2 (-108)))) (-2340 (*1 *2 *1) (-12 (-4 *1 (-624 *3 *4 *5)) (-4 *3 (-969)) (-4 *4 (-346 *3)) (-4 *5 (-346 *3)) (-5 *2 (-108)))) (-3669 (*1 *2 *1) (-12 (-4 *1 (-624 *3 *4 *5)) (-4 *3 (-969)) (-4 *4 (-346 *3)) (-4 *5 (-346 *3)) (-5 *2 (-108)))) (-3477 (*1 *1 *2 *2) (-12 (-5 *2 (-706)) (-4 *3 (-969)) (-4 *1 (-624 *3 *4 *5)) (-4 *4 (-346 *3)) (-4 *5 (-346 *3)))) (-1364 (*1 *1 *2) (-12 (-5 *2 (-586 (-586 *3))) (-4 *3 (-969)) (-4 *1 (-624 *3 *4 *5)) (-4 *4 (-346 *3)) (-4 *5 (-346 *3)))) (-1311 (*1 *1 *2 *3) (-12 (-5 *2 (-706)) (-4 *3 (-969)) (-4 *1 (-624 *3 *4 *5)) (-4 *4 (-346 *3)) (-4 *5 (-346 *3)))) (-2115 (*1 *1 *2) (-12 (-5 *2 (-586 *3)) (-4 *3 (-969)) (-4 *1 (-624 *3 *4 *5)) (-4 *4 (-346 *3)) (-4 *5 (-346 *3)))) (-2115 (*1 *1 *2) (-12 (-5 *2 (-586 *1)) (-4 *3 (-969)) (-4 *1 (-624 *3 *4 *5)) (-4 *4 (-346 *3)) (-4 *5 (-346 *3)))) (-2188 (*1 *1 *2) (-12 (-4 *3 (-969)) (-4 *1 (-624 *3 *4 *2)) (-4 *4 (-346 *3)) (-4 *2 (-346 *3)))) (-1305 (*1 *1 *2) (-12 (-4 *3 (-969)) (-4 *1 (-624 *3 *2 *4)) (-4 *2 (-346 *3)) (-4 *4 (-346 *3)))) (-1305 (*1 *1 *1) (-12 (-4 *1 (-624 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-346 *2)) (-4 *4 (-346 *2)))) (-3012 (*1 *1 *1) (-12 (-4 *1 (-624 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-346 *2)) (-4 *4 (-346 *2)))) (-4112 (*1 *1 *1 *1) (-12 (-4 *1 (-624 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-346 *2)) (-4 *4 (-346 *2)))) (-1472 (*1 *1 *1 *1) (-12 (-4 *1 (-624 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-346 *2)) (-4 *4 (-346 *2)))) (-3464 (*1 *2 *1) (-12 (-4 *1 (-624 *3 *4 *5)) (-4 *3 (-969)) (-4 *4 (-346 *3)) (-4 *5 (-346 *3)) (-5 *2 (-586 (-586 *3))))) (-2543 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-586 (-520))) (-4 *1 (-624 *3 *4 *5)) (-4 *3 (-969)) (-4 *4 (-346 *3)) (-4 *5 (-346 *3)))) (-2377 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-586 (-520))) (-4 *1 (-624 *3 *4 *5)) (-4 *3 (-969)) (-4 *4 (-346 *3)) (-4 *5 (-346 *3)))) (-1566 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-520)) (-4 *1 (-624 *3 *4 *5)) (-4 *3 (-969)) (-4 *4 (-346 *3)) (-4 *5 (-346 *3)))) (-1465 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-520)) (-4 *1 (-624 *3 *4 *5)) (-4 *3 (-969)) (-4 *4 (-346 *3)) (-4 *5 (-346 *3)))) (-3408 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-520)) (-4 *1 (-624 *3 *4 *5)) (-4 *3 (-969)) (-4 *4 (-346 *3)) (-4 *5 (-346 *3)))) (-4056 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-520)) (-4 *1 (-624 *3 *4 *5)) (-4 *3 (-969)) (-4 *4 (-346 *3)) (-4 *5 (-346 *3)))) (-1601 (*1 *1 *1 *1) (-12 (-4 *1 (-624 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-346 *2)) (-4 *4 (-346 *2)))) (-1611 (*1 *1 *1 *1) (-12 (-4 *1 (-624 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-346 *2)) (-4 *4 (-346 *2)))) (-1611 (*1 *1 *1) (-12 (-4 *1 (-624 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-346 *2)) (-4 *4 (-346 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-624 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-346 *2)) (-4 *4 (-346 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-624 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-346 *2)) (-4 *4 (-346 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-624 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-346 *2)) (-4 *4 (-346 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-520)) (-4 *1 (-624 *3 *4 *5)) (-4 *3 (-969)) (-4 *4 (-346 *3)) (-4 *5 (-346 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-624 *3 *4 *2)) (-4 *3 (-969)) (-4 *4 (-346 *3)) (-4 *2 (-346 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-624 *3 *2 *4)) (-4 *3 (-969)) (-4 *2 (-346 *3)) (-4 *4 (-346 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-706)) (-4 *1 (-624 *3 *4 *5)) (-4 *3 (-969)) (-4 *4 (-346 *3)) (-4 *5 (-346 *3)))) (-2230 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-624 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-346 *2)) (-4 *4 (-346 *2)) (-4 *2 (-512)))) (-1619 (*1 *1 *1 *2) (-12 (-4 *1 (-624 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-346 *2)) (-4 *4 (-346 *2)) (-4 *2 (-336)))) (-2085 (*1 *1 *1) (-12 (-4 *1 (-624 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-346 *2)) (-4 *4 (-346 *2)) (-4 *2 (-281)))) (-3160 (*1 *2 *1) (-12 (-4 *1 (-624 *3 *4 *5)) (-4 *3 (-969)) (-4 *4 (-346 *3)) (-4 *5 (-346 *3)) (-4 *3 (-512)) (-5 *2 (-706)))) (-2621 (*1 *2 *1) (-12 (-4 *1 (-624 *3 *4 *5)) (-4 *3 (-969)) (-4 *4 (-346 *3)) (-4 *5 (-346 *3)) (-4 *3 (-512)) (-5 *2 (-706)))) (-1408 (*1 *2 *1) (-12 (-4 *1 (-624 *3 *4 *5)) (-4 *3 (-969)) (-4 *4 (-346 *3)) (-4 *5 (-346 *3)) (-4 *3 (-512)) (-5 *2 (-586 *5)))) (-4145 (*1 *2 *1) (-12 (-4 *1 (-624 *2 *3 *4)) (-4 *3 (-346 *2)) (-4 *4 (-346 *2)) (|has| *2 (-6 (-4231 "*"))) (-4 *2 (-969)))) (-3346 (*1 *2 *1) (-12 (-4 *1 (-624 *2 *3 *4)) (-4 *3 (-346 *2)) (-4 *4 (-346 *2)) (|has| *2 (-6 (-4231 "*"))) (-4 *2 (-969)))) (-1675 (*1 *1 *1) (|partial| -12 (-4 *1 (-624 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-346 *2)) (-4 *4 (-346 *2)) (-4 *2 (-336)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-520)) (-4 *1 (-624 *3 *4 *5)) (-4 *3 (-969)) (-4 *4 (-346 *3)) (-4 *5 (-346 *3)) (-4 *3 (-336)))))
-(-13 (-55 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4230) (-6 -4229) (-15 -2878 ((-108) $)) (-15 -3149 ((-108) $)) (-15 -2340 ((-108) $)) (-15 -3669 ((-108) $)) (-15 -3477 ($ (-706) (-706))) (-15 -1364 ($ (-586 (-586 |t#1|)))) (-15 -1311 ($ (-706) |t#1|)) (-15 -2115 ($ (-586 |t#1|))) (-15 -2115 ($ (-586 $))) (-15 -2188 ($ |t#3|)) (-15 -1305 ($ |t#2|)) (-15 -1305 ($ $)) (-15 -3012 ($ $)) (-15 -4112 ($ $ $)) (-15 -1472 ($ $ $)) (-15 -3464 ((-586 (-586 |t#1|)) $)) (-15 -2543 ($ $ (-586 (-520)) (-586 (-520)))) (-15 -2377 ($ $ (-586 (-520)) (-586 (-520)) $)) (-15 -1566 ($ $ (-520) (-520))) (-15 -1465 ($ $ (-520) (-520))) (-15 -3408 ($ $ (-520) (-520) (-520) (-520))) (-15 -4056 ($ $ (-520) (-520) $)) (-15 -1601 ($ $ $)) (-15 -1611 ($ $ $)) (-15 -1611 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-520) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-706))) (IF (|has| |t#1| (-512)) (-15 -2230 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-336)) (-15 -1619 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-281)) (-15 -2085 ($ $)) |%noBranch|) (IF (|has| |t#1| (-512)) (PROGN (-15 -3160 ((-706) $)) (-15 -2621 ((-706) $)) (-15 -1408 ((-586 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4231 "*"))) (PROGN (-15 -4145 (|t#1| $)) (-15 -3346 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-336)) (PROGN (-15 -1675 ((-3 $ "failed") $)) (-15 ** ($ $ (-520)))) |%noBranch|)))
-(((-33) . T) ((-97) |has| |#1| (-1012)) ((-560 (-791)) -3700 (|has| |#1| (-1012)) (|has| |#1| (-560 (-791)))) ((-283 |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))) ((-459 |#1|) . T) ((-481 |#1| |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))) ((-1012) |has| |#1| (-1012)) ((-55 |#1| |#2| |#3|) . T) ((-1118) . T))
-((-2085 ((|#4| |#4|) 68 (|has| |#1| (-281)))) (-3160 (((-706) |#4|) 70 (|has| |#1| (-512)))) (-2621 (((-706) |#4|) 72 (|has| |#1| (-512)))) (-1408 (((-586 |#3|) |#4|) 79 (|has| |#1| (-512)))) (-1999 (((-2 (|:| -2060 |#1|) (|:| -3753 |#1|)) |#1| |#1|) 96 (|has| |#1| (-281)))) (-3346 ((|#1| |#4|) 34)) (-2576 (((-3 |#4| "failed") |#4|) 62 (|has| |#1| (-512)))) (-1675 (((-3 |#4| "failed") |#4|) 76 (|has| |#1| (-336)))) (-2140 ((|#4| |#4|) 55 (|has| |#1| (-512)))) (-2507 ((|#4| |#4| |#1| (-520) (-520)) 42)) (-3139 ((|#4| |#4| (-520) (-520)) 37)) (-1635 ((|#4| |#4| |#1| (-520) (-520)) 47)) (-4145 ((|#1| |#4|) 74)) (-1691 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 58 (|has| |#1| (-512)))))
-(((-625 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4145 (|#1| |#4|)) (-15 -3346 (|#1| |#4|)) (-15 -3139 (|#4| |#4| (-520) (-520))) (-15 -2507 (|#4| |#4| |#1| (-520) (-520))) (-15 -1635 (|#4| |#4| |#1| (-520) (-520))) (IF (|has| |#1| (-512)) (PROGN (-15 -3160 ((-706) |#4|)) (-15 -2621 ((-706) |#4|)) (-15 -1408 ((-586 |#3|) |#4|)) (-15 -2140 (|#4| |#4|)) (-15 -2576 ((-3 |#4| "failed") |#4|)) (-15 -1691 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-281)) (PROGN (-15 -2085 (|#4| |#4|)) (-15 -1999 ((-2 (|:| -2060 |#1|) (|:| -3753 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-336)) (-15 -1675 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-157) (-346 |#1|) (-346 |#1|) (-624 |#1| |#2| |#3|)) (T -625))
-((-1675 (*1 *2 *2) (|partial| -12 (-4 *3 (-336)) (-4 *3 (-157)) (-4 *4 (-346 *3)) (-4 *5 (-346 *3)) (-5 *1 (-625 *3 *4 *5 *2)) (-4 *2 (-624 *3 *4 *5)))) (-1999 (*1 *2 *3 *3) (-12 (-4 *3 (-281)) (-4 *3 (-157)) (-4 *4 (-346 *3)) (-4 *5 (-346 *3)) (-5 *2 (-2 (|:| -2060 *3) (|:| -3753 *3))) (-5 *1 (-625 *3 *4 *5 *6)) (-4 *6 (-624 *3 *4 *5)))) (-2085 (*1 *2 *2) (-12 (-4 *3 (-281)) (-4 *3 (-157)) (-4 *4 (-346 *3)) (-4 *5 (-346 *3)) (-5 *1 (-625 *3 *4 *5 *2)) (-4 *2 (-624 *3 *4 *5)))) (-1691 (*1 *2 *3) (-12 (-4 *4 (-512)) (-4 *4 (-157)) (-4 *5 (-346 *4)) (-4 *6 (-346 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-625 *4 *5 *6 *3)) (-4 *3 (-624 *4 *5 *6)))) (-2576 (*1 *2 *2) (|partial| -12 (-4 *3 (-512)) (-4 *3 (-157)) (-4 *4 (-346 *3)) (-4 *5 (-346 *3)) (-5 *1 (-625 *3 *4 *5 *2)) (-4 *2 (-624 *3 *4 *5)))) (-2140 (*1 *2 *2) (-12 (-4 *3 (-512)) (-4 *3 (-157)) (-4 *4 (-346 *3)) (-4 *5 (-346 *3)) (-5 *1 (-625 *3 *4 *5 *2)) (-4 *2 (-624 *3 *4 *5)))) (-1408 (*1 *2 *3) (-12 (-4 *4 (-512)) (-4 *4 (-157)) (-4 *5 (-346 *4)) (-4 *6 (-346 *4)) (-5 *2 (-586 *6)) (-5 *1 (-625 *4 *5 *6 *3)) (-4 *3 (-624 *4 *5 *6)))) (-2621 (*1 *2 *3) (-12 (-4 *4 (-512)) (-4 *4 (-157)) (-4 *5 (-346 *4)) (-4 *6 (-346 *4)) (-5 *2 (-706)) (-5 *1 (-625 *4 *5 *6 *3)) (-4 *3 (-624 *4 *5 *6)))) (-3160 (*1 *2 *3) (-12 (-4 *4 (-512)) (-4 *4 (-157)) (-4 *5 (-346 *4)) (-4 *6 (-346 *4)) (-5 *2 (-706)) (-5 *1 (-625 *4 *5 *6 *3)) (-4 *3 (-624 *4 *5 *6)))) (-1635 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-520)) (-4 *3 (-157)) (-4 *5 (-346 *3)) (-4 *6 (-346 *3)) (-5 *1 (-625 *3 *5 *6 *2)) (-4 *2 (-624 *3 *5 *6)))) (-2507 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-520)) (-4 *3 (-157)) (-4 *5 (-346 *3)) (-4 *6 (-346 *3)) (-5 *1 (-625 *3 *5 *6 *2)) (-4 *2 (-624 *3 *5 *6)))) (-3139 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-520)) (-4 *4 (-157)) (-4 *5 (-346 *4)) (-4 *6 (-346 *4)) (-5 *1 (-625 *4 *5 *6 *2)) (-4 *2 (-624 *4 *5 *6)))) (-3346 (*1 *2 *3) (-12 (-4 *4 (-346 *2)) (-4 *5 (-346 *2)) (-4 *2 (-157)) (-5 *1 (-625 *2 *4 *5 *3)) (-4 *3 (-624 *2 *4 *5)))) (-4145 (*1 *2 *3) (-12 (-4 *4 (-346 *2)) (-4 *5 (-346 *2)) (-4 *2 (-157)) (-5 *1 (-625 *2 *4 *5 *3)) (-4 *3 (-624 *2 *4 *5)))))
-(-10 -7 (-15 -4145 (|#1| |#4|)) (-15 -3346 (|#1| |#4|)) (-15 -3139 (|#4| |#4| (-520) (-520))) (-15 -2507 (|#4| |#4| |#1| (-520) (-520))) (-15 -1635 (|#4| |#4| |#1| (-520) (-520))) (IF (|has| |#1| (-512)) (PROGN (-15 -3160 ((-706) |#4|)) (-15 -2621 ((-706) |#4|)) (-15 -1408 ((-586 |#3|) |#4|)) (-15 -2140 (|#4| |#4|)) (-15 -2576 ((-3 |#4| "failed") |#4|)) (-15 -1691 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-281)) (PROGN (-15 -2085 (|#4| |#4|)) (-15 -1999 ((-2 (|:| -2060 |#1|) (|:| -3753 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-336)) (-15 -1675 ((-3 |#4| "failed") |#4|)) |%noBranch|))
-((-1414 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-3477 (($ (-706) (-706)) 45)) (-1472 (($ $ $) NIL)) (-1305 (($ (-1164 |#1|)) NIL) (($ $) NIL)) (-2340 (((-108) $) NIL)) (-1566 (($ $ (-520) (-520)) 12)) (-1465 (($ $ (-520) (-520)) NIL)) (-3408 (($ $ (-520) (-520) (-520) (-520)) NIL)) (-3012 (($ $) NIL)) (-2878 (((-108) $) NIL)) (-2063 (((-108) $ (-706)) NIL)) (-4056 (($ $ (-520) (-520) $) NIL)) (-2377 ((|#1| $ (-520) (-520) |#1|) NIL) (($ $ (-586 (-520)) (-586 (-520)) $) NIL)) (-2145 (($ $ (-520) (-1164 |#1|)) NIL)) (-3834 (($ $ (-520) (-1164 |#1|)) NIL)) (-1311 (($ (-706) |#1|) 22)) (-3961 (($) NIL T CONST)) (-2085 (($ $) 30 (|has| |#1| (-281)))) (-2120 (((-1164 |#1|) $ (-520)) NIL)) (-3160 (((-706) $) 32 (|has| |#1| (-512)))) (-3846 ((|#1| $ (-520) (-520) |#1|) 50)) (-3623 ((|#1| $ (-520) (-520)) NIL)) (-3828 (((-586 |#1|) $) NIL)) (-2621 (((-706) $) 34 (|has| |#1| (-512)))) (-1408 (((-586 (-1164 |#1|)) $) 37 (|has| |#1| (-512)))) (-1409 (((-706) $) 20)) (-1810 (($ (-706) (-706) |#1|) NIL)) (-1420 (((-706) $) 21)) (-3027 (((-108) $ (-706)) NIL)) (-3346 ((|#1| $) 28 (|has| |#1| (-6 (-4231 "*"))))) (-2289 (((-520) $) 9)) (-1867 (((-520) $) 10)) (-3702 (((-586 |#1|) $) NIL (|has| $ (-6 -4229)))) (-2422 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-1888 (((-520) $) 11)) (-2982 (((-520) $) 46)) (-1364 (($ (-586 (-586 |#1|))) NIL)) (-3830 (($ (-1 |#1| |#1|) $) NIL)) (-1389 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3464 (((-586 (-586 |#1|)) $) 58)) (-1390 (((-108) $ (-706)) NIL)) (-1239 (((-1066) $) NIL (|has| |#1| (-1012)))) (-1675 (((-3 $ "failed") $) 41 (|has| |#1| (-336)))) (-4112 (($ $ $) NIL)) (-4142 (((-1030) $) NIL (|has| |#1| (-1012)))) (-2936 (($ $ |#1|) NIL)) (-2230 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-512)))) (-4155 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 |#1|))) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-268 |#1|)) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-586 |#1|) (-586 |#1|)) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))) (-2533 (((-108) $ $) NIL)) (-4018 (((-108) $) NIL)) (-2238 (($) NIL)) (-2543 ((|#1| $ (-520) (-520)) NIL) ((|#1| $ (-520) (-520) |#1|) NIL) (($ $ (-586 (-520)) (-586 (-520))) NIL)) (-2115 (($ (-586 |#1|)) NIL) (($ (-586 $)) NIL) (($ (-1164 |#1|)) 51)) (-3149 (((-108) $) NIL)) (-4145 ((|#1| $) 26 (|has| |#1| (-6 (-4231 "*"))))) (-4159 (((-706) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229))) (((-706) |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-2403 (($ $) NIL)) (-1429 (((-496) $) 62 (|has| |#1| (-561 (-496))))) (-2460 (((-1164 |#1|) $ (-520)) NIL)) (-2188 (($ (-1164 |#1|)) NIL) (((-791) $) NIL (|has| |#1| (-560 (-791))))) (-1662 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-3669 (((-108) $) NIL)) (-1530 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-1619 (($ $ |#1|) NIL (|has| |#1| (-336)))) (-1611 (($ $ $) NIL) (($ $) NIL)) (-1601 (($ $ $) NIL)) (** (($ $ (-706)) 23) (($ $ (-520)) 44 (|has| |#1| (-336)))) (* (($ $ $) 13) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-520) $) NIL) (((-1164 |#1|) $ (-1164 |#1|)) NIL) (((-1164 |#1|) (-1164 |#1|) $) NIL)) (-3474 (((-706) $) NIL (|has| $ (-6 -4229)))))
-(((-626 |#1|) (-13 (-624 |#1| (-1164 |#1|) (-1164 |#1|)) (-10 -8 (-15 -2115 ($ (-1164 |#1|))) (IF (|has| |#1| (-561 (-496))) (-6 (-561 (-496))) |%noBranch|) (IF (|has| |#1| (-336)) (-15 -1675 ((-3 $ "failed") $)) |%noBranch|))) (-969)) (T -626))
-((-1675 (*1 *1 *1) (|partial| -12 (-5 *1 (-626 *2)) (-4 *2 (-336)) (-4 *2 (-969)))) (-2115 (*1 *1 *2) (-12 (-5 *2 (-1164 *3)) (-4 *3 (-969)) (-5 *1 (-626 *3)))))
-(-13 (-624 |#1| (-1164 |#1|) (-1164 |#1|)) (-10 -8 (-15 -2115 ($ (-1164 |#1|))) (IF (|has| |#1| (-561 (-496))) (-6 (-561 (-496))) |%noBranch|) (IF (|has| |#1| (-336)) (-15 -1675 ((-3 $ "failed") $)) |%noBranch|)))
-((-2425 (((-626 |#1|) (-626 |#1|) (-626 |#1|) (-626 |#1|)) 25)) (-3956 (((-626 |#1|) (-626 |#1|) (-626 |#1|) |#1|) 21)) (-1215 (((-626 |#1|) (-626 |#1|) (-626 |#1|) (-626 |#1|) (-626 |#1|) (-706)) 26)) (-3463 (((-626 |#1|) (-626 |#1|) (-626 |#1|) (-626 |#1|)) 14)) (-3428 (((-626 |#1|) (-626 |#1|) (-626 |#1|) (-626 |#1|)) 18) (((-626 |#1|) (-626 |#1|) (-626 |#1|)) 16)) (-2718 (((-626 |#1|) (-626 |#1|) |#1| (-626 |#1|)) 20)) (-2791 (((-626 |#1|) (-626 |#1|) (-626 |#1|)) 12)) (** (((-626 |#1|) (-626 |#1|) (-706)) 30)))
-(((-627 |#1|) (-10 -7 (-15 -2791 ((-626 |#1|) (-626 |#1|) (-626 |#1|))) (-15 -3463 ((-626 |#1|) (-626 |#1|) (-626 |#1|) (-626 |#1|))) (-15 -3428 ((-626 |#1|) (-626 |#1|) (-626 |#1|))) (-15 -3428 ((-626 |#1|) (-626 |#1|) (-626 |#1|) (-626 |#1|))) (-15 -2718 ((-626 |#1|) (-626 |#1|) |#1| (-626 |#1|))) (-15 -3956 ((-626 |#1|) (-626 |#1|) (-626 |#1|) |#1|)) (-15 -2425 ((-626 |#1|) (-626 |#1|) (-626 |#1|) (-626 |#1|))) (-15 -1215 ((-626 |#1|) (-626 |#1|) (-626 |#1|) (-626 |#1|) (-626 |#1|) (-706))) (-15 ** ((-626 |#1|) (-626 |#1|) (-706)))) (-969)) (T -627))
-((** (*1 *2 *2 *3) (-12 (-5 *2 (-626 *4)) (-5 *3 (-706)) (-4 *4 (-969)) (-5 *1 (-627 *4)))) (-1215 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-626 *4)) (-5 *3 (-706)) (-4 *4 (-969)) (-5 *1 (-627 *4)))) (-2425 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-969)) (-5 *1 (-627 *3)))) (-3956 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-626 *3)) (-4 *3 (-969)) (-5 *1 (-627 *3)))) (-2718 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-969)) (-5 *1 (-627 *3)))) (-3428 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-969)) (-5 *1 (-627 *3)))) (-3428 (*1 *2 *2 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-969)) (-5 *1 (-627 *3)))) (-3463 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-969)) (-5 *1 (-627 *3)))) (-2791 (*1 *2 *2 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-969)) (-5 *1 (-627 *3)))))
-(-10 -7 (-15 -2791 ((-626 |#1|) (-626 |#1|) (-626 |#1|))) (-15 -3463 ((-626 |#1|) (-626 |#1|) (-626 |#1|) (-626 |#1|))) (-15 -3428 ((-626 |#1|) (-626 |#1|) (-626 |#1|))) (-15 -3428 ((-626 |#1|) (-626 |#1|) (-626 |#1|) (-626 |#1|))) (-15 -2718 ((-626 |#1|) (-626 |#1|) |#1| (-626 |#1|))) (-15 -3956 ((-626 |#1|) (-626 |#1|) (-626 |#1|) |#1|)) (-15 -2425 ((-626 |#1|) (-626 |#1|) (-626 |#1|) (-626 |#1|))) (-15 -1215 ((-626 |#1|) (-626 |#1|) (-626 |#1|) (-626 |#1|) (-626 |#1|) (-706))) (-15 ** ((-626 |#1|) (-626 |#1|) (-706))))
-((-1829 ((|#2| |#2| |#4|) 25)) (-3714 (((-626 |#2|) |#3| |#4|) 31)) (-3307 (((-626 |#2|) |#2| |#4|) 30)) (-3136 (((-1164 |#2|) |#2| |#4|) 16)) (-2677 ((|#2| |#3| |#4|) 24)) (-4077 (((-626 |#2|) |#3| |#4| (-706) (-706)) 38)) (-1837 (((-626 |#2|) |#2| |#4| (-706)) 37)))
-(((-628 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3136 ((-1164 |#2|) |#2| |#4|)) (-15 -2677 (|#2| |#3| |#4|)) (-15 -1829 (|#2| |#2| |#4|)) (-15 -3307 ((-626 |#2|) |#2| |#4|)) (-15 -1837 ((-626 |#2|) |#2| |#4| (-706))) (-15 -3714 ((-626 |#2|) |#3| |#4|)) (-15 -4077 ((-626 |#2|) |#3| |#4| (-706) (-706)))) (-1012) (-828 |#1|) (-346 |#2|) (-13 (-346 |#1|) (-10 -7 (-6 -4229)))) (T -628))
-((-4077 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-706)) (-4 *6 (-1012)) (-4 *7 (-828 *6)) (-5 *2 (-626 *7)) (-5 *1 (-628 *6 *7 *3 *4)) (-4 *3 (-346 *7)) (-4 *4 (-13 (-346 *6) (-10 -7 (-6 -4229)))))) (-3714 (*1 *2 *3 *4) (-12 (-4 *5 (-1012)) (-4 *6 (-828 *5)) (-5 *2 (-626 *6)) (-5 *1 (-628 *5 *6 *3 *4)) (-4 *3 (-346 *6)) (-4 *4 (-13 (-346 *5) (-10 -7 (-6 -4229)))))) (-1837 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-706)) (-4 *6 (-1012)) (-4 *3 (-828 *6)) (-5 *2 (-626 *3)) (-5 *1 (-628 *6 *3 *7 *4)) (-4 *7 (-346 *3)) (-4 *4 (-13 (-346 *6) (-10 -7 (-6 -4229)))))) (-3307 (*1 *2 *3 *4) (-12 (-4 *5 (-1012)) (-4 *3 (-828 *5)) (-5 *2 (-626 *3)) (-5 *1 (-628 *5 *3 *6 *4)) (-4 *6 (-346 *3)) (-4 *4 (-13 (-346 *5) (-10 -7 (-6 -4229)))))) (-1829 (*1 *2 *2 *3) (-12 (-4 *4 (-1012)) (-4 *2 (-828 *4)) (-5 *1 (-628 *4 *2 *5 *3)) (-4 *5 (-346 *2)) (-4 *3 (-13 (-346 *4) (-10 -7 (-6 -4229)))))) (-2677 (*1 *2 *3 *4) (-12 (-4 *5 (-1012)) (-4 *2 (-828 *5)) (-5 *1 (-628 *5 *2 *3 *4)) (-4 *3 (-346 *2)) (-4 *4 (-13 (-346 *5) (-10 -7 (-6 -4229)))))) (-3136 (*1 *2 *3 *4) (-12 (-4 *5 (-1012)) (-4 *3 (-828 *5)) (-5 *2 (-1164 *3)) (-5 *1 (-628 *5 *3 *6 *4)) (-4 *6 (-346 *3)) (-4 *4 (-13 (-346 *5) (-10 -7 (-6 -4229)))))))
-(-10 -7 (-15 -3136 ((-1164 |#2|) |#2| |#4|)) (-15 -2677 (|#2| |#3| |#4|)) (-15 -1829 (|#2| |#2| |#4|)) (-15 -3307 ((-626 |#2|) |#2| |#4|)) (-15 -1837 ((-626 |#2|) |#2| |#4| (-706))) (-15 -3714 ((-626 |#2|) |#3| |#4|)) (-15 -4077 ((-626 |#2|) |#3| |#4| (-706) (-706))))
-((-3029 (((-2 (|:| |num| (-626 |#1|)) (|:| |den| |#1|)) (-626 |#2|)) 18)) (-2412 ((|#1| (-626 |#2|)) 9)) (-1387 (((-626 |#1|) (-626 |#2|)) 16)))
-(((-629 |#1| |#2|) (-10 -7 (-15 -2412 (|#1| (-626 |#2|))) (-15 -1387 ((-626 |#1|) (-626 |#2|))) (-15 -3029 ((-2 (|:| |num| (-626 |#1|)) (|:| |den| |#1|)) (-626 |#2|)))) (-512) (-917 |#1|)) (T -629))
-((-3029 (*1 *2 *3) (-12 (-5 *3 (-626 *5)) (-4 *5 (-917 *4)) (-4 *4 (-512)) (-5 *2 (-2 (|:| |num| (-626 *4)) (|:| |den| *4))) (-5 *1 (-629 *4 *5)))) (-1387 (*1 *2 *3) (-12 (-5 *3 (-626 *5)) (-4 *5 (-917 *4)) (-4 *4 (-512)) (-5 *2 (-626 *4)) (-5 *1 (-629 *4 *5)))) (-2412 (*1 *2 *3) (-12 (-5 *3 (-626 *4)) (-4 *4 (-917 *2)) (-4 *2 (-512)) (-5 *1 (-629 *2 *4)))))
-(-10 -7 (-15 -2412 (|#1| (-626 |#2|))) (-15 -1387 ((-626 |#1|) (-626 |#2|))) (-15 -3029 ((-2 (|:| |num| (-626 |#1|)) (|:| |den| |#1|)) (-626 |#2|))))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) NIL)) (-2583 (($ $) NIL)) (-1671 (((-108) $) NIL)) (-1405 (((-626 (-635))) NIL) (((-626 (-635)) (-1164 $)) NIL)) (-1864 (((-635) $) NIL)) (-2903 (($ $) NIL (|has| (-635) (-1104)))) (-2768 (($ $) NIL (|has| (-635) (-1104)))) (-1891 (((-1092 (-849) (-706)) (-520)) NIL (|has| (-635) (-322)))) (-1917 (((-3 $ "failed") $ $) NIL)) (-4119 (((-391 (-1079 $)) (-1079 $)) NIL (-12 (|has| (-635) (-281)) (|has| (-635) (-837))))) (-3024 (($ $) NIL (-3700 (-12 (|has| (-635) (-281)) (|has| (-635) (-837))) (|has| (-635) (-336))))) (-1507 (((-391 $) $) NIL (-3700 (-12 (|has| (-635) (-281)) (|has| (-635) (-837))) (|has| (-635) (-336))))) (-1927 (($ $) NIL (-12 (|has| (-635) (-926)) (|has| (-635) (-1104))))) (-3481 (((-3 (-586 (-1079 $)) "failed") (-586 (-1079 $)) (-1079 $)) NIL (-12 (|has| (-635) (-281)) (|has| (-635) (-837))))) (-1327 (((-108) $ $) NIL (|has| (-635) (-281)))) (-1628 (((-706)) NIL (|has| (-635) (-341)))) (-2879 (($ $) NIL (|has| (-635) (-1104)))) (-2745 (($ $) NIL (|has| (-635) (-1104)))) (-2925 (($ $) NIL (|has| (-635) (-1104)))) (-2789 (($ $) NIL (|has| (-635) (-1104)))) (-3961 (($) NIL T CONST)) (-1296 (((-3 (-520) "failed") $) NIL) (((-3 (-635) "failed") $) NIL) (((-3 (-380 (-520)) "failed") $) NIL (|has| (-635) (-960 (-380 (-520)))))) (-1482 (((-520) $) NIL) (((-635) $) NIL) (((-380 (-520)) $) NIL (|has| (-635) (-960 (-380 (-520)))))) (-3705 (($ (-1164 (-635))) NIL) (($ (-1164 (-635)) (-1164 $)) NIL)) (-2654 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-635) (-322)))) (-2276 (($ $ $) NIL (|has| (-635) (-281)))) (-3604 (((-626 (-635)) $) NIL) (((-626 (-635)) $ (-1164 $)) NIL)) (-2756 (((-626 (-635)) (-626 $)) NIL) (((-2 (|:| -3927 (-626 (-635))) (|:| |vec| (-1164 (-635)))) (-626 $) (-1164 $)) NIL) (((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 $) (-1164 $)) NIL (|has| (-635) (-582 (-520)))) (((-626 (-520)) (-626 $)) NIL (|has| (-635) (-582 (-520))))) (-3856 (((-3 $ "failed") (-380 (-1079 (-635)))) NIL (|has| (-635) (-336))) (($ (-1079 (-635))) NIL)) (-1540 (((-3 $ "failed") $) NIL)) (-1936 (((-635) $) 29)) (-2279 (((-3 (-380 (-520)) "failed") $) NIL (|has| (-635) (-505)))) (-1386 (((-108) $) NIL (|has| (-635) (-505)))) (-4055 (((-380 (-520)) $) NIL (|has| (-635) (-505)))) (-3160 (((-849)) NIL)) (-3249 (($) NIL (|has| (-635) (-341)))) (-2253 (($ $ $) NIL (|has| (-635) (-281)))) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) NIL (|has| (-635) (-281)))) (-2961 (($) NIL (|has| (-635) (-322)))) (-1855 (((-108) $) NIL (|has| (-635) (-322)))) (-1346 (($ $) NIL (|has| (-635) (-322))) (($ $ (-706)) NIL (|has| (-635) (-322)))) (-2036 (((-108) $) NIL (-3700 (-12 (|has| (-635) (-281)) (|has| (-635) (-837))) (|has| (-635) (-336))))) (-1838 (((-2 (|:| |r| (-635)) (|:| |phi| (-635))) $) NIL (-12 (|has| (-635) (-978)) (|has| (-635) (-1104))))) (-2833 (($) NIL (|has| (-635) (-1104)))) (-1272 (((-817 (-352) $) $ (-820 (-352)) (-817 (-352) $)) NIL (|has| (-635) (-814 (-352)))) (((-817 (-520) $) $ (-820 (-520)) (-817 (-520) $)) NIL (|has| (-635) (-814 (-520))))) (-3989 (((-769 (-849)) $) NIL (|has| (-635) (-322))) (((-849) $) NIL (|has| (-635) (-322)))) (-1537 (((-108) $) NIL)) (-2322 (($ $ (-520)) NIL (-12 (|has| (-635) (-926)) (|has| (-635) (-1104))))) (-1434 (((-635) $) NIL)) (-1394 (((-3 $ "failed") $) NIL (|has| (-635) (-322)))) (-3188 (((-3 (-586 $) "failed") (-586 $) $) NIL (|has| (-635) (-281)))) (-2034 (((-1079 (-635)) $) NIL (|has| (-635) (-336)))) (-2809 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-1389 (($ (-1 (-635) (-635)) $) NIL)) (-3040 (((-849) $) NIL (|has| (-635) (-341)))) (-1252 (($ $) NIL (|has| (-635) (-1104)))) (-3841 (((-1079 (-635)) $) NIL)) (-2222 (($ (-586 $)) NIL (|has| (-635) (-281))) (($ $ $) NIL (|has| (-635) (-281)))) (-1239 (((-1066) $) NIL)) (-3093 (($ $) NIL (|has| (-635) (-336)))) (-3794 (($) NIL (|has| (-635) (-322)) CONST)) (-2716 (($ (-849)) NIL (|has| (-635) (-341)))) (-1906 (($) NIL)) (-1947 (((-635) $) 31)) (-4142 (((-1030) $) NIL)) (-1382 (($) NIL)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) NIL (|has| (-635) (-281)))) (-2257 (($ (-586 $)) NIL (|has| (-635) (-281))) (($ $ $) NIL (|has| (-635) (-281)))) (-1517 (((-586 (-2 (|:| -1916 (-520)) (|:| -2647 (-520))))) NIL (|has| (-635) (-322)))) (-4133 (((-391 (-1079 $)) (-1079 $)) NIL (-12 (|has| (-635) (-281)) (|has| (-635) (-837))))) (-2017 (((-391 (-1079 $)) (-1079 $)) NIL (-12 (|has| (-635) (-281)) (|has| (-635) (-837))))) (-1916 (((-391 $) $) NIL (-3700 (-12 (|has| (-635) (-281)) (|has| (-635) (-837))) (|has| (-635) (-336))))) (-1283 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-635) (-281))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) NIL (|has| (-635) (-281)))) (-2230 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-635)) NIL (|has| (-635) (-512)))) (-2608 (((-3 (-586 $) "failed") (-586 $) $) NIL (|has| (-635) (-281)))) (-3260 (($ $) NIL (|has| (-635) (-1104)))) (-2286 (($ $ (-1083) (-635)) NIL (|has| (-635) (-481 (-1083) (-635)))) (($ $ (-586 (-1083)) (-586 (-635))) NIL (|has| (-635) (-481 (-1083) (-635)))) (($ $ (-586 (-268 (-635)))) NIL (|has| (-635) (-283 (-635)))) (($ $ (-268 (-635))) NIL (|has| (-635) (-283 (-635)))) (($ $ (-635) (-635)) NIL (|has| (-635) (-283 (-635)))) (($ $ (-586 (-635)) (-586 (-635))) NIL (|has| (-635) (-283 (-635))))) (-3704 (((-706) $) NIL (|has| (-635) (-281)))) (-2543 (($ $ (-635)) NIL (|has| (-635) (-260 (-635) (-635))))) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) NIL (|has| (-635) (-281)))) (-2732 (((-635)) NIL) (((-635) (-1164 $)) NIL)) (-2062 (((-3 (-706) "failed") $ $) NIL (|has| (-635) (-322))) (((-706) $) NIL (|has| (-635) (-322)))) (-2155 (($ $ (-1 (-635) (-635))) NIL) (($ $ (-1 (-635) (-635)) (-706)) NIL) (($ $ (-586 (-1083)) (-586 (-706))) NIL (|has| (-635) (-828 (-1083)))) (($ $ (-1083) (-706)) NIL (|has| (-635) (-828 (-1083)))) (($ $ (-586 (-1083))) NIL (|has| (-635) (-828 (-1083)))) (($ $ (-1083)) NIL (|has| (-635) (-828 (-1083)))) (($ $ (-706)) NIL (|has| (-635) (-209))) (($ $) NIL (|has| (-635) (-209)))) (-3404 (((-626 (-635)) (-1164 $) (-1 (-635) (-635))) NIL (|has| (-635) (-336)))) (-3484 (((-1079 (-635))) NIL)) (-1737 (($ $) NIL (|has| (-635) (-1104)))) (-2799 (($ $) NIL (|has| (-635) (-1104)))) (-3864 (($) NIL (|has| (-635) (-322)))) (-2914 (($ $) NIL (|has| (-635) (-1104)))) (-2779 (($ $) NIL (|has| (-635) (-1104)))) (-2891 (($ $) NIL (|has| (-635) (-1104)))) (-2757 (($ $) NIL (|has| (-635) (-1104)))) (-3790 (((-626 (-635)) (-1164 $)) NIL) (((-1164 (-635)) $) NIL) (((-626 (-635)) (-1164 $) (-1164 $)) NIL) (((-1164 (-635)) $ (-1164 $)) NIL)) (-1429 (((-496) $) NIL (|has| (-635) (-561 (-496)))) (((-154 (-201)) $) NIL (|has| (-635) (-945))) (((-154 (-352)) $) NIL (|has| (-635) (-945))) (((-820 (-352)) $) NIL (|has| (-635) (-561 (-820 (-352))))) (((-820 (-520)) $) NIL (|has| (-635) (-561 (-820 (-520))))) (($ (-1079 (-635))) NIL) (((-1079 (-635)) $) NIL) (($ (-1164 (-635))) NIL) (((-1164 (-635)) $) NIL)) (-2945 (($ $) NIL)) (-3784 (((-3 (-1164 $) "failed") (-626 $)) NIL (-3700 (-12 (|has| (-635) (-281)) (|has| $ (-133)) (|has| (-635) (-837))) (|has| (-635) (-322))))) (-3901 (($ (-635) (-635)) 12)) (-2188 (((-791) $) NIL) (($ (-520)) NIL) (($ $) NIL) (($ (-520)) NIL) (($ (-635)) NIL) (($ (-154 (-352))) 13) (($ (-154 (-520))) 19) (($ (-154 (-635))) 28) (($ (-154 (-637))) 25) (((-154 (-352)) $) 33) (($ (-380 (-520))) NIL (-3700 (|has| (-635) (-960 (-380 (-520)))) (|has| (-635) (-336))))) (-3796 (($ $) NIL (|has| (-635) (-322))) (((-3 $ "failed") $) NIL (-3700 (-12 (|has| (-635) (-281)) (|has| $ (-133)) (|has| (-635) (-837))) (|has| (-635) (-133))))) (-2948 (((-1079 (-635)) $) NIL)) (-3251 (((-706)) NIL)) (-1831 (((-1164 $)) NIL)) (-1758 (($ $) NIL (|has| (-635) (-1104)))) (-2831 (($ $) NIL (|has| (-635) (-1104)))) (-2559 (((-108) $ $) NIL)) (-1744 (($ $) NIL (|has| (-635) (-1104)))) (-2810 (($ $) NIL (|has| (-635) (-1104)))) (-1775 (($ $) NIL (|has| (-635) (-1104)))) (-2855 (($ $) NIL (|has| (-635) (-1104)))) (-3440 (((-635) $) NIL (|has| (-635) (-1104)))) (-3915 (($ $) NIL (|has| (-635) (-1104)))) (-2867 (($ $) NIL (|has| (-635) (-1104)))) (-1767 (($ $) NIL (|has| (-635) (-1104)))) (-2843 (($ $) NIL (|has| (-635) (-1104)))) (-1751 (($ $) NIL (|has| (-635) (-1104)))) (-2820 (($ $) NIL (|has| (-635) (-1104)))) (-2458 (($ $) NIL (|has| (-635) (-978)))) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL (|has| (-635) (-336)))) (-3560 (($) NIL T CONST)) (-3570 (($) NIL T CONST)) (-2211 (($ $ (-1 (-635) (-635))) NIL) (($ $ (-1 (-635) (-635)) (-706)) NIL) (($ $ (-586 (-1083)) (-586 (-706))) NIL (|has| (-635) (-828 (-1083)))) (($ $ (-1083) (-706)) NIL (|has| (-635) (-828 (-1083)))) (($ $ (-586 (-1083))) NIL (|has| (-635) (-828 (-1083)))) (($ $ (-1083)) NIL (|has| (-635) (-828 (-1083)))) (($ $ (-706)) NIL (|has| (-635) (-209))) (($ $) NIL (|has| (-635) (-209)))) (-1573 (((-108) $ $) NIL)) (-1557 (((-108) $ $) NIL)) (-1530 (((-108) $ $) NIL)) (-1565 (((-108) $ $) NIL)) (-1548 (((-108) $ $) NIL)) (-1619 (($ $ $) NIL (|has| (-635) (-336)))) (-1611 (($ $) NIL) (($ $ $) NIL)) (-1601 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ $) NIL (|has| (-635) (-1104))) (($ $ (-380 (-520))) NIL (-12 (|has| (-635) (-926)) (|has| (-635) (-1104)))) (($ $ (-520)) NIL (|has| (-635) (-336)))) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) NIL) (($ (-635) $) NIL) (($ $ (-635)) NIL) (($ (-380 (-520)) $) NIL (|has| (-635) (-336))) (($ $ (-380 (-520))) NIL (|has| (-635) (-336)))))
-(((-630) (-13 (-360) (-151 (-635)) (-10 -8 (-15 -2188 ($ (-154 (-352)))) (-15 -2188 ($ (-154 (-520)))) (-15 -2188 ($ (-154 (-635)))) (-15 -2188 ($ (-154 (-637)))) (-15 -2188 ((-154 (-352)) $))))) (T -630))
-((-2188 (*1 *1 *2) (-12 (-5 *2 (-154 (-352))) (-5 *1 (-630)))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-154 (-520))) (-5 *1 (-630)))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-154 (-635))) (-5 *1 (-630)))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-154 (-637))) (-5 *1 (-630)))) (-2188 (*1 *2 *1) (-12 (-5 *2 (-154 (-352))) (-5 *1 (-630)))))
-(-13 (-360) (-151 (-635)) (-10 -8 (-15 -2188 ($ (-154 (-352)))) (-15 -2188 ($ (-154 (-520)))) (-15 -2188 ($ (-154 (-635)))) (-15 -2188 ($ (-154 (-637)))) (-15 -2188 ((-154 (-352)) $))))
-((-1414 (((-108) $ $) 19 (|has| |#1| (-1012)))) (-2063 (((-108) $ (-706)) 8)) (-1817 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4229)))) (-1627 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4229)))) (-3961 (($) 7 T CONST)) (-3667 (($ $) 62)) (-2331 (($ $) 58 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-3766 (($ |#1| $) 47 (|has| $ (-6 -4229))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4229)))) (-1421 (($ |#1| $) 57 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4229)))) (-3856 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4229))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4229)))) (-3828 (((-586 |#1|) $) 30 (|has| $ (-6 -4229)))) (-3027 (((-108) $ (-706)) 9)) (-3702 (((-586 |#1|) $) 29 (|has| $ (-6 -4229)))) (-2422 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-3830 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#1| |#1|) $) 35)) (-1390 (((-108) $ (-706)) 10)) (-1239 (((-1066) $) 22 (|has| |#1| (-1012)))) (-3351 ((|#1| $) 39)) (-3618 (($ |#1| $) 40) (($ |#1| $ (-706)) 63)) (-4142 (((-1030) $) 21 (|has| |#1| (-1012)))) (-2985 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-3345 ((|#1| $) 41)) (-4155 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 |#1|))) 26 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-268 |#1|)) 25 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-586 |#1|) (-586 |#1|)) 23 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))) (-2533 (((-108) $ $) 14)) (-4018 (((-108) $) 11)) (-2238 (($) 12)) (-3305 (((-586 (-2 (|:| -3043 |#1|) (|:| -4159 (-706)))) $) 61)) (-1645 (($) 49) (($ (-586 |#1|)) 48)) (-4159 (((-706) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4229))) (((-706) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-2403 (($ $) 13)) (-1429 (((-496) $) 59 (|has| |#1| (-561 (-496))))) (-2200 (($ (-586 |#1|)) 50)) (-2188 (((-791) $) 18 (|has| |#1| (-560 (-791))))) (-1898 (($ (-586 |#1|)) 42)) (-1662 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4229)))) (-1530 (((-108) $ $) 20 (|has| |#1| (-1012)))) (-3474 (((-706) $) 6 (|has| $ (-6 -4229)))))
-(((-631 |#1|) (-1195) (-1012)) (T -631))
-((-3618 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-706)) (-4 *1 (-631 *2)) (-4 *2 (-1012)))) (-3667 (*1 *1 *1) (-12 (-4 *1 (-631 *2)) (-4 *2 (-1012)))) (-3305 (*1 *2 *1) (-12 (-4 *1 (-631 *3)) (-4 *3 (-1012)) (-5 *2 (-586 (-2 (|:| -3043 *3) (|:| -4159 (-706))))))))
-(-13 (-211 |t#1|) (-10 -8 (-15 -3618 ($ |t#1| $ (-706))) (-15 -3667 ($ $)) (-15 -3305 ((-586 (-2 (|:| -3043 |t#1|) (|:| -4159 (-706)))) $))))
-(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1012)) ((-560 (-791)) -3700 (|has| |#1| (-1012)) (|has| |#1| (-560 (-791)))) ((-139 |#1|) . T) ((-561 (-496)) |has| |#1| (-561 (-496))) ((-211 |#1|) . T) ((-283 |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))) ((-459 |#1|) . T) ((-481 |#1| |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))) ((-1012) |has| |#1| (-1012)) ((-1118) . T))
-((-2738 (((-586 |#1|) (-586 (-2 (|:| -1916 |#1|) (|:| -2528 (-520)))) (-520)) 46)) (-4096 ((|#1| |#1| (-520)) 45)) (-2257 ((|#1| |#1| |#1| (-520)) 35)) (-1916 (((-586 |#1|) |#1| (-520)) 38)) (-4099 ((|#1| |#1| (-520) |#1| (-520)) 32)) (-3431 (((-586 (-2 (|:| -1916 |#1|) (|:| -2528 (-520)))) |#1| (-520)) 44)))
-(((-632 |#1|) (-10 -7 (-15 -2257 (|#1| |#1| |#1| (-520))) (-15 -4096 (|#1| |#1| (-520))) (-15 -1916 ((-586 |#1|) |#1| (-520))) (-15 -3431 ((-586 (-2 (|:| -1916 |#1|) (|:| -2528 (-520)))) |#1| (-520))) (-15 -2738 ((-586 |#1|) (-586 (-2 (|:| -1916 |#1|) (|:| -2528 (-520)))) (-520))) (-15 -4099 (|#1| |#1| (-520) |#1| (-520)))) (-1140 (-520))) (T -632))
-((-4099 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-520)) (-5 *1 (-632 *2)) (-4 *2 (-1140 *3)))) (-2738 (*1 *2 *3 *4) (-12 (-5 *3 (-586 (-2 (|:| -1916 *5) (|:| -2528 (-520))))) (-5 *4 (-520)) (-4 *5 (-1140 *4)) (-5 *2 (-586 *5)) (-5 *1 (-632 *5)))) (-3431 (*1 *2 *3 *4) (-12 (-5 *4 (-520)) (-5 *2 (-586 (-2 (|:| -1916 *3) (|:| -2528 *4)))) (-5 *1 (-632 *3)) (-4 *3 (-1140 *4)))) (-1916 (*1 *2 *3 *4) (-12 (-5 *4 (-520)) (-5 *2 (-586 *3)) (-5 *1 (-632 *3)) (-4 *3 (-1140 *4)))) (-4096 (*1 *2 *2 *3) (-12 (-5 *3 (-520)) (-5 *1 (-632 *2)) (-4 *2 (-1140 *3)))) (-2257 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-520)) (-5 *1 (-632 *2)) (-4 *2 (-1140 *3)))))
-(-10 -7 (-15 -2257 (|#1| |#1| |#1| (-520))) (-15 -4096 (|#1| |#1| (-520))) (-15 -1916 ((-586 |#1|) |#1| (-520))) (-15 -3431 ((-586 (-2 (|:| -1916 |#1|) (|:| -2528 (-520)))) |#1| (-520))) (-15 -2738 ((-586 |#1|) (-586 (-2 (|:| -1916 |#1|) (|:| -2528 (-520)))) (-520))) (-15 -4099 (|#1| |#1| (-520) |#1| (-520))))
-((-3373 (((-1 (-871 (-201)) (-201) (-201)) (-1 (-201) (-201) (-201)) (-1 (-201) (-201) (-201)) (-1 (-201) (-201) (-201)) (-1 (-201) (-201) (-201) (-201))) 17)) (-2511 (((-1043 (-201)) (-1043 (-201)) (-1 (-871 (-201)) (-201) (-201)) (-1007 (-201)) (-1007 (-201)) (-586 (-238))) 38) (((-1043 (-201)) (-1 (-871 (-201)) (-201) (-201)) (-1007 (-201)) (-1007 (-201)) (-586 (-238))) 40) (((-1043 (-201)) (-1 (-201) (-201) (-201)) (-1 (-201) (-201) (-201)) (-1 (-201) (-201) (-201)) (-3 (-1 (-201) (-201) (-201) (-201)) "undefined") (-1007 (-201)) (-1007 (-201)) (-586 (-238))) 42)) (-3980 (((-1043 (-201)) (-289 (-520)) (-289 (-520)) (-289 (-520)) (-1 (-201) (-201)) (-1007 (-201)) (-586 (-238))) NIL)) (-2159 (((-1043 (-201)) (-1 (-201) (-201) (-201)) (-3 (-1 (-201) (-201) (-201) (-201)) "undefined") (-1007 (-201)) (-1007 (-201)) (-586 (-238))) 43)))
-(((-633) (-10 -7 (-15 -2511 ((-1043 (-201)) (-1 (-201) (-201) (-201)) (-1 (-201) (-201) (-201)) (-1 (-201) (-201) (-201)) (-3 (-1 (-201) (-201) (-201) (-201)) "undefined") (-1007 (-201)) (-1007 (-201)) (-586 (-238)))) (-15 -2511 ((-1043 (-201)) (-1 (-871 (-201)) (-201) (-201)) (-1007 (-201)) (-1007 (-201)) (-586 (-238)))) (-15 -2511 ((-1043 (-201)) (-1043 (-201)) (-1 (-871 (-201)) (-201) (-201)) (-1007 (-201)) (-1007 (-201)) (-586 (-238)))) (-15 -2159 ((-1043 (-201)) (-1 (-201) (-201) (-201)) (-3 (-1 (-201) (-201) (-201) (-201)) "undefined") (-1007 (-201)) (-1007 (-201)) (-586 (-238)))) (-15 -3980 ((-1043 (-201)) (-289 (-520)) (-289 (-520)) (-289 (-520)) (-1 (-201) (-201)) (-1007 (-201)) (-586 (-238)))) (-15 -3373 ((-1 (-871 (-201)) (-201) (-201)) (-1 (-201) (-201) (-201)) (-1 (-201) (-201) (-201)) (-1 (-201) (-201) (-201)) (-1 (-201) (-201) (-201) (-201)))))) (T -633))
-((-3373 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-201) (-201) (-201))) (-5 *4 (-1 (-201) (-201) (-201) (-201))) (-5 *2 (-1 (-871 (-201)) (-201) (-201))) (-5 *1 (-633)))) (-3980 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-289 (-520))) (-5 *4 (-1 (-201) (-201))) (-5 *5 (-1007 (-201))) (-5 *6 (-586 (-238))) (-5 *2 (-1043 (-201))) (-5 *1 (-633)))) (-2159 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-201) (-201) (-201))) (-5 *4 (-3 (-1 (-201) (-201) (-201) (-201)) "undefined")) (-5 *5 (-1007 (-201))) (-5 *6 (-586 (-238))) (-5 *2 (-1043 (-201))) (-5 *1 (-633)))) (-2511 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1043 (-201))) (-5 *3 (-1 (-871 (-201)) (-201) (-201))) (-5 *4 (-1007 (-201))) (-5 *5 (-586 (-238))) (-5 *1 (-633)))) (-2511 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-871 (-201)) (-201) (-201))) (-5 *4 (-1007 (-201))) (-5 *5 (-586 (-238))) (-5 *2 (-1043 (-201))) (-5 *1 (-633)))) (-2511 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-201) (-201) (-201))) (-5 *4 (-3 (-1 (-201) (-201) (-201) (-201)) "undefined")) (-5 *5 (-1007 (-201))) (-5 *6 (-586 (-238))) (-5 *2 (-1043 (-201))) (-5 *1 (-633)))))
-(-10 -7 (-15 -2511 ((-1043 (-201)) (-1 (-201) (-201) (-201)) (-1 (-201) (-201) (-201)) (-1 (-201) (-201) (-201)) (-3 (-1 (-201) (-201) (-201) (-201)) "undefined") (-1007 (-201)) (-1007 (-201)) (-586 (-238)))) (-15 -2511 ((-1043 (-201)) (-1 (-871 (-201)) (-201) (-201)) (-1007 (-201)) (-1007 (-201)) (-586 (-238)))) (-15 -2511 ((-1043 (-201)) (-1043 (-201)) (-1 (-871 (-201)) (-201) (-201)) (-1007 (-201)) (-1007 (-201)) (-586 (-238)))) (-15 -2159 ((-1043 (-201)) (-1 (-201) (-201) (-201)) (-3 (-1 (-201) (-201) (-201) (-201)) "undefined") (-1007 (-201)) (-1007 (-201)) (-586 (-238)))) (-15 -3980 ((-1043 (-201)) (-289 (-520)) (-289 (-520)) (-289 (-520)) (-1 (-201) (-201)) (-1007 (-201)) (-586 (-238)))) (-15 -3373 ((-1 (-871 (-201)) (-201) (-201)) (-1 (-201) (-201) (-201)) (-1 (-201) (-201) (-201)) (-1 (-201) (-201) (-201)) (-1 (-201) (-201) (-201) (-201)))))
-((-1916 (((-391 (-1079 |#4|)) (-1079 |#4|)) 73) (((-391 |#4|) |#4|) 217)))
-(((-634 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1916 ((-391 |#4|) |#4|)) (-15 -1916 ((-391 (-1079 |#4|)) (-1079 |#4|)))) (-783) (-728) (-322) (-877 |#3| |#2| |#1|)) (T -634))
-((-1916 (*1 *2 *3) (-12 (-4 *4 (-783)) (-4 *5 (-728)) (-4 *6 (-322)) (-4 *7 (-877 *6 *5 *4)) (-5 *2 (-391 (-1079 *7))) (-5 *1 (-634 *4 *5 *6 *7)) (-5 *3 (-1079 *7)))) (-1916 (*1 *2 *3) (-12 (-4 *4 (-783)) (-4 *5 (-728)) (-4 *6 (-322)) (-5 *2 (-391 *3)) (-5 *1 (-634 *4 *5 *6 *3)) (-4 *3 (-877 *6 *5 *4)))))
-(-10 -7 (-15 -1916 ((-391 |#4|) |#4|)) (-15 -1916 ((-391 (-1079 |#4|)) (-1079 |#4|))))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) 84)) (-4040 (((-520) $) 30)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) NIL)) (-2583 (($ $) NIL)) (-1671 (((-108) $) NIL)) (-2406 (($ $) NIL)) (-1917 (((-3 $ "failed") $ $) NIL)) (-3024 (($ $) NIL)) (-1507 (((-391 $) $) NIL)) (-1927 (($ $) NIL)) (-1327 (((-108) $ $) NIL)) (-2804 (((-520) $) NIL)) (-3961 (($) NIL T CONST)) (-1650 (($ $) NIL)) (-1296 (((-3 (-520) "failed") $) 73) (((-3 (-380 (-520)) "failed") $) 26) (((-3 (-352) "failed") $) 70)) (-1482 (((-520) $) 75) (((-380 (-520)) $) 67) (((-352) $) 68)) (-2276 (($ $ $) 96)) (-1540 (((-3 $ "failed") $) 87)) (-2253 (($ $ $) 95)) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) NIL)) (-2036 (((-108) $) NIL)) (-2173 (((-849)) 77) (((-849) (-849)) 76)) (-2328 (((-108) $) NIL)) (-1272 (((-817 (-352) $) $ (-820 (-352)) (-817 (-352) $)) NIL)) (-3989 (((-520) $) NIL)) (-1537 (((-108) $) NIL)) (-2322 (($ $ (-520)) NIL)) (-1434 (($ $) NIL)) (-3469 (((-108) $) NIL)) (-3188 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-1463 (((-520) (-520)) 81) (((-520)) 82)) (-2809 (($ $ $) NIL) (($) NIL (-12 (-2399 (|has| $ (-6 -4212))) (-2399 (|has| $ (-6 -4220)))))) (-1234 (((-520) (-520)) 79) (((-520)) 80)) (-2446 (($ $ $) NIL) (($) NIL (-12 (-2399 (|has| $ (-6 -4212))) (-2399 (|has| $ (-6 -4220)))))) (-3352 (((-520) $) 16)) (-2222 (($ $ $) NIL) (($ (-586 $)) NIL)) (-1239 (((-1066) $) NIL)) (-3093 (($ $) 91)) (-2344 (((-849) (-520)) NIL (|has| $ (-6 -4220)))) (-4142 (((-1030) $) NIL)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) NIL)) (-2257 (($ $ $) NIL) (($ (-586 $)) NIL)) (-4122 (($ $) NIL)) (-1626 (($ $) NIL)) (-3066 (($ (-520) (-520)) NIL) (($ (-520) (-520) (-849)) NIL)) (-1916 (((-391 $) $) NIL)) (-1283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2230 (((-3 $ "failed") $ $) 92)) (-2608 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-2647 (((-520) $) 22)) (-3704 (((-706) $) NIL)) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) 94)) (-2850 (((-849)) NIL) (((-849) (-849)) NIL (|has| $ (-6 -4220)))) (-2298 (((-849) (-520)) NIL (|has| $ (-6 -4220)))) (-1429 (((-352) $) NIL) (((-201) $) NIL) (((-820 (-352)) $) NIL)) (-2188 (((-791) $) 52) (($ (-520)) 63) (($ $) NIL) (($ (-380 (-520))) 66) (($ (-520)) 63) (($ (-380 (-520))) 66) (($ (-352)) 60) (((-352) $) 50) (($ (-637)) 55)) (-3251 (((-706)) 103)) (-1243 (($ (-520) (-520) (-849)) 44)) (-3370 (($ $) NIL)) (-1567 (((-849)) NIL) (((-849) (-849)) NIL (|has| $ (-6 -4220)))) (-3349 (((-849)) 35) (((-849) (-849)) 78)) (-2559 (((-108) $ $) NIL)) (-2458 (($ $) NIL)) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL)) (-3560 (($) 32 T CONST)) (-3570 (($) 17 T CONST)) (-1573 (((-108) $ $) NIL)) (-1557 (((-108) $ $) NIL)) (-1530 (((-108) $ $) 83)) (-1565 (((-108) $ $) NIL)) (-1548 (((-108) $ $) 101)) (-1619 (($ $ $) 65)) (-1611 (($ $) 99) (($ $ $) 100)) (-1601 (($ $ $) 98)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL) (($ $ (-380 (-520))) 90)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) 97) (($ $ $) 88) (($ $ (-380 (-520))) NIL) (($ (-380 (-520)) $) NIL)))
-(((-635) (-13 (-377) (-360) (-336) (-960 (-352)) (-960 (-380 (-520))) (-135) (-10 -8 (-15 -2173 ((-849) (-849))) (-15 -2173 ((-849))) (-15 -3349 ((-849) (-849))) (-15 -3349 ((-849))) (-15 -1234 ((-520) (-520))) (-15 -1234 ((-520))) (-15 -1463 ((-520) (-520))) (-15 -1463 ((-520))) (-15 -2188 ((-352) $)) (-15 -2188 ($ (-637))) (-15 -3352 ((-520) $)) (-15 -2647 ((-520) $)) (-15 -1243 ($ (-520) (-520) (-849)))))) (T -635))
-((-3349 (*1 *2) (-12 (-5 *2 (-849)) (-5 *1 (-635)))) (-2647 (*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-635)))) (-3352 (*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-635)))) (-2173 (*1 *2) (-12 (-5 *2 (-849)) (-5 *1 (-635)))) (-2173 (*1 *2 *2) (-12 (-5 *2 (-849)) (-5 *1 (-635)))) (-3349 (*1 *2 *2) (-12 (-5 *2 (-849)) (-5 *1 (-635)))) (-1234 (*1 *2 *2) (-12 (-5 *2 (-520)) (-5 *1 (-635)))) (-1234 (*1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-635)))) (-1463 (*1 *2 *2) (-12 (-5 *2 (-520)) (-5 *1 (-635)))) (-1463 (*1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-635)))) (-2188 (*1 *2 *1) (-12 (-5 *2 (-352)) (-5 *1 (-635)))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-637)) (-5 *1 (-635)))) (-1243 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-520)) (-5 *3 (-849)) (-5 *1 (-635)))))
-(-13 (-377) (-360) (-336) (-960 (-352)) (-960 (-380 (-520))) (-135) (-10 -8 (-15 -2173 ((-849) (-849))) (-15 -2173 ((-849))) (-15 -3349 ((-849) (-849))) (-15 -3349 ((-849))) (-15 -1234 ((-520) (-520))) (-15 -1234 ((-520))) (-15 -1463 ((-520) (-520))) (-15 -1463 ((-520))) (-15 -2188 ((-352) $)) (-15 -2188 ($ (-637))) (-15 -3352 ((-520) $)) (-15 -2647 ((-520) $)) (-15 -1243 ($ (-520) (-520) (-849)))))
-((-3825 (((-626 |#1|) (-626 |#1|) |#1| |#1|) 65)) (-2085 (((-626 |#1|) (-626 |#1|) |#1|) 48)) (-1467 (((-626 |#1|) (-626 |#1|) |#1|) 66)) (-1841 (((-626 |#1|) (-626 |#1|)) 49)) (-1999 (((-2 (|:| -2060 |#1|) (|:| -3753 |#1|)) |#1| |#1|) 64)))
-(((-636 |#1|) (-10 -7 (-15 -1841 ((-626 |#1|) (-626 |#1|))) (-15 -2085 ((-626 |#1|) (-626 |#1|) |#1|)) (-15 -1467 ((-626 |#1|) (-626 |#1|) |#1|)) (-15 -3825 ((-626 |#1|) (-626 |#1|) |#1| |#1|)) (-15 -1999 ((-2 (|:| -2060 |#1|) (|:| -3753 |#1|)) |#1| |#1|))) (-281)) (T -636))
-((-1999 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -2060 *3) (|:| -3753 *3))) (-5 *1 (-636 *3)) (-4 *3 (-281)))) (-3825 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-626 *3)) (-4 *3 (-281)) (-5 *1 (-636 *3)))) (-1467 (*1 *2 *2 *3) (-12 (-5 *2 (-626 *3)) (-4 *3 (-281)) (-5 *1 (-636 *3)))) (-2085 (*1 *2 *2 *3) (-12 (-5 *2 (-626 *3)) (-4 *3 (-281)) (-5 *1 (-636 *3)))) (-1841 (*1 *2 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-281)) (-5 *1 (-636 *3)))))
-(-10 -7 (-15 -1841 ((-626 |#1|) (-626 |#1|))) (-15 -2085 ((-626 |#1|) (-626 |#1|) |#1|)) (-15 -1467 ((-626 |#1|) (-626 |#1|) |#1|)) (-15 -3825 ((-626 |#1|) (-626 |#1|) |#1| |#1|)) (-15 -1999 ((-2 (|:| -2060 |#1|) (|:| -3753 |#1|)) |#1| |#1|)))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) NIL)) (-2583 (($ $) NIL)) (-1671 (((-108) $) NIL)) (-3942 (($ $ $) NIL)) (-1917 (((-3 $ "failed") $ $) NIL)) (-2372 (($ $ $ $) NIL)) (-3024 (($ $) NIL)) (-1507 (((-391 $) $) NIL)) (-1327 (((-108) $ $) NIL)) (-2804 (((-520) $) NIL)) (-1660 (($ $ $) NIL)) (-3961 (($) NIL T CONST)) (-1296 (((-3 (-520) "failed") $) 27)) (-1482 (((-520) $) 25)) (-2276 (($ $ $) NIL)) (-2756 (((-626 (-520)) (-626 $)) NIL) (((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 $) (-1164 $)) NIL)) (-1540 (((-3 $ "failed") $) NIL)) (-2279 (((-3 (-380 (-520)) "failed") $) NIL)) (-1386 (((-108) $) NIL)) (-4055 (((-380 (-520)) $) NIL)) (-3249 (($ $) NIL) (($) NIL)) (-2253 (($ $ $) NIL)) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) NIL)) (-2036 (((-108) $) NIL)) (-3028 (($ $ $ $) NIL)) (-3708 (($ $ $) NIL)) (-2328 (((-108) $) NIL)) (-4151 (($ $ $) NIL)) (-1272 (((-817 (-520) $) $ (-820 (-520)) (-817 (-520) $)) NIL)) (-1537 (((-108) $) NIL)) (-2777 (((-108) $) NIL)) (-1394 (((-3 $ "failed") $) NIL)) (-3469 (((-108) $) NIL)) (-3188 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-3368 (($ $ $ $) NIL)) (-2809 (($ $ $) NIL)) (-1545 (((-849) (-849)) 10) (((-849)) 9)) (-2446 (($ $ $) NIL)) (-3886 (($ $) NIL)) (-2515 (($ $) NIL)) (-2222 (($ (-586 $)) NIL) (($ $ $) NIL)) (-1239 (((-1066) $) NIL)) (-1527 (($ $ $) NIL)) (-3794 (($) NIL T CONST)) (-2952 (($ $) NIL)) (-4142 (((-1030) $) NIL) (($ $) NIL)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) NIL)) (-2257 (($ (-586 $)) NIL) (($ $ $) NIL)) (-2724 (($ $) NIL)) (-1916 (((-391 $) $) NIL)) (-1283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2230 (((-3 $ "failed") $ $) NIL)) (-2608 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-3615 (((-108) $) NIL)) (-3704 (((-706) $) NIL)) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) NIL)) (-2155 (($ $) NIL) (($ $ (-706)) NIL)) (-3047 (($ $) NIL)) (-2403 (($ $) NIL)) (-1429 (((-201) $) NIL) (((-352) $) NIL) (((-820 (-520)) $) NIL) (((-496) $) NIL) (((-520) $) NIL)) (-2188 (((-791) $) NIL) (($ (-520)) 24) (($ $) NIL) (($ (-520)) 24) (((-289 $) (-289 (-520))) 18)) (-3251 (((-706)) NIL)) (-3801 (((-108) $ $) NIL)) (-2586 (($ $ $) NIL)) (-3349 (($) NIL)) (-2559 (((-108) $ $) NIL)) (-2642 (($ $ $ $) NIL)) (-2458 (($ $) NIL)) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (-3560 (($) NIL T CONST)) (-3570 (($) NIL T CONST)) (-2211 (($ $) NIL) (($ $ (-706)) NIL)) (-1573 (((-108) $ $) NIL)) (-1557 (((-108) $ $) NIL)) (-1530 (((-108) $ $) NIL)) (-1565 (((-108) $ $) NIL)) (-1548 (((-108) $ $) NIL)) (-1611 (($ $) NIL) (($ $ $) NIL)) (-1601 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) NIL)))
-(((-637) (-13 (-360) (-505) (-10 -8 (-15 -1545 ((-849) (-849))) (-15 -1545 ((-849))) (-15 -2188 ((-289 $) (-289 (-520))))))) (T -637))
-((-1545 (*1 *2 *2) (-12 (-5 *2 (-849)) (-5 *1 (-637)))) (-1545 (*1 *2) (-12 (-5 *2 (-849)) (-5 *1 (-637)))) (-2188 (*1 *2 *3) (-12 (-5 *3 (-289 (-520))) (-5 *2 (-289 (-637))) (-5 *1 (-637)))))
-(-13 (-360) (-505) (-10 -8 (-15 -1545 ((-849) (-849))) (-15 -1545 ((-849))) (-15 -2188 ((-289 $) (-289 (-520))))))
-((-2380 (((-1 |#4| |#2| |#3|) |#1| (-1083) (-1083)) 19)) (-3945 (((-1 |#4| |#2| |#3|) (-1083)) 12)))
-(((-638 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3945 ((-1 |#4| |#2| |#3|) (-1083))) (-15 -2380 ((-1 |#4| |#2| |#3|) |#1| (-1083) (-1083)))) (-561 (-496)) (-1118) (-1118) (-1118)) (T -638))
-((-2380 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1083)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-638 *3 *5 *6 *7)) (-4 *3 (-561 (-496))) (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *7 (-1118)))) (-3945 (*1 *2 *3) (-12 (-5 *3 (-1083)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-638 *4 *5 *6 *7)) (-4 *4 (-561 (-496))) (-4 *5 (-1118)) (-4 *6 (-1118)) (-4 *7 (-1118)))))
-(-10 -7 (-15 -3945 ((-1 |#4| |#2| |#3|) (-1083))) (-15 -2380 ((-1 |#4| |#2| |#3|) |#1| (-1083) (-1083))))
-((-1414 (((-108) $ $) NIL)) (-2500 (((-1169) $ (-706)) 14)) (-3232 (((-706) $) 12)) (-2809 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2188 (((-791) $) 18) ((|#1| $) 15) (($ |#1|) 23)) (-1573 (((-108) $ $) NIL)) (-1557 (((-108) $ $) NIL)) (-1530 (((-108) $ $) 25)) (-1565 (((-108) $ $) NIL)) (-1548 (((-108) $ $) 24)))
-(((-639 |#1|) (-13 (-125) (-560 |#1|) (-10 -8 (-15 -2188 ($ |#1|)))) (-1012)) (T -639))
-((-2188 (*1 *1 *2) (-12 (-5 *1 (-639 *2)) (-4 *2 (-1012)))))
-(-13 (-125) (-560 |#1|) (-10 -8 (-15 -2188 ($ |#1|))))
-((-4196 (((-1 (-201) (-201) (-201)) |#1| (-1083) (-1083)) 33) (((-1 (-201) (-201)) |#1| (-1083)) 38)))
-(((-640 |#1|) (-10 -7 (-15 -4196 ((-1 (-201) (-201)) |#1| (-1083))) (-15 -4196 ((-1 (-201) (-201) (-201)) |#1| (-1083) (-1083)))) (-561 (-496))) (T -640))
-((-4196 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1083)) (-5 *2 (-1 (-201) (-201) (-201))) (-5 *1 (-640 *3)) (-4 *3 (-561 (-496))))) (-4196 (*1 *2 *3 *4) (-12 (-5 *4 (-1083)) (-5 *2 (-1 (-201) (-201))) (-5 *1 (-640 *3)) (-4 *3 (-561 (-496))))))
-(-10 -7 (-15 -4196 ((-1 (-201) (-201)) |#1| (-1083))) (-15 -4196 ((-1 (-201) (-201) (-201)) |#1| (-1083) (-1083))))
-((-2092 (((-1083) |#1| (-1083) (-586 (-1083))) 9) (((-1083) |#1| (-1083) (-1083) (-1083)) 12) (((-1083) |#1| (-1083) (-1083)) 11) (((-1083) |#1| (-1083)) 10)))
-(((-641 |#1|) (-10 -7 (-15 -2092 ((-1083) |#1| (-1083))) (-15 -2092 ((-1083) |#1| (-1083) (-1083))) (-15 -2092 ((-1083) |#1| (-1083) (-1083) (-1083))) (-15 -2092 ((-1083) |#1| (-1083) (-586 (-1083))))) (-561 (-496))) (T -641))
-((-2092 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-586 (-1083))) (-5 *2 (-1083)) (-5 *1 (-641 *3)) (-4 *3 (-561 (-496))))) (-2092 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1083)) (-5 *1 (-641 *3)) (-4 *3 (-561 (-496))))) (-2092 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1083)) (-5 *1 (-641 *3)) (-4 *3 (-561 (-496))))) (-2092 (*1 *2 *3 *2) (-12 (-5 *2 (-1083)) (-5 *1 (-641 *3)) (-4 *3 (-561 (-496))))))
-(-10 -7 (-15 -2092 ((-1083) |#1| (-1083))) (-15 -2092 ((-1083) |#1| (-1083) (-1083))) (-15 -2092 ((-1083) |#1| (-1083) (-1083) (-1083))) (-15 -2092 ((-1083) |#1| (-1083) (-586 (-1083)))))
-((-1673 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9)))
-(((-642 |#1| |#2|) (-10 -7 (-15 -1673 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1118) (-1118)) (T -642))
-((-1673 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-642 *3 *4)) (-4 *3 (-1118)) (-4 *4 (-1118)))))
-(-10 -7 (-15 -1673 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|)))
-((-1531 (((-1 |#3| |#2|) (-1083)) 11)) (-2380 (((-1 |#3| |#2|) |#1| (-1083)) 21)))
-(((-643 |#1| |#2| |#3|) (-10 -7 (-15 -1531 ((-1 |#3| |#2|) (-1083))) (-15 -2380 ((-1 |#3| |#2|) |#1| (-1083)))) (-561 (-496)) (-1118) (-1118)) (T -643))
-((-2380 (*1 *2 *3 *4) (-12 (-5 *4 (-1083)) (-5 *2 (-1 *6 *5)) (-5 *1 (-643 *3 *5 *6)) (-4 *3 (-561 (-496))) (-4 *5 (-1118)) (-4 *6 (-1118)))) (-1531 (*1 *2 *3) (-12 (-5 *3 (-1083)) (-5 *2 (-1 *6 *5)) (-5 *1 (-643 *4 *5 *6)) (-4 *4 (-561 (-496))) (-4 *5 (-1118)) (-4 *6 (-1118)))))
-(-10 -7 (-15 -1531 ((-1 |#3| |#2|) (-1083))) (-15 -2380 ((-1 |#3| |#2|) |#1| (-1083))))
-((-1544 (((-3 (-586 (-1079 |#4|)) "failed") (-1079 |#4|) (-586 |#2|) (-586 (-1079 |#4|)) (-586 |#3|) (-586 |#4|) (-586 (-586 (-2 (|:| -1552 (-706)) (|:| |pcoef| |#4|)))) (-586 (-706)) (-1164 (-586 (-1079 |#3|))) |#3|) 59)) (-3866 (((-3 (-586 (-1079 |#4|)) "failed") (-1079 |#4|) (-586 |#2|) (-586 (-1079 |#3|)) (-586 |#3|) (-586 |#4|) (-586 (-706)) |#3|) 72)) (-1221 (((-3 (-586 (-1079 |#4|)) "failed") (-1079 |#4|) (-586 |#2|) (-586 |#3|) (-586 (-706)) (-586 (-1079 |#4|)) (-1164 (-586 (-1079 |#3|))) |#3|) 32)))
-(((-644 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1221 ((-3 (-586 (-1079 |#4|)) "failed") (-1079 |#4|) (-586 |#2|) (-586 |#3|) (-586 (-706)) (-586 (-1079 |#4|)) (-1164 (-586 (-1079 |#3|))) |#3|)) (-15 -3866 ((-3 (-586 (-1079 |#4|)) "failed") (-1079 |#4|) (-586 |#2|) (-586 (-1079 |#3|)) (-586 |#3|) (-586 |#4|) (-586 (-706)) |#3|)) (-15 -1544 ((-3 (-586 (-1079 |#4|)) "failed") (-1079 |#4|) (-586 |#2|) (-586 (-1079 |#4|)) (-586 |#3|) (-586 |#4|) (-586 (-586 (-2 (|:| -1552 (-706)) (|:| |pcoef| |#4|)))) (-586 (-706)) (-1164 (-586 (-1079 |#3|))) |#3|))) (-728) (-783) (-281) (-877 |#3| |#1| |#2|)) (T -644))
-((-1544 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-586 (-1079 *13))) (-5 *3 (-1079 *13)) (-5 *4 (-586 *12)) (-5 *5 (-586 *10)) (-5 *6 (-586 *13)) (-5 *7 (-586 (-586 (-2 (|:| -1552 (-706)) (|:| |pcoef| *13))))) (-5 *8 (-586 (-706))) (-5 *9 (-1164 (-586 (-1079 *10)))) (-4 *12 (-783)) (-4 *10 (-281)) (-4 *13 (-877 *10 *11 *12)) (-4 *11 (-728)) (-5 *1 (-644 *11 *12 *10 *13)))) (-3866 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-586 *11)) (-5 *5 (-586 (-1079 *9))) (-5 *6 (-586 *9)) (-5 *7 (-586 *12)) (-5 *8 (-586 (-706))) (-4 *11 (-783)) (-4 *9 (-281)) (-4 *12 (-877 *9 *10 *11)) (-4 *10 (-728)) (-5 *2 (-586 (-1079 *12))) (-5 *1 (-644 *10 *11 *9 *12)) (-5 *3 (-1079 *12)))) (-1221 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-586 (-1079 *11))) (-5 *3 (-1079 *11)) (-5 *4 (-586 *10)) (-5 *5 (-586 *8)) (-5 *6 (-586 (-706))) (-5 *7 (-1164 (-586 (-1079 *8)))) (-4 *10 (-783)) (-4 *8 (-281)) (-4 *11 (-877 *8 *9 *10)) (-4 *9 (-728)) (-5 *1 (-644 *9 *10 *8 *11)))))
-(-10 -7 (-15 -1221 ((-3 (-586 (-1079 |#4|)) "failed") (-1079 |#4|) (-586 |#2|) (-586 |#3|) (-586 (-706)) (-586 (-1079 |#4|)) (-1164 (-586 (-1079 |#3|))) |#3|)) (-15 -3866 ((-3 (-586 (-1079 |#4|)) "failed") (-1079 |#4|) (-586 |#2|) (-586 (-1079 |#3|)) (-586 |#3|) (-586 |#4|) (-586 (-706)) |#3|)) (-15 -1544 ((-3 (-586 (-1079 |#4|)) "failed") (-1079 |#4|) (-586 |#2|) (-586 (-1079 |#4|)) (-586 |#3|) (-586 |#4|) (-586 (-586 (-2 (|:| -1552 (-706)) (|:| |pcoef| |#4|)))) (-586 (-706)) (-1164 (-586 (-1079 |#3|))) |#3|)))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-1917 (((-3 $ "failed") $ $) 19)) (-3961 (($) 17 T CONST)) (-3150 (($ $) 41)) (-1540 (((-3 $ "failed") $) 34)) (-1537 (((-108) $) 31)) (-4039 (($ |#1| (-706)) 39)) (-3562 (((-706) $) 43)) (-3133 ((|#1| $) 42)) (-1239 (((-1066) $) 9)) (-4142 (((-1030) $) 10)) (-2528 (((-706) $) 44)) (-2188 (((-791) $) 11) (($ (-520)) 28) (($ |#1|) 38 (|has| |#1| (-157)))) (-3475 ((|#1| $ (-706)) 40)) (-3251 (((-706)) 29)) (-3504 (($ $ (-849)) 26) (($ $ (-706)) 33)) (-3560 (($) 18 T CONST)) (-3570 (($) 30 T CONST)) (-1530 (((-108) $ $) 6)) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-706)) 32)) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ $ $) 24) (($ $ |#1|) 46) (($ |#1| $) 45)))
-(((-645 |#1|) (-1195) (-969)) (T -645))
-((-2528 (*1 *2 *1) (-12 (-4 *1 (-645 *3)) (-4 *3 (-969)) (-5 *2 (-706)))) (-3562 (*1 *2 *1) (-12 (-4 *1 (-645 *3)) (-4 *3 (-969)) (-5 *2 (-706)))) (-3133 (*1 *2 *1) (-12 (-4 *1 (-645 *2)) (-4 *2 (-969)))) (-3150 (*1 *1 *1) (-12 (-4 *1 (-645 *2)) (-4 *2 (-969)))) (-3475 (*1 *2 *1 *3) (-12 (-5 *3 (-706)) (-4 *1 (-645 *2)) (-4 *2 (-969)))) (-4039 (*1 *1 *2 *3) (-12 (-5 *3 (-706)) (-4 *1 (-645 *2)) (-4 *2 (-969)))))
-(-13 (-969) (-107 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-157)) (-6 (-37 |t#1|)) |%noBranch|) (-15 -2528 ((-706) $)) (-15 -3562 ((-706) $)) (-15 -3133 (|t#1| $)) (-15 -3150 ($ $)) (-15 -3475 (|t#1| $ (-706))) (-15 -4039 ($ |t#1| (-706)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-157)) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-560 (-791)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-653 |#1|) |has| |#1| (-157)) ((-662) . T) ((-975 |#1|) . T) ((-969) . T) ((-976) . T) ((-1024) . T) ((-1012) . T))
-((-1389 ((|#6| (-1 |#4| |#1|) |#3|) 23)))
-(((-646 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1389 (|#6| (-1 |#4| |#1|) |#3|))) (-512) (-1140 |#1|) (-1140 (-380 |#2|)) (-512) (-1140 |#4|) (-1140 (-380 |#5|))) (T -646))
-((-1389 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-512)) (-4 *7 (-512)) (-4 *6 (-1140 *5)) (-4 *2 (-1140 (-380 *8))) (-5 *1 (-646 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1140 (-380 *6))) (-4 *8 (-1140 *7)))))
-(-10 -7 (-15 -1389 (|#6| (-1 |#4| |#1|) |#3|)))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) NIL)) (-2583 (($ $) NIL)) (-1671 (((-108) $) NIL)) (-1917 (((-3 $ "failed") $ $) NIL)) (-3024 (($ $) NIL)) (-1507 (((-391 $) $) NIL)) (-1327 (((-108) $ $) NIL)) (-3961 (($) NIL T CONST)) (-2276 (($ $ $) NIL)) (-3856 (($ |#1| |#2|) NIL)) (-1540 (((-3 $ "failed") $) NIL)) (-2253 (($ $ $) NIL)) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) NIL)) (-2036 (((-108) $) NIL)) (-1537 (((-108) $) NIL)) (-3188 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-3178 ((|#2| $) NIL)) (-2222 (($ $ $) NIL) (($ (-586 $)) NIL)) (-1239 (((-1066) $) NIL)) (-3093 (($ $) NIL)) (-4142 (((-1030) $) NIL)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) NIL)) (-2257 (($ $ $) NIL) (($ (-586 $)) NIL)) (-1916 (((-391 $) $) NIL)) (-1283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2230 (((-3 $ "failed") $ $) NIL)) (-2608 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-1290 (((-3 $ "failed") $ $) NIL)) (-3704 (((-706) $) NIL)) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) NIL)) (-2188 (((-791) $) NIL) (($ (-520)) NIL) (($ $) NIL) (($ (-380 (-520))) NIL) ((|#1| $) NIL)) (-3251 (((-706)) NIL)) (-2559 (((-108) $ $) NIL)) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL)) (-3560 (($) NIL T CONST)) (-3570 (($) NIL T CONST)) (-1530 (((-108) $ $) NIL)) (-1619 (($ $ $) NIL)) (-1611 (($ $) NIL) (($ $ $) NIL)) (-1601 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) NIL) (($ $ (-380 (-520))) NIL) (($ (-380 (-520)) $) NIL)))
-(((-647 |#1| |#2| |#3| |#4| |#5|) (-13 (-336) (-10 -8 (-15 -3178 (|#2| $)) (-15 -2188 (|#1| $)) (-15 -3856 ($ |#1| |#2|)) (-15 -1290 ((-3 $ "failed") $ $)))) (-157) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -647))
-((-3178 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-647 *3 *2 *4 *5 *6)) (-4 *3 (-157)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2188 (*1 *2 *1) (-12 (-4 *2 (-157)) (-5 *1 (-647 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3856 (*1 *1 *2 *3) (-12 (-5 *1 (-647 *2 *3 *4 *5 *6)) (-4 *2 (-157)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1290 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-647 *2 *3 *4 *5 *6)) (-4 *2 (-157)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(-13 (-336) (-10 -8 (-15 -3178 (|#2| $)) (-15 -2188 (|#1| $)) (-15 -3856 ($ |#1| |#2|)) (-15 -1290 ((-3 $ "failed") $ $))))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) 30)) (-2580 (((-1164 |#1|) $ (-706)) NIL)) (-4081 (((-586 (-997)) $) NIL)) (-2083 (($ (-1079 |#1|)) NIL)) (-1278 (((-1079 $) $ (-997)) NIL) (((-1079 |#1|) $) NIL)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) NIL (|has| |#1| (-512)))) (-2583 (($ $) NIL (|has| |#1| (-512)))) (-1671 (((-108) $) NIL (|has| |#1| (-512)))) (-3665 (((-706) $) NIL) (((-706) $ (-586 (-997))) NIL)) (-1917 (((-3 $ "failed") $ $) NIL)) (-3309 (($ $ $) NIL (|has| |#1| (-512)))) (-4119 (((-391 (-1079 $)) (-1079 $)) NIL (|has| |#1| (-837)))) (-3024 (($ $) NIL (|has| |#1| (-424)))) (-1507 (((-391 $) $) NIL (|has| |#1| (-424)))) (-3481 (((-3 (-586 (-1079 $)) "failed") (-586 (-1079 $)) (-1079 $)) NIL (|has| |#1| (-837)))) (-1327 (((-108) $ $) NIL (|has| |#1| (-336)))) (-1628 (((-706)) 47 (|has| |#1| (-341)))) (-3392 (($ $ (-706)) NIL)) (-1371 (($ $ (-706)) NIL)) (-2498 ((|#2| |#2|) 44)) (-1285 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-424)))) (-3961 (($) NIL T CONST)) (-1296 (((-3 |#1| "failed") $) NIL) (((-3 (-380 (-520)) "failed") $) NIL (|has| |#1| (-960 (-380 (-520))))) (((-3 (-520) "failed") $) NIL (|has| |#1| (-960 (-520)))) (((-3 (-997) "failed") $) NIL)) (-1482 ((|#1| $) NIL) (((-380 (-520)) $) NIL (|has| |#1| (-960 (-380 (-520))))) (((-520) $) NIL (|has| |#1| (-960 (-520)))) (((-997) $) NIL)) (-2413 (($ $ $ (-997)) NIL (|has| |#1| (-157))) ((|#1| $ $) NIL (|has| |#1| (-157)))) (-2276 (($ $ $) NIL (|has| |#1| (-336)))) (-3150 (($ $) 34)) (-2756 (((-626 (-520)) (-626 $)) NIL (|has| |#1| (-582 (-520)))) (((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 $) (-1164 $)) NIL (|has| |#1| (-582 (-520)))) (((-2 (|:| -3927 (-626 |#1|)) (|:| |vec| (-1164 |#1|))) (-626 $) (-1164 $)) NIL) (((-626 |#1|) (-626 $)) NIL)) (-3856 (($ |#2|) 42)) (-1540 (((-3 $ "failed") $) 85)) (-3249 (($) 51 (|has| |#1| (-341)))) (-2253 (($ $ $) NIL (|has| |#1| (-336)))) (-3521 (($ $ $) NIL)) (-2847 (($ $ $) NIL (|has| |#1| (-512)))) (-1973 (((-2 (|:| -2972 |#1|) (|:| -2060 $) (|:| -3753 $)) $ $) NIL (|has| |#1| (-512)))) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) NIL (|has| |#1| (-336)))) (-3923 (($ $) NIL (|has| |#1| (-424))) (($ $ (-997)) NIL (|has| |#1| (-424)))) (-3142 (((-586 $) $) NIL)) (-2036 (((-108) $) NIL (|has| |#1| (-837)))) (-2421 (((-885 $)) 79)) (-3397 (($ $ |#1| (-706) $) NIL)) (-1272 (((-817 (-352) $) $ (-820 (-352)) (-817 (-352) $)) NIL (-12 (|has| (-997) (-814 (-352))) (|has| |#1| (-814 (-352))))) (((-817 (-520) $) $ (-820 (-520)) (-817 (-520) $)) NIL (-12 (|has| (-997) (-814 (-520))) (|has| |#1| (-814 (-520)))))) (-3989 (((-706) $ $) NIL (|has| |#1| (-512)))) (-1537 (((-108) $) NIL)) (-1315 (((-706) $) NIL)) (-1394 (((-3 $ "failed") $) NIL (|has| |#1| (-1059)))) (-4065 (($ (-1079 |#1|) (-997)) NIL) (($ (-1079 $) (-997)) NIL)) (-2371 (($ $ (-706)) NIL)) (-3188 (((-3 (-586 $) "failed") (-586 $) $) NIL (|has| |#1| (-336)))) (-1992 (((-586 $) $) NIL)) (-3774 (((-108) $) NIL)) (-4039 (($ |#1| (-706)) 77) (($ $ (-997) (-706)) NIL) (($ $ (-586 (-997)) (-586 (-706))) NIL)) (-1910 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $ (-997)) NIL) (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) NIL)) (-3178 ((|#2|) 45)) (-3562 (((-706) $) NIL) (((-706) $ (-997)) NIL) (((-586 (-706)) $ (-586 (-997))) NIL)) (-2809 (($ $ $) NIL (|has| |#1| (-783)))) (-2446 (($ $ $) NIL (|has| |#1| (-783)))) (-3295 (($ (-1 (-706) (-706)) $) NIL)) (-1389 (($ (-1 |#1| |#1|) $) NIL)) (-3416 (((-1079 |#1|) $) NIL)) (-3186 (((-3 (-997) "failed") $) NIL)) (-3040 (((-849) $) NIL (|has| |#1| (-341)))) (-3841 ((|#2| $) 41)) (-3123 (($ $) NIL)) (-3133 ((|#1| $) 28)) (-2222 (($ (-586 $)) NIL (|has| |#1| (-424))) (($ $ $) NIL (|has| |#1| (-424)))) (-1239 (((-1066) $) NIL)) (-3721 (((-2 (|:| -2060 $) (|:| -3753 $)) $ (-706)) NIL)) (-3548 (((-3 (-586 $) "failed") $) NIL)) (-1205 (((-3 (-586 $) "failed") $) NIL)) (-2568 (((-3 (-2 (|:| |var| (-997)) (|:| -2647 (-706))) "failed") $) NIL)) (-3517 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-3794 (($) NIL (|has| |#1| (-1059)) CONST)) (-2716 (($ (-849)) NIL (|has| |#1| (-341)))) (-4142 (((-1030) $) NIL)) (-3103 (((-108) $) NIL)) (-3113 ((|#1| $) NIL)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) NIL (|has| |#1| (-424)))) (-2257 (($ (-586 $)) NIL (|has| |#1| (-424))) (($ $ $) NIL (|has| |#1| (-424)))) (-2541 (($ $) 78 (|has| |#1| (-322)))) (-4133 (((-391 (-1079 $)) (-1079 $)) NIL (|has| |#1| (-837)))) (-2017 (((-391 (-1079 $)) (-1079 $)) NIL (|has| |#1| (-837)))) (-1916 (((-391 $) $) NIL (|has| |#1| (-837)))) (-1283 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-336))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) NIL (|has| |#1| (-336)))) (-2230 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-512))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-512)))) (-2608 (((-3 (-586 $) "failed") (-586 $) $) NIL (|has| |#1| (-336)))) (-2286 (($ $ (-586 (-268 $))) NIL) (($ $ (-268 $)) NIL) (($ $ $ $) NIL) (($ $ (-586 $) (-586 $)) NIL) (($ $ (-997) |#1|) NIL) (($ $ (-586 (-997)) (-586 |#1|)) NIL) (($ $ (-997) $) NIL) (($ $ (-586 (-997)) (-586 $)) NIL)) (-3704 (((-706) $) NIL (|has| |#1| (-336)))) (-2543 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-380 $) (-380 $) (-380 $)) NIL (|has| |#1| (-512))) ((|#1| (-380 $) |#1|) NIL (|has| |#1| (-336))) (((-380 $) $ (-380 $)) NIL (|has| |#1| (-512)))) (-1554 (((-3 $ "failed") $ (-706)) NIL)) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) 86 (|has| |#1| (-336)))) (-2732 (($ $ (-997)) NIL (|has| |#1| (-157))) ((|#1| $) NIL (|has| |#1| (-157)))) (-2155 (($ $ (-997)) NIL) (($ $ (-586 (-997))) NIL) (($ $ (-997) (-706)) NIL) (($ $ (-586 (-997)) (-586 (-706))) NIL) (($ $ (-706)) NIL) (($ $) NIL) (($ $ (-1083)) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-586 (-1083))) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-1083) (-706)) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-586 (-1083)) (-586 (-706))) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-1 |#1| |#1|) (-706)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2528 (((-706) $) 32) (((-706) $ (-997)) NIL) (((-586 (-706)) $ (-586 (-997))) NIL)) (-1429 (((-820 (-352)) $) NIL (-12 (|has| (-997) (-561 (-820 (-352)))) (|has| |#1| (-561 (-820 (-352)))))) (((-820 (-520)) $) NIL (-12 (|has| (-997) (-561 (-820 (-520)))) (|has| |#1| (-561 (-820 (-520)))))) (((-496) $) NIL (-12 (|has| (-997) (-561 (-496))) (|has| |#1| (-561 (-496)))))) (-1233 ((|#1| $) NIL (|has| |#1| (-424))) (($ $ (-997)) NIL (|has| |#1| (-424)))) (-3784 (((-3 (-1164 $) "failed") (-626 $)) NIL (-12 (|has| $ (-133)) (|has| |#1| (-837))))) (-2234 (((-885 $)) 36)) (-3240 (((-3 $ "failed") $ $) NIL (|has| |#1| (-512))) (((-3 (-380 $) "failed") (-380 $) $) NIL (|has| |#1| (-512)))) (-2188 (((-791) $) 61) (($ (-520)) NIL) (($ |#1|) 58) (($ (-997)) NIL) (($ |#2|) 68) (($ (-380 (-520))) NIL (-3700 (|has| |#1| (-37 (-380 (-520)))) (|has| |#1| (-960 (-380 (-520)))))) (($ $) NIL (|has| |#1| (-512)))) (-4113 (((-586 |#1|) $) NIL)) (-3475 ((|#1| $ (-706)) 63) (($ $ (-997) (-706)) NIL) (($ $ (-586 (-997)) (-586 (-706))) NIL)) (-3796 (((-3 $ "failed") $) NIL (-3700 (-12 (|has| $ (-133)) (|has| |#1| (-837))) (|has| |#1| (-133))))) (-3251 (((-706)) NIL)) (-1782 (($ $ $ (-706)) NIL (|has| |#1| (-157)))) (-2559 (((-108) $ $) NIL (|has| |#1| (-512)))) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (-3560 (($) 20 T CONST)) (-3696 (((-1164 |#1|) $) 75)) (-1915 (($ (-1164 |#1|)) 50)) (-3570 (($) 8 T CONST)) (-2211 (($ $ (-997)) NIL) (($ $ (-586 (-997))) NIL) (($ $ (-997) (-706)) NIL) (($ $ (-586 (-997)) (-586 (-706))) NIL) (($ $ (-706)) NIL) (($ $) NIL) (($ $ (-1083)) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-586 (-1083))) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-1083) (-706)) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-586 (-1083)) (-586 (-706))) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-1 |#1| |#1|) (-706)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3127 (((-1164 |#1|) $) NIL)) (-1573 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1557 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1530 (((-108) $ $) 69)) (-1565 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1548 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1619 (($ $ |#1|) NIL (|has| |#1| (-336)))) (-1611 (($ $) 72) (($ $ $) NIL)) (-1601 (($ $ $) 33)) (** (($ $ (-849)) NIL) (($ $ (-706)) 80)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) 57) (($ $ $) 74) (($ $ (-380 (-520))) NIL (|has| |#1| (-37 (-380 (-520))))) (($ (-380 (-520)) $) NIL (|has| |#1| (-37 (-380 (-520))))) (($ |#1| $) 55) (($ $ |#1|) NIL)))
-(((-648 |#1| |#2|) (-13 (-1140 |#1|) (-10 -8 (-15 -2498 (|#2| |#2|)) (-15 -3178 (|#2|)) (-15 -3856 ($ |#2|)) (-15 -3841 (|#2| $)) (-15 -2188 ($ |#2|)) (-15 -3696 ((-1164 |#1|) $)) (-15 -1915 ($ (-1164 |#1|))) (-15 -3127 ((-1164 |#1|) $)) (-15 -2421 ((-885 $))) (-15 -2234 ((-885 $))) (IF (|has| |#1| (-322)) (-15 -2541 ($ $)) |%noBranch|) (IF (|has| |#1| (-341)) (-6 (-341)) |%noBranch|))) (-969) (-1140 |#1|)) (T -648))
-((-2498 (*1 *2 *2) (-12 (-4 *3 (-969)) (-5 *1 (-648 *3 *2)) (-4 *2 (-1140 *3)))) (-3178 (*1 *2) (-12 (-4 *2 (-1140 *3)) (-5 *1 (-648 *3 *2)) (-4 *3 (-969)))) (-3856 (*1 *1 *2) (-12 (-4 *3 (-969)) (-5 *1 (-648 *3 *2)) (-4 *2 (-1140 *3)))) (-3841 (*1 *2 *1) (-12 (-4 *2 (-1140 *3)) (-5 *1 (-648 *3 *2)) (-4 *3 (-969)))) (-2188 (*1 *1 *2) (-12 (-4 *3 (-969)) (-5 *1 (-648 *3 *2)) (-4 *2 (-1140 *3)))) (-3696 (*1 *2 *1) (-12 (-4 *3 (-969)) (-5 *2 (-1164 *3)) (-5 *1 (-648 *3 *4)) (-4 *4 (-1140 *3)))) (-1915 (*1 *1 *2) (-12 (-5 *2 (-1164 *3)) (-4 *3 (-969)) (-5 *1 (-648 *3 *4)) (-4 *4 (-1140 *3)))) (-3127 (*1 *2 *1) (-12 (-4 *3 (-969)) (-5 *2 (-1164 *3)) (-5 *1 (-648 *3 *4)) (-4 *4 (-1140 *3)))) (-2421 (*1 *2) (-12 (-4 *3 (-969)) (-5 *2 (-885 (-648 *3 *4))) (-5 *1 (-648 *3 *4)) (-4 *4 (-1140 *3)))) (-2234 (*1 *2) (-12 (-4 *3 (-969)) (-5 *2 (-885 (-648 *3 *4))) (-5 *1 (-648 *3 *4)) (-4 *4 (-1140 *3)))) (-2541 (*1 *1 *1) (-12 (-4 *2 (-322)) (-4 *2 (-969)) (-5 *1 (-648 *2 *3)) (-4 *3 (-1140 *2)))))
-(-13 (-1140 |#1|) (-10 -8 (-15 -2498 (|#2| |#2|)) (-15 -3178 (|#2|)) (-15 -3856 ($ |#2|)) (-15 -3841 (|#2| $)) (-15 -2188 ($ |#2|)) (-15 -3696 ((-1164 |#1|) $)) (-15 -1915 ($ (-1164 |#1|))) (-15 -3127 ((-1164 |#1|) $)) (-15 -2421 ((-885 $))) (-15 -2234 ((-885 $))) (IF (|has| |#1| (-322)) (-15 -2541 ($ $)) |%noBranch|) (IF (|has| |#1| (-341)) (-6 (-341)) |%noBranch|)))
-((-1414 (((-108) $ $) NIL)) (-2809 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-1239 (((-1066) $) NIL)) (-2716 ((|#1| $) 13)) (-4142 (((-1030) $) NIL)) (-2647 ((|#2| $) 12)) (-2200 (($ |#1| |#2|) 16)) (-2188 (((-791) $) NIL) (($ (-2 (|:| -2716 |#1|) (|:| -2647 |#2|))) 15) (((-2 (|:| -2716 |#1|) (|:| -2647 |#2|)) $) 14)) (-1573 (((-108) $ $) NIL)) (-1557 (((-108) $ $) NIL)) (-1530 (((-108) $ $) NIL)) (-1565 (((-108) $ $) NIL)) (-1548 (((-108) $ $) 11)))
-(((-649 |#1| |#2| |#3|) (-13 (-783) (-10 -8 (-15 -2647 (|#2| $)) (-15 -2716 (|#1| $)) (-15 -2188 ($ (-2 (|:| -2716 |#1|) (|:| -2647 |#2|)))) (-15 -2188 ((-2 (|:| -2716 |#1|) (|:| -2647 |#2|)) $)) (-15 -2200 ($ |#1| |#2|)))) (-783) (-1012) (-1 (-108) (-2 (|:| -2716 |#1|) (|:| -2647 |#2|)) (-2 (|:| -2716 |#1|) (|:| -2647 |#2|)))) (T -649))
-((-2647 (*1 *2 *1) (-12 (-4 *2 (-1012)) (-5 *1 (-649 *3 *2 *4)) (-4 *3 (-783)) (-14 *4 (-1 (-108) (-2 (|:| -2716 *3) (|:| -2647 *2)) (-2 (|:| -2716 *3) (|:| -2647 *2)))))) (-2716 (*1 *2 *1) (-12 (-4 *2 (-783)) (-5 *1 (-649 *2 *3 *4)) (-4 *3 (-1012)) (-14 *4 (-1 (-108) (-2 (|:| -2716 *2) (|:| -2647 *3)) (-2 (|:| -2716 *2) (|:| -2647 *3)))))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2716 *3) (|:| -2647 *4))) (-4 *3 (-783)) (-4 *4 (-1012)) (-5 *1 (-649 *3 *4 *5)) (-14 *5 (-1 (-108) *2 *2)))) (-2188 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2716 *3) (|:| -2647 *4))) (-5 *1 (-649 *3 *4 *5)) (-4 *3 (-783)) (-4 *4 (-1012)) (-14 *5 (-1 (-108) *2 *2)))) (-2200 (*1 *1 *2 *3) (-12 (-5 *1 (-649 *2 *3 *4)) (-4 *2 (-783)) (-4 *3 (-1012)) (-14 *4 (-1 (-108) (-2 (|:| -2716 *2) (|:| -2647 *3)) (-2 (|:| -2716 *2) (|:| -2647 *3)))))))
-(-13 (-783) (-10 -8 (-15 -2647 (|#2| $)) (-15 -2716 (|#1| $)) (-15 -2188 ($ (-2 (|:| -2716 |#1|) (|:| -2647 |#2|)))) (-15 -2188 ((-2 (|:| -2716 |#1|) (|:| -2647 |#2|)) $)) (-15 -2200 ($ |#1| |#2|))))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) 59)) (-1917 (((-3 $ "failed") $ $) NIL)) (-3961 (($) NIL T CONST)) (-1296 (((-3 |#1| "failed") $) 89) (((-3 (-110) "failed") $) 95)) (-1482 ((|#1| $) NIL) (((-110) $) 39)) (-1540 (((-3 $ "failed") $) 90)) (-2023 ((|#2| (-110) |#2|) 82)) (-1537 (((-108) $) NIL)) (-2590 (($ |#1| (-334 (-110))) 13)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-1853 (($ $ (-1 |#2| |#2|)) 58)) (-3276 (($ $ (-1 |#2| |#2|)) 44)) (-2543 ((|#2| $ |#2|) 32)) (-3745 ((|#1| |#1|) 100 (|has| |#1| (-157)))) (-2188 (((-791) $) 66) (($ (-520)) 17) (($ |#1|) 16) (($ (-110)) 23)) (-3796 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-3251 (((-706)) 36)) (-1691 (($ $) 99 (|has| |#1| (-157))) (($ $ $) 103 (|has| |#1| (-157)))) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (-3560 (($) 20 T CONST)) (-3570 (($) 9 T CONST)) (-1530 (((-108) $ $) NIL)) (-1611 (($ $) 48) (($ $ $) NIL)) (-1601 (($ $ $) 73)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ (-110) (-520)) NIL) (($ $ (-520)) 57)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) 98) (($ $ $) 50) (($ |#1| $) 96 (|has| |#1| (-157))) (($ $ |#1|) 97 (|has| |#1| (-157)))))
-(((-650 |#1| |#2|) (-13 (-969) (-960 |#1|) (-960 (-110)) (-260 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |#1| (-157)) (PROGN (-6 (-37 |#1|)) (-15 -1691 ($ $)) (-15 -1691 ($ $ $)) (-15 -3745 (|#1| |#1|))) |%noBranch|) (-15 -3276 ($ $ (-1 |#2| |#2|))) (-15 -1853 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-110) (-520))) (-15 ** ($ $ (-520))) (-15 -2023 (|#2| (-110) |#2|)) (-15 -2590 ($ |#1| (-334 (-110)))))) (-969) (-588 |#1|)) (T -650))
-((-1691 (*1 *1 *1) (-12 (-4 *2 (-157)) (-4 *2 (-969)) (-5 *1 (-650 *2 *3)) (-4 *3 (-588 *2)))) (-1691 (*1 *1 *1 *1) (-12 (-4 *2 (-157)) (-4 *2 (-969)) (-5 *1 (-650 *2 *3)) (-4 *3 (-588 *2)))) (-3745 (*1 *2 *2) (-12 (-4 *2 (-157)) (-4 *2 (-969)) (-5 *1 (-650 *2 *3)) (-4 *3 (-588 *2)))) (-3276 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-588 *3)) (-4 *3 (-969)) (-5 *1 (-650 *3 *4)))) (-1853 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-588 *3)) (-4 *3 (-969)) (-5 *1 (-650 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-520)) (-4 *4 (-969)) (-5 *1 (-650 *4 *5)) (-4 *5 (-588 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-520)) (-4 *3 (-969)) (-5 *1 (-650 *3 *4)) (-4 *4 (-588 *3)))) (-2023 (*1 *2 *3 *2) (-12 (-5 *3 (-110)) (-4 *4 (-969)) (-5 *1 (-650 *4 *2)) (-4 *2 (-588 *4)))) (-2590 (*1 *1 *2 *3) (-12 (-5 *3 (-334 (-110))) (-4 *2 (-969)) (-5 *1 (-650 *2 *4)) (-4 *4 (-588 *2)))))
-(-13 (-969) (-960 |#1|) (-960 (-110)) (-260 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |#1| (-157)) (PROGN (-6 (-37 |#1|)) (-15 -1691 ($ $)) (-15 -1691 ($ $ $)) (-15 -3745 (|#1| |#1|))) |%noBranch|) (-15 -3276 ($ $ (-1 |#2| |#2|))) (-15 -1853 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-110) (-520))) (-15 ** ($ $ (-520))) (-15 -2023 (|#2| (-110) |#2|)) (-15 -2590 ($ |#1| (-334 (-110))))))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) 33)) (-1917 (((-3 $ "failed") $ $) NIL)) (-3961 (($) NIL T CONST)) (-3856 (($ |#1| |#2|) 25)) (-1540 (((-3 $ "failed") $) 47)) (-1537 (((-108) $) 35)) (-3178 ((|#2| $) 12)) (-1239 (((-1066) $) NIL)) (-3093 (($ $) 48)) (-4142 (((-1030) $) NIL)) (-1290 (((-3 $ "failed") $ $) 46)) (-2188 (((-791) $) 24) (($ (-520)) 19) ((|#1| $) 13)) (-3251 (((-706)) 28)) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (-3560 (($) 16 T CONST)) (-3570 (($) 30 T CONST)) (-1530 (((-108) $ $) 38)) (-1611 (($ $) 43) (($ $ $) 37)) (-1601 (($ $ $) 40)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) 21) (($ $ $) 20)))
-(((-651 |#1| |#2| |#3| |#4| |#5|) (-13 (-969) (-10 -8 (-15 -3178 (|#2| $)) (-15 -2188 (|#1| $)) (-15 -3856 ($ |#1| |#2|)) (-15 -1290 ((-3 $ "failed") $ $)) (-15 -1540 ((-3 $ "failed") $)) (-15 -3093 ($ $)))) (-157) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -651))
-((-1540 (*1 *1 *1) (|partial| -12 (-5 *1 (-651 *2 *3 *4 *5 *6)) (-4 *2 (-157)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3178 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-651 *3 *2 *4 *5 *6)) (-4 *3 (-157)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2188 (*1 *2 *1) (-12 (-4 *2 (-157)) (-5 *1 (-651 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3856 (*1 *1 *2 *3) (-12 (-5 *1 (-651 *2 *3 *4 *5 *6)) (-4 *2 (-157)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1290 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-651 *2 *3 *4 *5 *6)) (-4 *2 (-157)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3093 (*1 *1 *1) (-12 (-5 *1 (-651 *2 *3 *4 *5 *6)) (-4 *2 (-157)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(-13 (-969) (-10 -8 (-15 -3178 (|#2| $)) (-15 -2188 (|#1| $)) (-15 -3856 ($ |#1| |#2|)) (-15 -1290 ((-3 $ "failed") $ $)) (-15 -1540 ((-3 $ "failed") $)) (-15 -3093 ($ $))))
-((* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9)))
-(((-652 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-520) |#1|)) (-15 * (|#1| (-706) |#1|)) (-15 * (|#1| (-849) |#1|))) (-653 |#2|) (-157)) (T -652))
-NIL
-(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-520) |#1|)) (-15 * (|#1| (-706) |#1|)) (-15 * (|#1| (-849) |#1|)))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-1917 (((-3 $ "failed") $ $) 19)) (-3961 (($) 17 T CONST)) (-1239 (((-1066) $) 9)) (-4142 (((-1030) $) 10)) (-2188 (((-791) $) 11)) (-3560 (($) 18 T CONST)) (-1530 (((-108) $ $) 6)) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
-(((-653 |#1|) (-1195) (-157)) (T -653))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) 15)) (-1232 (((-3 $ "failed") $ $) NIL)) (-2547 (($) NIL T CONST)) (-2801 ((|#1| $) 21)) (-2810 (($ $ $) NIL (|has| |#1| (-727)))) (-2446 (($ $ $) NIL (|has| |#1| (-727)))) (-3688 (((-1067) $) 46)) (-4147 (((-1031) $) NIL)) (-2812 ((|#3| $) 22)) (-2189 (((-792) $) 42)) (-3561 (($) 10 T CONST)) (-1574 (((-108) $ $) NIL (|has| |#1| (-727)))) (-1558 (((-108) $ $) NIL (|has| |#1| (-727)))) (-1531 (((-108) $ $) 20)) (-1566 (((-108) $ $) NIL (|has| |#1| (-727)))) (-1549 (((-108) $ $) 24 (|has| |#1| (-727)))) (-1620 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-1612 (($ $) 17) (($ $ $) NIL)) (-1602 (($ $ $) 27)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL)))
+(((-603 |#1| |#2| |#3|) (-13 (-654 |#2|) (-10 -8 (IF (|has| |#1| (-727)) (-6 (-727)) |%noBranch|) (-15 -1620 ($ $ |#3|)) (-15 -1620 ($ |#1| |#3|)) (-15 -2801 (|#1| $)) (-15 -2812 (|#3| $)))) (-654 |#2|) (-157) (|SubsetCategory| (-663) |#2|)) (T -603))
+((-1620 (*1 *1 *1 *2) (-12 (-4 *4 (-157)) (-5 *1 (-603 *3 *4 *2)) (-4 *3 (-654 *4)) (-4 *2 (|SubsetCategory| (-663) *4)))) (-1620 (*1 *1 *2 *3) (-12 (-4 *4 (-157)) (-5 *1 (-603 *2 *4 *3)) (-4 *2 (-654 *4)) (-4 *3 (|SubsetCategory| (-663) *4)))) (-2801 (*1 *2 *1) (-12 (-4 *3 (-157)) (-4 *2 (-654 *3)) (-5 *1 (-603 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-663) *3)))) (-2812 (*1 *2 *1) (-12 (-4 *4 (-157)) (-4 *2 (|SubsetCategory| (-663) *4)) (-5 *1 (-603 *3 *4 *2)) (-4 *3 (-654 *4)))))
+(-13 (-654 |#2|) (-10 -8 (IF (|has| |#1| (-727)) (-6 (-727)) |%noBranch|) (-15 -1620 ($ $ |#3|)) (-15 -1620 ($ |#1| |#3|)) (-15 -2801 (|#1| $)) (-15 -2812 (|#3| $))))
+((-2298 (((-3 (-587 (-1080 |#1|)) "failed") (-587 (-1080 |#1|)) (-1080 |#1|)) 33)))
+(((-604 |#1|) (-10 -7 (-15 -2298 ((-3 (-587 (-1080 |#1|)) "failed") (-587 (-1080 |#1|)) (-1080 |#1|)))) (-838)) (T -604))
+((-2298 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-587 (-1080 *4))) (-5 *3 (-1080 *4)) (-4 *4 (-838)) (-5 *1 (-604 *4)))))
+(-10 -7 (-15 -2298 ((-3 (-587 (-1080 |#1|)) "failed") (-587 (-1080 |#1|)) (-1080 |#1|))))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-4101 (((-587 |#1|) $) 83)) (-1806 (($ $ (-707)) 91)) (-1232 (((-3 $ "failed") $ $) NIL)) (-2547 (($) NIL T CONST)) (-3634 (((-1187 |#1| |#2|) (-1187 |#1| |#2|) $) 48)) (-1297 (((-3 (-612 |#1|) "failed") $) NIL)) (-1483 (((-612 |#1|) $) NIL)) (-3152 (($ $) 90)) (-2678 (((-707) $) NIL)) (-2959 (((-587 $) $) NIL)) (-3649 (((-108) $) NIL)) (-2517 (($ (-612 |#1|) |#2|) 69)) (-2239 (($ $) 87)) (-1390 (($ (-1 |#2| |#2|) $) NIL)) (-3111 (((-1187 |#1| |#2|) (-1187 |#1| |#2|) $) 47)) (-1267 (((-2 (|:| |k| (-612 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3125 (((-612 |#1|) $) NIL)) (-3135 ((|#2| $) NIL)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2288 (($ $ |#1| $) 30) (($ $ (-587 |#1|) (-587 $)) 32)) (-1994 (((-707) $) 89)) (-2201 (($ $ $) 20) (($ (-612 |#1|) (-612 |#1|)) 78) (($ (-612 |#1|) $) 76) (($ $ (-612 |#1|)) 77)) (-2189 (((-792) $) NIL) (($ |#1|) 75) (((-1178 |#1| |#2|) $) 59) (((-1187 |#1| |#2|) $) 41) (($ (-612 |#1|)) 25)) (-1259 (((-587 |#2|) $) NIL)) (-3800 ((|#2| $ (-612 |#1|)) NIL)) (-2973 ((|#2| (-1187 |#1| |#2|) $) 43)) (-3561 (($) 23 T CONST)) (-2352 (((-587 (-2 (|:| |k| (-612 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3213 (((-3 $ "failed") (-1178 |#1| |#2|)) 61)) (-4121 (($ (-612 |#1|)) 14)) (-1531 (((-108) $ $) 44)) (-1620 (($ $ |#2|) NIL (|has| |#2| (-337)))) (-1612 (($ $) 67) (($ $ $) NIL)) (-1602 (($ $ $) 29)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ |#2| $) 28) (($ $ |#2|) NIL) (($ |#2| (-612 |#1|)) NIL)))
+(((-605 |#1| |#2|) (-13 (-348 |#1| |#2|) (-356 |#2| (-612 |#1|)) (-10 -8 (-15 -3213 ((-3 $ "failed") (-1178 |#1| |#2|))) (-15 -2201 ($ (-612 |#1|) (-612 |#1|))) (-15 -2201 ($ (-612 |#1|) $)) (-15 -2201 ($ $ (-612 |#1|))))) (-784) (-157)) (T -605))
+((-3213 (*1 *1 *2) (|partial| -12 (-5 *2 (-1178 *3 *4)) (-4 *3 (-784)) (-4 *4 (-157)) (-5 *1 (-605 *3 *4)))) (-2201 (*1 *1 *2 *2) (-12 (-5 *2 (-612 *3)) (-4 *3 (-784)) (-5 *1 (-605 *3 *4)) (-4 *4 (-157)))) (-2201 (*1 *1 *2 *1) (-12 (-5 *2 (-612 *3)) (-4 *3 (-784)) (-5 *1 (-605 *3 *4)) (-4 *4 (-157)))) (-2201 (*1 *1 *1 *2) (-12 (-5 *2 (-612 *3)) (-4 *3 (-784)) (-5 *1 (-605 *3 *4)) (-4 *4 (-157)))))
+(-13 (-348 |#1| |#2|) (-356 |#2| (-612 |#1|)) (-10 -8 (-15 -3213 ((-3 $ "failed") (-1178 |#1| |#2|))) (-15 -2201 ($ (-612 |#1|) (-612 |#1|))) (-15 -2201 ($ (-612 |#1|) $)) (-15 -2201 ($ $ (-612 |#1|)))))
+((-1505 (((-108) $) NIL) (((-108) (-1 (-108) |#2| |#2|) $) 50)) (-1621 (($ $) NIL) (($ (-1 (-108) |#2| |#2|) $) 11)) (-4098 (($ (-1 (-108) |#2|) $) 28)) (-3081 (($ $) 56)) (-2468 (($ $) 63)) (-3023 (($ |#2| $) NIL) (($ (-1 (-108) |#2|) $) 37)) (-3859 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 51) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 53)) (-3233 (((-521) |#2| $ (-521)) 61) (((-521) |#2| $) NIL) (((-521) (-1 (-108) |#2|) $) 47)) (-1811 (($ (-707) |#2|) 54)) (-3220 (($ $ $) NIL) (($ (-1 (-108) |#2| |#2|) $ $) 30)) (-1318 (($ $ $) NIL) (($ (-1 (-108) |#2| |#2|) $ $) 24)) (-1390 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 55)) (-1580 (($ |#2|) 14)) (-3373 (($ $ $ (-521)) 36) (($ |#2| $ (-521)) 34)) (-3620 (((-3 |#2| "failed") (-1 (-108) |#2|) $) 46)) (-2859 (($ $ (-1132 (-521))) 44) (($ $ (-521)) 38)) (-1497 (($ $ $ (-521)) 60)) (-2404 (($ $) 58)) (-1549 (((-108) $ $) 65)))
+(((-606 |#1| |#2|) (-10 -8 (-15 -1580 (|#1| |#2|)) (-15 -2859 (|#1| |#1| (-521))) (-15 -2859 (|#1| |#1| (-1132 (-521)))) (-15 -3023 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3373 (|#1| |#2| |#1| (-521))) (-15 -3373 (|#1| |#1| |#1| (-521))) (-15 -3220 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -4098 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3023 (|#1| |#2| |#1|)) (-15 -2468 (|#1| |#1|)) (-15 -3220 (|#1| |#1| |#1|)) (-15 -1318 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -1505 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -3233 ((-521) (-1 (-108) |#2|) |#1|)) (-15 -3233 ((-521) |#2| |#1|)) (-15 -3233 ((-521) |#2| |#1| (-521))) (-15 -1318 (|#1| |#1| |#1|)) (-15 -1505 ((-108) |#1|)) (-15 -1497 (|#1| |#1| |#1| (-521))) (-15 -3081 (|#1| |#1|)) (-15 -1621 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -1621 (|#1| |#1|)) (-15 -1549 ((-108) |#1| |#1|)) (-15 -3859 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3859 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3859 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3620 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -1811 (|#1| (-707) |#2|)) (-15 -1390 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1390 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2404 (|#1| |#1|))) (-607 |#2|) (-1119)) (T -606))
+NIL
+(-10 -8 (-15 -1580 (|#1| |#2|)) (-15 -2859 (|#1| |#1| (-521))) (-15 -2859 (|#1| |#1| (-1132 (-521)))) (-15 -3023 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3373 (|#1| |#2| |#1| (-521))) (-15 -3373 (|#1| |#1| |#1| (-521))) (-15 -3220 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -4098 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3023 (|#1| |#2| |#1|)) (-15 -2468 (|#1| |#1|)) (-15 -3220 (|#1| |#1| |#1|)) (-15 -1318 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -1505 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -3233 ((-521) (-1 (-108) |#2|) |#1|)) (-15 -3233 ((-521) |#2| |#1|)) (-15 -3233 ((-521) |#2| |#1| (-521))) (-15 -1318 (|#1| |#1| |#1|)) (-15 -1505 ((-108) |#1|)) (-15 -1497 (|#1| |#1| |#1| (-521))) (-15 -3081 (|#1| |#1|)) (-15 -1621 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -1621 (|#1| |#1|)) (-15 -1549 ((-108) |#1| |#1|)) (-15 -3859 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3859 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3859 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3620 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -1811 (|#1| (-707) |#2|)) (-15 -1390 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1390 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2404 (|#1| |#1|)))
+((-1415 (((-108) $ $) 19 (|has| |#1| (-1013)))) (-3430 ((|#1| $) 48)) (-2092 ((|#1| $) 65)) (-3830 (($ $) 67)) (-1903 (((-1170) $ (-521) (-521)) 97 (|has| $ (-6 -4234)))) (-3861 (($ $ (-521)) 52 (|has| $ (-6 -4234)))) (-1505 (((-108) $) 142 (|has| |#1| (-784))) (((-108) (-1 (-108) |#1| |#1|) $) 136)) (-1621 (($ $) 146 (-12 (|has| |#1| (-784)) (|has| $ (-6 -4234)))) (($ (-1 (-108) |#1| |#1|) $) 145 (|has| $ (-6 -4234)))) (-3211 (($ $) 141 (|has| |#1| (-784))) (($ (-1 (-108) |#1| |#1|) $) 135)) (-2978 (((-108) $ (-707)) 8)) (-2300 ((|#1| $ |#1|) 39 (|has| $ (-6 -4234)))) (-3739 (($ $ $) 56 (|has| $ (-6 -4234)))) (-1509 ((|#1| $ |#1|) 54 (|has| $ (-6 -4234)))) (-3977 ((|#1| $ |#1|) 58 (|has| $ (-6 -4234)))) (-2378 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4234))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4234))) (($ $ "rest" $) 55 (|has| $ (-6 -4234))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4234))) ((|#1| $ (-1132 (-521)) |#1|) 117 (|has| $ (-6 -4234))) ((|#1| $ (-521) |#1|) 86 (|has| $ (-6 -4234)))) (-2675 (($ $ (-587 $)) 41 (|has| $ (-6 -4234)))) (-4098 (($ (-1 (-108) |#1|) $) 129)) (-1628 (($ (-1 (-108) |#1|) $) 102 (|has| $ (-6 -4233)))) (-2080 ((|#1| $) 66)) (-2547 (($) 7 T CONST)) (-3081 (($ $) 144 (|has| $ (-6 -4234)))) (-1862 (($ $) 134)) (-2306 (($ $) 73) (($ $ (-707)) 71)) (-2468 (($ $) 131 (|has| |#1| (-1013)))) (-2332 (($ $) 99 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-3023 (($ |#1| $) 130 (|has| |#1| (-1013))) (($ (-1 (-108) |#1|) $) 125)) (-1422 (($ (-1 (-108) |#1|) $) 103 (|has| $ (-6 -4233))) (($ |#1| $) 100 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-3859 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-3849 ((|#1| $ (-521) |#1|) 85 (|has| $ (-6 -4234)))) (-3626 ((|#1| $ (-521)) 87)) (-1368 (((-108) $) 83)) (-3233 (((-521) |#1| $ (-521)) 139 (|has| |#1| (-1013))) (((-521) |#1| $) 138 (|has| |#1| (-1013))) (((-521) (-1 (-108) |#1|) $) 137)) (-3831 (((-587 |#1|) $) 30 (|has| $ (-6 -4233)))) (-3186 (((-587 $) $) 50)) (-3651 (((-108) $ $) 42 (|has| |#1| (-1013)))) (-1811 (($ (-707) |#1|) 108)) (-2139 (((-108) $ (-707)) 9)) (-2826 (((-521) $) 95 (|has| (-521) (-784)))) (-2810 (($ $ $) 147 (|has| |#1| (-784)))) (-3220 (($ $ $) 132 (|has| |#1| (-784))) (($ (-1 (-108) |#1| |#1|) $ $) 128)) (-1318 (($ $ $) 140 (|has| |#1| (-784))) (($ (-1 (-108) |#1| |#1|) $ $) 133)) (-3757 (((-587 |#1|) $) 29 (|has| $ (-6 -4233)))) (-2221 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-2597 (((-521) $) 94 (|has| (-521) (-784)))) (-2446 (($ $ $) 148 (|has| |#1| (-784)))) (-3833 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-1580 (($ |#1|) 122)) (-3574 (((-108) $ (-707)) 10)) (-1278 (((-587 |#1|) $) 45)) (-2229 (((-108) $) 49)) (-3688 (((-1067) $) 22 (|has| |#1| (-1013)))) (-1441 ((|#1| $) 70) (($ $ (-707)) 68)) (-3373 (($ $ $ (-521)) 127) (($ |#1| $ (-521)) 126)) (-1659 (($ $ $ (-521)) 116) (($ |#1| $ (-521)) 115)) (-1668 (((-587 (-521)) $) 92)) (-2941 (((-108) (-521) $) 91)) (-4147 (((-1031) $) 21 (|has| |#1| (-1013)))) (-2293 ((|#1| $) 76) (($ $ (-707)) 74)) (-3620 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 106)) (-3016 (($ $ |#1|) 96 (|has| $ (-6 -4234)))) (-3924 (((-108) $) 84)) (-1789 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 |#1|))) 26 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) 25 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) 23 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-2488 (((-108) $ $) 14)) (-3821 (((-108) |#1| $) 93 (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2489 (((-587 |#1|) $) 90)) (-3462 (((-108) $) 11)) (-4024 (($) 12)) (-2544 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1132 (-521))) 112) ((|#1| $ (-521)) 89) ((|#1| $ (-521) |#1|) 88)) (-2931 (((-521) $ $) 44)) (-2859 (($ $ (-1132 (-521))) 124) (($ $ (-521)) 123)) (-3691 (($ $ (-1132 (-521))) 114) (($ $ (-521)) 113)) (-2406 (((-108) $) 46)) (-3207 (($ $) 62)) (-2262 (($ $) 59 (|has| $ (-6 -4234)))) (-3083 (((-707) $) 63)) (-3717 (($ $) 64)) (-4163 (((-707) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4233))) (((-707) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-1497 (($ $ $ (-521)) 143 (|has| $ (-6 -4234)))) (-2404 (($ $) 13)) (-1430 (((-497) $) 98 (|has| |#1| (-562 (-497))))) (-2201 (($ (-587 |#1|)) 107)) (-3980 (($ $ $) 61) (($ $ |#1|) 60)) (-4159 (($ $ $) 78) (($ |#1| $) 77) (($ (-587 $)) 110) (($ $ |#1|) 109)) (-2189 (((-792) $) 18 (|has| |#1| (-561 (-792))))) (-3098 (((-587 $) $) 51)) (-2294 (((-108) $ $) 43 (|has| |#1| (-1013)))) (-3049 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4233)))) (-1574 (((-108) $ $) 150 (|has| |#1| (-784)))) (-1558 (((-108) $ $) 151 (|has| |#1| (-784)))) (-1531 (((-108) $ $) 20 (|has| |#1| (-1013)))) (-1566 (((-108) $ $) 149 (|has| |#1| (-784)))) (-1549 (((-108) $ $) 152 (|has| |#1| (-784)))) (-3475 (((-707) $) 6 (|has| $ (-6 -4233)))))
+(((-607 |#1|) (-1196) (-1119)) (T -607))
+((-1580 (*1 *1 *2) (-12 (-4 *1 (-607 *2)) (-4 *2 (-1119)))))
+(-13 (-1058 |t#1|) (-347 |t#1|) (-257 |t#1|) (-10 -8 (-15 -1580 ($ |t#1|))))
+(((-33) . T) ((-97) -3703 (|has| |#1| (-1013)) (|has| |#1| (-784))) ((-561 (-792)) -3703 (|has| |#1| (-1013)) (|has| |#1| (-784)) (|has| |#1| (-561 (-792)))) ((-139 |#1|) . T) ((-562 (-497)) |has| |#1| (-562 (-497))) ((-261 #0=(-521) |#1|) . T) ((-263 #0# |#1|) . T) ((-284 |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-257 |#1|) . T) ((-347 |#1|) . T) ((-460 |#1|) . T) ((-554 #0# |#1|) . T) ((-482 |#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-592 |#1|) . T) ((-784) |has| |#1| (-784)) ((-935 |#1|) . T) ((-1013) -3703 (|has| |#1| (-1013)) (|has| |#1| (-784))) ((-1058 |#1|) . T) ((-1119) . T) ((-1153 |#1|) . T))
+((-3182 (((-587 (-2 (|:| |particular| (-3 (-1165 |#1|) "failed")) (|:| -2470 (-587 (-1165 |#1|))))) (-587 (-587 |#1|)) (-587 (-1165 |#1|))) 21) (((-587 (-2 (|:| |particular| (-3 (-1165 |#1|) "failed")) (|:| -2470 (-587 (-1165 |#1|))))) (-627 |#1|) (-587 (-1165 |#1|))) 20) (((-2 (|:| |particular| (-3 (-1165 |#1|) "failed")) (|:| -2470 (-587 (-1165 |#1|)))) (-587 (-587 |#1|)) (-1165 |#1|)) 16) (((-2 (|:| |particular| (-3 (-1165 |#1|) "failed")) (|:| -2470 (-587 (-1165 |#1|)))) (-627 |#1|) (-1165 |#1|)) 13)) (-3162 (((-707) (-627 |#1|) (-1165 |#1|)) 29)) (-4028 (((-3 (-1165 |#1|) "failed") (-627 |#1|) (-1165 |#1|)) 23)) (-1272 (((-108) (-627 |#1|) (-1165 |#1|)) 26)))
+(((-608 |#1|) (-10 -7 (-15 -3182 ((-2 (|:| |particular| (-3 (-1165 |#1|) "failed")) (|:| -2470 (-587 (-1165 |#1|)))) (-627 |#1|) (-1165 |#1|))) (-15 -3182 ((-2 (|:| |particular| (-3 (-1165 |#1|) "failed")) (|:| -2470 (-587 (-1165 |#1|)))) (-587 (-587 |#1|)) (-1165 |#1|))) (-15 -3182 ((-587 (-2 (|:| |particular| (-3 (-1165 |#1|) "failed")) (|:| -2470 (-587 (-1165 |#1|))))) (-627 |#1|) (-587 (-1165 |#1|)))) (-15 -3182 ((-587 (-2 (|:| |particular| (-3 (-1165 |#1|) "failed")) (|:| -2470 (-587 (-1165 |#1|))))) (-587 (-587 |#1|)) (-587 (-1165 |#1|)))) (-15 -4028 ((-3 (-1165 |#1|) "failed") (-627 |#1|) (-1165 |#1|))) (-15 -1272 ((-108) (-627 |#1|) (-1165 |#1|))) (-15 -3162 ((-707) (-627 |#1|) (-1165 |#1|)))) (-337)) (T -608))
+((-3162 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *5)) (-5 *4 (-1165 *5)) (-4 *5 (-337)) (-5 *2 (-707)) (-5 *1 (-608 *5)))) (-1272 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *5)) (-5 *4 (-1165 *5)) (-4 *5 (-337)) (-5 *2 (-108)) (-5 *1 (-608 *5)))) (-4028 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1165 *4)) (-5 *3 (-627 *4)) (-4 *4 (-337)) (-5 *1 (-608 *4)))) (-3182 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-587 *5))) (-4 *5 (-337)) (-5 *2 (-587 (-2 (|:| |particular| (-3 (-1165 *5) "failed")) (|:| -2470 (-587 (-1165 *5)))))) (-5 *1 (-608 *5)) (-5 *4 (-587 (-1165 *5))))) (-3182 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *5)) (-4 *5 (-337)) (-5 *2 (-587 (-2 (|:| |particular| (-3 (-1165 *5) "failed")) (|:| -2470 (-587 (-1165 *5)))))) (-5 *1 (-608 *5)) (-5 *4 (-587 (-1165 *5))))) (-3182 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-587 *5))) (-4 *5 (-337)) (-5 *2 (-2 (|:| |particular| (-3 (-1165 *5) "failed")) (|:| -2470 (-587 (-1165 *5))))) (-5 *1 (-608 *5)) (-5 *4 (-1165 *5)))) (-3182 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *5)) (-4 *5 (-337)) (-5 *2 (-2 (|:| |particular| (-3 (-1165 *5) "failed")) (|:| -2470 (-587 (-1165 *5))))) (-5 *1 (-608 *5)) (-5 *4 (-1165 *5)))))
+(-10 -7 (-15 -3182 ((-2 (|:| |particular| (-3 (-1165 |#1|) "failed")) (|:| -2470 (-587 (-1165 |#1|)))) (-627 |#1|) (-1165 |#1|))) (-15 -3182 ((-2 (|:| |particular| (-3 (-1165 |#1|) "failed")) (|:| -2470 (-587 (-1165 |#1|)))) (-587 (-587 |#1|)) (-1165 |#1|))) (-15 -3182 ((-587 (-2 (|:| |particular| (-3 (-1165 |#1|) "failed")) (|:| -2470 (-587 (-1165 |#1|))))) (-627 |#1|) (-587 (-1165 |#1|)))) (-15 -3182 ((-587 (-2 (|:| |particular| (-3 (-1165 |#1|) "failed")) (|:| -2470 (-587 (-1165 |#1|))))) (-587 (-587 |#1|)) (-587 (-1165 |#1|)))) (-15 -4028 ((-3 (-1165 |#1|) "failed") (-627 |#1|) (-1165 |#1|))) (-15 -1272 ((-108) (-627 |#1|) (-1165 |#1|))) (-15 -3162 ((-707) (-627 |#1|) (-1165 |#1|))))
+((-3182 (((-587 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2470 (-587 |#3|)))) |#4| (-587 |#3|)) 47) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2470 (-587 |#3|))) |#4| |#3|) 45)) (-3162 (((-707) |#4| |#3|) 17)) (-4028 (((-3 |#3| "failed") |#4| |#3|) 20)) (-1272 (((-108) |#4| |#3|) 13)))
+(((-609 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3182 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2470 (-587 |#3|))) |#4| |#3|)) (-15 -3182 ((-587 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2470 (-587 |#3|)))) |#4| (-587 |#3|))) (-15 -4028 ((-3 |#3| "failed") |#4| |#3|)) (-15 -1272 ((-108) |#4| |#3|)) (-15 -3162 ((-707) |#4| |#3|))) (-337) (-13 (-347 |#1|) (-10 -7 (-6 -4234))) (-13 (-347 |#1|) (-10 -7 (-6 -4234))) (-625 |#1| |#2| |#3|)) (T -609))
+((-3162 (*1 *2 *3 *4) (-12 (-4 *5 (-337)) (-4 *6 (-13 (-347 *5) (-10 -7 (-6 -4234)))) (-4 *4 (-13 (-347 *5) (-10 -7 (-6 -4234)))) (-5 *2 (-707)) (-5 *1 (-609 *5 *6 *4 *3)) (-4 *3 (-625 *5 *6 *4)))) (-1272 (*1 *2 *3 *4) (-12 (-4 *5 (-337)) (-4 *6 (-13 (-347 *5) (-10 -7 (-6 -4234)))) (-4 *4 (-13 (-347 *5) (-10 -7 (-6 -4234)))) (-5 *2 (-108)) (-5 *1 (-609 *5 *6 *4 *3)) (-4 *3 (-625 *5 *6 *4)))) (-4028 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-337)) (-4 *5 (-13 (-347 *4) (-10 -7 (-6 -4234)))) (-4 *2 (-13 (-347 *4) (-10 -7 (-6 -4234)))) (-5 *1 (-609 *4 *5 *2 *3)) (-4 *3 (-625 *4 *5 *2)))) (-3182 (*1 *2 *3 *4) (-12 (-4 *5 (-337)) (-4 *6 (-13 (-347 *5) (-10 -7 (-6 -4234)))) (-4 *7 (-13 (-347 *5) (-10 -7 (-6 -4234)))) (-5 *2 (-587 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2470 (-587 *7))))) (-5 *1 (-609 *5 *6 *7 *3)) (-5 *4 (-587 *7)) (-4 *3 (-625 *5 *6 *7)))) (-3182 (*1 *2 *3 *4) (-12 (-4 *5 (-337)) (-4 *6 (-13 (-347 *5) (-10 -7 (-6 -4234)))) (-4 *4 (-13 (-347 *5) (-10 -7 (-6 -4234)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2470 (-587 *4)))) (-5 *1 (-609 *5 *6 *4 *3)) (-4 *3 (-625 *5 *6 *4)))))
+(-10 -7 (-15 -3182 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2470 (-587 |#3|))) |#4| |#3|)) (-15 -3182 ((-587 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2470 (-587 |#3|)))) |#4| (-587 |#3|))) (-15 -4028 ((-3 |#3| "failed") |#4| |#3|)) (-15 -1272 ((-108) |#4| |#3|)) (-15 -3162 ((-707) |#4| |#3|)))
+((-4133 (((-2 (|:| |particular| (-3 (-1165 (-381 |#4|)) "failed")) (|:| -2470 (-587 (-1165 (-381 |#4|))))) (-587 |#4|) (-587 |#3|)) 45)))
+(((-610 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4133 ((-2 (|:| |particular| (-3 (-1165 (-381 |#4|)) "failed")) (|:| -2470 (-587 (-1165 (-381 |#4|))))) (-587 |#4|) (-587 |#3|)))) (-513) (-729) (-784) (-878 |#1| |#2| |#3|)) (T -610))
+((-4133 (*1 *2 *3 *4) (-12 (-5 *3 (-587 *8)) (-5 *4 (-587 *7)) (-4 *7 (-784)) (-4 *8 (-878 *5 *6 *7)) (-4 *5 (-513)) (-4 *6 (-729)) (-5 *2 (-2 (|:| |particular| (-3 (-1165 (-381 *8)) "failed")) (|:| -2470 (-587 (-1165 (-381 *8)))))) (-5 *1 (-610 *5 *6 *7 *8)))))
+(-10 -7 (-15 -4133 ((-2 (|:| |particular| (-3 (-1165 (-381 |#4|)) "failed")) (|:| -2470 (-587 (-1165 (-381 |#4|))))) (-587 |#4|) (-587 |#3|))))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-3689 (((-3 $ "failed")) NIL (|has| |#2| (-513)))) (-1865 ((|#2| $) NIL)) (-2304 (((-108) $) NIL)) (-1232 (((-3 $ "failed") $ $) NIL)) (-3359 (((-1165 (-627 |#2|))) NIL) (((-1165 (-627 |#2|)) (-1165 $)) NIL)) (-2825 (((-108) $) NIL)) (-1386 (((-1165 $)) 37)) (-2978 (((-108) $ (-707)) NIL)) (-3480 (($ |#2|) NIL)) (-2547 (($) NIL T CONST)) (-1311 (($ $) NIL (|has| |#2| (-282)))) (-2672 (((-217 |#1| |#2|) $ (-521)) NIL)) (-3758 (((-3 (-2 (|:| |particular| $) (|:| -2470 (-587 $))) "failed")) NIL (|has| |#2| (-513)))) (-3167 (((-3 $ "failed")) NIL (|has| |#2| (-513)))) (-2168 (((-627 |#2|)) NIL) (((-627 |#2|) (-1165 $)) NIL)) (-3783 ((|#2| $) NIL)) (-3907 (((-627 |#2|) $) NIL) (((-627 |#2|) $ (-1165 $)) NIL)) (-3176 (((-3 $ "failed") $) NIL (|has| |#2| (-513)))) (-1528 (((-1080 (-881 |#2|))) NIL (|has| |#2| (-337)))) (-3047 (($ $ (-850)) NIL)) (-3333 ((|#2| $) NIL)) (-3330 (((-1080 |#2|) $) NIL (|has| |#2| (-513)))) (-3518 ((|#2|) NIL) ((|#2| (-1165 $)) NIL)) (-2370 (((-1080 |#2|) $) NIL)) (-1208 (((-108)) NIL)) (-1297 (((-3 (-521) "failed") $) NIL (|has| |#2| (-961 (-521)))) (((-3 (-381 (-521)) "failed") $) NIL (|has| |#2| (-961 (-381 (-521))))) (((-3 |#2| "failed") $) NIL)) (-1483 (((-521) $) NIL (|has| |#2| (-961 (-521)))) (((-381 (-521)) $) NIL (|has| |#2| (-961 (-381 (-521))))) ((|#2| $) NIL)) (-4083 (($ (-1165 |#2|)) NIL) (($ (-1165 |#2|) (-1165 $)) NIL)) (-3279 (((-627 (-521)) (-627 $)) NIL (|has| |#2| (-583 (-521)))) (((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (|has| |#2| (-583 (-521)))) (((-2 (|:| -1201 (-627 |#2|)) (|:| |vec| (-1165 |#2|))) (-627 $) (-1165 $)) NIL) (((-627 |#2|) (-627 $)) NIL)) (-1257 (((-3 $ "failed") $) NIL)) (-3162 (((-707) $) NIL (|has| |#2| (-513))) (((-850)) 38)) (-3626 ((|#2| $ (-521) (-521)) NIL)) (-3856 (((-108)) NIL)) (-2049 (($ $ (-850)) NIL)) (-3831 (((-587 |#2|) $) NIL (|has| $ (-6 -4233)))) (-3996 (((-108) $) NIL)) (-2097 (((-707) $) NIL (|has| |#2| (-513)))) (-3445 (((-587 (-217 |#1| |#2|)) $) NIL (|has| |#2| (-513)))) (-1410 (((-707) $) NIL)) (-2760 (((-108)) NIL)) (-1421 (((-707) $) NIL)) (-2139 (((-108) $ (-707)) NIL)) (-2274 ((|#2| $) NIL (|has| |#2| (-6 (-4235 "*"))))) (-2690 (((-521) $) NIL)) (-3222 (((-521) $) NIL)) (-3757 (((-587 |#2|) $) NIL (|has| $ (-6 -4233)))) (-2221 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#2| (-1013))))) (-2207 (((-521) $) NIL)) (-2684 (((-521) $) NIL)) (-1365 (($ (-587 (-587 |#2|))) NIL)) (-3833 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-1858 (((-587 (-587 |#2|)) $) NIL)) (-1344 (((-108)) NIL)) (-2383 (((-108)) NIL)) (-3574 (((-108) $ (-707)) NIL)) (-3524 (((-3 (-2 (|:| |particular| $) (|:| -2470 (-587 $))) "failed")) NIL (|has| |#2| (-513)))) (-2172 (((-3 $ "failed")) NIL (|has| |#2| (-513)))) (-1786 (((-627 |#2|)) NIL) (((-627 |#2|) (-1165 $)) NIL)) (-2627 ((|#2| $) NIL)) (-3734 (((-627 |#2|) $) NIL) (((-627 |#2|) $ (-1165 $)) NIL)) (-2652 (((-3 $ "failed") $) NIL (|has| |#2| (-513)))) (-1519 (((-1080 (-881 |#2|))) NIL (|has| |#2| (-337)))) (-2830 (($ $ (-850)) NIL)) (-1332 ((|#2| $) NIL)) (-1729 (((-1080 |#2|) $) NIL (|has| |#2| (-513)))) (-1586 ((|#2|) NIL) ((|#2| (-1165 $)) NIL)) (-3888 (((-1080 |#2|) $) NIL)) (-2118 (((-108)) NIL)) (-3688 (((-1067) $) NIL)) (-4045 (((-108)) NIL)) (-1560 (((-108)) NIL)) (-1381 (((-108)) NIL)) (-3841 (((-3 $ "failed") $) NIL (|has| |#2| (-337)))) (-4147 (((-1031) $) NIL)) (-1242 (((-108)) NIL)) (-2230 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-513)))) (-1789 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 |#2|))) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ (-269 |#2|)) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ (-587 |#2|) (-587 |#2|)) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))))) (-2488 (((-108) $ $) NIL)) (-3462 (((-108) $) NIL)) (-4024 (($) NIL)) (-2544 ((|#2| $ (-521) (-521) |#2|) NIL) ((|#2| $ (-521) (-521)) 22) ((|#2| $ (-521)) NIL)) (-2156 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-707)) NIL) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| |#2| (-829 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| |#2| (-829 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| |#2| (-829 (-1084)))) (($ $ (-1084)) NIL (|has| |#2| (-829 (-1084)))) (($ $ (-707)) NIL (|has| |#2| (-210))) (($ $) NIL (|has| |#2| (-210)))) (-1930 ((|#2| $) NIL)) (-2349 (($ (-587 |#2|)) NIL)) (-1222 (((-108) $) NIL)) (-3328 (((-217 |#1| |#2|) $) NIL)) (-3805 ((|#2| $) NIL (|has| |#2| (-6 (-4235 "*"))))) (-4163 (((-707) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4233))) (((-707) |#2| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#2| (-1013))))) (-2404 (($ $) NIL)) (-2234 (((-627 |#2|) (-1165 $)) NIL) (((-1165 |#2|) $) NIL) (((-627 |#2|) (-1165 $) (-1165 $)) NIL) (((-1165 |#2|) $ (-1165 $)) 25)) (-1430 (($ (-1165 |#2|)) NIL) (((-1165 |#2|) $) NIL)) (-3557 (((-587 (-881 |#2|))) NIL) (((-587 (-881 |#2|)) (-1165 $)) NIL)) (-2674 (($ $ $) NIL)) (-3160 (((-108)) NIL)) (-3187 (((-217 |#1| |#2|) $ (-521)) NIL)) (-2189 (((-792) $) NIL) (($ (-521)) NIL) (($ (-381 (-521))) NIL (|has| |#2| (-961 (-381 (-521))))) (($ |#2|) NIL) (((-627 |#2|) $) NIL)) (-3846 (((-707)) NIL)) (-2470 (((-1165 $)) 36)) (-2578 (((-587 (-1165 |#2|))) NIL (|has| |#2| (-513)))) (-2922 (($ $ $ $) NIL)) (-2057 (((-108)) NIL)) (-1616 (($ (-627 |#2|) $) NIL)) (-3049 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4233)))) (-2169 (((-108) $) NIL)) (-2464 (($ $ $) NIL)) (-1453 (((-108)) NIL)) (-3987 (((-108)) NIL)) (-2596 (((-108)) NIL)) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (-3561 (($) NIL T CONST)) (-3572 (($) NIL T CONST)) (-2212 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-707)) NIL) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| |#2| (-829 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| |#2| (-829 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| |#2| (-829 (-1084)))) (($ $ (-1084)) NIL (|has| |#2| (-829 (-1084)))) (($ $ (-707)) NIL (|has| |#2| (-210))) (($ $) NIL (|has| |#2| (-210)))) (-1531 (((-108) $ $) NIL)) (-1620 (($ $ |#2|) NIL (|has| |#2| (-337)))) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL (|has| |#2| (-337)))) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-217 |#1| |#2|) $ (-217 |#1| |#2|)) NIL) (((-217 |#1| |#2|) (-217 |#1| |#2|) $) NIL)) (-3475 (((-707) $) NIL (|has| $ (-6 -4233)))))
+(((-611 |#1| |#2|) (-13 (-1034 |#1| |#2| (-217 |#1| |#2|) (-217 |#1| |#2|)) (-561 (-627 |#2|)) (-391 |#2|)) (-850) (-157)) (T -611))
+NIL
+(-13 (-1034 |#1| |#2| (-217 |#1| |#2|) (-217 |#1| |#2|)) (-561 (-627 |#2|)) (-391 |#2|))
+((-1415 (((-108) $ $) NIL)) (-4101 (((-587 |#1|) $) NIL)) (-1925 (($ $) 51)) (-1423 (((-108) $) NIL)) (-1297 (((-3 |#1| "failed") $) NIL)) (-1483 ((|#1| $) NIL)) (-2810 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-1814 (((-3 $ "failed") (-756 |#1|)) 23)) (-4013 (((-108) (-756 |#1|)) 15)) (-1287 (($ (-756 |#1|)) 24)) (-2949 (((-108) $ $) 29)) (-2516 (((-850) $) 36)) (-1913 (($ $) NIL)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-1916 (((-587 $) (-756 |#1|)) 17)) (-2189 (((-792) $) 42) (($ |#1|) 33) (((-756 |#1|) $) 38) (((-616 |#1|) $) 43)) (-2887 (((-57 (-587 $)) (-587 |#1|) (-850)) 56)) (-3988 (((-587 $) (-587 |#1|) (-850)) 58)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) 52)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 37)))
+(((-612 |#1|) (-13 (-784) (-961 |#1|) (-10 -8 (-15 -1423 ((-108) $)) (-15 -1913 ($ $)) (-15 -1925 ($ $)) (-15 -2516 ((-850) $)) (-15 -2949 ((-108) $ $)) (-15 -2189 ((-756 |#1|) $)) (-15 -2189 ((-616 |#1|) $)) (-15 -1916 ((-587 $) (-756 |#1|))) (-15 -4013 ((-108) (-756 |#1|))) (-15 -1287 ($ (-756 |#1|))) (-15 -1814 ((-3 $ "failed") (-756 |#1|))) (-15 -4101 ((-587 |#1|) $)) (-15 -2887 ((-57 (-587 $)) (-587 |#1|) (-850))) (-15 -3988 ((-587 $) (-587 |#1|) (-850))))) (-784)) (T -612))
+((-1423 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-612 *3)) (-4 *3 (-784)))) (-1913 (*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-784)))) (-1925 (*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-784)))) (-2516 (*1 *2 *1) (-12 (-5 *2 (-850)) (-5 *1 (-612 *3)) (-4 *3 (-784)))) (-2949 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-612 *3)) (-4 *3 (-784)))) (-2189 (*1 *2 *1) (-12 (-5 *2 (-756 *3)) (-5 *1 (-612 *3)) (-4 *3 (-784)))) (-2189 (*1 *2 *1) (-12 (-5 *2 (-616 *3)) (-5 *1 (-612 *3)) (-4 *3 (-784)))) (-1916 (*1 *2 *3) (-12 (-5 *3 (-756 *4)) (-4 *4 (-784)) (-5 *2 (-587 (-612 *4))) (-5 *1 (-612 *4)))) (-4013 (*1 *2 *3) (-12 (-5 *3 (-756 *4)) (-4 *4 (-784)) (-5 *2 (-108)) (-5 *1 (-612 *4)))) (-1287 (*1 *1 *2) (-12 (-5 *2 (-756 *3)) (-4 *3 (-784)) (-5 *1 (-612 *3)))) (-1814 (*1 *1 *2) (|partial| -12 (-5 *2 (-756 *3)) (-4 *3 (-784)) (-5 *1 (-612 *3)))) (-4101 (*1 *2 *1) (-12 (-5 *2 (-587 *3)) (-5 *1 (-612 *3)) (-4 *3 (-784)))) (-2887 (*1 *2 *3 *4) (-12 (-5 *3 (-587 *5)) (-5 *4 (-850)) (-4 *5 (-784)) (-5 *2 (-57 (-587 (-612 *5)))) (-5 *1 (-612 *5)))) (-3988 (*1 *2 *3 *4) (-12 (-5 *3 (-587 *5)) (-5 *4 (-850)) (-4 *5 (-784)) (-5 *2 (-587 (-612 *5))) (-5 *1 (-612 *5)))))
+(-13 (-784) (-961 |#1|) (-10 -8 (-15 -1423 ((-108) $)) (-15 -1913 ($ $)) (-15 -1925 ($ $)) (-15 -2516 ((-850) $)) (-15 -2949 ((-108) $ $)) (-15 -2189 ((-756 |#1|) $)) (-15 -2189 ((-616 |#1|) $)) (-15 -1916 ((-587 $) (-756 |#1|))) (-15 -4013 ((-108) (-756 |#1|))) (-15 -1287 ($ (-756 |#1|))) (-15 -1814 ((-3 $ "failed") (-756 |#1|))) (-15 -4101 ((-587 |#1|) $)) (-15 -2887 ((-57 (-587 $)) (-587 |#1|) (-850))) (-15 -3988 ((-587 $) (-587 |#1|) (-850)))))
+((-3430 ((|#2| $) 76)) (-3830 (($ $) 96)) (-2978 (((-108) $ (-707)) 26)) (-2306 (($ $) 85) (($ $ (-707)) 88)) (-1368 (((-108) $) 97)) (-3186 (((-587 $) $) 72)) (-3651 (((-108) $ $) 71)) (-2139 (((-108) $ (-707)) 24)) (-2826 (((-521) $) 46)) (-2597 (((-521) $) 45)) (-3574 (((-108) $ (-707)) 22)) (-2229 (((-108) $) 74)) (-1441 ((|#2| $) 89) (($ $ (-707)) 92)) (-1659 (($ $ $ (-521)) 62) (($ |#2| $ (-521)) 61)) (-1668 (((-587 (-521)) $) 44)) (-2941 (((-108) (-521) $) 42)) (-2293 ((|#2| $) NIL) (($ $ (-707)) 84)) (-2447 (($ $ (-521)) 100)) (-3924 (((-108) $) 99)) (-1789 (((-108) (-1 (-108) |#2|) $) 32)) (-2489 (((-587 |#2|) $) 33)) (-2544 ((|#2| $ "value") NIL) ((|#2| $ "first") 83) (($ $ "rest") 87) ((|#2| $ "last") 95) (($ $ (-1132 (-521))) 58) ((|#2| $ (-521)) 40) ((|#2| $ (-521) |#2|) 41)) (-2931 (((-521) $ $) 70)) (-3691 (($ $ (-1132 (-521))) 57) (($ $ (-521)) 51)) (-2406 (((-108) $) 66)) (-3207 (($ $) 81)) (-3083 (((-707) $) 80)) (-3717 (($ $) 79)) (-2201 (($ (-587 |#2|)) 37)) (-3448 (($ $) 101)) (-3098 (((-587 $) $) 69)) (-2294 (((-108) $ $) 68)) (-3049 (((-108) (-1 (-108) |#2|) $) 31)) (-1531 (((-108) $ $) 18)) (-3475 (((-707) $) 29)))
+(((-613 |#1| |#2|) (-10 -8 (-15 -3448 (|#1| |#1|)) (-15 -2447 (|#1| |#1| (-521))) (-15 -1368 ((-108) |#1|)) (-15 -3924 ((-108) |#1|)) (-15 -2544 (|#2| |#1| (-521) |#2|)) (-15 -2544 (|#2| |#1| (-521))) (-15 -2489 ((-587 |#2|) |#1|)) (-15 -2941 ((-108) (-521) |#1|)) (-15 -1668 ((-587 (-521)) |#1|)) (-15 -2597 ((-521) |#1|)) (-15 -2826 ((-521) |#1|)) (-15 -2201 (|#1| (-587 |#2|))) (-15 -2544 (|#1| |#1| (-1132 (-521)))) (-15 -3691 (|#1| |#1| (-521))) (-15 -3691 (|#1| |#1| (-1132 (-521)))) (-15 -1659 (|#1| |#2| |#1| (-521))) (-15 -1659 (|#1| |#1| |#1| (-521))) (-15 -3207 (|#1| |#1|)) (-15 -3083 ((-707) |#1|)) (-15 -3717 (|#1| |#1|)) (-15 -3830 (|#1| |#1|)) (-15 -1441 (|#1| |#1| (-707))) (-15 -2544 (|#2| |#1| "last")) (-15 -1441 (|#2| |#1|)) (-15 -2306 (|#1| |#1| (-707))) (-15 -2544 (|#1| |#1| "rest")) (-15 -2306 (|#1| |#1|)) (-15 -2293 (|#1| |#1| (-707))) (-15 -2544 (|#2| |#1| "first")) (-15 -2293 (|#2| |#1|)) (-15 -3651 ((-108) |#1| |#1|)) (-15 -2294 ((-108) |#1| |#1|)) (-15 -2931 ((-521) |#1| |#1|)) (-15 -2406 ((-108) |#1|)) (-15 -2544 (|#2| |#1| "value")) (-15 -3430 (|#2| |#1|)) (-15 -2229 ((-108) |#1|)) (-15 -3186 ((-587 |#1|) |#1|)) (-15 -3098 ((-587 |#1|) |#1|)) (-15 -1531 ((-108) |#1| |#1|)) (-15 -1789 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3049 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3475 ((-707) |#1|)) (-15 -2978 ((-108) |#1| (-707))) (-15 -2139 ((-108) |#1| (-707))) (-15 -3574 ((-108) |#1| (-707)))) (-614 |#2|) (-1119)) (T -613))
+NIL
+(-10 -8 (-15 -3448 (|#1| |#1|)) (-15 -2447 (|#1| |#1| (-521))) (-15 -1368 ((-108) |#1|)) (-15 -3924 ((-108) |#1|)) (-15 -2544 (|#2| |#1| (-521) |#2|)) (-15 -2544 (|#2| |#1| (-521))) (-15 -2489 ((-587 |#2|) |#1|)) (-15 -2941 ((-108) (-521) |#1|)) (-15 -1668 ((-587 (-521)) |#1|)) (-15 -2597 ((-521) |#1|)) (-15 -2826 ((-521) |#1|)) (-15 -2201 (|#1| (-587 |#2|))) (-15 -2544 (|#1| |#1| (-1132 (-521)))) (-15 -3691 (|#1| |#1| (-521))) (-15 -3691 (|#1| |#1| (-1132 (-521)))) (-15 -1659 (|#1| |#2| |#1| (-521))) (-15 -1659 (|#1| |#1| |#1| (-521))) (-15 -3207 (|#1| |#1|)) (-15 -3083 ((-707) |#1|)) (-15 -3717 (|#1| |#1|)) (-15 -3830 (|#1| |#1|)) (-15 -1441 (|#1| |#1| (-707))) (-15 -2544 (|#2| |#1| "last")) (-15 -1441 (|#2| |#1|)) (-15 -2306 (|#1| |#1| (-707))) (-15 -2544 (|#1| |#1| "rest")) (-15 -2306 (|#1| |#1|)) (-15 -2293 (|#1| |#1| (-707))) (-15 -2544 (|#2| |#1| "first")) (-15 -2293 (|#2| |#1|)) (-15 -3651 ((-108) |#1| |#1|)) (-15 -2294 ((-108) |#1| |#1|)) (-15 -2931 ((-521) |#1| |#1|)) (-15 -2406 ((-108) |#1|)) (-15 -2544 (|#2| |#1| "value")) (-15 -3430 (|#2| |#1|)) (-15 -2229 ((-108) |#1|)) (-15 -3186 ((-587 |#1|) |#1|)) (-15 -3098 ((-587 |#1|) |#1|)) (-15 -1531 ((-108) |#1| |#1|)) (-15 -1789 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3049 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3475 ((-707) |#1|)) (-15 -2978 ((-108) |#1| (-707))) (-15 -2139 ((-108) |#1| (-707))) (-15 -3574 ((-108) |#1| (-707))))
+((-1415 (((-108) $ $) 19 (|has| |#1| (-1013)))) (-3430 ((|#1| $) 48)) (-2092 ((|#1| $) 65)) (-3830 (($ $) 67)) (-1903 (((-1170) $ (-521) (-521)) 97 (|has| $ (-6 -4234)))) (-3861 (($ $ (-521)) 52 (|has| $ (-6 -4234)))) (-2978 (((-108) $ (-707)) 8)) (-2300 ((|#1| $ |#1|) 39 (|has| $ (-6 -4234)))) (-3739 (($ $ $) 56 (|has| $ (-6 -4234)))) (-1509 ((|#1| $ |#1|) 54 (|has| $ (-6 -4234)))) (-3977 ((|#1| $ |#1|) 58 (|has| $ (-6 -4234)))) (-2378 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4234))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4234))) (($ $ "rest" $) 55 (|has| $ (-6 -4234))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4234))) ((|#1| $ (-1132 (-521)) |#1|) 117 (|has| $ (-6 -4234))) ((|#1| $ (-521) |#1|) 86 (|has| $ (-6 -4234)))) (-2675 (($ $ (-587 $)) 41 (|has| $ (-6 -4234)))) (-1628 (($ (-1 (-108) |#1|) $) 102)) (-2080 ((|#1| $) 66)) (-2547 (($) 7 T CONST)) (-3414 (($ $) 124)) (-2306 (($ $) 73) (($ $ (-707)) 71)) (-2332 (($ $) 99 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-1422 (($ |#1| $) 100 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233)))) (($ (-1 (-108) |#1|) $) 103)) (-3859 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-3849 ((|#1| $ (-521) |#1|) 85 (|has| $ (-6 -4234)))) (-3626 ((|#1| $ (-521)) 87)) (-1368 (((-108) $) 83)) (-3831 (((-587 |#1|) $) 30 (|has| $ (-6 -4233)))) (-2885 (((-707) $) 123)) (-3186 (((-587 $) $) 50)) (-3651 (((-108) $ $) 42 (|has| |#1| (-1013)))) (-1811 (($ (-707) |#1|) 108)) (-2139 (((-108) $ (-707)) 9)) (-2826 (((-521) $) 95 (|has| (-521) (-784)))) (-3757 (((-587 |#1|) $) 29 (|has| $ (-6 -4233)))) (-2221 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-2597 (((-521) $) 94 (|has| (-521) (-784)))) (-3833 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3574 (((-108) $ (-707)) 10)) (-1278 (((-587 |#1|) $) 45)) (-2229 (((-108) $) 49)) (-1689 (($ $) 126)) (-3345 (((-108) $) 127)) (-3688 (((-1067) $) 22 (|has| |#1| (-1013)))) (-1441 ((|#1| $) 70) (($ $ (-707)) 68)) (-1659 (($ $ $ (-521)) 116) (($ |#1| $ (-521)) 115)) (-1668 (((-587 (-521)) $) 92)) (-2941 (((-108) (-521) $) 91)) (-4147 (((-1031) $) 21 (|has| |#1| (-1013)))) (-2285 ((|#1| $) 125)) (-2293 ((|#1| $) 76) (($ $ (-707)) 74)) (-3620 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 106)) (-3016 (($ $ |#1|) 96 (|has| $ (-6 -4234)))) (-2447 (($ $ (-521)) 122)) (-3924 (((-108) $) 84)) (-1661 (((-108) $) 128)) (-3005 (((-108) $) 129)) (-1789 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 |#1|))) 26 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) 25 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) 23 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-2488 (((-108) $ $) 14)) (-3821 (((-108) |#1| $) 93 (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2489 (((-587 |#1|) $) 90)) (-3462 (((-108) $) 11)) (-4024 (($) 12)) (-2544 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1132 (-521))) 112) ((|#1| $ (-521)) 89) ((|#1| $ (-521) |#1|) 88)) (-2931 (((-521) $ $) 44)) (-3691 (($ $ (-1132 (-521))) 114) (($ $ (-521)) 113)) (-2406 (((-108) $) 46)) (-3207 (($ $) 62)) (-2262 (($ $) 59 (|has| $ (-6 -4234)))) (-3083 (((-707) $) 63)) (-3717 (($ $) 64)) (-4163 (((-707) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4233))) (((-707) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-2404 (($ $) 13)) (-1430 (((-497) $) 98 (|has| |#1| (-562 (-497))))) (-2201 (($ (-587 |#1|)) 107)) (-3980 (($ $ $) 61 (|has| $ (-6 -4234))) (($ $ |#1|) 60 (|has| $ (-6 -4234)))) (-4159 (($ $ $) 78) (($ |#1| $) 77) (($ (-587 $)) 110) (($ $ |#1|) 109)) (-3448 (($ $) 121)) (-2189 (((-792) $) 18 (|has| |#1| (-561 (-792))))) (-3098 (((-587 $) $) 51)) (-2294 (((-108) $ $) 43 (|has| |#1| (-1013)))) (-3049 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4233)))) (-1531 (((-108) $ $) 20 (|has| |#1| (-1013)))) (-3475 (((-707) $) 6 (|has| $ (-6 -4233)))))
+(((-614 |#1|) (-1196) (-1119)) (T -614))
+((-1422 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-614 *3)) (-4 *3 (-1119)))) (-1628 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-614 *3)) (-4 *3 (-1119)))) (-3005 (*1 *2 *1) (-12 (-4 *1 (-614 *3)) (-4 *3 (-1119)) (-5 *2 (-108)))) (-1661 (*1 *2 *1) (-12 (-4 *1 (-614 *3)) (-4 *3 (-1119)) (-5 *2 (-108)))) (-3345 (*1 *2 *1) (-12 (-4 *1 (-614 *3)) (-4 *3 (-1119)) (-5 *2 (-108)))) (-1689 (*1 *1 *1) (-12 (-4 *1 (-614 *2)) (-4 *2 (-1119)))) (-2285 (*1 *2 *1) (-12 (-4 *1 (-614 *2)) (-4 *2 (-1119)))) (-3414 (*1 *1 *1) (-12 (-4 *1 (-614 *2)) (-4 *2 (-1119)))) (-2885 (*1 *2 *1) (-12 (-4 *1 (-614 *3)) (-4 *3 (-1119)) (-5 *2 (-707)))) (-2447 (*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-4 *1 (-614 *3)) (-4 *3 (-1119)))) (-3448 (*1 *1 *1) (-12 (-4 *1 (-614 *2)) (-4 *2 (-1119)))))
+(-13 (-1058 |t#1|) (-10 -8 (-15 -1422 ($ (-1 (-108) |t#1|) $)) (-15 -1628 ($ (-1 (-108) |t#1|) $)) (-15 -3005 ((-108) $)) (-15 -1661 ((-108) $)) (-15 -3345 ((-108) $)) (-15 -1689 ($ $)) (-15 -2285 (|t#1| $)) (-15 -3414 ($ $)) (-15 -2885 ((-707) $)) (-15 -2447 ($ $ (-521))) (-15 -3448 ($ $))))
+(((-33) . T) ((-97) |has| |#1| (-1013)) ((-561 (-792)) -3703 (|has| |#1| (-1013)) (|has| |#1| (-561 (-792)))) ((-139 |#1|) . T) ((-562 (-497)) |has| |#1| (-562 (-497))) ((-261 #0=(-521) |#1|) . T) ((-263 #0# |#1|) . T) ((-284 |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-460 |#1|) . T) ((-554 #0# |#1|) . T) ((-482 |#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-592 |#1|) . T) ((-935 |#1|) . T) ((-1013) |has| |#1| (-1013)) ((-1058 |#1|) . T) ((-1119) . T) ((-1153 |#1|) . T))
+((-1415 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-2452 (($ (-707) (-707) (-707)) 34 (|has| |#1| (-970)))) (-2978 (((-108) $ (-707)) NIL)) (-3099 ((|#1| $ (-707) (-707) (-707) |#1|) 29)) (-2547 (($) NIL T CONST)) (-2398 (($ $ $) 38 (|has| |#1| (-970)))) (-3831 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-2139 (((-108) $ (-707)) NIL)) (-3757 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-2221 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-1654 (((-1165 (-707)) $) 10)) (-1235 (($ (-1084) $ $) 24)) (-3833 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#1| |#1|) $) NIL)) (-3574 (((-108) $ (-707)) NIL)) (-3688 (((-1067) $) NIL (|has| |#1| (-1013)))) (-3343 (($ (-707)) 36 (|has| |#1| (-970)))) (-4147 (((-1031) $) NIL (|has| |#1| (-1013)))) (-1789 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 |#1|))) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-2488 (((-108) $ $) NIL)) (-3462 (((-108) $) NIL)) (-4024 (($) NIL)) (-2544 ((|#1| $ (-707) (-707) (-707)) 27)) (-4163 (((-707) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (((-707) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2404 (($ $) NIL)) (-2201 (($ (-587 (-587 (-587 |#1|)))) 45)) (-2189 (($ (-886 (-886 (-886 |#1|)))) 17) (((-886 (-886 (-886 |#1|))) $) 14) (((-792) $) NIL (|has| |#1| (-561 (-792))))) (-3049 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-1531 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3475 (((-707) $) NIL (|has| $ (-6 -4233)))))
+(((-615 |#1|) (-13 (-460 |#1|) (-10 -8 (IF (|has| |#1| (-970)) (PROGN (-15 -2452 ($ (-707) (-707) (-707))) (-15 -3343 ($ (-707))) (-15 -2398 ($ $ $))) |%noBranch|) (-15 -2201 ($ (-587 (-587 (-587 |#1|))))) (-15 -2544 (|#1| $ (-707) (-707) (-707))) (-15 -3099 (|#1| $ (-707) (-707) (-707) |#1|)) (-15 -2189 ($ (-886 (-886 (-886 |#1|))))) (-15 -2189 ((-886 (-886 (-886 |#1|))) $)) (-15 -1235 ($ (-1084) $ $)) (-15 -1654 ((-1165 (-707)) $)))) (-1013)) (T -615))
+((-2452 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-707)) (-5 *1 (-615 *3)) (-4 *3 (-970)) (-4 *3 (-1013)))) (-3343 (*1 *1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-615 *3)) (-4 *3 (-970)) (-4 *3 (-1013)))) (-2398 (*1 *1 *1 *1) (-12 (-5 *1 (-615 *2)) (-4 *2 (-970)) (-4 *2 (-1013)))) (-2201 (*1 *1 *2) (-12 (-5 *2 (-587 (-587 (-587 *3)))) (-4 *3 (-1013)) (-5 *1 (-615 *3)))) (-2544 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-707)) (-5 *1 (-615 *2)) (-4 *2 (-1013)))) (-3099 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-707)) (-5 *1 (-615 *2)) (-4 *2 (-1013)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-886 (-886 (-886 *3)))) (-4 *3 (-1013)) (-5 *1 (-615 *3)))) (-2189 (*1 *2 *1) (-12 (-5 *2 (-886 (-886 (-886 *3)))) (-5 *1 (-615 *3)) (-4 *3 (-1013)))) (-1235 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-615 *3)) (-4 *3 (-1013)))) (-1654 (*1 *2 *1) (-12 (-5 *2 (-1165 (-707))) (-5 *1 (-615 *3)) (-4 *3 (-1013)))))
+(-13 (-460 |#1|) (-10 -8 (IF (|has| |#1| (-970)) (PROGN (-15 -2452 ($ (-707) (-707) (-707))) (-15 -3343 ($ (-707))) (-15 -2398 ($ $ $))) |%noBranch|) (-15 -2201 ($ (-587 (-587 (-587 |#1|))))) (-15 -2544 (|#1| $ (-707) (-707) (-707))) (-15 -3099 (|#1| $ (-707) (-707) (-707) |#1|)) (-15 -2189 ($ (-886 (-886 (-886 |#1|))))) (-15 -2189 ((-886 (-886 (-886 |#1|))) $)) (-15 -1235 ($ (-1084) $ $)) (-15 -1654 ((-1165 (-707)) $))))
+((-1415 (((-108) $ $) NIL)) (-4101 (((-587 |#1|) $) 14)) (-1925 (($ $) 18)) (-1423 (((-108) $) 19)) (-1297 (((-3 |#1| "failed") $) 22)) (-1483 ((|#1| $) 20)) (-2306 (($ $) 36)) (-2239 (($ $) 24)) (-2810 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-2949 (((-108) $ $) 42)) (-2516 (((-850) $) 38)) (-1913 (($ $) 17)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2293 ((|#1| $) 35)) (-2189 (((-792) $) 31) (($ |#1|) 23) (((-756 |#1|) $) 27)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) 12)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 40)) (* (($ $ $) 34)))
+(((-616 |#1|) (-13 (-784) (-961 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2189 ((-756 |#1|) $)) (-15 -2293 (|#1| $)) (-15 -1913 ($ $)) (-15 -2516 ((-850) $)) (-15 -2949 ((-108) $ $)) (-15 -2239 ($ $)) (-15 -2306 ($ $)) (-15 -1423 ((-108) $)) (-15 -1925 ($ $)) (-15 -4101 ((-587 |#1|) $)))) (-784)) (T -616))
+((* (*1 *1 *1 *1) (-12 (-5 *1 (-616 *2)) (-4 *2 (-784)))) (-2189 (*1 *2 *1) (-12 (-5 *2 (-756 *3)) (-5 *1 (-616 *3)) (-4 *3 (-784)))) (-2293 (*1 *2 *1) (-12 (-5 *1 (-616 *2)) (-4 *2 (-784)))) (-1913 (*1 *1 *1) (-12 (-5 *1 (-616 *2)) (-4 *2 (-784)))) (-2516 (*1 *2 *1) (-12 (-5 *2 (-850)) (-5 *1 (-616 *3)) (-4 *3 (-784)))) (-2949 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-616 *3)) (-4 *3 (-784)))) (-2239 (*1 *1 *1) (-12 (-5 *1 (-616 *2)) (-4 *2 (-784)))) (-2306 (*1 *1 *1) (-12 (-5 *1 (-616 *2)) (-4 *2 (-784)))) (-1423 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-616 *3)) (-4 *3 (-784)))) (-1925 (*1 *1 *1) (-12 (-5 *1 (-616 *2)) (-4 *2 (-784)))) (-4101 (*1 *2 *1) (-12 (-5 *2 (-587 *3)) (-5 *1 (-616 *3)) (-4 *3 (-784)))))
+(-13 (-784) (-961 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2189 ((-756 |#1|) $)) (-15 -2293 (|#1| $)) (-15 -1913 ($ $)) (-15 -2516 ((-850) $)) (-15 -2949 ((-108) $ $)) (-15 -2239 ($ $)) (-15 -2306 ($ $)) (-15 -1423 ((-108) $)) (-15 -1925 ($ $)) (-15 -4101 ((-587 |#1|) $))))
+((-3438 ((|#1| (-1 |#1| (-707) |#1|) (-707) |#1|) 11)) (-3202 ((|#1| (-1 |#1| |#1|) (-707) |#1|) 9)))
+(((-617 |#1|) (-10 -7 (-15 -3202 (|#1| (-1 |#1| |#1|) (-707) |#1|)) (-15 -3438 (|#1| (-1 |#1| (-707) |#1|) (-707) |#1|))) (-1013)) (T -617))
+((-3438 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-707) *2)) (-5 *4 (-707)) (-4 *2 (-1013)) (-5 *1 (-617 *2)))) (-3202 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-707)) (-4 *2 (-1013)) (-5 *1 (-617 *2)))))
+(-10 -7 (-15 -3202 (|#1| (-1 |#1| |#1|) (-707) |#1|)) (-15 -3438 (|#1| (-1 |#1| (-707) |#1|) (-707) |#1|)))
+((-4092 ((|#2| |#1| |#2|) 9)) (-4078 ((|#1| |#1| |#2|) 8)))
+(((-618 |#1| |#2|) (-10 -7 (-15 -4078 (|#1| |#1| |#2|)) (-15 -4092 (|#2| |#1| |#2|))) (-1013) (-1013)) (T -618))
+((-4092 (*1 *2 *3 *2) (-12 (-5 *1 (-618 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013)))) (-4078 (*1 *2 *2 *3) (-12 (-5 *1 (-618 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))))
+(-10 -7 (-15 -4078 (|#1| |#1| |#2|)) (-15 -4092 (|#2| |#1| |#2|)))
+((-3586 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11)))
+(((-619 |#1| |#2| |#3|) (-10 -7 (-15 -3586 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1013) (-1013) (-1013)) (T -619))
+((-3586 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013)) (-5 *1 (-619 *5 *6 *2)))))
+(-10 -7 (-15 -3586 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|)))
+((-3438 (((-1 |#1| (-707) |#1|) (-1 |#1| (-707) |#1|)) 23)) (-3415 (((-1 |#1|) |#1|) 8)) (-1781 ((|#1| |#1|) 16)) (-3350 (((-587 |#1|) (-1 (-587 |#1|) (-587 |#1|)) (-521)) 15) ((|#1| (-1 |#1| |#1|)) 11)) (-2189 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-707)) 20)))
+(((-620 |#1|) (-10 -7 (-15 -3415 ((-1 |#1|) |#1|)) (-15 -2189 ((-1 |#1|) |#1|)) (-15 -3350 (|#1| (-1 |#1| |#1|))) (-15 -3350 ((-587 |#1|) (-1 (-587 |#1|) (-587 |#1|)) (-521))) (-15 -1781 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-707))) (-15 -3438 ((-1 |#1| (-707) |#1|) (-1 |#1| (-707) |#1|)))) (-1013)) (T -620))
+((-3438 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-707) *3)) (-4 *3 (-1013)) (-5 *1 (-620 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-707)) (-4 *4 (-1013)) (-5 *1 (-620 *4)))) (-1781 (*1 *2 *2) (-12 (-5 *1 (-620 *2)) (-4 *2 (-1013)))) (-3350 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-587 *5) (-587 *5))) (-5 *4 (-521)) (-5 *2 (-587 *5)) (-5 *1 (-620 *5)) (-4 *5 (-1013)))) (-3350 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-620 *2)) (-4 *2 (-1013)))) (-2189 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-620 *3)) (-4 *3 (-1013)))) (-3415 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-620 *3)) (-4 *3 (-1013)))))
+(-10 -7 (-15 -3415 ((-1 |#1|) |#1|)) (-15 -2189 ((-1 |#1|) |#1|)) (-15 -3350 (|#1| (-1 |#1| |#1|))) (-15 -3350 ((-587 |#1|) (-1 (-587 |#1|) (-587 |#1|)) (-521))) (-15 -1781 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-707))) (-15 -3438 ((-1 |#1| (-707) |#1|) (-1 |#1| (-707) |#1|))))
+((-2376 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-3113 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-2676 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-2655 (((-1 |#2| |#1|) |#2|) 11)))
+(((-621 |#1| |#2|) (-10 -7 (-15 -2655 ((-1 |#2| |#1|) |#2|)) (-15 -3113 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2676 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2376 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1013) (-1013)) (T -621))
+((-2376 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-5 *2 (-1 *5 *4)) (-5 *1 (-621 *4 *5)))) (-2676 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1013)) (-5 *2 (-1 *5 *4)) (-5 *1 (-621 *4 *5)) (-4 *4 (-1013)))) (-3113 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-5 *2 (-1 *5)) (-5 *1 (-621 *4 *5)))) (-2655 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-621 *4 *3)) (-4 *4 (-1013)) (-4 *3 (-1013)))))
+(-10 -7 (-15 -2655 ((-1 |#2| |#1|) |#2|)) (-15 -3113 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2676 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2376 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|))))
+((-1957 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-2030 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-1537 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-3388 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-2671 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21)))
+(((-622 |#1| |#2| |#3|) (-10 -7 (-15 -2030 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -1537 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3388 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2671 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -1957 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1013) (-1013) (-1013)) (T -622))
+((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-1 *7 *5)) (-5 *1 (-622 *5 *6 *7)))) (-1957 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-622 *4 *5 *6)))) (-2671 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-622 *4 *5 *6)) (-4 *4 (-1013)))) (-3388 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1013)) (-4 *6 (-1013)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-622 *4 *5 *6)) (-4 *5 (-1013)))) (-1537 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *2 (-1 *6 *5)) (-5 *1 (-622 *4 *5 *6)))) (-2030 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1013)) (-4 *4 (-1013)) (-4 *6 (-1013)) (-5 *2 (-1 *6 *5)) (-5 *1 (-622 *5 *4 *6)))))
+(-10 -7 (-15 -2030 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -1537 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3388 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2671 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -1957 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|))))
+((-3859 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-1390 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31)))
+(((-623 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1390 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -1390 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3859 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-970) (-347 |#1|) (-347 |#1|) (-625 |#1| |#2| |#3|) (-970) (-347 |#5|) (-347 |#5|) (-625 |#5| |#6| |#7|)) (T -623))
+((-3859 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-970)) (-4 *2 (-970)) (-4 *6 (-347 *5)) (-4 *7 (-347 *5)) (-4 *8 (-347 *2)) (-4 *9 (-347 *2)) (-5 *1 (-623 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-625 *5 *6 *7)) (-4 *10 (-625 *2 *8 *9)))) (-1390 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-970)) (-4 *8 (-970)) (-4 *6 (-347 *5)) (-4 *7 (-347 *5)) (-4 *2 (-625 *8 *9 *10)) (-5 *1 (-623 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-625 *5 *6 *7)) (-4 *9 (-347 *8)) (-4 *10 (-347 *8)))) (-1390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-970)) (-4 *8 (-970)) (-4 *6 (-347 *5)) (-4 *7 (-347 *5)) (-4 *2 (-625 *8 *9 *10)) (-5 *1 (-623 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-625 *5 *6 *7)) (-4 *9 (-347 *8)) (-4 *10 (-347 *8)))))
+(-10 -7 (-15 -1390 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -1390 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3859 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|)))
+((-3478 (($ (-707) (-707)) 32)) (-3836 (($ $ $) 55)) (-1304 (($ |#3|) 51) (($ $) 52)) (-2304 (((-108) $) 27)) (-2594 (($ $ (-521) (-521)) 57)) (-3215 (($ $ (-521) (-521)) 58)) (-3729 (($ $ (-521) (-521) (-521) (-521)) 62)) (-1534 (($ $) 53)) (-2825 (((-108) $) 14)) (-2157 (($ $ (-521) (-521) $) 63)) (-2378 ((|#2| $ (-521) (-521) |#2|) NIL) (($ $ (-587 (-521)) (-587 (-521)) $) 61)) (-3480 (($ (-707) |#2|) 37)) (-1365 (($ (-587 (-587 |#2|))) 35)) (-1858 (((-587 (-587 |#2|)) $) 56)) (-4097 (($ $ $) 54)) (-2230 (((-3 $ "failed") $ |#2|) 90)) (-2544 ((|#2| $ (-521) (-521)) NIL) ((|#2| $ (-521) (-521) |#2|) NIL) (($ $ (-587 (-521)) (-587 (-521))) 60)) (-2349 (($ (-587 |#2|)) 39) (($ (-587 $)) 41)) (-1222 (((-108) $) 24)) (-2189 (($ |#4|) 46) (((-792) $) NIL)) (-2169 (((-108) $) 29)) (-1620 (($ $ |#2|) 92)) (-1612 (($ $ $) 67) (($ $) 70)) (-1602 (($ $ $) 65)) (** (($ $ (-707)) 79) (($ $ (-521)) 95)) (* (($ $ $) 76) (($ |#2| $) 72) (($ $ |#2|) 73) (($ (-521) $) 75) ((|#4| $ |#4|) 83) ((|#3| |#3| $) 87)))
+(((-624 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2189 ((-792) |#1|)) (-15 ** (|#1| |#1| (-521))) (-15 -1620 (|#1| |#1| |#2|)) (-15 -2230 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-707))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-521) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1612 (|#1| |#1|)) (-15 -1612 (|#1| |#1| |#1|)) (-15 -1602 (|#1| |#1| |#1|)) (-15 -2157 (|#1| |#1| (-521) (-521) |#1|)) (-15 -3729 (|#1| |#1| (-521) (-521) (-521) (-521))) (-15 -3215 (|#1| |#1| (-521) (-521))) (-15 -2594 (|#1| |#1| (-521) (-521))) (-15 -2378 (|#1| |#1| (-587 (-521)) (-587 (-521)) |#1|)) (-15 -2544 (|#1| |#1| (-587 (-521)) (-587 (-521)))) (-15 -1858 ((-587 (-587 |#2|)) |#1|)) (-15 -3836 (|#1| |#1| |#1|)) (-15 -4097 (|#1| |#1| |#1|)) (-15 -1534 (|#1| |#1|)) (-15 -1304 (|#1| |#1|)) (-15 -1304 (|#1| |#3|)) (-15 -2189 (|#1| |#4|)) (-15 -2349 (|#1| (-587 |#1|))) (-15 -2349 (|#1| (-587 |#2|))) (-15 -3480 (|#1| (-707) |#2|)) (-15 -1365 (|#1| (-587 (-587 |#2|)))) (-15 -3478 (|#1| (-707) (-707))) (-15 -2169 ((-108) |#1|)) (-15 -2304 ((-108) |#1|)) (-15 -1222 ((-108) |#1|)) (-15 -2825 ((-108) |#1|)) (-15 -2378 (|#2| |#1| (-521) (-521) |#2|)) (-15 -2544 (|#2| |#1| (-521) (-521) |#2|)) (-15 -2544 (|#2| |#1| (-521) (-521)))) (-625 |#2| |#3| |#4|) (-970) (-347 |#2|) (-347 |#2|)) (T -624))
+NIL
+(-10 -8 (-15 -2189 ((-792) |#1|)) (-15 ** (|#1| |#1| (-521))) (-15 -1620 (|#1| |#1| |#2|)) (-15 -2230 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-707))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-521) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1612 (|#1| |#1|)) (-15 -1612 (|#1| |#1| |#1|)) (-15 -1602 (|#1| |#1| |#1|)) (-15 -2157 (|#1| |#1| (-521) (-521) |#1|)) (-15 -3729 (|#1| |#1| (-521) (-521) (-521) (-521))) (-15 -3215 (|#1| |#1| (-521) (-521))) (-15 -2594 (|#1| |#1| (-521) (-521))) (-15 -2378 (|#1| |#1| (-587 (-521)) (-587 (-521)) |#1|)) (-15 -2544 (|#1| |#1| (-587 (-521)) (-587 (-521)))) (-15 -1858 ((-587 (-587 |#2|)) |#1|)) (-15 -3836 (|#1| |#1| |#1|)) (-15 -4097 (|#1| |#1| |#1|)) (-15 -1534 (|#1| |#1|)) (-15 -1304 (|#1| |#1|)) (-15 -1304 (|#1| |#3|)) (-15 -2189 (|#1| |#4|)) (-15 -2349 (|#1| (-587 |#1|))) (-15 -2349 (|#1| (-587 |#2|))) (-15 -3480 (|#1| (-707) |#2|)) (-15 -1365 (|#1| (-587 (-587 |#2|)))) (-15 -3478 (|#1| (-707) (-707))) (-15 -2169 ((-108) |#1|)) (-15 -2304 ((-108) |#1|)) (-15 -1222 ((-108) |#1|)) (-15 -2825 ((-108) |#1|)) (-15 -2378 (|#2| |#1| (-521) (-521) |#2|)) (-15 -2544 (|#2| |#1| (-521) (-521) |#2|)) (-15 -2544 (|#2| |#1| (-521) (-521))))
+((-1415 (((-108) $ $) 19 (|has| |#1| (-1013)))) (-3478 (($ (-707) (-707)) 97)) (-3836 (($ $ $) 87)) (-1304 (($ |#2|) 91) (($ $) 90)) (-2304 (((-108) $) 99)) (-2594 (($ $ (-521) (-521)) 83)) (-3215 (($ $ (-521) (-521)) 82)) (-3729 (($ $ (-521) (-521) (-521) (-521)) 81)) (-1534 (($ $) 89)) (-2825 (((-108) $) 101)) (-2978 (((-108) $ (-707)) 8)) (-2157 (($ $ (-521) (-521) $) 80)) (-2378 ((|#1| $ (-521) (-521) |#1|) 44) (($ $ (-587 (-521)) (-587 (-521)) $) 84)) (-1816 (($ $ (-521) |#2|) 42)) (-3520 (($ $ (-521) |#3|) 41)) (-3480 (($ (-707) |#1|) 95)) (-2547 (($) 7 T CONST)) (-1311 (($ $) 67 (|has| |#1| (-282)))) (-2672 ((|#2| $ (-521)) 46)) (-3162 (((-707) $) 66 (|has| |#1| (-513)))) (-3849 ((|#1| $ (-521) (-521) |#1|) 43)) (-3626 ((|#1| $ (-521) (-521)) 48)) (-3831 (((-587 |#1|) $) 30)) (-2097 (((-707) $) 65 (|has| |#1| (-513)))) (-3445 (((-587 |#3|) $) 64 (|has| |#1| (-513)))) (-1410 (((-707) $) 51)) (-1811 (($ (-707) (-707) |#1|) 57)) (-1421 (((-707) $) 50)) (-2139 (((-108) $ (-707)) 9)) (-2274 ((|#1| $) 62 (|has| |#1| (-6 (-4235 "*"))))) (-2690 (((-521) $) 55)) (-3222 (((-521) $) 53)) (-3757 (((-587 |#1|) $) 29 (|has| $ (-6 -4233)))) (-2221 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-2207 (((-521) $) 54)) (-2684 (((-521) $) 52)) (-1365 (($ (-587 (-587 |#1|))) 96)) (-3833 (($ (-1 |#1| |#1|) $) 34)) (-1390 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-1858 (((-587 (-587 |#1|)) $) 86)) (-3574 (((-108) $ (-707)) 10)) (-3688 (((-1067) $) 22 (|has| |#1| (-1013)))) (-3841 (((-3 $ "failed") $) 61 (|has| |#1| (-337)))) (-4097 (($ $ $) 88)) (-4147 (((-1031) $) 21 (|has| |#1| (-1013)))) (-3016 (($ $ |#1|) 56)) (-2230 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-513)))) (-1789 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 |#1|))) 26 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) 25 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) 23 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-2488 (((-108) $ $) 14)) (-3462 (((-108) $) 11)) (-4024 (($) 12)) (-2544 ((|#1| $ (-521) (-521)) 49) ((|#1| $ (-521) (-521) |#1|) 47) (($ $ (-587 (-521)) (-587 (-521))) 85)) (-2349 (($ (-587 |#1|)) 94) (($ (-587 $)) 93)) (-1222 (((-108) $) 100)) (-3805 ((|#1| $) 63 (|has| |#1| (-6 (-4235 "*"))))) (-4163 (((-707) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4233))) (((-707) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-2404 (($ $) 13)) (-3187 ((|#3| $ (-521)) 45)) (-2189 (($ |#3|) 92) (((-792) $) 18 (|has| |#1| (-561 (-792))))) (-3049 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4233)))) (-2169 (((-108) $) 98)) (-1531 (((-108) $ $) 20 (|has| |#1| (-1013)))) (-1620 (($ $ |#1|) 68 (|has| |#1| (-337)))) (-1612 (($ $ $) 78) (($ $) 77)) (-1602 (($ $ $) 79)) (** (($ $ (-707)) 70) (($ $ (-521)) 60 (|has| |#1| (-337)))) (* (($ $ $) 76) (($ |#1| $) 75) (($ $ |#1|) 74) (($ (-521) $) 73) ((|#3| $ |#3|) 72) ((|#2| |#2| $) 71)) (-3475 (((-707) $) 6 (|has| $ (-6 -4233)))))
+(((-625 |#1| |#2| |#3|) (-1196) (-970) (-347 |t#1|) (-347 |t#1|)) (T -625))
+((-2825 (*1 *2 *1) (-12 (-4 *1 (-625 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)) (-5 *2 (-108)))) (-1222 (*1 *2 *1) (-12 (-4 *1 (-625 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)) (-5 *2 (-108)))) (-2304 (*1 *2 *1) (-12 (-4 *1 (-625 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)) (-5 *2 (-108)))) (-2169 (*1 *2 *1) (-12 (-4 *1 (-625 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)) (-5 *2 (-108)))) (-3478 (*1 *1 *2 *2) (-12 (-5 *2 (-707)) (-4 *3 (-970)) (-4 *1 (-625 *3 *4 *5)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)))) (-1365 (*1 *1 *2) (-12 (-5 *2 (-587 (-587 *3))) (-4 *3 (-970)) (-4 *1 (-625 *3 *4 *5)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)))) (-3480 (*1 *1 *2 *3) (-12 (-5 *2 (-707)) (-4 *3 (-970)) (-4 *1 (-625 *3 *4 *5)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)))) (-2349 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-970)) (-4 *1 (-625 *3 *4 *5)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)))) (-2349 (*1 *1 *2) (-12 (-5 *2 (-587 *1)) (-4 *3 (-970)) (-4 *1 (-625 *3 *4 *5)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)))) (-2189 (*1 *1 *2) (-12 (-4 *3 (-970)) (-4 *1 (-625 *3 *4 *2)) (-4 *4 (-347 *3)) (-4 *2 (-347 *3)))) (-1304 (*1 *1 *2) (-12 (-4 *3 (-970)) (-4 *1 (-625 *3 *2 *4)) (-4 *2 (-347 *3)) (-4 *4 (-347 *3)))) (-1304 (*1 *1 *1) (-12 (-4 *1 (-625 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-347 *2)) (-4 *4 (-347 *2)))) (-1534 (*1 *1 *1) (-12 (-4 *1 (-625 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-347 *2)) (-4 *4 (-347 *2)))) (-4097 (*1 *1 *1 *1) (-12 (-4 *1 (-625 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-347 *2)) (-4 *4 (-347 *2)))) (-3836 (*1 *1 *1 *1) (-12 (-4 *1 (-625 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-347 *2)) (-4 *4 (-347 *2)))) (-1858 (*1 *2 *1) (-12 (-4 *1 (-625 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)) (-5 *2 (-587 (-587 *3))))) (-2544 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-587 (-521))) (-4 *1 (-625 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)))) (-2378 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-587 (-521))) (-4 *1 (-625 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)))) (-2594 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-521)) (-4 *1 (-625 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)))) (-3215 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-521)) (-4 *1 (-625 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)))) (-3729 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-521)) (-4 *1 (-625 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)))) (-2157 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-521)) (-4 *1 (-625 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)))) (-1602 (*1 *1 *1 *1) (-12 (-4 *1 (-625 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-347 *2)) (-4 *4 (-347 *2)))) (-1612 (*1 *1 *1 *1) (-12 (-4 *1 (-625 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-347 *2)) (-4 *4 (-347 *2)))) (-1612 (*1 *1 *1) (-12 (-4 *1 (-625 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-347 *2)) (-4 *4 (-347 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-625 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-347 *2)) (-4 *4 (-347 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-625 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-347 *2)) (-4 *4 (-347 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-625 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-347 *2)) (-4 *4 (-347 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-521)) (-4 *1 (-625 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-625 *3 *4 *2)) (-4 *3 (-970)) (-4 *4 (-347 *3)) (-4 *2 (-347 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-625 *3 *2 *4)) (-4 *3 (-970)) (-4 *2 (-347 *3)) (-4 *4 (-347 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-4 *1 (-625 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)))) (-2230 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-625 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-347 *2)) (-4 *4 (-347 *2)) (-4 *2 (-513)))) (-1620 (*1 *1 *1 *2) (-12 (-4 *1 (-625 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-347 *2)) (-4 *4 (-347 *2)) (-4 *2 (-337)))) (-1311 (*1 *1 *1) (-12 (-4 *1 (-625 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-347 *2)) (-4 *4 (-347 *2)) (-4 *2 (-282)))) (-3162 (*1 *2 *1) (-12 (-4 *1 (-625 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)) (-4 *3 (-513)) (-5 *2 (-707)))) (-2097 (*1 *2 *1) (-12 (-4 *1 (-625 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)) (-4 *3 (-513)) (-5 *2 (-707)))) (-3445 (*1 *2 *1) (-12 (-4 *1 (-625 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)) (-4 *3 (-513)) (-5 *2 (-587 *5)))) (-3805 (*1 *2 *1) (-12 (-4 *1 (-625 *2 *3 *4)) (-4 *3 (-347 *2)) (-4 *4 (-347 *2)) (|has| *2 (-6 (-4235 "*"))) (-4 *2 (-970)))) (-2274 (*1 *2 *1) (-12 (-4 *1 (-625 *2 *3 *4)) (-4 *3 (-347 *2)) (-4 *4 (-347 *2)) (|has| *2 (-6 (-4235 "*"))) (-4 *2 (-970)))) (-3841 (*1 *1 *1) (|partial| -12 (-4 *1 (-625 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-347 *2)) (-4 *4 (-347 *2)) (-4 *2 (-337)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-4 *1 (-625 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)) (-4 *3 (-337)))))
+(-13 (-55 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4234) (-6 -4233) (-15 -2825 ((-108) $)) (-15 -1222 ((-108) $)) (-15 -2304 ((-108) $)) (-15 -2169 ((-108) $)) (-15 -3478 ($ (-707) (-707))) (-15 -1365 ($ (-587 (-587 |t#1|)))) (-15 -3480 ($ (-707) |t#1|)) (-15 -2349 ($ (-587 |t#1|))) (-15 -2349 ($ (-587 $))) (-15 -2189 ($ |t#3|)) (-15 -1304 ($ |t#2|)) (-15 -1304 ($ $)) (-15 -1534 ($ $)) (-15 -4097 ($ $ $)) (-15 -3836 ($ $ $)) (-15 -1858 ((-587 (-587 |t#1|)) $)) (-15 -2544 ($ $ (-587 (-521)) (-587 (-521)))) (-15 -2378 ($ $ (-587 (-521)) (-587 (-521)) $)) (-15 -2594 ($ $ (-521) (-521))) (-15 -3215 ($ $ (-521) (-521))) (-15 -3729 ($ $ (-521) (-521) (-521) (-521))) (-15 -2157 ($ $ (-521) (-521) $)) (-15 -1602 ($ $ $)) (-15 -1612 ($ $ $)) (-15 -1612 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-521) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-707))) (IF (|has| |t#1| (-513)) (-15 -2230 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-337)) (-15 -1620 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-282)) (-15 -1311 ($ $)) |%noBranch|) (IF (|has| |t#1| (-513)) (PROGN (-15 -3162 ((-707) $)) (-15 -2097 ((-707) $)) (-15 -3445 ((-587 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4235 "*"))) (PROGN (-15 -3805 (|t#1| $)) (-15 -2274 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-337)) (PROGN (-15 -3841 ((-3 $ "failed") $)) (-15 ** ($ $ (-521)))) |%noBranch|)))
+(((-33) . T) ((-97) |has| |#1| (-1013)) ((-561 (-792)) -3703 (|has| |#1| (-1013)) (|has| |#1| (-561 (-792)))) ((-284 |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-460 |#1|) . T) ((-482 |#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-1013) |has| |#1| (-1013)) ((-55 |#1| |#2| |#3|) . T) ((-1119) . T))
+((-1311 ((|#4| |#4|) 68 (|has| |#1| (-282)))) (-3162 (((-707) |#4|) 70 (|has| |#1| (-513)))) (-2097 (((-707) |#4|) 72 (|has| |#1| (-513)))) (-3445 (((-587 |#3|) |#4|) 79 (|has| |#1| (-513)))) (-2278 (((-2 (|:| -3727 |#1|) (|:| -3820 |#1|)) |#1| |#1|) 96 (|has| |#1| (-282)))) (-2274 ((|#1| |#4|) 34)) (-1885 (((-3 |#4| "failed") |#4|) 62 (|has| |#1| (-513)))) (-3841 (((-3 |#4| "failed") |#4|) 76 (|has| |#1| (-337)))) (-3246 ((|#4| |#4|) 55 (|has| |#1| (-513)))) (-4004 ((|#4| |#4| |#1| (-521) (-521)) 42)) (-2431 ((|#4| |#4| (-521) (-521)) 37)) (-3096 ((|#4| |#4| |#1| (-521) (-521)) 47)) (-3805 ((|#1| |#4|) 74)) (-2399 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 58 (|has| |#1| (-513)))))
+(((-626 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3805 (|#1| |#4|)) (-15 -2274 (|#1| |#4|)) (-15 -2431 (|#4| |#4| (-521) (-521))) (-15 -4004 (|#4| |#4| |#1| (-521) (-521))) (-15 -3096 (|#4| |#4| |#1| (-521) (-521))) (IF (|has| |#1| (-513)) (PROGN (-15 -3162 ((-707) |#4|)) (-15 -2097 ((-707) |#4|)) (-15 -3445 ((-587 |#3|) |#4|)) (-15 -3246 (|#4| |#4|)) (-15 -1885 ((-3 |#4| "failed") |#4|)) (-15 -2399 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-282)) (PROGN (-15 -1311 (|#4| |#4|)) (-15 -2278 ((-2 (|:| -3727 |#1|) (|:| -3820 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-337)) (-15 -3841 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-157) (-347 |#1|) (-347 |#1|) (-625 |#1| |#2| |#3|)) (T -626))
+((-3841 (*1 *2 *2) (|partial| -12 (-4 *3 (-337)) (-4 *3 (-157)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)) (-5 *1 (-626 *3 *4 *5 *2)) (-4 *2 (-625 *3 *4 *5)))) (-2278 (*1 *2 *3 *3) (-12 (-4 *3 (-282)) (-4 *3 (-157)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)) (-5 *2 (-2 (|:| -3727 *3) (|:| -3820 *3))) (-5 *1 (-626 *3 *4 *5 *6)) (-4 *6 (-625 *3 *4 *5)))) (-1311 (*1 *2 *2) (-12 (-4 *3 (-282)) (-4 *3 (-157)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)) (-5 *1 (-626 *3 *4 *5 *2)) (-4 *2 (-625 *3 *4 *5)))) (-2399 (*1 *2 *3) (-12 (-4 *4 (-513)) (-4 *4 (-157)) (-4 *5 (-347 *4)) (-4 *6 (-347 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-626 *4 *5 *6 *3)) (-4 *3 (-625 *4 *5 *6)))) (-1885 (*1 *2 *2) (|partial| -12 (-4 *3 (-513)) (-4 *3 (-157)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)) (-5 *1 (-626 *3 *4 *5 *2)) (-4 *2 (-625 *3 *4 *5)))) (-3246 (*1 *2 *2) (-12 (-4 *3 (-513)) (-4 *3 (-157)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)) (-5 *1 (-626 *3 *4 *5 *2)) (-4 *2 (-625 *3 *4 *5)))) (-3445 (*1 *2 *3) (-12 (-4 *4 (-513)) (-4 *4 (-157)) (-4 *5 (-347 *4)) (-4 *6 (-347 *4)) (-5 *2 (-587 *6)) (-5 *1 (-626 *4 *5 *6 *3)) (-4 *3 (-625 *4 *5 *6)))) (-2097 (*1 *2 *3) (-12 (-4 *4 (-513)) (-4 *4 (-157)) (-4 *5 (-347 *4)) (-4 *6 (-347 *4)) (-5 *2 (-707)) (-5 *1 (-626 *4 *5 *6 *3)) (-4 *3 (-625 *4 *5 *6)))) (-3162 (*1 *2 *3) (-12 (-4 *4 (-513)) (-4 *4 (-157)) (-4 *5 (-347 *4)) (-4 *6 (-347 *4)) (-5 *2 (-707)) (-5 *1 (-626 *4 *5 *6 *3)) (-4 *3 (-625 *4 *5 *6)))) (-3096 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-521)) (-4 *3 (-157)) (-4 *5 (-347 *3)) (-4 *6 (-347 *3)) (-5 *1 (-626 *3 *5 *6 *2)) (-4 *2 (-625 *3 *5 *6)))) (-4004 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-521)) (-4 *3 (-157)) (-4 *5 (-347 *3)) (-4 *6 (-347 *3)) (-5 *1 (-626 *3 *5 *6 *2)) (-4 *2 (-625 *3 *5 *6)))) (-2431 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-521)) (-4 *4 (-157)) (-4 *5 (-347 *4)) (-4 *6 (-347 *4)) (-5 *1 (-626 *4 *5 *6 *2)) (-4 *2 (-625 *4 *5 *6)))) (-2274 (*1 *2 *3) (-12 (-4 *4 (-347 *2)) (-4 *5 (-347 *2)) (-4 *2 (-157)) (-5 *1 (-626 *2 *4 *5 *3)) (-4 *3 (-625 *2 *4 *5)))) (-3805 (*1 *2 *3) (-12 (-4 *4 (-347 *2)) (-4 *5 (-347 *2)) (-4 *2 (-157)) (-5 *1 (-626 *2 *4 *5 *3)) (-4 *3 (-625 *2 *4 *5)))))
+(-10 -7 (-15 -3805 (|#1| |#4|)) (-15 -2274 (|#1| |#4|)) (-15 -2431 (|#4| |#4| (-521) (-521))) (-15 -4004 (|#4| |#4| |#1| (-521) (-521))) (-15 -3096 (|#4| |#4| |#1| (-521) (-521))) (IF (|has| |#1| (-513)) (PROGN (-15 -3162 ((-707) |#4|)) (-15 -2097 ((-707) |#4|)) (-15 -3445 ((-587 |#3|) |#4|)) (-15 -3246 (|#4| |#4|)) (-15 -1885 ((-3 |#4| "failed") |#4|)) (-15 -2399 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-282)) (PROGN (-15 -1311 (|#4| |#4|)) (-15 -2278 ((-2 (|:| -3727 |#1|) (|:| -3820 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-337)) (-15 -3841 ((-3 |#4| "failed") |#4|)) |%noBranch|))
+((-1415 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3478 (($ (-707) (-707)) 45)) (-3836 (($ $ $) NIL)) (-1304 (($ (-1165 |#1|)) NIL) (($ $) NIL)) (-2304 (((-108) $) NIL)) (-2594 (($ $ (-521) (-521)) 12)) (-3215 (($ $ (-521) (-521)) NIL)) (-3729 (($ $ (-521) (-521) (-521) (-521)) NIL)) (-1534 (($ $) NIL)) (-2825 (((-108) $) NIL)) (-2978 (((-108) $ (-707)) NIL)) (-2157 (($ $ (-521) (-521) $) NIL)) (-2378 ((|#1| $ (-521) (-521) |#1|) NIL) (($ $ (-587 (-521)) (-587 (-521)) $) NIL)) (-1816 (($ $ (-521) (-1165 |#1|)) NIL)) (-3520 (($ $ (-521) (-1165 |#1|)) NIL)) (-3480 (($ (-707) |#1|) 22)) (-2547 (($) NIL T CONST)) (-1311 (($ $) 30 (|has| |#1| (-282)))) (-2672 (((-1165 |#1|) $ (-521)) NIL)) (-3162 (((-707) $) 32 (|has| |#1| (-513)))) (-3849 ((|#1| $ (-521) (-521) |#1|) 50)) (-3626 ((|#1| $ (-521) (-521)) NIL)) (-3831 (((-587 |#1|) $) NIL)) (-2097 (((-707) $) 34 (|has| |#1| (-513)))) (-3445 (((-587 (-1165 |#1|)) $) 37 (|has| |#1| (-513)))) (-1410 (((-707) $) 20)) (-1811 (($ (-707) (-707) |#1|) NIL)) (-1421 (((-707) $) 21)) (-2139 (((-108) $ (-707)) NIL)) (-2274 ((|#1| $) 28 (|has| |#1| (-6 (-4235 "*"))))) (-2690 (((-521) $) 9)) (-3222 (((-521) $) 10)) (-3757 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-2221 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2207 (((-521) $) 11)) (-2684 (((-521) $) 46)) (-1365 (($ (-587 (-587 |#1|))) NIL)) (-3833 (($ (-1 |#1| |#1|) $) NIL)) (-1390 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1858 (((-587 (-587 |#1|)) $) 58)) (-3574 (((-108) $ (-707)) NIL)) (-3688 (((-1067) $) NIL (|has| |#1| (-1013)))) (-3841 (((-3 $ "failed") $) 41 (|has| |#1| (-337)))) (-4097 (($ $ $) NIL)) (-4147 (((-1031) $) NIL (|has| |#1| (-1013)))) (-3016 (($ $ |#1|) NIL)) (-2230 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-513)))) (-1789 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 |#1|))) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-2488 (((-108) $ $) NIL)) (-3462 (((-108) $) NIL)) (-4024 (($) NIL)) (-2544 ((|#1| $ (-521) (-521)) NIL) ((|#1| $ (-521) (-521) |#1|) NIL) (($ $ (-587 (-521)) (-587 (-521))) NIL)) (-2349 (($ (-587 |#1|)) NIL) (($ (-587 $)) NIL) (($ (-1165 |#1|)) 51)) (-1222 (((-108) $) NIL)) (-3805 ((|#1| $) 26 (|has| |#1| (-6 (-4235 "*"))))) (-4163 (((-707) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (((-707) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2404 (($ $) NIL)) (-1430 (((-497) $) 62 (|has| |#1| (-562 (-497))))) (-3187 (((-1165 |#1|) $ (-521)) NIL)) (-2189 (($ (-1165 |#1|)) NIL) (((-792) $) NIL (|has| |#1| (-561 (-792))))) (-3049 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2169 (((-108) $) NIL)) (-1531 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-1620 (($ $ |#1|) NIL (|has| |#1| (-337)))) (-1612 (($ $ $) NIL) (($ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-707)) 23) (($ $ (-521)) 44 (|has| |#1| (-337)))) (* (($ $ $) 13) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-521) $) NIL) (((-1165 |#1|) $ (-1165 |#1|)) NIL) (((-1165 |#1|) (-1165 |#1|) $) NIL)) (-3475 (((-707) $) NIL (|has| $ (-6 -4233)))))
+(((-627 |#1|) (-13 (-625 |#1| (-1165 |#1|) (-1165 |#1|)) (-10 -8 (-15 -2349 ($ (-1165 |#1|))) (IF (|has| |#1| (-562 (-497))) (-6 (-562 (-497))) |%noBranch|) (IF (|has| |#1| (-337)) (-15 -3841 ((-3 $ "failed") $)) |%noBranch|))) (-970)) (T -627))
+((-3841 (*1 *1 *1) (|partial| -12 (-5 *1 (-627 *2)) (-4 *2 (-337)) (-4 *2 (-970)))) (-2349 (*1 *1 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-970)) (-5 *1 (-627 *3)))))
+(-13 (-625 |#1| (-1165 |#1|) (-1165 |#1|)) (-10 -8 (-15 -2349 ($ (-1165 |#1|))) (IF (|has| |#1| (-562 (-497))) (-6 (-562 (-497))) |%noBranch|) (IF (|has| |#1| (-337)) (-15 -3841 ((-3 $ "failed") $)) |%noBranch|)))
+((-2448 (((-627 |#1|) (-627 |#1|) (-627 |#1|) (-627 |#1|)) 25)) (-2192 (((-627 |#1|) (-627 |#1|) (-627 |#1|) |#1|) 21)) (-1211 (((-627 |#1|) (-627 |#1|) (-627 |#1|) (-627 |#1|) (-627 |#1|) (-707)) 26)) (-2948 (((-627 |#1|) (-627 |#1|) (-627 |#1|) (-627 |#1|)) 14)) (-3772 (((-627 |#1|) (-627 |#1|) (-627 |#1|) (-627 |#1|)) 18) (((-627 |#1|) (-627 |#1|) (-627 |#1|)) 16)) (-2033 (((-627 |#1|) (-627 |#1|) |#1| (-627 |#1|)) 20)) (-3640 (((-627 |#1|) (-627 |#1|) (-627 |#1|)) 12)) (** (((-627 |#1|) (-627 |#1|) (-707)) 30)))
+(((-628 |#1|) (-10 -7 (-15 -3640 ((-627 |#1|) (-627 |#1|) (-627 |#1|))) (-15 -2948 ((-627 |#1|) (-627 |#1|) (-627 |#1|) (-627 |#1|))) (-15 -3772 ((-627 |#1|) (-627 |#1|) (-627 |#1|))) (-15 -3772 ((-627 |#1|) (-627 |#1|) (-627 |#1|) (-627 |#1|))) (-15 -2033 ((-627 |#1|) (-627 |#1|) |#1| (-627 |#1|))) (-15 -2192 ((-627 |#1|) (-627 |#1|) (-627 |#1|) |#1|)) (-15 -2448 ((-627 |#1|) (-627 |#1|) (-627 |#1|) (-627 |#1|))) (-15 -1211 ((-627 |#1|) (-627 |#1|) (-627 |#1|) (-627 |#1|) (-627 |#1|) (-707))) (-15 ** ((-627 |#1|) (-627 |#1|) (-707)))) (-970)) (T -628))
+((** (*1 *2 *2 *3) (-12 (-5 *2 (-627 *4)) (-5 *3 (-707)) (-4 *4 (-970)) (-5 *1 (-628 *4)))) (-1211 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-627 *4)) (-5 *3 (-707)) (-4 *4 (-970)) (-5 *1 (-628 *4)))) (-2448 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-970)) (-5 *1 (-628 *3)))) (-2192 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-627 *3)) (-4 *3 (-970)) (-5 *1 (-628 *3)))) (-2033 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-970)) (-5 *1 (-628 *3)))) (-3772 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-970)) (-5 *1 (-628 *3)))) (-3772 (*1 *2 *2 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-970)) (-5 *1 (-628 *3)))) (-2948 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-970)) (-5 *1 (-628 *3)))) (-3640 (*1 *2 *2 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-970)) (-5 *1 (-628 *3)))))
+(-10 -7 (-15 -3640 ((-627 |#1|) (-627 |#1|) (-627 |#1|))) (-15 -2948 ((-627 |#1|) (-627 |#1|) (-627 |#1|) (-627 |#1|))) (-15 -3772 ((-627 |#1|) (-627 |#1|) (-627 |#1|))) (-15 -3772 ((-627 |#1|) (-627 |#1|) (-627 |#1|) (-627 |#1|))) (-15 -2033 ((-627 |#1|) (-627 |#1|) |#1| (-627 |#1|))) (-15 -2192 ((-627 |#1|) (-627 |#1|) (-627 |#1|) |#1|)) (-15 -2448 ((-627 |#1|) (-627 |#1|) (-627 |#1|) (-627 |#1|))) (-15 -1211 ((-627 |#1|) (-627 |#1|) (-627 |#1|) (-627 |#1|) (-627 |#1|) (-707))) (-15 ** ((-627 |#1|) (-627 |#1|) (-707))))
+((-2344 ((|#2| |#2| |#4|) 25)) (-2921 (((-627 |#2|) |#3| |#4|) 31)) (-1349 (((-627 |#2|) |#2| |#4|) 30)) (-2180 (((-1165 |#2|) |#2| |#4|) 16)) (-2984 ((|#2| |#3| |#4|) 24)) (-2980 (((-627 |#2|) |#3| |#4| (-707) (-707)) 38)) (-1868 (((-627 |#2|) |#2| |#4| (-707)) 37)))
+(((-629 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2180 ((-1165 |#2|) |#2| |#4|)) (-15 -2984 (|#2| |#3| |#4|)) (-15 -2344 (|#2| |#2| |#4|)) (-15 -1349 ((-627 |#2|) |#2| |#4|)) (-15 -1868 ((-627 |#2|) |#2| |#4| (-707))) (-15 -2921 ((-627 |#2|) |#3| |#4|)) (-15 -2980 ((-627 |#2|) |#3| |#4| (-707) (-707)))) (-1013) (-829 |#1|) (-347 |#2|) (-13 (-347 |#1|) (-10 -7 (-6 -4233)))) (T -629))
+((-2980 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-707)) (-4 *6 (-1013)) (-4 *7 (-829 *6)) (-5 *2 (-627 *7)) (-5 *1 (-629 *6 *7 *3 *4)) (-4 *3 (-347 *7)) (-4 *4 (-13 (-347 *6) (-10 -7 (-6 -4233)))))) (-2921 (*1 *2 *3 *4) (-12 (-4 *5 (-1013)) (-4 *6 (-829 *5)) (-5 *2 (-627 *6)) (-5 *1 (-629 *5 *6 *3 *4)) (-4 *3 (-347 *6)) (-4 *4 (-13 (-347 *5) (-10 -7 (-6 -4233)))))) (-1868 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-707)) (-4 *6 (-1013)) (-4 *3 (-829 *6)) (-5 *2 (-627 *3)) (-5 *1 (-629 *6 *3 *7 *4)) (-4 *7 (-347 *3)) (-4 *4 (-13 (-347 *6) (-10 -7 (-6 -4233)))))) (-1349 (*1 *2 *3 *4) (-12 (-4 *5 (-1013)) (-4 *3 (-829 *5)) (-5 *2 (-627 *3)) (-5 *1 (-629 *5 *3 *6 *4)) (-4 *6 (-347 *3)) (-4 *4 (-13 (-347 *5) (-10 -7 (-6 -4233)))))) (-2344 (*1 *2 *2 *3) (-12 (-4 *4 (-1013)) (-4 *2 (-829 *4)) (-5 *1 (-629 *4 *2 *5 *3)) (-4 *5 (-347 *2)) (-4 *3 (-13 (-347 *4) (-10 -7 (-6 -4233)))))) (-2984 (*1 *2 *3 *4) (-12 (-4 *5 (-1013)) (-4 *2 (-829 *5)) (-5 *1 (-629 *5 *2 *3 *4)) (-4 *3 (-347 *2)) (-4 *4 (-13 (-347 *5) (-10 -7 (-6 -4233)))))) (-2180 (*1 *2 *3 *4) (-12 (-4 *5 (-1013)) (-4 *3 (-829 *5)) (-5 *2 (-1165 *3)) (-5 *1 (-629 *5 *3 *6 *4)) (-4 *6 (-347 *3)) (-4 *4 (-13 (-347 *5) (-10 -7 (-6 -4233)))))))
+(-10 -7 (-15 -2180 ((-1165 |#2|) |#2| |#4|)) (-15 -2984 (|#2| |#3| |#4|)) (-15 -2344 (|#2| |#2| |#4|)) (-15 -1349 ((-627 |#2|) |#2| |#4|)) (-15 -1868 ((-627 |#2|) |#2| |#4| (-707))) (-15 -2921 ((-627 |#2|) |#3| |#4|)) (-15 -2980 ((-627 |#2|) |#3| |#4| (-707) (-707))))
+((-2338 (((-2 (|:| |num| (-627 |#1|)) (|:| |den| |#1|)) (-627 |#2|)) 18)) (-1452 ((|#1| (-627 |#2|)) 9)) (-2673 (((-627 |#1|) (-627 |#2|)) 16)))
+(((-630 |#1| |#2|) (-10 -7 (-15 -1452 (|#1| (-627 |#2|))) (-15 -2673 ((-627 |#1|) (-627 |#2|))) (-15 -2338 ((-2 (|:| |num| (-627 |#1|)) (|:| |den| |#1|)) (-627 |#2|)))) (-513) (-918 |#1|)) (T -630))
+((-2338 (*1 *2 *3) (-12 (-5 *3 (-627 *5)) (-4 *5 (-918 *4)) (-4 *4 (-513)) (-5 *2 (-2 (|:| |num| (-627 *4)) (|:| |den| *4))) (-5 *1 (-630 *4 *5)))) (-2673 (*1 *2 *3) (-12 (-5 *3 (-627 *5)) (-4 *5 (-918 *4)) (-4 *4 (-513)) (-5 *2 (-627 *4)) (-5 *1 (-630 *4 *5)))) (-1452 (*1 *2 *3) (-12 (-5 *3 (-627 *4)) (-4 *4 (-918 *2)) (-4 *2 (-513)) (-5 *1 (-630 *2 *4)))))
+(-10 -7 (-15 -1452 (|#1| (-627 |#2|))) (-15 -2673 ((-627 |#1|) (-627 |#2|))) (-15 -2338 ((-2 (|:| |num| (-627 |#1|)) (|:| |den| |#1|)) (-627 |#2|))))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-2559 (($ $) NIL)) (-1733 (((-108) $) NIL)) (-3214 (((-627 (-636))) NIL) (((-627 (-636)) (-1165 $)) NIL)) (-1865 (((-636) $) NIL)) (-2904 (($ $) NIL (|has| (-636) (-1105)))) (-2769 (($ $) NIL (|has| (-636) (-1105)))) (-1340 (((-1093 (-850) (-707)) (-521)) NIL (|has| (-636) (-323)))) (-1232 (((-3 $ "failed") $ $) NIL)) (-2598 (((-392 (-1080 $)) (-1080 $)) NIL (-12 (|has| (-636) (-282)) (|has| (-636) (-838))))) (-3063 (($ $) NIL (-3703 (-12 (|has| (-636) (-282)) (|has| (-636) (-838))) (|has| (-636) (-337))))) (-3358 (((-392 $) $) NIL (-3703 (-12 (|has| (-636) (-282)) (|has| (-636) (-838))) (|has| (-636) (-337))))) (-1927 (($ $) NIL (-12 (|has| (-636) (-927)) (|has| (-636) (-1105))))) (-2569 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) NIL (-12 (|has| (-636) (-282)) (|has| (-636) (-838))))) (-1389 (((-108) $ $) NIL (|has| (-636) (-282)))) (-1630 (((-707)) NIL (|has| (-636) (-342)))) (-2880 (($ $) NIL (|has| (-636) (-1105)))) (-2746 (($ $) NIL (|has| (-636) (-1105)))) (-2926 (($ $) NIL (|has| (-636) (-1105)))) (-2790 (($ $) NIL (|has| (-636) (-1105)))) (-2547 (($) NIL T CONST)) (-1297 (((-3 (-521) "failed") $) NIL) (((-3 (-636) "failed") $) NIL) (((-3 (-381 (-521)) "failed") $) NIL (|has| (-636) (-961 (-381 (-521)))))) (-1483 (((-521) $) NIL) (((-636) $) NIL) (((-381 (-521)) $) NIL (|has| (-636) (-961 (-381 (-521)))))) (-4083 (($ (-1165 (-636))) NIL) (($ (-1165 (-636)) (-1165 $)) NIL)) (-1864 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-636) (-323)))) (-2277 (($ $ $) NIL (|has| (-636) (-282)))) (-3499 (((-627 (-636)) $) NIL) (((-627 (-636)) $ (-1165 $)) NIL)) (-3279 (((-627 (-636)) (-627 $)) NIL) (((-2 (|:| -1201 (-627 (-636))) (|:| |vec| (-1165 (-636)))) (-627 $) (-1165 $)) NIL) (((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (|has| (-636) (-583 (-521)))) (((-627 (-521)) (-627 $)) NIL (|has| (-636) (-583 (-521))))) (-3859 (((-3 $ "failed") (-381 (-1080 (-636)))) NIL (|has| (-636) (-337))) (($ (-1080 (-636))) NIL)) (-1257 (((-3 $ "failed") $) NIL)) (-1935 (((-636) $) 29)) (-1521 (((-3 (-381 (-521)) "failed") $) NIL (|has| (-636) (-506)))) (-3190 (((-108) $) NIL (|has| (-636) (-506)))) (-2082 (((-381 (-521)) $) NIL (|has| (-636) (-506)))) (-3162 (((-850)) NIL)) (-3250 (($) NIL (|has| (-636) (-342)))) (-2253 (($ $ $) NIL (|has| (-636) (-282)))) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) NIL (|has| (-636) (-282)))) (-2103 (($) NIL (|has| (-636) (-323)))) (-2371 (((-108) $) NIL (|has| (-636) (-323)))) (-2833 (($ $) NIL (|has| (-636) (-323))) (($ $ (-707)) NIL (|has| (-636) (-323)))) (-2710 (((-108) $) NIL (-3703 (-12 (|has| (-636) (-282)) (|has| (-636) (-838))) (|has| (-636) (-337))))) (-3775 (((-2 (|:| |r| (-636)) (|:| |phi| (-636))) $) NIL (-12 (|has| (-636) (-979)) (|has| (-636) (-1105))))) (-2834 (($) NIL (|has| (-636) (-1105)))) (-3427 (((-818 (-353) $) $ (-821 (-353)) (-818 (-353) $)) NIL (|has| (-636) (-815 (-353)))) (((-818 (-521) $) $ (-821 (-521)) (-818 (-521) $)) NIL (|has| (-636) (-815 (-521))))) (-2733 (((-770 (-850)) $) NIL (|has| (-636) (-323))) (((-850) $) NIL (|has| (-636) (-323)))) (-3996 (((-108) $) NIL)) (-3407 (($ $ (-521)) NIL (-12 (|has| (-636) (-927)) (|has| (-636) (-1105))))) (-3930 (((-636) $) NIL)) (-3842 (((-3 $ "failed") $) NIL (|has| (-636) (-323)))) (-1546 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| (-636) (-282)))) (-3548 (((-1080 (-636)) $) NIL (|has| (-636) (-337)))) (-2810 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-1390 (($ (-1 (-636) (-636)) $) NIL)) (-2715 (((-850) $) NIL (|has| (-636) (-342)))) (-1253 (($ $) NIL (|has| (-636) (-1105)))) (-3844 (((-1080 (-636)) $) NIL)) (-2223 (($ (-587 $)) NIL (|has| (-636) (-282))) (($ $ $) NIL (|has| (-636) (-282)))) (-3688 (((-1067) $) NIL)) (-3095 (($ $) NIL (|has| (-636) (-337)))) (-3797 (($) NIL (|has| (-636) (-323)) CONST)) (-2716 (($ (-850)) NIL (|has| (-636) (-342)))) (-3146 (($) NIL)) (-1948 (((-636) $) 31)) (-4147 (((-1031) $) NIL)) (-1383 (($) NIL)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) NIL (|has| (-636) (-282)))) (-2258 (($ (-587 $)) NIL (|has| (-636) (-282))) (($ $ $) NIL (|has| (-636) (-282)))) (-3040 (((-587 (-2 (|:| -1916 (-521)) (|:| -2997 (-521))))) NIL (|has| (-636) (-323)))) (-1912 (((-392 (-1080 $)) (-1080 $)) NIL (-12 (|has| (-636) (-282)) (|has| (-636) (-838))))) (-2165 (((-392 (-1080 $)) (-1080 $)) NIL (-12 (|has| (-636) (-282)) (|has| (-636) (-838))))) (-1916 (((-392 $) $) NIL (-3703 (-12 (|has| (-636) (-282)) (|has| (-636) (-838))) (|has| (-636) (-337))))) (-1962 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-636) (-282))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL (|has| (-636) (-282)))) (-2230 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-636)) NIL (|has| (-636) (-513)))) (-3854 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| (-636) (-282)))) (-3261 (($ $) NIL (|has| (-636) (-1105)))) (-2288 (($ $ (-1084) (-636)) NIL (|has| (-636) (-482 (-1084) (-636)))) (($ $ (-587 (-1084)) (-587 (-636))) NIL (|has| (-636) (-482 (-1084) (-636)))) (($ $ (-587 (-269 (-636)))) NIL (|has| (-636) (-284 (-636)))) (($ $ (-269 (-636))) NIL (|has| (-636) (-284 (-636)))) (($ $ (-636) (-636)) NIL (|has| (-636) (-284 (-636)))) (($ $ (-587 (-636)) (-587 (-636))) NIL (|has| (-636) (-284 (-636))))) (-4196 (((-707) $) NIL (|has| (-636) (-282)))) (-2544 (($ $ (-636)) NIL (|has| (-636) (-261 (-636) (-636))))) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) NIL (|has| (-636) (-282)))) (-4010 (((-636)) NIL) (((-636) (-1165 $)) NIL)) (-4067 (((-3 (-707) "failed") $ $) NIL (|has| (-636) (-323))) (((-707) $) NIL (|has| (-636) (-323)))) (-2156 (($ $ (-1 (-636) (-636))) NIL) (($ $ (-1 (-636) (-636)) (-707)) NIL) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| (-636) (-829 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| (-636) (-829 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| (-636) (-829 (-1084)))) (($ $ (-1084)) NIL (|has| (-636) (-829 (-1084)))) (($ $ (-707)) NIL (|has| (-636) (-210))) (($ $) NIL (|has| (-636) (-210)))) (-3089 (((-627 (-636)) (-1165 $) (-1 (-636) (-636))) NIL (|has| (-636) (-337)))) (-2879 (((-1080 (-636))) NIL)) (-1738 (($ $) NIL (|has| (-636) (-1105)))) (-2800 (($ $) NIL (|has| (-636) (-1105)))) (-1204 (($) NIL (|has| (-636) (-323)))) (-2915 (($ $) NIL (|has| (-636) (-1105)))) (-2780 (($ $) NIL (|has| (-636) (-1105)))) (-2892 (($ $) NIL (|has| (-636) (-1105)))) (-2758 (($ $) NIL (|has| (-636) (-1105)))) (-2234 (((-627 (-636)) (-1165 $)) NIL) (((-1165 (-636)) $) NIL) (((-627 (-636)) (-1165 $) (-1165 $)) NIL) (((-1165 (-636)) $ (-1165 $)) NIL)) (-1430 (((-497) $) NIL (|has| (-636) (-562 (-497)))) (((-154 (-202)) $) NIL (|has| (-636) (-946))) (((-154 (-353)) $) NIL (|has| (-636) (-946))) (((-821 (-353)) $) NIL (|has| (-636) (-562 (-821 (-353))))) (((-821 (-521)) $) NIL (|has| (-636) (-562 (-821 (-521))))) (($ (-1080 (-636))) NIL) (((-1080 (-636)) $) NIL) (($ (-1165 (-636))) NIL) (((-1165 (-636)) $) NIL)) (-1223 (($ $) NIL)) (-2944 (((-3 (-1165 $) "failed") (-627 $)) NIL (-3703 (-12 (|has| (-636) (-282)) (|has| $ (-133)) (|has| (-636) (-838))) (|has| (-636) (-323))))) (-3905 (($ (-636) (-636)) 12)) (-2189 (((-792) $) NIL) (($ (-521)) NIL) (($ $) NIL) (($ (-521)) NIL) (($ (-636)) NIL) (($ (-154 (-353))) 13) (($ (-154 (-521))) 19) (($ (-154 (-636))) 28) (($ (-154 (-638))) 25) (((-154 (-353)) $) 33) (($ (-381 (-521))) NIL (-3703 (|has| (-636) (-961 (-381 (-521)))) (|has| (-636) (-337))))) (-1671 (($ $) NIL (|has| (-636) (-323))) (((-3 $ "failed") $) NIL (-3703 (-12 (|has| (-636) (-282)) (|has| $ (-133)) (|has| (-636) (-838))) (|has| (-636) (-133))))) (-3110 (((-1080 (-636)) $) NIL)) (-3846 (((-707)) NIL)) (-2470 (((-1165 $)) NIL)) (-1759 (($ $) NIL (|has| (-636) (-1105)))) (-2832 (($ $) NIL (|has| (-636) (-1105)))) (-4210 (((-108) $ $) NIL)) (-1745 (($ $) NIL (|has| (-636) (-1105)))) (-2811 (($ $) NIL (|has| (-636) (-1105)))) (-1776 (($ $) NIL (|has| (-636) (-1105)))) (-2856 (($ $) NIL (|has| (-636) (-1105)))) (-3503 (((-636) $) NIL (|has| (-636) (-1105)))) (-3919 (($ $) NIL (|has| (-636) (-1105)))) (-2868 (($ $) NIL (|has| (-636) (-1105)))) (-1768 (($ $) NIL (|has| (-636) (-1105)))) (-2844 (($ $) NIL (|has| (-636) (-1105)))) (-1752 (($ $) NIL (|has| (-636) (-1105)))) (-2821 (($ $) NIL (|has| (-636) (-1105)))) (-3304 (($ $) NIL (|has| (-636) (-979)))) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL (|has| (-636) (-337)))) (-3561 (($) NIL T CONST)) (-3572 (($) NIL T CONST)) (-2212 (($ $ (-1 (-636) (-636))) NIL) (($ $ (-1 (-636) (-636)) (-707)) NIL) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| (-636) (-829 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| (-636) (-829 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| (-636) (-829 (-1084)))) (($ $ (-1084)) NIL (|has| (-636) (-829 (-1084)))) (($ $ (-707)) NIL (|has| (-636) (-210))) (($ $) NIL (|has| (-636) (-210)))) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) NIL)) (-1620 (($ $ $) NIL (|has| (-636) (-337)))) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ $) NIL (|has| (-636) (-1105))) (($ $ (-381 (-521))) NIL (-12 (|has| (-636) (-927)) (|has| (-636) (-1105)))) (($ $ (-521)) NIL (|has| (-636) (-337)))) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ (-636) $) NIL) (($ $ (-636)) NIL) (($ (-381 (-521)) $) NIL (|has| (-636) (-337))) (($ $ (-381 (-521))) NIL (|has| (-636) (-337)))))
+(((-631) (-13 (-361) (-151 (-636)) (-10 -8 (-15 -2189 ($ (-154 (-353)))) (-15 -2189 ($ (-154 (-521)))) (-15 -2189 ($ (-154 (-636)))) (-15 -2189 ($ (-154 (-638)))) (-15 -2189 ((-154 (-353)) $))))) (T -631))
+((-2189 (*1 *1 *2) (-12 (-5 *2 (-154 (-353))) (-5 *1 (-631)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-154 (-521))) (-5 *1 (-631)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-154 (-636))) (-5 *1 (-631)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-154 (-638))) (-5 *1 (-631)))) (-2189 (*1 *2 *1) (-12 (-5 *2 (-154 (-353))) (-5 *1 (-631)))))
+(-13 (-361) (-151 (-636)) (-10 -8 (-15 -2189 ($ (-154 (-353)))) (-15 -2189 ($ (-154 (-521)))) (-15 -2189 ($ (-154 (-636)))) (-15 -2189 ($ (-154 (-638)))) (-15 -2189 ((-154 (-353)) $))))
+((-1415 (((-108) $ $) 19 (|has| |#1| (-1013)))) (-2978 (((-108) $ (-707)) 8)) (-4098 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4233)))) (-1628 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4233)))) (-2547 (($) 7 T CONST)) (-2468 (($ $) 62)) (-2332 (($ $) 58 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-3023 (($ |#1| $) 47 (|has| $ (-6 -4233))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4233)))) (-1422 (($ |#1| $) 57 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4233)))) (-3859 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4233)))) (-3831 (((-587 |#1|) $) 30 (|has| $ (-6 -4233)))) (-2139 (((-108) $ (-707)) 9)) (-3757 (((-587 |#1|) $) 29 (|has| $ (-6 -4233)))) (-2221 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-3833 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#1| |#1|) $) 35)) (-3574 (((-108) $ (-707)) 10)) (-3688 (((-1067) $) 22 (|has| |#1| (-1013)))) (-2511 ((|#1| $) 39)) (-3373 (($ |#1| $) 40) (($ |#1| $ (-707)) 63)) (-4147 (((-1031) $) 21 (|has| |#1| (-1013)))) (-3620 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-2166 ((|#1| $) 41)) (-1789 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 |#1|))) 26 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) 25 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) 23 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-2488 (((-108) $ $) 14)) (-3462 (((-108) $) 11)) (-4024 (($) 12)) (-2312 (((-587 (-2 (|:| -3045 |#1|) (|:| -4163 (-707)))) $) 61)) (-1784 (($) 49) (($ (-587 |#1|)) 48)) (-4163 (((-707) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4233))) (((-707) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-2404 (($ $) 13)) (-1430 (((-497) $) 59 (|has| |#1| (-562 (-497))))) (-2201 (($ (-587 |#1|)) 50)) (-2189 (((-792) $) 18 (|has| |#1| (-561 (-792))))) (-4091 (($ (-587 |#1|)) 42)) (-3049 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4233)))) (-1531 (((-108) $ $) 20 (|has| |#1| (-1013)))) (-3475 (((-707) $) 6 (|has| $ (-6 -4233)))))
+(((-632 |#1|) (-1196) (-1013)) (T -632))
+((-3373 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-707)) (-4 *1 (-632 *2)) (-4 *2 (-1013)))) (-2468 (*1 *1 *1) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1013)))) (-2312 (*1 *2 *1) (-12 (-4 *1 (-632 *3)) (-4 *3 (-1013)) (-5 *2 (-587 (-2 (|:| -3045 *3) (|:| -4163 (-707))))))))
+(-13 (-212 |t#1|) (-10 -8 (-15 -3373 ($ |t#1| $ (-707))) (-15 -2468 ($ $)) (-15 -2312 ((-587 (-2 (|:| -3045 |t#1|) (|:| -4163 (-707)))) $))))
+(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1013)) ((-561 (-792)) -3703 (|has| |#1| (-1013)) (|has| |#1| (-561 (-792)))) ((-139 |#1|) . T) ((-562 (-497)) |has| |#1| (-562 (-497))) ((-212 |#1|) . T) ((-284 |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-460 |#1|) . T) ((-482 |#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-1013) |has| |#1| (-1013)) ((-1119) . T))
+((-3166 (((-587 |#1|) (-587 (-2 (|:| -1916 |#1|) (|:| -1994 (-521)))) (-521)) 46)) (-2823 ((|#1| |#1| (-521)) 45)) (-2258 ((|#1| |#1| |#1| (-521)) 35)) (-1916 (((-587 |#1|) |#1| (-521)) 38)) (-2985 ((|#1| |#1| (-521) |#1| (-521)) 32)) (-3965 (((-587 (-2 (|:| -1916 |#1|) (|:| -1994 (-521)))) |#1| (-521)) 44)))
+(((-633 |#1|) (-10 -7 (-15 -2258 (|#1| |#1| |#1| (-521))) (-15 -2823 (|#1| |#1| (-521))) (-15 -1916 ((-587 |#1|) |#1| (-521))) (-15 -3965 ((-587 (-2 (|:| -1916 |#1|) (|:| -1994 (-521)))) |#1| (-521))) (-15 -3166 ((-587 |#1|) (-587 (-2 (|:| -1916 |#1|) (|:| -1994 (-521)))) (-521))) (-15 -2985 (|#1| |#1| (-521) |#1| (-521)))) (-1141 (-521))) (T -633))
+((-2985 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-521)) (-5 *1 (-633 *2)) (-4 *2 (-1141 *3)))) (-3166 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-2 (|:| -1916 *5) (|:| -1994 (-521))))) (-5 *4 (-521)) (-4 *5 (-1141 *4)) (-5 *2 (-587 *5)) (-5 *1 (-633 *5)))) (-3965 (*1 *2 *3 *4) (-12 (-5 *4 (-521)) (-5 *2 (-587 (-2 (|:| -1916 *3) (|:| -1994 *4)))) (-5 *1 (-633 *3)) (-4 *3 (-1141 *4)))) (-1916 (*1 *2 *3 *4) (-12 (-5 *4 (-521)) (-5 *2 (-587 *3)) (-5 *1 (-633 *3)) (-4 *3 (-1141 *4)))) (-2823 (*1 *2 *2 *3) (-12 (-5 *3 (-521)) (-5 *1 (-633 *2)) (-4 *2 (-1141 *3)))) (-2258 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-521)) (-5 *1 (-633 *2)) (-4 *2 (-1141 *3)))))
+(-10 -7 (-15 -2258 (|#1| |#1| |#1| (-521))) (-15 -2823 (|#1| |#1| (-521))) (-15 -1916 ((-587 |#1|) |#1| (-521))) (-15 -3965 ((-587 (-2 (|:| -1916 |#1|) (|:| -1994 (-521)))) |#1| (-521))) (-15 -3166 ((-587 |#1|) (-587 (-2 (|:| -1916 |#1|) (|:| -1994 (-521)))) (-521))) (-15 -2985 (|#1| |#1| (-521) |#1| (-521))))
+((-3923 (((-1 (-872 (-202)) (-202) (-202)) (-1 (-202) (-202) (-202)) (-1 (-202) (-202) (-202)) (-1 (-202) (-202) (-202)) (-1 (-202) (-202) (-202) (-202))) 17)) (-3163 (((-1044 (-202)) (-1044 (-202)) (-1 (-872 (-202)) (-202) (-202)) (-1008 (-202)) (-1008 (-202)) (-587 (-239))) 38) (((-1044 (-202)) (-1 (-872 (-202)) (-202) (-202)) (-1008 (-202)) (-1008 (-202)) (-587 (-239))) 40) (((-1044 (-202)) (-1 (-202) (-202) (-202)) (-1 (-202) (-202) (-202)) (-1 (-202) (-202) (-202)) (-3 (-1 (-202) (-202) (-202) (-202)) "undefined") (-1008 (-202)) (-1008 (-202)) (-587 (-239))) 42)) (-2393 (((-1044 (-202)) (-290 (-521)) (-290 (-521)) (-290 (-521)) (-1 (-202) (-202)) (-1008 (-202)) (-587 (-239))) NIL)) (-4068 (((-1044 (-202)) (-1 (-202) (-202) (-202)) (-3 (-1 (-202) (-202) (-202) (-202)) "undefined") (-1008 (-202)) (-1008 (-202)) (-587 (-239))) 43)))
+(((-634) (-10 -7 (-15 -3163 ((-1044 (-202)) (-1 (-202) (-202) (-202)) (-1 (-202) (-202) (-202)) (-1 (-202) (-202) (-202)) (-3 (-1 (-202) (-202) (-202) (-202)) "undefined") (-1008 (-202)) (-1008 (-202)) (-587 (-239)))) (-15 -3163 ((-1044 (-202)) (-1 (-872 (-202)) (-202) (-202)) (-1008 (-202)) (-1008 (-202)) (-587 (-239)))) (-15 -3163 ((-1044 (-202)) (-1044 (-202)) (-1 (-872 (-202)) (-202) (-202)) (-1008 (-202)) (-1008 (-202)) (-587 (-239)))) (-15 -4068 ((-1044 (-202)) (-1 (-202) (-202) (-202)) (-3 (-1 (-202) (-202) (-202) (-202)) "undefined") (-1008 (-202)) (-1008 (-202)) (-587 (-239)))) (-15 -2393 ((-1044 (-202)) (-290 (-521)) (-290 (-521)) (-290 (-521)) (-1 (-202) (-202)) (-1008 (-202)) (-587 (-239)))) (-15 -3923 ((-1 (-872 (-202)) (-202) (-202)) (-1 (-202) (-202) (-202)) (-1 (-202) (-202) (-202)) (-1 (-202) (-202) (-202)) (-1 (-202) (-202) (-202) (-202)))))) (T -634))
+((-3923 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-202) (-202) (-202))) (-5 *4 (-1 (-202) (-202) (-202) (-202))) (-5 *2 (-1 (-872 (-202)) (-202) (-202))) (-5 *1 (-634)))) (-2393 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-290 (-521))) (-5 *4 (-1 (-202) (-202))) (-5 *5 (-1008 (-202))) (-5 *6 (-587 (-239))) (-5 *2 (-1044 (-202))) (-5 *1 (-634)))) (-4068 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-202) (-202) (-202))) (-5 *4 (-3 (-1 (-202) (-202) (-202) (-202)) "undefined")) (-5 *5 (-1008 (-202))) (-5 *6 (-587 (-239))) (-5 *2 (-1044 (-202))) (-5 *1 (-634)))) (-3163 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1044 (-202))) (-5 *3 (-1 (-872 (-202)) (-202) (-202))) (-5 *4 (-1008 (-202))) (-5 *5 (-587 (-239))) (-5 *1 (-634)))) (-3163 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-872 (-202)) (-202) (-202))) (-5 *4 (-1008 (-202))) (-5 *5 (-587 (-239))) (-5 *2 (-1044 (-202))) (-5 *1 (-634)))) (-3163 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-202) (-202) (-202))) (-5 *4 (-3 (-1 (-202) (-202) (-202) (-202)) "undefined")) (-5 *5 (-1008 (-202))) (-5 *6 (-587 (-239))) (-5 *2 (-1044 (-202))) (-5 *1 (-634)))))
+(-10 -7 (-15 -3163 ((-1044 (-202)) (-1 (-202) (-202) (-202)) (-1 (-202) (-202) (-202)) (-1 (-202) (-202) (-202)) (-3 (-1 (-202) (-202) (-202) (-202)) "undefined") (-1008 (-202)) (-1008 (-202)) (-587 (-239)))) (-15 -3163 ((-1044 (-202)) (-1 (-872 (-202)) (-202) (-202)) (-1008 (-202)) (-1008 (-202)) (-587 (-239)))) (-15 -3163 ((-1044 (-202)) (-1044 (-202)) (-1 (-872 (-202)) (-202) (-202)) (-1008 (-202)) (-1008 (-202)) (-587 (-239)))) (-15 -4068 ((-1044 (-202)) (-1 (-202) (-202) (-202)) (-3 (-1 (-202) (-202) (-202) (-202)) "undefined") (-1008 (-202)) (-1008 (-202)) (-587 (-239)))) (-15 -2393 ((-1044 (-202)) (-290 (-521)) (-290 (-521)) (-290 (-521)) (-1 (-202) (-202)) (-1008 (-202)) (-587 (-239)))) (-15 -3923 ((-1 (-872 (-202)) (-202) (-202)) (-1 (-202) (-202) (-202)) (-1 (-202) (-202) (-202)) (-1 (-202) (-202) (-202)) (-1 (-202) (-202) (-202) (-202)))))
+((-1916 (((-392 (-1080 |#4|)) (-1080 |#4|)) 73) (((-392 |#4|) |#4|) 217)))
+(((-635 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1916 ((-392 |#4|) |#4|)) (-15 -1916 ((-392 (-1080 |#4|)) (-1080 |#4|)))) (-784) (-729) (-323) (-878 |#3| |#2| |#1|)) (T -635))
+((-1916 (*1 *2 *3) (-12 (-4 *4 (-784)) (-4 *5 (-729)) (-4 *6 (-323)) (-4 *7 (-878 *6 *5 *4)) (-5 *2 (-392 (-1080 *7))) (-5 *1 (-635 *4 *5 *6 *7)) (-5 *3 (-1080 *7)))) (-1916 (*1 *2 *3) (-12 (-4 *4 (-784)) (-4 *5 (-729)) (-4 *6 (-323)) (-5 *2 (-392 *3)) (-5 *1 (-635 *4 *5 *6 *3)) (-4 *3 (-878 *6 *5 *4)))))
+(-10 -7 (-15 -1916 ((-392 |#4|) |#4|)) (-15 -1916 ((-392 (-1080 |#4|)) (-1080 |#4|))))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) 84)) (-2086 (((-521) $) 30)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-2559 (($ $) NIL)) (-1733 (((-108) $) NIL)) (-2977 (($ $) NIL)) (-1232 (((-3 $ "failed") $ $) NIL)) (-3063 (($ $) NIL)) (-3358 (((-392 $) $) NIL)) (-1927 (($ $) NIL)) (-1389 (((-108) $ $) NIL)) (-1606 (((-521) $) NIL)) (-2547 (($) NIL T CONST)) (-1218 (($ $) NIL)) (-1297 (((-3 (-521) "failed") $) 73) (((-3 (-381 (-521)) "failed") $) 26) (((-3 (-353) "failed") $) 70)) (-1483 (((-521) $) 75) (((-381 (-521)) $) 67) (((-353) $) 68)) (-2277 (($ $ $) 96)) (-1257 (((-3 $ "failed") $) 87)) (-2253 (($ $ $) 95)) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) NIL)) (-2710 (((-108) $) NIL)) (-2173 (((-850)) 77) (((-850) (-850)) 76)) (-3951 (((-108) $) NIL)) (-3427 (((-818 (-353) $) $ (-821 (-353)) (-818 (-353) $)) NIL)) (-2733 (((-521) $) NIL)) (-3996 (((-108) $) NIL)) (-3407 (($ $ (-521)) NIL)) (-3930 (($ $) NIL)) (-2210 (((-108) $) NIL)) (-1546 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-4171 (((-521) (-521)) 81) (((-521)) 82)) (-2810 (($ $ $) NIL) (($) NIL (-12 (-2400 (|has| $ (-6 -4216))) (-2400 (|has| $ (-6 -4224)))))) (-2508 (((-521) (-521)) 79) (((-521)) 80)) (-2446 (($ $ $) NIL) (($) NIL (-12 (-2400 (|has| $ (-6 -4216))) (-2400 (|has| $ (-6 -4224)))))) (-3352 (((-521) $) 16)) (-2223 (($ $ $) NIL) (($ (-587 $)) NIL)) (-3688 (((-1067) $) NIL)) (-3095 (($ $) 91)) (-1492 (((-850) (-521)) NIL (|has| $ (-6 -4224)))) (-4147 (((-1031) $) NIL)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) NIL)) (-2258 (($ $ $) NIL) (($ (-587 $)) NIL)) (-2850 (($ $) NIL)) (-2567 (($ $) NIL)) (-3068 (($ (-521) (-521)) NIL) (($ (-521) (-521) (-850)) NIL)) (-1916 (((-392 $) $) NIL)) (-1962 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2230 (((-3 $ "failed") $ $) 92)) (-3854 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-2997 (((-521) $) 22)) (-4196 (((-707) $) NIL)) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) 94)) (-4151 (((-850)) NIL) (((-850) (-850)) NIL (|has| $ (-6 -4224)))) (-1276 (((-850) (-521)) NIL (|has| $ (-6 -4224)))) (-1430 (((-353) $) NIL) (((-202) $) NIL) (((-821 (-353)) $) NIL)) (-2189 (((-792) $) 52) (($ (-521)) 63) (($ $) NIL) (($ (-381 (-521))) 66) (($ (-521)) 63) (($ (-381 (-521))) 66) (($ (-353)) 60) (((-353) $) 50) (($ (-638)) 55)) (-3846 (((-707)) 103)) (-4208 (($ (-521) (-521) (-850)) 44)) (-2382 (($ $) NIL)) (-2703 (((-850)) NIL) (((-850) (-850)) NIL (|has| $ (-6 -4224)))) (-3351 (((-850)) 35) (((-850) (-850)) 78)) (-4210 (((-108) $ $) NIL)) (-3304 (($ $) NIL)) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (-3561 (($) 32 T CONST)) (-3572 (($) 17 T CONST)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) 83)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 101)) (-1620 (($ $ $) 65)) (-1612 (($ $) 99) (($ $ $) 100)) (-1602 (($ $ $) 98)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL) (($ $ (-381 (-521))) 90)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) 97) (($ $ $) 88) (($ $ (-381 (-521))) NIL) (($ (-381 (-521)) $) NIL)))
+(((-636) (-13 (-378) (-361) (-337) (-961 (-353)) (-961 (-381 (-521))) (-135) (-10 -8 (-15 -2173 ((-850) (-850))) (-15 -2173 ((-850))) (-15 -3351 ((-850) (-850))) (-15 -3351 ((-850))) (-15 -2508 ((-521) (-521))) (-15 -2508 ((-521))) (-15 -4171 ((-521) (-521))) (-15 -4171 ((-521))) (-15 -2189 ((-353) $)) (-15 -2189 ($ (-638))) (-15 -3352 ((-521) $)) (-15 -2997 ((-521) $)) (-15 -4208 ($ (-521) (-521) (-850)))))) (T -636))
+((-3351 (*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-636)))) (-2997 (*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-636)))) (-3352 (*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-636)))) (-2173 (*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-636)))) (-2173 (*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-636)))) (-3351 (*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-636)))) (-2508 (*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-636)))) (-2508 (*1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-636)))) (-4171 (*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-636)))) (-4171 (*1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-636)))) (-2189 (*1 *2 *1) (-12 (-5 *2 (-353)) (-5 *1 (-636)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-638)) (-5 *1 (-636)))) (-4208 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-521)) (-5 *3 (-850)) (-5 *1 (-636)))))
+(-13 (-378) (-361) (-337) (-961 (-353)) (-961 (-381 (-521))) (-135) (-10 -8 (-15 -2173 ((-850) (-850))) (-15 -2173 ((-850))) (-15 -3351 ((-850) (-850))) (-15 -3351 ((-850))) (-15 -2508 ((-521) (-521))) (-15 -2508 ((-521))) (-15 -4171 ((-521) (-521))) (-15 -4171 ((-521))) (-15 -2189 ((-353) $)) (-15 -2189 ($ (-638))) (-15 -3352 ((-521) $)) (-15 -2997 ((-521) $)) (-15 -4208 ($ (-521) (-521) (-850)))))
+((-3962 (((-627 |#1|) (-627 |#1|) |#1| |#1|) 65)) (-1311 (((-627 |#1|) (-627 |#1|) |#1|) 48)) (-3492 (((-627 |#1|) (-627 |#1|) |#1|) 66)) (-1293 (((-627 |#1|) (-627 |#1|)) 49)) (-2278 (((-2 (|:| -3727 |#1|) (|:| -3820 |#1|)) |#1| |#1|) 64)))
+(((-637 |#1|) (-10 -7 (-15 -1293 ((-627 |#1|) (-627 |#1|))) (-15 -1311 ((-627 |#1|) (-627 |#1|) |#1|)) (-15 -3492 ((-627 |#1|) (-627 |#1|) |#1|)) (-15 -3962 ((-627 |#1|) (-627 |#1|) |#1| |#1|)) (-15 -2278 ((-2 (|:| -3727 |#1|) (|:| -3820 |#1|)) |#1| |#1|))) (-282)) (T -637))
+((-2278 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -3727 *3) (|:| -3820 *3))) (-5 *1 (-637 *3)) (-4 *3 (-282)))) (-3962 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-627 *3)) (-4 *3 (-282)) (-5 *1 (-637 *3)))) (-3492 (*1 *2 *2 *3) (-12 (-5 *2 (-627 *3)) (-4 *3 (-282)) (-5 *1 (-637 *3)))) (-1311 (*1 *2 *2 *3) (-12 (-5 *2 (-627 *3)) (-4 *3 (-282)) (-5 *1 (-637 *3)))) (-1293 (*1 *2 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-282)) (-5 *1 (-637 *3)))))
+(-10 -7 (-15 -1293 ((-627 |#1|) (-627 |#1|))) (-15 -1311 ((-627 |#1|) (-627 |#1|) |#1|)) (-15 -3492 ((-627 |#1|) (-627 |#1|) |#1|)) (-15 -3962 ((-627 |#1|) (-627 |#1|) |#1| |#1|)) (-15 -2278 ((-2 (|:| -3727 |#1|) (|:| -3820 |#1|)) |#1| |#1|)))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-2559 (($ $) NIL)) (-1733 (((-108) $) NIL)) (-3929 (($ $ $) NIL)) (-1232 (((-3 $ "failed") $ $) NIL)) (-3106 (($ $ $ $) NIL)) (-3063 (($ $) NIL)) (-3358 (((-392 $) $) NIL)) (-1389 (((-108) $ $) NIL)) (-1606 (((-521) $) NIL)) (-1662 (($ $ $) NIL)) (-2547 (($) NIL T CONST)) (-1297 (((-3 (-521) "failed") $) 27)) (-1483 (((-521) $) 25)) (-2277 (($ $ $) NIL)) (-3279 (((-627 (-521)) (-627 $)) NIL) (((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL)) (-1257 (((-3 $ "failed") $) NIL)) (-1521 (((-3 (-381 (-521)) "failed") $) NIL)) (-3190 (((-108) $) NIL)) (-2082 (((-381 (-521)) $) NIL)) (-3250 (($ $) NIL) (($) NIL)) (-2253 (($ $ $) NIL)) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) NIL)) (-2710 (((-108) $) NIL)) (-2213 (($ $ $ $) NIL)) (-3158 (($ $ $) NIL)) (-3951 (((-108) $) NIL)) (-3189 (($ $ $) NIL)) (-3427 (((-818 (-521) $) $ (-821 (-521)) (-818 (-521) $)) NIL)) (-3996 (((-108) $) NIL)) (-1255 (((-108) $) NIL)) (-3842 (((-3 $ "failed") $) NIL)) (-2210 (((-108) $) NIL)) (-1546 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-2283 (($ $ $ $) NIL)) (-2810 (($ $ $) NIL)) (-2894 (((-850) (-850)) 10) (((-850)) 9)) (-2446 (($ $ $) NIL)) (-3890 (($ $) NIL)) (-2516 (($ $) NIL)) (-2223 (($ (-587 $)) NIL) (($ $ $) NIL)) (-3688 (((-1067) $) NIL)) (-1642 (($ $ $) NIL)) (-3797 (($) NIL T CONST)) (-2953 (($ $) NIL)) (-4147 (((-1031) $) NIL) (($ $) NIL)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) NIL)) (-2258 (($ (-587 $)) NIL) (($ $ $) NIL)) (-3210 (($ $) NIL)) (-1916 (((-392 $) $) NIL)) (-1962 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2230 (((-3 $ "failed") $ $) NIL)) (-3854 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-3550 (((-108) $) NIL)) (-4196 (((-707) $) NIL)) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) NIL)) (-2156 (($ $) NIL) (($ $ (-707)) NIL)) (-3052 (($ $) NIL)) (-2404 (($ $) NIL)) (-1430 (((-202) $) NIL) (((-353) $) NIL) (((-821 (-521)) $) NIL) (((-497) $) NIL) (((-521) $) NIL)) (-2189 (((-792) $) NIL) (($ (-521)) 24) (($ $) NIL) (($ (-521)) 24) (((-290 $) (-290 (-521))) 18)) (-3846 (((-707)) NIL)) (-3968 (((-108) $ $) NIL)) (-2712 (($ $ $) NIL)) (-3351 (($) NIL)) (-4210 (((-108) $ $) NIL)) (-3631 (($ $ $ $) NIL)) (-3304 (($ $) NIL)) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (-3561 (($) NIL T CONST)) (-3572 (($) NIL T CONST)) (-2212 (($ $) NIL) (($ $ (-707)) NIL)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL)))
+(((-638) (-13 (-361) (-506) (-10 -8 (-15 -2894 ((-850) (-850))) (-15 -2894 ((-850))) (-15 -2189 ((-290 $) (-290 (-521))))))) (T -638))
+((-2894 (*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-638)))) (-2894 (*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-638)))) (-2189 (*1 *2 *3) (-12 (-5 *3 (-290 (-521))) (-5 *2 (-290 (-638))) (-5 *1 (-638)))))
+(-13 (-361) (-506) (-10 -8 (-15 -2894 ((-850) (-850))) (-15 -2894 ((-850))) (-15 -2189 ((-290 $) (-290 (-521))))))
+((-3955 (((-1 |#4| |#2| |#3|) |#1| (-1084) (-1084)) 19)) (-1283 (((-1 |#4| |#2| |#3|) (-1084)) 12)))
+(((-639 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1283 ((-1 |#4| |#2| |#3|) (-1084))) (-15 -3955 ((-1 |#4| |#2| |#3|) |#1| (-1084) (-1084)))) (-562 (-497)) (-1119) (-1119) (-1119)) (T -639))
+((-3955 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1084)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-639 *3 *5 *6 *7)) (-4 *3 (-562 (-497))) (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119)))) (-1283 (*1 *2 *3) (-12 (-5 *3 (-1084)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-639 *4 *5 *6 *7)) (-4 *4 (-562 (-497))) (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119)))))
+(-10 -7 (-15 -1283 ((-1 |#4| |#2| |#3|) (-1084))) (-15 -3955 ((-1 |#4| |#2| |#3|) |#1| (-1084) (-1084))))
+((-1415 (((-108) $ $) NIL)) (-3380 (((-1170) $ (-707)) 14)) (-3233 (((-707) $) 12)) (-2810 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2189 (((-792) $) 18) ((|#1| $) 15) (($ |#1|) 23)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) 25)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 24)))
+(((-640 |#1|) (-13 (-125) (-561 |#1|) (-10 -8 (-15 -2189 ($ |#1|)))) (-1013)) (T -640))
+((-2189 (*1 *1 *2) (-12 (-5 *1 (-640 *2)) (-4 *2 (-1013)))))
+(-13 (-125) (-561 |#1|) (-10 -8 (-15 -2189 ($ |#1|))))
+((-1567 (((-1 (-202) (-202) (-202)) |#1| (-1084) (-1084)) 33) (((-1 (-202) (-202)) |#1| (-1084)) 38)))
+(((-641 |#1|) (-10 -7 (-15 -1567 ((-1 (-202) (-202)) |#1| (-1084))) (-15 -1567 ((-1 (-202) (-202) (-202)) |#1| (-1084) (-1084)))) (-562 (-497))) (T -641))
+((-1567 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1084)) (-5 *2 (-1 (-202) (-202) (-202))) (-5 *1 (-641 *3)) (-4 *3 (-562 (-497))))) (-1567 (*1 *2 *3 *4) (-12 (-5 *4 (-1084)) (-5 *2 (-1 (-202) (-202))) (-5 *1 (-641 *3)) (-4 *3 (-562 (-497))))))
+(-10 -7 (-15 -1567 ((-1 (-202) (-202)) |#1| (-1084))) (-15 -1567 ((-1 (-202) (-202) (-202)) |#1| (-1084) (-1084))))
+((-2093 (((-1084) |#1| (-1084) (-587 (-1084))) 9) (((-1084) |#1| (-1084) (-1084) (-1084)) 12) (((-1084) |#1| (-1084) (-1084)) 11) (((-1084) |#1| (-1084)) 10)))
+(((-642 |#1|) (-10 -7 (-15 -2093 ((-1084) |#1| (-1084))) (-15 -2093 ((-1084) |#1| (-1084) (-1084))) (-15 -2093 ((-1084) |#1| (-1084) (-1084) (-1084))) (-15 -2093 ((-1084) |#1| (-1084) (-587 (-1084))))) (-562 (-497))) (T -642))
+((-2093 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-587 (-1084))) (-5 *2 (-1084)) (-5 *1 (-642 *3)) (-4 *3 (-562 (-497))))) (-2093 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1084)) (-5 *1 (-642 *3)) (-4 *3 (-562 (-497))))) (-2093 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1084)) (-5 *1 (-642 *3)) (-4 *3 (-562 (-497))))) (-2093 (*1 *2 *3 *2) (-12 (-5 *2 (-1084)) (-5 *1 (-642 *3)) (-4 *3 (-562 (-497))))))
+(-10 -7 (-15 -2093 ((-1084) |#1| (-1084))) (-15 -2093 ((-1084) |#1| (-1084) (-1084))) (-15 -2093 ((-1084) |#1| (-1084) (-1084) (-1084))) (-15 -2093 ((-1084) |#1| (-1084) (-587 (-1084)))))
+((-1675 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9)))
+(((-643 |#1| |#2|) (-10 -7 (-15 -1675 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1119) (-1119)) (T -643))
+((-1675 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-643 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1119)))))
+(-10 -7 (-15 -1675 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|)))
+((-1809 (((-1 |#3| |#2|) (-1084)) 11)) (-3955 (((-1 |#3| |#2|) |#1| (-1084)) 21)))
+(((-644 |#1| |#2| |#3|) (-10 -7 (-15 -1809 ((-1 |#3| |#2|) (-1084))) (-15 -3955 ((-1 |#3| |#2|) |#1| (-1084)))) (-562 (-497)) (-1119) (-1119)) (T -644))
+((-3955 (*1 *2 *3 *4) (-12 (-5 *4 (-1084)) (-5 *2 (-1 *6 *5)) (-5 *1 (-644 *3 *5 *6)) (-4 *3 (-562 (-497))) (-4 *5 (-1119)) (-4 *6 (-1119)))) (-1809 (*1 *2 *3) (-12 (-5 *3 (-1084)) (-5 *2 (-1 *6 *5)) (-5 *1 (-644 *4 *5 *6)) (-4 *4 (-562 (-497))) (-4 *5 (-1119)) (-4 *6 (-1119)))))
+(-10 -7 (-15 -1809 ((-1 |#3| |#2|) (-1084))) (-15 -3955 ((-1 |#3| |#2|) |#1| (-1084))))
+((-2772 (((-3 (-587 (-1080 |#4|)) "failed") (-1080 |#4|) (-587 |#2|) (-587 (-1080 |#4|)) (-587 |#3|) (-587 |#4|) (-587 (-587 (-2 (|:| -2096 (-707)) (|:| |pcoef| |#4|)))) (-587 (-707)) (-1165 (-587 (-1080 |#3|))) |#3|) 59)) (-3120 (((-3 (-587 (-1080 |#4|)) "failed") (-1080 |#4|) (-587 |#2|) (-587 (-1080 |#3|)) (-587 |#3|) (-587 |#4|) (-587 (-707)) |#3|) 72)) (-3476 (((-3 (-587 (-1080 |#4|)) "failed") (-1080 |#4|) (-587 |#2|) (-587 |#3|) (-587 (-707)) (-587 (-1080 |#4|)) (-1165 (-587 (-1080 |#3|))) |#3|) 32)))
+(((-645 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3476 ((-3 (-587 (-1080 |#4|)) "failed") (-1080 |#4|) (-587 |#2|) (-587 |#3|) (-587 (-707)) (-587 (-1080 |#4|)) (-1165 (-587 (-1080 |#3|))) |#3|)) (-15 -3120 ((-3 (-587 (-1080 |#4|)) "failed") (-1080 |#4|) (-587 |#2|) (-587 (-1080 |#3|)) (-587 |#3|) (-587 |#4|) (-587 (-707)) |#3|)) (-15 -2772 ((-3 (-587 (-1080 |#4|)) "failed") (-1080 |#4|) (-587 |#2|) (-587 (-1080 |#4|)) (-587 |#3|) (-587 |#4|) (-587 (-587 (-2 (|:| -2096 (-707)) (|:| |pcoef| |#4|)))) (-587 (-707)) (-1165 (-587 (-1080 |#3|))) |#3|))) (-729) (-784) (-282) (-878 |#3| |#1| |#2|)) (T -645))
+((-2772 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-587 (-1080 *13))) (-5 *3 (-1080 *13)) (-5 *4 (-587 *12)) (-5 *5 (-587 *10)) (-5 *6 (-587 *13)) (-5 *7 (-587 (-587 (-2 (|:| -2096 (-707)) (|:| |pcoef| *13))))) (-5 *8 (-587 (-707))) (-5 *9 (-1165 (-587 (-1080 *10)))) (-4 *12 (-784)) (-4 *10 (-282)) (-4 *13 (-878 *10 *11 *12)) (-4 *11 (-729)) (-5 *1 (-645 *11 *12 *10 *13)))) (-3120 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-587 *11)) (-5 *5 (-587 (-1080 *9))) (-5 *6 (-587 *9)) (-5 *7 (-587 *12)) (-5 *8 (-587 (-707))) (-4 *11 (-784)) (-4 *9 (-282)) (-4 *12 (-878 *9 *10 *11)) (-4 *10 (-729)) (-5 *2 (-587 (-1080 *12))) (-5 *1 (-645 *10 *11 *9 *12)) (-5 *3 (-1080 *12)))) (-3476 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-587 (-1080 *11))) (-5 *3 (-1080 *11)) (-5 *4 (-587 *10)) (-5 *5 (-587 *8)) (-5 *6 (-587 (-707))) (-5 *7 (-1165 (-587 (-1080 *8)))) (-4 *10 (-784)) (-4 *8 (-282)) (-4 *11 (-878 *8 *9 *10)) (-4 *9 (-729)) (-5 *1 (-645 *9 *10 *8 *11)))))
+(-10 -7 (-15 -3476 ((-3 (-587 (-1080 |#4|)) "failed") (-1080 |#4|) (-587 |#2|) (-587 |#3|) (-587 (-707)) (-587 (-1080 |#4|)) (-1165 (-587 (-1080 |#3|))) |#3|)) (-15 -3120 ((-3 (-587 (-1080 |#4|)) "failed") (-1080 |#4|) (-587 |#2|) (-587 (-1080 |#3|)) (-587 |#3|) (-587 |#4|) (-587 (-707)) |#3|)) (-15 -2772 ((-3 (-587 (-1080 |#4|)) "failed") (-1080 |#4|) (-587 |#2|) (-587 (-1080 |#4|)) (-587 |#3|) (-587 |#4|) (-587 (-587 (-2 (|:| -2096 (-707)) (|:| |pcoef| |#4|)))) (-587 (-707)) (-1165 (-587 (-1080 |#3|))) |#3|)))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-1232 (((-3 $ "failed") $ $) 19)) (-2547 (($) 17 T CONST)) (-3152 (($ $) 41)) (-1257 (((-3 $ "failed") $) 34)) (-3996 (((-108) $) 31)) (-4043 (($ |#1| (-707)) 39)) (-3273 (((-707) $) 43)) (-3135 ((|#1| $) 42)) (-3688 (((-1067) $) 9)) (-4147 (((-1031) $) 10)) (-1994 (((-707) $) 44)) (-2189 (((-792) $) 11) (($ (-521)) 28) (($ |#1|) 38 (|has| |#1| (-157)))) (-3800 ((|#1| $ (-707)) 40)) (-3846 (((-707)) 29)) (-3505 (($ $ (-850)) 26) (($ $ (-707)) 33)) (-3561 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-707)) 32)) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ $ |#1|) 46) (($ |#1| $) 45)))
+(((-646 |#1|) (-1196) (-970)) (T -646))
+((-1994 (*1 *2 *1) (-12 (-4 *1 (-646 *3)) (-4 *3 (-970)) (-5 *2 (-707)))) (-3273 (*1 *2 *1) (-12 (-4 *1 (-646 *3)) (-4 *3 (-970)) (-5 *2 (-707)))) (-3135 (*1 *2 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-970)))) (-3152 (*1 *1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-970)))) (-3800 (*1 *2 *1 *3) (-12 (-5 *3 (-707)) (-4 *1 (-646 *2)) (-4 *2 (-970)))) (-4043 (*1 *1 *2 *3) (-12 (-5 *3 (-707)) (-4 *1 (-646 *2)) (-4 *2 (-970)))))
+(-13 (-970) (-107 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-157)) (-6 (-37 |t#1|)) |%noBranch|) (-15 -1994 ((-707) $)) (-15 -3273 ((-707) $)) (-15 -3135 (|t#1| $)) (-15 -3152 ($ $)) (-15 -3800 (|t#1| $ (-707))) (-15 -4043 ($ |t#1| (-707)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-157)) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-561 (-792)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-654 |#1|) |has| |#1| (-157)) ((-663) . T) ((-976 |#1|) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T))
+((-1390 ((|#6| (-1 |#4| |#1|) |#3|) 23)))
+(((-647 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1390 (|#6| (-1 |#4| |#1|) |#3|))) (-513) (-1141 |#1|) (-1141 (-381 |#2|)) (-513) (-1141 |#4|) (-1141 (-381 |#5|))) (T -647))
+((-1390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-513)) (-4 *7 (-513)) (-4 *6 (-1141 *5)) (-4 *2 (-1141 (-381 *8))) (-5 *1 (-647 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1141 (-381 *6))) (-4 *8 (-1141 *7)))))
+(-10 -7 (-15 -1390 (|#6| (-1 |#4| |#1|) |#3|)))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-2559 (($ $) NIL)) (-1733 (((-108) $) NIL)) (-1232 (((-3 $ "failed") $ $) NIL)) (-3063 (($ $) NIL)) (-3358 (((-392 $) $) NIL)) (-1389 (((-108) $ $) NIL)) (-2547 (($) NIL T CONST)) (-2277 (($ $ $) NIL)) (-3859 (($ |#1| |#2|) NIL)) (-1257 (((-3 $ "failed") $) NIL)) (-2253 (($ $ $) NIL)) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) NIL)) (-2710 (((-108) $) NIL)) (-3996 (((-108) $) NIL)) (-1546 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-2704 ((|#2| $) NIL)) (-2223 (($ $ $) NIL) (($ (-587 $)) NIL)) (-3688 (((-1067) $) NIL)) (-3095 (($ $) NIL)) (-4147 (((-1031) $) NIL)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) NIL)) (-2258 (($ $ $) NIL) (($ (-587 $)) NIL)) (-1916 (((-392 $) $) NIL)) (-1962 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2230 (((-3 $ "failed") $ $) NIL)) (-3854 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-1396 (((-3 $ "failed") $ $) NIL)) (-4196 (((-707) $) NIL)) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) NIL)) (-2189 (((-792) $) NIL) (($ (-521)) NIL) (($ $) NIL) (($ (-381 (-521))) NIL) ((|#1| $) NIL)) (-3846 (((-707)) NIL)) (-4210 (((-108) $ $) NIL)) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (-3561 (($) NIL T CONST)) (-3572 (($) NIL T CONST)) (-1531 (((-108) $ $) NIL)) (-1620 (($ $ $) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ (-381 (-521))) NIL) (($ (-381 (-521)) $) NIL)))
+(((-648 |#1| |#2| |#3| |#4| |#5|) (-13 (-337) (-10 -8 (-15 -2704 (|#2| $)) (-15 -2189 (|#1| $)) (-15 -3859 ($ |#1| |#2|)) (-15 -1396 ((-3 $ "failed") $ $)))) (-157) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -648))
+((-2704 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-648 *3 *2 *4 *5 *6)) (-4 *3 (-157)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2189 (*1 *2 *1) (-12 (-4 *2 (-157)) (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3859 (*1 *1 *2 *3) (-12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-157)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1396 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-157)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
+(-13 (-337) (-10 -8 (-15 -2704 (|#2| $)) (-15 -2189 (|#1| $)) (-15 -3859 ($ |#1| |#2|)) (-15 -1396 ((-3 $ "failed") $ $))))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) 30)) (-2141 (((-1165 |#1|) $ (-707)) NIL)) (-4084 (((-587 (-998)) $) NIL)) (-4087 (($ (-1080 |#1|)) NIL)) (-1280 (((-1080 $) $ (-998)) NIL) (((-1080 |#1|) $) NIL)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) NIL (|has| |#1| (-513)))) (-2559 (($ $) NIL (|has| |#1| (-513)))) (-1733 (((-108) $) NIL (|has| |#1| (-513)))) (-2256 (((-707) $) NIL) (((-707) $ (-587 (-998))) NIL)) (-1232 (((-3 $ "failed") $ $) NIL)) (-3570 (($ $ $) NIL (|has| |#1| (-513)))) (-2598 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#1| (-838)))) (-3063 (($ $) NIL (|has| |#1| (-425)))) (-3358 (((-392 $) $) NIL (|has| |#1| (-425)))) (-2569 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) NIL (|has| |#1| (-838)))) (-1389 (((-108) $ $) NIL (|has| |#1| (-337)))) (-1630 (((-707)) 47 (|has| |#1| (-342)))) (-2451 (($ $ (-707)) NIL)) (-2962 (($ $ (-707)) NIL)) (-1385 ((|#2| |#2|) 44)) (-2067 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-425)))) (-2547 (($) NIL T CONST)) (-1297 (((-3 |#1| "failed") $) NIL) (((-3 (-381 (-521)) "failed") $) NIL (|has| |#1| (-961 (-381 (-521))))) (((-3 (-521) "failed") $) NIL (|has| |#1| (-961 (-521)))) (((-3 (-998) "failed") $) NIL)) (-1483 ((|#1| $) NIL) (((-381 (-521)) $) NIL (|has| |#1| (-961 (-381 (-521))))) (((-521) $) NIL (|has| |#1| (-961 (-521)))) (((-998) $) NIL)) (-2114 (($ $ $ (-998)) NIL (|has| |#1| (-157))) ((|#1| $ $) NIL (|has| |#1| (-157)))) (-2277 (($ $ $) NIL (|has| |#1| (-337)))) (-3152 (($ $) 34)) (-3279 (((-627 (-521)) (-627 $)) NIL (|has| |#1| (-583 (-521)))) (((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (|has| |#1| (-583 (-521)))) (((-2 (|:| -1201 (-627 |#1|)) (|:| |vec| (-1165 |#1|))) (-627 $) (-1165 $)) NIL) (((-627 |#1|) (-627 $)) NIL)) (-3859 (($ |#2|) 42)) (-1257 (((-3 $ "failed") $) 85)) (-3250 (($) 51 (|has| |#1| (-342)))) (-2253 (($ $ $) NIL (|has| |#1| (-337)))) (-1553 (($ $ $) NIL)) (-3678 (($ $ $) NIL (|has| |#1| (-513)))) (-2225 (((-2 (|:| -2973 |#1|) (|:| -3727 $) (|:| -3820 $)) $ $) NIL (|has| |#1| (-513)))) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) NIL (|has| |#1| (-337)))) (-3666 (($ $) NIL (|has| |#1| (-425))) (($ $ (-998)) NIL (|has| |#1| (-425)))) (-3144 (((-587 $) $) NIL)) (-2710 (((-108) $) NIL (|has| |#1| (-838)))) (-2132 (((-886 $)) 79)) (-3528 (($ $ |#1| (-707) $) NIL)) (-3427 (((-818 (-353) $) $ (-821 (-353)) (-818 (-353) $)) NIL (-12 (|has| (-998) (-815 (-353))) (|has| |#1| (-815 (-353))))) (((-818 (-521) $) $ (-821 (-521)) (-818 (-521) $)) NIL (-12 (|has| (-998) (-815 (-521))) (|has| |#1| (-815 (-521)))))) (-2733 (((-707) $ $) NIL (|has| |#1| (-513)))) (-3996 (((-108) $) NIL)) (-2678 (((-707) $) NIL)) (-3842 (((-3 $ "failed") $) NIL (|has| |#1| (-1060)))) (-4069 (($ (-1080 |#1|) (-998)) NIL) (($ (-1080 $) (-998)) NIL)) (-1993 (($ $ (-707)) NIL)) (-1546 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| |#1| (-337)))) (-2959 (((-587 $) $) NIL)) (-3649 (((-108) $) NIL)) (-4043 (($ |#1| (-707)) 77) (($ $ (-998) (-707)) NIL) (($ $ (-587 (-998)) (-587 (-707))) NIL)) (-1450 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $ (-998)) NIL) (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) NIL)) (-2704 ((|#2|) 45)) (-3273 (((-707) $) NIL) (((-707) $ (-998)) NIL) (((-587 (-707)) $ (-587 (-998))) NIL)) (-2810 (($ $ $) NIL (|has| |#1| (-784)))) (-2446 (($ $ $) NIL (|has| |#1| (-784)))) (-3285 (($ (-1 (-707) (-707)) $) NIL)) (-1390 (($ (-1 |#1| |#1|) $) NIL)) (-1285 (((-1080 |#1|) $) NIL)) (-2477 (((-3 (-998) "failed") $) NIL)) (-2715 (((-850) $) NIL (|has| |#1| (-342)))) (-3844 ((|#2| $) 41)) (-3125 (($ $) NIL)) (-3135 ((|#1| $) 28)) (-2223 (($ (-587 $)) NIL (|has| |#1| (-425))) (($ $ $) NIL (|has| |#1| (-425)))) (-3688 (((-1067) $) NIL)) (-1328 (((-2 (|:| -3727 $) (|:| -3820 $)) $ (-707)) NIL)) (-1617 (((-3 (-587 $) "failed") $) NIL)) (-3177 (((-3 (-587 $) "failed") $) NIL)) (-3979 (((-3 (-2 (|:| |var| (-998)) (|:| -2997 (-707))) "failed") $) NIL)) (-2184 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3797 (($) NIL (|has| |#1| (-1060)) CONST)) (-2716 (($ (-850)) NIL (|has| |#1| (-342)))) (-4147 (((-1031) $) NIL)) (-3105 (((-108) $) NIL)) (-3115 ((|#1| $) NIL)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) NIL (|has| |#1| (-425)))) (-2258 (($ (-587 $)) NIL (|has| |#1| (-425))) (($ $ $) NIL (|has| |#1| (-425)))) (-2621 (($ $) 78 (|has| |#1| (-323)))) (-1912 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#1| (-838)))) (-2165 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#1| (-838)))) (-1916 (((-392 $) $) NIL (|has| |#1| (-838)))) (-1962 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-337))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL (|has| |#1| (-337)))) (-2230 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-513))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-513)))) (-3854 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| |#1| (-337)))) (-2288 (($ $ (-587 (-269 $))) NIL) (($ $ (-269 $)) NIL) (($ $ $ $) NIL) (($ $ (-587 $) (-587 $)) NIL) (($ $ (-998) |#1|) NIL) (($ $ (-587 (-998)) (-587 |#1|)) NIL) (($ $ (-998) $) NIL) (($ $ (-587 (-998)) (-587 $)) NIL)) (-4196 (((-707) $) NIL (|has| |#1| (-337)))) (-2544 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-381 $) (-381 $) (-381 $)) NIL (|has| |#1| (-513))) ((|#1| (-381 $) |#1|) NIL (|has| |#1| (-337))) (((-381 $) $ (-381 $)) NIL (|has| |#1| (-513)))) (-2182 (((-3 $ "failed") $ (-707)) NIL)) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) 86 (|has| |#1| (-337)))) (-4010 (($ $ (-998)) NIL (|has| |#1| (-157))) ((|#1| $) NIL (|has| |#1| (-157)))) (-2156 (($ $ (-998)) NIL) (($ $ (-587 (-998))) NIL) (($ $ (-998) (-707)) NIL) (($ $ (-587 (-998)) (-587 (-707))) NIL) (($ $ (-707)) NIL) (($ $) NIL) (($ $ (-1084)) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-1 |#1| |#1|) (-707)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-1994 (((-707) $) 32) (((-707) $ (-998)) NIL) (((-587 (-707)) $ (-587 (-998))) NIL)) (-1430 (((-821 (-353)) $) NIL (-12 (|has| (-998) (-562 (-821 (-353)))) (|has| |#1| (-562 (-821 (-353)))))) (((-821 (-521)) $) NIL (-12 (|has| (-998) (-562 (-821 (-521)))) (|has| |#1| (-562 (-821 (-521)))))) (((-497) $) NIL (-12 (|has| (-998) (-562 (-497))) (|has| |#1| (-562 (-497)))))) (-2403 ((|#1| $) NIL (|has| |#1| (-425))) (($ $ (-998)) NIL (|has| |#1| (-425)))) (-2944 (((-3 (-1165 $) "failed") (-627 $)) NIL (-12 (|has| $ (-133)) (|has| |#1| (-838))))) (-3661 (((-886 $)) 36)) (-1378 (((-3 $ "failed") $ $) NIL (|has| |#1| (-513))) (((-3 (-381 $) "failed") (-381 $) $) NIL (|has| |#1| (-513)))) (-2189 (((-792) $) 61) (($ (-521)) NIL) (($ |#1|) 58) (($ (-998)) NIL) (($ |#2|) 68) (($ (-381 (-521))) NIL (-3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-961 (-381 (-521)))))) (($ $) NIL (|has| |#1| (-513)))) (-1259 (((-587 |#1|) $) NIL)) (-3800 ((|#1| $ (-707)) 63) (($ $ (-998) (-707)) NIL) (($ $ (-587 (-998)) (-587 (-707))) NIL)) (-1671 (((-3 $ "failed") $) NIL (-3703 (-12 (|has| $ (-133)) (|has| |#1| (-838))) (|has| |#1| (-133))))) (-3846 (((-707)) NIL)) (-1547 (($ $ $ (-707)) NIL (|has| |#1| (-157)))) (-4210 (((-108) $ $) NIL (|has| |#1| (-513)))) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (-3561 (($) 20 T CONST)) (-1511 (((-1165 |#1|) $) 75)) (-2665 (($ (-1165 |#1|)) 50)) (-3572 (($) 8 T CONST)) (-2212 (($ $ (-998)) NIL) (($ $ (-587 (-998))) NIL) (($ $ (-998) (-707)) NIL) (($ $ (-587 (-998)) (-587 (-707))) NIL) (($ $ (-707)) NIL) (($ $) NIL) (($ $ (-1084)) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-1 |#1| |#1|) (-707)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3296 (((-1165 |#1|) $) NIL)) (-1574 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1558 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1531 (((-108) $ $) 69)) (-1566 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1549 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1620 (($ $ |#1|) NIL (|has| |#1| (-337)))) (-1612 (($ $) 72) (($ $ $) NIL)) (-1602 (($ $ $) 33)) (** (($ $ (-850)) NIL) (($ $ (-707)) 80)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) 57) (($ $ $) 74) (($ $ (-381 (-521))) NIL (|has| |#1| (-37 (-381 (-521))))) (($ (-381 (-521)) $) NIL (|has| |#1| (-37 (-381 (-521))))) (($ |#1| $) 55) (($ $ |#1|) NIL)))
+(((-649 |#1| |#2|) (-13 (-1141 |#1|) (-10 -8 (-15 -1385 (|#2| |#2|)) (-15 -2704 (|#2|)) (-15 -3859 ($ |#2|)) (-15 -3844 (|#2| $)) (-15 -2189 ($ |#2|)) (-15 -1511 ((-1165 |#1|) $)) (-15 -2665 ($ (-1165 |#1|))) (-15 -3296 ((-1165 |#1|) $)) (-15 -2132 ((-886 $))) (-15 -3661 ((-886 $))) (IF (|has| |#1| (-323)) (-15 -2621 ($ $)) |%noBranch|) (IF (|has| |#1| (-342)) (-6 (-342)) |%noBranch|))) (-970) (-1141 |#1|)) (T -649))
+((-1385 (*1 *2 *2) (-12 (-4 *3 (-970)) (-5 *1 (-649 *3 *2)) (-4 *2 (-1141 *3)))) (-2704 (*1 *2) (-12 (-4 *2 (-1141 *3)) (-5 *1 (-649 *3 *2)) (-4 *3 (-970)))) (-3859 (*1 *1 *2) (-12 (-4 *3 (-970)) (-5 *1 (-649 *3 *2)) (-4 *2 (-1141 *3)))) (-3844 (*1 *2 *1) (-12 (-4 *2 (-1141 *3)) (-5 *1 (-649 *3 *2)) (-4 *3 (-970)))) (-2189 (*1 *1 *2) (-12 (-4 *3 (-970)) (-5 *1 (-649 *3 *2)) (-4 *2 (-1141 *3)))) (-1511 (*1 *2 *1) (-12 (-4 *3 (-970)) (-5 *2 (-1165 *3)) (-5 *1 (-649 *3 *4)) (-4 *4 (-1141 *3)))) (-2665 (*1 *1 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-970)) (-5 *1 (-649 *3 *4)) (-4 *4 (-1141 *3)))) (-3296 (*1 *2 *1) (-12 (-4 *3 (-970)) (-5 *2 (-1165 *3)) (-5 *1 (-649 *3 *4)) (-4 *4 (-1141 *3)))) (-2132 (*1 *2) (-12 (-4 *3 (-970)) (-5 *2 (-886 (-649 *3 *4))) (-5 *1 (-649 *3 *4)) (-4 *4 (-1141 *3)))) (-3661 (*1 *2) (-12 (-4 *3 (-970)) (-5 *2 (-886 (-649 *3 *4))) (-5 *1 (-649 *3 *4)) (-4 *4 (-1141 *3)))) (-2621 (*1 *1 *1) (-12 (-4 *2 (-323)) (-4 *2 (-970)) (-5 *1 (-649 *2 *3)) (-4 *3 (-1141 *2)))))
+(-13 (-1141 |#1|) (-10 -8 (-15 -1385 (|#2| |#2|)) (-15 -2704 (|#2|)) (-15 -3859 ($ |#2|)) (-15 -3844 (|#2| $)) (-15 -2189 ($ |#2|)) (-15 -1511 ((-1165 |#1|) $)) (-15 -2665 ($ (-1165 |#1|))) (-15 -3296 ((-1165 |#1|) $)) (-15 -2132 ((-886 $))) (-15 -3661 ((-886 $))) (IF (|has| |#1| (-323)) (-15 -2621 ($ $)) |%noBranch|) (IF (|has| |#1| (-342)) (-6 (-342)) |%noBranch|)))
+((-1415 (((-108) $ $) NIL)) (-2810 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-3688 (((-1067) $) NIL)) (-2716 ((|#1| $) 13)) (-4147 (((-1031) $) NIL)) (-2997 ((|#2| $) 12)) (-2201 (($ |#1| |#2|) 16)) (-2189 (((-792) $) NIL) (($ (-2 (|:| -2716 |#1|) (|:| -2997 |#2|))) 15) (((-2 (|:| -2716 |#1|) (|:| -2997 |#2|)) $) 14)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 11)))
+(((-650 |#1| |#2| |#3|) (-13 (-784) (-10 -8 (-15 -2997 (|#2| $)) (-15 -2716 (|#1| $)) (-15 -2189 ($ (-2 (|:| -2716 |#1|) (|:| -2997 |#2|)))) (-15 -2189 ((-2 (|:| -2716 |#1|) (|:| -2997 |#2|)) $)) (-15 -2201 ($ |#1| |#2|)))) (-784) (-1013) (-1 (-108) (-2 (|:| -2716 |#1|) (|:| -2997 |#2|)) (-2 (|:| -2716 |#1|) (|:| -2997 |#2|)))) (T -650))
+((-2997 (*1 *2 *1) (-12 (-4 *2 (-1013)) (-5 *1 (-650 *3 *2 *4)) (-4 *3 (-784)) (-14 *4 (-1 (-108) (-2 (|:| -2716 *3) (|:| -2997 *2)) (-2 (|:| -2716 *3) (|:| -2997 *2)))))) (-2716 (*1 *2 *1) (-12 (-4 *2 (-784)) (-5 *1 (-650 *2 *3 *4)) (-4 *3 (-1013)) (-14 *4 (-1 (-108) (-2 (|:| -2716 *2) (|:| -2997 *3)) (-2 (|:| -2716 *2) (|:| -2997 *3)))))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2716 *3) (|:| -2997 *4))) (-4 *3 (-784)) (-4 *4 (-1013)) (-5 *1 (-650 *3 *4 *5)) (-14 *5 (-1 (-108) *2 *2)))) (-2189 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2716 *3) (|:| -2997 *4))) (-5 *1 (-650 *3 *4 *5)) (-4 *3 (-784)) (-4 *4 (-1013)) (-14 *5 (-1 (-108) *2 *2)))) (-2201 (*1 *1 *2 *3) (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-784)) (-4 *3 (-1013)) (-14 *4 (-1 (-108) (-2 (|:| -2716 *2) (|:| -2997 *3)) (-2 (|:| -2716 *2) (|:| -2997 *3)))))))
+(-13 (-784) (-10 -8 (-15 -2997 (|#2| $)) (-15 -2716 (|#1| $)) (-15 -2189 ($ (-2 (|:| -2716 |#1|) (|:| -2997 |#2|)))) (-15 -2189 ((-2 (|:| -2716 |#1|) (|:| -2997 |#2|)) $)) (-15 -2201 ($ |#1| |#2|))))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) 59)) (-1232 (((-3 $ "failed") $ $) NIL)) (-2547 (($) NIL T CONST)) (-1297 (((-3 |#1| "failed") $) 89) (((-3 (-110) "failed") $) 95)) (-1483 ((|#1| $) NIL) (((-110) $) 39)) (-1257 (((-3 $ "failed") $) 90)) (-1712 ((|#2| (-110) |#2|) 82)) (-3996 (((-108) $) NIL)) (-1876 (($ |#1| (-335 (-110))) 13)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2099 (($ $ (-1 |#2| |#2|)) 58)) (-2394 (($ $ (-1 |#2| |#2|)) 44)) (-2544 ((|#2| $ |#2|) 32)) (-1997 ((|#1| |#1|) 100 (|has| |#1| (-157)))) (-2189 (((-792) $) 66) (($ (-521)) 17) (($ |#1|) 16) (($ (-110)) 23)) (-1671 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-3846 (((-707)) 36)) (-2399 (($ $) 99 (|has| |#1| (-157))) (($ $ $) 103 (|has| |#1| (-157)))) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (-3561 (($) 20 T CONST)) (-3572 (($) 9 T CONST)) (-1531 (((-108) $ $) NIL)) (-1612 (($ $) 48) (($ $ $) NIL)) (-1602 (($ $ $) 73)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ (-110) (-521)) NIL) (($ $ (-521)) 57)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) 98) (($ $ $) 50) (($ |#1| $) 96 (|has| |#1| (-157))) (($ $ |#1|) 97 (|has| |#1| (-157)))))
+(((-651 |#1| |#2|) (-13 (-970) (-961 |#1|) (-961 (-110)) (-261 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |#1| (-157)) (PROGN (-6 (-37 |#1|)) (-15 -2399 ($ $)) (-15 -2399 ($ $ $)) (-15 -1997 (|#1| |#1|))) |%noBranch|) (-15 -2394 ($ $ (-1 |#2| |#2|))) (-15 -2099 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-110) (-521))) (-15 ** ($ $ (-521))) (-15 -1712 (|#2| (-110) |#2|)) (-15 -1876 ($ |#1| (-335 (-110)))))) (-970) (-589 |#1|)) (T -651))
+((-2399 (*1 *1 *1) (-12 (-4 *2 (-157)) (-4 *2 (-970)) (-5 *1 (-651 *2 *3)) (-4 *3 (-589 *2)))) (-2399 (*1 *1 *1 *1) (-12 (-4 *2 (-157)) (-4 *2 (-970)) (-5 *1 (-651 *2 *3)) (-4 *3 (-589 *2)))) (-1997 (*1 *2 *2) (-12 (-4 *2 (-157)) (-4 *2 (-970)) (-5 *1 (-651 *2 *3)) (-4 *3 (-589 *2)))) (-2394 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-589 *3)) (-4 *3 (-970)) (-5 *1 (-651 *3 *4)))) (-2099 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-589 *3)) (-4 *3 (-970)) (-5 *1 (-651 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-521)) (-4 *4 (-970)) (-5 *1 (-651 *4 *5)) (-4 *5 (-589 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-4 *3 (-970)) (-5 *1 (-651 *3 *4)) (-4 *4 (-589 *3)))) (-1712 (*1 *2 *3 *2) (-12 (-5 *3 (-110)) (-4 *4 (-970)) (-5 *1 (-651 *4 *2)) (-4 *2 (-589 *4)))) (-1876 (*1 *1 *2 *3) (-12 (-5 *3 (-335 (-110))) (-4 *2 (-970)) (-5 *1 (-651 *2 *4)) (-4 *4 (-589 *2)))))
+(-13 (-970) (-961 |#1|) (-961 (-110)) (-261 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |#1| (-157)) (PROGN (-6 (-37 |#1|)) (-15 -2399 ($ $)) (-15 -2399 ($ $ $)) (-15 -1997 (|#1| |#1|))) |%noBranch|) (-15 -2394 ($ $ (-1 |#2| |#2|))) (-15 -2099 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-110) (-521))) (-15 ** ($ $ (-521))) (-15 -1712 (|#2| (-110) |#2|)) (-15 -1876 ($ |#1| (-335 (-110))))))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) 33)) (-1232 (((-3 $ "failed") $ $) NIL)) (-2547 (($) NIL T CONST)) (-3859 (($ |#1| |#2|) 25)) (-1257 (((-3 $ "failed") $) 47)) (-3996 (((-108) $) 35)) (-2704 ((|#2| $) 12)) (-3688 (((-1067) $) NIL)) (-3095 (($ $) 48)) (-4147 (((-1031) $) NIL)) (-1396 (((-3 $ "failed") $ $) 46)) (-2189 (((-792) $) 24) (($ (-521)) 19) ((|#1| $) 13)) (-3846 (((-707)) 28)) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (-3561 (($) 16 T CONST)) (-3572 (($) 30 T CONST)) (-1531 (((-108) $ $) 38)) (-1612 (($ $) 43) (($ $ $) 37)) (-1602 (($ $ $) 40)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) 21) (($ $ $) 20)))
+(((-652 |#1| |#2| |#3| |#4| |#5|) (-13 (-970) (-10 -8 (-15 -2704 (|#2| $)) (-15 -2189 (|#1| $)) (-15 -3859 ($ |#1| |#2|)) (-15 -1396 ((-3 $ "failed") $ $)) (-15 -1257 ((-3 $ "failed") $)) (-15 -3095 ($ $)))) (-157) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -652))
+((-1257 (*1 *1 *1) (|partial| -12 (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *2 (-157)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2704 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-652 *3 *2 *4 *5 *6)) (-4 *3 (-157)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2189 (*1 *2 *1) (-12 (-4 *2 (-157)) (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3859 (*1 *1 *2 *3) (-12 (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *2 (-157)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1396 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *2 (-157)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3095 (*1 *1 *1) (-12 (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *2 (-157)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
+(-13 (-970) (-10 -8 (-15 -2704 (|#2| $)) (-15 -2189 (|#1| $)) (-15 -3859 ($ |#1| |#2|)) (-15 -1396 ((-3 $ "failed") $ $)) (-15 -1257 ((-3 $ "failed") $)) (-15 -3095 ($ $))))
+((* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9)))
+(((-653 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-521) |#1|)) (-15 * (|#1| (-707) |#1|)) (-15 * (|#1| (-850) |#1|))) (-654 |#2|) (-157)) (T -653))
+NIL
+(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-521) |#1|)) (-15 * (|#1| (-707) |#1|)) (-15 * (|#1| (-850) |#1|)))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-1232 (((-3 $ "failed") $ $) 19)) (-2547 (($) 17 T CONST)) (-3688 (((-1067) $) 9)) (-4147 (((-1031) $) 10)) (-2189 (((-792) $) 11)) (-3561 (($) 18 T CONST)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
+(((-654 |#1|) (-1196) (-157)) (T -654))
NIL
(-13 (-107 |t#1| |t#1|))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-560 (-791)) . T) ((-588 |#1|) . T) ((-975 |#1|) . T) ((-1012) . T))
-((-1414 (((-108) $ $) NIL)) (-1660 (($ |#1|) 17) (($ $ |#1|) 20)) (-1640 (($ |#1|) 18) (($ $ |#1|) 21)) (-3961 (($) NIL T CONST)) (-1540 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-1537 (((-108) $) NIL)) (-2408 (($ |#1| |#1| |#1| |#1|) 8)) (-1239 (((-1066) $) NIL)) (-3093 (($ $) 16)) (-4142 (((-1030) $) NIL)) (-2286 ((|#1| $ |#1|) 24) (((-769 |#1|) $ (-769 |#1|)) 32)) (-2945 (($ $ $) NIL)) (-3607 (($ $ $) NIL)) (-2188 (((-791) $) 39)) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL)) (-3570 (($) 9 T CONST)) (-1530 (((-108) $ $) 44)) (-1619 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL)) (* (($ $ $) 14)))
-(((-654 |#1|) (-13 (-445) (-10 -8 (-15 -2408 ($ |#1| |#1| |#1| |#1|)) (-15 -1660 ($ |#1|)) (-15 -1640 ($ |#1|)) (-15 -1540 ($)) (-15 -1660 ($ $ |#1|)) (-15 -1640 ($ $ |#1|)) (-15 -1540 ($ $)) (-15 -2286 (|#1| $ |#1|)) (-15 -2286 ((-769 |#1|) $ (-769 |#1|))))) (-336)) (T -654))
-((-2408 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-654 *2)) (-4 *2 (-336)))) (-1660 (*1 *1 *2) (-12 (-5 *1 (-654 *2)) (-4 *2 (-336)))) (-1640 (*1 *1 *2) (-12 (-5 *1 (-654 *2)) (-4 *2 (-336)))) (-1540 (*1 *1) (-12 (-5 *1 (-654 *2)) (-4 *2 (-336)))) (-1660 (*1 *1 *1 *2) (-12 (-5 *1 (-654 *2)) (-4 *2 (-336)))) (-1640 (*1 *1 *1 *2) (-12 (-5 *1 (-654 *2)) (-4 *2 (-336)))) (-1540 (*1 *1 *1) (-12 (-5 *1 (-654 *2)) (-4 *2 (-336)))) (-2286 (*1 *2 *1 *2) (-12 (-5 *1 (-654 *2)) (-4 *2 (-336)))) (-2286 (*1 *2 *1 *2) (-12 (-5 *2 (-769 *3)) (-4 *3 (-336)) (-5 *1 (-654 *3)))))
-(-13 (-445) (-10 -8 (-15 -2408 ($ |#1| |#1| |#1| |#1|)) (-15 -1660 ($ |#1|)) (-15 -1640 ($ |#1|)) (-15 -1540 ($)) (-15 -1660 ($ $ |#1|)) (-15 -1640 ($ $ |#1|)) (-15 -1540 ($ $)) (-15 -2286 (|#1| $ |#1|)) (-15 -2286 ((-769 |#1|) $ (-769 |#1|)))))
-((-3918 (($ $ (-849)) 12)) (-2544 (($ $ (-849)) 13)) (** (($ $ (-849)) 10)))
-(((-655 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-849))) (-15 -2544 (|#1| |#1| (-849))) (-15 -3918 (|#1| |#1| (-849)))) (-656)) (T -655))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-849))) (-15 -2544 (|#1| |#1| (-849))) (-15 -3918 (|#1| |#1| (-849))))
-((-1414 (((-108) $ $) 7)) (-3918 (($ $ (-849)) 15)) (-2544 (($ $ (-849)) 14)) (-1239 (((-1066) $) 9)) (-4142 (((-1030) $) 10)) (-2188 (((-791) $) 11)) (-1530 (((-108) $ $) 6)) (** (($ $ (-849)) 13)) (* (($ $ $) 16)))
-(((-656) (-1195)) (T -656))
-((* (*1 *1 *1 *1) (-4 *1 (-656))) (-3918 (*1 *1 *1 *2) (-12 (-4 *1 (-656)) (-5 *2 (-849)))) (-2544 (*1 *1 *1 *2) (-12 (-4 *1 (-656)) (-5 *2 (-849)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-656)) (-5 *2 (-849)))))
-(-13 (-1012) (-10 -8 (-15 * ($ $ $)) (-15 -3918 ($ $ (-849))) (-15 -2544 ($ $ (-849))) (-15 ** ($ $ (-849)))))
-(((-97) . T) ((-560 (-791)) . T) ((-1012) . T))
-((-3918 (($ $ (-849)) NIL) (($ $ (-706)) 17)) (-1537 (((-108) $) 10)) (-2544 (($ $ (-849)) NIL) (($ $ (-706)) 18)) (** (($ $ (-849)) NIL) (($ $ (-706)) 15)))
-(((-657 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-706))) (-15 -2544 (|#1| |#1| (-706))) (-15 -3918 (|#1| |#1| (-706))) (-15 -1537 ((-108) |#1|)) (-15 ** (|#1| |#1| (-849))) (-15 -2544 (|#1| |#1| (-849))) (-15 -3918 (|#1| |#1| (-849)))) (-658)) (T -657))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-706))) (-15 -2544 (|#1| |#1| (-706))) (-15 -3918 (|#1| |#1| (-706))) (-15 -1537 ((-108) |#1|)) (-15 ** (|#1| |#1| (-849))) (-15 -2544 (|#1| |#1| (-849))) (-15 -3918 (|#1| |#1| (-849))))
-((-1414 (((-108) $ $) 7)) (-2473 (((-3 $ "failed") $) 17)) (-3918 (($ $ (-849)) 15) (($ $ (-706)) 22)) (-1540 (((-3 $ "failed") $) 19)) (-1537 (((-108) $) 23)) (-1368 (((-3 $ "failed") $) 18)) (-2544 (($ $ (-849)) 14) (($ $ (-706)) 21)) (-1239 (((-1066) $) 9)) (-4142 (((-1030) $) 10)) (-2188 (((-791) $) 11)) (-3570 (($) 24 T CONST)) (-1530 (((-108) $ $) 6)) (** (($ $ (-849)) 13) (($ $ (-706)) 20)) (* (($ $ $) 16)))
-(((-658) (-1195)) (T -658))
-((-3570 (*1 *1) (-4 *1 (-658))) (-1537 (*1 *2 *1) (-12 (-4 *1 (-658)) (-5 *2 (-108)))) (-3918 (*1 *1 *1 *2) (-12 (-4 *1 (-658)) (-5 *2 (-706)))) (-2544 (*1 *1 *1 *2) (-12 (-4 *1 (-658)) (-5 *2 (-706)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-658)) (-5 *2 (-706)))) (-1540 (*1 *1 *1) (|partial| -4 *1 (-658))) (-1368 (*1 *1 *1) (|partial| -4 *1 (-658))) (-2473 (*1 *1 *1) (|partial| -4 *1 (-658))))
-(-13 (-656) (-10 -8 (-15 (-3570) ($) -2675) (-15 -1537 ((-108) $)) (-15 -3918 ($ $ (-706))) (-15 -2544 ($ $ (-706))) (-15 ** ($ $ (-706))) (-15 -1540 ((-3 $ "failed") $)) (-15 -1368 ((-3 $ "failed") $)) (-15 -2473 ((-3 $ "failed") $))))
-(((-97) . T) ((-560 (-791)) . T) ((-656) . T) ((-1012) . T))
-((-1628 (((-706)) 35)) (-1296 (((-3 (-520) "failed") $) NIL) (((-3 (-380 (-520)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-1482 (((-520) $) NIL) (((-380 (-520)) $) NIL) ((|#2| $) 22)) (-3856 (($ |#3|) NIL) (((-3 $ "failed") (-380 |#3|)) 45)) (-1540 (((-3 $ "failed") $) 65)) (-3249 (($) 39)) (-1434 ((|#2| $) 20)) (-1382 (($) 17)) (-2155 (($ $ (-1 |#2| |#2|) (-706)) NIL) (($ $ (-1 |#2| |#2|)) 53) (($ $ (-586 (-1083)) (-586 (-706))) NIL) (($ $ (-1083) (-706)) NIL) (($ $ (-586 (-1083))) NIL) (($ $ (-1083)) NIL) (($ $ (-706)) NIL) (($ $) NIL)) (-3404 (((-626 |#2|) (-1164 $) (-1 |#2| |#2|)) 60)) (-1429 (((-1164 |#2|) $) NIL) (($ (-1164 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-2948 ((|#3| $) 32)) (-1831 (((-1164 $)) 29)))
-(((-659 |#1| |#2| |#3|) (-10 -8 (-15 -2155 (|#1| |#1|)) (-15 -2155 (|#1| |#1| (-706))) (-15 -2155 (|#1| |#1| (-1083))) (-15 -2155 (|#1| |#1| (-586 (-1083)))) (-15 -2155 (|#1| |#1| (-1083) (-706))) (-15 -2155 (|#1| |#1| (-586 (-1083)) (-586 (-706)))) (-15 -3249 (|#1|)) (-15 -1628 ((-706))) (-15 -2155 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2155 (|#1| |#1| (-1 |#2| |#2|) (-706))) (-15 -3404 ((-626 |#2|) (-1164 |#1|) (-1 |#2| |#2|))) (-15 -3856 ((-3 |#1| "failed") (-380 |#3|))) (-15 -1429 (|#1| |#3|)) (-15 -3856 (|#1| |#3|)) (-15 -1382 (|#1|)) (-15 -1482 (|#2| |#1|)) (-15 -1296 ((-3 |#2| "failed") |#1|)) (-15 -1296 ((-3 (-380 (-520)) "failed") |#1|)) (-15 -1482 ((-380 (-520)) |#1|)) (-15 -1296 ((-3 (-520) "failed") |#1|)) (-15 -1482 ((-520) |#1|)) (-15 -1429 (|#3| |#1|)) (-15 -1429 (|#1| (-1164 |#2|))) (-15 -1429 ((-1164 |#2|) |#1|)) (-15 -1831 ((-1164 |#1|))) (-15 -2948 (|#3| |#1|)) (-15 -1434 (|#2| |#1|)) (-15 -1540 ((-3 |#1| "failed") |#1|))) (-660 |#2| |#3|) (-157) (-1140 |#2|)) (T -659))
-((-1628 (*1 *2) (-12 (-4 *4 (-157)) (-4 *5 (-1140 *4)) (-5 *2 (-706)) (-5 *1 (-659 *3 *4 *5)) (-4 *3 (-660 *4 *5)))))
-(-10 -8 (-15 -2155 (|#1| |#1|)) (-15 -2155 (|#1| |#1| (-706))) (-15 -2155 (|#1| |#1| (-1083))) (-15 -2155 (|#1| |#1| (-586 (-1083)))) (-15 -2155 (|#1| |#1| (-1083) (-706))) (-15 -2155 (|#1| |#1| (-586 (-1083)) (-586 (-706)))) (-15 -3249 (|#1|)) (-15 -1628 ((-706))) (-15 -2155 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2155 (|#1| |#1| (-1 |#2| |#2|) (-706))) (-15 -3404 ((-626 |#2|) (-1164 |#1|) (-1 |#2| |#2|))) (-15 -3856 ((-3 |#1| "failed") (-380 |#3|))) (-15 -1429 (|#1| |#3|)) (-15 -3856 (|#1| |#3|)) (-15 -1382 (|#1|)) (-15 -1482 (|#2| |#1|)) (-15 -1296 ((-3 |#2| "failed") |#1|)) (-15 -1296 ((-3 (-380 (-520)) "failed") |#1|)) (-15 -1482 ((-380 (-520)) |#1|)) (-15 -1296 ((-3 (-520) "failed") |#1|)) (-15 -1482 ((-520) |#1|)) (-15 -1429 (|#3| |#1|)) (-15 -1429 (|#1| (-1164 |#2|))) (-15 -1429 ((-1164 |#2|) |#1|)) (-15 -1831 ((-1164 |#1|))) (-15 -2948 (|#3| |#1|)) (-15 -1434 (|#2| |#1|)) (-15 -1540 ((-3 |#1| "failed") |#1|)))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) 93 (|has| |#1| (-336)))) (-2583 (($ $) 94 (|has| |#1| (-336)))) (-1671 (((-108) $) 96 (|has| |#1| (-336)))) (-1405 (((-626 |#1|) (-1164 $)) 46) (((-626 |#1|)) 61)) (-1864 ((|#1| $) 52)) (-1891 (((-1092 (-849) (-706)) (-520)) 147 (|has| |#1| (-322)))) (-1917 (((-3 $ "failed") $ $) 19)) (-3024 (($ $) 113 (|has| |#1| (-336)))) (-1507 (((-391 $) $) 114 (|has| |#1| (-336)))) (-1327 (((-108) $ $) 104 (|has| |#1| (-336)))) (-1628 (((-706)) 87 (|has| |#1| (-341)))) (-3961 (($) 17 T CONST)) (-1296 (((-3 (-520) "failed") $) 169 (|has| |#1| (-960 (-520)))) (((-3 (-380 (-520)) "failed") $) 167 (|has| |#1| (-960 (-380 (-520))))) (((-3 |#1| "failed") $) 166)) (-1482 (((-520) $) 170 (|has| |#1| (-960 (-520)))) (((-380 (-520)) $) 168 (|has| |#1| (-960 (-380 (-520))))) ((|#1| $) 165)) (-3705 (($ (-1164 |#1|) (-1164 $)) 48) (($ (-1164 |#1|)) 64)) (-2654 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| |#1| (-322)))) (-2276 (($ $ $) 108 (|has| |#1| (-336)))) (-3604 (((-626 |#1|) $ (-1164 $)) 53) (((-626 |#1|) $) 59)) (-2756 (((-626 (-520)) (-626 $)) 164 (|has| |#1| (-582 (-520)))) (((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 $) (-1164 $)) 163 (|has| |#1| (-582 (-520)))) (((-2 (|:| -3927 (-626 |#1|)) (|:| |vec| (-1164 |#1|))) (-626 $) (-1164 $)) 162) (((-626 |#1|) (-626 $)) 161)) (-3856 (($ |#2|) 158) (((-3 $ "failed") (-380 |#2|)) 155 (|has| |#1| (-336)))) (-1540 (((-3 $ "failed") $) 34)) (-3160 (((-849)) 54)) (-3249 (($) 90 (|has| |#1| (-341)))) (-2253 (($ $ $) 107 (|has| |#1| (-336)))) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) 102 (|has| |#1| (-336)))) (-2961 (($) 149 (|has| |#1| (-322)))) (-1855 (((-108) $) 150 (|has| |#1| (-322)))) (-1346 (($ $ (-706)) 141 (|has| |#1| (-322))) (($ $) 140 (|has| |#1| (-322)))) (-2036 (((-108) $) 115 (|has| |#1| (-336)))) (-3989 (((-849) $) 152 (|has| |#1| (-322))) (((-769 (-849)) $) 138 (|has| |#1| (-322)))) (-1537 (((-108) $) 31)) (-1434 ((|#1| $) 51)) (-1394 (((-3 $ "failed") $) 142 (|has| |#1| (-322)))) (-3188 (((-3 (-586 $) "failed") (-586 $) $) 111 (|has| |#1| (-336)))) (-2034 ((|#2| $) 44 (|has| |#1| (-336)))) (-3040 (((-849) $) 89 (|has| |#1| (-341)))) (-3841 ((|#2| $) 156)) (-2222 (($ (-586 $)) 100 (|has| |#1| (-336))) (($ $ $) 99 (|has| |#1| (-336)))) (-1239 (((-1066) $) 9)) (-3093 (($ $) 116 (|has| |#1| (-336)))) (-3794 (($) 143 (|has| |#1| (-322)) CONST)) (-2716 (($ (-849)) 88 (|has| |#1| (-341)))) (-4142 (((-1030) $) 10)) (-1382 (($) 160)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) 101 (|has| |#1| (-336)))) (-2257 (($ (-586 $)) 98 (|has| |#1| (-336))) (($ $ $) 97 (|has| |#1| (-336)))) (-1517 (((-586 (-2 (|:| -1916 (-520)) (|:| -2647 (-520))))) 146 (|has| |#1| (-322)))) (-1916 (((-391 $) $) 112 (|has| |#1| (-336)))) (-1283 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-336))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) 109 (|has| |#1| (-336)))) (-2230 (((-3 $ "failed") $ $) 92 (|has| |#1| (-336)))) (-2608 (((-3 (-586 $) "failed") (-586 $) $) 103 (|has| |#1| (-336)))) (-3704 (((-706) $) 105 (|has| |#1| (-336)))) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) 106 (|has| |#1| (-336)))) (-2732 ((|#1| (-1164 $)) 47) ((|#1|) 60)) (-2062 (((-706) $) 151 (|has| |#1| (-322))) (((-3 (-706) "failed") $ $) 139 (|has| |#1| (-322)))) (-2155 (($ $) 137 (-3700 (-4006 (|has| |#1| (-209)) (|has| |#1| (-336))) (|has| |#1| (-322)))) (($ $ (-706)) 135 (-3700 (-4006 (|has| |#1| (-209)) (|has| |#1| (-336))) (|has| |#1| (-322)))) (($ $ (-1083)) 133 (-4006 (|has| |#1| (-828 (-1083))) (|has| |#1| (-336)))) (($ $ (-586 (-1083))) 132 (-4006 (|has| |#1| (-828 (-1083))) (|has| |#1| (-336)))) (($ $ (-1083) (-706)) 131 (-4006 (|has| |#1| (-828 (-1083))) (|has| |#1| (-336)))) (($ $ (-586 (-1083)) (-586 (-706))) 130 (-4006 (|has| |#1| (-828 (-1083))) (|has| |#1| (-336)))) (($ $ (-1 |#1| |#1|) (-706)) 123 (|has| |#1| (-336))) (($ $ (-1 |#1| |#1|)) 122 (|has| |#1| (-336)))) (-3404 (((-626 |#1|) (-1164 $) (-1 |#1| |#1|)) 154 (|has| |#1| (-336)))) (-3484 ((|#2|) 159)) (-3864 (($) 148 (|has| |#1| (-322)))) (-3790 (((-1164 |#1|) $ (-1164 $)) 50) (((-626 |#1|) (-1164 $) (-1164 $)) 49) (((-1164 |#1|) $) 66) (((-626 |#1|) (-1164 $)) 65)) (-1429 (((-1164 |#1|) $) 63) (($ (-1164 |#1|)) 62) ((|#2| $) 171) (($ |#2|) 157)) (-3784 (((-3 (-1164 $) "failed") (-626 $)) 145 (|has| |#1| (-322)))) (-2188 (((-791) $) 11) (($ (-520)) 28) (($ |#1|) 37) (($ $) 91 (|has| |#1| (-336))) (($ (-380 (-520))) 86 (-3700 (|has| |#1| (-336)) (|has| |#1| (-960 (-380 (-520))))))) (-3796 (($ $) 144 (|has| |#1| (-322))) (((-3 $ "failed") $) 43 (|has| |#1| (-133)))) (-2948 ((|#2| $) 45)) (-3251 (((-706)) 29)) (-1831 (((-1164 $)) 67)) (-2559 (((-108) $ $) 95 (|has| |#1| (-336)))) (-3504 (($ $ (-849)) 26) (($ $ (-706)) 33) (($ $ (-520)) 117 (|has| |#1| (-336)))) (-3560 (($) 18 T CONST)) (-3570 (($) 30 T CONST)) (-2211 (($ $) 136 (-3700 (-4006 (|has| |#1| (-209)) (|has| |#1| (-336))) (|has| |#1| (-322)))) (($ $ (-706)) 134 (-3700 (-4006 (|has| |#1| (-209)) (|has| |#1| (-336))) (|has| |#1| (-322)))) (($ $ (-1083)) 129 (-4006 (|has| |#1| (-828 (-1083))) (|has| |#1| (-336)))) (($ $ (-586 (-1083))) 128 (-4006 (|has| |#1| (-828 (-1083))) (|has| |#1| (-336)))) (($ $ (-1083) (-706)) 127 (-4006 (|has| |#1| (-828 (-1083))) (|has| |#1| (-336)))) (($ $ (-586 (-1083)) (-586 (-706))) 126 (-4006 (|has| |#1| (-828 (-1083))) (|has| |#1| (-336)))) (($ $ (-1 |#1| |#1|) (-706)) 125 (|has| |#1| (-336))) (($ $ (-1 |#1| |#1|)) 124 (|has| |#1| (-336)))) (-1530 (((-108) $ $) 6)) (-1619 (($ $ $) 121 (|has| |#1| (-336)))) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-706)) 32) (($ $ (-520)) 118 (|has| |#1| (-336)))) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ (-380 (-520)) $) 120 (|has| |#1| (-336))) (($ $ (-380 (-520))) 119 (|has| |#1| (-336)))))
-(((-660 |#1| |#2|) (-1195) (-157) (-1140 |t#1|)) (T -660))
-((-1382 (*1 *1) (-12 (-4 *2 (-157)) (-4 *1 (-660 *2 *3)) (-4 *3 (-1140 *2)))) (-3484 (*1 *2) (-12 (-4 *1 (-660 *3 *2)) (-4 *3 (-157)) (-4 *2 (-1140 *3)))) (-3856 (*1 *1 *2) (-12 (-4 *3 (-157)) (-4 *1 (-660 *3 *2)) (-4 *2 (-1140 *3)))) (-1429 (*1 *1 *2) (-12 (-4 *3 (-157)) (-4 *1 (-660 *3 *2)) (-4 *2 (-1140 *3)))) (-3841 (*1 *2 *1) (-12 (-4 *1 (-660 *3 *2)) (-4 *3 (-157)) (-4 *2 (-1140 *3)))) (-3856 (*1 *1 *2) (|partial| -12 (-5 *2 (-380 *4)) (-4 *4 (-1140 *3)) (-4 *3 (-336)) (-4 *3 (-157)) (-4 *1 (-660 *3 *4)))) (-3404 (*1 *2 *3 *4) (-12 (-5 *3 (-1164 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-336)) (-4 *1 (-660 *5 *6)) (-4 *5 (-157)) (-4 *6 (-1140 *5)) (-5 *2 (-626 *5)))))
-(-13 (-382 |t#1| |t#2|) (-157) (-561 |t#2|) (-384 |t#1|) (-350 |t#1|) (-10 -8 (-15 -1382 ($)) (-15 -3484 (|t#2|)) (-15 -3856 ($ |t#2|)) (-15 -1429 ($ |t#2|)) (-15 -3841 (|t#2| $)) (IF (|has| |t#1| (-341)) (-6 (-341)) |%noBranch|) (IF (|has| |t#1| (-336)) (PROGN (-6 (-336)) (-6 (-207 |t#1|)) (-15 -3856 ((-3 $ "failed") (-380 |t#2|))) (-15 -3404 ((-626 |t#1|) (-1164 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-322)) (-6 (-322)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-380 (-520))) -3700 (|has| |#1| (-322)) (|has| |#1| (-336))) ((-37 |#1|) . T) ((-37 $) -3700 (|has| |#1| (-322)) (|has| |#1| (-336))) ((-97) . T) ((-107 #0# #0#) -3700 (|has| |#1| (-322)) (|has| |#1| (-336))) ((-107 |#1| |#1|) . T) ((-107 $ $) . T) ((-124) . T) ((-133) -3700 (|has| |#1| (-322)) (|has| |#1| (-133))) ((-135) |has| |#1| (-135)) ((-560 (-791)) . T) ((-157) . T) ((-561 |#2|) . T) ((-207 |#1|) |has| |#1| (-336)) ((-209) -3700 (|has| |#1| (-322)) (-12 (|has| |#1| (-209)) (|has| |#1| (-336)))) ((-219) -3700 (|has| |#1| (-322)) (|has| |#1| (-336))) ((-264) -3700 (|has| |#1| (-322)) (|has| |#1| (-336))) ((-281) -3700 (|has| |#1| (-322)) (|has| |#1| (-336))) ((-336) -3700 (|has| |#1| (-322)) (|has| |#1| (-336))) ((-375) |has| |#1| (-322)) ((-341) -3700 (|has| |#1| (-341)) (|has| |#1| (-322))) ((-322) |has| |#1| (-322)) ((-343 |#1| |#2|) . T) ((-382 |#1| |#2|) . T) ((-350 |#1|) . T) ((-384 |#1|) . T) ((-424) -3700 (|has| |#1| (-322)) (|has| |#1| (-336))) ((-512) -3700 (|has| |#1| (-322)) (|has| |#1| (-336))) ((-588 #0#) -3700 (|has| |#1| (-322)) (|has| |#1| (-336))) ((-588 |#1|) . T) ((-588 $) . T) ((-582 (-520)) |has| |#1| (-582 (-520))) ((-582 |#1|) . T) ((-653 #0#) -3700 (|has| |#1| (-322)) (|has| |#1| (-336))) ((-653 |#1|) . T) ((-653 $) -3700 (|has| |#1| (-322)) (|has| |#1| (-336))) ((-662) . T) ((-828 (-1083)) -12 (|has| |#1| (-336)) (|has| |#1| (-828 (-1083)))) ((-848) -3700 (|has| |#1| (-322)) (|has| |#1| (-336))) ((-960 (-380 (-520))) |has| |#1| (-960 (-380 (-520)))) ((-960 (-520)) |has| |#1| (-960 (-520))) ((-960 |#1|) . T) ((-975 #0#) -3700 (|has| |#1| (-322)) (|has| |#1| (-336))) ((-975 |#1|) . T) ((-975 $) . T) ((-969) . T) ((-976) . T) ((-1024) . T) ((-1012) . T) ((-1059) |has| |#1| (-322)) ((-1122) -3700 (|has| |#1| (-322)) (|has| |#1| (-336))))
-((-3961 (($) 14)) (-1540 (((-3 $ "failed") $) 16)) (-1537 (((-108) $) 13)) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) 9)) (** (($ $ (-849)) NIL) (($ $ (-706)) 20)))
-(((-661 |#1|) (-10 -8 (-15 -1540 ((-3 |#1| "failed") |#1|)) (-15 -3504 (|#1| |#1| (-706))) (-15 ** (|#1| |#1| (-706))) (-15 -1537 ((-108) |#1|)) (-15 -3961 (|#1|)) (-15 -3504 (|#1| |#1| (-849))) (-15 ** (|#1| |#1| (-849)))) (-662)) (T -661))
-NIL
-(-10 -8 (-15 -1540 ((-3 |#1| "failed") |#1|)) (-15 -3504 (|#1| |#1| (-706))) (-15 ** (|#1| |#1| (-706))) (-15 -1537 ((-108) |#1|)) (-15 -3961 (|#1|)) (-15 -3504 (|#1| |#1| (-849))) (-15 ** (|#1| |#1| (-849))))
-((-1414 (((-108) $ $) 7)) (-3961 (($) 20 T CONST)) (-1540 (((-3 $ "failed") $) 16)) (-1537 (((-108) $) 19)) (-1239 (((-1066) $) 9)) (-4142 (((-1030) $) 10)) (-2188 (((-791) $) 11)) (-3504 (($ $ (-849)) 13) (($ $ (-706)) 17)) (-3570 (($) 21 T CONST)) (-1530 (((-108) $ $) 6)) (** (($ $ (-849)) 14) (($ $ (-706)) 18)) (* (($ $ $) 15)))
-(((-662) (-1195)) (T -662))
-((-3570 (*1 *1) (-4 *1 (-662))) (-3961 (*1 *1) (-4 *1 (-662))) (-1537 (*1 *2 *1) (-12 (-4 *1 (-662)) (-5 *2 (-108)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-662)) (-5 *2 (-706)))) (-3504 (*1 *1 *1 *2) (-12 (-4 *1 (-662)) (-5 *2 (-706)))) (-1540 (*1 *1 *1) (|partial| -4 *1 (-662))))
-(-13 (-1024) (-10 -8 (-15 (-3570) ($) -2675) (-15 -3961 ($) -2675) (-15 -1537 ((-108) $)) (-15 ** ($ $ (-706))) (-15 -3504 ($ $ (-706))) (-15 -1540 ((-3 $ "failed") $))))
-(((-97) . T) ((-560 (-791)) . T) ((-1024) . T) ((-1012) . T))
-((-1534 (((-2 (|:| -3655 (-391 |#2|)) (|:| |special| (-391 |#2|))) |#2| (-1 |#2| |#2|)) 38)) (-3175 (((-2 (|:| -3655 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-3430 ((|#2| (-380 |#2|) (-1 |#2| |#2|)) 13)) (-2699 (((-2 (|:| |poly| |#2|) (|:| -3655 (-380 |#2|)) (|:| |special| (-380 |#2|))) (-380 |#2|) (-1 |#2| |#2|)) 47)))
-(((-663 |#1| |#2|) (-10 -7 (-15 -3175 ((-2 (|:| -3655 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -1534 ((-2 (|:| -3655 (-391 |#2|)) (|:| |special| (-391 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -3430 (|#2| (-380 |#2|) (-1 |#2| |#2|))) (-15 -2699 ((-2 (|:| |poly| |#2|) (|:| -3655 (-380 |#2|)) (|:| |special| (-380 |#2|))) (-380 |#2|) (-1 |#2| |#2|)))) (-336) (-1140 |#1|)) (T -663))
-((-2699 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1140 *5)) (-4 *5 (-336)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3655 (-380 *6)) (|:| |special| (-380 *6)))) (-5 *1 (-663 *5 *6)) (-5 *3 (-380 *6)))) (-3430 (*1 *2 *3 *4) (-12 (-5 *3 (-380 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1140 *5)) (-5 *1 (-663 *5 *2)) (-4 *5 (-336)))) (-1534 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1140 *5)) (-4 *5 (-336)) (-5 *2 (-2 (|:| -3655 (-391 *3)) (|:| |special| (-391 *3)))) (-5 *1 (-663 *5 *3)))) (-3175 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1140 *5)) (-4 *5 (-336)) (-5 *2 (-2 (|:| -3655 *3) (|:| |special| *3))) (-5 *1 (-663 *5 *3)))))
-(-10 -7 (-15 -3175 ((-2 (|:| -3655 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -1534 ((-2 (|:| -3655 (-391 |#2|)) (|:| |special| (-391 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -3430 (|#2| (-380 |#2|) (-1 |#2| |#2|))) (-15 -2699 ((-2 (|:| |poly| |#2|) (|:| -3655 (-380 |#2|)) (|:| |special| (-380 |#2|))) (-380 |#2|) (-1 |#2| |#2|))))
-((-3129 ((|#7| (-586 |#5|) |#6|) NIL)) (-1389 ((|#7| (-1 |#5| |#4|) |#6|) 26)))
-(((-664 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1389 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3129 (|#7| (-586 |#5|) |#6|))) (-783) (-728) (-728) (-969) (-969) (-877 |#4| |#2| |#1|) (-877 |#5| |#3| |#1|)) (T -664))
-((-3129 (*1 *2 *3 *4) (-12 (-5 *3 (-586 *9)) (-4 *9 (-969)) (-4 *5 (-783)) (-4 *6 (-728)) (-4 *8 (-969)) (-4 *2 (-877 *9 *7 *5)) (-5 *1 (-664 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-728)) (-4 *4 (-877 *8 *6 *5)))) (-1389 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-969)) (-4 *9 (-969)) (-4 *5 (-783)) (-4 *6 (-728)) (-4 *2 (-877 *9 *7 *5)) (-5 *1 (-664 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-728)) (-4 *4 (-877 *8 *6 *5)))))
-(-10 -7 (-15 -1389 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3129 (|#7| (-586 |#5|) |#6|)))
-((-1389 ((|#7| (-1 |#2| |#1|) |#6|) 29)))
-(((-665 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1389 (|#7| (-1 |#2| |#1|) |#6|))) (-783) (-783) (-728) (-728) (-969) (-877 |#5| |#3| |#1|) (-877 |#5| |#4| |#2|)) (T -665))
-((-1389 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-783)) (-4 *6 (-783)) (-4 *7 (-728)) (-4 *9 (-969)) (-4 *2 (-877 *9 *8 *6)) (-5 *1 (-665 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-728)) (-4 *4 (-877 *9 *7 *5)))))
-(-10 -7 (-15 -1389 (|#7| (-1 |#2| |#1|) |#6|)))
-((-1916 (((-391 |#4|) |#4|) 39)))
-(((-666 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1916 ((-391 |#4|) |#4|))) (-728) (-13 (-783) (-10 -8 (-15 -1429 ((-1083) $)) (-15 -1610 ((-3 $ "failed") (-1083))))) (-281) (-877 (-880 |#3|) |#1| |#2|)) (T -666))
-((-1916 (*1 *2 *3) (-12 (-4 *4 (-728)) (-4 *5 (-13 (-783) (-10 -8 (-15 -1429 ((-1083) $)) (-15 -1610 ((-3 $ "failed") (-1083)))))) (-4 *6 (-281)) (-5 *2 (-391 *3)) (-5 *1 (-666 *4 *5 *6 *3)) (-4 *3 (-877 (-880 *6) *4 *5)))))
-(-10 -7 (-15 -1916 ((-391 |#4|) |#4|)))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-4081 (((-586 (-793 |#1|)) $) NIL)) (-1278 (((-1079 $) $ (-793 |#1|)) NIL) (((-1079 |#2|) $) NIL)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) NIL (|has| |#2| (-512)))) (-2583 (($ $) NIL (|has| |#2| (-512)))) (-1671 (((-108) $) NIL (|has| |#2| (-512)))) (-3665 (((-706) $) NIL) (((-706) $ (-586 (-793 |#1|))) NIL)) (-1917 (((-3 $ "failed") $ $) NIL)) (-4119 (((-391 (-1079 $)) (-1079 $)) NIL (|has| |#2| (-837)))) (-3024 (($ $) NIL (|has| |#2| (-424)))) (-1507 (((-391 $) $) NIL (|has| |#2| (-424)))) (-3481 (((-3 (-586 (-1079 $)) "failed") (-586 (-1079 $)) (-1079 $)) NIL (|has| |#2| (-837)))) (-3961 (($) NIL T CONST)) (-1296 (((-3 |#2| "failed") $) NIL) (((-3 (-380 (-520)) "failed") $) NIL (|has| |#2| (-960 (-380 (-520))))) (((-3 (-520) "failed") $) NIL (|has| |#2| (-960 (-520)))) (((-3 (-793 |#1|) "failed") $) NIL)) (-1482 ((|#2| $) NIL) (((-380 (-520)) $) NIL (|has| |#2| (-960 (-380 (-520))))) (((-520) $) NIL (|has| |#2| (-960 (-520)))) (((-793 |#1|) $) NIL)) (-2413 (($ $ $ (-793 |#1|)) NIL (|has| |#2| (-157)))) (-3150 (($ $) NIL)) (-2756 (((-626 (-520)) (-626 $)) NIL (|has| |#2| (-582 (-520)))) (((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 $) (-1164 $)) NIL (|has| |#2| (-582 (-520)))) (((-2 (|:| -3927 (-626 |#2|)) (|:| |vec| (-1164 |#2|))) (-626 $) (-1164 $)) NIL) (((-626 |#2|) (-626 $)) NIL)) (-1540 (((-3 $ "failed") $) NIL)) (-3923 (($ $) NIL (|has| |#2| (-424))) (($ $ (-793 |#1|)) NIL (|has| |#2| (-424)))) (-3142 (((-586 $) $) NIL)) (-2036 (((-108) $) NIL (|has| |#2| (-837)))) (-3397 (($ $ |#2| (-492 (-793 |#1|)) $) NIL)) (-1272 (((-817 (-352) $) $ (-820 (-352)) (-817 (-352) $)) NIL (-12 (|has| (-793 |#1|) (-814 (-352))) (|has| |#2| (-814 (-352))))) (((-817 (-520) $) $ (-820 (-520)) (-817 (-520) $)) NIL (-12 (|has| (-793 |#1|) (-814 (-520))) (|has| |#2| (-814 (-520)))))) (-1537 (((-108) $) NIL)) (-1315 (((-706) $) NIL)) (-4065 (($ (-1079 |#2|) (-793 |#1|)) NIL) (($ (-1079 $) (-793 |#1|)) NIL)) (-1992 (((-586 $) $) NIL)) (-3774 (((-108) $) NIL)) (-4039 (($ |#2| (-492 (-793 |#1|))) NIL) (($ $ (-793 |#1|) (-706)) NIL) (($ $ (-586 (-793 |#1|)) (-586 (-706))) NIL)) (-1910 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $ (-793 |#1|)) NIL)) (-3562 (((-492 (-793 |#1|)) $) NIL) (((-706) $ (-793 |#1|)) NIL) (((-586 (-706)) $ (-586 (-793 |#1|))) NIL)) (-2809 (($ $ $) NIL (|has| |#2| (-783)))) (-2446 (($ $ $) NIL (|has| |#2| (-783)))) (-3295 (($ (-1 (-492 (-793 |#1|)) (-492 (-793 |#1|))) $) NIL)) (-1389 (($ (-1 |#2| |#2|) $) NIL)) (-3186 (((-3 (-793 |#1|) "failed") $) NIL)) (-3123 (($ $) NIL)) (-3133 ((|#2| $) NIL)) (-2222 (($ (-586 $)) NIL (|has| |#2| (-424))) (($ $ $) NIL (|has| |#2| (-424)))) (-1239 (((-1066) $) NIL)) (-3548 (((-3 (-586 $) "failed") $) NIL)) (-1205 (((-3 (-586 $) "failed") $) NIL)) (-2568 (((-3 (-2 (|:| |var| (-793 |#1|)) (|:| -2647 (-706))) "failed") $) NIL)) (-4142 (((-1030) $) NIL)) (-3103 (((-108) $) NIL)) (-3113 ((|#2| $) NIL)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) NIL (|has| |#2| (-424)))) (-2257 (($ (-586 $)) NIL (|has| |#2| (-424))) (($ $ $) NIL (|has| |#2| (-424)))) (-4133 (((-391 (-1079 $)) (-1079 $)) NIL (|has| |#2| (-837)))) (-2017 (((-391 (-1079 $)) (-1079 $)) NIL (|has| |#2| (-837)))) (-1916 (((-391 $) $) NIL (|has| |#2| (-837)))) (-2230 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-512))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-512)))) (-2286 (($ $ (-586 (-268 $))) NIL) (($ $ (-268 $)) NIL) (($ $ $ $) NIL) (($ $ (-586 $) (-586 $)) NIL) (($ $ (-793 |#1|) |#2|) NIL) (($ $ (-586 (-793 |#1|)) (-586 |#2|)) NIL) (($ $ (-793 |#1|) $) NIL) (($ $ (-586 (-793 |#1|)) (-586 $)) NIL)) (-2732 (($ $ (-793 |#1|)) NIL (|has| |#2| (-157)))) (-2155 (($ $ (-793 |#1|)) NIL) (($ $ (-586 (-793 |#1|))) NIL) (($ $ (-793 |#1|) (-706)) NIL) (($ $ (-586 (-793 |#1|)) (-586 (-706))) NIL)) (-2528 (((-492 (-793 |#1|)) $) NIL) (((-706) $ (-793 |#1|)) NIL) (((-586 (-706)) $ (-586 (-793 |#1|))) NIL)) (-1429 (((-820 (-352)) $) NIL (-12 (|has| (-793 |#1|) (-561 (-820 (-352)))) (|has| |#2| (-561 (-820 (-352)))))) (((-820 (-520)) $) NIL (-12 (|has| (-793 |#1|) (-561 (-820 (-520)))) (|has| |#2| (-561 (-820 (-520)))))) (((-496) $) NIL (-12 (|has| (-793 |#1|) (-561 (-496))) (|has| |#2| (-561 (-496)))))) (-1233 ((|#2| $) NIL (|has| |#2| (-424))) (($ $ (-793 |#1|)) NIL (|has| |#2| (-424)))) (-3784 (((-3 (-1164 $) "failed") (-626 $)) NIL (-12 (|has| $ (-133)) (|has| |#2| (-837))))) (-2188 (((-791) $) NIL) (($ (-520)) NIL) (($ |#2|) NIL) (($ (-793 |#1|)) NIL) (($ $) NIL (|has| |#2| (-512))) (($ (-380 (-520))) NIL (-3700 (|has| |#2| (-37 (-380 (-520)))) (|has| |#2| (-960 (-380 (-520))))))) (-4113 (((-586 |#2|) $) NIL)) (-3475 ((|#2| $ (-492 (-793 |#1|))) NIL) (($ $ (-793 |#1|) (-706)) NIL) (($ $ (-586 (-793 |#1|)) (-586 (-706))) NIL)) (-3796 (((-3 $ "failed") $) NIL (-3700 (-12 (|has| $ (-133)) (|has| |#2| (-837))) (|has| |#2| (-133))))) (-3251 (((-706)) NIL)) (-1782 (($ $ $ (-706)) NIL (|has| |#2| (-157)))) (-2559 (((-108) $ $) NIL (|has| |#2| (-512)))) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (-3560 (($) NIL T CONST)) (-3570 (($) NIL T CONST)) (-2211 (($ $ (-793 |#1|)) NIL) (($ $ (-586 (-793 |#1|))) NIL) (($ $ (-793 |#1|) (-706)) NIL) (($ $ (-586 (-793 |#1|)) (-586 (-706))) NIL)) (-1573 (((-108) $ $) NIL (|has| |#2| (-783)))) (-1557 (((-108) $ $) NIL (|has| |#2| (-783)))) (-1530 (((-108) $ $) NIL)) (-1565 (((-108) $ $) NIL (|has| |#2| (-783)))) (-1548 (((-108) $ $) NIL (|has| |#2| (-783)))) (-1619 (($ $ |#2|) NIL (|has| |#2| (-336)))) (-1611 (($ $) NIL) (($ $ $) NIL)) (-1601 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) NIL) (($ $ (-380 (-520))) NIL (|has| |#2| (-37 (-380 (-520))))) (($ (-380 (-520)) $) NIL (|has| |#2| (-37 (-380 (-520))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-667 |#1| |#2|) (-877 |#2| (-492 (-793 |#1|)) (-793 |#1|)) (-586 (-1083)) (-969)) (T -667))
-NIL
-(-877 |#2| (-492 (-793 |#1|)) (-793 |#1|))
-((-2107 (((-2 (|:| -1224 (-880 |#3|)) (|:| -2662 (-880 |#3|))) |#4|) 13)) (-4194 ((|#4| |#4| |#2|) 30)) (-3202 ((|#4| (-380 (-880 |#3|)) |#2|) 64)) (-3152 ((|#4| (-1079 (-880 |#3|)) |#2|) 77)) (-1244 ((|#4| (-1079 |#4|) |#2|) 50)) (-4101 ((|#4| |#4| |#2|) 53)) (-1916 (((-391 |#4|) |#4|) 38)))
-(((-668 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2107 ((-2 (|:| -1224 (-880 |#3|)) (|:| -2662 (-880 |#3|))) |#4|)) (-15 -4101 (|#4| |#4| |#2|)) (-15 -1244 (|#4| (-1079 |#4|) |#2|)) (-15 -4194 (|#4| |#4| |#2|)) (-15 -3152 (|#4| (-1079 (-880 |#3|)) |#2|)) (-15 -3202 (|#4| (-380 (-880 |#3|)) |#2|)) (-15 -1916 ((-391 |#4|) |#4|))) (-728) (-13 (-783) (-10 -8 (-15 -1429 ((-1083) $)))) (-512) (-877 (-380 (-880 |#3|)) |#1| |#2|)) (T -668))
-((-1916 (*1 *2 *3) (-12 (-4 *4 (-728)) (-4 *5 (-13 (-783) (-10 -8 (-15 -1429 ((-1083) $))))) (-4 *6 (-512)) (-5 *2 (-391 *3)) (-5 *1 (-668 *4 *5 *6 *3)) (-4 *3 (-877 (-380 (-880 *6)) *4 *5)))) (-3202 (*1 *2 *3 *4) (-12 (-4 *6 (-512)) (-4 *2 (-877 *3 *5 *4)) (-5 *1 (-668 *5 *4 *6 *2)) (-5 *3 (-380 (-880 *6))) (-4 *5 (-728)) (-4 *4 (-13 (-783) (-10 -8 (-15 -1429 ((-1083) $))))))) (-3152 (*1 *2 *3 *4) (-12 (-5 *3 (-1079 (-880 *6))) (-4 *6 (-512)) (-4 *2 (-877 (-380 (-880 *6)) *5 *4)) (-5 *1 (-668 *5 *4 *6 *2)) (-4 *5 (-728)) (-4 *4 (-13 (-783) (-10 -8 (-15 -1429 ((-1083) $))))))) (-4194 (*1 *2 *2 *3) (-12 (-4 *4 (-728)) (-4 *3 (-13 (-783) (-10 -8 (-15 -1429 ((-1083) $))))) (-4 *5 (-512)) (-5 *1 (-668 *4 *3 *5 *2)) (-4 *2 (-877 (-380 (-880 *5)) *4 *3)))) (-1244 (*1 *2 *3 *4) (-12 (-5 *3 (-1079 *2)) (-4 *2 (-877 (-380 (-880 *6)) *5 *4)) (-5 *1 (-668 *5 *4 *6 *2)) (-4 *5 (-728)) (-4 *4 (-13 (-783) (-10 -8 (-15 -1429 ((-1083) $))))) (-4 *6 (-512)))) (-4101 (*1 *2 *2 *3) (-12 (-4 *4 (-728)) (-4 *3 (-13 (-783) (-10 -8 (-15 -1429 ((-1083) $))))) (-4 *5 (-512)) (-5 *1 (-668 *4 *3 *5 *2)) (-4 *2 (-877 (-380 (-880 *5)) *4 *3)))) (-2107 (*1 *2 *3) (-12 (-4 *4 (-728)) (-4 *5 (-13 (-783) (-10 -8 (-15 -1429 ((-1083) $))))) (-4 *6 (-512)) (-5 *2 (-2 (|:| -1224 (-880 *6)) (|:| -2662 (-880 *6)))) (-5 *1 (-668 *4 *5 *6 *3)) (-4 *3 (-877 (-380 (-880 *6)) *4 *5)))))
-(-10 -7 (-15 -2107 ((-2 (|:| -1224 (-880 |#3|)) (|:| -2662 (-880 |#3|))) |#4|)) (-15 -4101 (|#4| |#4| |#2|)) (-15 -1244 (|#4| (-1079 |#4|) |#2|)) (-15 -4194 (|#4| |#4| |#2|)) (-15 -3152 (|#4| (-1079 (-880 |#3|)) |#2|)) (-15 -3202 (|#4| (-380 (-880 |#3|)) |#2|)) (-15 -1916 ((-391 |#4|) |#4|)))
-((-1916 (((-391 |#4|) |#4|) 51)))
-(((-669 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1916 ((-391 |#4|) |#4|))) (-728) (-783) (-13 (-281) (-135)) (-877 (-380 |#3|) |#1| |#2|)) (T -669))
-((-1916 (*1 *2 *3) (-12 (-4 *4 (-728)) (-4 *5 (-783)) (-4 *6 (-13 (-281) (-135))) (-5 *2 (-391 *3)) (-5 *1 (-669 *4 *5 *6 *3)) (-4 *3 (-877 (-380 *6) *4 *5)))))
-(-10 -7 (-15 -1916 ((-391 |#4|) |#4|)))
-((-1389 (((-671 |#2| |#3|) (-1 |#2| |#1|) (-671 |#1| |#3|)) 18)))
-(((-670 |#1| |#2| |#3|) (-10 -7 (-15 -1389 ((-671 |#2| |#3|) (-1 |#2| |#1|) (-671 |#1| |#3|)))) (-969) (-969) (-662)) (T -670))
-((-1389 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-671 *5 *7)) (-4 *5 (-969)) (-4 *6 (-969)) (-4 *7 (-662)) (-5 *2 (-671 *6 *7)) (-5 *1 (-670 *5 *6 *7)))))
-(-10 -7 (-15 -1389 ((-671 |#2| |#3|) (-1 |#2| |#1|) (-671 |#1| |#3|))))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) 26)) (-2088 (((-586 (-2 (|:| -2972 |#1|) (|:| -2516 |#2|))) $) 27)) (-1917 (((-3 $ "failed") $ $) NIL)) (-1628 (((-706)) 20 (-12 (|has| |#2| (-341)) (|has| |#1| (-341))))) (-3961 (($) NIL T CONST)) (-1296 (((-3 |#2| "failed") $) 56) (((-3 |#1| "failed") $) 59)) (-1482 ((|#2| $) NIL) ((|#1| $) NIL)) (-3150 (($ $) 76 (|has| |#2| (-783)))) (-1540 (((-3 $ "failed") $) 63)) (-3249 (($) 33 (-12 (|has| |#2| (-341)) (|has| |#1| (-341))))) (-1537 (((-108) $) NIL)) (-1315 (((-706) $) 54)) (-1992 (((-586 $) $) 37)) (-3774 (((-108) $) NIL)) (-4039 (($ |#1| |#2|) 16)) (-1389 (($ (-1 |#1| |#1|) $) 53)) (-3040 (((-849) $) 30 (-12 (|has| |#2| (-341)) (|has| |#1| (-341))))) (-3123 ((|#2| $) 75 (|has| |#2| (-783)))) (-3133 ((|#1| $) 74 (|has| |#2| (-783)))) (-1239 (((-1066) $) NIL)) (-2716 (($ (-849)) 25 (-12 (|has| |#2| (-341)) (|has| |#1| (-341))))) (-4142 (((-1030) $) NIL)) (-2188 (((-791) $) 73) (($ (-520)) 44) (($ |#2|) 40) (($ |#1|) 41) (($ (-586 (-2 (|:| -2972 |#1|) (|:| -2516 |#2|)))) 11)) (-4113 (((-586 |#1|) $) 39)) (-3475 ((|#1| $ |#2|) 84)) (-3796 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-3251 (((-706)) NIL)) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (-3560 (($) 12 T CONST)) (-3570 (($) 31 T CONST)) (-1530 (((-108) $ $) 77)) (-1611 (($ $) 46) (($ $ $) NIL)) (-1601 (($ $ $) 24)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) 51) (($ $ $) 86) (($ |#1| $) 48 (|has| |#1| (-157))) (($ $ |#1|) NIL (|has| |#1| (-157)))))
-(((-671 |#1| |#2|) (-13 (-969) (-960 |#2|) (-960 |#1|) (-10 -8 (-15 -4039 ($ |#1| |#2|)) (-15 -3475 (|#1| $ |#2|)) (-15 -2188 ($ (-586 (-2 (|:| -2972 |#1|) (|:| -2516 |#2|))))) (-15 -2088 ((-586 (-2 (|:| -2972 |#1|) (|:| -2516 |#2|))) $)) (-15 -1389 ($ (-1 |#1| |#1|) $)) (-15 -3774 ((-108) $)) (-15 -4113 ((-586 |#1|) $)) (-15 -1992 ((-586 $) $)) (-15 -1315 ((-706) $)) (IF (|has| |#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |#1| (-157)) (-6 (-37 |#1|)) |%noBranch|) (IF (|has| |#1| (-341)) (IF (|has| |#2| (-341)) (-6 (-341)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-783)) (PROGN (-15 -3123 (|#2| $)) (-15 -3133 (|#1| $)) (-15 -3150 ($ $))) |%noBranch|))) (-969) (-662)) (T -671))
-((-4039 (*1 *1 *2 *3) (-12 (-5 *1 (-671 *2 *3)) (-4 *2 (-969)) (-4 *3 (-662)))) (-3475 (*1 *2 *1 *3) (-12 (-4 *2 (-969)) (-5 *1 (-671 *2 *3)) (-4 *3 (-662)))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-586 (-2 (|:| -2972 *3) (|:| -2516 *4)))) (-4 *3 (-969)) (-4 *4 (-662)) (-5 *1 (-671 *3 *4)))) (-2088 (*1 *2 *1) (-12 (-5 *2 (-586 (-2 (|:| -2972 *3) (|:| -2516 *4)))) (-5 *1 (-671 *3 *4)) (-4 *3 (-969)) (-4 *4 (-662)))) (-1389 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-969)) (-5 *1 (-671 *3 *4)) (-4 *4 (-662)))) (-3774 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-671 *3 *4)) (-4 *3 (-969)) (-4 *4 (-662)))) (-4113 (*1 *2 *1) (-12 (-5 *2 (-586 *3)) (-5 *1 (-671 *3 *4)) (-4 *3 (-969)) (-4 *4 (-662)))) (-1992 (*1 *2 *1) (-12 (-5 *2 (-586 (-671 *3 *4))) (-5 *1 (-671 *3 *4)) (-4 *3 (-969)) (-4 *4 (-662)))) (-1315 (*1 *2 *1) (-12 (-5 *2 (-706)) (-5 *1 (-671 *3 *4)) (-4 *3 (-969)) (-4 *4 (-662)))) (-3123 (*1 *2 *1) (-12 (-4 *2 (-662)) (-4 *2 (-783)) (-5 *1 (-671 *3 *2)) (-4 *3 (-969)))) (-3133 (*1 *2 *1) (-12 (-4 *2 (-969)) (-5 *1 (-671 *2 *3)) (-4 *3 (-783)) (-4 *3 (-662)))) (-3150 (*1 *1 *1) (-12 (-5 *1 (-671 *2 *3)) (-4 *3 (-783)) (-4 *2 (-969)) (-4 *3 (-662)))))
-(-13 (-969) (-960 |#2|) (-960 |#1|) (-10 -8 (-15 -4039 ($ |#1| |#2|)) (-15 -3475 (|#1| $ |#2|)) (-15 -2188 ($ (-586 (-2 (|:| -2972 |#1|) (|:| -2516 |#2|))))) (-15 -2088 ((-586 (-2 (|:| -2972 |#1|) (|:| -2516 |#2|))) $)) (-15 -1389 ($ (-1 |#1| |#1|) $)) (-15 -3774 ((-108) $)) (-15 -4113 ((-586 |#1|) $)) (-15 -1992 ((-586 $) $)) (-15 -1315 ((-706) $)) (IF (|has| |#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |#1| (-157)) (-6 (-37 |#1|)) |%noBranch|) (IF (|has| |#1| (-341)) (IF (|has| |#2| (-341)) (-6 (-341)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-783)) (PROGN (-15 -3123 (|#2| $)) (-15 -3133 (|#1| $)) (-15 -3150 ($ $))) |%noBranch|)))
-((-1414 (((-108) $ $) 19)) (-2268 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-1907 (($ $ $) 72)) (-3645 (((-108) $ $) 73)) (-2063 (((-108) $ (-706)) 8)) (-1763 (($ (-586 |#1|)) 68) (($) 67)) (-1817 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4229)))) (-1627 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4229)))) (-3961 (($) 7 T CONST)) (-3667 (($ $) 62)) (-2331 (($ $) 58 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-3766 (($ |#1| $) 47 (|has| $ (-6 -4229))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4229)))) (-1421 (($ |#1| $) 57 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4229)))) (-3856 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4229))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4229)))) (-3828 (((-586 |#1|) $) 30 (|has| $ (-6 -4229)))) (-3027 (((-108) $ (-706)) 9)) (-3702 (((-586 |#1|) $) 29 (|has| $ (-6 -4229)))) (-2422 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-3830 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#1| |#1|) $) 35)) (-1390 (((-108) $ (-706)) 10)) (-1239 (((-1066) $) 22)) (-2077 (($ $ $) 69)) (-3351 ((|#1| $) 39)) (-3618 (($ |#1| $) 40) (($ |#1| $ (-706)) 63)) (-4142 (((-1030) $) 21)) (-2985 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-3345 ((|#1| $) 41)) (-4155 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 |#1|))) 26 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-268 |#1|)) 25 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-586 |#1|) (-586 |#1|)) 23 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))) (-2533 (((-108) $ $) 14)) (-4018 (((-108) $) 11)) (-2238 (($) 12)) (-3305 (((-586 (-2 (|:| -3043 |#1|) (|:| -4159 (-706)))) $) 61)) (-1397 (($ $ |#1|) 71) (($ $ $) 70)) (-1645 (($) 49) (($ (-586 |#1|)) 48)) (-4159 (((-706) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4229))) (((-706) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-2403 (($ $) 13)) (-1429 (((-496) $) 59 (|has| |#1| (-561 (-496))))) (-2200 (($ (-586 |#1|)) 50)) (-2188 (((-791) $) 18)) (-3386 (($ (-586 |#1|)) 66) (($) 65)) (-1898 (($ (-586 |#1|)) 42)) (-1662 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4229)))) (-1530 (((-108) $ $) 20)) (-1548 (((-108) $ $) 64)) (-3474 (((-706) $) 6 (|has| $ (-6 -4229)))))
-(((-672 |#1|) (-1195) (-1012)) (T -672))
-NIL
-(-13 (-631 |t#1|) (-1010 |t#1|))
-(((-33) . T) ((-102 |#1|) . T) ((-97) . T) ((-560 (-791)) . T) ((-139 |#1|) . T) ((-561 (-496)) |has| |#1| (-561 (-496))) ((-211 |#1|) . T) ((-283 |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))) ((-459 |#1|) . T) ((-481 |#1| |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))) ((-631 |#1|) . T) ((-1010 |#1|) . T) ((-1012) . T) ((-1118) . T))
-((-1414 (((-108) $ $) NIL)) (-2268 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 76)) (-1907 (($ $ $) 79)) (-3645 (((-108) $ $) 82)) (-2063 (((-108) $ (-706)) NIL)) (-1763 (($ (-586 |#1|)) 24) (($) 15)) (-1817 (($ (-1 (-108) |#1|) $) 70 (|has| $ (-6 -4229)))) (-1627 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-3961 (($) NIL T CONST)) (-3667 (($ $) 71)) (-2331 (($ $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-3766 (($ |#1| $) 61 (|has| $ (-6 -4229))) (($ (-1 (-108) |#1|) $) 64 (|has| $ (-6 -4229))) (($ |#1| $ (-520)) 62) (($ (-1 (-108) |#1|) $ (-520)) 65)) (-1421 (($ |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229))) (($ |#1| $ (-520)) 67) (($ (-1 (-108) |#1|) $ (-520)) 68)) (-3856 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4229))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4229)))) (-3828 (((-586 |#1|) $) 32 (|has| $ (-6 -4229)))) (-3897 (($) 13) (($ |#1|) 26) (($ (-586 |#1|)) 21)) (-3027 (((-108) $ (-706)) NIL)) (-3702 (((-586 |#1|) $) 38)) (-2422 (((-108) |#1| $) 57 (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-3830 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#1| |#1|) $) 75)) (-1390 (((-108) $ (-706)) NIL)) (-1239 (((-1066) $) NIL)) (-2077 (($ $ $) 77)) (-3351 ((|#1| $) 54)) (-3618 (($ |#1| $) 55) (($ |#1| $ (-706)) 72)) (-4142 (((-1030) $) NIL)) (-2985 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-3345 ((|#1| $) 53)) (-4155 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 |#1|))) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-268 |#1|)) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-586 |#1|) (-586 |#1|)) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))) (-2533 (((-108) $ $) NIL)) (-4018 (((-108) $) 49)) (-2238 (($) 12)) (-3305 (((-586 (-2 (|:| -3043 |#1|) (|:| -4159 (-706)))) $) 47)) (-1397 (($ $ |#1|) NIL) (($ $ $) 78)) (-1645 (($) 14) (($ (-586 |#1|)) 23)) (-4159 (((-706) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229))) (((-706) |#1| $) 60 (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-2403 (($ $) 66)) (-1429 (((-496) $) 36 (|has| |#1| (-561 (-496))))) (-2200 (($ (-586 |#1|)) 20)) (-2188 (((-791) $) 44)) (-3386 (($ (-586 |#1|)) 25) (($) 16)) (-1898 (($ (-586 |#1|)) 22)) (-1662 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-1530 (((-108) $ $) 80)) (-1548 (((-108) $ $) 81)) (-3474 (((-706) $) 59 (|has| $ (-6 -4229)))))
-(((-673 |#1|) (-13 (-672 |#1|) (-10 -8 (-6 -4229) (-6 -4230) (-15 -3897 ($)) (-15 -3897 ($ |#1|)) (-15 -3897 ($ (-586 |#1|))) (-15 -3702 ((-586 |#1|) $)) (-15 -1421 ($ |#1| $ (-520))) (-15 -1421 ($ (-1 (-108) |#1|) $ (-520))) (-15 -3766 ($ |#1| $ (-520))) (-15 -3766 ($ (-1 (-108) |#1|) $ (-520))))) (-1012)) (T -673))
-((-3897 (*1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-1012)))) (-3897 (*1 *1 *2) (-12 (-5 *1 (-673 *2)) (-4 *2 (-1012)))) (-3897 (*1 *1 *2) (-12 (-5 *2 (-586 *3)) (-4 *3 (-1012)) (-5 *1 (-673 *3)))) (-3702 (*1 *2 *1) (-12 (-5 *2 (-586 *3)) (-5 *1 (-673 *3)) (-4 *3 (-1012)))) (-1421 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-520)) (-5 *1 (-673 *2)) (-4 *2 (-1012)))) (-1421 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-108) *4)) (-5 *3 (-520)) (-4 *4 (-1012)) (-5 *1 (-673 *4)))) (-3766 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-520)) (-5 *1 (-673 *2)) (-4 *2 (-1012)))) (-3766 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-108) *4)) (-5 *3 (-520)) (-4 *4 (-1012)) (-5 *1 (-673 *4)))))
-(-13 (-672 |#1|) (-10 -8 (-6 -4229) (-6 -4230) (-15 -3897 ($)) (-15 -3897 ($ |#1|)) (-15 -3897 ($ (-586 |#1|))) (-15 -3702 ((-586 |#1|) $)) (-15 -1421 ($ |#1| $ (-520))) (-15 -1421 ($ (-1 (-108) |#1|) $ (-520))) (-15 -3766 ($ |#1| $ (-520))) (-15 -3766 ($ (-1 (-108) |#1|) $ (-520)))))
-((-3632 (((-1169) (-1066)) 8)))
-(((-674) (-10 -7 (-15 -3632 ((-1169) (-1066))))) (T -674))
-((-3632 (*1 *2 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-1169)) (-5 *1 (-674)))))
-(-10 -7 (-15 -3632 ((-1169) (-1066))))
-((-2354 (((-586 |#1|) (-586 |#1|) (-586 |#1|)) 10)))
-(((-675 |#1|) (-10 -7 (-15 -2354 ((-586 |#1|) (-586 |#1|) (-586 |#1|)))) (-783)) (T -675))
-((-2354 (*1 *2 *2 *2) (-12 (-5 *2 (-586 *3)) (-4 *3 (-783)) (-5 *1 (-675 *3)))))
-(-10 -7 (-15 -2354 ((-586 |#1|) (-586 |#1|) (-586 |#1|))))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-4081 (((-586 |#2|) $) 136)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) 129 (|has| |#1| (-512)))) (-2583 (($ $) 128 (|has| |#1| (-512)))) (-1671 (((-108) $) 126 (|has| |#1| (-512)))) (-2903 (($ $) 85 (|has| |#1| (-37 (-380 (-520)))))) (-2768 (($ $) 68 (|has| |#1| (-37 (-380 (-520)))))) (-1917 (((-3 $ "failed") $ $) 19)) (-1927 (($ $) 67 (|has| |#1| (-37 (-380 (-520)))))) (-2879 (($ $) 84 (|has| |#1| (-37 (-380 (-520)))))) (-2745 (($ $) 69 (|has| |#1| (-37 (-380 (-520)))))) (-2925 (($ $) 83 (|has| |#1| (-37 (-380 (-520)))))) (-2789 (($ $) 70 (|has| |#1| (-37 (-380 (-520)))))) (-3961 (($) 17 T CONST)) (-3150 (($ $) 120)) (-1540 (((-3 $ "failed") $) 34)) (-2198 (((-880 |#1|) $ (-706)) 98) (((-880 |#1|) $ (-706) (-706)) 97)) (-1342 (((-108) $) 137)) (-2833 (($) 95 (|has| |#1| (-37 (-380 (-520)))))) (-3989 (((-706) $ |#2|) 100) (((-706) $ |#2| (-706)) 99)) (-1537 (((-108) $) 31)) (-2322 (($ $ (-520)) 66 (|has| |#1| (-37 (-380 (-520)))))) (-3774 (((-108) $) 118)) (-4039 (($ $ (-586 |#2|) (-586 (-492 |#2|))) 135) (($ $ |#2| (-492 |#2|)) 134) (($ |#1| (-492 |#2|)) 119) (($ $ |#2| (-706)) 102) (($ $ (-586 |#2|) (-586 (-706))) 101)) (-1389 (($ (-1 |#1| |#1|) $) 117)) (-1252 (($ $) 92 (|has| |#1| (-37 (-380 (-520)))))) (-3123 (($ $) 115)) (-3133 ((|#1| $) 114)) (-1239 (((-1066) $) 9)) (-3517 (($ $ |#2|) 96 (|has| |#1| (-37 (-380 (-520)))))) (-4142 (((-1030) $) 10)) (-2116 (($ $ (-706)) 103)) (-2230 (((-3 $ "failed") $ $) 130 (|has| |#1| (-512)))) (-3260 (($ $) 93 (|has| |#1| (-37 (-380 (-520)))))) (-2286 (($ $ |#2| $) 111) (($ $ (-586 |#2|) (-586 $)) 110) (($ $ (-586 (-268 $))) 109) (($ $ (-268 $)) 108) (($ $ $ $) 107) (($ $ (-586 $) (-586 $)) 106)) (-2155 (($ $ |#2|) 42) (($ $ (-586 |#2|)) 41) (($ $ |#2| (-706)) 40) (($ $ (-586 |#2|) (-586 (-706))) 39)) (-2528 (((-492 |#2|) $) 116)) (-1737 (($ $) 82 (|has| |#1| (-37 (-380 (-520)))))) (-2799 (($ $) 71 (|has| |#1| (-37 (-380 (-520)))))) (-2914 (($ $) 81 (|has| |#1| (-37 (-380 (-520)))))) (-2779 (($ $) 72 (|has| |#1| (-37 (-380 (-520)))))) (-2891 (($ $) 80 (|has| |#1| (-37 (-380 (-520)))))) (-2757 (($ $) 73 (|has| |#1| (-37 (-380 (-520)))))) (-2759 (($ $) 138)) (-2188 (((-791) $) 11) (($ (-520)) 28) (($ |#1|) 133 (|has| |#1| (-157))) (($ $) 131 (|has| |#1| (-512))) (($ (-380 (-520))) 123 (|has| |#1| (-37 (-380 (-520)))))) (-3475 ((|#1| $ (-492 |#2|)) 121) (($ $ |#2| (-706)) 105) (($ $ (-586 |#2|) (-586 (-706))) 104)) (-3796 (((-3 $ "failed") $) 132 (|has| |#1| (-133)))) (-3251 (((-706)) 29)) (-1758 (($ $) 91 (|has| |#1| (-37 (-380 (-520)))))) (-2831 (($ $) 79 (|has| |#1| (-37 (-380 (-520)))))) (-2559 (((-108) $ $) 127 (|has| |#1| (-512)))) (-1744 (($ $) 90 (|has| |#1| (-37 (-380 (-520)))))) (-2810 (($ $) 78 (|has| |#1| (-37 (-380 (-520)))))) (-1775 (($ $) 89 (|has| |#1| (-37 (-380 (-520)))))) (-2855 (($ $) 77 (|has| |#1| (-37 (-380 (-520)))))) (-3915 (($ $) 88 (|has| |#1| (-37 (-380 (-520)))))) (-2867 (($ $) 76 (|has| |#1| (-37 (-380 (-520)))))) (-1767 (($ $) 87 (|has| |#1| (-37 (-380 (-520)))))) (-2843 (($ $) 75 (|has| |#1| (-37 (-380 (-520)))))) (-1751 (($ $) 86 (|has| |#1| (-37 (-380 (-520)))))) (-2820 (($ $) 74 (|has| |#1| (-37 (-380 (-520)))))) (-3504 (($ $ (-849)) 26) (($ $ (-706)) 33)) (-3560 (($) 18 T CONST)) (-3570 (($) 30 T CONST)) (-2211 (($ $ |#2|) 38) (($ $ (-586 |#2|)) 37) (($ $ |#2| (-706)) 36) (($ $ (-586 |#2|) (-586 (-706))) 35)) (-1530 (((-108) $ $) 6)) (-1619 (($ $ |#1|) 122 (|has| |#1| (-336)))) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-706)) 32) (($ $ $) 94 (|has| |#1| (-37 (-380 (-520))))) (($ $ (-380 (-520))) 65 (|has| |#1| (-37 (-380 (-520)))))) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ $ $) 24) (($ $ (-380 (-520))) 125 (|has| |#1| (-37 (-380 (-520))))) (($ (-380 (-520)) $) 124 (|has| |#1| (-37 (-380 (-520))))) (($ |#1| $) 113) (($ $ |#1|) 112)))
-(((-676 |#1| |#2|) (-1195) (-969) (-783)) (T -676))
-((-3475 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-706)) (-4 *1 (-676 *4 *2)) (-4 *4 (-969)) (-4 *2 (-783)))) (-3475 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-586 *5)) (-5 *3 (-586 (-706))) (-4 *1 (-676 *4 *5)) (-4 *4 (-969)) (-4 *5 (-783)))) (-2116 (*1 *1 *1 *2) (-12 (-5 *2 (-706)) (-4 *1 (-676 *3 *4)) (-4 *3 (-969)) (-4 *4 (-783)))) (-4039 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-706)) (-4 *1 (-676 *4 *2)) (-4 *4 (-969)) (-4 *2 (-783)))) (-4039 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-586 *5)) (-5 *3 (-586 (-706))) (-4 *1 (-676 *4 *5)) (-4 *4 (-969)) (-4 *5 (-783)))) (-3989 (*1 *2 *1 *3) (-12 (-4 *1 (-676 *4 *3)) (-4 *4 (-969)) (-4 *3 (-783)) (-5 *2 (-706)))) (-3989 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-706)) (-4 *1 (-676 *4 *3)) (-4 *4 (-969)) (-4 *3 (-783)))) (-2198 (*1 *2 *1 *3) (-12 (-5 *3 (-706)) (-4 *1 (-676 *4 *5)) (-4 *4 (-969)) (-4 *5 (-783)) (-5 *2 (-880 *4)))) (-2198 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-706)) (-4 *1 (-676 *4 *5)) (-4 *4 (-969)) (-4 *5 (-783)) (-5 *2 (-880 *4)))) (-3517 (*1 *1 *1 *2) (-12 (-4 *1 (-676 *3 *2)) (-4 *3 (-969)) (-4 *2 (-783)) (-4 *3 (-37 (-380 (-520)))))))
-(-13 (-828 |t#2|) (-898 |t#1| (-492 |t#2|) |t#2|) (-481 |t#2| $) (-283 $) (-10 -8 (-15 -3475 ($ $ |t#2| (-706))) (-15 -3475 ($ $ (-586 |t#2|) (-586 (-706)))) (-15 -2116 ($ $ (-706))) (-15 -4039 ($ $ |t#2| (-706))) (-15 -4039 ($ $ (-586 |t#2|) (-586 (-706)))) (-15 -3989 ((-706) $ |t#2|)) (-15 -3989 ((-706) $ |t#2| (-706))) (-15 -2198 ((-880 |t#1|) $ (-706))) (-15 -2198 ((-880 |t#1|) $ (-706) (-706))) (IF (|has| |t#1| (-37 (-380 (-520)))) (PROGN (-15 -3517 ($ $ |t#2|)) (-6 (-926)) (-6 (-1104))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-492 |#2|)) . T) ((-25) . T) ((-37 #1=(-380 (-520))) |has| |#1| (-37 (-380 (-520)))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) |has| |#1| (-512)) ((-34) |has| |#1| (-37 (-380 (-520)))) ((-91) |has| |#1| (-37 (-380 (-520)))) ((-97) . T) ((-107 #1# #1#) |has| |#1| (-37 (-380 (-520)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3700 (|has| |#1| (-512)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-560 (-791)) . T) ((-157) -3700 (|has| |#1| (-512)) (|has| |#1| (-157))) ((-258) |has| |#1| (-37 (-380 (-520)))) ((-264) |has| |#1| (-512)) ((-283 $) . T) ((-461) |has| |#1| (-37 (-380 (-520)))) ((-481 |#2| $) . T) ((-481 $ $) . T) ((-512) |has| |#1| (-512)) ((-588 #1#) |has| |#1| (-37 (-380 (-520)))) ((-588 |#1|) . T) ((-588 $) . T) ((-653 #1#) |has| |#1| (-37 (-380 (-520)))) ((-653 |#1|) |has| |#1| (-157)) ((-653 $) |has| |#1| (-512)) ((-662) . T) ((-828 |#2|) . T) ((-898 |#1| #0# |#2|) . T) ((-926) |has| |#1| (-37 (-380 (-520)))) ((-975 #1#) |has| |#1| (-37 (-380 (-520)))) ((-975 |#1|) . T) ((-975 $) -3700 (|has| |#1| (-512)) (|has| |#1| (-157))) ((-969) . T) ((-976) . T) ((-1024) . T) ((-1012) . T) ((-1104) |has| |#1| (-37 (-380 (-520)))) ((-1107) |has| |#1| (-37 (-380 (-520)))))
-((-1916 (((-391 (-1079 |#4|)) (-1079 |#4|)) 28) (((-391 |#4|) |#4|) 24)))
-(((-677 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1916 ((-391 |#4|) |#4|)) (-15 -1916 ((-391 (-1079 |#4|)) (-1079 |#4|)))) (-783) (-728) (-13 (-281) (-135)) (-877 |#3| |#2| |#1|)) (T -677))
-((-1916 (*1 *2 *3) (-12 (-4 *4 (-783)) (-4 *5 (-728)) (-4 *6 (-13 (-281) (-135))) (-4 *7 (-877 *6 *5 *4)) (-5 *2 (-391 (-1079 *7))) (-5 *1 (-677 *4 *5 *6 *7)) (-5 *3 (-1079 *7)))) (-1916 (*1 *2 *3) (-12 (-4 *4 (-783)) (-4 *5 (-728)) (-4 *6 (-13 (-281) (-135))) (-5 *2 (-391 *3)) (-5 *1 (-677 *4 *5 *6 *3)) (-4 *3 (-877 *6 *5 *4)))))
-(-10 -7 (-15 -1916 ((-391 |#4|) |#4|)) (-15 -1916 ((-391 (-1079 |#4|)) (-1079 |#4|))))
-((-2678 (((-391 |#4|) |#4| |#2|) 117)) (-3406 (((-391 |#4|) |#4|) NIL)) (-1507 (((-391 (-1079 |#4|)) (-1079 |#4|)) 108) (((-391 |#4|) |#4|) 38)) (-2531 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-586 (-2 (|:| -1916 (-1079 |#4|)) (|:| -2647 (-520)))))) (-1079 |#4|) (-586 |#2|) (-586 (-586 |#3|))) 66)) (-3168 (((-1079 |#3|) (-1079 |#3|) (-520)) 134)) (-3749 (((-586 (-706)) (-1079 |#4|) (-586 |#2|) (-706)) 59)) (-3841 (((-3 (-586 (-1079 |#4|)) "failed") (-1079 |#4|) (-1079 |#3|) (-1079 |#3|) |#4| (-586 |#2|) (-586 (-706)) (-586 |#3|)) 63)) (-4207 (((-2 (|:| |upol| (-1079 |#3|)) (|:| |Lval| (-586 |#3|)) (|:| |Lfact| (-586 (-2 (|:| -1916 (-1079 |#3|)) (|:| -2647 (-520))))) (|:| |ctpol| |#3|)) (-1079 |#4|) (-586 |#2|) (-586 (-586 |#3|))) 22)) (-2179 (((-2 (|:| -3075 (-1079 |#4|)) (|:| |polval| (-1079 |#3|))) (-1079 |#4|) (-1079 |#3|) (-520)) 55)) (-3878 (((-520) (-586 (-2 (|:| -1916 (-1079 |#3|)) (|:| -2647 (-520))))) 131)) (-2353 ((|#4| (-520) (-391 |#4|)) 56)) (-2365 (((-108) (-586 (-2 (|:| -1916 (-1079 |#3|)) (|:| -2647 (-520)))) (-586 (-2 (|:| -1916 (-1079 |#3|)) (|:| -2647 (-520))))) NIL)))
-(((-678 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1507 ((-391 |#4|) |#4|)) (-15 -1507 ((-391 (-1079 |#4|)) (-1079 |#4|))) (-15 -3406 ((-391 |#4|) |#4|)) (-15 -3878 ((-520) (-586 (-2 (|:| -1916 (-1079 |#3|)) (|:| -2647 (-520)))))) (-15 -2678 ((-391 |#4|) |#4| |#2|)) (-15 -2179 ((-2 (|:| -3075 (-1079 |#4|)) (|:| |polval| (-1079 |#3|))) (-1079 |#4|) (-1079 |#3|) (-520))) (-15 -2531 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-586 (-2 (|:| -1916 (-1079 |#4|)) (|:| -2647 (-520)))))) (-1079 |#4|) (-586 |#2|) (-586 (-586 |#3|)))) (-15 -4207 ((-2 (|:| |upol| (-1079 |#3|)) (|:| |Lval| (-586 |#3|)) (|:| |Lfact| (-586 (-2 (|:| -1916 (-1079 |#3|)) (|:| -2647 (-520))))) (|:| |ctpol| |#3|)) (-1079 |#4|) (-586 |#2|) (-586 (-586 |#3|)))) (-15 -2353 (|#4| (-520) (-391 |#4|))) (-15 -2365 ((-108) (-586 (-2 (|:| -1916 (-1079 |#3|)) (|:| -2647 (-520)))) (-586 (-2 (|:| -1916 (-1079 |#3|)) (|:| -2647 (-520)))))) (-15 -3841 ((-3 (-586 (-1079 |#4|)) "failed") (-1079 |#4|) (-1079 |#3|) (-1079 |#3|) |#4| (-586 |#2|) (-586 (-706)) (-586 |#3|))) (-15 -3749 ((-586 (-706)) (-1079 |#4|) (-586 |#2|) (-706))) (-15 -3168 ((-1079 |#3|) (-1079 |#3|) (-520)))) (-728) (-783) (-281) (-877 |#3| |#1| |#2|)) (T -678))
-((-3168 (*1 *2 *2 *3) (-12 (-5 *2 (-1079 *6)) (-5 *3 (-520)) (-4 *6 (-281)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *1 (-678 *4 *5 *6 *7)) (-4 *7 (-877 *6 *4 *5)))) (-3749 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1079 *9)) (-5 *4 (-586 *7)) (-4 *7 (-783)) (-4 *9 (-877 *8 *6 *7)) (-4 *6 (-728)) (-4 *8 (-281)) (-5 *2 (-586 (-706))) (-5 *1 (-678 *6 *7 *8 *9)) (-5 *5 (-706)))) (-3841 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1079 *11)) (-5 *6 (-586 *10)) (-5 *7 (-586 (-706))) (-5 *8 (-586 *11)) (-4 *10 (-783)) (-4 *11 (-281)) (-4 *9 (-728)) (-4 *5 (-877 *11 *9 *10)) (-5 *2 (-586 (-1079 *5))) (-5 *1 (-678 *9 *10 *11 *5)) (-5 *3 (-1079 *5)))) (-2365 (*1 *2 *3 *3) (-12 (-5 *3 (-586 (-2 (|:| -1916 (-1079 *6)) (|:| -2647 (-520))))) (-4 *6 (-281)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *2 (-108)) (-5 *1 (-678 *4 *5 *6 *7)) (-4 *7 (-877 *6 *4 *5)))) (-2353 (*1 *2 *3 *4) (-12 (-5 *3 (-520)) (-5 *4 (-391 *2)) (-4 *2 (-877 *7 *5 *6)) (-5 *1 (-678 *5 *6 *7 *2)) (-4 *5 (-728)) (-4 *6 (-783)) (-4 *7 (-281)))) (-4207 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1079 *9)) (-5 *4 (-586 *7)) (-5 *5 (-586 (-586 *8))) (-4 *7 (-783)) (-4 *8 (-281)) (-4 *9 (-877 *8 *6 *7)) (-4 *6 (-728)) (-5 *2 (-2 (|:| |upol| (-1079 *8)) (|:| |Lval| (-586 *8)) (|:| |Lfact| (-586 (-2 (|:| -1916 (-1079 *8)) (|:| -2647 (-520))))) (|:| |ctpol| *8))) (-5 *1 (-678 *6 *7 *8 *9)))) (-2531 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-586 *7)) (-5 *5 (-586 (-586 *8))) (-4 *7 (-783)) (-4 *8 (-281)) (-4 *6 (-728)) (-4 *9 (-877 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-586 (-2 (|:| -1916 (-1079 *9)) (|:| -2647 (-520))))))) (-5 *1 (-678 *6 *7 *8 *9)) (-5 *3 (-1079 *9)))) (-2179 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-520)) (-4 *6 (-728)) (-4 *7 (-783)) (-4 *8 (-281)) (-4 *9 (-877 *8 *6 *7)) (-5 *2 (-2 (|:| -3075 (-1079 *9)) (|:| |polval| (-1079 *8)))) (-5 *1 (-678 *6 *7 *8 *9)) (-5 *3 (-1079 *9)) (-5 *4 (-1079 *8)))) (-2678 (*1 *2 *3 *4) (-12 (-4 *5 (-728)) (-4 *4 (-783)) (-4 *6 (-281)) (-5 *2 (-391 *3)) (-5 *1 (-678 *5 *4 *6 *3)) (-4 *3 (-877 *6 *5 *4)))) (-3878 (*1 *2 *3) (-12 (-5 *3 (-586 (-2 (|:| -1916 (-1079 *6)) (|:| -2647 (-520))))) (-4 *6 (-281)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *2 (-520)) (-5 *1 (-678 *4 *5 *6 *7)) (-4 *7 (-877 *6 *4 *5)))) (-3406 (*1 *2 *3) (-12 (-4 *4 (-728)) (-4 *5 (-783)) (-4 *6 (-281)) (-5 *2 (-391 *3)) (-5 *1 (-678 *4 *5 *6 *3)) (-4 *3 (-877 *6 *4 *5)))) (-1507 (*1 *2 *3) (-12 (-4 *4 (-728)) (-4 *5 (-783)) (-4 *6 (-281)) (-4 *7 (-877 *6 *4 *5)) (-5 *2 (-391 (-1079 *7))) (-5 *1 (-678 *4 *5 *6 *7)) (-5 *3 (-1079 *7)))) (-1507 (*1 *2 *3) (-12 (-4 *4 (-728)) (-4 *5 (-783)) (-4 *6 (-281)) (-5 *2 (-391 *3)) (-5 *1 (-678 *4 *5 *6 *3)) (-4 *3 (-877 *6 *4 *5)))))
-(-10 -7 (-15 -1507 ((-391 |#4|) |#4|)) (-15 -1507 ((-391 (-1079 |#4|)) (-1079 |#4|))) (-15 -3406 ((-391 |#4|) |#4|)) (-15 -3878 ((-520) (-586 (-2 (|:| -1916 (-1079 |#3|)) (|:| -2647 (-520)))))) (-15 -2678 ((-391 |#4|) |#4| |#2|)) (-15 -2179 ((-2 (|:| -3075 (-1079 |#4|)) (|:| |polval| (-1079 |#3|))) (-1079 |#4|) (-1079 |#3|) (-520))) (-15 -2531 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-586 (-2 (|:| -1916 (-1079 |#4|)) (|:| -2647 (-520)))))) (-1079 |#4|) (-586 |#2|) (-586 (-586 |#3|)))) (-15 -4207 ((-2 (|:| |upol| (-1079 |#3|)) (|:| |Lval| (-586 |#3|)) (|:| |Lfact| (-586 (-2 (|:| -1916 (-1079 |#3|)) (|:| -2647 (-520))))) (|:| |ctpol| |#3|)) (-1079 |#4|) (-586 |#2|) (-586 (-586 |#3|)))) (-15 -2353 (|#4| (-520) (-391 |#4|))) (-15 -2365 ((-108) (-586 (-2 (|:| -1916 (-1079 |#3|)) (|:| -2647 (-520)))) (-586 (-2 (|:| -1916 (-1079 |#3|)) (|:| -2647 (-520)))))) (-15 -3841 ((-3 (-586 (-1079 |#4|)) "failed") (-1079 |#4|) (-1079 |#3|) (-1079 |#3|) |#4| (-586 |#2|) (-586 (-706)) (-586 |#3|))) (-15 -3749 ((-586 (-706)) (-1079 |#4|) (-586 |#2|) (-706))) (-15 -3168 ((-1079 |#3|) (-1079 |#3|) (-520))))
-((-3273 (($ $ (-849)) 12)))
-(((-679 |#1| |#2|) (-10 -8 (-15 -3273 (|#1| |#1| (-849)))) (-680 |#2|) (-157)) (T -679))
-NIL
-(-10 -8 (-15 -3273 (|#1| |#1| (-849))))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-1917 (((-3 $ "failed") $ $) 19)) (-3961 (($) 17 T CONST)) (-3918 (($ $ (-849)) 28)) (-3273 (($ $ (-849)) 33)) (-2544 (($ $ (-849)) 29)) (-1239 (((-1066) $) 9)) (-4142 (((-1030) $) 10)) (-3607 (($ $ $) 25)) (-2188 (((-791) $) 11)) (-2214 (($ $ $ $) 26)) (-3710 (($ $ $) 24)) (-3560 (($) 18 T CONST)) (-1530 (((-108) $ $) 6)) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (** (($ $ (-849)) 30)) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
-(((-680 |#1|) (-1195) (-157)) (T -680))
-((-3273 (*1 *1 *1 *2) (-12 (-5 *2 (-849)) (-4 *1 (-680 *3)) (-4 *3 (-157)))))
-(-13 (-697) (-653 |t#1|) (-10 -8 (-15 -3273 ($ $ (-849)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-560 (-791)) . T) ((-588 |#1|) . T) ((-653 |#1|) . T) ((-656) . T) ((-697) . T) ((-975 |#1|) . T) ((-1012) . T))
-((-2013 (((-958) (-626 (-201)) (-520) (-108) (-520)) 24)) (-3041 (((-958) (-626 (-201)) (-520) (-108) (-520)) 23)))
-(((-681) (-10 -7 (-15 -3041 ((-958) (-626 (-201)) (-520) (-108) (-520))) (-15 -2013 ((-958) (-626 (-201)) (-520) (-108) (-520))))) (T -681))
-((-2013 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-626 (-201))) (-5 *4 (-520)) (-5 *5 (-108)) (-5 *2 (-958)) (-5 *1 (-681)))) (-3041 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-626 (-201))) (-5 *4 (-520)) (-5 *5 (-108)) (-5 *2 (-958)) (-5 *1 (-681)))))
-(-10 -7 (-15 -3041 ((-958) (-626 (-201)) (-520) (-108) (-520))) (-15 -2013 ((-958) (-626 (-201)) (-520) (-108) (-520))))
-((-3485 (((-958) (-520) (-520) (-520) (-626 (-201)) (-201) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-72 FCN)))) 43)) (-1646 (((-958) (-520) (-520) (-626 (-201)) (-201) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-79 FCN)))) 39)) (-3681 (((-958) (-201) (-201) (-201) (-201) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-62 -4045)))) 32)))
-(((-682) (-10 -7 (-15 -3681 ((-958) (-201) (-201) (-201) (-201) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-62 -4045))))) (-15 -1646 ((-958) (-520) (-520) (-626 (-201)) (-201) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-79 FCN))))) (-15 -3485 ((-958) (-520) (-520) (-520) (-626 (-201)) (-201) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-72 FCN))))))) (T -682))
-((-3485 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *5 (-201)) (-5 *6 (-3 (|:| |fn| (-361)) (|:| |fp| (-72 FCN)))) (-5 *2 (-958)) (-5 *1 (-682)))) (-1646 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *5 (-201)) (-5 *6 (-3 (|:| |fn| (-361)) (|:| |fp| (-79 FCN)))) (-5 *2 (-958)) (-5 *1 (-682)))) (-3681 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-201)) (-5 *4 (-520)) (-5 *5 (-3 (|:| |fn| (-361)) (|:| |fp| (-62 -4045)))) (-5 *2 (-958)) (-5 *1 (-682)))))
-(-10 -7 (-15 -3681 ((-958) (-201) (-201) (-201) (-201) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-62 -4045))))) (-15 -1646 ((-958) (-520) (-520) (-626 (-201)) (-201) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-79 FCN))))) (-15 -3485 ((-958) (-520) (-520) (-520) (-626 (-201)) (-201) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-72 FCN))))))
-((-2566 (((-958) (-520) (-520) (-626 (-201)) (-520)) 33)) (-1634 (((-958) (-520) (-520) (-626 (-201)) (-520)) 32)) (-1297 (((-958) (-520) (-626 (-201)) (-520)) 31)) (-2825 (((-958) (-520) (-626 (-201)) (-520)) 30)) (-3225 (((-958) (-520) (-520) (-1066) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-520)) 29)) (-3720 (((-958) (-520) (-520) (-1066) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-520)) 28)) (-2720 (((-958) (-520) (-520) (-1066) (-626 (-201)) (-626 (-201)) (-520)) 27)) (-3156 (((-958) (-520) (-520) (-1066) (-626 (-201)) (-626 (-201)) (-520)) 26)) (-1338 (((-958) (-520) (-520) (-626 (-201)) (-626 (-201)) (-520)) 23)) (-3015 (((-958) (-520) (-626 (-201)) (-626 (-201)) (-520)) 22)) (-2993 (((-958) (-520) (-626 (-201)) (-520)) 21)) (-1460 (((-958) (-520) (-626 (-201)) (-520)) 20)))
-(((-683) (-10 -7 (-15 -1460 ((-958) (-520) (-626 (-201)) (-520))) (-15 -2993 ((-958) (-520) (-626 (-201)) (-520))) (-15 -3015 ((-958) (-520) (-626 (-201)) (-626 (-201)) (-520))) (-15 -1338 ((-958) (-520) (-520) (-626 (-201)) (-626 (-201)) (-520))) (-15 -3156 ((-958) (-520) (-520) (-1066) (-626 (-201)) (-626 (-201)) (-520))) (-15 -2720 ((-958) (-520) (-520) (-1066) (-626 (-201)) (-626 (-201)) (-520))) (-15 -3720 ((-958) (-520) (-520) (-1066) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-520))) (-15 -3225 ((-958) (-520) (-520) (-1066) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-520))) (-15 -2825 ((-958) (-520) (-626 (-201)) (-520))) (-15 -1297 ((-958) (-520) (-626 (-201)) (-520))) (-15 -1634 ((-958) (-520) (-520) (-626 (-201)) (-520))) (-15 -2566 ((-958) (-520) (-520) (-626 (-201)) (-520))))) (T -683))
-((-2566 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *2 (-958)) (-5 *1 (-683)))) (-1634 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *2 (-958)) (-5 *1 (-683)))) (-1297 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *2 (-958)) (-5 *1 (-683)))) (-2825 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *2 (-958)) (-5 *1 (-683)))) (-3225 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-520)) (-5 *4 (-1066)) (-5 *5 (-626 (-201))) (-5 *2 (-958)) (-5 *1 (-683)))) (-3720 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-520)) (-5 *4 (-1066)) (-5 *5 (-626 (-201))) (-5 *2 (-958)) (-5 *1 (-683)))) (-2720 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-520)) (-5 *4 (-1066)) (-5 *5 (-626 (-201))) (-5 *2 (-958)) (-5 *1 (-683)))) (-3156 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-520)) (-5 *4 (-1066)) (-5 *5 (-626 (-201))) (-5 *2 (-958)) (-5 *1 (-683)))) (-1338 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *2 (-958)) (-5 *1 (-683)))) (-3015 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *2 (-958)) (-5 *1 (-683)))) (-2993 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *2 (-958)) (-5 *1 (-683)))) (-1460 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *2 (-958)) (-5 *1 (-683)))))
-(-10 -7 (-15 -1460 ((-958) (-520) (-626 (-201)) (-520))) (-15 -2993 ((-958) (-520) (-626 (-201)) (-520))) (-15 -3015 ((-958) (-520) (-626 (-201)) (-626 (-201)) (-520))) (-15 -1338 ((-958) (-520) (-520) (-626 (-201)) (-626 (-201)) (-520))) (-15 -3156 ((-958) (-520) (-520) (-1066) (-626 (-201)) (-626 (-201)) (-520))) (-15 -2720 ((-958) (-520) (-520) (-1066) (-626 (-201)) (-626 (-201)) (-520))) (-15 -3720 ((-958) (-520) (-520) (-1066) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-520))) (-15 -3225 ((-958) (-520) (-520) (-1066) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-520))) (-15 -2825 ((-958) (-520) (-626 (-201)) (-520))) (-15 -1297 ((-958) (-520) (-626 (-201)) (-520))) (-15 -1634 ((-958) (-520) (-520) (-626 (-201)) (-520))) (-15 -2566 ((-958) (-520) (-520) (-626 (-201)) (-520))))
-((-2656 (((-958) (-520) (-626 (-201)) (-626 (-201)) (-520) (-201) (-520) (-520) (-626 (-201)) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-76 FUNCTN)))) 52)) (-2770 (((-958) (-626 (-201)) (-626 (-201)) (-520) (-520)) 51)) (-2798 (((-958) (-520) (-626 (-201)) (-626 (-201)) (-520) (-201) (-520) (-520) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-76 FUNCTN)))) 50)) (-3119 (((-958) (-201) (-201) (-520) (-520) (-520) (-520)) 46)) (-3344 (((-958) (-201) (-201) (-520) (-201) (-520) (-520) (-520) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-62 G)))) 45)) (-1430 (((-958) (-201) (-201) (-201) (-201) (-201) (-520) (-520) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-62 G)))) 44)) (-1349 (((-958) (-201) (-201) (-201) (-201) (-520) (-201) (-201) (-520) (-520) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-62 G)))) 43)) (-1852 (((-958) (-201) (-201) (-201) (-520) (-201) (-201) (-520) (-520) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-62 G)))) 42)) (-1474 (((-958) (-201) (-520) (-201) (-201) (-520) (-520) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-62 -4045)))) 38)) (-3250 (((-958) (-201) (-201) (-520) (-626 (-201)) (-201) (-201) (-520) (-520) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-62 -4045)))) 37)) (-1977 (((-958) (-201) (-201) (-201) (-201) (-520) (-520) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-62 -4045)))) 33)) (-1940 (((-958) (-201) (-201) (-201) (-201) (-520) (-520) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-62 -4045)))) 32)))
-(((-684) (-10 -7 (-15 -1940 ((-958) (-201) (-201) (-201) (-201) (-520) (-520) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-62 -4045))))) (-15 -1977 ((-958) (-201) (-201) (-201) (-201) (-520) (-520) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-62 -4045))))) (-15 -3250 ((-958) (-201) (-201) (-520) (-626 (-201)) (-201) (-201) (-520) (-520) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-62 -4045))))) (-15 -1474 ((-958) (-201) (-520) (-201) (-201) (-520) (-520) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-62 -4045))))) (-15 -1852 ((-958) (-201) (-201) (-201) (-520) (-201) (-201) (-520) (-520) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-62 G))))) (-15 -1349 ((-958) (-201) (-201) (-201) (-201) (-520) (-201) (-201) (-520) (-520) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-62 G))))) (-15 -1430 ((-958) (-201) (-201) (-201) (-201) (-201) (-520) (-520) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-62 G))))) (-15 -3344 ((-958) (-201) (-201) (-520) (-201) (-520) (-520) (-520) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-62 G))))) (-15 -3119 ((-958) (-201) (-201) (-520) (-520) (-520) (-520))) (-15 -2798 ((-958) (-520) (-626 (-201)) (-626 (-201)) (-520) (-201) (-520) (-520) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-76 FUNCTN))))) (-15 -2770 ((-958) (-626 (-201)) (-626 (-201)) (-520) (-520))) (-15 -2656 ((-958) (-520) (-626 (-201)) (-626 (-201)) (-520) (-201) (-520) (-520) (-626 (-201)) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-76 FUNCTN))))))) (T -684))
-((-2656 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *5 (-201)) (-5 *6 (-3 (|:| |fn| (-361)) (|:| |fp| (-76 FUNCTN)))) (-5 *2 (-958)) (-5 *1 (-684)))) (-2770 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-626 (-201))) (-5 *4 (-520)) (-5 *2 (-958)) (-5 *1 (-684)))) (-2798 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *5 (-201)) (-5 *6 (-3 (|:| |fn| (-361)) (|:| |fp| (-76 FUNCTN)))) (-5 *2 (-958)) (-5 *1 (-684)))) (-3119 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-201)) (-5 *4 (-520)) (-5 *2 (-958)) (-5 *1 (-684)))) (-3344 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-201)) (-5 *4 (-520)) (-5 *5 (-3 (|:| |fn| (-361)) (|:| |fp| (-62 G)))) (-5 *2 (-958)) (-5 *1 (-684)))) (-1430 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-201)) (-5 *4 (-520)) (-5 *5 (-3 (|:| |fn| (-361)) (|:| |fp| (-62 G)))) (-5 *2 (-958)) (-5 *1 (-684)))) (-1349 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-201)) (-5 *4 (-520)) (-5 *5 (-3 (|:| |fn| (-361)) (|:| |fp| (-62 G)))) (-5 *2 (-958)) (-5 *1 (-684)))) (-1852 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-201)) (-5 *4 (-520)) (-5 *5 (-3 (|:| |fn| (-361)) (|:| |fp| (-62 G)))) (-5 *2 (-958)) (-5 *1 (-684)))) (-1474 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-201)) (-5 *4 (-520)) (-5 *5 (-3 (|:| |fn| (-361)) (|:| |fp| (-62 -4045)))) (-5 *2 (-958)) (-5 *1 (-684)))) (-3250 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-520)) (-5 *5 (-626 (-201))) (-5 *6 (-3 (|:| |fn| (-361)) (|:| |fp| (-62 -4045)))) (-5 *3 (-201)) (-5 *2 (-958)) (-5 *1 (-684)))) (-1977 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-201)) (-5 *4 (-520)) (-5 *5 (-3 (|:| |fn| (-361)) (|:| |fp| (-62 -4045)))) (-5 *2 (-958)) (-5 *1 (-684)))) (-1940 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-201)) (-5 *4 (-520)) (-5 *5 (-3 (|:| |fn| (-361)) (|:| |fp| (-62 -4045)))) (-5 *2 (-958)) (-5 *1 (-684)))))
-(-10 -7 (-15 -1940 ((-958) (-201) (-201) (-201) (-201) (-520) (-520) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-62 -4045))))) (-15 -1977 ((-958) (-201) (-201) (-201) (-201) (-520) (-520) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-62 -4045))))) (-15 -3250 ((-958) (-201) (-201) (-520) (-626 (-201)) (-201) (-201) (-520) (-520) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-62 -4045))))) (-15 -1474 ((-958) (-201) (-520) (-201) (-201) (-520) (-520) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-62 -4045))))) (-15 -1852 ((-958) (-201) (-201) (-201) (-520) (-201) (-201) (-520) (-520) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-62 G))))) (-15 -1349 ((-958) (-201) (-201) (-201) (-201) (-520) (-201) (-201) (-520) (-520) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-62 G))))) (-15 -1430 ((-958) (-201) (-201) (-201) (-201) (-201) (-520) (-520) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-62 G))))) (-15 -3344 ((-958) (-201) (-201) (-520) (-201) (-520) (-520) (-520) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-62 G))))) (-15 -3119 ((-958) (-201) (-201) (-520) (-520) (-520) (-520))) (-15 -2798 ((-958) (-520) (-626 (-201)) (-626 (-201)) (-520) (-201) (-520) (-520) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-76 FUNCTN))))) (-15 -2770 ((-958) (-626 (-201)) (-626 (-201)) (-520) (-520))) (-15 -2656 ((-958) (-520) (-626 (-201)) (-626 (-201)) (-520) (-201) (-520) (-520) (-626 (-201)) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-76 FUNCTN))))))
-((-3125 (((-958) (-520) (-520) (-520) (-520) (-201) (-520) (-520) (-520) (-520) (-520) (-520) (-626 (-201)) (-626 (-201)) (-201) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-361)) (|:| |fp| (-74 G JACOBG JACGEP)))) 76)) (-4209 (((-958) (-626 (-201)) (-520) (-520) (-201) (-520) (-520) (-201) (-201) (-626 (-201)) (-520) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-361)) (|:| |fp| (-85 BDYVAL))) (-361) (-361)) 69) (((-958) (-626 (-201)) (-520) (-520) (-201) (-520) (-520) (-201) (-201) (-626 (-201)) (-520) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-361)) (|:| |fp| (-85 BDYVAL)))) 68)) (-2977 (((-958) (-201) (-201) (-520) (-201) (-520) (-520) (-520) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-520) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-361)) (|:| |fp| (-83 FCNG)))) 57)) (-3652 (((-958) (-626 (-201)) (-626 (-201)) (-520) (-201) (-201) (-201) (-520) (-520) (-520) (-626 (-201)) (-520) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-84 FCN)))) 50)) (-3262 (((-958) (-201) (-520) (-520) (-1066) (-520) (-201) (-626 (-201)) (-201) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-361)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-361)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-361)) (|:| |fp| (-86 OUTPUT)))) 49)) (-4170 (((-958) (-201) (-520) (-520) (-201) (-1066) (-201) (-626 (-201)) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-361)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-361)) (|:| |fp| (-86 OUTPUT)))) 45)) (-3170 (((-958) (-201) (-520) (-520) (-201) (-201) (-626 (-201)) (-201) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-361)) (|:| |fp| (-84 FCN)))) 42)) (-3322 (((-958) (-201) (-520) (-520) (-520) (-201) (-626 (-201)) (-201) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-361)) (|:| |fp| (-86 OUTPUT)))) 38)))
-(((-685) (-10 -7 (-15 -3322 ((-958) (-201) (-520) (-520) (-520) (-201) (-626 (-201)) (-201) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-361)) (|:| |fp| (-86 OUTPUT))))) (-15 -3170 ((-958) (-201) (-520) (-520) (-201) (-201) (-626 (-201)) (-201) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-361)) (|:| |fp| (-84 FCN))))) (-15 -4170 ((-958) (-201) (-520) (-520) (-201) (-1066) (-201) (-626 (-201)) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-361)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-361)) (|:| |fp| (-86 OUTPUT))))) (-15 -3262 ((-958) (-201) (-520) (-520) (-1066) (-520) (-201) (-626 (-201)) (-201) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-361)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-361)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-361)) (|:| |fp| (-86 OUTPUT))))) (-15 -3652 ((-958) (-626 (-201)) (-626 (-201)) (-520) (-201) (-201) (-201) (-520) (-520) (-520) (-626 (-201)) (-520) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-84 FCN))))) (-15 -2977 ((-958) (-201) (-201) (-520) (-201) (-520) (-520) (-520) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-520) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-361)) (|:| |fp| (-83 FCNG))))) (-15 -4209 ((-958) (-626 (-201)) (-520) (-520) (-201) (-520) (-520) (-201) (-201) (-626 (-201)) (-520) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-361)) (|:| |fp| (-85 BDYVAL))))) (-15 -4209 ((-958) (-626 (-201)) (-520) (-520) (-201) (-520) (-520) (-201) (-201) (-626 (-201)) (-520) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-361)) (|:| |fp| (-85 BDYVAL))) (-361) (-361))) (-15 -3125 ((-958) (-520) (-520) (-520) (-520) (-201) (-520) (-520) (-520) (-520) (-520) (-520) (-626 (-201)) (-626 (-201)) (-201) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-361)) (|:| |fp| (-74 G JACOBG JACGEP))))))) (T -685))
-((-3125 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-520)) (-5 *5 (-626 (-201))) (-5 *6 (-3 (|:| |fn| (-361)) (|:| |fp| (-73 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-361)) (|:| |fp| (-74 G JACOBG JACGEP)))) (-5 *4 (-201)) (-5 *2 (-958)) (-5 *1 (-685)))) (-4209 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-626 (-201))) (-5 *4 (-520)) (-5 *5 (-201)) (-5 *6 (-3 (|:| |fn| (-361)) (|:| |fp| (-59 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-361)) (|:| |fp| (-85 BDYVAL)))) (-5 *8 (-361)) (-5 *2 (-958)) (-5 *1 (-685)))) (-4209 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-626 (-201))) (-5 *4 (-520)) (-5 *5 (-201)) (-5 *6 (-3 (|:| |fn| (-361)) (|:| |fp| (-59 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-361)) (|:| |fp| (-85 BDYVAL)))) (-5 *2 (-958)) (-5 *1 (-685)))) (-2977 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-520)) (-5 *5 (-626 (-201))) (-5 *6 (-3 (|:| |fn| (-361)) (|:| |fp| (-82 FCNF)))) (-5 *7 (-3 (|:| |fn| (-361)) (|:| |fp| (-83 FCNG)))) (-5 *3 (-201)) (-5 *2 (-958)) (-5 *1 (-685)))) (-3652 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-626 (-201))) (-5 *4 (-520)) (-5 *5 (-201)) (-5 *6 (-3 (|:| |fn| (-361)) (|:| |fp| (-84 FCN)))) (-5 *2 (-958)) (-5 *1 (-685)))) (-3262 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-520)) (-5 *5 (-1066)) (-5 *6 (-626 (-201))) (-5 *7 (-3 (|:| |fn| (-361)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-361)) (|:| |fp| (-84 FCN)))) (-5 *9 (-3 (|:| |fn| (-361)) (|:| |fp| (-69 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-361)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-201)) (-5 *2 (-958)) (-5 *1 (-685)))) (-4170 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-520)) (-5 *5 (-1066)) (-5 *6 (-626 (-201))) (-5 *7 (-3 (|:| |fn| (-361)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-361)) (|:| |fp| (-84 FCN)))) (-5 *9 (-3 (|:| |fn| (-361)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-201)) (-5 *2 (-958)) (-5 *1 (-685)))) (-3170 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-520)) (-5 *5 (-626 (-201))) (-5 *6 (-3 (|:| |fn| (-361)) (|:| |fp| (-87 G)))) (-5 *7 (-3 (|:| |fn| (-361)) (|:| |fp| (-84 FCN)))) (-5 *3 (-201)) (-5 *2 (-958)) (-5 *1 (-685)))) (-3322 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-520)) (-5 *5 (-626 (-201))) (-5 *6 (-3 (|:| |fn| (-361)) (|:| |fp| (-84 FCN)))) (-5 *7 (-3 (|:| |fn| (-361)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-201)) (-5 *2 (-958)) (-5 *1 (-685)))))
-(-10 -7 (-15 -3322 ((-958) (-201) (-520) (-520) (-520) (-201) (-626 (-201)) (-201) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-361)) (|:| |fp| (-86 OUTPUT))))) (-15 -3170 ((-958) (-201) (-520) (-520) (-201) (-201) (-626 (-201)) (-201) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-361)) (|:| |fp| (-84 FCN))))) (-15 -4170 ((-958) (-201) (-520) (-520) (-201) (-1066) (-201) (-626 (-201)) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-361)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-361)) (|:| |fp| (-86 OUTPUT))))) (-15 -3262 ((-958) (-201) (-520) (-520) (-1066) (-520) (-201) (-626 (-201)) (-201) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-361)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-361)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-361)) (|:| |fp| (-86 OUTPUT))))) (-15 -3652 ((-958) (-626 (-201)) (-626 (-201)) (-520) (-201) (-201) (-201) (-520) (-520) (-520) (-626 (-201)) (-520) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-84 FCN))))) (-15 -2977 ((-958) (-201) (-201) (-520) (-201) (-520) (-520) (-520) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-520) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-361)) (|:| |fp| (-83 FCNG))))) (-15 -4209 ((-958) (-626 (-201)) (-520) (-520) (-201) (-520) (-520) (-201) (-201) (-626 (-201)) (-520) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-361)) (|:| |fp| (-85 BDYVAL))))) (-15 -4209 ((-958) (-626 (-201)) (-520) (-520) (-201) (-520) (-520) (-201) (-201) (-626 (-201)) (-520) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-361)) (|:| |fp| (-85 BDYVAL))) (-361) (-361))) (-15 -3125 ((-958) (-520) (-520) (-520) (-520) (-201) (-520) (-520) (-520) (-520) (-520) (-520) (-626 (-201)) (-626 (-201)) (-201) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-361)) (|:| |fp| (-74 G JACOBG JACGEP))))))
-((-2445 (((-958) (-201) (-201) (-520) (-520) (-626 (-201)) (-626 (-201)) (-201) (-201) (-520) (-520) (-626 (-201)) (-626 (-201)) (-201) (-201) (-520) (-520) (-626 (-201)) (-626 (-201)) (-201) (-520) (-520) (-520) (-614 (-201)) (-520)) 45)) (-3038 (((-958) (-201) (-201) (-201) (-201) (-520) (-520) (-520) (-1066) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-361)) (|:| |fp| (-81 BNDY)))) 41)) (-1921 (((-958) (-520) (-520) (-520) (-520) (-201) (-520) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-520)) 23)))
-(((-686) (-10 -7 (-15 -1921 ((-958) (-520) (-520) (-520) (-520) (-201) (-520) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-520))) (-15 -3038 ((-958) (-201) (-201) (-201) (-201) (-520) (-520) (-520) (-1066) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-361)) (|:| |fp| (-81 BNDY))))) (-15 -2445 ((-958) (-201) (-201) (-520) (-520) (-626 (-201)) (-626 (-201)) (-201) (-201) (-520) (-520) (-626 (-201)) (-626 (-201)) (-201) (-201) (-520) (-520) (-626 (-201)) (-626 (-201)) (-201) (-520) (-520) (-520) (-614 (-201)) (-520))))) (T -686))
-((-2445 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-520)) (-5 *5 (-626 (-201))) (-5 *6 (-614 (-201))) (-5 *3 (-201)) (-5 *2 (-958)) (-5 *1 (-686)))) (-3038 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-201)) (-5 *4 (-520)) (-5 *5 (-1066)) (-5 *6 (-3 (|:| |fn| (-361)) (|:| |fp| (-80 PDEF)))) (-5 *7 (-3 (|:| |fn| (-361)) (|:| |fp| (-81 BNDY)))) (-5 *2 (-958)) (-5 *1 (-686)))) (-1921 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-520)) (-5 *5 (-626 (-201))) (-5 *4 (-201)) (-5 *2 (-958)) (-5 *1 (-686)))))
-(-10 -7 (-15 -1921 ((-958) (-520) (-520) (-520) (-520) (-201) (-520) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-520))) (-15 -3038 ((-958) (-201) (-201) (-201) (-201) (-520) (-520) (-520) (-1066) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-361)) (|:| |fp| (-81 BNDY))))) (-15 -2445 ((-958) (-201) (-201) (-520) (-520) (-626 (-201)) (-626 (-201)) (-201) (-201) (-520) (-520) (-626 (-201)) (-626 (-201)) (-201) (-201) (-520) (-520) (-626 (-201)) (-626 (-201)) (-201) (-520) (-520) (-520) (-614 (-201)) (-520))))
-((-2882 (((-958) (-520) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-201) (-626 (-201)) (-201) (-201) (-520)) 35)) (-3292 (((-958) (-520) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-520) (-520) (-201) (-201) (-520)) 34)) (-1532 (((-958) (-520) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-626 (-520)) (-626 (-201)) (-201) (-201) (-520)) 33)) (-3938 (((-958) (-520) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-520)) 29)) (-3842 (((-958) (-520) (-520) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-520)) 28)) (-1787 (((-958) (-520) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-201) (-201) (-520)) 27)) (-2247 (((-958) (-520) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-520) (-626 (-201)) (-520)) 23)) (-3626 (((-958) (-520) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-520) (-626 (-201)) (-520)) 22)) (-3375 (((-958) (-520) (-626 (-201)) (-626 (-201)) (-520)) 21)) (-1674 (((-958) (-520) (-626 (-201)) (-626 (-201)) (-520) (-520) (-520)) 20)))
-(((-687) (-10 -7 (-15 -1674 ((-958) (-520) (-626 (-201)) (-626 (-201)) (-520) (-520) (-520))) (-15 -3375 ((-958) (-520) (-626 (-201)) (-626 (-201)) (-520))) (-15 -3626 ((-958) (-520) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-520) (-626 (-201)) (-520))) (-15 -2247 ((-958) (-520) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-520) (-626 (-201)) (-520))) (-15 -1787 ((-958) (-520) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-201) (-201) (-520))) (-15 -3842 ((-958) (-520) (-520) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-520))) (-15 -3938 ((-958) (-520) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-520))) (-15 -1532 ((-958) (-520) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-626 (-520)) (-626 (-201)) (-201) (-201) (-520))) (-15 -3292 ((-958) (-520) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-520) (-520) (-201) (-201) (-520))) (-15 -2882 ((-958) (-520) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-201) (-626 (-201)) (-201) (-201) (-520))))) (T -687))
-((-2882 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *5 (-201)) (-5 *2 (-958)) (-5 *1 (-687)))) (-3292 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *5 (-201)) (-5 *2 (-958)) (-5 *1 (-687)))) (-1532 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-626 (-201))) (-5 *5 (-626 (-520))) (-5 *6 (-201)) (-5 *3 (-520)) (-5 *2 (-958)) (-5 *1 (-687)))) (-3938 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *2 (-958)) (-5 *1 (-687)))) (-3842 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *2 (-958)) (-5 *1 (-687)))) (-1787 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *5 (-201)) (-5 *2 (-958)) (-5 *1 (-687)))) (-2247 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *2 (-958)) (-5 *1 (-687)))) (-3626 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *2 (-958)) (-5 *1 (-687)))) (-3375 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *2 (-958)) (-5 *1 (-687)))) (-1674 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *2 (-958)) (-5 *1 (-687)))))
-(-10 -7 (-15 -1674 ((-958) (-520) (-626 (-201)) (-626 (-201)) (-520) (-520) (-520))) (-15 -3375 ((-958) (-520) (-626 (-201)) (-626 (-201)) (-520))) (-15 -3626 ((-958) (-520) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-520) (-626 (-201)) (-520))) (-15 -2247 ((-958) (-520) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-520) (-626 (-201)) (-520))) (-15 -1787 ((-958) (-520) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-201) (-201) (-520))) (-15 -3842 ((-958) (-520) (-520) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-520))) (-15 -3938 ((-958) (-520) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-520))) (-15 -1532 ((-958) (-520) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-626 (-520)) (-626 (-201)) (-201) (-201) (-520))) (-15 -3292 ((-958) (-520) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-520) (-520) (-201) (-201) (-520))) (-15 -2882 ((-958) (-520) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-201) (-626 (-201)) (-201) (-201) (-520))))
-((-2793 (((-958) (-520) (-520) (-626 (-201)) (-626 (-201)) (-520) (-626 (-201)) (-626 (-201)) (-520) (-520) (-520)) 45)) (-4144 (((-958) (-520) (-520) (-520) (-201) (-626 (-201)) (-626 (-201)) (-520)) 44)) (-2655 (((-958) (-520) (-520) (-520) (-520) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-520) (-520) (-520)) 43)) (-3741 (((-958) (-520) (-520) (-520) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-520)) 42)) (-3936 (((-958) (-1066) (-520) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-201) (-520) (-520) (-520) (-520) (-520) (-626 (-201)) (-520) (-626 (-201)) (-626 (-201)) (-520)) 41)) (-2020 (((-958) (-1066) (-520) (-626 (-201)) (-520) (-626 (-201)) (-626 (-201)) (-201) (-520) (-520) (-520) (-520) (-520) (-626 (-201)) (-520) (-626 (-201)) (-626 (-201)) (-626 (-520)) (-520)) 40)) (-4197 (((-958) (-520) (-520) (-520) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-626 (-520)) (-520) (-520) (-520) (-201) (-626 (-201)) (-520)) 39)) (-4111 (((-958) (-1066) (-520) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-201) (-520) (-520) (-520) (-626 (-201)) (-520) (-626 (-201)) (-626 (-520))) 38)) (-3338 (((-958) (-520) (-626 (-201)) (-626 (-201)) (-520)) 35)) (-1374 (((-958) (-520) (-626 (-201)) (-626 (-201)) (-201) (-520) (-520)) 34)) (-4114 (((-958) (-520) (-626 (-201)) (-626 (-201)) (-201) (-520)) 33)) (-2193 (((-958) (-520) (-520) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-520)) 32)) (-3662 (((-958) (-520) (-201) (-201) (-626 (-201)) (-520) (-520) (-201) (-520)) 31)) (-2979 (((-958) (-520) (-201) (-201) (-626 (-201)) (-520) (-520) (-201) (-520) (-520) (-520)) 30)) (-1884 (((-958) (-520) (-201) (-201) (-626 (-201)) (-520) (-520) (-520) (-520) (-520)) 29)) (-3289 (((-958) (-520) (-520) (-520) (-201) (-201) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-520) (-626 (-201)) (-626 (-201)) (-520) (-626 (-520)) (-520) (-520) (-520)) 28)) (-1437 (((-958) (-520) (-626 (-201)) (-201) (-520)) 24)) (-2440 (((-958) (-520) (-520) (-520) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-520)) 20)))
-(((-688) (-10 -7 (-15 -2440 ((-958) (-520) (-520) (-520) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-520))) (-15 -1437 ((-958) (-520) (-626 (-201)) (-201) (-520))) (-15 -3289 ((-958) (-520) (-520) (-520) (-201) (-201) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-520) (-626 (-201)) (-626 (-201)) (-520) (-626 (-520)) (-520) (-520) (-520))) (-15 -1884 ((-958) (-520) (-201) (-201) (-626 (-201)) (-520) (-520) (-520) (-520) (-520))) (-15 -2979 ((-958) (-520) (-201) (-201) (-626 (-201)) (-520) (-520) (-201) (-520) (-520) (-520))) (-15 -3662 ((-958) (-520) (-201) (-201) (-626 (-201)) (-520) (-520) (-201) (-520))) (-15 -2193 ((-958) (-520) (-520) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-520))) (-15 -4114 ((-958) (-520) (-626 (-201)) (-626 (-201)) (-201) (-520))) (-15 -1374 ((-958) (-520) (-626 (-201)) (-626 (-201)) (-201) (-520) (-520))) (-15 -3338 ((-958) (-520) (-626 (-201)) (-626 (-201)) (-520))) (-15 -4111 ((-958) (-1066) (-520) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-201) (-520) (-520) (-520) (-626 (-201)) (-520) (-626 (-201)) (-626 (-520)))) (-15 -4197 ((-958) (-520) (-520) (-520) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-626 (-520)) (-520) (-520) (-520) (-201) (-626 (-201)) (-520))) (-15 -2020 ((-958) (-1066) (-520) (-626 (-201)) (-520) (-626 (-201)) (-626 (-201)) (-201) (-520) (-520) (-520) (-520) (-520) (-626 (-201)) (-520) (-626 (-201)) (-626 (-201)) (-626 (-520)) (-520))) (-15 -3936 ((-958) (-1066) (-520) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-201) (-520) (-520) (-520) (-520) (-520) (-626 (-201)) (-520) (-626 (-201)) (-626 (-201)) (-520))) (-15 -3741 ((-958) (-520) (-520) (-520) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-520))) (-15 -2655 ((-958) (-520) (-520) (-520) (-520) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-520) (-520) (-520))) (-15 -4144 ((-958) (-520) (-520) (-520) (-201) (-626 (-201)) (-626 (-201)) (-520))) (-15 -2793 ((-958) (-520) (-520) (-626 (-201)) (-626 (-201)) (-520) (-626 (-201)) (-626 (-201)) (-520) (-520) (-520))))) (T -688))
-((-2793 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *2 (-958)) (-5 *1 (-688)))) (-4144 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-520)) (-5 *5 (-626 (-201))) (-5 *4 (-201)) (-5 *2 (-958)) (-5 *1 (-688)))) (-2655 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *2 (-958)) (-5 *1 (-688)))) (-3741 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *2 (-958)) (-5 *1 (-688)))) (-3936 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1066)) (-5 *4 (-520)) (-5 *5 (-626 (-201))) (-5 *6 (-201)) (-5 *2 (-958)) (-5 *1 (-688)))) (-2020 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1066)) (-5 *5 (-626 (-201))) (-5 *6 (-201)) (-5 *7 (-626 (-520))) (-5 *4 (-520)) (-5 *2 (-958)) (-5 *1 (-688)))) (-4197 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-626 (-201))) (-5 *5 (-626 (-520))) (-5 *6 (-201)) (-5 *3 (-520)) (-5 *2 (-958)) (-5 *1 (-688)))) (-4111 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1066)) (-5 *5 (-626 (-201))) (-5 *6 (-201)) (-5 *7 (-626 (-520))) (-5 *4 (-520)) (-5 *2 (-958)) (-5 *1 (-688)))) (-3338 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *2 (-958)) (-5 *1 (-688)))) (-1374 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *5 (-201)) (-5 *2 (-958)) (-5 *1 (-688)))) (-4114 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *5 (-201)) (-5 *2 (-958)) (-5 *1 (-688)))) (-2193 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *2 (-958)) (-5 *1 (-688)))) (-3662 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-520)) (-5 *5 (-626 (-201))) (-5 *4 (-201)) (-5 *2 (-958)) (-5 *1 (-688)))) (-2979 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-520)) (-5 *5 (-626 (-201))) (-5 *4 (-201)) (-5 *2 (-958)) (-5 *1 (-688)))) (-1884 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-520)) (-5 *5 (-626 (-201))) (-5 *4 (-201)) (-5 *2 (-958)) (-5 *1 (-688)))) (-3289 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-626 (-201))) (-5 *6 (-626 (-520))) (-5 *3 (-520)) (-5 *4 (-201)) (-5 *2 (-958)) (-5 *1 (-688)))) (-1437 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *5 (-201)) (-5 *2 (-958)) (-5 *1 (-688)))) (-2440 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *2 (-958)) (-5 *1 (-688)))))
-(-10 -7 (-15 -2440 ((-958) (-520) (-520) (-520) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-520))) (-15 -1437 ((-958) (-520) (-626 (-201)) (-201) (-520))) (-15 -3289 ((-958) (-520) (-520) (-520) (-201) (-201) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-520) (-626 (-201)) (-626 (-201)) (-520) (-626 (-520)) (-520) (-520) (-520))) (-15 -1884 ((-958) (-520) (-201) (-201) (-626 (-201)) (-520) (-520) (-520) (-520) (-520))) (-15 -2979 ((-958) (-520) (-201) (-201) (-626 (-201)) (-520) (-520) (-201) (-520) (-520) (-520))) (-15 -3662 ((-958) (-520) (-201) (-201) (-626 (-201)) (-520) (-520) (-201) (-520))) (-15 -2193 ((-958) (-520) (-520) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-520))) (-15 -4114 ((-958) (-520) (-626 (-201)) (-626 (-201)) (-201) (-520))) (-15 -1374 ((-958) (-520) (-626 (-201)) (-626 (-201)) (-201) (-520) (-520))) (-15 -3338 ((-958) (-520) (-626 (-201)) (-626 (-201)) (-520))) (-15 -4111 ((-958) (-1066) (-520) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-201) (-520) (-520) (-520) (-626 (-201)) (-520) (-626 (-201)) (-626 (-520)))) (-15 -4197 ((-958) (-520) (-520) (-520) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-626 (-520)) (-520) (-520) (-520) (-201) (-626 (-201)) (-520))) (-15 -2020 ((-958) (-1066) (-520) (-626 (-201)) (-520) (-626 (-201)) (-626 (-201)) (-201) (-520) (-520) (-520) (-520) (-520) (-626 (-201)) (-520) (-626 (-201)) (-626 (-201)) (-626 (-520)) (-520))) (-15 -3936 ((-958) (-1066) (-520) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-201) (-520) (-520) (-520) (-520) (-520) (-626 (-201)) (-520) (-626 (-201)) (-626 (-201)) (-520))) (-15 -3741 ((-958) (-520) (-520) (-520) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-520))) (-15 -2655 ((-958) (-520) (-520) (-520) (-520) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-520) (-520) (-520))) (-15 -4144 ((-958) (-520) (-520) (-520) (-201) (-626 (-201)) (-626 (-201)) (-520))) (-15 -2793 ((-958) (-520) (-520) (-626 (-201)) (-626 (-201)) (-520) (-626 (-201)) (-626 (-201)) (-520) (-520) (-520))))
-((-1332 (((-958) (-520) (-520) (-520) (-201) (-626 (-201)) (-520) (-626 (-201)) (-520)) 63)) (-1654 (((-958) (-520) (-520) (-520) (-520) (-520) (-520) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-520) (-520) (-108) (-201) (-520) (-201) (-201) (-108) (-201) (-201) (-201) (-201) (-108) (-520) (-520) (-520) (-520) (-520) (-201) (-201) (-201) (-520) (-520) (-520) (-520) (-520) (-626 (-520)) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-361)) (|:| |fp| (-75 OBJFUN)))) 62)) (-3949 (((-958) (-520) (-520) (-520) (-520) (-520) (-520) (-520) (-520) (-201) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-108) (-108) (-108) (-520) (-520) (-626 (-201)) (-626 (-520)) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-63 QPHESS)))) 58)) (-2312 (((-958) (-520) (-520) (-520) (-520) (-520) (-520) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-108) (-520) (-520) (-626 (-201)) (-520)) 51)) (-2467 (((-958) (-520) (-520) (-520) (-520) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-64 FUNCT1)))) 50)) (-3627 (((-958) (-520) (-520) (-520) (-520) (-626 (-201)) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-61 LSFUN2)))) 46)) (-3505 (((-958) (-520) (-520) (-520) (-520) (-626 (-201)) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-77 LSFUN1)))) 42)) (-1620 (((-958) (-520) (-201) (-201) (-520) (-201) (-108) (-201) (-201) (-520) (-520) (-520) (-520) (-626 (-201)) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-75 OBJFUN)))) 38)))
-(((-689) (-10 -7 (-15 -1620 ((-958) (-520) (-201) (-201) (-520) (-201) (-108) (-201) (-201) (-520) (-520) (-520) (-520) (-626 (-201)) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-75 OBJFUN))))) (-15 -3505 ((-958) (-520) (-520) (-520) (-520) (-626 (-201)) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-77 LSFUN1))))) (-15 -3627 ((-958) (-520) (-520) (-520) (-520) (-626 (-201)) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-61 LSFUN2))))) (-15 -2467 ((-958) (-520) (-520) (-520) (-520) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-64 FUNCT1))))) (-15 -2312 ((-958) (-520) (-520) (-520) (-520) (-520) (-520) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-108) (-520) (-520) (-626 (-201)) (-520))) (-15 -3949 ((-958) (-520) (-520) (-520) (-520) (-520) (-520) (-520) (-520) (-201) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-108) (-108) (-108) (-520) (-520) (-626 (-201)) (-626 (-520)) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-63 QPHESS))))) (-15 -1654 ((-958) (-520) (-520) (-520) (-520) (-520) (-520) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-520) (-520) (-108) (-201) (-520) (-201) (-201) (-108) (-201) (-201) (-201) (-201) (-108) (-520) (-520) (-520) (-520) (-520) (-201) (-201) (-201) (-520) (-520) (-520) (-520) (-520) (-626 (-520)) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-361)) (|:| |fp| (-75 OBJFUN))))) (-15 -1332 ((-958) (-520) (-520) (-520) (-201) (-626 (-201)) (-520) (-626 (-201)) (-520))))) (T -689))
-((-1332 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-520)) (-5 *5 (-626 (-201))) (-5 *4 (-201)) (-5 *2 (-958)) (-5 *1 (-689)))) (-1654 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-626 (-201))) (-5 *5 (-108)) (-5 *6 (-201)) (-5 *7 (-626 (-520))) (-5 *8 (-3 (|:| |fn| (-361)) (|:| |fp| (-78 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-361)) (|:| |fp| (-75 OBJFUN)))) (-5 *3 (-520)) (-5 *2 (-958)) (-5 *1 (-689)))) (-3949 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-626 (-201))) (-5 *6 (-108)) (-5 *7 (-626 (-520))) (-5 *8 (-3 (|:| |fn| (-361)) (|:| |fp| (-63 QPHESS)))) (-5 *3 (-520)) (-5 *4 (-201)) (-5 *2 (-958)) (-5 *1 (-689)))) (-2312 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *5 (-108)) (-5 *2 (-958)) (-5 *1 (-689)))) (-2467 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *5 (-3 (|:| |fn| (-361)) (|:| |fp| (-64 FUNCT1)))) (-5 *2 (-958)) (-5 *1 (-689)))) (-3627 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *5 (-3 (|:| |fn| (-361)) (|:| |fp| (-61 LSFUN2)))) (-5 *2 (-958)) (-5 *1 (-689)))) (-3505 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *5 (-3 (|:| |fn| (-361)) (|:| |fp| (-77 LSFUN1)))) (-5 *2 (-958)) (-5 *1 (-689)))) (-1620 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-520)) (-5 *5 (-108)) (-5 *6 (-626 (-201))) (-5 *7 (-3 (|:| |fn| (-361)) (|:| |fp| (-75 OBJFUN)))) (-5 *4 (-201)) (-5 *2 (-958)) (-5 *1 (-689)))))
-(-10 -7 (-15 -1620 ((-958) (-520) (-201) (-201) (-520) (-201) (-108) (-201) (-201) (-520) (-520) (-520) (-520) (-626 (-201)) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-75 OBJFUN))))) (-15 -3505 ((-958) (-520) (-520) (-520) (-520) (-626 (-201)) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-77 LSFUN1))))) (-15 -3627 ((-958) (-520) (-520) (-520) (-520) (-626 (-201)) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-61 LSFUN2))))) (-15 -2467 ((-958) (-520) (-520) (-520) (-520) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-64 FUNCT1))))) (-15 -2312 ((-958) (-520) (-520) (-520) (-520) (-520) (-520) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-108) (-520) (-520) (-626 (-201)) (-520))) (-15 -3949 ((-958) (-520) (-520) (-520) (-520) (-520) (-520) (-520) (-520) (-201) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-108) (-108) (-108) (-520) (-520) (-626 (-201)) (-626 (-520)) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-63 QPHESS))))) (-15 -1654 ((-958) (-520) (-520) (-520) (-520) (-520) (-520) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-520) (-520) (-108) (-201) (-520) (-201) (-201) (-108) (-201) (-201) (-201) (-201) (-108) (-520) (-520) (-520) (-520) (-520) (-201) (-201) (-201) (-520) (-520) (-520) (-520) (-520) (-626 (-520)) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-361)) (|:| |fp| (-75 OBJFUN))))) (-15 -1332 ((-958) (-520) (-520) (-520) (-201) (-626 (-201)) (-520) (-626 (-201)) (-520))))
-((-4059 (((-958) (-1066) (-520) (-520) (-520) (-520) (-626 (-154 (-201))) (-626 (-154 (-201))) (-520)) 46)) (-1586 (((-958) (-1066) (-1066) (-520) (-520) (-626 (-154 (-201))) (-520) (-626 (-154 (-201))) (-520) (-520) (-626 (-154 (-201))) (-520)) 45)) (-4074 (((-958) (-520) (-520) (-520) (-626 (-154 (-201))) (-520)) 44)) (-2072 (((-958) (-1066) (-520) (-520) (-520) (-520) (-626 (-201)) (-626 (-201)) (-520)) 40)) (-3169 (((-958) (-1066) (-1066) (-520) (-520) (-626 (-201)) (-520) (-626 (-201)) (-520) (-520) (-626 (-201)) (-520)) 39)) (-3023 (((-958) (-520) (-520) (-520) (-626 (-201)) (-520)) 36)) (-2450 (((-958) (-520) (-626 (-201)) (-520) (-626 (-520)) (-520)) 35)) (-2235 (((-958) (-520) (-520) (-520) (-520) (-586 (-108)) (-626 (-201)) (-626 (-520)) (-626 (-520)) (-201) (-201) (-520)) 34)) (-2973 (((-958) (-520) (-520) (-520) (-626 (-520)) (-626 (-520)) (-626 (-520)) (-626 (-520)) (-108) (-201) (-108) (-626 (-520)) (-626 (-201)) (-520)) 33)) (-3809 (((-958) (-520) (-520) (-520) (-520) (-201) (-108) (-108) (-586 (-108)) (-626 (-201)) (-626 (-520)) (-626 (-520)) (-520)) 32)))
-(((-690) (-10 -7 (-15 -3809 ((-958) (-520) (-520) (-520) (-520) (-201) (-108) (-108) (-586 (-108)) (-626 (-201)) (-626 (-520)) (-626 (-520)) (-520))) (-15 -2973 ((-958) (-520) (-520) (-520) (-626 (-520)) (-626 (-520)) (-626 (-520)) (-626 (-520)) (-108) (-201) (-108) (-626 (-520)) (-626 (-201)) (-520))) (-15 -2235 ((-958) (-520) (-520) (-520) (-520) (-586 (-108)) (-626 (-201)) (-626 (-520)) (-626 (-520)) (-201) (-201) (-520))) (-15 -2450 ((-958) (-520) (-626 (-201)) (-520) (-626 (-520)) (-520))) (-15 -3023 ((-958) (-520) (-520) (-520) (-626 (-201)) (-520))) (-15 -3169 ((-958) (-1066) (-1066) (-520) (-520) (-626 (-201)) (-520) (-626 (-201)) (-520) (-520) (-626 (-201)) (-520))) (-15 -2072 ((-958) (-1066) (-520) (-520) (-520) (-520) (-626 (-201)) (-626 (-201)) (-520))) (-15 -4074 ((-958) (-520) (-520) (-520) (-626 (-154 (-201))) (-520))) (-15 -1586 ((-958) (-1066) (-1066) (-520) (-520) (-626 (-154 (-201))) (-520) (-626 (-154 (-201))) (-520) (-520) (-626 (-154 (-201))) (-520))) (-15 -4059 ((-958) (-1066) (-520) (-520) (-520) (-520) (-626 (-154 (-201))) (-626 (-154 (-201))) (-520))))) (T -690))
-((-4059 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1066)) (-5 *4 (-520)) (-5 *5 (-626 (-154 (-201)))) (-5 *2 (-958)) (-5 *1 (-690)))) (-1586 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1066)) (-5 *4 (-520)) (-5 *5 (-626 (-154 (-201)))) (-5 *2 (-958)) (-5 *1 (-690)))) (-4074 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-520)) (-5 *4 (-626 (-154 (-201)))) (-5 *2 (-958)) (-5 *1 (-690)))) (-2072 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1066)) (-5 *4 (-520)) (-5 *5 (-626 (-201))) (-5 *2 (-958)) (-5 *1 (-690)))) (-3169 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1066)) (-5 *4 (-520)) (-5 *5 (-626 (-201))) (-5 *2 (-958)) (-5 *1 (-690)))) (-3023 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *2 (-958)) (-5 *1 (-690)))) (-2450 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-626 (-201))) (-5 *5 (-626 (-520))) (-5 *3 (-520)) (-5 *2 (-958)) (-5 *1 (-690)))) (-2235 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-586 (-108))) (-5 *5 (-626 (-201))) (-5 *6 (-626 (-520))) (-5 *7 (-201)) (-5 *3 (-520)) (-5 *2 (-958)) (-5 *1 (-690)))) (-2973 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-626 (-520))) (-5 *5 (-108)) (-5 *7 (-626 (-201))) (-5 *3 (-520)) (-5 *6 (-201)) (-5 *2 (-958)) (-5 *1 (-690)))) (-3809 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-586 (-108))) (-5 *7 (-626 (-201))) (-5 *8 (-626 (-520))) (-5 *3 (-520)) (-5 *4 (-201)) (-5 *5 (-108)) (-5 *2 (-958)) (-5 *1 (-690)))))
-(-10 -7 (-15 -3809 ((-958) (-520) (-520) (-520) (-520) (-201) (-108) (-108) (-586 (-108)) (-626 (-201)) (-626 (-520)) (-626 (-520)) (-520))) (-15 -2973 ((-958) (-520) (-520) (-520) (-626 (-520)) (-626 (-520)) (-626 (-520)) (-626 (-520)) (-108) (-201) (-108) (-626 (-520)) (-626 (-201)) (-520))) (-15 -2235 ((-958) (-520) (-520) (-520) (-520) (-586 (-108)) (-626 (-201)) (-626 (-520)) (-626 (-520)) (-201) (-201) (-520))) (-15 -2450 ((-958) (-520) (-626 (-201)) (-520) (-626 (-520)) (-520))) (-15 -3023 ((-958) (-520) (-520) (-520) (-626 (-201)) (-520))) (-15 -3169 ((-958) (-1066) (-1066) (-520) (-520) (-626 (-201)) (-520) (-626 (-201)) (-520) (-520) (-626 (-201)) (-520))) (-15 -2072 ((-958) (-1066) (-520) (-520) (-520) (-520) (-626 (-201)) (-626 (-201)) (-520))) (-15 -4074 ((-958) (-520) (-520) (-520) (-626 (-154 (-201))) (-520))) (-15 -1586 ((-958) (-1066) (-1066) (-520) (-520) (-626 (-154 (-201))) (-520) (-626 (-154 (-201))) (-520) (-520) (-626 (-154 (-201))) (-520))) (-15 -4059 ((-958) (-1066) (-520) (-520) (-520) (-520) (-626 (-154 (-201))) (-626 (-154 (-201))) (-520))))
-((-3347 (((-958) (-520) (-520) (-520) (-520) (-520) (-108) (-520) (-108) (-520) (-626 (-154 (-201))) (-626 (-154 (-201))) (-520)) 64)) (-3826 (((-958) (-520) (-520) (-520) (-520) (-520) (-108) (-520) (-108) (-520) (-626 (-201)) (-626 (-201)) (-520)) 60)) (-1339 (((-958) (-520) (-520) (-201) (-520) (-520) (-520) (-520) (-520) (-520) (-520) (-626 (-201)) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-361)) (|:| |fp| (-66 IMAGE))) (-361)) 56) (((-958) (-520) (-520) (-201) (-520) (-520) (-520) (-520) (-520) (-520) (-520) (-626 (-201)) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-361)) (|:| |fp| (-66 IMAGE)))) 55)) (-2314 (((-958) (-520) (-520) (-520) (-201) (-108) (-520) (-626 (-201)) (-626 (-201)) (-520)) 37)) (-2595 (((-958) (-520) (-520) (-201) (-201) (-520) (-520) (-626 (-201)) (-520)) 33)) (-1196 (((-958) (-626 (-201)) (-520) (-626 (-201)) (-520) (-520) (-520) (-520) (-520)) 29)) (-4154 (((-958) (-520) (-520) (-520) (-626 (-201)) (-626 (-201)) (-520)) 28)) (-3348 (((-958) (-520) (-520) (-520) (-520) (-520) (-626 (-201)) (-626 (-201)) (-520)) 27)) (-3472 (((-958) (-520) (-520) (-520) (-626 (-201)) (-626 (-201)) (-520)) 26)) (-4030 (((-958) (-520) (-520) (-520) (-520) (-626 (-201)) (-520)) 25)) (-2597 (((-958) (-520) (-520) (-626 (-201)) (-520)) 24)) (-3857 (((-958) (-520) (-520) (-520) (-520) (-626 (-201)) (-626 (-201)) (-520)) 23)) (-3733 (((-958) (-520) (-520) (-520) (-626 (-201)) (-626 (-201)) (-520)) 22)) (-2499 (((-958) (-626 (-201)) (-520) (-520) (-520) (-520)) 21)) (-1897 (((-958) (-520) (-520) (-626 (-201)) (-520)) 20)))
-(((-691) (-10 -7 (-15 -1897 ((-958) (-520) (-520) (-626 (-201)) (-520))) (-15 -2499 ((-958) (-626 (-201)) (-520) (-520) (-520) (-520))) (-15 -3733 ((-958) (-520) (-520) (-520) (-626 (-201)) (-626 (-201)) (-520))) (-15 -3857 ((-958) (-520) (-520) (-520) (-520) (-626 (-201)) (-626 (-201)) (-520))) (-15 -2597 ((-958) (-520) (-520) (-626 (-201)) (-520))) (-15 -4030 ((-958) (-520) (-520) (-520) (-520) (-626 (-201)) (-520))) (-15 -3472 ((-958) (-520) (-520) (-520) (-626 (-201)) (-626 (-201)) (-520))) (-15 -3348 ((-958) (-520) (-520) (-520) (-520) (-520) (-626 (-201)) (-626 (-201)) (-520))) (-15 -4154 ((-958) (-520) (-520) (-520) (-626 (-201)) (-626 (-201)) (-520))) (-15 -1196 ((-958) (-626 (-201)) (-520) (-626 (-201)) (-520) (-520) (-520) (-520) (-520))) (-15 -2595 ((-958) (-520) (-520) (-201) (-201) (-520) (-520) (-626 (-201)) (-520))) (-15 -2314 ((-958) (-520) (-520) (-520) (-201) (-108) (-520) (-626 (-201)) (-626 (-201)) (-520))) (-15 -1339 ((-958) (-520) (-520) (-201) (-520) (-520) (-520) (-520) (-520) (-520) (-520) (-626 (-201)) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-361)) (|:| |fp| (-66 IMAGE))))) (-15 -1339 ((-958) (-520) (-520) (-201) (-520) (-520) (-520) (-520) (-520) (-520) (-520) (-626 (-201)) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-361)) (|:| |fp| (-66 IMAGE))) (-361))) (-15 -3826 ((-958) (-520) (-520) (-520) (-520) (-520) (-108) (-520) (-108) (-520) (-626 (-201)) (-626 (-201)) (-520))) (-15 -3347 ((-958) (-520) (-520) (-520) (-520) (-520) (-108) (-520) (-108) (-520) (-626 (-154 (-201))) (-626 (-154 (-201))) (-520))))) (T -691))
-((-3347 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-520)) (-5 *4 (-108)) (-5 *5 (-626 (-154 (-201)))) (-5 *2 (-958)) (-5 *1 (-691)))) (-3826 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-520)) (-5 *4 (-108)) (-5 *5 (-626 (-201))) (-5 *2 (-958)) (-5 *1 (-691)))) (-1339 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-520)) (-5 *5 (-626 (-201))) (-5 *6 (-3 (|:| |fn| (-361)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-361)) (|:| |fp| (-66 IMAGE)))) (-5 *8 (-361)) (-5 *4 (-201)) (-5 *2 (-958)) (-5 *1 (-691)))) (-1339 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-520)) (-5 *5 (-626 (-201))) (-5 *6 (-3 (|:| |fn| (-361)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-361)) (|:| |fp| (-66 IMAGE)))) (-5 *4 (-201)) (-5 *2 (-958)) (-5 *1 (-691)))) (-2314 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-520)) (-5 *5 (-108)) (-5 *6 (-626 (-201))) (-5 *4 (-201)) (-5 *2 (-958)) (-5 *1 (-691)))) (-2595 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-520)) (-5 *5 (-626 (-201))) (-5 *4 (-201)) (-5 *2 (-958)) (-5 *1 (-691)))) (-1196 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-626 (-201))) (-5 *4 (-520)) (-5 *2 (-958)) (-5 *1 (-691)))) (-4154 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *2 (-958)) (-5 *1 (-691)))) (-3348 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *2 (-958)) (-5 *1 (-691)))) (-3472 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *2 (-958)) (-5 *1 (-691)))) (-4030 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *2 (-958)) (-5 *1 (-691)))) (-2597 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *2 (-958)) (-5 *1 (-691)))) (-3857 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *2 (-958)) (-5 *1 (-691)))) (-3733 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *2 (-958)) (-5 *1 (-691)))) (-2499 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-626 (-201))) (-5 *4 (-520)) (-5 *2 (-958)) (-5 *1 (-691)))) (-1897 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *2 (-958)) (-5 *1 (-691)))))
-(-10 -7 (-15 -1897 ((-958) (-520) (-520) (-626 (-201)) (-520))) (-15 -2499 ((-958) (-626 (-201)) (-520) (-520) (-520) (-520))) (-15 -3733 ((-958) (-520) (-520) (-520) (-626 (-201)) (-626 (-201)) (-520))) (-15 -3857 ((-958) (-520) (-520) (-520) (-520) (-626 (-201)) (-626 (-201)) (-520))) (-15 -2597 ((-958) (-520) (-520) (-626 (-201)) (-520))) (-15 -4030 ((-958) (-520) (-520) (-520) (-520) (-626 (-201)) (-520))) (-15 -3472 ((-958) (-520) (-520) (-520) (-626 (-201)) (-626 (-201)) (-520))) (-15 -3348 ((-958) (-520) (-520) (-520) (-520) (-520) (-626 (-201)) (-626 (-201)) (-520))) (-15 -4154 ((-958) (-520) (-520) (-520) (-626 (-201)) (-626 (-201)) (-520))) (-15 -1196 ((-958) (-626 (-201)) (-520) (-626 (-201)) (-520) (-520) (-520) (-520) (-520))) (-15 -2595 ((-958) (-520) (-520) (-201) (-201) (-520) (-520) (-626 (-201)) (-520))) (-15 -2314 ((-958) (-520) (-520) (-520) (-201) (-108) (-520) (-626 (-201)) (-626 (-201)) (-520))) (-15 -1339 ((-958) (-520) (-520) (-201) (-520) (-520) (-520) (-520) (-520) (-520) (-520) (-626 (-201)) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-361)) (|:| |fp| (-66 IMAGE))))) (-15 -1339 ((-958) (-520) (-520) (-201) (-520) (-520) (-520) (-520) (-520) (-520) (-520) (-626 (-201)) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-361)) (|:| |fp| (-66 IMAGE))) (-361))) (-15 -3826 ((-958) (-520) (-520) (-520) (-520) (-520) (-108) (-520) (-108) (-520) (-626 (-201)) (-626 (-201)) (-520))) (-15 -3347 ((-958) (-520) (-520) (-520) (-520) (-520) (-108) (-520) (-108) (-520) (-626 (-154 (-201))) (-626 (-154 (-201))) (-520))))
-((-2261 (((-958) (-520) (-520) (-201) (-201) (-201) (-201) (-520) (-520) (-520) (-520) (-626 (-201)) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-68 APROD)))) 60)) (-4001 (((-958) (-520) (-626 (-201)) (-520) (-626 (-201)) (-626 (-520)) (-520) (-626 (-201)) (-520) (-520) (-520) (-520)) 56)) (-2356 (((-958) (-520) (-626 (-201)) (-108) (-201) (-520) (-520) (-520) (-520) (-201) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-361)) (|:| |fp| (-71 MSOLVE)))) 55)) (-3900 (((-958) (-520) (-520) (-626 (-201)) (-520) (-626 (-520)) (-520) (-626 (-520)) (-626 (-201)) (-626 (-520)) (-626 (-520)) (-626 (-201)) (-626 (-201)) (-626 (-520)) (-520)) 36)) (-3836 (((-958) (-520) (-520) (-520) (-201) (-520) (-626 (-201)) (-626 (-201)) (-520)) 35)) (-3387 (((-958) (-520) (-520) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-520)) 31)) (-2338 (((-958) (-520) (-626 (-201)) (-520) (-626 (-520)) (-626 (-520)) (-520) (-626 (-520)) (-626 (-201))) 30)) (-3715 (((-958) (-626 (-201)) (-520) (-626 (-201)) (-520) (-520) (-520)) 26)) (-2001 (((-958) (-520) (-626 (-201)) (-520) (-626 (-201)) (-520)) 25)) (-2325 (((-958) (-520) (-626 (-201)) (-520) (-626 (-201)) (-520)) 24)) (-2304 (((-958) (-520) (-626 (-154 (-201))) (-520) (-520) (-520) (-520) (-626 (-154 (-201))) (-520)) 20)))
-(((-692) (-10 -7 (-15 -2304 ((-958) (-520) (-626 (-154 (-201))) (-520) (-520) (-520) (-520) (-626 (-154 (-201))) (-520))) (-15 -2325 ((-958) (-520) (-626 (-201)) (-520) (-626 (-201)) (-520))) (-15 -2001 ((-958) (-520) (-626 (-201)) (-520) (-626 (-201)) (-520))) (-15 -3715 ((-958) (-626 (-201)) (-520) (-626 (-201)) (-520) (-520) (-520))) (-15 -2338 ((-958) (-520) (-626 (-201)) (-520) (-626 (-520)) (-626 (-520)) (-520) (-626 (-520)) (-626 (-201)))) (-15 -3387 ((-958) (-520) (-520) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-520))) (-15 -3836 ((-958) (-520) (-520) (-520) (-201) (-520) (-626 (-201)) (-626 (-201)) (-520))) (-15 -3900 ((-958) (-520) (-520) (-626 (-201)) (-520) (-626 (-520)) (-520) (-626 (-520)) (-626 (-201)) (-626 (-520)) (-626 (-520)) (-626 (-201)) (-626 (-201)) (-626 (-520)) (-520))) (-15 -2356 ((-958) (-520) (-626 (-201)) (-108) (-201) (-520) (-520) (-520) (-520) (-201) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-361)) (|:| |fp| (-71 MSOLVE))))) (-15 -4001 ((-958) (-520) (-626 (-201)) (-520) (-626 (-201)) (-626 (-520)) (-520) (-626 (-201)) (-520) (-520) (-520) (-520))) (-15 -2261 ((-958) (-520) (-520) (-201) (-201) (-201) (-201) (-520) (-520) (-520) (-520) (-626 (-201)) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-68 APROD))))))) (T -692))
-((-2261 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-520)) (-5 *5 (-626 (-201))) (-5 *6 (-3 (|:| |fn| (-361)) (|:| |fp| (-68 APROD)))) (-5 *4 (-201)) (-5 *2 (-958)) (-5 *1 (-692)))) (-4001 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-626 (-201))) (-5 *5 (-626 (-520))) (-5 *3 (-520)) (-5 *2 (-958)) (-5 *1 (-692)))) (-2356 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *5 (-108)) (-5 *6 (-201)) (-5 *7 (-3 (|:| |fn| (-361)) (|:| |fp| (-66 APROD)))) (-5 *8 (-3 (|:| |fn| (-361)) (|:| |fp| (-71 MSOLVE)))) (-5 *2 (-958)) (-5 *1 (-692)))) (-3900 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-626 (-201))) (-5 *5 (-626 (-520))) (-5 *3 (-520)) (-5 *2 (-958)) (-5 *1 (-692)))) (-3836 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-520)) (-5 *5 (-626 (-201))) (-5 *4 (-201)) (-5 *2 (-958)) (-5 *1 (-692)))) (-3387 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *2 (-958)) (-5 *1 (-692)))) (-2338 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-626 (-201))) (-5 *5 (-626 (-520))) (-5 *3 (-520)) (-5 *2 (-958)) (-5 *1 (-692)))) (-3715 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-626 (-201))) (-5 *4 (-520)) (-5 *2 (-958)) (-5 *1 (-692)))) (-2001 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *2 (-958)) (-5 *1 (-692)))) (-2325 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *2 (-958)) (-5 *1 (-692)))) (-2304 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-520)) (-5 *4 (-626 (-154 (-201)))) (-5 *2 (-958)) (-5 *1 (-692)))))
-(-10 -7 (-15 -2304 ((-958) (-520) (-626 (-154 (-201))) (-520) (-520) (-520) (-520) (-626 (-154 (-201))) (-520))) (-15 -2325 ((-958) (-520) (-626 (-201)) (-520) (-626 (-201)) (-520))) (-15 -2001 ((-958) (-520) (-626 (-201)) (-520) (-626 (-201)) (-520))) (-15 -3715 ((-958) (-626 (-201)) (-520) (-626 (-201)) (-520) (-520) (-520))) (-15 -2338 ((-958) (-520) (-626 (-201)) (-520) (-626 (-520)) (-626 (-520)) (-520) (-626 (-520)) (-626 (-201)))) (-15 -3387 ((-958) (-520) (-520) (-626 (-201)) (-626 (-201)) (-626 (-201)) (-520))) (-15 -3836 ((-958) (-520) (-520) (-520) (-201) (-520) (-626 (-201)) (-626 (-201)) (-520))) (-15 -3900 ((-958) (-520) (-520) (-626 (-201)) (-520) (-626 (-520)) (-520) (-626 (-520)) (-626 (-201)) (-626 (-520)) (-626 (-520)) (-626 (-201)) (-626 (-201)) (-626 (-520)) (-520))) (-15 -2356 ((-958) (-520) (-626 (-201)) (-108) (-201) (-520) (-520) (-520) (-520) (-201) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-361)) (|:| |fp| (-71 MSOLVE))))) (-15 -4001 ((-958) (-520) (-626 (-201)) (-520) (-626 (-201)) (-626 (-520)) (-520) (-626 (-201)) (-520) (-520) (-520) (-520))) (-15 -2261 ((-958) (-520) (-520) (-201) (-201) (-201) (-201) (-520) (-520) (-520) (-520) (-626 (-201)) (-520) (-3 (|:| |fn| (-361)) (|:| |fp| (-68 APROD))))))
-((-2547 (((-958) (-1066) (-520) (-520) (-626 (-201)) (-520) (-520) (-626 (-201))) 28)) (-4104 (((-958) (-1066) (-520) (-520) (-626 (-201))) 27)) (-2199 (((-958) (-1066) (-520) (-520) (-626 (-201)) (-520) (-626 (-520)) (-520) (-626 (-201))) 26)) (-1442 (((-958) (-520) (-520) (-520) (-626 (-201))) 20)))
-(((-693) (-10 -7 (-15 -1442 ((-958) (-520) (-520) (-520) (-626 (-201)))) (-15 -2199 ((-958) (-1066) (-520) (-520) (-626 (-201)) (-520) (-626 (-520)) (-520) (-626 (-201)))) (-15 -4104 ((-958) (-1066) (-520) (-520) (-626 (-201)))) (-15 -2547 ((-958) (-1066) (-520) (-520) (-626 (-201)) (-520) (-520) (-626 (-201)))))) (T -693))
-((-2547 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1066)) (-5 *4 (-520)) (-5 *5 (-626 (-201))) (-5 *2 (-958)) (-5 *1 (-693)))) (-4104 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1066)) (-5 *4 (-520)) (-5 *5 (-626 (-201))) (-5 *2 (-958)) (-5 *1 (-693)))) (-2199 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1066)) (-5 *5 (-626 (-201))) (-5 *6 (-626 (-520))) (-5 *4 (-520)) (-5 *2 (-958)) (-5 *1 (-693)))) (-1442 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *2 (-958)) (-5 *1 (-693)))))
-(-10 -7 (-15 -1442 ((-958) (-520) (-520) (-520) (-626 (-201)))) (-15 -2199 ((-958) (-1066) (-520) (-520) (-626 (-201)) (-520) (-626 (-520)) (-520) (-626 (-201)))) (-15 -4104 ((-958) (-1066) (-520) (-520) (-626 (-201)))) (-15 -2547 ((-958) (-1066) (-520) (-520) (-626 (-201)) (-520) (-520) (-626 (-201)))))
-((-2929 (((-958) (-201) (-201) (-201) (-201) (-520)) 62)) (-1969 (((-958) (-201) (-201) (-201) (-520)) 61)) (-2990 (((-958) (-201) (-201) (-201) (-520)) 60)) (-3601 (((-958) (-201) (-201) (-520)) 59)) (-3684 (((-958) (-201) (-520)) 58)) (-1213 (((-958) (-201) (-520)) 57)) (-3544 (((-958) (-201) (-520)) 56)) (-3580 (((-958) (-201) (-520)) 55)) (-3591 (((-958) (-201) (-520)) 54)) (-4157 (((-958) (-201) (-520)) 53)) (-2758 (((-958) (-201) (-154 (-201)) (-520) (-1066) (-520)) 52)) (-3614 (((-958) (-201) (-154 (-201)) (-520) (-1066) (-520)) 51)) (-1539 (((-958) (-201) (-520)) 50)) (-2750 (((-958) (-201) (-520)) 49)) (-2679 (((-958) (-201) (-520)) 48)) (-2133 (((-958) (-201) (-520)) 47)) (-1266 (((-958) (-520) (-201) (-154 (-201)) (-520) (-1066) (-520)) 46)) (-4085 (((-958) (-1066) (-154 (-201)) (-1066) (-520)) 45)) (-2701 (((-958) (-1066) (-154 (-201)) (-1066) (-520)) 44)) (-3459 (((-958) (-201) (-154 (-201)) (-520) (-1066) (-520)) 43)) (-4199 (((-958) (-201) (-154 (-201)) (-520) (-1066) (-520)) 42)) (-2663 (((-958) (-201) (-520)) 39)) (-1952 (((-958) (-201) (-520)) 38)) (-3330 (((-958) (-201) (-520)) 37)) (-2994 (((-958) (-201) (-520)) 36)) (-2920 (((-958) (-201) (-520)) 35)) (-4205 (((-958) (-201) (-520)) 34)) (-2817 (((-958) (-201) (-520)) 33)) (-3130 (((-958) (-201) (-520)) 32)) (-3539 (((-958) (-201) (-520)) 31)) (-1971 (((-958) (-201) (-520)) 30)) (-2813 (((-958) (-201) (-201) (-201) (-520)) 29)) (-1872 (((-958) (-201) (-520)) 28)) (-2483 (((-958) (-201) (-520)) 27)) (-3605 (((-958) (-201) (-520)) 26)) (-3789 (((-958) (-201) (-520)) 25)) (-2980 (((-958) (-201) (-520)) 24)) (-1558 (((-958) (-154 (-201)) (-520)) 20)))
-(((-694) (-10 -7 (-15 -1558 ((-958) (-154 (-201)) (-520))) (-15 -2980 ((-958) (-201) (-520))) (-15 -3789 ((-958) (-201) (-520))) (-15 -3605 ((-958) (-201) (-520))) (-15 -2483 ((-958) (-201) (-520))) (-15 -1872 ((-958) (-201) (-520))) (-15 -2813 ((-958) (-201) (-201) (-201) (-520))) (-15 -1971 ((-958) (-201) (-520))) (-15 -3539 ((-958) (-201) (-520))) (-15 -3130 ((-958) (-201) (-520))) (-15 -2817 ((-958) (-201) (-520))) (-15 -4205 ((-958) (-201) (-520))) (-15 -2920 ((-958) (-201) (-520))) (-15 -2994 ((-958) (-201) (-520))) (-15 -3330 ((-958) (-201) (-520))) (-15 -1952 ((-958) (-201) (-520))) (-15 -2663 ((-958) (-201) (-520))) (-15 -4199 ((-958) (-201) (-154 (-201)) (-520) (-1066) (-520))) (-15 -3459 ((-958) (-201) (-154 (-201)) (-520) (-1066) (-520))) (-15 -2701 ((-958) (-1066) (-154 (-201)) (-1066) (-520))) (-15 -4085 ((-958) (-1066) (-154 (-201)) (-1066) (-520))) (-15 -1266 ((-958) (-520) (-201) (-154 (-201)) (-520) (-1066) (-520))) (-15 -2133 ((-958) (-201) (-520))) (-15 -2679 ((-958) (-201) (-520))) (-15 -2750 ((-958) (-201) (-520))) (-15 -1539 ((-958) (-201) (-520))) (-15 -3614 ((-958) (-201) (-154 (-201)) (-520) (-1066) (-520))) (-15 -2758 ((-958) (-201) (-154 (-201)) (-520) (-1066) (-520))) (-15 -4157 ((-958) (-201) (-520))) (-15 -3591 ((-958) (-201) (-520))) (-15 -3580 ((-958) (-201) (-520))) (-15 -3544 ((-958) (-201) (-520))) (-15 -1213 ((-958) (-201) (-520))) (-15 -3684 ((-958) (-201) (-520))) (-15 -3601 ((-958) (-201) (-201) (-520))) (-15 -2990 ((-958) (-201) (-201) (-201) (-520))) (-15 -1969 ((-958) (-201) (-201) (-201) (-520))) (-15 -2929 ((-958) (-201) (-201) (-201) (-201) (-520))))) (T -694))
-((-2929 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-201)) (-5 *4 (-520)) (-5 *2 (-958)) (-5 *1 (-694)))) (-1969 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-201)) (-5 *4 (-520)) (-5 *2 (-958)) (-5 *1 (-694)))) (-2990 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-201)) (-5 *4 (-520)) (-5 *2 (-958)) (-5 *1 (-694)))) (-3601 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-201)) (-5 *4 (-520)) (-5 *2 (-958)) (-5 *1 (-694)))) (-3684 (*1 *2 *3 *4) (-12 (-5 *3 (-201)) (-5 *4 (-520)) (-5 *2 (-958)) (-5 *1 (-694)))) (-1213 (*1 *2 *3 *4) (-12 (-5 *3 (-201)) (-5 *4 (-520)) (-5 *2 (-958)) (-5 *1 (-694)))) (-3544 (*1 *2 *3 *4) (-12 (-5 *3 (-201)) (-5 *4 (-520)) (-5 *2 (-958)) (-5 *1 (-694)))) (-3580 (*1 *2 *3 *4) (-12 (-5 *3 (-201)) (-5 *4 (-520)) (-5 *2 (-958)) (-5 *1 (-694)))) (-3591 (*1 *2 *3 *4) (-12 (-5 *3 (-201)) (-5 *4 (-520)) (-5 *2 (-958)) (-5 *1 (-694)))) (-4157 (*1 *2 *3 *4) (-12 (-5 *3 (-201)) (-5 *4 (-520)) (-5 *2 (-958)) (-5 *1 (-694)))) (-2758 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-154 (-201))) (-5 *5 (-520)) (-5 *6 (-1066)) (-5 *3 (-201)) (-5 *2 (-958)) (-5 *1 (-694)))) (-3614 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-154 (-201))) (-5 *5 (-520)) (-5 *6 (-1066)) (-5 *3 (-201)) (-5 *2 (-958)) (-5 *1 (-694)))) (-1539 (*1 *2 *3 *4) (-12 (-5 *3 (-201)) (-5 *4 (-520)) (-5 *2 (-958)) (-5 *1 (-694)))) (-2750 (*1 *2 *3 *4) (-12 (-5 *3 (-201)) (-5 *4 (-520)) (-5 *2 (-958)) (-5 *1 (-694)))) (-2679 (*1 *2 *3 *4) (-12 (-5 *3 (-201)) (-5 *4 (-520)) (-5 *2 (-958)) (-5 *1 (-694)))) (-2133 (*1 *2 *3 *4) (-12 (-5 *3 (-201)) (-5 *4 (-520)) (-5 *2 (-958)) (-5 *1 (-694)))) (-1266 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-520)) (-5 *5 (-154 (-201))) (-5 *6 (-1066)) (-5 *4 (-201)) (-5 *2 (-958)) (-5 *1 (-694)))) (-4085 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1066)) (-5 *4 (-154 (-201))) (-5 *5 (-520)) (-5 *2 (-958)) (-5 *1 (-694)))) (-2701 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1066)) (-5 *4 (-154 (-201))) (-5 *5 (-520)) (-5 *2 (-958)) (-5 *1 (-694)))) (-3459 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-154 (-201))) (-5 *5 (-520)) (-5 *6 (-1066)) (-5 *3 (-201)) (-5 *2 (-958)) (-5 *1 (-694)))) (-4199 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-154 (-201))) (-5 *5 (-520)) (-5 *6 (-1066)) (-5 *3 (-201)) (-5 *2 (-958)) (-5 *1 (-694)))) (-2663 (*1 *2 *3 *4) (-12 (-5 *3 (-201)) (-5 *4 (-520)) (-5 *2 (-958)) (-5 *1 (-694)))) (-1952 (*1 *2 *3 *4) (-12 (-5 *3 (-201)) (-5 *4 (-520)) (-5 *2 (-958)) (-5 *1 (-694)))) (-3330 (*1 *2 *3 *4) (-12 (-5 *3 (-201)) (-5 *4 (-520)) (-5 *2 (-958)) (-5 *1 (-694)))) (-2994 (*1 *2 *3 *4) (-12 (-5 *3 (-201)) (-5 *4 (-520)) (-5 *2 (-958)) (-5 *1 (-694)))) (-2920 (*1 *2 *3 *4) (-12 (-5 *3 (-201)) (-5 *4 (-520)) (-5 *2 (-958)) (-5 *1 (-694)))) (-4205 (*1 *2 *3 *4) (-12 (-5 *3 (-201)) (-5 *4 (-520)) (-5 *2 (-958)) (-5 *1 (-694)))) (-2817 (*1 *2 *3 *4) (-12 (-5 *3 (-201)) (-5 *4 (-520)) (-5 *2 (-958)) (-5 *1 (-694)))) (-3130 (*1 *2 *3 *4) (-12 (-5 *3 (-201)) (-5 *4 (-520)) (-5 *2 (-958)) (-5 *1 (-694)))) (-3539 (*1 *2 *3 *4) (-12 (-5 *3 (-201)) (-5 *4 (-520)) (-5 *2 (-958)) (-5 *1 (-694)))) (-1971 (*1 *2 *3 *4) (-12 (-5 *3 (-201)) (-5 *4 (-520)) (-5 *2 (-958)) (-5 *1 (-694)))) (-2813 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-201)) (-5 *4 (-520)) (-5 *2 (-958)) (-5 *1 (-694)))) (-1872 (*1 *2 *3 *4) (-12 (-5 *3 (-201)) (-5 *4 (-520)) (-5 *2 (-958)) (-5 *1 (-694)))) (-2483 (*1 *2 *3 *4) (-12 (-5 *3 (-201)) (-5 *4 (-520)) (-5 *2 (-958)) (-5 *1 (-694)))) (-3605 (*1 *2 *3 *4) (-12 (-5 *3 (-201)) (-5 *4 (-520)) (-5 *2 (-958)) (-5 *1 (-694)))) (-3789 (*1 *2 *3 *4) (-12 (-5 *3 (-201)) (-5 *4 (-520)) (-5 *2 (-958)) (-5 *1 (-694)))) (-2980 (*1 *2 *3 *4) (-12 (-5 *3 (-201)) (-5 *4 (-520)) (-5 *2 (-958)) (-5 *1 (-694)))) (-1558 (*1 *2 *3 *4) (-12 (-5 *3 (-154 (-201))) (-5 *4 (-520)) (-5 *2 (-958)) (-5 *1 (-694)))))
-(-10 -7 (-15 -1558 ((-958) (-154 (-201)) (-520))) (-15 -2980 ((-958) (-201) (-520))) (-15 -3789 ((-958) (-201) (-520))) (-15 -3605 ((-958) (-201) (-520))) (-15 -2483 ((-958) (-201) (-520))) (-15 -1872 ((-958) (-201) (-520))) (-15 -2813 ((-958) (-201) (-201) (-201) (-520))) (-15 -1971 ((-958) (-201) (-520))) (-15 -3539 ((-958) (-201) (-520))) (-15 -3130 ((-958) (-201) (-520))) (-15 -2817 ((-958) (-201) (-520))) (-15 -4205 ((-958) (-201) (-520))) (-15 -2920 ((-958) (-201) (-520))) (-15 -2994 ((-958) (-201) (-520))) (-15 -3330 ((-958) (-201) (-520))) (-15 -1952 ((-958) (-201) (-520))) (-15 -2663 ((-958) (-201) (-520))) (-15 -4199 ((-958) (-201) (-154 (-201)) (-520) (-1066) (-520))) (-15 -3459 ((-958) (-201) (-154 (-201)) (-520) (-1066) (-520))) (-15 -2701 ((-958) (-1066) (-154 (-201)) (-1066) (-520))) (-15 -4085 ((-958) (-1066) (-154 (-201)) (-1066) (-520))) (-15 -1266 ((-958) (-520) (-201) (-154 (-201)) (-520) (-1066) (-520))) (-15 -2133 ((-958) (-201) (-520))) (-15 -2679 ((-958) (-201) (-520))) (-15 -2750 ((-958) (-201) (-520))) (-15 -1539 ((-958) (-201) (-520))) (-15 -3614 ((-958) (-201) (-154 (-201)) (-520) (-1066) (-520))) (-15 -2758 ((-958) (-201) (-154 (-201)) (-520) (-1066) (-520))) (-15 -4157 ((-958) (-201) (-520))) (-15 -3591 ((-958) (-201) (-520))) (-15 -3580 ((-958) (-201) (-520))) (-15 -3544 ((-958) (-201) (-520))) (-15 -1213 ((-958) (-201) (-520))) (-15 -3684 ((-958) (-201) (-520))) (-15 -3601 ((-958) (-201) (-201) (-520))) (-15 -2990 ((-958) (-201) (-201) (-201) (-520))) (-15 -1969 ((-958) (-201) (-201) (-201) (-520))) (-15 -2929 ((-958) (-201) (-201) (-201) (-201) (-520))))
-((-3805 (((-1169)) 18)) (-2381 (((-1066)) 22)) (-1324 (((-1066)) 21)) (-2592 (((-1016) (-1083) (-626 (-520))) 35) (((-1016) (-1083) (-626 (-201))) 31)) (-1597 (((-108)) 16)) (-2965 (((-1066) (-1066)) 25)))
-(((-695) (-10 -7 (-15 -1324 ((-1066))) (-15 -2381 ((-1066))) (-15 -2965 ((-1066) (-1066))) (-15 -2592 ((-1016) (-1083) (-626 (-201)))) (-15 -2592 ((-1016) (-1083) (-626 (-520)))) (-15 -1597 ((-108))) (-15 -3805 ((-1169))))) (T -695))
-((-3805 (*1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-695)))) (-1597 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-695)))) (-2592 (*1 *2 *3 *4) (-12 (-5 *3 (-1083)) (-5 *4 (-626 (-520))) (-5 *2 (-1016)) (-5 *1 (-695)))) (-2592 (*1 *2 *3 *4) (-12 (-5 *3 (-1083)) (-5 *4 (-626 (-201))) (-5 *2 (-1016)) (-5 *1 (-695)))) (-2965 (*1 *2 *2) (-12 (-5 *2 (-1066)) (-5 *1 (-695)))) (-2381 (*1 *2) (-12 (-5 *2 (-1066)) (-5 *1 (-695)))) (-1324 (*1 *2) (-12 (-5 *2 (-1066)) (-5 *1 (-695)))))
-(-10 -7 (-15 -1324 ((-1066))) (-15 -2381 ((-1066))) (-15 -2965 ((-1066) (-1066))) (-15 -2592 ((-1016) (-1083) (-626 (-201)))) (-15 -2592 ((-1016) (-1083) (-626 (-520)))) (-15 -1597 ((-108))) (-15 -3805 ((-1169))))
-((-3607 (($ $ $) 10)) (-2214 (($ $ $ $) 9)) (-3710 (($ $ $) 12)))
-(((-696 |#1|) (-10 -8 (-15 -3710 (|#1| |#1| |#1|)) (-15 -3607 (|#1| |#1| |#1|)) (-15 -2214 (|#1| |#1| |#1| |#1|))) (-697)) (T -696))
-NIL
-(-10 -8 (-15 -3710 (|#1| |#1| |#1|)) (-15 -3607 (|#1| |#1| |#1|)) (-15 -2214 (|#1| |#1| |#1| |#1|)))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-1917 (((-3 $ "failed") $ $) 19)) (-3961 (($) 17 T CONST)) (-3918 (($ $ (-849)) 28)) (-2544 (($ $ (-849)) 29)) (-1239 (((-1066) $) 9)) (-4142 (((-1030) $) 10)) (-3607 (($ $ $) 25)) (-2188 (((-791) $) 11)) (-2214 (($ $ $ $) 26)) (-3710 (($ $ $) 24)) (-3560 (($) 18 T CONST)) (-1530 (((-108) $ $) 6)) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (** (($ $ (-849)) 30)) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ $ $) 27)))
-(((-697) (-1195)) (T -697))
-((-2214 (*1 *1 *1 *1 *1) (-4 *1 (-697))) (-3607 (*1 *1 *1 *1) (-4 *1 (-697))) (-3710 (*1 *1 *1 *1) (-4 *1 (-697))))
-(-13 (-21) (-656) (-10 -8 (-15 -2214 ($ $ $ $)) (-15 -3607 ($ $ $)) (-15 -3710 ($ $ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-560 (-791)) . T) ((-656) . T) ((-1012) . T))
-((-2188 (((-791) $) NIL) (($ (-520)) 10)))
-(((-698 |#1|) (-10 -8 (-15 -2188 (|#1| (-520))) (-15 -2188 ((-791) |#1|))) (-699)) (T -698))
-NIL
-(-10 -8 (-15 -2188 (|#1| (-520))) (-15 -2188 ((-791) |#1|)))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-1917 (((-3 $ "failed") $ $) 19)) (-3961 (($) 17 T CONST)) (-2473 (((-3 $ "failed") $) 40)) (-3918 (($ $ (-849)) 28) (($ $ (-706)) 35)) (-1540 (((-3 $ "failed") $) 38)) (-1537 (((-108) $) 34)) (-1368 (((-3 $ "failed") $) 39)) (-2544 (($ $ (-849)) 29) (($ $ (-706)) 36)) (-1239 (((-1066) $) 9)) (-4142 (((-1030) $) 10)) (-3607 (($ $ $) 25)) (-2188 (((-791) $) 11) (($ (-520)) 31)) (-3251 (((-706)) 32)) (-2214 (($ $ $ $) 26)) (-3710 (($ $ $) 24)) (-3560 (($) 18 T CONST)) (-3570 (($) 33 T CONST)) (-1530 (((-108) $ $) 6)) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (** (($ $ (-849)) 30) (($ $ (-706)) 37)) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ $ $) 27)))
-(((-699) (-1195)) (T -699))
-((-3251 (*1 *2) (-12 (-4 *1 (-699)) (-5 *2 (-706)))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-520)) (-4 *1 (-699)))))
-(-13 (-697) (-658) (-10 -8 (-15 -3251 ((-706))) (-15 -2188 ($ (-520)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-560 (-791)) . T) ((-656) . T) ((-658) . T) ((-697) . T) ((-1012) . T))
-((-3844 (((-586 (-2 (|:| |outval| (-154 |#1|)) (|:| |outmult| (-520)) (|:| |outvect| (-586 (-626 (-154 |#1|)))))) (-626 (-154 (-380 (-520)))) |#1|) 27)) (-2727 (((-586 (-154 |#1|)) (-626 (-154 (-380 (-520)))) |#1|) 19)) (-2948 (((-880 (-154 (-380 (-520)))) (-626 (-154 (-380 (-520)))) (-1083)) 16) (((-880 (-154 (-380 (-520)))) (-626 (-154 (-380 (-520))))) 15)))
-(((-700 |#1|) (-10 -7 (-15 -2948 ((-880 (-154 (-380 (-520)))) (-626 (-154 (-380 (-520)))))) (-15 -2948 ((-880 (-154 (-380 (-520)))) (-626 (-154 (-380 (-520)))) (-1083))) (-15 -2727 ((-586 (-154 |#1|)) (-626 (-154 (-380 (-520)))) |#1|)) (-15 -3844 ((-586 (-2 (|:| |outval| (-154 |#1|)) (|:| |outmult| (-520)) (|:| |outvect| (-586 (-626 (-154 |#1|)))))) (-626 (-154 (-380 (-520)))) |#1|))) (-13 (-336) (-781))) (T -700))
-((-3844 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-154 (-380 (-520))))) (-5 *2 (-586 (-2 (|:| |outval| (-154 *4)) (|:| |outmult| (-520)) (|:| |outvect| (-586 (-626 (-154 *4))))))) (-5 *1 (-700 *4)) (-4 *4 (-13 (-336) (-781))))) (-2727 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-154 (-380 (-520))))) (-5 *2 (-586 (-154 *4))) (-5 *1 (-700 *4)) (-4 *4 (-13 (-336) (-781))))) (-2948 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-154 (-380 (-520))))) (-5 *4 (-1083)) (-5 *2 (-880 (-154 (-380 (-520))))) (-5 *1 (-700 *5)) (-4 *5 (-13 (-336) (-781))))) (-2948 (*1 *2 *3) (-12 (-5 *3 (-626 (-154 (-380 (-520))))) (-5 *2 (-880 (-154 (-380 (-520))))) (-5 *1 (-700 *4)) (-4 *4 (-13 (-336) (-781))))))
-(-10 -7 (-15 -2948 ((-880 (-154 (-380 (-520)))) (-626 (-154 (-380 (-520)))))) (-15 -2948 ((-880 (-154 (-380 (-520)))) (-626 (-154 (-380 (-520)))) (-1083))) (-15 -2727 ((-586 (-154 |#1|)) (-626 (-154 (-380 (-520)))) |#1|)) (-15 -3844 ((-586 (-2 (|:| |outval| (-154 |#1|)) (|:| |outmult| (-520)) (|:| |outvect| (-586 (-626 (-154 |#1|)))))) (-626 (-154 (-380 (-520)))) |#1|)))
-((-2774 (((-158 (-520)) |#1|) 25)))
-(((-701 |#1|) (-10 -7 (-15 -2774 ((-158 (-520)) |#1|))) (-377)) (T -701))
-((-2774 (*1 *2 *3) (-12 (-5 *2 (-158 (-520))) (-5 *1 (-701 *3)) (-4 *3 (-377)))))
-(-10 -7 (-15 -2774 ((-158 (-520)) |#1|)))
-((-3602 ((|#1| |#1| |#1|) 25)) (-3872 ((|#1| |#1| |#1|) 24)) (-1983 ((|#1| |#1| |#1|) 32)) (-3962 ((|#1| |#1| |#1|) 28)) (-1724 (((-3 |#1| "failed") |#1| |#1|) 27)) (-3564 (((-2 (|:| -2060 |#1|) (|:| -3753 |#1|)) |#1| |#1|) 23)))
-(((-702 |#1| |#2|) (-10 -7 (-15 -3564 ((-2 (|:| -2060 |#1|) (|:| -3753 |#1|)) |#1| |#1|)) (-15 -3872 (|#1| |#1| |#1|)) (-15 -3602 (|#1| |#1| |#1|)) (-15 -1724 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3962 (|#1| |#1| |#1|)) (-15 -1983 (|#1| |#1| |#1|))) (-645 |#2|) (-336)) (T -702))
-((-1983 (*1 *2 *2 *2) (-12 (-4 *3 (-336)) (-5 *1 (-702 *2 *3)) (-4 *2 (-645 *3)))) (-3962 (*1 *2 *2 *2) (-12 (-4 *3 (-336)) (-5 *1 (-702 *2 *3)) (-4 *2 (-645 *3)))) (-1724 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-336)) (-5 *1 (-702 *2 *3)) (-4 *2 (-645 *3)))) (-3602 (*1 *2 *2 *2) (-12 (-4 *3 (-336)) (-5 *1 (-702 *2 *3)) (-4 *2 (-645 *3)))) (-3872 (*1 *2 *2 *2) (-12 (-4 *3 (-336)) (-5 *1 (-702 *2 *3)) (-4 *2 (-645 *3)))) (-3564 (*1 *2 *3 *3) (-12 (-4 *4 (-336)) (-5 *2 (-2 (|:| -2060 *3) (|:| -3753 *3))) (-5 *1 (-702 *3 *4)) (-4 *3 (-645 *4)))))
-(-10 -7 (-15 -3564 ((-2 (|:| -2060 |#1|) (|:| -3753 |#1|)) |#1| |#1|)) (-15 -3872 (|#1| |#1| |#1|)) (-15 -3602 (|#1| |#1| |#1|)) (-15 -1724 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3962 (|#1| |#1| |#1|)) (-15 -1983 (|#1| |#1| |#1|)))
-((-4182 (((-2 (|:| -1831 (-626 (-520))) (|:| |basisDen| (-520)) (|:| |basisInv| (-626 (-520)))) (-520)) 58)) (-2323 (((-2 (|:| -1831 (-626 (-520))) (|:| |basisDen| (-520)) (|:| |basisInv| (-626 (-520))))) 56)) (-2732 (((-520)) 68)))
-(((-703 |#1| |#2|) (-10 -7 (-15 -2732 ((-520))) (-15 -2323 ((-2 (|:| -1831 (-626 (-520))) (|:| |basisDen| (-520)) (|:| |basisInv| (-626 (-520)))))) (-15 -4182 ((-2 (|:| -1831 (-626 (-520))) (|:| |basisDen| (-520)) (|:| |basisInv| (-626 (-520)))) (-520)))) (-1140 (-520)) (-382 (-520) |#1|)) (T -703))
-((-4182 (*1 *2 *3) (-12 (-5 *3 (-520)) (-4 *4 (-1140 *3)) (-5 *2 (-2 (|:| -1831 (-626 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-626 *3)))) (-5 *1 (-703 *4 *5)) (-4 *5 (-382 *3 *4)))) (-2323 (*1 *2) (-12 (-4 *3 (-1140 (-520))) (-5 *2 (-2 (|:| -1831 (-626 (-520))) (|:| |basisDen| (-520)) (|:| |basisInv| (-626 (-520))))) (-5 *1 (-703 *3 *4)) (-4 *4 (-382 (-520) *3)))) (-2732 (*1 *2) (-12 (-4 *3 (-1140 *2)) (-5 *2 (-520)) (-5 *1 (-703 *3 *4)) (-4 *4 (-382 *2 *3)))))
-(-10 -7 (-15 -2732 ((-520))) (-15 -2323 ((-2 (|:| -1831 (-626 (-520))) (|:| |basisDen| (-520)) (|:| |basisInv| (-626 (-520)))))) (-15 -4182 ((-2 (|:| -1831 (-626 (-520))) (|:| |basisDen| (-520)) (|:| |basisInv| (-626 (-520)))) (-520))))
-((-1414 (((-108) $ $) NIL)) (-1482 (((-3 (|:| |nia| (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (|:| |mdnia| (-2 (|:| |fn| (-289 (-201))) (|:| -1667 (-586 (-1007 (-776 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))) $) 15)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2188 (((-791) $) 14) (($ (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 8) (($ (-2 (|:| |fn| (-289 (-201))) (|:| -1667 (-586 (-1007 (-776 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 10) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (|:| |mdnia| (-2 (|:| |fn| (-289 (-201))) (|:| -1667 (-586 (-1007 (-776 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))))) 12)) (-1530 (((-108) $ $) NIL)))
-(((-704) (-13 (-1012) (-10 -8 (-15 -2188 ($ (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))) (-15 -2188 ($ (-2 (|:| |fn| (-289 (-201))) (|:| -1667 (-586 (-1007 (-776 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))) (-15 -2188 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (|:| |mdnia| (-2 (|:| |fn| (-289 (-201))) (|:| -1667 (-586 (-1007 (-776 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))))) (-15 -2188 ((-791) $)) (-15 -1482 ((-3 (|:| |nia| (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (|:| |mdnia| (-2 (|:| |fn| (-289 (-201))) (|:| -1667 (-586 (-1007 (-776 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))) $))))) (T -704))
-((-2188 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-704)))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (-5 *1 (-704)))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-289 (-201))) (|:| -1667 (-586 (-1007 (-776 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (-5 *1 (-704)))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (|:| |mdnia| (-2 (|:| |fn| (-289 (-201))) (|:| -1667 (-586 (-1007 (-776 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))))) (-5 *1 (-704)))) (-1482 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (|:| |mdnia| (-2 (|:| |fn| (-289 (-201))) (|:| -1667 (-586 (-1007 (-776 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))))) (-5 *1 (-704)))))
-(-13 (-1012) (-10 -8 (-15 -2188 ($ (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))) (-15 -2188 ($ (-2 (|:| |fn| (-289 (-201))) (|:| -1667 (-586 (-1007 (-776 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))) (-15 -2188 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (|:| |mdnia| (-2 (|:| |fn| (-289 (-201))) (|:| -1667 (-586 (-1007 (-776 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))))) (-15 -2188 ((-791) $)) (-15 -1482 ((-3 (|:| |nia| (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (|:| |mdnia| (-2 (|:| |fn| (-289 (-201))) (|:| -1667 (-586 (-1007 (-776 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))) $))))
-((-3536 (((-586 (-586 (-268 (-380 (-880 |#1|))))) (-586 (-880 |#1|))) 14) (((-586 (-586 (-268 (-380 (-880 |#1|))))) (-586 (-880 |#1|)) (-586 (-1083))) 13)) (-3600 (((-586 (-586 (-268 (-380 (-880 |#1|))))) (-586 (-880 |#1|))) 16) (((-586 (-586 (-268 (-380 (-880 |#1|))))) (-586 (-880 |#1|)) (-586 (-1083))) 15)))
-(((-705 |#1|) (-10 -7 (-15 -3536 ((-586 (-586 (-268 (-380 (-880 |#1|))))) (-586 (-880 |#1|)) (-586 (-1083)))) (-15 -3536 ((-586 (-586 (-268 (-380 (-880 |#1|))))) (-586 (-880 |#1|)))) (-15 -3600 ((-586 (-586 (-268 (-380 (-880 |#1|))))) (-586 (-880 |#1|)) (-586 (-1083)))) (-15 -3600 ((-586 (-586 (-268 (-380 (-880 |#1|))))) (-586 (-880 |#1|))))) (-512)) (T -705))
-((-3600 (*1 *2 *3) (-12 (-5 *3 (-586 (-880 *4))) (-4 *4 (-512)) (-5 *2 (-586 (-586 (-268 (-380 (-880 *4)))))) (-5 *1 (-705 *4)))) (-3600 (*1 *2 *3 *4) (-12 (-5 *3 (-586 (-880 *5))) (-5 *4 (-586 (-1083))) (-4 *5 (-512)) (-5 *2 (-586 (-586 (-268 (-380 (-880 *5)))))) (-5 *1 (-705 *5)))) (-3536 (*1 *2 *3) (-12 (-5 *3 (-586 (-880 *4))) (-4 *4 (-512)) (-5 *2 (-586 (-586 (-268 (-380 (-880 *4)))))) (-5 *1 (-705 *4)))) (-3536 (*1 *2 *3 *4) (-12 (-5 *3 (-586 (-880 *5))) (-5 *4 (-586 (-1083))) (-4 *5 (-512)) (-5 *2 (-586 (-586 (-268 (-380 (-880 *5)))))) (-5 *1 (-705 *5)))))
-(-10 -7 (-15 -3536 ((-586 (-586 (-268 (-380 (-880 |#1|))))) (-586 (-880 |#1|)) (-586 (-1083)))) (-15 -3536 ((-586 (-586 (-268 (-380 (-880 |#1|))))) (-586 (-880 |#1|)))) (-15 -3600 ((-586 (-586 (-268 (-380 (-880 |#1|))))) (-586 (-880 |#1|)) (-586 (-1083)))) (-15 -3600 ((-586 (-586 (-268 (-380 (-880 |#1|))))) (-586 (-880 |#1|)))))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-1224 (($ $ $) 8)) (-1917 (((-3 $ "failed") $ $) 11)) (-1660 (($ $ (-520)) 9)) (-3961 (($) NIL T CONST)) (-2276 (($ $ $) NIL)) (-1540 (((-3 $ "failed") $) NIL)) (-3249 (($ $) NIL)) (-2253 (($ $ $) NIL)) (-1537 (((-108) $) NIL)) (-2809 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2257 (($ $ $) NIL)) (-2230 (((-3 $ "failed") $ $) NIL)) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) NIL)) (-2188 (((-791) $) NIL)) (-3504 (($ $ (-706)) NIL) (($ $ (-849)) NIL)) (-3560 (($) NIL T CONST)) (-3570 (($) NIL T CONST)) (-1573 (((-108) $ $) NIL)) (-1557 (((-108) $ $) NIL)) (-1530 (((-108) $ $) NIL)) (-1565 (((-108) $ $) NIL)) (-1548 (((-108) $ $) NIL)) (-1601 (($ $ $) NIL)) (** (($ $ (-706)) NIL) (($ $ (-849)) NIL)) (* (($ (-706) $) NIL) (($ (-849) $) NIL) (($ $ $) NIL)))
-(((-706) (-13 (-728) (-662) (-10 -8 (-15 -2253 ($ $ $)) (-15 -2276 ($ $ $)) (-15 -2257 ($ $ $)) (-15 -2806 ((-2 (|:| -2060 $) (|:| -3753 $)) $ $)) (-15 -2230 ((-3 $ "failed") $ $)) (-15 -1660 ($ $ (-520))) (-15 -3249 ($ $)) (-6 (-4231 "*"))))) (T -706))
-((-2253 (*1 *1 *1 *1) (-5 *1 (-706))) (-2276 (*1 *1 *1 *1) (-5 *1 (-706))) (-2257 (*1 *1 *1 *1) (-5 *1 (-706))) (-2806 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2060 (-706)) (|:| -3753 (-706)))) (-5 *1 (-706)))) (-2230 (*1 *1 *1 *1) (|partial| -5 *1 (-706))) (-1660 (*1 *1 *1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-706)))) (-3249 (*1 *1 *1) (-5 *1 (-706))))
-(-13 (-728) (-662) (-10 -8 (-15 -2253 ($ $ $)) (-15 -2276 ($ $ $)) (-15 -2257 ($ $ $)) (-15 -2806 ((-2 (|:| -2060 $) (|:| -3753 $)) $ $)) (-15 -2230 ((-3 $ "failed") $ $)) (-15 -1660 ($ $ (-520))) (-15 -3249 ($ $)) (-6 (-4231 "*"))))
-((-3600 (((-3 |#2| "failed") |#2| |#2| (-110) (-1083)) 35)))
-(((-707 |#1| |#2|) (-10 -7 (-15 -3600 ((-3 |#2| "failed") |#2| |#2| (-110) (-1083)))) (-13 (-783) (-281) (-960 (-520)) (-582 (-520)) (-135)) (-13 (-29 |#1|) (-1104) (-886))) (T -707))
-((-3600 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-110)) (-5 *4 (-1083)) (-4 *5 (-13 (-783) (-281) (-960 (-520)) (-582 (-520)) (-135))) (-5 *1 (-707 *5 *2)) (-4 *2 (-13 (-29 *5) (-1104) (-886))))))
-(-10 -7 (-15 -3600 ((-3 |#2| "failed") |#2| |#2| (-110) (-1083))))
-((-2188 (((-709) |#1|) 8)))
-(((-708 |#1|) (-10 -7 (-15 -2188 ((-709) |#1|))) (-1118)) (T -708))
-((-2188 (*1 *2 *3) (-12 (-5 *2 (-709)) (-5 *1 (-708 *3)) (-4 *3 (-1118)))))
-(-10 -7 (-15 -2188 ((-709) |#1|)))
-((-1414 (((-108) $ $) NIL)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2188 (((-791) $) 7)) (-1530 (((-108) $ $) 9)))
-(((-709) (-1012)) (T -709))
-NIL
-(-1012)
-((-1434 ((|#2| |#4|) 35)))
-(((-710 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1434 (|#2| |#4|))) (-424) (-1140 |#1|) (-660 |#1| |#2|) (-1140 |#3|)) (T -710))
-((-1434 (*1 *2 *3) (-12 (-4 *4 (-424)) (-4 *5 (-660 *4 *2)) (-4 *2 (-1140 *4)) (-5 *1 (-710 *4 *2 *5 *3)) (-4 *3 (-1140 *5)))))
-(-10 -7 (-15 -1434 (|#2| |#4|)))
-((-1540 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 56)) (-1735 (((-1169) (-1066) (-1066) |#4| |#5|) 33)) (-3903 ((|#4| |#4| |#5|) 73)) (-2593 (((-586 (-2 (|:| |val| |#4|) (|:| -1883 |#5|))) |#4| |#5|) 77)) (-2027 (((-586 (-2 (|:| |val| (-108)) (|:| -1883 |#5|))) |#4| |#5|) 15)))
-(((-711 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1540 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3903 (|#4| |#4| |#5|)) (-15 -2593 ((-586 (-2 (|:| |val| |#4|) (|:| -1883 |#5|))) |#4| |#5|)) (-15 -1735 ((-1169) (-1066) (-1066) |#4| |#5|)) (-15 -2027 ((-586 (-2 (|:| |val| (-108)) (|:| -1883 |#5|))) |#4| |#5|))) (-424) (-728) (-783) (-983 |#1| |#2| |#3|) (-988 |#1| |#2| |#3| |#4|)) (T -711))
-((-2027 (*1 *2 *3 *4) (-12 (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783)) (-4 *3 (-983 *5 *6 *7)) (-5 *2 (-586 (-2 (|:| |val| (-108)) (|:| -1883 *4)))) (-5 *1 (-711 *5 *6 *7 *3 *4)) (-4 *4 (-988 *5 *6 *7 *3)))) (-1735 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1066)) (-4 *6 (-424)) (-4 *7 (-728)) (-4 *8 (-783)) (-4 *4 (-983 *6 *7 *8)) (-5 *2 (-1169)) (-5 *1 (-711 *6 *7 *8 *4 *5)) (-4 *5 (-988 *6 *7 *8 *4)))) (-2593 (*1 *2 *3 *4) (-12 (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783)) (-4 *3 (-983 *5 *6 *7)) (-5 *2 (-586 (-2 (|:| |val| *3) (|:| -1883 *4)))) (-5 *1 (-711 *5 *6 *7 *3 *4)) (-4 *4 (-988 *5 *6 *7 *3)))) (-3903 (*1 *2 *2 *3) (-12 (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783)) (-4 *2 (-983 *4 *5 *6)) (-5 *1 (-711 *4 *5 *6 *2 *3)) (-4 *3 (-988 *4 *5 *6 *2)))) (-1540 (*1 *2 *3 *4) (-12 (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783)) (-4 *3 (-983 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-711 *5 *6 *7 *3 *4)) (-4 *4 (-988 *5 *6 *7 *3)))))
-(-10 -7 (-15 -1540 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3903 (|#4| |#4| |#5|)) (-15 -2593 ((-586 (-2 (|:| |val| |#4|) (|:| -1883 |#5|))) |#4| |#5|)) (-15 -1735 ((-1169) (-1066) (-1066) |#4| |#5|)) (-15 -2027 ((-586 (-2 (|:| |val| (-108)) (|:| -1883 |#5|))) |#4| |#5|)))
-((-1296 (((-3 (-1079 (-1079 |#1|)) "failed") |#4|) 44)) (-3835 (((-586 |#4|) |#4|) 15)) (-3751 ((|#4| |#4|) 11)))
-(((-712 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3835 ((-586 |#4|) |#4|)) (-15 -1296 ((-3 (-1079 (-1079 |#1|)) "failed") |#4|)) (-15 -3751 (|#4| |#4|))) (-322) (-302 |#1|) (-1140 |#2|) (-1140 |#3|) (-849)) (T -712))
-((-3751 (*1 *2 *2) (-12 (-4 *3 (-322)) (-4 *4 (-302 *3)) (-4 *5 (-1140 *4)) (-5 *1 (-712 *3 *4 *5 *2 *6)) (-4 *2 (-1140 *5)) (-14 *6 (-849)))) (-1296 (*1 *2 *3) (|partial| -12 (-4 *4 (-322)) (-4 *5 (-302 *4)) (-4 *6 (-1140 *5)) (-5 *2 (-1079 (-1079 *4))) (-5 *1 (-712 *4 *5 *6 *3 *7)) (-4 *3 (-1140 *6)) (-14 *7 (-849)))) (-3835 (*1 *2 *3) (-12 (-4 *4 (-322)) (-4 *5 (-302 *4)) (-4 *6 (-1140 *5)) (-5 *2 (-586 *3)) (-5 *1 (-712 *4 *5 *6 *3 *7)) (-4 *3 (-1140 *6)) (-14 *7 (-849)))))
-(-10 -7 (-15 -3835 ((-586 |#4|) |#4|)) (-15 -1296 ((-3 (-1079 (-1079 |#1|)) "failed") |#4|)) (-15 -3751 (|#4| |#4|)))
-((-1616 (((-2 (|:| |deter| (-586 (-1079 |#5|))) (|:| |dterm| (-586 (-586 (-2 (|:| -1552 (-706)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-586 |#1|)) (|:| |nlead| (-586 |#5|))) (-1079 |#5|) (-586 |#1|) (-586 |#5|)) 53)) (-1908 (((-586 (-706)) |#1|) 12)))
-(((-713 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1616 ((-2 (|:| |deter| (-586 (-1079 |#5|))) (|:| |dterm| (-586 (-586 (-2 (|:| -1552 (-706)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-586 |#1|)) (|:| |nlead| (-586 |#5|))) (-1079 |#5|) (-586 |#1|) (-586 |#5|))) (-15 -1908 ((-586 (-706)) |#1|))) (-1140 |#4|) (-728) (-783) (-281) (-877 |#4| |#2| |#3|)) (T -713))
-((-1908 (*1 *2 *3) (-12 (-4 *4 (-728)) (-4 *5 (-783)) (-4 *6 (-281)) (-5 *2 (-586 (-706))) (-5 *1 (-713 *3 *4 *5 *6 *7)) (-4 *3 (-1140 *6)) (-4 *7 (-877 *6 *4 *5)))) (-1616 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1140 *9)) (-4 *7 (-728)) (-4 *8 (-783)) (-4 *9 (-281)) (-4 *10 (-877 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-586 (-1079 *10))) (|:| |dterm| (-586 (-586 (-2 (|:| -1552 (-706)) (|:| |pcoef| *10))))) (|:| |nfacts| (-586 *6)) (|:| |nlead| (-586 *10)))) (-5 *1 (-713 *6 *7 *8 *9 *10)) (-5 *3 (-1079 *10)) (-5 *4 (-586 *6)) (-5 *5 (-586 *10)))))
-(-10 -7 (-15 -1616 ((-2 (|:| |deter| (-586 (-1079 |#5|))) (|:| |dterm| (-586 (-586 (-2 (|:| -1552 (-706)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-586 |#1|)) (|:| |nlead| (-586 |#5|))) (-1079 |#5|) (-586 |#1|) (-586 |#5|))) (-15 -1908 ((-586 (-706)) |#1|)))
-((-3722 (((-586 (-2 (|:| |outval| |#1|) (|:| |outmult| (-520)) (|:| |outvect| (-586 (-626 |#1|))))) (-626 (-380 (-520))) |#1|) 27)) (-2660 (((-586 |#1|) (-626 (-380 (-520))) |#1|) 19)) (-2948 (((-880 (-380 (-520))) (-626 (-380 (-520))) (-1083)) 16) (((-880 (-380 (-520))) (-626 (-380 (-520)))) 15)))
-(((-714 |#1|) (-10 -7 (-15 -2948 ((-880 (-380 (-520))) (-626 (-380 (-520))))) (-15 -2948 ((-880 (-380 (-520))) (-626 (-380 (-520))) (-1083))) (-15 -2660 ((-586 |#1|) (-626 (-380 (-520))) |#1|)) (-15 -3722 ((-586 (-2 (|:| |outval| |#1|) (|:| |outmult| (-520)) (|:| |outvect| (-586 (-626 |#1|))))) (-626 (-380 (-520))) |#1|))) (-13 (-336) (-781))) (T -714))
-((-3722 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-380 (-520)))) (-5 *2 (-586 (-2 (|:| |outval| *4) (|:| |outmult| (-520)) (|:| |outvect| (-586 (-626 *4)))))) (-5 *1 (-714 *4)) (-4 *4 (-13 (-336) (-781))))) (-2660 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-380 (-520)))) (-5 *2 (-586 *4)) (-5 *1 (-714 *4)) (-4 *4 (-13 (-336) (-781))))) (-2948 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-380 (-520)))) (-5 *4 (-1083)) (-5 *2 (-880 (-380 (-520)))) (-5 *1 (-714 *5)) (-4 *5 (-13 (-336) (-781))))) (-2948 (*1 *2 *3) (-12 (-5 *3 (-626 (-380 (-520)))) (-5 *2 (-880 (-380 (-520)))) (-5 *1 (-714 *4)) (-4 *4 (-13 (-336) (-781))))))
-(-10 -7 (-15 -2948 ((-880 (-380 (-520))) (-626 (-380 (-520))))) (-15 -2948 ((-880 (-380 (-520))) (-626 (-380 (-520))) (-1083))) (-15 -2660 ((-586 |#1|) (-626 (-380 (-520))) |#1|)) (-15 -3722 ((-586 (-2 (|:| |outval| |#1|) (|:| |outmult| (-520)) (|:| |outvect| (-586 (-626 |#1|))))) (-626 (-380 (-520))) |#1|)))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) 34)) (-4081 (((-586 |#2|) $) NIL)) (-1278 (((-1079 $) $ |#2|) NIL) (((-1079 |#1|) $) NIL)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) NIL (|has| |#1| (-512)))) (-2583 (($ $) NIL (|has| |#1| (-512)))) (-1671 (((-108) $) NIL (|has| |#1| (-512)))) (-3665 (((-706) $) NIL) (((-706) $ (-586 |#2|)) NIL)) (-3827 (($ $) 28)) (-2760 (((-108) $ $) NIL)) (-1917 (((-3 $ "failed") $ $) NIL)) (-3309 (($ $ $) 93 (|has| |#1| (-512)))) (-3465 (((-586 $) $ $) 106 (|has| |#1| (-512)))) (-4119 (((-391 (-1079 $)) (-1079 $)) NIL (|has| |#1| (-837)))) (-3024 (($ $) NIL (|has| |#1| (-424)))) (-1507 (((-391 $) $) NIL (|has| |#1| (-424)))) (-3481 (((-3 (-586 (-1079 $)) "failed") (-586 (-1079 $)) (-1079 $)) NIL (|has| |#1| (-837)))) (-3961 (($) NIL T CONST)) (-1296 (((-3 |#1| "failed") $) NIL) (((-3 (-380 (-520)) "failed") $) NIL (|has| |#1| (-960 (-380 (-520))))) (((-3 (-520) "failed") $) NIL (|has| |#1| (-960 (-520)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-880 (-380 (-520)))) NIL (-12 (|has| |#1| (-37 (-380 (-520)))) (|has| |#2| (-561 (-1083))))) (((-3 $ "failed") (-880 (-520))) NIL (-3700 (-12 (|has| |#1| (-37 (-520))) (|has| |#2| (-561 (-1083))) (-2399 (|has| |#1| (-37 (-380 (-520)))))) (-12 (|has| |#1| (-37 (-380 (-520)))) (|has| |#2| (-561 (-1083)))))) (((-3 $ "failed") (-880 |#1|)) NIL (-3700 (-12 (|has| |#2| (-561 (-1083))) (-2399 (|has| |#1| (-37 (-380 (-520))))) (-2399 (|has| |#1| (-37 (-520))))) (-12 (|has| |#1| (-37 (-520))) (|has| |#2| (-561 (-1083))) (-2399 (|has| |#1| (-37 (-380 (-520))))) (-2399 (|has| |#1| (-505)))) (-12 (|has| |#1| (-37 (-380 (-520)))) (|has| |#2| (-561 (-1083))) (-2399 (|has| |#1| (-917 (-520))))))) (((-3 (-1035 |#1| |#2|) "failed") $) 18)) (-1482 ((|#1| $) NIL) (((-380 (-520)) $) NIL (|has| |#1| (-960 (-380 (-520))))) (((-520) $) NIL (|has| |#1| (-960 (-520)))) ((|#2| $) NIL) (($ (-880 (-380 (-520)))) NIL (-12 (|has| |#1| (-37 (-380 (-520)))) (|has| |#2| (-561 (-1083))))) (($ (-880 (-520))) NIL (-3700 (-12 (|has| |#1| (-37 (-520))) (|has| |#2| (-561 (-1083))) (-2399 (|has| |#1| (-37 (-380 (-520)))))) (-12 (|has| |#1| (-37 (-380 (-520)))) (|has| |#2| (-561 (-1083)))))) (($ (-880 |#1|)) NIL (-3700 (-12 (|has| |#2| (-561 (-1083))) (-2399 (|has| |#1| (-37 (-380 (-520))))) (-2399 (|has| |#1| (-37 (-520))))) (-12 (|has| |#1| (-37 (-520))) (|has| |#2| (-561 (-1083))) (-2399 (|has| |#1| (-37 (-380 (-520))))) (-2399 (|has| |#1| (-505)))) (-12 (|has| |#1| (-37 (-380 (-520)))) (|has| |#2| (-561 (-1083))) (-2399 (|has| |#1| (-917 (-520))))))) (((-1035 |#1| |#2|) $) NIL)) (-2413 (($ $ $ |#2|) NIL (|has| |#1| (-157))) (($ $ $) 104 (|has| |#1| (-512)))) (-3150 (($ $) NIL) (($ $ |#2|) NIL)) (-2756 (((-626 (-520)) (-626 $)) NIL (|has| |#1| (-582 (-520)))) (((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 $) (-1164 $)) NIL (|has| |#1| (-582 (-520)))) (((-2 (|:| -3927 (-626 |#1|)) (|:| |vec| (-1164 |#1|))) (-626 $) (-1164 $)) NIL) (((-626 |#1|) (-626 $)) NIL)) (-3738 (((-108) $ $) NIL) (((-108) $ (-586 $)) NIL)) (-1540 (((-3 $ "failed") $) NIL)) (-3916 (((-108) $) NIL)) (-1973 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) 70)) (-4053 (($ $) 119 (|has| |#1| (-424)))) (-3923 (($ $) NIL (|has| |#1| (-424))) (($ $ |#2|) NIL (|has| |#1| (-424)))) (-3142 (((-586 $) $) NIL)) (-2036 (((-108) $) NIL (|has| |#1| (-837)))) (-4171 (($ $) NIL (|has| |#1| (-512)))) (-2577 (($ $) NIL (|has| |#1| (-512)))) (-1623 (($ $ $) 65) (($ $ $ |#2|) NIL)) (-1950 (($ $ $) 68) (($ $ $ |#2|) NIL)) (-3397 (($ $ |#1| (-492 |#2|) $) NIL)) (-1272 (((-817 (-352) $) $ (-820 (-352)) (-817 (-352) $)) NIL (-12 (|has| |#1| (-814 (-352))) (|has| |#2| (-814 (-352))))) (((-817 (-520) $) $ (-820 (-520)) (-817 (-520) $)) NIL (-12 (|has| |#1| (-814 (-520))) (|has| |#2| (-814 (-520)))))) (-1537 (((-108) $) NIL)) (-1315 (((-706) $) NIL)) (-2311 (((-108) $ $) NIL) (((-108) $ (-586 $)) NIL)) (-1703 (($ $ $ $ $) 90 (|has| |#1| (-512)))) (-3871 ((|#2| $) 19)) (-4065 (($ (-1079 |#1|) |#2|) NIL) (($ (-1079 $) |#2|) NIL)) (-1992 (((-586 $) $) NIL)) (-3774 (((-108) $) NIL)) (-4039 (($ |#1| (-492 |#2|)) NIL) (($ $ |#2| (-706)) 36) (($ $ (-586 |#2|) (-586 (-706))) NIL)) (-3868 (($ $ $) 60)) (-1910 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $ |#2|) NIL)) (-3174 (((-108) $) NIL)) (-3562 (((-492 |#2|) $) NIL) (((-706) $ |#2|) NIL) (((-586 (-706)) $ (-586 |#2|)) NIL)) (-2809 (($ $ $) NIL (|has| |#1| (-783)))) (-2956 (((-706) $) 20)) (-2446 (($ $ $) NIL (|has| |#1| (-783)))) (-3295 (($ (-1 (-492 |#2|) (-492 |#2|)) $) NIL)) (-1389 (($ (-1 |#1| |#1|) $) NIL)) (-3186 (((-3 |#2| "failed") $) NIL)) (-1609 (($ $) NIL (|has| |#1| (-424)))) (-2158 (($ $) NIL (|has| |#1| (-424)))) (-2359 (((-586 $) $) NIL)) (-2347 (($ $) 37)) (-2108 (($ $) NIL (|has| |#1| (-424)))) (-4172 (((-586 $) $) 41)) (-1848 (($ $) 39)) (-3123 (($ $) NIL)) (-3133 ((|#1| $) NIL) (($ $ |#2|) 45)) (-2222 (($ (-586 $)) NIL (|has| |#1| (-424))) (($ $ $) NIL (|has| |#1| (-424)))) (-3106 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1798 (-706))) $ $) 82)) (-2000 (((-2 (|:| -2972 $) (|:| |gap| (-706)) (|:| -2060 $) (|:| -3753 $)) $ $) 67) (((-2 (|:| -2972 $) (|:| |gap| (-706)) (|:| -2060 $) (|:| -3753 $)) $ $ |#2|) NIL)) (-3331 (((-2 (|:| -2972 $) (|:| |gap| (-706)) (|:| -3753 $)) $ $) NIL) (((-2 (|:| -2972 $) (|:| |gap| (-706)) (|:| -3753 $)) $ $ |#2|) NIL)) (-3509 (($ $ $) 72) (($ $ $ |#2|) NIL)) (-1697 (($ $ $) 75) (($ $ $ |#2|) NIL)) (-1239 (((-1066) $) NIL)) (-2170 (($ $ $) 108 (|has| |#1| (-512)))) (-2852 (((-586 $) $) 30)) (-3548 (((-3 (-586 $) "failed") $) NIL)) (-1205 (((-3 (-586 $) "failed") $) NIL)) (-2568 (((-3 (-2 (|:| |var| |#2|) (|:| -2647 (-706))) "failed") $) NIL)) (-2428 (((-108) $ $) NIL) (((-108) $ (-586 $)) NIL)) (-2778 (($ $ $) NIL)) (-3794 (($ $) 21)) (-3444 (((-108) $ $) NIL)) (-1322 (((-108) $ $) NIL) (((-108) $ (-586 $)) NIL)) (-3499 (($ $ $) NIL)) (-3906 (($ $) 23)) (-4142 (((-1030) $) NIL)) (-1197 (((-2 (|:| -2257 $) (|:| |coef2| $)) $ $) 99 (|has| |#1| (-512)))) (-4141 (((-2 (|:| -2257 $) (|:| |coef1| $)) $ $) 96 (|has| |#1| (-512)))) (-3103 (((-108) $) 52)) (-3113 ((|#1| $) 55)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) NIL (|has| |#1| (-424)))) (-2257 ((|#1| |#1| $) 116 (|has| |#1| (-424))) (($ (-586 $)) NIL (|has| |#1| (-424))) (($ $ $) NIL (|has| |#1| (-424)))) (-4133 (((-391 (-1079 $)) (-1079 $)) NIL (|has| |#1| (-837)))) (-2017 (((-391 (-1079 $)) (-1079 $)) NIL (|has| |#1| (-837)))) (-1916 (((-391 $) $) NIL (|has| |#1| (-837)))) (-2320 (((-2 (|:| -2257 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 102 (|has| |#1| (-512)))) (-2230 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-512))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-512)))) (-2228 (($ $ |#1|) 112 (|has| |#1| (-512))) (($ $ $) NIL (|has| |#1| (-512)))) (-1479 (($ $ |#1|) 111 (|has| |#1| (-512))) (($ $ $) NIL (|has| |#1| (-512)))) (-2286 (($ $ (-586 (-268 $))) NIL) (($ $ (-268 $)) NIL) (($ $ $ $) NIL) (($ $ (-586 $) (-586 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-586 |#2|) (-586 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-586 |#2|) (-586 $)) NIL)) (-2732 (($ $ |#2|) NIL (|has| |#1| (-157)))) (-2155 (($ $ |#2|) NIL) (($ $ (-586 |#2|)) NIL) (($ $ |#2| (-706)) NIL) (($ $ (-586 |#2|) (-586 (-706))) NIL)) (-2528 (((-492 |#2|) $) NIL) (((-706) $ |#2|) 43) (((-586 (-706)) $ (-586 |#2|)) NIL)) (-2417 (($ $) NIL)) (-3185 (($ $) 33)) (-1429 (((-820 (-352)) $) NIL (-12 (|has| |#1| (-561 (-820 (-352)))) (|has| |#2| (-561 (-820 (-352)))))) (((-820 (-520)) $) NIL (-12 (|has| |#1| (-561 (-820 (-520)))) (|has| |#2| (-561 (-820 (-520)))))) (((-496) $) NIL (-12 (|has| |#1| (-561 (-496))) (|has| |#2| (-561 (-496))))) (($ (-880 (-380 (-520)))) NIL (-12 (|has| |#1| (-37 (-380 (-520)))) (|has| |#2| (-561 (-1083))))) (($ (-880 (-520))) NIL (-3700 (-12 (|has| |#1| (-37 (-520))) (|has| |#2| (-561 (-1083))) (-2399 (|has| |#1| (-37 (-380 (-520)))))) (-12 (|has| |#1| (-37 (-380 (-520)))) (|has| |#2| (-561 (-1083)))))) (($ (-880 |#1|)) NIL (|has| |#2| (-561 (-1083)))) (((-1066) $) NIL (-12 (|has| |#1| (-960 (-520))) (|has| |#2| (-561 (-1083))))) (((-880 |#1|) $) NIL (|has| |#2| (-561 (-1083))))) (-1233 ((|#1| $) 115 (|has| |#1| (-424))) (($ $ |#2|) NIL (|has| |#1| (-424)))) (-3784 (((-3 (-1164 $) "failed") (-626 $)) NIL (-12 (|has| $ (-133)) (|has| |#1| (-837))))) (-2188 (((-791) $) NIL) (($ (-520)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-880 |#1|) $) NIL (|has| |#2| (-561 (-1083)))) (((-1035 |#1| |#2|) $) 15) (($ (-1035 |#1| |#2|)) 16) (($ (-380 (-520))) NIL (-3700 (|has| |#1| (-37 (-380 (-520)))) (|has| |#1| (-960 (-380 (-520)))))) (($ $) NIL (|has| |#1| (-512)))) (-4113 (((-586 |#1|) $) NIL)) (-3475 ((|#1| $ (-492 |#2|)) NIL) (($ $ |#2| (-706)) 44) (($ $ (-586 |#2|) (-586 (-706))) NIL)) (-3796 (((-3 $ "failed") $) NIL (-3700 (-12 (|has| $ (-133)) (|has| |#1| (-837))) (|has| |#1| (-133))))) (-3251 (((-706)) NIL)) (-1782 (($ $ $ (-706)) NIL (|has| |#1| (-157)))) (-2559 (((-108) $ $) NIL (|has| |#1| (-512)))) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (-3560 (($) 13 T CONST)) (-2542 (((-3 (-108) "failed") $ $) NIL)) (-3570 (($) 35 T CONST)) (-3196 (($ $ $ $ (-706)) 88 (|has| |#1| (-512)))) (-1793 (($ $ $ (-706)) 87 (|has| |#1| (-512)))) (-2211 (($ $ |#2|) NIL) (($ $ (-586 |#2|)) NIL) (($ $ |#2| (-706)) NIL) (($ $ (-586 |#2|) (-586 (-706))) NIL)) (-1573 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1557 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1530 (((-108) $ $) 54)) (-1565 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1548 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1619 (($ $ |#1|) NIL (|has| |#1| (-336)))) (-1611 (($ $) NIL) (($ $ $) 64)) (-1601 (($ $ $) 74)) (** (($ $ (-849)) NIL) (($ $ (-706)) 61)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) 59) (($ $ (-380 (-520))) NIL (|has| |#1| (-37 (-380 (-520))))) (($ (-380 (-520)) $) NIL (|has| |#1| (-37 (-380 (-520))))) (($ |#1| $) 58) (($ $ |#1|) NIL)))
-(((-715 |#1| |#2|) (-13 (-983 |#1| (-492 |#2|) |#2|) (-560 (-1035 |#1| |#2|)) (-960 (-1035 |#1| |#2|))) (-969) (-783)) (T -715))
-NIL
-(-13 (-983 |#1| (-492 |#2|) |#2|) (-560 (-1035 |#1| |#2|)) (-960 (-1035 |#1| |#2|)))
-((-1389 (((-717 |#2|) (-1 |#2| |#1|) (-717 |#1|)) 13)))
-(((-716 |#1| |#2|) (-10 -7 (-15 -1389 ((-717 |#2|) (-1 |#2| |#1|) (-717 |#1|)))) (-969) (-969)) (T -716))
-((-1389 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-717 *5)) (-4 *5 (-969)) (-4 *6 (-969)) (-5 *2 (-717 *6)) (-5 *1 (-716 *5 *6)))))
-(-10 -7 (-15 -1389 ((-717 |#2|) (-1 |#2| |#1|) (-717 |#1|))))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) 12)) (-2580 (((-1164 |#1|) $ (-706)) NIL)) (-4081 (((-586 (-997)) $) NIL)) (-2083 (($ (-1079 |#1|)) NIL)) (-1278 (((-1079 $) $ (-997)) NIL) (((-1079 |#1|) $) NIL)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) NIL (|has| |#1| (-512)))) (-2583 (($ $) NIL (|has| |#1| (-512)))) (-1671 (((-108) $) NIL (|has| |#1| (-512)))) (-3665 (((-706) $) NIL) (((-706) $ (-586 (-997))) NIL)) (-1917 (((-3 $ "failed") $ $) NIL)) (-1966 (((-586 $) $ $) 39 (|has| |#1| (-512)))) (-3309 (($ $ $) 35 (|has| |#1| (-512)))) (-4119 (((-391 (-1079 $)) (-1079 $)) NIL (|has| |#1| (-837)))) (-3024 (($ $) NIL (|has| |#1| (-424)))) (-1507 (((-391 $) $) NIL (|has| |#1| (-424)))) (-3481 (((-3 (-586 (-1079 $)) "failed") (-586 (-1079 $)) (-1079 $)) NIL (|has| |#1| (-837)))) (-1327 (((-108) $ $) NIL (|has| |#1| (-336)))) (-3392 (($ $ (-706)) NIL)) (-1371 (($ $ (-706)) NIL)) (-1285 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-424)))) (-3961 (($) NIL T CONST)) (-1296 (((-3 |#1| "failed") $) NIL) (((-3 (-380 (-520)) "failed") $) NIL (|has| |#1| (-960 (-380 (-520))))) (((-3 (-520) "failed") $) NIL (|has| |#1| (-960 (-520)))) (((-3 (-997) "failed") $) NIL) (((-3 (-1079 |#1|) "failed") $) 10)) (-1482 ((|#1| $) NIL) (((-380 (-520)) $) NIL (|has| |#1| (-960 (-380 (-520))))) (((-520) $) NIL (|has| |#1| (-960 (-520)))) (((-997) $) NIL) (((-1079 |#1|) $) NIL)) (-2413 (($ $ $ (-997)) NIL (|has| |#1| (-157))) ((|#1| $ $) 43 (|has| |#1| (-157)))) (-2276 (($ $ $) NIL (|has| |#1| (-336)))) (-3150 (($ $) NIL)) (-2756 (((-626 (-520)) (-626 $)) NIL (|has| |#1| (-582 (-520)))) (((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 $) (-1164 $)) NIL (|has| |#1| (-582 (-520)))) (((-2 (|:| -3927 (-626 |#1|)) (|:| |vec| (-1164 |#1|))) (-626 $) (-1164 $)) NIL) (((-626 |#1|) (-626 $)) NIL)) (-1540 (((-3 $ "failed") $) NIL)) (-2253 (($ $ $) NIL (|has| |#1| (-336)))) (-3521 (($ $ $) NIL)) (-2847 (($ $ $) 71 (|has| |#1| (-512)))) (-1973 (((-2 (|:| -2972 |#1|) (|:| -2060 $) (|:| -3753 $)) $ $) 70 (|has| |#1| (-512)))) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) NIL (|has| |#1| (-336)))) (-3923 (($ $) NIL (|has| |#1| (-424))) (($ $ (-997)) NIL (|has| |#1| (-424)))) (-3142 (((-586 $) $) NIL)) (-2036 (((-108) $) NIL (|has| |#1| (-837)))) (-3397 (($ $ |#1| (-706) $) NIL)) (-1272 (((-817 (-352) $) $ (-820 (-352)) (-817 (-352) $)) NIL (-12 (|has| (-997) (-814 (-352))) (|has| |#1| (-814 (-352))))) (((-817 (-520) $) $ (-820 (-520)) (-817 (-520) $)) NIL (-12 (|has| (-997) (-814 (-520))) (|has| |#1| (-814 (-520)))))) (-3989 (((-706) $ $) NIL (|has| |#1| (-512)))) (-1537 (((-108) $) NIL)) (-1315 (((-706) $) NIL)) (-1394 (((-3 $ "failed") $) NIL (|has| |#1| (-1059)))) (-4065 (($ (-1079 |#1|) (-997)) NIL) (($ (-1079 $) (-997)) NIL)) (-2371 (($ $ (-706)) NIL)) (-3188 (((-3 (-586 $) "failed") (-586 $) $) NIL (|has| |#1| (-336)))) (-1992 (((-586 $) $) NIL)) (-3774 (((-108) $) NIL)) (-4039 (($ |#1| (-706)) NIL) (($ $ (-997) (-706)) NIL) (($ $ (-586 (-997)) (-586 (-706))) NIL)) (-3868 (($ $ $) 20)) (-1910 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $ (-997)) NIL) (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) NIL)) (-3562 (((-706) $) NIL) (((-706) $ (-997)) NIL) (((-586 (-706)) $ (-586 (-997))) NIL)) (-2809 (($ $ $) NIL (|has| |#1| (-783)))) (-2446 (($ $ $) NIL (|has| |#1| (-783)))) (-3295 (($ (-1 (-706) (-706)) $) NIL)) (-1389 (($ (-1 |#1| |#1|) $) NIL)) (-3416 (((-1079 |#1|) $) NIL)) (-3186 (((-3 (-997) "failed") $) NIL)) (-3123 (($ $) NIL)) (-3133 ((|#1| $) NIL)) (-2222 (($ (-586 $)) NIL (|has| |#1| (-424))) (($ $ $) NIL (|has| |#1| (-424)))) (-3106 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -1798 (-706))) $ $) 26)) (-3329 (($ $ $) 29)) (-3791 (($ $ $) 32)) (-2000 (((-2 (|:| -2972 |#1|) (|:| |gap| (-706)) (|:| -2060 $) (|:| -3753 $)) $ $) 31)) (-1239 (((-1066) $) NIL)) (-2170 (($ $ $) 41 (|has| |#1| (-512)))) (-3721 (((-2 (|:| -2060 $) (|:| -3753 $)) $ (-706)) NIL)) (-3548 (((-3 (-586 $) "failed") $) NIL)) (-1205 (((-3 (-586 $) "failed") $) NIL)) (-2568 (((-3 (-2 (|:| |var| (-997)) (|:| -2647 (-706))) "failed") $) NIL)) (-3517 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-3794 (($) NIL (|has| |#1| (-1059)) CONST)) (-4142 (((-1030) $) NIL)) (-1197 (((-2 (|:| -2257 $) (|:| |coef2| $)) $ $) 67 (|has| |#1| (-512)))) (-4141 (((-2 (|:| -2257 $) (|:| |coef1| $)) $ $) 63 (|has| |#1| (-512)))) (-3698 (((-2 (|:| -2413 |#1|) (|:| |coef2| $)) $ $) 55 (|has| |#1| (-512)))) (-2315 (((-2 (|:| -2413 |#1|) (|:| |coef1| $)) $ $) 51 (|has| |#1| (-512)))) (-3103 (((-108) $) 13)) (-3113 ((|#1| $) NIL)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) NIL (|has| |#1| (-424)))) (-2257 (($ (-586 $)) NIL (|has| |#1| (-424))) (($ $ $) NIL (|has| |#1| (-424)))) (-4118 (($ $ (-706) |#1| $) 19)) (-4133 (((-391 (-1079 $)) (-1079 $)) NIL (|has| |#1| (-837)))) (-2017 (((-391 (-1079 $)) (-1079 $)) NIL (|has| |#1| (-837)))) (-1916 (((-391 $) $) NIL (|has| |#1| (-837)))) (-2320 (((-2 (|:| -2257 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 59 (|has| |#1| (-512)))) (-1588 (((-2 (|:| -2413 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 47 (|has| |#1| (-512)))) (-1283 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-336))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) NIL (|has| |#1| (-336)))) (-2230 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-512))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-512)))) (-2608 (((-3 (-586 $) "failed") (-586 $) $) NIL (|has| |#1| (-336)))) (-2286 (($ $ (-586 (-268 $))) NIL) (($ $ (-268 $)) NIL) (($ $ $ $) NIL) (($ $ (-586 $) (-586 $)) NIL) (($ $ (-997) |#1|) NIL) (($ $ (-586 (-997)) (-586 |#1|)) NIL) (($ $ (-997) $) NIL) (($ $ (-586 (-997)) (-586 $)) NIL)) (-3704 (((-706) $) NIL (|has| |#1| (-336)))) (-2543 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-380 $) (-380 $) (-380 $)) NIL (|has| |#1| (-512))) ((|#1| (-380 $) |#1|) NIL (|has| |#1| (-336))) (((-380 $) $ (-380 $)) NIL (|has| |#1| (-512)))) (-1554 (((-3 $ "failed") $ (-706)) NIL)) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) NIL (|has| |#1| (-336)))) (-2732 (($ $ (-997)) NIL (|has| |#1| (-157))) ((|#1| $) NIL (|has| |#1| (-157)))) (-2155 (($ $ (-997)) NIL) (($ $ (-586 (-997))) NIL) (($ $ (-997) (-706)) NIL) (($ $ (-586 (-997)) (-586 (-706))) NIL) (($ $ (-706)) NIL) (($ $) NIL) (($ $ (-1083)) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-586 (-1083))) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-1083) (-706)) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-586 (-1083)) (-586 (-706))) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-1 |#1| |#1|) (-706)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2528 (((-706) $) NIL) (((-706) $ (-997)) NIL) (((-586 (-706)) $ (-586 (-997))) NIL)) (-1429 (((-820 (-352)) $) NIL (-12 (|has| (-997) (-561 (-820 (-352)))) (|has| |#1| (-561 (-820 (-352)))))) (((-820 (-520)) $) NIL (-12 (|has| (-997) (-561 (-820 (-520)))) (|has| |#1| (-561 (-820 (-520)))))) (((-496) $) NIL (-12 (|has| (-997) (-561 (-496))) (|has| |#1| (-561 (-496)))))) (-1233 ((|#1| $) NIL (|has| |#1| (-424))) (($ $ (-997)) NIL (|has| |#1| (-424)))) (-3784 (((-3 (-1164 $) "failed") (-626 $)) NIL (-12 (|has| $ (-133)) (|has| |#1| (-837))))) (-3240 (((-3 $ "failed") $ $) NIL (|has| |#1| (-512))) (((-3 (-380 $) "failed") (-380 $) $) NIL (|has| |#1| (-512)))) (-2188 (((-791) $) NIL) (($ (-520)) NIL) (($ |#1|) NIL) (($ (-997)) NIL) (((-1079 |#1|) $) 7) (($ (-1079 |#1|)) 8) (($ (-380 (-520))) NIL (-3700 (|has| |#1| (-37 (-380 (-520)))) (|has| |#1| (-960 (-380 (-520)))))) (($ $) NIL (|has| |#1| (-512)))) (-4113 (((-586 |#1|) $) NIL)) (-3475 ((|#1| $ (-706)) NIL) (($ $ (-997) (-706)) NIL) (($ $ (-586 (-997)) (-586 (-706))) NIL)) (-3796 (((-3 $ "failed") $) NIL (-3700 (-12 (|has| $ (-133)) (|has| |#1| (-837))) (|has| |#1| (-133))))) (-3251 (((-706)) NIL)) (-1782 (($ $ $ (-706)) NIL (|has| |#1| (-157)))) (-2559 (((-108) $ $) NIL (|has| |#1| (-512)))) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (-3560 (($) 21 T CONST)) (-3570 (($) 24 T CONST)) (-2211 (($ $ (-997)) NIL) (($ $ (-586 (-997))) NIL) (($ $ (-997) (-706)) NIL) (($ $ (-586 (-997)) (-586 (-706))) NIL) (($ $ (-706)) NIL) (($ $) NIL) (($ $ (-1083)) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-586 (-1083))) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-1083) (-706)) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-586 (-1083)) (-586 (-706))) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-1 |#1| |#1|) (-706)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1573 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1557 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1530 (((-108) $ $) NIL)) (-1565 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1548 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1619 (($ $ |#1|) NIL (|has| |#1| (-336)))) (-1611 (($ $) 28) (($ $ $) NIL)) (-1601 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) NIL) (($ $ (-380 (-520))) NIL (|has| |#1| (-37 (-380 (-520))))) (($ (-380 (-520)) $) NIL (|has| |#1| (-37 (-380 (-520))))) (($ |#1| $) 23) (($ $ |#1|) NIL)))
-(((-717 |#1|) (-13 (-1140 |#1|) (-560 (-1079 |#1|)) (-960 (-1079 |#1|)) (-10 -8 (-15 -4118 ($ $ (-706) |#1| $)) (-15 -3868 ($ $ $)) (-15 -3106 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -1798 (-706))) $ $)) (-15 -3329 ($ $ $)) (-15 -2000 ((-2 (|:| -2972 |#1|) (|:| |gap| (-706)) (|:| -2060 $) (|:| -3753 $)) $ $)) (-15 -3791 ($ $ $)) (IF (|has| |#1| (-512)) (PROGN (-15 -1966 ((-586 $) $ $)) (-15 -2170 ($ $ $)) (-15 -2320 ((-2 (|:| -2257 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -4141 ((-2 (|:| -2257 $) (|:| |coef1| $)) $ $)) (-15 -1197 ((-2 (|:| -2257 $) (|:| |coef2| $)) $ $)) (-15 -1588 ((-2 (|:| -2413 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2315 ((-2 (|:| -2413 |#1|) (|:| |coef1| $)) $ $)) (-15 -3698 ((-2 (|:| -2413 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-969)) (T -717))
-((-4118 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-706)) (-5 *1 (-717 *3)) (-4 *3 (-969)))) (-3868 (*1 *1 *1 *1) (-12 (-5 *1 (-717 *2)) (-4 *2 (-969)))) (-3106 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-717 *3)) (|:| |polden| *3) (|:| -1798 (-706)))) (-5 *1 (-717 *3)) (-4 *3 (-969)))) (-3329 (*1 *1 *1 *1) (-12 (-5 *1 (-717 *2)) (-4 *2 (-969)))) (-2000 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2972 *3) (|:| |gap| (-706)) (|:| -2060 (-717 *3)) (|:| -3753 (-717 *3)))) (-5 *1 (-717 *3)) (-4 *3 (-969)))) (-3791 (*1 *1 *1 *1) (-12 (-5 *1 (-717 *2)) (-4 *2 (-969)))) (-1966 (*1 *2 *1 *1) (-12 (-5 *2 (-586 (-717 *3))) (-5 *1 (-717 *3)) (-4 *3 (-512)) (-4 *3 (-969)))) (-2170 (*1 *1 *1 *1) (-12 (-5 *1 (-717 *2)) (-4 *2 (-512)) (-4 *2 (-969)))) (-2320 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2257 (-717 *3)) (|:| |coef1| (-717 *3)) (|:| |coef2| (-717 *3)))) (-5 *1 (-717 *3)) (-4 *3 (-512)) (-4 *3 (-969)))) (-4141 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2257 (-717 *3)) (|:| |coef1| (-717 *3)))) (-5 *1 (-717 *3)) (-4 *3 (-512)) (-4 *3 (-969)))) (-1197 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2257 (-717 *3)) (|:| |coef2| (-717 *3)))) (-5 *1 (-717 *3)) (-4 *3 (-512)) (-4 *3 (-969)))) (-1588 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2413 *3) (|:| |coef1| (-717 *3)) (|:| |coef2| (-717 *3)))) (-5 *1 (-717 *3)) (-4 *3 (-512)) (-4 *3 (-969)))) (-2315 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2413 *3) (|:| |coef1| (-717 *3)))) (-5 *1 (-717 *3)) (-4 *3 (-512)) (-4 *3 (-969)))) (-3698 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2413 *3) (|:| |coef2| (-717 *3)))) (-5 *1 (-717 *3)) (-4 *3 (-512)) (-4 *3 (-969)))))
-(-13 (-1140 |#1|) (-560 (-1079 |#1|)) (-960 (-1079 |#1|)) (-10 -8 (-15 -4118 ($ $ (-706) |#1| $)) (-15 -3868 ($ $ $)) (-15 -3106 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -1798 (-706))) $ $)) (-15 -3329 ($ $ $)) (-15 -2000 ((-2 (|:| -2972 |#1|) (|:| |gap| (-706)) (|:| -2060 $) (|:| -3753 $)) $ $)) (-15 -3791 ($ $ $)) (IF (|has| |#1| (-512)) (PROGN (-15 -1966 ((-586 $) $ $)) (-15 -2170 ($ $ $)) (-15 -2320 ((-2 (|:| -2257 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -4141 ((-2 (|:| -2257 $) (|:| |coef1| $)) $ $)) (-15 -1197 ((-2 (|:| -2257 $) (|:| |coef2| $)) $ $)) (-15 -1588 ((-2 (|:| -2413 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2315 ((-2 (|:| -2413 |#1|) (|:| |coef1| $)) $ $)) (-15 -3698 ((-2 (|:| -2413 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|)))
-((-2767 ((|#1| (-706) |#1|) 33 (|has| |#1| (-37 (-380 (-520)))))) (-1668 ((|#1| (-706) |#1|) 23)) (-2393 ((|#1| (-706) |#1|) 35 (|has| |#1| (-37 (-380 (-520)))))))
-(((-718 |#1|) (-10 -7 (-15 -1668 (|#1| (-706) |#1|)) (IF (|has| |#1| (-37 (-380 (-520)))) (PROGN (-15 -2393 (|#1| (-706) |#1|)) (-15 -2767 (|#1| (-706) |#1|))) |%noBranch|)) (-157)) (T -718))
-((-2767 (*1 *2 *3 *2) (-12 (-5 *3 (-706)) (-5 *1 (-718 *2)) (-4 *2 (-37 (-380 (-520)))) (-4 *2 (-157)))) (-2393 (*1 *2 *3 *2) (-12 (-5 *3 (-706)) (-5 *1 (-718 *2)) (-4 *2 (-37 (-380 (-520)))) (-4 *2 (-157)))) (-1668 (*1 *2 *3 *2) (-12 (-5 *3 (-706)) (-5 *1 (-718 *2)) (-4 *2 (-157)))))
-(-10 -7 (-15 -1668 (|#1| (-706) |#1|)) (IF (|has| |#1| (-37 (-380 (-520)))) (PROGN (-15 -2393 (|#1| (-706) |#1|)) (-15 -2767 (|#1| (-706) |#1|))) |%noBranch|))
-((-1414 (((-108) $ $) 7)) (-3769 (((-586 (-2 (|:| -1649 $) (|:| -1543 (-586 |#4|)))) (-586 |#4|)) 85)) (-3767 (((-586 $) (-586 |#4|)) 86) (((-586 $) (-586 |#4|) (-108)) 111)) (-4081 (((-586 |#3|) $) 33)) (-2373 (((-108) $) 26)) (-1937 (((-108) $) 17 (|has| |#1| (-512)))) (-3804 (((-108) |#4| $) 101) (((-108) $) 97)) (-3954 ((|#4| |#4| $) 92)) (-3024 (((-586 (-2 (|:| |val| |#4|) (|:| -1883 $))) |#4| $) 126)) (-3210 (((-2 (|:| |under| $) (|:| -1626 $) (|:| |upper| $)) $ |#3|) 27)) (-2063 (((-108) $ (-706)) 44)) (-1627 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4229))) (((-3 |#4| "failed") $ |#3|) 79)) (-3961 (($) 45 T CONST)) (-2215 (((-108) $) 22 (|has| |#1| (-512)))) (-3078 (((-108) $ $) 24 (|has| |#1| (-512)))) (-3675 (((-108) $ $) 23 (|has| |#1| (-512)))) (-2786 (((-108) $) 25 (|has| |#1| (-512)))) (-2589 (((-586 |#4|) (-586 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 93)) (-4167 (((-586 |#4|) (-586 |#4|) $) 18 (|has| |#1| (-512)))) (-3415 (((-586 |#4|) (-586 |#4|) $) 19 (|has| |#1| (-512)))) (-1296 (((-3 $ "failed") (-586 |#4|)) 36)) (-1482 (($ (-586 |#4|)) 35)) (-2305 (((-3 $ "failed") $) 82)) (-1618 ((|#4| |#4| $) 89)) (-2331 (($ $) 68 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -4229))))) (-1421 (($ |#4| $) 67 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -4229)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4229)))) (-3753 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-512)))) (-3738 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) 102)) (-2762 ((|#4| |#4| $) 87)) (-3856 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -4229)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4229))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4229))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 94)) (-2025 (((-2 (|:| -1649 (-586 |#4|)) (|:| -1543 (-586 |#4|))) $) 105)) (-2870 (((-108) |#4| $) 136)) (-1276 (((-108) |#4| $) 133)) (-1964 (((-108) |#4| $) 137) (((-108) $) 134)) (-3828 (((-586 |#4|) $) 52 (|has| $ (-6 -4229)))) (-2311 (((-108) |#4| $) 104) (((-108) $) 103)) (-3871 ((|#3| $) 34)) (-3027 (((-108) $ (-706)) 43)) (-3702 (((-586 |#4|) $) 53 (|has| $ (-6 -4229)))) (-2422 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -4229))))) (-3830 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#4| |#4|) $) 47)) (-2602 (((-586 |#3|) $) 32)) (-3394 (((-108) |#3| $) 31)) (-1390 (((-108) $ (-706)) 42)) (-1239 (((-1066) $) 9)) (-3797 (((-3 |#4| (-586 $)) |#4| |#4| $) 128)) (-2170 (((-586 (-2 (|:| |val| |#4|) (|:| -1883 $))) |#4| |#4| $) 127)) (-1440 (((-3 |#4| "failed") $) 83)) (-3674 (((-586 $) |#4| $) 129)) (-3757 (((-3 (-108) (-586 $)) |#4| $) 132)) (-2484 (((-586 (-2 (|:| |val| (-108)) (|:| -1883 $))) |#4| $) 131) (((-108) |#4| $) 130)) (-2077 (((-586 $) |#4| $) 125) (((-586 $) (-586 |#4|) $) 124) (((-586 $) (-586 |#4|) (-586 $)) 123) (((-586 $) |#4| (-586 $)) 122)) (-3709 (($ |#4| $) 117) (($ (-586 |#4|) $) 116)) (-2623 (((-586 |#4|) $) 107)) (-2428 (((-108) |#4| $) 99) (((-108) $) 95)) (-2778 ((|#4| |#4| $) 90)) (-3444 (((-108) $ $) 110)) (-2130 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-512)))) (-1322 (((-108) |#4| $) 100) (((-108) $) 96)) (-3499 ((|#4| |#4| $) 91)) (-4142 (((-1030) $) 10)) (-2293 (((-3 |#4| "failed") $) 84)) (-2985 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-2885 (((-3 $ "failed") $ |#4|) 78)) (-2116 (($ $ |#4|) 77) (((-586 $) |#4| $) 115) (((-586 $) |#4| (-586 $)) 114) (((-586 $) (-586 |#4|) $) 113) (((-586 $) (-586 |#4|) (-586 $)) 112)) (-4155 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 |#4|) (-586 |#4|)) 59 (-12 (|has| |#4| (-283 |#4|)) (|has| |#4| (-1012)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-283 |#4|)) (|has| |#4| (-1012)))) (($ $ (-268 |#4|)) 57 (-12 (|has| |#4| (-283 |#4|)) (|has| |#4| (-1012)))) (($ $ (-586 (-268 |#4|))) 56 (-12 (|has| |#4| (-283 |#4|)) (|has| |#4| (-1012))))) (-2533 (((-108) $ $) 38)) (-4018 (((-108) $) 41)) (-2238 (($) 40)) (-2528 (((-706) $) 106)) (-4159 (((-706) |#4| $) 54 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -4229)))) (((-706) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4229)))) (-2403 (($ $) 39)) (-1429 (((-496) $) 69 (|has| |#4| (-561 (-496))))) (-2200 (($ (-586 |#4|)) 60)) (-3399 (($ $ |#3|) 28)) (-4067 (($ $ |#3|) 30)) (-3932 (($ $) 88)) (-2513 (($ $ |#3|) 29)) (-2188 (((-791) $) 11) (((-586 |#4|) $) 37)) (-3898 (((-706) $) 76 (|has| |#3| (-341)))) (-1652 (((-3 (-2 (|:| |bas| $) (|:| -1353 (-586 |#4|))) "failed") (-586 |#4|) (-1 (-108) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1353 (-586 |#4|))) "failed") (-586 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) 108)) (-3146 (((-108) $ (-1 (-108) |#4| (-586 |#4|))) 98)) (-3272 (((-586 $) |#4| $) 121) (((-586 $) |#4| (-586 $)) 120) (((-586 $) (-586 |#4|) $) 119) (((-586 $) (-586 |#4|) (-586 $)) 118)) (-1662 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4229)))) (-1600 (((-586 |#3|) $) 81)) (-3230 (((-108) |#4| $) 135)) (-3718 (((-108) |#3| $) 80)) (-1530 (((-108) $ $) 6)) (-3474 (((-706) $) 46 (|has| $ (-6 -4229)))))
-(((-719 |#1| |#2| |#3| |#4|) (-1195) (-424) (-728) (-783) (-983 |t#1| |t#2| |t#3|)) (T -719))
-NIL
-(-13 (-988 |t#1| |t#2| |t#3| |t#4|))
-(((-33) . T) ((-97) . T) ((-560 (-586 |#4|)) . T) ((-560 (-791)) . T) ((-139 |#4|) . T) ((-561 (-496)) |has| |#4| (-561 (-496))) ((-283 |#4|) -12 (|has| |#4| (-283 |#4|)) (|has| |#4| (-1012))) ((-459 |#4|) . T) ((-481 |#4| |#4|) -12 (|has| |#4| (-283 |#4|)) (|has| |#4| (-1012))) ((-901 |#1| |#2| |#3| |#4|) . T) ((-988 |#1| |#2| |#3| |#4|) . T) ((-1012) . T) ((-1112 |#1| |#2| |#3| |#4|) . T) ((-1118) . T))
-((-1637 (((-3 (-352) "failed") (-289 |#1|) (-849)) 60 (-12 (|has| |#1| (-512)) (|has| |#1| (-783)))) (((-3 (-352) "failed") (-289 |#1|)) 52 (-12 (|has| |#1| (-512)) (|has| |#1| (-783)))) (((-3 (-352) "failed") (-380 (-880 |#1|)) (-849)) 39 (|has| |#1| (-512))) (((-3 (-352) "failed") (-380 (-880 |#1|))) 35 (|has| |#1| (-512))) (((-3 (-352) "failed") (-880 |#1|) (-849)) 30 (|has| |#1| (-969))) (((-3 (-352) "failed") (-880 |#1|)) 24 (|has| |#1| (-969)))) (-2388 (((-352) (-289 |#1|) (-849)) 92 (-12 (|has| |#1| (-512)) (|has| |#1| (-783)))) (((-352) (-289 |#1|)) 87 (-12 (|has| |#1| (-512)) (|has| |#1| (-783)))) (((-352) (-380 (-880 |#1|)) (-849)) 84 (|has| |#1| (-512))) (((-352) (-380 (-880 |#1|))) 81 (|has| |#1| (-512))) (((-352) (-880 |#1|) (-849)) 80 (|has| |#1| (-969))) (((-352) (-880 |#1|)) 77 (|has| |#1| (-969))) (((-352) |#1| (-849)) 73) (((-352) |#1|) 22)) (-2452 (((-3 (-154 (-352)) "failed") (-289 (-154 |#1|)) (-849)) 68 (-12 (|has| |#1| (-512)) (|has| |#1| (-783)))) (((-3 (-154 (-352)) "failed") (-289 (-154 |#1|))) 58 (-12 (|has| |#1| (-512)) (|has| |#1| (-783)))) (((-3 (-154 (-352)) "failed") (-289 |#1|) (-849)) 61 (-12 (|has| |#1| (-512)) (|has| |#1| (-783)))) (((-3 (-154 (-352)) "failed") (-289 |#1|)) 59 (-12 (|has| |#1| (-512)) (|has| |#1| (-783)))) (((-3 (-154 (-352)) "failed") (-380 (-880 (-154 |#1|))) (-849)) 44 (|has| |#1| (-512))) (((-3 (-154 (-352)) "failed") (-380 (-880 (-154 |#1|)))) 43 (|has| |#1| (-512))) (((-3 (-154 (-352)) "failed") (-380 (-880 |#1|)) (-849)) 38 (|has| |#1| (-512))) (((-3 (-154 (-352)) "failed") (-380 (-880 |#1|))) 37 (|has| |#1| (-512))) (((-3 (-154 (-352)) "failed") (-880 |#1|) (-849)) 28 (|has| |#1| (-969))) (((-3 (-154 (-352)) "failed") (-880 |#1|)) 26 (|has| |#1| (-969))) (((-3 (-154 (-352)) "failed") (-880 (-154 |#1|)) (-849)) 17 (|has| |#1| (-157))) (((-3 (-154 (-352)) "failed") (-880 (-154 |#1|))) 14 (|has| |#1| (-157)))) (-1242 (((-154 (-352)) (-289 (-154 |#1|)) (-849)) 95 (-12 (|has| |#1| (-512)) (|has| |#1| (-783)))) (((-154 (-352)) (-289 (-154 |#1|))) 94 (-12 (|has| |#1| (-512)) (|has| |#1| (-783)))) (((-154 (-352)) (-289 |#1|) (-849)) 93 (-12 (|has| |#1| (-512)) (|has| |#1| (-783)))) (((-154 (-352)) (-289 |#1|)) 91 (-12 (|has| |#1| (-512)) (|has| |#1| (-783)))) (((-154 (-352)) (-380 (-880 (-154 |#1|))) (-849)) 86 (|has| |#1| (-512))) (((-154 (-352)) (-380 (-880 (-154 |#1|)))) 85 (|has| |#1| (-512))) (((-154 (-352)) (-380 (-880 |#1|)) (-849)) 83 (|has| |#1| (-512))) (((-154 (-352)) (-380 (-880 |#1|))) 82 (|has| |#1| (-512))) (((-154 (-352)) (-880 |#1|) (-849)) 79 (|has| |#1| (-969))) (((-154 (-352)) (-880 |#1|)) 78 (|has| |#1| (-969))) (((-154 (-352)) (-880 (-154 |#1|)) (-849)) 75 (|has| |#1| (-157))) (((-154 (-352)) (-880 (-154 |#1|))) 74 (|has| |#1| (-157))) (((-154 (-352)) (-154 |#1|) (-849)) 16 (|has| |#1| (-157))) (((-154 (-352)) (-154 |#1|)) 12 (|has| |#1| (-157))) (((-154 (-352)) |#1| (-849)) 27) (((-154 (-352)) |#1|) 25)))
-(((-720 |#1|) (-10 -7 (-15 -2388 ((-352) |#1|)) (-15 -2388 ((-352) |#1| (-849))) (-15 -1242 ((-154 (-352)) |#1|)) (-15 -1242 ((-154 (-352)) |#1| (-849))) (IF (|has| |#1| (-157)) (PROGN (-15 -1242 ((-154 (-352)) (-154 |#1|))) (-15 -1242 ((-154 (-352)) (-154 |#1|) (-849))) (-15 -1242 ((-154 (-352)) (-880 (-154 |#1|)))) (-15 -1242 ((-154 (-352)) (-880 (-154 |#1|)) (-849)))) |%noBranch|) (IF (|has| |#1| (-969)) (PROGN (-15 -2388 ((-352) (-880 |#1|))) (-15 -2388 ((-352) (-880 |#1|) (-849))) (-15 -1242 ((-154 (-352)) (-880 |#1|))) (-15 -1242 ((-154 (-352)) (-880 |#1|) (-849)))) |%noBranch|) (IF (|has| |#1| (-512)) (PROGN (-15 -2388 ((-352) (-380 (-880 |#1|)))) (-15 -2388 ((-352) (-380 (-880 |#1|)) (-849))) (-15 -1242 ((-154 (-352)) (-380 (-880 |#1|)))) (-15 -1242 ((-154 (-352)) (-380 (-880 |#1|)) (-849))) (-15 -1242 ((-154 (-352)) (-380 (-880 (-154 |#1|))))) (-15 -1242 ((-154 (-352)) (-380 (-880 (-154 |#1|))) (-849))) (IF (|has| |#1| (-783)) (PROGN (-15 -2388 ((-352) (-289 |#1|))) (-15 -2388 ((-352) (-289 |#1|) (-849))) (-15 -1242 ((-154 (-352)) (-289 |#1|))) (-15 -1242 ((-154 (-352)) (-289 |#1|) (-849))) (-15 -1242 ((-154 (-352)) (-289 (-154 |#1|)))) (-15 -1242 ((-154 (-352)) (-289 (-154 |#1|)) (-849)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-157)) (PROGN (-15 -2452 ((-3 (-154 (-352)) "failed") (-880 (-154 |#1|)))) (-15 -2452 ((-3 (-154 (-352)) "failed") (-880 (-154 |#1|)) (-849)))) |%noBranch|) (IF (|has| |#1| (-969)) (PROGN (-15 -1637 ((-3 (-352) "failed") (-880 |#1|))) (-15 -1637 ((-3 (-352) "failed") (-880 |#1|) (-849))) (-15 -2452 ((-3 (-154 (-352)) "failed") (-880 |#1|))) (-15 -2452 ((-3 (-154 (-352)) "failed") (-880 |#1|) (-849)))) |%noBranch|) (IF (|has| |#1| (-512)) (PROGN (-15 -1637 ((-3 (-352) "failed") (-380 (-880 |#1|)))) (-15 -1637 ((-3 (-352) "failed") (-380 (-880 |#1|)) (-849))) (-15 -2452 ((-3 (-154 (-352)) "failed") (-380 (-880 |#1|)))) (-15 -2452 ((-3 (-154 (-352)) "failed") (-380 (-880 |#1|)) (-849))) (-15 -2452 ((-3 (-154 (-352)) "failed") (-380 (-880 (-154 |#1|))))) (-15 -2452 ((-3 (-154 (-352)) "failed") (-380 (-880 (-154 |#1|))) (-849))) (IF (|has| |#1| (-783)) (PROGN (-15 -1637 ((-3 (-352) "failed") (-289 |#1|))) (-15 -1637 ((-3 (-352) "failed") (-289 |#1|) (-849))) (-15 -2452 ((-3 (-154 (-352)) "failed") (-289 |#1|))) (-15 -2452 ((-3 (-154 (-352)) "failed") (-289 |#1|) (-849))) (-15 -2452 ((-3 (-154 (-352)) "failed") (-289 (-154 |#1|)))) (-15 -2452 ((-3 (-154 (-352)) "failed") (-289 (-154 |#1|)) (-849)))) |%noBranch|)) |%noBranch|)) (-561 (-352))) (T -720))
-((-2452 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-289 (-154 *5))) (-5 *4 (-849)) (-4 *5 (-512)) (-4 *5 (-783)) (-4 *5 (-561 (-352))) (-5 *2 (-154 (-352))) (-5 *1 (-720 *5)))) (-2452 (*1 *2 *3) (|partial| -12 (-5 *3 (-289 (-154 *4))) (-4 *4 (-512)) (-4 *4 (-783)) (-4 *4 (-561 (-352))) (-5 *2 (-154 (-352))) (-5 *1 (-720 *4)))) (-2452 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-289 *5)) (-5 *4 (-849)) (-4 *5 (-512)) (-4 *5 (-783)) (-4 *5 (-561 (-352))) (-5 *2 (-154 (-352))) (-5 *1 (-720 *5)))) (-2452 (*1 *2 *3) (|partial| -12 (-5 *3 (-289 *4)) (-4 *4 (-512)) (-4 *4 (-783)) (-4 *4 (-561 (-352))) (-5 *2 (-154 (-352))) (-5 *1 (-720 *4)))) (-1637 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-289 *5)) (-5 *4 (-849)) (-4 *5 (-512)) (-4 *5 (-783)) (-4 *5 (-561 *2)) (-5 *2 (-352)) (-5 *1 (-720 *5)))) (-1637 (*1 *2 *3) (|partial| -12 (-5 *3 (-289 *4)) (-4 *4 (-512)) (-4 *4 (-783)) (-4 *4 (-561 *2)) (-5 *2 (-352)) (-5 *1 (-720 *4)))) (-2452 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-380 (-880 (-154 *5)))) (-5 *4 (-849)) (-4 *5 (-512)) (-4 *5 (-561 (-352))) (-5 *2 (-154 (-352))) (-5 *1 (-720 *5)))) (-2452 (*1 *2 *3) (|partial| -12 (-5 *3 (-380 (-880 (-154 *4)))) (-4 *4 (-512)) (-4 *4 (-561 (-352))) (-5 *2 (-154 (-352))) (-5 *1 (-720 *4)))) (-2452 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-380 (-880 *5))) (-5 *4 (-849)) (-4 *5 (-512)) (-4 *5 (-561 (-352))) (-5 *2 (-154 (-352))) (-5 *1 (-720 *5)))) (-2452 (*1 *2 *3) (|partial| -12 (-5 *3 (-380 (-880 *4))) (-4 *4 (-512)) (-4 *4 (-561 (-352))) (-5 *2 (-154 (-352))) (-5 *1 (-720 *4)))) (-1637 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-380 (-880 *5))) (-5 *4 (-849)) (-4 *5 (-512)) (-4 *5 (-561 *2)) (-5 *2 (-352)) (-5 *1 (-720 *5)))) (-1637 (*1 *2 *3) (|partial| -12 (-5 *3 (-380 (-880 *4))) (-4 *4 (-512)) (-4 *4 (-561 *2)) (-5 *2 (-352)) (-5 *1 (-720 *4)))) (-2452 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-880 *5)) (-5 *4 (-849)) (-4 *5 (-969)) (-4 *5 (-561 (-352))) (-5 *2 (-154 (-352))) (-5 *1 (-720 *5)))) (-2452 (*1 *2 *3) (|partial| -12 (-5 *3 (-880 *4)) (-4 *4 (-969)) (-4 *4 (-561 (-352))) (-5 *2 (-154 (-352))) (-5 *1 (-720 *4)))) (-1637 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-880 *5)) (-5 *4 (-849)) (-4 *5 (-969)) (-4 *5 (-561 *2)) (-5 *2 (-352)) (-5 *1 (-720 *5)))) (-1637 (*1 *2 *3) (|partial| -12 (-5 *3 (-880 *4)) (-4 *4 (-969)) (-4 *4 (-561 *2)) (-5 *2 (-352)) (-5 *1 (-720 *4)))) (-2452 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-880 (-154 *5))) (-5 *4 (-849)) (-4 *5 (-157)) (-4 *5 (-561 (-352))) (-5 *2 (-154 (-352))) (-5 *1 (-720 *5)))) (-2452 (*1 *2 *3) (|partial| -12 (-5 *3 (-880 (-154 *4))) (-4 *4 (-157)) (-4 *4 (-561 (-352))) (-5 *2 (-154 (-352))) (-5 *1 (-720 *4)))) (-1242 (*1 *2 *3 *4) (-12 (-5 *3 (-289 (-154 *5))) (-5 *4 (-849)) (-4 *5 (-512)) (-4 *5 (-783)) (-4 *5 (-561 (-352))) (-5 *2 (-154 (-352))) (-5 *1 (-720 *5)))) (-1242 (*1 *2 *3) (-12 (-5 *3 (-289 (-154 *4))) (-4 *4 (-512)) (-4 *4 (-783)) (-4 *4 (-561 (-352))) (-5 *2 (-154 (-352))) (-5 *1 (-720 *4)))) (-1242 (*1 *2 *3 *4) (-12 (-5 *3 (-289 *5)) (-5 *4 (-849)) (-4 *5 (-512)) (-4 *5 (-783)) (-4 *5 (-561 (-352))) (-5 *2 (-154 (-352))) (-5 *1 (-720 *5)))) (-1242 (*1 *2 *3) (-12 (-5 *3 (-289 *4)) (-4 *4 (-512)) (-4 *4 (-783)) (-4 *4 (-561 (-352))) (-5 *2 (-154 (-352))) (-5 *1 (-720 *4)))) (-2388 (*1 *2 *3 *4) (-12 (-5 *3 (-289 *5)) (-5 *4 (-849)) (-4 *5 (-512)) (-4 *5 (-783)) (-4 *5 (-561 *2)) (-5 *2 (-352)) (-5 *1 (-720 *5)))) (-2388 (*1 *2 *3) (-12 (-5 *3 (-289 *4)) (-4 *4 (-512)) (-4 *4 (-783)) (-4 *4 (-561 *2)) (-5 *2 (-352)) (-5 *1 (-720 *4)))) (-1242 (*1 *2 *3 *4) (-12 (-5 *3 (-380 (-880 (-154 *5)))) (-5 *4 (-849)) (-4 *5 (-512)) (-4 *5 (-561 (-352))) (-5 *2 (-154 (-352))) (-5 *1 (-720 *5)))) (-1242 (*1 *2 *3) (-12 (-5 *3 (-380 (-880 (-154 *4)))) (-4 *4 (-512)) (-4 *4 (-561 (-352))) (-5 *2 (-154 (-352))) (-5 *1 (-720 *4)))) (-1242 (*1 *2 *3 *4) (-12 (-5 *3 (-380 (-880 *5))) (-5 *4 (-849)) (-4 *5 (-512)) (-4 *5 (-561 (-352))) (-5 *2 (-154 (-352))) (-5 *1 (-720 *5)))) (-1242 (*1 *2 *3) (-12 (-5 *3 (-380 (-880 *4))) (-4 *4 (-512)) (-4 *4 (-561 (-352))) (-5 *2 (-154 (-352))) (-5 *1 (-720 *4)))) (-2388 (*1 *2 *3 *4) (-12 (-5 *3 (-380 (-880 *5))) (-5 *4 (-849)) (-4 *5 (-512)) (-4 *5 (-561 *2)) (-5 *2 (-352)) (-5 *1 (-720 *5)))) (-2388 (*1 *2 *3) (-12 (-5 *3 (-380 (-880 *4))) (-4 *4 (-512)) (-4 *4 (-561 *2)) (-5 *2 (-352)) (-5 *1 (-720 *4)))) (-1242 (*1 *2 *3 *4) (-12 (-5 *3 (-880 *5)) (-5 *4 (-849)) (-4 *5 (-969)) (-4 *5 (-561 (-352))) (-5 *2 (-154 (-352))) (-5 *1 (-720 *5)))) (-1242 (*1 *2 *3) (-12 (-5 *3 (-880 *4)) (-4 *4 (-969)) (-4 *4 (-561 (-352))) (-5 *2 (-154 (-352))) (-5 *1 (-720 *4)))) (-2388 (*1 *2 *3 *4) (-12 (-5 *3 (-880 *5)) (-5 *4 (-849)) (-4 *5 (-969)) (-4 *5 (-561 *2)) (-5 *2 (-352)) (-5 *1 (-720 *5)))) (-2388 (*1 *2 *3) (-12 (-5 *3 (-880 *4)) (-4 *4 (-969)) (-4 *4 (-561 *2)) (-5 *2 (-352)) (-5 *1 (-720 *4)))) (-1242 (*1 *2 *3 *4) (-12 (-5 *3 (-880 (-154 *5))) (-5 *4 (-849)) (-4 *5 (-157)) (-4 *5 (-561 (-352))) (-5 *2 (-154 (-352))) (-5 *1 (-720 *5)))) (-1242 (*1 *2 *3) (-12 (-5 *3 (-880 (-154 *4))) (-4 *4 (-157)) (-4 *4 (-561 (-352))) (-5 *2 (-154 (-352))) (-5 *1 (-720 *4)))) (-1242 (*1 *2 *3 *4) (-12 (-5 *3 (-154 *5)) (-5 *4 (-849)) (-4 *5 (-157)) (-4 *5 (-561 (-352))) (-5 *2 (-154 (-352))) (-5 *1 (-720 *5)))) (-1242 (*1 *2 *3) (-12 (-5 *3 (-154 *4)) (-4 *4 (-157)) (-4 *4 (-561 (-352))) (-5 *2 (-154 (-352))) (-5 *1 (-720 *4)))) (-1242 (*1 *2 *3 *4) (-12 (-5 *4 (-849)) (-5 *2 (-154 (-352))) (-5 *1 (-720 *3)) (-4 *3 (-561 (-352))))) (-1242 (*1 *2 *3) (-12 (-5 *2 (-154 (-352))) (-5 *1 (-720 *3)) (-4 *3 (-561 (-352))))) (-2388 (*1 *2 *3 *4) (-12 (-5 *4 (-849)) (-5 *2 (-352)) (-5 *1 (-720 *3)) (-4 *3 (-561 *2)))) (-2388 (*1 *2 *3) (-12 (-5 *2 (-352)) (-5 *1 (-720 *3)) (-4 *3 (-561 *2)))))
-(-10 -7 (-15 -2388 ((-352) |#1|)) (-15 -2388 ((-352) |#1| (-849))) (-15 -1242 ((-154 (-352)) |#1|)) (-15 -1242 ((-154 (-352)) |#1| (-849))) (IF (|has| |#1| (-157)) (PROGN (-15 -1242 ((-154 (-352)) (-154 |#1|))) (-15 -1242 ((-154 (-352)) (-154 |#1|) (-849))) (-15 -1242 ((-154 (-352)) (-880 (-154 |#1|)))) (-15 -1242 ((-154 (-352)) (-880 (-154 |#1|)) (-849)))) |%noBranch|) (IF (|has| |#1| (-969)) (PROGN (-15 -2388 ((-352) (-880 |#1|))) (-15 -2388 ((-352) (-880 |#1|) (-849))) (-15 -1242 ((-154 (-352)) (-880 |#1|))) (-15 -1242 ((-154 (-352)) (-880 |#1|) (-849)))) |%noBranch|) (IF (|has| |#1| (-512)) (PROGN (-15 -2388 ((-352) (-380 (-880 |#1|)))) (-15 -2388 ((-352) (-380 (-880 |#1|)) (-849))) (-15 -1242 ((-154 (-352)) (-380 (-880 |#1|)))) (-15 -1242 ((-154 (-352)) (-380 (-880 |#1|)) (-849))) (-15 -1242 ((-154 (-352)) (-380 (-880 (-154 |#1|))))) (-15 -1242 ((-154 (-352)) (-380 (-880 (-154 |#1|))) (-849))) (IF (|has| |#1| (-783)) (PROGN (-15 -2388 ((-352) (-289 |#1|))) (-15 -2388 ((-352) (-289 |#1|) (-849))) (-15 -1242 ((-154 (-352)) (-289 |#1|))) (-15 -1242 ((-154 (-352)) (-289 |#1|) (-849))) (-15 -1242 ((-154 (-352)) (-289 (-154 |#1|)))) (-15 -1242 ((-154 (-352)) (-289 (-154 |#1|)) (-849)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-157)) (PROGN (-15 -2452 ((-3 (-154 (-352)) "failed") (-880 (-154 |#1|)))) (-15 -2452 ((-3 (-154 (-352)) "failed") (-880 (-154 |#1|)) (-849)))) |%noBranch|) (IF (|has| |#1| (-969)) (PROGN (-15 -1637 ((-3 (-352) "failed") (-880 |#1|))) (-15 -1637 ((-3 (-352) "failed") (-880 |#1|) (-849))) (-15 -2452 ((-3 (-154 (-352)) "failed") (-880 |#1|))) (-15 -2452 ((-3 (-154 (-352)) "failed") (-880 |#1|) (-849)))) |%noBranch|) (IF (|has| |#1| (-512)) (PROGN (-15 -1637 ((-3 (-352) "failed") (-380 (-880 |#1|)))) (-15 -1637 ((-3 (-352) "failed") (-380 (-880 |#1|)) (-849))) (-15 -2452 ((-3 (-154 (-352)) "failed") (-380 (-880 |#1|)))) (-15 -2452 ((-3 (-154 (-352)) "failed") (-380 (-880 |#1|)) (-849))) (-15 -2452 ((-3 (-154 (-352)) "failed") (-380 (-880 (-154 |#1|))))) (-15 -2452 ((-3 (-154 (-352)) "failed") (-380 (-880 (-154 |#1|))) (-849))) (IF (|has| |#1| (-783)) (PROGN (-15 -1637 ((-3 (-352) "failed") (-289 |#1|))) (-15 -1637 ((-3 (-352) "failed") (-289 |#1|) (-849))) (-15 -2452 ((-3 (-154 (-352)) "failed") (-289 |#1|))) (-15 -2452 ((-3 (-154 (-352)) "failed") (-289 |#1|) (-849))) (-15 -2452 ((-3 (-154 (-352)) "failed") (-289 (-154 |#1|)))) (-15 -2452 ((-3 (-154 (-352)) "failed") (-289 (-154 |#1|)) (-849)))) |%noBranch|)) |%noBranch|))
-((-2363 (((-849) (-1066)) 64)) (-2029 (((-3 (-352) "failed") (-1066)) 33)) (-2964 (((-352) (-1066)) 31)) (-4180 (((-849) (-1066)) 54)) (-2104 (((-1066) (-849)) 55)) (-1247 (((-1066) (-849)) 53)))
-(((-721) (-10 -7 (-15 -1247 ((-1066) (-849))) (-15 -4180 ((-849) (-1066))) (-15 -2104 ((-1066) (-849))) (-15 -2363 ((-849) (-1066))) (-15 -2964 ((-352) (-1066))) (-15 -2029 ((-3 (-352) "failed") (-1066))))) (T -721))
-((-2029 (*1 *2 *3) (|partial| -12 (-5 *3 (-1066)) (-5 *2 (-352)) (-5 *1 (-721)))) (-2964 (*1 *2 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-352)) (-5 *1 (-721)))) (-2363 (*1 *2 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-849)) (-5 *1 (-721)))) (-2104 (*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-1066)) (-5 *1 (-721)))) (-4180 (*1 *2 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-849)) (-5 *1 (-721)))) (-1247 (*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-1066)) (-5 *1 (-721)))))
-(-10 -7 (-15 -1247 ((-1066) (-849))) (-15 -4180 ((-849) (-1066))) (-15 -2104 ((-1066) (-849))) (-15 -2363 ((-849) (-1066))) (-15 -2964 ((-352) (-1066))) (-15 -2029 ((-3 (-352) "failed") (-1066))))
-((-1414 (((-108) $ $) 7)) (-1336 (((-958) (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201))) (-958)) 15) (((-958) (-2 (|:| |fn| (-289 (-201))) (|:| -1667 (-586 (-1007 (-776 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201))) (-958)) 13)) (-1796 (((-2 (|:| -1796 (-352)) (|:| |explanations| (-1066)) (|:| |extra| (-958))) (-981) (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 16) (((-2 (|:| -1796 (-352)) (|:| |explanations| (-1066)) (|:| |extra| (-958))) (-981) (-2 (|:| |fn| (-289 (-201))) (|:| -1667 (-586 (-1007 (-776 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 14)) (-1239 (((-1066) $) 9)) (-4142 (((-1030) $) 10)) (-2188 (((-791) $) 11)) (-1530 (((-108) $ $) 6)))
-(((-722) (-1195)) (T -722))
-((-1796 (*1 *2 *3 *4) (-12 (-4 *1 (-722)) (-5 *3 (-981)) (-5 *4 (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (-5 *2 (-2 (|:| -1796 (-352)) (|:| |explanations| (-1066)) (|:| |extra| (-958)))))) (-1336 (*1 *2 *3 *2) (-12 (-4 *1 (-722)) (-5 *2 (-958)) (-5 *3 (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))))) (-1796 (*1 *2 *3 *4) (-12 (-4 *1 (-722)) (-5 *3 (-981)) (-5 *4 (-2 (|:| |fn| (-289 (-201))) (|:| -1667 (-586 (-1007 (-776 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (-5 *2 (-2 (|:| -1796 (-352)) (|:| |explanations| (-1066)) (|:| |extra| (-958)))))) (-1336 (*1 *2 *3 *2) (-12 (-4 *1 (-722)) (-5 *2 (-958)) (-5 *3 (-2 (|:| |fn| (-289 (-201))) (|:| -1667 (-586 (-1007 (-776 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))))))
-(-13 (-1012) (-10 -7 (-15 -1796 ((-2 (|:| -1796 (-352)) (|:| |explanations| (-1066)) (|:| |extra| (-958))) (-981) (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))) (-15 -1336 ((-958) (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201))) (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201)) (|:| |relerr| (-201))) (-958))) (-15 -1796 ((-2 (|:| -1796 (-352)) (|:| |explanations| (-1066)) (|:| |extra| (-958))) (-981) (-2 (|:| |fn| (-289 (-201))) (|:| -1667 (-586 (-1007 (-776 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))) (-15 -1336 ((-958) (-2 (|:| |fn| (-289 (-201))) (|:| -1667 (-586 (-1007 (-776 (-201))))) (|:| |abserr| (-201)) (|:| |relerr| (-201))) (-958)))))
-(((-97) . T) ((-560 (-791)) . T) ((-1012) . T))
-((-3516 (((-1169) (-1164 (-352)) (-520) (-352) (-2 (|:| |try| (-352)) (|:| |did| (-352)) (|:| -3613 (-352))) (-352) (-1164 (-352)) (-1 (-1169) (-1164 (-352)) (-1164 (-352)) (-352)) (-1164 (-352)) (-1164 (-352)) (-1164 (-352)) (-1164 (-352)) (-1164 (-352)) (-1164 (-352)) (-1164 (-352))) 44) (((-1169) (-1164 (-352)) (-520) (-352) (-2 (|:| |try| (-352)) (|:| |did| (-352)) (|:| -3613 (-352))) (-352) (-1164 (-352)) (-1 (-1169) (-1164 (-352)) (-1164 (-352)) (-352))) 43)) (-1754 (((-1169) (-1164 (-352)) (-520) (-352) (-352) (-520) (-1 (-1169) (-1164 (-352)) (-1164 (-352)) (-352))) 50)) (-2208 (((-1169) (-1164 (-352)) (-520) (-352) (-352) (-352) (-352) (-520) (-1 (-1169) (-1164 (-352)) (-1164 (-352)) (-352))) 41)) (-3964 (((-1169) (-1164 (-352)) (-520) (-352) (-352) (-1 (-1169) (-1164 (-352)) (-1164 (-352)) (-352)) (-1164 (-352)) (-1164 (-352)) (-1164 (-352)) (-1164 (-352))) 52) (((-1169) (-1164 (-352)) (-520) (-352) (-352) (-1 (-1169) (-1164 (-352)) (-1164 (-352)) (-352))) 51)))
-(((-723) (-10 -7 (-15 -3964 ((-1169) (-1164 (-352)) (-520) (-352) (-352) (-1 (-1169) (-1164 (-352)) (-1164 (-352)) (-352)))) (-15 -3964 ((-1169) (-1164 (-352)) (-520) (-352) (-352) (-1 (-1169) (-1164 (-352)) (-1164 (-352)) (-352)) (-1164 (-352)) (-1164 (-352)) (-1164 (-352)) (-1164 (-352)))) (-15 -2208 ((-1169) (-1164 (-352)) (-520) (-352) (-352) (-352) (-352) (-520) (-1 (-1169) (-1164 (-352)) (-1164 (-352)) (-352)))) (-15 -3516 ((-1169) (-1164 (-352)) (-520) (-352) (-2 (|:| |try| (-352)) (|:| |did| (-352)) (|:| -3613 (-352))) (-352) (-1164 (-352)) (-1 (-1169) (-1164 (-352)) (-1164 (-352)) (-352)))) (-15 -3516 ((-1169) (-1164 (-352)) (-520) (-352) (-2 (|:| |try| (-352)) (|:| |did| (-352)) (|:| -3613 (-352))) (-352) (-1164 (-352)) (-1 (-1169) (-1164 (-352)) (-1164 (-352)) (-352)) (-1164 (-352)) (-1164 (-352)) (-1164 (-352)) (-1164 (-352)) (-1164 (-352)) (-1164 (-352)) (-1164 (-352)))) (-15 -1754 ((-1169) (-1164 (-352)) (-520) (-352) (-352) (-520) (-1 (-1169) (-1164 (-352)) (-1164 (-352)) (-352)))))) (T -723))
-((-1754 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-520)) (-5 *6 (-1 (-1169) (-1164 *5) (-1164 *5) (-352))) (-5 *3 (-1164 (-352))) (-5 *5 (-352)) (-5 *2 (-1169)) (-5 *1 (-723)))) (-3516 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-520)) (-5 *6 (-2 (|:| |try| (-352)) (|:| |did| (-352)) (|:| -3613 (-352)))) (-5 *7 (-1 (-1169) (-1164 *5) (-1164 *5) (-352))) (-5 *3 (-1164 (-352))) (-5 *5 (-352)) (-5 *2 (-1169)) (-5 *1 (-723)))) (-3516 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-520)) (-5 *6 (-2 (|:| |try| (-352)) (|:| |did| (-352)) (|:| -3613 (-352)))) (-5 *7 (-1 (-1169) (-1164 *5) (-1164 *5) (-352))) (-5 *3 (-1164 (-352))) (-5 *5 (-352)) (-5 *2 (-1169)) (-5 *1 (-723)))) (-2208 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-520)) (-5 *6 (-1 (-1169) (-1164 *5) (-1164 *5) (-352))) (-5 *3 (-1164 (-352))) (-5 *5 (-352)) (-5 *2 (-1169)) (-5 *1 (-723)))) (-3964 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-520)) (-5 *6 (-1 (-1169) (-1164 *5) (-1164 *5) (-352))) (-5 *3 (-1164 (-352))) (-5 *5 (-352)) (-5 *2 (-1169)) (-5 *1 (-723)))) (-3964 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-520)) (-5 *6 (-1 (-1169) (-1164 *5) (-1164 *5) (-352))) (-5 *3 (-1164 (-352))) (-5 *5 (-352)) (-5 *2 (-1169)) (-5 *1 (-723)))))
-(-10 -7 (-15 -3964 ((-1169) (-1164 (-352)) (-520) (-352) (-352) (-1 (-1169) (-1164 (-352)) (-1164 (-352)) (-352)))) (-15 -3964 ((-1169) (-1164 (-352)) (-520) (-352) (-352) (-1 (-1169) (-1164 (-352)) (-1164 (-352)) (-352)) (-1164 (-352)) (-1164 (-352)) (-1164 (-352)) (-1164 (-352)))) (-15 -2208 ((-1169) (-1164 (-352)) (-520) (-352) (-352) (-352) (-352) (-520) (-1 (-1169) (-1164 (-352)) (-1164 (-352)) (-352)))) (-15 -3516 ((-1169) (-1164 (-352)) (-520) (-352) (-2 (|:| |try| (-352)) (|:| |did| (-352)) (|:| -3613 (-352))) (-352) (-1164 (-352)) (-1 (-1169) (-1164 (-352)) (-1164 (-352)) (-352)))) (-15 -3516 ((-1169) (-1164 (-352)) (-520) (-352) (-2 (|:| |try| (-352)) (|:| |did| (-352)) (|:| -3613 (-352))) (-352) (-1164 (-352)) (-1 (-1169) (-1164 (-352)) (-1164 (-352)) (-352)) (-1164 (-352)) (-1164 (-352)) (-1164 (-352)) (-1164 (-352)) (-1164 (-352)) (-1164 (-352)) (-1164 (-352)))) (-15 -1754 ((-1169) (-1164 (-352)) (-520) (-352) (-352) (-520) (-1 (-1169) (-1164 (-352)) (-1164 (-352)) (-352)))))
-((-4000 (((-2 (|:| -3429 (-352)) (|:| -2967 (-352)) (|:| |totalpts| (-520)) (|:| |success| (-108))) (-1 (-352) (-352)) (-352) (-352) (-352) (-352) (-520) (-520)) 53)) (-1622 (((-2 (|:| -3429 (-352)) (|:| -2967 (-352)) (|:| |totalpts| (-520)) (|:| |success| (-108))) (-1 (-352) (-352)) (-352) (-352) (-352) (-352) (-520) (-520)) 30)) (-3629 (((-2 (|:| -3429 (-352)) (|:| -2967 (-352)) (|:| |totalpts| (-520)) (|:| |success| (-108))) (-1 (-352) (-352)) (-352) (-352) (-352) (-352) (-520) (-520)) 52)) (-1470 (((-2 (|:| -3429 (-352)) (|:| -2967 (-352)) (|:| |totalpts| (-520)) (|:| |success| (-108))) (-1 (-352) (-352)) (-352) (-352) (-352) (-352) (-520) (-520)) 28)) (-2010 (((-2 (|:| -3429 (-352)) (|:| -2967 (-352)) (|:| |totalpts| (-520)) (|:| |success| (-108))) (-1 (-352) (-352)) (-352) (-352) (-352) (-352) (-520) (-520)) 51)) (-1774 (((-2 (|:| -3429 (-352)) (|:| -2967 (-352)) (|:| |totalpts| (-520)) (|:| |success| (-108))) (-1 (-352) (-352)) (-352) (-352) (-352) (-352) (-520) (-520)) 18)) (-2839 (((-2 (|:| -3429 (-352)) (|:| -2967 (-352)) (|:| |totalpts| (-520)) (|:| |success| (-108))) (-1 (-352) (-352)) (-352) (-352) (-352) (-352) (-520) (-520) (-520)) 31)) (-2596 (((-2 (|:| -3429 (-352)) (|:| -2967 (-352)) (|:| |totalpts| (-520)) (|:| |success| (-108))) (-1 (-352) (-352)) (-352) (-352) (-352) (-352) (-520) (-520) (-520)) 29)) (-3243 (((-2 (|:| -3429 (-352)) (|:| -2967 (-352)) (|:| |totalpts| (-520)) (|:| |success| (-108))) (-1 (-352) (-352)) (-352) (-352) (-352) (-352) (-520) (-520) (-520)) 27)))
-(((-724) (-10 -7 (-15 -3243 ((-2 (|:| -3429 (-352)) (|:| -2967 (-352)) (|:| |totalpts| (-520)) (|:| |success| (-108))) (-1 (-352) (-352)) (-352) (-352) (-352) (-352) (-520) (-520) (-520))) (-15 -2596 ((-2 (|:| -3429 (-352)) (|:| -2967 (-352)) (|:| |totalpts| (-520)) (|:| |success| (-108))) (-1 (-352) (-352)) (-352) (-352) (-352) (-352) (-520) (-520) (-520))) (-15 -2839 ((-2 (|:| -3429 (-352)) (|:| -2967 (-352)) (|:| |totalpts| (-520)) (|:| |success| (-108))) (-1 (-352) (-352)) (-352) (-352) (-352) (-352) (-520) (-520) (-520))) (-15 -1774 ((-2 (|:| -3429 (-352)) (|:| -2967 (-352)) (|:| |totalpts| (-520)) (|:| |success| (-108))) (-1 (-352) (-352)) (-352) (-352) (-352) (-352) (-520) (-520))) (-15 -1470 ((-2 (|:| -3429 (-352)) (|:| -2967 (-352)) (|:| |totalpts| (-520)) (|:| |success| (-108))) (-1 (-352) (-352)) (-352) (-352) (-352) (-352) (-520) (-520))) (-15 -1622 ((-2 (|:| -3429 (-352)) (|:| -2967 (-352)) (|:| |totalpts| (-520)) (|:| |success| (-108))) (-1 (-352) (-352)) (-352) (-352) (-352) (-352) (-520) (-520))) (-15 -2010 ((-2 (|:| -3429 (-352)) (|:| -2967 (-352)) (|:| |totalpts| (-520)) (|:| |success| (-108))) (-1 (-352) (-352)) (-352) (-352) (-352) (-352) (-520) (-520))) (-15 -3629 ((-2 (|:| -3429 (-352)) (|:| -2967 (-352)) (|:| |totalpts| (-520)) (|:| |success| (-108))) (-1 (-352) (-352)) (-352) (-352) (-352) (-352) (-520) (-520))) (-15 -4000 ((-2 (|:| -3429 (-352)) (|:| -2967 (-352)) (|:| |totalpts| (-520)) (|:| |success| (-108))) (-1 (-352) (-352)) (-352) (-352) (-352) (-352) (-520) (-520))))) (T -724))
-((-4000 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-352) (-352))) (-5 *4 (-352)) (-5 *2 (-2 (|:| -3429 *4) (|:| -2967 *4) (|:| |totalpts| (-520)) (|:| |success| (-108)))) (-5 *1 (-724)) (-5 *5 (-520)))) (-3629 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-352) (-352))) (-5 *4 (-352)) (-5 *2 (-2 (|:| -3429 *4) (|:| -2967 *4) (|:| |totalpts| (-520)) (|:| |success| (-108)))) (-5 *1 (-724)) (-5 *5 (-520)))) (-2010 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-352) (-352))) (-5 *4 (-352)) (-5 *2 (-2 (|:| -3429 *4) (|:| -2967 *4) (|:| |totalpts| (-520)) (|:| |success| (-108)))) (-5 *1 (-724)) (-5 *5 (-520)))) (-1622 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-352) (-352))) (-5 *4 (-352)) (-5 *2 (-2 (|:| -3429 *4) (|:| -2967 *4) (|:| |totalpts| (-520)) (|:| |success| (-108)))) (-5 *1 (-724)) (-5 *5 (-520)))) (-1470 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-352) (-352))) (-5 *4 (-352)) (-5 *2 (-2 (|:| -3429 *4) (|:| -2967 *4) (|:| |totalpts| (-520)) (|:| |success| (-108)))) (-5 *1 (-724)) (-5 *5 (-520)))) (-1774 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-352) (-352))) (-5 *4 (-352)) (-5 *2 (-2 (|:| -3429 *4) (|:| -2967 *4) (|:| |totalpts| (-520)) (|:| |success| (-108)))) (-5 *1 (-724)) (-5 *5 (-520)))) (-2839 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-352) (-352))) (-5 *4 (-352)) (-5 *2 (-2 (|:| -3429 *4) (|:| -2967 *4) (|:| |totalpts| (-520)) (|:| |success| (-108)))) (-5 *1 (-724)) (-5 *5 (-520)))) (-2596 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-352) (-352))) (-5 *4 (-352)) (-5 *2 (-2 (|:| -3429 *4) (|:| -2967 *4) (|:| |totalpts| (-520)) (|:| |success| (-108)))) (-5 *1 (-724)) (-5 *5 (-520)))) (-3243 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-352) (-352))) (-5 *4 (-352)) (-5 *2 (-2 (|:| -3429 *4) (|:| -2967 *4) (|:| |totalpts| (-520)) (|:| |success| (-108)))) (-5 *1 (-724)) (-5 *5 (-520)))))
-(-10 -7 (-15 -3243 ((-2 (|:| -3429 (-352)) (|:| -2967 (-352)) (|:| |totalpts| (-520)) (|:| |success| (-108))) (-1 (-352) (-352)) (-352) (-352) (-352) (-352) (-520) (-520) (-520))) (-15 -2596 ((-2 (|:| -3429 (-352)) (|:| -2967 (-352)) (|:| |totalpts| (-520)) (|:| |success| (-108))) (-1 (-352) (-352)) (-352) (-352) (-352) (-352) (-520) (-520) (-520))) (-15 -2839 ((-2 (|:| -3429 (-352)) (|:| -2967 (-352)) (|:| |totalpts| (-520)) (|:| |success| (-108))) (-1 (-352) (-352)) (-352) (-352) (-352) (-352) (-520) (-520) (-520))) (-15 -1774 ((-2 (|:| -3429 (-352)) (|:| -2967 (-352)) (|:| |totalpts| (-520)) (|:| |success| (-108))) (-1 (-352) (-352)) (-352) (-352) (-352) (-352) (-520) (-520))) (-15 -1470 ((-2 (|:| -3429 (-352)) (|:| -2967 (-352)) (|:| |totalpts| (-520)) (|:| |success| (-108))) (-1 (-352) (-352)) (-352) (-352) (-352) (-352) (-520) (-520))) (-15 -1622 ((-2 (|:| -3429 (-352)) (|:| -2967 (-352)) (|:| |totalpts| (-520)) (|:| |success| (-108))) (-1 (-352) (-352)) (-352) (-352) (-352) (-352) (-520) (-520))) (-15 -2010 ((-2 (|:| -3429 (-352)) (|:| -2967 (-352)) (|:| |totalpts| (-520)) (|:| |success| (-108))) (-1 (-352) (-352)) (-352) (-352) (-352) (-352) (-520) (-520))) (-15 -3629 ((-2 (|:| -3429 (-352)) (|:| -2967 (-352)) (|:| |totalpts| (-520)) (|:| |success| (-108))) (-1 (-352) (-352)) (-352) (-352) (-352) (-352) (-520) (-520))) (-15 -4000 ((-2 (|:| -3429 (-352)) (|:| -2967 (-352)) (|:| |totalpts| (-520)) (|:| |success| (-108))) (-1 (-352) (-352)) (-352) (-352) (-352) (-352) (-520) (-520))))
-((-1957 (((-1114 |#1|) |#1| (-201) (-520)) 45)))
-(((-725 |#1|) (-10 -7 (-15 -1957 ((-1114 |#1|) |#1| (-201) (-520)))) (-899)) (T -725))
-((-1957 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-201)) (-5 *5 (-520)) (-5 *2 (-1114 *3)) (-5 *1 (-725 *3)) (-4 *3 (-899)))))
-(-10 -7 (-15 -1957 ((-1114 |#1|) |#1| (-201) (-520))))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 24)) (-1917 (((-3 $ "failed") $ $) 26)) (-3961 (($) 23 T CONST)) (-2809 (($ $ $) 13)) (-2446 (($ $ $) 14)) (-1239 (((-1066) $) 9)) (-4142 (((-1030) $) 10)) (-2188 (((-791) $) 11)) (-3560 (($) 22 T CONST)) (-1573 (((-108) $ $) 16)) (-1557 (((-108) $ $) 17)) (-1530 (((-108) $ $) 6)) (-1565 (((-108) $ $) 15)) (-1548 (((-108) $ $) 18)) (-1611 (($ $ $) 28) (($ $) 27)) (-1601 (($ $ $) 20)) (* (($ (-706) $) 25) (($ (-849) $) 21) (($ (-520) $) 29)))
-(((-726) (-1195)) (T -726))
-NIL
-(-13 (-731) (-21))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-560 (-791)) . T) ((-727) . T) ((-729) . T) ((-731) . T) ((-783) . T) ((-1012) . T))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 24)) (-3961 (($) 23 T CONST)) (-2809 (($ $ $) 13)) (-2446 (($ $ $) 14)) (-1239 (((-1066) $) 9)) (-4142 (((-1030) $) 10)) (-2188 (((-791) $) 11)) (-3560 (($) 22 T CONST)) (-1573 (((-108) $ $) 16)) (-1557 (((-108) $ $) 17)) (-1530 (((-108) $ $) 6)) (-1565 (((-108) $ $) 15)) (-1548 (((-108) $ $) 18)) (-1601 (($ $ $) 20)) (* (($ (-706) $) 25) (($ (-849) $) 21)))
-(((-727) (-1195)) (T -727))
-NIL
-(-13 (-729) (-23))
-(((-23) . T) ((-25) . T) ((-97) . T) ((-560 (-791)) . T) ((-729) . T) ((-783) . T) ((-1012) . T))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 24)) (-1224 (($ $ $) 27)) (-1917 (((-3 $ "failed") $ $) 26)) (-3961 (($) 23 T CONST)) (-2809 (($ $ $) 13)) (-2446 (($ $ $) 14)) (-1239 (((-1066) $) 9)) (-4142 (((-1030) $) 10)) (-2188 (((-791) $) 11)) (-3560 (($) 22 T CONST)) (-1573 (((-108) $ $) 16)) (-1557 (((-108) $ $) 17)) (-1530 (((-108) $ $) 6)) (-1565 (((-108) $ $) 15)) (-1548 (((-108) $ $) 18)) (-1601 (($ $ $) 20)) (* (($ (-706) $) 25) (($ (-849) $) 21)))
-(((-728) (-1195)) (T -728))
-((-1224 (*1 *1 *1 *1) (-4 *1 (-728))))
-(-13 (-731) (-10 -8 (-15 -1224 ($ $ $))))
-(((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-560 (-791)) . T) ((-727) . T) ((-729) . T) ((-731) . T) ((-783) . T) ((-1012) . T))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 24)) (-3961 (($) 23 T CONST)) (-2809 (($ $ $) 13)) (-2446 (($ $ $) 14)) (-1239 (((-1066) $) 9)) (-4142 (((-1030) $) 10)) (-2188 (((-791) $) 11)) (-3560 (($) 22 T CONST)) (-1573 (((-108) $ $) 16)) (-1557 (((-108) $ $) 17)) (-1530 (((-108) $ $) 6)) (-1565 (((-108) $ $) 15)) (-1548 (((-108) $ $) 18)) (-1601 (($ $ $) 20)) (* (($ (-706) $) 25) (($ (-849) $) 21)))
-(((-729) (-1195)) (T -729))
-NIL
-(-13 (-783) (-23))
-(((-23) . T) ((-25) . T) ((-97) . T) ((-560 (-791)) . T) ((-783) . T) ((-1012) . T))
-((-3429 (((-1016) $) 12)) (-1930 (($ (-1083) (-1016)) 13)) (-2883 (((-1083) $) 10)) (-2188 (((-791) $) 24)))
-(((-730) (-13 (-560 (-791)) (-10 -8 (-15 -2883 ((-1083) $)) (-15 -3429 ((-1016) $)) (-15 -1930 ($ (-1083) (-1016)))))) (T -730))
-((-2883 (*1 *2 *1) (-12 (-5 *2 (-1083)) (-5 *1 (-730)))) (-3429 (*1 *2 *1) (-12 (-5 *2 (-1016)) (-5 *1 (-730)))) (-1930 (*1 *1 *2 *3) (-12 (-5 *2 (-1083)) (-5 *3 (-1016)) (-5 *1 (-730)))))
-(-13 (-560 (-791)) (-10 -8 (-15 -2883 ((-1083) $)) (-15 -3429 ((-1016) $)) (-15 -1930 ($ (-1083) (-1016)))))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 24)) (-1917 (((-3 $ "failed") $ $) 26)) (-3961 (($) 23 T CONST)) (-2809 (($ $ $) 13)) (-2446 (($ $ $) 14)) (-1239 (((-1066) $) 9)) (-4142 (((-1030) $) 10)) (-2188 (((-791) $) 11)) (-3560 (($) 22 T CONST)) (-1573 (((-108) $ $) 16)) (-1557 (((-108) $ $) 17)) (-1530 (((-108) $ $) 6)) (-1565 (((-108) $ $) 15)) (-1548 (((-108) $ $) 18)) (-1601 (($ $ $) 20)) (* (($ (-706) $) 25) (($ (-849) $) 21)))
-(((-731) (-1195)) (T -731))
-NIL
-(-13 (-727) (-124))
-(((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-560 (-791)) . T) ((-727) . T) ((-729) . T) ((-783) . T) ((-1012) . T))
-((-2906 (((-108) $) 41)) (-1296 (((-3 (-520) "failed") $) NIL) (((-3 (-380 (-520)) "failed") $) NIL) (((-3 |#2| "failed") $) 44)) (-1482 (((-520) $) NIL) (((-380 (-520)) $) NIL) ((|#2| $) 42)) (-2279 (((-3 (-380 (-520)) "failed") $) 78)) (-1386 (((-108) $) 72)) (-4055 (((-380 (-520)) $) 76)) (-1434 ((|#2| $) 26)) (-1389 (($ (-1 |#2| |#2|) $) 23)) (-3093 (($ $) 61)) (-1429 (((-496) $) 67)) (-2945 (($ $) 21)) (-2188 (((-791) $) 56) (($ (-520)) 39) (($ |#2|) 37) (($ (-380 (-520))) NIL)) (-3251 (((-706)) 10)) (-2458 ((|#2| $) 71)) (-1530 (((-108) $ $) 29)) (-1548 (((-108) $ $) 69)) (-1611 (($ $) 31) (($ $ $) NIL)) (-1601 (($ $ $) 30)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) 35) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 32)))
-(((-732 |#1| |#2|) (-10 -8 (-15 -1548 ((-108) |#1| |#1|)) (-15 -1429 ((-496) |#1|)) (-15 -3093 (|#1| |#1|)) (-15 -2279 ((-3 (-380 (-520)) "failed") |#1|)) (-15 -4055 ((-380 (-520)) |#1|)) (-15 -1386 ((-108) |#1|)) (-15 -2458 (|#2| |#1|)) (-15 -1434 (|#2| |#1|)) (-15 -2945 (|#1| |#1|)) (-15 -1389 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1482 (|#2| |#1|)) (-15 -1296 ((-3 |#2| "failed") |#1|)) (-15 -2188 (|#1| (-380 (-520)))) (-15 -1296 ((-3 (-380 (-520)) "failed") |#1|)) (-15 -1482 ((-380 (-520)) |#1|)) (-15 -1296 ((-3 (-520) "failed") |#1|)) (-15 -1482 ((-520) |#1|)) (-15 -2188 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2188 (|#1| (-520))) (-15 -3251 ((-706))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-520) |#1|)) (-15 -1611 (|#1| |#1| |#1|)) (-15 -1611 (|#1| |#1|)) (-15 * (|#1| (-706) |#1|)) (-15 -2906 ((-108) |#1|)) (-15 * (|#1| (-849) |#1|)) (-15 -1601 (|#1| |#1| |#1|)) (-15 -2188 ((-791) |#1|)) (-15 -1530 ((-108) |#1| |#1|))) (-733 |#2|) (-157)) (T -732))
-((-3251 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-706)) (-5 *1 (-732 *3 *4)) (-4 *3 (-733 *4)))))
-(-10 -8 (-15 -1548 ((-108) |#1| |#1|)) (-15 -1429 ((-496) |#1|)) (-15 -3093 (|#1| |#1|)) (-15 -2279 ((-3 (-380 (-520)) "failed") |#1|)) (-15 -4055 ((-380 (-520)) |#1|)) (-15 -1386 ((-108) |#1|)) (-15 -2458 (|#2| |#1|)) (-15 -1434 (|#2| |#1|)) (-15 -2945 (|#1| |#1|)) (-15 -1389 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1482 (|#2| |#1|)) (-15 -1296 ((-3 |#2| "failed") |#1|)) (-15 -2188 (|#1| (-380 (-520)))) (-15 -1296 ((-3 (-380 (-520)) "failed") |#1|)) (-15 -1482 ((-380 (-520)) |#1|)) (-15 -1296 ((-3 (-520) "failed") |#1|)) (-15 -1482 ((-520) |#1|)) (-15 -2188 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2188 (|#1| (-520))) (-15 -3251 ((-706))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-520) |#1|)) (-15 -1611 (|#1| |#1| |#1|)) (-15 -1611 (|#1| |#1|)) (-15 * (|#1| (-706) |#1|)) (-15 -2906 ((-108) |#1|)) (-15 * (|#1| (-849) |#1|)) (-15 -1601 (|#1| |#1| |#1|)) (-15 -2188 ((-791) |#1|)) (-15 -1530 ((-108) |#1| |#1|)))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-1917 (((-3 $ "failed") $ $) 19)) (-1628 (((-706)) 53 (|has| |#1| (-341)))) (-3961 (($) 17 T CONST)) (-1296 (((-3 (-520) "failed") $) 94 (|has| |#1| (-960 (-520)))) (((-3 (-380 (-520)) "failed") $) 92 (|has| |#1| (-960 (-380 (-520))))) (((-3 |#1| "failed") $) 90)) (-1482 (((-520) $) 95 (|has| |#1| (-960 (-520)))) (((-380 (-520)) $) 93 (|has| |#1| (-960 (-380 (-520))))) ((|#1| $) 89)) (-1540 (((-3 $ "failed") $) 34)) (-1936 ((|#1| $) 79)) (-2279 (((-3 (-380 (-520)) "failed") $) 66 (|has| |#1| (-505)))) (-1386 (((-108) $) 68 (|has| |#1| (-505)))) (-4055 (((-380 (-520)) $) 67 (|has| |#1| (-505)))) (-3249 (($) 56 (|has| |#1| (-341)))) (-1537 (((-108) $) 31)) (-3594 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 70)) (-1434 ((|#1| $) 71)) (-2809 (($ $ $) 62 (|has| |#1| (-783)))) (-2446 (($ $ $) 61 (|has| |#1| (-783)))) (-1389 (($ (-1 |#1| |#1|) $) 81)) (-3040 (((-849) $) 55 (|has| |#1| (-341)))) (-1239 (((-1066) $) 9)) (-3093 (($ $) 65 (|has| |#1| (-336)))) (-2716 (($ (-849)) 54 (|has| |#1| (-341)))) (-2517 ((|#1| $) 76)) (-4148 ((|#1| $) 77)) (-2016 ((|#1| $) 78)) (-1711 ((|#1| $) 72)) (-2689 ((|#1| $) 73)) (-1862 ((|#1| $) 74)) (-1509 ((|#1| $) 75)) (-4142 (((-1030) $) 10)) (-2286 (($ $ (-586 |#1|) (-586 |#1|)) 87 (|has| |#1| (-283 |#1|))) (($ $ |#1| |#1|) 86 (|has| |#1| (-283 |#1|))) (($ $ (-268 |#1|)) 85 (|has| |#1| (-283 |#1|))) (($ $ (-586 (-268 |#1|))) 84 (|has| |#1| (-283 |#1|))) (($ $ (-586 (-1083)) (-586 |#1|)) 83 (|has| |#1| (-481 (-1083) |#1|))) (($ $ (-1083) |#1|) 82 (|has| |#1| (-481 (-1083) |#1|)))) (-2543 (($ $ |#1|) 88 (|has| |#1| (-260 |#1| |#1|)))) (-1429 (((-496) $) 63 (|has| |#1| (-561 (-496))))) (-2945 (($ $) 80)) (-2188 (((-791) $) 11) (($ (-520)) 28) (($ |#1|) 37) (($ (-380 (-520))) 91 (|has| |#1| (-960 (-380 (-520)))))) (-3796 (((-3 $ "failed") $) 64 (|has| |#1| (-133)))) (-3251 (((-706)) 29)) (-2458 ((|#1| $) 69 (|has| |#1| (-978)))) (-3504 (($ $ (-849)) 26) (($ $ (-706)) 33)) (-3560 (($) 18 T CONST)) (-3570 (($) 30 T CONST)) (-1573 (((-108) $ $) 59 (|has| |#1| (-783)))) (-1557 (((-108) $ $) 58 (|has| |#1| (-783)))) (-1530 (((-108) $ $) 6)) (-1565 (((-108) $ $) 60 (|has| |#1| (-783)))) (-1548 (((-108) $ $) 57 (|has| |#1| (-783)))) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-706)) 32)) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38)))
-(((-733 |#1|) (-1195) (-157)) (T -733))
-((-2945 (*1 *1 *1) (-12 (-4 *1 (-733 *2)) (-4 *2 (-157)))) (-1936 (*1 *2 *1) (-12 (-4 *1 (-733 *2)) (-4 *2 (-157)))) (-2016 (*1 *2 *1) (-12 (-4 *1 (-733 *2)) (-4 *2 (-157)))) (-4148 (*1 *2 *1) (-12 (-4 *1 (-733 *2)) (-4 *2 (-157)))) (-2517 (*1 *2 *1) (-12 (-4 *1 (-733 *2)) (-4 *2 (-157)))) (-1509 (*1 *2 *1) (-12 (-4 *1 (-733 *2)) (-4 *2 (-157)))) (-1862 (*1 *2 *1) (-12 (-4 *1 (-733 *2)) (-4 *2 (-157)))) (-2689 (*1 *2 *1) (-12 (-4 *1 (-733 *2)) (-4 *2 (-157)))) (-1711 (*1 *2 *1) (-12 (-4 *1 (-733 *2)) (-4 *2 (-157)))) (-1434 (*1 *2 *1) (-12 (-4 *1 (-733 *2)) (-4 *2 (-157)))) (-3594 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-733 *2)) (-4 *2 (-157)))) (-2458 (*1 *2 *1) (-12 (-4 *1 (-733 *2)) (-4 *2 (-157)) (-4 *2 (-978)))) (-1386 (*1 *2 *1) (-12 (-4 *1 (-733 *3)) (-4 *3 (-157)) (-4 *3 (-505)) (-5 *2 (-108)))) (-4055 (*1 *2 *1) (-12 (-4 *1 (-733 *3)) (-4 *3 (-157)) (-4 *3 (-505)) (-5 *2 (-380 (-520))))) (-2279 (*1 *2 *1) (|partial| -12 (-4 *1 (-733 *3)) (-4 *3 (-157)) (-4 *3 (-505)) (-5 *2 (-380 (-520))))) (-3093 (*1 *1 *1) (-12 (-4 *1 (-733 *2)) (-4 *2 (-157)) (-4 *2 (-336)))))
-(-13 (-37 |t#1|) (-384 |t#1|) (-311 |t#1|) (-10 -8 (-15 -2945 ($ $)) (-15 -1936 (|t#1| $)) (-15 -2016 (|t#1| $)) (-15 -4148 (|t#1| $)) (-15 -2517 (|t#1| $)) (-15 -1509 (|t#1| $)) (-15 -1862 (|t#1| $)) (-15 -2689 (|t#1| $)) (-15 -1711 (|t#1| $)) (-15 -1434 (|t#1| $)) (-15 -3594 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-341)) (-6 (-341)) |%noBranch|) (IF (|has| |t#1| (-783)) (-6 (-783)) |%noBranch|) (IF (|has| |t#1| (-561 (-496))) (-6 (-561 (-496))) |%noBranch|) (IF (|has| |t#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |t#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |t#1| (-978)) (-15 -2458 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-505)) (PROGN (-15 -1386 ((-108) $)) (-15 -4055 ((-380 (-520)) $)) (-15 -2279 ((-3 (-380 (-520)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-336)) (-15 -3093 ($ $)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-560 (-791)) . T) ((-561 (-496)) |has| |#1| (-561 (-496))) ((-260 |#1| $) |has| |#1| (-260 |#1| |#1|)) ((-283 |#1|) |has| |#1| (-283 |#1|)) ((-341) |has| |#1| (-341)) ((-311 |#1|) . T) ((-384 |#1|) . T) ((-481 (-1083) |#1|) |has| |#1| (-481 (-1083) |#1|)) ((-481 |#1| |#1|) |has| |#1| (-283 |#1|)) ((-588 |#1|) . T) ((-588 $) . T) ((-653 |#1|) . T) ((-662) . T) ((-783) |has| |#1| (-783)) ((-960 (-380 (-520))) |has| |#1| (-960 (-380 (-520)))) ((-960 (-520)) |has| |#1| (-960 (-520))) ((-960 |#1|) . T) ((-975 |#1|) . T) ((-969) . T) ((-976) . T) ((-1024) . T) ((-1012) . T))
-((-1389 ((|#3| (-1 |#4| |#2|) |#1|) 20)))
-(((-734 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1389 (|#3| (-1 |#4| |#2|) |#1|))) (-733 |#2|) (-157) (-733 |#4|) (-157)) (T -734))
-((-1389 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-157)) (-4 *6 (-157)) (-4 *2 (-733 *6)) (-5 *1 (-734 *4 *5 *2 *6)) (-4 *4 (-733 *5)))))
-(-10 -7 (-15 -1389 (|#3| (-1 |#4| |#2|) |#1|)))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-1917 (((-3 $ "failed") $ $) NIL)) (-1628 (((-706)) NIL (|has| |#1| (-341)))) (-3961 (($) NIL T CONST)) (-1296 (((-3 |#1| "failed") $) NIL) (((-3 (-923 |#1|) "failed") $) 35) (((-3 (-520) "failed") $) NIL (-3700 (|has| (-923 |#1|) (-960 (-520))) (|has| |#1| (-960 (-520))))) (((-3 (-380 (-520)) "failed") $) NIL (-3700 (|has| (-923 |#1|) (-960 (-380 (-520)))) (|has| |#1| (-960 (-380 (-520))))))) (-1482 ((|#1| $) NIL) (((-923 |#1|) $) 33) (((-520) $) NIL (-3700 (|has| (-923 |#1|) (-960 (-520))) (|has| |#1| (-960 (-520))))) (((-380 (-520)) $) NIL (-3700 (|has| (-923 |#1|) (-960 (-380 (-520)))) (|has| |#1| (-960 (-380 (-520))))))) (-1540 (((-3 $ "failed") $) NIL)) (-1936 ((|#1| $) 16)) (-2279 (((-3 (-380 (-520)) "failed") $) NIL (|has| |#1| (-505)))) (-1386 (((-108) $) NIL (|has| |#1| (-505)))) (-4055 (((-380 (-520)) $) NIL (|has| |#1| (-505)))) (-3249 (($) NIL (|has| |#1| (-341)))) (-1537 (((-108) $) NIL)) (-3594 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-923 |#1|) (-923 |#1|)) 29)) (-1434 ((|#1| $) NIL)) (-2809 (($ $ $) NIL (|has| |#1| (-783)))) (-2446 (($ $ $) NIL (|has| |#1| (-783)))) (-1389 (($ (-1 |#1| |#1|) $) NIL)) (-3040 (((-849) $) NIL (|has| |#1| (-341)))) (-1239 (((-1066) $) NIL)) (-3093 (($ $) NIL (|has| |#1| (-336)))) (-2716 (($ (-849)) NIL (|has| |#1| (-341)))) (-2517 ((|#1| $) 22)) (-4148 ((|#1| $) 20)) (-2016 ((|#1| $) 18)) (-1711 ((|#1| $) 26)) (-2689 ((|#1| $) 25)) (-1862 ((|#1| $) 24)) (-1509 ((|#1| $) 23)) (-4142 (((-1030) $) NIL)) (-2286 (($ $ (-586 |#1|) (-586 |#1|)) NIL (|has| |#1| (-283 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-283 |#1|))) (($ $ (-268 |#1|)) NIL (|has| |#1| (-283 |#1|))) (($ $ (-586 (-268 |#1|))) NIL (|has| |#1| (-283 |#1|))) (($ $ (-586 (-1083)) (-586 |#1|)) NIL (|has| |#1| (-481 (-1083) |#1|))) (($ $ (-1083) |#1|) NIL (|has| |#1| (-481 (-1083) |#1|)))) (-2543 (($ $ |#1|) NIL (|has| |#1| (-260 |#1| |#1|)))) (-1429 (((-496) $) NIL (|has| |#1| (-561 (-496))))) (-2945 (($ $) NIL)) (-2188 (((-791) $) NIL) (($ (-520)) NIL) (($ |#1|) NIL) (($ (-923 |#1|)) 30) (($ (-380 (-520))) NIL (-3700 (|has| (-923 |#1|) (-960 (-380 (-520)))) (|has| |#1| (-960 (-380 (-520))))))) (-3796 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-3251 (((-706)) NIL)) (-2458 ((|#1| $) NIL (|has| |#1| (-978)))) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (-3560 (($) 8 T CONST)) (-3570 (($) 12 T CONST)) (-1573 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1557 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1530 (((-108) $ $) NIL)) (-1565 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1548 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1611 (($ $) NIL) (($ $ $) NIL)) (-1601 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-735 |#1|) (-13 (-733 |#1|) (-384 (-923 |#1|)) (-10 -8 (-15 -3594 ($ (-923 |#1|) (-923 |#1|))))) (-157)) (T -735))
-((-3594 (*1 *1 *2 *2) (-12 (-5 *2 (-923 *3)) (-4 *3 (-157)) (-5 *1 (-735 *3)))))
-(-13 (-733 |#1|) (-384 (-923 |#1|)) (-10 -8 (-15 -3594 ($ (-923 |#1|) (-923 |#1|)))))
-((-1414 (((-108) $ $) 7)) (-1796 (((-2 (|:| -1796 (-352)) (|:| |explanations| (-1066))) (-981) (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1164 (-289 (-201)))) (|:| |yinit| (-586 (-201))) (|:| |intvals| (-586 (-201))) (|:| |g| (-289 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 14)) (-1239 (((-1066) $) 9)) (-4142 (((-1030) $) 10)) (-2188 (((-791) $) 11)) (-2818 (((-958) (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1164 (-289 (-201)))) (|:| |yinit| (-586 (-201))) (|:| |intvals| (-586 (-201))) (|:| |g| (-289 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 13)) (-1530 (((-108) $ $) 6)))
-(((-736) (-1195)) (T -736))
-((-1796 (*1 *2 *3 *4) (-12 (-4 *1 (-736)) (-5 *3 (-981)) (-5 *4 (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1164 (-289 (-201)))) (|:| |yinit| (-586 (-201))) (|:| |intvals| (-586 (-201))) (|:| |g| (-289 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (-5 *2 (-2 (|:| -1796 (-352)) (|:| |explanations| (-1066)))))) (-2818 (*1 *2 *3) (-12 (-4 *1 (-736)) (-5 *3 (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1164 (-289 (-201)))) (|:| |yinit| (-586 (-201))) (|:| |intvals| (-586 (-201))) (|:| |g| (-289 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (-5 *2 (-958)))))
-(-13 (-1012) (-10 -7 (-15 -1796 ((-2 (|:| -1796 (-352)) (|:| |explanations| (-1066))) (-981) (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1164 (-289 (-201)))) (|:| |yinit| (-586 (-201))) (|:| |intvals| (-586 (-201))) (|:| |g| (-289 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))) (-15 -2818 ((-958) (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1164 (-289 (-201)))) (|:| |yinit| (-586 (-201))) (|:| |intvals| (-586 (-201))) (|:| |g| (-289 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))))))
-(((-97) . T) ((-560 (-791)) . T) ((-1012) . T))
-((-2916 (((-2 (|:| |particular| |#2|) (|:| -1831 (-586 |#2|))) |#3| |#2| (-1083)) 19)))
-(((-737 |#1| |#2| |#3|) (-10 -7 (-15 -2916 ((-2 (|:| |particular| |#2|) (|:| -1831 (-586 |#2|))) |#3| |#2| (-1083)))) (-13 (-783) (-281) (-960 (-520)) (-582 (-520)) (-135)) (-13 (-29 |#1|) (-1104) (-886)) (-596 |#2|)) (T -737))
-((-2916 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1083)) (-4 *6 (-13 (-783) (-281) (-960 (-520)) (-582 (-520)) (-135))) (-4 *4 (-13 (-29 *6) (-1104) (-886))) (-5 *2 (-2 (|:| |particular| *4) (|:| -1831 (-586 *4)))) (-5 *1 (-737 *6 *4 *3)) (-4 *3 (-596 *4)))))
-(-10 -7 (-15 -2916 ((-2 (|:| |particular| |#2|) (|:| -1831 (-586 |#2|))) |#3| |#2| (-1083))))
-((-3600 (((-3 |#2| "failed") |#2| (-110) (-268 |#2|) (-586 |#2|)) 26) (((-3 |#2| "failed") (-268 |#2|) (-110) (-268 |#2|) (-586 |#2|)) 27) (((-3 (-2 (|:| |particular| |#2|) (|:| -1831 (-586 |#2|))) |#2| "failed") |#2| (-110) (-1083)) 16) (((-3 (-2 (|:| |particular| |#2|) (|:| -1831 (-586 |#2|))) |#2| "failed") (-268 |#2|) (-110) (-1083)) 17) (((-3 (-2 (|:| |particular| (-1164 |#2|)) (|:| -1831 (-586 (-1164 |#2|)))) "failed") (-586 |#2|) (-586 (-110)) (-1083)) 22) (((-3 (-2 (|:| |particular| (-1164 |#2|)) (|:| -1831 (-586 (-1164 |#2|)))) "failed") (-586 (-268 |#2|)) (-586 (-110)) (-1083)) 24) (((-3 (-586 (-1164 |#2|)) "failed") (-626 |#2|) (-1083)) 36) (((-3 (-2 (|:| |particular| (-1164 |#2|)) (|:| -1831 (-586 (-1164 |#2|)))) "failed") (-626 |#2|) (-1164 |#2|) (-1083)) 34)))
-(((-738 |#1| |#2|) (-10 -7 (-15 -3600 ((-3 (-2 (|:| |particular| (-1164 |#2|)) (|:| -1831 (-586 (-1164 |#2|)))) "failed") (-626 |#2|) (-1164 |#2|) (-1083))) (-15 -3600 ((-3 (-586 (-1164 |#2|)) "failed") (-626 |#2|) (-1083))) (-15 -3600 ((-3 (-2 (|:| |particular| (-1164 |#2|)) (|:| -1831 (-586 (-1164 |#2|)))) "failed") (-586 (-268 |#2|)) (-586 (-110)) (-1083))) (-15 -3600 ((-3 (-2 (|:| |particular| (-1164 |#2|)) (|:| -1831 (-586 (-1164 |#2|)))) "failed") (-586 |#2|) (-586 (-110)) (-1083))) (-15 -3600 ((-3 (-2 (|:| |particular| |#2|) (|:| -1831 (-586 |#2|))) |#2| "failed") (-268 |#2|) (-110) (-1083))) (-15 -3600 ((-3 (-2 (|:| |particular| |#2|) (|:| -1831 (-586 |#2|))) |#2| "failed") |#2| (-110) (-1083))) (-15 -3600 ((-3 |#2| "failed") (-268 |#2|) (-110) (-268 |#2|) (-586 |#2|))) (-15 -3600 ((-3 |#2| "failed") |#2| (-110) (-268 |#2|) (-586 |#2|)))) (-13 (-783) (-281) (-960 (-520)) (-582 (-520)) (-135)) (-13 (-29 |#1|) (-1104) (-886))) (T -738))
-((-3600 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-110)) (-5 *4 (-268 *2)) (-5 *5 (-586 *2)) (-4 *2 (-13 (-29 *6) (-1104) (-886))) (-4 *6 (-13 (-783) (-281) (-960 (-520)) (-582 (-520)) (-135))) (-5 *1 (-738 *6 *2)))) (-3600 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-268 *2)) (-5 *4 (-110)) (-5 *5 (-586 *2)) (-4 *2 (-13 (-29 *6) (-1104) (-886))) (-5 *1 (-738 *6 *2)) (-4 *6 (-13 (-783) (-281) (-960 (-520)) (-582 (-520)) (-135))))) (-3600 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-110)) (-5 *5 (-1083)) (-4 *6 (-13 (-783) (-281) (-960 (-520)) (-582 (-520)) (-135))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -1831 (-586 *3))) *3 "failed")) (-5 *1 (-738 *6 *3)) (-4 *3 (-13 (-29 *6) (-1104) (-886))))) (-3600 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-268 *7)) (-5 *4 (-110)) (-5 *5 (-1083)) (-4 *7 (-13 (-29 *6) (-1104) (-886))) (-4 *6 (-13 (-783) (-281) (-960 (-520)) (-582 (-520)) (-135))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -1831 (-586 *7))) *7 "failed")) (-5 *1 (-738 *6 *7)))) (-3600 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-586 *7)) (-5 *4 (-586 (-110))) (-5 *5 (-1083)) (-4 *7 (-13 (-29 *6) (-1104) (-886))) (-4 *6 (-13 (-783) (-281) (-960 (-520)) (-582 (-520)) (-135))) (-5 *2 (-2 (|:| |particular| (-1164 *7)) (|:| -1831 (-586 (-1164 *7))))) (-5 *1 (-738 *6 *7)))) (-3600 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-586 (-268 *7))) (-5 *4 (-586 (-110))) (-5 *5 (-1083)) (-4 *7 (-13 (-29 *6) (-1104) (-886))) (-4 *6 (-13 (-783) (-281) (-960 (-520)) (-582 (-520)) (-135))) (-5 *2 (-2 (|:| |particular| (-1164 *7)) (|:| -1831 (-586 (-1164 *7))))) (-5 *1 (-738 *6 *7)))) (-3600 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-626 *6)) (-5 *4 (-1083)) (-4 *6 (-13 (-29 *5) (-1104) (-886))) (-4 *5 (-13 (-783) (-281) (-960 (-520)) (-582 (-520)) (-135))) (-5 *2 (-586 (-1164 *6))) (-5 *1 (-738 *5 *6)))) (-3600 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-626 *7)) (-5 *5 (-1083)) (-4 *7 (-13 (-29 *6) (-1104) (-886))) (-4 *6 (-13 (-783) (-281) (-960 (-520)) (-582 (-520)) (-135))) (-5 *2 (-2 (|:| |particular| (-1164 *7)) (|:| -1831 (-586 (-1164 *7))))) (-5 *1 (-738 *6 *7)) (-5 *4 (-1164 *7)))))
-(-10 -7 (-15 -3600 ((-3 (-2 (|:| |particular| (-1164 |#2|)) (|:| -1831 (-586 (-1164 |#2|)))) "failed") (-626 |#2|) (-1164 |#2|) (-1083))) (-15 -3600 ((-3 (-586 (-1164 |#2|)) "failed") (-626 |#2|) (-1083))) (-15 -3600 ((-3 (-2 (|:| |particular| (-1164 |#2|)) (|:| -1831 (-586 (-1164 |#2|)))) "failed") (-586 (-268 |#2|)) (-586 (-110)) (-1083))) (-15 -3600 ((-3 (-2 (|:| |particular| (-1164 |#2|)) (|:| -1831 (-586 (-1164 |#2|)))) "failed") (-586 |#2|) (-586 (-110)) (-1083))) (-15 -3600 ((-3 (-2 (|:| |particular| |#2|) (|:| -1831 (-586 |#2|))) |#2| "failed") (-268 |#2|) (-110) (-1083))) (-15 -3600 ((-3 (-2 (|:| |particular| |#2|) (|:| -1831 (-586 |#2|))) |#2| "failed") |#2| (-110) (-1083))) (-15 -3600 ((-3 |#2| "failed") (-268 |#2|) (-110) (-268 |#2|) (-586 |#2|))) (-15 -3600 ((-3 |#2| "failed") |#2| (-110) (-268 |#2|) (-586 |#2|))))
-((-2775 (($) 9)) (-3506 (((-3 (-2 (|:| |stiffness| (-352)) (|:| |stability| (-352)) (|:| |expense| (-352)) (|:| |accuracy| (-352)) (|:| |intermediateResults| (-352))) "failed") (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1164 (-289 (-201)))) (|:| |yinit| (-586 (-201))) (|:| |intvals| (-586 (-201))) (|:| |g| (-289 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 26)) (-2960 (((-586 (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1164 (-289 (-201)))) (|:| |yinit| (-586 (-201))) (|:| |intvals| (-586 (-201))) (|:| |g| (-289 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) $) 23)) (-3618 (($ (-2 (|:| -2526 (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1164 (-289 (-201)))) (|:| |yinit| (-586 (-201))) (|:| |intvals| (-586 (-201))) (|:| |g| (-289 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (|:| -3043 (-2 (|:| |stiffness| (-352)) (|:| |stability| (-352)) (|:| |expense| (-352)) (|:| |accuracy| (-352)) (|:| |intermediateResults| (-352)))))) 20)) (-3845 (($ (-586 (-2 (|:| -2526 (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1164 (-289 (-201)))) (|:| |yinit| (-586 (-201))) (|:| |intvals| (-586 (-201))) (|:| |g| (-289 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (|:| -3043 (-2 (|:| |stiffness| (-352)) (|:| |stability| (-352)) (|:| |expense| (-352)) (|:| |accuracy| (-352)) (|:| |intermediateResults| (-352))))))) 18)) (-1599 (((-1169)) 12)))
-(((-739) (-10 -8 (-15 -2775 ($)) (-15 -1599 ((-1169))) (-15 -2960 ((-586 (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1164 (-289 (-201)))) (|:| |yinit| (-586 (-201))) (|:| |intvals| (-586 (-201))) (|:| |g| (-289 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) $)) (-15 -3845 ($ (-586 (-2 (|:| -2526 (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1164 (-289 (-201)))) (|:| |yinit| (-586 (-201))) (|:| |intvals| (-586 (-201))) (|:| |g| (-289 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (|:| -3043 (-2 (|:| |stiffness| (-352)) (|:| |stability| (-352)) (|:| |expense| (-352)) (|:| |accuracy| (-352)) (|:| |intermediateResults| (-352)))))))) (-15 -3618 ($ (-2 (|:| -2526 (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1164 (-289 (-201)))) (|:| |yinit| (-586 (-201))) (|:| |intvals| (-586 (-201))) (|:| |g| (-289 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (|:| -3043 (-2 (|:| |stiffness| (-352)) (|:| |stability| (-352)) (|:| |expense| (-352)) (|:| |accuracy| (-352)) (|:| |intermediateResults| (-352))))))) (-15 -3506 ((-3 (-2 (|:| |stiffness| (-352)) (|:| |stability| (-352)) (|:| |expense| (-352)) (|:| |accuracy| (-352)) (|:| |intermediateResults| (-352))) "failed") (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1164 (-289 (-201)))) (|:| |yinit| (-586 (-201))) (|:| |intvals| (-586 (-201))) (|:| |g| (-289 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))))) (T -739))
-((-3506 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1164 (-289 (-201)))) (|:| |yinit| (-586 (-201))) (|:| |intvals| (-586 (-201))) (|:| |g| (-289 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (-5 *2 (-2 (|:| |stiffness| (-352)) (|:| |stability| (-352)) (|:| |expense| (-352)) (|:| |accuracy| (-352)) (|:| |intermediateResults| (-352)))) (-5 *1 (-739)))) (-3618 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2526 (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1164 (-289 (-201)))) (|:| |yinit| (-586 (-201))) (|:| |intvals| (-586 (-201))) (|:| |g| (-289 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (|:| -3043 (-2 (|:| |stiffness| (-352)) (|:| |stability| (-352)) (|:| |expense| (-352)) (|:| |accuracy| (-352)) (|:| |intermediateResults| (-352)))))) (-5 *1 (-739)))) (-3845 (*1 *1 *2) (-12 (-5 *2 (-586 (-2 (|:| -2526 (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1164 (-289 (-201)))) (|:| |yinit| (-586 (-201))) (|:| |intvals| (-586 (-201))) (|:| |g| (-289 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (|:| -3043 (-2 (|:| |stiffness| (-352)) (|:| |stability| (-352)) (|:| |expense| (-352)) (|:| |accuracy| (-352)) (|:| |intermediateResults| (-352))))))) (-5 *1 (-739)))) (-2960 (*1 *2 *1) (-12 (-5 *2 (-586 (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1164 (-289 (-201)))) (|:| |yinit| (-586 (-201))) (|:| |intvals| (-586 (-201))) (|:| |g| (-289 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))) (-5 *1 (-739)))) (-1599 (*1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-739)))) (-2775 (*1 *1) (-5 *1 (-739))))
-(-10 -8 (-15 -2775 ($)) (-15 -1599 ((-1169))) (-15 -2960 ((-586 (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1164 (-289 (-201)))) (|:| |yinit| (-586 (-201))) (|:| |intvals| (-586 (-201))) (|:| |g| (-289 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) $)) (-15 -3845 ($ (-586 (-2 (|:| -2526 (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1164 (-289 (-201)))) (|:| |yinit| (-586 (-201))) (|:| |intvals| (-586 (-201))) (|:| |g| (-289 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (|:| -3043 (-2 (|:| |stiffness| (-352)) (|:| |stability| (-352)) (|:| |expense| (-352)) (|:| |accuracy| (-352)) (|:| |intermediateResults| (-352)))))))) (-15 -3618 ($ (-2 (|:| -2526 (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1164 (-289 (-201)))) (|:| |yinit| (-586 (-201))) (|:| |intvals| (-586 (-201))) (|:| |g| (-289 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (|:| -3043 (-2 (|:| |stiffness| (-352)) (|:| |stability| (-352)) (|:| |expense| (-352)) (|:| |accuracy| (-352)) (|:| |intermediateResults| (-352))))))) (-15 -3506 ((-3 (-2 (|:| |stiffness| (-352)) (|:| |stability| (-352)) (|:| |expense| (-352)) (|:| |accuracy| (-352)) (|:| |intermediateResults| (-352))) "failed") (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1164 (-289 (-201)))) (|:| |yinit| (-586 (-201))) (|:| |intvals| (-586 (-201))) (|:| |g| (-289 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))))
-((-2680 ((|#2| |#2| (-1083)) 15)) (-2040 ((|#2| |#2| (-1083)) 47)) (-1615 (((-1 |#2| |#2|) (-1083)) 11)))
-(((-740 |#1| |#2|) (-10 -7 (-15 -2680 (|#2| |#2| (-1083))) (-15 -2040 (|#2| |#2| (-1083))) (-15 -1615 ((-1 |#2| |#2|) (-1083)))) (-13 (-783) (-281) (-960 (-520)) (-582 (-520)) (-135)) (-13 (-29 |#1|) (-1104) (-886))) (T -740))
-((-1615 (*1 *2 *3) (-12 (-5 *3 (-1083)) (-4 *4 (-13 (-783) (-281) (-960 (-520)) (-582 (-520)) (-135))) (-5 *2 (-1 *5 *5)) (-5 *1 (-740 *4 *5)) (-4 *5 (-13 (-29 *4) (-1104) (-886))))) (-2040 (*1 *2 *2 *3) (-12 (-5 *3 (-1083)) (-4 *4 (-13 (-783) (-281) (-960 (-520)) (-582 (-520)) (-135))) (-5 *1 (-740 *4 *2)) (-4 *2 (-13 (-29 *4) (-1104) (-886))))) (-2680 (*1 *2 *2 *3) (-12 (-5 *3 (-1083)) (-4 *4 (-13 (-783) (-281) (-960 (-520)) (-582 (-520)) (-135))) (-5 *1 (-740 *4 *2)) (-4 *2 (-13 (-29 *4) (-1104) (-886))))))
-(-10 -7 (-15 -2680 (|#2| |#2| (-1083))) (-15 -2040 (|#2| |#2| (-1083))) (-15 -1615 ((-1 |#2| |#2|) (-1083))))
-((-3600 (((-958) (-1164 (-289 (-352))) (-352) (-352) (-586 (-352)) (-289 (-352)) (-586 (-352)) (-352) (-352)) 114) (((-958) (-1164 (-289 (-352))) (-352) (-352) (-586 (-352)) (-289 (-352)) (-586 (-352)) (-352)) 115) (((-958) (-1164 (-289 (-352))) (-352) (-352) (-586 (-352)) (-586 (-352)) (-352)) 117) (((-958) (-1164 (-289 (-352))) (-352) (-352) (-586 (-352)) (-289 (-352)) (-352)) 118) (((-958) (-1164 (-289 (-352))) (-352) (-352) (-586 (-352)) (-352)) 119) (((-958) (-1164 (-289 (-352))) (-352) (-352) (-586 (-352))) 120) (((-958) (-744) (-981)) 105) (((-958) (-744)) 106)) (-1796 (((-2 (|:| -1796 (-352)) (|:| -2883 (-1066)) (|:| |explanations| (-586 (-1066)))) (-744) (-981)) 71) (((-2 (|:| -1796 (-352)) (|:| -2883 (-1066)) (|:| |explanations| (-586 (-1066)))) (-744)) 73)))
-(((-741) (-10 -7 (-15 -3600 ((-958) (-744))) (-15 -3600 ((-958) (-744) (-981))) (-15 -3600 ((-958) (-1164 (-289 (-352))) (-352) (-352) (-586 (-352)))) (-15 -3600 ((-958) (-1164 (-289 (-352))) (-352) (-352) (-586 (-352)) (-352))) (-15 -3600 ((-958) (-1164 (-289 (-352))) (-352) (-352) (-586 (-352)) (-289 (-352)) (-352))) (-15 -3600 ((-958) (-1164 (-289 (-352))) (-352) (-352) (-586 (-352)) (-586 (-352)) (-352))) (-15 -3600 ((-958) (-1164 (-289 (-352))) (-352) (-352) (-586 (-352)) (-289 (-352)) (-586 (-352)) (-352))) (-15 -3600 ((-958) (-1164 (-289 (-352))) (-352) (-352) (-586 (-352)) (-289 (-352)) (-586 (-352)) (-352) (-352))) (-15 -1796 ((-2 (|:| -1796 (-352)) (|:| -2883 (-1066)) (|:| |explanations| (-586 (-1066)))) (-744))) (-15 -1796 ((-2 (|:| -1796 (-352)) (|:| -2883 (-1066)) (|:| |explanations| (-586 (-1066)))) (-744) (-981))))) (T -741))
-((-1796 (*1 *2 *3 *4) (-12 (-5 *3 (-744)) (-5 *4 (-981)) (-5 *2 (-2 (|:| -1796 (-352)) (|:| -2883 (-1066)) (|:| |explanations| (-586 (-1066))))) (-5 *1 (-741)))) (-1796 (*1 *2 *3) (-12 (-5 *3 (-744)) (-5 *2 (-2 (|:| -1796 (-352)) (|:| -2883 (-1066)) (|:| |explanations| (-586 (-1066))))) (-5 *1 (-741)))) (-3600 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1164 (-289 *4))) (-5 *5 (-586 (-352))) (-5 *6 (-289 (-352))) (-5 *4 (-352)) (-5 *2 (-958)) (-5 *1 (-741)))) (-3600 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1164 (-289 *4))) (-5 *5 (-586 (-352))) (-5 *6 (-289 (-352))) (-5 *4 (-352)) (-5 *2 (-958)) (-5 *1 (-741)))) (-3600 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1164 (-289 (-352)))) (-5 *4 (-352)) (-5 *5 (-586 *4)) (-5 *2 (-958)) (-5 *1 (-741)))) (-3600 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1164 (-289 *4))) (-5 *5 (-586 (-352))) (-5 *6 (-289 (-352))) (-5 *4 (-352)) (-5 *2 (-958)) (-5 *1 (-741)))) (-3600 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1164 (-289 (-352)))) (-5 *4 (-352)) (-5 *5 (-586 *4)) (-5 *2 (-958)) (-5 *1 (-741)))) (-3600 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1164 (-289 (-352)))) (-5 *4 (-352)) (-5 *5 (-586 *4)) (-5 *2 (-958)) (-5 *1 (-741)))) (-3600 (*1 *2 *3 *4) (-12 (-5 *3 (-744)) (-5 *4 (-981)) (-5 *2 (-958)) (-5 *1 (-741)))) (-3600 (*1 *2 *3) (-12 (-5 *3 (-744)) (-5 *2 (-958)) (-5 *1 (-741)))))
-(-10 -7 (-15 -3600 ((-958) (-744))) (-15 -3600 ((-958) (-744) (-981))) (-15 -3600 ((-958) (-1164 (-289 (-352))) (-352) (-352) (-586 (-352)))) (-15 -3600 ((-958) (-1164 (-289 (-352))) (-352) (-352) (-586 (-352)) (-352))) (-15 -3600 ((-958) (-1164 (-289 (-352))) (-352) (-352) (-586 (-352)) (-289 (-352)) (-352))) (-15 -3600 ((-958) (-1164 (-289 (-352))) (-352) (-352) (-586 (-352)) (-586 (-352)) (-352))) (-15 -3600 ((-958) (-1164 (-289 (-352))) (-352) (-352) (-586 (-352)) (-289 (-352)) (-586 (-352)) (-352))) (-15 -3600 ((-958) (-1164 (-289 (-352))) (-352) (-352) (-586 (-352)) (-289 (-352)) (-586 (-352)) (-352) (-352))) (-15 -1796 ((-2 (|:| -1796 (-352)) (|:| -2883 (-1066)) (|:| |explanations| (-586 (-1066)))) (-744))) (-15 -1796 ((-2 (|:| -1796 (-352)) (|:| -2883 (-1066)) (|:| |explanations| (-586 (-1066)))) (-744) (-981))))
-((-4049 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1831 (-586 |#4|))) (-593 |#4|) |#4|) 32)))
-(((-742 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4049 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1831 (-586 |#4|))) (-593 |#4|) |#4|))) (-13 (-336) (-135) (-960 (-520)) (-960 (-380 (-520)))) (-1140 |#1|) (-1140 (-380 |#2|)) (-315 |#1| |#2| |#3|)) (T -742))
-((-4049 (*1 *2 *3 *4) (-12 (-5 *3 (-593 *4)) (-4 *4 (-315 *5 *6 *7)) (-4 *5 (-13 (-336) (-135) (-960 (-520)) (-960 (-380 (-520))))) (-4 *6 (-1140 *5)) (-4 *7 (-1140 (-380 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1831 (-586 *4)))) (-5 *1 (-742 *5 *6 *7 *4)))))
-(-10 -7 (-15 -4049 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1831 (-586 |#4|))) (-593 |#4|) |#4|)))
-((-3029 (((-2 (|:| -3190 |#3|) (|:| |rh| (-586 (-380 |#2|)))) |#4| (-586 (-380 |#2|))) 52)) (-1370 (((-586 (-2 (|:| -1892 |#2|) (|:| -1607 |#2|))) |#4| |#2|) 60) (((-586 (-2 (|:| -1892 |#2|) (|:| -1607 |#2|))) |#4|) 59) (((-586 (-2 (|:| -1892 |#2|) (|:| -1607 |#2|))) |#3| |#2|) 20) (((-586 (-2 (|:| -1892 |#2|) (|:| -1607 |#2|))) |#3|) 21)) (-1261 ((|#2| |#4| |#1|) 61) ((|#2| |#3| |#1|) 27)) (-1229 ((|#2| |#3| (-586 (-380 |#2|))) 94) (((-3 |#2| "failed") |#3| (-380 |#2|)) 91)))
-(((-743 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1229 ((-3 |#2| "failed") |#3| (-380 |#2|))) (-15 -1229 (|#2| |#3| (-586 (-380 |#2|)))) (-15 -1370 ((-586 (-2 (|:| -1892 |#2|) (|:| -1607 |#2|))) |#3|)) (-15 -1370 ((-586 (-2 (|:| -1892 |#2|) (|:| -1607 |#2|))) |#3| |#2|)) (-15 -1261 (|#2| |#3| |#1|)) (-15 -1370 ((-586 (-2 (|:| -1892 |#2|) (|:| -1607 |#2|))) |#4|)) (-15 -1370 ((-586 (-2 (|:| -1892 |#2|) (|:| -1607 |#2|))) |#4| |#2|)) (-15 -1261 (|#2| |#4| |#1|)) (-15 -3029 ((-2 (|:| -3190 |#3|) (|:| |rh| (-586 (-380 |#2|)))) |#4| (-586 (-380 |#2|))))) (-13 (-336) (-135) (-960 (-380 (-520)))) (-1140 |#1|) (-596 |#2|) (-596 (-380 |#2|))) (T -743))
-((-3029 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-336) (-135) (-960 (-380 (-520))))) (-4 *6 (-1140 *5)) (-5 *2 (-2 (|:| -3190 *7) (|:| |rh| (-586 (-380 *6))))) (-5 *1 (-743 *5 *6 *7 *3)) (-5 *4 (-586 (-380 *6))) (-4 *7 (-596 *6)) (-4 *3 (-596 (-380 *6))))) (-1261 (*1 *2 *3 *4) (-12 (-4 *2 (-1140 *4)) (-5 *1 (-743 *4 *2 *5 *3)) (-4 *4 (-13 (-336) (-135) (-960 (-380 (-520))))) (-4 *5 (-596 *2)) (-4 *3 (-596 (-380 *2))))) (-1370 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-336) (-135) (-960 (-380 (-520))))) (-4 *4 (-1140 *5)) (-5 *2 (-586 (-2 (|:| -1892 *4) (|:| -1607 *4)))) (-5 *1 (-743 *5 *4 *6 *3)) (-4 *6 (-596 *4)) (-4 *3 (-596 (-380 *4))))) (-1370 (*1 *2 *3) (-12 (-4 *4 (-13 (-336) (-135) (-960 (-380 (-520))))) (-4 *5 (-1140 *4)) (-5 *2 (-586 (-2 (|:| -1892 *5) (|:| -1607 *5)))) (-5 *1 (-743 *4 *5 *6 *3)) (-4 *6 (-596 *5)) (-4 *3 (-596 (-380 *5))))) (-1261 (*1 *2 *3 *4) (-12 (-4 *2 (-1140 *4)) (-5 *1 (-743 *4 *2 *3 *5)) (-4 *4 (-13 (-336) (-135) (-960 (-380 (-520))))) (-4 *3 (-596 *2)) (-4 *5 (-596 (-380 *2))))) (-1370 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-336) (-135) (-960 (-380 (-520))))) (-4 *4 (-1140 *5)) (-5 *2 (-586 (-2 (|:| -1892 *4) (|:| -1607 *4)))) (-5 *1 (-743 *5 *4 *3 *6)) (-4 *3 (-596 *4)) (-4 *6 (-596 (-380 *4))))) (-1370 (*1 *2 *3) (-12 (-4 *4 (-13 (-336) (-135) (-960 (-380 (-520))))) (-4 *5 (-1140 *4)) (-5 *2 (-586 (-2 (|:| -1892 *5) (|:| -1607 *5)))) (-5 *1 (-743 *4 *5 *3 *6)) (-4 *3 (-596 *5)) (-4 *6 (-596 (-380 *5))))) (-1229 (*1 *2 *3 *4) (-12 (-5 *4 (-586 (-380 *2))) (-4 *2 (-1140 *5)) (-5 *1 (-743 *5 *2 *3 *6)) (-4 *5 (-13 (-336) (-135) (-960 (-380 (-520))))) (-4 *3 (-596 *2)) (-4 *6 (-596 (-380 *2))))) (-1229 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-380 *2)) (-4 *2 (-1140 *5)) (-5 *1 (-743 *5 *2 *3 *6)) (-4 *5 (-13 (-336) (-135) (-960 (-380 (-520))))) (-4 *3 (-596 *2)) (-4 *6 (-596 *4)))))
-(-10 -7 (-15 -1229 ((-3 |#2| "failed") |#3| (-380 |#2|))) (-15 -1229 (|#2| |#3| (-586 (-380 |#2|)))) (-15 -1370 ((-586 (-2 (|:| -1892 |#2|) (|:| -1607 |#2|))) |#3|)) (-15 -1370 ((-586 (-2 (|:| -1892 |#2|) (|:| -1607 |#2|))) |#3| |#2|)) (-15 -1261 (|#2| |#3| |#1|)) (-15 -1370 ((-586 (-2 (|:| -1892 |#2|) (|:| -1607 |#2|))) |#4|)) (-15 -1370 ((-586 (-2 (|:| -1892 |#2|) (|:| -1607 |#2|))) |#4| |#2|)) (-15 -1261 (|#2| |#4| |#1|)) (-15 -3029 ((-2 (|:| -3190 |#3|) (|:| |rh| (-586 (-380 |#2|)))) |#4| (-586 (-380 |#2|)))))
-((-1414 (((-108) $ $) NIL)) (-1482 (((-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1164 (-289 (-201)))) (|:| |yinit| (-586 (-201))) (|:| |intvals| (-586 (-201))) (|:| |g| (-289 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201))) $) 9)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2188 (((-791) $) 11) (($ (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1164 (-289 (-201)))) (|:| |yinit| (-586 (-201))) (|:| |intvals| (-586 (-201))) (|:| |g| (-289 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) 8)) (-1530 (((-108) $ $) NIL)))
-(((-744) (-13 (-1012) (-10 -8 (-15 -2188 ($ (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1164 (-289 (-201)))) (|:| |yinit| (-586 (-201))) (|:| |intvals| (-586 (-201))) (|:| |g| (-289 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))) (-15 -2188 ((-791) $)) (-15 -1482 ((-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1164 (-289 (-201)))) (|:| |yinit| (-586 (-201))) (|:| |intvals| (-586 (-201))) (|:| |g| (-289 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201))) $))))) (T -744))
-((-2188 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-744)))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1164 (-289 (-201)))) (|:| |yinit| (-586 (-201))) (|:| |intvals| (-586 (-201))) (|:| |g| (-289 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (-5 *1 (-744)))) (-1482 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1164 (-289 (-201)))) (|:| |yinit| (-586 (-201))) (|:| |intvals| (-586 (-201))) (|:| |g| (-289 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201)))) (-5 *1 (-744)))))
-(-13 (-1012) (-10 -8 (-15 -2188 ($ (-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1164 (-289 (-201)))) (|:| |yinit| (-586 (-201))) (|:| |intvals| (-586 (-201))) (|:| |g| (-289 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201))))) (-15 -2188 ((-791) $)) (-15 -1482 ((-2 (|:| |xinit| (-201)) (|:| |xend| (-201)) (|:| |fn| (-1164 (-289 (-201)))) (|:| |yinit| (-586 (-201))) (|:| |intvals| (-586 (-201))) (|:| |g| (-289 (-201))) (|:| |abserr| (-201)) (|:| |relerr| (-201))) $))))
-((-2210 (((-586 (-2 (|:| |frac| (-380 |#2|)) (|:| -3190 |#3|))) |#3| (-1 (-586 |#2|) |#2| (-1079 |#2|)) (-1 (-391 |#2|) |#2|)) 117)) (-1931 (((-586 (-2 (|:| |poly| |#2|) (|:| -3190 |#3|))) |#3| (-1 (-586 |#1|) |#2|)) 45)) (-1361 (((-586 (-2 (|:| |deg| (-706)) (|:| -3190 |#2|))) |#3|) 94)) (-2601 ((|#2| |#3|) 37)) (-1203 (((-586 (-2 (|:| -2675 |#1|) (|:| -3190 |#3|))) |#3| (-1 (-586 |#1|) |#2|)) 81)) (-2976 ((|#3| |#3| (-380 |#2|)) 62) ((|#3| |#3| |#2|) 78)))
-(((-745 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2601 (|#2| |#3|)) (-15 -1361 ((-586 (-2 (|:| |deg| (-706)) (|:| -3190 |#2|))) |#3|)) (-15 -1203 ((-586 (-2 (|:| -2675 |#1|) (|:| -3190 |#3|))) |#3| (-1 (-586 |#1|) |#2|))) (-15 -1931 ((-586 (-2 (|:| |poly| |#2|) (|:| -3190 |#3|))) |#3| (-1 (-586 |#1|) |#2|))) (-15 -2210 ((-586 (-2 (|:| |frac| (-380 |#2|)) (|:| -3190 |#3|))) |#3| (-1 (-586 |#2|) |#2| (-1079 |#2|)) (-1 (-391 |#2|) |#2|))) (-15 -2976 (|#3| |#3| |#2|)) (-15 -2976 (|#3| |#3| (-380 |#2|)))) (-13 (-336) (-135) (-960 (-380 (-520)))) (-1140 |#1|) (-596 |#2|) (-596 (-380 |#2|))) (T -745))
-((-2976 (*1 *2 *2 *3) (-12 (-5 *3 (-380 *5)) (-4 *4 (-13 (-336) (-135) (-960 (-380 (-520))))) (-4 *5 (-1140 *4)) (-5 *1 (-745 *4 *5 *2 *6)) (-4 *2 (-596 *5)) (-4 *6 (-596 *3)))) (-2976 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-336) (-135) (-960 (-380 (-520))))) (-4 *3 (-1140 *4)) (-5 *1 (-745 *4 *3 *2 *5)) (-4 *2 (-596 *3)) (-4 *5 (-596 (-380 *3))))) (-2210 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-586 *7) *7 (-1079 *7))) (-5 *5 (-1 (-391 *7) *7)) (-4 *7 (-1140 *6)) (-4 *6 (-13 (-336) (-135) (-960 (-380 (-520))))) (-5 *2 (-586 (-2 (|:| |frac| (-380 *7)) (|:| -3190 *3)))) (-5 *1 (-745 *6 *7 *3 *8)) (-4 *3 (-596 *7)) (-4 *8 (-596 (-380 *7))))) (-1931 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-586 *5) *6)) (-4 *5 (-13 (-336) (-135) (-960 (-380 (-520))))) (-4 *6 (-1140 *5)) (-5 *2 (-586 (-2 (|:| |poly| *6) (|:| -3190 *3)))) (-5 *1 (-745 *5 *6 *3 *7)) (-4 *3 (-596 *6)) (-4 *7 (-596 (-380 *6))))) (-1203 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-586 *5) *6)) (-4 *5 (-13 (-336) (-135) (-960 (-380 (-520))))) (-4 *6 (-1140 *5)) (-5 *2 (-586 (-2 (|:| -2675 *5) (|:| -3190 *3)))) (-5 *1 (-745 *5 *6 *3 *7)) (-4 *3 (-596 *6)) (-4 *7 (-596 (-380 *6))))) (-1361 (*1 *2 *3) (-12 (-4 *4 (-13 (-336) (-135) (-960 (-380 (-520))))) (-4 *5 (-1140 *4)) (-5 *2 (-586 (-2 (|:| |deg| (-706)) (|:| -3190 *5)))) (-5 *1 (-745 *4 *5 *3 *6)) (-4 *3 (-596 *5)) (-4 *6 (-596 (-380 *5))))) (-2601 (*1 *2 *3) (-12 (-4 *2 (-1140 *4)) (-5 *1 (-745 *4 *2 *3 *5)) (-4 *4 (-13 (-336) (-135) (-960 (-380 (-520))))) (-4 *3 (-596 *2)) (-4 *5 (-596 (-380 *2))))))
-(-10 -7 (-15 -2601 (|#2| |#3|)) (-15 -1361 ((-586 (-2 (|:| |deg| (-706)) (|:| -3190 |#2|))) |#3|)) (-15 -1203 ((-586 (-2 (|:| -2675 |#1|) (|:| -3190 |#3|))) |#3| (-1 (-586 |#1|) |#2|))) (-15 -1931 ((-586 (-2 (|:| |poly| |#2|) (|:| -3190 |#3|))) |#3| (-1 (-586 |#1|) |#2|))) (-15 -2210 ((-586 (-2 (|:| |frac| (-380 |#2|)) (|:| -3190 |#3|))) |#3| (-1 (-586 |#2|) |#2| (-1079 |#2|)) (-1 (-391 |#2|) |#2|))) (-15 -2976 (|#3| |#3| |#2|)) (-15 -2976 (|#3| |#3| (-380 |#2|))))
-((-2865 (((-2 (|:| -1831 (-586 (-380 |#2|))) (|:| -3927 (-626 |#1|))) (-594 |#2| (-380 |#2|)) (-586 (-380 |#2|))) 118) (((-2 (|:| |particular| (-3 (-380 |#2|) "failed")) (|:| -1831 (-586 (-380 |#2|)))) (-594 |#2| (-380 |#2|)) (-380 |#2|)) 117) (((-2 (|:| -1831 (-586 (-380 |#2|))) (|:| -3927 (-626 |#1|))) (-593 (-380 |#2|)) (-586 (-380 |#2|))) 112) (((-2 (|:| |particular| (-3 (-380 |#2|) "failed")) (|:| -1831 (-586 (-380 |#2|)))) (-593 (-380 |#2|)) (-380 |#2|)) 110)) (-3682 ((|#2| (-594 |#2| (-380 |#2|))) 77) ((|#2| (-593 (-380 |#2|))) 81)))
-(((-746 |#1| |#2|) (-10 -7 (-15 -2865 ((-2 (|:| |particular| (-3 (-380 |#2|) "failed")) (|:| -1831 (-586 (-380 |#2|)))) (-593 (-380 |#2|)) (-380 |#2|))) (-15 -2865 ((-2 (|:| -1831 (-586 (-380 |#2|))) (|:| -3927 (-626 |#1|))) (-593 (-380 |#2|)) (-586 (-380 |#2|)))) (-15 -2865 ((-2 (|:| |particular| (-3 (-380 |#2|) "failed")) (|:| -1831 (-586 (-380 |#2|)))) (-594 |#2| (-380 |#2|)) (-380 |#2|))) (-15 -2865 ((-2 (|:| -1831 (-586 (-380 |#2|))) (|:| -3927 (-626 |#1|))) (-594 |#2| (-380 |#2|)) (-586 (-380 |#2|)))) (-15 -3682 (|#2| (-593 (-380 |#2|)))) (-15 -3682 (|#2| (-594 |#2| (-380 |#2|))))) (-13 (-336) (-135) (-960 (-520)) (-960 (-380 (-520)))) (-1140 |#1|)) (T -746))
-((-3682 (*1 *2 *3) (-12 (-5 *3 (-594 *2 (-380 *2))) (-4 *2 (-1140 *4)) (-5 *1 (-746 *4 *2)) (-4 *4 (-13 (-336) (-135) (-960 (-520)) (-960 (-380 (-520))))))) (-3682 (*1 *2 *3) (-12 (-5 *3 (-593 (-380 *2))) (-4 *2 (-1140 *4)) (-5 *1 (-746 *4 *2)) (-4 *4 (-13 (-336) (-135) (-960 (-520)) (-960 (-380 (-520))))))) (-2865 (*1 *2 *3 *4) (-12 (-5 *3 (-594 *6 (-380 *6))) (-4 *6 (-1140 *5)) (-4 *5 (-13 (-336) (-135) (-960 (-520)) (-960 (-380 (-520))))) (-5 *2 (-2 (|:| -1831 (-586 (-380 *6))) (|:| -3927 (-626 *5)))) (-5 *1 (-746 *5 *6)) (-5 *4 (-586 (-380 *6))))) (-2865 (*1 *2 *3 *4) (-12 (-5 *3 (-594 *6 (-380 *6))) (-5 *4 (-380 *6)) (-4 *6 (-1140 *5)) (-4 *5 (-13 (-336) (-135) (-960 (-520)) (-960 (-380 (-520))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1831 (-586 *4)))) (-5 *1 (-746 *5 *6)))) (-2865 (*1 *2 *3 *4) (-12 (-5 *3 (-593 (-380 *6))) (-4 *6 (-1140 *5)) (-4 *5 (-13 (-336) (-135) (-960 (-520)) (-960 (-380 (-520))))) (-5 *2 (-2 (|:| -1831 (-586 (-380 *6))) (|:| -3927 (-626 *5)))) (-5 *1 (-746 *5 *6)) (-5 *4 (-586 (-380 *6))))) (-2865 (*1 *2 *3 *4) (-12 (-5 *3 (-593 (-380 *6))) (-5 *4 (-380 *6)) (-4 *6 (-1140 *5)) (-4 *5 (-13 (-336) (-135) (-960 (-520)) (-960 (-380 (-520))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1831 (-586 *4)))) (-5 *1 (-746 *5 *6)))))
-(-10 -7 (-15 -2865 ((-2 (|:| |particular| (-3 (-380 |#2|) "failed")) (|:| -1831 (-586 (-380 |#2|)))) (-593 (-380 |#2|)) (-380 |#2|))) (-15 -2865 ((-2 (|:| -1831 (-586 (-380 |#2|))) (|:| -3927 (-626 |#1|))) (-593 (-380 |#2|)) (-586 (-380 |#2|)))) (-15 -2865 ((-2 (|:| |particular| (-3 (-380 |#2|) "failed")) (|:| -1831 (-586 (-380 |#2|)))) (-594 |#2| (-380 |#2|)) (-380 |#2|))) (-15 -2865 ((-2 (|:| -1831 (-586 (-380 |#2|))) (|:| -3927 (-626 |#1|))) (-594 |#2| (-380 |#2|)) (-586 (-380 |#2|)))) (-15 -3682 (|#2| (-593 (-380 |#2|)))) (-15 -3682 (|#2| (-594 |#2| (-380 |#2|)))))
-((-2148 (((-2 (|:| -3927 (-626 |#2|)) (|:| |vec| (-1164 |#1|))) |#5| |#4|) 47)))
-(((-747 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2148 ((-2 (|:| -3927 (-626 |#2|)) (|:| |vec| (-1164 |#1|))) |#5| |#4|))) (-336) (-596 |#1|) (-1140 |#1|) (-660 |#1| |#3|) (-596 |#4|)) (T -747))
-((-2148 (*1 *2 *3 *4) (-12 (-4 *5 (-336)) (-4 *7 (-1140 *5)) (-4 *4 (-660 *5 *7)) (-5 *2 (-2 (|:| -3927 (-626 *6)) (|:| |vec| (-1164 *5)))) (-5 *1 (-747 *5 *6 *7 *4 *3)) (-4 *6 (-596 *5)) (-4 *3 (-596 *4)))))
-(-10 -7 (-15 -2148 ((-2 (|:| -3927 (-626 |#2|)) (|:| |vec| (-1164 |#1|))) |#5| |#4|)))
-((-2210 (((-586 (-2 (|:| |frac| (-380 |#2|)) (|:| -3190 (-594 |#2| (-380 |#2|))))) (-594 |#2| (-380 |#2|)) (-1 (-391 |#2|) |#2|)) 43)) (-2111 (((-586 (-380 |#2|)) (-594 |#2| (-380 |#2|)) (-1 (-391 |#2|) |#2|)) 134 (|has| |#1| (-27))) (((-586 (-380 |#2|)) (-594 |#2| (-380 |#2|))) 135 (|has| |#1| (-27))) (((-586 (-380 |#2|)) (-593 (-380 |#2|)) (-1 (-391 |#2|) |#2|)) 136 (|has| |#1| (-27))) (((-586 (-380 |#2|)) (-593 (-380 |#2|))) 137 (|has| |#1| (-27))) (((-586 (-380 |#2|)) (-594 |#2| (-380 |#2|)) (-1 (-586 |#1|) |#2|) (-1 (-391 |#2|) |#2|)) 36) (((-586 (-380 |#2|)) (-594 |#2| (-380 |#2|)) (-1 (-586 |#1|) |#2|)) 37) (((-586 (-380 |#2|)) (-593 (-380 |#2|)) (-1 (-586 |#1|) |#2|) (-1 (-391 |#2|) |#2|)) 34) (((-586 (-380 |#2|)) (-593 (-380 |#2|)) (-1 (-586 |#1|) |#2|)) 35)) (-1931 (((-586 (-2 (|:| |poly| |#2|) (|:| -3190 (-594 |#2| (-380 |#2|))))) (-594 |#2| (-380 |#2|)) (-1 (-586 |#1|) |#2|)) 81)))
-(((-748 |#1| |#2|) (-10 -7 (-15 -2111 ((-586 (-380 |#2|)) (-593 (-380 |#2|)) (-1 (-586 |#1|) |#2|))) (-15 -2111 ((-586 (-380 |#2|)) (-593 (-380 |#2|)) (-1 (-586 |#1|) |#2|) (-1 (-391 |#2|) |#2|))) (-15 -2111 ((-586 (-380 |#2|)) (-594 |#2| (-380 |#2|)) (-1 (-586 |#1|) |#2|))) (-15 -2111 ((-586 (-380 |#2|)) (-594 |#2| (-380 |#2|)) (-1 (-586 |#1|) |#2|) (-1 (-391 |#2|) |#2|))) (-15 -2210 ((-586 (-2 (|:| |frac| (-380 |#2|)) (|:| -3190 (-594 |#2| (-380 |#2|))))) (-594 |#2| (-380 |#2|)) (-1 (-391 |#2|) |#2|))) (-15 -1931 ((-586 (-2 (|:| |poly| |#2|) (|:| -3190 (-594 |#2| (-380 |#2|))))) (-594 |#2| (-380 |#2|)) (-1 (-586 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2111 ((-586 (-380 |#2|)) (-593 (-380 |#2|)))) (-15 -2111 ((-586 (-380 |#2|)) (-593 (-380 |#2|)) (-1 (-391 |#2|) |#2|))) (-15 -2111 ((-586 (-380 |#2|)) (-594 |#2| (-380 |#2|)))) (-15 -2111 ((-586 (-380 |#2|)) (-594 |#2| (-380 |#2|)) (-1 (-391 |#2|) |#2|)))) |%noBranch|)) (-13 (-336) (-135) (-960 (-520)) (-960 (-380 (-520)))) (-1140 |#1|)) (T -748))
-((-2111 (*1 *2 *3 *4) (-12 (-5 *3 (-594 *6 (-380 *6))) (-5 *4 (-1 (-391 *6) *6)) (-4 *6 (-1140 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-336) (-135) (-960 (-520)) (-960 (-380 (-520))))) (-5 *2 (-586 (-380 *6))) (-5 *1 (-748 *5 *6)))) (-2111 (*1 *2 *3) (-12 (-5 *3 (-594 *5 (-380 *5))) (-4 *5 (-1140 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-336) (-135) (-960 (-520)) (-960 (-380 (-520))))) (-5 *2 (-586 (-380 *5))) (-5 *1 (-748 *4 *5)))) (-2111 (*1 *2 *3 *4) (-12 (-5 *3 (-593 (-380 *6))) (-5 *4 (-1 (-391 *6) *6)) (-4 *6 (-1140 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-336) (-135) (-960 (-520)) (-960 (-380 (-520))))) (-5 *2 (-586 (-380 *6))) (-5 *1 (-748 *5 *6)))) (-2111 (*1 *2 *3) (-12 (-5 *3 (-593 (-380 *5))) (-4 *5 (-1140 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-336) (-135) (-960 (-520)) (-960 (-380 (-520))))) (-5 *2 (-586 (-380 *5))) (-5 *1 (-748 *4 *5)))) (-1931 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-586 *5) *6)) (-4 *5 (-13 (-336) (-135) (-960 (-520)) (-960 (-380 (-520))))) (-4 *6 (-1140 *5)) (-5 *2 (-586 (-2 (|:| |poly| *6) (|:| -3190 (-594 *6 (-380 *6)))))) (-5 *1 (-748 *5 *6)) (-5 *3 (-594 *6 (-380 *6))))) (-2210 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-391 *6) *6)) (-4 *6 (-1140 *5)) (-4 *5 (-13 (-336) (-135) (-960 (-520)) (-960 (-380 (-520))))) (-5 *2 (-586 (-2 (|:| |frac| (-380 *6)) (|:| -3190 (-594 *6 (-380 *6)))))) (-5 *1 (-748 *5 *6)) (-5 *3 (-594 *6 (-380 *6))))) (-2111 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-594 *7 (-380 *7))) (-5 *4 (-1 (-586 *6) *7)) (-5 *5 (-1 (-391 *7) *7)) (-4 *6 (-13 (-336) (-135) (-960 (-520)) (-960 (-380 (-520))))) (-4 *7 (-1140 *6)) (-5 *2 (-586 (-380 *7))) (-5 *1 (-748 *6 *7)))) (-2111 (*1 *2 *3 *4) (-12 (-5 *3 (-594 *6 (-380 *6))) (-5 *4 (-1 (-586 *5) *6)) (-4 *5 (-13 (-336) (-135) (-960 (-520)) (-960 (-380 (-520))))) (-4 *6 (-1140 *5)) (-5 *2 (-586 (-380 *6))) (-5 *1 (-748 *5 *6)))) (-2111 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-593 (-380 *7))) (-5 *4 (-1 (-586 *6) *7)) (-5 *5 (-1 (-391 *7) *7)) (-4 *6 (-13 (-336) (-135) (-960 (-520)) (-960 (-380 (-520))))) (-4 *7 (-1140 *6)) (-5 *2 (-586 (-380 *7))) (-5 *1 (-748 *6 *7)))) (-2111 (*1 *2 *3 *4) (-12 (-5 *3 (-593 (-380 *6))) (-5 *4 (-1 (-586 *5) *6)) (-4 *5 (-13 (-336) (-135) (-960 (-520)) (-960 (-380 (-520))))) (-4 *6 (-1140 *5)) (-5 *2 (-586 (-380 *6))) (-5 *1 (-748 *5 *6)))))
-(-10 -7 (-15 -2111 ((-586 (-380 |#2|)) (-593 (-380 |#2|)) (-1 (-586 |#1|) |#2|))) (-15 -2111 ((-586 (-380 |#2|)) (-593 (-380 |#2|)) (-1 (-586 |#1|) |#2|) (-1 (-391 |#2|) |#2|))) (-15 -2111 ((-586 (-380 |#2|)) (-594 |#2| (-380 |#2|)) (-1 (-586 |#1|) |#2|))) (-15 -2111 ((-586 (-380 |#2|)) (-594 |#2| (-380 |#2|)) (-1 (-586 |#1|) |#2|) (-1 (-391 |#2|) |#2|))) (-15 -2210 ((-586 (-2 (|:| |frac| (-380 |#2|)) (|:| -3190 (-594 |#2| (-380 |#2|))))) (-594 |#2| (-380 |#2|)) (-1 (-391 |#2|) |#2|))) (-15 -1931 ((-586 (-2 (|:| |poly| |#2|) (|:| -3190 (-594 |#2| (-380 |#2|))))) (-594 |#2| (-380 |#2|)) (-1 (-586 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2111 ((-586 (-380 |#2|)) (-593 (-380 |#2|)))) (-15 -2111 ((-586 (-380 |#2|)) (-593 (-380 |#2|)) (-1 (-391 |#2|) |#2|))) (-15 -2111 ((-586 (-380 |#2|)) (-594 |#2| (-380 |#2|)))) (-15 -2111 ((-586 (-380 |#2|)) (-594 |#2| (-380 |#2|)) (-1 (-391 |#2|) |#2|)))) |%noBranch|))
-((-1625 (((-2 (|:| -3927 (-626 |#2|)) (|:| |vec| (-1164 |#1|))) (-626 |#2|) (-1164 |#1|)) 85) (((-2 (|:| A (-626 |#1|)) (|:| |eqs| (-586 (-2 (|:| C (-626 |#1|)) (|:| |g| (-1164 |#1|)) (|:| -3190 |#2|) (|:| |rh| |#1|))))) (-626 |#1|) (-1164 |#1|)) 14)) (-3536 (((-2 (|:| |particular| (-3 (-1164 |#1|) "failed")) (|:| -1831 (-586 (-1164 |#1|)))) (-626 |#2|) (-1164 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -1831 (-586 |#1|))) |#2| |#1|)) 91)) (-3600 (((-3 (-2 (|:| |particular| (-1164 |#1|)) (|:| -1831 (-626 |#1|))) "failed") (-626 |#1|) (-1164 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1831 (-586 |#1|))) "failed") |#2| |#1|)) 44)))
-(((-749 |#1| |#2|) (-10 -7 (-15 -1625 ((-2 (|:| A (-626 |#1|)) (|:| |eqs| (-586 (-2 (|:| C (-626 |#1|)) (|:| |g| (-1164 |#1|)) (|:| -3190 |#2|) (|:| |rh| |#1|))))) (-626 |#1|) (-1164 |#1|))) (-15 -1625 ((-2 (|:| -3927 (-626 |#2|)) (|:| |vec| (-1164 |#1|))) (-626 |#2|) (-1164 |#1|))) (-15 -3600 ((-3 (-2 (|:| |particular| (-1164 |#1|)) (|:| -1831 (-626 |#1|))) "failed") (-626 |#1|) (-1164 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1831 (-586 |#1|))) "failed") |#2| |#1|))) (-15 -3536 ((-2 (|:| |particular| (-3 (-1164 |#1|) "failed")) (|:| -1831 (-586 (-1164 |#1|)))) (-626 |#2|) (-1164 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -1831 (-586 |#1|))) |#2| |#1|)))) (-336) (-596 |#1|)) (T -749))
-((-3536 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-626 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -1831 (-586 *6))) *7 *6)) (-4 *6 (-336)) (-4 *7 (-596 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1164 *6) "failed")) (|:| -1831 (-586 (-1164 *6))))) (-5 *1 (-749 *6 *7)) (-5 *4 (-1164 *6)))) (-3600 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -1831 (-586 *6))) "failed") *7 *6)) (-4 *6 (-336)) (-4 *7 (-596 *6)) (-5 *2 (-2 (|:| |particular| (-1164 *6)) (|:| -1831 (-626 *6)))) (-5 *1 (-749 *6 *7)) (-5 *3 (-626 *6)) (-5 *4 (-1164 *6)))) (-1625 (*1 *2 *3 *4) (-12 (-4 *5 (-336)) (-4 *6 (-596 *5)) (-5 *2 (-2 (|:| -3927 (-626 *6)) (|:| |vec| (-1164 *5)))) (-5 *1 (-749 *5 *6)) (-5 *3 (-626 *6)) (-5 *4 (-1164 *5)))) (-1625 (*1 *2 *3 *4) (-12 (-4 *5 (-336)) (-5 *2 (-2 (|:| A (-626 *5)) (|:| |eqs| (-586 (-2 (|:| C (-626 *5)) (|:| |g| (-1164 *5)) (|:| -3190 *6) (|:| |rh| *5)))))) (-5 *1 (-749 *5 *6)) (-5 *3 (-626 *5)) (-5 *4 (-1164 *5)) (-4 *6 (-596 *5)))))
-(-10 -7 (-15 -1625 ((-2 (|:| A (-626 |#1|)) (|:| |eqs| (-586 (-2 (|:| C (-626 |#1|)) (|:| |g| (-1164 |#1|)) (|:| -3190 |#2|) (|:| |rh| |#1|))))) (-626 |#1|) (-1164 |#1|))) (-15 -1625 ((-2 (|:| -3927 (-626 |#2|)) (|:| |vec| (-1164 |#1|))) (-626 |#2|) (-1164 |#1|))) (-15 -3600 ((-3 (-2 (|:| |particular| (-1164 |#1|)) (|:| -1831 (-626 |#1|))) "failed") (-626 |#1|) (-1164 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1831 (-586 |#1|))) "failed") |#2| |#1|))) (-15 -3536 ((-2 (|:| |particular| (-3 (-1164 |#1|) "failed")) (|:| -1831 (-586 (-1164 |#1|)))) (-626 |#2|) (-1164 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -1831 (-586 |#1|))) |#2| |#1|))))
-((-2609 (((-626 |#1|) (-586 |#1|) (-706)) 13) (((-626 |#1|) (-586 |#1|)) 14)) (-4109 (((-3 (-1164 |#1|) "failed") |#2| |#1| (-586 |#1|)) 34)) (-3839 (((-3 |#1| "failed") |#2| |#1| (-586 |#1|) (-1 |#1| |#1|)) 42)))
-(((-750 |#1| |#2|) (-10 -7 (-15 -2609 ((-626 |#1|) (-586 |#1|))) (-15 -2609 ((-626 |#1|) (-586 |#1|) (-706))) (-15 -4109 ((-3 (-1164 |#1|) "failed") |#2| |#1| (-586 |#1|))) (-15 -3839 ((-3 |#1| "failed") |#2| |#1| (-586 |#1|) (-1 |#1| |#1|)))) (-336) (-596 |#1|)) (T -750))
-((-3839 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-586 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-336)) (-5 *1 (-750 *2 *3)) (-4 *3 (-596 *2)))) (-4109 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-586 *4)) (-4 *4 (-336)) (-5 *2 (-1164 *4)) (-5 *1 (-750 *4 *3)) (-4 *3 (-596 *4)))) (-2609 (*1 *2 *3 *4) (-12 (-5 *3 (-586 *5)) (-5 *4 (-706)) (-4 *5 (-336)) (-5 *2 (-626 *5)) (-5 *1 (-750 *5 *6)) (-4 *6 (-596 *5)))) (-2609 (*1 *2 *3) (-12 (-5 *3 (-586 *4)) (-4 *4 (-336)) (-5 *2 (-626 *4)) (-5 *1 (-750 *4 *5)) (-4 *5 (-596 *4)))))
-(-10 -7 (-15 -2609 ((-626 |#1|) (-586 |#1|))) (-15 -2609 ((-626 |#1|) (-586 |#1|) (-706))) (-15 -4109 ((-3 (-1164 |#1|) "failed") |#2| |#1| (-586 |#1|))) (-15 -3839 ((-3 |#1| "failed") |#2| |#1| (-586 |#1|) (-1 |#1| |#1|))))
-((-1414 (((-108) $ $) NIL (|has| |#2| (-1012)))) (-2906 (((-108) $) NIL (|has| |#2| (-124)))) (-4121 (($ (-849)) NIL (|has| |#2| (-969)))) (-1476 (((-1169) $ (-520) (-520)) NIL (|has| $ (-6 -4230)))) (-1224 (($ $ $) NIL (|has| |#2| (-728)))) (-1917 (((-3 $ "failed") $ $) NIL (|has| |#2| (-124)))) (-2063 (((-108) $ (-706)) NIL)) (-1628 (((-706)) NIL (|has| |#2| (-341)))) (-2804 (((-520) $) NIL (|has| |#2| (-781)))) (-2377 ((|#2| $ (-520) |#2|) NIL (|has| $ (-6 -4230)))) (-3961 (($) NIL T CONST)) (-1296 (((-3 (-520) "failed") $) NIL (-12 (|has| |#2| (-960 (-520))) (|has| |#2| (-1012)))) (((-3 (-380 (-520)) "failed") $) NIL (-12 (|has| |#2| (-960 (-380 (-520)))) (|has| |#2| (-1012)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1012)))) (-1482 (((-520) $) NIL (-12 (|has| |#2| (-960 (-520))) (|has| |#2| (-1012)))) (((-380 (-520)) $) NIL (-12 (|has| |#2| (-960 (-380 (-520)))) (|has| |#2| (-1012)))) ((|#2| $) NIL (|has| |#2| (-1012)))) (-2756 (((-626 (-520)) (-626 $)) NIL (-12 (|has| |#2| (-582 (-520))) (|has| |#2| (-969)))) (((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 $) (-1164 $)) NIL (-12 (|has| |#2| (-582 (-520))) (|has| |#2| (-969)))) (((-2 (|:| -3927 (-626 |#2|)) (|:| |vec| (-1164 |#2|))) (-626 $) (-1164 $)) NIL (|has| |#2| (-969))) (((-626 |#2|) (-626 $)) NIL (|has| |#2| (-969)))) (-1540 (((-3 $ "failed") $) NIL (|has| |#2| (-969)))) (-3249 (($) NIL (|has| |#2| (-341)))) (-3846 ((|#2| $ (-520) |#2|) NIL (|has| $ (-6 -4230)))) (-3623 ((|#2| $ (-520)) NIL)) (-2328 (((-108) $) NIL (|has| |#2| (-781)))) (-3828 (((-586 |#2|) $) NIL (|has| $ (-6 -4229)))) (-1537 (((-108) $) NIL (|has| |#2| (-969)))) (-3469 (((-108) $) NIL (|has| |#2| (-781)))) (-3027 (((-108) $ (-706)) NIL)) (-2567 (((-520) $) NIL (|has| (-520) (-783)))) (-2809 (($ $ $) NIL (-3700 (|has| |#2| (-728)) (|has| |#2| (-781))))) (-3702 (((-586 |#2|) $) NIL (|has| $ (-6 -4229)))) (-2422 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#2| (-1012))))) (-1752 (((-520) $) NIL (|has| (-520) (-783)))) (-2446 (($ $ $) NIL (-3700 (|has| |#2| (-728)) (|has| |#2| (-781))))) (-3830 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#2| |#2|) $) NIL)) (-3040 (((-849) $) NIL (|has| |#2| (-341)))) (-1390 (((-108) $ (-706)) NIL)) (-1239 (((-1066) $) NIL (|has| |#2| (-1012)))) (-3622 (((-586 (-520)) $) NIL)) (-2603 (((-108) (-520) $) NIL)) (-2716 (($ (-849)) NIL (|has| |#2| (-341)))) (-4142 (((-1030) $) NIL (|has| |#2| (-1012)))) (-2293 ((|#2| $) NIL (|has| (-520) (-783)))) (-2936 (($ $ |#2|) NIL (|has| $ (-6 -4230)))) (-4155 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 |#2|))) NIL (-12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012)))) (($ $ (-268 |#2|)) NIL (-12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012)))) (($ $ (-586 |#2|) (-586 |#2|)) NIL (-12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012))))) (-2533 (((-108) $ $) NIL)) (-2094 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#2| (-1012))))) (-1523 (((-586 |#2|) $) NIL)) (-4018 (((-108) $) NIL)) (-2238 (($) NIL)) (-2543 ((|#2| $ (-520) |#2|) NIL) ((|#2| $ (-520)) NIL)) (-3639 ((|#2| $ $) NIL (|has| |#2| (-969)))) (-1960 (($ (-1164 |#2|)) NIL)) (-1556 (((-126)) NIL (|has| |#2| (-336)))) (-2155 (($ $) NIL (-12 (|has| |#2| (-209)) (|has| |#2| (-969)))) (($ $ (-706)) NIL (-12 (|has| |#2| (-209)) (|has| |#2| (-969)))) (($ $ (-1083)) NIL (-12 (|has| |#2| (-828 (-1083))) (|has| |#2| (-969)))) (($ $ (-586 (-1083))) NIL (-12 (|has| |#2| (-828 (-1083))) (|has| |#2| (-969)))) (($ $ (-1083) (-706)) NIL (-12 (|has| |#2| (-828 (-1083))) (|has| |#2| (-969)))) (($ $ (-586 (-1083)) (-586 (-706))) NIL (-12 (|has| |#2| (-828 (-1083))) (|has| |#2| (-969)))) (($ $ (-1 |#2| |#2|) (-706)) NIL (|has| |#2| (-969))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-969)))) (-4159 (((-706) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4229))) (((-706) |#2| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#2| (-1012))))) (-2403 (($ $) NIL)) (-2188 (((-1164 |#2|) $) NIL) (($ (-520)) NIL (-3700 (-12 (|has| |#2| (-960 (-520))) (|has| |#2| (-1012))) (|has| |#2| (-969)))) (($ (-380 (-520))) NIL (-12 (|has| |#2| (-960 (-380 (-520)))) (|has| |#2| (-1012)))) (($ |#2|) NIL (|has| |#2| (-1012))) (((-791) $) NIL (|has| |#2| (-560 (-791))))) (-3251 (((-706)) NIL (|has| |#2| (-969)))) (-1662 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4229)))) (-2458 (($ $) NIL (|has| |#2| (-781)))) (-3504 (($ $ (-706)) NIL (|has| |#2| (-969))) (($ $ (-849)) NIL (|has| |#2| (-969)))) (-3560 (($) NIL (|has| |#2| (-124)) CONST)) (-3570 (($) NIL (|has| |#2| (-969)) CONST)) (-2211 (($ $) NIL (-12 (|has| |#2| (-209)) (|has| |#2| (-969)))) (($ $ (-706)) NIL (-12 (|has| |#2| (-209)) (|has| |#2| (-969)))) (($ $ (-1083)) NIL (-12 (|has| |#2| (-828 (-1083))) (|has| |#2| (-969)))) (($ $ (-586 (-1083))) NIL (-12 (|has| |#2| (-828 (-1083))) (|has| |#2| (-969)))) (($ $ (-1083) (-706)) NIL (-12 (|has| |#2| (-828 (-1083))) (|has| |#2| (-969)))) (($ $ (-586 (-1083)) (-586 (-706))) NIL (-12 (|has| |#2| (-828 (-1083))) (|has| |#2| (-969)))) (($ $ (-1 |#2| |#2|) (-706)) NIL (|has| |#2| (-969))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-969)))) (-1573 (((-108) $ $) NIL (-3700 (|has| |#2| (-728)) (|has| |#2| (-781))))) (-1557 (((-108) $ $) NIL (-3700 (|has| |#2| (-728)) (|has| |#2| (-781))))) (-1530 (((-108) $ $) NIL (|has| |#2| (-1012)))) (-1565 (((-108) $ $) NIL (-3700 (|has| |#2| (-728)) (|has| |#2| (-781))))) (-1548 (((-108) $ $) 11 (-3700 (|has| |#2| (-728)) (|has| |#2| (-781))))) (-1619 (($ $ |#2|) NIL (|has| |#2| (-336)))) (-1611 (($ $ $) NIL (|has| |#2| (-969))) (($ $) NIL (|has| |#2| (-969)))) (-1601 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-706)) NIL (|has| |#2| (-969))) (($ $ (-849)) NIL (|has| |#2| (-969)))) (* (($ $ $) NIL (|has| |#2| (-969))) (($ (-520) $) NIL (|has| |#2| (-969))) (($ $ |#2|) NIL (|has| |#2| (-662))) (($ |#2| $) NIL (|has| |#2| (-662))) (($ (-706) $) NIL (|has| |#2| (-124))) (($ (-849) $) NIL (|has| |#2| (-25)))) (-3474 (((-706) $) NIL (|has| $ (-6 -4229)))))
-(((-751 |#1| |#2| |#3|) (-214 |#1| |#2|) (-706) (-728) (-1 (-108) (-1164 |#2|) (-1164 |#2|))) (T -751))
-NIL
-(-214 |#1| |#2|)
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-3508 (((-586 (-706)) $) NIL) (((-586 (-706)) $ (-1083)) NIL)) (-1785 (((-706) $) NIL) (((-706) $ (-1083)) NIL)) (-4081 (((-586 (-754 (-1083))) $) NIL)) (-1278 (((-1079 $) $ (-754 (-1083))) NIL) (((-1079 |#1|) $) NIL)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) NIL (|has| |#1| (-512)))) (-2583 (($ $) NIL (|has| |#1| (-512)))) (-1671 (((-108) $) NIL (|has| |#1| (-512)))) (-3665 (((-706) $) NIL) (((-706) $ (-586 (-754 (-1083)))) NIL)) (-1917 (((-3 $ "failed") $ $) NIL)) (-4119 (((-391 (-1079 $)) (-1079 $)) NIL (|has| |#1| (-837)))) (-3024 (($ $) NIL (|has| |#1| (-424)))) (-1507 (((-391 $) $) NIL (|has| |#1| (-424)))) (-3481 (((-3 (-586 (-1079 $)) "failed") (-586 (-1079 $)) (-1079 $)) NIL (|has| |#1| (-837)))) (-3863 (($ $) NIL)) (-3961 (($) NIL T CONST)) (-1296 (((-3 |#1| "failed") $) NIL) (((-3 (-380 (-520)) "failed") $) NIL (|has| |#1| (-960 (-380 (-520))))) (((-3 (-520) "failed") $) NIL (|has| |#1| (-960 (-520)))) (((-3 (-754 (-1083)) "failed") $) NIL) (((-3 (-1083) "failed") $) NIL) (((-3 (-1035 |#1| (-1083)) "failed") $) NIL)) (-1482 ((|#1| $) NIL) (((-380 (-520)) $) NIL (|has| |#1| (-960 (-380 (-520))))) (((-520) $) NIL (|has| |#1| (-960 (-520)))) (((-754 (-1083)) $) NIL) (((-1083) $) NIL) (((-1035 |#1| (-1083)) $) NIL)) (-2413 (($ $ $ (-754 (-1083))) NIL (|has| |#1| (-157)))) (-3150 (($ $) NIL)) (-2756 (((-626 (-520)) (-626 $)) NIL (|has| |#1| (-582 (-520)))) (((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 $) (-1164 $)) NIL (|has| |#1| (-582 (-520)))) (((-2 (|:| -3927 (-626 |#1|)) (|:| |vec| (-1164 |#1|))) (-626 $) (-1164 $)) NIL) (((-626 |#1|) (-626 $)) NIL)) (-1540 (((-3 $ "failed") $) NIL)) (-3923 (($ $) NIL (|has| |#1| (-424))) (($ $ (-754 (-1083))) NIL (|has| |#1| (-424)))) (-3142 (((-586 $) $) NIL)) (-2036 (((-108) $) NIL (|has| |#1| (-837)))) (-3397 (($ $ |#1| (-492 (-754 (-1083))) $) NIL)) (-1272 (((-817 (-352) $) $ (-820 (-352)) (-817 (-352) $)) NIL (-12 (|has| (-754 (-1083)) (-814 (-352))) (|has| |#1| (-814 (-352))))) (((-817 (-520) $) $ (-820 (-520)) (-817 (-520) $)) NIL (-12 (|has| (-754 (-1083)) (-814 (-520))) (|has| |#1| (-814 (-520)))))) (-3989 (((-706) $ (-1083)) NIL) (((-706) $) NIL)) (-1537 (((-108) $) NIL)) (-1315 (((-706) $) NIL)) (-4065 (($ (-1079 |#1|) (-754 (-1083))) NIL) (($ (-1079 $) (-754 (-1083))) NIL)) (-1992 (((-586 $) $) NIL)) (-3774 (((-108) $) NIL)) (-4039 (($ |#1| (-492 (-754 (-1083)))) NIL) (($ $ (-754 (-1083)) (-706)) NIL) (($ $ (-586 (-754 (-1083))) (-586 (-706))) NIL)) (-1910 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $ (-754 (-1083))) NIL)) (-3562 (((-492 (-754 (-1083))) $) NIL) (((-706) $ (-754 (-1083))) NIL) (((-586 (-706)) $ (-586 (-754 (-1083)))) NIL)) (-2809 (($ $ $) NIL (|has| |#1| (-783)))) (-2446 (($ $ $) NIL (|has| |#1| (-783)))) (-3295 (($ (-1 (-492 (-754 (-1083))) (-492 (-754 (-1083)))) $) NIL)) (-1389 (($ (-1 |#1| |#1|) $) NIL)) (-1676 (((-1 $ (-706)) (-1083)) NIL) (((-1 $ (-706)) $) NIL (|has| |#1| (-209)))) (-3186 (((-3 (-754 (-1083)) "failed") $) NIL)) (-3123 (($ $) NIL)) (-3133 ((|#1| $) NIL)) (-1569 (((-754 (-1083)) $) NIL)) (-2222 (($ (-586 $)) NIL (|has| |#1| (-424))) (($ $ $) NIL (|has| |#1| (-424)))) (-1239 (((-1066) $) NIL)) (-3365 (((-108) $) NIL)) (-3548 (((-3 (-586 $) "failed") $) NIL)) (-1205 (((-3 (-586 $) "failed") $) NIL)) (-2568 (((-3 (-2 (|:| |var| (-754 (-1083))) (|:| -2647 (-706))) "failed") $) NIL)) (-1900 (($ $) NIL)) (-4142 (((-1030) $) NIL)) (-3103 (((-108) $) NIL)) (-3113 ((|#1| $) NIL)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) NIL (|has| |#1| (-424)))) (-2257 (($ (-586 $)) NIL (|has| |#1| (-424))) (($ $ $) NIL (|has| |#1| (-424)))) (-4133 (((-391 (-1079 $)) (-1079 $)) NIL (|has| |#1| (-837)))) (-2017 (((-391 (-1079 $)) (-1079 $)) NIL (|has| |#1| (-837)))) (-1916 (((-391 $) $) NIL (|has| |#1| (-837)))) (-2230 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-512))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-512)))) (-2286 (($ $ (-586 (-268 $))) NIL) (($ $ (-268 $)) NIL) (($ $ $ $) NIL) (($ $ (-586 $) (-586 $)) NIL) (($ $ (-754 (-1083)) |#1|) NIL) (($ $ (-586 (-754 (-1083))) (-586 |#1|)) NIL) (($ $ (-754 (-1083)) $) NIL) (($ $ (-586 (-754 (-1083))) (-586 $)) NIL) (($ $ (-1083) $) NIL (|has| |#1| (-209))) (($ $ (-586 (-1083)) (-586 $)) NIL (|has| |#1| (-209))) (($ $ (-1083) |#1|) NIL (|has| |#1| (-209))) (($ $ (-586 (-1083)) (-586 |#1|)) NIL (|has| |#1| (-209)))) (-2732 (($ $ (-754 (-1083))) NIL (|has| |#1| (-157)))) (-2155 (($ $ (-754 (-1083))) NIL) (($ $ (-586 (-754 (-1083)))) NIL) (($ $ (-754 (-1083)) (-706)) NIL) (($ $ (-586 (-754 (-1083))) (-586 (-706))) NIL) (($ $) NIL (|has| |#1| (-209))) (($ $ (-706)) NIL (|has| |#1| (-209))) (($ $ (-1083)) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-586 (-1083))) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-1083) (-706)) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-586 (-1083)) (-586 (-706))) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-1 |#1| |#1|) (-706)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2557 (((-586 (-1083)) $) NIL)) (-2528 (((-492 (-754 (-1083))) $) NIL) (((-706) $ (-754 (-1083))) NIL) (((-586 (-706)) $ (-586 (-754 (-1083)))) NIL) (((-706) $ (-1083)) NIL)) (-1429 (((-820 (-352)) $) NIL (-12 (|has| (-754 (-1083)) (-561 (-820 (-352)))) (|has| |#1| (-561 (-820 (-352)))))) (((-820 (-520)) $) NIL (-12 (|has| (-754 (-1083)) (-561 (-820 (-520)))) (|has| |#1| (-561 (-820 (-520)))))) (((-496) $) NIL (-12 (|has| (-754 (-1083)) (-561 (-496))) (|has| |#1| (-561 (-496)))))) (-1233 ((|#1| $) NIL (|has| |#1| (-424))) (($ $ (-754 (-1083))) NIL (|has| |#1| (-424)))) (-3784 (((-3 (-1164 $) "failed") (-626 $)) NIL (-12 (|has| $ (-133)) (|has| |#1| (-837))))) (-2188 (((-791) $) NIL) (($ (-520)) NIL) (($ |#1|) NIL) (($ (-754 (-1083))) NIL) (($ (-1083)) NIL) (($ (-1035 |#1| (-1083))) NIL) (($ (-380 (-520))) NIL (-3700 (|has| |#1| (-37 (-380 (-520)))) (|has| |#1| (-960 (-380 (-520)))))) (($ $) NIL (|has| |#1| (-512)))) (-4113 (((-586 |#1|) $) NIL)) (-3475 ((|#1| $ (-492 (-754 (-1083)))) NIL) (($ $ (-754 (-1083)) (-706)) NIL) (($ $ (-586 (-754 (-1083))) (-586 (-706))) NIL)) (-3796 (((-3 $ "failed") $) NIL (-3700 (-12 (|has| $ (-133)) (|has| |#1| (-837))) (|has| |#1| (-133))))) (-3251 (((-706)) NIL)) (-1782 (($ $ $ (-706)) NIL (|has| |#1| (-157)))) (-2559 (((-108) $ $) NIL (|has| |#1| (-512)))) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (-3560 (($) NIL T CONST)) (-3570 (($) NIL T CONST)) (-2211 (($ $ (-754 (-1083))) NIL) (($ $ (-586 (-754 (-1083)))) NIL) (($ $ (-754 (-1083)) (-706)) NIL) (($ $ (-586 (-754 (-1083))) (-586 (-706))) NIL) (($ $) NIL (|has| |#1| (-209))) (($ $ (-706)) NIL (|has| |#1| (-209))) (($ $ (-1083)) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-586 (-1083))) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-1083) (-706)) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-586 (-1083)) (-586 (-706))) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-1 |#1| |#1|) (-706)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1573 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1557 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1530 (((-108) $ $) NIL)) (-1565 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1548 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1619 (($ $ |#1|) NIL (|has| |#1| (-336)))) (-1611 (($ $) NIL) (($ $ $) NIL)) (-1601 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) NIL) (($ $ (-380 (-520))) NIL (|has| |#1| (-37 (-380 (-520))))) (($ (-380 (-520)) $) NIL (|has| |#1| (-37 (-380 (-520))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-752 |#1|) (-13 (-228 |#1| (-1083) (-754 (-1083)) (-492 (-754 (-1083)))) (-960 (-1035 |#1| (-1083)))) (-969)) (T -752))
-NIL
-(-13 (-228 |#1| (-1083) (-754 (-1083)) (-492 (-754 (-1083)))) (-960 (-1035 |#1| (-1083))))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) NIL (|has| |#2| (-336)))) (-2583 (($ $) NIL (|has| |#2| (-336)))) (-1671 (((-108) $) NIL (|has| |#2| (-336)))) (-1917 (((-3 $ "failed") $ $) NIL)) (-3024 (($ $) NIL (|has| |#2| (-336)))) (-1507 (((-391 $) $) NIL (|has| |#2| (-336)))) (-1327 (((-108) $ $) NIL (|has| |#2| (-336)))) (-3961 (($) NIL T CONST)) (-2276 (($ $ $) NIL (|has| |#2| (-336)))) (-1540 (((-3 $ "failed") $) NIL)) (-2253 (($ $ $) NIL (|has| |#2| (-336)))) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) NIL (|has| |#2| (-336)))) (-2036 (((-108) $) NIL (|has| |#2| (-336)))) (-1537 (((-108) $) NIL)) (-3188 (((-3 (-586 $) "failed") (-586 $) $) NIL (|has| |#2| (-336)))) (-2222 (($ (-586 $)) NIL (|has| |#2| (-336))) (($ $ $) NIL (|has| |#2| (-336)))) (-1239 (((-1066) $) NIL)) (-3093 (($ $) 20 (|has| |#2| (-336)))) (-4142 (((-1030) $) NIL)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) NIL (|has| |#2| (-336)))) (-2257 (($ (-586 $)) NIL (|has| |#2| (-336))) (($ $ $) NIL (|has| |#2| (-336)))) (-1916 (((-391 $) $) NIL (|has| |#2| (-336)))) (-1283 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-336))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) NIL (|has| |#2| (-336)))) (-2230 (((-3 $ "failed") $ $) NIL (|has| |#2| (-336)))) (-2608 (((-3 (-586 $) "failed") (-586 $) $) NIL (|has| |#2| (-336)))) (-3704 (((-706) $) NIL (|has| |#2| (-336)))) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) NIL (|has| |#2| (-336)))) (-2155 (($ $ (-706)) NIL) (($ $) 13)) (-2188 (((-791) $) NIL) (($ (-520)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-380 (-520))) NIL (|has| |#2| (-336))) (($ $) NIL (|has| |#2| (-336)))) (-3251 (((-706)) NIL)) (-2559 (((-108) $ $) NIL (|has| |#2| (-336)))) (-3504 (($ $ (-706)) NIL) (($ $ (-849)) NIL) (($ $ (-520)) NIL (|has| |#2| (-336)))) (-3560 (($) NIL T CONST)) (-3570 (($) NIL T CONST)) (-2211 (($ $ (-706)) NIL) (($ $) NIL)) (-1530 (((-108) $ $) NIL)) (-1619 (($ $ $) 15 (|has| |#2| (-336)))) (-1611 (($ $) NIL) (($ $ $) NIL)) (-1601 (($ $ $) NIL)) (** (($ $ (-706)) NIL) (($ $ (-849)) NIL) (($ $ (-520)) 18 (|has| |#2| (-336)))) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-380 (-520)) $) NIL (|has| |#2| (-336))) (($ $ (-380 (-520))) NIL (|has| |#2| (-336)))))
-(((-753 |#1| |#2| |#3|) (-13 (-107 $ $) (-209) (-10 -8 (IF (|has| |#2| (-336)) (-6 (-336)) |%noBranch|) (-15 -2188 ($ |#2|)) (-15 -2188 (|#2| $)))) (-1012) (-828 |#1|) |#1|) (T -753))
-((-2188 (*1 *1 *2) (-12 (-4 *3 (-1012)) (-14 *4 *3) (-5 *1 (-753 *3 *2 *4)) (-4 *2 (-828 *3)))) (-2188 (*1 *2 *1) (-12 (-4 *2 (-828 *3)) (-5 *1 (-753 *3 *2 *4)) (-4 *3 (-1012)) (-14 *4 *3))))
-(-13 (-107 $ $) (-209) (-10 -8 (IF (|has| |#2| (-336)) (-6 (-336)) |%noBranch|) (-15 -2188 ($ |#2|)) (-15 -2188 (|#2| $))))
-((-1414 (((-108) $ $) NIL)) (-1785 (((-706) $) NIL)) (-1610 ((|#1| $) 10)) (-1296 (((-3 |#1| "failed") $) NIL)) (-1482 ((|#1| $) NIL)) (-3989 (((-706) $) 11)) (-2809 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-1676 (($ |#1| (-706)) 9)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2155 (($ $) NIL) (($ $ (-706)) NIL)) (-2188 (((-791) $) NIL) (($ |#1|) NIL)) (-1573 (((-108) $ $) NIL)) (-1557 (((-108) $ $) NIL)) (-1530 (((-108) $ $) NIL)) (-1565 (((-108) $ $) NIL)) (-1548 (((-108) $ $) NIL)))
-(((-754 |#1|) (-241 |#1|) (-783)) (T -754))
-NIL
-(-241 |#1|)
-((-1414 (((-108) $ $) NIL)) (-4097 (((-586 |#1|) $) 29)) (-1628 (((-706) $) NIL)) (-3961 (($) NIL T CONST)) (-3140 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 19)) (-1296 (((-3 |#1| "failed") $) NIL)) (-1482 ((|#1| $) NIL)) (-2305 (($ $) 31)) (-1540 (((-3 $ "failed") $) NIL)) (-3291 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-1537 (((-108) $) NIL)) (-3691 ((|#1| $ (-520)) NIL)) (-2706 (((-706) $ (-520)) NIL)) (-1355 (($ $) 36)) (-2809 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-1204 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 16)) (-1227 (((-108) $ $) 34)) (-2515 (((-706) $) 25)) (-1239 (((-1066) $) NIL)) (-2846 (($ $ $) NIL)) (-3084 (($ $ $) NIL)) (-4142 (((-1030) $) NIL)) (-2293 ((|#1| $) 30)) (-3493 (((-586 (-2 (|:| |gen| |#1|) (|:| -3260 (-706)))) $) NIL)) (-2241 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-2188 (((-791) $) NIL) (($ |#1|) NIL)) (-3504 (($ $ (-706)) NIL) (($ $ (-849)) NIL)) (-3570 (($) 14 T CONST)) (-1573 (((-108) $ $) NIL)) (-1557 (((-108) $ $) NIL)) (-1530 (((-108) $ $) NIL)) (-1565 (((-108) $ $) NIL)) (-1548 (((-108) $ $) 35)) (** (($ $ (-706)) NIL) (($ $ (-849)) NIL) (($ |#1| (-706)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-755 |#1|) (-13 (-779) (-960 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-706))) (-15 -2293 (|#1| $)) (-15 -2305 ($ $)) (-15 -1355 ($ $)) (-15 -1227 ((-108) $ $)) (-15 -3084 ($ $ $)) (-15 -2846 ($ $ $)) (-15 -1204 ((-3 $ "failed") $ $)) (-15 -3140 ((-3 $ "failed") $ $)) (-15 -1204 ((-3 $ "failed") $ |#1|)) (-15 -3140 ((-3 $ "failed") $ |#1|)) (-15 -2241 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3291 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1628 ((-706) $)) (-15 -2706 ((-706) $ (-520))) (-15 -3691 (|#1| $ (-520))) (-15 -3493 ((-586 (-2 (|:| |gen| |#1|) (|:| -3260 (-706)))) $)) (-15 -2515 ((-706) $)) (-15 -4097 ((-586 |#1|) $)))) (-783)) (T -755))
-((* (*1 *1 *2 *1) (-12 (-5 *1 (-755 *2)) (-4 *2 (-783)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-755 *2)) (-4 *2 (-783)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-706)) (-5 *1 (-755 *2)) (-4 *2 (-783)))) (-2293 (*1 *2 *1) (-12 (-5 *1 (-755 *2)) (-4 *2 (-783)))) (-2305 (*1 *1 *1) (-12 (-5 *1 (-755 *2)) (-4 *2 (-783)))) (-1355 (*1 *1 *1) (-12 (-5 *1 (-755 *2)) (-4 *2 (-783)))) (-1227 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-755 *3)) (-4 *3 (-783)))) (-3084 (*1 *1 *1 *1) (-12 (-5 *1 (-755 *2)) (-4 *2 (-783)))) (-2846 (*1 *1 *1 *1) (-12 (-5 *1 (-755 *2)) (-4 *2 (-783)))) (-1204 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-755 *2)) (-4 *2 (-783)))) (-3140 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-755 *2)) (-4 *2 (-783)))) (-1204 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-755 *2)) (-4 *2 (-783)))) (-3140 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-755 *2)) (-4 *2 (-783)))) (-2241 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-755 *3)) (|:| |rm| (-755 *3)))) (-5 *1 (-755 *3)) (-4 *3 (-783)))) (-3291 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-755 *3)) (|:| |mm| (-755 *3)) (|:| |rm| (-755 *3)))) (-5 *1 (-755 *3)) (-4 *3 (-783)))) (-1628 (*1 *2 *1) (-12 (-5 *2 (-706)) (-5 *1 (-755 *3)) (-4 *3 (-783)))) (-2706 (*1 *2 *1 *3) (-12 (-5 *3 (-520)) (-5 *2 (-706)) (-5 *1 (-755 *4)) (-4 *4 (-783)))) (-3691 (*1 *2 *1 *3) (-12 (-5 *3 (-520)) (-5 *1 (-755 *2)) (-4 *2 (-783)))) (-3493 (*1 *2 *1) (-12 (-5 *2 (-586 (-2 (|:| |gen| *3) (|:| -3260 (-706))))) (-5 *1 (-755 *3)) (-4 *3 (-783)))) (-2515 (*1 *2 *1) (-12 (-5 *2 (-706)) (-5 *1 (-755 *3)) (-4 *3 (-783)))) (-4097 (*1 *2 *1) (-12 (-5 *2 (-586 *3)) (-5 *1 (-755 *3)) (-4 *3 (-783)))))
-(-13 (-779) (-960 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-706))) (-15 -2293 (|#1| $)) (-15 -2305 ($ $)) (-15 -1355 ($ $)) (-15 -1227 ((-108) $ $)) (-15 -3084 ($ $ $)) (-15 -2846 ($ $ $)) (-15 -1204 ((-3 $ "failed") $ $)) (-15 -3140 ((-3 $ "failed") $ $)) (-15 -1204 ((-3 $ "failed") $ |#1|)) (-15 -3140 ((-3 $ "failed") $ |#1|)) (-15 -2241 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3291 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1628 ((-706) $)) (-15 -2706 ((-706) $ (-520))) (-15 -3691 (|#1| $ (-520))) (-15 -3493 ((-586 (-2 (|:| |gen| |#1|) (|:| -3260 (-706)))) $)) (-15 -2515 ((-706) $)) (-15 -4097 ((-586 |#1|) $))))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) 41)) (-2583 (($ $) 40)) (-1671 (((-108) $) 38)) (-1917 (((-3 $ "failed") $ $) 19)) (-2804 (((-520) $) 53)) (-3961 (($) 17 T CONST)) (-1540 (((-3 $ "failed") $) 34)) (-2328 (((-108) $) 51)) (-1537 (((-108) $) 31)) (-3469 (((-108) $) 52)) (-2809 (($ $ $) 50)) (-2446 (($ $ $) 49)) (-1239 (((-1066) $) 9)) (-4142 (((-1030) $) 10)) (-2230 (((-3 $ "failed") $ $) 42)) (-2188 (((-791) $) 11) (($ (-520)) 28) (($ $) 43)) (-3251 (((-706)) 29)) (-2559 (((-108) $ $) 39)) (-2458 (($ $) 54)) (-3504 (($ $ (-849)) 26) (($ $ (-706)) 33)) (-3560 (($) 18 T CONST)) (-3570 (($) 30 T CONST)) (-1573 (((-108) $ $) 47)) (-1557 (((-108) $ $) 46)) (-1530 (((-108) $ $) 6)) (-1565 (((-108) $ $) 48)) (-1548 (((-108) $ $) 45)) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-706)) 32)) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ $ $) 24)))
-(((-756) (-1195)) (T -756))
-NIL
-(-13 (-512) (-781))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-560 (-791)) . T) ((-157) . T) ((-264) . T) ((-512) . T) ((-588 $) . T) ((-653 $) . T) ((-662) . T) ((-726) . T) ((-727) . T) ((-729) . T) ((-731) . T) ((-781) . T) ((-783) . T) ((-975 $) . T) ((-969) . T) ((-976) . T) ((-1024) . T) ((-1012) . T))
-((-2908 (($ (-1030)) 7)) (-2792 (((-108) $ (-1066) (-1030)) 15)) (-3752 (((-758) $) 12)) (-2853 (((-758) $) 11)) (-3990 (((-1169) $) 9)) (-1484 (((-108) $ (-1030)) 16)))
-(((-757) (-10 -8 (-15 -2908 ($ (-1030))) (-15 -3990 ((-1169) $)) (-15 -2853 ((-758) $)) (-15 -3752 ((-758) $)) (-15 -2792 ((-108) $ (-1066) (-1030))) (-15 -1484 ((-108) $ (-1030))))) (T -757))
-((-1484 (*1 *2 *1 *3) (-12 (-5 *3 (-1030)) (-5 *2 (-108)) (-5 *1 (-757)))) (-2792 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1066)) (-5 *4 (-1030)) (-5 *2 (-108)) (-5 *1 (-757)))) (-3752 (*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-757)))) (-2853 (*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-757)))) (-3990 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-757)))) (-2908 (*1 *1 *2) (-12 (-5 *2 (-1030)) (-5 *1 (-757)))))
-(-10 -8 (-15 -2908 ($ (-1030))) (-15 -3990 ((-1169) $)) (-15 -2853 ((-758) $)) (-15 -3752 ((-758) $)) (-15 -2792 ((-108) $ (-1066) (-1030))) (-15 -1484 ((-108) $ (-1030))))
-((-3157 (((-1169) $ (-759)) 12)) (-2097 (((-1169) $ (-1083)) 32)) (-2332 (((-1169) $ (-1066) (-1066)) 34)) (-3221 (((-1169) $ (-1066)) 33)) (-3222 (((-1169) $) 19)) (-3727 (((-1169) $ (-520)) 28)) (-1893 (((-1169) $ (-201)) 30)) (-1393 (((-1169) $) 18)) (-3297 (((-1169) $) 26)) (-3401 (((-1169) $) 25)) (-2488 (((-1169) $) 23)) (-3048 (((-1169) $) 24)) (-2607 (((-1169) $) 22)) (-2683 (((-1169) $) 21)) (-1504 (((-1169) $) 20)) (-1435 (((-1169) $) 16)) (-1560 (((-1169) $) 17)) (-4068 (((-1169) $) 15)) (-2382 (((-1169) $) 14)) (-3285 (((-1169) $) 13)) (-3385 (($ (-1066) (-759)) 9)) (-1948 (($ (-1066) (-1066) (-759)) 8)) (-3557 (((-1083) $) 51)) (-3987 (((-1083) $) 55)) (-2167 (((-2 (|:| |cd| (-1066)) (|:| -2883 (-1066))) $) 54)) (-2728 (((-1066) $) 52)) (-3411 (((-1169) $) 41)) (-2047 (((-520) $) 49)) (-3847 (((-201) $) 50)) (-2149 (((-1169) $) 40)) (-3957 (((-1169) $) 48)) (-1423 (((-1169) $) 47)) (-2501 (((-1169) $) 45)) (-2345 (((-1169) $) 46)) (-1608 (((-1169) $) 44)) (-4021 (((-1169) $) 43)) (-1542 (((-1169) $) 42)) (-2160 (((-1169) $) 38)) (-1367 (((-1169) $) 39)) (-2216 (((-1169) $) 37)) (-3913 (((-1169) $) 36)) (-3590 (((-1169) $) 35)) (-3209 (((-1169) $) 11)))
-(((-758) (-10 -8 (-15 -1948 ($ (-1066) (-1066) (-759))) (-15 -3385 ($ (-1066) (-759))) (-15 -3209 ((-1169) $)) (-15 -3157 ((-1169) $ (-759))) (-15 -3285 ((-1169) $)) (-15 -2382 ((-1169) $)) (-15 -4068 ((-1169) $)) (-15 -1435 ((-1169) $)) (-15 -1560 ((-1169) $)) (-15 -1393 ((-1169) $)) (-15 -3222 ((-1169) $)) (-15 -1504 ((-1169) $)) (-15 -2683 ((-1169) $)) (-15 -2607 ((-1169) $)) (-15 -2488 ((-1169) $)) (-15 -3048 ((-1169) $)) (-15 -3401 ((-1169) $)) (-15 -3297 ((-1169) $)) (-15 -3727 ((-1169) $ (-520))) (-15 -1893 ((-1169) $ (-201))) (-15 -2097 ((-1169) $ (-1083))) (-15 -3221 ((-1169) $ (-1066))) (-15 -2332 ((-1169) $ (-1066) (-1066))) (-15 -3590 ((-1169) $)) (-15 -3913 ((-1169) $)) (-15 -2216 ((-1169) $)) (-15 -2160 ((-1169) $)) (-15 -1367 ((-1169) $)) (-15 -2149 ((-1169) $)) (-15 -3411 ((-1169) $)) (-15 -1542 ((-1169) $)) (-15 -4021 ((-1169) $)) (-15 -1608 ((-1169) $)) (-15 -2501 ((-1169) $)) (-15 -2345 ((-1169) $)) (-15 -1423 ((-1169) $)) (-15 -3957 ((-1169) $)) (-15 -2047 ((-520) $)) (-15 -3847 ((-201) $)) (-15 -3557 ((-1083) $)) (-15 -2728 ((-1066) $)) (-15 -2167 ((-2 (|:| |cd| (-1066)) (|:| -2883 (-1066))) $)) (-15 -3987 ((-1083) $)))) (T -758))
-((-3987 (*1 *2 *1) (-12 (-5 *2 (-1083)) (-5 *1 (-758)))) (-2167 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1066)) (|:| -2883 (-1066)))) (-5 *1 (-758)))) (-2728 (*1 *2 *1) (-12 (-5 *2 (-1066)) (-5 *1 (-758)))) (-3557 (*1 *2 *1) (-12 (-5 *2 (-1083)) (-5 *1 (-758)))) (-3847 (*1 *2 *1) (-12 (-5 *2 (-201)) (-5 *1 (-758)))) (-2047 (*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-758)))) (-3957 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-758)))) (-1423 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-758)))) (-2345 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-758)))) (-2501 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-758)))) (-1608 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-758)))) (-4021 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-758)))) (-1542 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-758)))) (-3411 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-758)))) (-2149 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-758)))) (-1367 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-758)))) (-2160 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-758)))) (-2216 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-758)))) (-3913 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-758)))) (-3590 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-758)))) (-2332 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-1169)) (-5 *1 (-758)))) (-3221 (*1 *2 *1 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-1169)) (-5 *1 (-758)))) (-2097 (*1 *2 *1 *3) (-12 (-5 *3 (-1083)) (-5 *2 (-1169)) (-5 *1 (-758)))) (-1893 (*1 *2 *1 *3) (-12 (-5 *3 (-201)) (-5 *2 (-1169)) (-5 *1 (-758)))) (-3727 (*1 *2 *1 *3) (-12 (-5 *3 (-520)) (-5 *2 (-1169)) (-5 *1 (-758)))) (-3297 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-758)))) (-3401 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-758)))) (-3048 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-758)))) (-2488 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-758)))) (-2607 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-758)))) (-2683 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-758)))) (-1504 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-758)))) (-3222 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-758)))) (-1393 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-758)))) (-1560 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-758)))) (-1435 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-758)))) (-4068 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-758)))) (-2382 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-758)))) (-3285 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-758)))) (-3157 (*1 *2 *1 *3) (-12 (-5 *3 (-759)) (-5 *2 (-1169)) (-5 *1 (-758)))) (-3209 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-758)))) (-3385 (*1 *1 *2 *3) (-12 (-5 *2 (-1066)) (-5 *3 (-759)) (-5 *1 (-758)))) (-1948 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1066)) (-5 *3 (-759)) (-5 *1 (-758)))))
-(-10 -8 (-15 -1948 ($ (-1066) (-1066) (-759))) (-15 -3385 ($ (-1066) (-759))) (-15 -3209 ((-1169) $)) (-15 -3157 ((-1169) $ (-759))) (-15 -3285 ((-1169) $)) (-15 -2382 ((-1169) $)) (-15 -4068 ((-1169) $)) (-15 -1435 ((-1169) $)) (-15 -1560 ((-1169) $)) (-15 -1393 ((-1169) $)) (-15 -3222 ((-1169) $)) (-15 -1504 ((-1169) $)) (-15 -2683 ((-1169) $)) (-15 -2607 ((-1169) $)) (-15 -2488 ((-1169) $)) (-15 -3048 ((-1169) $)) (-15 -3401 ((-1169) $)) (-15 -3297 ((-1169) $)) (-15 -3727 ((-1169) $ (-520))) (-15 -1893 ((-1169) $ (-201))) (-15 -2097 ((-1169) $ (-1083))) (-15 -3221 ((-1169) $ (-1066))) (-15 -2332 ((-1169) $ (-1066) (-1066))) (-15 -3590 ((-1169) $)) (-15 -3913 ((-1169) $)) (-15 -2216 ((-1169) $)) (-15 -2160 ((-1169) $)) (-15 -1367 ((-1169) $)) (-15 -2149 ((-1169) $)) (-15 -3411 ((-1169) $)) (-15 -1542 ((-1169) $)) (-15 -4021 ((-1169) $)) (-15 -1608 ((-1169) $)) (-15 -2501 ((-1169) $)) (-15 -2345 ((-1169) $)) (-15 -1423 ((-1169) $)) (-15 -3957 ((-1169) $)) (-15 -2047 ((-520) $)) (-15 -3847 ((-201) $)) (-15 -3557 ((-1083) $)) (-15 -2728 ((-1066) $)) (-15 -2167 ((-2 (|:| |cd| (-1066)) (|:| -2883 (-1066))) $)) (-15 -3987 ((-1083) $)))
-((-1414 (((-108) $ $) NIL)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2188 (((-791) $) 12)) (-1546 (($) 15)) (-2196 (($) 13)) (-3400 (($) 16)) (-4034 (($) 14)) (-1530 (((-108) $ $) 8)))
-(((-759) (-13 (-1012) (-10 -8 (-15 -2196 ($)) (-15 -1546 ($)) (-15 -3400 ($)) (-15 -4034 ($))))) (T -759))
-((-2196 (*1 *1) (-5 *1 (-759))) (-1546 (*1 *1) (-5 *1 (-759))) (-3400 (*1 *1) (-5 *1 (-759))) (-4034 (*1 *1) (-5 *1 (-759))))
-(-13 (-1012) (-10 -8 (-15 -2196 ($)) (-15 -1546 ($)) (-15 -3400 ($)) (-15 -4034 ($))))
-((-1414 (((-108) $ $) NIL)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2188 (((-791) $) 21) (($ (-1083)) 17)) (-3716 (((-108) $) 10)) (-1483 (((-108) $) 9)) (-2069 (((-108) $) 11)) (-3635 (((-108) $) 8)) (-1530 (((-108) $ $) 19)))
-(((-760) (-13 (-1012) (-10 -8 (-15 -2188 ($ (-1083))) (-15 -3635 ((-108) $)) (-15 -1483 ((-108) $)) (-15 -3716 ((-108) $)) (-15 -2069 ((-108) $))))) (T -760))
-((-2188 (*1 *1 *2) (-12 (-5 *2 (-1083)) (-5 *1 (-760)))) (-3635 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-760)))) (-1483 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-760)))) (-3716 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-760)))) (-2069 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-760)))))
-(-13 (-1012) (-10 -8 (-15 -2188 ($ (-1083))) (-15 -3635 ((-108) $)) (-15 -1483 ((-108) $)) (-15 -3716 ((-108) $)) (-15 -2069 ((-108) $))))
-((-1414 (((-108) $ $) NIL)) (-3483 (($ (-760) (-586 (-1083))) 24)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-3734 (((-760) $) 25)) (-3441 (((-586 (-1083)) $) 26)) (-2188 (((-791) $) 23)) (-1530 (((-108) $ $) NIL)))
-(((-761) (-13 (-1012) (-10 -8 (-15 -3734 ((-760) $)) (-15 -3441 ((-586 (-1083)) $)) (-15 -3483 ($ (-760) (-586 (-1083))))))) (T -761))
-((-3734 (*1 *2 *1) (-12 (-5 *2 (-760)) (-5 *1 (-761)))) (-3441 (*1 *2 *1) (-12 (-5 *2 (-586 (-1083))) (-5 *1 (-761)))) (-3483 (*1 *1 *2 *3) (-12 (-5 *2 (-760)) (-5 *3 (-586 (-1083))) (-5 *1 (-761)))))
-(-13 (-1012) (-10 -8 (-15 -3734 ((-760) $)) (-15 -3441 ((-586 (-1083)) $)) (-15 -3483 ($ (-760) (-586 (-1083))))))
-((-3610 (((-1169) (-758) (-289 |#1|) (-108)) 22) (((-1169) (-758) (-289 |#1|)) 76) (((-1066) (-289 |#1|) (-108)) 75) (((-1066) (-289 |#1|)) 74)))
-(((-762 |#1|) (-10 -7 (-15 -3610 ((-1066) (-289 |#1|))) (-15 -3610 ((-1066) (-289 |#1|) (-108))) (-15 -3610 ((-1169) (-758) (-289 |#1|))) (-15 -3610 ((-1169) (-758) (-289 |#1|) (-108)))) (-13 (-764) (-783) (-969))) (T -762))
-((-3610 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-758)) (-5 *4 (-289 *6)) (-5 *5 (-108)) (-4 *6 (-13 (-764) (-783) (-969))) (-5 *2 (-1169)) (-5 *1 (-762 *6)))) (-3610 (*1 *2 *3 *4) (-12 (-5 *3 (-758)) (-5 *4 (-289 *5)) (-4 *5 (-13 (-764) (-783) (-969))) (-5 *2 (-1169)) (-5 *1 (-762 *5)))) (-3610 (*1 *2 *3 *4) (-12 (-5 *3 (-289 *5)) (-5 *4 (-108)) (-4 *5 (-13 (-764) (-783) (-969))) (-5 *2 (-1066)) (-5 *1 (-762 *5)))) (-3610 (*1 *2 *3) (-12 (-5 *3 (-289 *4)) (-4 *4 (-13 (-764) (-783) (-969))) (-5 *2 (-1066)) (-5 *1 (-762 *4)))))
-(-10 -7 (-15 -3610 ((-1066) (-289 |#1|))) (-15 -3610 ((-1066) (-289 |#1|) (-108))) (-15 -3610 ((-1169) (-758) (-289 |#1|))) (-15 -3610 ((-1169) (-758) (-289 |#1|) (-108))))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-1917 (((-3 $ "failed") $ $) NIL)) (-3961 (($) NIL T CONST)) (-3150 (($ $) NIL)) (-1540 (((-3 $ "failed") $) NIL)) (-2329 ((|#1| $) 10)) (-1418 (($ |#1|) 9)) (-1537 (((-108) $) NIL)) (-4039 (($ |#2| (-706)) NIL)) (-3562 (((-706) $) NIL)) (-3133 ((|#2| $) NIL)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2155 (($ $ (-706)) NIL (|has| |#1| (-209))) (($ $) NIL (|has| |#1| (-209)))) (-2528 (((-706) $) NIL)) (-2188 (((-791) $) 17) (($ (-520)) NIL) (($ |#2|) NIL (|has| |#2| (-157)))) (-3475 ((|#2| $ (-706)) NIL)) (-3251 (((-706)) NIL)) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (-3560 (($) NIL T CONST)) (-3570 (($) NIL T CONST)) (-2211 (($ $ (-706)) NIL (|has| |#1| (-209))) (($ $) NIL (|has| |#1| (-209)))) (-1530 (((-108) $ $) NIL)) (-1611 (($ $) NIL) (($ $ $) NIL)) (-1601 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-763 |#1| |#2|) (-13 (-645 |#2|) (-10 -8 (IF (|has| |#1| (-209)) (-6 (-209)) |%noBranch|) (-15 -1418 ($ |#1|)) (-15 -2329 (|#1| $)))) (-645 |#2|) (-969)) (T -763))
-((-1418 (*1 *1 *2) (-12 (-4 *3 (-969)) (-5 *1 (-763 *2 *3)) (-4 *2 (-645 *3)))) (-2329 (*1 *2 *1) (-12 (-4 *2 (-645 *3)) (-5 *1 (-763 *2 *3)) (-4 *3 (-969)))))
-(-13 (-645 |#2|) (-10 -8 (IF (|has| |#1| (-209)) (-6 (-209)) |%noBranch|) (-15 -1418 ($ |#1|)) (-15 -2329 (|#1| $))))
-((-3610 (((-1169) (-758) $ (-108)) 9) (((-1169) (-758) $) 8) (((-1066) $ (-108)) 7) (((-1066) $) 6)))
-(((-764) (-1195)) (T -764))
-((-3610 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-764)) (-5 *3 (-758)) (-5 *4 (-108)) (-5 *2 (-1169)))) (-3610 (*1 *2 *3 *1) (-12 (-4 *1 (-764)) (-5 *3 (-758)) (-5 *2 (-1169)))) (-3610 (*1 *2 *1 *3) (-12 (-4 *1 (-764)) (-5 *3 (-108)) (-5 *2 (-1066)))) (-3610 (*1 *2 *1) (-12 (-4 *1 (-764)) (-5 *2 (-1066)))))
-(-13 (-10 -8 (-15 -3610 ((-1066) $)) (-15 -3610 ((-1066) $ (-108))) (-15 -3610 ((-1169) (-758) $)) (-15 -3610 ((-1169) (-758) $ (-108)))))
-((-2141 (((-285) (-1066) (-1066)) 12)) (-2671 (((-108) (-1066) (-1066)) 34)) (-3108 (((-108) (-1066)) 33)) (-1695 (((-51) (-1066)) 25)) (-2098 (((-51) (-1066)) 23)) (-1250 (((-51) (-758)) 17)) (-3315 (((-586 (-1066)) (-1066)) 28)) (-2773 (((-586 (-1066))) 27)))
-(((-765) (-10 -7 (-15 -1250 ((-51) (-758))) (-15 -2098 ((-51) (-1066))) (-15 -1695 ((-51) (-1066))) (-15 -2773 ((-586 (-1066)))) (-15 -3315 ((-586 (-1066)) (-1066))) (-15 -3108 ((-108) (-1066))) (-15 -2671 ((-108) (-1066) (-1066))) (-15 -2141 ((-285) (-1066) (-1066))))) (T -765))
-((-2141 (*1 *2 *3 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-285)) (-5 *1 (-765)))) (-2671 (*1 *2 *3 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-108)) (-5 *1 (-765)))) (-3108 (*1 *2 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-108)) (-5 *1 (-765)))) (-3315 (*1 *2 *3) (-12 (-5 *2 (-586 (-1066))) (-5 *1 (-765)) (-5 *3 (-1066)))) (-2773 (*1 *2) (-12 (-5 *2 (-586 (-1066))) (-5 *1 (-765)))) (-1695 (*1 *2 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-51)) (-5 *1 (-765)))) (-2098 (*1 *2 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-51)) (-5 *1 (-765)))) (-1250 (*1 *2 *3) (-12 (-5 *3 (-758)) (-5 *2 (-51)) (-5 *1 (-765)))))
-(-10 -7 (-15 -1250 ((-51) (-758))) (-15 -2098 ((-51) (-1066))) (-15 -1695 ((-51) (-1066))) (-15 -2773 ((-586 (-1066)))) (-15 -3315 ((-586 (-1066)) (-1066))) (-15 -3108 ((-108) (-1066))) (-15 -2671 ((-108) (-1066) (-1066))) (-15 -2141 ((-285) (-1066) (-1066))))
-((-1414 (((-108) $ $) 19)) (-2268 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-1907 (($ $ $) 72)) (-3645 (((-108) $ $) 73)) (-2063 (((-108) $ (-706)) 8)) (-1763 (($ (-586 |#1|)) 68) (($) 67)) (-1817 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4229)))) (-1627 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4229)))) (-3961 (($) 7 T CONST)) (-3667 (($ $) 62)) (-2331 (($ $) 58 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-3766 (($ |#1| $) 47 (|has| $ (-6 -4229))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4229)))) (-1421 (($ |#1| $) 57 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4229)))) (-3856 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4229))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4229)))) (-3828 (((-586 |#1|) $) 30 (|has| $ (-6 -4229)))) (-3027 (((-108) $ (-706)) 9)) (-2809 ((|#1| $) 78)) (-3235 (($ $ $) 81)) (-1819 (($ $ $) 80)) (-3702 (((-586 |#1|) $) 29 (|has| $ (-6 -4229)))) (-2422 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-2446 ((|#1| $) 79)) (-3830 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#1| |#1|) $) 35)) (-1390 (((-108) $ (-706)) 10)) (-1239 (((-1066) $) 22)) (-2077 (($ $ $) 69)) (-3351 ((|#1| $) 39)) (-3618 (($ |#1| $) 40) (($ |#1| $ (-706)) 63)) (-4142 (((-1030) $) 21)) (-2985 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-3345 ((|#1| $) 41)) (-4155 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 |#1|))) 26 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-268 |#1|)) 25 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-586 |#1|) (-586 |#1|)) 23 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))) (-2533 (((-108) $ $) 14)) (-4018 (((-108) $) 11)) (-2238 (($) 12)) (-3305 (((-586 (-2 (|:| -3043 |#1|) (|:| -4159 (-706)))) $) 61)) (-1397 (($ $ |#1|) 71) (($ $ $) 70)) (-1645 (($) 49) (($ (-586 |#1|)) 48)) (-4159 (((-706) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4229))) (((-706) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-2403 (($ $) 13)) (-1429 (((-496) $) 59 (|has| |#1| (-561 (-496))))) (-2200 (($ (-586 |#1|)) 50)) (-2188 (((-791) $) 18)) (-3386 (($ (-586 |#1|)) 66) (($) 65)) (-1898 (($ (-586 |#1|)) 42)) (-1662 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4229)))) (-1530 (((-108) $ $) 20)) (-1548 (((-108) $ $) 64)) (-3474 (((-706) $) 6 (|has| $ (-6 -4229)))))
-(((-766 |#1|) (-1195) (-783)) (T -766))
-((-2809 (*1 *2 *1) (-12 (-4 *1 (-766 *2)) (-4 *2 (-783)))))
-(-13 (-672 |t#1|) (-894 |t#1|) (-10 -8 (-15 -2809 (|t#1| $))))
-(((-33) . T) ((-102 |#1|) . T) ((-97) . T) ((-560 (-791)) . T) ((-139 |#1|) . T) ((-561 (-496)) |has| |#1| (-561 (-496))) ((-211 |#1|) . T) ((-283 |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))) ((-459 |#1|) . T) ((-481 |#1| |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))) ((-631 |#1|) . T) ((-672 |#1|) . T) ((-894 |#1|) . T) ((-1010 |#1|) . T) ((-1012) . T) ((-1118) . T))
-((-2575 (((-1169) (-1030) (-1030)) 47)) (-4192 (((-1169) (-757) (-51)) 44)) (-3377 (((-51) (-757)) 16)))
-(((-767) (-10 -7 (-15 -3377 ((-51) (-757))) (-15 -4192 ((-1169) (-757) (-51))) (-15 -2575 ((-1169) (-1030) (-1030))))) (T -767))
-((-2575 (*1 *2 *3 *3) (-12 (-5 *3 (-1030)) (-5 *2 (-1169)) (-5 *1 (-767)))) (-4192 (*1 *2 *3 *4) (-12 (-5 *3 (-757)) (-5 *4 (-51)) (-5 *2 (-1169)) (-5 *1 (-767)))) (-3377 (*1 *2 *3) (-12 (-5 *3 (-757)) (-5 *2 (-51)) (-5 *1 (-767)))))
-(-10 -7 (-15 -3377 ((-51) (-757))) (-15 -4192 ((-1169) (-757) (-51))) (-15 -2575 ((-1169) (-1030) (-1030))))
-((-1389 (((-769 |#2|) (-1 |#2| |#1|) (-769 |#1|) (-769 |#2|)) 12) (((-769 |#2|) (-1 |#2| |#1|) (-769 |#1|)) 13)))
-(((-768 |#1| |#2|) (-10 -7 (-15 -1389 ((-769 |#2|) (-1 |#2| |#1|) (-769 |#1|))) (-15 -1389 ((-769 |#2|) (-1 |#2| |#1|) (-769 |#1|) (-769 |#2|)))) (-1012) (-1012)) (T -768))
-((-1389 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-769 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-769 *5)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-5 *1 (-768 *5 *6)))) (-1389 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-769 *5)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-5 *2 (-769 *6)) (-5 *1 (-768 *5 *6)))))
-(-10 -7 (-15 -1389 ((-769 |#2|) (-1 |#2| |#1|) (-769 |#1|))) (-15 -1389 ((-769 |#2|) (-1 |#2| |#1|) (-769 |#1|) (-769 |#2|))))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL (|has| |#1| (-21)))) (-1917 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2804 (((-520) $) NIL (|has| |#1| (-781)))) (-3961 (($) NIL (|has| |#1| (-21)) CONST)) (-1296 (((-3 (-520) "failed") $) NIL (|has| |#1| (-960 (-520)))) (((-3 (-380 (-520)) "failed") $) NIL (|has| |#1| (-960 (-380 (-520))))) (((-3 |#1| "failed") $) 15)) (-1482 (((-520) $) NIL (|has| |#1| (-960 (-520)))) (((-380 (-520)) $) NIL (|has| |#1| (-960 (-380 (-520))))) ((|#1| $) 9)) (-1540 (((-3 $ "failed") $) 40 (|has| |#1| (-781)))) (-2279 (((-3 (-380 (-520)) "failed") $) 48 (|has| |#1| (-505)))) (-1386 (((-108) $) 43 (|has| |#1| (-505)))) (-4055 (((-380 (-520)) $) 45 (|has| |#1| (-505)))) (-2328 (((-108) $) NIL (|has| |#1| (-781)))) (-1537 (((-108) $) NIL (|has| |#1| (-781)))) (-3469 (((-108) $) NIL (|has| |#1| (-781)))) (-2809 (($ $ $) NIL (|has| |#1| (-781)))) (-2446 (($ $ $) NIL (|has| |#1| (-781)))) (-1239 (((-1066) $) NIL)) (-2844 (($) 13)) (-2781 (((-108) $) 12)) (-4142 (((-1030) $) NIL)) (-1447 (((-108) $) 11)) (-2188 (((-791) $) 18) (($ (-380 (-520))) NIL (|has| |#1| (-960 (-380 (-520))))) (($ |#1|) 8) (($ (-520)) NIL (-3700 (|has| |#1| (-781)) (|has| |#1| (-960 (-520)))))) (-3251 (((-706)) 34 (|has| |#1| (-781)))) (-2458 (($ $) NIL (|has| |#1| (-781)))) (-3504 (($ $ (-849)) NIL (|has| |#1| (-781))) (($ $ (-706)) NIL (|has| |#1| (-781)))) (-3560 (($) 22 (|has| |#1| (-21)) CONST)) (-3570 (($) 31 (|has| |#1| (-781)) CONST)) (-1573 (((-108) $ $) NIL (|has| |#1| (-781)))) (-1557 (((-108) $ $) NIL (|has| |#1| (-781)))) (-1530 (((-108) $ $) 20)) (-1565 (((-108) $ $) NIL (|has| |#1| (-781)))) (-1548 (((-108) $ $) 42 (|has| |#1| (-781)))) (-1611 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 27 (|has| |#1| (-21)))) (-1601 (($ $ $) 29 (|has| |#1| (-21)))) (** (($ $ (-849)) NIL (|has| |#1| (-781))) (($ $ (-706)) NIL (|has| |#1| (-781)))) (* (($ $ $) 37 (|has| |#1| (-781))) (($ (-520) $) 25 (|has| |#1| (-21))) (($ (-706) $) NIL (|has| |#1| (-21))) (($ (-849) $) NIL (|has| |#1| (-21)))))
-(((-769 |#1|) (-13 (-1012) (-384 |#1|) (-10 -8 (-15 -2844 ($)) (-15 -1447 ((-108) $)) (-15 -2781 ((-108) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-781)) (-6 (-781)) |%noBranch|) (IF (|has| |#1| (-505)) (PROGN (-15 -1386 ((-108) $)) (-15 -4055 ((-380 (-520)) $)) (-15 -2279 ((-3 (-380 (-520)) "failed") $))) |%noBranch|))) (-1012)) (T -769))
-((-2844 (*1 *1) (-12 (-5 *1 (-769 *2)) (-4 *2 (-1012)))) (-1447 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-769 *3)) (-4 *3 (-1012)))) (-2781 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-769 *3)) (-4 *3 (-1012)))) (-1386 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-769 *3)) (-4 *3 (-505)) (-4 *3 (-1012)))) (-4055 (*1 *2 *1) (-12 (-5 *2 (-380 (-520))) (-5 *1 (-769 *3)) (-4 *3 (-505)) (-4 *3 (-1012)))) (-2279 (*1 *2 *1) (|partial| -12 (-5 *2 (-380 (-520))) (-5 *1 (-769 *3)) (-4 *3 (-505)) (-4 *3 (-1012)))))
-(-13 (-1012) (-384 |#1|) (-10 -8 (-15 -2844 ($)) (-15 -1447 ((-108) $)) (-15 -2781 ((-108) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-781)) (-6 (-781)) |%noBranch|) (IF (|has| |#1| (-505)) (PROGN (-15 -1386 ((-108) $)) (-15 -4055 ((-380 (-520)) $)) (-15 -2279 ((-3 (-380 (-520)) "failed") $))) |%noBranch|)))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-1917 (((-3 $ "failed") $ $) NIL)) (-3961 (($) NIL T CONST)) (-1296 (((-3 |#1| "failed") $) NIL) (((-3 (-110) "failed") $) NIL)) (-1482 ((|#1| $) NIL) (((-110) $) NIL)) (-1540 (((-3 $ "failed") $) NIL)) (-2023 ((|#1| (-110) |#1|) NIL)) (-1537 (((-108) $) NIL)) (-2590 (($ |#1| (-334 (-110))) NIL)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-1853 (($ $ (-1 |#1| |#1|)) NIL)) (-3276 (($ $ (-1 |#1| |#1|)) NIL)) (-2543 ((|#1| $ |#1|) NIL)) (-3745 ((|#1| |#1|) NIL (|has| |#1| (-157)))) (-2188 (((-791) $) NIL) (($ (-520)) NIL) (($ |#1|) NIL) (($ (-110)) NIL)) (-3796 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-3251 (((-706)) NIL)) (-1691 (($ $) NIL (|has| |#1| (-157))) (($ $ $) NIL (|has| |#1| (-157)))) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (-3560 (($) NIL T CONST)) (-3570 (($) NIL T CONST)) (-1530 (((-108) $ $) NIL)) (-1611 (($ $) NIL) (($ $ $) NIL)) (-1601 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ (-110) (-520)) NIL) (($ $ (-520)) NIL)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-157))) (($ $ |#1|) NIL (|has| |#1| (-157)))))
-(((-770 |#1|) (-13 (-969) (-960 |#1|) (-960 (-110)) (-260 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |#1| (-157)) (PROGN (-6 (-37 |#1|)) (-15 -1691 ($ $)) (-15 -1691 ($ $ $)) (-15 -3745 (|#1| |#1|))) |%noBranch|) (-15 -3276 ($ $ (-1 |#1| |#1|))) (-15 -1853 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-110) (-520))) (-15 ** ($ $ (-520))) (-15 -2023 (|#1| (-110) |#1|)) (-15 -2590 ($ |#1| (-334 (-110)))))) (-969)) (T -770))
-((-1691 (*1 *1 *1) (-12 (-5 *1 (-770 *2)) (-4 *2 (-157)) (-4 *2 (-969)))) (-1691 (*1 *1 *1 *1) (-12 (-5 *1 (-770 *2)) (-4 *2 (-157)) (-4 *2 (-969)))) (-3745 (*1 *2 *2) (-12 (-5 *1 (-770 *2)) (-4 *2 (-157)) (-4 *2 (-969)))) (-3276 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-969)) (-5 *1 (-770 *3)))) (-1853 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-969)) (-5 *1 (-770 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-520)) (-5 *1 (-770 *4)) (-4 *4 (-969)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-770 *3)) (-4 *3 (-969)))) (-2023 (*1 *2 *3 *2) (-12 (-5 *3 (-110)) (-5 *1 (-770 *2)) (-4 *2 (-969)))) (-2590 (*1 *1 *2 *3) (-12 (-5 *3 (-334 (-110))) (-5 *1 (-770 *2)) (-4 *2 (-969)))))
-(-13 (-969) (-960 |#1|) (-960 (-110)) (-260 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |#1| (-157)) (PROGN (-6 (-37 |#1|)) (-15 -1691 ($ $)) (-15 -1691 ($ $ $)) (-15 -3745 (|#1| |#1|))) |%noBranch|) (-15 -3276 ($ $ (-1 |#1| |#1|))) (-15 -1853 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-110) (-520))) (-15 ** ($ $ (-520))) (-15 -2023 (|#1| (-110) |#1|)) (-15 -2590 ($ |#1| (-334 (-110))))))
-((-1881 (((-191 (-470)) (-1066)) 8)))
-(((-771) (-10 -7 (-15 -1881 ((-191 (-470)) (-1066))))) (T -771))
-((-1881 (*1 *2 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-191 (-470))) (-5 *1 (-771)))))
-(-10 -7 (-15 -1881 ((-191 (-470)) (-1066))))
-((-1414 (((-108) $ $) 7)) (-3070 (((-958) (-2 (|:| |lfn| (-586 (-289 (-201)))) (|:| -3794 (-586 (-201))))) 14) (((-958) (-2 (|:| |fn| (-289 (-201))) (|:| -3794 (-586 (-201))) (|:| |lb| (-586 (-776 (-201)))) (|:| |cf| (-586 (-289 (-201)))) (|:| |ub| (-586 (-776 (-201)))))) 13)) (-1796 (((-2 (|:| -1796 (-352)) (|:| |explanations| (-1066))) (-981) (-2 (|:| |fn| (-289 (-201))) (|:| -3794 (-586 (-201))) (|:| |lb| (-586 (-776 (-201)))) (|:| |cf| (-586 (-289 (-201)))) (|:| |ub| (-586 (-776 (-201)))))) 16) (((-2 (|:| -1796 (-352)) (|:| |explanations| (-1066))) (-981) (-2 (|:| |lfn| (-586 (-289 (-201)))) (|:| -3794 (-586 (-201))))) 15)) (-1239 (((-1066) $) 9)) (-4142 (((-1030) $) 10)) (-2188 (((-791) $) 11)) (-1530 (((-108) $ $) 6)))
-(((-772) (-1195)) (T -772))
-((-1796 (*1 *2 *3 *4) (-12 (-4 *1 (-772)) (-5 *3 (-981)) (-5 *4 (-2 (|:| |fn| (-289 (-201))) (|:| -3794 (-586 (-201))) (|:| |lb| (-586 (-776 (-201)))) (|:| |cf| (-586 (-289 (-201)))) (|:| |ub| (-586 (-776 (-201)))))) (-5 *2 (-2 (|:| -1796 (-352)) (|:| |explanations| (-1066)))))) (-1796 (*1 *2 *3 *4) (-12 (-4 *1 (-772)) (-5 *3 (-981)) (-5 *4 (-2 (|:| |lfn| (-586 (-289 (-201)))) (|:| -3794 (-586 (-201))))) (-5 *2 (-2 (|:| -1796 (-352)) (|:| |explanations| (-1066)))))) (-3070 (*1 *2 *3) (-12 (-4 *1 (-772)) (-5 *3 (-2 (|:| |lfn| (-586 (-289 (-201)))) (|:| -3794 (-586 (-201))))) (-5 *2 (-958)))) (-3070 (*1 *2 *3) (-12 (-4 *1 (-772)) (-5 *3 (-2 (|:| |fn| (-289 (-201))) (|:| -3794 (-586 (-201))) (|:| |lb| (-586 (-776 (-201)))) (|:| |cf| (-586 (-289 (-201)))) (|:| |ub| (-586 (-776 (-201)))))) (-5 *2 (-958)))))
-(-13 (-1012) (-10 -7 (-15 -1796 ((-2 (|:| -1796 (-352)) (|:| |explanations| (-1066))) (-981) (-2 (|:| |fn| (-289 (-201))) (|:| -3794 (-586 (-201))) (|:| |lb| (-586 (-776 (-201)))) (|:| |cf| (-586 (-289 (-201)))) (|:| |ub| (-586 (-776 (-201))))))) (-15 -1796 ((-2 (|:| -1796 (-352)) (|:| |explanations| (-1066))) (-981) (-2 (|:| |lfn| (-586 (-289 (-201)))) (|:| -3794 (-586 (-201)))))) (-15 -3070 ((-958) (-2 (|:| |lfn| (-586 (-289 (-201)))) (|:| -3794 (-586 (-201)))))) (-15 -3070 ((-958) (-2 (|:| |fn| (-289 (-201))) (|:| -3794 (-586 (-201))) (|:| |lb| (-586 (-776 (-201)))) (|:| |cf| (-586 (-289 (-201)))) (|:| |ub| (-586 (-776 (-201)))))))))
-(((-97) . T) ((-560 (-791)) . T) ((-1012) . T))
-((-2002 (((-958) (-586 (-289 (-352))) (-586 (-352))) 143) (((-958) (-289 (-352)) (-586 (-352))) 141) (((-958) (-289 (-352)) (-586 (-352)) (-586 (-776 (-352))) (-586 (-776 (-352)))) 140) (((-958) (-289 (-352)) (-586 (-352)) (-586 (-776 (-352))) (-586 (-289 (-352))) (-586 (-776 (-352)))) 139) (((-958) (-774)) 112) (((-958) (-774) (-981)) 111)) (-1796 (((-2 (|:| -1796 (-352)) (|:| -2883 (-1066)) (|:| |explanations| (-586 (-1066)))) (-774) (-981)) 76) (((-2 (|:| -1796 (-352)) (|:| -2883 (-1066)) (|:| |explanations| (-586 (-1066)))) (-774)) 78)) (-4090 (((-958) (-586 (-289 (-352))) (-586 (-352))) 144) (((-958) (-774)) 128)))
-(((-773) (-10 -7 (-15 -1796 ((-2 (|:| -1796 (-352)) (|:| -2883 (-1066)) (|:| |explanations| (-586 (-1066)))) (-774))) (-15 -1796 ((-2 (|:| -1796 (-352)) (|:| -2883 (-1066)) (|:| |explanations| (-586 (-1066)))) (-774) (-981))) (-15 -2002 ((-958) (-774) (-981))) (-15 -2002 ((-958) (-774))) (-15 -4090 ((-958) (-774))) (-15 -2002 ((-958) (-289 (-352)) (-586 (-352)) (-586 (-776 (-352))) (-586 (-289 (-352))) (-586 (-776 (-352))))) (-15 -2002 ((-958) (-289 (-352)) (-586 (-352)) (-586 (-776 (-352))) (-586 (-776 (-352))))) (-15 -2002 ((-958) (-289 (-352)) (-586 (-352)))) (-15 -2002 ((-958) (-586 (-289 (-352))) (-586 (-352)))) (-15 -4090 ((-958) (-586 (-289 (-352))) (-586 (-352)))))) (T -773))
-((-4090 (*1 *2 *3 *4) (-12 (-5 *3 (-586 (-289 (-352)))) (-5 *4 (-586 (-352))) (-5 *2 (-958)) (-5 *1 (-773)))) (-2002 (*1 *2 *3 *4) (-12 (-5 *3 (-586 (-289 (-352)))) (-5 *4 (-586 (-352))) (-5 *2 (-958)) (-5 *1 (-773)))) (-2002 (*1 *2 *3 *4) (-12 (-5 *3 (-289 (-352))) (-5 *4 (-586 (-352))) (-5 *2 (-958)) (-5 *1 (-773)))) (-2002 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-289 (-352))) (-5 *4 (-586 (-352))) (-5 *5 (-586 (-776 (-352)))) (-5 *2 (-958)) (-5 *1 (-773)))) (-2002 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-586 (-352))) (-5 *5 (-586 (-776 (-352)))) (-5 *6 (-586 (-289 (-352)))) (-5 *3 (-289 (-352))) (-5 *2 (-958)) (-5 *1 (-773)))) (-4090 (*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-958)) (-5 *1 (-773)))) (-2002 (*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-958)) (-5 *1 (-773)))) (-2002 (*1 *2 *3 *4) (-12 (-5 *3 (-774)) (-5 *4 (-981)) (-5 *2 (-958)) (-5 *1 (-773)))) (-1796 (*1 *2 *3 *4) (-12 (-5 *3 (-774)) (-5 *4 (-981)) (-5 *2 (-2 (|:| -1796 (-352)) (|:| -2883 (-1066)) (|:| |explanations| (-586 (-1066))))) (-5 *1 (-773)))) (-1796 (*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-2 (|:| -1796 (-352)) (|:| -2883 (-1066)) (|:| |explanations| (-586 (-1066))))) (-5 *1 (-773)))))
-(-10 -7 (-15 -1796 ((-2 (|:| -1796 (-352)) (|:| -2883 (-1066)) (|:| |explanations| (-586 (-1066)))) (-774))) (-15 -1796 ((-2 (|:| -1796 (-352)) (|:| -2883 (-1066)) (|:| |explanations| (-586 (-1066)))) (-774) (-981))) (-15 -2002 ((-958) (-774) (-981))) (-15 -2002 ((-958) (-774))) (-15 -4090 ((-958) (-774))) (-15 -2002 ((-958) (-289 (-352)) (-586 (-352)) (-586 (-776 (-352))) (-586 (-289 (-352))) (-586 (-776 (-352))))) (-15 -2002 ((-958) (-289 (-352)) (-586 (-352)) (-586 (-776 (-352))) (-586 (-776 (-352))))) (-15 -2002 ((-958) (-289 (-352)) (-586 (-352)))) (-15 -2002 ((-958) (-586 (-289 (-352))) (-586 (-352)))) (-15 -4090 ((-958) (-586 (-289 (-352))) (-586 (-352)))))
-((-1414 (((-108) $ $) NIL)) (-1482 (((-3 (|:| |noa| (-2 (|:| |fn| (-289 (-201))) (|:| -3794 (-586 (-201))) (|:| |lb| (-586 (-776 (-201)))) (|:| |cf| (-586 (-289 (-201)))) (|:| |ub| (-586 (-776 (-201)))))) (|:| |lsa| (-2 (|:| |lfn| (-586 (-289 (-201)))) (|:| -3794 (-586 (-201)))))) $) 15)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2188 (((-791) $) 14) (($ (-2 (|:| |fn| (-289 (-201))) (|:| -3794 (-586 (-201))) (|:| |lb| (-586 (-776 (-201)))) (|:| |cf| (-586 (-289 (-201)))) (|:| |ub| (-586 (-776 (-201)))))) 8) (($ (-2 (|:| |lfn| (-586 (-289 (-201)))) (|:| -3794 (-586 (-201))))) 10) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-289 (-201))) (|:| -3794 (-586 (-201))) (|:| |lb| (-586 (-776 (-201)))) (|:| |cf| (-586 (-289 (-201)))) (|:| |ub| (-586 (-776 (-201)))))) (|:| |lsa| (-2 (|:| |lfn| (-586 (-289 (-201)))) (|:| -3794 (-586 (-201))))))) 12)) (-1530 (((-108) $ $) NIL)))
-(((-774) (-13 (-1012) (-10 -8 (-15 -2188 ($ (-2 (|:| |fn| (-289 (-201))) (|:| -3794 (-586 (-201))) (|:| |lb| (-586 (-776 (-201)))) (|:| |cf| (-586 (-289 (-201)))) (|:| |ub| (-586 (-776 (-201))))))) (-15 -2188 ($ (-2 (|:| |lfn| (-586 (-289 (-201)))) (|:| -3794 (-586 (-201)))))) (-15 -2188 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-289 (-201))) (|:| -3794 (-586 (-201))) (|:| |lb| (-586 (-776 (-201)))) (|:| |cf| (-586 (-289 (-201)))) (|:| |ub| (-586 (-776 (-201)))))) (|:| |lsa| (-2 (|:| |lfn| (-586 (-289 (-201)))) (|:| -3794 (-586 (-201)))))))) (-15 -2188 ((-791) $)) (-15 -1482 ((-3 (|:| |noa| (-2 (|:| |fn| (-289 (-201))) (|:| -3794 (-586 (-201))) (|:| |lb| (-586 (-776 (-201)))) (|:| |cf| (-586 (-289 (-201)))) (|:| |ub| (-586 (-776 (-201)))))) (|:| |lsa| (-2 (|:| |lfn| (-586 (-289 (-201)))) (|:| -3794 (-586 (-201)))))) $))))) (T -774))
-((-2188 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-774)))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-289 (-201))) (|:| -3794 (-586 (-201))) (|:| |lb| (-586 (-776 (-201)))) (|:| |cf| (-586 (-289 (-201)))) (|:| |ub| (-586 (-776 (-201)))))) (-5 *1 (-774)))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-586 (-289 (-201)))) (|:| -3794 (-586 (-201))))) (-5 *1 (-774)))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-289 (-201))) (|:| -3794 (-586 (-201))) (|:| |lb| (-586 (-776 (-201)))) (|:| |cf| (-586 (-289 (-201)))) (|:| |ub| (-586 (-776 (-201)))))) (|:| |lsa| (-2 (|:| |lfn| (-586 (-289 (-201)))) (|:| -3794 (-586 (-201))))))) (-5 *1 (-774)))) (-1482 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-289 (-201))) (|:| -3794 (-586 (-201))) (|:| |lb| (-586 (-776 (-201)))) (|:| |cf| (-586 (-289 (-201)))) (|:| |ub| (-586 (-776 (-201)))))) (|:| |lsa| (-2 (|:| |lfn| (-586 (-289 (-201)))) (|:| -3794 (-586 (-201))))))) (-5 *1 (-774)))))
-(-13 (-1012) (-10 -8 (-15 -2188 ($ (-2 (|:| |fn| (-289 (-201))) (|:| -3794 (-586 (-201))) (|:| |lb| (-586 (-776 (-201)))) (|:| |cf| (-586 (-289 (-201)))) (|:| |ub| (-586 (-776 (-201))))))) (-15 -2188 ($ (-2 (|:| |lfn| (-586 (-289 (-201)))) (|:| -3794 (-586 (-201)))))) (-15 -2188 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-289 (-201))) (|:| -3794 (-586 (-201))) (|:| |lb| (-586 (-776 (-201)))) (|:| |cf| (-586 (-289 (-201)))) (|:| |ub| (-586 (-776 (-201)))))) (|:| |lsa| (-2 (|:| |lfn| (-586 (-289 (-201)))) (|:| -3794 (-586 (-201)))))))) (-15 -2188 ((-791) $)) (-15 -1482 ((-3 (|:| |noa| (-2 (|:| |fn| (-289 (-201))) (|:| -3794 (-586 (-201))) (|:| |lb| (-586 (-776 (-201)))) (|:| |cf| (-586 (-289 (-201)))) (|:| |ub| (-586 (-776 (-201)))))) (|:| |lsa| (-2 (|:| |lfn| (-586 (-289 (-201)))) (|:| -3794 (-586 (-201)))))) $))))
-((-1389 (((-776 |#2|) (-1 |#2| |#1|) (-776 |#1|) (-776 |#2|) (-776 |#2|)) 13) (((-776 |#2|) (-1 |#2| |#1|) (-776 |#1|)) 14)))
-(((-775 |#1| |#2|) (-10 -7 (-15 -1389 ((-776 |#2|) (-1 |#2| |#1|) (-776 |#1|))) (-15 -1389 ((-776 |#2|) (-1 |#2| |#1|) (-776 |#1|) (-776 |#2|) (-776 |#2|)))) (-1012) (-1012)) (T -775))
-((-1389 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-776 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-776 *5)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-5 *1 (-775 *5 *6)))) (-1389 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-776 *5)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-5 *2 (-776 *6)) (-5 *1 (-775 *5 *6)))))
-(-10 -7 (-15 -1389 ((-776 |#2|) (-1 |#2| |#1|) (-776 |#1|))) (-15 -1389 ((-776 |#2|) (-1 |#2| |#1|) (-776 |#1|) (-776 |#2|) (-776 |#2|))))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL (|has| |#1| (-21)))) (-1274 (((-1030) $) 24)) (-1917 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2804 (((-520) $) NIL (|has| |#1| (-781)))) (-3961 (($) NIL (|has| |#1| (-21)) CONST)) (-1296 (((-3 (-520) "failed") $) NIL (|has| |#1| (-960 (-520)))) (((-3 (-380 (-520)) "failed") $) NIL (|has| |#1| (-960 (-380 (-520))))) (((-3 |#1| "failed") $) 16)) (-1482 (((-520) $) NIL (|has| |#1| (-960 (-520)))) (((-380 (-520)) $) NIL (|has| |#1| (-960 (-380 (-520))))) ((|#1| $) 9)) (-1540 (((-3 $ "failed") $) 47 (|has| |#1| (-781)))) (-2279 (((-3 (-380 (-520)) "failed") $) 54 (|has| |#1| (-505)))) (-1386 (((-108) $) 49 (|has| |#1| (-505)))) (-4055 (((-380 (-520)) $) 52 (|has| |#1| (-505)))) (-2328 (((-108) $) NIL (|has| |#1| (-781)))) (-2868 (($) 13)) (-1537 (((-108) $) NIL (|has| |#1| (-781)))) (-3469 (((-108) $) NIL (|has| |#1| (-781)))) (-2881 (($) 14)) (-2809 (($ $ $) NIL (|has| |#1| (-781)))) (-2446 (($ $ $) NIL (|has| |#1| (-781)))) (-1239 (((-1066) $) NIL)) (-2781 (((-108) $) 12)) (-4142 (((-1030) $) NIL)) (-1447 (((-108) $) 11)) (-2188 (((-791) $) 22) (($ (-380 (-520))) NIL (|has| |#1| (-960 (-380 (-520))))) (($ |#1|) 8) (($ (-520)) NIL (-3700 (|has| |#1| (-781)) (|has| |#1| (-960 (-520)))))) (-3251 (((-706)) 41 (|has| |#1| (-781)))) (-2458 (($ $) NIL (|has| |#1| (-781)))) (-3504 (($ $ (-849)) NIL (|has| |#1| (-781))) (($ $ (-706)) NIL (|has| |#1| (-781)))) (-3560 (($) 29 (|has| |#1| (-21)) CONST)) (-3570 (($) 38 (|has| |#1| (-781)) CONST)) (-1573 (((-108) $ $) NIL (|has| |#1| (-781)))) (-1557 (((-108) $ $) NIL (|has| |#1| (-781)))) (-1530 (((-108) $ $) 27)) (-1565 (((-108) $ $) NIL (|has| |#1| (-781)))) (-1548 (((-108) $ $) 48 (|has| |#1| (-781)))) (-1611 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 34 (|has| |#1| (-21)))) (-1601 (($ $ $) 36 (|has| |#1| (-21)))) (** (($ $ (-849)) NIL (|has| |#1| (-781))) (($ $ (-706)) NIL (|has| |#1| (-781)))) (* (($ $ $) 44 (|has| |#1| (-781))) (($ (-520) $) 32 (|has| |#1| (-21))) (($ (-706) $) NIL (|has| |#1| (-21))) (($ (-849) $) NIL (|has| |#1| (-21)))))
-(((-776 |#1|) (-13 (-1012) (-384 |#1|) (-10 -8 (-15 -2868 ($)) (-15 -2881 ($)) (-15 -1447 ((-108) $)) (-15 -2781 ((-108) $)) (-15 -1274 ((-1030) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-781)) (-6 (-781)) |%noBranch|) (IF (|has| |#1| (-505)) (PROGN (-15 -1386 ((-108) $)) (-15 -4055 ((-380 (-520)) $)) (-15 -2279 ((-3 (-380 (-520)) "failed") $))) |%noBranch|))) (-1012)) (T -776))
-((-2868 (*1 *1) (-12 (-5 *1 (-776 *2)) (-4 *2 (-1012)))) (-2881 (*1 *1) (-12 (-5 *1 (-776 *2)) (-4 *2 (-1012)))) (-1447 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-776 *3)) (-4 *3 (-1012)))) (-2781 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-776 *3)) (-4 *3 (-1012)))) (-1274 (*1 *2 *1) (-12 (-5 *2 (-1030)) (-5 *1 (-776 *3)) (-4 *3 (-1012)))) (-1386 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-776 *3)) (-4 *3 (-505)) (-4 *3 (-1012)))) (-4055 (*1 *2 *1) (-12 (-5 *2 (-380 (-520))) (-5 *1 (-776 *3)) (-4 *3 (-505)) (-4 *3 (-1012)))) (-2279 (*1 *2 *1) (|partial| -12 (-5 *2 (-380 (-520))) (-5 *1 (-776 *3)) (-4 *3 (-505)) (-4 *3 (-1012)))))
-(-13 (-1012) (-384 |#1|) (-10 -8 (-15 -2868 ($)) (-15 -2881 ($)) (-15 -1447 ((-108) $)) (-15 -2781 ((-108) $)) (-15 -1274 ((-1030) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-781)) (-6 (-781)) |%noBranch|) (IF (|has| |#1| (-505)) (PROGN (-15 -1386 ((-108) $)) (-15 -4055 ((-380 (-520)) $)) (-15 -2279 ((-3 (-380 (-520)) "failed") $))) |%noBranch|)))
-((-1414 (((-108) $ $) 7)) (-1628 (((-706)) 20)) (-3249 (($) 23)) (-2809 (($ $ $) 13)) (-2446 (($ $ $) 14)) (-3040 (((-849) $) 22)) (-1239 (((-1066) $) 9)) (-2716 (($ (-849)) 21)) (-4142 (((-1030) $) 10)) (-2188 (((-791) $) 11)) (-1573 (((-108) $ $) 16)) (-1557 (((-108) $ $) 17)) (-1530 (((-108) $ $) 6)) (-1565 (((-108) $ $) 15)) (-1548 (((-108) $ $) 18)))
-(((-777) (-1195)) (T -777))
-NIL
-(-13 (-783) (-341))
-(((-97) . T) ((-560 (-791)) . T) ((-341) . T) ((-783) . T) ((-1012) . T))
-((-3009 (((-108) (-1164 |#2|) (-1164 |#2|)) 17)) (-3994 (((-108) (-1164 |#2|) (-1164 |#2|)) 18)) (-2695 (((-108) (-1164 |#2|) (-1164 |#2|)) 14)))
-(((-778 |#1| |#2|) (-10 -7 (-15 -2695 ((-108) (-1164 |#2|) (-1164 |#2|))) (-15 -3009 ((-108) (-1164 |#2|) (-1164 |#2|))) (-15 -3994 ((-108) (-1164 |#2|) (-1164 |#2|)))) (-706) (-727)) (T -778))
-((-3994 (*1 *2 *3 *3) (-12 (-5 *3 (-1164 *5)) (-4 *5 (-727)) (-5 *2 (-108)) (-5 *1 (-778 *4 *5)) (-14 *4 (-706)))) (-3009 (*1 *2 *3 *3) (-12 (-5 *3 (-1164 *5)) (-4 *5 (-727)) (-5 *2 (-108)) (-5 *1 (-778 *4 *5)) (-14 *4 (-706)))) (-2695 (*1 *2 *3 *3) (-12 (-5 *3 (-1164 *5)) (-4 *5 (-727)) (-5 *2 (-108)) (-5 *1 (-778 *4 *5)) (-14 *4 (-706)))))
-(-10 -7 (-15 -2695 ((-108) (-1164 |#2|) (-1164 |#2|))) (-15 -3009 ((-108) (-1164 |#2|) (-1164 |#2|))) (-15 -3994 ((-108) (-1164 |#2|) (-1164 |#2|))))
-((-1414 (((-108) $ $) 7)) (-3961 (($) 24 T CONST)) (-1540 (((-3 $ "failed") $) 28)) (-1537 (((-108) $) 25)) (-2809 (($ $ $) 13)) (-2446 (($ $ $) 14)) (-1239 (((-1066) $) 9)) (-4142 (((-1030) $) 10)) (-2188 (((-791) $) 11)) (-3504 (($ $ (-706)) 27) (($ $ (-849)) 22)) (-3570 (($) 23 T CONST)) (-1573 (((-108) $ $) 16)) (-1557 (((-108) $ $) 17)) (-1530 (((-108) $ $) 6)) (-1565 (((-108) $ $) 15)) (-1548 (((-108) $ $) 18)) (** (($ $ (-706)) 26) (($ $ (-849)) 21)) (* (($ $ $) 20)))
-(((-779) (-1195)) (T -779))
-NIL
-(-13 (-783) (-662))
-(((-97) . T) ((-560 (-791)) . T) ((-662) . T) ((-783) . T) ((-1024) . T) ((-1012) . T))
-((-2804 (((-520) $) 17)) (-2328 (((-108) $) 10)) (-3469 (((-108) $) 11)) (-2458 (($ $) 19)))
-(((-780 |#1|) (-10 -8 (-15 -2458 (|#1| |#1|)) (-15 -2804 ((-520) |#1|)) (-15 -3469 ((-108) |#1|)) (-15 -2328 ((-108) |#1|))) (-781)) (T -780))
-NIL
-(-10 -8 (-15 -2458 (|#1| |#1|)) (-15 -2804 ((-520) |#1|)) (-15 -3469 ((-108) |#1|)) (-15 -2328 ((-108) |#1|)))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 24)) (-1917 (((-3 $ "failed") $ $) 26)) (-2804 (((-520) $) 33)) (-3961 (($) 23 T CONST)) (-1540 (((-3 $ "failed") $) 39)) (-2328 (((-108) $) 35)) (-1537 (((-108) $) 42)) (-3469 (((-108) $) 34)) (-2809 (($ $ $) 13)) (-2446 (($ $ $) 14)) (-1239 (((-1066) $) 9)) (-4142 (((-1030) $) 10)) (-2188 (((-791) $) 11) (($ (-520)) 45)) (-3251 (((-706)) 44)) (-2458 (($ $) 32)) (-3504 (($ $ (-706)) 40) (($ $ (-849)) 36)) (-3560 (($) 22 T CONST)) (-3570 (($) 43 T CONST)) (-1573 (((-108) $ $) 16)) (-1557 (((-108) $ $) 17)) (-1530 (((-108) $ $) 6)) (-1565 (((-108) $ $) 15)) (-1548 (((-108) $ $) 18)) (-1611 (($ $ $) 28) (($ $) 27)) (-1601 (($ $ $) 20)) (** (($ $ (-706)) 41) (($ $ (-849)) 37)) (* (($ (-706) $) 25) (($ (-849) $) 21) (($ (-520) $) 29) (($ $ $) 38)))
-(((-781) (-1195)) (T -781))
-((-2328 (*1 *2 *1) (-12 (-4 *1 (-781)) (-5 *2 (-108)))) (-3469 (*1 *2 *1) (-12 (-4 *1 (-781)) (-5 *2 (-108)))) (-2804 (*1 *2 *1) (-12 (-4 *1 (-781)) (-5 *2 (-520)))) (-2458 (*1 *1 *1) (-4 *1 (-781))))
-(-13 (-726) (-969) (-662) (-10 -8 (-15 -2328 ((-108) $)) (-15 -3469 ((-108) $)) (-15 -2804 ((-520) $)) (-15 -2458 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-560 (-791)) . T) ((-588 $) . T) ((-662) . T) ((-726) . T) ((-727) . T) ((-729) . T) ((-731) . T) ((-783) . T) ((-969) . T) ((-976) . T) ((-1024) . T) ((-1012) . T))
-((-2809 (($ $ $) 10)) (-2446 (($ $ $) 9)) (-1573 (((-108) $ $) 13)) (-1557 (((-108) $ $) 11)) (-1565 (((-108) $ $) 14)))
-(((-782 |#1|) (-10 -8 (-15 -2809 (|#1| |#1| |#1|)) (-15 -2446 (|#1| |#1| |#1|)) (-15 -1565 ((-108) |#1| |#1|)) (-15 -1573 ((-108) |#1| |#1|)) (-15 -1557 ((-108) |#1| |#1|))) (-783)) (T -782))
-NIL
-(-10 -8 (-15 -2809 (|#1| |#1| |#1|)) (-15 -2446 (|#1| |#1| |#1|)) (-15 -1565 ((-108) |#1| |#1|)) (-15 -1573 ((-108) |#1| |#1|)) (-15 -1557 ((-108) |#1| |#1|)))
-((-1414 (((-108) $ $) 7)) (-2809 (($ $ $) 13)) (-2446 (($ $ $) 14)) (-1239 (((-1066) $) 9)) (-4142 (((-1030) $) 10)) (-2188 (((-791) $) 11)) (-1573 (((-108) $ $) 16)) (-1557 (((-108) $ $) 17)) (-1530 (((-108) $ $) 6)) (-1565 (((-108) $ $) 15)) (-1548 (((-108) $ $) 18)))
-(((-783) (-1195)) (T -783))
-((-1548 (*1 *2 *1 *1) (-12 (-4 *1 (-783)) (-5 *2 (-108)))) (-1557 (*1 *2 *1 *1) (-12 (-4 *1 (-783)) (-5 *2 (-108)))) (-1573 (*1 *2 *1 *1) (-12 (-4 *1 (-783)) (-5 *2 (-108)))) (-1565 (*1 *2 *1 *1) (-12 (-4 *1 (-783)) (-5 *2 (-108)))) (-2446 (*1 *1 *1 *1) (-4 *1 (-783))) (-2809 (*1 *1 *1 *1) (-4 *1 (-783))))
-(-13 (-1012) (-10 -8 (-15 -1548 ((-108) $ $)) (-15 -1557 ((-108) $ $)) (-15 -1573 ((-108) $ $)) (-15 -1565 ((-108) $ $)) (-15 -2446 ($ $ $)) (-15 -2809 ($ $ $))))
-(((-97) . T) ((-560 (-791)) . T) ((-1012) . T))
-((-2224 (($ $ $) 46)) (-2604 (($ $ $) 45)) (-1693 (($ $ $) 43)) (-3633 (($ $ $) 52)) (-1225 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) 47)) (-2637 (((-3 $ "failed") $ $) 50)) (-1296 (((-3 (-520) "failed") $) NIL) (((-3 (-380 (-520)) "failed") $) NIL) (((-3 |#2| "failed") $) 26)) (-3923 (($ $) 36)) (-3602 (($ $ $) 40)) (-3872 (($ $ $) 39)) (-1983 (($ $ $) 48)) (-3962 (($ $ $) 54)) (-2475 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) 42)) (-1724 (((-3 $ "failed") $ $) 49)) (-2230 (((-3 $ "failed") $ |#2|) 29)) (-1233 ((|#2| $) 33)) (-2188 (((-791) $) NIL) (($ (-520)) NIL) (($ (-380 (-520))) NIL) (($ |#2|) 12)) (-4113 (((-586 |#2|) $) 19)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 23)))
-(((-784 |#1| |#2|) (-10 -8 (-15 -1983 (|#1| |#1| |#1|)) (-15 -1225 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1382 |#1|)) |#1| |#1|)) (-15 -3633 (|#1| |#1| |#1|)) (-15 -2637 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2224 (|#1| |#1| |#1|)) (-15 -2604 (|#1| |#1| |#1|)) (-15 -1693 (|#1| |#1| |#1|)) (-15 -2475 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1382 |#1|)) |#1| |#1|)) (-15 -3962 (|#1| |#1| |#1|)) (-15 -1724 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3602 (|#1| |#1| |#1|)) (-15 -3872 (|#1| |#1| |#1|)) (-15 -3923 (|#1| |#1|)) (-15 -1233 (|#2| |#1|)) (-15 -2230 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4113 ((-586 |#2|) |#1|)) (-15 -1296 ((-3 |#2| "failed") |#1|)) (-15 -2188 (|#1| |#2|)) (-15 -2188 (|#1| (-380 (-520)))) (-15 -1296 ((-3 (-380 (-520)) "failed") |#1|)) (-15 -1296 ((-3 (-520) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2188 (|#1| (-520))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-520) |#1|)) (-15 * (|#1| (-706) |#1|)) (-15 * (|#1| (-849) |#1|)) (-15 -2188 ((-791) |#1|))) (-785 |#2|) (-969)) (T -784))
-NIL
-(-10 -8 (-15 -1983 (|#1| |#1| |#1|)) (-15 -1225 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1382 |#1|)) |#1| |#1|)) (-15 -3633 (|#1| |#1| |#1|)) (-15 -2637 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2224 (|#1| |#1| |#1|)) (-15 -2604 (|#1| |#1| |#1|)) (-15 -1693 (|#1| |#1| |#1|)) (-15 -2475 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1382 |#1|)) |#1| |#1|)) (-15 -3962 (|#1| |#1| |#1|)) (-15 -1724 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3602 (|#1| |#1| |#1|)) (-15 -3872 (|#1| |#1| |#1|)) (-15 -3923 (|#1| |#1|)) (-15 -1233 (|#2| |#1|)) (-15 -2230 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4113 ((-586 |#2|) |#1|)) (-15 -1296 ((-3 |#2| "failed") |#1|)) (-15 -2188 (|#1| |#2|)) (-15 -2188 (|#1| (-380 (-520)))) (-15 -1296 ((-3 (-380 (-520)) "failed") |#1|)) (-15 -1296 ((-3 (-520) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2188 (|#1| (-520))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-520) |#1|)) (-15 * (|#1| (-706) |#1|)) (-15 * (|#1| (-849) |#1|)) (-15 -2188 ((-791) |#1|)))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-1917 (((-3 $ "failed") $ $) 19)) (-3961 (($) 17 T CONST)) (-2224 (($ $ $) 45 (|has| |#1| (-336)))) (-2604 (($ $ $) 46 (|has| |#1| (-336)))) (-1693 (($ $ $) 48 (|has| |#1| (-336)))) (-3633 (($ $ $) 43 (|has| |#1| (-336)))) (-1225 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) 42 (|has| |#1| (-336)))) (-2637 (((-3 $ "failed") $ $) 44 (|has| |#1| (-336)))) (-2455 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) 47 (|has| |#1| (-336)))) (-1296 (((-3 (-520) "failed") $) 74 (|has| |#1| (-960 (-520)))) (((-3 (-380 (-520)) "failed") $) 72 (|has| |#1| (-960 (-380 (-520))))) (((-3 |#1| "failed") $) 69)) (-1482 (((-520) $) 75 (|has| |#1| (-960 (-520)))) (((-380 (-520)) $) 73 (|has| |#1| (-960 (-380 (-520))))) ((|#1| $) 68)) (-3150 (($ $) 64)) (-1540 (((-3 $ "failed") $) 34)) (-3923 (($ $) 55 (|has| |#1| (-424)))) (-1537 (((-108) $) 31)) (-4039 (($ |#1| (-706)) 62)) (-1216 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) 57 (|has| |#1| (-512)))) (-1422 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) 58 (|has| |#1| (-512)))) (-3562 (((-706) $) 66)) (-3602 (($ $ $) 52 (|has| |#1| (-336)))) (-3872 (($ $ $) 53 (|has| |#1| (-336)))) (-1983 (($ $ $) 41 (|has| |#1| (-336)))) (-3962 (($ $ $) 50 (|has| |#1| (-336)))) (-2475 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) 49 (|has| |#1| (-336)))) (-1724 (((-3 $ "failed") $ $) 51 (|has| |#1| (-336)))) (-3564 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) 54 (|has| |#1| (-336)))) (-3133 ((|#1| $) 65)) (-1239 (((-1066) $) 9)) (-4142 (((-1030) $) 10)) (-2230 (((-3 $ "failed") $ |#1|) 59 (|has| |#1| (-512)))) (-2528 (((-706) $) 67)) (-1233 ((|#1| $) 56 (|has| |#1| (-424)))) (-2188 (((-791) $) 11) (($ (-520)) 28) (($ (-380 (-520))) 71 (|has| |#1| (-960 (-380 (-520))))) (($ |#1|) 70)) (-4113 (((-586 |#1|) $) 61)) (-3475 ((|#1| $ (-706)) 63)) (-3251 (((-706)) 29)) (-1614 ((|#1| $ |#1| |#1|) 60)) (-3504 (($ $ (-849)) 26) (($ $ (-706)) 33)) (-3560 (($) 18 T CONST)) (-3570 (($) 30 T CONST)) (-1530 (((-108) $ $) 6)) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-706)) 32)) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ $ $) 24) (($ $ |#1|) 77) (($ |#1| $) 76)))
-(((-785 |#1|) (-1195) (-969)) (T -785))
-((-2528 (*1 *2 *1) (-12 (-4 *1 (-785 *3)) (-4 *3 (-969)) (-5 *2 (-706)))) (-3562 (*1 *2 *1) (-12 (-4 *1 (-785 *3)) (-4 *3 (-969)) (-5 *2 (-706)))) (-3133 (*1 *2 *1) (-12 (-4 *1 (-785 *2)) (-4 *2 (-969)))) (-3150 (*1 *1 *1) (-12 (-4 *1 (-785 *2)) (-4 *2 (-969)))) (-3475 (*1 *2 *1 *3) (-12 (-5 *3 (-706)) (-4 *1 (-785 *2)) (-4 *2 (-969)))) (-4039 (*1 *1 *2 *3) (-12 (-5 *3 (-706)) (-4 *1 (-785 *2)) (-4 *2 (-969)))) (-4113 (*1 *2 *1) (-12 (-4 *1 (-785 *3)) (-4 *3 (-969)) (-5 *2 (-586 *3)))) (-1614 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-785 *2)) (-4 *2 (-969)))) (-2230 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-785 *2)) (-4 *2 (-969)) (-4 *2 (-512)))) (-1422 (*1 *2 *1 *1) (-12 (-4 *3 (-512)) (-4 *3 (-969)) (-5 *2 (-2 (|:| -2060 *1) (|:| -3753 *1))) (-4 *1 (-785 *3)))) (-1216 (*1 *2 *1 *1) (-12 (-4 *3 (-512)) (-4 *3 (-969)) (-5 *2 (-2 (|:| -2060 *1) (|:| -3753 *1))) (-4 *1 (-785 *3)))) (-1233 (*1 *2 *1) (-12 (-4 *1 (-785 *2)) (-4 *2 (-969)) (-4 *2 (-424)))) (-3923 (*1 *1 *1) (-12 (-4 *1 (-785 *2)) (-4 *2 (-969)) (-4 *2 (-424)))) (-3564 (*1 *2 *1 *1) (-12 (-4 *3 (-336)) (-4 *3 (-969)) (-5 *2 (-2 (|:| -2060 *1) (|:| -3753 *1))) (-4 *1 (-785 *3)))) (-3872 (*1 *1 *1 *1) (-12 (-4 *1 (-785 *2)) (-4 *2 (-969)) (-4 *2 (-336)))) (-3602 (*1 *1 *1 *1) (-12 (-4 *1 (-785 *2)) (-4 *2 (-969)) (-4 *2 (-336)))) (-1724 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-785 *2)) (-4 *2 (-969)) (-4 *2 (-336)))) (-3962 (*1 *1 *1 *1) (-12 (-4 *1 (-785 *2)) (-4 *2 (-969)) (-4 *2 (-336)))) (-2475 (*1 *2 *1 *1) (-12 (-4 *3 (-336)) (-4 *3 (-969)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1382 *1))) (-4 *1 (-785 *3)))) (-1693 (*1 *1 *1 *1) (-12 (-4 *1 (-785 *2)) (-4 *2 (-969)) (-4 *2 (-336)))) (-2455 (*1 *2 *1 *1) (-12 (-4 *3 (-336)) (-4 *3 (-969)) (-5 *2 (-2 (|:| -2060 *1) (|:| -3753 *1))) (-4 *1 (-785 *3)))) (-2604 (*1 *1 *1 *1) (-12 (-4 *1 (-785 *2)) (-4 *2 (-969)) (-4 *2 (-336)))) (-2224 (*1 *1 *1 *1) (-12 (-4 *1 (-785 *2)) (-4 *2 (-969)) (-4 *2 (-336)))) (-2637 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-785 *2)) (-4 *2 (-969)) (-4 *2 (-336)))) (-3633 (*1 *1 *1 *1) (-12 (-4 *1 (-785 *2)) (-4 *2 (-969)) (-4 *2 (-336)))) (-1225 (*1 *2 *1 *1) (-12 (-4 *3 (-336)) (-4 *3 (-969)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1382 *1))) (-4 *1 (-785 *3)))) (-1983 (*1 *1 *1 *1) (-12 (-4 *1 (-785 *2)) (-4 *2 (-969)) (-4 *2 (-336)))))
-(-13 (-969) (-107 |t#1| |t#1|) (-384 |t#1|) (-10 -8 (-15 -2528 ((-706) $)) (-15 -3562 ((-706) $)) (-15 -3133 (|t#1| $)) (-15 -3150 ($ $)) (-15 -3475 (|t#1| $ (-706))) (-15 -4039 ($ |t#1| (-706))) (-15 -4113 ((-586 |t#1|) $)) (-15 -1614 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-157)) (-6 (-37 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-512)) (PROGN (-15 -2230 ((-3 $ "failed") $ |t#1|)) (-15 -1422 ((-2 (|:| -2060 $) (|:| -3753 $)) $ $)) (-15 -1216 ((-2 (|:| -2060 $) (|:| -3753 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-424)) (PROGN (-15 -1233 (|t#1| $)) (-15 -3923 ($ $))) |%noBranch|) (IF (|has| |t#1| (-336)) (PROGN (-15 -3564 ((-2 (|:| -2060 $) (|:| -3753 $)) $ $)) (-15 -3872 ($ $ $)) (-15 -3602 ($ $ $)) (-15 -1724 ((-3 $ "failed") $ $)) (-15 -3962 ($ $ $)) (-15 -2475 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $)) (-15 -1693 ($ $ $)) (-15 -2455 ((-2 (|:| -2060 $) (|:| -3753 $)) $ $)) (-15 -2604 ($ $ $)) (-15 -2224 ($ $ $)) (-15 -2637 ((-3 $ "failed") $ $)) (-15 -3633 ($ $ $)) (-15 -1225 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $)) (-15 -1983 ($ $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-157)) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-560 (-791)) . T) ((-384 |#1|) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-653 |#1|) |has| |#1| (-157)) ((-662) . T) ((-960 (-380 (-520))) |has| |#1| (-960 (-380 (-520)))) ((-960 (-520)) |has| |#1| (-960 (-520))) ((-960 |#1|) . T) ((-975 |#1|) . T) ((-969) . T) ((-976) . T) ((-1024) . T) ((-1012) . T))
-((-2485 ((|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|)) 21)) (-2455 (((-2 (|:| -2060 |#2|) (|:| -3753 |#2|)) |#2| |#2| (-94 |#1|)) 44 (|has| |#1| (-336)))) (-1216 (((-2 (|:| -2060 |#2|) (|:| -3753 |#2|)) |#2| |#2| (-94 |#1|)) 41 (|has| |#1| (-512)))) (-1422 (((-2 (|:| -2060 |#2|) (|:| -3753 |#2|)) |#2| |#2| (-94 |#1|)) 40 (|has| |#1| (-512)))) (-3564 (((-2 (|:| -2060 |#2|) (|:| -3753 |#2|)) |#2| |#2| (-94 |#1|)) 43 (|has| |#1| (-336)))) (-1614 ((|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|)) 32)))
-(((-786 |#1| |#2|) (-10 -7 (-15 -2485 (|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|))) (-15 -1614 (|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-512)) (PROGN (-15 -1422 ((-2 (|:| -2060 |#2|) (|:| -3753 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -1216 ((-2 (|:| -2060 |#2|) (|:| -3753 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|) (IF (|has| |#1| (-336)) (PROGN (-15 -3564 ((-2 (|:| -2060 |#2|) (|:| -3753 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -2455 ((-2 (|:| -2060 |#2|) (|:| -3753 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|)) (-969) (-785 |#1|)) (T -786))
-((-2455 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-336)) (-4 *5 (-969)) (-5 *2 (-2 (|:| -2060 *3) (|:| -3753 *3))) (-5 *1 (-786 *5 *3)) (-4 *3 (-785 *5)))) (-3564 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-336)) (-4 *5 (-969)) (-5 *2 (-2 (|:| -2060 *3) (|:| -3753 *3))) (-5 *1 (-786 *5 *3)) (-4 *3 (-785 *5)))) (-1216 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-512)) (-4 *5 (-969)) (-5 *2 (-2 (|:| -2060 *3) (|:| -3753 *3))) (-5 *1 (-786 *5 *3)) (-4 *3 (-785 *5)))) (-1422 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-512)) (-4 *5 (-969)) (-5 *2 (-2 (|:| -2060 *3) (|:| -3753 *3))) (-5 *1 (-786 *5 *3)) (-4 *3 (-785 *5)))) (-1614 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-94 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-969)) (-5 *1 (-786 *2 *3)) (-4 *3 (-785 *2)))) (-2485 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-969)) (-5 *1 (-786 *5 *2)) (-4 *2 (-785 *5)))))
-(-10 -7 (-15 -2485 (|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|))) (-15 -1614 (|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-512)) (PROGN (-15 -1422 ((-2 (|:| -2060 |#2|) (|:| -3753 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -1216 ((-2 (|:| -2060 |#2|) (|:| -3753 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|) (IF (|has| |#1| (-336)) (PROGN (-15 -3564 ((-2 (|:| -2060 |#2|) (|:| -3753 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -2455 ((-2 (|:| -2060 |#2|) (|:| -3753 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-1917 (((-3 $ "failed") $ $) NIL)) (-3961 (($) NIL T CONST)) (-2224 (($ $ $) NIL (|has| |#1| (-336)))) (-2604 (($ $ $) NIL (|has| |#1| (-336)))) (-1693 (($ $ $) NIL (|has| |#1| (-336)))) (-3633 (($ $ $) NIL (|has| |#1| (-336)))) (-1225 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) NIL (|has| |#1| (-336)))) (-2637 (((-3 $ "failed") $ $) NIL (|has| |#1| (-336)))) (-2455 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) 25 (|has| |#1| (-336)))) (-1296 (((-3 (-520) "failed") $) NIL (|has| |#1| (-960 (-520)))) (((-3 (-380 (-520)) "failed") $) NIL (|has| |#1| (-960 (-380 (-520))))) (((-3 |#1| "failed") $) NIL)) (-1482 (((-520) $) NIL (|has| |#1| (-960 (-520)))) (((-380 (-520)) $) NIL (|has| |#1| (-960 (-380 (-520))))) ((|#1| $) NIL)) (-3150 (($ $) NIL)) (-1540 (((-3 $ "failed") $) NIL)) (-3923 (($ $) NIL (|has| |#1| (-424)))) (-2802 (((-791) $ (-791)) NIL)) (-1537 (((-108) $) NIL)) (-4039 (($ |#1| (-706)) NIL)) (-1216 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) 21 (|has| |#1| (-512)))) (-1422 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) 19 (|has| |#1| (-512)))) (-3562 (((-706) $) NIL)) (-3602 (($ $ $) NIL (|has| |#1| (-336)))) (-3872 (($ $ $) NIL (|has| |#1| (-336)))) (-1983 (($ $ $) NIL (|has| |#1| (-336)))) (-3962 (($ $ $) NIL (|has| |#1| (-336)))) (-2475 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) NIL (|has| |#1| (-336)))) (-1724 (((-3 $ "failed") $ $) NIL (|has| |#1| (-336)))) (-3564 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) 23 (|has| |#1| (-336)))) (-3133 ((|#1| $) NIL)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2230 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-512)))) (-2528 (((-706) $) NIL)) (-1233 ((|#1| $) NIL (|has| |#1| (-424)))) (-2188 (((-791) $) NIL) (($ (-520)) NIL) (($ (-380 (-520))) NIL (|has| |#1| (-960 (-380 (-520))))) (($ |#1|) NIL)) (-4113 (((-586 |#1|) $) NIL)) (-3475 ((|#1| $ (-706)) NIL)) (-3251 (((-706)) NIL)) (-1614 ((|#1| $ |#1| |#1|) 15)) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (-3560 (($) NIL T CONST)) (-3570 (($) NIL T CONST)) (-1530 (((-108) $ $) NIL)) (-1611 (($ $) NIL) (($ $ $) NIL)) (-1601 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-787 |#1| |#2| |#3|) (-13 (-785 |#1|) (-10 -8 (-15 -2802 ((-791) $ (-791))))) (-969) (-94 |#1|) (-1 |#1| |#1|)) (T -787))
-((-2802 (*1 *2 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-787 *3 *4 *5)) (-4 *3 (-969)) (-14 *4 (-94 *3)) (-14 *5 (-1 *3 *3)))))
-(-13 (-785 |#1|) (-10 -8 (-15 -2802 ((-791) $ (-791)))))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-1917 (((-3 $ "failed") $ $) NIL)) (-3961 (($) NIL T CONST)) (-2224 (($ $ $) NIL (|has| |#2| (-336)))) (-2604 (($ $ $) NIL (|has| |#2| (-336)))) (-1693 (($ $ $) NIL (|has| |#2| (-336)))) (-3633 (($ $ $) NIL (|has| |#2| (-336)))) (-1225 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) NIL (|has| |#2| (-336)))) (-2637 (((-3 $ "failed") $ $) NIL (|has| |#2| (-336)))) (-2455 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) NIL (|has| |#2| (-336)))) (-1296 (((-3 (-520) "failed") $) NIL (|has| |#2| (-960 (-520)))) (((-3 (-380 (-520)) "failed") $) NIL (|has| |#2| (-960 (-380 (-520))))) (((-3 |#2| "failed") $) NIL)) (-1482 (((-520) $) NIL (|has| |#2| (-960 (-520)))) (((-380 (-520)) $) NIL (|has| |#2| (-960 (-380 (-520))))) ((|#2| $) NIL)) (-3150 (($ $) NIL)) (-1540 (((-3 $ "failed") $) NIL)) (-3923 (($ $) NIL (|has| |#2| (-424)))) (-1537 (((-108) $) NIL)) (-4039 (($ |#2| (-706)) 16)) (-1216 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) NIL (|has| |#2| (-512)))) (-1422 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) NIL (|has| |#2| (-512)))) (-3562 (((-706) $) NIL)) (-3602 (($ $ $) NIL (|has| |#2| (-336)))) (-3872 (($ $ $) NIL (|has| |#2| (-336)))) (-1983 (($ $ $) NIL (|has| |#2| (-336)))) (-3962 (($ $ $) NIL (|has| |#2| (-336)))) (-2475 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) NIL (|has| |#2| (-336)))) (-1724 (((-3 $ "failed") $ $) NIL (|has| |#2| (-336)))) (-3564 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) NIL (|has| |#2| (-336)))) (-3133 ((|#2| $) NIL)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2230 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-512)))) (-2528 (((-706) $) NIL)) (-1233 ((|#2| $) NIL (|has| |#2| (-424)))) (-2188 (((-791) $) 23) (($ (-520)) NIL) (($ (-380 (-520))) NIL (|has| |#2| (-960 (-380 (-520))))) (($ |#2|) NIL) (($ (-1160 |#1|)) 18)) (-4113 (((-586 |#2|) $) NIL)) (-3475 ((|#2| $ (-706)) NIL)) (-3251 (((-706)) NIL)) (-1614 ((|#2| $ |#2| |#2|) NIL)) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (-3560 (($) NIL T CONST)) (-3570 (($) 13 T CONST)) (-1530 (((-108) $ $) NIL)) (-1611 (($ $) NIL) (($ $ $) NIL)) (-1601 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-788 |#1| |#2| |#3| |#4|) (-13 (-785 |#2|) (-10 -8 (-15 -2188 ($ (-1160 |#1|))))) (-1083) (-969) (-94 |#2|) (-1 |#2| |#2|)) (T -788))
-((-2188 (*1 *1 *2) (-12 (-5 *2 (-1160 *3)) (-14 *3 (-1083)) (-5 *1 (-788 *3 *4 *5 *6)) (-4 *4 (-969)) (-14 *5 (-94 *4)) (-14 *6 (-1 *4 *4)))))
-(-13 (-785 |#2|) (-10 -8 (-15 -2188 ($ (-1160 |#1|)))))
-((-3858 ((|#1| (-706) |#1|) 35 (|has| |#1| (-37 (-380 (-520)))))) (-2554 ((|#1| (-706) (-706) |#1|) 27) ((|#1| (-706) |#1|) 20)) (-2709 ((|#1| (-706) |#1|) 31)) (-2989 ((|#1| (-706) |#1|) 29)) (-2259 ((|#1| (-706) |#1|) 28)))
-(((-789 |#1|) (-10 -7 (-15 -2259 (|#1| (-706) |#1|)) (-15 -2989 (|#1| (-706) |#1|)) (-15 -2709 (|#1| (-706) |#1|)) (-15 -2554 (|#1| (-706) |#1|)) (-15 -2554 (|#1| (-706) (-706) |#1|)) (IF (|has| |#1| (-37 (-380 (-520)))) (-15 -3858 (|#1| (-706) |#1|)) |%noBranch|)) (-157)) (T -789))
-((-3858 (*1 *2 *3 *2) (-12 (-5 *3 (-706)) (-5 *1 (-789 *2)) (-4 *2 (-37 (-380 (-520)))) (-4 *2 (-157)))) (-2554 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-706)) (-5 *1 (-789 *2)) (-4 *2 (-157)))) (-2554 (*1 *2 *3 *2) (-12 (-5 *3 (-706)) (-5 *1 (-789 *2)) (-4 *2 (-157)))) (-2709 (*1 *2 *3 *2) (-12 (-5 *3 (-706)) (-5 *1 (-789 *2)) (-4 *2 (-157)))) (-2989 (*1 *2 *3 *2) (-12 (-5 *3 (-706)) (-5 *1 (-789 *2)) (-4 *2 (-157)))) (-2259 (*1 *2 *3 *2) (-12 (-5 *3 (-706)) (-5 *1 (-789 *2)) (-4 *2 (-157)))))
-(-10 -7 (-15 -2259 (|#1| (-706) |#1|)) (-15 -2989 (|#1| (-706) |#1|)) (-15 -2709 (|#1| (-706) |#1|)) (-15 -2554 (|#1| (-706) |#1|)) (-15 -2554 (|#1| (-706) (-706) |#1|)) (IF (|has| |#1| (-37 (-380 (-520)))) (-15 -3858 (|#1| (-706) |#1|)) |%noBranch|))
-((-1414 (((-108) $ $) NIL)) (-3429 (((-520) $) 12)) (-2809 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2188 (((-791) $) 18) (($ (-520)) 11)) (-1573 (((-108) $ $) NIL)) (-1557 (((-108) $ $) NIL)) (-1530 (((-108) $ $) 8)) (-1565 (((-108) $ $) NIL)) (-1548 (((-108) $ $) 9)))
-(((-790) (-13 (-783) (-10 -8 (-15 -2188 ($ (-520))) (-15 -3429 ((-520) $))))) (T -790))
-((-2188 (*1 *1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-790)))) (-3429 (*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-790)))))
-(-13 (-783) (-10 -8 (-15 -2188 ($ (-520))) (-15 -3429 ((-520) $))))
-((-1414 (((-108) $ $) NIL)) (-1417 (($ $ $) 115)) (-2644 (((-520) $) 30) (((-520)) 35)) (-2181 (($ (-520)) 44)) (-2648 (($ $ $) 45) (($ (-586 $)) 76)) (-3545 (($ $ (-586 $)) 74)) (-2493 (((-520) $) 33)) (-3035 (($ $ $) 63)) (-3512 (($ $) 128) (($ $ $) 129) (($ $ $ $) 130)) (-1413 (((-520) $) 32)) (-4082 (($ $ $) 62)) (-1505 (($ $) 105)) (-4091 (($ $ $) 119)) (-2297 (($ (-586 $)) 52)) (-2524 (($ $ (-586 $)) 69)) (-3911 (($ (-520) (-520)) 46)) (-2918 (($ $) 116) (($ $ $) 117)) (-1924 (($ $ (-520)) 40) (($ $) 43)) (-2276 (($ $ $) 89)) (-1743 (($ $ $) 122)) (-1391 (($ $) 106)) (-2253 (($ $ $) 90)) (-1772 (($ $) 131) (($ $ $) 132) (($ $ $ $) 133)) (-2050 (((-1169) $) 8)) (-1551 (($ $) 109) (($ $ (-706)) 112)) (-2858 (($ $ $) 65)) (-1661 (($ $ $) 64)) (-3369 (($ $ (-586 $)) 100)) (-3049 (($ $ $) 104)) (-3296 (($ (-586 $)) 50)) (-1255 (($ $) 60) (($ (-586 $)) 61)) (-3016 (($ $ $) 113)) (-1416 (($ $) 107)) (-2530 (($ $ $) 118)) (-2802 (($ (-520)) 20) (($ (-1083)) 22) (($ (-1066)) 29) (($ (-201)) 24)) (-3991 (($ $ $) 93)) (-2399 (($ $) 94)) (-3630 (((-1169) (-1066)) 14)) (-2834 (($ (-1066)) 13)) (-1364 (($ (-586 (-586 $))) 48)) (-1912 (($ $ (-520)) 39) (($ $) 42)) (-1239 (((-1066) $) NIL)) (-2898 (($ $ $) 121)) (-2680 (($ $) 134) (($ $ $) 135) (($ $ $ $) 136)) (-3873 (((-108) $) 98)) (-2889 (($ $ (-586 $)) 102) (($ $ $ $) 103)) (-2905 (($ (-520)) 36)) (-4146 (((-520) $) 31) (((-520)) 34)) (-2877 (($ $ $) 37) (($ (-586 $)) 75)) (-4142 (((-1030) $) NIL)) (-2230 (($ $ $) 91)) (-2238 (($) 12)) (-2543 (($ $ (-586 $)) 99)) (-3639 (($ $) 108) (($ $ (-706)) 111)) (-2241 (($ $ $) 88)) (-2155 (($ $ (-706)) 127)) (-3657 (($ (-586 $)) 51)) (-2188 (((-791) $) 18)) (-1892 (($ $ (-520)) 38) (($ $) 41)) (-2032 (($ $) 58) (($ (-586 $)) 59)) (-3386 (($ $) 56) (($ (-586 $)) 57)) (-2319 (($ $) 114)) (-1765 (($ (-586 $)) 55)) (-2586 (($ $ $) 97)) (-3159 (($ $ $) 120)) (-4006 (($ $ $) 92)) (-2426 (($ $ $) 77)) (-1672 (($ $ $) 95) (($ $) 96)) (-1573 (($ $ $) 81)) (-1557 (($ $ $) 79)) (-1530 (((-108) $ $) 15) (($ $ $) 16)) (-1565 (($ $ $) 80)) (-1548 (($ $ $) 78)) (-1619 (($ $ $) 86)) (-1611 (($ $ $) 83) (($ $) 84)) (-1601 (($ $ $) 82)) (** (($ $ $) 87)) (* (($ $ $) 85)))
-(((-791) (-13 (-1012) (-10 -8 (-15 -2050 ((-1169) $)) (-15 -2834 ($ (-1066))) (-15 -3630 ((-1169) (-1066))) (-15 -2802 ($ (-520))) (-15 -2802 ($ (-1083))) (-15 -2802 ($ (-1066))) (-15 -2802 ($ (-201))) (-15 -2238 ($)) (-15 -2644 ((-520) $)) (-15 -4146 ((-520) $)) (-15 -2644 ((-520))) (-15 -4146 ((-520))) (-15 -1413 ((-520) $)) (-15 -2493 ((-520) $)) (-15 -2905 ($ (-520))) (-15 -2181 ($ (-520))) (-15 -3911 ($ (-520) (-520))) (-15 -1912 ($ $ (-520))) (-15 -1924 ($ $ (-520))) (-15 -1892 ($ $ (-520))) (-15 -1912 ($ $)) (-15 -1924 ($ $)) (-15 -1892 ($ $)) (-15 -2877 ($ $ $)) (-15 -2648 ($ $ $)) (-15 -2877 ($ (-586 $))) (-15 -2648 ($ (-586 $))) (-15 -3369 ($ $ (-586 $))) (-15 -2889 ($ $ (-586 $))) (-15 -2889 ($ $ $ $)) (-15 -3049 ($ $ $)) (-15 -3873 ((-108) $)) (-15 -2543 ($ $ (-586 $))) (-15 -1505 ($ $)) (-15 -2898 ($ $ $)) (-15 -2319 ($ $)) (-15 -1364 ($ (-586 (-586 $)))) (-15 -1417 ($ $ $)) (-15 -2918 ($ $)) (-15 -2918 ($ $ $)) (-15 -2530 ($ $ $)) (-15 -4091 ($ $ $)) (-15 -3159 ($ $ $)) (-15 -1743 ($ $ $)) (-15 -2155 ($ $ (-706))) (-15 -2586 ($ $ $)) (-15 -4082 ($ $ $)) (-15 -3035 ($ $ $)) (-15 -1661 ($ $ $)) (-15 -2858 ($ $ $)) (-15 -2524 ($ $ (-586 $))) (-15 -3545 ($ $ (-586 $))) (-15 -1391 ($ $)) (-15 -3639 ($ $)) (-15 -3639 ($ $ (-706))) (-15 -1551 ($ $)) (-15 -1551 ($ $ (-706))) (-15 -1416 ($ $)) (-15 -3016 ($ $ $)) (-15 -3512 ($ $)) (-15 -3512 ($ $ $)) (-15 -3512 ($ $ $ $)) (-15 -1772 ($ $)) (-15 -1772 ($ $ $)) (-15 -1772 ($ $ $ $)) (-15 -2680 ($ $)) (-15 -2680 ($ $ $)) (-15 -2680 ($ $ $ $)) (-15 -3386 ($ $)) (-15 -3386 ($ (-586 $))) (-15 -2032 ($ $)) (-15 -2032 ($ (-586 $))) (-15 -1255 ($ $)) (-15 -1255 ($ (-586 $))) (-15 -3296 ($ (-586 $))) (-15 -3657 ($ (-586 $))) (-15 -2297 ($ (-586 $))) (-15 -1765 ($ (-586 $))) (-15 -1530 ($ $ $)) (-15 -2426 ($ $ $)) (-15 -1548 ($ $ $)) (-15 -1557 ($ $ $)) (-15 -1565 ($ $ $)) (-15 -1573 ($ $ $)) (-15 -1601 ($ $ $)) (-15 -1611 ($ $ $)) (-15 -1611 ($ $)) (-15 * ($ $ $)) (-15 -1619 ($ $ $)) (-15 ** ($ $ $)) (-15 -2241 ($ $ $)) (-15 -2276 ($ $ $)) (-15 -2253 ($ $ $)) (-15 -2230 ($ $ $)) (-15 -4006 ($ $ $)) (-15 -3991 ($ $ $)) (-15 -2399 ($ $)) (-15 -1672 ($ $ $)) (-15 -1672 ($ $))))) (T -791))
-((-2050 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-791)))) (-2834 (*1 *1 *2) (-12 (-5 *2 (-1066)) (-5 *1 (-791)))) (-3630 (*1 *2 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-1169)) (-5 *1 (-791)))) (-2802 (*1 *1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-791)))) (-2802 (*1 *1 *2) (-12 (-5 *2 (-1083)) (-5 *1 (-791)))) (-2802 (*1 *1 *2) (-12 (-5 *2 (-1066)) (-5 *1 (-791)))) (-2802 (*1 *1 *2) (-12 (-5 *2 (-201)) (-5 *1 (-791)))) (-2238 (*1 *1) (-5 *1 (-791))) (-2644 (*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-791)))) (-4146 (*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-791)))) (-2644 (*1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-791)))) (-4146 (*1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-791)))) (-1413 (*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-791)))) (-2493 (*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-791)))) (-2905 (*1 *1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-791)))) (-2181 (*1 *1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-791)))) (-3911 (*1 *1 *2 *2) (-12 (-5 *2 (-520)) (-5 *1 (-791)))) (-1912 (*1 *1 *1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-791)))) (-1924 (*1 *1 *1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-791)))) (-1892 (*1 *1 *1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-791)))) (-1912 (*1 *1 *1) (-5 *1 (-791))) (-1924 (*1 *1 *1) (-5 *1 (-791))) (-1892 (*1 *1 *1) (-5 *1 (-791))) (-2877 (*1 *1 *1 *1) (-5 *1 (-791))) (-2648 (*1 *1 *1 *1) (-5 *1 (-791))) (-2877 (*1 *1 *2) (-12 (-5 *2 (-586 (-791))) (-5 *1 (-791)))) (-2648 (*1 *1 *2) (-12 (-5 *2 (-586 (-791))) (-5 *1 (-791)))) (-3369 (*1 *1 *1 *2) (-12 (-5 *2 (-586 (-791))) (-5 *1 (-791)))) (-2889 (*1 *1 *1 *2) (-12 (-5 *2 (-586 (-791))) (-5 *1 (-791)))) (-2889 (*1 *1 *1 *1 *1) (-5 *1 (-791))) (-3049 (*1 *1 *1 *1) (-5 *1 (-791))) (-3873 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-791)))) (-2543 (*1 *1 *1 *2) (-12 (-5 *2 (-586 (-791))) (-5 *1 (-791)))) (-1505 (*1 *1 *1) (-5 *1 (-791))) (-2898 (*1 *1 *1 *1) (-5 *1 (-791))) (-2319 (*1 *1 *1) (-5 *1 (-791))) (-1364 (*1 *1 *2) (-12 (-5 *2 (-586 (-586 (-791)))) (-5 *1 (-791)))) (-1417 (*1 *1 *1 *1) (-5 *1 (-791))) (-2918 (*1 *1 *1) (-5 *1 (-791))) (-2918 (*1 *1 *1 *1) (-5 *1 (-791))) (-2530 (*1 *1 *1 *1) (-5 *1 (-791))) (-4091 (*1 *1 *1 *1) (-5 *1 (-791))) (-3159 (*1 *1 *1 *1) (-5 *1 (-791))) (-1743 (*1 *1 *1 *1) (-5 *1 (-791))) (-2155 (*1 *1 *1 *2) (-12 (-5 *2 (-706)) (-5 *1 (-791)))) (-2586 (*1 *1 *1 *1) (-5 *1 (-791))) (-4082 (*1 *1 *1 *1) (-5 *1 (-791))) (-3035 (*1 *1 *1 *1) (-5 *1 (-791))) (-1661 (*1 *1 *1 *1) (-5 *1 (-791))) (-2858 (*1 *1 *1 *1) (-5 *1 (-791))) (-2524 (*1 *1 *1 *2) (-12 (-5 *2 (-586 (-791))) (-5 *1 (-791)))) (-3545 (*1 *1 *1 *2) (-12 (-5 *2 (-586 (-791))) (-5 *1 (-791)))) (-1391 (*1 *1 *1) (-5 *1 (-791))) (-3639 (*1 *1 *1) (-5 *1 (-791))) (-3639 (*1 *1 *1 *2) (-12 (-5 *2 (-706)) (-5 *1 (-791)))) (-1551 (*1 *1 *1) (-5 *1 (-791))) (-1551 (*1 *1 *1 *2) (-12 (-5 *2 (-706)) (-5 *1 (-791)))) (-1416 (*1 *1 *1) (-5 *1 (-791))) (-3016 (*1 *1 *1 *1) (-5 *1 (-791))) (-3512 (*1 *1 *1) (-5 *1 (-791))) (-3512 (*1 *1 *1 *1) (-5 *1 (-791))) (-3512 (*1 *1 *1 *1 *1) (-5 *1 (-791))) (-1772 (*1 *1 *1) (-5 *1 (-791))) (-1772 (*1 *1 *1 *1) (-5 *1 (-791))) (-1772 (*1 *1 *1 *1 *1) (-5 *1 (-791))) (-2680 (*1 *1 *1) (-5 *1 (-791))) (-2680 (*1 *1 *1 *1) (-5 *1 (-791))) (-2680 (*1 *1 *1 *1 *1) (-5 *1 (-791))) (-3386 (*1 *1 *1) (-5 *1 (-791))) (-3386 (*1 *1 *2) (-12 (-5 *2 (-586 (-791))) (-5 *1 (-791)))) (-2032 (*1 *1 *1) (-5 *1 (-791))) (-2032 (*1 *1 *2) (-12 (-5 *2 (-586 (-791))) (-5 *1 (-791)))) (-1255 (*1 *1 *1) (-5 *1 (-791))) (-1255 (*1 *1 *2) (-12 (-5 *2 (-586 (-791))) (-5 *1 (-791)))) (-3296 (*1 *1 *2) (-12 (-5 *2 (-586 (-791))) (-5 *1 (-791)))) (-3657 (*1 *1 *2) (-12 (-5 *2 (-586 (-791))) (-5 *1 (-791)))) (-2297 (*1 *1 *2) (-12 (-5 *2 (-586 (-791))) (-5 *1 (-791)))) (-1765 (*1 *1 *2) (-12 (-5 *2 (-586 (-791))) (-5 *1 (-791)))) (-1530 (*1 *1 *1 *1) (-5 *1 (-791))) (-2426 (*1 *1 *1 *1) (-5 *1 (-791))) (-1548 (*1 *1 *1 *1) (-5 *1 (-791))) (-1557 (*1 *1 *1 *1) (-5 *1 (-791))) (-1565 (*1 *1 *1 *1) (-5 *1 (-791))) (-1573 (*1 *1 *1 *1) (-5 *1 (-791))) (-1601 (*1 *1 *1 *1) (-5 *1 (-791))) (-1611 (*1 *1 *1 *1) (-5 *1 (-791))) (-1611 (*1 *1 *1) (-5 *1 (-791))) (* (*1 *1 *1 *1) (-5 *1 (-791))) (-1619 (*1 *1 *1 *1) (-5 *1 (-791))) (** (*1 *1 *1 *1) (-5 *1 (-791))) (-2241 (*1 *1 *1 *1) (-5 *1 (-791))) (-2276 (*1 *1 *1 *1) (-5 *1 (-791))) (-2253 (*1 *1 *1 *1) (-5 *1 (-791))) (-2230 (*1 *1 *1 *1) (-5 *1 (-791))) (-4006 (*1 *1 *1 *1) (-5 *1 (-791))) (-3991 (*1 *1 *1 *1) (-5 *1 (-791))) (-2399 (*1 *1 *1) (-5 *1 (-791))) (-1672 (*1 *1 *1 *1) (-5 *1 (-791))) (-1672 (*1 *1 *1) (-5 *1 (-791))))
-(-13 (-1012) (-10 -8 (-15 -2050 ((-1169) $)) (-15 -2834 ($ (-1066))) (-15 -3630 ((-1169) (-1066))) (-15 -2802 ($ (-520))) (-15 -2802 ($ (-1083))) (-15 -2802 ($ (-1066))) (-15 -2802 ($ (-201))) (-15 -2238 ($)) (-15 -2644 ((-520) $)) (-15 -4146 ((-520) $)) (-15 -2644 ((-520))) (-15 -4146 ((-520))) (-15 -1413 ((-520) $)) (-15 -2493 ((-520) $)) (-15 -2905 ($ (-520))) (-15 -2181 ($ (-520))) (-15 -3911 ($ (-520) (-520))) (-15 -1912 ($ $ (-520))) (-15 -1924 ($ $ (-520))) (-15 -1892 ($ $ (-520))) (-15 -1912 ($ $)) (-15 -1924 ($ $)) (-15 -1892 ($ $)) (-15 -2877 ($ $ $)) (-15 -2648 ($ $ $)) (-15 -2877 ($ (-586 $))) (-15 -2648 ($ (-586 $))) (-15 -3369 ($ $ (-586 $))) (-15 -2889 ($ $ (-586 $))) (-15 -2889 ($ $ $ $)) (-15 -3049 ($ $ $)) (-15 -3873 ((-108) $)) (-15 -2543 ($ $ (-586 $))) (-15 -1505 ($ $)) (-15 -2898 ($ $ $)) (-15 -2319 ($ $)) (-15 -1364 ($ (-586 (-586 $)))) (-15 -1417 ($ $ $)) (-15 -2918 ($ $)) (-15 -2918 ($ $ $)) (-15 -2530 ($ $ $)) (-15 -4091 ($ $ $)) (-15 -3159 ($ $ $)) (-15 -1743 ($ $ $)) (-15 -2155 ($ $ (-706))) (-15 -2586 ($ $ $)) (-15 -4082 ($ $ $)) (-15 -3035 ($ $ $)) (-15 -1661 ($ $ $)) (-15 -2858 ($ $ $)) (-15 -2524 ($ $ (-586 $))) (-15 -3545 ($ $ (-586 $))) (-15 -1391 ($ $)) (-15 -3639 ($ $)) (-15 -3639 ($ $ (-706))) (-15 -1551 ($ $)) (-15 -1551 ($ $ (-706))) (-15 -1416 ($ $)) (-15 -3016 ($ $ $)) (-15 -3512 ($ $)) (-15 -3512 ($ $ $)) (-15 -3512 ($ $ $ $)) (-15 -1772 ($ $)) (-15 -1772 ($ $ $)) (-15 -1772 ($ $ $ $)) (-15 -2680 ($ $)) (-15 -2680 ($ $ $)) (-15 -2680 ($ $ $ $)) (-15 -3386 ($ $)) (-15 -3386 ($ (-586 $))) (-15 -2032 ($ $)) (-15 -2032 ($ (-586 $))) (-15 -1255 ($ $)) (-15 -1255 ($ (-586 $))) (-15 -3296 ($ (-586 $))) (-15 -3657 ($ (-586 $))) (-15 -2297 ($ (-586 $))) (-15 -1765 ($ (-586 $))) (-15 -1530 ($ $ $)) (-15 -2426 ($ $ $)) (-15 -1548 ($ $ $)) (-15 -1557 ($ $ $)) (-15 -1565 ($ $ $)) (-15 -1573 ($ $ $)) (-15 -1601 ($ $ $)) (-15 -1611 ($ $ $)) (-15 -1611 ($ $)) (-15 * ($ $ $)) (-15 -1619 ($ $ $)) (-15 ** ($ $ $)) (-15 -2241 ($ $ $)) (-15 -2276 ($ $ $)) (-15 -2253 ($ $ $)) (-15 -2230 ($ $ $)) (-15 -4006 ($ $ $)) (-15 -3991 ($ $ $)) (-15 -2399 ($ $)) (-15 -1672 ($ $ $)) (-15 -1672 ($ $))))
-((-1481 (((-1169) (-586 (-51))) 24)) (-1584 (((-1169) (-1066) (-791)) 14) (((-1169) (-791)) 9) (((-1169) (-1066)) 11)))
-(((-792) (-10 -7 (-15 -1584 ((-1169) (-1066))) (-15 -1584 ((-1169) (-791))) (-15 -1584 ((-1169) (-1066) (-791))) (-15 -1481 ((-1169) (-586 (-51)))))) (T -792))
-((-1481 (*1 *2 *3) (-12 (-5 *3 (-586 (-51))) (-5 *2 (-1169)) (-5 *1 (-792)))) (-1584 (*1 *2 *3 *4) (-12 (-5 *3 (-1066)) (-5 *4 (-791)) (-5 *2 (-1169)) (-5 *1 (-792)))) (-1584 (*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1169)) (-5 *1 (-792)))) (-1584 (*1 *2 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-1169)) (-5 *1 (-792)))))
-(-10 -7 (-15 -1584 ((-1169) (-1066))) (-15 -1584 ((-1169) (-791))) (-15 -1584 ((-1169) (-1066) (-791))) (-15 -1481 ((-1169) (-586 (-51)))))
-((-1414 (((-108) $ $) NIL)) (-1610 (((-3 $ "failed") (-1083)) 32)) (-1628 (((-706)) 30)) (-3249 (($) NIL)) (-2809 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-3040 (((-849) $) 28)) (-1239 (((-1066) $) 38)) (-2716 (($ (-849)) 27)) (-4142 (((-1030) $) NIL)) (-1429 (((-1083) $) 13) (((-496) $) 19) (((-820 (-352)) $) 25) (((-820 (-520)) $) 22)) (-2188 (((-791) $) 16)) (-1573 (((-108) $ $) NIL)) (-1557 (((-108) $ $) NIL)) (-1530 (((-108) $ $) 35)) (-1565 (((-108) $ $) NIL)) (-1548 (((-108) $ $) 34)))
-(((-793 |#1|) (-13 (-777) (-561 (-1083)) (-561 (-496)) (-561 (-820 (-352))) (-561 (-820 (-520))) (-10 -8 (-15 -1610 ((-3 $ "failed") (-1083))))) (-586 (-1083))) (T -793))
-((-1610 (*1 *1 *2) (|partial| -12 (-5 *2 (-1083)) (-5 *1 (-793 *3)) (-14 *3 (-586 *2)))))
-(-13 (-777) (-561 (-1083)) (-561 (-496)) (-561 (-820 (-352))) (-561 (-820 (-520))) (-10 -8 (-15 -1610 ((-3 $ "failed") (-1083)))))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-1917 (((-3 $ "failed") $ $) NIL)) (-3961 (($) NIL T CONST)) (-1540 (((-3 $ "failed") $) NIL)) (-1537 (((-108) $) NIL)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2188 (((-791) $) NIL) (($ (-520)) NIL) (((-880 |#1|) $) NIL) (($ (-880 |#1|)) NIL) (($ |#1|) NIL (|has| |#1| (-157)))) (-3251 (((-706)) NIL)) (-3507 (((-1169) (-706)) NIL)) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (-3560 (($) NIL T CONST)) (-3570 (($) NIL T CONST)) (-1530 (((-108) $ $) NIL)) (-1619 (((-3 $ "failed") $ $) NIL (|has| |#1| (-336)))) (-1611 (($ $) NIL) (($ $ $) NIL)) (-1601 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-157))) (($ $ |#1|) NIL (|has| |#1| (-157)))))
-(((-794 |#1| |#2| |#3| |#4|) (-13 (-969) (-10 -8 (IF (|has| |#1| (-157)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2188 ((-880 |#1|) $)) (-15 -2188 ($ (-880 |#1|))) (IF (|has| |#1| (-336)) (-15 -1619 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3507 ((-1169) (-706))))) (-969) (-586 (-1083)) (-586 (-706)) (-706)) (T -794))
-((-2188 (*1 *2 *1) (-12 (-5 *2 (-880 *3)) (-5 *1 (-794 *3 *4 *5 *6)) (-4 *3 (-969)) (-14 *4 (-586 (-1083))) (-14 *5 (-586 (-706))) (-14 *6 (-706)))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-880 *3)) (-4 *3 (-969)) (-5 *1 (-794 *3 *4 *5 *6)) (-14 *4 (-586 (-1083))) (-14 *5 (-586 (-706))) (-14 *6 (-706)))) (-1619 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-794 *2 *3 *4 *5)) (-4 *2 (-336)) (-4 *2 (-969)) (-14 *3 (-586 (-1083))) (-14 *4 (-586 (-706))) (-14 *5 (-706)))) (-3507 (*1 *2 *3) (-12 (-5 *3 (-706)) (-5 *2 (-1169)) (-5 *1 (-794 *4 *5 *6 *7)) (-4 *4 (-969)) (-14 *5 (-586 (-1083))) (-14 *6 (-586 *3)) (-14 *7 *3))))
-(-13 (-969) (-10 -8 (IF (|has| |#1| (-157)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2188 ((-880 |#1|) $)) (-15 -2188 ($ (-880 |#1|))) (IF (|has| |#1| (-336)) (-15 -1619 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3507 ((-1169) (-706)))))
-((-3425 (((-3 (-158 |#3|) "failed") (-706) (-706) |#2| |#2|) 31)) (-1359 (((-3 (-380 |#3|) "failed") (-706) (-706) |#2| |#2|) 24)))
-(((-795 |#1| |#2| |#3|) (-10 -7 (-15 -1359 ((-3 (-380 |#3|) "failed") (-706) (-706) |#2| |#2|)) (-15 -3425 ((-3 (-158 |#3|) "failed") (-706) (-706) |#2| |#2|))) (-336) (-1155 |#1|) (-1140 |#1|)) (T -795))
-((-3425 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-706)) (-4 *5 (-336)) (-5 *2 (-158 *6)) (-5 *1 (-795 *5 *4 *6)) (-4 *4 (-1155 *5)) (-4 *6 (-1140 *5)))) (-1359 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-706)) (-4 *5 (-336)) (-5 *2 (-380 *6)) (-5 *1 (-795 *5 *4 *6)) (-4 *4 (-1155 *5)) (-4 *6 (-1140 *5)))))
-(-10 -7 (-15 -1359 ((-3 (-380 |#3|) "failed") (-706) (-706) |#2| |#2|)) (-15 -3425 ((-3 (-158 |#3|) "failed") (-706) (-706) |#2| |#2|)))
-((-1359 (((-3 (-380 (-1137 |#2| |#1|)) "failed") (-706) (-706) (-1156 |#1| |#2| |#3|)) 28) (((-3 (-380 (-1137 |#2| |#1|)) "failed") (-706) (-706) (-1156 |#1| |#2| |#3|) (-1156 |#1| |#2| |#3|)) 26)))
-(((-796 |#1| |#2| |#3|) (-10 -7 (-15 -1359 ((-3 (-380 (-1137 |#2| |#1|)) "failed") (-706) (-706) (-1156 |#1| |#2| |#3|) (-1156 |#1| |#2| |#3|))) (-15 -1359 ((-3 (-380 (-1137 |#2| |#1|)) "failed") (-706) (-706) (-1156 |#1| |#2| |#3|)))) (-336) (-1083) |#1|) (T -796))
-((-1359 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-706)) (-5 *4 (-1156 *5 *6 *7)) (-4 *5 (-336)) (-14 *6 (-1083)) (-14 *7 *5) (-5 *2 (-380 (-1137 *6 *5))) (-5 *1 (-796 *5 *6 *7)))) (-1359 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-706)) (-5 *4 (-1156 *5 *6 *7)) (-4 *5 (-336)) (-14 *6 (-1083)) (-14 *7 *5) (-5 *2 (-380 (-1137 *6 *5))) (-5 *1 (-796 *5 *6 *7)))))
-(-10 -7 (-15 -1359 ((-3 (-380 (-1137 |#2| |#1|)) "failed") (-706) (-706) (-1156 |#1| |#2| |#3|) (-1156 |#1| |#2| |#3|))) (-15 -1359 ((-3 (-380 (-1137 |#2| |#1|)) "failed") (-706) (-706) (-1156 |#1| |#2| |#3|))))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) 41)) (-2583 (($ $) 40)) (-1671 (((-108) $) 38)) (-1917 (((-3 $ "failed") $ $) 19)) (-1927 (($ $ (-520)) 62)) (-1327 (((-108) $ $) 59)) (-3961 (($) 17 T CONST)) (-2918 (($ (-1079 (-520)) (-520)) 61)) (-2276 (($ $ $) 55)) (-1540 (((-3 $ "failed") $) 34)) (-2944 (($ $) 64)) (-2253 (($ $ $) 56)) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) 51)) (-3989 (((-706) $) 69)) (-1537 (((-108) $) 31)) (-3188 (((-3 (-586 $) "failed") (-586 $) $) 52)) (-3178 (((-520)) 66)) (-1581 (((-520) $) 65)) (-2222 (($ $ $) 46) (($ (-586 $)) 45)) (-1239 (((-1066) $) 9)) (-4142 (((-1030) $) 10)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) 44)) (-2257 (($ $ $) 48) (($ (-586 $)) 47)) (-1283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2116 (($ $ (-520)) 68)) (-2230 (((-3 $ "failed") $ $) 42)) (-2608 (((-3 (-586 $) "failed") (-586 $) $) 50)) (-3704 (((-706) $) 58)) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) 57)) (-2850 (((-1064 (-520)) $) 70)) (-2759 (($ $) 67)) (-2188 (((-791) $) 11) (($ (-520)) 28) (($ $) 43)) (-3251 (((-706)) 29)) (-2559 (((-108) $ $) 39)) (-3890 (((-520) $ (-520)) 63)) (-3504 (($ $ (-849)) 26) (($ $ (-706)) 33)) (-3560 (($) 18 T CONST)) (-3570 (($) 30 T CONST)) (-1530 (((-108) $ $) 6)) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-706)) 32)) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ $ $) 24)))
-(((-797 |#1|) (-1195) (-520)) (T -797))
-((-2850 (*1 *2 *1) (-12 (-4 *1 (-797 *3)) (-5 *2 (-1064 (-520))))) (-3989 (*1 *2 *1) (-12 (-4 *1 (-797 *3)) (-5 *2 (-706)))) (-2116 (*1 *1 *1 *2) (-12 (-4 *1 (-797 *3)) (-5 *2 (-520)))) (-2759 (*1 *1 *1) (-4 *1 (-797 *2))) (-3178 (*1 *2) (-12 (-4 *1 (-797 *3)) (-5 *2 (-520)))) (-1581 (*1 *2 *1) (-12 (-4 *1 (-797 *3)) (-5 *2 (-520)))) (-2944 (*1 *1 *1) (-4 *1 (-797 *2))) (-3890 (*1 *2 *1 *2) (-12 (-4 *1 (-797 *3)) (-5 *2 (-520)))) (-1927 (*1 *1 *1 *2) (-12 (-4 *1 (-797 *3)) (-5 *2 (-520)))) (-2918 (*1 *1 *2 *3) (-12 (-5 *2 (-1079 (-520))) (-5 *3 (-520)) (-4 *1 (-797 *4)))))
-(-13 (-281) (-135) (-10 -8 (-15 -2850 ((-1064 (-520)) $)) (-15 -3989 ((-706) $)) (-15 -2116 ($ $ (-520))) (-15 -2759 ($ $)) (-15 -3178 ((-520))) (-15 -1581 ((-520) $)) (-15 -2944 ($ $)) (-15 -3890 ((-520) $ (-520))) (-15 -1927 ($ $ (-520))) (-15 -2918 ($ (-1079 (-520)) (-520)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-135) . T) ((-560 (-791)) . T) ((-157) . T) ((-264) . T) ((-281) . T) ((-424) . T) ((-512) . T) ((-588 $) . T) ((-653 $) . T) ((-662) . T) ((-848) . T) ((-975 $) . T) ((-969) . T) ((-976) . T) ((-1024) . T) ((-1012) . T))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) NIL)) (-2583 (($ $) NIL)) (-1671 (((-108) $) NIL)) (-1917 (((-3 $ "failed") $ $) NIL)) (-1927 (($ $ (-520)) NIL)) (-1327 (((-108) $ $) NIL)) (-3961 (($) NIL T CONST)) (-2918 (($ (-1079 (-520)) (-520)) NIL)) (-2276 (($ $ $) NIL)) (-1540 (((-3 $ "failed") $) NIL)) (-2944 (($ $) NIL)) (-2253 (($ $ $) NIL)) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) NIL)) (-3989 (((-706) $) NIL)) (-1537 (((-108) $) NIL)) (-3188 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-3178 (((-520)) NIL)) (-1581 (((-520) $) NIL)) (-2222 (($ $ $) NIL) (($ (-586 $)) NIL)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) NIL)) (-2257 (($ $ $) NIL) (($ (-586 $)) NIL)) (-1283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2116 (($ $ (-520)) NIL)) (-2230 (((-3 $ "failed") $ $) NIL)) (-2608 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-3704 (((-706) $) NIL)) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) NIL)) (-2850 (((-1064 (-520)) $) NIL)) (-2759 (($ $) NIL)) (-2188 (((-791) $) NIL) (($ (-520)) NIL) (($ $) NIL)) (-3251 (((-706)) NIL)) (-2559 (((-108) $ $) NIL)) (-3890 (((-520) $ (-520)) NIL)) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (-3560 (($) NIL T CONST)) (-3570 (($) NIL T CONST)) (-1530 (((-108) $ $) NIL)) (-1611 (($ $) NIL) (($ $ $) NIL)) (-1601 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) NIL)))
-(((-798 |#1|) (-797 |#1|) (-520)) (T -798))
-NIL
-(-797 |#1|)
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-4040 (((-798 |#1|) $) NIL (|has| (-798 |#1|) (-281)))) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) NIL)) (-2583 (($ $) NIL)) (-1671 (((-108) $) NIL)) (-1917 (((-3 $ "failed") $ $) NIL)) (-4119 (((-391 (-1079 $)) (-1079 $)) NIL (|has| (-798 |#1|) (-837)))) (-3024 (($ $) NIL)) (-1507 (((-391 $) $) NIL)) (-3481 (((-3 (-586 (-1079 $)) "failed") (-586 (-1079 $)) (-1079 $)) NIL (|has| (-798 |#1|) (-837)))) (-1327 (((-108) $ $) NIL)) (-2804 (((-520) $) NIL (|has| (-798 |#1|) (-756)))) (-3961 (($) NIL T CONST)) (-1296 (((-3 (-798 |#1|) "failed") $) NIL) (((-3 (-1083) "failed") $) NIL (|has| (-798 |#1|) (-960 (-1083)))) (((-3 (-380 (-520)) "failed") $) NIL (|has| (-798 |#1|) (-960 (-520)))) (((-3 (-520) "failed") $) NIL (|has| (-798 |#1|) (-960 (-520))))) (-1482 (((-798 |#1|) $) NIL) (((-1083) $) NIL (|has| (-798 |#1|) (-960 (-1083)))) (((-380 (-520)) $) NIL (|has| (-798 |#1|) (-960 (-520)))) (((-520) $) NIL (|has| (-798 |#1|) (-960 (-520))))) (-2243 (($ $) NIL) (($ (-520) $) NIL)) (-2276 (($ $ $) NIL)) (-2756 (((-626 (-520)) (-626 $)) NIL (|has| (-798 |#1|) (-582 (-520)))) (((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 $) (-1164 $)) NIL (|has| (-798 |#1|) (-582 (-520)))) (((-2 (|:| -3927 (-626 (-798 |#1|))) (|:| |vec| (-1164 (-798 |#1|)))) (-626 $) (-1164 $)) NIL) (((-626 (-798 |#1|)) (-626 $)) NIL)) (-1540 (((-3 $ "failed") $) NIL)) (-3249 (($) NIL (|has| (-798 |#1|) (-505)))) (-2253 (($ $ $) NIL)) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) NIL)) (-2036 (((-108) $) NIL)) (-2328 (((-108) $) NIL (|has| (-798 |#1|) (-756)))) (-1272 (((-817 (-520) $) $ (-820 (-520)) (-817 (-520) $)) NIL (|has| (-798 |#1|) (-814 (-520)))) (((-817 (-352) $) $ (-820 (-352)) (-817 (-352) $)) NIL (|has| (-798 |#1|) (-814 (-352))))) (-1537 (((-108) $) NIL)) (-4115 (($ $) NIL)) (-2800 (((-798 |#1|) $) NIL)) (-1394 (((-3 $ "failed") $) NIL (|has| (-798 |#1|) (-1059)))) (-3469 (((-108) $) NIL (|has| (-798 |#1|) (-756)))) (-3188 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-2809 (($ $ $) NIL (|has| (-798 |#1|) (-783)))) (-2446 (($ $ $) NIL (|has| (-798 |#1|) (-783)))) (-1389 (($ (-1 (-798 |#1|) (-798 |#1|)) $) NIL)) (-2222 (($ $ $) NIL) (($ (-586 $)) NIL)) (-1239 (((-1066) $) NIL)) (-3093 (($ $) NIL)) (-3794 (($) NIL (|has| (-798 |#1|) (-1059)) CONST)) (-4142 (((-1030) $) NIL)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) NIL)) (-2257 (($ $ $) NIL) (($ (-586 $)) NIL)) (-4122 (($ $) NIL (|has| (-798 |#1|) (-281)))) (-1626 (((-798 |#1|) $) NIL (|has| (-798 |#1|) (-505)))) (-4133 (((-391 (-1079 $)) (-1079 $)) NIL (|has| (-798 |#1|) (-837)))) (-2017 (((-391 (-1079 $)) (-1079 $)) NIL (|has| (-798 |#1|) (-837)))) (-1916 (((-391 $) $) NIL)) (-1283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2230 (((-3 $ "failed") $ $) NIL)) (-2608 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-2286 (($ $ (-586 (-798 |#1|)) (-586 (-798 |#1|))) NIL (|has| (-798 |#1|) (-283 (-798 |#1|)))) (($ $ (-798 |#1|) (-798 |#1|)) NIL (|has| (-798 |#1|) (-283 (-798 |#1|)))) (($ $ (-268 (-798 |#1|))) NIL (|has| (-798 |#1|) (-283 (-798 |#1|)))) (($ $ (-586 (-268 (-798 |#1|)))) NIL (|has| (-798 |#1|) (-283 (-798 |#1|)))) (($ $ (-586 (-1083)) (-586 (-798 |#1|))) NIL (|has| (-798 |#1|) (-481 (-1083) (-798 |#1|)))) (($ $ (-1083) (-798 |#1|)) NIL (|has| (-798 |#1|) (-481 (-1083) (-798 |#1|))))) (-3704 (((-706) $) NIL)) (-2543 (($ $ (-798 |#1|)) NIL (|has| (-798 |#1|) (-260 (-798 |#1|) (-798 |#1|))))) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) NIL)) (-2155 (($ $) NIL (|has| (-798 |#1|) (-209))) (($ $ (-706)) NIL (|has| (-798 |#1|) (-209))) (($ $ (-1083)) NIL (|has| (-798 |#1|) (-828 (-1083)))) (($ $ (-586 (-1083))) NIL (|has| (-798 |#1|) (-828 (-1083)))) (($ $ (-1083) (-706)) NIL (|has| (-798 |#1|) (-828 (-1083)))) (($ $ (-586 (-1083)) (-586 (-706))) NIL (|has| (-798 |#1|) (-828 (-1083)))) (($ $ (-1 (-798 |#1|) (-798 |#1|)) (-706)) NIL) (($ $ (-1 (-798 |#1|) (-798 |#1|))) NIL)) (-3556 (($ $) NIL)) (-2811 (((-798 |#1|) $) NIL)) (-1429 (((-820 (-520)) $) NIL (|has| (-798 |#1|) (-561 (-820 (-520))))) (((-820 (-352)) $) NIL (|has| (-798 |#1|) (-561 (-820 (-352))))) (((-496) $) NIL (|has| (-798 |#1|) (-561 (-496)))) (((-352) $) NIL (|has| (-798 |#1|) (-945))) (((-201) $) NIL (|has| (-798 |#1|) (-945)))) (-2774 (((-158 (-380 (-520))) $) NIL)) (-3784 (((-3 (-1164 $) "failed") (-626 $)) NIL (-12 (|has| $ (-133)) (|has| (-798 |#1|) (-837))))) (-2188 (((-791) $) NIL) (($ (-520)) NIL) (($ $) NIL) (($ (-380 (-520))) NIL) (($ (-798 |#1|)) NIL) (($ (-1083)) NIL (|has| (-798 |#1|) (-960 (-1083))))) (-3796 (((-3 $ "failed") $) NIL (-3700 (-12 (|has| $ (-133)) (|has| (-798 |#1|) (-837))) (|has| (-798 |#1|) (-133))))) (-3251 (((-706)) NIL)) (-3370 (((-798 |#1|) $) NIL (|has| (-798 |#1|) (-505)))) (-2559 (((-108) $ $) NIL)) (-3890 (((-380 (-520)) $ (-520)) NIL)) (-2458 (($ $) NIL (|has| (-798 |#1|) (-756)))) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL)) (-3560 (($) NIL T CONST)) (-3570 (($) NIL T CONST)) (-2211 (($ $) NIL (|has| (-798 |#1|) (-209))) (($ $ (-706)) NIL (|has| (-798 |#1|) (-209))) (($ $ (-1083)) NIL (|has| (-798 |#1|) (-828 (-1083)))) (($ $ (-586 (-1083))) NIL (|has| (-798 |#1|) (-828 (-1083)))) (($ $ (-1083) (-706)) NIL (|has| (-798 |#1|) (-828 (-1083)))) (($ $ (-586 (-1083)) (-586 (-706))) NIL (|has| (-798 |#1|) (-828 (-1083)))) (($ $ (-1 (-798 |#1|) (-798 |#1|)) (-706)) NIL) (($ $ (-1 (-798 |#1|) (-798 |#1|))) NIL)) (-1573 (((-108) $ $) NIL (|has| (-798 |#1|) (-783)))) (-1557 (((-108) $ $) NIL (|has| (-798 |#1|) (-783)))) (-1530 (((-108) $ $) NIL)) (-1565 (((-108) $ $) NIL (|has| (-798 |#1|) (-783)))) (-1548 (((-108) $ $) NIL (|has| (-798 |#1|) (-783)))) (-1619 (($ $ $) NIL) (($ (-798 |#1|) (-798 |#1|)) NIL)) (-1611 (($ $) NIL) (($ $ $) NIL)) (-1601 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) NIL) (($ $ (-380 (-520))) NIL) (($ (-380 (-520)) $) NIL) (($ (-798 |#1|) $) NIL) (($ $ (-798 |#1|)) NIL)))
-(((-799 |#1|) (-13 (-917 (-798 |#1|)) (-10 -8 (-15 -3890 ((-380 (-520)) $ (-520))) (-15 -2774 ((-158 (-380 (-520))) $)) (-15 -2243 ($ $)) (-15 -2243 ($ (-520) $)))) (-520)) (T -799))
-((-3890 (*1 *2 *1 *3) (-12 (-5 *2 (-380 (-520))) (-5 *1 (-799 *4)) (-14 *4 *3) (-5 *3 (-520)))) (-2774 (*1 *2 *1) (-12 (-5 *2 (-158 (-380 (-520)))) (-5 *1 (-799 *3)) (-14 *3 (-520)))) (-2243 (*1 *1 *1) (-12 (-5 *1 (-799 *2)) (-14 *2 (-520)))) (-2243 (*1 *1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-799 *3)) (-14 *3 *2))))
-(-13 (-917 (-798 |#1|)) (-10 -8 (-15 -3890 ((-380 (-520)) $ (-520))) (-15 -2774 ((-158 (-380 (-520))) $)) (-15 -2243 ($ $)) (-15 -2243 ($ (-520) $))))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-4040 ((|#2| $) NIL (|has| |#2| (-281)))) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) NIL)) (-2583 (($ $) NIL)) (-1671 (((-108) $) NIL)) (-1917 (((-3 $ "failed") $ $) NIL)) (-4119 (((-391 (-1079 $)) (-1079 $)) NIL (|has| |#2| (-837)))) (-3024 (($ $) NIL)) (-1507 (((-391 $) $) NIL)) (-3481 (((-3 (-586 (-1079 $)) "failed") (-586 (-1079 $)) (-1079 $)) NIL (|has| |#2| (-837)))) (-1327 (((-108) $ $) NIL)) (-2804 (((-520) $) NIL (|has| |#2| (-756)))) (-3961 (($) NIL T CONST)) (-1296 (((-3 |#2| "failed") $) NIL) (((-3 (-1083) "failed") $) NIL (|has| |#2| (-960 (-1083)))) (((-3 (-380 (-520)) "failed") $) NIL (|has| |#2| (-960 (-520)))) (((-3 (-520) "failed") $) NIL (|has| |#2| (-960 (-520))))) (-1482 ((|#2| $) NIL) (((-1083) $) NIL (|has| |#2| (-960 (-1083)))) (((-380 (-520)) $) NIL (|has| |#2| (-960 (-520)))) (((-520) $) NIL (|has| |#2| (-960 (-520))))) (-2243 (($ $) 31) (($ (-520) $) 32)) (-2276 (($ $ $) NIL)) (-2756 (((-626 (-520)) (-626 $)) NIL (|has| |#2| (-582 (-520)))) (((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 $) (-1164 $)) NIL (|has| |#2| (-582 (-520)))) (((-2 (|:| -3927 (-626 |#2|)) (|:| |vec| (-1164 |#2|))) (-626 $) (-1164 $)) NIL) (((-626 |#2|) (-626 $)) NIL)) (-1540 (((-3 $ "failed") $) 53)) (-3249 (($) NIL (|has| |#2| (-505)))) (-2253 (($ $ $) NIL)) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) NIL)) (-2036 (((-108) $) NIL)) (-2328 (((-108) $) NIL (|has| |#2| (-756)))) (-1272 (((-817 (-520) $) $ (-820 (-520)) (-817 (-520) $)) NIL (|has| |#2| (-814 (-520)))) (((-817 (-352) $) $ (-820 (-352)) (-817 (-352) $)) NIL (|has| |#2| (-814 (-352))))) (-1537 (((-108) $) NIL)) (-4115 (($ $) NIL)) (-2800 ((|#2| $) NIL)) (-1394 (((-3 $ "failed") $) NIL (|has| |#2| (-1059)))) (-3469 (((-108) $) NIL (|has| |#2| (-756)))) (-3188 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-2809 (($ $ $) NIL (|has| |#2| (-783)))) (-2446 (($ $ $) NIL (|has| |#2| (-783)))) (-1389 (($ (-1 |#2| |#2|) $) NIL)) (-2222 (($ $ $) NIL) (($ (-586 $)) NIL)) (-1239 (((-1066) $) NIL)) (-3093 (($ $) 49)) (-3794 (($) NIL (|has| |#2| (-1059)) CONST)) (-4142 (((-1030) $) NIL)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) NIL)) (-2257 (($ $ $) NIL) (($ (-586 $)) NIL)) (-4122 (($ $) NIL (|has| |#2| (-281)))) (-1626 ((|#2| $) NIL (|has| |#2| (-505)))) (-4133 (((-391 (-1079 $)) (-1079 $)) NIL (|has| |#2| (-837)))) (-2017 (((-391 (-1079 $)) (-1079 $)) NIL (|has| |#2| (-837)))) (-1916 (((-391 $) $) NIL)) (-1283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2230 (((-3 $ "failed") $ $) NIL)) (-2608 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-2286 (($ $ (-586 |#2|) (-586 |#2|)) NIL (|has| |#2| (-283 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-283 |#2|))) (($ $ (-268 |#2|)) NIL (|has| |#2| (-283 |#2|))) (($ $ (-586 (-268 |#2|))) NIL (|has| |#2| (-283 |#2|))) (($ $ (-586 (-1083)) (-586 |#2|)) NIL (|has| |#2| (-481 (-1083) |#2|))) (($ $ (-1083) |#2|) NIL (|has| |#2| (-481 (-1083) |#2|)))) (-3704 (((-706) $) NIL)) (-2543 (($ $ |#2|) NIL (|has| |#2| (-260 |#2| |#2|)))) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) NIL)) (-2155 (($ $) NIL (|has| |#2| (-209))) (($ $ (-706)) NIL (|has| |#2| (-209))) (($ $ (-1083)) NIL (|has| |#2| (-828 (-1083)))) (($ $ (-586 (-1083))) NIL (|has| |#2| (-828 (-1083)))) (($ $ (-1083) (-706)) NIL (|has| |#2| (-828 (-1083)))) (($ $ (-586 (-1083)) (-586 (-706))) NIL (|has| |#2| (-828 (-1083)))) (($ $ (-1 |#2| |#2|) (-706)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3556 (($ $) NIL)) (-2811 ((|#2| $) NIL)) (-1429 (((-820 (-520)) $) NIL (|has| |#2| (-561 (-820 (-520))))) (((-820 (-352)) $) NIL (|has| |#2| (-561 (-820 (-352))))) (((-496) $) NIL (|has| |#2| (-561 (-496)))) (((-352) $) NIL (|has| |#2| (-945))) (((-201) $) NIL (|has| |#2| (-945)))) (-2774 (((-158 (-380 (-520))) $) 68)) (-3784 (((-3 (-1164 $) "failed") (-626 $)) NIL (-12 (|has| $ (-133)) (|has| |#2| (-837))))) (-2188 (((-791) $) 86) (($ (-520)) 19) (($ $) NIL) (($ (-380 (-520))) 24) (($ |#2|) 18) (($ (-1083)) NIL (|has| |#2| (-960 (-1083))))) (-3796 (((-3 $ "failed") $) NIL (-3700 (-12 (|has| $ (-133)) (|has| |#2| (-837))) (|has| |#2| (-133))))) (-3251 (((-706)) NIL)) (-3370 ((|#2| $) NIL (|has| |#2| (-505)))) (-2559 (((-108) $ $) NIL)) (-3890 (((-380 (-520)) $ (-520)) 60)) (-2458 (($ $) NIL (|has| |#2| (-756)))) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL)) (-3560 (($) 14 T CONST)) (-3570 (($) 16 T CONST)) (-2211 (($ $) NIL (|has| |#2| (-209))) (($ $ (-706)) NIL (|has| |#2| (-209))) (($ $ (-1083)) NIL (|has| |#2| (-828 (-1083)))) (($ $ (-586 (-1083))) NIL (|has| |#2| (-828 (-1083)))) (($ $ (-1083) (-706)) NIL (|has| |#2| (-828 (-1083)))) (($ $ (-586 (-1083)) (-586 (-706))) NIL (|has| |#2| (-828 (-1083)))) (($ $ (-1 |#2| |#2|) (-706)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1573 (((-108) $ $) NIL (|has| |#2| (-783)))) (-1557 (((-108) $ $) NIL (|has| |#2| (-783)))) (-1530 (((-108) $ $) 35)) (-1565 (((-108) $ $) NIL (|has| |#2| (-783)))) (-1548 (((-108) $ $) NIL (|has| |#2| (-783)))) (-1619 (($ $ $) 23) (($ |#2| |#2|) 54)) (-1611 (($ $) 39) (($ $ $) 41)) (-1601 (($ $ $) 37)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) 50)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) 42) (($ $ $) 44) (($ $ (-380 (-520))) NIL) (($ (-380 (-520)) $) NIL) (($ |#2| $) 55) (($ $ |#2|) NIL)))
-(((-800 |#1| |#2|) (-13 (-917 |#2|) (-10 -8 (-15 -3890 ((-380 (-520)) $ (-520))) (-15 -2774 ((-158 (-380 (-520))) $)) (-15 -2243 ($ $)) (-15 -2243 ($ (-520) $)))) (-520) (-797 |#1|)) (T -800))
-((-3890 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-380 (-520))) (-5 *1 (-800 *4 *5)) (-5 *3 (-520)) (-4 *5 (-797 *4)))) (-2774 (*1 *2 *1) (-12 (-14 *3 (-520)) (-5 *2 (-158 (-380 (-520)))) (-5 *1 (-800 *3 *4)) (-4 *4 (-797 *3)))) (-2243 (*1 *1 *1) (-12 (-14 *2 (-520)) (-5 *1 (-800 *2 *3)) (-4 *3 (-797 *2)))) (-2243 (*1 *1 *2 *1) (-12 (-5 *2 (-520)) (-14 *3 *2) (-5 *1 (-800 *3 *4)) (-4 *4 (-797 *3)))))
-(-13 (-917 |#2|) (-10 -8 (-15 -3890 ((-380 (-520)) $ (-520))) (-15 -2774 ((-158 (-380 (-520))) $)) (-15 -2243 ($ $)) (-15 -2243 ($ (-520) $))))
-((-1414 (((-108) $ $) NIL (-12 (|has| |#1| (-1012)) (|has| |#2| (-1012))))) (-2079 ((|#2| $) 12)) (-2748 (($ |#1| |#2|) 9)) (-1239 (((-1066) $) NIL (-12 (|has| |#1| (-1012)) (|has| |#2| (-1012))))) (-4142 (((-1030) $) NIL (-12 (|has| |#1| (-1012)) (|has| |#2| (-1012))))) (-2293 ((|#1| $) 11)) (-2200 (($ |#1| |#2|) 10)) (-2188 (((-791) $) 18 (-3700 (-12 (|has| |#1| (-560 (-791))) (|has| |#2| (-560 (-791)))) (-12 (|has| |#1| (-1012)) (|has| |#2| (-1012)))))) (-1530 (((-108) $ $) 22 (-12 (|has| |#1| (-1012)) (|has| |#2| (-1012))))))
-(((-801 |#1| |#2|) (-13 (-1118) (-10 -8 (IF (|has| |#1| (-560 (-791))) (IF (|has| |#2| (-560 (-791))) (-6 (-560 (-791))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1012)) (IF (|has| |#2| (-1012)) (-6 (-1012)) |%noBranch|) |%noBranch|) (-15 -2748 ($ |#1| |#2|)) (-15 -2200 ($ |#1| |#2|)) (-15 -2293 (|#1| $)) (-15 -2079 (|#2| $)))) (-1118) (-1118)) (T -801))
-((-2748 (*1 *1 *2 *3) (-12 (-5 *1 (-801 *2 *3)) (-4 *2 (-1118)) (-4 *3 (-1118)))) (-2200 (*1 *1 *2 *3) (-12 (-5 *1 (-801 *2 *3)) (-4 *2 (-1118)) (-4 *3 (-1118)))) (-2293 (*1 *2 *1) (-12 (-4 *2 (-1118)) (-5 *1 (-801 *2 *3)) (-4 *3 (-1118)))) (-2079 (*1 *2 *1) (-12 (-4 *2 (-1118)) (-5 *1 (-801 *3 *2)) (-4 *3 (-1118)))))
-(-13 (-1118) (-10 -8 (IF (|has| |#1| (-560 (-791))) (IF (|has| |#2| (-560 (-791))) (-6 (-560 (-791))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1012)) (IF (|has| |#2| (-1012)) (-6 (-1012)) |%noBranch|) |%noBranch|) (-15 -2748 ($ |#1| |#2|)) (-15 -2200 ($ |#1| |#2|)) (-15 -2293 (|#1| $)) (-15 -2079 (|#2| $))))
-((-1414 (((-108) $ $) NIL)) (-3764 (((-520) $) 15)) (-3071 (($ (-143)) 11)) (-4125 (($ (-143)) 12)) (-1239 (((-1066) $) NIL)) (-2629 (((-143) $) 13)) (-4142 (((-1030) $) NIL)) (-2615 (($ (-143)) 9)) (-3598 (($ (-143)) 8)) (-2188 (((-791) $) 23) (($ (-143)) 16)) (-2237 (($ (-143)) 10)) (-1530 (((-108) $ $) NIL)))
-(((-802) (-13 (-1012) (-10 -8 (-15 -3598 ($ (-143))) (-15 -2615 ($ (-143))) (-15 -2237 ($ (-143))) (-15 -3071 ($ (-143))) (-15 -4125 ($ (-143))) (-15 -2629 ((-143) $)) (-15 -3764 ((-520) $)) (-15 -2188 ($ (-143)))))) (T -802))
-((-3598 (*1 *1 *2) (-12 (-5 *2 (-143)) (-5 *1 (-802)))) (-2615 (*1 *1 *2) (-12 (-5 *2 (-143)) (-5 *1 (-802)))) (-2237 (*1 *1 *2) (-12 (-5 *2 (-143)) (-5 *1 (-802)))) (-3071 (*1 *1 *2) (-12 (-5 *2 (-143)) (-5 *1 (-802)))) (-4125 (*1 *1 *2) (-12 (-5 *2 (-143)) (-5 *1 (-802)))) (-2629 (*1 *2 *1) (-12 (-5 *2 (-143)) (-5 *1 (-802)))) (-3764 (*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-802)))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-143)) (-5 *1 (-802)))))
-(-13 (-1012) (-10 -8 (-15 -3598 ($ (-143))) (-15 -2615 ($ (-143))) (-15 -2237 ($ (-143))) (-15 -3071 ($ (-143))) (-15 -4125 ($ (-143))) (-15 -2629 ((-143) $)) (-15 -3764 ((-520) $)) (-15 -2188 ($ (-143)))))
-((-2188 (((-289 (-520)) (-380 (-880 (-47)))) 21) (((-289 (-520)) (-880 (-47))) 16)))
-(((-803) (-10 -7 (-15 -2188 ((-289 (-520)) (-880 (-47)))) (-15 -2188 ((-289 (-520)) (-380 (-880 (-47))))))) (T -803))
-((-2188 (*1 *2 *3) (-12 (-5 *3 (-380 (-880 (-47)))) (-5 *2 (-289 (-520))) (-5 *1 (-803)))) (-2188 (*1 *2 *3) (-12 (-5 *3 (-880 (-47))) (-5 *2 (-289 (-520))) (-5 *1 (-803)))))
-(-10 -7 (-15 -2188 ((-289 (-520)) (-880 (-47)))) (-15 -2188 ((-289 (-520)) (-380 (-880 (-47))))))
-((-1389 (((-805 |#2|) (-1 |#2| |#1|) (-805 |#1|)) 14)))
-(((-804 |#1| |#2|) (-10 -7 (-15 -1389 ((-805 |#2|) (-1 |#2| |#1|) (-805 |#1|)))) (-1118) (-1118)) (T -804))
-((-1389 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-805 *5)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-5 *2 (-805 *6)) (-5 *1 (-804 *5 *6)))))
-(-10 -7 (-15 -1389 ((-805 |#2|) (-1 |#2| |#1|) (-805 |#1|))))
-((-4162 (($ |#1| |#1|) 8)) (-2827 ((|#1| $ (-706)) 10)))
-(((-805 |#1|) (-10 -8 (-15 -4162 ($ |#1| |#1|)) (-15 -2827 (|#1| $ (-706)))) (-1118)) (T -805))
-((-2827 (*1 *2 *1 *3) (-12 (-5 *3 (-706)) (-5 *1 (-805 *2)) (-4 *2 (-1118)))) (-4162 (*1 *1 *2 *2) (-12 (-5 *1 (-805 *2)) (-4 *2 (-1118)))))
-(-10 -8 (-15 -4162 ($ |#1| |#1|)) (-15 -2827 (|#1| $ (-706))))
-((-1389 (((-807 |#2|) (-1 |#2| |#1|) (-807 |#1|)) 14)))
-(((-806 |#1| |#2|) (-10 -7 (-15 -1389 ((-807 |#2|) (-1 |#2| |#1|) (-807 |#1|)))) (-1118) (-1118)) (T -806))
-((-1389 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-807 *5)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-5 *2 (-807 *6)) (-5 *1 (-806 *5 *6)))))
-(-10 -7 (-15 -1389 ((-807 |#2|) (-1 |#2| |#1|) (-807 |#1|))))
-((-4162 (($ |#1| |#1| |#1|) 8)) (-2827 ((|#1| $ (-706)) 10)))
-(((-807 |#1|) (-10 -8 (-15 -4162 ($ |#1| |#1| |#1|)) (-15 -2827 (|#1| $ (-706)))) (-1118)) (T -807))
-((-2827 (*1 *2 *1 *3) (-12 (-5 *3 (-706)) (-5 *1 (-807 *2)) (-4 *2 (-1118)))) (-4162 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-807 *2)) (-4 *2 (-1118)))))
-(-10 -8 (-15 -4162 ($ |#1| |#1| |#1|)) (-15 -2827 (|#1| $ (-706))))
-((-3496 (((-586 (-1088)) (-1066)) 8)))
-(((-808) (-10 -7 (-15 -3496 ((-586 (-1088)) (-1066))))) (T -808))
-((-3496 (*1 *2 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-586 (-1088))) (-5 *1 (-808)))))
-(-10 -7 (-15 -3496 ((-586 (-1088)) (-1066))))
-((-1389 (((-810 |#2|) (-1 |#2| |#1|) (-810 |#1|)) 14)))
-(((-809 |#1| |#2|) (-10 -7 (-15 -1389 ((-810 |#2|) (-1 |#2| |#1|) (-810 |#1|)))) (-1118) (-1118)) (T -809))
-((-1389 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-810 *5)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-5 *2 (-810 *6)) (-5 *1 (-809 *5 *6)))))
-(-10 -7 (-15 -1389 ((-810 |#2|) (-1 |#2| |#1|) (-810 |#1|))))
-((-2191 (($ |#1| |#1| |#1|) 8)) (-2827 ((|#1| $ (-706)) 10)))
-(((-810 |#1|) (-10 -8 (-15 -2191 ($ |#1| |#1| |#1|)) (-15 -2827 (|#1| $ (-706)))) (-1118)) (T -810))
-((-2827 (*1 *2 *1 *3) (-12 (-5 *3 (-706)) (-5 *1 (-810 *2)) (-4 *2 (-1118)))) (-2191 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-810 *2)) (-4 *2 (-1118)))))
-(-10 -8 (-15 -2191 ($ |#1| |#1| |#1|)) (-15 -2827 (|#1| $ (-706))))
-((-2271 (((-1064 (-586 (-520))) (-586 (-520)) (-1064 (-586 (-520)))) 32)) (-1605 (((-1064 (-586 (-520))) (-586 (-520)) (-586 (-520))) 28)) (-3850 (((-1064 (-586 (-520))) (-586 (-520))) 41) (((-1064 (-586 (-520))) (-586 (-520)) (-586 (-520))) 40)) (-3725 (((-1064 (-586 (-520))) (-520)) 42)) (-2166 (((-1064 (-586 (-520))) (-520) (-520)) 22) (((-1064 (-586 (-520))) (-520)) 16) (((-1064 (-586 (-520))) (-520) (-520) (-520)) 12)) (-1293 (((-1064 (-586 (-520))) (-1064 (-586 (-520)))) 26)) (-2945 (((-586 (-520)) (-586 (-520))) 25)))
-(((-811) (-10 -7 (-15 -2166 ((-1064 (-586 (-520))) (-520) (-520) (-520))) (-15 -2166 ((-1064 (-586 (-520))) (-520))) (-15 -2166 ((-1064 (-586 (-520))) (-520) (-520))) (-15 -2945 ((-586 (-520)) (-586 (-520)))) (-15 -1293 ((-1064 (-586 (-520))) (-1064 (-586 (-520))))) (-15 -1605 ((-1064 (-586 (-520))) (-586 (-520)) (-586 (-520)))) (-15 -2271 ((-1064 (-586 (-520))) (-586 (-520)) (-1064 (-586 (-520))))) (-15 -3850 ((-1064 (-586 (-520))) (-586 (-520)) (-586 (-520)))) (-15 -3850 ((-1064 (-586 (-520))) (-586 (-520)))) (-15 -3725 ((-1064 (-586 (-520))) (-520))))) (T -811))
-((-3725 (*1 *2 *3) (-12 (-5 *2 (-1064 (-586 (-520)))) (-5 *1 (-811)) (-5 *3 (-520)))) (-3850 (*1 *2 *3) (-12 (-5 *2 (-1064 (-586 (-520)))) (-5 *1 (-811)) (-5 *3 (-586 (-520))))) (-3850 (*1 *2 *3 *3) (-12 (-5 *2 (-1064 (-586 (-520)))) (-5 *1 (-811)) (-5 *3 (-586 (-520))))) (-2271 (*1 *2 *3 *2) (-12 (-5 *2 (-1064 (-586 (-520)))) (-5 *3 (-586 (-520))) (-5 *1 (-811)))) (-1605 (*1 *2 *3 *3) (-12 (-5 *2 (-1064 (-586 (-520)))) (-5 *1 (-811)) (-5 *3 (-586 (-520))))) (-1293 (*1 *2 *2) (-12 (-5 *2 (-1064 (-586 (-520)))) (-5 *1 (-811)))) (-2945 (*1 *2 *2) (-12 (-5 *2 (-586 (-520))) (-5 *1 (-811)))) (-2166 (*1 *2 *3 *3) (-12 (-5 *2 (-1064 (-586 (-520)))) (-5 *1 (-811)) (-5 *3 (-520)))) (-2166 (*1 *2 *3) (-12 (-5 *2 (-1064 (-586 (-520)))) (-5 *1 (-811)) (-5 *3 (-520)))) (-2166 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1064 (-586 (-520)))) (-5 *1 (-811)) (-5 *3 (-520)))))
-(-10 -7 (-15 -2166 ((-1064 (-586 (-520))) (-520) (-520) (-520))) (-15 -2166 ((-1064 (-586 (-520))) (-520))) (-15 -2166 ((-1064 (-586 (-520))) (-520) (-520))) (-15 -2945 ((-586 (-520)) (-586 (-520)))) (-15 -1293 ((-1064 (-586 (-520))) (-1064 (-586 (-520))))) (-15 -1605 ((-1064 (-586 (-520))) (-586 (-520)) (-586 (-520)))) (-15 -2271 ((-1064 (-586 (-520))) (-586 (-520)) (-1064 (-586 (-520))))) (-15 -3850 ((-1064 (-586 (-520))) (-586 (-520)) (-586 (-520)))) (-15 -3850 ((-1064 (-586 (-520))) (-586 (-520)))) (-15 -3725 ((-1064 (-586 (-520))) (-520))))
-((-1429 (((-820 (-352)) $) 9 (|has| |#1| (-561 (-820 (-352))))) (((-820 (-520)) $) 8 (|has| |#1| (-561 (-820 (-520)))))))
-(((-812 |#1|) (-1195) (-1118)) (T -812))
-NIL
-(-13 (-10 -7 (IF (|has| |t#1| (-561 (-820 (-520)))) (-6 (-561 (-820 (-520)))) |%noBranch|) (IF (|has| |t#1| (-561 (-820 (-352)))) (-6 (-561 (-820 (-352)))) |%noBranch|)))
-(((-561 (-820 (-352))) |has| |#1| (-561 (-820 (-352)))) ((-561 (-820 (-520))) |has| |#1| (-561 (-820 (-520)))))
-((-1414 (((-108) $ $) NIL)) (-1810 (($) 14)) (-1264 (($ (-817 |#1| |#2|) (-817 |#1| |#3|)) 27)) (-3823 (((-817 |#1| |#3|) $) 16)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2955 (((-108) $) 22)) (-3076 (($) 19)) (-2188 (((-791) $) 30)) (-3064 (((-817 |#1| |#2|) $) 15)) (-1530 (((-108) $ $) 25)))
-(((-813 |#1| |#2| |#3|) (-13 (-1012) (-10 -8 (-15 -2955 ((-108) $)) (-15 -3076 ($)) (-15 -1810 ($)) (-15 -1264 ($ (-817 |#1| |#2|) (-817 |#1| |#3|))) (-15 -3064 ((-817 |#1| |#2|) $)) (-15 -3823 ((-817 |#1| |#3|) $)))) (-1012) (-1012) (-606 |#2|)) (T -813))
-((-2955 (*1 *2 *1) (-12 (-4 *4 (-1012)) (-5 *2 (-108)) (-5 *1 (-813 *3 *4 *5)) (-4 *3 (-1012)) (-4 *5 (-606 *4)))) (-3076 (*1 *1) (-12 (-4 *3 (-1012)) (-5 *1 (-813 *2 *3 *4)) (-4 *2 (-1012)) (-4 *4 (-606 *3)))) (-1810 (*1 *1) (-12 (-4 *3 (-1012)) (-5 *1 (-813 *2 *3 *4)) (-4 *2 (-1012)) (-4 *4 (-606 *3)))) (-1264 (*1 *1 *2 *3) (-12 (-5 *2 (-817 *4 *5)) (-5 *3 (-817 *4 *6)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-606 *5)) (-5 *1 (-813 *4 *5 *6)))) (-3064 (*1 *2 *1) (-12 (-4 *4 (-1012)) (-5 *2 (-817 *3 *4)) (-5 *1 (-813 *3 *4 *5)) (-4 *3 (-1012)) (-4 *5 (-606 *4)))) (-3823 (*1 *2 *1) (-12 (-4 *4 (-1012)) (-5 *2 (-817 *3 *5)) (-5 *1 (-813 *3 *4 *5)) (-4 *3 (-1012)) (-4 *5 (-606 *4)))))
-(-13 (-1012) (-10 -8 (-15 -2955 ((-108) $)) (-15 -3076 ($)) (-15 -1810 ($)) (-15 -1264 ($ (-817 |#1| |#2|) (-817 |#1| |#3|))) (-15 -3064 ((-817 |#1| |#2|) $)) (-15 -3823 ((-817 |#1| |#3|) $))))
-((-1414 (((-108) $ $) 7)) (-1272 (((-817 |#1| $) $ (-820 |#1|) (-817 |#1| $)) 13)) (-1239 (((-1066) $) 9)) (-4142 (((-1030) $) 10)) (-2188 (((-791) $) 11)) (-1530 (((-108) $ $) 6)))
-(((-814 |#1|) (-1195) (-1012)) (T -814))
-((-1272 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-817 *4 *1)) (-5 *3 (-820 *4)) (-4 *1 (-814 *4)) (-4 *4 (-1012)))))
-(-13 (-1012) (-10 -8 (-15 -1272 ((-817 |t#1| $) $ (-820 |t#1|) (-817 |t#1| $)))))
-(((-97) . T) ((-560 (-791)) . T) ((-1012) . T))
-((-1784 (((-108) (-586 |#2|) |#3|) 23) (((-108) |#2| |#3|) 18)) (-3843 (((-817 |#1| |#2|) |#2| |#3|) 43 (-12 (-2399 (|has| |#2| (-960 (-1083)))) (-2399 (|has| |#2| (-969))))) (((-586 (-268 (-880 |#2|))) |#2| |#3|) 42 (-12 (|has| |#2| (-969)) (-2399 (|has| |#2| (-960 (-1083)))))) (((-586 (-268 |#2|)) |#2| |#3|) 35 (|has| |#2| (-960 (-1083)))) (((-813 |#1| |#2| (-586 |#2|)) (-586 |#2|) |#3|) 21)))
-(((-815 |#1| |#2| |#3|) (-10 -7 (-15 -1784 ((-108) |#2| |#3|)) (-15 -1784 ((-108) (-586 |#2|) |#3|)) (-15 -3843 ((-813 |#1| |#2| (-586 |#2|)) (-586 |#2|) |#3|)) (IF (|has| |#2| (-960 (-1083))) (-15 -3843 ((-586 (-268 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-969)) (-15 -3843 ((-586 (-268 (-880 |#2|))) |#2| |#3|)) (-15 -3843 ((-817 |#1| |#2|) |#2| |#3|))))) (-1012) (-814 |#1|) (-561 (-820 |#1|))) (T -815))
-((-3843 (*1 *2 *3 *4) (-12 (-4 *5 (-1012)) (-5 *2 (-817 *5 *3)) (-5 *1 (-815 *5 *3 *4)) (-2399 (-4 *3 (-960 (-1083)))) (-2399 (-4 *3 (-969))) (-4 *3 (-814 *5)) (-4 *4 (-561 (-820 *5))))) (-3843 (*1 *2 *3 *4) (-12 (-4 *5 (-1012)) (-5 *2 (-586 (-268 (-880 *3)))) (-5 *1 (-815 *5 *3 *4)) (-4 *3 (-969)) (-2399 (-4 *3 (-960 (-1083)))) (-4 *3 (-814 *5)) (-4 *4 (-561 (-820 *5))))) (-3843 (*1 *2 *3 *4) (-12 (-4 *5 (-1012)) (-5 *2 (-586 (-268 *3))) (-5 *1 (-815 *5 *3 *4)) (-4 *3 (-960 (-1083))) (-4 *3 (-814 *5)) (-4 *4 (-561 (-820 *5))))) (-3843 (*1 *2 *3 *4) (-12 (-4 *5 (-1012)) (-4 *6 (-814 *5)) (-5 *2 (-813 *5 *6 (-586 *6))) (-5 *1 (-815 *5 *6 *4)) (-5 *3 (-586 *6)) (-4 *4 (-561 (-820 *5))))) (-1784 (*1 *2 *3 *4) (-12 (-5 *3 (-586 *6)) (-4 *6 (-814 *5)) (-4 *5 (-1012)) (-5 *2 (-108)) (-5 *1 (-815 *5 *6 *4)) (-4 *4 (-561 (-820 *5))))) (-1784 (*1 *2 *3 *4) (-12 (-4 *5 (-1012)) (-5 *2 (-108)) (-5 *1 (-815 *5 *3 *4)) (-4 *3 (-814 *5)) (-4 *4 (-561 (-820 *5))))))
-(-10 -7 (-15 -1784 ((-108) |#2| |#3|)) (-15 -1784 ((-108) (-586 |#2|) |#3|)) (-15 -3843 ((-813 |#1| |#2| (-586 |#2|)) (-586 |#2|) |#3|)) (IF (|has| |#2| (-960 (-1083))) (-15 -3843 ((-586 (-268 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-969)) (-15 -3843 ((-586 (-268 (-880 |#2|))) |#2| |#3|)) (-15 -3843 ((-817 |#1| |#2|) |#2| |#3|)))))
-((-1389 (((-817 |#1| |#3|) (-1 |#3| |#2|) (-817 |#1| |#2|)) 21)))
-(((-816 |#1| |#2| |#3|) (-10 -7 (-15 -1389 ((-817 |#1| |#3|) (-1 |#3| |#2|) (-817 |#1| |#2|)))) (-1012) (-1012) (-1012)) (T -816))
-((-1389 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-817 *5 *6)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-817 *5 *7)) (-5 *1 (-816 *5 *6 *7)))))
-(-10 -7 (-15 -1389 ((-817 |#1| |#3|) (-1 |#3| |#2|) (-817 |#1| |#2|))))
-((-1414 (((-108) $ $) NIL)) (-2268 (($ $ $) 37)) (-3072 (((-3 (-108) "failed") $ (-820 |#1|)) 34)) (-1810 (($) 11)) (-1239 (((-1066) $) NIL)) (-4009 (($ (-820 |#1|) |#2| $) 20)) (-4142 (((-1030) $) NIL)) (-3740 (((-3 |#2| "failed") (-820 |#1|) $) 48)) (-2955 (((-108) $) 14)) (-3076 (($) 12)) (-1988 (((-586 (-2 (|:| -2526 (-1083)) (|:| -3043 |#2|))) $) 25)) (-2200 (($ (-586 (-2 (|:| -2526 (-1083)) (|:| -3043 |#2|)))) 23)) (-2188 (((-791) $) 42)) (-1617 (($ (-820 |#1|) |#2| $ |#2|) 46)) (-2169 (($ (-820 |#1|) |#2| $) 45)) (-1530 (((-108) $ $) 39)))
-(((-817 |#1| |#2|) (-13 (-1012) (-10 -8 (-15 -2955 ((-108) $)) (-15 -3076 ($)) (-15 -1810 ($)) (-15 -2268 ($ $ $)) (-15 -3740 ((-3 |#2| "failed") (-820 |#1|) $)) (-15 -2169 ($ (-820 |#1|) |#2| $)) (-15 -4009 ($ (-820 |#1|) |#2| $)) (-15 -1617 ($ (-820 |#1|) |#2| $ |#2|)) (-15 -1988 ((-586 (-2 (|:| -2526 (-1083)) (|:| -3043 |#2|))) $)) (-15 -2200 ($ (-586 (-2 (|:| -2526 (-1083)) (|:| -3043 |#2|))))) (-15 -3072 ((-3 (-108) "failed") $ (-820 |#1|))))) (-1012) (-1012)) (T -817))
-((-2955 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-817 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)))) (-3076 (*1 *1) (-12 (-5 *1 (-817 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1012)))) (-1810 (*1 *1) (-12 (-5 *1 (-817 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1012)))) (-2268 (*1 *1 *1 *1) (-12 (-5 *1 (-817 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1012)))) (-3740 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-820 *4)) (-4 *4 (-1012)) (-4 *2 (-1012)) (-5 *1 (-817 *4 *2)))) (-2169 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-820 *4)) (-4 *4 (-1012)) (-5 *1 (-817 *4 *3)) (-4 *3 (-1012)))) (-4009 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-820 *4)) (-4 *4 (-1012)) (-5 *1 (-817 *4 *3)) (-4 *3 (-1012)))) (-1617 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-820 *4)) (-4 *4 (-1012)) (-5 *1 (-817 *4 *3)) (-4 *3 (-1012)))) (-1988 (*1 *2 *1) (-12 (-5 *2 (-586 (-2 (|:| -2526 (-1083)) (|:| -3043 *4)))) (-5 *1 (-817 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)))) (-2200 (*1 *1 *2) (-12 (-5 *2 (-586 (-2 (|:| -2526 (-1083)) (|:| -3043 *4)))) (-4 *4 (-1012)) (-5 *1 (-817 *3 *4)) (-4 *3 (-1012)))) (-3072 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-820 *4)) (-4 *4 (-1012)) (-5 *2 (-108)) (-5 *1 (-817 *4 *5)) (-4 *5 (-1012)))))
-(-13 (-1012) (-10 -8 (-15 -2955 ((-108) $)) (-15 -3076 ($)) (-15 -1810 ($)) (-15 -2268 ($ $ $)) (-15 -3740 ((-3 |#2| "failed") (-820 |#1|) $)) (-15 -2169 ($ (-820 |#1|) |#2| $)) (-15 -4009 ($ (-820 |#1|) |#2| $)) (-15 -1617 ($ (-820 |#1|) |#2| $ |#2|)) (-15 -1988 ((-586 (-2 (|:| -2526 (-1083)) (|:| -3043 |#2|))) $)) (-15 -2200 ($ (-586 (-2 (|:| -2526 (-1083)) (|:| -3043 |#2|))))) (-15 -3072 ((-3 (-108) "failed") $ (-820 |#1|)))))
-((-1869 (((-820 |#1|) (-820 |#1|) (-586 (-1083)) (-1 (-108) (-586 |#2|))) 30) (((-820 |#1|) (-820 |#1|) (-586 (-1 (-108) |#2|))) 42) (((-820 |#1|) (-820 |#1|) (-1 (-108) |#2|)) 33)) (-3072 (((-108) (-586 |#2|) (-820 |#1|)) 39) (((-108) |#2| (-820 |#1|)) 35)) (-3996 (((-1 (-108) |#2|) (-820 |#1|)) 14)) (-2490 (((-586 |#2|) (-820 |#1|)) 23)) (-1986 (((-820 |#1|) (-820 |#1|) |#2|) 19)))
-(((-818 |#1| |#2|) (-10 -7 (-15 -1869 ((-820 |#1|) (-820 |#1|) (-1 (-108) |#2|))) (-15 -1869 ((-820 |#1|) (-820 |#1|) (-586 (-1 (-108) |#2|)))) (-15 -1869 ((-820 |#1|) (-820 |#1|) (-586 (-1083)) (-1 (-108) (-586 |#2|)))) (-15 -3996 ((-1 (-108) |#2|) (-820 |#1|))) (-15 -3072 ((-108) |#2| (-820 |#1|))) (-15 -3072 ((-108) (-586 |#2|) (-820 |#1|))) (-15 -1986 ((-820 |#1|) (-820 |#1|) |#2|)) (-15 -2490 ((-586 |#2|) (-820 |#1|)))) (-1012) (-1118)) (T -818))
-((-2490 (*1 *2 *3) (-12 (-5 *3 (-820 *4)) (-4 *4 (-1012)) (-5 *2 (-586 *5)) (-5 *1 (-818 *4 *5)) (-4 *5 (-1118)))) (-1986 (*1 *2 *2 *3) (-12 (-5 *2 (-820 *4)) (-4 *4 (-1012)) (-5 *1 (-818 *4 *3)) (-4 *3 (-1118)))) (-3072 (*1 *2 *3 *4) (-12 (-5 *3 (-586 *6)) (-5 *4 (-820 *5)) (-4 *5 (-1012)) (-4 *6 (-1118)) (-5 *2 (-108)) (-5 *1 (-818 *5 *6)))) (-3072 (*1 *2 *3 *4) (-12 (-5 *4 (-820 *5)) (-4 *5 (-1012)) (-5 *2 (-108)) (-5 *1 (-818 *5 *3)) (-4 *3 (-1118)))) (-3996 (*1 *2 *3) (-12 (-5 *3 (-820 *4)) (-4 *4 (-1012)) (-5 *2 (-1 (-108) *5)) (-5 *1 (-818 *4 *5)) (-4 *5 (-1118)))) (-1869 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-820 *5)) (-5 *3 (-586 (-1083))) (-5 *4 (-1 (-108) (-586 *6))) (-4 *5 (-1012)) (-4 *6 (-1118)) (-5 *1 (-818 *5 *6)))) (-1869 (*1 *2 *2 *3) (-12 (-5 *2 (-820 *4)) (-5 *3 (-586 (-1 (-108) *5))) (-4 *4 (-1012)) (-4 *5 (-1118)) (-5 *1 (-818 *4 *5)))) (-1869 (*1 *2 *2 *3) (-12 (-5 *2 (-820 *4)) (-5 *3 (-1 (-108) *5)) (-4 *4 (-1012)) (-4 *5 (-1118)) (-5 *1 (-818 *4 *5)))))
-(-10 -7 (-15 -1869 ((-820 |#1|) (-820 |#1|) (-1 (-108) |#2|))) (-15 -1869 ((-820 |#1|) (-820 |#1|) (-586 (-1 (-108) |#2|)))) (-15 -1869 ((-820 |#1|) (-820 |#1|) (-586 (-1083)) (-1 (-108) (-586 |#2|)))) (-15 -3996 ((-1 (-108) |#2|) (-820 |#1|))) (-15 -3072 ((-108) |#2| (-820 |#1|))) (-15 -3072 ((-108) (-586 |#2|) (-820 |#1|))) (-15 -1986 ((-820 |#1|) (-820 |#1|) |#2|)) (-15 -2490 ((-586 |#2|) (-820 |#1|))))
-((-1389 (((-820 |#2|) (-1 |#2| |#1|) (-820 |#1|)) 17)))
-(((-819 |#1| |#2|) (-10 -7 (-15 -1389 ((-820 |#2|) (-1 |#2| |#1|) (-820 |#1|)))) (-1012) (-1012)) (T -819))
-((-1389 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-820 *5)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-5 *2 (-820 *6)) (-5 *1 (-819 *5 *6)))))
-(-10 -7 (-15 -1389 ((-820 |#2|) (-1 |#2| |#1|) (-820 |#1|))))
-((-1414 (((-108) $ $) NIL)) (-3879 (($ $ (-586 (-51))) 63)) (-4081 (((-586 $) $) 117)) (-2761 (((-2 (|:| |var| (-586 (-1083))) (|:| |pred| (-51))) $) 23)) (-3525 (((-108) $) 30)) (-1515 (($ $ (-586 (-1083)) (-51)) 25)) (-1457 (($ $ (-586 (-51))) 62)) (-1296 (((-3 |#1| "failed") $) 60) (((-3 (-1083) "failed") $) 139)) (-1482 ((|#1| $) 56) (((-1083) $) NIL)) (-3921 (($ $) 107)) (-1738 (((-108) $) 46)) (-1594 (((-586 (-51)) $) 44)) (-2468 (($ (-1083) (-108) (-108) (-108)) 64)) (-1329 (((-3 (-586 $) "failed") (-586 $)) 71)) (-2841 (((-108) $) 49)) (-3403 (((-108) $) 48)) (-1239 (((-1066) $) NIL)) (-3548 (((-3 (-586 $) "failed") $) 35)) (-4066 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 42)) (-2090 (((-3 (-2 (|:| |val| $) (|:| -2647 $)) "failed") $) 82)) (-1205 (((-3 (-586 $) "failed") $) 32)) (-3695 (((-3 (-586 $) "failed") $ (-110)) 106) (((-3 (-2 (|:| -1418 (-110)) (|:| |arg| (-586 $))) "failed") $) 94)) (-3589 (((-3 (-586 $) "failed") $) 36)) (-2568 (((-3 (-2 (|:| |val| $) (|:| -2647 (-706))) "failed") $) 39)) (-1199 (((-108) $) 29)) (-4142 (((-1030) $) NIL)) (-2721 (((-108) $) 21)) (-2152 (((-108) $) 45)) (-1949 (((-586 (-51)) $) 110)) (-3208 (((-108) $) 47)) (-2543 (($ (-110) (-586 $)) 91)) (-1251 (((-706) $) 28)) (-2403 (($ $) 61)) (-1429 (($ (-586 $)) 58)) (-3256 (((-108) $) 26)) (-2188 (((-791) $) 51) (($ |#1|) 18) (($ (-1083)) 65)) (-1986 (($ $ (-51)) 109)) (-3560 (($) 90 T CONST)) (-3570 (($) 72 T CONST)) (-1530 (((-108) $ $) 78)) (-1619 (($ $ $) 99)) (-1601 (($ $ $) 103)) (** (($ $ (-706)) 98) (($ $ $) 52)) (* (($ $ $) 104)))
-(((-820 |#1|) (-13 (-1012) (-960 |#1|) (-960 (-1083)) (-10 -8 (-15 0 ($) -2675) (-15 1 ($) -2675) (-15 -1205 ((-3 (-586 $) "failed") $)) (-15 -3548 ((-3 (-586 $) "failed") $)) (-15 -3695 ((-3 (-586 $) "failed") $ (-110))) (-15 -3695 ((-3 (-2 (|:| -1418 (-110)) (|:| |arg| (-586 $))) "failed") $)) (-15 -2568 ((-3 (-2 (|:| |val| $) (|:| -2647 (-706))) "failed") $)) (-15 -4066 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3589 ((-3 (-586 $) "failed") $)) (-15 -2090 ((-3 (-2 (|:| |val| $) (|:| -2647 $)) "failed") $)) (-15 -2543 ($ (-110) (-586 $))) (-15 -1601 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-706))) (-15 ** ($ $ $)) (-15 -1619 ($ $ $)) (-15 -1251 ((-706) $)) (-15 -1429 ($ (-586 $))) (-15 -2403 ($ $)) (-15 -1199 ((-108) $)) (-15 -1738 ((-108) $)) (-15 -3525 ((-108) $)) (-15 -3256 ((-108) $)) (-15 -3208 ((-108) $)) (-15 -3403 ((-108) $)) (-15 -2841 ((-108) $)) (-15 -2152 ((-108) $)) (-15 -1594 ((-586 (-51)) $)) (-15 -1457 ($ $ (-586 (-51)))) (-15 -3879 ($ $ (-586 (-51)))) (-15 -2468 ($ (-1083) (-108) (-108) (-108))) (-15 -1515 ($ $ (-586 (-1083)) (-51))) (-15 -2761 ((-2 (|:| |var| (-586 (-1083))) (|:| |pred| (-51))) $)) (-15 -2721 ((-108) $)) (-15 -3921 ($ $)) (-15 -1986 ($ $ (-51))) (-15 -1949 ((-586 (-51)) $)) (-15 -4081 ((-586 $) $)) (-15 -1329 ((-3 (-586 $) "failed") (-586 $))))) (-1012)) (T -820))
-((-3560 (*1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-1012)))) (-3570 (*1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-1012)))) (-1205 (*1 *2 *1) (|partial| -12 (-5 *2 (-586 (-820 *3))) (-5 *1 (-820 *3)) (-4 *3 (-1012)))) (-3548 (*1 *2 *1) (|partial| -12 (-5 *2 (-586 (-820 *3))) (-5 *1 (-820 *3)) (-4 *3 (-1012)))) (-3695 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-110)) (-5 *2 (-586 (-820 *4))) (-5 *1 (-820 *4)) (-4 *4 (-1012)))) (-3695 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -1418 (-110)) (|:| |arg| (-586 (-820 *3))))) (-5 *1 (-820 *3)) (-4 *3 (-1012)))) (-2568 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-820 *3)) (|:| -2647 (-706)))) (-5 *1 (-820 *3)) (-4 *3 (-1012)))) (-4066 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-820 *3)) (|:| |den| (-820 *3)))) (-5 *1 (-820 *3)) (-4 *3 (-1012)))) (-3589 (*1 *2 *1) (|partial| -12 (-5 *2 (-586 (-820 *3))) (-5 *1 (-820 *3)) (-4 *3 (-1012)))) (-2090 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-820 *3)) (|:| -2647 (-820 *3)))) (-5 *1 (-820 *3)) (-4 *3 (-1012)))) (-2543 (*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-586 (-820 *4))) (-5 *1 (-820 *4)) (-4 *4 (-1012)))) (-1601 (*1 *1 *1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-1012)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-1012)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-706)) (-5 *1 (-820 *3)) (-4 *3 (-1012)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-1012)))) (-1619 (*1 *1 *1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-1012)))) (-1251 (*1 *2 *1) (-12 (-5 *2 (-706)) (-5 *1 (-820 *3)) (-4 *3 (-1012)))) (-1429 (*1 *1 *2) (-12 (-5 *2 (-586 (-820 *3))) (-5 *1 (-820 *3)) (-4 *3 (-1012)))) (-2403 (*1 *1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-1012)))) (-1199 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-820 *3)) (-4 *3 (-1012)))) (-1738 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-820 *3)) (-4 *3 (-1012)))) (-3525 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-820 *3)) (-4 *3 (-1012)))) (-3256 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-820 *3)) (-4 *3 (-1012)))) (-3208 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-820 *3)) (-4 *3 (-1012)))) (-3403 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-820 *3)) (-4 *3 (-1012)))) (-2841 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-820 *3)) (-4 *3 (-1012)))) (-2152 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-820 *3)) (-4 *3 (-1012)))) (-1594 (*1 *2 *1) (-12 (-5 *2 (-586 (-51))) (-5 *1 (-820 *3)) (-4 *3 (-1012)))) (-1457 (*1 *1 *1 *2) (-12 (-5 *2 (-586 (-51))) (-5 *1 (-820 *3)) (-4 *3 (-1012)))) (-3879 (*1 *1 *1 *2) (-12 (-5 *2 (-586 (-51))) (-5 *1 (-820 *3)) (-4 *3 (-1012)))) (-2468 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1083)) (-5 *3 (-108)) (-5 *1 (-820 *4)) (-4 *4 (-1012)))) (-1515 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-586 (-1083))) (-5 *3 (-51)) (-5 *1 (-820 *4)) (-4 *4 (-1012)))) (-2761 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-586 (-1083))) (|:| |pred| (-51)))) (-5 *1 (-820 *3)) (-4 *3 (-1012)))) (-2721 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-820 *3)) (-4 *3 (-1012)))) (-3921 (*1 *1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-1012)))) (-1986 (*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-820 *3)) (-4 *3 (-1012)))) (-1949 (*1 *2 *1) (-12 (-5 *2 (-586 (-51))) (-5 *1 (-820 *3)) (-4 *3 (-1012)))) (-4081 (*1 *2 *1) (-12 (-5 *2 (-586 (-820 *3))) (-5 *1 (-820 *3)) (-4 *3 (-1012)))) (-1329 (*1 *2 *2) (|partial| -12 (-5 *2 (-586 (-820 *3))) (-5 *1 (-820 *3)) (-4 *3 (-1012)))))
-(-13 (-1012) (-960 |#1|) (-960 (-1083)) (-10 -8 (-15 (-3560) ($) -2675) (-15 (-3570) ($) -2675) (-15 -1205 ((-3 (-586 $) "failed") $)) (-15 -3548 ((-3 (-586 $) "failed") $)) (-15 -3695 ((-3 (-586 $) "failed") $ (-110))) (-15 -3695 ((-3 (-2 (|:| -1418 (-110)) (|:| |arg| (-586 $))) "failed") $)) (-15 -2568 ((-3 (-2 (|:| |val| $) (|:| -2647 (-706))) "failed") $)) (-15 -4066 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3589 ((-3 (-586 $) "failed") $)) (-15 -2090 ((-3 (-2 (|:| |val| $) (|:| -2647 $)) "failed") $)) (-15 -2543 ($ (-110) (-586 $))) (-15 -1601 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-706))) (-15 ** ($ $ $)) (-15 -1619 ($ $ $)) (-15 -1251 ((-706) $)) (-15 -1429 ($ (-586 $))) (-15 -2403 ($ $)) (-15 -1199 ((-108) $)) (-15 -1738 ((-108) $)) (-15 -3525 ((-108) $)) (-15 -3256 ((-108) $)) (-15 -3208 ((-108) $)) (-15 -3403 ((-108) $)) (-15 -2841 ((-108) $)) (-15 -2152 ((-108) $)) (-15 -1594 ((-586 (-51)) $)) (-15 -1457 ($ $ (-586 (-51)))) (-15 -3879 ($ $ (-586 (-51)))) (-15 -2468 ($ (-1083) (-108) (-108) (-108))) (-15 -1515 ($ $ (-586 (-1083)) (-51))) (-15 -2761 ((-2 (|:| |var| (-586 (-1083))) (|:| |pred| (-51))) $)) (-15 -2721 ((-108) $)) (-15 -3921 ($ $)) (-15 -1986 ($ $ (-51))) (-15 -1949 ((-586 (-51)) $)) (-15 -4081 ((-586 $) $)) (-15 -1329 ((-3 (-586 $) "failed") (-586 $)))))
-((-1414 (((-108) $ $) NIL)) (-4097 (((-586 |#1|) $) 16)) (-3242 (((-108) $) 38)) (-1296 (((-3 (-611 |#1|) "failed") $) 41)) (-1482 (((-611 |#1|) $) 39)) (-2305 (($ $) 18)) (-2809 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-2515 (((-706) $) 45)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2293 (((-611 |#1|) $) 17)) (-2188 (((-791) $) 37) (($ (-611 |#1|)) 21) (((-755 |#1|) $) 27) (($ |#1|) 20)) (-3570 (($) 8 T CONST)) (-4164 (((-586 (-611 |#1|)) $) 23)) (-1573 (((-108) $ $) NIL)) (-1557 (((-108) $ $) NIL)) (-1530 (((-108) $ $) 11)) (-1565 (((-108) $ $) NIL)) (-1548 (((-108) $ $) 48)))
-(((-821 |#1|) (-13 (-783) (-960 (-611 |#1|)) (-10 -8 (-15 1 ($) -2675) (-15 -2188 ((-755 |#1|) $)) (-15 -2188 ($ |#1|)) (-15 -2293 ((-611 |#1|) $)) (-15 -2515 ((-706) $)) (-15 -4164 ((-586 (-611 |#1|)) $)) (-15 -2305 ($ $)) (-15 -3242 ((-108) $)) (-15 -4097 ((-586 |#1|) $)))) (-783)) (T -821))
-((-3570 (*1 *1) (-12 (-5 *1 (-821 *2)) (-4 *2 (-783)))) (-2188 (*1 *2 *1) (-12 (-5 *2 (-755 *3)) (-5 *1 (-821 *3)) (-4 *3 (-783)))) (-2188 (*1 *1 *2) (-12 (-5 *1 (-821 *2)) (-4 *2 (-783)))) (-2293 (*1 *2 *1) (-12 (-5 *2 (-611 *3)) (-5 *1 (-821 *3)) (-4 *3 (-783)))) (-2515 (*1 *2 *1) (-12 (-5 *2 (-706)) (-5 *1 (-821 *3)) (-4 *3 (-783)))) (-4164 (*1 *2 *1) (-12 (-5 *2 (-586 (-611 *3))) (-5 *1 (-821 *3)) (-4 *3 (-783)))) (-2305 (*1 *1 *1) (-12 (-5 *1 (-821 *2)) (-4 *2 (-783)))) (-3242 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-821 *3)) (-4 *3 (-783)))) (-4097 (*1 *2 *1) (-12 (-5 *2 (-586 *3)) (-5 *1 (-821 *3)) (-4 *3 (-783)))))
-(-13 (-783) (-960 (-611 |#1|)) (-10 -8 (-15 (-3570) ($) -2675) (-15 -2188 ((-755 |#1|) $)) (-15 -2188 ($ |#1|)) (-15 -2293 ((-611 |#1|) $)) (-15 -2515 ((-706) $)) (-15 -4164 ((-586 (-611 |#1|)) $)) (-15 -2305 ($ $)) (-15 -3242 ((-108) $)) (-15 -4097 ((-586 |#1|) $))))
-((-2974 ((|#1| |#1| |#1|) 20)))
-(((-822 |#1| |#2|) (-10 -7 (-15 -2974 (|#1| |#1| |#1|))) (-1140 |#2|) (-969)) (T -822))
-((-2974 (*1 *2 *2 *2) (-12 (-4 *3 (-969)) (-5 *1 (-822 *2 *3)) (-4 *2 (-1140 *3)))))
-(-10 -7 (-15 -2974 (|#1| |#1| |#1|)))
-((-1414 (((-108) $ $) 7)) (-1796 (((-2 (|:| -1796 (-352)) (|:| |explanations| (-1066))) (-981) (-2 (|:| |pde| (-586 (-289 (-201)))) (|:| |constraints| (-586 (-2 (|:| |start| (-201)) (|:| |finish| (-201)) (|:| |grid| (-706)) (|:| |boundaryType| (-520)) (|:| |dStart| (-626 (-201))) (|:| |dFinish| (-626 (-201)))))) (|:| |f| (-586 (-586 (-289 (-201))))) (|:| |st| (-1066)) (|:| |tol| (-201)))) 14)) (-1239 (((-1066) $) 9)) (-4142 (((-1030) $) 10)) (-2188 (((-791) $) 11)) (-2317 (((-958) (-2 (|:| |pde| (-586 (-289 (-201)))) (|:| |constraints| (-586 (-2 (|:| |start| (-201)) (|:| |finish| (-201)) (|:| |grid| (-706)) (|:| |boundaryType| (-520)) (|:| |dStart| (-626 (-201))) (|:| |dFinish| (-626 (-201)))))) (|:| |f| (-586 (-586 (-289 (-201))))) (|:| |st| (-1066)) (|:| |tol| (-201)))) 13)) (-1530 (((-108) $ $) 6)))
-(((-823) (-1195)) (T -823))
-((-1796 (*1 *2 *3 *4) (-12 (-4 *1 (-823)) (-5 *3 (-981)) (-5 *4 (-2 (|:| |pde| (-586 (-289 (-201)))) (|:| |constraints| (-586 (-2 (|:| |start| (-201)) (|:| |finish| (-201)) (|:| |grid| (-706)) (|:| |boundaryType| (-520)) (|:| |dStart| (-626 (-201))) (|:| |dFinish| (-626 (-201)))))) (|:| |f| (-586 (-586 (-289 (-201))))) (|:| |st| (-1066)) (|:| |tol| (-201)))) (-5 *2 (-2 (|:| -1796 (-352)) (|:| |explanations| (-1066)))))) (-2317 (*1 *2 *3) (-12 (-4 *1 (-823)) (-5 *3 (-2 (|:| |pde| (-586 (-289 (-201)))) (|:| |constraints| (-586 (-2 (|:| |start| (-201)) (|:| |finish| (-201)) (|:| |grid| (-706)) (|:| |boundaryType| (-520)) (|:| |dStart| (-626 (-201))) (|:| |dFinish| (-626 (-201)))))) (|:| |f| (-586 (-586 (-289 (-201))))) (|:| |st| (-1066)) (|:| |tol| (-201)))) (-5 *2 (-958)))))
-(-13 (-1012) (-10 -7 (-15 -1796 ((-2 (|:| -1796 (-352)) (|:| |explanations| (-1066))) (-981) (-2 (|:| |pde| (-586 (-289 (-201)))) (|:| |constraints| (-586 (-2 (|:| |start| (-201)) (|:| |finish| (-201)) (|:| |grid| (-706)) (|:| |boundaryType| (-520)) (|:| |dStart| (-626 (-201))) (|:| |dFinish| (-626 (-201)))))) (|:| |f| (-586 (-586 (-289 (-201))))) (|:| |st| (-1066)) (|:| |tol| (-201))))) (-15 -2317 ((-958) (-2 (|:| |pde| (-586 (-289 (-201)))) (|:| |constraints| (-586 (-2 (|:| |start| (-201)) (|:| |finish| (-201)) (|:| |grid| (-706)) (|:| |boundaryType| (-520)) (|:| |dStart| (-626 (-201))) (|:| |dFinish| (-626 (-201)))))) (|:| |f| (-586 (-586 (-289 (-201))))) (|:| |st| (-1066)) (|:| |tol| (-201)))))))
-(((-97) . T) ((-560 (-791)) . T) ((-1012) . T))
-((-3449 ((|#1| |#1| (-706)) 24)) (-2239 (((-3 |#1| "failed") |#1| |#1|) 23)) (-2699 (((-3 (-2 (|:| -1912 |#1|) (|:| -1924 |#1|)) "failed") |#1| (-706) (-706)) 27) (((-586 |#1|) |#1|) 29)))
-(((-824 |#1| |#2|) (-10 -7 (-15 -2699 ((-586 |#1|) |#1|)) (-15 -2699 ((-3 (-2 (|:| -1912 |#1|) (|:| -1924 |#1|)) "failed") |#1| (-706) (-706))) (-15 -2239 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3449 (|#1| |#1| (-706)))) (-1140 |#2|) (-336)) (T -824))
-((-3449 (*1 *2 *2 *3) (-12 (-5 *3 (-706)) (-4 *4 (-336)) (-5 *1 (-824 *2 *4)) (-4 *2 (-1140 *4)))) (-2239 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-336)) (-5 *1 (-824 *2 *3)) (-4 *2 (-1140 *3)))) (-2699 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-706)) (-4 *5 (-336)) (-5 *2 (-2 (|:| -1912 *3) (|:| -1924 *3))) (-5 *1 (-824 *3 *5)) (-4 *3 (-1140 *5)))) (-2699 (*1 *2 *3) (-12 (-4 *4 (-336)) (-5 *2 (-586 *3)) (-5 *1 (-824 *3 *4)) (-4 *3 (-1140 *4)))))
-(-10 -7 (-15 -2699 ((-586 |#1|) |#1|)) (-15 -2699 ((-3 (-2 (|:| -1912 |#1|) (|:| -1924 |#1|)) "failed") |#1| (-706) (-706))) (-15 -2239 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3449 (|#1| |#1| (-706))))
-((-3600 (((-958) (-352) (-352) (-352) (-352) (-706) (-706) (-586 (-289 (-352))) (-586 (-586 (-289 (-352)))) (-1066)) 92) (((-958) (-352) (-352) (-352) (-352) (-706) (-706) (-586 (-289 (-352))) (-586 (-586 (-289 (-352)))) (-1066) (-201)) 87) (((-958) (-826) (-981)) 76) (((-958) (-826)) 77)) (-1796 (((-2 (|:| -1796 (-352)) (|:| -2883 (-1066)) (|:| |explanations| (-586 (-1066)))) (-826) (-981)) 50) (((-2 (|:| -1796 (-352)) (|:| -2883 (-1066)) (|:| |explanations| (-586 (-1066)))) (-826)) 52)))
-(((-825) (-10 -7 (-15 -3600 ((-958) (-826))) (-15 -3600 ((-958) (-826) (-981))) (-15 -3600 ((-958) (-352) (-352) (-352) (-352) (-706) (-706) (-586 (-289 (-352))) (-586 (-586 (-289 (-352)))) (-1066) (-201))) (-15 -3600 ((-958) (-352) (-352) (-352) (-352) (-706) (-706) (-586 (-289 (-352))) (-586 (-586 (-289 (-352)))) (-1066))) (-15 -1796 ((-2 (|:| -1796 (-352)) (|:| -2883 (-1066)) (|:| |explanations| (-586 (-1066)))) (-826))) (-15 -1796 ((-2 (|:| -1796 (-352)) (|:| -2883 (-1066)) (|:| |explanations| (-586 (-1066)))) (-826) (-981))))) (T -825))
-((-1796 (*1 *2 *3 *4) (-12 (-5 *3 (-826)) (-5 *4 (-981)) (-5 *2 (-2 (|:| -1796 (-352)) (|:| -2883 (-1066)) (|:| |explanations| (-586 (-1066))))) (-5 *1 (-825)))) (-1796 (*1 *2 *3) (-12 (-5 *3 (-826)) (-5 *2 (-2 (|:| -1796 (-352)) (|:| -2883 (-1066)) (|:| |explanations| (-586 (-1066))))) (-5 *1 (-825)))) (-3600 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-706)) (-5 *6 (-586 (-586 (-289 *3)))) (-5 *7 (-1066)) (-5 *5 (-586 (-289 (-352)))) (-5 *3 (-352)) (-5 *2 (-958)) (-5 *1 (-825)))) (-3600 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-706)) (-5 *6 (-586 (-586 (-289 *3)))) (-5 *7 (-1066)) (-5 *8 (-201)) (-5 *5 (-586 (-289 (-352)))) (-5 *3 (-352)) (-5 *2 (-958)) (-5 *1 (-825)))) (-3600 (*1 *2 *3 *4) (-12 (-5 *3 (-826)) (-5 *4 (-981)) (-5 *2 (-958)) (-5 *1 (-825)))) (-3600 (*1 *2 *3) (-12 (-5 *3 (-826)) (-5 *2 (-958)) (-5 *1 (-825)))))
-(-10 -7 (-15 -3600 ((-958) (-826))) (-15 -3600 ((-958) (-826) (-981))) (-15 -3600 ((-958) (-352) (-352) (-352) (-352) (-706) (-706) (-586 (-289 (-352))) (-586 (-586 (-289 (-352)))) (-1066) (-201))) (-15 -3600 ((-958) (-352) (-352) (-352) (-352) (-706) (-706) (-586 (-289 (-352))) (-586 (-586 (-289 (-352)))) (-1066))) (-15 -1796 ((-2 (|:| -1796 (-352)) (|:| -2883 (-1066)) (|:| |explanations| (-586 (-1066)))) (-826))) (-15 -1796 ((-2 (|:| -1796 (-352)) (|:| -2883 (-1066)) (|:| |explanations| (-586 (-1066)))) (-826) (-981))))
-((-1414 (((-108) $ $) NIL)) (-1482 (((-2 (|:| |pde| (-586 (-289 (-201)))) (|:| |constraints| (-586 (-2 (|:| |start| (-201)) (|:| |finish| (-201)) (|:| |grid| (-706)) (|:| |boundaryType| (-520)) (|:| |dStart| (-626 (-201))) (|:| |dFinish| (-626 (-201)))))) (|:| |f| (-586 (-586 (-289 (-201))))) (|:| |st| (-1066)) (|:| |tol| (-201))) $) 10)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2188 (((-791) $) 12) (($ (-2 (|:| |pde| (-586 (-289 (-201)))) (|:| |constraints| (-586 (-2 (|:| |start| (-201)) (|:| |finish| (-201)) (|:| |grid| (-706)) (|:| |boundaryType| (-520)) (|:| |dStart| (-626 (-201))) (|:| |dFinish| (-626 (-201)))))) (|:| |f| (-586 (-586 (-289 (-201))))) (|:| |st| (-1066)) (|:| |tol| (-201)))) 9)) (-1530 (((-108) $ $) NIL)))
-(((-826) (-13 (-1012) (-10 -8 (-15 -2188 ($ (-2 (|:| |pde| (-586 (-289 (-201)))) (|:| |constraints| (-586 (-2 (|:| |start| (-201)) (|:| |finish| (-201)) (|:| |grid| (-706)) (|:| |boundaryType| (-520)) (|:| |dStart| (-626 (-201))) (|:| |dFinish| (-626 (-201)))))) (|:| |f| (-586 (-586 (-289 (-201))))) (|:| |st| (-1066)) (|:| |tol| (-201))))) (-15 -2188 ((-791) $)) (-15 -1482 ((-2 (|:| |pde| (-586 (-289 (-201)))) (|:| |constraints| (-586 (-2 (|:| |start| (-201)) (|:| |finish| (-201)) (|:| |grid| (-706)) (|:| |boundaryType| (-520)) (|:| |dStart| (-626 (-201))) (|:| |dFinish| (-626 (-201)))))) (|:| |f| (-586 (-586 (-289 (-201))))) (|:| |st| (-1066)) (|:| |tol| (-201))) $))))) (T -826))
-((-2188 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-826)))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-586 (-289 (-201)))) (|:| |constraints| (-586 (-2 (|:| |start| (-201)) (|:| |finish| (-201)) (|:| |grid| (-706)) (|:| |boundaryType| (-520)) (|:| |dStart| (-626 (-201))) (|:| |dFinish| (-626 (-201)))))) (|:| |f| (-586 (-586 (-289 (-201))))) (|:| |st| (-1066)) (|:| |tol| (-201)))) (-5 *1 (-826)))) (-1482 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-586 (-289 (-201)))) (|:| |constraints| (-586 (-2 (|:| |start| (-201)) (|:| |finish| (-201)) (|:| |grid| (-706)) (|:| |boundaryType| (-520)) (|:| |dStart| (-626 (-201))) (|:| |dFinish| (-626 (-201)))))) (|:| |f| (-586 (-586 (-289 (-201))))) (|:| |st| (-1066)) (|:| |tol| (-201)))) (-5 *1 (-826)))))
-(-13 (-1012) (-10 -8 (-15 -2188 ($ (-2 (|:| |pde| (-586 (-289 (-201)))) (|:| |constraints| (-586 (-2 (|:| |start| (-201)) (|:| |finish| (-201)) (|:| |grid| (-706)) (|:| |boundaryType| (-520)) (|:| |dStart| (-626 (-201))) (|:| |dFinish| (-626 (-201)))))) (|:| |f| (-586 (-586 (-289 (-201))))) (|:| |st| (-1066)) (|:| |tol| (-201))))) (-15 -2188 ((-791) $)) (-15 -1482 ((-2 (|:| |pde| (-586 (-289 (-201)))) (|:| |constraints| (-586 (-2 (|:| |start| (-201)) (|:| |finish| (-201)) (|:| |grid| (-706)) (|:| |boundaryType| (-520)) (|:| |dStart| (-626 (-201))) (|:| |dFinish| (-626 (-201)))))) (|:| |f| (-586 (-586 (-289 (-201))))) (|:| |st| (-1066)) (|:| |tol| (-201))) $))))
-((-2155 (($ $ |#2|) NIL) (($ $ (-586 |#2|)) 10) (($ $ |#2| (-706)) 12) (($ $ (-586 |#2|) (-586 (-706))) 15)) (-2211 (($ $ |#2|) 16) (($ $ (-586 |#2|)) 18) (($ $ |#2| (-706)) 19) (($ $ (-586 |#2|) (-586 (-706))) 21)))
-(((-827 |#1| |#2|) (-10 -8 (-15 -2211 (|#1| |#1| (-586 |#2|) (-586 (-706)))) (-15 -2211 (|#1| |#1| |#2| (-706))) (-15 -2211 (|#1| |#1| (-586 |#2|))) (-15 -2211 (|#1| |#1| |#2|)) (-15 -2155 (|#1| |#1| (-586 |#2|) (-586 (-706)))) (-15 -2155 (|#1| |#1| |#2| (-706))) (-15 -2155 (|#1| |#1| (-586 |#2|))) (-15 -2155 (|#1| |#1| |#2|))) (-828 |#2|) (-1012)) (T -827))
-NIL
-(-10 -8 (-15 -2211 (|#1| |#1| (-586 |#2|) (-586 (-706)))) (-15 -2211 (|#1| |#1| |#2| (-706))) (-15 -2211 (|#1| |#1| (-586 |#2|))) (-15 -2211 (|#1| |#1| |#2|)) (-15 -2155 (|#1| |#1| (-586 |#2|) (-586 (-706)))) (-15 -2155 (|#1| |#1| |#2| (-706))) (-15 -2155 (|#1| |#1| (-586 |#2|))) (-15 -2155 (|#1| |#1| |#2|)))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-1917 (((-3 $ "failed") $ $) 19)) (-3961 (($) 17 T CONST)) (-1540 (((-3 $ "failed") $) 34)) (-1537 (((-108) $) 31)) (-1239 (((-1066) $) 9)) (-4142 (((-1030) $) 10)) (-2155 (($ $ |#1|) 42) (($ $ (-586 |#1|)) 41) (($ $ |#1| (-706)) 40) (($ $ (-586 |#1|) (-586 (-706))) 39)) (-2188 (((-791) $) 11) (($ (-520)) 28)) (-3251 (((-706)) 29)) (-3504 (($ $ (-849)) 26) (($ $ (-706)) 33)) (-3560 (($) 18 T CONST)) (-3570 (($) 30 T CONST)) (-2211 (($ $ |#1|) 38) (($ $ (-586 |#1|)) 37) (($ $ |#1| (-706)) 36) (($ $ (-586 |#1|) (-586 (-706))) 35)) (-1530 (((-108) $ $) 6)) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-706)) 32)) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ $ $) 24)))
-(((-828 |#1|) (-1195) (-1012)) (T -828))
-((-2155 (*1 *1 *1 *2) (-12 (-4 *1 (-828 *2)) (-4 *2 (-1012)))) (-2155 (*1 *1 *1 *2) (-12 (-5 *2 (-586 *3)) (-4 *1 (-828 *3)) (-4 *3 (-1012)))) (-2155 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-706)) (-4 *1 (-828 *2)) (-4 *2 (-1012)))) (-2155 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-586 *4)) (-5 *3 (-586 (-706))) (-4 *1 (-828 *4)) (-4 *4 (-1012)))) (-2211 (*1 *1 *1 *2) (-12 (-4 *1 (-828 *2)) (-4 *2 (-1012)))) (-2211 (*1 *1 *1 *2) (-12 (-5 *2 (-586 *3)) (-4 *1 (-828 *3)) (-4 *3 (-1012)))) (-2211 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-706)) (-4 *1 (-828 *2)) (-4 *2 (-1012)))) (-2211 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-586 *4)) (-5 *3 (-586 (-706))) (-4 *1 (-828 *4)) (-4 *4 (-1012)))))
-(-13 (-969) (-10 -8 (-15 -2155 ($ $ |t#1|)) (-15 -2155 ($ $ (-586 |t#1|))) (-15 -2155 ($ $ |t#1| (-706))) (-15 -2155 ($ $ (-586 |t#1|) (-586 (-706)))) (-15 -2211 ($ $ |t#1|)) (-15 -2211 ($ $ (-586 |t#1|))) (-15 -2211 ($ $ |t#1| (-706))) (-15 -2211 ($ $ (-586 |t#1|) (-586 (-706))))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-560 (-791)) . T) ((-588 $) . T) ((-662) . T) ((-969) . T) ((-976) . T) ((-1024) . T) ((-1012) . T))
-((-1414 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-3429 ((|#1| $) 26)) (-2063 (((-108) $ (-706)) NIL)) (-2888 ((|#1| $ |#1|) NIL (|has| $ (-6 -4230)))) (-2478 (($ $ $) NIL (|has| $ (-6 -4230)))) (-3098 (($ $ $) NIL (|has| $ (-6 -4230)))) (-2377 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4230))) (($ $ "left" $) NIL (|has| $ (-6 -4230))) (($ $ "right" $) NIL (|has| $ (-6 -4230)))) (-3061 (($ $ (-586 $)) NIL (|has| $ (-6 -4230)))) (-3961 (($) NIL T CONST)) (-1924 (($ $) 25)) (-1795 (($ |#1|) 12) (($ $ $) 17)) (-3828 (((-586 |#1|) $) NIL (|has| $ (-6 -4229)))) (-3405 (((-586 $) $) NIL)) (-1885 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-3027 (((-108) $ (-706)) NIL)) (-3702 (((-586 |#1|) $) NIL (|has| $ (-6 -4229)))) (-2422 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-3830 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#1| |#1|) $) NIL)) (-1390 (((-108) $ (-706)) NIL)) (-1912 (($ $) 23)) (-1277 (((-586 |#1|) $) NIL)) (-1740 (((-108) $) 20)) (-1239 (((-1066) $) NIL (|has| |#1| (-1012)))) (-4142 (((-1030) $) NIL (|has| |#1| (-1012)))) (-4155 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 |#1|))) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-268 |#1|)) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-586 |#1|) (-586 |#1|)) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))) (-2533 (((-108) $ $) NIL)) (-4018 (((-108) $) NIL)) (-2238 (($) NIL)) (-2543 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3765 (((-520) $ $) NIL)) (-1975 (((-108) $) NIL)) (-4159 (((-706) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229))) (((-706) |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-2403 (($ $) NIL)) (-2188 (((-1105 |#1|) $) 9) (((-791) $) 29 (|has| |#1| (-560 (-791))))) (-2438 (((-586 $) $) NIL)) (-1639 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-1662 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-1530 (((-108) $ $) 21 (|has| |#1| (-1012)))) (-3474 (((-706) $) NIL (|has| $ (-6 -4229)))))
-(((-829 |#1|) (-13 (-115 |#1|) (-10 -8 (-15 -1795 ($ |#1|)) (-15 -1795 ($ $ $)) (-15 -2188 ((-1105 |#1|) $)))) (-1012)) (T -829))
-((-1795 (*1 *1 *2) (-12 (-5 *1 (-829 *2)) (-4 *2 (-1012)))) (-1795 (*1 *1 *1 *1) (-12 (-5 *1 (-829 *2)) (-4 *2 (-1012)))) (-2188 (*1 *2 *1) (-12 (-5 *2 (-1105 *3)) (-5 *1 (-829 *3)) (-4 *3 (-1012)))))
-(-13 (-115 |#1|) (-10 -8 (-15 -1795 ($ |#1|)) (-15 -1795 ($ $ $)) (-15 -2188 ((-1105 |#1|) $))))
-((-2409 ((|#2| (-1050 |#1| |#2|)) 41)))
-(((-830 |#1| |#2|) (-10 -7 (-15 -2409 (|#2| (-1050 |#1| |#2|)))) (-849) (-13 (-969) (-10 -7 (-6 (-4231 "*"))))) (T -830))
-((-2409 (*1 *2 *3) (-12 (-5 *3 (-1050 *4 *2)) (-14 *4 (-849)) (-4 *2 (-13 (-969) (-10 -7 (-6 (-4231 "*"))))) (-5 *1 (-830 *4 *2)))))
-(-10 -7 (-15 -2409 (|#2| (-1050 |#1| |#2|))))
-((-1414 (((-108) $ $) 7)) (-3961 (($) 20 T CONST)) (-1540 (((-3 $ "failed") $) 16)) (-3689 (((-1014 |#1|) $ |#1|) 35)) (-1537 (((-108) $) 19)) (-2809 (($ $ $) 33 (-3700 (|has| |#1| (-783)) (|has| |#1| (-341))))) (-2446 (($ $ $) 32 (-3700 (|has| |#1| (-783)) (|has| |#1| (-341))))) (-1239 (((-1066) $) 9)) (-3093 (($ $) 27)) (-4142 (((-1030) $) 10)) (-2286 ((|#1| $ |#1|) 37)) (-2543 ((|#1| $ |#1|) 36)) (-2672 (($ (-586 (-586 |#1|))) 38)) (-3445 (($ (-586 |#1|)) 39)) (-2945 (($ $ $) 23)) (-3607 (($ $ $) 22)) (-2188 (((-791) $) 11)) (-3504 (($ $ (-849)) 13) (($ $ (-706)) 17) (($ $ (-520)) 24)) (-3570 (($) 21 T CONST)) (-1573 (((-108) $ $) 30 (-3700 (|has| |#1| (-783)) (|has| |#1| (-341))))) (-1557 (((-108) $ $) 29 (-3700 (|has| |#1| (-783)) (|has| |#1| (-341))))) (-1530 (((-108) $ $) 6)) (-1565 (((-108) $ $) 31 (-3700 (|has| |#1| (-783)) (|has| |#1| (-341))))) (-1548 (((-108) $ $) 34)) (-1619 (($ $ $) 26)) (** (($ $ (-849)) 14) (($ $ (-706)) 18) (($ $ (-520)) 25)) (* (($ $ $) 15)))
-(((-831 |#1|) (-1195) (-1012)) (T -831))
-((-3445 (*1 *1 *2) (-12 (-5 *2 (-586 *3)) (-4 *3 (-1012)) (-4 *1 (-831 *3)))) (-2672 (*1 *1 *2) (-12 (-5 *2 (-586 (-586 *3))) (-4 *3 (-1012)) (-4 *1 (-831 *3)))) (-2286 (*1 *2 *1 *2) (-12 (-4 *1 (-831 *2)) (-4 *2 (-1012)))) (-2543 (*1 *2 *1 *2) (-12 (-4 *1 (-831 *2)) (-4 *2 (-1012)))) (-3689 (*1 *2 *1 *3) (-12 (-4 *1 (-831 *3)) (-4 *3 (-1012)) (-5 *2 (-1014 *3)))) (-1548 (*1 *2 *1 *1) (-12 (-4 *1 (-831 *3)) (-4 *3 (-1012)) (-5 *2 (-108)))))
-(-13 (-445) (-10 -8 (-15 -3445 ($ (-586 |t#1|))) (-15 -2672 ($ (-586 (-586 |t#1|)))) (-15 -2286 (|t#1| $ |t#1|)) (-15 -2543 (|t#1| $ |t#1|)) (-15 -3689 ((-1014 |t#1|) $ |t#1|)) (-15 -1548 ((-108) $ $)) (IF (|has| |t#1| (-783)) (-6 (-783)) |%noBranch|) (IF (|has| |t#1| (-341)) (-6 (-783)) |%noBranch|)))
-(((-97) . T) ((-560 (-791)) . T) ((-445) . T) ((-662) . T) ((-783) -3700 (|has| |#1| (-783)) (|has| |#1| (-341))) ((-1024) . T) ((-1012) . T))
-((-1414 (((-108) $ $) NIL)) (-2687 (((-586 (-586 (-706))) $) 108)) (-2375 (((-586 (-706)) (-833 |#1|) $) 130)) (-2096 (((-586 (-706)) (-833 |#1|) $) 131)) (-1519 (((-586 (-833 |#1|)) $) 98)) (-3249 (((-833 |#1|) $ (-520)) 103) (((-833 |#1|) $) 104)) (-2887 (($ (-586 (-833 |#1|))) 110)) (-3989 (((-706) $) 105)) (-2041 (((-1014 (-1014 |#1|)) $) 128)) (-3689 (((-1014 |#1|) $ |#1|) 121) (((-1014 (-1014 |#1|)) $ (-1014 |#1|)) 139) (((-1014 (-586 |#1|)) $ (-586 |#1|)) 142)) (-1279 (((-1014 |#1|) $) 101)) (-2422 (((-108) (-833 |#1|) $) 92)) (-1239 (((-1066) $) NIL)) (-3413 (((-1169) $) 95) (((-1169) $ (-520) (-520)) 143)) (-4142 (((-1030) $) NIL)) (-1664 (((-586 (-833 |#1|)) $) 96)) (-2543 (((-833 |#1|) $ (-706)) 99)) (-2528 (((-706) $) 106)) (-2188 (((-791) $) 119) (((-586 (-833 |#1|)) $) 22) (($ (-586 (-833 |#1|))) 109)) (-3349 (((-586 |#1|) $) 107)) (-1530 (((-108) $ $) 136)) (-1565 (((-108) $ $) 134)) (-1548 (((-108) $ $) 133)))
-(((-832 |#1|) (-13 (-1012) (-10 -8 (-15 -2188 ((-586 (-833 |#1|)) $)) (-15 -1664 ((-586 (-833 |#1|)) $)) (-15 -2543 ((-833 |#1|) $ (-706))) (-15 -3249 ((-833 |#1|) $ (-520))) (-15 -3249 ((-833 |#1|) $)) (-15 -3989 ((-706) $)) (-15 -2528 ((-706) $)) (-15 -3349 ((-586 |#1|) $)) (-15 -1519 ((-586 (-833 |#1|)) $)) (-15 -2687 ((-586 (-586 (-706))) $)) (-15 -2188 ($ (-586 (-833 |#1|)))) (-15 -2887 ($ (-586 (-833 |#1|)))) (-15 -3689 ((-1014 |#1|) $ |#1|)) (-15 -2041 ((-1014 (-1014 |#1|)) $)) (-15 -3689 ((-1014 (-1014 |#1|)) $ (-1014 |#1|))) (-15 -3689 ((-1014 (-586 |#1|)) $ (-586 |#1|))) (-15 -2422 ((-108) (-833 |#1|) $)) (-15 -2375 ((-586 (-706)) (-833 |#1|) $)) (-15 -2096 ((-586 (-706)) (-833 |#1|) $)) (-15 -1279 ((-1014 |#1|) $)) (-15 -1548 ((-108) $ $)) (-15 -1565 ((-108) $ $)) (-15 -3413 ((-1169) $)) (-15 -3413 ((-1169) $ (-520) (-520))))) (-1012)) (T -832))
-((-2188 (*1 *2 *1) (-12 (-5 *2 (-586 (-833 *3))) (-5 *1 (-832 *3)) (-4 *3 (-1012)))) (-1664 (*1 *2 *1) (-12 (-5 *2 (-586 (-833 *3))) (-5 *1 (-832 *3)) (-4 *3 (-1012)))) (-2543 (*1 *2 *1 *3) (-12 (-5 *3 (-706)) (-5 *2 (-833 *4)) (-5 *1 (-832 *4)) (-4 *4 (-1012)))) (-3249 (*1 *2 *1 *3) (-12 (-5 *3 (-520)) (-5 *2 (-833 *4)) (-5 *1 (-832 *4)) (-4 *4 (-1012)))) (-3249 (*1 *2 *1) (-12 (-5 *2 (-833 *3)) (-5 *1 (-832 *3)) (-4 *3 (-1012)))) (-3989 (*1 *2 *1) (-12 (-5 *2 (-706)) (-5 *1 (-832 *3)) (-4 *3 (-1012)))) (-2528 (*1 *2 *1) (-12 (-5 *2 (-706)) (-5 *1 (-832 *3)) (-4 *3 (-1012)))) (-3349 (*1 *2 *1) (-12 (-5 *2 (-586 *3)) (-5 *1 (-832 *3)) (-4 *3 (-1012)))) (-1519 (*1 *2 *1) (-12 (-5 *2 (-586 (-833 *3))) (-5 *1 (-832 *3)) (-4 *3 (-1012)))) (-2687 (*1 *2 *1) (-12 (-5 *2 (-586 (-586 (-706)))) (-5 *1 (-832 *3)) (-4 *3 (-1012)))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-586 (-833 *3))) (-4 *3 (-1012)) (-5 *1 (-832 *3)))) (-2887 (*1 *1 *2) (-12 (-5 *2 (-586 (-833 *3))) (-4 *3 (-1012)) (-5 *1 (-832 *3)))) (-3689 (*1 *2 *1 *3) (-12 (-5 *2 (-1014 *3)) (-5 *1 (-832 *3)) (-4 *3 (-1012)))) (-2041 (*1 *2 *1) (-12 (-5 *2 (-1014 (-1014 *3))) (-5 *1 (-832 *3)) (-4 *3 (-1012)))) (-3689 (*1 *2 *1 *3) (-12 (-4 *4 (-1012)) (-5 *2 (-1014 (-1014 *4))) (-5 *1 (-832 *4)) (-5 *3 (-1014 *4)))) (-3689 (*1 *2 *1 *3) (-12 (-4 *4 (-1012)) (-5 *2 (-1014 (-586 *4))) (-5 *1 (-832 *4)) (-5 *3 (-586 *4)))) (-2422 (*1 *2 *3 *1) (-12 (-5 *3 (-833 *4)) (-4 *4 (-1012)) (-5 *2 (-108)) (-5 *1 (-832 *4)))) (-2375 (*1 *2 *3 *1) (-12 (-5 *3 (-833 *4)) (-4 *4 (-1012)) (-5 *2 (-586 (-706))) (-5 *1 (-832 *4)))) (-2096 (*1 *2 *3 *1) (-12 (-5 *3 (-833 *4)) (-4 *4 (-1012)) (-5 *2 (-586 (-706))) (-5 *1 (-832 *4)))) (-1279 (*1 *2 *1) (-12 (-5 *2 (-1014 *3)) (-5 *1 (-832 *3)) (-4 *3 (-1012)))) (-1548 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-832 *3)) (-4 *3 (-1012)))) (-1565 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-832 *3)) (-4 *3 (-1012)))) (-3413 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-832 *3)) (-4 *3 (-1012)))) (-3413 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-520)) (-5 *2 (-1169)) (-5 *1 (-832 *4)) (-4 *4 (-1012)))))
-(-13 (-1012) (-10 -8 (-15 -2188 ((-586 (-833 |#1|)) $)) (-15 -1664 ((-586 (-833 |#1|)) $)) (-15 -2543 ((-833 |#1|) $ (-706))) (-15 -3249 ((-833 |#1|) $ (-520))) (-15 -3249 ((-833 |#1|) $)) (-15 -3989 ((-706) $)) (-15 -2528 ((-706) $)) (-15 -3349 ((-586 |#1|) $)) (-15 -1519 ((-586 (-833 |#1|)) $)) (-15 -2687 ((-586 (-586 (-706))) $)) (-15 -2188 ($ (-586 (-833 |#1|)))) (-15 -2887 ($ (-586 (-833 |#1|)))) (-15 -3689 ((-1014 |#1|) $ |#1|)) (-15 -2041 ((-1014 (-1014 |#1|)) $)) (-15 -3689 ((-1014 (-1014 |#1|)) $ (-1014 |#1|))) (-15 -3689 ((-1014 (-586 |#1|)) $ (-586 |#1|))) (-15 -2422 ((-108) (-833 |#1|) $)) (-15 -2375 ((-586 (-706)) (-833 |#1|) $)) (-15 -2096 ((-586 (-706)) (-833 |#1|) $)) (-15 -1279 ((-1014 |#1|) $)) (-15 -1548 ((-108) $ $)) (-15 -1565 ((-108) $ $)) (-15 -3413 ((-1169) $)) (-15 -3413 ((-1169) $ (-520) (-520)))))
-((-1414 (((-108) $ $) NIL)) (-3210 (((-586 $) (-586 $)) 77)) (-2804 (((-520) $) 60)) (-3961 (($) NIL T CONST)) (-1540 (((-3 $ "failed") $) NIL)) (-3989 (((-706) $) 58)) (-3689 (((-1014 |#1|) $ |#1|) 49)) (-1537 (((-108) $) NIL)) (-2777 (((-108) $) 63)) (-3788 (((-706) $) 61)) (-1279 (((-1014 |#1|) $) 42)) (-2809 (($ $ $) NIL (-3700 (|has| |#1| (-341)) (|has| |#1| (-783))))) (-2446 (($ $ $) NIL (-3700 (|has| |#1| (-341)) (|has| |#1| (-783))))) (-2295 (((-2 (|:| |preimage| (-586 |#1|)) (|:| |image| (-586 |#1|))) $) 36)) (-1239 (((-1066) $) NIL)) (-3093 (($ $) 93)) (-4142 (((-1030) $) NIL)) (-1797 (((-1014 |#1|) $) 99 (|has| |#1| (-341)))) (-3615 (((-108) $) 59)) (-2286 ((|#1| $ |#1|) 47)) (-2543 ((|#1| $ |#1|) 94)) (-2528 (((-706) $) 44)) (-2672 (($ (-586 (-586 |#1|))) 85)) (-1602 (((-896) $) 53)) (-3445 (($ (-586 |#1|)) 21)) (-2945 (($ $ $) NIL)) (-3607 (($ $ $) NIL)) (-1334 (($ (-586 (-586 |#1|))) 39)) (-4103 (($ (-586 (-586 |#1|))) 88)) (-2346 (($ (-586 |#1|)) 96)) (-2188 (((-791) $) 84) (($ (-586 (-586 |#1|))) 66) (($ (-586 |#1|)) 67)) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL)) (-3570 (($) 16 T CONST)) (-1573 (((-108) $ $) NIL (-3700 (|has| |#1| (-341)) (|has| |#1| (-783))))) (-1557 (((-108) $ $) NIL (-3700 (|has| |#1| (-341)) (|has| |#1| (-783))))) (-1530 (((-108) $ $) 45)) (-1565 (((-108) $ $) NIL (-3700 (|has| |#1| (-341)) (|has| |#1| (-783))))) (-1548 (((-108) $ $) 65)) (-1619 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL)) (* (($ $ $) 22)))
-(((-833 |#1|) (-13 (-831 |#1|) (-10 -8 (-15 -2295 ((-2 (|:| |preimage| (-586 |#1|)) (|:| |image| (-586 |#1|))) $)) (-15 -1334 ($ (-586 (-586 |#1|)))) (-15 -2188 ($ (-586 (-586 |#1|)))) (-15 -2188 ($ (-586 |#1|))) (-15 -4103 ($ (-586 (-586 |#1|)))) (-15 -2528 ((-706) $)) (-15 -1279 ((-1014 |#1|) $)) (-15 -1602 ((-896) $)) (-15 -3989 ((-706) $)) (-15 -3788 ((-706) $)) (-15 -2804 ((-520) $)) (-15 -3615 ((-108) $)) (-15 -2777 ((-108) $)) (-15 -3210 ((-586 $) (-586 $))) (IF (|has| |#1| (-341)) (-15 -1797 ((-1014 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-505)) (-15 -2346 ($ (-586 |#1|))) (IF (|has| |#1| (-341)) (-15 -2346 ($ (-586 |#1|))) |%noBranch|)))) (-1012)) (T -833))
-((-2295 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-586 *3)) (|:| |image| (-586 *3)))) (-5 *1 (-833 *3)) (-4 *3 (-1012)))) (-1334 (*1 *1 *2) (-12 (-5 *2 (-586 (-586 *3))) (-4 *3 (-1012)) (-5 *1 (-833 *3)))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-586 (-586 *3))) (-4 *3 (-1012)) (-5 *1 (-833 *3)))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-586 *3)) (-4 *3 (-1012)) (-5 *1 (-833 *3)))) (-4103 (*1 *1 *2) (-12 (-5 *2 (-586 (-586 *3))) (-4 *3 (-1012)) (-5 *1 (-833 *3)))) (-2528 (*1 *2 *1) (-12 (-5 *2 (-706)) (-5 *1 (-833 *3)) (-4 *3 (-1012)))) (-1279 (*1 *2 *1) (-12 (-5 *2 (-1014 *3)) (-5 *1 (-833 *3)) (-4 *3 (-1012)))) (-1602 (*1 *2 *1) (-12 (-5 *2 (-896)) (-5 *1 (-833 *3)) (-4 *3 (-1012)))) (-3989 (*1 *2 *1) (-12 (-5 *2 (-706)) (-5 *1 (-833 *3)) (-4 *3 (-1012)))) (-3788 (*1 *2 *1) (-12 (-5 *2 (-706)) (-5 *1 (-833 *3)) (-4 *3 (-1012)))) (-2804 (*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-833 *3)) (-4 *3 (-1012)))) (-3615 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-833 *3)) (-4 *3 (-1012)))) (-2777 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-833 *3)) (-4 *3 (-1012)))) (-3210 (*1 *2 *2) (-12 (-5 *2 (-586 (-833 *3))) (-5 *1 (-833 *3)) (-4 *3 (-1012)))) (-1797 (*1 *2 *1) (-12 (-5 *2 (-1014 *3)) (-5 *1 (-833 *3)) (-4 *3 (-341)) (-4 *3 (-1012)))) (-2346 (*1 *1 *2) (-12 (-5 *2 (-586 *3)) (-4 *3 (-1012)) (-5 *1 (-833 *3)))))
-(-13 (-831 |#1|) (-10 -8 (-15 -2295 ((-2 (|:| |preimage| (-586 |#1|)) (|:| |image| (-586 |#1|))) $)) (-15 -1334 ($ (-586 (-586 |#1|)))) (-15 -2188 ($ (-586 (-586 |#1|)))) (-15 -2188 ($ (-586 |#1|))) (-15 -4103 ($ (-586 (-586 |#1|)))) (-15 -2528 ((-706) $)) (-15 -1279 ((-1014 |#1|) $)) (-15 -1602 ((-896) $)) (-15 -3989 ((-706) $)) (-15 -3788 ((-706) $)) (-15 -2804 ((-520) $)) (-15 -3615 ((-108) $)) (-15 -2777 ((-108) $)) (-15 -3210 ((-586 $) (-586 $))) (IF (|has| |#1| (-341)) (-15 -1797 ((-1014 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-505)) (-15 -2346 ($ (-586 |#1|))) (IF (|has| |#1| (-341)) (-15 -2346 ($ (-586 |#1|))) |%noBranch|))))
-((-3946 (((-3 (-586 (-1079 |#4|)) "failed") (-586 (-1079 |#4|)) (-1079 |#4|)) 128)) (-1210 ((|#1|) 76)) (-1746 (((-391 (-1079 |#4|)) (-1079 |#4|)) 137)) (-2958 (((-391 (-1079 |#4|)) (-586 |#3|) (-1079 |#4|)) 68)) (-1347 (((-391 (-1079 |#4|)) (-1079 |#4|)) 147)) (-2808 (((-3 (-586 (-1079 |#4|)) "failed") (-586 (-1079 |#4|)) (-1079 |#4|) |#3|) 92)))
-(((-834 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3946 ((-3 (-586 (-1079 |#4|)) "failed") (-586 (-1079 |#4|)) (-1079 |#4|))) (-15 -1347 ((-391 (-1079 |#4|)) (-1079 |#4|))) (-15 -1746 ((-391 (-1079 |#4|)) (-1079 |#4|))) (-15 -1210 (|#1|)) (-15 -2808 ((-3 (-586 (-1079 |#4|)) "failed") (-586 (-1079 |#4|)) (-1079 |#4|) |#3|)) (-15 -2958 ((-391 (-1079 |#4|)) (-586 |#3|) (-1079 |#4|)))) (-837) (-728) (-783) (-877 |#1| |#2| |#3|)) (T -834))
-((-2958 (*1 *2 *3 *4) (-12 (-5 *3 (-586 *7)) (-4 *7 (-783)) (-4 *5 (-837)) (-4 *6 (-728)) (-4 *8 (-877 *5 *6 *7)) (-5 *2 (-391 (-1079 *8))) (-5 *1 (-834 *5 *6 *7 *8)) (-5 *4 (-1079 *8)))) (-2808 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-586 (-1079 *7))) (-5 *3 (-1079 *7)) (-4 *7 (-877 *5 *6 *4)) (-4 *5 (-837)) (-4 *6 (-728)) (-4 *4 (-783)) (-5 *1 (-834 *5 *6 *4 *7)))) (-1210 (*1 *2) (-12 (-4 *3 (-728)) (-4 *4 (-783)) (-4 *2 (-837)) (-5 *1 (-834 *2 *3 *4 *5)) (-4 *5 (-877 *2 *3 *4)))) (-1746 (*1 *2 *3) (-12 (-4 *4 (-837)) (-4 *5 (-728)) (-4 *6 (-783)) (-4 *7 (-877 *4 *5 *6)) (-5 *2 (-391 (-1079 *7))) (-5 *1 (-834 *4 *5 *6 *7)) (-5 *3 (-1079 *7)))) (-1347 (*1 *2 *3) (-12 (-4 *4 (-837)) (-4 *5 (-728)) (-4 *6 (-783)) (-4 *7 (-877 *4 *5 *6)) (-5 *2 (-391 (-1079 *7))) (-5 *1 (-834 *4 *5 *6 *7)) (-5 *3 (-1079 *7)))) (-3946 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-586 (-1079 *7))) (-5 *3 (-1079 *7)) (-4 *7 (-877 *4 *5 *6)) (-4 *4 (-837)) (-4 *5 (-728)) (-4 *6 (-783)) (-5 *1 (-834 *4 *5 *6 *7)))))
-(-10 -7 (-15 -3946 ((-3 (-586 (-1079 |#4|)) "failed") (-586 (-1079 |#4|)) (-1079 |#4|))) (-15 -1347 ((-391 (-1079 |#4|)) (-1079 |#4|))) (-15 -1746 ((-391 (-1079 |#4|)) (-1079 |#4|))) (-15 -1210 (|#1|)) (-15 -2808 ((-3 (-586 (-1079 |#4|)) "failed") (-586 (-1079 |#4|)) (-1079 |#4|) |#3|)) (-15 -2958 ((-391 (-1079 |#4|)) (-586 |#3|) (-1079 |#4|))))
-((-3946 (((-3 (-586 (-1079 |#2|)) "failed") (-586 (-1079 |#2|)) (-1079 |#2|)) 36)) (-1210 ((|#1|) 54)) (-1746 (((-391 (-1079 |#2|)) (-1079 |#2|)) 102)) (-2958 (((-391 (-1079 |#2|)) (-1079 |#2|)) 89)) (-1347 (((-391 (-1079 |#2|)) (-1079 |#2|)) 113)))
-(((-835 |#1| |#2|) (-10 -7 (-15 -3946 ((-3 (-586 (-1079 |#2|)) "failed") (-586 (-1079 |#2|)) (-1079 |#2|))) (-15 -1347 ((-391 (-1079 |#2|)) (-1079 |#2|))) (-15 -1746 ((-391 (-1079 |#2|)) (-1079 |#2|))) (-15 -1210 (|#1|)) (-15 -2958 ((-391 (-1079 |#2|)) (-1079 |#2|)))) (-837) (-1140 |#1|)) (T -835))
-((-2958 (*1 *2 *3) (-12 (-4 *4 (-837)) (-4 *5 (-1140 *4)) (-5 *2 (-391 (-1079 *5))) (-5 *1 (-835 *4 *5)) (-5 *3 (-1079 *5)))) (-1210 (*1 *2) (-12 (-4 *2 (-837)) (-5 *1 (-835 *2 *3)) (-4 *3 (-1140 *2)))) (-1746 (*1 *2 *3) (-12 (-4 *4 (-837)) (-4 *5 (-1140 *4)) (-5 *2 (-391 (-1079 *5))) (-5 *1 (-835 *4 *5)) (-5 *3 (-1079 *5)))) (-1347 (*1 *2 *3) (-12 (-4 *4 (-837)) (-4 *5 (-1140 *4)) (-5 *2 (-391 (-1079 *5))) (-5 *1 (-835 *4 *5)) (-5 *3 (-1079 *5)))) (-3946 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-586 (-1079 *5))) (-5 *3 (-1079 *5)) (-4 *5 (-1140 *4)) (-4 *4 (-837)) (-5 *1 (-835 *4 *5)))))
-(-10 -7 (-15 -3946 ((-3 (-586 (-1079 |#2|)) "failed") (-586 (-1079 |#2|)) (-1079 |#2|))) (-15 -1347 ((-391 (-1079 |#2|)) (-1079 |#2|))) (-15 -1746 ((-391 (-1079 |#2|)) (-1079 |#2|))) (-15 -1210 (|#1|)) (-15 -2958 ((-391 (-1079 |#2|)) (-1079 |#2|))))
-((-3481 (((-3 (-586 (-1079 $)) "failed") (-586 (-1079 $)) (-1079 $)) 39)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) 18)) (-3796 (((-3 $ "failed") $) 33)))
-(((-836 |#1|) (-10 -8 (-15 -3796 ((-3 |#1| "failed") |#1|)) (-15 -3481 ((-3 (-586 (-1079 |#1|)) "failed") (-586 (-1079 |#1|)) (-1079 |#1|))) (-15 -3653 ((-1079 |#1|) (-1079 |#1|) (-1079 |#1|)))) (-837)) (T -836))
-NIL
-(-10 -8 (-15 -3796 ((-3 |#1| "failed") |#1|)) (-15 -3481 ((-3 (-586 (-1079 |#1|)) "failed") (-586 (-1079 |#1|)) (-1079 |#1|))) (-15 -3653 ((-1079 |#1|) (-1079 |#1|) (-1079 |#1|))))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) 41)) (-2583 (($ $) 40)) (-1671 (((-108) $) 38)) (-1917 (((-3 $ "failed") $ $) 19)) (-4119 (((-391 (-1079 $)) (-1079 $)) 60)) (-3024 (($ $) 51)) (-1507 (((-391 $) $) 52)) (-3481 (((-3 (-586 (-1079 $)) "failed") (-586 (-1079 $)) (-1079 $)) 57)) (-3961 (($) 17 T CONST)) (-1540 (((-3 $ "failed") $) 34)) (-2036 (((-108) $) 53)) (-1537 (((-108) $) 31)) (-2222 (($ $ $) 46) (($ (-586 $)) 45)) (-1239 (((-1066) $) 9)) (-4142 (((-1030) $) 10)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) 44)) (-2257 (($ $ $) 48) (($ (-586 $)) 47)) (-4133 (((-391 (-1079 $)) (-1079 $)) 58)) (-2017 (((-391 (-1079 $)) (-1079 $)) 59)) (-1916 (((-391 $) $) 50)) (-2230 (((-3 $ "failed") $ $) 42)) (-3784 (((-3 (-1164 $) "failed") (-626 $)) 56 (|has| $ (-133)))) (-2188 (((-791) $) 11) (($ (-520)) 28) (($ $) 43)) (-3796 (((-3 $ "failed") $) 55 (|has| $ (-133)))) (-3251 (((-706)) 29)) (-2559 (((-108) $ $) 39)) (-3504 (($ $ (-849)) 26) (($ $ (-706)) 33)) (-3560 (($) 18 T CONST)) (-3570 (($) 30 T CONST)) (-1530 (((-108) $ $) 6)) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-706)) 32)) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ $ $) 24)))
-(((-837) (-1195)) (T -837))
-((-3653 (*1 *2 *2 *2) (-12 (-5 *2 (-1079 *1)) (-4 *1 (-837)))) (-4119 (*1 *2 *3) (-12 (-4 *1 (-837)) (-5 *2 (-391 (-1079 *1))) (-5 *3 (-1079 *1)))) (-2017 (*1 *2 *3) (-12 (-4 *1 (-837)) (-5 *2 (-391 (-1079 *1))) (-5 *3 (-1079 *1)))) (-4133 (*1 *2 *3) (-12 (-4 *1 (-837)) (-5 *2 (-391 (-1079 *1))) (-5 *3 (-1079 *1)))) (-3481 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-586 (-1079 *1))) (-5 *3 (-1079 *1)) (-4 *1 (-837)))) (-3784 (*1 *2 *3) (|partial| -12 (-5 *3 (-626 *1)) (-4 *1 (-133)) (-4 *1 (-837)) (-5 *2 (-1164 *1)))) (-3796 (*1 *1 *1) (|partial| -12 (-4 *1 (-133)) (-4 *1 (-837)))))
-(-13 (-1122) (-10 -8 (-15 -4119 ((-391 (-1079 $)) (-1079 $))) (-15 -2017 ((-391 (-1079 $)) (-1079 $))) (-15 -4133 ((-391 (-1079 $)) (-1079 $))) (-15 -3653 ((-1079 $) (-1079 $) (-1079 $))) (-15 -3481 ((-3 (-586 (-1079 $)) "failed") (-586 (-1079 $)) (-1079 $))) (IF (|has| $ (-133)) (PROGN (-15 -3784 ((-3 (-1164 $) "failed") (-626 $))) (-15 -3796 ((-3 $ "failed") $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-560 (-791)) . T) ((-157) . T) ((-264) . T) ((-424) . T) ((-512) . T) ((-588 $) . T) ((-653 $) . T) ((-662) . T) ((-975 $) . T) ((-969) . T) ((-976) . T) ((-1024) . T) ((-1012) . T) ((-1122) . T))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) NIL)) (-2583 (($ $) NIL)) (-1671 (((-108) $) NIL)) (-3412 (((-108) $) NIL)) (-2668 (((-706)) NIL)) (-1864 (($ $ (-849)) NIL (|has| $ (-341))) (($ $) NIL)) (-1891 (((-1092 (-849) (-706)) (-520)) NIL)) (-1917 (((-3 $ "failed") $ $) NIL)) (-3024 (($ $) NIL)) (-1507 (((-391 $) $) NIL)) (-1327 (((-108) $ $) NIL)) (-1628 (((-706)) NIL)) (-3961 (($) NIL T CONST)) (-1296 (((-3 $ "failed") $) NIL)) (-1482 (($ $) NIL)) (-3705 (($ (-1164 $)) NIL)) (-2654 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-2276 (($ $ $) NIL)) (-1540 (((-3 $ "failed") $) NIL)) (-3249 (($) NIL)) (-2253 (($ $ $) NIL)) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) NIL)) (-2961 (($) NIL)) (-1855 (((-108) $) NIL)) (-1346 (($ $) NIL) (($ $ (-706)) NIL)) (-2036 (((-108) $) NIL)) (-3989 (((-769 (-849)) $) NIL) (((-849) $) NIL)) (-1537 (((-108) $) NIL)) (-2645 (($) NIL (|has| $ (-341)))) (-2740 (((-108) $) NIL (|has| $ (-341)))) (-1434 (($ $ (-849)) NIL (|has| $ (-341))) (($ $) NIL)) (-1394 (((-3 $ "failed") $) NIL)) (-3188 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-2034 (((-1079 $) $ (-849)) NIL (|has| $ (-341))) (((-1079 $) $) NIL)) (-3040 (((-849) $) NIL)) (-3840 (((-1079 $) $) NIL (|has| $ (-341)))) (-1400 (((-3 (-1079 $) "failed") $ $) NIL (|has| $ (-341))) (((-1079 $) $) NIL (|has| $ (-341)))) (-3284 (($ $ (-1079 $)) NIL (|has| $ (-341)))) (-2222 (($ $ $) NIL) (($ (-586 $)) NIL)) (-1239 (((-1066) $) NIL)) (-3093 (($ $) NIL)) (-3794 (($) NIL T CONST)) (-2716 (($ (-849)) NIL)) (-3304 (((-108) $) NIL)) (-4142 (((-1030) $) NIL)) (-1382 (($) NIL (|has| $ (-341)))) (-3653 (((-1079 $) (-1079 $) (-1079 $)) NIL)) (-2257 (($ $ $) NIL) (($ (-586 $)) NIL)) (-1517 (((-586 (-2 (|:| -1916 (-520)) (|:| -2647 (-520))))) NIL)) (-1916 (((-391 $) $) NIL)) (-2206 (((-849)) NIL) (((-769 (-849))) NIL)) (-1283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2230 (((-3 $ "failed") $ $) NIL)) (-2608 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-3704 (((-706) $) NIL)) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) NIL)) (-2062 (((-3 (-706) "failed") $ $) NIL) (((-706) $) NIL)) (-1556 (((-126)) NIL)) (-2155 (($ $ (-706)) NIL) (($ $) NIL)) (-2528 (((-849) $) NIL) (((-769 (-849)) $) NIL)) (-3484 (((-1079 $)) NIL)) (-3864 (($) NIL)) (-3642 (($) NIL (|has| $ (-341)))) (-3790 (((-626 $) (-1164 $)) NIL) (((-1164 $) $) NIL)) (-1429 (((-520) $) NIL)) (-3784 (((-3 (-1164 $) "failed") (-626 $)) NIL)) (-2188 (((-791) $) NIL) (($ (-520)) NIL) (($ $) NIL) (($ (-380 (-520))) NIL)) (-3796 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-3251 (((-706)) NIL)) (-1831 (((-1164 $) (-849)) NIL) (((-1164 $)) NIL)) (-2559 (((-108) $ $) NIL)) (-3718 (((-108) $) NIL)) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL)) (-3560 (($) NIL T CONST)) (-3570 (($) NIL T CONST)) (-3751 (($ $ (-706)) NIL (|has| $ (-341))) (($ $) NIL (|has| $ (-341)))) (-2211 (($ $ (-706)) NIL) (($ $) NIL)) (-1530 (((-108) $ $) NIL)) (-1619 (($ $ $) NIL)) (-1611 (($ $) NIL) (($ $ $) NIL)) (-1601 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) NIL) (($ $ (-380 (-520))) NIL) (($ (-380 (-520)) $) NIL)))
-(((-838 |#1|) (-13 (-322) (-302 $) (-561 (-520))) (-849)) (T -838))
-NIL
-(-13 (-322) (-302 $) (-561 (-520)))
-((-3677 (((-3 (-2 (|:| -3989 (-706)) (|:| -2092 |#5|)) "failed") (-309 |#2| |#3| |#4| |#5|)) 76)) (-1823 (((-108) (-309 |#2| |#3| |#4| |#5|)) 16)) (-3989 (((-3 (-706) "failed") (-309 |#2| |#3| |#4| |#5|)) 14)))
-(((-839 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3989 ((-3 (-706) "failed") (-309 |#2| |#3| |#4| |#5|))) (-15 -1823 ((-108) (-309 |#2| |#3| |#4| |#5|))) (-15 -3677 ((-3 (-2 (|:| -3989 (-706)) (|:| -2092 |#5|)) "failed") (-309 |#2| |#3| |#4| |#5|)))) (-13 (-783) (-512) (-960 (-520))) (-403 |#1|) (-1140 |#2|) (-1140 (-380 |#3|)) (-315 |#2| |#3| |#4|)) (T -839))
-((-3677 (*1 *2 *3) (|partial| -12 (-5 *3 (-309 *5 *6 *7 *8)) (-4 *5 (-403 *4)) (-4 *6 (-1140 *5)) (-4 *7 (-1140 (-380 *6))) (-4 *8 (-315 *5 *6 *7)) (-4 *4 (-13 (-783) (-512) (-960 (-520)))) (-5 *2 (-2 (|:| -3989 (-706)) (|:| -2092 *8))) (-5 *1 (-839 *4 *5 *6 *7 *8)))) (-1823 (*1 *2 *3) (-12 (-5 *3 (-309 *5 *6 *7 *8)) (-4 *5 (-403 *4)) (-4 *6 (-1140 *5)) (-4 *7 (-1140 (-380 *6))) (-4 *8 (-315 *5 *6 *7)) (-4 *4 (-13 (-783) (-512) (-960 (-520)))) (-5 *2 (-108)) (-5 *1 (-839 *4 *5 *6 *7 *8)))) (-3989 (*1 *2 *3) (|partial| -12 (-5 *3 (-309 *5 *6 *7 *8)) (-4 *5 (-403 *4)) (-4 *6 (-1140 *5)) (-4 *7 (-1140 (-380 *6))) (-4 *8 (-315 *5 *6 *7)) (-4 *4 (-13 (-783) (-512) (-960 (-520)))) (-5 *2 (-706)) (-5 *1 (-839 *4 *5 *6 *7 *8)))))
-(-10 -7 (-15 -3989 ((-3 (-706) "failed") (-309 |#2| |#3| |#4| |#5|))) (-15 -1823 ((-108) (-309 |#2| |#3| |#4| |#5|))) (-15 -3677 ((-3 (-2 (|:| -3989 (-706)) (|:| -2092 |#5|)) "failed") (-309 |#2| |#3| |#4| |#5|))))
-((-3677 (((-3 (-2 (|:| -3989 (-706)) (|:| -2092 |#3|)) "failed") (-309 (-380 (-520)) |#1| |#2| |#3|)) 56)) (-1823 (((-108) (-309 (-380 (-520)) |#1| |#2| |#3|)) 13)) (-3989 (((-3 (-706) "failed") (-309 (-380 (-520)) |#1| |#2| |#3|)) 11)))
-(((-840 |#1| |#2| |#3|) (-10 -7 (-15 -3989 ((-3 (-706) "failed") (-309 (-380 (-520)) |#1| |#2| |#3|))) (-15 -1823 ((-108) (-309 (-380 (-520)) |#1| |#2| |#3|))) (-15 -3677 ((-3 (-2 (|:| -3989 (-706)) (|:| -2092 |#3|)) "failed") (-309 (-380 (-520)) |#1| |#2| |#3|)))) (-1140 (-380 (-520))) (-1140 (-380 |#1|)) (-315 (-380 (-520)) |#1| |#2|)) (T -840))
-((-3677 (*1 *2 *3) (|partial| -12 (-5 *3 (-309 (-380 (-520)) *4 *5 *6)) (-4 *4 (-1140 (-380 (-520)))) (-4 *5 (-1140 (-380 *4))) (-4 *6 (-315 (-380 (-520)) *4 *5)) (-5 *2 (-2 (|:| -3989 (-706)) (|:| -2092 *6))) (-5 *1 (-840 *4 *5 *6)))) (-1823 (*1 *2 *3) (-12 (-5 *3 (-309 (-380 (-520)) *4 *5 *6)) (-4 *4 (-1140 (-380 (-520)))) (-4 *5 (-1140 (-380 *4))) (-4 *6 (-315 (-380 (-520)) *4 *5)) (-5 *2 (-108)) (-5 *1 (-840 *4 *5 *6)))) (-3989 (*1 *2 *3) (|partial| -12 (-5 *3 (-309 (-380 (-520)) *4 *5 *6)) (-4 *4 (-1140 (-380 (-520)))) (-4 *5 (-1140 (-380 *4))) (-4 *6 (-315 (-380 (-520)) *4 *5)) (-5 *2 (-706)) (-5 *1 (-840 *4 *5 *6)))))
-(-10 -7 (-15 -3989 ((-3 (-706) "failed") (-309 (-380 (-520)) |#1| |#2| |#3|))) (-15 -1823 ((-108) (-309 (-380 (-520)) |#1| |#2| |#3|))) (-15 -3677 ((-3 (-2 (|:| -3989 (-706)) (|:| -2092 |#3|)) "failed") (-309 (-380 (-520)) |#1| |#2| |#3|))))
-((-3568 ((|#2| |#2|) 25)) (-1313 (((-520) (-586 (-2 (|:| |den| (-520)) (|:| |gcdnum| (-520))))) 15)) (-4193 (((-849) (-520)) 35)) (-4046 (((-520) |#2|) 42)) (-1866 (((-520) |#2|) 21) (((-2 (|:| |den| (-520)) (|:| |gcdnum| (-520))) |#1|) 20)))
-(((-841 |#1| |#2|) (-10 -7 (-15 -4193 ((-849) (-520))) (-15 -1866 ((-2 (|:| |den| (-520)) (|:| |gcdnum| (-520))) |#1|)) (-15 -1866 ((-520) |#2|)) (-15 -1313 ((-520) (-586 (-2 (|:| |den| (-520)) (|:| |gcdnum| (-520)))))) (-15 -4046 ((-520) |#2|)) (-15 -3568 (|#2| |#2|))) (-1140 (-380 (-520))) (-1140 (-380 |#1|))) (T -841))
-((-3568 (*1 *2 *2) (-12 (-4 *3 (-1140 (-380 (-520)))) (-5 *1 (-841 *3 *2)) (-4 *2 (-1140 (-380 *3))))) (-4046 (*1 *2 *3) (-12 (-4 *4 (-1140 (-380 *2))) (-5 *2 (-520)) (-5 *1 (-841 *4 *3)) (-4 *3 (-1140 (-380 *4))))) (-1313 (*1 *2 *3) (-12 (-5 *3 (-586 (-2 (|:| |den| (-520)) (|:| |gcdnum| (-520))))) (-4 *4 (-1140 (-380 *2))) (-5 *2 (-520)) (-5 *1 (-841 *4 *5)) (-4 *5 (-1140 (-380 *4))))) (-1866 (*1 *2 *3) (-12 (-4 *4 (-1140 (-380 *2))) (-5 *2 (-520)) (-5 *1 (-841 *4 *3)) (-4 *3 (-1140 (-380 *4))))) (-1866 (*1 *2 *3) (-12 (-4 *3 (-1140 (-380 (-520)))) (-5 *2 (-2 (|:| |den| (-520)) (|:| |gcdnum| (-520)))) (-5 *1 (-841 *3 *4)) (-4 *4 (-1140 (-380 *3))))) (-4193 (*1 *2 *3) (-12 (-5 *3 (-520)) (-4 *4 (-1140 (-380 *3))) (-5 *2 (-849)) (-5 *1 (-841 *4 *5)) (-4 *5 (-1140 (-380 *4))))))
-(-10 -7 (-15 -4193 ((-849) (-520))) (-15 -1866 ((-2 (|:| |den| (-520)) (|:| |gcdnum| (-520))) |#1|)) (-15 -1866 ((-520) |#2|)) (-15 -1313 ((-520) (-586 (-2 (|:| |den| (-520)) (|:| |gcdnum| (-520)))))) (-15 -4046 ((-520) |#2|)) (-15 -3568 (|#2| |#2|)))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-4040 ((|#1| $) 81)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) NIL)) (-2583 (($ $) NIL)) (-1671 (((-108) $) NIL)) (-1917 (((-3 $ "failed") $ $) NIL)) (-3024 (($ $) NIL)) (-1507 (((-391 $) $) NIL)) (-1327 (((-108) $ $) NIL)) (-3961 (($) NIL T CONST)) (-2276 (($ $ $) NIL)) (-1540 (((-3 $ "failed") $) 75)) (-2253 (($ $ $) NIL)) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) NIL)) (-2036 (((-108) $) NIL)) (-1928 (($ |#1| (-391 |#1|)) 73)) (-1341 (((-1079 |#1|) |#1| |#1|) 40)) (-1989 (($ $) 49)) (-1537 (((-108) $) NIL)) (-3046 (((-520) $) 78)) (-3599 (($ $ (-520)) 80)) (-3188 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-2222 (($ $ $) NIL) (($ (-586 $)) NIL)) (-1239 (((-1066) $) NIL)) (-3093 (($ $) NIL)) (-4142 (((-1030) $) NIL)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) NIL)) (-2257 (($ $ $) NIL) (($ (-586 $)) NIL)) (-1438 ((|#1| $) 77)) (-1487 (((-391 |#1|) $) 76)) (-1916 (((-391 $) $) NIL)) (-1283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2230 (((-3 $ "failed") $ $) 74)) (-2608 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-3704 (((-706) $) NIL)) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) NIL)) (-3697 (($ $) 38)) (-2188 (((-791) $) 99) (($ (-520)) 54) (($ $) NIL) (($ (-380 (-520))) NIL) (($ |#1|) 30) (((-380 |#1|) $) 59) (($ (-380 (-391 |#1|))) 67)) (-3251 (((-706)) 52)) (-2559 (((-108) $ $) NIL)) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL)) (-3560 (($) 23 T CONST)) (-3570 (($) 11 T CONST)) (-1530 (((-108) $ $) 68)) (-1619 (($ $ $) NIL)) (-1611 (($ $) 88) (($ $ $) NIL)) (-1601 (($ $ $) 37)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) 90) (($ $ $) 36) (($ $ (-380 (-520))) NIL) (($ (-380 (-520)) $) NIL) (($ |#1| $) 89) (($ $ |#1|) NIL)))
-(((-842 |#1|) (-13 (-336) (-37 |#1|) (-10 -8 (-15 -2188 ((-380 |#1|) $)) (-15 -2188 ($ (-380 (-391 |#1|)))) (-15 -3697 ($ $)) (-15 -1487 ((-391 |#1|) $)) (-15 -1438 (|#1| $)) (-15 -3599 ($ $ (-520))) (-15 -3046 ((-520) $)) (-15 -1341 ((-1079 |#1|) |#1| |#1|)) (-15 -1989 ($ $)) (-15 -1928 ($ |#1| (-391 |#1|))) (-15 -4040 (|#1| $)))) (-281)) (T -842))
-((-2188 (*1 *2 *1) (-12 (-5 *2 (-380 *3)) (-5 *1 (-842 *3)) (-4 *3 (-281)))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-380 (-391 *3))) (-4 *3 (-281)) (-5 *1 (-842 *3)))) (-3697 (*1 *1 *1) (-12 (-5 *1 (-842 *2)) (-4 *2 (-281)))) (-1487 (*1 *2 *1) (-12 (-5 *2 (-391 *3)) (-5 *1 (-842 *3)) (-4 *3 (-281)))) (-1438 (*1 *2 *1) (-12 (-5 *1 (-842 *2)) (-4 *2 (-281)))) (-3599 (*1 *1 *1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-842 *3)) (-4 *3 (-281)))) (-3046 (*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-842 *3)) (-4 *3 (-281)))) (-1341 (*1 *2 *3 *3) (-12 (-5 *2 (-1079 *3)) (-5 *1 (-842 *3)) (-4 *3 (-281)))) (-1989 (*1 *1 *1) (-12 (-5 *1 (-842 *2)) (-4 *2 (-281)))) (-1928 (*1 *1 *2 *3) (-12 (-5 *3 (-391 *2)) (-4 *2 (-281)) (-5 *1 (-842 *2)))) (-4040 (*1 *2 *1) (-12 (-5 *1 (-842 *2)) (-4 *2 (-281)))))
-(-13 (-336) (-37 |#1|) (-10 -8 (-15 -2188 ((-380 |#1|) $)) (-15 -2188 ($ (-380 (-391 |#1|)))) (-15 -3697 ($ $)) (-15 -1487 ((-391 |#1|) $)) (-15 -1438 (|#1| $)) (-15 -3599 ($ $ (-520))) (-15 -3046 ((-520) $)) (-15 -1341 ((-1079 |#1|) |#1| |#1|)) (-15 -1989 ($ $)) (-15 -1928 ($ |#1| (-391 |#1|))) (-15 -4040 (|#1| $))))
-((-1928 (((-51) (-880 |#1|) (-391 (-880 |#1|)) (-1083)) 16) (((-51) (-380 (-880 |#1|)) (-1083)) 17)))
-(((-843 |#1|) (-10 -7 (-15 -1928 ((-51) (-380 (-880 |#1|)) (-1083))) (-15 -1928 ((-51) (-880 |#1|) (-391 (-880 |#1|)) (-1083)))) (-13 (-281) (-135))) (T -843))
-((-1928 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-391 (-880 *6))) (-5 *5 (-1083)) (-5 *3 (-880 *6)) (-4 *6 (-13 (-281) (-135))) (-5 *2 (-51)) (-5 *1 (-843 *6)))) (-1928 (*1 *2 *3 *4) (-12 (-5 *3 (-380 (-880 *5))) (-5 *4 (-1083)) (-4 *5 (-13 (-281) (-135))) (-5 *2 (-51)) (-5 *1 (-843 *5)))))
-(-10 -7 (-15 -1928 ((-51) (-380 (-880 |#1|)) (-1083))) (-15 -1928 ((-51) (-880 |#1|) (-391 (-880 |#1|)) (-1083))))
-((-2634 ((|#4| (-586 |#4|)) 119) (((-1079 |#4|) (-1079 |#4|) (-1079 |#4|)) 66) ((|#4| |#4| |#4|) 118)) (-2257 (((-1079 |#4|) (-586 (-1079 |#4|))) 112) (((-1079 |#4|) (-1079 |#4|) (-1079 |#4|)) 49) ((|#4| (-586 |#4|)) 54) ((|#4| |#4| |#4|) 83)))
-(((-844 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2257 (|#4| |#4| |#4|)) (-15 -2257 (|#4| (-586 |#4|))) (-15 -2257 ((-1079 |#4|) (-1079 |#4|) (-1079 |#4|))) (-15 -2257 ((-1079 |#4|) (-586 (-1079 |#4|)))) (-15 -2634 (|#4| |#4| |#4|)) (-15 -2634 ((-1079 |#4|) (-1079 |#4|) (-1079 |#4|))) (-15 -2634 (|#4| (-586 |#4|)))) (-728) (-783) (-281) (-877 |#3| |#1| |#2|)) (T -844))
-((-2634 (*1 *2 *3) (-12 (-5 *3 (-586 *2)) (-4 *2 (-877 *6 *4 *5)) (-5 *1 (-844 *4 *5 *6 *2)) (-4 *4 (-728)) (-4 *5 (-783)) (-4 *6 (-281)))) (-2634 (*1 *2 *2 *2) (-12 (-5 *2 (-1079 *6)) (-4 *6 (-877 *5 *3 *4)) (-4 *3 (-728)) (-4 *4 (-783)) (-4 *5 (-281)) (-5 *1 (-844 *3 *4 *5 *6)))) (-2634 (*1 *2 *2 *2) (-12 (-4 *3 (-728)) (-4 *4 (-783)) (-4 *5 (-281)) (-5 *1 (-844 *3 *4 *5 *2)) (-4 *2 (-877 *5 *3 *4)))) (-2257 (*1 *2 *3) (-12 (-5 *3 (-586 (-1079 *7))) (-4 *4 (-728)) (-4 *5 (-783)) (-4 *6 (-281)) (-5 *2 (-1079 *7)) (-5 *1 (-844 *4 *5 *6 *7)) (-4 *7 (-877 *6 *4 *5)))) (-2257 (*1 *2 *2 *2) (-12 (-5 *2 (-1079 *6)) (-4 *6 (-877 *5 *3 *4)) (-4 *3 (-728)) (-4 *4 (-783)) (-4 *5 (-281)) (-5 *1 (-844 *3 *4 *5 *6)))) (-2257 (*1 *2 *3) (-12 (-5 *3 (-586 *2)) (-4 *2 (-877 *6 *4 *5)) (-5 *1 (-844 *4 *5 *6 *2)) (-4 *4 (-728)) (-4 *5 (-783)) (-4 *6 (-281)))) (-2257 (*1 *2 *2 *2) (-12 (-4 *3 (-728)) (-4 *4 (-783)) (-4 *5 (-281)) (-5 *1 (-844 *3 *4 *5 *2)) (-4 *2 (-877 *5 *3 *4)))))
-(-10 -7 (-15 -2257 (|#4| |#4| |#4|)) (-15 -2257 (|#4| (-586 |#4|))) (-15 -2257 ((-1079 |#4|) (-1079 |#4|) (-1079 |#4|))) (-15 -2257 ((-1079 |#4|) (-586 (-1079 |#4|)))) (-15 -2634 (|#4| |#4| |#4|)) (-15 -2634 ((-1079 |#4|) (-1079 |#4|) (-1079 |#4|))) (-15 -2634 (|#4| (-586 |#4|))))
-((-3426 (((-832 (-520)) (-896)) 22) (((-832 (-520)) (-586 (-520))) 19)) (-3661 (((-832 (-520)) (-586 (-520))) 46) (((-832 (-520)) (-849)) 47)) (-2854 (((-832 (-520))) 23)) (-2153 (((-832 (-520))) 36) (((-832 (-520)) (-586 (-520))) 35)) (-2512 (((-832 (-520))) 34) (((-832 (-520)) (-586 (-520))) 33)) (-2190 (((-832 (-520))) 32) (((-832 (-520)) (-586 (-520))) 31)) (-2520 (((-832 (-520))) 30) (((-832 (-520)) (-586 (-520))) 29)) (-3104 (((-832 (-520))) 28) (((-832 (-520)) (-586 (-520))) 27)) (-2550 (((-832 (-520))) 38) (((-832 (-520)) (-586 (-520))) 37)) (-3561 (((-832 (-520)) (-586 (-520))) 50) (((-832 (-520)) (-849)) 51)) (-3852 (((-832 (-520)) (-586 (-520))) 48) (((-832 (-520)) (-849)) 49)) (-1451 (((-832 (-520)) (-586 (-520))) 43) (((-832 (-520)) (-849)) 45)) (-3231 (((-832 (-520)) (-586 (-849))) 40)))
-(((-845) (-10 -7 (-15 -3661 ((-832 (-520)) (-849))) (-15 -3661 ((-832 (-520)) (-586 (-520)))) (-15 -1451 ((-832 (-520)) (-849))) (-15 -1451 ((-832 (-520)) (-586 (-520)))) (-15 -3231 ((-832 (-520)) (-586 (-849)))) (-15 -3852 ((-832 (-520)) (-849))) (-15 -3852 ((-832 (-520)) (-586 (-520)))) (-15 -3561 ((-832 (-520)) (-849))) (-15 -3561 ((-832 (-520)) (-586 (-520)))) (-15 -3104 ((-832 (-520)) (-586 (-520)))) (-15 -3104 ((-832 (-520)))) (-15 -2520 ((-832 (-520)) (-586 (-520)))) (-15 -2520 ((-832 (-520)))) (-15 -2190 ((-832 (-520)) (-586 (-520)))) (-15 -2190 ((-832 (-520)))) (-15 -2512 ((-832 (-520)) (-586 (-520)))) (-15 -2512 ((-832 (-520)))) (-15 -2153 ((-832 (-520)) (-586 (-520)))) (-15 -2153 ((-832 (-520)))) (-15 -2550 ((-832 (-520)) (-586 (-520)))) (-15 -2550 ((-832 (-520)))) (-15 -2854 ((-832 (-520)))) (-15 -3426 ((-832 (-520)) (-586 (-520)))) (-15 -3426 ((-832 (-520)) (-896))))) (T -845))
-((-3426 (*1 *2 *3) (-12 (-5 *3 (-896)) (-5 *2 (-832 (-520))) (-5 *1 (-845)))) (-3426 (*1 *2 *3) (-12 (-5 *3 (-586 (-520))) (-5 *2 (-832 (-520))) (-5 *1 (-845)))) (-2854 (*1 *2) (-12 (-5 *2 (-832 (-520))) (-5 *1 (-845)))) (-2550 (*1 *2) (-12 (-5 *2 (-832 (-520))) (-5 *1 (-845)))) (-2550 (*1 *2 *3) (-12 (-5 *3 (-586 (-520))) (-5 *2 (-832 (-520))) (-5 *1 (-845)))) (-2153 (*1 *2) (-12 (-5 *2 (-832 (-520))) (-5 *1 (-845)))) (-2153 (*1 *2 *3) (-12 (-5 *3 (-586 (-520))) (-5 *2 (-832 (-520))) (-5 *1 (-845)))) (-2512 (*1 *2) (-12 (-5 *2 (-832 (-520))) (-5 *1 (-845)))) (-2512 (*1 *2 *3) (-12 (-5 *3 (-586 (-520))) (-5 *2 (-832 (-520))) (-5 *1 (-845)))) (-2190 (*1 *2) (-12 (-5 *2 (-832 (-520))) (-5 *1 (-845)))) (-2190 (*1 *2 *3) (-12 (-5 *3 (-586 (-520))) (-5 *2 (-832 (-520))) (-5 *1 (-845)))) (-2520 (*1 *2) (-12 (-5 *2 (-832 (-520))) (-5 *1 (-845)))) (-2520 (*1 *2 *3) (-12 (-5 *3 (-586 (-520))) (-5 *2 (-832 (-520))) (-5 *1 (-845)))) (-3104 (*1 *2) (-12 (-5 *2 (-832 (-520))) (-5 *1 (-845)))) (-3104 (*1 *2 *3) (-12 (-5 *3 (-586 (-520))) (-5 *2 (-832 (-520))) (-5 *1 (-845)))) (-3561 (*1 *2 *3) (-12 (-5 *3 (-586 (-520))) (-5 *2 (-832 (-520))) (-5 *1 (-845)))) (-3561 (*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-832 (-520))) (-5 *1 (-845)))) (-3852 (*1 *2 *3) (-12 (-5 *3 (-586 (-520))) (-5 *2 (-832 (-520))) (-5 *1 (-845)))) (-3852 (*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-832 (-520))) (-5 *1 (-845)))) (-3231 (*1 *2 *3) (-12 (-5 *3 (-586 (-849))) (-5 *2 (-832 (-520))) (-5 *1 (-845)))) (-1451 (*1 *2 *3) (-12 (-5 *3 (-586 (-520))) (-5 *2 (-832 (-520))) (-5 *1 (-845)))) (-1451 (*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-832 (-520))) (-5 *1 (-845)))) (-3661 (*1 *2 *3) (-12 (-5 *3 (-586 (-520))) (-5 *2 (-832 (-520))) (-5 *1 (-845)))) (-3661 (*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-832 (-520))) (-5 *1 (-845)))))
-(-10 -7 (-15 -3661 ((-832 (-520)) (-849))) (-15 -3661 ((-832 (-520)) (-586 (-520)))) (-15 -1451 ((-832 (-520)) (-849))) (-15 -1451 ((-832 (-520)) (-586 (-520)))) (-15 -3231 ((-832 (-520)) (-586 (-849)))) (-15 -3852 ((-832 (-520)) (-849))) (-15 -3852 ((-832 (-520)) (-586 (-520)))) (-15 -3561 ((-832 (-520)) (-849))) (-15 -3561 ((-832 (-520)) (-586 (-520)))) (-15 -3104 ((-832 (-520)) (-586 (-520)))) (-15 -3104 ((-832 (-520)))) (-15 -2520 ((-832 (-520)) (-586 (-520)))) (-15 -2520 ((-832 (-520)))) (-15 -2190 ((-832 (-520)) (-586 (-520)))) (-15 -2190 ((-832 (-520)))) (-15 -2512 ((-832 (-520)) (-586 (-520)))) (-15 -2512 ((-832 (-520)))) (-15 -2153 ((-832 (-520)) (-586 (-520)))) (-15 -2153 ((-832 (-520)))) (-15 -2550 ((-832 (-520)) (-586 (-520)))) (-15 -2550 ((-832 (-520)))) (-15 -2854 ((-832 (-520)))) (-15 -3426 ((-832 (-520)) (-586 (-520)))) (-15 -3426 ((-832 (-520)) (-896))))
-((-3743 (((-586 (-880 |#1|)) (-586 (-880 |#1|)) (-586 (-1083))) 10)) (-3482 (((-586 (-880 |#1|)) (-586 (-880 |#1|)) (-586 (-1083))) 9)))
-(((-846 |#1|) (-10 -7 (-15 -3482 ((-586 (-880 |#1|)) (-586 (-880 |#1|)) (-586 (-1083)))) (-15 -3743 ((-586 (-880 |#1|)) (-586 (-880 |#1|)) (-586 (-1083))))) (-424)) (T -846))
-((-3743 (*1 *2 *2 *3) (-12 (-5 *2 (-586 (-880 *4))) (-5 *3 (-586 (-1083))) (-4 *4 (-424)) (-5 *1 (-846 *4)))) (-3482 (*1 *2 *2 *3) (-12 (-5 *2 (-586 (-880 *4))) (-5 *3 (-586 (-1083))) (-4 *4 (-424)) (-5 *1 (-846 *4)))))
-(-10 -7 (-15 -3482 ((-586 (-880 |#1|)) (-586 (-880 |#1|)) (-586 (-1083)))) (-15 -3743 ((-586 (-880 |#1|)) (-586 (-880 |#1|)) (-586 (-1083)))))
-((-2188 (((-289 |#1|) (-449)) 15)))
-(((-847 |#1|) (-10 -7 (-15 -2188 ((-289 |#1|) (-449)))) (-13 (-783) (-512))) (T -847))
-((-2188 (*1 *2 *3) (-12 (-5 *3 (-449)) (-5 *2 (-289 *4)) (-5 *1 (-847 *4)) (-4 *4 (-13 (-783) (-512))))))
-(-10 -7 (-15 -2188 ((-289 |#1|) (-449))))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) 41)) (-2583 (($ $) 40)) (-1671 (((-108) $) 38)) (-1917 (((-3 $ "failed") $ $) 19)) (-3961 (($) 17 T CONST)) (-1540 (((-3 $ "failed") $) 34)) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) 51)) (-1537 (((-108) $) 31)) (-2222 (($ $ $) 46) (($ (-586 $)) 45)) (-1239 (((-1066) $) 9)) (-4142 (((-1030) $) 10)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) 44)) (-2257 (($ $ $) 48) (($ (-586 $)) 47)) (-2230 (((-3 $ "failed") $ $) 42)) (-2608 (((-3 (-586 $) "failed") (-586 $) $) 50)) (-2188 (((-791) $) 11) (($ (-520)) 28) (($ $) 43)) (-3251 (((-706)) 29)) (-2559 (((-108) $ $) 39)) (-3504 (($ $ (-849)) 26) (($ $ (-706)) 33)) (-3560 (($) 18 T CONST)) (-3570 (($) 30 T CONST)) (-1530 (((-108) $ $) 6)) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-706)) 32)) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ $ $) 24)))
-(((-848) (-1195)) (T -848))
-((-2917 (*1 *2 *3) (-12 (-4 *1 (-848)) (-5 *2 (-2 (|:| -2972 (-586 *1)) (|:| -1382 *1))) (-5 *3 (-586 *1)))) (-2608 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-586 *1)) (-4 *1 (-848)))))
-(-13 (-424) (-10 -8 (-15 -2917 ((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $))) (-15 -2608 ((-3 (-586 $) "failed") (-586 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-560 (-791)) . T) ((-157) . T) ((-264) . T) ((-424) . T) ((-512) . T) ((-588 $) . T) ((-653 $) . T) ((-662) . T) ((-975 $) . T) ((-969) . T) ((-976) . T) ((-1024) . T) ((-1012) . T))
-((-1414 (((-108) $ $) NIL)) (-3961 (($) NIL T CONST)) (-1540 (((-3 $ "failed") $) NIL)) (-1537 (((-108) $) NIL)) (-2809 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2257 (($ $ $) NIL)) (-2188 (((-791) $) NIL)) (-3504 (($ $ (-706)) NIL) (($ $ (-849)) NIL)) (-3570 (($) NIL T CONST)) (-1573 (((-108) $ $) NIL)) (-1557 (((-108) $ $) NIL)) (-1530 (((-108) $ $) NIL)) (-1565 (((-108) $ $) NIL)) (-1548 (((-108) $ $) NIL)) (-1601 (($ $ $) NIL)) (** (($ $ (-706)) NIL) (($ $ (-849)) NIL)) (* (($ (-849) $) NIL) (($ $ $) NIL)))
-(((-849) (-13 (-25) (-783) (-662) (-10 -8 (-15 -2257 ($ $ $)) (-6 (-4231 "*"))))) (T -849))
-((-2257 (*1 *1 *1 *1) (-5 *1 (-849))))
-(-13 (-25) (-783) (-662) (-10 -8 (-15 -2257 ($ $ $)) (-6 (-4231 "*"))))
-((-2661 ((|#2| (-586 |#1|) (-586 |#1|)) 24)))
-(((-850 |#1| |#2|) (-10 -7 (-15 -2661 (|#2| (-586 |#1|) (-586 |#1|)))) (-336) (-1140 |#1|)) (T -850))
-((-2661 (*1 *2 *3 *3) (-12 (-5 *3 (-586 *4)) (-4 *4 (-336)) (-4 *2 (-1140 *4)) (-5 *1 (-850 *4 *2)))))
-(-10 -7 (-15 -2661 (|#2| (-586 |#1|) (-586 |#1|))))
-((-1821 (((-1079 |#2|) (-586 |#2|) (-586 |#2|)) 17) (((-1137 |#1| |#2|) (-1137 |#1| |#2|) (-586 |#2|) (-586 |#2|)) 13)))
-(((-851 |#1| |#2|) (-10 -7 (-15 -1821 ((-1137 |#1| |#2|) (-1137 |#1| |#2|) (-586 |#2|) (-586 |#2|))) (-15 -1821 ((-1079 |#2|) (-586 |#2|) (-586 |#2|)))) (-1083) (-336)) (T -851))
-((-1821 (*1 *2 *3 *3) (-12 (-5 *3 (-586 *5)) (-4 *5 (-336)) (-5 *2 (-1079 *5)) (-5 *1 (-851 *4 *5)) (-14 *4 (-1083)))) (-1821 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1137 *4 *5)) (-5 *3 (-586 *5)) (-14 *4 (-1083)) (-4 *5 (-336)) (-5 *1 (-851 *4 *5)))))
-(-10 -7 (-15 -1821 ((-1137 |#1| |#2|) (-1137 |#1| |#2|) (-586 |#2|) (-586 |#2|))) (-15 -1821 ((-1079 |#2|) (-586 |#2|) (-586 |#2|))))
-((-2227 (((-520) (-586 (-2 (|:| |eqzro| (-586 |#4|)) (|:| |neqzro| (-586 |#4|)) (|:| |wcond| (-586 (-880 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1164 (-380 (-880 |#1|)))) (|:| -1831 (-586 (-1164 (-380 (-880 |#1|))))))))) (-1066)) 138)) (-2532 ((|#4| |#4|) 154)) (-3726 (((-586 (-380 (-880 |#1|))) (-586 (-1083))) 117)) (-2075 (((-2 (|:| |eqzro| (-586 |#4|)) (|:| |neqzro| (-586 |#4|)) (|:| |wcond| (-586 (-880 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1164 (-380 (-880 |#1|)))) (|:| -1831 (-586 (-1164 (-380 (-880 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-586 (-520))) (|:| |cols| (-586 (-520)))) (-626 |#4|) (-586 (-380 (-880 |#1|))) (-586 (-586 |#4|)) (-706) (-706) (-520)) 73)) (-2430 (((-2 (|:| |partsol| (-1164 (-380 (-880 |#1|)))) (|:| -1831 (-586 (-1164 (-380 (-880 |#1|)))))) (-2 (|:| |partsol| (-1164 (-380 (-880 |#1|)))) (|:| -1831 (-586 (-1164 (-380 (-880 |#1|)))))) (-586 |#4|)) 57)) (-2482 (((-626 |#4|) (-626 |#4|) (-586 |#4|)) 53)) (-2988 (((-586 (-2 (|:| |eqzro| (-586 |#4|)) (|:| |neqzro| (-586 |#4|)) (|:| |wcond| (-586 (-880 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1164 (-380 (-880 |#1|)))) (|:| -1831 (-586 (-1164 (-380 (-880 |#1|))))))))) (-1066)) 150)) (-1705 (((-520) (-626 |#4|) (-849) (-1066)) 131) (((-520) (-626 |#4|) (-586 (-1083)) (-849) (-1066)) 130) (((-520) (-626 |#4|) (-586 |#4|) (-849) (-1066)) 129) (((-520) (-626 |#4|) (-1066)) 126) (((-520) (-626 |#4|) (-586 (-1083)) (-1066)) 125) (((-520) (-626 |#4|) (-586 |#4|) (-1066)) 124) (((-586 (-2 (|:| |eqzro| (-586 |#4|)) (|:| |neqzro| (-586 |#4|)) (|:| |wcond| (-586 (-880 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1164 (-380 (-880 |#1|)))) (|:| -1831 (-586 (-1164 (-380 (-880 |#1|))))))))) (-626 |#4|) (-849)) 123) (((-586 (-2 (|:| |eqzro| (-586 |#4|)) (|:| |neqzro| (-586 |#4|)) (|:| |wcond| (-586 (-880 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1164 (-380 (-880 |#1|)))) (|:| -1831 (-586 (-1164 (-380 (-880 |#1|))))))))) (-626 |#4|) (-586 (-1083)) (-849)) 122) (((-586 (-2 (|:| |eqzro| (-586 |#4|)) (|:| |neqzro| (-586 |#4|)) (|:| |wcond| (-586 (-880 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1164 (-380 (-880 |#1|)))) (|:| -1831 (-586 (-1164 (-380 (-880 |#1|))))))))) (-626 |#4|) (-586 |#4|) (-849)) 121) (((-586 (-2 (|:| |eqzro| (-586 |#4|)) (|:| |neqzro| (-586 |#4|)) (|:| |wcond| (-586 (-880 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1164 (-380 (-880 |#1|)))) (|:| -1831 (-586 (-1164 (-380 (-880 |#1|))))))))) (-626 |#4|)) 119) (((-586 (-2 (|:| |eqzro| (-586 |#4|)) (|:| |neqzro| (-586 |#4|)) (|:| |wcond| (-586 (-880 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1164 (-380 (-880 |#1|)))) (|:| -1831 (-586 (-1164 (-380 (-880 |#1|))))))))) (-626 |#4|) (-586 (-1083))) 118) (((-586 (-2 (|:| |eqzro| (-586 |#4|)) (|:| |neqzro| (-586 |#4|)) (|:| |wcond| (-586 (-880 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1164 (-380 (-880 |#1|)))) (|:| -1831 (-586 (-1164 (-380 (-880 |#1|))))))))) (-626 |#4|) (-586 |#4|)) 115)) (-1238 ((|#4| (-880 |#1|)) 66)) (-1286 (((-108) (-586 |#4|) (-586 (-586 |#4|))) 151)) (-2616 (((-586 (-586 (-520))) (-520) (-520)) 128)) (-2218 (((-586 (-586 |#4|)) (-586 (-586 |#4|))) 85)) (-2156 (((-706) (-586 (-2 (|:| -3160 (-706)) (|:| |eqns| (-586 (-2 (|:| |det| |#4|) (|:| |rows| (-586 (-520))) (|:| |cols| (-586 (-520)))))) (|:| |fgb| (-586 |#4|))))) 83)) (-3744 (((-706) (-586 (-2 (|:| -3160 (-706)) (|:| |eqns| (-586 (-2 (|:| |det| |#4|) (|:| |rows| (-586 (-520))) (|:| |cols| (-586 (-520)))))) (|:| |fgb| (-586 |#4|))))) 82)) (-2423 (((-108) (-586 (-880 |#1|))) 17) (((-108) (-586 |#4|)) 13)) (-3535 (((-2 (|:| |sysok| (-108)) (|:| |z0| (-586 |#4|)) (|:| |n0| (-586 |#4|))) (-586 |#4|) (-586 |#4|)) 69)) (-1245 (((-586 |#4|) |#4|) 47)) (-3585 (((-586 (-380 (-880 |#1|))) (-586 |#4|)) 113) (((-626 (-380 (-880 |#1|))) (-626 |#4|)) 54) (((-380 (-880 |#1|)) |#4|) 110)) (-3503 (((-2 (|:| |rgl| (-586 (-2 (|:| |eqzro| (-586 |#4|)) (|:| |neqzro| (-586 |#4|)) (|:| |wcond| (-586 (-880 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1164 (-380 (-880 |#1|)))) (|:| -1831 (-586 (-1164 (-380 (-880 |#1|)))))))))) (|:| |rgsz| (-520))) (-626 |#4|) (-586 (-380 (-880 |#1|))) (-706) (-1066) (-520)) 89)) (-3935 (((-586 (-2 (|:| -3160 (-706)) (|:| |eqns| (-586 (-2 (|:| |det| |#4|) (|:| |rows| (-586 (-520))) (|:| |cols| (-586 (-520)))))) (|:| |fgb| (-586 |#4|)))) (-626 |#4|) (-706)) 81)) (-3495 (((-586 (-2 (|:| |det| |#4|) (|:| |rows| (-586 (-520))) (|:| |cols| (-586 (-520))))) (-626 |#4|) (-706)) 98)) (-3972 (((-2 (|:| |partsol| (-1164 (-380 (-880 |#1|)))) (|:| -1831 (-586 (-1164 (-380 (-880 |#1|)))))) (-2 (|:| -3927 (-626 (-380 (-880 |#1|)))) (|:| |vec| (-586 (-380 (-880 |#1|)))) (|:| -3160 (-706)) (|:| |rows| (-586 (-520))) (|:| |cols| (-586 (-520))))) 46)))
-(((-852 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1705 ((-586 (-2 (|:| |eqzro| (-586 |#4|)) (|:| |neqzro| (-586 |#4|)) (|:| |wcond| (-586 (-880 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1164 (-380 (-880 |#1|)))) (|:| -1831 (-586 (-1164 (-380 (-880 |#1|))))))))) (-626 |#4|) (-586 |#4|))) (-15 -1705 ((-586 (-2 (|:| |eqzro| (-586 |#4|)) (|:| |neqzro| (-586 |#4|)) (|:| |wcond| (-586 (-880 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1164 (-380 (-880 |#1|)))) (|:| -1831 (-586 (-1164 (-380 (-880 |#1|))))))))) (-626 |#4|) (-586 (-1083)))) (-15 -1705 ((-586 (-2 (|:| |eqzro| (-586 |#4|)) (|:| |neqzro| (-586 |#4|)) (|:| |wcond| (-586 (-880 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1164 (-380 (-880 |#1|)))) (|:| -1831 (-586 (-1164 (-380 (-880 |#1|))))))))) (-626 |#4|))) (-15 -1705 ((-586 (-2 (|:| |eqzro| (-586 |#4|)) (|:| |neqzro| (-586 |#4|)) (|:| |wcond| (-586 (-880 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1164 (-380 (-880 |#1|)))) (|:| -1831 (-586 (-1164 (-380 (-880 |#1|))))))))) (-626 |#4|) (-586 |#4|) (-849))) (-15 -1705 ((-586 (-2 (|:| |eqzro| (-586 |#4|)) (|:| |neqzro| (-586 |#4|)) (|:| |wcond| (-586 (-880 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1164 (-380 (-880 |#1|)))) (|:| -1831 (-586 (-1164 (-380 (-880 |#1|))))))))) (-626 |#4|) (-586 (-1083)) (-849))) (-15 -1705 ((-586 (-2 (|:| |eqzro| (-586 |#4|)) (|:| |neqzro| (-586 |#4|)) (|:| |wcond| (-586 (-880 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1164 (-380 (-880 |#1|)))) (|:| -1831 (-586 (-1164 (-380 (-880 |#1|))))))))) (-626 |#4|) (-849))) (-15 -1705 ((-520) (-626 |#4|) (-586 |#4|) (-1066))) (-15 -1705 ((-520) (-626 |#4|) (-586 (-1083)) (-1066))) (-15 -1705 ((-520) (-626 |#4|) (-1066))) (-15 -1705 ((-520) (-626 |#4|) (-586 |#4|) (-849) (-1066))) (-15 -1705 ((-520) (-626 |#4|) (-586 (-1083)) (-849) (-1066))) (-15 -1705 ((-520) (-626 |#4|) (-849) (-1066))) (-15 -2227 ((-520) (-586 (-2 (|:| |eqzro| (-586 |#4|)) (|:| |neqzro| (-586 |#4|)) (|:| |wcond| (-586 (-880 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1164 (-380 (-880 |#1|)))) (|:| -1831 (-586 (-1164 (-380 (-880 |#1|))))))))) (-1066))) (-15 -2988 ((-586 (-2 (|:| |eqzro| (-586 |#4|)) (|:| |neqzro| (-586 |#4|)) (|:| |wcond| (-586 (-880 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1164 (-380 (-880 |#1|)))) (|:| -1831 (-586 (-1164 (-380 (-880 |#1|))))))))) (-1066))) (-15 -3503 ((-2 (|:| |rgl| (-586 (-2 (|:| |eqzro| (-586 |#4|)) (|:| |neqzro| (-586 |#4|)) (|:| |wcond| (-586 (-880 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1164 (-380 (-880 |#1|)))) (|:| -1831 (-586 (-1164 (-380 (-880 |#1|)))))))))) (|:| |rgsz| (-520))) (-626 |#4|) (-586 (-380 (-880 |#1|))) (-706) (-1066) (-520))) (-15 -3585 ((-380 (-880 |#1|)) |#4|)) (-15 -3585 ((-626 (-380 (-880 |#1|))) (-626 |#4|))) (-15 -3585 ((-586 (-380 (-880 |#1|))) (-586 |#4|))) (-15 -3726 ((-586 (-380 (-880 |#1|))) (-586 (-1083)))) (-15 -1238 (|#4| (-880 |#1|))) (-15 -3535 ((-2 (|:| |sysok| (-108)) (|:| |z0| (-586 |#4|)) (|:| |n0| (-586 |#4|))) (-586 |#4|) (-586 |#4|))) (-15 -3935 ((-586 (-2 (|:| -3160 (-706)) (|:| |eqns| (-586 (-2 (|:| |det| |#4|) (|:| |rows| (-586 (-520))) (|:| |cols| (-586 (-520)))))) (|:| |fgb| (-586 |#4|)))) (-626 |#4|) (-706))) (-15 -2430 ((-2 (|:| |partsol| (-1164 (-380 (-880 |#1|)))) (|:| -1831 (-586 (-1164 (-380 (-880 |#1|)))))) (-2 (|:| |partsol| (-1164 (-380 (-880 |#1|)))) (|:| -1831 (-586 (-1164 (-380 (-880 |#1|)))))) (-586 |#4|))) (-15 -3972 ((-2 (|:| |partsol| (-1164 (-380 (-880 |#1|)))) (|:| -1831 (-586 (-1164 (-380 (-880 |#1|)))))) (-2 (|:| -3927 (-626 (-380 (-880 |#1|)))) (|:| |vec| (-586 (-380 (-880 |#1|)))) (|:| -3160 (-706)) (|:| |rows| (-586 (-520))) (|:| |cols| (-586 (-520)))))) (-15 -1245 ((-586 |#4|) |#4|)) (-15 -3744 ((-706) (-586 (-2 (|:| -3160 (-706)) (|:| |eqns| (-586 (-2 (|:| |det| |#4|) (|:| |rows| (-586 (-520))) (|:| |cols| (-586 (-520)))))) (|:| |fgb| (-586 |#4|)))))) (-15 -2156 ((-706) (-586 (-2 (|:| -3160 (-706)) (|:| |eqns| (-586 (-2 (|:| |det| |#4|) (|:| |rows| (-586 (-520))) (|:| |cols| (-586 (-520)))))) (|:| |fgb| (-586 |#4|)))))) (-15 -2218 ((-586 (-586 |#4|)) (-586 (-586 |#4|)))) (-15 -2616 ((-586 (-586 (-520))) (-520) (-520))) (-15 -1286 ((-108) (-586 |#4|) (-586 (-586 |#4|)))) (-15 -3495 ((-586 (-2 (|:| |det| |#4|) (|:| |rows| (-586 (-520))) (|:| |cols| (-586 (-520))))) (-626 |#4|) (-706))) (-15 -2482 ((-626 |#4|) (-626 |#4|) (-586 |#4|))) (-15 -2075 ((-2 (|:| |eqzro| (-586 |#4|)) (|:| |neqzro| (-586 |#4|)) (|:| |wcond| (-586 (-880 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1164 (-380 (-880 |#1|)))) (|:| -1831 (-586 (-1164 (-380 (-880 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-586 (-520))) (|:| |cols| (-586 (-520)))) (-626 |#4|) (-586 (-380 (-880 |#1|))) (-586 (-586 |#4|)) (-706) (-706) (-520))) (-15 -2532 (|#4| |#4|)) (-15 -2423 ((-108) (-586 |#4|))) (-15 -2423 ((-108) (-586 (-880 |#1|))))) (-13 (-281) (-135)) (-13 (-783) (-561 (-1083))) (-728) (-877 |#1| |#3| |#2|)) (T -852))
-((-2423 (*1 *2 *3) (-12 (-5 *3 (-586 (-880 *4))) (-4 *4 (-13 (-281) (-135))) (-4 *5 (-13 (-783) (-561 (-1083)))) (-4 *6 (-728)) (-5 *2 (-108)) (-5 *1 (-852 *4 *5 *6 *7)) (-4 *7 (-877 *4 *6 *5)))) (-2423 (*1 *2 *3) (-12 (-5 *3 (-586 *7)) (-4 *7 (-877 *4 *6 *5)) (-4 *4 (-13 (-281) (-135))) (-4 *5 (-13 (-783) (-561 (-1083)))) (-4 *6 (-728)) (-5 *2 (-108)) (-5 *1 (-852 *4 *5 *6 *7)))) (-2532 (*1 *2 *2) (-12 (-4 *3 (-13 (-281) (-135))) (-4 *4 (-13 (-783) (-561 (-1083)))) (-4 *5 (-728)) (-5 *1 (-852 *3 *4 *5 *2)) (-4 *2 (-877 *3 *5 *4)))) (-2075 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-586 (-520))) (|:| |cols| (-586 (-520))))) (-5 *4 (-626 *12)) (-5 *5 (-586 (-380 (-880 *9)))) (-5 *6 (-586 (-586 *12))) (-5 *7 (-706)) (-5 *8 (-520)) (-4 *9 (-13 (-281) (-135))) (-4 *12 (-877 *9 *11 *10)) (-4 *10 (-13 (-783) (-561 (-1083)))) (-4 *11 (-728)) (-5 *2 (-2 (|:| |eqzro| (-586 *12)) (|:| |neqzro| (-586 *12)) (|:| |wcond| (-586 (-880 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1164 (-380 (-880 *9)))) (|:| -1831 (-586 (-1164 (-380 (-880 *9))))))))) (-5 *1 (-852 *9 *10 *11 *12)))) (-2482 (*1 *2 *2 *3) (-12 (-5 *2 (-626 *7)) (-5 *3 (-586 *7)) (-4 *7 (-877 *4 *6 *5)) (-4 *4 (-13 (-281) (-135))) (-4 *5 (-13 (-783) (-561 (-1083)))) (-4 *6 (-728)) (-5 *1 (-852 *4 *5 *6 *7)))) (-3495 (*1 *2 *3 *4) (-12 (-5 *3 (-626 *8)) (-5 *4 (-706)) (-4 *8 (-877 *5 *7 *6)) (-4 *5 (-13 (-281) (-135))) (-4 *6 (-13 (-783) (-561 (-1083)))) (-4 *7 (-728)) (-5 *2 (-586 (-2 (|:| |det| *8) (|:| |rows| (-586 (-520))) (|:| |cols| (-586 (-520)))))) (-5 *1 (-852 *5 *6 *7 *8)))) (-1286 (*1 *2 *3 *4) (-12 (-5 *4 (-586 (-586 *8))) (-5 *3 (-586 *8)) (-4 *8 (-877 *5 *7 *6)) (-4 *5 (-13 (-281) (-135))) (-4 *6 (-13 (-783) (-561 (-1083)))) (-4 *7 (-728)) (-5 *2 (-108)) (-5 *1 (-852 *5 *6 *7 *8)))) (-2616 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-281) (-135))) (-4 *5 (-13 (-783) (-561 (-1083)))) (-4 *6 (-728)) (-5 *2 (-586 (-586 (-520)))) (-5 *1 (-852 *4 *5 *6 *7)) (-5 *3 (-520)) (-4 *7 (-877 *4 *6 *5)))) (-2218 (*1 *2 *2) (-12 (-5 *2 (-586 (-586 *6))) (-4 *6 (-877 *3 *5 *4)) (-4 *3 (-13 (-281) (-135))) (-4 *4 (-13 (-783) (-561 (-1083)))) (-4 *5 (-728)) (-5 *1 (-852 *3 *4 *5 *6)))) (-2156 (*1 *2 *3) (-12 (-5 *3 (-586 (-2 (|:| -3160 (-706)) (|:| |eqns| (-586 (-2 (|:| |det| *7) (|:| |rows| (-586 (-520))) (|:| |cols| (-586 (-520)))))) (|:| |fgb| (-586 *7))))) (-4 *7 (-877 *4 *6 *5)) (-4 *4 (-13 (-281) (-135))) (-4 *5 (-13 (-783) (-561 (-1083)))) (-4 *6 (-728)) (-5 *2 (-706)) (-5 *1 (-852 *4 *5 *6 *7)))) (-3744 (*1 *2 *3) (-12 (-5 *3 (-586 (-2 (|:| -3160 (-706)) (|:| |eqns| (-586 (-2 (|:| |det| *7) (|:| |rows| (-586 (-520))) (|:| |cols| (-586 (-520)))))) (|:| |fgb| (-586 *7))))) (-4 *7 (-877 *4 *6 *5)) (-4 *4 (-13 (-281) (-135))) (-4 *5 (-13 (-783) (-561 (-1083)))) (-4 *6 (-728)) (-5 *2 (-706)) (-5 *1 (-852 *4 *5 *6 *7)))) (-1245 (*1 *2 *3) (-12 (-4 *4 (-13 (-281) (-135))) (-4 *5 (-13 (-783) (-561 (-1083)))) (-4 *6 (-728)) (-5 *2 (-586 *3)) (-5 *1 (-852 *4 *5 *6 *3)) (-4 *3 (-877 *4 *6 *5)))) (-3972 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3927 (-626 (-380 (-880 *4)))) (|:| |vec| (-586 (-380 (-880 *4)))) (|:| -3160 (-706)) (|:| |rows| (-586 (-520))) (|:| |cols| (-586 (-520))))) (-4 *4 (-13 (-281) (-135))) (-4 *5 (-13 (-783) (-561 (-1083)))) (-4 *6 (-728)) (-5 *2 (-2 (|:| |partsol| (-1164 (-380 (-880 *4)))) (|:| -1831 (-586 (-1164 (-380 (-880 *4))))))) (-5 *1 (-852 *4 *5 *6 *7)) (-4 *7 (-877 *4 *6 *5)))) (-2430 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1164 (-380 (-880 *4)))) (|:| -1831 (-586 (-1164 (-380 (-880 *4))))))) (-5 *3 (-586 *7)) (-4 *4 (-13 (-281) (-135))) (-4 *7 (-877 *4 *6 *5)) (-4 *5 (-13 (-783) (-561 (-1083)))) (-4 *6 (-728)) (-5 *1 (-852 *4 *5 *6 *7)))) (-3935 (*1 *2 *3 *4) (-12 (-5 *3 (-626 *8)) (-4 *8 (-877 *5 *7 *6)) (-4 *5 (-13 (-281) (-135))) (-4 *6 (-13 (-783) (-561 (-1083)))) (-4 *7 (-728)) (-5 *2 (-586 (-2 (|:| -3160 (-706)) (|:| |eqns| (-586 (-2 (|:| |det| *8) (|:| |rows| (-586 (-520))) (|:| |cols| (-586 (-520)))))) (|:| |fgb| (-586 *8))))) (-5 *1 (-852 *5 *6 *7 *8)) (-5 *4 (-706)))) (-3535 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-281) (-135))) (-4 *5 (-13 (-783) (-561 (-1083)))) (-4 *6 (-728)) (-4 *7 (-877 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-108)) (|:| |z0| (-586 *7)) (|:| |n0| (-586 *7)))) (-5 *1 (-852 *4 *5 *6 *7)) (-5 *3 (-586 *7)))) (-1238 (*1 *2 *3) (-12 (-5 *3 (-880 *4)) (-4 *4 (-13 (-281) (-135))) (-4 *2 (-877 *4 *6 *5)) (-5 *1 (-852 *4 *5 *6 *2)) (-4 *5 (-13 (-783) (-561 (-1083)))) (-4 *6 (-728)))) (-3726 (*1 *2 *3) (-12 (-5 *3 (-586 (-1083))) (-4 *4 (-13 (-281) (-135))) (-4 *5 (-13 (-783) (-561 (-1083)))) (-4 *6 (-728)) (-5 *2 (-586 (-380 (-880 *4)))) (-5 *1 (-852 *4 *5 *6 *7)) (-4 *7 (-877 *4 *6 *5)))) (-3585 (*1 *2 *3) (-12 (-5 *3 (-586 *7)) (-4 *7 (-877 *4 *6 *5)) (-4 *4 (-13 (-281) (-135))) (-4 *5 (-13 (-783) (-561 (-1083)))) (-4 *6 (-728)) (-5 *2 (-586 (-380 (-880 *4)))) (-5 *1 (-852 *4 *5 *6 *7)))) (-3585 (*1 *2 *3) (-12 (-5 *3 (-626 *7)) (-4 *7 (-877 *4 *6 *5)) (-4 *4 (-13 (-281) (-135))) (-4 *5 (-13 (-783) (-561 (-1083)))) (-4 *6 (-728)) (-5 *2 (-626 (-380 (-880 *4)))) (-5 *1 (-852 *4 *5 *6 *7)))) (-3585 (*1 *2 *3) (-12 (-4 *4 (-13 (-281) (-135))) (-4 *5 (-13 (-783) (-561 (-1083)))) (-4 *6 (-728)) (-5 *2 (-380 (-880 *4))) (-5 *1 (-852 *4 *5 *6 *3)) (-4 *3 (-877 *4 *6 *5)))) (-3503 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-626 *11)) (-5 *4 (-586 (-380 (-880 *8)))) (-5 *5 (-706)) (-5 *6 (-1066)) (-4 *8 (-13 (-281) (-135))) (-4 *11 (-877 *8 *10 *9)) (-4 *9 (-13 (-783) (-561 (-1083)))) (-4 *10 (-728)) (-5 *2 (-2 (|:| |rgl| (-586 (-2 (|:| |eqzro| (-586 *11)) (|:| |neqzro| (-586 *11)) (|:| |wcond| (-586 (-880 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1164 (-380 (-880 *8)))) (|:| -1831 (-586 (-1164 (-380 (-880 *8)))))))))) (|:| |rgsz| (-520)))) (-5 *1 (-852 *8 *9 *10 *11)) (-5 *7 (-520)))) (-2988 (*1 *2 *3) (-12 (-5 *3 (-1066)) (-4 *4 (-13 (-281) (-135))) (-4 *5 (-13 (-783) (-561 (-1083)))) (-4 *6 (-728)) (-5 *2 (-586 (-2 (|:| |eqzro| (-586 *7)) (|:| |neqzro| (-586 *7)) (|:| |wcond| (-586 (-880 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1164 (-380 (-880 *4)))) (|:| -1831 (-586 (-1164 (-380 (-880 *4)))))))))) (-5 *1 (-852 *4 *5 *6 *7)) (-4 *7 (-877 *4 *6 *5)))) (-2227 (*1 *2 *3 *4) (-12 (-5 *3 (-586 (-2 (|:| |eqzro| (-586 *8)) (|:| |neqzro| (-586 *8)) (|:| |wcond| (-586 (-880 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1164 (-380 (-880 *5)))) (|:| -1831 (-586 (-1164 (-380 (-880 *5)))))))))) (-5 *4 (-1066)) (-4 *5 (-13 (-281) (-135))) (-4 *8 (-877 *5 *7 *6)) (-4 *6 (-13 (-783) (-561 (-1083)))) (-4 *7 (-728)) (-5 *2 (-520)) (-5 *1 (-852 *5 *6 *7 *8)))) (-1705 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-626 *9)) (-5 *4 (-849)) (-5 *5 (-1066)) (-4 *9 (-877 *6 *8 *7)) (-4 *6 (-13 (-281) (-135))) (-4 *7 (-13 (-783) (-561 (-1083)))) (-4 *8 (-728)) (-5 *2 (-520)) (-5 *1 (-852 *6 *7 *8 *9)))) (-1705 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-626 *10)) (-5 *4 (-586 (-1083))) (-5 *5 (-849)) (-5 *6 (-1066)) (-4 *10 (-877 *7 *9 *8)) (-4 *7 (-13 (-281) (-135))) (-4 *8 (-13 (-783) (-561 (-1083)))) (-4 *9 (-728)) (-5 *2 (-520)) (-5 *1 (-852 *7 *8 *9 *10)))) (-1705 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-626 *10)) (-5 *4 (-586 *10)) (-5 *5 (-849)) (-5 *6 (-1066)) (-4 *10 (-877 *7 *9 *8)) (-4 *7 (-13 (-281) (-135))) (-4 *8 (-13 (-783) (-561 (-1083)))) (-4 *9 (-728)) (-5 *2 (-520)) (-5 *1 (-852 *7 *8 *9 *10)))) (-1705 (*1 *2 *3 *4) (-12 (-5 *3 (-626 *8)) (-5 *4 (-1066)) (-4 *8 (-877 *5 *7 *6)) (-4 *5 (-13 (-281) (-135))) (-4 *6 (-13 (-783) (-561 (-1083)))) (-4 *7 (-728)) (-5 *2 (-520)) (-5 *1 (-852 *5 *6 *7 *8)))) (-1705 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-626 *9)) (-5 *4 (-586 (-1083))) (-5 *5 (-1066)) (-4 *9 (-877 *6 *8 *7)) (-4 *6 (-13 (-281) (-135))) (-4 *7 (-13 (-783) (-561 (-1083)))) (-4 *8 (-728)) (-5 *2 (-520)) (-5 *1 (-852 *6 *7 *8 *9)))) (-1705 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-626 *9)) (-5 *4 (-586 *9)) (-5 *5 (-1066)) (-4 *9 (-877 *6 *8 *7)) (-4 *6 (-13 (-281) (-135))) (-4 *7 (-13 (-783) (-561 (-1083)))) (-4 *8 (-728)) (-5 *2 (-520)) (-5 *1 (-852 *6 *7 *8 *9)))) (-1705 (*1 *2 *3 *4) (-12 (-5 *3 (-626 *8)) (-5 *4 (-849)) (-4 *8 (-877 *5 *7 *6)) (-4 *5 (-13 (-281) (-135))) (-4 *6 (-13 (-783) (-561 (-1083)))) (-4 *7 (-728)) (-5 *2 (-586 (-2 (|:| |eqzro| (-586 *8)) (|:| |neqzro| (-586 *8)) (|:| |wcond| (-586 (-880 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1164 (-380 (-880 *5)))) (|:| -1831 (-586 (-1164 (-380 (-880 *5)))))))))) (-5 *1 (-852 *5 *6 *7 *8)))) (-1705 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-626 *9)) (-5 *4 (-586 (-1083))) (-5 *5 (-849)) (-4 *9 (-877 *6 *8 *7)) (-4 *6 (-13 (-281) (-135))) (-4 *7 (-13 (-783) (-561 (-1083)))) (-4 *8 (-728)) (-5 *2 (-586 (-2 (|:| |eqzro| (-586 *9)) (|:| |neqzro| (-586 *9)) (|:| |wcond| (-586 (-880 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1164 (-380 (-880 *6)))) (|:| -1831 (-586 (-1164 (-380 (-880 *6)))))))))) (-5 *1 (-852 *6 *7 *8 *9)))) (-1705 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-626 *9)) (-5 *5 (-849)) (-4 *9 (-877 *6 *8 *7)) (-4 *6 (-13 (-281) (-135))) (-4 *7 (-13 (-783) (-561 (-1083)))) (-4 *8 (-728)) (-5 *2 (-586 (-2 (|:| |eqzro| (-586 *9)) (|:| |neqzro| (-586 *9)) (|:| |wcond| (-586 (-880 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1164 (-380 (-880 *6)))) (|:| -1831 (-586 (-1164 (-380 (-880 *6)))))))))) (-5 *1 (-852 *6 *7 *8 *9)) (-5 *4 (-586 *9)))) (-1705 (*1 *2 *3) (-12 (-5 *3 (-626 *7)) (-4 *7 (-877 *4 *6 *5)) (-4 *4 (-13 (-281) (-135))) (-4 *5 (-13 (-783) (-561 (-1083)))) (-4 *6 (-728)) (-5 *2 (-586 (-2 (|:| |eqzro| (-586 *7)) (|:| |neqzro| (-586 *7)) (|:| |wcond| (-586 (-880 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1164 (-380 (-880 *4)))) (|:| -1831 (-586 (-1164 (-380 (-880 *4)))))))))) (-5 *1 (-852 *4 *5 *6 *7)))) (-1705 (*1 *2 *3 *4) (-12 (-5 *3 (-626 *8)) (-5 *4 (-586 (-1083))) (-4 *8 (-877 *5 *7 *6)) (-4 *5 (-13 (-281) (-135))) (-4 *6 (-13 (-783) (-561 (-1083)))) (-4 *7 (-728)) (-5 *2 (-586 (-2 (|:| |eqzro| (-586 *8)) (|:| |neqzro| (-586 *8)) (|:| |wcond| (-586 (-880 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1164 (-380 (-880 *5)))) (|:| -1831 (-586 (-1164 (-380 (-880 *5)))))))))) (-5 *1 (-852 *5 *6 *7 *8)))) (-1705 (*1 *2 *3 *4) (-12 (-5 *3 (-626 *8)) (-4 *8 (-877 *5 *7 *6)) (-4 *5 (-13 (-281) (-135))) (-4 *6 (-13 (-783) (-561 (-1083)))) (-4 *7 (-728)) (-5 *2 (-586 (-2 (|:| |eqzro| (-586 *8)) (|:| |neqzro| (-586 *8)) (|:| |wcond| (-586 (-880 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1164 (-380 (-880 *5)))) (|:| -1831 (-586 (-1164 (-380 (-880 *5)))))))))) (-5 *1 (-852 *5 *6 *7 *8)) (-5 *4 (-586 *8)))))
-(-10 -7 (-15 -1705 ((-586 (-2 (|:| |eqzro| (-586 |#4|)) (|:| |neqzro| (-586 |#4|)) (|:| |wcond| (-586 (-880 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1164 (-380 (-880 |#1|)))) (|:| -1831 (-586 (-1164 (-380 (-880 |#1|))))))))) (-626 |#4|) (-586 |#4|))) (-15 -1705 ((-586 (-2 (|:| |eqzro| (-586 |#4|)) (|:| |neqzro| (-586 |#4|)) (|:| |wcond| (-586 (-880 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1164 (-380 (-880 |#1|)))) (|:| -1831 (-586 (-1164 (-380 (-880 |#1|))))))))) (-626 |#4|) (-586 (-1083)))) (-15 -1705 ((-586 (-2 (|:| |eqzro| (-586 |#4|)) (|:| |neqzro| (-586 |#4|)) (|:| |wcond| (-586 (-880 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1164 (-380 (-880 |#1|)))) (|:| -1831 (-586 (-1164 (-380 (-880 |#1|))))))))) (-626 |#4|))) (-15 -1705 ((-586 (-2 (|:| |eqzro| (-586 |#4|)) (|:| |neqzro| (-586 |#4|)) (|:| |wcond| (-586 (-880 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1164 (-380 (-880 |#1|)))) (|:| -1831 (-586 (-1164 (-380 (-880 |#1|))))))))) (-626 |#4|) (-586 |#4|) (-849))) (-15 -1705 ((-586 (-2 (|:| |eqzro| (-586 |#4|)) (|:| |neqzro| (-586 |#4|)) (|:| |wcond| (-586 (-880 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1164 (-380 (-880 |#1|)))) (|:| -1831 (-586 (-1164 (-380 (-880 |#1|))))))))) (-626 |#4|) (-586 (-1083)) (-849))) (-15 -1705 ((-586 (-2 (|:| |eqzro| (-586 |#4|)) (|:| |neqzro| (-586 |#4|)) (|:| |wcond| (-586 (-880 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1164 (-380 (-880 |#1|)))) (|:| -1831 (-586 (-1164 (-380 (-880 |#1|))))))))) (-626 |#4|) (-849))) (-15 -1705 ((-520) (-626 |#4|) (-586 |#4|) (-1066))) (-15 -1705 ((-520) (-626 |#4|) (-586 (-1083)) (-1066))) (-15 -1705 ((-520) (-626 |#4|) (-1066))) (-15 -1705 ((-520) (-626 |#4|) (-586 |#4|) (-849) (-1066))) (-15 -1705 ((-520) (-626 |#4|) (-586 (-1083)) (-849) (-1066))) (-15 -1705 ((-520) (-626 |#4|) (-849) (-1066))) (-15 -2227 ((-520) (-586 (-2 (|:| |eqzro| (-586 |#4|)) (|:| |neqzro| (-586 |#4|)) (|:| |wcond| (-586 (-880 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1164 (-380 (-880 |#1|)))) (|:| -1831 (-586 (-1164 (-380 (-880 |#1|))))))))) (-1066))) (-15 -2988 ((-586 (-2 (|:| |eqzro| (-586 |#4|)) (|:| |neqzro| (-586 |#4|)) (|:| |wcond| (-586 (-880 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1164 (-380 (-880 |#1|)))) (|:| -1831 (-586 (-1164 (-380 (-880 |#1|))))))))) (-1066))) (-15 -3503 ((-2 (|:| |rgl| (-586 (-2 (|:| |eqzro| (-586 |#4|)) (|:| |neqzro| (-586 |#4|)) (|:| |wcond| (-586 (-880 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1164 (-380 (-880 |#1|)))) (|:| -1831 (-586 (-1164 (-380 (-880 |#1|)))))))))) (|:| |rgsz| (-520))) (-626 |#4|) (-586 (-380 (-880 |#1|))) (-706) (-1066) (-520))) (-15 -3585 ((-380 (-880 |#1|)) |#4|)) (-15 -3585 ((-626 (-380 (-880 |#1|))) (-626 |#4|))) (-15 -3585 ((-586 (-380 (-880 |#1|))) (-586 |#4|))) (-15 -3726 ((-586 (-380 (-880 |#1|))) (-586 (-1083)))) (-15 -1238 (|#4| (-880 |#1|))) (-15 -3535 ((-2 (|:| |sysok| (-108)) (|:| |z0| (-586 |#4|)) (|:| |n0| (-586 |#4|))) (-586 |#4|) (-586 |#4|))) (-15 -3935 ((-586 (-2 (|:| -3160 (-706)) (|:| |eqns| (-586 (-2 (|:| |det| |#4|) (|:| |rows| (-586 (-520))) (|:| |cols| (-586 (-520)))))) (|:| |fgb| (-586 |#4|)))) (-626 |#4|) (-706))) (-15 -2430 ((-2 (|:| |partsol| (-1164 (-380 (-880 |#1|)))) (|:| -1831 (-586 (-1164 (-380 (-880 |#1|)))))) (-2 (|:| |partsol| (-1164 (-380 (-880 |#1|)))) (|:| -1831 (-586 (-1164 (-380 (-880 |#1|)))))) (-586 |#4|))) (-15 -3972 ((-2 (|:| |partsol| (-1164 (-380 (-880 |#1|)))) (|:| -1831 (-586 (-1164 (-380 (-880 |#1|)))))) (-2 (|:| -3927 (-626 (-380 (-880 |#1|)))) (|:| |vec| (-586 (-380 (-880 |#1|)))) (|:| -3160 (-706)) (|:| |rows| (-586 (-520))) (|:| |cols| (-586 (-520)))))) (-15 -1245 ((-586 |#4|) |#4|)) (-15 -3744 ((-706) (-586 (-2 (|:| -3160 (-706)) (|:| |eqns| (-586 (-2 (|:| |det| |#4|) (|:| |rows| (-586 (-520))) (|:| |cols| (-586 (-520)))))) (|:| |fgb| (-586 |#4|)))))) (-15 -2156 ((-706) (-586 (-2 (|:| -3160 (-706)) (|:| |eqns| (-586 (-2 (|:| |det| |#4|) (|:| |rows| (-586 (-520))) (|:| |cols| (-586 (-520)))))) (|:| |fgb| (-586 |#4|)))))) (-15 -2218 ((-586 (-586 |#4|)) (-586 (-586 |#4|)))) (-15 -2616 ((-586 (-586 (-520))) (-520) (-520))) (-15 -1286 ((-108) (-586 |#4|) (-586 (-586 |#4|)))) (-15 -3495 ((-586 (-2 (|:| |det| |#4|) (|:| |rows| (-586 (-520))) (|:| |cols| (-586 (-520))))) (-626 |#4|) (-706))) (-15 -2482 ((-626 |#4|) (-626 |#4|) (-586 |#4|))) (-15 -2075 ((-2 (|:| |eqzro| (-586 |#4|)) (|:| |neqzro| (-586 |#4|)) (|:| |wcond| (-586 (-880 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1164 (-380 (-880 |#1|)))) (|:| -1831 (-586 (-1164 (-380 (-880 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-586 (-520))) (|:| |cols| (-586 (-520)))) (-626 |#4|) (-586 (-380 (-880 |#1|))) (-586 (-586 |#4|)) (-706) (-706) (-520))) (-15 -2532 (|#4| |#4|)) (-15 -2423 ((-108) (-586 |#4|))) (-15 -2423 ((-108) (-586 (-880 |#1|)))))
-((-3494 (((-855) |#1| (-1083)) 16) (((-855) |#1| (-1083) (-1007 (-201))) 20)) (-1990 (((-855) |#1| |#1| (-1083) (-1007 (-201))) 18) (((-855) |#1| (-1083) (-1007 (-201))) 14)))
-(((-853 |#1|) (-10 -7 (-15 -1990 ((-855) |#1| (-1083) (-1007 (-201)))) (-15 -1990 ((-855) |#1| |#1| (-1083) (-1007 (-201)))) (-15 -3494 ((-855) |#1| (-1083) (-1007 (-201)))) (-15 -3494 ((-855) |#1| (-1083)))) (-561 (-496))) (T -853))
-((-3494 (*1 *2 *3 *4) (-12 (-5 *4 (-1083)) (-5 *2 (-855)) (-5 *1 (-853 *3)) (-4 *3 (-561 (-496))))) (-3494 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1083)) (-5 *5 (-1007 (-201))) (-5 *2 (-855)) (-5 *1 (-853 *3)) (-4 *3 (-561 (-496))))) (-1990 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1083)) (-5 *5 (-1007 (-201))) (-5 *2 (-855)) (-5 *1 (-853 *3)) (-4 *3 (-561 (-496))))) (-1990 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1083)) (-5 *5 (-1007 (-201))) (-5 *2 (-855)) (-5 *1 (-853 *3)) (-4 *3 (-561 (-496))))))
-(-10 -7 (-15 -1990 ((-855) |#1| (-1083) (-1007 (-201)))) (-15 -1990 ((-855) |#1| |#1| (-1083) (-1007 (-201)))) (-15 -3494 ((-855) |#1| (-1083) (-1007 (-201)))) (-15 -3494 ((-855) |#1| (-1083))))
-((-4150 (($ $ (-1007 (-201)) (-1007 (-201)) (-1007 (-201))) 69)) (-3813 (((-1007 (-201)) $) 40)) (-3800 (((-1007 (-201)) $) 39)) (-3786 (((-1007 (-201)) $) 38)) (-3803 (((-586 (-586 (-201))) $) 43)) (-3628 (((-1007 (-201)) $) 41)) (-1854 (((-520) (-520)) 32)) (-2007 (((-520) (-520)) 28)) (-1269 (((-520) (-520)) 30)) (-1237 (((-108) (-108)) 35)) (-1502 (((-520)) 31)) (-2469 (($ $ (-1007 (-201))) 72) (($ $) 73)) (-2696 (($ (-1 (-871 (-201)) (-201)) (-1007 (-201))) 77) (($ (-1 (-871 (-201)) (-201)) (-1007 (-201)) (-1007 (-201)) (-1007 (-201)) (-1007 (-201))) 78)) (-1990 (($ (-1 (-201) (-201)) (-1 (-201) (-201)) (-1 (-201) (-201)) (-1 (-201) (-201)) (-1007 (-201))) 80) (($ (-1 (-201) (-201)) (-1 (-201) (-201)) (-1 (-201) (-201)) (-1 (-201) (-201)) (-1007 (-201)) (-1007 (-201)) (-1007 (-201)) (-1007 (-201))) 81) (($ $ (-1007 (-201))) 75)) (-3217 (((-520)) 36)) (-3135 (((-520)) 27)) (-3134 (((-520)) 29)) (-3763 (((-586 (-586 (-871 (-201)))) $) 93)) (-2579 (((-108) (-108)) 37)) (-2188 (((-791) $) 92)) (-2840 (((-108)) 34)))
-(((-854) (-13 (-899) (-10 -8 (-15 -2696 ($ (-1 (-871 (-201)) (-201)) (-1007 (-201)))) (-15 -2696 ($ (-1 (-871 (-201)) (-201)) (-1007 (-201)) (-1007 (-201)) (-1007 (-201)) (-1007 (-201)))) (-15 -1990 ($ (-1 (-201) (-201)) (-1 (-201) (-201)) (-1 (-201) (-201)) (-1 (-201) (-201)) (-1007 (-201)))) (-15 -1990 ($ (-1 (-201) (-201)) (-1 (-201) (-201)) (-1 (-201) (-201)) (-1 (-201) (-201)) (-1007 (-201)) (-1007 (-201)) (-1007 (-201)) (-1007 (-201)))) (-15 -1990 ($ $ (-1007 (-201)))) (-15 -4150 ($ $ (-1007 (-201)) (-1007 (-201)) (-1007 (-201)))) (-15 -2469 ($ $ (-1007 (-201)))) (-15 -2469 ($ $)) (-15 -3628 ((-1007 (-201)) $)) (-15 -3803 ((-586 (-586 (-201))) $)) (-15 -3135 ((-520))) (-15 -2007 ((-520) (-520))) (-15 -3134 ((-520))) (-15 -1269 ((-520) (-520))) (-15 -1502 ((-520))) (-15 -1854 ((-520) (-520))) (-15 -2840 ((-108))) (-15 -1237 ((-108) (-108))) (-15 -3217 ((-520))) (-15 -2579 ((-108) (-108)))))) (T -854))
-((-2696 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-871 (-201)) (-201))) (-5 *3 (-1007 (-201))) (-5 *1 (-854)))) (-2696 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-871 (-201)) (-201))) (-5 *3 (-1007 (-201))) (-5 *1 (-854)))) (-1990 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-201) (-201))) (-5 *3 (-1007 (-201))) (-5 *1 (-854)))) (-1990 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-201) (-201))) (-5 *3 (-1007 (-201))) (-5 *1 (-854)))) (-1990 (*1 *1 *1 *2) (-12 (-5 *2 (-1007 (-201))) (-5 *1 (-854)))) (-4150 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1007 (-201))) (-5 *1 (-854)))) (-2469 (*1 *1 *1 *2) (-12 (-5 *2 (-1007 (-201))) (-5 *1 (-854)))) (-2469 (*1 *1 *1) (-5 *1 (-854))) (-3628 (*1 *2 *1) (-12 (-5 *2 (-1007 (-201))) (-5 *1 (-854)))) (-3803 (*1 *2 *1) (-12 (-5 *2 (-586 (-586 (-201)))) (-5 *1 (-854)))) (-3135 (*1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-854)))) (-2007 (*1 *2 *2) (-12 (-5 *2 (-520)) (-5 *1 (-854)))) (-3134 (*1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-854)))) (-1269 (*1 *2 *2) (-12 (-5 *2 (-520)) (-5 *1 (-854)))) (-1502 (*1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-854)))) (-1854 (*1 *2 *2) (-12 (-5 *2 (-520)) (-5 *1 (-854)))) (-2840 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-854)))) (-1237 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-854)))) (-3217 (*1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-854)))) (-2579 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-854)))))
-(-13 (-899) (-10 -8 (-15 -2696 ($ (-1 (-871 (-201)) (-201)) (-1007 (-201)))) (-15 -2696 ($ (-1 (-871 (-201)) (-201)) (-1007 (-201)) (-1007 (-201)) (-1007 (-201)) (-1007 (-201)))) (-15 -1990 ($ (-1 (-201) (-201)) (-1 (-201) (-201)) (-1 (-201) (-201)) (-1 (-201) (-201)) (-1007 (-201)))) (-15 -1990 ($ (-1 (-201) (-201)) (-1 (-201) (-201)) (-1 (-201) (-201)) (-1 (-201) (-201)) (-1007 (-201)) (-1007 (-201)) (-1007 (-201)) (-1007 (-201)))) (-15 -1990 ($ $ (-1007 (-201)))) (-15 -4150 ($ $ (-1007 (-201)) (-1007 (-201)) (-1007 (-201)))) (-15 -2469 ($ $ (-1007 (-201)))) (-15 -2469 ($ $)) (-15 -3628 ((-1007 (-201)) $)) (-15 -3803 ((-586 (-586 (-201))) $)) (-15 -3135 ((-520))) (-15 -2007 ((-520) (-520))) (-15 -3134 ((-520))) (-15 -1269 ((-520) (-520))) (-15 -1502 ((-520))) (-15 -1854 ((-520) (-520))) (-15 -2840 ((-108))) (-15 -1237 ((-108) (-108))) (-15 -3217 ((-520))) (-15 -2579 ((-108) (-108)))))
-((-4150 (($ $ (-1007 (-201))) 70) (($ $ (-1007 (-201)) (-1007 (-201))) 71)) (-3800 (((-1007 (-201)) $) 43)) (-3786 (((-1007 (-201)) $) 42)) (-3628 (((-1007 (-201)) $) 44)) (-1704 (((-520) (-520)) 36)) (-3498 (((-520) (-520)) 32)) (-2688 (((-520) (-520)) 34)) (-2112 (((-108) (-108)) 38)) (-3268 (((-520)) 35)) (-2469 (($ $ (-1007 (-201))) 74) (($ $) 75)) (-2696 (($ (-1 (-871 (-201)) (-201)) (-1007 (-201))) 84) (($ (-1 (-871 (-201)) (-201)) (-1007 (-201)) (-1007 (-201)) (-1007 (-201))) 85)) (-3494 (($ (-1 (-201) (-201)) (-1007 (-201))) 92) (($ (-1 (-201) (-201))) 95)) (-1990 (($ (-1 (-201) (-201)) (-1007 (-201))) 79) (($ (-1 (-201) (-201)) (-1007 (-201)) (-1007 (-201))) 80) (($ (-586 (-1 (-201) (-201))) (-1007 (-201))) 87) (($ (-586 (-1 (-201) (-201))) (-1007 (-201)) (-1007 (-201))) 88) (($ (-1 (-201) (-201)) (-1 (-201) (-201)) (-1007 (-201))) 81) (($ (-1 (-201) (-201)) (-1 (-201) (-201)) (-1007 (-201)) (-1007 (-201)) (-1007 (-201))) 82) (($ $ (-1007 (-201))) 76)) (-2894 (((-108) $) 39)) (-2427 (((-520)) 40)) (-2204 (((-520)) 31)) (-2165 (((-520)) 33)) (-3763 (((-586 (-586 (-871 (-201)))) $) 22)) (-3004 (((-108) (-108)) 41)) (-2188 (((-791) $) 106)) (-3513 (((-108)) 37)))
-(((-855) (-13 (-882) (-10 -8 (-15 -1990 ($ (-1 (-201) (-201)) (-1007 (-201)))) (-15 -1990 ($ (-1 (-201) (-201)) (-1007 (-201)) (-1007 (-201)))) (-15 -1990 ($ (-586 (-1 (-201) (-201))) (-1007 (-201)))) (-15 -1990 ($ (-586 (-1 (-201) (-201))) (-1007 (-201)) (-1007 (-201)))) (-15 -1990 ($ (-1 (-201) (-201)) (-1 (-201) (-201)) (-1007 (-201)))) (-15 -1990 ($ (-1 (-201) (-201)) (-1 (-201) (-201)) (-1007 (-201)) (-1007 (-201)) (-1007 (-201)))) (-15 -2696 ($ (-1 (-871 (-201)) (-201)) (-1007 (-201)))) (-15 -2696 ($ (-1 (-871 (-201)) (-201)) (-1007 (-201)) (-1007 (-201)) (-1007 (-201)))) (-15 -3494 ($ (-1 (-201) (-201)) (-1007 (-201)))) (-15 -3494 ($ (-1 (-201) (-201)))) (-15 -1990 ($ $ (-1007 (-201)))) (-15 -2894 ((-108) $)) (-15 -4150 ($ $ (-1007 (-201)))) (-15 -4150 ($ $ (-1007 (-201)) (-1007 (-201)))) (-15 -2469 ($ $ (-1007 (-201)))) (-15 -2469 ($ $)) (-15 -3628 ((-1007 (-201)) $)) (-15 -2204 ((-520))) (-15 -3498 ((-520) (-520))) (-15 -2165 ((-520))) (-15 -2688 ((-520) (-520))) (-15 -3268 ((-520))) (-15 -1704 ((-520) (-520))) (-15 -3513 ((-108))) (-15 -2112 ((-108) (-108))) (-15 -2427 ((-520))) (-15 -3004 ((-108) (-108)))))) (T -855))
-((-1990 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-201) (-201))) (-5 *3 (-1007 (-201))) (-5 *1 (-855)))) (-1990 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-201) (-201))) (-5 *3 (-1007 (-201))) (-5 *1 (-855)))) (-1990 (*1 *1 *2 *3) (-12 (-5 *2 (-586 (-1 (-201) (-201)))) (-5 *3 (-1007 (-201))) (-5 *1 (-855)))) (-1990 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-586 (-1 (-201) (-201)))) (-5 *3 (-1007 (-201))) (-5 *1 (-855)))) (-1990 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-201) (-201))) (-5 *3 (-1007 (-201))) (-5 *1 (-855)))) (-1990 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-201) (-201))) (-5 *3 (-1007 (-201))) (-5 *1 (-855)))) (-2696 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-871 (-201)) (-201))) (-5 *3 (-1007 (-201))) (-5 *1 (-855)))) (-2696 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-871 (-201)) (-201))) (-5 *3 (-1007 (-201))) (-5 *1 (-855)))) (-3494 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-201) (-201))) (-5 *3 (-1007 (-201))) (-5 *1 (-855)))) (-3494 (*1 *1 *2) (-12 (-5 *2 (-1 (-201) (-201))) (-5 *1 (-855)))) (-1990 (*1 *1 *1 *2) (-12 (-5 *2 (-1007 (-201))) (-5 *1 (-855)))) (-2894 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-855)))) (-4150 (*1 *1 *1 *2) (-12 (-5 *2 (-1007 (-201))) (-5 *1 (-855)))) (-4150 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1007 (-201))) (-5 *1 (-855)))) (-2469 (*1 *1 *1 *2) (-12 (-5 *2 (-1007 (-201))) (-5 *1 (-855)))) (-2469 (*1 *1 *1) (-5 *1 (-855))) (-3628 (*1 *2 *1) (-12 (-5 *2 (-1007 (-201))) (-5 *1 (-855)))) (-2204 (*1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-855)))) (-3498 (*1 *2 *2) (-12 (-5 *2 (-520)) (-5 *1 (-855)))) (-2165 (*1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-855)))) (-2688 (*1 *2 *2) (-12 (-5 *2 (-520)) (-5 *1 (-855)))) (-3268 (*1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-855)))) (-1704 (*1 *2 *2) (-12 (-5 *2 (-520)) (-5 *1 (-855)))) (-3513 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-855)))) (-2112 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-855)))) (-2427 (*1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-855)))) (-3004 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-855)))))
-(-13 (-882) (-10 -8 (-15 -1990 ($ (-1 (-201) (-201)) (-1007 (-201)))) (-15 -1990 ($ (-1 (-201) (-201)) (-1007 (-201)) (-1007 (-201)))) (-15 -1990 ($ (-586 (-1 (-201) (-201))) (-1007 (-201)))) (-15 -1990 ($ (-586 (-1 (-201) (-201))) (-1007 (-201)) (-1007 (-201)))) (-15 -1990 ($ (-1 (-201) (-201)) (-1 (-201) (-201)) (-1007 (-201)))) (-15 -1990 ($ (-1 (-201) (-201)) (-1 (-201) (-201)) (-1007 (-201)) (-1007 (-201)) (-1007 (-201)))) (-15 -2696 ($ (-1 (-871 (-201)) (-201)) (-1007 (-201)))) (-15 -2696 ($ (-1 (-871 (-201)) (-201)) (-1007 (-201)) (-1007 (-201)) (-1007 (-201)))) (-15 -3494 ($ (-1 (-201) (-201)) (-1007 (-201)))) (-15 -3494 ($ (-1 (-201) (-201)))) (-15 -1990 ($ $ (-1007 (-201)))) (-15 -2894 ((-108) $)) (-15 -4150 ($ $ (-1007 (-201)))) (-15 -4150 ($ $ (-1007 (-201)) (-1007 (-201)))) (-15 -2469 ($ $ (-1007 (-201)))) (-15 -2469 ($ $)) (-15 -3628 ((-1007 (-201)) $)) (-15 -2204 ((-520))) (-15 -3498 ((-520) (-520))) (-15 -2165 ((-520))) (-15 -2688 ((-520) (-520))) (-15 -3268 ((-520))) (-15 -1704 ((-520) (-520))) (-15 -3513 ((-108))) (-15 -2112 ((-108) (-108))) (-15 -2427 ((-520))) (-15 -3004 ((-108) (-108)))))
-((-3077 (((-586 (-1007 (-201))) (-586 (-586 (-871 (-201))))) 23)))
-(((-856) (-10 -7 (-15 -3077 ((-586 (-1007 (-201))) (-586 (-586 (-871 (-201)))))))) (T -856))
-((-3077 (*1 *2 *3) (-12 (-5 *3 (-586 (-586 (-871 (-201))))) (-5 *2 (-586 (-1007 (-201)))) (-5 *1 (-856)))))
-(-10 -7 (-15 -3077 ((-586 (-1007 (-201))) (-586 (-586 (-871 (-201)))))))
-((-2697 ((|#2| |#2|) 25)) (-1792 ((|#2| |#2|) 26)) (-2675 ((|#2| |#2|) 24)) (-2978 ((|#2| |#2| (-1066)) 23)))
-(((-857 |#1| |#2|) (-10 -7 (-15 -2978 (|#2| |#2| (-1066))) (-15 -2675 (|#2| |#2|)) (-15 -2697 (|#2| |#2|)) (-15 -1792 (|#2| |#2|))) (-783) (-403 |#1|)) (T -857))
-((-1792 (*1 *2 *2) (-12 (-4 *3 (-783)) (-5 *1 (-857 *3 *2)) (-4 *2 (-403 *3)))) (-2697 (*1 *2 *2) (-12 (-4 *3 (-783)) (-5 *1 (-857 *3 *2)) (-4 *2 (-403 *3)))) (-2675 (*1 *2 *2) (-12 (-4 *3 (-783)) (-5 *1 (-857 *3 *2)) (-4 *2 (-403 *3)))) (-2978 (*1 *2 *2 *3) (-12 (-5 *3 (-1066)) (-4 *4 (-783)) (-5 *1 (-857 *4 *2)) (-4 *2 (-403 *4)))))
-(-10 -7 (-15 -2978 (|#2| |#2| (-1066))) (-15 -2675 (|#2| |#2|)) (-15 -2697 (|#2| |#2|)) (-15 -1792 (|#2| |#2|)))
-((-2697 (((-289 (-520)) (-1083)) 15)) (-1792 (((-289 (-520)) (-1083)) 13)) (-2675 (((-289 (-520)) (-1083)) 11)) (-2978 (((-289 (-520)) (-1083) (-1066)) 18)))
-(((-858) (-10 -7 (-15 -2978 ((-289 (-520)) (-1083) (-1066))) (-15 -2675 ((-289 (-520)) (-1083))) (-15 -2697 ((-289 (-520)) (-1083))) (-15 -1792 ((-289 (-520)) (-1083))))) (T -858))
-((-1792 (*1 *2 *3) (-12 (-5 *3 (-1083)) (-5 *2 (-289 (-520))) (-5 *1 (-858)))) (-2697 (*1 *2 *3) (-12 (-5 *3 (-1083)) (-5 *2 (-289 (-520))) (-5 *1 (-858)))) (-2675 (*1 *2 *3) (-12 (-5 *3 (-1083)) (-5 *2 (-289 (-520))) (-5 *1 (-858)))) (-2978 (*1 *2 *3 *4) (-12 (-5 *3 (-1083)) (-5 *4 (-1066)) (-5 *2 (-289 (-520))) (-5 *1 (-858)))))
-(-10 -7 (-15 -2978 ((-289 (-520)) (-1083) (-1066))) (-15 -2675 ((-289 (-520)) (-1083))) (-15 -2697 ((-289 (-520)) (-1083))) (-15 -1792 ((-289 (-520)) (-1083))))
-((-1272 (((-817 |#1| |#3|) |#2| (-820 |#1|) (-817 |#1| |#3|)) 24)) (-3641 (((-1 (-108) |#2|) (-1 (-108) |#3|)) 12)))
-(((-859 |#1| |#2| |#3|) (-10 -7 (-15 -3641 ((-1 (-108) |#2|) (-1 (-108) |#3|))) (-15 -1272 ((-817 |#1| |#3|) |#2| (-820 |#1|) (-817 |#1| |#3|)))) (-1012) (-814 |#1|) (-13 (-1012) (-960 |#2|))) (T -859))
-((-1272 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-817 *5 *6)) (-5 *4 (-820 *5)) (-4 *5 (-1012)) (-4 *6 (-13 (-1012) (-960 *3))) (-4 *3 (-814 *5)) (-5 *1 (-859 *5 *3 *6)))) (-3641 (*1 *2 *3) (-12 (-5 *3 (-1 (-108) *6)) (-4 *6 (-13 (-1012) (-960 *5))) (-4 *5 (-814 *4)) (-4 *4 (-1012)) (-5 *2 (-1 (-108) *5)) (-5 *1 (-859 *4 *5 *6)))))
-(-10 -7 (-15 -3641 ((-1 (-108) |#2|) (-1 (-108) |#3|))) (-15 -1272 ((-817 |#1| |#3|) |#2| (-820 |#1|) (-817 |#1| |#3|))))
-((-1272 (((-817 |#1| |#3|) |#3| (-820 |#1|) (-817 |#1| |#3|)) 29)))
-(((-860 |#1| |#2| |#3|) (-10 -7 (-15 -1272 ((-817 |#1| |#3|) |#3| (-820 |#1|) (-817 |#1| |#3|)))) (-1012) (-13 (-512) (-783) (-814 |#1|)) (-13 (-403 |#2|) (-561 (-820 |#1|)) (-814 |#1|) (-960 (-559 $)))) (T -860))
-((-1272 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-817 *5 *3)) (-4 *5 (-1012)) (-4 *3 (-13 (-403 *6) (-561 *4) (-814 *5) (-960 (-559 $)))) (-5 *4 (-820 *5)) (-4 *6 (-13 (-512) (-783) (-814 *5))) (-5 *1 (-860 *5 *6 *3)))))
-(-10 -7 (-15 -1272 ((-817 |#1| |#3|) |#3| (-820 |#1|) (-817 |#1| |#3|))))
-((-1272 (((-817 (-520) |#1|) |#1| (-820 (-520)) (-817 (-520) |#1|)) 12)))
-(((-861 |#1|) (-10 -7 (-15 -1272 ((-817 (-520) |#1|) |#1| (-820 (-520)) (-817 (-520) |#1|)))) (-505)) (T -861))
-((-1272 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-817 (-520) *3)) (-5 *4 (-820 (-520))) (-4 *3 (-505)) (-5 *1 (-861 *3)))))
-(-10 -7 (-15 -1272 ((-817 (-520) |#1|) |#1| (-820 (-520)) (-817 (-520) |#1|))))
-((-1272 (((-817 |#1| |#2|) (-559 |#2|) (-820 |#1|) (-817 |#1| |#2|)) 52)))
-(((-862 |#1| |#2|) (-10 -7 (-15 -1272 ((-817 |#1| |#2|) (-559 |#2|) (-820 |#1|) (-817 |#1| |#2|)))) (-1012) (-13 (-783) (-960 (-559 $)) (-561 (-820 |#1|)) (-814 |#1|))) (T -862))
-((-1272 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-817 *5 *6)) (-5 *3 (-559 *6)) (-4 *5 (-1012)) (-4 *6 (-13 (-783) (-960 (-559 $)) (-561 *4) (-814 *5))) (-5 *4 (-820 *5)) (-5 *1 (-862 *5 *6)))))
-(-10 -7 (-15 -1272 ((-817 |#1| |#2|) (-559 |#2|) (-820 |#1|) (-817 |#1| |#2|))))
-((-1272 (((-813 |#1| |#2| |#3|) |#3| (-820 |#1|) (-813 |#1| |#2| |#3|)) 14)))
-(((-863 |#1| |#2| |#3|) (-10 -7 (-15 -1272 ((-813 |#1| |#2| |#3|) |#3| (-820 |#1|) (-813 |#1| |#2| |#3|)))) (-1012) (-814 |#1|) (-606 |#2|)) (T -863))
-((-1272 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-813 *5 *6 *3)) (-5 *4 (-820 *5)) (-4 *5 (-1012)) (-4 *6 (-814 *5)) (-4 *3 (-606 *6)) (-5 *1 (-863 *5 *6 *3)))))
-(-10 -7 (-15 -1272 ((-813 |#1| |#2| |#3|) |#3| (-820 |#1|) (-813 |#1| |#2| |#3|))))
-((-1272 (((-817 |#1| |#5|) |#5| (-820 |#1|) (-817 |#1| |#5|)) 17 (|has| |#3| (-814 |#1|))) (((-817 |#1| |#5|) |#5| (-820 |#1|) (-817 |#1| |#5|) (-1 (-817 |#1| |#5|) |#3| (-820 |#1|) (-817 |#1| |#5|))) 16)))
-(((-864 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1272 ((-817 |#1| |#5|) |#5| (-820 |#1|) (-817 |#1| |#5|) (-1 (-817 |#1| |#5|) |#3| (-820 |#1|) (-817 |#1| |#5|)))) (IF (|has| |#3| (-814 |#1|)) (-15 -1272 ((-817 |#1| |#5|) |#5| (-820 |#1|) (-817 |#1| |#5|))) |%noBranch|)) (-1012) (-728) (-783) (-13 (-969) (-783) (-814 |#1|)) (-13 (-877 |#4| |#2| |#3|) (-561 (-820 |#1|)))) (T -864))
-((-1272 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-817 *5 *3)) (-4 *5 (-1012)) (-4 *3 (-13 (-877 *8 *6 *7) (-561 *4))) (-5 *4 (-820 *5)) (-4 *7 (-814 *5)) (-4 *6 (-728)) (-4 *7 (-783)) (-4 *8 (-13 (-969) (-783) (-814 *5))) (-5 *1 (-864 *5 *6 *7 *8 *3)))) (-1272 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-817 *6 *3) *8 (-820 *6) (-817 *6 *3))) (-4 *8 (-783)) (-5 *2 (-817 *6 *3)) (-5 *4 (-820 *6)) (-4 *6 (-1012)) (-4 *3 (-13 (-877 *9 *7 *8) (-561 *4))) (-4 *7 (-728)) (-4 *9 (-13 (-969) (-783) (-814 *6))) (-5 *1 (-864 *6 *7 *8 *9 *3)))))
-(-10 -7 (-15 -1272 ((-817 |#1| |#5|) |#5| (-820 |#1|) (-817 |#1| |#5|) (-1 (-817 |#1| |#5|) |#3| (-820 |#1|) (-817 |#1| |#5|)))) (IF (|has| |#3| (-814 |#1|)) (-15 -1272 ((-817 |#1| |#5|) |#5| (-820 |#1|) (-817 |#1| |#5|))) |%noBranch|))
-((-1869 ((|#2| |#2| (-586 (-1 (-108) |#3|))) 11) ((|#2| |#2| (-1 (-108) |#3|)) 12)))
-(((-865 |#1| |#2| |#3|) (-10 -7 (-15 -1869 (|#2| |#2| (-1 (-108) |#3|))) (-15 -1869 (|#2| |#2| (-586 (-1 (-108) |#3|))))) (-783) (-403 |#1|) (-1118)) (T -865))
-((-1869 (*1 *2 *2 *3) (-12 (-5 *3 (-586 (-1 (-108) *5))) (-4 *5 (-1118)) (-4 *4 (-783)) (-5 *1 (-865 *4 *2 *5)) (-4 *2 (-403 *4)))) (-1869 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-108) *5)) (-4 *5 (-1118)) (-4 *4 (-783)) (-5 *1 (-865 *4 *2 *5)) (-4 *2 (-403 *4)))))
-(-10 -7 (-15 -1869 (|#2| |#2| (-1 (-108) |#3|))) (-15 -1869 (|#2| |#2| (-586 (-1 (-108) |#3|)))))
-((-1869 (((-289 (-520)) (-1083) (-586 (-1 (-108) |#1|))) 16) (((-289 (-520)) (-1083) (-1 (-108) |#1|)) 13)))
-(((-866 |#1|) (-10 -7 (-15 -1869 ((-289 (-520)) (-1083) (-1 (-108) |#1|))) (-15 -1869 ((-289 (-520)) (-1083) (-586 (-1 (-108) |#1|))))) (-1118)) (T -866))
-((-1869 (*1 *2 *3 *4) (-12 (-5 *3 (-1083)) (-5 *4 (-586 (-1 (-108) *5))) (-4 *5 (-1118)) (-5 *2 (-289 (-520))) (-5 *1 (-866 *5)))) (-1869 (*1 *2 *3 *4) (-12 (-5 *3 (-1083)) (-5 *4 (-1 (-108) *5)) (-4 *5 (-1118)) (-5 *2 (-289 (-520))) (-5 *1 (-866 *5)))))
-(-10 -7 (-15 -1869 ((-289 (-520)) (-1083) (-1 (-108) |#1|))) (-15 -1869 ((-289 (-520)) (-1083) (-586 (-1 (-108) |#1|)))))
-((-1272 (((-817 |#1| |#3|) |#3| (-820 |#1|) (-817 |#1| |#3|)) 25)))
-(((-867 |#1| |#2| |#3|) (-10 -7 (-15 -1272 ((-817 |#1| |#3|) |#3| (-820 |#1|) (-817 |#1| |#3|)))) (-1012) (-13 (-512) (-814 |#1|) (-561 (-820 |#1|))) (-917 |#2|)) (T -867))
-((-1272 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-817 *5 *3)) (-4 *5 (-1012)) (-4 *3 (-917 *6)) (-4 *6 (-13 (-512) (-814 *5) (-561 *4))) (-5 *4 (-820 *5)) (-5 *1 (-867 *5 *6 *3)))))
-(-10 -7 (-15 -1272 ((-817 |#1| |#3|) |#3| (-820 |#1|) (-817 |#1| |#3|))))
-((-1272 (((-817 |#1| (-1083)) (-1083) (-820 |#1|) (-817 |#1| (-1083))) 17)))
-(((-868 |#1|) (-10 -7 (-15 -1272 ((-817 |#1| (-1083)) (-1083) (-820 |#1|) (-817 |#1| (-1083))))) (-1012)) (T -868))
-((-1272 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-817 *5 (-1083))) (-5 *3 (-1083)) (-5 *4 (-820 *5)) (-4 *5 (-1012)) (-5 *1 (-868 *5)))))
-(-10 -7 (-15 -1272 ((-817 |#1| (-1083)) (-1083) (-820 |#1|) (-817 |#1| (-1083)))))
-((-3200 (((-817 |#1| |#3|) (-586 |#3|) (-586 (-820 |#1|)) (-817 |#1| |#3|) (-1 (-817 |#1| |#3|) |#3| (-820 |#1|) (-817 |#1| |#3|))) 33)) (-1272 (((-817 |#1| |#3|) (-586 |#3|) (-586 (-820 |#1|)) (-1 |#3| (-586 |#3|)) (-817 |#1| |#3|) (-1 (-817 |#1| |#3|) |#3| (-820 |#1|) (-817 |#1| |#3|))) 32)))
-(((-869 |#1| |#2| |#3|) (-10 -7 (-15 -1272 ((-817 |#1| |#3|) (-586 |#3|) (-586 (-820 |#1|)) (-1 |#3| (-586 |#3|)) (-817 |#1| |#3|) (-1 (-817 |#1| |#3|) |#3| (-820 |#1|) (-817 |#1| |#3|)))) (-15 -3200 ((-817 |#1| |#3|) (-586 |#3|) (-586 (-820 |#1|)) (-817 |#1| |#3|) (-1 (-817 |#1| |#3|) |#3| (-820 |#1|) (-817 |#1| |#3|))))) (-1012) (-13 (-969) (-783)) (-13 (-969) (-561 (-820 |#1|)) (-960 |#2|))) (T -869))
-((-3200 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-586 *8)) (-5 *4 (-586 (-820 *6))) (-5 *5 (-1 (-817 *6 *8) *8 (-820 *6) (-817 *6 *8))) (-4 *6 (-1012)) (-4 *8 (-13 (-969) (-561 (-820 *6)) (-960 *7))) (-5 *2 (-817 *6 *8)) (-4 *7 (-13 (-969) (-783))) (-5 *1 (-869 *6 *7 *8)))) (-1272 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-586 (-820 *7))) (-5 *5 (-1 *9 (-586 *9))) (-5 *6 (-1 (-817 *7 *9) *9 (-820 *7) (-817 *7 *9))) (-4 *7 (-1012)) (-4 *9 (-13 (-969) (-561 (-820 *7)) (-960 *8))) (-5 *2 (-817 *7 *9)) (-5 *3 (-586 *9)) (-4 *8 (-13 (-969) (-783))) (-5 *1 (-869 *7 *8 *9)))))
-(-10 -7 (-15 -1272 ((-817 |#1| |#3|) (-586 |#3|) (-586 (-820 |#1|)) (-1 |#3| (-586 |#3|)) (-817 |#1| |#3|) (-1 (-817 |#1| |#3|) |#3| (-820 |#1|) (-817 |#1| |#3|)))) (-15 -3200 ((-817 |#1| |#3|) (-586 |#3|) (-586 (-820 |#1|)) (-817 |#1| |#3|) (-1 (-817 |#1| |#3|) |#3| (-820 |#1|) (-817 |#1| |#3|)))))
-((-1843 (((-1079 (-380 (-520))) (-520)) 62)) (-3111 (((-1079 (-520)) (-520)) 65)) (-1289 (((-1079 (-520)) (-520)) 59)) (-2073 (((-520) (-1079 (-520))) 54)) (-2154 (((-1079 (-380 (-520))) (-520)) 48)) (-1668 (((-1079 (-520)) (-520)) 37)) (-2989 (((-1079 (-520)) (-520)) 67)) (-2259 (((-1079 (-520)) (-520)) 66)) (-3340 (((-1079 (-380 (-520))) (-520)) 50)))
-(((-870) (-10 -7 (-15 -3340 ((-1079 (-380 (-520))) (-520))) (-15 -2259 ((-1079 (-520)) (-520))) (-15 -2989 ((-1079 (-520)) (-520))) (-15 -1668 ((-1079 (-520)) (-520))) (-15 -2154 ((-1079 (-380 (-520))) (-520))) (-15 -2073 ((-520) (-1079 (-520)))) (-15 -1289 ((-1079 (-520)) (-520))) (-15 -3111 ((-1079 (-520)) (-520))) (-15 -1843 ((-1079 (-380 (-520))) (-520))))) (T -870))
-((-1843 (*1 *2 *3) (-12 (-5 *2 (-1079 (-380 (-520)))) (-5 *1 (-870)) (-5 *3 (-520)))) (-3111 (*1 *2 *3) (-12 (-5 *2 (-1079 (-520))) (-5 *1 (-870)) (-5 *3 (-520)))) (-1289 (*1 *2 *3) (-12 (-5 *2 (-1079 (-520))) (-5 *1 (-870)) (-5 *3 (-520)))) (-2073 (*1 *2 *3) (-12 (-5 *3 (-1079 (-520))) (-5 *2 (-520)) (-5 *1 (-870)))) (-2154 (*1 *2 *3) (-12 (-5 *2 (-1079 (-380 (-520)))) (-5 *1 (-870)) (-5 *3 (-520)))) (-1668 (*1 *2 *3) (-12 (-5 *2 (-1079 (-520))) (-5 *1 (-870)) (-5 *3 (-520)))) (-2989 (*1 *2 *3) (-12 (-5 *2 (-1079 (-520))) (-5 *1 (-870)) (-5 *3 (-520)))) (-2259 (*1 *2 *3) (-12 (-5 *2 (-1079 (-520))) (-5 *1 (-870)) (-5 *3 (-520)))) (-3340 (*1 *2 *3) (-12 (-5 *2 (-1079 (-380 (-520)))) (-5 *1 (-870)) (-5 *3 (-520)))))
-(-10 -7 (-15 -3340 ((-1079 (-380 (-520))) (-520))) (-15 -2259 ((-1079 (-520)) (-520))) (-15 -2989 ((-1079 (-520)) (-520))) (-15 -1668 ((-1079 (-520)) (-520))) (-15 -2154 ((-1079 (-380 (-520))) (-520))) (-15 -2073 ((-520) (-1079 (-520)))) (-15 -1289 ((-1079 (-520)) (-520))) (-15 -3111 ((-1079 (-520)) (-520))) (-15 -1843 ((-1079 (-380 (-520))) (-520))))
-((-1414 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-3477 (($ (-706)) NIL (|has| |#1| (-23)))) (-1476 (((-1169) $ (-520) (-520)) NIL (|has| $ (-6 -4230)))) (-4029 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-783)))) (-3587 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4230))) (($ $) NIL (-12 (|has| $ (-6 -4230)) (|has| |#1| (-783))))) (-3210 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-783)))) (-2063 (((-108) $ (-706)) NIL)) (-2377 ((|#1| $ (-520) |#1|) 11 (|has| $ (-6 -4230))) ((|#1| $ (-1131 (-520)) |#1|) NIL (|has| $ (-6 -4230)))) (-1627 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-3961 (($) NIL T CONST)) (-2447 (($ $) NIL (|has| $ (-6 -4230)))) (-1861 (($ $) NIL)) (-2331 (($ $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-1421 (($ |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-3856 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4229))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4229)))) (-3846 ((|#1| $ (-520) |#1|) NIL (|has| $ (-6 -4230)))) (-3623 ((|#1| $ (-520)) NIL)) (-3232 (((-520) (-1 (-108) |#1|) $) NIL) (((-520) |#1| $) NIL (|has| |#1| (-1012))) (((-520) |#1| $ (-520)) NIL (|has| |#1| (-1012)))) (-2734 (($ (-586 |#1|)) 13)) (-3828 (((-586 |#1|) $) NIL (|has| $ (-6 -4229)))) (-3948 (((-626 |#1|) $ $) NIL (|has| |#1| (-969)))) (-1810 (($ (-706) |#1|) 8)) (-3027 (((-108) $ (-706)) NIL)) (-2567 (((-520) $) 10 (|has| (-520) (-783)))) (-2809 (($ $ $) NIL (|has| |#1| (-783)))) (-1819 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-783)))) (-3702 (((-586 |#1|) $) NIL (|has| $ (-6 -4229)))) (-2422 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-1752 (((-520) $) NIL (|has| (-520) (-783)))) (-2446 (($ $ $) NIL (|has| |#1| (-783)))) (-3830 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3224 ((|#1| $) NIL (-12 (|has| |#1| (-926)) (|has| |#1| (-969))))) (-1390 (((-108) $ (-706)) NIL)) (-2515 ((|#1| $) NIL (-12 (|has| |#1| (-926)) (|has| |#1| (-969))))) (-1239 (((-1066) $) NIL (|has| |#1| (-1012)))) (-1659 (($ |#1| $ (-520)) NIL) (($ $ $ (-520)) NIL)) (-3622 (((-586 (-520)) $) NIL)) (-2603 (((-108) (-520) $) NIL)) (-4142 (((-1030) $) NIL (|has| |#1| (-1012)))) (-2293 ((|#1| $) NIL (|has| (-520) (-783)))) (-2985 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-2936 (($ $ |#1|) NIL (|has| $ (-6 -4230)))) (-2116 (($ $ (-586 |#1|)) 24)) (-4155 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 |#1|))) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-268 |#1|)) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-586 |#1|) (-586 |#1|)) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))) (-2533 (((-108) $ $) NIL)) (-2094 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-1523 (((-586 |#1|) $) NIL)) (-4018 (((-108) $) NIL)) (-2238 (($) NIL)) (-2543 ((|#1| $ (-520) |#1|) NIL) ((|#1| $ (-520)) 18) (($ $ (-1131 (-520))) NIL)) (-3639 ((|#1| $ $) NIL (|has| |#1| (-969)))) (-1556 (((-849) $) 16)) (-3690 (($ $ (-520)) NIL) (($ $ (-1131 (-520))) NIL)) (-1480 (($ $ $) 22)) (-4159 (((-706) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229))) (((-706) |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-1913 (($ $ $ (-520)) NIL (|has| $ (-6 -4230)))) (-2403 (($ $) NIL)) (-1429 (((-496) $) NIL (|has| |#1| (-561 (-496)))) (($ (-586 |#1|)) 17)) (-2200 (($ (-586 |#1|)) NIL)) (-4156 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 23) (($ (-586 $)) NIL)) (-2188 (((-791) $) NIL (|has| |#1| (-560 (-791))))) (-1662 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-1573 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1557 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1530 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-1565 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1548 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1611 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1601 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-520) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-662))) (($ $ |#1|) NIL (|has| |#1| (-662)))) (-3474 (((-706) $) 14 (|has| $ (-6 -4229)))))
-(((-871 |#1|) (-905 |#1|) (-969)) (T -871))
-NIL
-(-905 |#1|)
-((-3892 (((-452 |#1| |#2|) (-880 |#2|)) 17)) (-2055 (((-223 |#1| |#2|) (-880 |#2|)) 29)) (-2940 (((-880 |#2|) (-452 |#1| |#2|)) 22)) (-1200 (((-223 |#1| |#2|) (-452 |#1| |#2|)) 53)) (-3239 (((-880 |#2|) (-223 |#1| |#2|)) 26)) (-2776 (((-452 |#1| |#2|) (-223 |#1| |#2|)) 44)))
-(((-872 |#1| |#2|) (-10 -7 (-15 -2776 ((-452 |#1| |#2|) (-223 |#1| |#2|))) (-15 -1200 ((-223 |#1| |#2|) (-452 |#1| |#2|))) (-15 -3892 ((-452 |#1| |#2|) (-880 |#2|))) (-15 -2940 ((-880 |#2|) (-452 |#1| |#2|))) (-15 -3239 ((-880 |#2|) (-223 |#1| |#2|))) (-15 -2055 ((-223 |#1| |#2|) (-880 |#2|)))) (-586 (-1083)) (-969)) (T -872))
-((-2055 (*1 *2 *3) (-12 (-5 *3 (-880 *5)) (-4 *5 (-969)) (-5 *2 (-223 *4 *5)) (-5 *1 (-872 *4 *5)) (-14 *4 (-586 (-1083))))) (-3239 (*1 *2 *3) (-12 (-5 *3 (-223 *4 *5)) (-14 *4 (-586 (-1083))) (-4 *5 (-969)) (-5 *2 (-880 *5)) (-5 *1 (-872 *4 *5)))) (-2940 (*1 *2 *3) (-12 (-5 *3 (-452 *4 *5)) (-14 *4 (-586 (-1083))) (-4 *5 (-969)) (-5 *2 (-880 *5)) (-5 *1 (-872 *4 *5)))) (-3892 (*1 *2 *3) (-12 (-5 *3 (-880 *5)) (-4 *5 (-969)) (-5 *2 (-452 *4 *5)) (-5 *1 (-872 *4 *5)) (-14 *4 (-586 (-1083))))) (-1200 (*1 *2 *3) (-12 (-5 *3 (-452 *4 *5)) (-14 *4 (-586 (-1083))) (-4 *5 (-969)) (-5 *2 (-223 *4 *5)) (-5 *1 (-872 *4 *5)))) (-2776 (*1 *2 *3) (-12 (-5 *3 (-223 *4 *5)) (-14 *4 (-586 (-1083))) (-4 *5 (-969)) (-5 *2 (-452 *4 *5)) (-5 *1 (-872 *4 *5)))))
-(-10 -7 (-15 -2776 ((-452 |#1| |#2|) (-223 |#1| |#2|))) (-15 -1200 ((-223 |#1| |#2|) (-452 |#1| |#2|))) (-15 -3892 ((-452 |#1| |#2|) (-880 |#2|))) (-15 -2940 ((-880 |#2|) (-452 |#1| |#2|))) (-15 -3239 ((-880 |#2|) (-223 |#1| |#2|))) (-15 -2055 ((-223 |#1| |#2|) (-880 |#2|))))
-((-2274 (((-586 |#2|) |#2| |#2|) 10)) (-1395 (((-706) (-586 |#1|)) 38 (|has| |#1| (-781)))) (-2610 (((-586 |#2|) |#2|) 11)) (-1384 (((-706) (-586 |#1|) (-520) (-520)) 37 (|has| |#1| (-781)))) (-3422 ((|#1| |#2|) 33 (|has| |#1| (-781)))))
-(((-873 |#1| |#2|) (-10 -7 (-15 -2274 ((-586 |#2|) |#2| |#2|)) (-15 -2610 ((-586 |#2|) |#2|)) (IF (|has| |#1| (-781)) (PROGN (-15 -3422 (|#1| |#2|)) (-15 -1395 ((-706) (-586 |#1|))) (-15 -1384 ((-706) (-586 |#1|) (-520) (-520)))) |%noBranch|)) (-336) (-1140 |#1|)) (T -873))
-((-1384 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-586 *5)) (-5 *4 (-520)) (-4 *5 (-781)) (-4 *5 (-336)) (-5 *2 (-706)) (-5 *1 (-873 *5 *6)) (-4 *6 (-1140 *5)))) (-1395 (*1 *2 *3) (-12 (-5 *3 (-586 *4)) (-4 *4 (-781)) (-4 *4 (-336)) (-5 *2 (-706)) (-5 *1 (-873 *4 *5)) (-4 *5 (-1140 *4)))) (-3422 (*1 *2 *3) (-12 (-4 *2 (-336)) (-4 *2 (-781)) (-5 *1 (-873 *2 *3)) (-4 *3 (-1140 *2)))) (-2610 (*1 *2 *3) (-12 (-4 *4 (-336)) (-5 *2 (-586 *3)) (-5 *1 (-873 *4 *3)) (-4 *3 (-1140 *4)))) (-2274 (*1 *2 *3 *3) (-12 (-4 *4 (-336)) (-5 *2 (-586 *3)) (-5 *1 (-873 *4 *3)) (-4 *3 (-1140 *4)))))
-(-10 -7 (-15 -2274 ((-586 |#2|) |#2| |#2|)) (-15 -2610 ((-586 |#2|) |#2|)) (IF (|has| |#1| (-781)) (PROGN (-15 -3422 (|#1| |#2|)) (-15 -1395 ((-706) (-586 |#1|))) (-15 -1384 ((-706) (-586 |#1|) (-520) (-520)))) |%noBranch|))
-((-1389 (((-880 |#2|) (-1 |#2| |#1|) (-880 |#1|)) 18)))
-(((-874 |#1| |#2|) (-10 -7 (-15 -1389 ((-880 |#2|) (-1 |#2| |#1|) (-880 |#1|)))) (-969) (-969)) (T -874))
-((-1389 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-880 *5)) (-4 *5 (-969)) (-4 *6 (-969)) (-5 *2 (-880 *6)) (-5 *1 (-874 *5 *6)))))
-(-10 -7 (-15 -1389 ((-880 |#2|) (-1 |#2| |#1|) (-880 |#1|))))
-((-1278 (((-1137 |#1| (-880 |#2|)) (-880 |#2|) (-1160 |#1|)) 18)))
-(((-875 |#1| |#2|) (-10 -7 (-15 -1278 ((-1137 |#1| (-880 |#2|)) (-880 |#2|) (-1160 |#1|)))) (-1083) (-969)) (T -875))
-((-1278 (*1 *2 *3 *4) (-12 (-5 *4 (-1160 *5)) (-14 *5 (-1083)) (-4 *6 (-969)) (-5 *2 (-1137 *5 (-880 *6))) (-5 *1 (-875 *5 *6)) (-5 *3 (-880 *6)))))
-(-10 -7 (-15 -1278 ((-1137 |#1| (-880 |#2|)) (-880 |#2|) (-1160 |#1|))))
-((-3665 (((-706) $) 70) (((-706) $ (-586 |#4|)) 73)) (-3024 (($ $) 170)) (-1507 (((-391 $) $) 162)) (-3481 (((-3 (-586 (-1079 $)) "failed") (-586 (-1079 $)) (-1079 $)) 113)) (-1296 (((-3 |#2| "failed") $) NIL) (((-3 (-380 (-520)) "failed") $) NIL) (((-3 (-520) "failed") $) NIL) (((-3 |#4| "failed") $) 59)) (-1482 ((|#2| $) NIL) (((-380 (-520)) $) NIL) (((-520) $) NIL) ((|#4| $) 58)) (-2413 (($ $ $ |#4|) 75)) (-2756 (((-626 (-520)) (-626 $)) NIL) (((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 $) (-1164 $)) NIL) (((-2 (|:| -3927 (-626 |#2|)) (|:| |vec| (-1164 |#2|))) (-626 $) (-1164 $)) 103) (((-626 |#2|) (-626 $)) 96)) (-3923 (($ $) 177) (($ $ |#4|) 180)) (-3142 (((-586 $) $) 62)) (-1272 (((-817 (-352) $) $ (-820 (-352)) (-817 (-352) $)) 195) (((-817 (-520) $) $ (-820 (-520)) (-817 (-520) $)) 189)) (-1992 (((-586 $) $) 28)) (-4039 (($ |#2| |#3|) NIL) (($ $ |#4| (-706)) NIL) (($ $ (-586 |#4|) (-586 (-706))) 56)) (-1910 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $ |#4|) 159)) (-3548 (((-3 (-586 $) "failed") $) 42)) (-1205 (((-3 (-586 $) "failed") $) 31)) (-2568 (((-3 (-2 (|:| |var| |#4|) (|:| -2647 (-706))) "failed") $) 46)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) 106)) (-4133 (((-391 (-1079 $)) (-1079 $)) 119)) (-2017 (((-391 (-1079 $)) (-1079 $)) 117)) (-1916 (((-391 $) $) 137)) (-2286 (($ $ (-586 (-268 $))) 20) (($ $ (-268 $)) NIL) (($ $ $ $) NIL) (($ $ (-586 $) (-586 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-586 |#4|) (-586 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-586 |#4|) (-586 $)) NIL)) (-2732 (($ $ |#4|) 77)) (-1429 (((-820 (-352)) $) 209) (((-820 (-520)) $) 202) (((-496) $) 217)) (-1233 ((|#2| $) NIL) (($ $ |#4|) 172)) (-3784 (((-3 (-1164 $) "failed") (-626 $)) 151)) (-3475 ((|#2| $ |#3|) NIL) (($ $ |#4| (-706)) 51) (($ $ (-586 |#4|) (-586 (-706))) 54)) (-3796 (((-3 $ "failed") $) 153)) (-1548 (((-108) $ $) 183)))
-(((-876 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3653 ((-1079 |#1|) (-1079 |#1|) (-1079 |#1|))) (-15 -1507 ((-391 |#1|) |#1|)) (-15 -3024 (|#1| |#1|)) (-15 -3796 ((-3 |#1| "failed") |#1|)) (-15 -1548 ((-108) |#1| |#1|)) (-15 -1429 ((-496) |#1|)) (-15 -1429 ((-820 (-520)) |#1|)) (-15 -1429 ((-820 (-352)) |#1|)) (-15 -1272 ((-817 (-520) |#1|) |#1| (-820 (-520)) (-817 (-520) |#1|))) (-15 -1272 ((-817 (-352) |#1|) |#1| (-820 (-352)) (-817 (-352) |#1|))) (-15 -1916 ((-391 |#1|) |#1|)) (-15 -2017 ((-391 (-1079 |#1|)) (-1079 |#1|))) (-15 -4133 ((-391 (-1079 |#1|)) (-1079 |#1|))) (-15 -3481 ((-3 (-586 (-1079 |#1|)) "failed") (-586 (-1079 |#1|)) (-1079 |#1|))) (-15 -3784 ((-3 (-1164 |#1|) "failed") (-626 |#1|))) (-15 -3923 (|#1| |#1| |#4|)) (-15 -1233 (|#1| |#1| |#4|)) (-15 -2732 (|#1| |#1| |#4|)) (-15 -2413 (|#1| |#1| |#1| |#4|)) (-15 -3142 ((-586 |#1|) |#1|)) (-15 -3665 ((-706) |#1| (-586 |#4|))) (-15 -3665 ((-706) |#1|)) (-15 -2568 ((-3 (-2 (|:| |var| |#4|) (|:| -2647 (-706))) "failed") |#1|)) (-15 -3548 ((-3 (-586 |#1|) "failed") |#1|)) (-15 -1205 ((-3 (-586 |#1|) "failed") |#1|)) (-15 -4039 (|#1| |#1| (-586 |#4|) (-586 (-706)))) (-15 -4039 (|#1| |#1| |#4| (-706))) (-15 -1910 ((-2 (|:| -2060 |#1|) (|:| -3753 |#1|)) |#1| |#1| |#4|)) (-15 -1992 ((-586 |#1|) |#1|)) (-15 -3475 (|#1| |#1| (-586 |#4|) (-586 (-706)))) (-15 -3475 (|#1| |#1| |#4| (-706))) (-15 -2756 ((-626 |#2|) (-626 |#1|))) (-15 -2756 ((-2 (|:| -3927 (-626 |#2|)) (|:| |vec| (-1164 |#2|))) (-626 |#1|) (-1164 |#1|))) (-15 -2756 ((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 |#1|) (-1164 |#1|))) (-15 -2756 ((-626 (-520)) (-626 |#1|))) (-15 -1482 (|#4| |#1|)) (-15 -1296 ((-3 |#4| "failed") |#1|)) (-15 -2286 (|#1| |#1| (-586 |#4|) (-586 |#1|))) (-15 -2286 (|#1| |#1| |#4| |#1|)) (-15 -2286 (|#1| |#1| (-586 |#4|) (-586 |#2|))) (-15 -2286 (|#1| |#1| |#4| |#2|)) (-15 -2286 (|#1| |#1| (-586 |#1|) (-586 |#1|))) (-15 -2286 (|#1| |#1| |#1| |#1|)) (-15 -2286 (|#1| |#1| (-268 |#1|))) (-15 -2286 (|#1| |#1| (-586 (-268 |#1|)))) (-15 -4039 (|#1| |#2| |#3|)) (-15 -3475 (|#2| |#1| |#3|)) (-15 -1482 ((-520) |#1|)) (-15 -1296 ((-3 (-520) "failed") |#1|)) (-15 -1482 ((-380 (-520)) |#1|)) (-15 -1296 ((-3 (-380 (-520)) "failed") |#1|)) (-15 -1296 ((-3 |#2| "failed") |#1|)) (-15 -1482 (|#2| |#1|)) (-15 -1233 (|#2| |#1|)) (-15 -3923 (|#1| |#1|))) (-877 |#2| |#3| |#4|) (-969) (-728) (-783)) (T -876))
-NIL
-(-10 -8 (-15 -3653 ((-1079 |#1|) (-1079 |#1|) (-1079 |#1|))) (-15 -1507 ((-391 |#1|) |#1|)) (-15 -3024 (|#1| |#1|)) (-15 -3796 ((-3 |#1| "failed") |#1|)) (-15 -1548 ((-108) |#1| |#1|)) (-15 -1429 ((-496) |#1|)) (-15 -1429 ((-820 (-520)) |#1|)) (-15 -1429 ((-820 (-352)) |#1|)) (-15 -1272 ((-817 (-520) |#1|) |#1| (-820 (-520)) (-817 (-520) |#1|))) (-15 -1272 ((-817 (-352) |#1|) |#1| (-820 (-352)) (-817 (-352) |#1|))) (-15 -1916 ((-391 |#1|) |#1|)) (-15 -2017 ((-391 (-1079 |#1|)) (-1079 |#1|))) (-15 -4133 ((-391 (-1079 |#1|)) (-1079 |#1|))) (-15 -3481 ((-3 (-586 (-1079 |#1|)) "failed") (-586 (-1079 |#1|)) (-1079 |#1|))) (-15 -3784 ((-3 (-1164 |#1|) "failed") (-626 |#1|))) (-15 -3923 (|#1| |#1| |#4|)) (-15 -1233 (|#1| |#1| |#4|)) (-15 -2732 (|#1| |#1| |#4|)) (-15 -2413 (|#1| |#1| |#1| |#4|)) (-15 -3142 ((-586 |#1|) |#1|)) (-15 -3665 ((-706) |#1| (-586 |#4|))) (-15 -3665 ((-706) |#1|)) (-15 -2568 ((-3 (-2 (|:| |var| |#4|) (|:| -2647 (-706))) "failed") |#1|)) (-15 -3548 ((-3 (-586 |#1|) "failed") |#1|)) (-15 -1205 ((-3 (-586 |#1|) "failed") |#1|)) (-15 -4039 (|#1| |#1| (-586 |#4|) (-586 (-706)))) (-15 -4039 (|#1| |#1| |#4| (-706))) (-15 -1910 ((-2 (|:| -2060 |#1|) (|:| -3753 |#1|)) |#1| |#1| |#4|)) (-15 -1992 ((-586 |#1|) |#1|)) (-15 -3475 (|#1| |#1| (-586 |#4|) (-586 (-706)))) (-15 -3475 (|#1| |#1| |#4| (-706))) (-15 -2756 ((-626 |#2|) (-626 |#1|))) (-15 -2756 ((-2 (|:| -3927 (-626 |#2|)) (|:| |vec| (-1164 |#2|))) (-626 |#1|) (-1164 |#1|))) (-15 -2756 ((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 |#1|) (-1164 |#1|))) (-15 -2756 ((-626 (-520)) (-626 |#1|))) (-15 -1482 (|#4| |#1|)) (-15 -1296 ((-3 |#4| "failed") |#1|)) (-15 -2286 (|#1| |#1| (-586 |#4|) (-586 |#1|))) (-15 -2286 (|#1| |#1| |#4| |#1|)) (-15 -2286 (|#1| |#1| (-586 |#4|) (-586 |#2|))) (-15 -2286 (|#1| |#1| |#4| |#2|)) (-15 -2286 (|#1| |#1| (-586 |#1|) (-586 |#1|))) (-15 -2286 (|#1| |#1| |#1| |#1|)) (-15 -2286 (|#1| |#1| (-268 |#1|))) (-15 -2286 (|#1| |#1| (-586 (-268 |#1|)))) (-15 -4039 (|#1| |#2| |#3|)) (-15 -3475 (|#2| |#1| |#3|)) (-15 -1482 ((-520) |#1|)) (-15 -1296 ((-3 (-520) "failed") |#1|)) (-15 -1482 ((-380 (-520)) |#1|)) (-15 -1296 ((-3 (-380 (-520)) "failed") |#1|)) (-15 -1296 ((-3 |#2| "failed") |#1|)) (-15 -1482 (|#2| |#1|)) (-15 -1233 (|#2| |#1|)) (-15 -3923 (|#1| |#1|)))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-4081 (((-586 |#3|) $) 110)) (-1278 (((-1079 $) $ |#3|) 125) (((-1079 |#1|) $) 124)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) 87 (|has| |#1| (-512)))) (-2583 (($ $) 88 (|has| |#1| (-512)))) (-1671 (((-108) $) 90 (|has| |#1| (-512)))) (-3665 (((-706) $) 112) (((-706) $ (-586 |#3|)) 111)) (-1917 (((-3 $ "failed") $ $) 19)) (-4119 (((-391 (-1079 $)) (-1079 $)) 100 (|has| |#1| (-837)))) (-3024 (($ $) 98 (|has| |#1| (-424)))) (-1507 (((-391 $) $) 97 (|has| |#1| (-424)))) (-3481 (((-3 (-586 (-1079 $)) "failed") (-586 (-1079 $)) (-1079 $)) 103 (|has| |#1| (-837)))) (-3961 (($) 17 T CONST)) (-1296 (((-3 |#1| "failed") $) 164) (((-3 (-380 (-520)) "failed") $) 162 (|has| |#1| (-960 (-380 (-520))))) (((-3 (-520) "failed") $) 160 (|has| |#1| (-960 (-520)))) (((-3 |#3| "failed") $) 136)) (-1482 ((|#1| $) 165) (((-380 (-520)) $) 161 (|has| |#1| (-960 (-380 (-520))))) (((-520) $) 159 (|has| |#1| (-960 (-520)))) ((|#3| $) 135)) (-2413 (($ $ $ |#3|) 108 (|has| |#1| (-157)))) (-3150 (($ $) 154)) (-2756 (((-626 (-520)) (-626 $)) 134 (|has| |#1| (-582 (-520)))) (((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 $) (-1164 $)) 133 (|has| |#1| (-582 (-520)))) (((-2 (|:| -3927 (-626 |#1|)) (|:| |vec| (-1164 |#1|))) (-626 $) (-1164 $)) 132) (((-626 |#1|) (-626 $)) 131)) (-1540 (((-3 $ "failed") $) 34)) (-3923 (($ $) 176 (|has| |#1| (-424))) (($ $ |#3|) 105 (|has| |#1| (-424)))) (-3142 (((-586 $) $) 109)) (-2036 (((-108) $) 96 (|has| |#1| (-837)))) (-3397 (($ $ |#1| |#2| $) 172)) (-1272 (((-817 (-352) $) $ (-820 (-352)) (-817 (-352) $)) 84 (-12 (|has| |#3| (-814 (-352))) (|has| |#1| (-814 (-352))))) (((-817 (-520) $) $ (-820 (-520)) (-817 (-520) $)) 83 (-12 (|has| |#3| (-814 (-520))) (|has| |#1| (-814 (-520)))))) (-1537 (((-108) $) 31)) (-1315 (((-706) $) 169)) (-4065 (($ (-1079 |#1|) |#3|) 117) (($ (-1079 $) |#3|) 116)) (-1992 (((-586 $) $) 126)) (-3774 (((-108) $) 152)) (-4039 (($ |#1| |#2|) 153) (($ $ |#3| (-706)) 119) (($ $ (-586 |#3|) (-586 (-706))) 118)) (-1910 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $ |#3|) 120)) (-3562 ((|#2| $) 170) (((-706) $ |#3|) 122) (((-586 (-706)) $ (-586 |#3|)) 121)) (-2809 (($ $ $) 79 (|has| |#1| (-783)))) (-2446 (($ $ $) 78 (|has| |#1| (-783)))) (-3295 (($ (-1 |#2| |#2|) $) 171)) (-1389 (($ (-1 |#1| |#1|) $) 151)) (-3186 (((-3 |#3| "failed") $) 123)) (-3123 (($ $) 149)) (-3133 ((|#1| $) 148)) (-2222 (($ (-586 $)) 94 (|has| |#1| (-424))) (($ $ $) 93 (|has| |#1| (-424)))) (-1239 (((-1066) $) 9)) (-3548 (((-3 (-586 $) "failed") $) 114)) (-1205 (((-3 (-586 $) "failed") $) 115)) (-2568 (((-3 (-2 (|:| |var| |#3|) (|:| -2647 (-706))) "failed") $) 113)) (-4142 (((-1030) $) 10)) (-3103 (((-108) $) 166)) (-3113 ((|#1| $) 167)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) 95 (|has| |#1| (-424)))) (-2257 (($ (-586 $)) 92 (|has| |#1| (-424))) (($ $ $) 91 (|has| |#1| (-424)))) (-4133 (((-391 (-1079 $)) (-1079 $)) 102 (|has| |#1| (-837)))) (-2017 (((-391 (-1079 $)) (-1079 $)) 101 (|has| |#1| (-837)))) (-1916 (((-391 $) $) 99 (|has| |#1| (-837)))) (-2230 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-512))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-512)))) (-2286 (($ $ (-586 (-268 $))) 145) (($ $ (-268 $)) 144) (($ $ $ $) 143) (($ $ (-586 $) (-586 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-586 |#3|) (-586 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-586 |#3|) (-586 $)) 138)) (-2732 (($ $ |#3|) 107 (|has| |#1| (-157)))) (-2155 (($ $ |#3|) 42) (($ $ (-586 |#3|)) 41) (($ $ |#3| (-706)) 40) (($ $ (-586 |#3|) (-586 (-706))) 39)) (-2528 ((|#2| $) 150) (((-706) $ |#3|) 130) (((-586 (-706)) $ (-586 |#3|)) 129)) (-1429 (((-820 (-352)) $) 82 (-12 (|has| |#3| (-561 (-820 (-352)))) (|has| |#1| (-561 (-820 (-352)))))) (((-820 (-520)) $) 81 (-12 (|has| |#3| (-561 (-820 (-520)))) (|has| |#1| (-561 (-820 (-520)))))) (((-496) $) 80 (-12 (|has| |#3| (-561 (-496))) (|has| |#1| (-561 (-496)))))) (-1233 ((|#1| $) 175 (|has| |#1| (-424))) (($ $ |#3|) 106 (|has| |#1| (-424)))) (-3784 (((-3 (-1164 $) "failed") (-626 $)) 104 (-4006 (|has| $ (-133)) (|has| |#1| (-837))))) (-2188 (((-791) $) 11) (($ (-520)) 28) (($ |#1|) 163) (($ |#3|) 137) (($ $) 85 (|has| |#1| (-512))) (($ (-380 (-520))) 72 (-3700 (|has| |#1| (-960 (-380 (-520)))) (|has| |#1| (-37 (-380 (-520))))))) (-4113 (((-586 |#1|) $) 168)) (-3475 ((|#1| $ |#2|) 155) (($ $ |#3| (-706)) 128) (($ $ (-586 |#3|) (-586 (-706))) 127)) (-3796 (((-3 $ "failed") $) 73 (-3700 (-4006 (|has| $ (-133)) (|has| |#1| (-837))) (|has| |#1| (-133))))) (-3251 (((-706)) 29)) (-1782 (($ $ $ (-706)) 173 (|has| |#1| (-157)))) (-2559 (((-108) $ $) 89 (|has| |#1| (-512)))) (-3504 (($ $ (-849)) 26) (($ $ (-706)) 33)) (-3560 (($) 18 T CONST)) (-3570 (($) 30 T CONST)) (-2211 (($ $ |#3|) 38) (($ $ (-586 |#3|)) 37) (($ $ |#3| (-706)) 36) (($ $ (-586 |#3|) (-586 (-706))) 35)) (-1573 (((-108) $ $) 76 (|has| |#1| (-783)))) (-1557 (((-108) $ $) 75 (|has| |#1| (-783)))) (-1530 (((-108) $ $) 6)) (-1565 (((-108) $ $) 77 (|has| |#1| (-783)))) (-1548 (((-108) $ $) 74 (|has| |#1| (-783)))) (-1619 (($ $ |#1|) 156 (|has| |#1| (-336)))) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-706)) 32)) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ $ $) 24) (($ $ (-380 (-520))) 158 (|has| |#1| (-37 (-380 (-520))))) (($ (-380 (-520)) $) 157 (|has| |#1| (-37 (-380 (-520))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
-(((-877 |#1| |#2| |#3|) (-1195) (-969) (-728) (-783)) (T -877))
-((-3923 (*1 *1 *1) (-12 (-4 *1 (-877 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-728)) (-4 *4 (-783)) (-4 *2 (-424)))) (-2528 (*1 *2 *1 *3) (-12 (-4 *1 (-877 *4 *5 *3)) (-4 *4 (-969)) (-4 *5 (-728)) (-4 *3 (-783)) (-5 *2 (-706)))) (-2528 (*1 *2 *1 *3) (-12 (-5 *3 (-586 *6)) (-4 *1 (-877 *4 *5 *6)) (-4 *4 (-969)) (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-586 (-706))))) (-3475 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-706)) (-4 *1 (-877 *4 *5 *2)) (-4 *4 (-969)) (-4 *5 (-728)) (-4 *2 (-783)))) (-3475 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-586 *6)) (-5 *3 (-586 (-706))) (-4 *1 (-877 *4 *5 *6)) (-4 *4 (-969)) (-4 *5 (-728)) (-4 *6 (-783)))) (-1992 (*1 *2 *1) (-12 (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *2 (-586 *1)) (-4 *1 (-877 *3 *4 *5)))) (-1278 (*1 *2 *1 *3) (-12 (-4 *4 (-969)) (-4 *5 (-728)) (-4 *3 (-783)) (-5 *2 (-1079 *1)) (-4 *1 (-877 *4 *5 *3)))) (-1278 (*1 *2 *1) (-12 (-4 *1 (-877 *3 *4 *5)) (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *2 (-1079 *3)))) (-3186 (*1 *2 *1) (|partial| -12 (-4 *1 (-877 *3 *4 *2)) (-4 *3 (-969)) (-4 *4 (-728)) (-4 *2 (-783)))) (-3562 (*1 *2 *1 *3) (-12 (-4 *1 (-877 *4 *5 *3)) (-4 *4 (-969)) (-4 *5 (-728)) (-4 *3 (-783)) (-5 *2 (-706)))) (-3562 (*1 *2 *1 *3) (-12 (-5 *3 (-586 *6)) (-4 *1 (-877 *4 *5 *6)) (-4 *4 (-969)) (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-586 (-706))))) (-1910 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-969)) (-4 *5 (-728)) (-4 *3 (-783)) (-5 *2 (-2 (|:| -2060 *1) (|:| -3753 *1))) (-4 *1 (-877 *4 *5 *3)))) (-4039 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-706)) (-4 *1 (-877 *4 *5 *2)) (-4 *4 (-969)) (-4 *5 (-728)) (-4 *2 (-783)))) (-4039 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-586 *6)) (-5 *3 (-586 (-706))) (-4 *1 (-877 *4 *5 *6)) (-4 *4 (-969)) (-4 *5 (-728)) (-4 *6 (-783)))) (-4065 (*1 *1 *2 *3) (-12 (-5 *2 (-1079 *4)) (-4 *4 (-969)) (-4 *1 (-877 *4 *5 *3)) (-4 *5 (-728)) (-4 *3 (-783)))) (-4065 (*1 *1 *2 *3) (-12 (-5 *2 (-1079 *1)) (-4 *1 (-877 *4 *5 *3)) (-4 *4 (-969)) (-4 *5 (-728)) (-4 *3 (-783)))) (-1205 (*1 *2 *1) (|partial| -12 (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *2 (-586 *1)) (-4 *1 (-877 *3 *4 *5)))) (-3548 (*1 *2 *1) (|partial| -12 (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *2 (-586 *1)) (-4 *1 (-877 *3 *4 *5)))) (-2568 (*1 *2 *1) (|partial| -12 (-4 *1 (-877 *3 *4 *5)) (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *2 (-2 (|:| |var| *5) (|:| -2647 (-706)))))) (-3665 (*1 *2 *1) (-12 (-4 *1 (-877 *3 *4 *5)) (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *2 (-706)))) (-3665 (*1 *2 *1 *3) (-12 (-5 *3 (-586 *6)) (-4 *1 (-877 *4 *5 *6)) (-4 *4 (-969)) (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-706)))) (-4081 (*1 *2 *1) (-12 (-4 *1 (-877 *3 *4 *5)) (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *2 (-586 *5)))) (-3142 (*1 *2 *1) (-12 (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *2 (-586 *1)) (-4 *1 (-877 *3 *4 *5)))) (-2413 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-877 *3 *4 *2)) (-4 *3 (-969)) (-4 *4 (-728)) (-4 *2 (-783)) (-4 *3 (-157)))) (-2732 (*1 *1 *1 *2) (-12 (-4 *1 (-877 *3 *4 *2)) (-4 *3 (-969)) (-4 *4 (-728)) (-4 *2 (-783)) (-4 *3 (-157)))) (-1233 (*1 *1 *1 *2) (-12 (-4 *1 (-877 *3 *4 *2)) (-4 *3 (-969)) (-4 *4 (-728)) (-4 *2 (-783)) (-4 *3 (-424)))) (-3923 (*1 *1 *1 *2) (-12 (-4 *1 (-877 *3 *4 *2)) (-4 *3 (-969)) (-4 *4 (-728)) (-4 *2 (-783)) (-4 *3 (-424)))) (-3024 (*1 *1 *1) (-12 (-4 *1 (-877 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-728)) (-4 *4 (-783)) (-4 *2 (-424)))) (-1507 (*1 *2 *1) (-12 (-4 *3 (-424)) (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *2 (-391 *1)) (-4 *1 (-877 *3 *4 *5)))))
-(-13 (-828 |t#3|) (-299 |t#1| |t#2|) (-283 $) (-481 |t#3| |t#1|) (-481 |t#3| $) (-960 |t#3|) (-350 |t#1|) (-10 -8 (-15 -2528 ((-706) $ |t#3|)) (-15 -2528 ((-586 (-706)) $ (-586 |t#3|))) (-15 -3475 ($ $ |t#3| (-706))) (-15 -3475 ($ $ (-586 |t#3|) (-586 (-706)))) (-15 -1992 ((-586 $) $)) (-15 -1278 ((-1079 $) $ |t#3|)) (-15 -1278 ((-1079 |t#1|) $)) (-15 -3186 ((-3 |t#3| "failed") $)) (-15 -3562 ((-706) $ |t#3|)) (-15 -3562 ((-586 (-706)) $ (-586 |t#3|))) (-15 -1910 ((-2 (|:| -2060 $) (|:| -3753 $)) $ $ |t#3|)) (-15 -4039 ($ $ |t#3| (-706))) (-15 -4039 ($ $ (-586 |t#3|) (-586 (-706)))) (-15 -4065 ($ (-1079 |t#1|) |t#3|)) (-15 -4065 ($ (-1079 $) |t#3|)) (-15 -1205 ((-3 (-586 $) "failed") $)) (-15 -3548 ((-3 (-586 $) "failed") $)) (-15 -2568 ((-3 (-2 (|:| |var| |t#3|) (|:| -2647 (-706))) "failed") $)) (-15 -3665 ((-706) $)) (-15 -3665 ((-706) $ (-586 |t#3|))) (-15 -4081 ((-586 |t#3|) $)) (-15 -3142 ((-586 $) $)) (IF (|has| |t#1| (-783)) (-6 (-783)) |%noBranch|) (IF (|has| |t#1| (-561 (-496))) (IF (|has| |t#3| (-561 (-496))) (-6 (-561 (-496))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-561 (-820 (-520)))) (IF (|has| |t#3| (-561 (-820 (-520)))) (-6 (-561 (-820 (-520)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-561 (-820 (-352)))) (IF (|has| |t#3| (-561 (-820 (-352)))) (-6 (-561 (-820 (-352)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-814 (-520))) (IF (|has| |t#3| (-814 (-520))) (-6 (-814 (-520))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-814 (-352))) (IF (|has| |t#3| (-814 (-352))) (-6 (-814 (-352))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-157)) (PROGN (-15 -2413 ($ $ $ |t#3|)) (-15 -2732 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-424)) (PROGN (-6 (-424)) (-15 -1233 ($ $ |t#3|)) (-15 -3923 ($ $)) (-15 -3923 ($ $ |t#3|)) (-15 -1507 ((-391 $) $)) (-15 -3024 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4227)) (-6 -4227) |%noBranch|) (IF (|has| |t#1| (-837)) (-6 (-837)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-380 (-520))) |has| |#1| (-37 (-380 (-520)))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) -3700 (|has| |#1| (-837)) (|has| |#1| (-512)) (|has| |#1| (-424))) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-380 (-520)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3700 (|has| |#1| (-837)) (|has| |#1| (-512)) (|has| |#1| (-424)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-560 (-791)) . T) ((-157) -3700 (|has| |#1| (-837)) (|has| |#1| (-512)) (|has| |#1| (-424)) (|has| |#1| (-157))) ((-561 (-496)) -12 (|has| |#1| (-561 (-496))) (|has| |#3| (-561 (-496)))) ((-561 (-820 (-352))) -12 (|has| |#1| (-561 (-820 (-352)))) (|has| |#3| (-561 (-820 (-352))))) ((-561 (-820 (-520))) -12 (|has| |#1| (-561 (-820 (-520)))) (|has| |#3| (-561 (-820 (-520))))) ((-264) -3700 (|has| |#1| (-837)) (|has| |#1| (-512)) (|has| |#1| (-424))) ((-283 $) . T) ((-299 |#1| |#2|) . T) ((-350 |#1|) . T) ((-384 |#1|) . T) ((-424) -3700 (|has| |#1| (-837)) (|has| |#1| (-424))) ((-481 |#3| |#1|) . T) ((-481 |#3| $) . T) ((-481 $ $) . T) ((-512) -3700 (|has| |#1| (-837)) (|has| |#1| (-512)) (|has| |#1| (-424))) ((-588 #0#) |has| |#1| (-37 (-380 (-520)))) ((-588 |#1|) . T) ((-588 $) . T) ((-582 (-520)) |has| |#1| (-582 (-520))) ((-582 |#1|) . T) ((-653 #0#) |has| |#1| (-37 (-380 (-520)))) ((-653 |#1|) |has| |#1| (-157)) ((-653 $) -3700 (|has| |#1| (-837)) (|has| |#1| (-512)) (|has| |#1| (-424))) ((-662) . T) ((-783) |has| |#1| (-783)) ((-828 |#3|) . T) ((-814 (-352)) -12 (|has| |#1| (-814 (-352))) (|has| |#3| (-814 (-352)))) ((-814 (-520)) -12 (|has| |#1| (-814 (-520))) (|has| |#3| (-814 (-520)))) ((-837) |has| |#1| (-837)) ((-960 (-380 (-520))) |has| |#1| (-960 (-380 (-520)))) ((-960 (-520)) |has| |#1| (-960 (-520))) ((-960 |#1|) . T) ((-960 |#3|) . T) ((-975 #0#) |has| |#1| (-37 (-380 (-520)))) ((-975 |#1|) . T) ((-975 $) -3700 (|has| |#1| (-837)) (|has| |#1| (-512)) (|has| |#1| (-424)) (|has| |#1| (-157))) ((-969) . T) ((-976) . T) ((-1024) . T) ((-1012) . T) ((-1122) |has| |#1| (-837)))
-((-4081 (((-586 |#2|) |#5|) 36)) (-1278 (((-1079 |#5|) |#5| |#2| (-1079 |#5|)) 23) (((-380 (-1079 |#5|)) |#5| |#2|) 16)) (-4065 ((|#5| (-380 (-1079 |#5|)) |#2|) 30)) (-3186 (((-3 |#2| "failed") |#5|) 61)) (-3548 (((-3 (-586 |#5|) "failed") |#5|) 55)) (-2090 (((-3 (-2 (|:| |val| |#5|) (|:| -2647 (-520))) "failed") |#5|) 45)) (-1205 (((-3 (-586 |#5|) "failed") |#5|) 57)) (-2568 (((-3 (-2 (|:| |var| |#2|) (|:| -2647 (-520))) "failed") |#5|) 48)))
-(((-878 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4081 ((-586 |#2|) |#5|)) (-15 -3186 ((-3 |#2| "failed") |#5|)) (-15 -1278 ((-380 (-1079 |#5|)) |#5| |#2|)) (-15 -4065 (|#5| (-380 (-1079 |#5|)) |#2|)) (-15 -1278 ((-1079 |#5|) |#5| |#2| (-1079 |#5|))) (-15 -1205 ((-3 (-586 |#5|) "failed") |#5|)) (-15 -3548 ((-3 (-586 |#5|) "failed") |#5|)) (-15 -2568 ((-3 (-2 (|:| |var| |#2|) (|:| -2647 (-520))) "failed") |#5|)) (-15 -2090 ((-3 (-2 (|:| |val| |#5|) (|:| -2647 (-520))) "failed") |#5|))) (-728) (-783) (-969) (-877 |#3| |#1| |#2|) (-13 (-336) (-10 -8 (-15 -2188 ($ |#4|)) (-15 -2800 (|#4| $)) (-15 -2811 (|#4| $))))) (T -878))
-((-2090 (*1 *2 *3) (|partial| -12 (-4 *4 (-728)) (-4 *5 (-783)) (-4 *6 (-969)) (-4 *7 (-877 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2647 (-520)))) (-5 *1 (-878 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-336) (-10 -8 (-15 -2188 ($ *7)) (-15 -2800 (*7 $)) (-15 -2811 (*7 $))))))) (-2568 (*1 *2 *3) (|partial| -12 (-4 *4 (-728)) (-4 *5 (-783)) (-4 *6 (-969)) (-4 *7 (-877 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2647 (-520)))) (-5 *1 (-878 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-336) (-10 -8 (-15 -2188 ($ *7)) (-15 -2800 (*7 $)) (-15 -2811 (*7 $))))))) (-3548 (*1 *2 *3) (|partial| -12 (-4 *4 (-728)) (-4 *5 (-783)) (-4 *6 (-969)) (-4 *7 (-877 *6 *4 *5)) (-5 *2 (-586 *3)) (-5 *1 (-878 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-336) (-10 -8 (-15 -2188 ($ *7)) (-15 -2800 (*7 $)) (-15 -2811 (*7 $))))))) (-1205 (*1 *2 *3) (|partial| -12 (-4 *4 (-728)) (-4 *5 (-783)) (-4 *6 (-969)) (-4 *7 (-877 *6 *4 *5)) (-5 *2 (-586 *3)) (-5 *1 (-878 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-336) (-10 -8 (-15 -2188 ($ *7)) (-15 -2800 (*7 $)) (-15 -2811 (*7 $))))))) (-1278 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1079 *3)) (-4 *3 (-13 (-336) (-10 -8 (-15 -2188 ($ *7)) (-15 -2800 (*7 $)) (-15 -2811 (*7 $))))) (-4 *7 (-877 *6 *5 *4)) (-4 *5 (-728)) (-4 *4 (-783)) (-4 *6 (-969)) (-5 *1 (-878 *5 *4 *6 *7 *3)))) (-4065 (*1 *2 *3 *4) (-12 (-5 *3 (-380 (-1079 *2))) (-4 *5 (-728)) (-4 *4 (-783)) (-4 *6 (-969)) (-4 *2 (-13 (-336) (-10 -8 (-15 -2188 ($ *7)) (-15 -2800 (*7 $)) (-15 -2811 (*7 $))))) (-5 *1 (-878 *5 *4 *6 *7 *2)) (-4 *7 (-877 *6 *5 *4)))) (-1278 (*1 *2 *3 *4) (-12 (-4 *5 (-728)) (-4 *4 (-783)) (-4 *6 (-969)) (-4 *7 (-877 *6 *5 *4)) (-5 *2 (-380 (-1079 *3))) (-5 *1 (-878 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-336) (-10 -8 (-15 -2188 ($ *7)) (-15 -2800 (*7 $)) (-15 -2811 (*7 $))))))) (-3186 (*1 *2 *3) (|partial| -12 (-4 *4 (-728)) (-4 *5 (-969)) (-4 *6 (-877 *5 *4 *2)) (-4 *2 (-783)) (-5 *1 (-878 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-336) (-10 -8 (-15 -2188 ($ *6)) (-15 -2800 (*6 $)) (-15 -2811 (*6 $))))))) (-4081 (*1 *2 *3) (-12 (-4 *4 (-728)) (-4 *5 (-783)) (-4 *6 (-969)) (-4 *7 (-877 *6 *4 *5)) (-5 *2 (-586 *5)) (-5 *1 (-878 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-336) (-10 -8 (-15 -2188 ($ *7)) (-15 -2800 (*7 $)) (-15 -2811 (*7 $))))))))
-(-10 -7 (-15 -4081 ((-586 |#2|) |#5|)) (-15 -3186 ((-3 |#2| "failed") |#5|)) (-15 -1278 ((-380 (-1079 |#5|)) |#5| |#2|)) (-15 -4065 (|#5| (-380 (-1079 |#5|)) |#2|)) (-15 -1278 ((-1079 |#5|) |#5| |#2| (-1079 |#5|))) (-15 -1205 ((-3 (-586 |#5|) "failed") |#5|)) (-15 -3548 ((-3 (-586 |#5|) "failed") |#5|)) (-15 -2568 ((-3 (-2 (|:| |var| |#2|) (|:| -2647 (-520))) "failed") |#5|)) (-15 -2090 ((-3 (-2 (|:| |val| |#5|) (|:| -2647 (-520))) "failed") |#5|)))
-((-1389 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24)))
-(((-879 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1389 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-728) (-783) (-969) (-877 |#3| |#1| |#2|) (-13 (-1012) (-10 -8 (-15 -1601 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-706)))))) (T -879))
-((-1389 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-783)) (-4 *8 (-969)) (-4 *6 (-728)) (-4 *2 (-13 (-1012) (-10 -8 (-15 -1601 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-706)))))) (-5 *1 (-879 *6 *7 *8 *5 *2)) (-4 *5 (-877 *8 *6 *7)))))
-(-10 -7 (-15 -1389 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|)))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-4081 (((-586 (-1083)) $) 15)) (-1278 (((-1079 $) $ (-1083)) 21) (((-1079 |#1|) $) NIL)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) NIL (|has| |#1| (-512)))) (-2583 (($ $) NIL (|has| |#1| (-512)))) (-1671 (((-108) $) NIL (|has| |#1| (-512)))) (-3665 (((-706) $) NIL) (((-706) $ (-586 (-1083))) NIL)) (-1917 (((-3 $ "failed") $ $) NIL)) (-4119 (((-391 (-1079 $)) (-1079 $)) NIL (|has| |#1| (-837)))) (-3024 (($ $) NIL (|has| |#1| (-424)))) (-1507 (((-391 $) $) NIL (|has| |#1| (-424)))) (-3481 (((-3 (-586 (-1079 $)) "failed") (-586 (-1079 $)) (-1079 $)) NIL (|has| |#1| (-837)))) (-3961 (($) NIL T CONST)) (-1296 (((-3 |#1| "failed") $) 8) (((-3 (-380 (-520)) "failed") $) NIL (|has| |#1| (-960 (-380 (-520))))) (((-3 (-520) "failed") $) NIL (|has| |#1| (-960 (-520)))) (((-3 (-1083) "failed") $) NIL)) (-1482 ((|#1| $) NIL) (((-380 (-520)) $) NIL (|has| |#1| (-960 (-380 (-520))))) (((-520) $) NIL (|has| |#1| (-960 (-520)))) (((-1083) $) NIL)) (-2413 (($ $ $ (-1083)) NIL (|has| |#1| (-157)))) (-3150 (($ $) NIL)) (-2756 (((-626 (-520)) (-626 $)) NIL (|has| |#1| (-582 (-520)))) (((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 $) (-1164 $)) NIL (|has| |#1| (-582 (-520)))) (((-2 (|:| -3927 (-626 |#1|)) (|:| |vec| (-1164 |#1|))) (-626 $) (-1164 $)) NIL) (((-626 |#1|) (-626 $)) NIL)) (-1540 (((-3 $ "failed") $) NIL)) (-3923 (($ $) NIL (|has| |#1| (-424))) (($ $ (-1083)) NIL (|has| |#1| (-424)))) (-3142 (((-586 $) $) NIL)) (-2036 (((-108) $) NIL (|has| |#1| (-837)))) (-3397 (($ $ |#1| (-492 (-1083)) $) NIL)) (-1272 (((-817 (-352) $) $ (-820 (-352)) (-817 (-352) $)) NIL (-12 (|has| (-1083) (-814 (-352))) (|has| |#1| (-814 (-352))))) (((-817 (-520) $) $ (-820 (-520)) (-817 (-520) $)) NIL (-12 (|has| (-1083) (-814 (-520))) (|has| |#1| (-814 (-520)))))) (-1537 (((-108) $) NIL)) (-1315 (((-706) $) NIL)) (-4065 (($ (-1079 |#1|) (-1083)) NIL) (($ (-1079 $) (-1083)) NIL)) (-1992 (((-586 $) $) NIL)) (-3774 (((-108) $) NIL)) (-4039 (($ |#1| (-492 (-1083))) NIL) (($ $ (-1083) (-706)) NIL) (($ $ (-586 (-1083)) (-586 (-706))) NIL)) (-1910 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $ (-1083)) NIL)) (-3562 (((-492 (-1083)) $) NIL) (((-706) $ (-1083)) NIL) (((-586 (-706)) $ (-586 (-1083))) NIL)) (-2809 (($ $ $) NIL (|has| |#1| (-783)))) (-2446 (($ $ $) NIL (|has| |#1| (-783)))) (-3295 (($ (-1 (-492 (-1083)) (-492 (-1083))) $) NIL)) (-1389 (($ (-1 |#1| |#1|) $) NIL)) (-3186 (((-3 (-1083) "failed") $) 19)) (-3123 (($ $) NIL)) (-3133 ((|#1| $) NIL)) (-2222 (($ (-586 $)) NIL (|has| |#1| (-424))) (($ $ $) NIL (|has| |#1| (-424)))) (-1239 (((-1066) $) NIL)) (-3548 (((-3 (-586 $) "failed") $) NIL)) (-1205 (((-3 (-586 $) "failed") $) NIL)) (-2568 (((-3 (-2 (|:| |var| (-1083)) (|:| -2647 (-706))) "failed") $) NIL)) (-3517 (($ $ (-1083)) 29 (|has| |#1| (-37 (-380 (-520)))))) (-4142 (((-1030) $) NIL)) (-3103 (((-108) $) NIL)) (-3113 ((|#1| $) NIL)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) NIL (|has| |#1| (-424)))) (-2257 (($ (-586 $)) NIL (|has| |#1| (-424))) (($ $ $) NIL (|has| |#1| (-424)))) (-4133 (((-391 (-1079 $)) (-1079 $)) NIL (|has| |#1| (-837)))) (-2017 (((-391 (-1079 $)) (-1079 $)) NIL (|has| |#1| (-837)))) (-1916 (((-391 $) $) NIL (|has| |#1| (-837)))) (-2230 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-512))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-512)))) (-2286 (($ $ (-586 (-268 $))) NIL) (($ $ (-268 $)) NIL) (($ $ $ $) NIL) (($ $ (-586 $) (-586 $)) NIL) (($ $ (-1083) |#1|) NIL) (($ $ (-586 (-1083)) (-586 |#1|)) NIL) (($ $ (-1083) $) NIL) (($ $ (-586 (-1083)) (-586 $)) NIL)) (-2732 (($ $ (-1083)) NIL (|has| |#1| (-157)))) (-2155 (($ $ (-1083)) NIL) (($ $ (-586 (-1083))) NIL) (($ $ (-1083) (-706)) NIL) (($ $ (-586 (-1083)) (-586 (-706))) NIL)) (-2528 (((-492 (-1083)) $) NIL) (((-706) $ (-1083)) NIL) (((-586 (-706)) $ (-586 (-1083))) NIL)) (-1429 (((-820 (-352)) $) NIL (-12 (|has| (-1083) (-561 (-820 (-352)))) (|has| |#1| (-561 (-820 (-352)))))) (((-820 (-520)) $) NIL (-12 (|has| (-1083) (-561 (-820 (-520)))) (|has| |#1| (-561 (-820 (-520)))))) (((-496) $) NIL (-12 (|has| (-1083) (-561 (-496))) (|has| |#1| (-561 (-496)))))) (-1233 ((|#1| $) NIL (|has| |#1| (-424))) (($ $ (-1083)) NIL (|has| |#1| (-424)))) (-3784 (((-3 (-1164 $) "failed") (-626 $)) NIL (-12 (|has| $ (-133)) (|has| |#1| (-837))))) (-2188 (((-791) $) 25) (($ (-520)) NIL) (($ |#1|) NIL) (($ (-1083)) 27) (($ (-380 (-520))) NIL (-3700 (|has| |#1| (-37 (-380 (-520)))) (|has| |#1| (-960 (-380 (-520)))))) (($ $) NIL (|has| |#1| (-512)))) (-4113 (((-586 |#1|) $) NIL)) (-3475 ((|#1| $ (-492 (-1083))) NIL) (($ $ (-1083) (-706)) NIL) (($ $ (-586 (-1083)) (-586 (-706))) NIL)) (-3796 (((-3 $ "failed") $) NIL (-3700 (-12 (|has| $ (-133)) (|has| |#1| (-837))) (|has| |#1| (-133))))) (-3251 (((-706)) NIL)) (-1782 (($ $ $ (-706)) NIL (|has| |#1| (-157)))) (-2559 (((-108) $ $) NIL (|has| |#1| (-512)))) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (-3560 (($) NIL T CONST)) (-3570 (($) NIL T CONST)) (-2211 (($ $ (-1083)) NIL) (($ $ (-586 (-1083))) NIL) (($ $ (-1083) (-706)) NIL) (($ $ (-586 (-1083)) (-586 (-706))) NIL)) (-1573 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1557 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1530 (((-108) $ $) NIL)) (-1565 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1548 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1619 (($ $ |#1|) NIL (|has| |#1| (-336)))) (-1611 (($ $) NIL) (($ $ $) NIL)) (-1601 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) NIL) (($ $ (-380 (-520))) NIL (|has| |#1| (-37 (-380 (-520))))) (($ (-380 (-520)) $) NIL (|has| |#1| (-37 (-380 (-520))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-880 |#1|) (-13 (-877 |#1| (-492 (-1083)) (-1083)) (-10 -8 (IF (|has| |#1| (-37 (-380 (-520)))) (-15 -3517 ($ $ (-1083))) |%noBranch|))) (-969)) (T -880))
-((-3517 (*1 *1 *1 *2) (-12 (-5 *2 (-1083)) (-5 *1 (-880 *3)) (-4 *3 (-37 (-380 (-520)))) (-4 *3 (-969)))))
-(-13 (-877 |#1| (-492 (-1083)) (-1083)) (-10 -8 (IF (|has| |#1| (-37 (-380 (-520)))) (-15 -3517 ($ $ (-1083))) |%noBranch|)))
-((-4048 (((-2 (|:| -2647 (-706)) (|:| -2972 |#5|) (|:| |radicand| |#5|)) |#3| (-706)) 37)) (-4128 (((-2 (|:| -2647 (-706)) (|:| -2972 |#5|) (|:| |radicand| |#5|)) (-380 (-520)) (-706)) 33)) (-1280 (((-2 (|:| -2647 (-706)) (|:| -2972 |#4|) (|:| |radicand| (-586 |#4|))) |#4| (-706)) 52)) (-2707 (((-2 (|:| -2647 (-706)) (|:| -2972 |#5|) (|:| |radicand| |#5|)) |#5| (-706)) 62 (|has| |#3| (-424)))))
-(((-881 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4048 ((-2 (|:| -2647 (-706)) (|:| -2972 |#5|) (|:| |radicand| |#5|)) |#3| (-706))) (-15 -4128 ((-2 (|:| -2647 (-706)) (|:| -2972 |#5|) (|:| |radicand| |#5|)) (-380 (-520)) (-706))) (IF (|has| |#3| (-424)) (-15 -2707 ((-2 (|:| -2647 (-706)) (|:| -2972 |#5|) (|:| |radicand| |#5|)) |#5| (-706))) |%noBranch|) (-15 -1280 ((-2 (|:| -2647 (-706)) (|:| -2972 |#4|) (|:| |radicand| (-586 |#4|))) |#4| (-706)))) (-728) (-783) (-512) (-877 |#3| |#1| |#2|) (-13 (-336) (-10 -8 (-15 -2800 (|#4| $)) (-15 -2811 (|#4| $)) (-15 -2188 ($ |#4|))))) (T -881))
-((-1280 (*1 *2 *3 *4) (-12 (-4 *5 (-728)) (-4 *6 (-783)) (-4 *7 (-512)) (-4 *3 (-877 *7 *5 *6)) (-5 *2 (-2 (|:| -2647 (-706)) (|:| -2972 *3) (|:| |radicand| (-586 *3)))) (-5 *1 (-881 *5 *6 *7 *3 *8)) (-5 *4 (-706)) (-4 *8 (-13 (-336) (-10 -8 (-15 -2800 (*3 $)) (-15 -2811 (*3 $)) (-15 -2188 ($ *3))))))) (-2707 (*1 *2 *3 *4) (-12 (-4 *7 (-424)) (-4 *5 (-728)) (-4 *6 (-783)) (-4 *7 (-512)) (-4 *8 (-877 *7 *5 *6)) (-5 *2 (-2 (|:| -2647 (-706)) (|:| -2972 *3) (|:| |radicand| *3))) (-5 *1 (-881 *5 *6 *7 *8 *3)) (-5 *4 (-706)) (-4 *3 (-13 (-336) (-10 -8 (-15 -2800 (*8 $)) (-15 -2811 (*8 $)) (-15 -2188 ($ *8))))))) (-4128 (*1 *2 *3 *4) (-12 (-5 *3 (-380 (-520))) (-4 *5 (-728)) (-4 *6 (-783)) (-4 *7 (-512)) (-4 *8 (-877 *7 *5 *6)) (-5 *2 (-2 (|:| -2647 (-706)) (|:| -2972 *9) (|:| |radicand| *9))) (-5 *1 (-881 *5 *6 *7 *8 *9)) (-5 *4 (-706)) (-4 *9 (-13 (-336) (-10 -8 (-15 -2800 (*8 $)) (-15 -2811 (*8 $)) (-15 -2188 ($ *8))))))) (-4048 (*1 *2 *3 *4) (-12 (-4 *5 (-728)) (-4 *6 (-783)) (-4 *3 (-512)) (-4 *7 (-877 *3 *5 *6)) (-5 *2 (-2 (|:| -2647 (-706)) (|:| -2972 *8) (|:| |radicand| *8))) (-5 *1 (-881 *5 *6 *3 *7 *8)) (-5 *4 (-706)) (-4 *8 (-13 (-336) (-10 -8 (-15 -2800 (*7 $)) (-15 -2811 (*7 $)) (-15 -2188 ($ *7))))))))
-(-10 -7 (-15 -4048 ((-2 (|:| -2647 (-706)) (|:| -2972 |#5|) (|:| |radicand| |#5|)) |#3| (-706))) (-15 -4128 ((-2 (|:| -2647 (-706)) (|:| -2972 |#5|) (|:| |radicand| |#5|)) (-380 (-520)) (-706))) (IF (|has| |#3| (-424)) (-15 -2707 ((-2 (|:| -2647 (-706)) (|:| -2972 |#5|) (|:| |radicand| |#5|)) |#5| (-706))) |%noBranch|) (-15 -1280 ((-2 (|:| -2647 (-706)) (|:| -2972 |#4|) (|:| |radicand| (-586 |#4|))) |#4| (-706))))
-((-3800 (((-1007 (-201)) $) 8)) (-3786 (((-1007 (-201)) $) 9)) (-3763 (((-586 (-586 (-871 (-201)))) $) 10)) (-2188 (((-791) $) 6)))
-(((-882) (-1195)) (T -882))
-((-3763 (*1 *2 *1) (-12 (-4 *1 (-882)) (-5 *2 (-586 (-586 (-871 (-201))))))) (-3786 (*1 *2 *1) (-12 (-4 *1 (-882)) (-5 *2 (-1007 (-201))))) (-3800 (*1 *2 *1) (-12 (-4 *1 (-882)) (-5 *2 (-1007 (-201))))))
-(-13 (-560 (-791)) (-10 -8 (-15 -3763 ((-586 (-586 (-871 (-201)))) $)) (-15 -3786 ((-1007 (-201)) $)) (-15 -3800 ((-1007 (-201)) $))))
-(((-560 (-791)) . T))
-((-1991 (((-3 (-626 |#1|) "failed") |#2| (-849)) 14)))
-(((-883 |#1| |#2|) (-10 -7 (-15 -1991 ((-3 (-626 |#1|) "failed") |#2| (-849)))) (-512) (-596 |#1|)) (T -883))
-((-1991 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-849)) (-4 *5 (-512)) (-5 *2 (-626 *5)) (-5 *1 (-883 *5 *3)) (-4 *3 (-596 *5)))))
-(-10 -7 (-15 -1991 ((-3 (-626 |#1|) "failed") |#2| (-849))))
-((-1404 (((-885 |#2|) (-1 |#2| |#1| |#2|) (-885 |#1|) |#2|) 16)) (-3856 ((|#2| (-1 |#2| |#1| |#2|) (-885 |#1|) |#2|) 18)) (-1389 (((-885 |#2|) (-1 |#2| |#1|) (-885 |#1|)) 13)))
-(((-884 |#1| |#2|) (-10 -7 (-15 -1404 ((-885 |#2|) (-1 |#2| |#1| |#2|) (-885 |#1|) |#2|)) (-15 -3856 (|#2| (-1 |#2| |#1| |#2|) (-885 |#1|) |#2|)) (-15 -1389 ((-885 |#2|) (-1 |#2| |#1|) (-885 |#1|)))) (-1118) (-1118)) (T -884))
-((-1389 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-885 *5)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-5 *2 (-885 *6)) (-5 *1 (-884 *5 *6)))) (-3856 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-885 *5)) (-4 *5 (-1118)) (-4 *2 (-1118)) (-5 *1 (-884 *5 *2)))) (-1404 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-885 *6)) (-4 *6 (-1118)) (-4 *5 (-1118)) (-5 *2 (-885 *5)) (-5 *1 (-884 *6 *5)))))
-(-10 -7 (-15 -1404 ((-885 |#2|) (-1 |#2| |#1| |#2|) (-885 |#1|) |#2|)) (-15 -3856 (|#2| (-1 |#2| |#1| |#2|) (-885 |#1|) |#2|)) (-15 -1389 ((-885 |#2|) (-1 |#2| |#1|) (-885 |#1|))))
-((-1414 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-1476 (((-1169) $ (-520) (-520)) NIL (|has| $ (-6 -4230)))) (-4029 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-783)))) (-3587 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4230))) (($ $) NIL (-12 (|has| $ (-6 -4230)) (|has| |#1| (-783))))) (-3210 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-783)))) (-2063 (((-108) $ (-706)) NIL)) (-2377 ((|#1| $ (-520) |#1|) 17 (|has| $ (-6 -4230))) ((|#1| $ (-1131 (-520)) |#1|) NIL (|has| $ (-6 -4230)))) (-1627 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-3961 (($) NIL T CONST)) (-2447 (($ $) NIL (|has| $ (-6 -4230)))) (-1861 (($ $) NIL)) (-2331 (($ $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-1421 (($ |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-3856 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4229))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4229)))) (-3846 ((|#1| $ (-520) |#1|) 16 (|has| $ (-6 -4230)))) (-3623 ((|#1| $ (-520)) 14)) (-3232 (((-520) (-1 (-108) |#1|) $) NIL) (((-520) |#1| $) NIL (|has| |#1| (-1012))) (((-520) |#1| $ (-520)) NIL (|has| |#1| (-1012)))) (-3828 (((-586 |#1|) $) NIL (|has| $ (-6 -4229)))) (-1810 (($ (-706) |#1|) 13)) (-3027 (((-108) $ (-706)) NIL)) (-2567 (((-520) $) 10 (|has| (-520) (-783)))) (-2809 (($ $ $) NIL (|has| |#1| (-783)))) (-1819 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-783)))) (-3702 (((-586 |#1|) $) NIL (|has| $ (-6 -4229)))) (-2422 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-1752 (((-520) $) NIL (|has| (-520) (-783)))) (-2446 (($ $ $) NIL (|has| |#1| (-783)))) (-3830 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1390 (((-108) $ (-706)) NIL)) (-1239 (((-1066) $) NIL (|has| |#1| (-1012)))) (-1659 (($ |#1| $ (-520)) NIL) (($ $ $ (-520)) NIL)) (-3622 (((-586 (-520)) $) NIL)) (-2603 (((-108) (-520) $) NIL)) (-4142 (((-1030) $) NIL (|has| |#1| (-1012)))) (-2293 ((|#1| $) NIL (|has| (-520) (-783)))) (-2985 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-2936 (($ $ |#1|) 12 (|has| $ (-6 -4230)))) (-4155 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 |#1|))) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-268 |#1|)) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-586 |#1|) (-586 |#1|)) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))) (-2533 (((-108) $ $) NIL)) (-2094 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-1523 (((-586 |#1|) $) NIL)) (-4018 (((-108) $) NIL)) (-2238 (($) 11)) (-2543 ((|#1| $ (-520) |#1|) NIL) ((|#1| $ (-520)) 15) (($ $ (-1131 (-520))) NIL)) (-3690 (($ $ (-520)) NIL) (($ $ (-1131 (-520))) NIL)) (-4159 (((-706) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229))) (((-706) |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-1913 (($ $ $ (-520)) NIL (|has| $ (-6 -4230)))) (-2403 (($ $) NIL)) (-1429 (((-496) $) NIL (|has| |#1| (-561 (-496))))) (-2200 (($ (-586 |#1|)) NIL)) (-4156 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-586 $)) NIL)) (-2188 (((-791) $) NIL (|has| |#1| (-560 (-791))))) (-1662 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-1573 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1557 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1530 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-1565 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1548 (((-108) $ $) NIL (|has| |#1| (-783)))) (-3474 (((-706) $) 8 (|has| $ (-6 -4229)))))
-(((-885 |#1|) (-19 |#1|) (-1118)) (T -885))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-561 (-792)) . T) ((-589 |#1|) . T) ((-976 |#1|) . T) ((-1013) . T))
+((-1415 (((-108) $ $) NIL)) (-1662 (($ |#1|) 17) (($ $ |#1|) 20)) (-2428 (($ |#1|) 18) (($ $ |#1|) 21)) (-2547 (($) NIL T CONST)) (-1257 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-3996 (((-108) $) NIL)) (-2047 (($ |#1| |#1| |#1| |#1|) 8)) (-3688 (((-1067) $) NIL)) (-3095 (($ $) 16)) (-4147 (((-1031) $) NIL)) (-2288 ((|#1| $ |#1|) 24) (((-770 |#1|) $ (-770 |#1|)) 32)) (-1223 (($ $ $) NIL)) (-2674 (($ $ $) NIL)) (-2189 (((-792) $) 39)) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (-3572 (($) 9 T CONST)) (-1531 (((-108) $ $) 44)) (-1620 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (* (($ $ $) 14)))
+(((-655 |#1|) (-13 (-446) (-10 -8 (-15 -2047 ($ |#1| |#1| |#1| |#1|)) (-15 -1662 ($ |#1|)) (-15 -2428 ($ |#1|)) (-15 -1257 ($)) (-15 -1662 ($ $ |#1|)) (-15 -2428 ($ $ |#1|)) (-15 -1257 ($ $)) (-15 -2288 (|#1| $ |#1|)) (-15 -2288 ((-770 |#1|) $ (-770 |#1|))))) (-337)) (T -655))
+((-2047 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-337)))) (-1662 (*1 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-337)))) (-2428 (*1 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-337)))) (-1257 (*1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-337)))) (-1662 (*1 *1 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-337)))) (-2428 (*1 *1 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-337)))) (-1257 (*1 *1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-337)))) (-2288 (*1 *2 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-337)))) (-2288 (*1 *2 *1 *2) (-12 (-5 *2 (-770 *3)) (-4 *3 (-337)) (-5 *1 (-655 *3)))))
+(-13 (-446) (-10 -8 (-15 -2047 ($ |#1| |#1| |#1| |#1|)) (-15 -1662 ($ |#1|)) (-15 -2428 ($ |#1|)) (-15 -1257 ($)) (-15 -1662 ($ $ |#1|)) (-15 -2428 ($ $ |#1|)) (-15 -1257 ($ $)) (-15 -2288 (|#1| $ |#1|)) (-15 -2288 ((-770 |#1|) $ (-770 |#1|)))))
+((-3047 (($ $ (-850)) 12)) (-2830 (($ $ (-850)) 13)) (** (($ $ (-850)) 10)))
+(((-656 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-850))) (-15 -2830 (|#1| |#1| (-850))) (-15 -3047 (|#1| |#1| (-850)))) (-657)) (T -656))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-850))) (-15 -2830 (|#1| |#1| (-850))) (-15 -3047 (|#1| |#1| (-850))))
+((-1415 (((-108) $ $) 7)) (-3047 (($ $ (-850)) 15)) (-2830 (($ $ (-850)) 14)) (-3688 (((-1067) $) 9)) (-4147 (((-1031) $) 10)) (-2189 (((-792) $) 11)) (-1531 (((-108) $ $) 6)) (** (($ $ (-850)) 13)) (* (($ $ $) 16)))
+(((-657) (-1196)) (T -657))
+((* (*1 *1 *1 *1) (-4 *1 (-657))) (-3047 (*1 *1 *1 *2) (-12 (-4 *1 (-657)) (-5 *2 (-850)))) (-2830 (*1 *1 *1 *2) (-12 (-4 *1 (-657)) (-5 *2 (-850)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-657)) (-5 *2 (-850)))))
+(-13 (-1013) (-10 -8 (-15 * ($ $ $)) (-15 -3047 ($ $ (-850))) (-15 -2830 ($ $ (-850))) (-15 ** ($ $ (-850)))))
+(((-97) . T) ((-561 (-792)) . T) ((-1013) . T))
+((-3047 (($ $ (-850)) NIL) (($ $ (-707)) 17)) (-3996 (((-108) $) 10)) (-2830 (($ $ (-850)) NIL) (($ $ (-707)) 18)) (** (($ $ (-850)) NIL) (($ $ (-707)) 15)))
+(((-658 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-707))) (-15 -2830 (|#1| |#1| (-707))) (-15 -3047 (|#1| |#1| (-707))) (-15 -3996 ((-108) |#1|)) (-15 ** (|#1| |#1| (-850))) (-15 -2830 (|#1| |#1| (-850))) (-15 -3047 (|#1| |#1| (-850)))) (-659)) (T -658))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-707))) (-15 -2830 (|#1| |#1| (-707))) (-15 -3047 (|#1| |#1| (-707))) (-15 -3996 ((-108) |#1|)) (-15 ** (|#1| |#1| (-850))) (-15 -2830 (|#1| |#1| (-850))) (-15 -3047 (|#1| |#1| (-850))))
+((-1415 (((-108) $ $) 7)) (-3176 (((-3 $ "failed") $) 17)) (-3047 (($ $ (-850)) 15) (($ $ (-707)) 22)) (-1257 (((-3 $ "failed") $) 19)) (-3996 (((-108) $) 23)) (-2652 (((-3 $ "failed") $) 18)) (-2830 (($ $ (-850)) 14) (($ $ (-707)) 21)) (-3688 (((-1067) $) 9)) (-4147 (((-1031) $) 10)) (-2189 (((-792) $) 11)) (-3572 (($) 24 T CONST)) (-1531 (((-108) $ $) 6)) (** (($ $ (-850)) 13) (($ $ (-707)) 20)) (* (($ $ $) 16)))
+(((-659) (-1196)) (T -659))
+((-3572 (*1 *1) (-4 *1 (-659))) (-3996 (*1 *2 *1) (-12 (-4 *1 (-659)) (-5 *2 (-108)))) (-3047 (*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-707)))) (-2830 (*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-707)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-707)))) (-1257 (*1 *1 *1) (|partial| -4 *1 (-659))) (-2652 (*1 *1 *1) (|partial| -4 *1 (-659))) (-3176 (*1 *1 *1) (|partial| -4 *1 (-659))))
+(-13 (-657) (-10 -8 (-15 (-3572) ($) -2676) (-15 -3996 ((-108) $)) (-15 -3047 ($ $ (-707))) (-15 -2830 ($ $ (-707))) (-15 ** ($ $ (-707))) (-15 -1257 ((-3 $ "failed") $)) (-15 -2652 ((-3 $ "failed") $)) (-15 -3176 ((-3 $ "failed") $))))
+(((-97) . T) ((-561 (-792)) . T) ((-657) . T) ((-1013) . T))
+((-1630 (((-707)) 35)) (-1297 (((-3 (-521) "failed") $) NIL) (((-3 (-381 (-521)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-1483 (((-521) $) NIL) (((-381 (-521)) $) NIL) ((|#2| $) 22)) (-3859 (($ |#3|) NIL) (((-3 $ "failed") (-381 |#3|)) 45)) (-1257 (((-3 $ "failed") $) 65)) (-3250 (($) 39)) (-3930 ((|#2| $) 20)) (-1383 (($) 17)) (-2156 (($ $ (-1 |#2| |#2|) (-707)) NIL) (($ $ (-1 |#2| |#2|)) 53) (($ $ (-587 (-1084)) (-587 (-707))) NIL) (($ $ (-1084) (-707)) NIL) (($ $ (-587 (-1084))) NIL) (($ $ (-1084)) NIL) (($ $ (-707)) NIL) (($ $) NIL)) (-3089 (((-627 |#2|) (-1165 $) (-1 |#2| |#2|)) 60)) (-1430 (((-1165 |#2|) $) NIL) (($ (-1165 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-3110 ((|#3| $) 32)) (-2470 (((-1165 $)) 29)))
+(((-660 |#1| |#2| |#3|) (-10 -8 (-15 -2156 (|#1| |#1|)) (-15 -2156 (|#1| |#1| (-707))) (-15 -2156 (|#1| |#1| (-1084))) (-15 -2156 (|#1| |#1| (-587 (-1084)))) (-15 -2156 (|#1| |#1| (-1084) (-707))) (-15 -2156 (|#1| |#1| (-587 (-1084)) (-587 (-707)))) (-15 -3250 (|#1|)) (-15 -1630 ((-707))) (-15 -2156 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2156 (|#1| |#1| (-1 |#2| |#2|) (-707))) (-15 -3089 ((-627 |#2|) (-1165 |#1|) (-1 |#2| |#2|))) (-15 -3859 ((-3 |#1| "failed") (-381 |#3|))) (-15 -1430 (|#1| |#3|)) (-15 -3859 (|#1| |#3|)) (-15 -1383 (|#1|)) (-15 -1483 (|#2| |#1|)) (-15 -1297 ((-3 |#2| "failed") |#1|)) (-15 -1297 ((-3 (-381 (-521)) "failed") |#1|)) (-15 -1483 ((-381 (-521)) |#1|)) (-15 -1297 ((-3 (-521) "failed") |#1|)) (-15 -1483 ((-521) |#1|)) (-15 -1430 (|#3| |#1|)) (-15 -1430 (|#1| (-1165 |#2|))) (-15 -1430 ((-1165 |#2|) |#1|)) (-15 -2470 ((-1165 |#1|))) (-15 -3110 (|#3| |#1|)) (-15 -3930 (|#2| |#1|)) (-15 -1257 ((-3 |#1| "failed") |#1|))) (-661 |#2| |#3|) (-157) (-1141 |#2|)) (T -660))
+((-1630 (*1 *2) (-12 (-4 *4 (-157)) (-4 *5 (-1141 *4)) (-5 *2 (-707)) (-5 *1 (-660 *3 *4 *5)) (-4 *3 (-661 *4 *5)))))
+(-10 -8 (-15 -2156 (|#1| |#1|)) (-15 -2156 (|#1| |#1| (-707))) (-15 -2156 (|#1| |#1| (-1084))) (-15 -2156 (|#1| |#1| (-587 (-1084)))) (-15 -2156 (|#1| |#1| (-1084) (-707))) (-15 -2156 (|#1| |#1| (-587 (-1084)) (-587 (-707)))) (-15 -3250 (|#1|)) (-15 -1630 ((-707))) (-15 -2156 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2156 (|#1| |#1| (-1 |#2| |#2|) (-707))) (-15 -3089 ((-627 |#2|) (-1165 |#1|) (-1 |#2| |#2|))) (-15 -3859 ((-3 |#1| "failed") (-381 |#3|))) (-15 -1430 (|#1| |#3|)) (-15 -3859 (|#1| |#3|)) (-15 -1383 (|#1|)) (-15 -1483 (|#2| |#1|)) (-15 -1297 ((-3 |#2| "failed") |#1|)) (-15 -1297 ((-3 (-381 (-521)) "failed") |#1|)) (-15 -1483 ((-381 (-521)) |#1|)) (-15 -1297 ((-3 (-521) "failed") |#1|)) (-15 -1483 ((-521) |#1|)) (-15 -1430 (|#3| |#1|)) (-15 -1430 (|#1| (-1165 |#2|))) (-15 -1430 ((-1165 |#2|) |#1|)) (-15 -2470 ((-1165 |#1|))) (-15 -3110 (|#3| |#1|)) (-15 -3930 (|#2| |#1|)) (-15 -1257 ((-3 |#1| "failed") |#1|)))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) 93 (|has| |#1| (-337)))) (-2559 (($ $) 94 (|has| |#1| (-337)))) (-1733 (((-108) $) 96 (|has| |#1| (-337)))) (-3214 (((-627 |#1|) (-1165 $)) 46) (((-627 |#1|)) 61)) (-1865 ((|#1| $) 52)) (-1340 (((-1093 (-850) (-707)) (-521)) 147 (|has| |#1| (-323)))) (-1232 (((-3 $ "failed") $ $) 19)) (-3063 (($ $) 113 (|has| |#1| (-337)))) (-3358 (((-392 $) $) 114 (|has| |#1| (-337)))) (-1389 (((-108) $ $) 104 (|has| |#1| (-337)))) (-1630 (((-707)) 87 (|has| |#1| (-342)))) (-2547 (($) 17 T CONST)) (-1297 (((-3 (-521) "failed") $) 169 (|has| |#1| (-961 (-521)))) (((-3 (-381 (-521)) "failed") $) 167 (|has| |#1| (-961 (-381 (-521))))) (((-3 |#1| "failed") $) 166)) (-1483 (((-521) $) 170 (|has| |#1| (-961 (-521)))) (((-381 (-521)) $) 168 (|has| |#1| (-961 (-381 (-521))))) ((|#1| $) 165)) (-4083 (($ (-1165 |#1|) (-1165 $)) 48) (($ (-1165 |#1|)) 64)) (-1864 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| |#1| (-323)))) (-2277 (($ $ $) 108 (|has| |#1| (-337)))) (-3499 (((-627 |#1|) $ (-1165 $)) 53) (((-627 |#1|) $) 59)) (-3279 (((-627 (-521)) (-627 $)) 164 (|has| |#1| (-583 (-521)))) (((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) 163 (|has| |#1| (-583 (-521)))) (((-2 (|:| -1201 (-627 |#1|)) (|:| |vec| (-1165 |#1|))) (-627 $) (-1165 $)) 162) (((-627 |#1|) (-627 $)) 161)) (-3859 (($ |#2|) 158) (((-3 $ "failed") (-381 |#2|)) 155 (|has| |#1| (-337)))) (-1257 (((-3 $ "failed") $) 34)) (-3162 (((-850)) 54)) (-3250 (($) 90 (|has| |#1| (-342)))) (-2253 (($ $ $) 107 (|has| |#1| (-337)))) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) 102 (|has| |#1| (-337)))) (-2103 (($) 149 (|has| |#1| (-323)))) (-2371 (((-108) $) 150 (|has| |#1| (-323)))) (-2833 (($ $ (-707)) 141 (|has| |#1| (-323))) (($ $) 140 (|has| |#1| (-323)))) (-2710 (((-108) $) 115 (|has| |#1| (-337)))) (-2733 (((-850) $) 152 (|has| |#1| (-323))) (((-770 (-850)) $) 138 (|has| |#1| (-323)))) (-3996 (((-108) $) 31)) (-3930 ((|#1| $) 51)) (-3842 (((-3 $ "failed") $) 142 (|has| |#1| (-323)))) (-1546 (((-3 (-587 $) "failed") (-587 $) $) 111 (|has| |#1| (-337)))) (-3548 ((|#2| $) 44 (|has| |#1| (-337)))) (-2715 (((-850) $) 89 (|has| |#1| (-342)))) (-3844 ((|#2| $) 156)) (-2223 (($ (-587 $)) 100 (|has| |#1| (-337))) (($ $ $) 99 (|has| |#1| (-337)))) (-3688 (((-1067) $) 9)) (-3095 (($ $) 116 (|has| |#1| (-337)))) (-3797 (($) 143 (|has| |#1| (-323)) CONST)) (-2716 (($ (-850)) 88 (|has| |#1| (-342)))) (-4147 (((-1031) $) 10)) (-1383 (($) 160)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) 101 (|has| |#1| (-337)))) (-2258 (($ (-587 $)) 98 (|has| |#1| (-337))) (($ $ $) 97 (|has| |#1| (-337)))) (-3040 (((-587 (-2 (|:| -1916 (-521)) (|:| -2997 (-521))))) 146 (|has| |#1| (-323)))) (-1916 (((-392 $) $) 112 (|has| |#1| (-337)))) (-1962 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-337))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) 109 (|has| |#1| (-337)))) (-2230 (((-3 $ "failed") $ $) 92 (|has| |#1| (-337)))) (-3854 (((-3 (-587 $) "failed") (-587 $) $) 103 (|has| |#1| (-337)))) (-4196 (((-707) $) 105 (|has| |#1| (-337)))) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) 106 (|has| |#1| (-337)))) (-4010 ((|#1| (-1165 $)) 47) ((|#1|) 60)) (-4067 (((-707) $) 151 (|has| |#1| (-323))) (((-3 (-707) "failed") $ $) 139 (|has| |#1| (-323)))) (-2156 (($ $) 137 (-3703 (-4009 (|has| |#1| (-210)) (|has| |#1| (-337))) (|has| |#1| (-323)))) (($ $ (-707)) 135 (-3703 (-4009 (|has| |#1| (-210)) (|has| |#1| (-337))) (|has| |#1| (-323)))) (($ $ (-1084)) 133 (-4009 (|has| |#1| (-829 (-1084))) (|has| |#1| (-337)))) (($ $ (-587 (-1084))) 132 (-4009 (|has| |#1| (-829 (-1084))) (|has| |#1| (-337)))) (($ $ (-1084) (-707)) 131 (-4009 (|has| |#1| (-829 (-1084))) (|has| |#1| (-337)))) (($ $ (-587 (-1084)) (-587 (-707))) 130 (-4009 (|has| |#1| (-829 (-1084))) (|has| |#1| (-337)))) (($ $ (-1 |#1| |#1|) (-707)) 123 (|has| |#1| (-337))) (($ $ (-1 |#1| |#1|)) 122 (|has| |#1| (-337)))) (-3089 (((-627 |#1|) (-1165 $) (-1 |#1| |#1|)) 154 (|has| |#1| (-337)))) (-2879 ((|#2|) 159)) (-1204 (($) 148 (|has| |#1| (-323)))) (-2234 (((-1165 |#1|) $ (-1165 $)) 50) (((-627 |#1|) (-1165 $) (-1165 $)) 49) (((-1165 |#1|) $) 66) (((-627 |#1|) (-1165 $)) 65)) (-1430 (((-1165 |#1|) $) 63) (($ (-1165 |#1|)) 62) ((|#2| $) 171) (($ |#2|) 157)) (-2944 (((-3 (-1165 $) "failed") (-627 $)) 145 (|has| |#1| (-323)))) (-2189 (((-792) $) 11) (($ (-521)) 28) (($ |#1|) 37) (($ $) 91 (|has| |#1| (-337))) (($ (-381 (-521))) 86 (-3703 (|has| |#1| (-337)) (|has| |#1| (-961 (-381 (-521))))))) (-1671 (($ $) 144 (|has| |#1| (-323))) (((-3 $ "failed") $) 43 (|has| |#1| (-133)))) (-3110 ((|#2| $) 45)) (-3846 (((-707)) 29)) (-2470 (((-1165 $)) 67)) (-4210 (((-108) $ $) 95 (|has| |#1| (-337)))) (-3505 (($ $ (-850)) 26) (($ $ (-707)) 33) (($ $ (-521)) 117 (|has| |#1| (-337)))) (-3561 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-2212 (($ $) 136 (-3703 (-4009 (|has| |#1| (-210)) (|has| |#1| (-337))) (|has| |#1| (-323)))) (($ $ (-707)) 134 (-3703 (-4009 (|has| |#1| (-210)) (|has| |#1| (-337))) (|has| |#1| (-323)))) (($ $ (-1084)) 129 (-4009 (|has| |#1| (-829 (-1084))) (|has| |#1| (-337)))) (($ $ (-587 (-1084))) 128 (-4009 (|has| |#1| (-829 (-1084))) (|has| |#1| (-337)))) (($ $ (-1084) (-707)) 127 (-4009 (|has| |#1| (-829 (-1084))) (|has| |#1| (-337)))) (($ $ (-587 (-1084)) (-587 (-707))) 126 (-4009 (|has| |#1| (-829 (-1084))) (|has| |#1| (-337)))) (($ $ (-1 |#1| |#1|) (-707)) 125 (|has| |#1| (-337))) (($ $ (-1 |#1| |#1|)) 124 (|has| |#1| (-337)))) (-1531 (((-108) $ $) 6)) (-1620 (($ $ $) 121 (|has| |#1| (-337)))) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-707)) 32) (($ $ (-521)) 118 (|has| |#1| (-337)))) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ (-381 (-521)) $) 120 (|has| |#1| (-337))) (($ $ (-381 (-521))) 119 (|has| |#1| (-337)))))
+(((-661 |#1| |#2|) (-1196) (-157) (-1141 |t#1|)) (T -661))
+((-1383 (*1 *1) (-12 (-4 *2 (-157)) (-4 *1 (-661 *2 *3)) (-4 *3 (-1141 *2)))) (-2879 (*1 *2) (-12 (-4 *1 (-661 *3 *2)) (-4 *3 (-157)) (-4 *2 (-1141 *3)))) (-3859 (*1 *1 *2) (-12 (-4 *3 (-157)) (-4 *1 (-661 *3 *2)) (-4 *2 (-1141 *3)))) (-1430 (*1 *1 *2) (-12 (-4 *3 (-157)) (-4 *1 (-661 *3 *2)) (-4 *2 (-1141 *3)))) (-3844 (*1 *2 *1) (-12 (-4 *1 (-661 *3 *2)) (-4 *3 (-157)) (-4 *2 (-1141 *3)))) (-3859 (*1 *1 *2) (|partial| -12 (-5 *2 (-381 *4)) (-4 *4 (-1141 *3)) (-4 *3 (-337)) (-4 *3 (-157)) (-4 *1 (-661 *3 *4)))) (-3089 (*1 *2 *3 *4) (-12 (-5 *3 (-1165 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-337)) (-4 *1 (-661 *5 *6)) (-4 *5 (-157)) (-4 *6 (-1141 *5)) (-5 *2 (-627 *5)))))
+(-13 (-383 |t#1| |t#2|) (-157) (-562 |t#2|) (-385 |t#1|) (-351 |t#1|) (-10 -8 (-15 -1383 ($)) (-15 -2879 (|t#2|)) (-15 -3859 ($ |t#2|)) (-15 -1430 ($ |t#2|)) (-15 -3844 (|t#2| $)) (IF (|has| |t#1| (-342)) (-6 (-342)) |%noBranch|) (IF (|has| |t#1| (-337)) (PROGN (-6 (-337)) (-6 (-208 |t#1|)) (-15 -3859 ((-3 $ "failed") (-381 |t#2|))) (-15 -3089 ((-627 |t#1|) (-1165 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-323)) (-6 (-323)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-381 (-521))) -3703 (|has| |#1| (-323)) (|has| |#1| (-337))) ((-37 |#1|) . T) ((-37 $) -3703 (|has| |#1| (-323)) (|has| |#1| (-337))) ((-97) . T) ((-107 #0# #0#) -3703 (|has| |#1| (-323)) (|has| |#1| (-337))) ((-107 |#1| |#1|) . T) ((-107 $ $) . T) ((-124) . T) ((-133) -3703 (|has| |#1| (-323)) (|has| |#1| (-133))) ((-135) |has| |#1| (-135)) ((-561 (-792)) . T) ((-157) . T) ((-562 |#2|) . T) ((-208 |#1|) |has| |#1| (-337)) ((-210) -3703 (|has| |#1| (-323)) (-12 (|has| |#1| (-210)) (|has| |#1| (-337)))) ((-220) -3703 (|has| |#1| (-323)) (|has| |#1| (-337))) ((-265) -3703 (|has| |#1| (-323)) (|has| |#1| (-337))) ((-282) -3703 (|has| |#1| (-323)) (|has| |#1| (-337))) ((-337) -3703 (|has| |#1| (-323)) (|has| |#1| (-337))) ((-376) |has| |#1| (-323)) ((-342) -3703 (|has| |#1| (-342)) (|has| |#1| (-323))) ((-323) |has| |#1| (-323)) ((-344 |#1| |#2|) . T) ((-383 |#1| |#2|) . T) ((-351 |#1|) . T) ((-385 |#1|) . T) ((-425) -3703 (|has| |#1| (-323)) (|has| |#1| (-337))) ((-513) -3703 (|has| |#1| (-323)) (|has| |#1| (-337))) ((-589 #0#) -3703 (|has| |#1| (-323)) (|has| |#1| (-337))) ((-589 |#1|) . T) ((-589 $) . T) ((-583 (-521)) |has| |#1| (-583 (-521))) ((-583 |#1|) . T) ((-654 #0#) -3703 (|has| |#1| (-323)) (|has| |#1| (-337))) ((-654 |#1|) . T) ((-654 $) -3703 (|has| |#1| (-323)) (|has| |#1| (-337))) ((-663) . T) ((-829 (-1084)) -12 (|has| |#1| (-337)) (|has| |#1| (-829 (-1084)))) ((-849) -3703 (|has| |#1| (-323)) (|has| |#1| (-337))) ((-961 (-381 (-521))) |has| |#1| (-961 (-381 (-521)))) ((-961 (-521)) |has| |#1| (-961 (-521))) ((-961 |#1|) . T) ((-976 #0#) -3703 (|has| |#1| (-323)) (|has| |#1| (-337))) ((-976 |#1|) . T) ((-976 $) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T) ((-1060) |has| |#1| (-323)) ((-1123) -3703 (|has| |#1| (-323)) (|has| |#1| (-337))))
+((-2547 (($) 14)) (-1257 (((-3 $ "failed") $) 16)) (-3996 (((-108) $) 13)) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) 9)) (** (($ $ (-850)) NIL) (($ $ (-707)) 20)))
+(((-662 |#1|) (-10 -8 (-15 -1257 ((-3 |#1| "failed") |#1|)) (-15 -3505 (|#1| |#1| (-707))) (-15 ** (|#1| |#1| (-707))) (-15 -3996 ((-108) |#1|)) (-15 -2547 (|#1|)) (-15 -3505 (|#1| |#1| (-850))) (-15 ** (|#1| |#1| (-850)))) (-663)) (T -662))
+NIL
+(-10 -8 (-15 -1257 ((-3 |#1| "failed") |#1|)) (-15 -3505 (|#1| |#1| (-707))) (-15 ** (|#1| |#1| (-707))) (-15 -3996 ((-108) |#1|)) (-15 -2547 (|#1|)) (-15 -3505 (|#1| |#1| (-850))) (-15 ** (|#1| |#1| (-850))))
+((-1415 (((-108) $ $) 7)) (-2547 (($) 20 T CONST)) (-1257 (((-3 $ "failed") $) 16)) (-3996 (((-108) $) 19)) (-3688 (((-1067) $) 9)) (-4147 (((-1031) $) 10)) (-2189 (((-792) $) 11)) (-3505 (($ $ (-850)) 13) (($ $ (-707)) 17)) (-3572 (($) 21 T CONST)) (-1531 (((-108) $ $) 6)) (** (($ $ (-850)) 14) (($ $ (-707)) 18)) (* (($ $ $) 15)))
+(((-663) (-1196)) (T -663))
+((-3572 (*1 *1) (-4 *1 (-663))) (-2547 (*1 *1) (-4 *1 (-663))) (-3996 (*1 *2 *1) (-12 (-4 *1 (-663)) (-5 *2 (-108)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-663)) (-5 *2 (-707)))) (-3505 (*1 *1 *1 *2) (-12 (-4 *1 (-663)) (-5 *2 (-707)))) (-1257 (*1 *1 *1) (|partial| -4 *1 (-663))))
+(-13 (-1025) (-10 -8 (-15 (-3572) ($) -2676) (-15 -2547 ($) -2676) (-15 -3996 ((-108) $)) (-15 ** ($ $ (-707))) (-15 -3505 ($ $ (-707))) (-15 -1257 ((-3 $ "failed") $))))
+(((-97) . T) ((-561 (-792)) . T) ((-1025) . T) ((-1013) . T))
+((-3853 (((-2 (|:| -3658 (-392 |#2|)) (|:| |special| (-392 |#2|))) |#2| (-1 |#2| |#2|)) 38)) (-3604 (((-2 (|:| -3658 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-3828 ((|#2| (-381 |#2|) (-1 |#2| |#2|)) 13)) (-3686 (((-2 (|:| |poly| |#2|) (|:| -3658 (-381 |#2|)) (|:| |special| (-381 |#2|))) (-381 |#2|) (-1 |#2| |#2|)) 47)))
+(((-664 |#1| |#2|) (-10 -7 (-15 -3604 ((-2 (|:| -3658 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3853 ((-2 (|:| -3658 (-392 |#2|)) (|:| |special| (-392 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -3828 (|#2| (-381 |#2|) (-1 |#2| |#2|))) (-15 -3686 ((-2 (|:| |poly| |#2|) (|:| -3658 (-381 |#2|)) (|:| |special| (-381 |#2|))) (-381 |#2|) (-1 |#2| |#2|)))) (-337) (-1141 |#1|)) (T -664))
+((-3686 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1141 *5)) (-4 *5 (-337)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3658 (-381 *6)) (|:| |special| (-381 *6)))) (-5 *1 (-664 *5 *6)) (-5 *3 (-381 *6)))) (-3828 (*1 *2 *3 *4) (-12 (-5 *3 (-381 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1141 *5)) (-5 *1 (-664 *5 *2)) (-4 *5 (-337)))) (-3853 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1141 *5)) (-4 *5 (-337)) (-5 *2 (-2 (|:| -3658 (-392 *3)) (|:| |special| (-392 *3)))) (-5 *1 (-664 *5 *3)))) (-3604 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1141 *5)) (-4 *5 (-337)) (-5 *2 (-2 (|:| -3658 *3) (|:| |special| *3))) (-5 *1 (-664 *5 *3)))))
+(-10 -7 (-15 -3604 ((-2 (|:| -3658 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3853 ((-2 (|:| -3658 (-392 |#2|)) (|:| |special| (-392 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -3828 (|#2| (-381 |#2|) (-1 |#2| |#2|))) (-15 -3686 ((-2 (|:| |poly| |#2|) (|:| -3658 (-381 |#2|)) (|:| |special| (-381 |#2|))) (-381 |#2|) (-1 |#2| |#2|))))
+((-3128 ((|#7| (-587 |#5|) |#6|) NIL)) (-1390 ((|#7| (-1 |#5| |#4|) |#6|) 26)))
+(((-665 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1390 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3128 (|#7| (-587 |#5|) |#6|))) (-784) (-729) (-729) (-970) (-970) (-878 |#4| |#2| |#1|) (-878 |#5| |#3| |#1|)) (T -665))
+((-3128 (*1 *2 *3 *4) (-12 (-5 *3 (-587 *9)) (-4 *9 (-970)) (-4 *5 (-784)) (-4 *6 (-729)) (-4 *8 (-970)) (-4 *2 (-878 *9 *7 *5)) (-5 *1 (-665 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-729)) (-4 *4 (-878 *8 *6 *5)))) (-1390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-970)) (-4 *9 (-970)) (-4 *5 (-784)) (-4 *6 (-729)) (-4 *2 (-878 *9 *7 *5)) (-5 *1 (-665 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-729)) (-4 *4 (-878 *8 *6 *5)))))
+(-10 -7 (-15 -1390 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3128 (|#7| (-587 |#5|) |#6|)))
+((-1390 ((|#7| (-1 |#2| |#1|) |#6|) 29)))
+(((-666 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1390 (|#7| (-1 |#2| |#1|) |#6|))) (-784) (-784) (-729) (-729) (-970) (-878 |#5| |#3| |#1|) (-878 |#5| |#4| |#2|)) (T -666))
+((-1390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-784)) (-4 *6 (-784)) (-4 *7 (-729)) (-4 *9 (-970)) (-4 *2 (-878 *9 *8 *6)) (-5 *1 (-666 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-729)) (-4 *4 (-878 *9 *7 *5)))))
+(-10 -7 (-15 -1390 (|#7| (-1 |#2| |#1|) |#6|)))
+((-1916 (((-392 |#4|) |#4|) 39)))
+(((-667 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1916 ((-392 |#4|) |#4|))) (-729) (-13 (-784) (-10 -8 (-15 -1430 ((-1084) $)) (-15 -1611 ((-3 $ "failed") (-1084))))) (-282) (-878 (-881 |#3|) |#1| |#2|)) (T -667))
+((-1916 (*1 *2 *3) (-12 (-4 *4 (-729)) (-4 *5 (-13 (-784) (-10 -8 (-15 -1430 ((-1084) $)) (-15 -1611 ((-3 $ "failed") (-1084)))))) (-4 *6 (-282)) (-5 *2 (-392 *3)) (-5 *1 (-667 *4 *5 *6 *3)) (-4 *3 (-878 (-881 *6) *4 *5)))))
+(-10 -7 (-15 -1916 ((-392 |#4|) |#4|)))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-4084 (((-587 (-794 |#1|)) $) NIL)) (-1280 (((-1080 $) $ (-794 |#1|)) NIL) (((-1080 |#2|) $) NIL)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) NIL (|has| |#2| (-513)))) (-2559 (($ $) NIL (|has| |#2| (-513)))) (-1733 (((-108) $) NIL (|has| |#2| (-513)))) (-2256 (((-707) $) NIL) (((-707) $ (-587 (-794 |#1|))) NIL)) (-1232 (((-3 $ "failed") $ $) NIL)) (-2598 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#2| (-838)))) (-3063 (($ $) NIL (|has| |#2| (-425)))) (-3358 (((-392 $) $) NIL (|has| |#2| (-425)))) (-2569 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) NIL (|has| |#2| (-838)))) (-2547 (($) NIL T CONST)) (-1297 (((-3 |#2| "failed") $) NIL) (((-3 (-381 (-521)) "failed") $) NIL (|has| |#2| (-961 (-381 (-521))))) (((-3 (-521) "failed") $) NIL (|has| |#2| (-961 (-521)))) (((-3 (-794 |#1|) "failed") $) NIL)) (-1483 ((|#2| $) NIL) (((-381 (-521)) $) NIL (|has| |#2| (-961 (-381 (-521))))) (((-521) $) NIL (|has| |#2| (-961 (-521)))) (((-794 |#1|) $) NIL)) (-2114 (($ $ $ (-794 |#1|)) NIL (|has| |#2| (-157)))) (-3152 (($ $) NIL)) (-3279 (((-627 (-521)) (-627 $)) NIL (|has| |#2| (-583 (-521)))) (((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (|has| |#2| (-583 (-521)))) (((-2 (|:| -1201 (-627 |#2|)) (|:| |vec| (-1165 |#2|))) (-627 $) (-1165 $)) NIL) (((-627 |#2|) (-627 $)) NIL)) (-1257 (((-3 $ "failed") $) NIL)) (-3666 (($ $) NIL (|has| |#2| (-425))) (($ $ (-794 |#1|)) NIL (|has| |#2| (-425)))) (-3144 (((-587 $) $) NIL)) (-2710 (((-108) $) NIL (|has| |#2| (-838)))) (-3528 (($ $ |#2| (-493 (-794 |#1|)) $) NIL)) (-3427 (((-818 (-353) $) $ (-821 (-353)) (-818 (-353) $)) NIL (-12 (|has| (-794 |#1|) (-815 (-353))) (|has| |#2| (-815 (-353))))) (((-818 (-521) $) $ (-821 (-521)) (-818 (-521) $)) NIL (-12 (|has| (-794 |#1|) (-815 (-521))) (|has| |#2| (-815 (-521)))))) (-3996 (((-108) $) NIL)) (-2678 (((-707) $) NIL)) (-4069 (($ (-1080 |#2|) (-794 |#1|)) NIL) (($ (-1080 $) (-794 |#1|)) NIL)) (-2959 (((-587 $) $) NIL)) (-3649 (((-108) $) NIL)) (-4043 (($ |#2| (-493 (-794 |#1|))) NIL) (($ $ (-794 |#1|) (-707)) NIL) (($ $ (-587 (-794 |#1|)) (-587 (-707))) NIL)) (-1450 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $ (-794 |#1|)) NIL)) (-3273 (((-493 (-794 |#1|)) $) NIL) (((-707) $ (-794 |#1|)) NIL) (((-587 (-707)) $ (-587 (-794 |#1|))) NIL)) (-2810 (($ $ $) NIL (|has| |#2| (-784)))) (-2446 (($ $ $) NIL (|has| |#2| (-784)))) (-3285 (($ (-1 (-493 (-794 |#1|)) (-493 (-794 |#1|))) $) NIL)) (-1390 (($ (-1 |#2| |#2|) $) NIL)) (-2477 (((-3 (-794 |#1|) "failed") $) NIL)) (-3125 (($ $) NIL)) (-3135 ((|#2| $) NIL)) (-2223 (($ (-587 $)) NIL (|has| |#2| (-425))) (($ $ $) NIL (|has| |#2| (-425)))) (-3688 (((-1067) $) NIL)) (-1617 (((-3 (-587 $) "failed") $) NIL)) (-3177 (((-3 (-587 $) "failed") $) NIL)) (-3979 (((-3 (-2 (|:| |var| (-794 |#1|)) (|:| -2997 (-707))) "failed") $) NIL)) (-4147 (((-1031) $) NIL)) (-3105 (((-108) $) NIL)) (-3115 ((|#2| $) NIL)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) NIL (|has| |#2| (-425)))) (-2258 (($ (-587 $)) NIL (|has| |#2| (-425))) (($ $ $) NIL (|has| |#2| (-425)))) (-1912 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#2| (-838)))) (-2165 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#2| (-838)))) (-1916 (((-392 $) $) NIL (|has| |#2| (-838)))) (-2230 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-513))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-513)))) (-2288 (($ $ (-587 (-269 $))) NIL) (($ $ (-269 $)) NIL) (($ $ $ $) NIL) (($ $ (-587 $) (-587 $)) NIL) (($ $ (-794 |#1|) |#2|) NIL) (($ $ (-587 (-794 |#1|)) (-587 |#2|)) NIL) (($ $ (-794 |#1|) $) NIL) (($ $ (-587 (-794 |#1|)) (-587 $)) NIL)) (-4010 (($ $ (-794 |#1|)) NIL (|has| |#2| (-157)))) (-2156 (($ $ (-794 |#1|)) NIL) (($ $ (-587 (-794 |#1|))) NIL) (($ $ (-794 |#1|) (-707)) NIL) (($ $ (-587 (-794 |#1|)) (-587 (-707))) NIL)) (-1994 (((-493 (-794 |#1|)) $) NIL) (((-707) $ (-794 |#1|)) NIL) (((-587 (-707)) $ (-587 (-794 |#1|))) NIL)) (-1430 (((-821 (-353)) $) NIL (-12 (|has| (-794 |#1|) (-562 (-821 (-353)))) (|has| |#2| (-562 (-821 (-353)))))) (((-821 (-521)) $) NIL (-12 (|has| (-794 |#1|) (-562 (-821 (-521)))) (|has| |#2| (-562 (-821 (-521)))))) (((-497) $) NIL (-12 (|has| (-794 |#1|) (-562 (-497))) (|has| |#2| (-562 (-497)))))) (-2403 ((|#2| $) NIL (|has| |#2| (-425))) (($ $ (-794 |#1|)) NIL (|has| |#2| (-425)))) (-2944 (((-3 (-1165 $) "failed") (-627 $)) NIL (-12 (|has| $ (-133)) (|has| |#2| (-838))))) (-2189 (((-792) $) NIL) (($ (-521)) NIL) (($ |#2|) NIL) (($ (-794 |#1|)) NIL) (($ $) NIL (|has| |#2| (-513))) (($ (-381 (-521))) NIL (-3703 (|has| |#2| (-37 (-381 (-521)))) (|has| |#2| (-961 (-381 (-521))))))) (-1259 (((-587 |#2|) $) NIL)) (-3800 ((|#2| $ (-493 (-794 |#1|))) NIL) (($ $ (-794 |#1|) (-707)) NIL) (($ $ (-587 (-794 |#1|)) (-587 (-707))) NIL)) (-1671 (((-3 $ "failed") $) NIL (-3703 (-12 (|has| $ (-133)) (|has| |#2| (-838))) (|has| |#2| (-133))))) (-3846 (((-707)) NIL)) (-1547 (($ $ $ (-707)) NIL (|has| |#2| (-157)))) (-4210 (((-108) $ $) NIL (|has| |#2| (-513)))) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (-3561 (($) NIL T CONST)) (-3572 (($) NIL T CONST)) (-2212 (($ $ (-794 |#1|)) NIL) (($ $ (-587 (-794 |#1|))) NIL) (($ $ (-794 |#1|) (-707)) NIL) (($ $ (-587 (-794 |#1|)) (-587 (-707))) NIL)) (-1574 (((-108) $ $) NIL (|has| |#2| (-784)))) (-1558 (((-108) $ $) NIL (|has| |#2| (-784)))) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL (|has| |#2| (-784)))) (-1549 (((-108) $ $) NIL (|has| |#2| (-784)))) (-1620 (($ $ |#2|) NIL (|has| |#2| (-337)))) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ (-381 (-521))) NIL (|has| |#2| (-37 (-381 (-521))))) (($ (-381 (-521)) $) NIL (|has| |#2| (-37 (-381 (-521))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-668 |#1| |#2|) (-878 |#2| (-493 (-794 |#1|)) (-794 |#1|)) (-587 (-1084)) (-970)) (T -668))
+NIL
+(-878 |#2| (-493 (-794 |#1|)) (-794 |#1|))
+((-2784 (((-2 (|:| -2641 (-881 |#3|)) (|:| -2618 (-881 |#3|))) |#4|) 13)) (-1407 ((|#4| |#4| |#2|) 30)) (-3506 ((|#4| (-381 (-881 |#3|)) |#2|) 64)) (-2564 ((|#4| (-1080 (-881 |#3|)) |#2|) 77)) (-1335 ((|#4| (-1080 |#4|) |#2|) 50)) (-1944 ((|#4| |#4| |#2|) 53)) (-1916 (((-392 |#4|) |#4|) 38)))
+(((-669 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2784 ((-2 (|:| -2641 (-881 |#3|)) (|:| -2618 (-881 |#3|))) |#4|)) (-15 -1944 (|#4| |#4| |#2|)) (-15 -1335 (|#4| (-1080 |#4|) |#2|)) (-15 -1407 (|#4| |#4| |#2|)) (-15 -2564 (|#4| (-1080 (-881 |#3|)) |#2|)) (-15 -3506 (|#4| (-381 (-881 |#3|)) |#2|)) (-15 -1916 ((-392 |#4|) |#4|))) (-729) (-13 (-784) (-10 -8 (-15 -1430 ((-1084) $)))) (-513) (-878 (-381 (-881 |#3|)) |#1| |#2|)) (T -669))
+((-1916 (*1 *2 *3) (-12 (-4 *4 (-729)) (-4 *5 (-13 (-784) (-10 -8 (-15 -1430 ((-1084) $))))) (-4 *6 (-513)) (-5 *2 (-392 *3)) (-5 *1 (-669 *4 *5 *6 *3)) (-4 *3 (-878 (-381 (-881 *6)) *4 *5)))) (-3506 (*1 *2 *3 *4) (-12 (-4 *6 (-513)) (-4 *2 (-878 *3 *5 *4)) (-5 *1 (-669 *5 *4 *6 *2)) (-5 *3 (-381 (-881 *6))) (-4 *5 (-729)) (-4 *4 (-13 (-784) (-10 -8 (-15 -1430 ((-1084) $))))))) (-2564 (*1 *2 *3 *4) (-12 (-5 *3 (-1080 (-881 *6))) (-4 *6 (-513)) (-4 *2 (-878 (-381 (-881 *6)) *5 *4)) (-5 *1 (-669 *5 *4 *6 *2)) (-4 *5 (-729)) (-4 *4 (-13 (-784) (-10 -8 (-15 -1430 ((-1084) $))))))) (-1407 (*1 *2 *2 *3) (-12 (-4 *4 (-729)) (-4 *3 (-13 (-784) (-10 -8 (-15 -1430 ((-1084) $))))) (-4 *5 (-513)) (-5 *1 (-669 *4 *3 *5 *2)) (-4 *2 (-878 (-381 (-881 *5)) *4 *3)))) (-1335 (*1 *2 *3 *4) (-12 (-5 *3 (-1080 *2)) (-4 *2 (-878 (-381 (-881 *6)) *5 *4)) (-5 *1 (-669 *5 *4 *6 *2)) (-4 *5 (-729)) (-4 *4 (-13 (-784) (-10 -8 (-15 -1430 ((-1084) $))))) (-4 *6 (-513)))) (-1944 (*1 *2 *2 *3) (-12 (-4 *4 (-729)) (-4 *3 (-13 (-784) (-10 -8 (-15 -1430 ((-1084) $))))) (-4 *5 (-513)) (-5 *1 (-669 *4 *3 *5 *2)) (-4 *2 (-878 (-381 (-881 *5)) *4 *3)))) (-2784 (*1 *2 *3) (-12 (-4 *4 (-729)) (-4 *5 (-13 (-784) (-10 -8 (-15 -1430 ((-1084) $))))) (-4 *6 (-513)) (-5 *2 (-2 (|:| -2641 (-881 *6)) (|:| -2618 (-881 *6)))) (-5 *1 (-669 *4 *5 *6 *3)) (-4 *3 (-878 (-381 (-881 *6)) *4 *5)))))
+(-10 -7 (-15 -2784 ((-2 (|:| -2641 (-881 |#3|)) (|:| -2618 (-881 |#3|))) |#4|)) (-15 -1944 (|#4| |#4| |#2|)) (-15 -1335 (|#4| (-1080 |#4|) |#2|)) (-15 -1407 (|#4| |#4| |#2|)) (-15 -2564 (|#4| (-1080 (-881 |#3|)) |#2|)) (-15 -3506 (|#4| (-381 (-881 |#3|)) |#2|)) (-15 -1916 ((-392 |#4|) |#4|)))
+((-1916 (((-392 |#4|) |#4|) 51)))
+(((-670 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1916 ((-392 |#4|) |#4|))) (-729) (-784) (-13 (-282) (-135)) (-878 (-381 |#3|) |#1| |#2|)) (T -670))
+((-1916 (*1 *2 *3) (-12 (-4 *4 (-729)) (-4 *5 (-784)) (-4 *6 (-13 (-282) (-135))) (-5 *2 (-392 *3)) (-5 *1 (-670 *4 *5 *6 *3)) (-4 *3 (-878 (-381 *6) *4 *5)))))
+(-10 -7 (-15 -1916 ((-392 |#4|) |#4|)))
+((-1390 (((-672 |#2| |#3|) (-1 |#2| |#1|) (-672 |#1| |#3|)) 18)))
+(((-671 |#1| |#2| |#3|) (-10 -7 (-15 -1390 ((-672 |#2| |#3|) (-1 |#2| |#1|) (-672 |#1| |#3|)))) (-970) (-970) (-663)) (T -671))
+((-1390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-672 *5 *7)) (-4 *5 (-970)) (-4 *6 (-970)) (-4 *7 (-663)) (-5 *2 (-672 *6 *7)) (-5 *1 (-671 *5 *6 *7)))))
+(-10 -7 (-15 -1390 ((-672 |#2| |#3|) (-1 |#2| |#1|) (-672 |#1| |#3|))))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) 26)) (-3423 (((-587 (-2 (|:| -2973 |#1|) (|:| -2517 |#2|))) $) 27)) (-1232 (((-3 $ "failed") $ $) NIL)) (-1630 (((-707)) 20 (-12 (|has| |#2| (-342)) (|has| |#1| (-342))))) (-2547 (($) NIL T CONST)) (-1297 (((-3 |#2| "failed") $) 56) (((-3 |#1| "failed") $) 59)) (-1483 ((|#2| $) NIL) ((|#1| $) NIL)) (-3152 (($ $) 76 (|has| |#2| (-784)))) (-1257 (((-3 $ "failed") $) 63)) (-3250 (($) 33 (-12 (|has| |#2| (-342)) (|has| |#1| (-342))))) (-3996 (((-108) $) NIL)) (-2678 (((-707) $) 54)) (-2959 (((-587 $) $) 37)) (-3649 (((-108) $) NIL)) (-4043 (($ |#1| |#2|) 16)) (-1390 (($ (-1 |#1| |#1|) $) 53)) (-2715 (((-850) $) 30 (-12 (|has| |#2| (-342)) (|has| |#1| (-342))))) (-3125 ((|#2| $) 75 (|has| |#2| (-784)))) (-3135 ((|#1| $) 74 (|has| |#2| (-784)))) (-3688 (((-1067) $) NIL)) (-2716 (($ (-850)) 25 (-12 (|has| |#2| (-342)) (|has| |#1| (-342))))) (-4147 (((-1031) $) NIL)) (-2189 (((-792) $) 73) (($ (-521)) 44) (($ |#2|) 40) (($ |#1|) 41) (($ (-587 (-2 (|:| -2973 |#1|) (|:| -2517 |#2|)))) 11)) (-1259 (((-587 |#1|) $) 39)) (-3800 ((|#1| $ |#2|) 84)) (-1671 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-3846 (((-707)) NIL)) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (-3561 (($) 12 T CONST)) (-3572 (($) 31 T CONST)) (-1531 (((-108) $ $) 77)) (-1612 (($ $) 46) (($ $ $) NIL)) (-1602 (($ $ $) 24)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) 51) (($ $ $) 86) (($ |#1| $) 48 (|has| |#1| (-157))) (($ $ |#1|) NIL (|has| |#1| (-157)))))
+(((-672 |#1| |#2|) (-13 (-970) (-961 |#2|) (-961 |#1|) (-10 -8 (-15 -4043 ($ |#1| |#2|)) (-15 -3800 (|#1| $ |#2|)) (-15 -2189 ($ (-587 (-2 (|:| -2973 |#1|) (|:| -2517 |#2|))))) (-15 -3423 ((-587 (-2 (|:| -2973 |#1|) (|:| -2517 |#2|))) $)) (-15 -1390 ($ (-1 |#1| |#1|) $)) (-15 -3649 ((-108) $)) (-15 -1259 ((-587 |#1|) $)) (-15 -2959 ((-587 $) $)) (-15 -2678 ((-707) $)) (IF (|has| |#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |#1| (-157)) (-6 (-37 |#1|)) |%noBranch|) (IF (|has| |#1| (-342)) (IF (|has| |#2| (-342)) (-6 (-342)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-784)) (PROGN (-15 -3125 (|#2| $)) (-15 -3135 (|#1| $)) (-15 -3152 ($ $))) |%noBranch|))) (-970) (-663)) (T -672))
+((-4043 (*1 *1 *2 *3) (-12 (-5 *1 (-672 *2 *3)) (-4 *2 (-970)) (-4 *3 (-663)))) (-3800 (*1 *2 *1 *3) (-12 (-4 *2 (-970)) (-5 *1 (-672 *2 *3)) (-4 *3 (-663)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-587 (-2 (|:| -2973 *3) (|:| -2517 *4)))) (-4 *3 (-970)) (-4 *4 (-663)) (-5 *1 (-672 *3 *4)))) (-3423 (*1 *2 *1) (-12 (-5 *2 (-587 (-2 (|:| -2973 *3) (|:| -2517 *4)))) (-5 *1 (-672 *3 *4)) (-4 *3 (-970)) (-4 *4 (-663)))) (-1390 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-970)) (-5 *1 (-672 *3 *4)) (-4 *4 (-663)))) (-3649 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-672 *3 *4)) (-4 *3 (-970)) (-4 *4 (-663)))) (-1259 (*1 *2 *1) (-12 (-5 *2 (-587 *3)) (-5 *1 (-672 *3 *4)) (-4 *3 (-970)) (-4 *4 (-663)))) (-2959 (*1 *2 *1) (-12 (-5 *2 (-587 (-672 *3 *4))) (-5 *1 (-672 *3 *4)) (-4 *3 (-970)) (-4 *4 (-663)))) (-2678 (*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-672 *3 *4)) (-4 *3 (-970)) (-4 *4 (-663)))) (-3125 (*1 *2 *1) (-12 (-4 *2 (-663)) (-4 *2 (-784)) (-5 *1 (-672 *3 *2)) (-4 *3 (-970)))) (-3135 (*1 *2 *1) (-12 (-4 *2 (-970)) (-5 *1 (-672 *2 *3)) (-4 *3 (-784)) (-4 *3 (-663)))) (-3152 (*1 *1 *1) (-12 (-5 *1 (-672 *2 *3)) (-4 *3 (-784)) (-4 *2 (-970)) (-4 *3 (-663)))))
+(-13 (-970) (-961 |#2|) (-961 |#1|) (-10 -8 (-15 -4043 ($ |#1| |#2|)) (-15 -3800 (|#1| $ |#2|)) (-15 -2189 ($ (-587 (-2 (|:| -2973 |#1|) (|:| -2517 |#2|))))) (-15 -3423 ((-587 (-2 (|:| -2973 |#1|) (|:| -2517 |#2|))) $)) (-15 -1390 ($ (-1 |#1| |#1|) $)) (-15 -3649 ((-108) $)) (-15 -1259 ((-587 |#1|) $)) (-15 -2959 ((-587 $) $)) (-15 -2678 ((-707) $)) (IF (|has| |#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |#1| (-157)) (-6 (-37 |#1|)) |%noBranch|) (IF (|has| |#1| (-342)) (IF (|has| |#2| (-342)) (-6 (-342)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-784)) (PROGN (-15 -3125 (|#2| $)) (-15 -3135 (|#1| $)) (-15 -3152 ($ $))) |%noBranch|)))
+((-1415 (((-108) $ $) 19)) (-2269 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-1953 (($ $ $) 72)) (-2976 (((-108) $ $) 73)) (-2978 (((-108) $ (-707)) 8)) (-1764 (($ (-587 |#1|)) 68) (($) 67)) (-4098 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4233)))) (-1628 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4233)))) (-2547 (($) 7 T CONST)) (-2468 (($ $) 62)) (-2332 (($ $) 58 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-3023 (($ |#1| $) 47 (|has| $ (-6 -4233))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4233)))) (-1422 (($ |#1| $) 57 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4233)))) (-3859 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4233)))) (-3831 (((-587 |#1|) $) 30 (|has| $ (-6 -4233)))) (-2139 (((-108) $ (-707)) 9)) (-3757 (((-587 |#1|) $) 29 (|has| $ (-6 -4233)))) (-2221 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-3833 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#1| |#1|) $) 35)) (-3574 (((-108) $ (-707)) 10)) (-3688 (((-1067) $) 22)) (-1660 (($ $ $) 69)) (-2511 ((|#1| $) 39)) (-3373 (($ |#1| $) 40) (($ |#1| $ (-707)) 63)) (-4147 (((-1031) $) 21)) (-3620 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-2166 ((|#1| $) 41)) (-1789 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 |#1|))) 26 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) 25 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) 23 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-2488 (((-108) $ $) 14)) (-3462 (((-108) $) 11)) (-4024 (($) 12)) (-2312 (((-587 (-2 (|:| -3045 |#1|) (|:| -4163 (-707)))) $) 61)) (-3130 (($ $ |#1|) 71) (($ $ $) 70)) (-1784 (($) 49) (($ (-587 |#1|)) 48)) (-4163 (((-707) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4233))) (((-707) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-2404 (($ $) 13)) (-1430 (((-497) $) 59 (|has| |#1| (-562 (-497))))) (-2201 (($ (-587 |#1|)) 50)) (-2189 (((-792) $) 18)) (-3387 (($ (-587 |#1|)) 66) (($) 65)) (-4091 (($ (-587 |#1|)) 42)) (-3049 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4233)))) (-1531 (((-108) $ $) 20)) (-1549 (((-108) $ $) 64)) (-3475 (((-707) $) 6 (|has| $ (-6 -4233)))))
+(((-673 |#1|) (-1196) (-1013)) (T -673))
+NIL
+(-13 (-632 |t#1|) (-1011 |t#1|))
+(((-33) . T) ((-102 |#1|) . T) ((-97) . T) ((-561 (-792)) . T) ((-139 |#1|) . T) ((-562 (-497)) |has| |#1| (-562 (-497))) ((-212 |#1|) . T) ((-284 |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-460 |#1|) . T) ((-482 |#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-632 |#1|) . T) ((-1011 |#1|) . T) ((-1013) . T) ((-1119) . T))
+((-1415 (((-108) $ $) NIL)) (-2269 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 76)) (-1953 (($ $ $) 79)) (-2976 (((-108) $ $) 82)) (-2978 (((-108) $ (-707)) NIL)) (-1764 (($ (-587 |#1|)) 24) (($) 15)) (-4098 (($ (-1 (-108) |#1|) $) 70 (|has| $ (-6 -4233)))) (-1628 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2547 (($) NIL T CONST)) (-2468 (($ $) 71)) (-2332 (($ $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-3023 (($ |#1| $) 61 (|has| $ (-6 -4233))) (($ (-1 (-108) |#1|) $) 64 (|has| $ (-6 -4233))) (($ |#1| $ (-521)) 62) (($ (-1 (-108) |#1|) $ (-521)) 65)) (-1422 (($ |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (($ |#1| $ (-521)) 67) (($ (-1 (-108) |#1|) $ (-521)) 68)) (-3859 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4233)))) (-3831 (((-587 |#1|) $) 32 (|has| $ (-6 -4233)))) (-3693 (($) 13) (($ |#1|) 26) (($ (-587 |#1|)) 21)) (-2139 (((-108) $ (-707)) NIL)) (-3757 (((-587 |#1|) $) 38)) (-2221 (((-108) |#1| $) 57 (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-3833 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#1| |#1|) $) 75)) (-3574 (((-108) $ (-707)) NIL)) (-3688 (((-1067) $) NIL)) (-1660 (($ $ $) 77)) (-2511 ((|#1| $) 54)) (-3373 (($ |#1| $) 55) (($ |#1| $ (-707)) 72)) (-4147 (((-1031) $) NIL)) (-3620 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-2166 ((|#1| $) 53)) (-1789 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 |#1|))) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-2488 (((-108) $ $) NIL)) (-3462 (((-108) $) 49)) (-4024 (($) 12)) (-2312 (((-587 (-2 (|:| -3045 |#1|) (|:| -4163 (-707)))) $) 47)) (-3130 (($ $ |#1|) NIL) (($ $ $) 78)) (-1784 (($) 14) (($ (-587 |#1|)) 23)) (-4163 (((-707) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (((-707) |#1| $) 60 (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2404 (($ $) 66)) (-1430 (((-497) $) 36 (|has| |#1| (-562 (-497))))) (-2201 (($ (-587 |#1|)) 20)) (-2189 (((-792) $) 44)) (-3387 (($ (-587 |#1|)) 25) (($) 16)) (-4091 (($ (-587 |#1|)) 22)) (-3049 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-1531 (((-108) $ $) 80)) (-1549 (((-108) $ $) 81)) (-3475 (((-707) $) 59 (|has| $ (-6 -4233)))))
+(((-674 |#1|) (-13 (-673 |#1|) (-10 -8 (-6 -4233) (-6 -4234) (-15 -3693 ($)) (-15 -3693 ($ |#1|)) (-15 -3693 ($ (-587 |#1|))) (-15 -3757 ((-587 |#1|) $)) (-15 -1422 ($ |#1| $ (-521))) (-15 -1422 ($ (-1 (-108) |#1|) $ (-521))) (-15 -3023 ($ |#1| $ (-521))) (-15 -3023 ($ (-1 (-108) |#1|) $ (-521))))) (-1013)) (T -674))
+((-3693 (*1 *1) (-12 (-5 *1 (-674 *2)) (-4 *2 (-1013)))) (-3693 (*1 *1 *2) (-12 (-5 *1 (-674 *2)) (-4 *2 (-1013)))) (-3693 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1013)) (-5 *1 (-674 *3)))) (-3757 (*1 *2 *1) (-12 (-5 *2 (-587 *3)) (-5 *1 (-674 *3)) (-4 *3 (-1013)))) (-1422 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-521)) (-5 *1 (-674 *2)) (-4 *2 (-1013)))) (-1422 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-108) *4)) (-5 *3 (-521)) (-4 *4 (-1013)) (-5 *1 (-674 *4)))) (-3023 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-521)) (-5 *1 (-674 *2)) (-4 *2 (-1013)))) (-3023 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-108) *4)) (-5 *3 (-521)) (-4 *4 (-1013)) (-5 *1 (-674 *4)))))
+(-13 (-673 |#1|) (-10 -8 (-6 -4233) (-6 -4234) (-15 -3693 ($)) (-15 -3693 ($ |#1|)) (-15 -3693 ($ (-587 |#1|))) (-15 -3757 ((-587 |#1|) $)) (-15 -1422 ($ |#1| $ (-521))) (-15 -1422 ($ (-1 (-108) |#1|) $ (-521))) (-15 -3023 ($ |#1| $ (-521))) (-15 -3023 ($ (-1 (-108) |#1|) $ (-521)))))
+((-3635 (((-1170) (-1067)) 8)))
+(((-675) (-10 -7 (-15 -3635 ((-1170) (-1067))))) (T -675))
+((-3635 (*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-675)))))
+(-10 -7 (-15 -3635 ((-1170) (-1067))))
+((-2249 (((-587 |#1|) (-587 |#1|) (-587 |#1|)) 10)))
+(((-676 |#1|) (-10 -7 (-15 -2249 ((-587 |#1|) (-587 |#1|) (-587 |#1|)))) (-784)) (T -676))
+((-2249 (*1 *2 *2 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-784)) (-5 *1 (-676 *3)))))
+(-10 -7 (-15 -2249 ((-587 |#1|) (-587 |#1|) (-587 |#1|))))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-4084 (((-587 |#2|) $) 136)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) 129 (|has| |#1| (-513)))) (-2559 (($ $) 128 (|has| |#1| (-513)))) (-1733 (((-108) $) 126 (|has| |#1| (-513)))) (-2904 (($ $) 85 (|has| |#1| (-37 (-381 (-521)))))) (-2769 (($ $) 68 (|has| |#1| (-37 (-381 (-521)))))) (-1232 (((-3 $ "failed") $ $) 19)) (-1927 (($ $) 67 (|has| |#1| (-37 (-381 (-521)))))) (-2880 (($ $) 84 (|has| |#1| (-37 (-381 (-521)))))) (-2746 (($ $) 69 (|has| |#1| (-37 (-381 (-521)))))) (-2926 (($ $) 83 (|has| |#1| (-37 (-381 (-521)))))) (-2790 (($ $) 70 (|has| |#1| (-37 (-381 (-521)))))) (-2547 (($) 17 T CONST)) (-3152 (($ $) 120)) (-1257 (((-3 $ "failed") $) 34)) (-2199 (((-881 |#1|) $ (-707)) 98) (((-881 |#1|) $ (-707) (-707)) 97)) (-1325 (((-108) $) 137)) (-2834 (($) 95 (|has| |#1| (-37 (-381 (-521)))))) (-2733 (((-707) $ |#2|) 100) (((-707) $ |#2| (-707)) 99)) (-3996 (((-108) $) 31)) (-3407 (($ $ (-521)) 66 (|has| |#1| (-37 (-381 (-521)))))) (-3649 (((-108) $) 118)) (-4043 (($ $ (-587 |#2|) (-587 (-493 |#2|))) 135) (($ $ |#2| (-493 |#2|)) 134) (($ |#1| (-493 |#2|)) 119) (($ $ |#2| (-707)) 102) (($ $ (-587 |#2|) (-587 (-707))) 101)) (-1390 (($ (-1 |#1| |#1|) $) 117)) (-1253 (($ $) 92 (|has| |#1| (-37 (-381 (-521)))))) (-3125 (($ $) 115)) (-3135 ((|#1| $) 114)) (-3688 (((-1067) $) 9)) (-2184 (($ $ |#2|) 96 (|has| |#1| (-37 (-381 (-521)))))) (-4147 (((-1031) $) 10)) (-2447 (($ $ (-707)) 103)) (-2230 (((-3 $ "failed") $ $) 130 (|has| |#1| (-513)))) (-3261 (($ $) 93 (|has| |#1| (-37 (-381 (-521)))))) (-2288 (($ $ |#2| $) 111) (($ $ (-587 |#2|) (-587 $)) 110) (($ $ (-587 (-269 $))) 109) (($ $ (-269 $)) 108) (($ $ $ $) 107) (($ $ (-587 $) (-587 $)) 106)) (-2156 (($ $ |#2|) 42) (($ $ (-587 |#2|)) 41) (($ $ |#2| (-707)) 40) (($ $ (-587 |#2|) (-587 (-707))) 39)) (-1994 (((-493 |#2|) $) 116)) (-1738 (($ $) 82 (|has| |#1| (-37 (-381 (-521)))))) (-2800 (($ $) 71 (|has| |#1| (-37 (-381 (-521)))))) (-2915 (($ $) 81 (|has| |#1| (-37 (-381 (-521)))))) (-2780 (($ $) 72 (|has| |#1| (-37 (-381 (-521)))))) (-2892 (($ $) 80 (|has| |#1| (-37 (-381 (-521)))))) (-2758 (($ $) 73 (|has| |#1| (-37 (-381 (-521)))))) (-3448 (($ $) 138)) (-2189 (((-792) $) 11) (($ (-521)) 28) (($ |#1|) 133 (|has| |#1| (-157))) (($ $) 131 (|has| |#1| (-513))) (($ (-381 (-521))) 123 (|has| |#1| (-37 (-381 (-521)))))) (-3800 ((|#1| $ (-493 |#2|)) 121) (($ $ |#2| (-707)) 105) (($ $ (-587 |#2|) (-587 (-707))) 104)) (-1671 (((-3 $ "failed") $) 132 (|has| |#1| (-133)))) (-3846 (((-707)) 29)) (-1759 (($ $) 91 (|has| |#1| (-37 (-381 (-521)))))) (-2832 (($ $) 79 (|has| |#1| (-37 (-381 (-521)))))) (-4210 (((-108) $ $) 127 (|has| |#1| (-513)))) (-1745 (($ $) 90 (|has| |#1| (-37 (-381 (-521)))))) (-2811 (($ $) 78 (|has| |#1| (-37 (-381 (-521)))))) (-1776 (($ $) 89 (|has| |#1| (-37 (-381 (-521)))))) (-2856 (($ $) 77 (|has| |#1| (-37 (-381 (-521)))))) (-3919 (($ $) 88 (|has| |#1| (-37 (-381 (-521)))))) (-2868 (($ $) 76 (|has| |#1| (-37 (-381 (-521)))))) (-1768 (($ $) 87 (|has| |#1| (-37 (-381 (-521)))))) (-2844 (($ $) 75 (|has| |#1| (-37 (-381 (-521)))))) (-1752 (($ $) 86 (|has| |#1| (-37 (-381 (-521)))))) (-2821 (($ $) 74 (|has| |#1| (-37 (-381 (-521)))))) (-3505 (($ $ (-850)) 26) (($ $ (-707)) 33)) (-3561 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-2212 (($ $ |#2|) 38) (($ $ (-587 |#2|)) 37) (($ $ |#2| (-707)) 36) (($ $ (-587 |#2|) (-587 (-707))) 35)) (-1531 (((-108) $ $) 6)) (-1620 (($ $ |#1|) 122 (|has| |#1| (-337)))) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-707)) 32) (($ $ $) 94 (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) 65 (|has| |#1| (-37 (-381 (-521)))))) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ $ (-381 (-521))) 125 (|has| |#1| (-37 (-381 (-521))))) (($ (-381 (-521)) $) 124 (|has| |#1| (-37 (-381 (-521))))) (($ |#1| $) 113) (($ $ |#1|) 112)))
+(((-677 |#1| |#2|) (-1196) (-970) (-784)) (T -677))
+((-3800 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-707)) (-4 *1 (-677 *4 *2)) (-4 *4 (-970)) (-4 *2 (-784)))) (-3800 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-587 *5)) (-5 *3 (-587 (-707))) (-4 *1 (-677 *4 *5)) (-4 *4 (-970)) (-4 *5 (-784)))) (-2447 (*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-4 *1 (-677 *3 *4)) (-4 *3 (-970)) (-4 *4 (-784)))) (-4043 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-707)) (-4 *1 (-677 *4 *2)) (-4 *4 (-970)) (-4 *2 (-784)))) (-4043 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-587 *5)) (-5 *3 (-587 (-707))) (-4 *1 (-677 *4 *5)) (-4 *4 (-970)) (-4 *5 (-784)))) (-2733 (*1 *2 *1 *3) (-12 (-4 *1 (-677 *4 *3)) (-4 *4 (-970)) (-4 *3 (-784)) (-5 *2 (-707)))) (-2733 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-707)) (-4 *1 (-677 *4 *3)) (-4 *4 (-970)) (-4 *3 (-784)))) (-2199 (*1 *2 *1 *3) (-12 (-5 *3 (-707)) (-4 *1 (-677 *4 *5)) (-4 *4 (-970)) (-4 *5 (-784)) (-5 *2 (-881 *4)))) (-2199 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-707)) (-4 *1 (-677 *4 *5)) (-4 *4 (-970)) (-4 *5 (-784)) (-5 *2 (-881 *4)))) (-2184 (*1 *1 *1 *2) (-12 (-4 *1 (-677 *3 *2)) (-4 *3 (-970)) (-4 *2 (-784)) (-4 *3 (-37 (-381 (-521)))))))
+(-13 (-829 |t#2|) (-899 |t#1| (-493 |t#2|) |t#2|) (-482 |t#2| $) (-284 $) (-10 -8 (-15 -3800 ($ $ |t#2| (-707))) (-15 -3800 ($ $ (-587 |t#2|) (-587 (-707)))) (-15 -2447 ($ $ (-707))) (-15 -4043 ($ $ |t#2| (-707))) (-15 -4043 ($ $ (-587 |t#2|) (-587 (-707)))) (-15 -2733 ((-707) $ |t#2|)) (-15 -2733 ((-707) $ |t#2| (-707))) (-15 -2199 ((-881 |t#1|) $ (-707))) (-15 -2199 ((-881 |t#1|) $ (-707) (-707))) (IF (|has| |t#1| (-37 (-381 (-521)))) (PROGN (-15 -2184 ($ $ |t#2|)) (-6 (-927)) (-6 (-1105))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-493 |#2|)) . T) ((-25) . T) ((-37 #1=(-381 (-521))) |has| |#1| (-37 (-381 (-521)))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) |has| |#1| (-513)) ((-34) |has| |#1| (-37 (-381 (-521)))) ((-91) |has| |#1| (-37 (-381 (-521)))) ((-97) . T) ((-107 #1# #1#) |has| |#1| (-37 (-381 (-521)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3703 (|has| |#1| (-513)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-561 (-792)) . T) ((-157) -3703 (|has| |#1| (-513)) (|has| |#1| (-157))) ((-259) |has| |#1| (-37 (-381 (-521)))) ((-265) |has| |#1| (-513)) ((-284 $) . T) ((-462) |has| |#1| (-37 (-381 (-521)))) ((-482 |#2| $) . T) ((-482 $ $) . T) ((-513) |has| |#1| (-513)) ((-589 #1#) |has| |#1| (-37 (-381 (-521)))) ((-589 |#1|) . T) ((-589 $) . T) ((-654 #1#) |has| |#1| (-37 (-381 (-521)))) ((-654 |#1|) |has| |#1| (-157)) ((-654 $) |has| |#1| (-513)) ((-663) . T) ((-829 |#2|) . T) ((-899 |#1| #0# |#2|) . T) ((-927) |has| |#1| (-37 (-381 (-521)))) ((-976 #1#) |has| |#1| (-37 (-381 (-521)))) ((-976 |#1|) . T) ((-976 $) -3703 (|has| |#1| (-513)) (|has| |#1| (-157))) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T) ((-1105) |has| |#1| (-37 (-381 (-521)))) ((-1108) |has| |#1| (-37 (-381 (-521)))))
+((-1916 (((-392 (-1080 |#4|)) (-1080 |#4|)) 28) (((-392 |#4|) |#4|) 24)))
+(((-678 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1916 ((-392 |#4|) |#4|)) (-15 -1916 ((-392 (-1080 |#4|)) (-1080 |#4|)))) (-784) (-729) (-13 (-282) (-135)) (-878 |#3| |#2| |#1|)) (T -678))
+((-1916 (*1 *2 *3) (-12 (-4 *4 (-784)) (-4 *5 (-729)) (-4 *6 (-13 (-282) (-135))) (-4 *7 (-878 *6 *5 *4)) (-5 *2 (-392 (-1080 *7))) (-5 *1 (-678 *4 *5 *6 *7)) (-5 *3 (-1080 *7)))) (-1916 (*1 *2 *3) (-12 (-4 *4 (-784)) (-4 *5 (-729)) (-4 *6 (-13 (-282) (-135))) (-5 *2 (-392 *3)) (-5 *1 (-678 *4 *5 *6 *3)) (-4 *3 (-878 *6 *5 *4)))))
+(-10 -7 (-15 -1916 ((-392 |#4|) |#4|)) (-15 -1916 ((-392 (-1080 |#4|)) (-1080 |#4|))))
+((-3070 (((-392 |#4|) |#4| |#2|) 117)) (-3454 (((-392 |#4|) |#4|) NIL)) (-3358 (((-392 (-1080 |#4|)) (-1080 |#4|)) 108) (((-392 |#4|) |#4|) 38)) (-2390 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-587 (-2 (|:| -1916 (-1080 |#4|)) (|:| -2997 (-521)))))) (-1080 |#4|) (-587 |#2|) (-587 (-587 |#3|))) 66)) (-3628 (((-1080 |#3|) (-1080 |#3|) (-521)) 134)) (-2368 (((-587 (-707)) (-1080 |#4|) (-587 |#2|) (-707)) 59)) (-3844 (((-3 (-587 (-1080 |#4|)) "failed") (-1080 |#4|) (-1080 |#3|) (-1080 |#3|) |#4| (-587 |#2|) (-587 (-707)) (-587 |#3|)) 63)) (-1263 (((-2 (|:| |upol| (-1080 |#3|)) (|:| |Lval| (-587 |#3|)) (|:| |Lfact| (-587 (-2 (|:| -1916 (-1080 |#3|)) (|:| -2997 (-521))))) (|:| |ctpol| |#3|)) (-1080 |#4|) (-587 |#2|) (-587 (-587 |#3|))) 22)) (-3638 (((-2 (|:| -3736 (-1080 |#4|)) (|:| |polval| (-1080 |#3|))) (-1080 |#4|) (-1080 |#3|) (-521)) 55)) (-2802 (((-521) (-587 (-2 (|:| -1916 (-1080 |#3|)) (|:| -2997 (-521))))) 131)) (-1288 ((|#4| (-521) (-392 |#4|)) 56)) (-4070 (((-108) (-587 (-2 (|:| -1916 (-1080 |#3|)) (|:| -2997 (-521)))) (-587 (-2 (|:| -1916 (-1080 |#3|)) (|:| -2997 (-521))))) NIL)))
+(((-679 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3358 ((-392 |#4|) |#4|)) (-15 -3358 ((-392 (-1080 |#4|)) (-1080 |#4|))) (-15 -3454 ((-392 |#4|) |#4|)) (-15 -2802 ((-521) (-587 (-2 (|:| -1916 (-1080 |#3|)) (|:| -2997 (-521)))))) (-15 -3070 ((-392 |#4|) |#4| |#2|)) (-15 -3638 ((-2 (|:| -3736 (-1080 |#4|)) (|:| |polval| (-1080 |#3|))) (-1080 |#4|) (-1080 |#3|) (-521))) (-15 -2390 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-587 (-2 (|:| -1916 (-1080 |#4|)) (|:| -2997 (-521)))))) (-1080 |#4|) (-587 |#2|) (-587 (-587 |#3|)))) (-15 -1263 ((-2 (|:| |upol| (-1080 |#3|)) (|:| |Lval| (-587 |#3|)) (|:| |Lfact| (-587 (-2 (|:| -1916 (-1080 |#3|)) (|:| -2997 (-521))))) (|:| |ctpol| |#3|)) (-1080 |#4|) (-587 |#2|) (-587 (-587 |#3|)))) (-15 -1288 (|#4| (-521) (-392 |#4|))) (-15 -4070 ((-108) (-587 (-2 (|:| -1916 (-1080 |#3|)) (|:| -2997 (-521)))) (-587 (-2 (|:| -1916 (-1080 |#3|)) (|:| -2997 (-521)))))) (-15 -3844 ((-3 (-587 (-1080 |#4|)) "failed") (-1080 |#4|) (-1080 |#3|) (-1080 |#3|) |#4| (-587 |#2|) (-587 (-707)) (-587 |#3|))) (-15 -2368 ((-587 (-707)) (-1080 |#4|) (-587 |#2|) (-707))) (-15 -3628 ((-1080 |#3|) (-1080 |#3|) (-521)))) (-729) (-784) (-282) (-878 |#3| |#1| |#2|)) (T -679))
+((-3628 (*1 *2 *2 *3) (-12 (-5 *2 (-1080 *6)) (-5 *3 (-521)) (-4 *6 (-282)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *1 (-679 *4 *5 *6 *7)) (-4 *7 (-878 *6 *4 *5)))) (-2368 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1080 *9)) (-5 *4 (-587 *7)) (-4 *7 (-784)) (-4 *9 (-878 *8 *6 *7)) (-4 *6 (-729)) (-4 *8 (-282)) (-5 *2 (-587 (-707))) (-5 *1 (-679 *6 *7 *8 *9)) (-5 *5 (-707)))) (-3844 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1080 *11)) (-5 *6 (-587 *10)) (-5 *7 (-587 (-707))) (-5 *8 (-587 *11)) (-4 *10 (-784)) (-4 *11 (-282)) (-4 *9 (-729)) (-4 *5 (-878 *11 *9 *10)) (-5 *2 (-587 (-1080 *5))) (-5 *1 (-679 *9 *10 *11 *5)) (-5 *3 (-1080 *5)))) (-4070 (*1 *2 *3 *3) (-12 (-5 *3 (-587 (-2 (|:| -1916 (-1080 *6)) (|:| -2997 (-521))))) (-4 *6 (-282)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *2 (-108)) (-5 *1 (-679 *4 *5 *6 *7)) (-4 *7 (-878 *6 *4 *5)))) (-1288 (*1 *2 *3 *4) (-12 (-5 *3 (-521)) (-5 *4 (-392 *2)) (-4 *2 (-878 *7 *5 *6)) (-5 *1 (-679 *5 *6 *7 *2)) (-4 *5 (-729)) (-4 *6 (-784)) (-4 *7 (-282)))) (-1263 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1080 *9)) (-5 *4 (-587 *7)) (-5 *5 (-587 (-587 *8))) (-4 *7 (-784)) (-4 *8 (-282)) (-4 *9 (-878 *8 *6 *7)) (-4 *6 (-729)) (-5 *2 (-2 (|:| |upol| (-1080 *8)) (|:| |Lval| (-587 *8)) (|:| |Lfact| (-587 (-2 (|:| -1916 (-1080 *8)) (|:| -2997 (-521))))) (|:| |ctpol| *8))) (-5 *1 (-679 *6 *7 *8 *9)))) (-2390 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-587 *7)) (-5 *5 (-587 (-587 *8))) (-4 *7 (-784)) (-4 *8 (-282)) (-4 *6 (-729)) (-4 *9 (-878 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-587 (-2 (|:| -1916 (-1080 *9)) (|:| -2997 (-521))))))) (-5 *1 (-679 *6 *7 *8 *9)) (-5 *3 (-1080 *9)))) (-3638 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-521)) (-4 *6 (-729)) (-4 *7 (-784)) (-4 *8 (-282)) (-4 *9 (-878 *8 *6 *7)) (-5 *2 (-2 (|:| -3736 (-1080 *9)) (|:| |polval| (-1080 *8)))) (-5 *1 (-679 *6 *7 *8 *9)) (-5 *3 (-1080 *9)) (-5 *4 (-1080 *8)))) (-3070 (*1 *2 *3 *4) (-12 (-4 *5 (-729)) (-4 *4 (-784)) (-4 *6 (-282)) (-5 *2 (-392 *3)) (-5 *1 (-679 *5 *4 *6 *3)) (-4 *3 (-878 *6 *5 *4)))) (-2802 (*1 *2 *3) (-12 (-5 *3 (-587 (-2 (|:| -1916 (-1080 *6)) (|:| -2997 (-521))))) (-4 *6 (-282)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *2 (-521)) (-5 *1 (-679 *4 *5 *6 *7)) (-4 *7 (-878 *6 *4 *5)))) (-3454 (*1 *2 *3) (-12 (-4 *4 (-729)) (-4 *5 (-784)) (-4 *6 (-282)) (-5 *2 (-392 *3)) (-5 *1 (-679 *4 *5 *6 *3)) (-4 *3 (-878 *6 *4 *5)))) (-3358 (*1 *2 *3) (-12 (-4 *4 (-729)) (-4 *5 (-784)) (-4 *6 (-282)) (-4 *7 (-878 *6 *4 *5)) (-5 *2 (-392 (-1080 *7))) (-5 *1 (-679 *4 *5 *6 *7)) (-5 *3 (-1080 *7)))) (-3358 (*1 *2 *3) (-12 (-4 *4 (-729)) (-4 *5 (-784)) (-4 *6 (-282)) (-5 *2 (-392 *3)) (-5 *1 (-679 *4 *5 *6 *3)) (-4 *3 (-878 *6 *4 *5)))))
+(-10 -7 (-15 -3358 ((-392 |#4|) |#4|)) (-15 -3358 ((-392 (-1080 |#4|)) (-1080 |#4|))) (-15 -3454 ((-392 |#4|) |#4|)) (-15 -2802 ((-521) (-587 (-2 (|:| -1916 (-1080 |#3|)) (|:| -2997 (-521)))))) (-15 -3070 ((-392 |#4|) |#4| |#2|)) (-15 -3638 ((-2 (|:| -3736 (-1080 |#4|)) (|:| |polval| (-1080 |#3|))) (-1080 |#4|) (-1080 |#3|) (-521))) (-15 -2390 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-587 (-2 (|:| -1916 (-1080 |#4|)) (|:| -2997 (-521)))))) (-1080 |#4|) (-587 |#2|) (-587 (-587 |#3|)))) (-15 -1263 ((-2 (|:| |upol| (-1080 |#3|)) (|:| |Lval| (-587 |#3|)) (|:| |Lfact| (-587 (-2 (|:| -1916 (-1080 |#3|)) (|:| -2997 (-521))))) (|:| |ctpol| |#3|)) (-1080 |#4|) (-587 |#2|) (-587 (-587 |#3|)))) (-15 -1288 (|#4| (-521) (-392 |#4|))) (-15 -4070 ((-108) (-587 (-2 (|:| -1916 (-1080 |#3|)) (|:| -2997 (-521)))) (-587 (-2 (|:| -1916 (-1080 |#3|)) (|:| -2997 (-521)))))) (-15 -3844 ((-3 (-587 (-1080 |#4|)) "failed") (-1080 |#4|) (-1080 |#3|) (-1080 |#3|) |#4| (-587 |#2|) (-587 (-707)) (-587 |#3|))) (-15 -2368 ((-587 (-707)) (-1080 |#4|) (-587 |#2|) (-707))) (-15 -3628 ((-1080 |#3|) (-1080 |#3|) (-521))))
+((-2049 (($ $ (-850)) 12)))
+(((-680 |#1| |#2|) (-10 -8 (-15 -2049 (|#1| |#1| (-850)))) (-681 |#2|) (-157)) (T -680))
+NIL
+(-10 -8 (-15 -2049 (|#1| |#1| (-850))))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-1232 (((-3 $ "failed") $ $) 19)) (-2547 (($) 17 T CONST)) (-3047 (($ $ (-850)) 28)) (-2049 (($ $ (-850)) 33)) (-2830 (($ $ (-850)) 29)) (-3688 (((-1067) $) 9)) (-4147 (((-1031) $) 10)) (-2674 (($ $ $) 25)) (-2189 (((-792) $) 11)) (-2922 (($ $ $ $) 26)) (-2464 (($ $ $) 24)) (-3561 (($) 18 T CONST)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 30)) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
+(((-681 |#1|) (-1196) (-157)) (T -681))
+((-2049 (*1 *1 *1 *2) (-12 (-5 *2 (-850)) (-4 *1 (-681 *3)) (-4 *3 (-157)))))
+(-13 (-698) (-654 |t#1|) (-10 -8 (-15 -2049 ($ $ (-850)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-561 (-792)) . T) ((-589 |#1|) . T) ((-654 |#1|) . T) ((-657) . T) ((-698) . T) ((-976 |#1|) . T) ((-1013) . T))
+((-2866 (((-959) (-627 (-202)) (-521) (-108) (-521)) 24)) (-2848 (((-959) (-627 (-202)) (-521) (-108) (-521)) 23)))
+(((-682) (-10 -7 (-15 -2848 ((-959) (-627 (-202)) (-521) (-108) (-521))) (-15 -2866 ((-959) (-627 (-202)) (-521) (-108) (-521))))) (T -682))
+((-2866 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-627 (-202))) (-5 *4 (-521)) (-5 *5 (-108)) (-5 *2 (-959)) (-5 *1 (-682)))) (-2848 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-627 (-202))) (-5 *4 (-521)) (-5 *5 (-108)) (-5 *2 (-959)) (-5 *1 (-682)))))
+(-10 -7 (-15 -2848 ((-959) (-627 (-202)) (-521) (-108) (-521))) (-15 -2866 ((-959) (-627 (-202)) (-521) (-108) (-521))))
+((-2982 (((-959) (-521) (-521) (-521) (-627 (-202)) (-202) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-72 FCN)))) 43)) (-3701 (((-959) (-521) (-521) (-627 (-202)) (-202) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-79 FCN)))) 39)) (-2788 (((-959) (-202) (-202) (-202) (-202) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-62 -4049)))) 32)))
+(((-683) (-10 -7 (-15 -2788 ((-959) (-202) (-202) (-202) (-202) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-62 -4049))))) (-15 -3701 ((-959) (-521) (-521) (-627 (-202)) (-202) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-79 FCN))))) (-15 -2982 ((-959) (-521) (-521) (-521) (-627 (-202)) (-202) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-72 FCN))))))) (T -683))
+((-2982 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *5 (-202)) (-5 *6 (-3 (|:| |fn| (-362)) (|:| |fp| (-72 FCN)))) (-5 *2 (-959)) (-5 *1 (-683)))) (-3701 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *5 (-202)) (-5 *6 (-3 (|:| |fn| (-362)) (|:| |fp| (-79 FCN)))) (-5 *2 (-959)) (-5 *1 (-683)))) (-2788 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *5 (-3 (|:| |fn| (-362)) (|:| |fp| (-62 -4049)))) (-5 *2 (-959)) (-5 *1 (-683)))))
+(-10 -7 (-15 -2788 ((-959) (-202) (-202) (-202) (-202) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-62 -4049))))) (-15 -3701 ((-959) (-521) (-521) (-627 (-202)) (-202) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-79 FCN))))) (-15 -2982 ((-959) (-521) (-521) (-521) (-627 (-202)) (-202) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-72 FCN))))))
+((-3742 (((-959) (-521) (-521) (-627 (-202)) (-521)) 33)) (-2971 (((-959) (-521) (-521) (-627 (-202)) (-521)) 32)) (-1711 (((-959) (-521) (-627 (-202)) (-521)) 31)) (-3143 (((-959) (-521) (-627 (-202)) (-521)) 30)) (-3500 (((-959) (-521) (-521) (-1067) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521)) 29)) (-1236 (((-959) (-521) (-521) (-1067) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521)) 28)) (-3862 (((-959) (-521) (-521) (-1067) (-627 (-202)) (-627 (-202)) (-521)) 27)) (-2817 (((-959) (-521) (-521) (-1067) (-627 (-202)) (-627 (-202)) (-521)) 26)) (-3813 (((-959) (-521) (-521) (-627 (-202)) (-627 (-202)) (-521)) 23)) (-3983 (((-959) (-521) (-627 (-202)) (-627 (-202)) (-521)) 22)) (-1702 (((-959) (-521) (-627 (-202)) (-521)) 21)) (-1924 (((-959) (-521) (-627 (-202)) (-521)) 20)))
+(((-684) (-10 -7 (-15 -1924 ((-959) (-521) (-627 (-202)) (-521))) (-15 -1702 ((-959) (-521) (-627 (-202)) (-521))) (-15 -3983 ((-959) (-521) (-627 (-202)) (-627 (-202)) (-521))) (-15 -3813 ((-959) (-521) (-521) (-627 (-202)) (-627 (-202)) (-521))) (-15 -2817 ((-959) (-521) (-521) (-1067) (-627 (-202)) (-627 (-202)) (-521))) (-15 -3862 ((-959) (-521) (-521) (-1067) (-627 (-202)) (-627 (-202)) (-521))) (-15 -1236 ((-959) (-521) (-521) (-1067) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521))) (-15 -3500 ((-959) (-521) (-521) (-1067) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521))) (-15 -3143 ((-959) (-521) (-627 (-202)) (-521))) (-15 -1711 ((-959) (-521) (-627 (-202)) (-521))) (-15 -2971 ((-959) (-521) (-521) (-627 (-202)) (-521))) (-15 -3742 ((-959) (-521) (-521) (-627 (-202)) (-521))))) (T -684))
+((-3742 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-684)))) (-2971 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-684)))) (-1711 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-684)))) (-3143 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-684)))) (-3500 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-521)) (-5 *4 (-1067)) (-5 *5 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-684)))) (-1236 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-521)) (-5 *4 (-1067)) (-5 *5 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-684)))) (-3862 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-521)) (-5 *4 (-1067)) (-5 *5 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-684)))) (-2817 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-521)) (-5 *4 (-1067)) (-5 *5 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-684)))) (-3813 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-684)))) (-3983 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-684)))) (-1702 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-684)))) (-1924 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-684)))))
+(-10 -7 (-15 -1924 ((-959) (-521) (-627 (-202)) (-521))) (-15 -1702 ((-959) (-521) (-627 (-202)) (-521))) (-15 -3983 ((-959) (-521) (-627 (-202)) (-627 (-202)) (-521))) (-15 -3813 ((-959) (-521) (-521) (-627 (-202)) (-627 (-202)) (-521))) (-15 -2817 ((-959) (-521) (-521) (-1067) (-627 (-202)) (-627 (-202)) (-521))) (-15 -3862 ((-959) (-521) (-521) (-1067) (-627 (-202)) (-627 (-202)) (-521))) (-15 -1236 ((-959) (-521) (-521) (-1067) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521))) (-15 -3500 ((-959) (-521) (-521) (-1067) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521))) (-15 -3143 ((-959) (-521) (-627 (-202)) (-521))) (-15 -1711 ((-959) (-521) (-627 (-202)) (-521))) (-15 -2971 ((-959) (-521) (-521) (-627 (-202)) (-521))) (-15 -3742 ((-959) (-521) (-521) (-627 (-202)) (-521))))
+((-2041 (((-959) (-521) (-627 (-202)) (-627 (-202)) (-521) (-202) (-521) (-521) (-627 (-202)) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-76 FUNCTN)))) 52)) (-2380 (((-959) (-627 (-202)) (-627 (-202)) (-521) (-521)) 51)) (-2263 (((-959) (-521) (-627 (-202)) (-627 (-202)) (-521) (-202) (-521) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-76 FUNCTN)))) 50)) (-3784 (((-959) (-202) (-202) (-521) (-521) (-521) (-521)) 46)) (-2098 (((-959) (-202) (-202) (-521) (-202) (-521) (-521) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-62 G)))) 45)) (-1736 (((-959) (-202) (-202) (-202) (-202) (-202) (-521) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-62 G)))) 44)) (-1873 (((-959) (-202) (-202) (-202) (-202) (-521) (-202) (-202) (-521) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-62 G)))) 43)) (-3132 (((-959) (-202) (-202) (-202) (-521) (-202) (-202) (-521) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-62 G)))) 42)) (-2911 (((-959) (-202) (-521) (-202) (-202) (-521) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-62 -4049)))) 38)) (-3723 (((-959) (-202) (-202) (-521) (-627 (-202)) (-202) (-202) (-521) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-62 -4049)))) 37)) (-3668 (((-959) (-202) (-202) (-202) (-202) (-521) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-62 -4049)))) 33)) (-2600 (((-959) (-202) (-202) (-202) (-202) (-521) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-62 -4049)))) 32)))
+(((-685) (-10 -7 (-15 -2600 ((-959) (-202) (-202) (-202) (-202) (-521) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-62 -4049))))) (-15 -3668 ((-959) (-202) (-202) (-202) (-202) (-521) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-62 -4049))))) (-15 -3723 ((-959) (-202) (-202) (-521) (-627 (-202)) (-202) (-202) (-521) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-62 -4049))))) (-15 -2911 ((-959) (-202) (-521) (-202) (-202) (-521) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-62 -4049))))) (-15 -3132 ((-959) (-202) (-202) (-202) (-521) (-202) (-202) (-521) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-62 G))))) (-15 -1873 ((-959) (-202) (-202) (-202) (-202) (-521) (-202) (-202) (-521) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-62 G))))) (-15 -1736 ((-959) (-202) (-202) (-202) (-202) (-202) (-521) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-62 G))))) (-15 -2098 ((-959) (-202) (-202) (-521) (-202) (-521) (-521) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-62 G))))) (-15 -3784 ((-959) (-202) (-202) (-521) (-521) (-521) (-521))) (-15 -2263 ((-959) (-521) (-627 (-202)) (-627 (-202)) (-521) (-202) (-521) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-76 FUNCTN))))) (-15 -2380 ((-959) (-627 (-202)) (-627 (-202)) (-521) (-521))) (-15 -2041 ((-959) (-521) (-627 (-202)) (-627 (-202)) (-521) (-202) (-521) (-521) (-627 (-202)) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-76 FUNCTN))))))) (T -685))
+((-2041 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *5 (-202)) (-5 *6 (-3 (|:| |fn| (-362)) (|:| |fp| (-76 FUNCTN)))) (-5 *2 (-959)) (-5 *1 (-685)))) (-2380 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-627 (-202))) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-685)))) (-2263 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *5 (-202)) (-5 *6 (-3 (|:| |fn| (-362)) (|:| |fp| (-76 FUNCTN)))) (-5 *2 (-959)) (-5 *1 (-685)))) (-3784 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-685)))) (-2098 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *5 (-3 (|:| |fn| (-362)) (|:| |fp| (-62 G)))) (-5 *2 (-959)) (-5 *1 (-685)))) (-1736 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *5 (-3 (|:| |fn| (-362)) (|:| |fp| (-62 G)))) (-5 *2 (-959)) (-5 *1 (-685)))) (-1873 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *5 (-3 (|:| |fn| (-362)) (|:| |fp| (-62 G)))) (-5 *2 (-959)) (-5 *1 (-685)))) (-3132 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *5 (-3 (|:| |fn| (-362)) (|:| |fp| (-62 G)))) (-5 *2 (-959)) (-5 *1 (-685)))) (-2911 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *5 (-3 (|:| |fn| (-362)) (|:| |fp| (-62 -4049)))) (-5 *2 (-959)) (-5 *1 (-685)))) (-3723 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-521)) (-5 *5 (-627 (-202))) (-5 *6 (-3 (|:| |fn| (-362)) (|:| |fp| (-62 -4049)))) (-5 *3 (-202)) (-5 *2 (-959)) (-5 *1 (-685)))) (-3668 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *5 (-3 (|:| |fn| (-362)) (|:| |fp| (-62 -4049)))) (-5 *2 (-959)) (-5 *1 (-685)))) (-2600 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *5 (-3 (|:| |fn| (-362)) (|:| |fp| (-62 -4049)))) (-5 *2 (-959)) (-5 *1 (-685)))))
+(-10 -7 (-15 -2600 ((-959) (-202) (-202) (-202) (-202) (-521) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-62 -4049))))) (-15 -3668 ((-959) (-202) (-202) (-202) (-202) (-521) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-62 -4049))))) (-15 -3723 ((-959) (-202) (-202) (-521) (-627 (-202)) (-202) (-202) (-521) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-62 -4049))))) (-15 -2911 ((-959) (-202) (-521) (-202) (-202) (-521) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-62 -4049))))) (-15 -3132 ((-959) (-202) (-202) (-202) (-521) (-202) (-202) (-521) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-62 G))))) (-15 -1873 ((-959) (-202) (-202) (-202) (-202) (-521) (-202) (-202) (-521) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-62 G))))) (-15 -1736 ((-959) (-202) (-202) (-202) (-202) (-202) (-521) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-62 G))))) (-15 -2098 ((-959) (-202) (-202) (-521) (-202) (-521) (-521) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-62 G))))) (-15 -3784 ((-959) (-202) (-202) (-521) (-521) (-521) (-521))) (-15 -2263 ((-959) (-521) (-627 (-202)) (-627 (-202)) (-521) (-202) (-521) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-76 FUNCTN))))) (-15 -2380 ((-959) (-627 (-202)) (-627 (-202)) (-521) (-521))) (-15 -2041 ((-959) (-521) (-627 (-202)) (-627 (-202)) (-521) (-202) (-521) (-521) (-627 (-202)) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-76 FUNCTN))))))
+((-3138 (((-959) (-521) (-521) (-521) (-521) (-202) (-521) (-521) (-521) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-202) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-362)) (|:| |fp| (-74 G JACOBG JACGEP)))) 76)) (-3191 (((-959) (-627 (-202)) (-521) (-521) (-202) (-521) (-521) (-202) (-202) (-627 (-202)) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-362)) (|:| |fp| (-85 BDYVAL))) (-362) (-362)) 69) (((-959) (-627 (-202)) (-521) (-521) (-202) (-521) (-521) (-202) (-202) (-627 (-202)) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-362)) (|:| |fp| (-85 BDYVAL)))) 68)) (-2073 (((-959) (-202) (-202) (-521) (-202) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-362)) (|:| |fp| (-83 FCNG)))) 57)) (-2435 (((-959) (-627 (-202)) (-627 (-202)) (-521) (-202) (-202) (-202) (-521) (-521) (-521) (-627 (-202)) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-84 FCN)))) 50)) (-3449 (((-959) (-202) (-521) (-521) (-1067) (-521) (-202) (-627 (-202)) (-202) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-362)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-362)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-362)) (|:| |fp| (-86 OUTPUT)))) 49)) (-4051 (((-959) (-202) (-521) (-521) (-202) (-1067) (-202) (-627 (-202)) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-362)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-362)) (|:| |fp| (-86 OUTPUT)))) 45)) (-3829 (((-959) (-202) (-521) (-521) (-202) (-202) (-627 (-202)) (-202) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-362)) (|:| |fp| (-84 FCN)))) 42)) (-3645 (((-959) (-202) (-521) (-521) (-521) (-202) (-627 (-202)) (-202) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-362)) (|:| |fp| (-86 OUTPUT)))) 38)))
+(((-686) (-10 -7 (-15 -3645 ((-959) (-202) (-521) (-521) (-521) (-202) (-627 (-202)) (-202) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-362)) (|:| |fp| (-86 OUTPUT))))) (-15 -3829 ((-959) (-202) (-521) (-521) (-202) (-202) (-627 (-202)) (-202) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-362)) (|:| |fp| (-84 FCN))))) (-15 -4051 ((-959) (-202) (-521) (-521) (-202) (-1067) (-202) (-627 (-202)) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-362)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-362)) (|:| |fp| (-86 OUTPUT))))) (-15 -3449 ((-959) (-202) (-521) (-521) (-1067) (-521) (-202) (-627 (-202)) (-202) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-362)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-362)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-362)) (|:| |fp| (-86 OUTPUT))))) (-15 -2435 ((-959) (-627 (-202)) (-627 (-202)) (-521) (-202) (-202) (-202) (-521) (-521) (-521) (-627 (-202)) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-84 FCN))))) (-15 -2073 ((-959) (-202) (-202) (-521) (-202) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-362)) (|:| |fp| (-83 FCNG))))) (-15 -3191 ((-959) (-627 (-202)) (-521) (-521) (-202) (-521) (-521) (-202) (-202) (-627 (-202)) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-362)) (|:| |fp| (-85 BDYVAL))))) (-15 -3191 ((-959) (-627 (-202)) (-521) (-521) (-202) (-521) (-521) (-202) (-202) (-627 (-202)) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-362)) (|:| |fp| (-85 BDYVAL))) (-362) (-362))) (-15 -3138 ((-959) (-521) (-521) (-521) (-521) (-202) (-521) (-521) (-521) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-202) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-362)) (|:| |fp| (-74 G JACOBG JACGEP))))))) (T -686))
+((-3138 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-521)) (-5 *5 (-627 (-202))) (-5 *6 (-3 (|:| |fn| (-362)) (|:| |fp| (-73 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-362)) (|:| |fp| (-74 G JACOBG JACGEP)))) (-5 *4 (-202)) (-5 *2 (-959)) (-5 *1 (-686)))) (-3191 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-627 (-202))) (-5 *4 (-521)) (-5 *5 (-202)) (-5 *6 (-3 (|:| |fn| (-362)) (|:| |fp| (-59 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-362)) (|:| |fp| (-85 BDYVAL)))) (-5 *8 (-362)) (-5 *2 (-959)) (-5 *1 (-686)))) (-3191 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-627 (-202))) (-5 *4 (-521)) (-5 *5 (-202)) (-5 *6 (-3 (|:| |fn| (-362)) (|:| |fp| (-59 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-362)) (|:| |fp| (-85 BDYVAL)))) (-5 *2 (-959)) (-5 *1 (-686)))) (-2073 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-521)) (-5 *5 (-627 (-202))) (-5 *6 (-3 (|:| |fn| (-362)) (|:| |fp| (-82 FCNF)))) (-5 *7 (-3 (|:| |fn| (-362)) (|:| |fp| (-83 FCNG)))) (-5 *3 (-202)) (-5 *2 (-959)) (-5 *1 (-686)))) (-2435 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-627 (-202))) (-5 *4 (-521)) (-5 *5 (-202)) (-5 *6 (-3 (|:| |fn| (-362)) (|:| |fp| (-84 FCN)))) (-5 *2 (-959)) (-5 *1 (-686)))) (-3449 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-521)) (-5 *5 (-1067)) (-5 *6 (-627 (-202))) (-5 *7 (-3 (|:| |fn| (-362)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-362)) (|:| |fp| (-84 FCN)))) (-5 *9 (-3 (|:| |fn| (-362)) (|:| |fp| (-69 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-362)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-202)) (-5 *2 (-959)) (-5 *1 (-686)))) (-4051 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-521)) (-5 *5 (-1067)) (-5 *6 (-627 (-202))) (-5 *7 (-3 (|:| |fn| (-362)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-362)) (|:| |fp| (-84 FCN)))) (-5 *9 (-3 (|:| |fn| (-362)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-202)) (-5 *2 (-959)) (-5 *1 (-686)))) (-3829 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-521)) (-5 *5 (-627 (-202))) (-5 *6 (-3 (|:| |fn| (-362)) (|:| |fp| (-87 G)))) (-5 *7 (-3 (|:| |fn| (-362)) (|:| |fp| (-84 FCN)))) (-5 *3 (-202)) (-5 *2 (-959)) (-5 *1 (-686)))) (-3645 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-521)) (-5 *5 (-627 (-202))) (-5 *6 (-3 (|:| |fn| (-362)) (|:| |fp| (-84 FCN)))) (-5 *7 (-3 (|:| |fn| (-362)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-202)) (-5 *2 (-959)) (-5 *1 (-686)))))
+(-10 -7 (-15 -3645 ((-959) (-202) (-521) (-521) (-521) (-202) (-627 (-202)) (-202) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-362)) (|:| |fp| (-86 OUTPUT))))) (-15 -3829 ((-959) (-202) (-521) (-521) (-202) (-202) (-627 (-202)) (-202) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-362)) (|:| |fp| (-84 FCN))))) (-15 -4051 ((-959) (-202) (-521) (-521) (-202) (-1067) (-202) (-627 (-202)) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-362)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-362)) (|:| |fp| (-86 OUTPUT))))) (-15 -3449 ((-959) (-202) (-521) (-521) (-1067) (-521) (-202) (-627 (-202)) (-202) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-362)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-362)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-362)) (|:| |fp| (-86 OUTPUT))))) (-15 -2435 ((-959) (-627 (-202)) (-627 (-202)) (-521) (-202) (-202) (-202) (-521) (-521) (-521) (-627 (-202)) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-84 FCN))))) (-15 -2073 ((-959) (-202) (-202) (-521) (-202) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-362)) (|:| |fp| (-83 FCNG))))) (-15 -3191 ((-959) (-627 (-202)) (-521) (-521) (-202) (-521) (-521) (-202) (-202) (-627 (-202)) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-362)) (|:| |fp| (-85 BDYVAL))))) (-15 -3191 ((-959) (-627 (-202)) (-521) (-521) (-202) (-521) (-521) (-202) (-202) (-627 (-202)) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-362)) (|:| |fp| (-85 BDYVAL))) (-362) (-362))) (-15 -3138 ((-959) (-521) (-521) (-521) (-521) (-202) (-521) (-521) (-521) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-202) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-362)) (|:| |fp| (-74 G JACOBG JACGEP))))))
+((-1869 (((-959) (-202) (-202) (-521) (-521) (-627 (-202)) (-627 (-202)) (-202) (-202) (-521) (-521) (-627 (-202)) (-627 (-202)) (-202) (-202) (-521) (-521) (-627 (-202)) (-627 (-202)) (-202) (-521) (-521) (-521) (-615 (-202)) (-521)) 45)) (-2981 (((-959) (-202) (-202) (-202) (-202) (-521) (-521) (-521) (-1067) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-362)) (|:| |fp| (-81 BNDY)))) 41)) (-1352 (((-959) (-521) (-521) (-521) (-521) (-202) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521)) 23)))
+(((-687) (-10 -7 (-15 -1352 ((-959) (-521) (-521) (-521) (-521) (-202) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521))) (-15 -2981 ((-959) (-202) (-202) (-202) (-202) (-521) (-521) (-521) (-1067) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-362)) (|:| |fp| (-81 BNDY))))) (-15 -1869 ((-959) (-202) (-202) (-521) (-521) (-627 (-202)) (-627 (-202)) (-202) (-202) (-521) (-521) (-627 (-202)) (-627 (-202)) (-202) (-202) (-521) (-521) (-627 (-202)) (-627 (-202)) (-202) (-521) (-521) (-521) (-615 (-202)) (-521))))) (T -687))
+((-1869 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-521)) (-5 *5 (-627 (-202))) (-5 *6 (-615 (-202))) (-5 *3 (-202)) (-5 *2 (-959)) (-5 *1 (-687)))) (-2981 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *5 (-1067)) (-5 *6 (-3 (|:| |fn| (-362)) (|:| |fp| (-80 PDEF)))) (-5 *7 (-3 (|:| |fn| (-362)) (|:| |fp| (-81 BNDY)))) (-5 *2 (-959)) (-5 *1 (-687)))) (-1352 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-521)) (-5 *5 (-627 (-202))) (-5 *4 (-202)) (-5 *2 (-959)) (-5 *1 (-687)))))
+(-10 -7 (-15 -1352 ((-959) (-521) (-521) (-521) (-521) (-202) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521))) (-15 -2981 ((-959) (-202) (-202) (-202) (-202) (-521) (-521) (-521) (-1067) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-362)) (|:| |fp| (-81 BNDY))))) (-15 -1869 ((-959) (-202) (-202) (-521) (-521) (-627 (-202)) (-627 (-202)) (-202) (-202) (-521) (-521) (-627 (-202)) (-627 (-202)) (-202) (-202) (-521) (-521) (-627 (-202)) (-627 (-202)) (-202) (-521) (-521) (-521) (-615 (-202)) (-521))))
+((-3020 (((-959) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-202) (-627 (-202)) (-202) (-202) (-521)) 35)) (-3136 (((-959) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521) (-521) (-202) (-202) (-521)) 34)) (-3669 (((-959) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-521)) (-627 (-202)) (-202) (-202) (-521)) 33)) (-4119 (((-959) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521)) 29)) (-3054 (((-959) (-521) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521)) 28)) (-3751 (((-959) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-202) (-202) (-521)) 27)) (-3546 (((-959) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521) (-627 (-202)) (-521)) 23)) (-3127 (((-959) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521) (-627 (-202)) (-521)) 22)) (-1220 (((-959) (-521) (-627 (-202)) (-627 (-202)) (-521)) 21)) (-1843 (((-959) (-521) (-627 (-202)) (-627 (-202)) (-521) (-521) (-521)) 20)))
+(((-688) (-10 -7 (-15 -1843 ((-959) (-521) (-627 (-202)) (-627 (-202)) (-521) (-521) (-521))) (-15 -1220 ((-959) (-521) (-627 (-202)) (-627 (-202)) (-521))) (-15 -3127 ((-959) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521) (-627 (-202)) (-521))) (-15 -3546 ((-959) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521) (-627 (-202)) (-521))) (-15 -3751 ((-959) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-202) (-202) (-521))) (-15 -3054 ((-959) (-521) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521))) (-15 -4119 ((-959) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521))) (-15 -3669 ((-959) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-521)) (-627 (-202)) (-202) (-202) (-521))) (-15 -3136 ((-959) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521) (-521) (-202) (-202) (-521))) (-15 -3020 ((-959) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-202) (-627 (-202)) (-202) (-202) (-521))))) (T -688))
+((-3020 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *5 (-202)) (-5 *2 (-959)) (-5 *1 (-688)))) (-3136 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *5 (-202)) (-5 *2 (-959)) (-5 *1 (-688)))) (-3669 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-627 (-202))) (-5 *5 (-627 (-521))) (-5 *6 (-202)) (-5 *3 (-521)) (-5 *2 (-959)) (-5 *1 (-688)))) (-4119 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-688)))) (-3054 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-688)))) (-3751 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *5 (-202)) (-5 *2 (-959)) (-5 *1 (-688)))) (-3546 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-688)))) (-3127 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-688)))) (-1220 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-688)))) (-1843 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-688)))))
+(-10 -7 (-15 -1843 ((-959) (-521) (-627 (-202)) (-627 (-202)) (-521) (-521) (-521))) (-15 -1220 ((-959) (-521) (-627 (-202)) (-627 (-202)) (-521))) (-15 -3127 ((-959) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521) (-627 (-202)) (-521))) (-15 -3546 ((-959) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521) (-627 (-202)) (-521))) (-15 -3751 ((-959) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-202) (-202) (-521))) (-15 -3054 ((-959) (-521) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521))) (-15 -4119 ((-959) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521))) (-15 -3669 ((-959) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-521)) (-627 (-202)) (-202) (-202) (-521))) (-15 -3136 ((-959) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521) (-521) (-202) (-202) (-521))) (-15 -3020 ((-959) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-202) (-627 (-202)) (-202) (-202) (-521))))
+((-2761 (((-959) (-521) (-521) (-627 (-202)) (-627 (-202)) (-521) (-627 (-202)) (-627 (-202)) (-521) (-521) (-521)) 45)) (-3641 (((-959) (-521) (-521) (-521) (-202) (-627 (-202)) (-627 (-202)) (-521)) 44)) (-1947 (((-959) (-521) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521) (-521) (-521)) 43)) (-3386 (((-959) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521)) 42)) (-3881 (((-959) (-1067) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-202) (-521) (-521) (-521) (-521) (-521) (-627 (-202)) (-521) (-627 (-202)) (-627 (-202)) (-521)) 41)) (-2518 (((-959) (-1067) (-521) (-627 (-202)) (-521) (-627 (-202)) (-627 (-202)) (-202) (-521) (-521) (-521) (-521) (-521) (-627 (-202)) (-521) (-627 (-202)) (-627 (-202)) (-627 (-521)) (-521)) 40)) (-1627 (((-959) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-521)) (-521) (-521) (-521) (-202) (-627 (-202)) (-521)) 39)) (-3917 (((-959) (-1067) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-202) (-521) (-521) (-521) (-627 (-202)) (-521) (-627 (-202)) (-627 (-521))) 38)) (-2908 (((-959) (-521) (-627 (-202)) (-627 (-202)) (-521)) 35)) (-1538 (((-959) (-521) (-627 (-202)) (-627 (-202)) (-202) (-521) (-521)) 34)) (-1379 (((-959) (-521) (-627 (-202)) (-627 (-202)) (-202) (-521)) 33)) (-2079 (((-959) (-521) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521)) 32)) (-1991 (((-959) (-521) (-202) (-202) (-627 (-202)) (-521) (-521) (-202) (-521)) 31)) (-2238 (((-959) (-521) (-202) (-202) (-627 (-202)) (-521) (-521) (-202) (-521) (-521) (-521)) 30)) (-3579 (((-959) (-521) (-202) (-202) (-627 (-202)) (-521) (-521) (-521) (-521) (-521)) 29)) (-4088 (((-959) (-521) (-521) (-521) (-202) (-202) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521) (-627 (-202)) (-627 (-202)) (-521) (-627 (-521)) (-521) (-521) (-521)) 28)) (-3159 (((-959) (-521) (-627 (-202)) (-202) (-521)) 24)) (-1475 (((-959) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521)) 20)))
+(((-689) (-10 -7 (-15 -1475 ((-959) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521))) (-15 -3159 ((-959) (-521) (-627 (-202)) (-202) (-521))) (-15 -4088 ((-959) (-521) (-521) (-521) (-202) (-202) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521) (-627 (-202)) (-627 (-202)) (-521) (-627 (-521)) (-521) (-521) (-521))) (-15 -3579 ((-959) (-521) (-202) (-202) (-627 (-202)) (-521) (-521) (-521) (-521) (-521))) (-15 -2238 ((-959) (-521) (-202) (-202) (-627 (-202)) (-521) (-521) (-202) (-521) (-521) (-521))) (-15 -1991 ((-959) (-521) (-202) (-202) (-627 (-202)) (-521) (-521) (-202) (-521))) (-15 -2079 ((-959) (-521) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521))) (-15 -1379 ((-959) (-521) (-627 (-202)) (-627 (-202)) (-202) (-521))) (-15 -1538 ((-959) (-521) (-627 (-202)) (-627 (-202)) (-202) (-521) (-521))) (-15 -2908 ((-959) (-521) (-627 (-202)) (-627 (-202)) (-521))) (-15 -3917 ((-959) (-1067) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-202) (-521) (-521) (-521) (-627 (-202)) (-521) (-627 (-202)) (-627 (-521)))) (-15 -1627 ((-959) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-521)) (-521) (-521) (-521) (-202) (-627 (-202)) (-521))) (-15 -2518 ((-959) (-1067) (-521) (-627 (-202)) (-521) (-627 (-202)) (-627 (-202)) (-202) (-521) (-521) (-521) (-521) (-521) (-627 (-202)) (-521) (-627 (-202)) (-627 (-202)) (-627 (-521)) (-521))) (-15 -3881 ((-959) (-1067) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-202) (-521) (-521) (-521) (-521) (-521) (-627 (-202)) (-521) (-627 (-202)) (-627 (-202)) (-521))) (-15 -3386 ((-959) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521))) (-15 -1947 ((-959) (-521) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521) (-521) (-521))) (-15 -3641 ((-959) (-521) (-521) (-521) (-202) (-627 (-202)) (-627 (-202)) (-521))) (-15 -2761 ((-959) (-521) (-521) (-627 (-202)) (-627 (-202)) (-521) (-627 (-202)) (-627 (-202)) (-521) (-521) (-521))))) (T -689))
+((-2761 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-689)))) (-3641 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-521)) (-5 *5 (-627 (-202))) (-5 *4 (-202)) (-5 *2 (-959)) (-5 *1 (-689)))) (-1947 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-689)))) (-3386 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-689)))) (-3881 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1067)) (-5 *4 (-521)) (-5 *5 (-627 (-202))) (-5 *6 (-202)) (-5 *2 (-959)) (-5 *1 (-689)))) (-2518 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1067)) (-5 *5 (-627 (-202))) (-5 *6 (-202)) (-5 *7 (-627 (-521))) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-689)))) (-1627 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-627 (-202))) (-5 *5 (-627 (-521))) (-5 *6 (-202)) (-5 *3 (-521)) (-5 *2 (-959)) (-5 *1 (-689)))) (-3917 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1067)) (-5 *5 (-627 (-202))) (-5 *6 (-202)) (-5 *7 (-627 (-521))) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-689)))) (-2908 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-689)))) (-1538 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *5 (-202)) (-5 *2 (-959)) (-5 *1 (-689)))) (-1379 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *5 (-202)) (-5 *2 (-959)) (-5 *1 (-689)))) (-2079 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-689)))) (-1991 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-521)) (-5 *5 (-627 (-202))) (-5 *4 (-202)) (-5 *2 (-959)) (-5 *1 (-689)))) (-2238 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-521)) (-5 *5 (-627 (-202))) (-5 *4 (-202)) (-5 *2 (-959)) (-5 *1 (-689)))) (-3579 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-521)) (-5 *5 (-627 (-202))) (-5 *4 (-202)) (-5 *2 (-959)) (-5 *1 (-689)))) (-4088 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-627 (-202))) (-5 *6 (-627 (-521))) (-5 *3 (-521)) (-5 *4 (-202)) (-5 *2 (-959)) (-5 *1 (-689)))) (-3159 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *5 (-202)) (-5 *2 (-959)) (-5 *1 (-689)))) (-1475 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-689)))))
+(-10 -7 (-15 -1475 ((-959) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521))) (-15 -3159 ((-959) (-521) (-627 (-202)) (-202) (-521))) (-15 -4088 ((-959) (-521) (-521) (-521) (-202) (-202) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521) (-627 (-202)) (-627 (-202)) (-521) (-627 (-521)) (-521) (-521) (-521))) (-15 -3579 ((-959) (-521) (-202) (-202) (-627 (-202)) (-521) (-521) (-521) (-521) (-521))) (-15 -2238 ((-959) (-521) (-202) (-202) (-627 (-202)) (-521) (-521) (-202) (-521) (-521) (-521))) (-15 -1991 ((-959) (-521) (-202) (-202) (-627 (-202)) (-521) (-521) (-202) (-521))) (-15 -2079 ((-959) (-521) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521))) (-15 -1379 ((-959) (-521) (-627 (-202)) (-627 (-202)) (-202) (-521))) (-15 -1538 ((-959) (-521) (-627 (-202)) (-627 (-202)) (-202) (-521) (-521))) (-15 -2908 ((-959) (-521) (-627 (-202)) (-627 (-202)) (-521))) (-15 -3917 ((-959) (-1067) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-202) (-521) (-521) (-521) (-627 (-202)) (-521) (-627 (-202)) (-627 (-521)))) (-15 -1627 ((-959) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-521)) (-521) (-521) (-521) (-202) (-627 (-202)) (-521))) (-15 -2518 ((-959) (-1067) (-521) (-627 (-202)) (-521) (-627 (-202)) (-627 (-202)) (-202) (-521) (-521) (-521) (-521) (-521) (-627 (-202)) (-521) (-627 (-202)) (-627 (-202)) (-627 (-521)) (-521))) (-15 -3881 ((-959) (-1067) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-202) (-521) (-521) (-521) (-521) (-521) (-627 (-202)) (-521) (-627 (-202)) (-627 (-202)) (-521))) (-15 -3386 ((-959) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521))) (-15 -1947 ((-959) (-521) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521) (-521) (-521))) (-15 -3641 ((-959) (-521) (-521) (-521) (-202) (-627 (-202)) (-627 (-202)) (-521))) (-15 -2761 ((-959) (-521) (-521) (-627 (-202)) (-627 (-202)) (-521) (-627 (-202)) (-627 (-202)) (-521) (-521) (-521))))
+((-1724 (((-959) (-521) (-521) (-521) (-202) (-627 (-202)) (-521) (-627 (-202)) (-521)) 63)) (-3450 (((-959) (-521) (-521) (-521) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521) (-521) (-108) (-202) (-521) (-202) (-202) (-108) (-202) (-202) (-202) (-202) (-108) (-521) (-521) (-521) (-521) (-521) (-202) (-202) (-202) (-521) (-521) (-521) (-521) (-521) (-627 (-521)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-362)) (|:| |fp| (-75 OBJFUN)))) 62)) (-2717 (((-959) (-521) (-521) (-521) (-521) (-521) (-521) (-521) (-521) (-202) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-108) (-108) (-108) (-521) (-521) (-627 (-202)) (-627 (-521)) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-63 QPHESS)))) 58)) (-1726 (((-959) (-521) (-521) (-521) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-108) (-521) (-521) (-627 (-202)) (-521)) 51)) (-4212 (((-959) (-521) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-64 FUNCT1)))) 50)) (-1918 (((-959) (-521) (-521) (-521) (-521) (-627 (-202)) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-61 LSFUN2)))) 46)) (-3241 (((-959) (-521) (-521) (-521) (-521) (-627 (-202)) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-77 LSFUN1)))) 42)) (-2064 (((-959) (-521) (-202) (-202) (-521) (-202) (-108) (-202) (-202) (-521) (-521) (-521) (-521) (-627 (-202)) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-75 OBJFUN)))) 38)))
+(((-690) (-10 -7 (-15 -2064 ((-959) (-521) (-202) (-202) (-521) (-202) (-108) (-202) (-202) (-521) (-521) (-521) (-521) (-627 (-202)) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-75 OBJFUN))))) (-15 -3241 ((-959) (-521) (-521) (-521) (-521) (-627 (-202)) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-77 LSFUN1))))) (-15 -1918 ((-959) (-521) (-521) (-521) (-521) (-627 (-202)) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-61 LSFUN2))))) (-15 -4212 ((-959) (-521) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-64 FUNCT1))))) (-15 -1726 ((-959) (-521) (-521) (-521) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-108) (-521) (-521) (-627 (-202)) (-521))) (-15 -2717 ((-959) (-521) (-521) (-521) (-521) (-521) (-521) (-521) (-521) (-202) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-108) (-108) (-108) (-521) (-521) (-627 (-202)) (-627 (-521)) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-63 QPHESS))))) (-15 -3450 ((-959) (-521) (-521) (-521) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521) (-521) (-108) (-202) (-521) (-202) (-202) (-108) (-202) (-202) (-202) (-202) (-108) (-521) (-521) (-521) (-521) (-521) (-202) (-202) (-202) (-521) (-521) (-521) (-521) (-521) (-627 (-521)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-362)) (|:| |fp| (-75 OBJFUN))))) (-15 -1724 ((-959) (-521) (-521) (-521) (-202) (-627 (-202)) (-521) (-627 (-202)) (-521))))) (T -690))
+((-1724 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-521)) (-5 *5 (-627 (-202))) (-5 *4 (-202)) (-5 *2 (-959)) (-5 *1 (-690)))) (-3450 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-627 (-202))) (-5 *5 (-108)) (-5 *6 (-202)) (-5 *7 (-627 (-521))) (-5 *8 (-3 (|:| |fn| (-362)) (|:| |fp| (-78 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-362)) (|:| |fp| (-75 OBJFUN)))) (-5 *3 (-521)) (-5 *2 (-959)) (-5 *1 (-690)))) (-2717 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-627 (-202))) (-5 *6 (-108)) (-5 *7 (-627 (-521))) (-5 *8 (-3 (|:| |fn| (-362)) (|:| |fp| (-63 QPHESS)))) (-5 *3 (-521)) (-5 *4 (-202)) (-5 *2 (-959)) (-5 *1 (-690)))) (-1726 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *5 (-108)) (-5 *2 (-959)) (-5 *1 (-690)))) (-4212 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *5 (-3 (|:| |fn| (-362)) (|:| |fp| (-64 FUNCT1)))) (-5 *2 (-959)) (-5 *1 (-690)))) (-1918 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *5 (-3 (|:| |fn| (-362)) (|:| |fp| (-61 LSFUN2)))) (-5 *2 (-959)) (-5 *1 (-690)))) (-3241 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *5 (-3 (|:| |fn| (-362)) (|:| |fp| (-77 LSFUN1)))) (-5 *2 (-959)) (-5 *1 (-690)))) (-2064 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-521)) (-5 *5 (-108)) (-5 *6 (-627 (-202))) (-5 *7 (-3 (|:| |fn| (-362)) (|:| |fp| (-75 OBJFUN)))) (-5 *4 (-202)) (-5 *2 (-959)) (-5 *1 (-690)))))
+(-10 -7 (-15 -2064 ((-959) (-521) (-202) (-202) (-521) (-202) (-108) (-202) (-202) (-521) (-521) (-521) (-521) (-627 (-202)) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-75 OBJFUN))))) (-15 -3241 ((-959) (-521) (-521) (-521) (-521) (-627 (-202)) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-77 LSFUN1))))) (-15 -1918 ((-959) (-521) (-521) (-521) (-521) (-627 (-202)) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-61 LSFUN2))))) (-15 -4212 ((-959) (-521) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-64 FUNCT1))))) (-15 -1726 ((-959) (-521) (-521) (-521) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-108) (-521) (-521) (-627 (-202)) (-521))) (-15 -2717 ((-959) (-521) (-521) (-521) (-521) (-521) (-521) (-521) (-521) (-202) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-108) (-108) (-108) (-521) (-521) (-627 (-202)) (-627 (-521)) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-63 QPHESS))))) (-15 -3450 ((-959) (-521) (-521) (-521) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521) (-521) (-108) (-202) (-521) (-202) (-202) (-108) (-202) (-202) (-202) (-202) (-108) (-521) (-521) (-521) (-521) (-521) (-202) (-202) (-202) (-521) (-521) (-521) (-521) (-521) (-627 (-521)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-362)) (|:| |fp| (-75 OBJFUN))))) (-15 -1724 ((-959) (-521) (-521) (-521) (-202) (-627 (-202)) (-521) (-627 (-202)) (-521))))
+((-2419 (((-959) (-1067) (-521) (-521) (-521) (-521) (-627 (-154 (-202))) (-627 (-154 (-202))) (-521)) 46)) (-3903 (((-959) (-1067) (-1067) (-521) (-521) (-627 (-154 (-202))) (-521) (-627 (-154 (-202))) (-521) (-521) (-627 (-154 (-202))) (-521)) 45)) (-2691 (((-959) (-521) (-521) (-521) (-627 (-154 (-202))) (-521)) 44)) (-2038 (((-959) (-1067) (-521) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-521)) 40)) (-3724 (((-959) (-1067) (-1067) (-521) (-521) (-627 (-202)) (-521) (-627 (-202)) (-521) (-521) (-627 (-202)) (-521)) 39)) (-2957 (((-959) (-521) (-521) (-521) (-627 (-202)) (-521)) 36)) (-1629 (((-959) (-521) (-627 (-202)) (-521) (-627 (-521)) (-521)) 35)) (-3761 (((-959) (-521) (-521) (-521) (-521) (-587 (-108)) (-627 (-202)) (-627 (-521)) (-627 (-521)) (-202) (-202) (-521)) 34)) (-3541 (((-959) (-521) (-521) (-521) (-627 (-521)) (-627 (-521)) (-627 (-521)) (-627 (-521)) (-108) (-202) (-108) (-627 (-521)) (-627 (-202)) (-521)) 33)) (-2635 (((-959) (-521) (-521) (-521) (-521) (-202) (-108) (-108) (-587 (-108)) (-627 (-202)) (-627 (-521)) (-627 (-521)) (-521)) 32)))
+(((-691) (-10 -7 (-15 -2635 ((-959) (-521) (-521) (-521) (-521) (-202) (-108) (-108) (-587 (-108)) (-627 (-202)) (-627 (-521)) (-627 (-521)) (-521))) (-15 -3541 ((-959) (-521) (-521) (-521) (-627 (-521)) (-627 (-521)) (-627 (-521)) (-627 (-521)) (-108) (-202) (-108) (-627 (-521)) (-627 (-202)) (-521))) (-15 -3761 ((-959) (-521) (-521) (-521) (-521) (-587 (-108)) (-627 (-202)) (-627 (-521)) (-627 (-521)) (-202) (-202) (-521))) (-15 -1629 ((-959) (-521) (-627 (-202)) (-521) (-627 (-521)) (-521))) (-15 -2957 ((-959) (-521) (-521) (-521) (-627 (-202)) (-521))) (-15 -3724 ((-959) (-1067) (-1067) (-521) (-521) (-627 (-202)) (-521) (-627 (-202)) (-521) (-521) (-627 (-202)) (-521))) (-15 -2038 ((-959) (-1067) (-521) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-521))) (-15 -2691 ((-959) (-521) (-521) (-521) (-627 (-154 (-202))) (-521))) (-15 -3903 ((-959) (-1067) (-1067) (-521) (-521) (-627 (-154 (-202))) (-521) (-627 (-154 (-202))) (-521) (-521) (-627 (-154 (-202))) (-521))) (-15 -2419 ((-959) (-1067) (-521) (-521) (-521) (-521) (-627 (-154 (-202))) (-627 (-154 (-202))) (-521))))) (T -691))
+((-2419 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1067)) (-5 *4 (-521)) (-5 *5 (-627 (-154 (-202)))) (-5 *2 (-959)) (-5 *1 (-691)))) (-3903 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1067)) (-5 *4 (-521)) (-5 *5 (-627 (-154 (-202)))) (-5 *2 (-959)) (-5 *1 (-691)))) (-2691 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-154 (-202)))) (-5 *2 (-959)) (-5 *1 (-691)))) (-2038 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1067)) (-5 *4 (-521)) (-5 *5 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-691)))) (-3724 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1067)) (-5 *4 (-521)) (-5 *5 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-691)))) (-2957 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-691)))) (-1629 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-627 (-202))) (-5 *5 (-627 (-521))) (-5 *3 (-521)) (-5 *2 (-959)) (-5 *1 (-691)))) (-3761 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-587 (-108))) (-5 *5 (-627 (-202))) (-5 *6 (-627 (-521))) (-5 *7 (-202)) (-5 *3 (-521)) (-5 *2 (-959)) (-5 *1 (-691)))) (-3541 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-627 (-521))) (-5 *5 (-108)) (-5 *7 (-627 (-202))) (-5 *3 (-521)) (-5 *6 (-202)) (-5 *2 (-959)) (-5 *1 (-691)))) (-2635 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-587 (-108))) (-5 *7 (-627 (-202))) (-5 *8 (-627 (-521))) (-5 *3 (-521)) (-5 *4 (-202)) (-5 *5 (-108)) (-5 *2 (-959)) (-5 *1 (-691)))))
+(-10 -7 (-15 -2635 ((-959) (-521) (-521) (-521) (-521) (-202) (-108) (-108) (-587 (-108)) (-627 (-202)) (-627 (-521)) (-627 (-521)) (-521))) (-15 -3541 ((-959) (-521) (-521) (-521) (-627 (-521)) (-627 (-521)) (-627 (-521)) (-627 (-521)) (-108) (-202) (-108) (-627 (-521)) (-627 (-202)) (-521))) (-15 -3761 ((-959) (-521) (-521) (-521) (-521) (-587 (-108)) (-627 (-202)) (-627 (-521)) (-627 (-521)) (-202) (-202) (-521))) (-15 -1629 ((-959) (-521) (-627 (-202)) (-521) (-627 (-521)) (-521))) (-15 -2957 ((-959) (-521) (-521) (-521) (-627 (-202)) (-521))) (-15 -3724 ((-959) (-1067) (-1067) (-521) (-521) (-627 (-202)) (-521) (-627 (-202)) (-521) (-521) (-627 (-202)) (-521))) (-15 -2038 ((-959) (-1067) (-521) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-521))) (-15 -2691 ((-959) (-521) (-521) (-521) (-627 (-154 (-202))) (-521))) (-15 -3903 ((-959) (-1067) (-1067) (-521) (-521) (-627 (-154 (-202))) (-521) (-627 (-154 (-202))) (-521) (-521) (-627 (-154 (-202))) (-521))) (-15 -2419 ((-959) (-1067) (-521) (-521) (-521) (-521) (-627 (-154 (-202))) (-627 (-154 (-202))) (-521))))
+((-2372 (((-959) (-521) (-521) (-521) (-521) (-521) (-108) (-521) (-108) (-521) (-627 (-154 (-202))) (-627 (-154 (-202))) (-521)) 64)) (-1213 (((-959) (-521) (-521) (-521) (-521) (-521) (-108) (-521) (-108) (-521) (-627 (-202)) (-627 (-202)) (-521)) 60)) (-3928 (((-959) (-521) (-521) (-202) (-521) (-521) (-521) (-521) (-521) (-521) (-521) (-627 (-202)) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-362)) (|:| |fp| (-66 IMAGE))) (-362)) 56) (((-959) (-521) (-521) (-202) (-521) (-521) (-521) (-521) (-521) (-521) (-521) (-627 (-202)) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-362)) (|:| |fp| (-66 IMAGE)))) 55)) (-3782 (((-959) (-521) (-521) (-521) (-202) (-108) (-521) (-627 (-202)) (-627 (-202)) (-521)) 37)) (-3310 (((-959) (-521) (-521) (-202) (-202) (-521) (-521) (-627 (-202)) (-521)) 33)) (-3608 (((-959) (-627 (-202)) (-521) (-627 (-202)) (-521) (-521) (-521) (-521) (-521)) 29)) (-3459 (((-959) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-521)) 28)) (-2455 (((-959) (-521) (-521) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-521)) 27)) (-2458 (((-959) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-521)) 26)) (-2301 (((-959) (-521) (-521) (-521) (-521) (-627 (-202)) (-521)) 25)) (-3484 (((-959) (-521) (-521) (-627 (-202)) (-521)) 24)) (-1704 (((-959) (-521) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-521)) 23)) (-3926 (((-959) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-521)) 22)) (-3301 (((-959) (-627 (-202)) (-521) (-521) (-521) (-521)) 21)) (-3393 (((-959) (-521) (-521) (-627 (-202)) (-521)) 20)))
+(((-692) (-10 -7 (-15 -3393 ((-959) (-521) (-521) (-627 (-202)) (-521))) (-15 -3301 ((-959) (-627 (-202)) (-521) (-521) (-521) (-521))) (-15 -3926 ((-959) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-521))) (-15 -1704 ((-959) (-521) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-521))) (-15 -3484 ((-959) (-521) (-521) (-627 (-202)) (-521))) (-15 -2301 ((-959) (-521) (-521) (-521) (-521) (-627 (-202)) (-521))) (-15 -2458 ((-959) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-521))) (-15 -2455 ((-959) (-521) (-521) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-521))) (-15 -3459 ((-959) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-521))) (-15 -3608 ((-959) (-627 (-202)) (-521) (-627 (-202)) (-521) (-521) (-521) (-521) (-521))) (-15 -3310 ((-959) (-521) (-521) (-202) (-202) (-521) (-521) (-627 (-202)) (-521))) (-15 -3782 ((-959) (-521) (-521) (-521) (-202) (-108) (-521) (-627 (-202)) (-627 (-202)) (-521))) (-15 -3928 ((-959) (-521) (-521) (-202) (-521) (-521) (-521) (-521) (-521) (-521) (-521) (-627 (-202)) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-362)) (|:| |fp| (-66 IMAGE))))) (-15 -3928 ((-959) (-521) (-521) (-202) (-521) (-521) (-521) (-521) (-521) (-521) (-521) (-627 (-202)) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-362)) (|:| |fp| (-66 IMAGE))) (-362))) (-15 -1213 ((-959) (-521) (-521) (-521) (-521) (-521) (-108) (-521) (-108) (-521) (-627 (-202)) (-627 (-202)) (-521))) (-15 -2372 ((-959) (-521) (-521) (-521) (-521) (-521) (-108) (-521) (-108) (-521) (-627 (-154 (-202))) (-627 (-154 (-202))) (-521))))) (T -692))
+((-2372 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-521)) (-5 *4 (-108)) (-5 *5 (-627 (-154 (-202)))) (-5 *2 (-959)) (-5 *1 (-692)))) (-1213 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-521)) (-5 *4 (-108)) (-5 *5 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-692)))) (-3928 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-521)) (-5 *5 (-627 (-202))) (-5 *6 (-3 (|:| |fn| (-362)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-362)) (|:| |fp| (-66 IMAGE)))) (-5 *8 (-362)) (-5 *4 (-202)) (-5 *2 (-959)) (-5 *1 (-692)))) (-3928 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-521)) (-5 *5 (-627 (-202))) (-5 *6 (-3 (|:| |fn| (-362)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-362)) (|:| |fp| (-66 IMAGE)))) (-5 *4 (-202)) (-5 *2 (-959)) (-5 *1 (-692)))) (-3782 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-521)) (-5 *5 (-108)) (-5 *6 (-627 (-202))) (-5 *4 (-202)) (-5 *2 (-959)) (-5 *1 (-692)))) (-3310 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-521)) (-5 *5 (-627 (-202))) (-5 *4 (-202)) (-5 *2 (-959)) (-5 *1 (-692)))) (-3608 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-627 (-202))) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-692)))) (-3459 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-692)))) (-2455 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-692)))) (-2458 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-692)))) (-2301 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-692)))) (-3484 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-692)))) (-1704 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-692)))) (-3926 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-692)))) (-3301 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-627 (-202))) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-692)))) (-3393 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-692)))))
+(-10 -7 (-15 -3393 ((-959) (-521) (-521) (-627 (-202)) (-521))) (-15 -3301 ((-959) (-627 (-202)) (-521) (-521) (-521) (-521))) (-15 -3926 ((-959) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-521))) (-15 -1704 ((-959) (-521) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-521))) (-15 -3484 ((-959) (-521) (-521) (-627 (-202)) (-521))) (-15 -2301 ((-959) (-521) (-521) (-521) (-521) (-627 (-202)) (-521))) (-15 -2458 ((-959) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-521))) (-15 -2455 ((-959) (-521) (-521) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-521))) (-15 -3459 ((-959) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-521))) (-15 -3608 ((-959) (-627 (-202)) (-521) (-627 (-202)) (-521) (-521) (-521) (-521) (-521))) (-15 -3310 ((-959) (-521) (-521) (-202) (-202) (-521) (-521) (-627 (-202)) (-521))) (-15 -3782 ((-959) (-521) (-521) (-521) (-202) (-108) (-521) (-627 (-202)) (-627 (-202)) (-521))) (-15 -3928 ((-959) (-521) (-521) (-202) (-521) (-521) (-521) (-521) (-521) (-521) (-521) (-627 (-202)) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-362)) (|:| |fp| (-66 IMAGE))))) (-15 -3928 ((-959) (-521) (-521) (-202) (-521) (-521) (-521) (-521) (-521) (-521) (-521) (-627 (-202)) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-362)) (|:| |fp| (-66 IMAGE))) (-362))) (-15 -1213 ((-959) (-521) (-521) (-521) (-521) (-521) (-108) (-521) (-108) (-521) (-627 (-202)) (-627 (-202)) (-521))) (-15 -2372 ((-959) (-521) (-521) (-521) (-521) (-521) (-108) (-521) (-108) (-521) (-627 (-154 (-202))) (-627 (-154 (-202))) (-521))))
+((-4182 (((-959) (-521) (-521) (-202) (-202) (-202) (-202) (-521) (-521) (-521) (-521) (-627 (-202)) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-68 APROD)))) 60)) (-3713 (((-959) (-521) (-627 (-202)) (-521) (-627 (-202)) (-627 (-521)) (-521) (-627 (-202)) (-521) (-521) (-521) (-521)) 56)) (-2480 (((-959) (-521) (-627 (-202)) (-108) (-202) (-521) (-521) (-521) (-521) (-202) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-362)) (|:| |fp| (-71 MSOLVE)))) 55)) (-3990 (((-959) (-521) (-521) (-627 (-202)) (-521) (-627 (-521)) (-521) (-627 (-521)) (-627 (-202)) (-627 (-521)) (-627 (-521)) (-627 (-202)) (-627 (-202)) (-627 (-521)) (-521)) 36)) (-3559 (((-959) (-521) (-521) (-521) (-202) (-521) (-627 (-202)) (-627 (-202)) (-521)) 35)) (-1730 (((-959) (-521) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521)) 31)) (-1487 (((-959) (-521) (-627 (-202)) (-521) (-627 (-521)) (-627 (-521)) (-521) (-627 (-521)) (-627 (-202))) 30)) (-4048 (((-959) (-627 (-202)) (-521) (-627 (-202)) (-521) (-521) (-521)) 26)) (-2469 (((-959) (-521) (-627 (-202)) (-521) (-627 (-202)) (-521)) 25)) (-3747 (((-959) (-521) (-627 (-202)) (-521) (-627 (-202)) (-521)) 24)) (-3609 (((-959) (-521) (-627 (-154 (-202))) (-521) (-521) (-521) (-521) (-627 (-154 (-202))) (-521)) 20)))
+(((-693) (-10 -7 (-15 -3609 ((-959) (-521) (-627 (-154 (-202))) (-521) (-521) (-521) (-521) (-627 (-154 (-202))) (-521))) (-15 -3747 ((-959) (-521) (-627 (-202)) (-521) (-627 (-202)) (-521))) (-15 -2469 ((-959) (-521) (-627 (-202)) (-521) (-627 (-202)) (-521))) (-15 -4048 ((-959) (-627 (-202)) (-521) (-627 (-202)) (-521) (-521) (-521))) (-15 -1487 ((-959) (-521) (-627 (-202)) (-521) (-627 (-521)) (-627 (-521)) (-521) (-627 (-521)) (-627 (-202)))) (-15 -1730 ((-959) (-521) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521))) (-15 -3559 ((-959) (-521) (-521) (-521) (-202) (-521) (-627 (-202)) (-627 (-202)) (-521))) (-15 -3990 ((-959) (-521) (-521) (-627 (-202)) (-521) (-627 (-521)) (-521) (-627 (-521)) (-627 (-202)) (-627 (-521)) (-627 (-521)) (-627 (-202)) (-627 (-202)) (-627 (-521)) (-521))) (-15 -2480 ((-959) (-521) (-627 (-202)) (-108) (-202) (-521) (-521) (-521) (-521) (-202) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-362)) (|:| |fp| (-71 MSOLVE))))) (-15 -3713 ((-959) (-521) (-627 (-202)) (-521) (-627 (-202)) (-627 (-521)) (-521) (-627 (-202)) (-521) (-521) (-521) (-521))) (-15 -4182 ((-959) (-521) (-521) (-202) (-202) (-202) (-202) (-521) (-521) (-521) (-521) (-627 (-202)) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-68 APROD))))))) (T -693))
+((-4182 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-521)) (-5 *5 (-627 (-202))) (-5 *6 (-3 (|:| |fn| (-362)) (|:| |fp| (-68 APROD)))) (-5 *4 (-202)) (-5 *2 (-959)) (-5 *1 (-693)))) (-3713 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-627 (-202))) (-5 *5 (-627 (-521))) (-5 *3 (-521)) (-5 *2 (-959)) (-5 *1 (-693)))) (-2480 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *5 (-108)) (-5 *6 (-202)) (-5 *7 (-3 (|:| |fn| (-362)) (|:| |fp| (-66 APROD)))) (-5 *8 (-3 (|:| |fn| (-362)) (|:| |fp| (-71 MSOLVE)))) (-5 *2 (-959)) (-5 *1 (-693)))) (-3990 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-627 (-202))) (-5 *5 (-627 (-521))) (-5 *3 (-521)) (-5 *2 (-959)) (-5 *1 (-693)))) (-3559 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-521)) (-5 *5 (-627 (-202))) (-5 *4 (-202)) (-5 *2 (-959)) (-5 *1 (-693)))) (-1730 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-693)))) (-1487 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-627 (-202))) (-5 *5 (-627 (-521))) (-5 *3 (-521)) (-5 *2 (-959)) (-5 *1 (-693)))) (-4048 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-627 (-202))) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-693)))) (-2469 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-693)))) (-3747 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-693)))) (-3609 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-154 (-202)))) (-5 *2 (-959)) (-5 *1 (-693)))))
+(-10 -7 (-15 -3609 ((-959) (-521) (-627 (-154 (-202))) (-521) (-521) (-521) (-521) (-627 (-154 (-202))) (-521))) (-15 -3747 ((-959) (-521) (-627 (-202)) (-521) (-627 (-202)) (-521))) (-15 -2469 ((-959) (-521) (-627 (-202)) (-521) (-627 (-202)) (-521))) (-15 -4048 ((-959) (-627 (-202)) (-521) (-627 (-202)) (-521) (-521) (-521))) (-15 -1487 ((-959) (-521) (-627 (-202)) (-521) (-627 (-521)) (-627 (-521)) (-521) (-627 (-521)) (-627 (-202)))) (-15 -1730 ((-959) (-521) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521))) (-15 -3559 ((-959) (-521) (-521) (-521) (-202) (-521) (-627 (-202)) (-627 (-202)) (-521))) (-15 -3990 ((-959) (-521) (-521) (-627 (-202)) (-521) (-627 (-521)) (-521) (-627 (-521)) (-627 (-202)) (-627 (-521)) (-627 (-521)) (-627 (-202)) (-627 (-202)) (-627 (-521)) (-521))) (-15 -2480 ((-959) (-521) (-627 (-202)) (-108) (-202) (-521) (-521) (-521) (-521) (-202) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-362)) (|:| |fp| (-71 MSOLVE))))) (-15 -3713 ((-959) (-521) (-627 (-202)) (-521) (-627 (-202)) (-627 (-521)) (-521) (-627 (-202)) (-521) (-521) (-521) (-521))) (-15 -4182 ((-959) (-521) (-521) (-202) (-202) (-202) (-202) (-521) (-521) (-521) (-521) (-627 (-202)) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-68 APROD))))))
+((-1425 (((-959) (-1067) (-521) (-521) (-627 (-202)) (-521) (-521) (-627 (-202))) 28)) (-2215 (((-959) (-1067) (-521) (-521) (-627 (-202))) 27)) (-1565 (((-959) (-1067) (-521) (-521) (-627 (-202)) (-521) (-627 (-521)) (-521) (-627 (-202))) 26)) (-3610 (((-959) (-521) (-521) (-521) (-627 (-202))) 20)))
+(((-694) (-10 -7 (-15 -3610 ((-959) (-521) (-521) (-521) (-627 (-202)))) (-15 -1565 ((-959) (-1067) (-521) (-521) (-627 (-202)) (-521) (-627 (-521)) (-521) (-627 (-202)))) (-15 -2215 ((-959) (-1067) (-521) (-521) (-627 (-202)))) (-15 -1425 ((-959) (-1067) (-521) (-521) (-627 (-202)) (-521) (-521) (-627 (-202)))))) (T -694))
+((-1425 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1067)) (-5 *4 (-521)) (-5 *5 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-694)))) (-2215 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1067)) (-5 *4 (-521)) (-5 *5 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-694)))) (-1565 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1067)) (-5 *5 (-627 (-202))) (-5 *6 (-627 (-521))) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-694)))) (-3610 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-694)))))
+(-10 -7 (-15 -3610 ((-959) (-521) (-521) (-521) (-627 (-202)))) (-15 -1565 ((-959) (-1067) (-521) (-521) (-627 (-202)) (-521) (-627 (-521)) (-521) (-627 (-202)))) (-15 -2215 ((-959) (-1067) (-521) (-521) (-627 (-202)))) (-15 -1425 ((-959) (-1067) (-521) (-521) (-627 (-202)) (-521) (-521) (-627 (-202)))))
+((-1513 (((-959) (-202) (-202) (-202) (-202) (-521)) 62)) (-1850 (((-959) (-202) (-202) (-202) (-521)) 61)) (-2325 (((-959) (-202) (-202) (-202) (-521)) 60)) (-3260 (((-959) (-202) (-202) (-521)) 59)) (-3107 (((-959) (-202) (-521)) 58)) (-4017 (((-959) (-202) (-521)) 57)) (-1856 (((-959) (-202) (-521)) 56)) (-2463 (((-959) (-202) (-521)) 55)) (-3646 (((-959) (-202) (-521)) 54)) (-1875 (((-959) (-202) (-521)) 53)) (-3347 (((-959) (-202) (-154 (-202)) (-521) (-1067) (-521)) 52)) (-1652 (((-959) (-202) (-154 (-202)) (-521) (-1067) (-521)) 51)) (-4109 (((-959) (-202) (-521)) 50)) (-4090 (((-959) (-202) (-521)) 49)) (-1958 (((-959) (-202) (-521)) 48)) (-3710 (((-959) (-202) (-521)) 47)) (-3796 (((-959) (-521) (-202) (-154 (-202)) (-521) (-1067) (-521)) 46)) (-2401 (((-959) (-1067) (-154 (-202)) (-1067) (-521)) 45)) (-2159 (((-959) (-1067) (-154 (-202)) (-1067) (-521)) 44)) (-2601 (((-959) (-202) (-154 (-202)) (-521) (-1067) (-521)) 43)) (-1739 (((-959) (-202) (-154 (-202)) (-521) (-1067) (-521)) 42)) (-2701 (((-959) (-202) (-521)) 39)) (-2329 (((-959) (-202) (-521)) 38)) (-4053 (((-959) (-202) (-521)) 37)) (-3599 (((-959) (-202) (-521)) 36)) (-1249 (((-959) (-202) (-521)) 35)) (-4059 (((-959) (-202) (-521)) 34)) (-3256 (((-959) (-202) (-521)) 33)) (-3463 (((-959) (-202) (-521)) 32)) (-3180 (((-959) (-202) (-521)) 31)) (-2048 (((-959) (-202) (-521)) 30)) (-1367 (((-959) (-202) (-202) (-202) (-521)) 29)) (-3542 (((-959) (-202) (-521)) 28)) (-4180 (((-959) (-202) (-521)) 27)) (-3573 (((-959) (-202) (-521)) 26)) (-2104 (((-959) (-202) (-521)) 25)) (-2328 (((-959) (-202) (-521)) 24)) (-2481 (((-959) (-154 (-202)) (-521)) 20)))
+(((-695) (-10 -7 (-15 -2481 ((-959) (-154 (-202)) (-521))) (-15 -2328 ((-959) (-202) (-521))) (-15 -2104 ((-959) (-202) (-521))) (-15 -3573 ((-959) (-202) (-521))) (-15 -4180 ((-959) (-202) (-521))) (-15 -3542 ((-959) (-202) (-521))) (-15 -1367 ((-959) (-202) (-202) (-202) (-521))) (-15 -2048 ((-959) (-202) (-521))) (-15 -3180 ((-959) (-202) (-521))) (-15 -3463 ((-959) (-202) (-521))) (-15 -3256 ((-959) (-202) (-521))) (-15 -4059 ((-959) (-202) (-521))) (-15 -1249 ((-959) (-202) (-521))) (-15 -3599 ((-959) (-202) (-521))) (-15 -4053 ((-959) (-202) (-521))) (-15 -2329 ((-959) (-202) (-521))) (-15 -2701 ((-959) (-202) (-521))) (-15 -1739 ((-959) (-202) (-154 (-202)) (-521) (-1067) (-521))) (-15 -2601 ((-959) (-202) (-154 (-202)) (-521) (-1067) (-521))) (-15 -2159 ((-959) (-1067) (-154 (-202)) (-1067) (-521))) (-15 -2401 ((-959) (-1067) (-154 (-202)) (-1067) (-521))) (-15 -3796 ((-959) (-521) (-202) (-154 (-202)) (-521) (-1067) (-521))) (-15 -3710 ((-959) (-202) (-521))) (-15 -1958 ((-959) (-202) (-521))) (-15 -4090 ((-959) (-202) (-521))) (-15 -4109 ((-959) (-202) (-521))) (-15 -1652 ((-959) (-202) (-154 (-202)) (-521) (-1067) (-521))) (-15 -3347 ((-959) (-202) (-154 (-202)) (-521) (-1067) (-521))) (-15 -1875 ((-959) (-202) (-521))) (-15 -3646 ((-959) (-202) (-521))) (-15 -2463 ((-959) (-202) (-521))) (-15 -1856 ((-959) (-202) (-521))) (-15 -4017 ((-959) (-202) (-521))) (-15 -3107 ((-959) (-202) (-521))) (-15 -3260 ((-959) (-202) (-202) (-521))) (-15 -2325 ((-959) (-202) (-202) (-202) (-521))) (-15 -1850 ((-959) (-202) (-202) (-202) (-521))) (-15 -1513 ((-959) (-202) (-202) (-202) (-202) (-521))))) (T -695))
+((-1513 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))) (-1850 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))) (-2325 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))) (-3260 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))) (-3107 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))) (-4017 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))) (-1856 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))) (-2463 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))) (-3646 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))) (-1875 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))) (-3347 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-154 (-202))) (-5 *5 (-521)) (-5 *6 (-1067)) (-5 *3 (-202)) (-5 *2 (-959)) (-5 *1 (-695)))) (-1652 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-154 (-202))) (-5 *5 (-521)) (-5 *6 (-1067)) (-5 *3 (-202)) (-5 *2 (-959)) (-5 *1 (-695)))) (-4109 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))) (-4090 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))) (-1958 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))) (-3710 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))) (-3796 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-521)) (-5 *5 (-154 (-202))) (-5 *6 (-1067)) (-5 *4 (-202)) (-5 *2 (-959)) (-5 *1 (-695)))) (-2401 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1067)) (-5 *4 (-154 (-202))) (-5 *5 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))) (-2159 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1067)) (-5 *4 (-154 (-202))) (-5 *5 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))) (-2601 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-154 (-202))) (-5 *5 (-521)) (-5 *6 (-1067)) (-5 *3 (-202)) (-5 *2 (-959)) (-5 *1 (-695)))) (-1739 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-154 (-202))) (-5 *5 (-521)) (-5 *6 (-1067)) (-5 *3 (-202)) (-5 *2 (-959)) (-5 *1 (-695)))) (-2701 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))) (-2329 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))) (-4053 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))) (-3599 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))) (-1249 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))) (-4059 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))) (-3256 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))) (-3463 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))) (-3180 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))) (-2048 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))) (-1367 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))) (-3542 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))) (-4180 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))) (-3573 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))) (-2104 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))) (-2328 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))) (-2481 (*1 *2 *3 *4) (-12 (-5 *3 (-154 (-202))) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))))
+(-10 -7 (-15 -2481 ((-959) (-154 (-202)) (-521))) (-15 -2328 ((-959) (-202) (-521))) (-15 -2104 ((-959) (-202) (-521))) (-15 -3573 ((-959) (-202) (-521))) (-15 -4180 ((-959) (-202) (-521))) (-15 -3542 ((-959) (-202) (-521))) (-15 -1367 ((-959) (-202) (-202) (-202) (-521))) (-15 -2048 ((-959) (-202) (-521))) (-15 -3180 ((-959) (-202) (-521))) (-15 -3463 ((-959) (-202) (-521))) (-15 -3256 ((-959) (-202) (-521))) (-15 -4059 ((-959) (-202) (-521))) (-15 -1249 ((-959) (-202) (-521))) (-15 -3599 ((-959) (-202) (-521))) (-15 -4053 ((-959) (-202) (-521))) (-15 -2329 ((-959) (-202) (-521))) (-15 -2701 ((-959) (-202) (-521))) (-15 -1739 ((-959) (-202) (-154 (-202)) (-521) (-1067) (-521))) (-15 -2601 ((-959) (-202) (-154 (-202)) (-521) (-1067) (-521))) (-15 -2159 ((-959) (-1067) (-154 (-202)) (-1067) (-521))) (-15 -2401 ((-959) (-1067) (-154 (-202)) (-1067) (-521))) (-15 -3796 ((-959) (-521) (-202) (-154 (-202)) (-521) (-1067) (-521))) (-15 -3710 ((-959) (-202) (-521))) (-15 -1958 ((-959) (-202) (-521))) (-15 -4090 ((-959) (-202) (-521))) (-15 -4109 ((-959) (-202) (-521))) (-15 -1652 ((-959) (-202) (-154 (-202)) (-521) (-1067) (-521))) (-15 -3347 ((-959) (-202) (-154 (-202)) (-521) (-1067) (-521))) (-15 -1875 ((-959) (-202) (-521))) (-15 -3646 ((-959) (-202) (-521))) (-15 -2463 ((-959) (-202) (-521))) (-15 -1856 ((-959) (-202) (-521))) (-15 -4017 ((-959) (-202) (-521))) (-15 -3107 ((-959) (-202) (-521))) (-15 -3260 ((-959) (-202) (-202) (-521))) (-15 -2325 ((-959) (-202) (-202) (-202) (-521))) (-15 -1850 ((-959) (-202) (-202) (-202) (-521))) (-15 -1513 ((-959) (-202) (-202) (-202) (-202) (-521))))
+((-3290 (((-1170)) 18)) (-2526 (((-1067)) 22)) (-2193 (((-1067)) 21)) (-3172 (((-1017) (-1084) (-627 (-521))) 35) (((-1017) (-1084) (-627 (-202))) 31)) (-1600 (((-108)) 16)) (-1296 (((-1067) (-1067)) 25)))
+(((-696) (-10 -7 (-15 -2193 ((-1067))) (-15 -2526 ((-1067))) (-15 -1296 ((-1067) (-1067))) (-15 -3172 ((-1017) (-1084) (-627 (-202)))) (-15 -3172 ((-1017) (-1084) (-627 (-521)))) (-15 -1600 ((-108))) (-15 -3290 ((-1170))))) (T -696))
+((-3290 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-696)))) (-1600 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-696)))) (-3172 (*1 *2 *3 *4) (-12 (-5 *3 (-1084)) (-5 *4 (-627 (-521))) (-5 *2 (-1017)) (-5 *1 (-696)))) (-3172 (*1 *2 *3 *4) (-12 (-5 *3 (-1084)) (-5 *4 (-627 (-202))) (-5 *2 (-1017)) (-5 *1 (-696)))) (-1296 (*1 *2 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-696)))) (-2526 (*1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-696)))) (-2193 (*1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-696)))))
+(-10 -7 (-15 -2193 ((-1067))) (-15 -2526 ((-1067))) (-15 -1296 ((-1067) (-1067))) (-15 -3172 ((-1017) (-1084) (-627 (-202)))) (-15 -3172 ((-1017) (-1084) (-627 (-521)))) (-15 -1600 ((-108))) (-15 -3290 ((-1170))))
+((-2674 (($ $ $) 10)) (-2922 (($ $ $ $) 9)) (-2464 (($ $ $) 12)))
+(((-697 |#1|) (-10 -8 (-15 -2464 (|#1| |#1| |#1|)) (-15 -2674 (|#1| |#1| |#1|)) (-15 -2922 (|#1| |#1| |#1| |#1|))) (-698)) (T -697))
+NIL
+(-10 -8 (-15 -2464 (|#1| |#1| |#1|)) (-15 -2674 (|#1| |#1| |#1|)) (-15 -2922 (|#1| |#1| |#1| |#1|)))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-1232 (((-3 $ "failed") $ $) 19)) (-2547 (($) 17 T CONST)) (-3047 (($ $ (-850)) 28)) (-2830 (($ $ (-850)) 29)) (-3688 (((-1067) $) 9)) (-4147 (((-1031) $) 10)) (-2674 (($ $ $) 25)) (-2189 (((-792) $) 11)) (-2922 (($ $ $ $) 26)) (-2464 (($ $ $) 24)) (-3561 (($) 18 T CONST)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 30)) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 27)))
+(((-698) (-1196)) (T -698))
+((-2922 (*1 *1 *1 *1 *1) (-4 *1 (-698))) (-2674 (*1 *1 *1 *1) (-4 *1 (-698))) (-2464 (*1 *1 *1 *1) (-4 *1 (-698))))
+(-13 (-21) (-657) (-10 -8 (-15 -2922 ($ $ $ $)) (-15 -2674 ($ $ $)) (-15 -2464 ($ $ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-561 (-792)) . T) ((-657) . T) ((-1013) . T))
+((-2189 (((-792) $) NIL) (($ (-521)) 10)))
+(((-699 |#1|) (-10 -8 (-15 -2189 (|#1| (-521))) (-15 -2189 ((-792) |#1|))) (-700)) (T -699))
+NIL
+(-10 -8 (-15 -2189 (|#1| (-521))) (-15 -2189 ((-792) |#1|)))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-1232 (((-3 $ "failed") $ $) 19)) (-2547 (($) 17 T CONST)) (-3176 (((-3 $ "failed") $) 40)) (-3047 (($ $ (-850)) 28) (($ $ (-707)) 35)) (-1257 (((-3 $ "failed") $) 38)) (-3996 (((-108) $) 34)) (-2652 (((-3 $ "failed") $) 39)) (-2830 (($ $ (-850)) 29) (($ $ (-707)) 36)) (-3688 (((-1067) $) 9)) (-4147 (((-1031) $) 10)) (-2674 (($ $ $) 25)) (-2189 (((-792) $) 11) (($ (-521)) 31)) (-3846 (((-707)) 32)) (-2922 (($ $ $ $) 26)) (-2464 (($ $ $) 24)) (-3561 (($) 18 T CONST)) (-3572 (($) 33 T CONST)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 30) (($ $ (-707)) 37)) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 27)))
+(((-700) (-1196)) (T -700))
+((-3846 (*1 *2) (-12 (-4 *1 (-700)) (-5 *2 (-707)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-521)) (-4 *1 (-700)))))
+(-13 (-698) (-659) (-10 -8 (-15 -3846 ((-707))) (-15 -2189 ($ (-521)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-561 (-792)) . T) ((-657) . T) ((-659) . T) ((-698) . T) ((-1013) . T))
+((-3235 (((-587 (-2 (|:| |outval| (-154 |#1|)) (|:| |outmult| (-521)) (|:| |outvect| (-587 (-627 (-154 |#1|)))))) (-627 (-154 (-381 (-521)))) |#1|) 27)) (-3567 (((-587 (-154 |#1|)) (-627 (-154 (-381 (-521)))) |#1|) 19)) (-3110 (((-881 (-154 (-381 (-521)))) (-627 (-154 (-381 (-521)))) (-1084)) 16) (((-881 (-154 (-381 (-521)))) (-627 (-154 (-381 (-521))))) 15)))
+(((-701 |#1|) (-10 -7 (-15 -3110 ((-881 (-154 (-381 (-521)))) (-627 (-154 (-381 (-521)))))) (-15 -3110 ((-881 (-154 (-381 (-521)))) (-627 (-154 (-381 (-521)))) (-1084))) (-15 -3567 ((-587 (-154 |#1|)) (-627 (-154 (-381 (-521)))) |#1|)) (-15 -3235 ((-587 (-2 (|:| |outval| (-154 |#1|)) (|:| |outmult| (-521)) (|:| |outvect| (-587 (-627 (-154 |#1|)))))) (-627 (-154 (-381 (-521)))) |#1|))) (-13 (-337) (-782))) (T -701))
+((-3235 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-154 (-381 (-521))))) (-5 *2 (-587 (-2 (|:| |outval| (-154 *4)) (|:| |outmult| (-521)) (|:| |outvect| (-587 (-627 (-154 *4))))))) (-5 *1 (-701 *4)) (-4 *4 (-13 (-337) (-782))))) (-3567 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-154 (-381 (-521))))) (-5 *2 (-587 (-154 *4))) (-5 *1 (-701 *4)) (-4 *4 (-13 (-337) (-782))))) (-3110 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-154 (-381 (-521))))) (-5 *4 (-1084)) (-5 *2 (-881 (-154 (-381 (-521))))) (-5 *1 (-701 *5)) (-4 *5 (-13 (-337) (-782))))) (-3110 (*1 *2 *3) (-12 (-5 *3 (-627 (-154 (-381 (-521))))) (-5 *2 (-881 (-154 (-381 (-521))))) (-5 *1 (-701 *4)) (-4 *4 (-13 (-337) (-782))))))
+(-10 -7 (-15 -3110 ((-881 (-154 (-381 (-521)))) (-627 (-154 (-381 (-521)))))) (-15 -3110 ((-881 (-154 (-381 (-521)))) (-627 (-154 (-381 (-521)))) (-1084))) (-15 -3567 ((-587 (-154 |#1|)) (-627 (-154 (-381 (-521)))) |#1|)) (-15 -3235 ((-587 (-2 (|:| |outval| (-154 |#1|)) (|:| |outmult| (-521)) (|:| |outvect| (-587 (-627 (-154 |#1|)))))) (-627 (-154 (-381 (-521)))) |#1|)))
+((-2554 (((-158 (-521)) |#1|) 25)))
+(((-702 |#1|) (-10 -7 (-15 -2554 ((-158 (-521)) |#1|))) (-378)) (T -702))
+((-2554 (*1 *2 *3) (-12 (-5 *2 (-158 (-521))) (-5 *1 (-702 *3)) (-4 *3 (-378)))))
+(-10 -7 (-15 -2554 ((-158 (-521)) |#1|)))
+((-3335 ((|#1| |#1| |#1|) 25)) (-3530 ((|#1| |#1| |#1|) 24)) (-4103 ((|#1| |#1| |#1|) 32)) (-2532 ((|#1| |#1| |#1|) 28)) (-3999 (((-3 |#1| "failed") |#1| |#1|) 27)) (-3420 (((-2 (|:| -3727 |#1|) (|:| -3820 |#1|)) |#1| |#1|) 23)))
+(((-703 |#1| |#2|) (-10 -7 (-15 -3420 ((-2 (|:| -3727 |#1|) (|:| -3820 |#1|)) |#1| |#1|)) (-15 -3530 (|#1| |#1| |#1|)) (-15 -3335 (|#1| |#1| |#1|)) (-15 -3999 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2532 (|#1| |#1| |#1|)) (-15 -4103 (|#1| |#1| |#1|))) (-646 |#2|) (-337)) (T -703))
+((-4103 (*1 *2 *2 *2) (-12 (-4 *3 (-337)) (-5 *1 (-703 *2 *3)) (-4 *2 (-646 *3)))) (-2532 (*1 *2 *2 *2) (-12 (-4 *3 (-337)) (-5 *1 (-703 *2 *3)) (-4 *2 (-646 *3)))) (-3999 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-337)) (-5 *1 (-703 *2 *3)) (-4 *2 (-646 *3)))) (-3335 (*1 *2 *2 *2) (-12 (-4 *3 (-337)) (-5 *1 (-703 *2 *3)) (-4 *2 (-646 *3)))) (-3530 (*1 *2 *2 *2) (-12 (-4 *3 (-337)) (-5 *1 (-703 *2 *3)) (-4 *2 (-646 *3)))) (-3420 (*1 *2 *3 *3) (-12 (-4 *4 (-337)) (-5 *2 (-2 (|:| -3727 *3) (|:| -3820 *3))) (-5 *1 (-703 *3 *4)) (-4 *3 (-646 *4)))))
+(-10 -7 (-15 -3420 ((-2 (|:| -3727 |#1|) (|:| -3820 |#1|)) |#1| |#1|)) (-15 -3530 (|#1| |#1| |#1|)) (-15 -3335 (|#1| |#1| |#1|)) (-15 -3999 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2532 (|#1| |#1| |#1|)) (-15 -4103 (|#1| |#1| |#1|)))
+((-2615 (((-2 (|:| -2470 (-627 (-521))) (|:| |basisDen| (-521)) (|:| |basisInv| (-627 (-521)))) (-521)) 58)) (-3545 (((-2 (|:| -2470 (-627 (-521))) (|:| |basisDen| (-521)) (|:| |basisInv| (-627 (-521))))) 56)) (-4010 (((-521)) 68)))
+(((-704 |#1| |#2|) (-10 -7 (-15 -4010 ((-521))) (-15 -3545 ((-2 (|:| -2470 (-627 (-521))) (|:| |basisDen| (-521)) (|:| |basisInv| (-627 (-521)))))) (-15 -2615 ((-2 (|:| -2470 (-627 (-521))) (|:| |basisDen| (-521)) (|:| |basisInv| (-627 (-521)))) (-521)))) (-1141 (-521)) (-383 (-521) |#1|)) (T -704))
+((-2615 (*1 *2 *3) (-12 (-5 *3 (-521)) (-4 *4 (-1141 *3)) (-5 *2 (-2 (|:| -2470 (-627 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-627 *3)))) (-5 *1 (-704 *4 *5)) (-4 *5 (-383 *3 *4)))) (-3545 (*1 *2) (-12 (-4 *3 (-1141 (-521))) (-5 *2 (-2 (|:| -2470 (-627 (-521))) (|:| |basisDen| (-521)) (|:| |basisInv| (-627 (-521))))) (-5 *1 (-704 *3 *4)) (-4 *4 (-383 (-521) *3)))) (-4010 (*1 *2) (-12 (-4 *3 (-1141 *2)) (-5 *2 (-521)) (-5 *1 (-704 *3 *4)) (-4 *4 (-383 *2 *3)))))
+(-10 -7 (-15 -4010 ((-521))) (-15 -3545 ((-2 (|:| -2470 (-627 (-521))) (|:| |basisDen| (-521)) (|:| |basisInv| (-627 (-521)))))) (-15 -2615 ((-2 (|:| -2470 (-627 (-521))) (|:| |basisDen| (-521)) (|:| |basisInv| (-627 (-521)))) (-521))))
+((-1415 (((-108) $ $) NIL)) (-1483 (((-3 (|:| |nia| (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| |mdnia| (-2 (|:| |fn| (-290 (-202))) (|:| -2442 (-587 (-1008 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) $) 15)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2189 (((-792) $) 14) (($ (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 8) (($ (-2 (|:| |fn| (-290 (-202))) (|:| -2442 (-587 (-1008 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 10) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| |mdnia| (-2 (|:| |fn| (-290 (-202))) (|:| -2442 (-587 (-1008 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))))) 12)) (-1531 (((-108) $ $) NIL)))
+(((-705) (-13 (-1013) (-10 -8 (-15 -2189 ($ (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -2189 ($ (-2 (|:| |fn| (-290 (-202))) (|:| -2442 (-587 (-1008 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -2189 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| |mdnia| (-2 (|:| |fn| (-290 (-202))) (|:| -2442 (-587 (-1008 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))))) (-15 -2189 ((-792) $)) (-15 -1483 ((-3 (|:| |nia| (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| |mdnia| (-2 (|:| |fn| (-290 (-202))) (|:| -2442 (-587 (-1008 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) $))))) (T -705))
+((-2189 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-705)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *1 (-705)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-290 (-202))) (|:| -2442 (-587 (-1008 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *1 (-705)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| |mdnia| (-2 (|:| |fn| (-290 (-202))) (|:| -2442 (-587 (-1008 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))))) (-5 *1 (-705)))) (-1483 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| |mdnia| (-2 (|:| |fn| (-290 (-202))) (|:| -2442 (-587 (-1008 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))))) (-5 *1 (-705)))))
+(-13 (-1013) (-10 -8 (-15 -2189 ($ (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -2189 ($ (-2 (|:| |fn| (-290 (-202))) (|:| -2442 (-587 (-1008 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -2189 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| |mdnia| (-2 (|:| |fn| (-290 (-202))) (|:| -2442 (-587 (-1008 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))))) (-15 -2189 ((-792) $)) (-15 -1483 ((-3 (|:| |nia| (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| |mdnia| (-2 (|:| |fn| (-290 (-202))) (|:| -2442 (-587 (-1008 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) $))))
+((-4085 (((-587 (-587 (-269 (-381 (-881 |#1|))))) (-587 (-881 |#1|))) 14) (((-587 (-587 (-269 (-381 (-881 |#1|))))) (-587 (-881 |#1|)) (-587 (-1084))) 13)) (-3182 (((-587 (-587 (-269 (-381 (-881 |#1|))))) (-587 (-881 |#1|))) 16) (((-587 (-587 (-269 (-381 (-881 |#1|))))) (-587 (-881 |#1|)) (-587 (-1084))) 15)))
+(((-706 |#1|) (-10 -7 (-15 -4085 ((-587 (-587 (-269 (-381 (-881 |#1|))))) (-587 (-881 |#1|)) (-587 (-1084)))) (-15 -4085 ((-587 (-587 (-269 (-381 (-881 |#1|))))) (-587 (-881 |#1|)))) (-15 -3182 ((-587 (-587 (-269 (-381 (-881 |#1|))))) (-587 (-881 |#1|)) (-587 (-1084)))) (-15 -3182 ((-587 (-587 (-269 (-381 (-881 |#1|))))) (-587 (-881 |#1|))))) (-513)) (T -706))
+((-3182 (*1 *2 *3) (-12 (-5 *3 (-587 (-881 *4))) (-4 *4 (-513)) (-5 *2 (-587 (-587 (-269 (-381 (-881 *4)))))) (-5 *1 (-706 *4)))) (-3182 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-881 *5))) (-5 *4 (-587 (-1084))) (-4 *5 (-513)) (-5 *2 (-587 (-587 (-269 (-381 (-881 *5)))))) (-5 *1 (-706 *5)))) (-4085 (*1 *2 *3) (-12 (-5 *3 (-587 (-881 *4))) (-4 *4 (-513)) (-5 *2 (-587 (-587 (-269 (-381 (-881 *4)))))) (-5 *1 (-706 *4)))) (-4085 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-881 *5))) (-5 *4 (-587 (-1084))) (-4 *5 (-513)) (-5 *2 (-587 (-587 (-269 (-381 (-881 *5)))))) (-5 *1 (-706 *5)))))
+(-10 -7 (-15 -4085 ((-587 (-587 (-269 (-381 (-881 |#1|))))) (-587 (-881 |#1|)) (-587 (-1084)))) (-15 -4085 ((-587 (-587 (-269 (-381 (-881 |#1|))))) (-587 (-881 |#1|)))) (-15 -3182 ((-587 (-587 (-269 (-381 (-881 |#1|))))) (-587 (-881 |#1|)) (-587 (-1084)))) (-15 -3182 ((-587 (-587 (-269 (-381 (-881 |#1|))))) (-587 (-881 |#1|)))))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-2641 (($ $ $) 8)) (-1232 (((-3 $ "failed") $ $) 11)) (-1662 (($ $ (-521)) 9)) (-2547 (($) NIL T CONST)) (-2277 (($ $ $) NIL)) (-1257 (((-3 $ "failed") $) NIL)) (-3250 (($ $) NIL)) (-2253 (($ $ $) NIL)) (-3996 (((-108) $) NIL)) (-2810 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2258 (($ $ $) NIL)) (-2230 (((-3 $ "failed") $ $) NIL)) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) NIL)) (-2189 (((-792) $) NIL)) (-3505 (($ $ (-707)) NIL) (($ $ (-850)) NIL)) (-3561 (($) NIL T CONST)) (-3572 (($) NIL T CONST)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-707)) NIL) (($ $ (-850)) NIL)) (* (($ (-707) $) NIL) (($ (-850) $) NIL) (($ $ $) NIL)))
+(((-707) (-13 (-729) (-663) (-10 -8 (-15 -2253 ($ $ $)) (-15 -2277 ($ $ $)) (-15 -2258 ($ $ $)) (-15 -1830 ((-2 (|:| -3727 $) (|:| -3820 $)) $ $)) (-15 -2230 ((-3 $ "failed") $ $)) (-15 -1662 ($ $ (-521))) (-15 -3250 ($ $)) (-6 (-4235 "*"))))) (T -707))
+((-2253 (*1 *1 *1 *1) (-5 *1 (-707))) (-2277 (*1 *1 *1 *1) (-5 *1 (-707))) (-2258 (*1 *1 *1 *1) (-5 *1 (-707))) (-1830 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3727 (-707)) (|:| -3820 (-707)))) (-5 *1 (-707)))) (-2230 (*1 *1 *1 *1) (|partial| -5 *1 (-707))) (-1662 (*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-707)))) (-3250 (*1 *1 *1) (-5 *1 (-707))))
+(-13 (-729) (-663) (-10 -8 (-15 -2253 ($ $ $)) (-15 -2277 ($ $ $)) (-15 -2258 ($ $ $)) (-15 -1830 ((-2 (|:| -3727 $) (|:| -3820 $)) $ $)) (-15 -2230 ((-3 $ "failed") $ $)) (-15 -1662 ($ $ (-521))) (-15 -3250 ($ $)) (-6 (-4235 "*"))))
+((-3182 (((-3 |#2| "failed") |#2| |#2| (-110) (-1084)) 35)))
+(((-708 |#1| |#2|) (-10 -7 (-15 -3182 ((-3 |#2| "failed") |#2| |#2| (-110) (-1084)))) (-13 (-784) (-282) (-961 (-521)) (-583 (-521)) (-135)) (-13 (-29 |#1|) (-1105) (-887))) (T -708))
+((-3182 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-110)) (-5 *4 (-1084)) (-4 *5 (-13 (-784) (-282) (-961 (-521)) (-583 (-521)) (-135))) (-5 *1 (-708 *5 *2)) (-4 *2 (-13 (-29 *5) (-1105) (-887))))))
+(-10 -7 (-15 -3182 ((-3 |#2| "failed") |#2| |#2| (-110) (-1084))))
+((-2189 (((-710) |#1|) 8)))
+(((-709 |#1|) (-10 -7 (-15 -2189 ((-710) |#1|))) (-1119)) (T -709))
+((-2189 (*1 *2 *3) (-12 (-5 *2 (-710)) (-5 *1 (-709 *3)) (-4 *3 (-1119)))))
+(-10 -7 (-15 -2189 ((-710) |#1|)))
+((-1415 (((-108) $ $) NIL)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2189 (((-792) $) 7)) (-1531 (((-108) $ $) 9)))
+(((-710) (-1013)) (T -710))
+NIL
+(-1013)
+((-3930 ((|#2| |#4|) 35)))
+(((-711 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3930 (|#2| |#4|))) (-425) (-1141 |#1|) (-661 |#1| |#2|) (-1141 |#3|)) (T -711))
+((-3930 (*1 *2 *3) (-12 (-4 *4 (-425)) (-4 *5 (-661 *4 *2)) (-4 *2 (-1141 *4)) (-5 *1 (-711 *4 *2 *5 *3)) (-4 *3 (-1141 *5)))))
+(-10 -7 (-15 -3930 (|#2| |#4|)))
+((-1257 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 56)) (-3133 (((-1170) (-1067) (-1067) |#4| |#5|) 33)) (-1199 ((|#4| |#4| |#5|) 73)) (-3244 (((-587 (-2 (|:| |val| |#4|) (|:| -1884 |#5|))) |#4| |#5|) 77)) (-4025 (((-587 (-2 (|:| |val| (-108)) (|:| -1884 |#5|))) |#4| |#5|) 15)))
+(((-712 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1257 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -1199 (|#4| |#4| |#5|)) (-15 -3244 ((-587 (-2 (|:| |val| |#4|) (|:| -1884 |#5|))) |#4| |#5|)) (-15 -3133 ((-1170) (-1067) (-1067) |#4| |#5|)) (-15 -4025 ((-587 (-2 (|:| |val| (-108)) (|:| -1884 |#5|))) |#4| |#5|))) (-425) (-729) (-784) (-984 |#1| |#2| |#3|) (-989 |#1| |#2| |#3| |#4|)) (T -712))
+((-4025 (*1 *2 *3 *4) (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784)) (-4 *3 (-984 *5 *6 *7)) (-5 *2 (-587 (-2 (|:| |val| (-108)) (|:| -1884 *4)))) (-5 *1 (-712 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))) (-3133 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1067)) (-4 *6 (-425)) (-4 *7 (-729)) (-4 *8 (-784)) (-4 *4 (-984 *6 *7 *8)) (-5 *2 (-1170)) (-5 *1 (-712 *6 *7 *8 *4 *5)) (-4 *5 (-989 *6 *7 *8 *4)))) (-3244 (*1 *2 *3 *4) (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784)) (-4 *3 (-984 *5 *6 *7)) (-5 *2 (-587 (-2 (|:| |val| *3) (|:| -1884 *4)))) (-5 *1 (-712 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))) (-1199 (*1 *2 *2 *3) (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784)) (-4 *2 (-984 *4 *5 *6)) (-5 *1 (-712 *4 *5 *6 *2 *3)) (-4 *3 (-989 *4 *5 *6 *2)))) (-1257 (*1 *2 *3 *4) (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784)) (-4 *3 (-984 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-712 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))))
+(-10 -7 (-15 -1257 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -1199 (|#4| |#4| |#5|)) (-15 -3244 ((-587 (-2 (|:| |val| |#4|) (|:| -1884 |#5|))) |#4| |#5|)) (-15 -3133 ((-1170) (-1067) (-1067) |#4| |#5|)) (-15 -4025 ((-587 (-2 (|:| |val| (-108)) (|:| -1884 |#5|))) |#4| |#5|)))
+((-1297 (((-3 (-1080 (-1080 |#1|)) "failed") |#4|) 44)) (-3264 (((-587 |#4|) |#4|) 15)) (-3654 ((|#4| |#4|) 11)))
+(((-713 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3264 ((-587 |#4|) |#4|)) (-15 -1297 ((-3 (-1080 (-1080 |#1|)) "failed") |#4|)) (-15 -3654 (|#4| |#4|))) (-323) (-303 |#1|) (-1141 |#2|) (-1141 |#3|) (-850)) (T -713))
+((-3654 (*1 *2 *2) (-12 (-4 *3 (-323)) (-4 *4 (-303 *3)) (-4 *5 (-1141 *4)) (-5 *1 (-713 *3 *4 *5 *2 *6)) (-4 *2 (-1141 *5)) (-14 *6 (-850)))) (-1297 (*1 *2 *3) (|partial| -12 (-4 *4 (-323)) (-4 *5 (-303 *4)) (-4 *6 (-1141 *5)) (-5 *2 (-1080 (-1080 *4))) (-5 *1 (-713 *4 *5 *6 *3 *7)) (-4 *3 (-1141 *6)) (-14 *7 (-850)))) (-3264 (*1 *2 *3) (-12 (-4 *4 (-323)) (-4 *5 (-303 *4)) (-4 *6 (-1141 *5)) (-5 *2 (-587 *3)) (-5 *1 (-713 *4 *5 *6 *3 *7)) (-4 *3 (-1141 *6)) (-14 *7 (-850)))))
+(-10 -7 (-15 -3264 ((-587 |#4|) |#4|)) (-15 -1297 ((-3 (-1080 (-1080 |#1|)) "failed") |#4|)) (-15 -3654 (|#4| |#4|)))
+((-3935 (((-2 (|:| |deter| (-587 (-1080 |#5|))) (|:| |dterm| (-587 (-587 (-2 (|:| -2096 (-707)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-587 |#1|)) (|:| |nlead| (-587 |#5|))) (-1080 |#5|) (-587 |#1|) (-587 |#5|)) 53)) (-3655 (((-587 (-707)) |#1|) 12)))
+(((-714 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3935 ((-2 (|:| |deter| (-587 (-1080 |#5|))) (|:| |dterm| (-587 (-587 (-2 (|:| -2096 (-707)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-587 |#1|)) (|:| |nlead| (-587 |#5|))) (-1080 |#5|) (-587 |#1|) (-587 |#5|))) (-15 -3655 ((-587 (-707)) |#1|))) (-1141 |#4|) (-729) (-784) (-282) (-878 |#4| |#2| |#3|)) (T -714))
+((-3655 (*1 *2 *3) (-12 (-4 *4 (-729)) (-4 *5 (-784)) (-4 *6 (-282)) (-5 *2 (-587 (-707))) (-5 *1 (-714 *3 *4 *5 *6 *7)) (-4 *3 (-1141 *6)) (-4 *7 (-878 *6 *4 *5)))) (-3935 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1141 *9)) (-4 *7 (-729)) (-4 *8 (-784)) (-4 *9 (-282)) (-4 *10 (-878 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-587 (-1080 *10))) (|:| |dterm| (-587 (-587 (-2 (|:| -2096 (-707)) (|:| |pcoef| *10))))) (|:| |nfacts| (-587 *6)) (|:| |nlead| (-587 *10)))) (-5 *1 (-714 *6 *7 *8 *9 *10)) (-5 *3 (-1080 *10)) (-5 *4 (-587 *6)) (-5 *5 (-587 *10)))))
+(-10 -7 (-15 -3935 ((-2 (|:| |deter| (-587 (-1080 |#5|))) (|:| |dterm| (-587 (-587 (-2 (|:| -2096 (-707)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-587 |#1|)) (|:| |nlead| (-587 |#5|))) (-1080 |#5|) (-587 |#1|) (-587 |#5|))) (-15 -3655 ((-587 (-707)) |#1|)))
+((-1524 (((-587 (-2 (|:| |outval| |#1|) (|:| |outmult| (-521)) (|:| |outvect| (-587 (-627 |#1|))))) (-627 (-381 (-521))) |#1|) 27)) (-2485 (((-587 |#1|) (-627 (-381 (-521))) |#1|) 19)) (-3110 (((-881 (-381 (-521))) (-627 (-381 (-521))) (-1084)) 16) (((-881 (-381 (-521))) (-627 (-381 (-521)))) 15)))
+(((-715 |#1|) (-10 -7 (-15 -3110 ((-881 (-381 (-521))) (-627 (-381 (-521))))) (-15 -3110 ((-881 (-381 (-521))) (-627 (-381 (-521))) (-1084))) (-15 -2485 ((-587 |#1|) (-627 (-381 (-521))) |#1|)) (-15 -1524 ((-587 (-2 (|:| |outval| |#1|) (|:| |outmult| (-521)) (|:| |outvect| (-587 (-627 |#1|))))) (-627 (-381 (-521))) |#1|))) (-13 (-337) (-782))) (T -715))
+((-1524 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-381 (-521)))) (-5 *2 (-587 (-2 (|:| |outval| *4) (|:| |outmult| (-521)) (|:| |outvect| (-587 (-627 *4)))))) (-5 *1 (-715 *4)) (-4 *4 (-13 (-337) (-782))))) (-2485 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-381 (-521)))) (-5 *2 (-587 *4)) (-5 *1 (-715 *4)) (-4 *4 (-13 (-337) (-782))))) (-3110 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-381 (-521)))) (-5 *4 (-1084)) (-5 *2 (-881 (-381 (-521)))) (-5 *1 (-715 *5)) (-4 *5 (-13 (-337) (-782))))) (-3110 (*1 *2 *3) (-12 (-5 *3 (-627 (-381 (-521)))) (-5 *2 (-881 (-381 (-521)))) (-5 *1 (-715 *4)) (-4 *4 (-13 (-337) (-782))))))
+(-10 -7 (-15 -3110 ((-881 (-381 (-521))) (-627 (-381 (-521))))) (-15 -3110 ((-881 (-381 (-521))) (-627 (-381 (-521))) (-1084))) (-15 -2485 ((-587 |#1|) (-627 (-381 (-521))) |#1|)) (-15 -1524 ((-587 (-2 (|:| |outval| |#1|) (|:| |outmult| (-521)) (|:| |outvect| (-587 (-627 |#1|))))) (-627 (-381 (-521))) |#1|)))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) 34)) (-4084 (((-587 |#2|) $) NIL)) (-1280 (((-1080 $) $ |#2|) NIL) (((-1080 |#1|) $) NIL)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) NIL (|has| |#1| (-513)))) (-2559 (($ $) NIL (|has| |#1| (-513)))) (-1733 (((-108) $) NIL (|has| |#1| (-513)))) (-2256 (((-707) $) NIL) (((-707) $ (-587 |#2|)) NIL)) (-3830 (($ $) 28)) (-3514 (((-108) $ $) NIL)) (-1232 (((-3 $ "failed") $ $) NIL)) (-3570 (($ $ $) 93 (|has| |#1| (-513)))) (-1950 (((-587 $) $ $) 106 (|has| |#1| (-513)))) (-2598 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#1| (-838)))) (-3063 (($ $) NIL (|has| |#1| (-425)))) (-3358 (((-392 $) $) NIL (|has| |#1| (-425)))) (-2569 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) NIL (|has| |#1| (-838)))) (-2547 (($) NIL T CONST)) (-1297 (((-3 |#1| "failed") $) NIL) (((-3 (-381 (-521)) "failed") $) NIL (|has| |#1| (-961 (-381 (-521))))) (((-3 (-521) "failed") $) NIL (|has| |#1| (-961 (-521)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-881 (-381 (-521)))) NIL (-12 (|has| |#1| (-37 (-381 (-521)))) (|has| |#2| (-562 (-1084))))) (((-3 $ "failed") (-881 (-521))) NIL (-3703 (-12 (|has| |#1| (-37 (-521))) (|has| |#2| (-562 (-1084))) (-2400 (|has| |#1| (-37 (-381 (-521)))))) (-12 (|has| |#1| (-37 (-381 (-521)))) (|has| |#2| (-562 (-1084)))))) (((-3 $ "failed") (-881 |#1|)) NIL (-3703 (-12 (|has| |#2| (-562 (-1084))) (-2400 (|has| |#1| (-37 (-381 (-521))))) (-2400 (|has| |#1| (-37 (-521))))) (-12 (|has| |#1| (-37 (-521))) (|has| |#2| (-562 (-1084))) (-2400 (|has| |#1| (-37 (-381 (-521))))) (-2400 (|has| |#1| (-506)))) (-12 (|has| |#1| (-37 (-381 (-521)))) (|has| |#2| (-562 (-1084))) (-2400 (|has| |#1| (-918 (-521))))))) (((-3 (-1036 |#1| |#2|) "failed") $) 18)) (-1483 ((|#1| $) NIL) (((-381 (-521)) $) NIL (|has| |#1| (-961 (-381 (-521))))) (((-521) $) NIL (|has| |#1| (-961 (-521)))) ((|#2| $) NIL) (($ (-881 (-381 (-521)))) NIL (-12 (|has| |#1| (-37 (-381 (-521)))) (|has| |#2| (-562 (-1084))))) (($ (-881 (-521))) NIL (-3703 (-12 (|has| |#1| (-37 (-521))) (|has| |#2| (-562 (-1084))) (-2400 (|has| |#1| (-37 (-381 (-521)))))) (-12 (|has| |#1| (-37 (-381 (-521)))) (|has| |#2| (-562 (-1084)))))) (($ (-881 |#1|)) NIL (-3703 (-12 (|has| |#2| (-562 (-1084))) (-2400 (|has| |#1| (-37 (-381 (-521))))) (-2400 (|has| |#1| (-37 (-521))))) (-12 (|has| |#1| (-37 (-521))) (|has| |#2| (-562 (-1084))) (-2400 (|has| |#1| (-37 (-381 (-521))))) (-2400 (|has| |#1| (-506)))) (-12 (|has| |#1| (-37 (-381 (-521)))) (|has| |#2| (-562 (-1084))) (-2400 (|has| |#1| (-918 (-521))))))) (((-1036 |#1| |#2|) $) NIL)) (-2114 (($ $ $ |#2|) NIL (|has| |#1| (-157))) (($ $ $) 104 (|has| |#1| (-513)))) (-3152 (($ $) NIL) (($ $ |#2|) NIL)) (-3279 (((-627 (-521)) (-627 $)) NIL (|has| |#1| (-583 (-521)))) (((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (|has| |#1| (-583 (-521)))) (((-2 (|:| -1201 (-627 |#1|)) (|:| |vec| (-1165 |#1|))) (-627 $) (-1165 $)) NIL) (((-627 |#1|) (-627 $)) NIL)) (-3156 (((-108) $ $) NIL) (((-108) $ (-587 $)) NIL)) (-1257 (((-3 $ "failed") $) NIL)) (-2798 (((-108) $) NIL)) (-2225 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) 70)) (-1880 (($ $) 119 (|has| |#1| (-425)))) (-3666 (($ $) NIL (|has| |#1| (-425))) (($ $ |#2|) NIL (|has| |#1| (-425)))) (-3144 (((-587 $) $) NIL)) (-2710 (((-108) $) NIL (|has| |#1| (-838)))) (-4156 (($ $) NIL (|has| |#1| (-513)))) (-1976 (($ $) NIL (|has| |#1| (-513)))) (-3416 (($ $ $) 65) (($ $ $ |#2|) NIL)) (-2197 (($ $ $) 68) (($ $ $ |#2|) NIL)) (-3528 (($ $ |#1| (-493 |#2|) $) NIL)) (-3427 (((-818 (-353) $) $ (-821 (-353)) (-818 (-353) $)) NIL (-12 (|has| |#1| (-815 (-353))) (|has| |#2| (-815 (-353))))) (((-818 (-521) $) $ (-821 (-521)) (-818 (-521) $)) NIL (-12 (|has| |#1| (-815 (-521))) (|has| |#2| (-815 (-521)))))) (-3996 (((-108) $) NIL)) (-2678 (((-707) $) NIL)) (-3266 (((-108) $ $) NIL) (((-108) $ (-587 $)) NIL)) (-1710 (($ $ $ $ $) 90 (|has| |#1| (-513)))) (-3464 ((|#2| $) 19)) (-4069 (($ (-1080 |#1|) |#2|) NIL) (($ (-1080 $) |#2|) NIL)) (-2959 (((-587 $) $) NIL)) (-3649 (((-108) $) NIL)) (-4043 (($ |#1| (-493 |#2|)) NIL) (($ $ |#2| (-707)) 36) (($ $ (-587 |#2|) (-587 (-707))) NIL)) (-3248 (($ $ $) 60)) (-1450 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $ |#2|) NIL)) (-1205 (((-108) $) NIL)) (-3273 (((-493 |#2|) $) NIL) (((-707) $ |#2|) NIL) (((-587 (-707)) $ (-587 |#2|)) NIL)) (-2810 (($ $ $) NIL (|has| |#1| (-784)))) (-2863 (((-707) $) 20)) (-2446 (($ $ $) NIL (|has| |#1| (-784)))) (-3285 (($ (-1 (-493 |#2|) (-493 |#2|)) $) NIL)) (-1390 (($ (-1 |#1| |#1|) $) NIL)) (-2477 (((-3 |#2| "failed") $) NIL)) (-2473 (($ $) NIL (|has| |#1| (-425)))) (-3975 (($ $) NIL (|has| |#1| (-425)))) (-1577 (((-587 $) $) NIL)) (-1696 (($ $) 37)) (-2874 (($ $) NIL (|has| |#1| (-425)))) (-1244 (((-587 $) $) 41)) (-2626 (($ $) 39)) (-3125 (($ $) NIL)) (-3135 ((|#1| $) NIL) (($ $ |#2|) 45)) (-2223 (($ (-587 $)) NIL (|has| |#1| (-425))) (($ $ $) NIL (|has| |#1| (-425)))) (-1812 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3745 (-707))) $ $) 82)) (-2389 (((-2 (|:| -2973 $) (|:| |gap| (-707)) (|:| -3727 $) (|:| -3820 $)) $ $) 67) (((-2 (|:| -2973 $) (|:| |gap| (-707)) (|:| -3727 $) (|:| -3820 $)) $ $ |#2|) NIL)) (-4177 (((-2 (|:| -2973 $) (|:| |gap| (-707)) (|:| -3820 $)) $ $) NIL) (((-2 (|:| -2973 $) (|:| |gap| (-707)) (|:| -3820 $)) $ $ |#2|) NIL)) (-2581 (($ $ $) 72) (($ $ $ |#2|) NIL)) (-2012 (($ $ $) 75) (($ $ $ |#2|) NIL)) (-3688 (((-1067) $) NIL)) (-2031 (($ $ $) 108 (|has| |#1| (-513)))) (-1358 (((-587 $) $) 30)) (-1617 (((-3 (-587 $) "failed") $) NIL)) (-3177 (((-3 (-587 $) "failed") $) NIL)) (-3979 (((-3 (-2 (|:| |var| |#2|) (|:| -2997 (-707))) "failed") $) NIL)) (-3786 (((-108) $ $) NIL) (((-108) $ (-587 $)) NIL)) (-1347 (($ $ $) NIL)) (-3797 (($ $) 21)) (-2146 (((-108) $ $) NIL)) (-1972 (((-108) $ $) NIL) (((-108) $ (-587 $)) NIL)) (-4065 (($ $ $) NIL)) (-3236 (($ $) 23)) (-4147 (((-1031) $) NIL)) (-3737 (((-2 (|:| -2258 $) (|:| |coef2| $)) $ $) 99 (|has| |#1| (-513)))) (-3225 (((-2 (|:| -2258 $) (|:| |coef1| $)) $ $) 96 (|has| |#1| (-513)))) (-3105 (((-108) $) 52)) (-3115 ((|#1| $) 55)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) NIL (|has| |#1| (-425)))) (-2258 ((|#1| |#1| $) 116 (|has| |#1| (-425))) (($ (-587 $)) NIL (|has| |#1| (-425))) (($ $ $) NIL (|has| |#1| (-425)))) (-1912 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#1| (-838)))) (-2165 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#1| (-838)))) (-1916 (((-392 $) $) NIL (|has| |#1| (-838)))) (-3270 (((-2 (|:| -2258 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 102 (|has| |#1| (-513)))) (-2230 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-513))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-513)))) (-3455 (($ $ |#1|) 112 (|has| |#1| (-513))) (($ $ $) NIL (|has| |#1| (-513)))) (-2187 (($ $ |#1|) 111 (|has| |#1| (-513))) (($ $ $) NIL (|has| |#1| (-513)))) (-2288 (($ $ (-587 (-269 $))) NIL) (($ $ (-269 $)) NIL) (($ $ $ $) NIL) (($ $ (-587 $) (-587 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-587 |#2|) (-587 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-587 |#2|) (-587 $)) NIL)) (-4010 (($ $ |#2|) NIL (|has| |#1| (-157)))) (-2156 (($ $ |#2|) NIL) (($ $ (-587 |#2|)) NIL) (($ $ |#2| (-707)) NIL) (($ $ (-587 |#2|) (-587 (-707))) NIL)) (-1994 (((-493 |#2|) $) NIL) (((-707) $ |#2|) 43) (((-587 (-707)) $ (-587 |#2|)) NIL)) (-2970 (($ $) NIL)) (-2355 (($ $) 33)) (-1430 (((-821 (-353)) $) NIL (-12 (|has| |#1| (-562 (-821 (-353)))) (|has| |#2| (-562 (-821 (-353)))))) (((-821 (-521)) $) NIL (-12 (|has| |#1| (-562 (-821 (-521)))) (|has| |#2| (-562 (-821 (-521)))))) (((-497) $) NIL (-12 (|has| |#1| (-562 (-497))) (|has| |#2| (-562 (-497))))) (($ (-881 (-381 (-521)))) NIL (-12 (|has| |#1| (-37 (-381 (-521)))) (|has| |#2| (-562 (-1084))))) (($ (-881 (-521))) NIL (-3703 (-12 (|has| |#1| (-37 (-521))) (|has| |#2| (-562 (-1084))) (-2400 (|has| |#1| (-37 (-381 (-521)))))) (-12 (|has| |#1| (-37 (-381 (-521)))) (|has| |#2| (-562 (-1084)))))) (($ (-881 |#1|)) NIL (|has| |#2| (-562 (-1084)))) (((-1067) $) NIL (-12 (|has| |#1| (-961 (-521))) (|has| |#2| (-562 (-1084))))) (((-881 |#1|) $) NIL (|has| |#2| (-562 (-1084))))) (-2403 ((|#1| $) 115 (|has| |#1| (-425))) (($ $ |#2|) NIL (|has| |#1| (-425)))) (-2944 (((-3 (-1165 $) "failed") (-627 $)) NIL (-12 (|has| $ (-133)) (|has| |#1| (-838))))) (-2189 (((-792) $) NIL) (($ (-521)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-881 |#1|) $) NIL (|has| |#2| (-562 (-1084)))) (((-1036 |#1| |#2|) $) 15) (($ (-1036 |#1| |#2|)) 16) (($ (-381 (-521))) NIL (-3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-961 (-381 (-521)))))) (($ $) NIL (|has| |#1| (-513)))) (-1259 (((-587 |#1|) $) NIL)) (-3800 ((|#1| $ (-493 |#2|)) NIL) (($ $ |#2| (-707)) 44) (($ $ (-587 |#2|) (-587 (-707))) NIL)) (-1671 (((-3 $ "failed") $) NIL (-3703 (-12 (|has| $ (-133)) (|has| |#1| (-838))) (|has| |#1| (-133))))) (-3846 (((-707)) NIL)) (-1547 (($ $ $ (-707)) NIL (|has| |#1| (-157)))) (-4210 (((-108) $ $) NIL (|has| |#1| (-513)))) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (-3561 (($) 13 T CONST)) (-2724 (((-3 (-108) "failed") $ $) NIL)) (-3572 (($) 35 T CONST)) (-4145 (($ $ $ $ (-707)) 88 (|has| |#1| (-513)))) (-1408 (($ $ $ (-707)) 87 (|has| |#1| (-513)))) (-2212 (($ $ |#2|) NIL) (($ $ (-587 |#2|)) NIL) (($ $ |#2| (-707)) NIL) (($ $ (-587 |#2|) (-587 (-707))) NIL)) (-1574 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1558 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1531 (((-108) $ $) 54)) (-1566 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1549 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1620 (($ $ |#1|) NIL (|has| |#1| (-337)))) (-1612 (($ $) NIL) (($ $ $) 64)) (-1602 (($ $ $) 74)) (** (($ $ (-850)) NIL) (($ $ (-707)) 61)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) 59) (($ $ (-381 (-521))) NIL (|has| |#1| (-37 (-381 (-521))))) (($ (-381 (-521)) $) NIL (|has| |#1| (-37 (-381 (-521))))) (($ |#1| $) 58) (($ $ |#1|) NIL)))
+(((-716 |#1| |#2|) (-13 (-984 |#1| (-493 |#2|) |#2|) (-561 (-1036 |#1| |#2|)) (-961 (-1036 |#1| |#2|))) (-970) (-784)) (T -716))
+NIL
+(-13 (-984 |#1| (-493 |#2|) |#2|) (-561 (-1036 |#1| |#2|)) (-961 (-1036 |#1| |#2|)))
+((-1390 (((-718 |#2|) (-1 |#2| |#1|) (-718 |#1|)) 13)))
+(((-717 |#1| |#2|) (-10 -7 (-15 -1390 ((-718 |#2|) (-1 |#2| |#1|) (-718 |#1|)))) (-970) (-970)) (T -717))
+((-1390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-718 *5)) (-4 *5 (-970)) (-4 *6 (-970)) (-5 *2 (-718 *6)) (-5 *1 (-717 *5 *6)))))
+(-10 -7 (-15 -1390 ((-718 |#2|) (-1 |#2| |#1|) (-718 |#1|))))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) 12)) (-2141 (((-1165 |#1|) $ (-707)) NIL)) (-4084 (((-587 (-998)) $) NIL)) (-4087 (($ (-1080 |#1|)) NIL)) (-1280 (((-1080 $) $ (-998)) NIL) (((-1080 |#1|) $) NIL)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) NIL (|has| |#1| (-513)))) (-2559 (($ $) NIL (|has| |#1| (-513)))) (-1733 (((-108) $) NIL (|has| |#1| (-513)))) (-2256 (((-707) $) NIL) (((-707) $ (-587 (-998))) NIL)) (-1232 (((-3 $ "failed") $ $) NIL)) (-3429 (((-587 $) $ $) 39 (|has| |#1| (-513)))) (-3570 (($ $ $) 35 (|has| |#1| (-513)))) (-2598 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#1| (-838)))) (-3063 (($ $) NIL (|has| |#1| (-425)))) (-3358 (((-392 $) $) NIL (|has| |#1| (-425)))) (-2569 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) NIL (|has| |#1| (-838)))) (-1389 (((-108) $ $) NIL (|has| |#1| (-337)))) (-2451 (($ $ (-707)) NIL)) (-2962 (($ $ (-707)) NIL)) (-2067 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-425)))) (-2547 (($) NIL T CONST)) (-1297 (((-3 |#1| "failed") $) NIL) (((-3 (-381 (-521)) "failed") $) NIL (|has| |#1| (-961 (-381 (-521))))) (((-3 (-521) "failed") $) NIL (|has| |#1| (-961 (-521)))) (((-3 (-998) "failed") $) NIL) (((-3 (-1080 |#1|) "failed") $) 10)) (-1483 ((|#1| $) NIL) (((-381 (-521)) $) NIL (|has| |#1| (-961 (-381 (-521))))) (((-521) $) NIL (|has| |#1| (-961 (-521)))) (((-998) $) NIL) (((-1080 |#1|) $) NIL)) (-2114 (($ $ $ (-998)) NIL (|has| |#1| (-157))) ((|#1| $ $) 43 (|has| |#1| (-157)))) (-2277 (($ $ $) NIL (|has| |#1| (-337)))) (-3152 (($ $) NIL)) (-3279 (((-627 (-521)) (-627 $)) NIL (|has| |#1| (-583 (-521)))) (((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (|has| |#1| (-583 (-521)))) (((-2 (|:| -1201 (-627 |#1|)) (|:| |vec| (-1165 |#1|))) (-627 $) (-1165 $)) NIL) (((-627 |#1|) (-627 $)) NIL)) (-1257 (((-3 $ "failed") $) NIL)) (-2253 (($ $ $) NIL (|has| |#1| (-337)))) (-1553 (($ $ $) NIL)) (-3678 (($ $ $) 71 (|has| |#1| (-513)))) (-2225 (((-2 (|:| -2973 |#1|) (|:| -3727 $) (|:| -3820 $)) $ $) 70 (|has| |#1| (-513)))) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) NIL (|has| |#1| (-337)))) (-3666 (($ $) NIL (|has| |#1| (-425))) (($ $ (-998)) NIL (|has| |#1| (-425)))) (-3144 (((-587 $) $) NIL)) (-2710 (((-108) $) NIL (|has| |#1| (-838)))) (-3528 (($ $ |#1| (-707) $) NIL)) (-3427 (((-818 (-353) $) $ (-821 (-353)) (-818 (-353) $)) NIL (-12 (|has| (-998) (-815 (-353))) (|has| |#1| (-815 (-353))))) (((-818 (-521) $) $ (-821 (-521)) (-818 (-521) $)) NIL (-12 (|has| (-998) (-815 (-521))) (|has| |#1| (-815 (-521)))))) (-2733 (((-707) $ $) NIL (|has| |#1| (-513)))) (-3996 (((-108) $) NIL)) (-2678 (((-707) $) NIL)) (-3842 (((-3 $ "failed") $) NIL (|has| |#1| (-1060)))) (-4069 (($ (-1080 |#1|) (-998)) NIL) (($ (-1080 $) (-998)) NIL)) (-1993 (($ $ (-707)) NIL)) (-1546 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| |#1| (-337)))) (-2959 (((-587 $) $) NIL)) (-3649 (((-108) $) NIL)) (-4043 (($ |#1| (-707)) NIL) (($ $ (-998) (-707)) NIL) (($ $ (-587 (-998)) (-587 (-707))) NIL)) (-3248 (($ $ $) 20)) (-1450 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $ (-998)) NIL) (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) NIL)) (-3273 (((-707) $) NIL) (((-707) $ (-998)) NIL) (((-587 (-707)) $ (-587 (-998))) NIL)) (-2810 (($ $ $) NIL (|has| |#1| (-784)))) (-2446 (($ $ $) NIL (|has| |#1| (-784)))) (-3285 (($ (-1 (-707) (-707)) $) NIL)) (-1390 (($ (-1 |#1| |#1|) $) NIL)) (-1285 (((-1080 |#1|) $) NIL)) (-2477 (((-3 (-998) "failed") $) NIL)) (-3125 (($ $) NIL)) (-3135 ((|#1| $) NIL)) (-2223 (($ (-587 $)) NIL (|has| |#1| (-425))) (($ $ $) NIL (|has| |#1| (-425)))) (-1812 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3745 (-707))) $ $) 26)) (-3943 (($ $ $) 29)) (-2366 (($ $ $) 32)) (-2389 (((-2 (|:| -2973 |#1|) (|:| |gap| (-707)) (|:| -3727 $) (|:| -3820 $)) $ $) 31)) (-3688 (((-1067) $) NIL)) (-2031 (($ $ $) 41 (|has| |#1| (-513)))) (-1328 (((-2 (|:| -3727 $) (|:| -3820 $)) $ (-707)) NIL)) (-1617 (((-3 (-587 $) "failed") $) NIL)) (-3177 (((-3 (-587 $) "failed") $) NIL)) (-3979 (((-3 (-2 (|:| |var| (-998)) (|:| -2997 (-707))) "failed") $) NIL)) (-2184 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3797 (($) NIL (|has| |#1| (-1060)) CONST)) (-4147 (((-1031) $) NIL)) (-3737 (((-2 (|:| -2258 $) (|:| |coef2| $)) $ $) 67 (|has| |#1| (-513)))) (-3225 (((-2 (|:| -2258 $) (|:| |coef1| $)) $ $) 63 (|has| |#1| (-513)))) (-1418 (((-2 (|:| -2114 |#1|) (|:| |coef2| $)) $ $) 55 (|has| |#1| (-513)))) (-4008 (((-2 (|:| -2114 |#1|) (|:| |coef1| $)) $ $) 51 (|has| |#1| (-513)))) (-3105 (((-108) $) 13)) (-3115 ((|#1| $) NIL)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) NIL (|has| |#1| (-425)))) (-2258 (($ (-587 $)) NIL (|has| |#1| (-425))) (($ $ $) NIL (|has| |#1| (-425)))) (-3590 (($ $ (-707) |#1| $) 19)) (-1912 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#1| (-838)))) (-2165 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#1| (-838)))) (-1916 (((-392 $) $) NIL (|has| |#1| (-838)))) (-3270 (((-2 (|:| -2258 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 59 (|has| |#1| (-513)))) (-2429 (((-2 (|:| -2114 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 47 (|has| |#1| (-513)))) (-1962 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-337))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL (|has| |#1| (-337)))) (-2230 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-513))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-513)))) (-3854 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| |#1| (-337)))) (-2288 (($ $ (-587 (-269 $))) NIL) (($ $ (-269 $)) NIL) (($ $ $ $) NIL) (($ $ (-587 $) (-587 $)) NIL) (($ $ (-998) |#1|) NIL) (($ $ (-587 (-998)) (-587 |#1|)) NIL) (($ $ (-998) $) NIL) (($ $ (-587 (-998)) (-587 $)) NIL)) (-4196 (((-707) $) NIL (|has| |#1| (-337)))) (-2544 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-381 $) (-381 $) (-381 $)) NIL (|has| |#1| (-513))) ((|#1| (-381 $) |#1|) NIL (|has| |#1| (-337))) (((-381 $) $ (-381 $)) NIL (|has| |#1| (-513)))) (-2182 (((-3 $ "failed") $ (-707)) NIL)) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) NIL (|has| |#1| (-337)))) (-4010 (($ $ (-998)) NIL (|has| |#1| (-157))) ((|#1| $) NIL (|has| |#1| (-157)))) (-2156 (($ $ (-998)) NIL) (($ $ (-587 (-998))) NIL) (($ $ (-998) (-707)) NIL) (($ $ (-587 (-998)) (-587 (-707))) NIL) (($ $ (-707)) NIL) (($ $) NIL) (($ $ (-1084)) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-1 |#1| |#1|) (-707)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-1994 (((-707) $) NIL) (((-707) $ (-998)) NIL) (((-587 (-707)) $ (-587 (-998))) NIL)) (-1430 (((-821 (-353)) $) NIL (-12 (|has| (-998) (-562 (-821 (-353)))) (|has| |#1| (-562 (-821 (-353)))))) (((-821 (-521)) $) NIL (-12 (|has| (-998) (-562 (-821 (-521)))) (|has| |#1| (-562 (-821 (-521)))))) (((-497) $) NIL (-12 (|has| (-998) (-562 (-497))) (|has| |#1| (-562 (-497)))))) (-2403 ((|#1| $) NIL (|has| |#1| (-425))) (($ $ (-998)) NIL (|has| |#1| (-425)))) (-2944 (((-3 (-1165 $) "failed") (-627 $)) NIL (-12 (|has| $ (-133)) (|has| |#1| (-838))))) (-1378 (((-3 $ "failed") $ $) NIL (|has| |#1| (-513))) (((-3 (-381 $) "failed") (-381 $) $) NIL (|has| |#1| (-513)))) (-2189 (((-792) $) NIL) (($ (-521)) NIL) (($ |#1|) NIL) (($ (-998)) NIL) (((-1080 |#1|) $) 7) (($ (-1080 |#1|)) 8) (($ (-381 (-521))) NIL (-3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-961 (-381 (-521)))))) (($ $) NIL (|has| |#1| (-513)))) (-1259 (((-587 |#1|) $) NIL)) (-3800 ((|#1| $ (-707)) NIL) (($ $ (-998) (-707)) NIL) (($ $ (-587 (-998)) (-587 (-707))) NIL)) (-1671 (((-3 $ "failed") $) NIL (-3703 (-12 (|has| $ (-133)) (|has| |#1| (-838))) (|has| |#1| (-133))))) (-3846 (((-707)) NIL)) (-1547 (($ $ $ (-707)) NIL (|has| |#1| (-157)))) (-4210 (((-108) $ $) NIL (|has| |#1| (-513)))) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (-3561 (($) 21 T CONST)) (-3572 (($) 24 T CONST)) (-2212 (($ $ (-998)) NIL) (($ $ (-587 (-998))) NIL) (($ $ (-998) (-707)) NIL) (($ $ (-587 (-998)) (-587 (-707))) NIL) (($ $ (-707)) NIL) (($ $) NIL) (($ $ (-1084)) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-1 |#1| |#1|) (-707)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1574 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1558 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1549 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1620 (($ $ |#1|) NIL (|has| |#1| (-337)))) (-1612 (($ $) 28) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ (-381 (-521))) NIL (|has| |#1| (-37 (-381 (-521))))) (($ (-381 (-521)) $) NIL (|has| |#1| (-37 (-381 (-521))))) (($ |#1| $) 23) (($ $ |#1|) NIL)))
+(((-718 |#1|) (-13 (-1141 |#1|) (-561 (-1080 |#1|)) (-961 (-1080 |#1|)) (-10 -8 (-15 -3590 ($ $ (-707) |#1| $)) (-15 -3248 ($ $ $)) (-15 -1812 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3745 (-707))) $ $)) (-15 -3943 ($ $ $)) (-15 -2389 ((-2 (|:| -2973 |#1|) (|:| |gap| (-707)) (|:| -3727 $) (|:| -3820 $)) $ $)) (-15 -2366 ($ $ $)) (IF (|has| |#1| (-513)) (PROGN (-15 -3429 ((-587 $) $ $)) (-15 -2031 ($ $ $)) (-15 -3270 ((-2 (|:| -2258 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3225 ((-2 (|:| -2258 $) (|:| |coef1| $)) $ $)) (-15 -3737 ((-2 (|:| -2258 $) (|:| |coef2| $)) $ $)) (-15 -2429 ((-2 (|:| -2114 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -4008 ((-2 (|:| -2114 |#1|) (|:| |coef1| $)) $ $)) (-15 -1418 ((-2 (|:| -2114 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-970)) (T -718))
+((-3590 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-707)) (-5 *1 (-718 *3)) (-4 *3 (-970)))) (-3248 (*1 *1 *1 *1) (-12 (-5 *1 (-718 *2)) (-4 *2 (-970)))) (-1812 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-718 *3)) (|:| |polden| *3) (|:| -3745 (-707)))) (-5 *1 (-718 *3)) (-4 *3 (-970)))) (-3943 (*1 *1 *1 *1) (-12 (-5 *1 (-718 *2)) (-4 *2 (-970)))) (-2389 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2973 *3) (|:| |gap| (-707)) (|:| -3727 (-718 *3)) (|:| -3820 (-718 *3)))) (-5 *1 (-718 *3)) (-4 *3 (-970)))) (-2366 (*1 *1 *1 *1) (-12 (-5 *1 (-718 *2)) (-4 *2 (-970)))) (-3429 (*1 *2 *1 *1) (-12 (-5 *2 (-587 (-718 *3))) (-5 *1 (-718 *3)) (-4 *3 (-513)) (-4 *3 (-970)))) (-2031 (*1 *1 *1 *1) (-12 (-5 *1 (-718 *2)) (-4 *2 (-513)) (-4 *2 (-970)))) (-3270 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2258 (-718 *3)) (|:| |coef1| (-718 *3)) (|:| |coef2| (-718 *3)))) (-5 *1 (-718 *3)) (-4 *3 (-513)) (-4 *3 (-970)))) (-3225 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2258 (-718 *3)) (|:| |coef1| (-718 *3)))) (-5 *1 (-718 *3)) (-4 *3 (-513)) (-4 *3 (-970)))) (-3737 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2258 (-718 *3)) (|:| |coef2| (-718 *3)))) (-5 *1 (-718 *3)) (-4 *3 (-513)) (-4 *3 (-970)))) (-2429 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2114 *3) (|:| |coef1| (-718 *3)) (|:| |coef2| (-718 *3)))) (-5 *1 (-718 *3)) (-4 *3 (-513)) (-4 *3 (-970)))) (-4008 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2114 *3) (|:| |coef1| (-718 *3)))) (-5 *1 (-718 *3)) (-4 *3 (-513)) (-4 *3 (-970)))) (-1418 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2114 *3) (|:| |coef2| (-718 *3)))) (-5 *1 (-718 *3)) (-4 *3 (-513)) (-4 *3 (-970)))))
+(-13 (-1141 |#1|) (-561 (-1080 |#1|)) (-961 (-1080 |#1|)) (-10 -8 (-15 -3590 ($ $ (-707) |#1| $)) (-15 -3248 ($ $ $)) (-15 -1812 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3745 (-707))) $ $)) (-15 -3943 ($ $ $)) (-15 -2389 ((-2 (|:| -2973 |#1|) (|:| |gap| (-707)) (|:| -3727 $) (|:| -3820 $)) $ $)) (-15 -2366 ($ $ $)) (IF (|has| |#1| (-513)) (PROGN (-15 -3429 ((-587 $) $ $)) (-15 -2031 ($ $ $)) (-15 -3270 ((-2 (|:| -2258 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3225 ((-2 (|:| -2258 $) (|:| |coef1| $)) $ $)) (-15 -3737 ((-2 (|:| -2258 $) (|:| |coef2| $)) $ $)) (-15 -2429 ((-2 (|:| -2114 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -4008 ((-2 (|:| -2114 |#1|) (|:| |coef1| $)) $ $)) (-15 -1418 ((-2 (|:| -2114 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|)))
+((-2335 ((|#1| (-707) |#1|) 33 (|has| |#1| (-37 (-381 (-521)))))) (-2557 ((|#1| (-707) |#1|) 23)) (-2646 ((|#1| (-707) |#1|) 35 (|has| |#1| (-37 (-381 (-521)))))))
+(((-719 |#1|) (-10 -7 (-15 -2557 (|#1| (-707) |#1|)) (IF (|has| |#1| (-37 (-381 (-521)))) (PROGN (-15 -2646 (|#1| (-707) |#1|)) (-15 -2335 (|#1| (-707) |#1|))) |%noBranch|)) (-157)) (T -719))
+((-2335 (*1 *2 *3 *2) (-12 (-5 *3 (-707)) (-5 *1 (-719 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-157)))) (-2646 (*1 *2 *3 *2) (-12 (-5 *3 (-707)) (-5 *1 (-719 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-157)))) (-2557 (*1 *2 *3 *2) (-12 (-5 *3 (-707)) (-5 *1 (-719 *2)) (-4 *2 (-157)))))
+(-10 -7 (-15 -2557 (|#1| (-707) |#1|)) (IF (|has| |#1| (-37 (-381 (-521)))) (PROGN (-15 -2646 (|#1| (-707) |#1|)) (-15 -2335 (|#1| (-707) |#1|))) |%noBranch|))
+((-1415 (((-108) $ $) 7)) (-2113 (((-587 (-2 (|:| -1650 $) (|:| -1544 (-587 |#4|)))) (-587 |#4|)) 85)) (-1906 (((-587 $) (-587 |#4|)) 86) (((-587 $) (-587 |#4|) (-108)) 111)) (-4084 (((-587 |#3|) $) 33)) (-3898 (((-108) $) 26)) (-2466 (((-108) $) 17 (|has| |#1| (-513)))) (-3199 (((-108) |#4| $) 101) (((-108) $) 97)) (-2015 ((|#4| |#4| $) 92)) (-3063 (((-587 (-2 (|:| |val| |#4|) (|:| -1884 $))) |#4| $) 126)) (-3211 (((-2 (|:| |under| $) (|:| -2567 $) (|:| |upper| $)) $ |#3|) 27)) (-2978 (((-108) $ (-707)) 44)) (-1628 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4233))) (((-3 |#4| "failed") $ |#3|) 79)) (-2547 (($) 45 T CONST)) (-3035 (((-108) $) 22 (|has| |#1| (-513)))) (-3091 (((-108) $ $) 24 (|has| |#1| (-513)))) (-3882 (((-108) $ $) 23 (|has| |#1| (-513)))) (-3237 (((-108) $) 25 (|has| |#1| (-513)))) (-2990 (((-587 |#4|) (-587 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 93)) (-3799 (((-587 |#4|) (-587 |#4|) $) 18 (|has| |#1| (-513)))) (-4183 (((-587 |#4|) (-587 |#4|) $) 19 (|has| |#1| (-513)))) (-1297 (((-3 $ "failed") (-587 |#4|)) 36)) (-1483 (($ (-587 |#4|)) 35)) (-2306 (((-3 $ "failed") $) 82)) (-1761 ((|#4| |#4| $) 89)) (-2332 (($ $) 68 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -4233))))) (-1422 (($ |#4| $) 67 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -4233)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4233)))) (-3820 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-513)))) (-3156 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) 102)) (-1970 ((|#4| |#4| $) 87)) (-3859 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -4233)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4233))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4233))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 94)) (-3726 (((-2 (|:| -1650 (-587 |#4|)) (|:| -1544 (-587 |#4|))) $) 105)) (-4124 (((-108) |#4| $) 136)) (-2628 (((-108) |#4| $) 133)) (-3263 (((-108) |#4| $) 137) (((-108) $) 134)) (-3831 (((-587 |#4|) $) 52 (|has| $ (-6 -4233)))) (-3266 (((-108) |#4| $) 104) (((-108) $) 103)) (-3464 ((|#3| $) 34)) (-2139 (((-108) $ (-707)) 43)) (-3757 (((-587 |#4|) $) 53 (|has| $ (-6 -4233)))) (-2221 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -4233))))) (-3833 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#4| |#4|) $) 47)) (-2820 (((-587 |#3|) $) 32)) (-2639 (((-108) |#3| $) 31)) (-3574 (((-108) $ (-707)) 42)) (-3688 (((-1067) $) 9)) (-1767 (((-3 |#4| (-587 $)) |#4| |#4| $) 128)) (-2031 (((-587 (-2 (|:| |val| |#4|) (|:| -1884 $))) |#4| |#4| $) 127)) (-1441 (((-3 |#4| "failed") $) 83)) (-3731 (((-587 $) |#4| $) 129)) (-4168 (((-3 (-108) (-587 $)) |#4| $) 132)) (-3395 (((-587 (-2 (|:| |val| (-108)) (|:| -1884 $))) |#4| $) 131) (((-108) |#4| $) 130)) (-1660 (((-587 $) |#4| $) 125) (((-587 $) (-587 |#4|) $) 124) (((-587 $) (-587 |#4|) (-587 $)) 123) (((-587 $) |#4| (-587 $)) 122)) (-3428 (($ |#4| $) 117) (($ (-587 |#4|) $) 116)) (-2323 (((-587 |#4|) $) 107)) (-3786 (((-108) |#4| $) 99) (((-108) $) 95)) (-1347 ((|#4| |#4| $) 90)) (-2146 (((-108) $ $) 110)) (-1341 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-513)))) (-1972 (((-108) |#4| $) 100) (((-108) $) 96)) (-4065 ((|#4| |#4| $) 91)) (-4147 (((-1031) $) 10)) (-2293 (((-3 |#4| "failed") $) 84)) (-3620 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-2001 (((-3 $ "failed") $ |#4|) 78)) (-2447 (($ $ |#4|) 77) (((-587 $) |#4| $) 115) (((-587 $) |#4| (-587 $)) 114) (((-587 $) (-587 |#4|) $) 113) (((-587 $) (-587 |#4|) (-587 $)) 112)) (-1789 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 |#4|) (-587 |#4|)) 59 (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013)))) (($ $ (-269 |#4|)) 57 (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013)))) (($ $ (-587 (-269 |#4|))) 56 (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013))))) (-2488 (((-108) $ $) 38)) (-3462 (((-108) $) 41)) (-4024 (($) 40)) (-1994 (((-707) $) 106)) (-4163 (((-707) |#4| $) 54 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -4233)))) (((-707) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4233)))) (-2404 (($ $) 39)) (-1430 (((-497) $) 69 (|has| |#4| (-562 (-497))))) (-2201 (($ (-587 |#4|)) 60)) (-3883 (($ $ |#3|) 28)) (-4029 (($ $ |#3|) 30)) (-3173 (($ $) 88)) (-3318 (($ $ |#3|) 29)) (-2189 (((-792) $) 11) (((-587 |#4|) $) 37)) (-3781 (((-707) $) 76 (|has| |#3| (-342)))) (-3234 (((-3 (-2 (|:| |bas| $) (|:| -1354 (-587 |#4|))) "failed") (-587 |#4|) (-1 (-108) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1354 (-587 |#4|))) "failed") (-587 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) 108)) (-3960 (((-108) $ (-1 (-108) |#4| (-587 |#4|))) 98)) (-1933 (((-587 $) |#4| $) 121) (((-587 $) |#4| (-587 $)) 120) (((-587 $) (-587 |#4|) $) 119) (((-587 $) (-587 |#4|) (-587 $)) 118)) (-3049 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4233)))) (-4099 (((-587 |#3|) $) 81)) (-4002 (((-108) |#4| $) 135)) (-2154 (((-108) |#3| $) 80)) (-1531 (((-108) $ $) 6)) (-3475 (((-707) $) 46 (|has| $ (-6 -4233)))))
+(((-720 |#1| |#2| |#3| |#4|) (-1196) (-425) (-729) (-784) (-984 |t#1| |t#2| |t#3|)) (T -720))
+NIL
+(-13 (-989 |t#1| |t#2| |t#3| |t#4|))
+(((-33) . T) ((-97) . T) ((-561 (-587 |#4|)) . T) ((-561 (-792)) . T) ((-139 |#4|) . T) ((-562 (-497)) |has| |#4| (-562 (-497))) ((-284 |#4|) -12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013))) ((-460 |#4|) . T) ((-482 |#4| |#4|) -12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013))) ((-902 |#1| |#2| |#3| |#4|) . T) ((-989 |#1| |#2| |#3| |#4|) . T) ((-1013) . T) ((-1113 |#1| |#2| |#3| |#4|) . T) ((-1119) . T))
+((-2155 (((-3 (-353) "failed") (-290 |#1|) (-850)) 60 (-12 (|has| |#1| (-513)) (|has| |#1| (-784)))) (((-3 (-353) "failed") (-290 |#1|)) 52 (-12 (|has| |#1| (-513)) (|has| |#1| (-784)))) (((-3 (-353) "failed") (-381 (-881 |#1|)) (-850)) 39 (|has| |#1| (-513))) (((-3 (-353) "failed") (-381 (-881 |#1|))) 35 (|has| |#1| (-513))) (((-3 (-353) "failed") (-881 |#1|) (-850)) 30 (|has| |#1| (-970))) (((-3 (-353) "failed") (-881 |#1|)) 24 (|has| |#1| (-970)))) (-2386 (((-353) (-290 |#1|) (-850)) 92 (-12 (|has| |#1| (-513)) (|has| |#1| (-784)))) (((-353) (-290 |#1|)) 87 (-12 (|has| |#1| (-513)) (|has| |#1| (-784)))) (((-353) (-381 (-881 |#1|)) (-850)) 84 (|has| |#1| (-513))) (((-353) (-381 (-881 |#1|))) 81 (|has| |#1| (-513))) (((-353) (-881 |#1|) (-850)) 80 (|has| |#1| (-970))) (((-353) (-881 |#1|)) 77 (|has| |#1| (-970))) (((-353) |#1| (-850)) 73) (((-353) |#1|) 22)) (-1874 (((-3 (-154 (-353)) "failed") (-290 (-154 |#1|)) (-850)) 68 (-12 (|has| |#1| (-513)) (|has| |#1| (-784)))) (((-3 (-154 (-353)) "failed") (-290 (-154 |#1|))) 58 (-12 (|has| |#1| (-513)) (|has| |#1| (-784)))) (((-3 (-154 (-353)) "failed") (-290 |#1|) (-850)) 61 (-12 (|has| |#1| (-513)) (|has| |#1| (-784)))) (((-3 (-154 (-353)) "failed") (-290 |#1|)) 59 (-12 (|has| |#1| (-513)) (|has| |#1| (-784)))) (((-3 (-154 (-353)) "failed") (-381 (-881 (-154 |#1|))) (-850)) 44 (|has| |#1| (-513))) (((-3 (-154 (-353)) "failed") (-381 (-881 (-154 |#1|)))) 43 (|has| |#1| (-513))) (((-3 (-154 (-353)) "failed") (-381 (-881 |#1|)) (-850)) 38 (|has| |#1| (-513))) (((-3 (-154 (-353)) "failed") (-381 (-881 |#1|))) 37 (|has| |#1| (-513))) (((-3 (-154 (-353)) "failed") (-881 |#1|) (-850)) 28 (|has| |#1| (-970))) (((-3 (-154 (-353)) "failed") (-881 |#1|)) 26 (|has| |#1| (-970))) (((-3 (-154 (-353)) "failed") (-881 (-154 |#1|)) (-850)) 17 (|has| |#1| (-157))) (((-3 (-154 (-353)) "failed") (-881 (-154 |#1|))) 14 (|has| |#1| (-157)))) (-1243 (((-154 (-353)) (-290 (-154 |#1|)) (-850)) 95 (-12 (|has| |#1| (-513)) (|has| |#1| (-784)))) (((-154 (-353)) (-290 (-154 |#1|))) 94 (-12 (|has| |#1| (-513)) (|has| |#1| (-784)))) (((-154 (-353)) (-290 |#1|) (-850)) 93 (-12 (|has| |#1| (-513)) (|has| |#1| (-784)))) (((-154 (-353)) (-290 |#1|)) 91 (-12 (|has| |#1| (-513)) (|has| |#1| (-784)))) (((-154 (-353)) (-381 (-881 (-154 |#1|))) (-850)) 86 (|has| |#1| (-513))) (((-154 (-353)) (-381 (-881 (-154 |#1|)))) 85 (|has| |#1| (-513))) (((-154 (-353)) (-381 (-881 |#1|)) (-850)) 83 (|has| |#1| (-513))) (((-154 (-353)) (-381 (-881 |#1|))) 82 (|has| |#1| (-513))) (((-154 (-353)) (-881 |#1|) (-850)) 79 (|has| |#1| (-970))) (((-154 (-353)) (-881 |#1|)) 78 (|has| |#1| (-970))) (((-154 (-353)) (-881 (-154 |#1|)) (-850)) 75 (|has| |#1| (-157))) (((-154 (-353)) (-881 (-154 |#1|))) 74 (|has| |#1| (-157))) (((-154 (-353)) (-154 |#1|) (-850)) 16 (|has| |#1| (-157))) (((-154 (-353)) (-154 |#1|)) 12 (|has| |#1| (-157))) (((-154 (-353)) |#1| (-850)) 27) (((-154 (-353)) |#1|) 25)))
+(((-721 |#1|) (-10 -7 (-15 -2386 ((-353) |#1|)) (-15 -2386 ((-353) |#1| (-850))) (-15 -1243 ((-154 (-353)) |#1|)) (-15 -1243 ((-154 (-353)) |#1| (-850))) (IF (|has| |#1| (-157)) (PROGN (-15 -1243 ((-154 (-353)) (-154 |#1|))) (-15 -1243 ((-154 (-353)) (-154 |#1|) (-850))) (-15 -1243 ((-154 (-353)) (-881 (-154 |#1|)))) (-15 -1243 ((-154 (-353)) (-881 (-154 |#1|)) (-850)))) |%noBranch|) (IF (|has| |#1| (-970)) (PROGN (-15 -2386 ((-353) (-881 |#1|))) (-15 -2386 ((-353) (-881 |#1|) (-850))) (-15 -1243 ((-154 (-353)) (-881 |#1|))) (-15 -1243 ((-154 (-353)) (-881 |#1|) (-850)))) |%noBranch|) (IF (|has| |#1| (-513)) (PROGN (-15 -2386 ((-353) (-381 (-881 |#1|)))) (-15 -2386 ((-353) (-381 (-881 |#1|)) (-850))) (-15 -1243 ((-154 (-353)) (-381 (-881 |#1|)))) (-15 -1243 ((-154 (-353)) (-381 (-881 |#1|)) (-850))) (-15 -1243 ((-154 (-353)) (-381 (-881 (-154 |#1|))))) (-15 -1243 ((-154 (-353)) (-381 (-881 (-154 |#1|))) (-850))) (IF (|has| |#1| (-784)) (PROGN (-15 -2386 ((-353) (-290 |#1|))) (-15 -2386 ((-353) (-290 |#1|) (-850))) (-15 -1243 ((-154 (-353)) (-290 |#1|))) (-15 -1243 ((-154 (-353)) (-290 |#1|) (-850))) (-15 -1243 ((-154 (-353)) (-290 (-154 |#1|)))) (-15 -1243 ((-154 (-353)) (-290 (-154 |#1|)) (-850)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-157)) (PROGN (-15 -1874 ((-3 (-154 (-353)) "failed") (-881 (-154 |#1|)))) (-15 -1874 ((-3 (-154 (-353)) "failed") (-881 (-154 |#1|)) (-850)))) |%noBranch|) (IF (|has| |#1| (-970)) (PROGN (-15 -2155 ((-3 (-353) "failed") (-881 |#1|))) (-15 -2155 ((-3 (-353) "failed") (-881 |#1|) (-850))) (-15 -1874 ((-3 (-154 (-353)) "failed") (-881 |#1|))) (-15 -1874 ((-3 (-154 (-353)) "failed") (-881 |#1|) (-850)))) |%noBranch|) (IF (|has| |#1| (-513)) (PROGN (-15 -2155 ((-3 (-353) "failed") (-381 (-881 |#1|)))) (-15 -2155 ((-3 (-353) "failed") (-381 (-881 |#1|)) (-850))) (-15 -1874 ((-3 (-154 (-353)) "failed") (-381 (-881 |#1|)))) (-15 -1874 ((-3 (-154 (-353)) "failed") (-381 (-881 |#1|)) (-850))) (-15 -1874 ((-3 (-154 (-353)) "failed") (-381 (-881 (-154 |#1|))))) (-15 -1874 ((-3 (-154 (-353)) "failed") (-381 (-881 (-154 |#1|))) (-850))) (IF (|has| |#1| (-784)) (PROGN (-15 -2155 ((-3 (-353) "failed") (-290 |#1|))) (-15 -2155 ((-3 (-353) "failed") (-290 |#1|) (-850))) (-15 -1874 ((-3 (-154 (-353)) "failed") (-290 |#1|))) (-15 -1874 ((-3 (-154 (-353)) "failed") (-290 |#1|) (-850))) (-15 -1874 ((-3 (-154 (-353)) "failed") (-290 (-154 |#1|)))) (-15 -1874 ((-3 (-154 (-353)) "failed") (-290 (-154 |#1|)) (-850)))) |%noBranch|)) |%noBranch|)) (-562 (-353))) (T -721))
+((-1874 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-290 (-154 *5))) (-5 *4 (-850)) (-4 *5 (-513)) (-4 *5 (-784)) (-4 *5 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *5)))) (-1874 (*1 *2 *3) (|partial| -12 (-5 *3 (-290 (-154 *4))) (-4 *4 (-513)) (-4 *4 (-784)) (-4 *4 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *4)))) (-1874 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-290 *5)) (-5 *4 (-850)) (-4 *5 (-513)) (-4 *5 (-784)) (-4 *5 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *5)))) (-1874 (*1 *2 *3) (|partial| -12 (-5 *3 (-290 *4)) (-4 *4 (-513)) (-4 *4 (-784)) (-4 *4 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *4)))) (-2155 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-290 *5)) (-5 *4 (-850)) (-4 *5 (-513)) (-4 *5 (-784)) (-4 *5 (-562 *2)) (-5 *2 (-353)) (-5 *1 (-721 *5)))) (-2155 (*1 *2 *3) (|partial| -12 (-5 *3 (-290 *4)) (-4 *4 (-513)) (-4 *4 (-784)) (-4 *4 (-562 *2)) (-5 *2 (-353)) (-5 *1 (-721 *4)))) (-1874 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-381 (-881 (-154 *5)))) (-5 *4 (-850)) (-4 *5 (-513)) (-4 *5 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *5)))) (-1874 (*1 *2 *3) (|partial| -12 (-5 *3 (-381 (-881 (-154 *4)))) (-4 *4 (-513)) (-4 *4 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *4)))) (-1874 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-381 (-881 *5))) (-5 *4 (-850)) (-4 *5 (-513)) (-4 *5 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *5)))) (-1874 (*1 *2 *3) (|partial| -12 (-5 *3 (-381 (-881 *4))) (-4 *4 (-513)) (-4 *4 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *4)))) (-2155 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-381 (-881 *5))) (-5 *4 (-850)) (-4 *5 (-513)) (-4 *5 (-562 *2)) (-5 *2 (-353)) (-5 *1 (-721 *5)))) (-2155 (*1 *2 *3) (|partial| -12 (-5 *3 (-381 (-881 *4))) (-4 *4 (-513)) (-4 *4 (-562 *2)) (-5 *2 (-353)) (-5 *1 (-721 *4)))) (-1874 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-881 *5)) (-5 *4 (-850)) (-4 *5 (-970)) (-4 *5 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *5)))) (-1874 (*1 *2 *3) (|partial| -12 (-5 *3 (-881 *4)) (-4 *4 (-970)) (-4 *4 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *4)))) (-2155 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-881 *5)) (-5 *4 (-850)) (-4 *5 (-970)) (-4 *5 (-562 *2)) (-5 *2 (-353)) (-5 *1 (-721 *5)))) (-2155 (*1 *2 *3) (|partial| -12 (-5 *3 (-881 *4)) (-4 *4 (-970)) (-4 *4 (-562 *2)) (-5 *2 (-353)) (-5 *1 (-721 *4)))) (-1874 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-881 (-154 *5))) (-5 *4 (-850)) (-4 *5 (-157)) (-4 *5 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *5)))) (-1874 (*1 *2 *3) (|partial| -12 (-5 *3 (-881 (-154 *4))) (-4 *4 (-157)) (-4 *4 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *4)))) (-1243 (*1 *2 *3 *4) (-12 (-5 *3 (-290 (-154 *5))) (-5 *4 (-850)) (-4 *5 (-513)) (-4 *5 (-784)) (-4 *5 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *5)))) (-1243 (*1 *2 *3) (-12 (-5 *3 (-290 (-154 *4))) (-4 *4 (-513)) (-4 *4 (-784)) (-4 *4 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *4)))) (-1243 (*1 *2 *3 *4) (-12 (-5 *3 (-290 *5)) (-5 *4 (-850)) (-4 *5 (-513)) (-4 *5 (-784)) (-4 *5 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *5)))) (-1243 (*1 *2 *3) (-12 (-5 *3 (-290 *4)) (-4 *4 (-513)) (-4 *4 (-784)) (-4 *4 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *4)))) (-2386 (*1 *2 *3 *4) (-12 (-5 *3 (-290 *5)) (-5 *4 (-850)) (-4 *5 (-513)) (-4 *5 (-784)) (-4 *5 (-562 *2)) (-5 *2 (-353)) (-5 *1 (-721 *5)))) (-2386 (*1 *2 *3) (-12 (-5 *3 (-290 *4)) (-4 *4 (-513)) (-4 *4 (-784)) (-4 *4 (-562 *2)) (-5 *2 (-353)) (-5 *1 (-721 *4)))) (-1243 (*1 *2 *3 *4) (-12 (-5 *3 (-381 (-881 (-154 *5)))) (-5 *4 (-850)) (-4 *5 (-513)) (-4 *5 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *5)))) (-1243 (*1 *2 *3) (-12 (-5 *3 (-381 (-881 (-154 *4)))) (-4 *4 (-513)) (-4 *4 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *4)))) (-1243 (*1 *2 *3 *4) (-12 (-5 *3 (-381 (-881 *5))) (-5 *4 (-850)) (-4 *5 (-513)) (-4 *5 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *5)))) (-1243 (*1 *2 *3) (-12 (-5 *3 (-381 (-881 *4))) (-4 *4 (-513)) (-4 *4 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *4)))) (-2386 (*1 *2 *3 *4) (-12 (-5 *3 (-381 (-881 *5))) (-5 *4 (-850)) (-4 *5 (-513)) (-4 *5 (-562 *2)) (-5 *2 (-353)) (-5 *1 (-721 *5)))) (-2386 (*1 *2 *3) (-12 (-5 *3 (-381 (-881 *4))) (-4 *4 (-513)) (-4 *4 (-562 *2)) (-5 *2 (-353)) (-5 *1 (-721 *4)))) (-1243 (*1 *2 *3 *4) (-12 (-5 *3 (-881 *5)) (-5 *4 (-850)) (-4 *5 (-970)) (-4 *5 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *5)))) (-1243 (*1 *2 *3) (-12 (-5 *3 (-881 *4)) (-4 *4 (-970)) (-4 *4 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *4)))) (-2386 (*1 *2 *3 *4) (-12 (-5 *3 (-881 *5)) (-5 *4 (-850)) (-4 *5 (-970)) (-4 *5 (-562 *2)) (-5 *2 (-353)) (-5 *1 (-721 *5)))) (-2386 (*1 *2 *3) (-12 (-5 *3 (-881 *4)) (-4 *4 (-970)) (-4 *4 (-562 *2)) (-5 *2 (-353)) (-5 *1 (-721 *4)))) (-1243 (*1 *2 *3 *4) (-12 (-5 *3 (-881 (-154 *5))) (-5 *4 (-850)) (-4 *5 (-157)) (-4 *5 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *5)))) (-1243 (*1 *2 *3) (-12 (-5 *3 (-881 (-154 *4))) (-4 *4 (-157)) (-4 *4 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *4)))) (-1243 (*1 *2 *3 *4) (-12 (-5 *3 (-154 *5)) (-5 *4 (-850)) (-4 *5 (-157)) (-4 *5 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *5)))) (-1243 (*1 *2 *3) (-12 (-5 *3 (-154 *4)) (-4 *4 (-157)) (-4 *4 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *4)))) (-1243 (*1 *2 *3 *4) (-12 (-5 *4 (-850)) (-5 *2 (-154 (-353))) (-5 *1 (-721 *3)) (-4 *3 (-562 (-353))))) (-1243 (*1 *2 *3) (-12 (-5 *2 (-154 (-353))) (-5 *1 (-721 *3)) (-4 *3 (-562 (-353))))) (-2386 (*1 *2 *3 *4) (-12 (-5 *4 (-850)) (-5 *2 (-353)) (-5 *1 (-721 *3)) (-4 *3 (-562 *2)))) (-2386 (*1 *2 *3) (-12 (-5 *2 (-353)) (-5 *1 (-721 *3)) (-4 *3 (-562 *2)))))
+(-10 -7 (-15 -2386 ((-353) |#1|)) (-15 -2386 ((-353) |#1| (-850))) (-15 -1243 ((-154 (-353)) |#1|)) (-15 -1243 ((-154 (-353)) |#1| (-850))) (IF (|has| |#1| (-157)) (PROGN (-15 -1243 ((-154 (-353)) (-154 |#1|))) (-15 -1243 ((-154 (-353)) (-154 |#1|) (-850))) (-15 -1243 ((-154 (-353)) (-881 (-154 |#1|)))) (-15 -1243 ((-154 (-353)) (-881 (-154 |#1|)) (-850)))) |%noBranch|) (IF (|has| |#1| (-970)) (PROGN (-15 -2386 ((-353) (-881 |#1|))) (-15 -2386 ((-353) (-881 |#1|) (-850))) (-15 -1243 ((-154 (-353)) (-881 |#1|))) (-15 -1243 ((-154 (-353)) (-881 |#1|) (-850)))) |%noBranch|) (IF (|has| |#1| (-513)) (PROGN (-15 -2386 ((-353) (-381 (-881 |#1|)))) (-15 -2386 ((-353) (-381 (-881 |#1|)) (-850))) (-15 -1243 ((-154 (-353)) (-381 (-881 |#1|)))) (-15 -1243 ((-154 (-353)) (-381 (-881 |#1|)) (-850))) (-15 -1243 ((-154 (-353)) (-381 (-881 (-154 |#1|))))) (-15 -1243 ((-154 (-353)) (-381 (-881 (-154 |#1|))) (-850))) (IF (|has| |#1| (-784)) (PROGN (-15 -2386 ((-353) (-290 |#1|))) (-15 -2386 ((-353) (-290 |#1|) (-850))) (-15 -1243 ((-154 (-353)) (-290 |#1|))) (-15 -1243 ((-154 (-353)) (-290 |#1|) (-850))) (-15 -1243 ((-154 (-353)) (-290 (-154 |#1|)))) (-15 -1243 ((-154 (-353)) (-290 (-154 |#1|)) (-850)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-157)) (PROGN (-15 -1874 ((-3 (-154 (-353)) "failed") (-881 (-154 |#1|)))) (-15 -1874 ((-3 (-154 (-353)) "failed") (-881 (-154 |#1|)) (-850)))) |%noBranch|) (IF (|has| |#1| (-970)) (PROGN (-15 -2155 ((-3 (-353) "failed") (-881 |#1|))) (-15 -2155 ((-3 (-353) "failed") (-881 |#1|) (-850))) (-15 -1874 ((-3 (-154 (-353)) "failed") (-881 |#1|))) (-15 -1874 ((-3 (-154 (-353)) "failed") (-881 |#1|) (-850)))) |%noBranch|) (IF (|has| |#1| (-513)) (PROGN (-15 -2155 ((-3 (-353) "failed") (-381 (-881 |#1|)))) (-15 -2155 ((-3 (-353) "failed") (-381 (-881 |#1|)) (-850))) (-15 -1874 ((-3 (-154 (-353)) "failed") (-381 (-881 |#1|)))) (-15 -1874 ((-3 (-154 (-353)) "failed") (-381 (-881 |#1|)) (-850))) (-15 -1874 ((-3 (-154 (-353)) "failed") (-381 (-881 (-154 |#1|))))) (-15 -1874 ((-3 (-154 (-353)) "failed") (-381 (-881 (-154 |#1|))) (-850))) (IF (|has| |#1| (-784)) (PROGN (-15 -2155 ((-3 (-353) "failed") (-290 |#1|))) (-15 -2155 ((-3 (-353) "failed") (-290 |#1|) (-850))) (-15 -1874 ((-3 (-154 (-353)) "failed") (-290 |#1|))) (-15 -1874 ((-3 (-154 (-353)) "failed") (-290 |#1|) (-850))) (-15 -1874 ((-3 (-154 (-353)) "failed") (-290 (-154 |#1|)))) (-15 -1874 ((-3 (-154 (-353)) "failed") (-290 (-154 |#1|)) (-850)))) |%noBranch|)) |%noBranch|))
+((-1769 (((-850) (-1067)) 64)) (-1353 (((-3 (-353) "failed") (-1067)) 33)) (-4213 (((-353) (-1067)) 31)) (-3566 (((-850) (-1067)) 54)) (-1342 (((-1067) (-850)) 55)) (-3442 (((-1067) (-850)) 53)))
+(((-722) (-10 -7 (-15 -3442 ((-1067) (-850))) (-15 -3566 ((-850) (-1067))) (-15 -1342 ((-1067) (-850))) (-15 -1769 ((-850) (-1067))) (-15 -4213 ((-353) (-1067))) (-15 -1353 ((-3 (-353) "failed") (-1067))))) (T -722))
+((-1353 (*1 *2 *3) (|partial| -12 (-5 *3 (-1067)) (-5 *2 (-353)) (-5 *1 (-722)))) (-4213 (*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-353)) (-5 *1 (-722)))) (-1769 (*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-850)) (-5 *1 (-722)))) (-1342 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1067)) (-5 *1 (-722)))) (-3566 (*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-850)) (-5 *1 (-722)))) (-3442 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1067)) (-5 *1 (-722)))))
+(-10 -7 (-15 -3442 ((-1067) (-850))) (-15 -3566 ((-850) (-1067))) (-15 -1342 ((-1067) (-850))) (-15 -1769 ((-850) (-1067))) (-15 -4213 ((-353) (-1067))) (-15 -1353 ((-3 (-353) "failed") (-1067))))
+((-1415 (((-108) $ $) 7)) (-3618 (((-959) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-959)) 15) (((-959) (-2 (|:| |fn| (-290 (-202))) (|:| -2442 (-587 (-1008 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-959)) 13)) (-1797 (((-2 (|:| -1797 (-353)) (|:| |explanations| (-1067)) (|:| |extra| (-959))) (-982) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 16) (((-2 (|:| -1797 (-353)) (|:| |explanations| (-1067)) (|:| |extra| (-959))) (-982) (-2 (|:| |fn| (-290 (-202))) (|:| -2442 (-587 (-1008 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 14)) (-3688 (((-1067) $) 9)) (-4147 (((-1031) $) 10)) (-2189 (((-792) $) 11)) (-1531 (((-108) $ $) 6)))
+(((-723) (-1196)) (T -723))
+((-1797 (*1 *2 *3 *4) (-12 (-4 *1 (-723)) (-5 *3 (-982)) (-5 *4 (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-2 (|:| -1797 (-353)) (|:| |explanations| (-1067)) (|:| |extra| (-959)))))) (-3618 (*1 *2 *3 *2) (-12 (-4 *1 (-723)) (-5 *2 (-959)) (-5 *3 (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))))) (-1797 (*1 *2 *3 *4) (-12 (-4 *1 (-723)) (-5 *3 (-982)) (-5 *4 (-2 (|:| |fn| (-290 (-202))) (|:| -2442 (-587 (-1008 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-2 (|:| -1797 (-353)) (|:| |explanations| (-1067)) (|:| |extra| (-959)))))) (-3618 (*1 *2 *3 *2) (-12 (-4 *1 (-723)) (-5 *2 (-959)) (-5 *3 (-2 (|:| |fn| (-290 (-202))) (|:| -2442 (-587 (-1008 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))))))
+(-13 (-1013) (-10 -7 (-15 -1797 ((-2 (|:| -1797 (-353)) (|:| |explanations| (-1067)) (|:| |extra| (-959))) (-982) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -3618 ((-959) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-959))) (-15 -1797 ((-2 (|:| -1797 (-353)) (|:| |explanations| (-1067)) (|:| |extra| (-959))) (-982) (-2 (|:| |fn| (-290 (-202))) (|:| -2442 (-587 (-1008 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -3618 ((-959) (-2 (|:| |fn| (-290 (-202))) (|:| -2442 (-587 (-1008 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-959)))))
+(((-97) . T) ((-561 (-792)) . T) ((-1013) . T))
+((-2027 (((-1170) (-1165 (-353)) (-521) (-353) (-2 (|:| |try| (-353)) (|:| |did| (-353)) (|:| -3616 (-353))) (-353) (-1165 (-353)) (-1 (-1170) (-1165 (-353)) (-1165 (-353)) (-353)) (-1165 (-353)) (-1165 (-353)) (-1165 (-353)) (-1165 (-353)) (-1165 (-353)) (-1165 (-353)) (-1165 (-353))) 44) (((-1170) (-1165 (-353)) (-521) (-353) (-2 (|:| |try| (-353)) (|:| |did| (-353)) (|:| -3616 (-353))) (-353) (-1165 (-353)) (-1 (-1170) (-1165 (-353)) (-1165 (-353)) (-353))) 43)) (-2860 (((-1170) (-1165 (-353)) (-521) (-353) (-353) (-521) (-1 (-1170) (-1165 (-353)) (-1165 (-353)) (-353))) 50)) (-3188 (((-1170) (-1165 (-353)) (-521) (-353) (-353) (-353) (-353) (-521) (-1 (-1170) (-1165 (-353)) (-1165 (-353)) (-353))) 41)) (-2711 (((-1170) (-1165 (-353)) (-521) (-353) (-353) (-1 (-1170) (-1165 (-353)) (-1165 (-353)) (-353)) (-1165 (-353)) (-1165 (-353)) (-1165 (-353)) (-1165 (-353))) 52) (((-1170) (-1165 (-353)) (-521) (-353) (-353) (-1 (-1170) (-1165 (-353)) (-1165 (-353)) (-353))) 51)))
+(((-724) (-10 -7 (-15 -2711 ((-1170) (-1165 (-353)) (-521) (-353) (-353) (-1 (-1170) (-1165 (-353)) (-1165 (-353)) (-353)))) (-15 -2711 ((-1170) (-1165 (-353)) (-521) (-353) (-353) (-1 (-1170) (-1165 (-353)) (-1165 (-353)) (-353)) (-1165 (-353)) (-1165 (-353)) (-1165 (-353)) (-1165 (-353)))) (-15 -3188 ((-1170) (-1165 (-353)) (-521) (-353) (-353) (-353) (-353) (-521) (-1 (-1170) (-1165 (-353)) (-1165 (-353)) (-353)))) (-15 -2027 ((-1170) (-1165 (-353)) (-521) (-353) (-2 (|:| |try| (-353)) (|:| |did| (-353)) (|:| -3616 (-353))) (-353) (-1165 (-353)) (-1 (-1170) (-1165 (-353)) (-1165 (-353)) (-353)))) (-15 -2027 ((-1170) (-1165 (-353)) (-521) (-353) (-2 (|:| |try| (-353)) (|:| |did| (-353)) (|:| -3616 (-353))) (-353) (-1165 (-353)) (-1 (-1170) (-1165 (-353)) (-1165 (-353)) (-353)) (-1165 (-353)) (-1165 (-353)) (-1165 (-353)) (-1165 (-353)) (-1165 (-353)) (-1165 (-353)) (-1165 (-353)))) (-15 -2860 ((-1170) (-1165 (-353)) (-521) (-353) (-353) (-521) (-1 (-1170) (-1165 (-353)) (-1165 (-353)) (-353)))))) (T -724))
+((-2860 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-521)) (-5 *6 (-1 (-1170) (-1165 *5) (-1165 *5) (-353))) (-5 *3 (-1165 (-353))) (-5 *5 (-353)) (-5 *2 (-1170)) (-5 *1 (-724)))) (-2027 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-521)) (-5 *6 (-2 (|:| |try| (-353)) (|:| |did| (-353)) (|:| -3616 (-353)))) (-5 *7 (-1 (-1170) (-1165 *5) (-1165 *5) (-353))) (-5 *3 (-1165 (-353))) (-5 *5 (-353)) (-5 *2 (-1170)) (-5 *1 (-724)))) (-2027 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-521)) (-5 *6 (-2 (|:| |try| (-353)) (|:| |did| (-353)) (|:| -3616 (-353)))) (-5 *7 (-1 (-1170) (-1165 *5) (-1165 *5) (-353))) (-5 *3 (-1165 (-353))) (-5 *5 (-353)) (-5 *2 (-1170)) (-5 *1 (-724)))) (-3188 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-521)) (-5 *6 (-1 (-1170) (-1165 *5) (-1165 *5) (-353))) (-5 *3 (-1165 (-353))) (-5 *5 (-353)) (-5 *2 (-1170)) (-5 *1 (-724)))) (-2711 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-521)) (-5 *6 (-1 (-1170) (-1165 *5) (-1165 *5) (-353))) (-5 *3 (-1165 (-353))) (-5 *5 (-353)) (-5 *2 (-1170)) (-5 *1 (-724)))) (-2711 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-521)) (-5 *6 (-1 (-1170) (-1165 *5) (-1165 *5) (-353))) (-5 *3 (-1165 (-353))) (-5 *5 (-353)) (-5 *2 (-1170)) (-5 *1 (-724)))))
+(-10 -7 (-15 -2711 ((-1170) (-1165 (-353)) (-521) (-353) (-353) (-1 (-1170) (-1165 (-353)) (-1165 (-353)) (-353)))) (-15 -2711 ((-1170) (-1165 (-353)) (-521) (-353) (-353) (-1 (-1170) (-1165 (-353)) (-1165 (-353)) (-353)) (-1165 (-353)) (-1165 (-353)) (-1165 (-353)) (-1165 (-353)))) (-15 -3188 ((-1170) (-1165 (-353)) (-521) (-353) (-353) (-353) (-353) (-521) (-1 (-1170) (-1165 (-353)) (-1165 (-353)) (-353)))) (-15 -2027 ((-1170) (-1165 (-353)) (-521) (-353) (-2 (|:| |try| (-353)) (|:| |did| (-353)) (|:| -3616 (-353))) (-353) (-1165 (-353)) (-1 (-1170) (-1165 (-353)) (-1165 (-353)) (-353)))) (-15 -2027 ((-1170) (-1165 (-353)) (-521) (-353) (-2 (|:| |try| (-353)) (|:| |did| (-353)) (|:| -3616 (-353))) (-353) (-1165 (-353)) (-1 (-1170) (-1165 (-353)) (-1165 (-353)) (-353)) (-1165 (-353)) (-1165 (-353)) (-1165 (-353)) (-1165 (-353)) (-1165 (-353)) (-1165 (-353)) (-1165 (-353)))) (-15 -2860 ((-1170) (-1165 (-353)) (-521) (-353) (-353) (-521) (-1 (-1170) (-1165 (-353)) (-1165 (-353)) (-353)))))
+((-1823 (((-2 (|:| -3430 (-353)) (|:| -2968 (-353)) (|:| |totalpts| (-521)) (|:| |success| (-108))) (-1 (-353) (-353)) (-353) (-353) (-353) (-353) (-521) (-521)) 53)) (-3326 (((-2 (|:| -3430 (-353)) (|:| -2968 (-353)) (|:| |totalpts| (-521)) (|:| |success| (-108))) (-1 (-353) (-353)) (-353) (-353) (-353) (-353) (-521) (-521)) 30)) (-3839 (((-2 (|:| -3430 (-353)) (|:| -2968 (-353)) (|:| |totalpts| (-521)) (|:| |success| (-108))) (-1 (-353) (-353)) (-353) (-353) (-353) (-353) (-521) (-521)) 52)) (-3533 (((-2 (|:| -3430 (-353)) (|:| -2968 (-353)) (|:| |totalpts| (-521)) (|:| |success| (-108))) (-1 (-353) (-353)) (-353) (-353) (-353) (-353) (-521) (-521)) 28)) (-2563 (((-2 (|:| -3430 (-353)) (|:| -2968 (-353)) (|:| |totalpts| (-521)) (|:| |success| (-108))) (-1 (-353) (-353)) (-353) (-353) (-353) (-353) (-521) (-521)) 51)) (-2757 (((-2 (|:| -3430 (-353)) (|:| -2968 (-353)) (|:| |totalpts| (-521)) (|:| |success| (-108))) (-1 (-353) (-353)) (-353) (-353) (-353) (-353) (-521) (-521)) 18)) (-2243 (((-2 (|:| -3430 (-353)) (|:| -2968 (-353)) (|:| |totalpts| (-521)) (|:| |success| (-108))) (-1 (-353) (-353)) (-353) (-353) (-353) (-353) (-521) (-521) (-521)) 31)) (-3406 (((-2 (|:| -3430 (-353)) (|:| -2968 (-353)) (|:| |totalpts| (-521)) (|:| |success| (-108))) (-1 (-353) (-353)) (-353) (-353) (-353) (-353) (-521) (-521) (-521)) 29)) (-1512 (((-2 (|:| -3430 (-353)) (|:| -2968 (-353)) (|:| |totalpts| (-521)) (|:| |success| (-108))) (-1 (-353) (-353)) (-353) (-353) (-353) (-353) (-521) (-521) (-521)) 27)))
+(((-725) (-10 -7 (-15 -1512 ((-2 (|:| -3430 (-353)) (|:| -2968 (-353)) (|:| |totalpts| (-521)) (|:| |success| (-108))) (-1 (-353) (-353)) (-353) (-353) (-353) (-353) (-521) (-521) (-521))) (-15 -3406 ((-2 (|:| -3430 (-353)) (|:| -2968 (-353)) (|:| |totalpts| (-521)) (|:| |success| (-108))) (-1 (-353) (-353)) (-353) (-353) (-353) (-353) (-521) (-521) (-521))) (-15 -2243 ((-2 (|:| -3430 (-353)) (|:| -2968 (-353)) (|:| |totalpts| (-521)) (|:| |success| (-108))) (-1 (-353) (-353)) (-353) (-353) (-353) (-353) (-521) (-521) (-521))) (-15 -2757 ((-2 (|:| -3430 (-353)) (|:| -2968 (-353)) (|:| |totalpts| (-521)) (|:| |success| (-108))) (-1 (-353) (-353)) (-353) (-353) (-353) (-353) (-521) (-521))) (-15 -3533 ((-2 (|:| -3430 (-353)) (|:| -2968 (-353)) (|:| |totalpts| (-521)) (|:| |success| (-108))) (-1 (-353) (-353)) (-353) (-353) (-353) (-353) (-521) (-521))) (-15 -3326 ((-2 (|:| -3430 (-353)) (|:| -2968 (-353)) (|:| |totalpts| (-521)) (|:| |success| (-108))) (-1 (-353) (-353)) (-353) (-353) (-353) (-353) (-521) (-521))) (-15 -2563 ((-2 (|:| -3430 (-353)) (|:| -2968 (-353)) (|:| |totalpts| (-521)) (|:| |success| (-108))) (-1 (-353) (-353)) (-353) (-353) (-353) (-353) (-521) (-521))) (-15 -3839 ((-2 (|:| -3430 (-353)) (|:| -2968 (-353)) (|:| |totalpts| (-521)) (|:| |success| (-108))) (-1 (-353) (-353)) (-353) (-353) (-353) (-353) (-521) (-521))) (-15 -1823 ((-2 (|:| -3430 (-353)) (|:| -2968 (-353)) (|:| |totalpts| (-521)) (|:| |success| (-108))) (-1 (-353) (-353)) (-353) (-353) (-353) (-353) (-521) (-521))))) (T -725))
+((-1823 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-353) (-353))) (-5 *4 (-353)) (-5 *2 (-2 (|:| -3430 *4) (|:| -2968 *4) (|:| |totalpts| (-521)) (|:| |success| (-108)))) (-5 *1 (-725)) (-5 *5 (-521)))) (-3839 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-353) (-353))) (-5 *4 (-353)) (-5 *2 (-2 (|:| -3430 *4) (|:| -2968 *4) (|:| |totalpts| (-521)) (|:| |success| (-108)))) (-5 *1 (-725)) (-5 *5 (-521)))) (-2563 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-353) (-353))) (-5 *4 (-353)) (-5 *2 (-2 (|:| -3430 *4) (|:| -2968 *4) (|:| |totalpts| (-521)) (|:| |success| (-108)))) (-5 *1 (-725)) (-5 *5 (-521)))) (-3326 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-353) (-353))) (-5 *4 (-353)) (-5 *2 (-2 (|:| -3430 *4) (|:| -2968 *4) (|:| |totalpts| (-521)) (|:| |success| (-108)))) (-5 *1 (-725)) (-5 *5 (-521)))) (-3533 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-353) (-353))) (-5 *4 (-353)) (-5 *2 (-2 (|:| -3430 *4) (|:| -2968 *4) (|:| |totalpts| (-521)) (|:| |success| (-108)))) (-5 *1 (-725)) (-5 *5 (-521)))) (-2757 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-353) (-353))) (-5 *4 (-353)) (-5 *2 (-2 (|:| -3430 *4) (|:| -2968 *4) (|:| |totalpts| (-521)) (|:| |success| (-108)))) (-5 *1 (-725)) (-5 *5 (-521)))) (-2243 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-353) (-353))) (-5 *4 (-353)) (-5 *2 (-2 (|:| -3430 *4) (|:| -2968 *4) (|:| |totalpts| (-521)) (|:| |success| (-108)))) (-5 *1 (-725)) (-5 *5 (-521)))) (-3406 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-353) (-353))) (-5 *4 (-353)) (-5 *2 (-2 (|:| -3430 *4) (|:| -2968 *4) (|:| |totalpts| (-521)) (|:| |success| (-108)))) (-5 *1 (-725)) (-5 *5 (-521)))) (-1512 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-353) (-353))) (-5 *4 (-353)) (-5 *2 (-2 (|:| -3430 *4) (|:| -2968 *4) (|:| |totalpts| (-521)) (|:| |success| (-108)))) (-5 *1 (-725)) (-5 *5 (-521)))))
+(-10 -7 (-15 -1512 ((-2 (|:| -3430 (-353)) (|:| -2968 (-353)) (|:| |totalpts| (-521)) (|:| |success| (-108))) (-1 (-353) (-353)) (-353) (-353) (-353) (-353) (-521) (-521) (-521))) (-15 -3406 ((-2 (|:| -3430 (-353)) (|:| -2968 (-353)) (|:| |totalpts| (-521)) (|:| |success| (-108))) (-1 (-353) (-353)) (-353) (-353) (-353) (-353) (-521) (-521) (-521))) (-15 -2243 ((-2 (|:| -3430 (-353)) (|:| -2968 (-353)) (|:| |totalpts| (-521)) (|:| |success| (-108))) (-1 (-353) (-353)) (-353) (-353) (-353) (-353) (-521) (-521) (-521))) (-15 -2757 ((-2 (|:| -3430 (-353)) (|:| -2968 (-353)) (|:| |totalpts| (-521)) (|:| |success| (-108))) (-1 (-353) (-353)) (-353) (-353) (-353) (-353) (-521) (-521))) (-15 -3533 ((-2 (|:| -3430 (-353)) (|:| -2968 (-353)) (|:| |totalpts| (-521)) (|:| |success| (-108))) (-1 (-353) (-353)) (-353) (-353) (-353) (-353) (-521) (-521))) (-15 -3326 ((-2 (|:| -3430 (-353)) (|:| -2968 (-353)) (|:| |totalpts| (-521)) (|:| |success| (-108))) (-1 (-353) (-353)) (-353) (-353) (-353) (-353) (-521) (-521))) (-15 -2563 ((-2 (|:| -3430 (-353)) (|:| -2968 (-353)) (|:| |totalpts| (-521)) (|:| |success| (-108))) (-1 (-353) (-353)) (-353) (-353) (-353) (-353) (-521) (-521))) (-15 -3839 ((-2 (|:| -3430 (-353)) (|:| -2968 (-353)) (|:| |totalpts| (-521)) (|:| |success| (-108))) (-1 (-353) (-353)) (-353) (-353) (-353) (-353) (-521) (-521))) (-15 -1823 ((-2 (|:| -3430 (-353)) (|:| -2968 (-353)) (|:| |totalpts| (-521)) (|:| |success| (-108))) (-1 (-353) (-353)) (-353) (-353) (-353) (-353) (-521) (-521))))
+((-3887 (((-1115 |#1|) |#1| (-202) (-521)) 45)))
+(((-726 |#1|) (-10 -7 (-15 -3887 ((-1115 |#1|) |#1| (-202) (-521)))) (-900)) (T -726))
+((-3887 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-202)) (-5 *5 (-521)) (-5 *2 (-1115 *3)) (-5 *1 (-726 *3)) (-4 *3 (-900)))))
+(-10 -7 (-15 -3887 ((-1115 |#1|) |#1| (-202) (-521))))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 24)) (-1232 (((-3 $ "failed") $ $) 26)) (-2547 (($) 23 T CONST)) (-2810 (($ $ $) 13)) (-2446 (($ $ $) 14)) (-3688 (((-1067) $) 9)) (-4147 (((-1031) $) 10)) (-2189 (((-792) $) 11)) (-3561 (($) 22 T CONST)) (-1574 (((-108) $ $) 16)) (-1558 (((-108) $ $) 17)) (-1531 (((-108) $ $) 6)) (-1566 (((-108) $ $) 15)) (-1549 (((-108) $ $) 18)) (-1612 (($ $ $) 28) (($ $) 27)) (-1602 (($ $ $) 20)) (* (($ (-707) $) 25) (($ (-850) $) 21) (($ (-521) $) 29)))
+(((-727) (-1196)) (T -727))
+NIL
+(-13 (-732) (-21))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-561 (-792)) . T) ((-728) . T) ((-730) . T) ((-732) . T) ((-784) . T) ((-1013) . T))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 24)) (-2547 (($) 23 T CONST)) (-2810 (($ $ $) 13)) (-2446 (($ $ $) 14)) (-3688 (((-1067) $) 9)) (-4147 (((-1031) $) 10)) (-2189 (((-792) $) 11)) (-3561 (($) 22 T CONST)) (-1574 (((-108) $ $) 16)) (-1558 (((-108) $ $) 17)) (-1531 (((-108) $ $) 6)) (-1566 (((-108) $ $) 15)) (-1549 (((-108) $ $) 18)) (-1602 (($ $ $) 20)) (* (($ (-707) $) 25) (($ (-850) $) 21)))
+(((-728) (-1196)) (T -728))
+NIL
+(-13 (-730) (-23))
+(((-23) . T) ((-25) . T) ((-97) . T) ((-561 (-792)) . T) ((-730) . T) ((-784) . T) ((-1013) . T))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 24)) (-2641 (($ $ $) 27)) (-1232 (((-3 $ "failed") $ $) 26)) (-2547 (($) 23 T CONST)) (-2810 (($ $ $) 13)) (-2446 (($ $ $) 14)) (-3688 (((-1067) $) 9)) (-4147 (((-1031) $) 10)) (-2189 (((-792) $) 11)) (-3561 (($) 22 T CONST)) (-1574 (((-108) $ $) 16)) (-1558 (((-108) $ $) 17)) (-1531 (((-108) $ $) 6)) (-1566 (((-108) $ $) 15)) (-1549 (((-108) $ $) 18)) (-1602 (($ $ $) 20)) (* (($ (-707) $) 25) (($ (-850) $) 21)))
+(((-729) (-1196)) (T -729))
+((-2641 (*1 *1 *1 *1) (-4 *1 (-729))))
+(-13 (-732) (-10 -8 (-15 -2641 ($ $ $))))
+(((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-561 (-792)) . T) ((-728) . T) ((-730) . T) ((-732) . T) ((-784) . T) ((-1013) . T))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 24)) (-2547 (($) 23 T CONST)) (-2810 (($ $ $) 13)) (-2446 (($ $ $) 14)) (-3688 (((-1067) $) 9)) (-4147 (((-1031) $) 10)) (-2189 (((-792) $) 11)) (-3561 (($) 22 T CONST)) (-1574 (((-108) $ $) 16)) (-1558 (((-108) $ $) 17)) (-1531 (((-108) $ $) 6)) (-1566 (((-108) $ $) 15)) (-1549 (((-108) $ $) 18)) (-1602 (($ $ $) 20)) (* (($ (-707) $) 25) (($ (-850) $) 21)))
+(((-730) (-1196)) (T -730))
+NIL
+(-13 (-784) (-23))
+(((-23) . T) ((-25) . T) ((-97) . T) ((-561 (-792)) . T) ((-784) . T) ((-1013) . T))
+((-3430 (((-1017) $) 12)) (-1931 (($ (-1084) (-1017)) 13)) (-2884 (((-1084) $) 10)) (-2189 (((-792) $) 24)))
+(((-731) (-13 (-561 (-792)) (-10 -8 (-15 -2884 ((-1084) $)) (-15 -3430 ((-1017) $)) (-15 -1931 ($ (-1084) (-1017)))))) (T -731))
+((-2884 (*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-731)))) (-3430 (*1 *2 *1) (-12 (-5 *2 (-1017)) (-5 *1 (-731)))) (-1931 (*1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-1017)) (-5 *1 (-731)))))
+(-13 (-561 (-792)) (-10 -8 (-15 -2884 ((-1084) $)) (-15 -3430 ((-1017) $)) (-15 -1931 ($ (-1084) (-1017)))))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 24)) (-1232 (((-3 $ "failed") $ $) 26)) (-2547 (($) 23 T CONST)) (-2810 (($ $ $) 13)) (-2446 (($ $ $) 14)) (-3688 (((-1067) $) 9)) (-4147 (((-1031) $) 10)) (-2189 (((-792) $) 11)) (-3561 (($) 22 T CONST)) (-1574 (((-108) $ $) 16)) (-1558 (((-108) $ $) 17)) (-1531 (((-108) $ $) 6)) (-1566 (((-108) $ $) 15)) (-1549 (((-108) $ $) 18)) (-1602 (($ $ $) 20)) (* (($ (-707) $) 25) (($ (-850) $) 21)))
+(((-732) (-1196)) (T -732))
+NIL
+(-13 (-728) (-124))
+(((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-561 (-792)) . T) ((-728) . T) ((-730) . T) ((-784) . T) ((-1013) . T))
+((-2220 (((-108) $) 41)) (-1297 (((-3 (-521) "failed") $) NIL) (((-3 (-381 (-521)) "failed") $) NIL) (((-3 |#2| "failed") $) 44)) (-1483 (((-521) $) NIL) (((-381 (-521)) $) NIL) ((|#2| $) 42)) (-1521 (((-3 (-381 (-521)) "failed") $) 78)) (-3190 (((-108) $) 72)) (-2082 (((-381 (-521)) $) 76)) (-3930 ((|#2| $) 26)) (-1390 (($ (-1 |#2| |#2|) $) 23)) (-3095 (($ $) 61)) (-1430 (((-497) $) 67)) (-1223 (($ $) 21)) (-2189 (((-792) $) 56) (($ (-521)) 39) (($ |#2|) 37) (($ (-381 (-521))) NIL)) (-3846 (((-707)) 10)) (-3304 ((|#2| $) 71)) (-1531 (((-108) $ $) 29)) (-1549 (((-108) $ $) 69)) (-1612 (($ $) 31) (($ $ $) NIL)) (-1602 (($ $ $) 30)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) 35) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 32)))
+(((-733 |#1| |#2|) (-10 -8 (-15 -1549 ((-108) |#1| |#1|)) (-15 -1430 ((-497) |#1|)) (-15 -3095 (|#1| |#1|)) (-15 -1521 ((-3 (-381 (-521)) "failed") |#1|)) (-15 -2082 ((-381 (-521)) |#1|)) (-15 -3190 ((-108) |#1|)) (-15 -3304 (|#2| |#1|)) (-15 -3930 (|#2| |#1|)) (-15 -1223 (|#1| |#1|)) (-15 -1390 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1483 (|#2| |#1|)) (-15 -1297 ((-3 |#2| "failed") |#1|)) (-15 -2189 (|#1| (-381 (-521)))) (-15 -1297 ((-3 (-381 (-521)) "failed") |#1|)) (-15 -1483 ((-381 (-521)) |#1|)) (-15 -1297 ((-3 (-521) "failed") |#1|)) (-15 -1483 ((-521) |#1|)) (-15 -2189 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2189 (|#1| (-521))) (-15 -3846 ((-707))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-521) |#1|)) (-15 -1612 (|#1| |#1| |#1|)) (-15 -1612 (|#1| |#1|)) (-15 * (|#1| (-707) |#1|)) (-15 -2220 ((-108) |#1|)) (-15 * (|#1| (-850) |#1|)) (-15 -1602 (|#1| |#1| |#1|)) (-15 -2189 ((-792) |#1|)) (-15 -1531 ((-108) |#1| |#1|))) (-734 |#2|) (-157)) (T -733))
+((-3846 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-707)) (-5 *1 (-733 *3 *4)) (-4 *3 (-734 *4)))))
+(-10 -8 (-15 -1549 ((-108) |#1| |#1|)) (-15 -1430 ((-497) |#1|)) (-15 -3095 (|#1| |#1|)) (-15 -1521 ((-3 (-381 (-521)) "failed") |#1|)) (-15 -2082 ((-381 (-521)) |#1|)) (-15 -3190 ((-108) |#1|)) (-15 -3304 (|#2| |#1|)) (-15 -3930 (|#2| |#1|)) (-15 -1223 (|#1| |#1|)) (-15 -1390 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1483 (|#2| |#1|)) (-15 -1297 ((-3 |#2| "failed") |#1|)) (-15 -2189 (|#1| (-381 (-521)))) (-15 -1297 ((-3 (-381 (-521)) "failed") |#1|)) (-15 -1483 ((-381 (-521)) |#1|)) (-15 -1297 ((-3 (-521) "failed") |#1|)) (-15 -1483 ((-521) |#1|)) (-15 -2189 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2189 (|#1| (-521))) (-15 -3846 ((-707))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-521) |#1|)) (-15 -1612 (|#1| |#1| |#1|)) (-15 -1612 (|#1| |#1|)) (-15 * (|#1| (-707) |#1|)) (-15 -2220 ((-108) |#1|)) (-15 * (|#1| (-850) |#1|)) (-15 -1602 (|#1| |#1| |#1|)) (-15 -2189 ((-792) |#1|)) (-15 -1531 ((-108) |#1| |#1|)))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-1232 (((-3 $ "failed") $ $) 19)) (-1630 (((-707)) 53 (|has| |#1| (-342)))) (-2547 (($) 17 T CONST)) (-1297 (((-3 (-521) "failed") $) 94 (|has| |#1| (-961 (-521)))) (((-3 (-381 (-521)) "failed") $) 92 (|has| |#1| (-961 (-381 (-521))))) (((-3 |#1| "failed") $) 90)) (-1483 (((-521) $) 95 (|has| |#1| (-961 (-521)))) (((-381 (-521)) $) 93 (|has| |#1| (-961 (-381 (-521))))) ((|#1| $) 89)) (-1257 (((-3 $ "failed") $) 34)) (-1935 ((|#1| $) 79)) (-1521 (((-3 (-381 (-521)) "failed") $) 66 (|has| |#1| (-506)))) (-3190 (((-108) $) 68 (|has| |#1| (-506)))) (-2082 (((-381 (-521)) $) 67 (|has| |#1| (-506)))) (-3250 (($) 56 (|has| |#1| (-342)))) (-3996 (((-108) $) 31)) (-3947 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 70)) (-3930 ((|#1| $) 71)) (-2810 (($ $ $) 62 (|has| |#1| (-784)))) (-2446 (($ $ $) 61 (|has| |#1| (-784)))) (-1390 (($ (-1 |#1| |#1|) $) 81)) (-2715 (((-850) $) 55 (|has| |#1| (-342)))) (-3688 (((-1067) $) 9)) (-3095 (($ $) 65 (|has| |#1| (-337)))) (-2716 (($ (-850)) 54 (|has| |#1| (-342)))) (-3394 ((|#1| $) 76)) (-4115 ((|#1| $) 77)) (-2044 ((|#1| $) 78)) (-3308 ((|#1| $) 72)) (-1917 ((|#1| $) 73)) (-3733 ((|#1| $) 74)) (-3504 ((|#1| $) 75)) (-4147 (((-1031) $) 10)) (-2288 (($ $ (-587 |#1|) (-587 |#1|)) 87 (|has| |#1| (-284 |#1|))) (($ $ |#1| |#1|) 86 (|has| |#1| (-284 |#1|))) (($ $ (-269 |#1|)) 85 (|has| |#1| (-284 |#1|))) (($ $ (-587 (-269 |#1|))) 84 (|has| |#1| (-284 |#1|))) (($ $ (-587 (-1084)) (-587 |#1|)) 83 (|has| |#1| (-482 (-1084) |#1|))) (($ $ (-1084) |#1|) 82 (|has| |#1| (-482 (-1084) |#1|)))) (-2544 (($ $ |#1|) 88 (|has| |#1| (-261 |#1| |#1|)))) (-1430 (((-497) $) 63 (|has| |#1| (-562 (-497))))) (-1223 (($ $) 80)) (-2189 (((-792) $) 11) (($ (-521)) 28) (($ |#1|) 37) (($ (-381 (-521))) 91 (|has| |#1| (-961 (-381 (-521)))))) (-1671 (((-3 $ "failed") $) 64 (|has| |#1| (-133)))) (-3846 (((-707)) 29)) (-3304 ((|#1| $) 69 (|has| |#1| (-979)))) (-3505 (($ $ (-850)) 26) (($ $ (-707)) 33)) (-3561 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-1574 (((-108) $ $) 59 (|has| |#1| (-784)))) (-1558 (((-108) $ $) 58 (|has| |#1| (-784)))) (-1531 (((-108) $ $) 6)) (-1566 (((-108) $ $) 60 (|has| |#1| (-784)))) (-1549 (((-108) $ $) 57 (|has| |#1| (-784)))) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-707)) 32)) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38)))
+(((-734 |#1|) (-1196) (-157)) (T -734))
+((-1223 (*1 *1 *1) (-12 (-4 *1 (-734 *2)) (-4 *2 (-157)))) (-1935 (*1 *2 *1) (-12 (-4 *1 (-734 *2)) (-4 *2 (-157)))) (-2044 (*1 *2 *1) (-12 (-4 *1 (-734 *2)) (-4 *2 (-157)))) (-4115 (*1 *2 *1) (-12 (-4 *1 (-734 *2)) (-4 *2 (-157)))) (-3394 (*1 *2 *1) (-12 (-4 *1 (-734 *2)) (-4 *2 (-157)))) (-3504 (*1 *2 *1) (-12 (-4 *1 (-734 *2)) (-4 *2 (-157)))) (-3733 (*1 *2 *1) (-12 (-4 *1 (-734 *2)) (-4 *2 (-157)))) (-1917 (*1 *2 *1) (-12 (-4 *1 (-734 *2)) (-4 *2 (-157)))) (-3308 (*1 *2 *1) (-12 (-4 *1 (-734 *2)) (-4 *2 (-157)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-734 *2)) (-4 *2 (-157)))) (-3947 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-734 *2)) (-4 *2 (-157)))) (-3304 (*1 *2 *1) (-12 (-4 *1 (-734 *2)) (-4 *2 (-157)) (-4 *2 (-979)))) (-3190 (*1 *2 *1) (-12 (-4 *1 (-734 *3)) (-4 *3 (-157)) (-4 *3 (-506)) (-5 *2 (-108)))) (-2082 (*1 *2 *1) (-12 (-4 *1 (-734 *3)) (-4 *3 (-157)) (-4 *3 (-506)) (-5 *2 (-381 (-521))))) (-1521 (*1 *2 *1) (|partial| -12 (-4 *1 (-734 *3)) (-4 *3 (-157)) (-4 *3 (-506)) (-5 *2 (-381 (-521))))) (-3095 (*1 *1 *1) (-12 (-4 *1 (-734 *2)) (-4 *2 (-157)) (-4 *2 (-337)))))
+(-13 (-37 |t#1|) (-385 |t#1|) (-312 |t#1|) (-10 -8 (-15 -1223 ($ $)) (-15 -1935 (|t#1| $)) (-15 -2044 (|t#1| $)) (-15 -4115 (|t#1| $)) (-15 -3394 (|t#1| $)) (-15 -3504 (|t#1| $)) (-15 -3733 (|t#1| $)) (-15 -1917 (|t#1| $)) (-15 -3308 (|t#1| $)) (-15 -3930 (|t#1| $)) (-15 -3947 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-342)) (-6 (-342)) |%noBranch|) (IF (|has| |t#1| (-784)) (-6 (-784)) |%noBranch|) (IF (|has| |t#1| (-562 (-497))) (-6 (-562 (-497))) |%noBranch|) (IF (|has| |t#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |t#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |t#1| (-979)) (-15 -3304 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-506)) (PROGN (-15 -3190 ((-108) $)) (-15 -2082 ((-381 (-521)) $)) (-15 -1521 ((-3 (-381 (-521)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-337)) (-15 -3095 ($ $)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-561 (-792)) . T) ((-562 (-497)) |has| |#1| (-562 (-497))) ((-261 |#1| $) |has| |#1| (-261 |#1| |#1|)) ((-284 |#1|) |has| |#1| (-284 |#1|)) ((-342) |has| |#1| (-342)) ((-312 |#1|) . T) ((-385 |#1|) . T) ((-482 (-1084) |#1|) |has| |#1| (-482 (-1084) |#1|)) ((-482 |#1| |#1|) |has| |#1| (-284 |#1|)) ((-589 |#1|) . T) ((-589 $) . T) ((-654 |#1|) . T) ((-663) . T) ((-784) |has| |#1| (-784)) ((-961 (-381 (-521))) |has| |#1| (-961 (-381 (-521)))) ((-961 (-521)) |has| |#1| (-961 (-521))) ((-961 |#1|) . T) ((-976 |#1|) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T))
+((-1390 ((|#3| (-1 |#4| |#2|) |#1|) 20)))
+(((-735 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1390 (|#3| (-1 |#4| |#2|) |#1|))) (-734 |#2|) (-157) (-734 |#4|) (-157)) (T -735))
+((-1390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-157)) (-4 *6 (-157)) (-4 *2 (-734 *6)) (-5 *1 (-735 *4 *5 *2 *6)) (-4 *4 (-734 *5)))))
+(-10 -7 (-15 -1390 (|#3| (-1 |#4| |#2|) |#1|)))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-1232 (((-3 $ "failed") $ $) NIL)) (-1630 (((-707)) NIL (|has| |#1| (-342)))) (-2547 (($) NIL T CONST)) (-1297 (((-3 |#1| "failed") $) NIL) (((-3 (-924 |#1|) "failed") $) 35) (((-3 (-521) "failed") $) NIL (-3703 (|has| (-924 |#1|) (-961 (-521))) (|has| |#1| (-961 (-521))))) (((-3 (-381 (-521)) "failed") $) NIL (-3703 (|has| (-924 |#1|) (-961 (-381 (-521)))) (|has| |#1| (-961 (-381 (-521))))))) (-1483 ((|#1| $) NIL) (((-924 |#1|) $) 33) (((-521) $) NIL (-3703 (|has| (-924 |#1|) (-961 (-521))) (|has| |#1| (-961 (-521))))) (((-381 (-521)) $) NIL (-3703 (|has| (-924 |#1|) (-961 (-381 (-521)))) (|has| |#1| (-961 (-381 (-521))))))) (-1257 (((-3 $ "failed") $) NIL)) (-1935 ((|#1| $) 16)) (-1521 (((-3 (-381 (-521)) "failed") $) NIL (|has| |#1| (-506)))) (-3190 (((-108) $) NIL (|has| |#1| (-506)))) (-2082 (((-381 (-521)) $) NIL (|has| |#1| (-506)))) (-3250 (($) NIL (|has| |#1| (-342)))) (-3996 (((-108) $) NIL)) (-3947 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-924 |#1|) (-924 |#1|)) 29)) (-3930 ((|#1| $) NIL)) (-2810 (($ $ $) NIL (|has| |#1| (-784)))) (-2446 (($ $ $) NIL (|has| |#1| (-784)))) (-1390 (($ (-1 |#1| |#1|) $) NIL)) (-2715 (((-850) $) NIL (|has| |#1| (-342)))) (-3688 (((-1067) $) NIL)) (-3095 (($ $) NIL (|has| |#1| (-337)))) (-2716 (($ (-850)) NIL (|has| |#1| (-342)))) (-3394 ((|#1| $) 22)) (-4115 ((|#1| $) 20)) (-2044 ((|#1| $) 18)) (-3308 ((|#1| $) 26)) (-1917 ((|#1| $) 25)) (-3733 ((|#1| $) 24)) (-3504 ((|#1| $) 23)) (-4147 (((-1031) $) NIL)) (-2288 (($ $ (-587 |#1|) (-587 |#1|)) NIL (|has| |#1| (-284 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-284 |#1|))) (($ $ (-269 |#1|)) NIL (|has| |#1| (-284 |#1|))) (($ $ (-587 (-269 |#1|))) NIL (|has| |#1| (-284 |#1|))) (($ $ (-587 (-1084)) (-587 |#1|)) NIL (|has| |#1| (-482 (-1084) |#1|))) (($ $ (-1084) |#1|) NIL (|has| |#1| (-482 (-1084) |#1|)))) (-2544 (($ $ |#1|) NIL (|has| |#1| (-261 |#1| |#1|)))) (-1430 (((-497) $) NIL (|has| |#1| (-562 (-497))))) (-1223 (($ $) NIL)) (-2189 (((-792) $) NIL) (($ (-521)) NIL) (($ |#1|) NIL) (($ (-924 |#1|)) 30) (($ (-381 (-521))) NIL (-3703 (|has| (-924 |#1|) (-961 (-381 (-521)))) (|has| |#1| (-961 (-381 (-521))))))) (-1671 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-3846 (((-707)) NIL)) (-3304 ((|#1| $) NIL (|has| |#1| (-979)))) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (-3561 (($) 8 T CONST)) (-3572 (($) 12 T CONST)) (-1574 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1558 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1549 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-736 |#1|) (-13 (-734 |#1|) (-385 (-924 |#1|)) (-10 -8 (-15 -3947 ($ (-924 |#1|) (-924 |#1|))))) (-157)) (T -736))
+((-3947 (*1 *1 *2 *2) (-12 (-5 *2 (-924 *3)) (-4 *3 (-157)) (-5 *1 (-736 *3)))))
+(-13 (-734 |#1|) (-385 (-924 |#1|)) (-10 -8 (-15 -3947 ($ (-924 |#1|) (-924 |#1|)))))
+((-1415 (((-108) $ $) 7)) (-1797 (((-2 (|:| -1797 (-353)) (|:| |explanations| (-1067))) (-982) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 14)) (-3688 (((-1067) $) 9)) (-4147 (((-1031) $) 10)) (-2189 (((-792) $) 11)) (-3569 (((-959) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 13)) (-1531 (((-108) $ $) 6)))
+(((-737) (-1196)) (T -737))
+((-1797 (*1 *2 *3 *4) (-12 (-4 *1 (-737)) (-5 *3 (-982)) (-5 *4 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-2 (|:| -1797 (-353)) (|:| |explanations| (-1067)))))) (-3569 (*1 *2 *3) (-12 (-4 *1 (-737)) (-5 *3 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-959)))))
+(-13 (-1013) (-10 -7 (-15 -1797 ((-2 (|:| -1797 (-353)) (|:| |explanations| (-1067))) (-982) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -3569 ((-959) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))))))
+(((-97) . T) ((-561 (-792)) . T) ((-1013) . T))
+((-3656 (((-2 (|:| |particular| |#2|) (|:| -2470 (-587 |#2|))) |#3| |#2| (-1084)) 19)))
+(((-738 |#1| |#2| |#3|) (-10 -7 (-15 -3656 ((-2 (|:| |particular| |#2|) (|:| -2470 (-587 |#2|))) |#3| |#2| (-1084)))) (-13 (-784) (-282) (-961 (-521)) (-583 (-521)) (-135)) (-13 (-29 |#1|) (-1105) (-887)) (-597 |#2|)) (T -738))
+((-3656 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1084)) (-4 *6 (-13 (-784) (-282) (-961 (-521)) (-583 (-521)) (-135))) (-4 *4 (-13 (-29 *6) (-1105) (-887))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2470 (-587 *4)))) (-5 *1 (-738 *6 *4 *3)) (-4 *3 (-597 *4)))))
+(-10 -7 (-15 -3656 ((-2 (|:| |particular| |#2|) (|:| -2470 (-587 |#2|))) |#3| |#2| (-1084))))
+((-3182 (((-3 |#2| "failed") |#2| (-110) (-269 |#2|) (-587 |#2|)) 26) (((-3 |#2| "failed") (-269 |#2|) (-110) (-269 |#2|) (-587 |#2|)) 27) (((-3 (-2 (|:| |particular| |#2|) (|:| -2470 (-587 |#2|))) |#2| "failed") |#2| (-110) (-1084)) 16) (((-3 (-2 (|:| |particular| |#2|) (|:| -2470 (-587 |#2|))) |#2| "failed") (-269 |#2|) (-110) (-1084)) 17) (((-3 (-2 (|:| |particular| (-1165 |#2|)) (|:| -2470 (-587 (-1165 |#2|)))) "failed") (-587 |#2|) (-587 (-110)) (-1084)) 22) (((-3 (-2 (|:| |particular| (-1165 |#2|)) (|:| -2470 (-587 (-1165 |#2|)))) "failed") (-587 (-269 |#2|)) (-587 (-110)) (-1084)) 24) (((-3 (-587 (-1165 |#2|)) "failed") (-627 |#2|) (-1084)) 36) (((-3 (-2 (|:| |particular| (-1165 |#2|)) (|:| -2470 (-587 (-1165 |#2|)))) "failed") (-627 |#2|) (-1165 |#2|) (-1084)) 34)))
+(((-739 |#1| |#2|) (-10 -7 (-15 -3182 ((-3 (-2 (|:| |particular| (-1165 |#2|)) (|:| -2470 (-587 (-1165 |#2|)))) "failed") (-627 |#2|) (-1165 |#2|) (-1084))) (-15 -3182 ((-3 (-587 (-1165 |#2|)) "failed") (-627 |#2|) (-1084))) (-15 -3182 ((-3 (-2 (|:| |particular| (-1165 |#2|)) (|:| -2470 (-587 (-1165 |#2|)))) "failed") (-587 (-269 |#2|)) (-587 (-110)) (-1084))) (-15 -3182 ((-3 (-2 (|:| |particular| (-1165 |#2|)) (|:| -2470 (-587 (-1165 |#2|)))) "failed") (-587 |#2|) (-587 (-110)) (-1084))) (-15 -3182 ((-3 (-2 (|:| |particular| |#2|) (|:| -2470 (-587 |#2|))) |#2| "failed") (-269 |#2|) (-110) (-1084))) (-15 -3182 ((-3 (-2 (|:| |particular| |#2|) (|:| -2470 (-587 |#2|))) |#2| "failed") |#2| (-110) (-1084))) (-15 -3182 ((-3 |#2| "failed") (-269 |#2|) (-110) (-269 |#2|) (-587 |#2|))) (-15 -3182 ((-3 |#2| "failed") |#2| (-110) (-269 |#2|) (-587 |#2|)))) (-13 (-784) (-282) (-961 (-521)) (-583 (-521)) (-135)) (-13 (-29 |#1|) (-1105) (-887))) (T -739))
+((-3182 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-110)) (-5 *4 (-269 *2)) (-5 *5 (-587 *2)) (-4 *2 (-13 (-29 *6) (-1105) (-887))) (-4 *6 (-13 (-784) (-282) (-961 (-521)) (-583 (-521)) (-135))) (-5 *1 (-739 *6 *2)))) (-3182 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-269 *2)) (-5 *4 (-110)) (-5 *5 (-587 *2)) (-4 *2 (-13 (-29 *6) (-1105) (-887))) (-5 *1 (-739 *6 *2)) (-4 *6 (-13 (-784) (-282) (-961 (-521)) (-583 (-521)) (-135))))) (-3182 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-110)) (-5 *5 (-1084)) (-4 *6 (-13 (-784) (-282) (-961 (-521)) (-583 (-521)) (-135))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2470 (-587 *3))) *3 "failed")) (-5 *1 (-739 *6 *3)) (-4 *3 (-13 (-29 *6) (-1105) (-887))))) (-3182 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-269 *7)) (-5 *4 (-110)) (-5 *5 (-1084)) (-4 *7 (-13 (-29 *6) (-1105) (-887))) (-4 *6 (-13 (-784) (-282) (-961 (-521)) (-583 (-521)) (-135))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2470 (-587 *7))) *7 "failed")) (-5 *1 (-739 *6 *7)))) (-3182 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-587 *7)) (-5 *4 (-587 (-110))) (-5 *5 (-1084)) (-4 *7 (-13 (-29 *6) (-1105) (-887))) (-4 *6 (-13 (-784) (-282) (-961 (-521)) (-583 (-521)) (-135))) (-5 *2 (-2 (|:| |particular| (-1165 *7)) (|:| -2470 (-587 (-1165 *7))))) (-5 *1 (-739 *6 *7)))) (-3182 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-587 (-269 *7))) (-5 *4 (-587 (-110))) (-5 *5 (-1084)) (-4 *7 (-13 (-29 *6) (-1105) (-887))) (-4 *6 (-13 (-784) (-282) (-961 (-521)) (-583 (-521)) (-135))) (-5 *2 (-2 (|:| |particular| (-1165 *7)) (|:| -2470 (-587 (-1165 *7))))) (-5 *1 (-739 *6 *7)))) (-3182 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-627 *6)) (-5 *4 (-1084)) (-4 *6 (-13 (-29 *5) (-1105) (-887))) (-4 *5 (-13 (-784) (-282) (-961 (-521)) (-583 (-521)) (-135))) (-5 *2 (-587 (-1165 *6))) (-5 *1 (-739 *5 *6)))) (-3182 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-627 *7)) (-5 *5 (-1084)) (-4 *7 (-13 (-29 *6) (-1105) (-887))) (-4 *6 (-13 (-784) (-282) (-961 (-521)) (-583 (-521)) (-135))) (-5 *2 (-2 (|:| |particular| (-1165 *7)) (|:| -2470 (-587 (-1165 *7))))) (-5 *1 (-739 *6 *7)) (-5 *4 (-1165 *7)))))
+(-10 -7 (-15 -3182 ((-3 (-2 (|:| |particular| (-1165 |#2|)) (|:| -2470 (-587 (-1165 |#2|)))) "failed") (-627 |#2|) (-1165 |#2|) (-1084))) (-15 -3182 ((-3 (-587 (-1165 |#2|)) "failed") (-627 |#2|) (-1084))) (-15 -3182 ((-3 (-2 (|:| |particular| (-1165 |#2|)) (|:| -2470 (-587 (-1165 |#2|)))) "failed") (-587 (-269 |#2|)) (-587 (-110)) (-1084))) (-15 -3182 ((-3 (-2 (|:| |particular| (-1165 |#2|)) (|:| -2470 (-587 (-1165 |#2|)))) "failed") (-587 |#2|) (-587 (-110)) (-1084))) (-15 -3182 ((-3 (-2 (|:| |particular| |#2|) (|:| -2470 (-587 |#2|))) |#2| "failed") (-269 |#2|) (-110) (-1084))) (-15 -3182 ((-3 (-2 (|:| |particular| |#2|) (|:| -2470 (-587 |#2|))) |#2| "failed") |#2| (-110) (-1084))) (-15 -3182 ((-3 |#2| "failed") (-269 |#2|) (-110) (-269 |#2|) (-587 |#2|))) (-15 -3182 ((-3 |#2| "failed") |#2| (-110) (-269 |#2|) (-587 |#2|))))
+((-2666 (($) 9)) (-3339 (((-3 (-2 (|:| |stiffness| (-353)) (|:| |stability| (-353)) (|:| |expense| (-353)) (|:| |accuracy| (-353)) (|:| |intermediateResults| (-353))) "failed") (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 26)) (-2961 (((-587 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) $) 23)) (-3373 (($ (-2 (|:| -2529 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3045 (-2 (|:| |stiffness| (-353)) (|:| |stability| (-353)) (|:| |expense| (-353)) (|:| |accuracy| (-353)) (|:| |intermediateResults| (-353)))))) 20)) (-3317 (($ (-587 (-2 (|:| -2529 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3045 (-2 (|:| |stiffness| (-353)) (|:| |stability| (-353)) (|:| |expense| (-353)) (|:| |accuracy| (-353)) (|:| |intermediateResults| (-353))))))) 18)) (-1212 (((-1170)) 12)))
+(((-740) (-10 -8 (-15 -2666 ($)) (-15 -1212 ((-1170))) (-15 -2961 ((-587 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) $)) (-15 -3317 ($ (-587 (-2 (|:| -2529 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3045 (-2 (|:| |stiffness| (-353)) (|:| |stability| (-353)) (|:| |expense| (-353)) (|:| |accuracy| (-353)) (|:| |intermediateResults| (-353)))))))) (-15 -3373 ($ (-2 (|:| -2529 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3045 (-2 (|:| |stiffness| (-353)) (|:| |stability| (-353)) (|:| |expense| (-353)) (|:| |accuracy| (-353)) (|:| |intermediateResults| (-353))))))) (-15 -3339 ((-3 (-2 (|:| |stiffness| (-353)) (|:| |stability| (-353)) (|:| |expense| (-353)) (|:| |accuracy| (-353)) (|:| |intermediateResults| (-353))) "failed") (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))))) (T -740))
+((-3339 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-2 (|:| |stiffness| (-353)) (|:| |stability| (-353)) (|:| |expense| (-353)) (|:| |accuracy| (-353)) (|:| |intermediateResults| (-353)))) (-5 *1 (-740)))) (-3373 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2529 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3045 (-2 (|:| |stiffness| (-353)) (|:| |stability| (-353)) (|:| |expense| (-353)) (|:| |accuracy| (-353)) (|:| |intermediateResults| (-353)))))) (-5 *1 (-740)))) (-3317 (*1 *1 *2) (-12 (-5 *2 (-587 (-2 (|:| -2529 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3045 (-2 (|:| |stiffness| (-353)) (|:| |stability| (-353)) (|:| |expense| (-353)) (|:| |accuracy| (-353)) (|:| |intermediateResults| (-353))))))) (-5 *1 (-740)))) (-2961 (*1 *2 *1) (-12 (-5 *2 (-587 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-5 *1 (-740)))) (-1212 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-740)))) (-2666 (*1 *1) (-5 *1 (-740))))
+(-10 -8 (-15 -2666 ($)) (-15 -1212 ((-1170))) (-15 -2961 ((-587 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) $)) (-15 -3317 ($ (-587 (-2 (|:| -2529 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3045 (-2 (|:| |stiffness| (-353)) (|:| |stability| (-353)) (|:| |expense| (-353)) (|:| |accuracy| (-353)) (|:| |intermediateResults| (-353)))))))) (-15 -3373 ($ (-2 (|:| -2529 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3045 (-2 (|:| |stiffness| (-353)) (|:| |stability| (-353)) (|:| |expense| (-353)) (|:| |accuracy| (-353)) (|:| |intermediateResults| (-353))))))) (-15 -3339 ((-3 (-2 (|:| |stiffness| (-353)) (|:| |stability| (-353)) (|:| |expense| (-353)) (|:| |accuracy| (-353)) (|:| |intermediateResults| (-353))) "failed") (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))))
+((-2072 ((|#2| |#2| (-1084)) 15)) (-2039 ((|#2| |#2| (-1084)) 47)) (-3838 (((-1 |#2| |#2|) (-1084)) 11)))
+(((-741 |#1| |#2|) (-10 -7 (-15 -2072 (|#2| |#2| (-1084))) (-15 -2039 (|#2| |#2| (-1084))) (-15 -3838 ((-1 |#2| |#2|) (-1084)))) (-13 (-784) (-282) (-961 (-521)) (-583 (-521)) (-135)) (-13 (-29 |#1|) (-1105) (-887))) (T -741))
+((-3838 (*1 *2 *3) (-12 (-5 *3 (-1084)) (-4 *4 (-13 (-784) (-282) (-961 (-521)) (-583 (-521)) (-135))) (-5 *2 (-1 *5 *5)) (-5 *1 (-741 *4 *5)) (-4 *5 (-13 (-29 *4) (-1105) (-887))))) (-2039 (*1 *2 *2 *3) (-12 (-5 *3 (-1084)) (-4 *4 (-13 (-784) (-282) (-961 (-521)) (-583 (-521)) (-135))) (-5 *1 (-741 *4 *2)) (-4 *2 (-13 (-29 *4) (-1105) (-887))))) (-2072 (*1 *2 *2 *3) (-12 (-5 *3 (-1084)) (-4 *4 (-13 (-784) (-282) (-961 (-521)) (-583 (-521)) (-135))) (-5 *1 (-741 *4 *2)) (-4 *2 (-13 (-29 *4) (-1105) (-887))))))
+(-10 -7 (-15 -2072 (|#2| |#2| (-1084))) (-15 -2039 (|#2| |#2| (-1084))) (-15 -3838 ((-1 |#2| |#2|) (-1084))))
+((-3182 (((-959) (-1165 (-290 (-353))) (-353) (-353) (-587 (-353)) (-290 (-353)) (-587 (-353)) (-353) (-353)) 114) (((-959) (-1165 (-290 (-353))) (-353) (-353) (-587 (-353)) (-290 (-353)) (-587 (-353)) (-353)) 115) (((-959) (-1165 (-290 (-353))) (-353) (-353) (-587 (-353)) (-587 (-353)) (-353)) 117) (((-959) (-1165 (-290 (-353))) (-353) (-353) (-587 (-353)) (-290 (-353)) (-353)) 118) (((-959) (-1165 (-290 (-353))) (-353) (-353) (-587 (-353)) (-353)) 119) (((-959) (-1165 (-290 (-353))) (-353) (-353) (-587 (-353))) 120) (((-959) (-745) (-982)) 105) (((-959) (-745)) 106)) (-1797 (((-2 (|:| -1797 (-353)) (|:| -2884 (-1067)) (|:| |explanations| (-587 (-1067)))) (-745) (-982)) 71) (((-2 (|:| -1797 (-353)) (|:| -2884 (-1067)) (|:| |explanations| (-587 (-1067)))) (-745)) 73)))
+(((-742) (-10 -7 (-15 -3182 ((-959) (-745))) (-15 -3182 ((-959) (-745) (-982))) (-15 -3182 ((-959) (-1165 (-290 (-353))) (-353) (-353) (-587 (-353)))) (-15 -3182 ((-959) (-1165 (-290 (-353))) (-353) (-353) (-587 (-353)) (-353))) (-15 -3182 ((-959) (-1165 (-290 (-353))) (-353) (-353) (-587 (-353)) (-290 (-353)) (-353))) (-15 -3182 ((-959) (-1165 (-290 (-353))) (-353) (-353) (-587 (-353)) (-587 (-353)) (-353))) (-15 -3182 ((-959) (-1165 (-290 (-353))) (-353) (-353) (-587 (-353)) (-290 (-353)) (-587 (-353)) (-353))) (-15 -3182 ((-959) (-1165 (-290 (-353))) (-353) (-353) (-587 (-353)) (-290 (-353)) (-587 (-353)) (-353) (-353))) (-15 -1797 ((-2 (|:| -1797 (-353)) (|:| -2884 (-1067)) (|:| |explanations| (-587 (-1067)))) (-745))) (-15 -1797 ((-2 (|:| -1797 (-353)) (|:| -2884 (-1067)) (|:| |explanations| (-587 (-1067)))) (-745) (-982))))) (T -742))
+((-1797 (*1 *2 *3 *4) (-12 (-5 *3 (-745)) (-5 *4 (-982)) (-5 *2 (-2 (|:| -1797 (-353)) (|:| -2884 (-1067)) (|:| |explanations| (-587 (-1067))))) (-5 *1 (-742)))) (-1797 (*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-2 (|:| -1797 (-353)) (|:| -2884 (-1067)) (|:| |explanations| (-587 (-1067))))) (-5 *1 (-742)))) (-3182 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1165 (-290 *4))) (-5 *5 (-587 (-353))) (-5 *6 (-290 (-353))) (-5 *4 (-353)) (-5 *2 (-959)) (-5 *1 (-742)))) (-3182 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1165 (-290 *4))) (-5 *5 (-587 (-353))) (-5 *6 (-290 (-353))) (-5 *4 (-353)) (-5 *2 (-959)) (-5 *1 (-742)))) (-3182 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1165 (-290 (-353)))) (-5 *4 (-353)) (-5 *5 (-587 *4)) (-5 *2 (-959)) (-5 *1 (-742)))) (-3182 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1165 (-290 *4))) (-5 *5 (-587 (-353))) (-5 *6 (-290 (-353))) (-5 *4 (-353)) (-5 *2 (-959)) (-5 *1 (-742)))) (-3182 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1165 (-290 (-353)))) (-5 *4 (-353)) (-5 *5 (-587 *4)) (-5 *2 (-959)) (-5 *1 (-742)))) (-3182 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1165 (-290 (-353)))) (-5 *4 (-353)) (-5 *5 (-587 *4)) (-5 *2 (-959)) (-5 *1 (-742)))) (-3182 (*1 *2 *3 *4) (-12 (-5 *3 (-745)) (-5 *4 (-982)) (-5 *2 (-959)) (-5 *1 (-742)))) (-3182 (*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-959)) (-5 *1 (-742)))))
+(-10 -7 (-15 -3182 ((-959) (-745))) (-15 -3182 ((-959) (-745) (-982))) (-15 -3182 ((-959) (-1165 (-290 (-353))) (-353) (-353) (-587 (-353)))) (-15 -3182 ((-959) (-1165 (-290 (-353))) (-353) (-353) (-587 (-353)) (-353))) (-15 -3182 ((-959) (-1165 (-290 (-353))) (-353) (-353) (-587 (-353)) (-290 (-353)) (-353))) (-15 -3182 ((-959) (-1165 (-290 (-353))) (-353) (-353) (-587 (-353)) (-587 (-353)) (-353))) (-15 -3182 ((-959) (-1165 (-290 (-353))) (-353) (-353) (-587 (-353)) (-290 (-353)) (-587 (-353)) (-353))) (-15 -3182 ((-959) (-1165 (-290 (-353))) (-353) (-353) (-587 (-353)) (-290 (-353)) (-587 (-353)) (-353) (-353))) (-15 -1797 ((-2 (|:| -1797 (-353)) (|:| -2884 (-1067)) (|:| |explanations| (-587 (-1067)))) (-745))) (-15 -1797 ((-2 (|:| -1797 (-353)) (|:| -2884 (-1067)) (|:| |explanations| (-587 (-1067)))) (-745) (-982))))
+((-3287 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2470 (-587 |#4|))) (-594 |#4|) |#4|) 32)))
+(((-743 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3287 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2470 (-587 |#4|))) (-594 |#4|) |#4|))) (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521)))) (-1141 |#1|) (-1141 (-381 |#2|)) (-316 |#1| |#2| |#3|)) (T -743))
+((-3287 (*1 *2 *3 *4) (-12 (-5 *3 (-594 *4)) (-4 *4 (-316 *5 *6 *7)) (-4 *5 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521))))) (-4 *6 (-1141 *5)) (-4 *7 (-1141 (-381 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2470 (-587 *4)))) (-5 *1 (-743 *5 *6 *7 *4)))))
+(-10 -7 (-15 -3287 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2470 (-587 |#4|))) (-594 |#4|) |#4|)))
+((-2338 (((-2 (|:| -3192 |#3|) (|:| |rh| (-587 (-381 |#2|)))) |#4| (-587 (-381 |#2|))) 52)) (-2867 (((-587 (-2 (|:| -1893 |#2|) (|:| -1608 |#2|))) |#4| |#2|) 60) (((-587 (-2 (|:| -1893 |#2|) (|:| -1608 |#2|))) |#4|) 59) (((-587 (-2 (|:| -1893 |#2|) (|:| -1608 |#2|))) |#3| |#2|) 20) (((-587 (-2 (|:| -1893 |#2|) (|:| -1608 |#2|))) |#3|) 21)) (-1518 ((|#2| |#4| |#1|) 61) ((|#2| |#3| |#1|) 27)) (-2008 ((|#2| |#3| (-587 (-381 |#2|))) 94) (((-3 |#2| "failed") |#3| (-381 |#2|)) 91)))
+(((-744 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2008 ((-3 |#2| "failed") |#3| (-381 |#2|))) (-15 -2008 (|#2| |#3| (-587 (-381 |#2|)))) (-15 -2867 ((-587 (-2 (|:| -1893 |#2|) (|:| -1608 |#2|))) |#3|)) (-15 -2867 ((-587 (-2 (|:| -1893 |#2|) (|:| -1608 |#2|))) |#3| |#2|)) (-15 -1518 (|#2| |#3| |#1|)) (-15 -2867 ((-587 (-2 (|:| -1893 |#2|) (|:| -1608 |#2|))) |#4|)) (-15 -2867 ((-587 (-2 (|:| -1893 |#2|) (|:| -1608 |#2|))) |#4| |#2|)) (-15 -1518 (|#2| |#4| |#1|)) (-15 -2338 ((-2 (|:| -3192 |#3|) (|:| |rh| (-587 (-381 |#2|)))) |#4| (-587 (-381 |#2|))))) (-13 (-337) (-135) (-961 (-381 (-521)))) (-1141 |#1|) (-597 |#2|) (-597 (-381 |#2|))) (T -744))
+((-2338 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-337) (-135) (-961 (-381 (-521))))) (-4 *6 (-1141 *5)) (-5 *2 (-2 (|:| -3192 *7) (|:| |rh| (-587 (-381 *6))))) (-5 *1 (-744 *5 *6 *7 *3)) (-5 *4 (-587 (-381 *6))) (-4 *7 (-597 *6)) (-4 *3 (-597 (-381 *6))))) (-1518 (*1 *2 *3 *4) (-12 (-4 *2 (-1141 *4)) (-5 *1 (-744 *4 *2 *5 *3)) (-4 *4 (-13 (-337) (-135) (-961 (-381 (-521))))) (-4 *5 (-597 *2)) (-4 *3 (-597 (-381 *2))))) (-2867 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-337) (-135) (-961 (-381 (-521))))) (-4 *4 (-1141 *5)) (-5 *2 (-587 (-2 (|:| -1893 *4) (|:| -1608 *4)))) (-5 *1 (-744 *5 *4 *6 *3)) (-4 *6 (-597 *4)) (-4 *3 (-597 (-381 *4))))) (-2867 (*1 *2 *3) (-12 (-4 *4 (-13 (-337) (-135) (-961 (-381 (-521))))) (-4 *5 (-1141 *4)) (-5 *2 (-587 (-2 (|:| -1893 *5) (|:| -1608 *5)))) (-5 *1 (-744 *4 *5 *6 *3)) (-4 *6 (-597 *5)) (-4 *3 (-597 (-381 *5))))) (-1518 (*1 *2 *3 *4) (-12 (-4 *2 (-1141 *4)) (-5 *1 (-744 *4 *2 *3 *5)) (-4 *4 (-13 (-337) (-135) (-961 (-381 (-521))))) (-4 *3 (-597 *2)) (-4 *5 (-597 (-381 *2))))) (-2867 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-337) (-135) (-961 (-381 (-521))))) (-4 *4 (-1141 *5)) (-5 *2 (-587 (-2 (|:| -1893 *4) (|:| -1608 *4)))) (-5 *1 (-744 *5 *4 *3 *6)) (-4 *3 (-597 *4)) (-4 *6 (-597 (-381 *4))))) (-2867 (*1 *2 *3) (-12 (-4 *4 (-13 (-337) (-135) (-961 (-381 (-521))))) (-4 *5 (-1141 *4)) (-5 *2 (-587 (-2 (|:| -1893 *5) (|:| -1608 *5)))) (-5 *1 (-744 *4 *5 *3 *6)) (-4 *3 (-597 *5)) (-4 *6 (-597 (-381 *5))))) (-2008 (*1 *2 *3 *4) (-12 (-5 *4 (-587 (-381 *2))) (-4 *2 (-1141 *5)) (-5 *1 (-744 *5 *2 *3 *6)) (-4 *5 (-13 (-337) (-135) (-961 (-381 (-521))))) (-4 *3 (-597 *2)) (-4 *6 (-597 (-381 *2))))) (-2008 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-381 *2)) (-4 *2 (-1141 *5)) (-5 *1 (-744 *5 *2 *3 *6)) (-4 *5 (-13 (-337) (-135) (-961 (-381 (-521))))) (-4 *3 (-597 *2)) (-4 *6 (-597 *4)))))
+(-10 -7 (-15 -2008 ((-3 |#2| "failed") |#3| (-381 |#2|))) (-15 -2008 (|#2| |#3| (-587 (-381 |#2|)))) (-15 -2867 ((-587 (-2 (|:| -1893 |#2|) (|:| -1608 |#2|))) |#3|)) (-15 -2867 ((-587 (-2 (|:| -1893 |#2|) (|:| -1608 |#2|))) |#3| |#2|)) (-15 -1518 (|#2| |#3| |#1|)) (-15 -2867 ((-587 (-2 (|:| -1893 |#2|) (|:| -1608 |#2|))) |#4|)) (-15 -2867 ((-587 (-2 (|:| -1893 |#2|) (|:| -1608 |#2|))) |#4| |#2|)) (-15 -1518 (|#2| |#4| |#1|)) (-15 -2338 ((-2 (|:| -3192 |#3|) (|:| |rh| (-587 (-381 |#2|)))) |#4| (-587 (-381 |#2|)))))
+((-1415 (((-108) $ $) NIL)) (-1483 (((-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) $) 9)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2189 (((-792) $) 11) (($ (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 8)) (-1531 (((-108) $ $) NIL)))
+(((-745) (-13 (-1013) (-10 -8 (-15 -2189 ($ (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -2189 ((-792) $)) (-15 -1483 ((-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) $))))) (T -745))
+((-2189 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-745)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *1 (-745)))) (-1483 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *1 (-745)))))
+(-13 (-1013) (-10 -8 (-15 -2189 ($ (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -2189 ((-792) $)) (-15 -1483 ((-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) $))))
+((-3411 (((-587 (-2 (|:| |frac| (-381 |#2|)) (|:| -3192 |#3|))) |#3| (-1 (-587 |#2|) |#2| (-1080 |#2|)) (-1 (-392 |#2|) |#2|)) 117)) (-1983 (((-587 (-2 (|:| |poly| |#2|) (|:| -3192 |#3|))) |#3| (-1 (-587 |#1|) |#2|)) 45)) (-3976 (((-587 (-2 (|:| |deg| (-707)) (|:| -3192 |#2|))) |#3|) 94)) (-2732 ((|#2| |#3|) 37)) (-1281 (((-587 (-2 (|:| -2676 |#1|) (|:| -3192 |#3|))) |#3| (-1 (-587 |#1|) |#2|)) 81)) (-1974 ((|#3| |#3| (-381 |#2|)) 62) ((|#3| |#3| |#2|) 78)))
+(((-746 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2732 (|#2| |#3|)) (-15 -3976 ((-587 (-2 (|:| |deg| (-707)) (|:| -3192 |#2|))) |#3|)) (-15 -1281 ((-587 (-2 (|:| -2676 |#1|) (|:| -3192 |#3|))) |#3| (-1 (-587 |#1|) |#2|))) (-15 -1983 ((-587 (-2 (|:| |poly| |#2|) (|:| -3192 |#3|))) |#3| (-1 (-587 |#1|) |#2|))) (-15 -3411 ((-587 (-2 (|:| |frac| (-381 |#2|)) (|:| -3192 |#3|))) |#3| (-1 (-587 |#2|) |#2| (-1080 |#2|)) (-1 (-392 |#2|) |#2|))) (-15 -1974 (|#3| |#3| |#2|)) (-15 -1974 (|#3| |#3| (-381 |#2|)))) (-13 (-337) (-135) (-961 (-381 (-521)))) (-1141 |#1|) (-597 |#2|) (-597 (-381 |#2|))) (T -746))
+((-1974 (*1 *2 *2 *3) (-12 (-5 *3 (-381 *5)) (-4 *4 (-13 (-337) (-135) (-961 (-381 (-521))))) (-4 *5 (-1141 *4)) (-5 *1 (-746 *4 *5 *2 *6)) (-4 *2 (-597 *5)) (-4 *6 (-597 *3)))) (-1974 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-337) (-135) (-961 (-381 (-521))))) (-4 *3 (-1141 *4)) (-5 *1 (-746 *4 *3 *2 *5)) (-4 *2 (-597 *3)) (-4 *5 (-597 (-381 *3))))) (-3411 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-587 *7) *7 (-1080 *7))) (-5 *5 (-1 (-392 *7) *7)) (-4 *7 (-1141 *6)) (-4 *6 (-13 (-337) (-135) (-961 (-381 (-521))))) (-5 *2 (-587 (-2 (|:| |frac| (-381 *7)) (|:| -3192 *3)))) (-5 *1 (-746 *6 *7 *3 *8)) (-4 *3 (-597 *7)) (-4 *8 (-597 (-381 *7))))) (-1983 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-587 *5) *6)) (-4 *5 (-13 (-337) (-135) (-961 (-381 (-521))))) (-4 *6 (-1141 *5)) (-5 *2 (-587 (-2 (|:| |poly| *6) (|:| -3192 *3)))) (-5 *1 (-746 *5 *6 *3 *7)) (-4 *3 (-597 *6)) (-4 *7 (-597 (-381 *6))))) (-1281 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-587 *5) *6)) (-4 *5 (-13 (-337) (-135) (-961 (-381 (-521))))) (-4 *6 (-1141 *5)) (-5 *2 (-587 (-2 (|:| -2676 *5) (|:| -3192 *3)))) (-5 *1 (-746 *5 *6 *3 *7)) (-4 *3 (-597 *6)) (-4 *7 (-597 (-381 *6))))) (-3976 (*1 *2 *3) (-12 (-4 *4 (-13 (-337) (-135) (-961 (-381 (-521))))) (-4 *5 (-1141 *4)) (-5 *2 (-587 (-2 (|:| |deg| (-707)) (|:| -3192 *5)))) (-5 *1 (-746 *4 *5 *3 *6)) (-4 *3 (-597 *5)) (-4 *6 (-597 (-381 *5))))) (-2732 (*1 *2 *3) (-12 (-4 *2 (-1141 *4)) (-5 *1 (-746 *4 *2 *3 *5)) (-4 *4 (-13 (-337) (-135) (-961 (-381 (-521))))) (-4 *3 (-597 *2)) (-4 *5 (-597 (-381 *2))))))
+(-10 -7 (-15 -2732 (|#2| |#3|)) (-15 -3976 ((-587 (-2 (|:| |deg| (-707)) (|:| -3192 |#2|))) |#3|)) (-15 -1281 ((-587 (-2 (|:| -2676 |#1|) (|:| -3192 |#3|))) |#3| (-1 (-587 |#1|) |#2|))) (-15 -1983 ((-587 (-2 (|:| |poly| |#2|) (|:| -3192 |#3|))) |#3| (-1 (-587 |#1|) |#2|))) (-15 -3411 ((-587 (-2 (|:| |frac| (-381 |#2|)) (|:| -3192 |#3|))) |#3| (-1 (-587 |#2|) |#2| (-1080 |#2|)) (-1 (-392 |#2|) |#2|))) (-15 -1974 (|#3| |#3| |#2|)) (-15 -1974 (|#3| |#3| (-381 |#2|))))
+((-1517 (((-2 (|:| -2470 (-587 (-381 |#2|))) (|:| -1201 (-627 |#1|))) (-595 |#2| (-381 |#2|)) (-587 (-381 |#2|))) 118) (((-2 (|:| |particular| (-3 (-381 |#2|) "failed")) (|:| -2470 (-587 (-381 |#2|)))) (-595 |#2| (-381 |#2|)) (-381 |#2|)) 117) (((-2 (|:| -2470 (-587 (-381 |#2|))) (|:| -1201 (-627 |#1|))) (-594 (-381 |#2|)) (-587 (-381 |#2|))) 112) (((-2 (|:| |particular| (-3 (-381 |#2|) "failed")) (|:| -2470 (-587 (-381 |#2|)))) (-594 (-381 |#2|)) (-381 |#2|)) 110)) (-2902 ((|#2| (-595 |#2| (-381 |#2|))) 77) ((|#2| (-594 (-381 |#2|))) 81)))
+(((-747 |#1| |#2|) (-10 -7 (-15 -1517 ((-2 (|:| |particular| (-3 (-381 |#2|) "failed")) (|:| -2470 (-587 (-381 |#2|)))) (-594 (-381 |#2|)) (-381 |#2|))) (-15 -1517 ((-2 (|:| -2470 (-587 (-381 |#2|))) (|:| -1201 (-627 |#1|))) (-594 (-381 |#2|)) (-587 (-381 |#2|)))) (-15 -1517 ((-2 (|:| |particular| (-3 (-381 |#2|) "failed")) (|:| -2470 (-587 (-381 |#2|)))) (-595 |#2| (-381 |#2|)) (-381 |#2|))) (-15 -1517 ((-2 (|:| -2470 (-587 (-381 |#2|))) (|:| -1201 (-627 |#1|))) (-595 |#2| (-381 |#2|)) (-587 (-381 |#2|)))) (-15 -2902 (|#2| (-594 (-381 |#2|)))) (-15 -2902 (|#2| (-595 |#2| (-381 |#2|))))) (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521)))) (-1141 |#1|)) (T -747))
+((-2902 (*1 *2 *3) (-12 (-5 *3 (-595 *2 (-381 *2))) (-4 *2 (-1141 *4)) (-5 *1 (-747 *4 *2)) (-4 *4 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521))))))) (-2902 (*1 *2 *3) (-12 (-5 *3 (-594 (-381 *2))) (-4 *2 (-1141 *4)) (-5 *1 (-747 *4 *2)) (-4 *4 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521))))))) (-1517 (*1 *2 *3 *4) (-12 (-5 *3 (-595 *6 (-381 *6))) (-4 *6 (-1141 *5)) (-4 *5 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521))))) (-5 *2 (-2 (|:| -2470 (-587 (-381 *6))) (|:| -1201 (-627 *5)))) (-5 *1 (-747 *5 *6)) (-5 *4 (-587 (-381 *6))))) (-1517 (*1 *2 *3 *4) (-12 (-5 *3 (-595 *6 (-381 *6))) (-5 *4 (-381 *6)) (-4 *6 (-1141 *5)) (-4 *5 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2470 (-587 *4)))) (-5 *1 (-747 *5 *6)))) (-1517 (*1 *2 *3 *4) (-12 (-5 *3 (-594 (-381 *6))) (-4 *6 (-1141 *5)) (-4 *5 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521))))) (-5 *2 (-2 (|:| -2470 (-587 (-381 *6))) (|:| -1201 (-627 *5)))) (-5 *1 (-747 *5 *6)) (-5 *4 (-587 (-381 *6))))) (-1517 (*1 *2 *3 *4) (-12 (-5 *3 (-594 (-381 *6))) (-5 *4 (-381 *6)) (-4 *6 (-1141 *5)) (-4 *5 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2470 (-587 *4)))) (-5 *1 (-747 *5 *6)))))
+(-10 -7 (-15 -1517 ((-2 (|:| |particular| (-3 (-381 |#2|) "failed")) (|:| -2470 (-587 (-381 |#2|)))) (-594 (-381 |#2|)) (-381 |#2|))) (-15 -1517 ((-2 (|:| -2470 (-587 (-381 |#2|))) (|:| -1201 (-627 |#1|))) (-594 (-381 |#2|)) (-587 (-381 |#2|)))) (-15 -1517 ((-2 (|:| |particular| (-3 (-381 |#2|) "failed")) (|:| -2470 (-587 (-381 |#2|)))) (-595 |#2| (-381 |#2|)) (-381 |#2|))) (-15 -1517 ((-2 (|:| -2470 (-587 (-381 |#2|))) (|:| -1201 (-627 |#1|))) (-595 |#2| (-381 |#2|)) (-587 (-381 |#2|)))) (-15 -2902 (|#2| (-594 (-381 |#2|)))) (-15 -2902 (|#2| (-595 |#2| (-381 |#2|)))))
+((-2105 (((-2 (|:| -1201 (-627 |#2|)) (|:| |vec| (-1165 |#1|))) |#5| |#4|) 47)))
+(((-748 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2105 ((-2 (|:| -1201 (-627 |#2|)) (|:| |vec| (-1165 |#1|))) |#5| |#4|))) (-337) (-597 |#1|) (-1141 |#1|) (-661 |#1| |#3|) (-597 |#4|)) (T -748))
+((-2105 (*1 *2 *3 *4) (-12 (-4 *5 (-337)) (-4 *7 (-1141 *5)) (-4 *4 (-661 *5 *7)) (-5 *2 (-2 (|:| -1201 (-627 *6)) (|:| |vec| (-1165 *5)))) (-5 *1 (-748 *5 *6 *7 *4 *3)) (-4 *6 (-597 *5)) (-4 *3 (-597 *4)))))
+(-10 -7 (-15 -2105 ((-2 (|:| -1201 (-627 |#2|)) (|:| |vec| (-1165 |#1|))) |#5| |#4|)))
+((-3411 (((-587 (-2 (|:| |frac| (-381 |#2|)) (|:| -3192 (-595 |#2| (-381 |#2|))))) (-595 |#2| (-381 |#2|)) (-1 (-392 |#2|) |#2|)) 43)) (-1959 (((-587 (-381 |#2|)) (-595 |#2| (-381 |#2|)) (-1 (-392 |#2|) |#2|)) 134 (|has| |#1| (-27))) (((-587 (-381 |#2|)) (-595 |#2| (-381 |#2|))) 135 (|has| |#1| (-27))) (((-587 (-381 |#2|)) (-594 (-381 |#2|)) (-1 (-392 |#2|) |#2|)) 136 (|has| |#1| (-27))) (((-587 (-381 |#2|)) (-594 (-381 |#2|))) 137 (|has| |#1| (-27))) (((-587 (-381 |#2|)) (-595 |#2| (-381 |#2|)) (-1 (-587 |#1|) |#2|) (-1 (-392 |#2|) |#2|)) 36) (((-587 (-381 |#2|)) (-595 |#2| (-381 |#2|)) (-1 (-587 |#1|) |#2|)) 37) (((-587 (-381 |#2|)) (-594 (-381 |#2|)) (-1 (-587 |#1|) |#2|) (-1 (-392 |#2|) |#2|)) 34) (((-587 (-381 |#2|)) (-594 (-381 |#2|)) (-1 (-587 |#1|) |#2|)) 35)) (-1983 (((-587 (-2 (|:| |poly| |#2|) (|:| -3192 (-595 |#2| (-381 |#2|))))) (-595 |#2| (-381 |#2|)) (-1 (-587 |#1|) |#2|)) 81)))
+(((-749 |#1| |#2|) (-10 -7 (-15 -1959 ((-587 (-381 |#2|)) (-594 (-381 |#2|)) (-1 (-587 |#1|) |#2|))) (-15 -1959 ((-587 (-381 |#2|)) (-594 (-381 |#2|)) (-1 (-587 |#1|) |#2|) (-1 (-392 |#2|) |#2|))) (-15 -1959 ((-587 (-381 |#2|)) (-595 |#2| (-381 |#2|)) (-1 (-587 |#1|) |#2|))) (-15 -1959 ((-587 (-381 |#2|)) (-595 |#2| (-381 |#2|)) (-1 (-587 |#1|) |#2|) (-1 (-392 |#2|) |#2|))) (-15 -3411 ((-587 (-2 (|:| |frac| (-381 |#2|)) (|:| -3192 (-595 |#2| (-381 |#2|))))) (-595 |#2| (-381 |#2|)) (-1 (-392 |#2|) |#2|))) (-15 -1983 ((-587 (-2 (|:| |poly| |#2|) (|:| -3192 (-595 |#2| (-381 |#2|))))) (-595 |#2| (-381 |#2|)) (-1 (-587 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1959 ((-587 (-381 |#2|)) (-594 (-381 |#2|)))) (-15 -1959 ((-587 (-381 |#2|)) (-594 (-381 |#2|)) (-1 (-392 |#2|) |#2|))) (-15 -1959 ((-587 (-381 |#2|)) (-595 |#2| (-381 |#2|)))) (-15 -1959 ((-587 (-381 |#2|)) (-595 |#2| (-381 |#2|)) (-1 (-392 |#2|) |#2|)))) |%noBranch|)) (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521)))) (-1141 |#1|)) (T -749))
+((-1959 (*1 *2 *3 *4) (-12 (-5 *3 (-595 *6 (-381 *6))) (-5 *4 (-1 (-392 *6) *6)) (-4 *6 (-1141 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521))))) (-5 *2 (-587 (-381 *6))) (-5 *1 (-749 *5 *6)))) (-1959 (*1 *2 *3) (-12 (-5 *3 (-595 *5 (-381 *5))) (-4 *5 (-1141 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521))))) (-5 *2 (-587 (-381 *5))) (-5 *1 (-749 *4 *5)))) (-1959 (*1 *2 *3 *4) (-12 (-5 *3 (-594 (-381 *6))) (-5 *4 (-1 (-392 *6) *6)) (-4 *6 (-1141 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521))))) (-5 *2 (-587 (-381 *6))) (-5 *1 (-749 *5 *6)))) (-1959 (*1 *2 *3) (-12 (-5 *3 (-594 (-381 *5))) (-4 *5 (-1141 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521))))) (-5 *2 (-587 (-381 *5))) (-5 *1 (-749 *4 *5)))) (-1983 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-587 *5) *6)) (-4 *5 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521))))) (-4 *6 (-1141 *5)) (-5 *2 (-587 (-2 (|:| |poly| *6) (|:| -3192 (-595 *6 (-381 *6)))))) (-5 *1 (-749 *5 *6)) (-5 *3 (-595 *6 (-381 *6))))) (-3411 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-392 *6) *6)) (-4 *6 (-1141 *5)) (-4 *5 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521))))) (-5 *2 (-587 (-2 (|:| |frac| (-381 *6)) (|:| -3192 (-595 *6 (-381 *6)))))) (-5 *1 (-749 *5 *6)) (-5 *3 (-595 *6 (-381 *6))))) (-1959 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-595 *7 (-381 *7))) (-5 *4 (-1 (-587 *6) *7)) (-5 *5 (-1 (-392 *7) *7)) (-4 *6 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521))))) (-4 *7 (-1141 *6)) (-5 *2 (-587 (-381 *7))) (-5 *1 (-749 *6 *7)))) (-1959 (*1 *2 *3 *4) (-12 (-5 *3 (-595 *6 (-381 *6))) (-5 *4 (-1 (-587 *5) *6)) (-4 *5 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521))))) (-4 *6 (-1141 *5)) (-5 *2 (-587 (-381 *6))) (-5 *1 (-749 *5 *6)))) (-1959 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-594 (-381 *7))) (-5 *4 (-1 (-587 *6) *7)) (-5 *5 (-1 (-392 *7) *7)) (-4 *6 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521))))) (-4 *7 (-1141 *6)) (-5 *2 (-587 (-381 *7))) (-5 *1 (-749 *6 *7)))) (-1959 (*1 *2 *3 *4) (-12 (-5 *3 (-594 (-381 *6))) (-5 *4 (-1 (-587 *5) *6)) (-4 *5 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521))))) (-4 *6 (-1141 *5)) (-5 *2 (-587 (-381 *6))) (-5 *1 (-749 *5 *6)))))
+(-10 -7 (-15 -1959 ((-587 (-381 |#2|)) (-594 (-381 |#2|)) (-1 (-587 |#1|) |#2|))) (-15 -1959 ((-587 (-381 |#2|)) (-594 (-381 |#2|)) (-1 (-587 |#1|) |#2|) (-1 (-392 |#2|) |#2|))) (-15 -1959 ((-587 (-381 |#2|)) (-595 |#2| (-381 |#2|)) (-1 (-587 |#1|) |#2|))) (-15 -1959 ((-587 (-381 |#2|)) (-595 |#2| (-381 |#2|)) (-1 (-587 |#1|) |#2|) (-1 (-392 |#2|) |#2|))) (-15 -3411 ((-587 (-2 (|:| |frac| (-381 |#2|)) (|:| -3192 (-595 |#2| (-381 |#2|))))) (-595 |#2| (-381 |#2|)) (-1 (-392 |#2|) |#2|))) (-15 -1983 ((-587 (-2 (|:| |poly| |#2|) (|:| -3192 (-595 |#2| (-381 |#2|))))) (-595 |#2| (-381 |#2|)) (-1 (-587 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1959 ((-587 (-381 |#2|)) (-594 (-381 |#2|)))) (-15 -1959 ((-587 (-381 |#2|)) (-594 (-381 |#2|)) (-1 (-392 |#2|) |#2|))) (-15 -1959 ((-587 (-381 |#2|)) (-595 |#2| (-381 |#2|)))) (-15 -1959 ((-587 (-381 |#2|)) (-595 |#2| (-381 |#2|)) (-1 (-392 |#2|) |#2|)))) |%noBranch|))
+((-3562 (((-2 (|:| -1201 (-627 |#2|)) (|:| |vec| (-1165 |#1|))) (-627 |#2|) (-1165 |#1|)) 85) (((-2 (|:| A (-627 |#1|)) (|:| |eqs| (-587 (-2 (|:| C (-627 |#1|)) (|:| |g| (-1165 |#1|)) (|:| -3192 |#2|) (|:| |rh| |#1|))))) (-627 |#1|) (-1165 |#1|)) 14)) (-4085 (((-2 (|:| |particular| (-3 (-1165 |#1|) "failed")) (|:| -2470 (-587 (-1165 |#1|)))) (-627 |#2|) (-1165 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2470 (-587 |#1|))) |#2| |#1|)) 91)) (-3182 (((-3 (-2 (|:| |particular| (-1165 |#1|)) (|:| -2470 (-627 |#1|))) "failed") (-627 |#1|) (-1165 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2470 (-587 |#1|))) "failed") |#2| |#1|)) 44)))
+(((-750 |#1| |#2|) (-10 -7 (-15 -3562 ((-2 (|:| A (-627 |#1|)) (|:| |eqs| (-587 (-2 (|:| C (-627 |#1|)) (|:| |g| (-1165 |#1|)) (|:| -3192 |#2|) (|:| |rh| |#1|))))) (-627 |#1|) (-1165 |#1|))) (-15 -3562 ((-2 (|:| -1201 (-627 |#2|)) (|:| |vec| (-1165 |#1|))) (-627 |#2|) (-1165 |#1|))) (-15 -3182 ((-3 (-2 (|:| |particular| (-1165 |#1|)) (|:| -2470 (-627 |#1|))) "failed") (-627 |#1|) (-1165 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2470 (-587 |#1|))) "failed") |#2| |#1|))) (-15 -4085 ((-2 (|:| |particular| (-3 (-1165 |#1|) "failed")) (|:| -2470 (-587 (-1165 |#1|)))) (-627 |#2|) (-1165 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2470 (-587 |#1|))) |#2| |#1|)))) (-337) (-597 |#1|)) (T -750))
+((-4085 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-627 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2470 (-587 *6))) *7 *6)) (-4 *6 (-337)) (-4 *7 (-597 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1165 *6) "failed")) (|:| -2470 (-587 (-1165 *6))))) (-5 *1 (-750 *6 *7)) (-5 *4 (-1165 *6)))) (-3182 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2470 (-587 *6))) "failed") *7 *6)) (-4 *6 (-337)) (-4 *7 (-597 *6)) (-5 *2 (-2 (|:| |particular| (-1165 *6)) (|:| -2470 (-627 *6)))) (-5 *1 (-750 *6 *7)) (-5 *3 (-627 *6)) (-5 *4 (-1165 *6)))) (-3562 (*1 *2 *3 *4) (-12 (-4 *5 (-337)) (-4 *6 (-597 *5)) (-5 *2 (-2 (|:| -1201 (-627 *6)) (|:| |vec| (-1165 *5)))) (-5 *1 (-750 *5 *6)) (-5 *3 (-627 *6)) (-5 *4 (-1165 *5)))) (-3562 (*1 *2 *3 *4) (-12 (-4 *5 (-337)) (-5 *2 (-2 (|:| A (-627 *5)) (|:| |eqs| (-587 (-2 (|:| C (-627 *5)) (|:| |g| (-1165 *5)) (|:| -3192 *6) (|:| |rh| *5)))))) (-5 *1 (-750 *5 *6)) (-5 *3 (-627 *5)) (-5 *4 (-1165 *5)) (-4 *6 (-597 *5)))))
+(-10 -7 (-15 -3562 ((-2 (|:| A (-627 |#1|)) (|:| |eqs| (-587 (-2 (|:| C (-627 |#1|)) (|:| |g| (-1165 |#1|)) (|:| -3192 |#2|) (|:| |rh| |#1|))))) (-627 |#1|) (-1165 |#1|))) (-15 -3562 ((-2 (|:| -1201 (-627 |#2|)) (|:| |vec| (-1165 |#1|))) (-627 |#2|) (-1165 |#1|))) (-15 -3182 ((-3 (-2 (|:| |particular| (-1165 |#1|)) (|:| -2470 (-627 |#1|))) "failed") (-627 |#1|) (-1165 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2470 (-587 |#1|))) "failed") |#2| |#1|))) (-15 -4085 ((-2 (|:| |particular| (-3 (-1165 |#1|) "failed")) (|:| -2470 (-587 (-1165 |#1|)))) (-627 |#2|) (-1165 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2470 (-587 |#1|))) |#2| |#1|))))
+((-3991 (((-627 |#1|) (-587 |#1|) (-707)) 13) (((-627 |#1|) (-587 |#1|)) 14)) (-1824 (((-3 (-1165 |#1|) "failed") |#2| |#1| (-587 |#1|)) 34)) (-4028 (((-3 |#1| "failed") |#2| |#1| (-587 |#1|) (-1 |#1| |#1|)) 42)))
+(((-751 |#1| |#2|) (-10 -7 (-15 -3991 ((-627 |#1|) (-587 |#1|))) (-15 -3991 ((-627 |#1|) (-587 |#1|) (-707))) (-15 -1824 ((-3 (-1165 |#1|) "failed") |#2| |#1| (-587 |#1|))) (-15 -4028 ((-3 |#1| "failed") |#2| |#1| (-587 |#1|) (-1 |#1| |#1|)))) (-337) (-597 |#1|)) (T -751))
+((-4028 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-587 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-337)) (-5 *1 (-751 *2 *3)) (-4 *3 (-597 *2)))) (-1824 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-587 *4)) (-4 *4 (-337)) (-5 *2 (-1165 *4)) (-5 *1 (-751 *4 *3)) (-4 *3 (-597 *4)))) (-3991 (*1 *2 *3 *4) (-12 (-5 *3 (-587 *5)) (-5 *4 (-707)) (-4 *5 (-337)) (-5 *2 (-627 *5)) (-5 *1 (-751 *5 *6)) (-4 *6 (-597 *5)))) (-3991 (*1 *2 *3) (-12 (-5 *3 (-587 *4)) (-4 *4 (-337)) (-5 *2 (-627 *4)) (-5 *1 (-751 *4 *5)) (-4 *5 (-597 *4)))))
+(-10 -7 (-15 -3991 ((-627 |#1|) (-587 |#1|))) (-15 -3991 ((-627 |#1|) (-587 |#1|) (-707))) (-15 -1824 ((-3 (-1165 |#1|) "failed") |#2| |#1| (-587 |#1|))) (-15 -4028 ((-3 |#1| "failed") |#2| |#1| (-587 |#1|) (-1 |#1| |#1|))))
+((-1415 (((-108) $ $) NIL (|has| |#2| (-1013)))) (-2220 (((-108) $) NIL (|has| |#2| (-124)))) (-2720 (($ (-850)) NIL (|has| |#2| (-970)))) (-1903 (((-1170) $ (-521) (-521)) NIL (|has| $ (-6 -4234)))) (-2641 (($ $ $) NIL (|has| |#2| (-729)))) (-1232 (((-3 $ "failed") $ $) NIL (|has| |#2| (-124)))) (-2978 (((-108) $ (-707)) NIL)) (-1630 (((-707)) NIL (|has| |#2| (-342)))) (-1606 (((-521) $) NIL (|has| |#2| (-782)))) (-2378 ((|#2| $ (-521) |#2|) NIL (|has| $ (-6 -4234)))) (-2547 (($) NIL T CONST)) (-1297 (((-3 (-521) "failed") $) NIL (-12 (|has| |#2| (-961 (-521))) (|has| |#2| (-1013)))) (((-3 (-381 (-521)) "failed") $) NIL (-12 (|has| |#2| (-961 (-381 (-521)))) (|has| |#2| (-1013)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1013)))) (-1483 (((-521) $) NIL (-12 (|has| |#2| (-961 (-521))) (|has| |#2| (-1013)))) (((-381 (-521)) $) NIL (-12 (|has| |#2| (-961 (-381 (-521)))) (|has| |#2| (-1013)))) ((|#2| $) NIL (|has| |#2| (-1013)))) (-3279 (((-627 (-521)) (-627 $)) NIL (-12 (|has| |#2| (-583 (-521))) (|has| |#2| (-970)))) (((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (-12 (|has| |#2| (-583 (-521))) (|has| |#2| (-970)))) (((-2 (|:| -1201 (-627 |#2|)) (|:| |vec| (-1165 |#2|))) (-627 $) (-1165 $)) NIL (|has| |#2| (-970))) (((-627 |#2|) (-627 $)) NIL (|has| |#2| (-970)))) (-1257 (((-3 $ "failed") $) NIL (|has| |#2| (-970)))) (-3250 (($) NIL (|has| |#2| (-342)))) (-3849 ((|#2| $ (-521) |#2|) NIL (|has| $ (-6 -4234)))) (-3626 ((|#2| $ (-521)) NIL)) (-3951 (((-108) $) NIL (|has| |#2| (-782)))) (-3831 (((-587 |#2|) $) NIL (|has| $ (-6 -4233)))) (-3996 (((-108) $) NIL (|has| |#2| (-970)))) (-2210 (((-108) $) NIL (|has| |#2| (-782)))) (-2139 (((-108) $ (-707)) NIL)) (-2826 (((-521) $) NIL (|has| (-521) (-784)))) (-2810 (($ $ $) NIL (-3703 (|has| |#2| (-729)) (|has| |#2| (-782))))) (-3757 (((-587 |#2|) $) NIL (|has| $ (-6 -4233)))) (-2221 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#2| (-1013))))) (-2597 (((-521) $) NIL (|has| (-521) (-784)))) (-2446 (($ $ $) NIL (-3703 (|has| |#2| (-729)) (|has| |#2| (-782))))) (-3833 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#2| |#2|) $) NIL)) (-2715 (((-850) $) NIL (|has| |#2| (-342)))) (-3574 (((-108) $ (-707)) NIL)) (-3688 (((-1067) $) NIL (|has| |#2| (-1013)))) (-1668 (((-587 (-521)) $) NIL)) (-2941 (((-108) (-521) $) NIL)) (-2716 (($ (-850)) NIL (|has| |#2| (-342)))) (-4147 (((-1031) $) NIL (|has| |#2| (-1013)))) (-2293 ((|#2| $) NIL (|has| (-521) (-784)))) (-3016 (($ $ |#2|) NIL (|has| $ (-6 -4234)))) (-1789 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 |#2|))) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ (-269 |#2|)) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ (-587 |#2|) (-587 |#2|)) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))))) (-2488 (((-108) $ $) NIL)) (-3821 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#2| (-1013))))) (-2489 (((-587 |#2|) $) NIL)) (-3462 (((-108) $) NIL)) (-4024 (($) NIL)) (-2544 ((|#2| $ (-521) |#2|) NIL) ((|#2| $ (-521)) NIL)) (-1231 ((|#2| $ $) NIL (|has| |#2| (-970)))) (-1961 (($ (-1165 |#2|)) NIL)) (-2359 (((-126)) NIL (|has| |#2| (-337)))) (-2156 (($ $) NIL (-12 (|has| |#2| (-210)) (|has| |#2| (-970)))) (($ $ (-707)) NIL (-12 (|has| |#2| (-210)) (|has| |#2| (-970)))) (($ $ (-1084)) NIL (-12 (|has| |#2| (-829 (-1084))) (|has| |#2| (-970)))) (($ $ (-587 (-1084))) NIL (-12 (|has| |#2| (-829 (-1084))) (|has| |#2| (-970)))) (($ $ (-1084) (-707)) NIL (-12 (|has| |#2| (-829 (-1084))) (|has| |#2| (-970)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (-12 (|has| |#2| (-829 (-1084))) (|has| |#2| (-970)))) (($ $ (-1 |#2| |#2|) (-707)) NIL (|has| |#2| (-970))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-970)))) (-4163 (((-707) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4233))) (((-707) |#2| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#2| (-1013))))) (-2404 (($ $) NIL)) (-2189 (((-1165 |#2|) $) NIL) (($ (-521)) NIL (-3703 (-12 (|has| |#2| (-961 (-521))) (|has| |#2| (-1013))) (|has| |#2| (-970)))) (($ (-381 (-521))) NIL (-12 (|has| |#2| (-961 (-381 (-521)))) (|has| |#2| (-1013)))) (($ |#2|) NIL (|has| |#2| (-1013))) (((-792) $) NIL (|has| |#2| (-561 (-792))))) (-3846 (((-707)) NIL (|has| |#2| (-970)))) (-3049 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4233)))) (-3304 (($ $) NIL (|has| |#2| (-782)))) (-3505 (($ $ (-707)) NIL (|has| |#2| (-970))) (($ $ (-850)) NIL (|has| |#2| (-970)))) (-3561 (($) NIL (|has| |#2| (-124)) CONST)) (-3572 (($) NIL (|has| |#2| (-970)) CONST)) (-2212 (($ $) NIL (-12 (|has| |#2| (-210)) (|has| |#2| (-970)))) (($ $ (-707)) NIL (-12 (|has| |#2| (-210)) (|has| |#2| (-970)))) (($ $ (-1084)) NIL (-12 (|has| |#2| (-829 (-1084))) (|has| |#2| (-970)))) (($ $ (-587 (-1084))) NIL (-12 (|has| |#2| (-829 (-1084))) (|has| |#2| (-970)))) (($ $ (-1084) (-707)) NIL (-12 (|has| |#2| (-829 (-1084))) (|has| |#2| (-970)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (-12 (|has| |#2| (-829 (-1084))) (|has| |#2| (-970)))) (($ $ (-1 |#2| |#2|) (-707)) NIL (|has| |#2| (-970))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-970)))) (-1574 (((-108) $ $) NIL (-3703 (|has| |#2| (-729)) (|has| |#2| (-782))))) (-1558 (((-108) $ $) NIL (-3703 (|has| |#2| (-729)) (|has| |#2| (-782))))) (-1531 (((-108) $ $) NIL (|has| |#2| (-1013)))) (-1566 (((-108) $ $) NIL (-3703 (|has| |#2| (-729)) (|has| |#2| (-782))))) (-1549 (((-108) $ $) 11 (-3703 (|has| |#2| (-729)) (|has| |#2| (-782))))) (-1620 (($ $ |#2|) NIL (|has| |#2| (-337)))) (-1612 (($ $ $) NIL (|has| |#2| (-970))) (($ $) NIL (|has| |#2| (-970)))) (-1602 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-707)) NIL (|has| |#2| (-970))) (($ $ (-850)) NIL (|has| |#2| (-970)))) (* (($ $ $) NIL (|has| |#2| (-970))) (($ (-521) $) NIL (|has| |#2| (-970))) (($ $ |#2|) NIL (|has| |#2| (-663))) (($ |#2| $) NIL (|has| |#2| (-663))) (($ (-707) $) NIL (|has| |#2| (-124))) (($ (-850) $) NIL (|has| |#2| (-25)))) (-3475 (((-707) $) NIL (|has| $ (-6 -4233)))))
+(((-752 |#1| |#2| |#3|) (-215 |#1| |#2|) (-707) (-729) (-1 (-108) (-1165 |#2|) (-1165 |#2|))) (T -752))
+NIL
+(-215 |#1| |#2|)
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-3531 (((-587 (-707)) $) NIL) (((-587 (-707)) $ (-1084)) NIL)) (-1758 (((-707) $) NIL) (((-707) $ (-1084)) NIL)) (-4084 (((-587 (-755 (-1084))) $) NIL)) (-1280 (((-1080 $) $ (-755 (-1084))) NIL) (((-1080 |#1|) $) NIL)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) NIL (|has| |#1| (-513)))) (-2559 (($ $) NIL (|has| |#1| (-513)))) (-1733 (((-108) $) NIL (|has| |#1| (-513)))) (-2256 (((-707) $) NIL) (((-707) $ (-587 (-755 (-1084)))) NIL)) (-1232 (((-3 $ "failed") $ $) NIL)) (-2598 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#1| (-838)))) (-3063 (($ $) NIL (|has| |#1| (-425)))) (-3358 (((-392 $) $) NIL (|has| |#1| (-425)))) (-2569 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) NIL (|has| |#1| (-838)))) (-4108 (($ $) NIL)) (-2547 (($) NIL T CONST)) (-1297 (((-3 |#1| "failed") $) NIL) (((-3 (-381 (-521)) "failed") $) NIL (|has| |#1| (-961 (-381 (-521))))) (((-3 (-521) "failed") $) NIL (|has| |#1| (-961 (-521)))) (((-3 (-755 (-1084)) "failed") $) NIL) (((-3 (-1084) "failed") $) NIL) (((-3 (-1036 |#1| (-1084)) "failed") $) NIL)) (-1483 ((|#1| $) NIL) (((-381 (-521)) $) NIL (|has| |#1| (-961 (-381 (-521))))) (((-521) $) NIL (|has| |#1| (-961 (-521)))) (((-755 (-1084)) $) NIL) (((-1084) $) NIL) (((-1036 |#1| (-1084)) $) NIL)) (-2114 (($ $ $ (-755 (-1084))) NIL (|has| |#1| (-157)))) (-3152 (($ $) NIL)) (-3279 (((-627 (-521)) (-627 $)) NIL (|has| |#1| (-583 (-521)))) (((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (|has| |#1| (-583 (-521)))) (((-2 (|:| -1201 (-627 |#1|)) (|:| |vec| (-1165 |#1|))) (-627 $) (-1165 $)) NIL) (((-627 |#1|) (-627 $)) NIL)) (-1257 (((-3 $ "failed") $) NIL)) (-3666 (($ $) NIL (|has| |#1| (-425))) (($ $ (-755 (-1084))) NIL (|has| |#1| (-425)))) (-3144 (((-587 $) $) NIL)) (-2710 (((-108) $) NIL (|has| |#1| (-838)))) (-3528 (($ $ |#1| (-493 (-755 (-1084))) $) NIL)) (-3427 (((-818 (-353) $) $ (-821 (-353)) (-818 (-353) $)) NIL (-12 (|has| (-755 (-1084)) (-815 (-353))) (|has| |#1| (-815 (-353))))) (((-818 (-521) $) $ (-821 (-521)) (-818 (-521) $)) NIL (-12 (|has| (-755 (-1084)) (-815 (-521))) (|has| |#1| (-815 (-521)))))) (-2733 (((-707) $ (-1084)) NIL) (((-707) $) NIL)) (-3996 (((-108) $) NIL)) (-2678 (((-707) $) NIL)) (-4069 (($ (-1080 |#1|) (-755 (-1084))) NIL) (($ (-1080 $) (-755 (-1084))) NIL)) (-2959 (((-587 $) $) NIL)) (-3649 (((-108) $) NIL)) (-4043 (($ |#1| (-493 (-755 (-1084)))) NIL) (($ $ (-755 (-1084)) (-707)) NIL) (($ $ (-587 (-755 (-1084))) (-587 (-707))) NIL)) (-1450 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $ (-755 (-1084))) NIL)) (-3273 (((-493 (-755 (-1084))) $) NIL) (((-707) $ (-755 (-1084))) NIL) (((-587 (-707)) $ (-587 (-755 (-1084)))) NIL)) (-2810 (($ $ $) NIL (|has| |#1| (-784)))) (-2446 (($ $ $) NIL (|has| |#1| (-784)))) (-3285 (($ (-1 (-493 (-755 (-1084))) (-493 (-755 (-1084)))) $) NIL)) (-1390 (($ (-1 |#1| |#1|) $) NIL)) (-3992 (((-1 $ (-707)) (-1084)) NIL) (((-1 $ (-707)) $) NIL (|has| |#1| (-210)))) (-2477 (((-3 (-755 (-1084)) "failed") $) NIL)) (-3125 (($ $) NIL)) (-3135 ((|#1| $) NIL)) (-1570 (((-755 (-1084)) $) NIL)) (-2223 (($ (-587 $)) NIL (|has| |#1| (-425))) (($ $ $) NIL (|has| |#1| (-425)))) (-3688 (((-1067) $) NIL)) (-2010 (((-108) $) NIL)) (-1617 (((-3 (-587 $) "failed") $) NIL)) (-3177 (((-3 (-587 $) "failed") $) NIL)) (-3979 (((-3 (-2 (|:| |var| (-755 (-1084))) (|:| -2997 (-707))) "failed") $) NIL)) (-1901 (($ $) NIL)) (-4147 (((-1031) $) NIL)) (-3105 (((-108) $) NIL)) (-3115 ((|#1| $) NIL)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) NIL (|has| |#1| (-425)))) (-2258 (($ (-587 $)) NIL (|has| |#1| (-425))) (($ $ $) NIL (|has| |#1| (-425)))) (-1912 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#1| (-838)))) (-2165 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#1| (-838)))) (-1916 (((-392 $) $) NIL (|has| |#1| (-838)))) (-2230 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-513))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-513)))) (-2288 (($ $ (-587 (-269 $))) NIL) (($ $ (-269 $)) NIL) (($ $ $ $) NIL) (($ $ (-587 $) (-587 $)) NIL) (($ $ (-755 (-1084)) |#1|) NIL) (($ $ (-587 (-755 (-1084))) (-587 |#1|)) NIL) (($ $ (-755 (-1084)) $) NIL) (($ $ (-587 (-755 (-1084))) (-587 $)) NIL) (($ $ (-1084) $) NIL (|has| |#1| (-210))) (($ $ (-587 (-1084)) (-587 $)) NIL (|has| |#1| (-210))) (($ $ (-1084) |#1|) NIL (|has| |#1| (-210))) (($ $ (-587 (-1084)) (-587 |#1|)) NIL (|has| |#1| (-210)))) (-4010 (($ $ (-755 (-1084))) NIL (|has| |#1| (-157)))) (-2156 (($ $ (-755 (-1084))) NIL) (($ $ (-587 (-755 (-1084)))) NIL) (($ $ (-755 (-1084)) (-707)) NIL) (($ $ (-587 (-755 (-1084))) (-587 (-707))) NIL) (($ $) NIL (|has| |#1| (-210))) (($ $ (-707)) NIL (|has| |#1| (-210))) (($ $ (-1084)) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-1 |#1| |#1|) (-707)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3865 (((-587 (-1084)) $) NIL)) (-1994 (((-493 (-755 (-1084))) $) NIL) (((-707) $ (-755 (-1084))) NIL) (((-587 (-707)) $ (-587 (-755 (-1084)))) NIL) (((-707) $ (-1084)) NIL)) (-1430 (((-821 (-353)) $) NIL (-12 (|has| (-755 (-1084)) (-562 (-821 (-353)))) (|has| |#1| (-562 (-821 (-353)))))) (((-821 (-521)) $) NIL (-12 (|has| (-755 (-1084)) (-562 (-821 (-521)))) (|has| |#1| (-562 (-821 (-521)))))) (((-497) $) NIL (-12 (|has| (-755 (-1084)) (-562 (-497))) (|has| |#1| (-562 (-497)))))) (-2403 ((|#1| $) NIL (|has| |#1| (-425))) (($ $ (-755 (-1084))) NIL (|has| |#1| (-425)))) (-2944 (((-3 (-1165 $) "failed") (-627 $)) NIL (-12 (|has| $ (-133)) (|has| |#1| (-838))))) (-2189 (((-792) $) NIL) (($ (-521)) NIL) (($ |#1|) NIL) (($ (-755 (-1084))) NIL) (($ (-1084)) NIL) (($ (-1036 |#1| (-1084))) NIL) (($ (-381 (-521))) NIL (-3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-961 (-381 (-521)))))) (($ $) NIL (|has| |#1| (-513)))) (-1259 (((-587 |#1|) $) NIL)) (-3800 ((|#1| $ (-493 (-755 (-1084)))) NIL) (($ $ (-755 (-1084)) (-707)) NIL) (($ $ (-587 (-755 (-1084))) (-587 (-707))) NIL)) (-1671 (((-3 $ "failed") $) NIL (-3703 (-12 (|has| $ (-133)) (|has| |#1| (-838))) (|has| |#1| (-133))))) (-3846 (((-707)) NIL)) (-1547 (($ $ $ (-707)) NIL (|has| |#1| (-157)))) (-4210 (((-108) $ $) NIL (|has| |#1| (-513)))) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (-3561 (($) NIL T CONST)) (-3572 (($) NIL T CONST)) (-2212 (($ $ (-755 (-1084))) NIL) (($ $ (-587 (-755 (-1084)))) NIL) (($ $ (-755 (-1084)) (-707)) NIL) (($ $ (-587 (-755 (-1084))) (-587 (-707))) NIL) (($ $) NIL (|has| |#1| (-210))) (($ $ (-707)) NIL (|has| |#1| (-210))) (($ $ (-1084)) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-1 |#1| |#1|) (-707)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1574 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1558 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1549 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1620 (($ $ |#1|) NIL (|has| |#1| (-337)))) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ (-381 (-521))) NIL (|has| |#1| (-37 (-381 (-521))))) (($ (-381 (-521)) $) NIL (|has| |#1| (-37 (-381 (-521))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-753 |#1|) (-13 (-229 |#1| (-1084) (-755 (-1084)) (-493 (-755 (-1084)))) (-961 (-1036 |#1| (-1084)))) (-970)) (T -753))
+NIL
+(-13 (-229 |#1| (-1084) (-755 (-1084)) (-493 (-755 (-1084)))) (-961 (-1036 |#1| (-1084))))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) NIL (|has| |#2| (-337)))) (-2559 (($ $) NIL (|has| |#2| (-337)))) (-1733 (((-108) $) NIL (|has| |#2| (-337)))) (-1232 (((-3 $ "failed") $ $) NIL)) (-3063 (($ $) NIL (|has| |#2| (-337)))) (-3358 (((-392 $) $) NIL (|has| |#2| (-337)))) (-1389 (((-108) $ $) NIL (|has| |#2| (-337)))) (-2547 (($) NIL T CONST)) (-2277 (($ $ $) NIL (|has| |#2| (-337)))) (-1257 (((-3 $ "failed") $) NIL)) (-2253 (($ $ $) NIL (|has| |#2| (-337)))) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) NIL (|has| |#2| (-337)))) (-2710 (((-108) $) NIL (|has| |#2| (-337)))) (-3996 (((-108) $) NIL)) (-1546 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| |#2| (-337)))) (-2223 (($ (-587 $)) NIL (|has| |#2| (-337))) (($ $ $) NIL (|has| |#2| (-337)))) (-3688 (((-1067) $) NIL)) (-3095 (($ $) 20 (|has| |#2| (-337)))) (-4147 (((-1031) $) NIL)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) NIL (|has| |#2| (-337)))) (-2258 (($ (-587 $)) NIL (|has| |#2| (-337))) (($ $ $) NIL (|has| |#2| (-337)))) (-1916 (((-392 $) $) NIL (|has| |#2| (-337)))) (-1962 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-337))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL (|has| |#2| (-337)))) (-2230 (((-3 $ "failed") $ $) NIL (|has| |#2| (-337)))) (-3854 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| |#2| (-337)))) (-4196 (((-707) $) NIL (|has| |#2| (-337)))) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) NIL (|has| |#2| (-337)))) (-2156 (($ $ (-707)) NIL) (($ $) 13)) (-2189 (((-792) $) NIL) (($ (-521)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-381 (-521))) NIL (|has| |#2| (-337))) (($ $) NIL (|has| |#2| (-337)))) (-3846 (((-707)) NIL)) (-4210 (((-108) $ $) NIL (|has| |#2| (-337)))) (-3505 (($ $ (-707)) NIL) (($ $ (-850)) NIL) (($ $ (-521)) NIL (|has| |#2| (-337)))) (-3561 (($) NIL T CONST)) (-3572 (($) NIL T CONST)) (-2212 (($ $ (-707)) NIL) (($ $) NIL)) (-1531 (((-108) $ $) NIL)) (-1620 (($ $ $) 15 (|has| |#2| (-337)))) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-707)) NIL) (($ $ (-850)) NIL) (($ $ (-521)) 18 (|has| |#2| (-337)))) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-381 (-521)) $) NIL (|has| |#2| (-337))) (($ $ (-381 (-521))) NIL (|has| |#2| (-337)))))
+(((-754 |#1| |#2| |#3|) (-13 (-107 $ $) (-210) (-10 -8 (IF (|has| |#2| (-337)) (-6 (-337)) |%noBranch|) (-15 -2189 ($ |#2|)) (-15 -2189 (|#2| $)))) (-1013) (-829 |#1|) |#1|) (T -754))
+((-2189 (*1 *1 *2) (-12 (-4 *3 (-1013)) (-14 *4 *3) (-5 *1 (-754 *3 *2 *4)) (-4 *2 (-829 *3)))) (-2189 (*1 *2 *1) (-12 (-4 *2 (-829 *3)) (-5 *1 (-754 *3 *2 *4)) (-4 *3 (-1013)) (-14 *4 *3))))
+(-13 (-107 $ $) (-210) (-10 -8 (IF (|has| |#2| (-337)) (-6 (-337)) |%noBranch|) (-15 -2189 ($ |#2|)) (-15 -2189 (|#2| $))))
+((-1415 (((-108) $ $) NIL)) (-1758 (((-707) $) NIL)) (-1611 ((|#1| $) 10)) (-1297 (((-3 |#1| "failed") $) NIL)) (-1483 ((|#1| $) NIL)) (-2733 (((-707) $) 11)) (-2810 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-3992 (($ |#1| (-707)) 9)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2156 (($ $) NIL) (($ $ (-707)) NIL)) (-2189 (((-792) $) NIL) (($ |#1|) NIL)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) NIL)))
+(((-755 |#1|) (-242 |#1|) (-784)) (T -755))
+NIL
+(-242 |#1|)
+((-1415 (((-108) $ $) NIL)) (-4101 (((-587 |#1|) $) 29)) (-1630 (((-707) $) NIL)) (-2547 (($) NIL T CONST)) (-3634 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 19)) (-1297 (((-3 |#1| "failed") $) NIL)) (-1483 ((|#1| $) NIL)) (-2306 (($ $) 31)) (-1257 (((-3 $ "failed") $) NIL)) (-1298 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-3996 (((-108) $) NIL)) (-1785 ((|#1| $ (-521)) NIL)) (-3695 (((-707) $ (-521)) NIL)) (-2239 (($ $) 36)) (-2810 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-3111 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 16)) (-2949 (((-108) $ $) 34)) (-2516 (((-707) $) 25)) (-3688 (((-1067) $) NIL)) (-3580 (($ $ $) NIL)) (-3583 (($ $ $) NIL)) (-4147 (((-1031) $) NIL)) (-2293 ((|#1| $) 30)) (-1514 (((-587 (-2 (|:| |gen| |#1|) (|:| -3261 (-707)))) $) NIL)) (-2242 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-2189 (((-792) $) NIL) (($ |#1|) NIL)) (-3505 (($ $ (-707)) NIL) (($ $ (-850)) NIL)) (-3572 (($) 14 T CONST)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 35)) (** (($ $ (-707)) NIL) (($ $ (-850)) NIL) (($ |#1| (-707)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-756 |#1|) (-13 (-780) (-961 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-707))) (-15 -2293 (|#1| $)) (-15 -2306 ($ $)) (-15 -2239 ($ $)) (-15 -2949 ((-108) $ $)) (-15 -3583 ($ $ $)) (-15 -3580 ($ $ $)) (-15 -3111 ((-3 $ "failed") $ $)) (-15 -3634 ((-3 $ "failed") $ $)) (-15 -3111 ((-3 $ "failed") $ |#1|)) (-15 -3634 ((-3 $ "failed") $ |#1|)) (-15 -2242 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1298 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1630 ((-707) $)) (-15 -3695 ((-707) $ (-521))) (-15 -1785 (|#1| $ (-521))) (-15 -1514 ((-587 (-2 (|:| |gen| |#1|) (|:| -3261 (-707)))) $)) (-15 -2516 ((-707) $)) (-15 -4101 ((-587 |#1|) $)))) (-784)) (T -756))
+((* (*1 *1 *2 *1) (-12 (-5 *1 (-756 *2)) (-4 *2 (-784)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-756 *2)) (-4 *2 (-784)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-707)) (-5 *1 (-756 *2)) (-4 *2 (-784)))) (-2293 (*1 *2 *1) (-12 (-5 *1 (-756 *2)) (-4 *2 (-784)))) (-2306 (*1 *1 *1) (-12 (-5 *1 (-756 *2)) (-4 *2 (-784)))) (-2239 (*1 *1 *1) (-12 (-5 *1 (-756 *2)) (-4 *2 (-784)))) (-2949 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-756 *3)) (-4 *3 (-784)))) (-3583 (*1 *1 *1 *1) (-12 (-5 *1 (-756 *2)) (-4 *2 (-784)))) (-3580 (*1 *1 *1 *1) (-12 (-5 *1 (-756 *2)) (-4 *2 (-784)))) (-3111 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-756 *2)) (-4 *2 (-784)))) (-3634 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-756 *2)) (-4 *2 (-784)))) (-3111 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-756 *2)) (-4 *2 (-784)))) (-3634 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-756 *2)) (-4 *2 (-784)))) (-2242 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-756 *3)) (|:| |rm| (-756 *3)))) (-5 *1 (-756 *3)) (-4 *3 (-784)))) (-1298 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-756 *3)) (|:| |mm| (-756 *3)) (|:| |rm| (-756 *3)))) (-5 *1 (-756 *3)) (-4 *3 (-784)))) (-1630 (*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-756 *3)) (-4 *3 (-784)))) (-3695 (*1 *2 *1 *3) (-12 (-5 *3 (-521)) (-5 *2 (-707)) (-5 *1 (-756 *4)) (-4 *4 (-784)))) (-1785 (*1 *2 *1 *3) (-12 (-5 *3 (-521)) (-5 *1 (-756 *2)) (-4 *2 (-784)))) (-1514 (*1 *2 *1) (-12 (-5 *2 (-587 (-2 (|:| |gen| *3) (|:| -3261 (-707))))) (-5 *1 (-756 *3)) (-4 *3 (-784)))) (-2516 (*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-756 *3)) (-4 *3 (-784)))) (-4101 (*1 *2 *1) (-12 (-5 *2 (-587 *3)) (-5 *1 (-756 *3)) (-4 *3 (-784)))))
+(-13 (-780) (-961 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-707))) (-15 -2293 (|#1| $)) (-15 -2306 ($ $)) (-15 -2239 ($ $)) (-15 -2949 ((-108) $ $)) (-15 -3583 ($ $ $)) (-15 -3580 ($ $ $)) (-15 -3111 ((-3 $ "failed") $ $)) (-15 -3634 ((-3 $ "failed") $ $)) (-15 -3111 ((-3 $ "failed") $ |#1|)) (-15 -3634 ((-3 $ "failed") $ |#1|)) (-15 -2242 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1298 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1630 ((-707) $)) (-15 -3695 ((-707) $ (-521))) (-15 -1785 (|#1| $ (-521))) (-15 -1514 ((-587 (-2 (|:| |gen| |#1|) (|:| -3261 (-707)))) $)) (-15 -2516 ((-707) $)) (-15 -4101 ((-587 |#1|) $))))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) 41)) (-2559 (($ $) 40)) (-1733 (((-108) $) 38)) (-1232 (((-3 $ "failed") $ $) 19)) (-1606 (((-521) $) 53)) (-2547 (($) 17 T CONST)) (-1257 (((-3 $ "failed") $) 34)) (-3951 (((-108) $) 51)) (-3996 (((-108) $) 31)) (-2210 (((-108) $) 52)) (-2810 (($ $ $) 50)) (-2446 (($ $ $) 49)) (-3688 (((-1067) $) 9)) (-4147 (((-1031) $) 10)) (-2230 (((-3 $ "failed") $ $) 42)) (-2189 (((-792) $) 11) (($ (-521)) 28) (($ $) 43)) (-3846 (((-707)) 29)) (-4210 (((-108) $ $) 39)) (-3304 (($ $) 54)) (-3505 (($ $ (-850)) 26) (($ $ (-707)) 33)) (-3561 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-1574 (((-108) $ $) 47)) (-1558 (((-108) $ $) 46)) (-1531 (((-108) $ $) 6)) (-1566 (((-108) $ $) 48)) (-1549 (((-108) $ $) 45)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-707)) 32)) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24)))
+(((-757) (-1196)) (T -757))
+NIL
+(-13 (-513) (-782))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-561 (-792)) . T) ((-157) . T) ((-265) . T) ((-513) . T) ((-589 $) . T) ((-654 $) . T) ((-663) . T) ((-727) . T) ((-728) . T) ((-730) . T) ((-732) . T) ((-782) . T) ((-784) . T) ((-976 $) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T))
+((-2437 (($ (-1031)) 7)) (-2647 (((-108) $ (-1067) (-1031)) 15)) (-3730 (((-759) $) 12)) (-3275 (((-759) $) 11)) (-2843 (((-1170) $) 9)) (-1360 (((-108) $ (-1031)) 16)))
+(((-758) (-10 -8 (-15 -2437 ($ (-1031))) (-15 -2843 ((-1170) $)) (-15 -3275 ((-759) $)) (-15 -3730 ((-759) $)) (-15 -2647 ((-108) $ (-1067) (-1031))) (-15 -1360 ((-108) $ (-1031))))) (T -758))
+((-1360 (*1 *2 *1 *3) (-12 (-5 *3 (-1031)) (-5 *2 (-108)) (-5 *1 (-758)))) (-2647 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1067)) (-5 *4 (-1031)) (-5 *2 (-108)) (-5 *1 (-758)))) (-3730 (*1 *2 *1) (-12 (-5 *2 (-759)) (-5 *1 (-758)))) (-3275 (*1 *2 *1) (-12 (-5 *2 (-759)) (-5 *1 (-758)))) (-2843 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-758)))) (-2437 (*1 *1 *2) (-12 (-5 *2 (-1031)) (-5 *1 (-758)))))
+(-10 -8 (-15 -2437 ($ (-1031))) (-15 -2843 ((-1170) $)) (-15 -3275 ((-759) $)) (-15 -3730 ((-759) $)) (-15 -2647 ((-108) $ (-1067) (-1031))) (-15 -1360 ((-108) $ (-1031))))
+((-2923 (((-1170) $ (-760)) 12)) (-1472 (((-1170) $ (-1084)) 32)) (-2013 (((-1170) $ (-1067) (-1067)) 34)) (-4188 (((-1170) $ (-1067)) 33)) (-1339 (((-1170) $) 19)) (-3568 (((-1170) $ (-521)) 28)) (-1679 (((-1170) $ (-202)) 30)) (-4152 (((-1170) $) 18)) (-3452 (((-1170) $) 26)) (-1237 (((-1170) $) 25)) (-2433 (((-1170) $) 23)) (-2050 (((-1170) $) 24)) (-3707 (((-1170) $) 22)) (-2421 (((-1170) $) 21)) (-3288 (((-1170) $) 20)) (-4126 (((-1170) $) 16)) (-3897 (((-1170) $) 17)) (-4117 (((-1170) $) 15)) (-1502 (((-1170) $) 14)) (-3680 (((-1170) $) 13)) (-1655 (($ (-1067) (-760)) 9)) (-2123 (($ (-1067) (-1067) (-760)) 8)) (-1228 (((-1084) $) 51)) (-2542 (((-1084) $) 55)) (-2912 (((-2 (|:| |cd| (-1067)) (|:| -2884 (-1067))) $) 54)) (-3555 (((-1067) $) 52)) (-1700 (((-1170) $) 41)) (-1643 (((-521) $) 49)) (-3424 (((-202) $) 50)) (-2191 (((-1170) $) 40)) (-2286 (((-1170) $) 48)) (-2200 (((-1170) $) 47)) (-3116 (((-1170) $) 45)) (-1571 (((-1170) $) 46)) (-3439 (((-1170) $) 44)) (-2851 (((-1170) $) 43)) (-2643 (((-1170) $) 42)) (-4148 (((-1170) $) 38)) (-2560 (((-1170) $) 39)) (-2198 (((-1170) $) 37)) (-2723 (((-1170) $) 36)) (-1787 (((-1170) $) 35)) (-3141 (((-1170) $) 11)))
+(((-759) (-10 -8 (-15 -2123 ($ (-1067) (-1067) (-760))) (-15 -1655 ($ (-1067) (-760))) (-15 -3141 ((-1170) $)) (-15 -2923 ((-1170) $ (-760))) (-15 -3680 ((-1170) $)) (-15 -1502 ((-1170) $)) (-15 -4117 ((-1170) $)) (-15 -4126 ((-1170) $)) (-15 -3897 ((-1170) $)) (-15 -4152 ((-1170) $)) (-15 -1339 ((-1170) $)) (-15 -3288 ((-1170) $)) (-15 -2421 ((-1170) $)) (-15 -3707 ((-1170) $)) (-15 -2433 ((-1170) $)) (-15 -2050 ((-1170) $)) (-15 -1237 ((-1170) $)) (-15 -3452 ((-1170) $)) (-15 -3568 ((-1170) $ (-521))) (-15 -1679 ((-1170) $ (-202))) (-15 -1472 ((-1170) $ (-1084))) (-15 -4188 ((-1170) $ (-1067))) (-15 -2013 ((-1170) $ (-1067) (-1067))) (-15 -1787 ((-1170) $)) (-15 -2723 ((-1170) $)) (-15 -2198 ((-1170) $)) (-15 -4148 ((-1170) $)) (-15 -2560 ((-1170) $)) (-15 -2191 ((-1170) $)) (-15 -1700 ((-1170) $)) (-15 -2643 ((-1170) $)) (-15 -2851 ((-1170) $)) (-15 -3439 ((-1170) $)) (-15 -3116 ((-1170) $)) (-15 -1571 ((-1170) $)) (-15 -2200 ((-1170) $)) (-15 -2286 ((-1170) $)) (-15 -1643 ((-521) $)) (-15 -3424 ((-202) $)) (-15 -1228 ((-1084) $)) (-15 -3555 ((-1067) $)) (-15 -2912 ((-2 (|:| |cd| (-1067)) (|:| -2884 (-1067))) $)) (-15 -2542 ((-1084) $)))) (T -759))
+((-2542 (*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-759)))) (-2912 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1067)) (|:| -2884 (-1067)))) (-5 *1 (-759)))) (-3555 (*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-759)))) (-1228 (*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-759)))) (-3424 (*1 *2 *1) (-12 (-5 *2 (-202)) (-5 *1 (-759)))) (-1643 (*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-759)))) (-2286 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-759)))) (-2200 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-759)))) (-1571 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-759)))) (-3116 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-759)))) (-3439 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-759)))) (-2851 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-759)))) (-2643 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-759)))) (-1700 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-759)))) (-2191 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-759)))) (-2560 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-759)))) (-4148 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-759)))) (-2198 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-759)))) (-2723 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-759)))) (-1787 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-759)))) (-2013 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-759)))) (-4188 (*1 *2 *1 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-759)))) (-1472 (*1 *2 *1 *3) (-12 (-5 *3 (-1084)) (-5 *2 (-1170)) (-5 *1 (-759)))) (-1679 (*1 *2 *1 *3) (-12 (-5 *3 (-202)) (-5 *2 (-1170)) (-5 *1 (-759)))) (-3568 (*1 *2 *1 *3) (-12 (-5 *3 (-521)) (-5 *2 (-1170)) (-5 *1 (-759)))) (-3452 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-759)))) (-1237 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-759)))) (-2050 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-759)))) (-2433 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-759)))) (-3707 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-759)))) (-2421 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-759)))) (-3288 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-759)))) (-1339 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-759)))) (-4152 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-759)))) (-3897 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-759)))) (-4126 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-759)))) (-4117 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-759)))) (-1502 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-759)))) (-3680 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-759)))) (-2923 (*1 *2 *1 *3) (-12 (-5 *3 (-760)) (-5 *2 (-1170)) (-5 *1 (-759)))) (-3141 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-759)))) (-1655 (*1 *1 *2 *3) (-12 (-5 *2 (-1067)) (-5 *3 (-760)) (-5 *1 (-759)))) (-2123 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1067)) (-5 *3 (-760)) (-5 *1 (-759)))))
+(-10 -8 (-15 -2123 ($ (-1067) (-1067) (-760))) (-15 -1655 ($ (-1067) (-760))) (-15 -3141 ((-1170) $)) (-15 -2923 ((-1170) $ (-760))) (-15 -3680 ((-1170) $)) (-15 -1502 ((-1170) $)) (-15 -4117 ((-1170) $)) (-15 -4126 ((-1170) $)) (-15 -3897 ((-1170) $)) (-15 -4152 ((-1170) $)) (-15 -1339 ((-1170) $)) (-15 -3288 ((-1170) $)) (-15 -2421 ((-1170) $)) (-15 -3707 ((-1170) $)) (-15 -2433 ((-1170) $)) (-15 -2050 ((-1170) $)) (-15 -1237 ((-1170) $)) (-15 -3452 ((-1170) $)) (-15 -3568 ((-1170) $ (-521))) (-15 -1679 ((-1170) $ (-202))) (-15 -1472 ((-1170) $ (-1084))) (-15 -4188 ((-1170) $ (-1067))) (-15 -2013 ((-1170) $ (-1067) (-1067))) (-15 -1787 ((-1170) $)) (-15 -2723 ((-1170) $)) (-15 -2198 ((-1170) $)) (-15 -4148 ((-1170) $)) (-15 -2560 ((-1170) $)) (-15 -2191 ((-1170) $)) (-15 -1700 ((-1170) $)) (-15 -2643 ((-1170) $)) (-15 -2851 ((-1170) $)) (-15 -3439 ((-1170) $)) (-15 -3116 ((-1170) $)) (-15 -1571 ((-1170) $)) (-15 -2200 ((-1170) $)) (-15 -2286 ((-1170) $)) (-15 -1643 ((-521) $)) (-15 -3424 ((-202) $)) (-15 -1228 ((-1084) $)) (-15 -3555 ((-1067) $)) (-15 -2912 ((-2 (|:| |cd| (-1067)) (|:| -2884 (-1067))) $)) (-15 -2542 ((-1084) $)))
+((-1415 (((-108) $ $) NIL)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2189 (((-792) $) 12)) (-2965 (($) 15)) (-2487 (($) 13)) (-4005 (($) 16)) (-3549 (($) 14)) (-1531 (((-108) $ $) 8)))
+(((-760) (-13 (-1013) (-10 -8 (-15 -2487 ($)) (-15 -2965 ($)) (-15 -4005 ($)) (-15 -3549 ($))))) (T -760))
+((-2487 (*1 *1) (-5 *1 (-760))) (-2965 (*1 *1) (-5 *1 (-760))) (-4005 (*1 *1) (-5 *1 (-760))) (-3549 (*1 *1) (-5 *1 (-760))))
+(-13 (-1013) (-10 -8 (-15 -2487 ($)) (-15 -2965 ($)) (-15 -4005 ($)) (-15 -3549 ($))))
+((-1415 (((-108) $ $) NIL)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2189 (((-792) $) 21) (($ (-1084)) 17)) (-1747 (((-108) $) 10)) (-2402 (((-108) $) 9)) (-1772 (((-108) $) 11)) (-2645 (((-108) $) 8)) (-1531 (((-108) $ $) 19)))
+(((-761) (-13 (-1013) (-10 -8 (-15 -2189 ($ (-1084))) (-15 -2645 ((-108) $)) (-15 -2402 ((-108) $)) (-15 -1747 ((-108) $)) (-15 -1772 ((-108) $))))) (T -761))
+((-2189 (*1 *1 *2) (-12 (-5 *2 (-1084)) (-5 *1 (-761)))) (-2645 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-761)))) (-2402 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-761)))) (-1747 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-761)))) (-1772 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-761)))))
+(-13 (-1013) (-10 -8 (-15 -2189 ($ (-1084))) (-15 -2645 ((-108) $)) (-15 -2402 ((-108) $)) (-15 -1747 ((-108) $)) (-15 -1772 ((-108) $))))
+((-1415 (((-108) $ $) NIL)) (-2792 (($ (-761) (-587 (-1084))) 24)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-4050 (((-761) $) 25)) (-1861 (((-587 (-1084)) $) 26)) (-2189 (((-792) $) 23)) (-1531 (((-108) $ $) NIL)))
+(((-762) (-13 (-1013) (-10 -8 (-15 -4050 ((-761) $)) (-15 -1861 ((-587 (-1084)) $)) (-15 -2792 ($ (-761) (-587 (-1084))))))) (T -762))
+((-4050 (*1 *2 *1) (-12 (-5 *2 (-761)) (-5 *1 (-762)))) (-1861 (*1 *2 *1) (-12 (-5 *2 (-587 (-1084))) (-5 *1 (-762)))) (-2792 (*1 *1 *2 *3) (-12 (-5 *2 (-761)) (-5 *3 (-587 (-1084))) (-5 *1 (-762)))))
+(-13 (-1013) (-10 -8 (-15 -4050 ((-761) $)) (-15 -1861 ((-587 (-1084)) $)) (-15 -2792 ($ (-761) (-587 (-1084))))))
+((-2287 (((-1170) (-759) (-290 |#1|) (-108)) 22) (((-1170) (-759) (-290 |#1|)) 76) (((-1067) (-290 |#1|) (-108)) 75) (((-1067) (-290 |#1|)) 74)))
+(((-763 |#1|) (-10 -7 (-15 -2287 ((-1067) (-290 |#1|))) (-15 -2287 ((-1067) (-290 |#1|) (-108))) (-15 -2287 ((-1170) (-759) (-290 |#1|))) (-15 -2287 ((-1170) (-759) (-290 |#1|) (-108)))) (-13 (-765) (-784) (-970))) (T -763))
+((-2287 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-759)) (-5 *4 (-290 *6)) (-5 *5 (-108)) (-4 *6 (-13 (-765) (-784) (-970))) (-5 *2 (-1170)) (-5 *1 (-763 *6)))) (-2287 (*1 *2 *3 *4) (-12 (-5 *3 (-759)) (-5 *4 (-290 *5)) (-4 *5 (-13 (-765) (-784) (-970))) (-5 *2 (-1170)) (-5 *1 (-763 *5)))) (-2287 (*1 *2 *3 *4) (-12 (-5 *3 (-290 *5)) (-5 *4 (-108)) (-4 *5 (-13 (-765) (-784) (-970))) (-5 *2 (-1067)) (-5 *1 (-763 *5)))) (-2287 (*1 *2 *3) (-12 (-5 *3 (-290 *4)) (-4 *4 (-13 (-765) (-784) (-970))) (-5 *2 (-1067)) (-5 *1 (-763 *4)))))
+(-10 -7 (-15 -2287 ((-1067) (-290 |#1|))) (-15 -2287 ((-1067) (-290 |#1|) (-108))) (-15 -2287 ((-1170) (-759) (-290 |#1|))) (-15 -2287 ((-1170) (-759) (-290 |#1|) (-108))))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-1232 (((-3 $ "failed") $ $) NIL)) (-2547 (($) NIL T CONST)) (-3152 (($ $) NIL)) (-1257 (((-3 $ "failed") $) NIL)) (-4093 ((|#1| $) 10)) (-1419 (($ |#1|) 9)) (-3996 (((-108) $) NIL)) (-4043 (($ |#2| (-707)) NIL)) (-3273 (((-707) $) NIL)) (-3135 ((|#2| $) NIL)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2156 (($ $ (-707)) NIL (|has| |#1| (-210))) (($ $) NIL (|has| |#1| (-210)))) (-1994 (((-707) $) NIL)) (-2189 (((-792) $) 17) (($ (-521)) NIL) (($ |#2|) NIL (|has| |#2| (-157)))) (-3800 ((|#2| $ (-707)) NIL)) (-3846 (((-707)) NIL)) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (-3561 (($) NIL T CONST)) (-3572 (($) NIL T CONST)) (-2212 (($ $ (-707)) NIL (|has| |#1| (-210))) (($ $) NIL (|has| |#1| (-210)))) (-1531 (((-108) $ $) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-764 |#1| |#2|) (-13 (-646 |#2|) (-10 -8 (IF (|has| |#1| (-210)) (-6 (-210)) |%noBranch|) (-15 -1419 ($ |#1|)) (-15 -4093 (|#1| $)))) (-646 |#2|) (-970)) (T -764))
+((-1419 (*1 *1 *2) (-12 (-4 *3 (-970)) (-5 *1 (-764 *2 *3)) (-4 *2 (-646 *3)))) (-4093 (*1 *2 *1) (-12 (-4 *2 (-646 *3)) (-5 *1 (-764 *2 *3)) (-4 *3 (-970)))))
+(-13 (-646 |#2|) (-10 -8 (IF (|has| |#1| (-210)) (-6 (-210)) |%noBranch|) (-15 -1419 ($ |#1|)) (-15 -4093 (|#1| $))))
+((-2287 (((-1170) (-759) $ (-108)) 9) (((-1170) (-759) $) 8) (((-1067) $ (-108)) 7) (((-1067) $) 6)))
+(((-765) (-1196)) (T -765))
+((-2287 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-765)) (-5 *3 (-759)) (-5 *4 (-108)) (-5 *2 (-1170)))) (-2287 (*1 *2 *3 *1) (-12 (-4 *1 (-765)) (-5 *3 (-759)) (-5 *2 (-1170)))) (-2287 (*1 *2 *1 *3) (-12 (-4 *1 (-765)) (-5 *3 (-108)) (-5 *2 (-1067)))) (-2287 (*1 *2 *1) (-12 (-4 *1 (-765)) (-5 *2 (-1067)))))
+(-13 (-10 -8 (-15 -2287 ((-1067) $)) (-15 -2287 ((-1067) $ (-108))) (-15 -2287 ((-1170) (-759) $)) (-15 -2287 ((-1170) (-759) $ (-108)))))
+((-3305 (((-286) (-1067) (-1067)) 12)) (-2587 (((-108) (-1067) (-1067)) 34)) (-1990 (((-108) (-1067)) 33)) (-3632 (((-51) (-1067)) 25)) (-1561 (((-51) (-1067)) 23)) (-2668 (((-51) (-759)) 17)) (-1338 (((-587 (-1067)) (-1067)) 28)) (-1292 (((-587 (-1067))) 27)))
+(((-766) (-10 -7 (-15 -2668 ((-51) (-759))) (-15 -1561 ((-51) (-1067))) (-15 -3632 ((-51) (-1067))) (-15 -1292 ((-587 (-1067)))) (-15 -1338 ((-587 (-1067)) (-1067))) (-15 -1990 ((-108) (-1067))) (-15 -2587 ((-108) (-1067) (-1067))) (-15 -3305 ((-286) (-1067) (-1067))))) (T -766))
+((-3305 (*1 *2 *3 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-286)) (-5 *1 (-766)))) (-2587 (*1 *2 *3 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-108)) (-5 *1 (-766)))) (-1990 (*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-108)) (-5 *1 (-766)))) (-1338 (*1 *2 *3) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-766)) (-5 *3 (-1067)))) (-1292 (*1 *2) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-766)))) (-3632 (*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-51)) (-5 *1 (-766)))) (-1561 (*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-51)) (-5 *1 (-766)))) (-2668 (*1 *2 *3) (-12 (-5 *3 (-759)) (-5 *2 (-51)) (-5 *1 (-766)))))
+(-10 -7 (-15 -2668 ((-51) (-759))) (-15 -1561 ((-51) (-1067))) (-15 -3632 ((-51) (-1067))) (-15 -1292 ((-587 (-1067)))) (-15 -1338 ((-587 (-1067)) (-1067))) (-15 -1990 ((-108) (-1067))) (-15 -2587 ((-108) (-1067) (-1067))) (-15 -3305 ((-286) (-1067) (-1067))))
+((-1415 (((-108) $ $) 19)) (-2269 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-1953 (($ $ $) 72)) (-2976 (((-108) $ $) 73)) (-2978 (((-108) $ (-707)) 8)) (-1764 (($ (-587 |#1|)) 68) (($) 67)) (-4098 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4233)))) (-1628 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4233)))) (-2547 (($) 7 T CONST)) (-2468 (($ $) 62)) (-2332 (($ $) 58 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-3023 (($ |#1| $) 47 (|has| $ (-6 -4233))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4233)))) (-1422 (($ |#1| $) 57 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4233)))) (-3859 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4233)))) (-3831 (((-587 |#1|) $) 30 (|has| $ (-6 -4233)))) (-2139 (((-108) $ (-707)) 9)) (-2810 ((|#1| $) 78)) (-3220 (($ $ $) 81)) (-1318 (($ $ $) 80)) (-3757 (((-587 |#1|) $) 29 (|has| $ (-6 -4233)))) (-2221 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-2446 ((|#1| $) 79)) (-3833 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#1| |#1|) $) 35)) (-3574 (((-108) $ (-707)) 10)) (-3688 (((-1067) $) 22)) (-1660 (($ $ $) 69)) (-2511 ((|#1| $) 39)) (-3373 (($ |#1| $) 40) (($ |#1| $ (-707)) 63)) (-4147 (((-1031) $) 21)) (-3620 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-2166 ((|#1| $) 41)) (-1789 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 |#1|))) 26 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) 25 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) 23 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-2488 (((-108) $ $) 14)) (-3462 (((-108) $) 11)) (-4024 (($) 12)) (-2312 (((-587 (-2 (|:| -3045 |#1|) (|:| -4163 (-707)))) $) 61)) (-3130 (($ $ |#1|) 71) (($ $ $) 70)) (-1784 (($) 49) (($ (-587 |#1|)) 48)) (-4163 (((-707) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4233))) (((-707) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-2404 (($ $) 13)) (-1430 (((-497) $) 59 (|has| |#1| (-562 (-497))))) (-2201 (($ (-587 |#1|)) 50)) (-2189 (((-792) $) 18)) (-3387 (($ (-587 |#1|)) 66) (($) 65)) (-4091 (($ (-587 |#1|)) 42)) (-3049 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4233)))) (-1531 (((-108) $ $) 20)) (-1549 (((-108) $ $) 64)) (-3475 (((-707) $) 6 (|has| $ (-6 -4233)))))
+(((-767 |#1|) (-1196) (-784)) (T -767))
+((-2810 (*1 *2 *1) (-12 (-4 *1 (-767 *2)) (-4 *2 (-784)))))
+(-13 (-673 |t#1|) (-895 |t#1|) (-10 -8 (-15 -2810 (|t#1| $))))
+(((-33) . T) ((-102 |#1|) . T) ((-97) . T) ((-561 (-792)) . T) ((-139 |#1|) . T) ((-562 (-497)) |has| |#1| (-562 (-497))) ((-212 |#1|) . T) ((-284 |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-460 |#1|) . T) ((-482 |#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-632 |#1|) . T) ((-673 |#1|) . T) ((-895 |#1|) . T) ((-1011 |#1|) . T) ((-1013) . T) ((-1119) . T))
+((-1801 (((-1170) (-1031) (-1031)) 47)) (-2358 (((-1170) (-758) (-51)) 44)) (-2611 (((-51) (-758)) 16)))
+(((-768) (-10 -7 (-15 -2611 ((-51) (-758))) (-15 -2358 ((-1170) (-758) (-51))) (-15 -1801 ((-1170) (-1031) (-1031))))) (T -768))
+((-1801 (*1 *2 *3 *3) (-12 (-5 *3 (-1031)) (-5 *2 (-1170)) (-5 *1 (-768)))) (-2358 (*1 *2 *3 *4) (-12 (-5 *3 (-758)) (-5 *4 (-51)) (-5 *2 (-1170)) (-5 *1 (-768)))) (-2611 (*1 *2 *3) (-12 (-5 *3 (-758)) (-5 *2 (-51)) (-5 *1 (-768)))))
+(-10 -7 (-15 -2611 ((-51) (-758))) (-15 -2358 ((-1170) (-758) (-51))) (-15 -1801 ((-1170) (-1031) (-1031))))
+((-1390 (((-770 |#2|) (-1 |#2| |#1|) (-770 |#1|) (-770 |#2|)) 12) (((-770 |#2|) (-1 |#2| |#1|) (-770 |#1|)) 13)))
+(((-769 |#1| |#2|) (-10 -7 (-15 -1390 ((-770 |#2|) (-1 |#2| |#1|) (-770 |#1|))) (-15 -1390 ((-770 |#2|) (-1 |#2| |#1|) (-770 |#1|) (-770 |#2|)))) (-1013) (-1013)) (T -769))
+((-1390 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-770 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-770 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *1 (-769 *5 *6)))) (-1390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-770 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *2 (-770 *6)) (-5 *1 (-769 *5 *6)))))
+(-10 -7 (-15 -1390 ((-770 |#2|) (-1 |#2| |#1|) (-770 |#1|))) (-15 -1390 ((-770 |#2|) (-1 |#2| |#1|) (-770 |#1|) (-770 |#2|))))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL (|has| |#1| (-21)))) (-1232 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1606 (((-521) $) NIL (|has| |#1| (-782)))) (-2547 (($) NIL (|has| |#1| (-21)) CONST)) (-1297 (((-3 (-521) "failed") $) NIL (|has| |#1| (-961 (-521)))) (((-3 (-381 (-521)) "failed") $) NIL (|has| |#1| (-961 (-381 (-521))))) (((-3 |#1| "failed") $) 15)) (-1483 (((-521) $) NIL (|has| |#1| (-961 (-521)))) (((-381 (-521)) $) NIL (|has| |#1| (-961 (-381 (-521))))) ((|#1| $) 9)) (-1257 (((-3 $ "failed") $) 40 (|has| |#1| (-782)))) (-1521 (((-3 (-381 (-521)) "failed") $) 48 (|has| |#1| (-506)))) (-3190 (((-108) $) 43 (|has| |#1| (-506)))) (-2082 (((-381 (-521)) $) 45 (|has| |#1| (-506)))) (-3951 (((-108) $) NIL (|has| |#1| (-782)))) (-3996 (((-108) $) NIL (|has| |#1| (-782)))) (-2210 (((-108) $) NIL (|has| |#1| (-782)))) (-2810 (($ $ $) NIL (|has| |#1| (-782)))) (-2446 (($ $ $) NIL (|has| |#1| (-782)))) (-3688 (((-1067) $) NIL)) (-2845 (($) 13)) (-3360 (((-108) $) 12)) (-4147 (((-1031) $) NIL)) (-2986 (((-108) $) 11)) (-2189 (((-792) $) 18) (($ (-381 (-521))) NIL (|has| |#1| (-961 (-381 (-521))))) (($ |#1|) 8) (($ (-521)) NIL (-3703 (|has| |#1| (-782)) (|has| |#1| (-961 (-521)))))) (-3846 (((-707)) 34 (|has| |#1| (-782)))) (-3304 (($ $) NIL (|has| |#1| (-782)))) (-3505 (($ $ (-850)) NIL (|has| |#1| (-782))) (($ $ (-707)) NIL (|has| |#1| (-782)))) (-3561 (($) 22 (|has| |#1| (-21)) CONST)) (-3572 (($) 31 (|has| |#1| (-782)) CONST)) (-1574 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1558 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1531 (((-108) $ $) 20)) (-1566 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1549 (((-108) $ $) 42 (|has| |#1| (-782)))) (-1612 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 27 (|has| |#1| (-21)))) (-1602 (($ $ $) 29 (|has| |#1| (-21)))) (** (($ $ (-850)) NIL (|has| |#1| (-782))) (($ $ (-707)) NIL (|has| |#1| (-782)))) (* (($ $ $) 37 (|has| |#1| (-782))) (($ (-521) $) 25 (|has| |#1| (-21))) (($ (-707) $) NIL (|has| |#1| (-21))) (($ (-850) $) NIL (|has| |#1| (-21)))))
+(((-770 |#1|) (-13 (-1013) (-385 |#1|) (-10 -8 (-15 -2845 ($)) (-15 -2986 ((-108) $)) (-15 -3360 ((-108) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-782)) (-6 (-782)) |%noBranch|) (IF (|has| |#1| (-506)) (PROGN (-15 -3190 ((-108) $)) (-15 -2082 ((-381 (-521)) $)) (-15 -1521 ((-3 (-381 (-521)) "failed") $))) |%noBranch|))) (-1013)) (T -770))
+((-2845 (*1 *1) (-12 (-5 *1 (-770 *2)) (-4 *2 (-1013)))) (-2986 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-770 *3)) (-4 *3 (-1013)))) (-3360 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-770 *3)) (-4 *3 (-1013)))) (-3190 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-770 *3)) (-4 *3 (-506)) (-4 *3 (-1013)))) (-2082 (*1 *2 *1) (-12 (-5 *2 (-381 (-521))) (-5 *1 (-770 *3)) (-4 *3 (-506)) (-4 *3 (-1013)))) (-1521 (*1 *2 *1) (|partial| -12 (-5 *2 (-381 (-521))) (-5 *1 (-770 *3)) (-4 *3 (-506)) (-4 *3 (-1013)))))
+(-13 (-1013) (-385 |#1|) (-10 -8 (-15 -2845 ($)) (-15 -2986 ((-108) $)) (-15 -3360 ((-108) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-782)) (-6 (-782)) |%noBranch|) (IF (|has| |#1| (-506)) (PROGN (-15 -3190 ((-108) $)) (-15 -2082 ((-381 (-521)) $)) (-15 -1521 ((-3 (-381 (-521)) "failed") $))) |%noBranch|)))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-1232 (((-3 $ "failed") $ $) NIL)) (-2547 (($) NIL T CONST)) (-1297 (((-3 |#1| "failed") $) NIL) (((-3 (-110) "failed") $) NIL)) (-1483 ((|#1| $) NIL) (((-110) $) NIL)) (-1257 (((-3 $ "failed") $) NIL)) (-1712 ((|#1| (-110) |#1|) NIL)) (-3996 (((-108) $) NIL)) (-1876 (($ |#1| (-335 (-110))) NIL)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2099 (($ $ (-1 |#1| |#1|)) NIL)) (-2394 (($ $ (-1 |#1| |#1|)) NIL)) (-2544 ((|#1| $ |#1|) NIL)) (-1997 ((|#1| |#1|) NIL (|has| |#1| (-157)))) (-2189 (((-792) $) NIL) (($ (-521)) NIL) (($ |#1|) NIL) (($ (-110)) NIL)) (-1671 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-3846 (((-707)) NIL)) (-2399 (($ $) NIL (|has| |#1| (-157))) (($ $ $) NIL (|has| |#1| (-157)))) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (-3561 (($) NIL T CONST)) (-3572 (($) NIL T CONST)) (-1531 (((-108) $ $) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ (-110) (-521)) NIL) (($ $ (-521)) NIL)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-157))) (($ $ |#1|) NIL (|has| |#1| (-157)))))
+(((-771 |#1|) (-13 (-970) (-961 |#1|) (-961 (-110)) (-261 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |#1| (-157)) (PROGN (-6 (-37 |#1|)) (-15 -2399 ($ $)) (-15 -2399 ($ $ $)) (-15 -1997 (|#1| |#1|))) |%noBranch|) (-15 -2394 ($ $ (-1 |#1| |#1|))) (-15 -2099 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-110) (-521))) (-15 ** ($ $ (-521))) (-15 -1712 (|#1| (-110) |#1|)) (-15 -1876 ($ |#1| (-335 (-110)))))) (-970)) (T -771))
+((-2399 (*1 *1 *1) (-12 (-5 *1 (-771 *2)) (-4 *2 (-157)) (-4 *2 (-970)))) (-2399 (*1 *1 *1 *1) (-12 (-5 *1 (-771 *2)) (-4 *2 (-157)) (-4 *2 (-970)))) (-1997 (*1 *2 *2) (-12 (-5 *1 (-771 *2)) (-4 *2 (-157)) (-4 *2 (-970)))) (-2394 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-970)) (-5 *1 (-771 *3)))) (-2099 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-970)) (-5 *1 (-771 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-521)) (-5 *1 (-771 *4)) (-4 *4 (-970)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-771 *3)) (-4 *3 (-970)))) (-1712 (*1 *2 *3 *2) (-12 (-5 *3 (-110)) (-5 *1 (-771 *2)) (-4 *2 (-970)))) (-1876 (*1 *1 *2 *3) (-12 (-5 *3 (-335 (-110))) (-5 *1 (-771 *2)) (-4 *2 (-970)))))
+(-13 (-970) (-961 |#1|) (-961 (-110)) (-261 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |#1| (-157)) (PROGN (-6 (-37 |#1|)) (-15 -2399 ($ $)) (-15 -2399 ($ $ $)) (-15 -1997 (|#1| |#1|))) |%noBranch|) (-15 -2394 ($ $ (-1 |#1| |#1|))) (-15 -2099 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-110) (-521))) (-15 ** ($ $ (-521))) (-15 -1712 (|#1| (-110) |#1|)) (-15 -1876 ($ |#1| (-335 (-110))))))
+((-3392 (((-192 (-471)) (-1067)) 8)))
+(((-772) (-10 -7 (-15 -3392 ((-192 (-471)) (-1067))))) (T -772))
+((-3392 (*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-192 (-471))) (-5 *1 (-772)))))
+(-10 -7 (-15 -3392 ((-192 (-471)) (-1067))))
+((-1415 (((-108) $ $) 7)) (-1635 (((-959) (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202))))) 14) (((-959) (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-777 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-777 (-202)))))) 13)) (-1797 (((-2 (|:| -1797 (-353)) (|:| |explanations| (-1067))) (-982) (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-777 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-777 (-202)))))) 16) (((-2 (|:| -1797 (-353)) (|:| |explanations| (-1067))) (-982) (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202))))) 15)) (-3688 (((-1067) $) 9)) (-4147 (((-1031) $) 10)) (-2189 (((-792) $) 11)) (-1531 (((-108) $ $) 6)))
+(((-773) (-1196)) (T -773))
+((-1797 (*1 *2 *3 *4) (-12 (-4 *1 (-773)) (-5 *3 (-982)) (-5 *4 (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-777 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-777 (-202)))))) (-5 *2 (-2 (|:| -1797 (-353)) (|:| |explanations| (-1067)))))) (-1797 (*1 *2 *3 *4) (-12 (-4 *1 (-773)) (-5 *3 (-982)) (-5 *4 (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202))))) (-5 *2 (-2 (|:| -1797 (-353)) (|:| |explanations| (-1067)))))) (-1635 (*1 *2 *3) (-12 (-4 *1 (-773)) (-5 *3 (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202))))) (-5 *2 (-959)))) (-1635 (*1 *2 *3) (-12 (-4 *1 (-773)) (-5 *3 (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-777 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-777 (-202)))))) (-5 *2 (-959)))))
+(-13 (-1013) (-10 -7 (-15 -1797 ((-2 (|:| -1797 (-353)) (|:| |explanations| (-1067))) (-982) (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-777 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-777 (-202))))))) (-15 -1797 ((-2 (|:| -1797 (-353)) (|:| |explanations| (-1067))) (-982) (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202)))))) (-15 -1635 ((-959) (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202)))))) (-15 -1635 ((-959) (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-777 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-777 (-202)))))))))
+(((-97) . T) ((-561 (-792)) . T) ((-1013) . T))
+((-2003 (((-959) (-587 (-290 (-353))) (-587 (-353))) 143) (((-959) (-290 (-353)) (-587 (-353))) 141) (((-959) (-290 (-353)) (-587 (-353)) (-587 (-777 (-353))) (-587 (-777 (-353)))) 140) (((-959) (-290 (-353)) (-587 (-353)) (-587 (-777 (-353))) (-587 (-290 (-353))) (-587 (-777 (-353)))) 139) (((-959) (-775)) 112) (((-959) (-775) (-982)) 111)) (-1797 (((-2 (|:| -1797 (-353)) (|:| -2884 (-1067)) (|:| |explanations| (-587 (-1067)))) (-775) (-982)) 76) (((-2 (|:| -1797 (-353)) (|:| -2884 (-1067)) (|:| |explanations| (-587 (-1067)))) (-775)) 78)) (-3915 (((-959) (-587 (-290 (-353))) (-587 (-353))) 144) (((-959) (-775)) 128)))
+(((-774) (-10 -7 (-15 -1797 ((-2 (|:| -1797 (-353)) (|:| -2884 (-1067)) (|:| |explanations| (-587 (-1067)))) (-775))) (-15 -1797 ((-2 (|:| -1797 (-353)) (|:| -2884 (-1067)) (|:| |explanations| (-587 (-1067)))) (-775) (-982))) (-15 -2003 ((-959) (-775) (-982))) (-15 -2003 ((-959) (-775))) (-15 -3915 ((-959) (-775))) (-15 -2003 ((-959) (-290 (-353)) (-587 (-353)) (-587 (-777 (-353))) (-587 (-290 (-353))) (-587 (-777 (-353))))) (-15 -2003 ((-959) (-290 (-353)) (-587 (-353)) (-587 (-777 (-353))) (-587 (-777 (-353))))) (-15 -2003 ((-959) (-290 (-353)) (-587 (-353)))) (-15 -2003 ((-959) (-587 (-290 (-353))) (-587 (-353)))) (-15 -3915 ((-959) (-587 (-290 (-353))) (-587 (-353)))))) (T -774))
+((-3915 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-290 (-353)))) (-5 *4 (-587 (-353))) (-5 *2 (-959)) (-5 *1 (-774)))) (-2003 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-290 (-353)))) (-5 *4 (-587 (-353))) (-5 *2 (-959)) (-5 *1 (-774)))) (-2003 (*1 *2 *3 *4) (-12 (-5 *3 (-290 (-353))) (-5 *4 (-587 (-353))) (-5 *2 (-959)) (-5 *1 (-774)))) (-2003 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-290 (-353))) (-5 *4 (-587 (-353))) (-5 *5 (-587 (-777 (-353)))) (-5 *2 (-959)) (-5 *1 (-774)))) (-2003 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-587 (-353))) (-5 *5 (-587 (-777 (-353)))) (-5 *6 (-587 (-290 (-353)))) (-5 *3 (-290 (-353))) (-5 *2 (-959)) (-5 *1 (-774)))) (-3915 (*1 *2 *3) (-12 (-5 *3 (-775)) (-5 *2 (-959)) (-5 *1 (-774)))) (-2003 (*1 *2 *3) (-12 (-5 *3 (-775)) (-5 *2 (-959)) (-5 *1 (-774)))) (-2003 (*1 *2 *3 *4) (-12 (-5 *3 (-775)) (-5 *4 (-982)) (-5 *2 (-959)) (-5 *1 (-774)))) (-1797 (*1 *2 *3 *4) (-12 (-5 *3 (-775)) (-5 *4 (-982)) (-5 *2 (-2 (|:| -1797 (-353)) (|:| -2884 (-1067)) (|:| |explanations| (-587 (-1067))))) (-5 *1 (-774)))) (-1797 (*1 *2 *3) (-12 (-5 *3 (-775)) (-5 *2 (-2 (|:| -1797 (-353)) (|:| -2884 (-1067)) (|:| |explanations| (-587 (-1067))))) (-5 *1 (-774)))))
+(-10 -7 (-15 -1797 ((-2 (|:| -1797 (-353)) (|:| -2884 (-1067)) (|:| |explanations| (-587 (-1067)))) (-775))) (-15 -1797 ((-2 (|:| -1797 (-353)) (|:| -2884 (-1067)) (|:| |explanations| (-587 (-1067)))) (-775) (-982))) (-15 -2003 ((-959) (-775) (-982))) (-15 -2003 ((-959) (-775))) (-15 -3915 ((-959) (-775))) (-15 -2003 ((-959) (-290 (-353)) (-587 (-353)) (-587 (-777 (-353))) (-587 (-290 (-353))) (-587 (-777 (-353))))) (-15 -2003 ((-959) (-290 (-353)) (-587 (-353)) (-587 (-777 (-353))) (-587 (-777 (-353))))) (-15 -2003 ((-959) (-290 (-353)) (-587 (-353)))) (-15 -2003 ((-959) (-587 (-290 (-353))) (-587 (-353)))) (-15 -3915 ((-959) (-587 (-290 (-353))) (-587 (-353)))))
+((-1415 (((-108) $ $) NIL)) (-1483 (((-3 (|:| |noa| (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-777 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-777 (-202)))))) (|:| |lsa| (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202)))))) $) 15)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2189 (((-792) $) 14) (($ (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-777 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-777 (-202)))))) 8) (($ (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202))))) 10) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-777 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-777 (-202)))))) (|:| |lsa| (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202))))))) 12)) (-1531 (((-108) $ $) NIL)))
+(((-775) (-13 (-1013) (-10 -8 (-15 -2189 ($ (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-777 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-777 (-202))))))) (-15 -2189 ($ (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202)))))) (-15 -2189 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-777 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-777 (-202)))))) (|:| |lsa| (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202)))))))) (-15 -2189 ((-792) $)) (-15 -1483 ((-3 (|:| |noa| (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-777 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-777 (-202)))))) (|:| |lsa| (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202)))))) $))))) (T -775))
+((-2189 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-775)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-777 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-777 (-202)))))) (-5 *1 (-775)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202))))) (-5 *1 (-775)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-777 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-777 (-202)))))) (|:| |lsa| (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202))))))) (-5 *1 (-775)))) (-1483 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-777 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-777 (-202)))))) (|:| |lsa| (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202))))))) (-5 *1 (-775)))))
+(-13 (-1013) (-10 -8 (-15 -2189 ($ (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-777 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-777 (-202))))))) (-15 -2189 ($ (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202)))))) (-15 -2189 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-777 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-777 (-202)))))) (|:| |lsa| (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202)))))))) (-15 -2189 ((-792) $)) (-15 -1483 ((-3 (|:| |noa| (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-777 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-777 (-202)))))) (|:| |lsa| (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202)))))) $))))
+((-1390 (((-777 |#2|) (-1 |#2| |#1|) (-777 |#1|) (-777 |#2|) (-777 |#2|)) 13) (((-777 |#2|) (-1 |#2| |#1|) (-777 |#1|)) 14)))
+(((-776 |#1| |#2|) (-10 -7 (-15 -1390 ((-777 |#2|) (-1 |#2| |#1|) (-777 |#1|))) (-15 -1390 ((-777 |#2|) (-1 |#2| |#1|) (-777 |#1|) (-777 |#2|) (-777 |#2|)))) (-1013) (-1013)) (T -776))
+((-1390 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-777 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-777 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *1 (-776 *5 *6)))) (-1390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-777 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *2 (-777 *6)) (-5 *1 (-776 *5 *6)))))
+(-10 -7 (-15 -1390 ((-777 |#2|) (-1 |#2| |#1|) (-777 |#1|))) (-15 -1390 ((-777 |#2|) (-1 |#2| |#1|) (-777 |#1|) (-777 |#2|) (-777 |#2|))))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL (|has| |#1| (-21)))) (-2556 (((-1031) $) 24)) (-1232 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1606 (((-521) $) NIL (|has| |#1| (-782)))) (-2547 (($) NIL (|has| |#1| (-21)) CONST)) (-1297 (((-3 (-521) "failed") $) NIL (|has| |#1| (-961 (-521)))) (((-3 (-381 (-521)) "failed") $) NIL (|has| |#1| (-961 (-381 (-521))))) (((-3 |#1| "failed") $) 16)) (-1483 (((-521) $) NIL (|has| |#1| (-961 (-521)))) (((-381 (-521)) $) NIL (|has| |#1| (-961 (-381 (-521))))) ((|#1| $) 9)) (-1257 (((-3 $ "failed") $) 47 (|has| |#1| (-782)))) (-1521 (((-3 (-381 (-521)) "failed") $) 54 (|has| |#1| (-506)))) (-3190 (((-108) $) 49 (|has| |#1| (-506)))) (-2082 (((-381 (-521)) $) 52 (|has| |#1| (-506)))) (-3951 (((-108) $) NIL (|has| |#1| (-782)))) (-2869 (($) 13)) (-3996 (((-108) $) NIL (|has| |#1| (-782)))) (-2210 (((-108) $) NIL (|has| |#1| (-782)))) (-2882 (($) 14)) (-2810 (($ $ $) NIL (|has| |#1| (-782)))) (-2446 (($ $ $) NIL (|has| |#1| (-782)))) (-3688 (((-1067) $) NIL)) (-3360 (((-108) $) 12)) (-4147 (((-1031) $) NIL)) (-2986 (((-108) $) 11)) (-2189 (((-792) $) 22) (($ (-381 (-521))) NIL (|has| |#1| (-961 (-381 (-521))))) (($ |#1|) 8) (($ (-521)) NIL (-3703 (|has| |#1| (-782)) (|has| |#1| (-961 (-521)))))) (-3846 (((-707)) 41 (|has| |#1| (-782)))) (-3304 (($ $) NIL (|has| |#1| (-782)))) (-3505 (($ $ (-850)) NIL (|has| |#1| (-782))) (($ $ (-707)) NIL (|has| |#1| (-782)))) (-3561 (($) 29 (|has| |#1| (-21)) CONST)) (-3572 (($) 38 (|has| |#1| (-782)) CONST)) (-1574 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1558 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1531 (((-108) $ $) 27)) (-1566 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1549 (((-108) $ $) 48 (|has| |#1| (-782)))) (-1612 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 34 (|has| |#1| (-21)))) (-1602 (($ $ $) 36 (|has| |#1| (-21)))) (** (($ $ (-850)) NIL (|has| |#1| (-782))) (($ $ (-707)) NIL (|has| |#1| (-782)))) (* (($ $ $) 44 (|has| |#1| (-782))) (($ (-521) $) 32 (|has| |#1| (-21))) (($ (-707) $) NIL (|has| |#1| (-21))) (($ (-850) $) NIL (|has| |#1| (-21)))))
+(((-777 |#1|) (-13 (-1013) (-385 |#1|) (-10 -8 (-15 -2869 ($)) (-15 -2882 ($)) (-15 -2986 ((-108) $)) (-15 -3360 ((-108) $)) (-15 -2556 ((-1031) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-782)) (-6 (-782)) |%noBranch|) (IF (|has| |#1| (-506)) (PROGN (-15 -3190 ((-108) $)) (-15 -2082 ((-381 (-521)) $)) (-15 -1521 ((-3 (-381 (-521)) "failed") $))) |%noBranch|))) (-1013)) (T -777))
+((-2869 (*1 *1) (-12 (-5 *1 (-777 *2)) (-4 *2 (-1013)))) (-2882 (*1 *1) (-12 (-5 *1 (-777 *2)) (-4 *2 (-1013)))) (-2986 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-777 *3)) (-4 *3 (-1013)))) (-3360 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-777 *3)) (-4 *3 (-1013)))) (-2556 (*1 *2 *1) (-12 (-5 *2 (-1031)) (-5 *1 (-777 *3)) (-4 *3 (-1013)))) (-3190 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-777 *3)) (-4 *3 (-506)) (-4 *3 (-1013)))) (-2082 (*1 *2 *1) (-12 (-5 *2 (-381 (-521))) (-5 *1 (-777 *3)) (-4 *3 (-506)) (-4 *3 (-1013)))) (-1521 (*1 *2 *1) (|partial| -12 (-5 *2 (-381 (-521))) (-5 *1 (-777 *3)) (-4 *3 (-506)) (-4 *3 (-1013)))))
+(-13 (-1013) (-385 |#1|) (-10 -8 (-15 -2869 ($)) (-15 -2882 ($)) (-15 -2986 ((-108) $)) (-15 -3360 ((-108) $)) (-15 -2556 ((-1031) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-782)) (-6 (-782)) |%noBranch|) (IF (|has| |#1| (-506)) (PROGN (-15 -3190 ((-108) $)) (-15 -2082 ((-381 (-521)) $)) (-15 -1521 ((-3 (-381 (-521)) "failed") $))) |%noBranch|)))
+((-1415 (((-108) $ $) 7)) (-1630 (((-707)) 20)) (-3250 (($) 23)) (-2810 (($ $ $) 13)) (-2446 (($ $ $) 14)) (-2715 (((-850) $) 22)) (-3688 (((-1067) $) 9)) (-2716 (($ (-850)) 21)) (-4147 (((-1031) $) 10)) (-2189 (((-792) $) 11)) (-1574 (((-108) $ $) 16)) (-1558 (((-108) $ $) 17)) (-1531 (((-108) $ $) 6)) (-1566 (((-108) $ $) 15)) (-1549 (((-108) $ $) 18)))
+(((-778) (-1196)) (T -778))
+NIL
+(-13 (-784) (-342))
+(((-97) . T) ((-561 (-792)) . T) ((-342) . T) ((-784) . T) ((-1013) . T))
+((-1820 (((-108) (-1165 |#2|) (-1165 |#2|)) 17)) (-1435 (((-108) (-1165 |#2|) (-1165 |#2|)) 18)) (-1670 (((-108) (-1165 |#2|) (-1165 |#2|)) 14)))
+(((-779 |#1| |#2|) (-10 -7 (-15 -1670 ((-108) (-1165 |#2|) (-1165 |#2|))) (-15 -1820 ((-108) (-1165 |#2|) (-1165 |#2|))) (-15 -1435 ((-108) (-1165 |#2|) (-1165 |#2|)))) (-707) (-728)) (T -779))
+((-1435 (*1 *2 *3 *3) (-12 (-5 *3 (-1165 *5)) (-4 *5 (-728)) (-5 *2 (-108)) (-5 *1 (-779 *4 *5)) (-14 *4 (-707)))) (-1820 (*1 *2 *3 *3) (-12 (-5 *3 (-1165 *5)) (-4 *5 (-728)) (-5 *2 (-108)) (-5 *1 (-779 *4 *5)) (-14 *4 (-707)))) (-1670 (*1 *2 *3 *3) (-12 (-5 *3 (-1165 *5)) (-4 *5 (-728)) (-5 *2 (-108)) (-5 *1 (-779 *4 *5)) (-14 *4 (-707)))))
+(-10 -7 (-15 -1670 ((-108) (-1165 |#2|) (-1165 |#2|))) (-15 -1820 ((-108) (-1165 |#2|) (-1165 |#2|))) (-15 -1435 ((-108) (-1165 |#2|) (-1165 |#2|))))
+((-1415 (((-108) $ $) 7)) (-2547 (($) 24 T CONST)) (-1257 (((-3 $ "failed") $) 28)) (-3996 (((-108) $) 25)) (-2810 (($ $ $) 13)) (-2446 (($ $ $) 14)) (-3688 (((-1067) $) 9)) (-4147 (((-1031) $) 10)) (-2189 (((-792) $) 11)) (-3505 (($ $ (-707)) 27) (($ $ (-850)) 22)) (-3572 (($) 23 T CONST)) (-1574 (((-108) $ $) 16)) (-1558 (((-108) $ $) 17)) (-1531 (((-108) $ $) 6)) (-1566 (((-108) $ $) 15)) (-1549 (((-108) $ $) 18)) (** (($ $ (-707)) 26) (($ $ (-850)) 21)) (* (($ $ $) 20)))
+(((-780) (-1196)) (T -780))
+NIL
+(-13 (-784) (-663))
+(((-97) . T) ((-561 (-792)) . T) ((-663) . T) ((-784) . T) ((-1025) . T) ((-1013) . T))
+((-1606 (((-521) $) 17)) (-3951 (((-108) $) 10)) (-2210 (((-108) $) 11)) (-3304 (($ $) 19)))
+(((-781 |#1|) (-10 -8 (-15 -3304 (|#1| |#1|)) (-15 -1606 ((-521) |#1|)) (-15 -2210 ((-108) |#1|)) (-15 -3951 ((-108) |#1|))) (-782)) (T -781))
+NIL
+(-10 -8 (-15 -3304 (|#1| |#1|)) (-15 -1606 ((-521) |#1|)) (-15 -2210 ((-108) |#1|)) (-15 -3951 ((-108) |#1|)))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 24)) (-1232 (((-3 $ "failed") $ $) 26)) (-1606 (((-521) $) 33)) (-2547 (($) 23 T CONST)) (-1257 (((-3 $ "failed") $) 39)) (-3951 (((-108) $) 35)) (-3996 (((-108) $) 42)) (-2210 (((-108) $) 34)) (-2810 (($ $ $) 13)) (-2446 (($ $ $) 14)) (-3688 (((-1067) $) 9)) (-4147 (((-1031) $) 10)) (-2189 (((-792) $) 11) (($ (-521)) 45)) (-3846 (((-707)) 44)) (-3304 (($ $) 32)) (-3505 (($ $ (-707)) 40) (($ $ (-850)) 36)) (-3561 (($) 22 T CONST)) (-3572 (($) 43 T CONST)) (-1574 (((-108) $ $) 16)) (-1558 (((-108) $ $) 17)) (-1531 (((-108) $ $) 6)) (-1566 (((-108) $ $) 15)) (-1549 (((-108) $ $) 18)) (-1612 (($ $ $) 28) (($ $) 27)) (-1602 (($ $ $) 20)) (** (($ $ (-707)) 41) (($ $ (-850)) 37)) (* (($ (-707) $) 25) (($ (-850) $) 21) (($ (-521) $) 29) (($ $ $) 38)))
+(((-782) (-1196)) (T -782))
+((-3951 (*1 *2 *1) (-12 (-4 *1 (-782)) (-5 *2 (-108)))) (-2210 (*1 *2 *1) (-12 (-4 *1 (-782)) (-5 *2 (-108)))) (-1606 (*1 *2 *1) (-12 (-4 *1 (-782)) (-5 *2 (-521)))) (-3304 (*1 *1 *1) (-4 *1 (-782))))
+(-13 (-727) (-970) (-663) (-10 -8 (-15 -3951 ((-108) $)) (-15 -2210 ((-108) $)) (-15 -1606 ((-521) $)) (-15 -3304 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-561 (-792)) . T) ((-589 $) . T) ((-663) . T) ((-727) . T) ((-728) . T) ((-730) . T) ((-732) . T) ((-784) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T))
+((-2810 (($ $ $) 10)) (-2446 (($ $ $) 9)) (-1574 (((-108) $ $) 13)) (-1558 (((-108) $ $) 11)) (-1566 (((-108) $ $) 14)))
+(((-783 |#1|) (-10 -8 (-15 -2810 (|#1| |#1| |#1|)) (-15 -2446 (|#1| |#1| |#1|)) (-15 -1566 ((-108) |#1| |#1|)) (-15 -1574 ((-108) |#1| |#1|)) (-15 -1558 ((-108) |#1| |#1|))) (-784)) (T -783))
+NIL
+(-10 -8 (-15 -2810 (|#1| |#1| |#1|)) (-15 -2446 (|#1| |#1| |#1|)) (-15 -1566 ((-108) |#1| |#1|)) (-15 -1574 ((-108) |#1| |#1|)) (-15 -1558 ((-108) |#1| |#1|)))
+((-1415 (((-108) $ $) 7)) (-2810 (($ $ $) 13)) (-2446 (($ $ $) 14)) (-3688 (((-1067) $) 9)) (-4147 (((-1031) $) 10)) (-2189 (((-792) $) 11)) (-1574 (((-108) $ $) 16)) (-1558 (((-108) $ $) 17)) (-1531 (((-108) $ $) 6)) (-1566 (((-108) $ $) 15)) (-1549 (((-108) $ $) 18)))
+(((-784) (-1196)) (T -784))
+((-1549 (*1 *2 *1 *1) (-12 (-4 *1 (-784)) (-5 *2 (-108)))) (-1558 (*1 *2 *1 *1) (-12 (-4 *1 (-784)) (-5 *2 (-108)))) (-1574 (*1 *2 *1 *1) (-12 (-4 *1 (-784)) (-5 *2 (-108)))) (-1566 (*1 *2 *1 *1) (-12 (-4 *1 (-784)) (-5 *2 (-108)))) (-2446 (*1 *1 *1 *1) (-4 *1 (-784))) (-2810 (*1 *1 *1 *1) (-4 *1 (-784))))
+(-13 (-1013) (-10 -8 (-15 -1549 ((-108) $ $)) (-15 -1558 ((-108) $ $)) (-15 -1574 ((-108) $ $)) (-15 -1566 ((-108) $ $)) (-15 -2446 ($ $ $)) (-15 -2810 ($ $ $))))
+(((-97) . T) ((-561 (-792)) . T) ((-1013) . T))
+((-1479 (($ $ $) 46)) (-3067 (($ $ $) 45)) (-3497 (($ $ $) 43)) (-1481 (($ $ $) 52)) (-2743 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) 47)) (-3198 (((-3 $ "failed") $ $) 50)) (-1297 (((-3 (-521) "failed") $) NIL) (((-3 (-381 (-521)) "failed") $) NIL) (((-3 |#2| "failed") $) 26)) (-3666 (($ $) 36)) (-3335 (($ $ $) 40)) (-3530 (($ $ $) 39)) (-4103 (($ $ $) 48)) (-2532 (($ $ $) 54)) (-3337 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) 42)) (-3999 (((-3 $ "failed") $ $) 49)) (-2230 (((-3 $ "failed") $ |#2|) 29)) (-2403 ((|#2| $) 33)) (-2189 (((-792) $) NIL) (($ (-521)) NIL) (($ (-381 (-521))) NIL) (($ |#2|) 12)) (-1259 (((-587 |#2|) $) 19)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 23)))
+(((-785 |#1| |#2|) (-10 -8 (-15 -4103 (|#1| |#1| |#1|)) (-15 -2743 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1383 |#1|)) |#1| |#1|)) (-15 -1481 (|#1| |#1| |#1|)) (-15 -3198 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1479 (|#1| |#1| |#1|)) (-15 -3067 (|#1| |#1| |#1|)) (-15 -3497 (|#1| |#1| |#1|)) (-15 -3337 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1383 |#1|)) |#1| |#1|)) (-15 -2532 (|#1| |#1| |#1|)) (-15 -3999 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3335 (|#1| |#1| |#1|)) (-15 -3530 (|#1| |#1| |#1|)) (-15 -3666 (|#1| |#1|)) (-15 -2403 (|#2| |#1|)) (-15 -2230 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1259 ((-587 |#2|) |#1|)) (-15 -1297 ((-3 |#2| "failed") |#1|)) (-15 -2189 (|#1| |#2|)) (-15 -2189 (|#1| (-381 (-521)))) (-15 -1297 ((-3 (-381 (-521)) "failed") |#1|)) (-15 -1297 ((-3 (-521) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2189 (|#1| (-521))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-521) |#1|)) (-15 * (|#1| (-707) |#1|)) (-15 * (|#1| (-850) |#1|)) (-15 -2189 ((-792) |#1|))) (-786 |#2|) (-970)) (T -785))
+NIL
+(-10 -8 (-15 -4103 (|#1| |#1| |#1|)) (-15 -2743 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1383 |#1|)) |#1| |#1|)) (-15 -1481 (|#1| |#1| |#1|)) (-15 -3198 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1479 (|#1| |#1| |#1|)) (-15 -3067 (|#1| |#1| |#1|)) (-15 -3497 (|#1| |#1| |#1|)) (-15 -3337 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1383 |#1|)) |#1| |#1|)) (-15 -2532 (|#1| |#1| |#1|)) (-15 -3999 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3335 (|#1| |#1| |#1|)) (-15 -3530 (|#1| |#1| |#1|)) (-15 -3666 (|#1| |#1|)) (-15 -2403 (|#2| |#1|)) (-15 -2230 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1259 ((-587 |#2|) |#1|)) (-15 -1297 ((-3 |#2| "failed") |#1|)) (-15 -2189 (|#1| |#2|)) (-15 -2189 (|#1| (-381 (-521)))) (-15 -1297 ((-3 (-381 (-521)) "failed") |#1|)) (-15 -1297 ((-3 (-521) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2189 (|#1| (-521))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-521) |#1|)) (-15 * (|#1| (-707) |#1|)) (-15 * (|#1| (-850) |#1|)) (-15 -2189 ((-792) |#1|)))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-1232 (((-3 $ "failed") $ $) 19)) (-2547 (($) 17 T CONST)) (-1479 (($ $ $) 45 (|has| |#1| (-337)))) (-3067 (($ $ $) 46 (|has| |#1| (-337)))) (-3497 (($ $ $) 48 (|has| |#1| (-337)))) (-1481 (($ $ $) 43 (|has| |#1| (-337)))) (-2743 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) 42 (|has| |#1| (-337)))) (-3198 (((-3 $ "failed") $ $) 44 (|has| |#1| (-337)))) (-1265 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) 47 (|has| |#1| (-337)))) (-1297 (((-3 (-521) "failed") $) 74 (|has| |#1| (-961 (-521)))) (((-3 (-381 (-521)) "failed") $) 72 (|has| |#1| (-961 (-381 (-521))))) (((-3 |#1| "failed") $) 69)) (-1483 (((-521) $) 75 (|has| |#1| (-961 (-521)))) (((-381 (-521)) $) 73 (|has| |#1| (-961 (-381 (-521))))) ((|#1| $) 68)) (-3152 (($ $) 64)) (-1257 (((-3 $ "failed") $) 34)) (-3666 (($ $) 55 (|has| |#1| (-425)))) (-3996 (((-108) $) 31)) (-4043 (($ |#1| (-707)) 62)) (-1329 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) 57 (|has| |#1| (-513)))) (-2068 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) 58 (|has| |#1| (-513)))) (-3273 (((-707) $) 66)) (-3335 (($ $ $) 52 (|has| |#1| (-337)))) (-3530 (($ $ $) 53 (|has| |#1| (-337)))) (-4103 (($ $ $) 41 (|has| |#1| (-337)))) (-2532 (($ $ $) 50 (|has| |#1| (-337)))) (-3337 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) 49 (|has| |#1| (-337)))) (-3999 (((-3 $ "failed") $ $) 51 (|has| |#1| (-337)))) (-3420 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) 54 (|has| |#1| (-337)))) (-3135 ((|#1| $) 65)) (-3688 (((-1067) $) 9)) (-4147 (((-1031) $) 10)) (-2230 (((-3 $ "failed") $ |#1|) 59 (|has| |#1| (-513)))) (-1994 (((-707) $) 67)) (-2403 ((|#1| $) 56 (|has| |#1| (-425)))) (-2189 (((-792) $) 11) (($ (-521)) 28) (($ (-381 (-521))) 71 (|has| |#1| (-961 (-381 (-521))))) (($ |#1|) 70)) (-1259 (((-587 |#1|) $) 61)) (-3800 ((|#1| $ (-707)) 63)) (-3846 (((-707)) 29)) (-1616 ((|#1| $ |#1| |#1|) 60)) (-3505 (($ $ (-850)) 26) (($ $ (-707)) 33)) (-3561 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-707)) 32)) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ $ |#1|) 77) (($ |#1| $) 76)))
+(((-786 |#1|) (-1196) (-970)) (T -786))
+((-1994 (*1 *2 *1) (-12 (-4 *1 (-786 *3)) (-4 *3 (-970)) (-5 *2 (-707)))) (-3273 (*1 *2 *1) (-12 (-4 *1 (-786 *3)) (-4 *3 (-970)) (-5 *2 (-707)))) (-3135 (*1 *2 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-970)))) (-3152 (*1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-970)))) (-3800 (*1 *2 *1 *3) (-12 (-5 *3 (-707)) (-4 *1 (-786 *2)) (-4 *2 (-970)))) (-4043 (*1 *1 *2 *3) (-12 (-5 *3 (-707)) (-4 *1 (-786 *2)) (-4 *2 (-970)))) (-1259 (*1 *2 *1) (-12 (-4 *1 (-786 *3)) (-4 *3 (-970)) (-5 *2 (-587 *3)))) (-1616 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-786 *2)) (-4 *2 (-970)))) (-2230 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-786 *2)) (-4 *2 (-970)) (-4 *2 (-513)))) (-2068 (*1 *2 *1 *1) (-12 (-4 *3 (-513)) (-4 *3 (-970)) (-5 *2 (-2 (|:| -3727 *1) (|:| -3820 *1))) (-4 *1 (-786 *3)))) (-1329 (*1 *2 *1 *1) (-12 (-4 *3 (-513)) (-4 *3 (-970)) (-5 *2 (-2 (|:| -3727 *1) (|:| -3820 *1))) (-4 *1 (-786 *3)))) (-2403 (*1 *2 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-970)) (-4 *2 (-425)))) (-3666 (*1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-970)) (-4 *2 (-425)))) (-3420 (*1 *2 *1 *1) (-12 (-4 *3 (-337)) (-4 *3 (-970)) (-5 *2 (-2 (|:| -3727 *1) (|:| -3820 *1))) (-4 *1 (-786 *3)))) (-3530 (*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-970)) (-4 *2 (-337)))) (-3335 (*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-970)) (-4 *2 (-337)))) (-3999 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-786 *2)) (-4 *2 (-970)) (-4 *2 (-337)))) (-2532 (*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-970)) (-4 *2 (-337)))) (-3337 (*1 *2 *1 *1) (-12 (-4 *3 (-337)) (-4 *3 (-970)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1383 *1))) (-4 *1 (-786 *3)))) (-3497 (*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-970)) (-4 *2 (-337)))) (-1265 (*1 *2 *1 *1) (-12 (-4 *3 (-337)) (-4 *3 (-970)) (-5 *2 (-2 (|:| -3727 *1) (|:| -3820 *1))) (-4 *1 (-786 *3)))) (-3067 (*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-970)) (-4 *2 (-337)))) (-1479 (*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-970)) (-4 *2 (-337)))) (-3198 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-786 *2)) (-4 *2 (-970)) (-4 *2 (-337)))) (-1481 (*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-970)) (-4 *2 (-337)))) (-2743 (*1 *2 *1 *1) (-12 (-4 *3 (-337)) (-4 *3 (-970)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1383 *1))) (-4 *1 (-786 *3)))) (-4103 (*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-970)) (-4 *2 (-337)))))
+(-13 (-970) (-107 |t#1| |t#1|) (-385 |t#1|) (-10 -8 (-15 -1994 ((-707) $)) (-15 -3273 ((-707) $)) (-15 -3135 (|t#1| $)) (-15 -3152 ($ $)) (-15 -3800 (|t#1| $ (-707))) (-15 -4043 ($ |t#1| (-707))) (-15 -1259 ((-587 |t#1|) $)) (-15 -1616 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-157)) (-6 (-37 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-513)) (PROGN (-15 -2230 ((-3 $ "failed") $ |t#1|)) (-15 -2068 ((-2 (|:| -3727 $) (|:| -3820 $)) $ $)) (-15 -1329 ((-2 (|:| -3727 $) (|:| -3820 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-425)) (PROGN (-15 -2403 (|t#1| $)) (-15 -3666 ($ $))) |%noBranch|) (IF (|has| |t#1| (-337)) (PROGN (-15 -3420 ((-2 (|:| -3727 $) (|:| -3820 $)) $ $)) (-15 -3530 ($ $ $)) (-15 -3335 ($ $ $)) (-15 -3999 ((-3 $ "failed") $ $)) (-15 -2532 ($ $ $)) (-15 -3337 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $)) (-15 -3497 ($ $ $)) (-15 -1265 ((-2 (|:| -3727 $) (|:| -3820 $)) $ $)) (-15 -3067 ($ $ $)) (-15 -1479 ($ $ $)) (-15 -3198 ((-3 $ "failed") $ $)) (-15 -1481 ($ $ $)) (-15 -2743 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $)) (-15 -4103 ($ $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-157)) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-561 (-792)) . T) ((-385 |#1|) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-654 |#1|) |has| |#1| (-157)) ((-663) . T) ((-961 (-381 (-521))) |has| |#1| (-961 (-381 (-521)))) ((-961 (-521)) |has| |#1| (-961 (-521))) ((-961 |#1|) . T) ((-976 |#1|) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T))
+((-2486 ((|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|)) 21)) (-1265 (((-2 (|:| -3727 |#2|) (|:| -3820 |#2|)) |#2| |#2| (-94 |#1|)) 44 (|has| |#1| (-337)))) (-1329 (((-2 (|:| -3727 |#2|) (|:| -3820 |#2|)) |#2| |#2| (-94 |#1|)) 41 (|has| |#1| (-513)))) (-2068 (((-2 (|:| -3727 |#2|) (|:| -3820 |#2|)) |#2| |#2| (-94 |#1|)) 40 (|has| |#1| (-513)))) (-3420 (((-2 (|:| -3727 |#2|) (|:| -3820 |#2|)) |#2| |#2| (-94 |#1|)) 43 (|has| |#1| (-337)))) (-1616 ((|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|)) 32)))
+(((-787 |#1| |#2|) (-10 -7 (-15 -2486 (|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|))) (-15 -1616 (|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-513)) (PROGN (-15 -2068 ((-2 (|:| -3727 |#2|) (|:| -3820 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -1329 ((-2 (|:| -3727 |#2|) (|:| -3820 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|) (IF (|has| |#1| (-337)) (PROGN (-15 -3420 ((-2 (|:| -3727 |#2|) (|:| -3820 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -1265 ((-2 (|:| -3727 |#2|) (|:| -3820 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|)) (-970) (-786 |#1|)) (T -787))
+((-1265 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-337)) (-4 *5 (-970)) (-5 *2 (-2 (|:| -3727 *3) (|:| -3820 *3))) (-5 *1 (-787 *5 *3)) (-4 *3 (-786 *5)))) (-3420 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-337)) (-4 *5 (-970)) (-5 *2 (-2 (|:| -3727 *3) (|:| -3820 *3))) (-5 *1 (-787 *5 *3)) (-4 *3 (-786 *5)))) (-1329 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-513)) (-4 *5 (-970)) (-5 *2 (-2 (|:| -3727 *3) (|:| -3820 *3))) (-5 *1 (-787 *5 *3)) (-4 *3 (-786 *5)))) (-2068 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-513)) (-4 *5 (-970)) (-5 *2 (-2 (|:| -3727 *3) (|:| -3820 *3))) (-5 *1 (-787 *5 *3)) (-4 *3 (-786 *5)))) (-1616 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-94 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-970)) (-5 *1 (-787 *2 *3)) (-4 *3 (-786 *2)))) (-2486 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-970)) (-5 *1 (-787 *5 *2)) (-4 *2 (-786 *5)))))
+(-10 -7 (-15 -2486 (|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|))) (-15 -1616 (|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-513)) (PROGN (-15 -2068 ((-2 (|:| -3727 |#2|) (|:| -3820 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -1329 ((-2 (|:| -3727 |#2|) (|:| -3820 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|) (IF (|has| |#1| (-337)) (PROGN (-15 -3420 ((-2 (|:| -3727 |#2|) (|:| -3820 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -1265 ((-2 (|:| -3727 |#2|) (|:| -3820 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-1232 (((-3 $ "failed") $ $) NIL)) (-2547 (($) NIL T CONST)) (-1479 (($ $ $) NIL (|has| |#1| (-337)))) (-3067 (($ $ $) NIL (|has| |#1| (-337)))) (-3497 (($ $ $) NIL (|has| |#1| (-337)))) (-1481 (($ $ $) NIL (|has| |#1| (-337)))) (-2743 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL (|has| |#1| (-337)))) (-3198 (((-3 $ "failed") $ $) NIL (|has| |#1| (-337)))) (-1265 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) 25 (|has| |#1| (-337)))) (-1297 (((-3 (-521) "failed") $) NIL (|has| |#1| (-961 (-521)))) (((-3 (-381 (-521)) "failed") $) NIL (|has| |#1| (-961 (-381 (-521))))) (((-3 |#1| "failed") $) NIL)) (-1483 (((-521) $) NIL (|has| |#1| (-961 (-521)))) (((-381 (-521)) $) NIL (|has| |#1| (-961 (-381 (-521))))) ((|#1| $) NIL)) (-3152 (($ $) NIL)) (-1257 (((-3 $ "failed") $) NIL)) (-3666 (($ $) NIL (|has| |#1| (-425)))) (-2531 (((-792) $ (-792)) NIL)) (-3996 (((-108) $) NIL)) (-4043 (($ |#1| (-707)) NIL)) (-1329 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) 21 (|has| |#1| (-513)))) (-2068 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) 19 (|has| |#1| (-513)))) (-3273 (((-707) $) NIL)) (-3335 (($ $ $) NIL (|has| |#1| (-337)))) (-3530 (($ $ $) NIL (|has| |#1| (-337)))) (-4103 (($ $ $) NIL (|has| |#1| (-337)))) (-2532 (($ $ $) NIL (|has| |#1| (-337)))) (-3337 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL (|has| |#1| (-337)))) (-3999 (((-3 $ "failed") $ $) NIL (|has| |#1| (-337)))) (-3420 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) 23 (|has| |#1| (-337)))) (-3135 ((|#1| $) NIL)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2230 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-513)))) (-1994 (((-707) $) NIL)) (-2403 ((|#1| $) NIL (|has| |#1| (-425)))) (-2189 (((-792) $) NIL) (($ (-521)) NIL) (($ (-381 (-521))) NIL (|has| |#1| (-961 (-381 (-521))))) (($ |#1|) NIL)) (-1259 (((-587 |#1|) $) NIL)) (-3800 ((|#1| $ (-707)) NIL)) (-3846 (((-707)) NIL)) (-1616 ((|#1| $ |#1| |#1|) 15)) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (-3561 (($) NIL T CONST)) (-3572 (($) NIL T CONST)) (-1531 (((-108) $ $) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-788 |#1| |#2| |#3|) (-13 (-786 |#1|) (-10 -8 (-15 -2531 ((-792) $ (-792))))) (-970) (-94 |#1|) (-1 |#1| |#1|)) (T -788))
+((-2531 (*1 *2 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-788 *3 *4 *5)) (-4 *3 (-970)) (-14 *4 (-94 *3)) (-14 *5 (-1 *3 *3)))))
+(-13 (-786 |#1|) (-10 -8 (-15 -2531 ((-792) $ (-792)))))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-1232 (((-3 $ "failed") $ $) NIL)) (-2547 (($) NIL T CONST)) (-1479 (($ $ $) NIL (|has| |#2| (-337)))) (-3067 (($ $ $) NIL (|has| |#2| (-337)))) (-3497 (($ $ $) NIL (|has| |#2| (-337)))) (-1481 (($ $ $) NIL (|has| |#2| (-337)))) (-2743 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL (|has| |#2| (-337)))) (-3198 (((-3 $ "failed") $ $) NIL (|has| |#2| (-337)))) (-1265 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) NIL (|has| |#2| (-337)))) (-1297 (((-3 (-521) "failed") $) NIL (|has| |#2| (-961 (-521)))) (((-3 (-381 (-521)) "failed") $) NIL (|has| |#2| (-961 (-381 (-521))))) (((-3 |#2| "failed") $) NIL)) (-1483 (((-521) $) NIL (|has| |#2| (-961 (-521)))) (((-381 (-521)) $) NIL (|has| |#2| (-961 (-381 (-521))))) ((|#2| $) NIL)) (-3152 (($ $) NIL)) (-1257 (((-3 $ "failed") $) NIL)) (-3666 (($ $) NIL (|has| |#2| (-425)))) (-3996 (((-108) $) NIL)) (-4043 (($ |#2| (-707)) 16)) (-1329 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) NIL (|has| |#2| (-513)))) (-2068 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) NIL (|has| |#2| (-513)))) (-3273 (((-707) $) NIL)) (-3335 (($ $ $) NIL (|has| |#2| (-337)))) (-3530 (($ $ $) NIL (|has| |#2| (-337)))) (-4103 (($ $ $) NIL (|has| |#2| (-337)))) (-2532 (($ $ $) NIL (|has| |#2| (-337)))) (-3337 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL (|has| |#2| (-337)))) (-3999 (((-3 $ "failed") $ $) NIL (|has| |#2| (-337)))) (-3420 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) NIL (|has| |#2| (-337)))) (-3135 ((|#2| $) NIL)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2230 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-513)))) (-1994 (((-707) $) NIL)) (-2403 ((|#2| $) NIL (|has| |#2| (-425)))) (-2189 (((-792) $) 23) (($ (-521)) NIL) (($ (-381 (-521))) NIL (|has| |#2| (-961 (-381 (-521))))) (($ |#2|) NIL) (($ (-1161 |#1|)) 18)) (-1259 (((-587 |#2|) $) NIL)) (-3800 ((|#2| $ (-707)) NIL)) (-3846 (((-707)) NIL)) (-1616 ((|#2| $ |#2| |#2|) NIL)) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (-3561 (($) NIL T CONST)) (-3572 (($) 13 T CONST)) (-1531 (((-108) $ $) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-789 |#1| |#2| |#3| |#4|) (-13 (-786 |#2|) (-10 -8 (-15 -2189 ($ (-1161 |#1|))))) (-1084) (-970) (-94 |#2|) (-1 |#2| |#2|)) (T -789))
+((-2189 (*1 *1 *2) (-12 (-5 *2 (-1161 *3)) (-14 *3 (-1084)) (-5 *1 (-789 *3 *4 *5 *6)) (-4 *4 (-970)) (-14 *5 (-94 *4)) (-14 *6 (-1 *4 *4)))))
+(-13 (-786 |#2|) (-10 -8 (-15 -2189 ($ (-1161 |#1|)))))
+((-1765 ((|#1| (-707) |#1|) 35 (|has| |#1| (-37 (-381 (-521)))))) (-1448 ((|#1| (-707) (-707) |#1|) 27) ((|#1| (-707) |#1|) 20)) (-4185 ((|#1| (-707) |#1|) 31)) (-2251 ((|#1| (-707) |#1|) 29)) (-3936 ((|#1| (-707) |#1|) 28)))
+(((-790 |#1|) (-10 -7 (-15 -3936 (|#1| (-707) |#1|)) (-15 -2251 (|#1| (-707) |#1|)) (-15 -4185 (|#1| (-707) |#1|)) (-15 -1448 (|#1| (-707) |#1|)) (-15 -1448 (|#1| (-707) (-707) |#1|)) (IF (|has| |#1| (-37 (-381 (-521)))) (-15 -1765 (|#1| (-707) |#1|)) |%noBranch|)) (-157)) (T -790))
+((-1765 (*1 *2 *3 *2) (-12 (-5 *3 (-707)) (-5 *1 (-790 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-157)))) (-1448 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-707)) (-5 *1 (-790 *2)) (-4 *2 (-157)))) (-1448 (*1 *2 *3 *2) (-12 (-5 *3 (-707)) (-5 *1 (-790 *2)) (-4 *2 (-157)))) (-4185 (*1 *2 *3 *2) (-12 (-5 *3 (-707)) (-5 *1 (-790 *2)) (-4 *2 (-157)))) (-2251 (*1 *2 *3 *2) (-12 (-5 *3 (-707)) (-5 *1 (-790 *2)) (-4 *2 (-157)))) (-3936 (*1 *2 *3 *2) (-12 (-5 *3 (-707)) (-5 *1 (-790 *2)) (-4 *2 (-157)))))
+(-10 -7 (-15 -3936 (|#1| (-707) |#1|)) (-15 -2251 (|#1| (-707) |#1|)) (-15 -4185 (|#1| (-707) |#1|)) (-15 -1448 (|#1| (-707) |#1|)) (-15 -1448 (|#1| (-707) (-707) |#1|)) (IF (|has| |#1| (-37 (-381 (-521)))) (-15 -1765 (|#1| (-707) |#1|)) |%noBranch|))
+((-1415 (((-108) $ $) NIL)) (-3430 (((-521) $) 12)) (-2810 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2189 (((-792) $) 18) (($ (-521)) 11)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) 8)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 9)))
+(((-791) (-13 (-784) (-10 -8 (-15 -2189 ($ (-521))) (-15 -3430 ((-521) $))))) (T -791))
+((-2189 (*1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-791)))) (-3430 (*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-791)))))
+(-13 (-784) (-10 -8 (-15 -2189 ($ (-521))) (-15 -3430 ((-521) $))))
+((-1415 (((-108) $ $) NIL)) (-3001 (($ $ $) 115)) (-2644 (((-521) $) 30) (((-521)) 35)) (-3860 (($ (-521)) 44)) (-3104 (($ $ $) 45) (($ (-587 $)) 76)) (-1936 (($ $ (-587 $)) 74)) (-1725 (((-521) $) 33)) (-2651 (($ $ $) 63)) (-3513 (($ $) 128) (($ $ $) 129) (($ $ $ $) 130)) (-2686 (((-521) $) 32)) (-2152 (($ $ $) 62)) (-1507 (($ $) 105)) (-4036 (($ $ $) 119)) (-2465 (($ (-587 $)) 52)) (-2525 (($ $ (-587 $)) 69)) (-2543 (($ (-521) (-521)) 46)) (-3948 (($ $) 116) (($ $ $) 117)) (-1925 (($ $ (-521)) 40) (($ $) 43)) (-2277 (($ $ $) 89)) (-2500 (($ $ $) 122)) (-3720 (($ $) 106)) (-2253 (($ $ $) 90)) (-2576 (($ $) 131) (($ $ $) 132) (($ $ $ $) 133)) (-2052 (((-1170) $) 8)) (-1999 (($ $) 109) (($ $ (-707)) 112)) (-1706 (($ $ $) 65)) (-2946 (($ $ $) 64)) (-3370 (($ $ (-587 $)) 100)) (-2148 (($ $ $) 104)) (-3364 (($ (-587 $)) 50)) (-3072 (($ $) 60) (($ (-587 $)) 61)) (-4111 (($ $ $) 113)) (-2890 (($ $) 107)) (-2268 (($ $ $) 118)) (-2531 (($ (-521)) 20) (($ (-1084)) 22) (($ (-1067)) 29) (($ (-202)) 24)) (-3994 (($ $ $) 93)) (-2400 (($ $) 94)) (-1427 (((-1170) (-1067)) 14)) (-2835 (($ (-1067)) 13)) (-1365 (($ (-587 (-587 $))) 48)) (-1913 (($ $ (-521)) 39) (($ $) 42)) (-3688 (((-1067) $) NIL)) (-2903 (($ $ $) 121)) (-2072 (($ $) 134) (($ $ $) 135) (($ $ $ $) 136)) (-3875 (((-108) $) 98)) (-2384 (($ $ (-587 $)) 102) (($ $ $ $) 103)) (-2133 (($ (-521)) 36)) (-4150 (((-521) $) 31) (((-521)) 34)) (-2729 (($ $ $) 37) (($ (-587 $)) 75)) (-4147 (((-1031) $) NIL)) (-2230 (($ $ $) 91)) (-4024 (($) 12)) (-2544 (($ $ (-587 $)) 99)) (-1231 (($ $) 108) (($ $ (-707)) 111)) (-2242 (($ $ $) 88)) (-2156 (($ $ (-707)) 127)) (-2660 (($ (-587 $)) 51)) (-2189 (((-792) $) 18)) (-1893 (($ $ (-521)) 38) (($ $) 41)) (-3349 (($ $) 58) (($ (-587 $)) 59)) (-3387 (($ $) 56) (($ (-587 $)) 57)) (-2320 (($ $) 114)) (-2454 (($ (-587 $)) 55)) (-2712 (($ $ $) 97)) (-1896 (($ $ $) 120)) (-4009 (($ $ $) 92)) (-2427 (($ $ $) 77)) (-1673 (($ $ $) 95) (($ $) 96)) (-1574 (($ $ $) 81)) (-1558 (($ $ $) 79)) (-1531 (((-108) $ $) 15) (($ $ $) 16)) (-1566 (($ $ $) 80)) (-1549 (($ $ $) 78)) (-1620 (($ $ $) 86)) (-1612 (($ $ $) 83) (($ $) 84)) (-1602 (($ $ $) 82)) (** (($ $ $) 87)) (* (($ $ $) 85)))
+(((-792) (-13 (-1013) (-10 -8 (-15 -2052 ((-1170) $)) (-15 -2835 ($ (-1067))) (-15 -1427 ((-1170) (-1067))) (-15 -2531 ($ (-521))) (-15 -2531 ($ (-1084))) (-15 -2531 ($ (-1067))) (-15 -2531 ($ (-202))) (-15 -4024 ($)) (-15 -2644 ((-521) $)) (-15 -4150 ((-521) $)) (-15 -2644 ((-521))) (-15 -4150 ((-521))) (-15 -2686 ((-521) $)) (-15 -1725 ((-521) $)) (-15 -2133 ($ (-521))) (-15 -3860 ($ (-521))) (-15 -2543 ($ (-521) (-521))) (-15 -1913 ($ $ (-521))) (-15 -1925 ($ $ (-521))) (-15 -1893 ($ $ (-521))) (-15 -1913 ($ $)) (-15 -1925 ($ $)) (-15 -1893 ($ $)) (-15 -2729 ($ $ $)) (-15 -3104 ($ $ $)) (-15 -2729 ($ (-587 $))) (-15 -3104 ($ (-587 $))) (-15 -3370 ($ $ (-587 $))) (-15 -2384 ($ $ (-587 $))) (-15 -2384 ($ $ $ $)) (-15 -2148 ($ $ $)) (-15 -3875 ((-108) $)) (-15 -2544 ($ $ (-587 $))) (-15 -1507 ($ $)) (-15 -2903 ($ $ $)) (-15 -2320 ($ $)) (-15 -1365 ($ (-587 (-587 $)))) (-15 -3001 ($ $ $)) (-15 -3948 ($ $)) (-15 -3948 ($ $ $)) (-15 -2268 ($ $ $)) (-15 -4036 ($ $ $)) (-15 -1896 ($ $ $)) (-15 -2500 ($ $ $)) (-15 -2156 ($ $ (-707))) (-15 -2712 ($ $ $)) (-15 -2152 ($ $ $)) (-15 -2651 ($ $ $)) (-15 -2946 ($ $ $)) (-15 -1706 ($ $ $)) (-15 -2525 ($ $ (-587 $))) (-15 -1936 ($ $ (-587 $))) (-15 -3720 ($ $)) (-15 -1231 ($ $)) (-15 -1231 ($ $ (-707))) (-15 -1999 ($ $)) (-15 -1999 ($ $ (-707))) (-15 -2890 ($ $)) (-15 -4111 ($ $ $)) (-15 -3513 ($ $)) (-15 -3513 ($ $ $)) (-15 -3513 ($ $ $ $)) (-15 -2576 ($ $)) (-15 -2576 ($ $ $)) (-15 -2576 ($ $ $ $)) (-15 -2072 ($ $)) (-15 -2072 ($ $ $)) (-15 -2072 ($ $ $ $)) (-15 -3387 ($ $)) (-15 -3387 ($ (-587 $))) (-15 -3349 ($ $)) (-15 -3349 ($ (-587 $))) (-15 -3072 ($ $)) (-15 -3072 ($ (-587 $))) (-15 -3364 ($ (-587 $))) (-15 -2660 ($ (-587 $))) (-15 -2465 ($ (-587 $))) (-15 -2454 ($ (-587 $))) (-15 -1531 ($ $ $)) (-15 -2427 ($ $ $)) (-15 -1549 ($ $ $)) (-15 -1558 ($ $ $)) (-15 -1566 ($ $ $)) (-15 -1574 ($ $ $)) (-15 -1602 ($ $ $)) (-15 -1612 ($ $ $)) (-15 -1612 ($ $)) (-15 * ($ $ $)) (-15 -1620 ($ $ $)) (-15 ** ($ $ $)) (-15 -2242 ($ $ $)) (-15 -2277 ($ $ $)) (-15 -2253 ($ $ $)) (-15 -2230 ($ $ $)) (-15 -4009 ($ $ $)) (-15 -3994 ($ $ $)) (-15 -2400 ($ $)) (-15 -1673 ($ $ $)) (-15 -1673 ($ $))))) (T -792))
+((-2052 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-792)))) (-2835 (*1 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-792)))) (-1427 (*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-792)))) (-2531 (*1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-792)))) (-2531 (*1 *1 *2) (-12 (-5 *2 (-1084)) (-5 *1 (-792)))) (-2531 (*1 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-792)))) (-2531 (*1 *1 *2) (-12 (-5 *2 (-202)) (-5 *1 (-792)))) (-4024 (*1 *1) (-5 *1 (-792))) (-2644 (*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-792)))) (-4150 (*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-792)))) (-2644 (*1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-792)))) (-4150 (*1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-792)))) (-2686 (*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-792)))) (-1725 (*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-792)))) (-2133 (*1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-792)))) (-3860 (*1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-792)))) (-2543 (*1 *1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-792)))) (-1913 (*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-792)))) (-1925 (*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-792)))) (-1893 (*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-792)))) (-1913 (*1 *1 *1) (-5 *1 (-792))) (-1925 (*1 *1 *1) (-5 *1 (-792))) (-1893 (*1 *1 *1) (-5 *1 (-792))) (-2729 (*1 *1 *1 *1) (-5 *1 (-792))) (-3104 (*1 *1 *1 *1) (-5 *1 (-792))) (-2729 (*1 *1 *2) (-12 (-5 *2 (-587 (-792))) (-5 *1 (-792)))) (-3104 (*1 *1 *2) (-12 (-5 *2 (-587 (-792))) (-5 *1 (-792)))) (-3370 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-792))) (-5 *1 (-792)))) (-2384 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-792))) (-5 *1 (-792)))) (-2384 (*1 *1 *1 *1 *1) (-5 *1 (-792))) (-2148 (*1 *1 *1 *1) (-5 *1 (-792))) (-3875 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-792)))) (-2544 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-792))) (-5 *1 (-792)))) (-1507 (*1 *1 *1) (-5 *1 (-792))) (-2903 (*1 *1 *1 *1) (-5 *1 (-792))) (-2320 (*1 *1 *1) (-5 *1 (-792))) (-1365 (*1 *1 *2) (-12 (-5 *2 (-587 (-587 (-792)))) (-5 *1 (-792)))) (-3001 (*1 *1 *1 *1) (-5 *1 (-792))) (-3948 (*1 *1 *1) (-5 *1 (-792))) (-3948 (*1 *1 *1 *1) (-5 *1 (-792))) (-2268 (*1 *1 *1 *1) (-5 *1 (-792))) (-4036 (*1 *1 *1 *1) (-5 *1 (-792))) (-1896 (*1 *1 *1 *1) (-5 *1 (-792))) (-2500 (*1 *1 *1 *1) (-5 *1 (-792))) (-2156 (*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-792)))) (-2712 (*1 *1 *1 *1) (-5 *1 (-792))) (-2152 (*1 *1 *1 *1) (-5 *1 (-792))) (-2651 (*1 *1 *1 *1) (-5 *1 (-792))) (-2946 (*1 *1 *1 *1) (-5 *1 (-792))) (-1706 (*1 *1 *1 *1) (-5 *1 (-792))) (-2525 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-792))) (-5 *1 (-792)))) (-1936 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-792))) (-5 *1 (-792)))) (-3720 (*1 *1 *1) (-5 *1 (-792))) (-1231 (*1 *1 *1) (-5 *1 (-792))) (-1231 (*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-792)))) (-1999 (*1 *1 *1) (-5 *1 (-792))) (-1999 (*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-792)))) (-2890 (*1 *1 *1) (-5 *1 (-792))) (-4111 (*1 *1 *1 *1) (-5 *1 (-792))) (-3513 (*1 *1 *1) (-5 *1 (-792))) (-3513 (*1 *1 *1 *1) (-5 *1 (-792))) (-3513 (*1 *1 *1 *1 *1) (-5 *1 (-792))) (-2576 (*1 *1 *1) (-5 *1 (-792))) (-2576 (*1 *1 *1 *1) (-5 *1 (-792))) (-2576 (*1 *1 *1 *1 *1) (-5 *1 (-792))) (-2072 (*1 *1 *1) (-5 *1 (-792))) (-2072 (*1 *1 *1 *1) (-5 *1 (-792))) (-2072 (*1 *1 *1 *1 *1) (-5 *1 (-792))) (-3387 (*1 *1 *1) (-5 *1 (-792))) (-3387 (*1 *1 *2) (-12 (-5 *2 (-587 (-792))) (-5 *1 (-792)))) (-3349 (*1 *1 *1) (-5 *1 (-792))) (-3349 (*1 *1 *2) (-12 (-5 *2 (-587 (-792))) (-5 *1 (-792)))) (-3072 (*1 *1 *1) (-5 *1 (-792))) (-3072 (*1 *1 *2) (-12 (-5 *2 (-587 (-792))) (-5 *1 (-792)))) (-3364 (*1 *1 *2) (-12 (-5 *2 (-587 (-792))) (-5 *1 (-792)))) (-2660 (*1 *1 *2) (-12 (-5 *2 (-587 (-792))) (-5 *1 (-792)))) (-2465 (*1 *1 *2) (-12 (-5 *2 (-587 (-792))) (-5 *1 (-792)))) (-2454 (*1 *1 *2) (-12 (-5 *2 (-587 (-792))) (-5 *1 (-792)))) (-1531 (*1 *1 *1 *1) (-5 *1 (-792))) (-2427 (*1 *1 *1 *1) (-5 *1 (-792))) (-1549 (*1 *1 *1 *1) (-5 *1 (-792))) (-1558 (*1 *1 *1 *1) (-5 *1 (-792))) (-1566 (*1 *1 *1 *1) (-5 *1 (-792))) (-1574 (*1 *1 *1 *1) (-5 *1 (-792))) (-1602 (*1 *1 *1 *1) (-5 *1 (-792))) (-1612 (*1 *1 *1 *1) (-5 *1 (-792))) (-1612 (*1 *1 *1) (-5 *1 (-792))) (* (*1 *1 *1 *1) (-5 *1 (-792))) (-1620 (*1 *1 *1 *1) (-5 *1 (-792))) (** (*1 *1 *1 *1) (-5 *1 (-792))) (-2242 (*1 *1 *1 *1) (-5 *1 (-792))) (-2277 (*1 *1 *1 *1) (-5 *1 (-792))) (-2253 (*1 *1 *1 *1) (-5 *1 (-792))) (-2230 (*1 *1 *1 *1) (-5 *1 (-792))) (-4009 (*1 *1 *1 *1) (-5 *1 (-792))) (-3994 (*1 *1 *1 *1) (-5 *1 (-792))) (-2400 (*1 *1 *1) (-5 *1 (-792))) (-1673 (*1 *1 *1 *1) (-5 *1 (-792))) (-1673 (*1 *1 *1) (-5 *1 (-792))))
+(-13 (-1013) (-10 -8 (-15 -2052 ((-1170) $)) (-15 -2835 ($ (-1067))) (-15 -1427 ((-1170) (-1067))) (-15 -2531 ($ (-521))) (-15 -2531 ($ (-1084))) (-15 -2531 ($ (-1067))) (-15 -2531 ($ (-202))) (-15 -4024 ($)) (-15 -2644 ((-521) $)) (-15 -4150 ((-521) $)) (-15 -2644 ((-521))) (-15 -4150 ((-521))) (-15 -2686 ((-521) $)) (-15 -1725 ((-521) $)) (-15 -2133 ($ (-521))) (-15 -3860 ($ (-521))) (-15 -2543 ($ (-521) (-521))) (-15 -1913 ($ $ (-521))) (-15 -1925 ($ $ (-521))) (-15 -1893 ($ $ (-521))) (-15 -1913 ($ $)) (-15 -1925 ($ $)) (-15 -1893 ($ $)) (-15 -2729 ($ $ $)) (-15 -3104 ($ $ $)) (-15 -2729 ($ (-587 $))) (-15 -3104 ($ (-587 $))) (-15 -3370 ($ $ (-587 $))) (-15 -2384 ($ $ (-587 $))) (-15 -2384 ($ $ $ $)) (-15 -2148 ($ $ $)) (-15 -3875 ((-108) $)) (-15 -2544 ($ $ (-587 $))) (-15 -1507 ($ $)) (-15 -2903 ($ $ $)) (-15 -2320 ($ $)) (-15 -1365 ($ (-587 (-587 $)))) (-15 -3001 ($ $ $)) (-15 -3948 ($ $)) (-15 -3948 ($ $ $)) (-15 -2268 ($ $ $)) (-15 -4036 ($ $ $)) (-15 -1896 ($ $ $)) (-15 -2500 ($ $ $)) (-15 -2156 ($ $ (-707))) (-15 -2712 ($ $ $)) (-15 -2152 ($ $ $)) (-15 -2651 ($ $ $)) (-15 -2946 ($ $ $)) (-15 -1706 ($ $ $)) (-15 -2525 ($ $ (-587 $))) (-15 -1936 ($ $ (-587 $))) (-15 -3720 ($ $)) (-15 -1231 ($ $)) (-15 -1231 ($ $ (-707))) (-15 -1999 ($ $)) (-15 -1999 ($ $ (-707))) (-15 -2890 ($ $)) (-15 -4111 ($ $ $)) (-15 -3513 ($ $)) (-15 -3513 ($ $ $)) (-15 -3513 ($ $ $ $)) (-15 -2576 ($ $)) (-15 -2576 ($ $ $)) (-15 -2576 ($ $ $ $)) (-15 -2072 ($ $)) (-15 -2072 ($ $ $)) (-15 -2072 ($ $ $ $)) (-15 -3387 ($ $)) (-15 -3387 ($ (-587 $))) (-15 -3349 ($ $)) (-15 -3349 ($ (-587 $))) (-15 -3072 ($ $)) (-15 -3072 ($ (-587 $))) (-15 -3364 ($ (-587 $))) (-15 -2660 ($ (-587 $))) (-15 -2465 ($ (-587 $))) (-15 -2454 ($ (-587 $))) (-15 -1531 ($ $ $)) (-15 -2427 ($ $ $)) (-15 -1549 ($ $ $)) (-15 -1558 ($ $ $)) (-15 -1566 ($ $ $)) (-15 -1574 ($ $ $)) (-15 -1602 ($ $ $)) (-15 -1612 ($ $ $)) (-15 -1612 ($ $)) (-15 * ($ $ $)) (-15 -1620 ($ $ $)) (-15 ** ($ $ $)) (-15 -2242 ($ $ $)) (-15 -2277 ($ $ $)) (-15 -2253 ($ $ $)) (-15 -2230 ($ $ $)) (-15 -4009 ($ $ $)) (-15 -3994 ($ $ $)) (-15 -2400 ($ $)) (-15 -1673 ($ $ $)) (-15 -1673 ($ $))))
+((-1482 (((-1170) (-587 (-51))) 24)) (-1585 (((-1170) (-1067) (-792)) 14) (((-1170) (-792)) 9) (((-1170) (-1067)) 11)))
+(((-793) (-10 -7 (-15 -1585 ((-1170) (-1067))) (-15 -1585 ((-1170) (-792))) (-15 -1585 ((-1170) (-1067) (-792))) (-15 -1482 ((-1170) (-587 (-51)))))) (T -793))
+((-1482 (*1 *2 *3) (-12 (-5 *3 (-587 (-51))) (-5 *2 (-1170)) (-5 *1 (-793)))) (-1585 (*1 *2 *3 *4) (-12 (-5 *3 (-1067)) (-5 *4 (-792)) (-5 *2 (-1170)) (-5 *1 (-793)))) (-1585 (*1 *2 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1170)) (-5 *1 (-793)))) (-1585 (*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-793)))))
+(-10 -7 (-15 -1585 ((-1170) (-1067))) (-15 -1585 ((-1170) (-792))) (-15 -1585 ((-1170) (-1067) (-792))) (-15 -1482 ((-1170) (-587 (-51)))))
+((-1415 (((-108) $ $) NIL)) (-1611 (((-3 $ "failed") (-1084)) 32)) (-1630 (((-707)) 30)) (-3250 (($) NIL)) (-2810 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-2715 (((-850) $) 28)) (-3688 (((-1067) $) 38)) (-2716 (($ (-850)) 27)) (-4147 (((-1031) $) NIL)) (-1430 (((-1084) $) 13) (((-497) $) 19) (((-821 (-353)) $) 25) (((-821 (-521)) $) 22)) (-2189 (((-792) $) 16)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) 35)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 34)))
+(((-794 |#1|) (-13 (-778) (-562 (-1084)) (-562 (-497)) (-562 (-821 (-353))) (-562 (-821 (-521))) (-10 -8 (-15 -1611 ((-3 $ "failed") (-1084))))) (-587 (-1084))) (T -794))
+((-1611 (*1 *1 *2) (|partial| -12 (-5 *2 (-1084)) (-5 *1 (-794 *3)) (-14 *3 (-587 *2)))))
+(-13 (-778) (-562 (-1084)) (-562 (-497)) (-562 (-821 (-353))) (-562 (-821 (-521))) (-10 -8 (-15 -1611 ((-3 $ "failed") (-1084)))))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-1232 (((-3 $ "failed") $ $) NIL)) (-2547 (($) NIL T CONST)) (-1257 (((-3 $ "failed") $) NIL)) (-3996 (((-108) $) NIL)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2189 (((-792) $) NIL) (($ (-521)) NIL) (((-881 |#1|) $) NIL) (($ (-881 |#1|)) NIL) (($ |#1|) NIL (|has| |#1| (-157)))) (-3846 (((-707)) NIL)) (-3472 (((-1170) (-707)) NIL)) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (-3561 (($) NIL T CONST)) (-3572 (($) NIL T CONST)) (-1531 (((-108) $ $) NIL)) (-1620 (((-3 $ "failed") $ $) NIL (|has| |#1| (-337)))) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-157))) (($ $ |#1|) NIL (|has| |#1| (-157)))))
+(((-795 |#1| |#2| |#3| |#4|) (-13 (-970) (-10 -8 (IF (|has| |#1| (-157)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2189 ((-881 |#1|) $)) (-15 -2189 ($ (-881 |#1|))) (IF (|has| |#1| (-337)) (-15 -1620 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3472 ((-1170) (-707))))) (-970) (-587 (-1084)) (-587 (-707)) (-707)) (T -795))
+((-2189 (*1 *2 *1) (-12 (-5 *2 (-881 *3)) (-5 *1 (-795 *3 *4 *5 *6)) (-4 *3 (-970)) (-14 *4 (-587 (-1084))) (-14 *5 (-587 (-707))) (-14 *6 (-707)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-881 *3)) (-4 *3 (-970)) (-5 *1 (-795 *3 *4 *5 *6)) (-14 *4 (-587 (-1084))) (-14 *5 (-587 (-707))) (-14 *6 (-707)))) (-1620 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-795 *2 *3 *4 *5)) (-4 *2 (-337)) (-4 *2 (-970)) (-14 *3 (-587 (-1084))) (-14 *4 (-587 (-707))) (-14 *5 (-707)))) (-3472 (*1 *2 *3) (-12 (-5 *3 (-707)) (-5 *2 (-1170)) (-5 *1 (-795 *4 *5 *6 *7)) (-4 *4 (-970)) (-14 *5 (-587 (-1084))) (-14 *6 (-587 *3)) (-14 *7 *3))))
+(-13 (-970) (-10 -8 (IF (|has| |#1| (-157)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2189 ((-881 |#1|) $)) (-15 -2189 ($ (-881 |#1|))) (IF (|has| |#1| (-337)) (-15 -1620 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3472 ((-1170) (-707)))))
+((-2341 (((-3 (-158 |#3|) "failed") (-707) (-707) |#2| |#2|) 31)) (-3822 (((-3 (-381 |#3|) "failed") (-707) (-707) |#2| |#2|) 24)))
+(((-796 |#1| |#2| |#3|) (-10 -7 (-15 -3822 ((-3 (-381 |#3|) "failed") (-707) (-707) |#2| |#2|)) (-15 -2341 ((-3 (-158 |#3|) "failed") (-707) (-707) |#2| |#2|))) (-337) (-1156 |#1|) (-1141 |#1|)) (T -796))
+((-2341 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-707)) (-4 *5 (-337)) (-5 *2 (-158 *6)) (-5 *1 (-796 *5 *4 *6)) (-4 *4 (-1156 *5)) (-4 *6 (-1141 *5)))) (-3822 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-707)) (-4 *5 (-337)) (-5 *2 (-381 *6)) (-5 *1 (-796 *5 *4 *6)) (-4 *4 (-1156 *5)) (-4 *6 (-1141 *5)))))
+(-10 -7 (-15 -3822 ((-3 (-381 |#3|) "failed") (-707) (-707) |#2| |#2|)) (-15 -2341 ((-3 (-158 |#3|) "failed") (-707) (-707) |#2| |#2|)))
+((-3822 (((-3 (-381 (-1138 |#2| |#1|)) "failed") (-707) (-707) (-1157 |#1| |#2| |#3|)) 28) (((-3 (-381 (-1138 |#2| |#1|)) "failed") (-707) (-707) (-1157 |#1| |#2| |#3|) (-1157 |#1| |#2| |#3|)) 26)))
+(((-797 |#1| |#2| |#3|) (-10 -7 (-15 -3822 ((-3 (-381 (-1138 |#2| |#1|)) "failed") (-707) (-707) (-1157 |#1| |#2| |#3|) (-1157 |#1| |#2| |#3|))) (-15 -3822 ((-3 (-381 (-1138 |#2| |#1|)) "failed") (-707) (-707) (-1157 |#1| |#2| |#3|)))) (-337) (-1084) |#1|) (T -797))
+((-3822 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-707)) (-5 *4 (-1157 *5 *6 *7)) (-4 *5 (-337)) (-14 *6 (-1084)) (-14 *7 *5) (-5 *2 (-381 (-1138 *6 *5))) (-5 *1 (-797 *5 *6 *7)))) (-3822 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-707)) (-5 *4 (-1157 *5 *6 *7)) (-4 *5 (-337)) (-14 *6 (-1084)) (-14 *7 *5) (-5 *2 (-381 (-1138 *6 *5))) (-5 *1 (-797 *5 *6 *7)))))
+(-10 -7 (-15 -3822 ((-3 (-381 (-1138 |#2| |#1|)) "failed") (-707) (-707) (-1157 |#1| |#2| |#3|) (-1157 |#1| |#2| |#3|))) (-15 -3822 ((-3 (-381 (-1138 |#2| |#1|)) "failed") (-707) (-707) (-1157 |#1| |#2| |#3|))))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) 41)) (-2559 (($ $) 40)) (-1733 (((-108) $) 38)) (-1232 (((-3 $ "failed") $ $) 19)) (-1927 (($ $ (-521)) 62)) (-1389 (((-108) $ $) 59)) (-2547 (($) 17 T CONST)) (-3948 (($ (-1080 (-521)) (-521)) 61)) (-2277 (($ $ $) 55)) (-1257 (((-3 $ "failed") $) 34)) (-4018 (($ $) 64)) (-2253 (($ $ $) 56)) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) 51)) (-2733 (((-707) $) 69)) (-3996 (((-108) $) 31)) (-1546 (((-3 (-587 $) "failed") (-587 $) $) 52)) (-2704 (((-521)) 66)) (-1720 (((-521) $) 65)) (-2223 (($ $ $) 46) (($ (-587 $)) 45)) (-3688 (((-1067) $) 9)) (-4147 (((-1031) $) 10)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) 44)) (-2258 (($ $ $) 48) (($ (-587 $)) 47)) (-1962 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2447 (($ $ (-521)) 68)) (-2230 (((-3 $ "failed") $ $) 42)) (-3854 (((-3 (-587 $) "failed") (-587 $) $) 50)) (-4196 (((-707) $) 58)) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) 57)) (-4151 (((-1065 (-521)) $) 70)) (-3448 (($ $) 67)) (-2189 (((-792) $) 11) (($ (-521)) 28) (($ $) 43)) (-3846 (((-707)) 29)) (-4210 (((-108) $ $) 39)) (-3894 (((-521) $ (-521)) 63)) (-3505 (($ $ (-850)) 26) (($ $ (-707)) 33)) (-3561 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-707)) 32)) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24)))
+(((-798 |#1|) (-1196) (-521)) (T -798))
+((-4151 (*1 *2 *1) (-12 (-4 *1 (-798 *3)) (-5 *2 (-1065 (-521))))) (-2733 (*1 *2 *1) (-12 (-4 *1 (-798 *3)) (-5 *2 (-707)))) (-2447 (*1 *1 *1 *2) (-12 (-4 *1 (-798 *3)) (-5 *2 (-521)))) (-3448 (*1 *1 *1) (-4 *1 (-798 *2))) (-2704 (*1 *2) (-12 (-4 *1 (-798 *3)) (-5 *2 (-521)))) (-1720 (*1 *2 *1) (-12 (-4 *1 (-798 *3)) (-5 *2 (-521)))) (-4018 (*1 *1 *1) (-4 *1 (-798 *2))) (-3894 (*1 *2 *1 *2) (-12 (-4 *1 (-798 *3)) (-5 *2 (-521)))) (-1927 (*1 *1 *1 *2) (-12 (-4 *1 (-798 *3)) (-5 *2 (-521)))) (-3948 (*1 *1 *2 *3) (-12 (-5 *2 (-1080 (-521))) (-5 *3 (-521)) (-4 *1 (-798 *4)))))
+(-13 (-282) (-135) (-10 -8 (-15 -4151 ((-1065 (-521)) $)) (-15 -2733 ((-707) $)) (-15 -2447 ($ $ (-521))) (-15 -3448 ($ $)) (-15 -2704 ((-521))) (-15 -1720 ((-521) $)) (-15 -4018 ($ $)) (-15 -3894 ((-521) $ (-521))) (-15 -1927 ($ $ (-521))) (-15 -3948 ($ (-1080 (-521)) (-521)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-135) . T) ((-561 (-792)) . T) ((-157) . T) ((-265) . T) ((-282) . T) ((-425) . T) ((-513) . T) ((-589 $) . T) ((-654 $) . T) ((-663) . T) ((-849) . T) ((-976 $) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-2559 (($ $) NIL)) (-1733 (((-108) $) NIL)) (-1232 (((-3 $ "failed") $ $) NIL)) (-1927 (($ $ (-521)) NIL)) (-1389 (((-108) $ $) NIL)) (-2547 (($) NIL T CONST)) (-3948 (($ (-1080 (-521)) (-521)) NIL)) (-2277 (($ $ $) NIL)) (-1257 (((-3 $ "failed") $) NIL)) (-4018 (($ $) NIL)) (-2253 (($ $ $) NIL)) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) NIL)) (-2733 (((-707) $) NIL)) (-3996 (((-108) $) NIL)) (-1546 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-2704 (((-521)) NIL)) (-1720 (((-521) $) NIL)) (-2223 (($ $ $) NIL) (($ (-587 $)) NIL)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) NIL)) (-2258 (($ $ $) NIL) (($ (-587 $)) NIL)) (-1962 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2447 (($ $ (-521)) NIL)) (-2230 (((-3 $ "failed") $ $) NIL)) (-3854 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-4196 (((-707) $) NIL)) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) NIL)) (-4151 (((-1065 (-521)) $) NIL)) (-3448 (($ $) NIL)) (-2189 (((-792) $) NIL) (($ (-521)) NIL) (($ $) NIL)) (-3846 (((-707)) NIL)) (-4210 (((-108) $ $) NIL)) (-3894 (((-521) $ (-521)) NIL)) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (-3561 (($) NIL T CONST)) (-3572 (($) NIL T CONST)) (-1531 (((-108) $ $) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL)))
+(((-799 |#1|) (-798 |#1|) (-521)) (T -799))
+NIL
+(-798 |#1|)
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-2086 (((-799 |#1|) $) NIL (|has| (-799 |#1|) (-282)))) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-2559 (($ $) NIL)) (-1733 (((-108) $) NIL)) (-1232 (((-3 $ "failed") $ $) NIL)) (-2598 (((-392 (-1080 $)) (-1080 $)) NIL (|has| (-799 |#1|) (-838)))) (-3063 (($ $) NIL)) (-3358 (((-392 $) $) NIL)) (-2569 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) NIL (|has| (-799 |#1|) (-838)))) (-1389 (((-108) $ $) NIL)) (-1606 (((-521) $) NIL (|has| (-799 |#1|) (-757)))) (-2547 (($) NIL T CONST)) (-1297 (((-3 (-799 |#1|) "failed") $) NIL) (((-3 (-1084) "failed") $) NIL (|has| (-799 |#1|) (-961 (-1084)))) (((-3 (-381 (-521)) "failed") $) NIL (|has| (-799 |#1|) (-961 (-521)))) (((-3 (-521) "failed") $) NIL (|has| (-799 |#1|) (-961 (-521))))) (-1483 (((-799 |#1|) $) NIL) (((-1084) $) NIL (|has| (-799 |#1|) (-961 (-1084)))) (((-381 (-521)) $) NIL (|has| (-799 |#1|) (-961 (-521)))) (((-521) $) NIL (|has| (-799 |#1|) (-961 (-521))))) (-1198 (($ $) NIL) (($ (-521) $) NIL)) (-2277 (($ $ $) NIL)) (-3279 (((-627 (-521)) (-627 $)) NIL (|has| (-799 |#1|) (-583 (-521)))) (((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (|has| (-799 |#1|) (-583 (-521)))) (((-2 (|:| -1201 (-627 (-799 |#1|))) (|:| |vec| (-1165 (-799 |#1|)))) (-627 $) (-1165 $)) NIL) (((-627 (-799 |#1|)) (-627 $)) NIL)) (-1257 (((-3 $ "failed") $) NIL)) (-3250 (($) NIL (|has| (-799 |#1|) (-506)))) (-2253 (($ $ $) NIL)) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) NIL)) (-2710 (((-108) $) NIL)) (-3951 (((-108) $) NIL (|has| (-799 |#1|) (-757)))) (-3427 (((-818 (-521) $) $ (-821 (-521)) (-818 (-521) $)) NIL (|has| (-799 |#1|) (-815 (-521)))) (((-818 (-353) $) $ (-821 (-353)) (-818 (-353) $)) NIL (|has| (-799 |#1|) (-815 (-353))))) (-3996 (((-108) $) NIL)) (-3257 (($ $) NIL)) (-2801 (((-799 |#1|) $) NIL)) (-3842 (((-3 $ "failed") $) NIL (|has| (-799 |#1|) (-1060)))) (-2210 (((-108) $) NIL (|has| (-799 |#1|) (-757)))) (-1546 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-2810 (($ $ $) NIL (|has| (-799 |#1|) (-784)))) (-2446 (($ $ $) NIL (|has| (-799 |#1|) (-784)))) (-1390 (($ (-1 (-799 |#1|) (-799 |#1|)) $) NIL)) (-2223 (($ $ $) NIL) (($ (-587 $)) NIL)) (-3688 (((-1067) $) NIL)) (-3095 (($ $) NIL)) (-3797 (($) NIL (|has| (-799 |#1|) (-1060)) CONST)) (-4147 (((-1031) $) NIL)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) NIL)) (-2258 (($ $ $) NIL) (($ (-587 $)) NIL)) (-2850 (($ $) NIL (|has| (-799 |#1|) (-282)))) (-2567 (((-799 |#1|) $) NIL (|has| (-799 |#1|) (-506)))) (-1912 (((-392 (-1080 $)) (-1080 $)) NIL (|has| (-799 |#1|) (-838)))) (-2165 (((-392 (-1080 $)) (-1080 $)) NIL (|has| (-799 |#1|) (-838)))) (-1916 (((-392 $) $) NIL)) (-1962 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2230 (((-3 $ "failed") $ $) NIL)) (-3854 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-2288 (($ $ (-587 (-799 |#1|)) (-587 (-799 |#1|))) NIL (|has| (-799 |#1|) (-284 (-799 |#1|)))) (($ $ (-799 |#1|) (-799 |#1|)) NIL (|has| (-799 |#1|) (-284 (-799 |#1|)))) (($ $ (-269 (-799 |#1|))) NIL (|has| (-799 |#1|) (-284 (-799 |#1|)))) (($ $ (-587 (-269 (-799 |#1|)))) NIL (|has| (-799 |#1|) (-284 (-799 |#1|)))) (($ $ (-587 (-1084)) (-587 (-799 |#1|))) NIL (|has| (-799 |#1|) (-482 (-1084) (-799 |#1|)))) (($ $ (-1084) (-799 |#1|)) NIL (|has| (-799 |#1|) (-482 (-1084) (-799 |#1|))))) (-4196 (((-707) $) NIL)) (-2544 (($ $ (-799 |#1|)) NIL (|has| (-799 |#1|) (-261 (-799 |#1|) (-799 |#1|))))) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) NIL)) (-2156 (($ $) NIL (|has| (-799 |#1|) (-210))) (($ $ (-707)) NIL (|has| (-799 |#1|) (-210))) (($ $ (-1084)) NIL (|has| (-799 |#1|) (-829 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| (-799 |#1|) (-829 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| (-799 |#1|) (-829 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| (-799 |#1|) (-829 (-1084)))) (($ $ (-1 (-799 |#1|) (-799 |#1|)) (-707)) NIL) (($ $ (-1 (-799 |#1|) (-799 |#1|))) NIL)) (-4142 (($ $) NIL)) (-2812 (((-799 |#1|) $) NIL)) (-1430 (((-821 (-521)) $) NIL (|has| (-799 |#1|) (-562 (-821 (-521))))) (((-821 (-353)) $) NIL (|has| (-799 |#1|) (-562 (-821 (-353))))) (((-497) $) NIL (|has| (-799 |#1|) (-562 (-497)))) (((-353) $) NIL (|has| (-799 |#1|) (-946))) (((-202) $) NIL (|has| (-799 |#1|) (-946)))) (-2554 (((-158 (-381 (-521))) $) NIL)) (-2944 (((-3 (-1165 $) "failed") (-627 $)) NIL (-12 (|has| $ (-133)) (|has| (-799 |#1|) (-838))))) (-2189 (((-792) $) NIL) (($ (-521)) NIL) (($ $) NIL) (($ (-381 (-521))) NIL) (($ (-799 |#1|)) NIL) (($ (-1084)) NIL (|has| (-799 |#1|) (-961 (-1084))))) (-1671 (((-3 $ "failed") $) NIL (-3703 (-12 (|has| $ (-133)) (|has| (-799 |#1|) (-838))) (|has| (-799 |#1|) (-133))))) (-3846 (((-707)) NIL)) (-2382 (((-799 |#1|) $) NIL (|has| (-799 |#1|) (-506)))) (-4210 (((-108) $ $) NIL)) (-3894 (((-381 (-521)) $ (-521)) NIL)) (-3304 (($ $) NIL (|has| (-799 |#1|) (-757)))) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (-3561 (($) NIL T CONST)) (-3572 (($) NIL T CONST)) (-2212 (($ $) NIL (|has| (-799 |#1|) (-210))) (($ $ (-707)) NIL (|has| (-799 |#1|) (-210))) (($ $ (-1084)) NIL (|has| (-799 |#1|) (-829 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| (-799 |#1|) (-829 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| (-799 |#1|) (-829 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| (-799 |#1|) (-829 (-1084)))) (($ $ (-1 (-799 |#1|) (-799 |#1|)) (-707)) NIL) (($ $ (-1 (-799 |#1|) (-799 |#1|))) NIL)) (-1574 (((-108) $ $) NIL (|has| (-799 |#1|) (-784)))) (-1558 (((-108) $ $) NIL (|has| (-799 |#1|) (-784)))) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL (|has| (-799 |#1|) (-784)))) (-1549 (((-108) $ $) NIL (|has| (-799 |#1|) (-784)))) (-1620 (($ $ $) NIL) (($ (-799 |#1|) (-799 |#1|)) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ (-381 (-521))) NIL) (($ (-381 (-521)) $) NIL) (($ (-799 |#1|) $) NIL) (($ $ (-799 |#1|)) NIL)))
+(((-800 |#1|) (-13 (-918 (-799 |#1|)) (-10 -8 (-15 -3894 ((-381 (-521)) $ (-521))) (-15 -2554 ((-158 (-381 (-521))) $)) (-15 -1198 ($ $)) (-15 -1198 ($ (-521) $)))) (-521)) (T -800))
+((-3894 (*1 *2 *1 *3) (-12 (-5 *2 (-381 (-521))) (-5 *1 (-800 *4)) (-14 *4 *3) (-5 *3 (-521)))) (-2554 (*1 *2 *1) (-12 (-5 *2 (-158 (-381 (-521)))) (-5 *1 (-800 *3)) (-14 *3 (-521)))) (-1198 (*1 *1 *1) (-12 (-5 *1 (-800 *2)) (-14 *2 (-521)))) (-1198 (*1 *1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-800 *3)) (-14 *3 *2))))
+(-13 (-918 (-799 |#1|)) (-10 -8 (-15 -3894 ((-381 (-521)) $ (-521))) (-15 -2554 ((-158 (-381 (-521))) $)) (-15 -1198 ($ $)) (-15 -1198 ($ (-521) $))))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-2086 ((|#2| $) NIL (|has| |#2| (-282)))) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-2559 (($ $) NIL)) (-1733 (((-108) $) NIL)) (-1232 (((-3 $ "failed") $ $) NIL)) (-2598 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#2| (-838)))) (-3063 (($ $) NIL)) (-3358 (((-392 $) $) NIL)) (-2569 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) NIL (|has| |#2| (-838)))) (-1389 (((-108) $ $) NIL)) (-1606 (((-521) $) NIL (|has| |#2| (-757)))) (-2547 (($) NIL T CONST)) (-1297 (((-3 |#2| "failed") $) NIL) (((-3 (-1084) "failed") $) NIL (|has| |#2| (-961 (-1084)))) (((-3 (-381 (-521)) "failed") $) NIL (|has| |#2| (-961 (-521)))) (((-3 (-521) "failed") $) NIL (|has| |#2| (-961 (-521))))) (-1483 ((|#2| $) NIL) (((-1084) $) NIL (|has| |#2| (-961 (-1084)))) (((-381 (-521)) $) NIL (|has| |#2| (-961 (-521)))) (((-521) $) NIL (|has| |#2| (-961 (-521))))) (-1198 (($ $) 31) (($ (-521) $) 32)) (-2277 (($ $ $) NIL)) (-3279 (((-627 (-521)) (-627 $)) NIL (|has| |#2| (-583 (-521)))) (((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (|has| |#2| (-583 (-521)))) (((-2 (|:| -1201 (-627 |#2|)) (|:| |vec| (-1165 |#2|))) (-627 $) (-1165 $)) NIL) (((-627 |#2|) (-627 $)) NIL)) (-1257 (((-3 $ "failed") $) 53)) (-3250 (($) NIL (|has| |#2| (-506)))) (-2253 (($ $ $) NIL)) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) NIL)) (-2710 (((-108) $) NIL)) (-3951 (((-108) $) NIL (|has| |#2| (-757)))) (-3427 (((-818 (-521) $) $ (-821 (-521)) (-818 (-521) $)) NIL (|has| |#2| (-815 (-521)))) (((-818 (-353) $) $ (-821 (-353)) (-818 (-353) $)) NIL (|has| |#2| (-815 (-353))))) (-3996 (((-108) $) NIL)) (-3257 (($ $) NIL)) (-2801 ((|#2| $) NIL)) (-3842 (((-3 $ "failed") $) NIL (|has| |#2| (-1060)))) (-2210 (((-108) $) NIL (|has| |#2| (-757)))) (-1546 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-2810 (($ $ $) NIL (|has| |#2| (-784)))) (-2446 (($ $ $) NIL (|has| |#2| (-784)))) (-1390 (($ (-1 |#2| |#2|) $) NIL)) (-2223 (($ $ $) NIL) (($ (-587 $)) NIL)) (-3688 (((-1067) $) NIL)) (-3095 (($ $) 49)) (-3797 (($) NIL (|has| |#2| (-1060)) CONST)) (-4147 (((-1031) $) NIL)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) NIL)) (-2258 (($ $ $) NIL) (($ (-587 $)) NIL)) (-2850 (($ $) NIL (|has| |#2| (-282)))) (-2567 ((|#2| $) NIL (|has| |#2| (-506)))) (-1912 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#2| (-838)))) (-2165 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#2| (-838)))) (-1916 (((-392 $) $) NIL)) (-1962 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2230 (((-3 $ "failed") $ $) NIL)) (-3854 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-2288 (($ $ (-587 |#2|) (-587 |#2|)) NIL (|has| |#2| (-284 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-284 |#2|))) (($ $ (-269 |#2|)) NIL (|has| |#2| (-284 |#2|))) (($ $ (-587 (-269 |#2|))) NIL (|has| |#2| (-284 |#2|))) (($ $ (-587 (-1084)) (-587 |#2|)) NIL (|has| |#2| (-482 (-1084) |#2|))) (($ $ (-1084) |#2|) NIL (|has| |#2| (-482 (-1084) |#2|)))) (-4196 (((-707) $) NIL)) (-2544 (($ $ |#2|) NIL (|has| |#2| (-261 |#2| |#2|)))) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) NIL)) (-2156 (($ $) NIL (|has| |#2| (-210))) (($ $ (-707)) NIL (|has| |#2| (-210))) (($ $ (-1084)) NIL (|has| |#2| (-829 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| |#2| (-829 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| |#2| (-829 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| |#2| (-829 (-1084)))) (($ $ (-1 |#2| |#2|) (-707)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-4142 (($ $) NIL)) (-2812 ((|#2| $) NIL)) (-1430 (((-821 (-521)) $) NIL (|has| |#2| (-562 (-821 (-521))))) (((-821 (-353)) $) NIL (|has| |#2| (-562 (-821 (-353))))) (((-497) $) NIL (|has| |#2| (-562 (-497)))) (((-353) $) NIL (|has| |#2| (-946))) (((-202) $) NIL (|has| |#2| (-946)))) (-2554 (((-158 (-381 (-521))) $) 68)) (-2944 (((-3 (-1165 $) "failed") (-627 $)) NIL (-12 (|has| $ (-133)) (|has| |#2| (-838))))) (-2189 (((-792) $) 86) (($ (-521)) 19) (($ $) NIL) (($ (-381 (-521))) 24) (($ |#2|) 18) (($ (-1084)) NIL (|has| |#2| (-961 (-1084))))) (-1671 (((-3 $ "failed") $) NIL (-3703 (-12 (|has| $ (-133)) (|has| |#2| (-838))) (|has| |#2| (-133))))) (-3846 (((-707)) NIL)) (-2382 ((|#2| $) NIL (|has| |#2| (-506)))) (-4210 (((-108) $ $) NIL)) (-3894 (((-381 (-521)) $ (-521)) 60)) (-3304 (($ $) NIL (|has| |#2| (-757)))) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (-3561 (($) 14 T CONST)) (-3572 (($) 16 T CONST)) (-2212 (($ $) NIL (|has| |#2| (-210))) (($ $ (-707)) NIL (|has| |#2| (-210))) (($ $ (-1084)) NIL (|has| |#2| (-829 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| |#2| (-829 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| |#2| (-829 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| |#2| (-829 (-1084)))) (($ $ (-1 |#2| |#2|) (-707)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1574 (((-108) $ $) NIL (|has| |#2| (-784)))) (-1558 (((-108) $ $) NIL (|has| |#2| (-784)))) (-1531 (((-108) $ $) 35)) (-1566 (((-108) $ $) NIL (|has| |#2| (-784)))) (-1549 (((-108) $ $) NIL (|has| |#2| (-784)))) (-1620 (($ $ $) 23) (($ |#2| |#2|) 54)) (-1612 (($ $) 39) (($ $ $) 41)) (-1602 (($ $ $) 37)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) 50)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) 42) (($ $ $) 44) (($ $ (-381 (-521))) NIL) (($ (-381 (-521)) $) NIL) (($ |#2| $) 55) (($ $ |#2|) NIL)))
+(((-801 |#1| |#2|) (-13 (-918 |#2|) (-10 -8 (-15 -3894 ((-381 (-521)) $ (-521))) (-15 -2554 ((-158 (-381 (-521))) $)) (-15 -1198 ($ $)) (-15 -1198 ($ (-521) $)))) (-521) (-798 |#1|)) (T -801))
+((-3894 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-381 (-521))) (-5 *1 (-801 *4 *5)) (-5 *3 (-521)) (-4 *5 (-798 *4)))) (-2554 (*1 *2 *1) (-12 (-14 *3 (-521)) (-5 *2 (-158 (-381 (-521)))) (-5 *1 (-801 *3 *4)) (-4 *4 (-798 *3)))) (-1198 (*1 *1 *1) (-12 (-14 *2 (-521)) (-5 *1 (-801 *2 *3)) (-4 *3 (-798 *2)))) (-1198 (*1 *1 *2 *1) (-12 (-5 *2 (-521)) (-14 *3 *2) (-5 *1 (-801 *3 *4)) (-4 *4 (-798 *3)))))
+(-13 (-918 |#2|) (-10 -8 (-15 -3894 ((-381 (-521)) $ (-521))) (-15 -2554 ((-158 (-381 (-521))) $)) (-15 -1198 ($ $)) (-15 -1198 ($ (-521) $))))
+((-1415 (((-108) $ $) NIL (-12 (|has| |#1| (-1013)) (|has| |#2| (-1013))))) (-2080 ((|#2| $) 12)) (-2749 (($ |#1| |#2|) 9)) (-3688 (((-1067) $) NIL (-12 (|has| |#1| (-1013)) (|has| |#2| (-1013))))) (-4147 (((-1031) $) NIL (-12 (|has| |#1| (-1013)) (|has| |#2| (-1013))))) (-2293 ((|#1| $) 11)) (-2201 (($ |#1| |#2|) 10)) (-2189 (((-792) $) 18 (-3703 (-12 (|has| |#1| (-561 (-792))) (|has| |#2| (-561 (-792)))) (-12 (|has| |#1| (-1013)) (|has| |#2| (-1013)))))) (-1531 (((-108) $ $) 22 (-12 (|has| |#1| (-1013)) (|has| |#2| (-1013))))))
+(((-802 |#1| |#2|) (-13 (-1119) (-10 -8 (IF (|has| |#1| (-561 (-792))) (IF (|has| |#2| (-561 (-792))) (-6 (-561 (-792))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1013)) (IF (|has| |#2| (-1013)) (-6 (-1013)) |%noBranch|) |%noBranch|) (-15 -2749 ($ |#1| |#2|)) (-15 -2201 ($ |#1| |#2|)) (-15 -2293 (|#1| $)) (-15 -2080 (|#2| $)))) (-1119) (-1119)) (T -802))
+((-2749 (*1 *1 *2 *3) (-12 (-5 *1 (-802 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-1119)))) (-2201 (*1 *1 *2 *3) (-12 (-5 *1 (-802 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-1119)))) (-2293 (*1 *2 *1) (-12 (-4 *2 (-1119)) (-5 *1 (-802 *2 *3)) (-4 *3 (-1119)))) (-2080 (*1 *2 *1) (-12 (-4 *2 (-1119)) (-5 *1 (-802 *3 *2)) (-4 *3 (-1119)))))
+(-13 (-1119) (-10 -8 (IF (|has| |#1| (-561 (-792))) (IF (|has| |#2| (-561 (-792))) (-6 (-561 (-792))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1013)) (IF (|has| |#2| (-1013)) (-6 (-1013)) |%noBranch|) |%noBranch|) (-15 -2749 ($ |#1| |#2|)) (-15 -2201 ($ |#1| |#2|)) (-15 -2293 (|#1| $)) (-15 -2080 (|#2| $))))
+((-1415 (((-108) $ $) NIL)) (-2840 (((-521) $) 15)) (-1698 (($ (-143)) 11)) (-2062 (($ (-143)) 12)) (-3688 (((-1067) $) NIL)) (-1748 (((-143) $) 13)) (-4147 (((-1031) $) NIL)) (-2617 (($ (-143)) 9)) (-1238 (($ (-143)) 8)) (-2189 (((-792) $) 23) (($ (-143)) 16)) (-2240 (($ (-143)) 10)) (-1531 (((-108) $ $) NIL)))
+(((-803) (-13 (-1013) (-10 -8 (-15 -1238 ($ (-143))) (-15 -2617 ($ (-143))) (-15 -2240 ($ (-143))) (-15 -1698 ($ (-143))) (-15 -2062 ($ (-143))) (-15 -1748 ((-143) $)) (-15 -2840 ((-521) $)) (-15 -2189 ($ (-143)))))) (T -803))
+((-1238 (*1 *1 *2) (-12 (-5 *2 (-143)) (-5 *1 (-803)))) (-2617 (*1 *1 *2) (-12 (-5 *2 (-143)) (-5 *1 (-803)))) (-2240 (*1 *1 *2) (-12 (-5 *2 (-143)) (-5 *1 (-803)))) (-1698 (*1 *1 *2) (-12 (-5 *2 (-143)) (-5 *1 (-803)))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-143)) (-5 *1 (-803)))) (-1748 (*1 *2 *1) (-12 (-5 *2 (-143)) (-5 *1 (-803)))) (-2840 (*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-803)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-143)) (-5 *1 (-803)))))
+(-13 (-1013) (-10 -8 (-15 -1238 ($ (-143))) (-15 -2617 ($ (-143))) (-15 -2240 ($ (-143))) (-15 -1698 ($ (-143))) (-15 -2062 ($ (-143))) (-15 -1748 ((-143) $)) (-15 -2840 ((-521) $)) (-15 -2189 ($ (-143)))))
+((-2189 (((-290 (-521)) (-381 (-881 (-47)))) 21) (((-290 (-521)) (-881 (-47))) 16)))
+(((-804) (-10 -7 (-15 -2189 ((-290 (-521)) (-881 (-47)))) (-15 -2189 ((-290 (-521)) (-381 (-881 (-47))))))) (T -804))
+((-2189 (*1 *2 *3) (-12 (-5 *3 (-381 (-881 (-47)))) (-5 *2 (-290 (-521))) (-5 *1 (-804)))) (-2189 (*1 *2 *3) (-12 (-5 *3 (-881 (-47))) (-5 *2 (-290 (-521))) (-5 *1 (-804)))))
+(-10 -7 (-15 -2189 ((-290 (-521)) (-881 (-47)))) (-15 -2189 ((-290 (-521)) (-381 (-881 (-47))))))
+((-1390 (((-806 |#2|) (-1 |#2| |#1|) (-806 |#1|)) 14)))
+(((-805 |#1| |#2|) (-10 -7 (-15 -1390 ((-806 |#2|) (-1 |#2| |#1|) (-806 |#1|)))) (-1119) (-1119)) (T -805))
+((-1390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-806 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-806 *6)) (-5 *1 (-805 *5 *6)))))
+(-10 -7 (-15 -1390 ((-806 |#2|) (-1 |#2| |#1|) (-806 |#1|))))
+((-2219 (($ |#1| |#1|) 8)) (-3243 ((|#1| $ (-707)) 10)))
+(((-806 |#1|) (-10 -8 (-15 -2219 ($ |#1| |#1|)) (-15 -3243 (|#1| $ (-707)))) (-1119)) (T -806))
+((-3243 (*1 *2 *1 *3) (-12 (-5 *3 (-707)) (-5 *1 (-806 *2)) (-4 *2 (-1119)))) (-2219 (*1 *1 *2 *2) (-12 (-5 *1 (-806 *2)) (-4 *2 (-1119)))))
+(-10 -8 (-15 -2219 ($ |#1| |#1|)) (-15 -3243 (|#1| $ (-707))))
+((-1390 (((-808 |#2|) (-1 |#2| |#1|) (-808 |#1|)) 14)))
+(((-807 |#1| |#2|) (-10 -7 (-15 -1390 ((-808 |#2|) (-1 |#2| |#1|) (-808 |#1|)))) (-1119) (-1119)) (T -807))
+((-1390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-808 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-808 *6)) (-5 *1 (-807 *5 *6)))))
+(-10 -7 (-15 -1390 ((-808 |#2|) (-1 |#2| |#1|) (-808 |#1|))))
+((-2219 (($ |#1| |#1| |#1|) 8)) (-3243 ((|#1| $ (-707)) 10)))
+(((-808 |#1|) (-10 -8 (-15 -2219 ($ |#1| |#1| |#1|)) (-15 -3243 (|#1| $ (-707)))) (-1119)) (T -808))
+((-3243 (*1 *2 *1 *3) (-12 (-5 *3 (-707)) (-5 *1 (-808 *2)) (-4 *2 (-1119)))) (-2219 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-808 *2)) (-4 *2 (-1119)))))
+(-10 -8 (-15 -2219 ($ |#1| |#1| |#1|)) (-15 -3243 (|#1| $ (-707))))
+((-1803 (((-587 (-1089)) (-1067)) 8)))
+(((-809) (-10 -7 (-15 -1803 ((-587 (-1089)) (-1067))))) (T -809))
+((-1803 (*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-587 (-1089))) (-5 *1 (-809)))))
+(-10 -7 (-15 -1803 ((-587 (-1089)) (-1067))))
+((-1390 (((-811 |#2|) (-1 |#2| |#1|) (-811 |#1|)) 14)))
+(((-810 |#1| |#2|) (-10 -7 (-15 -1390 ((-811 |#2|) (-1 |#2| |#1|) (-811 |#1|)))) (-1119) (-1119)) (T -810))
+((-1390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-811 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-811 *6)) (-5 *1 (-810 *5 *6)))))
+(-10 -7 (-15 -1390 ((-811 |#2|) (-1 |#2| |#1|) (-811 |#1|))))
+((-3041 (($ |#1| |#1| |#1|) 8)) (-3243 ((|#1| $ (-707)) 10)))
+(((-811 |#1|) (-10 -8 (-15 -3041 ($ |#1| |#1| |#1|)) (-15 -3243 (|#1| $ (-707)))) (-1119)) (T -811))
+((-3243 (*1 *2 *1 *3) (-12 (-5 *3 (-707)) (-5 *1 (-811 *2)) (-4 *2 (-1119)))) (-3041 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-811 *2)) (-4 *2 (-1119)))))
+(-10 -8 (-15 -3041 ($ |#1| |#1| |#1|)) (-15 -3243 (|#1| $ (-707))))
+((-2584 (((-1065 (-587 (-521))) (-587 (-521)) (-1065 (-587 (-521)))) 32)) (-3444 (((-1065 (-587 (-521))) (-587 (-521)) (-587 (-521))) 28)) (-1904 (((-1065 (-587 (-521))) (-587 (-521))) 41) (((-1065 (-587 (-521))) (-587 (-521)) (-587 (-521))) 40)) (-2693 (((-1065 (-587 (-521))) (-521)) 42)) (-2828 (((-1065 (-587 (-521))) (-521) (-521)) 22) (((-1065 (-587 (-521))) (-521)) 16) (((-1065 (-587 (-521))) (-521) (-521) (-521)) 12)) (-1607 (((-1065 (-587 (-521))) (-1065 (-587 (-521)))) 26)) (-1223 (((-587 (-521)) (-587 (-521))) 25)))
+(((-812) (-10 -7 (-15 -2828 ((-1065 (-587 (-521))) (-521) (-521) (-521))) (-15 -2828 ((-1065 (-587 (-521))) (-521))) (-15 -2828 ((-1065 (-587 (-521))) (-521) (-521))) (-15 -1223 ((-587 (-521)) (-587 (-521)))) (-15 -1607 ((-1065 (-587 (-521))) (-1065 (-587 (-521))))) (-15 -3444 ((-1065 (-587 (-521))) (-587 (-521)) (-587 (-521)))) (-15 -2584 ((-1065 (-587 (-521))) (-587 (-521)) (-1065 (-587 (-521))))) (-15 -1904 ((-1065 (-587 (-521))) (-587 (-521)) (-587 (-521)))) (-15 -1904 ((-1065 (-587 (-521))) (-587 (-521)))) (-15 -2693 ((-1065 (-587 (-521))) (-521))))) (T -812))
+((-2693 (*1 *2 *3) (-12 (-5 *2 (-1065 (-587 (-521)))) (-5 *1 (-812)) (-5 *3 (-521)))) (-1904 (*1 *2 *3) (-12 (-5 *2 (-1065 (-587 (-521)))) (-5 *1 (-812)) (-5 *3 (-587 (-521))))) (-1904 (*1 *2 *3 *3) (-12 (-5 *2 (-1065 (-587 (-521)))) (-5 *1 (-812)) (-5 *3 (-587 (-521))))) (-2584 (*1 *2 *3 *2) (-12 (-5 *2 (-1065 (-587 (-521)))) (-5 *3 (-587 (-521))) (-5 *1 (-812)))) (-3444 (*1 *2 *3 *3) (-12 (-5 *2 (-1065 (-587 (-521)))) (-5 *1 (-812)) (-5 *3 (-587 (-521))))) (-1607 (*1 *2 *2) (-12 (-5 *2 (-1065 (-587 (-521)))) (-5 *1 (-812)))) (-1223 (*1 *2 *2) (-12 (-5 *2 (-587 (-521))) (-5 *1 (-812)))) (-2828 (*1 *2 *3 *3) (-12 (-5 *2 (-1065 (-587 (-521)))) (-5 *1 (-812)) (-5 *3 (-521)))) (-2828 (*1 *2 *3) (-12 (-5 *2 (-1065 (-587 (-521)))) (-5 *1 (-812)) (-5 *3 (-521)))) (-2828 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1065 (-587 (-521)))) (-5 *1 (-812)) (-5 *3 (-521)))))
+(-10 -7 (-15 -2828 ((-1065 (-587 (-521))) (-521) (-521) (-521))) (-15 -2828 ((-1065 (-587 (-521))) (-521))) (-15 -2828 ((-1065 (-587 (-521))) (-521) (-521))) (-15 -1223 ((-587 (-521)) (-587 (-521)))) (-15 -1607 ((-1065 (-587 (-521))) (-1065 (-587 (-521))))) (-15 -3444 ((-1065 (-587 (-521))) (-587 (-521)) (-587 (-521)))) (-15 -2584 ((-1065 (-587 (-521))) (-587 (-521)) (-1065 (-587 (-521))))) (-15 -1904 ((-1065 (-587 (-521))) (-587 (-521)) (-587 (-521)))) (-15 -1904 ((-1065 (-587 (-521))) (-587 (-521)))) (-15 -2693 ((-1065 (-587 (-521))) (-521))))
+((-1430 (((-821 (-353)) $) 9 (|has| |#1| (-562 (-821 (-353))))) (((-821 (-521)) $) 8 (|has| |#1| (-562 (-821 (-521)))))))
+(((-813 |#1|) (-1196) (-1119)) (T -813))
+NIL
+(-13 (-10 -7 (IF (|has| |t#1| (-562 (-821 (-521)))) (-6 (-562 (-821 (-521)))) |%noBranch|) (IF (|has| |t#1| (-562 (-821 (-353)))) (-6 (-562 (-821 (-353)))) |%noBranch|)))
+(((-562 (-821 (-353))) |has| |#1| (-562 (-821 (-353)))) ((-562 (-821 (-521))) |has| |#1| (-562 (-821 (-521)))))
+((-1415 (((-108) $ $) NIL)) (-1811 (($) 14)) (-1863 (($ (-818 |#1| |#2|) (-818 |#1| |#3|)) 27)) (-3825 (((-818 |#1| |#3|) $) 16)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-3755 (((-108) $) 22)) (-3079 (($) 19)) (-2189 (((-792) $) 30)) (-2891 (((-818 |#1| |#2|) $) 15)) (-1531 (((-108) $ $) 25)))
+(((-814 |#1| |#2| |#3|) (-13 (-1013) (-10 -8 (-15 -3755 ((-108) $)) (-15 -3079 ($)) (-15 -1811 ($)) (-15 -1863 ($ (-818 |#1| |#2|) (-818 |#1| |#3|))) (-15 -2891 ((-818 |#1| |#2|) $)) (-15 -3825 ((-818 |#1| |#3|) $)))) (-1013) (-1013) (-607 |#2|)) (T -814))
+((-3755 (*1 *2 *1) (-12 (-4 *4 (-1013)) (-5 *2 (-108)) (-5 *1 (-814 *3 *4 *5)) (-4 *3 (-1013)) (-4 *5 (-607 *4)))) (-3079 (*1 *1) (-12 (-4 *3 (-1013)) (-5 *1 (-814 *2 *3 *4)) (-4 *2 (-1013)) (-4 *4 (-607 *3)))) (-1811 (*1 *1) (-12 (-4 *3 (-1013)) (-5 *1 (-814 *2 *3 *4)) (-4 *2 (-1013)) (-4 *4 (-607 *3)))) (-1863 (*1 *1 *2 *3) (-12 (-5 *2 (-818 *4 *5)) (-5 *3 (-818 *4 *6)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-607 *5)) (-5 *1 (-814 *4 *5 *6)))) (-2891 (*1 *2 *1) (-12 (-4 *4 (-1013)) (-5 *2 (-818 *3 *4)) (-5 *1 (-814 *3 *4 *5)) (-4 *3 (-1013)) (-4 *5 (-607 *4)))) (-3825 (*1 *2 *1) (-12 (-4 *4 (-1013)) (-5 *2 (-818 *3 *5)) (-5 *1 (-814 *3 *4 *5)) (-4 *3 (-1013)) (-4 *5 (-607 *4)))))
+(-13 (-1013) (-10 -8 (-15 -3755 ((-108) $)) (-15 -3079 ($)) (-15 -1811 ($)) (-15 -1863 ($ (-818 |#1| |#2|) (-818 |#1| |#3|))) (-15 -2891 ((-818 |#1| |#2|) $)) (-15 -3825 ((-818 |#1| |#3|) $))))
+((-1415 (((-108) $ $) 7)) (-3427 (((-818 |#1| $) $ (-821 |#1|) (-818 |#1| $)) 13)) (-3688 (((-1067) $) 9)) (-4147 (((-1031) $) 10)) (-2189 (((-792) $) 11)) (-1531 (((-108) $ $) 6)))
+(((-815 |#1|) (-1196) (-1013)) (T -815))
+((-3427 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-818 *4 *1)) (-5 *3 (-821 *4)) (-4 *1 (-815 *4)) (-4 *4 (-1013)))))
+(-13 (-1013) (-10 -8 (-15 -3427 ((-818 |t#1| $) $ (-821 |t#1|) (-818 |t#1| $)))))
+(((-97) . T) ((-561 (-792)) . T) ((-1013) . T))
+((-1705 (((-108) (-587 |#2|) |#3|) 23) (((-108) |#2| |#3|) 18)) (-3151 (((-818 |#1| |#2|) |#2| |#3|) 43 (-12 (-2400 (|has| |#2| (-961 (-1084)))) (-2400 (|has| |#2| (-970))))) (((-587 (-269 (-881 |#2|))) |#2| |#3|) 42 (-12 (|has| |#2| (-970)) (-2400 (|has| |#2| (-961 (-1084)))))) (((-587 (-269 |#2|)) |#2| |#3|) 35 (|has| |#2| (-961 (-1084)))) (((-814 |#1| |#2| (-587 |#2|)) (-587 |#2|) |#3|) 21)))
+(((-816 |#1| |#2| |#3|) (-10 -7 (-15 -1705 ((-108) |#2| |#3|)) (-15 -1705 ((-108) (-587 |#2|) |#3|)) (-15 -3151 ((-814 |#1| |#2| (-587 |#2|)) (-587 |#2|) |#3|)) (IF (|has| |#2| (-961 (-1084))) (-15 -3151 ((-587 (-269 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-970)) (-15 -3151 ((-587 (-269 (-881 |#2|))) |#2| |#3|)) (-15 -3151 ((-818 |#1| |#2|) |#2| |#3|))))) (-1013) (-815 |#1|) (-562 (-821 |#1|))) (T -816))
+((-3151 (*1 *2 *3 *4) (-12 (-4 *5 (-1013)) (-5 *2 (-818 *5 *3)) (-5 *1 (-816 *5 *3 *4)) (-2400 (-4 *3 (-961 (-1084)))) (-2400 (-4 *3 (-970))) (-4 *3 (-815 *5)) (-4 *4 (-562 (-821 *5))))) (-3151 (*1 *2 *3 *4) (-12 (-4 *5 (-1013)) (-5 *2 (-587 (-269 (-881 *3)))) (-5 *1 (-816 *5 *3 *4)) (-4 *3 (-970)) (-2400 (-4 *3 (-961 (-1084)))) (-4 *3 (-815 *5)) (-4 *4 (-562 (-821 *5))))) (-3151 (*1 *2 *3 *4) (-12 (-4 *5 (-1013)) (-5 *2 (-587 (-269 *3))) (-5 *1 (-816 *5 *3 *4)) (-4 *3 (-961 (-1084))) (-4 *3 (-815 *5)) (-4 *4 (-562 (-821 *5))))) (-3151 (*1 *2 *3 *4) (-12 (-4 *5 (-1013)) (-4 *6 (-815 *5)) (-5 *2 (-814 *5 *6 (-587 *6))) (-5 *1 (-816 *5 *6 *4)) (-5 *3 (-587 *6)) (-4 *4 (-562 (-821 *5))))) (-1705 (*1 *2 *3 *4) (-12 (-5 *3 (-587 *6)) (-4 *6 (-815 *5)) (-4 *5 (-1013)) (-5 *2 (-108)) (-5 *1 (-816 *5 *6 *4)) (-4 *4 (-562 (-821 *5))))) (-1705 (*1 *2 *3 *4) (-12 (-4 *5 (-1013)) (-5 *2 (-108)) (-5 *1 (-816 *5 *3 *4)) (-4 *3 (-815 *5)) (-4 *4 (-562 (-821 *5))))))
+(-10 -7 (-15 -1705 ((-108) |#2| |#3|)) (-15 -1705 ((-108) (-587 |#2|) |#3|)) (-15 -3151 ((-814 |#1| |#2| (-587 |#2|)) (-587 |#2|) |#3|)) (IF (|has| |#2| (-961 (-1084))) (-15 -3151 ((-587 (-269 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-970)) (-15 -3151 ((-587 (-269 (-881 |#2|))) |#2| |#3|)) (-15 -3151 ((-818 |#1| |#2|) |#2| |#3|)))))
+((-1390 (((-818 |#1| |#3|) (-1 |#3| |#2|) (-818 |#1| |#2|)) 21)))
+(((-817 |#1| |#2| |#3|) (-10 -7 (-15 -1390 ((-818 |#1| |#3|) (-1 |#3| |#2|) (-818 |#1| |#2|)))) (-1013) (-1013) (-1013)) (T -817))
+((-1390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-818 *5 *6)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-818 *5 *7)) (-5 *1 (-817 *5 *6 *7)))))
+(-10 -7 (-15 -1390 ((-818 |#1| |#3|) (-1 |#3| |#2|) (-818 |#1| |#2|))))
+((-1415 (((-108) $ $) NIL)) (-2269 (($ $ $) 37)) (-1774 (((-3 (-108) "failed") $ (-821 |#1|)) 34)) (-1811 (($) 11)) (-3688 (((-1067) $) NIL)) (-3554 (($ (-821 |#1|) |#2| $) 20)) (-4147 (((-1031) $) NIL)) (-3312 (((-3 |#2| "failed") (-821 |#1|) $) 48)) (-3755 (((-108) $) 14)) (-3079 (($) 12)) (-1992 (((-587 (-2 (|:| -2529 (-1084)) (|:| -3045 |#2|))) $) 25)) (-2201 (($ (-587 (-2 (|:| -2529 (-1084)) (|:| -3045 |#2|)))) 23)) (-2189 (((-792) $) 42)) (-3702 (($ (-821 |#1|) |#2| $ |#2|) 46)) (-1887 (($ (-821 |#1|) |#2| $) 45)) (-1531 (((-108) $ $) 39)))
+(((-818 |#1| |#2|) (-13 (-1013) (-10 -8 (-15 -3755 ((-108) $)) (-15 -3079 ($)) (-15 -1811 ($)) (-15 -2269 ($ $ $)) (-15 -3312 ((-3 |#2| "failed") (-821 |#1|) $)) (-15 -1887 ($ (-821 |#1|) |#2| $)) (-15 -3554 ($ (-821 |#1|) |#2| $)) (-15 -3702 ($ (-821 |#1|) |#2| $ |#2|)) (-15 -1992 ((-587 (-2 (|:| -2529 (-1084)) (|:| -3045 |#2|))) $)) (-15 -2201 ($ (-587 (-2 (|:| -2529 (-1084)) (|:| -3045 |#2|))))) (-15 -1774 ((-3 (-108) "failed") $ (-821 |#1|))))) (-1013) (-1013)) (T -818))
+((-3755 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-818 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))) (-3079 (*1 *1) (-12 (-5 *1 (-818 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))) (-1811 (*1 *1) (-12 (-5 *1 (-818 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))) (-2269 (*1 *1 *1 *1) (-12 (-5 *1 (-818 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))) (-3312 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-821 *4)) (-4 *4 (-1013)) (-4 *2 (-1013)) (-5 *1 (-818 *4 *2)))) (-1887 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-821 *4)) (-4 *4 (-1013)) (-5 *1 (-818 *4 *3)) (-4 *3 (-1013)))) (-3554 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-821 *4)) (-4 *4 (-1013)) (-5 *1 (-818 *4 *3)) (-4 *3 (-1013)))) (-3702 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-821 *4)) (-4 *4 (-1013)) (-5 *1 (-818 *4 *3)) (-4 *3 (-1013)))) (-1992 (*1 *2 *1) (-12 (-5 *2 (-587 (-2 (|:| -2529 (-1084)) (|:| -3045 *4)))) (-5 *1 (-818 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))) (-2201 (*1 *1 *2) (-12 (-5 *2 (-587 (-2 (|:| -2529 (-1084)) (|:| -3045 *4)))) (-4 *4 (-1013)) (-5 *1 (-818 *3 *4)) (-4 *3 (-1013)))) (-1774 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-821 *4)) (-4 *4 (-1013)) (-5 *2 (-108)) (-5 *1 (-818 *4 *5)) (-4 *5 (-1013)))))
+(-13 (-1013) (-10 -8 (-15 -3755 ((-108) $)) (-15 -3079 ($)) (-15 -1811 ($)) (-15 -2269 ($ $ $)) (-15 -3312 ((-3 |#2| "failed") (-821 |#1|) $)) (-15 -1887 ($ (-821 |#1|) |#2| $)) (-15 -3554 ($ (-821 |#1|) |#2| $)) (-15 -3702 ($ (-821 |#1|) |#2| $ |#2|)) (-15 -1992 ((-587 (-2 (|:| -2529 (-1084)) (|:| -3045 |#2|))) $)) (-15 -2201 ($ (-587 (-2 (|:| -2529 (-1084)) (|:| -3045 |#2|))))) (-15 -1774 ((-3 (-108) "failed") $ (-821 |#1|)))))
+((-1870 (((-821 |#1|) (-821 |#1|) (-587 (-1084)) (-1 (-108) (-587 |#2|))) 30) (((-821 |#1|) (-821 |#1|) (-587 (-1 (-108) |#2|))) 42) (((-821 |#1|) (-821 |#1|) (-1 (-108) |#2|)) 33)) (-1774 (((-108) (-587 |#2|) (-821 |#1|)) 39) (((-108) |#2| (-821 |#1|)) 35)) (-4000 (((-1 (-108) |#2|) (-821 |#1|)) 14)) (-3768 (((-587 |#2|) (-821 |#1|)) 23)) (-2523 (((-821 |#1|) (-821 |#1|) |#2|) 19)))
+(((-819 |#1| |#2|) (-10 -7 (-15 -1870 ((-821 |#1|) (-821 |#1|) (-1 (-108) |#2|))) (-15 -1870 ((-821 |#1|) (-821 |#1|) (-587 (-1 (-108) |#2|)))) (-15 -1870 ((-821 |#1|) (-821 |#1|) (-587 (-1084)) (-1 (-108) (-587 |#2|)))) (-15 -4000 ((-1 (-108) |#2|) (-821 |#1|))) (-15 -1774 ((-108) |#2| (-821 |#1|))) (-15 -1774 ((-108) (-587 |#2|) (-821 |#1|))) (-15 -2523 ((-821 |#1|) (-821 |#1|) |#2|)) (-15 -3768 ((-587 |#2|) (-821 |#1|)))) (-1013) (-1119)) (T -819))
+((-3768 (*1 *2 *3) (-12 (-5 *3 (-821 *4)) (-4 *4 (-1013)) (-5 *2 (-587 *5)) (-5 *1 (-819 *4 *5)) (-4 *5 (-1119)))) (-2523 (*1 *2 *2 *3) (-12 (-5 *2 (-821 *4)) (-4 *4 (-1013)) (-5 *1 (-819 *4 *3)) (-4 *3 (-1119)))) (-1774 (*1 *2 *3 *4) (-12 (-5 *3 (-587 *6)) (-5 *4 (-821 *5)) (-4 *5 (-1013)) (-4 *6 (-1119)) (-5 *2 (-108)) (-5 *1 (-819 *5 *6)))) (-1774 (*1 *2 *3 *4) (-12 (-5 *4 (-821 *5)) (-4 *5 (-1013)) (-5 *2 (-108)) (-5 *1 (-819 *5 *3)) (-4 *3 (-1119)))) (-4000 (*1 *2 *3) (-12 (-5 *3 (-821 *4)) (-4 *4 (-1013)) (-5 *2 (-1 (-108) *5)) (-5 *1 (-819 *4 *5)) (-4 *5 (-1119)))) (-1870 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-821 *5)) (-5 *3 (-587 (-1084))) (-5 *4 (-1 (-108) (-587 *6))) (-4 *5 (-1013)) (-4 *6 (-1119)) (-5 *1 (-819 *5 *6)))) (-1870 (*1 *2 *2 *3) (-12 (-5 *2 (-821 *4)) (-5 *3 (-587 (-1 (-108) *5))) (-4 *4 (-1013)) (-4 *5 (-1119)) (-5 *1 (-819 *4 *5)))) (-1870 (*1 *2 *2 *3) (-12 (-5 *2 (-821 *4)) (-5 *3 (-1 (-108) *5)) (-4 *4 (-1013)) (-4 *5 (-1119)) (-5 *1 (-819 *4 *5)))))
+(-10 -7 (-15 -1870 ((-821 |#1|) (-821 |#1|) (-1 (-108) |#2|))) (-15 -1870 ((-821 |#1|) (-821 |#1|) (-587 (-1 (-108) |#2|)))) (-15 -1870 ((-821 |#1|) (-821 |#1|) (-587 (-1084)) (-1 (-108) (-587 |#2|)))) (-15 -4000 ((-1 (-108) |#2|) (-821 |#1|))) (-15 -1774 ((-108) |#2| (-821 |#1|))) (-15 -1774 ((-108) (-587 |#2|) (-821 |#1|))) (-15 -2523 ((-821 |#1|) (-821 |#1|) |#2|)) (-15 -3768 ((-587 |#2|) (-821 |#1|))))
+((-1390 (((-821 |#2|) (-1 |#2| |#1|) (-821 |#1|)) 17)))
+(((-820 |#1| |#2|) (-10 -7 (-15 -1390 ((-821 |#2|) (-1 |#2| |#1|) (-821 |#1|)))) (-1013) (-1013)) (T -820))
+((-1390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-821 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *2 (-821 *6)) (-5 *1 (-820 *5 *6)))))
+(-10 -7 (-15 -1390 ((-821 |#2|) (-1 |#2| |#1|) (-821 |#1|))))
+((-1415 (((-108) $ $) NIL)) (-2895 (($ $ (-587 (-51))) 63)) (-4084 (((-587 $) $) 117)) (-1871 (((-2 (|:| |var| (-587 (-1084))) (|:| |pred| (-51))) $) 23)) (-3870 (((-108) $) 30)) (-2872 (($ $ (-587 (-1084)) (-51)) 25)) (-1684 (($ $ (-587 (-51))) 62)) (-1297 (((-3 |#1| "failed") $) 60) (((-3 (-1084) "failed") $) 139)) (-1483 ((|#1| $) 56) (((-1084) $) NIL)) (-1686 (($ $) 107)) (-2051 (((-108) $) 46)) (-3536 (((-587 (-51)) $) 44)) (-3074 (($ (-1084) (-108) (-108) (-108)) 64)) (-1540 (((-3 (-587 $) "failed") (-587 $)) 71)) (-1359 (((-108) $) 49)) (-1446 (((-108) $) 48)) (-3688 (((-1067) $) NIL)) (-1617 (((-3 (-587 $) "failed") $) 35)) (-4071 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 42)) (-1928 (((-3 (-2 (|:| |val| $) (|:| -2997 $)) "failed") $) 82)) (-3177 (((-3 (-587 $) "failed") $) 32)) (-2417 (((-3 (-587 $) "failed") $ (-110)) 106) (((-3 (-2 (|:| -1419 (-110)) (|:| |arg| (-587 $))) "failed") $) 94)) (-1732 (((-3 (-587 $) "failed") $) 36)) (-3979 (((-3 (-2 (|:| |val| $) (|:| -2997 (-707))) "failed") $) 39)) (-3982 (((-108) $) 29)) (-4147 (((-1031) $) NIL)) (-4054 (((-108) $) 21)) (-3571 (((-108) $) 45)) (-2101 (((-587 (-51)) $) 110)) (-3007 (((-108) $) 47)) (-2544 (($ (-110) (-587 $)) 91)) (-1252 (((-707) $) 28)) (-2404 (($ $) 61)) (-1430 (($ (-587 $)) 58)) (-3101 (((-108) $) 26)) (-2189 (((-792) $) 51) (($ |#1|) 18) (($ (-1084)) 65)) (-2523 (($ $ (-51)) 109)) (-3561 (($) 90 T CONST)) (-3572 (($) 72 T CONST)) (-1531 (((-108) $ $) 78)) (-1620 (($ $ $) 99)) (-1602 (($ $ $) 103)) (** (($ $ (-707)) 98) (($ $ $) 52)) (* (($ $ $) 104)))
+(((-821 |#1|) (-13 (-1013) (-961 |#1|) (-961 (-1084)) (-10 -8 (-15 0 ($) -2676) (-15 1 ($) -2676) (-15 -3177 ((-3 (-587 $) "failed") $)) (-15 -1617 ((-3 (-587 $) "failed") $)) (-15 -2417 ((-3 (-587 $) "failed") $ (-110))) (-15 -2417 ((-3 (-2 (|:| -1419 (-110)) (|:| |arg| (-587 $))) "failed") $)) (-15 -3979 ((-3 (-2 (|:| |val| $) (|:| -2997 (-707))) "failed") $)) (-15 -4071 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -1732 ((-3 (-587 $) "failed") $)) (-15 -1928 ((-3 (-2 (|:| |val| $) (|:| -2997 $)) "failed") $)) (-15 -2544 ($ (-110) (-587 $))) (-15 -1602 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-707))) (-15 ** ($ $ $)) (-15 -1620 ($ $ $)) (-15 -1252 ((-707) $)) (-15 -1430 ($ (-587 $))) (-15 -2404 ($ $)) (-15 -3982 ((-108) $)) (-15 -2051 ((-108) $)) (-15 -3870 ((-108) $)) (-15 -3101 ((-108) $)) (-15 -3007 ((-108) $)) (-15 -1446 ((-108) $)) (-15 -1359 ((-108) $)) (-15 -3571 ((-108) $)) (-15 -3536 ((-587 (-51)) $)) (-15 -1684 ($ $ (-587 (-51)))) (-15 -2895 ($ $ (-587 (-51)))) (-15 -3074 ($ (-1084) (-108) (-108) (-108))) (-15 -2872 ($ $ (-587 (-1084)) (-51))) (-15 -1871 ((-2 (|:| |var| (-587 (-1084))) (|:| |pred| (-51))) $)) (-15 -4054 ((-108) $)) (-15 -1686 ($ $)) (-15 -2523 ($ $ (-51))) (-15 -2101 ((-587 (-51)) $)) (-15 -4084 ((-587 $) $)) (-15 -1540 ((-3 (-587 $) "failed") (-587 $))))) (-1013)) (T -821))
+((-3561 (*1 *1) (-12 (-5 *1 (-821 *2)) (-4 *2 (-1013)))) (-3572 (*1 *1) (-12 (-5 *1 (-821 *2)) (-4 *2 (-1013)))) (-3177 (*1 *2 *1) (|partial| -12 (-5 *2 (-587 (-821 *3))) (-5 *1 (-821 *3)) (-4 *3 (-1013)))) (-1617 (*1 *2 *1) (|partial| -12 (-5 *2 (-587 (-821 *3))) (-5 *1 (-821 *3)) (-4 *3 (-1013)))) (-2417 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-110)) (-5 *2 (-587 (-821 *4))) (-5 *1 (-821 *4)) (-4 *4 (-1013)))) (-2417 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -1419 (-110)) (|:| |arg| (-587 (-821 *3))))) (-5 *1 (-821 *3)) (-4 *3 (-1013)))) (-3979 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-821 *3)) (|:| -2997 (-707)))) (-5 *1 (-821 *3)) (-4 *3 (-1013)))) (-4071 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-821 *3)) (|:| |den| (-821 *3)))) (-5 *1 (-821 *3)) (-4 *3 (-1013)))) (-1732 (*1 *2 *1) (|partial| -12 (-5 *2 (-587 (-821 *3))) (-5 *1 (-821 *3)) (-4 *3 (-1013)))) (-1928 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-821 *3)) (|:| -2997 (-821 *3)))) (-5 *1 (-821 *3)) (-4 *3 (-1013)))) (-2544 (*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-587 (-821 *4))) (-5 *1 (-821 *4)) (-4 *4 (-1013)))) (-1602 (*1 *1 *1 *1) (-12 (-5 *1 (-821 *2)) (-4 *2 (-1013)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-821 *2)) (-4 *2 (-1013)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-821 *3)) (-4 *3 (-1013)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-821 *2)) (-4 *2 (-1013)))) (-1620 (*1 *1 *1 *1) (-12 (-5 *1 (-821 *2)) (-4 *2 (-1013)))) (-1252 (*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-821 *3)) (-4 *3 (-1013)))) (-1430 (*1 *1 *2) (-12 (-5 *2 (-587 (-821 *3))) (-5 *1 (-821 *3)) (-4 *3 (-1013)))) (-2404 (*1 *1 *1) (-12 (-5 *1 (-821 *2)) (-4 *2 (-1013)))) (-3982 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-821 *3)) (-4 *3 (-1013)))) (-2051 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-821 *3)) (-4 *3 (-1013)))) (-3870 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-821 *3)) (-4 *3 (-1013)))) (-3101 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-821 *3)) (-4 *3 (-1013)))) (-3007 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-821 *3)) (-4 *3 (-1013)))) (-1446 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-821 *3)) (-4 *3 (-1013)))) (-1359 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-821 *3)) (-4 *3 (-1013)))) (-3571 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-821 *3)) (-4 *3 (-1013)))) (-3536 (*1 *2 *1) (-12 (-5 *2 (-587 (-51))) (-5 *1 (-821 *3)) (-4 *3 (-1013)))) (-1684 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-51))) (-5 *1 (-821 *3)) (-4 *3 (-1013)))) (-2895 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-51))) (-5 *1 (-821 *3)) (-4 *3 (-1013)))) (-3074 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-108)) (-5 *1 (-821 *4)) (-4 *4 (-1013)))) (-2872 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-587 (-1084))) (-5 *3 (-51)) (-5 *1 (-821 *4)) (-4 *4 (-1013)))) (-1871 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-587 (-1084))) (|:| |pred| (-51)))) (-5 *1 (-821 *3)) (-4 *3 (-1013)))) (-4054 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-821 *3)) (-4 *3 (-1013)))) (-1686 (*1 *1 *1) (-12 (-5 *1 (-821 *2)) (-4 *2 (-1013)))) (-2523 (*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-821 *3)) (-4 *3 (-1013)))) (-2101 (*1 *2 *1) (-12 (-5 *2 (-587 (-51))) (-5 *1 (-821 *3)) (-4 *3 (-1013)))) (-4084 (*1 *2 *1) (-12 (-5 *2 (-587 (-821 *3))) (-5 *1 (-821 *3)) (-4 *3 (-1013)))) (-1540 (*1 *2 *2) (|partial| -12 (-5 *2 (-587 (-821 *3))) (-5 *1 (-821 *3)) (-4 *3 (-1013)))))
+(-13 (-1013) (-961 |#1|) (-961 (-1084)) (-10 -8 (-15 (-3561) ($) -2676) (-15 (-3572) ($) -2676) (-15 -3177 ((-3 (-587 $) "failed") $)) (-15 -1617 ((-3 (-587 $) "failed") $)) (-15 -2417 ((-3 (-587 $) "failed") $ (-110))) (-15 -2417 ((-3 (-2 (|:| -1419 (-110)) (|:| |arg| (-587 $))) "failed") $)) (-15 -3979 ((-3 (-2 (|:| |val| $) (|:| -2997 (-707))) "failed") $)) (-15 -4071 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -1732 ((-3 (-587 $) "failed") $)) (-15 -1928 ((-3 (-2 (|:| |val| $) (|:| -2997 $)) "failed") $)) (-15 -2544 ($ (-110) (-587 $))) (-15 -1602 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-707))) (-15 ** ($ $ $)) (-15 -1620 ($ $ $)) (-15 -1252 ((-707) $)) (-15 -1430 ($ (-587 $))) (-15 -2404 ($ $)) (-15 -3982 ((-108) $)) (-15 -2051 ((-108) $)) (-15 -3870 ((-108) $)) (-15 -3101 ((-108) $)) (-15 -3007 ((-108) $)) (-15 -1446 ((-108) $)) (-15 -1359 ((-108) $)) (-15 -3571 ((-108) $)) (-15 -3536 ((-587 (-51)) $)) (-15 -1684 ($ $ (-587 (-51)))) (-15 -2895 ($ $ (-587 (-51)))) (-15 -3074 ($ (-1084) (-108) (-108) (-108))) (-15 -2872 ($ $ (-587 (-1084)) (-51))) (-15 -1871 ((-2 (|:| |var| (-587 (-1084))) (|:| |pred| (-51))) $)) (-15 -4054 ((-108) $)) (-15 -1686 ($ $)) (-15 -2523 ($ $ (-51))) (-15 -2101 ((-587 (-51)) $)) (-15 -4084 ((-587 $) $)) (-15 -1540 ((-3 (-587 $) "failed") (-587 $)))))
+((-1415 (((-108) $ $) NIL)) (-4101 (((-587 |#1|) $) 16)) (-1423 (((-108) $) 38)) (-1297 (((-3 (-612 |#1|) "failed") $) 41)) (-1483 (((-612 |#1|) $) 39)) (-2306 (($ $) 18)) (-2810 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-2516 (((-707) $) 45)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2293 (((-612 |#1|) $) 17)) (-2189 (((-792) $) 37) (($ (-612 |#1|)) 21) (((-756 |#1|) $) 27) (($ |#1|) 20)) (-3572 (($) 8 T CONST)) (-2352 (((-587 (-612 |#1|)) $) 23)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) 11)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 48)))
+(((-822 |#1|) (-13 (-784) (-961 (-612 |#1|)) (-10 -8 (-15 1 ($) -2676) (-15 -2189 ((-756 |#1|) $)) (-15 -2189 ($ |#1|)) (-15 -2293 ((-612 |#1|) $)) (-15 -2516 ((-707) $)) (-15 -2352 ((-587 (-612 |#1|)) $)) (-15 -2306 ($ $)) (-15 -1423 ((-108) $)) (-15 -4101 ((-587 |#1|) $)))) (-784)) (T -822))
+((-3572 (*1 *1) (-12 (-5 *1 (-822 *2)) (-4 *2 (-784)))) (-2189 (*1 *2 *1) (-12 (-5 *2 (-756 *3)) (-5 *1 (-822 *3)) (-4 *3 (-784)))) (-2189 (*1 *1 *2) (-12 (-5 *1 (-822 *2)) (-4 *2 (-784)))) (-2293 (*1 *2 *1) (-12 (-5 *2 (-612 *3)) (-5 *1 (-822 *3)) (-4 *3 (-784)))) (-2516 (*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-822 *3)) (-4 *3 (-784)))) (-2352 (*1 *2 *1) (-12 (-5 *2 (-587 (-612 *3))) (-5 *1 (-822 *3)) (-4 *3 (-784)))) (-2306 (*1 *1 *1) (-12 (-5 *1 (-822 *2)) (-4 *2 (-784)))) (-1423 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-822 *3)) (-4 *3 (-784)))) (-4101 (*1 *2 *1) (-12 (-5 *2 (-587 *3)) (-5 *1 (-822 *3)) (-4 *3 (-784)))))
+(-13 (-784) (-961 (-612 |#1|)) (-10 -8 (-15 (-3572) ($) -2676) (-15 -2189 ((-756 |#1|) $)) (-15 -2189 ($ |#1|)) (-15 -2293 ((-612 |#1|) $)) (-15 -2516 ((-707) $)) (-15 -2352 ((-587 (-612 |#1|)) $)) (-15 -2306 ($ $)) (-15 -1423 ((-108) $)) (-15 -4101 ((-587 |#1|) $))))
+((-3600 ((|#1| |#1| |#1|) 20)))
+(((-823 |#1| |#2|) (-10 -7 (-15 -3600 (|#1| |#1| |#1|))) (-1141 |#2|) (-970)) (T -823))
+((-3600 (*1 *2 *2 *2) (-12 (-4 *3 (-970)) (-5 *1 (-823 *2 *3)) (-4 *2 (-1141 *3)))))
+(-10 -7 (-15 -3600 (|#1| |#1| |#1|)))
+((-1415 (((-108) $ $) 7)) (-1797 (((-2 (|:| -1797 (-353)) (|:| |explanations| (-1067))) (-982) (-2 (|:| |pde| (-587 (-290 (-202)))) (|:| |constraints| (-587 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-707)) (|:| |boundaryType| (-521)) (|:| |dStart| (-627 (-202))) (|:| |dFinish| (-627 (-202)))))) (|:| |f| (-587 (-587 (-290 (-202))))) (|:| |st| (-1067)) (|:| |tol| (-202)))) 14)) (-3688 (((-1067) $) 9)) (-4147 (((-1031) $) 10)) (-2189 (((-792) $) 11)) (-1226 (((-959) (-2 (|:| |pde| (-587 (-290 (-202)))) (|:| |constraints| (-587 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-707)) (|:| |boundaryType| (-521)) (|:| |dStart| (-627 (-202))) (|:| |dFinish| (-627 (-202)))))) (|:| |f| (-587 (-587 (-290 (-202))))) (|:| |st| (-1067)) (|:| |tol| (-202)))) 13)) (-1531 (((-108) $ $) 6)))
+(((-824) (-1196)) (T -824))
+((-1797 (*1 *2 *3 *4) (-12 (-4 *1 (-824)) (-5 *3 (-982)) (-5 *4 (-2 (|:| |pde| (-587 (-290 (-202)))) (|:| |constraints| (-587 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-707)) (|:| |boundaryType| (-521)) (|:| |dStart| (-627 (-202))) (|:| |dFinish| (-627 (-202)))))) (|:| |f| (-587 (-587 (-290 (-202))))) (|:| |st| (-1067)) (|:| |tol| (-202)))) (-5 *2 (-2 (|:| -1797 (-353)) (|:| |explanations| (-1067)))))) (-1226 (*1 *2 *3) (-12 (-4 *1 (-824)) (-5 *3 (-2 (|:| |pde| (-587 (-290 (-202)))) (|:| |constraints| (-587 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-707)) (|:| |boundaryType| (-521)) (|:| |dStart| (-627 (-202))) (|:| |dFinish| (-627 (-202)))))) (|:| |f| (-587 (-587 (-290 (-202))))) (|:| |st| (-1067)) (|:| |tol| (-202)))) (-5 *2 (-959)))))
+(-13 (-1013) (-10 -7 (-15 -1797 ((-2 (|:| -1797 (-353)) (|:| |explanations| (-1067))) (-982) (-2 (|:| |pde| (-587 (-290 (-202)))) (|:| |constraints| (-587 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-707)) (|:| |boundaryType| (-521)) (|:| |dStart| (-627 (-202))) (|:| |dFinish| (-627 (-202)))))) (|:| |f| (-587 (-587 (-290 (-202))))) (|:| |st| (-1067)) (|:| |tol| (-202))))) (-15 -1226 ((-959) (-2 (|:| |pde| (-587 (-290 (-202)))) (|:| |constraints| (-587 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-707)) (|:| |boundaryType| (-521)) (|:| |dStart| (-627 (-202))) (|:| |dFinish| (-627 (-202)))))) (|:| |f| (-587 (-587 (-290 (-202))))) (|:| |st| (-1067)) (|:| |tol| (-202)))))))
+(((-97) . T) ((-561 (-792)) . T) ((-1013) . T))
+((-3679 ((|#1| |#1| (-707)) 24)) (-1977 (((-3 |#1| "failed") |#1| |#1|) 23)) (-3686 (((-3 (-2 (|:| -1913 |#1|) (|:| -1925 |#1|)) "failed") |#1| (-707) (-707)) 27) (((-587 |#1|) |#1|) 29)))
+(((-825 |#1| |#2|) (-10 -7 (-15 -3686 ((-587 |#1|) |#1|)) (-15 -3686 ((-3 (-2 (|:| -1913 |#1|) (|:| -1925 |#1|)) "failed") |#1| (-707) (-707))) (-15 -1977 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3679 (|#1| |#1| (-707)))) (-1141 |#2|) (-337)) (T -825))
+((-3679 (*1 *2 *2 *3) (-12 (-5 *3 (-707)) (-4 *4 (-337)) (-5 *1 (-825 *2 *4)) (-4 *2 (-1141 *4)))) (-1977 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-337)) (-5 *1 (-825 *2 *3)) (-4 *2 (-1141 *3)))) (-3686 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-707)) (-4 *5 (-337)) (-5 *2 (-2 (|:| -1913 *3) (|:| -1925 *3))) (-5 *1 (-825 *3 *5)) (-4 *3 (-1141 *5)))) (-3686 (*1 *2 *3) (-12 (-4 *4 (-337)) (-5 *2 (-587 *3)) (-5 *1 (-825 *3 *4)) (-4 *3 (-1141 *4)))))
+(-10 -7 (-15 -3686 ((-587 |#1|) |#1|)) (-15 -3686 ((-3 (-2 (|:| -1913 |#1|) (|:| -1925 |#1|)) "failed") |#1| (-707) (-707))) (-15 -1977 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3679 (|#1| |#1| (-707))))
+((-3182 (((-959) (-353) (-353) (-353) (-353) (-707) (-707) (-587 (-290 (-353))) (-587 (-587 (-290 (-353)))) (-1067)) 92) (((-959) (-353) (-353) (-353) (-353) (-707) (-707) (-587 (-290 (-353))) (-587 (-587 (-290 (-353)))) (-1067) (-202)) 87) (((-959) (-827) (-982)) 76) (((-959) (-827)) 77)) (-1797 (((-2 (|:| -1797 (-353)) (|:| -2884 (-1067)) (|:| |explanations| (-587 (-1067)))) (-827) (-982)) 50) (((-2 (|:| -1797 (-353)) (|:| -2884 (-1067)) (|:| |explanations| (-587 (-1067)))) (-827)) 52)))
+(((-826) (-10 -7 (-15 -3182 ((-959) (-827))) (-15 -3182 ((-959) (-827) (-982))) (-15 -3182 ((-959) (-353) (-353) (-353) (-353) (-707) (-707) (-587 (-290 (-353))) (-587 (-587 (-290 (-353)))) (-1067) (-202))) (-15 -3182 ((-959) (-353) (-353) (-353) (-353) (-707) (-707) (-587 (-290 (-353))) (-587 (-587 (-290 (-353)))) (-1067))) (-15 -1797 ((-2 (|:| -1797 (-353)) (|:| -2884 (-1067)) (|:| |explanations| (-587 (-1067)))) (-827))) (-15 -1797 ((-2 (|:| -1797 (-353)) (|:| -2884 (-1067)) (|:| |explanations| (-587 (-1067)))) (-827) (-982))))) (T -826))
+((-1797 (*1 *2 *3 *4) (-12 (-5 *3 (-827)) (-5 *4 (-982)) (-5 *2 (-2 (|:| -1797 (-353)) (|:| -2884 (-1067)) (|:| |explanations| (-587 (-1067))))) (-5 *1 (-826)))) (-1797 (*1 *2 *3) (-12 (-5 *3 (-827)) (-5 *2 (-2 (|:| -1797 (-353)) (|:| -2884 (-1067)) (|:| |explanations| (-587 (-1067))))) (-5 *1 (-826)))) (-3182 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-707)) (-5 *6 (-587 (-587 (-290 *3)))) (-5 *7 (-1067)) (-5 *5 (-587 (-290 (-353)))) (-5 *3 (-353)) (-5 *2 (-959)) (-5 *1 (-826)))) (-3182 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-707)) (-5 *6 (-587 (-587 (-290 *3)))) (-5 *7 (-1067)) (-5 *8 (-202)) (-5 *5 (-587 (-290 (-353)))) (-5 *3 (-353)) (-5 *2 (-959)) (-5 *1 (-826)))) (-3182 (*1 *2 *3 *4) (-12 (-5 *3 (-827)) (-5 *4 (-982)) (-5 *2 (-959)) (-5 *1 (-826)))) (-3182 (*1 *2 *3) (-12 (-5 *3 (-827)) (-5 *2 (-959)) (-5 *1 (-826)))))
+(-10 -7 (-15 -3182 ((-959) (-827))) (-15 -3182 ((-959) (-827) (-982))) (-15 -3182 ((-959) (-353) (-353) (-353) (-353) (-707) (-707) (-587 (-290 (-353))) (-587 (-587 (-290 (-353)))) (-1067) (-202))) (-15 -3182 ((-959) (-353) (-353) (-353) (-353) (-707) (-707) (-587 (-290 (-353))) (-587 (-587 (-290 (-353)))) (-1067))) (-15 -1797 ((-2 (|:| -1797 (-353)) (|:| -2884 (-1067)) (|:| |explanations| (-587 (-1067)))) (-827))) (-15 -1797 ((-2 (|:| -1797 (-353)) (|:| -2884 (-1067)) (|:| |explanations| (-587 (-1067)))) (-827) (-982))))
+((-1415 (((-108) $ $) NIL)) (-1483 (((-2 (|:| |pde| (-587 (-290 (-202)))) (|:| |constraints| (-587 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-707)) (|:| |boundaryType| (-521)) (|:| |dStart| (-627 (-202))) (|:| |dFinish| (-627 (-202)))))) (|:| |f| (-587 (-587 (-290 (-202))))) (|:| |st| (-1067)) (|:| |tol| (-202))) $) 10)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2189 (((-792) $) 12) (($ (-2 (|:| |pde| (-587 (-290 (-202)))) (|:| |constraints| (-587 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-707)) (|:| |boundaryType| (-521)) (|:| |dStart| (-627 (-202))) (|:| |dFinish| (-627 (-202)))))) (|:| |f| (-587 (-587 (-290 (-202))))) (|:| |st| (-1067)) (|:| |tol| (-202)))) 9)) (-1531 (((-108) $ $) NIL)))
+(((-827) (-13 (-1013) (-10 -8 (-15 -2189 ($ (-2 (|:| |pde| (-587 (-290 (-202)))) (|:| |constraints| (-587 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-707)) (|:| |boundaryType| (-521)) (|:| |dStart| (-627 (-202))) (|:| |dFinish| (-627 (-202)))))) (|:| |f| (-587 (-587 (-290 (-202))))) (|:| |st| (-1067)) (|:| |tol| (-202))))) (-15 -2189 ((-792) $)) (-15 -1483 ((-2 (|:| |pde| (-587 (-290 (-202)))) (|:| |constraints| (-587 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-707)) (|:| |boundaryType| (-521)) (|:| |dStart| (-627 (-202))) (|:| |dFinish| (-627 (-202)))))) (|:| |f| (-587 (-587 (-290 (-202))))) (|:| |st| (-1067)) (|:| |tol| (-202))) $))))) (T -827))
+((-2189 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-827)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-587 (-290 (-202)))) (|:| |constraints| (-587 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-707)) (|:| |boundaryType| (-521)) (|:| |dStart| (-627 (-202))) (|:| |dFinish| (-627 (-202)))))) (|:| |f| (-587 (-587 (-290 (-202))))) (|:| |st| (-1067)) (|:| |tol| (-202)))) (-5 *1 (-827)))) (-1483 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-587 (-290 (-202)))) (|:| |constraints| (-587 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-707)) (|:| |boundaryType| (-521)) (|:| |dStart| (-627 (-202))) (|:| |dFinish| (-627 (-202)))))) (|:| |f| (-587 (-587 (-290 (-202))))) (|:| |st| (-1067)) (|:| |tol| (-202)))) (-5 *1 (-827)))))
+(-13 (-1013) (-10 -8 (-15 -2189 ($ (-2 (|:| |pde| (-587 (-290 (-202)))) (|:| |constraints| (-587 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-707)) (|:| |boundaryType| (-521)) (|:| |dStart| (-627 (-202))) (|:| |dFinish| (-627 (-202)))))) (|:| |f| (-587 (-587 (-290 (-202))))) (|:| |st| (-1067)) (|:| |tol| (-202))))) (-15 -2189 ((-792) $)) (-15 -1483 ((-2 (|:| |pde| (-587 (-290 (-202)))) (|:| |constraints| (-587 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-707)) (|:| |boundaryType| (-521)) (|:| |dStart| (-627 (-202))) (|:| |dFinish| (-627 (-202)))))) (|:| |f| (-587 (-587 (-290 (-202))))) (|:| |st| (-1067)) (|:| |tol| (-202))) $))))
+((-2156 (($ $ |#2|) NIL) (($ $ (-587 |#2|)) 10) (($ $ |#2| (-707)) 12) (($ $ (-587 |#2|) (-587 (-707))) 15)) (-2212 (($ $ |#2|) 16) (($ $ (-587 |#2|)) 18) (($ $ |#2| (-707)) 19) (($ $ (-587 |#2|) (-587 (-707))) 21)))
+(((-828 |#1| |#2|) (-10 -8 (-15 -2212 (|#1| |#1| (-587 |#2|) (-587 (-707)))) (-15 -2212 (|#1| |#1| |#2| (-707))) (-15 -2212 (|#1| |#1| (-587 |#2|))) (-15 -2212 (|#1| |#1| |#2|)) (-15 -2156 (|#1| |#1| (-587 |#2|) (-587 (-707)))) (-15 -2156 (|#1| |#1| |#2| (-707))) (-15 -2156 (|#1| |#1| (-587 |#2|))) (-15 -2156 (|#1| |#1| |#2|))) (-829 |#2|) (-1013)) (T -828))
+NIL
+(-10 -8 (-15 -2212 (|#1| |#1| (-587 |#2|) (-587 (-707)))) (-15 -2212 (|#1| |#1| |#2| (-707))) (-15 -2212 (|#1| |#1| (-587 |#2|))) (-15 -2212 (|#1| |#1| |#2|)) (-15 -2156 (|#1| |#1| (-587 |#2|) (-587 (-707)))) (-15 -2156 (|#1| |#1| |#2| (-707))) (-15 -2156 (|#1| |#1| (-587 |#2|))) (-15 -2156 (|#1| |#1| |#2|)))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-1232 (((-3 $ "failed") $ $) 19)) (-2547 (($) 17 T CONST)) (-1257 (((-3 $ "failed") $) 34)) (-3996 (((-108) $) 31)) (-3688 (((-1067) $) 9)) (-4147 (((-1031) $) 10)) (-2156 (($ $ |#1|) 42) (($ $ (-587 |#1|)) 41) (($ $ |#1| (-707)) 40) (($ $ (-587 |#1|) (-587 (-707))) 39)) (-2189 (((-792) $) 11) (($ (-521)) 28)) (-3846 (((-707)) 29)) (-3505 (($ $ (-850)) 26) (($ $ (-707)) 33)) (-3561 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-2212 (($ $ |#1|) 38) (($ $ (-587 |#1|)) 37) (($ $ |#1| (-707)) 36) (($ $ (-587 |#1|) (-587 (-707))) 35)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-707)) 32)) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24)))
+(((-829 |#1|) (-1196) (-1013)) (T -829))
+((-2156 (*1 *1 *1 *2) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1013)))) (-2156 (*1 *1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *1 (-829 *3)) (-4 *3 (-1013)))) (-2156 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-707)) (-4 *1 (-829 *2)) (-4 *2 (-1013)))) (-2156 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-587 *4)) (-5 *3 (-587 (-707))) (-4 *1 (-829 *4)) (-4 *4 (-1013)))) (-2212 (*1 *1 *1 *2) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1013)))) (-2212 (*1 *1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *1 (-829 *3)) (-4 *3 (-1013)))) (-2212 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-707)) (-4 *1 (-829 *2)) (-4 *2 (-1013)))) (-2212 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-587 *4)) (-5 *3 (-587 (-707))) (-4 *1 (-829 *4)) (-4 *4 (-1013)))))
+(-13 (-970) (-10 -8 (-15 -2156 ($ $ |t#1|)) (-15 -2156 ($ $ (-587 |t#1|))) (-15 -2156 ($ $ |t#1| (-707))) (-15 -2156 ($ $ (-587 |t#1|) (-587 (-707)))) (-15 -2212 ($ $ |t#1|)) (-15 -2212 ($ $ (-587 |t#1|))) (-15 -2212 ($ $ |t#1| (-707))) (-15 -2212 ($ $ (-587 |t#1|) (-587 (-707))))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-561 (-792)) . T) ((-589 $) . T) ((-663) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T))
+((-1415 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3430 ((|#1| $) 26)) (-2978 (((-108) $ (-707)) NIL)) (-2300 ((|#1| $ |#1|) NIL (|has| $ (-6 -4234)))) (-1838 (($ $ $) NIL (|has| $ (-6 -4234)))) (-4007 (($ $ $) NIL (|has| $ (-6 -4234)))) (-2378 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4234))) (($ $ "left" $) NIL (|has| $ (-6 -4234))) (($ $ "right" $) NIL (|has| $ (-6 -4234)))) (-2675 (($ $ (-587 $)) NIL (|has| $ (-6 -4234)))) (-2547 (($) NIL T CONST)) (-1925 (($ $) 25)) (-1796 (($ |#1|) 12) (($ $ $) 17)) (-3831 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-3186 (((-587 $) $) NIL)) (-3651 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-2139 (((-108) $ (-707)) NIL)) (-3757 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-2221 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-3833 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#1| |#1|) $) NIL)) (-3574 (((-108) $ (-707)) NIL)) (-1913 (($ $) 23)) (-1278 (((-587 |#1|) $) NIL)) (-2229 (((-108) $) 20)) (-3688 (((-1067) $) NIL (|has| |#1| (-1013)))) (-4147 (((-1031) $) NIL (|has| |#1| (-1013)))) (-1789 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 |#1|))) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-2488 (((-108) $ $) NIL)) (-3462 (((-108) $) NIL)) (-4024 (($) NIL)) (-2544 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2931 (((-521) $ $) NIL)) (-2406 (((-108) $) NIL)) (-4163 (((-707) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (((-707) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2404 (($ $) NIL)) (-2189 (((-1106 |#1|) $) 9) (((-792) $) 29 (|has| |#1| (-561 (-792))))) (-3098 (((-587 $) $) NIL)) (-2294 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3049 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-1531 (((-108) $ $) 21 (|has| |#1| (-1013)))) (-3475 (((-707) $) NIL (|has| $ (-6 -4233)))))
+(((-830 |#1|) (-13 (-115 |#1|) (-10 -8 (-15 -1796 ($ |#1|)) (-15 -1796 ($ $ $)) (-15 -2189 ((-1106 |#1|) $)))) (-1013)) (T -830))
+((-1796 (*1 *1 *2) (-12 (-5 *1 (-830 *2)) (-4 *2 (-1013)))) (-1796 (*1 *1 *1 *1) (-12 (-5 *1 (-830 *2)) (-4 *2 (-1013)))) (-2189 (*1 *2 *1) (-12 (-5 *2 (-1106 *3)) (-5 *1 (-830 *3)) (-4 *3 (-1013)))))
+(-13 (-115 |#1|) (-10 -8 (-15 -1796 ($ |#1|)) (-15 -1796 ($ $ $)) (-15 -2189 ((-1106 |#1|) $))))
+((-2194 ((|#2| (-1051 |#1| |#2|)) 41)))
+(((-831 |#1| |#2|) (-10 -7 (-15 -2194 (|#2| (-1051 |#1| |#2|)))) (-850) (-13 (-970) (-10 -7 (-6 (-4235 "*"))))) (T -831))
+((-2194 (*1 *2 *3) (-12 (-5 *3 (-1051 *4 *2)) (-14 *4 (-850)) (-4 *2 (-13 (-970) (-10 -7 (-6 (-4235 "*"))))) (-5 *1 (-831 *4 *2)))))
+(-10 -7 (-15 -2194 (|#2| (-1051 |#1| |#2|))))
+((-1415 (((-108) $ $) 7)) (-2547 (($) 20 T CONST)) (-1257 (((-3 $ "failed") $) 16)) (-1713 (((-1015 |#1|) $ |#1|) 35)) (-3996 (((-108) $) 19)) (-2810 (($ $ $) 33 (-3703 (|has| |#1| (-784)) (|has| |#1| (-342))))) (-2446 (($ $ $) 32 (-3703 (|has| |#1| (-784)) (|has| |#1| (-342))))) (-3688 (((-1067) $) 9)) (-3095 (($ $) 27)) (-4147 (((-1031) $) 10)) (-2288 ((|#1| $ |#1|) 37)) (-2544 ((|#1| $ |#1|) 36)) (-2667 (($ (-587 (-587 |#1|))) 38)) (-2214 (($ (-587 |#1|)) 39)) (-1223 (($ $ $) 23)) (-2674 (($ $ $) 22)) (-2189 (((-792) $) 11)) (-3505 (($ $ (-850)) 13) (($ $ (-707)) 17) (($ $ (-521)) 24)) (-3572 (($) 21 T CONST)) (-1574 (((-108) $ $) 30 (-3703 (|has| |#1| (-784)) (|has| |#1| (-342))))) (-1558 (((-108) $ $) 29 (-3703 (|has| |#1| (-784)) (|has| |#1| (-342))))) (-1531 (((-108) $ $) 6)) (-1566 (((-108) $ $) 31 (-3703 (|has| |#1| (-784)) (|has| |#1| (-342))))) (-1549 (((-108) $ $) 34)) (-1620 (($ $ $) 26)) (** (($ $ (-850)) 14) (($ $ (-707)) 18) (($ $ (-521)) 25)) (* (($ $ $) 15)))
+(((-832 |#1|) (-1196) (-1013)) (T -832))
+((-2214 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1013)) (-4 *1 (-832 *3)))) (-2667 (*1 *1 *2) (-12 (-5 *2 (-587 (-587 *3))) (-4 *3 (-1013)) (-4 *1 (-832 *3)))) (-2288 (*1 *2 *1 *2) (-12 (-4 *1 (-832 *2)) (-4 *2 (-1013)))) (-2544 (*1 *2 *1 *2) (-12 (-4 *1 (-832 *2)) (-4 *2 (-1013)))) (-1713 (*1 *2 *1 *3) (-12 (-4 *1 (-832 *3)) (-4 *3 (-1013)) (-5 *2 (-1015 *3)))) (-1549 (*1 *2 *1 *1) (-12 (-4 *1 (-832 *3)) (-4 *3 (-1013)) (-5 *2 (-108)))))
+(-13 (-446) (-10 -8 (-15 -2214 ($ (-587 |t#1|))) (-15 -2667 ($ (-587 (-587 |t#1|)))) (-15 -2288 (|t#1| $ |t#1|)) (-15 -2544 (|t#1| $ |t#1|)) (-15 -1713 ((-1015 |t#1|) $ |t#1|)) (-15 -1549 ((-108) $ $)) (IF (|has| |t#1| (-784)) (-6 (-784)) |%noBranch|) (IF (|has| |t#1| (-342)) (-6 (-784)) |%noBranch|)))
+(((-97) . T) ((-561 (-792)) . T) ((-446) . T) ((-663) . T) ((-784) -3703 (|has| |#1| (-784)) (|has| |#1| (-342))) ((-1025) . T) ((-1013) . T))
+((-1415 (((-108) $ $) NIL)) (-2939 (((-587 (-587 (-707))) $) 108)) (-4134 (((-587 (-707)) (-834 |#1|) $) 130)) (-1840 (((-587 (-707)) (-834 |#1|) $) 131)) (-2036 (((-587 (-834 |#1|)) $) 98)) (-3250 (((-834 |#1|) $ (-521)) 103) (((-834 |#1|) $) 104)) (-2204 (($ (-587 (-834 |#1|))) 110)) (-2733 (((-707) $) 105)) (-2161 (((-1015 (-1015 |#1|)) $) 128)) (-1713 (((-1015 |#1|) $ |#1|) 121) (((-1015 (-1015 |#1|)) $ (-1015 |#1|)) 139) (((-1015 (-587 |#1|)) $ (-587 |#1|)) 142)) (-2730 (((-1015 |#1|) $) 101)) (-2221 (((-108) (-834 |#1|) $) 92)) (-3688 (((-1067) $) NIL)) (-2088 (((-1170) $) 95) (((-1170) $ (-521) (-521)) 143)) (-4147 (((-1031) $) NIL)) (-2150 (((-587 (-834 |#1|)) $) 96)) (-2544 (((-834 |#1|) $ (-707)) 99)) (-1994 (((-707) $) 106)) (-2189 (((-792) $) 119) (((-587 (-834 |#1|)) $) 22) (($ (-587 (-834 |#1|))) 109)) (-3351 (((-587 |#1|) $) 107)) (-1531 (((-108) $ $) 136)) (-1566 (((-108) $ $) 134)) (-1549 (((-108) $ $) 133)))
+(((-833 |#1|) (-13 (-1013) (-10 -8 (-15 -2189 ((-587 (-834 |#1|)) $)) (-15 -2150 ((-587 (-834 |#1|)) $)) (-15 -2544 ((-834 |#1|) $ (-707))) (-15 -3250 ((-834 |#1|) $ (-521))) (-15 -3250 ((-834 |#1|) $)) (-15 -2733 ((-707) $)) (-15 -1994 ((-707) $)) (-15 -3351 ((-587 |#1|) $)) (-15 -2036 ((-587 (-834 |#1|)) $)) (-15 -2939 ((-587 (-587 (-707))) $)) (-15 -2189 ($ (-587 (-834 |#1|)))) (-15 -2204 ($ (-587 (-834 |#1|)))) (-15 -1713 ((-1015 |#1|) $ |#1|)) (-15 -2161 ((-1015 (-1015 |#1|)) $)) (-15 -1713 ((-1015 (-1015 |#1|)) $ (-1015 |#1|))) (-15 -1713 ((-1015 (-587 |#1|)) $ (-587 |#1|))) (-15 -2221 ((-108) (-834 |#1|) $)) (-15 -4134 ((-587 (-707)) (-834 |#1|) $)) (-15 -1840 ((-587 (-707)) (-834 |#1|) $)) (-15 -2730 ((-1015 |#1|) $)) (-15 -1549 ((-108) $ $)) (-15 -1566 ((-108) $ $)) (-15 -2088 ((-1170) $)) (-15 -2088 ((-1170) $ (-521) (-521))))) (-1013)) (T -833))
+((-2189 (*1 *2 *1) (-12 (-5 *2 (-587 (-834 *3))) (-5 *1 (-833 *3)) (-4 *3 (-1013)))) (-2150 (*1 *2 *1) (-12 (-5 *2 (-587 (-834 *3))) (-5 *1 (-833 *3)) (-4 *3 (-1013)))) (-2544 (*1 *2 *1 *3) (-12 (-5 *3 (-707)) (-5 *2 (-834 *4)) (-5 *1 (-833 *4)) (-4 *4 (-1013)))) (-3250 (*1 *2 *1 *3) (-12 (-5 *3 (-521)) (-5 *2 (-834 *4)) (-5 *1 (-833 *4)) (-4 *4 (-1013)))) (-3250 (*1 *2 *1) (-12 (-5 *2 (-834 *3)) (-5 *1 (-833 *3)) (-4 *3 (-1013)))) (-2733 (*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-833 *3)) (-4 *3 (-1013)))) (-1994 (*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-833 *3)) (-4 *3 (-1013)))) (-3351 (*1 *2 *1) (-12 (-5 *2 (-587 *3)) (-5 *1 (-833 *3)) (-4 *3 (-1013)))) (-2036 (*1 *2 *1) (-12 (-5 *2 (-587 (-834 *3))) (-5 *1 (-833 *3)) (-4 *3 (-1013)))) (-2939 (*1 *2 *1) (-12 (-5 *2 (-587 (-587 (-707)))) (-5 *1 (-833 *3)) (-4 *3 (-1013)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-587 (-834 *3))) (-4 *3 (-1013)) (-5 *1 (-833 *3)))) (-2204 (*1 *1 *2) (-12 (-5 *2 (-587 (-834 *3))) (-4 *3 (-1013)) (-5 *1 (-833 *3)))) (-1713 (*1 *2 *1 *3) (-12 (-5 *2 (-1015 *3)) (-5 *1 (-833 *3)) (-4 *3 (-1013)))) (-2161 (*1 *2 *1) (-12 (-5 *2 (-1015 (-1015 *3))) (-5 *1 (-833 *3)) (-4 *3 (-1013)))) (-1713 (*1 *2 *1 *3) (-12 (-4 *4 (-1013)) (-5 *2 (-1015 (-1015 *4))) (-5 *1 (-833 *4)) (-5 *3 (-1015 *4)))) (-1713 (*1 *2 *1 *3) (-12 (-4 *4 (-1013)) (-5 *2 (-1015 (-587 *4))) (-5 *1 (-833 *4)) (-5 *3 (-587 *4)))) (-2221 (*1 *2 *3 *1) (-12 (-5 *3 (-834 *4)) (-4 *4 (-1013)) (-5 *2 (-108)) (-5 *1 (-833 *4)))) (-4134 (*1 *2 *3 *1) (-12 (-5 *3 (-834 *4)) (-4 *4 (-1013)) (-5 *2 (-587 (-707))) (-5 *1 (-833 *4)))) (-1840 (*1 *2 *3 *1) (-12 (-5 *3 (-834 *4)) (-4 *4 (-1013)) (-5 *2 (-587 (-707))) (-5 *1 (-833 *4)))) (-2730 (*1 *2 *1) (-12 (-5 *2 (-1015 *3)) (-5 *1 (-833 *3)) (-4 *3 (-1013)))) (-1549 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-833 *3)) (-4 *3 (-1013)))) (-1566 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-833 *3)) (-4 *3 (-1013)))) (-2088 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-833 *3)) (-4 *3 (-1013)))) (-2088 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-521)) (-5 *2 (-1170)) (-5 *1 (-833 *4)) (-4 *4 (-1013)))))
+(-13 (-1013) (-10 -8 (-15 -2189 ((-587 (-834 |#1|)) $)) (-15 -2150 ((-587 (-834 |#1|)) $)) (-15 -2544 ((-834 |#1|) $ (-707))) (-15 -3250 ((-834 |#1|) $ (-521))) (-15 -3250 ((-834 |#1|) $)) (-15 -2733 ((-707) $)) (-15 -1994 ((-707) $)) (-15 -3351 ((-587 |#1|) $)) (-15 -2036 ((-587 (-834 |#1|)) $)) (-15 -2939 ((-587 (-587 (-707))) $)) (-15 -2189 ($ (-587 (-834 |#1|)))) (-15 -2204 ($ (-587 (-834 |#1|)))) (-15 -1713 ((-1015 |#1|) $ |#1|)) (-15 -2161 ((-1015 (-1015 |#1|)) $)) (-15 -1713 ((-1015 (-1015 |#1|)) $ (-1015 |#1|))) (-15 -1713 ((-1015 (-587 |#1|)) $ (-587 |#1|))) (-15 -2221 ((-108) (-834 |#1|) $)) (-15 -4134 ((-587 (-707)) (-834 |#1|) $)) (-15 -1840 ((-587 (-707)) (-834 |#1|) $)) (-15 -2730 ((-1015 |#1|) $)) (-15 -1549 ((-108) $ $)) (-15 -1566 ((-108) $ $)) (-15 -2088 ((-1170) $)) (-15 -2088 ((-1170) $ (-521) (-521)))))
+((-1415 (((-108) $ $) NIL)) (-3211 (((-587 $) (-587 $)) 77)) (-1606 (((-521) $) 60)) (-2547 (($) NIL T CONST)) (-1257 (((-3 $ "failed") $) NIL)) (-2733 (((-707) $) 58)) (-1713 (((-1015 |#1|) $ |#1|) 49)) (-3996 (((-108) $) NIL)) (-1255 (((-108) $) 63)) (-1899 (((-707) $) 61)) (-2730 (((-1015 |#1|) $) 42)) (-2810 (($ $ $) NIL (-3703 (|has| |#1| (-342)) (|has| |#1| (-784))))) (-2446 (($ $ $) NIL (-3703 (|has| |#1| (-342)) (|has| |#1| (-784))))) (-2170 (((-2 (|:| |preimage| (-587 |#1|)) (|:| |image| (-587 |#1|))) $) 36)) (-3688 (((-1067) $) NIL)) (-3095 (($ $) 93)) (-4147 (((-1031) $) NIL)) (-3595 (((-1015 |#1|) $) 99 (|has| |#1| (-342)))) (-3550 (((-108) $) 59)) (-2288 ((|#1| $ |#1|) 47)) (-2544 ((|#1| $ |#1|) 94)) (-1994 (((-707) $) 44)) (-2667 (($ (-587 (-587 |#1|))) 85)) (-1426 (((-897) $) 53)) (-2214 (($ (-587 |#1|)) 21)) (-1223 (($ $ $) NIL)) (-2674 (($ $ $) NIL)) (-1854 (($ (-587 (-587 |#1|))) 39)) (-2117 (($ (-587 (-587 |#1|))) 88)) (-1645 (($ (-587 |#1|)) 96)) (-2189 (((-792) $) 84) (($ (-587 (-587 |#1|))) 66) (($ (-587 |#1|)) 67)) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (-3572 (($) 16 T CONST)) (-1574 (((-108) $ $) NIL (-3703 (|has| |#1| (-342)) (|has| |#1| (-784))))) (-1558 (((-108) $ $) NIL (-3703 (|has| |#1| (-342)) (|has| |#1| (-784))))) (-1531 (((-108) $ $) 45)) (-1566 (((-108) $ $) NIL (-3703 (|has| |#1| (-342)) (|has| |#1| (-784))))) (-1549 (((-108) $ $) 65)) (-1620 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (* (($ $ $) 22)))
+(((-834 |#1|) (-13 (-832 |#1|) (-10 -8 (-15 -2170 ((-2 (|:| |preimage| (-587 |#1|)) (|:| |image| (-587 |#1|))) $)) (-15 -1854 ($ (-587 (-587 |#1|)))) (-15 -2189 ($ (-587 (-587 |#1|)))) (-15 -2189 ($ (-587 |#1|))) (-15 -2117 ($ (-587 (-587 |#1|)))) (-15 -1994 ((-707) $)) (-15 -2730 ((-1015 |#1|) $)) (-15 -1426 ((-897) $)) (-15 -2733 ((-707) $)) (-15 -1899 ((-707) $)) (-15 -1606 ((-521) $)) (-15 -3550 ((-108) $)) (-15 -1255 ((-108) $)) (-15 -3211 ((-587 $) (-587 $))) (IF (|has| |#1| (-342)) (-15 -3595 ((-1015 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-506)) (-15 -1645 ($ (-587 |#1|))) (IF (|has| |#1| (-342)) (-15 -1645 ($ (-587 |#1|))) |%noBranch|)))) (-1013)) (T -834))
+((-2170 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-587 *3)) (|:| |image| (-587 *3)))) (-5 *1 (-834 *3)) (-4 *3 (-1013)))) (-1854 (*1 *1 *2) (-12 (-5 *2 (-587 (-587 *3))) (-4 *3 (-1013)) (-5 *1 (-834 *3)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-587 (-587 *3))) (-4 *3 (-1013)) (-5 *1 (-834 *3)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1013)) (-5 *1 (-834 *3)))) (-2117 (*1 *1 *2) (-12 (-5 *2 (-587 (-587 *3))) (-4 *3 (-1013)) (-5 *1 (-834 *3)))) (-1994 (*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-834 *3)) (-4 *3 (-1013)))) (-2730 (*1 *2 *1) (-12 (-5 *2 (-1015 *3)) (-5 *1 (-834 *3)) (-4 *3 (-1013)))) (-1426 (*1 *2 *1) (-12 (-5 *2 (-897)) (-5 *1 (-834 *3)) (-4 *3 (-1013)))) (-2733 (*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-834 *3)) (-4 *3 (-1013)))) (-1899 (*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-834 *3)) (-4 *3 (-1013)))) (-1606 (*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-834 *3)) (-4 *3 (-1013)))) (-3550 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-834 *3)) (-4 *3 (-1013)))) (-1255 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-834 *3)) (-4 *3 (-1013)))) (-3211 (*1 *2 *2) (-12 (-5 *2 (-587 (-834 *3))) (-5 *1 (-834 *3)) (-4 *3 (-1013)))) (-3595 (*1 *2 *1) (-12 (-5 *2 (-1015 *3)) (-5 *1 (-834 *3)) (-4 *3 (-342)) (-4 *3 (-1013)))) (-1645 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1013)) (-5 *1 (-834 *3)))))
+(-13 (-832 |#1|) (-10 -8 (-15 -2170 ((-2 (|:| |preimage| (-587 |#1|)) (|:| |image| (-587 |#1|))) $)) (-15 -1854 ($ (-587 (-587 |#1|)))) (-15 -2189 ($ (-587 (-587 |#1|)))) (-15 -2189 ($ (-587 |#1|))) (-15 -2117 ($ (-587 (-587 |#1|)))) (-15 -1994 ((-707) $)) (-15 -2730 ((-1015 |#1|) $)) (-15 -1426 ((-897) $)) (-15 -2733 ((-707) $)) (-15 -1899 ((-707) $)) (-15 -1606 ((-521) $)) (-15 -3550 ((-108) $)) (-15 -1255 ((-108) $)) (-15 -3211 ((-587 $) (-587 $))) (IF (|has| |#1| (-342)) (-15 -3595 ((-1015 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-506)) (-15 -1645 ($ (-587 |#1|))) (IF (|has| |#1| (-342)) (-15 -1645 ($ (-587 |#1|))) |%noBranch|))))
+((-1380 (((-3 (-587 (-1080 |#4|)) "failed") (-587 (-1080 |#4|)) (-1080 |#4|)) 128)) (-3523 ((|#1|) 76)) (-2565 (((-392 (-1080 |#4|)) (-1080 |#4|)) 137)) (-1715 (((-392 (-1080 |#4|)) (-587 |#3|) (-1080 |#4|)) 68)) (-2917 (((-392 (-1080 |#4|)) (-1080 |#4|)) 147)) (-3978 (((-3 (-587 (-1080 |#4|)) "failed") (-587 (-1080 |#4|)) (-1080 |#4|) |#3|) 92)))
+(((-835 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1380 ((-3 (-587 (-1080 |#4|)) "failed") (-587 (-1080 |#4|)) (-1080 |#4|))) (-15 -2917 ((-392 (-1080 |#4|)) (-1080 |#4|))) (-15 -2565 ((-392 (-1080 |#4|)) (-1080 |#4|))) (-15 -3523 (|#1|)) (-15 -3978 ((-3 (-587 (-1080 |#4|)) "failed") (-587 (-1080 |#4|)) (-1080 |#4|) |#3|)) (-15 -1715 ((-392 (-1080 |#4|)) (-587 |#3|) (-1080 |#4|)))) (-838) (-729) (-784) (-878 |#1| |#2| |#3|)) (T -835))
+((-1715 (*1 *2 *3 *4) (-12 (-5 *3 (-587 *7)) (-4 *7 (-784)) (-4 *5 (-838)) (-4 *6 (-729)) (-4 *8 (-878 *5 *6 *7)) (-5 *2 (-392 (-1080 *8))) (-5 *1 (-835 *5 *6 *7 *8)) (-5 *4 (-1080 *8)))) (-3978 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-587 (-1080 *7))) (-5 *3 (-1080 *7)) (-4 *7 (-878 *5 *6 *4)) (-4 *5 (-838)) (-4 *6 (-729)) (-4 *4 (-784)) (-5 *1 (-835 *5 *6 *4 *7)))) (-3523 (*1 *2) (-12 (-4 *3 (-729)) (-4 *4 (-784)) (-4 *2 (-838)) (-5 *1 (-835 *2 *3 *4 *5)) (-4 *5 (-878 *2 *3 *4)))) (-2565 (*1 *2 *3) (-12 (-4 *4 (-838)) (-4 *5 (-729)) (-4 *6 (-784)) (-4 *7 (-878 *4 *5 *6)) (-5 *2 (-392 (-1080 *7))) (-5 *1 (-835 *4 *5 *6 *7)) (-5 *3 (-1080 *7)))) (-2917 (*1 *2 *3) (-12 (-4 *4 (-838)) (-4 *5 (-729)) (-4 *6 (-784)) (-4 *7 (-878 *4 *5 *6)) (-5 *2 (-392 (-1080 *7))) (-5 *1 (-835 *4 *5 *6 *7)) (-5 *3 (-1080 *7)))) (-1380 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-587 (-1080 *7))) (-5 *3 (-1080 *7)) (-4 *7 (-878 *4 *5 *6)) (-4 *4 (-838)) (-4 *5 (-729)) (-4 *6 (-784)) (-5 *1 (-835 *4 *5 *6 *7)))))
+(-10 -7 (-15 -1380 ((-3 (-587 (-1080 |#4|)) "failed") (-587 (-1080 |#4|)) (-1080 |#4|))) (-15 -2917 ((-392 (-1080 |#4|)) (-1080 |#4|))) (-15 -2565 ((-392 (-1080 |#4|)) (-1080 |#4|))) (-15 -3523 (|#1|)) (-15 -3978 ((-3 (-587 (-1080 |#4|)) "failed") (-587 (-1080 |#4|)) (-1080 |#4|) |#3|)) (-15 -1715 ((-392 (-1080 |#4|)) (-587 |#3|) (-1080 |#4|))))
+((-1380 (((-3 (-587 (-1080 |#2|)) "failed") (-587 (-1080 |#2|)) (-1080 |#2|)) 36)) (-3523 ((|#1|) 54)) (-2565 (((-392 (-1080 |#2|)) (-1080 |#2|)) 102)) (-1715 (((-392 (-1080 |#2|)) (-1080 |#2|)) 89)) (-2917 (((-392 (-1080 |#2|)) (-1080 |#2|)) 113)))
+(((-836 |#1| |#2|) (-10 -7 (-15 -1380 ((-3 (-587 (-1080 |#2|)) "failed") (-587 (-1080 |#2|)) (-1080 |#2|))) (-15 -2917 ((-392 (-1080 |#2|)) (-1080 |#2|))) (-15 -2565 ((-392 (-1080 |#2|)) (-1080 |#2|))) (-15 -3523 (|#1|)) (-15 -1715 ((-392 (-1080 |#2|)) (-1080 |#2|)))) (-838) (-1141 |#1|)) (T -836))
+((-1715 (*1 *2 *3) (-12 (-4 *4 (-838)) (-4 *5 (-1141 *4)) (-5 *2 (-392 (-1080 *5))) (-5 *1 (-836 *4 *5)) (-5 *3 (-1080 *5)))) (-3523 (*1 *2) (-12 (-4 *2 (-838)) (-5 *1 (-836 *2 *3)) (-4 *3 (-1141 *2)))) (-2565 (*1 *2 *3) (-12 (-4 *4 (-838)) (-4 *5 (-1141 *4)) (-5 *2 (-392 (-1080 *5))) (-5 *1 (-836 *4 *5)) (-5 *3 (-1080 *5)))) (-2917 (*1 *2 *3) (-12 (-4 *4 (-838)) (-4 *5 (-1141 *4)) (-5 *2 (-392 (-1080 *5))) (-5 *1 (-836 *4 *5)) (-5 *3 (-1080 *5)))) (-1380 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-587 (-1080 *5))) (-5 *3 (-1080 *5)) (-4 *5 (-1141 *4)) (-4 *4 (-838)) (-5 *1 (-836 *4 *5)))))
+(-10 -7 (-15 -1380 ((-3 (-587 (-1080 |#2|)) "failed") (-587 (-1080 |#2|)) (-1080 |#2|))) (-15 -2917 ((-392 (-1080 |#2|)) (-1080 |#2|))) (-15 -2565 ((-392 (-1080 |#2|)) (-1080 |#2|))) (-15 -3523 (|#1|)) (-15 -1715 ((-392 (-1080 |#2|)) (-1080 |#2|))))
+((-2569 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) 39)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) 18)) (-1671 (((-3 $ "failed") $) 33)))
+(((-837 |#1|) (-10 -8 (-15 -1671 ((-3 |#1| "failed") |#1|)) (-15 -2569 ((-3 (-587 (-1080 |#1|)) "failed") (-587 (-1080 |#1|)) (-1080 |#1|))) (-15 -2513 ((-1080 |#1|) (-1080 |#1|) (-1080 |#1|)))) (-838)) (T -837))
+NIL
+(-10 -8 (-15 -1671 ((-3 |#1| "failed") |#1|)) (-15 -2569 ((-3 (-587 (-1080 |#1|)) "failed") (-587 (-1080 |#1|)) (-1080 |#1|))) (-15 -2513 ((-1080 |#1|) (-1080 |#1|) (-1080 |#1|))))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) 41)) (-2559 (($ $) 40)) (-1733 (((-108) $) 38)) (-1232 (((-3 $ "failed") $ $) 19)) (-2598 (((-392 (-1080 $)) (-1080 $)) 60)) (-3063 (($ $) 51)) (-3358 (((-392 $) $) 52)) (-2569 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) 57)) (-2547 (($) 17 T CONST)) (-1257 (((-3 $ "failed") $) 34)) (-2710 (((-108) $) 53)) (-3996 (((-108) $) 31)) (-2223 (($ $ $) 46) (($ (-587 $)) 45)) (-3688 (((-1067) $) 9)) (-4147 (((-1031) $) 10)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) 44)) (-2258 (($ $ $) 48) (($ (-587 $)) 47)) (-1912 (((-392 (-1080 $)) (-1080 $)) 58)) (-2165 (((-392 (-1080 $)) (-1080 $)) 59)) (-1916 (((-392 $) $) 50)) (-2230 (((-3 $ "failed") $ $) 42)) (-2944 (((-3 (-1165 $) "failed") (-627 $)) 56 (|has| $ (-133)))) (-2189 (((-792) $) 11) (($ (-521)) 28) (($ $) 43)) (-1671 (((-3 $ "failed") $) 55 (|has| $ (-133)))) (-3846 (((-707)) 29)) (-4210 (((-108) $ $) 39)) (-3505 (($ $ (-850)) 26) (($ $ (-707)) 33)) (-3561 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-707)) 32)) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24)))
+(((-838) (-1196)) (T -838))
+((-2513 (*1 *2 *2 *2) (-12 (-5 *2 (-1080 *1)) (-4 *1 (-838)))) (-2598 (*1 *2 *3) (-12 (-4 *1 (-838)) (-5 *2 (-392 (-1080 *1))) (-5 *3 (-1080 *1)))) (-2165 (*1 *2 *3) (-12 (-4 *1 (-838)) (-5 *2 (-392 (-1080 *1))) (-5 *3 (-1080 *1)))) (-1912 (*1 *2 *3) (-12 (-4 *1 (-838)) (-5 *2 (-392 (-1080 *1))) (-5 *3 (-1080 *1)))) (-2569 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-587 (-1080 *1))) (-5 *3 (-1080 *1)) (-4 *1 (-838)))) (-2944 (*1 *2 *3) (|partial| -12 (-5 *3 (-627 *1)) (-4 *1 (-133)) (-4 *1 (-838)) (-5 *2 (-1165 *1)))) (-1671 (*1 *1 *1) (|partial| -12 (-4 *1 (-133)) (-4 *1 (-838)))))
+(-13 (-1123) (-10 -8 (-15 -2598 ((-392 (-1080 $)) (-1080 $))) (-15 -2165 ((-392 (-1080 $)) (-1080 $))) (-15 -1912 ((-392 (-1080 $)) (-1080 $))) (-15 -2513 ((-1080 $) (-1080 $) (-1080 $))) (-15 -2569 ((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $))) (IF (|has| $ (-133)) (PROGN (-15 -2944 ((-3 (-1165 $) "failed") (-627 $))) (-15 -1671 ((-3 $ "failed") $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-561 (-792)) . T) ((-157) . T) ((-265) . T) ((-425) . T) ((-513) . T) ((-589 $) . T) ((-654 $) . T) ((-663) . T) ((-976 $) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T) ((-1123) . T))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-2559 (($ $) NIL)) (-1733 (((-108) $) NIL)) (-1779 (((-108) $) NIL)) (-3471 (((-707)) NIL)) (-1865 (($ $ (-850)) NIL (|has| $ (-342))) (($ $) NIL)) (-1340 (((-1093 (-850) (-707)) (-521)) NIL)) (-1232 (((-3 $ "failed") $ $) NIL)) (-3063 (($ $) NIL)) (-3358 (((-392 $) $) NIL)) (-1389 (((-108) $ $) NIL)) (-1630 (((-707)) NIL)) (-2547 (($) NIL T CONST)) (-1297 (((-3 $ "failed") $) NIL)) (-1483 (($ $) NIL)) (-4083 (($ (-1165 $)) NIL)) (-1864 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-2277 (($ $ $) NIL)) (-1257 (((-3 $ "failed") $) NIL)) (-3250 (($) NIL)) (-2253 (($ $ $) NIL)) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) NIL)) (-2103 (($) NIL)) (-2371 (((-108) $) NIL)) (-2833 (($ $) NIL) (($ $ (-707)) NIL)) (-2710 (((-108) $) NIL)) (-2733 (((-770 (-850)) $) NIL) (((-850) $) NIL)) (-3996 (((-108) $) NIL)) (-3958 (($) NIL (|has| $ (-342)))) (-1279 (((-108) $) NIL (|has| $ (-342)))) (-3930 (($ $ (-850)) NIL (|has| $ (-342))) (($ $) NIL)) (-3842 (((-3 $ "failed") $) NIL)) (-1546 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-3548 (((-1080 $) $ (-850)) NIL (|has| $ (-342))) (((-1080 $) $) NIL)) (-2715 (((-850) $) NIL)) (-4179 (((-1080 $) $) NIL (|has| $ (-342)))) (-2728 (((-3 (-1080 $) "failed") $ $) NIL (|has| $ (-342))) (((-1080 $) $) NIL (|has| $ (-342)))) (-1818 (($ $ (-1080 $)) NIL (|has| $ (-342)))) (-2223 (($ $ $) NIL) (($ (-587 $)) NIL)) (-3688 (((-1067) $) NIL)) (-3095 (($ $) NIL)) (-3797 (($) NIL T CONST)) (-2716 (($ (-850)) NIL)) (-2218 (((-108) $) NIL)) (-4147 (((-1031) $) NIL)) (-1383 (($) NIL (|has| $ (-342)))) (-2513 (((-1080 $) (-1080 $) (-1080 $)) NIL)) (-2258 (($ $ $) NIL) (($ (-587 $)) NIL)) (-3040 (((-587 (-2 (|:| -1916 (-521)) (|:| -2997 (-521))))) NIL)) (-1916 (((-392 $) $) NIL)) (-4178 (((-850)) NIL) (((-770 (-850))) NIL)) (-1962 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2230 (((-3 $ "failed") $ $) NIL)) (-3854 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-4196 (((-707) $) NIL)) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) NIL)) (-4067 (((-3 (-707) "failed") $ $) NIL) (((-707) $) NIL)) (-2359 (((-126)) NIL)) (-2156 (($ $ (-707)) NIL) (($ $) NIL)) (-1994 (((-850) $) NIL) (((-770 (-850)) $) NIL)) (-2879 (((-1080 $)) NIL)) (-1204 (($) NIL)) (-2677 (($) NIL (|has| $ (-342)))) (-2234 (((-627 $) (-1165 $)) NIL) (((-1165 $) $) NIL)) (-1430 (((-521) $) NIL)) (-2944 (((-3 (-1165 $) "failed") (-627 $)) NIL)) (-2189 (((-792) $) NIL) (($ (-521)) NIL) (($ $) NIL) (($ (-381 (-521))) NIL)) (-1671 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-3846 (((-707)) NIL)) (-2470 (((-1165 $) (-850)) NIL) (((-1165 $)) NIL)) (-4210 (((-108) $ $) NIL)) (-2154 (((-108) $) NIL)) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (-3561 (($) NIL T CONST)) (-3572 (($) NIL T CONST)) (-3654 (($ $ (-707)) NIL (|has| $ (-342))) (($ $) NIL (|has| $ (-342)))) (-2212 (($ $ (-707)) NIL) (($ $) NIL)) (-1531 (((-108) $ $) NIL)) (-1620 (($ $ $) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ (-381 (-521))) NIL) (($ (-381 (-521)) $) NIL)))
+(((-839 |#1|) (-13 (-323) (-303 $) (-562 (-521))) (-850)) (T -839))
+NIL
+(-13 (-323) (-303 $) (-562 (-521)))
+((-4201 (((-3 (-2 (|:| -2733 (-707)) (|:| -2093 |#5|)) "failed") (-310 |#2| |#3| |#4| |#5|)) 76)) (-2789 (((-108) (-310 |#2| |#3| |#4| |#5|)) 16)) (-2733 (((-3 (-707) "failed") (-310 |#2| |#3| |#4| |#5|)) 14)))
+(((-840 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2733 ((-3 (-707) "failed") (-310 |#2| |#3| |#4| |#5|))) (-15 -2789 ((-108) (-310 |#2| |#3| |#4| |#5|))) (-15 -4201 ((-3 (-2 (|:| -2733 (-707)) (|:| -2093 |#5|)) "failed") (-310 |#2| |#3| |#4| |#5|)))) (-13 (-784) (-513) (-961 (-521))) (-404 |#1|) (-1141 |#2|) (-1141 (-381 |#3|)) (-316 |#2| |#3| |#4|)) (T -840))
+((-4201 (*1 *2 *3) (|partial| -12 (-5 *3 (-310 *5 *6 *7 *8)) (-4 *5 (-404 *4)) (-4 *6 (-1141 *5)) (-4 *7 (-1141 (-381 *6))) (-4 *8 (-316 *5 *6 *7)) (-4 *4 (-13 (-784) (-513) (-961 (-521)))) (-5 *2 (-2 (|:| -2733 (-707)) (|:| -2093 *8))) (-5 *1 (-840 *4 *5 *6 *7 *8)))) (-2789 (*1 *2 *3) (-12 (-5 *3 (-310 *5 *6 *7 *8)) (-4 *5 (-404 *4)) (-4 *6 (-1141 *5)) (-4 *7 (-1141 (-381 *6))) (-4 *8 (-316 *5 *6 *7)) (-4 *4 (-13 (-784) (-513) (-961 (-521)))) (-5 *2 (-108)) (-5 *1 (-840 *4 *5 *6 *7 *8)))) (-2733 (*1 *2 *3) (|partial| -12 (-5 *3 (-310 *5 *6 *7 *8)) (-4 *5 (-404 *4)) (-4 *6 (-1141 *5)) (-4 *7 (-1141 (-381 *6))) (-4 *8 (-316 *5 *6 *7)) (-4 *4 (-13 (-784) (-513) (-961 (-521)))) (-5 *2 (-707)) (-5 *1 (-840 *4 *5 *6 *7 *8)))))
+(-10 -7 (-15 -2733 ((-3 (-707) "failed") (-310 |#2| |#3| |#4| |#5|))) (-15 -2789 ((-108) (-310 |#2| |#3| |#4| |#5|))) (-15 -4201 ((-3 (-2 (|:| -2733 (-707)) (|:| -2093 |#5|)) "failed") (-310 |#2| |#3| |#4| |#5|))))
+((-4201 (((-3 (-2 (|:| -2733 (-707)) (|:| -2093 |#3|)) "failed") (-310 (-381 (-521)) |#1| |#2| |#3|)) 56)) (-2789 (((-108) (-310 (-381 (-521)) |#1| |#2| |#3|)) 13)) (-2733 (((-3 (-707) "failed") (-310 (-381 (-521)) |#1| |#2| |#3|)) 11)))
+(((-841 |#1| |#2| |#3|) (-10 -7 (-15 -2733 ((-3 (-707) "failed") (-310 (-381 (-521)) |#1| |#2| |#3|))) (-15 -2789 ((-108) (-310 (-381 (-521)) |#1| |#2| |#3|))) (-15 -4201 ((-3 (-2 (|:| -2733 (-707)) (|:| -2093 |#3|)) "failed") (-310 (-381 (-521)) |#1| |#2| |#3|)))) (-1141 (-381 (-521))) (-1141 (-381 |#1|)) (-316 (-381 (-521)) |#1| |#2|)) (T -841))
+((-4201 (*1 *2 *3) (|partial| -12 (-5 *3 (-310 (-381 (-521)) *4 *5 *6)) (-4 *4 (-1141 (-381 (-521)))) (-4 *5 (-1141 (-381 *4))) (-4 *6 (-316 (-381 (-521)) *4 *5)) (-5 *2 (-2 (|:| -2733 (-707)) (|:| -2093 *6))) (-5 *1 (-841 *4 *5 *6)))) (-2789 (*1 *2 *3) (-12 (-5 *3 (-310 (-381 (-521)) *4 *5 *6)) (-4 *4 (-1141 (-381 (-521)))) (-4 *5 (-1141 (-381 *4))) (-4 *6 (-316 (-381 (-521)) *4 *5)) (-5 *2 (-108)) (-5 *1 (-841 *4 *5 *6)))) (-2733 (*1 *2 *3) (|partial| -12 (-5 *3 (-310 (-381 (-521)) *4 *5 *6)) (-4 *4 (-1141 (-381 (-521)))) (-4 *5 (-1141 (-381 *4))) (-4 *6 (-316 (-381 (-521)) *4 *5)) (-5 *2 (-707)) (-5 *1 (-841 *4 *5 *6)))))
+(-10 -7 (-15 -2733 ((-3 (-707) "failed") (-310 (-381 (-521)) |#1| |#2| |#3|))) (-15 -2789 ((-108) (-310 (-381 (-521)) |#1| |#2| |#3|))) (-15 -4201 ((-3 (-2 (|:| -2733 (-707)) (|:| -2093 |#3|)) "failed") (-310 (-381 (-521)) |#1| |#2| |#3|))))
+((-2604 ((|#2| |#2|) 25)) (-2534 (((-521) (-587 (-2 (|:| |den| (-521)) (|:| |gcdnum| (-521))))) 15)) (-2474 (((-850) (-521)) 35)) (-3038 (((-521) |#2|) 42)) (-1348 (((-521) |#2|) 21) (((-2 (|:| |den| (-521)) (|:| |gcdnum| (-521))) |#1|) 20)))
+(((-842 |#1| |#2|) (-10 -7 (-15 -2474 ((-850) (-521))) (-15 -1348 ((-2 (|:| |den| (-521)) (|:| |gcdnum| (-521))) |#1|)) (-15 -1348 ((-521) |#2|)) (-15 -2534 ((-521) (-587 (-2 (|:| |den| (-521)) (|:| |gcdnum| (-521)))))) (-15 -3038 ((-521) |#2|)) (-15 -2604 (|#2| |#2|))) (-1141 (-381 (-521))) (-1141 (-381 |#1|))) (T -842))
+((-2604 (*1 *2 *2) (-12 (-4 *3 (-1141 (-381 (-521)))) (-5 *1 (-842 *3 *2)) (-4 *2 (-1141 (-381 *3))))) (-3038 (*1 *2 *3) (-12 (-4 *4 (-1141 (-381 *2))) (-5 *2 (-521)) (-5 *1 (-842 *4 *3)) (-4 *3 (-1141 (-381 *4))))) (-2534 (*1 *2 *3) (-12 (-5 *3 (-587 (-2 (|:| |den| (-521)) (|:| |gcdnum| (-521))))) (-4 *4 (-1141 (-381 *2))) (-5 *2 (-521)) (-5 *1 (-842 *4 *5)) (-4 *5 (-1141 (-381 *4))))) (-1348 (*1 *2 *3) (-12 (-4 *4 (-1141 (-381 *2))) (-5 *2 (-521)) (-5 *1 (-842 *4 *3)) (-4 *3 (-1141 (-381 *4))))) (-1348 (*1 *2 *3) (-12 (-4 *3 (-1141 (-381 (-521)))) (-5 *2 (-2 (|:| |den| (-521)) (|:| |gcdnum| (-521)))) (-5 *1 (-842 *3 *4)) (-4 *4 (-1141 (-381 *3))))) (-2474 (*1 *2 *3) (-12 (-5 *3 (-521)) (-4 *4 (-1141 (-381 *3))) (-5 *2 (-850)) (-5 *1 (-842 *4 *5)) (-4 *5 (-1141 (-381 *4))))))
+(-10 -7 (-15 -2474 ((-850) (-521))) (-15 -1348 ((-2 (|:| |den| (-521)) (|:| |gcdnum| (-521))) |#1|)) (-15 -1348 ((-521) |#2|)) (-15 -2534 ((-521) (-587 (-2 (|:| |den| (-521)) (|:| |gcdnum| (-521)))))) (-15 -3038 ((-521) |#2|)) (-15 -2604 (|#2| |#2|)))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-2086 ((|#1| $) 81)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-2559 (($ $) NIL)) (-1733 (((-108) $) NIL)) (-1232 (((-3 $ "failed") $ $) NIL)) (-3063 (($ $) NIL)) (-3358 (((-392 $) $) NIL)) (-1389 (((-108) $ $) NIL)) (-2547 (($) NIL T CONST)) (-2277 (($ $ $) NIL)) (-1257 (((-3 $ "failed") $) 75)) (-2253 (($ $ $) NIL)) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) NIL)) (-2710 (((-108) $) NIL)) (-2987 (($ |#1| (-392 |#1|)) 73)) (-4207 (((-1080 |#1|) |#1| |#1|) 40)) (-2683 (($ $) 49)) (-3996 (((-108) $) NIL)) (-1984 (((-521) $) 78)) (-1337 (($ $ (-521)) 80)) (-1546 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-2223 (($ $ $) NIL) (($ (-587 $)) NIL)) (-3688 (((-1067) $) NIL)) (-3095 (($ $) NIL)) (-4147 (((-1031) $) NIL)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) NIL)) (-2258 (($ $ $) NIL) (($ (-587 $)) NIL)) (-3282 ((|#1| $) 77)) (-1563 (((-392 |#1|) $) 76)) (-1916 (((-392 $) $) NIL)) (-1962 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2230 (((-3 $ "failed") $ $) 74)) (-3854 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-4196 (((-707) $) NIL)) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) NIL)) (-2610 (($ $) 38)) (-2189 (((-792) $) 99) (($ (-521)) 54) (($ $) NIL) (($ (-381 (-521))) NIL) (($ |#1|) 30) (((-381 |#1|) $) 59) (($ (-381 (-392 |#1|))) 67)) (-3846 (((-707)) 52)) (-4210 (((-108) $ $) NIL)) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (-3561 (($) 23 T CONST)) (-3572 (($) 11 T CONST)) (-1531 (((-108) $ $) 68)) (-1620 (($ $ $) NIL)) (-1612 (($ $) 88) (($ $ $) NIL)) (-1602 (($ $ $) 37)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) 90) (($ $ $) 36) (($ $ (-381 (-521))) NIL) (($ (-381 (-521)) $) NIL) (($ |#1| $) 89) (($ $ |#1|) NIL)))
+(((-843 |#1|) (-13 (-337) (-37 |#1|) (-10 -8 (-15 -2189 ((-381 |#1|) $)) (-15 -2189 ($ (-381 (-392 |#1|)))) (-15 -2610 ($ $)) (-15 -1563 ((-392 |#1|) $)) (-15 -3282 (|#1| $)) (-15 -1337 ($ $ (-521))) (-15 -1984 ((-521) $)) (-15 -4207 ((-1080 |#1|) |#1| |#1|)) (-15 -2683 ($ $)) (-15 -2987 ($ |#1| (-392 |#1|))) (-15 -2086 (|#1| $)))) (-282)) (T -843))
+((-2189 (*1 *2 *1) (-12 (-5 *2 (-381 *3)) (-5 *1 (-843 *3)) (-4 *3 (-282)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-381 (-392 *3))) (-4 *3 (-282)) (-5 *1 (-843 *3)))) (-2610 (*1 *1 *1) (-12 (-5 *1 (-843 *2)) (-4 *2 (-282)))) (-1563 (*1 *2 *1) (-12 (-5 *2 (-392 *3)) (-5 *1 (-843 *3)) (-4 *3 (-282)))) (-3282 (*1 *2 *1) (-12 (-5 *1 (-843 *2)) (-4 *2 (-282)))) (-1337 (*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-843 *3)) (-4 *3 (-282)))) (-1984 (*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-843 *3)) (-4 *3 (-282)))) (-4207 (*1 *2 *3 *3) (-12 (-5 *2 (-1080 *3)) (-5 *1 (-843 *3)) (-4 *3 (-282)))) (-2683 (*1 *1 *1) (-12 (-5 *1 (-843 *2)) (-4 *2 (-282)))) (-2987 (*1 *1 *2 *3) (-12 (-5 *3 (-392 *2)) (-4 *2 (-282)) (-5 *1 (-843 *2)))) (-2086 (*1 *2 *1) (-12 (-5 *1 (-843 *2)) (-4 *2 (-282)))))
+(-13 (-337) (-37 |#1|) (-10 -8 (-15 -2189 ((-381 |#1|) $)) (-15 -2189 ($ (-381 (-392 |#1|)))) (-15 -2610 ($ $)) (-15 -1563 ((-392 |#1|) $)) (-15 -3282 (|#1| $)) (-15 -1337 ($ $ (-521))) (-15 -1984 ((-521) $)) (-15 -4207 ((-1080 |#1|) |#1| |#1|)) (-15 -2683 ($ $)) (-15 -2987 ($ |#1| (-392 |#1|))) (-15 -2086 (|#1| $))))
+((-2987 (((-51) (-881 |#1|) (-392 (-881 |#1|)) (-1084)) 16) (((-51) (-381 (-881 |#1|)) (-1084)) 17)))
+(((-844 |#1|) (-10 -7 (-15 -2987 ((-51) (-381 (-881 |#1|)) (-1084))) (-15 -2987 ((-51) (-881 |#1|) (-392 (-881 |#1|)) (-1084)))) (-13 (-282) (-135))) (T -844))
+((-2987 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-392 (-881 *6))) (-5 *5 (-1084)) (-5 *3 (-881 *6)) (-4 *6 (-13 (-282) (-135))) (-5 *2 (-51)) (-5 *1 (-844 *6)))) (-2987 (*1 *2 *3 *4) (-12 (-5 *3 (-381 (-881 *5))) (-5 *4 (-1084)) (-4 *5 (-13 (-282) (-135))) (-5 *2 (-51)) (-5 *1 (-844 *5)))))
+(-10 -7 (-15 -2987 ((-51) (-381 (-881 |#1|)) (-1084))) (-15 -2987 ((-51) (-881 |#1|) (-392 (-881 |#1|)) (-1084))))
+((-1395 ((|#4| (-587 |#4|)) 119) (((-1080 |#4|) (-1080 |#4|) (-1080 |#4|)) 66) ((|#4| |#4| |#4|) 118)) (-2258 (((-1080 |#4|) (-587 (-1080 |#4|))) 112) (((-1080 |#4|) (-1080 |#4|) (-1080 |#4|)) 49) ((|#4| (-587 |#4|)) 54) ((|#4| |#4| |#4|) 83)))
+(((-845 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2258 (|#4| |#4| |#4|)) (-15 -2258 (|#4| (-587 |#4|))) (-15 -2258 ((-1080 |#4|) (-1080 |#4|) (-1080 |#4|))) (-15 -2258 ((-1080 |#4|) (-587 (-1080 |#4|)))) (-15 -1395 (|#4| |#4| |#4|)) (-15 -1395 ((-1080 |#4|) (-1080 |#4|) (-1080 |#4|))) (-15 -1395 (|#4| (-587 |#4|)))) (-729) (-784) (-282) (-878 |#3| |#1| |#2|)) (T -845))
+((-1395 (*1 *2 *3) (-12 (-5 *3 (-587 *2)) (-4 *2 (-878 *6 *4 *5)) (-5 *1 (-845 *4 *5 *6 *2)) (-4 *4 (-729)) (-4 *5 (-784)) (-4 *6 (-282)))) (-1395 (*1 *2 *2 *2) (-12 (-5 *2 (-1080 *6)) (-4 *6 (-878 *5 *3 *4)) (-4 *3 (-729)) (-4 *4 (-784)) (-4 *5 (-282)) (-5 *1 (-845 *3 *4 *5 *6)))) (-1395 (*1 *2 *2 *2) (-12 (-4 *3 (-729)) (-4 *4 (-784)) (-4 *5 (-282)) (-5 *1 (-845 *3 *4 *5 *2)) (-4 *2 (-878 *5 *3 *4)))) (-2258 (*1 *2 *3) (-12 (-5 *3 (-587 (-1080 *7))) (-4 *4 (-729)) (-4 *5 (-784)) (-4 *6 (-282)) (-5 *2 (-1080 *7)) (-5 *1 (-845 *4 *5 *6 *7)) (-4 *7 (-878 *6 *4 *5)))) (-2258 (*1 *2 *2 *2) (-12 (-5 *2 (-1080 *6)) (-4 *6 (-878 *5 *3 *4)) (-4 *3 (-729)) (-4 *4 (-784)) (-4 *5 (-282)) (-5 *1 (-845 *3 *4 *5 *6)))) (-2258 (*1 *2 *3) (-12 (-5 *3 (-587 *2)) (-4 *2 (-878 *6 *4 *5)) (-5 *1 (-845 *4 *5 *6 *2)) (-4 *4 (-729)) (-4 *5 (-784)) (-4 *6 (-282)))) (-2258 (*1 *2 *2 *2) (-12 (-4 *3 (-729)) (-4 *4 (-784)) (-4 *5 (-282)) (-5 *1 (-845 *3 *4 *5 *2)) (-4 *2 (-878 *5 *3 *4)))))
+(-10 -7 (-15 -2258 (|#4| |#4| |#4|)) (-15 -2258 (|#4| (-587 |#4|))) (-15 -2258 ((-1080 |#4|) (-1080 |#4|) (-1080 |#4|))) (-15 -2258 ((-1080 |#4|) (-587 (-1080 |#4|)))) (-15 -1395 (|#4| |#4| |#4|)) (-15 -1395 ((-1080 |#4|) (-1080 |#4|) (-1080 |#4|))) (-15 -1395 (|#4| (-587 |#4|))))
+((-3565 (((-833 (-521)) (-897)) 22) (((-833 (-521)) (-587 (-521))) 19)) (-1897 (((-833 (-521)) (-587 (-521))) 46) (((-833 (-521)) (-850)) 47)) (-3371 (((-833 (-521))) 23)) (-3644 (((-833 (-521))) 36) (((-833 (-521)) (-587 (-521))) 35)) (-3252 (((-833 (-521))) 34) (((-833 (-521)) (-587 (-521))) 33)) (-2955 (((-833 (-521))) 32) (((-833 (-521)) (-587 (-521))) 31)) (-2552 (((-833 (-521))) 30) (((-833 (-521)) (-587 (-521))) 29)) (-1209 (((-833 (-521))) 28) (((-833 (-521)) (-587 (-521))) 27)) (-2441 (((-833 (-521))) 38) (((-833 (-521)) (-587 (-521))) 37)) (-3209 (((-833 (-521)) (-587 (-521))) 50) (((-833 (-521)) (-850)) 51)) (-2076 (((-833 (-521)) (-587 (-521))) 48) (((-833 (-521)) (-850)) 49)) (-2217 (((-833 (-521)) (-587 (-521))) 43) (((-833 (-521)) (-850)) 45)) (-4131 (((-833 (-521)) (-587 (-850))) 40)))
+(((-846) (-10 -7 (-15 -1897 ((-833 (-521)) (-850))) (-15 -1897 ((-833 (-521)) (-587 (-521)))) (-15 -2217 ((-833 (-521)) (-850))) (-15 -2217 ((-833 (-521)) (-587 (-521)))) (-15 -4131 ((-833 (-521)) (-587 (-850)))) (-15 -2076 ((-833 (-521)) (-850))) (-15 -2076 ((-833 (-521)) (-587 (-521)))) (-15 -3209 ((-833 (-521)) (-850))) (-15 -3209 ((-833 (-521)) (-587 (-521)))) (-15 -1209 ((-833 (-521)) (-587 (-521)))) (-15 -1209 ((-833 (-521)))) (-15 -2552 ((-833 (-521)) (-587 (-521)))) (-15 -2552 ((-833 (-521)))) (-15 -2955 ((-833 (-521)) (-587 (-521)))) (-15 -2955 ((-833 (-521)))) (-15 -3252 ((-833 (-521)) (-587 (-521)))) (-15 -3252 ((-833 (-521)))) (-15 -3644 ((-833 (-521)) (-587 (-521)))) (-15 -3644 ((-833 (-521)))) (-15 -2441 ((-833 (-521)) (-587 (-521)))) (-15 -2441 ((-833 (-521)))) (-15 -3371 ((-833 (-521)))) (-15 -3565 ((-833 (-521)) (-587 (-521)))) (-15 -3565 ((-833 (-521)) (-897))))) (T -846))
+((-3565 (*1 *2 *3) (-12 (-5 *3 (-897)) (-5 *2 (-833 (-521))) (-5 *1 (-846)))) (-3565 (*1 *2 *3) (-12 (-5 *3 (-587 (-521))) (-5 *2 (-833 (-521))) (-5 *1 (-846)))) (-3371 (*1 *2) (-12 (-5 *2 (-833 (-521))) (-5 *1 (-846)))) (-2441 (*1 *2) (-12 (-5 *2 (-833 (-521))) (-5 *1 (-846)))) (-2441 (*1 *2 *3) (-12 (-5 *3 (-587 (-521))) (-5 *2 (-833 (-521))) (-5 *1 (-846)))) (-3644 (*1 *2) (-12 (-5 *2 (-833 (-521))) (-5 *1 (-846)))) (-3644 (*1 *2 *3) (-12 (-5 *3 (-587 (-521))) (-5 *2 (-833 (-521))) (-5 *1 (-846)))) (-3252 (*1 *2) (-12 (-5 *2 (-833 (-521))) (-5 *1 (-846)))) (-3252 (*1 *2 *3) (-12 (-5 *3 (-587 (-521))) (-5 *2 (-833 (-521))) (-5 *1 (-846)))) (-2955 (*1 *2) (-12 (-5 *2 (-833 (-521))) (-5 *1 (-846)))) (-2955 (*1 *2 *3) (-12 (-5 *3 (-587 (-521))) (-5 *2 (-833 (-521))) (-5 *1 (-846)))) (-2552 (*1 *2) (-12 (-5 *2 (-833 (-521))) (-5 *1 (-846)))) (-2552 (*1 *2 *3) (-12 (-5 *3 (-587 (-521))) (-5 *2 (-833 (-521))) (-5 *1 (-846)))) (-1209 (*1 *2) (-12 (-5 *2 (-833 (-521))) (-5 *1 (-846)))) (-1209 (*1 *2 *3) (-12 (-5 *3 (-587 (-521))) (-5 *2 (-833 (-521))) (-5 *1 (-846)))) (-3209 (*1 *2 *3) (-12 (-5 *3 (-587 (-521))) (-5 *2 (-833 (-521))) (-5 *1 (-846)))) (-3209 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-833 (-521))) (-5 *1 (-846)))) (-2076 (*1 *2 *3) (-12 (-5 *3 (-587 (-521))) (-5 *2 (-833 (-521))) (-5 *1 (-846)))) (-2076 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-833 (-521))) (-5 *1 (-846)))) (-4131 (*1 *2 *3) (-12 (-5 *3 (-587 (-850))) (-5 *2 (-833 (-521))) (-5 *1 (-846)))) (-2217 (*1 *2 *3) (-12 (-5 *3 (-587 (-521))) (-5 *2 (-833 (-521))) (-5 *1 (-846)))) (-2217 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-833 (-521))) (-5 *1 (-846)))) (-1897 (*1 *2 *3) (-12 (-5 *3 (-587 (-521))) (-5 *2 (-833 (-521))) (-5 *1 (-846)))) (-1897 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-833 (-521))) (-5 *1 (-846)))))
+(-10 -7 (-15 -1897 ((-833 (-521)) (-850))) (-15 -1897 ((-833 (-521)) (-587 (-521)))) (-15 -2217 ((-833 (-521)) (-850))) (-15 -2217 ((-833 (-521)) (-587 (-521)))) (-15 -4131 ((-833 (-521)) (-587 (-850)))) (-15 -2076 ((-833 (-521)) (-850))) (-15 -2076 ((-833 (-521)) (-587 (-521)))) (-15 -3209 ((-833 (-521)) (-850))) (-15 -3209 ((-833 (-521)) (-587 (-521)))) (-15 -1209 ((-833 (-521)) (-587 (-521)))) (-15 -1209 ((-833 (-521)))) (-15 -2552 ((-833 (-521)) (-587 (-521)))) (-15 -2552 ((-833 (-521)))) (-15 -2955 ((-833 (-521)) (-587 (-521)))) (-15 -2955 ((-833 (-521)))) (-15 -3252 ((-833 (-521)) (-587 (-521)))) (-15 -3252 ((-833 (-521)))) (-15 -3644 ((-833 (-521)) (-587 (-521)))) (-15 -3644 ((-833 (-521)))) (-15 -2441 ((-833 (-521)) (-587 (-521)))) (-15 -2441 ((-833 (-521)))) (-15 -3371 ((-833 (-521)))) (-15 -3565 ((-833 (-521)) (-587 (-521)))) (-15 -3565 ((-833 (-521)) (-897))))
+((-1825 (((-587 (-881 |#1|)) (-587 (-881 |#1|)) (-587 (-1084))) 10)) (-2679 (((-587 (-881 |#1|)) (-587 (-881 |#1|)) (-587 (-1084))) 9)))
+(((-847 |#1|) (-10 -7 (-15 -2679 ((-587 (-881 |#1|)) (-587 (-881 |#1|)) (-587 (-1084)))) (-15 -1825 ((-587 (-881 |#1|)) (-587 (-881 |#1|)) (-587 (-1084))))) (-425)) (T -847))
+((-1825 (*1 *2 *2 *3) (-12 (-5 *2 (-587 (-881 *4))) (-5 *3 (-587 (-1084))) (-4 *4 (-425)) (-5 *1 (-847 *4)))) (-2679 (*1 *2 *2 *3) (-12 (-5 *2 (-587 (-881 *4))) (-5 *3 (-587 (-1084))) (-4 *4 (-425)) (-5 *1 (-847 *4)))))
+(-10 -7 (-15 -2679 ((-587 (-881 |#1|)) (-587 (-881 |#1|)) (-587 (-1084)))) (-15 -1825 ((-587 (-881 |#1|)) (-587 (-881 |#1|)) (-587 (-1084)))))
+((-2189 (((-290 |#1|) (-450)) 15)))
+(((-848 |#1|) (-10 -7 (-15 -2189 ((-290 |#1|) (-450)))) (-13 (-784) (-513))) (T -848))
+((-2189 (*1 *2 *3) (-12 (-5 *3 (-450)) (-5 *2 (-290 *4)) (-5 *1 (-848 *4)) (-4 *4 (-13 (-784) (-513))))))
+(-10 -7 (-15 -2189 ((-290 |#1|) (-450))))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) 41)) (-2559 (($ $) 40)) (-1733 (((-108) $) 38)) (-1232 (((-3 $ "failed") $ $) 19)) (-2547 (($) 17 T CONST)) (-1257 (((-3 $ "failed") $) 34)) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) 51)) (-3996 (((-108) $) 31)) (-2223 (($ $ $) 46) (($ (-587 $)) 45)) (-3688 (((-1067) $) 9)) (-4147 (((-1031) $) 10)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) 44)) (-2258 (($ $ $) 48) (($ (-587 $)) 47)) (-2230 (((-3 $ "failed") $ $) 42)) (-3854 (((-3 (-587 $) "failed") (-587 $) $) 50)) (-2189 (((-792) $) 11) (($ (-521)) 28) (($ $) 43)) (-3846 (((-707)) 29)) (-4210 (((-108) $ $) 39)) (-3505 (($ $ (-850)) 26) (($ $ (-707)) 33)) (-3561 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-707)) 32)) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24)))
+(((-849) (-1196)) (T -849))
+((-3780 (*1 *2 *3) (-12 (-4 *1 (-849)) (-5 *2 (-2 (|:| -2973 (-587 *1)) (|:| -1383 *1))) (-5 *3 (-587 *1)))) (-3854 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-587 *1)) (-4 *1 (-849)))))
+(-13 (-425) (-10 -8 (-15 -3780 ((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $))) (-15 -3854 ((-3 (-587 $) "failed") (-587 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-561 (-792)) . T) ((-157) . T) ((-265) . T) ((-425) . T) ((-513) . T) ((-589 $) . T) ((-654 $) . T) ((-663) . T) ((-976 $) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T))
+((-1415 (((-108) $ $) NIL)) (-2547 (($) NIL T CONST)) (-1257 (((-3 $ "failed") $) NIL)) (-3996 (((-108) $) NIL)) (-2810 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2258 (($ $ $) NIL)) (-2189 (((-792) $) NIL)) (-3505 (($ $ (-707)) NIL) (($ $ (-850)) NIL)) (-3572 (($) NIL T CONST)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-707)) NIL) (($ $ (-850)) NIL)) (* (($ (-850) $) NIL) (($ $ $) NIL)))
+(((-850) (-13 (-25) (-784) (-663) (-10 -8 (-15 -2258 ($ $ $)) (-6 (-4235 "*"))))) (T -850))
+((-2258 (*1 *1 *1 *1) (-5 *1 (-850))))
+(-13 (-25) (-784) (-663) (-10 -8 (-15 -2258 ($ $ $)) (-6 (-4235 "*"))))
+((-2550 ((|#2| (-587 |#1|) (-587 |#1|)) 24)))
+(((-851 |#1| |#2|) (-10 -7 (-15 -2550 (|#2| (-587 |#1|) (-587 |#1|)))) (-337) (-1141 |#1|)) (T -851))
+((-2550 (*1 *2 *3 *3) (-12 (-5 *3 (-587 *4)) (-4 *4 (-337)) (-4 *2 (-1141 *4)) (-5 *1 (-851 *4 *2)))))
+(-10 -7 (-15 -2550 (|#2| (-587 |#1|) (-587 |#1|))))
+((-2603 (((-1080 |#2|) (-587 |#2|) (-587 |#2|)) 17) (((-1138 |#1| |#2|) (-1138 |#1| |#2|) (-587 |#2|) (-587 |#2|)) 13)))
+(((-852 |#1| |#2|) (-10 -7 (-15 -2603 ((-1138 |#1| |#2|) (-1138 |#1| |#2|) (-587 |#2|) (-587 |#2|))) (-15 -2603 ((-1080 |#2|) (-587 |#2|) (-587 |#2|)))) (-1084) (-337)) (T -852))
+((-2603 (*1 *2 *3 *3) (-12 (-5 *3 (-587 *5)) (-4 *5 (-337)) (-5 *2 (-1080 *5)) (-5 *1 (-852 *4 *5)) (-14 *4 (-1084)))) (-2603 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1138 *4 *5)) (-5 *3 (-587 *5)) (-14 *4 (-1084)) (-4 *5 (-337)) (-5 *1 (-852 *4 *5)))))
+(-10 -7 (-15 -2603 ((-1138 |#1| |#2|) (-1138 |#1| |#2|) (-587 |#2|) (-587 |#2|))) (-15 -2603 ((-1080 |#2|) (-587 |#2|) (-587 |#2|))))
+((-3367 (((-521) (-587 (-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-881 |#1|)))) (|:| -2470 (-587 (-1165 (-381 (-881 |#1|))))))))) (-1067)) 138)) (-2408 ((|#4| |#4|) 154)) (-3507 (((-587 (-381 (-881 |#1|))) (-587 (-1084))) 117)) (-2361 (((-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-881 |#1|)))) (|:| -2470 (-587 (-1165 (-381 (-881 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-587 (-521))) (|:| |cols| (-587 (-521)))) (-627 |#4|) (-587 (-381 (-881 |#1|))) (-587 (-587 |#4|)) (-707) (-707) (-521)) 73)) (-4023 (((-2 (|:| |partsol| (-1165 (-381 (-881 |#1|)))) (|:| -2470 (-587 (-1165 (-381 (-881 |#1|)))))) (-2 (|:| |partsol| (-1165 (-381 (-881 |#1|)))) (|:| -2470 (-587 (-1165 (-381 (-881 |#1|)))))) (-587 |#4|)) 57)) (-3826 (((-627 |#4|) (-627 |#4|) (-587 |#4|)) 53)) (-2171 (((-587 (-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-881 |#1|)))) (|:| -2470 (-587 (-1165 (-381 (-881 |#1|))))))))) (-1067)) 150)) (-1949 (((-521) (-627 |#4|) (-850) (-1067)) 131) (((-521) (-627 |#4|) (-587 (-1084)) (-850) (-1067)) 130) (((-521) (-627 |#4|) (-587 |#4|) (-850) (-1067)) 129) (((-521) (-627 |#4|) (-1067)) 126) (((-521) (-627 |#4|) (-587 (-1084)) (-1067)) 125) (((-521) (-627 |#4|) (-587 |#4|) (-1067)) 124) (((-587 (-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-881 |#1|)))) (|:| -2470 (-587 (-1165 (-381 (-881 |#1|))))))))) (-627 |#4|) (-850)) 123) (((-587 (-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-881 |#1|)))) (|:| -2470 (-587 (-1165 (-381 (-881 |#1|))))))))) (-627 |#4|) (-587 (-1084)) (-850)) 122) (((-587 (-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-881 |#1|)))) (|:| -2470 (-587 (-1165 (-381 (-881 |#1|))))))))) (-627 |#4|) (-587 |#4|) (-850)) 121) (((-587 (-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-881 |#1|)))) (|:| -2470 (-587 (-1165 (-381 (-881 |#1|))))))))) (-627 |#4|)) 119) (((-587 (-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-881 |#1|)))) (|:| -2470 (-587 (-1165 (-381 (-881 |#1|))))))))) (-627 |#4|) (-587 (-1084))) 118) (((-587 (-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-881 |#1|)))) (|:| -2470 (-587 (-1165 (-381 (-881 |#1|))))))))) (-627 |#4|) (-587 |#4|)) 115)) (-1775 ((|#4| (-881 |#1|)) 66)) (-2153 (((-108) (-587 |#4|) (-587 (-587 |#4|))) 151)) (-2836 (((-587 (-587 (-521))) (-521) (-521)) 128)) (-1754 (((-587 (-587 |#4|)) (-587 (-587 |#4|))) 85)) (-3806 (((-707) (-587 (-2 (|:| -3162 (-707)) (|:| |eqns| (-587 (-2 (|:| |det| |#4|) (|:| |rows| (-587 (-521))) (|:| |cols| (-587 (-521)))))) (|:| |fgb| (-587 |#4|))))) 83)) (-1920 (((-707) (-587 (-2 (|:| -3162 (-707)) (|:| |eqns| (-587 (-2 (|:| |det| |#4|) (|:| |rows| (-587 (-521))) (|:| |cols| (-587 (-521)))))) (|:| |fgb| (-587 |#4|))))) 82)) (-2291 (((-108) (-587 (-881 |#1|))) 17) (((-108) (-587 |#4|)) 13)) (-3932 (((-2 (|:| |sysok| (-108)) (|:| |z0| (-587 |#4|)) (|:| |n0| (-587 |#4|))) (-587 |#4|) (-587 |#4|)) 69)) (-3219 (((-587 |#4|) |#4|) 47)) (-1559 (((-587 (-381 (-881 |#1|))) (-587 |#4|)) 113) (((-627 (-381 (-881 |#1|))) (-627 |#4|)) 54) (((-381 (-881 |#1|)) |#4|) 110)) (-1362 (((-2 (|:| |rgl| (-587 (-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-881 |#1|)))) (|:| -2470 (-587 (-1165 (-381 (-881 |#1|)))))))))) (|:| |rgsz| (-521))) (-627 |#4|) (-587 (-381 (-881 |#1|))) (-707) (-1067) (-521)) 89)) (-3670 (((-587 (-2 (|:| -3162 (-707)) (|:| |eqns| (-587 (-2 (|:| |det| |#4|) (|:| |rows| (-587 (-521))) (|:| |cols| (-587 (-521)))))) (|:| |fgb| (-587 |#4|)))) (-627 |#4|) (-707)) 81)) (-1722 (((-587 (-2 (|:| |det| |#4|) (|:| |rows| (-587 (-521))) (|:| |cols| (-587 (-521))))) (-627 |#4|) (-707)) 98)) (-2209 (((-2 (|:| |partsol| (-1165 (-381 (-881 |#1|)))) (|:| -2470 (-587 (-1165 (-381 (-881 |#1|)))))) (-2 (|:| -1201 (-627 (-381 (-881 |#1|)))) (|:| |vec| (-587 (-381 (-881 |#1|)))) (|:| -3162 (-707)) (|:| |rows| (-587 (-521))) (|:| |cols| (-587 (-521))))) 46)))
+(((-853 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1949 ((-587 (-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-881 |#1|)))) (|:| -2470 (-587 (-1165 (-381 (-881 |#1|))))))))) (-627 |#4|) (-587 |#4|))) (-15 -1949 ((-587 (-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-881 |#1|)))) (|:| -2470 (-587 (-1165 (-381 (-881 |#1|))))))))) (-627 |#4|) (-587 (-1084)))) (-15 -1949 ((-587 (-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-881 |#1|)))) (|:| -2470 (-587 (-1165 (-381 (-881 |#1|))))))))) (-627 |#4|))) (-15 -1949 ((-587 (-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-881 |#1|)))) (|:| -2470 (-587 (-1165 (-381 (-881 |#1|))))))))) (-627 |#4|) (-587 |#4|) (-850))) (-15 -1949 ((-587 (-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-881 |#1|)))) (|:| -2470 (-587 (-1165 (-381 (-881 |#1|))))))))) (-627 |#4|) (-587 (-1084)) (-850))) (-15 -1949 ((-587 (-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-881 |#1|)))) (|:| -2470 (-587 (-1165 (-381 (-881 |#1|))))))))) (-627 |#4|) (-850))) (-15 -1949 ((-521) (-627 |#4|) (-587 |#4|) (-1067))) (-15 -1949 ((-521) (-627 |#4|) (-587 (-1084)) (-1067))) (-15 -1949 ((-521) (-627 |#4|) (-1067))) (-15 -1949 ((-521) (-627 |#4|) (-587 |#4|) (-850) (-1067))) (-15 -1949 ((-521) (-627 |#4|) (-587 (-1084)) (-850) (-1067))) (-15 -1949 ((-521) (-627 |#4|) (-850) (-1067))) (-15 -3367 ((-521) (-587 (-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-881 |#1|)))) (|:| -2470 (-587 (-1165 (-381 (-881 |#1|))))))))) (-1067))) (-15 -2171 ((-587 (-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-881 |#1|)))) (|:| -2470 (-587 (-1165 (-381 (-881 |#1|))))))))) (-1067))) (-15 -1362 ((-2 (|:| |rgl| (-587 (-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-881 |#1|)))) (|:| -2470 (-587 (-1165 (-381 (-881 |#1|)))))))))) (|:| |rgsz| (-521))) (-627 |#4|) (-587 (-381 (-881 |#1|))) (-707) (-1067) (-521))) (-15 -1559 ((-381 (-881 |#1|)) |#4|)) (-15 -1559 ((-627 (-381 (-881 |#1|))) (-627 |#4|))) (-15 -1559 ((-587 (-381 (-881 |#1|))) (-587 |#4|))) (-15 -3507 ((-587 (-381 (-881 |#1|))) (-587 (-1084)))) (-15 -1775 (|#4| (-881 |#1|))) (-15 -3932 ((-2 (|:| |sysok| (-108)) (|:| |z0| (-587 |#4|)) (|:| |n0| (-587 |#4|))) (-587 |#4|) (-587 |#4|))) (-15 -3670 ((-587 (-2 (|:| -3162 (-707)) (|:| |eqns| (-587 (-2 (|:| |det| |#4|) (|:| |rows| (-587 (-521))) (|:| |cols| (-587 (-521)))))) (|:| |fgb| (-587 |#4|)))) (-627 |#4|) (-707))) (-15 -4023 ((-2 (|:| |partsol| (-1165 (-381 (-881 |#1|)))) (|:| -2470 (-587 (-1165 (-381 (-881 |#1|)))))) (-2 (|:| |partsol| (-1165 (-381 (-881 |#1|)))) (|:| -2470 (-587 (-1165 (-381 (-881 |#1|)))))) (-587 |#4|))) (-15 -2209 ((-2 (|:| |partsol| (-1165 (-381 (-881 |#1|)))) (|:| -2470 (-587 (-1165 (-381 (-881 |#1|)))))) (-2 (|:| -1201 (-627 (-381 (-881 |#1|)))) (|:| |vec| (-587 (-381 (-881 |#1|)))) (|:| -3162 (-707)) (|:| |rows| (-587 (-521))) (|:| |cols| (-587 (-521)))))) (-15 -3219 ((-587 |#4|) |#4|)) (-15 -1920 ((-707) (-587 (-2 (|:| -3162 (-707)) (|:| |eqns| (-587 (-2 (|:| |det| |#4|) (|:| |rows| (-587 (-521))) (|:| |cols| (-587 (-521)))))) (|:| |fgb| (-587 |#4|)))))) (-15 -3806 ((-707) (-587 (-2 (|:| -3162 (-707)) (|:| |eqns| (-587 (-2 (|:| |det| |#4|) (|:| |rows| (-587 (-521))) (|:| |cols| (-587 (-521)))))) (|:| |fgb| (-587 |#4|)))))) (-15 -1754 ((-587 (-587 |#4|)) (-587 (-587 |#4|)))) (-15 -2836 ((-587 (-587 (-521))) (-521) (-521))) (-15 -2153 ((-108) (-587 |#4|) (-587 (-587 |#4|)))) (-15 -1722 ((-587 (-2 (|:| |det| |#4|) (|:| |rows| (-587 (-521))) (|:| |cols| (-587 (-521))))) (-627 |#4|) (-707))) (-15 -3826 ((-627 |#4|) (-627 |#4|) (-587 |#4|))) (-15 -2361 ((-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-881 |#1|)))) (|:| -2470 (-587 (-1165 (-381 (-881 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-587 (-521))) (|:| |cols| (-587 (-521)))) (-627 |#4|) (-587 (-381 (-881 |#1|))) (-587 (-587 |#4|)) (-707) (-707) (-521))) (-15 -2408 (|#4| |#4|)) (-15 -2291 ((-108) (-587 |#4|))) (-15 -2291 ((-108) (-587 (-881 |#1|))))) (-13 (-282) (-135)) (-13 (-784) (-562 (-1084))) (-729) (-878 |#1| |#3| |#2|)) (T -853))
+((-2291 (*1 *2 *3) (-12 (-5 *3 (-587 (-881 *4))) (-4 *4 (-13 (-282) (-135))) (-4 *5 (-13 (-784) (-562 (-1084)))) (-4 *6 (-729)) (-5 *2 (-108)) (-5 *1 (-853 *4 *5 *6 *7)) (-4 *7 (-878 *4 *6 *5)))) (-2291 (*1 *2 *3) (-12 (-5 *3 (-587 *7)) (-4 *7 (-878 *4 *6 *5)) (-4 *4 (-13 (-282) (-135))) (-4 *5 (-13 (-784) (-562 (-1084)))) (-4 *6 (-729)) (-5 *2 (-108)) (-5 *1 (-853 *4 *5 *6 *7)))) (-2408 (*1 *2 *2) (-12 (-4 *3 (-13 (-282) (-135))) (-4 *4 (-13 (-784) (-562 (-1084)))) (-4 *5 (-729)) (-5 *1 (-853 *3 *4 *5 *2)) (-4 *2 (-878 *3 *5 *4)))) (-2361 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-587 (-521))) (|:| |cols| (-587 (-521))))) (-5 *4 (-627 *12)) (-5 *5 (-587 (-381 (-881 *9)))) (-5 *6 (-587 (-587 *12))) (-5 *7 (-707)) (-5 *8 (-521)) (-4 *9 (-13 (-282) (-135))) (-4 *12 (-878 *9 *11 *10)) (-4 *10 (-13 (-784) (-562 (-1084)))) (-4 *11 (-729)) (-5 *2 (-2 (|:| |eqzro| (-587 *12)) (|:| |neqzro| (-587 *12)) (|:| |wcond| (-587 (-881 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-881 *9)))) (|:| -2470 (-587 (-1165 (-381 (-881 *9))))))))) (-5 *1 (-853 *9 *10 *11 *12)))) (-3826 (*1 *2 *2 *3) (-12 (-5 *2 (-627 *7)) (-5 *3 (-587 *7)) (-4 *7 (-878 *4 *6 *5)) (-4 *4 (-13 (-282) (-135))) (-4 *5 (-13 (-784) (-562 (-1084)))) (-4 *6 (-729)) (-5 *1 (-853 *4 *5 *6 *7)))) (-1722 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *8)) (-5 *4 (-707)) (-4 *8 (-878 *5 *7 *6)) (-4 *5 (-13 (-282) (-135))) (-4 *6 (-13 (-784) (-562 (-1084)))) (-4 *7 (-729)) (-5 *2 (-587 (-2 (|:| |det| *8) (|:| |rows| (-587 (-521))) (|:| |cols| (-587 (-521)))))) (-5 *1 (-853 *5 *6 *7 *8)))) (-2153 (*1 *2 *3 *4) (-12 (-5 *4 (-587 (-587 *8))) (-5 *3 (-587 *8)) (-4 *8 (-878 *5 *7 *6)) (-4 *5 (-13 (-282) (-135))) (-4 *6 (-13 (-784) (-562 (-1084)))) (-4 *7 (-729)) (-5 *2 (-108)) (-5 *1 (-853 *5 *6 *7 *8)))) (-2836 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-282) (-135))) (-4 *5 (-13 (-784) (-562 (-1084)))) (-4 *6 (-729)) (-5 *2 (-587 (-587 (-521)))) (-5 *1 (-853 *4 *5 *6 *7)) (-5 *3 (-521)) (-4 *7 (-878 *4 *6 *5)))) (-1754 (*1 *2 *2) (-12 (-5 *2 (-587 (-587 *6))) (-4 *6 (-878 *3 *5 *4)) (-4 *3 (-13 (-282) (-135))) (-4 *4 (-13 (-784) (-562 (-1084)))) (-4 *5 (-729)) (-5 *1 (-853 *3 *4 *5 *6)))) (-3806 (*1 *2 *3) (-12 (-5 *3 (-587 (-2 (|:| -3162 (-707)) (|:| |eqns| (-587 (-2 (|:| |det| *7) (|:| |rows| (-587 (-521))) (|:| |cols| (-587 (-521)))))) (|:| |fgb| (-587 *7))))) (-4 *7 (-878 *4 *6 *5)) (-4 *4 (-13 (-282) (-135))) (-4 *5 (-13 (-784) (-562 (-1084)))) (-4 *6 (-729)) (-5 *2 (-707)) (-5 *1 (-853 *4 *5 *6 *7)))) (-1920 (*1 *2 *3) (-12 (-5 *3 (-587 (-2 (|:| -3162 (-707)) (|:| |eqns| (-587 (-2 (|:| |det| *7) (|:| |rows| (-587 (-521))) (|:| |cols| (-587 (-521)))))) (|:| |fgb| (-587 *7))))) (-4 *7 (-878 *4 *6 *5)) (-4 *4 (-13 (-282) (-135))) (-4 *5 (-13 (-784) (-562 (-1084)))) (-4 *6 (-729)) (-5 *2 (-707)) (-5 *1 (-853 *4 *5 *6 *7)))) (-3219 (*1 *2 *3) (-12 (-4 *4 (-13 (-282) (-135))) (-4 *5 (-13 (-784) (-562 (-1084)))) (-4 *6 (-729)) (-5 *2 (-587 *3)) (-5 *1 (-853 *4 *5 *6 *3)) (-4 *3 (-878 *4 *6 *5)))) (-2209 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1201 (-627 (-381 (-881 *4)))) (|:| |vec| (-587 (-381 (-881 *4)))) (|:| -3162 (-707)) (|:| |rows| (-587 (-521))) (|:| |cols| (-587 (-521))))) (-4 *4 (-13 (-282) (-135))) (-4 *5 (-13 (-784) (-562 (-1084)))) (-4 *6 (-729)) (-5 *2 (-2 (|:| |partsol| (-1165 (-381 (-881 *4)))) (|:| -2470 (-587 (-1165 (-381 (-881 *4))))))) (-5 *1 (-853 *4 *5 *6 *7)) (-4 *7 (-878 *4 *6 *5)))) (-4023 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1165 (-381 (-881 *4)))) (|:| -2470 (-587 (-1165 (-381 (-881 *4))))))) (-5 *3 (-587 *7)) (-4 *4 (-13 (-282) (-135))) (-4 *7 (-878 *4 *6 *5)) (-4 *5 (-13 (-784) (-562 (-1084)))) (-4 *6 (-729)) (-5 *1 (-853 *4 *5 *6 *7)))) (-3670 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *8)) (-4 *8 (-878 *5 *7 *6)) (-4 *5 (-13 (-282) (-135))) (-4 *6 (-13 (-784) (-562 (-1084)))) (-4 *7 (-729)) (-5 *2 (-587 (-2 (|:| -3162 (-707)) (|:| |eqns| (-587 (-2 (|:| |det| *8) (|:| |rows| (-587 (-521))) (|:| |cols| (-587 (-521)))))) (|:| |fgb| (-587 *8))))) (-5 *1 (-853 *5 *6 *7 *8)) (-5 *4 (-707)))) (-3932 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-282) (-135))) (-4 *5 (-13 (-784) (-562 (-1084)))) (-4 *6 (-729)) (-4 *7 (-878 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-108)) (|:| |z0| (-587 *7)) (|:| |n0| (-587 *7)))) (-5 *1 (-853 *4 *5 *6 *7)) (-5 *3 (-587 *7)))) (-1775 (*1 *2 *3) (-12 (-5 *3 (-881 *4)) (-4 *4 (-13 (-282) (-135))) (-4 *2 (-878 *4 *6 *5)) (-5 *1 (-853 *4 *5 *6 *2)) (-4 *5 (-13 (-784) (-562 (-1084)))) (-4 *6 (-729)))) (-3507 (*1 *2 *3) (-12 (-5 *3 (-587 (-1084))) (-4 *4 (-13 (-282) (-135))) (-4 *5 (-13 (-784) (-562 (-1084)))) (-4 *6 (-729)) (-5 *2 (-587 (-381 (-881 *4)))) (-5 *1 (-853 *4 *5 *6 *7)) (-4 *7 (-878 *4 *6 *5)))) (-1559 (*1 *2 *3) (-12 (-5 *3 (-587 *7)) (-4 *7 (-878 *4 *6 *5)) (-4 *4 (-13 (-282) (-135))) (-4 *5 (-13 (-784) (-562 (-1084)))) (-4 *6 (-729)) (-5 *2 (-587 (-381 (-881 *4)))) (-5 *1 (-853 *4 *5 *6 *7)))) (-1559 (*1 *2 *3) (-12 (-5 *3 (-627 *7)) (-4 *7 (-878 *4 *6 *5)) (-4 *4 (-13 (-282) (-135))) (-4 *5 (-13 (-784) (-562 (-1084)))) (-4 *6 (-729)) (-5 *2 (-627 (-381 (-881 *4)))) (-5 *1 (-853 *4 *5 *6 *7)))) (-1559 (*1 *2 *3) (-12 (-4 *4 (-13 (-282) (-135))) (-4 *5 (-13 (-784) (-562 (-1084)))) (-4 *6 (-729)) (-5 *2 (-381 (-881 *4))) (-5 *1 (-853 *4 *5 *6 *3)) (-4 *3 (-878 *4 *6 *5)))) (-1362 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-627 *11)) (-5 *4 (-587 (-381 (-881 *8)))) (-5 *5 (-707)) (-5 *6 (-1067)) (-4 *8 (-13 (-282) (-135))) (-4 *11 (-878 *8 *10 *9)) (-4 *9 (-13 (-784) (-562 (-1084)))) (-4 *10 (-729)) (-5 *2 (-2 (|:| |rgl| (-587 (-2 (|:| |eqzro| (-587 *11)) (|:| |neqzro| (-587 *11)) (|:| |wcond| (-587 (-881 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-881 *8)))) (|:| -2470 (-587 (-1165 (-381 (-881 *8)))))))))) (|:| |rgsz| (-521)))) (-5 *1 (-853 *8 *9 *10 *11)) (-5 *7 (-521)))) (-2171 (*1 *2 *3) (-12 (-5 *3 (-1067)) (-4 *4 (-13 (-282) (-135))) (-4 *5 (-13 (-784) (-562 (-1084)))) (-4 *6 (-729)) (-5 *2 (-587 (-2 (|:| |eqzro| (-587 *7)) (|:| |neqzro| (-587 *7)) (|:| |wcond| (-587 (-881 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-881 *4)))) (|:| -2470 (-587 (-1165 (-381 (-881 *4)))))))))) (-5 *1 (-853 *4 *5 *6 *7)) (-4 *7 (-878 *4 *6 *5)))) (-3367 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-2 (|:| |eqzro| (-587 *8)) (|:| |neqzro| (-587 *8)) (|:| |wcond| (-587 (-881 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-881 *5)))) (|:| -2470 (-587 (-1165 (-381 (-881 *5)))))))))) (-5 *4 (-1067)) (-4 *5 (-13 (-282) (-135))) (-4 *8 (-878 *5 *7 *6)) (-4 *6 (-13 (-784) (-562 (-1084)))) (-4 *7 (-729)) (-5 *2 (-521)) (-5 *1 (-853 *5 *6 *7 *8)))) (-1949 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-627 *9)) (-5 *4 (-850)) (-5 *5 (-1067)) (-4 *9 (-878 *6 *8 *7)) (-4 *6 (-13 (-282) (-135))) (-4 *7 (-13 (-784) (-562 (-1084)))) (-4 *8 (-729)) (-5 *2 (-521)) (-5 *1 (-853 *6 *7 *8 *9)))) (-1949 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-627 *10)) (-5 *4 (-587 (-1084))) (-5 *5 (-850)) (-5 *6 (-1067)) (-4 *10 (-878 *7 *9 *8)) (-4 *7 (-13 (-282) (-135))) (-4 *8 (-13 (-784) (-562 (-1084)))) (-4 *9 (-729)) (-5 *2 (-521)) (-5 *1 (-853 *7 *8 *9 *10)))) (-1949 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-627 *10)) (-5 *4 (-587 *10)) (-5 *5 (-850)) (-5 *6 (-1067)) (-4 *10 (-878 *7 *9 *8)) (-4 *7 (-13 (-282) (-135))) (-4 *8 (-13 (-784) (-562 (-1084)))) (-4 *9 (-729)) (-5 *2 (-521)) (-5 *1 (-853 *7 *8 *9 *10)))) (-1949 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *8)) (-5 *4 (-1067)) (-4 *8 (-878 *5 *7 *6)) (-4 *5 (-13 (-282) (-135))) (-4 *6 (-13 (-784) (-562 (-1084)))) (-4 *7 (-729)) (-5 *2 (-521)) (-5 *1 (-853 *5 *6 *7 *8)))) (-1949 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-627 *9)) (-5 *4 (-587 (-1084))) (-5 *5 (-1067)) (-4 *9 (-878 *6 *8 *7)) (-4 *6 (-13 (-282) (-135))) (-4 *7 (-13 (-784) (-562 (-1084)))) (-4 *8 (-729)) (-5 *2 (-521)) (-5 *1 (-853 *6 *7 *8 *9)))) (-1949 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-627 *9)) (-5 *4 (-587 *9)) (-5 *5 (-1067)) (-4 *9 (-878 *6 *8 *7)) (-4 *6 (-13 (-282) (-135))) (-4 *7 (-13 (-784) (-562 (-1084)))) (-4 *8 (-729)) (-5 *2 (-521)) (-5 *1 (-853 *6 *7 *8 *9)))) (-1949 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *8)) (-5 *4 (-850)) (-4 *8 (-878 *5 *7 *6)) (-4 *5 (-13 (-282) (-135))) (-4 *6 (-13 (-784) (-562 (-1084)))) (-4 *7 (-729)) (-5 *2 (-587 (-2 (|:| |eqzro| (-587 *8)) (|:| |neqzro| (-587 *8)) (|:| |wcond| (-587 (-881 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-881 *5)))) (|:| -2470 (-587 (-1165 (-381 (-881 *5)))))))))) (-5 *1 (-853 *5 *6 *7 *8)))) (-1949 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-627 *9)) (-5 *4 (-587 (-1084))) (-5 *5 (-850)) (-4 *9 (-878 *6 *8 *7)) (-4 *6 (-13 (-282) (-135))) (-4 *7 (-13 (-784) (-562 (-1084)))) (-4 *8 (-729)) (-5 *2 (-587 (-2 (|:| |eqzro| (-587 *9)) (|:| |neqzro| (-587 *9)) (|:| |wcond| (-587 (-881 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-881 *6)))) (|:| -2470 (-587 (-1165 (-381 (-881 *6)))))))))) (-5 *1 (-853 *6 *7 *8 *9)))) (-1949 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-627 *9)) (-5 *5 (-850)) (-4 *9 (-878 *6 *8 *7)) (-4 *6 (-13 (-282) (-135))) (-4 *7 (-13 (-784) (-562 (-1084)))) (-4 *8 (-729)) (-5 *2 (-587 (-2 (|:| |eqzro| (-587 *9)) (|:| |neqzro| (-587 *9)) (|:| |wcond| (-587 (-881 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-881 *6)))) (|:| -2470 (-587 (-1165 (-381 (-881 *6)))))))))) (-5 *1 (-853 *6 *7 *8 *9)) (-5 *4 (-587 *9)))) (-1949 (*1 *2 *3) (-12 (-5 *3 (-627 *7)) (-4 *7 (-878 *4 *6 *5)) (-4 *4 (-13 (-282) (-135))) (-4 *5 (-13 (-784) (-562 (-1084)))) (-4 *6 (-729)) (-5 *2 (-587 (-2 (|:| |eqzro| (-587 *7)) (|:| |neqzro| (-587 *7)) (|:| |wcond| (-587 (-881 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-881 *4)))) (|:| -2470 (-587 (-1165 (-381 (-881 *4)))))))))) (-5 *1 (-853 *4 *5 *6 *7)))) (-1949 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *8)) (-5 *4 (-587 (-1084))) (-4 *8 (-878 *5 *7 *6)) (-4 *5 (-13 (-282) (-135))) (-4 *6 (-13 (-784) (-562 (-1084)))) (-4 *7 (-729)) (-5 *2 (-587 (-2 (|:| |eqzro| (-587 *8)) (|:| |neqzro| (-587 *8)) (|:| |wcond| (-587 (-881 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-881 *5)))) (|:| -2470 (-587 (-1165 (-381 (-881 *5)))))))))) (-5 *1 (-853 *5 *6 *7 *8)))) (-1949 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *8)) (-4 *8 (-878 *5 *7 *6)) (-4 *5 (-13 (-282) (-135))) (-4 *6 (-13 (-784) (-562 (-1084)))) (-4 *7 (-729)) (-5 *2 (-587 (-2 (|:| |eqzro| (-587 *8)) (|:| |neqzro| (-587 *8)) (|:| |wcond| (-587 (-881 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-881 *5)))) (|:| -2470 (-587 (-1165 (-381 (-881 *5)))))))))) (-5 *1 (-853 *5 *6 *7 *8)) (-5 *4 (-587 *8)))))
+(-10 -7 (-15 -1949 ((-587 (-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-881 |#1|)))) (|:| -2470 (-587 (-1165 (-381 (-881 |#1|))))))))) (-627 |#4|) (-587 |#4|))) (-15 -1949 ((-587 (-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-881 |#1|)))) (|:| -2470 (-587 (-1165 (-381 (-881 |#1|))))))))) (-627 |#4|) (-587 (-1084)))) (-15 -1949 ((-587 (-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-881 |#1|)))) (|:| -2470 (-587 (-1165 (-381 (-881 |#1|))))))))) (-627 |#4|))) (-15 -1949 ((-587 (-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-881 |#1|)))) (|:| -2470 (-587 (-1165 (-381 (-881 |#1|))))))))) (-627 |#4|) (-587 |#4|) (-850))) (-15 -1949 ((-587 (-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-881 |#1|)))) (|:| -2470 (-587 (-1165 (-381 (-881 |#1|))))))))) (-627 |#4|) (-587 (-1084)) (-850))) (-15 -1949 ((-587 (-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-881 |#1|)))) (|:| -2470 (-587 (-1165 (-381 (-881 |#1|))))))))) (-627 |#4|) (-850))) (-15 -1949 ((-521) (-627 |#4|) (-587 |#4|) (-1067))) (-15 -1949 ((-521) (-627 |#4|) (-587 (-1084)) (-1067))) (-15 -1949 ((-521) (-627 |#4|) (-1067))) (-15 -1949 ((-521) (-627 |#4|) (-587 |#4|) (-850) (-1067))) (-15 -1949 ((-521) (-627 |#4|) (-587 (-1084)) (-850) (-1067))) (-15 -1949 ((-521) (-627 |#4|) (-850) (-1067))) (-15 -3367 ((-521) (-587 (-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-881 |#1|)))) (|:| -2470 (-587 (-1165 (-381 (-881 |#1|))))))))) (-1067))) (-15 -2171 ((-587 (-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-881 |#1|)))) (|:| -2470 (-587 (-1165 (-381 (-881 |#1|))))))))) (-1067))) (-15 -1362 ((-2 (|:| |rgl| (-587 (-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-881 |#1|)))) (|:| -2470 (-587 (-1165 (-381 (-881 |#1|)))))))))) (|:| |rgsz| (-521))) (-627 |#4|) (-587 (-381 (-881 |#1|))) (-707) (-1067) (-521))) (-15 -1559 ((-381 (-881 |#1|)) |#4|)) (-15 -1559 ((-627 (-381 (-881 |#1|))) (-627 |#4|))) (-15 -1559 ((-587 (-381 (-881 |#1|))) (-587 |#4|))) (-15 -3507 ((-587 (-381 (-881 |#1|))) (-587 (-1084)))) (-15 -1775 (|#4| (-881 |#1|))) (-15 -3932 ((-2 (|:| |sysok| (-108)) (|:| |z0| (-587 |#4|)) (|:| |n0| (-587 |#4|))) (-587 |#4|) (-587 |#4|))) (-15 -3670 ((-587 (-2 (|:| -3162 (-707)) (|:| |eqns| (-587 (-2 (|:| |det| |#4|) (|:| |rows| (-587 (-521))) (|:| |cols| (-587 (-521)))))) (|:| |fgb| (-587 |#4|)))) (-627 |#4|) (-707))) (-15 -4023 ((-2 (|:| |partsol| (-1165 (-381 (-881 |#1|)))) (|:| -2470 (-587 (-1165 (-381 (-881 |#1|)))))) (-2 (|:| |partsol| (-1165 (-381 (-881 |#1|)))) (|:| -2470 (-587 (-1165 (-381 (-881 |#1|)))))) (-587 |#4|))) (-15 -2209 ((-2 (|:| |partsol| (-1165 (-381 (-881 |#1|)))) (|:| -2470 (-587 (-1165 (-381 (-881 |#1|)))))) (-2 (|:| -1201 (-627 (-381 (-881 |#1|)))) (|:| |vec| (-587 (-381 (-881 |#1|)))) (|:| -3162 (-707)) (|:| |rows| (-587 (-521))) (|:| |cols| (-587 (-521)))))) (-15 -3219 ((-587 |#4|) |#4|)) (-15 -1920 ((-707) (-587 (-2 (|:| -3162 (-707)) (|:| |eqns| (-587 (-2 (|:| |det| |#4|) (|:| |rows| (-587 (-521))) (|:| |cols| (-587 (-521)))))) (|:| |fgb| (-587 |#4|)))))) (-15 -3806 ((-707) (-587 (-2 (|:| -3162 (-707)) (|:| |eqns| (-587 (-2 (|:| |det| |#4|) (|:| |rows| (-587 (-521))) (|:| |cols| (-587 (-521)))))) (|:| |fgb| (-587 |#4|)))))) (-15 -1754 ((-587 (-587 |#4|)) (-587 (-587 |#4|)))) (-15 -2836 ((-587 (-587 (-521))) (-521) (-521))) (-15 -2153 ((-108) (-587 |#4|) (-587 (-587 |#4|)))) (-15 -1722 ((-587 (-2 (|:| |det| |#4|) (|:| |rows| (-587 (-521))) (|:| |cols| (-587 (-521))))) (-627 |#4|) (-707))) (-15 -3826 ((-627 |#4|) (-627 |#4|) (-587 |#4|))) (-15 -2361 ((-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-881 |#1|)))) (|:| -2470 (-587 (-1165 (-381 (-881 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-587 (-521))) (|:| |cols| (-587 (-521)))) (-627 |#4|) (-587 (-381 (-881 |#1|))) (-587 (-587 |#4|)) (-707) (-707) (-521))) (-15 -2408 (|#4| |#4|)) (-15 -2291 ((-108) (-587 |#4|))) (-15 -2291 ((-108) (-587 (-881 |#1|)))))
+((-1618 (((-856) |#1| (-1084)) 16) (((-856) |#1| (-1084) (-1008 (-202))) 20)) (-2765 (((-856) |#1| |#1| (-1084) (-1008 (-202))) 18) (((-856) |#1| (-1084) (-1008 (-202))) 14)))
+(((-854 |#1|) (-10 -7 (-15 -2765 ((-856) |#1| (-1084) (-1008 (-202)))) (-15 -2765 ((-856) |#1| |#1| (-1084) (-1008 (-202)))) (-15 -1618 ((-856) |#1| (-1084) (-1008 (-202)))) (-15 -1618 ((-856) |#1| (-1084)))) (-562 (-497))) (T -854))
+((-1618 (*1 *2 *3 *4) (-12 (-5 *4 (-1084)) (-5 *2 (-856)) (-5 *1 (-854 *3)) (-4 *3 (-562 (-497))))) (-1618 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1084)) (-5 *5 (-1008 (-202))) (-5 *2 (-856)) (-5 *1 (-854 *3)) (-4 *3 (-562 (-497))))) (-2765 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1084)) (-5 *5 (-1008 (-202))) (-5 *2 (-856)) (-5 *1 (-854 *3)) (-4 *3 (-562 (-497))))) (-2765 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1084)) (-5 *5 (-1008 (-202))) (-5 *2 (-856)) (-5 *1 (-854 *3)) (-4 *3 (-562 (-497))))))
+(-10 -7 (-15 -2765 ((-856) |#1| (-1084) (-1008 (-202)))) (-15 -2765 ((-856) |#1| |#1| (-1084) (-1008 (-202)))) (-15 -1618 ((-856) |#1| (-1084) (-1008 (-202)))) (-15 -1618 ((-856) |#1| (-1084))))
+((-3114 (($ $ (-1008 (-202)) (-1008 (-202)) (-1008 (-202))) 69)) (-3816 (((-1008 (-202)) $) 40)) (-3803 (((-1008 (-202)) $) 39)) (-3789 (((-1008 (-202)) $) 38)) (-1316 (((-587 (-587 (-202))) $) 43)) (-3097 (((-1008 (-202)) $) 41)) (-2241 (((-521) (-521)) 32)) (-4140 (((-521) (-521)) 28)) (-1392 (((-521) (-521)) 30)) (-1690 (((-108) (-108)) 35)) (-3224 (((-521)) 31)) (-3161 (($ $ (-1008 (-202))) 72) (($ $) 73)) (-1735 (($ (-1 (-872 (-202)) (-202)) (-1008 (-202))) 77) (($ (-1 (-872 (-202)) (-202)) (-1008 (-202)) (-1008 (-202)) (-1008 (-202)) (-1008 (-202))) 78)) (-2765 (($ (-1 (-202) (-202)) (-1 (-202) (-202)) (-1 (-202) (-202)) (-1 (-202) (-202)) (-1008 (-202))) 80) (($ (-1 (-202) (-202)) (-1 (-202) (-202)) (-1 (-202) (-202)) (-1 (-202) (-202)) (-1008 (-202)) (-1008 (-202)) (-1008 (-202)) (-1008 (-202))) 81) (($ $ (-1008 (-202))) 75)) (-1693 (((-521)) 36)) (-2095 (((-521)) 27)) (-2011 (((-521)) 29)) (-2742 (((-587 (-587 (-872 (-202)))) $) 93)) (-2054 (((-108) (-108)) 37)) (-2189 (((-792) $) 92)) (-2395 (((-108)) 34)))
+(((-855) (-13 (-900) (-10 -8 (-15 -1735 ($ (-1 (-872 (-202)) (-202)) (-1008 (-202)))) (-15 -1735 ($ (-1 (-872 (-202)) (-202)) (-1008 (-202)) (-1008 (-202)) (-1008 (-202)) (-1008 (-202)))) (-15 -2765 ($ (-1 (-202) (-202)) (-1 (-202) (-202)) (-1 (-202) (-202)) (-1 (-202) (-202)) (-1008 (-202)))) (-15 -2765 ($ (-1 (-202) (-202)) (-1 (-202) (-202)) (-1 (-202) (-202)) (-1 (-202) (-202)) (-1008 (-202)) (-1008 (-202)) (-1008 (-202)) (-1008 (-202)))) (-15 -2765 ($ $ (-1008 (-202)))) (-15 -3114 ($ $ (-1008 (-202)) (-1008 (-202)) (-1008 (-202)))) (-15 -3161 ($ $ (-1008 (-202)))) (-15 -3161 ($ $)) (-15 -3097 ((-1008 (-202)) $)) (-15 -1316 ((-587 (-587 (-202))) $)) (-15 -2095 ((-521))) (-15 -4140 ((-521) (-521))) (-15 -2011 ((-521))) (-15 -1392 ((-521) (-521))) (-15 -3224 ((-521))) (-15 -2241 ((-521) (-521))) (-15 -2395 ((-108))) (-15 -1690 ((-108) (-108))) (-15 -1693 ((-521))) (-15 -2054 ((-108) (-108)))))) (T -855))
+((-1735 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-872 (-202)) (-202))) (-5 *3 (-1008 (-202))) (-5 *1 (-855)))) (-1735 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-872 (-202)) (-202))) (-5 *3 (-1008 (-202))) (-5 *1 (-855)))) (-2765 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-202) (-202))) (-5 *3 (-1008 (-202))) (-5 *1 (-855)))) (-2765 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-202) (-202))) (-5 *3 (-1008 (-202))) (-5 *1 (-855)))) (-2765 (*1 *1 *1 *2) (-12 (-5 *2 (-1008 (-202))) (-5 *1 (-855)))) (-3114 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1008 (-202))) (-5 *1 (-855)))) (-3161 (*1 *1 *1 *2) (-12 (-5 *2 (-1008 (-202))) (-5 *1 (-855)))) (-3161 (*1 *1 *1) (-5 *1 (-855))) (-3097 (*1 *2 *1) (-12 (-5 *2 (-1008 (-202))) (-5 *1 (-855)))) (-1316 (*1 *2 *1) (-12 (-5 *2 (-587 (-587 (-202)))) (-5 *1 (-855)))) (-2095 (*1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-855)))) (-4140 (*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-855)))) (-2011 (*1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-855)))) (-1392 (*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-855)))) (-3224 (*1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-855)))) (-2241 (*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-855)))) (-2395 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-855)))) (-1690 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-855)))) (-1693 (*1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-855)))) (-2054 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-855)))))
+(-13 (-900) (-10 -8 (-15 -1735 ($ (-1 (-872 (-202)) (-202)) (-1008 (-202)))) (-15 -1735 ($ (-1 (-872 (-202)) (-202)) (-1008 (-202)) (-1008 (-202)) (-1008 (-202)) (-1008 (-202)))) (-15 -2765 ($ (-1 (-202) (-202)) (-1 (-202) (-202)) (-1 (-202) (-202)) (-1 (-202) (-202)) (-1008 (-202)))) (-15 -2765 ($ (-1 (-202) (-202)) (-1 (-202) (-202)) (-1 (-202) (-202)) (-1 (-202) (-202)) (-1008 (-202)) (-1008 (-202)) (-1008 (-202)) (-1008 (-202)))) (-15 -2765 ($ $ (-1008 (-202)))) (-15 -3114 ($ $ (-1008 (-202)) (-1008 (-202)) (-1008 (-202)))) (-15 -3161 ($ $ (-1008 (-202)))) (-15 -3161 ($ $)) (-15 -3097 ((-1008 (-202)) $)) (-15 -1316 ((-587 (-587 (-202))) $)) (-15 -2095 ((-521))) (-15 -4140 ((-521) (-521))) (-15 -2011 ((-521))) (-15 -1392 ((-521) (-521))) (-15 -3224 ((-521))) (-15 -2241 ((-521) (-521))) (-15 -2395 ((-108))) (-15 -1690 ((-108) (-108))) (-15 -1693 ((-521))) (-15 -2054 ((-108) (-108)))))
+((-3114 (($ $ (-1008 (-202))) 70) (($ $ (-1008 (-202)) (-1008 (-202))) 71)) (-3803 (((-1008 (-202)) $) 43)) (-3789 (((-1008 (-202)) $) 42)) (-3097 (((-1008 (-202)) $) 44)) (-3612 (((-521) (-521)) 36)) (-3891 (((-521) (-521)) 32)) (-3034 (((-521) (-521)) 34)) (-2074 (((-108) (-108)) 38)) (-2793 (((-521)) 35)) (-3161 (($ $ (-1008 (-202))) 74) (($ $) 75)) (-1735 (($ (-1 (-872 (-202)) (-202)) (-1008 (-202))) 84) (($ (-1 (-872 (-202)) (-202)) (-1008 (-202)) (-1008 (-202)) (-1008 (-202))) 85)) (-1618 (($ (-1 (-202) (-202)) (-1008 (-202))) 92) (($ (-1 (-202) (-202))) 95)) (-2765 (($ (-1 (-202) (-202)) (-1008 (-202))) 79) (($ (-1 (-202) (-202)) (-1008 (-202)) (-1008 (-202))) 80) (($ (-587 (-1 (-202) (-202))) (-1008 (-202))) 87) (($ (-587 (-1 (-202) (-202))) (-1008 (-202)) (-1008 (-202))) 88) (($ (-1 (-202) (-202)) (-1 (-202) (-202)) (-1008 (-202))) 81) (($ (-1 (-202) (-202)) (-1 (-202) (-202)) (-1008 (-202)) (-1008 (-202)) (-1008 (-202))) 82) (($ $ (-1008 (-202))) 76)) (-2541 (((-108) $) 39)) (-3672 (((-521)) 40)) (-3801 (((-521)) 31)) (-2731 (((-521)) 33)) (-2742 (((-587 (-587 (-872 (-202)))) $) 22)) (-3008 (((-108) (-108)) 41)) (-2189 (((-792) $) 106)) (-2824 (((-108)) 37)))
+(((-856) (-13 (-883) (-10 -8 (-15 -2765 ($ (-1 (-202) (-202)) (-1008 (-202)))) (-15 -2765 ($ (-1 (-202) (-202)) (-1008 (-202)) (-1008 (-202)))) (-15 -2765 ($ (-587 (-1 (-202) (-202))) (-1008 (-202)))) (-15 -2765 ($ (-587 (-1 (-202) (-202))) (-1008 (-202)) (-1008 (-202)))) (-15 -2765 ($ (-1 (-202) (-202)) (-1 (-202) (-202)) (-1008 (-202)))) (-15 -2765 ($ (-1 (-202) (-202)) (-1 (-202) (-202)) (-1008 (-202)) (-1008 (-202)) (-1008 (-202)))) (-15 -1735 ($ (-1 (-872 (-202)) (-202)) (-1008 (-202)))) (-15 -1735 ($ (-1 (-872 (-202)) (-202)) (-1008 (-202)) (-1008 (-202)) (-1008 (-202)))) (-15 -1618 ($ (-1 (-202) (-202)) (-1008 (-202)))) (-15 -1618 ($ (-1 (-202) (-202)))) (-15 -2765 ($ $ (-1008 (-202)))) (-15 -2541 ((-108) $)) (-15 -3114 ($ $ (-1008 (-202)))) (-15 -3114 ($ $ (-1008 (-202)) (-1008 (-202)))) (-15 -3161 ($ $ (-1008 (-202)))) (-15 -3161 ($ $)) (-15 -3097 ((-1008 (-202)) $)) (-15 -3801 ((-521))) (-15 -3891 ((-521) (-521))) (-15 -2731 ((-521))) (-15 -3034 ((-521) (-521))) (-15 -2793 ((-521))) (-15 -3612 ((-521) (-521))) (-15 -2824 ((-108))) (-15 -2074 ((-108) (-108))) (-15 -3672 ((-521))) (-15 -3008 ((-108) (-108)))))) (T -856))
+((-2765 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-202) (-202))) (-5 *3 (-1008 (-202))) (-5 *1 (-856)))) (-2765 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-202) (-202))) (-5 *3 (-1008 (-202))) (-5 *1 (-856)))) (-2765 (*1 *1 *2 *3) (-12 (-5 *2 (-587 (-1 (-202) (-202)))) (-5 *3 (-1008 (-202))) (-5 *1 (-856)))) (-2765 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-587 (-1 (-202) (-202)))) (-5 *3 (-1008 (-202))) (-5 *1 (-856)))) (-2765 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-202) (-202))) (-5 *3 (-1008 (-202))) (-5 *1 (-856)))) (-2765 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-202) (-202))) (-5 *3 (-1008 (-202))) (-5 *1 (-856)))) (-1735 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-872 (-202)) (-202))) (-5 *3 (-1008 (-202))) (-5 *1 (-856)))) (-1735 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-872 (-202)) (-202))) (-5 *3 (-1008 (-202))) (-5 *1 (-856)))) (-1618 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-202) (-202))) (-5 *3 (-1008 (-202))) (-5 *1 (-856)))) (-1618 (*1 *1 *2) (-12 (-5 *2 (-1 (-202) (-202))) (-5 *1 (-856)))) (-2765 (*1 *1 *1 *2) (-12 (-5 *2 (-1008 (-202))) (-5 *1 (-856)))) (-2541 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-856)))) (-3114 (*1 *1 *1 *2) (-12 (-5 *2 (-1008 (-202))) (-5 *1 (-856)))) (-3114 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1008 (-202))) (-5 *1 (-856)))) (-3161 (*1 *1 *1 *2) (-12 (-5 *2 (-1008 (-202))) (-5 *1 (-856)))) (-3161 (*1 *1 *1) (-5 *1 (-856))) (-3097 (*1 *2 *1) (-12 (-5 *2 (-1008 (-202))) (-5 *1 (-856)))) (-3801 (*1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-856)))) (-3891 (*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-856)))) (-2731 (*1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-856)))) (-3034 (*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-856)))) (-2793 (*1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-856)))) (-3612 (*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-856)))) (-2824 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-856)))) (-2074 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-856)))) (-3672 (*1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-856)))) (-3008 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-856)))))
+(-13 (-883) (-10 -8 (-15 -2765 ($ (-1 (-202) (-202)) (-1008 (-202)))) (-15 -2765 ($ (-1 (-202) (-202)) (-1008 (-202)) (-1008 (-202)))) (-15 -2765 ($ (-587 (-1 (-202) (-202))) (-1008 (-202)))) (-15 -2765 ($ (-587 (-1 (-202) (-202))) (-1008 (-202)) (-1008 (-202)))) (-15 -2765 ($ (-1 (-202) (-202)) (-1 (-202) (-202)) (-1008 (-202)))) (-15 -2765 ($ (-1 (-202) (-202)) (-1 (-202) (-202)) (-1008 (-202)) (-1008 (-202)) (-1008 (-202)))) (-15 -1735 ($ (-1 (-872 (-202)) (-202)) (-1008 (-202)))) (-15 -1735 ($ (-1 (-872 (-202)) (-202)) (-1008 (-202)) (-1008 (-202)) (-1008 (-202)))) (-15 -1618 ($ (-1 (-202) (-202)) (-1008 (-202)))) (-15 -1618 ($ (-1 (-202) (-202)))) (-15 -2765 ($ $ (-1008 (-202)))) (-15 -2541 ((-108) $)) (-15 -3114 ($ $ (-1008 (-202)))) (-15 -3114 ($ $ (-1008 (-202)) (-1008 (-202)))) (-15 -3161 ($ $ (-1008 (-202)))) (-15 -3161 ($ $)) (-15 -3097 ((-1008 (-202)) $)) (-15 -3801 ((-521))) (-15 -3891 ((-521) (-521))) (-15 -2731 ((-521))) (-15 -3034 ((-521) (-521))) (-15 -2793 ((-521))) (-15 -3612 ((-521) (-521))) (-15 -2824 ((-108))) (-15 -2074 ((-108) (-108))) (-15 -3672 ((-521))) (-15 -3008 ((-108) (-108)))))
+((-3848 (((-587 (-1008 (-202))) (-587 (-587 (-872 (-202))))) 23)))
+(((-857) (-10 -7 (-15 -3848 ((-587 (-1008 (-202))) (-587 (-587 (-872 (-202)))))))) (T -857))
+((-3848 (*1 *2 *3) (-12 (-5 *3 (-587 (-587 (-872 (-202))))) (-5 *2 (-587 (-1008 (-202)))) (-5 *1 (-857)))))
+(-10 -7 (-15 -3848 ((-587 (-1008 (-202))) (-587 (-587 (-872 (-202)))))))
+((-2698 ((|#2| |#2|) 25)) (-1793 ((|#2| |#2|) 26)) (-2676 ((|#2| |#2|) 24)) (-2979 ((|#2| |#2| (-1067)) 23)))
+(((-858 |#1| |#2|) (-10 -7 (-15 -2979 (|#2| |#2| (-1067))) (-15 -2676 (|#2| |#2|)) (-15 -2698 (|#2| |#2|)) (-15 -1793 (|#2| |#2|))) (-784) (-404 |#1|)) (T -858))
+((-1793 (*1 *2 *2) (-12 (-4 *3 (-784)) (-5 *1 (-858 *3 *2)) (-4 *2 (-404 *3)))) (-2698 (*1 *2 *2) (-12 (-4 *3 (-784)) (-5 *1 (-858 *3 *2)) (-4 *2 (-404 *3)))) (-2676 (*1 *2 *2) (-12 (-4 *3 (-784)) (-5 *1 (-858 *3 *2)) (-4 *2 (-404 *3)))) (-2979 (*1 *2 *2 *3) (-12 (-5 *3 (-1067)) (-4 *4 (-784)) (-5 *1 (-858 *4 *2)) (-4 *2 (-404 *4)))))
+(-10 -7 (-15 -2979 (|#2| |#2| (-1067))) (-15 -2676 (|#2| |#2|)) (-15 -2698 (|#2| |#2|)) (-15 -1793 (|#2| |#2|)))
+((-2698 (((-290 (-521)) (-1084)) 15)) (-1793 (((-290 (-521)) (-1084)) 13)) (-2676 (((-290 (-521)) (-1084)) 11)) (-2979 (((-290 (-521)) (-1084) (-1067)) 18)))
+(((-859) (-10 -7 (-15 -2979 ((-290 (-521)) (-1084) (-1067))) (-15 -2676 ((-290 (-521)) (-1084))) (-15 -2698 ((-290 (-521)) (-1084))) (-15 -1793 ((-290 (-521)) (-1084))))) (T -859))
+((-1793 (*1 *2 *3) (-12 (-5 *3 (-1084)) (-5 *2 (-290 (-521))) (-5 *1 (-859)))) (-2698 (*1 *2 *3) (-12 (-5 *3 (-1084)) (-5 *2 (-290 (-521))) (-5 *1 (-859)))) (-2676 (*1 *2 *3) (-12 (-5 *3 (-1084)) (-5 *2 (-290 (-521))) (-5 *1 (-859)))) (-2979 (*1 *2 *3 *4) (-12 (-5 *3 (-1084)) (-5 *4 (-1067)) (-5 *2 (-290 (-521))) (-5 *1 (-859)))))
+(-10 -7 (-15 -2979 ((-290 (-521)) (-1084) (-1067))) (-15 -2676 ((-290 (-521)) (-1084))) (-15 -2698 ((-290 (-521)) (-1084))) (-15 -1793 ((-290 (-521)) (-1084))))
+((-3427 (((-818 |#1| |#3|) |#2| (-821 |#1|) (-818 |#1| |#3|)) 24)) (-2599 (((-1 (-108) |#2|) (-1 (-108) |#3|)) 12)))
+(((-860 |#1| |#2| |#3|) (-10 -7 (-15 -2599 ((-1 (-108) |#2|) (-1 (-108) |#3|))) (-15 -3427 ((-818 |#1| |#3|) |#2| (-821 |#1|) (-818 |#1| |#3|)))) (-1013) (-815 |#1|) (-13 (-1013) (-961 |#2|))) (T -860))
+((-3427 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-818 *5 *6)) (-5 *4 (-821 *5)) (-4 *5 (-1013)) (-4 *6 (-13 (-1013) (-961 *3))) (-4 *3 (-815 *5)) (-5 *1 (-860 *5 *3 *6)))) (-2599 (*1 *2 *3) (-12 (-5 *3 (-1 (-108) *6)) (-4 *6 (-13 (-1013) (-961 *5))) (-4 *5 (-815 *4)) (-4 *4 (-1013)) (-5 *2 (-1 (-108) *5)) (-5 *1 (-860 *4 *5 *6)))))
+(-10 -7 (-15 -2599 ((-1 (-108) |#2|) (-1 (-108) |#3|))) (-15 -3427 ((-818 |#1| |#3|) |#2| (-821 |#1|) (-818 |#1| |#3|))))
+((-3427 (((-818 |#1| |#3|) |#3| (-821 |#1|) (-818 |#1| |#3|)) 29)))
+(((-861 |#1| |#2| |#3|) (-10 -7 (-15 -3427 ((-818 |#1| |#3|) |#3| (-821 |#1|) (-818 |#1| |#3|)))) (-1013) (-13 (-513) (-784) (-815 |#1|)) (-13 (-404 |#2|) (-562 (-821 |#1|)) (-815 |#1|) (-961 (-560 $)))) (T -861))
+((-3427 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-818 *5 *3)) (-4 *5 (-1013)) (-4 *3 (-13 (-404 *6) (-562 *4) (-815 *5) (-961 (-560 $)))) (-5 *4 (-821 *5)) (-4 *6 (-13 (-513) (-784) (-815 *5))) (-5 *1 (-861 *5 *6 *3)))))
+(-10 -7 (-15 -3427 ((-818 |#1| |#3|) |#3| (-821 |#1|) (-818 |#1| |#3|))))
+((-3427 (((-818 (-521) |#1|) |#1| (-821 (-521)) (-818 (-521) |#1|)) 12)))
+(((-862 |#1|) (-10 -7 (-15 -3427 ((-818 (-521) |#1|) |#1| (-821 (-521)) (-818 (-521) |#1|)))) (-506)) (T -862))
+((-3427 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-818 (-521) *3)) (-5 *4 (-821 (-521))) (-4 *3 (-506)) (-5 *1 (-862 *3)))))
+(-10 -7 (-15 -3427 ((-818 (-521) |#1|) |#1| (-821 (-521)) (-818 (-521) |#1|))))
+((-3427 (((-818 |#1| |#2|) (-560 |#2|) (-821 |#1|) (-818 |#1| |#2|)) 52)))
+(((-863 |#1| |#2|) (-10 -7 (-15 -3427 ((-818 |#1| |#2|) (-560 |#2|) (-821 |#1|) (-818 |#1| |#2|)))) (-1013) (-13 (-784) (-961 (-560 $)) (-562 (-821 |#1|)) (-815 |#1|))) (T -863))
+((-3427 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-818 *5 *6)) (-5 *3 (-560 *6)) (-4 *5 (-1013)) (-4 *6 (-13 (-784) (-961 (-560 $)) (-562 *4) (-815 *5))) (-5 *4 (-821 *5)) (-5 *1 (-863 *5 *6)))))
+(-10 -7 (-15 -3427 ((-818 |#1| |#2|) (-560 |#2|) (-821 |#1|) (-818 |#1| |#2|))))
+((-3427 (((-814 |#1| |#2| |#3|) |#3| (-821 |#1|) (-814 |#1| |#2| |#3|)) 14)))
+(((-864 |#1| |#2| |#3|) (-10 -7 (-15 -3427 ((-814 |#1| |#2| |#3|) |#3| (-821 |#1|) (-814 |#1| |#2| |#3|)))) (-1013) (-815 |#1|) (-607 |#2|)) (T -864))
+((-3427 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-814 *5 *6 *3)) (-5 *4 (-821 *5)) (-4 *5 (-1013)) (-4 *6 (-815 *5)) (-4 *3 (-607 *6)) (-5 *1 (-864 *5 *6 *3)))))
+(-10 -7 (-15 -3427 ((-814 |#1| |#2| |#3|) |#3| (-821 |#1|) (-814 |#1| |#2| |#3|))))
+((-3427 (((-818 |#1| |#5|) |#5| (-821 |#1|) (-818 |#1| |#5|)) 17 (|has| |#3| (-815 |#1|))) (((-818 |#1| |#5|) |#5| (-821 |#1|) (-818 |#1| |#5|) (-1 (-818 |#1| |#5|) |#3| (-821 |#1|) (-818 |#1| |#5|))) 16)))
+(((-865 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3427 ((-818 |#1| |#5|) |#5| (-821 |#1|) (-818 |#1| |#5|) (-1 (-818 |#1| |#5|) |#3| (-821 |#1|) (-818 |#1| |#5|)))) (IF (|has| |#3| (-815 |#1|)) (-15 -3427 ((-818 |#1| |#5|) |#5| (-821 |#1|) (-818 |#1| |#5|))) |%noBranch|)) (-1013) (-729) (-784) (-13 (-970) (-784) (-815 |#1|)) (-13 (-878 |#4| |#2| |#3|) (-562 (-821 |#1|)))) (T -865))
+((-3427 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-818 *5 *3)) (-4 *5 (-1013)) (-4 *3 (-13 (-878 *8 *6 *7) (-562 *4))) (-5 *4 (-821 *5)) (-4 *7 (-815 *5)) (-4 *6 (-729)) (-4 *7 (-784)) (-4 *8 (-13 (-970) (-784) (-815 *5))) (-5 *1 (-865 *5 *6 *7 *8 *3)))) (-3427 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-818 *6 *3) *8 (-821 *6) (-818 *6 *3))) (-4 *8 (-784)) (-5 *2 (-818 *6 *3)) (-5 *4 (-821 *6)) (-4 *6 (-1013)) (-4 *3 (-13 (-878 *9 *7 *8) (-562 *4))) (-4 *7 (-729)) (-4 *9 (-13 (-970) (-784) (-815 *6))) (-5 *1 (-865 *6 *7 *8 *9 *3)))))
+(-10 -7 (-15 -3427 ((-818 |#1| |#5|) |#5| (-821 |#1|) (-818 |#1| |#5|) (-1 (-818 |#1| |#5|) |#3| (-821 |#1|) (-818 |#1| |#5|)))) (IF (|has| |#3| (-815 |#1|)) (-15 -3427 ((-818 |#1| |#5|) |#5| (-821 |#1|) (-818 |#1| |#5|))) |%noBranch|))
+((-1870 ((|#2| |#2| (-587 (-1 (-108) |#3|))) 11) ((|#2| |#2| (-1 (-108) |#3|)) 12)))
+(((-866 |#1| |#2| |#3|) (-10 -7 (-15 -1870 (|#2| |#2| (-1 (-108) |#3|))) (-15 -1870 (|#2| |#2| (-587 (-1 (-108) |#3|))))) (-784) (-404 |#1|) (-1119)) (T -866))
+((-1870 (*1 *2 *2 *3) (-12 (-5 *3 (-587 (-1 (-108) *5))) (-4 *5 (-1119)) (-4 *4 (-784)) (-5 *1 (-866 *4 *2 *5)) (-4 *2 (-404 *4)))) (-1870 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-108) *5)) (-4 *5 (-1119)) (-4 *4 (-784)) (-5 *1 (-866 *4 *2 *5)) (-4 *2 (-404 *4)))))
+(-10 -7 (-15 -1870 (|#2| |#2| (-1 (-108) |#3|))) (-15 -1870 (|#2| |#2| (-587 (-1 (-108) |#3|)))))
+((-1870 (((-290 (-521)) (-1084) (-587 (-1 (-108) |#1|))) 16) (((-290 (-521)) (-1084) (-1 (-108) |#1|)) 13)))
+(((-867 |#1|) (-10 -7 (-15 -1870 ((-290 (-521)) (-1084) (-1 (-108) |#1|))) (-15 -1870 ((-290 (-521)) (-1084) (-587 (-1 (-108) |#1|))))) (-1119)) (T -867))
+((-1870 (*1 *2 *3 *4) (-12 (-5 *3 (-1084)) (-5 *4 (-587 (-1 (-108) *5))) (-4 *5 (-1119)) (-5 *2 (-290 (-521))) (-5 *1 (-867 *5)))) (-1870 (*1 *2 *3 *4) (-12 (-5 *3 (-1084)) (-5 *4 (-1 (-108) *5)) (-4 *5 (-1119)) (-5 *2 (-290 (-521))) (-5 *1 (-867 *5)))))
+(-10 -7 (-15 -1870 ((-290 (-521)) (-1084) (-1 (-108) |#1|))) (-15 -1870 ((-290 (-521)) (-1084) (-587 (-1 (-108) |#1|)))))
+((-3427 (((-818 |#1| |#3|) |#3| (-821 |#1|) (-818 |#1| |#3|)) 25)))
+(((-868 |#1| |#2| |#3|) (-10 -7 (-15 -3427 ((-818 |#1| |#3|) |#3| (-821 |#1|) (-818 |#1| |#3|)))) (-1013) (-13 (-513) (-815 |#1|) (-562 (-821 |#1|))) (-918 |#2|)) (T -868))
+((-3427 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-818 *5 *3)) (-4 *5 (-1013)) (-4 *3 (-918 *6)) (-4 *6 (-13 (-513) (-815 *5) (-562 *4))) (-5 *4 (-821 *5)) (-5 *1 (-868 *5 *6 *3)))))
+(-10 -7 (-15 -3427 ((-818 |#1| |#3|) |#3| (-821 |#1|) (-818 |#1| |#3|))))
+((-3427 (((-818 |#1| (-1084)) (-1084) (-821 |#1|) (-818 |#1| (-1084))) 17)))
+(((-869 |#1|) (-10 -7 (-15 -3427 ((-818 |#1| (-1084)) (-1084) (-821 |#1|) (-818 |#1| (-1084))))) (-1013)) (T -869))
+((-3427 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-818 *5 (-1084))) (-5 *3 (-1084)) (-5 *4 (-821 *5)) (-4 *5 (-1013)) (-5 *1 (-869 *5)))))
+(-10 -7 (-15 -3427 ((-818 |#1| (-1084)) (-1084) (-821 |#1|) (-818 |#1| (-1084)))))
+((-3401 (((-818 |#1| |#3|) (-587 |#3|) (-587 (-821 |#1|)) (-818 |#1| |#3|) (-1 (-818 |#1| |#3|) |#3| (-821 |#1|) (-818 |#1| |#3|))) 33)) (-3427 (((-818 |#1| |#3|) (-587 |#3|) (-587 (-821 |#1|)) (-1 |#3| (-587 |#3|)) (-818 |#1| |#3|) (-1 (-818 |#1| |#3|) |#3| (-821 |#1|) (-818 |#1| |#3|))) 32)))
+(((-870 |#1| |#2| |#3|) (-10 -7 (-15 -3427 ((-818 |#1| |#3|) (-587 |#3|) (-587 (-821 |#1|)) (-1 |#3| (-587 |#3|)) (-818 |#1| |#3|) (-1 (-818 |#1| |#3|) |#3| (-821 |#1|) (-818 |#1| |#3|)))) (-15 -3401 ((-818 |#1| |#3|) (-587 |#3|) (-587 (-821 |#1|)) (-818 |#1| |#3|) (-1 (-818 |#1| |#3|) |#3| (-821 |#1|) (-818 |#1| |#3|))))) (-1013) (-13 (-970) (-784)) (-13 (-970) (-562 (-821 |#1|)) (-961 |#2|))) (T -870))
+((-3401 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-587 *8)) (-5 *4 (-587 (-821 *6))) (-5 *5 (-1 (-818 *6 *8) *8 (-821 *6) (-818 *6 *8))) (-4 *6 (-1013)) (-4 *8 (-13 (-970) (-562 (-821 *6)) (-961 *7))) (-5 *2 (-818 *6 *8)) (-4 *7 (-13 (-970) (-784))) (-5 *1 (-870 *6 *7 *8)))) (-3427 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-587 (-821 *7))) (-5 *5 (-1 *9 (-587 *9))) (-5 *6 (-1 (-818 *7 *9) *9 (-821 *7) (-818 *7 *9))) (-4 *7 (-1013)) (-4 *9 (-13 (-970) (-562 (-821 *7)) (-961 *8))) (-5 *2 (-818 *7 *9)) (-5 *3 (-587 *9)) (-4 *8 (-13 (-970) (-784))) (-5 *1 (-870 *7 *8 *9)))))
+(-10 -7 (-15 -3427 ((-818 |#1| |#3|) (-587 |#3|) (-587 (-821 |#1|)) (-1 |#3| (-587 |#3|)) (-818 |#1| |#3|) (-1 (-818 |#1| |#3|) |#3| (-821 |#1|) (-818 |#1| |#3|)))) (-15 -3401 ((-818 |#1| |#3|) (-587 |#3|) (-587 (-821 |#1|)) (-818 |#1| |#3|) (-1 (-818 |#1| |#3|) |#3| (-821 |#1|) (-818 |#1| |#3|)))))
+((-3299 (((-1080 (-381 (-521))) (-521)) 62)) (-2231 (((-1080 (-521)) (-521)) 65)) (-2459 (((-1080 (-521)) (-521)) 59)) (-2183 (((-521) (-1080 (-521))) 54)) (-3743 (((-1080 (-381 (-521))) (-521)) 48)) (-2557 (((-1080 (-521)) (-521)) 37)) (-2251 (((-1080 (-521)) (-521)) 67)) (-3936 (((-1080 (-521)) (-521)) 66)) (-2996 (((-1080 (-381 (-521))) (-521)) 50)))
+(((-871) (-10 -7 (-15 -2996 ((-1080 (-381 (-521))) (-521))) (-15 -3936 ((-1080 (-521)) (-521))) (-15 -2251 ((-1080 (-521)) (-521))) (-15 -2557 ((-1080 (-521)) (-521))) (-15 -3743 ((-1080 (-381 (-521))) (-521))) (-15 -2183 ((-521) (-1080 (-521)))) (-15 -2459 ((-1080 (-521)) (-521))) (-15 -2231 ((-1080 (-521)) (-521))) (-15 -3299 ((-1080 (-381 (-521))) (-521))))) (T -871))
+((-3299 (*1 *2 *3) (-12 (-5 *2 (-1080 (-381 (-521)))) (-5 *1 (-871)) (-5 *3 (-521)))) (-2231 (*1 *2 *3) (-12 (-5 *2 (-1080 (-521))) (-5 *1 (-871)) (-5 *3 (-521)))) (-2459 (*1 *2 *3) (-12 (-5 *2 (-1080 (-521))) (-5 *1 (-871)) (-5 *3 (-521)))) (-2183 (*1 *2 *3) (-12 (-5 *3 (-1080 (-521))) (-5 *2 (-521)) (-5 *1 (-871)))) (-3743 (*1 *2 *3) (-12 (-5 *2 (-1080 (-381 (-521)))) (-5 *1 (-871)) (-5 *3 (-521)))) (-2557 (*1 *2 *3) (-12 (-5 *2 (-1080 (-521))) (-5 *1 (-871)) (-5 *3 (-521)))) (-2251 (*1 *2 *3) (-12 (-5 *2 (-1080 (-521))) (-5 *1 (-871)) (-5 *3 (-521)))) (-3936 (*1 *2 *3) (-12 (-5 *2 (-1080 (-521))) (-5 *1 (-871)) (-5 *3 (-521)))) (-2996 (*1 *2 *3) (-12 (-5 *2 (-1080 (-381 (-521)))) (-5 *1 (-871)) (-5 *3 (-521)))))
+(-10 -7 (-15 -2996 ((-1080 (-381 (-521))) (-521))) (-15 -3936 ((-1080 (-521)) (-521))) (-15 -2251 ((-1080 (-521)) (-521))) (-15 -2557 ((-1080 (-521)) (-521))) (-15 -3743 ((-1080 (-381 (-521))) (-521))) (-15 -2183 ((-521) (-1080 (-521)))) (-15 -2459 ((-1080 (-521)) (-521))) (-15 -2231 ((-1080 (-521)) (-521))) (-15 -3299 ((-1080 (-381 (-521))) (-521))))
+((-1415 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3478 (($ (-707)) NIL (|has| |#1| (-23)))) (-1903 (((-1170) $ (-521) (-521)) NIL (|has| $ (-6 -4234)))) (-1505 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-784)))) (-1621 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4234))) (($ $) NIL (-12 (|has| $ (-6 -4234)) (|has| |#1| (-784))))) (-3211 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-784)))) (-2978 (((-108) $ (-707)) NIL)) (-2378 ((|#1| $ (-521) |#1|) 11 (|has| $ (-6 -4234))) ((|#1| $ (-1132 (-521)) |#1|) NIL (|has| $ (-6 -4234)))) (-1628 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2547 (($) NIL T CONST)) (-3081 (($ $) NIL (|has| $ (-6 -4234)))) (-1862 (($ $) NIL)) (-2332 (($ $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-1422 (($ |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-3859 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4233)))) (-3849 ((|#1| $ (-521) |#1|) NIL (|has| $ (-6 -4234)))) (-3626 ((|#1| $ (-521)) NIL)) (-3233 (((-521) (-1 (-108) |#1|) $) NIL) (((-521) |#1| $) NIL (|has| |#1| (-1013))) (((-521) |#1| $ (-521)) NIL (|has| |#1| (-1013)))) (-2735 (($ (-587 |#1|)) 13)) (-3831 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-3952 (((-627 |#1|) $ $) NIL (|has| |#1| (-970)))) (-1811 (($ (-707) |#1|) 8)) (-2139 (((-108) $ (-707)) NIL)) (-2826 (((-521) $) 10 (|has| (-521) (-784)))) (-2810 (($ $ $) NIL (|has| |#1| (-784)))) (-1318 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-784)))) (-3757 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-2221 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2597 (((-521) $) NIL (|has| (-521) (-784)))) (-2446 (($ $ $) NIL (|has| |#1| (-784)))) (-3833 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3366 ((|#1| $) NIL (-12 (|has| |#1| (-927)) (|has| |#1| (-970))))) (-3574 (((-108) $ (-707)) NIL)) (-2516 ((|#1| $) NIL (-12 (|has| |#1| (-927)) (|has| |#1| (-970))))) (-3688 (((-1067) $) NIL (|has| |#1| (-1013)))) (-1659 (($ |#1| $ (-521)) NIL) (($ $ $ (-521)) NIL)) (-1668 (((-587 (-521)) $) NIL)) (-2941 (((-108) (-521) $) NIL)) (-4147 (((-1031) $) NIL (|has| |#1| (-1013)))) (-2293 ((|#1| $) NIL (|has| (-521) (-784)))) (-3620 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-3016 (($ $ |#1|) NIL (|has| $ (-6 -4234)))) (-2447 (($ $ (-587 |#1|)) 24)) (-1789 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 |#1|))) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-2488 (((-108) $ $) NIL)) (-3821 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2489 (((-587 |#1|) $) NIL)) (-3462 (((-108) $) NIL)) (-4024 (($) NIL)) (-2544 ((|#1| $ (-521) |#1|) NIL) ((|#1| $ (-521)) 18) (($ $ (-1132 (-521))) NIL)) (-1231 ((|#1| $ $) NIL (|has| |#1| (-970)))) (-2359 (((-850) $) 16)) (-3691 (($ $ (-521)) NIL) (($ $ (-1132 (-521))) NIL)) (-2292 (($ $ $) 22)) (-4163 (((-707) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (((-707) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-1497 (($ $ $ (-521)) NIL (|has| $ (-6 -4234)))) (-2404 (($ $) NIL)) (-1430 (((-497) $) NIL (|has| |#1| (-562 (-497)))) (($ (-587 |#1|)) 17)) (-2201 (($ (-587 |#1|)) NIL)) (-4159 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 23) (($ (-587 $)) NIL)) (-2189 (((-792) $) NIL (|has| |#1| (-561 (-792))))) (-3049 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-1574 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1558 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1531 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-1566 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1549 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1612 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1602 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-521) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-663))) (($ $ |#1|) NIL (|has| |#1| (-663)))) (-3475 (((-707) $) 14 (|has| $ (-6 -4233)))))
+(((-872 |#1|) (-906 |#1|) (-970)) (T -872))
+NIL
+(-906 |#1|)
+((-1603 (((-453 |#1| |#2|) (-881 |#2|)) 17)) (-3319 (((-224 |#1| |#2|) (-881 |#2|)) 29)) (-1458 (((-881 |#2|) (-453 |#1| |#2|)) 22)) (-4094 (((-224 |#1| |#2|) (-453 |#1| |#2|)) 53)) (-2426 (((-881 |#2|) (-224 |#1| |#2|)) 26)) (-2782 (((-453 |#1| |#2|) (-224 |#1| |#2|)) 44)))
+(((-873 |#1| |#2|) (-10 -7 (-15 -2782 ((-453 |#1| |#2|) (-224 |#1| |#2|))) (-15 -4094 ((-224 |#1| |#2|) (-453 |#1| |#2|))) (-15 -1603 ((-453 |#1| |#2|) (-881 |#2|))) (-15 -1458 ((-881 |#2|) (-453 |#1| |#2|))) (-15 -2426 ((-881 |#2|) (-224 |#1| |#2|))) (-15 -3319 ((-224 |#1| |#2|) (-881 |#2|)))) (-587 (-1084)) (-970)) (T -873))
+((-3319 (*1 *2 *3) (-12 (-5 *3 (-881 *5)) (-4 *5 (-970)) (-5 *2 (-224 *4 *5)) (-5 *1 (-873 *4 *5)) (-14 *4 (-587 (-1084))))) (-2426 (*1 *2 *3) (-12 (-5 *3 (-224 *4 *5)) (-14 *4 (-587 (-1084))) (-4 *5 (-970)) (-5 *2 (-881 *5)) (-5 *1 (-873 *4 *5)))) (-1458 (*1 *2 *3) (-12 (-5 *3 (-453 *4 *5)) (-14 *4 (-587 (-1084))) (-4 *5 (-970)) (-5 *2 (-881 *5)) (-5 *1 (-873 *4 *5)))) (-1603 (*1 *2 *3) (-12 (-5 *3 (-881 *5)) (-4 *5 (-970)) (-5 *2 (-453 *4 *5)) (-5 *1 (-873 *4 *5)) (-14 *4 (-587 (-1084))))) (-4094 (*1 *2 *3) (-12 (-5 *3 (-453 *4 *5)) (-14 *4 (-587 (-1084))) (-4 *5 (-970)) (-5 *2 (-224 *4 *5)) (-5 *1 (-873 *4 *5)))) (-2782 (*1 *2 *3) (-12 (-5 *3 (-224 *4 *5)) (-14 *4 (-587 (-1084))) (-4 *5 (-970)) (-5 *2 (-453 *4 *5)) (-5 *1 (-873 *4 *5)))))
+(-10 -7 (-15 -2782 ((-453 |#1| |#2|) (-224 |#1| |#2|))) (-15 -4094 ((-224 |#1| |#2|) (-453 |#1| |#2|))) (-15 -1603 ((-453 |#1| |#2|) (-881 |#2|))) (-15 -1458 ((-881 |#2|) (-453 |#1| |#2|))) (-15 -2426 ((-881 |#2|) (-224 |#1| |#2|))) (-15 -3319 ((-224 |#1| |#2|) (-881 |#2|))))
+((-2178 (((-587 |#2|) |#2| |#2|) 10)) (-4195 (((-707) (-587 |#1|)) 38 (|has| |#1| (-782)))) (-4170 (((-587 |#2|) |#2|) 11)) (-3039 (((-707) (-587 |#1|) (-521) (-521)) 37 (|has| |#1| (-782)))) (-2111 ((|#1| |#2|) 33 (|has| |#1| (-782)))))
+(((-874 |#1| |#2|) (-10 -7 (-15 -2178 ((-587 |#2|) |#2| |#2|)) (-15 -4170 ((-587 |#2|) |#2|)) (IF (|has| |#1| (-782)) (PROGN (-15 -2111 (|#1| |#2|)) (-15 -4195 ((-707) (-587 |#1|))) (-15 -3039 ((-707) (-587 |#1|) (-521) (-521)))) |%noBranch|)) (-337) (-1141 |#1|)) (T -874))
+((-3039 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-587 *5)) (-5 *4 (-521)) (-4 *5 (-782)) (-4 *5 (-337)) (-5 *2 (-707)) (-5 *1 (-874 *5 *6)) (-4 *6 (-1141 *5)))) (-4195 (*1 *2 *3) (-12 (-5 *3 (-587 *4)) (-4 *4 (-782)) (-4 *4 (-337)) (-5 *2 (-707)) (-5 *1 (-874 *4 *5)) (-4 *5 (-1141 *4)))) (-2111 (*1 *2 *3) (-12 (-4 *2 (-337)) (-4 *2 (-782)) (-5 *1 (-874 *2 *3)) (-4 *3 (-1141 *2)))) (-4170 (*1 *2 *3) (-12 (-4 *4 (-337)) (-5 *2 (-587 *3)) (-5 *1 (-874 *4 *3)) (-4 *3 (-1141 *4)))) (-2178 (*1 *2 *3 *3) (-12 (-4 *4 (-337)) (-5 *2 (-587 *3)) (-5 *1 (-874 *4 *3)) (-4 *3 (-1141 *4)))))
+(-10 -7 (-15 -2178 ((-587 |#2|) |#2| |#2|)) (-15 -4170 ((-587 |#2|) |#2|)) (IF (|has| |#1| (-782)) (PROGN (-15 -2111 (|#1| |#2|)) (-15 -4195 ((-707) (-587 |#1|))) (-15 -3039 ((-707) (-587 |#1|) (-521) (-521)))) |%noBranch|))
+((-1390 (((-881 |#2|) (-1 |#2| |#1|) (-881 |#1|)) 18)))
+(((-875 |#1| |#2|) (-10 -7 (-15 -1390 ((-881 |#2|) (-1 |#2| |#1|) (-881 |#1|)))) (-970) (-970)) (T -875))
+((-1390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-881 *5)) (-4 *5 (-970)) (-4 *6 (-970)) (-5 *2 (-881 *6)) (-5 *1 (-875 *5 *6)))))
+(-10 -7 (-15 -1390 ((-881 |#2|) (-1 |#2| |#1|) (-881 |#1|))))
+((-1280 (((-1138 |#1| (-881 |#2|)) (-881 |#2|) (-1161 |#1|)) 18)))
+(((-876 |#1| |#2|) (-10 -7 (-15 -1280 ((-1138 |#1| (-881 |#2|)) (-881 |#2|) (-1161 |#1|)))) (-1084) (-970)) (T -876))
+((-1280 (*1 *2 *3 *4) (-12 (-5 *4 (-1161 *5)) (-14 *5 (-1084)) (-4 *6 (-970)) (-5 *2 (-1138 *5 (-881 *6))) (-5 *1 (-876 *5 *6)) (-5 *3 (-881 *6)))))
+(-10 -7 (-15 -1280 ((-1138 |#1| (-881 |#2|)) (-881 |#2|) (-1161 |#1|))))
+((-2256 (((-707) $) 70) (((-707) $ (-587 |#4|)) 73)) (-3063 (($ $) 170)) (-3358 (((-392 $) $) 162)) (-2569 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) 113)) (-1297 (((-3 |#2| "failed") $) NIL) (((-3 (-381 (-521)) "failed") $) NIL) (((-3 (-521) "failed") $) NIL) (((-3 |#4| "failed") $) 59)) (-1483 ((|#2| $) NIL) (((-381 (-521)) $) NIL) (((-521) $) NIL) ((|#4| $) 58)) (-2114 (($ $ $ |#4|) 75)) (-3279 (((-627 (-521)) (-627 $)) NIL) (((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL) (((-2 (|:| -1201 (-627 |#2|)) (|:| |vec| (-1165 |#2|))) (-627 $) (-1165 $)) 103) (((-627 |#2|) (-627 $)) 96)) (-3666 (($ $) 177) (($ $ |#4|) 180)) (-3144 (((-587 $) $) 62)) (-3427 (((-818 (-353) $) $ (-821 (-353)) (-818 (-353) $)) 195) (((-818 (-521) $) $ (-821 (-521)) (-818 (-521) $)) 189)) (-2959 (((-587 $) $) 28)) (-4043 (($ |#2| |#3|) NIL) (($ $ |#4| (-707)) NIL) (($ $ (-587 |#4|) (-587 (-707))) 56)) (-1450 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $ |#4|) 159)) (-1617 (((-3 (-587 $) "failed") $) 42)) (-3177 (((-3 (-587 $) "failed") $) 31)) (-3979 (((-3 (-2 (|:| |var| |#4|) (|:| -2997 (-707))) "failed") $) 46)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) 106)) (-1912 (((-392 (-1080 $)) (-1080 $)) 119)) (-2165 (((-392 (-1080 $)) (-1080 $)) 117)) (-1916 (((-392 $) $) 137)) (-2288 (($ $ (-587 (-269 $))) 20) (($ $ (-269 $)) NIL) (($ $ $ $) NIL) (($ $ (-587 $) (-587 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-587 |#4|) (-587 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-587 |#4|) (-587 $)) NIL)) (-4010 (($ $ |#4|) 77)) (-1430 (((-821 (-353)) $) 209) (((-821 (-521)) $) 202) (((-497) $) 217)) (-2403 ((|#2| $) NIL) (($ $ |#4|) 172)) (-2944 (((-3 (-1165 $) "failed") (-627 $)) 151)) (-3800 ((|#2| $ |#3|) NIL) (($ $ |#4| (-707)) 51) (($ $ (-587 |#4|) (-587 (-707))) 54)) (-1671 (((-3 $ "failed") $) 153)) (-1549 (((-108) $ $) 183)))
+(((-877 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2513 ((-1080 |#1|) (-1080 |#1|) (-1080 |#1|))) (-15 -3358 ((-392 |#1|) |#1|)) (-15 -3063 (|#1| |#1|)) (-15 -1671 ((-3 |#1| "failed") |#1|)) (-15 -1549 ((-108) |#1| |#1|)) (-15 -1430 ((-497) |#1|)) (-15 -1430 ((-821 (-521)) |#1|)) (-15 -1430 ((-821 (-353)) |#1|)) (-15 -3427 ((-818 (-521) |#1|) |#1| (-821 (-521)) (-818 (-521) |#1|))) (-15 -3427 ((-818 (-353) |#1|) |#1| (-821 (-353)) (-818 (-353) |#1|))) (-15 -1916 ((-392 |#1|) |#1|)) (-15 -2165 ((-392 (-1080 |#1|)) (-1080 |#1|))) (-15 -1912 ((-392 (-1080 |#1|)) (-1080 |#1|))) (-15 -2569 ((-3 (-587 (-1080 |#1|)) "failed") (-587 (-1080 |#1|)) (-1080 |#1|))) (-15 -2944 ((-3 (-1165 |#1|) "failed") (-627 |#1|))) (-15 -3666 (|#1| |#1| |#4|)) (-15 -2403 (|#1| |#1| |#4|)) (-15 -4010 (|#1| |#1| |#4|)) (-15 -2114 (|#1| |#1| |#1| |#4|)) (-15 -3144 ((-587 |#1|) |#1|)) (-15 -2256 ((-707) |#1| (-587 |#4|))) (-15 -2256 ((-707) |#1|)) (-15 -3979 ((-3 (-2 (|:| |var| |#4|) (|:| -2997 (-707))) "failed") |#1|)) (-15 -1617 ((-3 (-587 |#1|) "failed") |#1|)) (-15 -3177 ((-3 (-587 |#1|) "failed") |#1|)) (-15 -4043 (|#1| |#1| (-587 |#4|) (-587 (-707)))) (-15 -4043 (|#1| |#1| |#4| (-707))) (-15 -1450 ((-2 (|:| -3727 |#1|) (|:| -3820 |#1|)) |#1| |#1| |#4|)) (-15 -2959 ((-587 |#1|) |#1|)) (-15 -3800 (|#1| |#1| (-587 |#4|) (-587 (-707)))) (-15 -3800 (|#1| |#1| |#4| (-707))) (-15 -3279 ((-627 |#2|) (-627 |#1|))) (-15 -3279 ((-2 (|:| -1201 (-627 |#2|)) (|:| |vec| (-1165 |#2|))) (-627 |#1|) (-1165 |#1|))) (-15 -3279 ((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 |#1|) (-1165 |#1|))) (-15 -3279 ((-627 (-521)) (-627 |#1|))) (-15 -1483 (|#4| |#1|)) (-15 -1297 ((-3 |#4| "failed") |#1|)) (-15 -2288 (|#1| |#1| (-587 |#4|) (-587 |#1|))) (-15 -2288 (|#1| |#1| |#4| |#1|)) (-15 -2288 (|#1| |#1| (-587 |#4|) (-587 |#2|))) (-15 -2288 (|#1| |#1| |#4| |#2|)) (-15 -2288 (|#1| |#1| (-587 |#1|) (-587 |#1|))) (-15 -2288 (|#1| |#1| |#1| |#1|)) (-15 -2288 (|#1| |#1| (-269 |#1|))) (-15 -2288 (|#1| |#1| (-587 (-269 |#1|)))) (-15 -4043 (|#1| |#2| |#3|)) (-15 -3800 (|#2| |#1| |#3|)) (-15 -1483 ((-521) |#1|)) (-15 -1297 ((-3 (-521) "failed") |#1|)) (-15 -1483 ((-381 (-521)) |#1|)) (-15 -1297 ((-3 (-381 (-521)) "failed") |#1|)) (-15 -1297 ((-3 |#2| "failed") |#1|)) (-15 -1483 (|#2| |#1|)) (-15 -2403 (|#2| |#1|)) (-15 -3666 (|#1| |#1|))) (-878 |#2| |#3| |#4|) (-970) (-729) (-784)) (T -877))
+NIL
+(-10 -8 (-15 -2513 ((-1080 |#1|) (-1080 |#1|) (-1080 |#1|))) (-15 -3358 ((-392 |#1|) |#1|)) (-15 -3063 (|#1| |#1|)) (-15 -1671 ((-3 |#1| "failed") |#1|)) (-15 -1549 ((-108) |#1| |#1|)) (-15 -1430 ((-497) |#1|)) (-15 -1430 ((-821 (-521)) |#1|)) (-15 -1430 ((-821 (-353)) |#1|)) (-15 -3427 ((-818 (-521) |#1|) |#1| (-821 (-521)) (-818 (-521) |#1|))) (-15 -3427 ((-818 (-353) |#1|) |#1| (-821 (-353)) (-818 (-353) |#1|))) (-15 -1916 ((-392 |#1|) |#1|)) (-15 -2165 ((-392 (-1080 |#1|)) (-1080 |#1|))) (-15 -1912 ((-392 (-1080 |#1|)) (-1080 |#1|))) (-15 -2569 ((-3 (-587 (-1080 |#1|)) "failed") (-587 (-1080 |#1|)) (-1080 |#1|))) (-15 -2944 ((-3 (-1165 |#1|) "failed") (-627 |#1|))) (-15 -3666 (|#1| |#1| |#4|)) (-15 -2403 (|#1| |#1| |#4|)) (-15 -4010 (|#1| |#1| |#4|)) (-15 -2114 (|#1| |#1| |#1| |#4|)) (-15 -3144 ((-587 |#1|) |#1|)) (-15 -2256 ((-707) |#1| (-587 |#4|))) (-15 -2256 ((-707) |#1|)) (-15 -3979 ((-3 (-2 (|:| |var| |#4|) (|:| -2997 (-707))) "failed") |#1|)) (-15 -1617 ((-3 (-587 |#1|) "failed") |#1|)) (-15 -3177 ((-3 (-587 |#1|) "failed") |#1|)) (-15 -4043 (|#1| |#1| (-587 |#4|) (-587 (-707)))) (-15 -4043 (|#1| |#1| |#4| (-707))) (-15 -1450 ((-2 (|:| -3727 |#1|) (|:| -3820 |#1|)) |#1| |#1| |#4|)) (-15 -2959 ((-587 |#1|) |#1|)) (-15 -3800 (|#1| |#1| (-587 |#4|) (-587 (-707)))) (-15 -3800 (|#1| |#1| |#4| (-707))) (-15 -3279 ((-627 |#2|) (-627 |#1|))) (-15 -3279 ((-2 (|:| -1201 (-627 |#2|)) (|:| |vec| (-1165 |#2|))) (-627 |#1|) (-1165 |#1|))) (-15 -3279 ((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 |#1|) (-1165 |#1|))) (-15 -3279 ((-627 (-521)) (-627 |#1|))) (-15 -1483 (|#4| |#1|)) (-15 -1297 ((-3 |#4| "failed") |#1|)) (-15 -2288 (|#1| |#1| (-587 |#4|) (-587 |#1|))) (-15 -2288 (|#1| |#1| |#4| |#1|)) (-15 -2288 (|#1| |#1| (-587 |#4|) (-587 |#2|))) (-15 -2288 (|#1| |#1| |#4| |#2|)) (-15 -2288 (|#1| |#1| (-587 |#1|) (-587 |#1|))) (-15 -2288 (|#1| |#1| |#1| |#1|)) (-15 -2288 (|#1| |#1| (-269 |#1|))) (-15 -2288 (|#1| |#1| (-587 (-269 |#1|)))) (-15 -4043 (|#1| |#2| |#3|)) (-15 -3800 (|#2| |#1| |#3|)) (-15 -1483 ((-521) |#1|)) (-15 -1297 ((-3 (-521) "failed") |#1|)) (-15 -1483 ((-381 (-521)) |#1|)) (-15 -1297 ((-3 (-381 (-521)) "failed") |#1|)) (-15 -1297 ((-3 |#2| "failed") |#1|)) (-15 -1483 (|#2| |#1|)) (-15 -2403 (|#2| |#1|)) (-15 -3666 (|#1| |#1|)))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-4084 (((-587 |#3|) $) 110)) (-1280 (((-1080 $) $ |#3|) 125) (((-1080 |#1|) $) 124)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) 87 (|has| |#1| (-513)))) (-2559 (($ $) 88 (|has| |#1| (-513)))) (-1733 (((-108) $) 90 (|has| |#1| (-513)))) (-2256 (((-707) $) 112) (((-707) $ (-587 |#3|)) 111)) (-1232 (((-3 $ "failed") $ $) 19)) (-2598 (((-392 (-1080 $)) (-1080 $)) 100 (|has| |#1| (-838)))) (-3063 (($ $) 98 (|has| |#1| (-425)))) (-3358 (((-392 $) $) 97 (|has| |#1| (-425)))) (-2569 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) 103 (|has| |#1| (-838)))) (-2547 (($) 17 T CONST)) (-1297 (((-3 |#1| "failed") $) 164) (((-3 (-381 (-521)) "failed") $) 162 (|has| |#1| (-961 (-381 (-521))))) (((-3 (-521) "failed") $) 160 (|has| |#1| (-961 (-521)))) (((-3 |#3| "failed") $) 136)) (-1483 ((|#1| $) 165) (((-381 (-521)) $) 161 (|has| |#1| (-961 (-381 (-521))))) (((-521) $) 159 (|has| |#1| (-961 (-521)))) ((|#3| $) 135)) (-2114 (($ $ $ |#3|) 108 (|has| |#1| (-157)))) (-3152 (($ $) 154)) (-3279 (((-627 (-521)) (-627 $)) 134 (|has| |#1| (-583 (-521)))) (((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) 133 (|has| |#1| (-583 (-521)))) (((-2 (|:| -1201 (-627 |#1|)) (|:| |vec| (-1165 |#1|))) (-627 $) (-1165 $)) 132) (((-627 |#1|) (-627 $)) 131)) (-1257 (((-3 $ "failed") $) 34)) (-3666 (($ $) 176 (|has| |#1| (-425))) (($ $ |#3|) 105 (|has| |#1| (-425)))) (-3144 (((-587 $) $) 109)) (-2710 (((-108) $) 96 (|has| |#1| (-838)))) (-3528 (($ $ |#1| |#2| $) 172)) (-3427 (((-818 (-353) $) $ (-821 (-353)) (-818 (-353) $)) 84 (-12 (|has| |#3| (-815 (-353))) (|has| |#1| (-815 (-353))))) (((-818 (-521) $) $ (-821 (-521)) (-818 (-521) $)) 83 (-12 (|has| |#3| (-815 (-521))) (|has| |#1| (-815 (-521)))))) (-3996 (((-108) $) 31)) (-2678 (((-707) $) 169)) (-4069 (($ (-1080 |#1|) |#3|) 117) (($ (-1080 $) |#3|) 116)) (-2959 (((-587 $) $) 126)) (-3649 (((-108) $) 152)) (-4043 (($ |#1| |#2|) 153) (($ $ |#3| (-707)) 119) (($ $ (-587 |#3|) (-587 (-707))) 118)) (-1450 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $ |#3|) 120)) (-3273 ((|#2| $) 170) (((-707) $ |#3|) 122) (((-587 (-707)) $ (-587 |#3|)) 121)) (-2810 (($ $ $) 79 (|has| |#1| (-784)))) (-2446 (($ $ $) 78 (|has| |#1| (-784)))) (-3285 (($ (-1 |#2| |#2|) $) 171)) (-1390 (($ (-1 |#1| |#1|) $) 151)) (-2477 (((-3 |#3| "failed") $) 123)) (-3125 (($ $) 149)) (-3135 ((|#1| $) 148)) (-2223 (($ (-587 $)) 94 (|has| |#1| (-425))) (($ $ $) 93 (|has| |#1| (-425)))) (-3688 (((-1067) $) 9)) (-1617 (((-3 (-587 $) "failed") $) 114)) (-3177 (((-3 (-587 $) "failed") $) 115)) (-3979 (((-3 (-2 (|:| |var| |#3|) (|:| -2997 (-707))) "failed") $) 113)) (-4147 (((-1031) $) 10)) (-3105 (((-108) $) 166)) (-3115 ((|#1| $) 167)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) 95 (|has| |#1| (-425)))) (-2258 (($ (-587 $)) 92 (|has| |#1| (-425))) (($ $ $) 91 (|has| |#1| (-425)))) (-1912 (((-392 (-1080 $)) (-1080 $)) 102 (|has| |#1| (-838)))) (-2165 (((-392 (-1080 $)) (-1080 $)) 101 (|has| |#1| (-838)))) (-1916 (((-392 $) $) 99 (|has| |#1| (-838)))) (-2230 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-513))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-513)))) (-2288 (($ $ (-587 (-269 $))) 145) (($ $ (-269 $)) 144) (($ $ $ $) 143) (($ $ (-587 $) (-587 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-587 |#3|) (-587 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-587 |#3|) (-587 $)) 138)) (-4010 (($ $ |#3|) 107 (|has| |#1| (-157)))) (-2156 (($ $ |#3|) 42) (($ $ (-587 |#3|)) 41) (($ $ |#3| (-707)) 40) (($ $ (-587 |#3|) (-587 (-707))) 39)) (-1994 ((|#2| $) 150) (((-707) $ |#3|) 130) (((-587 (-707)) $ (-587 |#3|)) 129)) (-1430 (((-821 (-353)) $) 82 (-12 (|has| |#3| (-562 (-821 (-353)))) (|has| |#1| (-562 (-821 (-353)))))) (((-821 (-521)) $) 81 (-12 (|has| |#3| (-562 (-821 (-521)))) (|has| |#1| (-562 (-821 (-521)))))) (((-497) $) 80 (-12 (|has| |#3| (-562 (-497))) (|has| |#1| (-562 (-497)))))) (-2403 ((|#1| $) 175 (|has| |#1| (-425))) (($ $ |#3|) 106 (|has| |#1| (-425)))) (-2944 (((-3 (-1165 $) "failed") (-627 $)) 104 (-4009 (|has| $ (-133)) (|has| |#1| (-838))))) (-2189 (((-792) $) 11) (($ (-521)) 28) (($ |#1|) 163) (($ |#3|) 137) (($ $) 85 (|has| |#1| (-513))) (($ (-381 (-521))) 72 (-3703 (|has| |#1| (-961 (-381 (-521)))) (|has| |#1| (-37 (-381 (-521))))))) (-1259 (((-587 |#1|) $) 168)) (-3800 ((|#1| $ |#2|) 155) (($ $ |#3| (-707)) 128) (($ $ (-587 |#3|) (-587 (-707))) 127)) (-1671 (((-3 $ "failed") $) 73 (-3703 (-4009 (|has| $ (-133)) (|has| |#1| (-838))) (|has| |#1| (-133))))) (-3846 (((-707)) 29)) (-1547 (($ $ $ (-707)) 173 (|has| |#1| (-157)))) (-4210 (((-108) $ $) 89 (|has| |#1| (-513)))) (-3505 (($ $ (-850)) 26) (($ $ (-707)) 33)) (-3561 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-2212 (($ $ |#3|) 38) (($ $ (-587 |#3|)) 37) (($ $ |#3| (-707)) 36) (($ $ (-587 |#3|) (-587 (-707))) 35)) (-1574 (((-108) $ $) 76 (|has| |#1| (-784)))) (-1558 (((-108) $ $) 75 (|has| |#1| (-784)))) (-1531 (((-108) $ $) 6)) (-1566 (((-108) $ $) 77 (|has| |#1| (-784)))) (-1549 (((-108) $ $) 74 (|has| |#1| (-784)))) (-1620 (($ $ |#1|) 156 (|has| |#1| (-337)))) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-707)) 32)) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ $ (-381 (-521))) 158 (|has| |#1| (-37 (-381 (-521))))) (($ (-381 (-521)) $) 157 (|has| |#1| (-37 (-381 (-521))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
+(((-878 |#1| |#2| |#3|) (-1196) (-970) (-729) (-784)) (T -878))
+((-3666 (*1 *1 *1) (-12 (-4 *1 (-878 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729)) (-4 *4 (-784)) (-4 *2 (-425)))) (-1994 (*1 *2 *1 *3) (-12 (-4 *1 (-878 *4 *5 *3)) (-4 *4 (-970)) (-4 *5 (-729)) (-4 *3 (-784)) (-5 *2 (-707)))) (-1994 (*1 *2 *1 *3) (-12 (-5 *3 (-587 *6)) (-4 *1 (-878 *4 *5 *6)) (-4 *4 (-970)) (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-587 (-707))))) (-3800 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-707)) (-4 *1 (-878 *4 *5 *2)) (-4 *4 (-970)) (-4 *5 (-729)) (-4 *2 (-784)))) (-3800 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-587 *6)) (-5 *3 (-587 (-707))) (-4 *1 (-878 *4 *5 *6)) (-4 *4 (-970)) (-4 *5 (-729)) (-4 *6 (-784)))) (-2959 (*1 *2 *1) (-12 (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *2 (-587 *1)) (-4 *1 (-878 *3 *4 *5)))) (-1280 (*1 *2 *1 *3) (-12 (-4 *4 (-970)) (-4 *5 (-729)) (-4 *3 (-784)) (-5 *2 (-1080 *1)) (-4 *1 (-878 *4 *5 *3)))) (-1280 (*1 *2 *1) (-12 (-4 *1 (-878 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *2 (-1080 *3)))) (-2477 (*1 *2 *1) (|partial| -12 (-4 *1 (-878 *3 *4 *2)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *2 (-784)))) (-3273 (*1 *2 *1 *3) (-12 (-4 *1 (-878 *4 *5 *3)) (-4 *4 (-970)) (-4 *5 (-729)) (-4 *3 (-784)) (-5 *2 (-707)))) (-3273 (*1 *2 *1 *3) (-12 (-5 *3 (-587 *6)) (-4 *1 (-878 *4 *5 *6)) (-4 *4 (-970)) (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-587 (-707))))) (-1450 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-970)) (-4 *5 (-729)) (-4 *3 (-784)) (-5 *2 (-2 (|:| -3727 *1) (|:| -3820 *1))) (-4 *1 (-878 *4 *5 *3)))) (-4043 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-707)) (-4 *1 (-878 *4 *5 *2)) (-4 *4 (-970)) (-4 *5 (-729)) (-4 *2 (-784)))) (-4043 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-587 *6)) (-5 *3 (-587 (-707))) (-4 *1 (-878 *4 *5 *6)) (-4 *4 (-970)) (-4 *5 (-729)) (-4 *6 (-784)))) (-4069 (*1 *1 *2 *3) (-12 (-5 *2 (-1080 *4)) (-4 *4 (-970)) (-4 *1 (-878 *4 *5 *3)) (-4 *5 (-729)) (-4 *3 (-784)))) (-4069 (*1 *1 *2 *3) (-12 (-5 *2 (-1080 *1)) (-4 *1 (-878 *4 *5 *3)) (-4 *4 (-970)) (-4 *5 (-729)) (-4 *3 (-784)))) (-3177 (*1 *2 *1) (|partial| -12 (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *2 (-587 *1)) (-4 *1 (-878 *3 *4 *5)))) (-1617 (*1 *2 *1) (|partial| -12 (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *2 (-587 *1)) (-4 *1 (-878 *3 *4 *5)))) (-3979 (*1 *2 *1) (|partial| -12 (-4 *1 (-878 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *2 (-2 (|:| |var| *5) (|:| -2997 (-707)))))) (-2256 (*1 *2 *1) (-12 (-4 *1 (-878 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *2 (-707)))) (-2256 (*1 *2 *1 *3) (-12 (-5 *3 (-587 *6)) (-4 *1 (-878 *4 *5 *6)) (-4 *4 (-970)) (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-707)))) (-4084 (*1 *2 *1) (-12 (-4 *1 (-878 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *2 (-587 *5)))) (-3144 (*1 *2 *1) (-12 (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *2 (-587 *1)) (-4 *1 (-878 *3 *4 *5)))) (-2114 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-878 *3 *4 *2)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *2 (-784)) (-4 *3 (-157)))) (-4010 (*1 *1 *1 *2) (-12 (-4 *1 (-878 *3 *4 *2)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *2 (-784)) (-4 *3 (-157)))) (-2403 (*1 *1 *1 *2) (-12 (-4 *1 (-878 *3 *4 *2)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *2 (-784)) (-4 *3 (-425)))) (-3666 (*1 *1 *1 *2) (-12 (-4 *1 (-878 *3 *4 *2)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *2 (-784)) (-4 *3 (-425)))) (-3063 (*1 *1 *1) (-12 (-4 *1 (-878 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729)) (-4 *4 (-784)) (-4 *2 (-425)))) (-3358 (*1 *2 *1) (-12 (-4 *3 (-425)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *2 (-392 *1)) (-4 *1 (-878 *3 *4 *5)))))
+(-13 (-829 |t#3|) (-300 |t#1| |t#2|) (-284 $) (-482 |t#3| |t#1|) (-482 |t#3| $) (-961 |t#3|) (-351 |t#1|) (-10 -8 (-15 -1994 ((-707) $ |t#3|)) (-15 -1994 ((-587 (-707)) $ (-587 |t#3|))) (-15 -3800 ($ $ |t#3| (-707))) (-15 -3800 ($ $ (-587 |t#3|) (-587 (-707)))) (-15 -2959 ((-587 $) $)) (-15 -1280 ((-1080 $) $ |t#3|)) (-15 -1280 ((-1080 |t#1|) $)) (-15 -2477 ((-3 |t#3| "failed") $)) (-15 -3273 ((-707) $ |t#3|)) (-15 -3273 ((-587 (-707)) $ (-587 |t#3|))) (-15 -1450 ((-2 (|:| -3727 $) (|:| -3820 $)) $ $ |t#3|)) (-15 -4043 ($ $ |t#3| (-707))) (-15 -4043 ($ $ (-587 |t#3|) (-587 (-707)))) (-15 -4069 ($ (-1080 |t#1|) |t#3|)) (-15 -4069 ($ (-1080 $) |t#3|)) (-15 -3177 ((-3 (-587 $) "failed") $)) (-15 -1617 ((-3 (-587 $) "failed") $)) (-15 -3979 ((-3 (-2 (|:| |var| |t#3|) (|:| -2997 (-707))) "failed") $)) (-15 -2256 ((-707) $)) (-15 -2256 ((-707) $ (-587 |t#3|))) (-15 -4084 ((-587 |t#3|) $)) (-15 -3144 ((-587 $) $)) (IF (|has| |t#1| (-784)) (-6 (-784)) |%noBranch|) (IF (|has| |t#1| (-562 (-497))) (IF (|has| |t#3| (-562 (-497))) (-6 (-562 (-497))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-562 (-821 (-521)))) (IF (|has| |t#3| (-562 (-821 (-521)))) (-6 (-562 (-821 (-521)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-562 (-821 (-353)))) (IF (|has| |t#3| (-562 (-821 (-353)))) (-6 (-562 (-821 (-353)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-815 (-521))) (IF (|has| |t#3| (-815 (-521))) (-6 (-815 (-521))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-815 (-353))) (IF (|has| |t#3| (-815 (-353))) (-6 (-815 (-353))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-157)) (PROGN (-15 -2114 ($ $ $ |t#3|)) (-15 -4010 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-425)) (PROGN (-6 (-425)) (-15 -2403 ($ $ |t#3|)) (-15 -3666 ($ $)) (-15 -3666 ($ $ |t#3|)) (-15 -3358 ((-392 $) $)) (-15 -3063 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4231)) (-6 -4231) |%noBranch|) (IF (|has| |t#1| (-838)) (-6 (-838)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-381 (-521))) |has| |#1| (-37 (-381 (-521)))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) -3703 (|has| |#1| (-838)) (|has| |#1| (-513)) (|has| |#1| (-425))) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-381 (-521)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3703 (|has| |#1| (-838)) (|has| |#1| (-513)) (|has| |#1| (-425)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-561 (-792)) . T) ((-157) -3703 (|has| |#1| (-838)) (|has| |#1| (-513)) (|has| |#1| (-425)) (|has| |#1| (-157))) ((-562 (-497)) -12 (|has| |#1| (-562 (-497))) (|has| |#3| (-562 (-497)))) ((-562 (-821 (-353))) -12 (|has| |#1| (-562 (-821 (-353)))) (|has| |#3| (-562 (-821 (-353))))) ((-562 (-821 (-521))) -12 (|has| |#1| (-562 (-821 (-521)))) (|has| |#3| (-562 (-821 (-521))))) ((-265) -3703 (|has| |#1| (-838)) (|has| |#1| (-513)) (|has| |#1| (-425))) ((-284 $) . T) ((-300 |#1| |#2|) . T) ((-351 |#1|) . T) ((-385 |#1|) . T) ((-425) -3703 (|has| |#1| (-838)) (|has| |#1| (-425))) ((-482 |#3| |#1|) . T) ((-482 |#3| $) . T) ((-482 $ $) . T) ((-513) -3703 (|has| |#1| (-838)) (|has| |#1| (-513)) (|has| |#1| (-425))) ((-589 #0#) |has| |#1| (-37 (-381 (-521)))) ((-589 |#1|) . T) ((-589 $) . T) ((-583 (-521)) |has| |#1| (-583 (-521))) ((-583 |#1|) . T) ((-654 #0#) |has| |#1| (-37 (-381 (-521)))) ((-654 |#1|) |has| |#1| (-157)) ((-654 $) -3703 (|has| |#1| (-838)) (|has| |#1| (-513)) (|has| |#1| (-425))) ((-663) . T) ((-784) |has| |#1| (-784)) ((-829 |#3|) . T) ((-815 (-353)) -12 (|has| |#1| (-815 (-353))) (|has| |#3| (-815 (-353)))) ((-815 (-521)) -12 (|has| |#1| (-815 (-521))) (|has| |#3| (-815 (-521)))) ((-838) |has| |#1| (-838)) ((-961 (-381 (-521))) |has| |#1| (-961 (-381 (-521)))) ((-961 (-521)) |has| |#1| (-961 (-521))) ((-961 |#1|) . T) ((-961 |#3|) . T) ((-976 #0#) |has| |#1| (-37 (-381 (-521)))) ((-976 |#1|) . T) ((-976 $) -3703 (|has| |#1| (-838)) (|has| |#1| (-513)) (|has| |#1| (-425)) (|has| |#1| (-157))) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T) ((-1123) |has| |#1| (-838)))
+((-4084 (((-587 |#2|) |#5|) 36)) (-1280 (((-1080 |#5|) |#5| |#2| (-1080 |#5|)) 23) (((-381 (-1080 |#5|)) |#5| |#2|) 16)) (-4069 ((|#5| (-381 (-1080 |#5|)) |#2|) 30)) (-2477 (((-3 |#2| "failed") |#5|) 61)) (-1617 (((-3 (-587 |#5|) "failed") |#5|) 55)) (-1928 (((-3 (-2 (|:| |val| |#5|) (|:| -2997 (-521))) "failed") |#5|) 45)) (-3177 (((-3 (-587 |#5|) "failed") |#5|) 57)) (-3979 (((-3 (-2 (|:| |var| |#2|) (|:| -2997 (-521))) "failed") |#5|) 48)))
+(((-879 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4084 ((-587 |#2|) |#5|)) (-15 -2477 ((-3 |#2| "failed") |#5|)) (-15 -1280 ((-381 (-1080 |#5|)) |#5| |#2|)) (-15 -4069 (|#5| (-381 (-1080 |#5|)) |#2|)) (-15 -1280 ((-1080 |#5|) |#5| |#2| (-1080 |#5|))) (-15 -3177 ((-3 (-587 |#5|) "failed") |#5|)) (-15 -1617 ((-3 (-587 |#5|) "failed") |#5|)) (-15 -3979 ((-3 (-2 (|:| |var| |#2|) (|:| -2997 (-521))) "failed") |#5|)) (-15 -1928 ((-3 (-2 (|:| |val| |#5|) (|:| -2997 (-521))) "failed") |#5|))) (-729) (-784) (-970) (-878 |#3| |#1| |#2|) (-13 (-337) (-10 -8 (-15 -2189 ($ |#4|)) (-15 -2801 (|#4| $)) (-15 -2812 (|#4| $))))) (T -879))
+((-1928 (*1 *2 *3) (|partial| -12 (-4 *4 (-729)) (-4 *5 (-784)) (-4 *6 (-970)) (-4 *7 (-878 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2997 (-521)))) (-5 *1 (-879 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-337) (-10 -8 (-15 -2189 ($ *7)) (-15 -2801 (*7 $)) (-15 -2812 (*7 $))))))) (-3979 (*1 *2 *3) (|partial| -12 (-4 *4 (-729)) (-4 *5 (-784)) (-4 *6 (-970)) (-4 *7 (-878 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2997 (-521)))) (-5 *1 (-879 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-337) (-10 -8 (-15 -2189 ($ *7)) (-15 -2801 (*7 $)) (-15 -2812 (*7 $))))))) (-1617 (*1 *2 *3) (|partial| -12 (-4 *4 (-729)) (-4 *5 (-784)) (-4 *6 (-970)) (-4 *7 (-878 *6 *4 *5)) (-5 *2 (-587 *3)) (-5 *1 (-879 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-337) (-10 -8 (-15 -2189 ($ *7)) (-15 -2801 (*7 $)) (-15 -2812 (*7 $))))))) (-3177 (*1 *2 *3) (|partial| -12 (-4 *4 (-729)) (-4 *5 (-784)) (-4 *6 (-970)) (-4 *7 (-878 *6 *4 *5)) (-5 *2 (-587 *3)) (-5 *1 (-879 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-337) (-10 -8 (-15 -2189 ($ *7)) (-15 -2801 (*7 $)) (-15 -2812 (*7 $))))))) (-1280 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-13 (-337) (-10 -8 (-15 -2189 ($ *7)) (-15 -2801 (*7 $)) (-15 -2812 (*7 $))))) (-4 *7 (-878 *6 *5 *4)) (-4 *5 (-729)) (-4 *4 (-784)) (-4 *6 (-970)) (-5 *1 (-879 *5 *4 *6 *7 *3)))) (-4069 (*1 *2 *3 *4) (-12 (-5 *3 (-381 (-1080 *2))) (-4 *5 (-729)) (-4 *4 (-784)) (-4 *6 (-970)) (-4 *2 (-13 (-337) (-10 -8 (-15 -2189 ($ *7)) (-15 -2801 (*7 $)) (-15 -2812 (*7 $))))) (-5 *1 (-879 *5 *4 *6 *7 *2)) (-4 *7 (-878 *6 *5 *4)))) (-1280 (*1 *2 *3 *4) (-12 (-4 *5 (-729)) (-4 *4 (-784)) (-4 *6 (-970)) (-4 *7 (-878 *6 *5 *4)) (-5 *2 (-381 (-1080 *3))) (-5 *1 (-879 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-337) (-10 -8 (-15 -2189 ($ *7)) (-15 -2801 (*7 $)) (-15 -2812 (*7 $))))))) (-2477 (*1 *2 *3) (|partial| -12 (-4 *4 (-729)) (-4 *5 (-970)) (-4 *6 (-878 *5 *4 *2)) (-4 *2 (-784)) (-5 *1 (-879 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-337) (-10 -8 (-15 -2189 ($ *6)) (-15 -2801 (*6 $)) (-15 -2812 (*6 $))))))) (-4084 (*1 *2 *3) (-12 (-4 *4 (-729)) (-4 *5 (-784)) (-4 *6 (-970)) (-4 *7 (-878 *6 *4 *5)) (-5 *2 (-587 *5)) (-5 *1 (-879 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-337) (-10 -8 (-15 -2189 ($ *7)) (-15 -2801 (*7 $)) (-15 -2812 (*7 $))))))))
+(-10 -7 (-15 -4084 ((-587 |#2|) |#5|)) (-15 -2477 ((-3 |#2| "failed") |#5|)) (-15 -1280 ((-381 (-1080 |#5|)) |#5| |#2|)) (-15 -4069 (|#5| (-381 (-1080 |#5|)) |#2|)) (-15 -1280 ((-1080 |#5|) |#5| |#2| (-1080 |#5|))) (-15 -3177 ((-3 (-587 |#5|) "failed") |#5|)) (-15 -1617 ((-3 (-587 |#5|) "failed") |#5|)) (-15 -3979 ((-3 (-2 (|:| |var| |#2|) (|:| -2997 (-521))) "failed") |#5|)) (-15 -1928 ((-3 (-2 (|:| |val| |#5|) (|:| -2997 (-521))) "failed") |#5|)))
+((-1390 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24)))
+(((-880 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1390 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-729) (-784) (-970) (-878 |#3| |#1| |#2|) (-13 (-1013) (-10 -8 (-15 -1602 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-707)))))) (T -880))
+((-1390 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-784)) (-4 *8 (-970)) (-4 *6 (-729)) (-4 *2 (-13 (-1013) (-10 -8 (-15 -1602 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-707)))))) (-5 *1 (-880 *6 *7 *8 *5 *2)) (-4 *5 (-878 *8 *6 *7)))))
+(-10 -7 (-15 -1390 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|)))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-4084 (((-587 (-1084)) $) 15)) (-1280 (((-1080 $) $ (-1084)) 21) (((-1080 |#1|) $) NIL)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) NIL (|has| |#1| (-513)))) (-2559 (($ $) NIL (|has| |#1| (-513)))) (-1733 (((-108) $) NIL (|has| |#1| (-513)))) (-2256 (((-707) $) NIL) (((-707) $ (-587 (-1084))) NIL)) (-1232 (((-3 $ "failed") $ $) NIL)) (-2598 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#1| (-838)))) (-3063 (($ $) NIL (|has| |#1| (-425)))) (-3358 (((-392 $) $) NIL (|has| |#1| (-425)))) (-2569 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) NIL (|has| |#1| (-838)))) (-2547 (($) NIL T CONST)) (-1297 (((-3 |#1| "failed") $) 8) (((-3 (-381 (-521)) "failed") $) NIL (|has| |#1| (-961 (-381 (-521))))) (((-3 (-521) "failed") $) NIL (|has| |#1| (-961 (-521)))) (((-3 (-1084) "failed") $) NIL)) (-1483 ((|#1| $) NIL) (((-381 (-521)) $) NIL (|has| |#1| (-961 (-381 (-521))))) (((-521) $) NIL (|has| |#1| (-961 (-521)))) (((-1084) $) NIL)) (-2114 (($ $ $ (-1084)) NIL (|has| |#1| (-157)))) (-3152 (($ $) NIL)) (-3279 (((-627 (-521)) (-627 $)) NIL (|has| |#1| (-583 (-521)))) (((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (|has| |#1| (-583 (-521)))) (((-2 (|:| -1201 (-627 |#1|)) (|:| |vec| (-1165 |#1|))) (-627 $) (-1165 $)) NIL) (((-627 |#1|) (-627 $)) NIL)) (-1257 (((-3 $ "failed") $) NIL)) (-3666 (($ $) NIL (|has| |#1| (-425))) (($ $ (-1084)) NIL (|has| |#1| (-425)))) (-3144 (((-587 $) $) NIL)) (-2710 (((-108) $) NIL (|has| |#1| (-838)))) (-3528 (($ $ |#1| (-493 (-1084)) $) NIL)) (-3427 (((-818 (-353) $) $ (-821 (-353)) (-818 (-353) $)) NIL (-12 (|has| (-1084) (-815 (-353))) (|has| |#1| (-815 (-353))))) (((-818 (-521) $) $ (-821 (-521)) (-818 (-521) $)) NIL (-12 (|has| (-1084) (-815 (-521))) (|has| |#1| (-815 (-521)))))) (-3996 (((-108) $) NIL)) (-2678 (((-707) $) NIL)) (-4069 (($ (-1080 |#1|) (-1084)) NIL) (($ (-1080 $) (-1084)) NIL)) (-2959 (((-587 $) $) NIL)) (-3649 (((-108) $) NIL)) (-4043 (($ |#1| (-493 (-1084))) NIL) (($ $ (-1084) (-707)) NIL) (($ $ (-587 (-1084)) (-587 (-707))) NIL)) (-1450 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $ (-1084)) NIL)) (-3273 (((-493 (-1084)) $) NIL) (((-707) $ (-1084)) NIL) (((-587 (-707)) $ (-587 (-1084))) NIL)) (-2810 (($ $ $) NIL (|has| |#1| (-784)))) (-2446 (($ $ $) NIL (|has| |#1| (-784)))) (-3285 (($ (-1 (-493 (-1084)) (-493 (-1084))) $) NIL)) (-1390 (($ (-1 |#1| |#1|) $) NIL)) (-2477 (((-3 (-1084) "failed") $) 19)) (-3125 (($ $) NIL)) (-3135 ((|#1| $) NIL)) (-2223 (($ (-587 $)) NIL (|has| |#1| (-425))) (($ $ $) NIL (|has| |#1| (-425)))) (-3688 (((-1067) $) NIL)) (-1617 (((-3 (-587 $) "failed") $) NIL)) (-3177 (((-3 (-587 $) "failed") $) NIL)) (-3979 (((-3 (-2 (|:| |var| (-1084)) (|:| -2997 (-707))) "failed") $) NIL)) (-2184 (($ $ (-1084)) 29 (|has| |#1| (-37 (-381 (-521)))))) (-4147 (((-1031) $) NIL)) (-3105 (((-108) $) NIL)) (-3115 ((|#1| $) NIL)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) NIL (|has| |#1| (-425)))) (-2258 (($ (-587 $)) NIL (|has| |#1| (-425))) (($ $ $) NIL (|has| |#1| (-425)))) (-1912 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#1| (-838)))) (-2165 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#1| (-838)))) (-1916 (((-392 $) $) NIL (|has| |#1| (-838)))) (-2230 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-513))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-513)))) (-2288 (($ $ (-587 (-269 $))) NIL) (($ $ (-269 $)) NIL) (($ $ $ $) NIL) (($ $ (-587 $) (-587 $)) NIL) (($ $ (-1084) |#1|) NIL) (($ $ (-587 (-1084)) (-587 |#1|)) NIL) (($ $ (-1084) $) NIL) (($ $ (-587 (-1084)) (-587 $)) NIL)) (-4010 (($ $ (-1084)) NIL (|has| |#1| (-157)))) (-2156 (($ $ (-1084)) NIL) (($ $ (-587 (-1084))) NIL) (($ $ (-1084) (-707)) NIL) (($ $ (-587 (-1084)) (-587 (-707))) NIL)) (-1994 (((-493 (-1084)) $) NIL) (((-707) $ (-1084)) NIL) (((-587 (-707)) $ (-587 (-1084))) NIL)) (-1430 (((-821 (-353)) $) NIL (-12 (|has| (-1084) (-562 (-821 (-353)))) (|has| |#1| (-562 (-821 (-353)))))) (((-821 (-521)) $) NIL (-12 (|has| (-1084) (-562 (-821 (-521)))) (|has| |#1| (-562 (-821 (-521)))))) (((-497) $) NIL (-12 (|has| (-1084) (-562 (-497))) (|has| |#1| (-562 (-497)))))) (-2403 ((|#1| $) NIL (|has| |#1| (-425))) (($ $ (-1084)) NIL (|has| |#1| (-425)))) (-2944 (((-3 (-1165 $) "failed") (-627 $)) NIL (-12 (|has| $ (-133)) (|has| |#1| (-838))))) (-2189 (((-792) $) 25) (($ (-521)) NIL) (($ |#1|) NIL) (($ (-1084)) 27) (($ (-381 (-521))) NIL (-3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-961 (-381 (-521)))))) (($ $) NIL (|has| |#1| (-513)))) (-1259 (((-587 |#1|) $) NIL)) (-3800 ((|#1| $ (-493 (-1084))) NIL) (($ $ (-1084) (-707)) NIL) (($ $ (-587 (-1084)) (-587 (-707))) NIL)) (-1671 (((-3 $ "failed") $) NIL (-3703 (-12 (|has| $ (-133)) (|has| |#1| (-838))) (|has| |#1| (-133))))) (-3846 (((-707)) NIL)) (-1547 (($ $ $ (-707)) NIL (|has| |#1| (-157)))) (-4210 (((-108) $ $) NIL (|has| |#1| (-513)))) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (-3561 (($) NIL T CONST)) (-3572 (($) NIL T CONST)) (-2212 (($ $ (-1084)) NIL) (($ $ (-587 (-1084))) NIL) (($ $ (-1084) (-707)) NIL) (($ $ (-587 (-1084)) (-587 (-707))) NIL)) (-1574 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1558 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1549 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1620 (($ $ |#1|) NIL (|has| |#1| (-337)))) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ (-381 (-521))) NIL (|has| |#1| (-37 (-381 (-521))))) (($ (-381 (-521)) $) NIL (|has| |#1| (-37 (-381 (-521))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-881 |#1|) (-13 (-878 |#1| (-493 (-1084)) (-1084)) (-10 -8 (IF (|has| |#1| (-37 (-381 (-521)))) (-15 -2184 ($ $ (-1084))) |%noBranch|))) (-970)) (T -881))
+((-2184 (*1 *1 *1 *2) (-12 (-5 *2 (-1084)) (-5 *1 (-881 *3)) (-4 *3 (-37 (-381 (-521)))) (-4 *3 (-970)))))
+(-13 (-878 |#1| (-493 (-1084)) (-1084)) (-10 -8 (IF (|has| |#1| (-37 (-381 (-521)))) (-15 -2184 ($ $ (-1084))) |%noBranch|)))
+((-3223 (((-2 (|:| -2997 (-707)) (|:| -2973 |#5|) (|:| |radicand| |#5|)) |#3| (-707)) 37)) (-2492 (((-2 (|:| -2997 (-707)) (|:| -2973 |#5|) (|:| |radicand| |#5|)) (-381 (-521)) (-707)) 33)) (-2853 (((-2 (|:| -2997 (-707)) (|:| -2973 |#4|) (|:| |radicand| (-587 |#4|))) |#4| (-707)) 52)) (-3869 (((-2 (|:| -2997 (-707)) (|:| -2973 |#5|) (|:| |radicand| |#5|)) |#5| (-707)) 62 (|has| |#3| (-425)))))
+(((-882 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3223 ((-2 (|:| -2997 (-707)) (|:| -2973 |#5|) (|:| |radicand| |#5|)) |#3| (-707))) (-15 -2492 ((-2 (|:| -2997 (-707)) (|:| -2973 |#5|) (|:| |radicand| |#5|)) (-381 (-521)) (-707))) (IF (|has| |#3| (-425)) (-15 -3869 ((-2 (|:| -2997 (-707)) (|:| -2973 |#5|) (|:| |radicand| |#5|)) |#5| (-707))) |%noBranch|) (-15 -2853 ((-2 (|:| -2997 (-707)) (|:| -2973 |#4|) (|:| |radicand| (-587 |#4|))) |#4| (-707)))) (-729) (-784) (-513) (-878 |#3| |#1| |#2|) (-13 (-337) (-10 -8 (-15 -2801 (|#4| $)) (-15 -2812 (|#4| $)) (-15 -2189 ($ |#4|))))) (T -882))
+((-2853 (*1 *2 *3 *4) (-12 (-4 *5 (-729)) (-4 *6 (-784)) (-4 *7 (-513)) (-4 *3 (-878 *7 *5 *6)) (-5 *2 (-2 (|:| -2997 (-707)) (|:| -2973 *3) (|:| |radicand| (-587 *3)))) (-5 *1 (-882 *5 *6 *7 *3 *8)) (-5 *4 (-707)) (-4 *8 (-13 (-337) (-10 -8 (-15 -2801 (*3 $)) (-15 -2812 (*3 $)) (-15 -2189 ($ *3))))))) (-3869 (*1 *2 *3 *4) (-12 (-4 *7 (-425)) (-4 *5 (-729)) (-4 *6 (-784)) (-4 *7 (-513)) (-4 *8 (-878 *7 *5 *6)) (-5 *2 (-2 (|:| -2997 (-707)) (|:| -2973 *3) (|:| |radicand| *3))) (-5 *1 (-882 *5 *6 *7 *8 *3)) (-5 *4 (-707)) (-4 *3 (-13 (-337) (-10 -8 (-15 -2801 (*8 $)) (-15 -2812 (*8 $)) (-15 -2189 ($ *8))))))) (-2492 (*1 *2 *3 *4) (-12 (-5 *3 (-381 (-521))) (-4 *5 (-729)) (-4 *6 (-784)) (-4 *7 (-513)) (-4 *8 (-878 *7 *5 *6)) (-5 *2 (-2 (|:| -2997 (-707)) (|:| -2973 *9) (|:| |radicand| *9))) (-5 *1 (-882 *5 *6 *7 *8 *9)) (-5 *4 (-707)) (-4 *9 (-13 (-337) (-10 -8 (-15 -2801 (*8 $)) (-15 -2812 (*8 $)) (-15 -2189 ($ *8))))))) (-3223 (*1 *2 *3 *4) (-12 (-4 *5 (-729)) (-4 *6 (-784)) (-4 *3 (-513)) (-4 *7 (-878 *3 *5 *6)) (-5 *2 (-2 (|:| -2997 (-707)) (|:| -2973 *8) (|:| |radicand| *8))) (-5 *1 (-882 *5 *6 *3 *7 *8)) (-5 *4 (-707)) (-4 *8 (-13 (-337) (-10 -8 (-15 -2801 (*7 $)) (-15 -2812 (*7 $)) (-15 -2189 ($ *7))))))))
+(-10 -7 (-15 -3223 ((-2 (|:| -2997 (-707)) (|:| -2973 |#5|) (|:| |radicand| |#5|)) |#3| (-707))) (-15 -2492 ((-2 (|:| -2997 (-707)) (|:| -2973 |#5|) (|:| |radicand| |#5|)) (-381 (-521)) (-707))) (IF (|has| |#3| (-425)) (-15 -3869 ((-2 (|:| -2997 (-707)) (|:| -2973 |#5|) (|:| |radicand| |#5|)) |#5| (-707))) |%noBranch|) (-15 -2853 ((-2 (|:| -2997 (-707)) (|:| -2973 |#4|) (|:| |radicand| (-587 |#4|))) |#4| (-707))))
+((-3803 (((-1008 (-202)) $) 8)) (-3789 (((-1008 (-202)) $) 9)) (-2742 (((-587 (-587 (-872 (-202)))) $) 10)) (-2189 (((-792) $) 6)))
+(((-883) (-1196)) (T -883))
+((-2742 (*1 *2 *1) (-12 (-4 *1 (-883)) (-5 *2 (-587 (-587 (-872 (-202))))))) (-3789 (*1 *2 *1) (-12 (-4 *1 (-883)) (-5 *2 (-1008 (-202))))) (-3803 (*1 *2 *1) (-12 (-4 *1 (-883)) (-5 *2 (-1008 (-202))))))
+(-13 (-561 (-792)) (-10 -8 (-15 -2742 ((-587 (-587 (-872 (-202)))) $)) (-15 -3789 ((-1008 (-202)) $)) (-15 -3803 ((-1008 (-202)) $))))
+(((-561 (-792)) . T))
+((-2865 (((-3 (-627 |#1|) "failed") |#2| (-850)) 14)))
+(((-884 |#1| |#2|) (-10 -7 (-15 -2865 ((-3 (-627 |#1|) "failed") |#2| (-850)))) (-513) (-597 |#1|)) (T -884))
+((-2865 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-850)) (-4 *5 (-513)) (-5 *2 (-627 *5)) (-5 *1 (-884 *5 *3)) (-4 *3 (-597 *5)))))
+(-10 -7 (-15 -2865 ((-3 (-627 |#1|) "failed") |#2| (-850))))
+((-3126 (((-886 |#2|) (-1 |#2| |#1| |#2|) (-886 |#1|) |#2|) 16)) (-3859 ((|#2| (-1 |#2| |#1| |#2|) (-886 |#1|) |#2|) 18)) (-1390 (((-886 |#2|) (-1 |#2| |#1|) (-886 |#1|)) 13)))
+(((-885 |#1| |#2|) (-10 -7 (-15 -3126 ((-886 |#2|) (-1 |#2| |#1| |#2|) (-886 |#1|) |#2|)) (-15 -3859 (|#2| (-1 |#2| |#1| |#2|) (-886 |#1|) |#2|)) (-15 -1390 ((-886 |#2|) (-1 |#2| |#1|) (-886 |#1|)))) (-1119) (-1119)) (T -885))
+((-1390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-886 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-886 *6)) (-5 *1 (-885 *5 *6)))) (-3859 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-886 *5)) (-4 *5 (-1119)) (-4 *2 (-1119)) (-5 *1 (-885 *5 *2)))) (-3126 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-886 *6)) (-4 *6 (-1119)) (-4 *5 (-1119)) (-5 *2 (-886 *5)) (-5 *1 (-885 *6 *5)))))
+(-10 -7 (-15 -3126 ((-886 |#2|) (-1 |#2| |#1| |#2|) (-886 |#1|) |#2|)) (-15 -3859 (|#2| (-1 |#2| |#1| |#2|) (-886 |#1|) |#2|)) (-15 -1390 ((-886 |#2|) (-1 |#2| |#1|) (-886 |#1|))))
+((-1415 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-1903 (((-1170) $ (-521) (-521)) NIL (|has| $ (-6 -4234)))) (-1505 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-784)))) (-1621 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4234))) (($ $) NIL (-12 (|has| $ (-6 -4234)) (|has| |#1| (-784))))) (-3211 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-784)))) (-2978 (((-108) $ (-707)) NIL)) (-2378 ((|#1| $ (-521) |#1|) 17 (|has| $ (-6 -4234))) ((|#1| $ (-1132 (-521)) |#1|) NIL (|has| $ (-6 -4234)))) (-1628 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2547 (($) NIL T CONST)) (-3081 (($ $) NIL (|has| $ (-6 -4234)))) (-1862 (($ $) NIL)) (-2332 (($ $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-1422 (($ |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-3859 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4233)))) (-3849 ((|#1| $ (-521) |#1|) 16 (|has| $ (-6 -4234)))) (-3626 ((|#1| $ (-521)) 14)) (-3233 (((-521) (-1 (-108) |#1|) $) NIL) (((-521) |#1| $) NIL (|has| |#1| (-1013))) (((-521) |#1| $ (-521)) NIL (|has| |#1| (-1013)))) (-3831 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-1811 (($ (-707) |#1|) 13)) (-2139 (((-108) $ (-707)) NIL)) (-2826 (((-521) $) 10 (|has| (-521) (-784)))) (-2810 (($ $ $) NIL (|has| |#1| (-784)))) (-1318 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-784)))) (-3757 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-2221 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2597 (((-521) $) NIL (|has| (-521) (-784)))) (-2446 (($ $ $) NIL (|has| |#1| (-784)))) (-3833 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3574 (((-108) $ (-707)) NIL)) (-3688 (((-1067) $) NIL (|has| |#1| (-1013)))) (-1659 (($ |#1| $ (-521)) NIL) (($ $ $ (-521)) NIL)) (-1668 (((-587 (-521)) $) NIL)) (-2941 (((-108) (-521) $) NIL)) (-4147 (((-1031) $) NIL (|has| |#1| (-1013)))) (-2293 ((|#1| $) NIL (|has| (-521) (-784)))) (-3620 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-3016 (($ $ |#1|) 12 (|has| $ (-6 -4234)))) (-1789 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 |#1|))) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-2488 (((-108) $ $) NIL)) (-3821 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2489 (((-587 |#1|) $) NIL)) (-3462 (((-108) $) NIL)) (-4024 (($) 11)) (-2544 ((|#1| $ (-521) |#1|) NIL) ((|#1| $ (-521)) 15) (($ $ (-1132 (-521))) NIL)) (-3691 (($ $ (-521)) NIL) (($ $ (-1132 (-521))) NIL)) (-4163 (((-707) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (((-707) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-1497 (($ $ $ (-521)) NIL (|has| $ (-6 -4234)))) (-2404 (($ $) NIL)) (-1430 (((-497) $) NIL (|has| |#1| (-562 (-497))))) (-2201 (($ (-587 |#1|)) NIL)) (-4159 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-587 $)) NIL)) (-2189 (((-792) $) NIL (|has| |#1| (-561 (-792))))) (-3049 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-1574 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1558 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1531 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-1566 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1549 (((-108) $ $) NIL (|has| |#1| (-784)))) (-3475 (((-707) $) 8 (|has| $ (-6 -4233)))))
+(((-886 |#1|) (-19 |#1|) (-1119)) (T -886))
NIL
(-19 |#1|)
-((-2410 (($ $ (-1005 $)) 7) (($ $ (-1083)) 6)))
-(((-886) (-1195)) (T -886))
-((-2410 (*1 *1 *1 *2) (-12 (-5 *2 (-1005 *1)) (-4 *1 (-886)))) (-2410 (*1 *1 *1 *2) (-12 (-4 *1 (-886)) (-5 *2 (-1083)))))
-(-13 (-10 -8 (-15 -2410 ($ $ (-1083))) (-15 -2410 ($ $ (-1005 $)))))
-((-2961 (((-2 (|:| -2972 (-586 (-520))) (|:| |poly| (-586 (-1079 |#1|))) (|:| |prim| (-1079 |#1|))) (-586 (-880 |#1|)) (-586 (-1083)) (-1083)) 23) (((-2 (|:| -2972 (-586 (-520))) (|:| |poly| (-586 (-1079 |#1|))) (|:| |prim| (-1079 |#1|))) (-586 (-880 |#1|)) (-586 (-1083))) 24) (((-2 (|:| |coef1| (-520)) (|:| |coef2| (-520)) (|:| |prim| (-1079 |#1|))) (-880 |#1|) (-1083) (-880 |#1|) (-1083)) 41)))
-(((-887 |#1|) (-10 -7 (-15 -2961 ((-2 (|:| |coef1| (-520)) (|:| |coef2| (-520)) (|:| |prim| (-1079 |#1|))) (-880 |#1|) (-1083) (-880 |#1|) (-1083))) (-15 -2961 ((-2 (|:| -2972 (-586 (-520))) (|:| |poly| (-586 (-1079 |#1|))) (|:| |prim| (-1079 |#1|))) (-586 (-880 |#1|)) (-586 (-1083)))) (-15 -2961 ((-2 (|:| -2972 (-586 (-520))) (|:| |poly| (-586 (-1079 |#1|))) (|:| |prim| (-1079 |#1|))) (-586 (-880 |#1|)) (-586 (-1083)) (-1083)))) (-13 (-336) (-135))) (T -887))
-((-2961 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-586 (-880 *6))) (-5 *4 (-586 (-1083))) (-5 *5 (-1083)) (-4 *6 (-13 (-336) (-135))) (-5 *2 (-2 (|:| -2972 (-586 (-520))) (|:| |poly| (-586 (-1079 *6))) (|:| |prim| (-1079 *6)))) (-5 *1 (-887 *6)))) (-2961 (*1 *2 *3 *4) (-12 (-5 *3 (-586 (-880 *5))) (-5 *4 (-586 (-1083))) (-4 *5 (-13 (-336) (-135))) (-5 *2 (-2 (|:| -2972 (-586 (-520))) (|:| |poly| (-586 (-1079 *5))) (|:| |prim| (-1079 *5)))) (-5 *1 (-887 *5)))) (-2961 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-880 *5)) (-5 *4 (-1083)) (-4 *5 (-13 (-336) (-135))) (-5 *2 (-2 (|:| |coef1| (-520)) (|:| |coef2| (-520)) (|:| |prim| (-1079 *5)))) (-5 *1 (-887 *5)))))
-(-10 -7 (-15 -2961 ((-2 (|:| |coef1| (-520)) (|:| |coef2| (-520)) (|:| |prim| (-1079 |#1|))) (-880 |#1|) (-1083) (-880 |#1|) (-1083))) (-15 -2961 ((-2 (|:| -2972 (-586 (-520))) (|:| |poly| (-586 (-1079 |#1|))) (|:| |prim| (-1079 |#1|))) (-586 (-880 |#1|)) (-586 (-1083)))) (-15 -2961 ((-2 (|:| -2972 (-586 (-520))) (|:| |poly| (-586 (-1079 |#1|))) (|:| |prim| (-1079 |#1|))) (-586 (-880 |#1|)) (-586 (-1083)) (-1083))))
-((-3815 (((-586 |#1|) |#1| |#1|) 42)) (-2036 (((-108) |#1|) 39)) (-3383 ((|#1| |#1|) 65)) (-2127 ((|#1| |#1|) 64)))
-(((-888 |#1|) (-10 -7 (-15 -2036 ((-108) |#1|)) (-15 -2127 (|#1| |#1|)) (-15 -3383 (|#1| |#1|)) (-15 -3815 ((-586 |#1|) |#1| |#1|))) (-505)) (T -888))
-((-3815 (*1 *2 *3 *3) (-12 (-5 *2 (-586 *3)) (-5 *1 (-888 *3)) (-4 *3 (-505)))) (-3383 (*1 *2 *2) (-12 (-5 *1 (-888 *2)) (-4 *2 (-505)))) (-2127 (*1 *2 *2) (-12 (-5 *1 (-888 *2)) (-4 *2 (-505)))) (-2036 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-888 *3)) (-4 *3 (-505)))))
-(-10 -7 (-15 -2036 ((-108) |#1|)) (-15 -2127 (|#1| |#1|)) (-15 -3383 (|#1| |#1|)) (-15 -3815 ((-586 |#1|) |#1| |#1|)))
-((-2050 (((-1169) (-791)) 9)))
-(((-889) (-10 -7 (-15 -2050 ((-1169) (-791))))) (T -889))
-((-2050 (*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1169)) (-5 *1 (-889)))))
-(-10 -7 (-15 -2050 ((-1169) (-791))))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) 63 (|has| |#1| (-512)))) (-2583 (($ $) 64 (|has| |#1| (-512)))) (-1671 (((-108) $) NIL (|has| |#1| (-512)))) (-1917 (((-3 $ "failed") $ $) NIL)) (-3961 (($) NIL T CONST)) (-1296 (((-3 (-520) "failed") $) NIL (|has| |#1| (-960 (-520)))) (((-3 (-380 (-520)) "failed") $) NIL (|has| |#1| (-960 (-380 (-520))))) (((-3 |#1| "failed") $) 28)) (-1482 (((-520) $) NIL (|has| |#1| (-960 (-520)))) (((-380 (-520)) $) NIL (|has| |#1| (-960 (-380 (-520))))) ((|#1| $) NIL)) (-3150 (($ $) 24)) (-1540 (((-3 $ "failed") $) 35)) (-3923 (($ $) NIL (|has| |#1| (-424)))) (-3397 (($ $ |#1| |#2| $) 48)) (-1537 (((-108) $) NIL)) (-1315 (((-706) $) 16)) (-3774 (((-108) $) NIL)) (-4039 (($ |#1| |#2|) NIL)) (-3562 ((|#2| $) 19)) (-3295 (($ (-1 |#2| |#2|) $) NIL)) (-1389 (($ (-1 |#1| |#1|) $) NIL)) (-3123 (($ $) 23)) (-3133 ((|#1| $) 21)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-3103 (((-108) $) 40)) (-3113 ((|#1| $) NIL)) (-4118 (($ $ |#2| |#1| $) 72 (-12 (|has| |#2| (-124)) (|has| |#1| (-512))))) (-2230 (((-3 $ "failed") $ $) 74 (|has| |#1| (-512))) (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-512)))) (-2528 ((|#2| $) 17)) (-1233 ((|#1| $) NIL (|has| |#1| (-424)))) (-2188 (((-791) $) NIL) (($ (-520)) 39) (($ $) NIL (|has| |#1| (-512))) (($ |#1|) 34) (($ (-380 (-520))) NIL (-3700 (|has| |#1| (-37 (-380 (-520)))) (|has| |#1| (-960 (-380 (-520))))))) (-4113 (((-586 |#1|) $) NIL)) (-3475 ((|#1| $ |#2|) 31)) (-3796 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-3251 (((-706)) 15)) (-1782 (($ $ $ (-706)) 59 (|has| |#1| (-157)))) (-2559 (((-108) $ $) 69 (|has| |#1| (-512)))) (-3504 (($ $ (-849)) 55) (($ $ (-706)) 56)) (-3560 (($) 22 T CONST)) (-3570 (($) 12 T CONST)) (-1530 (((-108) $ $) 68)) (-1619 (($ $ |#1|) 75 (|has| |#1| (-336)))) (-1611 (($ $) NIL) (($ $ $) NIL)) (-1601 (($ $ $) NIL)) (** (($ $ (-849)) 54) (($ $ (-706)) 52)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) 51) (($ $ |#1|) 50) (($ |#1| $) 49) (($ (-380 (-520)) $) NIL (|has| |#1| (-37 (-380 (-520))))) (($ $ (-380 (-520))) NIL (|has| |#1| (-37 (-380 (-520)))))))
-(((-890 |#1| |#2|) (-13 (-299 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-512)) (IF (|has| |#2| (-124)) (-15 -4118 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4227)) (-6 -4227) |%noBranch|))) (-969) (-727)) (T -890))
-((-4118 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-890 *3 *2)) (-4 *2 (-124)) (-4 *3 (-512)) (-4 *3 (-969)) (-4 *2 (-727)))))
-(-13 (-299 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-512)) (IF (|has| |#2| (-124)) (-15 -4118 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4227)) (-6 -4227) |%noBranch|)))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL (-3700 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-728)) (|has| |#2| (-728)))))) (-1224 (($ $ $) 63 (-12 (|has| |#1| (-728)) (|has| |#2| (-728))))) (-1917 (((-3 $ "failed") $ $) 50 (-3700 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-728)) (|has| |#2| (-728)))))) (-1628 (((-706)) 34 (-12 (|has| |#1| (-341)) (|has| |#2| (-341))))) (-2207 ((|#2| $) 21)) (-1432 ((|#1| $) 20)) (-3961 (($) NIL (-3700 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-445)) (|has| |#2| (-445))) (-12 (|has| |#1| (-662)) (|has| |#2| (-662))) (-12 (|has| |#1| (-728)) (|has| |#2| (-728)))) CONST)) (-1540 (((-3 $ "failed") $) NIL (-3700 (-12 (|has| |#1| (-445)) (|has| |#2| (-445))) (-12 (|has| |#1| (-662)) (|has| |#2| (-662)))))) (-3249 (($) NIL (-12 (|has| |#1| (-341)) (|has| |#2| (-341))))) (-1537 (((-108) $) NIL (-3700 (-12 (|has| |#1| (-445)) (|has| |#2| (-445))) (-12 (|has| |#1| (-662)) (|has| |#2| (-662)))))) (-2809 (($ $ $) NIL (-3700 (-12 (|has| |#1| (-728)) (|has| |#2| (-728))) (-12 (|has| |#1| (-783)) (|has| |#2| (-783)))))) (-2446 (($ $ $) NIL (-3700 (-12 (|has| |#1| (-728)) (|has| |#2| (-728))) (-12 (|has| |#1| (-783)) (|has| |#2| (-783)))))) (-2028 (($ |#1| |#2|) 19)) (-3040 (((-849) $) NIL (-12 (|has| |#1| (-341)) (|has| |#2| (-341))))) (-1239 (((-1066) $) NIL)) (-3093 (($ $) 37 (-12 (|has| |#1| (-445)) (|has| |#2| (-445))))) (-2716 (($ (-849)) NIL (-12 (|has| |#1| (-341)) (|has| |#2| (-341))))) (-4142 (((-1030) $) NIL)) (-2945 (($ $ $) NIL (-12 (|has| |#1| (-445)) (|has| |#2| (-445))))) (-3607 (($ $ $) NIL (-12 (|has| |#1| (-445)) (|has| |#2| (-445))))) (-2188 (((-791) $) 14)) (-3504 (($ $ (-520)) NIL (-12 (|has| |#1| (-445)) (|has| |#2| (-445)))) (($ $ (-706)) NIL (-3700 (-12 (|has| |#1| (-445)) (|has| |#2| (-445))) (-12 (|has| |#1| (-662)) (|has| |#2| (-662))))) (($ $ (-849)) NIL (-3700 (-12 (|has| |#1| (-445)) (|has| |#2| (-445))) (-12 (|has| |#1| (-662)) (|has| |#2| (-662)))))) (-3560 (($) 40 (-3700 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-728)) (|has| |#2| (-728)))) CONST)) (-3570 (($) 24 (-3700 (-12 (|has| |#1| (-445)) (|has| |#2| (-445))) (-12 (|has| |#1| (-662)) (|has| |#2| (-662)))) CONST)) (-1573 (((-108) $ $) NIL (-3700 (-12 (|has| |#1| (-728)) (|has| |#2| (-728))) (-12 (|has| |#1| (-783)) (|has| |#2| (-783)))))) (-1557 (((-108) $ $) NIL (-3700 (-12 (|has| |#1| (-728)) (|has| |#2| (-728))) (-12 (|has| |#1| (-783)) (|has| |#2| (-783)))))) (-1530 (((-108) $ $) 18)) (-1565 (((-108) $ $) NIL (-3700 (-12 (|has| |#1| (-728)) (|has| |#2| (-728))) (-12 (|has| |#1| (-783)) (|has| |#2| (-783)))))) (-1548 (((-108) $ $) 66 (-3700 (-12 (|has| |#1| (-728)) (|has| |#2| (-728))) (-12 (|has| |#1| (-783)) (|has| |#2| (-783)))))) (-1619 (($ $ $) NIL (-12 (|has| |#1| (-445)) (|has| |#2| (-445))))) (-1611 (($ $ $) 56 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 53 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-1601 (($ $ $) 43 (-3700 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-728)) (|has| |#2| (-728)))))) (** (($ $ (-520)) NIL (-12 (|has| |#1| (-445)) (|has| |#2| (-445)))) (($ $ (-706)) 31 (-3700 (-12 (|has| |#1| (-445)) (|has| |#2| (-445))) (-12 (|has| |#1| (-662)) (|has| |#2| (-662))))) (($ $ (-849)) NIL (-3700 (-12 (|has| |#1| (-445)) (|has| |#2| (-445))) (-12 (|has| |#1| (-662)) (|has| |#2| (-662)))))) (* (($ (-520) $) 60 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-706) $) 46 (-3700 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-728)) (|has| |#2| (-728))))) (($ (-849) $) NIL (-3700 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-728)) (|has| |#2| (-728))))) (($ $ $) 27 (-3700 (-12 (|has| |#1| (-445)) (|has| |#2| (-445))) (-12 (|has| |#1| (-662)) (|has| |#2| (-662)))))))
-(((-891 |#1| |#2|) (-13 (-1012) (-10 -8 (IF (|has| |#1| (-341)) (IF (|has| |#2| (-341)) (-6 (-341)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-662)) (IF (|has| |#2| (-662)) (-6 (-662)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-124)) (IF (|has| |#2| (-124)) (-6 (-124)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-445)) (IF (|has| |#2| (-445)) (-6 (-445)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-728)) (IF (|has| |#2| (-728)) (-6 (-728)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-783)) (IF (|has| |#2| (-783)) (-6 (-783)) |%noBranch|) |%noBranch|) (-15 -2028 ($ |#1| |#2|)) (-15 -1432 (|#1| $)) (-15 -2207 (|#2| $)))) (-1012) (-1012)) (T -891))
-((-2028 (*1 *1 *2 *3) (-12 (-5 *1 (-891 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1012)))) (-1432 (*1 *2 *1) (-12 (-4 *2 (-1012)) (-5 *1 (-891 *2 *3)) (-4 *3 (-1012)))) (-2207 (*1 *2 *1) (-12 (-4 *2 (-1012)) (-5 *1 (-891 *3 *2)) (-4 *3 (-1012)))))
-(-13 (-1012) (-10 -8 (IF (|has| |#1| (-341)) (IF (|has| |#2| (-341)) (-6 (-341)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-662)) (IF (|has| |#2| (-662)) (-6 (-662)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-124)) (IF (|has| |#2| (-124)) (-6 (-124)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-445)) (IF (|has| |#2| (-445)) (-6 (-445)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-728)) (IF (|has| |#2| (-728)) (-6 (-728)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-783)) (IF (|has| |#2| (-783)) (-6 (-783)) |%noBranch|) |%noBranch|) (-15 -2028 ($ |#1| |#2|)) (-15 -1432 (|#1| $)) (-15 -2207 (|#2| $))))
-((-4081 (((-1014 (-1083)) $) 19)) (-4044 (((-108) $) 26)) (-1610 (((-1083) $) 27)) (-1766 (((-108) $) 24)) (-2225 ((|#1| $) 25)) (-3000 (((-801 $ $) $) 34)) (-1524 (((-108) $) 33)) (-3991 (($ $ $) 12)) (-3005 (($ $) 29)) (-2569 (((-108) $) 28)) (-2399 (($ $) 10)) (-3998 (((-801 $ $) $) 36)) (-2502 (((-108) $) 35)) (-3332 (($ $ $) 13)) (-1456 (((-801 $ $) $) 38)) (-1369 (((-108) $) 37)) (-2922 (($ $ $) 14)) (-2188 (($ |#1|) 7) (($ (-1083)) 9) (((-791) $) 40 (|has| |#1| (-560 (-791))))) (-3095 (((-801 $ $) $) 32)) (-3166 (((-108) $) 30)) (-4006 (($ $ $) 11)))
-(((-892 |#1|) (-13 (-893) (-10 -8 (IF (|has| |#1| (-560 (-791))) (-6 (-560 (-791))) |%noBranch|) (-15 -2188 ($ |#1|)) (-15 -2188 ($ (-1083))) (-15 -4081 ((-1014 (-1083)) $)) (-15 -1766 ((-108) $)) (-15 -2225 (|#1| $)) (-15 -4044 ((-108) $)) (-15 -1610 ((-1083) $)) (-15 -2569 ((-108) $)) (-15 -3005 ($ $)) (-15 -3166 ((-108) $)) (-15 -3095 ((-801 $ $) $)) (-15 -1524 ((-108) $)) (-15 -3000 ((-801 $ $) $)) (-15 -2502 ((-108) $)) (-15 -3998 ((-801 $ $) $)) (-15 -1369 ((-108) $)) (-15 -1456 ((-801 $ $) $)))) (-893)) (T -892))
-((-2188 (*1 *1 *2) (-12 (-5 *1 (-892 *2)) (-4 *2 (-893)))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-1083)) (-5 *1 (-892 *3)) (-4 *3 (-893)))) (-4081 (*1 *2 *1) (-12 (-5 *2 (-1014 (-1083))) (-5 *1 (-892 *3)) (-4 *3 (-893)))) (-1766 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-892 *3)) (-4 *3 (-893)))) (-2225 (*1 *2 *1) (-12 (-5 *1 (-892 *2)) (-4 *2 (-893)))) (-4044 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-892 *3)) (-4 *3 (-893)))) (-1610 (*1 *2 *1) (-12 (-5 *2 (-1083)) (-5 *1 (-892 *3)) (-4 *3 (-893)))) (-2569 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-892 *3)) (-4 *3 (-893)))) (-3005 (*1 *1 *1) (-12 (-5 *1 (-892 *2)) (-4 *2 (-893)))) (-3166 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-892 *3)) (-4 *3 (-893)))) (-3095 (*1 *2 *1) (-12 (-5 *2 (-801 (-892 *3) (-892 *3))) (-5 *1 (-892 *3)) (-4 *3 (-893)))) (-1524 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-892 *3)) (-4 *3 (-893)))) (-3000 (*1 *2 *1) (-12 (-5 *2 (-801 (-892 *3) (-892 *3))) (-5 *1 (-892 *3)) (-4 *3 (-893)))) (-2502 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-892 *3)) (-4 *3 (-893)))) (-3998 (*1 *2 *1) (-12 (-5 *2 (-801 (-892 *3) (-892 *3))) (-5 *1 (-892 *3)) (-4 *3 (-893)))) (-1369 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-892 *3)) (-4 *3 (-893)))) (-1456 (*1 *2 *1) (-12 (-5 *2 (-801 (-892 *3) (-892 *3))) (-5 *1 (-892 *3)) (-4 *3 (-893)))))
-(-13 (-893) (-10 -8 (IF (|has| |#1| (-560 (-791))) (-6 (-560 (-791))) |%noBranch|) (-15 -2188 ($ |#1|)) (-15 -2188 ($ (-1083))) (-15 -4081 ((-1014 (-1083)) $)) (-15 -1766 ((-108) $)) (-15 -2225 (|#1| $)) (-15 -4044 ((-108) $)) (-15 -1610 ((-1083) $)) (-15 -2569 ((-108) $)) (-15 -3005 ($ $)) (-15 -3166 ((-108) $)) (-15 -3095 ((-801 $ $) $)) (-15 -1524 ((-108) $)) (-15 -3000 ((-801 $ $) $)) (-15 -2502 ((-108) $)) (-15 -3998 ((-801 $ $) $)) (-15 -1369 ((-108) $)) (-15 -1456 ((-801 $ $) $))))
-((-3991 (($ $ $) 8)) (-2399 (($ $) 6)) (-3332 (($ $ $) 9)) (-2922 (($ $ $) 10)) (-4006 (($ $ $) 7)))
-(((-893) (-1195)) (T -893))
-((-2922 (*1 *1 *1 *1) (-4 *1 (-893))) (-3332 (*1 *1 *1 *1) (-4 *1 (-893))) (-3991 (*1 *1 *1 *1) (-4 *1 (-893))) (-4006 (*1 *1 *1 *1) (-4 *1 (-893))) (-2399 (*1 *1 *1) (-4 *1 (-893))))
-(-13 (-10 -8 (-15 -2399 ($ $)) (-15 -4006 ($ $ $)) (-15 -3991 ($ $ $)) (-15 -3332 ($ $ $)) (-15 -2922 ($ $ $))))
-((-1414 (((-108) $ $) 19 (|has| |#1| (-1012)))) (-2063 (((-108) $ (-706)) 8)) (-3961 (($) 7 T CONST)) (-3828 (((-586 |#1|) $) 30 (|has| $ (-6 -4229)))) (-3027 (((-108) $ (-706)) 9)) (-3235 (($ $ $) 43)) (-1819 (($ $ $) 44)) (-3702 (((-586 |#1|) $) 29 (|has| $ (-6 -4229)))) (-2422 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-2446 ((|#1| $) 45)) (-3830 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#1| |#1|) $) 35)) (-1390 (((-108) $ (-706)) 10)) (-1239 (((-1066) $) 22 (|has| |#1| (-1012)))) (-3351 ((|#1| $) 39)) (-3618 (($ |#1| $) 40)) (-4142 (((-1030) $) 21 (|has| |#1| (-1012)))) (-3345 ((|#1| $) 41)) (-4155 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 |#1|))) 26 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-268 |#1|)) 25 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-586 |#1|) (-586 |#1|)) 23 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))) (-2533 (((-108) $ $) 14)) (-4018 (((-108) $) 11)) (-2238 (($) 12)) (-4159 (((-706) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4229))) (((-706) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-2403 (($ $) 13)) (-2188 (((-791) $) 18 (|has| |#1| (-560 (-791))))) (-1898 (($ (-586 |#1|)) 42)) (-1662 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4229)))) (-1530 (((-108) $ $) 20 (|has| |#1| (-1012)))) (-3474 (((-706) $) 6 (|has| $ (-6 -4229)))))
-(((-894 |#1|) (-1195) (-783)) (T -894))
-((-2446 (*1 *2 *1) (-12 (-4 *1 (-894 *2)) (-4 *2 (-783)))) (-1819 (*1 *1 *1 *1) (-12 (-4 *1 (-894 *2)) (-4 *2 (-783)))) (-3235 (*1 *1 *1 *1) (-12 (-4 *1 (-894 *2)) (-4 *2 (-783)))))
-(-13 (-102 |t#1|) (-10 -8 (-6 -4229) (-15 -2446 (|t#1| $)) (-15 -1819 ($ $ $)) (-15 -3235 ($ $ $))))
-(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1012)) ((-560 (-791)) -3700 (|has| |#1| (-1012)) (|has| |#1| (-560 (-791)))) ((-283 |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))) ((-459 |#1|) . T) ((-481 |#1| |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))) ((-1012) |has| |#1| (-1012)) ((-1118) . T))
-((-2874 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2257 |#2|)) |#2| |#2|) 85)) (-3309 ((|#2| |#2| |#2|) 83)) (-3448 (((-2 (|:| |coef2| |#2|) (|:| -2257 |#2|)) |#2| |#2|) 87)) (-4061 (((-2 (|:| |coef1| |#2|) (|:| -2257 |#2|)) |#2| |#2|) 89)) (-3569 (((-2 (|:| |coef2| |#2|) (|:| -1267 |#1|)) |#2| |#2|) 107 (|has| |#1| (-424)))) (-3799 (((-2 (|:| |coef2| |#2|) (|:| -2413 |#1|)) |#2| |#2|) 46)) (-2135 (((-2 (|:| |coef2| |#2|) (|:| -2413 |#1|)) |#2| |#2|) 64)) (-2142 (((-2 (|:| |coef1| |#2|) (|:| -2413 |#1|)) |#2| |#2|) 66)) (-3537 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 78)) (-3637 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-706)) 71)) (-2836 (((-2 (|:| |coef2| |#2|) (|:| -2732 |#1|)) |#2|) 97)) (-1863 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-706)) 74)) (-2419 (((-586 (-706)) |#2| |#2|) 82)) (-3162 ((|#1| |#2| |#2|) 42)) (-2620 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1267 |#1|)) |#2| |#2|) 105 (|has| |#1| (-424)))) (-1267 ((|#1| |#2| |#2|) 103 (|has| |#1| (-424)))) (-2245 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2413 |#1|)) |#2| |#2|) 44)) (-2859 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2413 |#1|)) |#2| |#2|) 63)) (-2413 ((|#1| |#2| |#2|) 61)) (-1973 (((-2 (|:| -2972 |#1|) (|:| -2060 |#2|) (|:| -3753 |#2|)) |#2| |#2|) 35)) (-2398 ((|#2| |#2| |#2| |#2| |#1|) 53)) (-3491 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 76)) (-2170 ((|#2| |#2| |#2|) 75)) (-2650 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-706)) 69)) (-3975 ((|#2| |#2| |#2| (-706)) 67)) (-2257 ((|#2| |#2| |#2|) 111 (|has| |#1| (-424)))) (-2230 (((-1164 |#2|) (-1164 |#2|) |#1|) 21)) (-2806 (((-2 (|:| -2060 |#2|) (|:| -3753 |#2|)) |#2| |#2|) 39)) (-2941 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2732 |#1|)) |#2|) 95)) (-2732 ((|#1| |#2|) 92)) (-1870 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-706)) 73)) (-1343 ((|#2| |#2| |#2| (-706)) 72)) (-3910 (((-586 |#2|) |#2| |#2|) 80)) (-1849 ((|#2| |#2| |#1| |#1| (-706)) 50)) (-2712 ((|#1| |#1| |#1| (-706)) 49)) (* (((-1164 |#2|) |#1| (-1164 |#2|)) 16)))
-(((-895 |#1| |#2|) (-10 -7 (-15 -2413 (|#1| |#2| |#2|)) (-15 -2859 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2413 |#1|)) |#2| |#2|)) (-15 -2135 ((-2 (|:| |coef2| |#2|) (|:| -2413 |#1|)) |#2| |#2|)) (-15 -2142 ((-2 (|:| |coef1| |#2|) (|:| -2413 |#1|)) |#2| |#2|)) (-15 -3975 (|#2| |#2| |#2| (-706))) (-15 -2650 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-706))) (-15 -3637 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-706))) (-15 -1343 (|#2| |#2| |#2| (-706))) (-15 -1870 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-706))) (-15 -1863 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-706))) (-15 -2170 (|#2| |#2| |#2|)) (-15 -3491 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3537 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3309 (|#2| |#2| |#2|)) (-15 -2874 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2257 |#2|)) |#2| |#2|)) (-15 -3448 ((-2 (|:| |coef2| |#2|) (|:| -2257 |#2|)) |#2| |#2|)) (-15 -4061 ((-2 (|:| |coef1| |#2|) (|:| -2257 |#2|)) |#2| |#2|)) (-15 -2732 (|#1| |#2|)) (-15 -2941 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2732 |#1|)) |#2|)) (-15 -2836 ((-2 (|:| |coef2| |#2|) (|:| -2732 |#1|)) |#2|)) (-15 -3910 ((-586 |#2|) |#2| |#2|)) (-15 -2419 ((-586 (-706)) |#2| |#2|)) (IF (|has| |#1| (-424)) (PROGN (-15 -1267 (|#1| |#2| |#2|)) (-15 -2620 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1267 |#1|)) |#2| |#2|)) (-15 -3569 ((-2 (|:| |coef2| |#2|) (|:| -1267 |#1|)) |#2| |#2|)) (-15 -2257 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1164 |#2|) |#1| (-1164 |#2|))) (-15 -2230 ((-1164 |#2|) (-1164 |#2|) |#1|)) (-15 -1973 ((-2 (|:| -2972 |#1|) (|:| -2060 |#2|) (|:| -3753 |#2|)) |#2| |#2|)) (-15 -2806 ((-2 (|:| -2060 |#2|) (|:| -3753 |#2|)) |#2| |#2|)) (-15 -2712 (|#1| |#1| |#1| (-706))) (-15 -1849 (|#2| |#2| |#1| |#1| (-706))) (-15 -2398 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3162 (|#1| |#2| |#2|)) (-15 -2245 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2413 |#1|)) |#2| |#2|)) (-15 -3799 ((-2 (|:| |coef2| |#2|) (|:| -2413 |#1|)) |#2| |#2|))) (-512) (-1140 |#1|)) (T -895))
-((-3799 (*1 *2 *3 *3) (-12 (-4 *4 (-512)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2413 *4))) (-5 *1 (-895 *4 *3)) (-4 *3 (-1140 *4)))) (-2245 (*1 *2 *3 *3) (-12 (-4 *4 (-512)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2413 *4))) (-5 *1 (-895 *4 *3)) (-4 *3 (-1140 *4)))) (-3162 (*1 *2 *3 *3) (-12 (-4 *2 (-512)) (-5 *1 (-895 *2 *3)) (-4 *3 (-1140 *2)))) (-2398 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-512)) (-5 *1 (-895 *3 *2)) (-4 *2 (-1140 *3)))) (-1849 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-706)) (-4 *3 (-512)) (-5 *1 (-895 *3 *2)) (-4 *2 (-1140 *3)))) (-2712 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-706)) (-4 *2 (-512)) (-5 *1 (-895 *2 *4)) (-4 *4 (-1140 *2)))) (-2806 (*1 *2 *3 *3) (-12 (-4 *4 (-512)) (-5 *2 (-2 (|:| -2060 *3) (|:| -3753 *3))) (-5 *1 (-895 *4 *3)) (-4 *3 (-1140 *4)))) (-1973 (*1 *2 *3 *3) (-12 (-4 *4 (-512)) (-5 *2 (-2 (|:| -2972 *4) (|:| -2060 *3) (|:| -3753 *3))) (-5 *1 (-895 *4 *3)) (-4 *3 (-1140 *4)))) (-2230 (*1 *2 *2 *3) (-12 (-5 *2 (-1164 *4)) (-4 *4 (-1140 *3)) (-4 *3 (-512)) (-5 *1 (-895 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1164 *4)) (-4 *4 (-1140 *3)) (-4 *3 (-512)) (-5 *1 (-895 *3 *4)))) (-2257 (*1 *2 *2 *2) (-12 (-4 *3 (-424)) (-4 *3 (-512)) (-5 *1 (-895 *3 *2)) (-4 *2 (-1140 *3)))) (-3569 (*1 *2 *3 *3) (-12 (-4 *4 (-424)) (-4 *4 (-512)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1267 *4))) (-5 *1 (-895 *4 *3)) (-4 *3 (-1140 *4)))) (-2620 (*1 *2 *3 *3) (-12 (-4 *4 (-424)) (-4 *4 (-512)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1267 *4))) (-5 *1 (-895 *4 *3)) (-4 *3 (-1140 *4)))) (-1267 (*1 *2 *3 *3) (-12 (-4 *2 (-512)) (-4 *2 (-424)) (-5 *1 (-895 *2 *3)) (-4 *3 (-1140 *2)))) (-2419 (*1 *2 *3 *3) (-12 (-4 *4 (-512)) (-5 *2 (-586 (-706))) (-5 *1 (-895 *4 *3)) (-4 *3 (-1140 *4)))) (-3910 (*1 *2 *3 *3) (-12 (-4 *4 (-512)) (-5 *2 (-586 *3)) (-5 *1 (-895 *4 *3)) (-4 *3 (-1140 *4)))) (-2836 (*1 *2 *3) (-12 (-4 *4 (-512)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2732 *4))) (-5 *1 (-895 *4 *3)) (-4 *3 (-1140 *4)))) (-2941 (*1 *2 *3) (-12 (-4 *4 (-512)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2732 *4))) (-5 *1 (-895 *4 *3)) (-4 *3 (-1140 *4)))) (-2732 (*1 *2 *3) (-12 (-4 *2 (-512)) (-5 *1 (-895 *2 *3)) (-4 *3 (-1140 *2)))) (-4061 (*1 *2 *3 *3) (-12 (-4 *4 (-512)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2257 *3))) (-5 *1 (-895 *4 *3)) (-4 *3 (-1140 *4)))) (-3448 (*1 *2 *3 *3) (-12 (-4 *4 (-512)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2257 *3))) (-5 *1 (-895 *4 *3)) (-4 *3 (-1140 *4)))) (-2874 (*1 *2 *3 *3) (-12 (-4 *4 (-512)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2257 *3))) (-5 *1 (-895 *4 *3)) (-4 *3 (-1140 *4)))) (-3309 (*1 *2 *2 *2) (-12 (-4 *3 (-512)) (-5 *1 (-895 *3 *2)) (-4 *2 (-1140 *3)))) (-3537 (*1 *2 *3 *3) (-12 (-4 *4 (-512)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-895 *4 *3)) (-4 *3 (-1140 *4)))) (-3491 (*1 *2 *3 *3) (-12 (-4 *4 (-512)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-895 *4 *3)) (-4 *3 (-1140 *4)))) (-2170 (*1 *2 *2 *2) (-12 (-4 *3 (-512)) (-5 *1 (-895 *3 *2)) (-4 *2 (-1140 *3)))) (-1863 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-706)) (-4 *5 (-512)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-895 *5 *3)) (-4 *3 (-1140 *5)))) (-1870 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-706)) (-4 *5 (-512)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-895 *5 *3)) (-4 *3 (-1140 *5)))) (-1343 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-706)) (-4 *4 (-512)) (-5 *1 (-895 *4 *2)) (-4 *2 (-1140 *4)))) (-3637 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-706)) (-4 *5 (-512)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-895 *5 *3)) (-4 *3 (-1140 *5)))) (-2650 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-706)) (-4 *5 (-512)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-895 *5 *3)) (-4 *3 (-1140 *5)))) (-3975 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-706)) (-4 *4 (-512)) (-5 *1 (-895 *4 *2)) (-4 *2 (-1140 *4)))) (-2142 (*1 *2 *3 *3) (-12 (-4 *4 (-512)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2413 *4))) (-5 *1 (-895 *4 *3)) (-4 *3 (-1140 *4)))) (-2135 (*1 *2 *3 *3) (-12 (-4 *4 (-512)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2413 *4))) (-5 *1 (-895 *4 *3)) (-4 *3 (-1140 *4)))) (-2859 (*1 *2 *3 *3) (-12 (-4 *4 (-512)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2413 *4))) (-5 *1 (-895 *4 *3)) (-4 *3 (-1140 *4)))) (-2413 (*1 *2 *3 *3) (-12 (-4 *2 (-512)) (-5 *1 (-895 *2 *3)) (-4 *3 (-1140 *2)))))
-(-10 -7 (-15 -2413 (|#1| |#2| |#2|)) (-15 -2859 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2413 |#1|)) |#2| |#2|)) (-15 -2135 ((-2 (|:| |coef2| |#2|) (|:| -2413 |#1|)) |#2| |#2|)) (-15 -2142 ((-2 (|:| |coef1| |#2|) (|:| -2413 |#1|)) |#2| |#2|)) (-15 -3975 (|#2| |#2| |#2| (-706))) (-15 -2650 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-706))) (-15 -3637 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-706))) (-15 -1343 (|#2| |#2| |#2| (-706))) (-15 -1870 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-706))) (-15 -1863 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-706))) (-15 -2170 (|#2| |#2| |#2|)) (-15 -3491 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3537 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3309 (|#2| |#2| |#2|)) (-15 -2874 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2257 |#2|)) |#2| |#2|)) (-15 -3448 ((-2 (|:| |coef2| |#2|) (|:| -2257 |#2|)) |#2| |#2|)) (-15 -4061 ((-2 (|:| |coef1| |#2|) (|:| -2257 |#2|)) |#2| |#2|)) (-15 -2732 (|#1| |#2|)) (-15 -2941 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2732 |#1|)) |#2|)) (-15 -2836 ((-2 (|:| |coef2| |#2|) (|:| -2732 |#1|)) |#2|)) (-15 -3910 ((-586 |#2|) |#2| |#2|)) (-15 -2419 ((-586 (-706)) |#2| |#2|)) (IF (|has| |#1| (-424)) (PROGN (-15 -1267 (|#1| |#2| |#2|)) (-15 -2620 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1267 |#1|)) |#2| |#2|)) (-15 -3569 ((-2 (|:| |coef2| |#2|) (|:| -1267 |#1|)) |#2| |#2|)) (-15 -2257 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1164 |#2|) |#1| (-1164 |#2|))) (-15 -2230 ((-1164 |#2|) (-1164 |#2|) |#1|)) (-15 -1973 ((-2 (|:| -2972 |#1|) (|:| -2060 |#2|) (|:| -3753 |#2|)) |#2| |#2|)) (-15 -2806 ((-2 (|:| -2060 |#2|) (|:| -3753 |#2|)) |#2| |#2|)) (-15 -2712 (|#1| |#1| |#1| (-706))) (-15 -1849 (|#2| |#2| |#1| |#1| (-706))) (-15 -2398 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3162 (|#1| |#2| |#2|)) (-15 -2245 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2413 |#1|)) |#2| |#2|)) (-15 -3799 ((-2 (|:| |coef2| |#2|) (|:| -2413 |#1|)) |#2| |#2|)))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-1917 (((-3 $ "failed") $ $) 27)) (-3961 (($) NIL T CONST)) (-3247 (((-586 (-586 (-520))) (-586 (-520))) 29)) (-1857 (((-520) $) 45)) (-1993 (($ (-586 (-520))) 17)) (-2809 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-1429 (((-586 (-520)) $) 11)) (-2945 (($ $) 32)) (-2188 (((-791) $) 43) (((-586 (-520)) $) 9)) (-3560 (($) 7 T CONST)) (-1573 (((-108) $ $) NIL)) (-1557 (((-108) $ $) NIL)) (-1530 (((-108) $ $) 20)) (-1565 (((-108) $ $) NIL)) (-1548 (((-108) $ $) 19)) (-1601 (($ $ $) 21)) (* (($ (-706) $) 25) (($ (-849) $) NIL)))
-(((-896) (-13 (-731) (-561 (-586 (-520))) (-10 -8 (-15 -1993 ($ (-586 (-520)))) (-15 -3247 ((-586 (-586 (-520))) (-586 (-520)))) (-15 -1857 ((-520) $)) (-15 -2945 ($ $)) (-15 -2188 ((-586 (-520)) $))))) (T -896))
-((-1993 (*1 *1 *2) (-12 (-5 *2 (-586 (-520))) (-5 *1 (-896)))) (-3247 (*1 *2 *3) (-12 (-5 *2 (-586 (-586 (-520)))) (-5 *1 (-896)) (-5 *3 (-586 (-520))))) (-1857 (*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-896)))) (-2945 (*1 *1 *1) (-5 *1 (-896))) (-2188 (*1 *2 *1) (-12 (-5 *2 (-586 (-520))) (-5 *1 (-896)))))
-(-13 (-731) (-561 (-586 (-520))) (-10 -8 (-15 -1993 ($ (-586 (-520)))) (-15 -3247 ((-586 (-586 (-520))) (-586 (-520)))) (-15 -1857 ((-520) $)) (-15 -2945 ($ $)) (-15 -2188 ((-586 (-520)) $))))
-((-1619 (($ $ |#2|) 30)) (-1611 (($ $) 22) (($ $ $) NIL)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) 15) (($ $ $) NIL) (($ $ |#2|) 20) (($ |#2| $) 19) (($ (-380 (-520)) $) 26) (($ $ (-380 (-520))) 28)))
-(((-897 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-380 (-520)))) (-15 * (|#1| (-380 (-520)) |#1|)) (-15 -1619 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-520) |#1|)) (-15 -1611 (|#1| |#1| |#1|)) (-15 -1611 (|#1| |#1|)) (-15 * (|#1| (-706) |#1|)) (-15 * (|#1| (-849) |#1|))) (-898 |#2| |#3| |#4|) (-969) (-727) (-783)) (T -897))
-NIL
-(-10 -8 (-15 * (|#1| |#1| (-380 (-520)))) (-15 * (|#1| (-380 (-520)) |#1|)) (-15 -1619 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-520) |#1|)) (-15 -1611 (|#1| |#1| |#1|)) (-15 -1611 (|#1| |#1|)) (-15 * (|#1| (-706) |#1|)) (-15 * (|#1| (-849) |#1|)))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-4081 (((-586 |#3|) $) 74)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) 51 (|has| |#1| (-512)))) (-2583 (($ $) 52 (|has| |#1| (-512)))) (-1671 (((-108) $) 54 (|has| |#1| (-512)))) (-1917 (((-3 $ "failed") $ $) 19)) (-3961 (($) 17 T CONST)) (-3150 (($ $) 60)) (-1540 (((-3 $ "failed") $) 34)) (-1342 (((-108) $) 73)) (-1537 (((-108) $) 31)) (-3774 (((-108) $) 62)) (-4039 (($ |#1| |#2|) 61) (($ $ |#3| |#2|) 76) (($ $ (-586 |#3|) (-586 |#2|)) 75)) (-1389 (($ (-1 |#1| |#1|) $) 63)) (-3123 (($ $) 65)) (-3133 ((|#1| $) 66)) (-1239 (((-1066) $) 9)) (-4142 (((-1030) $) 10)) (-2230 (((-3 $ "failed") $ $) 50 (|has| |#1| (-512)))) (-2528 ((|#2| $) 64)) (-2759 (($ $) 72)) (-2188 (((-791) $) 11) (($ (-520)) 28) (($ (-380 (-520))) 57 (|has| |#1| (-37 (-380 (-520))))) (($ $) 49 (|has| |#1| (-512))) (($ |#1|) 47 (|has| |#1| (-157)))) (-3475 ((|#1| $ |#2|) 59)) (-3796 (((-3 $ "failed") $) 48 (|has| |#1| (-133)))) (-3251 (((-706)) 29)) (-2559 (((-108) $ $) 53 (|has| |#1| (-512)))) (-3504 (($ $ (-849)) 26) (($ $ (-706)) 33)) (-3560 (($) 18 T CONST)) (-3570 (($) 30 T CONST)) (-1530 (((-108) $ $) 6)) (-1619 (($ $ |#1|) 58 (|has| |#1| (-336)))) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-706)) 32)) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-380 (-520)) $) 56 (|has| |#1| (-37 (-380 (-520))))) (($ $ (-380 (-520))) 55 (|has| |#1| (-37 (-380 (-520)))))))
-(((-898 |#1| |#2| |#3|) (-1195) (-969) (-727) (-783)) (T -898))
-((-3133 (*1 *2 *1) (-12 (-4 *1 (-898 *2 *3 *4)) (-4 *3 (-727)) (-4 *4 (-783)) (-4 *2 (-969)))) (-3123 (*1 *1 *1) (-12 (-4 *1 (-898 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-727)) (-4 *4 (-783)))) (-2528 (*1 *2 *1) (-12 (-4 *1 (-898 *3 *2 *4)) (-4 *3 (-969)) (-4 *4 (-783)) (-4 *2 (-727)))) (-4039 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-898 *4 *3 *2)) (-4 *4 (-969)) (-4 *3 (-727)) (-4 *2 (-783)))) (-4039 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-586 *6)) (-5 *3 (-586 *5)) (-4 *1 (-898 *4 *5 *6)) (-4 *4 (-969)) (-4 *5 (-727)) (-4 *6 (-783)))) (-4081 (*1 *2 *1) (-12 (-4 *1 (-898 *3 *4 *5)) (-4 *3 (-969)) (-4 *4 (-727)) (-4 *5 (-783)) (-5 *2 (-586 *5)))) (-1342 (*1 *2 *1) (-12 (-4 *1 (-898 *3 *4 *5)) (-4 *3 (-969)) (-4 *4 (-727)) (-4 *5 (-783)) (-5 *2 (-108)))) (-2759 (*1 *1 *1) (-12 (-4 *1 (-898 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-727)) (-4 *4 (-783)))))
-(-13 (-46 |t#1| |t#2|) (-10 -8 (-15 -4039 ($ $ |t#3| |t#2|)) (-15 -4039 ($ $ (-586 |t#3|) (-586 |t#2|))) (-15 -3123 ($ $)) (-15 -3133 (|t#1| $)) (-15 -2528 (|t#2| $)) (-15 -4081 ((-586 |t#3|) $)) (-15 -1342 ((-108) $)) (-15 -2759 ($ $))))
-(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-380 (-520))) |has| |#1| (-37 (-380 (-520)))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) |has| |#1| (-512)) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-380 (-520)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3700 (|has| |#1| (-512)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-560 (-791)) . T) ((-157) -3700 (|has| |#1| (-512)) (|has| |#1| (-157))) ((-264) |has| |#1| (-512)) ((-512) |has| |#1| (-512)) ((-588 #0#) |has| |#1| (-37 (-380 (-520)))) ((-588 |#1|) . T) ((-588 $) . T) ((-653 #0#) |has| |#1| (-37 (-380 (-520)))) ((-653 |#1|) |has| |#1| (-157)) ((-653 $) |has| |#1| (-512)) ((-662) . T) ((-975 #0#) |has| |#1| (-37 (-380 (-520)))) ((-975 |#1|) . T) ((-975 $) -3700 (|has| |#1| (-512)) (|has| |#1| (-157))) ((-969) . T) ((-976) . T) ((-1024) . T) ((-1012) . T))
-((-3813 (((-1007 (-201)) $) 8)) (-3800 (((-1007 (-201)) $) 9)) (-3786 (((-1007 (-201)) $) 10)) (-3763 (((-586 (-586 (-871 (-201)))) $) 11)) (-2188 (((-791) $) 6)))
-(((-899) (-1195)) (T -899))
-((-3763 (*1 *2 *1) (-12 (-4 *1 (-899)) (-5 *2 (-586 (-586 (-871 (-201))))))) (-3786 (*1 *2 *1) (-12 (-4 *1 (-899)) (-5 *2 (-1007 (-201))))) (-3800 (*1 *2 *1) (-12 (-4 *1 (-899)) (-5 *2 (-1007 (-201))))) (-3813 (*1 *2 *1) (-12 (-4 *1 (-899)) (-5 *2 (-1007 (-201))))))
-(-13 (-560 (-791)) (-10 -8 (-15 -3763 ((-586 (-586 (-871 (-201)))) $)) (-15 -3786 ((-1007 (-201)) $)) (-15 -3800 ((-1007 (-201)) $)) (-15 -3813 ((-1007 (-201)) $))))
-(((-560 (-791)) . T))
-((-4081 (((-586 |#4|) $) 23)) (-2373 (((-108) $) 48)) (-1937 (((-108) $) 47)) (-3210 (((-2 (|:| |under| $) (|:| -1626 $) (|:| |upper| $)) $ |#4|) 36)) (-2215 (((-108) $) 49)) (-3078 (((-108) $ $) 55)) (-3675 (((-108) $ $) 58)) (-2786 (((-108) $) 53)) (-4167 (((-586 |#5|) (-586 |#5|) $) 90)) (-3415 (((-586 |#5|) (-586 |#5|) $) 87)) (-3753 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-2602 (((-586 |#4|) $) 27)) (-3394 (((-108) |#4| $) 30)) (-2130 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 73)) (-3399 (($ $ |#4|) 33)) (-4067 (($ $ |#4|) 32)) (-2513 (($ $ |#4|) 34)) (-1530 (((-108) $ $) 40)))
-(((-900 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1937 ((-108) |#1|)) (-15 -4167 ((-586 |#5|) (-586 |#5|) |#1|)) (-15 -3415 ((-586 |#5|) (-586 |#5|) |#1|)) (-15 -3753 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2130 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2215 ((-108) |#1|)) (-15 -3675 ((-108) |#1| |#1|)) (-15 -3078 ((-108) |#1| |#1|)) (-15 -2786 ((-108) |#1|)) (-15 -2373 ((-108) |#1|)) (-15 -3210 ((-2 (|:| |under| |#1|) (|:| -1626 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3399 (|#1| |#1| |#4|)) (-15 -2513 (|#1| |#1| |#4|)) (-15 -4067 (|#1| |#1| |#4|)) (-15 -3394 ((-108) |#4| |#1|)) (-15 -2602 ((-586 |#4|) |#1|)) (-15 -4081 ((-586 |#4|) |#1|)) (-15 -1530 ((-108) |#1| |#1|))) (-901 |#2| |#3| |#4| |#5|) (-969) (-728) (-783) (-983 |#2| |#3| |#4|)) (T -900))
-NIL
-(-10 -8 (-15 -1937 ((-108) |#1|)) (-15 -4167 ((-586 |#5|) (-586 |#5|) |#1|)) (-15 -3415 ((-586 |#5|) (-586 |#5|) |#1|)) (-15 -3753 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2130 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2215 ((-108) |#1|)) (-15 -3675 ((-108) |#1| |#1|)) (-15 -3078 ((-108) |#1| |#1|)) (-15 -2786 ((-108) |#1|)) (-15 -2373 ((-108) |#1|)) (-15 -3210 ((-2 (|:| |under| |#1|) (|:| -1626 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3399 (|#1| |#1| |#4|)) (-15 -2513 (|#1| |#1| |#4|)) (-15 -4067 (|#1| |#1| |#4|)) (-15 -3394 ((-108) |#4| |#1|)) (-15 -2602 ((-586 |#4|) |#1|)) (-15 -4081 ((-586 |#4|) |#1|)) (-15 -1530 ((-108) |#1| |#1|)))
-((-1414 (((-108) $ $) 7)) (-4081 (((-586 |#3|) $) 33)) (-2373 (((-108) $) 26)) (-1937 (((-108) $) 17 (|has| |#1| (-512)))) (-3210 (((-2 (|:| |under| $) (|:| -1626 $) (|:| |upper| $)) $ |#3|) 27)) (-2063 (((-108) $ (-706)) 44)) (-1627 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4229)))) (-3961 (($) 45 T CONST)) (-2215 (((-108) $) 22 (|has| |#1| (-512)))) (-3078 (((-108) $ $) 24 (|has| |#1| (-512)))) (-3675 (((-108) $ $) 23 (|has| |#1| (-512)))) (-2786 (((-108) $) 25 (|has| |#1| (-512)))) (-4167 (((-586 |#4|) (-586 |#4|) $) 18 (|has| |#1| (-512)))) (-3415 (((-586 |#4|) (-586 |#4|) $) 19 (|has| |#1| (-512)))) (-1296 (((-3 $ "failed") (-586 |#4|)) 36)) (-1482 (($ (-586 |#4|)) 35)) (-2331 (($ $) 68 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -4229))))) (-1421 (($ |#4| $) 67 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -4229)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4229)))) (-3753 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-512)))) (-3856 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -4229)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4229))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4229)))) (-3828 (((-586 |#4|) $) 52 (|has| $ (-6 -4229)))) (-3871 ((|#3| $) 34)) (-3027 (((-108) $ (-706)) 43)) (-3702 (((-586 |#4|) $) 53 (|has| $ (-6 -4229)))) (-2422 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -4229))))) (-3830 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#4| |#4|) $) 47)) (-2602 (((-586 |#3|) $) 32)) (-3394 (((-108) |#3| $) 31)) (-1390 (((-108) $ (-706)) 42)) (-1239 (((-1066) $) 9)) (-2130 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-512)))) (-4142 (((-1030) $) 10)) (-2985 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-4155 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 |#4|) (-586 |#4|)) 59 (-12 (|has| |#4| (-283 |#4|)) (|has| |#4| (-1012)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-283 |#4|)) (|has| |#4| (-1012)))) (($ $ (-268 |#4|)) 57 (-12 (|has| |#4| (-283 |#4|)) (|has| |#4| (-1012)))) (($ $ (-586 (-268 |#4|))) 56 (-12 (|has| |#4| (-283 |#4|)) (|has| |#4| (-1012))))) (-2533 (((-108) $ $) 38)) (-4018 (((-108) $) 41)) (-2238 (($) 40)) (-4159 (((-706) |#4| $) 54 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -4229)))) (((-706) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4229)))) (-2403 (($ $) 39)) (-1429 (((-496) $) 69 (|has| |#4| (-561 (-496))))) (-2200 (($ (-586 |#4|)) 60)) (-3399 (($ $ |#3|) 28)) (-4067 (($ $ |#3|) 30)) (-2513 (($ $ |#3|) 29)) (-2188 (((-791) $) 11) (((-586 |#4|) $) 37)) (-1662 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4229)))) (-1530 (((-108) $ $) 6)) (-3474 (((-706) $) 46 (|has| $ (-6 -4229)))))
-(((-901 |#1| |#2| |#3| |#4|) (-1195) (-969) (-728) (-783) (-983 |t#1| |t#2| |t#3|)) (T -901))
-((-1296 (*1 *1 *2) (|partial| -12 (-5 *2 (-586 *6)) (-4 *6 (-983 *3 *4 *5)) (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783)) (-4 *1 (-901 *3 *4 *5 *6)))) (-1482 (*1 *1 *2) (-12 (-5 *2 (-586 *6)) (-4 *6 (-983 *3 *4 *5)) (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783)) (-4 *1 (-901 *3 *4 *5 *6)))) (-3871 (*1 *2 *1) (-12 (-4 *1 (-901 *3 *4 *2 *5)) (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-983 *3 *4 *2)) (-4 *2 (-783)))) (-4081 (*1 *2 *1) (-12 (-4 *1 (-901 *3 *4 *5 *6)) (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783)) (-4 *6 (-983 *3 *4 *5)) (-5 *2 (-586 *5)))) (-2602 (*1 *2 *1) (-12 (-4 *1 (-901 *3 *4 *5 *6)) (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783)) (-4 *6 (-983 *3 *4 *5)) (-5 *2 (-586 *5)))) (-3394 (*1 *2 *3 *1) (-12 (-4 *1 (-901 *4 *5 *3 *6)) (-4 *4 (-969)) (-4 *5 (-728)) (-4 *3 (-783)) (-4 *6 (-983 *4 *5 *3)) (-5 *2 (-108)))) (-4067 (*1 *1 *1 *2) (-12 (-4 *1 (-901 *3 *4 *2 *5)) (-4 *3 (-969)) (-4 *4 (-728)) (-4 *2 (-783)) (-4 *5 (-983 *3 *4 *2)))) (-2513 (*1 *1 *1 *2) (-12 (-4 *1 (-901 *3 *4 *2 *5)) (-4 *3 (-969)) (-4 *4 (-728)) (-4 *2 (-783)) (-4 *5 (-983 *3 *4 *2)))) (-3399 (*1 *1 *1 *2) (-12 (-4 *1 (-901 *3 *4 *2 *5)) (-4 *3 (-969)) (-4 *4 (-728)) (-4 *2 (-783)) (-4 *5 (-983 *3 *4 *2)))) (-3210 (*1 *2 *1 *3) (-12 (-4 *4 (-969)) (-4 *5 (-728)) (-4 *3 (-783)) (-4 *6 (-983 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -1626 *1) (|:| |upper| *1))) (-4 *1 (-901 *4 *5 *3 *6)))) (-2373 (*1 *2 *1) (-12 (-4 *1 (-901 *3 *4 *5 *6)) (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783)) (-4 *6 (-983 *3 *4 *5)) (-5 *2 (-108)))) (-2786 (*1 *2 *1) (-12 (-4 *1 (-901 *3 *4 *5 *6)) (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783)) (-4 *6 (-983 *3 *4 *5)) (-4 *3 (-512)) (-5 *2 (-108)))) (-3078 (*1 *2 *1 *1) (-12 (-4 *1 (-901 *3 *4 *5 *6)) (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783)) (-4 *6 (-983 *3 *4 *5)) (-4 *3 (-512)) (-5 *2 (-108)))) (-3675 (*1 *2 *1 *1) (-12 (-4 *1 (-901 *3 *4 *5 *6)) (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783)) (-4 *6 (-983 *3 *4 *5)) (-4 *3 (-512)) (-5 *2 (-108)))) (-2215 (*1 *2 *1) (-12 (-4 *1 (-901 *3 *4 *5 *6)) (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783)) (-4 *6 (-983 *3 *4 *5)) (-4 *3 (-512)) (-5 *2 (-108)))) (-2130 (*1 *2 *3 *1) (-12 (-4 *1 (-901 *4 *5 *6 *3)) (-4 *4 (-969)) (-4 *5 (-728)) (-4 *6 (-783)) (-4 *3 (-983 *4 *5 *6)) (-4 *4 (-512)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-3753 (*1 *2 *3 *1) (-12 (-4 *1 (-901 *4 *5 *6 *3)) (-4 *4 (-969)) (-4 *5 (-728)) (-4 *6 (-783)) (-4 *3 (-983 *4 *5 *6)) (-4 *4 (-512)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-3415 (*1 *2 *2 *1) (-12 (-5 *2 (-586 *6)) (-4 *1 (-901 *3 *4 *5 *6)) (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783)) (-4 *6 (-983 *3 *4 *5)) (-4 *3 (-512)))) (-4167 (*1 *2 *2 *1) (-12 (-5 *2 (-586 *6)) (-4 *1 (-901 *3 *4 *5 *6)) (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783)) (-4 *6 (-983 *3 *4 *5)) (-4 *3 (-512)))) (-1937 (*1 *2 *1) (-12 (-4 *1 (-901 *3 *4 *5 *6)) (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783)) (-4 *6 (-983 *3 *4 *5)) (-4 *3 (-512)) (-5 *2 (-108)))))
-(-13 (-1012) (-139 |t#4|) (-560 (-586 |t#4|)) (-10 -8 (-6 -4229) (-15 -1296 ((-3 $ "failed") (-586 |t#4|))) (-15 -1482 ($ (-586 |t#4|))) (-15 -3871 (|t#3| $)) (-15 -4081 ((-586 |t#3|) $)) (-15 -2602 ((-586 |t#3|) $)) (-15 -3394 ((-108) |t#3| $)) (-15 -4067 ($ $ |t#3|)) (-15 -2513 ($ $ |t#3|)) (-15 -3399 ($ $ |t#3|)) (-15 -3210 ((-2 (|:| |under| $) (|:| -1626 $) (|:| |upper| $)) $ |t#3|)) (-15 -2373 ((-108) $)) (IF (|has| |t#1| (-512)) (PROGN (-15 -2786 ((-108) $)) (-15 -3078 ((-108) $ $)) (-15 -3675 ((-108) $ $)) (-15 -2215 ((-108) $)) (-15 -2130 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3753 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3415 ((-586 |t#4|) (-586 |t#4|) $)) (-15 -4167 ((-586 |t#4|) (-586 |t#4|) $)) (-15 -1937 ((-108) $))) |%noBranch|)))
-(((-33) . T) ((-97) . T) ((-560 (-586 |#4|)) . T) ((-560 (-791)) . T) ((-139 |#4|) . T) ((-561 (-496)) |has| |#4| (-561 (-496))) ((-283 |#4|) -12 (|has| |#4| (-283 |#4|)) (|has| |#4| (-1012))) ((-459 |#4|) . T) ((-481 |#4| |#4|) -12 (|has| |#4| (-283 |#4|)) (|has| |#4| (-1012))) ((-1012) . T) ((-1118) . T))
-((-2076 (((-586 |#4|) |#4| |#4|) 115)) (-3533 (((-586 |#4|) (-586 |#4|) (-108)) 104 (|has| |#1| (-424))) (((-586 |#4|) (-586 |#4|)) 105 (|has| |#1| (-424)))) (-2588 (((-2 (|:| |goodPols| (-586 |#4|)) (|:| |badPols| (-586 |#4|))) (-586 |#4|)) 35)) (-1248 (((-108) |#4|) 34)) (-2383 (((-586 |#4|) |#4|) 101 (|has| |#1| (-424)))) (-3806 (((-2 (|:| |goodPols| (-586 |#4|)) (|:| |badPols| (-586 |#4|))) (-1 (-108) |#4|) (-586 |#4|)) 20)) (-2232 (((-2 (|:| |goodPols| (-586 |#4|)) (|:| |badPols| (-586 |#4|))) (-586 (-1 (-108) |#4|)) (-586 |#4|)) 22)) (-1596 (((-2 (|:| |goodPols| (-586 |#4|)) (|:| |badPols| (-586 |#4|))) (-586 (-1 (-108) |#4|)) (-586 |#4|)) 23)) (-2717 (((-3 (-2 (|:| |bas| (-448 |#1| |#2| |#3| |#4|)) (|:| -1353 (-586 |#4|))) "failed") (-586 |#4|)) 73)) (-3105 (((-586 |#4|) (-586 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|)) 85)) (-1939 (((-586 |#4|) (-586 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|)) 108)) (-2240 (((-586 |#4|) (-586 |#4|)) 107)) (-1669 (((-586 |#4|) (-586 |#4|) (-586 |#4|) (-108)) 48) (((-586 |#4|) (-586 |#4|) (-586 |#4|)) 50)) (-3450 ((|#4| |#4| (-586 |#4|)) 49)) (-2012 (((-586 |#4|) (-586 |#4|) (-586 |#4|)) 111 (|has| |#1| (-424)))) (-2164 (((-586 |#4|) (-586 |#4|) (-586 |#4|)) 114 (|has| |#1| (-424)))) (-1362 (((-586 |#4|) (-586 |#4|) (-586 |#4|)) 113 (|has| |#1| (-424)))) (-2327 (((-586 |#4|) (-586 |#4|) (-586 |#4|) (-1 (-586 |#4|) (-586 |#4|))) 87) (((-586 |#4|) (-586 |#4|) (-586 |#4|)) 89) (((-586 |#4|) (-586 |#4|) |#4|) 118) (((-586 |#4|) |#4| |#4|) 116) (((-586 |#4|) (-586 |#4|)) 88)) (-2694 (((-586 |#4|) (-586 |#4|) (-586 |#4|)) 98 (-12 (|has| |#1| (-135)) (|has| |#1| (-281))))) (-1760 (((-2 (|:| |goodPols| (-586 |#4|)) (|:| |badPols| (-586 |#4|))) (-586 |#4|)) 41)) (-3638 (((-108) (-586 |#4|)) 62)) (-1749 (((-108) (-586 |#4|) (-586 (-586 |#4|))) 53)) (-1701 (((-2 (|:| |goodPols| (-586 |#4|)) (|:| |badPols| (-586 |#4|))) (-586 |#4|)) 29)) (-3692 (((-108) |#4|) 28)) (-1942 (((-586 |#4|) (-586 |#4|)) 97 (-12 (|has| |#1| (-135)) (|has| |#1| (-281))))) (-1590 (((-586 |#4|) (-586 |#4|)) 96 (-12 (|has| |#1| (-135)) (|has| |#1| (-281))))) (-1685 (((-586 |#4|) (-586 |#4|)) 66)) (-3893 (((-586 |#4|) (-586 |#4|)) 79)) (-3678 (((-108) (-586 |#4|) (-586 |#4|)) 51)) (-2161 (((-2 (|:| |goodPols| (-586 |#4|)) (|:| |badPols| (-586 |#4|))) (-586 |#4|)) 39)) (-2835 (((-108) |#4|) 36)))
-(((-902 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2327 ((-586 |#4|) (-586 |#4|))) (-15 -2327 ((-586 |#4|) |#4| |#4|)) (-15 -2240 ((-586 |#4|) (-586 |#4|))) (-15 -2076 ((-586 |#4|) |#4| |#4|)) (-15 -2327 ((-586 |#4|) (-586 |#4|) |#4|)) (-15 -2327 ((-586 |#4|) (-586 |#4|) (-586 |#4|))) (-15 -2327 ((-586 |#4|) (-586 |#4|) (-586 |#4|) (-1 (-586 |#4|) (-586 |#4|)))) (-15 -3678 ((-108) (-586 |#4|) (-586 |#4|))) (-15 -1749 ((-108) (-586 |#4|) (-586 (-586 |#4|)))) (-15 -3638 ((-108) (-586 |#4|))) (-15 -3806 ((-2 (|:| |goodPols| (-586 |#4|)) (|:| |badPols| (-586 |#4|))) (-1 (-108) |#4|) (-586 |#4|))) (-15 -2232 ((-2 (|:| |goodPols| (-586 |#4|)) (|:| |badPols| (-586 |#4|))) (-586 (-1 (-108) |#4|)) (-586 |#4|))) (-15 -1596 ((-2 (|:| |goodPols| (-586 |#4|)) (|:| |badPols| (-586 |#4|))) (-586 (-1 (-108) |#4|)) (-586 |#4|))) (-15 -1760 ((-2 (|:| |goodPols| (-586 |#4|)) (|:| |badPols| (-586 |#4|))) (-586 |#4|))) (-15 -1248 ((-108) |#4|)) (-15 -2588 ((-2 (|:| |goodPols| (-586 |#4|)) (|:| |badPols| (-586 |#4|))) (-586 |#4|))) (-15 -3692 ((-108) |#4|)) (-15 -1701 ((-2 (|:| |goodPols| (-586 |#4|)) (|:| |badPols| (-586 |#4|))) (-586 |#4|))) (-15 -2835 ((-108) |#4|)) (-15 -2161 ((-2 (|:| |goodPols| (-586 |#4|)) (|:| |badPols| (-586 |#4|))) (-586 |#4|))) (-15 -1669 ((-586 |#4|) (-586 |#4|) (-586 |#4|))) (-15 -1669 ((-586 |#4|) (-586 |#4|) (-586 |#4|) (-108))) (-15 -3450 (|#4| |#4| (-586 |#4|))) (-15 -1685 ((-586 |#4|) (-586 |#4|))) (-15 -2717 ((-3 (-2 (|:| |bas| (-448 |#1| |#2| |#3| |#4|)) (|:| -1353 (-586 |#4|))) "failed") (-586 |#4|))) (-15 -3893 ((-586 |#4|) (-586 |#4|))) (-15 -3105 ((-586 |#4|) (-586 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1939 ((-586 |#4|) (-586 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-424)) (PROGN (-15 -2383 ((-586 |#4|) |#4|)) (-15 -3533 ((-586 |#4|) (-586 |#4|))) (-15 -3533 ((-586 |#4|) (-586 |#4|) (-108))) (-15 -2012 ((-586 |#4|) (-586 |#4|) (-586 |#4|))) (-15 -1362 ((-586 |#4|) (-586 |#4|) (-586 |#4|))) (-15 -2164 ((-586 |#4|) (-586 |#4|) (-586 |#4|)))) |%noBranch|) (IF (|has| |#1| (-281)) (IF (|has| |#1| (-135)) (PROGN (-15 -1590 ((-586 |#4|) (-586 |#4|))) (-15 -1942 ((-586 |#4|) (-586 |#4|))) (-15 -2694 ((-586 |#4|) (-586 |#4|) (-586 |#4|)))) |%noBranch|) |%noBranch|)) (-512) (-728) (-783) (-983 |#1| |#2| |#3|)) (T -902))
-((-2694 (*1 *2 *2 *2) (-12 (-5 *2 (-586 *6)) (-4 *6 (-983 *3 *4 *5)) (-4 *3 (-135)) (-4 *3 (-281)) (-4 *3 (-512)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *1 (-902 *3 *4 *5 *6)))) (-1942 (*1 *2 *2) (-12 (-5 *2 (-586 *6)) (-4 *6 (-983 *3 *4 *5)) (-4 *3 (-135)) (-4 *3 (-281)) (-4 *3 (-512)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *1 (-902 *3 *4 *5 *6)))) (-1590 (*1 *2 *2) (-12 (-5 *2 (-586 *6)) (-4 *6 (-983 *3 *4 *5)) (-4 *3 (-135)) (-4 *3 (-281)) (-4 *3 (-512)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *1 (-902 *3 *4 *5 *6)))) (-2164 (*1 *2 *2 *2) (-12 (-5 *2 (-586 *6)) (-4 *6 (-983 *3 *4 *5)) (-4 *3 (-424)) (-4 *3 (-512)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *1 (-902 *3 *4 *5 *6)))) (-1362 (*1 *2 *2 *2) (-12 (-5 *2 (-586 *6)) (-4 *6 (-983 *3 *4 *5)) (-4 *3 (-424)) (-4 *3 (-512)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *1 (-902 *3 *4 *5 *6)))) (-2012 (*1 *2 *2 *2) (-12 (-5 *2 (-586 *6)) (-4 *6 (-983 *3 *4 *5)) (-4 *3 (-424)) (-4 *3 (-512)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *1 (-902 *3 *4 *5 *6)))) (-3533 (*1 *2 *2 *3) (-12 (-5 *2 (-586 *7)) (-5 *3 (-108)) (-4 *7 (-983 *4 *5 *6)) (-4 *4 (-424)) (-4 *4 (-512)) (-4 *5 (-728)) (-4 *6 (-783)) (-5 *1 (-902 *4 *5 *6 *7)))) (-3533 (*1 *2 *2) (-12 (-5 *2 (-586 *6)) (-4 *6 (-983 *3 *4 *5)) (-4 *3 (-424)) (-4 *3 (-512)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *1 (-902 *3 *4 *5 *6)))) (-2383 (*1 *2 *3) (-12 (-4 *4 (-424)) (-4 *4 (-512)) (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-586 *3)) (-5 *1 (-902 *4 *5 *6 *3)) (-4 *3 (-983 *4 *5 *6)))) (-1939 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-586 *8)) (-5 *3 (-1 (-108) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-983 *5 *6 *7)) (-4 *5 (-512)) (-4 *6 (-728)) (-4 *7 (-783)) (-5 *1 (-902 *5 *6 *7 *8)))) (-3105 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-586 *9)) (-5 *3 (-1 (-108) *9)) (-5 *4 (-1 (-108) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-983 *6 *7 *8)) (-4 *6 (-512)) (-4 *7 (-728)) (-4 *8 (-783)) (-5 *1 (-902 *6 *7 *8 *9)))) (-3893 (*1 *2 *2) (-12 (-5 *2 (-586 *6)) (-4 *6 (-983 *3 *4 *5)) (-4 *3 (-512)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *1 (-902 *3 *4 *5 *6)))) (-2717 (*1 *2 *3) (|partial| -12 (-4 *4 (-512)) (-4 *5 (-728)) (-4 *6 (-783)) (-4 *7 (-983 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-448 *4 *5 *6 *7)) (|:| -1353 (-586 *7)))) (-5 *1 (-902 *4 *5 *6 *7)) (-5 *3 (-586 *7)))) (-1685 (*1 *2 *2) (-12 (-5 *2 (-586 *6)) (-4 *6 (-983 *3 *4 *5)) (-4 *3 (-512)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *1 (-902 *3 *4 *5 *6)))) (-3450 (*1 *2 *2 *3) (-12 (-5 *3 (-586 *2)) (-4 *2 (-983 *4 *5 *6)) (-4 *4 (-512)) (-4 *5 (-728)) (-4 *6 (-783)) (-5 *1 (-902 *4 *5 *6 *2)))) (-1669 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-586 *7)) (-5 *3 (-108)) (-4 *7 (-983 *4 *5 *6)) (-4 *4 (-512)) (-4 *5 (-728)) (-4 *6 (-783)) (-5 *1 (-902 *4 *5 *6 *7)))) (-1669 (*1 *2 *2 *2) (-12 (-5 *2 (-586 *6)) (-4 *6 (-983 *3 *4 *5)) (-4 *3 (-512)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *1 (-902 *3 *4 *5 *6)))) (-2161 (*1 *2 *3) (-12 (-4 *4 (-512)) (-4 *5 (-728)) (-4 *6 (-783)) (-4 *7 (-983 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-586 *7)) (|:| |badPols| (-586 *7)))) (-5 *1 (-902 *4 *5 *6 *7)) (-5 *3 (-586 *7)))) (-2835 (*1 *2 *3) (-12 (-4 *4 (-512)) (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-108)) (-5 *1 (-902 *4 *5 *6 *3)) (-4 *3 (-983 *4 *5 *6)))) (-1701 (*1 *2 *3) (-12 (-4 *4 (-512)) (-4 *5 (-728)) (-4 *6 (-783)) (-4 *7 (-983 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-586 *7)) (|:| |badPols| (-586 *7)))) (-5 *1 (-902 *4 *5 *6 *7)) (-5 *3 (-586 *7)))) (-3692 (*1 *2 *3) (-12 (-4 *4 (-512)) (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-108)) (-5 *1 (-902 *4 *5 *6 *3)) (-4 *3 (-983 *4 *5 *6)))) (-2588 (*1 *2 *3) (-12 (-4 *4 (-512)) (-4 *5 (-728)) (-4 *6 (-783)) (-4 *7 (-983 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-586 *7)) (|:| |badPols| (-586 *7)))) (-5 *1 (-902 *4 *5 *6 *7)) (-5 *3 (-586 *7)))) (-1248 (*1 *2 *3) (-12 (-4 *4 (-512)) (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-108)) (-5 *1 (-902 *4 *5 *6 *3)) (-4 *3 (-983 *4 *5 *6)))) (-1760 (*1 *2 *3) (-12 (-4 *4 (-512)) (-4 *5 (-728)) (-4 *6 (-783)) (-4 *7 (-983 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-586 *7)) (|:| |badPols| (-586 *7)))) (-5 *1 (-902 *4 *5 *6 *7)) (-5 *3 (-586 *7)))) (-1596 (*1 *2 *3 *4) (-12 (-5 *3 (-586 (-1 (-108) *8))) (-4 *8 (-983 *5 *6 *7)) (-4 *5 (-512)) (-4 *6 (-728)) (-4 *7 (-783)) (-5 *2 (-2 (|:| |goodPols| (-586 *8)) (|:| |badPols| (-586 *8)))) (-5 *1 (-902 *5 *6 *7 *8)) (-5 *4 (-586 *8)))) (-2232 (*1 *2 *3 *4) (-12 (-5 *3 (-586 (-1 (-108) *8))) (-4 *8 (-983 *5 *6 *7)) (-4 *5 (-512)) (-4 *6 (-728)) (-4 *7 (-783)) (-5 *2 (-2 (|:| |goodPols| (-586 *8)) (|:| |badPols| (-586 *8)))) (-5 *1 (-902 *5 *6 *7 *8)) (-5 *4 (-586 *8)))) (-3806 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-108) *8)) (-4 *8 (-983 *5 *6 *7)) (-4 *5 (-512)) (-4 *6 (-728)) (-4 *7 (-783)) (-5 *2 (-2 (|:| |goodPols| (-586 *8)) (|:| |badPols| (-586 *8)))) (-5 *1 (-902 *5 *6 *7 *8)) (-5 *4 (-586 *8)))) (-3638 (*1 *2 *3) (-12 (-5 *3 (-586 *7)) (-4 *7 (-983 *4 *5 *6)) (-4 *4 (-512)) (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-108)) (-5 *1 (-902 *4 *5 *6 *7)))) (-1749 (*1 *2 *3 *4) (-12 (-5 *4 (-586 (-586 *8))) (-5 *3 (-586 *8)) (-4 *8 (-983 *5 *6 *7)) (-4 *5 (-512)) (-4 *6 (-728)) (-4 *7 (-783)) (-5 *2 (-108)) (-5 *1 (-902 *5 *6 *7 *8)))) (-3678 (*1 *2 *3 *3) (-12 (-5 *3 (-586 *7)) (-4 *7 (-983 *4 *5 *6)) (-4 *4 (-512)) (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-108)) (-5 *1 (-902 *4 *5 *6 *7)))) (-2327 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-586 *7) (-586 *7))) (-5 *2 (-586 *7)) (-4 *7 (-983 *4 *5 *6)) (-4 *4 (-512)) (-4 *5 (-728)) (-4 *6 (-783)) (-5 *1 (-902 *4 *5 *6 *7)))) (-2327 (*1 *2 *2 *2) (-12 (-5 *2 (-586 *6)) (-4 *6 (-983 *3 *4 *5)) (-4 *3 (-512)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *1 (-902 *3 *4 *5 *6)))) (-2327 (*1 *2 *2 *3) (-12 (-5 *2 (-586 *3)) (-4 *3 (-983 *4 *5 *6)) (-4 *4 (-512)) (-4 *5 (-728)) (-4 *6 (-783)) (-5 *1 (-902 *4 *5 *6 *3)))) (-2076 (*1 *2 *3 *3) (-12 (-4 *4 (-512)) (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-586 *3)) (-5 *1 (-902 *4 *5 *6 *3)) (-4 *3 (-983 *4 *5 *6)))) (-2240 (*1 *2 *2) (-12 (-5 *2 (-586 *6)) (-4 *6 (-983 *3 *4 *5)) (-4 *3 (-512)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *1 (-902 *3 *4 *5 *6)))) (-2327 (*1 *2 *3 *3) (-12 (-4 *4 (-512)) (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-586 *3)) (-5 *1 (-902 *4 *5 *6 *3)) (-4 *3 (-983 *4 *5 *6)))) (-2327 (*1 *2 *2) (-12 (-5 *2 (-586 *6)) (-4 *6 (-983 *3 *4 *5)) (-4 *3 (-512)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *1 (-902 *3 *4 *5 *6)))))
-(-10 -7 (-15 -2327 ((-586 |#4|) (-586 |#4|))) (-15 -2327 ((-586 |#4|) |#4| |#4|)) (-15 -2240 ((-586 |#4|) (-586 |#4|))) (-15 -2076 ((-586 |#4|) |#4| |#4|)) (-15 -2327 ((-586 |#4|) (-586 |#4|) |#4|)) (-15 -2327 ((-586 |#4|) (-586 |#4|) (-586 |#4|))) (-15 -2327 ((-586 |#4|) (-586 |#4|) (-586 |#4|) (-1 (-586 |#4|) (-586 |#4|)))) (-15 -3678 ((-108) (-586 |#4|) (-586 |#4|))) (-15 -1749 ((-108) (-586 |#4|) (-586 (-586 |#4|)))) (-15 -3638 ((-108) (-586 |#4|))) (-15 -3806 ((-2 (|:| |goodPols| (-586 |#4|)) (|:| |badPols| (-586 |#4|))) (-1 (-108) |#4|) (-586 |#4|))) (-15 -2232 ((-2 (|:| |goodPols| (-586 |#4|)) (|:| |badPols| (-586 |#4|))) (-586 (-1 (-108) |#4|)) (-586 |#4|))) (-15 -1596 ((-2 (|:| |goodPols| (-586 |#4|)) (|:| |badPols| (-586 |#4|))) (-586 (-1 (-108) |#4|)) (-586 |#4|))) (-15 -1760 ((-2 (|:| |goodPols| (-586 |#4|)) (|:| |badPols| (-586 |#4|))) (-586 |#4|))) (-15 -1248 ((-108) |#4|)) (-15 -2588 ((-2 (|:| |goodPols| (-586 |#4|)) (|:| |badPols| (-586 |#4|))) (-586 |#4|))) (-15 -3692 ((-108) |#4|)) (-15 -1701 ((-2 (|:| |goodPols| (-586 |#4|)) (|:| |badPols| (-586 |#4|))) (-586 |#4|))) (-15 -2835 ((-108) |#4|)) (-15 -2161 ((-2 (|:| |goodPols| (-586 |#4|)) (|:| |badPols| (-586 |#4|))) (-586 |#4|))) (-15 -1669 ((-586 |#4|) (-586 |#4|) (-586 |#4|))) (-15 -1669 ((-586 |#4|) (-586 |#4|) (-586 |#4|) (-108))) (-15 -3450 (|#4| |#4| (-586 |#4|))) (-15 -1685 ((-586 |#4|) (-586 |#4|))) (-15 -2717 ((-3 (-2 (|:| |bas| (-448 |#1| |#2| |#3| |#4|)) (|:| -1353 (-586 |#4|))) "failed") (-586 |#4|))) (-15 -3893 ((-586 |#4|) (-586 |#4|))) (-15 -3105 ((-586 |#4|) (-586 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1939 ((-586 |#4|) (-586 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-424)) (PROGN (-15 -2383 ((-586 |#4|) |#4|)) (-15 -3533 ((-586 |#4|) (-586 |#4|))) (-15 -3533 ((-586 |#4|) (-586 |#4|) (-108))) (-15 -2012 ((-586 |#4|) (-586 |#4|) (-586 |#4|))) (-15 -1362 ((-586 |#4|) (-586 |#4|) (-586 |#4|))) (-15 -2164 ((-586 |#4|) (-586 |#4|) (-586 |#4|)))) |%noBranch|) (IF (|has| |#1| (-281)) (IF (|has| |#1| (-135)) (PROGN (-15 -1590 ((-586 |#4|) (-586 |#4|))) (-15 -1942 ((-586 |#4|) (-586 |#4|))) (-15 -2694 ((-586 |#4|) (-586 |#4|) (-586 |#4|)))) |%noBranch|) |%noBranch|))
-((-3854 (((-2 (|:| R (-626 |#1|)) (|:| A (-626 |#1|)) (|:| |Ainv| (-626 |#1|))) (-626 |#1|) (-94 |#1|) (-1 |#1| |#1|)) 19)) (-4179 (((-586 (-2 (|:| C (-626 |#1|)) (|:| |g| (-1164 |#1|)))) (-626 |#1|) (-1164 |#1|)) 36)) (-1243 (((-626 |#1|) (-626 |#1|) (-626 |#1|) (-94 |#1|) (-1 |#1| |#1|)) 16)))
-(((-903 |#1|) (-10 -7 (-15 -3854 ((-2 (|:| R (-626 |#1|)) (|:| A (-626 |#1|)) (|:| |Ainv| (-626 |#1|))) (-626 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -1243 ((-626 |#1|) (-626 |#1|) (-626 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -4179 ((-586 (-2 (|:| C (-626 |#1|)) (|:| |g| (-1164 |#1|)))) (-626 |#1|) (-1164 |#1|)))) (-336)) (T -903))
-((-4179 (*1 *2 *3 *4) (-12 (-4 *5 (-336)) (-5 *2 (-586 (-2 (|:| C (-626 *5)) (|:| |g| (-1164 *5))))) (-5 *1 (-903 *5)) (-5 *3 (-626 *5)) (-5 *4 (-1164 *5)))) (-1243 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-626 *5)) (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-336)) (-5 *1 (-903 *5)))) (-3854 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-94 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-336)) (-5 *2 (-2 (|:| R (-626 *6)) (|:| A (-626 *6)) (|:| |Ainv| (-626 *6)))) (-5 *1 (-903 *6)) (-5 *3 (-626 *6)))))
-(-10 -7 (-15 -3854 ((-2 (|:| R (-626 |#1|)) (|:| A (-626 |#1|)) (|:| |Ainv| (-626 |#1|))) (-626 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -1243 ((-626 |#1|) (-626 |#1|) (-626 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -4179 ((-586 (-2 (|:| C (-626 |#1|)) (|:| |g| (-1164 |#1|)))) (-626 |#1|) (-1164 |#1|))))
-((-1507 (((-391 |#4|) |#4|) 47)))
-(((-904 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1507 ((-391 |#4|) |#4|))) (-783) (-728) (-424) (-877 |#3| |#2| |#1|)) (T -904))
-((-1507 (*1 *2 *3) (-12 (-4 *4 (-783)) (-4 *5 (-728)) (-4 *6 (-424)) (-5 *2 (-391 *3)) (-5 *1 (-904 *4 *5 *6 *3)) (-4 *3 (-877 *6 *5 *4)))))
-(-10 -7 (-15 -1507 ((-391 |#4|) |#4|)))
-((-1414 (((-108) $ $) 19 (|has| |#1| (-1012)))) (-3477 (($ (-706)) 112 (|has| |#1| (-23)))) (-1476 (((-1169) $ (-520) (-520)) 40 (|has| $ (-6 -4230)))) (-4029 (((-108) (-1 (-108) |#1| |#1|) $) 98) (((-108) $) 92 (|has| |#1| (-783)))) (-3587 (($ (-1 (-108) |#1| |#1|) $) 89 (|has| $ (-6 -4230))) (($ $) 88 (-12 (|has| |#1| (-783)) (|has| $ (-6 -4230))))) (-3210 (($ (-1 (-108) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-783)))) (-2063 (((-108) $ (-706)) 8)) (-2377 ((|#1| $ (-520) |#1|) 52 (|has| $ (-6 -4230))) ((|#1| $ (-1131 (-520)) |#1|) 58 (|has| $ (-6 -4230)))) (-1627 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4229)))) (-3961 (($) 7 T CONST)) (-2447 (($ $) 90 (|has| $ (-6 -4230)))) (-1861 (($ $) 100)) (-2331 (($ $) 78 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-1421 (($ |#1| $) 77 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4229)))) (-3856 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4229))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4229)))) (-3846 ((|#1| $ (-520) |#1|) 53 (|has| $ (-6 -4230)))) (-3623 ((|#1| $ (-520)) 51)) (-3232 (((-520) (-1 (-108) |#1|) $) 97) (((-520) |#1| $) 96 (|has| |#1| (-1012))) (((-520) |#1| $ (-520)) 95 (|has| |#1| (-1012)))) (-2734 (($ (-586 |#1|)) 118)) (-3828 (((-586 |#1|) $) 30 (|has| $ (-6 -4229)))) (-3948 (((-626 |#1|) $ $) 105 (|has| |#1| (-969)))) (-1810 (($ (-706) |#1|) 69)) (-3027 (((-108) $ (-706)) 9)) (-2567 (((-520) $) 43 (|has| (-520) (-783)))) (-2809 (($ $ $) 87 (|has| |#1| (-783)))) (-1819 (($ (-1 (-108) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-783)))) (-3702 (((-586 |#1|) $) 29 (|has| $ (-6 -4229)))) (-2422 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-1752 (((-520) $) 44 (|has| (-520) (-783)))) (-2446 (($ $ $) 86 (|has| |#1| (-783)))) (-3830 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3224 ((|#1| $) 102 (-12 (|has| |#1| (-969)) (|has| |#1| (-926))))) (-1390 (((-108) $ (-706)) 10)) (-2515 ((|#1| $) 103 (-12 (|has| |#1| (-969)) (|has| |#1| (-926))))) (-1239 (((-1066) $) 22 (|has| |#1| (-1012)))) (-1659 (($ |#1| $ (-520)) 60) (($ $ $ (-520)) 59)) (-3622 (((-586 (-520)) $) 46)) (-2603 (((-108) (-520) $) 47)) (-4142 (((-1030) $) 21 (|has| |#1| (-1012)))) (-2293 ((|#1| $) 42 (|has| (-520) (-783)))) (-2985 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-2936 (($ $ |#1|) 41 (|has| $ (-6 -4230)))) (-2116 (($ $ (-586 |#1|)) 115)) (-4155 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 |#1|))) 26 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-268 |#1|)) 25 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-586 |#1|) (-586 |#1|)) 23 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))) (-2533 (((-108) $ $) 14)) (-2094 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-1523 (((-586 |#1|) $) 48)) (-4018 (((-108) $) 11)) (-2238 (($) 12)) (-2543 ((|#1| $ (-520) |#1|) 50) ((|#1| $ (-520)) 49) (($ $ (-1131 (-520))) 63)) (-3639 ((|#1| $ $) 106 (|has| |#1| (-969)))) (-1556 (((-849) $) 117)) (-3690 (($ $ (-520)) 62) (($ $ (-1131 (-520))) 61)) (-1480 (($ $ $) 104)) (-4159 (((-706) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4229))) (((-706) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-1913 (($ $ $ (-520)) 91 (|has| $ (-6 -4230)))) (-2403 (($ $) 13)) (-1429 (((-496) $) 79 (|has| |#1| (-561 (-496)))) (($ (-586 |#1|)) 116)) (-2200 (($ (-586 |#1|)) 70)) (-4156 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-586 $)) 65)) (-2188 (((-791) $) 18 (|has| |#1| (-560 (-791))))) (-1662 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4229)))) (-1573 (((-108) $ $) 84 (|has| |#1| (-783)))) (-1557 (((-108) $ $) 83 (|has| |#1| (-783)))) (-1530 (((-108) $ $) 20 (|has| |#1| (-1012)))) (-1565 (((-108) $ $) 85 (|has| |#1| (-783)))) (-1548 (((-108) $ $) 82 (|has| |#1| (-783)))) (-1611 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-1601 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-520) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-662))) (($ $ |#1|) 107 (|has| |#1| (-662)))) (-3474 (((-706) $) 6 (|has| $ (-6 -4229)))))
-(((-905 |#1|) (-1195) (-969)) (T -905))
-((-2734 (*1 *1 *2) (-12 (-5 *2 (-586 *3)) (-4 *3 (-969)) (-4 *1 (-905 *3)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-905 *3)) (-4 *3 (-969)) (-5 *2 (-849)))) (-1429 (*1 *1 *2) (-12 (-5 *2 (-586 *3)) (-4 *3 (-969)) (-4 *1 (-905 *3)))) (-1480 (*1 *1 *1 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-969)))) (-2116 (*1 *1 *1 *2) (-12 (-5 *2 (-586 *3)) (-4 *1 (-905 *3)) (-4 *3 (-969)))))
-(-13 (-1162 |t#1|) (-10 -8 (-15 -2734 ($ (-586 |t#1|))) (-15 -1556 ((-849) $)) (-15 -1429 ($ (-586 |t#1|))) (-15 -1480 ($ $ $)) (-15 -2116 ($ $ (-586 |t#1|)))))
-(((-33) . T) ((-97) -3700 (|has| |#1| (-1012)) (|has| |#1| (-783))) ((-560 (-791)) -3700 (|has| |#1| (-1012)) (|has| |#1| (-783)) (|has| |#1| (-560 (-791)))) ((-139 |#1|) . T) ((-561 (-496)) |has| |#1| (-561 (-496))) ((-260 #0=(-520) |#1|) . T) ((-262 #0# |#1|) . T) ((-283 |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))) ((-346 |#1|) . T) ((-459 |#1|) . T) ((-553 #0# |#1|) . T) ((-481 |#1| |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))) ((-591 |#1|) . T) ((-19 |#1|) . T) ((-783) |has| |#1| (-783)) ((-1012) -3700 (|has| |#1| (-1012)) (|has| |#1| (-783))) ((-1118) . T) ((-1162 |#1|) . T))
-((-1389 (((-871 |#2|) (-1 |#2| |#1|) (-871 |#1|)) 17)))
-(((-906 |#1| |#2|) (-10 -7 (-15 -1389 ((-871 |#2|) (-1 |#2| |#1|) (-871 |#1|)))) (-969) (-969)) (T -906))
-((-1389 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-871 *5)) (-4 *5 (-969)) (-4 *6 (-969)) (-5 *2 (-871 *6)) (-5 *1 (-906 *5 *6)))))
-(-10 -7 (-15 -1389 ((-871 |#2|) (-1 |#2| |#1|) (-871 |#1|))))
-((-3950 ((|#1| (-871 |#1|)) 13)) (-3423 ((|#1| (-871 |#1|)) 12)) (-3711 ((|#1| (-871 |#1|)) 11)) (-1425 ((|#1| (-871 |#1|)) 15)) (-3764 ((|#1| (-871 |#1|)) 21)) (-3851 ((|#1| (-871 |#1|)) 14)) (-1655 ((|#1| (-871 |#1|)) 16)) (-2629 ((|#1| (-871 |#1|)) 20)) (-3867 ((|#1| (-871 |#1|)) 19)))
-(((-907 |#1|) (-10 -7 (-15 -3711 (|#1| (-871 |#1|))) (-15 -3423 (|#1| (-871 |#1|))) (-15 -3950 (|#1| (-871 |#1|))) (-15 -3851 (|#1| (-871 |#1|))) (-15 -1425 (|#1| (-871 |#1|))) (-15 -1655 (|#1| (-871 |#1|))) (-15 -3867 (|#1| (-871 |#1|))) (-15 -2629 (|#1| (-871 |#1|))) (-15 -3764 (|#1| (-871 |#1|)))) (-969)) (T -907))
-((-3764 (*1 *2 *3) (-12 (-5 *3 (-871 *2)) (-5 *1 (-907 *2)) (-4 *2 (-969)))) (-2629 (*1 *2 *3) (-12 (-5 *3 (-871 *2)) (-5 *1 (-907 *2)) (-4 *2 (-969)))) (-3867 (*1 *2 *3) (-12 (-5 *3 (-871 *2)) (-5 *1 (-907 *2)) (-4 *2 (-969)))) (-1655 (*1 *2 *3) (-12 (-5 *3 (-871 *2)) (-5 *1 (-907 *2)) (-4 *2 (-969)))) (-1425 (*1 *2 *3) (-12 (-5 *3 (-871 *2)) (-5 *1 (-907 *2)) (-4 *2 (-969)))) (-3851 (*1 *2 *3) (-12 (-5 *3 (-871 *2)) (-5 *1 (-907 *2)) (-4 *2 (-969)))) (-3950 (*1 *2 *3) (-12 (-5 *3 (-871 *2)) (-5 *1 (-907 *2)) (-4 *2 (-969)))) (-3423 (*1 *2 *3) (-12 (-5 *3 (-871 *2)) (-5 *1 (-907 *2)) (-4 *2 (-969)))) (-3711 (*1 *2 *3) (-12 (-5 *3 (-871 *2)) (-5 *1 (-907 *2)) (-4 *2 (-969)))))
-(-10 -7 (-15 -3711 (|#1| (-871 |#1|))) (-15 -3423 (|#1| (-871 |#1|))) (-15 -3950 (|#1| (-871 |#1|))) (-15 -3851 (|#1| (-871 |#1|))) (-15 -1425 (|#1| (-871 |#1|))) (-15 -1655 (|#1| (-871 |#1|))) (-15 -3867 (|#1| (-871 |#1|))) (-15 -2629 (|#1| (-871 |#1|))) (-15 -3764 (|#1| (-871 |#1|))))
-((-1307 (((-3 |#1| "failed") |#1|) 18)) (-1722 (((-3 |#1| "failed") |#1|) 6)) (-3057 (((-3 |#1| "failed") |#1|) 16)) (-1433 (((-3 |#1| "failed") |#1|) 4)) (-4025 (((-3 |#1| "failed") |#1|) 20)) (-2277 (((-3 |#1| "failed") |#1|) 8)) (-2420 (((-3 |#1| "failed") |#1| (-706)) 1)) (-4126 (((-3 |#1| "failed") |#1|) 3)) (-4054 (((-3 |#1| "failed") |#1|) 2)) (-3065 (((-3 |#1| "failed") |#1|) 21)) (-1984 (((-3 |#1| "failed") |#1|) 9)) (-3277 (((-3 |#1| "failed") |#1|) 19)) (-2004 (((-3 |#1| "failed") |#1|) 7)) (-3025 (((-3 |#1| "failed") |#1|) 17)) (-2003 (((-3 |#1| "failed") |#1|) 5)) (-1455 (((-3 |#1| "failed") |#1|) 24)) (-2631 (((-3 |#1| "failed") |#1|) 12)) (-2480 (((-3 |#1| "failed") |#1|) 22)) (-2163 (((-3 |#1| "failed") |#1|) 10)) (-1923 (((-3 |#1| "failed") |#1|) 26)) (-3418 (((-3 |#1| "failed") |#1|) 14)) (-2192 (((-3 |#1| "failed") |#1|) 27)) (-3480 (((-3 |#1| "failed") |#1|) 15)) (-3458 (((-3 |#1| "failed") |#1|) 25)) (-3187 (((-3 |#1| "failed") |#1|) 13)) (-3358 (((-3 |#1| "failed") |#1|) 23)) (-3624 (((-3 |#1| "failed") |#1|) 11)))
-(((-908 |#1|) (-1195) (-1104)) (T -908))
-((-2192 (*1 *2 *2) (|partial| -12 (-4 *1 (-908 *2)) (-4 *2 (-1104)))) (-1923 (*1 *2 *2) (|partial| -12 (-4 *1 (-908 *2)) (-4 *2 (-1104)))) (-3458 (*1 *2 *2) (|partial| -12 (-4 *1 (-908 *2)) (-4 *2 (-1104)))) (-1455 (*1 *2 *2) (|partial| -12 (-4 *1 (-908 *2)) (-4 *2 (-1104)))) (-3358 (*1 *2 *2) (|partial| -12 (-4 *1 (-908 *2)) (-4 *2 (-1104)))) (-2480 (*1 *2 *2) (|partial| -12 (-4 *1 (-908 *2)) (-4 *2 (-1104)))) (-3065 (*1 *2 *2) (|partial| -12 (-4 *1 (-908 *2)) (-4 *2 (-1104)))) (-4025 (*1 *2 *2) (|partial| -12 (-4 *1 (-908 *2)) (-4 *2 (-1104)))) (-3277 (*1 *2 *2) (|partial| -12 (-4 *1 (-908 *2)) (-4 *2 (-1104)))) (-1307 (*1 *2 *2) (|partial| -12 (-4 *1 (-908 *2)) (-4 *2 (-1104)))) (-3025 (*1 *2 *2) (|partial| -12 (-4 *1 (-908 *2)) (-4 *2 (-1104)))) (-3057 (*1 *2 *2) (|partial| -12 (-4 *1 (-908 *2)) (-4 *2 (-1104)))) (-3480 (*1 *2 *2) (|partial| -12 (-4 *1 (-908 *2)) (-4 *2 (-1104)))) (-3418 (*1 *2 *2) (|partial| -12 (-4 *1 (-908 *2)) (-4 *2 (-1104)))) (-3187 (*1 *2 *2) (|partial| -12 (-4 *1 (-908 *2)) (-4 *2 (-1104)))) (-2631 (*1 *2 *2) (|partial| -12 (-4 *1 (-908 *2)) (-4 *2 (-1104)))) (-3624 (*1 *2 *2) (|partial| -12 (-4 *1 (-908 *2)) (-4 *2 (-1104)))) (-2163 (*1 *2 *2) (|partial| -12 (-4 *1 (-908 *2)) (-4 *2 (-1104)))) (-1984 (*1 *2 *2) (|partial| -12 (-4 *1 (-908 *2)) (-4 *2 (-1104)))) (-2277 (*1 *2 *2) (|partial| -12 (-4 *1 (-908 *2)) (-4 *2 (-1104)))) (-2004 (*1 *2 *2) (|partial| -12 (-4 *1 (-908 *2)) (-4 *2 (-1104)))) (-1722 (*1 *2 *2) (|partial| -12 (-4 *1 (-908 *2)) (-4 *2 (-1104)))) (-2003 (*1 *2 *2) (|partial| -12 (-4 *1 (-908 *2)) (-4 *2 (-1104)))) (-1433 (*1 *2 *2) (|partial| -12 (-4 *1 (-908 *2)) (-4 *2 (-1104)))) (-4126 (*1 *2 *2) (|partial| -12 (-4 *1 (-908 *2)) (-4 *2 (-1104)))) (-4054 (*1 *2 *2) (|partial| -12 (-4 *1 (-908 *2)) (-4 *2 (-1104)))) (-2420 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-706)) (-4 *1 (-908 *2)) (-4 *2 (-1104)))))
-(-13 (-10 -7 (-15 -2420 ((-3 |t#1| "failed") |t#1| (-706))) (-15 -4054 ((-3 |t#1| "failed") |t#1|)) (-15 -4126 ((-3 |t#1| "failed") |t#1|)) (-15 -1433 ((-3 |t#1| "failed") |t#1|)) (-15 -2003 ((-3 |t#1| "failed") |t#1|)) (-15 -1722 ((-3 |t#1| "failed") |t#1|)) (-15 -2004 ((-3 |t#1| "failed") |t#1|)) (-15 -2277 ((-3 |t#1| "failed") |t#1|)) (-15 -1984 ((-3 |t#1| "failed") |t#1|)) (-15 -2163 ((-3 |t#1| "failed") |t#1|)) (-15 -3624 ((-3 |t#1| "failed") |t#1|)) (-15 -2631 ((-3 |t#1| "failed") |t#1|)) (-15 -3187 ((-3 |t#1| "failed") |t#1|)) (-15 -3418 ((-3 |t#1| "failed") |t#1|)) (-15 -3480 ((-3 |t#1| "failed") |t#1|)) (-15 -3057 ((-3 |t#1| "failed") |t#1|)) (-15 -3025 ((-3 |t#1| "failed") |t#1|)) (-15 -1307 ((-3 |t#1| "failed") |t#1|)) (-15 -3277 ((-3 |t#1| "failed") |t#1|)) (-15 -4025 ((-3 |t#1| "failed") |t#1|)) (-15 -3065 ((-3 |t#1| "failed") |t#1|)) (-15 -2480 ((-3 |t#1| "failed") |t#1|)) (-15 -3358 ((-3 |t#1| "failed") |t#1|)) (-15 -1455 ((-3 |t#1| "failed") |t#1|)) (-15 -3458 ((-3 |t#1| "failed") |t#1|)) (-15 -1923 ((-3 |t#1| "failed") |t#1|)) (-15 -2192 ((-3 |t#1| "failed") |t#1|))))
-((-4194 ((|#4| |#4| (-586 |#3|)) 56) ((|#4| |#4| |#3|) 55)) (-4101 ((|#4| |#4| (-586 |#3|)) 23) ((|#4| |#4| |#3|) 19)) (-1389 ((|#4| (-1 |#4| (-880 |#1|)) |#4|) 30)))
-(((-909 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4101 (|#4| |#4| |#3|)) (-15 -4101 (|#4| |#4| (-586 |#3|))) (-15 -4194 (|#4| |#4| |#3|)) (-15 -4194 (|#4| |#4| (-586 |#3|))) (-15 -1389 (|#4| (-1 |#4| (-880 |#1|)) |#4|))) (-969) (-728) (-13 (-783) (-10 -8 (-15 -1429 ((-1083) $)) (-15 -1610 ((-3 $ "failed") (-1083))))) (-877 (-880 |#1|) |#2| |#3|)) (T -909))
-((-1389 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-880 *4))) (-4 *4 (-969)) (-4 *2 (-877 (-880 *4) *5 *6)) (-4 *5 (-728)) (-4 *6 (-13 (-783) (-10 -8 (-15 -1429 ((-1083) $)) (-15 -1610 ((-3 $ "failed") (-1083)))))) (-5 *1 (-909 *4 *5 *6 *2)))) (-4194 (*1 *2 *2 *3) (-12 (-5 *3 (-586 *6)) (-4 *6 (-13 (-783) (-10 -8 (-15 -1429 ((-1083) $)) (-15 -1610 ((-3 $ "failed") (-1083)))))) (-4 *4 (-969)) (-4 *5 (-728)) (-5 *1 (-909 *4 *5 *6 *2)) (-4 *2 (-877 (-880 *4) *5 *6)))) (-4194 (*1 *2 *2 *3) (-12 (-4 *4 (-969)) (-4 *5 (-728)) (-4 *3 (-13 (-783) (-10 -8 (-15 -1429 ((-1083) $)) (-15 -1610 ((-3 $ "failed") (-1083)))))) (-5 *1 (-909 *4 *5 *3 *2)) (-4 *2 (-877 (-880 *4) *5 *3)))) (-4101 (*1 *2 *2 *3) (-12 (-5 *3 (-586 *6)) (-4 *6 (-13 (-783) (-10 -8 (-15 -1429 ((-1083) $)) (-15 -1610 ((-3 $ "failed") (-1083)))))) (-4 *4 (-969)) (-4 *5 (-728)) (-5 *1 (-909 *4 *5 *6 *2)) (-4 *2 (-877 (-880 *4) *5 *6)))) (-4101 (*1 *2 *2 *3) (-12 (-4 *4 (-969)) (-4 *5 (-728)) (-4 *3 (-13 (-783) (-10 -8 (-15 -1429 ((-1083) $)) (-15 -1610 ((-3 $ "failed") (-1083)))))) (-5 *1 (-909 *4 *5 *3 *2)) (-4 *2 (-877 (-880 *4) *5 *3)))))
-(-10 -7 (-15 -4101 (|#4| |#4| |#3|)) (-15 -4101 (|#4| |#4| (-586 |#3|))) (-15 -4194 (|#4| |#4| |#3|)) (-15 -4194 (|#4| |#4| (-586 |#3|))) (-15 -1389 (|#4| (-1 |#4| (-880 |#1|)) |#4|)))
-((-4083 ((|#2| |#3|) 34)) (-4182 (((-2 (|:| -1831 (-626 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-626 |#2|))) |#2|) 71)) (-2323 (((-2 (|:| -1831 (-626 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-626 |#2|)))) 86)))
-(((-910 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2323 ((-2 (|:| -1831 (-626 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-626 |#2|))))) (-15 -4182 ((-2 (|:| -1831 (-626 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-626 |#2|))) |#2|)) (-15 -4083 (|#2| |#3|))) (-322) (-1140 |#1|) (-1140 |#2|) (-660 |#2| |#3|)) (T -910))
-((-4083 (*1 *2 *3) (-12 (-4 *3 (-1140 *2)) (-4 *2 (-1140 *4)) (-5 *1 (-910 *4 *2 *3 *5)) (-4 *4 (-322)) (-4 *5 (-660 *2 *3)))) (-4182 (*1 *2 *3) (-12 (-4 *4 (-322)) (-4 *3 (-1140 *4)) (-4 *5 (-1140 *3)) (-5 *2 (-2 (|:| -1831 (-626 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-626 *3)))) (-5 *1 (-910 *4 *3 *5 *6)) (-4 *6 (-660 *3 *5)))) (-2323 (*1 *2) (-12 (-4 *3 (-322)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 *4)) (-5 *2 (-2 (|:| -1831 (-626 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-626 *4)))) (-5 *1 (-910 *3 *4 *5 *6)) (-4 *6 (-660 *4 *5)))))
-(-10 -7 (-15 -2323 ((-2 (|:| -1831 (-626 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-626 |#2|))))) (-15 -4182 ((-2 (|:| -1831 (-626 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-626 |#2|))) |#2|)) (-15 -4083 (|#2| |#3|)))
-((-3965 (((-912 (-380 (-520)) (-793 |#1|) (-216 |#2| (-706)) (-223 |#1| (-380 (-520)))) (-912 (-380 (-520)) (-793 |#1|) (-216 |#2| (-706)) (-223 |#1| (-380 (-520))))) 65)))
-(((-911 |#1| |#2|) (-10 -7 (-15 -3965 ((-912 (-380 (-520)) (-793 |#1|) (-216 |#2| (-706)) (-223 |#1| (-380 (-520)))) (-912 (-380 (-520)) (-793 |#1|) (-216 |#2| (-706)) (-223 |#1| (-380 (-520))))))) (-586 (-1083)) (-706)) (T -911))
-((-3965 (*1 *2 *2) (-12 (-5 *2 (-912 (-380 (-520)) (-793 *3) (-216 *4 (-706)) (-223 *3 (-380 (-520))))) (-14 *3 (-586 (-1083))) (-14 *4 (-706)) (-5 *1 (-911 *3 *4)))))
-(-10 -7 (-15 -3965 ((-912 (-380 (-520)) (-793 |#1|) (-216 |#2| (-706)) (-223 |#1| (-380 (-520)))) (-912 (-380 (-520)) (-793 |#1|) (-216 |#2| (-706)) (-223 |#1| (-380 (-520)))))))
-((-1414 (((-108) $ $) NIL)) (-2826 (((-3 (-108) "failed") $) 67)) (-3855 (($ $) 35 (-12 (|has| |#1| (-135)) (|has| |#1| (-281))))) (-3958 (($ $ (-3 (-108) "failed")) 68)) (-3683 (($ (-586 |#4|) |#4|) 24)) (-1239 (((-1066) $) NIL)) (-3837 (($ $) 65)) (-4142 (((-1030) $) NIL)) (-4018 (((-108) $) 66)) (-2238 (($) 29)) (-2459 ((|#4| $) 70)) (-2519 (((-586 |#4|) $) 69)) (-2188 (((-791) $) 64)) (-1530 (((-108) $ $) NIL)))
-(((-912 |#1| |#2| |#3| |#4|) (-13 (-1012) (-560 (-791)) (-10 -8 (-15 -2238 ($)) (-15 -3683 ($ (-586 |#4|) |#4|)) (-15 -2826 ((-3 (-108) "failed") $)) (-15 -3958 ($ $ (-3 (-108) "failed"))) (-15 -4018 ((-108) $)) (-15 -2519 ((-586 |#4|) $)) (-15 -2459 (|#4| $)) (-15 -3837 ($ $)) (IF (|has| |#1| (-281)) (IF (|has| |#1| (-135)) (-15 -3855 ($ $)) |%noBranch|) |%noBranch|))) (-424) (-783) (-728) (-877 |#1| |#3| |#2|)) (T -912))
-((-2238 (*1 *1) (-12 (-4 *2 (-424)) (-4 *3 (-783)) (-4 *4 (-728)) (-5 *1 (-912 *2 *3 *4 *5)) (-4 *5 (-877 *2 *4 *3)))) (-3683 (*1 *1 *2 *3) (-12 (-5 *2 (-586 *3)) (-4 *3 (-877 *4 *6 *5)) (-4 *4 (-424)) (-4 *5 (-783)) (-4 *6 (-728)) (-5 *1 (-912 *4 *5 *6 *3)))) (-2826 (*1 *2 *1) (|partial| -12 (-4 *3 (-424)) (-4 *4 (-783)) (-4 *5 (-728)) (-5 *2 (-108)) (-5 *1 (-912 *3 *4 *5 *6)) (-4 *6 (-877 *3 *5 *4)))) (-3958 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-108) "failed")) (-4 *3 (-424)) (-4 *4 (-783)) (-4 *5 (-728)) (-5 *1 (-912 *3 *4 *5 *6)) (-4 *6 (-877 *3 *5 *4)))) (-4018 (*1 *2 *1) (-12 (-4 *3 (-424)) (-4 *4 (-783)) (-4 *5 (-728)) (-5 *2 (-108)) (-5 *1 (-912 *3 *4 *5 *6)) (-4 *6 (-877 *3 *5 *4)))) (-2519 (*1 *2 *1) (-12 (-4 *3 (-424)) (-4 *4 (-783)) (-4 *5 (-728)) (-5 *2 (-586 *6)) (-5 *1 (-912 *3 *4 *5 *6)) (-4 *6 (-877 *3 *5 *4)))) (-2459 (*1 *2 *1) (-12 (-4 *2 (-877 *3 *5 *4)) (-5 *1 (-912 *3 *4 *5 *2)) (-4 *3 (-424)) (-4 *4 (-783)) (-4 *5 (-728)))) (-3837 (*1 *1 *1) (-12 (-4 *2 (-424)) (-4 *3 (-783)) (-4 *4 (-728)) (-5 *1 (-912 *2 *3 *4 *5)) (-4 *5 (-877 *2 *4 *3)))) (-3855 (*1 *1 *1) (-12 (-4 *2 (-135)) (-4 *2 (-281)) (-4 *2 (-424)) (-4 *3 (-783)) (-4 *4 (-728)) (-5 *1 (-912 *2 *3 *4 *5)) (-4 *5 (-877 *2 *4 *3)))))
-(-13 (-1012) (-560 (-791)) (-10 -8 (-15 -2238 ($)) (-15 -3683 ($ (-586 |#4|) |#4|)) (-15 -2826 ((-3 (-108) "failed") $)) (-15 -3958 ($ $ (-3 (-108) "failed"))) (-15 -4018 ((-108) $)) (-15 -2519 ((-586 |#4|) $)) (-15 -2459 (|#4| $)) (-15 -3837 ($ $)) (IF (|has| |#1| (-281)) (IF (|has| |#1| (-135)) (-15 -3855 ($ $)) |%noBranch|) |%noBranch|)))
-((-2128 (((-108) |#5| |#5|) 38)) (-4105 (((-108) |#5| |#5|) 52)) (-3699 (((-108) |#5| (-586 |#5|)) 74) (((-108) |#5| |#5|) 61)) (-4013 (((-108) (-586 |#4|) (-586 |#4|)) 58)) (-1712 (((-108) (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|)) (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))) 63)) (-3874 (((-1169)) 33)) (-2897 (((-1169) (-1066) (-1066) (-1066)) 29)) (-3117 (((-586 |#5|) (-586 |#5|)) 81)) (-2984 (((-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))) (-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|)))) 79)) (-2143 (((-586 (-2 (|:| -3190 (-586 |#4|)) (|:| -1883 |#5|) (|:| |ineq| (-586 |#4|)))) (-586 |#4|) (-586 |#5|) (-108) (-108)) 101)) (-3364 (((-108) |#5| |#5|) 47)) (-3479 (((-3 (-108) "failed") |#5| |#5|) 71)) (-3087 (((-108) (-586 |#4|) (-586 |#4|)) 57)) (-3515 (((-108) (-586 |#4|) (-586 |#4|)) 59)) (-3444 (((-108) (-586 |#4|) (-586 |#4|)) 60)) (-3760 (((-3 (-2 (|:| -3190 (-586 |#4|)) (|:| -1883 |#5|) (|:| |ineq| (-586 |#4|))) "failed") (-586 |#4|) |#5| (-586 |#4|) (-108) (-108) (-108) (-108) (-108)) 97)) (-1878 (((-586 |#5|) (-586 |#5|)) 43)))
-(((-913 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2897 ((-1169) (-1066) (-1066) (-1066))) (-15 -3874 ((-1169))) (-15 -2128 ((-108) |#5| |#5|)) (-15 -1878 ((-586 |#5|) (-586 |#5|))) (-15 -3364 ((-108) |#5| |#5|)) (-15 -4105 ((-108) |#5| |#5|)) (-15 -4013 ((-108) (-586 |#4|) (-586 |#4|))) (-15 -3087 ((-108) (-586 |#4|) (-586 |#4|))) (-15 -3515 ((-108) (-586 |#4|) (-586 |#4|))) (-15 -3444 ((-108) (-586 |#4|) (-586 |#4|))) (-15 -3479 ((-3 (-108) "failed") |#5| |#5|)) (-15 -3699 ((-108) |#5| |#5|)) (-15 -3699 ((-108) |#5| (-586 |#5|))) (-15 -3117 ((-586 |#5|) (-586 |#5|))) (-15 -1712 ((-108) (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|)) (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|)))) (-15 -2984 ((-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))) (-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))))) (-15 -2143 ((-586 (-2 (|:| -3190 (-586 |#4|)) (|:| -1883 |#5|) (|:| |ineq| (-586 |#4|)))) (-586 |#4|) (-586 |#5|) (-108) (-108))) (-15 -3760 ((-3 (-2 (|:| -3190 (-586 |#4|)) (|:| -1883 |#5|) (|:| |ineq| (-586 |#4|))) "failed") (-586 |#4|) |#5| (-586 |#4|) (-108) (-108) (-108) (-108) (-108)))) (-424) (-728) (-783) (-983 |#1| |#2| |#3|) (-988 |#1| |#2| |#3| |#4|)) (T -913))
-((-3760 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-108)) (-4 *6 (-424)) (-4 *7 (-728)) (-4 *8 (-783)) (-4 *9 (-983 *6 *7 *8)) (-5 *2 (-2 (|:| -3190 (-586 *9)) (|:| -1883 *4) (|:| |ineq| (-586 *9)))) (-5 *1 (-913 *6 *7 *8 *9 *4)) (-5 *3 (-586 *9)) (-4 *4 (-988 *6 *7 *8 *9)))) (-2143 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-586 *10)) (-5 *5 (-108)) (-4 *10 (-988 *6 *7 *8 *9)) (-4 *6 (-424)) (-4 *7 (-728)) (-4 *8 (-783)) (-4 *9 (-983 *6 *7 *8)) (-5 *2 (-586 (-2 (|:| -3190 (-586 *9)) (|:| -1883 *10) (|:| |ineq| (-586 *9))))) (-5 *1 (-913 *6 *7 *8 *9 *10)) (-5 *3 (-586 *9)))) (-2984 (*1 *2 *2) (-12 (-5 *2 (-586 (-2 (|:| |val| (-586 *6)) (|:| -1883 *7)))) (-4 *6 (-983 *3 *4 *5)) (-4 *7 (-988 *3 *4 *5 *6)) (-4 *3 (-424)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *1 (-913 *3 *4 *5 *6 *7)))) (-1712 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-586 *7)) (|:| -1883 *8))) (-4 *7 (-983 *4 *5 *6)) (-4 *8 (-988 *4 *5 *6 *7)) (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-108)) (-5 *1 (-913 *4 *5 *6 *7 *8)))) (-3117 (*1 *2 *2) (-12 (-5 *2 (-586 *7)) (-4 *7 (-988 *3 *4 *5 *6)) (-4 *3 (-424)) (-4 *4 (-728)) (-4 *5 (-783)) (-4 *6 (-983 *3 *4 *5)) (-5 *1 (-913 *3 *4 *5 *6 *7)))) (-3699 (*1 *2 *3 *4) (-12 (-5 *4 (-586 *3)) (-4 *3 (-988 *5 *6 *7 *8)) (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783)) (-4 *8 (-983 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-913 *5 *6 *7 *8 *3)))) (-3699 (*1 *2 *3 *3) (-12 (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783)) (-4 *7 (-983 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-913 *4 *5 *6 *7 *3)) (-4 *3 (-988 *4 *5 *6 *7)))) (-3479 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783)) (-4 *7 (-983 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-913 *4 *5 *6 *7 *3)) (-4 *3 (-988 *4 *5 *6 *7)))) (-3444 (*1 *2 *3 *3) (-12 (-5 *3 (-586 *7)) (-4 *7 (-983 *4 *5 *6)) (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-108)) (-5 *1 (-913 *4 *5 *6 *7 *8)) (-4 *8 (-988 *4 *5 *6 *7)))) (-3515 (*1 *2 *3 *3) (-12 (-5 *3 (-586 *7)) (-4 *7 (-983 *4 *5 *6)) (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-108)) (-5 *1 (-913 *4 *5 *6 *7 *8)) (-4 *8 (-988 *4 *5 *6 *7)))) (-3087 (*1 *2 *3 *3) (-12 (-5 *3 (-586 *7)) (-4 *7 (-983 *4 *5 *6)) (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-108)) (-5 *1 (-913 *4 *5 *6 *7 *8)) (-4 *8 (-988 *4 *5 *6 *7)))) (-4013 (*1 *2 *3 *3) (-12 (-5 *3 (-586 *7)) (-4 *7 (-983 *4 *5 *6)) (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-108)) (-5 *1 (-913 *4 *5 *6 *7 *8)) (-4 *8 (-988 *4 *5 *6 *7)))) (-4105 (*1 *2 *3 *3) (-12 (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783)) (-4 *7 (-983 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-913 *4 *5 *6 *7 *3)) (-4 *3 (-988 *4 *5 *6 *7)))) (-3364 (*1 *2 *3 *3) (-12 (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783)) (-4 *7 (-983 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-913 *4 *5 *6 *7 *3)) (-4 *3 (-988 *4 *5 *6 *7)))) (-1878 (*1 *2 *2) (-12 (-5 *2 (-586 *7)) (-4 *7 (-988 *3 *4 *5 *6)) (-4 *3 (-424)) (-4 *4 (-728)) (-4 *5 (-783)) (-4 *6 (-983 *3 *4 *5)) (-5 *1 (-913 *3 *4 *5 *6 *7)))) (-2128 (*1 *2 *3 *3) (-12 (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783)) (-4 *7 (-983 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-913 *4 *5 *6 *7 *3)) (-4 *3 (-988 *4 *5 *6 *7)))) (-3874 (*1 *2) (-12 (-4 *3 (-424)) (-4 *4 (-728)) (-4 *5 (-783)) (-4 *6 (-983 *3 *4 *5)) (-5 *2 (-1169)) (-5 *1 (-913 *3 *4 *5 *6 *7)) (-4 *7 (-988 *3 *4 *5 *6)))) (-2897 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1066)) (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783)) (-4 *7 (-983 *4 *5 *6)) (-5 *2 (-1169)) (-5 *1 (-913 *4 *5 *6 *7 *8)) (-4 *8 (-988 *4 *5 *6 *7)))))
-(-10 -7 (-15 -2897 ((-1169) (-1066) (-1066) (-1066))) (-15 -3874 ((-1169))) (-15 -2128 ((-108) |#5| |#5|)) (-15 -1878 ((-586 |#5|) (-586 |#5|))) (-15 -3364 ((-108) |#5| |#5|)) (-15 -4105 ((-108) |#5| |#5|)) (-15 -4013 ((-108) (-586 |#4|) (-586 |#4|))) (-15 -3087 ((-108) (-586 |#4|) (-586 |#4|))) (-15 -3515 ((-108) (-586 |#4|) (-586 |#4|))) (-15 -3444 ((-108) (-586 |#4|) (-586 |#4|))) (-15 -3479 ((-3 (-108) "failed") |#5| |#5|)) (-15 -3699 ((-108) |#5| |#5|)) (-15 -3699 ((-108) |#5| (-586 |#5|))) (-15 -3117 ((-586 |#5|) (-586 |#5|))) (-15 -1712 ((-108) (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|)) (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|)))) (-15 -2984 ((-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))) (-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))))) (-15 -2143 ((-586 (-2 (|:| -3190 (-586 |#4|)) (|:| -1883 |#5|) (|:| |ineq| (-586 |#4|)))) (-586 |#4|) (-586 |#5|) (-108) (-108))) (-15 -3760 ((-3 (-2 (|:| -3190 (-586 |#4|)) (|:| -1883 |#5|) (|:| |ineq| (-586 |#4|))) "failed") (-586 |#4|) |#5| (-586 |#4|) (-108) (-108) (-108) (-108) (-108))))
-((-1610 (((-1083) $) 15)) (-3429 (((-1066) $) 16)) (-1607 (($ (-1083) (-1066)) 14)) (-2188 (((-791) $) 13)))
-(((-914) (-13 (-560 (-791)) (-10 -8 (-15 -1607 ($ (-1083) (-1066))) (-15 -1610 ((-1083) $)) (-15 -3429 ((-1066) $))))) (T -914))
-((-1607 (*1 *1 *2 *3) (-12 (-5 *2 (-1083)) (-5 *3 (-1066)) (-5 *1 (-914)))) (-1610 (*1 *2 *1) (-12 (-5 *2 (-1083)) (-5 *1 (-914)))) (-3429 (*1 *2 *1) (-12 (-5 *2 (-1066)) (-5 *1 (-914)))))
-(-13 (-560 (-791)) (-10 -8 (-15 -1607 ($ (-1083) (-1066))) (-15 -1610 ((-1083) $)) (-15 -3429 ((-1066) $))))
-((-1389 ((|#4| (-1 |#2| |#1|) |#3|) 14)))
-(((-915 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1389 (|#4| (-1 |#2| |#1|) |#3|))) (-512) (-512) (-917 |#1|) (-917 |#2|)) (T -915))
-((-1389 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-512)) (-4 *6 (-512)) (-4 *2 (-917 *6)) (-5 *1 (-915 *5 *6 *4 *2)) (-4 *4 (-917 *5)))))
-(-10 -7 (-15 -1389 (|#4| (-1 |#2| |#1|) |#3|)))
-((-1296 (((-3 |#2| "failed") $) NIL) (((-3 (-1083) "failed") $) 65) (((-3 (-380 (-520)) "failed") $) NIL) (((-3 (-520) "failed") $) 95)) (-1482 ((|#2| $) NIL) (((-1083) $) 60) (((-380 (-520)) $) NIL) (((-520) $) 92)) (-2756 (((-626 (-520)) (-626 $)) NIL) (((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 $) (-1164 $)) NIL) (((-2 (|:| -3927 (-626 |#2|)) (|:| |vec| (-1164 |#2|))) (-626 $) (-1164 $)) 112) (((-626 |#2|) (-626 $)) 28)) (-3249 (($) 98)) (-1272 (((-817 (-520) $) $ (-820 (-520)) (-817 (-520) $)) 74) (((-817 (-352) $) $ (-820 (-352)) (-817 (-352) $)) 83)) (-4115 (($ $) 10)) (-1394 (((-3 $ "failed") $) 20)) (-1389 (($ (-1 |#2| |#2|) $) 22)) (-3794 (($) 16)) (-4122 (($ $) 54)) (-2155 (($ $) NIL) (($ $ (-706)) NIL) (($ $ (-1083)) NIL) (($ $ (-586 (-1083))) NIL) (($ $ (-1083) (-706)) NIL) (($ $ (-586 (-1083)) (-586 (-706))) NIL) (($ $ (-1 |#2| |#2|) (-706)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-3556 (($ $) 12)) (-1429 (((-820 (-520)) $) 69) (((-820 (-352)) $) 78) (((-496) $) 40) (((-352) $) 44) (((-201) $) 47)) (-2188 (((-791) $) NIL) (($ (-520)) NIL) (($ $) NIL) (($ (-380 (-520))) 90) (($ |#2|) NIL) (($ (-1083)) 57)) (-3251 (((-706)) 31)) (-1548 (((-108) $ $) 50)))
-(((-916 |#1| |#2|) (-10 -8 (-15 -1548 ((-108) |#1| |#1|)) (-15 -3794 (|#1|)) (-15 -1394 ((-3 |#1| "failed") |#1|)) (-15 -1482 ((-520) |#1|)) (-15 -1296 ((-3 (-520) "failed") |#1|)) (-15 -1482 ((-380 (-520)) |#1|)) (-15 -1296 ((-3 (-380 (-520)) "failed") |#1|)) (-15 -1429 ((-201) |#1|)) (-15 -1429 ((-352) |#1|)) (-15 -1429 ((-496) |#1|)) (-15 -1482 ((-1083) |#1|)) (-15 -1296 ((-3 (-1083) "failed") |#1|)) (-15 -2188 (|#1| (-1083))) (-15 -3249 (|#1|)) (-15 -4122 (|#1| |#1|)) (-15 -3556 (|#1| |#1|)) (-15 -4115 (|#1| |#1|)) (-15 -1272 ((-817 (-352) |#1|) |#1| (-820 (-352)) (-817 (-352) |#1|))) (-15 -1272 ((-817 (-520) |#1|) |#1| (-820 (-520)) (-817 (-520) |#1|))) (-15 -1429 ((-820 (-352)) |#1|)) (-15 -1429 ((-820 (-520)) |#1|)) (-15 -2756 ((-626 |#2|) (-626 |#1|))) (-15 -2756 ((-2 (|:| -3927 (-626 |#2|)) (|:| |vec| (-1164 |#2|))) (-626 |#1|) (-1164 |#1|))) (-15 -2756 ((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 |#1|) (-1164 |#1|))) (-15 -2756 ((-626 (-520)) (-626 |#1|))) (-15 -2155 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2155 (|#1| |#1| (-1 |#2| |#2|) (-706))) (-15 -2155 (|#1| |#1| (-586 (-1083)) (-586 (-706)))) (-15 -2155 (|#1| |#1| (-1083) (-706))) (-15 -2155 (|#1| |#1| (-586 (-1083)))) (-15 -2155 (|#1| |#1| (-1083))) (-15 -2155 (|#1| |#1| (-706))) (-15 -2155 (|#1| |#1|)) (-15 -1389 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1482 (|#2| |#1|)) (-15 -1296 ((-3 |#2| "failed") |#1|)) (-15 -2188 (|#1| |#2|)) (-15 -2188 (|#1| (-380 (-520)))) (-15 -2188 (|#1| |#1|)) (-15 -2188 (|#1| (-520))) (-15 -3251 ((-706))) (-15 -2188 ((-791) |#1|))) (-917 |#2|) (-512)) (T -916))
-((-3251 (*1 *2) (-12 (-4 *4 (-512)) (-5 *2 (-706)) (-5 *1 (-916 *3 *4)) (-4 *3 (-917 *4)))))
-(-10 -8 (-15 -1548 ((-108) |#1| |#1|)) (-15 -3794 (|#1|)) (-15 -1394 ((-3 |#1| "failed") |#1|)) (-15 -1482 ((-520) |#1|)) (-15 -1296 ((-3 (-520) "failed") |#1|)) (-15 -1482 ((-380 (-520)) |#1|)) (-15 -1296 ((-3 (-380 (-520)) "failed") |#1|)) (-15 -1429 ((-201) |#1|)) (-15 -1429 ((-352) |#1|)) (-15 -1429 ((-496) |#1|)) (-15 -1482 ((-1083) |#1|)) (-15 -1296 ((-3 (-1083) "failed") |#1|)) (-15 -2188 (|#1| (-1083))) (-15 -3249 (|#1|)) (-15 -4122 (|#1| |#1|)) (-15 -3556 (|#1| |#1|)) (-15 -4115 (|#1| |#1|)) (-15 -1272 ((-817 (-352) |#1|) |#1| (-820 (-352)) (-817 (-352) |#1|))) (-15 -1272 ((-817 (-520) |#1|) |#1| (-820 (-520)) (-817 (-520) |#1|))) (-15 -1429 ((-820 (-352)) |#1|)) (-15 -1429 ((-820 (-520)) |#1|)) (-15 -2756 ((-626 |#2|) (-626 |#1|))) (-15 -2756 ((-2 (|:| -3927 (-626 |#2|)) (|:| |vec| (-1164 |#2|))) (-626 |#1|) (-1164 |#1|))) (-15 -2756 ((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 |#1|) (-1164 |#1|))) (-15 -2756 ((-626 (-520)) (-626 |#1|))) (-15 -2155 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2155 (|#1| |#1| (-1 |#2| |#2|) (-706))) (-15 -2155 (|#1| |#1| (-586 (-1083)) (-586 (-706)))) (-15 -2155 (|#1| |#1| (-1083) (-706))) (-15 -2155 (|#1| |#1| (-586 (-1083)))) (-15 -2155 (|#1| |#1| (-1083))) (-15 -2155 (|#1| |#1| (-706))) (-15 -2155 (|#1| |#1|)) (-15 -1389 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1482 (|#2| |#1|)) (-15 -1296 ((-3 |#2| "failed") |#1|)) (-15 -2188 (|#1| |#2|)) (-15 -2188 (|#1| (-380 (-520)))) (-15 -2188 (|#1| |#1|)) (-15 -2188 (|#1| (-520))) (-15 -3251 ((-706))) (-15 -2188 ((-791) |#1|)))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-4040 ((|#1| $) 139 (|has| |#1| (-281)))) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) 41)) (-2583 (($ $) 40)) (-1671 (((-108) $) 38)) (-1917 (((-3 $ "failed") $ $) 19)) (-4119 (((-391 (-1079 $)) (-1079 $)) 130 (|has| |#1| (-837)))) (-3024 (($ $) 73)) (-1507 (((-391 $) $) 72)) (-3481 (((-3 (-586 (-1079 $)) "failed") (-586 (-1079 $)) (-1079 $)) 133 (|has| |#1| (-837)))) (-1327 (((-108) $ $) 59)) (-2804 (((-520) $) 120 (|has| |#1| (-756)))) (-3961 (($) 17 T CONST)) (-1296 (((-3 |#1| "failed") $) 178) (((-3 (-1083) "failed") $) 128 (|has| |#1| (-960 (-1083)))) (((-3 (-380 (-520)) "failed") $) 112 (|has| |#1| (-960 (-520)))) (((-3 (-520) "failed") $) 110 (|has| |#1| (-960 (-520))))) (-1482 ((|#1| $) 177) (((-1083) $) 127 (|has| |#1| (-960 (-1083)))) (((-380 (-520)) $) 111 (|has| |#1| (-960 (-520)))) (((-520) $) 109 (|has| |#1| (-960 (-520))))) (-2276 (($ $ $) 55)) (-2756 (((-626 (-520)) (-626 $)) 152 (|has| |#1| (-582 (-520)))) (((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 $) (-1164 $)) 151 (|has| |#1| (-582 (-520)))) (((-2 (|:| -3927 (-626 |#1|)) (|:| |vec| (-1164 |#1|))) (-626 $) (-1164 $)) 150) (((-626 |#1|) (-626 $)) 149)) (-1540 (((-3 $ "failed") $) 34)) (-3249 (($) 137 (|has| |#1| (-505)))) (-2253 (($ $ $) 56)) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) 51)) (-2036 (((-108) $) 71)) (-2328 (((-108) $) 122 (|has| |#1| (-756)))) (-1272 (((-817 (-520) $) $ (-820 (-520)) (-817 (-520) $)) 146 (|has| |#1| (-814 (-520)))) (((-817 (-352) $) $ (-820 (-352)) (-817 (-352) $)) 145 (|has| |#1| (-814 (-352))))) (-1537 (((-108) $) 31)) (-4115 (($ $) 141)) (-2800 ((|#1| $) 143)) (-1394 (((-3 $ "failed") $) 108 (|has| |#1| (-1059)))) (-3469 (((-108) $) 121 (|has| |#1| (-756)))) (-3188 (((-3 (-586 $) "failed") (-586 $) $) 52)) (-2809 (($ $ $) 118 (|has| |#1| (-783)))) (-2446 (($ $ $) 117 (|has| |#1| (-783)))) (-1389 (($ (-1 |#1| |#1|) $) 169)) (-2222 (($ $ $) 46) (($ (-586 $)) 45)) (-1239 (((-1066) $) 9)) (-3093 (($ $) 70)) (-3794 (($) 107 (|has| |#1| (-1059)) CONST)) (-4142 (((-1030) $) 10)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) 44)) (-2257 (($ $ $) 48) (($ (-586 $)) 47)) (-4122 (($ $) 138 (|has| |#1| (-281)))) (-1626 ((|#1| $) 135 (|has| |#1| (-505)))) (-4133 (((-391 (-1079 $)) (-1079 $)) 132 (|has| |#1| (-837)))) (-2017 (((-391 (-1079 $)) (-1079 $)) 131 (|has| |#1| (-837)))) (-1916 (((-391 $) $) 74)) (-1283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2230 (((-3 $ "failed") $ $) 42)) (-2608 (((-3 (-586 $) "failed") (-586 $) $) 50)) (-2286 (($ $ (-586 |#1|) (-586 |#1|)) 175 (|has| |#1| (-283 |#1|))) (($ $ |#1| |#1|) 174 (|has| |#1| (-283 |#1|))) (($ $ (-268 |#1|)) 173 (|has| |#1| (-283 |#1|))) (($ $ (-586 (-268 |#1|))) 172 (|has| |#1| (-283 |#1|))) (($ $ (-586 (-1083)) (-586 |#1|)) 171 (|has| |#1| (-481 (-1083) |#1|))) (($ $ (-1083) |#1|) 170 (|has| |#1| (-481 (-1083) |#1|)))) (-3704 (((-706) $) 58)) (-2543 (($ $ |#1|) 176 (|has| |#1| (-260 |#1| |#1|)))) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) 57)) (-2155 (($ $) 168 (|has| |#1| (-209))) (($ $ (-706)) 166 (|has| |#1| (-209))) (($ $ (-1083)) 164 (|has| |#1| (-828 (-1083)))) (($ $ (-586 (-1083))) 163 (|has| |#1| (-828 (-1083)))) (($ $ (-1083) (-706)) 162 (|has| |#1| (-828 (-1083)))) (($ $ (-586 (-1083)) (-586 (-706))) 161 (|has| |#1| (-828 (-1083)))) (($ $ (-1 |#1| |#1|) (-706)) 154) (($ $ (-1 |#1| |#1|)) 153)) (-3556 (($ $) 140)) (-2811 ((|#1| $) 142)) (-1429 (((-820 (-520)) $) 148 (|has| |#1| (-561 (-820 (-520))))) (((-820 (-352)) $) 147 (|has| |#1| (-561 (-820 (-352))))) (((-496) $) 125 (|has| |#1| (-561 (-496)))) (((-352) $) 124 (|has| |#1| (-945))) (((-201) $) 123 (|has| |#1| (-945)))) (-3784 (((-3 (-1164 $) "failed") (-626 $)) 134 (-4006 (|has| $ (-133)) (|has| |#1| (-837))))) (-2188 (((-791) $) 11) (($ (-520)) 28) (($ $) 43) (($ (-380 (-520))) 65) (($ |#1|) 181) (($ (-1083)) 129 (|has| |#1| (-960 (-1083))))) (-3796 (((-3 $ "failed") $) 126 (-3700 (|has| |#1| (-133)) (-4006 (|has| $ (-133)) (|has| |#1| (-837)))))) (-3251 (((-706)) 29)) (-3370 ((|#1| $) 136 (|has| |#1| (-505)))) (-2559 (((-108) $ $) 39)) (-2458 (($ $) 119 (|has| |#1| (-756)))) (-3504 (($ $ (-849)) 26) (($ $ (-706)) 33) (($ $ (-520)) 69)) (-3560 (($) 18 T CONST)) (-3570 (($) 30 T CONST)) (-2211 (($ $) 167 (|has| |#1| (-209))) (($ $ (-706)) 165 (|has| |#1| (-209))) (($ $ (-1083)) 160 (|has| |#1| (-828 (-1083)))) (($ $ (-586 (-1083))) 159 (|has| |#1| (-828 (-1083)))) (($ $ (-1083) (-706)) 158 (|has| |#1| (-828 (-1083)))) (($ $ (-586 (-1083)) (-586 (-706))) 157 (|has| |#1| (-828 (-1083)))) (($ $ (-1 |#1| |#1|) (-706)) 156) (($ $ (-1 |#1| |#1|)) 155)) (-1573 (((-108) $ $) 115 (|has| |#1| (-783)))) (-1557 (((-108) $ $) 114 (|has| |#1| (-783)))) (-1530 (((-108) $ $) 6)) (-1565 (((-108) $ $) 116 (|has| |#1| (-783)))) (-1548 (((-108) $ $) 113 (|has| |#1| (-783)))) (-1619 (($ $ $) 64) (($ |#1| |#1|) 144)) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-706)) 32) (($ $ (-520)) 68)) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ $ $) 24) (($ $ (-380 (-520))) 67) (($ (-380 (-520)) $) 66) (($ |#1| $) 180) (($ $ |#1|) 179)))
-(((-917 |#1|) (-1195) (-512)) (T -917))
-((-1619 (*1 *1 *2 *2) (-12 (-4 *1 (-917 *2)) (-4 *2 (-512)))) (-2800 (*1 *2 *1) (-12 (-4 *1 (-917 *2)) (-4 *2 (-512)))) (-2811 (*1 *2 *1) (-12 (-4 *1 (-917 *2)) (-4 *2 (-512)))) (-4115 (*1 *1 *1) (-12 (-4 *1 (-917 *2)) (-4 *2 (-512)))) (-3556 (*1 *1 *1) (-12 (-4 *1 (-917 *2)) (-4 *2 (-512)))) (-4040 (*1 *2 *1) (-12 (-4 *1 (-917 *2)) (-4 *2 (-512)) (-4 *2 (-281)))) (-4122 (*1 *1 *1) (-12 (-4 *1 (-917 *2)) (-4 *2 (-512)) (-4 *2 (-281)))) (-3249 (*1 *1) (-12 (-4 *1 (-917 *2)) (-4 *2 (-505)) (-4 *2 (-512)))) (-3370 (*1 *2 *1) (-12 (-4 *1 (-917 *2)) (-4 *2 (-512)) (-4 *2 (-505)))) (-1626 (*1 *2 *1) (-12 (-4 *1 (-917 *2)) (-4 *2 (-512)) (-4 *2 (-505)))))
-(-13 (-336) (-37 |t#1|) (-960 |t#1|) (-311 |t#1|) (-207 |t#1|) (-350 |t#1|) (-812 |t#1|) (-373 |t#1|) (-10 -8 (-15 -1619 ($ |t#1| |t#1|)) (-15 -2800 (|t#1| $)) (-15 -2811 (|t#1| $)) (-15 -4115 ($ $)) (-15 -3556 ($ $)) (IF (|has| |t#1| (-1059)) (-6 (-1059)) |%noBranch|) (IF (|has| |t#1| (-960 (-520))) (PROGN (-6 (-960 (-520))) (-6 (-960 (-380 (-520))))) |%noBranch|) (IF (|has| |t#1| (-783)) (-6 (-783)) |%noBranch|) (IF (|has| |t#1| (-756)) (-6 (-756)) |%noBranch|) (IF (|has| |t#1| (-945)) (-6 (-945)) |%noBranch|) (IF (|has| |t#1| (-561 (-496))) (-6 (-561 (-496))) |%noBranch|) (IF (|has| |t#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |t#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |t#1| (-960 (-1083))) (-6 (-960 (-1083))) |%noBranch|) (IF (|has| |t#1| (-281)) (PROGN (-15 -4040 (|t#1| $)) (-15 -4122 ($ $))) |%noBranch|) (IF (|has| |t#1| (-505)) (PROGN (-15 -3249 ($)) (-15 -3370 (|t#1| $)) (-15 -1626 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-837)) (-6 (-837)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-380 (-520))) . T) ((-37 |#1|) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 |#1| |#1|) . T) ((-107 $ $) . T) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-560 (-791)) . T) ((-157) . T) ((-561 (-201)) |has| |#1| (-945)) ((-561 (-352)) |has| |#1| (-945)) ((-561 (-496)) |has| |#1| (-561 (-496))) ((-561 (-820 (-352))) |has| |#1| (-561 (-820 (-352)))) ((-561 (-820 (-520))) |has| |#1| (-561 (-820 (-520)))) ((-207 |#1|) . T) ((-209) |has| |#1| (-209)) ((-219) . T) ((-260 |#1| $) |has| |#1| (-260 |#1| |#1|)) ((-264) . T) ((-281) . T) ((-283 |#1|) |has| |#1| (-283 |#1|)) ((-336) . T) ((-311 |#1|) . T) ((-350 |#1|) . T) ((-373 |#1|) . T) ((-424) . T) ((-481 (-1083) |#1|) |has| |#1| (-481 (-1083) |#1|)) ((-481 |#1| |#1|) |has| |#1| (-283 |#1|)) ((-512) . T) ((-588 #0#) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-582 (-520)) |has| |#1| (-582 (-520))) ((-582 |#1|) . T) ((-653 #0#) . T) ((-653 |#1|) . T) ((-653 $) . T) ((-662) . T) ((-726) |has| |#1| (-756)) ((-727) |has| |#1| (-756)) ((-729) |has| |#1| (-756)) ((-731) |has| |#1| (-756)) ((-756) |has| |#1| (-756)) ((-781) |has| |#1| (-756)) ((-783) -3700 (|has| |#1| (-783)) (|has| |#1| (-756))) ((-828 (-1083)) |has| |#1| (-828 (-1083))) ((-814 (-352)) |has| |#1| (-814 (-352))) ((-814 (-520)) |has| |#1| (-814 (-520))) ((-812 |#1|) . T) ((-837) |has| |#1| (-837)) ((-848) . T) ((-945) |has| |#1| (-945)) ((-960 (-380 (-520))) |has| |#1| (-960 (-520))) ((-960 (-520)) |has| |#1| (-960 (-520))) ((-960 (-1083)) |has| |#1| (-960 (-1083))) ((-960 |#1|) . T) ((-975 #0#) . T) ((-975 |#1|) . T) ((-975 $) . T) ((-969) . T) ((-976) . T) ((-1024) . T) ((-1012) . T) ((-1059) |has| |#1| (-1059)) ((-1118) . T) ((-1122) . T))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-1917 (((-3 $ "failed") $ $) NIL)) (-3961 (($) NIL T CONST)) (-2784 (($ (-1050 |#1| |#2|)) 11)) (-1364 (((-1050 |#1| |#2|) $) 12)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2543 ((|#2| $ (-216 |#1| |#2|)) 16)) (-2188 (((-791) $) NIL)) (-3560 (($) NIL T CONST)) (-1530 (((-108) $ $) NIL)) (-1611 (($ $) NIL) (($ $ $) NIL)) (-1601 (($ $ $) NIL)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL)))
-(((-918 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -2784 ($ (-1050 |#1| |#2|))) (-15 -1364 ((-1050 |#1| |#2|) $)) (-15 -2543 (|#2| $ (-216 |#1| |#2|))))) (-849) (-336)) (T -918))
-((-2784 (*1 *1 *2) (-12 (-5 *2 (-1050 *3 *4)) (-14 *3 (-849)) (-4 *4 (-336)) (-5 *1 (-918 *3 *4)))) (-1364 (*1 *2 *1) (-12 (-5 *2 (-1050 *3 *4)) (-5 *1 (-918 *3 *4)) (-14 *3 (-849)) (-4 *4 (-336)))) (-2543 (*1 *2 *1 *3) (-12 (-5 *3 (-216 *4 *2)) (-14 *4 (-849)) (-4 *2 (-336)) (-5 *1 (-918 *4 *2)))))
-(-13 (-21) (-10 -8 (-15 -2784 ($ (-1050 |#1| |#2|))) (-15 -1364 ((-1050 |#1| |#2|) $)) (-15 -2543 (|#2| $ (-216 |#1| |#2|)))))
-((-1414 (((-108) $ $) 19 (|has| |#1| (-1012)))) (-2063 (((-108) $ (-706)) 8)) (-3961 (($) 7 T CONST)) (-3812 (($ $) 46)) (-3828 (((-586 |#1|) $) 30 (|has| $ (-6 -4229)))) (-3027 (((-108) $ (-706)) 9)) (-3702 (((-586 |#1|) $) 29 (|has| $ (-6 -4229)))) (-2422 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-3830 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#1| |#1|) $) 35)) (-1390 (((-108) $ (-706)) 10)) (-2515 (((-706) $) 45)) (-1239 (((-1066) $) 22 (|has| |#1| (-1012)))) (-3351 ((|#1| $) 39)) (-3618 (($ |#1| $) 40)) (-4142 (((-1030) $) 21 (|has| |#1| (-1012)))) (-1834 ((|#1| $) 44)) (-3345 ((|#1| $) 41)) (-4155 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 |#1|))) 26 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-268 |#1|)) 25 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-586 |#1|) (-586 |#1|)) 23 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))) (-2533 (((-108) $ $) 14)) (-1777 ((|#1| |#1| $) 48)) (-4018 (((-108) $) 11)) (-2238 (($) 12)) (-2024 ((|#1| $) 47)) (-4159 (((-706) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4229))) (((-706) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-2403 (($ $) 13)) (-2188 (((-791) $) 18 (|has| |#1| (-560 (-791))))) (-1898 (($ (-586 |#1|)) 42)) (-4149 ((|#1| $) 43)) (-1662 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4229)))) (-1530 (((-108) $ $) 20 (|has| |#1| (-1012)))) (-3474 (((-706) $) 6 (|has| $ (-6 -4229)))))
-(((-919 |#1|) (-1195) (-1118)) (T -919))
-((-1777 (*1 *2 *2 *1) (-12 (-4 *1 (-919 *2)) (-4 *2 (-1118)))) (-2024 (*1 *2 *1) (-12 (-4 *1 (-919 *2)) (-4 *2 (-1118)))) (-3812 (*1 *1 *1) (-12 (-4 *1 (-919 *2)) (-4 *2 (-1118)))) (-2515 (*1 *2 *1) (-12 (-4 *1 (-919 *3)) (-4 *3 (-1118)) (-5 *2 (-706)))) (-1834 (*1 *2 *1) (-12 (-4 *1 (-919 *2)) (-4 *2 (-1118)))) (-4149 (*1 *2 *1) (-12 (-4 *1 (-919 *2)) (-4 *2 (-1118)))))
-(-13 (-102 |t#1|) (-10 -8 (-6 -4229) (-15 -1777 (|t#1| |t#1| $)) (-15 -2024 (|t#1| $)) (-15 -3812 ($ $)) (-15 -2515 ((-706) $)) (-15 -1834 (|t#1| $)) (-15 -4149 (|t#1| $))))
-(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1012)) ((-560 (-791)) -3700 (|has| |#1| (-1012)) (|has| |#1| (-560 (-791)))) ((-283 |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))) ((-459 |#1|) . T) ((-481 |#1| |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))) ((-1012) |has| |#1| (-1012)) ((-1118) . T))
-((-2906 (((-108) $) 42)) (-1296 (((-3 (-520) "failed") $) NIL) (((-3 (-380 (-520)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-1482 (((-520) $) NIL) (((-380 (-520)) $) NIL) ((|#2| $) 43)) (-2279 (((-3 (-380 (-520)) "failed") $) 78)) (-1386 (((-108) $) 72)) (-4055 (((-380 (-520)) $) 76)) (-1537 (((-108) $) 41)) (-1434 ((|#2| $) 22)) (-1389 (($ (-1 |#2| |#2|) $) 19)) (-3093 (($ $) 61)) (-2155 (($ $) NIL) (($ $ (-706)) NIL) (($ $ (-1083)) NIL) (($ $ (-586 (-1083))) NIL) (($ $ (-1083) (-706)) NIL) (($ $ (-586 (-1083)) (-586 (-706))) NIL) (($ $ (-1 |#2| |#2|) (-706)) NIL) (($ $ (-1 |#2| |#2|)) 34)) (-1429 (((-496) $) 67)) (-2945 (($ $) 17)) (-2188 (((-791) $) 56) (($ (-520)) 38) (($ |#2|) 36) (($ (-380 (-520))) NIL)) (-3251 (((-706)) 10)) (-2458 ((|#2| $) 71)) (-1530 (((-108) $ $) 25)) (-1548 (((-108) $ $) 69)) (-1611 (($ $) 29) (($ $ $) 28)) (-1601 (($ $ $) 26)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) 33) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 30) (($ $ (-380 (-520))) NIL) (($ (-380 (-520)) $) NIL)))
-(((-920 |#1| |#2|) (-10 -8 (-15 -2188 (|#1| (-380 (-520)))) (-15 -1548 ((-108) |#1| |#1|)) (-15 * (|#1| (-380 (-520)) |#1|)) (-15 * (|#1| |#1| (-380 (-520)))) (-15 -3093 (|#1| |#1|)) (-15 -1429 ((-496) |#1|)) (-15 -2279 ((-3 (-380 (-520)) "failed") |#1|)) (-15 -4055 ((-380 (-520)) |#1|)) (-15 -1386 ((-108) |#1|)) (-15 -2458 (|#2| |#1|)) (-15 -1434 (|#2| |#1|)) (-15 -2945 (|#1| |#1|)) (-15 -1389 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2155 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2155 (|#1| |#1| (-1 |#2| |#2|) (-706))) (-15 -2155 (|#1| |#1| (-586 (-1083)) (-586 (-706)))) (-15 -2155 (|#1| |#1| (-1083) (-706))) (-15 -2155 (|#1| |#1| (-586 (-1083)))) (-15 -2155 (|#1| |#1| (-1083))) (-15 -2155 (|#1| |#1| (-706))) (-15 -2155 (|#1| |#1|)) (-15 -1482 (|#2| |#1|)) (-15 -1296 ((-3 |#2| "failed") |#1|)) (-15 -1296 ((-3 (-380 (-520)) "failed") |#1|)) (-15 -1482 ((-380 (-520)) |#1|)) (-15 -1296 ((-3 (-520) "failed") |#1|)) (-15 -1482 ((-520) |#1|)) (-15 -2188 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2188 (|#1| (-520))) (-15 -3251 ((-706))) (-15 -1537 ((-108) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-520) |#1|)) (-15 -1611 (|#1| |#1| |#1|)) (-15 -1611 (|#1| |#1|)) (-15 * (|#1| (-706) |#1|)) (-15 -2906 ((-108) |#1|)) (-15 * (|#1| (-849) |#1|)) (-15 -1601 (|#1| |#1| |#1|)) (-15 -2188 ((-791) |#1|)) (-15 -1530 ((-108) |#1| |#1|))) (-921 |#2|) (-157)) (T -920))
-((-3251 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-706)) (-5 *1 (-920 *3 *4)) (-4 *3 (-921 *4)))))
-(-10 -8 (-15 -2188 (|#1| (-380 (-520)))) (-15 -1548 ((-108) |#1| |#1|)) (-15 * (|#1| (-380 (-520)) |#1|)) (-15 * (|#1| |#1| (-380 (-520)))) (-15 -3093 (|#1| |#1|)) (-15 -1429 ((-496) |#1|)) (-15 -2279 ((-3 (-380 (-520)) "failed") |#1|)) (-15 -4055 ((-380 (-520)) |#1|)) (-15 -1386 ((-108) |#1|)) (-15 -2458 (|#2| |#1|)) (-15 -1434 (|#2| |#1|)) (-15 -2945 (|#1| |#1|)) (-15 -1389 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2155 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2155 (|#1| |#1| (-1 |#2| |#2|) (-706))) (-15 -2155 (|#1| |#1| (-586 (-1083)) (-586 (-706)))) (-15 -2155 (|#1| |#1| (-1083) (-706))) (-15 -2155 (|#1| |#1| (-586 (-1083)))) (-15 -2155 (|#1| |#1| (-1083))) (-15 -2155 (|#1| |#1| (-706))) (-15 -2155 (|#1| |#1|)) (-15 -1482 (|#2| |#1|)) (-15 -1296 ((-3 |#2| "failed") |#1|)) (-15 -1296 ((-3 (-380 (-520)) "failed") |#1|)) (-15 -1482 ((-380 (-520)) |#1|)) (-15 -1296 ((-3 (-520) "failed") |#1|)) (-15 -1482 ((-520) |#1|)) (-15 -2188 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2188 (|#1| (-520))) (-15 -3251 ((-706))) (-15 -1537 ((-108) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-520) |#1|)) (-15 -1611 (|#1| |#1| |#1|)) (-15 -1611 (|#1| |#1|)) (-15 * (|#1| (-706) |#1|)) (-15 -2906 ((-108) |#1|)) (-15 * (|#1| (-849) |#1|)) (-15 -1601 (|#1| |#1| |#1|)) (-15 -2188 ((-791) |#1|)) (-15 -1530 ((-108) |#1| |#1|)))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-1917 (((-3 $ "failed") $ $) 19)) (-3961 (($) 17 T CONST)) (-1296 (((-3 (-520) "failed") $) 119 (|has| |#1| (-960 (-520)))) (((-3 (-380 (-520)) "failed") $) 117 (|has| |#1| (-960 (-380 (-520))))) (((-3 |#1| "failed") $) 116)) (-1482 (((-520) $) 120 (|has| |#1| (-960 (-520)))) (((-380 (-520)) $) 118 (|has| |#1| (-960 (-380 (-520))))) ((|#1| $) 115)) (-2756 (((-626 (-520)) (-626 $)) 90 (|has| |#1| (-582 (-520)))) (((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 $) (-1164 $)) 89 (|has| |#1| (-582 (-520)))) (((-2 (|:| -3927 (-626 |#1|)) (|:| |vec| (-1164 |#1|))) (-626 $) (-1164 $)) 88) (((-626 |#1|) (-626 $)) 87)) (-1540 (((-3 $ "failed") $) 34)) (-1936 ((|#1| $) 80)) (-2279 (((-3 (-380 (-520)) "failed") $) 76 (|has| |#1| (-505)))) (-1386 (((-108) $) 78 (|has| |#1| (-505)))) (-4055 (((-380 (-520)) $) 77 (|has| |#1| (-505)))) (-3896 (($ |#1| |#1| |#1| |#1|) 81)) (-1537 (((-108) $) 31)) (-1434 ((|#1| $) 82)) (-2809 (($ $ $) 68 (|has| |#1| (-783)))) (-2446 (($ $ $) 67 (|has| |#1| (-783)))) (-1389 (($ (-1 |#1| |#1|) $) 91)) (-1239 (((-1066) $) 9)) (-3093 (($ $) 73 (|has| |#1| (-336)))) (-1711 ((|#1| $) 83)) (-2689 ((|#1| $) 84)) (-1862 ((|#1| $) 85)) (-4142 (((-1030) $) 10)) (-2286 (($ $ (-586 |#1|) (-586 |#1|)) 97 (|has| |#1| (-283 |#1|))) (($ $ |#1| |#1|) 96 (|has| |#1| (-283 |#1|))) (($ $ (-268 |#1|)) 95 (|has| |#1| (-283 |#1|))) (($ $ (-586 (-268 |#1|))) 94 (|has| |#1| (-283 |#1|))) (($ $ (-586 (-1083)) (-586 |#1|)) 93 (|has| |#1| (-481 (-1083) |#1|))) (($ $ (-1083) |#1|) 92 (|has| |#1| (-481 (-1083) |#1|)))) (-2543 (($ $ |#1|) 98 (|has| |#1| (-260 |#1| |#1|)))) (-2155 (($ $) 114 (|has| |#1| (-209))) (($ $ (-706)) 112 (|has| |#1| (-209))) (($ $ (-1083)) 110 (|has| |#1| (-828 (-1083)))) (($ $ (-586 (-1083))) 109 (|has| |#1| (-828 (-1083)))) (($ $ (-1083) (-706)) 108 (|has| |#1| (-828 (-1083)))) (($ $ (-586 (-1083)) (-586 (-706))) 107 (|has| |#1| (-828 (-1083)))) (($ $ (-1 |#1| |#1|) (-706)) 100) (($ $ (-1 |#1| |#1|)) 99)) (-1429 (((-496) $) 74 (|has| |#1| (-561 (-496))))) (-2945 (($ $) 86)) (-2188 (((-791) $) 11) (($ (-520)) 28) (($ |#1|) 37) (($ (-380 (-520))) 62 (-3700 (|has| |#1| (-336)) (|has| |#1| (-960 (-380 (-520))))))) (-3796 (((-3 $ "failed") $) 75 (|has| |#1| (-133)))) (-3251 (((-706)) 29)) (-2458 ((|#1| $) 79 (|has| |#1| (-978)))) (-3504 (($ $ (-849)) 26) (($ $ (-706)) 33) (($ $ (-520)) 72 (|has| |#1| (-336)))) (-3560 (($) 18 T CONST)) (-3570 (($) 30 T CONST)) (-2211 (($ $) 113 (|has| |#1| (-209))) (($ $ (-706)) 111 (|has| |#1| (-209))) (($ $ (-1083)) 106 (|has| |#1| (-828 (-1083)))) (($ $ (-586 (-1083))) 105 (|has| |#1| (-828 (-1083)))) (($ $ (-1083) (-706)) 104 (|has| |#1| (-828 (-1083)))) (($ $ (-586 (-1083)) (-586 (-706))) 103 (|has| |#1| (-828 (-1083)))) (($ $ (-1 |#1| |#1|) (-706)) 102) (($ $ (-1 |#1| |#1|)) 101)) (-1573 (((-108) $ $) 65 (|has| |#1| (-783)))) (-1557 (((-108) $ $) 64 (|has| |#1| (-783)))) (-1530 (((-108) $ $) 6)) (-1565 (((-108) $ $) 66 (|has| |#1| (-783)))) (-1548 (((-108) $ $) 63 (|has| |#1| (-783)))) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-706)) 32) (($ $ (-520)) 71 (|has| |#1| (-336)))) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ $ (-380 (-520))) 70 (|has| |#1| (-336))) (($ (-380 (-520)) $) 69 (|has| |#1| (-336)))))
-(((-921 |#1|) (-1195) (-157)) (T -921))
-((-2945 (*1 *1 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-157)))) (-1862 (*1 *2 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-157)))) (-2689 (*1 *2 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-157)))) (-1711 (*1 *2 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-157)))) (-1434 (*1 *2 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-157)))) (-3896 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-921 *2)) (-4 *2 (-157)))) (-1936 (*1 *2 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-157)))) (-2458 (*1 *2 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-157)) (-4 *2 (-978)))) (-1386 (*1 *2 *1) (-12 (-4 *1 (-921 *3)) (-4 *3 (-157)) (-4 *3 (-505)) (-5 *2 (-108)))) (-4055 (*1 *2 *1) (-12 (-4 *1 (-921 *3)) (-4 *3 (-157)) (-4 *3 (-505)) (-5 *2 (-380 (-520))))) (-2279 (*1 *2 *1) (|partial| -12 (-4 *1 (-921 *3)) (-4 *3 (-157)) (-4 *3 (-505)) (-5 *2 (-380 (-520))))))
-(-13 (-37 |t#1|) (-384 |t#1|) (-207 |t#1|) (-311 |t#1|) (-350 |t#1|) (-10 -8 (-15 -2945 ($ $)) (-15 -1862 (|t#1| $)) (-15 -2689 (|t#1| $)) (-15 -1711 (|t#1| $)) (-15 -1434 (|t#1| $)) (-15 -3896 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -1936 (|t#1| $)) (IF (|has| |t#1| (-264)) (-6 (-264)) |%noBranch|) (IF (|has| |t#1| (-783)) (-6 (-783)) |%noBranch|) (IF (|has| |t#1| (-336)) (-6 (-219)) |%noBranch|) (IF (|has| |t#1| (-561 (-496))) (-6 (-561 (-496))) |%noBranch|) (IF (|has| |t#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |t#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |t#1| (-978)) (-15 -2458 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-505)) (PROGN (-15 -1386 ((-108) $)) (-15 -4055 ((-380 (-520)) $)) (-15 -2279 ((-3 (-380 (-520)) "failed") $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-380 (-520))) |has| |#1| (-336)) ((-37 |#1|) . T) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-336)) ((-107 |#1| |#1|) . T) ((-107 $ $) -3700 (|has| |#1| (-336)) (|has| |#1| (-264))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-560 (-791)) . T) ((-561 (-496)) |has| |#1| (-561 (-496))) ((-207 |#1|) . T) ((-209) |has| |#1| (-209)) ((-219) |has| |#1| (-336)) ((-260 |#1| $) |has| |#1| (-260 |#1| |#1|)) ((-264) -3700 (|has| |#1| (-336)) (|has| |#1| (-264))) ((-283 |#1|) |has| |#1| (-283 |#1|)) ((-311 |#1|) . T) ((-350 |#1|) . T) ((-384 |#1|) . T) ((-481 (-1083) |#1|) |has| |#1| (-481 (-1083) |#1|)) ((-481 |#1| |#1|) |has| |#1| (-283 |#1|)) ((-588 #0#) |has| |#1| (-336)) ((-588 |#1|) . T) ((-588 $) . T) ((-582 (-520)) |has| |#1| (-582 (-520))) ((-582 |#1|) . T) ((-653 #0#) |has| |#1| (-336)) ((-653 |#1|) . T) ((-662) . T) ((-783) |has| |#1| (-783)) ((-828 (-1083)) |has| |#1| (-828 (-1083))) ((-960 (-380 (-520))) |has| |#1| (-960 (-380 (-520)))) ((-960 (-520)) |has| |#1| (-960 (-520))) ((-960 |#1|) . T) ((-975 #0#) |has| |#1| (-336)) ((-975 |#1|) . T) ((-975 $) -3700 (|has| |#1| (-336)) (|has| |#1| (-264))) ((-969) . T) ((-976) . T) ((-1024) . T) ((-1012) . T))
-((-1389 ((|#3| (-1 |#4| |#2|) |#1|) 16)))
-(((-922 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1389 (|#3| (-1 |#4| |#2|) |#1|))) (-921 |#2|) (-157) (-921 |#4|) (-157)) (T -922))
-((-1389 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-157)) (-4 *6 (-157)) (-4 *2 (-921 *6)) (-5 *1 (-922 *4 *5 *2 *6)) (-4 *4 (-921 *5)))))
-(-10 -7 (-15 -1389 (|#3| (-1 |#4| |#2|) |#1|)))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-1917 (((-3 $ "failed") $ $) NIL)) (-3961 (($) NIL T CONST)) (-1296 (((-3 (-520) "failed") $) NIL (|has| |#1| (-960 (-520)))) (((-3 (-380 (-520)) "failed") $) NIL (|has| |#1| (-960 (-380 (-520))))) (((-3 |#1| "failed") $) NIL)) (-1482 (((-520) $) NIL (|has| |#1| (-960 (-520)))) (((-380 (-520)) $) NIL (|has| |#1| (-960 (-380 (-520))))) ((|#1| $) NIL)) (-2756 (((-626 (-520)) (-626 $)) NIL (|has| |#1| (-582 (-520)))) (((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 $) (-1164 $)) NIL (|has| |#1| (-582 (-520)))) (((-2 (|:| -3927 (-626 |#1|)) (|:| |vec| (-1164 |#1|))) (-626 $) (-1164 $)) NIL) (((-626 |#1|) (-626 $)) NIL)) (-1540 (((-3 $ "failed") $) NIL)) (-1936 ((|#1| $) 12)) (-2279 (((-3 (-380 (-520)) "failed") $) NIL (|has| |#1| (-505)))) (-1386 (((-108) $) NIL (|has| |#1| (-505)))) (-4055 (((-380 (-520)) $) NIL (|has| |#1| (-505)))) (-3896 (($ |#1| |#1| |#1| |#1|) 16)) (-1537 (((-108) $) NIL)) (-1434 ((|#1| $) NIL)) (-2809 (($ $ $) NIL (|has| |#1| (-783)))) (-2446 (($ $ $) NIL (|has| |#1| (-783)))) (-1389 (($ (-1 |#1| |#1|) $) NIL)) (-1239 (((-1066) $) NIL)) (-3093 (($ $) NIL (|has| |#1| (-336)))) (-1711 ((|#1| $) 15)) (-2689 ((|#1| $) 14)) (-1862 ((|#1| $) 13)) (-4142 (((-1030) $) NIL)) (-2286 (($ $ (-586 |#1|) (-586 |#1|)) NIL (|has| |#1| (-283 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-283 |#1|))) (($ $ (-268 |#1|)) NIL (|has| |#1| (-283 |#1|))) (($ $ (-586 (-268 |#1|))) NIL (|has| |#1| (-283 |#1|))) (($ $ (-586 (-1083)) (-586 |#1|)) NIL (|has| |#1| (-481 (-1083) |#1|))) (($ $ (-1083) |#1|) NIL (|has| |#1| (-481 (-1083) |#1|)))) (-2543 (($ $ |#1|) NIL (|has| |#1| (-260 |#1| |#1|)))) (-2155 (($ $) NIL (|has| |#1| (-209))) (($ $ (-706)) NIL (|has| |#1| (-209))) (($ $ (-1083)) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-586 (-1083))) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-1083) (-706)) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-586 (-1083)) (-586 (-706))) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-1 |#1| |#1|) (-706)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1429 (((-496) $) NIL (|has| |#1| (-561 (-496))))) (-2945 (($ $) NIL)) (-2188 (((-791) $) NIL) (($ (-520)) NIL) (($ |#1|) NIL) (($ (-380 (-520))) NIL (-3700 (|has| |#1| (-336)) (|has| |#1| (-960 (-380 (-520))))))) (-3796 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-3251 (((-706)) NIL)) (-2458 ((|#1| $) NIL (|has| |#1| (-978)))) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL (|has| |#1| (-336)))) (-3560 (($) 8 T CONST)) (-3570 (($) 10 T CONST)) (-2211 (($ $) NIL (|has| |#1| (-209))) (($ $ (-706)) NIL (|has| |#1| (-209))) (($ $ (-1083)) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-586 (-1083))) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-1083) (-706)) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-586 (-1083)) (-586 (-706))) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-1 |#1| |#1|) (-706)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1573 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1557 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1530 (((-108) $ $) NIL)) (-1565 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1548 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1611 (($ $) NIL) (($ $ $) NIL)) (-1601 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL (|has| |#1| (-336)))) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-380 (-520))) NIL (|has| |#1| (-336))) (($ (-380 (-520)) $) NIL (|has| |#1| (-336)))))
-(((-923 |#1|) (-921 |#1|) (-157)) (T -923))
-NIL
-(-921 |#1|)
-((-1414 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-2063 (((-108) $ (-706)) NIL)) (-3961 (($) NIL T CONST)) (-3812 (($ $) 20)) (-3650 (($ (-586 |#1|)) 29)) (-3828 (((-586 |#1|) $) NIL (|has| $ (-6 -4229)))) (-3027 (((-108) $ (-706)) NIL)) (-3702 (((-586 |#1|) $) NIL (|has| $ (-6 -4229)))) (-2422 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-3830 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#1| |#1|) $) NIL)) (-1390 (((-108) $ (-706)) NIL)) (-2515 (((-706) $) 22)) (-1239 (((-1066) $) NIL (|has| |#1| (-1012)))) (-3351 ((|#1| $) 24)) (-3618 (($ |#1| $) 15)) (-4142 (((-1030) $) NIL (|has| |#1| (-1012)))) (-1834 ((|#1| $) 23)) (-3345 ((|#1| $) 19)) (-4155 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 |#1|))) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-268 |#1|)) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-586 |#1|) (-586 |#1|)) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))) (-2533 (((-108) $ $) NIL)) (-1777 ((|#1| |#1| $) 14)) (-4018 (((-108) $) 17)) (-2238 (($) NIL)) (-2024 ((|#1| $) 18)) (-4159 (((-706) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229))) (((-706) |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-2403 (($ $) NIL)) (-2188 (((-791) $) NIL (|has| |#1| (-560 (-791))))) (-1898 (($ (-586 |#1|)) NIL)) (-4149 ((|#1| $) 26)) (-1662 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-1530 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-3474 (((-706) $) NIL (|has| $ (-6 -4229)))))
-(((-924 |#1|) (-13 (-919 |#1|) (-10 -8 (-15 -3650 ($ (-586 |#1|))))) (-1012)) (T -924))
-((-3650 (*1 *1 *2) (-12 (-5 *2 (-586 *3)) (-4 *3 (-1012)) (-5 *1 (-924 *3)))))
-(-13 (-919 |#1|) (-10 -8 (-15 -3650 ($ (-586 |#1|)))))
-((-1927 (($ $) 12)) (-2322 (($ $ (-520)) 13)))
-(((-925 |#1|) (-10 -8 (-15 -1927 (|#1| |#1|)) (-15 -2322 (|#1| |#1| (-520)))) (-926)) (T -925))
-NIL
-(-10 -8 (-15 -1927 (|#1| |#1|)) (-15 -2322 (|#1| |#1| (-520))))
-((-1927 (($ $) 6)) (-2322 (($ $ (-520)) 7)) (** (($ $ (-380 (-520))) 8)))
-(((-926) (-1195)) (T -926))
-((** (*1 *1 *1 *2) (-12 (-4 *1 (-926)) (-5 *2 (-380 (-520))))) (-2322 (*1 *1 *1 *2) (-12 (-4 *1 (-926)) (-5 *2 (-520)))) (-1927 (*1 *1 *1) (-4 *1 (-926))))
-(-13 (-10 -8 (-15 -1927 ($ $)) (-15 -2322 ($ $ (-520))) (-15 ** ($ $ (-380 (-520))))))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-3731 (((-2 (|:| |num| (-1164 |#2|)) (|:| |den| |#2|)) $) NIL)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) NIL (|has| (-380 |#2|) (-336)))) (-2583 (($ $) NIL (|has| (-380 |#2|) (-336)))) (-1671 (((-108) $) NIL (|has| (-380 |#2|) (-336)))) (-1405 (((-626 (-380 |#2|)) (-1164 $)) NIL) (((-626 (-380 |#2|))) NIL)) (-1864 (((-380 |#2|) $) NIL)) (-1891 (((-1092 (-849) (-706)) (-520)) NIL (|has| (-380 |#2|) (-322)))) (-1917 (((-3 $ "failed") $ $) NIL)) (-3024 (($ $) NIL (|has| (-380 |#2|) (-336)))) (-1507 (((-391 $) $) NIL (|has| (-380 |#2|) (-336)))) (-1327 (((-108) $ $) NIL (|has| (-380 |#2|) (-336)))) (-1628 (((-706)) NIL (|has| (-380 |#2|) (-341)))) (-3007 (((-108)) NIL)) (-3530 (((-108) |#1|) 147) (((-108) |#2|) 152)) (-3961 (($) NIL T CONST)) (-1296 (((-3 (-520) "failed") $) NIL (|has| (-380 |#2|) (-960 (-520)))) (((-3 (-380 (-520)) "failed") $) NIL (|has| (-380 |#2|) (-960 (-380 (-520))))) (((-3 (-380 |#2|) "failed") $) NIL)) (-1482 (((-520) $) NIL (|has| (-380 |#2|) (-960 (-520)))) (((-380 (-520)) $) NIL (|has| (-380 |#2|) (-960 (-380 (-520))))) (((-380 |#2|) $) NIL)) (-3705 (($ (-1164 (-380 |#2|)) (-1164 $)) NIL) (($ (-1164 (-380 |#2|))) 70) (($ (-1164 |#2|) |#2|) NIL)) (-2654 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-380 |#2|) (-322)))) (-2276 (($ $ $) NIL (|has| (-380 |#2|) (-336)))) (-3604 (((-626 (-380 |#2|)) $ (-1164 $)) NIL) (((-626 (-380 |#2|)) $) NIL)) (-2756 (((-626 (-520)) (-626 $)) NIL (|has| (-380 |#2|) (-582 (-520)))) (((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 $) (-1164 $)) NIL (|has| (-380 |#2|) (-582 (-520)))) (((-2 (|:| -3927 (-626 (-380 |#2|))) (|:| |vec| (-1164 (-380 |#2|)))) (-626 $) (-1164 $)) NIL) (((-626 (-380 |#2|)) (-626 $)) NIL)) (-2124 (((-1164 $) (-1164 $)) NIL)) (-3856 (($ |#3|) 65) (((-3 $ "failed") (-380 |#3|)) NIL (|has| (-380 |#2|) (-336)))) (-1540 (((-3 $ "failed") $) NIL)) (-1925 (((-586 (-586 |#1|))) NIL (|has| |#1| (-341)))) (-4072 (((-108) |#1| |#1|) NIL)) (-3160 (((-849)) NIL)) (-3249 (($) NIL (|has| (-380 |#2|) (-341)))) (-4086 (((-108)) NIL)) (-3381 (((-108) |#1|) 56) (((-108) |#2|) 149)) (-2253 (($ $ $) NIL (|has| (-380 |#2|) (-336)))) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) NIL (|has| (-380 |#2|) (-336)))) (-3923 (($ $) NIL)) (-2961 (($) NIL (|has| (-380 |#2|) (-322)))) (-1855 (((-108) $) NIL (|has| (-380 |#2|) (-322)))) (-1346 (($ $ (-706)) NIL (|has| (-380 |#2|) (-322))) (($ $) NIL (|has| (-380 |#2|) (-322)))) (-2036 (((-108) $) NIL (|has| (-380 |#2|) (-336)))) (-3989 (((-849) $) NIL (|has| (-380 |#2|) (-322))) (((-769 (-849)) $) NIL (|has| (-380 |#2|) (-322)))) (-1537 (((-108) $) NIL)) (-2368 (((-706)) NIL)) (-3245 (((-1164 $) (-1164 $)) NIL)) (-1434 (((-380 |#2|) $) NIL)) (-2735 (((-586 (-880 |#1|)) (-1083)) NIL (|has| |#1| (-336)))) (-1394 (((-3 $ "failed") $) NIL (|has| (-380 |#2|) (-322)))) (-3188 (((-3 (-586 $) "failed") (-586 $) $) NIL (|has| (-380 |#2|) (-336)))) (-2034 ((|#3| $) NIL (|has| (-380 |#2|) (-336)))) (-3040 (((-849) $) NIL (|has| (-380 |#2|) (-341)))) (-3841 ((|#3| $) NIL)) (-2222 (($ (-586 $)) NIL (|has| (-380 |#2|) (-336))) (($ $ $) NIL (|has| (-380 |#2|) (-336)))) (-1239 (((-1066) $) NIL)) (-3252 (((-626 (-380 |#2|))) 52)) (-4137 (((-626 (-380 |#2|))) 51)) (-3093 (($ $) NIL (|has| (-380 |#2|) (-336)))) (-4183 (($ (-1164 |#2|) |#2|) 71)) (-3895 (((-626 (-380 |#2|))) 50)) (-3531 (((-626 (-380 |#2|))) 49)) (-2402 (((-2 (|:| |num| (-626 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 86)) (-3889 (((-2 (|:| |num| (-1164 |#2|)) (|:| |den| |#2|)) $) 77)) (-3442 (((-1164 $)) 46)) (-2323 (((-1164 $)) 45)) (-2730 (((-108) $) NIL)) (-2378 (((-108) $) NIL) (((-108) $ |#1|) NIL) (((-108) $ |#2|) NIL)) (-3794 (($) NIL (|has| (-380 |#2|) (-322)) CONST)) (-2716 (($ (-849)) NIL (|has| (-380 |#2|) (-341)))) (-2691 (((-3 |#2| "failed")) 63)) (-4142 (((-1030) $) NIL)) (-1822 (((-706)) NIL)) (-1382 (($) NIL)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) NIL (|has| (-380 |#2|) (-336)))) (-2257 (($ (-586 $)) NIL (|has| (-380 |#2|) (-336))) (($ $ $) NIL (|has| (-380 |#2|) (-336)))) (-1517 (((-586 (-2 (|:| -1916 (-520)) (|:| -2647 (-520))))) NIL (|has| (-380 |#2|) (-322)))) (-1916 (((-391 $) $) NIL (|has| (-380 |#2|) (-336)))) (-1283 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-380 |#2|) (-336))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) NIL (|has| (-380 |#2|) (-336)))) (-2230 (((-3 $ "failed") $ $) NIL (|has| (-380 |#2|) (-336)))) (-2608 (((-3 (-586 $) "failed") (-586 $) $) NIL (|has| (-380 |#2|) (-336)))) (-3704 (((-706) $) NIL (|has| (-380 |#2|) (-336)))) (-2543 ((|#1| $ |#1| |#1|) NIL)) (-2605 (((-3 |#2| "failed")) 62)) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) NIL (|has| (-380 |#2|) (-336)))) (-2732 (((-380 |#2|) (-1164 $)) NIL) (((-380 |#2|)) 42)) (-2062 (((-706) $) NIL (|has| (-380 |#2|) (-322))) (((-3 (-706) "failed") $ $) NIL (|has| (-380 |#2|) (-322)))) (-2155 (($ $ (-1 (-380 |#2|) (-380 |#2|)) (-706)) NIL (|has| (-380 |#2|) (-336))) (($ $ (-1 (-380 |#2|) (-380 |#2|))) NIL (|has| (-380 |#2|) (-336))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-586 (-1083)) (-586 (-706))) NIL (-12 (|has| (-380 |#2|) (-336)) (|has| (-380 |#2|) (-828 (-1083))))) (($ $ (-1083) (-706)) NIL (-12 (|has| (-380 |#2|) (-336)) (|has| (-380 |#2|) (-828 (-1083))))) (($ $ (-586 (-1083))) NIL (-12 (|has| (-380 |#2|) (-336)) (|has| (-380 |#2|) (-828 (-1083))))) (($ $ (-1083)) NIL (-12 (|has| (-380 |#2|) (-336)) (|has| (-380 |#2|) (-828 (-1083))))) (($ $ (-706)) NIL (-3700 (-12 (|has| (-380 |#2|) (-209)) (|has| (-380 |#2|) (-336))) (|has| (-380 |#2|) (-322)))) (($ $) NIL (-3700 (-12 (|has| (-380 |#2|) (-209)) (|has| (-380 |#2|) (-336))) (|has| (-380 |#2|) (-322))))) (-3404 (((-626 (-380 |#2|)) (-1164 $) (-1 (-380 |#2|) (-380 |#2|))) NIL (|has| (-380 |#2|) (-336)))) (-3484 ((|#3|) 53)) (-3864 (($) NIL (|has| (-380 |#2|) (-322)))) (-3790 (((-1164 (-380 |#2|)) $ (-1164 $)) NIL) (((-626 (-380 |#2|)) (-1164 $) (-1164 $)) NIL) (((-1164 (-380 |#2|)) $) 72) (((-626 (-380 |#2|)) (-1164 $)) NIL)) (-1429 (((-1164 (-380 |#2|)) $) NIL) (($ (-1164 (-380 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3784 (((-3 (-1164 $) "failed") (-626 $)) NIL (|has| (-380 |#2|) (-322)))) (-2352 (((-1164 $) (-1164 $)) NIL)) (-2188 (((-791) $) NIL) (($ (-520)) NIL) (($ (-380 |#2|)) NIL) (($ (-380 (-520))) NIL (-3700 (|has| (-380 |#2|) (-960 (-380 (-520)))) (|has| (-380 |#2|) (-336)))) (($ $) NIL (|has| (-380 |#2|) (-336)))) (-3796 (($ $) NIL (|has| (-380 |#2|) (-322))) (((-3 $ "failed") $) NIL (|has| (-380 |#2|) (-133)))) (-2948 ((|#3| $) NIL)) (-3251 (((-706)) NIL)) (-3128 (((-108)) 60)) (-2080 (((-108) |#1|) 153) (((-108) |#2|) 154)) (-1831 (((-1164 $)) 124)) (-2559 (((-108) $ $) NIL (|has| (-380 |#2|) (-336)))) (-2934 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-3982 (((-108)) NIL)) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL (|has| (-380 |#2|) (-336)))) (-3560 (($) 94 T CONST)) (-3570 (($) NIL T CONST)) (-2211 (($ $ (-1 (-380 |#2|) (-380 |#2|)) (-706)) NIL (|has| (-380 |#2|) (-336))) (($ $ (-1 (-380 |#2|) (-380 |#2|))) NIL (|has| (-380 |#2|) (-336))) (($ $ (-586 (-1083)) (-586 (-706))) NIL (-12 (|has| (-380 |#2|) (-336)) (|has| (-380 |#2|) (-828 (-1083))))) (($ $ (-1083) (-706)) NIL (-12 (|has| (-380 |#2|) (-336)) (|has| (-380 |#2|) (-828 (-1083))))) (($ $ (-586 (-1083))) NIL (-12 (|has| (-380 |#2|) (-336)) (|has| (-380 |#2|) (-828 (-1083))))) (($ $ (-1083)) NIL (-12 (|has| (-380 |#2|) (-336)) (|has| (-380 |#2|) (-828 (-1083))))) (($ $ (-706)) NIL (-3700 (-12 (|has| (-380 |#2|) (-209)) (|has| (-380 |#2|) (-336))) (|has| (-380 |#2|) (-322)))) (($ $) NIL (-3700 (-12 (|has| (-380 |#2|) (-209)) (|has| (-380 |#2|) (-336))) (|has| (-380 |#2|) (-322))))) (-1530 (((-108) $ $) NIL)) (-1619 (($ $ $) NIL (|has| (-380 |#2|) (-336)))) (-1611 (($ $) NIL) (($ $ $) NIL)) (-1601 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL (|has| (-380 |#2|) (-336)))) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) NIL) (($ $ (-380 |#2|)) NIL) (($ (-380 |#2|) $) NIL) (($ (-380 (-520)) $) NIL (|has| (-380 |#2|) (-336))) (($ $ (-380 (-520))) NIL (|has| (-380 |#2|) (-336)))))
-(((-927 |#1| |#2| |#3| |#4| |#5|) (-315 |#1| |#2| |#3|) (-1122) (-1140 |#1|) (-1140 (-380 |#2|)) (-380 |#2|) (-706)) (T -927))
-NIL
-(-315 |#1| |#2| |#3|)
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-2102 (((-586 (-520)) $) 54)) (-1636 (($ (-586 (-520))) 62)) (-4040 (((-520) $) 40 (|has| (-520) (-281)))) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) NIL)) (-2583 (($ $) NIL)) (-1671 (((-108) $) NIL)) (-1917 (((-3 $ "failed") $ $) NIL)) (-4119 (((-391 (-1079 $)) (-1079 $)) NIL (|has| (-520) (-837)))) (-3024 (($ $) NIL)) (-1507 (((-391 $) $) NIL)) (-3481 (((-3 (-586 (-1079 $)) "failed") (-586 (-1079 $)) (-1079 $)) NIL (|has| (-520) (-837)))) (-1327 (((-108) $ $) NIL)) (-2804 (((-520) $) NIL (|has| (-520) (-756)))) (-3961 (($) NIL T CONST)) (-1296 (((-3 (-520) "failed") $) 49) (((-3 (-1083) "failed") $) NIL (|has| (-520) (-960 (-1083)))) (((-3 (-380 (-520)) "failed") $) 47 (|has| (-520) (-960 (-520)))) (((-3 (-520) "failed") $) 49 (|has| (-520) (-960 (-520))))) (-1482 (((-520) $) NIL) (((-1083) $) NIL (|has| (-520) (-960 (-1083)))) (((-380 (-520)) $) NIL (|has| (-520) (-960 (-520)))) (((-520) $) NIL (|has| (-520) (-960 (-520))))) (-2276 (($ $ $) NIL)) (-2756 (((-626 (-520)) (-626 $)) NIL (|has| (-520) (-582 (-520)))) (((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 $) (-1164 $)) NIL (|has| (-520) (-582 (-520)))) (((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 $) (-1164 $)) NIL) (((-626 (-520)) (-626 $)) NIL)) (-1540 (((-3 $ "failed") $) NIL)) (-3249 (($) NIL (|has| (-520) (-505)))) (-2253 (($ $ $) NIL)) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) NIL)) (-2036 (((-108) $) NIL)) (-1595 (((-586 (-520)) $) 60)) (-2328 (((-108) $) NIL (|has| (-520) (-756)))) (-1272 (((-817 (-520) $) $ (-820 (-520)) (-817 (-520) $)) NIL (|has| (-520) (-814 (-520)))) (((-817 (-352) $) $ (-820 (-352)) (-817 (-352) $)) NIL (|has| (-520) (-814 (-352))))) (-1537 (((-108) $) NIL)) (-4115 (($ $) NIL)) (-2800 (((-520) $) 37)) (-1394 (((-3 $ "failed") $) NIL (|has| (-520) (-1059)))) (-3469 (((-108) $) NIL (|has| (-520) (-756)))) (-3188 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-2809 (($ $ $) NIL (|has| (-520) (-783)))) (-2446 (($ $ $) NIL (|has| (-520) (-783)))) (-1389 (($ (-1 (-520) (-520)) $) NIL)) (-2222 (($ $ $) NIL) (($ (-586 $)) NIL)) (-1239 (((-1066) $) NIL)) (-3093 (($ $) NIL)) (-3794 (($) NIL (|has| (-520) (-1059)) CONST)) (-4142 (((-1030) $) NIL)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) NIL)) (-2257 (($ $ $) NIL) (($ (-586 $)) NIL)) (-4122 (($ $) NIL (|has| (-520) (-281))) (((-380 (-520)) $) 42)) (-3992 (((-1064 (-520)) $) 59)) (-1340 (($ (-586 (-520)) (-586 (-520))) 63)) (-1626 (((-520) $) 53 (|has| (-520) (-505)))) (-4133 (((-391 (-1079 $)) (-1079 $)) NIL (|has| (-520) (-837)))) (-2017 (((-391 (-1079 $)) (-1079 $)) NIL (|has| (-520) (-837)))) (-1916 (((-391 $) $) NIL)) (-1283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2230 (((-3 $ "failed") $ $) NIL)) (-2608 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-2286 (($ $ (-586 (-520)) (-586 (-520))) NIL (|has| (-520) (-283 (-520)))) (($ $ (-520) (-520)) NIL (|has| (-520) (-283 (-520)))) (($ $ (-268 (-520))) NIL (|has| (-520) (-283 (-520)))) (($ $ (-586 (-268 (-520)))) NIL (|has| (-520) (-283 (-520)))) (($ $ (-586 (-1083)) (-586 (-520))) NIL (|has| (-520) (-481 (-1083) (-520)))) (($ $ (-1083) (-520)) NIL (|has| (-520) (-481 (-1083) (-520))))) (-3704 (((-706) $) NIL)) (-2543 (($ $ (-520)) NIL (|has| (-520) (-260 (-520) (-520))))) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) NIL)) (-2155 (($ $) 11 (|has| (-520) (-209))) (($ $ (-706)) NIL (|has| (-520) (-209))) (($ $ (-1083)) NIL (|has| (-520) (-828 (-1083)))) (($ $ (-586 (-1083))) NIL (|has| (-520) (-828 (-1083)))) (($ $ (-1083) (-706)) NIL (|has| (-520) (-828 (-1083)))) (($ $ (-586 (-1083)) (-586 (-706))) NIL (|has| (-520) (-828 (-1083)))) (($ $ (-1 (-520) (-520)) (-706)) NIL) (($ $ (-1 (-520) (-520))) NIL)) (-3556 (($ $) NIL)) (-2811 (((-520) $) 39)) (-3010 (((-586 (-520)) $) 61)) (-1429 (((-820 (-520)) $) NIL (|has| (-520) (-561 (-820 (-520))))) (((-820 (-352)) $) NIL (|has| (-520) (-561 (-820 (-352))))) (((-496) $) NIL (|has| (-520) (-561 (-496)))) (((-352) $) NIL (|has| (-520) (-945))) (((-201) $) NIL (|has| (-520) (-945)))) (-3784 (((-3 (-1164 $) "failed") (-626 $)) NIL (-12 (|has| $ (-133)) (|has| (-520) (-837))))) (-2188 (((-791) $) 77) (($ (-520)) 43) (($ $) NIL) (($ (-380 (-520))) 19) (($ (-520)) 43) (($ (-1083)) NIL (|has| (-520) (-960 (-1083)))) (((-380 (-520)) $) 17)) (-3796 (((-3 $ "failed") $) NIL (-3700 (-12 (|has| $ (-133)) (|has| (-520) (-837))) (|has| (-520) (-133))))) (-3251 (((-706)) 9)) (-3370 (((-520) $) 51 (|has| (-520) (-505)))) (-2559 (((-108) $ $) NIL)) (-2458 (($ $) NIL (|has| (-520) (-756)))) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL)) (-3560 (($) 10 T CONST)) (-3570 (($) 12 T CONST)) (-2211 (($ $) NIL (|has| (-520) (-209))) (($ $ (-706)) NIL (|has| (-520) (-209))) (($ $ (-1083)) NIL (|has| (-520) (-828 (-1083)))) (($ $ (-586 (-1083))) NIL (|has| (-520) (-828 (-1083)))) (($ $ (-1083) (-706)) NIL (|has| (-520) (-828 (-1083)))) (($ $ (-586 (-1083)) (-586 (-706))) NIL (|has| (-520) (-828 (-1083)))) (($ $ (-1 (-520) (-520)) (-706)) NIL) (($ $ (-1 (-520) (-520))) NIL)) (-1573 (((-108) $ $) NIL (|has| (-520) (-783)))) (-1557 (((-108) $ $) NIL (|has| (-520) (-783)))) (-1530 (((-108) $ $) 14)) (-1565 (((-108) $ $) NIL (|has| (-520) (-783)))) (-1548 (((-108) $ $) 33 (|has| (-520) (-783)))) (-1619 (($ $ $) 29) (($ (-520) (-520)) 31)) (-1611 (($ $) 15) (($ $ $) 22)) (-1601 (($ $ $) 20)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) 25) (($ $ $) 27) (($ $ (-380 (-520))) NIL) (($ (-380 (-520)) $) NIL) (($ (-520) $) 25) (($ $ (-520)) NIL)))
-(((-928 |#1|) (-13 (-917 (-520)) (-10 -8 (-15 -2188 ((-380 (-520)) $)) (-15 -4122 ((-380 (-520)) $)) (-15 -2102 ((-586 (-520)) $)) (-15 -3992 ((-1064 (-520)) $)) (-15 -1595 ((-586 (-520)) $)) (-15 -3010 ((-586 (-520)) $)) (-15 -1636 ($ (-586 (-520)))) (-15 -1340 ($ (-586 (-520)) (-586 (-520)))))) (-520)) (T -928))
-((-2188 (*1 *2 *1) (-12 (-5 *2 (-380 (-520))) (-5 *1 (-928 *3)) (-14 *3 (-520)))) (-4122 (*1 *2 *1) (-12 (-5 *2 (-380 (-520))) (-5 *1 (-928 *3)) (-14 *3 (-520)))) (-2102 (*1 *2 *1) (-12 (-5 *2 (-586 (-520))) (-5 *1 (-928 *3)) (-14 *3 (-520)))) (-3992 (*1 *2 *1) (-12 (-5 *2 (-1064 (-520))) (-5 *1 (-928 *3)) (-14 *3 (-520)))) (-1595 (*1 *2 *1) (-12 (-5 *2 (-586 (-520))) (-5 *1 (-928 *3)) (-14 *3 (-520)))) (-3010 (*1 *2 *1) (-12 (-5 *2 (-586 (-520))) (-5 *1 (-928 *3)) (-14 *3 (-520)))) (-1636 (*1 *1 *2) (-12 (-5 *2 (-586 (-520))) (-5 *1 (-928 *3)) (-14 *3 (-520)))) (-1340 (*1 *1 *2 *2) (-12 (-5 *2 (-586 (-520))) (-5 *1 (-928 *3)) (-14 *3 (-520)))))
-(-13 (-917 (-520)) (-10 -8 (-15 -2188 ((-380 (-520)) $)) (-15 -4122 ((-380 (-520)) $)) (-15 -2102 ((-586 (-520)) $)) (-15 -3992 ((-1064 (-520)) $)) (-15 -1595 ((-586 (-520)) $)) (-15 -3010 ((-586 (-520)) $)) (-15 -1636 ($ (-586 (-520)))) (-15 -1340 ($ (-586 (-520)) (-586 (-520))))))
-((-3470 (((-51) (-380 (-520)) (-520)) 9)))
-(((-929) (-10 -7 (-15 -3470 ((-51) (-380 (-520)) (-520))))) (T -929))
-((-3470 (*1 *2 *3 *4) (-12 (-5 *3 (-380 (-520))) (-5 *4 (-520)) (-5 *2 (-51)) (-5 *1 (-929)))))
-(-10 -7 (-15 -3470 ((-51) (-380 (-520)) (-520))))
-((-1628 (((-520)) 13)) (-2649 (((-520)) 16)) (-3388 (((-1169) (-520)) 15)) (-1579 (((-520) (-520)) 17) (((-520)) 12)))
-(((-930) (-10 -7 (-15 -1579 ((-520))) (-15 -1628 ((-520))) (-15 -1579 ((-520) (-520))) (-15 -3388 ((-1169) (-520))) (-15 -2649 ((-520))))) (T -930))
-((-2649 (*1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-930)))) (-3388 (*1 *2 *3) (-12 (-5 *3 (-520)) (-5 *2 (-1169)) (-5 *1 (-930)))) (-1579 (*1 *2 *2) (-12 (-5 *2 (-520)) (-5 *1 (-930)))) (-1628 (*1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-930)))) (-1579 (*1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-930)))))
-(-10 -7 (-15 -1579 ((-520))) (-15 -1628 ((-520))) (-15 -1579 ((-520) (-520))) (-15 -3388 ((-1169) (-520))) (-15 -2649 ((-520))))
-((-3257 (((-391 |#1|) |#1|) 40)) (-1916 (((-391 |#1|) |#1|) 39)))
-(((-931 |#1|) (-10 -7 (-15 -1916 ((-391 |#1|) |#1|)) (-15 -3257 ((-391 |#1|) |#1|))) (-1140 (-380 (-520)))) (T -931))
-((-3257 (*1 *2 *3) (-12 (-5 *2 (-391 *3)) (-5 *1 (-931 *3)) (-4 *3 (-1140 (-380 (-520)))))) (-1916 (*1 *2 *3) (-12 (-5 *2 (-391 *3)) (-5 *1 (-931 *3)) (-4 *3 (-1140 (-380 (-520)))))))
-(-10 -7 (-15 -1916 ((-391 |#1|) |#1|)) (-15 -3257 ((-391 |#1|) |#1|)))
-((-2279 (((-3 (-380 (-520)) "failed") |#1|) 14)) (-1386 (((-108) |#1|) 13)) (-4055 (((-380 (-520)) |#1|) 9)))
-(((-932 |#1|) (-10 -7 (-15 -4055 ((-380 (-520)) |#1|)) (-15 -1386 ((-108) |#1|)) (-15 -2279 ((-3 (-380 (-520)) "failed") |#1|))) (-960 (-380 (-520)))) (T -932))
-((-2279 (*1 *2 *3) (|partial| -12 (-5 *2 (-380 (-520))) (-5 *1 (-932 *3)) (-4 *3 (-960 *2)))) (-1386 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-932 *3)) (-4 *3 (-960 (-380 (-520)))))) (-4055 (*1 *2 *3) (-12 (-5 *2 (-380 (-520))) (-5 *1 (-932 *3)) (-4 *3 (-960 *2)))))
-(-10 -7 (-15 -4055 ((-380 (-520)) |#1|)) (-15 -1386 ((-108) |#1|)) (-15 -2279 ((-3 (-380 (-520)) "failed") |#1|)))
-((-2377 ((|#2| $ "value" |#2|) 12)) (-2543 ((|#2| $ "value") 10)) (-1639 (((-108) $ $) 18)))
-(((-933 |#1| |#2|) (-10 -8 (-15 -2377 (|#2| |#1| "value" |#2|)) (-15 -1639 ((-108) |#1| |#1|)) (-15 -2543 (|#2| |#1| "value"))) (-934 |#2|) (-1118)) (T -933))
-NIL
-(-10 -8 (-15 -2377 (|#2| |#1| "value" |#2|)) (-15 -1639 ((-108) |#1| |#1|)) (-15 -2543 (|#2| |#1| "value")))
-((-1414 (((-108) $ $) 19 (|has| |#1| (-1012)))) (-3429 ((|#1| $) 48)) (-2063 (((-108) $ (-706)) 8)) (-2888 ((|#1| $ |#1|) 39 (|has| $ (-6 -4230)))) (-2377 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4230)))) (-3061 (($ $ (-586 $)) 41 (|has| $ (-6 -4230)))) (-3961 (($) 7 T CONST)) (-3828 (((-586 |#1|) $) 30 (|has| $ (-6 -4229)))) (-3405 (((-586 $) $) 50)) (-1885 (((-108) $ $) 42 (|has| |#1| (-1012)))) (-3027 (((-108) $ (-706)) 9)) (-3702 (((-586 |#1|) $) 29 (|has| $ (-6 -4229)))) (-2422 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-3830 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#1| |#1|) $) 35)) (-1390 (((-108) $ (-706)) 10)) (-1277 (((-586 |#1|) $) 45)) (-1740 (((-108) $) 49)) (-1239 (((-1066) $) 22 (|has| |#1| (-1012)))) (-4142 (((-1030) $) 21 (|has| |#1| (-1012)))) (-4155 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 |#1|))) 26 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-268 |#1|)) 25 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-586 |#1|) (-586 |#1|)) 23 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))) (-2533 (((-108) $ $) 14)) (-4018 (((-108) $) 11)) (-2238 (($) 12)) (-2543 ((|#1| $ "value") 47)) (-3765 (((-520) $ $) 44)) (-1975 (((-108) $) 46)) (-4159 (((-706) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4229))) (((-706) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-2403 (($ $) 13)) (-2188 (((-791) $) 18 (|has| |#1| (-560 (-791))))) (-2438 (((-586 $) $) 51)) (-1639 (((-108) $ $) 43 (|has| |#1| (-1012)))) (-1662 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4229)))) (-1530 (((-108) $ $) 20 (|has| |#1| (-1012)))) (-3474 (((-706) $) 6 (|has| $ (-6 -4229)))))
-(((-934 |#1|) (-1195) (-1118)) (T -934))
-((-2438 (*1 *2 *1) (-12 (-4 *3 (-1118)) (-5 *2 (-586 *1)) (-4 *1 (-934 *3)))) (-3405 (*1 *2 *1) (-12 (-4 *3 (-1118)) (-5 *2 (-586 *1)) (-4 *1 (-934 *3)))) (-1740 (*1 *2 *1) (-12 (-4 *1 (-934 *3)) (-4 *3 (-1118)) (-5 *2 (-108)))) (-3429 (*1 *2 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-1118)))) (-2543 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-934 *2)) (-4 *2 (-1118)))) (-1975 (*1 *2 *1) (-12 (-4 *1 (-934 *3)) (-4 *3 (-1118)) (-5 *2 (-108)))) (-1277 (*1 *2 *1) (-12 (-4 *1 (-934 *3)) (-4 *3 (-1118)) (-5 *2 (-586 *3)))) (-3765 (*1 *2 *1 *1) (-12 (-4 *1 (-934 *3)) (-4 *3 (-1118)) (-5 *2 (-520)))) (-1639 (*1 *2 *1 *1) (-12 (-4 *1 (-934 *3)) (-4 *3 (-1118)) (-4 *3 (-1012)) (-5 *2 (-108)))) (-1885 (*1 *2 *1 *1) (-12 (-4 *1 (-934 *3)) (-4 *3 (-1118)) (-4 *3 (-1012)) (-5 *2 (-108)))) (-3061 (*1 *1 *1 *2) (-12 (-5 *2 (-586 *1)) (|has| *1 (-6 -4230)) (-4 *1 (-934 *3)) (-4 *3 (-1118)))) (-2377 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4230)) (-4 *1 (-934 *2)) (-4 *2 (-1118)))) (-2888 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4230)) (-4 *1 (-934 *2)) (-4 *2 (-1118)))))
-(-13 (-459 |t#1|) (-10 -8 (-15 -2438 ((-586 $) $)) (-15 -3405 ((-586 $) $)) (-15 -1740 ((-108) $)) (-15 -3429 (|t#1| $)) (-15 -2543 (|t#1| $ "value")) (-15 -1975 ((-108) $)) (-15 -1277 ((-586 |t#1|) $)) (-15 -3765 ((-520) $ $)) (IF (|has| |t#1| (-1012)) (PROGN (-15 -1639 ((-108) $ $)) (-15 -1885 ((-108) $ $))) |%noBranch|) (IF (|has| $ (-6 -4230)) (PROGN (-15 -3061 ($ $ (-586 $))) (-15 -2377 (|t#1| $ "value" |t#1|)) (-15 -2888 (|t#1| $ |t#1|))) |%noBranch|)))
-(((-33) . T) ((-97) |has| |#1| (-1012)) ((-560 (-791)) -3700 (|has| |#1| (-1012)) (|has| |#1| (-560 (-791)))) ((-283 |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))) ((-459 |#1|) . T) ((-481 |#1| |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))) ((-1012) |has| |#1| (-1012)) ((-1118) . T))
-((-1927 (($ $) 9) (($ $ (-706)) 43) (($ (-380 (-520))) 12) (($ (-520)) 15)) (-2288 (((-3 $ "failed") (-1079 $) (-849) (-791)) 23) (((-3 $ "failed") (-1079 $) (-849)) 28)) (-2322 (($ $ (-520)) 49)) (-3251 (((-706)) 16)) (-3233 (((-586 $) (-1079 $)) NIL) (((-586 $) (-1079 (-380 (-520)))) 54) (((-586 $) (-1079 (-520))) 59) (((-586 $) (-880 $)) 63) (((-586 $) (-880 (-380 (-520)))) 67) (((-586 $) (-880 (-520))) 71)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL) (($ $ (-380 (-520))) 47)))
-(((-935 |#1|) (-10 -8 (-15 -1927 (|#1| (-520))) (-15 -1927 (|#1| (-380 (-520)))) (-15 -1927 (|#1| |#1| (-706))) (-15 -3233 ((-586 |#1|) (-880 (-520)))) (-15 -3233 ((-586 |#1|) (-880 (-380 (-520))))) (-15 -3233 ((-586 |#1|) (-880 |#1|))) (-15 -3233 ((-586 |#1|) (-1079 (-520)))) (-15 -3233 ((-586 |#1|) (-1079 (-380 (-520))))) (-15 -3233 ((-586 |#1|) (-1079 |#1|))) (-15 -2288 ((-3 |#1| "failed") (-1079 |#1|) (-849))) (-15 -2288 ((-3 |#1| "failed") (-1079 |#1|) (-849) (-791))) (-15 ** (|#1| |#1| (-380 (-520)))) (-15 -2322 (|#1| |#1| (-520))) (-15 -1927 (|#1| |#1|)) (-15 ** (|#1| |#1| (-520))) (-15 -3251 ((-706))) (-15 ** (|#1| |#1| (-706))) (-15 ** (|#1| |#1| (-849)))) (-936)) (T -935))
-((-3251 (*1 *2) (-12 (-5 *2 (-706)) (-5 *1 (-935 *3)) (-4 *3 (-936)))))
-(-10 -8 (-15 -1927 (|#1| (-520))) (-15 -1927 (|#1| (-380 (-520)))) (-15 -1927 (|#1| |#1| (-706))) (-15 -3233 ((-586 |#1|) (-880 (-520)))) (-15 -3233 ((-586 |#1|) (-880 (-380 (-520))))) (-15 -3233 ((-586 |#1|) (-880 |#1|))) (-15 -3233 ((-586 |#1|) (-1079 (-520)))) (-15 -3233 ((-586 |#1|) (-1079 (-380 (-520))))) (-15 -3233 ((-586 |#1|) (-1079 |#1|))) (-15 -2288 ((-3 |#1| "failed") (-1079 |#1|) (-849))) (-15 -2288 ((-3 |#1| "failed") (-1079 |#1|) (-849) (-791))) (-15 ** (|#1| |#1| (-380 (-520)))) (-15 -2322 (|#1| |#1| (-520))) (-15 -1927 (|#1| |#1|)) (-15 ** (|#1| |#1| (-520))) (-15 -3251 ((-706))) (-15 ** (|#1| |#1| (-706))) (-15 ** (|#1| |#1| (-849))))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) 89)) (-2583 (($ $) 90)) (-1671 (((-108) $) 92)) (-1917 (((-3 $ "failed") $ $) 19)) (-3024 (($ $) 109)) (-1507 (((-391 $) $) 110)) (-1927 (($ $) 73) (($ $ (-706)) 59) (($ (-380 (-520))) 58) (($ (-520)) 57)) (-1327 (((-108) $ $) 100)) (-2804 (((-520) $) 127)) (-3961 (($) 17 T CONST)) (-2288 (((-3 $ "failed") (-1079 $) (-849) (-791)) 67) (((-3 $ "failed") (-1079 $) (-849)) 66)) (-1296 (((-3 (-520) "failed") $) 85 (|has| (-380 (-520)) (-960 (-520)))) (((-3 (-380 (-520)) "failed") $) 83 (|has| (-380 (-520)) (-960 (-380 (-520))))) (((-3 (-380 (-520)) "failed") $) 81)) (-1482 (((-520) $) 86 (|has| (-380 (-520)) (-960 (-520)))) (((-380 (-520)) $) 84 (|has| (-380 (-520)) (-960 (-380 (-520))))) (((-380 (-520)) $) 80)) (-3833 (($ $ (-791)) 56)) (-1943 (($ $ (-791)) 55)) (-2276 (($ $ $) 104)) (-1540 (((-3 $ "failed") $) 34)) (-2253 (($ $ $) 103)) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) 98)) (-2036 (((-108) $) 111)) (-2328 (((-108) $) 125)) (-1537 (((-108) $) 31)) (-2322 (($ $ (-520)) 72)) (-3469 (((-108) $) 126)) (-3188 (((-3 (-586 $) "failed") (-586 $) $) 107)) (-2809 (($ $ $) 124)) (-2446 (($ $ $) 123)) (-4166 (((-3 (-1079 $) "failed") $) 68)) (-3772 (((-3 (-791) "failed") $) 70)) (-1298 (((-3 (-1079 $) "failed") $) 69)) (-2222 (($ (-586 $)) 96) (($ $ $) 95)) (-1239 (((-1066) $) 9)) (-3093 (($ $) 112)) (-4142 (((-1030) $) 10)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) 97)) (-2257 (($ (-586 $)) 94) (($ $ $) 93)) (-1916 (((-391 $) $) 108)) (-1283 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 106) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) 105)) (-2230 (((-3 $ "failed") $ $) 88)) (-2608 (((-3 (-586 $) "failed") (-586 $) $) 99)) (-3704 (((-706) $) 101)) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) 102)) (-2188 (((-791) $) 11) (($ (-520)) 28) (($ (-380 (-520))) 117) (($ $) 87) (($ (-380 (-520))) 82) (($ (-520)) 79) (($ (-380 (-520))) 76)) (-3251 (((-706)) 29)) (-2559 (((-108) $ $) 91)) (-3890 (((-380 (-520)) $ $) 54)) (-3233 (((-586 $) (-1079 $)) 65) (((-586 $) (-1079 (-380 (-520)))) 64) (((-586 $) (-1079 (-520))) 63) (((-586 $) (-880 $)) 62) (((-586 $) (-880 (-380 (-520)))) 61) (((-586 $) (-880 (-520))) 60)) (-2458 (($ $) 128)) (-3504 (($ $ (-849)) 26) (($ $ (-706)) 33) (($ $ (-520)) 113)) (-3560 (($) 18 T CONST)) (-3570 (($) 30 T CONST)) (-1573 (((-108) $ $) 121)) (-1557 (((-108) $ $) 120)) (-1530 (((-108) $ $) 6)) (-1565 (((-108) $ $) 122)) (-1548 (((-108) $ $) 119)) (-1619 (($ $ $) 118)) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-706)) 32) (($ $ (-520)) 114) (($ $ (-380 (-520))) 71)) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ $ $) 24) (($ (-380 (-520)) $) 116) (($ $ (-380 (-520))) 115) (($ (-520) $) 78) (($ $ (-520)) 77) (($ (-380 (-520)) $) 75) (($ $ (-380 (-520))) 74)))
-(((-936) (-1195)) (T -936))
-((-1927 (*1 *1 *1) (-4 *1 (-936))) (-3772 (*1 *2 *1) (|partial| -12 (-4 *1 (-936)) (-5 *2 (-791)))) (-1298 (*1 *2 *1) (|partial| -12 (-5 *2 (-1079 *1)) (-4 *1 (-936)))) (-4166 (*1 *2 *1) (|partial| -12 (-5 *2 (-1079 *1)) (-4 *1 (-936)))) (-2288 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1079 *1)) (-5 *3 (-849)) (-5 *4 (-791)) (-4 *1 (-936)))) (-2288 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1079 *1)) (-5 *3 (-849)) (-4 *1 (-936)))) (-3233 (*1 *2 *3) (-12 (-5 *3 (-1079 *1)) (-4 *1 (-936)) (-5 *2 (-586 *1)))) (-3233 (*1 *2 *3) (-12 (-5 *3 (-1079 (-380 (-520)))) (-5 *2 (-586 *1)) (-4 *1 (-936)))) (-3233 (*1 *2 *3) (-12 (-5 *3 (-1079 (-520))) (-5 *2 (-586 *1)) (-4 *1 (-936)))) (-3233 (*1 *2 *3) (-12 (-5 *3 (-880 *1)) (-4 *1 (-936)) (-5 *2 (-586 *1)))) (-3233 (*1 *2 *3) (-12 (-5 *3 (-880 (-380 (-520)))) (-5 *2 (-586 *1)) (-4 *1 (-936)))) (-3233 (*1 *2 *3) (-12 (-5 *3 (-880 (-520))) (-5 *2 (-586 *1)) (-4 *1 (-936)))) (-1927 (*1 *1 *1 *2) (-12 (-4 *1 (-936)) (-5 *2 (-706)))) (-1927 (*1 *1 *2) (-12 (-5 *2 (-380 (-520))) (-4 *1 (-936)))) (-1927 (*1 *1 *2) (-12 (-5 *2 (-520)) (-4 *1 (-936)))) (-3833 (*1 *1 *1 *2) (-12 (-4 *1 (-936)) (-5 *2 (-791)))) (-1943 (*1 *1 *1 *2) (-12 (-4 *1 (-936)) (-5 *2 (-791)))) (-3890 (*1 *2 *1 *1) (-12 (-4 *1 (-936)) (-5 *2 (-380 (-520))))))
-(-13 (-135) (-781) (-157) (-336) (-384 (-380 (-520))) (-37 (-520)) (-37 (-380 (-520))) (-926) (-10 -8 (-15 -3772 ((-3 (-791) "failed") $)) (-15 -1298 ((-3 (-1079 $) "failed") $)) (-15 -4166 ((-3 (-1079 $) "failed") $)) (-15 -2288 ((-3 $ "failed") (-1079 $) (-849) (-791))) (-15 -2288 ((-3 $ "failed") (-1079 $) (-849))) (-15 -3233 ((-586 $) (-1079 $))) (-15 -3233 ((-586 $) (-1079 (-380 (-520))))) (-15 -3233 ((-586 $) (-1079 (-520)))) (-15 -3233 ((-586 $) (-880 $))) (-15 -3233 ((-586 $) (-880 (-380 (-520))))) (-15 -3233 ((-586 $) (-880 (-520)))) (-15 -1927 ($ $ (-706))) (-15 -1927 ($ $)) (-15 -1927 ($ (-380 (-520)))) (-15 -1927 ($ (-520))) (-15 -3833 ($ $ (-791))) (-15 -1943 ($ $ (-791))) (-15 -3890 ((-380 (-520)) $ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-380 (-520))) . T) ((-37 #1=(-520)) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 #1# #1#) . T) ((-107 $ $) . T) ((-124) . T) ((-135) . T) ((-560 (-791)) . T) ((-157) . T) ((-219) . T) ((-264) . T) ((-281) . T) ((-336) . T) ((-384 (-380 (-520))) . T) ((-424) . T) ((-512) . T) ((-588 #0#) . T) ((-588 #1#) . T) ((-588 $) . T) ((-653 #0#) . T) ((-653 #1#) . T) ((-653 $) . T) ((-662) . T) ((-726) . T) ((-727) . T) ((-729) . T) ((-731) . T) ((-781) . T) ((-783) . T) ((-848) . T) ((-926) . T) ((-960 (-380 (-520))) . T) ((-960 (-520)) |has| (-380 (-520)) (-960 (-520))) ((-975 #0#) . T) ((-975 #1#) . T) ((-975 $) . T) ((-969) . T) ((-976) . T) ((-1024) . T) ((-1012) . T) ((-1122) . T))
-((-2014 (((-2 (|:| |ans| |#2|) (|:| -1924 |#2|) (|:| |sol?| (-108))) (-520) |#2| |#2| (-1083) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-586 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-586 |#2|)) (-1 (-3 (-2 (|:| -4016 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 62)))
-(((-937 |#1| |#2|) (-10 -7 (-15 -2014 ((-2 (|:| |ans| |#2|) (|:| -1924 |#2|) (|:| |sol?| (-108))) (-520) |#2| |#2| (-1083) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-586 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-586 |#2|)) (-1 (-3 (-2 (|:| -4016 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-424) (-783) (-135) (-960 (-520)) (-582 (-520))) (-13 (-1104) (-27) (-403 |#1|))) (T -937))
-((-2014 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1083)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-586 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-586 *4))) (-5 *7 (-1 (-3 (-2 (|:| -4016 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1104) (-27) (-403 *8))) (-4 *8 (-13 (-424) (-783) (-135) (-960 *3) (-582 *3))) (-5 *3 (-520)) (-5 *2 (-2 (|:| |ans| *4) (|:| -1924 *4) (|:| |sol?| (-108)))) (-5 *1 (-937 *8 *4)))))
-(-10 -7 (-15 -2014 ((-2 (|:| |ans| |#2|) (|:| -1924 |#2|) (|:| |sol?| (-108))) (-520) |#2| |#2| (-1083) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-586 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-586 |#2|)) (-1 (-3 (-2 (|:| -4016 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
-((-3303 (((-3 (-586 |#2|) "failed") (-520) |#2| |#2| |#2| (-1083) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-586 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-586 |#2|)) (-1 (-3 (-2 (|:| -4016 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 47)))
-(((-938 |#1| |#2|) (-10 -7 (-15 -3303 ((-3 (-586 |#2|) "failed") (-520) |#2| |#2| |#2| (-1083) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-586 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-586 |#2|)) (-1 (-3 (-2 (|:| -4016 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-424) (-783) (-135) (-960 (-520)) (-582 (-520))) (-13 (-1104) (-27) (-403 |#1|))) (T -938))
-((-3303 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1083)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-586 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-586 *4))) (-5 *7 (-1 (-3 (-2 (|:| -4016 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1104) (-27) (-403 *8))) (-4 *8 (-13 (-424) (-783) (-135) (-960 *3) (-582 *3))) (-5 *3 (-520)) (-5 *2 (-586 *4)) (-5 *1 (-938 *8 *4)))))
-(-10 -7 (-15 -3303 ((-3 (-586 |#2|) "failed") (-520) |#2| |#2| |#2| (-1083) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-586 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-586 |#2|)) (-1 (-3 (-2 (|:| -4016 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
-((-3410 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-108)))) (|:| -3190 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-520)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-520) (-1 |#2| |#2|)) 30)) (-2981 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-380 |#2|)) (|:| |c| (-380 |#2|)) (|:| -1638 |#2|)) "failed") (-380 |#2|) (-380 |#2|) (-1 |#2| |#2|)) 57)) (-3336 (((-2 (|:| |ans| (-380 |#2|)) (|:| |nosol| (-108))) (-380 |#2|) (-380 |#2|)) 62)))
-(((-939 |#1| |#2|) (-10 -7 (-15 -2981 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-380 |#2|)) (|:| |c| (-380 |#2|)) (|:| -1638 |#2|)) "failed") (-380 |#2|) (-380 |#2|) (-1 |#2| |#2|))) (-15 -3336 ((-2 (|:| |ans| (-380 |#2|)) (|:| |nosol| (-108))) (-380 |#2|) (-380 |#2|))) (-15 -3410 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-108)))) (|:| -3190 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-520)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-520) (-1 |#2| |#2|)))) (-13 (-336) (-135) (-960 (-520))) (-1140 |#1|)) (T -939))
-((-3410 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1140 *6)) (-4 *6 (-13 (-336) (-135) (-960 *4))) (-5 *4 (-520)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-108)))) (|:| -3190 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-939 *6 *3)))) (-3336 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-336) (-135) (-960 (-520)))) (-4 *5 (-1140 *4)) (-5 *2 (-2 (|:| |ans| (-380 *5)) (|:| |nosol| (-108)))) (-5 *1 (-939 *4 *5)) (-5 *3 (-380 *5)))) (-2981 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1140 *5)) (-4 *5 (-13 (-336) (-135) (-960 (-520)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-380 *6)) (|:| |c| (-380 *6)) (|:| -1638 *6))) (-5 *1 (-939 *5 *6)) (-5 *3 (-380 *6)))))
-(-10 -7 (-15 -2981 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-380 |#2|)) (|:| |c| (-380 |#2|)) (|:| -1638 |#2|)) "failed") (-380 |#2|) (-380 |#2|) (-1 |#2| |#2|))) (-15 -3336 ((-2 (|:| |ans| (-380 |#2|)) (|:| |nosol| (-108))) (-380 |#2|) (-380 |#2|))) (-15 -3410 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-108)))) (|:| -3190 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-520)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-520) (-1 |#2| |#2|))))
-((-2698 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-380 |#2|)) (|:| |h| |#2|) (|:| |c1| (-380 |#2|)) (|:| |c2| (-380 |#2|)) (|:| -1638 |#2|)) "failed") (-380 |#2|) (-380 |#2|) (-380 |#2|) (-1 |#2| |#2|)) 22)) (-3278 (((-3 (-586 (-380 |#2|)) "failed") (-380 |#2|) (-380 |#2|) (-380 |#2|)) 32)))
-(((-940 |#1| |#2|) (-10 -7 (-15 -2698 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-380 |#2|)) (|:| |h| |#2|) (|:| |c1| (-380 |#2|)) (|:| |c2| (-380 |#2|)) (|:| -1638 |#2|)) "failed") (-380 |#2|) (-380 |#2|) (-380 |#2|) (-1 |#2| |#2|))) (-15 -3278 ((-3 (-586 (-380 |#2|)) "failed") (-380 |#2|) (-380 |#2|) (-380 |#2|)))) (-13 (-336) (-135) (-960 (-520))) (-1140 |#1|)) (T -940))
-((-3278 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-336) (-135) (-960 (-520)))) (-4 *5 (-1140 *4)) (-5 *2 (-586 (-380 *5))) (-5 *1 (-940 *4 *5)) (-5 *3 (-380 *5)))) (-2698 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1140 *5)) (-4 *5 (-13 (-336) (-135) (-960 (-520)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-380 *6)) (|:| |h| *6) (|:| |c1| (-380 *6)) (|:| |c2| (-380 *6)) (|:| -1638 *6))) (-5 *1 (-940 *5 *6)) (-5 *3 (-380 *6)))))
-(-10 -7 (-15 -2698 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-380 |#2|)) (|:| |h| |#2|) (|:| |c1| (-380 |#2|)) (|:| |c2| (-380 |#2|)) (|:| -1638 |#2|)) "failed") (-380 |#2|) (-380 |#2|) (-380 |#2|) (-1 |#2| |#2|))) (-15 -3278 ((-3 (-586 (-380 |#2|)) "failed") (-380 |#2|) (-380 |#2|) (-380 |#2|))))
-((-3792 (((-1 |#1|) (-586 (-2 (|:| -3429 |#1|) (|:| -1785 (-520))))) 37)) (-1739 (((-1 |#1|) (-1014 |#1|)) 45)) (-4187 (((-1 |#1|) (-1164 |#1|) (-1164 (-520)) (-520)) 34)))
-(((-941 |#1|) (-10 -7 (-15 -1739 ((-1 |#1|) (-1014 |#1|))) (-15 -3792 ((-1 |#1|) (-586 (-2 (|:| -3429 |#1|) (|:| -1785 (-520)))))) (-15 -4187 ((-1 |#1|) (-1164 |#1|) (-1164 (-520)) (-520)))) (-1012)) (T -941))
-((-4187 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1164 *6)) (-5 *4 (-1164 (-520))) (-5 *5 (-520)) (-4 *6 (-1012)) (-5 *2 (-1 *6)) (-5 *1 (-941 *6)))) (-3792 (*1 *2 *3) (-12 (-5 *3 (-586 (-2 (|:| -3429 *4) (|:| -1785 (-520))))) (-4 *4 (-1012)) (-5 *2 (-1 *4)) (-5 *1 (-941 *4)))) (-1739 (*1 *2 *3) (-12 (-5 *3 (-1014 *4)) (-4 *4 (-1012)) (-5 *2 (-1 *4)) (-5 *1 (-941 *4)))))
-(-10 -7 (-15 -1739 ((-1 |#1|) (-1014 |#1|))) (-15 -3792 ((-1 |#1|) (-586 (-2 (|:| -3429 |#1|) (|:| -1785 (-520)))))) (-15 -4187 ((-1 |#1|) (-1164 |#1|) (-1164 (-520)) (-520))))
-((-3989 (((-706) (-309 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23)))
-(((-942 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3989 ((-706) (-309 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-336) (-1140 |#1|) (-1140 (-380 |#2|)) (-315 |#1| |#2| |#3|) (-13 (-341) (-336))) (T -942))
-((-3989 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-309 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-336)) (-4 *7 (-1140 *6)) (-4 *4 (-1140 (-380 *7))) (-4 *8 (-315 *6 *7 *4)) (-4 *9 (-13 (-341) (-336))) (-5 *2 (-706)) (-5 *1 (-942 *6 *7 *4 *8 *9)))))
-(-10 -7 (-15 -3989 ((-706) (-309 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|))))
-((-2469 (((-3 (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520)))) "failed") |#1| (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520)))) (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520))))) 31) (((-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520)))) |#1| (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520)))) (-380 (-520))) 28)) (-3880 (((-586 (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520))))) |#1| (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520)))) (-380 (-520))) 33) (((-586 (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520))))) |#1| (-380 (-520))) 29) (((-586 (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520))))) |#1| (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520))))) 32) (((-586 (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520))))) |#1|) 27)) (-2270 (((-586 (-380 (-520))) (-586 (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520)))))) 19)) (-2666 (((-380 (-520)) (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520))))) 16)))
-(((-943 |#1|) (-10 -7 (-15 -3880 ((-586 (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520))))) |#1|)) (-15 -3880 ((-586 (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520))))) |#1| (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520)))))) (-15 -3880 ((-586 (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520))))) |#1| (-380 (-520)))) (-15 -3880 ((-586 (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520))))) |#1| (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520)))) (-380 (-520)))) (-15 -2469 ((-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520)))) |#1| (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520)))) (-380 (-520)))) (-15 -2469 ((-3 (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520)))) "failed") |#1| (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520)))) (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520)))))) (-15 -2666 ((-380 (-520)) (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520)))))) (-15 -2270 ((-586 (-380 (-520))) (-586 (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520)))))))) (-1140 (-520))) (T -943))
-((-2270 (*1 *2 *3) (-12 (-5 *3 (-586 (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520)))))) (-5 *2 (-586 (-380 (-520)))) (-5 *1 (-943 *4)) (-4 *4 (-1140 (-520))))) (-2666 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520))))) (-5 *2 (-380 (-520))) (-5 *1 (-943 *4)) (-4 *4 (-1140 (-520))))) (-2469 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520))))) (-5 *1 (-943 *3)) (-4 *3 (-1140 (-520))))) (-2469 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520))))) (-5 *4 (-380 (-520))) (-5 *1 (-943 *3)) (-4 *3 (-1140 (-520))))) (-3880 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-380 (-520))) (-5 *2 (-586 (-2 (|:| -1912 *5) (|:| -1924 *5)))) (-5 *1 (-943 *3)) (-4 *3 (-1140 (-520))) (-5 *4 (-2 (|:| -1912 *5) (|:| -1924 *5))))) (-3880 (*1 *2 *3 *4) (-12 (-5 *2 (-586 (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520)))))) (-5 *1 (-943 *3)) (-4 *3 (-1140 (-520))) (-5 *4 (-380 (-520))))) (-3880 (*1 *2 *3 *4) (-12 (-5 *2 (-586 (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520)))))) (-5 *1 (-943 *3)) (-4 *3 (-1140 (-520))) (-5 *4 (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520))))))) (-3880 (*1 *2 *3) (-12 (-5 *2 (-586 (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520)))))) (-5 *1 (-943 *3)) (-4 *3 (-1140 (-520))))))
-(-10 -7 (-15 -3880 ((-586 (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520))))) |#1|)) (-15 -3880 ((-586 (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520))))) |#1| (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520)))))) (-15 -3880 ((-586 (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520))))) |#1| (-380 (-520)))) (-15 -3880 ((-586 (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520))))) |#1| (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520)))) (-380 (-520)))) (-15 -2469 ((-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520)))) |#1| (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520)))) (-380 (-520)))) (-15 -2469 ((-3 (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520)))) "failed") |#1| (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520)))) (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520)))))) (-15 -2666 ((-380 (-520)) (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520)))))) (-15 -2270 ((-586 (-380 (-520))) (-586 (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520))))))))
-((-2469 (((-3 (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520)))) "failed") |#1| (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520)))) (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520))))) 35) (((-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520)))) |#1| (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520)))) (-380 (-520))) 32)) (-3880 (((-586 (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520))))) |#1| (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520)))) (-380 (-520))) 30) (((-586 (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520))))) |#1| (-380 (-520))) 26) (((-586 (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520))))) |#1| (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520))))) 28) (((-586 (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520))))) |#1|) 24)))
-(((-944 |#1|) (-10 -7 (-15 -3880 ((-586 (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520))))) |#1|)) (-15 -3880 ((-586 (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520))))) |#1| (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520)))))) (-15 -3880 ((-586 (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520))))) |#1| (-380 (-520)))) (-15 -3880 ((-586 (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520))))) |#1| (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520)))) (-380 (-520)))) (-15 -2469 ((-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520)))) |#1| (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520)))) (-380 (-520)))) (-15 -2469 ((-3 (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520)))) "failed") |#1| (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520)))) (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520))))))) (-1140 (-380 (-520)))) (T -944))
-((-2469 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520))))) (-5 *1 (-944 *3)) (-4 *3 (-1140 (-380 (-520)))))) (-2469 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520))))) (-5 *4 (-380 (-520))) (-5 *1 (-944 *3)) (-4 *3 (-1140 *4)))) (-3880 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-380 (-520))) (-5 *2 (-586 (-2 (|:| -1912 *5) (|:| -1924 *5)))) (-5 *1 (-944 *3)) (-4 *3 (-1140 *5)) (-5 *4 (-2 (|:| -1912 *5) (|:| -1924 *5))))) (-3880 (*1 *2 *3 *4) (-12 (-5 *4 (-380 (-520))) (-5 *2 (-586 (-2 (|:| -1912 *4) (|:| -1924 *4)))) (-5 *1 (-944 *3)) (-4 *3 (-1140 *4)))) (-3880 (*1 *2 *3 *4) (-12 (-5 *2 (-586 (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520)))))) (-5 *1 (-944 *3)) (-4 *3 (-1140 (-380 (-520)))) (-5 *4 (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520))))))) (-3880 (*1 *2 *3) (-12 (-5 *2 (-586 (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520)))))) (-5 *1 (-944 *3)) (-4 *3 (-1140 (-380 (-520)))))))
-(-10 -7 (-15 -3880 ((-586 (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520))))) |#1|)) (-15 -3880 ((-586 (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520))))) |#1| (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520)))))) (-15 -3880 ((-586 (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520))))) |#1| (-380 (-520)))) (-15 -3880 ((-586 (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520))))) |#1| (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520)))) (-380 (-520)))) (-15 -2469 ((-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520)))) |#1| (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520)))) (-380 (-520)))) (-15 -2469 ((-3 (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520)))) "failed") |#1| (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520)))) (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520)))))))
-((-1429 (((-201) $) 6) (((-352) $) 9)))
-(((-945) (-1195)) (T -945))
-NIL
-(-13 (-561 (-201)) (-561 (-352)))
-(((-561 (-201)) . T) ((-561 (-352)) . T))
-((-3600 (((-586 (-352)) (-880 (-520)) (-352)) 27) (((-586 (-352)) (-880 (-380 (-520))) (-352)) 26)) (-3062 (((-586 (-586 (-352))) (-586 (-880 (-520))) (-586 (-1083)) (-352)) 36)))
-(((-946) (-10 -7 (-15 -3600 ((-586 (-352)) (-880 (-380 (-520))) (-352))) (-15 -3600 ((-586 (-352)) (-880 (-520)) (-352))) (-15 -3062 ((-586 (-586 (-352))) (-586 (-880 (-520))) (-586 (-1083)) (-352))))) (T -946))
-((-3062 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-586 (-880 (-520)))) (-5 *4 (-586 (-1083))) (-5 *2 (-586 (-586 (-352)))) (-5 *1 (-946)) (-5 *5 (-352)))) (-3600 (*1 *2 *3 *4) (-12 (-5 *3 (-880 (-520))) (-5 *2 (-586 (-352))) (-5 *1 (-946)) (-5 *4 (-352)))) (-3600 (*1 *2 *3 *4) (-12 (-5 *3 (-880 (-380 (-520)))) (-5 *2 (-586 (-352))) (-5 *1 (-946)) (-5 *4 (-352)))))
-(-10 -7 (-15 -3600 ((-586 (-352)) (-880 (-380 (-520))) (-352))) (-15 -3600 ((-586 (-352)) (-880 (-520)) (-352))) (-15 -3062 ((-586 (-586 (-352))) (-586 (-880 (-520))) (-586 (-1083)) (-352))))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) 70)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) NIL)) (-2583 (($ $) NIL)) (-1671 (((-108) $) NIL)) (-1917 (((-3 $ "failed") $ $) NIL)) (-3024 (($ $) NIL)) (-1507 (((-391 $) $) NIL)) (-1927 (($ $) NIL) (($ $ (-706)) NIL) (($ (-380 (-520))) NIL) (($ (-520)) NIL)) (-1327 (((-108) $ $) NIL)) (-2804 (((-520) $) 65)) (-3961 (($) NIL T CONST)) (-2288 (((-3 $ "failed") (-1079 $) (-849) (-791)) NIL) (((-3 $ "failed") (-1079 $) (-849)) 49)) (-1296 (((-3 (-380 (-520)) "failed") $) NIL (|has| (-380 (-520)) (-960 (-380 (-520))))) (((-3 (-380 (-520)) "failed") $) NIL) (((-3 |#1| "failed") $) 108) (((-3 (-520) "failed") $) NIL (-3700 (|has| (-380 (-520)) (-960 (-520))) (|has| |#1| (-960 (-520)))))) (-1482 (((-380 (-520)) $) 14 (|has| (-380 (-520)) (-960 (-380 (-520))))) (((-380 (-520)) $) 14) ((|#1| $) 109) (((-520) $) NIL (-3700 (|has| (-380 (-520)) (-960 (-520))) (|has| |#1| (-960 (-520)))))) (-3833 (($ $ (-791)) 40)) (-1943 (($ $ (-791)) 41)) (-2276 (($ $ $) NIL)) (-2489 (((-380 (-520)) $ $) 18)) (-1540 (((-3 $ "failed") $) 83)) (-2253 (($ $ $) NIL)) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) NIL)) (-2036 (((-108) $) NIL)) (-2328 (((-108) $) 60)) (-1537 (((-108) $) NIL)) (-2322 (($ $ (-520)) NIL)) (-3469 (((-108) $) 63)) (-3188 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-2809 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-4166 (((-3 (-1079 $) "failed") $) 78)) (-3772 (((-3 (-791) "failed") $) 77)) (-1298 (((-3 (-1079 $) "failed") $) 75)) (-3939 (((-3 (-979 $ (-1079 $)) "failed") $) 73)) (-2222 (($ (-586 $)) NIL) (($ $ $) NIL)) (-1239 (((-1066) $) NIL)) (-3093 (($ $) 84)) (-4142 (((-1030) $) NIL)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) NIL)) (-2257 (($ (-586 $)) NIL) (($ $ $) NIL)) (-1916 (((-391 $) $) NIL)) (-1283 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) NIL)) (-2230 (((-3 $ "failed") $ $) NIL)) (-2608 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-3704 (((-706) $) NIL)) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) NIL)) (-2188 (((-791) $) 82) (($ (-520)) NIL) (($ (-380 (-520))) NIL) (($ $) 57) (($ (-380 (-520))) NIL) (($ (-520)) NIL) (($ (-380 (-520))) NIL) (($ |#1|) 111)) (-3251 (((-706)) NIL)) (-2559 (((-108) $ $) NIL)) (-3890 (((-380 (-520)) $ $) 24)) (-3233 (((-586 $) (-1079 $)) 55) (((-586 $) (-1079 (-380 (-520)))) NIL) (((-586 $) (-1079 (-520))) NIL) (((-586 $) (-880 $)) NIL) (((-586 $) (-880 (-380 (-520)))) NIL) (((-586 $) (-880 (-520))) NIL)) (-3802 (($ (-979 $ (-1079 $)) (-791)) 39)) (-2458 (($ $) 19)) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL)) (-3560 (($) 28 T CONST)) (-3570 (($) 34 T CONST)) (-1573 (((-108) $ $) NIL)) (-1557 (((-108) $ $) NIL)) (-1530 (((-108) $ $) 71)) (-1565 (((-108) $ $) NIL)) (-1548 (((-108) $ $) 21)) (-1619 (($ $ $) 32)) (-1611 (($ $) 33) (($ $ $) 69)) (-1601 (($ $ $) 104)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL) (($ $ (-380 (-520))) NIL)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) 92) (($ $ $) 97) (($ (-380 (-520)) $) NIL) (($ $ (-380 (-520))) NIL) (($ (-520) $) 92) (($ $ (-520)) NIL) (($ (-380 (-520)) $) NIL) (($ $ (-380 (-520))) NIL) (($ |#1| $) 96) (($ $ |#1|) NIL)))
-(((-947 |#1|) (-13 (-936) (-384 |#1|) (-37 |#1|) (-10 -8 (-15 -3802 ($ (-979 $ (-1079 $)) (-791))) (-15 -3939 ((-3 (-979 $ (-1079 $)) "failed") $)) (-15 -2489 ((-380 (-520)) $ $)))) (-13 (-781) (-336) (-945))) (T -947))
-((-3802 (*1 *1 *2 *3) (-12 (-5 *2 (-979 (-947 *4) (-1079 (-947 *4)))) (-5 *3 (-791)) (-5 *1 (-947 *4)) (-4 *4 (-13 (-781) (-336) (-945))))) (-3939 (*1 *2 *1) (|partial| -12 (-5 *2 (-979 (-947 *3) (-1079 (-947 *3)))) (-5 *1 (-947 *3)) (-4 *3 (-13 (-781) (-336) (-945))))) (-2489 (*1 *2 *1 *1) (-12 (-5 *2 (-380 (-520))) (-5 *1 (-947 *3)) (-4 *3 (-13 (-781) (-336) (-945))))))
-(-13 (-936) (-384 |#1|) (-37 |#1|) (-10 -8 (-15 -3802 ($ (-979 $ (-1079 $)) (-791))) (-15 -3939 ((-3 (-979 $ (-1079 $)) "failed") $)) (-15 -2489 ((-380 (-520)) $ $))))
-((-3522 (((-2 (|:| -3190 |#2|) (|:| -1418 (-586 |#1|))) |#2| (-586 |#1|)) 20) ((|#2| |#2| |#1|) 15)))
-(((-948 |#1| |#2|) (-10 -7 (-15 -3522 (|#2| |#2| |#1|)) (-15 -3522 ((-2 (|:| -3190 |#2|) (|:| -1418 (-586 |#1|))) |#2| (-586 |#1|)))) (-336) (-596 |#1|)) (T -948))
-((-3522 (*1 *2 *3 *4) (-12 (-4 *5 (-336)) (-5 *2 (-2 (|:| -3190 *3) (|:| -1418 (-586 *5)))) (-5 *1 (-948 *5 *3)) (-5 *4 (-586 *5)) (-4 *3 (-596 *5)))) (-3522 (*1 *2 *2 *3) (-12 (-4 *3 (-336)) (-5 *1 (-948 *3 *2)) (-4 *2 (-596 *3)))))
-(-10 -7 (-15 -3522 (|#2| |#2| |#1|)) (-15 -3522 ((-2 (|:| -3190 |#2|) (|:| -1418 (-586 |#1|))) |#2| (-586 |#1|))))
-((-1414 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-3109 ((|#1| $ |#1|) 14)) (-2377 ((|#1| $ |#1|) 12)) (-2168 (($ |#1|) 10)) (-1239 (((-1066) $) NIL (|has| |#1| (-1012)))) (-4142 (((-1030) $) NIL (|has| |#1| (-1012)))) (-2543 ((|#1| $) 11)) (-3334 ((|#1| $) 13)) (-2188 (((-791) $) 21 (|has| |#1| (-1012)))) (-1530 (((-108) $ $) 9)))
-(((-949 |#1|) (-13 (-1118) (-10 -8 (-15 -2168 ($ |#1|)) (-15 -2543 (|#1| $)) (-15 -2377 (|#1| $ |#1|)) (-15 -3334 (|#1| $)) (-15 -3109 (|#1| $ |#1|)) (-15 -1530 ((-108) $ $)) (IF (|has| |#1| (-1012)) (-6 (-1012)) |%noBranch|))) (-1118)) (T -949))
-((-2168 (*1 *1 *2) (-12 (-5 *1 (-949 *2)) (-4 *2 (-1118)))) (-2543 (*1 *2 *1) (-12 (-5 *1 (-949 *2)) (-4 *2 (-1118)))) (-2377 (*1 *2 *1 *2) (-12 (-5 *1 (-949 *2)) (-4 *2 (-1118)))) (-3334 (*1 *2 *1) (-12 (-5 *1 (-949 *2)) (-4 *2 (-1118)))) (-3109 (*1 *2 *1 *2) (-12 (-5 *1 (-949 *2)) (-4 *2 (-1118)))) (-1530 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-949 *3)) (-4 *3 (-1118)))))
-(-13 (-1118) (-10 -8 (-15 -2168 ($ |#1|)) (-15 -2543 (|#1| $)) (-15 -2377 (|#1| $ |#1|)) (-15 -3334 (|#1| $)) (-15 -3109 (|#1| $ |#1|)) (-15 -1530 ((-108) $ $)) (IF (|has| |#1| (-1012)) (-6 (-1012)) |%noBranch|)))
-((-1414 (((-108) $ $) NIL)) (-3769 (((-586 (-2 (|:| -1649 $) (|:| -1543 (-586 |#4|)))) (-586 |#4|)) NIL)) (-3767 (((-586 $) (-586 |#4|)) 105) (((-586 $) (-586 |#4|) (-108)) 106) (((-586 $) (-586 |#4|) (-108) (-108)) 104) (((-586 $) (-586 |#4|) (-108) (-108) (-108) (-108)) 107)) (-4081 (((-586 |#3|) $) NIL)) (-2373 (((-108) $) NIL)) (-1937 (((-108) $) NIL (|has| |#1| (-512)))) (-3804 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3954 ((|#4| |#4| $) NIL)) (-3024 (((-586 (-2 (|:| |val| |#4|) (|:| -1883 $))) |#4| $) 99)) (-3210 (((-2 (|:| |under| $) (|:| -1626 $) (|:| |upper| $)) $ |#3|) NIL)) (-2063 (((-108) $ (-706)) NIL)) (-1627 (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4229))) (((-3 |#4| "failed") $ |#3|) 54)) (-3961 (($) NIL T CONST)) (-2215 (((-108) $) 26 (|has| |#1| (-512)))) (-3078 (((-108) $ $) NIL (|has| |#1| (-512)))) (-3675 (((-108) $ $) NIL (|has| |#1| (-512)))) (-2786 (((-108) $) NIL (|has| |#1| (-512)))) (-2589 (((-586 |#4|) (-586 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-4167 (((-586 |#4|) (-586 |#4|) $) NIL (|has| |#1| (-512)))) (-3415 (((-586 |#4|) (-586 |#4|) $) NIL (|has| |#1| (-512)))) (-1296 (((-3 $ "failed") (-586 |#4|)) NIL)) (-1482 (($ (-586 |#4|)) NIL)) (-2305 (((-3 $ "failed") $) 39)) (-1618 ((|#4| |#4| $) 57)) (-2331 (($ $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#4| (-1012))))) (-1421 (($ |#4| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#4| (-1012)))) (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4229)))) (-3753 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 73 (|has| |#1| (-512)))) (-3738 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) NIL)) (-2762 ((|#4| |#4| $) NIL)) (-3856 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4229)) (|has| |#4| (-1012)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4229))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4229))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-2025 (((-2 (|:| -1649 (-586 |#4|)) (|:| -1543 (-586 |#4|))) $) NIL)) (-2870 (((-108) |#4| $) NIL)) (-1276 (((-108) |#4| $) NIL)) (-1964 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3228 (((-2 (|:| |val| (-586 |#4|)) (|:| |towers| (-586 $))) (-586 |#4|) (-108) (-108)) 119)) (-3828 (((-586 |#4|) $) 16 (|has| $ (-6 -4229)))) (-2311 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3871 ((|#3| $) 33)) (-3027 (((-108) $ (-706)) NIL)) (-3702 (((-586 |#4|) $) 17 (|has| $ (-6 -4229)))) (-2422 (((-108) |#4| $) 25 (-12 (|has| $ (-6 -4229)) (|has| |#4| (-1012))))) (-3830 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#4| |#4|) $) 21)) (-2602 (((-586 |#3|) $) NIL)) (-3394 (((-108) |#3| $) NIL)) (-1390 (((-108) $ (-706)) NIL)) (-1239 (((-1066) $) NIL)) (-3797 (((-3 |#4| (-586 $)) |#4| |#4| $) NIL)) (-2170 (((-586 (-2 (|:| |val| |#4|) (|:| -1883 $))) |#4| |#4| $) 97)) (-1440 (((-3 |#4| "failed") $) 37)) (-3674 (((-586 $) |#4| $) 80)) (-3757 (((-3 (-108) (-586 $)) |#4| $) NIL)) (-2484 (((-586 (-2 (|:| |val| (-108)) (|:| -1883 $))) |#4| $) 90) (((-108) |#4| $) 52)) (-2077 (((-586 $) |#4| $) 102) (((-586 $) (-586 |#4|) $) NIL) (((-586 $) (-586 |#4|) (-586 $)) 103) (((-586 $) |#4| (-586 $)) NIL)) (-2771 (((-586 $) (-586 |#4|) (-108) (-108) (-108)) 114)) (-3709 (($ |#4| $) 70) (($ (-586 |#4|) $) 71) (((-586 $) |#4| $ (-108) (-108) (-108) (-108) (-108)) 67)) (-2623 (((-586 |#4|) $) NIL)) (-2428 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2778 ((|#4| |#4| $) NIL)) (-3444 (((-108) $ $) NIL)) (-2130 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-512)))) (-1322 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3499 ((|#4| |#4| $) NIL)) (-4142 (((-1030) $) NIL)) (-2293 (((-3 |#4| "failed") $) 35)) (-2985 (((-3 |#4| "failed") (-1 (-108) |#4|) $) NIL)) (-2885 (((-3 $ "failed") $ |#4|) 48)) (-2116 (($ $ |#4|) NIL) (((-586 $) |#4| $) 82) (((-586 $) |#4| (-586 $)) NIL) (((-586 $) (-586 |#4|) $) NIL) (((-586 $) (-586 |#4|) (-586 $)) 77)) (-4155 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 |#4|) (-586 |#4|)) NIL (-12 (|has| |#4| (-283 |#4|)) (|has| |#4| (-1012)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-283 |#4|)) (|has| |#4| (-1012)))) (($ $ (-268 |#4|)) NIL (-12 (|has| |#4| (-283 |#4|)) (|has| |#4| (-1012)))) (($ $ (-586 (-268 |#4|))) NIL (-12 (|has| |#4| (-283 |#4|)) (|has| |#4| (-1012))))) (-2533 (((-108) $ $) NIL)) (-4018 (((-108) $) 15)) (-2238 (($) 13)) (-2528 (((-706) $) NIL)) (-4159 (((-706) |#4| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#4| (-1012)))) (((-706) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4229)))) (-2403 (($ $) 12)) (-1429 (((-496) $) NIL (|has| |#4| (-561 (-496))))) (-2200 (($ (-586 |#4|)) 20)) (-3399 (($ $ |#3|) 42)) (-4067 (($ $ |#3|) 44)) (-3932 (($ $) NIL)) (-2513 (($ $ |#3|) NIL)) (-2188 (((-791) $) 31) (((-586 |#4|) $) 40)) (-3898 (((-706) $) NIL (|has| |#3| (-341)))) (-1652 (((-3 (-2 (|:| |bas| $) (|:| -1353 (-586 |#4|))) "failed") (-586 |#4|) (-1 (-108) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1353 (-586 |#4|))) "failed") (-586 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-3146 (((-108) $ (-1 (-108) |#4| (-586 |#4|))) NIL)) (-3272 (((-586 $) |#4| $) 79) (((-586 $) |#4| (-586 $)) NIL) (((-586 $) (-586 |#4|) $) NIL) (((-586 $) (-586 |#4|) (-586 $)) NIL)) (-1662 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4229)))) (-1600 (((-586 |#3|) $) NIL)) (-3230 (((-108) |#4| $) NIL)) (-3718 (((-108) |#3| $) 53)) (-1530 (((-108) $ $) NIL)) (-3474 (((-706) $) NIL (|has| $ (-6 -4229)))))
-(((-950 |#1| |#2| |#3| |#4|) (-13 (-988 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3709 ((-586 $) |#4| $ (-108) (-108) (-108) (-108) (-108))) (-15 -3767 ((-586 $) (-586 |#4|) (-108) (-108))) (-15 -3767 ((-586 $) (-586 |#4|) (-108) (-108) (-108) (-108))) (-15 -2771 ((-586 $) (-586 |#4|) (-108) (-108) (-108))) (-15 -3228 ((-2 (|:| |val| (-586 |#4|)) (|:| |towers| (-586 $))) (-586 |#4|) (-108) (-108))))) (-424) (-728) (-783) (-983 |#1| |#2| |#3|)) (T -950))
-((-3709 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783)) (-5 *2 (-586 (-950 *5 *6 *7 *3))) (-5 *1 (-950 *5 *6 *7 *3)) (-4 *3 (-983 *5 *6 *7)))) (-3767 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-586 *8)) (-5 *4 (-108)) (-4 *8 (-983 *5 *6 *7)) (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783)) (-5 *2 (-586 (-950 *5 *6 *7 *8))) (-5 *1 (-950 *5 *6 *7 *8)))) (-3767 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-586 *8)) (-5 *4 (-108)) (-4 *8 (-983 *5 *6 *7)) (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783)) (-5 *2 (-586 (-950 *5 *6 *7 *8))) (-5 *1 (-950 *5 *6 *7 *8)))) (-2771 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-586 *8)) (-5 *4 (-108)) (-4 *8 (-983 *5 *6 *7)) (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783)) (-5 *2 (-586 (-950 *5 *6 *7 *8))) (-5 *1 (-950 *5 *6 *7 *8)))) (-3228 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783)) (-4 *8 (-983 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-586 *8)) (|:| |towers| (-586 (-950 *5 *6 *7 *8))))) (-5 *1 (-950 *5 *6 *7 *8)) (-5 *3 (-586 *8)))))
-(-13 (-988 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3709 ((-586 $) |#4| $ (-108) (-108) (-108) (-108) (-108))) (-15 -3767 ((-586 $) (-586 |#4|) (-108) (-108))) (-15 -3767 ((-586 $) (-586 |#4|) (-108) (-108) (-108) (-108))) (-15 -2771 ((-586 $) (-586 |#4|) (-108) (-108) (-108))) (-15 -3228 ((-2 (|:| |val| (-586 |#4|)) (|:| |towers| (-586 $))) (-586 |#4|) (-108) (-108)))))
-((-1683 (((-586 (-626 |#1|)) (-586 (-626 |#1|))) 57) (((-626 |#1|) (-626 |#1|)) 56) (((-586 (-626 |#1|)) (-586 (-626 |#1|)) (-586 (-626 |#1|))) 55) (((-626 |#1|) (-626 |#1|) (-626 |#1|)) 52)) (-1458 (((-586 (-626 |#1|)) (-586 (-626 |#1|)) (-849)) 51) (((-626 |#1|) (-626 |#1|) (-849)) 50)) (-2416 (((-586 (-626 (-520))) (-586 (-586 (-520)))) 67) (((-586 (-626 (-520))) (-586 (-833 (-520))) (-520)) 66) (((-626 (-520)) (-586 (-520))) 63) (((-626 (-520)) (-833 (-520)) (-520)) 62)) (-3558 (((-626 (-880 |#1|)) (-706)) 80)) (-1808 (((-586 (-626 |#1|)) (-586 (-626 |#1|)) (-849)) 36 (|has| |#1| (-6 (-4231 "*")))) (((-626 |#1|) (-626 |#1|) (-849)) 34 (|has| |#1| (-6 (-4231 "*"))))))
-(((-951 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4231 "*"))) (-15 -1808 ((-626 |#1|) (-626 |#1|) (-849))) |%noBranch|) (IF (|has| |#1| (-6 (-4231 "*"))) (-15 -1808 ((-586 (-626 |#1|)) (-586 (-626 |#1|)) (-849))) |%noBranch|) (-15 -3558 ((-626 (-880 |#1|)) (-706))) (-15 -1458 ((-626 |#1|) (-626 |#1|) (-849))) (-15 -1458 ((-586 (-626 |#1|)) (-586 (-626 |#1|)) (-849))) (-15 -1683 ((-626 |#1|) (-626 |#1|) (-626 |#1|))) (-15 -1683 ((-586 (-626 |#1|)) (-586 (-626 |#1|)) (-586 (-626 |#1|)))) (-15 -1683 ((-626 |#1|) (-626 |#1|))) (-15 -1683 ((-586 (-626 |#1|)) (-586 (-626 |#1|)))) (-15 -2416 ((-626 (-520)) (-833 (-520)) (-520))) (-15 -2416 ((-626 (-520)) (-586 (-520)))) (-15 -2416 ((-586 (-626 (-520))) (-586 (-833 (-520))) (-520))) (-15 -2416 ((-586 (-626 (-520))) (-586 (-586 (-520)))))) (-969)) (T -951))
-((-2416 (*1 *2 *3) (-12 (-5 *3 (-586 (-586 (-520)))) (-5 *2 (-586 (-626 (-520)))) (-5 *1 (-951 *4)) (-4 *4 (-969)))) (-2416 (*1 *2 *3 *4) (-12 (-5 *3 (-586 (-833 (-520)))) (-5 *4 (-520)) (-5 *2 (-586 (-626 *4))) (-5 *1 (-951 *5)) (-4 *5 (-969)))) (-2416 (*1 *2 *3) (-12 (-5 *3 (-586 (-520))) (-5 *2 (-626 (-520))) (-5 *1 (-951 *4)) (-4 *4 (-969)))) (-2416 (*1 *2 *3 *4) (-12 (-5 *3 (-833 (-520))) (-5 *4 (-520)) (-5 *2 (-626 *4)) (-5 *1 (-951 *5)) (-4 *5 (-969)))) (-1683 (*1 *2 *2) (-12 (-5 *2 (-586 (-626 *3))) (-4 *3 (-969)) (-5 *1 (-951 *3)))) (-1683 (*1 *2 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-969)) (-5 *1 (-951 *3)))) (-1683 (*1 *2 *2 *2) (-12 (-5 *2 (-586 (-626 *3))) (-4 *3 (-969)) (-5 *1 (-951 *3)))) (-1683 (*1 *2 *2 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-969)) (-5 *1 (-951 *3)))) (-1458 (*1 *2 *2 *3) (-12 (-5 *2 (-586 (-626 *4))) (-5 *3 (-849)) (-4 *4 (-969)) (-5 *1 (-951 *4)))) (-1458 (*1 *2 *2 *3) (-12 (-5 *2 (-626 *4)) (-5 *3 (-849)) (-4 *4 (-969)) (-5 *1 (-951 *4)))) (-3558 (*1 *2 *3) (-12 (-5 *3 (-706)) (-5 *2 (-626 (-880 *4))) (-5 *1 (-951 *4)) (-4 *4 (-969)))) (-1808 (*1 *2 *2 *3) (-12 (-5 *2 (-586 (-626 *4))) (-5 *3 (-849)) (|has| *4 (-6 (-4231 "*"))) (-4 *4 (-969)) (-5 *1 (-951 *4)))) (-1808 (*1 *2 *2 *3) (-12 (-5 *2 (-626 *4)) (-5 *3 (-849)) (|has| *4 (-6 (-4231 "*"))) (-4 *4 (-969)) (-5 *1 (-951 *4)))))
-(-10 -7 (IF (|has| |#1| (-6 (-4231 "*"))) (-15 -1808 ((-626 |#1|) (-626 |#1|) (-849))) |%noBranch|) (IF (|has| |#1| (-6 (-4231 "*"))) (-15 -1808 ((-586 (-626 |#1|)) (-586 (-626 |#1|)) (-849))) |%noBranch|) (-15 -3558 ((-626 (-880 |#1|)) (-706))) (-15 -1458 ((-626 |#1|) (-626 |#1|) (-849))) (-15 -1458 ((-586 (-626 |#1|)) (-586 (-626 |#1|)) (-849))) (-15 -1683 ((-626 |#1|) (-626 |#1|) (-626 |#1|))) (-15 -1683 ((-586 (-626 |#1|)) (-586 (-626 |#1|)) (-586 (-626 |#1|)))) (-15 -1683 ((-626 |#1|) (-626 |#1|))) (-15 -1683 ((-586 (-626 |#1|)) (-586 (-626 |#1|)))) (-15 -2416 ((-626 (-520)) (-833 (-520)) (-520))) (-15 -2416 ((-626 (-520)) (-586 (-520)))) (-15 -2416 ((-586 (-626 (-520))) (-586 (-833 (-520))) (-520))) (-15 -2416 ((-586 (-626 (-520))) (-586 (-586 (-520))))))
-((-3050 (((-626 |#1|) (-586 (-626 |#1|)) (-1164 |#1|)) 50 (|has| |#1| (-281)))) (-3175 (((-586 (-586 (-626 |#1|))) (-586 (-626 |#1|)) (-1164 (-1164 |#1|))) 73 (|has| |#1| (-336))) (((-586 (-586 (-626 |#1|))) (-586 (-626 |#1|)) (-1164 |#1|)) 71 (|has| |#1| (-336)))) (-1471 (((-1164 |#1|) (-586 (-1164 |#1|)) (-520)) 75 (-12 (|has| |#1| (-336)) (|has| |#1| (-341))))) (-2571 (((-586 (-586 (-626 |#1|))) (-586 (-626 |#1|)) (-849)) 80 (-12 (|has| |#1| (-336)) (|has| |#1| (-341)))) (((-586 (-586 (-626 |#1|))) (-586 (-626 |#1|)) (-108)) 78 (-12 (|has| |#1| (-336)) (|has| |#1| (-341)))) (((-586 (-586 (-626 |#1|))) (-586 (-626 |#1|))) 77 (-12 (|has| |#1| (-336)) (|has| |#1| (-341)))) (((-586 (-586 (-626 |#1|))) (-586 (-626 |#1|)) (-108) (-520) (-520)) 76 (-12 (|has| |#1| (-336)) (|has| |#1| (-341))))) (-2619 (((-108) (-586 (-626 |#1|))) 69 (|has| |#1| (-336))) (((-108) (-586 (-626 |#1|)) (-520)) 68 (|has| |#1| (-336)))) (-3356 (((-1164 (-1164 |#1|)) (-586 (-626 |#1|)) (-1164 |#1|)) 48 (|has| |#1| (-281)))) (-2437 (((-626 |#1|) (-586 (-626 |#1|)) (-626 |#1|)) 33)) (-1525 (((-626 |#1|) (-1164 (-1164 |#1|))) 30)) (-2890 (((-626 |#1|) (-586 (-626 |#1|)) (-586 (-626 |#1|)) (-520)) 64 (|has| |#1| (-336))) (((-626 |#1|) (-586 (-626 |#1|)) (-586 (-626 |#1|))) 63 (|has| |#1| (-336))) (((-626 |#1|) (-586 (-626 |#1|)) (-586 (-626 |#1|)) (-108) (-520)) 62 (|has| |#1| (-336)))))
-(((-952 |#1|) (-10 -7 (-15 -1525 ((-626 |#1|) (-1164 (-1164 |#1|)))) (-15 -2437 ((-626 |#1|) (-586 (-626 |#1|)) (-626 |#1|))) (IF (|has| |#1| (-281)) (PROGN (-15 -3356 ((-1164 (-1164 |#1|)) (-586 (-626 |#1|)) (-1164 |#1|))) (-15 -3050 ((-626 |#1|) (-586 (-626 |#1|)) (-1164 |#1|)))) |%noBranch|) (IF (|has| |#1| (-336)) (PROGN (-15 -2890 ((-626 |#1|) (-586 (-626 |#1|)) (-586 (-626 |#1|)) (-108) (-520))) (-15 -2890 ((-626 |#1|) (-586 (-626 |#1|)) (-586 (-626 |#1|)))) (-15 -2890 ((-626 |#1|) (-586 (-626 |#1|)) (-586 (-626 |#1|)) (-520))) (-15 -2619 ((-108) (-586 (-626 |#1|)) (-520))) (-15 -2619 ((-108) (-586 (-626 |#1|)))) (-15 -3175 ((-586 (-586 (-626 |#1|))) (-586 (-626 |#1|)) (-1164 |#1|))) (-15 -3175 ((-586 (-586 (-626 |#1|))) (-586 (-626 |#1|)) (-1164 (-1164 |#1|))))) |%noBranch|) (IF (|has| |#1| (-341)) (IF (|has| |#1| (-336)) (PROGN (-15 -2571 ((-586 (-586 (-626 |#1|))) (-586 (-626 |#1|)) (-108) (-520) (-520))) (-15 -2571 ((-586 (-586 (-626 |#1|))) (-586 (-626 |#1|)))) (-15 -2571 ((-586 (-586 (-626 |#1|))) (-586 (-626 |#1|)) (-108))) (-15 -2571 ((-586 (-586 (-626 |#1|))) (-586 (-626 |#1|)) (-849))) (-15 -1471 ((-1164 |#1|) (-586 (-1164 |#1|)) (-520)))) |%noBranch|) |%noBranch|)) (-969)) (T -952))
-((-1471 (*1 *2 *3 *4) (-12 (-5 *3 (-586 (-1164 *5))) (-5 *4 (-520)) (-5 *2 (-1164 *5)) (-5 *1 (-952 *5)) (-4 *5 (-336)) (-4 *5 (-341)) (-4 *5 (-969)))) (-2571 (*1 *2 *3 *4) (-12 (-5 *4 (-849)) (-4 *5 (-336)) (-4 *5 (-341)) (-4 *5 (-969)) (-5 *2 (-586 (-586 (-626 *5)))) (-5 *1 (-952 *5)) (-5 *3 (-586 (-626 *5))))) (-2571 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-336)) (-4 *5 (-341)) (-4 *5 (-969)) (-5 *2 (-586 (-586 (-626 *5)))) (-5 *1 (-952 *5)) (-5 *3 (-586 (-626 *5))))) (-2571 (*1 *2 *3) (-12 (-4 *4 (-336)) (-4 *4 (-341)) (-4 *4 (-969)) (-5 *2 (-586 (-586 (-626 *4)))) (-5 *1 (-952 *4)) (-5 *3 (-586 (-626 *4))))) (-2571 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-108)) (-5 *5 (-520)) (-4 *6 (-336)) (-4 *6 (-341)) (-4 *6 (-969)) (-5 *2 (-586 (-586 (-626 *6)))) (-5 *1 (-952 *6)) (-5 *3 (-586 (-626 *6))))) (-3175 (*1 *2 *3 *4) (-12 (-5 *4 (-1164 (-1164 *5))) (-4 *5 (-336)) (-4 *5 (-969)) (-5 *2 (-586 (-586 (-626 *5)))) (-5 *1 (-952 *5)) (-5 *3 (-586 (-626 *5))))) (-3175 (*1 *2 *3 *4) (-12 (-5 *4 (-1164 *5)) (-4 *5 (-336)) (-4 *5 (-969)) (-5 *2 (-586 (-586 (-626 *5)))) (-5 *1 (-952 *5)) (-5 *3 (-586 (-626 *5))))) (-2619 (*1 *2 *3) (-12 (-5 *3 (-586 (-626 *4))) (-4 *4 (-336)) (-4 *4 (-969)) (-5 *2 (-108)) (-5 *1 (-952 *4)))) (-2619 (*1 *2 *3 *4) (-12 (-5 *3 (-586 (-626 *5))) (-5 *4 (-520)) (-4 *5 (-336)) (-4 *5 (-969)) (-5 *2 (-108)) (-5 *1 (-952 *5)))) (-2890 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-586 (-626 *5))) (-5 *4 (-520)) (-5 *2 (-626 *5)) (-5 *1 (-952 *5)) (-4 *5 (-336)) (-4 *5 (-969)))) (-2890 (*1 *2 *3 *3) (-12 (-5 *3 (-586 (-626 *4))) (-5 *2 (-626 *4)) (-5 *1 (-952 *4)) (-4 *4 (-336)) (-4 *4 (-969)))) (-2890 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-586 (-626 *6))) (-5 *4 (-108)) (-5 *5 (-520)) (-5 *2 (-626 *6)) (-5 *1 (-952 *6)) (-4 *6 (-336)) (-4 *6 (-969)))) (-3050 (*1 *2 *3 *4) (-12 (-5 *3 (-586 (-626 *5))) (-5 *4 (-1164 *5)) (-4 *5 (-281)) (-4 *5 (-969)) (-5 *2 (-626 *5)) (-5 *1 (-952 *5)))) (-3356 (*1 *2 *3 *4) (-12 (-5 *3 (-586 (-626 *5))) (-4 *5 (-281)) (-4 *5 (-969)) (-5 *2 (-1164 (-1164 *5))) (-5 *1 (-952 *5)) (-5 *4 (-1164 *5)))) (-2437 (*1 *2 *3 *2) (-12 (-5 *3 (-586 (-626 *4))) (-5 *2 (-626 *4)) (-4 *4 (-969)) (-5 *1 (-952 *4)))) (-1525 (*1 *2 *3) (-12 (-5 *3 (-1164 (-1164 *4))) (-4 *4 (-969)) (-5 *2 (-626 *4)) (-5 *1 (-952 *4)))))
-(-10 -7 (-15 -1525 ((-626 |#1|) (-1164 (-1164 |#1|)))) (-15 -2437 ((-626 |#1|) (-586 (-626 |#1|)) (-626 |#1|))) (IF (|has| |#1| (-281)) (PROGN (-15 -3356 ((-1164 (-1164 |#1|)) (-586 (-626 |#1|)) (-1164 |#1|))) (-15 -3050 ((-626 |#1|) (-586 (-626 |#1|)) (-1164 |#1|)))) |%noBranch|) (IF (|has| |#1| (-336)) (PROGN (-15 -2890 ((-626 |#1|) (-586 (-626 |#1|)) (-586 (-626 |#1|)) (-108) (-520))) (-15 -2890 ((-626 |#1|) (-586 (-626 |#1|)) (-586 (-626 |#1|)))) (-15 -2890 ((-626 |#1|) (-586 (-626 |#1|)) (-586 (-626 |#1|)) (-520))) (-15 -2619 ((-108) (-586 (-626 |#1|)) (-520))) (-15 -2619 ((-108) (-586 (-626 |#1|)))) (-15 -3175 ((-586 (-586 (-626 |#1|))) (-586 (-626 |#1|)) (-1164 |#1|))) (-15 -3175 ((-586 (-586 (-626 |#1|))) (-586 (-626 |#1|)) (-1164 (-1164 |#1|))))) |%noBranch|) (IF (|has| |#1| (-341)) (IF (|has| |#1| (-336)) (PROGN (-15 -2571 ((-586 (-586 (-626 |#1|))) (-586 (-626 |#1|)) (-108) (-520) (-520))) (-15 -2571 ((-586 (-586 (-626 |#1|))) (-586 (-626 |#1|)))) (-15 -2571 ((-586 (-586 (-626 |#1|))) (-586 (-626 |#1|)) (-108))) (-15 -2571 ((-586 (-586 (-626 |#1|))) (-586 (-626 |#1|)) (-849))) (-15 -1471 ((-1164 |#1|) (-586 (-1164 |#1|)) (-520)))) |%noBranch|) |%noBranch|))
-((-3363 ((|#1| (-849) |#1|) 9)))
-(((-953 |#1|) (-10 -7 (-15 -3363 (|#1| (-849) |#1|))) (-13 (-1012) (-10 -8 (-15 -1601 ($ $ $))))) (T -953))
-((-3363 (*1 *2 *3 *2) (-12 (-5 *3 (-849)) (-5 *1 (-953 *2)) (-4 *2 (-13 (-1012) (-10 -8 (-15 -1601 ($ $ $))))))))
-(-10 -7 (-15 -3363 (|#1| (-849) |#1|)))
-((-4100 (((-586 (-2 (|:| |radval| (-289 (-520))) (|:| |radmult| (-520)) (|:| |radvect| (-586 (-626 (-289 (-520))))))) (-626 (-380 (-880 (-520))))) 58)) (-3730 (((-586 (-626 (-289 (-520)))) (-289 (-520)) (-626 (-380 (-880 (-520))))) 48)) (-3747 (((-586 (-289 (-520))) (-626 (-380 (-880 (-520))))) 41)) (-3597 (((-586 (-626 (-289 (-520)))) (-626 (-380 (-880 (-520))))) 68)) (-3101 (((-626 (-289 (-520))) (-626 (-289 (-520)))) 33)) (-3114 (((-586 (-626 (-289 (-520)))) (-586 (-626 (-289 (-520))))) 61)) (-2042 (((-3 (-626 (-289 (-520))) "failed") (-626 (-380 (-880 (-520))))) 65)))
-(((-954) (-10 -7 (-15 -4100 ((-586 (-2 (|:| |radval| (-289 (-520))) (|:| |radmult| (-520)) (|:| |radvect| (-586 (-626 (-289 (-520))))))) (-626 (-380 (-880 (-520)))))) (-15 -3730 ((-586 (-626 (-289 (-520)))) (-289 (-520)) (-626 (-380 (-880 (-520)))))) (-15 -3747 ((-586 (-289 (-520))) (-626 (-380 (-880 (-520)))))) (-15 -2042 ((-3 (-626 (-289 (-520))) "failed") (-626 (-380 (-880 (-520)))))) (-15 -3101 ((-626 (-289 (-520))) (-626 (-289 (-520))))) (-15 -3114 ((-586 (-626 (-289 (-520)))) (-586 (-626 (-289 (-520)))))) (-15 -3597 ((-586 (-626 (-289 (-520)))) (-626 (-380 (-880 (-520)))))))) (T -954))
-((-3597 (*1 *2 *3) (-12 (-5 *3 (-626 (-380 (-880 (-520))))) (-5 *2 (-586 (-626 (-289 (-520))))) (-5 *1 (-954)))) (-3114 (*1 *2 *2) (-12 (-5 *2 (-586 (-626 (-289 (-520))))) (-5 *1 (-954)))) (-3101 (*1 *2 *2) (-12 (-5 *2 (-626 (-289 (-520)))) (-5 *1 (-954)))) (-2042 (*1 *2 *3) (|partial| -12 (-5 *3 (-626 (-380 (-880 (-520))))) (-5 *2 (-626 (-289 (-520)))) (-5 *1 (-954)))) (-3747 (*1 *2 *3) (-12 (-5 *3 (-626 (-380 (-880 (-520))))) (-5 *2 (-586 (-289 (-520)))) (-5 *1 (-954)))) (-3730 (*1 *2 *3 *4) (-12 (-5 *4 (-626 (-380 (-880 (-520))))) (-5 *2 (-586 (-626 (-289 (-520))))) (-5 *1 (-954)) (-5 *3 (-289 (-520))))) (-4100 (*1 *2 *3) (-12 (-5 *3 (-626 (-380 (-880 (-520))))) (-5 *2 (-586 (-2 (|:| |radval| (-289 (-520))) (|:| |radmult| (-520)) (|:| |radvect| (-586 (-626 (-289 (-520)))))))) (-5 *1 (-954)))))
-(-10 -7 (-15 -4100 ((-586 (-2 (|:| |radval| (-289 (-520))) (|:| |radmult| (-520)) (|:| |radvect| (-586 (-626 (-289 (-520))))))) (-626 (-380 (-880 (-520)))))) (-15 -3730 ((-586 (-626 (-289 (-520)))) (-289 (-520)) (-626 (-380 (-880 (-520)))))) (-15 -3747 ((-586 (-289 (-520))) (-626 (-380 (-880 (-520)))))) (-15 -2042 ((-3 (-626 (-289 (-520))) "failed") (-626 (-380 (-880 (-520)))))) (-15 -3101 ((-626 (-289 (-520))) (-626 (-289 (-520))))) (-15 -3114 ((-586 (-626 (-289 (-520)))) (-586 (-626 (-289 (-520)))))) (-15 -3597 ((-586 (-626 (-289 (-520)))) (-626 (-380 (-880 (-520)))))))
-((-1552 ((|#1| |#1| (-849)) 9)))
-(((-955 |#1|) (-10 -7 (-15 -1552 (|#1| |#1| (-849)))) (-13 (-1012) (-10 -8 (-15 * ($ $ $))))) (T -955))
-((-1552 (*1 *2 *2 *3) (-12 (-5 *3 (-849)) (-5 *1 (-955 *2)) (-4 *2 (-13 (-1012) (-10 -8 (-15 * ($ $ $))))))))
-(-10 -7 (-15 -1552 (|#1| |#1| (-849))))
-((-2188 ((|#1| (-285)) 11) (((-1169) |#1|) 9)))
-(((-956 |#1|) (-10 -7 (-15 -2188 ((-1169) |#1|)) (-15 -2188 (|#1| (-285)))) (-1118)) (T -956))
-((-2188 (*1 *2 *3) (-12 (-5 *3 (-285)) (-5 *1 (-956 *2)) (-4 *2 (-1118)))) (-2188 (*1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *1 (-956 *3)) (-4 *3 (-1118)))))
-(-10 -7 (-15 -2188 ((-1169) |#1|)) (-15 -2188 (|#1| (-285))))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-1917 (((-3 $ "failed") $ $) NIL)) (-3961 (($) NIL T CONST)) (-3856 (($ |#4|) 25)) (-1540 (((-3 $ "failed") $) NIL)) (-1537 (((-108) $) NIL)) (-3841 ((|#4| $) 27)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2188 (((-791) $) 46) (($ (-520)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-3251 (((-706)) 43)) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (-3560 (($) 21 T CONST)) (-3570 (($) 23 T CONST)) (-1530 (((-108) $ $) 40)) (-1611 (($ $) 31) (($ $ $) NIL)) (-1601 (($ $ $) 29)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL)))
-(((-957 |#1| |#2| |#3| |#4| |#5|) (-13 (-157) (-37 |#1|) (-10 -8 (-15 -3856 ($ |#4|)) (-15 -2188 ($ |#4|)) (-15 -3841 (|#4| $)))) (-336) (-728) (-783) (-877 |#1| |#2| |#3|) (-586 |#4|)) (T -957))
-((-3856 (*1 *1 *2) (-12 (-4 *3 (-336)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *1 (-957 *3 *4 *5 *2 *6)) (-4 *2 (-877 *3 *4 *5)) (-14 *6 (-586 *2)))) (-2188 (*1 *1 *2) (-12 (-4 *3 (-336)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *1 (-957 *3 *4 *5 *2 *6)) (-4 *2 (-877 *3 *4 *5)) (-14 *6 (-586 *2)))) (-3841 (*1 *2 *1) (-12 (-4 *2 (-877 *3 *4 *5)) (-5 *1 (-957 *3 *4 *5 *2 *6)) (-4 *3 (-336)) (-4 *4 (-728)) (-4 *5 (-783)) (-14 *6 (-586 *2)))))
-(-13 (-157) (-37 |#1|) (-10 -8 (-15 -3856 ($ |#4|)) (-15 -2188 ($ |#4|)) (-15 -3841 (|#4| $))))
-((-1414 (((-108) $ $) NIL (-3700 (|has| (-51) (-1012)) (|has| (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (-1012))))) (-1799 (($) NIL) (($ (-586 (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))))) NIL)) (-1476 (((-1169) $ (-1083) (-1083)) NIL (|has| $ (-6 -4230)))) (-2063 (((-108) $ (-706)) NIL)) (-2598 (((-108) (-108)) 39)) (-4070 (((-108) (-108)) 38)) (-2377 (((-51) $ (-1083) (-51)) NIL)) (-1817 (($ (-1 (-108) (-2 (|:| -2526 (-1083)) (|:| -3043 (-51)))) $) NIL (|has| $ (-6 -4229)))) (-1627 (($ (-1 (-108) (-2 (|:| -2526 (-1083)) (|:| -3043 (-51)))) $) NIL (|has| $ (-6 -4229)))) (-2747 (((-3 (-51) "failed") (-1083) $) NIL)) (-3961 (($) NIL T CONST)) (-2331 (($ $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (-1012))))) (-3766 (($ (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) $) NIL (|has| $ (-6 -4229))) (($ (-1 (-108) (-2 (|:| -2526 (-1083)) (|:| -3043 (-51)))) $) NIL (|has| $ (-6 -4229))) (((-3 (-51) "failed") (-1083) $) NIL)) (-1421 (($ (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (-1012)))) (($ (-1 (-108) (-2 (|:| -2526 (-1083)) (|:| -3043 (-51)))) $) NIL (|has| $ (-6 -4229)))) (-3856 (((-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (-1 (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (-2 (|:| -2526 (-1083)) (|:| -3043 (-51)))) $ (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (-2 (|:| -2526 (-1083)) (|:| -3043 (-51)))) NIL (-12 (|has| $ (-6 -4229)) (|has| (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (-1012)))) (((-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (-1 (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (-2 (|:| -2526 (-1083)) (|:| -3043 (-51)))) $ (-2 (|:| -2526 (-1083)) (|:| -3043 (-51)))) NIL (|has| $ (-6 -4229))) (((-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (-1 (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (-2 (|:| -2526 (-1083)) (|:| -3043 (-51)))) $) NIL (|has| $ (-6 -4229)))) (-3846 (((-51) $ (-1083) (-51)) NIL (|has| $ (-6 -4230)))) (-3623 (((-51) $ (-1083)) NIL)) (-3828 (((-586 (-2 (|:| -2526 (-1083)) (|:| -3043 (-51)))) $) NIL (|has| $ (-6 -4229))) (((-586 (-51)) $) NIL (|has| $ (-6 -4229)))) (-3027 (((-108) $ (-706)) NIL)) (-2567 (((-1083) $) NIL (|has| (-1083) (-783)))) (-3702 (((-586 (-2 (|:| -2526 (-1083)) (|:| -3043 (-51)))) $) NIL (|has| $ (-6 -4229))) (((-586 (-51)) $) NIL (|has| $ (-6 -4229)))) (-2422 (((-108) (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (-1012)))) (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-51) (-1012))))) (-1752 (((-1083) $) NIL (|has| (-1083) (-783)))) (-3830 (($ (-1 (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (-2 (|:| -2526 (-1083)) (|:| -3043 (-51)))) $) NIL (|has| $ (-6 -4230))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4230)))) (-1389 (($ (-1 (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (-2 (|:| -2526 (-1083)) (|:| -3043 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-1390 (((-108) $ (-706)) NIL)) (-1239 (((-1066) $) NIL (-3700 (|has| (-51) (-1012)) (|has| (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (-1012))))) (-2960 (((-586 (-1083)) $) 34)) (-1612 (((-108) (-1083) $) NIL)) (-3351 (((-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) $) NIL)) (-3618 (($ (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) $) NIL)) (-3622 (((-586 (-1083)) $) NIL)) (-2603 (((-108) (-1083) $) NIL)) (-4142 (((-1030) $) NIL (-3700 (|has| (-51) (-1012)) (|has| (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (-1012))))) (-2293 (((-51) $) NIL (|has| (-1083) (-783)))) (-2985 (((-3 (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) "failed") (-1 (-108) (-2 (|:| -2526 (-1083)) (|:| -3043 (-51)))) $) NIL)) (-2936 (($ $ (-51)) NIL (|has| $ (-6 -4230)))) (-3345 (((-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) $) NIL)) (-4155 (((-108) (-1 (-108) (-2 (|:| -2526 (-1083)) (|:| -3043 (-51)))) $) NIL (|has| $ (-6 -4229))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 (-2 (|:| -2526 (-1083)) (|:| -3043 (-51)))))) NIL (-12 (|has| (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (-283 (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))))) (|has| (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (-1012)))) (($ $ (-268 (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))))) NIL (-12 (|has| (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (-283 (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))))) (|has| (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (-1012)))) (($ $ (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (-2 (|:| -2526 (-1083)) (|:| -3043 (-51)))) NIL (-12 (|has| (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (-283 (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))))) (|has| (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (-1012)))) (($ $ (-586 (-2 (|:| -2526 (-1083)) (|:| -3043 (-51)))) (-586 (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))))) NIL (-12 (|has| (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (-283 (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))))) (|has| (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (-1012)))) (($ $ (-586 (-51)) (-586 (-51))) NIL (-12 (|has| (-51) (-283 (-51))) (|has| (-51) (-1012)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-283 (-51))) (|has| (-51) (-1012)))) (($ $ (-268 (-51))) NIL (-12 (|has| (-51) (-283 (-51))) (|has| (-51) (-1012)))) (($ $ (-586 (-268 (-51)))) NIL (-12 (|has| (-51) (-283 (-51))) (|has| (-51) (-1012))))) (-2533 (((-108) $ $) NIL)) (-2094 (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-51) (-1012))))) (-1523 (((-586 (-51)) $) NIL)) (-4018 (((-108) $) NIL)) (-2238 (($) NIL)) (-2543 (((-51) $ (-1083)) 35) (((-51) $ (-1083) (-51)) NIL)) (-1645 (($) NIL) (($ (-586 (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))))) NIL)) (-4159 (((-706) (-1 (-108) (-2 (|:| -2526 (-1083)) (|:| -3043 (-51)))) $) NIL (|has| $ (-6 -4229))) (((-706) (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (-1012)))) (((-706) (-51) $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-51) (-1012)))) (((-706) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4229)))) (-2403 (($ $) NIL)) (-1429 (((-496) $) NIL (|has| (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (-561 (-496))))) (-2200 (($ (-586 (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))))) NIL)) (-2188 (((-791) $) 37 (-3700 (|has| (-51) (-560 (-791))) (|has| (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (-560 (-791)))))) (-1898 (($ (-586 (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))))) NIL)) (-1662 (((-108) (-1 (-108) (-2 (|:| -2526 (-1083)) (|:| -3043 (-51)))) $) NIL (|has| $ (-6 -4229))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4229)))) (-1530 (((-108) $ $) NIL (-3700 (|has| (-51) (-1012)) (|has| (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (-1012))))) (-3474 (((-706) $) NIL (|has| $ (-6 -4229)))))
-(((-958) (-13 (-1095 (-1083) (-51)) (-10 -7 (-15 -2598 ((-108) (-108))) (-15 -4070 ((-108) (-108))) (-6 -4229)))) (T -958))
-((-2598 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-958)))) (-4070 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-958)))))
-(-13 (-1095 (-1083) (-51)) (-10 -7 (-15 -2598 ((-108) (-108))) (-15 -4070 ((-108) (-108))) (-6 -4229)))
-((-1482 ((|#2| $) 10)))
-(((-959 |#1| |#2|) (-10 -8 (-15 -1482 (|#2| |#1|))) (-960 |#2|) (-1118)) (T -959))
-NIL
-(-10 -8 (-15 -1482 (|#2| |#1|)))
-((-1296 (((-3 |#1| "failed") $) 7)) (-1482 ((|#1| $) 8)) (-2188 (($ |#1|) 6)))
-(((-960 |#1|) (-1195) (-1118)) (T -960))
-((-1482 (*1 *2 *1) (-12 (-4 *1 (-960 *2)) (-4 *2 (-1118)))) (-1296 (*1 *2 *1) (|partial| -12 (-4 *1 (-960 *2)) (-4 *2 (-1118)))) (-2188 (*1 *1 *2) (-12 (-4 *1 (-960 *2)) (-4 *2 (-1118)))))
-(-13 (-10 -8 (-15 -2188 ($ |t#1|)) (-15 -1296 ((-3 |t#1| "failed") $)) (-15 -1482 (|t#1| $))))
-((-3205 (((-586 (-586 (-268 (-380 (-880 |#2|))))) (-586 (-880 |#2|)) (-586 (-1083))) 35)))
-(((-961 |#1| |#2|) (-10 -7 (-15 -3205 ((-586 (-586 (-268 (-380 (-880 |#2|))))) (-586 (-880 |#2|)) (-586 (-1083))))) (-512) (-13 (-512) (-960 |#1|))) (T -961))
-((-3205 (*1 *2 *3 *4) (-12 (-5 *3 (-586 (-880 *6))) (-5 *4 (-586 (-1083))) (-4 *6 (-13 (-512) (-960 *5))) (-4 *5 (-512)) (-5 *2 (-586 (-586 (-268 (-380 (-880 *6)))))) (-5 *1 (-961 *5 *6)))))
-(-10 -7 (-15 -3205 ((-586 (-586 (-268 (-380 (-880 |#2|))))) (-586 (-880 |#2|)) (-586 (-1083)))))
-((-2217 (((-352)) 15)) (-1739 (((-1 (-352)) (-352) (-352)) 20)) (-1638 (((-1 (-352)) (-706)) 43)) (-3732 (((-352)) 34)) (-3655 (((-1 (-352)) (-352) (-352)) 35)) (-2248 (((-352)) 26)) (-3018 (((-1 (-352)) (-352)) 27)) (-1383 (((-352) (-706)) 38)) (-3122 (((-1 (-352)) (-706)) 39)) (-4045 (((-1 (-352)) (-706) (-706)) 42)) (-1815 (((-1 (-352)) (-706) (-706)) 40)))
-(((-962) (-10 -7 (-15 -2217 ((-352))) (-15 -3732 ((-352))) (-15 -2248 ((-352))) (-15 -1383 ((-352) (-706))) (-15 -1739 ((-1 (-352)) (-352) (-352))) (-15 -3655 ((-1 (-352)) (-352) (-352))) (-15 -3018 ((-1 (-352)) (-352))) (-15 -3122 ((-1 (-352)) (-706))) (-15 -1815 ((-1 (-352)) (-706) (-706))) (-15 -4045 ((-1 (-352)) (-706) (-706))) (-15 -1638 ((-1 (-352)) (-706))))) (T -962))
-((-1638 (*1 *2 *3) (-12 (-5 *3 (-706)) (-5 *2 (-1 (-352))) (-5 *1 (-962)))) (-4045 (*1 *2 *3 *3) (-12 (-5 *3 (-706)) (-5 *2 (-1 (-352))) (-5 *1 (-962)))) (-1815 (*1 *2 *3 *3) (-12 (-5 *3 (-706)) (-5 *2 (-1 (-352))) (-5 *1 (-962)))) (-3122 (*1 *2 *3) (-12 (-5 *3 (-706)) (-5 *2 (-1 (-352))) (-5 *1 (-962)))) (-3018 (*1 *2 *3) (-12 (-5 *2 (-1 (-352))) (-5 *1 (-962)) (-5 *3 (-352)))) (-3655 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-352))) (-5 *1 (-962)) (-5 *3 (-352)))) (-1739 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-352))) (-5 *1 (-962)) (-5 *3 (-352)))) (-1383 (*1 *2 *3) (-12 (-5 *3 (-706)) (-5 *2 (-352)) (-5 *1 (-962)))) (-2248 (*1 *2) (-12 (-5 *2 (-352)) (-5 *1 (-962)))) (-3732 (*1 *2) (-12 (-5 *2 (-352)) (-5 *1 (-962)))) (-2217 (*1 *2) (-12 (-5 *2 (-352)) (-5 *1 (-962)))))
-(-10 -7 (-15 -2217 ((-352))) (-15 -3732 ((-352))) (-15 -2248 ((-352))) (-15 -1383 ((-352) (-706))) (-15 -1739 ((-1 (-352)) (-352) (-352))) (-15 -3655 ((-1 (-352)) (-352) (-352))) (-15 -3018 ((-1 (-352)) (-352))) (-15 -3122 ((-1 (-352)) (-706))) (-15 -1815 ((-1 (-352)) (-706) (-706))) (-15 -4045 ((-1 (-352)) (-706) (-706))) (-15 -1638 ((-1 (-352)) (-706))))
-((-1916 (((-391 |#1|) |#1|) 31)))
-(((-963 |#1|) (-10 -7 (-15 -1916 ((-391 |#1|) |#1|))) (-1140 (-380 (-880 (-520))))) (T -963))
-((-1916 (*1 *2 *3) (-12 (-5 *2 (-391 *3)) (-5 *1 (-963 *3)) (-4 *3 (-1140 (-380 (-880 (-520))))))))
-(-10 -7 (-15 -1916 ((-391 |#1|) |#1|)))
-((-4011 (((-380 (-391 (-880 |#1|))) (-380 (-880 |#1|))) 14)))
-(((-964 |#1|) (-10 -7 (-15 -4011 ((-380 (-391 (-880 |#1|))) (-380 (-880 |#1|))))) (-281)) (T -964))
-((-4011 (*1 *2 *3) (-12 (-5 *3 (-380 (-880 *4))) (-4 *4 (-281)) (-5 *2 (-380 (-391 (-880 *4)))) (-5 *1 (-964 *4)))))
-(-10 -7 (-15 -4011 ((-380 (-391 (-880 |#1|))) (-380 (-880 |#1|)))))
-((-4081 (((-586 (-1083)) (-380 (-880 |#1|))) 15)) (-1278 (((-380 (-1079 (-380 (-880 |#1|)))) (-380 (-880 |#1|)) (-1083)) 22)) (-4065 (((-380 (-880 |#1|)) (-380 (-1079 (-380 (-880 |#1|)))) (-1083)) 24)) (-3186 (((-3 (-1083) "failed") (-380 (-880 |#1|))) 18)) (-2286 (((-380 (-880 |#1|)) (-380 (-880 |#1|)) (-586 (-268 (-380 (-880 |#1|))))) 29) (((-380 (-880 |#1|)) (-380 (-880 |#1|)) (-268 (-380 (-880 |#1|)))) 31) (((-380 (-880 |#1|)) (-380 (-880 |#1|)) (-586 (-1083)) (-586 (-380 (-880 |#1|)))) 26) (((-380 (-880 |#1|)) (-380 (-880 |#1|)) (-1083) (-380 (-880 |#1|))) 27)) (-2188 (((-380 (-880 |#1|)) |#1|) 11)))
-(((-965 |#1|) (-10 -7 (-15 -4081 ((-586 (-1083)) (-380 (-880 |#1|)))) (-15 -3186 ((-3 (-1083) "failed") (-380 (-880 |#1|)))) (-15 -1278 ((-380 (-1079 (-380 (-880 |#1|)))) (-380 (-880 |#1|)) (-1083))) (-15 -4065 ((-380 (-880 |#1|)) (-380 (-1079 (-380 (-880 |#1|)))) (-1083))) (-15 -2286 ((-380 (-880 |#1|)) (-380 (-880 |#1|)) (-1083) (-380 (-880 |#1|)))) (-15 -2286 ((-380 (-880 |#1|)) (-380 (-880 |#1|)) (-586 (-1083)) (-586 (-380 (-880 |#1|))))) (-15 -2286 ((-380 (-880 |#1|)) (-380 (-880 |#1|)) (-268 (-380 (-880 |#1|))))) (-15 -2286 ((-380 (-880 |#1|)) (-380 (-880 |#1|)) (-586 (-268 (-380 (-880 |#1|)))))) (-15 -2188 ((-380 (-880 |#1|)) |#1|))) (-512)) (T -965))
-((-2188 (*1 *2 *3) (-12 (-5 *2 (-380 (-880 *3))) (-5 *1 (-965 *3)) (-4 *3 (-512)))) (-2286 (*1 *2 *2 *3) (-12 (-5 *3 (-586 (-268 (-380 (-880 *4))))) (-5 *2 (-380 (-880 *4))) (-4 *4 (-512)) (-5 *1 (-965 *4)))) (-2286 (*1 *2 *2 *3) (-12 (-5 *3 (-268 (-380 (-880 *4)))) (-5 *2 (-380 (-880 *4))) (-4 *4 (-512)) (-5 *1 (-965 *4)))) (-2286 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-586 (-1083))) (-5 *4 (-586 (-380 (-880 *5)))) (-5 *2 (-380 (-880 *5))) (-4 *5 (-512)) (-5 *1 (-965 *5)))) (-2286 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-380 (-880 *4))) (-5 *3 (-1083)) (-4 *4 (-512)) (-5 *1 (-965 *4)))) (-4065 (*1 *2 *3 *4) (-12 (-5 *3 (-380 (-1079 (-380 (-880 *5))))) (-5 *4 (-1083)) (-5 *2 (-380 (-880 *5))) (-5 *1 (-965 *5)) (-4 *5 (-512)))) (-1278 (*1 *2 *3 *4) (-12 (-5 *4 (-1083)) (-4 *5 (-512)) (-5 *2 (-380 (-1079 (-380 (-880 *5))))) (-5 *1 (-965 *5)) (-5 *3 (-380 (-880 *5))))) (-3186 (*1 *2 *3) (|partial| -12 (-5 *3 (-380 (-880 *4))) (-4 *4 (-512)) (-5 *2 (-1083)) (-5 *1 (-965 *4)))) (-4081 (*1 *2 *3) (-12 (-5 *3 (-380 (-880 *4))) (-4 *4 (-512)) (-5 *2 (-586 (-1083))) (-5 *1 (-965 *4)))))
-(-10 -7 (-15 -4081 ((-586 (-1083)) (-380 (-880 |#1|)))) (-15 -3186 ((-3 (-1083) "failed") (-380 (-880 |#1|)))) (-15 -1278 ((-380 (-1079 (-380 (-880 |#1|)))) (-380 (-880 |#1|)) (-1083))) (-15 -4065 ((-380 (-880 |#1|)) (-380 (-1079 (-380 (-880 |#1|)))) (-1083))) (-15 -2286 ((-380 (-880 |#1|)) (-380 (-880 |#1|)) (-1083) (-380 (-880 |#1|)))) (-15 -2286 ((-380 (-880 |#1|)) (-380 (-880 |#1|)) (-586 (-1083)) (-586 (-380 (-880 |#1|))))) (-15 -2286 ((-380 (-880 |#1|)) (-380 (-880 |#1|)) (-268 (-380 (-880 |#1|))))) (-15 -2286 ((-380 (-880 |#1|)) (-380 (-880 |#1|)) (-586 (-268 (-380 (-880 |#1|)))))) (-15 -2188 ((-380 (-880 |#1|)) |#1|)))
-((-1414 (((-108) $ $) NIL)) (-3769 (((-586 (-2 (|:| -1649 $) (|:| -1543 (-586 (-715 |#1| (-793 |#2|)))))) (-586 (-715 |#1| (-793 |#2|)))) NIL)) (-3767 (((-586 $) (-586 (-715 |#1| (-793 |#2|)))) NIL) (((-586 $) (-586 (-715 |#1| (-793 |#2|))) (-108)) NIL) (((-586 $) (-586 (-715 |#1| (-793 |#2|))) (-108) (-108)) NIL)) (-4081 (((-586 (-793 |#2|)) $) NIL)) (-2373 (((-108) $) NIL)) (-1937 (((-108) $) NIL (|has| |#1| (-512)))) (-3804 (((-108) (-715 |#1| (-793 |#2|)) $) NIL) (((-108) $) NIL)) (-3954 (((-715 |#1| (-793 |#2|)) (-715 |#1| (-793 |#2|)) $) NIL)) (-3024 (((-586 (-2 (|:| |val| (-715 |#1| (-793 |#2|))) (|:| -1883 $))) (-715 |#1| (-793 |#2|)) $) NIL)) (-3210 (((-2 (|:| |under| $) (|:| -1626 $) (|:| |upper| $)) $ (-793 |#2|)) NIL)) (-2063 (((-108) $ (-706)) NIL)) (-1627 (($ (-1 (-108) (-715 |#1| (-793 |#2|))) $) NIL (|has| $ (-6 -4229))) (((-3 (-715 |#1| (-793 |#2|)) "failed") $ (-793 |#2|)) NIL)) (-3961 (($) NIL T CONST)) (-2215 (((-108) $) NIL (|has| |#1| (-512)))) (-3078 (((-108) $ $) NIL (|has| |#1| (-512)))) (-3675 (((-108) $ $) NIL (|has| |#1| (-512)))) (-2786 (((-108) $) NIL (|has| |#1| (-512)))) (-2589 (((-586 (-715 |#1| (-793 |#2|))) (-586 (-715 |#1| (-793 |#2|))) $ (-1 (-715 |#1| (-793 |#2|)) (-715 |#1| (-793 |#2|)) (-715 |#1| (-793 |#2|))) (-1 (-108) (-715 |#1| (-793 |#2|)) (-715 |#1| (-793 |#2|)))) NIL)) (-4167 (((-586 (-715 |#1| (-793 |#2|))) (-586 (-715 |#1| (-793 |#2|))) $) NIL (|has| |#1| (-512)))) (-3415 (((-586 (-715 |#1| (-793 |#2|))) (-586 (-715 |#1| (-793 |#2|))) $) NIL (|has| |#1| (-512)))) (-1296 (((-3 $ "failed") (-586 (-715 |#1| (-793 |#2|)))) NIL)) (-1482 (($ (-586 (-715 |#1| (-793 |#2|)))) NIL)) (-2305 (((-3 $ "failed") $) NIL)) (-1618 (((-715 |#1| (-793 |#2|)) (-715 |#1| (-793 |#2|)) $) NIL)) (-2331 (($ $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-715 |#1| (-793 |#2|)) (-1012))))) (-1421 (($ (-715 |#1| (-793 |#2|)) $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-715 |#1| (-793 |#2|)) (-1012)))) (($ (-1 (-108) (-715 |#1| (-793 |#2|))) $) NIL (|has| $ (-6 -4229)))) (-3753 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-715 |#1| (-793 |#2|))) (|:| |den| |#1|)) (-715 |#1| (-793 |#2|)) $) NIL (|has| |#1| (-512)))) (-3738 (((-108) (-715 |#1| (-793 |#2|)) $ (-1 (-108) (-715 |#1| (-793 |#2|)) (-715 |#1| (-793 |#2|)))) NIL)) (-2762 (((-715 |#1| (-793 |#2|)) (-715 |#1| (-793 |#2|)) $) NIL)) (-3856 (((-715 |#1| (-793 |#2|)) (-1 (-715 |#1| (-793 |#2|)) (-715 |#1| (-793 |#2|)) (-715 |#1| (-793 |#2|))) $ (-715 |#1| (-793 |#2|)) (-715 |#1| (-793 |#2|))) NIL (-12 (|has| $ (-6 -4229)) (|has| (-715 |#1| (-793 |#2|)) (-1012)))) (((-715 |#1| (-793 |#2|)) (-1 (-715 |#1| (-793 |#2|)) (-715 |#1| (-793 |#2|)) (-715 |#1| (-793 |#2|))) $ (-715 |#1| (-793 |#2|))) NIL (|has| $ (-6 -4229))) (((-715 |#1| (-793 |#2|)) (-1 (-715 |#1| (-793 |#2|)) (-715 |#1| (-793 |#2|)) (-715 |#1| (-793 |#2|))) $) NIL (|has| $ (-6 -4229))) (((-715 |#1| (-793 |#2|)) (-715 |#1| (-793 |#2|)) $ (-1 (-715 |#1| (-793 |#2|)) (-715 |#1| (-793 |#2|)) (-715 |#1| (-793 |#2|))) (-1 (-108) (-715 |#1| (-793 |#2|)) (-715 |#1| (-793 |#2|)))) NIL)) (-2025 (((-2 (|:| -1649 (-586 (-715 |#1| (-793 |#2|)))) (|:| -1543 (-586 (-715 |#1| (-793 |#2|))))) $) NIL)) (-2870 (((-108) (-715 |#1| (-793 |#2|)) $) NIL)) (-1276 (((-108) (-715 |#1| (-793 |#2|)) $) NIL)) (-1964 (((-108) (-715 |#1| (-793 |#2|)) $) NIL) (((-108) $) NIL)) (-3828 (((-586 (-715 |#1| (-793 |#2|))) $) NIL (|has| $ (-6 -4229)))) (-2311 (((-108) (-715 |#1| (-793 |#2|)) $) NIL) (((-108) $) NIL)) (-3871 (((-793 |#2|) $) NIL)) (-3027 (((-108) $ (-706)) NIL)) (-3702 (((-586 (-715 |#1| (-793 |#2|))) $) NIL (|has| $ (-6 -4229)))) (-2422 (((-108) (-715 |#1| (-793 |#2|)) $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-715 |#1| (-793 |#2|)) (-1012))))) (-3830 (($ (-1 (-715 |#1| (-793 |#2|)) (-715 |#1| (-793 |#2|))) $) NIL (|has| $ (-6 -4230)))) (-1389 (($ (-1 (-715 |#1| (-793 |#2|)) (-715 |#1| (-793 |#2|))) $) NIL)) (-2602 (((-586 (-793 |#2|)) $) NIL)) (-3394 (((-108) (-793 |#2|) $) NIL)) (-1390 (((-108) $ (-706)) NIL)) (-1239 (((-1066) $) NIL)) (-3797 (((-3 (-715 |#1| (-793 |#2|)) (-586 $)) (-715 |#1| (-793 |#2|)) (-715 |#1| (-793 |#2|)) $) NIL)) (-2170 (((-586 (-2 (|:| |val| (-715 |#1| (-793 |#2|))) (|:| -1883 $))) (-715 |#1| (-793 |#2|)) (-715 |#1| (-793 |#2|)) $) NIL)) (-1440 (((-3 (-715 |#1| (-793 |#2|)) "failed") $) NIL)) (-3674 (((-586 $) (-715 |#1| (-793 |#2|)) $) NIL)) (-3757 (((-3 (-108) (-586 $)) (-715 |#1| (-793 |#2|)) $) NIL)) (-2484 (((-586 (-2 (|:| |val| (-108)) (|:| -1883 $))) (-715 |#1| (-793 |#2|)) $) NIL) (((-108) (-715 |#1| (-793 |#2|)) $) NIL)) (-2077 (((-586 $) (-715 |#1| (-793 |#2|)) $) NIL) (((-586 $) (-586 (-715 |#1| (-793 |#2|))) $) NIL) (((-586 $) (-586 (-715 |#1| (-793 |#2|))) (-586 $)) NIL) (((-586 $) (-715 |#1| (-793 |#2|)) (-586 $)) NIL)) (-3709 (($ (-715 |#1| (-793 |#2|)) $) NIL) (($ (-586 (-715 |#1| (-793 |#2|))) $) NIL)) (-2623 (((-586 (-715 |#1| (-793 |#2|))) $) NIL)) (-2428 (((-108) (-715 |#1| (-793 |#2|)) $) NIL) (((-108) $) NIL)) (-2778 (((-715 |#1| (-793 |#2|)) (-715 |#1| (-793 |#2|)) $) NIL)) (-3444 (((-108) $ $) NIL)) (-2130 (((-2 (|:| |num| (-715 |#1| (-793 |#2|))) (|:| |den| |#1|)) (-715 |#1| (-793 |#2|)) $) NIL (|has| |#1| (-512)))) (-1322 (((-108) (-715 |#1| (-793 |#2|)) $) NIL) (((-108) $) NIL)) (-3499 (((-715 |#1| (-793 |#2|)) (-715 |#1| (-793 |#2|)) $) NIL)) (-4142 (((-1030) $) NIL)) (-2293 (((-3 (-715 |#1| (-793 |#2|)) "failed") $) NIL)) (-2985 (((-3 (-715 |#1| (-793 |#2|)) "failed") (-1 (-108) (-715 |#1| (-793 |#2|))) $) NIL)) (-2885 (((-3 $ "failed") $ (-715 |#1| (-793 |#2|))) NIL)) (-2116 (($ $ (-715 |#1| (-793 |#2|))) NIL) (((-586 $) (-715 |#1| (-793 |#2|)) $) NIL) (((-586 $) (-715 |#1| (-793 |#2|)) (-586 $)) NIL) (((-586 $) (-586 (-715 |#1| (-793 |#2|))) $) NIL) (((-586 $) (-586 (-715 |#1| (-793 |#2|))) (-586 $)) NIL)) (-4155 (((-108) (-1 (-108) (-715 |#1| (-793 |#2|))) $) NIL (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-715 |#1| (-793 |#2|))) (-586 (-715 |#1| (-793 |#2|)))) NIL (-12 (|has| (-715 |#1| (-793 |#2|)) (-283 (-715 |#1| (-793 |#2|)))) (|has| (-715 |#1| (-793 |#2|)) (-1012)))) (($ $ (-715 |#1| (-793 |#2|)) (-715 |#1| (-793 |#2|))) NIL (-12 (|has| (-715 |#1| (-793 |#2|)) (-283 (-715 |#1| (-793 |#2|)))) (|has| (-715 |#1| (-793 |#2|)) (-1012)))) (($ $ (-268 (-715 |#1| (-793 |#2|)))) NIL (-12 (|has| (-715 |#1| (-793 |#2|)) (-283 (-715 |#1| (-793 |#2|)))) (|has| (-715 |#1| (-793 |#2|)) (-1012)))) (($ $ (-586 (-268 (-715 |#1| (-793 |#2|))))) NIL (-12 (|has| (-715 |#1| (-793 |#2|)) (-283 (-715 |#1| (-793 |#2|)))) (|has| (-715 |#1| (-793 |#2|)) (-1012))))) (-2533 (((-108) $ $) NIL)) (-4018 (((-108) $) NIL)) (-2238 (($) NIL)) (-2528 (((-706) $) NIL)) (-4159 (((-706) (-715 |#1| (-793 |#2|)) $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-715 |#1| (-793 |#2|)) (-1012)))) (((-706) (-1 (-108) (-715 |#1| (-793 |#2|))) $) NIL (|has| $ (-6 -4229)))) (-2403 (($ $) NIL)) (-1429 (((-496) $) NIL (|has| (-715 |#1| (-793 |#2|)) (-561 (-496))))) (-2200 (($ (-586 (-715 |#1| (-793 |#2|)))) NIL)) (-3399 (($ $ (-793 |#2|)) NIL)) (-4067 (($ $ (-793 |#2|)) NIL)) (-3932 (($ $) NIL)) (-2513 (($ $ (-793 |#2|)) NIL)) (-2188 (((-791) $) NIL) (((-586 (-715 |#1| (-793 |#2|))) $) NIL)) (-3898 (((-706) $) NIL (|has| (-793 |#2|) (-341)))) (-1652 (((-3 (-2 (|:| |bas| $) (|:| -1353 (-586 (-715 |#1| (-793 |#2|))))) "failed") (-586 (-715 |#1| (-793 |#2|))) (-1 (-108) (-715 |#1| (-793 |#2|)) (-715 |#1| (-793 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1353 (-586 (-715 |#1| (-793 |#2|))))) "failed") (-586 (-715 |#1| (-793 |#2|))) (-1 (-108) (-715 |#1| (-793 |#2|))) (-1 (-108) (-715 |#1| (-793 |#2|)) (-715 |#1| (-793 |#2|)))) NIL)) (-3146 (((-108) $ (-1 (-108) (-715 |#1| (-793 |#2|)) (-586 (-715 |#1| (-793 |#2|))))) NIL)) (-3272 (((-586 $) (-715 |#1| (-793 |#2|)) $) NIL) (((-586 $) (-715 |#1| (-793 |#2|)) (-586 $)) NIL) (((-586 $) (-586 (-715 |#1| (-793 |#2|))) $) NIL) (((-586 $) (-586 (-715 |#1| (-793 |#2|))) (-586 $)) NIL)) (-1662 (((-108) (-1 (-108) (-715 |#1| (-793 |#2|))) $) NIL (|has| $ (-6 -4229)))) (-1600 (((-586 (-793 |#2|)) $) NIL)) (-3230 (((-108) (-715 |#1| (-793 |#2|)) $) NIL)) (-3718 (((-108) (-793 |#2|) $) NIL)) (-1530 (((-108) $ $) NIL)) (-3474 (((-706) $) NIL (|has| $ (-6 -4229)))))
-(((-966 |#1| |#2|) (-13 (-988 |#1| (-492 (-793 |#2|)) (-793 |#2|) (-715 |#1| (-793 |#2|))) (-10 -8 (-15 -3767 ((-586 $) (-586 (-715 |#1| (-793 |#2|))) (-108) (-108))))) (-424) (-586 (-1083))) (T -966))
-((-3767 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-586 (-715 *5 (-793 *6)))) (-5 *4 (-108)) (-4 *5 (-424)) (-14 *6 (-586 (-1083))) (-5 *2 (-586 (-966 *5 *6))) (-5 *1 (-966 *5 *6)))))
-(-13 (-988 |#1| (-492 (-793 |#2|)) (-793 |#2|) (-715 |#1| (-793 |#2|))) (-10 -8 (-15 -3767 ((-586 $) (-586 (-715 |#1| (-793 |#2|))) (-108) (-108)))))
-((-1739 (((-1 (-520)) (-1007 (-520))) 33)) (-3264 (((-520) (-520) (-520) (-520) (-520)) 30)) (-2444 (((-1 (-520)) |RationalNumber|) NIL)) (-1730 (((-1 (-520)) |RationalNumber|) NIL)) (-2586 (((-1 (-520)) (-520) |RationalNumber|) NIL)))
-(((-967) (-10 -7 (-15 -1739 ((-1 (-520)) (-1007 (-520)))) (-15 -2586 ((-1 (-520)) (-520) |RationalNumber|)) (-15 -2444 ((-1 (-520)) |RationalNumber|)) (-15 -1730 ((-1 (-520)) |RationalNumber|)) (-15 -3264 ((-520) (-520) (-520) (-520) (-520))))) (T -967))
-((-3264 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-520)) (-5 *1 (-967)))) (-1730 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-520))) (-5 *1 (-967)))) (-2444 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-520))) (-5 *1 (-967)))) (-2586 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-520))) (-5 *1 (-967)) (-5 *3 (-520)))) (-1739 (*1 *2 *3) (-12 (-5 *3 (-1007 (-520))) (-5 *2 (-1 (-520))) (-5 *1 (-967)))))
-(-10 -7 (-15 -1739 ((-1 (-520)) (-1007 (-520)))) (-15 -2586 ((-1 (-520)) (-520) |RationalNumber|)) (-15 -2444 ((-1 (-520)) |RationalNumber|)) (-15 -1730 ((-1 (-520)) |RationalNumber|)) (-15 -3264 ((-520) (-520) (-520) (-520) (-520))))
-((-2188 (((-791) $) NIL) (($ (-520)) 10)))
-(((-968 |#1|) (-10 -8 (-15 -2188 (|#1| (-520))) (-15 -2188 ((-791) |#1|))) (-969)) (T -968))
-NIL
-(-10 -8 (-15 -2188 (|#1| (-520))) (-15 -2188 ((-791) |#1|)))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-1917 (((-3 $ "failed") $ $) 19)) (-3961 (($) 17 T CONST)) (-1540 (((-3 $ "failed") $) 34)) (-1537 (((-108) $) 31)) (-1239 (((-1066) $) 9)) (-4142 (((-1030) $) 10)) (-2188 (((-791) $) 11) (($ (-520)) 28)) (-3251 (((-706)) 29)) (-3504 (($ $ (-849)) 26) (($ $ (-706)) 33)) (-3560 (($) 18 T CONST)) (-3570 (($) 30 T CONST)) (-1530 (((-108) $ $) 6)) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-706)) 32)) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ $ $) 24)))
-(((-969) (-1195)) (T -969))
-((-3251 (*1 *2) (-12 (-4 *1 (-969)) (-5 *2 (-706)))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-520)) (-4 *1 (-969)))))
-(-13 (-976) (-662) (-588 $) (-10 -8 (-15 -3251 ((-706))) (-15 -2188 ($ (-520))) (-6 -4226)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-560 (-791)) . T) ((-588 $) . T) ((-662) . T) ((-976) . T) ((-1024) . T) ((-1012) . T))
-((-1821 (((-380 (-880 |#2|)) (-586 |#2|) (-586 |#2|) (-706) (-706)) 45)))
-(((-970 |#1| |#2|) (-10 -7 (-15 -1821 ((-380 (-880 |#2|)) (-586 |#2|) (-586 |#2|) (-706) (-706)))) (-1083) (-336)) (T -970))
-((-1821 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-586 *6)) (-5 *4 (-706)) (-4 *6 (-336)) (-5 *2 (-380 (-880 *6))) (-5 *1 (-970 *5 *6)) (-14 *5 (-1083)))))
-(-10 -7 (-15 -1821 ((-380 (-880 |#2|)) (-586 |#2|) (-586 |#2|) (-706) (-706))))
-((-2340 (((-108) $) 28)) (-2878 (((-108) $) 16)) (-1409 (((-706) $) 13)) (-1420 (((-706) $) 14)) (-3149 (((-108) $) 26)) (-3669 (((-108) $) 30)))
-(((-971 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -1420 ((-706) |#1|)) (-15 -1409 ((-706) |#1|)) (-15 -3669 ((-108) |#1|)) (-15 -2340 ((-108) |#1|)) (-15 -3149 ((-108) |#1|)) (-15 -2878 ((-108) |#1|))) (-972 |#2| |#3| |#4| |#5| |#6|) (-706) (-706) (-969) (-214 |#3| |#4|) (-214 |#2| |#4|)) (T -971))
-NIL
-(-10 -8 (-15 -1420 ((-706) |#1|)) (-15 -1409 ((-706) |#1|)) (-15 -3669 ((-108) |#1|)) (-15 -2340 ((-108) |#1|)) (-15 -3149 ((-108) |#1|)) (-15 -2878 ((-108) |#1|)))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-2340 (((-108) $) 51)) (-1917 (((-3 $ "failed") $ $) 19)) (-2878 (((-108) $) 53)) (-2063 (((-108) $ (-706)) 61)) (-3961 (($) 17 T CONST)) (-2085 (($ $) 34 (|has| |#3| (-281)))) (-2120 ((|#4| $ (-520)) 39)) (-3160 (((-706) $) 33 (|has| |#3| (-512)))) (-3623 ((|#3| $ (-520) (-520)) 41)) (-3828 (((-586 |#3|) $) 68 (|has| $ (-6 -4229)))) (-2621 (((-706) $) 32 (|has| |#3| (-512)))) (-1408 (((-586 |#5|) $) 31 (|has| |#3| (-512)))) (-1409 (((-706) $) 45)) (-1420 (((-706) $) 44)) (-3027 (((-108) $ (-706)) 60)) (-2289 (((-520) $) 49)) (-1867 (((-520) $) 47)) (-3702 (((-586 |#3|) $) 69 (|has| $ (-6 -4229)))) (-2422 (((-108) |#3| $) 71 (-12 (|has| |#3| (-1012)) (|has| $ (-6 -4229))))) (-1888 (((-520) $) 48)) (-2982 (((-520) $) 46)) (-1364 (($ (-586 (-586 |#3|))) 54)) (-3830 (($ (-1 |#3| |#3|) $) 64 (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#3| |#3|) $) 63) (($ (-1 |#3| |#3| |#3|) $ $) 37)) (-3464 (((-586 (-586 |#3|)) $) 43)) (-1390 (((-108) $ (-706)) 59)) (-1239 (((-1066) $) 9)) (-4142 (((-1030) $) 10)) (-2230 (((-3 $ "failed") $ |#3|) 36 (|has| |#3| (-512)))) (-4155 (((-108) (-1 (-108) |#3|) $) 66 (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 |#3|) (-586 |#3|)) 75 (-12 (|has| |#3| (-283 |#3|)) (|has| |#3| (-1012)))) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-283 |#3|)) (|has| |#3| (-1012)))) (($ $ (-268 |#3|)) 73 (-12 (|has| |#3| (-283 |#3|)) (|has| |#3| (-1012)))) (($ $ (-586 (-268 |#3|))) 72 (-12 (|has| |#3| (-283 |#3|)) (|has| |#3| (-1012))))) (-2533 (((-108) $ $) 55)) (-4018 (((-108) $) 58)) (-2238 (($) 57)) (-2543 ((|#3| $ (-520) (-520)) 42) ((|#3| $ (-520) (-520) |#3|) 40)) (-3149 (((-108) $) 52)) (-4159 (((-706) |#3| $) 70 (-12 (|has| |#3| (-1012)) (|has| $ (-6 -4229)))) (((-706) (-1 (-108) |#3|) $) 67 (|has| $ (-6 -4229)))) (-2403 (($ $) 56)) (-2460 ((|#5| $ (-520)) 38)) (-2188 (((-791) $) 11)) (-1662 (((-108) (-1 (-108) |#3|) $) 65 (|has| $ (-6 -4229)))) (-3669 (((-108) $) 50)) (-3560 (($) 18 T CONST)) (-1530 (((-108) $ $) 6)) (-1619 (($ $ |#3|) 35 (|has| |#3| (-336)))) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ |#3| $) 23) (($ $ |#3|) 26)) (-3474 (((-706) $) 62 (|has| $ (-6 -4229)))))
-(((-972 |#1| |#2| |#3| |#4| |#5|) (-1195) (-706) (-706) (-969) (-214 |t#2| |t#3|) (-214 |t#1| |t#3|)) (T -972))
-((-1389 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-972 *3 *4 *5 *6 *7)) (-4 *5 (-969)) (-4 *6 (-214 *4 *5)) (-4 *7 (-214 *3 *5)))) (-1364 (*1 *1 *2) (-12 (-5 *2 (-586 (-586 *5))) (-4 *5 (-969)) (-4 *1 (-972 *3 *4 *5 *6 *7)) (-4 *6 (-214 *4 *5)) (-4 *7 (-214 *3 *5)))) (-2878 (*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *5 *6 *7)) (-4 *5 (-969)) (-4 *6 (-214 *4 *5)) (-4 *7 (-214 *3 *5)) (-5 *2 (-108)))) (-3149 (*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *5 *6 *7)) (-4 *5 (-969)) (-4 *6 (-214 *4 *5)) (-4 *7 (-214 *3 *5)) (-5 *2 (-108)))) (-2340 (*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *5 *6 *7)) (-4 *5 (-969)) (-4 *6 (-214 *4 *5)) (-4 *7 (-214 *3 *5)) (-5 *2 (-108)))) (-3669 (*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *5 *6 *7)) (-4 *5 (-969)) (-4 *6 (-214 *4 *5)) (-4 *7 (-214 *3 *5)) (-5 *2 (-108)))) (-2289 (*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *5 *6 *7)) (-4 *5 (-969)) (-4 *6 (-214 *4 *5)) (-4 *7 (-214 *3 *5)) (-5 *2 (-520)))) (-1888 (*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *5 *6 *7)) (-4 *5 (-969)) (-4 *6 (-214 *4 *5)) (-4 *7 (-214 *3 *5)) (-5 *2 (-520)))) (-1867 (*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *5 *6 *7)) (-4 *5 (-969)) (-4 *6 (-214 *4 *5)) (-4 *7 (-214 *3 *5)) (-5 *2 (-520)))) (-2982 (*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *5 *6 *7)) (-4 *5 (-969)) (-4 *6 (-214 *4 *5)) (-4 *7 (-214 *3 *5)) (-5 *2 (-520)))) (-1409 (*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *5 *6 *7)) (-4 *5 (-969)) (-4 *6 (-214 *4 *5)) (-4 *7 (-214 *3 *5)) (-5 *2 (-706)))) (-1420 (*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *5 *6 *7)) (-4 *5 (-969)) (-4 *6 (-214 *4 *5)) (-4 *7 (-214 *3 *5)) (-5 *2 (-706)))) (-3464 (*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *5 *6 *7)) (-4 *5 (-969)) (-4 *6 (-214 *4 *5)) (-4 *7 (-214 *3 *5)) (-5 *2 (-586 (-586 *5))))) (-2543 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-520)) (-4 *1 (-972 *4 *5 *2 *6 *7)) (-4 *6 (-214 *5 *2)) (-4 *7 (-214 *4 *2)) (-4 *2 (-969)))) (-3623 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-520)) (-4 *1 (-972 *4 *5 *2 *6 *7)) (-4 *6 (-214 *5 *2)) (-4 *7 (-214 *4 *2)) (-4 *2 (-969)))) (-2543 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-520)) (-4 *1 (-972 *4 *5 *2 *6 *7)) (-4 *2 (-969)) (-4 *6 (-214 *5 *2)) (-4 *7 (-214 *4 *2)))) (-2120 (*1 *2 *1 *3) (-12 (-5 *3 (-520)) (-4 *1 (-972 *4 *5 *6 *2 *7)) (-4 *6 (-969)) (-4 *7 (-214 *4 *6)) (-4 *2 (-214 *5 *6)))) (-2460 (*1 *2 *1 *3) (-12 (-5 *3 (-520)) (-4 *1 (-972 *4 *5 *6 *7 *2)) (-4 *6 (-969)) (-4 *7 (-214 *5 *6)) (-4 *2 (-214 *4 *6)))) (-1389 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-972 *3 *4 *5 *6 *7)) (-4 *5 (-969)) (-4 *6 (-214 *4 *5)) (-4 *7 (-214 *3 *5)))) (-2230 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-972 *3 *4 *2 *5 *6)) (-4 *2 (-969)) (-4 *5 (-214 *4 *2)) (-4 *6 (-214 *3 *2)) (-4 *2 (-512)))) (-1619 (*1 *1 *1 *2) (-12 (-4 *1 (-972 *3 *4 *2 *5 *6)) (-4 *2 (-969)) (-4 *5 (-214 *4 *2)) (-4 *6 (-214 *3 *2)) (-4 *2 (-336)))) (-2085 (*1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4 *5 *6)) (-4 *4 (-969)) (-4 *5 (-214 *3 *4)) (-4 *6 (-214 *2 *4)) (-4 *4 (-281)))) (-3160 (*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *5 *6 *7)) (-4 *5 (-969)) (-4 *6 (-214 *4 *5)) (-4 *7 (-214 *3 *5)) (-4 *5 (-512)) (-5 *2 (-706)))) (-2621 (*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *5 *6 *7)) (-4 *5 (-969)) (-4 *6 (-214 *4 *5)) (-4 *7 (-214 *3 *5)) (-4 *5 (-512)) (-5 *2 (-706)))) (-1408 (*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *5 *6 *7)) (-4 *5 (-969)) (-4 *6 (-214 *4 *5)) (-4 *7 (-214 *3 *5)) (-4 *5 (-512)) (-5 *2 (-586 *7)))))
-(-13 (-107 |t#3| |t#3|) (-459 |t#3|) (-10 -8 (-6 -4229) (IF (|has| |t#3| (-157)) (-6 (-653 |t#3|)) |%noBranch|) (-15 -1364 ($ (-586 (-586 |t#3|)))) (-15 -2878 ((-108) $)) (-15 -3149 ((-108) $)) (-15 -2340 ((-108) $)) (-15 -3669 ((-108) $)) (-15 -2289 ((-520) $)) (-15 -1888 ((-520) $)) (-15 -1867 ((-520) $)) (-15 -2982 ((-520) $)) (-15 -1409 ((-706) $)) (-15 -1420 ((-706) $)) (-15 -3464 ((-586 (-586 |t#3|)) $)) (-15 -2543 (|t#3| $ (-520) (-520))) (-15 -3623 (|t#3| $ (-520) (-520))) (-15 -2543 (|t#3| $ (-520) (-520) |t#3|)) (-15 -2120 (|t#4| $ (-520))) (-15 -2460 (|t#5| $ (-520))) (-15 -1389 ($ (-1 |t#3| |t#3|) $)) (-15 -1389 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-512)) (-15 -2230 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-336)) (-15 -1619 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-281)) (-15 -2085 ($ $)) |%noBranch|) (IF (|has| |t#3| (-512)) (PROGN (-15 -3160 ((-706) $)) (-15 -2621 ((-706) $)) (-15 -1408 ((-586 |t#5|) $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-33) . T) ((-97) . T) ((-107 |#3| |#3|) . T) ((-124) . T) ((-560 (-791)) . T) ((-283 |#3|) -12 (|has| |#3| (-283 |#3|)) (|has| |#3| (-1012))) ((-459 |#3|) . T) ((-481 |#3| |#3|) -12 (|has| |#3| (-283 |#3|)) (|has| |#3| (-1012))) ((-588 |#3|) . T) ((-653 |#3|) |has| |#3| (-157)) ((-975 |#3|) . T) ((-1012) . T) ((-1118) . T))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-2340 (((-108) $) NIL)) (-1917 (((-3 $ "failed") $ $) NIL)) (-2878 (((-108) $) NIL)) (-2063 (((-108) $ (-706)) NIL)) (-3961 (($) NIL T CONST)) (-2085 (($ $) 40 (|has| |#3| (-281)))) (-2120 (((-216 |#2| |#3|) $ (-520)) 29)) (-2121 (($ (-626 |#3|)) 38)) (-3160 (((-706) $) 42 (|has| |#3| (-512)))) (-3623 ((|#3| $ (-520) (-520)) NIL)) (-3828 (((-586 |#3|) $) NIL (|has| $ (-6 -4229)))) (-2621 (((-706) $) 44 (|has| |#3| (-512)))) (-1408 (((-586 (-216 |#1| |#3|)) $) 48 (|has| |#3| (-512)))) (-1409 (((-706) $) NIL)) (-1420 (((-706) $) NIL)) (-3027 (((-108) $ (-706)) NIL)) (-2289 (((-520) $) NIL)) (-1867 (((-520) $) NIL)) (-3702 (((-586 |#3|) $) NIL (|has| $ (-6 -4229)))) (-2422 (((-108) |#3| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#3| (-1012))))) (-1888 (((-520) $) NIL)) (-2982 (((-520) $) NIL)) (-1364 (($ (-586 (-586 |#3|))) 24)) (-3830 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-3464 (((-586 (-586 |#3|)) $) NIL)) (-1390 (((-108) $ (-706)) NIL)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2230 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-512)))) (-4155 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 |#3|) (-586 |#3|)) NIL (-12 (|has| |#3| (-283 |#3|)) (|has| |#3| (-1012)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-283 |#3|)) (|has| |#3| (-1012)))) (($ $ (-268 |#3|)) NIL (-12 (|has| |#3| (-283 |#3|)) (|has| |#3| (-1012)))) (($ $ (-586 (-268 |#3|))) NIL (-12 (|has| |#3| (-283 |#3|)) (|has| |#3| (-1012))))) (-2533 (((-108) $ $) NIL)) (-4018 (((-108) $) NIL)) (-2238 (($) NIL)) (-2543 ((|#3| $ (-520) (-520)) NIL) ((|#3| $ (-520) (-520) |#3|) NIL)) (-1556 (((-126)) 51 (|has| |#3| (-336)))) (-3149 (((-108) $) NIL)) (-4159 (((-706) |#3| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#3| (-1012)))) (((-706) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4229)))) (-2403 (($ $) NIL)) (-1429 (((-496) $) 60 (|has| |#3| (-561 (-496))))) (-2460 (((-216 |#1| |#3|) $ (-520)) 33)) (-2188 (((-791) $) 16) (((-626 |#3|) $) 35)) (-1662 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4229)))) (-3669 (((-108) $) NIL)) (-3560 (($) 13 T CONST)) (-1530 (((-108) $ $) NIL)) (-1619 (($ $ |#3|) NIL (|has| |#3| (-336)))) (-1611 (($ $) NIL) (($ $ $) NIL)) (-1601 (($ $ $) NIL)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-3474 (((-706) $) NIL (|has| $ (-6 -4229)))))
-(((-973 |#1| |#2| |#3|) (-13 (-972 |#1| |#2| |#3| (-216 |#2| |#3|) (-216 |#1| |#3|)) (-560 (-626 |#3|)) (-10 -8 (IF (|has| |#3| (-336)) (-6 (-1171 |#3|)) |%noBranch|) (IF (|has| |#3| (-561 (-496))) (-6 (-561 (-496))) |%noBranch|) (-15 -2121 ($ (-626 |#3|))) (-15 -2188 ((-626 |#3|) $)))) (-706) (-706) (-969)) (T -973))
-((-2188 (*1 *2 *1) (-12 (-5 *2 (-626 *5)) (-5 *1 (-973 *3 *4 *5)) (-14 *3 (-706)) (-14 *4 (-706)) (-4 *5 (-969)))) (-2121 (*1 *1 *2) (-12 (-5 *2 (-626 *5)) (-4 *5 (-969)) (-5 *1 (-973 *3 *4 *5)) (-14 *3 (-706)) (-14 *4 (-706)))))
-(-13 (-972 |#1| |#2| |#3| (-216 |#2| |#3|) (-216 |#1| |#3|)) (-560 (-626 |#3|)) (-10 -8 (IF (|has| |#3| (-336)) (-6 (-1171 |#3|)) |%noBranch|) (IF (|has| |#3| (-561 (-496))) (-6 (-561 (-496))) |%noBranch|) (-15 -2121 ($ (-626 |#3|))) (-15 -2188 ((-626 |#3|) $))))
-((-3856 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 34)) (-1389 ((|#10| (-1 |#7| |#3|) |#6|) 32)))
-(((-974 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -1389 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3856 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-706) (-706) (-969) (-214 |#2| |#3|) (-214 |#1| |#3|) (-972 |#1| |#2| |#3| |#4| |#5|) (-969) (-214 |#2| |#7|) (-214 |#1| |#7|) (-972 |#1| |#2| |#7| |#8| |#9|)) (T -974))
-((-3856 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-969)) (-4 *2 (-969)) (-14 *5 (-706)) (-14 *6 (-706)) (-4 *8 (-214 *6 *7)) (-4 *9 (-214 *5 *7)) (-4 *10 (-214 *6 *2)) (-4 *11 (-214 *5 *2)) (-5 *1 (-974 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-972 *5 *6 *7 *8 *9)) (-4 *12 (-972 *5 *6 *2 *10 *11)))) (-1389 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-969)) (-4 *10 (-969)) (-14 *5 (-706)) (-14 *6 (-706)) (-4 *8 (-214 *6 *7)) (-4 *9 (-214 *5 *7)) (-4 *2 (-972 *5 *6 *10 *11 *12)) (-5 *1 (-974 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-972 *5 *6 *7 *8 *9)) (-4 *11 (-214 *6 *10)) (-4 *12 (-214 *5 *10)))))
-(-10 -7 (-15 -1389 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3856 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|)))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-1917 (((-3 $ "failed") $ $) 19)) (-3961 (($) 17 T CONST)) (-1239 (((-1066) $) 9)) (-4142 (((-1030) $) 10)) (-2188 (((-791) $) 11)) (-3560 (($) 18 T CONST)) (-1530 (((-108) $ $) 6)) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ $ |#1|) 23)))
-(((-975 |#1|) (-1195) (-976)) (T -975))
-((* (*1 *1 *1 *2) (-12 (-4 *1 (-975 *2)) (-4 *2 (-976)))))
+((-2337 (($ $ (-1006 $)) 7) (($ $ (-1084)) 6)))
+(((-887) (-1196)) (T -887))
+((-2337 (*1 *1 *1 *2) (-12 (-5 *2 (-1006 *1)) (-4 *1 (-887)))) (-2337 (*1 *1 *1 *2) (-12 (-4 *1 (-887)) (-5 *2 (-1084)))))
+(-13 (-10 -8 (-15 -2337 ($ $ (-1084))) (-15 -2337 ($ $ (-1006 $)))))
+((-2103 (((-2 (|:| -2973 (-587 (-521))) (|:| |poly| (-587 (-1080 |#1|))) (|:| |prim| (-1080 |#1|))) (-587 (-881 |#1|)) (-587 (-1084)) (-1084)) 23) (((-2 (|:| -2973 (-587 (-521))) (|:| |poly| (-587 (-1080 |#1|))) (|:| |prim| (-1080 |#1|))) (-587 (-881 |#1|)) (-587 (-1084))) 24) (((-2 (|:| |coef1| (-521)) (|:| |coef2| (-521)) (|:| |prim| (-1080 |#1|))) (-881 |#1|) (-1084) (-881 |#1|) (-1084)) 41)))
+(((-888 |#1|) (-10 -7 (-15 -2103 ((-2 (|:| |coef1| (-521)) (|:| |coef2| (-521)) (|:| |prim| (-1080 |#1|))) (-881 |#1|) (-1084) (-881 |#1|) (-1084))) (-15 -2103 ((-2 (|:| -2973 (-587 (-521))) (|:| |poly| (-587 (-1080 |#1|))) (|:| |prim| (-1080 |#1|))) (-587 (-881 |#1|)) (-587 (-1084)))) (-15 -2103 ((-2 (|:| -2973 (-587 (-521))) (|:| |poly| (-587 (-1080 |#1|))) (|:| |prim| (-1080 |#1|))) (-587 (-881 |#1|)) (-587 (-1084)) (-1084)))) (-13 (-337) (-135))) (T -888))
+((-2103 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-587 (-881 *6))) (-5 *4 (-587 (-1084))) (-5 *5 (-1084)) (-4 *6 (-13 (-337) (-135))) (-5 *2 (-2 (|:| -2973 (-587 (-521))) (|:| |poly| (-587 (-1080 *6))) (|:| |prim| (-1080 *6)))) (-5 *1 (-888 *6)))) (-2103 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-881 *5))) (-5 *4 (-587 (-1084))) (-4 *5 (-13 (-337) (-135))) (-5 *2 (-2 (|:| -2973 (-587 (-521))) (|:| |poly| (-587 (-1080 *5))) (|:| |prim| (-1080 *5)))) (-5 *1 (-888 *5)))) (-2103 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-881 *5)) (-5 *4 (-1084)) (-4 *5 (-13 (-337) (-135))) (-5 *2 (-2 (|:| |coef1| (-521)) (|:| |coef2| (-521)) (|:| |prim| (-1080 *5)))) (-5 *1 (-888 *5)))))
+(-10 -7 (-15 -2103 ((-2 (|:| |coef1| (-521)) (|:| |coef2| (-521)) (|:| |prim| (-1080 |#1|))) (-881 |#1|) (-1084) (-881 |#1|) (-1084))) (-15 -2103 ((-2 (|:| -2973 (-587 (-521))) (|:| |poly| (-587 (-1080 |#1|))) (|:| |prim| (-1080 |#1|))) (-587 (-881 |#1|)) (-587 (-1084)))) (-15 -2103 ((-2 (|:| -2973 (-587 (-521))) (|:| |poly| (-587 (-1080 |#1|))) (|:| |prim| (-1080 |#1|))) (-587 (-881 |#1|)) (-587 (-1084)) (-1084))))
+((-2119 (((-587 |#1|) |#1| |#1|) 42)) (-2710 (((-108) |#1|) 39)) (-1503 ((|#1| |#1|) 65)) (-2176 ((|#1| |#1|) 64)))
+(((-889 |#1|) (-10 -7 (-15 -2710 ((-108) |#1|)) (-15 -2176 (|#1| |#1|)) (-15 -1503 (|#1| |#1|)) (-15 -2119 ((-587 |#1|) |#1| |#1|))) (-506)) (T -889))
+((-2119 (*1 *2 *3 *3) (-12 (-5 *2 (-587 *3)) (-5 *1 (-889 *3)) (-4 *3 (-506)))) (-1503 (*1 *2 *2) (-12 (-5 *1 (-889 *2)) (-4 *2 (-506)))) (-2176 (*1 *2 *2) (-12 (-5 *1 (-889 *2)) (-4 *2 (-506)))) (-2710 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-889 *3)) (-4 *3 (-506)))))
+(-10 -7 (-15 -2710 ((-108) |#1|)) (-15 -2176 (|#1| |#1|)) (-15 -1503 (|#1| |#1|)) (-15 -2119 ((-587 |#1|) |#1| |#1|)))
+((-2052 (((-1170) (-792)) 9)))
+(((-890) (-10 -7 (-15 -2052 ((-1170) (-792))))) (T -890))
+((-2052 (*1 *2 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1170)) (-5 *1 (-890)))))
+(-10 -7 (-15 -2052 ((-1170) (-792))))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) 63 (|has| |#1| (-513)))) (-2559 (($ $) 64 (|has| |#1| (-513)))) (-1733 (((-108) $) NIL (|has| |#1| (-513)))) (-1232 (((-3 $ "failed") $ $) NIL)) (-2547 (($) NIL T CONST)) (-1297 (((-3 (-521) "failed") $) NIL (|has| |#1| (-961 (-521)))) (((-3 (-381 (-521)) "failed") $) NIL (|has| |#1| (-961 (-381 (-521))))) (((-3 |#1| "failed") $) 28)) (-1483 (((-521) $) NIL (|has| |#1| (-961 (-521)))) (((-381 (-521)) $) NIL (|has| |#1| (-961 (-381 (-521))))) ((|#1| $) NIL)) (-3152 (($ $) 24)) (-1257 (((-3 $ "failed") $) 35)) (-3666 (($ $) NIL (|has| |#1| (-425)))) (-3528 (($ $ |#1| |#2| $) 48)) (-3996 (((-108) $) NIL)) (-2678 (((-707) $) 16)) (-3649 (((-108) $) NIL)) (-4043 (($ |#1| |#2|) NIL)) (-3273 ((|#2| $) 19)) (-3285 (($ (-1 |#2| |#2|) $) NIL)) (-1390 (($ (-1 |#1| |#1|) $) NIL)) (-3125 (($ $) 23)) (-3135 ((|#1| $) 21)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-3105 (((-108) $) 40)) (-3115 ((|#1| $) NIL)) (-3590 (($ $ |#2| |#1| $) 72 (-12 (|has| |#2| (-124)) (|has| |#1| (-513))))) (-2230 (((-3 $ "failed") $ $) 74 (|has| |#1| (-513))) (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-513)))) (-1994 ((|#2| $) 17)) (-2403 ((|#1| $) NIL (|has| |#1| (-425)))) (-2189 (((-792) $) NIL) (($ (-521)) 39) (($ $) NIL (|has| |#1| (-513))) (($ |#1|) 34) (($ (-381 (-521))) NIL (-3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-961 (-381 (-521))))))) (-1259 (((-587 |#1|) $) NIL)) (-3800 ((|#1| $ |#2|) 31)) (-1671 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-3846 (((-707)) 15)) (-1547 (($ $ $ (-707)) 59 (|has| |#1| (-157)))) (-4210 (((-108) $ $) 69 (|has| |#1| (-513)))) (-3505 (($ $ (-850)) 55) (($ $ (-707)) 56)) (-3561 (($) 22 T CONST)) (-3572 (($) 12 T CONST)) (-1531 (((-108) $ $) 68)) (-1620 (($ $ |#1|) 75 (|has| |#1| (-337)))) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) 54) (($ $ (-707)) 52)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) 51) (($ $ |#1|) 50) (($ |#1| $) 49) (($ (-381 (-521)) $) NIL (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) NIL (|has| |#1| (-37 (-381 (-521)))))))
+(((-891 |#1| |#2|) (-13 (-300 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-513)) (IF (|has| |#2| (-124)) (-15 -3590 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4231)) (-6 -4231) |%noBranch|))) (-970) (-728)) (T -891))
+((-3590 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-891 *3 *2)) (-4 *2 (-124)) (-4 *3 (-513)) (-4 *3 (-970)) (-4 *2 (-728)))))
+(-13 (-300 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-513)) (IF (|has| |#2| (-124)) (-15 -3590 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4231)) (-6 -4231) |%noBranch|)))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL (-3703 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-729)) (|has| |#2| (-729)))))) (-2641 (($ $ $) 63 (-12 (|has| |#1| (-729)) (|has| |#2| (-729))))) (-1232 (((-3 $ "failed") $ $) 50 (-3703 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-729)) (|has| |#2| (-729)))))) (-1630 (((-707)) 34 (-12 (|has| |#1| (-342)) (|has| |#2| (-342))))) (-1326 ((|#2| $) 21)) (-1849 ((|#1| $) 20)) (-2547 (($) NIL (-3703 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-446)) (|has| |#2| (-446))) (-12 (|has| |#1| (-663)) (|has| |#2| (-663))) (-12 (|has| |#1| (-729)) (|has| |#2| (-729)))) CONST)) (-1257 (((-3 $ "failed") $) NIL (-3703 (-12 (|has| |#1| (-446)) (|has| |#2| (-446))) (-12 (|has| |#1| (-663)) (|has| |#2| (-663)))))) (-3250 (($) NIL (-12 (|has| |#1| (-342)) (|has| |#2| (-342))))) (-3996 (((-108) $) NIL (-3703 (-12 (|has| |#1| (-446)) (|has| |#2| (-446))) (-12 (|has| |#1| (-663)) (|has| |#2| (-663)))))) (-2810 (($ $ $) NIL (-3703 (-12 (|has| |#1| (-729)) (|has| |#2| (-729))) (-12 (|has| |#1| (-784)) (|has| |#2| (-784)))))) (-2446 (($ $ $) NIL (-3703 (-12 (|has| |#1| (-729)) (|has| |#2| (-729))) (-12 (|has| |#1| (-784)) (|has| |#2| (-784)))))) (-1230 (($ |#1| |#2|) 19)) (-2715 (((-850) $) NIL (-12 (|has| |#1| (-342)) (|has| |#2| (-342))))) (-3688 (((-1067) $) NIL)) (-3095 (($ $) 37 (-12 (|has| |#1| (-446)) (|has| |#2| (-446))))) (-2716 (($ (-850)) NIL (-12 (|has| |#1| (-342)) (|has| |#2| (-342))))) (-4147 (((-1031) $) NIL)) (-1223 (($ $ $) NIL (-12 (|has| |#1| (-446)) (|has| |#2| (-446))))) (-2674 (($ $ $) NIL (-12 (|has| |#1| (-446)) (|has| |#2| (-446))))) (-2189 (((-792) $) 14)) (-3505 (($ $ (-521)) NIL (-12 (|has| |#1| (-446)) (|has| |#2| (-446)))) (($ $ (-707)) NIL (-3703 (-12 (|has| |#1| (-446)) (|has| |#2| (-446))) (-12 (|has| |#1| (-663)) (|has| |#2| (-663))))) (($ $ (-850)) NIL (-3703 (-12 (|has| |#1| (-446)) (|has| |#2| (-446))) (-12 (|has| |#1| (-663)) (|has| |#2| (-663)))))) (-3561 (($) 40 (-3703 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-729)) (|has| |#2| (-729)))) CONST)) (-3572 (($) 24 (-3703 (-12 (|has| |#1| (-446)) (|has| |#2| (-446))) (-12 (|has| |#1| (-663)) (|has| |#2| (-663)))) CONST)) (-1574 (((-108) $ $) NIL (-3703 (-12 (|has| |#1| (-729)) (|has| |#2| (-729))) (-12 (|has| |#1| (-784)) (|has| |#2| (-784)))))) (-1558 (((-108) $ $) NIL (-3703 (-12 (|has| |#1| (-729)) (|has| |#2| (-729))) (-12 (|has| |#1| (-784)) (|has| |#2| (-784)))))) (-1531 (((-108) $ $) 18)) (-1566 (((-108) $ $) NIL (-3703 (-12 (|has| |#1| (-729)) (|has| |#2| (-729))) (-12 (|has| |#1| (-784)) (|has| |#2| (-784)))))) (-1549 (((-108) $ $) 66 (-3703 (-12 (|has| |#1| (-729)) (|has| |#2| (-729))) (-12 (|has| |#1| (-784)) (|has| |#2| (-784)))))) (-1620 (($ $ $) NIL (-12 (|has| |#1| (-446)) (|has| |#2| (-446))))) (-1612 (($ $ $) 56 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 53 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-1602 (($ $ $) 43 (-3703 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-729)) (|has| |#2| (-729)))))) (** (($ $ (-521)) NIL (-12 (|has| |#1| (-446)) (|has| |#2| (-446)))) (($ $ (-707)) 31 (-3703 (-12 (|has| |#1| (-446)) (|has| |#2| (-446))) (-12 (|has| |#1| (-663)) (|has| |#2| (-663))))) (($ $ (-850)) NIL (-3703 (-12 (|has| |#1| (-446)) (|has| |#2| (-446))) (-12 (|has| |#1| (-663)) (|has| |#2| (-663)))))) (* (($ (-521) $) 60 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-707) $) 46 (-3703 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-729)) (|has| |#2| (-729))))) (($ (-850) $) NIL (-3703 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-729)) (|has| |#2| (-729))))) (($ $ $) 27 (-3703 (-12 (|has| |#1| (-446)) (|has| |#2| (-446))) (-12 (|has| |#1| (-663)) (|has| |#2| (-663)))))))
+(((-892 |#1| |#2|) (-13 (-1013) (-10 -8 (IF (|has| |#1| (-342)) (IF (|has| |#2| (-342)) (-6 (-342)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-663)) (IF (|has| |#2| (-663)) (-6 (-663)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-124)) (IF (|has| |#2| (-124)) (-6 (-124)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-446)) (IF (|has| |#2| (-446)) (-6 (-446)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-729)) (IF (|has| |#2| (-729)) (-6 (-729)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-784)) (IF (|has| |#2| (-784)) (-6 (-784)) |%noBranch|) |%noBranch|) (-15 -1230 ($ |#1| |#2|)) (-15 -1849 (|#1| $)) (-15 -1326 (|#2| $)))) (-1013) (-1013)) (T -892))
+((-1230 (*1 *1 *2 *3) (-12 (-5 *1 (-892 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))) (-1849 (*1 *2 *1) (-12 (-4 *2 (-1013)) (-5 *1 (-892 *2 *3)) (-4 *3 (-1013)))) (-1326 (*1 *2 *1) (-12 (-4 *2 (-1013)) (-5 *1 (-892 *3 *2)) (-4 *3 (-1013)))))
+(-13 (-1013) (-10 -8 (IF (|has| |#1| (-342)) (IF (|has| |#2| (-342)) (-6 (-342)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-663)) (IF (|has| |#2| (-663)) (-6 (-663)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-124)) (IF (|has| |#2| (-124)) (-6 (-124)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-446)) (IF (|has| |#2| (-446)) (-6 (-446)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-729)) (IF (|has| |#2| (-729)) (-6 (-729)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-784)) (IF (|has| |#2| (-784)) (-6 (-784)) |%noBranch|) |%noBranch|) (-15 -1230 ($ |#1| |#2|)) (-15 -1849 (|#1| $)) (-15 -1326 (|#2| $))))
+((-4084 (((-1015 (-1084)) $) 19)) (-4158 (((-108) $) 26)) (-1611 (((-1084) $) 27)) (-3721 (((-108) $) 24)) (-1533 ((|#1| $) 25)) (-1391 (((-802 $ $) $) 34)) (-1429 (((-108) $) 33)) (-3994 (($ $ $) 12)) (-1907 (($ $) 29)) (-2570 (((-108) $) 28)) (-2400 (($ $) 10)) (-1663 (((-802 $ $) $) 36)) (-1770 (((-108) $) 35)) (-3334 (($ $ $) 13)) (-1569 (((-802 $ $) $) 38)) (-2744 (((-108) $) 37)) (-2630 (($ $ $) 14)) (-2189 (($ |#1|) 7) (($ (-1084)) 9) (((-792) $) 40 (|has| |#1| (-561 (-792))))) (-2750 (((-802 $ $) $) 32)) (-2331 (((-108) $) 30)) (-4009 (($ $ $) 11)))
+(((-893 |#1|) (-13 (-894) (-10 -8 (IF (|has| |#1| (-561 (-792))) (-6 (-561 (-792))) |%noBranch|) (-15 -2189 ($ |#1|)) (-15 -2189 ($ (-1084))) (-15 -4084 ((-1015 (-1084)) $)) (-15 -3721 ((-108) $)) (-15 -1533 (|#1| $)) (-15 -4158 ((-108) $)) (-15 -1611 ((-1084) $)) (-15 -2570 ((-108) $)) (-15 -1907 ($ $)) (-15 -2331 ((-108) $)) (-15 -2750 ((-802 $ $) $)) (-15 -1429 ((-108) $)) (-15 -1391 ((-802 $ $) $)) (-15 -1770 ((-108) $)) (-15 -1663 ((-802 $ $) $)) (-15 -2744 ((-108) $)) (-15 -1569 ((-802 $ $) $)))) (-894)) (T -893))
+((-2189 (*1 *1 *2) (-12 (-5 *1 (-893 *2)) (-4 *2 (-894)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-1084)) (-5 *1 (-893 *3)) (-4 *3 (-894)))) (-4084 (*1 *2 *1) (-12 (-5 *2 (-1015 (-1084))) (-5 *1 (-893 *3)) (-4 *3 (-894)))) (-3721 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-893 *3)) (-4 *3 (-894)))) (-1533 (*1 *2 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-894)))) (-4158 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-893 *3)) (-4 *3 (-894)))) (-1611 (*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-893 *3)) (-4 *3 (-894)))) (-2570 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-893 *3)) (-4 *3 (-894)))) (-1907 (*1 *1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-894)))) (-2331 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-893 *3)) (-4 *3 (-894)))) (-2750 (*1 *2 *1) (-12 (-5 *2 (-802 (-893 *3) (-893 *3))) (-5 *1 (-893 *3)) (-4 *3 (-894)))) (-1429 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-893 *3)) (-4 *3 (-894)))) (-1391 (*1 *2 *1) (-12 (-5 *2 (-802 (-893 *3) (-893 *3))) (-5 *1 (-893 *3)) (-4 *3 (-894)))) (-1770 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-893 *3)) (-4 *3 (-894)))) (-1663 (*1 *2 *1) (-12 (-5 *2 (-802 (-893 *3) (-893 *3))) (-5 *1 (-893 *3)) (-4 *3 (-894)))) (-2744 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-893 *3)) (-4 *3 (-894)))) (-1569 (*1 *2 *1) (-12 (-5 *2 (-802 (-893 *3) (-893 *3))) (-5 *1 (-893 *3)) (-4 *3 (-894)))))
+(-13 (-894) (-10 -8 (IF (|has| |#1| (-561 (-792))) (-6 (-561 (-792))) |%noBranch|) (-15 -2189 ($ |#1|)) (-15 -2189 ($ (-1084))) (-15 -4084 ((-1015 (-1084)) $)) (-15 -3721 ((-108) $)) (-15 -1533 (|#1| $)) (-15 -4158 ((-108) $)) (-15 -1611 ((-1084) $)) (-15 -2570 ((-108) $)) (-15 -1907 ($ $)) (-15 -2331 ((-108) $)) (-15 -2750 ((-802 $ $) $)) (-15 -1429 ((-108) $)) (-15 -1391 ((-802 $ $) $)) (-15 -1770 ((-108) $)) (-15 -1663 ((-802 $ $) $)) (-15 -2744 ((-108) $)) (-15 -1569 ((-802 $ $) $))))
+((-3994 (($ $ $) 8)) (-2400 (($ $) 6)) (-3334 (($ $ $) 9)) (-2630 (($ $ $) 10)) (-4009 (($ $ $) 7)))
+(((-894) (-1196)) (T -894))
+((-2630 (*1 *1 *1 *1) (-4 *1 (-894))) (-3334 (*1 *1 *1 *1) (-4 *1 (-894))) (-3994 (*1 *1 *1 *1) (-4 *1 (-894))) (-4009 (*1 *1 *1 *1) (-4 *1 (-894))) (-2400 (*1 *1 *1) (-4 *1 (-894))))
+(-13 (-10 -8 (-15 -2400 ($ $)) (-15 -4009 ($ $ $)) (-15 -3994 ($ $ $)) (-15 -3334 ($ $ $)) (-15 -2630 ($ $ $))))
+((-1415 (((-108) $ $) 19 (|has| |#1| (-1013)))) (-2978 (((-108) $ (-707)) 8)) (-2547 (($) 7 T CONST)) (-3831 (((-587 |#1|) $) 30 (|has| $ (-6 -4233)))) (-2139 (((-108) $ (-707)) 9)) (-3220 (($ $ $) 43)) (-1318 (($ $ $) 44)) (-3757 (((-587 |#1|) $) 29 (|has| $ (-6 -4233)))) (-2221 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-2446 ((|#1| $) 45)) (-3833 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#1| |#1|) $) 35)) (-3574 (((-108) $ (-707)) 10)) (-3688 (((-1067) $) 22 (|has| |#1| (-1013)))) (-2511 ((|#1| $) 39)) (-3373 (($ |#1| $) 40)) (-4147 (((-1031) $) 21 (|has| |#1| (-1013)))) (-2166 ((|#1| $) 41)) (-1789 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 |#1|))) 26 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) 25 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) 23 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-2488 (((-108) $ $) 14)) (-3462 (((-108) $) 11)) (-4024 (($) 12)) (-4163 (((-707) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4233))) (((-707) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-2404 (($ $) 13)) (-2189 (((-792) $) 18 (|has| |#1| (-561 (-792))))) (-4091 (($ (-587 |#1|)) 42)) (-3049 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4233)))) (-1531 (((-108) $ $) 20 (|has| |#1| (-1013)))) (-3475 (((-707) $) 6 (|has| $ (-6 -4233)))))
+(((-895 |#1|) (-1196) (-784)) (T -895))
+((-2446 (*1 *2 *1) (-12 (-4 *1 (-895 *2)) (-4 *2 (-784)))) (-1318 (*1 *1 *1 *1) (-12 (-4 *1 (-895 *2)) (-4 *2 (-784)))) (-3220 (*1 *1 *1 *1) (-12 (-4 *1 (-895 *2)) (-4 *2 (-784)))))
+(-13 (-102 |t#1|) (-10 -8 (-6 -4233) (-15 -2446 (|t#1| $)) (-15 -1318 ($ $ $)) (-15 -3220 ($ $ $))))
+(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1013)) ((-561 (-792)) -3703 (|has| |#1| (-1013)) (|has| |#1| (-561 (-792)))) ((-284 |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-460 |#1|) . T) ((-482 |#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-1013) |has| |#1| (-1013)) ((-1119) . T))
+((-1294 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2258 |#2|)) |#2| |#2|) 85)) (-3570 ((|#2| |#2| |#2|) 83)) (-3613 (((-2 (|:| |coef2| |#2|) (|:| -2258 |#2|)) |#2| |#2|) 87)) (-3706 (((-2 (|:| |coef1| |#2|) (|:| -2258 |#2|)) |#2| |#2|) 89)) (-2687 (((-2 (|:| |coef2| |#2|) (|:| -4034 |#1|)) |#2| |#2|) 107 (|has| |#1| (-425)))) (-3815 (((-2 (|:| |coef2| |#2|) (|:| -2114 |#1|)) |#2| |#2|) 46)) (-3939 (((-2 (|:| |coef2| |#2|) (|:| -2114 |#1|)) |#2| |#2|) 64)) (-3399 (((-2 (|:| |coef1| |#2|) (|:| -2114 |#1|)) |#2| |#2|) 66)) (-2988 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 78)) (-4026 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-707)) 71)) (-2004 (((-2 (|:| |coef2| |#2|) (|:| -4010 |#1|)) |#2|) 97)) (-3950 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-707)) 74)) (-1937 (((-587 (-707)) |#2| |#2|) 82)) (-2089 ((|#1| |#2| |#2|) 42)) (-1985 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4034 |#1|)) |#2| |#2|) 105 (|has| |#1| (-425)))) (-4034 ((|#1| |#2| |#2|) 103 (|has| |#1| (-425)))) (-1651 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2114 |#1|)) |#2| |#2|) 44)) (-3164 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2114 |#1|)) |#2| |#2|) 63)) (-2114 ((|#1| |#2| |#2|) 61)) (-2225 (((-2 (|:| -2973 |#1|) (|:| -3727 |#2|) (|:| -3820 |#2|)) |#2| |#2|) 35)) (-2938 ((|#2| |#2| |#2| |#2| |#1|) 53)) (-1398 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 76)) (-2031 ((|#2| |#2| |#2|) 75)) (-3284 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-707)) 69)) (-2449 ((|#2| |#2| |#2| (-707)) 67)) (-2258 ((|#2| |#2| |#2|) 111 (|has| |#1| (-425)))) (-2230 (((-1165 |#2|) (-1165 |#2|) |#1|) 21)) (-1830 (((-2 (|:| -3727 |#2|) (|:| -3820 |#2|)) |#2| |#2|) 39)) (-3564 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4010 |#1|)) |#2|) 95)) (-4010 ((|#1| |#2|) 92)) (-3511 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-707)) 73)) (-2588 ((|#2| |#2| |#2| (-707)) 72)) (-3527 (((-587 |#2|) |#2| |#2|) 80)) (-2739 ((|#2| |#2| |#1| |#1| (-707)) 50)) (-2388 ((|#1| |#1| |#1| (-707)) 49)) (* (((-1165 |#2|) |#1| (-1165 |#2|)) 16)))
+(((-896 |#1| |#2|) (-10 -7 (-15 -2114 (|#1| |#2| |#2|)) (-15 -3164 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2114 |#1|)) |#2| |#2|)) (-15 -3939 ((-2 (|:| |coef2| |#2|) (|:| -2114 |#1|)) |#2| |#2|)) (-15 -3399 ((-2 (|:| |coef1| |#2|) (|:| -2114 |#1|)) |#2| |#2|)) (-15 -2449 (|#2| |#2| |#2| (-707))) (-15 -3284 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-707))) (-15 -4026 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-707))) (-15 -2588 (|#2| |#2| |#2| (-707))) (-15 -3511 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-707))) (-15 -3950 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-707))) (-15 -2031 (|#2| |#2| |#2|)) (-15 -1398 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2988 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3570 (|#2| |#2| |#2|)) (-15 -1294 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2258 |#2|)) |#2| |#2|)) (-15 -3613 ((-2 (|:| |coef2| |#2|) (|:| -2258 |#2|)) |#2| |#2|)) (-15 -3706 ((-2 (|:| |coef1| |#2|) (|:| -2258 |#2|)) |#2| |#2|)) (-15 -4010 (|#1| |#2|)) (-15 -3564 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4010 |#1|)) |#2|)) (-15 -2004 ((-2 (|:| |coef2| |#2|) (|:| -4010 |#1|)) |#2|)) (-15 -3527 ((-587 |#2|) |#2| |#2|)) (-15 -1937 ((-587 (-707)) |#2| |#2|)) (IF (|has| |#1| (-425)) (PROGN (-15 -4034 (|#1| |#2| |#2|)) (-15 -1985 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4034 |#1|)) |#2| |#2|)) (-15 -2687 ((-2 (|:| |coef2| |#2|) (|:| -4034 |#1|)) |#2| |#2|)) (-15 -2258 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1165 |#2|) |#1| (-1165 |#2|))) (-15 -2230 ((-1165 |#2|) (-1165 |#2|) |#1|)) (-15 -2225 ((-2 (|:| -2973 |#1|) (|:| -3727 |#2|) (|:| -3820 |#2|)) |#2| |#2|)) (-15 -1830 ((-2 (|:| -3727 |#2|) (|:| -3820 |#2|)) |#2| |#2|)) (-15 -2388 (|#1| |#1| |#1| (-707))) (-15 -2739 (|#2| |#2| |#1| |#1| (-707))) (-15 -2938 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2089 (|#1| |#2| |#2|)) (-15 -1651 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2114 |#1|)) |#2| |#2|)) (-15 -3815 ((-2 (|:| |coef2| |#2|) (|:| -2114 |#1|)) |#2| |#2|))) (-513) (-1141 |#1|)) (T -896))
+((-3815 (*1 *2 *3 *3) (-12 (-4 *4 (-513)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2114 *4))) (-5 *1 (-896 *4 *3)) (-4 *3 (-1141 *4)))) (-1651 (*1 *2 *3 *3) (-12 (-4 *4 (-513)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2114 *4))) (-5 *1 (-896 *4 *3)) (-4 *3 (-1141 *4)))) (-2089 (*1 *2 *3 *3) (-12 (-4 *2 (-513)) (-5 *1 (-896 *2 *3)) (-4 *3 (-1141 *2)))) (-2938 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-513)) (-5 *1 (-896 *3 *2)) (-4 *2 (-1141 *3)))) (-2739 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-707)) (-4 *3 (-513)) (-5 *1 (-896 *3 *2)) (-4 *2 (-1141 *3)))) (-2388 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-707)) (-4 *2 (-513)) (-5 *1 (-896 *2 *4)) (-4 *4 (-1141 *2)))) (-1830 (*1 *2 *3 *3) (-12 (-4 *4 (-513)) (-5 *2 (-2 (|:| -3727 *3) (|:| -3820 *3))) (-5 *1 (-896 *4 *3)) (-4 *3 (-1141 *4)))) (-2225 (*1 *2 *3 *3) (-12 (-4 *4 (-513)) (-5 *2 (-2 (|:| -2973 *4) (|:| -3727 *3) (|:| -3820 *3))) (-5 *1 (-896 *4 *3)) (-4 *3 (-1141 *4)))) (-2230 (*1 *2 *2 *3) (-12 (-5 *2 (-1165 *4)) (-4 *4 (-1141 *3)) (-4 *3 (-513)) (-5 *1 (-896 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1165 *4)) (-4 *4 (-1141 *3)) (-4 *3 (-513)) (-5 *1 (-896 *3 *4)))) (-2258 (*1 *2 *2 *2) (-12 (-4 *3 (-425)) (-4 *3 (-513)) (-5 *1 (-896 *3 *2)) (-4 *2 (-1141 *3)))) (-2687 (*1 *2 *3 *3) (-12 (-4 *4 (-425)) (-4 *4 (-513)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4034 *4))) (-5 *1 (-896 *4 *3)) (-4 *3 (-1141 *4)))) (-1985 (*1 *2 *3 *3) (-12 (-4 *4 (-425)) (-4 *4 (-513)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4034 *4))) (-5 *1 (-896 *4 *3)) (-4 *3 (-1141 *4)))) (-4034 (*1 *2 *3 *3) (-12 (-4 *2 (-513)) (-4 *2 (-425)) (-5 *1 (-896 *2 *3)) (-4 *3 (-1141 *2)))) (-1937 (*1 *2 *3 *3) (-12 (-4 *4 (-513)) (-5 *2 (-587 (-707))) (-5 *1 (-896 *4 *3)) (-4 *3 (-1141 *4)))) (-3527 (*1 *2 *3 *3) (-12 (-4 *4 (-513)) (-5 *2 (-587 *3)) (-5 *1 (-896 *4 *3)) (-4 *3 (-1141 *4)))) (-2004 (*1 *2 *3) (-12 (-4 *4 (-513)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4010 *4))) (-5 *1 (-896 *4 *3)) (-4 *3 (-1141 *4)))) (-3564 (*1 *2 *3) (-12 (-4 *4 (-513)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4010 *4))) (-5 *1 (-896 *4 *3)) (-4 *3 (-1141 *4)))) (-4010 (*1 *2 *3) (-12 (-4 *2 (-513)) (-5 *1 (-896 *2 *3)) (-4 *3 (-1141 *2)))) (-3706 (*1 *2 *3 *3) (-12 (-4 *4 (-513)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2258 *3))) (-5 *1 (-896 *4 *3)) (-4 *3 (-1141 *4)))) (-3613 (*1 *2 *3 *3) (-12 (-4 *4 (-513)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2258 *3))) (-5 *1 (-896 *4 *3)) (-4 *3 (-1141 *4)))) (-1294 (*1 *2 *3 *3) (-12 (-4 *4 (-513)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2258 *3))) (-5 *1 (-896 *4 *3)) (-4 *3 (-1141 *4)))) (-3570 (*1 *2 *2 *2) (-12 (-4 *3 (-513)) (-5 *1 (-896 *3 *2)) (-4 *2 (-1141 *3)))) (-2988 (*1 *2 *3 *3) (-12 (-4 *4 (-513)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-896 *4 *3)) (-4 *3 (-1141 *4)))) (-1398 (*1 *2 *3 *3) (-12 (-4 *4 (-513)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-896 *4 *3)) (-4 *3 (-1141 *4)))) (-2031 (*1 *2 *2 *2) (-12 (-4 *3 (-513)) (-5 *1 (-896 *3 *2)) (-4 *2 (-1141 *3)))) (-3950 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-707)) (-4 *5 (-513)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-896 *5 *3)) (-4 *3 (-1141 *5)))) (-3511 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-707)) (-4 *5 (-513)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-896 *5 *3)) (-4 *3 (-1141 *5)))) (-2588 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-707)) (-4 *4 (-513)) (-5 *1 (-896 *4 *2)) (-4 *2 (-1141 *4)))) (-4026 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-707)) (-4 *5 (-513)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-896 *5 *3)) (-4 *3 (-1141 *5)))) (-3284 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-707)) (-4 *5 (-513)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-896 *5 *3)) (-4 *3 (-1141 *5)))) (-2449 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-707)) (-4 *4 (-513)) (-5 *1 (-896 *4 *2)) (-4 *2 (-1141 *4)))) (-3399 (*1 *2 *3 *3) (-12 (-4 *4 (-513)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2114 *4))) (-5 *1 (-896 *4 *3)) (-4 *3 (-1141 *4)))) (-3939 (*1 *2 *3 *3) (-12 (-4 *4 (-513)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2114 *4))) (-5 *1 (-896 *4 *3)) (-4 *3 (-1141 *4)))) (-3164 (*1 *2 *3 *3) (-12 (-4 *4 (-513)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2114 *4))) (-5 *1 (-896 *4 *3)) (-4 *3 (-1141 *4)))) (-2114 (*1 *2 *3 *3) (-12 (-4 *2 (-513)) (-5 *1 (-896 *2 *3)) (-4 *3 (-1141 *2)))))
+(-10 -7 (-15 -2114 (|#1| |#2| |#2|)) (-15 -3164 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2114 |#1|)) |#2| |#2|)) (-15 -3939 ((-2 (|:| |coef2| |#2|) (|:| -2114 |#1|)) |#2| |#2|)) (-15 -3399 ((-2 (|:| |coef1| |#2|) (|:| -2114 |#1|)) |#2| |#2|)) (-15 -2449 (|#2| |#2| |#2| (-707))) (-15 -3284 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-707))) (-15 -4026 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-707))) (-15 -2588 (|#2| |#2| |#2| (-707))) (-15 -3511 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-707))) (-15 -3950 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-707))) (-15 -2031 (|#2| |#2| |#2|)) (-15 -1398 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2988 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3570 (|#2| |#2| |#2|)) (-15 -1294 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2258 |#2|)) |#2| |#2|)) (-15 -3613 ((-2 (|:| |coef2| |#2|) (|:| -2258 |#2|)) |#2| |#2|)) (-15 -3706 ((-2 (|:| |coef1| |#2|) (|:| -2258 |#2|)) |#2| |#2|)) (-15 -4010 (|#1| |#2|)) (-15 -3564 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4010 |#1|)) |#2|)) (-15 -2004 ((-2 (|:| |coef2| |#2|) (|:| -4010 |#1|)) |#2|)) (-15 -3527 ((-587 |#2|) |#2| |#2|)) (-15 -1937 ((-587 (-707)) |#2| |#2|)) (IF (|has| |#1| (-425)) (PROGN (-15 -4034 (|#1| |#2| |#2|)) (-15 -1985 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4034 |#1|)) |#2| |#2|)) (-15 -2687 ((-2 (|:| |coef2| |#2|) (|:| -4034 |#1|)) |#2| |#2|)) (-15 -2258 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1165 |#2|) |#1| (-1165 |#2|))) (-15 -2230 ((-1165 |#2|) (-1165 |#2|) |#1|)) (-15 -2225 ((-2 (|:| -2973 |#1|) (|:| -3727 |#2|) (|:| -3820 |#2|)) |#2| |#2|)) (-15 -1830 ((-2 (|:| -3727 |#2|) (|:| -3820 |#2|)) |#2| |#2|)) (-15 -2388 (|#1| |#1| |#1| (-707))) (-15 -2739 (|#2| |#2| |#1| |#1| (-707))) (-15 -2938 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2089 (|#1| |#2| |#2|)) (-15 -1651 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2114 |#1|)) |#2| |#2|)) (-15 -3815 ((-2 (|:| |coef2| |#2|) (|:| -2114 |#1|)) |#2| |#2|)))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-1232 (((-3 $ "failed") $ $) 27)) (-2547 (($) NIL T CONST)) (-1749 (((-587 (-587 (-521))) (-587 (-521))) 29)) (-1480 (((-521) $) 45)) (-1834 (($ (-587 (-521))) 17)) (-2810 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-1430 (((-587 (-521)) $) 11)) (-1223 (($ $) 32)) (-2189 (((-792) $) 43) (((-587 (-521)) $) 9)) (-3561 (($) 7 T CONST)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) 20)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 19)) (-1602 (($ $ $) 21)) (* (($ (-707) $) 25) (($ (-850) $) NIL)))
+(((-897) (-13 (-732) (-562 (-587 (-521))) (-10 -8 (-15 -1834 ($ (-587 (-521)))) (-15 -1749 ((-587 (-587 (-521))) (-587 (-521)))) (-15 -1480 ((-521) $)) (-15 -1223 ($ $)) (-15 -2189 ((-587 (-521)) $))))) (T -897))
+((-1834 (*1 *1 *2) (-12 (-5 *2 (-587 (-521))) (-5 *1 (-897)))) (-1749 (*1 *2 *3) (-12 (-5 *2 (-587 (-587 (-521)))) (-5 *1 (-897)) (-5 *3 (-587 (-521))))) (-1480 (*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-897)))) (-1223 (*1 *1 *1) (-5 *1 (-897))) (-2189 (*1 *2 *1) (-12 (-5 *2 (-587 (-521))) (-5 *1 (-897)))))
+(-13 (-732) (-562 (-587 (-521))) (-10 -8 (-15 -1834 ($ (-587 (-521)))) (-15 -1749 ((-587 (-587 (-521))) (-587 (-521)))) (-15 -1480 ((-521) $)) (-15 -1223 ($ $)) (-15 -2189 ((-587 (-521)) $))))
+((-1620 (($ $ |#2|) 30)) (-1612 (($ $) 22) (($ $ $) NIL)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) 15) (($ $ $) NIL) (($ $ |#2|) 20) (($ |#2| $) 19) (($ (-381 (-521)) $) 26) (($ $ (-381 (-521))) 28)))
+(((-898 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-381 (-521)))) (-15 * (|#1| (-381 (-521)) |#1|)) (-15 -1620 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-521) |#1|)) (-15 -1612 (|#1| |#1| |#1|)) (-15 -1612 (|#1| |#1|)) (-15 * (|#1| (-707) |#1|)) (-15 * (|#1| (-850) |#1|))) (-899 |#2| |#3| |#4|) (-970) (-728) (-784)) (T -898))
+NIL
+(-10 -8 (-15 * (|#1| |#1| (-381 (-521)))) (-15 * (|#1| (-381 (-521)) |#1|)) (-15 -1620 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-521) |#1|)) (-15 -1612 (|#1| |#1| |#1|)) (-15 -1612 (|#1| |#1|)) (-15 * (|#1| (-707) |#1|)) (-15 * (|#1| (-850) |#1|)))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-4084 (((-587 |#3|) $) 74)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) 51 (|has| |#1| (-513)))) (-2559 (($ $) 52 (|has| |#1| (-513)))) (-1733 (((-108) $) 54 (|has| |#1| (-513)))) (-1232 (((-3 $ "failed") $ $) 19)) (-2547 (($) 17 T CONST)) (-3152 (($ $) 60)) (-1257 (((-3 $ "failed") $) 34)) (-1325 (((-108) $) 73)) (-3996 (((-108) $) 31)) (-3649 (((-108) $) 62)) (-4043 (($ |#1| |#2|) 61) (($ $ |#3| |#2|) 76) (($ $ (-587 |#3|) (-587 |#2|)) 75)) (-1390 (($ (-1 |#1| |#1|) $) 63)) (-3125 (($ $) 65)) (-3135 ((|#1| $) 66)) (-3688 (((-1067) $) 9)) (-4147 (((-1031) $) 10)) (-2230 (((-3 $ "failed") $ $) 50 (|has| |#1| (-513)))) (-1994 ((|#2| $) 64)) (-3448 (($ $) 72)) (-2189 (((-792) $) 11) (($ (-521)) 28) (($ (-381 (-521))) 57 (|has| |#1| (-37 (-381 (-521))))) (($ $) 49 (|has| |#1| (-513))) (($ |#1|) 47 (|has| |#1| (-157)))) (-3800 ((|#1| $ |#2|) 59)) (-1671 (((-3 $ "failed") $) 48 (|has| |#1| (-133)))) (-3846 (((-707)) 29)) (-4210 (((-108) $ $) 53 (|has| |#1| (-513)))) (-3505 (($ $ (-850)) 26) (($ $ (-707)) 33)) (-3561 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-1531 (((-108) $ $) 6)) (-1620 (($ $ |#1|) 58 (|has| |#1| (-337)))) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-707)) 32)) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-381 (-521)) $) 56 (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) 55 (|has| |#1| (-37 (-381 (-521)))))))
+(((-899 |#1| |#2| |#3|) (-1196) (-970) (-728) (-784)) (T -899))
+((-3135 (*1 *2 *1) (-12 (-4 *1 (-899 *2 *3 *4)) (-4 *3 (-728)) (-4 *4 (-784)) (-4 *2 (-970)))) (-3125 (*1 *1 *1) (-12 (-4 *1 (-899 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-728)) (-4 *4 (-784)))) (-1994 (*1 *2 *1) (-12 (-4 *1 (-899 *3 *2 *4)) (-4 *3 (-970)) (-4 *4 (-784)) (-4 *2 (-728)))) (-4043 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-899 *4 *3 *2)) (-4 *4 (-970)) (-4 *3 (-728)) (-4 *2 (-784)))) (-4043 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-587 *6)) (-5 *3 (-587 *5)) (-4 *1 (-899 *4 *5 *6)) (-4 *4 (-970)) (-4 *5 (-728)) (-4 *6 (-784)))) (-4084 (*1 *2 *1) (-12 (-4 *1 (-899 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-728)) (-4 *5 (-784)) (-5 *2 (-587 *5)))) (-1325 (*1 *2 *1) (-12 (-4 *1 (-899 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-728)) (-4 *5 (-784)) (-5 *2 (-108)))) (-3448 (*1 *1 *1) (-12 (-4 *1 (-899 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-728)) (-4 *4 (-784)))))
+(-13 (-46 |t#1| |t#2|) (-10 -8 (-15 -4043 ($ $ |t#3| |t#2|)) (-15 -4043 ($ $ (-587 |t#3|) (-587 |t#2|))) (-15 -3125 ($ $)) (-15 -3135 (|t#1| $)) (-15 -1994 (|t#2| $)) (-15 -4084 ((-587 |t#3|) $)) (-15 -1325 ((-108) $)) (-15 -3448 ($ $))))
+(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-381 (-521))) |has| |#1| (-37 (-381 (-521)))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) |has| |#1| (-513)) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-381 (-521)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3703 (|has| |#1| (-513)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-561 (-792)) . T) ((-157) -3703 (|has| |#1| (-513)) (|has| |#1| (-157))) ((-265) |has| |#1| (-513)) ((-513) |has| |#1| (-513)) ((-589 #0#) |has| |#1| (-37 (-381 (-521)))) ((-589 |#1|) . T) ((-589 $) . T) ((-654 #0#) |has| |#1| (-37 (-381 (-521)))) ((-654 |#1|) |has| |#1| (-157)) ((-654 $) |has| |#1| (-513)) ((-663) . T) ((-976 #0#) |has| |#1| (-37 (-381 (-521)))) ((-976 |#1|) . T) ((-976 $) -3703 (|has| |#1| (-513)) (|has| |#1| (-157))) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T))
+((-3816 (((-1008 (-202)) $) 8)) (-3803 (((-1008 (-202)) $) 9)) (-3789 (((-1008 (-202)) $) 10)) (-2742 (((-587 (-587 (-872 (-202)))) $) 11)) (-2189 (((-792) $) 6)))
+(((-900) (-1196)) (T -900))
+((-2742 (*1 *2 *1) (-12 (-4 *1 (-900)) (-5 *2 (-587 (-587 (-872 (-202))))))) (-3789 (*1 *2 *1) (-12 (-4 *1 (-900)) (-5 *2 (-1008 (-202))))) (-3803 (*1 *2 *1) (-12 (-4 *1 (-900)) (-5 *2 (-1008 (-202))))) (-3816 (*1 *2 *1) (-12 (-4 *1 (-900)) (-5 *2 (-1008 (-202))))))
+(-13 (-561 (-792)) (-10 -8 (-15 -2742 ((-587 (-587 (-872 (-202)))) $)) (-15 -3789 ((-1008 (-202)) $)) (-15 -3803 ((-1008 (-202)) $)) (-15 -3816 ((-1008 (-202)) $))))
+(((-561 (-792)) . T))
+((-4084 (((-587 |#4|) $) 23)) (-3898 (((-108) $) 48)) (-2466 (((-108) $) 47)) (-3211 (((-2 (|:| |under| $) (|:| -2567 $) (|:| |upper| $)) $ |#4|) 36)) (-3035 (((-108) $) 49)) (-3091 (((-108) $ $) 55)) (-3882 (((-108) $ $) 58)) (-3237 (((-108) $) 53)) (-3799 (((-587 |#5|) (-587 |#5|) $) 90)) (-4183 (((-587 |#5|) (-587 |#5|) $) 87)) (-3820 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-2820 (((-587 |#4|) $) 27)) (-2639 (((-108) |#4| $) 30)) (-1341 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 73)) (-3883 (($ $ |#4|) 33)) (-4029 (($ $ |#4|) 32)) (-3318 (($ $ |#4|) 34)) (-1531 (((-108) $ $) 40)))
+(((-901 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2466 ((-108) |#1|)) (-15 -3799 ((-587 |#5|) (-587 |#5|) |#1|)) (-15 -4183 ((-587 |#5|) (-587 |#5|) |#1|)) (-15 -3820 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1341 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3035 ((-108) |#1|)) (-15 -3882 ((-108) |#1| |#1|)) (-15 -3091 ((-108) |#1| |#1|)) (-15 -3237 ((-108) |#1|)) (-15 -3898 ((-108) |#1|)) (-15 -3211 ((-2 (|:| |under| |#1|) (|:| -2567 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3883 (|#1| |#1| |#4|)) (-15 -3318 (|#1| |#1| |#4|)) (-15 -4029 (|#1| |#1| |#4|)) (-15 -2639 ((-108) |#4| |#1|)) (-15 -2820 ((-587 |#4|) |#1|)) (-15 -4084 ((-587 |#4|) |#1|)) (-15 -1531 ((-108) |#1| |#1|))) (-902 |#2| |#3| |#4| |#5|) (-970) (-729) (-784) (-984 |#2| |#3| |#4|)) (T -901))
+NIL
+(-10 -8 (-15 -2466 ((-108) |#1|)) (-15 -3799 ((-587 |#5|) (-587 |#5|) |#1|)) (-15 -4183 ((-587 |#5|) (-587 |#5|) |#1|)) (-15 -3820 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1341 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3035 ((-108) |#1|)) (-15 -3882 ((-108) |#1| |#1|)) (-15 -3091 ((-108) |#1| |#1|)) (-15 -3237 ((-108) |#1|)) (-15 -3898 ((-108) |#1|)) (-15 -3211 ((-2 (|:| |under| |#1|) (|:| -2567 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3883 (|#1| |#1| |#4|)) (-15 -3318 (|#1| |#1| |#4|)) (-15 -4029 (|#1| |#1| |#4|)) (-15 -2639 ((-108) |#4| |#1|)) (-15 -2820 ((-587 |#4|) |#1|)) (-15 -4084 ((-587 |#4|) |#1|)) (-15 -1531 ((-108) |#1| |#1|)))
+((-1415 (((-108) $ $) 7)) (-4084 (((-587 |#3|) $) 33)) (-3898 (((-108) $) 26)) (-2466 (((-108) $) 17 (|has| |#1| (-513)))) (-3211 (((-2 (|:| |under| $) (|:| -2567 $) (|:| |upper| $)) $ |#3|) 27)) (-2978 (((-108) $ (-707)) 44)) (-1628 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4233)))) (-2547 (($) 45 T CONST)) (-3035 (((-108) $) 22 (|has| |#1| (-513)))) (-3091 (((-108) $ $) 24 (|has| |#1| (-513)))) (-3882 (((-108) $ $) 23 (|has| |#1| (-513)))) (-3237 (((-108) $) 25 (|has| |#1| (-513)))) (-3799 (((-587 |#4|) (-587 |#4|) $) 18 (|has| |#1| (-513)))) (-4183 (((-587 |#4|) (-587 |#4|) $) 19 (|has| |#1| (-513)))) (-1297 (((-3 $ "failed") (-587 |#4|)) 36)) (-1483 (($ (-587 |#4|)) 35)) (-2332 (($ $) 68 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -4233))))) (-1422 (($ |#4| $) 67 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -4233)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4233)))) (-3820 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-513)))) (-3859 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -4233)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4233))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4233)))) (-3831 (((-587 |#4|) $) 52 (|has| $ (-6 -4233)))) (-3464 ((|#3| $) 34)) (-2139 (((-108) $ (-707)) 43)) (-3757 (((-587 |#4|) $) 53 (|has| $ (-6 -4233)))) (-2221 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -4233))))) (-3833 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#4| |#4|) $) 47)) (-2820 (((-587 |#3|) $) 32)) (-2639 (((-108) |#3| $) 31)) (-3574 (((-108) $ (-707)) 42)) (-3688 (((-1067) $) 9)) (-1341 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-513)))) (-4147 (((-1031) $) 10)) (-3620 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-1789 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 |#4|) (-587 |#4|)) 59 (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013)))) (($ $ (-269 |#4|)) 57 (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013)))) (($ $ (-587 (-269 |#4|))) 56 (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013))))) (-2488 (((-108) $ $) 38)) (-3462 (((-108) $) 41)) (-4024 (($) 40)) (-4163 (((-707) |#4| $) 54 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -4233)))) (((-707) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4233)))) (-2404 (($ $) 39)) (-1430 (((-497) $) 69 (|has| |#4| (-562 (-497))))) (-2201 (($ (-587 |#4|)) 60)) (-3883 (($ $ |#3|) 28)) (-4029 (($ $ |#3|) 30)) (-3318 (($ $ |#3|) 29)) (-2189 (((-792) $) 11) (((-587 |#4|) $) 37)) (-3049 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4233)))) (-1531 (((-108) $ $) 6)) (-3475 (((-707) $) 46 (|has| $ (-6 -4233)))))
+(((-902 |#1| |#2| |#3| |#4|) (-1196) (-970) (-729) (-784) (-984 |t#1| |t#2| |t#3|)) (T -902))
+((-1297 (*1 *1 *2) (|partial| -12 (-5 *2 (-587 *6)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784)) (-4 *1 (-902 *3 *4 *5 *6)))) (-1483 (*1 *1 *2) (-12 (-5 *2 (-587 *6)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784)) (-4 *1 (-902 *3 *4 *5 *6)))) (-3464 (*1 *2 *1) (-12 (-4 *1 (-902 *3 *4 *2 *5)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-984 *3 *4 *2)) (-4 *2 (-784)))) (-4084 (*1 *2 *1) (-12 (-4 *1 (-902 *3 *4 *5 *6)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784)) (-4 *6 (-984 *3 *4 *5)) (-5 *2 (-587 *5)))) (-2820 (*1 *2 *1) (-12 (-4 *1 (-902 *3 *4 *5 *6)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784)) (-4 *6 (-984 *3 *4 *5)) (-5 *2 (-587 *5)))) (-2639 (*1 *2 *3 *1) (-12 (-4 *1 (-902 *4 *5 *3 *6)) (-4 *4 (-970)) (-4 *5 (-729)) (-4 *3 (-784)) (-4 *6 (-984 *4 *5 *3)) (-5 *2 (-108)))) (-4029 (*1 *1 *1 *2) (-12 (-4 *1 (-902 *3 *4 *2 *5)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *2 (-784)) (-4 *5 (-984 *3 *4 *2)))) (-3318 (*1 *1 *1 *2) (-12 (-4 *1 (-902 *3 *4 *2 *5)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *2 (-784)) (-4 *5 (-984 *3 *4 *2)))) (-3883 (*1 *1 *1 *2) (-12 (-4 *1 (-902 *3 *4 *2 *5)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *2 (-784)) (-4 *5 (-984 *3 *4 *2)))) (-3211 (*1 *2 *1 *3) (-12 (-4 *4 (-970)) (-4 *5 (-729)) (-4 *3 (-784)) (-4 *6 (-984 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -2567 *1) (|:| |upper| *1))) (-4 *1 (-902 *4 *5 *3 *6)))) (-3898 (*1 *2 *1) (-12 (-4 *1 (-902 *3 *4 *5 *6)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784)) (-4 *6 (-984 *3 *4 *5)) (-5 *2 (-108)))) (-3237 (*1 *2 *1) (-12 (-4 *1 (-902 *3 *4 *5 *6)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-513)) (-5 *2 (-108)))) (-3091 (*1 *2 *1 *1) (-12 (-4 *1 (-902 *3 *4 *5 *6)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-513)) (-5 *2 (-108)))) (-3882 (*1 *2 *1 *1) (-12 (-4 *1 (-902 *3 *4 *5 *6)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-513)) (-5 *2 (-108)))) (-3035 (*1 *2 *1) (-12 (-4 *1 (-902 *3 *4 *5 *6)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-513)) (-5 *2 (-108)))) (-1341 (*1 *2 *3 *1) (-12 (-4 *1 (-902 *4 *5 *6 *3)) (-4 *4 (-970)) (-4 *5 (-729)) (-4 *6 (-784)) (-4 *3 (-984 *4 *5 *6)) (-4 *4 (-513)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-3820 (*1 *2 *3 *1) (-12 (-4 *1 (-902 *4 *5 *6 *3)) (-4 *4 (-970)) (-4 *5 (-729)) (-4 *6 (-784)) (-4 *3 (-984 *4 *5 *6)) (-4 *4 (-513)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-4183 (*1 *2 *2 *1) (-12 (-5 *2 (-587 *6)) (-4 *1 (-902 *3 *4 *5 *6)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-513)))) (-3799 (*1 *2 *2 *1) (-12 (-5 *2 (-587 *6)) (-4 *1 (-902 *3 *4 *5 *6)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-513)))) (-2466 (*1 *2 *1) (-12 (-4 *1 (-902 *3 *4 *5 *6)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-513)) (-5 *2 (-108)))))
+(-13 (-1013) (-139 |t#4|) (-561 (-587 |t#4|)) (-10 -8 (-6 -4233) (-15 -1297 ((-3 $ "failed") (-587 |t#4|))) (-15 -1483 ($ (-587 |t#4|))) (-15 -3464 (|t#3| $)) (-15 -4084 ((-587 |t#3|) $)) (-15 -2820 ((-587 |t#3|) $)) (-15 -2639 ((-108) |t#3| $)) (-15 -4029 ($ $ |t#3|)) (-15 -3318 ($ $ |t#3|)) (-15 -3883 ($ $ |t#3|)) (-15 -3211 ((-2 (|:| |under| $) (|:| -2567 $) (|:| |upper| $)) $ |t#3|)) (-15 -3898 ((-108) $)) (IF (|has| |t#1| (-513)) (PROGN (-15 -3237 ((-108) $)) (-15 -3091 ((-108) $ $)) (-15 -3882 ((-108) $ $)) (-15 -3035 ((-108) $)) (-15 -1341 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3820 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -4183 ((-587 |t#4|) (-587 |t#4|) $)) (-15 -3799 ((-587 |t#4|) (-587 |t#4|) $)) (-15 -2466 ((-108) $))) |%noBranch|)))
+(((-33) . T) ((-97) . T) ((-561 (-587 |#4|)) . T) ((-561 (-792)) . T) ((-139 |#4|) . T) ((-562 (-497)) |has| |#4| (-562 (-497))) ((-284 |#4|) -12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013))) ((-460 |#4|) . T) ((-482 |#4| |#4|) -12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013))) ((-1013) . T) ((-1119) . T))
+((-1323 (((-587 |#4|) |#4| |#4|) 115)) (-3623 (((-587 |#4|) (-587 |#4|) (-108)) 104 (|has| |#1| (-425))) (((-587 |#4|) (-587 |#4|)) 105 (|has| |#1| (-425)))) (-2900 (((-2 (|:| |goodPols| (-587 |#4|)) (|:| |badPols| (-587 |#4|))) (-587 |#4|)) 35)) (-3540 (((-108) |#4|) 34)) (-1610 (((-587 |#4|) |#4|) 101 (|has| |#1| (-425)))) (-3422 (((-2 (|:| |goodPols| (-587 |#4|)) (|:| |badPols| (-587 |#4|))) (-1 (-108) |#4|) (-587 |#4|)) 20)) (-1721 (((-2 (|:| |goodPols| (-587 |#4|)) (|:| |badPols| (-587 |#4|))) (-587 (-1 (-108) |#4|)) (-587 |#4|)) 22)) (-3769 (((-2 (|:| |goodPols| (-587 |#4|)) (|:| |badPols| (-587 |#4|))) (-587 (-1 (-108) |#4|)) (-587 |#4|)) 23)) (-3108 (((-3 (-2 (|:| |bas| (-449 |#1| |#2| |#3| |#4|)) (|:| -1354 (-587 |#4|))) "failed") (-587 |#4|)) 73)) (-1307 (((-587 |#4|) (-587 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|)) 85)) (-2524 (((-587 |#4|) (-587 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|)) 108)) (-3354 (((-587 |#4|) (-587 |#4|)) 107)) (-1535 (((-587 |#4|) (-587 |#4|) (-587 |#4|) (-108)) 48) (((-587 |#4|) (-587 |#4|) (-587 |#4|)) 50)) (-3767 ((|#4| |#4| (-587 |#4|)) 49)) (-2803 (((-587 |#4|) (-587 |#4|) (-587 |#4|)) 111 (|has| |#1| (-425)))) (-2661 (((-587 |#4|) (-587 |#4|) (-587 |#4|)) 114 (|has| |#1| (-425)))) (-4135 (((-587 |#4|) (-587 |#4|) (-587 |#4|)) 113 (|has| |#1| (-425)))) (-3843 (((-587 |#4|) (-587 |#4|) (-587 |#4|) (-1 (-587 |#4|) (-587 |#4|))) 87) (((-587 |#4|) (-587 |#4|) (-587 |#4|)) 89) (((-587 |#4|) (-587 |#4|) |#4|) 118) (((-587 |#4|) |#4| |#4|) 116) (((-587 |#4|) (-587 |#4|)) 88)) (-1624 (((-587 |#4|) (-587 |#4|) (-587 |#4|)) 98 (-12 (|has| |#1| (-135)) (|has| |#1| (-282))))) (-2061 (((-2 (|:| |goodPols| (-587 |#4|)) (|:| |badPols| (-587 |#4|))) (-587 |#4|)) 41)) (-4127 (((-108) (-587 |#4|)) 62)) (-2876 (((-108) (-587 |#4|) (-587 (-587 |#4|))) 53)) (-1302 (((-2 (|:| |goodPols| (-587 |#4|)) (|:| |badPols| (-587 |#4|))) (-587 |#4|)) 29)) (-1879 (((-108) |#4|) 28)) (-2807 (((-587 |#4|) (-587 |#4|)) 97 (-12 (|has| |#1| (-135)) (|has| |#1| (-282))))) (-2620 (((-587 |#4|) (-587 |#4|)) 96 (-12 (|has| |#1| (-135)) (|has| |#1| (-282))))) (-3766 (((-587 |#4|) (-587 |#4|)) 66)) (-1656 (((-587 |#4|) (-587 |#4|)) 79)) (-1320 (((-108) (-587 |#4|) (-587 |#4|)) 51)) (-1251 (((-2 (|:| |goodPols| (-587 |#4|)) (|:| |badPols| (-587 |#4|))) (-587 |#4|)) 39)) (-1915 (((-108) |#4|) 36)))
+(((-903 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3843 ((-587 |#4|) (-587 |#4|))) (-15 -3843 ((-587 |#4|) |#4| |#4|)) (-15 -3354 ((-587 |#4|) (-587 |#4|))) (-15 -1323 ((-587 |#4|) |#4| |#4|)) (-15 -3843 ((-587 |#4|) (-587 |#4|) |#4|)) (-15 -3843 ((-587 |#4|) (-587 |#4|) (-587 |#4|))) (-15 -3843 ((-587 |#4|) (-587 |#4|) (-587 |#4|) (-1 (-587 |#4|) (-587 |#4|)))) (-15 -1320 ((-108) (-587 |#4|) (-587 |#4|))) (-15 -2876 ((-108) (-587 |#4|) (-587 (-587 |#4|)))) (-15 -4127 ((-108) (-587 |#4|))) (-15 -3422 ((-2 (|:| |goodPols| (-587 |#4|)) (|:| |badPols| (-587 |#4|))) (-1 (-108) |#4|) (-587 |#4|))) (-15 -1721 ((-2 (|:| |goodPols| (-587 |#4|)) (|:| |badPols| (-587 |#4|))) (-587 (-1 (-108) |#4|)) (-587 |#4|))) (-15 -3769 ((-2 (|:| |goodPols| (-587 |#4|)) (|:| |badPols| (-587 |#4|))) (-587 (-1 (-108) |#4|)) (-587 |#4|))) (-15 -2061 ((-2 (|:| |goodPols| (-587 |#4|)) (|:| |badPols| (-587 |#4|))) (-587 |#4|))) (-15 -3540 ((-108) |#4|)) (-15 -2900 ((-2 (|:| |goodPols| (-587 |#4|)) (|:| |badPols| (-587 |#4|))) (-587 |#4|))) (-15 -1879 ((-108) |#4|)) (-15 -1302 ((-2 (|:| |goodPols| (-587 |#4|)) (|:| |badPols| (-587 |#4|))) (-587 |#4|))) (-15 -1915 ((-108) |#4|)) (-15 -1251 ((-2 (|:| |goodPols| (-587 |#4|)) (|:| |badPols| (-587 |#4|))) (-587 |#4|))) (-15 -1535 ((-587 |#4|) (-587 |#4|) (-587 |#4|))) (-15 -1535 ((-587 |#4|) (-587 |#4|) (-587 |#4|) (-108))) (-15 -3767 (|#4| |#4| (-587 |#4|))) (-15 -3766 ((-587 |#4|) (-587 |#4|))) (-15 -3108 ((-3 (-2 (|:| |bas| (-449 |#1| |#2| |#3| |#4|)) (|:| -1354 (-587 |#4|))) "failed") (-587 |#4|))) (-15 -1656 ((-587 |#4|) (-587 |#4|))) (-15 -1307 ((-587 |#4|) (-587 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2524 ((-587 |#4|) (-587 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-425)) (PROGN (-15 -1610 ((-587 |#4|) |#4|)) (-15 -3623 ((-587 |#4|) (-587 |#4|))) (-15 -3623 ((-587 |#4|) (-587 |#4|) (-108))) (-15 -2803 ((-587 |#4|) (-587 |#4|) (-587 |#4|))) (-15 -4135 ((-587 |#4|) (-587 |#4|) (-587 |#4|))) (-15 -2661 ((-587 |#4|) (-587 |#4|) (-587 |#4|)))) |%noBranch|) (IF (|has| |#1| (-282)) (IF (|has| |#1| (-135)) (PROGN (-15 -2620 ((-587 |#4|) (-587 |#4|))) (-15 -2807 ((-587 |#4|) (-587 |#4|))) (-15 -1624 ((-587 |#4|) (-587 |#4|) (-587 |#4|)))) |%noBranch|) |%noBranch|)) (-513) (-729) (-784) (-984 |#1| |#2| |#3|)) (T -903))
+((-1624 (*1 *2 *2 *2) (-12 (-5 *2 (-587 *6)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-135)) (-4 *3 (-282)) (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *1 (-903 *3 *4 *5 *6)))) (-2807 (*1 *2 *2) (-12 (-5 *2 (-587 *6)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-135)) (-4 *3 (-282)) (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *1 (-903 *3 *4 *5 *6)))) (-2620 (*1 *2 *2) (-12 (-5 *2 (-587 *6)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-135)) (-4 *3 (-282)) (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *1 (-903 *3 *4 *5 *6)))) (-2661 (*1 *2 *2 *2) (-12 (-5 *2 (-587 *6)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-425)) (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *1 (-903 *3 *4 *5 *6)))) (-4135 (*1 *2 *2 *2) (-12 (-5 *2 (-587 *6)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-425)) (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *1 (-903 *3 *4 *5 *6)))) (-2803 (*1 *2 *2 *2) (-12 (-5 *2 (-587 *6)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-425)) (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *1 (-903 *3 *4 *5 *6)))) (-3623 (*1 *2 *2 *3) (-12 (-5 *2 (-587 *7)) (-5 *3 (-108)) (-4 *7 (-984 *4 *5 *6)) (-4 *4 (-425)) (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-784)) (-5 *1 (-903 *4 *5 *6 *7)))) (-3623 (*1 *2 *2) (-12 (-5 *2 (-587 *6)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-425)) (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *1 (-903 *3 *4 *5 *6)))) (-1610 (*1 *2 *3) (-12 (-4 *4 (-425)) (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-587 *3)) (-5 *1 (-903 *4 *5 *6 *3)) (-4 *3 (-984 *4 *5 *6)))) (-2524 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-587 *8)) (-5 *3 (-1 (-108) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-984 *5 *6 *7)) (-4 *5 (-513)) (-4 *6 (-729)) (-4 *7 (-784)) (-5 *1 (-903 *5 *6 *7 *8)))) (-1307 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-587 *9)) (-5 *3 (-1 (-108) *9)) (-5 *4 (-1 (-108) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-984 *6 *7 *8)) (-4 *6 (-513)) (-4 *7 (-729)) (-4 *8 (-784)) (-5 *1 (-903 *6 *7 *8 *9)))) (-1656 (*1 *2 *2) (-12 (-5 *2 (-587 *6)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *1 (-903 *3 *4 *5 *6)))) (-3108 (*1 *2 *3) (|partial| -12 (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-784)) (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-449 *4 *5 *6 *7)) (|:| -1354 (-587 *7)))) (-5 *1 (-903 *4 *5 *6 *7)) (-5 *3 (-587 *7)))) (-3766 (*1 *2 *2) (-12 (-5 *2 (-587 *6)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *1 (-903 *3 *4 *5 *6)))) (-3767 (*1 *2 *2 *3) (-12 (-5 *3 (-587 *2)) (-4 *2 (-984 *4 *5 *6)) (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-784)) (-5 *1 (-903 *4 *5 *6 *2)))) (-1535 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-587 *7)) (-5 *3 (-108)) (-4 *7 (-984 *4 *5 *6)) (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-784)) (-5 *1 (-903 *4 *5 *6 *7)))) (-1535 (*1 *2 *2 *2) (-12 (-5 *2 (-587 *6)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *1 (-903 *3 *4 *5 *6)))) (-1251 (*1 *2 *3) (-12 (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-784)) (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-587 *7)) (|:| |badPols| (-587 *7)))) (-5 *1 (-903 *4 *5 *6 *7)) (-5 *3 (-587 *7)))) (-1915 (*1 *2 *3) (-12 (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-108)) (-5 *1 (-903 *4 *5 *6 *3)) (-4 *3 (-984 *4 *5 *6)))) (-1302 (*1 *2 *3) (-12 (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-784)) (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-587 *7)) (|:| |badPols| (-587 *7)))) (-5 *1 (-903 *4 *5 *6 *7)) (-5 *3 (-587 *7)))) (-1879 (*1 *2 *3) (-12 (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-108)) (-5 *1 (-903 *4 *5 *6 *3)) (-4 *3 (-984 *4 *5 *6)))) (-2900 (*1 *2 *3) (-12 (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-784)) (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-587 *7)) (|:| |badPols| (-587 *7)))) (-5 *1 (-903 *4 *5 *6 *7)) (-5 *3 (-587 *7)))) (-3540 (*1 *2 *3) (-12 (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-108)) (-5 *1 (-903 *4 *5 *6 *3)) (-4 *3 (-984 *4 *5 *6)))) (-2061 (*1 *2 *3) (-12 (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-784)) (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-587 *7)) (|:| |badPols| (-587 *7)))) (-5 *1 (-903 *4 *5 *6 *7)) (-5 *3 (-587 *7)))) (-3769 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-1 (-108) *8))) (-4 *8 (-984 *5 *6 *7)) (-4 *5 (-513)) (-4 *6 (-729)) (-4 *7 (-784)) (-5 *2 (-2 (|:| |goodPols| (-587 *8)) (|:| |badPols| (-587 *8)))) (-5 *1 (-903 *5 *6 *7 *8)) (-5 *4 (-587 *8)))) (-1721 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-1 (-108) *8))) (-4 *8 (-984 *5 *6 *7)) (-4 *5 (-513)) (-4 *6 (-729)) (-4 *7 (-784)) (-5 *2 (-2 (|:| |goodPols| (-587 *8)) (|:| |badPols| (-587 *8)))) (-5 *1 (-903 *5 *6 *7 *8)) (-5 *4 (-587 *8)))) (-3422 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-108) *8)) (-4 *8 (-984 *5 *6 *7)) (-4 *5 (-513)) (-4 *6 (-729)) (-4 *7 (-784)) (-5 *2 (-2 (|:| |goodPols| (-587 *8)) (|:| |badPols| (-587 *8)))) (-5 *1 (-903 *5 *6 *7 *8)) (-5 *4 (-587 *8)))) (-4127 (*1 *2 *3) (-12 (-5 *3 (-587 *7)) (-4 *7 (-984 *4 *5 *6)) (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-108)) (-5 *1 (-903 *4 *5 *6 *7)))) (-2876 (*1 *2 *3 *4) (-12 (-5 *4 (-587 (-587 *8))) (-5 *3 (-587 *8)) (-4 *8 (-984 *5 *6 *7)) (-4 *5 (-513)) (-4 *6 (-729)) (-4 *7 (-784)) (-5 *2 (-108)) (-5 *1 (-903 *5 *6 *7 *8)))) (-1320 (*1 *2 *3 *3) (-12 (-5 *3 (-587 *7)) (-4 *7 (-984 *4 *5 *6)) (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-108)) (-5 *1 (-903 *4 *5 *6 *7)))) (-3843 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-587 *7) (-587 *7))) (-5 *2 (-587 *7)) (-4 *7 (-984 *4 *5 *6)) (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-784)) (-5 *1 (-903 *4 *5 *6 *7)))) (-3843 (*1 *2 *2 *2) (-12 (-5 *2 (-587 *6)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *1 (-903 *3 *4 *5 *6)))) (-3843 (*1 *2 *2 *3) (-12 (-5 *2 (-587 *3)) (-4 *3 (-984 *4 *5 *6)) (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-784)) (-5 *1 (-903 *4 *5 *6 *3)))) (-1323 (*1 *2 *3 *3) (-12 (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-587 *3)) (-5 *1 (-903 *4 *5 *6 *3)) (-4 *3 (-984 *4 *5 *6)))) (-3354 (*1 *2 *2) (-12 (-5 *2 (-587 *6)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *1 (-903 *3 *4 *5 *6)))) (-3843 (*1 *2 *3 *3) (-12 (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-587 *3)) (-5 *1 (-903 *4 *5 *6 *3)) (-4 *3 (-984 *4 *5 *6)))) (-3843 (*1 *2 *2) (-12 (-5 *2 (-587 *6)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *1 (-903 *3 *4 *5 *6)))))
+(-10 -7 (-15 -3843 ((-587 |#4|) (-587 |#4|))) (-15 -3843 ((-587 |#4|) |#4| |#4|)) (-15 -3354 ((-587 |#4|) (-587 |#4|))) (-15 -1323 ((-587 |#4|) |#4| |#4|)) (-15 -3843 ((-587 |#4|) (-587 |#4|) |#4|)) (-15 -3843 ((-587 |#4|) (-587 |#4|) (-587 |#4|))) (-15 -3843 ((-587 |#4|) (-587 |#4|) (-587 |#4|) (-1 (-587 |#4|) (-587 |#4|)))) (-15 -1320 ((-108) (-587 |#4|) (-587 |#4|))) (-15 -2876 ((-108) (-587 |#4|) (-587 (-587 |#4|)))) (-15 -4127 ((-108) (-587 |#4|))) (-15 -3422 ((-2 (|:| |goodPols| (-587 |#4|)) (|:| |badPols| (-587 |#4|))) (-1 (-108) |#4|) (-587 |#4|))) (-15 -1721 ((-2 (|:| |goodPols| (-587 |#4|)) (|:| |badPols| (-587 |#4|))) (-587 (-1 (-108) |#4|)) (-587 |#4|))) (-15 -3769 ((-2 (|:| |goodPols| (-587 |#4|)) (|:| |badPols| (-587 |#4|))) (-587 (-1 (-108) |#4|)) (-587 |#4|))) (-15 -2061 ((-2 (|:| |goodPols| (-587 |#4|)) (|:| |badPols| (-587 |#4|))) (-587 |#4|))) (-15 -3540 ((-108) |#4|)) (-15 -2900 ((-2 (|:| |goodPols| (-587 |#4|)) (|:| |badPols| (-587 |#4|))) (-587 |#4|))) (-15 -1879 ((-108) |#4|)) (-15 -1302 ((-2 (|:| |goodPols| (-587 |#4|)) (|:| |badPols| (-587 |#4|))) (-587 |#4|))) (-15 -1915 ((-108) |#4|)) (-15 -1251 ((-2 (|:| |goodPols| (-587 |#4|)) (|:| |badPols| (-587 |#4|))) (-587 |#4|))) (-15 -1535 ((-587 |#4|) (-587 |#4|) (-587 |#4|))) (-15 -1535 ((-587 |#4|) (-587 |#4|) (-587 |#4|) (-108))) (-15 -3767 (|#4| |#4| (-587 |#4|))) (-15 -3766 ((-587 |#4|) (-587 |#4|))) (-15 -3108 ((-3 (-2 (|:| |bas| (-449 |#1| |#2| |#3| |#4|)) (|:| -1354 (-587 |#4|))) "failed") (-587 |#4|))) (-15 -1656 ((-587 |#4|) (-587 |#4|))) (-15 -1307 ((-587 |#4|) (-587 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2524 ((-587 |#4|) (-587 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-425)) (PROGN (-15 -1610 ((-587 |#4|) |#4|)) (-15 -3623 ((-587 |#4|) (-587 |#4|))) (-15 -3623 ((-587 |#4|) (-587 |#4|) (-108))) (-15 -2803 ((-587 |#4|) (-587 |#4|) (-587 |#4|))) (-15 -4135 ((-587 |#4|) (-587 |#4|) (-587 |#4|))) (-15 -2661 ((-587 |#4|) (-587 |#4|) (-587 |#4|)))) |%noBranch|) (IF (|has| |#1| (-282)) (IF (|has| |#1| (-135)) (PROGN (-15 -2620 ((-587 |#4|) (-587 |#4|))) (-15 -2807 ((-587 |#4|) (-587 |#4|))) (-15 -1624 ((-587 |#4|) (-587 |#4|) (-587 |#4|)))) |%noBranch|) |%noBranch|))
+((-2175 (((-2 (|:| R (-627 |#1|)) (|:| A (-627 |#1|)) (|:| |Ainv| (-627 |#1|))) (-627 |#1|) (-94 |#1|) (-1 |#1| |#1|)) 19)) (-3495 (((-587 (-2 (|:| C (-627 |#1|)) (|:| |g| (-1165 |#1|)))) (-627 |#1|) (-1165 |#1|)) 36)) (-4208 (((-627 |#1|) (-627 |#1|) (-627 |#1|) (-94 |#1|) (-1 |#1| |#1|)) 16)))
+(((-904 |#1|) (-10 -7 (-15 -2175 ((-2 (|:| R (-627 |#1|)) (|:| A (-627 |#1|)) (|:| |Ainv| (-627 |#1|))) (-627 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -4208 ((-627 |#1|) (-627 |#1|) (-627 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -3495 ((-587 (-2 (|:| C (-627 |#1|)) (|:| |g| (-1165 |#1|)))) (-627 |#1|) (-1165 |#1|)))) (-337)) (T -904))
+((-3495 (*1 *2 *3 *4) (-12 (-4 *5 (-337)) (-5 *2 (-587 (-2 (|:| C (-627 *5)) (|:| |g| (-1165 *5))))) (-5 *1 (-904 *5)) (-5 *3 (-627 *5)) (-5 *4 (-1165 *5)))) (-4208 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-627 *5)) (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-337)) (-5 *1 (-904 *5)))) (-2175 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-94 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-337)) (-5 *2 (-2 (|:| R (-627 *6)) (|:| A (-627 *6)) (|:| |Ainv| (-627 *6)))) (-5 *1 (-904 *6)) (-5 *3 (-627 *6)))))
+(-10 -7 (-15 -2175 ((-2 (|:| R (-627 |#1|)) (|:| A (-627 |#1|)) (|:| |Ainv| (-627 |#1|))) (-627 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -4208 ((-627 |#1|) (-627 |#1|) (-627 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -3495 ((-587 (-2 (|:| C (-627 |#1|)) (|:| |g| (-1165 |#1|)))) (-627 |#1|) (-1165 |#1|))))
+((-3358 (((-392 |#4|) |#4|) 47)))
+(((-905 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3358 ((-392 |#4|) |#4|))) (-784) (-729) (-425) (-878 |#3| |#2| |#1|)) (T -905))
+((-3358 (*1 *2 *3) (-12 (-4 *4 (-784)) (-4 *5 (-729)) (-4 *6 (-425)) (-5 *2 (-392 *3)) (-5 *1 (-905 *4 *5 *6 *3)) (-4 *3 (-878 *6 *5 *4)))))
+(-10 -7 (-15 -3358 ((-392 |#4|) |#4|)))
+((-1415 (((-108) $ $) 19 (|has| |#1| (-1013)))) (-3478 (($ (-707)) 112 (|has| |#1| (-23)))) (-1903 (((-1170) $ (-521) (-521)) 40 (|has| $ (-6 -4234)))) (-1505 (((-108) (-1 (-108) |#1| |#1|) $) 98) (((-108) $) 92 (|has| |#1| (-784)))) (-1621 (($ (-1 (-108) |#1| |#1|) $) 89 (|has| $ (-6 -4234))) (($ $) 88 (-12 (|has| |#1| (-784)) (|has| $ (-6 -4234))))) (-3211 (($ (-1 (-108) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-784)))) (-2978 (((-108) $ (-707)) 8)) (-2378 ((|#1| $ (-521) |#1|) 52 (|has| $ (-6 -4234))) ((|#1| $ (-1132 (-521)) |#1|) 58 (|has| $ (-6 -4234)))) (-1628 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4233)))) (-2547 (($) 7 T CONST)) (-3081 (($ $) 90 (|has| $ (-6 -4234)))) (-1862 (($ $) 100)) (-2332 (($ $) 78 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-1422 (($ |#1| $) 77 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4233)))) (-3859 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4233)))) (-3849 ((|#1| $ (-521) |#1|) 53 (|has| $ (-6 -4234)))) (-3626 ((|#1| $ (-521)) 51)) (-3233 (((-521) (-1 (-108) |#1|) $) 97) (((-521) |#1| $) 96 (|has| |#1| (-1013))) (((-521) |#1| $ (-521)) 95 (|has| |#1| (-1013)))) (-2735 (($ (-587 |#1|)) 118)) (-3831 (((-587 |#1|) $) 30 (|has| $ (-6 -4233)))) (-3952 (((-627 |#1|) $ $) 105 (|has| |#1| (-970)))) (-1811 (($ (-707) |#1|) 69)) (-2139 (((-108) $ (-707)) 9)) (-2826 (((-521) $) 43 (|has| (-521) (-784)))) (-2810 (($ $ $) 87 (|has| |#1| (-784)))) (-1318 (($ (-1 (-108) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-784)))) (-3757 (((-587 |#1|) $) 29 (|has| $ (-6 -4233)))) (-2221 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-2597 (((-521) $) 44 (|has| (-521) (-784)))) (-2446 (($ $ $) 86 (|has| |#1| (-784)))) (-3833 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3366 ((|#1| $) 102 (-12 (|has| |#1| (-970)) (|has| |#1| (-927))))) (-3574 (((-108) $ (-707)) 10)) (-2516 ((|#1| $) 103 (-12 (|has| |#1| (-970)) (|has| |#1| (-927))))) (-3688 (((-1067) $) 22 (|has| |#1| (-1013)))) (-1659 (($ |#1| $ (-521)) 60) (($ $ $ (-521)) 59)) (-1668 (((-587 (-521)) $) 46)) (-2941 (((-108) (-521) $) 47)) (-4147 (((-1031) $) 21 (|has| |#1| (-1013)))) (-2293 ((|#1| $) 42 (|has| (-521) (-784)))) (-3620 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-3016 (($ $ |#1|) 41 (|has| $ (-6 -4234)))) (-2447 (($ $ (-587 |#1|)) 115)) (-1789 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 |#1|))) 26 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) 25 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) 23 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-2488 (((-108) $ $) 14)) (-3821 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2489 (((-587 |#1|) $) 48)) (-3462 (((-108) $) 11)) (-4024 (($) 12)) (-2544 ((|#1| $ (-521) |#1|) 50) ((|#1| $ (-521)) 49) (($ $ (-1132 (-521))) 63)) (-1231 ((|#1| $ $) 106 (|has| |#1| (-970)))) (-2359 (((-850) $) 117)) (-3691 (($ $ (-521)) 62) (($ $ (-1132 (-521))) 61)) (-2292 (($ $ $) 104)) (-4163 (((-707) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4233))) (((-707) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-1497 (($ $ $ (-521)) 91 (|has| $ (-6 -4234)))) (-2404 (($ $) 13)) (-1430 (((-497) $) 79 (|has| |#1| (-562 (-497)))) (($ (-587 |#1|)) 116)) (-2201 (($ (-587 |#1|)) 70)) (-4159 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-587 $)) 65)) (-2189 (((-792) $) 18 (|has| |#1| (-561 (-792))))) (-3049 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4233)))) (-1574 (((-108) $ $) 84 (|has| |#1| (-784)))) (-1558 (((-108) $ $) 83 (|has| |#1| (-784)))) (-1531 (((-108) $ $) 20 (|has| |#1| (-1013)))) (-1566 (((-108) $ $) 85 (|has| |#1| (-784)))) (-1549 (((-108) $ $) 82 (|has| |#1| (-784)))) (-1612 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-1602 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-521) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-663))) (($ $ |#1|) 107 (|has| |#1| (-663)))) (-3475 (((-707) $) 6 (|has| $ (-6 -4233)))))
+(((-906 |#1|) (-1196) (-970)) (T -906))
+((-2735 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-970)) (-4 *1 (-906 *3)))) (-2359 (*1 *2 *1) (-12 (-4 *1 (-906 *3)) (-4 *3 (-970)) (-5 *2 (-850)))) (-1430 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-970)) (-4 *1 (-906 *3)))) (-2292 (*1 *1 *1 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-970)))) (-2447 (*1 *1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *1 (-906 *3)) (-4 *3 (-970)))))
+(-13 (-1163 |t#1|) (-10 -8 (-15 -2735 ($ (-587 |t#1|))) (-15 -2359 ((-850) $)) (-15 -1430 ($ (-587 |t#1|))) (-15 -2292 ($ $ $)) (-15 -2447 ($ $ (-587 |t#1|)))))
+(((-33) . T) ((-97) -3703 (|has| |#1| (-1013)) (|has| |#1| (-784))) ((-561 (-792)) -3703 (|has| |#1| (-1013)) (|has| |#1| (-784)) (|has| |#1| (-561 (-792)))) ((-139 |#1|) . T) ((-562 (-497)) |has| |#1| (-562 (-497))) ((-261 #0=(-521) |#1|) . T) ((-263 #0# |#1|) . T) ((-284 |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-347 |#1|) . T) ((-460 |#1|) . T) ((-554 #0# |#1|) . T) ((-482 |#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-592 |#1|) . T) ((-19 |#1|) . T) ((-784) |has| |#1| (-784)) ((-1013) -3703 (|has| |#1| (-1013)) (|has| |#1| (-784))) ((-1119) . T) ((-1163 |#1|) . T))
+((-1390 (((-872 |#2|) (-1 |#2| |#1|) (-872 |#1|)) 17)))
+(((-907 |#1| |#2|) (-10 -7 (-15 -1390 ((-872 |#2|) (-1 |#2| |#1|) (-872 |#1|)))) (-970) (-970)) (T -907))
+((-1390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-872 *5)) (-4 *5 (-970)) (-4 *6 (-970)) (-5 *2 (-872 *6)) (-5 *1 (-907 *5 *6)))))
+(-10 -7 (-15 -1390 ((-872 |#2|) (-1 |#2| |#1|) (-872 |#1|))))
+((-2816 ((|#1| (-872 |#1|)) 13)) (-2185 ((|#1| (-872 |#1|)) 12)) (-2774 ((|#1| (-872 |#1|)) 11)) (-2460 ((|#1| (-872 |#1|)) 15)) (-2840 ((|#1| (-872 |#1|)) 21)) (-2017 ((|#1| (-872 |#1|)) 14)) (-3558 ((|#1| (-872 |#1|)) 16)) (-1748 ((|#1| (-872 |#1|)) 20)) (-3185 ((|#1| (-872 |#1|)) 19)))
+(((-908 |#1|) (-10 -7 (-15 -2774 (|#1| (-872 |#1|))) (-15 -2185 (|#1| (-872 |#1|))) (-15 -2816 (|#1| (-872 |#1|))) (-15 -2017 (|#1| (-872 |#1|))) (-15 -2460 (|#1| (-872 |#1|))) (-15 -3558 (|#1| (-872 |#1|))) (-15 -3185 (|#1| (-872 |#1|))) (-15 -1748 (|#1| (-872 |#1|))) (-15 -2840 (|#1| (-872 |#1|)))) (-970)) (T -908))
+((-2840 (*1 *2 *3) (-12 (-5 *3 (-872 *2)) (-5 *1 (-908 *2)) (-4 *2 (-970)))) (-1748 (*1 *2 *3) (-12 (-5 *3 (-872 *2)) (-5 *1 (-908 *2)) (-4 *2 (-970)))) (-3185 (*1 *2 *3) (-12 (-5 *3 (-872 *2)) (-5 *1 (-908 *2)) (-4 *2 (-970)))) (-3558 (*1 *2 *3) (-12 (-5 *3 (-872 *2)) (-5 *1 (-908 *2)) (-4 *2 (-970)))) (-2460 (*1 *2 *3) (-12 (-5 *3 (-872 *2)) (-5 *1 (-908 *2)) (-4 *2 (-970)))) (-2017 (*1 *2 *3) (-12 (-5 *3 (-872 *2)) (-5 *1 (-908 *2)) (-4 *2 (-970)))) (-2816 (*1 *2 *3) (-12 (-5 *3 (-872 *2)) (-5 *1 (-908 *2)) (-4 *2 (-970)))) (-2185 (*1 *2 *3) (-12 (-5 *3 (-872 *2)) (-5 *1 (-908 *2)) (-4 *2 (-970)))) (-2774 (*1 *2 *3) (-12 (-5 *3 (-872 *2)) (-5 *1 (-908 *2)) (-4 *2 (-970)))))
+(-10 -7 (-15 -2774 (|#1| (-872 |#1|))) (-15 -2185 (|#1| (-872 |#1|))) (-15 -2816 (|#1| (-872 |#1|))) (-15 -2017 (|#1| (-872 |#1|))) (-15 -2460 (|#1| (-872 |#1|))) (-15 -3558 (|#1| (-872 |#1|))) (-15 -3185 (|#1| (-872 |#1|))) (-15 -1748 (|#1| (-872 |#1|))) (-15 -2840 (|#1| (-872 |#1|))))
+((-3197 (((-3 |#1| "failed") |#1|) 18)) (-1839 (((-3 |#1| "failed") |#1|) 6)) (-4006 (((-3 |#1| "failed") |#1|) 16)) (-3762 (((-3 |#1| "failed") |#1|) 4)) (-2112 (((-3 |#1| "failed") |#1|) 20)) (-2450 (((-3 |#1| "failed") |#1|) 8)) (-2066 (((-3 |#1| "failed") |#1| (-707)) 1)) (-2206 (((-3 |#1| "failed") |#1|) 3)) (-1982 (((-3 |#1| "failed") |#1|) 2)) (-2972 (((-3 |#1| "failed") |#1|) 21)) (-4184 (((-3 |#1| "failed") |#1|) 9)) (-2498 (((-3 |#1| "failed") |#1|) 19)) (-3773 (((-3 |#1| "failed") |#1|) 7)) (-3142 (((-3 |#1| "failed") |#1|) 17)) (-3685 (((-3 |#1| "failed") |#1|) 5)) (-1471 (((-3 |#1| "failed") |#1|) 24)) (-3824 (((-3 |#1| "failed") |#1|) 12)) (-2059 (((-3 |#1| "failed") |#1|) 22)) (-2574 (((-3 |#1| "failed") |#1|) 10)) (-2699 (((-3 |#1| "failed") |#1|) 26)) (-1551 (((-3 |#1| "failed") |#1|) 14)) (-1911 (((-3 |#1| "failed") |#1|) 27)) (-1303 (((-3 |#1| "failed") |#1|) 15)) (-2533 (((-3 |#1| "failed") |#1|) 25)) (-1456 (((-3 |#1| "failed") |#1|) 13)) (-1929 (((-3 |#1| "failed") |#1|) 23)) (-3316 (((-3 |#1| "failed") |#1|) 11)))
+(((-909 |#1|) (-1196) (-1105)) (T -909))
+((-1911 (*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))) (-2699 (*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))) (-2533 (*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))) (-1471 (*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))) (-1929 (*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))) (-2059 (*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))) (-2972 (*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))) (-2112 (*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))) (-2498 (*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))) (-3197 (*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))) (-3142 (*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))) (-4006 (*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))) (-1303 (*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))) (-1551 (*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))) (-1456 (*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))) (-3824 (*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))) (-3316 (*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))) (-2574 (*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))) (-4184 (*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))) (-2450 (*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))) (-3773 (*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))) (-1839 (*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))) (-3685 (*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))) (-3762 (*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))) (-2206 (*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))) (-1982 (*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))) (-2066 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-707)) (-4 *1 (-909 *2)) (-4 *2 (-1105)))))
+(-13 (-10 -7 (-15 -2066 ((-3 |t#1| "failed") |t#1| (-707))) (-15 -1982 ((-3 |t#1| "failed") |t#1|)) (-15 -2206 ((-3 |t#1| "failed") |t#1|)) (-15 -3762 ((-3 |t#1| "failed") |t#1|)) (-15 -3685 ((-3 |t#1| "failed") |t#1|)) (-15 -1839 ((-3 |t#1| "failed") |t#1|)) (-15 -3773 ((-3 |t#1| "failed") |t#1|)) (-15 -2450 ((-3 |t#1| "failed") |t#1|)) (-15 -4184 ((-3 |t#1| "failed") |t#1|)) (-15 -2574 ((-3 |t#1| "failed") |t#1|)) (-15 -3316 ((-3 |t#1| "failed") |t#1|)) (-15 -3824 ((-3 |t#1| "failed") |t#1|)) (-15 -1456 ((-3 |t#1| "failed") |t#1|)) (-15 -1551 ((-3 |t#1| "failed") |t#1|)) (-15 -1303 ((-3 |t#1| "failed") |t#1|)) (-15 -4006 ((-3 |t#1| "failed") |t#1|)) (-15 -3142 ((-3 |t#1| "failed") |t#1|)) (-15 -3197 ((-3 |t#1| "failed") |t#1|)) (-15 -2498 ((-3 |t#1| "failed") |t#1|)) (-15 -2112 ((-3 |t#1| "failed") |t#1|)) (-15 -2972 ((-3 |t#1| "failed") |t#1|)) (-15 -2059 ((-3 |t#1| "failed") |t#1|)) (-15 -1929 ((-3 |t#1| "failed") |t#1|)) (-15 -1471 ((-3 |t#1| "failed") |t#1|)) (-15 -2533 ((-3 |t#1| "failed") |t#1|)) (-15 -2699 ((-3 |t#1| "failed") |t#1|)) (-15 -1911 ((-3 |t#1| "failed") |t#1|))))
+((-1407 ((|#4| |#4| (-587 |#3|)) 56) ((|#4| |#4| |#3|) 55)) (-1944 ((|#4| |#4| (-587 |#3|)) 23) ((|#4| |#4| |#3|) 19)) (-1390 ((|#4| (-1 |#4| (-881 |#1|)) |#4|) 30)))
+(((-910 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1944 (|#4| |#4| |#3|)) (-15 -1944 (|#4| |#4| (-587 |#3|))) (-15 -1407 (|#4| |#4| |#3|)) (-15 -1407 (|#4| |#4| (-587 |#3|))) (-15 -1390 (|#4| (-1 |#4| (-881 |#1|)) |#4|))) (-970) (-729) (-13 (-784) (-10 -8 (-15 -1430 ((-1084) $)) (-15 -1611 ((-3 $ "failed") (-1084))))) (-878 (-881 |#1|) |#2| |#3|)) (T -910))
+((-1390 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-881 *4))) (-4 *4 (-970)) (-4 *2 (-878 (-881 *4) *5 *6)) (-4 *5 (-729)) (-4 *6 (-13 (-784) (-10 -8 (-15 -1430 ((-1084) $)) (-15 -1611 ((-3 $ "failed") (-1084)))))) (-5 *1 (-910 *4 *5 *6 *2)))) (-1407 (*1 *2 *2 *3) (-12 (-5 *3 (-587 *6)) (-4 *6 (-13 (-784) (-10 -8 (-15 -1430 ((-1084) $)) (-15 -1611 ((-3 $ "failed") (-1084)))))) (-4 *4 (-970)) (-4 *5 (-729)) (-5 *1 (-910 *4 *5 *6 *2)) (-4 *2 (-878 (-881 *4) *5 *6)))) (-1407 (*1 *2 *2 *3) (-12 (-4 *4 (-970)) (-4 *5 (-729)) (-4 *3 (-13 (-784) (-10 -8 (-15 -1430 ((-1084) $)) (-15 -1611 ((-3 $ "failed") (-1084)))))) (-5 *1 (-910 *4 *5 *3 *2)) (-4 *2 (-878 (-881 *4) *5 *3)))) (-1944 (*1 *2 *2 *3) (-12 (-5 *3 (-587 *6)) (-4 *6 (-13 (-784) (-10 -8 (-15 -1430 ((-1084) $)) (-15 -1611 ((-3 $ "failed") (-1084)))))) (-4 *4 (-970)) (-4 *5 (-729)) (-5 *1 (-910 *4 *5 *6 *2)) (-4 *2 (-878 (-881 *4) *5 *6)))) (-1944 (*1 *2 *2 *3) (-12 (-4 *4 (-970)) (-4 *5 (-729)) (-4 *3 (-13 (-784) (-10 -8 (-15 -1430 ((-1084) $)) (-15 -1611 ((-3 $ "failed") (-1084)))))) (-5 *1 (-910 *4 *5 *3 *2)) (-4 *2 (-878 (-881 *4) *5 *3)))))
+(-10 -7 (-15 -1944 (|#4| |#4| |#3|)) (-15 -1944 (|#4| |#4| (-587 |#3|))) (-15 -1407 (|#4| |#4| |#3|)) (-15 -1407 (|#4| |#4| (-587 |#3|))) (-15 -1390 (|#4| (-1 |#4| (-881 |#1|)) |#4|)))
+((-2232 ((|#2| |#3|) 34)) (-2615 (((-2 (|:| -2470 (-627 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-627 |#2|))) |#2|) 71)) (-3545 (((-2 (|:| -2470 (-627 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-627 |#2|)))) 86)))
+(((-911 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3545 ((-2 (|:| -2470 (-627 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-627 |#2|))))) (-15 -2615 ((-2 (|:| -2470 (-627 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-627 |#2|))) |#2|)) (-15 -2232 (|#2| |#3|))) (-323) (-1141 |#1|) (-1141 |#2|) (-661 |#2| |#3|)) (T -911))
+((-2232 (*1 *2 *3) (-12 (-4 *3 (-1141 *2)) (-4 *2 (-1141 *4)) (-5 *1 (-911 *4 *2 *3 *5)) (-4 *4 (-323)) (-4 *5 (-661 *2 *3)))) (-2615 (*1 *2 *3) (-12 (-4 *4 (-323)) (-4 *3 (-1141 *4)) (-4 *5 (-1141 *3)) (-5 *2 (-2 (|:| -2470 (-627 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-627 *3)))) (-5 *1 (-911 *4 *3 *5 *6)) (-4 *6 (-661 *3 *5)))) (-3545 (*1 *2) (-12 (-4 *3 (-323)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 *4)) (-5 *2 (-2 (|:| -2470 (-627 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-627 *4)))) (-5 *1 (-911 *3 *4 *5 *6)) (-4 *6 (-661 *4 *5)))))
+(-10 -7 (-15 -3545 ((-2 (|:| -2470 (-627 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-627 |#2|))))) (-15 -2615 ((-2 (|:| -2470 (-627 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-627 |#2|))) |#2|)) (-15 -2232 (|#2| |#3|)))
+((-2829 (((-913 (-381 (-521)) (-794 |#1|) (-217 |#2| (-707)) (-224 |#1| (-381 (-521)))) (-913 (-381 (-521)) (-794 |#1|) (-217 |#2| (-707)) (-224 |#1| (-381 (-521))))) 65)))
+(((-912 |#1| |#2|) (-10 -7 (-15 -2829 ((-913 (-381 (-521)) (-794 |#1|) (-217 |#2| (-707)) (-224 |#1| (-381 (-521)))) (-913 (-381 (-521)) (-794 |#1|) (-217 |#2| (-707)) (-224 |#1| (-381 (-521))))))) (-587 (-1084)) (-707)) (T -912))
+((-2829 (*1 *2 *2) (-12 (-5 *2 (-913 (-381 (-521)) (-794 *3) (-217 *4 (-707)) (-224 *3 (-381 (-521))))) (-14 *3 (-587 (-1084))) (-14 *4 (-707)) (-5 *1 (-912 *3 *4)))))
+(-10 -7 (-15 -2829 ((-913 (-381 (-521)) (-794 |#1|) (-217 |#2| (-707)) (-224 |#1| (-381 (-521)))) (-913 (-381 (-521)) (-794 |#1|) (-217 |#2| (-707)) (-224 |#1| (-381 (-521)))))))
+((-1415 (((-108) $ $) NIL)) (-2827 (((-3 (-108) "failed") $) 67)) (-2254 (($ $) 35 (-12 (|has| |#1| (-135)) (|has| |#1| (-282))))) (-2396 (($ $ (-3 (-108) "failed")) 68)) (-3002 (($ (-587 |#4|) |#4|) 24)) (-3688 (((-1067) $) NIL)) (-3692 (($ $) 65)) (-4147 (((-1031) $) NIL)) (-3462 (((-108) $) 66)) (-4024 (($) 29)) (-3446 ((|#4| $) 70)) (-3534 (((-587 |#4|) $) 69)) (-2189 (((-792) $) 64)) (-1531 (((-108) $ $) NIL)))
+(((-913 |#1| |#2| |#3| |#4|) (-13 (-1013) (-561 (-792)) (-10 -8 (-15 -4024 ($)) (-15 -3002 ($ (-587 |#4|) |#4|)) (-15 -2827 ((-3 (-108) "failed") $)) (-15 -2396 ($ $ (-3 (-108) "failed"))) (-15 -3462 ((-108) $)) (-15 -3534 ((-587 |#4|) $)) (-15 -3446 (|#4| $)) (-15 -3692 ($ $)) (IF (|has| |#1| (-282)) (IF (|has| |#1| (-135)) (-15 -2254 ($ $)) |%noBranch|) |%noBranch|))) (-425) (-784) (-729) (-878 |#1| |#3| |#2|)) (T -913))
+((-4024 (*1 *1) (-12 (-4 *2 (-425)) (-4 *3 (-784)) (-4 *4 (-729)) (-5 *1 (-913 *2 *3 *4 *5)) (-4 *5 (-878 *2 *4 *3)))) (-3002 (*1 *1 *2 *3) (-12 (-5 *2 (-587 *3)) (-4 *3 (-878 *4 *6 *5)) (-4 *4 (-425)) (-4 *5 (-784)) (-4 *6 (-729)) (-5 *1 (-913 *4 *5 *6 *3)))) (-2827 (*1 *2 *1) (|partial| -12 (-4 *3 (-425)) (-4 *4 (-784)) (-4 *5 (-729)) (-5 *2 (-108)) (-5 *1 (-913 *3 *4 *5 *6)) (-4 *6 (-878 *3 *5 *4)))) (-2396 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-108) "failed")) (-4 *3 (-425)) (-4 *4 (-784)) (-4 *5 (-729)) (-5 *1 (-913 *3 *4 *5 *6)) (-4 *6 (-878 *3 *5 *4)))) (-3462 (*1 *2 *1) (-12 (-4 *3 (-425)) (-4 *4 (-784)) (-4 *5 (-729)) (-5 *2 (-108)) (-5 *1 (-913 *3 *4 *5 *6)) (-4 *6 (-878 *3 *5 *4)))) (-3534 (*1 *2 *1) (-12 (-4 *3 (-425)) (-4 *4 (-784)) (-4 *5 (-729)) (-5 *2 (-587 *6)) (-5 *1 (-913 *3 *4 *5 *6)) (-4 *6 (-878 *3 *5 *4)))) (-3446 (*1 *2 *1) (-12 (-4 *2 (-878 *3 *5 *4)) (-5 *1 (-913 *3 *4 *5 *2)) (-4 *3 (-425)) (-4 *4 (-784)) (-4 *5 (-729)))) (-3692 (*1 *1 *1) (-12 (-4 *2 (-425)) (-4 *3 (-784)) (-4 *4 (-729)) (-5 *1 (-913 *2 *3 *4 *5)) (-4 *5 (-878 *2 *4 *3)))) (-2254 (*1 *1 *1) (-12 (-4 *2 (-135)) (-4 *2 (-282)) (-4 *2 (-425)) (-4 *3 (-784)) (-4 *4 (-729)) (-5 *1 (-913 *2 *3 *4 *5)) (-4 *5 (-878 *2 *4 *3)))))
+(-13 (-1013) (-561 (-792)) (-10 -8 (-15 -4024 ($)) (-15 -3002 ($ (-587 |#4|) |#4|)) (-15 -2827 ((-3 (-108) "failed") $)) (-15 -2396 ($ $ (-3 (-108) "failed"))) (-15 -3462 ((-108) $)) (-15 -3534 ((-587 |#4|) $)) (-15 -3446 (|#4| $)) (-15 -3692 ($ $)) (IF (|has| |#1| (-282)) (IF (|has| |#1| (-135)) (-15 -2254 ($ $)) |%noBranch|) |%noBranch|)))
+((-2266 (((-108) |#5| |#5|) 38)) (-1414 (((-108) |#5| |#5|) 52)) (-3521 (((-108) |#5| (-587 |#5|)) 74) (((-108) |#5| |#5|) 61)) (-1250 (((-108) (-587 |#4|) (-587 |#4|)) 58)) (-3391 (((-108) (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|)) (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))) 63)) (-2520 (((-1170)) 33)) (-2841 (((-1170) (-1067) (-1067) (-1067)) 29)) (-3684 (((-587 |#5|) (-587 |#5|)) 81)) (-3560 (((-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))) (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|)))) 79)) (-3470 (((-587 (-2 (|:| -3192 (-587 |#4|)) (|:| -1884 |#5|) (|:| |ineq| (-587 |#4|)))) (-587 |#4|) (-587 |#5|) (-108) (-108)) 101)) (-1934 (((-108) |#5| |#5|) 47)) (-4157 (((-3 (-108) "failed") |#5| |#5|) 71)) (-4186 (((-108) (-587 |#4|) (-587 |#4|)) 57)) (-3103 (((-108) (-587 |#4|) (-587 |#4|)) 59)) (-2146 (((-108) (-587 |#4|) (-587 |#4|)) 60)) (-2582 (((-3 (-2 (|:| -3192 (-587 |#4|)) (|:| -1884 |#5|) (|:| |ineq| (-587 |#4|))) "failed") (-587 |#4|) |#5| (-587 |#4|) (-108) (-108) (-108) (-108) (-108)) 97)) (-3134 (((-587 |#5|) (-587 |#5|)) 43)))
+(((-914 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2841 ((-1170) (-1067) (-1067) (-1067))) (-15 -2520 ((-1170))) (-15 -2266 ((-108) |#5| |#5|)) (-15 -3134 ((-587 |#5|) (-587 |#5|))) (-15 -1934 ((-108) |#5| |#5|)) (-15 -1414 ((-108) |#5| |#5|)) (-15 -1250 ((-108) (-587 |#4|) (-587 |#4|))) (-15 -4186 ((-108) (-587 |#4|) (-587 |#4|))) (-15 -3103 ((-108) (-587 |#4|) (-587 |#4|))) (-15 -2146 ((-108) (-587 |#4|) (-587 |#4|))) (-15 -4157 ((-3 (-108) "failed") |#5| |#5|)) (-15 -3521 ((-108) |#5| |#5|)) (-15 -3521 ((-108) |#5| (-587 |#5|))) (-15 -3684 ((-587 |#5|) (-587 |#5|))) (-15 -3391 ((-108) (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|)) (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|)))) (-15 -3560 ((-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))) (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))))) (-15 -3470 ((-587 (-2 (|:| -3192 (-587 |#4|)) (|:| -1884 |#5|) (|:| |ineq| (-587 |#4|)))) (-587 |#4|) (-587 |#5|) (-108) (-108))) (-15 -2582 ((-3 (-2 (|:| -3192 (-587 |#4|)) (|:| -1884 |#5|) (|:| |ineq| (-587 |#4|))) "failed") (-587 |#4|) |#5| (-587 |#4|) (-108) (-108) (-108) (-108) (-108)))) (-425) (-729) (-784) (-984 |#1| |#2| |#3|) (-989 |#1| |#2| |#3| |#4|)) (T -914))
+((-2582 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-108)) (-4 *6 (-425)) (-4 *7 (-729)) (-4 *8 (-784)) (-4 *9 (-984 *6 *7 *8)) (-5 *2 (-2 (|:| -3192 (-587 *9)) (|:| -1884 *4) (|:| |ineq| (-587 *9)))) (-5 *1 (-914 *6 *7 *8 *9 *4)) (-5 *3 (-587 *9)) (-4 *4 (-989 *6 *7 *8 *9)))) (-3470 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-587 *10)) (-5 *5 (-108)) (-4 *10 (-989 *6 *7 *8 *9)) (-4 *6 (-425)) (-4 *7 (-729)) (-4 *8 (-784)) (-4 *9 (-984 *6 *7 *8)) (-5 *2 (-587 (-2 (|:| -3192 (-587 *9)) (|:| -1884 *10) (|:| |ineq| (-587 *9))))) (-5 *1 (-914 *6 *7 *8 *9 *10)) (-5 *3 (-587 *9)))) (-3560 (*1 *2 *2) (-12 (-5 *2 (-587 (-2 (|:| |val| (-587 *6)) (|:| -1884 *7)))) (-4 *6 (-984 *3 *4 *5)) (-4 *7 (-989 *3 *4 *5 *6)) (-4 *3 (-425)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *1 (-914 *3 *4 *5 *6 *7)))) (-3391 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-587 *7)) (|:| -1884 *8))) (-4 *7 (-984 *4 *5 *6)) (-4 *8 (-989 *4 *5 *6 *7)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-108)) (-5 *1 (-914 *4 *5 *6 *7 *8)))) (-3684 (*1 *2 *2) (-12 (-5 *2 (-587 *7)) (-4 *7 (-989 *3 *4 *5 *6)) (-4 *3 (-425)) (-4 *4 (-729)) (-4 *5 (-784)) (-4 *6 (-984 *3 *4 *5)) (-5 *1 (-914 *3 *4 *5 *6 *7)))) (-3521 (*1 *2 *3 *4) (-12 (-5 *4 (-587 *3)) (-4 *3 (-989 *5 *6 *7 *8)) (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784)) (-4 *8 (-984 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-914 *5 *6 *7 *8 *3)))) (-3521 (*1 *2 *3 *3) (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784)) (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-914 *4 *5 *6 *7 *3)) (-4 *3 (-989 *4 *5 *6 *7)))) (-4157 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784)) (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-914 *4 *5 *6 *7 *3)) (-4 *3 (-989 *4 *5 *6 *7)))) (-2146 (*1 *2 *3 *3) (-12 (-5 *3 (-587 *7)) (-4 *7 (-984 *4 *5 *6)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-108)) (-5 *1 (-914 *4 *5 *6 *7 *8)) (-4 *8 (-989 *4 *5 *6 *7)))) (-3103 (*1 *2 *3 *3) (-12 (-5 *3 (-587 *7)) (-4 *7 (-984 *4 *5 *6)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-108)) (-5 *1 (-914 *4 *5 *6 *7 *8)) (-4 *8 (-989 *4 *5 *6 *7)))) (-4186 (*1 *2 *3 *3) (-12 (-5 *3 (-587 *7)) (-4 *7 (-984 *4 *5 *6)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-108)) (-5 *1 (-914 *4 *5 *6 *7 *8)) (-4 *8 (-989 *4 *5 *6 *7)))) (-1250 (*1 *2 *3 *3) (-12 (-5 *3 (-587 *7)) (-4 *7 (-984 *4 *5 *6)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-108)) (-5 *1 (-914 *4 *5 *6 *7 *8)) (-4 *8 (-989 *4 *5 *6 *7)))) (-1414 (*1 *2 *3 *3) (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784)) (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-914 *4 *5 *6 *7 *3)) (-4 *3 (-989 *4 *5 *6 *7)))) (-1934 (*1 *2 *3 *3) (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784)) (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-914 *4 *5 *6 *7 *3)) (-4 *3 (-989 *4 *5 *6 *7)))) (-3134 (*1 *2 *2) (-12 (-5 *2 (-587 *7)) (-4 *7 (-989 *3 *4 *5 *6)) (-4 *3 (-425)) (-4 *4 (-729)) (-4 *5 (-784)) (-4 *6 (-984 *3 *4 *5)) (-5 *1 (-914 *3 *4 *5 *6 *7)))) (-2266 (*1 *2 *3 *3) (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784)) (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-914 *4 *5 *6 *7 *3)) (-4 *3 (-989 *4 *5 *6 *7)))) (-2520 (*1 *2) (-12 (-4 *3 (-425)) (-4 *4 (-729)) (-4 *5 (-784)) (-4 *6 (-984 *3 *4 *5)) (-5 *2 (-1170)) (-5 *1 (-914 *3 *4 *5 *6 *7)) (-4 *7 (-989 *3 *4 *5 *6)))) (-2841 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1067)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784)) (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-1170)) (-5 *1 (-914 *4 *5 *6 *7 *8)) (-4 *8 (-989 *4 *5 *6 *7)))))
+(-10 -7 (-15 -2841 ((-1170) (-1067) (-1067) (-1067))) (-15 -2520 ((-1170))) (-15 -2266 ((-108) |#5| |#5|)) (-15 -3134 ((-587 |#5|) (-587 |#5|))) (-15 -1934 ((-108) |#5| |#5|)) (-15 -1414 ((-108) |#5| |#5|)) (-15 -1250 ((-108) (-587 |#4|) (-587 |#4|))) (-15 -4186 ((-108) (-587 |#4|) (-587 |#4|))) (-15 -3103 ((-108) (-587 |#4|) (-587 |#4|))) (-15 -2146 ((-108) (-587 |#4|) (-587 |#4|))) (-15 -4157 ((-3 (-108) "failed") |#5| |#5|)) (-15 -3521 ((-108) |#5| |#5|)) (-15 -3521 ((-108) |#5| (-587 |#5|))) (-15 -3684 ((-587 |#5|) (-587 |#5|))) (-15 -3391 ((-108) (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|)) (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|)))) (-15 -3560 ((-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))) (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))))) (-15 -3470 ((-587 (-2 (|:| -3192 (-587 |#4|)) (|:| -1884 |#5|) (|:| |ineq| (-587 |#4|)))) (-587 |#4|) (-587 |#5|) (-108) (-108))) (-15 -2582 ((-3 (-2 (|:| -3192 (-587 |#4|)) (|:| -1884 |#5|) (|:| |ineq| (-587 |#4|))) "failed") (-587 |#4|) |#5| (-587 |#4|) (-108) (-108) (-108) (-108) (-108))))
+((-1611 (((-1084) $) 15)) (-3430 (((-1067) $) 16)) (-1608 (($ (-1084) (-1067)) 14)) (-2189 (((-792) $) 13)))
+(((-915) (-13 (-561 (-792)) (-10 -8 (-15 -1608 ($ (-1084) (-1067))) (-15 -1611 ((-1084) $)) (-15 -3430 ((-1067) $))))) (T -915))
+((-1608 (*1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-1067)) (-5 *1 (-915)))) (-1611 (*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-915)))) (-3430 (*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-915)))))
+(-13 (-561 (-792)) (-10 -8 (-15 -1608 ($ (-1084) (-1067))) (-15 -1611 ((-1084) $)) (-15 -3430 ((-1067) $))))
+((-1390 ((|#4| (-1 |#2| |#1|) |#3|) 14)))
+(((-916 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1390 (|#4| (-1 |#2| |#1|) |#3|))) (-513) (-513) (-918 |#1|) (-918 |#2|)) (T -916))
+((-1390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-513)) (-4 *6 (-513)) (-4 *2 (-918 *6)) (-5 *1 (-916 *5 *6 *4 *2)) (-4 *4 (-918 *5)))))
+(-10 -7 (-15 -1390 (|#4| (-1 |#2| |#1|) |#3|)))
+((-1297 (((-3 |#2| "failed") $) NIL) (((-3 (-1084) "failed") $) 65) (((-3 (-381 (-521)) "failed") $) NIL) (((-3 (-521) "failed") $) 95)) (-1483 ((|#2| $) NIL) (((-1084) $) 60) (((-381 (-521)) $) NIL) (((-521) $) 92)) (-3279 (((-627 (-521)) (-627 $)) NIL) (((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL) (((-2 (|:| -1201 (-627 |#2|)) (|:| |vec| (-1165 |#2|))) (-627 $) (-1165 $)) 112) (((-627 |#2|) (-627 $)) 28)) (-3250 (($) 98)) (-3427 (((-818 (-521) $) $ (-821 (-521)) (-818 (-521) $)) 74) (((-818 (-353) $) $ (-821 (-353)) (-818 (-353) $)) 83)) (-3257 (($ $) 10)) (-3842 (((-3 $ "failed") $) 20)) (-1390 (($ (-1 |#2| |#2|) $) 22)) (-3797 (($) 16)) (-2850 (($ $) 54)) (-2156 (($ $) NIL) (($ $ (-707)) NIL) (($ $ (-1084)) NIL) (($ $ (-587 (-1084))) NIL) (($ $ (-1084) (-707)) NIL) (($ $ (-587 (-1084)) (-587 (-707))) NIL) (($ $ (-1 |#2| |#2|) (-707)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-4142 (($ $) 12)) (-1430 (((-821 (-521)) $) 69) (((-821 (-353)) $) 78) (((-497) $) 40) (((-353) $) 44) (((-202) $) 47)) (-2189 (((-792) $) NIL) (($ (-521)) NIL) (($ $) NIL) (($ (-381 (-521))) 90) (($ |#2|) NIL) (($ (-1084)) 57)) (-3846 (((-707)) 31)) (-1549 (((-108) $ $) 50)))
+(((-917 |#1| |#2|) (-10 -8 (-15 -1549 ((-108) |#1| |#1|)) (-15 -3797 (|#1|)) (-15 -3842 ((-3 |#1| "failed") |#1|)) (-15 -1483 ((-521) |#1|)) (-15 -1297 ((-3 (-521) "failed") |#1|)) (-15 -1483 ((-381 (-521)) |#1|)) (-15 -1297 ((-3 (-381 (-521)) "failed") |#1|)) (-15 -1430 ((-202) |#1|)) (-15 -1430 ((-353) |#1|)) (-15 -1430 ((-497) |#1|)) (-15 -1483 ((-1084) |#1|)) (-15 -1297 ((-3 (-1084) "failed") |#1|)) (-15 -2189 (|#1| (-1084))) (-15 -3250 (|#1|)) (-15 -2850 (|#1| |#1|)) (-15 -4142 (|#1| |#1|)) (-15 -3257 (|#1| |#1|)) (-15 -3427 ((-818 (-353) |#1|) |#1| (-821 (-353)) (-818 (-353) |#1|))) (-15 -3427 ((-818 (-521) |#1|) |#1| (-821 (-521)) (-818 (-521) |#1|))) (-15 -1430 ((-821 (-353)) |#1|)) (-15 -1430 ((-821 (-521)) |#1|)) (-15 -3279 ((-627 |#2|) (-627 |#1|))) (-15 -3279 ((-2 (|:| -1201 (-627 |#2|)) (|:| |vec| (-1165 |#2|))) (-627 |#1|) (-1165 |#1|))) (-15 -3279 ((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 |#1|) (-1165 |#1|))) (-15 -3279 ((-627 (-521)) (-627 |#1|))) (-15 -2156 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2156 (|#1| |#1| (-1 |#2| |#2|) (-707))) (-15 -2156 (|#1| |#1| (-587 (-1084)) (-587 (-707)))) (-15 -2156 (|#1| |#1| (-1084) (-707))) (-15 -2156 (|#1| |#1| (-587 (-1084)))) (-15 -2156 (|#1| |#1| (-1084))) (-15 -2156 (|#1| |#1| (-707))) (-15 -2156 (|#1| |#1|)) (-15 -1390 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1483 (|#2| |#1|)) (-15 -1297 ((-3 |#2| "failed") |#1|)) (-15 -2189 (|#1| |#2|)) (-15 -2189 (|#1| (-381 (-521)))) (-15 -2189 (|#1| |#1|)) (-15 -2189 (|#1| (-521))) (-15 -3846 ((-707))) (-15 -2189 ((-792) |#1|))) (-918 |#2|) (-513)) (T -917))
+((-3846 (*1 *2) (-12 (-4 *4 (-513)) (-5 *2 (-707)) (-5 *1 (-917 *3 *4)) (-4 *3 (-918 *4)))))
+(-10 -8 (-15 -1549 ((-108) |#1| |#1|)) (-15 -3797 (|#1|)) (-15 -3842 ((-3 |#1| "failed") |#1|)) (-15 -1483 ((-521) |#1|)) (-15 -1297 ((-3 (-521) "failed") |#1|)) (-15 -1483 ((-381 (-521)) |#1|)) (-15 -1297 ((-3 (-381 (-521)) "failed") |#1|)) (-15 -1430 ((-202) |#1|)) (-15 -1430 ((-353) |#1|)) (-15 -1430 ((-497) |#1|)) (-15 -1483 ((-1084) |#1|)) (-15 -1297 ((-3 (-1084) "failed") |#1|)) (-15 -2189 (|#1| (-1084))) (-15 -3250 (|#1|)) (-15 -2850 (|#1| |#1|)) (-15 -4142 (|#1| |#1|)) (-15 -3257 (|#1| |#1|)) (-15 -3427 ((-818 (-353) |#1|) |#1| (-821 (-353)) (-818 (-353) |#1|))) (-15 -3427 ((-818 (-521) |#1|) |#1| (-821 (-521)) (-818 (-521) |#1|))) (-15 -1430 ((-821 (-353)) |#1|)) (-15 -1430 ((-821 (-521)) |#1|)) (-15 -3279 ((-627 |#2|) (-627 |#1|))) (-15 -3279 ((-2 (|:| -1201 (-627 |#2|)) (|:| |vec| (-1165 |#2|))) (-627 |#1|) (-1165 |#1|))) (-15 -3279 ((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 |#1|) (-1165 |#1|))) (-15 -3279 ((-627 (-521)) (-627 |#1|))) (-15 -2156 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2156 (|#1| |#1| (-1 |#2| |#2|) (-707))) (-15 -2156 (|#1| |#1| (-587 (-1084)) (-587 (-707)))) (-15 -2156 (|#1| |#1| (-1084) (-707))) (-15 -2156 (|#1| |#1| (-587 (-1084)))) (-15 -2156 (|#1| |#1| (-1084))) (-15 -2156 (|#1| |#1| (-707))) (-15 -2156 (|#1| |#1|)) (-15 -1390 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1483 (|#2| |#1|)) (-15 -1297 ((-3 |#2| "failed") |#1|)) (-15 -2189 (|#1| |#2|)) (-15 -2189 (|#1| (-381 (-521)))) (-15 -2189 (|#1| |#1|)) (-15 -2189 (|#1| (-521))) (-15 -3846 ((-707))) (-15 -2189 ((-792) |#1|)))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-2086 ((|#1| $) 139 (|has| |#1| (-282)))) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) 41)) (-2559 (($ $) 40)) (-1733 (((-108) $) 38)) (-1232 (((-3 $ "failed") $ $) 19)) (-2598 (((-392 (-1080 $)) (-1080 $)) 130 (|has| |#1| (-838)))) (-3063 (($ $) 73)) (-3358 (((-392 $) $) 72)) (-2569 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) 133 (|has| |#1| (-838)))) (-1389 (((-108) $ $) 59)) (-1606 (((-521) $) 120 (|has| |#1| (-757)))) (-2547 (($) 17 T CONST)) (-1297 (((-3 |#1| "failed") $) 178) (((-3 (-1084) "failed") $) 128 (|has| |#1| (-961 (-1084)))) (((-3 (-381 (-521)) "failed") $) 112 (|has| |#1| (-961 (-521)))) (((-3 (-521) "failed") $) 110 (|has| |#1| (-961 (-521))))) (-1483 ((|#1| $) 177) (((-1084) $) 127 (|has| |#1| (-961 (-1084)))) (((-381 (-521)) $) 111 (|has| |#1| (-961 (-521)))) (((-521) $) 109 (|has| |#1| (-961 (-521))))) (-2277 (($ $ $) 55)) (-3279 (((-627 (-521)) (-627 $)) 152 (|has| |#1| (-583 (-521)))) (((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) 151 (|has| |#1| (-583 (-521)))) (((-2 (|:| -1201 (-627 |#1|)) (|:| |vec| (-1165 |#1|))) (-627 $) (-1165 $)) 150) (((-627 |#1|) (-627 $)) 149)) (-1257 (((-3 $ "failed") $) 34)) (-3250 (($) 137 (|has| |#1| (-506)))) (-2253 (($ $ $) 56)) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) 51)) (-2710 (((-108) $) 71)) (-3951 (((-108) $) 122 (|has| |#1| (-757)))) (-3427 (((-818 (-521) $) $ (-821 (-521)) (-818 (-521) $)) 146 (|has| |#1| (-815 (-521)))) (((-818 (-353) $) $ (-821 (-353)) (-818 (-353) $)) 145 (|has| |#1| (-815 (-353))))) (-3996 (((-108) $) 31)) (-3257 (($ $) 141)) (-2801 ((|#1| $) 143)) (-3842 (((-3 $ "failed") $) 108 (|has| |#1| (-1060)))) (-2210 (((-108) $) 121 (|has| |#1| (-757)))) (-1546 (((-3 (-587 $) "failed") (-587 $) $) 52)) (-2810 (($ $ $) 118 (|has| |#1| (-784)))) (-2446 (($ $ $) 117 (|has| |#1| (-784)))) (-1390 (($ (-1 |#1| |#1|) $) 169)) (-2223 (($ $ $) 46) (($ (-587 $)) 45)) (-3688 (((-1067) $) 9)) (-3095 (($ $) 70)) (-3797 (($) 107 (|has| |#1| (-1060)) CONST)) (-4147 (((-1031) $) 10)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) 44)) (-2258 (($ $ $) 48) (($ (-587 $)) 47)) (-2850 (($ $) 138 (|has| |#1| (-282)))) (-2567 ((|#1| $) 135 (|has| |#1| (-506)))) (-1912 (((-392 (-1080 $)) (-1080 $)) 132 (|has| |#1| (-838)))) (-2165 (((-392 (-1080 $)) (-1080 $)) 131 (|has| |#1| (-838)))) (-1916 (((-392 $) $) 74)) (-1962 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2230 (((-3 $ "failed") $ $) 42)) (-3854 (((-3 (-587 $) "failed") (-587 $) $) 50)) (-2288 (($ $ (-587 |#1|) (-587 |#1|)) 175 (|has| |#1| (-284 |#1|))) (($ $ |#1| |#1|) 174 (|has| |#1| (-284 |#1|))) (($ $ (-269 |#1|)) 173 (|has| |#1| (-284 |#1|))) (($ $ (-587 (-269 |#1|))) 172 (|has| |#1| (-284 |#1|))) (($ $ (-587 (-1084)) (-587 |#1|)) 171 (|has| |#1| (-482 (-1084) |#1|))) (($ $ (-1084) |#1|) 170 (|has| |#1| (-482 (-1084) |#1|)))) (-4196 (((-707) $) 58)) (-2544 (($ $ |#1|) 176 (|has| |#1| (-261 |#1| |#1|)))) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) 57)) (-2156 (($ $) 168 (|has| |#1| (-210))) (($ $ (-707)) 166 (|has| |#1| (-210))) (($ $ (-1084)) 164 (|has| |#1| (-829 (-1084)))) (($ $ (-587 (-1084))) 163 (|has| |#1| (-829 (-1084)))) (($ $ (-1084) (-707)) 162 (|has| |#1| (-829 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) 161 (|has| |#1| (-829 (-1084)))) (($ $ (-1 |#1| |#1|) (-707)) 154) (($ $ (-1 |#1| |#1|)) 153)) (-4142 (($ $) 140)) (-2812 ((|#1| $) 142)) (-1430 (((-821 (-521)) $) 148 (|has| |#1| (-562 (-821 (-521))))) (((-821 (-353)) $) 147 (|has| |#1| (-562 (-821 (-353))))) (((-497) $) 125 (|has| |#1| (-562 (-497)))) (((-353) $) 124 (|has| |#1| (-946))) (((-202) $) 123 (|has| |#1| (-946)))) (-2944 (((-3 (-1165 $) "failed") (-627 $)) 134 (-4009 (|has| $ (-133)) (|has| |#1| (-838))))) (-2189 (((-792) $) 11) (($ (-521)) 28) (($ $) 43) (($ (-381 (-521))) 65) (($ |#1|) 181) (($ (-1084)) 129 (|has| |#1| (-961 (-1084))))) (-1671 (((-3 $ "failed") $) 126 (-3703 (|has| |#1| (-133)) (-4009 (|has| $ (-133)) (|has| |#1| (-838)))))) (-3846 (((-707)) 29)) (-2382 ((|#1| $) 136 (|has| |#1| (-506)))) (-4210 (((-108) $ $) 39)) (-3304 (($ $) 119 (|has| |#1| (-757)))) (-3505 (($ $ (-850)) 26) (($ $ (-707)) 33) (($ $ (-521)) 69)) (-3561 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-2212 (($ $) 167 (|has| |#1| (-210))) (($ $ (-707)) 165 (|has| |#1| (-210))) (($ $ (-1084)) 160 (|has| |#1| (-829 (-1084)))) (($ $ (-587 (-1084))) 159 (|has| |#1| (-829 (-1084)))) (($ $ (-1084) (-707)) 158 (|has| |#1| (-829 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) 157 (|has| |#1| (-829 (-1084)))) (($ $ (-1 |#1| |#1|) (-707)) 156) (($ $ (-1 |#1| |#1|)) 155)) (-1574 (((-108) $ $) 115 (|has| |#1| (-784)))) (-1558 (((-108) $ $) 114 (|has| |#1| (-784)))) (-1531 (((-108) $ $) 6)) (-1566 (((-108) $ $) 116 (|has| |#1| (-784)))) (-1549 (((-108) $ $) 113 (|has| |#1| (-784)))) (-1620 (($ $ $) 64) (($ |#1| |#1|) 144)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-707)) 32) (($ $ (-521)) 68)) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ $ (-381 (-521))) 67) (($ (-381 (-521)) $) 66) (($ |#1| $) 180) (($ $ |#1|) 179)))
+(((-918 |#1|) (-1196) (-513)) (T -918))
+((-1620 (*1 *1 *2 *2) (-12 (-4 *1 (-918 *2)) (-4 *2 (-513)))) (-2801 (*1 *2 *1) (-12 (-4 *1 (-918 *2)) (-4 *2 (-513)))) (-2812 (*1 *2 *1) (-12 (-4 *1 (-918 *2)) (-4 *2 (-513)))) (-3257 (*1 *1 *1) (-12 (-4 *1 (-918 *2)) (-4 *2 (-513)))) (-4142 (*1 *1 *1) (-12 (-4 *1 (-918 *2)) (-4 *2 (-513)))) (-2086 (*1 *2 *1) (-12 (-4 *1 (-918 *2)) (-4 *2 (-513)) (-4 *2 (-282)))) (-2850 (*1 *1 *1) (-12 (-4 *1 (-918 *2)) (-4 *2 (-513)) (-4 *2 (-282)))) (-3250 (*1 *1) (-12 (-4 *1 (-918 *2)) (-4 *2 (-506)) (-4 *2 (-513)))) (-2382 (*1 *2 *1) (-12 (-4 *1 (-918 *2)) (-4 *2 (-513)) (-4 *2 (-506)))) (-2567 (*1 *2 *1) (-12 (-4 *1 (-918 *2)) (-4 *2 (-513)) (-4 *2 (-506)))))
+(-13 (-337) (-37 |t#1|) (-961 |t#1|) (-312 |t#1|) (-208 |t#1|) (-351 |t#1|) (-813 |t#1|) (-374 |t#1|) (-10 -8 (-15 -1620 ($ |t#1| |t#1|)) (-15 -2801 (|t#1| $)) (-15 -2812 (|t#1| $)) (-15 -3257 ($ $)) (-15 -4142 ($ $)) (IF (|has| |t#1| (-1060)) (-6 (-1060)) |%noBranch|) (IF (|has| |t#1| (-961 (-521))) (PROGN (-6 (-961 (-521))) (-6 (-961 (-381 (-521))))) |%noBranch|) (IF (|has| |t#1| (-784)) (-6 (-784)) |%noBranch|) (IF (|has| |t#1| (-757)) (-6 (-757)) |%noBranch|) (IF (|has| |t#1| (-946)) (-6 (-946)) |%noBranch|) (IF (|has| |t#1| (-562 (-497))) (-6 (-562 (-497))) |%noBranch|) (IF (|has| |t#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |t#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |t#1| (-961 (-1084))) (-6 (-961 (-1084))) |%noBranch|) (IF (|has| |t#1| (-282)) (PROGN (-15 -2086 (|t#1| $)) (-15 -2850 ($ $))) |%noBranch|) (IF (|has| |t#1| (-506)) (PROGN (-15 -3250 ($)) (-15 -2382 (|t#1| $)) (-15 -2567 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-838)) (-6 (-838)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-381 (-521))) . T) ((-37 |#1|) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 |#1| |#1|) . T) ((-107 $ $) . T) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-561 (-792)) . T) ((-157) . T) ((-562 (-202)) |has| |#1| (-946)) ((-562 (-353)) |has| |#1| (-946)) ((-562 (-497)) |has| |#1| (-562 (-497))) ((-562 (-821 (-353))) |has| |#1| (-562 (-821 (-353)))) ((-562 (-821 (-521))) |has| |#1| (-562 (-821 (-521)))) ((-208 |#1|) . T) ((-210) |has| |#1| (-210)) ((-220) . T) ((-261 |#1| $) |has| |#1| (-261 |#1| |#1|)) ((-265) . T) ((-282) . T) ((-284 |#1|) |has| |#1| (-284 |#1|)) ((-337) . T) ((-312 |#1|) . T) ((-351 |#1|) . T) ((-374 |#1|) . T) ((-425) . T) ((-482 (-1084) |#1|) |has| |#1| (-482 (-1084) |#1|)) ((-482 |#1| |#1|) |has| |#1| (-284 |#1|)) ((-513) . T) ((-589 #0#) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-583 (-521)) |has| |#1| (-583 (-521))) ((-583 |#1|) . T) ((-654 #0#) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-663) . T) ((-727) |has| |#1| (-757)) ((-728) |has| |#1| (-757)) ((-730) |has| |#1| (-757)) ((-732) |has| |#1| (-757)) ((-757) |has| |#1| (-757)) ((-782) |has| |#1| (-757)) ((-784) -3703 (|has| |#1| (-784)) (|has| |#1| (-757))) ((-829 (-1084)) |has| |#1| (-829 (-1084))) ((-815 (-353)) |has| |#1| (-815 (-353))) ((-815 (-521)) |has| |#1| (-815 (-521))) ((-813 |#1|) . T) ((-838) |has| |#1| (-838)) ((-849) . T) ((-946) |has| |#1| (-946)) ((-961 (-381 (-521))) |has| |#1| (-961 (-521))) ((-961 (-521)) |has| |#1| (-961 (-521))) ((-961 (-1084)) |has| |#1| (-961 (-1084))) ((-961 |#1|) . T) ((-976 #0#) . T) ((-976 |#1|) . T) ((-976 $) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T) ((-1060) |has| |#1| (-1060)) ((-1119) . T) ((-1123) . T))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-1232 (((-3 $ "failed") $ $) NIL)) (-2547 (($) NIL T CONST)) (-4203 (($ (-1051 |#1| |#2|)) 11)) (-1365 (((-1051 |#1| |#2|) $) 12)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2544 ((|#2| $ (-217 |#1| |#2|)) 16)) (-2189 (((-792) $) NIL)) (-3561 (($) NIL T CONST)) (-1531 (((-108) $ $) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL)))
+(((-919 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -4203 ($ (-1051 |#1| |#2|))) (-15 -1365 ((-1051 |#1| |#2|) $)) (-15 -2544 (|#2| $ (-217 |#1| |#2|))))) (-850) (-337)) (T -919))
+((-4203 (*1 *1 *2) (-12 (-5 *2 (-1051 *3 *4)) (-14 *3 (-850)) (-4 *4 (-337)) (-5 *1 (-919 *3 *4)))) (-1365 (*1 *2 *1) (-12 (-5 *2 (-1051 *3 *4)) (-5 *1 (-919 *3 *4)) (-14 *3 (-850)) (-4 *4 (-337)))) (-2544 (*1 *2 *1 *3) (-12 (-5 *3 (-217 *4 *2)) (-14 *4 (-850)) (-4 *2 (-337)) (-5 *1 (-919 *4 *2)))))
+(-13 (-21) (-10 -8 (-15 -4203 ($ (-1051 |#1| |#2|))) (-15 -1365 ((-1051 |#1| |#2|) $)) (-15 -2544 (|#2| $ (-217 |#1| |#2|)))))
+((-1415 (((-108) $ $) 19 (|has| |#1| (-1013)))) (-2978 (((-108) $ (-707)) 8)) (-2547 (($) 7 T CONST)) (-3030 (($ $) 46)) (-3831 (((-587 |#1|) $) 30 (|has| $ (-6 -4233)))) (-2139 (((-108) $ (-707)) 9)) (-3757 (((-587 |#1|) $) 29 (|has| $ (-6 -4233)))) (-2221 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-3833 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#1| |#1|) $) 35)) (-3574 (((-108) $ (-707)) 10)) (-2516 (((-707) $) 45)) (-3688 (((-1067) $) 22 (|has| |#1| (-1013)))) (-2511 ((|#1| $) 39)) (-3373 (($ |#1| $) 40)) (-4147 (((-1031) $) 21 (|has| |#1| (-1013)))) (-1664 ((|#1| $) 44)) (-2166 ((|#1| $) 41)) (-1789 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 |#1|))) 26 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) 25 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) 23 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-2488 (((-108) $ $) 14)) (-2983 ((|#1| |#1| $) 48)) (-3462 (((-108) $) 11)) (-4024 (($) 12)) (-1815 ((|#1| $) 47)) (-4163 (((-707) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4233))) (((-707) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-2404 (($ $) 13)) (-2189 (((-792) $) 18 (|has| |#1| (-561 (-792))))) (-4091 (($ (-587 |#1|)) 42)) (-3009 ((|#1| $) 43)) (-3049 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4233)))) (-1531 (((-108) $ $) 20 (|has| |#1| (-1013)))) (-3475 (((-707) $) 6 (|has| $ (-6 -4233)))))
+(((-920 |#1|) (-1196) (-1119)) (T -920))
+((-2983 (*1 *2 *2 *1) (-12 (-4 *1 (-920 *2)) (-4 *2 (-1119)))) (-1815 (*1 *2 *1) (-12 (-4 *1 (-920 *2)) (-4 *2 (-1119)))) (-3030 (*1 *1 *1) (-12 (-4 *1 (-920 *2)) (-4 *2 (-1119)))) (-2516 (*1 *2 *1) (-12 (-4 *1 (-920 *3)) (-4 *3 (-1119)) (-5 *2 (-707)))) (-1664 (*1 *2 *1) (-12 (-4 *1 (-920 *2)) (-4 *2 (-1119)))) (-3009 (*1 *2 *1) (-12 (-4 *1 (-920 *2)) (-4 *2 (-1119)))))
+(-13 (-102 |t#1|) (-10 -8 (-6 -4233) (-15 -2983 (|t#1| |t#1| $)) (-15 -1815 (|t#1| $)) (-15 -3030 ($ $)) (-15 -2516 ((-707) $)) (-15 -1664 (|t#1| $)) (-15 -3009 (|t#1| $))))
+(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1013)) ((-561 (-792)) -3703 (|has| |#1| (-1013)) (|has| |#1| (-561 (-792)))) ((-284 |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-460 |#1|) . T) ((-482 |#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-1013) |has| |#1| (-1013)) ((-1119) . T))
+((-2220 (((-108) $) 42)) (-1297 (((-3 (-521) "failed") $) NIL) (((-3 (-381 (-521)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-1483 (((-521) $) NIL) (((-381 (-521)) $) NIL) ((|#2| $) 43)) (-1521 (((-3 (-381 (-521)) "failed") $) 78)) (-3190 (((-108) $) 72)) (-2082 (((-381 (-521)) $) 76)) (-3996 (((-108) $) 41)) (-3930 ((|#2| $) 22)) (-1390 (($ (-1 |#2| |#2|) $) 19)) (-3095 (($ $) 61)) (-2156 (($ $) NIL) (($ $ (-707)) NIL) (($ $ (-1084)) NIL) (($ $ (-587 (-1084))) NIL) (($ $ (-1084) (-707)) NIL) (($ $ (-587 (-1084)) (-587 (-707))) NIL) (($ $ (-1 |#2| |#2|) (-707)) NIL) (($ $ (-1 |#2| |#2|)) 34)) (-1430 (((-497) $) 67)) (-1223 (($ $) 17)) (-2189 (((-792) $) 56) (($ (-521)) 38) (($ |#2|) 36) (($ (-381 (-521))) NIL)) (-3846 (((-707)) 10)) (-3304 ((|#2| $) 71)) (-1531 (((-108) $ $) 25)) (-1549 (((-108) $ $) 69)) (-1612 (($ $) 29) (($ $ $) 28)) (-1602 (($ $ $) 26)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) 33) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 30) (($ $ (-381 (-521))) NIL) (($ (-381 (-521)) $) NIL)))
+(((-921 |#1| |#2|) (-10 -8 (-15 -2189 (|#1| (-381 (-521)))) (-15 -1549 ((-108) |#1| |#1|)) (-15 * (|#1| (-381 (-521)) |#1|)) (-15 * (|#1| |#1| (-381 (-521)))) (-15 -3095 (|#1| |#1|)) (-15 -1430 ((-497) |#1|)) (-15 -1521 ((-3 (-381 (-521)) "failed") |#1|)) (-15 -2082 ((-381 (-521)) |#1|)) (-15 -3190 ((-108) |#1|)) (-15 -3304 (|#2| |#1|)) (-15 -3930 (|#2| |#1|)) (-15 -1223 (|#1| |#1|)) (-15 -1390 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2156 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2156 (|#1| |#1| (-1 |#2| |#2|) (-707))) (-15 -2156 (|#1| |#1| (-587 (-1084)) (-587 (-707)))) (-15 -2156 (|#1| |#1| (-1084) (-707))) (-15 -2156 (|#1| |#1| (-587 (-1084)))) (-15 -2156 (|#1| |#1| (-1084))) (-15 -2156 (|#1| |#1| (-707))) (-15 -2156 (|#1| |#1|)) (-15 -1483 (|#2| |#1|)) (-15 -1297 ((-3 |#2| "failed") |#1|)) (-15 -1297 ((-3 (-381 (-521)) "failed") |#1|)) (-15 -1483 ((-381 (-521)) |#1|)) (-15 -1297 ((-3 (-521) "failed") |#1|)) (-15 -1483 ((-521) |#1|)) (-15 -2189 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2189 (|#1| (-521))) (-15 -3846 ((-707))) (-15 -3996 ((-108) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-521) |#1|)) (-15 -1612 (|#1| |#1| |#1|)) (-15 -1612 (|#1| |#1|)) (-15 * (|#1| (-707) |#1|)) (-15 -2220 ((-108) |#1|)) (-15 * (|#1| (-850) |#1|)) (-15 -1602 (|#1| |#1| |#1|)) (-15 -2189 ((-792) |#1|)) (-15 -1531 ((-108) |#1| |#1|))) (-922 |#2|) (-157)) (T -921))
+((-3846 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-707)) (-5 *1 (-921 *3 *4)) (-4 *3 (-922 *4)))))
+(-10 -8 (-15 -2189 (|#1| (-381 (-521)))) (-15 -1549 ((-108) |#1| |#1|)) (-15 * (|#1| (-381 (-521)) |#1|)) (-15 * (|#1| |#1| (-381 (-521)))) (-15 -3095 (|#1| |#1|)) (-15 -1430 ((-497) |#1|)) (-15 -1521 ((-3 (-381 (-521)) "failed") |#1|)) (-15 -2082 ((-381 (-521)) |#1|)) (-15 -3190 ((-108) |#1|)) (-15 -3304 (|#2| |#1|)) (-15 -3930 (|#2| |#1|)) (-15 -1223 (|#1| |#1|)) (-15 -1390 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2156 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2156 (|#1| |#1| (-1 |#2| |#2|) (-707))) (-15 -2156 (|#1| |#1| (-587 (-1084)) (-587 (-707)))) (-15 -2156 (|#1| |#1| (-1084) (-707))) (-15 -2156 (|#1| |#1| (-587 (-1084)))) (-15 -2156 (|#1| |#1| (-1084))) (-15 -2156 (|#1| |#1| (-707))) (-15 -2156 (|#1| |#1|)) (-15 -1483 (|#2| |#1|)) (-15 -1297 ((-3 |#2| "failed") |#1|)) (-15 -1297 ((-3 (-381 (-521)) "failed") |#1|)) (-15 -1483 ((-381 (-521)) |#1|)) (-15 -1297 ((-3 (-521) "failed") |#1|)) (-15 -1483 ((-521) |#1|)) (-15 -2189 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2189 (|#1| (-521))) (-15 -3846 ((-707))) (-15 -3996 ((-108) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-521) |#1|)) (-15 -1612 (|#1| |#1| |#1|)) (-15 -1612 (|#1| |#1|)) (-15 * (|#1| (-707) |#1|)) (-15 -2220 ((-108) |#1|)) (-15 * (|#1| (-850) |#1|)) (-15 -1602 (|#1| |#1| |#1|)) (-15 -2189 ((-792) |#1|)) (-15 -1531 ((-108) |#1| |#1|)))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-1232 (((-3 $ "failed") $ $) 19)) (-2547 (($) 17 T CONST)) (-1297 (((-3 (-521) "failed") $) 119 (|has| |#1| (-961 (-521)))) (((-3 (-381 (-521)) "failed") $) 117 (|has| |#1| (-961 (-381 (-521))))) (((-3 |#1| "failed") $) 116)) (-1483 (((-521) $) 120 (|has| |#1| (-961 (-521)))) (((-381 (-521)) $) 118 (|has| |#1| (-961 (-381 (-521))))) ((|#1| $) 115)) (-3279 (((-627 (-521)) (-627 $)) 90 (|has| |#1| (-583 (-521)))) (((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) 89 (|has| |#1| (-583 (-521)))) (((-2 (|:| -1201 (-627 |#1|)) (|:| |vec| (-1165 |#1|))) (-627 $) (-1165 $)) 88) (((-627 |#1|) (-627 $)) 87)) (-1257 (((-3 $ "failed") $) 34)) (-1935 ((|#1| $) 80)) (-1521 (((-3 (-381 (-521)) "failed") $) 76 (|has| |#1| (-506)))) (-3190 (((-108) $) 78 (|has| |#1| (-506)))) (-2082 (((-381 (-521)) $) 77 (|has| |#1| (-506)))) (-1828 (($ |#1| |#1| |#1| |#1|) 81)) (-3996 (((-108) $) 31)) (-3930 ((|#1| $) 82)) (-2810 (($ $ $) 68 (|has| |#1| (-784)))) (-2446 (($ $ $) 67 (|has| |#1| (-784)))) (-1390 (($ (-1 |#1| |#1|) $) 91)) (-3688 (((-1067) $) 9)) (-3095 (($ $) 73 (|has| |#1| (-337)))) (-3308 ((|#1| $) 83)) (-1917 ((|#1| $) 84)) (-3733 ((|#1| $) 85)) (-4147 (((-1031) $) 10)) (-2288 (($ $ (-587 |#1|) (-587 |#1|)) 97 (|has| |#1| (-284 |#1|))) (($ $ |#1| |#1|) 96 (|has| |#1| (-284 |#1|))) (($ $ (-269 |#1|)) 95 (|has| |#1| (-284 |#1|))) (($ $ (-587 (-269 |#1|))) 94 (|has| |#1| (-284 |#1|))) (($ $ (-587 (-1084)) (-587 |#1|)) 93 (|has| |#1| (-482 (-1084) |#1|))) (($ $ (-1084) |#1|) 92 (|has| |#1| (-482 (-1084) |#1|)))) (-2544 (($ $ |#1|) 98 (|has| |#1| (-261 |#1| |#1|)))) (-2156 (($ $) 114 (|has| |#1| (-210))) (($ $ (-707)) 112 (|has| |#1| (-210))) (($ $ (-1084)) 110 (|has| |#1| (-829 (-1084)))) (($ $ (-587 (-1084))) 109 (|has| |#1| (-829 (-1084)))) (($ $ (-1084) (-707)) 108 (|has| |#1| (-829 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) 107 (|has| |#1| (-829 (-1084)))) (($ $ (-1 |#1| |#1|) (-707)) 100) (($ $ (-1 |#1| |#1|)) 99)) (-1430 (((-497) $) 74 (|has| |#1| (-562 (-497))))) (-1223 (($ $) 86)) (-2189 (((-792) $) 11) (($ (-521)) 28) (($ |#1|) 37) (($ (-381 (-521))) 62 (-3703 (|has| |#1| (-337)) (|has| |#1| (-961 (-381 (-521))))))) (-1671 (((-3 $ "failed") $) 75 (|has| |#1| (-133)))) (-3846 (((-707)) 29)) (-3304 ((|#1| $) 79 (|has| |#1| (-979)))) (-3505 (($ $ (-850)) 26) (($ $ (-707)) 33) (($ $ (-521)) 72 (|has| |#1| (-337)))) (-3561 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-2212 (($ $) 113 (|has| |#1| (-210))) (($ $ (-707)) 111 (|has| |#1| (-210))) (($ $ (-1084)) 106 (|has| |#1| (-829 (-1084)))) (($ $ (-587 (-1084))) 105 (|has| |#1| (-829 (-1084)))) (($ $ (-1084) (-707)) 104 (|has| |#1| (-829 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) 103 (|has| |#1| (-829 (-1084)))) (($ $ (-1 |#1| |#1|) (-707)) 102) (($ $ (-1 |#1| |#1|)) 101)) (-1574 (((-108) $ $) 65 (|has| |#1| (-784)))) (-1558 (((-108) $ $) 64 (|has| |#1| (-784)))) (-1531 (((-108) $ $) 6)) (-1566 (((-108) $ $) 66 (|has| |#1| (-784)))) (-1549 (((-108) $ $) 63 (|has| |#1| (-784)))) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-707)) 32) (($ $ (-521)) 71 (|has| |#1| (-337)))) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ $ (-381 (-521))) 70 (|has| |#1| (-337))) (($ (-381 (-521)) $) 69 (|has| |#1| (-337)))))
+(((-922 |#1|) (-1196) (-157)) (T -922))
+((-1223 (*1 *1 *1) (-12 (-4 *1 (-922 *2)) (-4 *2 (-157)))) (-3733 (*1 *2 *1) (-12 (-4 *1 (-922 *2)) (-4 *2 (-157)))) (-1917 (*1 *2 *1) (-12 (-4 *1 (-922 *2)) (-4 *2 (-157)))) (-3308 (*1 *2 *1) (-12 (-4 *1 (-922 *2)) (-4 *2 (-157)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-922 *2)) (-4 *2 (-157)))) (-1828 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-922 *2)) (-4 *2 (-157)))) (-1935 (*1 *2 *1) (-12 (-4 *1 (-922 *2)) (-4 *2 (-157)))) (-3304 (*1 *2 *1) (-12 (-4 *1 (-922 *2)) (-4 *2 (-157)) (-4 *2 (-979)))) (-3190 (*1 *2 *1) (-12 (-4 *1 (-922 *3)) (-4 *3 (-157)) (-4 *3 (-506)) (-5 *2 (-108)))) (-2082 (*1 *2 *1) (-12 (-4 *1 (-922 *3)) (-4 *3 (-157)) (-4 *3 (-506)) (-5 *2 (-381 (-521))))) (-1521 (*1 *2 *1) (|partial| -12 (-4 *1 (-922 *3)) (-4 *3 (-157)) (-4 *3 (-506)) (-5 *2 (-381 (-521))))))
+(-13 (-37 |t#1|) (-385 |t#1|) (-208 |t#1|) (-312 |t#1|) (-351 |t#1|) (-10 -8 (-15 -1223 ($ $)) (-15 -3733 (|t#1| $)) (-15 -1917 (|t#1| $)) (-15 -3308 (|t#1| $)) (-15 -3930 (|t#1| $)) (-15 -1828 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -1935 (|t#1| $)) (IF (|has| |t#1| (-265)) (-6 (-265)) |%noBranch|) (IF (|has| |t#1| (-784)) (-6 (-784)) |%noBranch|) (IF (|has| |t#1| (-337)) (-6 (-220)) |%noBranch|) (IF (|has| |t#1| (-562 (-497))) (-6 (-562 (-497))) |%noBranch|) (IF (|has| |t#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |t#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |t#1| (-979)) (-15 -3304 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-506)) (PROGN (-15 -3190 ((-108) $)) (-15 -2082 ((-381 (-521)) $)) (-15 -1521 ((-3 (-381 (-521)) "failed") $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-381 (-521))) |has| |#1| (-337)) ((-37 |#1|) . T) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-337)) ((-107 |#1| |#1|) . T) ((-107 $ $) -3703 (|has| |#1| (-337)) (|has| |#1| (-265))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-561 (-792)) . T) ((-562 (-497)) |has| |#1| (-562 (-497))) ((-208 |#1|) . T) ((-210) |has| |#1| (-210)) ((-220) |has| |#1| (-337)) ((-261 |#1| $) |has| |#1| (-261 |#1| |#1|)) ((-265) -3703 (|has| |#1| (-337)) (|has| |#1| (-265))) ((-284 |#1|) |has| |#1| (-284 |#1|)) ((-312 |#1|) . T) ((-351 |#1|) . T) ((-385 |#1|) . T) ((-482 (-1084) |#1|) |has| |#1| (-482 (-1084) |#1|)) ((-482 |#1| |#1|) |has| |#1| (-284 |#1|)) ((-589 #0#) |has| |#1| (-337)) ((-589 |#1|) . T) ((-589 $) . T) ((-583 (-521)) |has| |#1| (-583 (-521))) ((-583 |#1|) . T) ((-654 #0#) |has| |#1| (-337)) ((-654 |#1|) . T) ((-663) . T) ((-784) |has| |#1| (-784)) ((-829 (-1084)) |has| |#1| (-829 (-1084))) ((-961 (-381 (-521))) |has| |#1| (-961 (-381 (-521)))) ((-961 (-521)) |has| |#1| (-961 (-521))) ((-961 |#1|) . T) ((-976 #0#) |has| |#1| (-337)) ((-976 |#1|) . T) ((-976 $) -3703 (|has| |#1| (-337)) (|has| |#1| (-265))) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T))
+((-1390 ((|#3| (-1 |#4| |#2|) |#1|) 16)))
+(((-923 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1390 (|#3| (-1 |#4| |#2|) |#1|))) (-922 |#2|) (-157) (-922 |#4|) (-157)) (T -923))
+((-1390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-157)) (-4 *6 (-157)) (-4 *2 (-922 *6)) (-5 *1 (-923 *4 *5 *2 *6)) (-4 *4 (-922 *5)))))
+(-10 -7 (-15 -1390 (|#3| (-1 |#4| |#2|) |#1|)))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-1232 (((-3 $ "failed") $ $) NIL)) (-2547 (($) NIL T CONST)) (-1297 (((-3 (-521) "failed") $) NIL (|has| |#1| (-961 (-521)))) (((-3 (-381 (-521)) "failed") $) NIL (|has| |#1| (-961 (-381 (-521))))) (((-3 |#1| "failed") $) NIL)) (-1483 (((-521) $) NIL (|has| |#1| (-961 (-521)))) (((-381 (-521)) $) NIL (|has| |#1| (-961 (-381 (-521))))) ((|#1| $) NIL)) (-3279 (((-627 (-521)) (-627 $)) NIL (|has| |#1| (-583 (-521)))) (((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (|has| |#1| (-583 (-521)))) (((-2 (|:| -1201 (-627 |#1|)) (|:| |vec| (-1165 |#1|))) (-627 $) (-1165 $)) NIL) (((-627 |#1|) (-627 $)) NIL)) (-1257 (((-3 $ "failed") $) NIL)) (-1935 ((|#1| $) 12)) (-1521 (((-3 (-381 (-521)) "failed") $) NIL (|has| |#1| (-506)))) (-3190 (((-108) $) NIL (|has| |#1| (-506)))) (-2082 (((-381 (-521)) $) NIL (|has| |#1| (-506)))) (-1828 (($ |#1| |#1| |#1| |#1|) 16)) (-3996 (((-108) $) NIL)) (-3930 ((|#1| $) NIL)) (-2810 (($ $ $) NIL (|has| |#1| (-784)))) (-2446 (($ $ $) NIL (|has| |#1| (-784)))) (-1390 (($ (-1 |#1| |#1|) $) NIL)) (-3688 (((-1067) $) NIL)) (-3095 (($ $) NIL (|has| |#1| (-337)))) (-3308 ((|#1| $) 15)) (-1917 ((|#1| $) 14)) (-3733 ((|#1| $) 13)) (-4147 (((-1031) $) NIL)) (-2288 (($ $ (-587 |#1|) (-587 |#1|)) NIL (|has| |#1| (-284 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-284 |#1|))) (($ $ (-269 |#1|)) NIL (|has| |#1| (-284 |#1|))) (($ $ (-587 (-269 |#1|))) NIL (|has| |#1| (-284 |#1|))) (($ $ (-587 (-1084)) (-587 |#1|)) NIL (|has| |#1| (-482 (-1084) |#1|))) (($ $ (-1084) |#1|) NIL (|has| |#1| (-482 (-1084) |#1|)))) (-2544 (($ $ |#1|) NIL (|has| |#1| (-261 |#1| |#1|)))) (-2156 (($ $) NIL (|has| |#1| (-210))) (($ $ (-707)) NIL (|has| |#1| (-210))) (($ $ (-1084)) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-1 |#1| |#1|) (-707)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1430 (((-497) $) NIL (|has| |#1| (-562 (-497))))) (-1223 (($ $) NIL)) (-2189 (((-792) $) NIL) (($ (-521)) NIL) (($ |#1|) NIL) (($ (-381 (-521))) NIL (-3703 (|has| |#1| (-337)) (|has| |#1| (-961 (-381 (-521))))))) (-1671 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-3846 (((-707)) NIL)) (-3304 ((|#1| $) NIL (|has| |#1| (-979)))) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL (|has| |#1| (-337)))) (-3561 (($) 8 T CONST)) (-3572 (($) 10 T CONST)) (-2212 (($ $) NIL (|has| |#1| (-210))) (($ $ (-707)) NIL (|has| |#1| (-210))) (($ $ (-1084)) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-1 |#1| |#1|) (-707)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1574 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1558 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1549 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL (|has| |#1| (-337)))) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-381 (-521))) NIL (|has| |#1| (-337))) (($ (-381 (-521)) $) NIL (|has| |#1| (-337)))))
+(((-924 |#1|) (-922 |#1|) (-157)) (T -924))
+NIL
+(-922 |#1|)
+((-1415 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-2978 (((-108) $ (-707)) NIL)) (-2547 (($) NIL T CONST)) (-3030 (($ $) 20)) (-2252 (($ (-587 |#1|)) 29)) (-3831 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-2139 (((-108) $ (-707)) NIL)) (-3757 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-2221 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-3833 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#1| |#1|) $) NIL)) (-3574 (((-108) $ (-707)) NIL)) (-2516 (((-707) $) 22)) (-3688 (((-1067) $) NIL (|has| |#1| (-1013)))) (-2511 ((|#1| $) 24)) (-3373 (($ |#1| $) 15)) (-4147 (((-1031) $) NIL (|has| |#1| (-1013)))) (-1664 ((|#1| $) 23)) (-2166 ((|#1| $) 19)) (-1789 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 |#1|))) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-2488 (((-108) $ $) NIL)) (-2983 ((|#1| |#1| $) 14)) (-3462 (((-108) $) 17)) (-4024 (($) NIL)) (-1815 ((|#1| $) 18)) (-4163 (((-707) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (((-707) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2404 (($ $) NIL)) (-2189 (((-792) $) NIL (|has| |#1| (-561 (-792))))) (-4091 (($ (-587 |#1|)) NIL)) (-3009 ((|#1| $) 26)) (-3049 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-1531 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3475 (((-707) $) NIL (|has| $ (-6 -4233)))))
+(((-925 |#1|) (-13 (-920 |#1|) (-10 -8 (-15 -2252 ($ (-587 |#1|))))) (-1013)) (T -925))
+((-2252 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1013)) (-5 *1 (-925 *3)))))
+(-13 (-920 |#1|) (-10 -8 (-15 -2252 ($ (-587 |#1|)))))
+((-1927 (($ $) 12)) (-3407 (($ $ (-521)) 13)))
+(((-926 |#1|) (-10 -8 (-15 -1927 (|#1| |#1|)) (-15 -3407 (|#1| |#1| (-521)))) (-927)) (T -926))
+NIL
+(-10 -8 (-15 -1927 (|#1| |#1|)) (-15 -3407 (|#1| |#1| (-521))))
+((-1927 (($ $) 6)) (-3407 (($ $ (-521)) 7)) (** (($ $ (-381 (-521))) 8)))
+(((-927) (-1196)) (T -927))
+((** (*1 *1 *1 *2) (-12 (-4 *1 (-927)) (-5 *2 (-381 (-521))))) (-3407 (*1 *1 *1 *2) (-12 (-4 *1 (-927)) (-5 *2 (-521)))) (-1927 (*1 *1 *1) (-4 *1 (-927))))
+(-13 (-10 -8 (-15 -1927 ($ $)) (-15 -3407 ($ $ (-521))) (-15 ** ($ $ (-381 (-521))))))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-3698 (((-2 (|:| |num| (-1165 |#2|)) (|:| |den| |#2|)) $) NIL)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) NIL (|has| (-381 |#2|) (-337)))) (-2559 (($ $) NIL (|has| (-381 |#2|) (-337)))) (-1733 (((-108) $) NIL (|has| (-381 |#2|) (-337)))) (-3214 (((-627 (-381 |#2|)) (-1165 $)) NIL) (((-627 (-381 |#2|))) NIL)) (-1865 (((-381 |#2|) $) NIL)) (-1340 (((-1093 (-850) (-707)) (-521)) NIL (|has| (-381 |#2|) (-323)))) (-1232 (((-3 $ "failed") $ $) NIL)) (-3063 (($ $) NIL (|has| (-381 |#2|) (-337)))) (-3358 (((-392 $) $) NIL (|has| (-381 |#2|) (-337)))) (-1389 (((-108) $ $) NIL (|has| (-381 |#2|) (-337)))) (-1630 (((-707)) NIL (|has| (-381 |#2|) (-342)))) (-3792 (((-108)) NIL)) (-3453 (((-108) |#1|) 147) (((-108) |#2|) 152)) (-2547 (($) NIL T CONST)) (-1297 (((-3 (-521) "failed") $) NIL (|has| (-381 |#2|) (-961 (-521)))) (((-3 (-381 (-521)) "failed") $) NIL (|has| (-381 |#2|) (-961 (-381 (-521))))) (((-3 (-381 |#2|) "failed") $) NIL)) (-1483 (((-521) $) NIL (|has| (-381 |#2|) (-961 (-521)))) (((-381 (-521)) $) NIL (|has| (-381 |#2|) (-961 (-381 (-521))))) (((-381 |#2|) $) NIL)) (-4083 (($ (-1165 (-381 |#2|)) (-1165 $)) NIL) (($ (-1165 (-381 |#2|))) 70) (($ (-1165 |#2|) |#2|) NIL)) (-1864 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-381 |#2|) (-323)))) (-2277 (($ $ $) NIL (|has| (-381 |#2|) (-337)))) (-3499 (((-627 (-381 |#2|)) $ (-1165 $)) NIL) (((-627 (-381 |#2|)) $) NIL)) (-3279 (((-627 (-521)) (-627 $)) NIL (|has| (-381 |#2|) (-583 (-521)))) (((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (|has| (-381 |#2|) (-583 (-521)))) (((-2 (|:| -1201 (-627 (-381 |#2|))) (|:| |vec| (-1165 (-381 |#2|)))) (-627 $) (-1165 $)) NIL) (((-627 (-381 |#2|)) (-627 $)) NIL)) (-1886 (((-1165 $) (-1165 $)) NIL)) (-3859 (($ |#3|) 65) (((-3 $ "failed") (-381 |#3|)) NIL (|has| (-381 |#2|) (-337)))) (-1257 (((-3 $ "failed") $) NIL)) (-2805 (((-587 (-587 |#1|))) NIL (|has| |#1| (-342)))) (-2608 (((-108) |#1| |#1|) NIL)) (-3162 (((-850)) NIL)) (-3250 (($) NIL (|has| (-381 |#2|) (-342)))) (-3607 (((-108)) NIL)) (-3024 (((-108) |#1|) 56) (((-108) |#2|) 149)) (-2253 (($ $ $) NIL (|has| (-381 |#2|) (-337)))) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) NIL (|has| (-381 |#2|) (-337)))) (-3666 (($ $) NIL)) (-2103 (($) NIL (|has| (-381 |#2|) (-323)))) (-2371 (((-108) $) NIL (|has| (-381 |#2|) (-323)))) (-2833 (($ $ (-707)) NIL (|has| (-381 |#2|) (-323))) (($ $) NIL (|has| (-381 |#2|) (-323)))) (-2710 (((-108) $) NIL (|has| (-381 |#2|) (-337)))) (-2733 (((-850) $) NIL (|has| (-381 |#2|) (-323))) (((-770 (-850)) $) NIL (|has| (-381 |#2|) (-323)))) (-3996 (((-108) $) NIL)) (-1489 (((-707)) NIL)) (-1638 (((-1165 $) (-1165 $)) NIL)) (-3930 (((-381 |#2|) $) NIL)) (-4107 (((-587 (-881 |#1|)) (-1084)) NIL (|has| |#1| (-337)))) (-3842 (((-3 $ "failed") $) NIL (|has| (-381 |#2|) (-323)))) (-1546 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| (-381 |#2|) (-337)))) (-3548 ((|#3| $) NIL (|has| (-381 |#2|) (-337)))) (-2715 (((-850) $) NIL (|has| (-381 |#2|) (-342)))) (-3844 ((|#3| $) NIL)) (-2223 (($ (-587 $)) NIL (|has| (-381 |#2|) (-337))) (($ $ $) NIL (|has| (-381 |#2|) (-337)))) (-3688 (((-1067) $) NIL)) (-3940 (((-627 (-381 |#2|))) 52)) (-3204 (((-627 (-381 |#2|))) 51)) (-3095 (($ $) NIL (|has| (-381 |#2|) (-337)))) (-2696 (($ (-1165 |#2|) |#2|) 71)) (-1760 (((-627 (-381 |#2|))) 50)) (-3205 (((-627 (-381 |#2|))) 49)) (-2022 (((-2 (|:| |num| (-627 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 86)) (-1447 (((-2 (|:| |num| (-1165 |#2|)) (|:| |den| |#2|)) $) 77)) (-1942 (((-1165 $)) 46)) (-3545 (((-1165 $)) 45)) (-3722 (((-108) $) NIL)) (-1596 (((-108) $) NIL) (((-108) $ |#1|) NIL) (((-108) $ |#2|) NIL)) (-3797 (($) NIL (|has| (-381 |#2|) (-323)) CONST)) (-2716 (($ (-850)) NIL (|has| (-381 |#2|) (-342)))) (-1403 (((-3 |#2| "failed")) 63)) (-4147 (((-1031) $) NIL)) (-2695 (((-707)) NIL)) (-1383 (($) NIL)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) NIL (|has| (-381 |#2|) (-337)))) (-2258 (($ (-587 $)) NIL (|has| (-381 |#2|) (-337))) (($ $ $) NIL (|has| (-381 |#2|) (-337)))) (-3040 (((-587 (-2 (|:| -1916 (-521)) (|:| -2997 (-521))))) NIL (|has| (-381 |#2|) (-323)))) (-1916 (((-392 $) $) NIL (|has| (-381 |#2|) (-337)))) (-1962 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-381 |#2|) (-337))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL (|has| (-381 |#2|) (-337)))) (-2230 (((-3 $ "failed") $ $) NIL (|has| (-381 |#2|) (-337)))) (-3854 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| (-381 |#2|) (-337)))) (-4196 (((-707) $) NIL (|has| (-381 |#2|) (-337)))) (-2544 ((|#1| $ |#1| |#1|) NIL)) (-1963 (((-3 |#2| "failed")) 62)) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) NIL (|has| (-381 |#2|) (-337)))) (-4010 (((-381 |#2|) (-1165 $)) NIL) (((-381 |#2|)) 42)) (-4067 (((-707) $) NIL (|has| (-381 |#2|) (-323))) (((-3 (-707) "failed") $ $) NIL (|has| (-381 |#2|) (-323)))) (-2156 (($ $ (-1 (-381 |#2|) (-381 |#2|)) (-707)) NIL (|has| (-381 |#2|) (-337))) (($ $ (-1 (-381 |#2|) (-381 |#2|))) NIL (|has| (-381 |#2|) (-337))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-587 (-1084)) (-587 (-707))) NIL (-12 (|has| (-381 |#2|) (-337)) (|has| (-381 |#2|) (-829 (-1084))))) (($ $ (-1084) (-707)) NIL (-12 (|has| (-381 |#2|) (-337)) (|has| (-381 |#2|) (-829 (-1084))))) (($ $ (-587 (-1084))) NIL (-12 (|has| (-381 |#2|) (-337)) (|has| (-381 |#2|) (-829 (-1084))))) (($ $ (-1084)) NIL (-12 (|has| (-381 |#2|) (-337)) (|has| (-381 |#2|) (-829 (-1084))))) (($ $ (-707)) NIL (-3703 (-12 (|has| (-381 |#2|) (-210)) (|has| (-381 |#2|) (-337))) (|has| (-381 |#2|) (-323)))) (($ $) NIL (-3703 (-12 (|has| (-381 |#2|) (-210)) (|has| (-381 |#2|) (-337))) (|has| (-381 |#2|) (-323))))) (-3089 (((-627 (-381 |#2|)) (-1165 $) (-1 (-381 |#2|) (-381 |#2|))) NIL (|has| (-381 |#2|) (-337)))) (-2879 ((|#3|) 53)) (-1204 (($) NIL (|has| (-381 |#2|) (-323)))) (-2234 (((-1165 (-381 |#2|)) $ (-1165 $)) NIL) (((-627 (-381 |#2|)) (-1165 $) (-1165 $)) NIL) (((-1165 (-381 |#2|)) $) 72) (((-627 (-381 |#2|)) (-1165 $)) NIL)) (-1430 (((-1165 (-381 |#2|)) $) NIL) (($ (-1165 (-381 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-2944 (((-3 (-1165 $) "failed") (-627 $)) NIL (|has| (-381 |#2|) (-323)))) (-3966 (((-1165 $) (-1165 $)) NIL)) (-2189 (((-792) $) NIL) (($ (-521)) NIL) (($ (-381 |#2|)) NIL) (($ (-381 (-521))) NIL (-3703 (|has| (-381 |#2|) (-961 (-381 (-521)))) (|has| (-381 |#2|) (-337)))) (($ $) NIL (|has| (-381 |#2|) (-337)))) (-1671 (($ $) NIL (|has| (-381 |#2|) (-323))) (((-3 $ "failed") $) NIL (|has| (-381 |#2|) (-133)))) (-3110 ((|#3| $) NIL)) (-3846 (((-707)) NIL)) (-3377 (((-108)) 60)) (-3622 (((-108) |#1|) 153) (((-108) |#2|) 154)) (-2470 (((-1165 $)) 124)) (-4210 (((-108) $ $) NIL (|has| (-381 |#2|) (-337)))) (-3700 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-3643 (((-108)) NIL)) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL (|has| (-381 |#2|) (-337)))) (-3561 (($) 94 T CONST)) (-3572 (($) NIL T CONST)) (-2212 (($ $ (-1 (-381 |#2|) (-381 |#2|)) (-707)) NIL (|has| (-381 |#2|) (-337))) (($ $ (-1 (-381 |#2|) (-381 |#2|))) NIL (|has| (-381 |#2|) (-337))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (-12 (|has| (-381 |#2|) (-337)) (|has| (-381 |#2|) (-829 (-1084))))) (($ $ (-1084) (-707)) NIL (-12 (|has| (-381 |#2|) (-337)) (|has| (-381 |#2|) (-829 (-1084))))) (($ $ (-587 (-1084))) NIL (-12 (|has| (-381 |#2|) (-337)) (|has| (-381 |#2|) (-829 (-1084))))) (($ $ (-1084)) NIL (-12 (|has| (-381 |#2|) (-337)) (|has| (-381 |#2|) (-829 (-1084))))) (($ $ (-707)) NIL (-3703 (-12 (|has| (-381 |#2|) (-210)) (|has| (-381 |#2|) (-337))) (|has| (-381 |#2|) (-323)))) (($ $) NIL (-3703 (-12 (|has| (-381 |#2|) (-210)) (|has| (-381 |#2|) (-337))) (|has| (-381 |#2|) (-323))))) (-1531 (((-108) $ $) NIL)) (-1620 (($ $ $) NIL (|has| (-381 |#2|) (-337)))) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL (|has| (-381 |#2|) (-337)))) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ (-381 |#2|)) NIL) (($ (-381 |#2|) $) NIL) (($ (-381 (-521)) $) NIL (|has| (-381 |#2|) (-337))) (($ $ (-381 (-521))) NIL (|has| (-381 |#2|) (-337)))))
+(((-928 |#1| |#2| |#3| |#4| |#5|) (-316 |#1| |#2| |#3|) (-1123) (-1141 |#1|) (-1141 (-381 |#2|)) (-381 |#2|) (-707)) (T -928))
+NIL
+(-316 |#1| |#2| |#3|)
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-4144 (((-587 (-521)) $) 54)) (-2020 (($ (-587 (-521))) 62)) (-2086 (((-521) $) 40 (|has| (-521) (-282)))) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-2559 (($ $) NIL)) (-1733 (((-108) $) NIL)) (-1232 (((-3 $ "failed") $ $) NIL)) (-2598 (((-392 (-1080 $)) (-1080 $)) NIL (|has| (-521) (-838)))) (-3063 (($ $) NIL)) (-3358 (((-392 $) $) NIL)) (-2569 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) NIL (|has| (-521) (-838)))) (-1389 (((-108) $ $) NIL)) (-1606 (((-521) $) NIL (|has| (-521) (-757)))) (-2547 (($) NIL T CONST)) (-1297 (((-3 (-521) "failed") $) 49) (((-3 (-1084) "failed") $) NIL (|has| (-521) (-961 (-1084)))) (((-3 (-381 (-521)) "failed") $) 47 (|has| (-521) (-961 (-521)))) (((-3 (-521) "failed") $) 49 (|has| (-521) (-961 (-521))))) (-1483 (((-521) $) NIL) (((-1084) $) NIL (|has| (-521) (-961 (-1084)))) (((-381 (-521)) $) NIL (|has| (-521) (-961 (-521)))) (((-521) $) NIL (|has| (-521) (-961 (-521))))) (-2277 (($ $ $) NIL)) (-3279 (((-627 (-521)) (-627 $)) NIL (|has| (-521) (-583 (-521)))) (((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (|has| (-521) (-583 (-521)))) (((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL) (((-627 (-521)) (-627 $)) NIL)) (-1257 (((-3 $ "failed") $) NIL)) (-3250 (($) NIL (|has| (-521) (-506)))) (-2253 (($ $ $) NIL)) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) NIL)) (-2710 (((-108) $) NIL)) (-3615 (((-587 (-521)) $) 60)) (-3951 (((-108) $) NIL (|has| (-521) (-757)))) (-3427 (((-818 (-521) $) $ (-821 (-521)) (-818 (-521) $)) NIL (|has| (-521) (-815 (-521)))) (((-818 (-353) $) $ (-821 (-353)) (-818 (-353) $)) NIL (|has| (-521) (-815 (-353))))) (-3996 (((-108) $) NIL)) (-3257 (($ $) NIL)) (-2801 (((-521) $) 37)) (-3842 (((-3 $ "failed") $) NIL (|has| (-521) (-1060)))) (-2210 (((-108) $) NIL (|has| (-521) (-757)))) (-1546 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-2810 (($ $ $) NIL (|has| (-521) (-784)))) (-2446 (($ $ $) NIL (|has| (-521) (-784)))) (-1390 (($ (-1 (-521) (-521)) $) NIL)) (-2223 (($ $ $) NIL) (($ (-587 $)) NIL)) (-3688 (((-1067) $) NIL)) (-3095 (($ $) NIL)) (-3797 (($) NIL (|has| (-521) (-1060)) CONST)) (-4147 (((-1031) $) NIL)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) NIL)) (-2258 (($ $ $) NIL) (($ (-587 $)) NIL)) (-2850 (($ $) NIL (|has| (-521) (-282))) (((-381 (-521)) $) 42)) (-2942 (((-1065 (-521)) $) 59)) (-4052 (($ (-587 (-521)) (-587 (-521))) 63)) (-2567 (((-521) $) 53 (|has| (-521) (-506)))) (-1912 (((-392 (-1080 $)) (-1080 $)) NIL (|has| (-521) (-838)))) (-2165 (((-392 (-1080 $)) (-1080 $)) NIL (|has| (-521) (-838)))) (-1916 (((-392 $) $) NIL)) (-1962 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2230 (((-3 $ "failed") $ $) NIL)) (-3854 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-2288 (($ $ (-587 (-521)) (-587 (-521))) NIL (|has| (-521) (-284 (-521)))) (($ $ (-521) (-521)) NIL (|has| (-521) (-284 (-521)))) (($ $ (-269 (-521))) NIL (|has| (-521) (-284 (-521)))) (($ $ (-587 (-269 (-521)))) NIL (|has| (-521) (-284 (-521)))) (($ $ (-587 (-1084)) (-587 (-521))) NIL (|has| (-521) (-482 (-1084) (-521)))) (($ $ (-1084) (-521)) NIL (|has| (-521) (-482 (-1084) (-521))))) (-4196 (((-707) $) NIL)) (-2544 (($ $ (-521)) NIL (|has| (-521) (-261 (-521) (-521))))) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) NIL)) (-2156 (($ $) 11 (|has| (-521) (-210))) (($ $ (-707)) NIL (|has| (-521) (-210))) (($ $ (-1084)) NIL (|has| (-521) (-829 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| (-521) (-829 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| (-521) (-829 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| (-521) (-829 (-1084)))) (($ $ (-1 (-521) (-521)) (-707)) NIL) (($ $ (-1 (-521) (-521))) NIL)) (-4142 (($ $) NIL)) (-2812 (((-521) $) 39)) (-1462 (((-587 (-521)) $) 61)) (-1430 (((-821 (-521)) $) NIL (|has| (-521) (-562 (-821 (-521))))) (((-821 (-353)) $) NIL (|has| (-521) (-562 (-821 (-353))))) (((-497) $) NIL (|has| (-521) (-562 (-497)))) (((-353) $) NIL (|has| (-521) (-946))) (((-202) $) NIL (|has| (-521) (-946)))) (-2944 (((-3 (-1165 $) "failed") (-627 $)) NIL (-12 (|has| $ (-133)) (|has| (-521) (-838))))) (-2189 (((-792) $) 77) (($ (-521)) 43) (($ $) NIL) (($ (-381 (-521))) 19) (($ (-521)) 43) (($ (-1084)) NIL (|has| (-521) (-961 (-1084)))) (((-381 (-521)) $) 17)) (-1671 (((-3 $ "failed") $) NIL (-3703 (-12 (|has| $ (-133)) (|has| (-521) (-838))) (|has| (-521) (-133))))) (-3846 (((-707)) 9)) (-2382 (((-521) $) 51 (|has| (-521) (-506)))) (-4210 (((-108) $ $) NIL)) (-3304 (($ $) NIL (|has| (-521) (-757)))) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (-3561 (($) 10 T CONST)) (-3572 (($) 12 T CONST)) (-2212 (($ $) NIL (|has| (-521) (-210))) (($ $ (-707)) NIL (|has| (-521) (-210))) (($ $ (-1084)) NIL (|has| (-521) (-829 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| (-521) (-829 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| (-521) (-829 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| (-521) (-829 (-1084)))) (($ $ (-1 (-521) (-521)) (-707)) NIL) (($ $ (-1 (-521) (-521))) NIL)) (-1574 (((-108) $ $) NIL (|has| (-521) (-784)))) (-1558 (((-108) $ $) NIL (|has| (-521) (-784)))) (-1531 (((-108) $ $) 14)) (-1566 (((-108) $ $) NIL (|has| (-521) (-784)))) (-1549 (((-108) $ $) 33 (|has| (-521) (-784)))) (-1620 (($ $ $) 29) (($ (-521) (-521)) 31)) (-1612 (($ $) 15) (($ $ $) 22)) (-1602 (($ $ $) 20)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) 25) (($ $ $) 27) (($ $ (-381 (-521))) NIL) (($ (-381 (-521)) $) NIL) (($ (-521) $) 25) (($ $ (-521)) NIL)))
+(((-929 |#1|) (-13 (-918 (-521)) (-10 -8 (-15 -2189 ((-381 (-521)) $)) (-15 -2850 ((-381 (-521)) $)) (-15 -4144 ((-587 (-521)) $)) (-15 -2942 ((-1065 (-521)) $)) (-15 -3615 ((-587 (-521)) $)) (-15 -1462 ((-587 (-521)) $)) (-15 -2020 ($ (-587 (-521)))) (-15 -4052 ($ (-587 (-521)) (-587 (-521)))))) (-521)) (T -929))
+((-2189 (*1 *2 *1) (-12 (-5 *2 (-381 (-521))) (-5 *1 (-929 *3)) (-14 *3 (-521)))) (-2850 (*1 *2 *1) (-12 (-5 *2 (-381 (-521))) (-5 *1 (-929 *3)) (-14 *3 (-521)))) (-4144 (*1 *2 *1) (-12 (-5 *2 (-587 (-521))) (-5 *1 (-929 *3)) (-14 *3 (-521)))) (-2942 (*1 *2 *1) (-12 (-5 *2 (-1065 (-521))) (-5 *1 (-929 *3)) (-14 *3 (-521)))) (-3615 (*1 *2 *1) (-12 (-5 *2 (-587 (-521))) (-5 *1 (-929 *3)) (-14 *3 (-521)))) (-1462 (*1 *2 *1) (-12 (-5 *2 (-587 (-521))) (-5 *1 (-929 *3)) (-14 *3 (-521)))) (-2020 (*1 *1 *2) (-12 (-5 *2 (-587 (-521))) (-5 *1 (-929 *3)) (-14 *3 (-521)))) (-4052 (*1 *1 *2 *2) (-12 (-5 *2 (-587 (-521))) (-5 *1 (-929 *3)) (-14 *3 (-521)))))
+(-13 (-918 (-521)) (-10 -8 (-15 -2189 ((-381 (-521)) $)) (-15 -2850 ((-381 (-521)) $)) (-15 -4144 ((-587 (-521)) $)) (-15 -2942 ((-1065 (-521)) $)) (-15 -3615 ((-587 (-521)) $)) (-15 -1462 ((-587 (-521)) $)) (-15 -2020 ($ (-587 (-521)))) (-15 -4052 ($ (-587 (-521)) (-587 (-521))))))
+((-2303 (((-51) (-381 (-521)) (-521)) 9)))
+(((-930) (-10 -7 (-15 -2303 ((-51) (-381 (-521)) (-521))))) (T -930))
+((-2303 (*1 *2 *3 *4) (-12 (-5 *3 (-381 (-521))) (-5 *4 (-521)) (-5 *2 (-51)) (-5 *1 (-930)))))
+(-10 -7 (-15 -2303 ((-51) (-381 (-521)) (-521))))
+((-1630 (((-521)) 13)) (-3201 (((-521)) 16)) (-1804 (((-1170) (-521)) 15)) (-1647 (((-521) (-521)) 17) (((-521)) 12)))
+(((-931) (-10 -7 (-15 -1647 ((-521))) (-15 -1630 ((-521))) (-15 -1647 ((-521) (-521))) (-15 -1804 ((-1170) (-521))) (-15 -3201 ((-521))))) (T -931))
+((-3201 (*1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-931)))) (-1804 (*1 *2 *3) (-12 (-5 *3 (-521)) (-5 *2 (-1170)) (-5 *1 (-931)))) (-1647 (*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-931)))) (-1630 (*1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-931)))) (-1647 (*1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-931)))))
+(-10 -7 (-15 -1647 ((-521))) (-15 -1630 ((-521))) (-15 -1647 ((-521) (-521))) (-15 -1804 ((-1170) (-521))) (-15 -3201 ((-521))))
+((-3168 (((-392 |#1|) |#1|) 40)) (-1916 (((-392 |#1|) |#1|) 39)))
+(((-932 |#1|) (-10 -7 (-15 -1916 ((-392 |#1|) |#1|)) (-15 -3168 ((-392 |#1|) |#1|))) (-1141 (-381 (-521)))) (T -932))
+((-3168 (*1 *2 *3) (-12 (-5 *2 (-392 *3)) (-5 *1 (-932 *3)) (-4 *3 (-1141 (-381 (-521)))))) (-1916 (*1 *2 *3) (-12 (-5 *2 (-392 *3)) (-5 *1 (-932 *3)) (-4 *3 (-1141 (-381 (-521)))))))
+(-10 -7 (-15 -1916 ((-392 |#1|) |#1|)) (-15 -3168 ((-392 |#1|) |#1|)))
+((-1521 (((-3 (-381 (-521)) "failed") |#1|) 14)) (-3190 (((-108) |#1|) 13)) (-2082 (((-381 (-521)) |#1|) 9)))
+(((-933 |#1|) (-10 -7 (-15 -2082 ((-381 (-521)) |#1|)) (-15 -3190 ((-108) |#1|)) (-15 -1521 ((-3 (-381 (-521)) "failed") |#1|))) (-961 (-381 (-521)))) (T -933))
+((-1521 (*1 *2 *3) (|partial| -12 (-5 *2 (-381 (-521))) (-5 *1 (-933 *3)) (-4 *3 (-961 *2)))) (-3190 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-933 *3)) (-4 *3 (-961 (-381 (-521)))))) (-2082 (*1 *2 *3) (-12 (-5 *2 (-381 (-521))) (-5 *1 (-933 *3)) (-4 *3 (-961 *2)))))
+(-10 -7 (-15 -2082 ((-381 (-521)) |#1|)) (-15 -3190 ((-108) |#1|)) (-15 -1521 ((-3 (-381 (-521)) "failed") |#1|)))
+((-2378 ((|#2| $ "value" |#2|) 12)) (-2544 ((|#2| $ "value") 10)) (-2294 (((-108) $ $) 18)))
+(((-934 |#1| |#2|) (-10 -8 (-15 -2378 (|#2| |#1| "value" |#2|)) (-15 -2294 ((-108) |#1| |#1|)) (-15 -2544 (|#2| |#1| "value"))) (-935 |#2|) (-1119)) (T -934))
+NIL
+(-10 -8 (-15 -2378 (|#2| |#1| "value" |#2|)) (-15 -2294 ((-108) |#1| |#1|)) (-15 -2544 (|#2| |#1| "value")))
+((-1415 (((-108) $ $) 19 (|has| |#1| (-1013)))) (-3430 ((|#1| $) 48)) (-2978 (((-108) $ (-707)) 8)) (-2300 ((|#1| $ |#1|) 39 (|has| $ (-6 -4234)))) (-2378 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4234)))) (-2675 (($ $ (-587 $)) 41 (|has| $ (-6 -4234)))) (-2547 (($) 7 T CONST)) (-3831 (((-587 |#1|) $) 30 (|has| $ (-6 -4233)))) (-3186 (((-587 $) $) 50)) (-3651 (((-108) $ $) 42 (|has| |#1| (-1013)))) (-2139 (((-108) $ (-707)) 9)) (-3757 (((-587 |#1|) $) 29 (|has| $ (-6 -4233)))) (-2221 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-3833 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#1| |#1|) $) 35)) (-3574 (((-108) $ (-707)) 10)) (-1278 (((-587 |#1|) $) 45)) (-2229 (((-108) $) 49)) (-3688 (((-1067) $) 22 (|has| |#1| (-1013)))) (-4147 (((-1031) $) 21 (|has| |#1| (-1013)))) (-1789 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 |#1|))) 26 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) 25 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) 23 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-2488 (((-108) $ $) 14)) (-3462 (((-108) $) 11)) (-4024 (($) 12)) (-2544 ((|#1| $ "value") 47)) (-2931 (((-521) $ $) 44)) (-2406 (((-108) $) 46)) (-4163 (((-707) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4233))) (((-707) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-2404 (($ $) 13)) (-2189 (((-792) $) 18 (|has| |#1| (-561 (-792))))) (-3098 (((-587 $) $) 51)) (-2294 (((-108) $ $) 43 (|has| |#1| (-1013)))) (-3049 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4233)))) (-1531 (((-108) $ $) 20 (|has| |#1| (-1013)))) (-3475 (((-707) $) 6 (|has| $ (-6 -4233)))))
+(((-935 |#1|) (-1196) (-1119)) (T -935))
+((-3098 (*1 *2 *1) (-12 (-4 *3 (-1119)) (-5 *2 (-587 *1)) (-4 *1 (-935 *3)))) (-3186 (*1 *2 *1) (-12 (-4 *3 (-1119)) (-5 *2 (-587 *1)) (-4 *1 (-935 *3)))) (-2229 (*1 *2 *1) (-12 (-4 *1 (-935 *3)) (-4 *3 (-1119)) (-5 *2 (-108)))) (-3430 (*1 *2 *1) (-12 (-4 *1 (-935 *2)) (-4 *2 (-1119)))) (-2544 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-935 *2)) (-4 *2 (-1119)))) (-2406 (*1 *2 *1) (-12 (-4 *1 (-935 *3)) (-4 *3 (-1119)) (-5 *2 (-108)))) (-1278 (*1 *2 *1) (-12 (-4 *1 (-935 *3)) (-4 *3 (-1119)) (-5 *2 (-587 *3)))) (-2931 (*1 *2 *1 *1) (-12 (-4 *1 (-935 *3)) (-4 *3 (-1119)) (-5 *2 (-521)))) (-2294 (*1 *2 *1 *1) (-12 (-4 *1 (-935 *3)) (-4 *3 (-1119)) (-4 *3 (-1013)) (-5 *2 (-108)))) (-3651 (*1 *2 *1 *1) (-12 (-4 *1 (-935 *3)) (-4 *3 (-1119)) (-4 *3 (-1013)) (-5 *2 (-108)))) (-2675 (*1 *1 *1 *2) (-12 (-5 *2 (-587 *1)) (|has| *1 (-6 -4234)) (-4 *1 (-935 *3)) (-4 *3 (-1119)))) (-2378 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4234)) (-4 *1 (-935 *2)) (-4 *2 (-1119)))) (-2300 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4234)) (-4 *1 (-935 *2)) (-4 *2 (-1119)))))
+(-13 (-460 |t#1|) (-10 -8 (-15 -3098 ((-587 $) $)) (-15 -3186 ((-587 $) $)) (-15 -2229 ((-108) $)) (-15 -3430 (|t#1| $)) (-15 -2544 (|t#1| $ "value")) (-15 -2406 ((-108) $)) (-15 -1278 ((-587 |t#1|) $)) (-15 -2931 ((-521) $ $)) (IF (|has| |t#1| (-1013)) (PROGN (-15 -2294 ((-108) $ $)) (-15 -3651 ((-108) $ $))) |%noBranch|) (IF (|has| $ (-6 -4234)) (PROGN (-15 -2675 ($ $ (-587 $))) (-15 -2378 (|t#1| $ "value" |t#1|)) (-15 -2300 (|t#1| $ |t#1|))) |%noBranch|)))
+(((-33) . T) ((-97) |has| |#1| (-1013)) ((-561 (-792)) -3703 (|has| |#1| (-1013)) (|has| |#1| (-561 (-792)))) ((-284 |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-460 |#1|) . T) ((-482 |#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-1013) |has| |#1| (-1013)) ((-1119) . T))
+((-1927 (($ $) 9) (($ $ (-707)) 43) (($ (-381 (-521))) 12) (($ (-521)) 15)) (-2590 (((-3 $ "failed") (-1080 $) (-850) (-792)) 23) (((-3 $ "failed") (-1080 $) (-850)) 28)) (-3407 (($ $ (-521)) 49)) (-3846 (((-707)) 16)) (-3032 (((-587 $) (-1080 $)) NIL) (((-587 $) (-1080 (-381 (-521)))) 54) (((-587 $) (-1080 (-521))) 59) (((-587 $) (-881 $)) 63) (((-587 $) (-881 (-381 (-521)))) 67) (((-587 $) (-881 (-521))) 71)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL) (($ $ (-381 (-521))) 47)))
+(((-936 |#1|) (-10 -8 (-15 -1927 (|#1| (-521))) (-15 -1927 (|#1| (-381 (-521)))) (-15 -1927 (|#1| |#1| (-707))) (-15 -3032 ((-587 |#1|) (-881 (-521)))) (-15 -3032 ((-587 |#1|) (-881 (-381 (-521))))) (-15 -3032 ((-587 |#1|) (-881 |#1|))) (-15 -3032 ((-587 |#1|) (-1080 (-521)))) (-15 -3032 ((-587 |#1|) (-1080 (-381 (-521))))) (-15 -3032 ((-587 |#1|) (-1080 |#1|))) (-15 -2590 ((-3 |#1| "failed") (-1080 |#1|) (-850))) (-15 -2590 ((-3 |#1| "failed") (-1080 |#1|) (-850) (-792))) (-15 ** (|#1| |#1| (-381 (-521)))) (-15 -3407 (|#1| |#1| (-521))) (-15 -1927 (|#1| |#1|)) (-15 ** (|#1| |#1| (-521))) (-15 -3846 ((-707))) (-15 ** (|#1| |#1| (-707))) (-15 ** (|#1| |#1| (-850)))) (-937)) (T -936))
+((-3846 (*1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-936 *3)) (-4 *3 (-937)))))
+(-10 -8 (-15 -1927 (|#1| (-521))) (-15 -1927 (|#1| (-381 (-521)))) (-15 -1927 (|#1| |#1| (-707))) (-15 -3032 ((-587 |#1|) (-881 (-521)))) (-15 -3032 ((-587 |#1|) (-881 (-381 (-521))))) (-15 -3032 ((-587 |#1|) (-881 |#1|))) (-15 -3032 ((-587 |#1|) (-1080 (-521)))) (-15 -3032 ((-587 |#1|) (-1080 (-381 (-521))))) (-15 -3032 ((-587 |#1|) (-1080 |#1|))) (-15 -2590 ((-3 |#1| "failed") (-1080 |#1|) (-850))) (-15 -2590 ((-3 |#1| "failed") (-1080 |#1|) (-850) (-792))) (-15 ** (|#1| |#1| (-381 (-521)))) (-15 -3407 (|#1| |#1| (-521))) (-15 -1927 (|#1| |#1|)) (-15 ** (|#1| |#1| (-521))) (-15 -3846 ((-707))) (-15 ** (|#1| |#1| (-707))) (-15 ** (|#1| |#1| (-850))))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) 89)) (-2559 (($ $) 90)) (-1733 (((-108) $) 92)) (-1232 (((-3 $ "failed") $ $) 19)) (-3063 (($ $) 109)) (-3358 (((-392 $) $) 110)) (-1927 (($ $) 73) (($ $ (-707)) 59) (($ (-381 (-521))) 58) (($ (-521)) 57)) (-1389 (((-108) $ $) 100)) (-1606 (((-521) $) 127)) (-2547 (($) 17 T CONST)) (-2590 (((-3 $ "failed") (-1080 $) (-850) (-792)) 67) (((-3 $ "failed") (-1080 $) (-850)) 66)) (-1297 (((-3 (-521) "failed") $) 85 (|has| (-381 (-521)) (-961 (-521)))) (((-3 (-381 (-521)) "failed") $) 83 (|has| (-381 (-521)) (-961 (-381 (-521))))) (((-3 (-381 (-521)) "failed") $) 81)) (-1483 (((-521) $) 86 (|has| (-381 (-521)) (-961 (-521)))) (((-381 (-521)) $) 84 (|has| (-381 (-521)) (-961 (-381 (-521))))) (((-381 (-521)) $) 80)) (-3376 (($ $ (-792)) 56)) (-2932 (($ $ (-792)) 55)) (-2277 (($ $ $) 104)) (-1257 (((-3 $ "failed") $) 34)) (-2253 (($ $ $) 103)) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) 98)) (-2710 (((-108) $) 111)) (-3951 (((-108) $) 125)) (-3996 (((-108) $) 31)) (-3407 (($ $ (-521)) 72)) (-2210 (((-108) $) 126)) (-1546 (((-3 (-587 $) "failed") (-587 $) $) 107)) (-2810 (($ $ $) 124)) (-2446 (($ $ $) 123)) (-3671 (((-3 (-1080 $) "failed") $) 68)) (-2354 (((-3 (-792) "failed") $) 70)) (-1783 (((-3 (-1080 $) "failed") $) 69)) (-2223 (($ (-587 $)) 96) (($ $ $) 95)) (-3688 (((-1067) $) 9)) (-3095 (($ $) 112)) (-4147 (((-1031) $) 10)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) 97)) (-2258 (($ (-587 $)) 94) (($ $ $) 93)) (-1916 (((-392 $) $) 108)) (-1962 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 106) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) 105)) (-2230 (((-3 $ "failed") $ $) 88)) (-3854 (((-3 (-587 $) "failed") (-587 $) $) 99)) (-4196 (((-707) $) 101)) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) 102)) (-2189 (((-792) $) 11) (($ (-521)) 28) (($ (-381 (-521))) 117) (($ $) 87) (($ (-381 (-521))) 82) (($ (-521)) 79) (($ (-381 (-521))) 76)) (-3846 (((-707)) 29)) (-4210 (((-108) $ $) 91)) (-3894 (((-381 (-521)) $ $) 54)) (-3032 (((-587 $) (-1080 $)) 65) (((-587 $) (-1080 (-381 (-521)))) 64) (((-587 $) (-1080 (-521))) 63) (((-587 $) (-881 $)) 62) (((-587 $) (-881 (-381 (-521)))) 61) (((-587 $) (-881 (-521))) 60)) (-3304 (($ $) 128)) (-3505 (($ $ (-850)) 26) (($ $ (-707)) 33) (($ $ (-521)) 113)) (-3561 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-1574 (((-108) $ $) 121)) (-1558 (((-108) $ $) 120)) (-1531 (((-108) $ $) 6)) (-1566 (((-108) $ $) 122)) (-1549 (((-108) $ $) 119)) (-1620 (($ $ $) 118)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-707)) 32) (($ $ (-521)) 114) (($ $ (-381 (-521))) 71)) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ (-381 (-521)) $) 116) (($ $ (-381 (-521))) 115) (($ (-521) $) 78) (($ $ (-521)) 77) (($ (-381 (-521)) $) 75) (($ $ (-381 (-521))) 74)))
+(((-937) (-1196)) (T -937))
+((-1927 (*1 *1 *1) (-4 *1 (-937))) (-2354 (*1 *2 *1) (|partial| -12 (-4 *1 (-937)) (-5 *2 (-792)))) (-1783 (*1 *2 *1) (|partial| -12 (-5 *2 (-1080 *1)) (-4 *1 (-937)))) (-3671 (*1 *2 *1) (|partial| -12 (-5 *2 (-1080 *1)) (-4 *1 (-937)))) (-2590 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1080 *1)) (-5 *3 (-850)) (-5 *4 (-792)) (-4 *1 (-937)))) (-2590 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1080 *1)) (-5 *3 (-850)) (-4 *1 (-937)))) (-3032 (*1 *2 *3) (-12 (-5 *3 (-1080 *1)) (-4 *1 (-937)) (-5 *2 (-587 *1)))) (-3032 (*1 *2 *3) (-12 (-5 *3 (-1080 (-381 (-521)))) (-5 *2 (-587 *1)) (-4 *1 (-937)))) (-3032 (*1 *2 *3) (-12 (-5 *3 (-1080 (-521))) (-5 *2 (-587 *1)) (-4 *1 (-937)))) (-3032 (*1 *2 *3) (-12 (-5 *3 (-881 *1)) (-4 *1 (-937)) (-5 *2 (-587 *1)))) (-3032 (*1 *2 *3) (-12 (-5 *3 (-881 (-381 (-521)))) (-5 *2 (-587 *1)) (-4 *1 (-937)))) (-3032 (*1 *2 *3) (-12 (-5 *3 (-881 (-521))) (-5 *2 (-587 *1)) (-4 *1 (-937)))) (-1927 (*1 *1 *1 *2) (-12 (-4 *1 (-937)) (-5 *2 (-707)))) (-1927 (*1 *1 *2) (-12 (-5 *2 (-381 (-521))) (-4 *1 (-937)))) (-1927 (*1 *1 *2) (-12 (-5 *2 (-521)) (-4 *1 (-937)))) (-3376 (*1 *1 *1 *2) (-12 (-4 *1 (-937)) (-5 *2 (-792)))) (-2932 (*1 *1 *1 *2) (-12 (-4 *1 (-937)) (-5 *2 (-792)))) (-3894 (*1 *2 *1 *1) (-12 (-4 *1 (-937)) (-5 *2 (-381 (-521))))))
+(-13 (-135) (-782) (-157) (-337) (-385 (-381 (-521))) (-37 (-521)) (-37 (-381 (-521))) (-927) (-10 -8 (-15 -2354 ((-3 (-792) "failed") $)) (-15 -1783 ((-3 (-1080 $) "failed") $)) (-15 -3671 ((-3 (-1080 $) "failed") $)) (-15 -2590 ((-3 $ "failed") (-1080 $) (-850) (-792))) (-15 -2590 ((-3 $ "failed") (-1080 $) (-850))) (-15 -3032 ((-587 $) (-1080 $))) (-15 -3032 ((-587 $) (-1080 (-381 (-521))))) (-15 -3032 ((-587 $) (-1080 (-521)))) (-15 -3032 ((-587 $) (-881 $))) (-15 -3032 ((-587 $) (-881 (-381 (-521))))) (-15 -3032 ((-587 $) (-881 (-521)))) (-15 -1927 ($ $ (-707))) (-15 -1927 ($ $)) (-15 -1927 ($ (-381 (-521)))) (-15 -1927 ($ (-521))) (-15 -3376 ($ $ (-792))) (-15 -2932 ($ $ (-792))) (-15 -3894 ((-381 (-521)) $ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-381 (-521))) . T) ((-37 #1=(-521)) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 #1# #1#) . T) ((-107 $ $) . T) ((-124) . T) ((-135) . T) ((-561 (-792)) . T) ((-157) . T) ((-220) . T) ((-265) . T) ((-282) . T) ((-337) . T) ((-385 (-381 (-521))) . T) ((-425) . T) ((-513) . T) ((-589 #0#) . T) ((-589 #1#) . T) ((-589 $) . T) ((-654 #0#) . T) ((-654 #1#) . T) ((-654 $) . T) ((-663) . T) ((-727) . T) ((-728) . T) ((-730) . T) ((-732) . T) ((-782) . T) ((-784) . T) ((-849) . T) ((-927) . T) ((-961 (-381 (-521))) . T) ((-961 (-521)) |has| (-381 (-521)) (-961 (-521))) ((-976 #0#) . T) ((-976 #1#) . T) ((-976 $) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T) ((-1123) . T))
+((-2991 (((-2 (|:| |ans| |#2|) (|:| -1925 |#2|) (|:| |sol?| (-108))) (-521) |#2| |#2| (-1084) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-587 |#2|)) (-1 (-3 (-2 (|:| -3100 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 62)))
+(((-938 |#1| |#2|) (-10 -7 (-15 -2991 ((-2 (|:| |ans| |#2|) (|:| -1925 |#2|) (|:| |sol?| (-108))) (-521) |#2| |#2| (-1084) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-587 |#2|)) (-1 (-3 (-2 (|:| -3100 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-425) (-784) (-135) (-961 (-521)) (-583 (-521))) (-13 (-1105) (-27) (-404 |#1|))) (T -938))
+((-2991 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1084)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-587 *4))) (-5 *7 (-1 (-3 (-2 (|:| -3100 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1105) (-27) (-404 *8))) (-4 *8 (-13 (-425) (-784) (-135) (-961 *3) (-583 *3))) (-5 *3 (-521)) (-5 *2 (-2 (|:| |ans| *4) (|:| -1925 *4) (|:| |sol?| (-108)))) (-5 *1 (-938 *8 *4)))))
+(-10 -7 (-15 -2991 ((-2 (|:| |ans| |#2|) (|:| -1925 |#2|) (|:| |sol?| (-108))) (-521) |#2| |#2| (-1084) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-587 |#2|)) (-1 (-3 (-2 (|:| -3100 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
+((-2063 (((-3 (-587 |#2|) "failed") (-521) |#2| |#2| |#2| (-1084) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-587 |#2|)) (-1 (-3 (-2 (|:| -3100 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 47)))
+(((-939 |#1| |#2|) (-10 -7 (-15 -2063 ((-3 (-587 |#2|) "failed") (-521) |#2| |#2| |#2| (-1084) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-587 |#2|)) (-1 (-3 (-2 (|:| -3100 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-425) (-784) (-135) (-961 (-521)) (-583 (-521))) (-13 (-1105) (-27) (-404 |#1|))) (T -939))
+((-2063 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1084)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-587 *4))) (-5 *7 (-1 (-3 (-2 (|:| -3100 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1105) (-27) (-404 *8))) (-4 *8 (-13 (-425) (-784) (-135) (-961 *3) (-583 *3))) (-5 *3 (-521)) (-5 *2 (-587 *4)) (-5 *1 (-939 *8 *4)))))
+(-10 -7 (-15 -2063 ((-3 (-587 |#2|) "failed") (-521) |#2| |#2| |#2| (-1084) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-587 |#2|)) (-1 (-3 (-2 (|:| -3100 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
+((-3963 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-108)))) (|:| -3192 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-521)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-521) (-1 |#2| |#2|)) 30)) (-2412 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-381 |#2|)) (|:| |c| (-381 |#2|)) (|:| -1639 |#2|)) "failed") (-381 |#2|) (-381 |#2|) (-1 |#2| |#2|)) 57)) (-2709 (((-2 (|:| |ans| (-381 |#2|)) (|:| |nosol| (-108))) (-381 |#2|) (-381 |#2|)) 62)))
+(((-940 |#1| |#2|) (-10 -7 (-15 -2412 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-381 |#2|)) (|:| |c| (-381 |#2|)) (|:| -1639 |#2|)) "failed") (-381 |#2|) (-381 |#2|) (-1 |#2| |#2|))) (-15 -2709 ((-2 (|:| |ans| (-381 |#2|)) (|:| |nosol| (-108))) (-381 |#2|) (-381 |#2|))) (-15 -3963 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-108)))) (|:| -3192 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-521)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-521) (-1 |#2| |#2|)))) (-13 (-337) (-135) (-961 (-521))) (-1141 |#1|)) (T -940))
+((-3963 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1141 *6)) (-4 *6 (-13 (-337) (-135) (-961 *4))) (-5 *4 (-521)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-108)))) (|:| -3192 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-940 *6 *3)))) (-2709 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-337) (-135) (-961 (-521)))) (-4 *5 (-1141 *4)) (-5 *2 (-2 (|:| |ans| (-381 *5)) (|:| |nosol| (-108)))) (-5 *1 (-940 *4 *5)) (-5 *3 (-381 *5)))) (-2412 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1141 *5)) (-4 *5 (-13 (-337) (-135) (-961 (-521)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-381 *6)) (|:| |c| (-381 *6)) (|:| -1639 *6))) (-5 *1 (-940 *5 *6)) (-5 *3 (-381 *6)))))
+(-10 -7 (-15 -2412 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-381 |#2|)) (|:| |c| (-381 |#2|)) (|:| -1639 |#2|)) "failed") (-381 |#2|) (-381 |#2|) (-1 |#2| |#2|))) (-15 -2709 ((-2 (|:| |ans| (-381 |#2|)) (|:| |nosol| (-108))) (-381 |#2|) (-381 |#2|))) (-15 -3963 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-108)))) (|:| -3192 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-521)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-521) (-1 |#2| |#2|))))
+((-1802 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-381 |#2|)) (|:| |h| |#2|) (|:| |c1| (-381 |#2|)) (|:| |c2| (-381 |#2|)) (|:| -1639 |#2|)) "failed") (-381 |#2|) (-381 |#2|) (-381 |#2|) (-1 |#2| |#2|)) 22)) (-1439 (((-3 (-587 (-381 |#2|)) "failed") (-381 |#2|) (-381 |#2|) (-381 |#2|)) 32)))
+(((-941 |#1| |#2|) (-10 -7 (-15 -1802 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-381 |#2|)) (|:| |h| |#2|) (|:| |c1| (-381 |#2|)) (|:| |c2| (-381 |#2|)) (|:| -1639 |#2|)) "failed") (-381 |#2|) (-381 |#2|) (-381 |#2|) (-1 |#2| |#2|))) (-15 -1439 ((-3 (-587 (-381 |#2|)) "failed") (-381 |#2|) (-381 |#2|) (-381 |#2|)))) (-13 (-337) (-135) (-961 (-521))) (-1141 |#1|)) (T -941))
+((-1439 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-337) (-135) (-961 (-521)))) (-4 *5 (-1141 *4)) (-5 *2 (-587 (-381 *5))) (-5 *1 (-941 *4 *5)) (-5 *3 (-381 *5)))) (-1802 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1141 *5)) (-4 *5 (-13 (-337) (-135) (-961 (-521)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-381 *6)) (|:| |h| *6) (|:| |c1| (-381 *6)) (|:| |c2| (-381 *6)) (|:| -1639 *6))) (-5 *1 (-941 *5 *6)) (-5 *3 (-381 *6)))))
+(-10 -7 (-15 -1802 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-381 |#2|)) (|:| |h| |#2|) (|:| |c1| (-381 |#2|)) (|:| |c2| (-381 |#2|)) (|:| -1639 |#2|)) "failed") (-381 |#2|) (-381 |#2|) (-381 |#2|) (-1 |#2| |#2|))) (-15 -1439 ((-3 (-587 (-381 |#2|)) "failed") (-381 |#2|) (-381 |#2|) (-381 |#2|))))
+((-2495 (((-1 |#1|) (-587 (-2 (|:| -3430 |#1|) (|:| -1758 (-521))))) 37)) (-2129 (((-1 |#1|) (-1015 |#1|)) 45)) (-3029 (((-1 |#1|) (-1165 |#1|) (-1165 (-521)) (-521)) 34)))
+(((-942 |#1|) (-10 -7 (-15 -2129 ((-1 |#1|) (-1015 |#1|))) (-15 -2495 ((-1 |#1|) (-587 (-2 (|:| -3430 |#1|) (|:| -1758 (-521)))))) (-15 -3029 ((-1 |#1|) (-1165 |#1|) (-1165 (-521)) (-521)))) (-1013)) (T -942))
+((-3029 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1165 *6)) (-5 *4 (-1165 (-521))) (-5 *5 (-521)) (-4 *6 (-1013)) (-5 *2 (-1 *6)) (-5 *1 (-942 *6)))) (-2495 (*1 *2 *3) (-12 (-5 *3 (-587 (-2 (|:| -3430 *4) (|:| -1758 (-521))))) (-4 *4 (-1013)) (-5 *2 (-1 *4)) (-5 *1 (-942 *4)))) (-2129 (*1 *2 *3) (-12 (-5 *3 (-1015 *4)) (-4 *4 (-1013)) (-5 *2 (-1 *4)) (-5 *1 (-942 *4)))))
+(-10 -7 (-15 -2129 ((-1 |#1|) (-1015 |#1|))) (-15 -2495 ((-1 |#1|) (-587 (-2 (|:| -3430 |#1|) (|:| -1758 (-521)))))) (-15 -3029 ((-1 |#1|) (-1165 |#1|) (-1165 (-521)) (-521))))
+((-2733 (((-707) (-310 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23)))
+(((-943 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2733 ((-707) (-310 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-337) (-1141 |#1|) (-1141 (-381 |#2|)) (-316 |#1| |#2| |#3|) (-13 (-342) (-337))) (T -943))
+((-2733 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-310 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-337)) (-4 *7 (-1141 *6)) (-4 *4 (-1141 (-381 *7))) (-4 *8 (-316 *6 *7 *4)) (-4 *9 (-13 (-342) (-337))) (-5 *2 (-707)) (-5 *1 (-943 *6 *7 *4 *8 *9)))))
+(-10 -7 (-15 -2733 ((-707) (-310 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|))))
+((-3161 (((-3 (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521)))) "failed") |#1| (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521)))) (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521))))) 31) (((-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521)))) |#1| (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521)))) (-381 (-521))) 28)) (-2975 (((-587 (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521))))) |#1| (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521)))) (-381 (-521))) 33) (((-587 (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521))))) |#1| (-381 (-521))) 29) (((-587 (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521))))) |#1| (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521))))) 32) (((-587 (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521))))) |#1|) 27)) (-3582 (((-587 (-381 (-521))) (-587 (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521)))))) 19)) (-3322 (((-381 (-521)) (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521))))) 16)))
+(((-944 |#1|) (-10 -7 (-15 -2975 ((-587 (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521))))) |#1|)) (-15 -2975 ((-587 (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521))))) |#1| (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521)))))) (-15 -2975 ((-587 (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521))))) |#1| (-381 (-521)))) (-15 -2975 ((-587 (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521))))) |#1| (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521)))) (-381 (-521)))) (-15 -3161 ((-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521)))) |#1| (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521)))) (-381 (-521)))) (-15 -3161 ((-3 (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521)))) "failed") |#1| (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521)))) (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521)))))) (-15 -3322 ((-381 (-521)) (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521)))))) (-15 -3582 ((-587 (-381 (-521))) (-587 (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521)))))))) (-1141 (-521))) (T -944))
+((-3582 (*1 *2 *3) (-12 (-5 *3 (-587 (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521)))))) (-5 *2 (-587 (-381 (-521)))) (-5 *1 (-944 *4)) (-4 *4 (-1141 (-521))))) (-3322 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521))))) (-5 *2 (-381 (-521))) (-5 *1 (-944 *4)) (-4 *4 (-1141 (-521))))) (-3161 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521))))) (-5 *1 (-944 *3)) (-4 *3 (-1141 (-521))))) (-3161 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521))))) (-5 *4 (-381 (-521))) (-5 *1 (-944 *3)) (-4 *3 (-1141 (-521))))) (-2975 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-381 (-521))) (-5 *2 (-587 (-2 (|:| -1913 *5) (|:| -1925 *5)))) (-5 *1 (-944 *3)) (-4 *3 (-1141 (-521))) (-5 *4 (-2 (|:| -1913 *5) (|:| -1925 *5))))) (-2975 (*1 *2 *3 *4) (-12 (-5 *2 (-587 (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521)))))) (-5 *1 (-944 *3)) (-4 *3 (-1141 (-521))) (-5 *4 (-381 (-521))))) (-2975 (*1 *2 *3 *4) (-12 (-5 *2 (-587 (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521)))))) (-5 *1 (-944 *3)) (-4 *3 (-1141 (-521))) (-5 *4 (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521))))))) (-2975 (*1 *2 *3) (-12 (-5 *2 (-587 (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521)))))) (-5 *1 (-944 *3)) (-4 *3 (-1141 (-521))))))
+(-10 -7 (-15 -2975 ((-587 (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521))))) |#1|)) (-15 -2975 ((-587 (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521))))) |#1| (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521)))))) (-15 -2975 ((-587 (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521))))) |#1| (-381 (-521)))) (-15 -2975 ((-587 (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521))))) |#1| (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521)))) (-381 (-521)))) (-15 -3161 ((-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521)))) |#1| (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521)))) (-381 (-521)))) (-15 -3161 ((-3 (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521)))) "failed") |#1| (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521)))) (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521)))))) (-15 -3322 ((-381 (-521)) (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521)))))) (-15 -3582 ((-587 (-381 (-521))) (-587 (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521))))))))
+((-3161 (((-3 (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521)))) "failed") |#1| (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521)))) (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521))))) 35) (((-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521)))) |#1| (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521)))) (-381 (-521))) 32)) (-2975 (((-587 (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521))))) |#1| (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521)))) (-381 (-521))) 30) (((-587 (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521))))) |#1| (-381 (-521))) 26) (((-587 (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521))))) |#1| (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521))))) 28) (((-587 (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521))))) |#1|) 24)))
+(((-945 |#1|) (-10 -7 (-15 -2975 ((-587 (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521))))) |#1|)) (-15 -2975 ((-587 (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521))))) |#1| (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521)))))) (-15 -2975 ((-587 (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521))))) |#1| (-381 (-521)))) (-15 -2975 ((-587 (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521))))) |#1| (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521)))) (-381 (-521)))) (-15 -3161 ((-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521)))) |#1| (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521)))) (-381 (-521)))) (-15 -3161 ((-3 (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521)))) "failed") |#1| (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521)))) (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521))))))) (-1141 (-381 (-521)))) (T -945))
+((-3161 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521))))) (-5 *1 (-945 *3)) (-4 *3 (-1141 (-381 (-521)))))) (-3161 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521))))) (-5 *4 (-381 (-521))) (-5 *1 (-945 *3)) (-4 *3 (-1141 *4)))) (-2975 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-381 (-521))) (-5 *2 (-587 (-2 (|:| -1913 *5) (|:| -1925 *5)))) (-5 *1 (-945 *3)) (-4 *3 (-1141 *5)) (-5 *4 (-2 (|:| -1913 *5) (|:| -1925 *5))))) (-2975 (*1 *2 *3 *4) (-12 (-5 *4 (-381 (-521))) (-5 *2 (-587 (-2 (|:| -1913 *4) (|:| -1925 *4)))) (-5 *1 (-945 *3)) (-4 *3 (-1141 *4)))) (-2975 (*1 *2 *3 *4) (-12 (-5 *2 (-587 (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521)))))) (-5 *1 (-945 *3)) (-4 *3 (-1141 (-381 (-521)))) (-5 *4 (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521))))))) (-2975 (*1 *2 *3) (-12 (-5 *2 (-587 (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521)))))) (-5 *1 (-945 *3)) (-4 *3 (-1141 (-381 (-521)))))))
+(-10 -7 (-15 -2975 ((-587 (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521))))) |#1|)) (-15 -2975 ((-587 (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521))))) |#1| (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521)))))) (-15 -2975 ((-587 (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521))))) |#1| (-381 (-521)))) (-15 -2975 ((-587 (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521))))) |#1| (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521)))) (-381 (-521)))) (-15 -3161 ((-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521)))) |#1| (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521)))) (-381 (-521)))) (-15 -3161 ((-3 (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521)))) "failed") |#1| (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521)))) (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521)))))))
+((-1430 (((-202) $) 6) (((-353) $) 9)))
+(((-946) (-1196)) (T -946))
+NIL
+(-13 (-562 (-202)) (-562 (-353)))
+(((-562 (-202)) . T) ((-562 (-353)) . T))
+((-3182 (((-587 (-353)) (-881 (-521)) (-353)) 27) (((-587 (-353)) (-881 (-381 (-521))) (-353)) 26)) (-2779 (((-587 (-587 (-353))) (-587 (-881 (-521))) (-587 (-1084)) (-353)) 36)))
+(((-947) (-10 -7 (-15 -3182 ((-587 (-353)) (-881 (-381 (-521))) (-353))) (-15 -3182 ((-587 (-353)) (-881 (-521)) (-353))) (-15 -2779 ((-587 (-587 (-353))) (-587 (-881 (-521))) (-587 (-1084)) (-353))))) (T -947))
+((-2779 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-587 (-881 (-521)))) (-5 *4 (-587 (-1084))) (-5 *2 (-587 (-587 (-353)))) (-5 *1 (-947)) (-5 *5 (-353)))) (-3182 (*1 *2 *3 *4) (-12 (-5 *3 (-881 (-521))) (-5 *2 (-587 (-353))) (-5 *1 (-947)) (-5 *4 (-353)))) (-3182 (*1 *2 *3 *4) (-12 (-5 *3 (-881 (-381 (-521)))) (-5 *2 (-587 (-353))) (-5 *1 (-947)) (-5 *4 (-353)))))
+(-10 -7 (-15 -3182 ((-587 (-353)) (-881 (-381 (-521))) (-353))) (-15 -3182 ((-587 (-353)) (-881 (-521)) (-353))) (-15 -2779 ((-587 (-587 (-353))) (-587 (-881 (-521))) (-587 (-1084)) (-353))))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) 70)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-2559 (($ $) NIL)) (-1733 (((-108) $) NIL)) (-1232 (((-3 $ "failed") $ $) NIL)) (-3063 (($ $) NIL)) (-3358 (((-392 $) $) NIL)) (-1927 (($ $) NIL) (($ $ (-707)) NIL) (($ (-381 (-521))) NIL) (($ (-521)) NIL)) (-1389 (((-108) $ $) NIL)) (-1606 (((-521) $) 65)) (-2547 (($) NIL T CONST)) (-2590 (((-3 $ "failed") (-1080 $) (-850) (-792)) NIL) (((-3 $ "failed") (-1080 $) (-850)) 49)) (-1297 (((-3 (-381 (-521)) "failed") $) NIL (|has| (-381 (-521)) (-961 (-381 (-521))))) (((-3 (-381 (-521)) "failed") $) NIL) (((-3 |#1| "failed") $) 108) (((-3 (-521) "failed") $) NIL (-3703 (|has| (-381 (-521)) (-961 (-521))) (|has| |#1| (-961 (-521)))))) (-1483 (((-381 (-521)) $) 14 (|has| (-381 (-521)) (-961 (-381 (-521))))) (((-381 (-521)) $) 14) ((|#1| $) 109) (((-521) $) NIL (-3703 (|has| (-381 (-521)) (-961 (-521))) (|has| |#1| (-961 (-521)))))) (-3376 (($ $ (-792)) 40)) (-2932 (($ $ (-792)) 41)) (-2277 (($ $ $) NIL)) (-2738 (((-381 (-521)) $ $) 18)) (-1257 (((-3 $ "failed") $) 83)) (-2253 (($ $ $) NIL)) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) NIL)) (-2710 (((-108) $) NIL)) (-3951 (((-108) $) 60)) (-3996 (((-108) $) NIL)) (-3407 (($ $ (-521)) NIL)) (-2210 (((-108) $) 63)) (-1546 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-2810 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-3671 (((-3 (-1080 $) "failed") $) 78)) (-2354 (((-3 (-792) "failed") $) 77)) (-1783 (((-3 (-1080 $) "failed") $) 75)) (-1526 (((-3 (-980 $ (-1080 $)) "failed") $) 73)) (-2223 (($ (-587 $)) NIL) (($ $ $) NIL)) (-3688 (((-1067) $) NIL)) (-3095 (($ $) 84)) (-4147 (((-1031) $) NIL)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) NIL)) (-2258 (($ (-587 $)) NIL) (($ $ $) NIL)) (-1916 (((-392 $) $) NIL)) (-1962 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL)) (-2230 (((-3 $ "failed") $ $) NIL)) (-3854 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-4196 (((-707) $) NIL)) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) NIL)) (-2189 (((-792) $) 82) (($ (-521)) NIL) (($ (-381 (-521))) NIL) (($ $) 57) (($ (-381 (-521))) NIL) (($ (-521)) NIL) (($ (-381 (-521))) NIL) (($ |#1|) 111)) (-3846 (((-707)) NIL)) (-4210 (((-108) $ $) NIL)) (-3894 (((-381 (-521)) $ $) 24)) (-3032 (((-587 $) (-1080 $)) 55) (((-587 $) (-1080 (-381 (-521)))) NIL) (((-587 $) (-1080 (-521))) NIL) (((-587 $) (-881 $)) NIL) (((-587 $) (-881 (-381 (-521)))) NIL) (((-587 $) (-881 (-521))) NIL)) (-4162 (($ (-980 $ (-1080 $)) (-792)) 39)) (-3304 (($ $) 19)) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (-3561 (($) 28 T CONST)) (-3572 (($) 34 T CONST)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) 71)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 21)) (-1620 (($ $ $) 32)) (-1612 (($ $) 33) (($ $ $) 69)) (-1602 (($ $ $) 104)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL) (($ $ (-381 (-521))) NIL)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) 92) (($ $ $) 97) (($ (-381 (-521)) $) NIL) (($ $ (-381 (-521))) NIL) (($ (-521) $) 92) (($ $ (-521)) NIL) (($ (-381 (-521)) $) NIL) (($ $ (-381 (-521))) NIL) (($ |#1| $) 96) (($ $ |#1|) NIL)))
+(((-948 |#1|) (-13 (-937) (-385 |#1|) (-37 |#1|) (-10 -8 (-15 -4162 ($ (-980 $ (-1080 $)) (-792))) (-15 -1526 ((-3 (-980 $ (-1080 $)) "failed") $)) (-15 -2738 ((-381 (-521)) $ $)))) (-13 (-782) (-337) (-946))) (T -948))
+((-4162 (*1 *1 *2 *3) (-12 (-5 *2 (-980 (-948 *4) (-1080 (-948 *4)))) (-5 *3 (-792)) (-5 *1 (-948 *4)) (-4 *4 (-13 (-782) (-337) (-946))))) (-1526 (*1 *2 *1) (|partial| -12 (-5 *2 (-980 (-948 *3) (-1080 (-948 *3)))) (-5 *1 (-948 *3)) (-4 *3 (-13 (-782) (-337) (-946))))) (-2738 (*1 *2 *1 *1) (-12 (-5 *2 (-381 (-521))) (-5 *1 (-948 *3)) (-4 *3 (-13 (-782) (-337) (-946))))))
+(-13 (-937) (-385 |#1|) (-37 |#1|) (-10 -8 (-15 -4162 ($ (-980 $ (-1080 $)) (-792))) (-15 -1526 ((-3 (-980 $ (-1080 $)) "failed") $)) (-15 -2738 ((-381 (-521)) $ $))))
+((-1649 (((-2 (|:| -3192 |#2|) (|:| -1419 (-587 |#1|))) |#2| (-587 |#1|)) 20) ((|#2| |#2| |#1|) 15)))
+(((-949 |#1| |#2|) (-10 -7 (-15 -1649 (|#2| |#2| |#1|)) (-15 -1649 ((-2 (|:| -3192 |#2|) (|:| -1419 (-587 |#1|))) |#2| (-587 |#1|)))) (-337) (-597 |#1|)) (T -949))
+((-1649 (*1 *2 *3 *4) (-12 (-4 *5 (-337)) (-5 *2 (-2 (|:| -3192 *3) (|:| -1419 (-587 *5)))) (-5 *1 (-949 *5 *3)) (-5 *4 (-587 *5)) (-4 *3 (-597 *5)))) (-1649 (*1 *2 *2 *3) (-12 (-4 *3 (-337)) (-5 *1 (-949 *3 *2)) (-4 *2 (-597 *3)))))
+(-10 -7 (-15 -1649 (|#2| |#2| |#1|)) (-15 -1649 ((-2 (|:| -3192 |#2|) (|:| -1419 (-587 |#1|))) |#2| (-587 |#1|))))
+((-1415 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-2065 ((|#1| $ |#1|) 14)) (-2378 ((|#1| $ |#1|) 12)) (-3011 (($ |#1|) 10)) (-3688 (((-1067) $) NIL (|has| |#1| (-1013)))) (-4147 (((-1031) $) NIL (|has| |#1| (-1013)))) (-2544 ((|#1| $) 11)) (-1363 ((|#1| $) 13)) (-2189 (((-792) $) 21 (|has| |#1| (-1013)))) (-1531 (((-108) $ $) 9)))
+(((-950 |#1|) (-13 (-1119) (-10 -8 (-15 -3011 ($ |#1|)) (-15 -2544 (|#1| $)) (-15 -2378 (|#1| $ |#1|)) (-15 -1363 (|#1| $)) (-15 -2065 (|#1| $ |#1|)) (-15 -1531 ((-108) $ $)) (IF (|has| |#1| (-1013)) (-6 (-1013)) |%noBranch|))) (-1119)) (T -950))
+((-3011 (*1 *1 *2) (-12 (-5 *1 (-950 *2)) (-4 *2 (-1119)))) (-2544 (*1 *2 *1) (-12 (-5 *1 (-950 *2)) (-4 *2 (-1119)))) (-2378 (*1 *2 *1 *2) (-12 (-5 *1 (-950 *2)) (-4 *2 (-1119)))) (-1363 (*1 *2 *1) (-12 (-5 *1 (-950 *2)) (-4 *2 (-1119)))) (-2065 (*1 *2 *1 *2) (-12 (-5 *1 (-950 *2)) (-4 *2 (-1119)))) (-1531 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-950 *3)) (-4 *3 (-1119)))))
+(-13 (-1119) (-10 -8 (-15 -3011 ($ |#1|)) (-15 -2544 (|#1| $)) (-15 -2378 (|#1| $ |#1|)) (-15 -1363 (|#1| $)) (-15 -2065 (|#1| $ |#1|)) (-15 -1531 ((-108) $ $)) (IF (|has| |#1| (-1013)) (-6 (-1013)) |%noBranch|)))
+((-1415 (((-108) $ $) NIL)) (-2113 (((-587 (-2 (|:| -1650 $) (|:| -1544 (-587 |#4|)))) (-587 |#4|)) NIL)) (-1906 (((-587 $) (-587 |#4|)) 105) (((-587 $) (-587 |#4|) (-108)) 106) (((-587 $) (-587 |#4|) (-108) (-108)) 104) (((-587 $) (-587 |#4|) (-108) (-108) (-108) (-108)) 107)) (-4084 (((-587 |#3|) $) NIL)) (-3898 (((-108) $) NIL)) (-2466 (((-108) $) NIL (|has| |#1| (-513)))) (-3199 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2015 ((|#4| |#4| $) NIL)) (-3063 (((-587 (-2 (|:| |val| |#4|) (|:| -1884 $))) |#4| $) 99)) (-3211 (((-2 (|:| |under| $) (|:| -2567 $) (|:| |upper| $)) $ |#3|) NIL)) (-2978 (((-108) $ (-707)) NIL)) (-1628 (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4233))) (((-3 |#4| "failed") $ |#3|) 54)) (-2547 (($) NIL T CONST)) (-3035 (((-108) $) 26 (|has| |#1| (-513)))) (-3091 (((-108) $ $) NIL (|has| |#1| (-513)))) (-3882 (((-108) $ $) NIL (|has| |#1| (-513)))) (-3237 (((-108) $) NIL (|has| |#1| (-513)))) (-2990 (((-587 |#4|) (-587 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-3799 (((-587 |#4|) (-587 |#4|) $) NIL (|has| |#1| (-513)))) (-4183 (((-587 |#4|) (-587 |#4|) $) NIL (|has| |#1| (-513)))) (-1297 (((-3 $ "failed") (-587 |#4|)) NIL)) (-1483 (($ (-587 |#4|)) NIL)) (-2306 (((-3 $ "failed") $) 39)) (-1761 ((|#4| |#4| $) 57)) (-2332 (($ $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#4| (-1013))))) (-1422 (($ |#4| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#4| (-1013)))) (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4233)))) (-3820 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 73 (|has| |#1| (-513)))) (-3156 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) NIL)) (-1970 ((|#4| |#4| $) NIL)) (-3859 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4233)) (|has| |#4| (-1013)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4233))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4233))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-3726 (((-2 (|:| -1650 (-587 |#4|)) (|:| -1544 (-587 |#4|))) $) NIL)) (-4124 (((-108) |#4| $) NIL)) (-2628 (((-108) |#4| $) NIL)) (-3263 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3677 (((-2 (|:| |val| (-587 |#4|)) (|:| |towers| (-587 $))) (-587 |#4|) (-108) (-108)) 119)) (-3831 (((-587 |#4|) $) 16 (|has| $ (-6 -4233)))) (-3266 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3464 ((|#3| $) 33)) (-2139 (((-108) $ (-707)) NIL)) (-3757 (((-587 |#4|) $) 17 (|has| $ (-6 -4233)))) (-2221 (((-108) |#4| $) 25 (-12 (|has| $ (-6 -4233)) (|has| |#4| (-1013))))) (-3833 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#4| |#4|) $) 21)) (-2820 (((-587 |#3|) $) NIL)) (-2639 (((-108) |#3| $) NIL)) (-3574 (((-108) $ (-707)) NIL)) (-3688 (((-1067) $) NIL)) (-1767 (((-3 |#4| (-587 $)) |#4| |#4| $) NIL)) (-2031 (((-587 (-2 (|:| |val| |#4|) (|:| -1884 $))) |#4| |#4| $) 97)) (-1441 (((-3 |#4| "failed") $) 37)) (-3731 (((-587 $) |#4| $) 80)) (-4168 (((-3 (-108) (-587 $)) |#4| $) NIL)) (-3395 (((-587 (-2 (|:| |val| (-108)) (|:| -1884 $))) |#4| $) 90) (((-108) |#4| $) 52)) (-1660 (((-587 $) |#4| $) 102) (((-587 $) (-587 |#4|) $) NIL) (((-587 $) (-587 |#4|) (-587 $)) 103) (((-587 $) |#4| (-587 $)) NIL)) (-3624 (((-587 $) (-587 |#4|) (-108) (-108) (-108)) 114)) (-3428 (($ |#4| $) 70) (($ (-587 |#4|) $) 71) (((-587 $) |#4| $ (-108) (-108) (-108) (-108) (-108)) 67)) (-2323 (((-587 |#4|) $) NIL)) (-3786 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-1347 ((|#4| |#4| $) NIL)) (-2146 (((-108) $ $) NIL)) (-1341 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-513)))) (-1972 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-4065 ((|#4| |#4| $) NIL)) (-4147 (((-1031) $) NIL)) (-2293 (((-3 |#4| "failed") $) 35)) (-3620 (((-3 |#4| "failed") (-1 (-108) |#4|) $) NIL)) (-2001 (((-3 $ "failed") $ |#4|) 48)) (-2447 (($ $ |#4|) NIL) (((-587 $) |#4| $) 82) (((-587 $) |#4| (-587 $)) NIL) (((-587 $) (-587 |#4|) $) NIL) (((-587 $) (-587 |#4|) (-587 $)) 77)) (-1789 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 |#4|) (-587 |#4|)) NIL (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013)))) (($ $ (-269 |#4|)) NIL (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013)))) (($ $ (-587 (-269 |#4|))) NIL (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013))))) (-2488 (((-108) $ $) NIL)) (-3462 (((-108) $) 15)) (-4024 (($) 13)) (-1994 (((-707) $) NIL)) (-4163 (((-707) |#4| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#4| (-1013)))) (((-707) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4233)))) (-2404 (($ $) 12)) (-1430 (((-497) $) NIL (|has| |#4| (-562 (-497))))) (-2201 (($ (-587 |#4|)) 20)) (-3883 (($ $ |#3|) 42)) (-4029 (($ $ |#3|) 44)) (-3173 (($ $) NIL)) (-3318 (($ $ |#3|) NIL)) (-2189 (((-792) $) 31) (((-587 |#4|) $) 40)) (-3781 (((-707) $) NIL (|has| |#3| (-342)))) (-3234 (((-3 (-2 (|:| |bas| $) (|:| -1354 (-587 |#4|))) "failed") (-587 |#4|) (-1 (-108) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1354 (-587 |#4|))) "failed") (-587 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-3960 (((-108) $ (-1 (-108) |#4| (-587 |#4|))) NIL)) (-1933 (((-587 $) |#4| $) 79) (((-587 $) |#4| (-587 $)) NIL) (((-587 $) (-587 |#4|) $) NIL) (((-587 $) (-587 |#4|) (-587 $)) NIL)) (-3049 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4233)))) (-4099 (((-587 |#3|) $) NIL)) (-4002 (((-108) |#4| $) NIL)) (-2154 (((-108) |#3| $) 53)) (-1531 (((-108) $ $) NIL)) (-3475 (((-707) $) NIL (|has| $ (-6 -4233)))))
+(((-951 |#1| |#2| |#3| |#4|) (-13 (-989 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3428 ((-587 $) |#4| $ (-108) (-108) (-108) (-108) (-108))) (-15 -1906 ((-587 $) (-587 |#4|) (-108) (-108))) (-15 -1906 ((-587 $) (-587 |#4|) (-108) (-108) (-108) (-108))) (-15 -3624 ((-587 $) (-587 |#4|) (-108) (-108) (-108))) (-15 -3677 ((-2 (|:| |val| (-587 |#4|)) (|:| |towers| (-587 $))) (-587 |#4|) (-108) (-108))))) (-425) (-729) (-784) (-984 |#1| |#2| |#3|)) (T -951))
+((-3428 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784)) (-5 *2 (-587 (-951 *5 *6 *7 *3))) (-5 *1 (-951 *5 *6 *7 *3)) (-4 *3 (-984 *5 *6 *7)))) (-1906 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-587 *8)) (-5 *4 (-108)) (-4 *8 (-984 *5 *6 *7)) (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784)) (-5 *2 (-587 (-951 *5 *6 *7 *8))) (-5 *1 (-951 *5 *6 *7 *8)))) (-1906 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-587 *8)) (-5 *4 (-108)) (-4 *8 (-984 *5 *6 *7)) (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784)) (-5 *2 (-587 (-951 *5 *6 *7 *8))) (-5 *1 (-951 *5 *6 *7 *8)))) (-3624 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-587 *8)) (-5 *4 (-108)) (-4 *8 (-984 *5 *6 *7)) (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784)) (-5 *2 (-587 (-951 *5 *6 *7 *8))) (-5 *1 (-951 *5 *6 *7 *8)))) (-3677 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784)) (-4 *8 (-984 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-587 *8)) (|:| |towers| (-587 (-951 *5 *6 *7 *8))))) (-5 *1 (-951 *5 *6 *7 *8)) (-5 *3 (-587 *8)))))
+(-13 (-989 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3428 ((-587 $) |#4| $ (-108) (-108) (-108) (-108) (-108))) (-15 -1906 ((-587 $) (-587 |#4|) (-108) (-108))) (-15 -1906 ((-587 $) (-587 |#4|) (-108) (-108) (-108) (-108))) (-15 -3624 ((-587 $) (-587 |#4|) (-108) (-108) (-108))) (-15 -3677 ((-2 (|:| |val| (-587 |#4|)) (|:| |towers| (-587 $))) (-587 |#4|) (-108) (-108)))))
+((-3289 (((-587 (-627 |#1|)) (-587 (-627 |#1|))) 57) (((-627 |#1|) (-627 |#1|)) 56) (((-587 (-627 |#1|)) (-587 (-627 |#1|)) (-587 (-627 |#1|))) 55) (((-627 |#1|) (-627 |#1|) (-627 |#1|)) 52)) (-1799 (((-587 (-627 |#1|)) (-587 (-627 |#1|)) (-850)) 51) (((-627 |#1|) (-627 |#1|) (-850)) 50)) (-2877 (((-587 (-627 (-521))) (-587 (-587 (-521)))) 67) (((-587 (-627 (-521))) (-587 (-834 (-521))) (-521)) 66) (((-627 (-521)) (-587 (-521))) 63) (((-627 (-521)) (-834 (-521)) (-521)) 62)) (-1314 (((-627 (-881 |#1|)) (-707)) 80)) (-2453 (((-587 (-627 |#1|)) (-587 (-627 |#1|)) (-850)) 36 (|has| |#1| (-6 (-4235 "*")))) (((-627 |#1|) (-627 |#1|) (-850)) 34 (|has| |#1| (-6 (-4235 "*"))))))
+(((-952 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4235 "*"))) (-15 -2453 ((-627 |#1|) (-627 |#1|) (-850))) |%noBranch|) (IF (|has| |#1| (-6 (-4235 "*"))) (-15 -2453 ((-587 (-627 |#1|)) (-587 (-627 |#1|)) (-850))) |%noBranch|) (-15 -1314 ((-627 (-881 |#1|)) (-707))) (-15 -1799 ((-627 |#1|) (-627 |#1|) (-850))) (-15 -1799 ((-587 (-627 |#1|)) (-587 (-627 |#1|)) (-850))) (-15 -3289 ((-627 |#1|) (-627 |#1|) (-627 |#1|))) (-15 -3289 ((-587 (-627 |#1|)) (-587 (-627 |#1|)) (-587 (-627 |#1|)))) (-15 -3289 ((-627 |#1|) (-627 |#1|))) (-15 -3289 ((-587 (-627 |#1|)) (-587 (-627 |#1|)))) (-15 -2877 ((-627 (-521)) (-834 (-521)) (-521))) (-15 -2877 ((-627 (-521)) (-587 (-521)))) (-15 -2877 ((-587 (-627 (-521))) (-587 (-834 (-521))) (-521))) (-15 -2877 ((-587 (-627 (-521))) (-587 (-587 (-521)))))) (-970)) (T -952))
+((-2877 (*1 *2 *3) (-12 (-5 *3 (-587 (-587 (-521)))) (-5 *2 (-587 (-627 (-521)))) (-5 *1 (-952 *4)) (-4 *4 (-970)))) (-2877 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-834 (-521)))) (-5 *4 (-521)) (-5 *2 (-587 (-627 *4))) (-5 *1 (-952 *5)) (-4 *5 (-970)))) (-2877 (*1 *2 *3) (-12 (-5 *3 (-587 (-521))) (-5 *2 (-627 (-521))) (-5 *1 (-952 *4)) (-4 *4 (-970)))) (-2877 (*1 *2 *3 *4) (-12 (-5 *3 (-834 (-521))) (-5 *4 (-521)) (-5 *2 (-627 *4)) (-5 *1 (-952 *5)) (-4 *5 (-970)))) (-3289 (*1 *2 *2) (-12 (-5 *2 (-587 (-627 *3))) (-4 *3 (-970)) (-5 *1 (-952 *3)))) (-3289 (*1 *2 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-970)) (-5 *1 (-952 *3)))) (-3289 (*1 *2 *2 *2) (-12 (-5 *2 (-587 (-627 *3))) (-4 *3 (-970)) (-5 *1 (-952 *3)))) (-3289 (*1 *2 *2 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-970)) (-5 *1 (-952 *3)))) (-1799 (*1 *2 *2 *3) (-12 (-5 *2 (-587 (-627 *4))) (-5 *3 (-850)) (-4 *4 (-970)) (-5 *1 (-952 *4)))) (-1799 (*1 *2 *2 *3) (-12 (-5 *2 (-627 *4)) (-5 *3 (-850)) (-4 *4 (-970)) (-5 *1 (-952 *4)))) (-1314 (*1 *2 *3) (-12 (-5 *3 (-707)) (-5 *2 (-627 (-881 *4))) (-5 *1 (-952 *4)) (-4 *4 (-970)))) (-2453 (*1 *2 *2 *3) (-12 (-5 *2 (-587 (-627 *4))) (-5 *3 (-850)) (|has| *4 (-6 (-4235 "*"))) (-4 *4 (-970)) (-5 *1 (-952 *4)))) (-2453 (*1 *2 *2 *3) (-12 (-5 *2 (-627 *4)) (-5 *3 (-850)) (|has| *4 (-6 (-4235 "*"))) (-4 *4 (-970)) (-5 *1 (-952 *4)))))
+(-10 -7 (IF (|has| |#1| (-6 (-4235 "*"))) (-15 -2453 ((-627 |#1|) (-627 |#1|) (-850))) |%noBranch|) (IF (|has| |#1| (-6 (-4235 "*"))) (-15 -2453 ((-587 (-627 |#1|)) (-587 (-627 |#1|)) (-850))) |%noBranch|) (-15 -1314 ((-627 (-881 |#1|)) (-707))) (-15 -1799 ((-627 |#1|) (-627 |#1|) (-850))) (-15 -1799 ((-587 (-627 |#1|)) (-587 (-627 |#1|)) (-850))) (-15 -3289 ((-627 |#1|) (-627 |#1|) (-627 |#1|))) (-15 -3289 ((-587 (-627 |#1|)) (-587 (-627 |#1|)) (-587 (-627 |#1|)))) (-15 -3289 ((-627 |#1|) (-627 |#1|))) (-15 -3289 ((-587 (-627 |#1|)) (-587 (-627 |#1|)))) (-15 -2877 ((-627 (-521)) (-834 (-521)) (-521))) (-15 -2877 ((-627 (-521)) (-587 (-521)))) (-15 -2877 ((-587 (-627 (-521))) (-587 (-834 (-521))) (-521))) (-15 -2877 ((-587 (-627 (-521))) (-587 (-587 (-521))))))
+((-2250 (((-627 |#1|) (-587 (-627 |#1|)) (-1165 |#1|)) 50 (|has| |#1| (-282)))) (-3604 (((-587 (-587 (-627 |#1|))) (-587 (-627 |#1|)) (-1165 (-1165 |#1|))) 73 (|has| |#1| (-337))) (((-587 (-587 (-627 |#1|))) (-587 (-627 |#1|)) (-1165 |#1|)) 71 (|has| |#1| (-337)))) (-3652 (((-1165 |#1|) (-587 (-1165 |#1|)) (-521)) 75 (-12 (|has| |#1| (-337)) (|has| |#1| (-342))))) (-3212 (((-587 (-587 (-627 |#1|))) (-587 (-627 |#1|)) (-850)) 80 (-12 (|has| |#1| (-337)) (|has| |#1| (-342)))) (((-587 (-587 (-627 |#1|))) (-587 (-627 |#1|)) (-108)) 78 (-12 (|has| |#1| (-337)) (|has| |#1| (-342)))) (((-587 (-587 (-627 |#1|))) (-587 (-627 |#1|))) 77 (-12 (|has| |#1| (-337)) (|has| |#1| (-342)))) (((-587 (-587 (-627 |#1|))) (-587 (-627 |#1|)) (-108) (-521) (-521)) 76 (-12 (|has| |#1| (-337)) (|has| |#1| (-342))))) (-1891 (((-108) (-587 (-627 |#1|))) 69 (|has| |#1| (-337))) (((-108) (-587 (-627 |#1|)) (-521)) 68 (|has| |#1| (-337)))) (-2940 (((-1165 (-1165 |#1|)) (-587 (-627 |#1|)) (-1165 |#1|)) 48 (|has| |#1| (-282)))) (-2992 (((-627 |#1|) (-587 (-627 |#1|)) (-627 |#1|)) 33)) (-1515 (((-627 |#1|) (-1165 (-1165 |#1|))) 30)) (-2475 (((-627 |#1|) (-587 (-627 |#1|)) (-587 (-627 |#1|)) (-521)) 64 (|has| |#1| (-337))) (((-627 |#1|) (-587 (-627 |#1|)) (-587 (-627 |#1|))) 63 (|has| |#1| (-337))) (((-627 |#1|) (-587 (-627 |#1|)) (-587 (-627 |#1|)) (-108) (-521)) 62 (|has| |#1| (-337)))))
+(((-953 |#1|) (-10 -7 (-15 -1515 ((-627 |#1|) (-1165 (-1165 |#1|)))) (-15 -2992 ((-627 |#1|) (-587 (-627 |#1|)) (-627 |#1|))) (IF (|has| |#1| (-282)) (PROGN (-15 -2940 ((-1165 (-1165 |#1|)) (-587 (-627 |#1|)) (-1165 |#1|))) (-15 -2250 ((-627 |#1|) (-587 (-627 |#1|)) (-1165 |#1|)))) |%noBranch|) (IF (|has| |#1| (-337)) (PROGN (-15 -2475 ((-627 |#1|) (-587 (-627 |#1|)) (-587 (-627 |#1|)) (-108) (-521))) (-15 -2475 ((-627 |#1|) (-587 (-627 |#1|)) (-587 (-627 |#1|)))) (-15 -2475 ((-627 |#1|) (-587 (-627 |#1|)) (-587 (-627 |#1|)) (-521))) (-15 -1891 ((-108) (-587 (-627 |#1|)) (-521))) (-15 -1891 ((-108) (-587 (-627 |#1|)))) (-15 -3604 ((-587 (-587 (-627 |#1|))) (-587 (-627 |#1|)) (-1165 |#1|))) (-15 -3604 ((-587 (-587 (-627 |#1|))) (-587 (-627 |#1|)) (-1165 (-1165 |#1|))))) |%noBranch|) (IF (|has| |#1| (-342)) (IF (|has| |#1| (-337)) (PROGN (-15 -3212 ((-587 (-587 (-627 |#1|))) (-587 (-627 |#1|)) (-108) (-521) (-521))) (-15 -3212 ((-587 (-587 (-627 |#1|))) (-587 (-627 |#1|)))) (-15 -3212 ((-587 (-587 (-627 |#1|))) (-587 (-627 |#1|)) (-108))) (-15 -3212 ((-587 (-587 (-627 |#1|))) (-587 (-627 |#1|)) (-850))) (-15 -3652 ((-1165 |#1|) (-587 (-1165 |#1|)) (-521)))) |%noBranch|) |%noBranch|)) (-970)) (T -953))
+((-3652 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-1165 *5))) (-5 *4 (-521)) (-5 *2 (-1165 *5)) (-5 *1 (-953 *5)) (-4 *5 (-337)) (-4 *5 (-342)) (-4 *5 (-970)))) (-3212 (*1 *2 *3 *4) (-12 (-5 *4 (-850)) (-4 *5 (-337)) (-4 *5 (-342)) (-4 *5 (-970)) (-5 *2 (-587 (-587 (-627 *5)))) (-5 *1 (-953 *5)) (-5 *3 (-587 (-627 *5))))) (-3212 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-337)) (-4 *5 (-342)) (-4 *5 (-970)) (-5 *2 (-587 (-587 (-627 *5)))) (-5 *1 (-953 *5)) (-5 *3 (-587 (-627 *5))))) (-3212 (*1 *2 *3) (-12 (-4 *4 (-337)) (-4 *4 (-342)) (-4 *4 (-970)) (-5 *2 (-587 (-587 (-627 *4)))) (-5 *1 (-953 *4)) (-5 *3 (-587 (-627 *4))))) (-3212 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-108)) (-5 *5 (-521)) (-4 *6 (-337)) (-4 *6 (-342)) (-4 *6 (-970)) (-5 *2 (-587 (-587 (-627 *6)))) (-5 *1 (-953 *6)) (-5 *3 (-587 (-627 *6))))) (-3604 (*1 *2 *3 *4) (-12 (-5 *4 (-1165 (-1165 *5))) (-4 *5 (-337)) (-4 *5 (-970)) (-5 *2 (-587 (-587 (-627 *5)))) (-5 *1 (-953 *5)) (-5 *3 (-587 (-627 *5))))) (-3604 (*1 *2 *3 *4) (-12 (-5 *4 (-1165 *5)) (-4 *5 (-337)) (-4 *5 (-970)) (-5 *2 (-587 (-587 (-627 *5)))) (-5 *1 (-953 *5)) (-5 *3 (-587 (-627 *5))))) (-1891 (*1 *2 *3) (-12 (-5 *3 (-587 (-627 *4))) (-4 *4 (-337)) (-4 *4 (-970)) (-5 *2 (-108)) (-5 *1 (-953 *4)))) (-1891 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-627 *5))) (-5 *4 (-521)) (-4 *5 (-337)) (-4 *5 (-970)) (-5 *2 (-108)) (-5 *1 (-953 *5)))) (-2475 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-587 (-627 *5))) (-5 *4 (-521)) (-5 *2 (-627 *5)) (-5 *1 (-953 *5)) (-4 *5 (-337)) (-4 *5 (-970)))) (-2475 (*1 *2 *3 *3) (-12 (-5 *3 (-587 (-627 *4))) (-5 *2 (-627 *4)) (-5 *1 (-953 *4)) (-4 *4 (-337)) (-4 *4 (-970)))) (-2475 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-587 (-627 *6))) (-5 *4 (-108)) (-5 *5 (-521)) (-5 *2 (-627 *6)) (-5 *1 (-953 *6)) (-4 *6 (-337)) (-4 *6 (-970)))) (-2250 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-627 *5))) (-5 *4 (-1165 *5)) (-4 *5 (-282)) (-4 *5 (-970)) (-5 *2 (-627 *5)) (-5 *1 (-953 *5)))) (-2940 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-627 *5))) (-4 *5 (-282)) (-4 *5 (-970)) (-5 *2 (-1165 (-1165 *5))) (-5 *1 (-953 *5)) (-5 *4 (-1165 *5)))) (-2992 (*1 *2 *3 *2) (-12 (-5 *3 (-587 (-627 *4))) (-5 *2 (-627 *4)) (-4 *4 (-970)) (-5 *1 (-953 *4)))) (-1515 (*1 *2 *3) (-12 (-5 *3 (-1165 (-1165 *4))) (-4 *4 (-970)) (-5 *2 (-627 *4)) (-5 *1 (-953 *4)))))
+(-10 -7 (-15 -1515 ((-627 |#1|) (-1165 (-1165 |#1|)))) (-15 -2992 ((-627 |#1|) (-587 (-627 |#1|)) (-627 |#1|))) (IF (|has| |#1| (-282)) (PROGN (-15 -2940 ((-1165 (-1165 |#1|)) (-587 (-627 |#1|)) (-1165 |#1|))) (-15 -2250 ((-627 |#1|) (-587 (-627 |#1|)) (-1165 |#1|)))) |%noBranch|) (IF (|has| |#1| (-337)) (PROGN (-15 -2475 ((-627 |#1|) (-587 (-627 |#1|)) (-587 (-627 |#1|)) (-108) (-521))) (-15 -2475 ((-627 |#1|) (-587 (-627 |#1|)) (-587 (-627 |#1|)))) (-15 -2475 ((-627 |#1|) (-587 (-627 |#1|)) (-587 (-627 |#1|)) (-521))) (-15 -1891 ((-108) (-587 (-627 |#1|)) (-521))) (-15 -1891 ((-108) (-587 (-627 |#1|)))) (-15 -3604 ((-587 (-587 (-627 |#1|))) (-587 (-627 |#1|)) (-1165 |#1|))) (-15 -3604 ((-587 (-587 (-627 |#1|))) (-587 (-627 |#1|)) (-1165 (-1165 |#1|))))) |%noBranch|) (IF (|has| |#1| (-342)) (IF (|has| |#1| (-337)) (PROGN (-15 -3212 ((-587 (-587 (-627 |#1|))) (-587 (-627 |#1|)) (-108) (-521) (-521))) (-15 -3212 ((-587 (-587 (-627 |#1|))) (-587 (-627 |#1|)))) (-15 -3212 ((-587 (-587 (-627 |#1|))) (-587 (-627 |#1|)) (-108))) (-15 -3212 ((-587 (-587 (-627 |#1|))) (-587 (-627 |#1|)) (-850))) (-15 -3652 ((-1165 |#1|) (-587 (-1165 |#1|)) (-521)))) |%noBranch|) |%noBranch|))
+((-3365 ((|#1| (-850) |#1|) 9)))
+(((-954 |#1|) (-10 -7 (-15 -3365 (|#1| (-850) |#1|))) (-13 (-1013) (-10 -8 (-15 -1602 ($ $ $))))) (T -954))
+((-3365 (*1 *2 *3 *2) (-12 (-5 *3 (-850)) (-5 *1 (-954 *2)) (-4 *2 (-13 (-1013) (-10 -8 (-15 -1602 ($ $ $))))))))
+(-10 -7 (-15 -3365 (|#1| (-850) |#1|)))
+((-3071 (((-587 (-2 (|:| |radval| (-290 (-521))) (|:| |radmult| (-521)) (|:| |radvect| (-587 (-627 (-290 (-521))))))) (-627 (-381 (-881 (-521))))) 58)) (-3606 (((-587 (-627 (-290 (-521)))) (-290 (-521)) (-627 (-381 (-881 (-521))))) 48)) (-2203 (((-587 (-290 (-521))) (-627 (-381 (-881 (-521))))) 41)) (-4153 (((-587 (-627 (-290 (-521)))) (-627 (-381 (-881 (-521))))) 68)) (-2140 (((-627 (-290 (-521))) (-627 (-290 (-521)))) 33)) (-2363 (((-587 (-627 (-290 (-521)))) (-587 (-627 (-290 (-521))))) 61)) (-2326 (((-3 (-627 (-290 (-521))) "failed") (-627 (-381 (-881 (-521))))) 65)))
+(((-955) (-10 -7 (-15 -3071 ((-587 (-2 (|:| |radval| (-290 (-521))) (|:| |radmult| (-521)) (|:| |radvect| (-587 (-627 (-290 (-521))))))) (-627 (-381 (-881 (-521)))))) (-15 -3606 ((-587 (-627 (-290 (-521)))) (-290 (-521)) (-627 (-381 (-881 (-521)))))) (-15 -2203 ((-587 (-290 (-521))) (-627 (-381 (-881 (-521)))))) (-15 -2326 ((-3 (-627 (-290 (-521))) "failed") (-627 (-381 (-881 (-521)))))) (-15 -2140 ((-627 (-290 (-521))) (-627 (-290 (-521))))) (-15 -2363 ((-587 (-627 (-290 (-521)))) (-587 (-627 (-290 (-521)))))) (-15 -4153 ((-587 (-627 (-290 (-521)))) (-627 (-381 (-881 (-521)))))))) (T -955))
+((-4153 (*1 *2 *3) (-12 (-5 *3 (-627 (-381 (-881 (-521))))) (-5 *2 (-587 (-627 (-290 (-521))))) (-5 *1 (-955)))) (-2363 (*1 *2 *2) (-12 (-5 *2 (-587 (-627 (-290 (-521))))) (-5 *1 (-955)))) (-2140 (*1 *2 *2) (-12 (-5 *2 (-627 (-290 (-521)))) (-5 *1 (-955)))) (-2326 (*1 *2 *3) (|partial| -12 (-5 *3 (-627 (-381 (-881 (-521))))) (-5 *2 (-627 (-290 (-521)))) (-5 *1 (-955)))) (-2203 (*1 *2 *3) (-12 (-5 *3 (-627 (-381 (-881 (-521))))) (-5 *2 (-587 (-290 (-521)))) (-5 *1 (-955)))) (-3606 (*1 *2 *3 *4) (-12 (-5 *4 (-627 (-381 (-881 (-521))))) (-5 *2 (-587 (-627 (-290 (-521))))) (-5 *1 (-955)) (-5 *3 (-290 (-521))))) (-3071 (*1 *2 *3) (-12 (-5 *3 (-627 (-381 (-881 (-521))))) (-5 *2 (-587 (-2 (|:| |radval| (-290 (-521))) (|:| |radmult| (-521)) (|:| |radvect| (-587 (-627 (-290 (-521)))))))) (-5 *1 (-955)))))
+(-10 -7 (-15 -3071 ((-587 (-2 (|:| |radval| (-290 (-521))) (|:| |radmult| (-521)) (|:| |radvect| (-587 (-627 (-290 (-521))))))) (-627 (-381 (-881 (-521)))))) (-15 -3606 ((-587 (-627 (-290 (-521)))) (-290 (-521)) (-627 (-381 (-881 (-521)))))) (-15 -2203 ((-587 (-290 (-521))) (-627 (-381 (-881 (-521)))))) (-15 -2326 ((-3 (-627 (-290 (-521))) "failed") (-627 (-381 (-881 (-521)))))) (-15 -2140 ((-627 (-290 (-521))) (-627 (-290 (-521))))) (-15 -2363 ((-587 (-627 (-290 (-521)))) (-587 (-627 (-290 (-521)))))) (-15 -4153 ((-587 (-627 (-290 (-521)))) (-627 (-381 (-881 (-521)))))))
+((-2096 ((|#1| |#1| (-850)) 9)))
+(((-956 |#1|) (-10 -7 (-15 -2096 (|#1| |#1| (-850)))) (-13 (-1013) (-10 -8 (-15 * ($ $ $))))) (T -956))
+((-2096 (*1 *2 *2 *3) (-12 (-5 *3 (-850)) (-5 *1 (-956 *2)) (-4 *2 (-13 (-1013) (-10 -8 (-15 * ($ $ $))))))))
+(-10 -7 (-15 -2096 (|#1| |#1| (-850))))
+((-2189 ((|#1| (-286)) 11) (((-1170) |#1|) 9)))
+(((-957 |#1|) (-10 -7 (-15 -2189 ((-1170) |#1|)) (-15 -2189 (|#1| (-286)))) (-1119)) (T -957))
+((-2189 (*1 *2 *3) (-12 (-5 *3 (-286)) (-5 *1 (-957 *2)) (-4 *2 (-1119)))) (-2189 (*1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *1 (-957 *3)) (-4 *3 (-1119)))))
+(-10 -7 (-15 -2189 ((-1170) |#1|)) (-15 -2189 (|#1| (-286))))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-1232 (((-3 $ "failed") $ $) NIL)) (-2547 (($) NIL T CONST)) (-3859 (($ |#4|) 25)) (-1257 (((-3 $ "failed") $) NIL)) (-3996 (((-108) $) NIL)) (-3844 ((|#4| $) 27)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2189 (((-792) $) 46) (($ (-521)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-3846 (((-707)) 43)) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (-3561 (($) 21 T CONST)) (-3572 (($) 23 T CONST)) (-1531 (((-108) $ $) 40)) (-1612 (($ $) 31) (($ $ $) NIL)) (-1602 (($ $ $) 29)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL)))
+(((-958 |#1| |#2| |#3| |#4| |#5|) (-13 (-157) (-37 |#1|) (-10 -8 (-15 -3859 ($ |#4|)) (-15 -2189 ($ |#4|)) (-15 -3844 (|#4| $)))) (-337) (-729) (-784) (-878 |#1| |#2| |#3|) (-587 |#4|)) (T -958))
+((-3859 (*1 *1 *2) (-12 (-4 *3 (-337)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *1 (-958 *3 *4 *5 *2 *6)) (-4 *2 (-878 *3 *4 *5)) (-14 *6 (-587 *2)))) (-2189 (*1 *1 *2) (-12 (-4 *3 (-337)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *1 (-958 *3 *4 *5 *2 *6)) (-4 *2 (-878 *3 *4 *5)) (-14 *6 (-587 *2)))) (-3844 (*1 *2 *1) (-12 (-4 *2 (-878 *3 *4 *5)) (-5 *1 (-958 *3 *4 *5 *2 *6)) (-4 *3 (-337)) (-4 *4 (-729)) (-4 *5 (-784)) (-14 *6 (-587 *2)))))
+(-13 (-157) (-37 |#1|) (-10 -8 (-15 -3859 ($ |#4|)) (-15 -2189 ($ |#4|)) (-15 -3844 (|#4| $))))
+((-1415 (((-108) $ $) NIL (-3703 (|has| (-51) (-1013)) (|has| (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (-1013))))) (-1800 (($) NIL) (($ (-587 (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))))) NIL)) (-1903 (((-1170) $ (-1084) (-1084)) NIL (|has| $ (-6 -4234)))) (-2978 (((-108) $ (-707)) NIL)) (-3543 (((-108) (-108)) 39)) (-1286 (((-108) (-108)) 38)) (-2378 (((-51) $ (-1084) (-51)) NIL)) (-4098 (($ (-1 (-108) (-2 (|:| -2529 (-1084)) (|:| -3045 (-51)))) $) NIL (|has| $ (-6 -4233)))) (-1628 (($ (-1 (-108) (-2 (|:| -2529 (-1084)) (|:| -3045 (-51)))) $) NIL (|has| $ (-6 -4233)))) (-2748 (((-3 (-51) "failed") (-1084) $) NIL)) (-2547 (($) NIL T CONST)) (-2332 (($ $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (-1013))))) (-3023 (($ (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) $) NIL (|has| $ (-6 -4233))) (($ (-1 (-108) (-2 (|:| -2529 (-1084)) (|:| -3045 (-51)))) $) NIL (|has| $ (-6 -4233))) (((-3 (-51) "failed") (-1084) $) NIL)) (-1422 (($ (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (-1013)))) (($ (-1 (-108) (-2 (|:| -2529 (-1084)) (|:| -3045 (-51)))) $) NIL (|has| $ (-6 -4233)))) (-3859 (((-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (-1 (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (-2 (|:| -2529 (-1084)) (|:| -3045 (-51)))) $ (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (-2 (|:| -2529 (-1084)) (|:| -3045 (-51)))) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (-1013)))) (((-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (-1 (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (-2 (|:| -2529 (-1084)) (|:| -3045 (-51)))) $ (-2 (|:| -2529 (-1084)) (|:| -3045 (-51)))) NIL (|has| $ (-6 -4233))) (((-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (-1 (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (-2 (|:| -2529 (-1084)) (|:| -3045 (-51)))) $) NIL (|has| $ (-6 -4233)))) (-3849 (((-51) $ (-1084) (-51)) NIL (|has| $ (-6 -4234)))) (-3626 (((-51) $ (-1084)) NIL)) (-3831 (((-587 (-2 (|:| -2529 (-1084)) (|:| -3045 (-51)))) $) NIL (|has| $ (-6 -4233))) (((-587 (-51)) $) NIL (|has| $ (-6 -4233)))) (-2139 (((-108) $ (-707)) NIL)) (-2826 (((-1084) $) NIL (|has| (-1084) (-784)))) (-3757 (((-587 (-2 (|:| -2529 (-1084)) (|:| -3045 (-51)))) $) NIL (|has| $ (-6 -4233))) (((-587 (-51)) $) NIL (|has| $ (-6 -4233)))) (-2221 (((-108) (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (-1013)))) (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-51) (-1013))))) (-2597 (((-1084) $) NIL (|has| (-1084) (-784)))) (-3833 (($ (-1 (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (-2 (|:| -2529 (-1084)) (|:| -3045 (-51)))) $) NIL (|has| $ (-6 -4234))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4234)))) (-1390 (($ (-1 (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (-2 (|:| -2529 (-1084)) (|:| -3045 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-3574 (((-108) $ (-707)) NIL)) (-3688 (((-1067) $) NIL (-3703 (|has| (-51) (-1013)) (|has| (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (-1013))))) (-2961 (((-587 (-1084)) $) 34)) (-2781 (((-108) (-1084) $) NIL)) (-2511 (((-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) $) NIL)) (-3373 (($ (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) $) NIL)) (-1668 (((-587 (-1084)) $) NIL)) (-2941 (((-108) (-1084) $) NIL)) (-4147 (((-1031) $) NIL (-3703 (|has| (-51) (-1013)) (|has| (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (-1013))))) (-2293 (((-51) $) NIL (|has| (-1084) (-784)))) (-3620 (((-3 (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) "failed") (-1 (-108) (-2 (|:| -2529 (-1084)) (|:| -3045 (-51)))) $) NIL)) (-3016 (($ $ (-51)) NIL (|has| $ (-6 -4234)))) (-2166 (((-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) $) NIL)) (-1789 (((-108) (-1 (-108) (-2 (|:| -2529 (-1084)) (|:| -3045 (-51)))) $) NIL (|has| $ (-6 -4233))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 (-2 (|:| -2529 (-1084)) (|:| -3045 (-51)))))) NIL (-12 (|has| (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (-284 (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))))) (|has| (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (-1013)))) (($ $ (-269 (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))))) NIL (-12 (|has| (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (-284 (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))))) (|has| (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (-1013)))) (($ $ (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (-2 (|:| -2529 (-1084)) (|:| -3045 (-51)))) NIL (-12 (|has| (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (-284 (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))))) (|has| (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (-1013)))) (($ $ (-587 (-2 (|:| -2529 (-1084)) (|:| -3045 (-51)))) (-587 (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))))) NIL (-12 (|has| (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (-284 (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))))) (|has| (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (-1013)))) (($ $ (-587 (-51)) (-587 (-51))) NIL (-12 (|has| (-51) (-284 (-51))) (|has| (-51) (-1013)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-284 (-51))) (|has| (-51) (-1013)))) (($ $ (-269 (-51))) NIL (-12 (|has| (-51) (-284 (-51))) (|has| (-51) (-1013)))) (($ $ (-587 (-269 (-51)))) NIL (-12 (|has| (-51) (-284 (-51))) (|has| (-51) (-1013))))) (-2488 (((-108) $ $) NIL)) (-3821 (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-51) (-1013))))) (-2489 (((-587 (-51)) $) NIL)) (-3462 (((-108) $) NIL)) (-4024 (($) NIL)) (-2544 (((-51) $ (-1084)) 35) (((-51) $ (-1084) (-51)) NIL)) (-1784 (($) NIL) (($ (-587 (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))))) NIL)) (-4163 (((-707) (-1 (-108) (-2 (|:| -2529 (-1084)) (|:| -3045 (-51)))) $) NIL (|has| $ (-6 -4233))) (((-707) (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (-1013)))) (((-707) (-51) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-51) (-1013)))) (((-707) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4233)))) (-2404 (($ $) NIL)) (-1430 (((-497) $) NIL (|has| (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (-562 (-497))))) (-2201 (($ (-587 (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))))) NIL)) (-2189 (((-792) $) 37 (-3703 (|has| (-51) (-561 (-792))) (|has| (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (-561 (-792)))))) (-4091 (($ (-587 (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))))) NIL)) (-3049 (((-108) (-1 (-108) (-2 (|:| -2529 (-1084)) (|:| -3045 (-51)))) $) NIL (|has| $ (-6 -4233))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4233)))) (-1531 (((-108) $ $) NIL (-3703 (|has| (-51) (-1013)) (|has| (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (-1013))))) (-3475 (((-707) $) NIL (|has| $ (-6 -4233)))))
+(((-959) (-13 (-1096 (-1084) (-51)) (-10 -7 (-15 -3543 ((-108) (-108))) (-15 -1286 ((-108) (-108))) (-6 -4233)))) (T -959))
+((-3543 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-959)))) (-1286 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-959)))))
+(-13 (-1096 (-1084) (-51)) (-10 -7 (-15 -3543 ((-108) (-108))) (-15 -1286 ((-108) (-108))) (-6 -4233)))
+((-1483 ((|#2| $) 10)))
+(((-960 |#1| |#2|) (-10 -8 (-15 -1483 (|#2| |#1|))) (-961 |#2|) (-1119)) (T -960))
+NIL
+(-10 -8 (-15 -1483 (|#2| |#1|)))
+((-1297 (((-3 |#1| "failed") $) 7)) (-1483 ((|#1| $) 8)) (-2189 (($ |#1|) 6)))
+(((-961 |#1|) (-1196) (-1119)) (T -961))
+((-1483 (*1 *2 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-1119)))) (-1297 (*1 *2 *1) (|partial| -12 (-4 *1 (-961 *2)) (-4 *2 (-1119)))) (-2189 (*1 *1 *2) (-12 (-4 *1 (-961 *2)) (-4 *2 (-1119)))))
+(-13 (-10 -8 (-15 -2189 ($ |t#1|)) (-15 -1297 ((-3 |t#1| "failed") $)) (-15 -1483 (|t#1| $))))
+((-2751 (((-587 (-587 (-269 (-381 (-881 |#2|))))) (-587 (-881 |#2|)) (-587 (-1084))) 35)))
+(((-962 |#1| |#2|) (-10 -7 (-15 -2751 ((-587 (-587 (-269 (-381 (-881 |#2|))))) (-587 (-881 |#2|)) (-587 (-1084))))) (-513) (-13 (-513) (-961 |#1|))) (T -962))
+((-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-881 *6))) (-5 *4 (-587 (-1084))) (-4 *6 (-13 (-513) (-961 *5))) (-4 *5 (-513)) (-5 *2 (-587 (-587 (-269 (-381 (-881 *6)))))) (-5 *1 (-962 *5 *6)))))
+(-10 -7 (-15 -2751 ((-587 (-587 (-269 (-381 (-881 |#2|))))) (-587 (-881 |#2|)) (-587 (-1084)))))
+((-2279 (((-353)) 15)) (-2129 (((-1 (-353)) (-353) (-353)) 20)) (-1639 (((-1 (-353)) (-707)) 43)) (-3798 (((-353)) 34)) (-3658 (((-1 (-353)) (-353) (-353)) 35)) (-3647 (((-353)) 26)) (-1327 (((-1 (-353)) (-353)) 27)) (-3863 (((-353) (-707)) 38)) (-4189 (((-1 (-353)) (-707)) 39)) (-4049 (((-1 (-353)) (-707) (-707)) 42)) (-1829 (((-1 (-353)) (-707) (-707)) 40)))
+(((-963) (-10 -7 (-15 -2279 ((-353))) (-15 -3798 ((-353))) (-15 -3647 ((-353))) (-15 -3863 ((-353) (-707))) (-15 -2129 ((-1 (-353)) (-353) (-353))) (-15 -3658 ((-1 (-353)) (-353) (-353))) (-15 -1327 ((-1 (-353)) (-353))) (-15 -4189 ((-1 (-353)) (-707))) (-15 -1829 ((-1 (-353)) (-707) (-707))) (-15 -4049 ((-1 (-353)) (-707) (-707))) (-15 -1639 ((-1 (-353)) (-707))))) (T -963))
+((-1639 (*1 *2 *3) (-12 (-5 *3 (-707)) (-5 *2 (-1 (-353))) (-5 *1 (-963)))) (-4049 (*1 *2 *3 *3) (-12 (-5 *3 (-707)) (-5 *2 (-1 (-353))) (-5 *1 (-963)))) (-1829 (*1 *2 *3 *3) (-12 (-5 *3 (-707)) (-5 *2 (-1 (-353))) (-5 *1 (-963)))) (-4189 (*1 *2 *3) (-12 (-5 *3 (-707)) (-5 *2 (-1 (-353))) (-5 *1 (-963)))) (-1327 (*1 *2 *3) (-12 (-5 *2 (-1 (-353))) (-5 *1 (-963)) (-5 *3 (-353)))) (-3658 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-353))) (-5 *1 (-963)) (-5 *3 (-353)))) (-2129 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-353))) (-5 *1 (-963)) (-5 *3 (-353)))) (-3863 (*1 *2 *3) (-12 (-5 *3 (-707)) (-5 *2 (-353)) (-5 *1 (-963)))) (-3647 (*1 *2) (-12 (-5 *2 (-353)) (-5 *1 (-963)))) (-3798 (*1 *2) (-12 (-5 *2 (-353)) (-5 *1 (-963)))) (-2279 (*1 *2) (-12 (-5 *2 (-353)) (-5 *1 (-963)))))
+(-10 -7 (-15 -2279 ((-353))) (-15 -3798 ((-353))) (-15 -3647 ((-353))) (-15 -3863 ((-353) (-707))) (-15 -2129 ((-1 (-353)) (-353) (-353))) (-15 -3658 ((-1 (-353)) (-353) (-353))) (-15 -1327 ((-1 (-353)) (-353))) (-15 -4189 ((-1 (-353)) (-707))) (-15 -1829 ((-1 (-353)) (-707) (-707))) (-15 -4049 ((-1 (-353)) (-707) (-707))) (-15 -1639 ((-1 (-353)) (-707))))
+((-1916 (((-392 |#1|) |#1|) 31)))
+(((-964 |#1|) (-10 -7 (-15 -1916 ((-392 |#1|) |#1|))) (-1141 (-381 (-881 (-521))))) (T -964))
+((-1916 (*1 *2 *3) (-12 (-5 *2 (-392 *3)) (-5 *1 (-964 *3)) (-4 *3 (-1141 (-381 (-881 (-521))))))))
+(-10 -7 (-15 -1916 ((-392 |#1|) |#1|)))
+((-3909 (((-381 (-392 (-881 |#1|))) (-381 (-881 |#1|))) 14)))
+(((-965 |#1|) (-10 -7 (-15 -3909 ((-381 (-392 (-881 |#1|))) (-381 (-881 |#1|))))) (-282)) (T -965))
+((-3909 (*1 *2 *3) (-12 (-5 *3 (-381 (-881 *4))) (-4 *4 (-282)) (-5 *2 (-381 (-392 (-881 *4)))) (-5 *1 (-965 *4)))))
+(-10 -7 (-15 -3909 ((-381 (-392 (-881 |#1|))) (-381 (-881 |#1|)))))
+((-4084 (((-587 (-1084)) (-381 (-881 |#1|))) 15)) (-1280 (((-381 (-1080 (-381 (-881 |#1|)))) (-381 (-881 |#1|)) (-1084)) 22)) (-4069 (((-381 (-881 |#1|)) (-381 (-1080 (-381 (-881 |#1|)))) (-1084)) 24)) (-2477 (((-3 (-1084) "failed") (-381 (-881 |#1|))) 18)) (-2288 (((-381 (-881 |#1|)) (-381 (-881 |#1|)) (-587 (-269 (-381 (-881 |#1|))))) 29) (((-381 (-881 |#1|)) (-381 (-881 |#1|)) (-269 (-381 (-881 |#1|)))) 31) (((-381 (-881 |#1|)) (-381 (-881 |#1|)) (-587 (-1084)) (-587 (-381 (-881 |#1|)))) 26) (((-381 (-881 |#1|)) (-381 (-881 |#1|)) (-1084) (-381 (-881 |#1|))) 27)) (-2189 (((-381 (-881 |#1|)) |#1|) 11)))
+(((-966 |#1|) (-10 -7 (-15 -4084 ((-587 (-1084)) (-381 (-881 |#1|)))) (-15 -2477 ((-3 (-1084) "failed") (-381 (-881 |#1|)))) (-15 -1280 ((-381 (-1080 (-381 (-881 |#1|)))) (-381 (-881 |#1|)) (-1084))) (-15 -4069 ((-381 (-881 |#1|)) (-381 (-1080 (-381 (-881 |#1|)))) (-1084))) (-15 -2288 ((-381 (-881 |#1|)) (-381 (-881 |#1|)) (-1084) (-381 (-881 |#1|)))) (-15 -2288 ((-381 (-881 |#1|)) (-381 (-881 |#1|)) (-587 (-1084)) (-587 (-381 (-881 |#1|))))) (-15 -2288 ((-381 (-881 |#1|)) (-381 (-881 |#1|)) (-269 (-381 (-881 |#1|))))) (-15 -2288 ((-381 (-881 |#1|)) (-381 (-881 |#1|)) (-587 (-269 (-381 (-881 |#1|)))))) (-15 -2189 ((-381 (-881 |#1|)) |#1|))) (-513)) (T -966))
+((-2189 (*1 *2 *3) (-12 (-5 *2 (-381 (-881 *3))) (-5 *1 (-966 *3)) (-4 *3 (-513)))) (-2288 (*1 *2 *2 *3) (-12 (-5 *3 (-587 (-269 (-381 (-881 *4))))) (-5 *2 (-381 (-881 *4))) (-4 *4 (-513)) (-5 *1 (-966 *4)))) (-2288 (*1 *2 *2 *3) (-12 (-5 *3 (-269 (-381 (-881 *4)))) (-5 *2 (-381 (-881 *4))) (-4 *4 (-513)) (-5 *1 (-966 *4)))) (-2288 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-587 (-1084))) (-5 *4 (-587 (-381 (-881 *5)))) (-5 *2 (-381 (-881 *5))) (-4 *5 (-513)) (-5 *1 (-966 *5)))) (-2288 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-381 (-881 *4))) (-5 *3 (-1084)) (-4 *4 (-513)) (-5 *1 (-966 *4)))) (-4069 (*1 *2 *3 *4) (-12 (-5 *3 (-381 (-1080 (-381 (-881 *5))))) (-5 *4 (-1084)) (-5 *2 (-381 (-881 *5))) (-5 *1 (-966 *5)) (-4 *5 (-513)))) (-1280 (*1 *2 *3 *4) (-12 (-5 *4 (-1084)) (-4 *5 (-513)) (-5 *2 (-381 (-1080 (-381 (-881 *5))))) (-5 *1 (-966 *5)) (-5 *3 (-381 (-881 *5))))) (-2477 (*1 *2 *3) (|partial| -12 (-5 *3 (-381 (-881 *4))) (-4 *4 (-513)) (-5 *2 (-1084)) (-5 *1 (-966 *4)))) (-4084 (*1 *2 *3) (-12 (-5 *3 (-381 (-881 *4))) (-4 *4 (-513)) (-5 *2 (-587 (-1084))) (-5 *1 (-966 *4)))))
+(-10 -7 (-15 -4084 ((-587 (-1084)) (-381 (-881 |#1|)))) (-15 -2477 ((-3 (-1084) "failed") (-381 (-881 |#1|)))) (-15 -1280 ((-381 (-1080 (-381 (-881 |#1|)))) (-381 (-881 |#1|)) (-1084))) (-15 -4069 ((-381 (-881 |#1|)) (-381 (-1080 (-381 (-881 |#1|)))) (-1084))) (-15 -2288 ((-381 (-881 |#1|)) (-381 (-881 |#1|)) (-1084) (-381 (-881 |#1|)))) (-15 -2288 ((-381 (-881 |#1|)) (-381 (-881 |#1|)) (-587 (-1084)) (-587 (-381 (-881 |#1|))))) (-15 -2288 ((-381 (-881 |#1|)) (-381 (-881 |#1|)) (-269 (-381 (-881 |#1|))))) (-15 -2288 ((-381 (-881 |#1|)) (-381 (-881 |#1|)) (-587 (-269 (-381 (-881 |#1|)))))) (-15 -2189 ((-381 (-881 |#1|)) |#1|)))
+((-1415 (((-108) $ $) NIL)) (-2113 (((-587 (-2 (|:| -1650 $) (|:| -1544 (-587 (-716 |#1| (-794 |#2|)))))) (-587 (-716 |#1| (-794 |#2|)))) NIL)) (-1906 (((-587 $) (-587 (-716 |#1| (-794 |#2|)))) NIL) (((-587 $) (-587 (-716 |#1| (-794 |#2|))) (-108)) NIL) (((-587 $) (-587 (-716 |#1| (-794 |#2|))) (-108) (-108)) NIL)) (-4084 (((-587 (-794 |#2|)) $) NIL)) (-3898 (((-108) $) NIL)) (-2466 (((-108) $) NIL (|has| |#1| (-513)))) (-3199 (((-108) (-716 |#1| (-794 |#2|)) $) NIL) (((-108) $) NIL)) (-2015 (((-716 |#1| (-794 |#2|)) (-716 |#1| (-794 |#2|)) $) NIL)) (-3063 (((-587 (-2 (|:| |val| (-716 |#1| (-794 |#2|))) (|:| -1884 $))) (-716 |#1| (-794 |#2|)) $) NIL)) (-3211 (((-2 (|:| |under| $) (|:| -2567 $) (|:| |upper| $)) $ (-794 |#2|)) NIL)) (-2978 (((-108) $ (-707)) NIL)) (-1628 (($ (-1 (-108) (-716 |#1| (-794 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-3 (-716 |#1| (-794 |#2|)) "failed") $ (-794 |#2|)) NIL)) (-2547 (($) NIL T CONST)) (-3035 (((-108) $) NIL (|has| |#1| (-513)))) (-3091 (((-108) $ $) NIL (|has| |#1| (-513)))) (-3882 (((-108) $ $) NIL (|has| |#1| (-513)))) (-3237 (((-108) $) NIL (|has| |#1| (-513)))) (-2990 (((-587 (-716 |#1| (-794 |#2|))) (-587 (-716 |#1| (-794 |#2|))) $ (-1 (-716 |#1| (-794 |#2|)) (-716 |#1| (-794 |#2|)) (-716 |#1| (-794 |#2|))) (-1 (-108) (-716 |#1| (-794 |#2|)) (-716 |#1| (-794 |#2|)))) NIL)) (-3799 (((-587 (-716 |#1| (-794 |#2|))) (-587 (-716 |#1| (-794 |#2|))) $) NIL (|has| |#1| (-513)))) (-4183 (((-587 (-716 |#1| (-794 |#2|))) (-587 (-716 |#1| (-794 |#2|))) $) NIL (|has| |#1| (-513)))) (-1297 (((-3 $ "failed") (-587 (-716 |#1| (-794 |#2|)))) NIL)) (-1483 (($ (-587 (-716 |#1| (-794 |#2|)))) NIL)) (-2306 (((-3 $ "failed") $) NIL)) (-1761 (((-716 |#1| (-794 |#2|)) (-716 |#1| (-794 |#2|)) $) NIL)) (-2332 (($ $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-716 |#1| (-794 |#2|)) (-1013))))) (-1422 (($ (-716 |#1| (-794 |#2|)) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-716 |#1| (-794 |#2|)) (-1013)))) (($ (-1 (-108) (-716 |#1| (-794 |#2|))) $) NIL (|has| $ (-6 -4233)))) (-3820 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-716 |#1| (-794 |#2|))) (|:| |den| |#1|)) (-716 |#1| (-794 |#2|)) $) NIL (|has| |#1| (-513)))) (-3156 (((-108) (-716 |#1| (-794 |#2|)) $ (-1 (-108) (-716 |#1| (-794 |#2|)) (-716 |#1| (-794 |#2|)))) NIL)) (-1970 (((-716 |#1| (-794 |#2|)) (-716 |#1| (-794 |#2|)) $) NIL)) (-3859 (((-716 |#1| (-794 |#2|)) (-1 (-716 |#1| (-794 |#2|)) (-716 |#1| (-794 |#2|)) (-716 |#1| (-794 |#2|))) $ (-716 |#1| (-794 |#2|)) (-716 |#1| (-794 |#2|))) NIL (-12 (|has| $ (-6 -4233)) (|has| (-716 |#1| (-794 |#2|)) (-1013)))) (((-716 |#1| (-794 |#2|)) (-1 (-716 |#1| (-794 |#2|)) (-716 |#1| (-794 |#2|)) (-716 |#1| (-794 |#2|))) $ (-716 |#1| (-794 |#2|))) NIL (|has| $ (-6 -4233))) (((-716 |#1| (-794 |#2|)) (-1 (-716 |#1| (-794 |#2|)) (-716 |#1| (-794 |#2|)) (-716 |#1| (-794 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-716 |#1| (-794 |#2|)) (-716 |#1| (-794 |#2|)) $ (-1 (-716 |#1| (-794 |#2|)) (-716 |#1| (-794 |#2|)) (-716 |#1| (-794 |#2|))) (-1 (-108) (-716 |#1| (-794 |#2|)) (-716 |#1| (-794 |#2|)))) NIL)) (-3726 (((-2 (|:| -1650 (-587 (-716 |#1| (-794 |#2|)))) (|:| -1544 (-587 (-716 |#1| (-794 |#2|))))) $) NIL)) (-4124 (((-108) (-716 |#1| (-794 |#2|)) $) NIL)) (-2628 (((-108) (-716 |#1| (-794 |#2|)) $) NIL)) (-3263 (((-108) (-716 |#1| (-794 |#2|)) $) NIL) (((-108) $) NIL)) (-3831 (((-587 (-716 |#1| (-794 |#2|))) $) NIL (|has| $ (-6 -4233)))) (-3266 (((-108) (-716 |#1| (-794 |#2|)) $) NIL) (((-108) $) NIL)) (-3464 (((-794 |#2|) $) NIL)) (-2139 (((-108) $ (-707)) NIL)) (-3757 (((-587 (-716 |#1| (-794 |#2|))) $) NIL (|has| $ (-6 -4233)))) (-2221 (((-108) (-716 |#1| (-794 |#2|)) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-716 |#1| (-794 |#2|)) (-1013))))) (-3833 (($ (-1 (-716 |#1| (-794 |#2|)) (-716 |#1| (-794 |#2|))) $) NIL (|has| $ (-6 -4234)))) (-1390 (($ (-1 (-716 |#1| (-794 |#2|)) (-716 |#1| (-794 |#2|))) $) NIL)) (-2820 (((-587 (-794 |#2|)) $) NIL)) (-2639 (((-108) (-794 |#2|) $) NIL)) (-3574 (((-108) $ (-707)) NIL)) (-3688 (((-1067) $) NIL)) (-1767 (((-3 (-716 |#1| (-794 |#2|)) (-587 $)) (-716 |#1| (-794 |#2|)) (-716 |#1| (-794 |#2|)) $) NIL)) (-2031 (((-587 (-2 (|:| |val| (-716 |#1| (-794 |#2|))) (|:| -1884 $))) (-716 |#1| (-794 |#2|)) (-716 |#1| (-794 |#2|)) $) NIL)) (-1441 (((-3 (-716 |#1| (-794 |#2|)) "failed") $) NIL)) (-3731 (((-587 $) (-716 |#1| (-794 |#2|)) $) NIL)) (-4168 (((-3 (-108) (-587 $)) (-716 |#1| (-794 |#2|)) $) NIL)) (-3395 (((-587 (-2 (|:| |val| (-108)) (|:| -1884 $))) (-716 |#1| (-794 |#2|)) $) NIL) (((-108) (-716 |#1| (-794 |#2|)) $) NIL)) (-1660 (((-587 $) (-716 |#1| (-794 |#2|)) $) NIL) (((-587 $) (-587 (-716 |#1| (-794 |#2|))) $) NIL) (((-587 $) (-587 (-716 |#1| (-794 |#2|))) (-587 $)) NIL) (((-587 $) (-716 |#1| (-794 |#2|)) (-587 $)) NIL)) (-3428 (($ (-716 |#1| (-794 |#2|)) $) NIL) (($ (-587 (-716 |#1| (-794 |#2|))) $) NIL)) (-2323 (((-587 (-716 |#1| (-794 |#2|))) $) NIL)) (-3786 (((-108) (-716 |#1| (-794 |#2|)) $) NIL) (((-108) $) NIL)) (-1347 (((-716 |#1| (-794 |#2|)) (-716 |#1| (-794 |#2|)) $) NIL)) (-2146 (((-108) $ $) NIL)) (-1341 (((-2 (|:| |num| (-716 |#1| (-794 |#2|))) (|:| |den| |#1|)) (-716 |#1| (-794 |#2|)) $) NIL (|has| |#1| (-513)))) (-1972 (((-108) (-716 |#1| (-794 |#2|)) $) NIL) (((-108) $) NIL)) (-4065 (((-716 |#1| (-794 |#2|)) (-716 |#1| (-794 |#2|)) $) NIL)) (-4147 (((-1031) $) NIL)) (-2293 (((-3 (-716 |#1| (-794 |#2|)) "failed") $) NIL)) (-3620 (((-3 (-716 |#1| (-794 |#2|)) "failed") (-1 (-108) (-716 |#1| (-794 |#2|))) $) NIL)) (-2001 (((-3 $ "failed") $ (-716 |#1| (-794 |#2|))) NIL)) (-2447 (($ $ (-716 |#1| (-794 |#2|))) NIL) (((-587 $) (-716 |#1| (-794 |#2|)) $) NIL) (((-587 $) (-716 |#1| (-794 |#2|)) (-587 $)) NIL) (((-587 $) (-587 (-716 |#1| (-794 |#2|))) $) NIL) (((-587 $) (-587 (-716 |#1| (-794 |#2|))) (-587 $)) NIL)) (-1789 (((-108) (-1 (-108) (-716 |#1| (-794 |#2|))) $) NIL (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-716 |#1| (-794 |#2|))) (-587 (-716 |#1| (-794 |#2|)))) NIL (-12 (|has| (-716 |#1| (-794 |#2|)) (-284 (-716 |#1| (-794 |#2|)))) (|has| (-716 |#1| (-794 |#2|)) (-1013)))) (($ $ (-716 |#1| (-794 |#2|)) (-716 |#1| (-794 |#2|))) NIL (-12 (|has| (-716 |#1| (-794 |#2|)) (-284 (-716 |#1| (-794 |#2|)))) (|has| (-716 |#1| (-794 |#2|)) (-1013)))) (($ $ (-269 (-716 |#1| (-794 |#2|)))) NIL (-12 (|has| (-716 |#1| (-794 |#2|)) (-284 (-716 |#1| (-794 |#2|)))) (|has| (-716 |#1| (-794 |#2|)) (-1013)))) (($ $ (-587 (-269 (-716 |#1| (-794 |#2|))))) NIL (-12 (|has| (-716 |#1| (-794 |#2|)) (-284 (-716 |#1| (-794 |#2|)))) (|has| (-716 |#1| (-794 |#2|)) (-1013))))) (-2488 (((-108) $ $) NIL)) (-3462 (((-108) $) NIL)) (-4024 (($) NIL)) (-1994 (((-707) $) NIL)) (-4163 (((-707) (-716 |#1| (-794 |#2|)) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-716 |#1| (-794 |#2|)) (-1013)))) (((-707) (-1 (-108) (-716 |#1| (-794 |#2|))) $) NIL (|has| $ (-6 -4233)))) (-2404 (($ $) NIL)) (-1430 (((-497) $) NIL (|has| (-716 |#1| (-794 |#2|)) (-562 (-497))))) (-2201 (($ (-587 (-716 |#1| (-794 |#2|)))) NIL)) (-3883 (($ $ (-794 |#2|)) NIL)) (-4029 (($ $ (-794 |#2|)) NIL)) (-3173 (($ $) NIL)) (-3318 (($ $ (-794 |#2|)) NIL)) (-2189 (((-792) $) NIL) (((-587 (-716 |#1| (-794 |#2|))) $) NIL)) (-3781 (((-707) $) NIL (|has| (-794 |#2|) (-342)))) (-3234 (((-3 (-2 (|:| |bas| $) (|:| -1354 (-587 (-716 |#1| (-794 |#2|))))) "failed") (-587 (-716 |#1| (-794 |#2|))) (-1 (-108) (-716 |#1| (-794 |#2|)) (-716 |#1| (-794 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1354 (-587 (-716 |#1| (-794 |#2|))))) "failed") (-587 (-716 |#1| (-794 |#2|))) (-1 (-108) (-716 |#1| (-794 |#2|))) (-1 (-108) (-716 |#1| (-794 |#2|)) (-716 |#1| (-794 |#2|)))) NIL)) (-3960 (((-108) $ (-1 (-108) (-716 |#1| (-794 |#2|)) (-587 (-716 |#1| (-794 |#2|))))) NIL)) (-1933 (((-587 $) (-716 |#1| (-794 |#2|)) $) NIL) (((-587 $) (-716 |#1| (-794 |#2|)) (-587 $)) NIL) (((-587 $) (-587 (-716 |#1| (-794 |#2|))) $) NIL) (((-587 $) (-587 (-716 |#1| (-794 |#2|))) (-587 $)) NIL)) (-3049 (((-108) (-1 (-108) (-716 |#1| (-794 |#2|))) $) NIL (|has| $ (-6 -4233)))) (-4099 (((-587 (-794 |#2|)) $) NIL)) (-4002 (((-108) (-716 |#1| (-794 |#2|)) $) NIL)) (-2154 (((-108) (-794 |#2|) $) NIL)) (-1531 (((-108) $ $) NIL)) (-3475 (((-707) $) NIL (|has| $ (-6 -4233)))))
+(((-967 |#1| |#2|) (-13 (-989 |#1| (-493 (-794 |#2|)) (-794 |#2|) (-716 |#1| (-794 |#2|))) (-10 -8 (-15 -1906 ((-587 $) (-587 (-716 |#1| (-794 |#2|))) (-108) (-108))))) (-425) (-587 (-1084))) (T -967))
+((-1906 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-587 (-716 *5 (-794 *6)))) (-5 *4 (-108)) (-4 *5 (-425)) (-14 *6 (-587 (-1084))) (-5 *2 (-587 (-967 *5 *6))) (-5 *1 (-967 *5 *6)))))
+(-13 (-989 |#1| (-493 (-794 |#2|)) (-794 |#2|) (-716 |#1| (-794 |#2|))) (-10 -8 (-15 -1906 ((-587 $) (-587 (-716 |#1| (-794 |#2|))) (-108) (-108)))))
+((-2129 (((-1 (-521)) (-1008 (-521))) 33)) (-3587 (((-521) (-521) (-521) (-521) (-521)) 30)) (-1766 (((-1 (-521)) |RationalNumber|) NIL)) (-2658 (((-1 (-521)) |RationalNumber|) NIL)) (-2712 (((-1 (-521)) (-521) |RationalNumber|) NIL)))
+(((-968) (-10 -7 (-15 -2129 ((-1 (-521)) (-1008 (-521)))) (-15 -2712 ((-1 (-521)) (-521) |RationalNumber|)) (-15 -1766 ((-1 (-521)) |RationalNumber|)) (-15 -2658 ((-1 (-521)) |RationalNumber|)) (-15 -3587 ((-521) (-521) (-521) (-521) (-521))))) (T -968))
+((-3587 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-968)))) (-2658 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-521))) (-5 *1 (-968)))) (-1766 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-521))) (-5 *1 (-968)))) (-2712 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-521))) (-5 *1 (-968)) (-5 *3 (-521)))) (-2129 (*1 *2 *3) (-12 (-5 *3 (-1008 (-521))) (-5 *2 (-1 (-521))) (-5 *1 (-968)))))
+(-10 -7 (-15 -2129 ((-1 (-521)) (-1008 (-521)))) (-15 -2712 ((-1 (-521)) (-521) |RationalNumber|)) (-15 -1766 ((-1 (-521)) |RationalNumber|)) (-15 -2658 ((-1 (-521)) |RationalNumber|)) (-15 -3587 ((-521) (-521) (-521) (-521) (-521))))
+((-2189 (((-792) $) NIL) (($ (-521)) 10)))
+(((-969 |#1|) (-10 -8 (-15 -2189 (|#1| (-521))) (-15 -2189 ((-792) |#1|))) (-970)) (T -969))
+NIL
+(-10 -8 (-15 -2189 (|#1| (-521))) (-15 -2189 ((-792) |#1|)))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-1232 (((-3 $ "failed") $ $) 19)) (-2547 (($) 17 T CONST)) (-1257 (((-3 $ "failed") $) 34)) (-3996 (((-108) $) 31)) (-3688 (((-1067) $) 9)) (-4147 (((-1031) $) 10)) (-2189 (((-792) $) 11) (($ (-521)) 28)) (-3846 (((-707)) 29)) (-3505 (($ $ (-850)) 26) (($ $ (-707)) 33)) (-3561 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-707)) 32)) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24)))
+(((-970) (-1196)) (T -970))
+((-3846 (*1 *2) (-12 (-4 *1 (-970)) (-5 *2 (-707)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-521)) (-4 *1 (-970)))))
+(-13 (-977) (-663) (-589 $) (-10 -8 (-15 -3846 ((-707))) (-15 -2189 ($ (-521))) (-6 -4230)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-561 (-792)) . T) ((-589 $) . T) ((-663) . T) ((-977) . T) ((-1025) . T) ((-1013) . T))
+((-2603 (((-381 (-881 |#2|)) (-587 |#2|) (-587 |#2|) (-707) (-707)) 45)))
+(((-971 |#1| |#2|) (-10 -7 (-15 -2603 ((-381 (-881 |#2|)) (-587 |#2|) (-587 |#2|) (-707) (-707)))) (-1084) (-337)) (T -971))
+((-2603 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-587 *6)) (-5 *4 (-707)) (-4 *6 (-337)) (-5 *2 (-381 (-881 *6))) (-5 *1 (-971 *5 *6)) (-14 *5 (-1084)))))
+(-10 -7 (-15 -2603 ((-381 (-881 |#2|)) (-587 |#2|) (-587 |#2|) (-707) (-707))))
+((-2304 (((-108) $) 28)) (-2825 (((-108) $) 16)) (-1410 (((-707) $) 13)) (-1421 (((-707) $) 14)) (-1222 (((-108) $) 26)) (-2169 (((-108) $) 30)))
+(((-972 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -1421 ((-707) |#1|)) (-15 -1410 ((-707) |#1|)) (-15 -2169 ((-108) |#1|)) (-15 -2304 ((-108) |#1|)) (-15 -1222 ((-108) |#1|)) (-15 -2825 ((-108) |#1|))) (-973 |#2| |#3| |#4| |#5| |#6|) (-707) (-707) (-970) (-215 |#3| |#4|) (-215 |#2| |#4|)) (T -972))
+NIL
+(-10 -8 (-15 -1421 ((-707) |#1|)) (-15 -1410 ((-707) |#1|)) (-15 -2169 ((-108) |#1|)) (-15 -2304 ((-108) |#1|)) (-15 -1222 ((-108) |#1|)) (-15 -2825 ((-108) |#1|)))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-2304 (((-108) $) 51)) (-1232 (((-3 $ "failed") $ $) 19)) (-2825 (((-108) $) 53)) (-2978 (((-108) $ (-707)) 61)) (-2547 (($) 17 T CONST)) (-1311 (($ $) 34 (|has| |#3| (-282)))) (-2672 ((|#4| $ (-521)) 39)) (-3162 (((-707) $) 33 (|has| |#3| (-513)))) (-3626 ((|#3| $ (-521) (-521)) 41)) (-3831 (((-587 |#3|) $) 68 (|has| $ (-6 -4233)))) (-2097 (((-707) $) 32 (|has| |#3| (-513)))) (-3445 (((-587 |#5|) $) 31 (|has| |#3| (-513)))) (-1410 (((-707) $) 45)) (-1421 (((-707) $) 44)) (-2139 (((-108) $ (-707)) 60)) (-2690 (((-521) $) 49)) (-3222 (((-521) $) 47)) (-3757 (((-587 |#3|) $) 69 (|has| $ (-6 -4233)))) (-2221 (((-108) |#3| $) 71 (-12 (|has| |#3| (-1013)) (|has| $ (-6 -4233))))) (-2207 (((-521) $) 48)) (-2684 (((-521) $) 46)) (-1365 (($ (-587 (-587 |#3|))) 54)) (-3833 (($ (-1 |#3| |#3|) $) 64 (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#3| |#3|) $) 63) (($ (-1 |#3| |#3| |#3|) $ $) 37)) (-1858 (((-587 (-587 |#3|)) $) 43)) (-3574 (((-108) $ (-707)) 59)) (-3688 (((-1067) $) 9)) (-4147 (((-1031) $) 10)) (-2230 (((-3 $ "failed") $ |#3|) 36 (|has| |#3| (-513)))) (-1789 (((-108) (-1 (-108) |#3|) $) 66 (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 |#3|) (-587 |#3|)) 75 (-12 (|has| |#3| (-284 |#3|)) (|has| |#3| (-1013)))) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-284 |#3|)) (|has| |#3| (-1013)))) (($ $ (-269 |#3|)) 73 (-12 (|has| |#3| (-284 |#3|)) (|has| |#3| (-1013)))) (($ $ (-587 (-269 |#3|))) 72 (-12 (|has| |#3| (-284 |#3|)) (|has| |#3| (-1013))))) (-2488 (((-108) $ $) 55)) (-3462 (((-108) $) 58)) (-4024 (($) 57)) (-2544 ((|#3| $ (-521) (-521)) 42) ((|#3| $ (-521) (-521) |#3|) 40)) (-1222 (((-108) $) 52)) (-4163 (((-707) |#3| $) 70 (-12 (|has| |#3| (-1013)) (|has| $ (-6 -4233)))) (((-707) (-1 (-108) |#3|) $) 67 (|has| $ (-6 -4233)))) (-2404 (($ $) 56)) (-3187 ((|#5| $ (-521)) 38)) (-2189 (((-792) $) 11)) (-3049 (((-108) (-1 (-108) |#3|) $) 65 (|has| $ (-6 -4233)))) (-2169 (((-108) $) 50)) (-3561 (($) 18 T CONST)) (-1531 (((-108) $ $) 6)) (-1620 (($ $ |#3|) 35 (|has| |#3| (-337)))) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ |#3| $) 23) (($ $ |#3|) 26)) (-3475 (((-707) $) 62 (|has| $ (-6 -4233)))))
+(((-973 |#1| |#2| |#3| |#4| |#5|) (-1196) (-707) (-707) (-970) (-215 |t#2| |t#3|) (-215 |t#1| |t#3|)) (T -973))
+((-1390 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-973 *3 *4 *5 *6 *7)) (-4 *5 (-970)) (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)))) (-1365 (*1 *1 *2) (-12 (-5 *2 (-587 (-587 *5))) (-4 *5 (-970)) (-4 *1 (-973 *3 *4 *5 *6 *7)) (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)))) (-2825 (*1 *2 *1) (-12 (-4 *1 (-973 *3 *4 *5 *6 *7)) (-4 *5 (-970)) (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-108)))) (-1222 (*1 *2 *1) (-12 (-4 *1 (-973 *3 *4 *5 *6 *7)) (-4 *5 (-970)) (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-108)))) (-2304 (*1 *2 *1) (-12 (-4 *1 (-973 *3 *4 *5 *6 *7)) (-4 *5 (-970)) (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-108)))) (-2169 (*1 *2 *1) (-12 (-4 *1 (-973 *3 *4 *5 *6 *7)) (-4 *5 (-970)) (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-108)))) (-2690 (*1 *2 *1) (-12 (-4 *1 (-973 *3 *4 *5 *6 *7)) (-4 *5 (-970)) (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-521)))) (-2207 (*1 *2 *1) (-12 (-4 *1 (-973 *3 *4 *5 *6 *7)) (-4 *5 (-970)) (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-521)))) (-3222 (*1 *2 *1) (-12 (-4 *1 (-973 *3 *4 *5 *6 *7)) (-4 *5 (-970)) (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-521)))) (-2684 (*1 *2 *1) (-12 (-4 *1 (-973 *3 *4 *5 *6 *7)) (-4 *5 (-970)) (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-521)))) (-1410 (*1 *2 *1) (-12 (-4 *1 (-973 *3 *4 *5 *6 *7)) (-4 *5 (-970)) (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-707)))) (-1421 (*1 *2 *1) (-12 (-4 *1 (-973 *3 *4 *5 *6 *7)) (-4 *5 (-970)) (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-707)))) (-1858 (*1 *2 *1) (-12 (-4 *1 (-973 *3 *4 *5 *6 *7)) (-4 *5 (-970)) (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-587 (-587 *5))))) (-2544 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-521)) (-4 *1 (-973 *4 *5 *2 *6 *7)) (-4 *6 (-215 *5 *2)) (-4 *7 (-215 *4 *2)) (-4 *2 (-970)))) (-3626 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-521)) (-4 *1 (-973 *4 *5 *2 *6 *7)) (-4 *6 (-215 *5 *2)) (-4 *7 (-215 *4 *2)) (-4 *2 (-970)))) (-2544 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-521)) (-4 *1 (-973 *4 *5 *2 *6 *7)) (-4 *2 (-970)) (-4 *6 (-215 *5 *2)) (-4 *7 (-215 *4 *2)))) (-2672 (*1 *2 *1 *3) (-12 (-5 *3 (-521)) (-4 *1 (-973 *4 *5 *6 *2 *7)) (-4 *6 (-970)) (-4 *7 (-215 *4 *6)) (-4 *2 (-215 *5 *6)))) (-3187 (*1 *2 *1 *3) (-12 (-5 *3 (-521)) (-4 *1 (-973 *4 *5 *6 *7 *2)) (-4 *6 (-970)) (-4 *7 (-215 *5 *6)) (-4 *2 (-215 *4 *6)))) (-1390 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-973 *3 *4 *5 *6 *7)) (-4 *5 (-970)) (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)))) (-2230 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-973 *3 *4 *2 *5 *6)) (-4 *2 (-970)) (-4 *5 (-215 *4 *2)) (-4 *6 (-215 *3 *2)) (-4 *2 (-513)))) (-1620 (*1 *1 *1 *2) (-12 (-4 *1 (-973 *3 *4 *2 *5 *6)) (-4 *2 (-970)) (-4 *5 (-215 *4 *2)) (-4 *6 (-215 *3 *2)) (-4 *2 (-337)))) (-1311 (*1 *1 *1) (-12 (-4 *1 (-973 *2 *3 *4 *5 *6)) (-4 *4 (-970)) (-4 *5 (-215 *3 *4)) (-4 *6 (-215 *2 *4)) (-4 *4 (-282)))) (-3162 (*1 *2 *1) (-12 (-4 *1 (-973 *3 *4 *5 *6 *7)) (-4 *5 (-970)) (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-4 *5 (-513)) (-5 *2 (-707)))) (-2097 (*1 *2 *1) (-12 (-4 *1 (-973 *3 *4 *5 *6 *7)) (-4 *5 (-970)) (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-4 *5 (-513)) (-5 *2 (-707)))) (-3445 (*1 *2 *1) (-12 (-4 *1 (-973 *3 *4 *5 *6 *7)) (-4 *5 (-970)) (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-4 *5 (-513)) (-5 *2 (-587 *7)))))
+(-13 (-107 |t#3| |t#3|) (-460 |t#3|) (-10 -8 (-6 -4233) (IF (|has| |t#3| (-157)) (-6 (-654 |t#3|)) |%noBranch|) (-15 -1365 ($ (-587 (-587 |t#3|)))) (-15 -2825 ((-108) $)) (-15 -1222 ((-108) $)) (-15 -2304 ((-108) $)) (-15 -2169 ((-108) $)) (-15 -2690 ((-521) $)) (-15 -2207 ((-521) $)) (-15 -3222 ((-521) $)) (-15 -2684 ((-521) $)) (-15 -1410 ((-707) $)) (-15 -1421 ((-707) $)) (-15 -1858 ((-587 (-587 |t#3|)) $)) (-15 -2544 (|t#3| $ (-521) (-521))) (-15 -3626 (|t#3| $ (-521) (-521))) (-15 -2544 (|t#3| $ (-521) (-521) |t#3|)) (-15 -2672 (|t#4| $ (-521))) (-15 -3187 (|t#5| $ (-521))) (-15 -1390 ($ (-1 |t#3| |t#3|) $)) (-15 -1390 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-513)) (-15 -2230 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-337)) (-15 -1620 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-282)) (-15 -1311 ($ $)) |%noBranch|) (IF (|has| |t#3| (-513)) (PROGN (-15 -3162 ((-707) $)) (-15 -2097 ((-707) $)) (-15 -3445 ((-587 |t#5|) $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-33) . T) ((-97) . T) ((-107 |#3| |#3|) . T) ((-124) . T) ((-561 (-792)) . T) ((-284 |#3|) -12 (|has| |#3| (-284 |#3|)) (|has| |#3| (-1013))) ((-460 |#3|) . T) ((-482 |#3| |#3|) -12 (|has| |#3| (-284 |#3|)) (|has| |#3| (-1013))) ((-589 |#3|) . T) ((-654 |#3|) |has| |#3| (-157)) ((-976 |#3|) . T) ((-1013) . T) ((-1119) . T))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-2304 (((-108) $) NIL)) (-1232 (((-3 $ "failed") $ $) NIL)) (-2825 (((-108) $) NIL)) (-2978 (((-108) $ (-707)) NIL)) (-2547 (($) NIL T CONST)) (-1311 (($ $) 40 (|has| |#3| (-282)))) (-2672 (((-217 |#2| |#3|) $ (-521)) 29)) (-2766 (($ (-627 |#3|)) 38)) (-3162 (((-707) $) 42 (|has| |#3| (-513)))) (-3626 ((|#3| $ (-521) (-521)) NIL)) (-3831 (((-587 |#3|) $) NIL (|has| $ (-6 -4233)))) (-2097 (((-707) $) 44 (|has| |#3| (-513)))) (-3445 (((-587 (-217 |#1| |#3|)) $) 48 (|has| |#3| (-513)))) (-1410 (((-707) $) NIL)) (-1421 (((-707) $) NIL)) (-2139 (((-108) $ (-707)) NIL)) (-2690 (((-521) $) NIL)) (-3222 (((-521) $) NIL)) (-3757 (((-587 |#3|) $) NIL (|has| $ (-6 -4233)))) (-2221 (((-108) |#3| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#3| (-1013))))) (-2207 (((-521) $) NIL)) (-2684 (((-521) $) NIL)) (-1365 (($ (-587 (-587 |#3|))) 24)) (-3833 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-1858 (((-587 (-587 |#3|)) $) NIL)) (-3574 (((-108) $ (-707)) NIL)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2230 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-513)))) (-1789 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 |#3|) (-587 |#3|)) NIL (-12 (|has| |#3| (-284 |#3|)) (|has| |#3| (-1013)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-284 |#3|)) (|has| |#3| (-1013)))) (($ $ (-269 |#3|)) NIL (-12 (|has| |#3| (-284 |#3|)) (|has| |#3| (-1013)))) (($ $ (-587 (-269 |#3|))) NIL (-12 (|has| |#3| (-284 |#3|)) (|has| |#3| (-1013))))) (-2488 (((-108) $ $) NIL)) (-3462 (((-108) $) NIL)) (-4024 (($) NIL)) (-2544 ((|#3| $ (-521) (-521)) NIL) ((|#3| $ (-521) (-521) |#3|) NIL)) (-2359 (((-126)) 51 (|has| |#3| (-337)))) (-1222 (((-108) $) NIL)) (-4163 (((-707) |#3| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#3| (-1013)))) (((-707) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4233)))) (-2404 (($ $) NIL)) (-1430 (((-497) $) 60 (|has| |#3| (-562 (-497))))) (-3187 (((-217 |#1| |#3|) $ (-521)) 33)) (-2189 (((-792) $) 16) (((-627 |#3|) $) 35)) (-3049 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4233)))) (-2169 (((-108) $) NIL)) (-3561 (($) 13 T CONST)) (-1531 (((-108) $ $) NIL)) (-1620 (($ $ |#3|) NIL (|has| |#3| (-337)))) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-3475 (((-707) $) NIL (|has| $ (-6 -4233)))))
+(((-974 |#1| |#2| |#3|) (-13 (-973 |#1| |#2| |#3| (-217 |#2| |#3|) (-217 |#1| |#3|)) (-561 (-627 |#3|)) (-10 -8 (IF (|has| |#3| (-337)) (-6 (-1172 |#3|)) |%noBranch|) (IF (|has| |#3| (-562 (-497))) (-6 (-562 (-497))) |%noBranch|) (-15 -2766 ($ (-627 |#3|))) (-15 -2189 ((-627 |#3|) $)))) (-707) (-707) (-970)) (T -974))
+((-2189 (*1 *2 *1) (-12 (-5 *2 (-627 *5)) (-5 *1 (-974 *3 *4 *5)) (-14 *3 (-707)) (-14 *4 (-707)) (-4 *5 (-970)))) (-2766 (*1 *1 *2) (-12 (-5 *2 (-627 *5)) (-4 *5 (-970)) (-5 *1 (-974 *3 *4 *5)) (-14 *3 (-707)) (-14 *4 (-707)))))
+(-13 (-973 |#1| |#2| |#3| (-217 |#2| |#3|) (-217 |#1| |#3|)) (-561 (-627 |#3|)) (-10 -8 (IF (|has| |#3| (-337)) (-6 (-1172 |#3|)) |%noBranch|) (IF (|has| |#3| (-562 (-497))) (-6 (-562 (-497))) |%noBranch|) (-15 -2766 ($ (-627 |#3|))) (-15 -2189 ((-627 |#3|) $))))
+((-3859 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 34)) (-1390 ((|#10| (-1 |#7| |#3|) |#6|) 32)))
+(((-975 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -1390 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3859 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-707) (-707) (-970) (-215 |#2| |#3|) (-215 |#1| |#3|) (-973 |#1| |#2| |#3| |#4| |#5|) (-970) (-215 |#2| |#7|) (-215 |#1| |#7|) (-973 |#1| |#2| |#7| |#8| |#9|)) (T -975))
+((-3859 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-970)) (-4 *2 (-970)) (-14 *5 (-707)) (-14 *6 (-707)) (-4 *8 (-215 *6 *7)) (-4 *9 (-215 *5 *7)) (-4 *10 (-215 *6 *2)) (-4 *11 (-215 *5 *2)) (-5 *1 (-975 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-973 *5 *6 *7 *8 *9)) (-4 *12 (-973 *5 *6 *2 *10 *11)))) (-1390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-970)) (-4 *10 (-970)) (-14 *5 (-707)) (-14 *6 (-707)) (-4 *8 (-215 *6 *7)) (-4 *9 (-215 *5 *7)) (-4 *2 (-973 *5 *6 *10 *11 *12)) (-5 *1 (-975 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-973 *5 *6 *7 *8 *9)) (-4 *11 (-215 *6 *10)) (-4 *12 (-215 *5 *10)))))
+(-10 -7 (-15 -1390 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3859 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|)))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-1232 (((-3 $ "failed") $ $) 19)) (-2547 (($) 17 T CONST)) (-3688 (((-1067) $) 9)) (-4147 (((-1031) $) 10)) (-2189 (((-792) $) 11)) (-3561 (($) 18 T CONST)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ |#1|) 23)))
+(((-976 |#1|) (-1196) (-977)) (T -976))
+((* (*1 *1 *1 *2) (-12 (-4 *1 (-976 *2)) (-4 *2 (-977)))))
(-13 (-21) (-10 -8 (-15 * ($ $ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-560 (-791)) . T) ((-1012) . T))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-1917 (((-3 $ "failed") $ $) 19)) (-3961 (($) 17 T CONST)) (-1239 (((-1066) $) 9)) (-4142 (((-1030) $) 10)) (-2188 (((-791) $) 11)) (-3504 (($ $ (-849)) 26)) (-3560 (($) 18 T CONST)) (-1530 (((-108) $ $) 6)) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (** (($ $ (-849)) 25)) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ $ $) 24)))
-(((-976) (-1195)) (T -976))
-NIL
-(-13 (-21) (-1024))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-560 (-791)) . T) ((-1024) . T) ((-1012) . T))
-((-2406 (($ $) 16)) (-1650 (($ $) 22)) (-1272 (((-817 (-352) $) $ (-820 (-352)) (-817 (-352) $)) 49)) (-1434 (($ $) 24)) (-4122 (($ $) 11)) (-1626 (($ $) 38)) (-1429 (((-352) $) NIL) (((-201) $) NIL) (((-820 (-352)) $) 33)) (-2188 (((-791) $) NIL) (($ (-520)) NIL) (($ $) NIL) (($ (-380 (-520))) 28) (($ (-520)) NIL) (($ (-380 (-520))) 28)) (-3251 (((-706)) 8)) (-3370 (($ $) 39)))
-(((-977 |#1|) (-10 -8 (-15 -1650 (|#1| |#1|)) (-15 -2406 (|#1| |#1|)) (-15 -4122 (|#1| |#1|)) (-15 -1626 (|#1| |#1|)) (-15 -3370 (|#1| |#1|)) (-15 -1434 (|#1| |#1|)) (-15 -1272 ((-817 (-352) |#1|) |#1| (-820 (-352)) (-817 (-352) |#1|))) (-15 -1429 ((-820 (-352)) |#1|)) (-15 -2188 (|#1| (-380 (-520)))) (-15 -2188 (|#1| (-520))) (-15 -1429 ((-201) |#1|)) (-15 -1429 ((-352) |#1|)) (-15 -2188 (|#1| (-380 (-520)))) (-15 -2188 (|#1| |#1|)) (-15 -2188 (|#1| (-520))) (-15 -3251 ((-706))) (-15 -2188 ((-791) |#1|))) (-978)) (T -977))
-((-3251 (*1 *2) (-12 (-5 *2 (-706)) (-5 *1 (-977 *3)) (-4 *3 (-978)))))
-(-10 -8 (-15 -1650 (|#1| |#1|)) (-15 -2406 (|#1| |#1|)) (-15 -4122 (|#1| |#1|)) (-15 -1626 (|#1| |#1|)) (-15 -3370 (|#1| |#1|)) (-15 -1434 (|#1| |#1|)) (-15 -1272 ((-817 (-352) |#1|) |#1| (-820 (-352)) (-817 (-352) |#1|))) (-15 -1429 ((-820 (-352)) |#1|)) (-15 -2188 (|#1| (-380 (-520)))) (-15 -2188 (|#1| (-520))) (-15 -1429 ((-201) |#1|)) (-15 -1429 ((-352) |#1|)) (-15 -2188 (|#1| (-380 (-520)))) (-15 -2188 (|#1| |#1|)) (-15 -2188 (|#1| (-520))) (-15 -3251 ((-706))) (-15 -2188 ((-791) |#1|)))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-4040 (((-520) $) 89)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) 41)) (-2583 (($ $) 40)) (-1671 (((-108) $) 38)) (-2406 (($ $) 87)) (-1917 (((-3 $ "failed") $ $) 19)) (-3024 (($ $) 73)) (-1507 (((-391 $) $) 72)) (-1927 (($ $) 97)) (-1327 (((-108) $ $) 59)) (-2804 (((-520) $) 114)) (-3961 (($) 17 T CONST)) (-1650 (($ $) 86)) (-1296 (((-3 (-520) "failed") $) 102) (((-3 (-380 (-520)) "failed") $) 99)) (-1482 (((-520) $) 101) (((-380 (-520)) $) 98)) (-2276 (($ $ $) 55)) (-1540 (((-3 $ "failed") $) 34)) (-2253 (($ $ $) 56)) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) 51)) (-2036 (((-108) $) 71)) (-2328 (((-108) $) 112)) (-1272 (((-817 (-352) $) $ (-820 (-352)) (-817 (-352) $)) 93)) (-1537 (((-108) $) 31)) (-2322 (($ $ (-520)) 96)) (-1434 (($ $) 92)) (-3469 (((-108) $) 113)) (-3188 (((-3 (-586 $) "failed") (-586 $) $) 52)) (-2809 (($ $ $) 111)) (-2446 (($ $ $) 110)) (-2222 (($ $ $) 46) (($ (-586 $)) 45)) (-1239 (((-1066) $) 9)) (-3093 (($ $) 70)) (-4142 (((-1030) $) 10)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) 44)) (-2257 (($ $ $) 48) (($ (-586 $)) 47)) (-4122 (($ $) 88)) (-1626 (($ $) 90)) (-1916 (((-391 $) $) 74)) (-1283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2230 (((-3 $ "failed") $ $) 42)) (-2608 (((-3 (-586 $) "failed") (-586 $) $) 50)) (-3704 (((-706) $) 58)) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) 57)) (-1429 (((-352) $) 105) (((-201) $) 104) (((-820 (-352)) $) 94)) (-2188 (((-791) $) 11) (($ (-520)) 28) (($ $) 43) (($ (-380 (-520))) 65) (($ (-520)) 103) (($ (-380 (-520))) 100)) (-3251 (((-706)) 29)) (-3370 (($ $) 91)) (-2559 (((-108) $ $) 39)) (-2458 (($ $) 115)) (-3504 (($ $ (-849)) 26) (($ $ (-706)) 33) (($ $ (-520)) 69)) (-3560 (($) 18 T CONST)) (-3570 (($) 30 T CONST)) (-1573 (((-108) $ $) 108)) (-1557 (((-108) $ $) 107)) (-1530 (((-108) $ $) 6)) (-1565 (((-108) $ $) 109)) (-1548 (((-108) $ $) 106)) (-1619 (($ $ $) 64)) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-706)) 32) (($ $ (-520)) 68) (($ $ (-380 (-520))) 95)) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ $ $) 24) (($ $ (-380 (-520))) 67) (($ (-380 (-520)) $) 66)))
-(((-978) (-1195)) (T -978))
-((-2458 (*1 *1 *1) (-4 *1 (-978))) (-1434 (*1 *1 *1) (-4 *1 (-978))) (-3370 (*1 *1 *1) (-4 *1 (-978))) (-1626 (*1 *1 *1) (-4 *1 (-978))) (-4040 (*1 *2 *1) (-12 (-4 *1 (-978)) (-5 *2 (-520)))) (-4122 (*1 *1 *1) (-4 *1 (-978))) (-2406 (*1 *1 *1) (-4 *1 (-978))) (-1650 (*1 *1 *1) (-4 *1 (-978))))
-(-13 (-336) (-781) (-945) (-960 (-520)) (-960 (-380 (-520))) (-926) (-561 (-820 (-352))) (-814 (-352)) (-135) (-10 -8 (-15 -1434 ($ $)) (-15 -3370 ($ $)) (-15 -1626 ($ $)) (-15 -4040 ((-520) $)) (-15 -4122 ($ $)) (-15 -2406 ($ $)) (-15 -1650 ($ $)) (-15 -2458 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-380 (-520))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-124) . T) ((-135) . T) ((-560 (-791)) . T) ((-157) . T) ((-561 (-201)) . T) ((-561 (-352)) . T) ((-561 (-820 (-352))) . T) ((-219) . T) ((-264) . T) ((-281) . T) ((-336) . T) ((-424) . T) ((-512) . T) ((-588 #0#) . T) ((-588 $) . T) ((-653 #0#) . T) ((-653 $) . T) ((-662) . T) ((-726) . T) ((-727) . T) ((-729) . T) ((-731) . T) ((-781) . T) ((-783) . T) ((-814 (-352)) . T) ((-848) . T) ((-926) . T) ((-945) . T) ((-960 (-380 (-520))) . T) ((-960 (-520)) . T) ((-975 #0#) . T) ((-975 $) . T) ((-969) . T) ((-976) . T) ((-1024) . T) ((-1012) . T) ((-1122) . T))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) |#2| $) 23)) (-1628 ((|#1| $) 10)) (-2804 (((-520) |#2| $) 89)) (-2288 (((-3 $ "failed") |#2| (-849)) 58)) (-1924 ((|#1| $) 28)) (-2489 ((|#1| |#2| $ |#1|) 37)) (-2469 (($ $) 25)) (-1540 (((-3 |#2| "failed") |#2| $) 88)) (-2328 (((-108) |#2| $) NIL)) (-3469 (((-108) |#2| $) NIL)) (-3862 (((-108) |#2| $) 24)) (-2722 ((|#1| $) 90)) (-1912 ((|#1| $) 27)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-3484 ((|#2| $) 80)) (-2188 (((-791) $) 71)) (-3890 ((|#1| |#2| $ |#1|) 38)) (-3233 (((-586 $) |#2|) 60)) (-1530 (((-108) $ $) 75)))
-(((-979 |#1| |#2|) (-13 (-985 |#1| |#2|) (-10 -8 (-15 -1912 (|#1| $)) (-15 -1924 (|#1| $)) (-15 -1628 (|#1| $)) (-15 -2722 (|#1| $)) (-15 -2469 ($ $)) (-15 -3862 ((-108) |#2| $)) (-15 -2489 (|#1| |#2| $ |#1|)))) (-13 (-781) (-336)) (-1140 |#1|)) (T -979))
-((-2489 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-781) (-336))) (-5 *1 (-979 *2 *3)) (-4 *3 (-1140 *2)))) (-1912 (*1 *2 *1) (-12 (-4 *2 (-13 (-781) (-336))) (-5 *1 (-979 *2 *3)) (-4 *3 (-1140 *2)))) (-1924 (*1 *2 *1) (-12 (-4 *2 (-13 (-781) (-336))) (-5 *1 (-979 *2 *3)) (-4 *3 (-1140 *2)))) (-1628 (*1 *2 *1) (-12 (-4 *2 (-13 (-781) (-336))) (-5 *1 (-979 *2 *3)) (-4 *3 (-1140 *2)))) (-2722 (*1 *2 *1) (-12 (-4 *2 (-13 (-781) (-336))) (-5 *1 (-979 *2 *3)) (-4 *3 (-1140 *2)))) (-2469 (*1 *1 *1) (-12 (-4 *2 (-13 (-781) (-336))) (-5 *1 (-979 *2 *3)) (-4 *3 (-1140 *2)))) (-3862 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-781) (-336))) (-5 *2 (-108)) (-5 *1 (-979 *4 *3)) (-4 *3 (-1140 *4)))))
-(-13 (-985 |#1| |#2|) (-10 -8 (-15 -1912 (|#1| $)) (-15 -1924 (|#1| $)) (-15 -1628 (|#1| $)) (-15 -2722 (|#1| $)) (-15 -2469 ($ $)) (-15 -3862 ((-108) |#2| $)) (-15 -2489 (|#1| |#2| $ |#1|))))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) NIL)) (-2583 (($ $) NIL)) (-1671 (((-108) $) NIL)) (-3942 (($ $ $) NIL)) (-1917 (((-3 $ "failed") $ $) NIL)) (-2372 (($ $ $ $) NIL)) (-3024 (($ $) NIL)) (-1507 (((-391 $) $) NIL)) (-1327 (((-108) $ $) NIL)) (-2804 (((-520) $) NIL)) (-1660 (($ $ $) NIL)) (-3961 (($) NIL T CONST)) (-2005 (($ (-1083)) 10) (($ (-520)) 7)) (-1296 (((-3 (-520) "failed") $) NIL)) (-1482 (((-520) $) NIL)) (-2276 (($ $ $) NIL)) (-2756 (((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 $) (-1164 $)) NIL) (((-626 (-520)) (-626 $)) NIL)) (-1540 (((-3 $ "failed") $) NIL)) (-2279 (((-3 (-380 (-520)) "failed") $) NIL)) (-1386 (((-108) $) NIL)) (-4055 (((-380 (-520)) $) NIL)) (-3249 (($) NIL) (($ $) NIL)) (-2253 (($ $ $) NIL)) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) NIL)) (-2036 (((-108) $) NIL)) (-3028 (($ $ $ $) NIL)) (-3708 (($ $ $) NIL)) (-2328 (((-108) $) NIL)) (-4151 (($ $ $) NIL)) (-1272 (((-817 (-520) $) $ (-820 (-520)) (-817 (-520) $)) NIL)) (-1537 (((-108) $) NIL)) (-2777 (((-108) $) NIL)) (-1394 (((-3 $ "failed") $) NIL)) (-3469 (((-108) $) NIL)) (-3188 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-3368 (($ $ $ $) NIL)) (-2809 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-3886 (($ $) NIL)) (-2515 (($ $) NIL)) (-2222 (($ $ $) NIL) (($ (-586 $)) NIL)) (-1239 (((-1066) $) NIL)) (-1527 (($ $ $) NIL)) (-3794 (($) NIL T CONST)) (-2952 (($ $) NIL)) (-4142 (((-1030) $) NIL) (($ $) NIL)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) NIL)) (-2257 (($ $ $) NIL) (($ (-586 $)) NIL)) (-2724 (($ $) NIL)) (-1916 (((-391 $) $) NIL)) (-1283 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) NIL)) (-2230 (((-3 $ "failed") $ $) NIL)) (-2608 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-3615 (((-108) $) NIL)) (-3704 (((-706) $) NIL)) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) NIL)) (-2155 (($ $ (-706)) NIL) (($ $) NIL)) (-3047 (($ $) NIL)) (-2403 (($ $) NIL)) (-1429 (((-520) $) 16) (((-496) $) NIL) (((-820 (-520)) $) NIL) (((-352) $) NIL) (((-201) $) NIL) (($ (-1083)) 9)) (-2188 (((-791) $) 20) (($ (-520)) 6) (($ $) NIL) (($ (-520)) 6)) (-3251 (((-706)) NIL)) (-3801 (((-108) $ $) NIL)) (-2586 (($ $ $) NIL)) (-3349 (($) NIL)) (-2559 (((-108) $ $) NIL)) (-2642 (($ $ $ $) NIL)) (-2458 (($ $) NIL)) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (-3560 (($) NIL T CONST)) (-3570 (($) NIL T CONST)) (-2211 (($ $ (-706)) NIL) (($ $) NIL)) (-1573 (((-108) $ $) NIL)) (-1557 (((-108) $ $) NIL)) (-1530 (((-108) $ $) NIL)) (-1565 (((-108) $ $) NIL)) (-1548 (((-108) $ $) NIL)) (-1611 (($ $) 19) (($ $ $) NIL)) (-1601 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) NIL)))
-(((-980) (-13 (-505) (-10 -8 (-6 -4216) (-6 -4221) (-6 -4217) (-15 -1429 ($ (-1083))) (-15 -2005 ($ (-1083))) (-15 -2005 ($ (-520)))))) (T -980))
-((-1429 (*1 *1 *2) (-12 (-5 *2 (-1083)) (-5 *1 (-980)))) (-2005 (*1 *1 *2) (-12 (-5 *2 (-1083)) (-5 *1 (-980)))) (-2005 (*1 *1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-980)))))
-(-13 (-505) (-10 -8 (-6 -4216) (-6 -4221) (-6 -4217) (-15 -1429 ($ (-1083))) (-15 -2005 ($ (-1083))) (-15 -2005 ($ (-520)))))
-((-1414 (((-108) $ $) NIL (-3700 (|has| (-51) (-1012)) (|has| (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (-1012))))) (-1799 (($) NIL) (($ (-586 (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))))) NIL)) (-1476 (((-1169) $ (-1083) (-1083)) NIL (|has| $ (-6 -4230)))) (-2063 (((-108) $ (-706)) NIL)) (-1490 (($) 9)) (-2377 (((-51) $ (-1083) (-51)) NIL)) (-1689 (($ $) 23)) (-3922 (($ $) 21)) (-4052 (($ $) 20)) (-1485 (($ $) 22)) (-1555 (($ $) 25)) (-2652 (($ $) 26)) (-2632 (($ $) 19)) (-2100 (($ $) 24)) (-1817 (($ (-1 (-108) (-2 (|:| -2526 (-1083)) (|:| -3043 (-51)))) $) NIL (|has| $ (-6 -4229)))) (-1627 (($ (-1 (-108) (-2 (|:| -2526 (-1083)) (|:| -3043 (-51)))) $) 18 (|has| $ (-6 -4229)))) (-2747 (((-3 (-51) "failed") (-1083) $) 34)) (-3961 (($) NIL T CONST)) (-3894 (($) 7)) (-2331 (($ $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (-1012))))) (-3766 (($ (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) $) 46 (|has| $ (-6 -4229))) (($ (-1 (-108) (-2 (|:| -2526 (-1083)) (|:| -3043 (-51)))) $) NIL (|has| $ (-6 -4229))) (((-3 (-51) "failed") (-1083) $) NIL)) (-1421 (($ (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (-1012)))) (($ (-1 (-108) (-2 (|:| -2526 (-1083)) (|:| -3043 (-51)))) $) NIL (|has| $ (-6 -4229)))) (-3856 (((-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (-1 (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (-2 (|:| -2526 (-1083)) (|:| -3043 (-51)))) $ (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (-2 (|:| -2526 (-1083)) (|:| -3043 (-51)))) NIL (-12 (|has| $ (-6 -4229)) (|has| (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (-1012)))) (((-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (-1 (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (-2 (|:| -2526 (-1083)) (|:| -3043 (-51)))) $ (-2 (|:| -2526 (-1083)) (|:| -3043 (-51)))) NIL (|has| $ (-6 -4229))) (((-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (-1 (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (-2 (|:| -2526 (-1083)) (|:| -3043 (-51)))) $) NIL (|has| $ (-6 -4229)))) (-1873 (((-3 (-1066) "failed") $ (-1066) (-520)) 59)) (-3846 (((-51) $ (-1083) (-51)) NIL (|has| $ (-6 -4230)))) (-3623 (((-51) $ (-1083)) NIL)) (-3828 (((-586 (-2 (|:| -2526 (-1083)) (|:| -3043 (-51)))) $) NIL (|has| $ (-6 -4229))) (((-586 (-51)) $) NIL (|has| $ (-6 -4229)))) (-3027 (((-108) $ (-706)) NIL)) (-2567 (((-1083) $) NIL (|has| (-1083) (-783)))) (-3702 (((-586 (-2 (|:| -2526 (-1083)) (|:| -3043 (-51)))) $) 28 (|has| $ (-6 -4229))) (((-586 (-51)) $) NIL (|has| $ (-6 -4229)))) (-2422 (((-108) (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (-1012)))) (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-51) (-1012))))) (-1752 (((-1083) $) NIL (|has| (-1083) (-783)))) (-3830 (($ (-1 (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (-2 (|:| -2526 (-1083)) (|:| -3043 (-51)))) $) NIL (|has| $ (-6 -4230))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4230)))) (-1389 (($ (-1 (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (-2 (|:| -2526 (-1083)) (|:| -3043 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-1390 (((-108) $ (-706)) NIL)) (-1239 (((-1066) $) NIL (-3700 (|has| (-51) (-1012)) (|has| (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (-1012))))) (-2960 (((-586 (-1083)) $) NIL)) (-1612 (((-108) (-1083) $) NIL)) (-3351 (((-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) $) NIL)) (-3618 (($ (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) $) 37)) (-3622 (((-586 (-1083)) $) NIL)) (-2603 (((-108) (-1083) $) NIL)) (-4142 (((-1030) $) NIL (-3700 (|has| (-51) (-1012)) (|has| (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (-1012))))) (-3137 (((-352) $ (-1083)) 45)) (-1944 (((-586 (-1066)) $ (-1066)) 60)) (-2293 (((-51) $) NIL (|has| (-1083) (-783)))) (-2985 (((-3 (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) "failed") (-1 (-108) (-2 (|:| -2526 (-1083)) (|:| -3043 (-51)))) $) NIL)) (-2936 (($ $ (-51)) NIL (|has| $ (-6 -4230)))) (-3345 (((-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) $) NIL)) (-4155 (((-108) (-1 (-108) (-2 (|:| -2526 (-1083)) (|:| -3043 (-51)))) $) NIL (|has| $ (-6 -4229))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 (-2 (|:| -2526 (-1083)) (|:| -3043 (-51)))))) NIL (-12 (|has| (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (-283 (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))))) (|has| (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (-1012)))) (($ $ (-268 (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))))) NIL (-12 (|has| (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (-283 (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))))) (|has| (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (-1012)))) (($ $ (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (-2 (|:| -2526 (-1083)) (|:| -3043 (-51)))) NIL (-12 (|has| (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (-283 (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))))) (|has| (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (-1012)))) (($ $ (-586 (-2 (|:| -2526 (-1083)) (|:| -3043 (-51)))) (-586 (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))))) NIL (-12 (|has| (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (-283 (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))))) (|has| (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (-1012)))) (($ $ (-586 (-51)) (-586 (-51))) NIL (-12 (|has| (-51) (-283 (-51))) (|has| (-51) (-1012)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-283 (-51))) (|has| (-51) (-1012)))) (($ $ (-268 (-51))) NIL (-12 (|has| (-51) (-283 (-51))) (|has| (-51) (-1012)))) (($ $ (-586 (-268 (-51)))) NIL (-12 (|has| (-51) (-283 (-51))) (|has| (-51) (-1012))))) (-2533 (((-108) $ $) NIL)) (-2094 (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-51) (-1012))))) (-1523 (((-586 (-51)) $) NIL)) (-4018 (((-108) $) NIL)) (-2238 (($) NIL)) (-2543 (((-51) $ (-1083)) NIL) (((-51) $ (-1083) (-51)) NIL)) (-1645 (($) NIL) (($ (-586 (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))))) NIL)) (-3971 (($ $ (-1083)) 47)) (-4159 (((-706) (-1 (-108) (-2 (|:| -2526 (-1083)) (|:| -3043 (-51)))) $) NIL (|has| $ (-6 -4229))) (((-706) (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (-1012)))) (((-706) (-51) $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-51) (-1012)))) (((-706) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4229)))) (-2403 (($ $) NIL)) (-1429 (((-496) $) NIL (|has| (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (-561 (-496))))) (-2200 (($ (-586 (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))))) 30)) (-4156 (($ $ $) 31)) (-2188 (((-791) $) NIL (-3700 (|has| (-51) (-560 (-791))) (|has| (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (-560 (-791)))))) (-3969 (($ $ (-1083) (-352)) 43)) (-1401 (($ $ (-1083) (-352)) 44)) (-1898 (($ (-586 (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))))) NIL)) (-1662 (((-108) (-1 (-108) (-2 (|:| -2526 (-1083)) (|:| -3043 (-51)))) $) NIL (|has| $ (-6 -4229))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4229)))) (-1530 (((-108) $ $) NIL (-3700 (|has| (-51) (-1012)) (|has| (-2 (|:| -2526 (-1083)) (|:| -3043 (-51))) (-1012))))) (-3474 (((-706) $) NIL (|has| $ (-6 -4229)))))
-(((-981) (-13 (-1095 (-1083) (-51)) (-10 -8 (-15 -4156 ($ $ $)) (-15 -3894 ($)) (-15 -2632 ($ $)) (-15 -4052 ($ $)) (-15 -3922 ($ $)) (-15 -1485 ($ $)) (-15 -2100 ($ $)) (-15 -1689 ($ $)) (-15 -1555 ($ $)) (-15 -2652 ($ $)) (-15 -3969 ($ $ (-1083) (-352))) (-15 -1401 ($ $ (-1083) (-352))) (-15 -3137 ((-352) $ (-1083))) (-15 -1944 ((-586 (-1066)) $ (-1066))) (-15 -3971 ($ $ (-1083))) (-15 -1490 ($)) (-15 -1873 ((-3 (-1066) "failed") $ (-1066) (-520))) (-6 -4229)))) (T -981))
-((-4156 (*1 *1 *1 *1) (-5 *1 (-981))) (-3894 (*1 *1) (-5 *1 (-981))) (-2632 (*1 *1 *1) (-5 *1 (-981))) (-4052 (*1 *1 *1) (-5 *1 (-981))) (-3922 (*1 *1 *1) (-5 *1 (-981))) (-1485 (*1 *1 *1) (-5 *1 (-981))) (-2100 (*1 *1 *1) (-5 *1 (-981))) (-1689 (*1 *1 *1) (-5 *1 (-981))) (-1555 (*1 *1 *1) (-5 *1 (-981))) (-2652 (*1 *1 *1) (-5 *1 (-981))) (-3969 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1083)) (-5 *3 (-352)) (-5 *1 (-981)))) (-1401 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1083)) (-5 *3 (-352)) (-5 *1 (-981)))) (-3137 (*1 *2 *1 *3) (-12 (-5 *3 (-1083)) (-5 *2 (-352)) (-5 *1 (-981)))) (-1944 (*1 *2 *1 *3) (-12 (-5 *2 (-586 (-1066))) (-5 *1 (-981)) (-5 *3 (-1066)))) (-3971 (*1 *1 *1 *2) (-12 (-5 *2 (-1083)) (-5 *1 (-981)))) (-1490 (*1 *1) (-5 *1 (-981))) (-1873 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1066)) (-5 *3 (-520)) (-5 *1 (-981)))))
-(-13 (-1095 (-1083) (-51)) (-10 -8 (-15 -4156 ($ $ $)) (-15 -3894 ($)) (-15 -2632 ($ $)) (-15 -4052 ($ $)) (-15 -3922 ($ $)) (-15 -1485 ($ $)) (-15 -2100 ($ $)) (-15 -1689 ($ $)) (-15 -1555 ($ $)) (-15 -2652 ($ $)) (-15 -3969 ($ $ (-1083) (-352))) (-15 -1401 ($ $ (-1083) (-352))) (-15 -3137 ((-352) $ (-1083))) (-15 -1944 ((-586 (-1066)) $ (-1066))) (-15 -3971 ($ $ (-1083))) (-15 -1490 ($)) (-15 -1873 ((-3 (-1066) "failed") $ (-1066) (-520))) (-6 -4229)))
-((-3827 (($ $) 45)) (-2760 (((-108) $ $) 74)) (-1296 (((-3 |#2| "failed") $) NIL) (((-3 (-380 (-520)) "failed") $) NIL) (((-3 (-520) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-880 (-380 (-520)))) 227) (((-3 $ "failed") (-880 (-520))) 226) (((-3 $ "failed") (-880 |#2|)) 229)) (-1482 ((|#2| $) NIL) (((-380 (-520)) $) NIL) (((-520) $) NIL) ((|#4| $) NIL) (($ (-880 (-380 (-520)))) 215) (($ (-880 (-520))) 211) (($ (-880 |#2|)) 231)) (-3150 (($ $) NIL) (($ $ |#4|) 43)) (-3738 (((-108) $ $) 112) (((-108) $ (-586 $)) 113)) (-3916 (((-108) $) 56)) (-1973 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) 107)) (-4053 (($ $) 138)) (-4171 (($ $) 134)) (-2577 (($ $) 133)) (-1623 (($ $ $) 79) (($ $ $ |#4|) 84)) (-1950 (($ $ $) 82) (($ $ $ |#4|) 86)) (-2311 (((-108) $ $) 121) (((-108) $ (-586 $)) 122)) (-3871 ((|#4| $) 33)) (-3868 (($ $ $) 110)) (-3174 (((-108) $) 55)) (-2956 (((-706) $) 35)) (-1609 (($ $) 152)) (-2158 (($ $) 149)) (-2359 (((-586 $) $) 68)) (-2347 (($ $) 57)) (-2108 (($ $) 145)) (-4172 (((-586 $) $) 65)) (-1848 (($ $) 59)) (-3133 ((|#2| $) NIL) (($ $ |#4|) 38)) (-3106 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1798 (-706))) $ $) 111)) (-2000 (((-2 (|:| -2972 $) (|:| |gap| (-706)) (|:| -2060 $) (|:| -3753 $)) $ $) 108) (((-2 (|:| -2972 $) (|:| |gap| (-706)) (|:| -2060 $) (|:| -3753 $)) $ $ |#4|) 109)) (-3331 (((-2 (|:| -2972 $) (|:| |gap| (-706)) (|:| -3753 $)) $ $) 104) (((-2 (|:| -2972 $) (|:| |gap| (-706)) (|:| -3753 $)) $ $ |#4|) 105)) (-3509 (($ $ $) 89) (($ $ $ |#4|) 95)) (-1697 (($ $ $) 90) (($ $ $ |#4|) 96)) (-2852 (((-586 $) $) 51)) (-2428 (((-108) $ $) 118) (((-108) $ (-586 $)) 119)) (-2778 (($ $ $) 103)) (-3794 (($ $) 37)) (-3444 (((-108) $ $) 72)) (-1322 (((-108) $ $) 114) (((-108) $ (-586 $)) 116)) (-3499 (($ $ $) 101)) (-3906 (($ $) 40)) (-2257 ((|#2| |#2| $) 142) (($ (-586 $)) NIL) (($ $ $) NIL)) (-2228 (($ $ |#2|) NIL) (($ $ $) 131)) (-1479 (($ $ |#2|) 126) (($ $ $) 129)) (-2417 (($ $) 48)) (-3185 (($ $) 52)) (-1429 (((-820 (-352)) $) NIL) (((-820 (-520)) $) NIL) (((-496) $) NIL) (($ (-880 (-380 (-520)))) 217) (($ (-880 (-520))) 213) (($ (-880 |#2|)) 228) (((-1066) $) 250) (((-880 |#2|) $) 162)) (-2188 (((-791) $) 30) (($ (-520)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-880 |#2|) $) 163) (($ (-380 (-520))) NIL) (($ $) NIL)) (-2542 (((-3 (-108) "failed") $ $) 71)))
-(((-982 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2188 (|#1| |#1|)) (-15 -2257 (|#1| |#1| |#1|)) (-15 -2257 (|#1| (-586 |#1|))) (-15 -2188 (|#1| (-380 (-520)))) (-15 -2188 ((-880 |#2|) |#1|)) (-15 -1429 ((-880 |#2|) |#1|)) (-15 -1429 ((-1066) |#1|)) (-15 -1609 (|#1| |#1|)) (-15 -2158 (|#1| |#1|)) (-15 -2108 (|#1| |#1|)) (-15 -4053 (|#1| |#1|)) (-15 -2257 (|#2| |#2| |#1|)) (-15 -2228 (|#1| |#1| |#1|)) (-15 -1479 (|#1| |#1| |#1|)) (-15 -2228 (|#1| |#1| |#2|)) (-15 -1479 (|#1| |#1| |#2|)) (-15 -4171 (|#1| |#1|)) (-15 -2577 (|#1| |#1|)) (-15 -1429 (|#1| (-880 |#2|))) (-15 -1482 (|#1| (-880 |#2|))) (-15 -1296 ((-3 |#1| "failed") (-880 |#2|))) (-15 -1429 (|#1| (-880 (-520)))) (-15 -1482 (|#1| (-880 (-520)))) (-15 -1296 ((-3 |#1| "failed") (-880 (-520)))) (-15 -1429 (|#1| (-880 (-380 (-520))))) (-15 -1482 (|#1| (-880 (-380 (-520))))) (-15 -1296 ((-3 |#1| "failed") (-880 (-380 (-520))))) (-15 -2778 (|#1| |#1| |#1|)) (-15 -3499 (|#1| |#1| |#1|)) (-15 -3106 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -1798 (-706))) |#1| |#1|)) (-15 -3868 (|#1| |#1| |#1|)) (-15 -1973 ((-2 (|:| -2060 |#1|) (|:| -3753 |#1|)) |#1| |#1|)) (-15 -2000 ((-2 (|:| -2972 |#1|) (|:| |gap| (-706)) (|:| -2060 |#1|) (|:| -3753 |#1|)) |#1| |#1| |#4|)) (-15 -2000 ((-2 (|:| -2972 |#1|) (|:| |gap| (-706)) (|:| -2060 |#1|) (|:| -3753 |#1|)) |#1| |#1|)) (-15 -3331 ((-2 (|:| -2972 |#1|) (|:| |gap| (-706)) (|:| -3753 |#1|)) |#1| |#1| |#4|)) (-15 -3331 ((-2 (|:| -2972 |#1|) (|:| |gap| (-706)) (|:| -3753 |#1|)) |#1| |#1|)) (-15 -1697 (|#1| |#1| |#1| |#4|)) (-15 -3509 (|#1| |#1| |#1| |#4|)) (-15 -1697 (|#1| |#1| |#1|)) (-15 -3509 (|#1| |#1| |#1|)) (-15 -1950 (|#1| |#1| |#1| |#4|)) (-15 -1623 (|#1| |#1| |#1| |#4|)) (-15 -1950 (|#1| |#1| |#1|)) (-15 -1623 (|#1| |#1| |#1|)) (-15 -2311 ((-108) |#1| (-586 |#1|))) (-15 -2311 ((-108) |#1| |#1|)) (-15 -2428 ((-108) |#1| (-586 |#1|))) (-15 -2428 ((-108) |#1| |#1|)) (-15 -1322 ((-108) |#1| (-586 |#1|))) (-15 -1322 ((-108) |#1| |#1|)) (-15 -3738 ((-108) |#1| (-586 |#1|))) (-15 -3738 ((-108) |#1| |#1|)) (-15 -2760 ((-108) |#1| |#1|)) (-15 -3444 ((-108) |#1| |#1|)) (-15 -2542 ((-3 (-108) "failed") |#1| |#1|)) (-15 -2359 ((-586 |#1|) |#1|)) (-15 -4172 ((-586 |#1|) |#1|)) (-15 -1848 (|#1| |#1|)) (-15 -2347 (|#1| |#1|)) (-15 -3916 ((-108) |#1|)) (-15 -3174 ((-108) |#1|)) (-15 -3150 (|#1| |#1| |#4|)) (-15 -3133 (|#1| |#1| |#4|)) (-15 -3185 (|#1| |#1|)) (-15 -2852 ((-586 |#1|) |#1|)) (-15 -2417 (|#1| |#1|)) (-15 -3827 (|#1| |#1|)) (-15 -3906 (|#1| |#1|)) (-15 -3794 (|#1| |#1|)) (-15 -2956 ((-706) |#1|)) (-15 -3871 (|#4| |#1|)) (-15 -1429 ((-496) |#1|)) (-15 -1429 ((-820 (-520)) |#1|)) (-15 -1429 ((-820 (-352)) |#1|)) (-15 -1482 (|#4| |#1|)) (-15 -1296 ((-3 |#4| "failed") |#1|)) (-15 -2188 (|#1| |#4|)) (-15 -3133 (|#2| |#1|)) (-15 -3150 (|#1| |#1|)) (-15 -1482 ((-520) |#1|)) (-15 -1296 ((-3 (-520) "failed") |#1|)) (-15 -1482 ((-380 (-520)) |#1|)) (-15 -1296 ((-3 (-380 (-520)) "failed") |#1|)) (-15 -2188 (|#1| |#2|)) (-15 -1296 ((-3 |#2| "failed") |#1|)) (-15 -1482 (|#2| |#1|)) (-15 -2188 (|#1| (-520))) (-15 -2188 ((-791) |#1|))) (-983 |#2| |#3| |#4|) (-969) (-728) (-783)) (T -982))
-NIL
-(-10 -8 (-15 -2188 (|#1| |#1|)) (-15 -2257 (|#1| |#1| |#1|)) (-15 -2257 (|#1| (-586 |#1|))) (-15 -2188 (|#1| (-380 (-520)))) (-15 -2188 ((-880 |#2|) |#1|)) (-15 -1429 ((-880 |#2|) |#1|)) (-15 -1429 ((-1066) |#1|)) (-15 -1609 (|#1| |#1|)) (-15 -2158 (|#1| |#1|)) (-15 -2108 (|#1| |#1|)) (-15 -4053 (|#1| |#1|)) (-15 -2257 (|#2| |#2| |#1|)) (-15 -2228 (|#1| |#1| |#1|)) (-15 -1479 (|#1| |#1| |#1|)) (-15 -2228 (|#1| |#1| |#2|)) (-15 -1479 (|#1| |#1| |#2|)) (-15 -4171 (|#1| |#1|)) (-15 -2577 (|#1| |#1|)) (-15 -1429 (|#1| (-880 |#2|))) (-15 -1482 (|#1| (-880 |#2|))) (-15 -1296 ((-3 |#1| "failed") (-880 |#2|))) (-15 -1429 (|#1| (-880 (-520)))) (-15 -1482 (|#1| (-880 (-520)))) (-15 -1296 ((-3 |#1| "failed") (-880 (-520)))) (-15 -1429 (|#1| (-880 (-380 (-520))))) (-15 -1482 (|#1| (-880 (-380 (-520))))) (-15 -1296 ((-3 |#1| "failed") (-880 (-380 (-520))))) (-15 -2778 (|#1| |#1| |#1|)) (-15 -3499 (|#1| |#1| |#1|)) (-15 -3106 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -1798 (-706))) |#1| |#1|)) (-15 -3868 (|#1| |#1| |#1|)) (-15 -1973 ((-2 (|:| -2060 |#1|) (|:| -3753 |#1|)) |#1| |#1|)) (-15 -2000 ((-2 (|:| -2972 |#1|) (|:| |gap| (-706)) (|:| -2060 |#1|) (|:| -3753 |#1|)) |#1| |#1| |#4|)) (-15 -2000 ((-2 (|:| -2972 |#1|) (|:| |gap| (-706)) (|:| -2060 |#1|) (|:| -3753 |#1|)) |#1| |#1|)) (-15 -3331 ((-2 (|:| -2972 |#1|) (|:| |gap| (-706)) (|:| -3753 |#1|)) |#1| |#1| |#4|)) (-15 -3331 ((-2 (|:| -2972 |#1|) (|:| |gap| (-706)) (|:| -3753 |#1|)) |#1| |#1|)) (-15 -1697 (|#1| |#1| |#1| |#4|)) (-15 -3509 (|#1| |#1| |#1| |#4|)) (-15 -1697 (|#1| |#1| |#1|)) (-15 -3509 (|#1| |#1| |#1|)) (-15 -1950 (|#1| |#1| |#1| |#4|)) (-15 -1623 (|#1| |#1| |#1| |#4|)) (-15 -1950 (|#1| |#1| |#1|)) (-15 -1623 (|#1| |#1| |#1|)) (-15 -2311 ((-108) |#1| (-586 |#1|))) (-15 -2311 ((-108) |#1| |#1|)) (-15 -2428 ((-108) |#1| (-586 |#1|))) (-15 -2428 ((-108) |#1| |#1|)) (-15 -1322 ((-108) |#1| (-586 |#1|))) (-15 -1322 ((-108) |#1| |#1|)) (-15 -3738 ((-108) |#1| (-586 |#1|))) (-15 -3738 ((-108) |#1| |#1|)) (-15 -2760 ((-108) |#1| |#1|)) (-15 -3444 ((-108) |#1| |#1|)) (-15 -2542 ((-3 (-108) "failed") |#1| |#1|)) (-15 -2359 ((-586 |#1|) |#1|)) (-15 -4172 ((-586 |#1|) |#1|)) (-15 -1848 (|#1| |#1|)) (-15 -2347 (|#1| |#1|)) (-15 -3916 ((-108) |#1|)) (-15 -3174 ((-108) |#1|)) (-15 -3150 (|#1| |#1| |#4|)) (-15 -3133 (|#1| |#1| |#4|)) (-15 -3185 (|#1| |#1|)) (-15 -2852 ((-586 |#1|) |#1|)) (-15 -2417 (|#1| |#1|)) (-15 -3827 (|#1| |#1|)) (-15 -3906 (|#1| |#1|)) (-15 -3794 (|#1| |#1|)) (-15 -2956 ((-706) |#1|)) (-15 -3871 (|#4| |#1|)) (-15 -1429 ((-496) |#1|)) (-15 -1429 ((-820 (-520)) |#1|)) (-15 -1429 ((-820 (-352)) |#1|)) (-15 -1482 (|#4| |#1|)) (-15 -1296 ((-3 |#4| "failed") |#1|)) (-15 -2188 (|#1| |#4|)) (-15 -3133 (|#2| |#1|)) (-15 -3150 (|#1| |#1|)) (-15 -1482 ((-520) |#1|)) (-15 -1296 ((-3 (-520) "failed") |#1|)) (-15 -1482 ((-380 (-520)) |#1|)) (-15 -1296 ((-3 (-380 (-520)) "failed") |#1|)) (-15 -2188 (|#1| |#2|)) (-15 -1296 ((-3 |#2| "failed") |#1|)) (-15 -1482 (|#2| |#1|)) (-15 -2188 (|#1| (-520))) (-15 -2188 ((-791) |#1|)))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-4081 (((-586 |#3|) $) 110)) (-1278 (((-1079 $) $ |#3|) 125) (((-1079 |#1|) $) 124)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) 87 (|has| |#1| (-512)))) (-2583 (($ $) 88 (|has| |#1| (-512)))) (-1671 (((-108) $) 90 (|has| |#1| (-512)))) (-3665 (((-706) $) 112) (((-706) $ (-586 |#3|)) 111)) (-3827 (($ $) 271)) (-2760 (((-108) $ $) 257)) (-1917 (((-3 $ "failed") $ $) 19)) (-3309 (($ $ $) 216 (|has| |#1| (-512)))) (-3465 (((-586 $) $ $) 211 (|has| |#1| (-512)))) (-4119 (((-391 (-1079 $)) (-1079 $)) 100 (|has| |#1| (-837)))) (-3024 (($ $) 98 (|has| |#1| (-424)))) (-1507 (((-391 $) $) 97 (|has| |#1| (-424)))) (-3481 (((-3 (-586 (-1079 $)) "failed") (-586 (-1079 $)) (-1079 $)) 103 (|has| |#1| (-837)))) (-3961 (($) 17 T CONST)) (-1296 (((-3 |#1| "failed") $) 164) (((-3 (-380 (-520)) "failed") $) 162 (|has| |#1| (-960 (-380 (-520))))) (((-3 (-520) "failed") $) 160 (|has| |#1| (-960 (-520)))) (((-3 |#3| "failed") $) 136) (((-3 $ "failed") (-880 (-380 (-520)))) 231 (-12 (|has| |#1| (-37 (-380 (-520)))) (|has| |#3| (-561 (-1083))))) (((-3 $ "failed") (-880 (-520))) 228 (-3700 (-12 (-2399 (|has| |#1| (-37 (-380 (-520))))) (|has| |#1| (-37 (-520))) (|has| |#3| (-561 (-1083)))) (-12 (|has| |#1| (-37 (-380 (-520)))) (|has| |#3| (-561 (-1083)))))) (((-3 $ "failed") (-880 |#1|)) 225 (-3700 (-12 (-2399 (|has| |#1| (-37 (-380 (-520))))) (-2399 (|has| |#1| (-37 (-520)))) (|has| |#3| (-561 (-1083)))) (-12 (-2399 (|has| |#1| (-505))) (-2399 (|has| |#1| (-37 (-380 (-520))))) (|has| |#1| (-37 (-520))) (|has| |#3| (-561 (-1083)))) (-12 (-2399 (|has| |#1| (-917 (-520)))) (|has| |#1| (-37 (-380 (-520)))) (|has| |#3| (-561 (-1083))))))) (-1482 ((|#1| $) 165) (((-380 (-520)) $) 161 (|has| |#1| (-960 (-380 (-520))))) (((-520) $) 159 (|has| |#1| (-960 (-520)))) ((|#3| $) 135) (($ (-880 (-380 (-520)))) 230 (-12 (|has| |#1| (-37 (-380 (-520)))) (|has| |#3| (-561 (-1083))))) (($ (-880 (-520))) 227 (-3700 (-12 (-2399 (|has| |#1| (-37 (-380 (-520))))) (|has| |#1| (-37 (-520))) (|has| |#3| (-561 (-1083)))) (-12 (|has| |#1| (-37 (-380 (-520)))) (|has| |#3| (-561 (-1083)))))) (($ (-880 |#1|)) 224 (-3700 (-12 (-2399 (|has| |#1| (-37 (-380 (-520))))) (-2399 (|has| |#1| (-37 (-520)))) (|has| |#3| (-561 (-1083)))) (-12 (-2399 (|has| |#1| (-505))) (-2399 (|has| |#1| (-37 (-380 (-520))))) (|has| |#1| (-37 (-520))) (|has| |#3| (-561 (-1083)))) (-12 (-2399 (|has| |#1| (-917 (-520)))) (|has| |#1| (-37 (-380 (-520)))) (|has| |#3| (-561 (-1083))))))) (-2413 (($ $ $ |#3|) 108 (|has| |#1| (-157))) (($ $ $) 212 (|has| |#1| (-512)))) (-3150 (($ $) 154) (($ $ |#3|) 266)) (-2756 (((-626 (-520)) (-626 $)) 134 (|has| |#1| (-582 (-520)))) (((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 $) (-1164 $)) 133 (|has| |#1| (-582 (-520)))) (((-2 (|:| -3927 (-626 |#1|)) (|:| |vec| (-1164 |#1|))) (-626 $) (-1164 $)) 132) (((-626 |#1|) (-626 $)) 131)) (-3738 (((-108) $ $) 256) (((-108) $ (-586 $)) 255)) (-1540 (((-3 $ "failed") $) 34)) (-3916 (((-108) $) 264)) (-1973 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) 236)) (-4053 (($ $) 205 (|has| |#1| (-424)))) (-3923 (($ $) 176 (|has| |#1| (-424))) (($ $ |#3|) 105 (|has| |#1| (-424)))) (-3142 (((-586 $) $) 109)) (-2036 (((-108) $) 96 (|has| |#1| (-837)))) (-4171 (($ $) 221 (|has| |#1| (-512)))) (-2577 (($ $) 222 (|has| |#1| (-512)))) (-1623 (($ $ $) 248) (($ $ $ |#3|) 246)) (-1950 (($ $ $) 247) (($ $ $ |#3|) 245)) (-3397 (($ $ |#1| |#2| $) 172)) (-1272 (((-817 (-352) $) $ (-820 (-352)) (-817 (-352) $)) 84 (-12 (|has| |#3| (-814 (-352))) (|has| |#1| (-814 (-352))))) (((-817 (-520) $) $ (-820 (-520)) (-817 (-520) $)) 83 (-12 (|has| |#3| (-814 (-520))) (|has| |#1| (-814 (-520)))))) (-1537 (((-108) $) 31)) (-1315 (((-706) $) 169)) (-2311 (((-108) $ $) 250) (((-108) $ (-586 $)) 249)) (-1703 (($ $ $ $ $) 207 (|has| |#1| (-512)))) (-3871 ((|#3| $) 275)) (-4065 (($ (-1079 |#1|) |#3|) 117) (($ (-1079 $) |#3|) 116)) (-1992 (((-586 $) $) 126)) (-3774 (((-108) $) 152)) (-4039 (($ |#1| |#2|) 153) (($ $ |#3| (-706)) 119) (($ $ (-586 |#3|) (-586 (-706))) 118)) (-3868 (($ $ $) 235)) (-1910 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $ |#3|) 120)) (-3174 (((-108) $) 265)) (-3562 ((|#2| $) 170) (((-706) $ |#3|) 122) (((-586 (-706)) $ (-586 |#3|)) 121)) (-2809 (($ $ $) 79 (|has| |#1| (-783)))) (-2956 (((-706) $) 274)) (-2446 (($ $ $) 78 (|has| |#1| (-783)))) (-3295 (($ (-1 |#2| |#2|) $) 171)) (-1389 (($ (-1 |#1| |#1|) $) 151)) (-3186 (((-3 |#3| "failed") $) 123)) (-1609 (($ $) 202 (|has| |#1| (-424)))) (-2158 (($ $) 203 (|has| |#1| (-424)))) (-2359 (((-586 $) $) 260)) (-2347 (($ $) 263)) (-2108 (($ $) 204 (|has| |#1| (-424)))) (-4172 (((-586 $) $) 261)) (-1848 (($ $) 262)) (-3123 (($ $) 149)) (-3133 ((|#1| $) 148) (($ $ |#3|) 267)) (-2222 (($ (-586 $)) 94 (|has| |#1| (-424))) (($ $ $) 93 (|has| |#1| (-424)))) (-3106 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1798 (-706))) $ $) 234)) (-2000 (((-2 (|:| -2972 $) (|:| |gap| (-706)) (|:| -2060 $) (|:| -3753 $)) $ $) 238) (((-2 (|:| -2972 $) (|:| |gap| (-706)) (|:| -2060 $) (|:| -3753 $)) $ $ |#3|) 237)) (-3331 (((-2 (|:| -2972 $) (|:| |gap| (-706)) (|:| -3753 $)) $ $) 240) (((-2 (|:| -2972 $) (|:| |gap| (-706)) (|:| -3753 $)) $ $ |#3|) 239)) (-3509 (($ $ $) 244) (($ $ $ |#3|) 242)) (-1697 (($ $ $) 243) (($ $ $ |#3|) 241)) (-1239 (((-1066) $) 9)) (-2170 (($ $ $) 210 (|has| |#1| (-512)))) (-2852 (((-586 $) $) 269)) (-3548 (((-3 (-586 $) "failed") $) 114)) (-1205 (((-3 (-586 $) "failed") $) 115)) (-2568 (((-3 (-2 (|:| |var| |#3|) (|:| -2647 (-706))) "failed") $) 113)) (-2428 (((-108) $ $) 252) (((-108) $ (-586 $)) 251)) (-2778 (($ $ $) 232)) (-3794 (($ $) 273)) (-3444 (((-108) $ $) 258)) (-1322 (((-108) $ $) 254) (((-108) $ (-586 $)) 253)) (-3499 (($ $ $) 233)) (-3906 (($ $) 272)) (-4142 (((-1030) $) 10)) (-1197 (((-2 (|:| -2257 $) (|:| |coef2| $)) $ $) 213 (|has| |#1| (-512)))) (-4141 (((-2 (|:| -2257 $) (|:| |coef1| $)) $ $) 214 (|has| |#1| (-512)))) (-3103 (((-108) $) 166)) (-3113 ((|#1| $) 167)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) 95 (|has| |#1| (-424)))) (-2257 ((|#1| |#1| $) 206 (|has| |#1| (-424))) (($ (-586 $)) 92 (|has| |#1| (-424))) (($ $ $) 91 (|has| |#1| (-424)))) (-4133 (((-391 (-1079 $)) (-1079 $)) 102 (|has| |#1| (-837)))) (-2017 (((-391 (-1079 $)) (-1079 $)) 101 (|has| |#1| (-837)))) (-1916 (((-391 $) $) 99 (|has| |#1| (-837)))) (-2320 (((-2 (|:| -2257 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 215 (|has| |#1| (-512)))) (-2230 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-512))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-512)))) (-2228 (($ $ |#1|) 219 (|has| |#1| (-512))) (($ $ $) 217 (|has| |#1| (-512)))) (-1479 (($ $ |#1|) 220 (|has| |#1| (-512))) (($ $ $) 218 (|has| |#1| (-512)))) (-2286 (($ $ (-586 (-268 $))) 145) (($ $ (-268 $)) 144) (($ $ $ $) 143) (($ $ (-586 $) (-586 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-586 |#3|) (-586 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-586 |#3|) (-586 $)) 138)) (-2732 (($ $ |#3|) 107 (|has| |#1| (-157)))) (-2155 (($ $ |#3|) 42) (($ $ (-586 |#3|)) 41) (($ $ |#3| (-706)) 40) (($ $ (-586 |#3|) (-586 (-706))) 39)) (-2528 ((|#2| $) 150) (((-706) $ |#3|) 130) (((-586 (-706)) $ (-586 |#3|)) 129)) (-2417 (($ $) 270)) (-3185 (($ $) 268)) (-1429 (((-820 (-352)) $) 82 (-12 (|has| |#3| (-561 (-820 (-352)))) (|has| |#1| (-561 (-820 (-352)))))) (((-820 (-520)) $) 81 (-12 (|has| |#3| (-561 (-820 (-520)))) (|has| |#1| (-561 (-820 (-520)))))) (((-496) $) 80 (-12 (|has| |#3| (-561 (-496))) (|has| |#1| (-561 (-496))))) (($ (-880 (-380 (-520)))) 229 (-12 (|has| |#1| (-37 (-380 (-520)))) (|has| |#3| (-561 (-1083))))) (($ (-880 (-520))) 226 (-3700 (-12 (-2399 (|has| |#1| (-37 (-380 (-520))))) (|has| |#1| (-37 (-520))) (|has| |#3| (-561 (-1083)))) (-12 (|has| |#1| (-37 (-380 (-520)))) (|has| |#3| (-561 (-1083)))))) (($ (-880 |#1|)) 223 (|has| |#3| (-561 (-1083)))) (((-1066) $) 201 (-12 (|has| |#1| (-960 (-520))) (|has| |#3| (-561 (-1083))))) (((-880 |#1|) $) 200 (|has| |#3| (-561 (-1083))))) (-1233 ((|#1| $) 175 (|has| |#1| (-424))) (($ $ |#3|) 106 (|has| |#1| (-424)))) (-3784 (((-3 (-1164 $) "failed") (-626 $)) 104 (-4006 (|has| $ (-133)) (|has| |#1| (-837))))) (-2188 (((-791) $) 11) (($ (-520)) 28) (($ |#1|) 163) (($ |#3|) 137) (((-880 |#1|) $) 199 (|has| |#3| (-561 (-1083)))) (($ (-380 (-520))) 72 (-3700 (|has| |#1| (-960 (-380 (-520)))) (|has| |#1| (-37 (-380 (-520)))))) (($ $) 85 (|has| |#1| (-512)))) (-4113 (((-586 |#1|) $) 168)) (-3475 ((|#1| $ |#2|) 155) (($ $ |#3| (-706)) 128) (($ $ (-586 |#3|) (-586 (-706))) 127)) (-3796 (((-3 $ "failed") $) 73 (-3700 (-4006 (|has| $ (-133)) (|has| |#1| (-837))) (|has| |#1| (-133))))) (-3251 (((-706)) 29)) (-1782 (($ $ $ (-706)) 173 (|has| |#1| (-157)))) (-2559 (((-108) $ $) 89 (|has| |#1| (-512)))) (-3504 (($ $ (-849)) 26) (($ $ (-706)) 33)) (-3560 (($) 18 T CONST)) (-2542 (((-3 (-108) "failed") $ $) 259)) (-3570 (($) 30 T CONST)) (-3196 (($ $ $ $ (-706)) 208 (|has| |#1| (-512)))) (-1793 (($ $ $ (-706)) 209 (|has| |#1| (-512)))) (-2211 (($ $ |#3|) 38) (($ $ (-586 |#3|)) 37) (($ $ |#3| (-706)) 36) (($ $ (-586 |#3|) (-586 (-706))) 35)) (-1573 (((-108) $ $) 76 (|has| |#1| (-783)))) (-1557 (((-108) $ $) 75 (|has| |#1| (-783)))) (-1530 (((-108) $ $) 6)) (-1565 (((-108) $ $) 77 (|has| |#1| (-783)))) (-1548 (((-108) $ $) 74 (|has| |#1| (-783)))) (-1619 (($ $ |#1|) 156 (|has| |#1| (-336)))) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-706)) 32)) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ $ $) 24) (($ $ (-380 (-520))) 158 (|has| |#1| (-37 (-380 (-520))))) (($ (-380 (-520)) $) 157 (|has| |#1| (-37 (-380 (-520))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
-(((-983 |#1| |#2| |#3|) (-1195) (-969) (-728) (-783)) (T -983))
-((-3871 (*1 *2 *1) (-12 (-4 *1 (-983 *3 *4 *2)) (-4 *3 (-969)) (-4 *4 (-728)) (-4 *2 (-783)))) (-2956 (*1 *2 *1) (-12 (-4 *1 (-983 *3 *4 *5)) (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *2 (-706)))) (-3794 (*1 *1 *1) (-12 (-4 *1 (-983 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-728)) (-4 *4 (-783)))) (-3906 (*1 *1 *1) (-12 (-4 *1 (-983 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-728)) (-4 *4 (-783)))) (-3827 (*1 *1 *1) (-12 (-4 *1 (-983 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-728)) (-4 *4 (-783)))) (-2417 (*1 *1 *1) (-12 (-4 *1 (-983 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-728)) (-4 *4 (-783)))) (-2852 (*1 *2 *1) (-12 (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *2 (-586 *1)) (-4 *1 (-983 *3 *4 *5)))) (-3185 (*1 *1 *1) (-12 (-4 *1 (-983 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-728)) (-4 *4 (-783)))) (-3133 (*1 *1 *1 *2) (-12 (-4 *1 (-983 *3 *4 *2)) (-4 *3 (-969)) (-4 *4 (-728)) (-4 *2 (-783)))) (-3150 (*1 *1 *1 *2) (-12 (-4 *1 (-983 *3 *4 *2)) (-4 *3 (-969)) (-4 *4 (-728)) (-4 *2 (-783)))) (-3174 (*1 *2 *1) (-12 (-4 *1 (-983 *3 *4 *5)) (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *2 (-108)))) (-3916 (*1 *2 *1) (-12 (-4 *1 (-983 *3 *4 *5)) (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *2 (-108)))) (-2347 (*1 *1 *1) (-12 (-4 *1 (-983 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-728)) (-4 *4 (-783)))) (-1848 (*1 *1 *1) (-12 (-4 *1 (-983 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-728)) (-4 *4 (-783)))) (-4172 (*1 *2 *1) (-12 (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *2 (-586 *1)) (-4 *1 (-983 *3 *4 *5)))) (-2359 (*1 *2 *1) (-12 (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *2 (-586 *1)) (-4 *1 (-983 *3 *4 *5)))) (-2542 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-983 *3 *4 *5)) (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *2 (-108)))) (-3444 (*1 *2 *1 *1) (-12 (-4 *1 (-983 *3 *4 *5)) (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *2 (-108)))) (-2760 (*1 *2 *1 *1) (-12 (-4 *1 (-983 *3 *4 *5)) (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *2 (-108)))) (-3738 (*1 *2 *1 *1) (-12 (-4 *1 (-983 *3 *4 *5)) (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *2 (-108)))) (-3738 (*1 *2 *1 *3) (-12 (-5 *3 (-586 *1)) (-4 *1 (-983 *4 *5 *6)) (-4 *4 (-969)) (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-108)))) (-1322 (*1 *2 *1 *1) (-12 (-4 *1 (-983 *3 *4 *5)) (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *2 (-108)))) (-1322 (*1 *2 *1 *3) (-12 (-5 *3 (-586 *1)) (-4 *1 (-983 *4 *5 *6)) (-4 *4 (-969)) (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-108)))) (-2428 (*1 *2 *1 *1) (-12 (-4 *1 (-983 *3 *4 *5)) (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *2 (-108)))) (-2428 (*1 *2 *1 *3) (-12 (-5 *3 (-586 *1)) (-4 *1 (-983 *4 *5 *6)) (-4 *4 (-969)) (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-108)))) (-2311 (*1 *2 *1 *1) (-12 (-4 *1 (-983 *3 *4 *5)) (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *2 (-108)))) (-2311 (*1 *2 *1 *3) (-12 (-5 *3 (-586 *1)) (-4 *1 (-983 *4 *5 *6)) (-4 *4 (-969)) (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-108)))) (-1623 (*1 *1 *1 *1) (-12 (-4 *1 (-983 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-728)) (-4 *4 (-783)))) (-1950 (*1 *1 *1 *1) (-12 (-4 *1 (-983 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-728)) (-4 *4 (-783)))) (-1623 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-983 *3 *4 *2)) (-4 *3 (-969)) (-4 *4 (-728)) (-4 *2 (-783)))) (-1950 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-983 *3 *4 *2)) (-4 *3 (-969)) (-4 *4 (-728)) (-4 *2 (-783)))) (-3509 (*1 *1 *1 *1) (-12 (-4 *1 (-983 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-728)) (-4 *4 (-783)))) (-1697 (*1 *1 *1 *1) (-12 (-4 *1 (-983 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-728)) (-4 *4 (-783)))) (-3509 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-983 *3 *4 *2)) (-4 *3 (-969)) (-4 *4 (-728)) (-4 *2 (-783)))) (-1697 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-983 *3 *4 *2)) (-4 *3 (-969)) (-4 *4 (-728)) (-4 *2 (-783)))) (-3331 (*1 *2 *1 *1) (-12 (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *2 (-2 (|:| -2972 *1) (|:| |gap| (-706)) (|:| -3753 *1))) (-4 *1 (-983 *3 *4 *5)))) (-3331 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-969)) (-4 *5 (-728)) (-4 *3 (-783)) (-5 *2 (-2 (|:| -2972 *1) (|:| |gap| (-706)) (|:| -3753 *1))) (-4 *1 (-983 *4 *5 *3)))) (-2000 (*1 *2 *1 *1) (-12 (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *2 (-2 (|:| -2972 *1) (|:| |gap| (-706)) (|:| -2060 *1) (|:| -3753 *1))) (-4 *1 (-983 *3 *4 *5)))) (-2000 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-969)) (-4 *5 (-728)) (-4 *3 (-783)) (-5 *2 (-2 (|:| -2972 *1) (|:| |gap| (-706)) (|:| -2060 *1) (|:| -3753 *1))) (-4 *1 (-983 *4 *5 *3)))) (-1973 (*1 *2 *1 *1) (-12 (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *2 (-2 (|:| -2060 *1) (|:| -3753 *1))) (-4 *1 (-983 *3 *4 *5)))) (-3868 (*1 *1 *1 *1) (-12 (-4 *1 (-983 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-728)) (-4 *4 (-783)))) (-3106 (*1 *2 *1 *1) (-12 (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -1798 (-706)))) (-4 *1 (-983 *3 *4 *5)))) (-3499 (*1 *1 *1 *1) (-12 (-4 *1 (-983 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-728)) (-4 *4 (-783)))) (-2778 (*1 *1 *1 *1) (-12 (-4 *1 (-983 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-728)) (-4 *4 (-783)))) (-1296 (*1 *1 *2) (|partial| -12 (-5 *2 (-880 (-380 (-520)))) (-4 *1 (-983 *3 *4 *5)) (-4 *3 (-37 (-380 (-520)))) (-4 *5 (-561 (-1083))) (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783)))) (-1482 (*1 *1 *2) (-12 (-5 *2 (-880 (-380 (-520)))) (-4 *1 (-983 *3 *4 *5)) (-4 *3 (-37 (-380 (-520)))) (-4 *5 (-561 (-1083))) (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783)))) (-1429 (*1 *1 *2) (-12 (-5 *2 (-880 (-380 (-520)))) (-4 *1 (-983 *3 *4 *5)) (-4 *3 (-37 (-380 (-520)))) (-4 *5 (-561 (-1083))) (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783)))) (-1296 (*1 *1 *2) (|partial| -3700 (-12 (-5 *2 (-880 (-520))) (-4 *1 (-983 *3 *4 *5)) (-12 (-2399 (-4 *3 (-37 (-380 (-520))))) (-4 *3 (-37 (-520))) (-4 *5 (-561 (-1083)))) (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783))) (-12 (-5 *2 (-880 (-520))) (-4 *1 (-983 *3 *4 *5)) (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *5 (-561 (-1083)))) (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783))))) (-1482 (*1 *1 *2) (-3700 (-12 (-5 *2 (-880 (-520))) (-4 *1 (-983 *3 *4 *5)) (-12 (-2399 (-4 *3 (-37 (-380 (-520))))) (-4 *3 (-37 (-520))) (-4 *5 (-561 (-1083)))) (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783))) (-12 (-5 *2 (-880 (-520))) (-4 *1 (-983 *3 *4 *5)) (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *5 (-561 (-1083)))) (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783))))) (-1429 (*1 *1 *2) (-3700 (-12 (-5 *2 (-880 (-520))) (-4 *1 (-983 *3 *4 *5)) (-12 (-2399 (-4 *3 (-37 (-380 (-520))))) (-4 *3 (-37 (-520))) (-4 *5 (-561 (-1083)))) (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783))) (-12 (-5 *2 (-880 (-520))) (-4 *1 (-983 *3 *4 *5)) (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *5 (-561 (-1083)))) (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783))))) (-1296 (*1 *1 *2) (|partial| -3700 (-12 (-5 *2 (-880 *3)) (-12 (-2399 (-4 *3 (-37 (-380 (-520))))) (-2399 (-4 *3 (-37 (-520)))) (-4 *5 (-561 (-1083)))) (-4 *3 (-969)) (-4 *1 (-983 *3 *4 *5)) (-4 *4 (-728)) (-4 *5 (-783))) (-12 (-5 *2 (-880 *3)) (-12 (-2399 (-4 *3 (-505))) (-2399 (-4 *3 (-37 (-380 (-520))))) (-4 *3 (-37 (-520))) (-4 *5 (-561 (-1083)))) (-4 *3 (-969)) (-4 *1 (-983 *3 *4 *5)) (-4 *4 (-728)) (-4 *5 (-783))) (-12 (-5 *2 (-880 *3)) (-12 (-2399 (-4 *3 (-917 (-520)))) (-4 *3 (-37 (-380 (-520)))) (-4 *5 (-561 (-1083)))) (-4 *3 (-969)) (-4 *1 (-983 *3 *4 *5)) (-4 *4 (-728)) (-4 *5 (-783))))) (-1482 (*1 *1 *2) (-3700 (-12 (-5 *2 (-880 *3)) (-12 (-2399 (-4 *3 (-37 (-380 (-520))))) (-2399 (-4 *3 (-37 (-520)))) (-4 *5 (-561 (-1083)))) (-4 *3 (-969)) (-4 *1 (-983 *3 *4 *5)) (-4 *4 (-728)) (-4 *5 (-783))) (-12 (-5 *2 (-880 *3)) (-12 (-2399 (-4 *3 (-505))) (-2399 (-4 *3 (-37 (-380 (-520))))) (-4 *3 (-37 (-520))) (-4 *5 (-561 (-1083)))) (-4 *3 (-969)) (-4 *1 (-983 *3 *4 *5)) (-4 *4 (-728)) (-4 *5 (-783))) (-12 (-5 *2 (-880 *3)) (-12 (-2399 (-4 *3 (-917 (-520)))) (-4 *3 (-37 (-380 (-520)))) (-4 *5 (-561 (-1083)))) (-4 *3 (-969)) (-4 *1 (-983 *3 *4 *5)) (-4 *4 (-728)) (-4 *5 (-783))))) (-1429 (*1 *1 *2) (-12 (-5 *2 (-880 *3)) (-4 *3 (-969)) (-4 *1 (-983 *3 *4 *5)) (-4 *5 (-561 (-1083))) (-4 *4 (-728)) (-4 *5 (-783)))) (-2577 (*1 *1 *1) (-12 (-4 *1 (-983 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-728)) (-4 *4 (-783)) (-4 *2 (-512)))) (-4171 (*1 *1 *1) (-12 (-4 *1 (-983 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-728)) (-4 *4 (-783)) (-4 *2 (-512)))) (-1479 (*1 *1 *1 *2) (-12 (-4 *1 (-983 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-728)) (-4 *4 (-783)) (-4 *2 (-512)))) (-2228 (*1 *1 *1 *2) (-12 (-4 *1 (-983 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-728)) (-4 *4 (-783)) (-4 *2 (-512)))) (-1479 (*1 *1 *1 *1) (-12 (-4 *1 (-983 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-728)) (-4 *4 (-783)) (-4 *2 (-512)))) (-2228 (*1 *1 *1 *1) (-12 (-4 *1 (-983 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-728)) (-4 *4 (-783)) (-4 *2 (-512)))) (-3309 (*1 *1 *1 *1) (-12 (-4 *1 (-983 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-728)) (-4 *4 (-783)) (-4 *2 (-512)))) (-2320 (*1 *2 *1 *1) (-12 (-4 *3 (-512)) (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *2 (-2 (|:| -2257 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-983 *3 *4 *5)))) (-4141 (*1 *2 *1 *1) (-12 (-4 *3 (-512)) (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *2 (-2 (|:| -2257 *1) (|:| |coef1| *1))) (-4 *1 (-983 *3 *4 *5)))) (-1197 (*1 *2 *1 *1) (-12 (-4 *3 (-512)) (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *2 (-2 (|:| -2257 *1) (|:| |coef2| *1))) (-4 *1 (-983 *3 *4 *5)))) (-2413 (*1 *1 *1 *1) (-12 (-4 *1 (-983 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-728)) (-4 *4 (-783)) (-4 *2 (-512)))) (-3465 (*1 *2 *1 *1) (-12 (-4 *3 (-512)) (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *2 (-586 *1)) (-4 *1 (-983 *3 *4 *5)))) (-2170 (*1 *1 *1 *1) (-12 (-4 *1 (-983 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-728)) (-4 *4 (-783)) (-4 *2 (-512)))) (-1793 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-706)) (-4 *1 (-983 *3 *4 *5)) (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783)) (-4 *3 (-512)))) (-3196 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-706)) (-4 *1 (-983 *3 *4 *5)) (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783)) (-4 *3 (-512)))) (-1703 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-983 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-728)) (-4 *4 (-783)) (-4 *2 (-512)))) (-2257 (*1 *2 *2 *1) (-12 (-4 *1 (-983 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-728)) (-4 *4 (-783)) (-4 *2 (-424)))) (-4053 (*1 *1 *1) (-12 (-4 *1 (-983 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-728)) (-4 *4 (-783)) (-4 *2 (-424)))) (-2108 (*1 *1 *1) (-12 (-4 *1 (-983 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-728)) (-4 *4 (-783)) (-4 *2 (-424)))) (-2158 (*1 *1 *1) (-12 (-4 *1 (-983 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-728)) (-4 *4 (-783)) (-4 *2 (-424)))) (-1609 (*1 *1 *1) (-12 (-4 *1 (-983 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-728)) (-4 *4 (-783)) (-4 *2 (-424)))))
-(-13 (-877 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3871 (|t#3| $)) (-15 -2956 ((-706) $)) (-15 -3794 ($ $)) (-15 -3906 ($ $)) (-15 -3827 ($ $)) (-15 -2417 ($ $)) (-15 -2852 ((-586 $) $)) (-15 -3185 ($ $)) (-15 -3133 ($ $ |t#3|)) (-15 -3150 ($ $ |t#3|)) (-15 -3174 ((-108) $)) (-15 -3916 ((-108) $)) (-15 -2347 ($ $)) (-15 -1848 ($ $)) (-15 -4172 ((-586 $) $)) (-15 -2359 ((-586 $) $)) (-15 -2542 ((-3 (-108) "failed") $ $)) (-15 -3444 ((-108) $ $)) (-15 -2760 ((-108) $ $)) (-15 -3738 ((-108) $ $)) (-15 -3738 ((-108) $ (-586 $))) (-15 -1322 ((-108) $ $)) (-15 -1322 ((-108) $ (-586 $))) (-15 -2428 ((-108) $ $)) (-15 -2428 ((-108) $ (-586 $))) (-15 -2311 ((-108) $ $)) (-15 -2311 ((-108) $ (-586 $))) (-15 -1623 ($ $ $)) (-15 -1950 ($ $ $)) (-15 -1623 ($ $ $ |t#3|)) (-15 -1950 ($ $ $ |t#3|)) (-15 -3509 ($ $ $)) (-15 -1697 ($ $ $)) (-15 -3509 ($ $ $ |t#3|)) (-15 -1697 ($ $ $ |t#3|)) (-15 -3331 ((-2 (|:| -2972 $) (|:| |gap| (-706)) (|:| -3753 $)) $ $)) (-15 -3331 ((-2 (|:| -2972 $) (|:| |gap| (-706)) (|:| -3753 $)) $ $ |t#3|)) (-15 -2000 ((-2 (|:| -2972 $) (|:| |gap| (-706)) (|:| -2060 $) (|:| -3753 $)) $ $)) (-15 -2000 ((-2 (|:| -2972 $) (|:| |gap| (-706)) (|:| -2060 $) (|:| -3753 $)) $ $ |t#3|)) (-15 -1973 ((-2 (|:| -2060 $) (|:| -3753 $)) $ $)) (-15 -3868 ($ $ $)) (-15 -3106 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1798 (-706))) $ $)) (-15 -3499 ($ $ $)) (-15 -2778 ($ $ $)) (IF (|has| |t#3| (-561 (-1083))) (PROGN (-6 (-560 (-880 |t#1|))) (-6 (-561 (-880 |t#1|))) (IF (|has| |t#1| (-37 (-380 (-520)))) (PROGN (-15 -1296 ((-3 $ "failed") (-880 (-380 (-520))))) (-15 -1482 ($ (-880 (-380 (-520))))) (-15 -1429 ($ (-880 (-380 (-520))))) (-15 -1296 ((-3 $ "failed") (-880 (-520)))) (-15 -1482 ($ (-880 (-520)))) (-15 -1429 ($ (-880 (-520)))) (IF (|has| |t#1| (-917 (-520))) |%noBranch| (PROGN (-15 -1296 ((-3 $ "failed") (-880 |t#1|))) (-15 -1482 ($ (-880 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-37 (-520))) (IF (|has| |t#1| (-37 (-380 (-520)))) |%noBranch| (PROGN (-15 -1296 ((-3 $ "failed") (-880 (-520)))) (-15 -1482 ($ (-880 (-520)))) (-15 -1429 ($ (-880 (-520)))) (IF (|has| |t#1| (-505)) |%noBranch| (PROGN (-15 -1296 ((-3 $ "failed") (-880 |t#1|))) (-15 -1482 ($ (-880 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-37 (-520))) |%noBranch| (IF (|has| |t#1| (-37 (-380 (-520)))) |%noBranch| (PROGN (-15 -1296 ((-3 $ "failed") (-880 |t#1|))) (-15 -1482 ($ (-880 |t#1|)))))) (-15 -1429 ($ (-880 |t#1|))) (IF (|has| |t#1| (-960 (-520))) (-6 (-561 (-1066))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-512)) (PROGN (-15 -2577 ($ $)) (-15 -4171 ($ $)) (-15 -1479 ($ $ |t#1|)) (-15 -2228 ($ $ |t#1|)) (-15 -1479 ($ $ $)) (-15 -2228 ($ $ $)) (-15 -3309 ($ $ $)) (-15 -2320 ((-2 (|:| -2257 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -4141 ((-2 (|:| -2257 $) (|:| |coef1| $)) $ $)) (-15 -1197 ((-2 (|:| -2257 $) (|:| |coef2| $)) $ $)) (-15 -2413 ($ $ $)) (-15 -3465 ((-586 $) $ $)) (-15 -2170 ($ $ $)) (-15 -1793 ($ $ $ (-706))) (-15 -3196 ($ $ $ $ (-706))) (-15 -1703 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-424)) (PROGN (-15 -2257 (|t#1| |t#1| $)) (-15 -4053 ($ $)) (-15 -2108 ($ $)) (-15 -2158 ($ $)) (-15 -1609 ($ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-380 (-520))) |has| |#1| (-37 (-380 (-520)))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) -3700 (|has| |#1| (-837)) (|has| |#1| (-512)) (|has| |#1| (-424))) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-380 (-520)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3700 (|has| |#1| (-837)) (|has| |#1| (-512)) (|has| |#1| (-424)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-560 (-791)) . T) ((-560 (-880 |#1|)) |has| |#3| (-561 (-1083))) ((-157) -3700 (|has| |#1| (-837)) (|has| |#1| (-512)) (|has| |#1| (-424)) (|has| |#1| (-157))) ((-561 (-496)) -12 (|has| |#1| (-561 (-496))) (|has| |#3| (-561 (-496)))) ((-561 (-820 (-352))) -12 (|has| |#1| (-561 (-820 (-352)))) (|has| |#3| (-561 (-820 (-352))))) ((-561 (-820 (-520))) -12 (|has| |#1| (-561 (-820 (-520)))) (|has| |#3| (-561 (-820 (-520))))) ((-561 (-880 |#1|)) |has| |#3| (-561 (-1083))) ((-561 (-1066)) -12 (|has| |#1| (-960 (-520))) (|has| |#3| (-561 (-1083)))) ((-264) -3700 (|has| |#1| (-837)) (|has| |#1| (-512)) (|has| |#1| (-424))) ((-283 $) . T) ((-299 |#1| |#2|) . T) ((-350 |#1|) . T) ((-384 |#1|) . T) ((-424) -3700 (|has| |#1| (-837)) (|has| |#1| (-424))) ((-481 |#3| |#1|) . T) ((-481 |#3| $) . T) ((-481 $ $) . T) ((-512) -3700 (|has| |#1| (-837)) (|has| |#1| (-512)) (|has| |#1| (-424))) ((-588 #0#) |has| |#1| (-37 (-380 (-520)))) ((-588 |#1|) . T) ((-588 $) . T) ((-582 (-520)) |has| |#1| (-582 (-520))) ((-582 |#1|) . T) ((-653 #0#) |has| |#1| (-37 (-380 (-520)))) ((-653 |#1|) |has| |#1| (-157)) ((-653 $) -3700 (|has| |#1| (-837)) (|has| |#1| (-512)) (|has| |#1| (-424))) ((-662) . T) ((-783) |has| |#1| (-783)) ((-828 |#3|) . T) ((-814 (-352)) -12 (|has| |#1| (-814 (-352))) (|has| |#3| (-814 (-352)))) ((-814 (-520)) -12 (|has| |#1| (-814 (-520))) (|has| |#3| (-814 (-520)))) ((-877 |#1| |#2| |#3|) . T) ((-837) |has| |#1| (-837)) ((-960 (-380 (-520))) |has| |#1| (-960 (-380 (-520)))) ((-960 (-520)) |has| |#1| (-960 (-520))) ((-960 |#1|) . T) ((-960 |#3|) . T) ((-975 #0#) |has| |#1| (-37 (-380 (-520)))) ((-975 |#1|) . T) ((-975 $) -3700 (|has| |#1| (-837)) (|has| |#1| (-512)) (|has| |#1| (-424)) (|has| |#1| (-157))) ((-969) . T) ((-976) . T) ((-1024) . T) ((-1012) . T) ((-1122) |has| |#1| (-837)))
-((-2906 (((-108) |#3| $) 13)) (-2288 (((-3 $ "failed") |#3| (-849)) 23)) (-1540 (((-3 |#3| "failed") |#3| $) 37)) (-2328 (((-108) |#3| $) 16)) (-3469 (((-108) |#3| $) 14)))
-(((-984 |#1| |#2| |#3|) (-10 -8 (-15 -2288 ((-3 |#1| "failed") |#3| (-849))) (-15 -1540 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2328 ((-108) |#3| |#1|)) (-15 -3469 ((-108) |#3| |#1|)) (-15 -2906 ((-108) |#3| |#1|))) (-985 |#2| |#3|) (-13 (-781) (-336)) (-1140 |#2|)) (T -984))
-NIL
-(-10 -8 (-15 -2288 ((-3 |#1| "failed") |#3| (-849))) (-15 -1540 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2328 ((-108) |#3| |#1|)) (-15 -3469 ((-108) |#3| |#1|)) (-15 -2906 ((-108) |#3| |#1|)))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) |#2| $) 21)) (-2804 (((-520) |#2| $) 22)) (-2288 (((-3 $ "failed") |#2| (-849)) 15)) (-2489 ((|#1| |#2| $ |#1|) 13)) (-1540 (((-3 |#2| "failed") |#2| $) 18)) (-2328 (((-108) |#2| $) 19)) (-3469 (((-108) |#2| $) 20)) (-1239 (((-1066) $) 9)) (-4142 (((-1030) $) 10)) (-3484 ((|#2| $) 17)) (-2188 (((-791) $) 11)) (-3890 ((|#1| |#2| $ |#1|) 14)) (-3233 (((-586 $) |#2|) 16)) (-1530 (((-108) $ $) 6)))
-(((-985 |#1| |#2|) (-1195) (-13 (-781) (-336)) (-1140 |t#1|)) (T -985))
-((-2804 (*1 *2 *3 *1) (-12 (-4 *1 (-985 *4 *3)) (-4 *4 (-13 (-781) (-336))) (-4 *3 (-1140 *4)) (-5 *2 (-520)))) (-2906 (*1 *2 *3 *1) (-12 (-4 *1 (-985 *4 *3)) (-4 *4 (-13 (-781) (-336))) (-4 *3 (-1140 *4)) (-5 *2 (-108)))) (-3469 (*1 *2 *3 *1) (-12 (-4 *1 (-985 *4 *3)) (-4 *4 (-13 (-781) (-336))) (-4 *3 (-1140 *4)) (-5 *2 (-108)))) (-2328 (*1 *2 *3 *1) (-12 (-4 *1 (-985 *4 *3)) (-4 *4 (-13 (-781) (-336))) (-4 *3 (-1140 *4)) (-5 *2 (-108)))) (-1540 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-985 *3 *2)) (-4 *3 (-13 (-781) (-336))) (-4 *2 (-1140 *3)))) (-3484 (*1 *2 *1) (-12 (-4 *1 (-985 *3 *2)) (-4 *3 (-13 (-781) (-336))) (-4 *2 (-1140 *3)))) (-3233 (*1 *2 *3) (-12 (-4 *4 (-13 (-781) (-336))) (-4 *3 (-1140 *4)) (-5 *2 (-586 *1)) (-4 *1 (-985 *4 *3)))) (-2288 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-849)) (-4 *4 (-13 (-781) (-336))) (-4 *1 (-985 *4 *2)) (-4 *2 (-1140 *4)))) (-3890 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-985 *2 *3)) (-4 *2 (-13 (-781) (-336))) (-4 *3 (-1140 *2)))) (-2489 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-985 *2 *3)) (-4 *2 (-13 (-781) (-336))) (-4 *3 (-1140 *2)))))
-(-13 (-1012) (-10 -8 (-15 -2804 ((-520) |t#2| $)) (-15 -2906 ((-108) |t#2| $)) (-15 -3469 ((-108) |t#2| $)) (-15 -2328 ((-108) |t#2| $)) (-15 -1540 ((-3 |t#2| "failed") |t#2| $)) (-15 -3484 (|t#2| $)) (-15 -3233 ((-586 $) |t#2|)) (-15 -2288 ((-3 $ "failed") |t#2| (-849))) (-15 -3890 (|t#1| |t#2| $ |t#1|)) (-15 -2489 (|t#1| |t#2| $ |t#1|))))
-(((-97) . T) ((-560 (-791)) . T) ((-1012) . T))
-((-1945 (((-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))) (-586 |#4|) (-586 |#5|) (-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))) (-2 (|:| |done| (-586 |#5|)) (|:| |todo| (-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))))) (-706)) 96)) (-4181 (((-2 (|:| |done| (-586 |#5|)) (|:| |todo| (-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))))) |#4| |#5|) 56) (((-2 (|:| |done| (-586 |#5|)) (|:| |todo| (-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))))) |#4| |#5| (-706)) 55)) (-1905 (((-1169) (-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))) (-706)) 87)) (-2197 (((-706) (-586 |#4|) (-586 |#5|)) 27)) (-1755 (((-2 (|:| |done| (-586 |#5|)) (|:| |todo| (-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))))) |#4| |#5|) 58) (((-2 (|:| |done| (-586 |#5|)) (|:| |todo| (-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))))) |#4| |#5| (-706)) 57) (((-2 (|:| |done| (-586 |#5|)) (|:| |todo| (-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))))) |#4| |#5| (-706) (-108)) 59)) (-2699 (((-586 |#5|) (-586 |#4|) (-586 |#5|) (-108) (-108) (-108) (-108) (-108)) 78) (((-586 |#5|) (-586 |#4|) (-586 |#5|) (-108) (-108)) 79)) (-1429 (((-1066) (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))) 82)) (-2837 (((-2 (|:| |done| (-586 |#5|)) (|:| |todo| (-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))))) |#4| |#5| (-108)) 54)) (-2901 (((-706) (-586 |#4|) (-586 |#5|)) 19)))
-(((-986 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2901 ((-706) (-586 |#4|) (-586 |#5|))) (-15 -2197 ((-706) (-586 |#4|) (-586 |#5|))) (-15 -2837 ((-2 (|:| |done| (-586 |#5|)) (|:| |todo| (-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))))) |#4| |#5| (-108))) (-15 -4181 ((-2 (|:| |done| (-586 |#5|)) (|:| |todo| (-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))))) |#4| |#5| (-706))) (-15 -4181 ((-2 (|:| |done| (-586 |#5|)) (|:| |todo| (-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))))) |#4| |#5|)) (-15 -1755 ((-2 (|:| |done| (-586 |#5|)) (|:| |todo| (-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))))) |#4| |#5| (-706) (-108))) (-15 -1755 ((-2 (|:| |done| (-586 |#5|)) (|:| |todo| (-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))))) |#4| |#5| (-706))) (-15 -1755 ((-2 (|:| |done| (-586 |#5|)) (|:| |todo| (-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))))) |#4| |#5|)) (-15 -2699 ((-586 |#5|) (-586 |#4|) (-586 |#5|) (-108) (-108))) (-15 -2699 ((-586 |#5|) (-586 |#4|) (-586 |#5|) (-108) (-108) (-108) (-108) (-108))) (-15 -1945 ((-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))) (-586 |#4|) (-586 |#5|) (-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))) (-2 (|:| |done| (-586 |#5|)) (|:| |todo| (-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))))) (-706))) (-15 -1429 ((-1066) (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|)))) (-15 -1905 ((-1169) (-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))) (-706)))) (-424) (-728) (-783) (-983 |#1| |#2| |#3|) (-988 |#1| |#2| |#3| |#4|)) (T -986))
-((-1905 (*1 *2 *3 *4) (-12 (-5 *3 (-586 (-2 (|:| |val| (-586 *8)) (|:| -1883 *9)))) (-5 *4 (-706)) (-4 *8 (-983 *5 *6 *7)) (-4 *9 (-988 *5 *6 *7 *8)) (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783)) (-5 *2 (-1169)) (-5 *1 (-986 *5 *6 *7 *8 *9)))) (-1429 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-586 *7)) (|:| -1883 *8))) (-4 *7 (-983 *4 *5 *6)) (-4 *8 (-988 *4 *5 *6 *7)) (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-1066)) (-5 *1 (-986 *4 *5 *6 *7 *8)))) (-1945 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-586 *11)) (|:| |todo| (-586 (-2 (|:| |val| *3) (|:| -1883 *11)))))) (-5 *6 (-706)) (-5 *2 (-586 (-2 (|:| |val| (-586 *10)) (|:| -1883 *11)))) (-5 *3 (-586 *10)) (-5 *4 (-586 *11)) (-4 *10 (-983 *7 *8 *9)) (-4 *11 (-988 *7 *8 *9 *10)) (-4 *7 (-424)) (-4 *8 (-728)) (-4 *9 (-783)) (-5 *1 (-986 *7 *8 *9 *10 *11)))) (-2699 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-586 *9)) (-5 *3 (-586 *8)) (-5 *4 (-108)) (-4 *8 (-983 *5 *6 *7)) (-4 *9 (-988 *5 *6 *7 *8)) (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783)) (-5 *1 (-986 *5 *6 *7 *8 *9)))) (-2699 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-586 *9)) (-5 *3 (-586 *8)) (-5 *4 (-108)) (-4 *8 (-983 *5 *6 *7)) (-4 *9 (-988 *5 *6 *7 *8)) (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783)) (-5 *1 (-986 *5 *6 *7 *8 *9)))) (-1755 (*1 *2 *3 *4) (-12 (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783)) (-4 *3 (-983 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-586 *4)) (|:| |todo| (-586 (-2 (|:| |val| (-586 *3)) (|:| -1883 *4)))))) (-5 *1 (-986 *5 *6 *7 *3 *4)) (-4 *4 (-988 *5 *6 *7 *3)))) (-1755 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-706)) (-4 *6 (-424)) (-4 *7 (-728)) (-4 *8 (-783)) (-4 *3 (-983 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-586 *4)) (|:| |todo| (-586 (-2 (|:| |val| (-586 *3)) (|:| -1883 *4)))))) (-5 *1 (-986 *6 *7 *8 *3 *4)) (-4 *4 (-988 *6 *7 *8 *3)))) (-1755 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-706)) (-5 *6 (-108)) (-4 *7 (-424)) (-4 *8 (-728)) (-4 *9 (-783)) (-4 *3 (-983 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-586 *4)) (|:| |todo| (-586 (-2 (|:| |val| (-586 *3)) (|:| -1883 *4)))))) (-5 *1 (-986 *7 *8 *9 *3 *4)) (-4 *4 (-988 *7 *8 *9 *3)))) (-4181 (*1 *2 *3 *4) (-12 (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783)) (-4 *3 (-983 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-586 *4)) (|:| |todo| (-586 (-2 (|:| |val| (-586 *3)) (|:| -1883 *4)))))) (-5 *1 (-986 *5 *6 *7 *3 *4)) (-4 *4 (-988 *5 *6 *7 *3)))) (-4181 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-706)) (-4 *6 (-424)) (-4 *7 (-728)) (-4 *8 (-783)) (-4 *3 (-983 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-586 *4)) (|:| |todo| (-586 (-2 (|:| |val| (-586 *3)) (|:| -1883 *4)))))) (-5 *1 (-986 *6 *7 *8 *3 *4)) (-4 *4 (-988 *6 *7 *8 *3)))) (-2837 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-108)) (-4 *6 (-424)) (-4 *7 (-728)) (-4 *8 (-783)) (-4 *3 (-983 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-586 *4)) (|:| |todo| (-586 (-2 (|:| |val| (-586 *3)) (|:| -1883 *4)))))) (-5 *1 (-986 *6 *7 *8 *3 *4)) (-4 *4 (-988 *6 *7 *8 *3)))) (-2197 (*1 *2 *3 *4) (-12 (-5 *3 (-586 *8)) (-5 *4 (-586 *9)) (-4 *8 (-983 *5 *6 *7)) (-4 *9 (-988 *5 *6 *7 *8)) (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783)) (-5 *2 (-706)) (-5 *1 (-986 *5 *6 *7 *8 *9)))) (-2901 (*1 *2 *3 *4) (-12 (-5 *3 (-586 *8)) (-5 *4 (-586 *9)) (-4 *8 (-983 *5 *6 *7)) (-4 *9 (-988 *5 *6 *7 *8)) (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783)) (-5 *2 (-706)) (-5 *1 (-986 *5 *6 *7 *8 *9)))))
-(-10 -7 (-15 -2901 ((-706) (-586 |#4|) (-586 |#5|))) (-15 -2197 ((-706) (-586 |#4|) (-586 |#5|))) (-15 -2837 ((-2 (|:| |done| (-586 |#5|)) (|:| |todo| (-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))))) |#4| |#5| (-108))) (-15 -4181 ((-2 (|:| |done| (-586 |#5|)) (|:| |todo| (-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))))) |#4| |#5| (-706))) (-15 -4181 ((-2 (|:| |done| (-586 |#5|)) (|:| |todo| (-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))))) |#4| |#5|)) (-15 -1755 ((-2 (|:| |done| (-586 |#5|)) (|:| |todo| (-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))))) |#4| |#5| (-706) (-108))) (-15 -1755 ((-2 (|:| |done| (-586 |#5|)) (|:| |todo| (-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))))) |#4| |#5| (-706))) (-15 -1755 ((-2 (|:| |done| (-586 |#5|)) (|:| |todo| (-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))))) |#4| |#5|)) (-15 -2699 ((-586 |#5|) (-586 |#4|) (-586 |#5|) (-108) (-108))) (-15 -2699 ((-586 |#5|) (-586 |#4|) (-586 |#5|) (-108) (-108) (-108) (-108) (-108))) (-15 -1945 ((-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))) (-586 |#4|) (-586 |#5|) (-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))) (-2 (|:| |done| (-586 |#5|)) (|:| |todo| (-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))))) (-706))) (-15 -1429 ((-1066) (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|)))) (-15 -1905 ((-1169) (-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))) (-706))))
-((-2870 (((-108) |#5| $) 21)) (-1276 (((-108) |#5| $) 24)) (-1964 (((-108) |#5| $) 16) (((-108) $) 45)) (-2077 (((-586 $) |#5| $) NIL) (((-586 $) (-586 |#5|) $) 77) (((-586 $) (-586 |#5|) (-586 $)) 75) (((-586 $) |#5| (-586 $)) 78)) (-2116 (($ $ |#5|) NIL) (((-586 $) |#5| $) NIL) (((-586 $) |#5| (-586 $)) 60) (((-586 $) (-586 |#5|) $) 62) (((-586 $) (-586 |#5|) (-586 $)) 64)) (-3272 (((-586 $) |#5| $) NIL) (((-586 $) |#5| (-586 $)) 54) (((-586 $) (-586 |#5|) $) 56) (((-586 $) (-586 |#5|) (-586 $)) 58)) (-3230 (((-108) |#5| $) 27)))
-(((-987 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2116 ((-586 |#1|) (-586 |#5|) (-586 |#1|))) (-15 -2116 ((-586 |#1|) (-586 |#5|) |#1|)) (-15 -2116 ((-586 |#1|) |#5| (-586 |#1|))) (-15 -2116 ((-586 |#1|) |#5| |#1|)) (-15 -3272 ((-586 |#1|) (-586 |#5|) (-586 |#1|))) (-15 -3272 ((-586 |#1|) (-586 |#5|) |#1|)) (-15 -3272 ((-586 |#1|) |#5| (-586 |#1|))) (-15 -3272 ((-586 |#1|) |#5| |#1|)) (-15 -2077 ((-586 |#1|) |#5| (-586 |#1|))) (-15 -2077 ((-586 |#1|) (-586 |#5|) (-586 |#1|))) (-15 -2077 ((-586 |#1|) (-586 |#5|) |#1|)) (-15 -2077 ((-586 |#1|) |#5| |#1|)) (-15 -1276 ((-108) |#5| |#1|)) (-15 -1964 ((-108) |#1|)) (-15 -3230 ((-108) |#5| |#1|)) (-15 -2870 ((-108) |#5| |#1|)) (-15 -1964 ((-108) |#5| |#1|)) (-15 -2116 (|#1| |#1| |#5|))) (-988 |#2| |#3| |#4| |#5|) (-424) (-728) (-783) (-983 |#2| |#3| |#4|)) (T -987))
-NIL
-(-10 -8 (-15 -2116 ((-586 |#1|) (-586 |#5|) (-586 |#1|))) (-15 -2116 ((-586 |#1|) (-586 |#5|) |#1|)) (-15 -2116 ((-586 |#1|) |#5| (-586 |#1|))) (-15 -2116 ((-586 |#1|) |#5| |#1|)) (-15 -3272 ((-586 |#1|) (-586 |#5|) (-586 |#1|))) (-15 -3272 ((-586 |#1|) (-586 |#5|) |#1|)) (-15 -3272 ((-586 |#1|) |#5| (-586 |#1|))) (-15 -3272 ((-586 |#1|) |#5| |#1|)) (-15 -2077 ((-586 |#1|) |#5| (-586 |#1|))) (-15 -2077 ((-586 |#1|) (-586 |#5|) (-586 |#1|))) (-15 -2077 ((-586 |#1|) (-586 |#5|) |#1|)) (-15 -2077 ((-586 |#1|) |#5| |#1|)) (-15 -1276 ((-108) |#5| |#1|)) (-15 -1964 ((-108) |#1|)) (-15 -3230 ((-108) |#5| |#1|)) (-15 -2870 ((-108) |#5| |#1|)) (-15 -1964 ((-108) |#5| |#1|)) (-15 -2116 (|#1| |#1| |#5|)))
-((-1414 (((-108) $ $) 7)) (-3769 (((-586 (-2 (|:| -1649 $) (|:| -1543 (-586 |#4|)))) (-586 |#4|)) 85)) (-3767 (((-586 $) (-586 |#4|)) 86) (((-586 $) (-586 |#4|) (-108)) 111)) (-4081 (((-586 |#3|) $) 33)) (-2373 (((-108) $) 26)) (-1937 (((-108) $) 17 (|has| |#1| (-512)))) (-3804 (((-108) |#4| $) 101) (((-108) $) 97)) (-3954 ((|#4| |#4| $) 92)) (-3024 (((-586 (-2 (|:| |val| |#4|) (|:| -1883 $))) |#4| $) 126)) (-3210 (((-2 (|:| |under| $) (|:| -1626 $) (|:| |upper| $)) $ |#3|) 27)) (-2063 (((-108) $ (-706)) 44)) (-1627 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4229))) (((-3 |#4| "failed") $ |#3|) 79)) (-3961 (($) 45 T CONST)) (-2215 (((-108) $) 22 (|has| |#1| (-512)))) (-3078 (((-108) $ $) 24 (|has| |#1| (-512)))) (-3675 (((-108) $ $) 23 (|has| |#1| (-512)))) (-2786 (((-108) $) 25 (|has| |#1| (-512)))) (-2589 (((-586 |#4|) (-586 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 93)) (-4167 (((-586 |#4|) (-586 |#4|) $) 18 (|has| |#1| (-512)))) (-3415 (((-586 |#4|) (-586 |#4|) $) 19 (|has| |#1| (-512)))) (-1296 (((-3 $ "failed") (-586 |#4|)) 36)) (-1482 (($ (-586 |#4|)) 35)) (-2305 (((-3 $ "failed") $) 82)) (-1618 ((|#4| |#4| $) 89)) (-2331 (($ $) 68 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -4229))))) (-1421 (($ |#4| $) 67 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -4229)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4229)))) (-3753 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-512)))) (-3738 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) 102)) (-2762 ((|#4| |#4| $) 87)) (-3856 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -4229)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4229))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4229))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 94)) (-2025 (((-2 (|:| -1649 (-586 |#4|)) (|:| -1543 (-586 |#4|))) $) 105)) (-2870 (((-108) |#4| $) 136)) (-1276 (((-108) |#4| $) 133)) (-1964 (((-108) |#4| $) 137) (((-108) $) 134)) (-3828 (((-586 |#4|) $) 52 (|has| $ (-6 -4229)))) (-2311 (((-108) |#4| $) 104) (((-108) $) 103)) (-3871 ((|#3| $) 34)) (-3027 (((-108) $ (-706)) 43)) (-3702 (((-586 |#4|) $) 53 (|has| $ (-6 -4229)))) (-2422 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -4229))))) (-3830 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#4| |#4|) $) 47)) (-2602 (((-586 |#3|) $) 32)) (-3394 (((-108) |#3| $) 31)) (-1390 (((-108) $ (-706)) 42)) (-1239 (((-1066) $) 9)) (-3797 (((-3 |#4| (-586 $)) |#4| |#4| $) 128)) (-2170 (((-586 (-2 (|:| |val| |#4|) (|:| -1883 $))) |#4| |#4| $) 127)) (-1440 (((-3 |#4| "failed") $) 83)) (-3674 (((-586 $) |#4| $) 129)) (-3757 (((-3 (-108) (-586 $)) |#4| $) 132)) (-2484 (((-586 (-2 (|:| |val| (-108)) (|:| -1883 $))) |#4| $) 131) (((-108) |#4| $) 130)) (-2077 (((-586 $) |#4| $) 125) (((-586 $) (-586 |#4|) $) 124) (((-586 $) (-586 |#4|) (-586 $)) 123) (((-586 $) |#4| (-586 $)) 122)) (-3709 (($ |#4| $) 117) (($ (-586 |#4|) $) 116)) (-2623 (((-586 |#4|) $) 107)) (-2428 (((-108) |#4| $) 99) (((-108) $) 95)) (-2778 ((|#4| |#4| $) 90)) (-3444 (((-108) $ $) 110)) (-2130 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-512)))) (-1322 (((-108) |#4| $) 100) (((-108) $) 96)) (-3499 ((|#4| |#4| $) 91)) (-4142 (((-1030) $) 10)) (-2293 (((-3 |#4| "failed") $) 84)) (-2985 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-2885 (((-3 $ "failed") $ |#4|) 78)) (-2116 (($ $ |#4|) 77) (((-586 $) |#4| $) 115) (((-586 $) |#4| (-586 $)) 114) (((-586 $) (-586 |#4|) $) 113) (((-586 $) (-586 |#4|) (-586 $)) 112)) (-4155 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 |#4|) (-586 |#4|)) 59 (-12 (|has| |#4| (-283 |#4|)) (|has| |#4| (-1012)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-283 |#4|)) (|has| |#4| (-1012)))) (($ $ (-268 |#4|)) 57 (-12 (|has| |#4| (-283 |#4|)) (|has| |#4| (-1012)))) (($ $ (-586 (-268 |#4|))) 56 (-12 (|has| |#4| (-283 |#4|)) (|has| |#4| (-1012))))) (-2533 (((-108) $ $) 38)) (-4018 (((-108) $) 41)) (-2238 (($) 40)) (-2528 (((-706) $) 106)) (-4159 (((-706) |#4| $) 54 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -4229)))) (((-706) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4229)))) (-2403 (($ $) 39)) (-1429 (((-496) $) 69 (|has| |#4| (-561 (-496))))) (-2200 (($ (-586 |#4|)) 60)) (-3399 (($ $ |#3|) 28)) (-4067 (($ $ |#3|) 30)) (-3932 (($ $) 88)) (-2513 (($ $ |#3|) 29)) (-2188 (((-791) $) 11) (((-586 |#4|) $) 37)) (-3898 (((-706) $) 76 (|has| |#3| (-341)))) (-1652 (((-3 (-2 (|:| |bas| $) (|:| -1353 (-586 |#4|))) "failed") (-586 |#4|) (-1 (-108) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1353 (-586 |#4|))) "failed") (-586 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) 108)) (-3146 (((-108) $ (-1 (-108) |#4| (-586 |#4|))) 98)) (-3272 (((-586 $) |#4| $) 121) (((-586 $) |#4| (-586 $)) 120) (((-586 $) (-586 |#4|) $) 119) (((-586 $) (-586 |#4|) (-586 $)) 118)) (-1662 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4229)))) (-1600 (((-586 |#3|) $) 81)) (-3230 (((-108) |#4| $) 135)) (-3718 (((-108) |#3| $) 80)) (-1530 (((-108) $ $) 6)) (-3474 (((-706) $) 46 (|has| $ (-6 -4229)))))
-(((-988 |#1| |#2| |#3| |#4|) (-1195) (-424) (-728) (-783) (-983 |t#1| |t#2| |t#3|)) (T -988))
-((-1964 (*1 *2 *3 *1) (-12 (-4 *1 (-988 *4 *5 *6 *3)) (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783)) (-4 *3 (-983 *4 *5 *6)) (-5 *2 (-108)))) (-2870 (*1 *2 *3 *1) (-12 (-4 *1 (-988 *4 *5 *6 *3)) (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783)) (-4 *3 (-983 *4 *5 *6)) (-5 *2 (-108)))) (-3230 (*1 *2 *3 *1) (-12 (-4 *1 (-988 *4 *5 *6 *3)) (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783)) (-4 *3 (-983 *4 *5 *6)) (-5 *2 (-108)))) (-1964 (*1 *2 *1) (-12 (-4 *1 (-988 *3 *4 *5 *6)) (-4 *3 (-424)) (-4 *4 (-728)) (-4 *5 (-783)) (-4 *6 (-983 *3 *4 *5)) (-5 *2 (-108)))) (-1276 (*1 *2 *3 *1) (-12 (-4 *1 (-988 *4 *5 *6 *3)) (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783)) (-4 *3 (-983 *4 *5 *6)) (-5 *2 (-108)))) (-3757 (*1 *2 *3 *1) (-12 (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783)) (-4 *3 (-983 *4 *5 *6)) (-5 *2 (-3 (-108) (-586 *1))) (-4 *1 (-988 *4 *5 *6 *3)))) (-2484 (*1 *2 *3 *1) (-12 (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783)) (-4 *3 (-983 *4 *5 *6)) (-5 *2 (-586 (-2 (|:| |val| (-108)) (|:| -1883 *1)))) (-4 *1 (-988 *4 *5 *6 *3)))) (-2484 (*1 *2 *3 *1) (-12 (-4 *1 (-988 *4 *5 *6 *3)) (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783)) (-4 *3 (-983 *4 *5 *6)) (-5 *2 (-108)))) (-3674 (*1 *2 *3 *1) (-12 (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783)) (-4 *3 (-983 *4 *5 *6)) (-5 *2 (-586 *1)) (-4 *1 (-988 *4 *5 *6 *3)))) (-3797 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783)) (-4 *3 (-983 *4 *5 *6)) (-5 *2 (-3 *3 (-586 *1))) (-4 *1 (-988 *4 *5 *6 *3)))) (-2170 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783)) (-4 *3 (-983 *4 *5 *6)) (-5 *2 (-586 (-2 (|:| |val| *3) (|:| -1883 *1)))) (-4 *1 (-988 *4 *5 *6 *3)))) (-3024 (*1 *2 *3 *1) (-12 (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783)) (-4 *3 (-983 *4 *5 *6)) (-5 *2 (-586 (-2 (|:| |val| *3) (|:| -1883 *1)))) (-4 *1 (-988 *4 *5 *6 *3)))) (-2077 (*1 *2 *3 *1) (-12 (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783)) (-4 *3 (-983 *4 *5 *6)) (-5 *2 (-586 *1)) (-4 *1 (-988 *4 *5 *6 *3)))) (-2077 (*1 *2 *3 *1) (-12 (-5 *3 (-586 *7)) (-4 *7 (-983 *4 *5 *6)) (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-586 *1)) (-4 *1 (-988 *4 *5 *6 *7)))) (-2077 (*1 *2 *3 *2) (-12 (-5 *2 (-586 *1)) (-5 *3 (-586 *7)) (-4 *1 (-988 *4 *5 *6 *7)) (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783)) (-4 *7 (-983 *4 *5 *6)))) (-2077 (*1 *2 *3 *2) (-12 (-5 *2 (-586 *1)) (-4 *1 (-988 *4 *5 *6 *3)) (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783)) (-4 *3 (-983 *4 *5 *6)))) (-3272 (*1 *2 *3 *1) (-12 (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783)) (-4 *3 (-983 *4 *5 *6)) (-5 *2 (-586 *1)) (-4 *1 (-988 *4 *5 *6 *3)))) (-3272 (*1 *2 *3 *2) (-12 (-5 *2 (-586 *1)) (-4 *1 (-988 *4 *5 *6 *3)) (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783)) (-4 *3 (-983 *4 *5 *6)))) (-3272 (*1 *2 *3 *1) (-12 (-5 *3 (-586 *7)) (-4 *7 (-983 *4 *5 *6)) (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-586 *1)) (-4 *1 (-988 *4 *5 *6 *7)))) (-3272 (*1 *2 *3 *2) (-12 (-5 *2 (-586 *1)) (-5 *3 (-586 *7)) (-4 *1 (-988 *4 *5 *6 *7)) (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783)) (-4 *7 (-983 *4 *5 *6)))) (-3709 (*1 *1 *2 *1) (-12 (-4 *1 (-988 *3 *4 *5 *2)) (-4 *3 (-424)) (-4 *4 (-728)) (-4 *5 (-783)) (-4 *2 (-983 *3 *4 *5)))) (-3709 (*1 *1 *2 *1) (-12 (-5 *2 (-586 *6)) (-4 *1 (-988 *3 *4 *5 *6)) (-4 *3 (-424)) (-4 *4 (-728)) (-4 *5 (-783)) (-4 *6 (-983 *3 *4 *5)))) (-2116 (*1 *2 *3 *1) (-12 (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783)) (-4 *3 (-983 *4 *5 *6)) (-5 *2 (-586 *1)) (-4 *1 (-988 *4 *5 *6 *3)))) (-2116 (*1 *2 *3 *2) (-12 (-5 *2 (-586 *1)) (-4 *1 (-988 *4 *5 *6 *3)) (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783)) (-4 *3 (-983 *4 *5 *6)))) (-2116 (*1 *2 *3 *1) (-12 (-5 *3 (-586 *7)) (-4 *7 (-983 *4 *5 *6)) (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-586 *1)) (-4 *1 (-988 *4 *5 *6 *7)))) (-2116 (*1 *2 *3 *2) (-12 (-5 *2 (-586 *1)) (-5 *3 (-586 *7)) (-4 *1 (-988 *4 *5 *6 *7)) (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783)) (-4 *7 (-983 *4 *5 *6)))) (-3767 (*1 *2 *3 *4) (-12 (-5 *3 (-586 *8)) (-5 *4 (-108)) (-4 *8 (-983 *5 *6 *7)) (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783)) (-5 *2 (-586 *1)) (-4 *1 (-988 *5 *6 *7 *8)))))
-(-13 (-1112 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -1964 ((-108) |t#4| $)) (-15 -2870 ((-108) |t#4| $)) (-15 -3230 ((-108) |t#4| $)) (-15 -1964 ((-108) $)) (-15 -1276 ((-108) |t#4| $)) (-15 -3757 ((-3 (-108) (-586 $)) |t#4| $)) (-15 -2484 ((-586 (-2 (|:| |val| (-108)) (|:| -1883 $))) |t#4| $)) (-15 -2484 ((-108) |t#4| $)) (-15 -3674 ((-586 $) |t#4| $)) (-15 -3797 ((-3 |t#4| (-586 $)) |t#4| |t#4| $)) (-15 -2170 ((-586 (-2 (|:| |val| |t#4|) (|:| -1883 $))) |t#4| |t#4| $)) (-15 -3024 ((-586 (-2 (|:| |val| |t#4|) (|:| -1883 $))) |t#4| $)) (-15 -2077 ((-586 $) |t#4| $)) (-15 -2077 ((-586 $) (-586 |t#4|) $)) (-15 -2077 ((-586 $) (-586 |t#4|) (-586 $))) (-15 -2077 ((-586 $) |t#4| (-586 $))) (-15 -3272 ((-586 $) |t#4| $)) (-15 -3272 ((-586 $) |t#4| (-586 $))) (-15 -3272 ((-586 $) (-586 |t#4|) $)) (-15 -3272 ((-586 $) (-586 |t#4|) (-586 $))) (-15 -3709 ($ |t#4| $)) (-15 -3709 ($ (-586 |t#4|) $)) (-15 -2116 ((-586 $) |t#4| $)) (-15 -2116 ((-586 $) |t#4| (-586 $))) (-15 -2116 ((-586 $) (-586 |t#4|) $)) (-15 -2116 ((-586 $) (-586 |t#4|) (-586 $))) (-15 -3767 ((-586 $) (-586 |t#4|) (-108)))))
-(((-33) . T) ((-97) . T) ((-560 (-586 |#4|)) . T) ((-560 (-791)) . T) ((-139 |#4|) . T) ((-561 (-496)) |has| |#4| (-561 (-496))) ((-283 |#4|) -12 (|has| |#4| (-283 |#4|)) (|has| |#4| (-1012))) ((-459 |#4|) . T) ((-481 |#4| |#4|) -12 (|has| |#4| (-283 |#4|)) (|has| |#4| (-1012))) ((-901 |#1| |#2| |#3| |#4|) . T) ((-1012) . T) ((-1112 |#1| |#2| |#3| |#4|) . T) ((-1118) . T))
-((-2794 (((-586 (-2 (|:| |val| |#4|) (|:| -1883 |#5|))) |#4| |#5|) 81)) (-3670 (((-586 (-2 (|:| |val| |#4|) (|:| -1883 |#5|))) |#4| |#4| |#5|) 113)) (-2364 (((-586 |#5|) |#4| |#5|) 70)) (-2330 (((-586 (-2 (|:| |val| (-108)) (|:| -1883 |#5|))) |#4| |#5|) 44) (((-108) |#4| |#5|) 52)) (-2134 (((-1169)) 35)) (-3519 (((-1169)) 25)) (-3646 (((-1169) (-1066) (-1066) (-1066)) 31)) (-4022 (((-1169) (-1066) (-1066) (-1066)) 20)) (-4002 (((-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))) |#4| |#4| |#5|) 96)) (-2614 (((-586 (-2 (|:| |val| |#4|) (|:| -1883 |#5|))) (-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))) |#3| (-108)) 107) (((-586 (-2 (|:| |val| |#4|) (|:| -1883 |#5|))) |#4| |#4| |#5| (-108) (-108)) 49)) (-3573 (((-586 (-2 (|:| |val| |#4|) (|:| -1883 |#5|))) |#4| |#4| |#5|) 102)))
-(((-989 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4022 ((-1169) (-1066) (-1066) (-1066))) (-15 -3519 ((-1169))) (-15 -3646 ((-1169) (-1066) (-1066) (-1066))) (-15 -2134 ((-1169))) (-15 -4002 ((-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))) |#4| |#4| |#5|)) (-15 -2614 ((-586 (-2 (|:| |val| |#4|) (|:| -1883 |#5|))) |#4| |#4| |#5| (-108) (-108))) (-15 -2614 ((-586 (-2 (|:| |val| |#4|) (|:| -1883 |#5|))) (-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))) |#3| (-108))) (-15 -3573 ((-586 (-2 (|:| |val| |#4|) (|:| -1883 |#5|))) |#4| |#4| |#5|)) (-15 -3670 ((-586 (-2 (|:| |val| |#4|) (|:| -1883 |#5|))) |#4| |#4| |#5|)) (-15 -2330 ((-108) |#4| |#5|)) (-15 -2330 ((-586 (-2 (|:| |val| (-108)) (|:| -1883 |#5|))) |#4| |#5|)) (-15 -2364 ((-586 |#5|) |#4| |#5|)) (-15 -2794 ((-586 (-2 (|:| |val| |#4|) (|:| -1883 |#5|))) |#4| |#5|))) (-424) (-728) (-783) (-983 |#1| |#2| |#3|) (-988 |#1| |#2| |#3| |#4|)) (T -989))
-((-2794 (*1 *2 *3 *4) (-12 (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783)) (-4 *3 (-983 *5 *6 *7)) (-5 *2 (-586 (-2 (|:| |val| *3) (|:| -1883 *4)))) (-5 *1 (-989 *5 *6 *7 *3 *4)) (-4 *4 (-988 *5 *6 *7 *3)))) (-2364 (*1 *2 *3 *4) (-12 (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783)) (-4 *3 (-983 *5 *6 *7)) (-5 *2 (-586 *4)) (-5 *1 (-989 *5 *6 *7 *3 *4)) (-4 *4 (-988 *5 *6 *7 *3)))) (-2330 (*1 *2 *3 *4) (-12 (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783)) (-4 *3 (-983 *5 *6 *7)) (-5 *2 (-586 (-2 (|:| |val| (-108)) (|:| -1883 *4)))) (-5 *1 (-989 *5 *6 *7 *3 *4)) (-4 *4 (-988 *5 *6 *7 *3)))) (-2330 (*1 *2 *3 *4) (-12 (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783)) (-4 *3 (-983 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-989 *5 *6 *7 *3 *4)) (-4 *4 (-988 *5 *6 *7 *3)))) (-3670 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783)) (-4 *3 (-983 *5 *6 *7)) (-5 *2 (-586 (-2 (|:| |val| *3) (|:| -1883 *4)))) (-5 *1 (-989 *5 *6 *7 *3 *4)) (-4 *4 (-988 *5 *6 *7 *3)))) (-3573 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783)) (-4 *3 (-983 *5 *6 *7)) (-5 *2 (-586 (-2 (|:| |val| *3) (|:| -1883 *4)))) (-5 *1 (-989 *5 *6 *7 *3 *4)) (-4 *4 (-988 *5 *6 *7 *3)))) (-2614 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-586 (-2 (|:| |val| (-586 *8)) (|:| -1883 *9)))) (-5 *5 (-108)) (-4 *8 (-983 *6 *7 *4)) (-4 *9 (-988 *6 *7 *4 *8)) (-4 *6 (-424)) (-4 *7 (-728)) (-4 *4 (-783)) (-5 *2 (-586 (-2 (|:| |val| *8) (|:| -1883 *9)))) (-5 *1 (-989 *6 *7 *4 *8 *9)))) (-2614 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-108)) (-4 *6 (-424)) (-4 *7 (-728)) (-4 *8 (-783)) (-4 *3 (-983 *6 *7 *8)) (-5 *2 (-586 (-2 (|:| |val| *3) (|:| -1883 *4)))) (-5 *1 (-989 *6 *7 *8 *3 *4)) (-4 *4 (-988 *6 *7 *8 *3)))) (-4002 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783)) (-4 *3 (-983 *5 *6 *7)) (-5 *2 (-586 (-2 (|:| |val| (-586 *3)) (|:| -1883 *4)))) (-5 *1 (-989 *5 *6 *7 *3 *4)) (-4 *4 (-988 *5 *6 *7 *3)))) (-2134 (*1 *2) (-12 (-4 *3 (-424)) (-4 *4 (-728)) (-4 *5 (-783)) (-4 *6 (-983 *3 *4 *5)) (-5 *2 (-1169)) (-5 *1 (-989 *3 *4 *5 *6 *7)) (-4 *7 (-988 *3 *4 *5 *6)))) (-3646 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1066)) (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783)) (-4 *7 (-983 *4 *5 *6)) (-5 *2 (-1169)) (-5 *1 (-989 *4 *5 *6 *7 *8)) (-4 *8 (-988 *4 *5 *6 *7)))) (-3519 (*1 *2) (-12 (-4 *3 (-424)) (-4 *4 (-728)) (-4 *5 (-783)) (-4 *6 (-983 *3 *4 *5)) (-5 *2 (-1169)) (-5 *1 (-989 *3 *4 *5 *6 *7)) (-4 *7 (-988 *3 *4 *5 *6)))) (-4022 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1066)) (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783)) (-4 *7 (-983 *4 *5 *6)) (-5 *2 (-1169)) (-5 *1 (-989 *4 *5 *6 *7 *8)) (-4 *8 (-988 *4 *5 *6 *7)))))
-(-10 -7 (-15 -4022 ((-1169) (-1066) (-1066) (-1066))) (-15 -3519 ((-1169))) (-15 -3646 ((-1169) (-1066) (-1066) (-1066))) (-15 -2134 ((-1169))) (-15 -4002 ((-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))) |#4| |#4| |#5|)) (-15 -2614 ((-586 (-2 (|:| |val| |#4|) (|:| -1883 |#5|))) |#4| |#4| |#5| (-108) (-108))) (-15 -2614 ((-586 (-2 (|:| |val| |#4|) (|:| -1883 |#5|))) (-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))) |#3| (-108))) (-15 -3573 ((-586 (-2 (|:| |val| |#4|) (|:| -1883 |#5|))) |#4| |#4| |#5|)) (-15 -3670 ((-586 (-2 (|:| |val| |#4|) (|:| -1883 |#5|))) |#4| |#4| |#5|)) (-15 -2330 ((-108) |#4| |#5|)) (-15 -2330 ((-586 (-2 (|:| |val| (-108)) (|:| -1883 |#5|))) |#4| |#5|)) (-15 -2364 ((-586 |#5|) |#4| |#5|)) (-15 -2794 ((-586 (-2 (|:| |val| |#4|) (|:| -1883 |#5|))) |#4| |#5|)))
-((-1414 (((-108) $ $) NIL)) (-2883 (((-1083) $) 8)) (-1239 (((-1066) $) 16)) (-4142 (((-1030) $) NIL)) (-2188 (((-791) $) 11)) (-1530 (((-108) $ $) 13)))
-(((-990 |#1|) (-13 (-1012) (-10 -8 (-15 -2883 ((-1083) $)))) (-1083)) (T -990))
-((-2883 (*1 *2 *1) (-12 (-5 *2 (-1083)) (-5 *1 (-990 *3)) (-14 *3 *2))))
-(-13 (-1012) (-10 -8 (-15 -2883 ((-1083) $))))
-((-1414 (((-108) $ $) NIL)) (-1869 (($ $ (-586 (-1083)) (-1 (-108) (-586 |#3|))) 29)) (-1360 (($ |#3| |#3|) 21) (($ |#3| |#3| (-586 (-1083))) 19)) (-3595 ((|#3| $) 13)) (-1296 (((-3 (-268 |#3|) "failed") $) 56)) (-1482 (((-268 |#3|) $) NIL)) (-2986 (((-586 (-1083)) $) 15)) (-1377 (((-820 |#1|) $) 11)) (-3586 ((|#3| $) 12)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2543 ((|#3| $ |#3|) 25) ((|#3| $ |#3| (-849)) 36)) (-2188 (((-791) $) 85) (($ (-268 |#3|)) 20)) (-1530 (((-108) $ $) 33)))
-(((-991 |#1| |#2| |#3|) (-13 (-1012) (-260 |#3| |#3|) (-960 (-268 |#3|)) (-10 -8 (-15 -1360 ($ |#3| |#3|)) (-15 -1360 ($ |#3| |#3| (-586 (-1083)))) (-15 -1869 ($ $ (-586 (-1083)) (-1 (-108) (-586 |#3|)))) (-15 -1377 ((-820 |#1|) $)) (-15 -3586 (|#3| $)) (-15 -3595 (|#3| $)) (-15 -2543 (|#3| $ |#3| (-849))) (-15 -2986 ((-586 (-1083)) $)))) (-1012) (-13 (-969) (-814 |#1|) (-783) (-561 (-820 |#1|))) (-13 (-403 |#2|) (-814 |#1|) (-561 (-820 |#1|)))) (T -991))
-((-1360 (*1 *1 *2 *2) (-12 (-4 *3 (-1012)) (-4 *4 (-13 (-969) (-814 *3) (-783) (-561 (-820 *3)))) (-5 *1 (-991 *3 *4 *2)) (-4 *2 (-13 (-403 *4) (-814 *3) (-561 (-820 *3)))))) (-1360 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-586 (-1083))) (-4 *4 (-1012)) (-4 *5 (-13 (-969) (-814 *4) (-783) (-561 (-820 *4)))) (-5 *1 (-991 *4 *5 *2)) (-4 *2 (-13 (-403 *5) (-814 *4) (-561 (-820 *4)))))) (-1869 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-586 (-1083))) (-5 *3 (-1 (-108) (-586 *6))) (-4 *6 (-13 (-403 *5) (-814 *4) (-561 (-820 *4)))) (-4 *4 (-1012)) (-4 *5 (-13 (-969) (-814 *4) (-783) (-561 (-820 *4)))) (-5 *1 (-991 *4 *5 *6)))) (-1377 (*1 *2 *1) (-12 (-4 *3 (-1012)) (-4 *4 (-13 (-969) (-814 *3) (-783) (-561 *2))) (-5 *2 (-820 *3)) (-5 *1 (-991 *3 *4 *5)) (-4 *5 (-13 (-403 *4) (-814 *3) (-561 *2))))) (-3586 (*1 *2 *1) (-12 (-4 *3 (-1012)) (-4 *2 (-13 (-403 *4) (-814 *3) (-561 (-820 *3)))) (-5 *1 (-991 *3 *4 *2)) (-4 *4 (-13 (-969) (-814 *3) (-783) (-561 (-820 *3)))))) (-3595 (*1 *2 *1) (-12 (-4 *3 (-1012)) (-4 *2 (-13 (-403 *4) (-814 *3) (-561 (-820 *3)))) (-5 *1 (-991 *3 *4 *2)) (-4 *4 (-13 (-969) (-814 *3) (-783) (-561 (-820 *3)))))) (-2543 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-849)) (-4 *4 (-1012)) (-4 *5 (-13 (-969) (-814 *4) (-783) (-561 (-820 *4)))) (-5 *1 (-991 *4 *5 *2)) (-4 *2 (-13 (-403 *5) (-814 *4) (-561 (-820 *4)))))) (-2986 (*1 *2 *1) (-12 (-4 *3 (-1012)) (-4 *4 (-13 (-969) (-814 *3) (-783) (-561 (-820 *3)))) (-5 *2 (-586 (-1083))) (-5 *1 (-991 *3 *4 *5)) (-4 *5 (-13 (-403 *4) (-814 *3) (-561 (-820 *3)))))))
-(-13 (-1012) (-260 |#3| |#3|) (-960 (-268 |#3|)) (-10 -8 (-15 -1360 ($ |#3| |#3|)) (-15 -1360 ($ |#3| |#3| (-586 (-1083)))) (-15 -1869 ($ $ (-586 (-1083)) (-1 (-108) (-586 |#3|)))) (-15 -1377 ((-820 |#1|) $)) (-15 -3586 (|#3| $)) (-15 -3595 (|#3| $)) (-15 -2543 (|#3| $ |#3| (-849))) (-15 -2986 ((-586 (-1083)) $))))
-((-1414 (((-108) $ $) NIL)) (-1836 (($ (-586 (-991 |#1| |#2| |#3|))) 12)) (-3293 (((-586 (-991 |#1| |#2| |#3|)) $) 19)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2543 ((|#3| $ |#3|) 22) ((|#3| $ |#3| (-849)) 25)) (-2188 (((-791) $) 15)) (-1530 (((-108) $ $) 18)))
-(((-992 |#1| |#2| |#3|) (-13 (-1012) (-260 |#3| |#3|) (-10 -8 (-15 -1836 ($ (-586 (-991 |#1| |#2| |#3|)))) (-15 -3293 ((-586 (-991 |#1| |#2| |#3|)) $)) (-15 -2543 (|#3| $ |#3| (-849))))) (-1012) (-13 (-969) (-814 |#1|) (-783) (-561 (-820 |#1|))) (-13 (-403 |#2|) (-814 |#1|) (-561 (-820 |#1|)))) (T -992))
-((-1836 (*1 *1 *2) (-12 (-5 *2 (-586 (-991 *3 *4 *5))) (-4 *3 (-1012)) (-4 *4 (-13 (-969) (-814 *3) (-783) (-561 (-820 *3)))) (-4 *5 (-13 (-403 *4) (-814 *3) (-561 (-820 *3)))) (-5 *1 (-992 *3 *4 *5)))) (-3293 (*1 *2 *1) (-12 (-4 *3 (-1012)) (-4 *4 (-13 (-969) (-814 *3) (-783) (-561 (-820 *3)))) (-5 *2 (-586 (-991 *3 *4 *5))) (-5 *1 (-992 *3 *4 *5)) (-4 *5 (-13 (-403 *4) (-814 *3) (-561 (-820 *3)))))) (-2543 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-849)) (-4 *4 (-1012)) (-4 *5 (-13 (-969) (-814 *4) (-783) (-561 (-820 *4)))) (-5 *1 (-992 *4 *5 *2)) (-4 *2 (-13 (-403 *5) (-814 *4) (-561 (-820 *4)))))))
-(-13 (-1012) (-260 |#3| |#3|) (-10 -8 (-15 -1836 ($ (-586 (-991 |#1| |#2| |#3|)))) (-15 -3293 ((-586 (-991 |#1| |#2| |#3|)) $)) (-15 -2543 (|#3| $ |#3| (-849)))))
-((-2018 (((-586 (-2 (|:| -1714 (-1079 |#1|)) (|:| -3790 (-586 (-880 |#1|))))) (-586 (-880 |#1|)) (-108) (-108)) 74) (((-586 (-2 (|:| -1714 (-1079 |#1|)) (|:| -3790 (-586 (-880 |#1|))))) (-586 (-880 |#1|))) 76) (((-586 (-2 (|:| -1714 (-1079 |#1|)) (|:| -3790 (-586 (-880 |#1|))))) (-586 (-880 |#1|)) (-108)) 75)))
-(((-993 |#1| |#2|) (-10 -7 (-15 -2018 ((-586 (-2 (|:| -1714 (-1079 |#1|)) (|:| -3790 (-586 (-880 |#1|))))) (-586 (-880 |#1|)) (-108))) (-15 -2018 ((-586 (-2 (|:| -1714 (-1079 |#1|)) (|:| -3790 (-586 (-880 |#1|))))) (-586 (-880 |#1|)))) (-15 -2018 ((-586 (-2 (|:| -1714 (-1079 |#1|)) (|:| -3790 (-586 (-880 |#1|))))) (-586 (-880 |#1|)) (-108) (-108)))) (-13 (-281) (-135)) (-586 (-1083))) (T -993))
-((-2018 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-281) (-135))) (-5 *2 (-586 (-2 (|:| -1714 (-1079 *5)) (|:| -3790 (-586 (-880 *5)))))) (-5 *1 (-993 *5 *6)) (-5 *3 (-586 (-880 *5))) (-14 *6 (-586 (-1083))))) (-2018 (*1 *2 *3) (-12 (-4 *4 (-13 (-281) (-135))) (-5 *2 (-586 (-2 (|:| -1714 (-1079 *4)) (|:| -3790 (-586 (-880 *4)))))) (-5 *1 (-993 *4 *5)) (-5 *3 (-586 (-880 *4))) (-14 *5 (-586 (-1083))))) (-2018 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-281) (-135))) (-5 *2 (-586 (-2 (|:| -1714 (-1079 *5)) (|:| -3790 (-586 (-880 *5)))))) (-5 *1 (-993 *5 *6)) (-5 *3 (-586 (-880 *5))) (-14 *6 (-586 (-1083))))))
-(-10 -7 (-15 -2018 ((-586 (-2 (|:| -1714 (-1079 |#1|)) (|:| -3790 (-586 (-880 |#1|))))) (-586 (-880 |#1|)) (-108))) (-15 -2018 ((-586 (-2 (|:| -1714 (-1079 |#1|)) (|:| -3790 (-586 (-880 |#1|))))) (-586 (-880 |#1|)))) (-15 -2018 ((-586 (-2 (|:| -1714 (-1079 |#1|)) (|:| -3790 (-586 (-880 |#1|))))) (-586 (-880 |#1|)) (-108) (-108))))
-((-1916 (((-391 |#3|) |#3|) 16)))
-(((-994 |#1| |#2| |#3|) (-10 -7 (-15 -1916 ((-391 |#3|) |#3|))) (-1140 (-380 (-520))) (-13 (-336) (-135) (-660 (-380 (-520)) |#1|)) (-1140 |#2|)) (T -994))
-((-1916 (*1 *2 *3) (-12 (-4 *4 (-1140 (-380 (-520)))) (-4 *5 (-13 (-336) (-135) (-660 (-380 (-520)) *4))) (-5 *2 (-391 *3)) (-5 *1 (-994 *4 *5 *3)) (-4 *3 (-1140 *5)))))
-(-10 -7 (-15 -1916 ((-391 |#3|) |#3|)))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) 125)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) NIL (|has| |#1| (-336)))) (-2583 (($ $) NIL (|has| |#1| (-336)))) (-1671 (((-108) $) NIL (|has| |#1| (-336)))) (-1405 (((-626 |#1|) (-1164 $)) NIL) (((-626 |#1|)) 115)) (-1864 ((|#1| $) 119)) (-1891 (((-1092 (-849) (-706)) (-520)) NIL (|has| |#1| (-322)))) (-1917 (((-3 $ "failed") $ $) NIL)) (-3024 (($ $) NIL (|has| |#1| (-336)))) (-1507 (((-391 $) $) NIL (|has| |#1| (-336)))) (-1327 (((-108) $ $) NIL (|has| |#1| (-336)))) (-1628 (((-706)) 40 (|has| |#1| (-341)))) (-3961 (($) NIL T CONST)) (-1296 (((-3 (-520) "failed") $) NIL (|has| |#1| (-960 (-520)))) (((-3 (-380 (-520)) "failed") $) NIL (|has| |#1| (-960 (-380 (-520))))) (((-3 |#1| "failed") $) NIL)) (-1482 (((-520) $) NIL (|has| |#1| (-960 (-520)))) (((-380 (-520)) $) NIL (|has| |#1| (-960 (-380 (-520))))) ((|#1| $) NIL)) (-3705 (($ (-1164 |#1|) (-1164 $)) NIL) (($ (-1164 |#1|)) 43)) (-2654 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-322)))) (-2276 (($ $ $) NIL (|has| |#1| (-336)))) (-3604 (((-626 |#1|) $ (-1164 $)) NIL) (((-626 |#1|) $) NIL)) (-2756 (((-626 (-520)) (-626 $)) NIL (|has| |#1| (-582 (-520)))) (((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 $) (-1164 $)) NIL (|has| |#1| (-582 (-520)))) (((-2 (|:| -3927 (-626 |#1|)) (|:| |vec| (-1164 |#1|))) (-626 $) (-1164 $)) 106) (((-626 |#1|) (-626 $)) 100)) (-3856 (($ |#2|) 61) (((-3 $ "failed") (-380 |#2|)) NIL (|has| |#1| (-336)))) (-1540 (((-3 $ "failed") $) NIL)) (-3160 (((-849)) 77)) (-3249 (($) 44 (|has| |#1| (-341)))) (-2253 (($ $ $) NIL (|has| |#1| (-336)))) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) NIL (|has| |#1| (-336)))) (-2961 (($) NIL (|has| |#1| (-322)))) (-1855 (((-108) $) NIL (|has| |#1| (-322)))) (-1346 (($ $ (-706)) NIL (|has| |#1| (-322))) (($ $) NIL (|has| |#1| (-322)))) (-2036 (((-108) $) NIL (|has| |#1| (-336)))) (-3989 (((-849) $) NIL (|has| |#1| (-322))) (((-769 (-849)) $) NIL (|has| |#1| (-322)))) (-1537 (((-108) $) NIL)) (-1434 ((|#1| $) NIL)) (-1394 (((-3 $ "failed") $) NIL (|has| |#1| (-322)))) (-3188 (((-3 (-586 $) "failed") (-586 $) $) NIL (|has| |#1| (-336)))) (-2034 ((|#2| $) 84 (|has| |#1| (-336)))) (-3040 (((-849) $) 130 (|has| |#1| (-341)))) (-3841 ((|#2| $) 58)) (-2222 (($ (-586 $)) NIL (|has| |#1| (-336))) (($ $ $) NIL (|has| |#1| (-336)))) (-1239 (((-1066) $) NIL)) (-3093 (($ $) NIL (|has| |#1| (-336)))) (-3794 (($) NIL (|has| |#1| (-322)) CONST)) (-2716 (($ (-849)) 124 (|has| |#1| (-341)))) (-4142 (((-1030) $) NIL)) (-1382 (($) 121)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) NIL (|has| |#1| (-336)))) (-2257 (($ (-586 $)) NIL (|has| |#1| (-336))) (($ $ $) NIL (|has| |#1| (-336)))) (-1517 (((-586 (-2 (|:| -1916 (-520)) (|:| -2647 (-520))))) NIL (|has| |#1| (-322)))) (-1916 (((-391 $) $) NIL (|has| |#1| (-336)))) (-1283 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-336))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) NIL (|has| |#1| (-336)))) (-2230 (((-3 $ "failed") $ $) NIL (|has| |#1| (-336)))) (-2608 (((-3 (-586 $) "failed") (-586 $) $) NIL (|has| |#1| (-336)))) (-3704 (((-706) $) NIL (|has| |#1| (-336)))) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) NIL (|has| |#1| (-336)))) (-2732 ((|#1| (-1164 $)) NIL) ((|#1|) 109)) (-2062 (((-706) $) NIL (|has| |#1| (-322))) (((-3 (-706) "failed") $ $) NIL (|has| |#1| (-322)))) (-2155 (($ $) NIL (-3700 (-12 (|has| |#1| (-209)) (|has| |#1| (-336))) (|has| |#1| (-322)))) (($ $ (-706)) NIL (-3700 (-12 (|has| |#1| (-209)) (|has| |#1| (-336))) (|has| |#1| (-322)))) (($ $ (-1083)) NIL (-12 (|has| |#1| (-336)) (|has| |#1| (-828 (-1083))))) (($ $ (-586 (-1083))) NIL (-12 (|has| |#1| (-336)) (|has| |#1| (-828 (-1083))))) (($ $ (-1083) (-706)) NIL (-12 (|has| |#1| (-336)) (|has| |#1| (-828 (-1083))))) (($ $ (-586 (-1083)) (-586 (-706))) NIL (-12 (|has| |#1| (-336)) (|has| |#1| (-828 (-1083))))) (($ $ (-1 |#1| |#1|) (-706)) NIL (|has| |#1| (-336))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-336)))) (-3404 (((-626 |#1|) (-1164 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-336)))) (-3484 ((|#2|) 73)) (-3864 (($) NIL (|has| |#1| (-322)))) (-3790 (((-1164 |#1|) $ (-1164 $)) 89) (((-626 |#1|) (-1164 $) (-1164 $)) NIL) (((-1164 |#1|) $) 71) (((-626 |#1|) (-1164 $)) 85)) (-1429 (((-1164 |#1|) $) NIL) (($ (-1164 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-3784 (((-3 (-1164 $) "failed") (-626 $)) NIL (|has| |#1| (-322)))) (-2188 (((-791) $) 57) (($ (-520)) 53) (($ |#1|) 54) (($ $) NIL (|has| |#1| (-336))) (($ (-380 (-520))) NIL (-3700 (|has| |#1| (-336)) (|has| |#1| (-960 (-380 (-520))))))) (-3796 (($ $) NIL (|has| |#1| (-322))) (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-2948 ((|#2| $) 82)) (-3251 (((-706)) 75)) (-1831 (((-1164 $)) 81)) (-2559 (((-108) $ $) NIL (|has| |#1| (-336)))) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL (|has| |#1| (-336)))) (-3560 (($) 30 T CONST)) (-3570 (($) 19 T CONST)) (-2211 (($ $) NIL (-3700 (-12 (|has| |#1| (-209)) (|has| |#1| (-336))) (|has| |#1| (-322)))) (($ $ (-706)) NIL (-3700 (-12 (|has| |#1| (-209)) (|has| |#1| (-336))) (|has| |#1| (-322)))) (($ $ (-1083)) NIL (-12 (|has| |#1| (-336)) (|has| |#1| (-828 (-1083))))) (($ $ (-586 (-1083))) NIL (-12 (|has| |#1| (-336)) (|has| |#1| (-828 (-1083))))) (($ $ (-1083) (-706)) NIL (-12 (|has| |#1| (-336)) (|has| |#1| (-828 (-1083))))) (($ $ (-586 (-1083)) (-586 (-706))) NIL (-12 (|has| |#1| (-336)) (|has| |#1| (-828 (-1083))))) (($ $ (-1 |#1| |#1|) (-706)) NIL (|has| |#1| (-336))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-336)))) (-1530 (((-108) $ $) 63)) (-1619 (($ $ $) NIL (|has| |#1| (-336)))) (-1611 (($ $) 67) (($ $ $) NIL)) (-1601 (($ $ $) 65)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL (|has| |#1| (-336)))) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) 51) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 48) (($ (-380 (-520)) $) NIL (|has| |#1| (-336))) (($ $ (-380 (-520))) NIL (|has| |#1| (-336)))))
-(((-995 |#1| |#2| |#3|) (-660 |#1| |#2|) (-157) (-1140 |#1|) |#2|) (T -995))
-NIL
-(-660 |#1| |#2|)
-((-1916 (((-391 |#3|) |#3|) 16)))
-(((-996 |#1| |#2| |#3|) (-10 -7 (-15 -1916 ((-391 |#3|) |#3|))) (-1140 (-380 (-880 (-520)))) (-13 (-336) (-135) (-660 (-380 (-880 (-520))) |#1|)) (-1140 |#2|)) (T -996))
-((-1916 (*1 *2 *3) (-12 (-4 *4 (-1140 (-380 (-880 (-520))))) (-4 *5 (-13 (-336) (-135) (-660 (-380 (-880 (-520))) *4))) (-5 *2 (-391 *3)) (-5 *1 (-996 *4 *5 *3)) (-4 *3 (-1140 *5)))))
-(-10 -7 (-15 -1916 ((-391 |#3|) |#3|)))
-((-1414 (((-108) $ $) NIL)) (-2809 (($ $ $) 14)) (-2446 (($ $ $) 15)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-1541 (($) 6)) (-1429 (((-1083) $) 18)) (-2188 (((-791) $) 12)) (-1573 (((-108) $ $) NIL)) (-1557 (((-108) $ $) NIL)) (-1530 (((-108) $ $) 13)) (-1565 (((-108) $ $) NIL)) (-1548 (((-108) $ $) 8)))
-(((-997) (-13 (-783) (-10 -8 (-15 -1541 ($)) (-15 -1429 ((-1083) $))))) (T -997))
-((-1541 (*1 *1) (-5 *1 (-997))) (-1429 (*1 *2 *1) (-12 (-5 *2 (-1083)) (-5 *1 (-997)))))
-(-13 (-783) (-10 -8 (-15 -1541 ($)) (-15 -1429 ((-1083) $))))
-((-2873 ((|#1| |#1| (-1 (-520) |#1| |#1|)) 23) ((|#1| |#1| (-1 (-108) |#1|)) 20)) (-1547 (((-1169)) 15)) (-2869 (((-586 |#1|)) 9)))
-(((-998 |#1|) (-10 -7 (-15 -1547 ((-1169))) (-15 -2869 ((-586 |#1|))) (-15 -2873 (|#1| |#1| (-1 (-108) |#1|))) (-15 -2873 (|#1| |#1| (-1 (-520) |#1| |#1|)))) (-125)) (T -998))
-((-2873 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-520) *2 *2)) (-4 *2 (-125)) (-5 *1 (-998 *2)))) (-2873 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-108) *2)) (-4 *2 (-125)) (-5 *1 (-998 *2)))) (-2869 (*1 *2) (-12 (-5 *2 (-586 *3)) (-5 *1 (-998 *3)) (-4 *3 (-125)))) (-1547 (*1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-998 *3)) (-4 *3 (-125)))))
-(-10 -7 (-15 -1547 ((-1169))) (-15 -2869 ((-586 |#1|))) (-15 -2873 (|#1| |#1| (-1 (-108) |#1|))) (-15 -2873 (|#1| |#1| (-1 (-520) |#1| |#1|))))
-((-3350 (($ (-104) $) 15)) (-3138 (((-3 (-104) "failed") (-1083) $) 13)) (-2238 (($) 6)) (-1249 (($) 16)) (-2723 (($) 17)) (-2464 (((-586 (-159)) $) 8)) (-2188 (((-791) $) 20)))
-(((-999) (-13 (-560 (-791)) (-10 -8 (-15 -2238 ($)) (-15 -2464 ((-586 (-159)) $)) (-15 -3138 ((-3 (-104) "failed") (-1083) $)) (-15 -3350 ($ (-104) $)) (-15 -1249 ($)) (-15 -2723 ($))))) (T -999))
-((-2238 (*1 *1) (-5 *1 (-999))) (-2464 (*1 *2 *1) (-12 (-5 *2 (-586 (-159))) (-5 *1 (-999)))) (-3138 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1083)) (-5 *2 (-104)) (-5 *1 (-999)))) (-3350 (*1 *1 *2 *1) (-12 (-5 *2 (-104)) (-5 *1 (-999)))) (-1249 (*1 *1) (-5 *1 (-999))) (-2723 (*1 *1) (-5 *1 (-999))))
-(-13 (-560 (-791)) (-10 -8 (-15 -2238 ($)) (-15 -2464 ((-586 (-159)) $)) (-15 -3138 ((-3 (-104) "failed") (-1083) $)) (-15 -3350 ($ (-104) $)) (-15 -1249 ($)) (-15 -2723 ($))))
-((-2284 (((-1164 (-626 |#1|)) (-586 (-626 |#1|))) 41) (((-1164 (-626 (-880 |#1|))) (-586 (-1083)) (-626 (-880 |#1|))) 61) (((-1164 (-626 (-380 (-880 |#1|)))) (-586 (-1083)) (-626 (-380 (-880 |#1|)))) 77)) (-3790 (((-1164 |#1|) (-626 |#1|) (-586 (-626 |#1|))) 35)))
-(((-1000 |#1|) (-10 -7 (-15 -2284 ((-1164 (-626 (-380 (-880 |#1|)))) (-586 (-1083)) (-626 (-380 (-880 |#1|))))) (-15 -2284 ((-1164 (-626 (-880 |#1|))) (-586 (-1083)) (-626 (-880 |#1|)))) (-15 -2284 ((-1164 (-626 |#1|)) (-586 (-626 |#1|)))) (-15 -3790 ((-1164 |#1|) (-626 |#1|) (-586 (-626 |#1|))))) (-336)) (T -1000))
-((-3790 (*1 *2 *3 *4) (-12 (-5 *4 (-586 (-626 *5))) (-5 *3 (-626 *5)) (-4 *5 (-336)) (-5 *2 (-1164 *5)) (-5 *1 (-1000 *5)))) (-2284 (*1 *2 *3) (-12 (-5 *3 (-586 (-626 *4))) (-4 *4 (-336)) (-5 *2 (-1164 (-626 *4))) (-5 *1 (-1000 *4)))) (-2284 (*1 *2 *3 *4) (-12 (-5 *3 (-586 (-1083))) (-4 *5 (-336)) (-5 *2 (-1164 (-626 (-880 *5)))) (-5 *1 (-1000 *5)) (-5 *4 (-626 (-880 *5))))) (-2284 (*1 *2 *3 *4) (-12 (-5 *3 (-586 (-1083))) (-4 *5 (-336)) (-5 *2 (-1164 (-626 (-380 (-880 *5))))) (-5 *1 (-1000 *5)) (-5 *4 (-626 (-380 (-880 *5)))))))
-(-10 -7 (-15 -2284 ((-1164 (-626 (-380 (-880 |#1|)))) (-586 (-1083)) (-626 (-380 (-880 |#1|))))) (-15 -2284 ((-1164 (-626 (-880 |#1|))) (-586 (-1083)) (-626 (-880 |#1|)))) (-15 -2284 ((-1164 (-626 |#1|)) (-586 (-626 |#1|)))) (-15 -3790 ((-1164 |#1|) (-626 |#1|) (-586 (-626 |#1|)))))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-3508 (((-586 (-706)) $) NIL) (((-586 (-706)) $ (-1083)) NIL)) (-1785 (((-706) $) NIL) (((-706) $ (-1083)) NIL)) (-4081 (((-586 (-1002 (-1083))) $) NIL)) (-1278 (((-1079 $) $ (-1002 (-1083))) NIL) (((-1079 |#1|) $) NIL)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) NIL (|has| |#1| (-512)))) (-2583 (($ $) NIL (|has| |#1| (-512)))) (-1671 (((-108) $) NIL (|has| |#1| (-512)))) (-3665 (((-706) $) NIL) (((-706) $ (-586 (-1002 (-1083)))) NIL)) (-1917 (((-3 $ "failed") $ $) NIL)) (-4119 (((-391 (-1079 $)) (-1079 $)) NIL (|has| |#1| (-837)))) (-3024 (($ $) NIL (|has| |#1| (-424)))) (-1507 (((-391 $) $) NIL (|has| |#1| (-424)))) (-3481 (((-3 (-586 (-1079 $)) "failed") (-586 (-1079 $)) (-1079 $)) NIL (|has| |#1| (-837)))) (-3863 (($ $) NIL)) (-3961 (($) NIL T CONST)) (-1296 (((-3 |#1| "failed") $) NIL) (((-3 (-380 (-520)) "failed") $) NIL (|has| |#1| (-960 (-380 (-520))))) (((-3 (-520) "failed") $) NIL (|has| |#1| (-960 (-520)))) (((-3 (-1002 (-1083)) "failed") $) NIL) (((-3 (-1083) "failed") $) NIL) (((-3 (-1035 |#1| (-1083)) "failed") $) NIL)) (-1482 ((|#1| $) NIL) (((-380 (-520)) $) NIL (|has| |#1| (-960 (-380 (-520))))) (((-520) $) NIL (|has| |#1| (-960 (-520)))) (((-1002 (-1083)) $) NIL) (((-1083) $) NIL) (((-1035 |#1| (-1083)) $) NIL)) (-2413 (($ $ $ (-1002 (-1083))) NIL (|has| |#1| (-157)))) (-3150 (($ $) NIL)) (-2756 (((-626 (-520)) (-626 $)) NIL (|has| |#1| (-582 (-520)))) (((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 $) (-1164 $)) NIL (|has| |#1| (-582 (-520)))) (((-2 (|:| -3927 (-626 |#1|)) (|:| |vec| (-1164 |#1|))) (-626 $) (-1164 $)) NIL) (((-626 |#1|) (-626 $)) NIL)) (-1540 (((-3 $ "failed") $) NIL)) (-3923 (($ $) NIL (|has| |#1| (-424))) (($ $ (-1002 (-1083))) NIL (|has| |#1| (-424)))) (-3142 (((-586 $) $) NIL)) (-2036 (((-108) $) NIL (|has| |#1| (-837)))) (-3397 (($ $ |#1| (-492 (-1002 (-1083))) $) NIL)) (-1272 (((-817 (-352) $) $ (-820 (-352)) (-817 (-352) $)) NIL (-12 (|has| (-1002 (-1083)) (-814 (-352))) (|has| |#1| (-814 (-352))))) (((-817 (-520) $) $ (-820 (-520)) (-817 (-520) $)) NIL (-12 (|has| (-1002 (-1083)) (-814 (-520))) (|has| |#1| (-814 (-520)))))) (-3989 (((-706) $ (-1083)) NIL) (((-706) $) NIL)) (-1537 (((-108) $) NIL)) (-1315 (((-706) $) NIL)) (-4065 (($ (-1079 |#1|) (-1002 (-1083))) NIL) (($ (-1079 $) (-1002 (-1083))) NIL)) (-1992 (((-586 $) $) NIL)) (-3774 (((-108) $) NIL)) (-4039 (($ |#1| (-492 (-1002 (-1083)))) NIL) (($ $ (-1002 (-1083)) (-706)) NIL) (($ $ (-586 (-1002 (-1083))) (-586 (-706))) NIL)) (-1910 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $ (-1002 (-1083))) NIL)) (-3562 (((-492 (-1002 (-1083))) $) NIL) (((-706) $ (-1002 (-1083))) NIL) (((-586 (-706)) $ (-586 (-1002 (-1083)))) NIL)) (-2809 (($ $ $) NIL (|has| |#1| (-783)))) (-2446 (($ $ $) NIL (|has| |#1| (-783)))) (-3295 (($ (-1 (-492 (-1002 (-1083))) (-492 (-1002 (-1083)))) $) NIL)) (-1389 (($ (-1 |#1| |#1|) $) NIL)) (-1676 (((-1 $ (-706)) (-1083)) NIL) (((-1 $ (-706)) $) NIL (|has| |#1| (-209)))) (-3186 (((-3 (-1002 (-1083)) "failed") $) NIL)) (-3123 (($ $) NIL)) (-3133 ((|#1| $) NIL)) (-1569 (((-1002 (-1083)) $) NIL)) (-2222 (($ (-586 $)) NIL (|has| |#1| (-424))) (($ $ $) NIL (|has| |#1| (-424)))) (-1239 (((-1066) $) NIL)) (-3365 (((-108) $) NIL)) (-3548 (((-3 (-586 $) "failed") $) NIL)) (-1205 (((-3 (-586 $) "failed") $) NIL)) (-2568 (((-3 (-2 (|:| |var| (-1002 (-1083))) (|:| -2647 (-706))) "failed") $) NIL)) (-1900 (($ $) NIL)) (-4142 (((-1030) $) NIL)) (-3103 (((-108) $) NIL)) (-3113 ((|#1| $) NIL)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) NIL (|has| |#1| (-424)))) (-2257 (($ (-586 $)) NIL (|has| |#1| (-424))) (($ $ $) NIL (|has| |#1| (-424)))) (-4133 (((-391 (-1079 $)) (-1079 $)) NIL (|has| |#1| (-837)))) (-2017 (((-391 (-1079 $)) (-1079 $)) NIL (|has| |#1| (-837)))) (-1916 (((-391 $) $) NIL (|has| |#1| (-837)))) (-2230 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-512))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-512)))) (-2286 (($ $ (-586 (-268 $))) NIL) (($ $ (-268 $)) NIL) (($ $ $ $) NIL) (($ $ (-586 $) (-586 $)) NIL) (($ $ (-1002 (-1083)) |#1|) NIL) (($ $ (-586 (-1002 (-1083))) (-586 |#1|)) NIL) (($ $ (-1002 (-1083)) $) NIL) (($ $ (-586 (-1002 (-1083))) (-586 $)) NIL) (($ $ (-1083) $) NIL (|has| |#1| (-209))) (($ $ (-586 (-1083)) (-586 $)) NIL (|has| |#1| (-209))) (($ $ (-1083) |#1|) NIL (|has| |#1| (-209))) (($ $ (-586 (-1083)) (-586 |#1|)) NIL (|has| |#1| (-209)))) (-2732 (($ $ (-1002 (-1083))) NIL (|has| |#1| (-157)))) (-2155 (($ $ (-1002 (-1083))) NIL) (($ $ (-586 (-1002 (-1083)))) NIL) (($ $ (-1002 (-1083)) (-706)) NIL) (($ $ (-586 (-1002 (-1083))) (-586 (-706))) NIL) (($ $) NIL (|has| |#1| (-209))) (($ $ (-706)) NIL (|has| |#1| (-209))) (($ $ (-1083)) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-586 (-1083))) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-1083) (-706)) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-586 (-1083)) (-586 (-706))) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-1 |#1| |#1|) (-706)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2557 (((-586 (-1083)) $) NIL)) (-2528 (((-492 (-1002 (-1083))) $) NIL) (((-706) $ (-1002 (-1083))) NIL) (((-586 (-706)) $ (-586 (-1002 (-1083)))) NIL) (((-706) $ (-1083)) NIL)) (-1429 (((-820 (-352)) $) NIL (-12 (|has| (-1002 (-1083)) (-561 (-820 (-352)))) (|has| |#1| (-561 (-820 (-352)))))) (((-820 (-520)) $) NIL (-12 (|has| (-1002 (-1083)) (-561 (-820 (-520)))) (|has| |#1| (-561 (-820 (-520)))))) (((-496) $) NIL (-12 (|has| (-1002 (-1083)) (-561 (-496))) (|has| |#1| (-561 (-496)))))) (-1233 ((|#1| $) NIL (|has| |#1| (-424))) (($ $ (-1002 (-1083))) NIL (|has| |#1| (-424)))) (-3784 (((-3 (-1164 $) "failed") (-626 $)) NIL (-12 (|has| $ (-133)) (|has| |#1| (-837))))) (-2188 (((-791) $) NIL) (($ (-520)) NIL) (($ |#1|) NIL) (($ (-1002 (-1083))) NIL) (($ (-1083)) NIL) (($ (-1035 |#1| (-1083))) NIL) (($ (-380 (-520))) NIL (-3700 (|has| |#1| (-37 (-380 (-520)))) (|has| |#1| (-960 (-380 (-520)))))) (($ $) NIL (|has| |#1| (-512)))) (-4113 (((-586 |#1|) $) NIL)) (-3475 ((|#1| $ (-492 (-1002 (-1083)))) NIL) (($ $ (-1002 (-1083)) (-706)) NIL) (($ $ (-586 (-1002 (-1083))) (-586 (-706))) NIL)) (-3796 (((-3 $ "failed") $) NIL (-3700 (-12 (|has| $ (-133)) (|has| |#1| (-837))) (|has| |#1| (-133))))) (-3251 (((-706)) NIL)) (-1782 (($ $ $ (-706)) NIL (|has| |#1| (-157)))) (-2559 (((-108) $ $) NIL (|has| |#1| (-512)))) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (-3560 (($) NIL T CONST)) (-3570 (($) NIL T CONST)) (-2211 (($ $ (-1002 (-1083))) NIL) (($ $ (-586 (-1002 (-1083)))) NIL) (($ $ (-1002 (-1083)) (-706)) NIL) (($ $ (-586 (-1002 (-1083))) (-586 (-706))) NIL) (($ $) NIL (|has| |#1| (-209))) (($ $ (-706)) NIL (|has| |#1| (-209))) (($ $ (-1083)) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-586 (-1083))) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-1083) (-706)) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-586 (-1083)) (-586 (-706))) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-1 |#1| |#1|) (-706)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1573 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1557 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1530 (((-108) $ $) NIL)) (-1565 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1548 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1619 (($ $ |#1|) NIL (|has| |#1| (-336)))) (-1611 (($ $) NIL) (($ $ $) NIL)) (-1601 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) NIL) (($ $ (-380 (-520))) NIL (|has| |#1| (-37 (-380 (-520))))) (($ (-380 (-520)) $) NIL (|has| |#1| (-37 (-380 (-520))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-1001 |#1|) (-13 (-228 |#1| (-1083) (-1002 (-1083)) (-492 (-1002 (-1083)))) (-960 (-1035 |#1| (-1083)))) (-969)) (T -1001))
-NIL
-(-13 (-228 |#1| (-1083) (-1002 (-1083)) (-492 (-1002 (-1083)))) (-960 (-1035 |#1| (-1083))))
-((-1414 (((-108) $ $) NIL)) (-1785 (((-706) $) NIL)) (-1610 ((|#1| $) 10)) (-1296 (((-3 |#1| "failed") $) NIL)) (-1482 ((|#1| $) NIL)) (-3989 (((-706) $) 11)) (-2809 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-1676 (($ |#1| (-706)) 9)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2155 (($ $) NIL) (($ $ (-706)) NIL)) (-2188 (((-791) $) NIL) (($ |#1|) NIL)) (-1573 (((-108) $ $) NIL)) (-1557 (((-108) $ $) NIL)) (-1530 (((-108) $ $) NIL)) (-1565 (((-108) $ $) NIL)) (-1548 (((-108) $ $) 15)))
-(((-1002 |#1|) (-241 |#1|) (-783)) (T -1002))
-NIL
-(-241 |#1|)
-((-1389 (((-586 |#2|) (-1 |#2| |#1|) (-1007 |#1|)) 24 (|has| |#1| (-781))) (((-1007 |#2|) (-1 |#2| |#1|) (-1007 |#1|)) 14)))
-(((-1003 |#1| |#2|) (-10 -7 (-15 -1389 ((-1007 |#2|) (-1 |#2| |#1|) (-1007 |#1|))) (IF (|has| |#1| (-781)) (-15 -1389 ((-586 |#2|) (-1 |#2| |#1|) (-1007 |#1|))) |%noBranch|)) (-1118) (-1118)) (T -1003))
-((-1389 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1007 *5)) (-4 *5 (-781)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-5 *2 (-586 *6)) (-5 *1 (-1003 *5 *6)))) (-1389 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1007 *5)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-5 *2 (-1007 *6)) (-5 *1 (-1003 *5 *6)))))
-(-10 -7 (-15 -1389 ((-1007 |#2|) (-1 |#2| |#1|) (-1007 |#1|))) (IF (|has| |#1| (-781)) (-15 -1389 ((-586 |#2|) (-1 |#2| |#1|) (-1007 |#1|))) |%noBranch|))
-((-1389 (((-1005 |#2|) (-1 |#2| |#1|) (-1005 |#1|)) 19)))
-(((-1004 |#1| |#2|) (-10 -7 (-15 -1389 ((-1005 |#2|) (-1 |#2| |#1|) (-1005 |#1|)))) (-1118) (-1118)) (T -1004))
-((-1389 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1005 *5)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-5 *2 (-1005 *6)) (-5 *1 (-1004 *5 *6)))))
-(-10 -7 (-15 -1389 ((-1005 |#2|) (-1 |#2| |#1|) (-1005 |#1|))))
-((-1414 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-1610 (((-1083) $) 11)) (-1538 (((-1007 |#1|) $) 12)) (-1239 (((-1066) $) NIL (|has| |#1| (-1012)))) (-4142 (((-1030) $) NIL (|has| |#1| (-1012)))) (-1607 (($ (-1083) (-1007 |#1|)) 10)) (-2188 (((-791) $) 20 (|has| |#1| (-1012)))) (-1530 (((-108) $ $) 15 (|has| |#1| (-1012)))))
-(((-1005 |#1|) (-13 (-1118) (-10 -8 (-15 -1607 ($ (-1083) (-1007 |#1|))) (-15 -1610 ((-1083) $)) (-15 -1538 ((-1007 |#1|) $)) (IF (|has| |#1| (-1012)) (-6 (-1012)) |%noBranch|))) (-1118)) (T -1005))
-((-1607 (*1 *1 *2 *3) (-12 (-5 *2 (-1083)) (-5 *3 (-1007 *4)) (-4 *4 (-1118)) (-5 *1 (-1005 *4)))) (-1610 (*1 *2 *1) (-12 (-5 *2 (-1083)) (-5 *1 (-1005 *3)) (-4 *3 (-1118)))) (-1538 (*1 *2 *1) (-12 (-5 *2 (-1007 *3)) (-5 *1 (-1005 *3)) (-4 *3 (-1118)))))
-(-13 (-1118) (-10 -8 (-15 -1607 ($ (-1083) (-1007 |#1|))) (-15 -1610 ((-1083) $)) (-15 -1538 ((-1007 |#1|) $)) (IF (|has| |#1| (-1012)) (-6 (-1012)) |%noBranch|)))
-((-1538 (($ |#1| |#1|) 7)) (-2205 ((|#1| $) 10)) (-1448 ((|#1| $) 12)) (-1459 (((-520) $) 8)) (-3609 ((|#1| $) 9)) (-1469 ((|#1| $) 11)) (-1429 (($ |#1|) 6)) (-1672 (($ |#1| |#1|) 14)) (-1344 (($ $ (-520)) 13)))
-(((-1006 |#1|) (-1195) (-1118)) (T -1006))
-((-1672 (*1 *1 *2 *2) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1118)))) (-1344 (*1 *1 *1 *2) (-12 (-5 *2 (-520)) (-4 *1 (-1006 *3)) (-4 *3 (-1118)))) (-1448 (*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1118)))) (-1469 (*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1118)))) (-2205 (*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1118)))) (-3609 (*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1118)))) (-1459 (*1 *2 *1) (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1118)) (-5 *2 (-520)))) (-1538 (*1 *1 *2 *2) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1118)))) (-1429 (*1 *1 *2) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1118)))))
-(-13 (-1118) (-10 -8 (-15 -1672 ($ |t#1| |t#1|)) (-15 -1344 ($ $ (-520))) (-15 -1448 (|t#1| $)) (-15 -1469 (|t#1| $)) (-15 -2205 (|t#1| $)) (-15 -3609 (|t#1| $)) (-15 -1459 ((-520) $)) (-15 -1538 ($ |t#1| |t#1|)) (-15 -1429 ($ |t#1|))))
-(((-1118) . T))
-((-1414 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-1538 (($ |#1| |#1|) 15)) (-1389 (((-586 |#1|) (-1 |#1| |#1|) $) 38 (|has| |#1| (-781)))) (-2205 ((|#1| $) 10)) (-1448 ((|#1| $) 9)) (-1239 (((-1066) $) NIL (|has| |#1| (-1012)))) (-1459 (((-520) $) 14)) (-3609 ((|#1| $) 12)) (-1469 ((|#1| $) 11)) (-4142 (((-1030) $) NIL (|has| |#1| (-1012)))) (-1603 (((-586 |#1|) $) 36 (|has| |#1| (-781))) (((-586 |#1|) (-586 $)) 35 (|has| |#1| (-781)))) (-1429 (($ |#1|) 26)) (-2188 (((-791) $) 25 (|has| |#1| (-1012)))) (-1672 (($ |#1| |#1|) 8)) (-1344 (($ $ (-520)) 16)) (-1530 (((-108) $ $) 19 (|has| |#1| (-1012)))))
-(((-1007 |#1|) (-13 (-1006 |#1|) (-10 -7 (IF (|has| |#1| (-1012)) (-6 (-1012)) |%noBranch|) (IF (|has| |#1| (-781)) (-6 (-1008 |#1| (-586 |#1|))) |%noBranch|))) (-1118)) (T -1007))
-NIL
-(-13 (-1006 |#1|) (-10 -7 (IF (|has| |#1| (-1012)) (-6 (-1012)) |%noBranch|) (IF (|has| |#1| (-781)) (-6 (-1008 |#1| (-586 |#1|))) |%noBranch|)))
-((-1538 (($ |#1| |#1|) 7)) (-1389 ((|#2| (-1 |#1| |#1|) $) 16)) (-2205 ((|#1| $) 10)) (-1448 ((|#1| $) 12)) (-1459 (((-520) $) 8)) (-3609 ((|#1| $) 9)) (-1469 ((|#1| $) 11)) (-1603 ((|#2| (-586 $)) 18) ((|#2| $) 17)) (-1429 (($ |#1|) 6)) (-1672 (($ |#1| |#1|) 14)) (-1344 (($ $ (-520)) 13)))
-(((-1008 |#1| |#2|) (-1195) (-781) (-1057 |t#1|)) (T -1008))
-((-1603 (*1 *2 *3) (-12 (-5 *3 (-586 *1)) (-4 *1 (-1008 *4 *2)) (-4 *4 (-781)) (-4 *2 (-1057 *4)))) (-1603 (*1 *2 *1) (-12 (-4 *1 (-1008 *3 *2)) (-4 *3 (-781)) (-4 *2 (-1057 *3)))) (-1389 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1008 *4 *2)) (-4 *4 (-781)) (-4 *2 (-1057 *4)))))
-(-13 (-1006 |t#1|) (-10 -8 (-15 -1603 (|t#2| (-586 $))) (-15 -1603 (|t#2| $)) (-15 -1389 (|t#2| (-1 |t#1| |t#1|) $))))
-(((-1006 |#1|) . T) ((-1118) . T))
-((-2268 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-1907 (($ $ $) 10)) (-1397 (($ $ $) NIL) (($ $ |#2|) 15)))
-(((-1009 |#1| |#2|) (-10 -8 (-15 -2268 (|#1| |#2| |#1|)) (-15 -2268 (|#1| |#1| |#2|)) (-15 -2268 (|#1| |#1| |#1|)) (-15 -1907 (|#1| |#1| |#1|)) (-15 -1397 (|#1| |#1| |#2|)) (-15 -1397 (|#1| |#1| |#1|))) (-1010 |#2|) (-1012)) (T -1009))
-NIL
-(-10 -8 (-15 -2268 (|#1| |#2| |#1|)) (-15 -2268 (|#1| |#1| |#2|)) (-15 -2268 (|#1| |#1| |#1|)) (-15 -1907 (|#1| |#1| |#1|)) (-15 -1397 (|#1| |#1| |#2|)) (-15 -1397 (|#1| |#1| |#1|)))
-((-1414 (((-108) $ $) 7)) (-2268 (($ $ $) 18) (($ $ |#1|) 17) (($ |#1| $) 16)) (-1907 (($ $ $) 20)) (-3645 (((-108) $ $) 19)) (-2063 (((-108) $ (-706)) 35)) (-1763 (($) 25) (($ (-586 |#1|)) 24)) (-1627 (($ (-1 (-108) |#1|) $) 56 (|has| $ (-6 -4229)))) (-3961 (($) 36 T CONST)) (-2331 (($ $) 59 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-1421 (($ |#1| $) 58 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229)))) (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4229)))) (-3856 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4229))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4229)))) (-3828 (((-586 |#1|) $) 43 (|has| $ (-6 -4229)))) (-3027 (((-108) $ (-706)) 34)) (-3702 (((-586 |#1|) $) 44 (|has| $ (-6 -4229)))) (-2422 (((-108) |#1| $) 46 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-3830 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#1| |#1|) $) 38)) (-1390 (((-108) $ (-706)) 33)) (-1239 (((-1066) $) 9)) (-2077 (($ $ $) 23)) (-4142 (((-1030) $) 10)) (-2985 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 52)) (-4155 (((-108) (-1 (-108) |#1|) $) 41 (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 |#1|) (-586 |#1|)) 50 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ |#1| |#1|) 49 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-268 |#1|)) 48 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-586 (-268 |#1|))) 47 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))) (-2533 (((-108) $ $) 29)) (-4018 (((-108) $) 32)) (-2238 (($) 31)) (-1397 (($ $ $) 22) (($ $ |#1|) 21)) (-4159 (((-706) |#1| $) 45 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229)))) (((-706) (-1 (-108) |#1|) $) 42 (|has| $ (-6 -4229)))) (-2403 (($ $) 30)) (-1429 (((-496) $) 60 (|has| |#1| (-561 (-496))))) (-2200 (($ (-586 |#1|)) 51)) (-2188 (((-791) $) 11)) (-3386 (($) 27) (($ (-586 |#1|)) 26)) (-1662 (((-108) (-1 (-108) |#1|) $) 40 (|has| $ (-6 -4229)))) (-1530 (((-108) $ $) 6)) (-1548 (((-108) $ $) 28)) (-3474 (((-706) $) 37 (|has| $ (-6 -4229)))))
-(((-1010 |#1|) (-1195) (-1012)) (T -1010))
-((-1548 (*1 *2 *1 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1012)) (-5 *2 (-108)))) (-3386 (*1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1012)))) (-3386 (*1 *1 *2) (-12 (-5 *2 (-586 *3)) (-4 *3 (-1012)) (-4 *1 (-1010 *3)))) (-1763 (*1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1012)))) (-1763 (*1 *1 *2) (-12 (-5 *2 (-586 *3)) (-4 *3 (-1012)) (-4 *1 (-1010 *3)))) (-2077 (*1 *1 *1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1012)))) (-1397 (*1 *1 *1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1012)))) (-1397 (*1 *1 *1 *2) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1012)))) (-1907 (*1 *1 *1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1012)))) (-3645 (*1 *2 *1 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1012)) (-5 *2 (-108)))) (-2268 (*1 *1 *1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1012)))) (-2268 (*1 *1 *1 *2) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1012)))) (-2268 (*1 *1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1012)))))
-(-13 (-1012) (-139 |t#1|) (-10 -8 (-6 -4219) (-15 -1548 ((-108) $ $)) (-15 -3386 ($)) (-15 -3386 ($ (-586 |t#1|))) (-15 -1763 ($)) (-15 -1763 ($ (-586 |t#1|))) (-15 -2077 ($ $ $)) (-15 -1397 ($ $ $)) (-15 -1397 ($ $ |t#1|)) (-15 -1907 ($ $ $)) (-15 -3645 ((-108) $ $)) (-15 -2268 ($ $ $)) (-15 -2268 ($ $ |t#1|)) (-15 -2268 ($ |t#1| $))))
-(((-33) . T) ((-97) . T) ((-560 (-791)) . T) ((-139 |#1|) . T) ((-561 (-496)) |has| |#1| (-561 (-496))) ((-283 |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))) ((-459 |#1|) . T) ((-481 |#1| |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))) ((-1012) . T) ((-1118) . T))
-((-1239 (((-1066) $) 10)) (-4142 (((-1030) $) 8)))
-(((-1011 |#1|) (-10 -8 (-15 -1239 ((-1066) |#1|)) (-15 -4142 ((-1030) |#1|))) (-1012)) (T -1011))
-NIL
-(-10 -8 (-15 -1239 ((-1066) |#1|)) (-15 -4142 ((-1030) |#1|)))
-((-1414 (((-108) $ $) 7)) (-1239 (((-1066) $) 9)) (-4142 (((-1030) $) 10)) (-2188 (((-791) $) 11)) (-1530 (((-108) $ $) 6)))
-(((-1012) (-1195)) (T -1012))
-((-4142 (*1 *2 *1) (-12 (-4 *1 (-1012)) (-5 *2 (-1030)))) (-1239 (*1 *2 *1) (-12 (-4 *1 (-1012)) (-5 *2 (-1066)))))
-(-13 (-97) (-560 (-791)) (-10 -8 (-15 -4142 ((-1030) $)) (-15 -1239 ((-1066) $))))
-(((-97) . T) ((-560 (-791)) . T))
-((-1414 (((-108) $ $) NIL)) (-1628 (((-706)) 30)) (-1514 (($ (-586 (-849))) 52)) (-2862 (((-3 $ "failed") $ (-849) (-849)) 57)) (-3249 (($) 32)) (-2422 (((-108) (-849) $) 35)) (-3040 (((-849) $) 50)) (-1239 (((-1066) $) NIL)) (-2716 (($ (-849)) 31)) (-3795 (((-3 $ "failed") $ (-849)) 55)) (-4142 (((-1030) $) NIL)) (-3020 (((-1164 $)) 40)) (-2334 (((-586 (-849)) $) 23)) (-1201 (((-706) $ (-849) (-849)) 56)) (-2188 (((-791) $) 29)) (-1530 (((-108) $ $) 21)))
-(((-1013 |#1| |#2|) (-13 (-341) (-10 -8 (-15 -3795 ((-3 $ "failed") $ (-849))) (-15 -2862 ((-3 $ "failed") $ (-849) (-849))) (-15 -2334 ((-586 (-849)) $)) (-15 -1514 ($ (-586 (-849)))) (-15 -3020 ((-1164 $))) (-15 -2422 ((-108) (-849) $)) (-15 -1201 ((-706) $ (-849) (-849))))) (-849) (-849)) (T -1013))
-((-3795 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-849)) (-5 *1 (-1013 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-2862 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-849)) (-5 *1 (-1013 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-2334 (*1 *2 *1) (-12 (-5 *2 (-586 (-849))) (-5 *1 (-1013 *3 *4)) (-14 *3 (-849)) (-14 *4 (-849)))) (-1514 (*1 *1 *2) (-12 (-5 *2 (-586 (-849))) (-5 *1 (-1013 *3 *4)) (-14 *3 (-849)) (-14 *4 (-849)))) (-3020 (*1 *2) (-12 (-5 *2 (-1164 (-1013 *3 *4))) (-5 *1 (-1013 *3 *4)) (-14 *3 (-849)) (-14 *4 (-849)))) (-2422 (*1 *2 *3 *1) (-12 (-5 *3 (-849)) (-5 *2 (-108)) (-5 *1 (-1013 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-1201 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-849)) (-5 *2 (-706)) (-5 *1 (-1013 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
-(-13 (-341) (-10 -8 (-15 -3795 ((-3 $ "failed") $ (-849))) (-15 -2862 ((-3 $ "failed") $ (-849) (-849))) (-15 -2334 ((-586 (-849)) $)) (-15 -1514 ($ (-586 (-849)))) (-15 -3020 ((-1164 $))) (-15 -2422 ((-108) (-849) $)) (-15 -1201 ((-706) $ (-849) (-849)))))
-((-1414 (((-108) $ $) NIL)) (-2442 (($) NIL (|has| |#1| (-341)))) (-2268 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 74)) (-1907 (($ $ $) 72)) (-3645 (((-108) $ $) 73)) (-2063 (((-108) $ (-706)) NIL)) (-1628 (((-706)) NIL (|has| |#1| (-341)))) (-1763 (($ (-586 |#1|)) NIL) (($) 13)) (-1817 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-1627 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-3961 (($) NIL T CONST)) (-2331 (($ $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-3766 (($ |#1| $) 67 (|has| $ (-6 -4229))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-1421 (($ |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-3856 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4229))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4229)))) (-3249 (($) NIL (|has| |#1| (-341)))) (-3828 (((-586 |#1|) $) 19 (|has| $ (-6 -4229)))) (-3027 (((-108) $ (-706)) NIL)) (-2809 ((|#1| $) 57 (|has| |#1| (-783)))) (-3702 (((-586 |#1|) $) NIL (|has| $ (-6 -4229)))) (-2422 (((-108) |#1| $) 66 (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-2446 ((|#1| $) 55 (|has| |#1| (-783)))) (-3830 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#1| |#1|) $) 34)) (-3040 (((-849) $) NIL (|has| |#1| (-341)))) (-1390 (((-108) $ (-706)) NIL)) (-1239 (((-1066) $) NIL)) (-2077 (($ $ $) 70)) (-3351 ((|#1| $) 25)) (-3618 (($ |#1| $) 65)) (-2716 (($ (-849)) NIL (|has| |#1| (-341)))) (-4142 (((-1030) $) NIL)) (-2985 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 31)) (-3345 ((|#1| $) 27)) (-4155 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 |#1|))) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-268 |#1|)) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-586 |#1|) (-586 |#1|)) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))) (-2533 (((-108) $ $) NIL)) (-4018 (((-108) $) 21)) (-2238 (($) 11)) (-1397 (($ $ |#1|) NIL) (($ $ $) 71)) (-1645 (($) NIL) (($ (-586 |#1|)) NIL)) (-4159 (((-706) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229))) (((-706) |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-2403 (($ $) 16)) (-1429 (((-496) $) 52 (|has| |#1| (-561 (-496))))) (-2200 (($ (-586 |#1|)) 61)) (-3881 (($ $) NIL (|has| |#1| (-341)))) (-2188 (((-791) $) NIL)) (-1436 (((-706) $) NIL)) (-3386 (($ (-586 |#1|)) NIL) (($) 12)) (-1898 (($ (-586 |#1|)) NIL)) (-1662 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-1530 (((-108) $ $) 54)) (-1548 (((-108) $ $) NIL)) (-3474 (((-706) $) 10 (|has| $ (-6 -4229)))))
-(((-1014 |#1|) (-398 |#1|) (-1012)) (T -1014))
-NIL
-(-398 |#1|)
-((-1414 (((-108) $ $) 7)) (-3525 (((-108) $) 32)) (-1488 ((|#2| $) 27)) (-1732 (((-108) $) 33)) (-1505 ((|#1| $) 28)) (-1348 (((-108) $) 35)) (-2505 (((-108) $) 37)) (-1230 (((-108) $) 34)) (-1239 (((-1066) $) 9)) (-3447 (((-108) $) 31)) (-1506 ((|#3| $) 26)) (-4142 (((-1030) $) 10)) (-2919 (((-108) $) 30)) (-3066 ((|#4| $) 25)) (-1574 ((|#5| $) 24)) (-3190 (((-108) $ $) 38)) (-2543 (($ $ (-520)) 14) (($ $ (-586 (-520))) 13)) (-1988 (((-586 $) $) 29)) (-1429 (($ (-586 $)) 23) (($ |#1|) 22) (($ |#2|) 21) (($ |#3|) 20) (($ |#4|) 19) (($ |#5|) 18)) (-2188 (((-791) $) 11)) (-3206 (($ $) 16)) (-3194 (($ $) 17)) (-3452 (((-108) $) 36)) (-1530 (((-108) $ $) 6)) (-3474 (((-520) $) 15)))
-(((-1015 |#1| |#2| |#3| |#4| |#5|) (-1195) (-1012) (-1012) (-1012) (-1012) (-1012)) (T -1015))
-((-3190 (*1 *2 *1 *1) (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-108)))) (-2505 (*1 *2 *1) (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-108)))) (-3452 (*1 *2 *1) (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-108)))) (-1348 (*1 *2 *1) (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-108)))) (-1230 (*1 *2 *1) (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-108)))) (-1732 (*1 *2 *1) (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-108)))) (-3525 (*1 *2 *1) (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-108)))) (-3447 (*1 *2 *1) (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-108)))) (-2919 (*1 *2 *1) (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-108)))) (-1988 (*1 *2 *1) (-12 (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-586 *1)) (-4 *1 (-1015 *3 *4 *5 *6 *7)))) (-1505 (*1 *2 *1) (-12 (-4 *1 (-1015 *2 *3 *4 *5 *6)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *2 (-1012)))) (-1488 (*1 *2 *1) (-12 (-4 *1 (-1015 *3 *2 *4 *5 *6)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *2 (-1012)))) (-1506 (*1 *2 *1) (-12 (-4 *1 (-1015 *3 *4 *2 *5 *6)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *2 (-1012)))) (-3066 (*1 *2 *1) (-12 (-4 *1 (-1015 *3 *4 *5 *2 *6)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *2 (-1012)))) (-1574 (*1 *2 *1) (-12 (-4 *1 (-1015 *3 *4 *5 *6 *2)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *2 (-1012)))) (-1429 (*1 *1 *2) (-12 (-5 *2 (-586 *1)) (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)))) (-1429 (*1 *1 *2) (-12 (-4 *1 (-1015 *2 *3 *4 *5 *6)) (-4 *2 (-1012)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)))) (-1429 (*1 *1 *2) (-12 (-4 *1 (-1015 *3 *2 *4 *5 *6)) (-4 *3 (-1012)) (-4 *2 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)))) (-1429 (*1 *1 *2) (-12 (-4 *1 (-1015 *3 *4 *2 *5 *6)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *2 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)))) (-1429 (*1 *1 *2) (-12 (-4 *1 (-1015 *3 *4 *5 *2 *6)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *2 (-1012)) (-4 *6 (-1012)))) (-1429 (*1 *1 *2) (-12 (-4 *1 (-1015 *3 *4 *5 *6 *2)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *2 (-1012)))) (-3194 (*1 *1 *1) (-12 (-4 *1 (-1015 *2 *3 *4 *5 *6)) (-4 *2 (-1012)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)))) (-3206 (*1 *1 *1) (-12 (-4 *1 (-1015 *2 *3 *4 *5 *6)) (-4 *2 (-1012)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)))) (-3474 (*1 *2 *1) (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-520)))) (-2543 (*1 *1 *1 *2) (-12 (-5 *2 (-520)) (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)))) (-2543 (*1 *1 *1 *2) (-12 (-5 *2 (-586 (-520))) (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)))))
-(-13 (-1012) (-10 -8 (-15 -3190 ((-108) $ $)) (-15 -2505 ((-108) $)) (-15 -3452 ((-108) $)) (-15 -1348 ((-108) $)) (-15 -1230 ((-108) $)) (-15 -1732 ((-108) $)) (-15 -3525 ((-108) $)) (-15 -3447 ((-108) $)) (-15 -2919 ((-108) $)) (-15 -1988 ((-586 $) $)) (-15 -1505 (|t#1| $)) (-15 -1488 (|t#2| $)) (-15 -1506 (|t#3| $)) (-15 -3066 (|t#4| $)) (-15 -1574 (|t#5| $)) (-15 -1429 ($ (-586 $))) (-15 -1429 ($ |t#1|)) (-15 -1429 ($ |t#2|)) (-15 -1429 ($ |t#3|)) (-15 -1429 ($ |t#4|)) (-15 -1429 ($ |t#5|)) (-15 -3194 ($ $)) (-15 -3206 ($ $)) (-15 -3474 ((-520) $)) (-15 -2543 ($ $ (-520))) (-15 -2543 ($ $ (-586 (-520))))))
-(((-97) . T) ((-560 (-791)) . T) ((-1012) . T))
-((-1414 (((-108) $ $) NIL)) (-3525 (((-108) $) NIL)) (-1488 (((-1083) $) NIL)) (-1732 (((-108) $) NIL)) (-1505 (((-1066) $) NIL)) (-1348 (((-108) $) NIL)) (-2505 (((-108) $) NIL)) (-1230 (((-108) $) NIL)) (-1239 (((-1066) $) NIL)) (-3447 (((-108) $) NIL)) (-1506 (((-520) $) NIL)) (-4142 (((-1030) $) NIL)) (-2919 (((-108) $) NIL)) (-3066 (((-201) $) NIL)) (-1574 (((-791) $) NIL)) (-3190 (((-108) $ $) NIL)) (-2543 (($ $ (-520)) NIL) (($ $ (-586 (-520))) NIL)) (-1988 (((-586 $) $) NIL)) (-1429 (($ (-586 $)) NIL) (($ (-1066)) NIL) (($ (-1083)) NIL) (($ (-520)) NIL) (($ (-201)) NIL) (($ (-791)) NIL)) (-2188 (((-791) $) NIL)) (-3206 (($ $) NIL)) (-3194 (($ $) NIL)) (-3452 (((-108) $) NIL)) (-1530 (((-108) $ $) NIL)) (-3474 (((-520) $) NIL)))
-(((-1016) (-1015 (-1066) (-1083) (-520) (-201) (-791))) (T -1016))
-NIL
-(-1015 (-1066) (-1083) (-520) (-201) (-791))
-((-1414 (((-108) $ $) NIL)) (-3525 (((-108) $) 38)) (-1488 ((|#2| $) 42)) (-1732 (((-108) $) 37)) (-1505 ((|#1| $) 41)) (-1348 (((-108) $) 35)) (-2505 (((-108) $) 14)) (-1230 (((-108) $) 36)) (-1239 (((-1066) $) NIL)) (-3447 (((-108) $) 39)) (-1506 ((|#3| $) 44)) (-4142 (((-1030) $) NIL)) (-2919 (((-108) $) 40)) (-3066 ((|#4| $) 43)) (-1574 ((|#5| $) 45)) (-3190 (((-108) $ $) 34)) (-2543 (($ $ (-520)) 56) (($ $ (-586 (-520))) 58)) (-1988 (((-586 $) $) 22)) (-1429 (($ (-586 $)) 46) (($ |#1|) 47) (($ |#2|) 48) (($ |#3|) 49) (($ |#4|) 50) (($ |#5|) 51)) (-2188 (((-791) $) 23)) (-3206 (($ $) 21)) (-3194 (($ $) 52)) (-3452 (((-108) $) 18)) (-1530 (((-108) $ $) 33)) (-3474 (((-520) $) 54)))
-(((-1017 |#1| |#2| |#3| |#4| |#5|) (-1015 |#1| |#2| |#3| |#4| |#5|) (-1012) (-1012) (-1012) (-1012) (-1012)) (T -1017))
-NIL
-(-1015 |#1| |#2| |#3| |#4| |#5|)
-((-2008 (((-1169) $) 23)) (-1462 (($ (-1083) (-407) |#2|) 11)) (-2188 (((-791) $) 16)))
-(((-1018 |#1| |#2|) (-13 (-368) (-10 -8 (-15 -1462 ($ (-1083) (-407) |#2|)))) (-783) (-403 |#1|)) (T -1018))
-((-1462 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1083)) (-5 *3 (-407)) (-4 *5 (-783)) (-5 *1 (-1018 *5 *4)) (-4 *4 (-403 *5)))))
-(-13 (-368) (-10 -8 (-15 -1462 ($ (-1083) (-407) |#2|))))
-((-2128 (((-108) |#5| |#5|) 38)) (-4105 (((-108) |#5| |#5|) 52)) (-3699 (((-108) |#5| (-586 |#5|)) 75) (((-108) |#5| |#5|) 61)) (-4013 (((-108) (-586 |#4|) (-586 |#4|)) 58)) (-1712 (((-108) (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|)) (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))) 63)) (-3874 (((-1169)) 33)) (-2897 (((-1169) (-1066) (-1066) (-1066)) 29)) (-3117 (((-586 |#5|) (-586 |#5|)) 82)) (-2984 (((-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))) (-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|)))) 80)) (-2143 (((-586 (-2 (|:| -3190 (-586 |#4|)) (|:| -1883 |#5|) (|:| |ineq| (-586 |#4|)))) (-586 |#4|) (-586 |#5|) (-108) (-108)) 102)) (-3364 (((-108) |#5| |#5|) 47)) (-3479 (((-3 (-108) "failed") |#5| |#5|) 71)) (-3087 (((-108) (-586 |#4|) (-586 |#4|)) 57)) (-3515 (((-108) (-586 |#4|) (-586 |#4|)) 59)) (-3444 (((-108) (-586 |#4|) (-586 |#4|)) 60)) (-3760 (((-3 (-2 (|:| -3190 (-586 |#4|)) (|:| -1883 |#5|) (|:| |ineq| (-586 |#4|))) "failed") (-586 |#4|) |#5| (-586 |#4|) (-108) (-108) (-108) (-108) (-108)) 98)) (-1878 (((-586 |#5|) (-586 |#5|)) 43)))
-(((-1019 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2897 ((-1169) (-1066) (-1066) (-1066))) (-15 -3874 ((-1169))) (-15 -2128 ((-108) |#5| |#5|)) (-15 -1878 ((-586 |#5|) (-586 |#5|))) (-15 -3364 ((-108) |#5| |#5|)) (-15 -4105 ((-108) |#5| |#5|)) (-15 -4013 ((-108) (-586 |#4|) (-586 |#4|))) (-15 -3087 ((-108) (-586 |#4|) (-586 |#4|))) (-15 -3515 ((-108) (-586 |#4|) (-586 |#4|))) (-15 -3444 ((-108) (-586 |#4|) (-586 |#4|))) (-15 -3479 ((-3 (-108) "failed") |#5| |#5|)) (-15 -3699 ((-108) |#5| |#5|)) (-15 -3699 ((-108) |#5| (-586 |#5|))) (-15 -3117 ((-586 |#5|) (-586 |#5|))) (-15 -1712 ((-108) (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|)) (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|)))) (-15 -2984 ((-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))) (-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))))) (-15 -2143 ((-586 (-2 (|:| -3190 (-586 |#4|)) (|:| -1883 |#5|) (|:| |ineq| (-586 |#4|)))) (-586 |#4|) (-586 |#5|) (-108) (-108))) (-15 -3760 ((-3 (-2 (|:| -3190 (-586 |#4|)) (|:| -1883 |#5|) (|:| |ineq| (-586 |#4|))) "failed") (-586 |#4|) |#5| (-586 |#4|) (-108) (-108) (-108) (-108) (-108)))) (-424) (-728) (-783) (-983 |#1| |#2| |#3|) (-988 |#1| |#2| |#3| |#4|)) (T -1019))
-((-3760 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-108)) (-4 *6 (-424)) (-4 *7 (-728)) (-4 *8 (-783)) (-4 *9 (-983 *6 *7 *8)) (-5 *2 (-2 (|:| -3190 (-586 *9)) (|:| -1883 *4) (|:| |ineq| (-586 *9)))) (-5 *1 (-1019 *6 *7 *8 *9 *4)) (-5 *3 (-586 *9)) (-4 *4 (-988 *6 *7 *8 *9)))) (-2143 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-586 *10)) (-5 *5 (-108)) (-4 *10 (-988 *6 *7 *8 *9)) (-4 *6 (-424)) (-4 *7 (-728)) (-4 *8 (-783)) (-4 *9 (-983 *6 *7 *8)) (-5 *2 (-586 (-2 (|:| -3190 (-586 *9)) (|:| -1883 *10) (|:| |ineq| (-586 *9))))) (-5 *1 (-1019 *6 *7 *8 *9 *10)) (-5 *3 (-586 *9)))) (-2984 (*1 *2 *2) (-12 (-5 *2 (-586 (-2 (|:| |val| (-586 *6)) (|:| -1883 *7)))) (-4 *6 (-983 *3 *4 *5)) (-4 *7 (-988 *3 *4 *5 *6)) (-4 *3 (-424)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *1 (-1019 *3 *4 *5 *6 *7)))) (-1712 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-586 *7)) (|:| -1883 *8))) (-4 *7 (-983 *4 *5 *6)) (-4 *8 (-988 *4 *5 *6 *7)) (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-108)) (-5 *1 (-1019 *4 *5 *6 *7 *8)))) (-3117 (*1 *2 *2) (-12 (-5 *2 (-586 *7)) (-4 *7 (-988 *3 *4 *5 *6)) (-4 *3 (-424)) (-4 *4 (-728)) (-4 *5 (-783)) (-4 *6 (-983 *3 *4 *5)) (-5 *1 (-1019 *3 *4 *5 *6 *7)))) (-3699 (*1 *2 *3 *4) (-12 (-5 *4 (-586 *3)) (-4 *3 (-988 *5 *6 *7 *8)) (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783)) (-4 *8 (-983 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-1019 *5 *6 *7 *8 *3)))) (-3699 (*1 *2 *3 *3) (-12 (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783)) (-4 *7 (-983 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-988 *4 *5 *6 *7)))) (-3479 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783)) (-4 *7 (-983 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-988 *4 *5 *6 *7)))) (-3444 (*1 *2 *3 *3) (-12 (-5 *3 (-586 *7)) (-4 *7 (-983 *4 *5 *6)) (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-108)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-988 *4 *5 *6 *7)))) (-3515 (*1 *2 *3 *3) (-12 (-5 *3 (-586 *7)) (-4 *7 (-983 *4 *5 *6)) (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-108)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-988 *4 *5 *6 *7)))) (-3087 (*1 *2 *3 *3) (-12 (-5 *3 (-586 *7)) (-4 *7 (-983 *4 *5 *6)) (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-108)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-988 *4 *5 *6 *7)))) (-4013 (*1 *2 *3 *3) (-12 (-5 *3 (-586 *7)) (-4 *7 (-983 *4 *5 *6)) (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-108)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-988 *4 *5 *6 *7)))) (-4105 (*1 *2 *3 *3) (-12 (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783)) (-4 *7 (-983 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-988 *4 *5 *6 *7)))) (-3364 (*1 *2 *3 *3) (-12 (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783)) (-4 *7 (-983 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-988 *4 *5 *6 *7)))) (-1878 (*1 *2 *2) (-12 (-5 *2 (-586 *7)) (-4 *7 (-988 *3 *4 *5 *6)) (-4 *3 (-424)) (-4 *4 (-728)) (-4 *5 (-783)) (-4 *6 (-983 *3 *4 *5)) (-5 *1 (-1019 *3 *4 *5 *6 *7)))) (-2128 (*1 *2 *3 *3) (-12 (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783)) (-4 *7 (-983 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-988 *4 *5 *6 *7)))) (-3874 (*1 *2) (-12 (-4 *3 (-424)) (-4 *4 (-728)) (-4 *5 (-783)) (-4 *6 (-983 *3 *4 *5)) (-5 *2 (-1169)) (-5 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *7 (-988 *3 *4 *5 *6)))) (-2897 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1066)) (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783)) (-4 *7 (-983 *4 *5 *6)) (-5 *2 (-1169)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-988 *4 *5 *6 *7)))))
-(-10 -7 (-15 -2897 ((-1169) (-1066) (-1066) (-1066))) (-15 -3874 ((-1169))) (-15 -2128 ((-108) |#5| |#5|)) (-15 -1878 ((-586 |#5|) (-586 |#5|))) (-15 -3364 ((-108) |#5| |#5|)) (-15 -4105 ((-108) |#5| |#5|)) (-15 -4013 ((-108) (-586 |#4|) (-586 |#4|))) (-15 -3087 ((-108) (-586 |#4|) (-586 |#4|))) (-15 -3515 ((-108) (-586 |#4|) (-586 |#4|))) (-15 -3444 ((-108) (-586 |#4|) (-586 |#4|))) (-15 -3479 ((-3 (-108) "failed") |#5| |#5|)) (-15 -3699 ((-108) |#5| |#5|)) (-15 -3699 ((-108) |#5| (-586 |#5|))) (-15 -3117 ((-586 |#5|) (-586 |#5|))) (-15 -1712 ((-108) (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|)) (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|)))) (-15 -2984 ((-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))) (-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))))) (-15 -2143 ((-586 (-2 (|:| -3190 (-586 |#4|)) (|:| -1883 |#5|) (|:| |ineq| (-586 |#4|)))) (-586 |#4|) (-586 |#5|) (-108) (-108))) (-15 -3760 ((-3 (-2 (|:| -3190 (-586 |#4|)) (|:| -1883 |#5|) (|:| |ineq| (-586 |#4|))) "failed") (-586 |#4|) |#5| (-586 |#4|) (-108) (-108) (-108) (-108) (-108))))
-((-2731 (((-586 (-2 (|:| |val| |#4|) (|:| -1883 |#5|))) |#4| |#5|) 95)) (-2087 (((-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))) |#4| |#4| |#5|) 71)) (-2394 (((-586 (-2 (|:| |val| |#4|) (|:| -1883 |#5|))) |#4| |#4| |#5|) 89)) (-3887 (((-586 |#5|) |#4| |#5|) 110)) (-2545 (((-586 |#5|) |#4| |#5|) 117)) (-2751 (((-586 |#5|) |#4| |#5|) 118)) (-3417 (((-586 (-2 (|:| |val| (-108)) (|:| -1883 |#5|))) |#4| |#5|) 96)) (-3427 (((-586 (-2 (|:| |val| (-108)) (|:| -1883 |#5|))) |#4| |#5|) 116)) (-1643 (((-586 (-2 (|:| |val| (-108)) (|:| -1883 |#5|))) |#4| |#5|) 44) (((-108) |#4| |#5|) 52)) (-4037 (((-586 (-2 (|:| |val| |#4|) (|:| -1883 |#5|))) (-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))) |#3| (-108)) 83) (((-586 (-2 (|:| |val| |#4|) (|:| -1883 |#5|))) |#4| |#4| |#5| (-108) (-108)) 49)) (-2449 (((-586 (-2 (|:| |val| |#4|) (|:| -1883 |#5|))) |#4| |#4| |#5|) 78)) (-2134 (((-1169)) 35)) (-3519 (((-1169)) 25)) (-3646 (((-1169) (-1066) (-1066) (-1066)) 31)) (-4022 (((-1169) (-1066) (-1066) (-1066)) 20)))
-(((-1020 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4022 ((-1169) (-1066) (-1066) (-1066))) (-15 -3519 ((-1169))) (-15 -3646 ((-1169) (-1066) (-1066) (-1066))) (-15 -2134 ((-1169))) (-15 -2087 ((-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))) |#4| |#4| |#5|)) (-15 -4037 ((-586 (-2 (|:| |val| |#4|) (|:| -1883 |#5|))) |#4| |#4| |#5| (-108) (-108))) (-15 -4037 ((-586 (-2 (|:| |val| |#4|) (|:| -1883 |#5|))) (-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))) |#3| (-108))) (-15 -2449 ((-586 (-2 (|:| |val| |#4|) (|:| -1883 |#5|))) |#4| |#4| |#5|)) (-15 -2394 ((-586 (-2 (|:| |val| |#4|) (|:| -1883 |#5|))) |#4| |#4| |#5|)) (-15 -1643 ((-108) |#4| |#5|)) (-15 -3417 ((-586 (-2 (|:| |val| (-108)) (|:| -1883 |#5|))) |#4| |#5|)) (-15 -3887 ((-586 |#5|) |#4| |#5|)) (-15 -3427 ((-586 (-2 (|:| |val| (-108)) (|:| -1883 |#5|))) |#4| |#5|)) (-15 -2545 ((-586 |#5|) |#4| |#5|)) (-15 -1643 ((-586 (-2 (|:| |val| (-108)) (|:| -1883 |#5|))) |#4| |#5|)) (-15 -2751 ((-586 |#5|) |#4| |#5|)) (-15 -2731 ((-586 (-2 (|:| |val| |#4|) (|:| -1883 |#5|))) |#4| |#5|))) (-424) (-728) (-783) (-983 |#1| |#2| |#3|) (-988 |#1| |#2| |#3| |#4|)) (T -1020))
-((-2731 (*1 *2 *3 *4) (-12 (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783)) (-4 *3 (-983 *5 *6 *7)) (-5 *2 (-586 (-2 (|:| |val| *3) (|:| -1883 *4)))) (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-988 *5 *6 *7 *3)))) (-2751 (*1 *2 *3 *4) (-12 (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783)) (-4 *3 (-983 *5 *6 *7)) (-5 *2 (-586 *4)) (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-988 *5 *6 *7 *3)))) (-1643 (*1 *2 *3 *4) (-12 (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783)) (-4 *3 (-983 *5 *6 *7)) (-5 *2 (-586 (-2 (|:| |val| (-108)) (|:| -1883 *4)))) (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-988 *5 *6 *7 *3)))) (-2545 (*1 *2 *3 *4) (-12 (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783)) (-4 *3 (-983 *5 *6 *7)) (-5 *2 (-586 *4)) (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-988 *5 *6 *7 *3)))) (-3427 (*1 *2 *3 *4) (-12 (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783)) (-4 *3 (-983 *5 *6 *7)) (-5 *2 (-586 (-2 (|:| |val| (-108)) (|:| -1883 *4)))) (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-988 *5 *6 *7 *3)))) (-3887 (*1 *2 *3 *4) (-12 (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783)) (-4 *3 (-983 *5 *6 *7)) (-5 *2 (-586 *4)) (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-988 *5 *6 *7 *3)))) (-3417 (*1 *2 *3 *4) (-12 (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783)) (-4 *3 (-983 *5 *6 *7)) (-5 *2 (-586 (-2 (|:| |val| (-108)) (|:| -1883 *4)))) (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-988 *5 *6 *7 *3)))) (-1643 (*1 *2 *3 *4) (-12 (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783)) (-4 *3 (-983 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-988 *5 *6 *7 *3)))) (-2394 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783)) (-4 *3 (-983 *5 *6 *7)) (-5 *2 (-586 (-2 (|:| |val| *3) (|:| -1883 *4)))) (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-988 *5 *6 *7 *3)))) (-2449 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783)) (-4 *3 (-983 *5 *6 *7)) (-5 *2 (-586 (-2 (|:| |val| *3) (|:| -1883 *4)))) (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-988 *5 *6 *7 *3)))) (-4037 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-586 (-2 (|:| |val| (-586 *8)) (|:| -1883 *9)))) (-5 *5 (-108)) (-4 *8 (-983 *6 *7 *4)) (-4 *9 (-988 *6 *7 *4 *8)) (-4 *6 (-424)) (-4 *7 (-728)) (-4 *4 (-783)) (-5 *2 (-586 (-2 (|:| |val| *8) (|:| -1883 *9)))) (-5 *1 (-1020 *6 *7 *4 *8 *9)))) (-4037 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-108)) (-4 *6 (-424)) (-4 *7 (-728)) (-4 *8 (-783)) (-4 *3 (-983 *6 *7 *8)) (-5 *2 (-586 (-2 (|:| |val| *3) (|:| -1883 *4)))) (-5 *1 (-1020 *6 *7 *8 *3 *4)) (-4 *4 (-988 *6 *7 *8 *3)))) (-2087 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783)) (-4 *3 (-983 *5 *6 *7)) (-5 *2 (-586 (-2 (|:| |val| (-586 *3)) (|:| -1883 *4)))) (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-988 *5 *6 *7 *3)))) (-2134 (*1 *2) (-12 (-4 *3 (-424)) (-4 *4 (-728)) (-4 *5 (-783)) (-4 *6 (-983 *3 *4 *5)) (-5 *2 (-1169)) (-5 *1 (-1020 *3 *4 *5 *6 *7)) (-4 *7 (-988 *3 *4 *5 *6)))) (-3646 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1066)) (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783)) (-4 *7 (-983 *4 *5 *6)) (-5 *2 (-1169)) (-5 *1 (-1020 *4 *5 *6 *7 *8)) (-4 *8 (-988 *4 *5 *6 *7)))) (-3519 (*1 *2) (-12 (-4 *3 (-424)) (-4 *4 (-728)) (-4 *5 (-783)) (-4 *6 (-983 *3 *4 *5)) (-5 *2 (-1169)) (-5 *1 (-1020 *3 *4 *5 *6 *7)) (-4 *7 (-988 *3 *4 *5 *6)))) (-4022 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1066)) (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783)) (-4 *7 (-983 *4 *5 *6)) (-5 *2 (-1169)) (-5 *1 (-1020 *4 *5 *6 *7 *8)) (-4 *8 (-988 *4 *5 *6 *7)))))
-(-10 -7 (-15 -4022 ((-1169) (-1066) (-1066) (-1066))) (-15 -3519 ((-1169))) (-15 -3646 ((-1169) (-1066) (-1066) (-1066))) (-15 -2134 ((-1169))) (-15 -2087 ((-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))) |#4| |#4| |#5|)) (-15 -4037 ((-586 (-2 (|:| |val| |#4|) (|:| -1883 |#5|))) |#4| |#4| |#5| (-108) (-108))) (-15 -4037 ((-586 (-2 (|:| |val| |#4|) (|:| -1883 |#5|))) (-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))) |#3| (-108))) (-15 -2449 ((-586 (-2 (|:| |val| |#4|) (|:| -1883 |#5|))) |#4| |#4| |#5|)) (-15 -2394 ((-586 (-2 (|:| |val| |#4|) (|:| -1883 |#5|))) |#4| |#4| |#5|)) (-15 -1643 ((-108) |#4| |#5|)) (-15 -3417 ((-586 (-2 (|:| |val| (-108)) (|:| -1883 |#5|))) |#4| |#5|)) (-15 -3887 ((-586 |#5|) |#4| |#5|)) (-15 -3427 ((-586 (-2 (|:| |val| (-108)) (|:| -1883 |#5|))) |#4| |#5|)) (-15 -2545 ((-586 |#5|) |#4| |#5|)) (-15 -1643 ((-586 (-2 (|:| |val| (-108)) (|:| -1883 |#5|))) |#4| |#5|)) (-15 -2751 ((-586 |#5|) |#4| |#5|)) (-15 -2731 ((-586 (-2 (|:| |val| |#4|) (|:| -1883 |#5|))) |#4| |#5|)))
-((-1414 (((-108) $ $) 7)) (-3769 (((-586 (-2 (|:| -1649 $) (|:| -1543 (-586 |#4|)))) (-586 |#4|)) 85)) (-3767 (((-586 $) (-586 |#4|)) 86) (((-586 $) (-586 |#4|) (-108)) 111)) (-4081 (((-586 |#3|) $) 33)) (-2373 (((-108) $) 26)) (-1937 (((-108) $) 17 (|has| |#1| (-512)))) (-3804 (((-108) |#4| $) 101) (((-108) $) 97)) (-3954 ((|#4| |#4| $) 92)) (-3024 (((-586 (-2 (|:| |val| |#4|) (|:| -1883 $))) |#4| $) 126)) (-3210 (((-2 (|:| |under| $) (|:| -1626 $) (|:| |upper| $)) $ |#3|) 27)) (-2063 (((-108) $ (-706)) 44)) (-1627 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4229))) (((-3 |#4| "failed") $ |#3|) 79)) (-3961 (($) 45 T CONST)) (-2215 (((-108) $) 22 (|has| |#1| (-512)))) (-3078 (((-108) $ $) 24 (|has| |#1| (-512)))) (-3675 (((-108) $ $) 23 (|has| |#1| (-512)))) (-2786 (((-108) $) 25 (|has| |#1| (-512)))) (-2589 (((-586 |#4|) (-586 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 93)) (-4167 (((-586 |#4|) (-586 |#4|) $) 18 (|has| |#1| (-512)))) (-3415 (((-586 |#4|) (-586 |#4|) $) 19 (|has| |#1| (-512)))) (-1296 (((-3 $ "failed") (-586 |#4|)) 36)) (-1482 (($ (-586 |#4|)) 35)) (-2305 (((-3 $ "failed") $) 82)) (-1618 ((|#4| |#4| $) 89)) (-2331 (($ $) 68 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -4229))))) (-1421 (($ |#4| $) 67 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -4229)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4229)))) (-3753 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-512)))) (-3738 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) 102)) (-2762 ((|#4| |#4| $) 87)) (-3856 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -4229)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4229))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4229))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 94)) (-2025 (((-2 (|:| -1649 (-586 |#4|)) (|:| -1543 (-586 |#4|))) $) 105)) (-2870 (((-108) |#4| $) 136)) (-1276 (((-108) |#4| $) 133)) (-1964 (((-108) |#4| $) 137) (((-108) $) 134)) (-3828 (((-586 |#4|) $) 52 (|has| $ (-6 -4229)))) (-2311 (((-108) |#4| $) 104) (((-108) $) 103)) (-3871 ((|#3| $) 34)) (-3027 (((-108) $ (-706)) 43)) (-3702 (((-586 |#4|) $) 53 (|has| $ (-6 -4229)))) (-2422 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -4229))))) (-3830 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#4| |#4|) $) 47)) (-2602 (((-586 |#3|) $) 32)) (-3394 (((-108) |#3| $) 31)) (-1390 (((-108) $ (-706)) 42)) (-1239 (((-1066) $) 9)) (-3797 (((-3 |#4| (-586 $)) |#4| |#4| $) 128)) (-2170 (((-586 (-2 (|:| |val| |#4|) (|:| -1883 $))) |#4| |#4| $) 127)) (-1440 (((-3 |#4| "failed") $) 83)) (-3674 (((-586 $) |#4| $) 129)) (-3757 (((-3 (-108) (-586 $)) |#4| $) 132)) (-2484 (((-586 (-2 (|:| |val| (-108)) (|:| -1883 $))) |#4| $) 131) (((-108) |#4| $) 130)) (-2077 (((-586 $) |#4| $) 125) (((-586 $) (-586 |#4|) $) 124) (((-586 $) (-586 |#4|) (-586 $)) 123) (((-586 $) |#4| (-586 $)) 122)) (-3709 (($ |#4| $) 117) (($ (-586 |#4|) $) 116)) (-2623 (((-586 |#4|) $) 107)) (-2428 (((-108) |#4| $) 99) (((-108) $) 95)) (-2778 ((|#4| |#4| $) 90)) (-3444 (((-108) $ $) 110)) (-2130 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-512)))) (-1322 (((-108) |#4| $) 100) (((-108) $) 96)) (-3499 ((|#4| |#4| $) 91)) (-4142 (((-1030) $) 10)) (-2293 (((-3 |#4| "failed") $) 84)) (-2985 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-2885 (((-3 $ "failed") $ |#4|) 78)) (-2116 (($ $ |#4|) 77) (((-586 $) |#4| $) 115) (((-586 $) |#4| (-586 $)) 114) (((-586 $) (-586 |#4|) $) 113) (((-586 $) (-586 |#4|) (-586 $)) 112)) (-4155 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 |#4|) (-586 |#4|)) 59 (-12 (|has| |#4| (-283 |#4|)) (|has| |#4| (-1012)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-283 |#4|)) (|has| |#4| (-1012)))) (($ $ (-268 |#4|)) 57 (-12 (|has| |#4| (-283 |#4|)) (|has| |#4| (-1012)))) (($ $ (-586 (-268 |#4|))) 56 (-12 (|has| |#4| (-283 |#4|)) (|has| |#4| (-1012))))) (-2533 (((-108) $ $) 38)) (-4018 (((-108) $) 41)) (-2238 (($) 40)) (-2528 (((-706) $) 106)) (-4159 (((-706) |#4| $) 54 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -4229)))) (((-706) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4229)))) (-2403 (($ $) 39)) (-1429 (((-496) $) 69 (|has| |#4| (-561 (-496))))) (-2200 (($ (-586 |#4|)) 60)) (-3399 (($ $ |#3|) 28)) (-4067 (($ $ |#3|) 30)) (-3932 (($ $) 88)) (-2513 (($ $ |#3|) 29)) (-2188 (((-791) $) 11) (((-586 |#4|) $) 37)) (-3898 (((-706) $) 76 (|has| |#3| (-341)))) (-1652 (((-3 (-2 (|:| |bas| $) (|:| -1353 (-586 |#4|))) "failed") (-586 |#4|) (-1 (-108) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1353 (-586 |#4|))) "failed") (-586 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) 108)) (-3146 (((-108) $ (-1 (-108) |#4| (-586 |#4|))) 98)) (-3272 (((-586 $) |#4| $) 121) (((-586 $) |#4| (-586 $)) 120) (((-586 $) (-586 |#4|) $) 119) (((-586 $) (-586 |#4|) (-586 $)) 118)) (-1662 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4229)))) (-1600 (((-586 |#3|) $) 81)) (-3230 (((-108) |#4| $) 135)) (-3718 (((-108) |#3| $) 80)) (-1530 (((-108) $ $) 6)) (-3474 (((-706) $) 46 (|has| $ (-6 -4229)))))
-(((-1021 |#1| |#2| |#3| |#4|) (-1195) (-424) (-728) (-783) (-983 |t#1| |t#2| |t#3|)) (T -1021))
-NIL
-(-13 (-988 |t#1| |t#2| |t#3| |t#4|))
-(((-33) . T) ((-97) . T) ((-560 (-586 |#4|)) . T) ((-560 (-791)) . T) ((-139 |#4|) . T) ((-561 (-496)) |has| |#4| (-561 (-496))) ((-283 |#4|) -12 (|has| |#4| (-283 |#4|)) (|has| |#4| (-1012))) ((-459 |#4|) . T) ((-481 |#4| |#4|) -12 (|has| |#4| (-283 |#4|)) (|has| |#4| (-1012))) ((-901 |#1| |#2| |#3| |#4|) . T) ((-988 |#1| |#2| |#3| |#4|) . T) ((-1012) . T) ((-1112 |#1| |#2| |#3| |#4|) . T) ((-1118) . T))
-((-1385 (((-586 (-520)) (-520) (-520) (-520)) 22)) (-3658 (((-586 (-520)) (-520) (-520) (-520)) 12)) (-2195 (((-586 (-520)) (-520) (-520) (-520)) 18)) (-3550 (((-520) (-520) (-520)) 9)) (-2348 (((-1164 (-520)) (-586 (-520)) (-1164 (-520)) (-520)) 45) (((-1164 (-520)) (-1164 (-520)) (-1164 (-520)) (-520)) 40)) (-3310 (((-586 (-520)) (-586 (-520)) (-586 (-520)) (-108)) 27)) (-2670 (((-626 (-520)) (-586 (-520)) (-586 (-520)) (-626 (-520))) 44)) (-1727 (((-626 (-520)) (-586 (-520)) (-586 (-520))) 32)) (-1886 (((-586 (-626 (-520))) (-586 (-520))) 34)) (-2788 (((-586 (-520)) (-586 (-520)) (-586 (-520)) (-626 (-520))) 47)) (-2049 (((-626 (-520)) (-586 (-520)) (-586 (-520)) (-586 (-520))) 55)))
-(((-1022) (-10 -7 (-15 -2049 ((-626 (-520)) (-586 (-520)) (-586 (-520)) (-586 (-520)))) (-15 -2788 ((-586 (-520)) (-586 (-520)) (-586 (-520)) (-626 (-520)))) (-15 -1886 ((-586 (-626 (-520))) (-586 (-520)))) (-15 -1727 ((-626 (-520)) (-586 (-520)) (-586 (-520)))) (-15 -2670 ((-626 (-520)) (-586 (-520)) (-586 (-520)) (-626 (-520)))) (-15 -3310 ((-586 (-520)) (-586 (-520)) (-586 (-520)) (-108))) (-15 -2348 ((-1164 (-520)) (-1164 (-520)) (-1164 (-520)) (-520))) (-15 -2348 ((-1164 (-520)) (-586 (-520)) (-1164 (-520)) (-520))) (-15 -3550 ((-520) (-520) (-520))) (-15 -2195 ((-586 (-520)) (-520) (-520) (-520))) (-15 -3658 ((-586 (-520)) (-520) (-520) (-520))) (-15 -1385 ((-586 (-520)) (-520) (-520) (-520))))) (T -1022))
-((-1385 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-586 (-520))) (-5 *1 (-1022)) (-5 *3 (-520)))) (-3658 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-586 (-520))) (-5 *1 (-1022)) (-5 *3 (-520)))) (-2195 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-586 (-520))) (-5 *1 (-1022)) (-5 *3 (-520)))) (-3550 (*1 *2 *2 *2) (-12 (-5 *2 (-520)) (-5 *1 (-1022)))) (-2348 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1164 (-520))) (-5 *3 (-586 (-520))) (-5 *4 (-520)) (-5 *1 (-1022)))) (-2348 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1164 (-520))) (-5 *3 (-520)) (-5 *1 (-1022)))) (-3310 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-586 (-520))) (-5 *3 (-108)) (-5 *1 (-1022)))) (-2670 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-626 (-520))) (-5 *3 (-586 (-520))) (-5 *1 (-1022)))) (-1727 (*1 *2 *3 *3) (-12 (-5 *3 (-586 (-520))) (-5 *2 (-626 (-520))) (-5 *1 (-1022)))) (-1886 (*1 *2 *3) (-12 (-5 *3 (-586 (-520))) (-5 *2 (-586 (-626 (-520)))) (-5 *1 (-1022)))) (-2788 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-586 (-520))) (-5 *3 (-626 (-520))) (-5 *1 (-1022)))) (-2049 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-586 (-520))) (-5 *2 (-626 (-520))) (-5 *1 (-1022)))))
-(-10 -7 (-15 -2049 ((-626 (-520)) (-586 (-520)) (-586 (-520)) (-586 (-520)))) (-15 -2788 ((-586 (-520)) (-586 (-520)) (-586 (-520)) (-626 (-520)))) (-15 -1886 ((-586 (-626 (-520))) (-586 (-520)))) (-15 -1727 ((-626 (-520)) (-586 (-520)) (-586 (-520)))) (-15 -2670 ((-626 (-520)) (-586 (-520)) (-586 (-520)) (-626 (-520)))) (-15 -3310 ((-586 (-520)) (-586 (-520)) (-586 (-520)) (-108))) (-15 -2348 ((-1164 (-520)) (-1164 (-520)) (-1164 (-520)) (-520))) (-15 -2348 ((-1164 (-520)) (-586 (-520)) (-1164 (-520)) (-520))) (-15 -3550 ((-520) (-520) (-520))) (-15 -2195 ((-586 (-520)) (-520) (-520) (-520))) (-15 -3658 ((-586 (-520)) (-520) (-520) (-520))) (-15 -1385 ((-586 (-520)) (-520) (-520) (-520))))
-((-3504 (($ $ (-849)) 12)) (** (($ $ (-849)) 10)))
-(((-1023 |#1|) (-10 -8 (-15 -3504 (|#1| |#1| (-849))) (-15 ** (|#1| |#1| (-849)))) (-1024)) (T -1023))
-NIL
-(-10 -8 (-15 -3504 (|#1| |#1| (-849))) (-15 ** (|#1| |#1| (-849))))
-((-1414 (((-108) $ $) 7)) (-1239 (((-1066) $) 9)) (-4142 (((-1030) $) 10)) (-2188 (((-791) $) 11)) (-3504 (($ $ (-849)) 13)) (-1530 (((-108) $ $) 6)) (** (($ $ (-849)) 14)) (* (($ $ $) 15)))
-(((-1024) (-1195)) (T -1024))
-((* (*1 *1 *1 *1) (-4 *1 (-1024))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1024)) (-5 *2 (-849)))) (-3504 (*1 *1 *1 *2) (-12 (-4 *1 (-1024)) (-5 *2 (-849)))))
-(-13 (-1012) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-849))) (-15 -3504 ($ $ (-849)))))
-(((-97) . T) ((-560 (-791)) . T) ((-1012) . T))
-((-1414 (((-108) $ $) NIL (|has| |#3| (-1012)))) (-2906 (((-108) $) NIL (|has| |#3| (-124)))) (-4121 (($ (-849)) NIL (|has| |#3| (-969)))) (-1476 (((-1169) $ (-520) (-520)) NIL (|has| $ (-6 -4230)))) (-1224 (($ $ $) NIL (|has| |#3| (-728)))) (-1917 (((-3 $ "failed") $ $) NIL (|has| |#3| (-124)))) (-2063 (((-108) $ (-706)) NIL)) (-1628 (((-706)) NIL (|has| |#3| (-341)))) (-2804 (((-520) $) NIL (|has| |#3| (-781)))) (-2377 ((|#3| $ (-520) |#3|) NIL (|has| $ (-6 -4230)))) (-3961 (($) NIL T CONST)) (-1296 (((-3 (-520) "failed") $) NIL (-12 (|has| |#3| (-960 (-520))) (|has| |#3| (-1012)))) (((-3 (-380 (-520)) "failed") $) NIL (-12 (|has| |#3| (-960 (-380 (-520)))) (|has| |#3| (-1012)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1012)))) (-1482 (((-520) $) NIL (-12 (|has| |#3| (-960 (-520))) (|has| |#3| (-1012)))) (((-380 (-520)) $) NIL (-12 (|has| |#3| (-960 (-380 (-520)))) (|has| |#3| (-1012)))) ((|#3| $) NIL (|has| |#3| (-1012)))) (-2756 (((-626 (-520)) (-626 $)) NIL (-12 (|has| |#3| (-582 (-520))) (|has| |#3| (-969)))) (((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 $) (-1164 $)) NIL (-12 (|has| |#3| (-582 (-520))) (|has| |#3| (-969)))) (((-2 (|:| -3927 (-626 |#3|)) (|:| |vec| (-1164 |#3|))) (-626 $) (-1164 $)) NIL (|has| |#3| (-969))) (((-626 |#3|) (-626 $)) NIL (|has| |#3| (-969)))) (-1540 (((-3 $ "failed") $) NIL (|has| |#3| (-969)))) (-3249 (($) NIL (|has| |#3| (-341)))) (-3846 ((|#3| $ (-520) |#3|) NIL (|has| $ (-6 -4230)))) (-3623 ((|#3| $ (-520)) 12)) (-2328 (((-108) $) NIL (|has| |#3| (-781)))) (-3828 (((-586 |#3|) $) NIL (|has| $ (-6 -4229)))) (-1537 (((-108) $) NIL (|has| |#3| (-969)))) (-3469 (((-108) $) NIL (|has| |#3| (-781)))) (-3027 (((-108) $ (-706)) NIL)) (-2567 (((-520) $) NIL (|has| (-520) (-783)))) (-2809 (($ $ $) NIL (-3700 (|has| |#3| (-728)) (|has| |#3| (-781))))) (-3702 (((-586 |#3|) $) NIL (|has| $ (-6 -4229)))) (-2422 (((-108) |#3| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#3| (-1012))))) (-1752 (((-520) $) NIL (|has| (-520) (-783)))) (-2446 (($ $ $) NIL (-3700 (|has| |#3| (-728)) (|has| |#3| (-781))))) (-3830 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#3| |#3|) $) NIL)) (-3040 (((-849) $) NIL (|has| |#3| (-341)))) (-1390 (((-108) $ (-706)) NIL)) (-1239 (((-1066) $) NIL (|has| |#3| (-1012)))) (-3622 (((-586 (-520)) $) NIL)) (-2603 (((-108) (-520) $) NIL)) (-2716 (($ (-849)) NIL (|has| |#3| (-341)))) (-4142 (((-1030) $) NIL (|has| |#3| (-1012)))) (-2293 ((|#3| $) NIL (|has| (-520) (-783)))) (-2936 (($ $ |#3|) NIL (|has| $ (-6 -4230)))) (-4155 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 |#3|))) NIL (-12 (|has| |#3| (-283 |#3|)) (|has| |#3| (-1012)))) (($ $ (-268 |#3|)) NIL (-12 (|has| |#3| (-283 |#3|)) (|has| |#3| (-1012)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-283 |#3|)) (|has| |#3| (-1012)))) (($ $ (-586 |#3|) (-586 |#3|)) NIL (-12 (|has| |#3| (-283 |#3|)) (|has| |#3| (-1012))))) (-2533 (((-108) $ $) NIL)) (-2094 (((-108) |#3| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#3| (-1012))))) (-1523 (((-586 |#3|) $) NIL)) (-4018 (((-108) $) NIL)) (-2238 (($) NIL)) (-2543 ((|#3| $ (-520) |#3|) NIL) ((|#3| $ (-520)) NIL)) (-3639 ((|#3| $ $) NIL (|has| |#3| (-969)))) (-1960 (($ (-1164 |#3|)) NIL)) (-1556 (((-126)) NIL (|has| |#3| (-336)))) (-2155 (($ $) NIL (-12 (|has| |#3| (-209)) (|has| |#3| (-969)))) (($ $ (-706)) NIL (-12 (|has| |#3| (-209)) (|has| |#3| (-969)))) (($ $ (-1083)) NIL (-12 (|has| |#3| (-828 (-1083))) (|has| |#3| (-969)))) (($ $ (-586 (-1083))) NIL (-12 (|has| |#3| (-828 (-1083))) (|has| |#3| (-969)))) (($ $ (-1083) (-706)) NIL (-12 (|has| |#3| (-828 (-1083))) (|has| |#3| (-969)))) (($ $ (-586 (-1083)) (-586 (-706))) NIL (-12 (|has| |#3| (-828 (-1083))) (|has| |#3| (-969)))) (($ $ (-1 |#3| |#3|) (-706)) NIL (|has| |#3| (-969))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-969)))) (-4159 (((-706) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4229))) (((-706) |#3| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#3| (-1012))))) (-2403 (($ $) NIL)) (-2188 (((-1164 |#3|) $) NIL) (($ (-520)) NIL (-3700 (-12 (|has| |#3| (-960 (-520))) (|has| |#3| (-1012))) (|has| |#3| (-969)))) (($ (-380 (-520))) NIL (-12 (|has| |#3| (-960 (-380 (-520)))) (|has| |#3| (-1012)))) (($ |#3|) NIL (|has| |#3| (-1012))) (((-791) $) NIL (|has| |#3| (-560 (-791))))) (-3251 (((-706)) NIL (|has| |#3| (-969)))) (-1662 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4229)))) (-2458 (($ $) NIL (|has| |#3| (-781)))) (-3504 (($ $ (-706)) NIL (|has| |#3| (-969))) (($ $ (-849)) NIL (|has| |#3| (-969)))) (-3560 (($) NIL (|has| |#3| (-124)) CONST)) (-3570 (($) NIL (|has| |#3| (-969)) CONST)) (-2211 (($ $) NIL (-12 (|has| |#3| (-209)) (|has| |#3| (-969)))) (($ $ (-706)) NIL (-12 (|has| |#3| (-209)) (|has| |#3| (-969)))) (($ $ (-1083)) NIL (-12 (|has| |#3| (-828 (-1083))) (|has| |#3| (-969)))) (($ $ (-586 (-1083))) NIL (-12 (|has| |#3| (-828 (-1083))) (|has| |#3| (-969)))) (($ $ (-1083) (-706)) NIL (-12 (|has| |#3| (-828 (-1083))) (|has| |#3| (-969)))) (($ $ (-586 (-1083)) (-586 (-706))) NIL (-12 (|has| |#3| (-828 (-1083))) (|has| |#3| (-969)))) (($ $ (-1 |#3| |#3|) (-706)) NIL (|has| |#3| (-969))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-969)))) (-1573 (((-108) $ $) NIL (-3700 (|has| |#3| (-728)) (|has| |#3| (-781))))) (-1557 (((-108) $ $) NIL (-3700 (|has| |#3| (-728)) (|has| |#3| (-781))))) (-1530 (((-108) $ $) NIL (|has| |#3| (-1012)))) (-1565 (((-108) $ $) NIL (-3700 (|has| |#3| (-728)) (|has| |#3| (-781))))) (-1548 (((-108) $ $) 17 (-3700 (|has| |#3| (-728)) (|has| |#3| (-781))))) (-1619 (($ $ |#3|) NIL (|has| |#3| (-336)))) (-1611 (($ $ $) NIL (|has| |#3| (-969))) (($ $) NIL (|has| |#3| (-969)))) (-1601 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-706)) NIL (|has| |#3| (-969))) (($ $ (-849)) NIL (|has| |#3| (-969)))) (* (($ $ $) NIL (|has| |#3| (-969))) (($ (-520) $) NIL (|has| |#3| (-969))) (($ $ |#3|) NIL (|has| |#3| (-662))) (($ |#3| $) NIL (|has| |#3| (-662))) (($ (-706) $) NIL (|has| |#3| (-124))) (($ (-849) $) NIL (|has| |#3| (-25)))) (-3474 (((-706) $) NIL (|has| $ (-6 -4229)))))
-(((-1025 |#1| |#2| |#3|) (-214 |#1| |#3|) (-706) (-706) (-728)) (T -1025))
-NIL
-(-214 |#1| |#3|)
-((-2611 (((-586 (-1137 |#2| |#1|)) (-1137 |#2| |#1|) (-1137 |#2| |#1|)) 37)) (-4079 (((-520) (-1137 |#2| |#1|)) 68 (|has| |#1| (-424)))) (-3085 (((-520) (-1137 |#2| |#1|)) 54)) (-1550 (((-586 (-1137 |#2| |#1|)) (-1137 |#2| |#1|) (-1137 |#2| |#1|)) 45)) (-2646 (((-520) (-1137 |#2| |#1|) (-1137 |#2| |#1|)) 56 (|has| |#1| (-424)))) (-3510 (((-586 |#1|) (-1137 |#2| |#1|) (-1137 |#2| |#1|)) 48)) (-3995 (((-520) (-1137 |#2| |#1|) (-1137 |#2| |#1|)) 53)))
-(((-1026 |#1| |#2|) (-10 -7 (-15 -2611 ((-586 (-1137 |#2| |#1|)) (-1137 |#2| |#1|) (-1137 |#2| |#1|))) (-15 -1550 ((-586 (-1137 |#2| |#1|)) (-1137 |#2| |#1|) (-1137 |#2| |#1|))) (-15 -3510 ((-586 |#1|) (-1137 |#2| |#1|) (-1137 |#2| |#1|))) (-15 -3995 ((-520) (-1137 |#2| |#1|) (-1137 |#2| |#1|))) (-15 -3085 ((-520) (-1137 |#2| |#1|))) (IF (|has| |#1| (-424)) (PROGN (-15 -2646 ((-520) (-1137 |#2| |#1|) (-1137 |#2| |#1|))) (-15 -4079 ((-520) (-1137 |#2| |#1|)))) |%noBranch|)) (-756) (-1083)) (T -1026))
-((-4079 (*1 *2 *3) (-12 (-5 *3 (-1137 *5 *4)) (-4 *4 (-424)) (-4 *4 (-756)) (-14 *5 (-1083)) (-5 *2 (-520)) (-5 *1 (-1026 *4 *5)))) (-2646 (*1 *2 *3 *3) (-12 (-5 *3 (-1137 *5 *4)) (-4 *4 (-424)) (-4 *4 (-756)) (-14 *5 (-1083)) (-5 *2 (-520)) (-5 *1 (-1026 *4 *5)))) (-3085 (*1 *2 *3) (-12 (-5 *3 (-1137 *5 *4)) (-4 *4 (-756)) (-14 *5 (-1083)) (-5 *2 (-520)) (-5 *1 (-1026 *4 *5)))) (-3995 (*1 *2 *3 *3) (-12 (-5 *3 (-1137 *5 *4)) (-4 *4 (-756)) (-14 *5 (-1083)) (-5 *2 (-520)) (-5 *1 (-1026 *4 *5)))) (-3510 (*1 *2 *3 *3) (-12 (-5 *3 (-1137 *5 *4)) (-4 *4 (-756)) (-14 *5 (-1083)) (-5 *2 (-586 *4)) (-5 *1 (-1026 *4 *5)))) (-1550 (*1 *2 *3 *3) (-12 (-4 *4 (-756)) (-14 *5 (-1083)) (-5 *2 (-586 (-1137 *5 *4))) (-5 *1 (-1026 *4 *5)) (-5 *3 (-1137 *5 *4)))) (-2611 (*1 *2 *3 *3) (-12 (-4 *4 (-756)) (-14 *5 (-1083)) (-5 *2 (-586 (-1137 *5 *4))) (-5 *1 (-1026 *4 *5)) (-5 *3 (-1137 *5 *4)))))
-(-10 -7 (-15 -2611 ((-586 (-1137 |#2| |#1|)) (-1137 |#2| |#1|) (-1137 |#2| |#1|))) (-15 -1550 ((-586 (-1137 |#2| |#1|)) (-1137 |#2| |#1|) (-1137 |#2| |#1|))) (-15 -3510 ((-586 |#1|) (-1137 |#2| |#1|) (-1137 |#2| |#1|))) (-15 -3995 ((-520) (-1137 |#2| |#1|) (-1137 |#2| |#1|))) (-15 -3085 ((-520) (-1137 |#2| |#1|))) (IF (|has| |#1| (-424)) (PROGN (-15 -2646 ((-520) (-1137 |#2| |#1|) (-1137 |#2| |#1|))) (-15 -4079 ((-520) (-1137 |#2| |#1|)))) |%noBranch|))
-((-2804 (((-3 (-520) "failed") |#2| (-1083) |#2| (-1066)) 16) (((-3 (-520) "failed") |#2| (-1083) (-776 |#2|)) 14) (((-3 (-520) "failed") |#2|) 51)))
-(((-1027 |#1| |#2|) (-10 -7 (-15 -2804 ((-3 (-520) "failed") |#2|)) (-15 -2804 ((-3 (-520) "failed") |#2| (-1083) (-776 |#2|))) (-15 -2804 ((-3 (-520) "failed") |#2| (-1083) |#2| (-1066)))) (-13 (-512) (-783) (-960 (-520)) (-582 (-520)) (-424)) (-13 (-27) (-1104) (-403 |#1|))) (T -1027))
-((-2804 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1083)) (-5 *5 (-1066)) (-4 *6 (-13 (-512) (-783) (-960 *2) (-582 *2) (-424))) (-5 *2 (-520)) (-5 *1 (-1027 *6 *3)) (-4 *3 (-13 (-27) (-1104) (-403 *6))))) (-2804 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1083)) (-5 *5 (-776 *3)) (-4 *3 (-13 (-27) (-1104) (-403 *6))) (-4 *6 (-13 (-512) (-783) (-960 *2) (-582 *2) (-424))) (-5 *2 (-520)) (-5 *1 (-1027 *6 *3)))) (-2804 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-512) (-783) (-960 *2) (-582 *2) (-424))) (-5 *2 (-520)) (-5 *1 (-1027 *4 *3)) (-4 *3 (-13 (-27) (-1104) (-403 *4))))))
-(-10 -7 (-15 -2804 ((-3 (-520) "failed") |#2|)) (-15 -2804 ((-3 (-520) "failed") |#2| (-1083) (-776 |#2|))) (-15 -2804 ((-3 (-520) "failed") |#2| (-1083) |#2| (-1066))))
-((-2804 (((-3 (-520) "failed") (-380 (-880 |#1|)) (-1083) (-380 (-880 |#1|)) (-1066)) 34) (((-3 (-520) "failed") (-380 (-880 |#1|)) (-1083) (-776 (-380 (-880 |#1|)))) 29) (((-3 (-520) "failed") (-380 (-880 |#1|))) 12)))
-(((-1028 |#1|) (-10 -7 (-15 -2804 ((-3 (-520) "failed") (-380 (-880 |#1|)))) (-15 -2804 ((-3 (-520) "failed") (-380 (-880 |#1|)) (-1083) (-776 (-380 (-880 |#1|))))) (-15 -2804 ((-3 (-520) "failed") (-380 (-880 |#1|)) (-1083) (-380 (-880 |#1|)) (-1066)))) (-424)) (T -1028))
-((-2804 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-380 (-880 *6))) (-5 *4 (-1083)) (-5 *5 (-1066)) (-4 *6 (-424)) (-5 *2 (-520)) (-5 *1 (-1028 *6)))) (-2804 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1083)) (-5 *5 (-776 (-380 (-880 *6)))) (-5 *3 (-380 (-880 *6))) (-4 *6 (-424)) (-5 *2 (-520)) (-5 *1 (-1028 *6)))) (-2804 (*1 *2 *3) (|partial| -12 (-5 *3 (-380 (-880 *4))) (-4 *4 (-424)) (-5 *2 (-520)) (-5 *1 (-1028 *4)))))
-(-10 -7 (-15 -2804 ((-3 (-520) "failed") (-380 (-880 |#1|)))) (-15 -2804 ((-3 (-520) "failed") (-380 (-880 |#1|)) (-1083) (-776 (-380 (-880 |#1|))))) (-15 -2804 ((-3 (-520) "failed") (-380 (-880 |#1|)) (-1083) (-380 (-880 |#1|)) (-1066))))
-((-3855 (((-289 (-520)) (-47)) 11)))
-(((-1029) (-10 -7 (-15 -3855 ((-289 (-520)) (-47))))) (T -1029))
-((-3855 (*1 *2 *3) (-12 (-5 *3 (-47)) (-5 *2 (-289 (-520))) (-5 *1 (-1029)))))
-(-10 -7 (-15 -3855 ((-289 (-520)) (-47))))
-((-1414 (((-108) $ $) NIL)) (-1499 (($ $) 41)) (-2906 (((-108) $) 65)) (-3343 (($ $ $) 48)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) 84)) (-2583 (($ $) NIL)) (-1671 (((-108) $) NIL)) (-3942 (($ $ $) NIL)) (-1917 (((-3 $ "failed") $ $) NIL)) (-2372 (($ $ $ $) 74)) (-3024 (($ $) NIL)) (-1507 (((-391 $) $) NIL)) (-1327 (((-108) $ $) NIL)) (-2804 (((-520) $) NIL)) (-1660 (($ $ $) 71)) (-3961 (($) NIL T CONST)) (-1296 (((-3 (-520) "failed") $) NIL)) (-1482 (((-520) $) NIL)) (-2276 (($ $ $) 59)) (-2756 (((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 $) (-1164 $)) 78) (((-626 (-520)) (-626 $)) 28)) (-1540 (((-3 $ "failed") $) NIL)) (-2279 (((-3 (-380 (-520)) "failed") $) NIL)) (-1386 (((-108) $) NIL)) (-4055 (((-380 (-520)) $) NIL)) (-3249 (($) 81) (($ $) 82)) (-2253 (($ $ $) 58)) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) NIL)) (-2036 (((-108) $) NIL)) (-3028 (($ $ $ $) NIL)) (-3708 (($ $ $) 79)) (-2328 (((-108) $) NIL)) (-4151 (($ $ $) NIL)) (-1272 (((-817 (-520) $) $ (-820 (-520)) (-817 (-520) $)) NIL)) (-1537 (((-108) $) 66)) (-2777 (((-108) $) 64)) (-2399 (($ $) 42)) (-1394 (((-3 $ "failed") $) NIL)) (-3469 (((-108) $) 75)) (-3188 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-3368 (($ $ $ $) 72)) (-2809 (($ $ $) 68) (($) 39)) (-2446 (($ $ $) 67) (($) 38)) (-3886 (($ $) NIL)) (-2515 (($ $) 70)) (-2222 (($ $ $) NIL) (($ (-586 $)) NIL)) (-1239 (((-1066) $) NIL)) (-1527 (($ $ $) NIL)) (-3794 (($) NIL T CONST)) (-2952 (($ $) 50)) (-4142 (((-1030) $) NIL) (($ $) 69)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) NIL)) (-2257 (($ $ $) 62) (($ (-586 $)) NIL)) (-2724 (($ $) NIL)) (-1916 (((-391 $) $) NIL)) (-1283 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) NIL)) (-2230 (((-3 $ "failed") $ $) NIL)) (-2608 (((-3 (-586 $) "failed") (-586 $) $) NIL)) (-3615 (((-108) $) NIL)) (-3704 (((-706) $) NIL)) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) 61)) (-2155 (($ $ (-706)) NIL) (($ $) NIL)) (-3047 (($ $) 51)) (-2403 (($ $) NIL)) (-1429 (((-520) $) 32) (((-496) $) NIL) (((-820 (-520)) $) NIL) (((-352) $) NIL) (((-201) $) NIL)) (-2188 (((-791) $) 31) (($ (-520)) 80) (($ $) NIL) (($ (-520)) 80)) (-3251 (((-706)) NIL)) (-3801 (((-108) $ $) NIL)) (-2586 (($ $ $) NIL)) (-3349 (($) 37)) (-2559 (((-108) $ $) NIL)) (-2642 (($ $ $ $) 73)) (-2458 (($ $) 63)) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (-2763 (($ $ $) 44)) (-3560 (($) 35 T CONST)) (-3500 (($ $ $) 47)) (-3570 (($) 36 T CONST)) (-3610 (((-1066) $) 21) (((-1066) $ (-108)) 23) (((-1169) (-758) $) 24) (((-1169) (-758) $ (-108)) 25)) (-3511 (($ $) 45)) (-2211 (($ $ (-706)) NIL) (($ $) NIL)) (-3492 (($ $ $) 46)) (-1573 (((-108) $ $) NIL)) (-1557 (((-108) $ $) NIL)) (-1530 (((-108) $ $) 40)) (-1565 (((-108) $ $) NIL)) (-1548 (((-108) $ $) 49)) (-2321 (($ $ $) 43)) (-1611 (($ $) 52) (($ $ $) 54)) (-1601 (($ $ $) 53)) (** (($ $ (-849)) NIL) (($ $ (-706)) 57)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) 34) (($ $ $) 55)))
-(((-1030) (-13 (-505) (-601) (-764) (-10 -8 (-6 -4216) (-6 -4221) (-6 -4217) (-15 -2446 ($)) (-15 -2809 ($)) (-15 -2399 ($ $)) (-15 -1499 ($ $)) (-15 -2321 ($ $ $)) (-15 -2763 ($ $ $)) (-15 -3343 ($ $ $)) (-15 -3511 ($ $)) (-15 -3492 ($ $ $)) (-15 -3500 ($ $ $))))) (T -1030))
-((-2763 (*1 *1 *1 *1) (-5 *1 (-1030))) (-2321 (*1 *1 *1 *1) (-5 *1 (-1030))) (-1499 (*1 *1 *1) (-5 *1 (-1030))) (-2446 (*1 *1) (-5 *1 (-1030))) (-2809 (*1 *1) (-5 *1 (-1030))) (-2399 (*1 *1 *1) (-5 *1 (-1030))) (-3343 (*1 *1 *1 *1) (-5 *1 (-1030))) (-3511 (*1 *1 *1) (-5 *1 (-1030))) (-3492 (*1 *1 *1 *1) (-5 *1 (-1030))) (-3500 (*1 *1 *1 *1) (-5 *1 (-1030))))
-(-13 (-505) (-601) (-764) (-10 -8 (-6 -4216) (-6 -4221) (-6 -4217) (-15 -2446 ($)) (-15 -2809 ($)) (-15 -2399 ($ $)) (-15 -1499 ($ $)) (-15 -2321 ($ $ $)) (-15 -2763 ($ $ $)) (-15 -3343 ($ $ $)) (-15 -3511 ($ $)) (-15 -3492 ($ $ $)) (-15 -3500 ($ $ $))))
-((-1414 (((-108) $ $) 19 (|has| |#1| (-1012)))) (-1353 ((|#1| $) 44)) (-2063 (((-108) $ (-706)) 8)) (-3961 (($) 7 T CONST)) (-1352 ((|#1| |#1| $) 46)) (-3621 ((|#1| $) 45)) (-3828 (((-586 |#1|) $) 30 (|has| $ (-6 -4229)))) (-3027 (((-108) $ (-706)) 9)) (-3702 (((-586 |#1|) $) 29 (|has| $ (-6 -4229)))) (-2422 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-3830 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#1| |#1|) $) 35)) (-1390 (((-108) $ (-706)) 10)) (-1239 (((-1066) $) 22 (|has| |#1| (-1012)))) (-3351 ((|#1| $) 39)) (-3618 (($ |#1| $) 40)) (-4142 (((-1030) $) 21 (|has| |#1| (-1012)))) (-3345 ((|#1| $) 41)) (-4155 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 |#1|))) 26 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-268 |#1|)) 25 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-586 |#1|) (-586 |#1|)) 23 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))) (-2533 (((-108) $ $) 14)) (-4018 (((-108) $) 11)) (-2238 (($) 12)) (-1251 (((-706) $) 43)) (-4159 (((-706) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4229))) (((-706) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-2403 (($ $) 13)) (-2188 (((-791) $) 18 (|has| |#1| (-560 (-791))))) (-1898 (($ (-586 |#1|)) 42)) (-1662 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4229)))) (-1530 (((-108) $ $) 20 (|has| |#1| (-1012)))) (-3474 (((-706) $) 6 (|has| $ (-6 -4229)))))
-(((-1031 |#1|) (-1195) (-1118)) (T -1031))
-((-1352 (*1 *2 *2 *1) (-12 (-4 *1 (-1031 *2)) (-4 *2 (-1118)))) (-3621 (*1 *2 *1) (-12 (-4 *1 (-1031 *2)) (-4 *2 (-1118)))) (-1353 (*1 *2 *1) (-12 (-4 *1 (-1031 *2)) (-4 *2 (-1118)))) (-1251 (*1 *2 *1) (-12 (-4 *1 (-1031 *3)) (-4 *3 (-1118)) (-5 *2 (-706)))))
-(-13 (-102 |t#1|) (-10 -8 (-6 -4229) (-15 -1352 (|t#1| |t#1| $)) (-15 -3621 (|t#1| $)) (-15 -1353 (|t#1| $)) (-15 -1251 ((-706) $))))
-(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1012)) ((-560 (-791)) -3700 (|has| |#1| (-1012)) (|has| |#1| (-560 (-791)))) ((-283 |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))) ((-459 |#1|) . T) ((-481 |#1| |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))) ((-1012) |has| |#1| (-1012)) ((-1118) . T))
-((-1864 ((|#3| $) 76)) (-1296 (((-3 (-520) "failed") $) NIL) (((-3 (-380 (-520)) "failed") $) NIL) (((-3 |#3| "failed") $) 40)) (-1482 (((-520) $) NIL) (((-380 (-520)) $) NIL) ((|#3| $) 37)) (-2756 (((-626 (-520)) (-626 $)) NIL) (((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 $) (-1164 $)) NIL) (((-2 (|:| -3927 (-626 |#3|)) (|:| |vec| (-1164 |#3|))) (-626 $) (-1164 $)) 73) (((-626 |#3|) (-626 $)) 65)) (-2155 (($ $ (-1 |#3| |#3|)) 19) (($ $ (-1 |#3| |#3|) (-706)) NIL) (($ $ (-586 (-1083)) (-586 (-706))) NIL) (($ $ (-1083) (-706)) NIL) (($ $ (-586 (-1083))) NIL) (($ $ (-1083)) NIL) (($ $ (-706)) NIL) (($ $) NIL)) (-3182 ((|#3| $) 78)) (-1965 ((|#4| $) 32)) (-2188 (((-791) $) NIL) (($ (-520)) NIL) (($ (-380 (-520))) NIL) (($ |#3|) 16)) (** (($ $ (-849)) NIL) (($ $ (-706)) 15) (($ $ (-520)) 82)))
-(((-1032 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-520))) (-15 -3182 (|#3| |#1|)) (-15 -1864 (|#3| |#1|)) (-15 -1965 (|#4| |#1|)) (-15 -2756 ((-626 |#3|) (-626 |#1|))) (-15 -2756 ((-2 (|:| -3927 (-626 |#3|)) (|:| |vec| (-1164 |#3|))) (-626 |#1|) (-1164 |#1|))) (-15 -2756 ((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 |#1|) (-1164 |#1|))) (-15 -2756 ((-626 (-520)) (-626 |#1|))) (-15 -1482 (|#3| |#1|)) (-15 -1296 ((-3 |#3| "failed") |#1|)) (-15 -2188 (|#1| |#3|)) (-15 -2188 (|#1| (-380 (-520)))) (-15 -1296 ((-3 (-380 (-520)) "failed") |#1|)) (-15 -1482 ((-380 (-520)) |#1|)) (-15 -1296 ((-3 (-520) "failed") |#1|)) (-15 -1482 ((-520) |#1|)) (-15 -2155 (|#1| |#1|)) (-15 -2155 (|#1| |#1| (-706))) (-15 -2155 (|#1| |#1| (-1083))) (-15 -2155 (|#1| |#1| (-586 (-1083)))) (-15 -2155 (|#1| |#1| (-1083) (-706))) (-15 -2155 (|#1| |#1| (-586 (-1083)) (-586 (-706)))) (-15 -2155 (|#1| |#1| (-1 |#3| |#3|) (-706))) (-15 -2155 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2188 (|#1| (-520))) (-15 ** (|#1| |#1| (-706))) (-15 ** (|#1| |#1| (-849))) (-15 -2188 ((-791) |#1|))) (-1033 |#2| |#3| |#4| |#5|) (-706) (-969) (-214 |#2| |#3|) (-214 |#2| |#3|)) (T -1032))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-520))) (-15 -3182 (|#3| |#1|)) (-15 -1864 (|#3| |#1|)) (-15 -1965 (|#4| |#1|)) (-15 -2756 ((-626 |#3|) (-626 |#1|))) (-15 -2756 ((-2 (|:| -3927 (-626 |#3|)) (|:| |vec| (-1164 |#3|))) (-626 |#1|) (-1164 |#1|))) (-15 -2756 ((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 |#1|) (-1164 |#1|))) (-15 -2756 ((-626 (-520)) (-626 |#1|))) (-15 -1482 (|#3| |#1|)) (-15 -1296 ((-3 |#3| "failed") |#1|)) (-15 -2188 (|#1| |#3|)) (-15 -2188 (|#1| (-380 (-520)))) (-15 -1296 ((-3 (-380 (-520)) "failed") |#1|)) (-15 -1482 ((-380 (-520)) |#1|)) (-15 -1296 ((-3 (-520) "failed") |#1|)) (-15 -1482 ((-520) |#1|)) (-15 -2155 (|#1| |#1|)) (-15 -2155 (|#1| |#1| (-706))) (-15 -2155 (|#1| |#1| (-1083))) (-15 -2155 (|#1| |#1| (-586 (-1083)))) (-15 -2155 (|#1| |#1| (-1083) (-706))) (-15 -2155 (|#1| |#1| (-586 (-1083)) (-586 (-706)))) (-15 -2155 (|#1| |#1| (-1 |#3| |#3|) (-706))) (-15 -2155 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2188 (|#1| (-520))) (-15 ** (|#1| |#1| (-706))) (-15 ** (|#1| |#1| (-849))) (-15 -2188 ((-791) |#1|)))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-1864 ((|#2| $) 72)) (-2340 (((-108) $) 112)) (-1917 (((-3 $ "failed") $ $) 19)) (-2878 (((-108) $) 110)) (-2063 (((-108) $ (-706)) 102)) (-1311 (($ |#2|) 75)) (-3961 (($) 17 T CONST)) (-2085 (($ $) 129 (|has| |#2| (-281)))) (-2120 ((|#3| $ (-520)) 124)) (-1296 (((-3 (-520) "failed") $) 86 (|has| |#2| (-960 (-520)))) (((-3 (-380 (-520)) "failed") $) 84 (|has| |#2| (-960 (-380 (-520))))) (((-3 |#2| "failed") $) 81)) (-1482 (((-520) $) 87 (|has| |#2| (-960 (-520)))) (((-380 (-520)) $) 85 (|has| |#2| (-960 (-380 (-520))))) ((|#2| $) 80)) (-2756 (((-626 (-520)) (-626 $)) 79 (|has| |#2| (-582 (-520)))) (((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 $) (-1164 $)) 78 (|has| |#2| (-582 (-520)))) (((-2 (|:| -3927 (-626 |#2|)) (|:| |vec| (-1164 |#2|))) (-626 $) (-1164 $)) 77) (((-626 |#2|) (-626 $)) 76)) (-1540 (((-3 $ "failed") $) 34)) (-3160 (((-706) $) 130 (|has| |#2| (-512)))) (-3623 ((|#2| $ (-520) (-520)) 122)) (-3828 (((-586 |#2|) $) 95 (|has| $ (-6 -4229)))) (-1537 (((-108) $) 31)) (-2621 (((-706) $) 131 (|has| |#2| (-512)))) (-1408 (((-586 |#4|) $) 132 (|has| |#2| (-512)))) (-1409 (((-706) $) 118)) (-1420 (((-706) $) 119)) (-3027 (((-108) $ (-706)) 103)) (-3346 ((|#2| $) 67 (|has| |#2| (-6 (-4231 "*"))))) (-2289 (((-520) $) 114)) (-1867 (((-520) $) 116)) (-3702 (((-586 |#2|) $) 94 (|has| $ (-6 -4229)))) (-2422 (((-108) |#2| $) 92 (-12 (|has| |#2| (-1012)) (|has| $ (-6 -4229))))) (-1888 (((-520) $) 115)) (-2982 (((-520) $) 117)) (-1364 (($ (-586 (-586 |#2|))) 109)) (-3830 (($ (-1 |#2| |#2|) $) 99 (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#2| |#2| |#2|) $ $) 126) (($ (-1 |#2| |#2|) $) 100)) (-3464 (((-586 (-586 |#2|)) $) 120)) (-1390 (((-108) $ (-706)) 104)) (-1239 (((-1066) $) 9)) (-1675 (((-3 $ "failed") $) 66 (|has| |#2| (-336)))) (-4142 (((-1030) $) 10)) (-2230 (((-3 $ "failed") $ |#2|) 127 (|has| |#2| (-512)))) (-4155 (((-108) (-1 (-108) |#2|) $) 97 (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 |#2|))) 91 (-12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012)))) (($ $ (-268 |#2|)) 90 (-12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012)))) (($ $ |#2| |#2|) 89 (-12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012)))) (($ $ (-586 |#2|) (-586 |#2|)) 88 (-12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012))))) (-2533 (((-108) $ $) 108)) (-4018 (((-108) $) 105)) (-2238 (($) 106)) (-2543 ((|#2| $ (-520) (-520) |#2|) 123) ((|#2| $ (-520) (-520)) 121)) (-2155 (($ $ (-1 |#2| |#2|)) 52) (($ $ (-1 |#2| |#2|) (-706)) 51) (($ $ (-586 (-1083)) (-586 (-706))) 44 (|has| |#2| (-828 (-1083)))) (($ $ (-1083) (-706)) 43 (|has| |#2| (-828 (-1083)))) (($ $ (-586 (-1083))) 42 (|has| |#2| (-828 (-1083)))) (($ $ (-1083)) 41 (|has| |#2| (-828 (-1083)))) (($ $ (-706)) 39 (|has| |#2| (-209))) (($ $) 37 (|has| |#2| (-209)))) (-3182 ((|#2| $) 71)) (-2115 (($ (-586 |#2|)) 74)) (-3149 (((-108) $) 111)) (-1965 ((|#3| $) 73)) (-4145 ((|#2| $) 68 (|has| |#2| (-6 (-4231 "*"))))) (-4159 (((-706) (-1 (-108) |#2|) $) 96 (|has| $ (-6 -4229))) (((-706) |#2| $) 93 (-12 (|has| |#2| (-1012)) (|has| $ (-6 -4229))))) (-2403 (($ $) 107)) (-2460 ((|#4| $ (-520)) 125)) (-2188 (((-791) $) 11) (($ (-520)) 28) (($ (-380 (-520))) 83 (|has| |#2| (-960 (-380 (-520))))) (($ |#2|) 82)) (-3251 (((-706)) 29)) (-1662 (((-108) (-1 (-108) |#2|) $) 98 (|has| $ (-6 -4229)))) (-3669 (((-108) $) 113)) (-3504 (($ $ (-849)) 26) (($ $ (-706)) 33)) (-3560 (($) 18 T CONST)) (-3570 (($) 30 T CONST)) (-2211 (($ $ (-1 |#2| |#2|)) 50) (($ $ (-1 |#2| |#2|) (-706)) 49) (($ $ (-586 (-1083)) (-586 (-706))) 48 (|has| |#2| (-828 (-1083)))) (($ $ (-1083) (-706)) 47 (|has| |#2| (-828 (-1083)))) (($ $ (-586 (-1083))) 46 (|has| |#2| (-828 (-1083)))) (($ $ (-1083)) 45 (|has| |#2| (-828 (-1083)))) (($ $ (-706)) 40 (|has| |#2| (-209))) (($ $) 38 (|has| |#2| (-209)))) (-1530 (((-108) $ $) 6)) (-1619 (($ $ |#2|) 128 (|has| |#2| (-336)))) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-706)) 32) (($ $ (-520)) 65 (|has| |#2| (-336)))) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ $ $) 24) (($ $ |#2|) 134) (($ |#2| $) 133) ((|#4| $ |#4|) 70) ((|#3| |#3| $) 69)) (-3474 (((-706) $) 101 (|has| $ (-6 -4229)))))
-(((-1033 |#1| |#2| |#3| |#4|) (-1195) (-706) (-969) (-214 |t#1| |t#2|) (-214 |t#1| |t#2|)) (T -1033))
-((-1311 (*1 *1 *2) (-12 (-4 *2 (-969)) (-4 *1 (-1033 *3 *2 *4 *5)) (-4 *4 (-214 *3 *2)) (-4 *5 (-214 *3 *2)))) (-2115 (*1 *1 *2) (-12 (-5 *2 (-586 *4)) (-4 *4 (-969)) (-4 *1 (-1033 *3 *4 *5 *6)) (-4 *5 (-214 *3 *4)) (-4 *6 (-214 *3 *4)))) (-1965 (*1 *2 *1) (-12 (-4 *1 (-1033 *3 *4 *2 *5)) (-4 *4 (-969)) (-4 *5 (-214 *3 *4)) (-4 *2 (-214 *3 *4)))) (-1864 (*1 *2 *1) (-12 (-4 *1 (-1033 *3 *2 *4 *5)) (-4 *4 (-214 *3 *2)) (-4 *5 (-214 *3 *2)) (-4 *2 (-969)))) (-3182 (*1 *2 *1) (-12 (-4 *1 (-1033 *3 *2 *4 *5)) (-4 *4 (-214 *3 *2)) (-4 *5 (-214 *3 *2)) (-4 *2 (-969)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1033 *3 *4 *5 *2)) (-4 *4 (-969)) (-4 *5 (-214 *3 *4)) (-4 *2 (-214 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1033 *3 *4 *2 *5)) (-4 *4 (-969)) (-4 *2 (-214 *3 *4)) (-4 *5 (-214 *3 *4)))) (-4145 (*1 *2 *1) (-12 (-4 *1 (-1033 *3 *2 *4 *5)) (-4 *4 (-214 *3 *2)) (-4 *5 (-214 *3 *2)) (|has| *2 (-6 (-4231 "*"))) (-4 *2 (-969)))) (-3346 (*1 *2 *1) (-12 (-4 *1 (-1033 *3 *2 *4 *5)) (-4 *4 (-214 *3 *2)) (-4 *5 (-214 *3 *2)) (|has| *2 (-6 (-4231 "*"))) (-4 *2 (-969)))) (-1675 (*1 *1 *1) (|partial| -12 (-4 *1 (-1033 *2 *3 *4 *5)) (-4 *3 (-969)) (-4 *4 (-214 *2 *3)) (-4 *5 (-214 *2 *3)) (-4 *3 (-336)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-520)) (-4 *1 (-1033 *3 *4 *5 *6)) (-4 *4 (-969)) (-4 *5 (-214 *3 *4)) (-4 *6 (-214 *3 *4)) (-4 *4 (-336)))))
-(-13 (-207 |t#2|) (-107 |t#2| |t#2|) (-972 |t#1| |t#1| |t#2| |t#3| |t#4|) (-384 |t#2|) (-350 |t#2|) (-10 -8 (IF (|has| |t#2| (-157)) (-6 (-653 |t#2|)) |%noBranch|) (-15 -1311 ($ |t#2|)) (-15 -2115 ($ (-586 |t#2|))) (-15 -1965 (|t#3| $)) (-15 -1864 (|t#2| $)) (-15 -3182 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4231 "*"))) (PROGN (-6 (-37 |t#2|)) (-15 -4145 (|t#2| $)) (-15 -3346 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-336)) (PROGN (-15 -1675 ((-3 $ "failed") $)) (-15 ** ($ $ (-520)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-33) . T) ((-37 |#2|) |has| |#2| (-6 (-4231 "*"))) ((-97) . T) ((-107 |#2| |#2|) . T) ((-124) . T) ((-560 (-791)) . T) ((-207 |#2|) . T) ((-209) |has| |#2| (-209)) ((-283 |#2|) -12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012))) ((-350 |#2|) . T) ((-384 |#2|) . T) ((-459 |#2|) . T) ((-481 |#2| |#2|) -12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012))) ((-588 |#2|) . T) ((-588 $) . T) ((-582 (-520)) |has| |#2| (-582 (-520))) ((-582 |#2|) . T) ((-653 |#2|) -3700 (|has| |#2| (-157)) (|has| |#2| (-6 (-4231 "*")))) ((-662) . T) ((-828 (-1083)) |has| |#2| (-828 (-1083))) ((-972 |#1| |#1| |#2| |#3| |#4|) . T) ((-960 (-380 (-520))) |has| |#2| (-960 (-380 (-520)))) ((-960 (-520)) |has| |#2| (-960 (-520))) ((-960 |#2|) . T) ((-975 |#2|) . T) ((-969) . T) ((-976) . T) ((-1024) . T) ((-1012) . T) ((-1118) . T))
-((-3559 ((|#4| |#4|) 68)) (-1289 ((|#4| |#4|) 63)) (-2236 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1831 (-586 |#3|))) |#4| |#3|) 76)) (-3184 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 67)) (-2362 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 65)))
-(((-1034 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1289 (|#4| |#4|)) (-15 -2362 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3559 (|#4| |#4|)) (-15 -3184 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -2236 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1831 (-586 |#3|))) |#4| |#3|))) (-281) (-346 |#1|) (-346 |#1|) (-624 |#1| |#2| |#3|)) (T -1034))
-((-2236 (*1 *2 *3 *4) (-12 (-4 *5 (-281)) (-4 *6 (-346 *5)) (-4 *4 (-346 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1831 (-586 *4)))) (-5 *1 (-1034 *5 *6 *4 *3)) (-4 *3 (-624 *5 *6 *4)))) (-3184 (*1 *2 *3) (-12 (-4 *4 (-281)) (-4 *5 (-346 *4)) (-4 *6 (-346 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1034 *4 *5 *6 *3)) (-4 *3 (-624 *4 *5 *6)))) (-3559 (*1 *2 *2) (-12 (-4 *3 (-281)) (-4 *4 (-346 *3)) (-4 *5 (-346 *3)) (-5 *1 (-1034 *3 *4 *5 *2)) (-4 *2 (-624 *3 *4 *5)))) (-2362 (*1 *2 *3) (-12 (-4 *4 (-281)) (-4 *5 (-346 *4)) (-4 *6 (-346 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1034 *4 *5 *6 *3)) (-4 *3 (-624 *4 *5 *6)))) (-1289 (*1 *2 *2) (-12 (-4 *3 (-281)) (-4 *4 (-346 *3)) (-4 *5 (-346 *3)) (-5 *1 (-1034 *3 *4 *5 *2)) (-4 *2 (-624 *3 *4 *5)))))
-(-10 -7 (-15 -1289 (|#4| |#4|)) (-15 -2362 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3559 (|#4| |#4|)) (-15 -3184 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -2236 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1831 (-586 |#3|))) |#4| |#3|)))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) 17)) (-4081 (((-586 |#2|) $) 159)) (-1278 (((-1079 $) $ |#2|) 53) (((-1079 |#1|) $) 42)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) 109 (|has| |#1| (-512)))) (-2583 (($ $) 111 (|has| |#1| (-512)))) (-1671 (((-108) $) 113 (|has| |#1| (-512)))) (-3665 (((-706) $) NIL) (((-706) $ (-586 |#2|)) 193)) (-1917 (((-3 $ "failed") $ $) NIL)) (-4119 (((-391 (-1079 $)) (-1079 $)) NIL (|has| |#1| (-837)))) (-3024 (($ $) NIL (|has| |#1| (-424)))) (-1507 (((-391 $) $) NIL (|has| |#1| (-424)))) (-3481 (((-3 (-586 (-1079 $)) "failed") (-586 (-1079 $)) (-1079 $)) NIL (|has| |#1| (-837)))) (-3961 (($) NIL T CONST)) (-1296 (((-3 |#1| "failed") $) 156) (((-3 (-380 (-520)) "failed") $) NIL (|has| |#1| (-960 (-380 (-520))))) (((-3 (-520) "failed") $) NIL (|has| |#1| (-960 (-520)))) (((-3 |#2| "failed") $) NIL)) (-1482 ((|#1| $) 154) (((-380 (-520)) $) NIL (|has| |#1| (-960 (-380 (-520))))) (((-520) $) NIL (|has| |#1| (-960 (-520)))) ((|#2| $) NIL)) (-2413 (($ $ $ |#2|) NIL (|has| |#1| (-157)))) (-3150 (($ $) 197)) (-2756 (((-626 (-520)) (-626 $)) NIL (|has| |#1| (-582 (-520)))) (((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 $) (-1164 $)) NIL (|has| |#1| (-582 (-520)))) (((-2 (|:| -3927 (-626 |#1|)) (|:| |vec| (-1164 |#1|))) (-626 $) (-1164 $)) NIL) (((-626 |#1|) (-626 $)) NIL)) (-1540 (((-3 $ "failed") $) 81)) (-3923 (($ $) NIL (|has| |#1| (-424))) (($ $ |#2|) NIL (|has| |#1| (-424)))) (-3142 (((-586 $) $) NIL)) (-2036 (((-108) $) NIL (|has| |#1| (-837)))) (-3397 (($ $ |#1| (-492 |#2|) $) NIL)) (-1272 (((-817 (-352) $) $ (-820 (-352)) (-817 (-352) $)) NIL (-12 (|has| |#1| (-814 (-352))) (|has| |#2| (-814 (-352))))) (((-817 (-520) $) $ (-820 (-520)) (-817 (-520) $)) NIL (-12 (|has| |#1| (-814 (-520))) (|has| |#2| (-814 (-520)))))) (-1537 (((-108) $) 19)) (-1315 (((-706) $) 26)) (-4065 (($ (-1079 |#1|) |#2|) 47) (($ (-1079 $) |#2|) 63)) (-1992 (((-586 $) $) NIL)) (-3774 (((-108) $) 31)) (-4039 (($ |#1| (-492 |#2|)) 70) (($ $ |#2| (-706)) 51) (($ $ (-586 |#2|) (-586 (-706))) NIL)) (-1910 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $ |#2|) NIL)) (-3562 (((-492 |#2|) $) 186) (((-706) $ |#2|) 187) (((-586 (-706)) $ (-586 |#2|)) 188)) (-2809 (($ $ $) NIL (|has| |#1| (-783)))) (-2446 (($ $ $) NIL (|has| |#1| (-783)))) (-3295 (($ (-1 (-492 |#2|) (-492 |#2|)) $) NIL)) (-1389 (($ (-1 |#1| |#1|) $) 121)) (-3186 (((-3 |#2| "failed") $) 161)) (-3123 (($ $) 196)) (-3133 ((|#1| $) 36)) (-2222 (($ (-586 $)) NIL (|has| |#1| (-424))) (($ $ $) NIL (|has| |#1| (-424)))) (-1239 (((-1066) $) NIL)) (-3548 (((-3 (-586 $) "failed") $) NIL)) (-1205 (((-3 (-586 $) "failed") $) NIL)) (-2568 (((-3 (-2 (|:| |var| |#2|) (|:| -2647 (-706))) "failed") $) NIL)) (-4142 (((-1030) $) NIL)) (-3103 (((-108) $) 32)) (-3113 ((|#1| $) NIL)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) 139 (|has| |#1| (-424)))) (-2257 (($ (-586 $)) 144 (|has| |#1| (-424))) (($ $ $) 131 (|has| |#1| (-424)))) (-4133 (((-391 (-1079 $)) (-1079 $)) NIL (|has| |#1| (-837)))) (-2017 (((-391 (-1079 $)) (-1079 $)) NIL (|has| |#1| (-837)))) (-1916 (((-391 $) $) NIL (|has| |#1| (-837)))) (-2230 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-512))) (((-3 $ "failed") $ $) 119 (|has| |#1| (-512)))) (-2286 (($ $ (-586 (-268 $))) NIL) (($ $ (-268 $)) NIL) (($ $ $ $) NIL) (($ $ (-586 $) (-586 $)) NIL) (($ $ |#2| |#1|) 164) (($ $ (-586 |#2|) (-586 |#1|)) 177) (($ $ |#2| $) 163) (($ $ (-586 |#2|) (-586 $)) 176)) (-2732 (($ $ |#2|) NIL (|has| |#1| (-157)))) (-2155 (($ $ |#2|) 195) (($ $ (-586 |#2|)) NIL) (($ $ |#2| (-706)) NIL) (($ $ (-586 |#2|) (-586 (-706))) NIL)) (-2528 (((-492 |#2|) $) 182) (((-706) $ |#2|) 178) (((-586 (-706)) $ (-586 |#2|)) 180)) (-1429 (((-820 (-352)) $) NIL (-12 (|has| |#1| (-561 (-820 (-352)))) (|has| |#2| (-561 (-820 (-352)))))) (((-820 (-520)) $) NIL (-12 (|has| |#1| (-561 (-820 (-520)))) (|has| |#2| (-561 (-820 (-520)))))) (((-496) $) NIL (-12 (|has| |#1| (-561 (-496))) (|has| |#2| (-561 (-496)))))) (-1233 ((|#1| $) 127 (|has| |#1| (-424))) (($ $ |#2|) 130 (|has| |#1| (-424)))) (-3784 (((-3 (-1164 $) "failed") (-626 $)) NIL (-12 (|has| $ (-133)) (|has| |#1| (-837))))) (-2188 (((-791) $) 150) (($ (-520)) 75) (($ |#1|) 76) (($ |#2|) 28) (($ $) NIL (|has| |#1| (-512))) (($ (-380 (-520))) NIL (-3700 (|has| |#1| (-37 (-380 (-520)))) (|has| |#1| (-960 (-380 (-520))))))) (-4113 (((-586 |#1|) $) 153)) (-3475 ((|#1| $ (-492 |#2|)) 72) (($ $ |#2| (-706)) NIL) (($ $ (-586 |#2|) (-586 (-706))) NIL)) (-3796 (((-3 $ "failed") $) NIL (-3700 (-12 (|has| $ (-133)) (|has| |#1| (-837))) (|has| |#1| (-133))))) (-3251 (((-706)) 78)) (-1782 (($ $ $ (-706)) NIL (|has| |#1| (-157)))) (-2559 (((-108) $ $) 116 (|has| |#1| (-512)))) (-3504 (($ $ (-849)) 101) (($ $ (-706)) 103)) (-3560 (($) 12 T CONST)) (-3570 (($) 14 T CONST)) (-2211 (($ $ |#2|) NIL) (($ $ (-586 |#2|)) NIL) (($ $ |#2| (-706)) NIL) (($ $ (-586 |#2|) (-586 (-706))) NIL)) (-1573 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1557 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1530 (((-108) $ $) 96)) (-1565 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1548 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1619 (($ $ |#1|) 125 (|has| |#1| (-336)))) (-1611 (($ $) 84) (($ $ $) 94)) (-1601 (($ $ $) 48)) (** (($ $ (-849)) 102) (($ $ (-706)) 99)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) 87) (($ $ $) 64) (($ $ (-380 (-520))) NIL (|has| |#1| (-37 (-380 (-520))))) (($ (-380 (-520)) $) NIL (|has| |#1| (-37 (-380 (-520))))) (($ |#1| $) 89) (($ $ |#1|) NIL)))
-(((-1035 |#1| |#2|) (-877 |#1| (-492 |#2|) |#2|) (-969) (-783)) (T -1035))
-NIL
-(-877 |#1| (-492 |#2|) |#2|)
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-4081 (((-586 |#2|) $) NIL)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) NIL (|has| |#1| (-512)))) (-2583 (($ $) NIL (|has| |#1| (-512)))) (-1671 (((-108) $) NIL (|has| |#1| (-512)))) (-2903 (($ $) 142 (|has| |#1| (-37 (-380 (-520)))))) (-2768 (($ $) 118 (|has| |#1| (-37 (-380 (-520)))))) (-1917 (((-3 $ "failed") $ $) NIL)) (-1927 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2879 (($ $) 138 (|has| |#1| (-37 (-380 (-520)))))) (-2745 (($ $) 114 (|has| |#1| (-37 (-380 (-520)))))) (-2925 (($ $) 146 (|has| |#1| (-37 (-380 (-520)))))) (-2789 (($ $) 122 (|has| |#1| (-37 (-380 (-520)))))) (-3961 (($) NIL T CONST)) (-3150 (($ $) NIL)) (-1540 (((-3 $ "failed") $) NIL)) (-2198 (((-880 |#1|) $ (-706)) NIL) (((-880 |#1|) $ (-706) (-706)) NIL)) (-1342 (((-108) $) NIL)) (-2833 (($) NIL (|has| |#1| (-37 (-380 (-520)))))) (-3989 (((-706) $ |#2|) NIL) (((-706) $ |#2| (-706)) NIL)) (-1537 (((-108) $) NIL)) (-2322 (($ $ (-520)) NIL (|has| |#1| (-37 (-380 (-520)))))) (-3774 (((-108) $) NIL)) (-4039 (($ $ (-586 |#2|) (-586 (-492 |#2|))) NIL) (($ $ |#2| (-492 |#2|)) NIL) (($ |#1| (-492 |#2|)) NIL) (($ $ |#2| (-706)) 58) (($ $ (-586 |#2|) (-586 (-706))) NIL)) (-1389 (($ (-1 |#1| |#1|) $) NIL)) (-1252 (($ $) 112 (|has| |#1| (-37 (-380 (-520)))))) (-3123 (($ $) NIL)) (-3133 ((|#1| $) NIL)) (-1239 (((-1066) $) NIL)) (-3517 (($ $ |#2|) NIL (|has| |#1| (-37 (-380 (-520))))) (($ $ |#2| |#1|) 165 (|has| |#1| (-37 (-380 (-520)))))) (-4142 (((-1030) $) NIL)) (-2272 (($ (-1 $) |#2| |#1|) 164 (|has| |#1| (-37 (-380 (-520)))))) (-2116 (($ $ (-706)) 15)) (-2230 (((-3 $ "failed") $ $) NIL (|has| |#1| (-512)))) (-3260 (($ $) 110 (|has| |#1| (-37 (-380 (-520)))))) (-2286 (($ $ |#2| $) 96) (($ $ (-586 |#2|) (-586 $)) 89) (($ $ (-586 (-268 $))) NIL) (($ $ (-268 $)) NIL) (($ $ $ $) NIL) (($ $ (-586 $) (-586 $)) NIL)) (-2155 (($ $ |#2|) 99) (($ $ (-586 |#2|)) NIL) (($ $ |#2| (-706)) NIL) (($ $ (-586 |#2|) (-586 (-706))) NIL)) (-2528 (((-492 |#2|) $) NIL)) (-1788 (((-1 (-1064 |#3|) |#3|) (-586 |#2|) (-586 (-1064 |#3|))) 79)) (-1737 (($ $) 148 (|has| |#1| (-37 (-380 (-520)))))) (-2799 (($ $) 124 (|has| |#1| (-37 (-380 (-520)))))) (-2914 (($ $) 144 (|has| |#1| (-37 (-380 (-520)))))) (-2779 (($ $) 120 (|has| |#1| (-37 (-380 (-520)))))) (-2891 (($ $) 140 (|has| |#1| (-37 (-380 (-520)))))) (-2757 (($ $) 116 (|has| |#1| (-37 (-380 (-520)))))) (-2759 (($ $) 17)) (-2188 (((-791) $) 180) (($ (-520)) NIL) (($ |#1|) 44 (|has| |#1| (-157))) (($ $) NIL (|has| |#1| (-512))) (($ (-380 (-520))) NIL (|has| |#1| (-37 (-380 (-520))))) (($ |#2|) 65) (($ |#3|) 63)) (-3475 ((|#1| $ (-492 |#2|)) NIL) (($ $ |#2| (-706)) NIL) (($ $ (-586 |#2|) (-586 (-706))) NIL) ((|#3| $ (-706)) 42)) (-3796 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-3251 (((-706)) NIL)) (-1758 (($ $) 154 (|has| |#1| (-37 (-380 (-520)))))) (-2831 (($ $) 130 (|has| |#1| (-37 (-380 (-520)))))) (-2559 (((-108) $ $) NIL (|has| |#1| (-512)))) (-1744 (($ $) 150 (|has| |#1| (-37 (-380 (-520)))))) (-2810 (($ $) 126 (|has| |#1| (-37 (-380 (-520)))))) (-1775 (($ $) 158 (|has| |#1| (-37 (-380 (-520)))))) (-2855 (($ $) 134 (|has| |#1| (-37 (-380 (-520)))))) (-3915 (($ $) 160 (|has| |#1| (-37 (-380 (-520)))))) (-2867 (($ $) 136 (|has| |#1| (-37 (-380 (-520)))))) (-1767 (($ $) 156 (|has| |#1| (-37 (-380 (-520)))))) (-2843 (($ $) 132 (|has| |#1| (-37 (-380 (-520)))))) (-1751 (($ $) 152 (|has| |#1| (-37 (-380 (-520)))))) (-2820 (($ $) 128 (|has| |#1| (-37 (-380 (-520)))))) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (-3560 (($) 18 T CONST)) (-3570 (($) 10 T CONST)) (-2211 (($ $ |#2|) NIL) (($ $ (-586 |#2|)) NIL) (($ $ |#2| (-706)) NIL) (($ $ (-586 |#2|) (-586 (-706))) NIL)) (-1530 (((-108) $ $) NIL)) (-1619 (($ $ |#1|) 182 (|has| |#1| (-336)))) (-1611 (($ $) NIL) (($ $ $) NIL)) (-1601 (($ $ $) 61)) (** (($ $ (-849)) NIL) (($ $ (-706)) 70) (($ $ $) NIL (|has| |#1| (-37 (-380 (-520))))) (($ $ (-380 (-520))) 102 (|has| |#1| (-37 (-380 (-520)))))) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) 60) (($ $ (-380 (-520))) 107 (|has| |#1| (-37 (-380 (-520))))) (($ (-380 (-520)) $) 105 (|has| |#1| (-37 (-380 (-520))))) (($ |#1| $) 47) (($ $ |#1|) 48) (($ |#3| $) 46)))
-(((-1036 |#1| |#2| |#3|) (-13 (-676 |#1| |#2|) (-10 -8 (-15 -3475 (|#3| $ (-706))) (-15 -2188 ($ |#2|)) (-15 -2188 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -1788 ((-1 (-1064 |#3|) |#3|) (-586 |#2|) (-586 (-1064 |#3|)))) (IF (|has| |#1| (-37 (-380 (-520)))) (PROGN (-15 -3517 ($ $ |#2| |#1|)) (-15 -2272 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-969) (-783) (-877 |#1| (-492 |#2|) |#2|)) (T -1036))
-((-3475 (*1 *2 *1 *3) (-12 (-5 *3 (-706)) (-4 *2 (-877 *4 (-492 *5) *5)) (-5 *1 (-1036 *4 *5 *2)) (-4 *4 (-969)) (-4 *5 (-783)))) (-2188 (*1 *1 *2) (-12 (-4 *3 (-969)) (-4 *2 (-783)) (-5 *1 (-1036 *3 *2 *4)) (-4 *4 (-877 *3 (-492 *2) *2)))) (-2188 (*1 *1 *2) (-12 (-4 *3 (-969)) (-4 *4 (-783)) (-5 *1 (-1036 *3 *4 *2)) (-4 *2 (-877 *3 (-492 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-969)) (-4 *4 (-783)) (-5 *1 (-1036 *3 *4 *2)) (-4 *2 (-877 *3 (-492 *4) *4)))) (-1788 (*1 *2 *3 *4) (-12 (-5 *3 (-586 *6)) (-5 *4 (-586 (-1064 *7))) (-4 *6 (-783)) (-4 *7 (-877 *5 (-492 *6) *6)) (-4 *5 (-969)) (-5 *2 (-1 (-1064 *7) *7)) (-5 *1 (-1036 *5 *6 *7)))) (-3517 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *3 (-969)) (-4 *2 (-783)) (-5 *1 (-1036 *3 *2 *4)) (-4 *4 (-877 *3 (-492 *2) *2)))) (-2272 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1036 *4 *3 *5))) (-4 *4 (-37 (-380 (-520)))) (-4 *4 (-969)) (-4 *3 (-783)) (-5 *1 (-1036 *4 *3 *5)) (-4 *5 (-877 *4 (-492 *3) *3)))))
-(-13 (-676 |#1| |#2|) (-10 -8 (-15 -3475 (|#3| $ (-706))) (-15 -2188 ($ |#2|)) (-15 -2188 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -1788 ((-1 (-1064 |#3|) |#3|) (-586 |#2|) (-586 (-1064 |#3|)))) (IF (|has| |#1| (-37 (-380 (-520)))) (PROGN (-15 -3517 ($ $ |#2| |#1|)) (-15 -2272 ($ (-1 $) |#2| |#1|))) |%noBranch|)))
-((-1414 (((-108) $ $) 7)) (-3769 (((-586 (-2 (|:| -1649 $) (|:| -1543 (-586 |#4|)))) (-586 |#4|)) 85)) (-3767 (((-586 $) (-586 |#4|)) 86) (((-586 $) (-586 |#4|) (-108)) 111)) (-4081 (((-586 |#3|) $) 33)) (-2373 (((-108) $) 26)) (-1937 (((-108) $) 17 (|has| |#1| (-512)))) (-3804 (((-108) |#4| $) 101) (((-108) $) 97)) (-3954 ((|#4| |#4| $) 92)) (-3024 (((-586 (-2 (|:| |val| |#4|) (|:| -1883 $))) |#4| $) 126)) (-3210 (((-2 (|:| |under| $) (|:| -1626 $) (|:| |upper| $)) $ |#3|) 27)) (-2063 (((-108) $ (-706)) 44)) (-1627 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4229))) (((-3 |#4| "failed") $ |#3|) 79)) (-3961 (($) 45 T CONST)) (-2215 (((-108) $) 22 (|has| |#1| (-512)))) (-3078 (((-108) $ $) 24 (|has| |#1| (-512)))) (-3675 (((-108) $ $) 23 (|has| |#1| (-512)))) (-2786 (((-108) $) 25 (|has| |#1| (-512)))) (-2589 (((-586 |#4|) (-586 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 93)) (-4167 (((-586 |#4|) (-586 |#4|) $) 18 (|has| |#1| (-512)))) (-3415 (((-586 |#4|) (-586 |#4|) $) 19 (|has| |#1| (-512)))) (-1296 (((-3 $ "failed") (-586 |#4|)) 36)) (-1482 (($ (-586 |#4|)) 35)) (-2305 (((-3 $ "failed") $) 82)) (-1618 ((|#4| |#4| $) 89)) (-2331 (($ $) 68 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -4229))))) (-1421 (($ |#4| $) 67 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -4229)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4229)))) (-3753 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-512)))) (-3738 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) 102)) (-2762 ((|#4| |#4| $) 87)) (-3856 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -4229)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4229))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4229))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 94)) (-2025 (((-2 (|:| -1649 (-586 |#4|)) (|:| -1543 (-586 |#4|))) $) 105)) (-2870 (((-108) |#4| $) 136)) (-1276 (((-108) |#4| $) 133)) (-1964 (((-108) |#4| $) 137) (((-108) $) 134)) (-3828 (((-586 |#4|) $) 52 (|has| $ (-6 -4229)))) (-2311 (((-108) |#4| $) 104) (((-108) $) 103)) (-3871 ((|#3| $) 34)) (-3027 (((-108) $ (-706)) 43)) (-3702 (((-586 |#4|) $) 53 (|has| $ (-6 -4229)))) (-2422 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -4229))))) (-3830 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#4| |#4|) $) 47)) (-2602 (((-586 |#3|) $) 32)) (-3394 (((-108) |#3| $) 31)) (-1390 (((-108) $ (-706)) 42)) (-1239 (((-1066) $) 9)) (-3797 (((-3 |#4| (-586 $)) |#4| |#4| $) 128)) (-2170 (((-586 (-2 (|:| |val| |#4|) (|:| -1883 $))) |#4| |#4| $) 127)) (-1440 (((-3 |#4| "failed") $) 83)) (-3674 (((-586 $) |#4| $) 129)) (-3757 (((-3 (-108) (-586 $)) |#4| $) 132)) (-2484 (((-586 (-2 (|:| |val| (-108)) (|:| -1883 $))) |#4| $) 131) (((-108) |#4| $) 130)) (-2077 (((-586 $) |#4| $) 125) (((-586 $) (-586 |#4|) $) 124) (((-586 $) (-586 |#4|) (-586 $)) 123) (((-586 $) |#4| (-586 $)) 122)) (-3709 (($ |#4| $) 117) (($ (-586 |#4|) $) 116)) (-2623 (((-586 |#4|) $) 107)) (-2428 (((-108) |#4| $) 99) (((-108) $) 95)) (-2778 ((|#4| |#4| $) 90)) (-3444 (((-108) $ $) 110)) (-2130 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-512)))) (-1322 (((-108) |#4| $) 100) (((-108) $) 96)) (-3499 ((|#4| |#4| $) 91)) (-4142 (((-1030) $) 10)) (-2293 (((-3 |#4| "failed") $) 84)) (-2985 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-2885 (((-3 $ "failed") $ |#4|) 78)) (-2116 (($ $ |#4|) 77) (((-586 $) |#4| $) 115) (((-586 $) |#4| (-586 $)) 114) (((-586 $) (-586 |#4|) $) 113) (((-586 $) (-586 |#4|) (-586 $)) 112)) (-4155 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 |#4|) (-586 |#4|)) 59 (-12 (|has| |#4| (-283 |#4|)) (|has| |#4| (-1012)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-283 |#4|)) (|has| |#4| (-1012)))) (($ $ (-268 |#4|)) 57 (-12 (|has| |#4| (-283 |#4|)) (|has| |#4| (-1012)))) (($ $ (-586 (-268 |#4|))) 56 (-12 (|has| |#4| (-283 |#4|)) (|has| |#4| (-1012))))) (-2533 (((-108) $ $) 38)) (-4018 (((-108) $) 41)) (-2238 (($) 40)) (-2528 (((-706) $) 106)) (-4159 (((-706) |#4| $) 54 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -4229)))) (((-706) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4229)))) (-2403 (($ $) 39)) (-1429 (((-496) $) 69 (|has| |#4| (-561 (-496))))) (-2200 (($ (-586 |#4|)) 60)) (-3399 (($ $ |#3|) 28)) (-4067 (($ $ |#3|) 30)) (-3932 (($ $) 88)) (-2513 (($ $ |#3|) 29)) (-2188 (((-791) $) 11) (((-586 |#4|) $) 37)) (-3898 (((-706) $) 76 (|has| |#3| (-341)))) (-1652 (((-3 (-2 (|:| |bas| $) (|:| -1353 (-586 |#4|))) "failed") (-586 |#4|) (-1 (-108) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1353 (-586 |#4|))) "failed") (-586 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) 108)) (-3146 (((-108) $ (-1 (-108) |#4| (-586 |#4|))) 98)) (-3272 (((-586 $) |#4| $) 121) (((-586 $) |#4| (-586 $)) 120) (((-586 $) (-586 |#4|) $) 119) (((-586 $) (-586 |#4|) (-586 $)) 118)) (-1662 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4229)))) (-1600 (((-586 |#3|) $) 81)) (-3230 (((-108) |#4| $) 135)) (-3718 (((-108) |#3| $) 80)) (-1530 (((-108) $ $) 6)) (-3474 (((-706) $) 46 (|has| $ (-6 -4229)))))
-(((-1037 |#1| |#2| |#3| |#4|) (-1195) (-424) (-728) (-783) (-983 |t#1| |t#2| |t#3|)) (T -1037))
-NIL
-(-13 (-1021 |t#1| |t#2| |t#3| |t#4|) (-719 |t#1| |t#2| |t#3| |t#4|))
-(((-33) . T) ((-97) . T) ((-560 (-586 |#4|)) . T) ((-560 (-791)) . T) ((-139 |#4|) . T) ((-561 (-496)) |has| |#4| (-561 (-496))) ((-283 |#4|) -12 (|has| |#4| (-283 |#4|)) (|has| |#4| (-1012))) ((-459 |#4|) . T) ((-481 |#4| |#4|) -12 (|has| |#4| (-283 |#4|)) (|has| |#4| (-1012))) ((-719 |#1| |#2| |#3| |#4|) . T) ((-901 |#1| |#2| |#3| |#4|) . T) ((-988 |#1| |#2| |#3| |#4|) . T) ((-1012) . T) ((-1021 |#1| |#2| |#3| |#4|) . T) ((-1112 |#1| |#2| |#3| |#4|) . T) ((-1118) . T))
-((-3600 (((-586 |#2|) |#1|) 12)) (-1493 (((-586 |#2|) |#2| |#2| |#2| |#2| |#2|) 37) (((-586 |#2|) |#1|) 47)) (-1778 (((-586 |#2|) |#2| |#2| |#2|) 35) (((-586 |#2|) |#1|) 45)) (-3839 ((|#2| |#1|) 42)) (-2743 (((-2 (|:| |solns| (-586 |#2|)) (|:| |maps| (-586 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 16)) (-2175 (((-586 |#2|) |#2| |#2|) 34) (((-586 |#2|) |#1|) 44)) (-2453 (((-586 |#2|) |#2| |#2| |#2| |#2|) 36) (((-586 |#2|) |#1|) 46)) (-3542 ((|#2| |#2| |#2| |#2| |#2| |#2|) 41)) (-3532 ((|#2| |#2| |#2| |#2|) 39)) (-2638 ((|#2| |#2| |#2|) 38)) (-4014 ((|#2| |#2| |#2| |#2| |#2|) 40)))
-(((-1038 |#1| |#2|) (-10 -7 (-15 -3600 ((-586 |#2|) |#1|)) (-15 -3839 (|#2| |#1|)) (-15 -2743 ((-2 (|:| |solns| (-586 |#2|)) (|:| |maps| (-586 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -2175 ((-586 |#2|) |#1|)) (-15 -1778 ((-586 |#2|) |#1|)) (-15 -2453 ((-586 |#2|) |#1|)) (-15 -1493 ((-586 |#2|) |#1|)) (-15 -2175 ((-586 |#2|) |#2| |#2|)) (-15 -1778 ((-586 |#2|) |#2| |#2| |#2|)) (-15 -2453 ((-586 |#2|) |#2| |#2| |#2| |#2|)) (-15 -1493 ((-586 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2638 (|#2| |#2| |#2|)) (-15 -3532 (|#2| |#2| |#2| |#2|)) (-15 -4014 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3542 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1140 |#2|) (-13 (-336) (-10 -8 (-15 ** ($ $ (-380 (-520))))))) (T -1038))
-((-3542 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-336) (-10 -8 (-15 ** ($ $ (-380 (-520))))))) (-5 *1 (-1038 *3 *2)) (-4 *3 (-1140 *2)))) (-4014 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-336) (-10 -8 (-15 ** ($ $ (-380 (-520))))))) (-5 *1 (-1038 *3 *2)) (-4 *3 (-1140 *2)))) (-3532 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-336) (-10 -8 (-15 ** ($ $ (-380 (-520))))))) (-5 *1 (-1038 *3 *2)) (-4 *3 (-1140 *2)))) (-2638 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-336) (-10 -8 (-15 ** ($ $ (-380 (-520))))))) (-5 *1 (-1038 *3 *2)) (-4 *3 (-1140 *2)))) (-1493 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-336) (-10 -8 (-15 ** ($ $ (-380 (-520))))))) (-5 *2 (-586 *3)) (-5 *1 (-1038 *4 *3)) (-4 *4 (-1140 *3)))) (-2453 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-336) (-10 -8 (-15 ** ($ $ (-380 (-520))))))) (-5 *2 (-586 *3)) (-5 *1 (-1038 *4 *3)) (-4 *4 (-1140 *3)))) (-1778 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-336) (-10 -8 (-15 ** ($ $ (-380 (-520))))))) (-5 *2 (-586 *3)) (-5 *1 (-1038 *4 *3)) (-4 *4 (-1140 *3)))) (-2175 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-336) (-10 -8 (-15 ** ($ $ (-380 (-520))))))) (-5 *2 (-586 *3)) (-5 *1 (-1038 *4 *3)) (-4 *4 (-1140 *3)))) (-1493 (*1 *2 *3) (-12 (-4 *4 (-13 (-336) (-10 -8 (-15 ** ($ $ (-380 (-520))))))) (-5 *2 (-586 *4)) (-5 *1 (-1038 *3 *4)) (-4 *3 (-1140 *4)))) (-2453 (*1 *2 *3) (-12 (-4 *4 (-13 (-336) (-10 -8 (-15 ** ($ $ (-380 (-520))))))) (-5 *2 (-586 *4)) (-5 *1 (-1038 *3 *4)) (-4 *3 (-1140 *4)))) (-1778 (*1 *2 *3) (-12 (-4 *4 (-13 (-336) (-10 -8 (-15 ** ($ $ (-380 (-520))))))) (-5 *2 (-586 *4)) (-5 *1 (-1038 *3 *4)) (-4 *3 (-1140 *4)))) (-2175 (*1 *2 *3) (-12 (-4 *4 (-13 (-336) (-10 -8 (-15 ** ($ $ (-380 (-520))))))) (-5 *2 (-586 *4)) (-5 *1 (-1038 *3 *4)) (-4 *3 (-1140 *4)))) (-2743 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-336) (-10 -8 (-15 ** ($ $ (-380 (-520))))))) (-5 *2 (-2 (|:| |solns| (-586 *5)) (|:| |maps| (-586 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1038 *3 *5)) (-4 *3 (-1140 *5)))) (-3839 (*1 *2 *3) (-12 (-4 *2 (-13 (-336) (-10 -8 (-15 ** ($ $ (-380 (-520))))))) (-5 *1 (-1038 *3 *2)) (-4 *3 (-1140 *2)))) (-3600 (*1 *2 *3) (-12 (-4 *4 (-13 (-336) (-10 -8 (-15 ** ($ $ (-380 (-520))))))) (-5 *2 (-586 *4)) (-5 *1 (-1038 *3 *4)) (-4 *3 (-1140 *4)))))
-(-10 -7 (-15 -3600 ((-586 |#2|) |#1|)) (-15 -3839 (|#2| |#1|)) (-15 -2743 ((-2 (|:| |solns| (-586 |#2|)) (|:| |maps| (-586 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -2175 ((-586 |#2|) |#1|)) (-15 -1778 ((-586 |#2|) |#1|)) (-15 -2453 ((-586 |#2|) |#1|)) (-15 -1493 ((-586 |#2|) |#1|)) (-15 -2175 ((-586 |#2|) |#2| |#2|)) (-15 -1778 ((-586 |#2|) |#2| |#2| |#2|)) (-15 -2453 ((-586 |#2|) |#2| |#2| |#2| |#2|)) (-15 -1493 ((-586 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2638 (|#2| |#2| |#2|)) (-15 -3532 (|#2| |#2| |#2| |#2|)) (-15 -4014 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3542 (|#2| |#2| |#2| |#2| |#2| |#2|)))
-((-2051 (((-586 (-586 (-268 (-289 |#1|)))) (-586 (-268 (-380 (-880 |#1|))))) 95) (((-586 (-586 (-268 (-289 |#1|)))) (-586 (-268 (-380 (-880 |#1|)))) (-586 (-1083))) 94) (((-586 (-586 (-268 (-289 |#1|)))) (-586 (-380 (-880 |#1|)))) 92) (((-586 (-586 (-268 (-289 |#1|)))) (-586 (-380 (-880 |#1|))) (-586 (-1083))) 90) (((-586 (-268 (-289 |#1|))) (-268 (-380 (-880 |#1|)))) 76) (((-586 (-268 (-289 |#1|))) (-268 (-380 (-880 |#1|))) (-1083)) 77) (((-586 (-268 (-289 |#1|))) (-380 (-880 |#1|))) 71) (((-586 (-268 (-289 |#1|))) (-380 (-880 |#1|)) (-1083)) 60)) (-4012 (((-586 (-586 (-289 |#1|))) (-586 (-380 (-880 |#1|))) (-586 (-1083))) 88) (((-586 (-289 |#1|)) (-380 (-880 |#1|)) (-1083)) 43)) (-2400 (((-1073 (-586 (-289 |#1|)) (-586 (-268 (-289 |#1|)))) (-380 (-880 |#1|)) (-1083)) 98) (((-1073 (-586 (-289 |#1|)) (-586 (-268 (-289 |#1|)))) (-268 (-380 (-880 |#1|))) (-1083)) 97)))
-(((-1039 |#1|) (-10 -7 (-15 -2051 ((-586 (-268 (-289 |#1|))) (-380 (-880 |#1|)) (-1083))) (-15 -2051 ((-586 (-268 (-289 |#1|))) (-380 (-880 |#1|)))) (-15 -2051 ((-586 (-268 (-289 |#1|))) (-268 (-380 (-880 |#1|))) (-1083))) (-15 -2051 ((-586 (-268 (-289 |#1|))) (-268 (-380 (-880 |#1|))))) (-15 -2051 ((-586 (-586 (-268 (-289 |#1|)))) (-586 (-380 (-880 |#1|))) (-586 (-1083)))) (-15 -2051 ((-586 (-586 (-268 (-289 |#1|)))) (-586 (-380 (-880 |#1|))))) (-15 -2051 ((-586 (-586 (-268 (-289 |#1|)))) (-586 (-268 (-380 (-880 |#1|)))) (-586 (-1083)))) (-15 -2051 ((-586 (-586 (-268 (-289 |#1|)))) (-586 (-268 (-380 (-880 |#1|)))))) (-15 -4012 ((-586 (-289 |#1|)) (-380 (-880 |#1|)) (-1083))) (-15 -4012 ((-586 (-586 (-289 |#1|))) (-586 (-380 (-880 |#1|))) (-586 (-1083)))) (-15 -2400 ((-1073 (-586 (-289 |#1|)) (-586 (-268 (-289 |#1|)))) (-268 (-380 (-880 |#1|))) (-1083))) (-15 -2400 ((-1073 (-586 (-289 |#1|)) (-586 (-268 (-289 |#1|)))) (-380 (-880 |#1|)) (-1083)))) (-13 (-281) (-783) (-135))) (T -1039))
-((-2400 (*1 *2 *3 *4) (-12 (-5 *3 (-380 (-880 *5))) (-5 *4 (-1083)) (-4 *5 (-13 (-281) (-783) (-135))) (-5 *2 (-1073 (-586 (-289 *5)) (-586 (-268 (-289 *5))))) (-5 *1 (-1039 *5)))) (-2400 (*1 *2 *3 *4) (-12 (-5 *3 (-268 (-380 (-880 *5)))) (-5 *4 (-1083)) (-4 *5 (-13 (-281) (-783) (-135))) (-5 *2 (-1073 (-586 (-289 *5)) (-586 (-268 (-289 *5))))) (-5 *1 (-1039 *5)))) (-4012 (*1 *2 *3 *4) (-12 (-5 *3 (-586 (-380 (-880 *5)))) (-5 *4 (-586 (-1083))) (-4 *5 (-13 (-281) (-783) (-135))) (-5 *2 (-586 (-586 (-289 *5)))) (-5 *1 (-1039 *5)))) (-4012 (*1 *2 *3 *4) (-12 (-5 *3 (-380 (-880 *5))) (-5 *4 (-1083)) (-4 *5 (-13 (-281) (-783) (-135))) (-5 *2 (-586 (-289 *5))) (-5 *1 (-1039 *5)))) (-2051 (*1 *2 *3) (-12 (-5 *3 (-586 (-268 (-380 (-880 *4))))) (-4 *4 (-13 (-281) (-783) (-135))) (-5 *2 (-586 (-586 (-268 (-289 *4))))) (-5 *1 (-1039 *4)))) (-2051 (*1 *2 *3 *4) (-12 (-5 *3 (-586 (-268 (-380 (-880 *5))))) (-5 *4 (-586 (-1083))) (-4 *5 (-13 (-281) (-783) (-135))) (-5 *2 (-586 (-586 (-268 (-289 *5))))) (-5 *1 (-1039 *5)))) (-2051 (*1 *2 *3) (-12 (-5 *3 (-586 (-380 (-880 *4)))) (-4 *4 (-13 (-281) (-783) (-135))) (-5 *2 (-586 (-586 (-268 (-289 *4))))) (-5 *1 (-1039 *4)))) (-2051 (*1 *2 *3 *4) (-12 (-5 *3 (-586 (-380 (-880 *5)))) (-5 *4 (-586 (-1083))) (-4 *5 (-13 (-281) (-783) (-135))) (-5 *2 (-586 (-586 (-268 (-289 *5))))) (-5 *1 (-1039 *5)))) (-2051 (*1 *2 *3) (-12 (-5 *3 (-268 (-380 (-880 *4)))) (-4 *4 (-13 (-281) (-783) (-135))) (-5 *2 (-586 (-268 (-289 *4)))) (-5 *1 (-1039 *4)))) (-2051 (*1 *2 *3 *4) (-12 (-5 *3 (-268 (-380 (-880 *5)))) (-5 *4 (-1083)) (-4 *5 (-13 (-281) (-783) (-135))) (-5 *2 (-586 (-268 (-289 *5)))) (-5 *1 (-1039 *5)))) (-2051 (*1 *2 *3) (-12 (-5 *3 (-380 (-880 *4))) (-4 *4 (-13 (-281) (-783) (-135))) (-5 *2 (-586 (-268 (-289 *4)))) (-5 *1 (-1039 *4)))) (-2051 (*1 *2 *3 *4) (-12 (-5 *3 (-380 (-880 *5))) (-5 *4 (-1083)) (-4 *5 (-13 (-281) (-783) (-135))) (-5 *2 (-586 (-268 (-289 *5)))) (-5 *1 (-1039 *5)))))
-(-10 -7 (-15 -2051 ((-586 (-268 (-289 |#1|))) (-380 (-880 |#1|)) (-1083))) (-15 -2051 ((-586 (-268 (-289 |#1|))) (-380 (-880 |#1|)))) (-15 -2051 ((-586 (-268 (-289 |#1|))) (-268 (-380 (-880 |#1|))) (-1083))) (-15 -2051 ((-586 (-268 (-289 |#1|))) (-268 (-380 (-880 |#1|))))) (-15 -2051 ((-586 (-586 (-268 (-289 |#1|)))) (-586 (-380 (-880 |#1|))) (-586 (-1083)))) (-15 -2051 ((-586 (-586 (-268 (-289 |#1|)))) (-586 (-380 (-880 |#1|))))) (-15 -2051 ((-586 (-586 (-268 (-289 |#1|)))) (-586 (-268 (-380 (-880 |#1|)))) (-586 (-1083)))) (-15 -2051 ((-586 (-586 (-268 (-289 |#1|)))) (-586 (-268 (-380 (-880 |#1|)))))) (-15 -4012 ((-586 (-289 |#1|)) (-380 (-880 |#1|)) (-1083))) (-15 -4012 ((-586 (-586 (-289 |#1|))) (-586 (-380 (-880 |#1|))) (-586 (-1083)))) (-15 -2400 ((-1073 (-586 (-289 |#1|)) (-586 (-268 (-289 |#1|)))) (-268 (-380 (-880 |#1|))) (-1083))) (-15 -2400 ((-1073 (-586 (-289 |#1|)) (-586 (-268 (-289 |#1|)))) (-380 (-880 |#1|)) (-1083))))
-((-4131 (((-380 (-1079 (-289 |#1|))) (-1164 (-289 |#1|)) (-380 (-1079 (-289 |#1|))) (-520)) 27)) (-1750 (((-380 (-1079 (-289 |#1|))) (-380 (-1079 (-289 |#1|))) (-380 (-1079 (-289 |#1|))) (-380 (-1079 (-289 |#1|)))) 39)))
-(((-1040 |#1|) (-10 -7 (-15 -1750 ((-380 (-1079 (-289 |#1|))) (-380 (-1079 (-289 |#1|))) (-380 (-1079 (-289 |#1|))) (-380 (-1079 (-289 |#1|))))) (-15 -4131 ((-380 (-1079 (-289 |#1|))) (-1164 (-289 |#1|)) (-380 (-1079 (-289 |#1|))) (-520)))) (-13 (-512) (-783))) (T -1040))
-((-4131 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-380 (-1079 (-289 *5)))) (-5 *3 (-1164 (-289 *5))) (-5 *4 (-520)) (-4 *5 (-13 (-512) (-783))) (-5 *1 (-1040 *5)))) (-1750 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-380 (-1079 (-289 *3)))) (-4 *3 (-13 (-512) (-783))) (-5 *1 (-1040 *3)))))
-(-10 -7 (-15 -1750 ((-380 (-1079 (-289 |#1|))) (-380 (-1079 (-289 |#1|))) (-380 (-1079 (-289 |#1|))) (-380 (-1079 (-289 |#1|))))) (-15 -4131 ((-380 (-1079 (-289 |#1|))) (-1164 (-289 |#1|)) (-380 (-1079 (-289 |#1|))) (-520))))
-((-3600 (((-586 (-586 (-268 (-289 |#1|)))) (-586 (-268 (-289 |#1|))) (-586 (-1083))) 217) (((-586 (-268 (-289 |#1|))) (-289 |#1|) (-1083)) 20) (((-586 (-268 (-289 |#1|))) (-268 (-289 |#1|)) (-1083)) 26) (((-586 (-268 (-289 |#1|))) (-268 (-289 |#1|))) 25) (((-586 (-268 (-289 |#1|))) (-289 |#1|)) 21)))
-(((-1041 |#1|) (-10 -7 (-15 -3600 ((-586 (-268 (-289 |#1|))) (-289 |#1|))) (-15 -3600 ((-586 (-268 (-289 |#1|))) (-268 (-289 |#1|)))) (-15 -3600 ((-586 (-268 (-289 |#1|))) (-268 (-289 |#1|)) (-1083))) (-15 -3600 ((-586 (-268 (-289 |#1|))) (-289 |#1|) (-1083))) (-15 -3600 ((-586 (-586 (-268 (-289 |#1|)))) (-586 (-268 (-289 |#1|))) (-586 (-1083))))) (-13 (-783) (-281) (-960 (-520)) (-582 (-520)) (-135))) (T -1041))
-((-3600 (*1 *2 *3 *4) (-12 (-5 *4 (-586 (-1083))) (-4 *5 (-13 (-783) (-281) (-960 (-520)) (-582 (-520)) (-135))) (-5 *2 (-586 (-586 (-268 (-289 *5))))) (-5 *1 (-1041 *5)) (-5 *3 (-586 (-268 (-289 *5)))))) (-3600 (*1 *2 *3 *4) (-12 (-5 *4 (-1083)) (-4 *5 (-13 (-783) (-281) (-960 (-520)) (-582 (-520)) (-135))) (-5 *2 (-586 (-268 (-289 *5)))) (-5 *1 (-1041 *5)) (-5 *3 (-289 *5)))) (-3600 (*1 *2 *3 *4) (-12 (-5 *4 (-1083)) (-4 *5 (-13 (-783) (-281) (-960 (-520)) (-582 (-520)) (-135))) (-5 *2 (-586 (-268 (-289 *5)))) (-5 *1 (-1041 *5)) (-5 *3 (-268 (-289 *5))))) (-3600 (*1 *2 *3) (-12 (-4 *4 (-13 (-783) (-281) (-960 (-520)) (-582 (-520)) (-135))) (-5 *2 (-586 (-268 (-289 *4)))) (-5 *1 (-1041 *4)) (-5 *3 (-268 (-289 *4))))) (-3600 (*1 *2 *3) (-12 (-4 *4 (-13 (-783) (-281) (-960 (-520)) (-582 (-520)) (-135))) (-5 *2 (-586 (-268 (-289 *4)))) (-5 *1 (-1041 *4)) (-5 *3 (-289 *4)))))
-(-10 -7 (-15 -3600 ((-586 (-268 (-289 |#1|))) (-289 |#1|))) (-15 -3600 ((-586 (-268 (-289 |#1|))) (-268 (-289 |#1|)))) (-15 -3600 ((-586 (-268 (-289 |#1|))) (-268 (-289 |#1|)) (-1083))) (-15 -3600 ((-586 (-268 (-289 |#1|))) (-289 |#1|) (-1083))) (-15 -3600 ((-586 (-586 (-268 (-289 |#1|)))) (-586 (-268 (-289 |#1|))) (-586 (-1083)))))
-((-3314 ((|#2| |#2|) 20 (|has| |#1| (-783))) ((|#2| |#2| (-1 (-108) |#1| |#1|)) 16)) (-3810 ((|#2| |#2|) 19 (|has| |#1| (-783))) ((|#2| |#2| (-1 (-108) |#1| |#1|)) 15)))
-(((-1042 |#1| |#2|) (-10 -7 (-15 -3810 (|#2| |#2| (-1 (-108) |#1| |#1|))) (-15 -3314 (|#2| |#2| (-1 (-108) |#1| |#1|))) (IF (|has| |#1| (-783)) (PROGN (-15 -3810 (|#2| |#2|)) (-15 -3314 (|#2| |#2|))) |%noBranch|)) (-1118) (-13 (-553 (-520) |#1|) (-10 -7 (-6 -4229) (-6 -4230)))) (T -1042))
-((-3314 (*1 *2 *2) (-12 (-4 *3 (-783)) (-4 *3 (-1118)) (-5 *1 (-1042 *3 *2)) (-4 *2 (-13 (-553 (-520) *3) (-10 -7 (-6 -4229) (-6 -4230)))))) (-3810 (*1 *2 *2) (-12 (-4 *3 (-783)) (-4 *3 (-1118)) (-5 *1 (-1042 *3 *2)) (-4 *2 (-13 (-553 (-520) *3) (-10 -7 (-6 -4229) (-6 -4230)))))) (-3314 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1118)) (-5 *1 (-1042 *4 *2)) (-4 *2 (-13 (-553 (-520) *4) (-10 -7 (-6 -4229) (-6 -4230)))))) (-3810 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1118)) (-5 *1 (-1042 *4 *2)) (-4 *2 (-13 (-553 (-520) *4) (-10 -7 (-6 -4229) (-6 -4230)))))))
-(-10 -7 (-15 -3810 (|#2| |#2| (-1 (-108) |#1| |#1|))) (-15 -3314 (|#2| |#2| (-1 (-108) |#1| |#1|))) (IF (|has| |#1| (-783)) (PROGN (-15 -3810 (|#2| |#2|)) (-15 -3314 (|#2| |#2|))) |%noBranch|))
-((-1414 (((-108) $ $) NIL)) (-2263 (((-1072 3 |#1|) $) 106)) (-1424 (((-108) $) 72)) (-2803 (($ $ (-586 (-871 |#1|))) 20) (($ $ (-586 (-586 |#1|))) 75) (($ (-586 (-871 |#1|))) 74) (((-586 (-871 |#1|)) $) 73)) (-3326 (((-108) $) 41)) (-2734 (($ $ (-871 |#1|)) 46) (($ $ (-586 |#1|)) 51) (($ $ (-706)) 53) (($ (-871 |#1|)) 47) (((-871 |#1|) $) 45)) (-3339 (((-2 (|:| -4129 (-706)) (|:| |curves| (-706)) (|:| |polygons| (-706)) (|:| |constructs| (-706))) $) 104)) (-2726 (((-706) $) 26)) (-2368 (((-706) $) 25)) (-2349 (($ $ (-706) (-871 |#1|)) 39)) (-3742 (((-108) $) 82)) (-4147 (($ $ (-586 (-586 (-871 |#1|))) (-586 (-156)) (-156)) 89) (($ $ (-586 (-586 (-586 |#1|))) (-586 (-156)) (-156)) 91) (($ $ (-586 (-586 (-871 |#1|))) (-108) (-108)) 85) (($ $ (-586 (-586 (-586 |#1|))) (-108) (-108)) 93) (($ (-586 (-586 (-871 |#1|)))) 86) (($ (-586 (-586 (-871 |#1|))) (-108) (-108)) 87) (((-586 (-586 (-871 |#1|))) $) 84)) (-1819 (($ (-586 $)) 28) (($ $ $) 29)) (-2448 (((-586 (-156)) $) 102)) (-4038 (((-586 (-871 |#1|)) $) 97)) (-1647 (((-586 (-586 (-156))) $) 101)) (-3096 (((-586 (-586 (-586 (-871 |#1|)))) $) NIL)) (-2749 (((-586 (-586 (-586 (-706)))) $) 99)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-3300 (((-706) $ (-586 (-871 |#1|))) 37)) (-2643 (((-108) $) 54)) (-4162 (($ $ (-586 (-871 |#1|))) 56) (($ $ (-586 (-586 |#1|))) 62) (($ (-586 (-871 |#1|))) 57) (((-586 (-871 |#1|)) $) 55)) (-1209 (($) 23) (($ (-1072 3 |#1|)) 24)) (-2403 (($ $) 35)) (-3280 (((-586 $) $) 34)) (-3240 (($ (-586 $)) 31)) (-2509 (((-586 $) $) 33)) (-2188 (((-791) $) 110)) (-2754 (((-108) $) 64)) (-3021 (($ $ (-586 (-871 |#1|))) 66) (($ $ (-586 (-586 |#1|))) 69) (($ (-586 (-871 |#1|))) 67) (((-586 (-871 |#1|)) $) 65)) (-2365 (($ $) 105)) (-1530 (((-108) $ $) NIL)))
-(((-1043 |#1|) (-1044 |#1|) (-969)) (T -1043))
-NIL
-(-1044 |#1|)
-((-1414 (((-108) $ $) 7)) (-2263 (((-1072 3 |#1|) $) 13)) (-1424 (((-108) $) 29)) (-2803 (($ $ (-586 (-871 |#1|))) 33) (($ $ (-586 (-586 |#1|))) 32) (($ (-586 (-871 |#1|))) 31) (((-586 (-871 |#1|)) $) 30)) (-3326 (((-108) $) 44)) (-2734 (($ $ (-871 |#1|)) 49) (($ $ (-586 |#1|)) 48) (($ $ (-706)) 47) (($ (-871 |#1|)) 46) (((-871 |#1|) $) 45)) (-3339 (((-2 (|:| -4129 (-706)) (|:| |curves| (-706)) (|:| |polygons| (-706)) (|:| |constructs| (-706))) $) 15)) (-2726 (((-706) $) 58)) (-2368 (((-706) $) 59)) (-2349 (($ $ (-706) (-871 |#1|)) 50)) (-3742 (((-108) $) 21)) (-4147 (($ $ (-586 (-586 (-871 |#1|))) (-586 (-156)) (-156)) 28) (($ $ (-586 (-586 (-586 |#1|))) (-586 (-156)) (-156)) 27) (($ $ (-586 (-586 (-871 |#1|))) (-108) (-108)) 26) (($ $ (-586 (-586 (-586 |#1|))) (-108) (-108)) 25) (($ (-586 (-586 (-871 |#1|)))) 24) (($ (-586 (-586 (-871 |#1|))) (-108) (-108)) 23) (((-586 (-586 (-871 |#1|))) $) 22)) (-1819 (($ (-586 $)) 57) (($ $ $) 56)) (-2448 (((-586 (-156)) $) 16)) (-4038 (((-586 (-871 |#1|)) $) 20)) (-1647 (((-586 (-586 (-156))) $) 17)) (-3096 (((-586 (-586 (-586 (-871 |#1|)))) $) 18)) (-2749 (((-586 (-586 (-586 (-706)))) $) 19)) (-1239 (((-1066) $) 9)) (-4142 (((-1030) $) 10)) (-3300 (((-706) $ (-586 (-871 |#1|))) 51)) (-2643 (((-108) $) 39)) (-4162 (($ $ (-586 (-871 |#1|))) 43) (($ $ (-586 (-586 |#1|))) 42) (($ (-586 (-871 |#1|))) 41) (((-586 (-871 |#1|)) $) 40)) (-1209 (($) 61) (($ (-1072 3 |#1|)) 60)) (-2403 (($ $) 52)) (-3280 (((-586 $) $) 53)) (-3240 (($ (-586 $)) 55)) (-2509 (((-586 $) $) 54)) (-2188 (((-791) $) 11)) (-2754 (((-108) $) 34)) (-3021 (($ $ (-586 (-871 |#1|))) 38) (($ $ (-586 (-586 |#1|))) 37) (($ (-586 (-871 |#1|))) 36) (((-586 (-871 |#1|)) $) 35)) (-2365 (($ $) 14)) (-1530 (((-108) $ $) 6)))
-(((-1044 |#1|) (-1195) (-969)) (T -1044))
-((-2188 (*1 *2 *1) (-12 (-4 *1 (-1044 *3)) (-4 *3 (-969)) (-5 *2 (-791)))) (-1209 (*1 *1) (-12 (-4 *1 (-1044 *2)) (-4 *2 (-969)))) (-1209 (*1 *1 *2) (-12 (-5 *2 (-1072 3 *3)) (-4 *3 (-969)) (-4 *1 (-1044 *3)))) (-2368 (*1 *2 *1) (-12 (-4 *1 (-1044 *3)) (-4 *3 (-969)) (-5 *2 (-706)))) (-2726 (*1 *2 *1) (-12 (-4 *1 (-1044 *3)) (-4 *3 (-969)) (-5 *2 (-706)))) (-1819 (*1 *1 *2) (-12 (-5 *2 (-586 *1)) (-4 *1 (-1044 *3)) (-4 *3 (-969)))) (-1819 (*1 *1 *1 *1) (-12 (-4 *1 (-1044 *2)) (-4 *2 (-969)))) (-3240 (*1 *1 *2) (-12 (-5 *2 (-586 *1)) (-4 *1 (-1044 *3)) (-4 *3 (-969)))) (-2509 (*1 *2 *1) (-12 (-4 *3 (-969)) (-5 *2 (-586 *1)) (-4 *1 (-1044 *3)))) (-3280 (*1 *2 *1) (-12 (-4 *3 (-969)) (-5 *2 (-586 *1)) (-4 *1 (-1044 *3)))) (-2403 (*1 *1 *1) (-12 (-4 *1 (-1044 *2)) (-4 *2 (-969)))) (-3300 (*1 *2 *1 *3) (-12 (-5 *3 (-586 (-871 *4))) (-4 *1 (-1044 *4)) (-4 *4 (-969)) (-5 *2 (-706)))) (-2349 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-706)) (-5 *3 (-871 *4)) (-4 *1 (-1044 *4)) (-4 *4 (-969)))) (-2734 (*1 *1 *1 *2) (-12 (-5 *2 (-871 *3)) (-4 *1 (-1044 *3)) (-4 *3 (-969)))) (-2734 (*1 *1 *1 *2) (-12 (-5 *2 (-586 *3)) (-4 *1 (-1044 *3)) (-4 *3 (-969)))) (-2734 (*1 *1 *1 *2) (-12 (-5 *2 (-706)) (-4 *1 (-1044 *3)) (-4 *3 (-969)))) (-2734 (*1 *1 *2) (-12 (-5 *2 (-871 *3)) (-4 *3 (-969)) (-4 *1 (-1044 *3)))) (-2734 (*1 *2 *1) (-12 (-4 *1 (-1044 *3)) (-4 *3 (-969)) (-5 *2 (-871 *3)))) (-3326 (*1 *2 *1) (-12 (-4 *1 (-1044 *3)) (-4 *3 (-969)) (-5 *2 (-108)))) (-4162 (*1 *1 *1 *2) (-12 (-5 *2 (-586 (-871 *3))) (-4 *1 (-1044 *3)) (-4 *3 (-969)))) (-4162 (*1 *1 *1 *2) (-12 (-5 *2 (-586 (-586 *3))) (-4 *1 (-1044 *3)) (-4 *3 (-969)))) (-4162 (*1 *1 *2) (-12 (-5 *2 (-586 (-871 *3))) (-4 *3 (-969)) (-4 *1 (-1044 *3)))) (-4162 (*1 *2 *1) (-12 (-4 *1 (-1044 *3)) (-4 *3 (-969)) (-5 *2 (-586 (-871 *3))))) (-2643 (*1 *2 *1) (-12 (-4 *1 (-1044 *3)) (-4 *3 (-969)) (-5 *2 (-108)))) (-3021 (*1 *1 *1 *2) (-12 (-5 *2 (-586 (-871 *3))) (-4 *1 (-1044 *3)) (-4 *3 (-969)))) (-3021 (*1 *1 *1 *2) (-12 (-5 *2 (-586 (-586 *3))) (-4 *1 (-1044 *3)) (-4 *3 (-969)))) (-3021 (*1 *1 *2) (-12 (-5 *2 (-586 (-871 *3))) (-4 *3 (-969)) (-4 *1 (-1044 *3)))) (-3021 (*1 *2 *1) (-12 (-4 *1 (-1044 *3)) (-4 *3 (-969)) (-5 *2 (-586 (-871 *3))))) (-2754 (*1 *2 *1) (-12 (-4 *1 (-1044 *3)) (-4 *3 (-969)) (-5 *2 (-108)))) (-2803 (*1 *1 *1 *2) (-12 (-5 *2 (-586 (-871 *3))) (-4 *1 (-1044 *3)) (-4 *3 (-969)))) (-2803 (*1 *1 *1 *2) (-12 (-5 *2 (-586 (-586 *3))) (-4 *1 (-1044 *3)) (-4 *3 (-969)))) (-2803 (*1 *1 *2) (-12 (-5 *2 (-586 (-871 *3))) (-4 *3 (-969)) (-4 *1 (-1044 *3)))) (-2803 (*1 *2 *1) (-12 (-4 *1 (-1044 *3)) (-4 *3 (-969)) (-5 *2 (-586 (-871 *3))))) (-1424 (*1 *2 *1) (-12 (-4 *1 (-1044 *3)) (-4 *3 (-969)) (-5 *2 (-108)))) (-4147 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-586 (-586 (-871 *5)))) (-5 *3 (-586 (-156))) (-5 *4 (-156)) (-4 *1 (-1044 *5)) (-4 *5 (-969)))) (-4147 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-586 (-586 (-586 *5)))) (-5 *3 (-586 (-156))) (-5 *4 (-156)) (-4 *1 (-1044 *5)) (-4 *5 (-969)))) (-4147 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-586 (-586 (-871 *4)))) (-5 *3 (-108)) (-4 *1 (-1044 *4)) (-4 *4 (-969)))) (-4147 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-586 (-586 (-586 *4)))) (-5 *3 (-108)) (-4 *1 (-1044 *4)) (-4 *4 (-969)))) (-4147 (*1 *1 *2) (-12 (-5 *2 (-586 (-586 (-871 *3)))) (-4 *3 (-969)) (-4 *1 (-1044 *3)))) (-4147 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-586 (-586 (-871 *4)))) (-5 *3 (-108)) (-4 *4 (-969)) (-4 *1 (-1044 *4)))) (-4147 (*1 *2 *1) (-12 (-4 *1 (-1044 *3)) (-4 *3 (-969)) (-5 *2 (-586 (-586 (-871 *3)))))) (-3742 (*1 *2 *1) (-12 (-4 *1 (-1044 *3)) (-4 *3 (-969)) (-5 *2 (-108)))) (-4038 (*1 *2 *1) (-12 (-4 *1 (-1044 *3)) (-4 *3 (-969)) (-5 *2 (-586 (-871 *3))))) (-2749 (*1 *2 *1) (-12 (-4 *1 (-1044 *3)) (-4 *3 (-969)) (-5 *2 (-586 (-586 (-586 (-706))))))) (-3096 (*1 *2 *1) (-12 (-4 *1 (-1044 *3)) (-4 *3 (-969)) (-5 *2 (-586 (-586 (-586 (-871 *3))))))) (-1647 (*1 *2 *1) (-12 (-4 *1 (-1044 *3)) (-4 *3 (-969)) (-5 *2 (-586 (-586 (-156)))))) (-2448 (*1 *2 *1) (-12 (-4 *1 (-1044 *3)) (-4 *3 (-969)) (-5 *2 (-586 (-156))))) (-3339 (*1 *2 *1) (-12 (-4 *1 (-1044 *3)) (-4 *3 (-969)) (-5 *2 (-2 (|:| -4129 (-706)) (|:| |curves| (-706)) (|:| |polygons| (-706)) (|:| |constructs| (-706)))))) (-2365 (*1 *1 *1) (-12 (-4 *1 (-1044 *2)) (-4 *2 (-969)))) (-2263 (*1 *2 *1) (-12 (-4 *1 (-1044 *3)) (-4 *3 (-969)) (-5 *2 (-1072 3 *3)))))
-(-13 (-1012) (-10 -8 (-15 -1209 ($)) (-15 -1209 ($ (-1072 3 |t#1|))) (-15 -2368 ((-706) $)) (-15 -2726 ((-706) $)) (-15 -1819 ($ (-586 $))) (-15 -1819 ($ $ $)) (-15 -3240 ($ (-586 $))) (-15 -2509 ((-586 $) $)) (-15 -3280 ((-586 $) $)) (-15 -2403 ($ $)) (-15 -3300 ((-706) $ (-586 (-871 |t#1|)))) (-15 -2349 ($ $ (-706) (-871 |t#1|))) (-15 -2734 ($ $ (-871 |t#1|))) (-15 -2734 ($ $ (-586 |t#1|))) (-15 -2734 ($ $ (-706))) (-15 -2734 ($ (-871 |t#1|))) (-15 -2734 ((-871 |t#1|) $)) (-15 -3326 ((-108) $)) (-15 -4162 ($ $ (-586 (-871 |t#1|)))) (-15 -4162 ($ $ (-586 (-586 |t#1|)))) (-15 -4162 ($ (-586 (-871 |t#1|)))) (-15 -4162 ((-586 (-871 |t#1|)) $)) (-15 -2643 ((-108) $)) (-15 -3021 ($ $ (-586 (-871 |t#1|)))) (-15 -3021 ($ $ (-586 (-586 |t#1|)))) (-15 -3021 ($ (-586 (-871 |t#1|)))) (-15 -3021 ((-586 (-871 |t#1|)) $)) (-15 -2754 ((-108) $)) (-15 -2803 ($ $ (-586 (-871 |t#1|)))) (-15 -2803 ($ $ (-586 (-586 |t#1|)))) (-15 -2803 ($ (-586 (-871 |t#1|)))) (-15 -2803 ((-586 (-871 |t#1|)) $)) (-15 -1424 ((-108) $)) (-15 -4147 ($ $ (-586 (-586 (-871 |t#1|))) (-586 (-156)) (-156))) (-15 -4147 ($ $ (-586 (-586 (-586 |t#1|))) (-586 (-156)) (-156))) (-15 -4147 ($ $ (-586 (-586 (-871 |t#1|))) (-108) (-108))) (-15 -4147 ($ $ (-586 (-586 (-586 |t#1|))) (-108) (-108))) (-15 -4147 ($ (-586 (-586 (-871 |t#1|))))) (-15 -4147 ($ (-586 (-586 (-871 |t#1|))) (-108) (-108))) (-15 -4147 ((-586 (-586 (-871 |t#1|))) $)) (-15 -3742 ((-108) $)) (-15 -4038 ((-586 (-871 |t#1|)) $)) (-15 -2749 ((-586 (-586 (-586 (-706)))) $)) (-15 -3096 ((-586 (-586 (-586 (-871 |t#1|)))) $)) (-15 -1647 ((-586 (-586 (-156))) $)) (-15 -2448 ((-586 (-156)) $)) (-15 -3339 ((-2 (|:| -4129 (-706)) (|:| |curves| (-706)) (|:| |polygons| (-706)) (|:| |constructs| (-706))) $)) (-15 -2365 ($ $)) (-15 -2263 ((-1072 3 |t#1|) $)) (-15 -2188 ((-791) $))))
-(((-97) . T) ((-560 (-791)) . T) ((-1012) . T))
-((-2578 (((-586 (-1088)) (-1066)) 8)))
-(((-1045) (-10 -7 (-15 -2578 ((-586 (-1088)) (-1066))))) (T -1045))
-((-2578 (*1 *2 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-586 (-1088))) (-5 *1 (-1045)))))
-(-10 -7 (-15 -2578 ((-586 (-1088)) (-1066))))
-((-4184 (((-1169) (-586 (-791))) 23) (((-1169) (-791)) 22)) (-3777 (((-1169) (-586 (-791))) 21) (((-1169) (-791)) 20)) (-2008 (((-1169) (-586 (-791))) 19) (((-1169) (-791)) 11) (((-1169) (-1066) (-791)) 17)))
-(((-1046) (-10 -7 (-15 -2008 ((-1169) (-1066) (-791))) (-15 -2008 ((-1169) (-791))) (-15 -3777 ((-1169) (-791))) (-15 -4184 ((-1169) (-791))) (-15 -2008 ((-1169) (-586 (-791)))) (-15 -3777 ((-1169) (-586 (-791)))) (-15 -4184 ((-1169) (-586 (-791)))))) (T -1046))
-((-4184 (*1 *2 *3) (-12 (-5 *3 (-586 (-791))) (-5 *2 (-1169)) (-5 *1 (-1046)))) (-3777 (*1 *2 *3) (-12 (-5 *3 (-586 (-791))) (-5 *2 (-1169)) (-5 *1 (-1046)))) (-2008 (*1 *2 *3) (-12 (-5 *3 (-586 (-791))) (-5 *2 (-1169)) (-5 *1 (-1046)))) (-4184 (*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1169)) (-5 *1 (-1046)))) (-3777 (*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1169)) (-5 *1 (-1046)))) (-2008 (*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1169)) (-5 *1 (-1046)))) (-2008 (*1 *2 *3 *4) (-12 (-5 *3 (-1066)) (-5 *4 (-791)) (-5 *2 (-1169)) (-5 *1 (-1046)))))
-(-10 -7 (-15 -2008 ((-1169) (-1066) (-791))) (-15 -2008 ((-1169) (-791))) (-15 -3777 ((-1169) (-791))) (-15 -4184 ((-1169) (-791))) (-15 -2008 ((-1169) (-586 (-791)))) (-15 -3777 ((-1169) (-586 (-791)))) (-15 -4184 ((-1169) (-586 (-791)))))
-((-1443 (($ $ $) 10)) (-2899 (($ $) 9)) (-2622 (($ $ $) 13)) (-1757 (($ $ $) 15)) (-2418 (($ $ $) 12)) (-3838 (($ $ $) 14)) (-1699 (($ $) 17)) (-1300 (($ $) 16)) (-2458 (($ $) 6)) (-2551 (($ $ $) 11) (($ $) 7)) (-1815 (($ $ $) 8)))
-(((-1047) (-1195)) (T -1047))
-((-1699 (*1 *1 *1) (-4 *1 (-1047))) (-1300 (*1 *1 *1) (-4 *1 (-1047))) (-1757 (*1 *1 *1 *1) (-4 *1 (-1047))) (-3838 (*1 *1 *1 *1) (-4 *1 (-1047))) (-2622 (*1 *1 *1 *1) (-4 *1 (-1047))) (-2418 (*1 *1 *1 *1) (-4 *1 (-1047))) (-2551 (*1 *1 *1 *1) (-4 *1 (-1047))) (-1443 (*1 *1 *1 *1) (-4 *1 (-1047))) (-2899 (*1 *1 *1) (-4 *1 (-1047))) (-1815 (*1 *1 *1 *1) (-4 *1 (-1047))) (-2551 (*1 *1 *1) (-4 *1 (-1047))) (-2458 (*1 *1 *1) (-4 *1 (-1047))))
-(-13 (-10 -8 (-15 -2458 ($ $)) (-15 -2551 ($ $)) (-15 -1815 ($ $ $)) (-15 -2899 ($ $)) (-15 -1443 ($ $ $)) (-15 -2551 ($ $ $)) (-15 -2418 ($ $ $)) (-15 -2622 ($ $ $)) (-15 -3838 ($ $ $)) (-15 -1757 ($ $ $)) (-15 -1300 ($ $)) (-15 -1699 ($ $))))
-((-1414 (((-108) $ $) 41)) (-3429 ((|#1| $) 15)) (-2503 (((-108) $ $ (-1 (-108) |#2| |#2|)) 36)) (-2826 (((-108) $) 17)) (-1258 (($ $ |#1|) 28)) (-4004 (($ $ (-108)) 30)) (-1718 (($ $) 31)) (-3685 (($ $ |#2|) 29)) (-1239 (((-1066) $) NIL)) (-1651 (((-108) $ $ (-1 (-108) |#1| |#1|) (-1 (-108) |#2| |#2|)) 35)) (-4142 (((-1030) $) NIL)) (-4018 (((-108) $) 14)) (-2238 (($) 10)) (-2403 (($ $) 27)) (-2200 (($ |#1| |#2| (-108)) 18) (($ |#1| |#2|) 19) (($ (-2 (|:| |val| |#1|) (|:| -1883 |#2|))) 21) (((-586 $) (-586 (-2 (|:| |val| |#1|) (|:| -1883 |#2|)))) 24) (((-586 $) |#1| (-586 |#2|)) 26)) (-1666 ((|#2| $) 16)) (-2188 (((-791) $) 50)) (-1530 (((-108) $ $) 39)))
-(((-1048 |#1| |#2|) (-13 (-1012) (-10 -8 (-15 -2238 ($)) (-15 -4018 ((-108) $)) (-15 -3429 (|#1| $)) (-15 -1666 (|#2| $)) (-15 -2826 ((-108) $)) (-15 -2200 ($ |#1| |#2| (-108))) (-15 -2200 ($ |#1| |#2|)) (-15 -2200 ($ (-2 (|:| |val| |#1|) (|:| -1883 |#2|)))) (-15 -2200 ((-586 $) (-586 (-2 (|:| |val| |#1|) (|:| -1883 |#2|))))) (-15 -2200 ((-586 $) |#1| (-586 |#2|))) (-15 -2403 ($ $)) (-15 -1258 ($ $ |#1|)) (-15 -3685 ($ $ |#2|)) (-15 -4004 ($ $ (-108))) (-15 -1718 ($ $)) (-15 -1651 ((-108) $ $ (-1 (-108) |#1| |#1|) (-1 (-108) |#2| |#2|))) (-15 -2503 ((-108) $ $ (-1 (-108) |#2| |#2|))))) (-13 (-1012) (-33)) (-13 (-1012) (-33))) (T -1048))
-((-2238 (*1 *1) (-12 (-5 *1 (-1048 *2 *3)) (-4 *2 (-13 (-1012) (-33))) (-4 *3 (-13 (-1012) (-33))))) (-4018 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1048 *3 *4)) (-4 *3 (-13 (-1012) (-33))) (-4 *4 (-13 (-1012) (-33))))) (-3429 (*1 *2 *1) (-12 (-4 *2 (-13 (-1012) (-33))) (-5 *1 (-1048 *2 *3)) (-4 *3 (-13 (-1012) (-33))))) (-1666 (*1 *2 *1) (-12 (-4 *2 (-13 (-1012) (-33))) (-5 *1 (-1048 *3 *2)) (-4 *3 (-13 (-1012) (-33))))) (-2826 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1048 *3 *4)) (-4 *3 (-13 (-1012) (-33))) (-4 *4 (-13 (-1012) (-33))))) (-2200 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-108)) (-5 *1 (-1048 *2 *3)) (-4 *2 (-13 (-1012) (-33))) (-4 *3 (-13 (-1012) (-33))))) (-2200 (*1 *1 *2 *3) (-12 (-5 *1 (-1048 *2 *3)) (-4 *2 (-13 (-1012) (-33))) (-4 *3 (-13 (-1012) (-33))))) (-2200 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1883 *4))) (-4 *3 (-13 (-1012) (-33))) (-4 *4 (-13 (-1012) (-33))) (-5 *1 (-1048 *3 *4)))) (-2200 (*1 *2 *3) (-12 (-5 *3 (-586 (-2 (|:| |val| *4) (|:| -1883 *5)))) (-4 *4 (-13 (-1012) (-33))) (-4 *5 (-13 (-1012) (-33))) (-5 *2 (-586 (-1048 *4 *5))) (-5 *1 (-1048 *4 *5)))) (-2200 (*1 *2 *3 *4) (-12 (-5 *4 (-586 *5)) (-4 *5 (-13 (-1012) (-33))) (-5 *2 (-586 (-1048 *3 *5))) (-5 *1 (-1048 *3 *5)) (-4 *3 (-13 (-1012) (-33))))) (-2403 (*1 *1 *1) (-12 (-5 *1 (-1048 *2 *3)) (-4 *2 (-13 (-1012) (-33))) (-4 *3 (-13 (-1012) (-33))))) (-1258 (*1 *1 *1 *2) (-12 (-5 *1 (-1048 *2 *3)) (-4 *2 (-13 (-1012) (-33))) (-4 *3 (-13 (-1012) (-33))))) (-3685 (*1 *1 *1 *2) (-12 (-5 *1 (-1048 *3 *2)) (-4 *3 (-13 (-1012) (-33))) (-4 *2 (-13 (-1012) (-33))))) (-4004 (*1 *1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1048 *3 *4)) (-4 *3 (-13 (-1012) (-33))) (-4 *4 (-13 (-1012) (-33))))) (-1718 (*1 *1 *1) (-12 (-5 *1 (-1048 *2 *3)) (-4 *2 (-13 (-1012) (-33))) (-4 *3 (-13 (-1012) (-33))))) (-1651 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-108) *5 *5)) (-5 *4 (-1 (-108) *6 *6)) (-4 *5 (-13 (-1012) (-33))) (-4 *6 (-13 (-1012) (-33))) (-5 *2 (-108)) (-5 *1 (-1048 *5 *6)))) (-2503 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-108) *5 *5)) (-4 *5 (-13 (-1012) (-33))) (-5 *2 (-108)) (-5 *1 (-1048 *4 *5)) (-4 *4 (-13 (-1012) (-33))))))
-(-13 (-1012) (-10 -8 (-15 -2238 ($)) (-15 -4018 ((-108) $)) (-15 -3429 (|#1| $)) (-15 -1666 (|#2| $)) (-15 -2826 ((-108) $)) (-15 -2200 ($ |#1| |#2| (-108))) (-15 -2200 ($ |#1| |#2|)) (-15 -2200 ($ (-2 (|:| |val| |#1|) (|:| -1883 |#2|)))) (-15 -2200 ((-586 $) (-586 (-2 (|:| |val| |#1|) (|:| -1883 |#2|))))) (-15 -2200 ((-586 $) |#1| (-586 |#2|))) (-15 -2403 ($ $)) (-15 -1258 ($ $ |#1|)) (-15 -3685 ($ $ |#2|)) (-15 -4004 ($ $ (-108))) (-15 -1718 ($ $)) (-15 -1651 ((-108) $ $ (-1 (-108) |#1| |#1|) (-1 (-108) |#2| |#2|))) (-15 -2503 ((-108) $ $ (-1 (-108) |#2| |#2|)))))
-((-1414 (((-108) $ $) NIL (|has| (-1048 |#1| |#2|) (-1012)))) (-3429 (((-1048 |#1| |#2|) $) 25)) (-3735 (($ $) 76)) (-3754 (((-108) (-1048 |#1| |#2|) $ (-1 (-108) |#2| |#2|)) 85)) (-1663 (($ $ $ (-586 (-1048 |#1| |#2|))) 90) (($ $ $ (-586 (-1048 |#1| |#2|)) (-1 (-108) |#2| |#2|)) 91)) (-2063 (((-108) $ (-706)) NIL)) (-2888 (((-1048 |#1| |#2|) $ (-1048 |#1| |#2|)) 43 (|has| $ (-6 -4230)))) (-2377 (((-1048 |#1| |#2|) $ "value" (-1048 |#1| |#2|)) NIL (|has| $ (-6 -4230)))) (-3061 (($ $ (-586 $)) 41 (|has| $ (-6 -4230)))) (-3961 (($) NIL T CONST)) (-1736 (((-586 (-2 (|:| |val| |#1|) (|:| -1883 |#2|))) $) 80)) (-3766 (($ (-1048 |#1| |#2|) $) 39)) (-1421 (($ (-1048 |#1| |#2|) $) 31)) (-3828 (((-586 (-1048 |#1| |#2|)) $) NIL (|has| $ (-6 -4229)))) (-3405 (((-586 $) $) 51)) (-1508 (((-108) (-1048 |#1| |#2|) $) 82)) (-1885 (((-108) $ $) NIL (|has| (-1048 |#1| |#2|) (-1012)))) (-3027 (((-108) $ (-706)) NIL)) (-3702 (((-586 (-1048 |#1| |#2|)) $) 55 (|has| $ (-6 -4229)))) (-2422 (((-108) (-1048 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-1048 |#1| |#2|) (-1012))))) (-3830 (($ (-1 (-1048 |#1| |#2|) (-1048 |#1| |#2|)) $) 47 (|has| $ (-6 -4230)))) (-1389 (($ (-1 (-1048 |#1| |#2|) (-1048 |#1| |#2|)) $) 46)) (-1390 (((-108) $ (-706)) NIL)) (-1277 (((-586 (-1048 |#1| |#2|)) $) 53)) (-1740 (((-108) $) 42)) (-1239 (((-1066) $) NIL (|has| (-1048 |#1| |#2|) (-1012)))) (-4142 (((-1030) $) NIL (|has| (-1048 |#1| |#2|) (-1012)))) (-3596 (((-3 $ "failed") $) 75)) (-4155 (((-108) (-1 (-108) (-1048 |#1| |#2|)) $) NIL (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 (-1048 |#1| |#2|)))) NIL (-12 (|has| (-1048 |#1| |#2|) (-283 (-1048 |#1| |#2|))) (|has| (-1048 |#1| |#2|) (-1012)))) (($ $ (-268 (-1048 |#1| |#2|))) NIL (-12 (|has| (-1048 |#1| |#2|) (-283 (-1048 |#1| |#2|))) (|has| (-1048 |#1| |#2|) (-1012)))) (($ $ (-1048 |#1| |#2|) (-1048 |#1| |#2|)) NIL (-12 (|has| (-1048 |#1| |#2|) (-283 (-1048 |#1| |#2|))) (|has| (-1048 |#1| |#2|) (-1012)))) (($ $ (-586 (-1048 |#1| |#2|)) (-586 (-1048 |#1| |#2|))) NIL (-12 (|has| (-1048 |#1| |#2|) (-283 (-1048 |#1| |#2|))) (|has| (-1048 |#1| |#2|) (-1012))))) (-2533 (((-108) $ $) 50)) (-4018 (((-108) $) 22)) (-2238 (($) 24)) (-2543 (((-1048 |#1| |#2|) $ "value") NIL)) (-3765 (((-520) $ $) NIL)) (-1975 (((-108) $) 44)) (-4159 (((-706) (-1 (-108) (-1048 |#1| |#2|)) $) NIL (|has| $ (-6 -4229))) (((-706) (-1048 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-1048 |#1| |#2|) (-1012))))) (-2403 (($ $) 49)) (-2200 (($ (-1048 |#1| |#2|)) 9) (($ |#1| |#2| (-586 $)) 12) (($ |#1| |#2| (-586 (-1048 |#1| |#2|))) 14) (($ |#1| |#2| |#1| (-586 |#2|)) 17)) (-4120 (((-586 |#2|) $) 81)) (-2188 (((-791) $) 73 (|has| (-1048 |#1| |#2|) (-560 (-791))))) (-2438 (((-586 $) $) 28)) (-1639 (((-108) $ $) NIL (|has| (-1048 |#1| |#2|) (-1012)))) (-1662 (((-108) (-1 (-108) (-1048 |#1| |#2|)) $) NIL (|has| $ (-6 -4229)))) (-1530 (((-108) $ $) 64 (|has| (-1048 |#1| |#2|) (-1012)))) (-3474 (((-706) $) 58 (|has| $ (-6 -4229)))))
-(((-1049 |#1| |#2|) (-13 (-934 (-1048 |#1| |#2|)) (-10 -8 (-6 -4230) (-6 -4229) (-15 -3596 ((-3 $ "failed") $)) (-15 -3735 ($ $)) (-15 -2200 ($ (-1048 |#1| |#2|))) (-15 -2200 ($ |#1| |#2| (-586 $))) (-15 -2200 ($ |#1| |#2| (-586 (-1048 |#1| |#2|)))) (-15 -2200 ($ |#1| |#2| |#1| (-586 |#2|))) (-15 -4120 ((-586 |#2|) $)) (-15 -1736 ((-586 (-2 (|:| |val| |#1|) (|:| -1883 |#2|))) $)) (-15 -1508 ((-108) (-1048 |#1| |#2|) $)) (-15 -3754 ((-108) (-1048 |#1| |#2|) $ (-1 (-108) |#2| |#2|))) (-15 -1421 ($ (-1048 |#1| |#2|) $)) (-15 -3766 ($ (-1048 |#1| |#2|) $)) (-15 -1663 ($ $ $ (-586 (-1048 |#1| |#2|)))) (-15 -1663 ($ $ $ (-586 (-1048 |#1| |#2|)) (-1 (-108) |#2| |#2|))))) (-13 (-1012) (-33)) (-13 (-1012) (-33))) (T -1049))
-((-3596 (*1 *1 *1) (|partial| -12 (-5 *1 (-1049 *2 *3)) (-4 *2 (-13 (-1012) (-33))) (-4 *3 (-13 (-1012) (-33))))) (-3735 (*1 *1 *1) (-12 (-5 *1 (-1049 *2 *3)) (-4 *2 (-13 (-1012) (-33))) (-4 *3 (-13 (-1012) (-33))))) (-2200 (*1 *1 *2) (-12 (-5 *2 (-1048 *3 *4)) (-4 *3 (-13 (-1012) (-33))) (-4 *4 (-13 (-1012) (-33))) (-5 *1 (-1049 *3 *4)))) (-2200 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-586 (-1049 *2 *3))) (-5 *1 (-1049 *2 *3)) (-4 *2 (-13 (-1012) (-33))) (-4 *3 (-13 (-1012) (-33))))) (-2200 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-586 (-1048 *2 *3))) (-4 *2 (-13 (-1012) (-33))) (-4 *3 (-13 (-1012) (-33))) (-5 *1 (-1049 *2 *3)))) (-2200 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-586 *3)) (-4 *3 (-13 (-1012) (-33))) (-5 *1 (-1049 *2 *3)) (-4 *2 (-13 (-1012) (-33))))) (-4120 (*1 *2 *1) (-12 (-5 *2 (-586 *4)) (-5 *1 (-1049 *3 *4)) (-4 *3 (-13 (-1012) (-33))) (-4 *4 (-13 (-1012) (-33))))) (-1736 (*1 *2 *1) (-12 (-5 *2 (-586 (-2 (|:| |val| *3) (|:| -1883 *4)))) (-5 *1 (-1049 *3 *4)) (-4 *3 (-13 (-1012) (-33))) (-4 *4 (-13 (-1012) (-33))))) (-1508 (*1 *2 *3 *1) (-12 (-5 *3 (-1048 *4 *5)) (-4 *4 (-13 (-1012) (-33))) (-4 *5 (-13 (-1012) (-33))) (-5 *2 (-108)) (-5 *1 (-1049 *4 *5)))) (-3754 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1048 *5 *6)) (-5 *4 (-1 (-108) *6 *6)) (-4 *5 (-13 (-1012) (-33))) (-4 *6 (-13 (-1012) (-33))) (-5 *2 (-108)) (-5 *1 (-1049 *5 *6)))) (-1421 (*1 *1 *2 *1) (-12 (-5 *2 (-1048 *3 *4)) (-4 *3 (-13 (-1012) (-33))) (-4 *4 (-13 (-1012) (-33))) (-5 *1 (-1049 *3 *4)))) (-3766 (*1 *1 *2 *1) (-12 (-5 *2 (-1048 *3 *4)) (-4 *3 (-13 (-1012) (-33))) (-4 *4 (-13 (-1012) (-33))) (-5 *1 (-1049 *3 *4)))) (-1663 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-586 (-1048 *3 *4))) (-4 *3 (-13 (-1012) (-33))) (-4 *4 (-13 (-1012) (-33))) (-5 *1 (-1049 *3 *4)))) (-1663 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-586 (-1048 *4 *5))) (-5 *3 (-1 (-108) *5 *5)) (-4 *4 (-13 (-1012) (-33))) (-4 *5 (-13 (-1012) (-33))) (-5 *1 (-1049 *4 *5)))))
-(-13 (-934 (-1048 |#1| |#2|)) (-10 -8 (-6 -4230) (-6 -4229) (-15 -3596 ((-3 $ "failed") $)) (-15 -3735 ($ $)) (-15 -2200 ($ (-1048 |#1| |#2|))) (-15 -2200 ($ |#1| |#2| (-586 $))) (-15 -2200 ($ |#1| |#2| (-586 (-1048 |#1| |#2|)))) (-15 -2200 ($ |#1| |#2| |#1| (-586 |#2|))) (-15 -4120 ((-586 |#2|) $)) (-15 -1736 ((-586 (-2 (|:| |val| |#1|) (|:| -1883 |#2|))) $)) (-15 -1508 ((-108) (-1048 |#1| |#2|) $)) (-15 -3754 ((-108) (-1048 |#1| |#2|) $ (-1 (-108) |#2| |#2|))) (-15 -1421 ($ (-1048 |#1| |#2|) $)) (-15 -3766 ($ (-1048 |#1| |#2|) $)) (-15 -1663 ($ $ $ (-586 (-1048 |#1| |#2|)))) (-15 -1663 ($ $ $ (-586 (-1048 |#1| |#2|)) (-1 (-108) |#2| |#2|)))))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-1305 (($ $) NIL)) (-1864 ((|#2| $) NIL)) (-2340 (((-108) $) NIL)) (-1917 (((-3 $ "failed") $ $) NIL)) (-3748 (($ (-626 |#2|)) 45)) (-2878 (((-108) $) NIL)) (-2063 (((-108) $ (-706)) NIL)) (-1311 (($ |#2|) 9)) (-3961 (($) NIL T CONST)) (-2085 (($ $) 58 (|has| |#2| (-281)))) (-2120 (((-216 |#1| |#2|) $ (-520)) 31)) (-1296 (((-3 (-520) "failed") $) NIL (|has| |#2| (-960 (-520)))) (((-3 (-380 (-520)) "failed") $) NIL (|has| |#2| (-960 (-380 (-520))))) (((-3 |#2| "failed") $) NIL)) (-1482 (((-520) $) NIL (|has| |#2| (-960 (-520)))) (((-380 (-520)) $) NIL (|has| |#2| (-960 (-380 (-520))))) ((|#2| $) NIL)) (-2756 (((-626 (-520)) (-626 $)) NIL (|has| |#2| (-582 (-520)))) (((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 $) (-1164 $)) NIL (|has| |#2| (-582 (-520)))) (((-2 (|:| -3927 (-626 |#2|)) (|:| |vec| (-1164 |#2|))) (-626 $) (-1164 $)) NIL) (((-626 |#2|) (-626 $)) NIL)) (-1540 (((-3 $ "failed") $) 72)) (-3160 (((-706) $) 60 (|has| |#2| (-512)))) (-3623 ((|#2| $ (-520) (-520)) NIL)) (-3828 (((-586 |#2|) $) NIL (|has| $ (-6 -4229)))) (-1537 (((-108) $) NIL)) (-2621 (((-706) $) 62 (|has| |#2| (-512)))) (-1408 (((-586 (-216 |#1| |#2|)) $) 66 (|has| |#2| (-512)))) (-1409 (((-706) $) NIL)) (-1420 (((-706) $) NIL)) (-3027 (((-108) $ (-706)) NIL)) (-3346 ((|#2| $) 56 (|has| |#2| (-6 (-4231 "*"))))) (-2289 (((-520) $) NIL)) (-1867 (((-520) $) NIL)) (-3702 (((-586 |#2|) $) NIL (|has| $ (-6 -4229)))) (-2422 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#2| (-1012))))) (-1888 (((-520) $) NIL)) (-2982 (((-520) $) NIL)) (-1364 (($ (-586 (-586 |#2|))) 26)) (-3830 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3464 (((-586 (-586 |#2|)) $) NIL)) (-1390 (((-108) $ (-706)) NIL)) (-1239 (((-1066) $) NIL)) (-1675 (((-3 $ "failed") $) 69 (|has| |#2| (-336)))) (-4142 (((-1030) $) NIL)) (-2230 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-512)))) (-4155 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 |#2|))) NIL (-12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012)))) (($ $ (-268 |#2|)) NIL (-12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012)))) (($ $ (-586 |#2|) (-586 |#2|)) NIL (-12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012))))) (-2533 (((-108) $ $) NIL)) (-4018 (((-108) $) NIL)) (-2238 (($) NIL)) (-2543 ((|#2| $ (-520) (-520) |#2|) NIL) ((|#2| $ (-520) (-520)) NIL)) (-2155 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-706)) NIL) (($ $ (-586 (-1083)) (-586 (-706))) NIL (|has| |#2| (-828 (-1083)))) (($ $ (-1083) (-706)) NIL (|has| |#2| (-828 (-1083)))) (($ $ (-586 (-1083))) NIL (|has| |#2| (-828 (-1083)))) (($ $ (-1083)) NIL (|has| |#2| (-828 (-1083)))) (($ $ (-706)) NIL (|has| |#2| (-209))) (($ $) NIL (|has| |#2| (-209)))) (-3182 ((|#2| $) NIL)) (-2115 (($ (-586 |#2|)) 40)) (-3149 (((-108) $) NIL)) (-1965 (((-216 |#1| |#2|) $) NIL)) (-4145 ((|#2| $) 54 (|has| |#2| (-6 (-4231 "*"))))) (-4159 (((-706) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4229))) (((-706) |#2| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#2| (-1012))))) (-2403 (($ $) NIL)) (-1429 (((-496) $) 81 (|has| |#2| (-561 (-496))))) (-2460 (((-216 |#1| |#2|) $ (-520)) 33)) (-2188 (((-791) $) 36) (($ (-520)) NIL) (($ (-380 (-520))) NIL (|has| |#2| (-960 (-380 (-520))))) (($ |#2|) NIL) (((-626 |#2|) $) 42)) (-3251 (((-706)) 17)) (-1662 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4229)))) (-3669 (((-108) $) NIL)) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (-3560 (($) 11 T CONST)) (-3570 (($) 14 T CONST)) (-2211 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-706)) NIL) (($ $ (-586 (-1083)) (-586 (-706))) NIL (|has| |#2| (-828 (-1083)))) (($ $ (-1083) (-706)) NIL (|has| |#2| (-828 (-1083)))) (($ $ (-586 (-1083))) NIL (|has| |#2| (-828 (-1083)))) (($ $ (-1083)) NIL (|has| |#2| (-828 (-1083)))) (($ $ (-706)) NIL (|has| |#2| (-209))) (($ $) NIL (|has| |#2| (-209)))) (-1530 (((-108) $ $) NIL)) (-1619 (($ $ |#2|) NIL (|has| |#2| (-336)))) (-1611 (($ $) NIL) (($ $ $) NIL)) (-1601 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-706)) 52) (($ $ (-520)) 71 (|has| |#2| (-336)))) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-216 |#1| |#2|) $ (-216 |#1| |#2|)) 48) (((-216 |#1| |#2|) (-216 |#1| |#2|) $) 50)) (-3474 (((-706) $) NIL (|has| $ (-6 -4229)))))
-(((-1050 |#1| |#2|) (-13 (-1033 |#1| |#2| (-216 |#1| |#2|) (-216 |#1| |#2|)) (-560 (-626 |#2|)) (-10 -8 (-15 -1305 ($ $)) (-15 -3748 ($ (-626 |#2|))) (-15 -2188 ((-626 |#2|) $)) (IF (|has| |#2| (-6 (-4231 "*"))) (-6 -4218) |%noBranch|) (IF (|has| |#2| (-6 (-4231 "*"))) (IF (|has| |#2| (-6 -4226)) (-6 -4226) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-561 (-496))) (-6 (-561 (-496))) |%noBranch|))) (-706) (-969)) (T -1050))
-((-2188 (*1 *2 *1) (-12 (-5 *2 (-626 *4)) (-5 *1 (-1050 *3 *4)) (-14 *3 (-706)) (-4 *4 (-969)))) (-1305 (*1 *1 *1) (-12 (-5 *1 (-1050 *2 *3)) (-14 *2 (-706)) (-4 *3 (-969)))) (-3748 (*1 *1 *2) (-12 (-5 *2 (-626 *4)) (-4 *4 (-969)) (-5 *1 (-1050 *3 *4)) (-14 *3 (-706)))))
-(-13 (-1033 |#1| |#2| (-216 |#1| |#2|) (-216 |#1| |#2|)) (-560 (-626 |#2|)) (-10 -8 (-15 -1305 ($ $)) (-15 -3748 ($ (-626 |#2|))) (-15 -2188 ((-626 |#2|) $)) (IF (|has| |#2| (-6 (-4231 "*"))) (-6 -4218) |%noBranch|) (IF (|has| |#2| (-6 (-4231 "*"))) (IF (|has| |#2| (-6 -4226)) (-6 -4226) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-561 (-496))) (-6 (-561 (-496))) |%noBranch|)))
-((-2209 (($ $) 19)) (-1734 (($ $ (-132)) 10) (($ $ (-129)) 14)) (-3785 (((-108) $ $) 24)) (-3002 (($ $) 17)) (-2543 (((-132) $ (-520) (-132)) NIL) (((-132) $ (-520)) NIL) (($ $ (-1131 (-520))) NIL) (($ $ $) 29)) (-2188 (($ (-132)) 27) (((-791) $) NIL)))
-(((-1051 |#1|) (-10 -8 (-15 -2188 ((-791) |#1|)) (-15 -2543 (|#1| |#1| |#1|)) (-15 -1734 (|#1| |#1| (-129))) (-15 -1734 (|#1| |#1| (-132))) (-15 -2188 (|#1| (-132))) (-15 -3785 ((-108) |#1| |#1|)) (-15 -2209 (|#1| |#1|)) (-15 -3002 (|#1| |#1|)) (-15 -2543 (|#1| |#1| (-1131 (-520)))) (-15 -2543 ((-132) |#1| (-520))) (-15 -2543 ((-132) |#1| (-520) (-132)))) (-1052)) (T -1051))
-NIL
-(-10 -8 (-15 -2188 ((-791) |#1|)) (-15 -2543 (|#1| |#1| |#1|)) (-15 -1734 (|#1| |#1| (-129))) (-15 -1734 (|#1| |#1| (-132))) (-15 -2188 (|#1| (-132))) (-15 -3785 ((-108) |#1| |#1|)) (-15 -2209 (|#1| |#1|)) (-15 -3002 (|#1| |#1|)) (-15 -2543 (|#1| |#1| (-1131 (-520)))) (-15 -2543 ((-132) |#1| (-520))) (-15 -2543 ((-132) |#1| (-520) (-132))))
-((-1414 (((-108) $ $) 19 (|has| (-132) (-1012)))) (-4176 (($ $) 120)) (-2209 (($ $) 121)) (-1734 (($ $ (-132)) 108) (($ $ (-129)) 107)) (-1476 (((-1169) $ (-520) (-520)) 40 (|has| $ (-6 -4230)))) (-3761 (((-108) $ $) 118)) (-3736 (((-108) $ $ (-520)) 117)) (-3175 (((-586 $) $ (-132)) 110) (((-586 $) $ (-129)) 109)) (-4029 (((-108) (-1 (-108) (-132) (-132)) $) 98) (((-108) $) 92 (|has| (-132) (-783)))) (-3587 (($ (-1 (-108) (-132) (-132)) $) 89 (|has| $ (-6 -4230))) (($ $) 88 (-12 (|has| (-132) (-783)) (|has| $ (-6 -4230))))) (-3210 (($ (-1 (-108) (-132) (-132)) $) 99) (($ $) 93 (|has| (-132) (-783)))) (-2063 (((-108) $ (-706)) 8)) (-2377 (((-132) $ (-520) (-132)) 52 (|has| $ (-6 -4230))) (((-132) $ (-1131 (-520)) (-132)) 58 (|has| $ (-6 -4230)))) (-1627 (($ (-1 (-108) (-132)) $) 75 (|has| $ (-6 -4229)))) (-3961 (($) 7 T CONST)) (-2845 (($ $ (-132)) 104) (($ $ (-129)) 103)) (-2447 (($ $) 90 (|has| $ (-6 -4230)))) (-1861 (($ $) 100)) (-2514 (($ $ (-1131 (-520)) $) 114)) (-2331 (($ $) 78 (-12 (|has| (-132) (-1012)) (|has| $ (-6 -4229))))) (-1421 (($ (-132) $) 77 (-12 (|has| (-132) (-1012)) (|has| $ (-6 -4229)))) (($ (-1 (-108) (-132)) $) 74 (|has| $ (-6 -4229)))) (-3856 (((-132) (-1 (-132) (-132) (-132)) $ (-132) (-132)) 76 (-12 (|has| (-132) (-1012)) (|has| $ (-6 -4229)))) (((-132) (-1 (-132) (-132) (-132)) $ (-132)) 73 (|has| $ (-6 -4229))) (((-132) (-1 (-132) (-132) (-132)) $) 72 (|has| $ (-6 -4229)))) (-3846 (((-132) $ (-520) (-132)) 53 (|has| $ (-6 -4230)))) (-3623 (((-132) $ (-520)) 51)) (-3785 (((-108) $ $) 119)) (-3232 (((-520) (-1 (-108) (-132)) $) 97) (((-520) (-132) $) 96 (|has| (-132) (-1012))) (((-520) (-132) $ (-520)) 95 (|has| (-132) (-1012))) (((-520) $ $ (-520)) 113) (((-520) (-129) $ (-520)) 112)) (-3828 (((-586 (-132)) $) 30 (|has| $ (-6 -4229)))) (-1810 (($ (-706) (-132)) 69)) (-3027 (((-108) $ (-706)) 9)) (-2567 (((-520) $) 43 (|has| (-520) (-783)))) (-2809 (($ $ $) 87 (|has| (-132) (-783)))) (-1819 (($ (-1 (-108) (-132) (-132)) $ $) 101) (($ $ $) 94 (|has| (-132) (-783)))) (-3702 (((-586 (-132)) $) 29 (|has| $ (-6 -4229)))) (-2422 (((-108) (-132) $) 27 (-12 (|has| (-132) (-1012)) (|has| $ (-6 -4229))))) (-1752 (((-520) $) 44 (|has| (-520) (-783)))) (-2446 (($ $ $) 86 (|has| (-132) (-783)))) (-1453 (((-108) $ $ (-132)) 115)) (-4139 (((-706) $ $ (-132)) 116)) (-3830 (($ (-1 (-132) (-132)) $) 34 (|has| $ (-6 -4230)))) (-1389 (($ (-1 (-132) (-132)) $) 35) (($ (-1 (-132) (-132) (-132)) $ $) 64)) (-1826 (($ $) 122)) (-3002 (($ $) 123)) (-1390 (((-108) $ (-706)) 10)) (-2857 (($ $ (-132)) 106) (($ $ (-129)) 105)) (-1239 (((-1066) $) 22 (|has| (-132) (-1012)))) (-1659 (($ (-132) $ (-520)) 60) (($ $ $ (-520)) 59)) (-3622 (((-586 (-520)) $) 46)) (-2603 (((-108) (-520) $) 47)) (-4142 (((-1030) $) 21 (|has| (-132) (-1012)))) (-2293 (((-132) $) 42 (|has| (-520) (-783)))) (-2985 (((-3 (-132) "failed") (-1 (-108) (-132)) $) 71)) (-2936 (($ $ (-132)) 41 (|has| $ (-6 -4230)))) (-4155 (((-108) (-1 (-108) (-132)) $) 32 (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 (-132)))) 26 (-12 (|has| (-132) (-283 (-132))) (|has| (-132) (-1012)))) (($ $ (-268 (-132))) 25 (-12 (|has| (-132) (-283 (-132))) (|has| (-132) (-1012)))) (($ $ (-132) (-132)) 24 (-12 (|has| (-132) (-283 (-132))) (|has| (-132) (-1012)))) (($ $ (-586 (-132)) (-586 (-132))) 23 (-12 (|has| (-132) (-283 (-132))) (|has| (-132) (-1012))))) (-2533 (((-108) $ $) 14)) (-2094 (((-108) (-132) $) 45 (-12 (|has| $ (-6 -4229)) (|has| (-132) (-1012))))) (-1523 (((-586 (-132)) $) 48)) (-4018 (((-108) $) 11)) (-2238 (($) 12)) (-2543 (((-132) $ (-520) (-132)) 50) (((-132) $ (-520)) 49) (($ $ (-1131 (-520))) 63) (($ $ $) 102)) (-3690 (($ $ (-520)) 62) (($ $ (-1131 (-520))) 61)) (-4159 (((-706) (-1 (-108) (-132)) $) 31 (|has| $ (-6 -4229))) (((-706) (-132) $) 28 (-12 (|has| (-132) (-1012)) (|has| $ (-6 -4229))))) (-1913 (($ $ $ (-520)) 91 (|has| $ (-6 -4230)))) (-2403 (($ $) 13)) (-1429 (((-496) $) 79 (|has| (-132) (-561 (-496))))) (-2200 (($ (-586 (-132))) 70)) (-4156 (($ $ (-132)) 68) (($ (-132) $) 67) (($ $ $) 66) (($ (-586 $)) 65)) (-2188 (($ (-132)) 111) (((-791) $) 18 (|has| (-132) (-560 (-791))))) (-1662 (((-108) (-1 (-108) (-132)) $) 33 (|has| $ (-6 -4229)))) (-1573 (((-108) $ $) 84 (|has| (-132) (-783)))) (-1557 (((-108) $ $) 83 (|has| (-132) (-783)))) (-1530 (((-108) $ $) 20 (|has| (-132) (-1012)))) (-1565 (((-108) $ $) 85 (|has| (-132) (-783)))) (-1548 (((-108) $ $) 82 (|has| (-132) (-783)))) (-3474 (((-706) $) 6 (|has| $ (-6 -4229)))))
-(((-1052) (-1195)) (T -1052))
-((-3002 (*1 *1 *1) (-4 *1 (-1052))) (-1826 (*1 *1 *1) (-4 *1 (-1052))) (-2209 (*1 *1 *1) (-4 *1 (-1052))) (-4176 (*1 *1 *1) (-4 *1 (-1052))) (-3785 (*1 *2 *1 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-108)))) (-3761 (*1 *2 *1 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-108)))) (-3736 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (-520)) (-5 *2 (-108)))) (-4139 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (-132)) (-5 *2 (-706)))) (-1453 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (-132)) (-5 *2 (-108)))) (-2514 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-1131 (-520))))) (-3232 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1052)) (-5 *2 (-520)))) (-3232 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1052)) (-5 *2 (-520)) (-5 *3 (-129)))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-132)) (-4 *1 (-1052)))) (-3175 (*1 *2 *1 *3) (-12 (-5 *3 (-132)) (-5 *2 (-586 *1)) (-4 *1 (-1052)))) (-3175 (*1 *2 *1 *3) (-12 (-5 *3 (-129)) (-5 *2 (-586 *1)) (-4 *1 (-1052)))) (-1734 (*1 *1 *1 *2) (-12 (-4 *1 (-1052)) (-5 *2 (-132)))) (-1734 (*1 *1 *1 *2) (-12 (-4 *1 (-1052)) (-5 *2 (-129)))) (-2857 (*1 *1 *1 *2) (-12 (-4 *1 (-1052)) (-5 *2 (-132)))) (-2857 (*1 *1 *1 *2) (-12 (-4 *1 (-1052)) (-5 *2 (-129)))) (-2845 (*1 *1 *1 *2) (-12 (-4 *1 (-1052)) (-5 *2 (-132)))) (-2845 (*1 *1 *1 *2) (-12 (-4 *1 (-1052)) (-5 *2 (-129)))) (-2543 (*1 *1 *1 *1) (-4 *1 (-1052))))
-(-13 (-19 (-132)) (-10 -8 (-15 -3002 ($ $)) (-15 -1826 ($ $)) (-15 -2209 ($ $)) (-15 -4176 ($ $)) (-15 -3785 ((-108) $ $)) (-15 -3761 ((-108) $ $)) (-15 -3736 ((-108) $ $ (-520))) (-15 -4139 ((-706) $ $ (-132))) (-15 -1453 ((-108) $ $ (-132))) (-15 -2514 ($ $ (-1131 (-520)) $)) (-15 -3232 ((-520) $ $ (-520))) (-15 -3232 ((-520) (-129) $ (-520))) (-15 -2188 ($ (-132))) (-15 -3175 ((-586 $) $ (-132))) (-15 -3175 ((-586 $) $ (-129))) (-15 -1734 ($ $ (-132))) (-15 -1734 ($ $ (-129))) (-15 -2857 ($ $ (-132))) (-15 -2857 ($ $ (-129))) (-15 -2845 ($ $ (-132))) (-15 -2845 ($ $ (-129))) (-15 -2543 ($ $ $))))
-(((-33) . T) ((-97) -3700 (|has| (-132) (-1012)) (|has| (-132) (-783))) ((-560 (-791)) -3700 (|has| (-132) (-1012)) (|has| (-132) (-783)) (|has| (-132) (-560 (-791)))) ((-139 #0=(-132)) . T) ((-561 (-496)) |has| (-132) (-561 (-496))) ((-260 #1=(-520) #0#) . T) ((-262 #1# #0#) . T) ((-283 #0#) -12 (|has| (-132) (-283 (-132))) (|has| (-132) (-1012))) ((-346 #0#) . T) ((-459 #0#) . T) ((-553 #1# #0#) . T) ((-481 #0# #0#) -12 (|has| (-132) (-283 (-132))) (|has| (-132) (-1012))) ((-591 #0#) . T) ((-19 #0#) . T) ((-783) |has| (-132) (-783)) ((-1012) -3700 (|has| (-132) (-1012)) (|has| (-132) (-783))) ((-1118) . T))
-((-1945 (((-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))) (-586 |#4|) (-586 |#5|) (-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))) (-2 (|:| |done| (-586 |#5|)) (|:| |todo| (-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))))) (-706)) 94)) (-4181 (((-2 (|:| |done| (-586 |#5|)) (|:| |todo| (-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))))) |#4| |#5|) 54) (((-2 (|:| |done| (-586 |#5|)) (|:| |todo| (-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))))) |#4| |#5| (-706)) 53)) (-1905 (((-1169) (-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))) (-706)) 85)) (-2197 (((-706) (-586 |#4|) (-586 |#5|)) 27)) (-1755 (((-2 (|:| |done| (-586 |#5|)) (|:| |todo| (-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))))) |#4| |#5|) 56) (((-2 (|:| |done| (-586 |#5|)) (|:| |todo| (-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))))) |#4| |#5| (-706)) 55) (((-2 (|:| |done| (-586 |#5|)) (|:| |todo| (-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))))) |#4| |#5| (-706) (-108)) 57)) (-2699 (((-586 |#5|) (-586 |#4|) (-586 |#5|) (-108) (-108) (-108) (-108) (-108)) 76) (((-586 |#5|) (-586 |#4|) (-586 |#5|) (-108) (-108)) 77)) (-1429 (((-1066) (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))) 80)) (-2837 (((-2 (|:| |done| (-586 |#5|)) (|:| |todo| (-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))))) |#4| |#5|) 52)) (-2901 (((-706) (-586 |#4|) (-586 |#5|)) 19)))
-(((-1053 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2901 ((-706) (-586 |#4|) (-586 |#5|))) (-15 -2197 ((-706) (-586 |#4|) (-586 |#5|))) (-15 -2837 ((-2 (|:| |done| (-586 |#5|)) (|:| |todo| (-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))))) |#4| |#5|)) (-15 -4181 ((-2 (|:| |done| (-586 |#5|)) (|:| |todo| (-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))))) |#4| |#5| (-706))) (-15 -4181 ((-2 (|:| |done| (-586 |#5|)) (|:| |todo| (-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))))) |#4| |#5|)) (-15 -1755 ((-2 (|:| |done| (-586 |#5|)) (|:| |todo| (-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))))) |#4| |#5| (-706) (-108))) (-15 -1755 ((-2 (|:| |done| (-586 |#5|)) (|:| |todo| (-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))))) |#4| |#5| (-706))) (-15 -1755 ((-2 (|:| |done| (-586 |#5|)) (|:| |todo| (-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))))) |#4| |#5|)) (-15 -2699 ((-586 |#5|) (-586 |#4|) (-586 |#5|) (-108) (-108))) (-15 -2699 ((-586 |#5|) (-586 |#4|) (-586 |#5|) (-108) (-108) (-108) (-108) (-108))) (-15 -1945 ((-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))) (-586 |#4|) (-586 |#5|) (-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))) (-2 (|:| |done| (-586 |#5|)) (|:| |todo| (-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))))) (-706))) (-15 -1429 ((-1066) (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|)))) (-15 -1905 ((-1169) (-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))) (-706)))) (-424) (-728) (-783) (-983 |#1| |#2| |#3|) (-1021 |#1| |#2| |#3| |#4|)) (T -1053))
-((-1905 (*1 *2 *3 *4) (-12 (-5 *3 (-586 (-2 (|:| |val| (-586 *8)) (|:| -1883 *9)))) (-5 *4 (-706)) (-4 *8 (-983 *5 *6 *7)) (-4 *9 (-1021 *5 *6 *7 *8)) (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783)) (-5 *2 (-1169)) (-5 *1 (-1053 *5 *6 *7 *8 *9)))) (-1429 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-586 *7)) (|:| -1883 *8))) (-4 *7 (-983 *4 *5 *6)) (-4 *8 (-1021 *4 *5 *6 *7)) (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-1066)) (-5 *1 (-1053 *4 *5 *6 *7 *8)))) (-1945 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-586 *11)) (|:| |todo| (-586 (-2 (|:| |val| *3) (|:| -1883 *11)))))) (-5 *6 (-706)) (-5 *2 (-586 (-2 (|:| |val| (-586 *10)) (|:| -1883 *11)))) (-5 *3 (-586 *10)) (-5 *4 (-586 *11)) (-4 *10 (-983 *7 *8 *9)) (-4 *11 (-1021 *7 *8 *9 *10)) (-4 *7 (-424)) (-4 *8 (-728)) (-4 *9 (-783)) (-5 *1 (-1053 *7 *8 *9 *10 *11)))) (-2699 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-586 *9)) (-5 *3 (-586 *8)) (-5 *4 (-108)) (-4 *8 (-983 *5 *6 *7)) (-4 *9 (-1021 *5 *6 *7 *8)) (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783)) (-5 *1 (-1053 *5 *6 *7 *8 *9)))) (-2699 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-586 *9)) (-5 *3 (-586 *8)) (-5 *4 (-108)) (-4 *8 (-983 *5 *6 *7)) (-4 *9 (-1021 *5 *6 *7 *8)) (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783)) (-5 *1 (-1053 *5 *6 *7 *8 *9)))) (-1755 (*1 *2 *3 *4) (-12 (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783)) (-4 *3 (-983 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-586 *4)) (|:| |todo| (-586 (-2 (|:| |val| (-586 *3)) (|:| -1883 *4)))))) (-5 *1 (-1053 *5 *6 *7 *3 *4)) (-4 *4 (-1021 *5 *6 *7 *3)))) (-1755 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-706)) (-4 *6 (-424)) (-4 *7 (-728)) (-4 *8 (-783)) (-4 *3 (-983 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-586 *4)) (|:| |todo| (-586 (-2 (|:| |val| (-586 *3)) (|:| -1883 *4)))))) (-5 *1 (-1053 *6 *7 *8 *3 *4)) (-4 *4 (-1021 *6 *7 *8 *3)))) (-1755 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-706)) (-5 *6 (-108)) (-4 *7 (-424)) (-4 *8 (-728)) (-4 *9 (-783)) (-4 *3 (-983 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-586 *4)) (|:| |todo| (-586 (-2 (|:| |val| (-586 *3)) (|:| -1883 *4)))))) (-5 *1 (-1053 *7 *8 *9 *3 *4)) (-4 *4 (-1021 *7 *8 *9 *3)))) (-4181 (*1 *2 *3 *4) (-12 (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783)) (-4 *3 (-983 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-586 *4)) (|:| |todo| (-586 (-2 (|:| |val| (-586 *3)) (|:| -1883 *4)))))) (-5 *1 (-1053 *5 *6 *7 *3 *4)) (-4 *4 (-1021 *5 *6 *7 *3)))) (-4181 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-706)) (-4 *6 (-424)) (-4 *7 (-728)) (-4 *8 (-783)) (-4 *3 (-983 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-586 *4)) (|:| |todo| (-586 (-2 (|:| |val| (-586 *3)) (|:| -1883 *4)))))) (-5 *1 (-1053 *6 *7 *8 *3 *4)) (-4 *4 (-1021 *6 *7 *8 *3)))) (-2837 (*1 *2 *3 *4) (-12 (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783)) (-4 *3 (-983 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-586 *4)) (|:| |todo| (-586 (-2 (|:| |val| (-586 *3)) (|:| -1883 *4)))))) (-5 *1 (-1053 *5 *6 *7 *3 *4)) (-4 *4 (-1021 *5 *6 *7 *3)))) (-2197 (*1 *2 *3 *4) (-12 (-5 *3 (-586 *8)) (-5 *4 (-586 *9)) (-4 *8 (-983 *5 *6 *7)) (-4 *9 (-1021 *5 *6 *7 *8)) (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783)) (-5 *2 (-706)) (-5 *1 (-1053 *5 *6 *7 *8 *9)))) (-2901 (*1 *2 *3 *4) (-12 (-5 *3 (-586 *8)) (-5 *4 (-586 *9)) (-4 *8 (-983 *5 *6 *7)) (-4 *9 (-1021 *5 *6 *7 *8)) (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783)) (-5 *2 (-706)) (-5 *1 (-1053 *5 *6 *7 *8 *9)))))
-(-10 -7 (-15 -2901 ((-706) (-586 |#4|) (-586 |#5|))) (-15 -2197 ((-706) (-586 |#4|) (-586 |#5|))) (-15 -2837 ((-2 (|:| |done| (-586 |#5|)) (|:| |todo| (-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))))) |#4| |#5|)) (-15 -4181 ((-2 (|:| |done| (-586 |#5|)) (|:| |todo| (-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))))) |#4| |#5| (-706))) (-15 -4181 ((-2 (|:| |done| (-586 |#5|)) (|:| |todo| (-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))))) |#4| |#5|)) (-15 -1755 ((-2 (|:| |done| (-586 |#5|)) (|:| |todo| (-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))))) |#4| |#5| (-706) (-108))) (-15 -1755 ((-2 (|:| |done| (-586 |#5|)) (|:| |todo| (-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))))) |#4| |#5| (-706))) (-15 -1755 ((-2 (|:| |done| (-586 |#5|)) (|:| |todo| (-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))))) |#4| |#5|)) (-15 -2699 ((-586 |#5|) (-586 |#4|) (-586 |#5|) (-108) (-108))) (-15 -2699 ((-586 |#5|) (-586 |#4|) (-586 |#5|) (-108) (-108) (-108) (-108) (-108))) (-15 -1945 ((-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))) (-586 |#4|) (-586 |#5|) (-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))) (-2 (|:| |done| (-586 |#5|)) (|:| |todo| (-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))))) (-706))) (-15 -1429 ((-1066) (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|)))) (-15 -1905 ((-1169) (-586 (-2 (|:| |val| (-586 |#4|)) (|:| -1883 |#5|))) (-706))))
-((-1414 (((-108) $ $) NIL)) (-3769 (((-586 (-2 (|:| -1649 $) (|:| -1543 (-586 |#4|)))) (-586 |#4|)) NIL)) (-3767 (((-586 $) (-586 |#4|)) 110) (((-586 $) (-586 |#4|) (-108)) 111) (((-586 $) (-586 |#4|) (-108) (-108)) 109) (((-586 $) (-586 |#4|) (-108) (-108) (-108) (-108)) 112)) (-4081 (((-586 |#3|) $) NIL)) (-2373 (((-108) $) NIL)) (-1937 (((-108) $) NIL (|has| |#1| (-512)))) (-3804 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3954 ((|#4| |#4| $) NIL)) (-3024 (((-586 (-2 (|:| |val| |#4|) (|:| -1883 $))) |#4| $) 84)) (-3210 (((-2 (|:| |under| $) (|:| -1626 $) (|:| |upper| $)) $ |#3|) NIL)) (-2063 (((-108) $ (-706)) NIL)) (-1627 (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4229))) (((-3 |#4| "failed") $ |#3|) 62)) (-3961 (($) NIL T CONST)) (-2215 (((-108) $) 26 (|has| |#1| (-512)))) (-3078 (((-108) $ $) NIL (|has| |#1| (-512)))) (-3675 (((-108) $ $) NIL (|has| |#1| (-512)))) (-2786 (((-108) $) NIL (|has| |#1| (-512)))) (-2589 (((-586 |#4|) (-586 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-4167 (((-586 |#4|) (-586 |#4|) $) NIL (|has| |#1| (-512)))) (-3415 (((-586 |#4|) (-586 |#4|) $) NIL (|has| |#1| (-512)))) (-1296 (((-3 $ "failed") (-586 |#4|)) NIL)) (-1482 (($ (-586 |#4|)) NIL)) (-2305 (((-3 $ "failed") $) 39)) (-1618 ((|#4| |#4| $) 65)) (-2331 (($ $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#4| (-1012))))) (-1421 (($ |#4| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#4| (-1012)))) (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4229)))) (-3753 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 78 (|has| |#1| (-512)))) (-3738 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) NIL)) (-2762 ((|#4| |#4| $) NIL)) (-3856 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4229)) (|has| |#4| (-1012)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4229))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4229))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-2025 (((-2 (|:| -1649 (-586 |#4|)) (|:| -1543 (-586 |#4|))) $) NIL)) (-2870 (((-108) |#4| $) NIL)) (-1276 (((-108) |#4| $) NIL)) (-1964 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3228 (((-2 (|:| |val| (-586 |#4|)) (|:| |towers| (-586 $))) (-586 |#4|) (-108) (-108)) 124)) (-3828 (((-586 |#4|) $) 16 (|has| $ (-6 -4229)))) (-2311 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3871 ((|#3| $) 33)) (-3027 (((-108) $ (-706)) NIL)) (-3702 (((-586 |#4|) $) 17 (|has| $ (-6 -4229)))) (-2422 (((-108) |#4| $) 25 (-12 (|has| $ (-6 -4229)) (|has| |#4| (-1012))))) (-3830 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#4| |#4|) $) 21)) (-2602 (((-586 |#3|) $) NIL)) (-3394 (((-108) |#3| $) NIL)) (-1390 (((-108) $ (-706)) NIL)) (-1239 (((-1066) $) NIL)) (-3797 (((-3 |#4| (-586 $)) |#4| |#4| $) NIL)) (-2170 (((-586 (-2 (|:| |val| |#4|) (|:| -1883 $))) |#4| |#4| $) 103)) (-1440 (((-3 |#4| "failed") $) 37)) (-3674 (((-586 $) |#4| $) 88)) (-3757 (((-3 (-108) (-586 $)) |#4| $) NIL)) (-2484 (((-586 (-2 (|:| |val| (-108)) (|:| -1883 $))) |#4| $) 98) (((-108) |#4| $) 53)) (-2077 (((-586 $) |#4| $) 107) (((-586 $) (-586 |#4|) $) NIL) (((-586 $) (-586 |#4|) (-586 $)) 108) (((-586 $) |#4| (-586 $)) NIL)) (-2771 (((-586 $) (-586 |#4|) (-108) (-108) (-108)) 119)) (-3709 (($ |#4| $) 75) (($ (-586 |#4|) $) 76) (((-586 $) |#4| $ (-108) (-108) (-108) (-108) (-108)) 74)) (-2623 (((-586 |#4|) $) NIL)) (-2428 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2778 ((|#4| |#4| $) NIL)) (-3444 (((-108) $ $) NIL)) (-2130 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-512)))) (-1322 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3499 ((|#4| |#4| $) NIL)) (-4142 (((-1030) $) NIL)) (-2293 (((-3 |#4| "failed") $) 35)) (-2985 (((-3 |#4| "failed") (-1 (-108) |#4|) $) NIL)) (-2885 (((-3 $ "failed") $ |#4|) 48)) (-2116 (($ $ |#4|) NIL) (((-586 $) |#4| $) 90) (((-586 $) |#4| (-586 $)) NIL) (((-586 $) (-586 |#4|) $) NIL) (((-586 $) (-586 |#4|) (-586 $)) 86)) (-4155 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 |#4|) (-586 |#4|)) NIL (-12 (|has| |#4| (-283 |#4|)) (|has| |#4| (-1012)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-283 |#4|)) (|has| |#4| (-1012)))) (($ $ (-268 |#4|)) NIL (-12 (|has| |#4| (-283 |#4|)) (|has| |#4| (-1012)))) (($ $ (-586 (-268 |#4|))) NIL (-12 (|has| |#4| (-283 |#4|)) (|has| |#4| (-1012))))) (-2533 (((-108) $ $) NIL)) (-4018 (((-108) $) 15)) (-2238 (($) 13)) (-2528 (((-706) $) NIL)) (-4159 (((-706) |#4| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#4| (-1012)))) (((-706) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4229)))) (-2403 (($ $) 12)) (-1429 (((-496) $) NIL (|has| |#4| (-561 (-496))))) (-2200 (($ (-586 |#4|)) 20)) (-3399 (($ $ |#3|) 42)) (-4067 (($ $ |#3|) 44)) (-3932 (($ $) NIL)) (-2513 (($ $ |#3|) NIL)) (-2188 (((-791) $) 31) (((-586 |#4|) $) 40)) (-3898 (((-706) $) NIL (|has| |#3| (-341)))) (-1652 (((-3 (-2 (|:| |bas| $) (|:| -1353 (-586 |#4|))) "failed") (-586 |#4|) (-1 (-108) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1353 (-586 |#4|))) "failed") (-586 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-3146 (((-108) $ (-1 (-108) |#4| (-586 |#4|))) NIL)) (-3272 (((-586 $) |#4| $) 54) (((-586 $) |#4| (-586 $)) NIL) (((-586 $) (-586 |#4|) $) NIL) (((-586 $) (-586 |#4|) (-586 $)) NIL)) (-1662 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4229)))) (-1600 (((-586 |#3|) $) NIL)) (-3230 (((-108) |#4| $) NIL)) (-3718 (((-108) |#3| $) 61)) (-1530 (((-108) $ $) NIL)) (-3474 (((-706) $) NIL (|has| $ (-6 -4229)))))
-(((-1054 |#1| |#2| |#3| |#4|) (-13 (-1021 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3709 ((-586 $) |#4| $ (-108) (-108) (-108) (-108) (-108))) (-15 -3767 ((-586 $) (-586 |#4|) (-108) (-108))) (-15 -3767 ((-586 $) (-586 |#4|) (-108) (-108) (-108) (-108))) (-15 -2771 ((-586 $) (-586 |#4|) (-108) (-108) (-108))) (-15 -3228 ((-2 (|:| |val| (-586 |#4|)) (|:| |towers| (-586 $))) (-586 |#4|) (-108) (-108))))) (-424) (-728) (-783) (-983 |#1| |#2| |#3|)) (T -1054))
-((-3709 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783)) (-5 *2 (-586 (-1054 *5 *6 *7 *3))) (-5 *1 (-1054 *5 *6 *7 *3)) (-4 *3 (-983 *5 *6 *7)))) (-3767 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-586 *8)) (-5 *4 (-108)) (-4 *8 (-983 *5 *6 *7)) (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783)) (-5 *2 (-586 (-1054 *5 *6 *7 *8))) (-5 *1 (-1054 *5 *6 *7 *8)))) (-3767 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-586 *8)) (-5 *4 (-108)) (-4 *8 (-983 *5 *6 *7)) (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783)) (-5 *2 (-586 (-1054 *5 *6 *7 *8))) (-5 *1 (-1054 *5 *6 *7 *8)))) (-2771 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-586 *8)) (-5 *4 (-108)) (-4 *8 (-983 *5 *6 *7)) (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783)) (-5 *2 (-586 (-1054 *5 *6 *7 *8))) (-5 *1 (-1054 *5 *6 *7 *8)))) (-3228 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783)) (-4 *8 (-983 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-586 *8)) (|:| |towers| (-586 (-1054 *5 *6 *7 *8))))) (-5 *1 (-1054 *5 *6 *7 *8)) (-5 *3 (-586 *8)))))
-(-13 (-1021 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3709 ((-586 $) |#4| $ (-108) (-108) (-108) (-108) (-108))) (-15 -3767 ((-586 $) (-586 |#4|) (-108) (-108))) (-15 -3767 ((-586 $) (-586 |#4|) (-108) (-108) (-108) (-108))) (-15 -2771 ((-586 $) (-586 |#4|) (-108) (-108) (-108))) (-15 -3228 ((-2 (|:| |val| (-586 |#4|)) (|:| |towers| (-586 $))) (-586 |#4|) (-108) (-108)))))
-((-1414 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-1353 ((|#1| $) 34)) (-3970 (($ (-586 |#1|)) 39)) (-2063 (((-108) $ (-706)) NIL)) (-3961 (($) NIL T CONST)) (-1352 ((|#1| |#1| $) 36)) (-3621 ((|#1| $) 32)) (-3828 (((-586 |#1|) $) 18 (|has| $ (-6 -4229)))) (-3027 (((-108) $ (-706)) NIL)) (-3702 (((-586 |#1|) $) NIL (|has| $ (-6 -4229)))) (-2422 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-3830 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#1| |#1|) $) 22)) (-1390 (((-108) $ (-706)) NIL)) (-1239 (((-1066) $) NIL (|has| |#1| (-1012)))) (-3351 ((|#1| $) 35)) (-3618 (($ |#1| $) 37)) (-4142 (((-1030) $) NIL (|has| |#1| (-1012)))) (-3345 ((|#1| $) 33)) (-4155 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 |#1|))) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-268 |#1|)) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-586 |#1|) (-586 |#1|)) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))) (-2533 (((-108) $ $) NIL)) (-4018 (((-108) $) 31)) (-2238 (($) 38)) (-1251 (((-706) $) 29)) (-4159 (((-706) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229))) (((-706) |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-2403 (($ $) 27)) (-2188 (((-791) $) 14 (|has| |#1| (-560 (-791))))) (-1898 (($ (-586 |#1|)) NIL)) (-1662 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-1530 (((-108) $ $) 17 (|has| |#1| (-1012)))) (-3474 (((-706) $) 30 (|has| $ (-6 -4229)))))
-(((-1055 |#1|) (-13 (-1031 |#1|) (-10 -8 (-15 -3970 ($ (-586 |#1|))))) (-1118)) (T -1055))
-((-3970 (*1 *1 *2) (-12 (-5 *2 (-586 *3)) (-4 *3 (-1118)) (-5 *1 (-1055 *3)))))
-(-13 (-1031 |#1|) (-10 -8 (-15 -3970 ($ (-586 |#1|)))))
-((-2377 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1131 (-520)) |#2|) 44) ((|#2| $ (-520) |#2|) 41)) (-3928 (((-108) $) 12)) (-3830 (($ (-1 |#2| |#2|) $) 39)) (-2293 ((|#2| $) NIL) (($ $ (-706)) 17)) (-2936 (($ $ |#2|) 40)) (-1392 (((-108) $) 11)) (-2543 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1131 (-520))) 31) ((|#2| $ (-520)) 23) ((|#2| $ (-520) |#2|) NIL)) (-2251 (($ $ $) 47) (($ $ |#2|) NIL)) (-4156 (($ $ $) 33) (($ |#2| $) NIL) (($ (-586 $)) 36) (($ $ |#2|) NIL)))
-(((-1056 |#1| |#2|) (-10 -8 (-15 -3928 ((-108) |#1|)) (-15 -1392 ((-108) |#1|)) (-15 -2377 (|#2| |#1| (-520) |#2|)) (-15 -2543 (|#2| |#1| (-520) |#2|)) (-15 -2543 (|#2| |#1| (-520))) (-15 -2936 (|#1| |#1| |#2|)) (-15 -4156 (|#1| |#1| |#2|)) (-15 -4156 (|#1| (-586 |#1|))) (-15 -2543 (|#1| |#1| (-1131 (-520)))) (-15 -2377 (|#2| |#1| (-1131 (-520)) |#2|)) (-15 -2377 (|#2| |#1| "last" |#2|)) (-15 -2377 (|#1| |#1| "rest" |#1|)) (-15 -2377 (|#2| |#1| "first" |#2|)) (-15 -2251 (|#1| |#1| |#2|)) (-15 -2251 (|#1| |#1| |#1|)) (-15 -2543 (|#2| |#1| "last")) (-15 -2543 (|#1| |#1| "rest")) (-15 -2293 (|#1| |#1| (-706))) (-15 -2543 (|#2| |#1| "first")) (-15 -2293 (|#2| |#1|)) (-15 -4156 (|#1| |#2| |#1|)) (-15 -4156 (|#1| |#1| |#1|)) (-15 -2377 (|#2| |#1| "value" |#2|)) (-15 -2543 (|#2| |#1| "value")) (-15 -3830 (|#1| (-1 |#2| |#2|) |#1|))) (-1057 |#2|) (-1118)) (T -1056))
-NIL
-(-10 -8 (-15 -3928 ((-108) |#1|)) (-15 -1392 ((-108) |#1|)) (-15 -2377 (|#2| |#1| (-520) |#2|)) (-15 -2543 (|#2| |#1| (-520) |#2|)) (-15 -2543 (|#2| |#1| (-520))) (-15 -2936 (|#1| |#1| |#2|)) (-15 -4156 (|#1| |#1| |#2|)) (-15 -4156 (|#1| (-586 |#1|))) (-15 -2543 (|#1| |#1| (-1131 (-520)))) (-15 -2377 (|#2| |#1| (-1131 (-520)) |#2|)) (-15 -2377 (|#2| |#1| "last" |#2|)) (-15 -2377 (|#1| |#1| "rest" |#1|)) (-15 -2377 (|#2| |#1| "first" |#2|)) (-15 -2251 (|#1| |#1| |#2|)) (-15 -2251 (|#1| |#1| |#1|)) (-15 -2543 (|#2| |#1| "last")) (-15 -2543 (|#1| |#1| "rest")) (-15 -2293 (|#1| |#1| (-706))) (-15 -2543 (|#2| |#1| "first")) (-15 -2293 (|#2| |#1|)) (-15 -4156 (|#1| |#2| |#1|)) (-15 -4156 (|#1| |#1| |#1|)) (-15 -2377 (|#2| |#1| "value" |#2|)) (-15 -2543 (|#2| |#1| "value")) (-15 -3830 (|#1| (-1 |#2| |#2|) |#1|)))
-((-1414 (((-108) $ $) 19 (|has| |#1| (-1012)))) (-3429 ((|#1| $) 48)) (-2091 ((|#1| $) 65)) (-3827 (($ $) 67)) (-1476 (((-1169) $ (-520) (-520)) 97 (|has| $ (-6 -4230)))) (-1198 (($ $ (-520)) 52 (|has| $ (-6 -4230)))) (-2063 (((-108) $ (-706)) 8)) (-2888 ((|#1| $ |#1|) 39 (|has| $ (-6 -4230)))) (-2719 (($ $ $) 56 (|has| $ (-6 -4230)))) (-3819 ((|#1| $ |#1|) 54 (|has| $ (-6 -4230)))) (-1598 ((|#1| $ |#1|) 58 (|has| $ (-6 -4230)))) (-2377 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4230))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4230))) (($ $ "rest" $) 55 (|has| $ (-6 -4230))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4230))) ((|#1| $ (-1131 (-520)) |#1|) 117 (|has| $ (-6 -4230))) ((|#1| $ (-520) |#1|) 86 (|has| $ (-6 -4230)))) (-3061 (($ $ (-586 $)) 41 (|has| $ (-6 -4230)))) (-1627 (($ (-1 (-108) |#1|) $) 102 (|has| $ (-6 -4229)))) (-2079 ((|#1| $) 66)) (-3961 (($) 7 T CONST)) (-2305 (($ $) 73) (($ $ (-706)) 71)) (-2331 (($ $) 99 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-1421 (($ (-1 (-108) |#1|) $) 103 (|has| $ (-6 -4229))) (($ |#1| $) 100 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-3856 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4229))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4229))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-3846 ((|#1| $ (-520) |#1|) 85 (|has| $ (-6 -4230)))) (-3623 ((|#1| $ (-520)) 87)) (-3928 (((-108) $) 83)) (-3828 (((-586 |#1|) $) 30 (|has| $ (-6 -4229)))) (-3405 (((-586 $) $) 50)) (-1885 (((-108) $ $) 42 (|has| |#1| (-1012)))) (-1810 (($ (-706) |#1|) 108)) (-3027 (((-108) $ (-706)) 9)) (-2567 (((-520) $) 95 (|has| (-520) (-783)))) (-3702 (((-586 |#1|) $) 29 (|has| $ (-6 -4229)))) (-2422 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-1752 (((-520) $) 94 (|has| (-520) (-783)))) (-3830 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-1390 (((-108) $ (-706)) 10)) (-1277 (((-586 |#1|) $) 45)) (-1740 (((-108) $) 49)) (-1239 (((-1066) $) 22 (|has| |#1| (-1012)))) (-1440 ((|#1| $) 70) (($ $ (-706)) 68)) (-1659 (($ $ $ (-520)) 116) (($ |#1| $ (-520)) 115)) (-3622 (((-586 (-520)) $) 92)) (-2603 (((-108) (-520) $) 91)) (-4142 (((-1030) $) 21 (|has| |#1| (-1012)))) (-2293 ((|#1| $) 76) (($ $ (-706)) 74)) (-2985 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 106)) (-2936 (($ $ |#1|) 96 (|has| $ (-6 -4230)))) (-1392 (((-108) $) 84)) (-4155 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 |#1|))) 26 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-268 |#1|)) 25 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-586 |#1|) (-586 |#1|)) 23 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))) (-2533 (((-108) $ $) 14)) (-2094 (((-108) |#1| $) 93 (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-1523 (((-586 |#1|) $) 90)) (-4018 (((-108) $) 11)) (-2238 (($) 12)) (-2543 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1131 (-520))) 112) ((|#1| $ (-520)) 89) ((|#1| $ (-520) |#1|) 88)) (-3765 (((-520) $ $) 44)) (-3690 (($ $ (-1131 (-520))) 114) (($ $ (-520)) 113)) (-1975 (((-108) $) 46)) (-3436 (($ $) 62)) (-1521 (($ $) 59 (|has| $ (-6 -4230)))) (-3341 (((-706) $) 63)) (-1696 (($ $) 64)) (-4159 (((-706) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4229))) (((-706) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-2403 (($ $) 13)) (-1429 (((-496) $) 98 (|has| |#1| (-561 (-496))))) (-2200 (($ (-586 |#1|)) 107)) (-2251 (($ $ $) 61 (|has| $ (-6 -4230))) (($ $ |#1|) 60 (|has| $ (-6 -4230)))) (-4156 (($ $ $) 78) (($ |#1| $) 77) (($ (-586 $)) 110) (($ $ |#1|) 109)) (-2188 (((-791) $) 18 (|has| |#1| (-560 (-791))))) (-2438 (((-586 $) $) 51)) (-1639 (((-108) $ $) 43 (|has| |#1| (-1012)))) (-1662 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4229)))) (-1530 (((-108) $ $) 20 (|has| |#1| (-1012)))) (-3474 (((-706) $) 6 (|has| $ (-6 -4229)))))
-(((-1057 |#1|) (-1195) (-1118)) (T -1057))
-((-1392 (*1 *2 *1) (-12 (-4 *1 (-1057 *3)) (-4 *3 (-1118)) (-5 *2 (-108)))) (-3928 (*1 *2 *1) (-12 (-4 *1 (-1057 *3)) (-4 *3 (-1118)) (-5 *2 (-108)))))
-(-13 (-1152 |t#1|) (-591 |t#1|) (-10 -8 (-15 -1392 ((-108) $)) (-15 -3928 ((-108) $))))
-(((-33) . T) ((-97) |has| |#1| (-1012)) ((-560 (-791)) -3700 (|has| |#1| (-1012)) (|has| |#1| (-560 (-791)))) ((-139 |#1|) . T) ((-561 (-496)) |has| |#1| (-561 (-496))) ((-260 #0=(-520) |#1|) . T) ((-262 #0# |#1|) . T) ((-283 |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))) ((-459 |#1|) . T) ((-553 #0# |#1|) . T) ((-481 |#1| |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))) ((-591 |#1|) . T) ((-934 |#1|) . T) ((-1012) |has| |#1| (-1012)) ((-1118) . T) ((-1152 |#1|) . T))
-((-1414 (((-108) $ $) NIL (-3700 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)) (|has| |#2| (-1012))))) (-1799 (($) NIL) (($ (-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) NIL)) (-1476 (((-1169) $ |#1| |#1|) NIL (|has| $ (-6 -4230)))) (-2063 (((-108) $ (-706)) NIL)) (-2377 ((|#2| $ |#1| |#2|) NIL)) (-1817 (($ (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4229)))) (-1627 (($ (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4229)))) (-2747 (((-3 |#2| "failed") |#1| $) NIL)) (-3961 (($) NIL T CONST)) (-2331 (($ $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012))))) (-3766 (($ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) NIL (|has| $ (-6 -4229))) (($ (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4229))) (((-3 |#2| "failed") |#1| $) NIL)) (-1421 (($ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (($ (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4229)))) (-3856 (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) NIL (-12 (|has| $ (-6 -4229)) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) NIL (|has| $ (-6 -4229))) (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4229)))) (-3846 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4230)))) (-3623 ((|#2| $ |#1|) NIL)) (-3828 (((-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4229))) (((-586 |#2|) $) NIL (|has| $ (-6 -4229)))) (-3027 (((-108) $ (-706)) NIL)) (-2567 ((|#1| $) NIL (|has| |#1| (-783)))) (-3702 (((-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4229))) (((-586 |#2|) $) NIL (|has| $ (-6 -4229)))) (-2422 (((-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#2| (-1012))))) (-1752 ((|#1| $) NIL (|has| |#1| (-783)))) (-3830 (($ (-1 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4230))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4230)))) (-1389 (($ (-1 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1390 (((-108) $ (-706)) NIL)) (-1239 (((-1066) $) NIL (-3700 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)) (|has| |#2| (-1012))))) (-2960 (((-586 |#1|) $) NIL)) (-1612 (((-108) |#1| $) NIL)) (-3351 (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) NIL)) (-3618 (($ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) NIL)) (-3622 (((-586 |#1|) $) NIL)) (-2603 (((-108) |#1| $) NIL)) (-4142 (((-1030) $) NIL (-3700 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)) (|has| |#2| (-1012))))) (-2293 ((|#2| $) NIL (|has| |#1| (-783)))) (-2985 (((-3 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) "failed") (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL)) (-2936 (($ $ |#2|) NIL (|has| $ (-6 -4230)))) (-3345 (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) NIL)) (-4155 (((-108) (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4229))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))))) NIL (-12 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-283 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (($ $ (-268 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) NIL (-12 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-283 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (($ $ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) NIL (-12 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-283 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (($ $ (-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) (-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) NIL (-12 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-283 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (($ $ (-586 |#2|) (-586 |#2|)) NIL (-12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012)))) (($ $ (-268 |#2|)) NIL (-12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012)))) (($ $ (-586 (-268 |#2|))) NIL (-12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012))))) (-2533 (((-108) $ $) NIL)) (-2094 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#2| (-1012))))) (-1523 (((-586 |#2|) $) NIL)) (-4018 (((-108) $) NIL)) (-2238 (($) NIL)) (-2543 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1645 (($) NIL) (($ (-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) NIL)) (-4159 (((-706) (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4229))) (((-706) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (((-706) |#2| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#2| (-1012)))) (((-706) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4229)))) (-2403 (($ $) NIL)) (-1429 (((-496) $) NIL (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-561 (-496))))) (-2200 (($ (-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) NIL)) (-2188 (((-791) $) NIL (-3700 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-560 (-791))) (|has| |#2| (-560 (-791)))))) (-1898 (($ (-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) NIL)) (-1662 (((-108) (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4229))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4229)))) (-1530 (((-108) $ $) NIL (-3700 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)) (|has| |#2| (-1012))))) (-3474 (((-706) $) NIL (|has| $ (-6 -4229)))))
-(((-1058 |#1| |#2| |#3|) (-1095 |#1| |#2|) (-1012) (-1012) |#2|) (T -1058))
-NIL
-(-1095 |#1| |#2|)
-((-1414 (((-108) $ $) 7)) (-1394 (((-3 $ "failed") $) 13)) (-1239 (((-1066) $) 9)) (-3794 (($) 14 T CONST)) (-4142 (((-1030) $) 10)) (-2188 (((-791) $) 11)) (-1530 (((-108) $ $) 6)))
-(((-1059) (-1195)) (T -1059))
-((-3794 (*1 *1) (-4 *1 (-1059))) (-1394 (*1 *1 *1) (|partial| -4 *1 (-1059))))
-(-13 (-1012) (-10 -8 (-15 -3794 ($) -2675) (-15 -1394 ((-3 $ "failed") $))))
-(((-97) . T) ((-560 (-791)) . T) ((-1012) . T))
-((-3302 (((-1064 |#1|) (-1064 |#1|)) 17)) (-2176 (((-1064 |#1|) (-1064 |#1|)) 13)) (-1262 (((-1064 |#1|) (-1064 |#1|) (-520) (-520)) 20)) (-1449 (((-1064 |#1|) (-1064 |#1|)) 15)))
-(((-1060 |#1|) (-10 -7 (-15 -2176 ((-1064 |#1|) (-1064 |#1|))) (-15 -1449 ((-1064 |#1|) (-1064 |#1|))) (-15 -3302 ((-1064 |#1|) (-1064 |#1|))) (-15 -1262 ((-1064 |#1|) (-1064 |#1|) (-520) (-520)))) (-13 (-512) (-135))) (T -1060))
-((-1262 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1064 *4)) (-5 *3 (-520)) (-4 *4 (-13 (-512) (-135))) (-5 *1 (-1060 *4)))) (-3302 (*1 *2 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-13 (-512) (-135))) (-5 *1 (-1060 *3)))) (-1449 (*1 *2 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-13 (-512) (-135))) (-5 *1 (-1060 *3)))) (-2176 (*1 *2 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-13 (-512) (-135))) (-5 *1 (-1060 *3)))))
-(-10 -7 (-15 -2176 ((-1064 |#1|) (-1064 |#1|))) (-15 -1449 ((-1064 |#1|) (-1064 |#1|))) (-15 -3302 ((-1064 |#1|) (-1064 |#1|))) (-15 -1262 ((-1064 |#1|) (-1064 |#1|) (-520) (-520))))
-((-4156 (((-1064 |#1|) (-1064 (-1064 |#1|))) 15)))
-(((-1061 |#1|) (-10 -7 (-15 -4156 ((-1064 |#1|) (-1064 (-1064 |#1|))))) (-1118)) (T -1061))
-((-4156 (*1 *2 *3) (-12 (-5 *3 (-1064 (-1064 *4))) (-5 *2 (-1064 *4)) (-5 *1 (-1061 *4)) (-4 *4 (-1118)))))
-(-10 -7 (-15 -4156 ((-1064 |#1|) (-1064 (-1064 |#1|)))))
-((-1404 (((-1064 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1064 |#1|)) 25)) (-3856 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1064 |#1|)) 26)) (-1389 (((-1064 |#2|) (-1 |#2| |#1|) (-1064 |#1|)) 16)))
-(((-1062 |#1| |#2|) (-10 -7 (-15 -1389 ((-1064 |#2|) (-1 |#2| |#1|) (-1064 |#1|))) (-15 -1404 ((-1064 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1064 |#1|))) (-15 -3856 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1064 |#1|)))) (-1118) (-1118)) (T -1062))
-((-3856 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1064 *5)) (-4 *5 (-1118)) (-4 *2 (-1118)) (-5 *1 (-1062 *5 *2)))) (-1404 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1064 *6)) (-4 *6 (-1118)) (-4 *3 (-1118)) (-5 *2 (-1064 *3)) (-5 *1 (-1062 *6 *3)))) (-1389 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1064 *5)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-5 *2 (-1064 *6)) (-5 *1 (-1062 *5 *6)))))
-(-10 -7 (-15 -1389 ((-1064 |#2|) (-1 |#2| |#1|) (-1064 |#1|))) (-15 -1404 ((-1064 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1064 |#1|))) (-15 -3856 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1064 |#1|))))
-((-1389 (((-1064 |#3|) (-1 |#3| |#1| |#2|) (-1064 |#1|) (-1064 |#2|)) 21)))
-(((-1063 |#1| |#2| |#3|) (-10 -7 (-15 -1389 ((-1064 |#3|) (-1 |#3| |#1| |#2|) (-1064 |#1|) (-1064 |#2|)))) (-1118) (-1118) (-1118)) (T -1063))
-((-1389 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1064 *6)) (-5 *5 (-1064 *7)) (-4 *6 (-1118)) (-4 *7 (-1118)) (-4 *8 (-1118)) (-5 *2 (-1064 *8)) (-5 *1 (-1063 *6 *7 *8)))))
-(-10 -7 (-15 -1389 ((-1064 |#3|) (-1 |#3| |#1| |#2|) (-1064 |#1|) (-1064 |#2|))))
-((-1414 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-3429 ((|#1| $) NIL)) (-2091 ((|#1| $) NIL)) (-3827 (($ $) 49)) (-1476 (((-1169) $ (-520) (-520)) 74 (|has| $ (-6 -4230)))) (-1198 (($ $ (-520)) 108 (|has| $ (-6 -4230)))) (-2063 (((-108) $ (-706)) NIL)) (-3750 (((-791) $) 38 (|has| |#1| (-1012)))) (-2713 (((-108)) 39 (|has| |#1| (-1012)))) (-2888 ((|#1| $ |#1|) NIL (|has| $ (-6 -4230)))) (-2719 (($ $ $) 96 (|has| $ (-6 -4230))) (($ $ (-520) $) 118)) (-3819 ((|#1| $ |#1|) 105 (|has| $ (-6 -4230)))) (-1598 ((|#1| $ |#1|) 100 (|has| $ (-6 -4230)))) (-2377 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4230))) ((|#1| $ "first" |#1|) 102 (|has| $ (-6 -4230))) (($ $ "rest" $) 104 (|has| $ (-6 -4230))) ((|#1| $ "last" |#1|) 107 (|has| $ (-6 -4230))) ((|#1| $ (-1131 (-520)) |#1|) 87 (|has| $ (-6 -4230))) ((|#1| $ (-520) |#1|) 53 (|has| $ (-6 -4230)))) (-3061 (($ $ (-586 $)) NIL (|has| $ (-6 -4230)))) (-1627 (($ (-1 (-108) |#1|) $) 56)) (-2079 ((|#1| $) NIL)) (-3961 (($) NIL T CONST)) (-2849 (($ $) 14)) (-2305 (($ $) 29) (($ $ (-706)) 86)) (-3778 (((-108) (-586 |#1|) $) 113 (|has| |#1| (-1012)))) (-3258 (($ (-586 |#1|)) 110)) (-2331 (($ $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-1421 (($ |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012)))) (($ (-1 (-108) |#1|) $) 55)) (-3856 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4229))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4229))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-3846 ((|#1| $ (-520) |#1|) NIL (|has| $ (-6 -4230)))) (-3623 ((|#1| $ (-520)) NIL)) (-3928 (((-108) $) NIL)) (-3828 (((-586 |#1|) $) NIL (|has| $ (-6 -4229)))) (-1584 (((-1169) (-520) $) 117 (|has| |#1| (-1012)))) (-3207 (((-706) $) 115)) (-3405 (((-586 $) $) NIL)) (-1885 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-1810 (($ (-706) |#1|) NIL)) (-3027 (((-108) $ (-706)) NIL)) (-2567 (((-520) $) NIL (|has| (-520) (-783)))) (-3702 (((-586 |#1|) $) NIL (|has| $ (-6 -4229)))) (-2422 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-1752 (((-520) $) NIL (|has| (-520) (-783)))) (-3830 (($ (-1 |#1| |#1|) $) 71 (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#1| |#1|) $) 61) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-1390 (((-108) $ (-706)) NIL)) (-1277 (((-586 |#1|) $) NIL)) (-1740 (((-108) $) NIL)) (-2443 (($ $) 88)) (-2266 (((-108) $) 13)) (-1239 (((-1066) $) NIL (|has| |#1| (-1012)))) (-1440 ((|#1| $) NIL) (($ $ (-706)) NIL)) (-1659 (($ $ $ (-520)) NIL) (($ |#1| $ (-520)) NIL)) (-3622 (((-586 (-520)) $) NIL)) (-2603 (((-108) (-520) $) 72)) (-4142 (((-1030) $) NIL (|has| |#1| (-1012)))) (-1576 (($ (-1 |#1|)) 120) (($ (-1 |#1| |#1|) |#1|) 121)) (-3885 ((|#1| $) 10)) (-2293 ((|#1| $) 28) (($ $ (-706)) 47)) (-1301 (((-2 (|:| |cycle?| (-108)) (|:| -3369 (-706)) (|:| |period| (-706))) (-706) $) 25)) (-2985 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-1613 (($ (-1 (-108) |#1|) $) 122)) (-1621 (($ (-1 (-108) |#1|) $) 123)) (-2936 (($ $ |#1|) 66 (|has| $ (-6 -4230)))) (-2116 (($ $ (-520)) 32)) (-1392 (((-108) $) 70)) (-3549 (((-108) $) 12)) (-3952 (((-108) $) 114)) (-4155 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 |#1|))) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-268 |#1|)) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-586 |#1|) (-586 |#1|)) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))) (-2533 (((-108) $ $) 20)) (-2094 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-1523 (((-586 |#1|) $) NIL)) (-4018 (((-108) $) 15)) (-2238 (($) 41)) (-2543 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1131 (-520))) NIL) ((|#1| $ (-520)) 52) ((|#1| $ (-520) |#1|) NIL)) (-3765 (((-520) $ $) 46)) (-3690 (($ $ (-1131 (-520))) NIL) (($ $ (-520)) NIL)) (-2819 (($ (-1 $)) 45)) (-1975 (((-108) $) 67)) (-3436 (($ $) 68)) (-1521 (($ $) 97 (|has| $ (-6 -4230)))) (-3341 (((-706) $) NIL)) (-1696 (($ $) NIL)) (-4159 (((-706) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229))) (((-706) |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-2403 (($ $) 42)) (-1429 (((-496) $) NIL (|has| |#1| (-561 (-496))))) (-2200 (($ (-586 |#1|)) 51)) (-3434 (($ |#1| $) 95)) (-2251 (($ $ $) 98 (|has| $ (-6 -4230))) (($ $ |#1|) 99 (|has| $ (-6 -4230)))) (-4156 (($ $ $) 76) (($ |#1| $) 43) (($ (-586 $)) 81) (($ $ |#1|) 75)) (-2759 (($ $) 48)) (-2188 (($ (-586 |#1|)) 109) (((-791) $) 40 (|has| |#1| (-560 (-791))))) (-2438 (((-586 $) $) NIL)) (-1639 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-1662 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-1530 (((-108) $ $) 112 (|has| |#1| (-1012)))) (-3474 (((-706) $) NIL (|has| $ (-6 -4229)))))
-(((-1064 |#1|) (-13 (-613 |#1|) (-10 -8 (-6 -4230) (-15 -2188 ($ (-586 |#1|))) (-15 -3258 ($ (-586 |#1|))) (IF (|has| |#1| (-1012)) (-15 -3778 ((-108) (-586 |#1|) $)) |%noBranch|) (-15 -1301 ((-2 (|:| |cycle?| (-108)) (|:| -3369 (-706)) (|:| |period| (-706))) (-706) $)) (-15 -2819 ($ (-1 $))) (-15 -3434 ($ |#1| $)) (IF (|has| |#1| (-1012)) (PROGN (-15 -1584 ((-1169) (-520) $)) (-15 -3750 ((-791) $)) (-15 -2713 ((-108)))) |%noBranch|) (-15 -2719 ($ $ (-520) $)) (-15 -1576 ($ (-1 |#1|))) (-15 -1576 ($ (-1 |#1| |#1|) |#1|)) (-15 -1613 ($ (-1 (-108) |#1|) $)) (-15 -1621 ($ (-1 (-108) |#1|) $)))) (-1118)) (T -1064))
-((-2188 (*1 *1 *2) (-12 (-5 *2 (-586 *3)) (-4 *3 (-1118)) (-5 *1 (-1064 *3)))) (-3258 (*1 *1 *2) (-12 (-5 *2 (-586 *3)) (-4 *3 (-1118)) (-5 *1 (-1064 *3)))) (-3778 (*1 *2 *3 *1) (-12 (-5 *3 (-586 *4)) (-4 *4 (-1012)) (-4 *4 (-1118)) (-5 *2 (-108)) (-5 *1 (-1064 *4)))) (-1301 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-108)) (|:| -3369 (-706)) (|:| |period| (-706)))) (-5 *1 (-1064 *4)) (-4 *4 (-1118)) (-5 *3 (-706)))) (-2819 (*1 *1 *2) (-12 (-5 *2 (-1 (-1064 *3))) (-5 *1 (-1064 *3)) (-4 *3 (-1118)))) (-3434 (*1 *1 *2 *1) (-12 (-5 *1 (-1064 *2)) (-4 *2 (-1118)))) (-1584 (*1 *2 *3 *1) (-12 (-5 *3 (-520)) (-5 *2 (-1169)) (-5 *1 (-1064 *4)) (-4 *4 (-1012)) (-4 *4 (-1118)))) (-3750 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-1064 *3)) (-4 *3 (-1012)) (-4 *3 (-1118)))) (-2713 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1064 *3)) (-4 *3 (-1012)) (-4 *3 (-1118)))) (-2719 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-1064 *3)) (-4 *3 (-1118)))) (-1576 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1118)) (-5 *1 (-1064 *3)))) (-1576 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1118)) (-5 *1 (-1064 *3)))) (-1613 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1118)) (-5 *1 (-1064 *3)))) (-1621 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1118)) (-5 *1 (-1064 *3)))))
-(-13 (-613 |#1|) (-10 -8 (-6 -4230) (-15 -2188 ($ (-586 |#1|))) (-15 -3258 ($ (-586 |#1|))) (IF (|has| |#1| (-1012)) (-15 -3778 ((-108) (-586 |#1|) $)) |%noBranch|) (-15 -1301 ((-2 (|:| |cycle?| (-108)) (|:| -3369 (-706)) (|:| |period| (-706))) (-706) $)) (-15 -2819 ($ (-1 $))) (-15 -3434 ($ |#1| $)) (IF (|has| |#1| (-1012)) (PROGN (-15 -1584 ((-1169) (-520) $)) (-15 -3750 ((-791) $)) (-15 -2713 ((-108)))) |%noBranch|) (-15 -2719 ($ $ (-520) $)) (-15 -1576 ($ (-1 |#1|))) (-15 -1576 ($ (-1 |#1| |#1|) |#1|)) (-15 -1613 ($ (-1 (-108) |#1|) $)) (-15 -1621 ($ (-1 (-108) |#1|) $))))
-((-1414 (((-108) $ $) 19)) (-4176 (($ $) 120)) (-2209 (($ $) 121)) (-1734 (($ $ (-132)) 108) (($ $ (-129)) 107)) (-1476 (((-1169) $ (-520) (-520)) 40 (|has| $ (-6 -4230)))) (-3761 (((-108) $ $) 118)) (-3736 (((-108) $ $ (-520)) 117)) (-1505 (($ (-520)) 127)) (-3175 (((-586 $) $ (-132)) 110) (((-586 $) $ (-129)) 109)) (-4029 (((-108) (-1 (-108) (-132) (-132)) $) 98) (((-108) $) 92 (|has| (-132) (-783)))) (-3587 (($ (-1 (-108) (-132) (-132)) $) 89 (|has| $ (-6 -4230))) (($ $) 88 (-12 (|has| (-132) (-783)) (|has| $ (-6 -4230))))) (-3210 (($ (-1 (-108) (-132) (-132)) $) 99) (($ $) 93 (|has| (-132) (-783)))) (-2063 (((-108) $ (-706)) 8)) (-2377 (((-132) $ (-520) (-132)) 52 (|has| $ (-6 -4230))) (((-132) $ (-1131 (-520)) (-132)) 58 (|has| $ (-6 -4230)))) (-1627 (($ (-1 (-108) (-132)) $) 75 (|has| $ (-6 -4229)))) (-3961 (($) 7 T CONST)) (-2845 (($ $ (-132)) 104) (($ $ (-129)) 103)) (-2447 (($ $) 90 (|has| $ (-6 -4230)))) (-1861 (($ $) 100)) (-2514 (($ $ (-1131 (-520)) $) 114)) (-2331 (($ $) 78 (-12 (|has| (-132) (-1012)) (|has| $ (-6 -4229))))) (-1421 (($ (-132) $) 77 (-12 (|has| (-132) (-1012)) (|has| $ (-6 -4229)))) (($ (-1 (-108) (-132)) $) 74 (|has| $ (-6 -4229)))) (-3856 (((-132) (-1 (-132) (-132) (-132)) $ (-132) (-132)) 76 (-12 (|has| (-132) (-1012)) (|has| $ (-6 -4229)))) (((-132) (-1 (-132) (-132) (-132)) $ (-132)) 73 (|has| $ (-6 -4229))) (((-132) (-1 (-132) (-132) (-132)) $) 72 (|has| $ (-6 -4229)))) (-3846 (((-132) $ (-520) (-132)) 53 (|has| $ (-6 -4230)))) (-3623 (((-132) $ (-520)) 51)) (-3785 (((-108) $ $) 119)) (-3232 (((-520) (-1 (-108) (-132)) $) 97) (((-520) (-132) $) 96 (|has| (-132) (-1012))) (((-520) (-132) $ (-520)) 95 (|has| (-132) (-1012))) (((-520) $ $ (-520)) 113) (((-520) (-129) $ (-520)) 112)) (-3828 (((-586 (-132)) $) 30 (|has| $ (-6 -4229)))) (-1810 (($ (-706) (-132)) 69)) (-3027 (((-108) $ (-706)) 9)) (-2567 (((-520) $) 43 (|has| (-520) (-783)))) (-2809 (($ $ $) 87 (|has| (-132) (-783)))) (-1819 (($ (-1 (-108) (-132) (-132)) $ $) 101) (($ $ $) 94 (|has| (-132) (-783)))) (-3702 (((-586 (-132)) $) 29 (|has| $ (-6 -4229)))) (-2422 (((-108) (-132) $) 27 (-12 (|has| (-132) (-1012)) (|has| $ (-6 -4229))))) (-1752 (((-520) $) 44 (|has| (-520) (-783)))) (-2446 (($ $ $) 86 (|has| (-132) (-783)))) (-1453 (((-108) $ $ (-132)) 115)) (-4139 (((-706) $ $ (-132)) 116)) (-3830 (($ (-1 (-132) (-132)) $) 34 (|has| $ (-6 -4230)))) (-1389 (($ (-1 (-132) (-132)) $) 35) (($ (-1 (-132) (-132) (-132)) $ $) 64)) (-1826 (($ $) 122)) (-3002 (($ $) 123)) (-1390 (((-108) $ (-706)) 10)) (-2857 (($ $ (-132)) 106) (($ $ (-129)) 105)) (-1239 (((-1066) $) 22)) (-1659 (($ (-132) $ (-520)) 60) (($ $ $ (-520)) 59)) (-3622 (((-586 (-520)) $) 46)) (-2603 (((-108) (-520) $) 47)) (-4142 (((-1030) $) 21)) (-2293 (((-132) $) 42 (|has| (-520) (-783)))) (-2985 (((-3 (-132) "failed") (-1 (-108) (-132)) $) 71)) (-2936 (($ $ (-132)) 41 (|has| $ (-6 -4230)))) (-4155 (((-108) (-1 (-108) (-132)) $) 32 (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 (-132)))) 26 (-12 (|has| (-132) (-283 (-132))) (|has| (-132) (-1012)))) (($ $ (-268 (-132))) 25 (-12 (|has| (-132) (-283 (-132))) (|has| (-132) (-1012)))) (($ $ (-132) (-132)) 24 (-12 (|has| (-132) (-283 (-132))) (|has| (-132) (-1012)))) (($ $ (-586 (-132)) (-586 (-132))) 23 (-12 (|has| (-132) (-283 (-132))) (|has| (-132) (-1012))))) (-2533 (((-108) $ $) 14)) (-2094 (((-108) (-132) $) 45 (-12 (|has| $ (-6 -4229)) (|has| (-132) (-1012))))) (-1523 (((-586 (-132)) $) 48)) (-4018 (((-108) $) 11)) (-2238 (($) 12)) (-2543 (((-132) $ (-520) (-132)) 50) (((-132) $ (-520)) 49) (($ $ (-1131 (-520))) 63) (($ $ $) 102)) (-3690 (($ $ (-520)) 62) (($ $ (-1131 (-520))) 61)) (-4159 (((-706) (-1 (-108) (-132)) $) 31 (|has| $ (-6 -4229))) (((-706) (-132) $) 28 (-12 (|has| (-132) (-1012)) (|has| $ (-6 -4229))))) (-1913 (($ $ $ (-520)) 91 (|has| $ (-6 -4230)))) (-2403 (($ $) 13)) (-1429 (((-496) $) 79 (|has| (-132) (-561 (-496))))) (-2200 (($ (-586 (-132))) 70)) (-4156 (($ $ (-132)) 68) (($ (-132) $) 67) (($ $ $) 66) (($ (-586 $)) 65)) (-2188 (($ (-132)) 111) (((-791) $) 18)) (-1662 (((-108) (-1 (-108) (-132)) $) 33 (|has| $ (-6 -4229)))) (-3610 (((-1066) $) 131) (((-1066) $ (-108)) 130) (((-1169) (-758) $) 129) (((-1169) (-758) $ (-108)) 128)) (-1573 (((-108) $ $) 84 (|has| (-132) (-783)))) (-1557 (((-108) $ $) 83 (|has| (-132) (-783)))) (-1530 (((-108) $ $) 20)) (-1565 (((-108) $ $) 85 (|has| (-132) (-783)))) (-1548 (((-108) $ $) 82 (|has| (-132) (-783)))) (-3474 (((-706) $) 6 (|has| $ (-6 -4229)))))
-(((-1065) (-1195)) (T -1065))
-((-1505 (*1 *1 *2) (-12 (-5 *2 (-520)) (-4 *1 (-1065)))))
-(-13 (-1052) (-1012) (-764) (-10 -8 (-15 -1505 ($ (-520)))))
-(((-33) . T) ((-97) . T) ((-560 (-791)) . T) ((-139 #0=(-132)) . T) ((-561 (-496)) |has| (-132) (-561 (-496))) ((-260 #1=(-520) #0#) . T) ((-262 #1# #0#) . T) ((-283 #0#) -12 (|has| (-132) (-283 (-132))) (|has| (-132) (-1012))) ((-346 #0#) . T) ((-459 #0#) . T) ((-553 #1# #0#) . T) ((-481 #0# #0#) -12 (|has| (-132) (-283 (-132))) (|has| (-132) (-1012))) ((-591 #0#) . T) ((-19 #0#) . T) ((-764) . T) ((-783) |has| (-132) (-783)) ((-1012) . T) ((-1052) . T) ((-1118) . T))
-((-1414 (((-108) $ $) NIL)) (-4176 (($ $) NIL)) (-2209 (($ $) NIL)) (-1734 (($ $ (-132)) NIL) (($ $ (-129)) NIL)) (-1476 (((-1169) $ (-520) (-520)) NIL (|has| $ (-6 -4230)))) (-3761 (((-108) $ $) NIL)) (-3736 (((-108) $ $ (-520)) NIL)) (-1505 (($ (-520)) 7)) (-3175 (((-586 $) $ (-132)) NIL) (((-586 $) $ (-129)) NIL)) (-4029 (((-108) (-1 (-108) (-132) (-132)) $) NIL) (((-108) $) NIL (|has| (-132) (-783)))) (-3587 (($ (-1 (-108) (-132) (-132)) $) NIL (|has| $ (-6 -4230))) (($ $) NIL (-12 (|has| $ (-6 -4230)) (|has| (-132) (-783))))) (-3210 (($ (-1 (-108) (-132) (-132)) $) NIL) (($ $) NIL (|has| (-132) (-783)))) (-2063 (((-108) $ (-706)) NIL)) (-2377 (((-132) $ (-520) (-132)) NIL (|has| $ (-6 -4230))) (((-132) $ (-1131 (-520)) (-132)) NIL (|has| $ (-6 -4230)))) (-1627 (($ (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4229)))) (-3961 (($) NIL T CONST)) (-2845 (($ $ (-132)) NIL) (($ $ (-129)) NIL)) (-2447 (($ $) NIL (|has| $ (-6 -4230)))) (-1861 (($ $) NIL)) (-2514 (($ $ (-1131 (-520)) $) NIL)) (-2331 (($ $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-132) (-1012))))) (-1421 (($ (-132) $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-132) (-1012)))) (($ (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4229)))) (-3856 (((-132) (-1 (-132) (-132) (-132)) $ (-132) (-132)) NIL (-12 (|has| $ (-6 -4229)) (|has| (-132) (-1012)))) (((-132) (-1 (-132) (-132) (-132)) $ (-132)) NIL (|has| $ (-6 -4229))) (((-132) (-1 (-132) (-132) (-132)) $) NIL (|has| $ (-6 -4229)))) (-3846 (((-132) $ (-520) (-132)) NIL (|has| $ (-6 -4230)))) (-3623 (((-132) $ (-520)) NIL)) (-3785 (((-108) $ $) NIL)) (-3232 (((-520) (-1 (-108) (-132)) $) NIL) (((-520) (-132) $) NIL (|has| (-132) (-1012))) (((-520) (-132) $ (-520)) NIL (|has| (-132) (-1012))) (((-520) $ $ (-520)) NIL) (((-520) (-129) $ (-520)) NIL)) (-3828 (((-586 (-132)) $) NIL (|has| $ (-6 -4229)))) (-1810 (($ (-706) (-132)) NIL)) (-3027 (((-108) $ (-706)) NIL)) (-2567 (((-520) $) NIL (|has| (-520) (-783)))) (-2809 (($ $ $) NIL (|has| (-132) (-783)))) (-1819 (($ (-1 (-108) (-132) (-132)) $ $) NIL) (($ $ $) NIL (|has| (-132) (-783)))) (-3702 (((-586 (-132)) $) NIL (|has| $ (-6 -4229)))) (-2422 (((-108) (-132) $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-132) (-1012))))) (-1752 (((-520) $) NIL (|has| (-520) (-783)))) (-2446 (($ $ $) NIL (|has| (-132) (-783)))) (-1453 (((-108) $ $ (-132)) NIL)) (-4139 (((-706) $ $ (-132)) NIL)) (-3830 (($ (-1 (-132) (-132)) $) NIL (|has| $ (-6 -4230)))) (-1389 (($ (-1 (-132) (-132)) $) NIL) (($ (-1 (-132) (-132) (-132)) $ $) NIL)) (-1826 (($ $) NIL)) (-3002 (($ $) NIL)) (-1390 (((-108) $ (-706)) NIL)) (-2857 (($ $ (-132)) NIL) (($ $ (-129)) NIL)) (-1239 (((-1066) $) NIL)) (-1659 (($ (-132) $ (-520)) NIL) (($ $ $ (-520)) NIL)) (-3622 (((-586 (-520)) $) NIL)) (-2603 (((-108) (-520) $) NIL)) (-4142 (((-1030) $) NIL)) (-2293 (((-132) $) NIL (|has| (-520) (-783)))) (-2985 (((-3 (-132) "failed") (-1 (-108) (-132)) $) NIL)) (-2936 (($ $ (-132)) NIL (|has| $ (-6 -4230)))) (-4155 (((-108) (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 (-132)))) NIL (-12 (|has| (-132) (-283 (-132))) (|has| (-132) (-1012)))) (($ $ (-268 (-132))) NIL (-12 (|has| (-132) (-283 (-132))) (|has| (-132) (-1012)))) (($ $ (-132) (-132)) NIL (-12 (|has| (-132) (-283 (-132))) (|has| (-132) (-1012)))) (($ $ (-586 (-132)) (-586 (-132))) NIL (-12 (|has| (-132) (-283 (-132))) (|has| (-132) (-1012))))) (-2533 (((-108) $ $) NIL)) (-2094 (((-108) (-132) $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-132) (-1012))))) (-1523 (((-586 (-132)) $) NIL)) (-4018 (((-108) $) NIL)) (-2238 (($) NIL)) (-2543 (((-132) $ (-520) (-132)) NIL) (((-132) $ (-520)) NIL) (($ $ (-1131 (-520))) NIL) (($ $ $) NIL)) (-3690 (($ $ (-520)) NIL) (($ $ (-1131 (-520))) NIL)) (-4159 (((-706) (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4229))) (((-706) (-132) $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-132) (-1012))))) (-1913 (($ $ $ (-520)) NIL (|has| $ (-6 -4230)))) (-2403 (($ $) NIL)) (-1429 (((-496) $) NIL (|has| (-132) (-561 (-496))))) (-2200 (($ (-586 (-132))) NIL)) (-4156 (($ $ (-132)) NIL) (($ (-132) $) NIL) (($ $ $) NIL) (($ (-586 $)) NIL)) (-2188 (($ (-132)) NIL) (((-791) $) NIL)) (-1662 (((-108) (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4229)))) (-3610 (((-1066) $) 18) (((-1066) $ (-108)) 20) (((-1169) (-758) $) 21) (((-1169) (-758) $ (-108)) 22)) (-1573 (((-108) $ $) NIL (|has| (-132) (-783)))) (-1557 (((-108) $ $) NIL (|has| (-132) (-783)))) (-1530 (((-108) $ $) NIL)) (-1565 (((-108) $ $) NIL (|has| (-132) (-783)))) (-1548 (((-108) $ $) NIL (|has| (-132) (-783)))) (-3474 (((-706) $) NIL (|has| $ (-6 -4229)))))
-(((-1066) (-1065)) (T -1066))
-NIL
-(-1065)
-((-1414 (((-108) $ $) NIL (-3700 (|has| (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (-1012)) (|has| |#1| (-1012))))) (-1799 (($) NIL) (($ (-586 (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)))) NIL)) (-1476 (((-1169) $ (-1066) (-1066)) NIL (|has| $ (-6 -4230)))) (-2063 (((-108) $ (-706)) NIL)) (-2377 ((|#1| $ (-1066) |#1|) NIL)) (-1817 (($ (-1 (-108) (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|))) $) NIL (|has| $ (-6 -4229)))) (-1627 (($ (-1 (-108) (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|))) $) NIL (|has| $ (-6 -4229)))) (-2747 (((-3 |#1| "failed") (-1066) $) NIL)) (-3961 (($) NIL T CONST)) (-2331 (($ $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (-1012))))) (-3766 (($ (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) $) NIL (|has| $ (-6 -4229))) (($ (-1 (-108) (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|))) $) NIL (|has| $ (-6 -4229))) (((-3 |#1| "failed") (-1066) $) NIL)) (-1421 (($ (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (-1012)))) (($ (-1 (-108) (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|))) $) NIL (|has| $ (-6 -4229)))) (-3856 (((-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (-1 (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|))) $ (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|))) NIL (-12 (|has| $ (-6 -4229)) (|has| (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (-1012)))) (((-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (-1 (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|))) $ (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|))) NIL (|has| $ (-6 -4229))) (((-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (-1 (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|))) $) NIL (|has| $ (-6 -4229)))) (-3846 ((|#1| $ (-1066) |#1|) NIL (|has| $ (-6 -4230)))) (-3623 ((|#1| $ (-1066)) NIL)) (-3828 (((-586 (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|))) $) NIL (|has| $ (-6 -4229))) (((-586 |#1|) $) NIL (|has| $ (-6 -4229)))) (-3027 (((-108) $ (-706)) NIL)) (-2567 (((-1066) $) NIL (|has| (-1066) (-783)))) (-3702 (((-586 (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|))) $) NIL (|has| $ (-6 -4229))) (((-586 |#1|) $) NIL (|has| $ (-6 -4229)))) (-2422 (((-108) (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (-1012)))) (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-1752 (((-1066) $) NIL (|has| (-1066) (-783)))) (-3830 (($ (-1 (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|))) $) NIL (|has| $ (-6 -4230))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4230)))) (-1389 (($ (-1 (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1390 (((-108) $ (-706)) NIL)) (-1239 (((-1066) $) NIL (-3700 (|has| (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (-1012)) (|has| |#1| (-1012))))) (-2960 (((-586 (-1066)) $) NIL)) (-1612 (((-108) (-1066) $) NIL)) (-3351 (((-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) $) NIL)) (-3618 (($ (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) $) NIL)) (-3622 (((-586 (-1066)) $) NIL)) (-2603 (((-108) (-1066) $) NIL)) (-4142 (((-1030) $) NIL (-3700 (|has| (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (-1012)) (|has| |#1| (-1012))))) (-2293 ((|#1| $) NIL (|has| (-1066) (-783)))) (-2985 (((-3 (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) "failed") (-1 (-108) (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|))) $) NIL)) (-2936 (($ $ |#1|) NIL (|has| $ (-6 -4230)))) (-3345 (((-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) $) NIL)) (-4155 (((-108) (-1 (-108) (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|))) $) NIL (|has| $ (-6 -4229))) (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|))))) NIL (-12 (|has| (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (-283 (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)))) (|has| (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (-1012)))) (($ $ (-268 (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)))) NIL (-12 (|has| (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (-283 (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)))) (|has| (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (-1012)))) (($ $ (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|))) NIL (-12 (|has| (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (-283 (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)))) (|has| (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (-1012)))) (($ $ (-586 (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|))) (-586 (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)))) NIL (-12 (|has| (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (-283 (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)))) (|has| (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (-1012)))) (($ $ (-586 |#1|) (-586 |#1|)) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-268 |#1|)) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-586 (-268 |#1|))) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))) (-2533 (((-108) $ $) NIL)) (-2094 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-1523 (((-586 |#1|) $) NIL)) (-4018 (((-108) $) NIL)) (-2238 (($) NIL)) (-2543 ((|#1| $ (-1066)) NIL) ((|#1| $ (-1066) |#1|) NIL)) (-1645 (($) NIL) (($ (-586 (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)))) NIL)) (-4159 (((-706) (-1 (-108) (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|))) $) NIL (|has| $ (-6 -4229))) (((-706) (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (-1012)))) (((-706) |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012)))) (((-706) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-2403 (($ $) NIL)) (-1429 (((-496) $) NIL (|has| (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (-561 (-496))))) (-2200 (($ (-586 (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)))) NIL)) (-2188 (((-791) $) NIL (-3700 (|has| (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (-560 (-791))) (|has| |#1| (-560 (-791)))))) (-1898 (($ (-586 (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)))) NIL)) (-1662 (((-108) (-1 (-108) (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|))) $) NIL (|has| $ (-6 -4229))) (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-1530 (((-108) $ $) NIL (-3700 (|has| (-2 (|:| -2526 (-1066)) (|:| -3043 |#1|)) (-1012)) (|has| |#1| (-1012))))) (-3474 (((-706) $) NIL (|has| $ (-6 -4229)))))
-(((-1067 |#1|) (-13 (-1095 (-1066) |#1|) (-10 -7 (-6 -4229))) (-1012)) (T -1067))
-NIL
-(-13 (-1095 (-1066) |#1|) (-10 -7 (-6 -4229)))
-((-2861 (((-1064 |#1|) (-1064 |#1|)) 77)) (-1540 (((-3 (-1064 |#1|) "failed") (-1064 |#1|)) 37)) (-3849 (((-1064 |#1|) (-380 (-520)) (-1064 |#1|)) 117 (|has| |#1| (-37 (-380 (-520)))))) (-1798 (((-1064 |#1|) |#1| (-1064 |#1|)) 121 (|has| |#1| (-336)))) (-1929 (((-1064 |#1|) (-1064 |#1|)) 90)) (-1241 (((-1064 (-520)) (-520)) 57)) (-3612 (((-1064 |#1|) (-1064 (-1064 |#1|))) 108 (|has| |#1| (-37 (-380 (-520)))))) (-3860 (((-1064 |#1|) (-520) (-520) (-1064 |#1|)) 95)) (-2516 (((-1064 |#1|) |#1| (-520)) 45)) (-3891 (((-1064 |#1|) (-1064 |#1|) (-1064 |#1|)) 60)) (-2313 (((-1064 |#1|) (-1064 |#1|) (-1064 |#1|)) 119 (|has| |#1| (-336)))) (-1291 (((-1064 |#1|) |#1| (-1 (-1064 |#1|))) 107 (|has| |#1| (-37 (-380 (-520)))))) (-1563 (((-1064 |#1|) (-1 |#1| (-520)) |#1| (-1 (-1064 |#1|))) 120 (|has| |#1| (-336)))) (-1308 (((-1064 |#1|) (-1064 |#1|)) 89)) (-3089 (((-1064 |#1|) (-1064 |#1|)) 76)) (-1868 (((-1064 |#1|) (-520) (-520) (-1064 |#1|)) 96)) (-3517 (((-1064 |#1|) |#1| (-1064 |#1|)) 105 (|has| |#1| (-37 (-380 (-520)))))) (-3275 (((-1064 (-520)) (-520)) 56)) (-2680 (((-1064 |#1|) |#1|) 59)) (-3656 (((-1064 |#1|) (-1064 |#1|) (-520) (-520)) 92)) (-3455 (((-1064 |#1|) (-1 |#1| (-520)) (-1064 |#1|)) 66)) (-2230 (((-3 (-1064 |#1|) "failed") (-1064 |#1|) (-1064 |#1|)) 35)) (-2581 (((-1064 |#1|) (-1064 |#1|)) 91)) (-2286 (((-1064 |#1|) (-1064 |#1|) |#1|) 71)) (-3912 (((-1064 |#1|) (-1064 |#1|)) 62)) (-2974 (((-1064 |#1|) (-1064 |#1|) (-1064 |#1|)) 72)) (-2188 (((-1064 |#1|) |#1|) 67)) (-3554 (((-1064 |#1|) (-1064 (-1064 |#1|))) 82)) (-1619 (((-1064 |#1|) (-1064 |#1|) (-1064 |#1|)) 36)) (-1611 (((-1064 |#1|) (-1064 |#1|)) 21) (((-1064 |#1|) (-1064 |#1|) (-1064 |#1|)) 23)) (-1601 (((-1064 |#1|) (-1064 |#1|) (-1064 |#1|)) 17)) (* (((-1064 |#1|) (-1064 |#1|) |#1|) 29) (((-1064 |#1|) |#1| (-1064 |#1|)) 26) (((-1064 |#1|) (-1064 |#1|) (-1064 |#1|)) 27)))
-(((-1068 |#1|) (-10 -7 (-15 -1601 ((-1064 |#1|) (-1064 |#1|) (-1064 |#1|))) (-15 -1611 ((-1064 |#1|) (-1064 |#1|) (-1064 |#1|))) (-15 -1611 ((-1064 |#1|) (-1064 |#1|))) (-15 * ((-1064 |#1|) (-1064 |#1|) (-1064 |#1|))) (-15 * ((-1064 |#1|) |#1| (-1064 |#1|))) (-15 * ((-1064 |#1|) (-1064 |#1|) |#1|)) (-15 -2230 ((-3 (-1064 |#1|) "failed") (-1064 |#1|) (-1064 |#1|))) (-15 -1619 ((-1064 |#1|) (-1064 |#1|) (-1064 |#1|))) (-15 -1540 ((-3 (-1064 |#1|) "failed") (-1064 |#1|))) (-15 -2516 ((-1064 |#1|) |#1| (-520))) (-15 -3275 ((-1064 (-520)) (-520))) (-15 -1241 ((-1064 (-520)) (-520))) (-15 -2680 ((-1064 |#1|) |#1|)) (-15 -3891 ((-1064 |#1|) (-1064 |#1|) (-1064 |#1|))) (-15 -3912 ((-1064 |#1|) (-1064 |#1|))) (-15 -3455 ((-1064 |#1|) (-1 |#1| (-520)) (-1064 |#1|))) (-15 -2188 ((-1064 |#1|) |#1|)) (-15 -2286 ((-1064 |#1|) (-1064 |#1|) |#1|)) (-15 -2974 ((-1064 |#1|) (-1064 |#1|) (-1064 |#1|))) (-15 -3089 ((-1064 |#1|) (-1064 |#1|))) (-15 -2861 ((-1064 |#1|) (-1064 |#1|))) (-15 -3554 ((-1064 |#1|) (-1064 (-1064 |#1|)))) (-15 -1308 ((-1064 |#1|) (-1064 |#1|))) (-15 -1929 ((-1064 |#1|) (-1064 |#1|))) (-15 -2581 ((-1064 |#1|) (-1064 |#1|))) (-15 -3656 ((-1064 |#1|) (-1064 |#1|) (-520) (-520))) (-15 -3860 ((-1064 |#1|) (-520) (-520) (-1064 |#1|))) (-15 -1868 ((-1064 |#1|) (-520) (-520) (-1064 |#1|))) (IF (|has| |#1| (-37 (-380 (-520)))) (PROGN (-15 -3517 ((-1064 |#1|) |#1| (-1064 |#1|))) (-15 -1291 ((-1064 |#1|) |#1| (-1 (-1064 |#1|)))) (-15 -3612 ((-1064 |#1|) (-1064 (-1064 |#1|)))) (-15 -3849 ((-1064 |#1|) (-380 (-520)) (-1064 |#1|)))) |%noBranch|) (IF (|has| |#1| (-336)) (PROGN (-15 -2313 ((-1064 |#1|) (-1064 |#1|) (-1064 |#1|))) (-15 -1563 ((-1064 |#1|) (-1 |#1| (-520)) |#1| (-1 (-1064 |#1|)))) (-15 -1798 ((-1064 |#1|) |#1| (-1064 |#1|)))) |%noBranch|)) (-969)) (T -1068))
-((-1798 (*1 *2 *3 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-336)) (-4 *3 (-969)) (-5 *1 (-1068 *3)))) (-1563 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-520))) (-5 *5 (-1 (-1064 *4))) (-4 *4 (-336)) (-4 *4 (-969)) (-5 *2 (-1064 *4)) (-5 *1 (-1068 *4)))) (-2313 (*1 *2 *2 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-336)) (-4 *3 (-969)) (-5 *1 (-1068 *3)))) (-3849 (*1 *2 *3 *2) (-12 (-5 *2 (-1064 *4)) (-4 *4 (-37 *3)) (-4 *4 (-969)) (-5 *3 (-380 (-520))) (-5 *1 (-1068 *4)))) (-3612 (*1 *2 *3) (-12 (-5 *3 (-1064 (-1064 *4))) (-5 *2 (-1064 *4)) (-5 *1 (-1068 *4)) (-4 *4 (-37 (-380 (-520)))) (-4 *4 (-969)))) (-1291 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1064 *3))) (-5 *2 (-1064 *3)) (-5 *1 (-1068 *3)) (-4 *3 (-37 (-380 (-520)))) (-4 *3 (-969)))) (-3517 (*1 *2 *3 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520)))) (-4 *3 (-969)) (-5 *1 (-1068 *3)))) (-1868 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1064 *4)) (-5 *3 (-520)) (-4 *4 (-969)) (-5 *1 (-1068 *4)))) (-3860 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1064 *4)) (-5 *3 (-520)) (-4 *4 (-969)) (-5 *1 (-1068 *4)))) (-3656 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1064 *4)) (-5 *3 (-520)) (-4 *4 (-969)) (-5 *1 (-1068 *4)))) (-2581 (*1 *2 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-969)) (-5 *1 (-1068 *3)))) (-1929 (*1 *2 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-969)) (-5 *1 (-1068 *3)))) (-1308 (*1 *2 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-969)) (-5 *1 (-1068 *3)))) (-3554 (*1 *2 *3) (-12 (-5 *3 (-1064 (-1064 *4))) (-5 *2 (-1064 *4)) (-5 *1 (-1068 *4)) (-4 *4 (-969)))) (-2861 (*1 *2 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-969)) (-5 *1 (-1068 *3)))) (-3089 (*1 *2 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-969)) (-5 *1 (-1068 *3)))) (-2974 (*1 *2 *2 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-969)) (-5 *1 (-1068 *3)))) (-2286 (*1 *2 *2 *3) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-969)) (-5 *1 (-1068 *3)))) (-2188 (*1 *2 *3) (-12 (-5 *2 (-1064 *3)) (-5 *1 (-1068 *3)) (-4 *3 (-969)))) (-3455 (*1 *2 *3 *2) (-12 (-5 *2 (-1064 *4)) (-5 *3 (-1 *4 (-520))) (-4 *4 (-969)) (-5 *1 (-1068 *4)))) (-3912 (*1 *2 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-969)) (-5 *1 (-1068 *3)))) (-3891 (*1 *2 *2 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-969)) (-5 *1 (-1068 *3)))) (-2680 (*1 *2 *3) (-12 (-5 *2 (-1064 *3)) (-5 *1 (-1068 *3)) (-4 *3 (-969)))) (-1241 (*1 *2 *3) (-12 (-5 *2 (-1064 (-520))) (-5 *1 (-1068 *4)) (-4 *4 (-969)) (-5 *3 (-520)))) (-3275 (*1 *2 *3) (-12 (-5 *2 (-1064 (-520))) (-5 *1 (-1068 *4)) (-4 *4 (-969)) (-5 *3 (-520)))) (-2516 (*1 *2 *3 *4) (-12 (-5 *4 (-520)) (-5 *2 (-1064 *3)) (-5 *1 (-1068 *3)) (-4 *3 (-969)))) (-1540 (*1 *2 *2) (|partial| -12 (-5 *2 (-1064 *3)) (-4 *3 (-969)) (-5 *1 (-1068 *3)))) (-1619 (*1 *2 *2 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-969)) (-5 *1 (-1068 *3)))) (-2230 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1064 *3)) (-4 *3 (-969)) (-5 *1 (-1068 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-969)) (-5 *1 (-1068 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-969)) (-5 *1 (-1068 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-969)) (-5 *1 (-1068 *3)))) (-1611 (*1 *2 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-969)) (-5 *1 (-1068 *3)))) (-1611 (*1 *2 *2 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-969)) (-5 *1 (-1068 *3)))) (-1601 (*1 *2 *2 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-969)) (-5 *1 (-1068 *3)))))
-(-10 -7 (-15 -1601 ((-1064 |#1|) (-1064 |#1|) (-1064 |#1|))) (-15 -1611 ((-1064 |#1|) (-1064 |#1|) (-1064 |#1|))) (-15 -1611 ((-1064 |#1|) (-1064 |#1|))) (-15 * ((-1064 |#1|) (-1064 |#1|) (-1064 |#1|))) (-15 * ((-1064 |#1|) |#1| (-1064 |#1|))) (-15 * ((-1064 |#1|) (-1064 |#1|) |#1|)) (-15 -2230 ((-3 (-1064 |#1|) "failed") (-1064 |#1|) (-1064 |#1|))) (-15 -1619 ((-1064 |#1|) (-1064 |#1|) (-1064 |#1|))) (-15 -1540 ((-3 (-1064 |#1|) "failed") (-1064 |#1|))) (-15 -2516 ((-1064 |#1|) |#1| (-520))) (-15 -3275 ((-1064 (-520)) (-520))) (-15 -1241 ((-1064 (-520)) (-520))) (-15 -2680 ((-1064 |#1|) |#1|)) (-15 -3891 ((-1064 |#1|) (-1064 |#1|) (-1064 |#1|))) (-15 -3912 ((-1064 |#1|) (-1064 |#1|))) (-15 -3455 ((-1064 |#1|) (-1 |#1| (-520)) (-1064 |#1|))) (-15 -2188 ((-1064 |#1|) |#1|)) (-15 -2286 ((-1064 |#1|) (-1064 |#1|) |#1|)) (-15 -2974 ((-1064 |#1|) (-1064 |#1|) (-1064 |#1|))) (-15 -3089 ((-1064 |#1|) (-1064 |#1|))) (-15 -2861 ((-1064 |#1|) (-1064 |#1|))) (-15 -3554 ((-1064 |#1|) (-1064 (-1064 |#1|)))) (-15 -1308 ((-1064 |#1|) (-1064 |#1|))) (-15 -1929 ((-1064 |#1|) (-1064 |#1|))) (-15 -2581 ((-1064 |#1|) (-1064 |#1|))) (-15 -3656 ((-1064 |#1|) (-1064 |#1|) (-520) (-520))) (-15 -3860 ((-1064 |#1|) (-520) (-520) (-1064 |#1|))) (-15 -1868 ((-1064 |#1|) (-520) (-520) (-1064 |#1|))) (IF (|has| |#1| (-37 (-380 (-520)))) (PROGN (-15 -3517 ((-1064 |#1|) |#1| (-1064 |#1|))) (-15 -1291 ((-1064 |#1|) |#1| (-1 (-1064 |#1|)))) (-15 -3612 ((-1064 |#1|) (-1064 (-1064 |#1|)))) (-15 -3849 ((-1064 |#1|) (-380 (-520)) (-1064 |#1|)))) |%noBranch|) (IF (|has| |#1| (-336)) (PROGN (-15 -2313 ((-1064 |#1|) (-1064 |#1|) (-1064 |#1|))) (-15 -1563 ((-1064 |#1|) (-1 |#1| (-520)) |#1| (-1 (-1064 |#1|)))) (-15 -1798 ((-1064 |#1|) |#1| (-1064 |#1|)))) |%noBranch|))
-((-2903 (((-1064 |#1|) (-1064 |#1|)) 57)) (-2768 (((-1064 |#1|) (-1064 |#1|)) 39)) (-2879 (((-1064 |#1|) (-1064 |#1|)) 53)) (-2745 (((-1064 |#1|) (-1064 |#1|)) 35)) (-2925 (((-1064 |#1|) (-1064 |#1|)) 60)) (-2789 (((-1064 |#1|) (-1064 |#1|)) 42)) (-1252 (((-1064 |#1|) (-1064 |#1|)) 31)) (-3260 (((-1064 |#1|) (-1064 |#1|)) 27)) (-1737 (((-1064 |#1|) (-1064 |#1|)) 61)) (-2799 (((-1064 |#1|) (-1064 |#1|)) 43)) (-2914 (((-1064 |#1|) (-1064 |#1|)) 58)) (-2779 (((-1064 |#1|) (-1064 |#1|)) 40)) (-2891 (((-1064 |#1|) (-1064 |#1|)) 55)) (-2757 (((-1064 |#1|) (-1064 |#1|)) 37)) (-1758 (((-1064 |#1|) (-1064 |#1|)) 65)) (-2831 (((-1064 |#1|) (-1064 |#1|)) 47)) (-1744 (((-1064 |#1|) (-1064 |#1|)) 63)) (-2810 (((-1064 |#1|) (-1064 |#1|)) 45)) (-1775 (((-1064 |#1|) (-1064 |#1|)) 68)) (-2855 (((-1064 |#1|) (-1064 |#1|)) 50)) (-3915 (((-1064 |#1|) (-1064 |#1|)) 69)) (-2867 (((-1064 |#1|) (-1064 |#1|)) 51)) (-1767 (((-1064 |#1|) (-1064 |#1|)) 67)) (-2843 (((-1064 |#1|) (-1064 |#1|)) 49)) (-1751 (((-1064 |#1|) (-1064 |#1|)) 66)) (-2820 (((-1064 |#1|) (-1064 |#1|)) 48)) (** (((-1064 |#1|) (-1064 |#1|) (-1064 |#1|)) 33)))
-(((-1069 |#1|) (-10 -7 (-15 -3260 ((-1064 |#1|) (-1064 |#1|))) (-15 -1252 ((-1064 |#1|) (-1064 |#1|))) (-15 ** ((-1064 |#1|) (-1064 |#1|) (-1064 |#1|))) (-15 -2745 ((-1064 |#1|) (-1064 |#1|))) (-15 -2757 ((-1064 |#1|) (-1064 |#1|))) (-15 -2768 ((-1064 |#1|) (-1064 |#1|))) (-15 -2779 ((-1064 |#1|) (-1064 |#1|))) (-15 -2789 ((-1064 |#1|) (-1064 |#1|))) (-15 -2799 ((-1064 |#1|) (-1064 |#1|))) (-15 -2810 ((-1064 |#1|) (-1064 |#1|))) (-15 -2820 ((-1064 |#1|) (-1064 |#1|))) (-15 -2831 ((-1064 |#1|) (-1064 |#1|))) (-15 -2843 ((-1064 |#1|) (-1064 |#1|))) (-15 -2855 ((-1064 |#1|) (-1064 |#1|))) (-15 -2867 ((-1064 |#1|) (-1064 |#1|))) (-15 -2879 ((-1064 |#1|) (-1064 |#1|))) (-15 -2891 ((-1064 |#1|) (-1064 |#1|))) (-15 -2903 ((-1064 |#1|) (-1064 |#1|))) (-15 -2914 ((-1064 |#1|) (-1064 |#1|))) (-15 -2925 ((-1064 |#1|) (-1064 |#1|))) (-15 -1737 ((-1064 |#1|) (-1064 |#1|))) (-15 -1744 ((-1064 |#1|) (-1064 |#1|))) (-15 -1751 ((-1064 |#1|) (-1064 |#1|))) (-15 -1758 ((-1064 |#1|) (-1064 |#1|))) (-15 -1767 ((-1064 |#1|) (-1064 |#1|))) (-15 -1775 ((-1064 |#1|) (-1064 |#1|))) (-15 -3915 ((-1064 |#1|) (-1064 |#1|)))) (-37 (-380 (-520)))) (T -1069))
-((-3915 (*1 *2 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520)))) (-5 *1 (-1069 *3)))) (-1775 (*1 *2 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520)))) (-5 *1 (-1069 *3)))) (-1767 (*1 *2 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520)))) (-5 *1 (-1069 *3)))) (-1758 (*1 *2 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520)))) (-5 *1 (-1069 *3)))) (-1751 (*1 *2 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520)))) (-5 *1 (-1069 *3)))) (-1744 (*1 *2 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520)))) (-5 *1 (-1069 *3)))) (-1737 (*1 *2 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520)))) (-5 *1 (-1069 *3)))) (-2925 (*1 *2 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520)))) (-5 *1 (-1069 *3)))) (-2914 (*1 *2 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520)))) (-5 *1 (-1069 *3)))) (-2903 (*1 *2 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520)))) (-5 *1 (-1069 *3)))) (-2891 (*1 *2 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520)))) (-5 *1 (-1069 *3)))) (-2879 (*1 *2 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520)))) (-5 *1 (-1069 *3)))) (-2867 (*1 *2 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520)))) (-5 *1 (-1069 *3)))) (-2855 (*1 *2 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520)))) (-5 *1 (-1069 *3)))) (-2843 (*1 *2 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520)))) (-5 *1 (-1069 *3)))) (-2831 (*1 *2 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520)))) (-5 *1 (-1069 *3)))) (-2820 (*1 *2 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520)))) (-5 *1 (-1069 *3)))) (-2810 (*1 *2 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520)))) (-5 *1 (-1069 *3)))) (-2799 (*1 *2 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520)))) (-5 *1 (-1069 *3)))) (-2789 (*1 *2 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520)))) (-5 *1 (-1069 *3)))) (-2779 (*1 *2 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520)))) (-5 *1 (-1069 *3)))) (-2768 (*1 *2 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520)))) (-5 *1 (-1069 *3)))) (-2757 (*1 *2 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520)))) (-5 *1 (-1069 *3)))) (-2745 (*1 *2 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520)))) (-5 *1 (-1069 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520)))) (-5 *1 (-1069 *3)))) (-1252 (*1 *2 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520)))) (-5 *1 (-1069 *3)))) (-3260 (*1 *2 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520)))) (-5 *1 (-1069 *3)))))
-(-10 -7 (-15 -3260 ((-1064 |#1|) (-1064 |#1|))) (-15 -1252 ((-1064 |#1|) (-1064 |#1|))) (-15 ** ((-1064 |#1|) (-1064 |#1|) (-1064 |#1|))) (-15 -2745 ((-1064 |#1|) (-1064 |#1|))) (-15 -2757 ((-1064 |#1|) (-1064 |#1|))) (-15 -2768 ((-1064 |#1|) (-1064 |#1|))) (-15 -2779 ((-1064 |#1|) (-1064 |#1|))) (-15 -2789 ((-1064 |#1|) (-1064 |#1|))) (-15 -2799 ((-1064 |#1|) (-1064 |#1|))) (-15 -2810 ((-1064 |#1|) (-1064 |#1|))) (-15 -2820 ((-1064 |#1|) (-1064 |#1|))) (-15 -2831 ((-1064 |#1|) (-1064 |#1|))) (-15 -2843 ((-1064 |#1|) (-1064 |#1|))) (-15 -2855 ((-1064 |#1|) (-1064 |#1|))) (-15 -2867 ((-1064 |#1|) (-1064 |#1|))) (-15 -2879 ((-1064 |#1|) (-1064 |#1|))) (-15 -2891 ((-1064 |#1|) (-1064 |#1|))) (-15 -2903 ((-1064 |#1|) (-1064 |#1|))) (-15 -2914 ((-1064 |#1|) (-1064 |#1|))) (-15 -2925 ((-1064 |#1|) (-1064 |#1|))) (-15 -1737 ((-1064 |#1|) (-1064 |#1|))) (-15 -1744 ((-1064 |#1|) (-1064 |#1|))) (-15 -1751 ((-1064 |#1|) (-1064 |#1|))) (-15 -1758 ((-1064 |#1|) (-1064 |#1|))) (-15 -1767 ((-1064 |#1|) (-1064 |#1|))) (-15 -1775 ((-1064 |#1|) (-1064 |#1|))) (-15 -3915 ((-1064 |#1|) (-1064 |#1|))))
-((-2903 (((-1064 |#1|) (-1064 |#1|)) 100)) (-2768 (((-1064 |#1|) (-1064 |#1|)) 64)) (-2630 (((-2 (|:| -2879 (-1064 |#1|)) (|:| -2891 (-1064 |#1|))) (-1064 |#1|)) 96)) (-2879 (((-1064 |#1|) (-1064 |#1|)) 97)) (-2066 (((-2 (|:| -2745 (-1064 |#1|)) (|:| -2757 (-1064 |#1|))) (-1064 |#1|)) 53)) (-2745 (((-1064 |#1|) (-1064 |#1|)) 54)) (-2925 (((-1064 |#1|) (-1064 |#1|)) 102)) (-2789 (((-1064 |#1|) (-1064 |#1|)) 71)) (-1252 (((-1064 |#1|) (-1064 |#1|)) 39)) (-3260 (((-1064 |#1|) (-1064 |#1|)) 36)) (-1737 (((-1064 |#1|) (-1064 |#1|)) 103)) (-2799 (((-1064 |#1|) (-1064 |#1|)) 72)) (-2914 (((-1064 |#1|) (-1064 |#1|)) 101)) (-2779 (((-1064 |#1|) (-1064 |#1|)) 67)) (-2891 (((-1064 |#1|) (-1064 |#1|)) 98)) (-2757 (((-1064 |#1|) (-1064 |#1|)) 55)) (-1758 (((-1064 |#1|) (-1064 |#1|)) 111)) (-2831 (((-1064 |#1|) (-1064 |#1|)) 86)) (-1744 (((-1064 |#1|) (-1064 |#1|)) 105)) (-2810 (((-1064 |#1|) (-1064 |#1|)) 82)) (-1775 (((-1064 |#1|) (-1064 |#1|)) 115)) (-2855 (((-1064 |#1|) (-1064 |#1|)) 90)) (-3915 (((-1064 |#1|) (-1064 |#1|)) 117)) (-2867 (((-1064 |#1|) (-1064 |#1|)) 92)) (-1767 (((-1064 |#1|) (-1064 |#1|)) 113)) (-2843 (((-1064 |#1|) (-1064 |#1|)) 88)) (-1751 (((-1064 |#1|) (-1064 |#1|)) 107)) (-2820 (((-1064 |#1|) (-1064 |#1|)) 84)) (** (((-1064 |#1|) (-1064 |#1|) (-1064 |#1|)) 40)))
-(((-1070 |#1|) (-10 -7 (-15 -3260 ((-1064 |#1|) (-1064 |#1|))) (-15 -1252 ((-1064 |#1|) (-1064 |#1|))) (-15 ** ((-1064 |#1|) (-1064 |#1|) (-1064 |#1|))) (-15 -2066 ((-2 (|:| -2745 (-1064 |#1|)) (|:| -2757 (-1064 |#1|))) (-1064 |#1|))) (-15 -2745 ((-1064 |#1|) (-1064 |#1|))) (-15 -2757 ((-1064 |#1|) (-1064 |#1|))) (-15 -2768 ((-1064 |#1|) (-1064 |#1|))) (-15 -2779 ((-1064 |#1|) (-1064 |#1|))) (-15 -2789 ((-1064 |#1|) (-1064 |#1|))) (-15 -2799 ((-1064 |#1|) (-1064 |#1|))) (-15 -2810 ((-1064 |#1|) (-1064 |#1|))) (-15 -2820 ((-1064 |#1|) (-1064 |#1|))) (-15 -2831 ((-1064 |#1|) (-1064 |#1|))) (-15 -2843 ((-1064 |#1|) (-1064 |#1|))) (-15 -2855 ((-1064 |#1|) (-1064 |#1|))) (-15 -2867 ((-1064 |#1|) (-1064 |#1|))) (-15 -2630 ((-2 (|:| -2879 (-1064 |#1|)) (|:| -2891 (-1064 |#1|))) (-1064 |#1|))) (-15 -2879 ((-1064 |#1|) (-1064 |#1|))) (-15 -2891 ((-1064 |#1|) (-1064 |#1|))) (-15 -2903 ((-1064 |#1|) (-1064 |#1|))) (-15 -2914 ((-1064 |#1|) (-1064 |#1|))) (-15 -2925 ((-1064 |#1|) (-1064 |#1|))) (-15 -1737 ((-1064 |#1|) (-1064 |#1|))) (-15 -1744 ((-1064 |#1|) (-1064 |#1|))) (-15 -1751 ((-1064 |#1|) (-1064 |#1|))) (-15 -1758 ((-1064 |#1|) (-1064 |#1|))) (-15 -1767 ((-1064 |#1|) (-1064 |#1|))) (-15 -1775 ((-1064 |#1|) (-1064 |#1|))) (-15 -3915 ((-1064 |#1|) (-1064 |#1|)))) (-37 (-380 (-520)))) (T -1070))
-((-3915 (*1 *2 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520)))) (-5 *1 (-1070 *3)))) (-1775 (*1 *2 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520)))) (-5 *1 (-1070 *3)))) (-1767 (*1 *2 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520)))) (-5 *1 (-1070 *3)))) (-1758 (*1 *2 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520)))) (-5 *1 (-1070 *3)))) (-1751 (*1 *2 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520)))) (-5 *1 (-1070 *3)))) (-1744 (*1 *2 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520)))) (-5 *1 (-1070 *3)))) (-1737 (*1 *2 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520)))) (-5 *1 (-1070 *3)))) (-2925 (*1 *2 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520)))) (-5 *1 (-1070 *3)))) (-2914 (*1 *2 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520)))) (-5 *1 (-1070 *3)))) (-2903 (*1 *2 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520)))) (-5 *1 (-1070 *3)))) (-2891 (*1 *2 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520)))) (-5 *1 (-1070 *3)))) (-2879 (*1 *2 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520)))) (-5 *1 (-1070 *3)))) (-2630 (*1 *2 *3) (-12 (-4 *4 (-37 (-380 (-520)))) (-5 *2 (-2 (|:| -2879 (-1064 *4)) (|:| -2891 (-1064 *4)))) (-5 *1 (-1070 *4)) (-5 *3 (-1064 *4)))) (-2867 (*1 *2 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520)))) (-5 *1 (-1070 *3)))) (-2855 (*1 *2 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520)))) (-5 *1 (-1070 *3)))) (-2843 (*1 *2 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520)))) (-5 *1 (-1070 *3)))) (-2831 (*1 *2 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520)))) (-5 *1 (-1070 *3)))) (-2820 (*1 *2 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520)))) (-5 *1 (-1070 *3)))) (-2810 (*1 *2 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520)))) (-5 *1 (-1070 *3)))) (-2799 (*1 *2 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520)))) (-5 *1 (-1070 *3)))) (-2789 (*1 *2 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520)))) (-5 *1 (-1070 *3)))) (-2779 (*1 *2 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520)))) (-5 *1 (-1070 *3)))) (-2768 (*1 *2 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520)))) (-5 *1 (-1070 *3)))) (-2757 (*1 *2 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520)))) (-5 *1 (-1070 *3)))) (-2745 (*1 *2 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520)))) (-5 *1 (-1070 *3)))) (-2066 (*1 *2 *3) (-12 (-4 *4 (-37 (-380 (-520)))) (-5 *2 (-2 (|:| -2745 (-1064 *4)) (|:| -2757 (-1064 *4)))) (-5 *1 (-1070 *4)) (-5 *3 (-1064 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520)))) (-5 *1 (-1070 *3)))) (-1252 (*1 *2 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520)))) (-5 *1 (-1070 *3)))) (-3260 (*1 *2 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520)))) (-5 *1 (-1070 *3)))))
-(-10 -7 (-15 -3260 ((-1064 |#1|) (-1064 |#1|))) (-15 -1252 ((-1064 |#1|) (-1064 |#1|))) (-15 ** ((-1064 |#1|) (-1064 |#1|) (-1064 |#1|))) (-15 -2066 ((-2 (|:| -2745 (-1064 |#1|)) (|:| -2757 (-1064 |#1|))) (-1064 |#1|))) (-15 -2745 ((-1064 |#1|) (-1064 |#1|))) (-15 -2757 ((-1064 |#1|) (-1064 |#1|))) (-15 -2768 ((-1064 |#1|) (-1064 |#1|))) (-15 -2779 ((-1064 |#1|) (-1064 |#1|))) (-15 -2789 ((-1064 |#1|) (-1064 |#1|))) (-15 -2799 ((-1064 |#1|) (-1064 |#1|))) (-15 -2810 ((-1064 |#1|) (-1064 |#1|))) (-15 -2820 ((-1064 |#1|) (-1064 |#1|))) (-15 -2831 ((-1064 |#1|) (-1064 |#1|))) (-15 -2843 ((-1064 |#1|) (-1064 |#1|))) (-15 -2855 ((-1064 |#1|) (-1064 |#1|))) (-15 -2867 ((-1064 |#1|) (-1064 |#1|))) (-15 -2630 ((-2 (|:| -2879 (-1064 |#1|)) (|:| -2891 (-1064 |#1|))) (-1064 |#1|))) (-15 -2879 ((-1064 |#1|) (-1064 |#1|))) (-15 -2891 ((-1064 |#1|) (-1064 |#1|))) (-15 -2903 ((-1064 |#1|) (-1064 |#1|))) (-15 -2914 ((-1064 |#1|) (-1064 |#1|))) (-15 -2925 ((-1064 |#1|) (-1064 |#1|))) (-15 -1737 ((-1064 |#1|) (-1064 |#1|))) (-15 -1744 ((-1064 |#1|) (-1064 |#1|))) (-15 -1751 ((-1064 |#1|) (-1064 |#1|))) (-15 -1758 ((-1064 |#1|) (-1064 |#1|))) (-15 -1767 ((-1064 |#1|) (-1064 |#1|))) (-15 -1775 ((-1064 |#1|) (-1064 |#1|))) (-15 -3915 ((-1064 |#1|) (-1064 |#1|))))
-((-1713 (((-885 |#2|) |#2| |#2|) 36)) (-3923 ((|#2| |#2| |#1|) 19 (|has| |#1| (-281)))))
-(((-1071 |#1| |#2|) (-10 -7 (-15 -1713 ((-885 |#2|) |#2| |#2|)) (IF (|has| |#1| (-281)) (-15 -3923 (|#2| |#2| |#1|)) |%noBranch|)) (-512) (-1140 |#1|)) (T -1071))
-((-3923 (*1 *2 *2 *3) (-12 (-4 *3 (-281)) (-4 *3 (-512)) (-5 *1 (-1071 *3 *2)) (-4 *2 (-1140 *3)))) (-1713 (*1 *2 *3 *3) (-12 (-4 *4 (-512)) (-5 *2 (-885 *3)) (-5 *1 (-1071 *4 *3)) (-4 *3 (-1140 *4)))))
-(-10 -7 (-15 -1713 ((-885 |#2|) |#2| |#2|)) (IF (|has| |#1| (-281)) (-15 -3923 (|#2| |#2| |#1|)) |%noBranch|))
-((-1414 (((-108) $ $) NIL)) (-3541 (($ $ (-586 (-706))) 67)) (-2263 (($) 26)) (-3333 (($ $) 42)) (-1285 (((-586 $) $) 51)) (-2278 (((-108) $) 16)) (-1211 (((-586 (-871 |#2|)) $) 74)) (-2937 (($ $) 68)) (-3783 (((-706) $) 37)) (-1810 (($) 25)) (-2995 (($ $ (-586 (-706)) (-871 |#2|)) 60) (($ $ (-586 (-706)) (-706)) 61) (($ $ (-706) (-871 |#2|)) 63)) (-1819 (($ $ $) 48) (($ (-586 $)) 50)) (-1553 (((-706) $) 75)) (-1740 (((-108) $) 15)) (-1239 (((-1066) $) NIL)) (-3456 (((-108) $) 18)) (-4142 (((-1030) $) NIL)) (-3003 (((-156) $) 73)) (-1963 (((-871 |#2|) $) 69)) (-2564 (((-706) $) 70)) (-2401 (((-108) $) 72)) (-2618 (($ $ (-586 (-706)) (-156)) 66)) (-2434 (($ $) 43)) (-2188 (((-791) $) 85)) (-1500 (($ $ (-586 (-706)) (-108)) 65)) (-2438 (((-586 $) $) 11)) (-3223 (($ $ (-706)) 36)) (-1222 (($ $) 32)) (-2900 (($ $ $ (-871 |#2|) (-706)) 56)) (-3261 (($ $ (-871 |#2|)) 55)) (-3759 (($ $ (-586 (-706)) (-871 |#2|)) 54) (($ $ (-586 (-706)) (-706)) 58) (((-706) $ (-871 |#2|)) 59)) (-1530 (((-108) $ $) 79)))
-(((-1072 |#1| |#2|) (-13 (-1012) (-10 -8 (-15 -1740 ((-108) $)) (-15 -2278 ((-108) $)) (-15 -3456 ((-108) $)) (-15 -1810 ($)) (-15 -2263 ($)) (-15 -1222 ($ $)) (-15 -3223 ($ $ (-706))) (-15 -2438 ((-586 $) $)) (-15 -3783 ((-706) $)) (-15 -3333 ($ $)) (-15 -2434 ($ $)) (-15 -1819 ($ $ $)) (-15 -1819 ($ (-586 $))) (-15 -1285 ((-586 $) $)) (-15 -3759 ($ $ (-586 (-706)) (-871 |#2|))) (-15 -3261 ($ $ (-871 |#2|))) (-15 -2900 ($ $ $ (-871 |#2|) (-706))) (-15 -2995 ($ $ (-586 (-706)) (-871 |#2|))) (-15 -3759 ($ $ (-586 (-706)) (-706))) (-15 -2995 ($ $ (-586 (-706)) (-706))) (-15 -3759 ((-706) $ (-871 |#2|))) (-15 -2995 ($ $ (-706) (-871 |#2|))) (-15 -1500 ($ $ (-586 (-706)) (-108))) (-15 -2618 ($ $ (-586 (-706)) (-156))) (-15 -3541 ($ $ (-586 (-706)))) (-15 -1963 ((-871 |#2|) $)) (-15 -2564 ((-706) $)) (-15 -2401 ((-108) $)) (-15 -3003 ((-156) $)) (-15 -1553 ((-706) $)) (-15 -2937 ($ $)) (-15 -1211 ((-586 (-871 |#2|)) $)))) (-849) (-969)) (T -1072))
-((-1740 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1072 *3 *4)) (-14 *3 (-849)) (-4 *4 (-969)))) (-2278 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1072 *3 *4)) (-14 *3 (-849)) (-4 *4 (-969)))) (-3456 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1072 *3 *4)) (-14 *3 (-849)) (-4 *4 (-969)))) (-1810 (*1 *1) (-12 (-5 *1 (-1072 *2 *3)) (-14 *2 (-849)) (-4 *3 (-969)))) (-2263 (*1 *1) (-12 (-5 *1 (-1072 *2 *3)) (-14 *2 (-849)) (-4 *3 (-969)))) (-1222 (*1 *1 *1) (-12 (-5 *1 (-1072 *2 *3)) (-14 *2 (-849)) (-4 *3 (-969)))) (-3223 (*1 *1 *1 *2) (-12 (-5 *2 (-706)) (-5 *1 (-1072 *3 *4)) (-14 *3 (-849)) (-4 *4 (-969)))) (-2438 (*1 *2 *1) (-12 (-5 *2 (-586 (-1072 *3 *4))) (-5 *1 (-1072 *3 *4)) (-14 *3 (-849)) (-4 *4 (-969)))) (-3783 (*1 *2 *1) (-12 (-5 *2 (-706)) (-5 *1 (-1072 *3 *4)) (-14 *3 (-849)) (-4 *4 (-969)))) (-3333 (*1 *1 *1) (-12 (-5 *1 (-1072 *2 *3)) (-14 *2 (-849)) (-4 *3 (-969)))) (-2434 (*1 *1 *1) (-12 (-5 *1 (-1072 *2 *3)) (-14 *2 (-849)) (-4 *3 (-969)))) (-1819 (*1 *1 *1 *1) (-12 (-5 *1 (-1072 *2 *3)) (-14 *2 (-849)) (-4 *3 (-969)))) (-1819 (*1 *1 *2) (-12 (-5 *2 (-586 (-1072 *3 *4))) (-5 *1 (-1072 *3 *4)) (-14 *3 (-849)) (-4 *4 (-969)))) (-1285 (*1 *2 *1) (-12 (-5 *2 (-586 (-1072 *3 *4))) (-5 *1 (-1072 *3 *4)) (-14 *3 (-849)) (-4 *4 (-969)))) (-3759 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-586 (-706))) (-5 *3 (-871 *5)) (-4 *5 (-969)) (-5 *1 (-1072 *4 *5)) (-14 *4 (-849)))) (-3261 (*1 *1 *1 *2) (-12 (-5 *2 (-871 *4)) (-4 *4 (-969)) (-5 *1 (-1072 *3 *4)) (-14 *3 (-849)))) (-2900 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-871 *5)) (-5 *3 (-706)) (-4 *5 (-969)) (-5 *1 (-1072 *4 *5)) (-14 *4 (-849)))) (-2995 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-586 (-706))) (-5 *3 (-871 *5)) (-4 *5 (-969)) (-5 *1 (-1072 *4 *5)) (-14 *4 (-849)))) (-3759 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-586 (-706))) (-5 *3 (-706)) (-5 *1 (-1072 *4 *5)) (-14 *4 (-849)) (-4 *5 (-969)))) (-2995 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-586 (-706))) (-5 *3 (-706)) (-5 *1 (-1072 *4 *5)) (-14 *4 (-849)) (-4 *5 (-969)))) (-3759 (*1 *2 *1 *3) (-12 (-5 *3 (-871 *5)) (-4 *5 (-969)) (-5 *2 (-706)) (-5 *1 (-1072 *4 *5)) (-14 *4 (-849)))) (-2995 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-706)) (-5 *3 (-871 *5)) (-4 *5 (-969)) (-5 *1 (-1072 *4 *5)) (-14 *4 (-849)))) (-1500 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-586 (-706))) (-5 *3 (-108)) (-5 *1 (-1072 *4 *5)) (-14 *4 (-849)) (-4 *5 (-969)))) (-2618 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-586 (-706))) (-5 *3 (-156)) (-5 *1 (-1072 *4 *5)) (-14 *4 (-849)) (-4 *5 (-969)))) (-3541 (*1 *1 *1 *2) (-12 (-5 *2 (-586 (-706))) (-5 *1 (-1072 *3 *4)) (-14 *3 (-849)) (-4 *4 (-969)))) (-1963 (*1 *2 *1) (-12 (-5 *2 (-871 *4)) (-5 *1 (-1072 *3 *4)) (-14 *3 (-849)) (-4 *4 (-969)))) (-2564 (*1 *2 *1) (-12 (-5 *2 (-706)) (-5 *1 (-1072 *3 *4)) (-14 *3 (-849)) (-4 *4 (-969)))) (-2401 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1072 *3 *4)) (-14 *3 (-849)) (-4 *4 (-969)))) (-3003 (*1 *2 *1) (-12 (-5 *2 (-156)) (-5 *1 (-1072 *3 *4)) (-14 *3 (-849)) (-4 *4 (-969)))) (-1553 (*1 *2 *1) (-12 (-5 *2 (-706)) (-5 *1 (-1072 *3 *4)) (-14 *3 (-849)) (-4 *4 (-969)))) (-2937 (*1 *1 *1) (-12 (-5 *1 (-1072 *2 *3)) (-14 *2 (-849)) (-4 *3 (-969)))) (-1211 (*1 *2 *1) (-12 (-5 *2 (-586 (-871 *4))) (-5 *1 (-1072 *3 *4)) (-14 *3 (-849)) (-4 *4 (-969)))))
-(-13 (-1012) (-10 -8 (-15 -1740 ((-108) $)) (-15 -2278 ((-108) $)) (-15 -3456 ((-108) $)) (-15 -1810 ($)) (-15 -2263 ($)) (-15 -1222 ($ $)) (-15 -3223 ($ $ (-706))) (-15 -2438 ((-586 $) $)) (-15 -3783 ((-706) $)) (-15 -3333 ($ $)) (-15 -2434 ($ $)) (-15 -1819 ($ $ $)) (-15 -1819 ($ (-586 $))) (-15 -1285 ((-586 $) $)) (-15 -3759 ($ $ (-586 (-706)) (-871 |#2|))) (-15 -3261 ($ $ (-871 |#2|))) (-15 -2900 ($ $ $ (-871 |#2|) (-706))) (-15 -2995 ($ $ (-586 (-706)) (-871 |#2|))) (-15 -3759 ($ $ (-586 (-706)) (-706))) (-15 -2995 ($ $ (-586 (-706)) (-706))) (-15 -3759 ((-706) $ (-871 |#2|))) (-15 -2995 ($ $ (-706) (-871 |#2|))) (-15 -1500 ($ $ (-586 (-706)) (-108))) (-15 -2618 ($ $ (-586 (-706)) (-156))) (-15 -3541 ($ $ (-586 (-706)))) (-15 -1963 ((-871 |#2|) $)) (-15 -2564 ((-706) $)) (-15 -2401 ((-108) $)) (-15 -3003 ((-156) $)) (-15 -1553 ((-706) $)) (-15 -2937 ($ $)) (-15 -1211 ((-586 (-871 |#2|)) $))))
-((-1414 (((-108) $ $) NIL)) (-3595 ((|#2| $) 11)) (-3586 ((|#1| $) 10)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2200 (($ |#1| |#2|) 9)) (-2188 (((-791) $) 16)) (-1530 (((-108) $ $) NIL)))
-(((-1073 |#1| |#2|) (-13 (-1012) (-10 -8 (-15 -2200 ($ |#1| |#2|)) (-15 -3586 (|#1| $)) (-15 -3595 (|#2| $)))) (-1012) (-1012)) (T -1073))
-((-2200 (*1 *1 *2 *3) (-12 (-5 *1 (-1073 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1012)))) (-3586 (*1 *2 *1) (-12 (-4 *2 (-1012)) (-5 *1 (-1073 *2 *3)) (-4 *3 (-1012)))) (-3595 (*1 *2 *1) (-12 (-4 *2 (-1012)) (-5 *1 (-1073 *3 *2)) (-4 *3 (-1012)))))
-(-13 (-1012) (-10 -8 (-15 -2200 ($ |#1| |#2|)) (-15 -3586 (|#1| $)) (-15 -3595 (|#2| $))))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-4040 (((-1081 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1081 |#1| |#2| |#3|) (-281)) (|has| |#1| (-336))))) (-4081 (((-586 (-997)) $) NIL)) (-1610 (((-1083) $) 11)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) NIL (-3700 (-12 (|has| (-1081 |#1| |#2| |#3|) (-756)) (|has| |#1| (-336))) (-12 (|has| (-1081 |#1| |#2| |#3|) (-837)) (|has| |#1| (-336))) (|has| |#1| (-512))))) (-2583 (($ $) NIL (-3700 (-12 (|has| (-1081 |#1| |#2| |#3|) (-756)) (|has| |#1| (-336))) (-12 (|has| (-1081 |#1| |#2| |#3|) (-837)) (|has| |#1| (-336))) (|has| |#1| (-512))))) (-1671 (((-108) $) NIL (-3700 (-12 (|has| (-1081 |#1| |#2| |#3|) (-756)) (|has| |#1| (-336))) (-12 (|has| (-1081 |#1| |#2| |#3|) (-837)) (|has| |#1| (-336))) (|has| |#1| (-512))))) (-2406 (($ $ (-520)) NIL) (($ $ (-520) (-520)) 66)) (-2088 (((-1064 (-2 (|:| |k| (-520)) (|:| |c| |#1|))) $) NIL)) (-4010 (((-1081 |#1| |#2| |#3|) $) 36)) (-2486 (((-3 (-1081 |#1| |#2| |#3|) "failed") $) 29)) (-3053 (((-1081 |#1| |#2| |#3|) $) 30)) (-2903 (($ $) 107 (|has| |#1| (-37 (-380 (-520)))))) (-2768 (($ $) 83 (|has| |#1| (-37 (-380 (-520)))))) (-1917 (((-3 $ "failed") $ $) NIL)) (-4119 (((-391 (-1079 $)) (-1079 $)) NIL (-12 (|has| (-1081 |#1| |#2| |#3|) (-837)) (|has| |#1| (-336))))) (-3024 (($ $) NIL (|has| |#1| (-336)))) (-1507 (((-391 $) $) NIL (|has| |#1| (-336)))) (-1927 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-3481 (((-3 (-586 (-1079 $)) "failed") (-586 (-1079 $)) (-1079 $)) NIL (-12 (|has| (-1081 |#1| |#2| |#3|) (-837)) (|has| |#1| (-336))))) (-1327 (((-108) $ $) NIL (|has| |#1| (-336)))) (-2879 (($ $) 103 (|has| |#1| (-37 (-380 (-520)))))) (-2745 (($ $) 79 (|has| |#1| (-37 (-380 (-520)))))) (-2804 (((-520) $) NIL (-12 (|has| (-1081 |#1| |#2| |#3|) (-756)) (|has| |#1| (-336))))) (-2769 (($ (-1064 (-2 (|:| |k| (-520)) (|:| |c| |#1|)))) NIL)) (-2925 (($ $) 111 (|has| |#1| (-37 (-380 (-520)))))) (-2789 (($ $) 87 (|has| |#1| (-37 (-380 (-520)))))) (-3961 (($) NIL T CONST)) (-1296 (((-3 (-1081 |#1| |#2| |#3|) "failed") $) 31) (((-3 (-1083) "failed") $) NIL (-12 (|has| (-1081 |#1| |#2| |#3|) (-960 (-1083))) (|has| |#1| (-336)))) (((-3 (-380 (-520)) "failed") $) NIL (-12 (|has| (-1081 |#1| |#2| |#3|) (-960 (-520))) (|has| |#1| (-336)))) (((-3 (-520) "failed") $) NIL (-12 (|has| (-1081 |#1| |#2| |#3|) (-960 (-520))) (|has| |#1| (-336))))) (-1482 (((-1081 |#1| |#2| |#3|) $) 131) (((-1083) $) NIL (-12 (|has| (-1081 |#1| |#2| |#3|) (-960 (-1083))) (|has| |#1| (-336)))) (((-380 (-520)) $) NIL (-12 (|has| (-1081 |#1| |#2| |#3|) (-960 (-520))) (|has| |#1| (-336)))) (((-520) $) NIL (-12 (|has| (-1081 |#1| |#2| |#3|) (-960 (-520))) (|has| |#1| (-336))))) (-2243 (($ $) 34) (($ (-520) $) 35)) (-2276 (($ $ $) NIL (|has| |#1| (-336)))) (-3150 (($ $) NIL)) (-2756 (((-626 (-1081 |#1| |#2| |#3|)) (-626 $)) NIL (|has| |#1| (-336))) (((-2 (|:| -3927 (-626 (-1081 |#1| |#2| |#3|))) (|:| |vec| (-1164 (-1081 |#1| |#2| |#3|)))) (-626 $) (-1164 $)) NIL (|has| |#1| (-336))) (((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 $) (-1164 $)) NIL (-12 (|has| (-1081 |#1| |#2| |#3|) (-582 (-520))) (|has| |#1| (-336)))) (((-626 (-520)) (-626 $)) NIL (-12 (|has| (-1081 |#1| |#2| |#3|) (-582 (-520))) (|has| |#1| (-336))))) (-1540 (((-3 $ "failed") $) 48)) (-1570 (((-380 (-880 |#1|)) $ (-520)) 65 (|has| |#1| (-512))) (((-380 (-880 |#1|)) $ (-520) (-520)) 67 (|has| |#1| (-512)))) (-3249 (($) NIL (-12 (|has| (-1081 |#1| |#2| |#3|) (-505)) (|has| |#1| (-336))))) (-2253 (($ $ $) NIL (|has| |#1| (-336)))) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) NIL (|has| |#1| (-336)))) (-2036 (((-108) $) NIL (|has| |#1| (-336)))) (-2328 (((-108) $) NIL (-12 (|has| (-1081 |#1| |#2| |#3|) (-756)) (|has| |#1| (-336))))) (-1342 (((-108) $) 25)) (-2833 (($) NIL (|has| |#1| (-37 (-380 (-520)))))) (-1272 (((-817 (-520) $) $ (-820 (-520)) (-817 (-520) $)) NIL (-12 (|has| (-1081 |#1| |#2| |#3|) (-814 (-520))) (|has| |#1| (-336)))) (((-817 (-352) $) $ (-820 (-352)) (-817 (-352) $)) NIL (-12 (|has| (-1081 |#1| |#2| |#3|) (-814 (-352))) (|has| |#1| (-336))))) (-3989 (((-520) $) NIL) (((-520) $ (-520)) 24)) (-1537 (((-108) $) NIL)) (-4115 (($ $) NIL (|has| |#1| (-336)))) (-2800 (((-1081 |#1| |#2| |#3|) $) 38 (|has| |#1| (-336)))) (-2322 (($ $ (-520)) NIL (|has| |#1| (-37 (-380 (-520)))))) (-1394 (((-3 $ "failed") $) NIL (-12 (|has| (-1081 |#1| |#2| |#3|) (-1059)) (|has| |#1| (-336))))) (-3469 (((-108) $) NIL (-12 (|has| (-1081 |#1| |#2| |#3|) (-756)) (|has| |#1| (-336))))) (-2371 (($ $ (-849)) NIL)) (-1306 (($ (-1 |#1| (-520)) $) NIL)) (-3188 (((-3 (-586 $) "failed") (-586 $) $) NIL (|has| |#1| (-336)))) (-3774 (((-108) $) NIL)) (-4039 (($ |#1| (-520)) 18) (($ $ (-997) (-520)) NIL) (($ $ (-586 (-997)) (-586 (-520))) NIL)) (-2809 (($ $ $) NIL (-3700 (-12 (|has| (-1081 |#1| |#2| |#3|) (-756)) (|has| |#1| (-336))) (-12 (|has| (-1081 |#1| |#2| |#3|) (-783)) (|has| |#1| (-336)))))) (-2446 (($ $ $) NIL (-3700 (-12 (|has| (-1081 |#1| |#2| |#3|) (-756)) (|has| |#1| (-336))) (-12 (|has| (-1081 |#1| |#2| |#3|) (-783)) (|has| |#1| (-336)))))) (-1389 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1081 |#1| |#2| |#3|) (-1081 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-336)))) (-1252 (($ $) 72 (|has| |#1| (-37 (-380 (-520)))))) (-3123 (($ $) NIL)) (-3133 ((|#1| $) NIL)) (-2222 (($ (-586 $)) NIL (|has| |#1| (-336))) (($ $ $) NIL (|has| |#1| (-336)))) (-3063 (($ (-520) (-1081 |#1| |#2| |#3|)) 33)) (-1239 (((-1066) $) NIL)) (-3093 (($ $) NIL (|has| |#1| (-336)))) (-3517 (($ $) 70 (|has| |#1| (-37 (-380 (-520))))) (($ $ (-1083)) NIL (-3700 (-12 (|has| |#1| (-15 -3517 (|#1| |#1| (-1083)))) (|has| |#1| (-15 -4081 ((-586 (-1083)) |#1|))) (|has| |#1| (-37 (-380 (-520))))) (-12 (|has| |#1| (-29 (-520))) (|has| |#1| (-37 (-380 (-520)))) (|has| |#1| (-886)) (|has| |#1| (-1104))))) (($ $ (-1160 |#2|)) 71 (|has| |#1| (-37 (-380 (-520)))))) (-3794 (($) NIL (-12 (|has| (-1081 |#1| |#2| |#3|) (-1059)) (|has| |#1| (-336))) CONST)) (-4142 (((-1030) $) NIL)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) NIL (|has| |#1| (-336)))) (-2257 (($ (-586 $)) NIL (|has| |#1| (-336))) (($ $ $) NIL (|has| |#1| (-336)))) (-4122 (($ $) NIL (-12 (|has| (-1081 |#1| |#2| |#3|) (-281)) (|has| |#1| (-336))))) (-1626 (((-1081 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1081 |#1| |#2| |#3|) (-505)) (|has| |#1| (-336))))) (-4133 (((-391 (-1079 $)) (-1079 $)) NIL (-12 (|has| (-1081 |#1| |#2| |#3|) (-837)) (|has| |#1| (-336))))) (-2017 (((-391 (-1079 $)) (-1079 $)) NIL (-12 (|has| (-1081 |#1| |#2| |#3|) (-837)) (|has| |#1| (-336))))) (-1916 (((-391 $) $) NIL (|has| |#1| (-336)))) (-1283 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-336))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) NIL (|has| |#1| (-336)))) (-2116 (($ $ (-520)) 145)) (-2230 (((-3 $ "failed") $ $) 49 (-3700 (-12 (|has| (-1081 |#1| |#2| |#3|) (-756)) (|has| |#1| (-336))) (-12 (|has| (-1081 |#1| |#2| |#3|) (-837)) (|has| |#1| (-336))) (|has| |#1| (-512))))) (-2608 (((-3 (-586 $) "failed") (-586 $) $) NIL (|has| |#1| (-336)))) (-3260 (($ $) 73 (|has| |#1| (-37 (-380 (-520)))))) (-2286 (((-1064 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-520))))) (($ $ (-1083) (-1081 |#1| |#2| |#3|)) NIL (-12 (|has| (-1081 |#1| |#2| |#3|) (-481 (-1083) (-1081 |#1| |#2| |#3|))) (|has| |#1| (-336)))) (($ $ (-586 (-1083)) (-586 (-1081 |#1| |#2| |#3|))) NIL (-12 (|has| (-1081 |#1| |#2| |#3|) (-481 (-1083) (-1081 |#1| |#2| |#3|))) (|has| |#1| (-336)))) (($ $ (-586 (-268 (-1081 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1081 |#1| |#2| |#3|) (-283 (-1081 |#1| |#2| |#3|))) (|has| |#1| (-336)))) (($ $ (-268 (-1081 |#1| |#2| |#3|))) NIL (-12 (|has| (-1081 |#1| |#2| |#3|) (-283 (-1081 |#1| |#2| |#3|))) (|has| |#1| (-336)))) (($ $ (-1081 |#1| |#2| |#3|) (-1081 |#1| |#2| |#3|)) NIL (-12 (|has| (-1081 |#1| |#2| |#3|) (-283 (-1081 |#1| |#2| |#3|))) (|has| |#1| (-336)))) (($ $ (-586 (-1081 |#1| |#2| |#3|)) (-586 (-1081 |#1| |#2| |#3|))) NIL (-12 (|has| (-1081 |#1| |#2| |#3|) (-283 (-1081 |#1| |#2| |#3|))) (|has| |#1| (-336))))) (-3704 (((-706) $) NIL (|has| |#1| (-336)))) (-2543 ((|#1| $ (-520)) NIL) (($ $ $) 54 (|has| (-520) (-1024))) (($ $ (-1081 |#1| |#2| |#3|)) NIL (-12 (|has| (-1081 |#1| |#2| |#3|) (-260 (-1081 |#1| |#2| |#3|) (-1081 |#1| |#2| |#3|))) (|has| |#1| (-336))))) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) NIL (|has| |#1| (-336)))) (-2155 (($ $ (-1 (-1081 |#1| |#2| |#3|) (-1081 |#1| |#2| |#3|))) NIL (|has| |#1| (-336))) (($ $ (-1 (-1081 |#1| |#2| |#3|) (-1081 |#1| |#2| |#3|)) (-706)) NIL (|has| |#1| (-336))) (($ $ (-1160 |#2|)) 51) (($ $ (-706)) NIL (-3700 (-12 (|has| (-1081 |#1| |#2| |#3|) (-209)) (|has| |#1| (-336))) (|has| |#1| (-15 * (|#1| (-520) |#1|))))) (($ $) 50 (-3700 (-12 (|has| (-1081 |#1| |#2| |#3|) (-209)) (|has| |#1| (-336))) (|has| |#1| (-15 * (|#1| (-520) |#1|))))) (($ $ (-586 (-1083)) (-586 (-706))) NIL (-3700 (-12 (|has| (-1081 |#1| |#2| |#3|) (-828 (-1083))) (|has| |#1| (-336))) (-12 (|has| |#1| (-15 * (|#1| (-520) |#1|))) (|has| |#1| (-828 (-1083)))))) (($ $ (-1083) (-706)) NIL (-3700 (-12 (|has| (-1081 |#1| |#2| |#3|) (-828 (-1083))) (|has| |#1| (-336))) (-12 (|has| |#1| (-15 * (|#1| (-520) |#1|))) (|has| |#1| (-828 (-1083)))))) (($ $ (-586 (-1083))) NIL (-3700 (-12 (|has| (-1081 |#1| |#2| |#3|) (-828 (-1083))) (|has| |#1| (-336))) (-12 (|has| |#1| (-15 * (|#1| (-520) |#1|))) (|has| |#1| (-828 (-1083)))))) (($ $ (-1083)) NIL (-3700 (-12 (|has| (-1081 |#1| |#2| |#3|) (-828 (-1083))) (|has| |#1| (-336))) (-12 (|has| |#1| (-15 * (|#1| (-520) |#1|))) (|has| |#1| (-828 (-1083))))))) (-3556 (($ $) NIL (|has| |#1| (-336)))) (-2811 (((-1081 |#1| |#2| |#3|) $) 41 (|has| |#1| (-336)))) (-2528 (((-520) $) 37)) (-1737 (($ $) 113 (|has| |#1| (-37 (-380 (-520)))))) (-2799 (($ $) 89 (|has| |#1| (-37 (-380 (-520)))))) (-2914 (($ $) 109 (|has| |#1| (-37 (-380 (-520)))))) (-2779 (($ $) 85 (|has| |#1| (-37 (-380 (-520)))))) (-2891 (($ $) 105 (|has| |#1| (-37 (-380 (-520)))))) (-2757 (($ $) 81 (|has| |#1| (-37 (-380 (-520)))))) (-1429 (((-496) $) NIL (-12 (|has| (-1081 |#1| |#2| |#3|) (-561 (-496))) (|has| |#1| (-336)))) (((-352) $) NIL (-12 (|has| (-1081 |#1| |#2| |#3|) (-945)) (|has| |#1| (-336)))) (((-201) $) NIL (-12 (|has| (-1081 |#1| |#2| |#3|) (-945)) (|has| |#1| (-336)))) (((-820 (-352)) $) NIL (-12 (|has| (-1081 |#1| |#2| |#3|) (-561 (-820 (-352)))) (|has| |#1| (-336)))) (((-820 (-520)) $) NIL (-12 (|has| (-1081 |#1| |#2| |#3|) (-561 (-820 (-520)))) (|has| |#1| (-336))))) (-3784 (((-3 (-1164 $) "failed") (-626 $)) NIL (-12 (|has| $ (-133)) (|has| (-1081 |#1| |#2| |#3|) (-837)) (|has| |#1| (-336))))) (-2759 (($ $) NIL)) (-2188 (((-791) $) 149) (($ (-520)) NIL) (($ |#1|) NIL (|has| |#1| (-157))) (($ (-1081 |#1| |#2| |#3|)) 27) (($ (-1160 |#2|)) 23) (($ (-1083)) NIL (-12 (|has| (-1081 |#1| |#2| |#3|) (-960 (-1083))) (|has| |#1| (-336)))) (($ $) NIL (-3700 (-12 (|has| (-1081 |#1| |#2| |#3|) (-756)) (|has| |#1| (-336))) (-12 (|has| (-1081 |#1| |#2| |#3|) (-837)) (|has| |#1| (-336))) (|has| |#1| (-512)))) (($ (-380 (-520))) NIL (-3700 (-12 (|has| (-1081 |#1| |#2| |#3|) (-960 (-520))) (|has| |#1| (-336))) (|has| |#1| (-37 (-380 (-520))))))) (-3475 ((|#1| $ (-520)) 68)) (-3796 (((-3 $ "failed") $) NIL (-3700 (-12 (|has| $ (-133)) (|has| (-1081 |#1| |#2| |#3|) (-837)) (|has| |#1| (-336))) (-12 (|has| (-1081 |#1| |#2| |#3|) (-133)) (|has| |#1| (-336))) (|has| |#1| (-133))))) (-3251 (((-706)) NIL)) (-1892 ((|#1| $) 12)) (-3370 (((-1081 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1081 |#1| |#2| |#3|) (-505)) (|has| |#1| (-336))))) (-1758 (($ $) 119 (|has| |#1| (-37 (-380 (-520)))))) (-2831 (($ $) 95 (|has| |#1| (-37 (-380 (-520)))))) (-2559 (((-108) $ $) NIL (-3700 (-12 (|has| (-1081 |#1| |#2| |#3|) (-756)) (|has| |#1| (-336))) (-12 (|has| (-1081 |#1| |#2| |#3|) (-837)) (|has| |#1| (-336))) (|has| |#1| (-512))))) (-1744 (($ $) 115 (|has| |#1| (-37 (-380 (-520)))))) (-2810 (($ $) 91 (|has| |#1| (-37 (-380 (-520)))))) (-1775 (($ $) 123 (|has| |#1| (-37 (-380 (-520)))))) (-2855 (($ $) 99 (|has| |#1| (-37 (-380 (-520)))))) (-3890 ((|#1| $ (-520)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-520)))) (|has| |#1| (-15 -2188 (|#1| (-1083))))))) (-3915 (($ $) 125 (|has| |#1| (-37 (-380 (-520)))))) (-2867 (($ $) 101 (|has| |#1| (-37 (-380 (-520)))))) (-1767 (($ $) 121 (|has| |#1| (-37 (-380 (-520)))))) (-2843 (($ $) 97 (|has| |#1| (-37 (-380 (-520)))))) (-1751 (($ $) 117 (|has| |#1| (-37 (-380 (-520)))))) (-2820 (($ $) 93 (|has| |#1| (-37 (-380 (-520)))))) (-2458 (($ $) NIL (-12 (|has| (-1081 |#1| |#2| |#3|) (-756)) (|has| |#1| (-336))))) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL (|has| |#1| (-336)))) (-3560 (($) 20 T CONST)) (-3570 (($) 16 T CONST)) (-2211 (($ $ (-1 (-1081 |#1| |#2| |#3|) (-1081 |#1| |#2| |#3|))) NIL (|has| |#1| (-336))) (($ $ (-1 (-1081 |#1| |#2| |#3|) (-1081 |#1| |#2| |#3|)) (-706)) NIL (|has| |#1| (-336))) (($ $ (-706)) NIL (-3700 (-12 (|has| (-1081 |#1| |#2| |#3|) (-209)) (|has| |#1| (-336))) (|has| |#1| (-15 * (|#1| (-520) |#1|))))) (($ $) NIL (-3700 (-12 (|has| (-1081 |#1| |#2| |#3|) (-209)) (|has| |#1| (-336))) (|has| |#1| (-15 * (|#1| (-520) |#1|))))) (($ $ (-586 (-1083)) (-586 (-706))) NIL (-3700 (-12 (|has| (-1081 |#1| |#2| |#3|) (-828 (-1083))) (|has| |#1| (-336))) (-12 (|has| |#1| (-15 * (|#1| (-520) |#1|))) (|has| |#1| (-828 (-1083)))))) (($ $ (-1083) (-706)) NIL (-3700 (-12 (|has| (-1081 |#1| |#2| |#3|) (-828 (-1083))) (|has| |#1| (-336))) (-12 (|has| |#1| (-15 * (|#1| (-520) |#1|))) (|has| |#1| (-828 (-1083)))))) (($ $ (-586 (-1083))) NIL (-3700 (-12 (|has| (-1081 |#1| |#2| |#3|) (-828 (-1083))) (|has| |#1| (-336))) (-12 (|has| |#1| (-15 * (|#1| (-520) |#1|))) (|has| |#1| (-828 (-1083)))))) (($ $ (-1083)) NIL (-3700 (-12 (|has| (-1081 |#1| |#2| |#3|) (-828 (-1083))) (|has| |#1| (-336))) (-12 (|has| |#1| (-15 * (|#1| (-520) |#1|))) (|has| |#1| (-828 (-1083))))))) (-1573 (((-108) $ $) NIL (-3700 (-12 (|has| (-1081 |#1| |#2| |#3|) (-756)) (|has| |#1| (-336))) (-12 (|has| (-1081 |#1| |#2| |#3|) (-783)) (|has| |#1| (-336)))))) (-1557 (((-108) $ $) NIL (-3700 (-12 (|has| (-1081 |#1| |#2| |#3|) (-756)) (|has| |#1| (-336))) (-12 (|has| (-1081 |#1| |#2| |#3|) (-783)) (|has| |#1| (-336)))))) (-1530 (((-108) $ $) NIL)) (-1565 (((-108) $ $) NIL (-3700 (-12 (|has| (-1081 |#1| |#2| |#3|) (-756)) (|has| |#1| (-336))) (-12 (|has| (-1081 |#1| |#2| |#3|) (-783)) (|has| |#1| (-336)))))) (-1548 (((-108) $ $) NIL (-3700 (-12 (|has| (-1081 |#1| |#2| |#3|) (-756)) (|has| |#1| (-336))) (-12 (|has| (-1081 |#1| |#2| |#3|) (-783)) (|has| |#1| (-336)))))) (-1619 (($ $ |#1|) NIL (|has| |#1| (-336))) (($ $ $) 44 (|has| |#1| (-336))) (($ (-1081 |#1| |#2| |#3|) (-1081 |#1| |#2| |#3|)) 45 (|has| |#1| (-336)))) (-1611 (($ $) NIL) (($ $ $) NIL)) (-1601 (($ $ $) 21)) (** (($ $ (-849)) NIL) (($ $ (-706)) 53) (($ $ (-520)) NIL (|has| |#1| (-336))) (($ $ $) 74 (|has| |#1| (-37 (-380 (-520))))) (($ $ (-380 (-520))) 128 (|has| |#1| (-37 (-380 (-520)))))) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) 32) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1081 |#1| |#2| |#3|)) 43 (|has| |#1| (-336))) (($ (-1081 |#1| |#2| |#3|) $) 42 (|has| |#1| (-336))) (($ (-380 (-520)) $) NIL (|has| |#1| (-37 (-380 (-520))))) (($ $ (-380 (-520))) NIL (|has| |#1| (-37 (-380 (-520)))))))
-(((-1074 |#1| |#2| |#3|) (-13 (-1126 |#1| (-1081 |#1| |#2| |#3|)) (-10 -8 (-15 -2188 ($ (-1160 |#2|))) (-15 -2155 ($ $ (-1160 |#2|))) (IF (|has| |#1| (-37 (-380 (-520)))) (-15 -3517 ($ $ (-1160 |#2|))) |%noBranch|))) (-969) (-1083) |#1|) (T -1074))
-((-2188 (*1 *1 *2) (-12 (-5 *2 (-1160 *4)) (-14 *4 (-1083)) (-5 *1 (-1074 *3 *4 *5)) (-4 *3 (-969)) (-14 *5 *3))) (-2155 (*1 *1 *1 *2) (-12 (-5 *2 (-1160 *4)) (-14 *4 (-1083)) (-5 *1 (-1074 *3 *4 *5)) (-4 *3 (-969)) (-14 *5 *3))) (-3517 (*1 *1 *1 *2) (-12 (-5 *2 (-1160 *4)) (-14 *4 (-1083)) (-5 *1 (-1074 *3 *4 *5)) (-4 *3 (-37 (-380 (-520)))) (-4 *3 (-969)) (-14 *5 *3))))
-(-13 (-1126 |#1| (-1081 |#1| |#2| |#3|)) (-10 -8 (-15 -2188 ($ (-1160 |#2|))) (-15 -2155 ($ $ (-1160 |#2|))) (IF (|has| |#1| (-37 (-380 (-520)))) (-15 -3517 ($ $ (-1160 |#2|))) |%noBranch|)))
-((-3512 ((|#2| |#2| (-1005 |#2|)) 26) ((|#2| |#2| (-1083)) 28)))
-(((-1075 |#1| |#2|) (-10 -7 (-15 -3512 (|#2| |#2| (-1083))) (-15 -3512 (|#2| |#2| (-1005 |#2|)))) (-13 (-512) (-783) (-960 (-520)) (-582 (-520))) (-13 (-403 |#1|) (-146) (-27) (-1104))) (T -1075))
-((-3512 (*1 *2 *2 *3) (-12 (-5 *3 (-1005 *2)) (-4 *2 (-13 (-403 *4) (-146) (-27) (-1104))) (-4 *4 (-13 (-512) (-783) (-960 (-520)) (-582 (-520)))) (-5 *1 (-1075 *4 *2)))) (-3512 (*1 *2 *2 *3) (-12 (-5 *3 (-1083)) (-4 *4 (-13 (-512) (-783) (-960 (-520)) (-582 (-520)))) (-5 *1 (-1075 *4 *2)) (-4 *2 (-13 (-403 *4) (-146) (-27) (-1104))))))
-(-10 -7 (-15 -3512 (|#2| |#2| (-1083))) (-15 -3512 (|#2| |#2| (-1005 |#2|))))
-((-3512 (((-3 (-380 (-880 |#1|)) (-289 |#1|)) (-380 (-880 |#1|)) (-1005 (-380 (-880 |#1|)))) 30) (((-380 (-880 |#1|)) (-880 |#1|) (-1005 (-880 |#1|))) 44) (((-3 (-380 (-880 |#1|)) (-289 |#1|)) (-380 (-880 |#1|)) (-1083)) 32) (((-380 (-880 |#1|)) (-880 |#1|) (-1083)) 36)))
-(((-1076 |#1|) (-10 -7 (-15 -3512 ((-380 (-880 |#1|)) (-880 |#1|) (-1083))) (-15 -3512 ((-3 (-380 (-880 |#1|)) (-289 |#1|)) (-380 (-880 |#1|)) (-1083))) (-15 -3512 ((-380 (-880 |#1|)) (-880 |#1|) (-1005 (-880 |#1|)))) (-15 -3512 ((-3 (-380 (-880 |#1|)) (-289 |#1|)) (-380 (-880 |#1|)) (-1005 (-380 (-880 |#1|)))))) (-13 (-512) (-783) (-960 (-520)))) (T -1076))
-((-3512 (*1 *2 *3 *4) (-12 (-5 *4 (-1005 (-380 (-880 *5)))) (-5 *3 (-380 (-880 *5))) (-4 *5 (-13 (-512) (-783) (-960 (-520)))) (-5 *2 (-3 *3 (-289 *5))) (-5 *1 (-1076 *5)))) (-3512 (*1 *2 *3 *4) (-12 (-5 *4 (-1005 (-880 *5))) (-5 *3 (-880 *5)) (-4 *5 (-13 (-512) (-783) (-960 (-520)))) (-5 *2 (-380 *3)) (-5 *1 (-1076 *5)))) (-3512 (*1 *2 *3 *4) (-12 (-5 *4 (-1083)) (-4 *5 (-13 (-512) (-783) (-960 (-520)))) (-5 *2 (-3 (-380 (-880 *5)) (-289 *5))) (-5 *1 (-1076 *5)) (-5 *3 (-380 (-880 *5))))) (-3512 (*1 *2 *3 *4) (-12 (-5 *4 (-1083)) (-4 *5 (-13 (-512) (-783) (-960 (-520)))) (-5 *2 (-380 (-880 *5))) (-5 *1 (-1076 *5)) (-5 *3 (-880 *5)))))
-(-10 -7 (-15 -3512 ((-380 (-880 |#1|)) (-880 |#1|) (-1083))) (-15 -3512 ((-3 (-380 (-880 |#1|)) (-289 |#1|)) (-380 (-880 |#1|)) (-1083))) (-15 -3512 ((-380 (-880 |#1|)) (-880 |#1|) (-1005 (-880 |#1|)))) (-15 -3512 ((-3 (-380 (-880 |#1|)) (-289 |#1|)) (-380 (-880 |#1|)) (-1005 (-380 (-880 |#1|))))))
-((-1389 (((-1079 |#2|) (-1 |#2| |#1|) (-1079 |#1|)) 13)))
-(((-1077 |#1| |#2|) (-10 -7 (-15 -1389 ((-1079 |#2|) (-1 |#2| |#1|) (-1079 |#1|)))) (-969) (-969)) (T -1077))
-((-1389 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1079 *5)) (-4 *5 (-969)) (-4 *6 (-969)) (-5 *2 (-1079 *6)) (-5 *1 (-1077 *5 *6)))))
-(-10 -7 (-15 -1389 ((-1079 |#2|) (-1 |#2| |#1|) (-1079 |#1|))))
-((-1507 (((-391 (-1079 (-380 |#4|))) (-1079 (-380 |#4|))) 50)) (-1916 (((-391 (-1079 (-380 |#4|))) (-1079 (-380 |#4|))) 51)))
-(((-1078 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1916 ((-391 (-1079 (-380 |#4|))) (-1079 (-380 |#4|)))) (-15 -1507 ((-391 (-1079 (-380 |#4|))) (-1079 (-380 |#4|))))) (-728) (-783) (-424) (-877 |#3| |#1| |#2|)) (T -1078))
-((-1507 (*1 *2 *3) (-12 (-4 *4 (-728)) (-4 *5 (-783)) (-4 *6 (-424)) (-4 *7 (-877 *6 *4 *5)) (-5 *2 (-391 (-1079 (-380 *7)))) (-5 *1 (-1078 *4 *5 *6 *7)) (-5 *3 (-1079 (-380 *7))))) (-1916 (*1 *2 *3) (-12 (-4 *4 (-728)) (-4 *5 (-783)) (-4 *6 (-424)) (-4 *7 (-877 *6 *4 *5)) (-5 *2 (-391 (-1079 (-380 *7)))) (-5 *1 (-1078 *4 *5 *6 *7)) (-5 *3 (-1079 (-380 *7))))))
-(-10 -7 (-15 -1916 ((-391 (-1079 (-380 |#4|))) (-1079 (-380 |#4|)))) (-15 -1507 ((-391 (-1079 (-380 |#4|))) (-1079 (-380 |#4|)))))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) 30)) (-2580 (((-1164 |#1|) $ (-706)) NIL)) (-4081 (((-586 (-997)) $) NIL)) (-2083 (($ (-1079 |#1|)) NIL)) (-1278 (((-1079 $) $ (-997)) 59) (((-1079 |#1|) $) 48)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) NIL (|has| |#1| (-512)))) (-2583 (($ $) 133 (|has| |#1| (-512)))) (-1671 (((-108) $) NIL (|has| |#1| (-512)))) (-3665 (((-706) $) NIL) (((-706) $ (-586 (-997))) NIL)) (-1917 (((-3 $ "failed") $ $) NIL)) (-3309 (($ $ $) 127 (|has| |#1| (-512)))) (-4119 (((-391 (-1079 $)) (-1079 $)) 72 (|has| |#1| (-837)))) (-3024 (($ $) NIL (|has| |#1| (-424)))) (-1507 (((-391 $) $) NIL (|has| |#1| (-424)))) (-3481 (((-3 (-586 (-1079 $)) "failed") (-586 (-1079 $)) (-1079 $)) 92 (|has| |#1| (-837)))) (-1327 (((-108) $ $) NIL (|has| |#1| (-336)))) (-3392 (($ $ (-706)) 42)) (-1371 (($ $ (-706)) 43)) (-1285 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-424)))) (-3961 (($) NIL T CONST)) (-1296 (((-3 |#1| "failed") $) NIL) (((-3 (-380 (-520)) "failed") $) NIL (|has| |#1| (-960 (-380 (-520))))) (((-3 (-520) "failed") $) NIL (|has| |#1| (-960 (-520)))) (((-3 (-997) "failed") $) NIL)) (-1482 ((|#1| $) NIL) (((-380 (-520)) $) NIL (|has| |#1| (-960 (-380 (-520))))) (((-520) $) NIL (|has| |#1| (-960 (-520)))) (((-997) $) NIL)) (-2413 (($ $ $ (-997)) NIL (|has| |#1| (-157))) ((|#1| $ $) 129 (|has| |#1| (-157)))) (-2276 (($ $ $) NIL (|has| |#1| (-336)))) (-3150 (($ $) 57)) (-2756 (((-626 (-520)) (-626 $)) NIL (|has| |#1| (-582 (-520)))) (((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 $) (-1164 $)) NIL (|has| |#1| (-582 (-520)))) (((-2 (|:| -3927 (-626 |#1|)) (|:| |vec| (-1164 |#1|))) (-626 $) (-1164 $)) NIL) (((-626 |#1|) (-626 $)) NIL)) (-1540 (((-3 $ "failed") $) NIL)) (-2253 (($ $ $) NIL (|has| |#1| (-336)))) (-3521 (($ $ $) 105)) (-2847 (($ $ $) NIL (|has| |#1| (-512)))) (-1973 (((-2 (|:| -2972 |#1|) (|:| -2060 $) (|:| -3753 $)) $ $) NIL (|has| |#1| (-512)))) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) NIL (|has| |#1| (-336)))) (-3923 (($ $) 134 (|has| |#1| (-424))) (($ $ (-997)) NIL (|has| |#1| (-424)))) (-3142 (((-586 $) $) NIL)) (-2036 (((-108) $) NIL (|has| |#1| (-837)))) (-3397 (($ $ |#1| (-706) $) 46)) (-1272 (((-817 (-352) $) $ (-820 (-352)) (-817 (-352) $)) NIL (-12 (|has| (-997) (-814 (-352))) (|has| |#1| (-814 (-352))))) (((-817 (-520) $) $ (-820 (-520)) (-817 (-520) $)) NIL (-12 (|has| (-997) (-814 (-520))) (|has| |#1| (-814 (-520)))))) (-2802 (((-791) $ (-791)) 118)) (-3989 (((-706) $ $) NIL (|has| |#1| (-512)))) (-1537 (((-108) $) 32)) (-1315 (((-706) $) NIL)) (-1394 (((-3 $ "failed") $) NIL (|has| |#1| (-1059)))) (-4065 (($ (-1079 |#1|) (-997)) 50) (($ (-1079 $) (-997)) 66)) (-2371 (($ $ (-706)) 34)) (-3188 (((-3 (-586 $) "failed") (-586 $) $) NIL (|has| |#1| (-336)))) (-1992 (((-586 $) $) NIL)) (-3774 (((-108) $) NIL)) (-4039 (($ |#1| (-706)) 64) (($ $ (-997) (-706)) NIL) (($ $ (-586 (-997)) (-586 (-706))) NIL)) (-1910 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $ (-997)) NIL) (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) 122)) (-3562 (((-706) $) NIL) (((-706) $ (-997)) NIL) (((-586 (-706)) $ (-586 (-997))) NIL)) (-2809 (($ $ $) NIL (|has| |#1| (-783)))) (-2446 (($ $ $) NIL (|has| |#1| (-783)))) (-3295 (($ (-1 (-706) (-706)) $) NIL)) (-1389 (($ (-1 |#1| |#1|) $) NIL)) (-3416 (((-1079 |#1|) $) NIL)) (-3186 (((-3 (-997) "failed") $) NIL)) (-3123 (($ $) NIL)) (-3133 ((|#1| $) 53)) (-2222 (($ (-586 $)) NIL (|has| |#1| (-424))) (($ $ $) NIL (|has| |#1| (-424)))) (-1239 (((-1066) $) NIL)) (-3721 (((-2 (|:| -2060 $) (|:| -3753 $)) $ (-706)) 41)) (-3548 (((-3 (-586 $) "failed") $) NIL)) (-1205 (((-3 (-586 $) "failed") $) NIL)) (-2568 (((-3 (-2 (|:| |var| (-997)) (|:| -2647 (-706))) "failed") $) NIL)) (-3517 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-3794 (($) NIL (|has| |#1| (-1059)) CONST)) (-4142 (((-1030) $) NIL)) (-3103 (((-108) $) 33)) (-3113 ((|#1| $) NIL)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) 80 (|has| |#1| (-424)))) (-2257 (($ (-586 $)) NIL (|has| |#1| (-424))) (($ $ $) 136 (|has| |#1| (-424)))) (-4118 (($ $ (-706) |#1| $) 100)) (-4133 (((-391 (-1079 $)) (-1079 $)) 78 (|has| |#1| (-837)))) (-2017 (((-391 (-1079 $)) (-1079 $)) 77 (|has| |#1| (-837)))) (-1916 (((-391 $) $) 85 (|has| |#1| (-837)))) (-1283 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-336))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) NIL (|has| |#1| (-336)))) (-2230 (((-3 $ "failed") $ |#1|) 132 (|has| |#1| (-512))) (((-3 $ "failed") $ $) 101 (|has| |#1| (-512)))) (-2608 (((-3 (-586 $) "failed") (-586 $) $) NIL (|has| |#1| (-336)))) (-2286 (($ $ (-586 (-268 $))) NIL) (($ $ (-268 $)) NIL) (($ $ $ $) NIL) (($ $ (-586 $) (-586 $)) NIL) (($ $ (-997) |#1|) NIL) (($ $ (-586 (-997)) (-586 |#1|)) NIL) (($ $ (-997) $) NIL) (($ $ (-586 (-997)) (-586 $)) NIL)) (-3704 (((-706) $) NIL (|has| |#1| (-336)))) (-2543 ((|#1| $ |#1|) 120) (($ $ $) 121) (((-380 $) (-380 $) (-380 $)) NIL (|has| |#1| (-512))) ((|#1| (-380 $) |#1|) NIL (|has| |#1| (-336))) (((-380 $) $ (-380 $)) NIL (|has| |#1| (-512)))) (-1554 (((-3 $ "failed") $ (-706)) 37)) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) 139 (|has| |#1| (-336)))) (-2732 (($ $ (-997)) NIL (|has| |#1| (-157))) ((|#1| $) 125 (|has| |#1| (-157)))) (-2155 (($ $ (-997)) NIL) (($ $ (-586 (-997))) NIL) (($ $ (-997) (-706)) NIL) (($ $ (-586 (-997)) (-586 (-706))) NIL) (($ $ (-706)) NIL) (($ $) NIL) (($ $ (-1083)) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-586 (-1083))) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-1083) (-706)) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-586 (-1083)) (-586 (-706))) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-1 |#1| |#1|) (-706)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2528 (((-706) $) 55) (((-706) $ (-997)) NIL) (((-586 (-706)) $ (-586 (-997))) NIL)) (-1429 (((-820 (-352)) $) NIL (-12 (|has| (-997) (-561 (-820 (-352)))) (|has| |#1| (-561 (-820 (-352)))))) (((-820 (-520)) $) NIL (-12 (|has| (-997) (-561 (-820 (-520)))) (|has| |#1| (-561 (-820 (-520)))))) (((-496) $) NIL (-12 (|has| (-997) (-561 (-496))) (|has| |#1| (-561 (-496)))))) (-1233 ((|#1| $) 131 (|has| |#1| (-424))) (($ $ (-997)) NIL (|has| |#1| (-424)))) (-3784 (((-3 (-1164 $) "failed") (-626 $)) NIL (-12 (|has| $ (-133)) (|has| |#1| (-837))))) (-3240 (((-3 $ "failed") $ $) NIL (|has| |#1| (-512))) (((-3 (-380 $) "failed") (-380 $) $) NIL (|has| |#1| (-512)))) (-2188 (((-791) $) 119) (($ (-520)) NIL) (($ |#1|) 54) (($ (-997)) NIL) (($ (-380 (-520))) NIL (-3700 (|has| |#1| (-37 (-380 (-520)))) (|has| |#1| (-960 (-380 (-520)))))) (($ $) NIL (|has| |#1| (-512)))) (-4113 (((-586 |#1|) $) NIL)) (-3475 ((|#1| $ (-706)) NIL) (($ $ (-997) (-706)) NIL) (($ $ (-586 (-997)) (-586 (-706))) NIL)) (-3796 (((-3 $ "failed") $) NIL (-3700 (-12 (|has| $ (-133)) (|has| |#1| (-837))) (|has| |#1| (-133))))) (-3251 (((-706)) NIL)) (-1782 (($ $ $ (-706)) 28 (|has| |#1| (-157)))) (-2559 (((-108) $ $) NIL (|has| |#1| (-512)))) (-3504 (($ $ (-849)) 15) (($ $ (-706)) 16)) (-3560 (($) 17 T CONST)) (-3570 (($) 18 T CONST)) (-2211 (($ $ (-997)) NIL) (($ $ (-586 (-997))) NIL) (($ $ (-997) (-706)) NIL) (($ $ (-586 (-997)) (-586 (-706))) NIL) (($ $ (-706)) NIL) (($ $) NIL) (($ $ (-1083)) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-586 (-1083))) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-1083) (-706)) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-586 (-1083)) (-586 (-706))) NIL (|has| |#1| (-828 (-1083)))) (($ $ (-1 |#1| |#1|) (-706)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1573 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1557 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1530 (((-108) $ $) 97)) (-1565 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1548 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1619 (($ $ |#1|) 140 (|has| |#1| (-336)))) (-1611 (($ $) NIL) (($ $ $) NIL)) (-1601 (($ $ $) 67)) (** (($ $ (-849)) 14) (($ $ (-706)) 12)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) 27) (($ $ (-380 (-520))) NIL (|has| |#1| (-37 (-380 (-520))))) (($ (-380 (-520)) $) NIL (|has| |#1| (-37 (-380 (-520))))) (($ |#1| $) 103) (($ $ |#1|) NIL)))
-(((-1079 |#1|) (-13 (-1140 |#1|) (-10 -8 (-15 -2802 ((-791) $ (-791))) (-15 -4118 ($ $ (-706) |#1| $)))) (-969)) (T -1079))
-((-2802 (*1 *2 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-1079 *3)) (-4 *3 (-969)))) (-4118 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-706)) (-5 *1 (-1079 *3)) (-4 *3 (-969)))))
-(-13 (-1140 |#1|) (-10 -8 (-15 -2802 ((-791) $ (-791))) (-15 -4118 ($ $ (-706) |#1| $))))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-4081 (((-586 (-997)) $) NIL)) (-1610 (((-1083) $) 11)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) NIL (|has| |#1| (-512)))) (-2583 (($ $) NIL (|has| |#1| (-512)))) (-1671 (((-108) $) NIL (|has| |#1| (-512)))) (-2406 (($ $ (-380 (-520))) NIL) (($ $ (-380 (-520)) (-380 (-520))) NIL)) (-2088 (((-1064 (-2 (|:| |k| (-380 (-520))) (|:| |c| |#1|))) $) NIL)) (-2903 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2768 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-1917 (((-3 $ "failed") $ $) NIL)) (-3024 (($ $) NIL (|has| |#1| (-336)))) (-1507 (((-391 $) $) NIL (|has| |#1| (-336)))) (-1927 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-1327 (((-108) $ $) NIL (|has| |#1| (-336)))) (-2879 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2745 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2769 (($ (-706) (-1064 (-2 (|:| |k| (-380 (-520))) (|:| |c| |#1|)))) NIL)) (-2925 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2789 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-3961 (($) NIL T CONST)) (-1296 (((-3 (-1074 |#1| |#2| |#3|) "failed") $) 32) (((-3 (-1081 |#1| |#2| |#3|) "failed") $) 35)) (-1482 (((-1074 |#1| |#2| |#3|) $) NIL) (((-1081 |#1| |#2| |#3|) $) NIL)) (-2276 (($ $ $) NIL (|has| |#1| (-336)))) (-3150 (($ $) NIL)) (-1540 (((-3 $ "failed") $) NIL)) (-2966 (((-380 (-520)) $) 55)) (-2253 (($ $ $) NIL (|has| |#1| (-336)))) (-3073 (($ (-380 (-520)) (-1074 |#1| |#2| |#3|)) NIL)) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) NIL (|has| |#1| (-336)))) (-2036 (((-108) $) NIL (|has| |#1| (-336)))) (-1342 (((-108) $) NIL)) (-2833 (($) NIL (|has| |#1| (-37 (-380 (-520)))))) (-3989 (((-380 (-520)) $) NIL) (((-380 (-520)) $ (-380 (-520))) NIL)) (-1537 (((-108) $) NIL)) (-2322 (($ $ (-520)) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2371 (($ $ (-849)) NIL) (($ $ (-380 (-520))) NIL)) (-3188 (((-3 (-586 $) "failed") (-586 $) $) NIL (|has| |#1| (-336)))) (-3774 (((-108) $) NIL)) (-4039 (($ |#1| (-380 (-520))) 19) (($ $ (-997) (-380 (-520))) NIL) (($ $ (-586 (-997)) (-586 (-380 (-520)))) NIL)) (-1389 (($ (-1 |#1| |#1|) $) NIL)) (-1252 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-3123 (($ $) NIL)) (-3133 ((|#1| $) NIL)) (-2222 (($ (-586 $)) NIL (|has| |#1| (-336))) (($ $ $) NIL (|has| |#1| (-336)))) (-3267 (((-1074 |#1| |#2| |#3|) $) 40)) (-3581 (((-3 (-1074 |#1| |#2| |#3|) "failed") $) NIL)) (-3063 (((-1074 |#1| |#2| |#3|) $) NIL)) (-1239 (((-1066) $) NIL)) (-3093 (($ $) NIL (|has| |#1| (-336)))) (-3517 (($ $) 38 (|has| |#1| (-37 (-380 (-520))))) (($ $ (-1083)) NIL (-3700 (-12 (|has| |#1| (-15 -3517 (|#1| |#1| (-1083)))) (|has| |#1| (-15 -4081 ((-586 (-1083)) |#1|))) (|has| |#1| (-37 (-380 (-520))))) (-12 (|has| |#1| (-29 (-520))) (|has| |#1| (-37 (-380 (-520)))) (|has| |#1| (-886)) (|has| |#1| (-1104))))) (($ $ (-1160 |#2|)) 39 (|has| |#1| (-37 (-380 (-520)))))) (-4142 (((-1030) $) NIL)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) NIL (|has| |#1| (-336)))) (-2257 (($ (-586 $)) NIL (|has| |#1| (-336))) (($ $ $) NIL (|has| |#1| (-336)))) (-1916 (((-391 $) $) NIL (|has| |#1| (-336)))) (-1283 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-336))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) NIL (|has| |#1| (-336)))) (-2116 (($ $ (-380 (-520))) NIL)) (-2230 (((-3 $ "failed") $ $) NIL (|has| |#1| (-512)))) (-2608 (((-3 (-586 $) "failed") (-586 $) $) NIL (|has| |#1| (-336)))) (-3260 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2286 (((-1064 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-380 (-520))))))) (-3704 (((-706) $) NIL (|has| |#1| (-336)))) (-2543 ((|#1| $ (-380 (-520))) NIL) (($ $ $) NIL (|has| (-380 (-520)) (-1024)))) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) NIL (|has| |#1| (-336)))) (-2155 (($ $ (-586 (-1083)) (-586 (-706))) NIL (-12 (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|))) (|has| |#1| (-828 (-1083))))) (($ $ (-1083) (-706)) NIL (-12 (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|))) (|has| |#1| (-828 (-1083))))) (($ $ (-586 (-1083))) NIL (-12 (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|))) (|has| |#1| (-828 (-1083))))) (($ $ (-1083)) NIL (-12 (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|))) (|has| |#1| (-828 (-1083))))) (($ $ (-706)) NIL (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|)))) (($ $) 36 (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|)))) (($ $ (-1160 |#2|)) 37)) (-2528 (((-380 (-520)) $) NIL)) (-1737 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2799 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2914 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2779 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2891 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2757 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2759 (($ $) NIL)) (-2188 (((-791) $) 58) (($ (-520)) NIL) (($ |#1|) NIL (|has| |#1| (-157))) (($ (-1074 |#1| |#2| |#3|)) 29) (($ (-1081 |#1| |#2| |#3|)) 30) (($ (-1160 |#2|)) 25) (($ (-380 (-520))) NIL (|has| |#1| (-37 (-380 (-520))))) (($ $) NIL (|has| |#1| (-512)))) (-3475 ((|#1| $ (-380 (-520))) NIL)) (-3796 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-3251 (((-706)) NIL)) (-1892 ((|#1| $) 12)) (-1758 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2831 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2559 (((-108) $ $) NIL (|has| |#1| (-512)))) (-1744 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2810 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-1775 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2855 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-3890 ((|#1| $ (-380 (-520))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-380 (-520))))) (|has| |#1| (-15 -2188 (|#1| (-1083))))))) (-3915 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2867 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-1767 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2843 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-1751 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2820 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL (|has| |#1| (-336)))) (-3560 (($) 21 T CONST)) (-3570 (($) 16 T CONST)) (-2211 (($ $ (-586 (-1083)) (-586 (-706))) NIL (-12 (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|))) (|has| |#1| (-828 (-1083))))) (($ $ (-1083) (-706)) NIL (-12 (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|))) (|has| |#1| (-828 (-1083))))) (($ $ (-586 (-1083))) NIL (-12 (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|))) (|has| |#1| (-828 (-1083))))) (($ $ (-1083)) NIL (-12 (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|))) (|has| |#1| (-828 (-1083))))) (($ $ (-706)) NIL (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|))))) (-1530 (((-108) $ $) NIL)) (-1619 (($ $ |#1|) NIL (|has| |#1| (-336))) (($ $ $) NIL (|has| |#1| (-336)))) (-1611 (($ $) NIL) (($ $ $) NIL)) (-1601 (($ $ $) 23)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL (|has| |#1| (-336))) (($ $ $) NIL (|has| |#1| (-37 (-380 (-520))))) (($ $ (-380 (-520))) NIL (|has| |#1| (-37 (-380 (-520)))))) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-380 (-520)) $) NIL (|has| |#1| (-37 (-380 (-520))))) (($ $ (-380 (-520))) NIL (|has| |#1| (-37 (-380 (-520)))))))
-(((-1080 |#1| |#2| |#3|) (-13 (-1147 |#1| (-1074 |#1| |#2| |#3|)) (-960 (-1081 |#1| |#2| |#3|)) (-10 -8 (-15 -2188 ($ (-1160 |#2|))) (-15 -2155 ($ $ (-1160 |#2|))) (IF (|has| |#1| (-37 (-380 (-520)))) (-15 -3517 ($ $ (-1160 |#2|))) |%noBranch|))) (-969) (-1083) |#1|) (T -1080))
-((-2188 (*1 *1 *2) (-12 (-5 *2 (-1160 *4)) (-14 *4 (-1083)) (-5 *1 (-1080 *3 *4 *5)) (-4 *3 (-969)) (-14 *5 *3))) (-2155 (*1 *1 *1 *2) (-12 (-5 *2 (-1160 *4)) (-14 *4 (-1083)) (-5 *1 (-1080 *3 *4 *5)) (-4 *3 (-969)) (-14 *5 *3))) (-3517 (*1 *1 *1 *2) (-12 (-5 *2 (-1160 *4)) (-14 *4 (-1083)) (-5 *1 (-1080 *3 *4 *5)) (-4 *3 (-37 (-380 (-520)))) (-4 *3 (-969)) (-14 *5 *3))))
-(-13 (-1147 |#1| (-1074 |#1| |#2| |#3|)) (-960 (-1081 |#1| |#2| |#3|)) (-10 -8 (-15 -2188 ($ (-1160 |#2|))) (-15 -2155 ($ $ (-1160 |#2|))) (IF (|has| |#1| (-37 (-380 (-520)))) (-15 -3517 ($ $ (-1160 |#2|))) |%noBranch|)))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) 125)) (-4081 (((-586 (-997)) $) NIL)) (-1610 (((-1083) $) 116)) (-3372 (((-1137 |#2| |#1|) $ (-706)) 63)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) NIL (|has| |#1| (-512)))) (-2583 (($ $) NIL (|has| |#1| (-512)))) (-1671 (((-108) $) NIL (|has| |#1| (-512)))) (-2406 (($ $ (-706)) 79) (($ $ (-706) (-706)) 76)) (-2088 (((-1064 (-2 (|:| |k| (-706)) (|:| |c| |#1|))) $) 102)) (-2903 (($ $) 169 (|has| |#1| (-37 (-380 (-520)))))) (-2768 (($ $) 145 (|has| |#1| (-37 (-380 (-520)))))) (-1917 (((-3 $ "failed") $ $) NIL)) (-1927 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2879 (($ $) 165 (|has| |#1| (-37 (-380 (-520)))))) (-2745 (($ $) 141 (|has| |#1| (-37 (-380 (-520)))))) (-2769 (($ (-1064 (-2 (|:| |k| (-706)) (|:| |c| |#1|)))) 115) (($ (-1064 |#1|)) 110)) (-2925 (($ $) 173 (|has| |#1| (-37 (-380 (-520)))))) (-2789 (($ $) 149 (|has| |#1| (-37 (-380 (-520)))))) (-3961 (($) NIL T CONST)) (-3150 (($ $) NIL)) (-1540 (((-3 $ "failed") $) 23)) (-1287 (($ $) 26)) (-2198 (((-880 |#1|) $ (-706)) 75) (((-880 |#1|) $ (-706) (-706)) 77)) (-1342 (((-108) $) 120)) (-2833 (($) NIL (|has| |#1| (-37 (-380 (-520)))))) (-3989 (((-706) $) 122) (((-706) $ (-706)) 124)) (-1537 (((-108) $) NIL)) (-2322 (($ $ (-520)) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2371 (($ $ (-849)) NIL)) (-1306 (($ (-1 |#1| (-520)) $) NIL)) (-3774 (((-108) $) NIL)) (-4039 (($ |#1| (-706)) 13) (($ $ (-997) (-706)) NIL) (($ $ (-586 (-997)) (-586 (-706))) NIL)) (-1389 (($ (-1 |#1| |#1|) $) NIL)) (-1252 (($ $) 131 (|has| |#1| (-37 (-380 (-520)))))) (-3123 (($ $) NIL)) (-3133 ((|#1| $) NIL)) (-1239 (((-1066) $) NIL)) (-3517 (($ $) 129 (|has| |#1| (-37 (-380 (-520))))) (($ $ (-1083)) NIL (-3700 (-12 (|has| |#1| (-15 -3517 (|#1| |#1| (-1083)))) (|has| |#1| (-15 -4081 ((-586 (-1083)) |#1|))) (|has| |#1| (-37 (-380 (-520))))) (-12 (|has| |#1| (-29 (-520))) (|has| |#1| (-37 (-380 (-520)))) (|has| |#1| (-886)) (|has| |#1| (-1104))))) (($ $ (-1160 |#2|)) 130 (|has| |#1| (-37 (-380 (-520)))))) (-4142 (((-1030) $) NIL)) (-2116 (($ $ (-706)) 15)) (-2230 (((-3 $ "failed") $ $) 24 (|has| |#1| (-512)))) (-3260 (($ $) 133 (|has| |#1| (-37 (-380 (-520)))))) (-2286 (((-1064 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-706)))))) (-2543 ((|#1| $ (-706)) 119) (($ $ $) 128 (|has| (-706) (-1024)))) (-2155 (($ $ (-586 (-1083)) (-586 (-706))) NIL (-12 (|has| |#1| (-15 * (|#1| (-706) |#1|))) (|has| |#1| (-828 (-1083))))) (($ $ (-1083) (-706)) NIL (-12 (|has| |#1| (-15 * (|#1| (-706) |#1|))) (|has| |#1| (-828 (-1083))))) (($ $ (-586 (-1083))) NIL (-12 (|has| |#1| (-15 * (|#1| (-706) |#1|))) (|has| |#1| (-828 (-1083))))) (($ $ (-1083)) NIL (-12 (|has| |#1| (-15 * (|#1| (-706) |#1|))) (|has| |#1| (-828 (-1083))))) (($ $ (-706)) NIL (|has| |#1| (-15 * (|#1| (-706) |#1|)))) (($ $) 27 (|has| |#1| (-15 * (|#1| (-706) |#1|)))) (($ $ (-1160 |#2|)) 29)) (-2528 (((-706) $) NIL)) (-1737 (($ $) 175 (|has| |#1| (-37 (-380 (-520)))))) (-2799 (($ $) 151 (|has| |#1| (-37 (-380 (-520)))))) (-2914 (($ $) 171 (|has| |#1| (-37 (-380 (-520)))))) (-2779 (($ $) 147 (|has| |#1| (-37 (-380 (-520)))))) (-2891 (($ $) 167 (|has| |#1| (-37 (-380 (-520)))))) (-2757 (($ $) 143 (|has| |#1| (-37 (-380 (-520)))))) (-2759 (($ $) NIL)) (-2188 (((-791) $) 201) (($ (-520)) NIL) (($ (-380 (-520))) NIL (|has| |#1| (-37 (-380 (-520))))) (($ $) NIL (|has| |#1| (-512))) (($ |#1|) 126 (|has| |#1| (-157))) (($ (-1137 |#2| |#1|)) 51) (($ (-1160 |#2|)) 32)) (-4113 (((-1064 |#1|) $) 98)) (-3475 ((|#1| $ (-706)) 118)) (-3796 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-3251 (((-706)) NIL)) (-1892 ((|#1| $) 54)) (-1758 (($ $) 181 (|has| |#1| (-37 (-380 (-520)))))) (-2831 (($ $) 157 (|has| |#1| (-37 (-380 (-520)))))) (-2559 (((-108) $ $) NIL (|has| |#1| (-512)))) (-1744 (($ $) 177 (|has| |#1| (-37 (-380 (-520)))))) (-2810 (($ $) 153 (|has| |#1| (-37 (-380 (-520)))))) (-1775 (($ $) 185 (|has| |#1| (-37 (-380 (-520)))))) (-2855 (($ $) 161 (|has| |#1| (-37 (-380 (-520)))))) (-3890 ((|#1| $ (-706)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-706)))) (|has| |#1| (-15 -2188 (|#1| (-1083))))))) (-3915 (($ $) 187 (|has| |#1| (-37 (-380 (-520)))))) (-2867 (($ $) 163 (|has| |#1| (-37 (-380 (-520)))))) (-1767 (($ $) 183 (|has| |#1| (-37 (-380 (-520)))))) (-2843 (($ $) 159 (|has| |#1| (-37 (-380 (-520)))))) (-1751 (($ $) 179 (|has| |#1| (-37 (-380 (-520)))))) (-2820 (($ $) 155 (|has| |#1| (-37 (-380 (-520)))))) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (-3560 (($) 17 T CONST)) (-3570 (($) 19 T CONST)) (-2211 (($ $ (-586 (-1083)) (-586 (-706))) NIL (-12 (|has| |#1| (-15 * (|#1| (-706) |#1|))) (|has| |#1| (-828 (-1083))))) (($ $ (-1083) (-706)) NIL (-12 (|has| |#1| (-15 * (|#1| (-706) |#1|))) (|has| |#1| (-828 (-1083))))) (($ $ (-586 (-1083))) NIL (-12 (|has| |#1| (-15 * (|#1| (-706) |#1|))) (|has| |#1| (-828 (-1083))))) (($ $ (-1083)) NIL (-12 (|has| |#1| (-15 * (|#1| (-706) |#1|))) (|has| |#1| (-828 (-1083))))) (($ $ (-706)) NIL (|has| |#1| (-15 * (|#1| (-706) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-706) |#1|))))) (-1530 (((-108) $ $) NIL)) (-1619 (($ $ |#1|) NIL (|has| |#1| (-336)))) (-1611 (($ $) NIL) (($ $ $) 194)) (-1601 (($ $ $) 31)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ |#1|) 198 (|has| |#1| (-336))) (($ $ $) 134 (|has| |#1| (-37 (-380 (-520))))) (($ $ (-380 (-520))) 137 (|has| |#1| (-37 (-380 (-520)))))) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) 132) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-380 (-520)) $) NIL (|has| |#1| (-37 (-380 (-520))))) (($ $ (-380 (-520))) NIL (|has| |#1| (-37 (-380 (-520)))))))
-(((-1081 |#1| |#2| |#3|) (-13 (-1155 |#1|) (-10 -8 (-15 -2188 ($ (-1137 |#2| |#1|))) (-15 -3372 ((-1137 |#2| |#1|) $ (-706))) (-15 -2188 ($ (-1160 |#2|))) (-15 -2155 ($ $ (-1160 |#2|))) (IF (|has| |#1| (-37 (-380 (-520)))) (-15 -3517 ($ $ (-1160 |#2|))) |%noBranch|))) (-969) (-1083) |#1|) (T -1081))
-((-2188 (*1 *1 *2) (-12 (-5 *2 (-1137 *4 *3)) (-4 *3 (-969)) (-14 *4 (-1083)) (-14 *5 *3) (-5 *1 (-1081 *3 *4 *5)))) (-3372 (*1 *2 *1 *3) (-12 (-5 *3 (-706)) (-5 *2 (-1137 *5 *4)) (-5 *1 (-1081 *4 *5 *6)) (-4 *4 (-969)) (-14 *5 (-1083)) (-14 *6 *4))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-1160 *4)) (-14 *4 (-1083)) (-5 *1 (-1081 *3 *4 *5)) (-4 *3 (-969)) (-14 *5 *3))) (-2155 (*1 *1 *1 *2) (-12 (-5 *2 (-1160 *4)) (-14 *4 (-1083)) (-5 *1 (-1081 *3 *4 *5)) (-4 *3 (-969)) (-14 *5 *3))) (-3517 (*1 *1 *1 *2) (-12 (-5 *2 (-1160 *4)) (-14 *4 (-1083)) (-5 *1 (-1081 *3 *4 *5)) (-4 *3 (-37 (-380 (-520)))) (-4 *3 (-969)) (-14 *5 *3))))
-(-13 (-1155 |#1|) (-10 -8 (-15 -2188 ($ (-1137 |#2| |#1|))) (-15 -3372 ((-1137 |#2| |#1|) $ (-706))) (-15 -2188 ($ (-1160 |#2|))) (-15 -2155 ($ $ (-1160 |#2|))) (IF (|has| |#1| (-37 (-380 (-520)))) (-15 -3517 ($ $ (-1160 |#2|))) |%noBranch|)))
-((-2188 (((-791) $) 22) (($ (-1083)) 24)) (-3700 (($ (-3 (|:| I (-289 (-520))) (|:| -4045 (-289 (-352))) (|:| CF (-289 (-154 (-352)))) (|:| |switch| $)) (-3 (|:| I (-289 (-520))) (|:| -4045 (-289 (-352))) (|:| CF (-289 (-154 (-352)))) (|:| |switch| $))) 35)) (-3687 (($ (-3 (|:| I (-289 (-520))) (|:| -4045 (-289 (-352))) (|:| CF (-289 (-154 (-352)))) (|:| |switch| $))) 28) (($ $) 29)) (-3173 (($ (-3 (|:| I (-289 (-520))) (|:| -4045 (-289 (-352))) (|:| CF (-289 (-154 (-352)))) (|:| |switch| $)) (-3 (|:| I (-289 (-520))) (|:| -4045 (-289 (-352))) (|:| CF (-289 (-154 (-352)))) (|:| |switch| $))) 30)) (-3163 (($ (-3 (|:| I (-289 (-520))) (|:| -4045 (-289 (-352))) (|:| CF (-289 (-154 (-352)))) (|:| |switch| $)) (-3 (|:| I (-289 (-520))) (|:| -4045 (-289 (-352))) (|:| CF (-289 (-154 (-352)))) (|:| |switch| $))) 32)) (-3153 (($ (-3 (|:| I (-289 (-520))) (|:| -4045 (-289 (-352))) (|:| CF (-289 (-154 (-352)))) (|:| |switch| $)) (-3 (|:| I (-289 (-520))) (|:| -4045 (-289 (-352))) (|:| CF (-289 (-154 (-352)))) (|:| |switch| $))) 31)) (-3145 (($ (-3 (|:| I (-289 (-520))) (|:| -4045 (-289 (-352))) (|:| CF (-289 (-154 (-352)))) (|:| |switch| $)) (-3 (|:| I (-289 (-520))) (|:| -4045 (-289 (-352))) (|:| CF (-289 (-154 (-352)))) (|:| |switch| $))) 33)) (-3079 (($ (-3 (|:| I (-289 (-520))) (|:| -4045 (-289 (-352))) (|:| CF (-289 (-154 (-352)))) (|:| |switch| $)) (-3 (|:| I (-289 (-520))) (|:| -4045 (-289 (-352))) (|:| CF (-289 (-154 (-352)))) (|:| |switch| $))) 36)) (-12 (($ (-3 (|:| I (-289 (-520))) (|:| -4045 (-289 (-352))) (|:| CF (-289 (-154 (-352)))) (|:| |switch| $)) (-3 (|:| I (-289 (-520))) (|:| -4045 (-289 (-352))) (|:| CF (-289 (-154 (-352)))) (|:| |switch| $))) 34)))
-(((-1082) (-13 (-560 (-791)) (-10 -8 (-15 -2188 ($ (-1083))) (-15 -3173 ($ (-3 (|:| I (-289 (-520))) (|:| -4045 (-289 (-352))) (|:| CF (-289 (-154 (-352)))) (|:| |switch| $)) (-3 (|:| I (-289 (-520))) (|:| -4045 (-289 (-352))) (|:| CF (-289 (-154 (-352)))) (|:| |switch| $)))) (-15 -3153 ($ (-3 (|:| I (-289 (-520))) (|:| -4045 (-289 (-352))) (|:| CF (-289 (-154 (-352)))) (|:| |switch| $)) (-3 (|:| I (-289 (-520))) (|:| -4045 (-289 (-352))) (|:| CF (-289 (-154 (-352)))) (|:| |switch| $)))) (-15 -3163 ($ (-3 (|:| I (-289 (-520))) (|:| -4045 (-289 (-352))) (|:| CF (-289 (-154 (-352)))) (|:| |switch| $)) (-3 (|:| I (-289 (-520))) (|:| -4045 (-289 (-352))) (|:| CF (-289 (-154 (-352)))) (|:| |switch| $)))) (-15 -3145 ($ (-3 (|:| I (-289 (-520))) (|:| -4045 (-289 (-352))) (|:| CF (-289 (-154 (-352)))) (|:| |switch| $)) (-3 (|:| I (-289 (-520))) (|:| -4045 (-289 (-352))) (|:| CF (-289 (-154 (-352)))) (|:| |switch| $)))) (-15 -3700 ($ (-3 (|:| I (-289 (-520))) (|:| -4045 (-289 (-352))) (|:| CF (-289 (-154 (-352)))) (|:| |switch| $)) (-3 (|:| I (-289 (-520))) (|:| -4045 (-289 (-352))) (|:| CF (-289 (-154 (-352)))) (|:| |switch| $)))) (-15 -3079 ($ (-3 (|:| I (-289 (-520))) (|:| -4045 (-289 (-352))) (|:| CF (-289 (-154 (-352)))) (|:| |switch| $)) (-3 (|:| I (-289 (-520))) (|:| -4045 (-289 (-352))) (|:| CF (-289 (-154 (-352)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-289 (-520))) (|:| -4045 (-289 (-352))) (|:| CF (-289 (-154 (-352)))) (|:| |switch| $)) (-3 (|:| I (-289 (-520))) (|:| -4045 (-289 (-352))) (|:| CF (-289 (-154 (-352)))) (|:| |switch| $)))) (-15 -3687 ($ (-3 (|:| I (-289 (-520))) (|:| -4045 (-289 (-352))) (|:| CF (-289 (-154 (-352)))) (|:| |switch| $)))) (-15 -3687 ($ $))))) (T -1082))
-((-2188 (*1 *1 *2) (-12 (-5 *2 (-1083)) (-5 *1 (-1082)))) (-3173 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-289 (-520))) (|:| -4045 (-289 (-352))) (|:| CF (-289 (-154 (-352)))) (|:| |switch| (-1082)))) (-5 *1 (-1082)))) (-3153 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-289 (-520))) (|:| -4045 (-289 (-352))) (|:| CF (-289 (-154 (-352)))) (|:| |switch| (-1082)))) (-5 *1 (-1082)))) (-3163 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-289 (-520))) (|:| -4045 (-289 (-352))) (|:| CF (-289 (-154 (-352)))) (|:| |switch| (-1082)))) (-5 *1 (-1082)))) (-3145 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-289 (-520))) (|:| -4045 (-289 (-352))) (|:| CF (-289 (-154 (-352)))) (|:| |switch| (-1082)))) (-5 *1 (-1082)))) (-3700 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-289 (-520))) (|:| -4045 (-289 (-352))) (|:| CF (-289 (-154 (-352)))) (|:| |switch| (-1082)))) (-5 *1 (-1082)))) (-3079 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-289 (-520))) (|:| -4045 (-289 (-352))) (|:| CF (-289 (-154 (-352)))) (|:| |switch| (-1082)))) (-5 *1 (-1082)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-289 (-520))) (|:| -4045 (-289 (-352))) (|:| CF (-289 (-154 (-352)))) (|:| |switch| (-1082)))) (-5 *1 (-1082)))) (-3687 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-289 (-520))) (|:| -4045 (-289 (-352))) (|:| CF (-289 (-154 (-352)))) (|:| |switch| (-1082)))) (-5 *1 (-1082)))) (-3687 (*1 *1 *1) (-5 *1 (-1082))))
-(-13 (-560 (-791)) (-10 -8 (-15 -2188 ($ (-1083))) (-15 -3173 ($ (-3 (|:| I (-289 (-520))) (|:| -4045 (-289 (-352))) (|:| CF (-289 (-154 (-352)))) (|:| |switch| $)) (-3 (|:| I (-289 (-520))) (|:| -4045 (-289 (-352))) (|:| CF (-289 (-154 (-352)))) (|:| |switch| $)))) (-15 -3153 ($ (-3 (|:| I (-289 (-520))) (|:| -4045 (-289 (-352))) (|:| CF (-289 (-154 (-352)))) (|:| |switch| $)) (-3 (|:| I (-289 (-520))) (|:| -4045 (-289 (-352))) (|:| CF (-289 (-154 (-352)))) (|:| |switch| $)))) (-15 -3163 ($ (-3 (|:| I (-289 (-520))) (|:| -4045 (-289 (-352))) (|:| CF (-289 (-154 (-352)))) (|:| |switch| $)) (-3 (|:| I (-289 (-520))) (|:| -4045 (-289 (-352))) (|:| CF (-289 (-154 (-352)))) (|:| |switch| $)))) (-15 -3145 ($ (-3 (|:| I (-289 (-520))) (|:| -4045 (-289 (-352))) (|:| CF (-289 (-154 (-352)))) (|:| |switch| $)) (-3 (|:| I (-289 (-520))) (|:| -4045 (-289 (-352))) (|:| CF (-289 (-154 (-352)))) (|:| |switch| $)))) (-15 -3700 ($ (-3 (|:| I (-289 (-520))) (|:| -4045 (-289 (-352))) (|:| CF (-289 (-154 (-352)))) (|:| |switch| $)) (-3 (|:| I (-289 (-520))) (|:| -4045 (-289 (-352))) (|:| CF (-289 (-154 (-352)))) (|:| |switch| $)))) (-15 -3079 ($ (-3 (|:| I (-289 (-520))) (|:| -4045 (-289 (-352))) (|:| CF (-289 (-154 (-352)))) (|:| |switch| $)) (-3 (|:| I (-289 (-520))) (|:| -4045 (-289 (-352))) (|:| CF (-289 (-154 (-352)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-289 (-520))) (|:| -4045 (-289 (-352))) (|:| CF (-289 (-154 (-352)))) (|:| |switch| $)) (-3 (|:| I (-289 (-520))) (|:| -4045 (-289 (-352))) (|:| CF (-289 (-154 (-352)))) (|:| |switch| $)))) (-15 -3687 ($ (-3 (|:| I (-289 (-520))) (|:| -4045 (-289 (-352))) (|:| CF (-289 (-154 (-352)))) (|:| |switch| $)))) (-15 -3687 ($ $))))
-((-1414 (((-108) $ $) NIL)) (-3045 (($ $ (-586 (-791))) 58)) (-4069 (($ $ (-586 (-791))) 56)) (-1505 (((-1066) $) 82)) (-2524 (((-2 (|:| -4082 (-586 (-791))) (|:| -1224 (-586 (-791))) (|:| |presup| (-586 (-791))) (|:| -1661 (-586 (-791))) (|:| |args| (-586 (-791)))) $) 85)) (-1827 (((-108) $) 21)) (-1580 (($ $ (-586 (-586 (-791)))) 54) (($ $ (-2 (|:| -4082 (-586 (-791))) (|:| -1224 (-586 (-791))) (|:| |presup| (-586 (-791))) (|:| -1661 (-586 (-791))) (|:| |args| (-586 (-791))))) 80)) (-3961 (($) 123 T CONST)) (-2765 (((-1169)) 104)) (-1272 (((-817 (-520) $) $ (-820 (-520)) (-817 (-520) $)) 65) (((-817 (-352) $) $ (-820 (-352)) (-817 (-352) $)) 71)) (-1810 (($) 93) (($ $) 99)) (-2883 (($ $) 81)) (-2809 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-1578 (((-586 $) $) 105)) (-1239 (((-1066) $) 88)) (-4142 (((-1030) $) NIL)) (-2543 (($ $ (-586 (-791))) 57)) (-1429 (((-496) $) 45) (((-1083) $) 46) (((-820 (-520)) $) 75) (((-820 (-352)) $) 73)) (-2188 (((-791) $) 52) (($ (-1066)) 47)) (-1818 (($ $ (-586 (-791))) 59)) (-3610 (((-1066) $) 33) (((-1066) $ (-108)) 34) (((-1169) (-758) $) 35) (((-1169) (-758) $ (-108)) 36)) (-1573 (((-108) $ $) NIL)) (-1557 (((-108) $ $) NIL)) (-1530 (((-108) $ $) 48)) (-1565 (((-108) $ $) NIL)) (-1548 (((-108) $ $) 49)))
-(((-1083) (-13 (-783) (-561 (-496)) (-764) (-561 (-1083)) (-561 (-820 (-520))) (-561 (-820 (-352))) (-814 (-520)) (-814 (-352)) (-10 -8 (-15 -1810 ($)) (-15 -1810 ($ $)) (-15 -2765 ((-1169))) (-15 -2188 ($ (-1066))) (-15 -2883 ($ $)) (-15 -1827 ((-108) $)) (-15 -2524 ((-2 (|:| -4082 (-586 (-791))) (|:| -1224 (-586 (-791))) (|:| |presup| (-586 (-791))) (|:| -1661 (-586 (-791))) (|:| |args| (-586 (-791)))) $)) (-15 -1580 ($ $ (-586 (-586 (-791))))) (-15 -1580 ($ $ (-2 (|:| -4082 (-586 (-791))) (|:| -1224 (-586 (-791))) (|:| |presup| (-586 (-791))) (|:| -1661 (-586 (-791))) (|:| |args| (-586 (-791)))))) (-15 -4069 ($ $ (-586 (-791)))) (-15 -3045 ($ $ (-586 (-791)))) (-15 -1818 ($ $ (-586 (-791)))) (-15 -2543 ($ $ (-586 (-791)))) (-15 -1505 ((-1066) $)) (-15 -1578 ((-586 $) $)) (-15 -3961 ($) -2675)))) (T -1083))
-((-1810 (*1 *1) (-5 *1 (-1083))) (-1810 (*1 *1 *1) (-5 *1 (-1083))) (-2765 (*1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-1083)))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-1066)) (-5 *1 (-1083)))) (-2883 (*1 *1 *1) (-5 *1 (-1083))) (-1827 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1083)))) (-2524 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -4082 (-586 (-791))) (|:| -1224 (-586 (-791))) (|:| |presup| (-586 (-791))) (|:| -1661 (-586 (-791))) (|:| |args| (-586 (-791))))) (-5 *1 (-1083)))) (-1580 (*1 *1 *1 *2) (-12 (-5 *2 (-586 (-586 (-791)))) (-5 *1 (-1083)))) (-1580 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -4082 (-586 (-791))) (|:| -1224 (-586 (-791))) (|:| |presup| (-586 (-791))) (|:| -1661 (-586 (-791))) (|:| |args| (-586 (-791))))) (-5 *1 (-1083)))) (-4069 (*1 *1 *1 *2) (-12 (-5 *2 (-586 (-791))) (-5 *1 (-1083)))) (-3045 (*1 *1 *1 *2) (-12 (-5 *2 (-586 (-791))) (-5 *1 (-1083)))) (-1818 (*1 *1 *1 *2) (-12 (-5 *2 (-586 (-791))) (-5 *1 (-1083)))) (-2543 (*1 *1 *1 *2) (-12 (-5 *2 (-586 (-791))) (-5 *1 (-1083)))) (-1505 (*1 *2 *1) (-12 (-5 *2 (-1066)) (-5 *1 (-1083)))) (-1578 (*1 *2 *1) (-12 (-5 *2 (-586 (-1083))) (-5 *1 (-1083)))) (-3961 (*1 *1) (-5 *1 (-1083))))
-(-13 (-783) (-561 (-496)) (-764) (-561 (-1083)) (-561 (-820 (-520))) (-561 (-820 (-352))) (-814 (-520)) (-814 (-352)) (-10 -8 (-15 -1810 ($)) (-15 -1810 ($ $)) (-15 -2765 ((-1169))) (-15 -2188 ($ (-1066))) (-15 -2883 ($ $)) (-15 -1827 ((-108) $)) (-15 -2524 ((-2 (|:| -4082 (-586 (-791))) (|:| -1224 (-586 (-791))) (|:| |presup| (-586 (-791))) (|:| -1661 (-586 (-791))) (|:| |args| (-586 (-791)))) $)) (-15 -1580 ($ $ (-586 (-586 (-791))))) (-15 -1580 ($ $ (-2 (|:| -4082 (-586 (-791))) (|:| -1224 (-586 (-791))) (|:| |presup| (-586 (-791))) (|:| -1661 (-586 (-791))) (|:| |args| (-586 (-791)))))) (-15 -4069 ($ $ (-586 (-791)))) (-15 -3045 ($ $ (-586 (-791)))) (-15 -1818 ($ $ (-586 (-791)))) (-15 -2543 ($ $ (-586 (-791)))) (-15 -1505 ((-1066) $)) (-15 -1578 ((-586 $) $)) (-15 -3961 ($) -2675)))
-((-3717 (((-1164 |#1|) |#1| (-849)) 16) (((-1164 |#1|) (-586 |#1|)) 20)))
-(((-1084 |#1|) (-10 -7 (-15 -3717 ((-1164 |#1|) (-586 |#1|))) (-15 -3717 ((-1164 |#1|) |#1| (-849)))) (-969)) (T -1084))
-((-3717 (*1 *2 *3 *4) (-12 (-5 *4 (-849)) (-5 *2 (-1164 *3)) (-5 *1 (-1084 *3)) (-4 *3 (-969)))) (-3717 (*1 *2 *3) (-12 (-5 *3 (-586 *4)) (-4 *4 (-969)) (-5 *2 (-1164 *4)) (-5 *1 (-1084 *4)))))
-(-10 -7 (-15 -3717 ((-1164 |#1|) (-586 |#1|))) (-15 -3717 ((-1164 |#1|) |#1| (-849))))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) NIL (|has| |#1| (-512)))) (-2583 (($ $) NIL (|has| |#1| (-512)))) (-1671 (((-108) $) NIL (|has| |#1| (-512)))) (-1917 (((-3 $ "failed") $ $) NIL)) (-3961 (($) NIL T CONST)) (-1296 (((-3 (-520) "failed") $) NIL (|has| |#1| (-960 (-520)))) (((-3 (-380 (-520)) "failed") $) NIL (|has| |#1| (-960 (-380 (-520))))) (((-3 |#1| "failed") $) NIL)) (-1482 (((-520) $) NIL (|has| |#1| (-960 (-520)))) (((-380 (-520)) $) NIL (|has| |#1| (-960 (-380 (-520))))) ((|#1| $) NIL)) (-3150 (($ $) NIL)) (-1540 (((-3 $ "failed") $) NIL)) (-3923 (($ $) NIL (|has| |#1| (-424)))) (-3397 (($ $ |#1| (-896) $) NIL)) (-1537 (((-108) $) NIL)) (-1315 (((-706) $) NIL)) (-3774 (((-108) $) NIL)) (-4039 (($ |#1| (-896)) NIL)) (-3562 (((-896) $) NIL)) (-3295 (($ (-1 (-896) (-896)) $) NIL)) (-1389 (($ (-1 |#1| |#1|) $) NIL)) (-3123 (($ $) NIL)) (-3133 ((|#1| $) NIL)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-3103 (((-108) $) NIL)) (-3113 ((|#1| $) NIL)) (-4118 (($ $ (-896) |#1| $) NIL (-12 (|has| (-896) (-124)) (|has| |#1| (-512))))) (-2230 (((-3 $ "failed") $ $) NIL (|has| |#1| (-512))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-512)))) (-2528 (((-896) $) NIL)) (-1233 ((|#1| $) NIL (|has| |#1| (-424)))) (-2188 (((-791) $) NIL) (($ (-520)) NIL) (($ $) NIL (|has| |#1| (-512))) (($ |#1|) NIL) (($ (-380 (-520))) NIL (-3700 (|has| |#1| (-37 (-380 (-520)))) (|has| |#1| (-960 (-380 (-520))))))) (-4113 (((-586 |#1|) $) NIL)) (-3475 ((|#1| $ (-896)) NIL)) (-3796 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-3251 (((-706)) NIL)) (-1782 (($ $ $ (-706)) NIL (|has| |#1| (-157)))) (-2559 (((-108) $ $) NIL (|has| |#1| (-512)))) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (-3560 (($) 9 T CONST)) (-3570 (($) 14 T CONST)) (-1530 (((-108) $ $) 16)) (-1619 (($ $ |#1|) NIL (|has| |#1| (-336)))) (-1611 (($ $) NIL) (($ $ $) NIL)) (-1601 (($ $ $) 19)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) 13) (($ (-380 (-520)) $) NIL (|has| |#1| (-37 (-380 (-520))))) (($ $ (-380 (-520))) NIL (|has| |#1| (-37 (-380 (-520)))))))
-(((-1085 |#1|) (-13 (-299 |#1| (-896)) (-10 -8 (IF (|has| |#1| (-512)) (IF (|has| (-896) (-124)) (-15 -4118 ($ $ (-896) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4227)) (-6 -4227) |%noBranch|))) (-969)) (T -1085))
-((-4118 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-896)) (-4 *2 (-124)) (-5 *1 (-1085 *3)) (-4 *3 (-512)) (-4 *3 (-969)))))
-(-13 (-299 |#1| (-896)) (-10 -8 (IF (|has| |#1| (-512)) (IF (|has| (-896) (-124)) (-15 -4118 ($ $ (-896) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4227)) (-6 -4227) |%noBranch|)))
-((-2556 (((-1087) (-1083) $) 24)) (-1828 (($) 28)) (-1679 (((-3 (|:| |fst| (-407)) (|:| -1365 "void")) (-1083) $) 21)) (-1260 (((-1169) (-1083) (-3 (|:| |fst| (-407)) (|:| -1365 "void")) $) 40) (((-1169) (-1083) (-3 (|:| |fst| (-407)) (|:| -1365 "void"))) 41) (((-1169) (-3 (|:| |fst| (-407)) (|:| -1365 "void"))) 42)) (-2830 (((-1169) (-1083)) 57)) (-3191 (((-1169) (-1083) $) 54) (((-1169) (-1083)) 55) (((-1169)) 56)) (-3409 (((-1169) (-1083)) 36)) (-2866 (((-1083)) 35)) (-2238 (($) 33)) (-3420 (((-410) (-1083) (-410) (-1083) $) 44) (((-410) (-586 (-1083)) (-410) (-1083) $) 48) (((-410) (-1083) (-410)) 45) (((-410) (-1083) (-410) (-1083)) 49)) (-3069 (((-1083)) 34)) (-2188 (((-791) $) 27)) (-3552 (((-1169)) 29) (((-1169) (-1083)) 32)) (-4158 (((-586 (-1083)) (-1083) $) 23)) (-3676 (((-1169) (-1083) (-586 (-1083)) $) 37) (((-1169) (-1083) (-586 (-1083))) 38) (((-1169) (-586 (-1083))) 39)))
-(((-1086) (-13 (-560 (-791)) (-10 -8 (-15 -1828 ($)) (-15 -3552 ((-1169))) (-15 -3552 ((-1169) (-1083))) (-15 -3420 ((-410) (-1083) (-410) (-1083) $)) (-15 -3420 ((-410) (-586 (-1083)) (-410) (-1083) $)) (-15 -3420 ((-410) (-1083) (-410))) (-15 -3420 ((-410) (-1083) (-410) (-1083))) (-15 -3409 ((-1169) (-1083))) (-15 -3069 ((-1083))) (-15 -2866 ((-1083))) (-15 -3676 ((-1169) (-1083) (-586 (-1083)) $)) (-15 -3676 ((-1169) (-1083) (-586 (-1083)))) (-15 -3676 ((-1169) (-586 (-1083)))) (-15 -1260 ((-1169) (-1083) (-3 (|:| |fst| (-407)) (|:| -1365 "void")) $)) (-15 -1260 ((-1169) (-1083) (-3 (|:| |fst| (-407)) (|:| -1365 "void")))) (-15 -1260 ((-1169) (-3 (|:| |fst| (-407)) (|:| -1365 "void")))) (-15 -3191 ((-1169) (-1083) $)) (-15 -3191 ((-1169) (-1083))) (-15 -3191 ((-1169))) (-15 -2830 ((-1169) (-1083))) (-15 -2238 ($)) (-15 -1679 ((-3 (|:| |fst| (-407)) (|:| -1365 "void")) (-1083) $)) (-15 -4158 ((-586 (-1083)) (-1083) $)) (-15 -2556 ((-1087) (-1083) $))))) (T -1086))
-((-1828 (*1 *1) (-5 *1 (-1086))) (-3552 (*1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-1086)))) (-3552 (*1 *2 *3) (-12 (-5 *3 (-1083)) (-5 *2 (-1169)) (-5 *1 (-1086)))) (-3420 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-410)) (-5 *3 (-1083)) (-5 *1 (-1086)))) (-3420 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-410)) (-5 *3 (-586 (-1083))) (-5 *4 (-1083)) (-5 *1 (-1086)))) (-3420 (*1 *2 *3 *2) (-12 (-5 *2 (-410)) (-5 *3 (-1083)) (-5 *1 (-1086)))) (-3420 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-410)) (-5 *3 (-1083)) (-5 *1 (-1086)))) (-3409 (*1 *2 *3) (-12 (-5 *3 (-1083)) (-5 *2 (-1169)) (-5 *1 (-1086)))) (-3069 (*1 *2) (-12 (-5 *2 (-1083)) (-5 *1 (-1086)))) (-2866 (*1 *2) (-12 (-5 *2 (-1083)) (-5 *1 (-1086)))) (-3676 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-586 (-1083))) (-5 *3 (-1083)) (-5 *2 (-1169)) (-5 *1 (-1086)))) (-3676 (*1 *2 *3 *4) (-12 (-5 *4 (-586 (-1083))) (-5 *3 (-1083)) (-5 *2 (-1169)) (-5 *1 (-1086)))) (-3676 (*1 *2 *3) (-12 (-5 *3 (-586 (-1083))) (-5 *2 (-1169)) (-5 *1 (-1086)))) (-1260 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1083)) (-5 *4 (-3 (|:| |fst| (-407)) (|:| -1365 "void"))) (-5 *2 (-1169)) (-5 *1 (-1086)))) (-1260 (*1 *2 *3 *4) (-12 (-5 *3 (-1083)) (-5 *4 (-3 (|:| |fst| (-407)) (|:| -1365 "void"))) (-5 *2 (-1169)) (-5 *1 (-1086)))) (-1260 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-407)) (|:| -1365 "void"))) (-5 *2 (-1169)) (-5 *1 (-1086)))) (-3191 (*1 *2 *3 *1) (-12 (-5 *3 (-1083)) (-5 *2 (-1169)) (-5 *1 (-1086)))) (-3191 (*1 *2 *3) (-12 (-5 *3 (-1083)) (-5 *2 (-1169)) (-5 *1 (-1086)))) (-3191 (*1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-1086)))) (-2830 (*1 *2 *3) (-12 (-5 *3 (-1083)) (-5 *2 (-1169)) (-5 *1 (-1086)))) (-2238 (*1 *1) (-5 *1 (-1086))) (-1679 (*1 *2 *3 *1) (-12 (-5 *3 (-1083)) (-5 *2 (-3 (|:| |fst| (-407)) (|:| -1365 "void"))) (-5 *1 (-1086)))) (-4158 (*1 *2 *3 *1) (-12 (-5 *2 (-586 (-1083))) (-5 *1 (-1086)) (-5 *3 (-1083)))) (-2556 (*1 *2 *3 *1) (-12 (-5 *3 (-1083)) (-5 *2 (-1087)) (-5 *1 (-1086)))))
-(-13 (-560 (-791)) (-10 -8 (-15 -1828 ($)) (-15 -3552 ((-1169))) (-15 -3552 ((-1169) (-1083))) (-15 -3420 ((-410) (-1083) (-410) (-1083) $)) (-15 -3420 ((-410) (-586 (-1083)) (-410) (-1083) $)) (-15 -3420 ((-410) (-1083) (-410))) (-15 -3420 ((-410) (-1083) (-410) (-1083))) (-15 -3409 ((-1169) (-1083))) (-15 -3069 ((-1083))) (-15 -2866 ((-1083))) (-15 -3676 ((-1169) (-1083) (-586 (-1083)) $)) (-15 -3676 ((-1169) (-1083) (-586 (-1083)))) (-15 -3676 ((-1169) (-586 (-1083)))) (-15 -1260 ((-1169) (-1083) (-3 (|:| |fst| (-407)) (|:| -1365 "void")) $)) (-15 -1260 ((-1169) (-1083) (-3 (|:| |fst| (-407)) (|:| -1365 "void")))) (-15 -1260 ((-1169) (-3 (|:| |fst| (-407)) (|:| -1365 "void")))) (-15 -3191 ((-1169) (-1083) $)) (-15 -3191 ((-1169) (-1083))) (-15 -3191 ((-1169))) (-15 -2830 ((-1169) (-1083))) (-15 -2238 ($)) (-15 -1679 ((-3 (|:| |fst| (-407)) (|:| -1365 "void")) (-1083) $)) (-15 -4158 ((-586 (-1083)) (-1083) $)) (-15 -2556 ((-1087) (-1083) $))))
-((-3439 (((-586 (-586 (-3 (|:| -2883 (-1083)) (|:| |bounds| (-586 (-3 (|:| S (-1083)) (|:| P (-880 (-520))))))))) $) 57)) (-3237 (((-586 (-3 (|:| -2883 (-1083)) (|:| |bounds| (-586 (-3 (|:| S (-1083)) (|:| P (-880 (-520)))))))) (-407) $) 40)) (-1953 (($ (-586 (-2 (|:| -2526 (-1083)) (|:| -3043 (-410))))) 15)) (-2830 (((-1169) $) 65)) (-3238 (((-586 (-1083)) $) 20)) (-1958 (((-1016) $) 53)) (-4102 (((-410) (-1083) $) 27)) (-3566 (((-586 (-1083)) $) 30)) (-2238 (($) 17)) (-3420 (((-410) (-586 (-1083)) (-410) $) 25) (((-410) (-1083) (-410) $) 24)) (-2188 (((-791) $) 9) (((-1092 (-1083) (-410)) $) 11)))
-(((-1087) (-13 (-560 (-791)) (-10 -8 (-15 -2188 ((-1092 (-1083) (-410)) $)) (-15 -2238 ($)) (-15 -3420 ((-410) (-586 (-1083)) (-410) $)) (-15 -3420 ((-410) (-1083) (-410) $)) (-15 -4102 ((-410) (-1083) $)) (-15 -3238 ((-586 (-1083)) $)) (-15 -3237 ((-586 (-3 (|:| -2883 (-1083)) (|:| |bounds| (-586 (-3 (|:| S (-1083)) (|:| P (-880 (-520)))))))) (-407) $)) (-15 -3566 ((-586 (-1083)) $)) (-15 -3439 ((-586 (-586 (-3 (|:| -2883 (-1083)) (|:| |bounds| (-586 (-3 (|:| S (-1083)) (|:| P (-880 (-520))))))))) $)) (-15 -1958 ((-1016) $)) (-15 -2830 ((-1169) $)) (-15 -1953 ($ (-586 (-2 (|:| -2526 (-1083)) (|:| -3043 (-410))))))))) (T -1087))
-((-2188 (*1 *2 *1) (-12 (-5 *2 (-1092 (-1083) (-410))) (-5 *1 (-1087)))) (-2238 (*1 *1) (-5 *1 (-1087))) (-3420 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-410)) (-5 *3 (-586 (-1083))) (-5 *1 (-1087)))) (-3420 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-410)) (-5 *3 (-1083)) (-5 *1 (-1087)))) (-4102 (*1 *2 *3 *1) (-12 (-5 *3 (-1083)) (-5 *2 (-410)) (-5 *1 (-1087)))) (-3238 (*1 *2 *1) (-12 (-5 *2 (-586 (-1083))) (-5 *1 (-1087)))) (-3237 (*1 *2 *3 *1) (-12 (-5 *3 (-407)) (-5 *2 (-586 (-3 (|:| -2883 (-1083)) (|:| |bounds| (-586 (-3 (|:| S (-1083)) (|:| P (-880 (-520))))))))) (-5 *1 (-1087)))) (-3566 (*1 *2 *1) (-12 (-5 *2 (-586 (-1083))) (-5 *1 (-1087)))) (-3439 (*1 *2 *1) (-12 (-5 *2 (-586 (-586 (-3 (|:| -2883 (-1083)) (|:| |bounds| (-586 (-3 (|:| S (-1083)) (|:| P (-880 (-520)))))))))) (-5 *1 (-1087)))) (-1958 (*1 *2 *1) (-12 (-5 *2 (-1016)) (-5 *1 (-1087)))) (-2830 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-1087)))) (-1953 (*1 *1 *2) (-12 (-5 *2 (-586 (-2 (|:| -2526 (-1083)) (|:| -3043 (-410))))) (-5 *1 (-1087)))))
-(-13 (-560 (-791)) (-10 -8 (-15 -2188 ((-1092 (-1083) (-410)) $)) (-15 -2238 ($)) (-15 -3420 ((-410) (-586 (-1083)) (-410) $)) (-15 -3420 ((-410) (-1083) (-410) $)) (-15 -4102 ((-410) (-1083) $)) (-15 -3238 ((-586 (-1083)) $)) (-15 -3237 ((-586 (-3 (|:| -2883 (-1083)) (|:| |bounds| (-586 (-3 (|:| S (-1083)) (|:| P (-880 (-520)))))))) (-407) $)) (-15 -3566 ((-586 (-1083)) $)) (-15 -3439 ((-586 (-586 (-3 (|:| -2883 (-1083)) (|:| |bounds| (-586 (-3 (|:| S (-1083)) (|:| P (-880 (-520))))))))) $)) (-15 -1958 ((-1016) $)) (-15 -2830 ((-1169) $)) (-15 -1953 ($ (-586 (-2 (|:| -2526 (-1083)) (|:| -3043 (-410))))))))
-((-3746 (((-108) $) 41)) (-1583 (((-3 (-520) (-201) (-1083) (-1066) $) $) 49)) (-2497 (((-586 $) $) 54)) (-1429 (((-1016) $) 19) (($ (-1016)) 20)) (-2138 (((-108) $) 51)) (-2188 (((-791) $) NIL) (($ (-520)) 22) (((-520) $) 24) (($ (-201)) 26) (((-201) $) 28) (($ (-1083)) 30) (((-1083) $) 32) (($ (-1066)) 34) (((-1066) $) 36)) (-2174 (((-108) $ (|[\|\|]| (-520))) 9) (((-108) $ (|[\|\|]| (-201))) 12) (((-108) $ (|[\|\|]| (-1083))) 18) (((-108) $ (|[\|\|]| (-1066))) 15)) (-1497 (($ (-1083) (-586 $)) 38) (($ $ (-586 $)) 39)) (-2439 (((-520) $) 23) (((-201) $) 27) (((-1083) $) 31) (((-1066) $) 35)))
-(((-1088) (-13 (-1159) (-560 (-791)) (-10 -8 (-15 -1429 ((-1016) $)) (-15 -1429 ($ (-1016))) (-15 -2188 ($ (-520))) (-15 -2188 ((-520) $)) (-15 -2439 ((-520) $)) (-15 -2188 ($ (-201))) (-15 -2188 ((-201) $)) (-15 -2439 ((-201) $)) (-15 -2188 ($ (-1083))) (-15 -2188 ((-1083) $)) (-15 -2439 ((-1083) $)) (-15 -2188 ($ (-1066))) (-15 -2188 ((-1066) $)) (-15 -2439 ((-1066) $)) (-15 -1497 ($ (-1083) (-586 $))) (-15 -1497 ($ $ (-586 $))) (-15 -3746 ((-108) $)) (-15 -1583 ((-3 (-520) (-201) (-1083) (-1066) $) $)) (-15 -2497 ((-586 $) $)) (-15 -2138 ((-108) $)) (-15 -2174 ((-108) $ (|[\|\|]| (-520)))) (-15 -2174 ((-108) $ (|[\|\|]| (-201)))) (-15 -2174 ((-108) $ (|[\|\|]| (-1083)))) (-15 -2174 ((-108) $ (|[\|\|]| (-1066))))))) (T -1088))
-((-1429 (*1 *2 *1) (-12 (-5 *2 (-1016)) (-5 *1 (-1088)))) (-1429 (*1 *1 *2) (-12 (-5 *2 (-1016)) (-5 *1 (-1088)))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-1088)))) (-2188 (*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-1088)))) (-2439 (*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-1088)))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-201)) (-5 *1 (-1088)))) (-2188 (*1 *2 *1) (-12 (-5 *2 (-201)) (-5 *1 (-1088)))) (-2439 (*1 *2 *1) (-12 (-5 *2 (-201)) (-5 *1 (-1088)))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-1083)) (-5 *1 (-1088)))) (-2188 (*1 *2 *1) (-12 (-5 *2 (-1083)) (-5 *1 (-1088)))) (-2439 (*1 *2 *1) (-12 (-5 *2 (-1083)) (-5 *1 (-1088)))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-1066)) (-5 *1 (-1088)))) (-2188 (*1 *2 *1) (-12 (-5 *2 (-1066)) (-5 *1 (-1088)))) (-2439 (*1 *2 *1) (-12 (-5 *2 (-1066)) (-5 *1 (-1088)))) (-1497 (*1 *1 *2 *3) (-12 (-5 *2 (-1083)) (-5 *3 (-586 (-1088))) (-5 *1 (-1088)))) (-1497 (*1 *1 *1 *2) (-12 (-5 *2 (-586 (-1088))) (-5 *1 (-1088)))) (-3746 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1088)))) (-1583 (*1 *2 *1) (-12 (-5 *2 (-3 (-520) (-201) (-1083) (-1066) (-1088))) (-5 *1 (-1088)))) (-2497 (*1 *2 *1) (-12 (-5 *2 (-586 (-1088))) (-5 *1 (-1088)))) (-2138 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1088)))) (-2174 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-520))) (-5 *2 (-108)) (-5 *1 (-1088)))) (-2174 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-201))) (-5 *2 (-108)) (-5 *1 (-1088)))) (-2174 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1083))) (-5 *2 (-108)) (-5 *1 (-1088)))) (-2174 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1066))) (-5 *2 (-108)) (-5 *1 (-1088)))))
-(-13 (-1159) (-560 (-791)) (-10 -8 (-15 -1429 ((-1016) $)) (-15 -1429 ($ (-1016))) (-15 -2188 ($ (-520))) (-15 -2188 ((-520) $)) (-15 -2439 ((-520) $)) (-15 -2188 ($ (-201))) (-15 -2188 ((-201) $)) (-15 -2439 ((-201) $)) (-15 -2188 ($ (-1083))) (-15 -2188 ((-1083) $)) (-15 -2439 ((-1083) $)) (-15 -2188 ($ (-1066))) (-15 -2188 ((-1066) $)) (-15 -2439 ((-1066) $)) (-15 -1497 ($ (-1083) (-586 $))) (-15 -1497 ($ $ (-586 $))) (-15 -3746 ((-108) $)) (-15 -1583 ((-3 (-520) (-201) (-1083) (-1066) $) $)) (-15 -2497 ((-586 $) $)) (-15 -2138 ((-108) $)) (-15 -2174 ((-108) $ (|[\|\|]| (-520)))) (-15 -2174 ((-108) $ (|[\|\|]| (-201)))) (-15 -2174 ((-108) $ (|[\|\|]| (-1083)))) (-15 -2174 ((-108) $ (|[\|\|]| (-1066))))))
-((-3943 (((-586 (-586 (-880 |#1|))) (-586 (-380 (-880 |#1|))) (-586 (-1083))) 55)) (-3600 (((-586 (-268 (-380 (-880 |#1|)))) (-268 (-380 (-880 |#1|)))) 67) (((-586 (-268 (-380 (-880 |#1|)))) (-380 (-880 |#1|))) 63) (((-586 (-268 (-380 (-880 |#1|)))) (-268 (-380 (-880 |#1|))) (-1083)) 68) (((-586 (-268 (-380 (-880 |#1|)))) (-380 (-880 |#1|)) (-1083)) 62) (((-586 (-586 (-268 (-380 (-880 |#1|))))) (-586 (-268 (-380 (-880 |#1|))))) 92) (((-586 (-586 (-268 (-380 (-880 |#1|))))) (-586 (-380 (-880 |#1|)))) 91) (((-586 (-586 (-268 (-380 (-880 |#1|))))) (-586 (-268 (-380 (-880 |#1|)))) (-586 (-1083))) 93) (((-586 (-586 (-268 (-380 (-880 |#1|))))) (-586 (-380 (-880 |#1|))) (-586 (-1083))) 90)))
-(((-1089 |#1|) (-10 -7 (-15 -3600 ((-586 (-586 (-268 (-380 (-880 |#1|))))) (-586 (-380 (-880 |#1|))) (-586 (-1083)))) (-15 -3600 ((-586 (-586 (-268 (-380 (-880 |#1|))))) (-586 (-268 (-380 (-880 |#1|)))) (-586 (-1083)))) (-15 -3600 ((-586 (-586 (-268 (-380 (-880 |#1|))))) (-586 (-380 (-880 |#1|))))) (-15 -3600 ((-586 (-586 (-268 (-380 (-880 |#1|))))) (-586 (-268 (-380 (-880 |#1|)))))) (-15 -3600 ((-586 (-268 (-380 (-880 |#1|)))) (-380 (-880 |#1|)) (-1083))) (-15 -3600 ((-586 (-268 (-380 (-880 |#1|)))) (-268 (-380 (-880 |#1|))) (-1083))) (-15 -3600 ((-586 (-268 (-380 (-880 |#1|)))) (-380 (-880 |#1|)))) (-15 -3600 ((-586 (-268 (-380 (-880 |#1|)))) (-268 (-380 (-880 |#1|))))) (-15 -3943 ((-586 (-586 (-880 |#1|))) (-586 (-380 (-880 |#1|))) (-586 (-1083))))) (-512)) (T -1089))
-((-3943 (*1 *2 *3 *4) (-12 (-5 *3 (-586 (-380 (-880 *5)))) (-5 *4 (-586 (-1083))) (-4 *5 (-512)) (-5 *2 (-586 (-586 (-880 *5)))) (-5 *1 (-1089 *5)))) (-3600 (*1 *2 *3) (-12 (-4 *4 (-512)) (-5 *2 (-586 (-268 (-380 (-880 *4))))) (-5 *1 (-1089 *4)) (-5 *3 (-268 (-380 (-880 *4)))))) (-3600 (*1 *2 *3) (-12 (-4 *4 (-512)) (-5 *2 (-586 (-268 (-380 (-880 *4))))) (-5 *1 (-1089 *4)) (-5 *3 (-380 (-880 *4))))) (-3600 (*1 *2 *3 *4) (-12 (-5 *4 (-1083)) (-4 *5 (-512)) (-5 *2 (-586 (-268 (-380 (-880 *5))))) (-5 *1 (-1089 *5)) (-5 *3 (-268 (-380 (-880 *5)))))) (-3600 (*1 *2 *3 *4) (-12 (-5 *4 (-1083)) (-4 *5 (-512)) (-5 *2 (-586 (-268 (-380 (-880 *5))))) (-5 *1 (-1089 *5)) (-5 *3 (-380 (-880 *5))))) (-3600 (*1 *2 *3) (-12 (-4 *4 (-512)) (-5 *2 (-586 (-586 (-268 (-380 (-880 *4)))))) (-5 *1 (-1089 *4)) (-5 *3 (-586 (-268 (-380 (-880 *4))))))) (-3600 (*1 *2 *3) (-12 (-5 *3 (-586 (-380 (-880 *4)))) (-4 *4 (-512)) (-5 *2 (-586 (-586 (-268 (-380 (-880 *4)))))) (-5 *1 (-1089 *4)))) (-3600 (*1 *2 *3 *4) (-12 (-5 *4 (-586 (-1083))) (-4 *5 (-512)) (-5 *2 (-586 (-586 (-268 (-380 (-880 *5)))))) (-5 *1 (-1089 *5)) (-5 *3 (-586 (-268 (-380 (-880 *5))))))) (-3600 (*1 *2 *3 *4) (-12 (-5 *3 (-586 (-380 (-880 *5)))) (-5 *4 (-586 (-1083))) (-4 *5 (-512)) (-5 *2 (-586 (-586 (-268 (-380 (-880 *5)))))) (-5 *1 (-1089 *5)))))
-(-10 -7 (-15 -3600 ((-586 (-586 (-268 (-380 (-880 |#1|))))) (-586 (-380 (-880 |#1|))) (-586 (-1083)))) (-15 -3600 ((-586 (-586 (-268 (-380 (-880 |#1|))))) (-586 (-268 (-380 (-880 |#1|)))) (-586 (-1083)))) (-15 -3600 ((-586 (-586 (-268 (-380 (-880 |#1|))))) (-586 (-380 (-880 |#1|))))) (-15 -3600 ((-586 (-586 (-268 (-380 (-880 |#1|))))) (-586 (-268 (-380 (-880 |#1|)))))) (-15 -3600 ((-586 (-268 (-380 (-880 |#1|)))) (-380 (-880 |#1|)) (-1083))) (-15 -3600 ((-586 (-268 (-380 (-880 |#1|)))) (-268 (-380 (-880 |#1|))) (-1083))) (-15 -3600 ((-586 (-268 (-380 (-880 |#1|)))) (-380 (-880 |#1|)))) (-15 -3600 ((-586 (-268 (-380 (-880 |#1|)))) (-268 (-380 (-880 |#1|))))) (-15 -3943 ((-586 (-586 (-880 |#1|))) (-586 (-380 (-880 |#1|))) (-586 (-1083)))))
-((-1577 (((-586 (-586 |#1|)) (-586 (-586 |#1|)) (-586 (-586 (-586 |#1|)))) 38)) (-1895 (((-586 (-586 (-586 |#1|))) (-586 (-586 |#1|))) 24)) (-3328 (((-1091 (-586 |#1|)) (-586 |#1|)) 34)) (-2465 (((-586 (-586 |#1|)) (-586 |#1|)) 30)) (-3914 (((-2 (|:| |f1| (-586 |#1|)) (|:| |f2| (-586 (-586 (-586 |#1|)))) (|:| |f3| (-586 (-586 |#1|))) (|:| |f4| (-586 (-586 (-586 |#1|))))) (-586 (-586 (-586 |#1|)))) 37)) (-1899 (((-2 (|:| |f1| (-586 |#1|)) (|:| |f2| (-586 (-586 (-586 |#1|)))) (|:| |f3| (-586 (-586 |#1|))) (|:| |f4| (-586 (-586 (-586 |#1|))))) (-586 |#1|) (-586 (-586 (-586 |#1|))) (-586 (-586 |#1|)) (-586 (-586 (-586 |#1|))) (-586 (-586 (-586 |#1|))) (-586 (-586 (-586 |#1|)))) 36)) (-2022 (((-586 (-586 |#1|)) (-586 (-586 |#1|))) 28)) (-1675 (((-586 |#1|) (-586 |#1|)) 31)) (-2828 (((-586 (-586 (-586 |#1|))) (-586 |#1|) (-586 (-586 (-586 |#1|)))) 18)) (-3437 (((-586 (-586 (-586 |#1|))) (-1 (-108) |#1| |#1|) (-586 |#1|) (-586 (-586 (-586 |#1|)))) 15)) (-2506 (((-2 (|:| |fs| (-108)) (|:| |sd| (-586 |#1|)) (|:| |td| (-586 (-586 |#1|)))) (-1 (-108) |#1| |#1|) (-586 |#1|) (-586 (-586 |#1|))) 13)) (-2285 (((-586 (-586 |#1|)) (-586 (-586 (-586 |#1|)))) 39)) (-3963 (((-586 (-586 |#1|)) (-1091 (-586 |#1|))) 41)))
-(((-1090 |#1|) (-10 -7 (-15 -2506 ((-2 (|:| |fs| (-108)) (|:| |sd| (-586 |#1|)) (|:| |td| (-586 (-586 |#1|)))) (-1 (-108) |#1| |#1|) (-586 |#1|) (-586 (-586 |#1|)))) (-15 -3437 ((-586 (-586 (-586 |#1|))) (-1 (-108) |#1| |#1|) (-586 |#1|) (-586 (-586 (-586 |#1|))))) (-15 -2828 ((-586 (-586 (-586 |#1|))) (-586 |#1|) (-586 (-586 (-586 |#1|))))) (-15 -1577 ((-586 (-586 |#1|)) (-586 (-586 |#1|)) (-586 (-586 (-586 |#1|))))) (-15 -2285 ((-586 (-586 |#1|)) (-586 (-586 (-586 |#1|))))) (-15 -3963 ((-586 (-586 |#1|)) (-1091 (-586 |#1|)))) (-15 -1895 ((-586 (-586 (-586 |#1|))) (-586 (-586 |#1|)))) (-15 -3328 ((-1091 (-586 |#1|)) (-586 |#1|))) (-15 -2022 ((-586 (-586 |#1|)) (-586 (-586 |#1|)))) (-15 -2465 ((-586 (-586 |#1|)) (-586 |#1|))) (-15 -1675 ((-586 |#1|) (-586 |#1|))) (-15 -1899 ((-2 (|:| |f1| (-586 |#1|)) (|:| |f2| (-586 (-586 (-586 |#1|)))) (|:| |f3| (-586 (-586 |#1|))) (|:| |f4| (-586 (-586 (-586 |#1|))))) (-586 |#1|) (-586 (-586 (-586 |#1|))) (-586 (-586 |#1|)) (-586 (-586 (-586 |#1|))) (-586 (-586 (-586 |#1|))) (-586 (-586 (-586 |#1|))))) (-15 -3914 ((-2 (|:| |f1| (-586 |#1|)) (|:| |f2| (-586 (-586 (-586 |#1|)))) (|:| |f3| (-586 (-586 |#1|))) (|:| |f4| (-586 (-586 (-586 |#1|))))) (-586 (-586 (-586 |#1|)))))) (-783)) (T -1090))
-((-3914 (*1 *2 *3) (-12 (-4 *4 (-783)) (-5 *2 (-2 (|:| |f1| (-586 *4)) (|:| |f2| (-586 (-586 (-586 *4)))) (|:| |f3| (-586 (-586 *4))) (|:| |f4| (-586 (-586 (-586 *4)))))) (-5 *1 (-1090 *4)) (-5 *3 (-586 (-586 (-586 *4)))))) (-1899 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-783)) (-5 *3 (-586 *6)) (-5 *5 (-586 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-586 *5)) (|:| |f3| *5) (|:| |f4| (-586 *5)))) (-5 *1 (-1090 *6)) (-5 *4 (-586 *5)))) (-1675 (*1 *2 *2) (-12 (-5 *2 (-586 *3)) (-4 *3 (-783)) (-5 *1 (-1090 *3)))) (-2465 (*1 *2 *3) (-12 (-4 *4 (-783)) (-5 *2 (-586 (-586 *4))) (-5 *1 (-1090 *4)) (-5 *3 (-586 *4)))) (-2022 (*1 *2 *2) (-12 (-5 *2 (-586 (-586 *3))) (-4 *3 (-783)) (-5 *1 (-1090 *3)))) (-3328 (*1 *2 *3) (-12 (-4 *4 (-783)) (-5 *2 (-1091 (-586 *4))) (-5 *1 (-1090 *4)) (-5 *3 (-586 *4)))) (-1895 (*1 *2 *3) (-12 (-4 *4 (-783)) (-5 *2 (-586 (-586 (-586 *4)))) (-5 *1 (-1090 *4)) (-5 *3 (-586 (-586 *4))))) (-3963 (*1 *2 *3) (-12 (-5 *3 (-1091 (-586 *4))) (-4 *4 (-783)) (-5 *2 (-586 (-586 *4))) (-5 *1 (-1090 *4)))) (-2285 (*1 *2 *3) (-12 (-5 *3 (-586 (-586 (-586 *4)))) (-5 *2 (-586 (-586 *4))) (-5 *1 (-1090 *4)) (-4 *4 (-783)))) (-1577 (*1 *2 *2 *3) (-12 (-5 *3 (-586 (-586 (-586 *4)))) (-5 *2 (-586 (-586 *4))) (-4 *4 (-783)) (-5 *1 (-1090 *4)))) (-2828 (*1 *2 *3 *2) (-12 (-5 *2 (-586 (-586 (-586 *4)))) (-5 *3 (-586 *4)) (-4 *4 (-783)) (-5 *1 (-1090 *4)))) (-3437 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-586 (-586 (-586 *5)))) (-5 *3 (-1 (-108) *5 *5)) (-5 *4 (-586 *5)) (-4 *5 (-783)) (-5 *1 (-1090 *5)))) (-2506 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-108) *6 *6)) (-4 *6 (-783)) (-5 *4 (-586 *6)) (-5 *2 (-2 (|:| |fs| (-108)) (|:| |sd| *4) (|:| |td| (-586 *4)))) (-5 *1 (-1090 *6)) (-5 *5 (-586 *4)))))
-(-10 -7 (-15 -2506 ((-2 (|:| |fs| (-108)) (|:| |sd| (-586 |#1|)) (|:| |td| (-586 (-586 |#1|)))) (-1 (-108) |#1| |#1|) (-586 |#1|) (-586 (-586 |#1|)))) (-15 -3437 ((-586 (-586 (-586 |#1|))) (-1 (-108) |#1| |#1|) (-586 |#1|) (-586 (-586 (-586 |#1|))))) (-15 -2828 ((-586 (-586 (-586 |#1|))) (-586 |#1|) (-586 (-586 (-586 |#1|))))) (-15 -1577 ((-586 (-586 |#1|)) (-586 (-586 |#1|)) (-586 (-586 (-586 |#1|))))) (-15 -2285 ((-586 (-586 |#1|)) (-586 (-586 (-586 |#1|))))) (-15 -3963 ((-586 (-586 |#1|)) (-1091 (-586 |#1|)))) (-15 -1895 ((-586 (-586 (-586 |#1|))) (-586 (-586 |#1|)))) (-15 -3328 ((-1091 (-586 |#1|)) (-586 |#1|))) (-15 -2022 ((-586 (-586 |#1|)) (-586 (-586 |#1|)))) (-15 -2465 ((-586 (-586 |#1|)) (-586 |#1|))) (-15 -1675 ((-586 |#1|) (-586 |#1|))) (-15 -1899 ((-2 (|:| |f1| (-586 |#1|)) (|:| |f2| (-586 (-586 (-586 |#1|)))) (|:| |f3| (-586 (-586 |#1|))) (|:| |f4| (-586 (-586 (-586 |#1|))))) (-586 |#1|) (-586 (-586 (-586 |#1|))) (-586 (-586 |#1|)) (-586 (-586 (-586 |#1|))) (-586 (-586 (-586 |#1|))) (-586 (-586 (-586 |#1|))))) (-15 -3914 ((-2 (|:| |f1| (-586 |#1|)) (|:| |f2| (-586 (-586 (-586 |#1|)))) (|:| |f3| (-586 (-586 |#1|))) (|:| |f4| (-586 (-586 (-586 |#1|))))) (-586 (-586 (-586 |#1|))))))
-((-2902 (($ (-586 (-586 |#1|))) 9)) (-3464 (((-586 (-586 |#1|)) $) 10)) (-2188 (((-791) $) 25)))
-(((-1091 |#1|) (-10 -8 (-15 -2902 ($ (-586 (-586 |#1|)))) (-15 -3464 ((-586 (-586 |#1|)) $)) (-15 -2188 ((-791) $))) (-1012)) (T -1091))
-((-2188 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-1091 *3)) (-4 *3 (-1012)))) (-3464 (*1 *2 *1) (-12 (-5 *2 (-586 (-586 *3))) (-5 *1 (-1091 *3)) (-4 *3 (-1012)))) (-2902 (*1 *1 *2) (-12 (-5 *2 (-586 (-586 *3))) (-4 *3 (-1012)) (-5 *1 (-1091 *3)))))
-(-10 -8 (-15 -2902 ($ (-586 (-586 |#1|)))) (-15 -3464 ((-586 (-586 |#1|)) $)) (-15 -2188 ((-791) $)))
-((-1414 (((-108) $ $) NIL (-3700 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)) (|has| |#2| (-1012))))) (-1799 (($) NIL) (($ (-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) NIL)) (-1476 (((-1169) $ |#1| |#1|) NIL (|has| $ (-6 -4230)))) (-2063 (((-108) $ (-706)) NIL)) (-2377 ((|#2| $ |#1| |#2|) NIL)) (-1817 (($ (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4229)))) (-1627 (($ (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4229)))) (-2747 (((-3 |#2| "failed") |#1| $) NIL)) (-3961 (($) NIL T CONST)) (-2331 (($ $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012))))) (-3766 (($ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) NIL (|has| $ (-6 -4229))) (($ (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4229))) (((-3 |#2| "failed") |#1| $) NIL)) (-1421 (($ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (($ (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4229)))) (-3856 (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) NIL (-12 (|has| $ (-6 -4229)) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) NIL (|has| $ (-6 -4229))) (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4229)))) (-3846 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4230)))) (-3623 ((|#2| $ |#1|) NIL)) (-3828 (((-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4229))) (((-586 |#2|) $) NIL (|has| $ (-6 -4229)))) (-3027 (((-108) $ (-706)) NIL)) (-2567 ((|#1| $) NIL (|has| |#1| (-783)))) (-3702 (((-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4229))) (((-586 |#2|) $) NIL (|has| $ (-6 -4229)))) (-2422 (((-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#2| (-1012))))) (-1752 ((|#1| $) NIL (|has| |#1| (-783)))) (-3830 (($ (-1 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4230))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4230)))) (-1389 (($ (-1 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1390 (((-108) $ (-706)) NIL)) (-1239 (((-1066) $) NIL (-3700 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)) (|has| |#2| (-1012))))) (-2960 (((-586 |#1|) $) NIL)) (-1612 (((-108) |#1| $) NIL)) (-3351 (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) NIL)) (-3618 (($ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) NIL)) (-3622 (((-586 |#1|) $) NIL)) (-2603 (((-108) |#1| $) NIL)) (-4142 (((-1030) $) NIL (-3700 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)) (|has| |#2| (-1012))))) (-2293 ((|#2| $) NIL (|has| |#1| (-783)))) (-2985 (((-3 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) "failed") (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL)) (-2936 (($ $ |#2|) NIL (|has| $ (-6 -4230)))) (-3345 (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) NIL)) (-4155 (((-108) (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4229))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))))) NIL (-12 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-283 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (($ $ (-268 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) NIL (-12 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-283 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (($ $ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) NIL (-12 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-283 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (($ $ (-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) (-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) NIL (-12 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-283 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (($ $ (-586 |#2|) (-586 |#2|)) NIL (-12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012)))) (($ $ (-268 |#2|)) NIL (-12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012)))) (($ $ (-586 (-268 |#2|))) NIL (-12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012))))) (-2533 (((-108) $ $) NIL)) (-2094 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#2| (-1012))))) (-1523 (((-586 |#2|) $) NIL)) (-4018 (((-108) $) NIL)) (-2238 (($) NIL)) (-2543 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1645 (($) NIL) (($ (-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) NIL)) (-4159 (((-706) (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4229))) (((-706) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) NIL (-12 (|has| $ (-6 -4229)) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (((-706) |#2| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#2| (-1012)))) (((-706) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4229)))) (-2403 (($ $) NIL)) (-1429 (((-496) $) NIL (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-561 (-496))))) (-2200 (($ (-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) NIL)) (-2188 (((-791) $) NIL (-3700 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-560 (-791))) (|has| |#2| (-560 (-791)))))) (-1898 (($ (-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) NIL)) (-1662 (((-108) (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) NIL (|has| $ (-6 -4229))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4229)))) (-1530 (((-108) $ $) NIL (-3700 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)) (|has| |#2| (-1012))))) (-3474 (((-706) $) NIL (|has| $ (-6 -4229)))))
-(((-1092 |#1| |#2|) (-13 (-1095 |#1| |#2|) (-10 -7 (-6 -4229))) (-1012) (-1012)) (T -1092))
-NIL
-(-13 (-1095 |#1| |#2|) (-10 -7 (-6 -4229)))
-((-3688 ((|#1| (-586 |#1|)) 32)) (-3215 ((|#1| |#1| (-520)) 18)) (-3919 (((-1079 |#1|) |#1| (-849)) 15)))
-(((-1093 |#1|) (-10 -7 (-15 -3688 (|#1| (-586 |#1|))) (-15 -3919 ((-1079 |#1|) |#1| (-849))) (-15 -3215 (|#1| |#1| (-520)))) (-336)) (T -1093))
-((-3215 (*1 *2 *2 *3) (-12 (-5 *3 (-520)) (-5 *1 (-1093 *2)) (-4 *2 (-336)))) (-3919 (*1 *2 *3 *4) (-12 (-5 *4 (-849)) (-5 *2 (-1079 *3)) (-5 *1 (-1093 *3)) (-4 *3 (-336)))) (-3688 (*1 *2 *3) (-12 (-5 *3 (-586 *2)) (-5 *1 (-1093 *2)) (-4 *2 (-336)))))
-(-10 -7 (-15 -3688 (|#1| (-586 |#1|))) (-15 -3919 ((-1079 |#1|) |#1| (-849))) (-15 -3215 (|#1| |#1| (-520))))
-((-1799 (($) 10) (($ (-586 (-2 (|:| -2526 |#2|) (|:| -3043 |#3|)))) 14)) (-3766 (($ (-2 (|:| -2526 |#2|) (|:| -3043 |#3|)) $) 60) (($ (-1 (-108) (-2 (|:| -2526 |#2|) (|:| -3043 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-3828 (((-586 (-2 (|:| -2526 |#2|) (|:| -3043 |#3|))) $) 39) (((-586 |#3|) $) 41)) (-3830 (($ (-1 (-2 (|:| -2526 |#2|) (|:| -3043 |#3|)) (-2 (|:| -2526 |#2|) (|:| -3043 |#3|))) $) 52) (($ (-1 |#3| |#3|) $) 33)) (-1389 (($ (-1 (-2 (|:| -2526 |#2|) (|:| -3043 |#3|)) (-2 (|:| -2526 |#2|) (|:| -3043 |#3|))) $) 50) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-3351 (((-2 (|:| -2526 |#2|) (|:| -3043 |#3|)) $) 53)) (-3618 (($ (-2 (|:| -2526 |#2|) (|:| -3043 |#3|)) $) 16)) (-3622 (((-586 |#2|) $) 19)) (-2603 (((-108) |#2| $) 58)) (-2985 (((-3 (-2 (|:| -2526 |#2|) (|:| -3043 |#3|)) "failed") (-1 (-108) (-2 (|:| -2526 |#2|) (|:| -3043 |#3|))) $) 57)) (-3345 (((-2 (|:| -2526 |#2|) (|:| -3043 |#3|)) $) 62)) (-4155 (((-108) (-1 (-108) (-2 (|:| -2526 |#2|) (|:| -3043 |#3|))) $) NIL) (((-108) (-1 (-108) |#3|) $) 66)) (-1523 (((-586 |#3|) $) 43)) (-2543 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-4159 (((-706) (-1 (-108) (-2 (|:| -2526 |#2|) (|:| -3043 |#3|))) $) NIL) (((-706) (-2 (|:| -2526 |#2|) (|:| -3043 |#3|)) $) NIL) (((-706) |#3| $) NIL) (((-706) (-1 (-108) |#3|) $) 67)) (-2188 (((-791) $) 27)) (-1662 (((-108) (-1 (-108) (-2 (|:| -2526 |#2|) (|:| -3043 |#3|))) $) NIL) (((-108) (-1 (-108) |#3|) $) 64)) (-1530 (((-108) $ $) 48)))
-(((-1094 |#1| |#2| |#3|) (-10 -8 (-15 -2188 ((-791) |#1|)) (-15 -1530 ((-108) |#1| |#1|)) (-15 -1389 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -1799 (|#1| (-586 (-2 (|:| -2526 |#2|) (|:| -3043 |#3|))))) (-15 -1799 (|#1|)) (-15 -1389 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3830 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1662 ((-108) (-1 (-108) |#3|) |#1|)) (-15 -4155 ((-108) (-1 (-108) |#3|) |#1|)) (-15 -4159 ((-706) (-1 (-108) |#3|) |#1|)) (-15 -3828 ((-586 |#3|) |#1|)) (-15 -4159 ((-706) |#3| |#1|)) (-15 -2543 (|#3| |#1| |#2| |#3|)) (-15 -2543 (|#3| |#1| |#2|)) (-15 -1523 ((-586 |#3|) |#1|)) (-15 -2603 ((-108) |#2| |#1|)) (-15 -3622 ((-586 |#2|) |#1|)) (-15 -3766 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3766 (|#1| (-1 (-108) (-2 (|:| -2526 |#2|) (|:| -3043 |#3|))) |#1|)) (-15 -3766 (|#1| (-2 (|:| -2526 |#2|) (|:| -3043 |#3|)) |#1|)) (-15 -2985 ((-3 (-2 (|:| -2526 |#2|) (|:| -3043 |#3|)) "failed") (-1 (-108) (-2 (|:| -2526 |#2|) (|:| -3043 |#3|))) |#1|)) (-15 -3351 ((-2 (|:| -2526 |#2|) (|:| -3043 |#3|)) |#1|)) (-15 -3618 (|#1| (-2 (|:| -2526 |#2|) (|:| -3043 |#3|)) |#1|)) (-15 -3345 ((-2 (|:| -2526 |#2|) (|:| -3043 |#3|)) |#1|)) (-15 -4159 ((-706) (-2 (|:| -2526 |#2|) (|:| -3043 |#3|)) |#1|)) (-15 -3828 ((-586 (-2 (|:| -2526 |#2|) (|:| -3043 |#3|))) |#1|)) (-15 -4159 ((-706) (-1 (-108) (-2 (|:| -2526 |#2|) (|:| -3043 |#3|))) |#1|)) (-15 -4155 ((-108) (-1 (-108) (-2 (|:| -2526 |#2|) (|:| -3043 |#3|))) |#1|)) (-15 -1662 ((-108) (-1 (-108) (-2 (|:| -2526 |#2|) (|:| -3043 |#3|))) |#1|)) (-15 -3830 (|#1| (-1 (-2 (|:| -2526 |#2|) (|:| -3043 |#3|)) (-2 (|:| -2526 |#2|) (|:| -3043 |#3|))) |#1|)) (-15 -1389 (|#1| (-1 (-2 (|:| -2526 |#2|) (|:| -3043 |#3|)) (-2 (|:| -2526 |#2|) (|:| -3043 |#3|))) |#1|))) (-1095 |#2| |#3|) (-1012) (-1012)) (T -1094))
-NIL
-(-10 -8 (-15 -2188 ((-791) |#1|)) (-15 -1530 ((-108) |#1| |#1|)) (-15 -1389 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -1799 (|#1| (-586 (-2 (|:| -2526 |#2|) (|:| -3043 |#3|))))) (-15 -1799 (|#1|)) (-15 -1389 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3830 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1662 ((-108) (-1 (-108) |#3|) |#1|)) (-15 -4155 ((-108) (-1 (-108) |#3|) |#1|)) (-15 -4159 ((-706) (-1 (-108) |#3|) |#1|)) (-15 -3828 ((-586 |#3|) |#1|)) (-15 -4159 ((-706) |#3| |#1|)) (-15 -2543 (|#3| |#1| |#2| |#3|)) (-15 -2543 (|#3| |#1| |#2|)) (-15 -1523 ((-586 |#3|) |#1|)) (-15 -2603 ((-108) |#2| |#1|)) (-15 -3622 ((-586 |#2|) |#1|)) (-15 -3766 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3766 (|#1| (-1 (-108) (-2 (|:| -2526 |#2|) (|:| -3043 |#3|))) |#1|)) (-15 -3766 (|#1| (-2 (|:| -2526 |#2|) (|:| -3043 |#3|)) |#1|)) (-15 -2985 ((-3 (-2 (|:| -2526 |#2|) (|:| -3043 |#3|)) "failed") (-1 (-108) (-2 (|:| -2526 |#2|) (|:| -3043 |#3|))) |#1|)) (-15 -3351 ((-2 (|:| -2526 |#2|) (|:| -3043 |#3|)) |#1|)) (-15 -3618 (|#1| (-2 (|:| -2526 |#2|) (|:| -3043 |#3|)) |#1|)) (-15 -3345 ((-2 (|:| -2526 |#2|) (|:| -3043 |#3|)) |#1|)) (-15 -4159 ((-706) (-2 (|:| -2526 |#2|) (|:| -3043 |#3|)) |#1|)) (-15 -3828 ((-586 (-2 (|:| -2526 |#2|) (|:| -3043 |#3|))) |#1|)) (-15 -4159 ((-706) (-1 (-108) (-2 (|:| -2526 |#2|) (|:| -3043 |#3|))) |#1|)) (-15 -4155 ((-108) (-1 (-108) (-2 (|:| -2526 |#2|) (|:| -3043 |#3|))) |#1|)) (-15 -1662 ((-108) (-1 (-108) (-2 (|:| -2526 |#2|) (|:| -3043 |#3|))) |#1|)) (-15 -3830 (|#1| (-1 (-2 (|:| -2526 |#2|) (|:| -3043 |#3|)) (-2 (|:| -2526 |#2|) (|:| -3043 |#3|))) |#1|)) (-15 -1389 (|#1| (-1 (-2 (|:| -2526 |#2|) (|:| -3043 |#3|)) (-2 (|:| -2526 |#2|) (|:| -3043 |#3|))) |#1|)))
-((-1414 (((-108) $ $) 19 (-3700 (|has| |#2| (-1012)) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012))))) (-1799 (($) 72) (($ (-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) 71)) (-1476 (((-1169) $ |#1| |#1|) 99 (|has| $ (-6 -4230)))) (-2063 (((-108) $ (-706)) 8)) (-2377 ((|#2| $ |#1| |#2|) 73)) (-1817 (($ (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) 45 (|has| $ (-6 -4229)))) (-1627 (($ (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) 55 (|has| $ (-6 -4229)))) (-2747 (((-3 |#2| "failed") |#1| $) 61)) (-3961 (($) 7 T CONST)) (-2331 (($ $) 58 (-12 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)) (|has| $ (-6 -4229))))) (-3766 (($ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) 47 (|has| $ (-6 -4229))) (($ (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) 46 (|has| $ (-6 -4229))) (((-3 |#2| "failed") |#1| $) 62)) (-1421 (($ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)) (|has| $ (-6 -4229)))) (($ (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) 54 (|has| $ (-6 -4229)))) (-3856 (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) 56 (-12 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)) (|has| $ (-6 -4229)))) (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) 53 (|has| $ (-6 -4229))) (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) 52 (|has| $ (-6 -4229)))) (-3846 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4230)))) (-3623 ((|#2| $ |#1|) 88)) (-3828 (((-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) 30 (|has| $ (-6 -4229))) (((-586 |#2|) $) 79 (|has| $ (-6 -4229)))) (-3027 (((-108) $ (-706)) 9)) (-2567 ((|#1| $) 96 (|has| |#1| (-783)))) (-3702 (((-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) 29 (|has| $ (-6 -4229))) (((-586 |#2|) $) 80 (|has| $ (-6 -4229)))) (-2422 (((-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)) (|has| $ (-6 -4229)))) (((-108) |#2| $) 82 (-12 (|has| |#2| (-1012)) (|has| $ (-6 -4229))))) (-1752 ((|#1| $) 95 (|has| |#1| (-783)))) (-3830 (($ (-1 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) 34 (|has| $ (-6 -4230))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4230)))) (-1389 (($ (-1 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70)) (-1390 (((-108) $ (-706)) 10)) (-1239 (((-1066) $) 22 (-3700 (|has| |#2| (-1012)) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012))))) (-2960 (((-586 |#1|) $) 63)) (-1612 (((-108) |#1| $) 64)) (-3351 (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) 39)) (-3618 (($ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) 40)) (-3622 (((-586 |#1|) $) 93)) (-2603 (((-108) |#1| $) 92)) (-4142 (((-1030) $) 21 (-3700 (|has| |#2| (-1012)) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012))))) (-2293 ((|#2| $) 97 (|has| |#1| (-783)))) (-2985 (((-3 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) "failed") (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) 51)) (-2936 (($ $ |#2|) 98 (|has| $ (-6 -4230)))) (-3345 (((-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) 41)) (-4155 (((-108) (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) 32 (|has| $ (-6 -4229))) (((-108) (-1 (-108) |#2|) $) 77 (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))))) 26 (-12 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-283 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (($ $ (-268 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) 25 (-12 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-283 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (($ $ (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) 24 (-12 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-283 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (($ $ (-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) (-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) 23 (-12 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-283 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)))) (($ $ (-586 |#2|) (-586 |#2|)) 86 (-12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012)))) (($ $ (-268 |#2|)) 84 (-12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012)))) (($ $ (-586 (-268 |#2|))) 83 (-12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012))))) (-2533 (((-108) $ $) 14)) (-2094 (((-108) |#2| $) 94 (-12 (|has| $ (-6 -4229)) (|has| |#2| (-1012))))) (-1523 (((-586 |#2|) $) 91)) (-4018 (((-108) $) 11)) (-2238 (($) 12)) (-2543 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89)) (-1645 (($) 49) (($ (-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) 48)) (-4159 (((-706) (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) 31 (|has| $ (-6 -4229))) (((-706) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)) (|has| $ (-6 -4229)))) (((-706) |#2| $) 81 (-12 (|has| |#2| (-1012)) (|has| $ (-6 -4229)))) (((-706) (-1 (-108) |#2|) $) 78 (|has| $ (-6 -4229)))) (-2403 (($ $) 13)) (-1429 (((-496) $) 59 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-561 (-496))))) (-2200 (($ (-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) 50)) (-2188 (((-791) $) 18 (-3700 (|has| |#2| (-560 (-791))) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-560 (-791)))))) (-1898 (($ (-586 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) 42)) (-1662 (((-108) (-1 (-108) (-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) $) 33 (|has| $ (-6 -4229))) (((-108) (-1 (-108) |#2|) $) 76 (|has| $ (-6 -4229)))) (-1530 (((-108) $ $) 20 (-3700 (|has| |#2| (-1012)) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012))))) (-3474 (((-706) $) 6 (|has| $ (-6 -4229)))))
-(((-1095 |#1| |#2|) (-1195) (-1012) (-1012)) (T -1095))
-((-2377 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1095 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1012)))) (-1799 (*1 *1) (-12 (-4 *1 (-1095 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1012)))) (-1799 (*1 *1 *2) (-12 (-5 *2 (-586 (-2 (|:| -2526 *3) (|:| -3043 *4)))) (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *1 (-1095 *3 *4)))) (-1389 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1095 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)))))
-(-13 (-557 |t#1| |t#2|) (-553 |t#1| |t#2|) (-10 -8 (-15 -2377 (|t#2| $ |t#1| |t#2|)) (-15 -1799 ($)) (-15 -1799 ($ (-586 (-2 (|:| -2526 |t#1|) (|:| -3043 |t#2|))))) (-15 -1389 ($ (-1 |t#2| |t#2| |t#2|) $ $))))
-(((-33) . T) ((-102 #0=(-2 (|:| -2526 |#1|) (|:| -3043 |#2|))) . T) ((-97) -3700 (|has| |#2| (-1012)) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012))) ((-560 (-791)) -3700 (|has| |#2| (-1012)) (|has| |#2| (-560 (-791))) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012)) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-560 (-791)))) ((-139 #0#) . T) ((-561 (-496)) |has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-561 (-496))) ((-205 #0#) . T) ((-211 #0#) . T) ((-260 |#1| |#2|) . T) ((-262 |#1| |#2|) . T) ((-283 #0#) -12 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-283 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012))) ((-283 |#2|) -12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012))) ((-459 #0#) . T) ((-459 |#2|) . T) ((-553 |#1| |#2|) . T) ((-481 #0# #0#) -12 (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-283 (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)))) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012))) ((-481 |#2| |#2|) -12 (|has| |#2| (-283 |#2|)) (|has| |#2| (-1012))) ((-557 |#1| |#2|) . T) ((-1012) -3700 (|has| |#2| (-1012)) (|has| (-2 (|:| -2526 |#1|) (|:| -3043 |#2|)) (-1012))) ((-1118) . T))
-((-1345 (((-108)) 24)) (-2299 (((-1169) (-1066)) 26)) (-2226 (((-108)) 36)) (-1809 (((-1169)) 34)) (-1253 (((-1169) (-1066) (-1066)) 25)) (-3294 (((-108)) 37)) (-3618 (((-1169) |#1| |#2|) 44)) (-1731 (((-1169)) 20)) (-3983 (((-3 |#2| "failed") |#1|) 42)) (-2739 (((-1169)) 35)))
-(((-1096 |#1| |#2|) (-10 -7 (-15 -1731 ((-1169))) (-15 -1253 ((-1169) (-1066) (-1066))) (-15 -2299 ((-1169) (-1066))) (-15 -1809 ((-1169))) (-15 -2739 ((-1169))) (-15 -1345 ((-108))) (-15 -2226 ((-108))) (-15 -3294 ((-108))) (-15 -3983 ((-3 |#2| "failed") |#1|)) (-15 -3618 ((-1169) |#1| |#2|))) (-1012) (-1012)) (T -1096))
-((-3618 (*1 *2 *3 *4) (-12 (-5 *2 (-1169)) (-5 *1 (-1096 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)))) (-3983 (*1 *2 *3) (|partial| -12 (-4 *2 (-1012)) (-5 *1 (-1096 *3 *2)) (-4 *3 (-1012)))) (-3294 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1096 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)))) (-2226 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1096 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)))) (-1345 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1096 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)))) (-2739 (*1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-1096 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)))) (-1809 (*1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-1096 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)))) (-2299 (*1 *2 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-1169)) (-5 *1 (-1096 *4 *5)) (-4 *4 (-1012)) (-4 *5 (-1012)))) (-1253 (*1 *2 *3 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-1169)) (-5 *1 (-1096 *4 *5)) (-4 *4 (-1012)) (-4 *5 (-1012)))) (-1731 (*1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-1096 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012)))))
-(-10 -7 (-15 -1731 ((-1169))) (-15 -1253 ((-1169) (-1066) (-1066))) (-15 -2299 ((-1169) (-1066))) (-15 -1809 ((-1169))) (-15 -2739 ((-1169))) (-15 -1345 ((-108))) (-15 -2226 ((-108))) (-15 -3294 ((-108))) (-15 -3983 ((-3 |#2| "failed") |#1|)) (-15 -3618 ((-1169) |#1| |#2|)))
-((-1820 (((-1066) (-1066)) 18)) (-2782 (((-51) (-1066)) 21)))
-(((-1097) (-10 -7 (-15 -2782 ((-51) (-1066))) (-15 -1820 ((-1066) (-1066))))) (T -1097))
-((-1820 (*1 *2 *2) (-12 (-5 *2 (-1066)) (-5 *1 (-1097)))) (-2782 (*1 *2 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-51)) (-5 *1 (-1097)))))
-(-10 -7 (-15 -2782 ((-51) (-1066))) (-15 -1820 ((-1066) (-1066))))
-((-2188 (((-1099) |#1|) 11)))
-(((-1098 |#1|) (-10 -7 (-15 -2188 ((-1099) |#1|))) (-1012)) (T -1098))
-((-2188 (*1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *1 (-1098 *3)) (-4 *3 (-1012)))))
-(-10 -7 (-15 -2188 ((-1099) |#1|)))
-((-1414 (((-108) $ $) NIL)) (-1631 (((-586 (-1066)) $) 33)) (-1687 (((-586 (-1066)) $ (-586 (-1066))) 36)) (-2369 (((-586 (-1066)) $ (-586 (-1066))) 35)) (-3920 (((-586 (-1066)) $ (-586 (-1066))) 37)) (-1223 (((-586 (-1066)) $) 32)) (-1810 (($) 22)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-3099 (((-586 (-1066)) $) 34)) (-1677 (((-1169) $ (-520)) 29) (((-1169) $) 30)) (-1429 (($ (-791) (-520)) 26) (($ (-791) (-520) (-791)) NIL)) (-2188 (((-791) $) 39) (($ (-791)) 24)) (-1530 (((-108) $ $) NIL)))
-(((-1099) (-13 (-1012) (-10 -8 (-15 -2188 ($ (-791))) (-15 -1429 ($ (-791) (-520))) (-15 -1429 ($ (-791) (-520) (-791))) (-15 -1677 ((-1169) $ (-520))) (-15 -1677 ((-1169) $)) (-15 -3099 ((-586 (-1066)) $)) (-15 -1631 ((-586 (-1066)) $)) (-15 -1810 ($)) (-15 -1223 ((-586 (-1066)) $)) (-15 -3920 ((-586 (-1066)) $ (-586 (-1066)))) (-15 -1687 ((-586 (-1066)) $ (-586 (-1066)))) (-15 -2369 ((-586 (-1066)) $ (-586 (-1066))))))) (T -1099))
-((-2188 (*1 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-1099)))) (-1429 (*1 *1 *2 *3) (-12 (-5 *2 (-791)) (-5 *3 (-520)) (-5 *1 (-1099)))) (-1429 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-791)) (-5 *3 (-520)) (-5 *1 (-1099)))) (-1677 (*1 *2 *1 *3) (-12 (-5 *3 (-520)) (-5 *2 (-1169)) (-5 *1 (-1099)))) (-1677 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-1099)))) (-3099 (*1 *2 *1) (-12 (-5 *2 (-586 (-1066))) (-5 *1 (-1099)))) (-1631 (*1 *2 *1) (-12 (-5 *2 (-586 (-1066))) (-5 *1 (-1099)))) (-1810 (*1 *1) (-5 *1 (-1099))) (-1223 (*1 *2 *1) (-12 (-5 *2 (-586 (-1066))) (-5 *1 (-1099)))) (-3920 (*1 *2 *1 *2) (-12 (-5 *2 (-586 (-1066))) (-5 *1 (-1099)))) (-1687 (*1 *2 *1 *2) (-12 (-5 *2 (-586 (-1066))) (-5 *1 (-1099)))) (-2369 (*1 *2 *1 *2) (-12 (-5 *2 (-586 (-1066))) (-5 *1 (-1099)))))
-(-13 (-1012) (-10 -8 (-15 -2188 ($ (-791))) (-15 -1429 ($ (-791) (-520))) (-15 -1429 ($ (-791) (-520) (-791))) (-15 -1677 ((-1169) $ (-520))) (-15 -1677 ((-1169) $)) (-15 -3099 ((-586 (-1066)) $)) (-15 -1631 ((-586 (-1066)) $)) (-15 -1810 ($)) (-15 -1223 ((-586 (-1066)) $)) (-15 -3920 ((-586 (-1066)) $ (-586 (-1066)))) (-15 -1687 ((-586 (-1066)) $ (-586 (-1066)))) (-15 -2369 ((-586 (-1066)) $ (-586 (-1066))))))
-((-1414 (((-108) $ $) NIL)) (-1642 (((-1066) $ (-1066)) 15) (((-1066) $) 14)) (-1801 (((-1066) $ (-1066)) 13)) (-2405 (($ $ (-1066)) NIL)) (-2895 (((-3 (-1066) "failed") $) 11)) (-2584 (((-1066) $) 8)) (-1461 (((-3 (-1066) "failed") $) 12)) (-1582 (((-1066) $) 9)) (-1543 (($ (-361)) NIL) (($ (-361) (-1066)) NIL)) (-2883 (((-361) $) NIL)) (-1239 (((-1066) $) NIL)) (-3968 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-1591 (((-108) $) 17)) (-2188 (((-791) $) NIL)) (-1934 (($ $) NIL)) (-1530 (((-108) $ $) NIL)))
-(((-1100) (-13 (-337 (-361) (-1066)) (-10 -8 (-15 -1642 ((-1066) $ (-1066))) (-15 -1642 ((-1066) $)) (-15 -2584 ((-1066) $)) (-15 -2895 ((-3 (-1066) "failed") $)) (-15 -1461 ((-3 (-1066) "failed") $)) (-15 -1591 ((-108) $))))) (T -1100))
-((-1642 (*1 *2 *1 *2) (-12 (-5 *2 (-1066)) (-5 *1 (-1100)))) (-1642 (*1 *2 *1) (-12 (-5 *2 (-1066)) (-5 *1 (-1100)))) (-2584 (*1 *2 *1) (-12 (-5 *2 (-1066)) (-5 *1 (-1100)))) (-2895 (*1 *2 *1) (|partial| -12 (-5 *2 (-1066)) (-5 *1 (-1100)))) (-1461 (*1 *2 *1) (|partial| -12 (-5 *2 (-1066)) (-5 *1 (-1100)))) (-1591 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1100)))))
-(-13 (-337 (-361) (-1066)) (-10 -8 (-15 -1642 ((-1066) $ (-1066))) (-15 -1642 ((-1066) $)) (-15 -2584 ((-1066) $)) (-15 -2895 ((-3 (-1066) "failed") $)) (-15 -1461 ((-3 (-1066) "failed") $)) (-15 -1591 ((-108) $))))
-((-2804 (((-3 (-520) "failed") |#1|) 19)) (-3944 (((-3 (-520) "failed") |#1|) 13)) (-3520 (((-520) (-1066)) 28)))
-(((-1101 |#1|) (-10 -7 (-15 -2804 ((-3 (-520) "failed") |#1|)) (-15 -3944 ((-3 (-520) "failed") |#1|)) (-15 -3520 ((-520) (-1066)))) (-969)) (T -1101))
-((-3520 (*1 *2 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-520)) (-5 *1 (-1101 *4)) (-4 *4 (-969)))) (-3944 (*1 *2 *3) (|partial| -12 (-5 *2 (-520)) (-5 *1 (-1101 *3)) (-4 *3 (-969)))) (-2804 (*1 *2 *3) (|partial| -12 (-5 *2 (-520)) (-5 *1 (-1101 *3)) (-4 *3 (-969)))))
-(-10 -7 (-15 -2804 ((-3 (-520) "failed") |#1|)) (-15 -3944 ((-3 (-520) "failed") |#1|)) (-15 -3520 ((-520) (-1066))))
-((-2395 (((-1043 (-201))) 8)))
-(((-1102) (-10 -7 (-15 -2395 ((-1043 (-201)))))) (T -1102))
-((-2395 (*1 *2) (-12 (-5 *2 (-1043 (-201))) (-5 *1 (-1102)))))
-(-10 -7 (-15 -2395 ((-1043 (-201)))))
-((-2833 (($) 11)) (-1758 (($ $) 35)) (-1744 (($ $) 33)) (-2810 (($ $) 25)) (-1775 (($ $) 17)) (-3915 (($ $) 15)) (-1767 (($ $) 19)) (-2843 (($ $) 30)) (-1751 (($ $) 34)) (-2820 (($ $) 29)))
-(((-1103 |#1|) (-10 -8 (-15 -2833 (|#1|)) (-15 -1758 (|#1| |#1|)) (-15 -1744 (|#1| |#1|)) (-15 -1775 (|#1| |#1|)) (-15 -3915 (|#1| |#1|)) (-15 -1767 (|#1| |#1|)) (-15 -1751 (|#1| |#1|)) (-15 -2810 (|#1| |#1|)) (-15 -2843 (|#1| |#1|)) (-15 -2820 (|#1| |#1|))) (-1104)) (T -1103))
-NIL
-(-10 -8 (-15 -2833 (|#1|)) (-15 -1758 (|#1| |#1|)) (-15 -1744 (|#1| |#1|)) (-15 -1775 (|#1| |#1|)) (-15 -3915 (|#1| |#1|)) (-15 -1767 (|#1| |#1|)) (-15 -1751 (|#1| |#1|)) (-15 -2810 (|#1| |#1|)) (-15 -2843 (|#1| |#1|)) (-15 -2820 (|#1| |#1|)))
-((-2903 (($ $) 26)) (-2768 (($ $) 11)) (-2879 (($ $) 27)) (-2745 (($ $) 10)) (-2925 (($ $) 28)) (-2789 (($ $) 9)) (-2833 (($) 16)) (-1252 (($ $) 19)) (-3260 (($ $) 18)) (-1737 (($ $) 29)) (-2799 (($ $) 8)) (-2914 (($ $) 30)) (-2779 (($ $) 7)) (-2891 (($ $) 31)) (-2757 (($ $) 6)) (-1758 (($ $) 20)) (-2831 (($ $) 32)) (-1744 (($ $) 21)) (-2810 (($ $) 33)) (-1775 (($ $) 22)) (-2855 (($ $) 34)) (-3915 (($ $) 23)) (-2867 (($ $) 35)) (-1767 (($ $) 24)) (-2843 (($ $) 36)) (-1751 (($ $) 25)) (-2820 (($ $) 37)) (** (($ $ $) 17)))
-(((-1104) (-1195)) (T -1104))
-((-2833 (*1 *1) (-4 *1 (-1104))))
-(-13 (-1107) (-91) (-461) (-34) (-258) (-10 -8 (-15 -2833 ($))))
-(((-34) . T) ((-91) . T) ((-258) . T) ((-461) . T) ((-1107) . T))
-((-1414 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-3429 ((|#1| $) 17)) (-3468 (($ |#1| (-586 $)) 23) (($ (-586 |#1|)) 27) (($ |#1|) 25)) (-2063 (((-108) $ (-706)) 47)) (-2888 ((|#1| $ |#1|) 14 (|has| $ (-6 -4230)))) (-2377 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4230)))) (-3061 (($ $ (-586 $)) 13 (|has| $ (-6 -4230)))) (-3961 (($) NIL T CONST)) (-3828 (((-586 |#1|) $) 51 (|has| $ (-6 -4229)))) (-3405 (((-586 $) $) 42)) (-1885 (((-108) $ $) 33 (|has| |#1| (-1012)))) (-3027 (((-108) $ (-706)) 40)) (-3702 (((-586 |#1|) $) 52 (|has| $ (-6 -4229)))) (-2422 (((-108) |#1| $) 50 (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-3830 (($ (-1 |#1| |#1|) $) 24 (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#1| |#1|) $) 22)) (-1390 (((-108) $ (-706)) 39)) (-1277 (((-586 |#1|) $) 37)) (-1740 (((-108) $) 36)) (-1239 (((-1066) $) NIL (|has| |#1| (-1012)))) (-4142 (((-1030) $) NIL (|has| |#1| (-1012)))) (-4155 (((-108) (-1 (-108) |#1|) $) 49 (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 |#1|))) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-268 |#1|)) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-586 |#1|) (-586 |#1|)) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))) (-2533 (((-108) $ $) 74)) (-4018 (((-108) $) 9)) (-2238 (($) 10)) (-2543 ((|#1| $ "value") NIL)) (-3765 (((-520) $ $) 32)) (-3773 (((-586 $) $) 58)) (-3301 (((-108) $ $) 76)) (-4123 (((-586 $) $) 71)) (-1721 (($ $) 72)) (-1975 (((-108) $) 55)) (-4159 (((-706) (-1 (-108) |#1|) $) 20 (|has| $ (-6 -4229))) (((-706) |#1| $) 16 (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-2403 (($ $) 57)) (-2188 (((-791) $) 60 (|has| |#1| (-560 (-791))))) (-2438 (((-586 $) $) 12)) (-1639 (((-108) $ $) 29 (|has| |#1| (-1012)))) (-1662 (((-108) (-1 (-108) |#1|) $) 48 (|has| $ (-6 -4229)))) (-1530 (((-108) $ $) 28 (|has| |#1| (-1012)))) (-3474 (((-706) $) 38 (|has| $ (-6 -4229)))))
-(((-1105 |#1|) (-13 (-934 |#1|) (-10 -8 (-6 -4229) (-6 -4230) (-15 -3468 ($ |#1| (-586 $))) (-15 -3468 ($ (-586 |#1|))) (-15 -3468 ($ |#1|)) (-15 -1975 ((-108) $)) (-15 -1721 ($ $)) (-15 -4123 ((-586 $) $)) (-15 -3301 ((-108) $ $)) (-15 -3773 ((-586 $) $)))) (-1012)) (T -1105))
-((-1975 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1105 *3)) (-4 *3 (-1012)))) (-3468 (*1 *1 *2 *3) (-12 (-5 *3 (-586 (-1105 *2))) (-5 *1 (-1105 *2)) (-4 *2 (-1012)))) (-3468 (*1 *1 *2) (-12 (-5 *2 (-586 *3)) (-4 *3 (-1012)) (-5 *1 (-1105 *3)))) (-3468 (*1 *1 *2) (-12 (-5 *1 (-1105 *2)) (-4 *2 (-1012)))) (-1721 (*1 *1 *1) (-12 (-5 *1 (-1105 *2)) (-4 *2 (-1012)))) (-4123 (*1 *2 *1) (-12 (-5 *2 (-586 (-1105 *3))) (-5 *1 (-1105 *3)) (-4 *3 (-1012)))) (-3301 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1105 *3)) (-4 *3 (-1012)))) (-3773 (*1 *2 *1) (-12 (-5 *2 (-586 (-1105 *3))) (-5 *1 (-1105 *3)) (-4 *3 (-1012)))))
-(-13 (-934 |#1|) (-10 -8 (-6 -4229) (-6 -4230) (-15 -3468 ($ |#1| (-586 $))) (-15 -3468 ($ (-586 |#1|))) (-15 -3468 ($ |#1|)) (-15 -1975 ((-108) $)) (-15 -1721 ($ $)) (-15 -4123 ((-586 $) $)) (-15 -3301 ((-108) $ $)) (-15 -3773 ((-586 $) $))))
-((-2768 (($ $) 15)) (-2789 (($ $) 12)) (-2799 (($ $) 10)) (-2779 (($ $) 17)))
-(((-1106 |#1|) (-10 -8 (-15 -2779 (|#1| |#1|)) (-15 -2799 (|#1| |#1|)) (-15 -2789 (|#1| |#1|)) (-15 -2768 (|#1| |#1|))) (-1107)) (T -1106))
-NIL
-(-10 -8 (-15 -2779 (|#1| |#1|)) (-15 -2799 (|#1| |#1|)) (-15 -2789 (|#1| |#1|)) (-15 -2768 (|#1| |#1|)))
-((-2768 (($ $) 11)) (-2745 (($ $) 10)) (-2789 (($ $) 9)) (-2799 (($ $) 8)) (-2779 (($ $) 7)) (-2757 (($ $) 6)))
-(((-1107) (-1195)) (T -1107))
-((-2768 (*1 *1 *1) (-4 *1 (-1107))) (-2745 (*1 *1 *1) (-4 *1 (-1107))) (-2789 (*1 *1 *1) (-4 *1 (-1107))) (-2799 (*1 *1 *1) (-4 *1 (-1107))) (-2779 (*1 *1 *1) (-4 *1 (-1107))) (-2757 (*1 *1 *1) (-4 *1 (-1107))))
-(-13 (-10 -8 (-15 -2757 ($ $)) (-15 -2779 ($ $)) (-15 -2799 ($ $)) (-15 -2789 ($ $)) (-15 -2745 ($ $)) (-15 -2768 ($ $))))
-((-2772 ((|#2| |#2|) 85)) (-2685 (((-108) |#2|) 25)) (-1936 ((|#2| |#2|) 29)) (-1947 ((|#2| |#2|) 31)) (-2310 ((|#2| |#2| (-1083)) 79) ((|#2| |#2|) 80)) (-3244 (((-154 |#2|) |#2|) 27)) (-2343 ((|#2| |#2| (-1083)) 81) ((|#2| |#2|) 82)))
-(((-1108 |#1| |#2|) (-10 -7 (-15 -2310 (|#2| |#2|)) (-15 -2310 (|#2| |#2| (-1083))) (-15 -2343 (|#2| |#2|)) (-15 -2343 (|#2| |#2| (-1083))) (-15 -2772 (|#2| |#2|)) (-15 -1936 (|#2| |#2|)) (-15 -1947 (|#2| |#2|)) (-15 -2685 ((-108) |#2|)) (-15 -3244 ((-154 |#2|) |#2|))) (-13 (-424) (-783) (-960 (-520)) (-582 (-520))) (-13 (-27) (-1104) (-403 |#1|))) (T -1108))
-((-3244 (*1 *2 *3) (-12 (-4 *4 (-13 (-424) (-783) (-960 (-520)) (-582 (-520)))) (-5 *2 (-154 *3)) (-5 *1 (-1108 *4 *3)) (-4 *3 (-13 (-27) (-1104) (-403 *4))))) (-2685 (*1 *2 *3) (-12 (-4 *4 (-13 (-424) (-783) (-960 (-520)) (-582 (-520)))) (-5 *2 (-108)) (-5 *1 (-1108 *4 *3)) (-4 *3 (-13 (-27) (-1104) (-403 *4))))) (-1947 (*1 *2 *2) (-12 (-4 *3 (-13 (-424) (-783) (-960 (-520)) (-582 (-520)))) (-5 *1 (-1108 *3 *2)) (-4 *2 (-13 (-27) (-1104) (-403 *3))))) (-1936 (*1 *2 *2) (-12 (-4 *3 (-13 (-424) (-783) (-960 (-520)) (-582 (-520)))) (-5 *1 (-1108 *3 *2)) (-4 *2 (-13 (-27) (-1104) (-403 *3))))) (-2772 (*1 *2 *2) (-12 (-4 *3 (-13 (-424) (-783) (-960 (-520)) (-582 (-520)))) (-5 *1 (-1108 *3 *2)) (-4 *2 (-13 (-27) (-1104) (-403 *3))))) (-2343 (*1 *2 *2 *3) (-12 (-5 *3 (-1083)) (-4 *4 (-13 (-424) (-783) (-960 (-520)) (-582 (-520)))) (-5 *1 (-1108 *4 *2)) (-4 *2 (-13 (-27) (-1104) (-403 *4))))) (-2343 (*1 *2 *2) (-12 (-4 *3 (-13 (-424) (-783) (-960 (-520)) (-582 (-520)))) (-5 *1 (-1108 *3 *2)) (-4 *2 (-13 (-27) (-1104) (-403 *3))))) (-2310 (*1 *2 *2 *3) (-12 (-5 *3 (-1083)) (-4 *4 (-13 (-424) (-783) (-960 (-520)) (-582 (-520)))) (-5 *1 (-1108 *4 *2)) (-4 *2 (-13 (-27) (-1104) (-403 *4))))) (-2310 (*1 *2 *2) (-12 (-4 *3 (-13 (-424) (-783) (-960 (-520)) (-582 (-520)))) (-5 *1 (-1108 *3 *2)) (-4 *2 (-13 (-27) (-1104) (-403 *3))))))
-(-10 -7 (-15 -2310 (|#2| |#2|)) (-15 -2310 (|#2| |#2| (-1083))) (-15 -2343 (|#2| |#2|)) (-15 -2343 (|#2| |#2| (-1083))) (-15 -2772 (|#2| |#2|)) (-15 -1936 (|#2| |#2|)) (-15 -1947 (|#2| |#2|)) (-15 -2685 ((-108) |#2|)) (-15 -3244 ((-154 |#2|) |#2|)))
-((-1568 ((|#4| |#4| |#1|) 27)) (-3907 ((|#4| |#4| |#1|) 28)))
-(((-1109 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1568 (|#4| |#4| |#1|)) (-15 -3907 (|#4| |#4| |#1|))) (-512) (-346 |#1|) (-346 |#1|) (-624 |#1| |#2| |#3|)) (T -1109))
-((-3907 (*1 *2 *2 *3) (-12 (-4 *3 (-512)) (-4 *4 (-346 *3)) (-4 *5 (-346 *3)) (-5 *1 (-1109 *3 *4 *5 *2)) (-4 *2 (-624 *3 *4 *5)))) (-1568 (*1 *2 *2 *3) (-12 (-4 *3 (-512)) (-4 *4 (-346 *3)) (-4 *5 (-346 *3)) (-5 *1 (-1109 *3 *4 *5 *2)) (-4 *2 (-624 *3 *4 *5)))))
-(-10 -7 (-15 -1568 (|#4| |#4| |#1|)) (-15 -3907 (|#4| |#4| |#1|)))
-((-3578 ((|#2| |#2|) 132)) (-3407 ((|#2| |#2|) 129)) (-2123 ((|#2| |#2|) 120)) (-3723 ((|#2| |#2|) 117)) (-4143 ((|#2| |#2|) 125)) (-3374 ((|#2| |#2|) 113)) (-3553 ((|#2| |#2|) 42)) (-3551 ((|#2| |#2|) 93)) (-3855 ((|#2| |#2|) 73)) (-2303 ((|#2| |#2|) 127)) (-1629 ((|#2| |#2|) 115)) (-3924 ((|#2| |#2|) 137)) (-2521 ((|#2| |#2|) 135)) (-2998 ((|#2| |#2|) 136)) (-3755 ((|#2| |#2|) 134)) (-2147 ((|#2| |#2|) 146)) (-3006 ((|#2| |#2|) 30 (-12 (|has| |#2| (-561 (-820 |#1|))) (|has| |#2| (-814 |#1|)) (|has| |#1| (-561 (-820 |#1|))) (|has| |#1| (-814 |#1|))))) (-3390 ((|#2| |#2|) 74)) (-2640 ((|#2| |#2|) 138)) (-1603 ((|#2| |#2|) 139)) (-3102 ((|#2| |#2|) 126)) (-3668 ((|#2| |#2|) 114)) (-2549 ((|#2| |#2|) 133)) (-1256 ((|#2| |#2|) 131)) (-2250 ((|#2| |#2|) 121)) (-3654 ((|#2| |#2|) 119)) (-2600 ((|#2| |#2|) 123)) (-2537 ((|#2| |#2|) 111)))
-(((-1110 |#1| |#2|) (-10 -7 (-15 -1603 (|#2| |#2|)) (-15 -3855 (|#2| |#2|)) (-15 -2147 (|#2| |#2|)) (-15 -3551 (|#2| |#2|)) (-15 -3553 (|#2| |#2|)) (-15 -3390 (|#2| |#2|)) (-15 -2640 (|#2| |#2|)) (-15 -2537 (|#2| |#2|)) (-15 -2600 (|#2| |#2|)) (-15 -2250 (|#2| |#2|)) (-15 -2549 (|#2| |#2|)) (-15 -3668 (|#2| |#2|)) (-15 -3102 (|#2| |#2|)) (-15 -1629 (|#2| |#2|)) (-15 -2303 (|#2| |#2|)) (-15 -3374 (|#2| |#2|)) (-15 -4143 (|#2| |#2|)) (-15 -2123 (|#2| |#2|)) (-15 -3578 (|#2| |#2|)) (-15 -3723 (|#2| |#2|)) (-15 -3407 (|#2| |#2|)) (-15 -3654 (|#2| |#2|)) (-15 -1256 (|#2| |#2|)) (-15 -3755 (|#2| |#2|)) (-15 -2521 (|#2| |#2|)) (-15 -2998 (|#2| |#2|)) (-15 -3924 (|#2| |#2|)) (IF (|has| |#1| (-814 |#1|)) (IF (|has| |#1| (-561 (-820 |#1|))) (IF (|has| |#2| (-561 (-820 |#1|))) (IF (|has| |#2| (-814 |#1|)) (-15 -3006 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-13 (-783) (-424)) (-13 (-403 |#1|) (-1104))) (T -1110))
-((-3006 (*1 *2 *2) (-12 (-4 *3 (-561 (-820 *3))) (-4 *3 (-814 *3)) (-4 *3 (-13 (-783) (-424))) (-5 *1 (-1110 *3 *2)) (-4 *2 (-561 (-820 *3))) (-4 *2 (-814 *3)) (-4 *2 (-13 (-403 *3) (-1104))))) (-3924 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-424))) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-403 *3) (-1104))))) (-2998 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-424))) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-403 *3) (-1104))))) (-2521 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-424))) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-403 *3) (-1104))))) (-3755 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-424))) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-403 *3) (-1104))))) (-1256 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-424))) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-403 *3) (-1104))))) (-3654 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-424))) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-403 *3) (-1104))))) (-3407 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-424))) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-403 *3) (-1104))))) (-3723 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-424))) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-403 *3) (-1104))))) (-3578 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-424))) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-403 *3) (-1104))))) (-2123 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-424))) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-403 *3) (-1104))))) (-4143 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-424))) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-403 *3) (-1104))))) (-3374 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-424))) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-403 *3) (-1104))))) (-2303 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-424))) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-403 *3) (-1104))))) (-1629 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-424))) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-403 *3) (-1104))))) (-3102 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-424))) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-403 *3) (-1104))))) (-3668 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-424))) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-403 *3) (-1104))))) (-2549 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-424))) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-403 *3) (-1104))))) (-2250 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-424))) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-403 *3) (-1104))))) (-2600 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-424))) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-403 *3) (-1104))))) (-2537 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-424))) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-403 *3) (-1104))))) (-2640 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-424))) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-403 *3) (-1104))))) (-3390 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-424))) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-403 *3) (-1104))))) (-3553 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-424))) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-403 *3) (-1104))))) (-3551 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-424))) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-403 *3) (-1104))))) (-2147 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-424))) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-403 *3) (-1104))))) (-3855 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-424))) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-403 *3) (-1104))))) (-1603 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-424))) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-403 *3) (-1104))))))
-(-10 -7 (-15 -1603 (|#2| |#2|)) (-15 -3855 (|#2| |#2|)) (-15 -2147 (|#2| |#2|)) (-15 -3551 (|#2| |#2|)) (-15 -3553 (|#2| |#2|)) (-15 -3390 (|#2| |#2|)) (-15 -2640 (|#2| |#2|)) (-15 -2537 (|#2| |#2|)) (-15 -2600 (|#2| |#2|)) (-15 -2250 (|#2| |#2|)) (-15 -2549 (|#2| |#2|)) (-15 -3668 (|#2| |#2|)) (-15 -3102 (|#2| |#2|)) (-15 -1629 (|#2| |#2|)) (-15 -2303 (|#2| |#2|)) (-15 -3374 (|#2| |#2|)) (-15 -4143 (|#2| |#2|)) (-15 -2123 (|#2| |#2|)) (-15 -3578 (|#2| |#2|)) (-15 -3723 (|#2| |#2|)) (-15 -3407 (|#2| |#2|)) (-15 -3654 (|#2| |#2|)) (-15 -1256 (|#2| |#2|)) (-15 -3755 (|#2| |#2|)) (-15 -2521 (|#2| |#2|)) (-15 -2998 (|#2| |#2|)) (-15 -3924 (|#2| |#2|)) (IF (|has| |#1| (-814 |#1|)) (IF (|has| |#1| (-561 (-820 |#1|))) (IF (|has| |#2| (-561 (-820 |#1|))) (IF (|has| |#2| (-814 |#1|)) (-15 -3006 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
-((-3804 (((-108) |#5| $) 60) (((-108) $) 102)) (-3954 ((|#5| |#5| $) 75)) (-1627 (($ (-1 (-108) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 119)) (-2589 (((-586 |#5|) (-586 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|)) 73)) (-1296 (((-3 $ "failed") (-586 |#5|)) 126)) (-2305 (((-3 $ "failed") $) 112)) (-1618 ((|#5| |#5| $) 94)) (-3738 (((-108) |#5| $ (-1 (-108) |#5| |#5|)) 31)) (-2762 ((|#5| |#5| $) 98)) (-3856 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|)) 69)) (-2025 (((-2 (|:| -1649 (-586 |#5|)) (|:| -1543 (-586 |#5|))) $) 55)) (-2311 (((-108) |#5| $) 58) (((-108) $) 103)) (-3871 ((|#4| $) 108)) (-1440 (((-3 |#5| "failed") $) 110)) (-2623 (((-586 |#5|) $) 49)) (-2428 (((-108) |#5| $) 67) (((-108) $) 107)) (-2778 ((|#5| |#5| $) 81)) (-3444 (((-108) $ $) 27)) (-1322 (((-108) |#5| $) 63) (((-108) $) 105)) (-3499 ((|#5| |#5| $) 78)) (-2293 (((-3 |#5| "failed") $) 109)) (-2116 (($ $ |#5|) 127)) (-2528 (((-706) $) 52)) (-2200 (($ (-586 |#5|)) 124)) (-3399 (($ $ |#4|) 122)) (-4067 (($ $ |#4|) 121)) (-3932 (($ $) 120)) (-2188 (((-791) $) NIL) (((-586 |#5|) $) 113)) (-3898 (((-706) $) 130)) (-1652 (((-3 (-2 (|:| |bas| $) (|:| -1353 (-586 |#5|))) "failed") (-586 |#5|) (-1 (-108) |#5| |#5|)) 43) (((-3 (-2 (|:| |bas| $) (|:| -1353 (-586 |#5|))) "failed") (-586 |#5|) (-1 (-108) |#5|) (-1 (-108) |#5| |#5|)) 45)) (-3146 (((-108) $ (-1 (-108) |#5| (-586 |#5|))) 100)) (-1600 (((-586 |#4|) $) 115)) (-3718 (((-108) |#4| $) 118)) (-1530 (((-108) $ $) 19)))
-(((-1111 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3898 ((-706) |#1|)) (-15 -2116 (|#1| |#1| |#5|)) (-15 -1627 ((-3 |#5| "failed") |#1| |#4|)) (-15 -3718 ((-108) |#4| |#1|)) (-15 -1600 ((-586 |#4|) |#1|)) (-15 -2305 ((-3 |#1| "failed") |#1|)) (-15 -1440 ((-3 |#5| "failed") |#1|)) (-15 -2293 ((-3 |#5| "failed") |#1|)) (-15 -2762 (|#5| |#5| |#1|)) (-15 -3932 (|#1| |#1|)) (-15 -1618 (|#5| |#5| |#1|)) (-15 -2778 (|#5| |#5| |#1|)) (-15 -3499 (|#5| |#5| |#1|)) (-15 -3954 (|#5| |#5| |#1|)) (-15 -2589 ((-586 |#5|) (-586 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|))) (-15 -3856 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|))) (-15 -2428 ((-108) |#1|)) (-15 -1322 ((-108) |#1|)) (-15 -3804 ((-108) |#1|)) (-15 -3146 ((-108) |#1| (-1 (-108) |#5| (-586 |#5|)))) (-15 -2428 ((-108) |#5| |#1|)) (-15 -1322 ((-108) |#5| |#1|)) (-15 -3804 ((-108) |#5| |#1|)) (-15 -3738 ((-108) |#5| |#1| (-1 (-108) |#5| |#5|))) (-15 -2311 ((-108) |#1|)) (-15 -2311 ((-108) |#5| |#1|)) (-15 -2025 ((-2 (|:| -1649 (-586 |#5|)) (|:| -1543 (-586 |#5|))) |#1|)) (-15 -2528 ((-706) |#1|)) (-15 -2623 ((-586 |#5|) |#1|)) (-15 -1652 ((-3 (-2 (|:| |bas| |#1|) (|:| -1353 (-586 |#5|))) "failed") (-586 |#5|) (-1 (-108) |#5|) (-1 (-108) |#5| |#5|))) (-15 -1652 ((-3 (-2 (|:| |bas| |#1|) (|:| -1353 (-586 |#5|))) "failed") (-586 |#5|) (-1 (-108) |#5| |#5|))) (-15 -3444 ((-108) |#1| |#1|)) (-15 -3399 (|#1| |#1| |#4|)) (-15 -4067 (|#1| |#1| |#4|)) (-15 -3871 (|#4| |#1|)) (-15 -1296 ((-3 |#1| "failed") (-586 |#5|))) (-15 -2188 ((-586 |#5|) |#1|)) (-15 -2200 (|#1| (-586 |#5|))) (-15 -3856 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3856 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -1627 (|#1| (-1 (-108) |#5|) |#1|)) (-15 -3856 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2188 ((-791) |#1|)) (-15 -1530 ((-108) |#1| |#1|))) (-1112 |#2| |#3| |#4| |#5|) (-512) (-728) (-783) (-983 |#2| |#3| |#4|)) (T -1111))
-NIL
-(-10 -8 (-15 -3898 ((-706) |#1|)) (-15 -2116 (|#1| |#1| |#5|)) (-15 -1627 ((-3 |#5| "failed") |#1| |#4|)) (-15 -3718 ((-108) |#4| |#1|)) (-15 -1600 ((-586 |#4|) |#1|)) (-15 -2305 ((-3 |#1| "failed") |#1|)) (-15 -1440 ((-3 |#5| "failed") |#1|)) (-15 -2293 ((-3 |#5| "failed") |#1|)) (-15 -2762 (|#5| |#5| |#1|)) (-15 -3932 (|#1| |#1|)) (-15 -1618 (|#5| |#5| |#1|)) (-15 -2778 (|#5| |#5| |#1|)) (-15 -3499 (|#5| |#5| |#1|)) (-15 -3954 (|#5| |#5| |#1|)) (-15 -2589 ((-586 |#5|) (-586 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|))) (-15 -3856 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|))) (-15 -2428 ((-108) |#1|)) (-15 -1322 ((-108) |#1|)) (-15 -3804 ((-108) |#1|)) (-15 -3146 ((-108) |#1| (-1 (-108) |#5| (-586 |#5|)))) (-15 -2428 ((-108) |#5| |#1|)) (-15 -1322 ((-108) |#5| |#1|)) (-15 -3804 ((-108) |#5| |#1|)) (-15 -3738 ((-108) |#5| |#1| (-1 (-108) |#5| |#5|))) (-15 -2311 ((-108) |#1|)) (-15 -2311 ((-108) |#5| |#1|)) (-15 -2025 ((-2 (|:| -1649 (-586 |#5|)) (|:| -1543 (-586 |#5|))) |#1|)) (-15 -2528 ((-706) |#1|)) (-15 -2623 ((-586 |#5|) |#1|)) (-15 -1652 ((-3 (-2 (|:| |bas| |#1|) (|:| -1353 (-586 |#5|))) "failed") (-586 |#5|) (-1 (-108) |#5|) (-1 (-108) |#5| |#5|))) (-15 -1652 ((-3 (-2 (|:| |bas| |#1|) (|:| -1353 (-586 |#5|))) "failed") (-586 |#5|) (-1 (-108) |#5| |#5|))) (-15 -3444 ((-108) |#1| |#1|)) (-15 -3399 (|#1| |#1| |#4|)) (-15 -4067 (|#1| |#1| |#4|)) (-15 -3871 (|#4| |#1|)) (-15 -1296 ((-3 |#1| "failed") (-586 |#5|))) (-15 -2188 ((-586 |#5|) |#1|)) (-15 -2200 (|#1| (-586 |#5|))) (-15 -3856 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3856 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -1627 (|#1| (-1 (-108) |#5|) |#1|)) (-15 -3856 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2188 ((-791) |#1|)) (-15 -1530 ((-108) |#1| |#1|)))
-((-1414 (((-108) $ $) 7)) (-3769 (((-586 (-2 (|:| -1649 $) (|:| -1543 (-586 |#4|)))) (-586 |#4|)) 85)) (-3767 (((-586 $) (-586 |#4|)) 86)) (-4081 (((-586 |#3|) $) 33)) (-2373 (((-108) $) 26)) (-1937 (((-108) $) 17 (|has| |#1| (-512)))) (-3804 (((-108) |#4| $) 101) (((-108) $) 97)) (-3954 ((|#4| |#4| $) 92)) (-3210 (((-2 (|:| |under| $) (|:| -1626 $) (|:| |upper| $)) $ |#3|) 27)) (-2063 (((-108) $ (-706)) 44)) (-1627 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4229))) (((-3 |#4| "failed") $ |#3|) 79)) (-3961 (($) 45 T CONST)) (-2215 (((-108) $) 22 (|has| |#1| (-512)))) (-3078 (((-108) $ $) 24 (|has| |#1| (-512)))) (-3675 (((-108) $ $) 23 (|has| |#1| (-512)))) (-2786 (((-108) $) 25 (|has| |#1| (-512)))) (-2589 (((-586 |#4|) (-586 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 93)) (-4167 (((-586 |#4|) (-586 |#4|) $) 18 (|has| |#1| (-512)))) (-3415 (((-586 |#4|) (-586 |#4|) $) 19 (|has| |#1| (-512)))) (-1296 (((-3 $ "failed") (-586 |#4|)) 36)) (-1482 (($ (-586 |#4|)) 35)) (-2305 (((-3 $ "failed") $) 82)) (-1618 ((|#4| |#4| $) 89)) (-2331 (($ $) 68 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -4229))))) (-1421 (($ |#4| $) 67 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -4229)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4229)))) (-3753 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-512)))) (-3738 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) 102)) (-2762 ((|#4| |#4| $) 87)) (-3856 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -4229)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4229))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4229))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 94)) (-2025 (((-2 (|:| -1649 (-586 |#4|)) (|:| -1543 (-586 |#4|))) $) 105)) (-3828 (((-586 |#4|) $) 52 (|has| $ (-6 -4229)))) (-2311 (((-108) |#4| $) 104) (((-108) $) 103)) (-3871 ((|#3| $) 34)) (-3027 (((-108) $ (-706)) 43)) (-3702 (((-586 |#4|) $) 53 (|has| $ (-6 -4229)))) (-2422 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -4229))))) (-3830 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#4| |#4|) $) 47)) (-2602 (((-586 |#3|) $) 32)) (-3394 (((-108) |#3| $) 31)) (-1390 (((-108) $ (-706)) 42)) (-1239 (((-1066) $) 9)) (-1440 (((-3 |#4| "failed") $) 83)) (-2623 (((-586 |#4|) $) 107)) (-2428 (((-108) |#4| $) 99) (((-108) $) 95)) (-2778 ((|#4| |#4| $) 90)) (-3444 (((-108) $ $) 110)) (-2130 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-512)))) (-1322 (((-108) |#4| $) 100) (((-108) $) 96)) (-3499 ((|#4| |#4| $) 91)) (-4142 (((-1030) $) 10)) (-2293 (((-3 |#4| "failed") $) 84)) (-2985 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-2885 (((-3 $ "failed") $ |#4|) 78)) (-2116 (($ $ |#4|) 77)) (-4155 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 |#4|) (-586 |#4|)) 59 (-12 (|has| |#4| (-283 |#4|)) (|has| |#4| (-1012)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-283 |#4|)) (|has| |#4| (-1012)))) (($ $ (-268 |#4|)) 57 (-12 (|has| |#4| (-283 |#4|)) (|has| |#4| (-1012)))) (($ $ (-586 (-268 |#4|))) 56 (-12 (|has| |#4| (-283 |#4|)) (|has| |#4| (-1012))))) (-2533 (((-108) $ $) 38)) (-4018 (((-108) $) 41)) (-2238 (($) 40)) (-2528 (((-706) $) 106)) (-4159 (((-706) |#4| $) 54 (-12 (|has| |#4| (-1012)) (|has| $ (-6 -4229)))) (((-706) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4229)))) (-2403 (($ $) 39)) (-1429 (((-496) $) 69 (|has| |#4| (-561 (-496))))) (-2200 (($ (-586 |#4|)) 60)) (-3399 (($ $ |#3|) 28)) (-4067 (($ $ |#3|) 30)) (-3932 (($ $) 88)) (-2513 (($ $ |#3|) 29)) (-2188 (((-791) $) 11) (((-586 |#4|) $) 37)) (-3898 (((-706) $) 76 (|has| |#3| (-341)))) (-1652 (((-3 (-2 (|:| |bas| $) (|:| -1353 (-586 |#4|))) "failed") (-586 |#4|) (-1 (-108) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1353 (-586 |#4|))) "failed") (-586 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) 108)) (-3146 (((-108) $ (-1 (-108) |#4| (-586 |#4|))) 98)) (-1662 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4229)))) (-1600 (((-586 |#3|) $) 81)) (-3718 (((-108) |#3| $) 80)) (-1530 (((-108) $ $) 6)) (-3474 (((-706) $) 46 (|has| $ (-6 -4229)))))
-(((-1112 |#1| |#2| |#3| |#4|) (-1195) (-512) (-728) (-783) (-983 |t#1| |t#2| |t#3|)) (T -1112))
-((-3444 (*1 *2 *1 *1) (-12 (-4 *1 (-1112 *3 *4 *5 *6)) (-4 *3 (-512)) (-4 *4 (-728)) (-4 *5 (-783)) (-4 *6 (-983 *3 *4 *5)) (-5 *2 (-108)))) (-1652 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-108) *8 *8)) (-4 *8 (-983 *5 *6 *7)) (-4 *5 (-512)) (-4 *6 (-728)) (-4 *7 (-783)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1353 (-586 *8)))) (-5 *3 (-586 *8)) (-4 *1 (-1112 *5 *6 *7 *8)))) (-1652 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-108) *9)) (-5 *5 (-1 (-108) *9 *9)) (-4 *9 (-983 *6 *7 *8)) (-4 *6 (-512)) (-4 *7 (-728)) (-4 *8 (-783)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1353 (-586 *9)))) (-5 *3 (-586 *9)) (-4 *1 (-1112 *6 *7 *8 *9)))) (-2623 (*1 *2 *1) (-12 (-4 *1 (-1112 *3 *4 *5 *6)) (-4 *3 (-512)) (-4 *4 (-728)) (-4 *5 (-783)) (-4 *6 (-983 *3 *4 *5)) (-5 *2 (-586 *6)))) (-2528 (*1 *2 *1) (-12 (-4 *1 (-1112 *3 *4 *5 *6)) (-4 *3 (-512)) (-4 *4 (-728)) (-4 *5 (-783)) (-4 *6 (-983 *3 *4 *5)) (-5 *2 (-706)))) (-2025 (*1 *2 *1) (-12 (-4 *1 (-1112 *3 *4 *5 *6)) (-4 *3 (-512)) (-4 *4 (-728)) (-4 *5 (-783)) (-4 *6 (-983 *3 *4 *5)) (-5 *2 (-2 (|:| -1649 (-586 *6)) (|:| -1543 (-586 *6)))))) (-2311 (*1 *2 *3 *1) (-12 (-4 *1 (-1112 *4 *5 *6 *3)) (-4 *4 (-512)) (-4 *5 (-728)) (-4 *6 (-783)) (-4 *3 (-983 *4 *5 *6)) (-5 *2 (-108)))) (-2311 (*1 *2 *1) (-12 (-4 *1 (-1112 *3 *4 *5 *6)) (-4 *3 (-512)) (-4 *4 (-728)) (-4 *5 (-783)) (-4 *6 (-983 *3 *4 *5)) (-5 *2 (-108)))) (-3738 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-108) *3 *3)) (-4 *1 (-1112 *5 *6 *7 *3)) (-4 *5 (-512)) (-4 *6 (-728)) (-4 *7 (-783)) (-4 *3 (-983 *5 *6 *7)) (-5 *2 (-108)))) (-3804 (*1 *2 *3 *1) (-12 (-4 *1 (-1112 *4 *5 *6 *3)) (-4 *4 (-512)) (-4 *5 (-728)) (-4 *6 (-783)) (-4 *3 (-983 *4 *5 *6)) (-5 *2 (-108)))) (-1322 (*1 *2 *3 *1) (-12 (-4 *1 (-1112 *4 *5 *6 *3)) (-4 *4 (-512)) (-4 *5 (-728)) (-4 *6 (-783)) (-4 *3 (-983 *4 *5 *6)) (-5 *2 (-108)))) (-2428 (*1 *2 *3 *1) (-12 (-4 *1 (-1112 *4 *5 *6 *3)) (-4 *4 (-512)) (-4 *5 (-728)) (-4 *6 (-783)) (-4 *3 (-983 *4 *5 *6)) (-5 *2 (-108)))) (-3146 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-108) *7 (-586 *7))) (-4 *1 (-1112 *4 *5 *6 *7)) (-4 *4 (-512)) (-4 *5 (-728)) (-4 *6 (-783)) (-4 *7 (-983 *4 *5 *6)) (-5 *2 (-108)))) (-3804 (*1 *2 *1) (-12 (-4 *1 (-1112 *3 *4 *5 *6)) (-4 *3 (-512)) (-4 *4 (-728)) (-4 *5 (-783)) (-4 *6 (-983 *3 *4 *5)) (-5 *2 (-108)))) (-1322 (*1 *2 *1) (-12 (-4 *1 (-1112 *3 *4 *5 *6)) (-4 *3 (-512)) (-4 *4 (-728)) (-4 *5 (-783)) (-4 *6 (-983 *3 *4 *5)) (-5 *2 (-108)))) (-2428 (*1 *2 *1) (-12 (-4 *1 (-1112 *3 *4 *5 *6)) (-4 *3 (-512)) (-4 *4 (-728)) (-4 *5 (-783)) (-4 *6 (-983 *3 *4 *5)) (-5 *2 (-108)))) (-3856 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-108) *2 *2)) (-4 *1 (-1112 *5 *6 *7 *2)) (-4 *5 (-512)) (-4 *6 (-728)) (-4 *7 (-783)) (-4 *2 (-983 *5 *6 *7)))) (-2589 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-586 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-108) *8 *8)) (-4 *1 (-1112 *5 *6 *7 *8)) (-4 *5 (-512)) (-4 *6 (-728)) (-4 *7 (-783)) (-4 *8 (-983 *5 *6 *7)))) (-3954 (*1 *2 *2 *1) (-12 (-4 *1 (-1112 *3 *4 *5 *2)) (-4 *3 (-512)) (-4 *4 (-728)) (-4 *5 (-783)) (-4 *2 (-983 *3 *4 *5)))) (-3499 (*1 *2 *2 *1) (-12 (-4 *1 (-1112 *3 *4 *5 *2)) (-4 *3 (-512)) (-4 *4 (-728)) (-4 *5 (-783)) (-4 *2 (-983 *3 *4 *5)))) (-2778 (*1 *2 *2 *1) (-12 (-4 *1 (-1112 *3 *4 *5 *2)) (-4 *3 (-512)) (-4 *4 (-728)) (-4 *5 (-783)) (-4 *2 (-983 *3 *4 *5)))) (-1618 (*1 *2 *2 *1) (-12 (-4 *1 (-1112 *3 *4 *5 *2)) (-4 *3 (-512)) (-4 *4 (-728)) (-4 *5 (-783)) (-4 *2 (-983 *3 *4 *5)))) (-3932 (*1 *1 *1) (-12 (-4 *1 (-1112 *2 *3 *4 *5)) (-4 *2 (-512)) (-4 *3 (-728)) (-4 *4 (-783)) (-4 *5 (-983 *2 *3 *4)))) (-2762 (*1 *2 *2 *1) (-12 (-4 *1 (-1112 *3 *4 *5 *2)) (-4 *3 (-512)) (-4 *4 (-728)) (-4 *5 (-783)) (-4 *2 (-983 *3 *4 *5)))) (-3767 (*1 *2 *3) (-12 (-5 *3 (-586 *7)) (-4 *7 (-983 *4 *5 *6)) (-4 *4 (-512)) (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-586 *1)) (-4 *1 (-1112 *4 *5 *6 *7)))) (-3769 (*1 *2 *3) (-12 (-4 *4 (-512)) (-4 *5 (-728)) (-4 *6 (-783)) (-4 *7 (-983 *4 *5 *6)) (-5 *2 (-586 (-2 (|:| -1649 *1) (|:| -1543 (-586 *7))))) (-5 *3 (-586 *7)) (-4 *1 (-1112 *4 *5 *6 *7)))) (-2293 (*1 *2 *1) (|partial| -12 (-4 *1 (-1112 *3 *4 *5 *2)) (-4 *3 (-512)) (-4 *4 (-728)) (-4 *5 (-783)) (-4 *2 (-983 *3 *4 *5)))) (-1440 (*1 *2 *1) (|partial| -12 (-4 *1 (-1112 *3 *4 *5 *2)) (-4 *3 (-512)) (-4 *4 (-728)) (-4 *5 (-783)) (-4 *2 (-983 *3 *4 *5)))) (-2305 (*1 *1 *1) (|partial| -12 (-4 *1 (-1112 *2 *3 *4 *5)) (-4 *2 (-512)) (-4 *3 (-728)) (-4 *4 (-783)) (-4 *5 (-983 *2 *3 *4)))) (-1600 (*1 *2 *1) (-12 (-4 *1 (-1112 *3 *4 *5 *6)) (-4 *3 (-512)) (-4 *4 (-728)) (-4 *5 (-783)) (-4 *6 (-983 *3 *4 *5)) (-5 *2 (-586 *5)))) (-3718 (*1 *2 *3 *1) (-12 (-4 *1 (-1112 *4 *5 *3 *6)) (-4 *4 (-512)) (-4 *5 (-728)) (-4 *3 (-783)) (-4 *6 (-983 *4 *5 *3)) (-5 *2 (-108)))) (-1627 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1112 *4 *5 *3 *2)) (-4 *4 (-512)) (-4 *5 (-728)) (-4 *3 (-783)) (-4 *2 (-983 *4 *5 *3)))) (-2885 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1112 *3 *4 *5 *2)) (-4 *3 (-512)) (-4 *4 (-728)) (-4 *5 (-783)) (-4 *2 (-983 *3 *4 *5)))) (-2116 (*1 *1 *1 *2) (-12 (-4 *1 (-1112 *3 *4 *5 *2)) (-4 *3 (-512)) (-4 *4 (-728)) (-4 *5 (-783)) (-4 *2 (-983 *3 *4 *5)))) (-3898 (*1 *2 *1) (-12 (-4 *1 (-1112 *3 *4 *5 *6)) (-4 *3 (-512)) (-4 *4 (-728)) (-4 *5 (-783)) (-4 *6 (-983 *3 *4 *5)) (-4 *5 (-341)) (-5 *2 (-706)))))
-(-13 (-901 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4229) (-6 -4230) (-15 -3444 ((-108) $ $)) (-15 -1652 ((-3 (-2 (|:| |bas| $) (|:| -1353 (-586 |t#4|))) "failed") (-586 |t#4|) (-1 (-108) |t#4| |t#4|))) (-15 -1652 ((-3 (-2 (|:| |bas| $) (|:| -1353 (-586 |t#4|))) "failed") (-586 |t#4|) (-1 (-108) |t#4|) (-1 (-108) |t#4| |t#4|))) (-15 -2623 ((-586 |t#4|) $)) (-15 -2528 ((-706) $)) (-15 -2025 ((-2 (|:| -1649 (-586 |t#4|)) (|:| -1543 (-586 |t#4|))) $)) (-15 -2311 ((-108) |t#4| $)) (-15 -2311 ((-108) $)) (-15 -3738 ((-108) |t#4| $ (-1 (-108) |t#4| |t#4|))) (-15 -3804 ((-108) |t#4| $)) (-15 -1322 ((-108) |t#4| $)) (-15 -2428 ((-108) |t#4| $)) (-15 -3146 ((-108) $ (-1 (-108) |t#4| (-586 |t#4|)))) (-15 -3804 ((-108) $)) (-15 -1322 ((-108) $)) (-15 -2428 ((-108) $)) (-15 -3856 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-108) |t#4| |t#4|))) (-15 -2589 ((-586 |t#4|) (-586 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-108) |t#4| |t#4|))) (-15 -3954 (|t#4| |t#4| $)) (-15 -3499 (|t#4| |t#4| $)) (-15 -2778 (|t#4| |t#4| $)) (-15 -1618 (|t#4| |t#4| $)) (-15 -3932 ($ $)) (-15 -2762 (|t#4| |t#4| $)) (-15 -3767 ((-586 $) (-586 |t#4|))) (-15 -3769 ((-586 (-2 (|:| -1649 $) (|:| -1543 (-586 |t#4|)))) (-586 |t#4|))) (-15 -2293 ((-3 |t#4| "failed") $)) (-15 -1440 ((-3 |t#4| "failed") $)) (-15 -2305 ((-3 $ "failed") $)) (-15 -1600 ((-586 |t#3|) $)) (-15 -3718 ((-108) |t#3| $)) (-15 -1627 ((-3 |t#4| "failed") $ |t#3|)) (-15 -2885 ((-3 $ "failed") $ |t#4|)) (-15 -2116 ($ $ |t#4|)) (IF (|has| |t#3| (-341)) (-15 -3898 ((-706) $)) |%noBranch|)))
-(((-33) . T) ((-97) . T) ((-560 (-586 |#4|)) . T) ((-560 (-791)) . T) ((-139 |#4|) . T) ((-561 (-496)) |has| |#4| (-561 (-496))) ((-283 |#4|) -12 (|has| |#4| (-283 |#4|)) (|has| |#4| (-1012))) ((-459 |#4|) . T) ((-481 |#4| |#4|) -12 (|has| |#4| (-283 |#4|)) (|has| |#4| (-1012))) ((-901 |#1| |#2| |#3| |#4|) . T) ((-1012) . T) ((-1118) . T))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-4081 (((-586 (-1083)) $) NIL)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) NIL (|has| |#1| (-512)))) (-2583 (($ $) NIL (|has| |#1| (-512)))) (-1671 (((-108) $) NIL (|has| |#1| (-512)))) (-2903 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2768 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-1917 (((-3 $ "failed") $ $) NIL)) (-1927 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2879 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2745 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2925 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2789 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-3961 (($) NIL T CONST)) (-3150 (($ $) NIL)) (-1540 (((-3 $ "failed") $) NIL)) (-2198 (((-880 |#1|) $ (-706)) 17) (((-880 |#1|) $ (-706) (-706)) NIL)) (-1342 (((-108) $) NIL)) (-2833 (($) NIL (|has| |#1| (-37 (-380 (-520)))))) (-3989 (((-706) $ (-1083)) NIL) (((-706) $ (-1083) (-706)) NIL)) (-1537 (((-108) $) NIL)) (-2322 (($ $ (-520)) NIL (|has| |#1| (-37 (-380 (-520)))))) (-3774 (((-108) $) NIL)) (-4039 (($ $ (-586 (-1083)) (-586 (-492 (-1083)))) NIL) (($ $ (-1083) (-492 (-1083))) NIL) (($ |#1| (-492 (-1083))) NIL) (($ $ (-1083) (-706)) NIL) (($ $ (-586 (-1083)) (-586 (-706))) NIL)) (-1389 (($ (-1 |#1| |#1|) $) NIL)) (-1252 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-3123 (($ $) NIL)) (-3133 ((|#1| $) NIL)) (-1239 (((-1066) $) NIL)) (-3517 (($ $ (-1083)) NIL (|has| |#1| (-37 (-380 (-520))))) (($ $ (-1083) |#1|) NIL (|has| |#1| (-37 (-380 (-520)))))) (-4142 (((-1030) $) NIL)) (-2272 (($ (-1 $) (-1083) |#1|) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2116 (($ $ (-706)) NIL)) (-2230 (((-3 $ "failed") $ $) NIL (|has| |#1| (-512)))) (-3260 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2286 (($ $ (-1083) $) NIL) (($ $ (-586 (-1083)) (-586 $)) NIL) (($ $ (-586 (-268 $))) NIL) (($ $ (-268 $)) NIL) (($ $ $ $) NIL) (($ $ (-586 $) (-586 $)) NIL)) (-2155 (($ $ (-1083)) NIL) (($ $ (-586 (-1083))) NIL) (($ $ (-1083) (-706)) NIL) (($ $ (-586 (-1083)) (-586 (-706))) NIL)) (-2528 (((-492 (-1083)) $) NIL)) (-1737 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2799 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2914 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2779 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2891 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2757 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2759 (($ $) NIL)) (-2188 (((-791) $) NIL) (($ (-520)) NIL) (($ |#1|) NIL (|has| |#1| (-157))) (($ $) NIL (|has| |#1| (-512))) (($ (-380 (-520))) NIL (|has| |#1| (-37 (-380 (-520))))) (($ (-1083)) NIL) (($ (-880 |#1|)) NIL)) (-3475 ((|#1| $ (-492 (-1083))) NIL) (($ $ (-1083) (-706)) NIL) (($ $ (-586 (-1083)) (-586 (-706))) NIL) (((-880 |#1|) $ (-706)) NIL)) (-3796 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-3251 (((-706)) NIL)) (-1758 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2831 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2559 (((-108) $ $) NIL (|has| |#1| (-512)))) (-1744 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2810 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-1775 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2855 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-3915 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2867 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-1767 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2843 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-1751 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2820 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (-3560 (($) NIL T CONST)) (-3570 (($) NIL T CONST)) (-2211 (($ $ (-1083)) NIL) (($ $ (-586 (-1083))) NIL) (($ $ (-1083) (-706)) NIL) (($ $ (-586 (-1083)) (-586 (-706))) NIL)) (-1530 (((-108) $ $) NIL)) (-1619 (($ $ |#1|) NIL (|has| |#1| (-336)))) (-1611 (($ $) NIL) (($ $ $) NIL)) (-1601 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ $) NIL (|has| |#1| (-37 (-380 (-520))))) (($ $ (-380 (-520))) NIL (|has| |#1| (-37 (-380 (-520)))))) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) NIL) (($ $ (-380 (-520))) NIL (|has| |#1| (-37 (-380 (-520))))) (($ (-380 (-520)) $) NIL (|has| |#1| (-37 (-380 (-520))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-1113 |#1|) (-13 (-676 |#1| (-1083)) (-10 -8 (-15 -3475 ((-880 |#1|) $ (-706))) (-15 -2188 ($ (-1083))) (-15 -2188 ($ (-880 |#1|))) (IF (|has| |#1| (-37 (-380 (-520)))) (PROGN (-15 -3517 ($ $ (-1083) |#1|)) (-15 -2272 ($ (-1 $) (-1083) |#1|))) |%noBranch|))) (-969)) (T -1113))
-((-3475 (*1 *2 *1 *3) (-12 (-5 *3 (-706)) (-5 *2 (-880 *4)) (-5 *1 (-1113 *4)) (-4 *4 (-969)))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-1083)) (-5 *1 (-1113 *3)) (-4 *3 (-969)))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-880 *3)) (-4 *3 (-969)) (-5 *1 (-1113 *3)))) (-3517 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1083)) (-5 *1 (-1113 *3)) (-4 *3 (-37 (-380 (-520)))) (-4 *3 (-969)))) (-2272 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1113 *4))) (-5 *3 (-1083)) (-5 *1 (-1113 *4)) (-4 *4 (-37 (-380 (-520)))) (-4 *4 (-969)))))
-(-13 (-676 |#1| (-1083)) (-10 -8 (-15 -3475 ((-880 |#1|) $ (-706))) (-15 -2188 ($ (-1083))) (-15 -2188 ($ (-880 |#1|))) (IF (|has| |#1| (-37 (-380 (-520)))) (PROGN (-15 -3517 ($ $ (-1083) |#1|)) (-15 -2272 ($ (-1 $) (-1083) |#1|))) |%noBranch|)))
-((-1957 (($ |#1| (-586 (-586 (-871 (-201)))) (-108)) 16)) (-4026 (((-108) $ (-108)) 15)) (-2991 (((-108) $) 14)) (-3355 (((-586 (-586 (-871 (-201)))) $) 10)) (-3097 ((|#1| $) 8)) (-2587 (((-108) $) 12)))
-(((-1114 |#1|) (-10 -8 (-15 -3097 (|#1| $)) (-15 -3355 ((-586 (-586 (-871 (-201)))) $)) (-15 -2587 ((-108) $)) (-15 -2991 ((-108) $)) (-15 -4026 ((-108) $ (-108))) (-15 -1957 ($ |#1| (-586 (-586 (-871 (-201)))) (-108)))) (-899)) (T -1114))
-((-1957 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-586 (-586 (-871 (-201))))) (-5 *4 (-108)) (-5 *1 (-1114 *2)) (-4 *2 (-899)))) (-4026 (*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1114 *3)) (-4 *3 (-899)))) (-2991 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1114 *3)) (-4 *3 (-899)))) (-2587 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1114 *3)) (-4 *3 (-899)))) (-3355 (*1 *2 *1) (-12 (-5 *2 (-586 (-586 (-871 (-201))))) (-5 *1 (-1114 *3)) (-4 *3 (-899)))) (-3097 (*1 *2 *1) (-12 (-5 *1 (-1114 *2)) (-4 *2 (-899)))))
-(-10 -8 (-15 -3097 (|#1| $)) (-15 -3355 ((-586 (-586 (-871 (-201)))) $)) (-15 -2587 ((-108) $)) (-15 -2991 ((-108) $)) (-15 -4026 ((-108) $ (-108))) (-15 -1957 ($ |#1| (-586 (-586 (-871 (-201)))) (-108))))
-((-4121 (((-871 (-201)) (-871 (-201))) 25)) (-2734 (((-871 (-201)) (-201) (-201) (-201) (-201)) 10)) (-3321 (((-586 (-871 (-201))) (-871 (-201)) (-871 (-201)) (-871 (-201)) (-201) (-586 (-586 (-201)))) 37)) (-3639 (((-201) (-871 (-201)) (-871 (-201))) 21)) (-1480 (((-871 (-201)) (-871 (-201)) (-871 (-201))) 22)) (-3663 (((-586 (-586 (-201))) (-520)) 31)) (-1611 (((-871 (-201)) (-871 (-201)) (-871 (-201))) 20)) (-1601 (((-871 (-201)) (-871 (-201)) (-871 (-201))) 19)) (* (((-871 (-201)) (-201) (-871 (-201))) 18)))
-(((-1115) (-10 -7 (-15 -2734 ((-871 (-201)) (-201) (-201) (-201) (-201))) (-15 * ((-871 (-201)) (-201) (-871 (-201)))) (-15 -1601 ((-871 (-201)) (-871 (-201)) (-871 (-201)))) (-15 -1611 ((-871 (-201)) (-871 (-201)) (-871 (-201)))) (-15 -3639 ((-201) (-871 (-201)) (-871 (-201)))) (-15 -1480 ((-871 (-201)) (-871 (-201)) (-871 (-201)))) (-15 -4121 ((-871 (-201)) (-871 (-201)))) (-15 -3663 ((-586 (-586 (-201))) (-520))) (-15 -3321 ((-586 (-871 (-201))) (-871 (-201)) (-871 (-201)) (-871 (-201)) (-201) (-586 (-586 (-201))))))) (T -1115))
-((-3321 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-586 (-586 (-201)))) (-5 *4 (-201)) (-5 *2 (-586 (-871 *4))) (-5 *1 (-1115)) (-5 *3 (-871 *4)))) (-3663 (*1 *2 *3) (-12 (-5 *3 (-520)) (-5 *2 (-586 (-586 (-201)))) (-5 *1 (-1115)))) (-4121 (*1 *2 *2) (-12 (-5 *2 (-871 (-201))) (-5 *1 (-1115)))) (-1480 (*1 *2 *2 *2) (-12 (-5 *2 (-871 (-201))) (-5 *1 (-1115)))) (-3639 (*1 *2 *3 *3) (-12 (-5 *3 (-871 (-201))) (-5 *2 (-201)) (-5 *1 (-1115)))) (-1611 (*1 *2 *2 *2) (-12 (-5 *2 (-871 (-201))) (-5 *1 (-1115)))) (-1601 (*1 *2 *2 *2) (-12 (-5 *2 (-871 (-201))) (-5 *1 (-1115)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-871 (-201))) (-5 *3 (-201)) (-5 *1 (-1115)))) (-2734 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-871 (-201))) (-5 *1 (-1115)) (-5 *3 (-201)))))
-(-10 -7 (-15 -2734 ((-871 (-201)) (-201) (-201) (-201) (-201))) (-15 * ((-871 (-201)) (-201) (-871 (-201)))) (-15 -1601 ((-871 (-201)) (-871 (-201)) (-871 (-201)))) (-15 -1611 ((-871 (-201)) (-871 (-201)) (-871 (-201)))) (-15 -3639 ((-201) (-871 (-201)) (-871 (-201)))) (-15 -1480 ((-871 (-201)) (-871 (-201)) (-871 (-201)))) (-15 -4121 ((-871 (-201)) (-871 (-201)))) (-15 -3663 ((-586 (-586 (-201))) (-520))) (-15 -3321 ((-586 (-871 (-201))) (-871 (-201)) (-871 (-201)) (-871 (-201)) (-201) (-586 (-586 (-201))))))
-((-1414 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-1627 ((|#1| $ (-706)) 13)) (-2515 (((-706) $) 12)) (-1239 (((-1066) $) NIL (|has| |#1| (-1012)))) (-4142 (((-1030) $) NIL (|has| |#1| (-1012)))) (-2188 (((-885 |#1|) $) 10) (($ (-885 |#1|)) 9) (((-791) $) 23 (|has| |#1| (-560 (-791))))) (-1530 (((-108) $ $) 16 (|has| |#1| (-1012)))))
-(((-1116 |#1|) (-13 (-560 (-885 |#1|)) (-10 -8 (-15 -2188 ($ (-885 |#1|))) (-15 -1627 (|#1| $ (-706))) (-15 -2515 ((-706) $)) (IF (|has| |#1| (-560 (-791))) (-6 (-560 (-791))) |%noBranch|) (IF (|has| |#1| (-1012)) (-6 (-1012)) |%noBranch|))) (-1118)) (T -1116))
-((-2188 (*1 *1 *2) (-12 (-5 *2 (-885 *3)) (-4 *3 (-1118)) (-5 *1 (-1116 *3)))) (-1627 (*1 *2 *1 *3) (-12 (-5 *3 (-706)) (-5 *1 (-1116 *2)) (-4 *2 (-1118)))) (-2515 (*1 *2 *1) (-12 (-5 *2 (-706)) (-5 *1 (-1116 *3)) (-4 *3 (-1118)))))
-(-13 (-560 (-885 |#1|)) (-10 -8 (-15 -2188 ($ (-885 |#1|))) (-15 -1627 (|#1| $ (-706))) (-15 -2515 ((-706) $)) (IF (|has| |#1| (-560 (-791))) (-6 (-560 (-791))) |%noBranch|) (IF (|has| |#1| (-1012)) (-6 (-1012)) |%noBranch|)))
-((-1959 (((-391 (-1079 (-1079 |#1|))) (-1079 (-1079 |#1|)) (-520)) 79)) (-1254 (((-391 (-1079 (-1079 |#1|))) (-1079 (-1079 |#1|))) 73)) (-1419 (((-391 (-1079 (-1079 |#1|))) (-1079 (-1079 |#1|))) 58)))
-(((-1117 |#1|) (-10 -7 (-15 -1254 ((-391 (-1079 (-1079 |#1|))) (-1079 (-1079 |#1|)))) (-15 -1419 ((-391 (-1079 (-1079 |#1|))) (-1079 (-1079 |#1|)))) (-15 -1959 ((-391 (-1079 (-1079 |#1|))) (-1079 (-1079 |#1|)) (-520)))) (-322)) (T -1117))
-((-1959 (*1 *2 *3 *4) (-12 (-5 *4 (-520)) (-4 *5 (-322)) (-5 *2 (-391 (-1079 (-1079 *5)))) (-5 *1 (-1117 *5)) (-5 *3 (-1079 (-1079 *5))))) (-1419 (*1 *2 *3) (-12 (-4 *4 (-322)) (-5 *2 (-391 (-1079 (-1079 *4)))) (-5 *1 (-1117 *4)) (-5 *3 (-1079 (-1079 *4))))) (-1254 (*1 *2 *3) (-12 (-4 *4 (-322)) (-5 *2 (-391 (-1079 (-1079 *4)))) (-5 *1 (-1117 *4)) (-5 *3 (-1079 (-1079 *4))))))
-(-10 -7 (-15 -1254 ((-391 (-1079 (-1079 |#1|))) (-1079 (-1079 |#1|)))) (-15 -1419 ((-391 (-1079 (-1079 |#1|))) (-1079 (-1079 |#1|)))) (-15 -1959 ((-391 (-1079 (-1079 |#1|))) (-1079 (-1079 |#1|)) (-520))))
-NIL
-(((-1118) (-1195)) (T -1118))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-561 (-792)) . T) ((-1013) . T))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-1232 (((-3 $ "failed") $ $) 19)) (-2547 (($) 17 T CONST)) (-3688 (((-1067) $) 9)) (-4147 (((-1031) $) 10)) (-2189 (((-792) $) 11)) (-3505 (($ $ (-850)) 26)) (-3561 (($) 18 T CONST)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25)) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24)))
+(((-977) (-1196)) (T -977))
+NIL
+(-13 (-21) (-1025))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-561 (-792)) . T) ((-1025) . T) ((-1013) . T))
+((-2977 (($ $) 16)) (-1218 (($ $) 22)) (-3427 (((-818 (-353) $) $ (-821 (-353)) (-818 (-353) $)) 49)) (-3930 (($ $) 24)) (-2850 (($ $) 11)) (-2567 (($ $) 38)) (-1430 (((-353) $) NIL) (((-202) $) NIL) (((-821 (-353)) $) 33)) (-2189 (((-792) $) NIL) (($ (-521)) NIL) (($ $) NIL) (($ (-381 (-521))) 28) (($ (-521)) NIL) (($ (-381 (-521))) 28)) (-3846 (((-707)) 8)) (-2382 (($ $) 39)))
+(((-978 |#1|) (-10 -8 (-15 -1218 (|#1| |#1|)) (-15 -2977 (|#1| |#1|)) (-15 -2850 (|#1| |#1|)) (-15 -2567 (|#1| |#1|)) (-15 -2382 (|#1| |#1|)) (-15 -3930 (|#1| |#1|)) (-15 -3427 ((-818 (-353) |#1|) |#1| (-821 (-353)) (-818 (-353) |#1|))) (-15 -1430 ((-821 (-353)) |#1|)) (-15 -2189 (|#1| (-381 (-521)))) (-15 -2189 (|#1| (-521))) (-15 -1430 ((-202) |#1|)) (-15 -1430 ((-353) |#1|)) (-15 -2189 (|#1| (-381 (-521)))) (-15 -2189 (|#1| |#1|)) (-15 -2189 (|#1| (-521))) (-15 -3846 ((-707))) (-15 -2189 ((-792) |#1|))) (-979)) (T -978))
+((-3846 (*1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-978 *3)) (-4 *3 (-979)))))
+(-10 -8 (-15 -1218 (|#1| |#1|)) (-15 -2977 (|#1| |#1|)) (-15 -2850 (|#1| |#1|)) (-15 -2567 (|#1| |#1|)) (-15 -2382 (|#1| |#1|)) (-15 -3930 (|#1| |#1|)) (-15 -3427 ((-818 (-353) |#1|) |#1| (-821 (-353)) (-818 (-353) |#1|))) (-15 -1430 ((-821 (-353)) |#1|)) (-15 -2189 (|#1| (-381 (-521)))) (-15 -2189 (|#1| (-521))) (-15 -1430 ((-202) |#1|)) (-15 -1430 ((-353) |#1|)) (-15 -2189 (|#1| (-381 (-521)))) (-15 -2189 (|#1| |#1|)) (-15 -2189 (|#1| (-521))) (-15 -3846 ((-707))) (-15 -2189 ((-792) |#1|)))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-2086 (((-521) $) 89)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) 41)) (-2559 (($ $) 40)) (-1733 (((-108) $) 38)) (-2977 (($ $) 87)) (-1232 (((-3 $ "failed") $ $) 19)) (-3063 (($ $) 73)) (-3358 (((-392 $) $) 72)) (-1927 (($ $) 97)) (-1389 (((-108) $ $) 59)) (-1606 (((-521) $) 114)) (-2547 (($) 17 T CONST)) (-1218 (($ $) 86)) (-1297 (((-3 (-521) "failed") $) 102) (((-3 (-381 (-521)) "failed") $) 99)) (-1483 (((-521) $) 101) (((-381 (-521)) $) 98)) (-2277 (($ $ $) 55)) (-1257 (((-3 $ "failed") $) 34)) (-2253 (($ $ $) 56)) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) 51)) (-2710 (((-108) $) 71)) (-3951 (((-108) $) 112)) (-3427 (((-818 (-353) $) $ (-821 (-353)) (-818 (-353) $)) 93)) (-3996 (((-108) $) 31)) (-3407 (($ $ (-521)) 96)) (-3930 (($ $) 92)) (-2210 (((-108) $) 113)) (-1546 (((-3 (-587 $) "failed") (-587 $) $) 52)) (-2810 (($ $ $) 111)) (-2446 (($ $ $) 110)) (-2223 (($ $ $) 46) (($ (-587 $)) 45)) (-3688 (((-1067) $) 9)) (-3095 (($ $) 70)) (-4147 (((-1031) $) 10)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) 44)) (-2258 (($ $ $) 48) (($ (-587 $)) 47)) (-2850 (($ $) 88)) (-2567 (($ $) 90)) (-1916 (((-392 $) $) 74)) (-1962 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2230 (((-3 $ "failed") $ $) 42)) (-3854 (((-3 (-587 $) "failed") (-587 $) $) 50)) (-4196 (((-707) $) 58)) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) 57)) (-1430 (((-353) $) 105) (((-202) $) 104) (((-821 (-353)) $) 94)) (-2189 (((-792) $) 11) (($ (-521)) 28) (($ $) 43) (($ (-381 (-521))) 65) (($ (-521)) 103) (($ (-381 (-521))) 100)) (-3846 (((-707)) 29)) (-2382 (($ $) 91)) (-4210 (((-108) $ $) 39)) (-3304 (($ $) 115)) (-3505 (($ $ (-850)) 26) (($ $ (-707)) 33) (($ $ (-521)) 69)) (-3561 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-1574 (((-108) $ $) 108)) (-1558 (((-108) $ $) 107)) (-1531 (((-108) $ $) 6)) (-1566 (((-108) $ $) 109)) (-1549 (((-108) $ $) 106)) (-1620 (($ $ $) 64)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-707)) 32) (($ $ (-521)) 68) (($ $ (-381 (-521))) 95)) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ $ (-381 (-521))) 67) (($ (-381 (-521)) $) 66)))
+(((-979) (-1196)) (T -979))
+((-3304 (*1 *1 *1) (-4 *1 (-979))) (-3930 (*1 *1 *1) (-4 *1 (-979))) (-2382 (*1 *1 *1) (-4 *1 (-979))) (-2567 (*1 *1 *1) (-4 *1 (-979))) (-2086 (*1 *2 *1) (-12 (-4 *1 (-979)) (-5 *2 (-521)))) (-2850 (*1 *1 *1) (-4 *1 (-979))) (-2977 (*1 *1 *1) (-4 *1 (-979))) (-1218 (*1 *1 *1) (-4 *1 (-979))))
+(-13 (-337) (-782) (-946) (-961 (-521)) (-961 (-381 (-521))) (-927) (-562 (-821 (-353))) (-815 (-353)) (-135) (-10 -8 (-15 -3930 ($ $)) (-15 -2382 ($ $)) (-15 -2567 ($ $)) (-15 -2086 ((-521) $)) (-15 -2850 ($ $)) (-15 -2977 ($ $)) (-15 -1218 ($ $)) (-15 -3304 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-381 (-521))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-124) . T) ((-135) . T) ((-561 (-792)) . T) ((-157) . T) ((-562 (-202)) . T) ((-562 (-353)) . T) ((-562 (-821 (-353))) . T) ((-220) . T) ((-265) . T) ((-282) . T) ((-337) . T) ((-425) . T) ((-513) . T) ((-589 #0#) . T) ((-589 $) . T) ((-654 #0#) . T) ((-654 $) . T) ((-663) . T) ((-727) . T) ((-728) . T) ((-730) . T) ((-732) . T) ((-782) . T) ((-784) . T) ((-815 (-353)) . T) ((-849) . T) ((-927) . T) ((-946) . T) ((-961 (-381 (-521))) . T) ((-961 (-521)) . T) ((-976 #0#) . T) ((-976 $) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T) ((-1123) . T))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) |#2| $) 23)) (-1630 ((|#1| $) 10)) (-1606 (((-521) |#2| $) 89)) (-2590 (((-3 $ "failed") |#2| (-850)) 58)) (-1925 ((|#1| $) 28)) (-2738 ((|#1| |#2| $ |#1|) 37)) (-3161 (($ $) 25)) (-1257 (((-3 |#2| "failed") |#2| $) 88)) (-3951 (((-108) |#2| $) NIL)) (-2210 (((-108) |#2| $) NIL)) (-3997 (((-108) |#2| $) 24)) (-1245 ((|#1| $) 90)) (-1913 ((|#1| $) 27)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2879 ((|#2| $) 80)) (-2189 (((-792) $) 71)) (-3894 ((|#1| |#2| $ |#1|) 38)) (-3032 (((-587 $) |#2|) 60)) (-1531 (((-108) $ $) 75)))
+(((-980 |#1| |#2|) (-13 (-986 |#1| |#2|) (-10 -8 (-15 -1913 (|#1| $)) (-15 -1925 (|#1| $)) (-15 -1630 (|#1| $)) (-15 -1245 (|#1| $)) (-15 -3161 ($ $)) (-15 -3997 ((-108) |#2| $)) (-15 -2738 (|#1| |#2| $ |#1|)))) (-13 (-782) (-337)) (-1141 |#1|)) (T -980))
+((-2738 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-782) (-337))) (-5 *1 (-980 *2 *3)) (-4 *3 (-1141 *2)))) (-1913 (*1 *2 *1) (-12 (-4 *2 (-13 (-782) (-337))) (-5 *1 (-980 *2 *3)) (-4 *3 (-1141 *2)))) (-1925 (*1 *2 *1) (-12 (-4 *2 (-13 (-782) (-337))) (-5 *1 (-980 *2 *3)) (-4 *3 (-1141 *2)))) (-1630 (*1 *2 *1) (-12 (-4 *2 (-13 (-782) (-337))) (-5 *1 (-980 *2 *3)) (-4 *3 (-1141 *2)))) (-1245 (*1 *2 *1) (-12 (-4 *2 (-13 (-782) (-337))) (-5 *1 (-980 *2 *3)) (-4 *3 (-1141 *2)))) (-3161 (*1 *1 *1) (-12 (-4 *2 (-13 (-782) (-337))) (-5 *1 (-980 *2 *3)) (-4 *3 (-1141 *2)))) (-3997 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-782) (-337))) (-5 *2 (-108)) (-5 *1 (-980 *4 *3)) (-4 *3 (-1141 *4)))))
+(-13 (-986 |#1| |#2|) (-10 -8 (-15 -1913 (|#1| $)) (-15 -1925 (|#1| $)) (-15 -1630 (|#1| $)) (-15 -1245 (|#1| $)) (-15 -3161 ($ $)) (-15 -3997 ((-108) |#2| $)) (-15 -2738 (|#1| |#2| $ |#1|))))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-2559 (($ $) NIL)) (-1733 (((-108) $) NIL)) (-3929 (($ $ $) NIL)) (-1232 (((-3 $ "failed") $ $) NIL)) (-3106 (($ $ $ $) NIL)) (-3063 (($ $) NIL)) (-3358 (((-392 $) $) NIL)) (-1389 (((-108) $ $) NIL)) (-1606 (((-521) $) NIL)) (-1662 (($ $ $) NIL)) (-2547 (($) NIL T CONST)) (-3901 (($ (-1084)) 10) (($ (-521)) 7)) (-1297 (((-3 (-521) "failed") $) NIL)) (-1483 (((-521) $) NIL)) (-2277 (($ $ $) NIL)) (-3279 (((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL) (((-627 (-521)) (-627 $)) NIL)) (-1257 (((-3 $ "failed") $) NIL)) (-1521 (((-3 (-381 (-521)) "failed") $) NIL)) (-3190 (((-108) $) NIL)) (-2082 (((-381 (-521)) $) NIL)) (-3250 (($) NIL) (($ $) NIL)) (-2253 (($ $ $) NIL)) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) NIL)) (-2710 (((-108) $) NIL)) (-2213 (($ $ $ $) NIL)) (-3158 (($ $ $) NIL)) (-3951 (((-108) $) NIL)) (-3189 (($ $ $) NIL)) (-3427 (((-818 (-521) $) $ (-821 (-521)) (-818 (-521) $)) NIL)) (-3996 (((-108) $) NIL)) (-1255 (((-108) $) NIL)) (-3842 (((-3 $ "failed") $) NIL)) (-2210 (((-108) $) NIL)) (-1546 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-2283 (($ $ $ $) NIL)) (-2810 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-3890 (($ $) NIL)) (-2516 (($ $) NIL)) (-2223 (($ $ $) NIL) (($ (-587 $)) NIL)) (-3688 (((-1067) $) NIL)) (-1642 (($ $ $) NIL)) (-3797 (($) NIL T CONST)) (-2953 (($ $) NIL)) (-4147 (((-1031) $) NIL) (($ $) NIL)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) NIL)) (-2258 (($ $ $) NIL) (($ (-587 $)) NIL)) (-3210 (($ $) NIL)) (-1916 (((-392 $) $) NIL)) (-1962 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL)) (-2230 (((-3 $ "failed") $ $) NIL)) (-3854 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-3550 (((-108) $) NIL)) (-4196 (((-707) $) NIL)) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) NIL)) (-2156 (($ $ (-707)) NIL) (($ $) NIL)) (-3052 (($ $) NIL)) (-2404 (($ $) NIL)) (-1430 (((-521) $) 16) (((-497) $) NIL) (((-821 (-521)) $) NIL) (((-353) $) NIL) (((-202) $) NIL) (($ (-1084)) 9)) (-2189 (((-792) $) 20) (($ (-521)) 6) (($ $) NIL) (($ (-521)) 6)) (-3846 (((-707)) NIL)) (-3968 (((-108) $ $) NIL)) (-2712 (($ $ $) NIL)) (-3351 (($) NIL)) (-4210 (((-108) $ $) NIL)) (-3631 (($ $ $ $) NIL)) (-3304 (($ $) NIL)) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (-3561 (($) NIL T CONST)) (-3572 (($) NIL T CONST)) (-2212 (($ $ (-707)) NIL) (($ $) NIL)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) NIL)) (-1612 (($ $) 19) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL)))
+(((-981) (-13 (-506) (-10 -8 (-6 -4220) (-6 -4225) (-6 -4221) (-15 -1430 ($ (-1084))) (-15 -3901 ($ (-1084))) (-15 -3901 ($ (-521)))))) (T -981))
+((-1430 (*1 *1 *2) (-12 (-5 *2 (-1084)) (-5 *1 (-981)))) (-3901 (*1 *1 *2) (-12 (-5 *2 (-1084)) (-5 *1 (-981)))) (-3901 (*1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-981)))))
+(-13 (-506) (-10 -8 (-6 -4220) (-6 -4225) (-6 -4221) (-15 -1430 ($ (-1084))) (-15 -3901 ($ (-1084))) (-15 -3901 ($ (-521)))))
+((-1415 (((-108) $ $) NIL (-3703 (|has| (-51) (-1013)) (|has| (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (-1013))))) (-1800 (($) NIL) (($ (-587 (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))))) NIL)) (-1903 (((-1170) $ (-1084) (-1084)) NIL (|has| $ (-6 -4234)))) (-2978 (((-108) $ (-707)) NIL)) (-1680 (($) 9)) (-2378 (((-51) $ (-1084) (-51)) NIL)) (-3084 (($ $) 23)) (-3592 (($ $) 21)) (-3522 (($ $) 20)) (-1412 (($ $) 22)) (-2272 (($ $) 25)) (-3466 (($ $) 26)) (-4060 (($ $) 19)) (-3389 (($ $) 24)) (-4098 (($ (-1 (-108) (-2 (|:| -2529 (-1084)) (|:| -3045 (-51)))) $) NIL (|has| $ (-6 -4233)))) (-1628 (($ (-1 (-108) (-2 (|:| -2529 (-1084)) (|:| -3045 (-51)))) $) 18 (|has| $ (-6 -4233)))) (-2748 (((-3 (-51) "failed") (-1084) $) 34)) (-2547 (($) NIL T CONST)) (-1716 (($) 7)) (-2332 (($ $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (-1013))))) (-3023 (($ (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) $) 46 (|has| $ (-6 -4233))) (($ (-1 (-108) (-2 (|:| -2529 (-1084)) (|:| -3045 (-51)))) $) NIL (|has| $ (-6 -4233))) (((-3 (-51) "failed") (-1084) $) NIL)) (-1422 (($ (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (-1013)))) (($ (-1 (-108) (-2 (|:| -2529 (-1084)) (|:| -3045 (-51)))) $) NIL (|has| $ (-6 -4233)))) (-3859 (((-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (-1 (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (-2 (|:| -2529 (-1084)) (|:| -3045 (-51)))) $ (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (-2 (|:| -2529 (-1084)) (|:| -3045 (-51)))) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (-1013)))) (((-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (-1 (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (-2 (|:| -2529 (-1084)) (|:| -3045 (-51)))) $ (-2 (|:| -2529 (-1084)) (|:| -3045 (-51)))) NIL (|has| $ (-6 -4233))) (((-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (-1 (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (-2 (|:| -2529 (-1084)) (|:| -3045 (-51)))) $) NIL (|has| $ (-6 -4233)))) (-3665 (((-3 (-1067) "failed") $ (-1067) (-521)) 59)) (-3849 (((-51) $ (-1084) (-51)) NIL (|has| $ (-6 -4234)))) (-3626 (((-51) $ (-1084)) NIL)) (-3831 (((-587 (-2 (|:| -2529 (-1084)) (|:| -3045 (-51)))) $) NIL (|has| $ (-6 -4233))) (((-587 (-51)) $) NIL (|has| $ (-6 -4233)))) (-2139 (((-108) $ (-707)) NIL)) (-2826 (((-1084) $) NIL (|has| (-1084) (-784)))) (-3757 (((-587 (-2 (|:| -2529 (-1084)) (|:| -3045 (-51)))) $) 28 (|has| $ (-6 -4233))) (((-587 (-51)) $) NIL (|has| $ (-6 -4233)))) (-2221 (((-108) (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (-1013)))) (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-51) (-1013))))) (-2597 (((-1084) $) NIL (|has| (-1084) (-784)))) (-3833 (($ (-1 (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (-2 (|:| -2529 (-1084)) (|:| -3045 (-51)))) $) NIL (|has| $ (-6 -4234))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4234)))) (-1390 (($ (-1 (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (-2 (|:| -2529 (-1084)) (|:| -3045 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-3574 (((-108) $ (-707)) NIL)) (-3688 (((-1067) $) NIL (-3703 (|has| (-51) (-1013)) (|has| (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (-1013))))) (-2961 (((-587 (-1084)) $) NIL)) (-2781 (((-108) (-1084) $) NIL)) (-2511 (((-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) $) NIL)) (-3373 (($ (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) $) 37)) (-1668 (((-587 (-1084)) $) NIL)) (-2941 (((-108) (-1084) $) NIL)) (-4147 (((-1031) $) NIL (-3703 (|has| (-51) (-1013)) (|has| (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (-1013))))) (-2260 (((-353) $ (-1084)) 45)) (-1846 (((-587 (-1067)) $ (-1067)) 60)) (-2293 (((-51) $) NIL (|has| (-1084) (-784)))) (-3620 (((-3 (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) "failed") (-1 (-108) (-2 (|:| -2529 (-1084)) (|:| -3045 (-51)))) $) NIL)) (-3016 (($ $ (-51)) NIL (|has| $ (-6 -4234)))) (-2166 (((-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) $) NIL)) (-1789 (((-108) (-1 (-108) (-2 (|:| -2529 (-1084)) (|:| -3045 (-51)))) $) NIL (|has| $ (-6 -4233))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 (-2 (|:| -2529 (-1084)) (|:| -3045 (-51)))))) NIL (-12 (|has| (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (-284 (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))))) (|has| (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (-1013)))) (($ $ (-269 (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))))) NIL (-12 (|has| (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (-284 (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))))) (|has| (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (-1013)))) (($ $ (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (-2 (|:| -2529 (-1084)) (|:| -3045 (-51)))) NIL (-12 (|has| (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (-284 (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))))) (|has| (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (-1013)))) (($ $ (-587 (-2 (|:| -2529 (-1084)) (|:| -3045 (-51)))) (-587 (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))))) NIL (-12 (|has| (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (-284 (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))))) (|has| (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (-1013)))) (($ $ (-587 (-51)) (-587 (-51))) NIL (-12 (|has| (-51) (-284 (-51))) (|has| (-51) (-1013)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-284 (-51))) (|has| (-51) (-1013)))) (($ $ (-269 (-51))) NIL (-12 (|has| (-51) (-284 (-51))) (|has| (-51) (-1013)))) (($ $ (-587 (-269 (-51)))) NIL (-12 (|has| (-51) (-284 (-51))) (|has| (-51) (-1013))))) (-2488 (((-108) $ $) NIL)) (-3821 (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-51) (-1013))))) (-2489 (((-587 (-51)) $) NIL)) (-3462 (((-108) $) NIL)) (-4024 (($) NIL)) (-2544 (((-51) $ (-1084)) NIL) (((-51) $ (-1084) (-51)) NIL)) (-1784 (($) NIL) (($ (-587 (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))))) NIL)) (-2142 (($ $ (-1084)) 47)) (-4163 (((-707) (-1 (-108) (-2 (|:| -2529 (-1084)) (|:| -3045 (-51)))) $) NIL (|has| $ (-6 -4233))) (((-707) (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (-1013)))) (((-707) (-51) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-51) (-1013)))) (((-707) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4233)))) (-2404 (($ $) NIL)) (-1430 (((-497) $) NIL (|has| (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (-562 (-497))))) (-2201 (($ (-587 (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))))) 30)) (-4159 (($ $ $) 31)) (-2189 (((-792) $) NIL (-3703 (|has| (-51) (-561 (-792))) (|has| (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (-561 (-792)))))) (-2042 (($ $ (-1084) (-353)) 43)) (-3779 (($ $ (-1084) (-353)) 44)) (-4091 (($ (-587 (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))))) NIL)) (-3049 (((-108) (-1 (-108) (-2 (|:| -2529 (-1084)) (|:| -3045 (-51)))) $) NIL (|has| $ (-6 -4233))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4233)))) (-1531 (((-108) $ $) NIL (-3703 (|has| (-51) (-1013)) (|has| (-2 (|:| -2529 (-1084)) (|:| -3045 (-51))) (-1013))))) (-3475 (((-707) $) NIL (|has| $ (-6 -4233)))))
+(((-982) (-13 (-1096 (-1084) (-51)) (-10 -8 (-15 -4159 ($ $ $)) (-15 -1716 ($)) (-15 -4060 ($ $)) (-15 -3522 ($ $)) (-15 -3592 ($ $)) (-15 -1412 ($ $)) (-15 -3389 ($ $)) (-15 -3084 ($ $)) (-15 -2272 ($ $)) (-15 -3466 ($ $)) (-15 -2042 ($ $ (-1084) (-353))) (-15 -3779 ($ $ (-1084) (-353))) (-15 -2260 ((-353) $ (-1084))) (-15 -1846 ((-587 (-1067)) $ (-1067))) (-15 -2142 ($ $ (-1084))) (-15 -1680 ($)) (-15 -3665 ((-3 (-1067) "failed") $ (-1067) (-521))) (-6 -4233)))) (T -982))
+((-4159 (*1 *1 *1 *1) (-5 *1 (-982))) (-1716 (*1 *1) (-5 *1 (-982))) (-4060 (*1 *1 *1) (-5 *1 (-982))) (-3522 (*1 *1 *1) (-5 *1 (-982))) (-3592 (*1 *1 *1) (-5 *1 (-982))) (-1412 (*1 *1 *1) (-5 *1 (-982))) (-3389 (*1 *1 *1) (-5 *1 (-982))) (-3084 (*1 *1 *1) (-5 *1 (-982))) (-2272 (*1 *1 *1) (-5 *1 (-982))) (-3466 (*1 *1 *1) (-5 *1 (-982))) (-2042 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-353)) (-5 *1 (-982)))) (-3779 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-353)) (-5 *1 (-982)))) (-2260 (*1 *2 *1 *3) (-12 (-5 *3 (-1084)) (-5 *2 (-353)) (-5 *1 (-982)))) (-1846 (*1 *2 *1 *3) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-982)) (-5 *3 (-1067)))) (-2142 (*1 *1 *1 *2) (-12 (-5 *2 (-1084)) (-5 *1 (-982)))) (-1680 (*1 *1) (-5 *1 (-982))) (-3665 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1067)) (-5 *3 (-521)) (-5 *1 (-982)))))
+(-13 (-1096 (-1084) (-51)) (-10 -8 (-15 -4159 ($ $ $)) (-15 -1716 ($)) (-15 -4060 ($ $)) (-15 -3522 ($ $)) (-15 -3592 ($ $)) (-15 -1412 ($ $)) (-15 -3389 ($ $)) (-15 -3084 ($ $)) (-15 -2272 ($ $)) (-15 -3466 ($ $)) (-15 -2042 ($ $ (-1084) (-353))) (-15 -3779 ($ $ (-1084) (-353))) (-15 -2260 ((-353) $ (-1084))) (-15 -1846 ((-587 (-1067)) $ (-1067))) (-15 -2142 ($ $ (-1084))) (-15 -1680 ($)) (-15 -3665 ((-3 (-1067) "failed") $ (-1067) (-521))) (-6 -4233)))
+((-3830 (($ $) 45)) (-3514 (((-108) $ $) 74)) (-1297 (((-3 |#2| "failed") $) NIL) (((-3 (-381 (-521)) "failed") $) NIL) (((-3 (-521) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-881 (-381 (-521)))) 227) (((-3 $ "failed") (-881 (-521))) 226) (((-3 $ "failed") (-881 |#2|)) 229)) (-1483 ((|#2| $) NIL) (((-381 (-521)) $) NIL) (((-521) $) NIL) ((|#4| $) NIL) (($ (-881 (-381 (-521)))) 215) (($ (-881 (-521))) 211) (($ (-881 |#2|)) 231)) (-3152 (($ $) NIL) (($ $ |#4|) 43)) (-3156 (((-108) $ $) 112) (((-108) $ (-587 $)) 113)) (-2798 (((-108) $) 56)) (-2225 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) 107)) (-1880 (($ $) 138)) (-4156 (($ $) 134)) (-1976 (($ $) 133)) (-3416 (($ $ $) 79) (($ $ $ |#4|) 84)) (-2197 (($ $ $) 82) (($ $ $ |#4|) 86)) (-3266 (((-108) $ $) 121) (((-108) $ (-587 $)) 122)) (-3464 ((|#4| $) 33)) (-3248 (($ $ $) 110)) (-1205 (((-108) $) 55)) (-2863 (((-707) $) 35)) (-2473 (($ $) 152)) (-3975 (($ $) 149)) (-1577 (((-587 $) $) 68)) (-1696 (($ $) 57)) (-2874 (($ $) 145)) (-1244 (((-587 $) $) 65)) (-2626 (($ $) 59)) (-3135 ((|#2| $) NIL) (($ $ |#4|) 38)) (-1812 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3745 (-707))) $ $) 111)) (-2389 (((-2 (|:| -2973 $) (|:| |gap| (-707)) (|:| -3727 $) (|:| -3820 $)) $ $) 108) (((-2 (|:| -2973 $) (|:| |gap| (-707)) (|:| -3727 $) (|:| -3820 $)) $ $ |#4|) 109)) (-4177 (((-2 (|:| -2973 $) (|:| |gap| (-707)) (|:| -3820 $)) $ $) 104) (((-2 (|:| -2973 $) (|:| |gap| (-707)) (|:| -3820 $)) $ $ |#4|) 105)) (-2581 (($ $ $) 89) (($ $ $ |#4|) 95)) (-2012 (($ $ $) 90) (($ $ $ |#4|) 96)) (-1358 (((-587 $) $) 51)) (-3786 (((-108) $ $) 118) (((-108) $ (-587 $)) 119)) (-1347 (($ $ $) 103)) (-3797 (($ $) 37)) (-2146 (((-108) $ $) 72)) (-1972 (((-108) $ $) 114) (((-108) $ (-587 $)) 116)) (-4065 (($ $ $) 101)) (-3236 (($ $) 40)) (-2258 ((|#2| |#2| $) 142) (($ (-587 $)) NIL) (($ $ $) NIL)) (-3455 (($ $ |#2|) NIL) (($ $ $) 131)) (-2187 (($ $ |#2|) 126) (($ $ $) 129)) (-2970 (($ $) 48)) (-2355 (($ $) 52)) (-1430 (((-821 (-353)) $) NIL) (((-821 (-521)) $) NIL) (((-497) $) NIL) (($ (-881 (-381 (-521)))) 217) (($ (-881 (-521))) 213) (($ (-881 |#2|)) 228) (((-1067) $) 250) (((-881 |#2|) $) 162)) (-2189 (((-792) $) 30) (($ (-521)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-881 |#2|) $) 163) (($ (-381 (-521))) NIL) (($ $) NIL)) (-2724 (((-3 (-108) "failed") $ $) 71)))
+(((-983 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2189 (|#1| |#1|)) (-15 -2258 (|#1| |#1| |#1|)) (-15 -2258 (|#1| (-587 |#1|))) (-15 -2189 (|#1| (-381 (-521)))) (-15 -2189 ((-881 |#2|) |#1|)) (-15 -1430 ((-881 |#2|) |#1|)) (-15 -1430 ((-1067) |#1|)) (-15 -2473 (|#1| |#1|)) (-15 -3975 (|#1| |#1|)) (-15 -2874 (|#1| |#1|)) (-15 -1880 (|#1| |#1|)) (-15 -2258 (|#2| |#2| |#1|)) (-15 -3455 (|#1| |#1| |#1|)) (-15 -2187 (|#1| |#1| |#1|)) (-15 -3455 (|#1| |#1| |#2|)) (-15 -2187 (|#1| |#1| |#2|)) (-15 -4156 (|#1| |#1|)) (-15 -1976 (|#1| |#1|)) (-15 -1430 (|#1| (-881 |#2|))) (-15 -1483 (|#1| (-881 |#2|))) (-15 -1297 ((-3 |#1| "failed") (-881 |#2|))) (-15 -1430 (|#1| (-881 (-521)))) (-15 -1483 (|#1| (-881 (-521)))) (-15 -1297 ((-3 |#1| "failed") (-881 (-521)))) (-15 -1430 (|#1| (-881 (-381 (-521))))) (-15 -1483 (|#1| (-881 (-381 (-521))))) (-15 -1297 ((-3 |#1| "failed") (-881 (-381 (-521))))) (-15 -1347 (|#1| |#1| |#1|)) (-15 -4065 (|#1| |#1| |#1|)) (-15 -1812 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3745 (-707))) |#1| |#1|)) (-15 -3248 (|#1| |#1| |#1|)) (-15 -2225 ((-2 (|:| -3727 |#1|) (|:| -3820 |#1|)) |#1| |#1|)) (-15 -2389 ((-2 (|:| -2973 |#1|) (|:| |gap| (-707)) (|:| -3727 |#1|) (|:| -3820 |#1|)) |#1| |#1| |#4|)) (-15 -2389 ((-2 (|:| -2973 |#1|) (|:| |gap| (-707)) (|:| -3727 |#1|) (|:| -3820 |#1|)) |#1| |#1|)) (-15 -4177 ((-2 (|:| -2973 |#1|) (|:| |gap| (-707)) (|:| -3820 |#1|)) |#1| |#1| |#4|)) (-15 -4177 ((-2 (|:| -2973 |#1|) (|:| |gap| (-707)) (|:| -3820 |#1|)) |#1| |#1|)) (-15 -2012 (|#1| |#1| |#1| |#4|)) (-15 -2581 (|#1| |#1| |#1| |#4|)) (-15 -2012 (|#1| |#1| |#1|)) (-15 -2581 (|#1| |#1| |#1|)) (-15 -2197 (|#1| |#1| |#1| |#4|)) (-15 -3416 (|#1| |#1| |#1| |#4|)) (-15 -2197 (|#1| |#1| |#1|)) (-15 -3416 (|#1| |#1| |#1|)) (-15 -3266 ((-108) |#1| (-587 |#1|))) (-15 -3266 ((-108) |#1| |#1|)) (-15 -3786 ((-108) |#1| (-587 |#1|))) (-15 -3786 ((-108) |#1| |#1|)) (-15 -1972 ((-108) |#1| (-587 |#1|))) (-15 -1972 ((-108) |#1| |#1|)) (-15 -3156 ((-108) |#1| (-587 |#1|))) (-15 -3156 ((-108) |#1| |#1|)) (-15 -3514 ((-108) |#1| |#1|)) (-15 -2146 ((-108) |#1| |#1|)) (-15 -2724 ((-3 (-108) "failed") |#1| |#1|)) (-15 -1577 ((-587 |#1|) |#1|)) (-15 -1244 ((-587 |#1|) |#1|)) (-15 -2626 (|#1| |#1|)) (-15 -1696 (|#1| |#1|)) (-15 -2798 ((-108) |#1|)) (-15 -1205 ((-108) |#1|)) (-15 -3152 (|#1| |#1| |#4|)) (-15 -3135 (|#1| |#1| |#4|)) (-15 -2355 (|#1| |#1|)) (-15 -1358 ((-587 |#1|) |#1|)) (-15 -2970 (|#1| |#1|)) (-15 -3830 (|#1| |#1|)) (-15 -3236 (|#1| |#1|)) (-15 -3797 (|#1| |#1|)) (-15 -2863 ((-707) |#1|)) (-15 -3464 (|#4| |#1|)) (-15 -1430 ((-497) |#1|)) (-15 -1430 ((-821 (-521)) |#1|)) (-15 -1430 ((-821 (-353)) |#1|)) (-15 -1483 (|#4| |#1|)) (-15 -1297 ((-3 |#4| "failed") |#1|)) (-15 -2189 (|#1| |#4|)) (-15 -3135 (|#2| |#1|)) (-15 -3152 (|#1| |#1|)) (-15 -1483 ((-521) |#1|)) (-15 -1297 ((-3 (-521) "failed") |#1|)) (-15 -1483 ((-381 (-521)) |#1|)) (-15 -1297 ((-3 (-381 (-521)) "failed") |#1|)) (-15 -2189 (|#1| |#2|)) (-15 -1297 ((-3 |#2| "failed") |#1|)) (-15 -1483 (|#2| |#1|)) (-15 -2189 (|#1| (-521))) (-15 -2189 ((-792) |#1|))) (-984 |#2| |#3| |#4|) (-970) (-729) (-784)) (T -983))
+NIL
+(-10 -8 (-15 -2189 (|#1| |#1|)) (-15 -2258 (|#1| |#1| |#1|)) (-15 -2258 (|#1| (-587 |#1|))) (-15 -2189 (|#1| (-381 (-521)))) (-15 -2189 ((-881 |#2|) |#1|)) (-15 -1430 ((-881 |#2|) |#1|)) (-15 -1430 ((-1067) |#1|)) (-15 -2473 (|#1| |#1|)) (-15 -3975 (|#1| |#1|)) (-15 -2874 (|#1| |#1|)) (-15 -1880 (|#1| |#1|)) (-15 -2258 (|#2| |#2| |#1|)) (-15 -3455 (|#1| |#1| |#1|)) (-15 -2187 (|#1| |#1| |#1|)) (-15 -3455 (|#1| |#1| |#2|)) (-15 -2187 (|#1| |#1| |#2|)) (-15 -4156 (|#1| |#1|)) (-15 -1976 (|#1| |#1|)) (-15 -1430 (|#1| (-881 |#2|))) (-15 -1483 (|#1| (-881 |#2|))) (-15 -1297 ((-3 |#1| "failed") (-881 |#2|))) (-15 -1430 (|#1| (-881 (-521)))) (-15 -1483 (|#1| (-881 (-521)))) (-15 -1297 ((-3 |#1| "failed") (-881 (-521)))) (-15 -1430 (|#1| (-881 (-381 (-521))))) (-15 -1483 (|#1| (-881 (-381 (-521))))) (-15 -1297 ((-3 |#1| "failed") (-881 (-381 (-521))))) (-15 -1347 (|#1| |#1| |#1|)) (-15 -4065 (|#1| |#1| |#1|)) (-15 -1812 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3745 (-707))) |#1| |#1|)) (-15 -3248 (|#1| |#1| |#1|)) (-15 -2225 ((-2 (|:| -3727 |#1|) (|:| -3820 |#1|)) |#1| |#1|)) (-15 -2389 ((-2 (|:| -2973 |#1|) (|:| |gap| (-707)) (|:| -3727 |#1|) (|:| -3820 |#1|)) |#1| |#1| |#4|)) (-15 -2389 ((-2 (|:| -2973 |#1|) (|:| |gap| (-707)) (|:| -3727 |#1|) (|:| -3820 |#1|)) |#1| |#1|)) (-15 -4177 ((-2 (|:| -2973 |#1|) (|:| |gap| (-707)) (|:| -3820 |#1|)) |#1| |#1| |#4|)) (-15 -4177 ((-2 (|:| -2973 |#1|) (|:| |gap| (-707)) (|:| -3820 |#1|)) |#1| |#1|)) (-15 -2012 (|#1| |#1| |#1| |#4|)) (-15 -2581 (|#1| |#1| |#1| |#4|)) (-15 -2012 (|#1| |#1| |#1|)) (-15 -2581 (|#1| |#1| |#1|)) (-15 -2197 (|#1| |#1| |#1| |#4|)) (-15 -3416 (|#1| |#1| |#1| |#4|)) (-15 -2197 (|#1| |#1| |#1|)) (-15 -3416 (|#1| |#1| |#1|)) (-15 -3266 ((-108) |#1| (-587 |#1|))) (-15 -3266 ((-108) |#1| |#1|)) (-15 -3786 ((-108) |#1| (-587 |#1|))) (-15 -3786 ((-108) |#1| |#1|)) (-15 -1972 ((-108) |#1| (-587 |#1|))) (-15 -1972 ((-108) |#1| |#1|)) (-15 -3156 ((-108) |#1| (-587 |#1|))) (-15 -3156 ((-108) |#1| |#1|)) (-15 -3514 ((-108) |#1| |#1|)) (-15 -2146 ((-108) |#1| |#1|)) (-15 -2724 ((-3 (-108) "failed") |#1| |#1|)) (-15 -1577 ((-587 |#1|) |#1|)) (-15 -1244 ((-587 |#1|) |#1|)) (-15 -2626 (|#1| |#1|)) (-15 -1696 (|#1| |#1|)) (-15 -2798 ((-108) |#1|)) (-15 -1205 ((-108) |#1|)) (-15 -3152 (|#1| |#1| |#4|)) (-15 -3135 (|#1| |#1| |#4|)) (-15 -2355 (|#1| |#1|)) (-15 -1358 ((-587 |#1|) |#1|)) (-15 -2970 (|#1| |#1|)) (-15 -3830 (|#1| |#1|)) (-15 -3236 (|#1| |#1|)) (-15 -3797 (|#1| |#1|)) (-15 -2863 ((-707) |#1|)) (-15 -3464 (|#4| |#1|)) (-15 -1430 ((-497) |#1|)) (-15 -1430 ((-821 (-521)) |#1|)) (-15 -1430 ((-821 (-353)) |#1|)) (-15 -1483 (|#4| |#1|)) (-15 -1297 ((-3 |#4| "failed") |#1|)) (-15 -2189 (|#1| |#4|)) (-15 -3135 (|#2| |#1|)) (-15 -3152 (|#1| |#1|)) (-15 -1483 ((-521) |#1|)) (-15 -1297 ((-3 (-521) "failed") |#1|)) (-15 -1483 ((-381 (-521)) |#1|)) (-15 -1297 ((-3 (-381 (-521)) "failed") |#1|)) (-15 -2189 (|#1| |#2|)) (-15 -1297 ((-3 |#2| "failed") |#1|)) (-15 -1483 (|#2| |#1|)) (-15 -2189 (|#1| (-521))) (-15 -2189 ((-792) |#1|)))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-4084 (((-587 |#3|) $) 110)) (-1280 (((-1080 $) $ |#3|) 125) (((-1080 |#1|) $) 124)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) 87 (|has| |#1| (-513)))) (-2559 (($ $) 88 (|has| |#1| (-513)))) (-1733 (((-108) $) 90 (|has| |#1| (-513)))) (-2256 (((-707) $) 112) (((-707) $ (-587 |#3|)) 111)) (-3830 (($ $) 271)) (-3514 (((-108) $ $) 257)) (-1232 (((-3 $ "failed") $ $) 19)) (-3570 (($ $ $) 216 (|has| |#1| (-513)))) (-1950 (((-587 $) $ $) 211 (|has| |#1| (-513)))) (-2598 (((-392 (-1080 $)) (-1080 $)) 100 (|has| |#1| (-838)))) (-3063 (($ $) 98 (|has| |#1| (-425)))) (-3358 (((-392 $) $) 97 (|has| |#1| (-425)))) (-2569 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) 103 (|has| |#1| (-838)))) (-2547 (($) 17 T CONST)) (-1297 (((-3 |#1| "failed") $) 164) (((-3 (-381 (-521)) "failed") $) 162 (|has| |#1| (-961 (-381 (-521))))) (((-3 (-521) "failed") $) 160 (|has| |#1| (-961 (-521)))) (((-3 |#3| "failed") $) 136) (((-3 $ "failed") (-881 (-381 (-521)))) 231 (-12 (|has| |#1| (-37 (-381 (-521)))) (|has| |#3| (-562 (-1084))))) (((-3 $ "failed") (-881 (-521))) 228 (-3703 (-12 (-2400 (|has| |#1| (-37 (-381 (-521))))) (|has| |#1| (-37 (-521))) (|has| |#3| (-562 (-1084)))) (-12 (|has| |#1| (-37 (-381 (-521)))) (|has| |#3| (-562 (-1084)))))) (((-3 $ "failed") (-881 |#1|)) 225 (-3703 (-12 (-2400 (|has| |#1| (-37 (-381 (-521))))) (-2400 (|has| |#1| (-37 (-521)))) (|has| |#3| (-562 (-1084)))) (-12 (-2400 (|has| |#1| (-506))) (-2400 (|has| |#1| (-37 (-381 (-521))))) (|has| |#1| (-37 (-521))) (|has| |#3| (-562 (-1084)))) (-12 (-2400 (|has| |#1| (-918 (-521)))) (|has| |#1| (-37 (-381 (-521)))) (|has| |#3| (-562 (-1084))))))) (-1483 ((|#1| $) 165) (((-381 (-521)) $) 161 (|has| |#1| (-961 (-381 (-521))))) (((-521) $) 159 (|has| |#1| (-961 (-521)))) ((|#3| $) 135) (($ (-881 (-381 (-521)))) 230 (-12 (|has| |#1| (-37 (-381 (-521)))) (|has| |#3| (-562 (-1084))))) (($ (-881 (-521))) 227 (-3703 (-12 (-2400 (|has| |#1| (-37 (-381 (-521))))) (|has| |#1| (-37 (-521))) (|has| |#3| (-562 (-1084)))) (-12 (|has| |#1| (-37 (-381 (-521)))) (|has| |#3| (-562 (-1084)))))) (($ (-881 |#1|)) 224 (-3703 (-12 (-2400 (|has| |#1| (-37 (-381 (-521))))) (-2400 (|has| |#1| (-37 (-521)))) (|has| |#3| (-562 (-1084)))) (-12 (-2400 (|has| |#1| (-506))) (-2400 (|has| |#1| (-37 (-381 (-521))))) (|has| |#1| (-37 (-521))) (|has| |#3| (-562 (-1084)))) (-12 (-2400 (|has| |#1| (-918 (-521)))) (|has| |#1| (-37 (-381 (-521)))) (|has| |#3| (-562 (-1084))))))) (-2114 (($ $ $ |#3|) 108 (|has| |#1| (-157))) (($ $ $) 212 (|has| |#1| (-513)))) (-3152 (($ $) 154) (($ $ |#3|) 266)) (-3279 (((-627 (-521)) (-627 $)) 134 (|has| |#1| (-583 (-521)))) (((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) 133 (|has| |#1| (-583 (-521)))) (((-2 (|:| -1201 (-627 |#1|)) (|:| |vec| (-1165 |#1|))) (-627 $) (-1165 $)) 132) (((-627 |#1|) (-627 $)) 131)) (-3156 (((-108) $ $) 256) (((-108) $ (-587 $)) 255)) (-1257 (((-3 $ "failed") $) 34)) (-2798 (((-108) $) 264)) (-2225 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) 236)) (-1880 (($ $) 205 (|has| |#1| (-425)))) (-3666 (($ $) 176 (|has| |#1| (-425))) (($ $ |#3|) 105 (|has| |#1| (-425)))) (-3144 (((-587 $) $) 109)) (-2710 (((-108) $) 96 (|has| |#1| (-838)))) (-4156 (($ $) 221 (|has| |#1| (-513)))) (-1976 (($ $) 222 (|has| |#1| (-513)))) (-3416 (($ $ $) 248) (($ $ $ |#3|) 246)) (-2197 (($ $ $) 247) (($ $ $ |#3|) 245)) (-3528 (($ $ |#1| |#2| $) 172)) (-3427 (((-818 (-353) $) $ (-821 (-353)) (-818 (-353) $)) 84 (-12 (|has| |#3| (-815 (-353))) (|has| |#1| (-815 (-353))))) (((-818 (-521) $) $ (-821 (-521)) (-818 (-521) $)) 83 (-12 (|has| |#3| (-815 (-521))) (|has| |#1| (-815 (-521)))))) (-3996 (((-108) $) 31)) (-2678 (((-707) $) 169)) (-3266 (((-108) $ $) 250) (((-108) $ (-587 $)) 249)) (-1710 (($ $ $ $ $) 207 (|has| |#1| (-513)))) (-3464 ((|#3| $) 275)) (-4069 (($ (-1080 |#1|) |#3|) 117) (($ (-1080 $) |#3|) 116)) (-2959 (((-587 $) $) 126)) (-3649 (((-108) $) 152)) (-4043 (($ |#1| |#2|) 153) (($ $ |#3| (-707)) 119) (($ $ (-587 |#3|) (-587 (-707))) 118)) (-3248 (($ $ $) 235)) (-1450 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $ |#3|) 120)) (-1205 (((-108) $) 265)) (-3273 ((|#2| $) 170) (((-707) $ |#3|) 122) (((-587 (-707)) $ (-587 |#3|)) 121)) (-2810 (($ $ $) 79 (|has| |#1| (-784)))) (-2863 (((-707) $) 274)) (-2446 (($ $ $) 78 (|has| |#1| (-784)))) (-3285 (($ (-1 |#2| |#2|) $) 171)) (-1390 (($ (-1 |#1| |#1|) $) 151)) (-2477 (((-3 |#3| "failed") $) 123)) (-2473 (($ $) 202 (|has| |#1| (-425)))) (-3975 (($ $) 203 (|has| |#1| (-425)))) (-1577 (((-587 $) $) 260)) (-1696 (($ $) 263)) (-2874 (($ $) 204 (|has| |#1| (-425)))) (-1244 (((-587 $) $) 261)) (-2626 (($ $) 262)) (-3125 (($ $) 149)) (-3135 ((|#1| $) 148) (($ $ |#3|) 267)) (-2223 (($ (-587 $)) 94 (|has| |#1| (-425))) (($ $ $) 93 (|has| |#1| (-425)))) (-1812 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3745 (-707))) $ $) 234)) (-2389 (((-2 (|:| -2973 $) (|:| |gap| (-707)) (|:| -3727 $) (|:| -3820 $)) $ $) 238) (((-2 (|:| -2973 $) (|:| |gap| (-707)) (|:| -3727 $) (|:| -3820 $)) $ $ |#3|) 237)) (-4177 (((-2 (|:| -2973 $) (|:| |gap| (-707)) (|:| -3820 $)) $ $) 240) (((-2 (|:| -2973 $) (|:| |gap| (-707)) (|:| -3820 $)) $ $ |#3|) 239)) (-2581 (($ $ $) 244) (($ $ $ |#3|) 242)) (-2012 (($ $ $) 243) (($ $ $ |#3|) 241)) (-3688 (((-1067) $) 9)) (-2031 (($ $ $) 210 (|has| |#1| (-513)))) (-1358 (((-587 $) $) 269)) (-1617 (((-3 (-587 $) "failed") $) 114)) (-3177 (((-3 (-587 $) "failed") $) 115)) (-3979 (((-3 (-2 (|:| |var| |#3|) (|:| -2997 (-707))) "failed") $) 113)) (-3786 (((-108) $ $) 252) (((-108) $ (-587 $)) 251)) (-1347 (($ $ $) 232)) (-3797 (($ $) 273)) (-2146 (((-108) $ $) 258)) (-1972 (((-108) $ $) 254) (((-108) $ (-587 $)) 253)) (-4065 (($ $ $) 233)) (-3236 (($ $) 272)) (-4147 (((-1031) $) 10)) (-3737 (((-2 (|:| -2258 $) (|:| |coef2| $)) $ $) 213 (|has| |#1| (-513)))) (-3225 (((-2 (|:| -2258 $) (|:| |coef1| $)) $ $) 214 (|has| |#1| (-513)))) (-3105 (((-108) $) 166)) (-3115 ((|#1| $) 167)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) 95 (|has| |#1| (-425)))) (-2258 ((|#1| |#1| $) 206 (|has| |#1| (-425))) (($ (-587 $)) 92 (|has| |#1| (-425))) (($ $ $) 91 (|has| |#1| (-425)))) (-1912 (((-392 (-1080 $)) (-1080 $)) 102 (|has| |#1| (-838)))) (-2165 (((-392 (-1080 $)) (-1080 $)) 101 (|has| |#1| (-838)))) (-1916 (((-392 $) $) 99 (|has| |#1| (-838)))) (-3270 (((-2 (|:| -2258 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 215 (|has| |#1| (-513)))) (-2230 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-513))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-513)))) (-3455 (($ $ |#1|) 219 (|has| |#1| (-513))) (($ $ $) 217 (|has| |#1| (-513)))) (-2187 (($ $ |#1|) 220 (|has| |#1| (-513))) (($ $ $) 218 (|has| |#1| (-513)))) (-2288 (($ $ (-587 (-269 $))) 145) (($ $ (-269 $)) 144) (($ $ $ $) 143) (($ $ (-587 $) (-587 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-587 |#3|) (-587 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-587 |#3|) (-587 $)) 138)) (-4010 (($ $ |#3|) 107 (|has| |#1| (-157)))) (-2156 (($ $ |#3|) 42) (($ $ (-587 |#3|)) 41) (($ $ |#3| (-707)) 40) (($ $ (-587 |#3|) (-587 (-707))) 39)) (-1994 ((|#2| $) 150) (((-707) $ |#3|) 130) (((-587 (-707)) $ (-587 |#3|)) 129)) (-2970 (($ $) 270)) (-2355 (($ $) 268)) (-1430 (((-821 (-353)) $) 82 (-12 (|has| |#3| (-562 (-821 (-353)))) (|has| |#1| (-562 (-821 (-353)))))) (((-821 (-521)) $) 81 (-12 (|has| |#3| (-562 (-821 (-521)))) (|has| |#1| (-562 (-821 (-521)))))) (((-497) $) 80 (-12 (|has| |#3| (-562 (-497))) (|has| |#1| (-562 (-497))))) (($ (-881 (-381 (-521)))) 229 (-12 (|has| |#1| (-37 (-381 (-521)))) (|has| |#3| (-562 (-1084))))) (($ (-881 (-521))) 226 (-3703 (-12 (-2400 (|has| |#1| (-37 (-381 (-521))))) (|has| |#1| (-37 (-521))) (|has| |#3| (-562 (-1084)))) (-12 (|has| |#1| (-37 (-381 (-521)))) (|has| |#3| (-562 (-1084)))))) (($ (-881 |#1|)) 223 (|has| |#3| (-562 (-1084)))) (((-1067) $) 201 (-12 (|has| |#1| (-961 (-521))) (|has| |#3| (-562 (-1084))))) (((-881 |#1|) $) 200 (|has| |#3| (-562 (-1084))))) (-2403 ((|#1| $) 175 (|has| |#1| (-425))) (($ $ |#3|) 106 (|has| |#1| (-425)))) (-2944 (((-3 (-1165 $) "failed") (-627 $)) 104 (-4009 (|has| $ (-133)) (|has| |#1| (-838))))) (-2189 (((-792) $) 11) (($ (-521)) 28) (($ |#1|) 163) (($ |#3|) 137) (((-881 |#1|) $) 199 (|has| |#3| (-562 (-1084)))) (($ (-381 (-521))) 72 (-3703 (|has| |#1| (-961 (-381 (-521)))) (|has| |#1| (-37 (-381 (-521)))))) (($ $) 85 (|has| |#1| (-513)))) (-1259 (((-587 |#1|) $) 168)) (-3800 ((|#1| $ |#2|) 155) (($ $ |#3| (-707)) 128) (($ $ (-587 |#3|) (-587 (-707))) 127)) (-1671 (((-3 $ "failed") $) 73 (-3703 (-4009 (|has| $ (-133)) (|has| |#1| (-838))) (|has| |#1| (-133))))) (-3846 (((-707)) 29)) (-1547 (($ $ $ (-707)) 173 (|has| |#1| (-157)))) (-4210 (((-108) $ $) 89 (|has| |#1| (-513)))) (-3505 (($ $ (-850)) 26) (($ $ (-707)) 33)) (-3561 (($) 18 T CONST)) (-2724 (((-3 (-108) "failed") $ $) 259)) (-3572 (($) 30 T CONST)) (-4145 (($ $ $ $ (-707)) 208 (|has| |#1| (-513)))) (-1408 (($ $ $ (-707)) 209 (|has| |#1| (-513)))) (-2212 (($ $ |#3|) 38) (($ $ (-587 |#3|)) 37) (($ $ |#3| (-707)) 36) (($ $ (-587 |#3|) (-587 (-707))) 35)) (-1574 (((-108) $ $) 76 (|has| |#1| (-784)))) (-1558 (((-108) $ $) 75 (|has| |#1| (-784)))) (-1531 (((-108) $ $) 6)) (-1566 (((-108) $ $) 77 (|has| |#1| (-784)))) (-1549 (((-108) $ $) 74 (|has| |#1| (-784)))) (-1620 (($ $ |#1|) 156 (|has| |#1| (-337)))) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-707)) 32)) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ $ (-381 (-521))) 158 (|has| |#1| (-37 (-381 (-521))))) (($ (-381 (-521)) $) 157 (|has| |#1| (-37 (-381 (-521))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
+(((-984 |#1| |#2| |#3|) (-1196) (-970) (-729) (-784)) (T -984))
+((-3464 (*1 *2 *1) (-12 (-4 *1 (-984 *3 *4 *2)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *2 (-784)))) (-2863 (*1 *2 *1) (-12 (-4 *1 (-984 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *2 (-707)))) (-3797 (*1 *1 *1) (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729)) (-4 *4 (-784)))) (-3236 (*1 *1 *1) (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729)) (-4 *4 (-784)))) (-3830 (*1 *1 *1) (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729)) (-4 *4 (-784)))) (-2970 (*1 *1 *1) (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729)) (-4 *4 (-784)))) (-1358 (*1 *2 *1) (-12 (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *2 (-587 *1)) (-4 *1 (-984 *3 *4 *5)))) (-2355 (*1 *1 *1) (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729)) (-4 *4 (-784)))) (-3135 (*1 *1 *1 *2) (-12 (-4 *1 (-984 *3 *4 *2)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *2 (-784)))) (-3152 (*1 *1 *1 *2) (-12 (-4 *1 (-984 *3 *4 *2)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *2 (-784)))) (-1205 (*1 *2 *1) (-12 (-4 *1 (-984 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *2 (-108)))) (-2798 (*1 *2 *1) (-12 (-4 *1 (-984 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *2 (-108)))) (-1696 (*1 *1 *1) (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729)) (-4 *4 (-784)))) (-2626 (*1 *1 *1) (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729)) (-4 *4 (-784)))) (-1244 (*1 *2 *1) (-12 (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *2 (-587 *1)) (-4 *1 (-984 *3 *4 *5)))) (-1577 (*1 *2 *1) (-12 (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *2 (-587 *1)) (-4 *1 (-984 *3 *4 *5)))) (-2724 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-984 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *2 (-108)))) (-2146 (*1 *2 *1 *1) (-12 (-4 *1 (-984 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *2 (-108)))) (-3514 (*1 *2 *1 *1) (-12 (-4 *1 (-984 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *2 (-108)))) (-3156 (*1 *2 *1 *1) (-12 (-4 *1 (-984 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *2 (-108)))) (-3156 (*1 *2 *1 *3) (-12 (-5 *3 (-587 *1)) (-4 *1 (-984 *4 *5 *6)) (-4 *4 (-970)) (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-108)))) (-1972 (*1 *2 *1 *1) (-12 (-4 *1 (-984 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *2 (-108)))) (-1972 (*1 *2 *1 *3) (-12 (-5 *3 (-587 *1)) (-4 *1 (-984 *4 *5 *6)) (-4 *4 (-970)) (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-108)))) (-3786 (*1 *2 *1 *1) (-12 (-4 *1 (-984 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *2 (-108)))) (-3786 (*1 *2 *1 *3) (-12 (-5 *3 (-587 *1)) (-4 *1 (-984 *4 *5 *6)) (-4 *4 (-970)) (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-108)))) (-3266 (*1 *2 *1 *1) (-12 (-4 *1 (-984 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *2 (-108)))) (-3266 (*1 *2 *1 *3) (-12 (-5 *3 (-587 *1)) (-4 *1 (-984 *4 *5 *6)) (-4 *4 (-970)) (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-108)))) (-3416 (*1 *1 *1 *1) (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729)) (-4 *4 (-784)))) (-2197 (*1 *1 *1 *1) (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729)) (-4 *4 (-784)))) (-3416 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-984 *3 *4 *2)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *2 (-784)))) (-2197 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-984 *3 *4 *2)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *2 (-784)))) (-2581 (*1 *1 *1 *1) (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729)) (-4 *4 (-784)))) (-2012 (*1 *1 *1 *1) (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729)) (-4 *4 (-784)))) (-2581 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-984 *3 *4 *2)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *2 (-784)))) (-2012 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-984 *3 *4 *2)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *2 (-784)))) (-4177 (*1 *2 *1 *1) (-12 (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *2 (-2 (|:| -2973 *1) (|:| |gap| (-707)) (|:| -3820 *1))) (-4 *1 (-984 *3 *4 *5)))) (-4177 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-970)) (-4 *5 (-729)) (-4 *3 (-784)) (-5 *2 (-2 (|:| -2973 *1) (|:| |gap| (-707)) (|:| -3820 *1))) (-4 *1 (-984 *4 *5 *3)))) (-2389 (*1 *2 *1 *1) (-12 (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *2 (-2 (|:| -2973 *1) (|:| |gap| (-707)) (|:| -3727 *1) (|:| -3820 *1))) (-4 *1 (-984 *3 *4 *5)))) (-2389 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-970)) (-4 *5 (-729)) (-4 *3 (-784)) (-5 *2 (-2 (|:| -2973 *1) (|:| |gap| (-707)) (|:| -3727 *1) (|:| -3820 *1))) (-4 *1 (-984 *4 *5 *3)))) (-2225 (*1 *2 *1 *1) (-12 (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *2 (-2 (|:| -3727 *1) (|:| -3820 *1))) (-4 *1 (-984 *3 *4 *5)))) (-3248 (*1 *1 *1 *1) (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729)) (-4 *4 (-784)))) (-1812 (*1 *2 *1 *1) (-12 (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3745 (-707)))) (-4 *1 (-984 *3 *4 *5)))) (-4065 (*1 *1 *1 *1) (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729)) (-4 *4 (-784)))) (-1347 (*1 *1 *1 *1) (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729)) (-4 *4 (-784)))) (-1297 (*1 *1 *2) (|partial| -12 (-5 *2 (-881 (-381 (-521)))) (-4 *1 (-984 *3 *4 *5)) (-4 *3 (-37 (-381 (-521)))) (-4 *5 (-562 (-1084))) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784)))) (-1483 (*1 *1 *2) (-12 (-5 *2 (-881 (-381 (-521)))) (-4 *1 (-984 *3 *4 *5)) (-4 *3 (-37 (-381 (-521)))) (-4 *5 (-562 (-1084))) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784)))) (-1430 (*1 *1 *2) (-12 (-5 *2 (-881 (-381 (-521)))) (-4 *1 (-984 *3 *4 *5)) (-4 *3 (-37 (-381 (-521)))) (-4 *5 (-562 (-1084))) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784)))) (-1297 (*1 *1 *2) (|partial| -3703 (-12 (-5 *2 (-881 (-521))) (-4 *1 (-984 *3 *4 *5)) (-12 (-2400 (-4 *3 (-37 (-381 (-521))))) (-4 *3 (-37 (-521))) (-4 *5 (-562 (-1084)))) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784))) (-12 (-5 *2 (-881 (-521))) (-4 *1 (-984 *3 *4 *5)) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *5 (-562 (-1084)))) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784))))) (-1483 (*1 *1 *2) (-3703 (-12 (-5 *2 (-881 (-521))) (-4 *1 (-984 *3 *4 *5)) (-12 (-2400 (-4 *3 (-37 (-381 (-521))))) (-4 *3 (-37 (-521))) (-4 *5 (-562 (-1084)))) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784))) (-12 (-5 *2 (-881 (-521))) (-4 *1 (-984 *3 *4 *5)) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *5 (-562 (-1084)))) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784))))) (-1430 (*1 *1 *2) (-3703 (-12 (-5 *2 (-881 (-521))) (-4 *1 (-984 *3 *4 *5)) (-12 (-2400 (-4 *3 (-37 (-381 (-521))))) (-4 *3 (-37 (-521))) (-4 *5 (-562 (-1084)))) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784))) (-12 (-5 *2 (-881 (-521))) (-4 *1 (-984 *3 *4 *5)) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *5 (-562 (-1084)))) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784))))) (-1297 (*1 *1 *2) (|partial| -3703 (-12 (-5 *2 (-881 *3)) (-12 (-2400 (-4 *3 (-37 (-381 (-521))))) (-2400 (-4 *3 (-37 (-521)))) (-4 *5 (-562 (-1084)))) (-4 *3 (-970)) (-4 *1 (-984 *3 *4 *5)) (-4 *4 (-729)) (-4 *5 (-784))) (-12 (-5 *2 (-881 *3)) (-12 (-2400 (-4 *3 (-506))) (-2400 (-4 *3 (-37 (-381 (-521))))) (-4 *3 (-37 (-521))) (-4 *5 (-562 (-1084)))) (-4 *3 (-970)) (-4 *1 (-984 *3 *4 *5)) (-4 *4 (-729)) (-4 *5 (-784))) (-12 (-5 *2 (-881 *3)) (-12 (-2400 (-4 *3 (-918 (-521)))) (-4 *3 (-37 (-381 (-521)))) (-4 *5 (-562 (-1084)))) (-4 *3 (-970)) (-4 *1 (-984 *3 *4 *5)) (-4 *4 (-729)) (-4 *5 (-784))))) (-1483 (*1 *1 *2) (-3703 (-12 (-5 *2 (-881 *3)) (-12 (-2400 (-4 *3 (-37 (-381 (-521))))) (-2400 (-4 *3 (-37 (-521)))) (-4 *5 (-562 (-1084)))) (-4 *3 (-970)) (-4 *1 (-984 *3 *4 *5)) (-4 *4 (-729)) (-4 *5 (-784))) (-12 (-5 *2 (-881 *3)) (-12 (-2400 (-4 *3 (-506))) (-2400 (-4 *3 (-37 (-381 (-521))))) (-4 *3 (-37 (-521))) (-4 *5 (-562 (-1084)))) (-4 *3 (-970)) (-4 *1 (-984 *3 *4 *5)) (-4 *4 (-729)) (-4 *5 (-784))) (-12 (-5 *2 (-881 *3)) (-12 (-2400 (-4 *3 (-918 (-521)))) (-4 *3 (-37 (-381 (-521)))) (-4 *5 (-562 (-1084)))) (-4 *3 (-970)) (-4 *1 (-984 *3 *4 *5)) (-4 *4 (-729)) (-4 *5 (-784))))) (-1430 (*1 *1 *2) (-12 (-5 *2 (-881 *3)) (-4 *3 (-970)) (-4 *1 (-984 *3 *4 *5)) (-4 *5 (-562 (-1084))) (-4 *4 (-729)) (-4 *5 (-784)))) (-1976 (*1 *1 *1) (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729)) (-4 *4 (-784)) (-4 *2 (-513)))) (-4156 (*1 *1 *1) (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729)) (-4 *4 (-784)) (-4 *2 (-513)))) (-2187 (*1 *1 *1 *2) (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729)) (-4 *4 (-784)) (-4 *2 (-513)))) (-3455 (*1 *1 *1 *2) (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729)) (-4 *4 (-784)) (-4 *2 (-513)))) (-2187 (*1 *1 *1 *1) (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729)) (-4 *4 (-784)) (-4 *2 (-513)))) (-3455 (*1 *1 *1 *1) (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729)) (-4 *4 (-784)) (-4 *2 (-513)))) (-3570 (*1 *1 *1 *1) (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729)) (-4 *4 (-784)) (-4 *2 (-513)))) (-3270 (*1 *2 *1 *1) (-12 (-4 *3 (-513)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *2 (-2 (|:| -2258 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-984 *3 *4 *5)))) (-3225 (*1 *2 *1 *1) (-12 (-4 *3 (-513)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *2 (-2 (|:| -2258 *1) (|:| |coef1| *1))) (-4 *1 (-984 *3 *4 *5)))) (-3737 (*1 *2 *1 *1) (-12 (-4 *3 (-513)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *2 (-2 (|:| -2258 *1) (|:| |coef2| *1))) (-4 *1 (-984 *3 *4 *5)))) (-2114 (*1 *1 *1 *1) (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729)) (-4 *4 (-784)) (-4 *2 (-513)))) (-1950 (*1 *2 *1 *1) (-12 (-4 *3 (-513)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *2 (-587 *1)) (-4 *1 (-984 *3 *4 *5)))) (-2031 (*1 *1 *1 *1) (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729)) (-4 *4 (-784)) (-4 *2 (-513)))) (-1408 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-707)) (-4 *1 (-984 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784)) (-4 *3 (-513)))) (-4145 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-707)) (-4 *1 (-984 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784)) (-4 *3 (-513)))) (-1710 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729)) (-4 *4 (-784)) (-4 *2 (-513)))) (-2258 (*1 *2 *2 *1) (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729)) (-4 *4 (-784)) (-4 *2 (-425)))) (-1880 (*1 *1 *1) (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729)) (-4 *4 (-784)) (-4 *2 (-425)))) (-2874 (*1 *1 *1) (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729)) (-4 *4 (-784)) (-4 *2 (-425)))) (-3975 (*1 *1 *1) (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729)) (-4 *4 (-784)) (-4 *2 (-425)))) (-2473 (*1 *1 *1) (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729)) (-4 *4 (-784)) (-4 *2 (-425)))))
+(-13 (-878 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3464 (|t#3| $)) (-15 -2863 ((-707) $)) (-15 -3797 ($ $)) (-15 -3236 ($ $)) (-15 -3830 ($ $)) (-15 -2970 ($ $)) (-15 -1358 ((-587 $) $)) (-15 -2355 ($ $)) (-15 -3135 ($ $ |t#3|)) (-15 -3152 ($ $ |t#3|)) (-15 -1205 ((-108) $)) (-15 -2798 ((-108) $)) (-15 -1696 ($ $)) (-15 -2626 ($ $)) (-15 -1244 ((-587 $) $)) (-15 -1577 ((-587 $) $)) (-15 -2724 ((-3 (-108) "failed") $ $)) (-15 -2146 ((-108) $ $)) (-15 -3514 ((-108) $ $)) (-15 -3156 ((-108) $ $)) (-15 -3156 ((-108) $ (-587 $))) (-15 -1972 ((-108) $ $)) (-15 -1972 ((-108) $ (-587 $))) (-15 -3786 ((-108) $ $)) (-15 -3786 ((-108) $ (-587 $))) (-15 -3266 ((-108) $ $)) (-15 -3266 ((-108) $ (-587 $))) (-15 -3416 ($ $ $)) (-15 -2197 ($ $ $)) (-15 -3416 ($ $ $ |t#3|)) (-15 -2197 ($ $ $ |t#3|)) (-15 -2581 ($ $ $)) (-15 -2012 ($ $ $)) (-15 -2581 ($ $ $ |t#3|)) (-15 -2012 ($ $ $ |t#3|)) (-15 -4177 ((-2 (|:| -2973 $) (|:| |gap| (-707)) (|:| -3820 $)) $ $)) (-15 -4177 ((-2 (|:| -2973 $) (|:| |gap| (-707)) (|:| -3820 $)) $ $ |t#3|)) (-15 -2389 ((-2 (|:| -2973 $) (|:| |gap| (-707)) (|:| -3727 $) (|:| -3820 $)) $ $)) (-15 -2389 ((-2 (|:| -2973 $) (|:| |gap| (-707)) (|:| -3727 $) (|:| -3820 $)) $ $ |t#3|)) (-15 -2225 ((-2 (|:| -3727 $) (|:| -3820 $)) $ $)) (-15 -3248 ($ $ $)) (-15 -1812 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3745 (-707))) $ $)) (-15 -4065 ($ $ $)) (-15 -1347 ($ $ $)) (IF (|has| |t#3| (-562 (-1084))) (PROGN (-6 (-561 (-881 |t#1|))) (-6 (-562 (-881 |t#1|))) (IF (|has| |t#1| (-37 (-381 (-521)))) (PROGN (-15 -1297 ((-3 $ "failed") (-881 (-381 (-521))))) (-15 -1483 ($ (-881 (-381 (-521))))) (-15 -1430 ($ (-881 (-381 (-521))))) (-15 -1297 ((-3 $ "failed") (-881 (-521)))) (-15 -1483 ($ (-881 (-521)))) (-15 -1430 ($ (-881 (-521)))) (IF (|has| |t#1| (-918 (-521))) |%noBranch| (PROGN (-15 -1297 ((-3 $ "failed") (-881 |t#1|))) (-15 -1483 ($ (-881 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-37 (-521))) (IF (|has| |t#1| (-37 (-381 (-521)))) |%noBranch| (PROGN (-15 -1297 ((-3 $ "failed") (-881 (-521)))) (-15 -1483 ($ (-881 (-521)))) (-15 -1430 ($ (-881 (-521)))) (IF (|has| |t#1| (-506)) |%noBranch| (PROGN (-15 -1297 ((-3 $ "failed") (-881 |t#1|))) (-15 -1483 ($ (-881 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-37 (-521))) |%noBranch| (IF (|has| |t#1| (-37 (-381 (-521)))) |%noBranch| (PROGN (-15 -1297 ((-3 $ "failed") (-881 |t#1|))) (-15 -1483 ($ (-881 |t#1|)))))) (-15 -1430 ($ (-881 |t#1|))) (IF (|has| |t#1| (-961 (-521))) (-6 (-562 (-1067))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-513)) (PROGN (-15 -1976 ($ $)) (-15 -4156 ($ $)) (-15 -2187 ($ $ |t#1|)) (-15 -3455 ($ $ |t#1|)) (-15 -2187 ($ $ $)) (-15 -3455 ($ $ $)) (-15 -3570 ($ $ $)) (-15 -3270 ((-2 (|:| -2258 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3225 ((-2 (|:| -2258 $) (|:| |coef1| $)) $ $)) (-15 -3737 ((-2 (|:| -2258 $) (|:| |coef2| $)) $ $)) (-15 -2114 ($ $ $)) (-15 -1950 ((-587 $) $ $)) (-15 -2031 ($ $ $)) (-15 -1408 ($ $ $ (-707))) (-15 -4145 ($ $ $ $ (-707))) (-15 -1710 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-425)) (PROGN (-15 -2258 (|t#1| |t#1| $)) (-15 -1880 ($ $)) (-15 -2874 ($ $)) (-15 -3975 ($ $)) (-15 -2473 ($ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-381 (-521))) |has| |#1| (-37 (-381 (-521)))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) -3703 (|has| |#1| (-838)) (|has| |#1| (-513)) (|has| |#1| (-425))) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-381 (-521)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3703 (|has| |#1| (-838)) (|has| |#1| (-513)) (|has| |#1| (-425)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-561 (-792)) . T) ((-561 (-881 |#1|)) |has| |#3| (-562 (-1084))) ((-157) -3703 (|has| |#1| (-838)) (|has| |#1| (-513)) (|has| |#1| (-425)) (|has| |#1| (-157))) ((-562 (-497)) -12 (|has| |#1| (-562 (-497))) (|has| |#3| (-562 (-497)))) ((-562 (-821 (-353))) -12 (|has| |#1| (-562 (-821 (-353)))) (|has| |#3| (-562 (-821 (-353))))) ((-562 (-821 (-521))) -12 (|has| |#1| (-562 (-821 (-521)))) (|has| |#3| (-562 (-821 (-521))))) ((-562 (-881 |#1|)) |has| |#3| (-562 (-1084))) ((-562 (-1067)) -12 (|has| |#1| (-961 (-521))) (|has| |#3| (-562 (-1084)))) ((-265) -3703 (|has| |#1| (-838)) (|has| |#1| (-513)) (|has| |#1| (-425))) ((-284 $) . T) ((-300 |#1| |#2|) . T) ((-351 |#1|) . T) ((-385 |#1|) . T) ((-425) -3703 (|has| |#1| (-838)) (|has| |#1| (-425))) ((-482 |#3| |#1|) . T) ((-482 |#3| $) . T) ((-482 $ $) . T) ((-513) -3703 (|has| |#1| (-838)) (|has| |#1| (-513)) (|has| |#1| (-425))) ((-589 #0#) |has| |#1| (-37 (-381 (-521)))) ((-589 |#1|) . T) ((-589 $) . T) ((-583 (-521)) |has| |#1| (-583 (-521))) ((-583 |#1|) . T) ((-654 #0#) |has| |#1| (-37 (-381 (-521)))) ((-654 |#1|) |has| |#1| (-157)) ((-654 $) -3703 (|has| |#1| (-838)) (|has| |#1| (-513)) (|has| |#1| (-425))) ((-663) . T) ((-784) |has| |#1| (-784)) ((-829 |#3|) . T) ((-815 (-353)) -12 (|has| |#1| (-815 (-353))) (|has| |#3| (-815 (-353)))) ((-815 (-521)) -12 (|has| |#1| (-815 (-521))) (|has| |#3| (-815 (-521)))) ((-878 |#1| |#2| |#3|) . T) ((-838) |has| |#1| (-838)) ((-961 (-381 (-521))) |has| |#1| (-961 (-381 (-521)))) ((-961 (-521)) |has| |#1| (-961 (-521))) ((-961 |#1|) . T) ((-961 |#3|) . T) ((-976 #0#) |has| |#1| (-37 (-381 (-521)))) ((-976 |#1|) . T) ((-976 $) -3703 (|has| |#1| (-838)) (|has| |#1| (-513)) (|has| |#1| (-425)) (|has| |#1| (-157))) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T) ((-1123) |has| |#1| (-838)))
+((-2220 (((-108) |#3| $) 13)) (-2590 (((-3 $ "failed") |#3| (-850)) 23)) (-1257 (((-3 |#3| "failed") |#3| $) 37)) (-3951 (((-108) |#3| $) 16)) (-2210 (((-108) |#3| $) 14)))
+(((-985 |#1| |#2| |#3|) (-10 -8 (-15 -2590 ((-3 |#1| "failed") |#3| (-850))) (-15 -1257 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3951 ((-108) |#3| |#1|)) (-15 -2210 ((-108) |#3| |#1|)) (-15 -2220 ((-108) |#3| |#1|))) (-986 |#2| |#3|) (-13 (-782) (-337)) (-1141 |#2|)) (T -985))
+NIL
+(-10 -8 (-15 -2590 ((-3 |#1| "failed") |#3| (-850))) (-15 -1257 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3951 ((-108) |#3| |#1|)) (-15 -2210 ((-108) |#3| |#1|)) (-15 -2220 ((-108) |#3| |#1|)))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) |#2| $) 21)) (-1606 (((-521) |#2| $) 22)) (-2590 (((-3 $ "failed") |#2| (-850)) 15)) (-2738 ((|#1| |#2| $ |#1|) 13)) (-1257 (((-3 |#2| "failed") |#2| $) 18)) (-3951 (((-108) |#2| $) 19)) (-2210 (((-108) |#2| $) 20)) (-3688 (((-1067) $) 9)) (-4147 (((-1031) $) 10)) (-2879 ((|#2| $) 17)) (-2189 (((-792) $) 11)) (-3894 ((|#1| |#2| $ |#1|) 14)) (-3032 (((-587 $) |#2|) 16)) (-1531 (((-108) $ $) 6)))
+(((-986 |#1| |#2|) (-1196) (-13 (-782) (-337)) (-1141 |t#1|)) (T -986))
+((-1606 (*1 *2 *3 *1) (-12 (-4 *1 (-986 *4 *3)) (-4 *4 (-13 (-782) (-337))) (-4 *3 (-1141 *4)) (-5 *2 (-521)))) (-2220 (*1 *2 *3 *1) (-12 (-4 *1 (-986 *4 *3)) (-4 *4 (-13 (-782) (-337))) (-4 *3 (-1141 *4)) (-5 *2 (-108)))) (-2210 (*1 *2 *3 *1) (-12 (-4 *1 (-986 *4 *3)) (-4 *4 (-13 (-782) (-337))) (-4 *3 (-1141 *4)) (-5 *2 (-108)))) (-3951 (*1 *2 *3 *1) (-12 (-4 *1 (-986 *4 *3)) (-4 *4 (-13 (-782) (-337))) (-4 *3 (-1141 *4)) (-5 *2 (-108)))) (-1257 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-986 *3 *2)) (-4 *3 (-13 (-782) (-337))) (-4 *2 (-1141 *3)))) (-2879 (*1 *2 *1) (-12 (-4 *1 (-986 *3 *2)) (-4 *3 (-13 (-782) (-337))) (-4 *2 (-1141 *3)))) (-3032 (*1 *2 *3) (-12 (-4 *4 (-13 (-782) (-337))) (-4 *3 (-1141 *4)) (-5 *2 (-587 *1)) (-4 *1 (-986 *4 *3)))) (-2590 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-850)) (-4 *4 (-13 (-782) (-337))) (-4 *1 (-986 *4 *2)) (-4 *2 (-1141 *4)))) (-3894 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-986 *2 *3)) (-4 *2 (-13 (-782) (-337))) (-4 *3 (-1141 *2)))) (-2738 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-986 *2 *3)) (-4 *2 (-13 (-782) (-337))) (-4 *3 (-1141 *2)))))
+(-13 (-1013) (-10 -8 (-15 -1606 ((-521) |t#2| $)) (-15 -2220 ((-108) |t#2| $)) (-15 -2210 ((-108) |t#2| $)) (-15 -3951 ((-108) |t#2| $)) (-15 -1257 ((-3 |t#2| "failed") |t#2| $)) (-15 -2879 (|t#2| $)) (-15 -3032 ((-587 $) |t#2|)) (-15 -2590 ((-3 $ "failed") |t#2| (-850))) (-15 -3894 (|t#1| |t#2| $ |t#1|)) (-15 -2738 (|t#1| |t#2| $ |t#1|))))
+(((-97) . T) ((-561 (-792)) . T) ((-1013) . T))
+((-1938 (((-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))) (-587 |#4|) (-587 |#5|) (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))) (-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))))) (-707)) 96)) (-2555 (((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))))) |#4| |#5|) 56) (((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))))) |#4| |#5| (-707)) 55)) (-1905 (((-1170) (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))) (-707)) 87)) (-1466 (((-707) (-587 |#4|) (-587 |#5|)) 27)) (-2928 (((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))))) |#4| |#5|) 58) (((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))))) |#4| |#5| (-707)) 57) (((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))))) |#4| |#5| (-707) (-108)) 59)) (-3686 (((-587 |#5|) (-587 |#4|) (-587 |#5|) (-108) (-108) (-108) (-108) (-108)) 78) (((-587 |#5|) (-587 |#4|) (-587 |#5|) (-108) (-108)) 79)) (-1430 (((-1067) (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))) 82)) (-2087 (((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))))) |#4| |#5| (-108)) 54)) (-1951 (((-707) (-587 |#4|) (-587 |#5|)) 19)))
+(((-987 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1951 ((-707) (-587 |#4|) (-587 |#5|))) (-15 -1466 ((-707) (-587 |#4|) (-587 |#5|))) (-15 -2087 ((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))))) |#4| |#5| (-108))) (-15 -2555 ((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))))) |#4| |#5| (-707))) (-15 -2555 ((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))))) |#4| |#5|)) (-15 -2928 ((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))))) |#4| |#5| (-707) (-108))) (-15 -2928 ((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))))) |#4| |#5| (-707))) (-15 -2928 ((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))))) |#4| |#5|)) (-15 -3686 ((-587 |#5|) (-587 |#4|) (-587 |#5|) (-108) (-108))) (-15 -3686 ((-587 |#5|) (-587 |#4|) (-587 |#5|) (-108) (-108) (-108) (-108) (-108))) (-15 -1938 ((-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))) (-587 |#4|) (-587 |#5|) (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))) (-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))))) (-707))) (-15 -1430 ((-1067) (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|)))) (-15 -1905 ((-1170) (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))) (-707)))) (-425) (-729) (-784) (-984 |#1| |#2| |#3|) (-989 |#1| |#2| |#3| |#4|)) (T -987))
+((-1905 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-2 (|:| |val| (-587 *8)) (|:| -1884 *9)))) (-5 *4 (-707)) (-4 *8 (-984 *5 *6 *7)) (-4 *9 (-989 *5 *6 *7 *8)) (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784)) (-5 *2 (-1170)) (-5 *1 (-987 *5 *6 *7 *8 *9)))) (-1430 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-587 *7)) (|:| -1884 *8))) (-4 *7 (-984 *4 *5 *6)) (-4 *8 (-989 *4 *5 *6 *7)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-1067)) (-5 *1 (-987 *4 *5 *6 *7 *8)))) (-1938 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-587 *11)) (|:| |todo| (-587 (-2 (|:| |val| *3) (|:| -1884 *11)))))) (-5 *6 (-707)) (-5 *2 (-587 (-2 (|:| |val| (-587 *10)) (|:| -1884 *11)))) (-5 *3 (-587 *10)) (-5 *4 (-587 *11)) (-4 *10 (-984 *7 *8 *9)) (-4 *11 (-989 *7 *8 *9 *10)) (-4 *7 (-425)) (-4 *8 (-729)) (-4 *9 (-784)) (-5 *1 (-987 *7 *8 *9 *10 *11)))) (-3686 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-587 *9)) (-5 *3 (-587 *8)) (-5 *4 (-108)) (-4 *8 (-984 *5 *6 *7)) (-4 *9 (-989 *5 *6 *7 *8)) (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784)) (-5 *1 (-987 *5 *6 *7 *8 *9)))) (-3686 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-587 *9)) (-5 *3 (-587 *8)) (-5 *4 (-108)) (-4 *8 (-984 *5 *6 *7)) (-4 *9 (-989 *5 *6 *7 *8)) (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784)) (-5 *1 (-987 *5 *6 *7 *8 *9)))) (-2928 (*1 *2 *3 *4) (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784)) (-4 *3 (-984 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-587 *4)) (|:| |todo| (-587 (-2 (|:| |val| (-587 *3)) (|:| -1884 *4)))))) (-5 *1 (-987 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))) (-2928 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-707)) (-4 *6 (-425)) (-4 *7 (-729)) (-4 *8 (-784)) (-4 *3 (-984 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-587 *4)) (|:| |todo| (-587 (-2 (|:| |val| (-587 *3)) (|:| -1884 *4)))))) (-5 *1 (-987 *6 *7 *8 *3 *4)) (-4 *4 (-989 *6 *7 *8 *3)))) (-2928 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-707)) (-5 *6 (-108)) (-4 *7 (-425)) (-4 *8 (-729)) (-4 *9 (-784)) (-4 *3 (-984 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-587 *4)) (|:| |todo| (-587 (-2 (|:| |val| (-587 *3)) (|:| -1884 *4)))))) (-5 *1 (-987 *7 *8 *9 *3 *4)) (-4 *4 (-989 *7 *8 *9 *3)))) (-2555 (*1 *2 *3 *4) (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784)) (-4 *3 (-984 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-587 *4)) (|:| |todo| (-587 (-2 (|:| |val| (-587 *3)) (|:| -1884 *4)))))) (-5 *1 (-987 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))) (-2555 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-707)) (-4 *6 (-425)) (-4 *7 (-729)) (-4 *8 (-784)) (-4 *3 (-984 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-587 *4)) (|:| |todo| (-587 (-2 (|:| |val| (-587 *3)) (|:| -1884 *4)))))) (-5 *1 (-987 *6 *7 *8 *3 *4)) (-4 *4 (-989 *6 *7 *8 *3)))) (-2087 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-108)) (-4 *6 (-425)) (-4 *7 (-729)) (-4 *8 (-784)) (-4 *3 (-984 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-587 *4)) (|:| |todo| (-587 (-2 (|:| |val| (-587 *3)) (|:| -1884 *4)))))) (-5 *1 (-987 *6 *7 *8 *3 *4)) (-4 *4 (-989 *6 *7 *8 *3)))) (-1466 (*1 *2 *3 *4) (-12 (-5 *3 (-587 *8)) (-5 *4 (-587 *9)) (-4 *8 (-984 *5 *6 *7)) (-4 *9 (-989 *5 *6 *7 *8)) (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784)) (-5 *2 (-707)) (-5 *1 (-987 *5 *6 *7 *8 *9)))) (-1951 (*1 *2 *3 *4) (-12 (-5 *3 (-587 *8)) (-5 *4 (-587 *9)) (-4 *8 (-984 *5 *6 *7)) (-4 *9 (-989 *5 *6 *7 *8)) (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784)) (-5 *2 (-707)) (-5 *1 (-987 *5 *6 *7 *8 *9)))))
+(-10 -7 (-15 -1951 ((-707) (-587 |#4|) (-587 |#5|))) (-15 -1466 ((-707) (-587 |#4|) (-587 |#5|))) (-15 -2087 ((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))))) |#4| |#5| (-108))) (-15 -2555 ((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))))) |#4| |#5| (-707))) (-15 -2555 ((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))))) |#4| |#5|)) (-15 -2928 ((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))))) |#4| |#5| (-707) (-108))) (-15 -2928 ((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))))) |#4| |#5| (-707))) (-15 -2928 ((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))))) |#4| |#5|)) (-15 -3686 ((-587 |#5|) (-587 |#4|) (-587 |#5|) (-108) (-108))) (-15 -3686 ((-587 |#5|) (-587 |#4|) (-587 |#5|) (-108) (-108) (-108) (-108) (-108))) (-15 -1938 ((-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))) (-587 |#4|) (-587 |#5|) (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))) (-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))))) (-707))) (-15 -1430 ((-1067) (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|)))) (-15 -1905 ((-1170) (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))) (-707))))
+((-4124 (((-108) |#5| $) 21)) (-2628 (((-108) |#5| $) 24)) (-3263 (((-108) |#5| $) 16) (((-108) $) 45)) (-1660 (((-587 $) |#5| $) NIL) (((-587 $) (-587 |#5|) $) 77) (((-587 $) (-587 |#5|) (-587 $)) 75) (((-587 $) |#5| (-587 $)) 78)) (-2447 (($ $ |#5|) NIL) (((-587 $) |#5| $) NIL) (((-587 $) |#5| (-587 $)) 60) (((-587 $) (-587 |#5|) $) 62) (((-587 $) (-587 |#5|) (-587 $)) 64)) (-1933 (((-587 $) |#5| $) NIL) (((-587 $) |#5| (-587 $)) 54) (((-587 $) (-587 |#5|) $) 56) (((-587 $) (-587 |#5|) (-587 $)) 58)) (-4002 (((-108) |#5| $) 27)))
+(((-988 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2447 ((-587 |#1|) (-587 |#5|) (-587 |#1|))) (-15 -2447 ((-587 |#1|) (-587 |#5|) |#1|)) (-15 -2447 ((-587 |#1|) |#5| (-587 |#1|))) (-15 -2447 ((-587 |#1|) |#5| |#1|)) (-15 -1933 ((-587 |#1|) (-587 |#5|) (-587 |#1|))) (-15 -1933 ((-587 |#1|) (-587 |#5|) |#1|)) (-15 -1933 ((-587 |#1|) |#5| (-587 |#1|))) (-15 -1933 ((-587 |#1|) |#5| |#1|)) (-15 -1660 ((-587 |#1|) |#5| (-587 |#1|))) (-15 -1660 ((-587 |#1|) (-587 |#5|) (-587 |#1|))) (-15 -1660 ((-587 |#1|) (-587 |#5|) |#1|)) (-15 -1660 ((-587 |#1|) |#5| |#1|)) (-15 -2628 ((-108) |#5| |#1|)) (-15 -3263 ((-108) |#1|)) (-15 -4002 ((-108) |#5| |#1|)) (-15 -4124 ((-108) |#5| |#1|)) (-15 -3263 ((-108) |#5| |#1|)) (-15 -2447 (|#1| |#1| |#5|))) (-989 |#2| |#3| |#4| |#5|) (-425) (-729) (-784) (-984 |#2| |#3| |#4|)) (T -988))
+NIL
+(-10 -8 (-15 -2447 ((-587 |#1|) (-587 |#5|) (-587 |#1|))) (-15 -2447 ((-587 |#1|) (-587 |#5|) |#1|)) (-15 -2447 ((-587 |#1|) |#5| (-587 |#1|))) (-15 -2447 ((-587 |#1|) |#5| |#1|)) (-15 -1933 ((-587 |#1|) (-587 |#5|) (-587 |#1|))) (-15 -1933 ((-587 |#1|) (-587 |#5|) |#1|)) (-15 -1933 ((-587 |#1|) |#5| (-587 |#1|))) (-15 -1933 ((-587 |#1|) |#5| |#1|)) (-15 -1660 ((-587 |#1|) |#5| (-587 |#1|))) (-15 -1660 ((-587 |#1|) (-587 |#5|) (-587 |#1|))) (-15 -1660 ((-587 |#1|) (-587 |#5|) |#1|)) (-15 -1660 ((-587 |#1|) |#5| |#1|)) (-15 -2628 ((-108) |#5| |#1|)) (-15 -3263 ((-108) |#1|)) (-15 -4002 ((-108) |#5| |#1|)) (-15 -4124 ((-108) |#5| |#1|)) (-15 -3263 ((-108) |#5| |#1|)) (-15 -2447 (|#1| |#1| |#5|)))
+((-1415 (((-108) $ $) 7)) (-2113 (((-587 (-2 (|:| -1650 $) (|:| -1544 (-587 |#4|)))) (-587 |#4|)) 85)) (-1906 (((-587 $) (-587 |#4|)) 86) (((-587 $) (-587 |#4|) (-108)) 111)) (-4084 (((-587 |#3|) $) 33)) (-3898 (((-108) $) 26)) (-2466 (((-108) $) 17 (|has| |#1| (-513)))) (-3199 (((-108) |#4| $) 101) (((-108) $) 97)) (-2015 ((|#4| |#4| $) 92)) (-3063 (((-587 (-2 (|:| |val| |#4|) (|:| -1884 $))) |#4| $) 126)) (-3211 (((-2 (|:| |under| $) (|:| -2567 $) (|:| |upper| $)) $ |#3|) 27)) (-2978 (((-108) $ (-707)) 44)) (-1628 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4233))) (((-3 |#4| "failed") $ |#3|) 79)) (-2547 (($) 45 T CONST)) (-3035 (((-108) $) 22 (|has| |#1| (-513)))) (-3091 (((-108) $ $) 24 (|has| |#1| (-513)))) (-3882 (((-108) $ $) 23 (|has| |#1| (-513)))) (-3237 (((-108) $) 25 (|has| |#1| (-513)))) (-2990 (((-587 |#4|) (-587 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 93)) (-3799 (((-587 |#4|) (-587 |#4|) $) 18 (|has| |#1| (-513)))) (-4183 (((-587 |#4|) (-587 |#4|) $) 19 (|has| |#1| (-513)))) (-1297 (((-3 $ "failed") (-587 |#4|)) 36)) (-1483 (($ (-587 |#4|)) 35)) (-2306 (((-3 $ "failed") $) 82)) (-1761 ((|#4| |#4| $) 89)) (-2332 (($ $) 68 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -4233))))) (-1422 (($ |#4| $) 67 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -4233)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4233)))) (-3820 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-513)))) (-3156 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) 102)) (-1970 ((|#4| |#4| $) 87)) (-3859 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -4233)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4233))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4233))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 94)) (-3726 (((-2 (|:| -1650 (-587 |#4|)) (|:| -1544 (-587 |#4|))) $) 105)) (-4124 (((-108) |#4| $) 136)) (-2628 (((-108) |#4| $) 133)) (-3263 (((-108) |#4| $) 137) (((-108) $) 134)) (-3831 (((-587 |#4|) $) 52 (|has| $ (-6 -4233)))) (-3266 (((-108) |#4| $) 104) (((-108) $) 103)) (-3464 ((|#3| $) 34)) (-2139 (((-108) $ (-707)) 43)) (-3757 (((-587 |#4|) $) 53 (|has| $ (-6 -4233)))) (-2221 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -4233))))) (-3833 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#4| |#4|) $) 47)) (-2820 (((-587 |#3|) $) 32)) (-2639 (((-108) |#3| $) 31)) (-3574 (((-108) $ (-707)) 42)) (-3688 (((-1067) $) 9)) (-1767 (((-3 |#4| (-587 $)) |#4| |#4| $) 128)) (-2031 (((-587 (-2 (|:| |val| |#4|) (|:| -1884 $))) |#4| |#4| $) 127)) (-1441 (((-3 |#4| "failed") $) 83)) (-3731 (((-587 $) |#4| $) 129)) (-4168 (((-3 (-108) (-587 $)) |#4| $) 132)) (-3395 (((-587 (-2 (|:| |val| (-108)) (|:| -1884 $))) |#4| $) 131) (((-108) |#4| $) 130)) (-1660 (((-587 $) |#4| $) 125) (((-587 $) (-587 |#4|) $) 124) (((-587 $) (-587 |#4|) (-587 $)) 123) (((-587 $) |#4| (-587 $)) 122)) (-3428 (($ |#4| $) 117) (($ (-587 |#4|) $) 116)) (-2323 (((-587 |#4|) $) 107)) (-3786 (((-108) |#4| $) 99) (((-108) $) 95)) (-1347 ((|#4| |#4| $) 90)) (-2146 (((-108) $ $) 110)) (-1341 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-513)))) (-1972 (((-108) |#4| $) 100) (((-108) $) 96)) (-4065 ((|#4| |#4| $) 91)) (-4147 (((-1031) $) 10)) (-2293 (((-3 |#4| "failed") $) 84)) (-3620 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-2001 (((-3 $ "failed") $ |#4|) 78)) (-2447 (($ $ |#4|) 77) (((-587 $) |#4| $) 115) (((-587 $) |#4| (-587 $)) 114) (((-587 $) (-587 |#4|) $) 113) (((-587 $) (-587 |#4|) (-587 $)) 112)) (-1789 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 |#4|) (-587 |#4|)) 59 (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013)))) (($ $ (-269 |#4|)) 57 (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013)))) (($ $ (-587 (-269 |#4|))) 56 (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013))))) (-2488 (((-108) $ $) 38)) (-3462 (((-108) $) 41)) (-4024 (($) 40)) (-1994 (((-707) $) 106)) (-4163 (((-707) |#4| $) 54 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -4233)))) (((-707) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4233)))) (-2404 (($ $) 39)) (-1430 (((-497) $) 69 (|has| |#4| (-562 (-497))))) (-2201 (($ (-587 |#4|)) 60)) (-3883 (($ $ |#3|) 28)) (-4029 (($ $ |#3|) 30)) (-3173 (($ $) 88)) (-3318 (($ $ |#3|) 29)) (-2189 (((-792) $) 11) (((-587 |#4|) $) 37)) (-3781 (((-707) $) 76 (|has| |#3| (-342)))) (-3234 (((-3 (-2 (|:| |bas| $) (|:| -1354 (-587 |#4|))) "failed") (-587 |#4|) (-1 (-108) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1354 (-587 |#4|))) "failed") (-587 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) 108)) (-3960 (((-108) $ (-1 (-108) |#4| (-587 |#4|))) 98)) (-1933 (((-587 $) |#4| $) 121) (((-587 $) |#4| (-587 $)) 120) (((-587 $) (-587 |#4|) $) 119) (((-587 $) (-587 |#4|) (-587 $)) 118)) (-3049 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4233)))) (-4099 (((-587 |#3|) $) 81)) (-4002 (((-108) |#4| $) 135)) (-2154 (((-108) |#3| $) 80)) (-1531 (((-108) $ $) 6)) (-3475 (((-707) $) 46 (|has| $ (-6 -4233)))))
+(((-989 |#1| |#2| |#3| |#4|) (-1196) (-425) (-729) (-784) (-984 |t#1| |t#2| |t#3|)) (T -989))
+((-3263 (*1 *2 *3 *1) (-12 (-4 *1 (-989 *4 *5 *6 *3)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784)) (-4 *3 (-984 *4 *5 *6)) (-5 *2 (-108)))) (-4124 (*1 *2 *3 *1) (-12 (-4 *1 (-989 *4 *5 *6 *3)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784)) (-4 *3 (-984 *4 *5 *6)) (-5 *2 (-108)))) (-4002 (*1 *2 *3 *1) (-12 (-4 *1 (-989 *4 *5 *6 *3)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784)) (-4 *3 (-984 *4 *5 *6)) (-5 *2 (-108)))) (-3263 (*1 *2 *1) (-12 (-4 *1 (-989 *3 *4 *5 *6)) (-4 *3 (-425)) (-4 *4 (-729)) (-4 *5 (-784)) (-4 *6 (-984 *3 *4 *5)) (-5 *2 (-108)))) (-2628 (*1 *2 *3 *1) (-12 (-4 *1 (-989 *4 *5 *6 *3)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784)) (-4 *3 (-984 *4 *5 *6)) (-5 *2 (-108)))) (-4168 (*1 *2 *3 *1) (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784)) (-4 *3 (-984 *4 *5 *6)) (-5 *2 (-3 (-108) (-587 *1))) (-4 *1 (-989 *4 *5 *6 *3)))) (-3395 (*1 *2 *3 *1) (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784)) (-4 *3 (-984 *4 *5 *6)) (-5 *2 (-587 (-2 (|:| |val| (-108)) (|:| -1884 *1)))) (-4 *1 (-989 *4 *5 *6 *3)))) (-3395 (*1 *2 *3 *1) (-12 (-4 *1 (-989 *4 *5 *6 *3)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784)) (-4 *3 (-984 *4 *5 *6)) (-5 *2 (-108)))) (-3731 (*1 *2 *3 *1) (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784)) (-4 *3 (-984 *4 *5 *6)) (-5 *2 (-587 *1)) (-4 *1 (-989 *4 *5 *6 *3)))) (-1767 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784)) (-4 *3 (-984 *4 *5 *6)) (-5 *2 (-3 *3 (-587 *1))) (-4 *1 (-989 *4 *5 *6 *3)))) (-2031 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784)) (-4 *3 (-984 *4 *5 *6)) (-5 *2 (-587 (-2 (|:| |val| *3) (|:| -1884 *1)))) (-4 *1 (-989 *4 *5 *6 *3)))) (-3063 (*1 *2 *3 *1) (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784)) (-4 *3 (-984 *4 *5 *6)) (-5 *2 (-587 (-2 (|:| |val| *3) (|:| -1884 *1)))) (-4 *1 (-989 *4 *5 *6 *3)))) (-1660 (*1 *2 *3 *1) (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784)) (-4 *3 (-984 *4 *5 *6)) (-5 *2 (-587 *1)) (-4 *1 (-989 *4 *5 *6 *3)))) (-1660 (*1 *2 *3 *1) (-12 (-5 *3 (-587 *7)) (-4 *7 (-984 *4 *5 *6)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-587 *1)) (-4 *1 (-989 *4 *5 *6 *7)))) (-1660 (*1 *2 *3 *2) (-12 (-5 *2 (-587 *1)) (-5 *3 (-587 *7)) (-4 *1 (-989 *4 *5 *6 *7)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784)) (-4 *7 (-984 *4 *5 *6)))) (-1660 (*1 *2 *3 *2) (-12 (-5 *2 (-587 *1)) (-4 *1 (-989 *4 *5 *6 *3)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784)) (-4 *3 (-984 *4 *5 *6)))) (-1933 (*1 *2 *3 *1) (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784)) (-4 *3 (-984 *4 *5 *6)) (-5 *2 (-587 *1)) (-4 *1 (-989 *4 *5 *6 *3)))) (-1933 (*1 *2 *3 *2) (-12 (-5 *2 (-587 *1)) (-4 *1 (-989 *4 *5 *6 *3)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784)) (-4 *3 (-984 *4 *5 *6)))) (-1933 (*1 *2 *3 *1) (-12 (-5 *3 (-587 *7)) (-4 *7 (-984 *4 *5 *6)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-587 *1)) (-4 *1 (-989 *4 *5 *6 *7)))) (-1933 (*1 *2 *3 *2) (-12 (-5 *2 (-587 *1)) (-5 *3 (-587 *7)) (-4 *1 (-989 *4 *5 *6 *7)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784)) (-4 *7 (-984 *4 *5 *6)))) (-3428 (*1 *1 *2 *1) (-12 (-4 *1 (-989 *3 *4 *5 *2)) (-4 *3 (-425)) (-4 *4 (-729)) (-4 *5 (-784)) (-4 *2 (-984 *3 *4 *5)))) (-3428 (*1 *1 *2 *1) (-12 (-5 *2 (-587 *6)) (-4 *1 (-989 *3 *4 *5 *6)) (-4 *3 (-425)) (-4 *4 (-729)) (-4 *5 (-784)) (-4 *6 (-984 *3 *4 *5)))) (-2447 (*1 *2 *3 *1) (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784)) (-4 *3 (-984 *4 *5 *6)) (-5 *2 (-587 *1)) (-4 *1 (-989 *4 *5 *6 *3)))) (-2447 (*1 *2 *3 *2) (-12 (-5 *2 (-587 *1)) (-4 *1 (-989 *4 *5 *6 *3)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784)) (-4 *3 (-984 *4 *5 *6)))) (-2447 (*1 *2 *3 *1) (-12 (-5 *3 (-587 *7)) (-4 *7 (-984 *4 *5 *6)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-587 *1)) (-4 *1 (-989 *4 *5 *6 *7)))) (-2447 (*1 *2 *3 *2) (-12 (-5 *2 (-587 *1)) (-5 *3 (-587 *7)) (-4 *1 (-989 *4 *5 *6 *7)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784)) (-4 *7 (-984 *4 *5 *6)))) (-1906 (*1 *2 *3 *4) (-12 (-5 *3 (-587 *8)) (-5 *4 (-108)) (-4 *8 (-984 *5 *6 *7)) (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784)) (-5 *2 (-587 *1)) (-4 *1 (-989 *5 *6 *7 *8)))))
+(-13 (-1113 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -3263 ((-108) |t#4| $)) (-15 -4124 ((-108) |t#4| $)) (-15 -4002 ((-108) |t#4| $)) (-15 -3263 ((-108) $)) (-15 -2628 ((-108) |t#4| $)) (-15 -4168 ((-3 (-108) (-587 $)) |t#4| $)) (-15 -3395 ((-587 (-2 (|:| |val| (-108)) (|:| -1884 $))) |t#4| $)) (-15 -3395 ((-108) |t#4| $)) (-15 -3731 ((-587 $) |t#4| $)) (-15 -1767 ((-3 |t#4| (-587 $)) |t#4| |t#4| $)) (-15 -2031 ((-587 (-2 (|:| |val| |t#4|) (|:| -1884 $))) |t#4| |t#4| $)) (-15 -3063 ((-587 (-2 (|:| |val| |t#4|) (|:| -1884 $))) |t#4| $)) (-15 -1660 ((-587 $) |t#4| $)) (-15 -1660 ((-587 $) (-587 |t#4|) $)) (-15 -1660 ((-587 $) (-587 |t#4|) (-587 $))) (-15 -1660 ((-587 $) |t#4| (-587 $))) (-15 -1933 ((-587 $) |t#4| $)) (-15 -1933 ((-587 $) |t#4| (-587 $))) (-15 -1933 ((-587 $) (-587 |t#4|) $)) (-15 -1933 ((-587 $) (-587 |t#4|) (-587 $))) (-15 -3428 ($ |t#4| $)) (-15 -3428 ($ (-587 |t#4|) $)) (-15 -2447 ((-587 $) |t#4| $)) (-15 -2447 ((-587 $) |t#4| (-587 $))) (-15 -2447 ((-587 $) (-587 |t#4|) $)) (-15 -2447 ((-587 $) (-587 |t#4|) (-587 $))) (-15 -1906 ((-587 $) (-587 |t#4|) (-108)))))
+(((-33) . T) ((-97) . T) ((-561 (-587 |#4|)) . T) ((-561 (-792)) . T) ((-139 |#4|) . T) ((-562 (-497)) |has| |#4| (-562 (-497))) ((-284 |#4|) -12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013))) ((-460 |#4|) . T) ((-482 |#4| |#4|) -12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013))) ((-902 |#1| |#2| |#3| |#4|) . T) ((-1013) . T) ((-1113 |#1| |#2| |#3| |#4|) . T) ((-1119) . T))
+((-2909 (((-587 (-2 (|:| |val| |#4|) (|:| -1884 |#5|))) |#4| |#5|) 81)) (-2261 (((-587 (-2 (|:| |val| |#4|) (|:| -1884 |#5|))) |#4| |#4| |#5|) 113)) (-2077 (((-587 |#5|) |#4| |#5|) 70)) (-1900 (((-587 (-2 (|:| |val| (-108)) (|:| -1884 |#5|))) |#4| |#5|) 44) (((-108) |#4| |#5|) 52)) (-3811 (((-1170)) 35)) (-2476 (((-1170)) 25)) (-3073 (((-1170) (-1067) (-1067) (-1067)) 31)) (-3993 (((-1170) (-1067) (-1067) (-1067)) 20)) (-3832 (((-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))) |#4| |#4| |#5|) 96)) (-2768 (((-587 (-2 (|:| |val| |#4|) (|:| -1884 |#5|))) (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))) |#3| (-108)) 107) (((-587 (-2 (|:| |val| |#4|) (|:| -1884 |#5|))) |#4| |#4| |#5| (-108) (-108)) 49)) (-2935 (((-587 (-2 (|:| |val| |#4|) (|:| -1884 |#5|))) |#4| |#4| |#5|) 102)))
+(((-990 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3993 ((-1170) (-1067) (-1067) (-1067))) (-15 -2476 ((-1170))) (-15 -3073 ((-1170) (-1067) (-1067) (-1067))) (-15 -3811 ((-1170))) (-15 -3832 ((-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))) |#4| |#4| |#5|)) (-15 -2768 ((-587 (-2 (|:| |val| |#4|) (|:| -1884 |#5|))) |#4| |#4| |#5| (-108) (-108))) (-15 -2768 ((-587 (-2 (|:| |val| |#4|) (|:| -1884 |#5|))) (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))) |#3| (-108))) (-15 -2935 ((-587 (-2 (|:| |val| |#4|) (|:| -1884 |#5|))) |#4| |#4| |#5|)) (-15 -2261 ((-587 (-2 (|:| |val| |#4|) (|:| -1884 |#5|))) |#4| |#4| |#5|)) (-15 -1900 ((-108) |#4| |#5|)) (-15 -1900 ((-587 (-2 (|:| |val| (-108)) (|:| -1884 |#5|))) |#4| |#5|)) (-15 -2077 ((-587 |#5|) |#4| |#5|)) (-15 -2909 ((-587 (-2 (|:| |val| |#4|) (|:| -1884 |#5|))) |#4| |#5|))) (-425) (-729) (-784) (-984 |#1| |#2| |#3|) (-989 |#1| |#2| |#3| |#4|)) (T -990))
+((-2909 (*1 *2 *3 *4) (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784)) (-4 *3 (-984 *5 *6 *7)) (-5 *2 (-587 (-2 (|:| |val| *3) (|:| -1884 *4)))) (-5 *1 (-990 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))) (-2077 (*1 *2 *3 *4) (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784)) (-4 *3 (-984 *5 *6 *7)) (-5 *2 (-587 *4)) (-5 *1 (-990 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))) (-1900 (*1 *2 *3 *4) (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784)) (-4 *3 (-984 *5 *6 *7)) (-5 *2 (-587 (-2 (|:| |val| (-108)) (|:| -1884 *4)))) (-5 *1 (-990 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))) (-1900 (*1 *2 *3 *4) (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784)) (-4 *3 (-984 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-990 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))) (-2261 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784)) (-4 *3 (-984 *5 *6 *7)) (-5 *2 (-587 (-2 (|:| |val| *3) (|:| -1884 *4)))) (-5 *1 (-990 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))) (-2935 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784)) (-4 *3 (-984 *5 *6 *7)) (-5 *2 (-587 (-2 (|:| |val| *3) (|:| -1884 *4)))) (-5 *1 (-990 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))) (-2768 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-587 (-2 (|:| |val| (-587 *8)) (|:| -1884 *9)))) (-5 *5 (-108)) (-4 *8 (-984 *6 *7 *4)) (-4 *9 (-989 *6 *7 *4 *8)) (-4 *6 (-425)) (-4 *7 (-729)) (-4 *4 (-784)) (-5 *2 (-587 (-2 (|:| |val| *8) (|:| -1884 *9)))) (-5 *1 (-990 *6 *7 *4 *8 *9)))) (-2768 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-108)) (-4 *6 (-425)) (-4 *7 (-729)) (-4 *8 (-784)) (-4 *3 (-984 *6 *7 *8)) (-5 *2 (-587 (-2 (|:| |val| *3) (|:| -1884 *4)))) (-5 *1 (-990 *6 *7 *8 *3 *4)) (-4 *4 (-989 *6 *7 *8 *3)))) (-3832 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784)) (-4 *3 (-984 *5 *6 *7)) (-5 *2 (-587 (-2 (|:| |val| (-587 *3)) (|:| -1884 *4)))) (-5 *1 (-990 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))) (-3811 (*1 *2) (-12 (-4 *3 (-425)) (-4 *4 (-729)) (-4 *5 (-784)) (-4 *6 (-984 *3 *4 *5)) (-5 *2 (-1170)) (-5 *1 (-990 *3 *4 *5 *6 *7)) (-4 *7 (-989 *3 *4 *5 *6)))) (-3073 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1067)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784)) (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-1170)) (-5 *1 (-990 *4 *5 *6 *7 *8)) (-4 *8 (-989 *4 *5 *6 *7)))) (-2476 (*1 *2) (-12 (-4 *3 (-425)) (-4 *4 (-729)) (-4 *5 (-784)) (-4 *6 (-984 *3 *4 *5)) (-5 *2 (-1170)) (-5 *1 (-990 *3 *4 *5 *6 *7)) (-4 *7 (-989 *3 *4 *5 *6)))) (-3993 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1067)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784)) (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-1170)) (-5 *1 (-990 *4 *5 *6 *7 *8)) (-4 *8 (-989 *4 *5 *6 *7)))))
+(-10 -7 (-15 -3993 ((-1170) (-1067) (-1067) (-1067))) (-15 -2476 ((-1170))) (-15 -3073 ((-1170) (-1067) (-1067) (-1067))) (-15 -3811 ((-1170))) (-15 -3832 ((-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))) |#4| |#4| |#5|)) (-15 -2768 ((-587 (-2 (|:| |val| |#4|) (|:| -1884 |#5|))) |#4| |#4| |#5| (-108) (-108))) (-15 -2768 ((-587 (-2 (|:| |val| |#4|) (|:| -1884 |#5|))) (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))) |#3| (-108))) (-15 -2935 ((-587 (-2 (|:| |val| |#4|) (|:| -1884 |#5|))) |#4| |#4| |#5|)) (-15 -2261 ((-587 (-2 (|:| |val| |#4|) (|:| -1884 |#5|))) |#4| |#4| |#5|)) (-15 -1900 ((-108) |#4| |#5|)) (-15 -1900 ((-587 (-2 (|:| |val| (-108)) (|:| -1884 |#5|))) |#4| |#5|)) (-15 -2077 ((-587 |#5|) |#4| |#5|)) (-15 -2909 ((-587 (-2 (|:| |val| |#4|) (|:| -1884 |#5|))) |#4| |#5|)))
+((-1415 (((-108) $ $) NIL)) (-2884 (((-1084) $) 8)) (-3688 (((-1067) $) 16)) (-4147 (((-1031) $) NIL)) (-2189 (((-792) $) 11)) (-1531 (((-108) $ $) 13)))
+(((-991 |#1|) (-13 (-1013) (-10 -8 (-15 -2884 ((-1084) $)))) (-1084)) (T -991))
+((-2884 (*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-991 *3)) (-14 *3 *2))))
+(-13 (-1013) (-10 -8 (-15 -2884 ((-1084) $))))
+((-1415 (((-108) $ $) NIL)) (-1870 (($ $ (-587 (-1084)) (-1 (-108) (-587 |#3|))) 29)) (-1361 (($ |#3| |#3|) 21) (($ |#3| |#3| (-587 (-1084))) 19)) (-3597 ((|#3| $) 13)) (-1297 (((-3 (-269 |#3|) "failed") $) 56)) (-1483 (((-269 |#3|) $) NIL)) (-3704 (((-587 (-1084)) $) 15)) (-1377 (((-821 |#1|) $) 11)) (-3588 ((|#3| $) 12)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2544 ((|#3| $ |#3|) 25) ((|#3| $ |#3| (-850)) 36)) (-2189 (((-792) $) 85) (($ (-269 |#3|)) 20)) (-1531 (((-108) $ $) 33)))
+(((-992 |#1| |#2| |#3|) (-13 (-1013) (-261 |#3| |#3|) (-961 (-269 |#3|)) (-10 -8 (-15 -1361 ($ |#3| |#3|)) (-15 -1361 ($ |#3| |#3| (-587 (-1084)))) (-15 -1870 ($ $ (-587 (-1084)) (-1 (-108) (-587 |#3|)))) (-15 -1377 ((-821 |#1|) $)) (-15 -3588 (|#3| $)) (-15 -3597 (|#3| $)) (-15 -2544 (|#3| $ |#3| (-850))) (-15 -3704 ((-587 (-1084)) $)))) (-1013) (-13 (-970) (-815 |#1|) (-784) (-562 (-821 |#1|))) (-13 (-404 |#2|) (-815 |#1|) (-562 (-821 |#1|)))) (T -992))
+((-1361 (*1 *1 *2 *2) (-12 (-4 *3 (-1013)) (-4 *4 (-13 (-970) (-815 *3) (-784) (-562 (-821 *3)))) (-5 *1 (-992 *3 *4 *2)) (-4 *2 (-13 (-404 *4) (-815 *3) (-562 (-821 *3)))))) (-1361 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-587 (-1084))) (-4 *4 (-1013)) (-4 *5 (-13 (-970) (-815 *4) (-784) (-562 (-821 *4)))) (-5 *1 (-992 *4 *5 *2)) (-4 *2 (-13 (-404 *5) (-815 *4) (-562 (-821 *4)))))) (-1870 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-587 (-1084))) (-5 *3 (-1 (-108) (-587 *6))) (-4 *6 (-13 (-404 *5) (-815 *4) (-562 (-821 *4)))) (-4 *4 (-1013)) (-4 *5 (-13 (-970) (-815 *4) (-784) (-562 (-821 *4)))) (-5 *1 (-992 *4 *5 *6)))) (-1377 (*1 *2 *1) (-12 (-4 *3 (-1013)) (-4 *4 (-13 (-970) (-815 *3) (-784) (-562 *2))) (-5 *2 (-821 *3)) (-5 *1 (-992 *3 *4 *5)) (-4 *5 (-13 (-404 *4) (-815 *3) (-562 *2))))) (-3588 (*1 *2 *1) (-12 (-4 *3 (-1013)) (-4 *2 (-13 (-404 *4) (-815 *3) (-562 (-821 *3)))) (-5 *1 (-992 *3 *4 *2)) (-4 *4 (-13 (-970) (-815 *3) (-784) (-562 (-821 *3)))))) (-3597 (*1 *2 *1) (-12 (-4 *3 (-1013)) (-4 *2 (-13 (-404 *4) (-815 *3) (-562 (-821 *3)))) (-5 *1 (-992 *3 *4 *2)) (-4 *4 (-13 (-970) (-815 *3) (-784) (-562 (-821 *3)))))) (-2544 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-850)) (-4 *4 (-1013)) (-4 *5 (-13 (-970) (-815 *4) (-784) (-562 (-821 *4)))) (-5 *1 (-992 *4 *5 *2)) (-4 *2 (-13 (-404 *5) (-815 *4) (-562 (-821 *4)))))) (-3704 (*1 *2 *1) (-12 (-4 *3 (-1013)) (-4 *4 (-13 (-970) (-815 *3) (-784) (-562 (-821 *3)))) (-5 *2 (-587 (-1084))) (-5 *1 (-992 *3 *4 *5)) (-4 *5 (-13 (-404 *4) (-815 *3) (-562 (-821 *3)))))))
+(-13 (-1013) (-261 |#3| |#3|) (-961 (-269 |#3|)) (-10 -8 (-15 -1361 ($ |#3| |#3|)) (-15 -1361 ($ |#3| |#3| (-587 (-1084)))) (-15 -1870 ($ $ (-587 (-1084)) (-1 (-108) (-587 |#3|)))) (-15 -1377 ((-821 |#1|) $)) (-15 -3588 (|#3| $)) (-15 -3597 (|#3| $)) (-15 -2544 (|#3| $ |#3| (-850))) (-15 -3704 ((-587 (-1084)) $))))
+((-1415 (((-108) $ $) NIL)) (-1837 (($ (-587 (-992 |#1| |#2| |#3|))) 12)) (-3294 (((-587 (-992 |#1| |#2| |#3|)) $) 19)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2544 ((|#3| $ |#3|) 22) ((|#3| $ |#3| (-850)) 25)) (-2189 (((-792) $) 15)) (-1531 (((-108) $ $) 18)))
+(((-993 |#1| |#2| |#3|) (-13 (-1013) (-261 |#3| |#3|) (-10 -8 (-15 -1837 ($ (-587 (-992 |#1| |#2| |#3|)))) (-15 -3294 ((-587 (-992 |#1| |#2| |#3|)) $)) (-15 -2544 (|#3| $ |#3| (-850))))) (-1013) (-13 (-970) (-815 |#1|) (-784) (-562 (-821 |#1|))) (-13 (-404 |#2|) (-815 |#1|) (-562 (-821 |#1|)))) (T -993))
+((-1837 (*1 *1 *2) (-12 (-5 *2 (-587 (-992 *3 *4 *5))) (-4 *3 (-1013)) (-4 *4 (-13 (-970) (-815 *3) (-784) (-562 (-821 *3)))) (-4 *5 (-13 (-404 *4) (-815 *3) (-562 (-821 *3)))) (-5 *1 (-993 *3 *4 *5)))) (-3294 (*1 *2 *1) (-12 (-4 *3 (-1013)) (-4 *4 (-13 (-970) (-815 *3) (-784) (-562 (-821 *3)))) (-5 *2 (-587 (-992 *3 *4 *5))) (-5 *1 (-993 *3 *4 *5)) (-4 *5 (-13 (-404 *4) (-815 *3) (-562 (-821 *3)))))) (-2544 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-850)) (-4 *4 (-1013)) (-4 *5 (-13 (-970) (-815 *4) (-784) (-562 (-821 *4)))) (-5 *1 (-993 *4 *5 *2)) (-4 *2 (-13 (-404 *5) (-815 *4) (-562 (-821 *4)))))))
+(-13 (-1013) (-261 |#3| |#3|) (-10 -8 (-15 -1837 ($ (-587 (-992 |#1| |#2| |#3|)))) (-15 -3294 ((-587 (-992 |#1| |#2| |#3|)) $)) (-15 -2544 (|#3| $ |#3| (-850)))))
+((-2318 (((-587 (-2 (|:| -3183 (-1080 |#1|)) (|:| -2234 (-587 (-881 |#1|))))) (-587 (-881 |#1|)) (-108) (-108)) 74) (((-587 (-2 (|:| -3183 (-1080 |#1|)) (|:| -2234 (-587 (-881 |#1|))))) (-587 (-881 |#1|))) 76) (((-587 (-2 (|:| -3183 (-1080 |#1|)) (|:| -2234 (-587 (-881 |#1|))))) (-587 (-881 |#1|)) (-108)) 75)))
+(((-994 |#1| |#2|) (-10 -7 (-15 -2318 ((-587 (-2 (|:| -3183 (-1080 |#1|)) (|:| -2234 (-587 (-881 |#1|))))) (-587 (-881 |#1|)) (-108))) (-15 -2318 ((-587 (-2 (|:| -3183 (-1080 |#1|)) (|:| -2234 (-587 (-881 |#1|))))) (-587 (-881 |#1|)))) (-15 -2318 ((-587 (-2 (|:| -3183 (-1080 |#1|)) (|:| -2234 (-587 (-881 |#1|))))) (-587 (-881 |#1|)) (-108) (-108)))) (-13 (-282) (-135)) (-587 (-1084))) (T -994))
+((-2318 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-282) (-135))) (-5 *2 (-587 (-2 (|:| -3183 (-1080 *5)) (|:| -2234 (-587 (-881 *5)))))) (-5 *1 (-994 *5 *6)) (-5 *3 (-587 (-881 *5))) (-14 *6 (-587 (-1084))))) (-2318 (*1 *2 *3) (-12 (-4 *4 (-13 (-282) (-135))) (-5 *2 (-587 (-2 (|:| -3183 (-1080 *4)) (|:| -2234 (-587 (-881 *4)))))) (-5 *1 (-994 *4 *5)) (-5 *3 (-587 (-881 *4))) (-14 *5 (-587 (-1084))))) (-2318 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-282) (-135))) (-5 *2 (-587 (-2 (|:| -3183 (-1080 *5)) (|:| -2234 (-587 (-881 *5)))))) (-5 *1 (-994 *5 *6)) (-5 *3 (-587 (-881 *5))) (-14 *6 (-587 (-1084))))))
+(-10 -7 (-15 -2318 ((-587 (-2 (|:| -3183 (-1080 |#1|)) (|:| -2234 (-587 (-881 |#1|))))) (-587 (-881 |#1|)) (-108))) (-15 -2318 ((-587 (-2 (|:| -3183 (-1080 |#1|)) (|:| -2234 (-587 (-881 |#1|))))) (-587 (-881 |#1|)))) (-15 -2318 ((-587 (-2 (|:| -3183 (-1080 |#1|)) (|:| -2234 (-587 (-881 |#1|))))) (-587 (-881 |#1|)) (-108) (-108))))
+((-1916 (((-392 |#3|) |#3|) 16)))
+(((-995 |#1| |#2| |#3|) (-10 -7 (-15 -1916 ((-392 |#3|) |#3|))) (-1141 (-381 (-521))) (-13 (-337) (-135) (-661 (-381 (-521)) |#1|)) (-1141 |#2|)) (T -995))
+((-1916 (*1 *2 *3) (-12 (-4 *4 (-1141 (-381 (-521)))) (-4 *5 (-13 (-337) (-135) (-661 (-381 (-521)) *4))) (-5 *2 (-392 *3)) (-5 *1 (-995 *4 *5 *3)) (-4 *3 (-1141 *5)))))
+(-10 -7 (-15 -1916 ((-392 |#3|) |#3|)))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) 125)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) NIL (|has| |#1| (-337)))) (-2559 (($ $) NIL (|has| |#1| (-337)))) (-1733 (((-108) $) NIL (|has| |#1| (-337)))) (-3214 (((-627 |#1|) (-1165 $)) NIL) (((-627 |#1|)) 115)) (-1865 ((|#1| $) 119)) (-1340 (((-1093 (-850) (-707)) (-521)) NIL (|has| |#1| (-323)))) (-1232 (((-3 $ "failed") $ $) NIL)) (-3063 (($ $) NIL (|has| |#1| (-337)))) (-3358 (((-392 $) $) NIL (|has| |#1| (-337)))) (-1389 (((-108) $ $) NIL (|has| |#1| (-337)))) (-1630 (((-707)) 40 (|has| |#1| (-342)))) (-2547 (($) NIL T CONST)) (-1297 (((-3 (-521) "failed") $) NIL (|has| |#1| (-961 (-521)))) (((-3 (-381 (-521)) "failed") $) NIL (|has| |#1| (-961 (-381 (-521))))) (((-3 |#1| "failed") $) NIL)) (-1483 (((-521) $) NIL (|has| |#1| (-961 (-521)))) (((-381 (-521)) $) NIL (|has| |#1| (-961 (-381 (-521))))) ((|#1| $) NIL)) (-4083 (($ (-1165 |#1|) (-1165 $)) NIL) (($ (-1165 |#1|)) 43)) (-1864 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-323)))) (-2277 (($ $ $) NIL (|has| |#1| (-337)))) (-3499 (((-627 |#1|) $ (-1165 $)) NIL) (((-627 |#1|) $) NIL)) (-3279 (((-627 (-521)) (-627 $)) NIL (|has| |#1| (-583 (-521)))) (((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (|has| |#1| (-583 (-521)))) (((-2 (|:| -1201 (-627 |#1|)) (|:| |vec| (-1165 |#1|))) (-627 $) (-1165 $)) 106) (((-627 |#1|) (-627 $)) 100)) (-3859 (($ |#2|) 61) (((-3 $ "failed") (-381 |#2|)) NIL (|has| |#1| (-337)))) (-1257 (((-3 $ "failed") $) NIL)) (-3162 (((-850)) 77)) (-3250 (($) 44 (|has| |#1| (-342)))) (-2253 (($ $ $) NIL (|has| |#1| (-337)))) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) NIL (|has| |#1| (-337)))) (-2103 (($) NIL (|has| |#1| (-323)))) (-2371 (((-108) $) NIL (|has| |#1| (-323)))) (-2833 (($ $ (-707)) NIL (|has| |#1| (-323))) (($ $) NIL (|has| |#1| (-323)))) (-2710 (((-108) $) NIL (|has| |#1| (-337)))) (-2733 (((-850) $) NIL (|has| |#1| (-323))) (((-770 (-850)) $) NIL (|has| |#1| (-323)))) (-3996 (((-108) $) NIL)) (-3930 ((|#1| $) NIL)) (-3842 (((-3 $ "failed") $) NIL (|has| |#1| (-323)))) (-1546 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| |#1| (-337)))) (-3548 ((|#2| $) 84 (|has| |#1| (-337)))) (-2715 (((-850) $) 130 (|has| |#1| (-342)))) (-3844 ((|#2| $) 58)) (-2223 (($ (-587 $)) NIL (|has| |#1| (-337))) (($ $ $) NIL (|has| |#1| (-337)))) (-3688 (((-1067) $) NIL)) (-3095 (($ $) NIL (|has| |#1| (-337)))) (-3797 (($) NIL (|has| |#1| (-323)) CONST)) (-2716 (($ (-850)) 124 (|has| |#1| (-342)))) (-4147 (((-1031) $) NIL)) (-1383 (($) 121)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) NIL (|has| |#1| (-337)))) (-2258 (($ (-587 $)) NIL (|has| |#1| (-337))) (($ $ $) NIL (|has| |#1| (-337)))) (-3040 (((-587 (-2 (|:| -1916 (-521)) (|:| -2997 (-521))))) NIL (|has| |#1| (-323)))) (-1916 (((-392 $) $) NIL (|has| |#1| (-337)))) (-1962 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-337))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL (|has| |#1| (-337)))) (-2230 (((-3 $ "failed") $ $) NIL (|has| |#1| (-337)))) (-3854 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| |#1| (-337)))) (-4196 (((-707) $) NIL (|has| |#1| (-337)))) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) NIL (|has| |#1| (-337)))) (-4010 ((|#1| (-1165 $)) NIL) ((|#1|) 109)) (-4067 (((-707) $) NIL (|has| |#1| (-323))) (((-3 (-707) "failed") $ $) NIL (|has| |#1| (-323)))) (-2156 (($ $) NIL (-3703 (-12 (|has| |#1| (-210)) (|has| |#1| (-337))) (|has| |#1| (-323)))) (($ $ (-707)) NIL (-3703 (-12 (|has| |#1| (-210)) (|has| |#1| (-337))) (|has| |#1| (-323)))) (($ $ (-1084)) NIL (-12 (|has| |#1| (-337)) (|has| |#1| (-829 (-1084))))) (($ $ (-587 (-1084))) NIL (-12 (|has| |#1| (-337)) (|has| |#1| (-829 (-1084))))) (($ $ (-1084) (-707)) NIL (-12 (|has| |#1| (-337)) (|has| |#1| (-829 (-1084))))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (-12 (|has| |#1| (-337)) (|has| |#1| (-829 (-1084))))) (($ $ (-1 |#1| |#1|) (-707)) NIL (|has| |#1| (-337))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-337)))) (-3089 (((-627 |#1|) (-1165 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-337)))) (-2879 ((|#2|) 73)) (-1204 (($) NIL (|has| |#1| (-323)))) (-2234 (((-1165 |#1|) $ (-1165 $)) 89) (((-627 |#1|) (-1165 $) (-1165 $)) NIL) (((-1165 |#1|) $) 71) (((-627 |#1|) (-1165 $)) 85)) (-1430 (((-1165 |#1|) $) NIL) (($ (-1165 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-2944 (((-3 (-1165 $) "failed") (-627 $)) NIL (|has| |#1| (-323)))) (-2189 (((-792) $) 57) (($ (-521)) 53) (($ |#1|) 54) (($ $) NIL (|has| |#1| (-337))) (($ (-381 (-521))) NIL (-3703 (|has| |#1| (-337)) (|has| |#1| (-961 (-381 (-521))))))) (-1671 (($ $) NIL (|has| |#1| (-323))) (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-3110 ((|#2| $) 82)) (-3846 (((-707)) 75)) (-2470 (((-1165 $)) 81)) (-4210 (((-108) $ $) NIL (|has| |#1| (-337)))) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL (|has| |#1| (-337)))) (-3561 (($) 30 T CONST)) (-3572 (($) 19 T CONST)) (-2212 (($ $) NIL (-3703 (-12 (|has| |#1| (-210)) (|has| |#1| (-337))) (|has| |#1| (-323)))) (($ $ (-707)) NIL (-3703 (-12 (|has| |#1| (-210)) (|has| |#1| (-337))) (|has| |#1| (-323)))) (($ $ (-1084)) NIL (-12 (|has| |#1| (-337)) (|has| |#1| (-829 (-1084))))) (($ $ (-587 (-1084))) NIL (-12 (|has| |#1| (-337)) (|has| |#1| (-829 (-1084))))) (($ $ (-1084) (-707)) NIL (-12 (|has| |#1| (-337)) (|has| |#1| (-829 (-1084))))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (-12 (|has| |#1| (-337)) (|has| |#1| (-829 (-1084))))) (($ $ (-1 |#1| |#1|) (-707)) NIL (|has| |#1| (-337))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-337)))) (-1531 (((-108) $ $) 63)) (-1620 (($ $ $) NIL (|has| |#1| (-337)))) (-1612 (($ $) 67) (($ $ $) NIL)) (-1602 (($ $ $) 65)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL (|has| |#1| (-337)))) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) 51) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 48) (($ (-381 (-521)) $) NIL (|has| |#1| (-337))) (($ $ (-381 (-521))) NIL (|has| |#1| (-337)))))
+(((-996 |#1| |#2| |#3|) (-661 |#1| |#2|) (-157) (-1141 |#1|) |#2|) (T -996))
+NIL
+(-661 |#1| |#2|)
+((-1916 (((-392 |#3|) |#3|) 16)))
+(((-997 |#1| |#2| |#3|) (-10 -7 (-15 -1916 ((-392 |#3|) |#3|))) (-1141 (-381 (-881 (-521)))) (-13 (-337) (-135) (-661 (-381 (-881 (-521))) |#1|)) (-1141 |#2|)) (T -997))
+((-1916 (*1 *2 *3) (-12 (-4 *4 (-1141 (-381 (-881 (-521))))) (-4 *5 (-13 (-337) (-135) (-661 (-381 (-881 (-521))) *4))) (-5 *2 (-392 *3)) (-5 *1 (-997 *4 *5 *3)) (-4 *3 (-1141 *5)))))
+(-10 -7 (-15 -1916 ((-392 |#3|) |#3|)))
+((-1415 (((-108) $ $) NIL)) (-2810 (($ $ $) 14)) (-2446 (($ $ $) 15)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2535 (($) 6)) (-1430 (((-1084) $) 18)) (-2189 (((-792) $) 12)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) 13)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 8)))
+(((-998) (-13 (-784) (-10 -8 (-15 -2535 ($)) (-15 -1430 ((-1084) $))))) (T -998))
+((-2535 (*1 *1) (-5 *1 (-998))) (-1430 (*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-998)))))
+(-13 (-784) (-10 -8 (-15 -2535 ($)) (-15 -1430 ((-1084) $))))
+((-4193 ((|#1| |#1| (-1 (-521) |#1| |#1|)) 23) ((|#1| |#1| (-1 (-108) |#1|)) 20)) (-1548 (((-1170)) 15)) (-2870 (((-587 |#1|)) 9)))
+(((-999 |#1|) (-10 -7 (-15 -1548 ((-1170))) (-15 -2870 ((-587 |#1|))) (-15 -4193 (|#1| |#1| (-1 (-108) |#1|))) (-15 -4193 (|#1| |#1| (-1 (-521) |#1| |#1|)))) (-125)) (T -999))
+((-4193 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-521) *2 *2)) (-4 *2 (-125)) (-5 *1 (-999 *2)))) (-4193 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-108) *2)) (-4 *2 (-125)) (-5 *1 (-999 *2)))) (-2870 (*1 *2) (-12 (-5 *2 (-587 *3)) (-5 *1 (-999 *3)) (-4 *3 (-125)))) (-1548 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-999 *3)) (-4 *3 (-125)))))
+(-10 -7 (-15 -1548 ((-1170))) (-15 -2870 ((-587 |#1|))) (-15 -4193 (|#1| |#1| (-1 (-108) |#1|))) (-15 -4193 (|#1| |#1| (-1 (-521) |#1| |#1|))))
+((-2530 (($ (-104) $) 15)) (-2346 (((-3 (-104) "failed") (-1084) $) 13)) (-4024 (($) 6)) (-3650 (($) 16)) (-1372 (($) 17)) (-3944 (((-587 (-159)) $) 8)) (-2189 (((-792) $) 20)))
+(((-1000) (-13 (-561 (-792)) (-10 -8 (-15 -4024 ($)) (-15 -3944 ((-587 (-159)) $)) (-15 -2346 ((-3 (-104) "failed") (-1084) $)) (-15 -2530 ($ (-104) $)) (-15 -3650 ($)) (-15 -1372 ($))))) (T -1000))
+((-4024 (*1 *1) (-5 *1 (-1000))) (-3944 (*1 *2 *1) (-12 (-5 *2 (-587 (-159))) (-5 *1 (-1000)))) (-2346 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1084)) (-5 *2 (-104)) (-5 *1 (-1000)))) (-2530 (*1 *1 *2 *1) (-12 (-5 *2 (-104)) (-5 *1 (-1000)))) (-3650 (*1 *1) (-5 *1 (-1000))) (-1372 (*1 *1) (-5 *1 (-1000))))
+(-13 (-561 (-792)) (-10 -8 (-15 -4024 ($)) (-15 -3944 ((-587 (-159)) $)) (-15 -2346 ((-3 (-104) "failed") (-1084) $)) (-15 -2530 ($ (-104) $)) (-15 -3650 ($)) (-15 -1372 ($))))
+((-3359 (((-1165 (-627 |#1|)) (-587 (-627 |#1|))) 41) (((-1165 (-627 (-881 |#1|))) (-587 (-1084)) (-627 (-881 |#1|))) 61) (((-1165 (-627 (-381 (-881 |#1|)))) (-587 (-1084)) (-627 (-381 (-881 |#1|)))) 77)) (-2234 (((-1165 |#1|) (-627 |#1|) (-587 (-627 |#1|))) 35)))
+(((-1001 |#1|) (-10 -7 (-15 -3359 ((-1165 (-627 (-381 (-881 |#1|)))) (-587 (-1084)) (-627 (-381 (-881 |#1|))))) (-15 -3359 ((-1165 (-627 (-881 |#1|))) (-587 (-1084)) (-627 (-881 |#1|)))) (-15 -3359 ((-1165 (-627 |#1|)) (-587 (-627 |#1|)))) (-15 -2234 ((-1165 |#1|) (-627 |#1|) (-587 (-627 |#1|))))) (-337)) (T -1001))
+((-2234 (*1 *2 *3 *4) (-12 (-5 *4 (-587 (-627 *5))) (-5 *3 (-627 *5)) (-4 *5 (-337)) (-5 *2 (-1165 *5)) (-5 *1 (-1001 *5)))) (-3359 (*1 *2 *3) (-12 (-5 *3 (-587 (-627 *4))) (-4 *4 (-337)) (-5 *2 (-1165 (-627 *4))) (-5 *1 (-1001 *4)))) (-3359 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-1084))) (-4 *5 (-337)) (-5 *2 (-1165 (-627 (-881 *5)))) (-5 *1 (-1001 *5)) (-5 *4 (-627 (-881 *5))))) (-3359 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-1084))) (-4 *5 (-337)) (-5 *2 (-1165 (-627 (-381 (-881 *5))))) (-5 *1 (-1001 *5)) (-5 *4 (-627 (-381 (-881 *5)))))))
+(-10 -7 (-15 -3359 ((-1165 (-627 (-381 (-881 |#1|)))) (-587 (-1084)) (-627 (-381 (-881 |#1|))))) (-15 -3359 ((-1165 (-627 (-881 |#1|))) (-587 (-1084)) (-627 (-881 |#1|)))) (-15 -3359 ((-1165 (-627 |#1|)) (-587 (-627 |#1|)))) (-15 -2234 ((-1165 |#1|) (-627 |#1|) (-587 (-627 |#1|)))))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-3531 (((-587 (-707)) $) NIL) (((-587 (-707)) $ (-1084)) NIL)) (-1758 (((-707) $) NIL) (((-707) $ (-1084)) NIL)) (-4084 (((-587 (-1003 (-1084))) $) NIL)) (-1280 (((-1080 $) $ (-1003 (-1084))) NIL) (((-1080 |#1|) $) NIL)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) NIL (|has| |#1| (-513)))) (-2559 (($ $) NIL (|has| |#1| (-513)))) (-1733 (((-108) $) NIL (|has| |#1| (-513)))) (-2256 (((-707) $) NIL) (((-707) $ (-587 (-1003 (-1084)))) NIL)) (-1232 (((-3 $ "failed") $ $) NIL)) (-2598 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#1| (-838)))) (-3063 (($ $) NIL (|has| |#1| (-425)))) (-3358 (((-392 $) $) NIL (|has| |#1| (-425)))) (-2569 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) NIL (|has| |#1| (-838)))) (-4108 (($ $) NIL)) (-2547 (($) NIL T CONST)) (-1297 (((-3 |#1| "failed") $) NIL) (((-3 (-381 (-521)) "failed") $) NIL (|has| |#1| (-961 (-381 (-521))))) (((-3 (-521) "failed") $) NIL (|has| |#1| (-961 (-521)))) (((-3 (-1003 (-1084)) "failed") $) NIL) (((-3 (-1084) "failed") $) NIL) (((-3 (-1036 |#1| (-1084)) "failed") $) NIL)) (-1483 ((|#1| $) NIL) (((-381 (-521)) $) NIL (|has| |#1| (-961 (-381 (-521))))) (((-521) $) NIL (|has| |#1| (-961 (-521)))) (((-1003 (-1084)) $) NIL) (((-1084) $) NIL) (((-1036 |#1| (-1084)) $) NIL)) (-2114 (($ $ $ (-1003 (-1084))) NIL (|has| |#1| (-157)))) (-3152 (($ $) NIL)) (-3279 (((-627 (-521)) (-627 $)) NIL (|has| |#1| (-583 (-521)))) (((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (|has| |#1| (-583 (-521)))) (((-2 (|:| -1201 (-627 |#1|)) (|:| |vec| (-1165 |#1|))) (-627 $) (-1165 $)) NIL) (((-627 |#1|) (-627 $)) NIL)) (-1257 (((-3 $ "failed") $) NIL)) (-3666 (($ $) NIL (|has| |#1| (-425))) (($ $ (-1003 (-1084))) NIL (|has| |#1| (-425)))) (-3144 (((-587 $) $) NIL)) (-2710 (((-108) $) NIL (|has| |#1| (-838)))) (-3528 (($ $ |#1| (-493 (-1003 (-1084))) $) NIL)) (-3427 (((-818 (-353) $) $ (-821 (-353)) (-818 (-353) $)) NIL (-12 (|has| (-1003 (-1084)) (-815 (-353))) (|has| |#1| (-815 (-353))))) (((-818 (-521) $) $ (-821 (-521)) (-818 (-521) $)) NIL (-12 (|has| (-1003 (-1084)) (-815 (-521))) (|has| |#1| (-815 (-521)))))) (-2733 (((-707) $ (-1084)) NIL) (((-707) $) NIL)) (-3996 (((-108) $) NIL)) (-2678 (((-707) $) NIL)) (-4069 (($ (-1080 |#1|) (-1003 (-1084))) NIL) (($ (-1080 $) (-1003 (-1084))) NIL)) (-2959 (((-587 $) $) NIL)) (-3649 (((-108) $) NIL)) (-4043 (($ |#1| (-493 (-1003 (-1084)))) NIL) (($ $ (-1003 (-1084)) (-707)) NIL) (($ $ (-587 (-1003 (-1084))) (-587 (-707))) NIL)) (-1450 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $ (-1003 (-1084))) NIL)) (-3273 (((-493 (-1003 (-1084))) $) NIL) (((-707) $ (-1003 (-1084))) NIL) (((-587 (-707)) $ (-587 (-1003 (-1084)))) NIL)) (-2810 (($ $ $) NIL (|has| |#1| (-784)))) (-2446 (($ $ $) NIL (|has| |#1| (-784)))) (-3285 (($ (-1 (-493 (-1003 (-1084))) (-493 (-1003 (-1084)))) $) NIL)) (-1390 (($ (-1 |#1| |#1|) $) NIL)) (-3992 (((-1 $ (-707)) (-1084)) NIL) (((-1 $ (-707)) $) NIL (|has| |#1| (-210)))) (-2477 (((-3 (-1003 (-1084)) "failed") $) NIL)) (-3125 (($ $) NIL)) (-3135 ((|#1| $) NIL)) (-1570 (((-1003 (-1084)) $) NIL)) (-2223 (($ (-587 $)) NIL (|has| |#1| (-425))) (($ $ $) NIL (|has| |#1| (-425)))) (-3688 (((-1067) $) NIL)) (-2010 (((-108) $) NIL)) (-1617 (((-3 (-587 $) "failed") $) NIL)) (-3177 (((-3 (-587 $) "failed") $) NIL)) (-3979 (((-3 (-2 (|:| |var| (-1003 (-1084))) (|:| -2997 (-707))) "failed") $) NIL)) (-1901 (($ $) NIL)) (-4147 (((-1031) $) NIL)) (-3105 (((-108) $) NIL)) (-3115 ((|#1| $) NIL)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) NIL (|has| |#1| (-425)))) (-2258 (($ (-587 $)) NIL (|has| |#1| (-425))) (($ $ $) NIL (|has| |#1| (-425)))) (-1912 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#1| (-838)))) (-2165 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#1| (-838)))) (-1916 (((-392 $) $) NIL (|has| |#1| (-838)))) (-2230 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-513))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-513)))) (-2288 (($ $ (-587 (-269 $))) NIL) (($ $ (-269 $)) NIL) (($ $ $ $) NIL) (($ $ (-587 $) (-587 $)) NIL) (($ $ (-1003 (-1084)) |#1|) NIL) (($ $ (-587 (-1003 (-1084))) (-587 |#1|)) NIL) (($ $ (-1003 (-1084)) $) NIL) (($ $ (-587 (-1003 (-1084))) (-587 $)) NIL) (($ $ (-1084) $) NIL (|has| |#1| (-210))) (($ $ (-587 (-1084)) (-587 $)) NIL (|has| |#1| (-210))) (($ $ (-1084) |#1|) NIL (|has| |#1| (-210))) (($ $ (-587 (-1084)) (-587 |#1|)) NIL (|has| |#1| (-210)))) (-4010 (($ $ (-1003 (-1084))) NIL (|has| |#1| (-157)))) (-2156 (($ $ (-1003 (-1084))) NIL) (($ $ (-587 (-1003 (-1084)))) NIL) (($ $ (-1003 (-1084)) (-707)) NIL) (($ $ (-587 (-1003 (-1084))) (-587 (-707))) NIL) (($ $) NIL (|has| |#1| (-210))) (($ $ (-707)) NIL (|has| |#1| (-210))) (($ $ (-1084)) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-1 |#1| |#1|) (-707)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3865 (((-587 (-1084)) $) NIL)) (-1994 (((-493 (-1003 (-1084))) $) NIL) (((-707) $ (-1003 (-1084))) NIL) (((-587 (-707)) $ (-587 (-1003 (-1084)))) NIL) (((-707) $ (-1084)) NIL)) (-1430 (((-821 (-353)) $) NIL (-12 (|has| (-1003 (-1084)) (-562 (-821 (-353)))) (|has| |#1| (-562 (-821 (-353)))))) (((-821 (-521)) $) NIL (-12 (|has| (-1003 (-1084)) (-562 (-821 (-521)))) (|has| |#1| (-562 (-821 (-521)))))) (((-497) $) NIL (-12 (|has| (-1003 (-1084)) (-562 (-497))) (|has| |#1| (-562 (-497)))))) (-2403 ((|#1| $) NIL (|has| |#1| (-425))) (($ $ (-1003 (-1084))) NIL (|has| |#1| (-425)))) (-2944 (((-3 (-1165 $) "failed") (-627 $)) NIL (-12 (|has| $ (-133)) (|has| |#1| (-838))))) (-2189 (((-792) $) NIL) (($ (-521)) NIL) (($ |#1|) NIL) (($ (-1003 (-1084))) NIL) (($ (-1084)) NIL) (($ (-1036 |#1| (-1084))) NIL) (($ (-381 (-521))) NIL (-3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-961 (-381 (-521)))))) (($ $) NIL (|has| |#1| (-513)))) (-1259 (((-587 |#1|) $) NIL)) (-3800 ((|#1| $ (-493 (-1003 (-1084)))) NIL) (($ $ (-1003 (-1084)) (-707)) NIL) (($ $ (-587 (-1003 (-1084))) (-587 (-707))) NIL)) (-1671 (((-3 $ "failed") $) NIL (-3703 (-12 (|has| $ (-133)) (|has| |#1| (-838))) (|has| |#1| (-133))))) (-3846 (((-707)) NIL)) (-1547 (($ $ $ (-707)) NIL (|has| |#1| (-157)))) (-4210 (((-108) $ $) NIL (|has| |#1| (-513)))) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (-3561 (($) NIL T CONST)) (-3572 (($) NIL T CONST)) (-2212 (($ $ (-1003 (-1084))) NIL) (($ $ (-587 (-1003 (-1084)))) NIL) (($ $ (-1003 (-1084)) (-707)) NIL) (($ $ (-587 (-1003 (-1084))) (-587 (-707))) NIL) (($ $) NIL (|has| |#1| (-210))) (($ $ (-707)) NIL (|has| |#1| (-210))) (($ $ (-1084)) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-1 |#1| |#1|) (-707)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1574 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1558 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1549 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1620 (($ $ |#1|) NIL (|has| |#1| (-337)))) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ (-381 (-521))) NIL (|has| |#1| (-37 (-381 (-521))))) (($ (-381 (-521)) $) NIL (|has| |#1| (-37 (-381 (-521))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-1002 |#1|) (-13 (-229 |#1| (-1084) (-1003 (-1084)) (-493 (-1003 (-1084)))) (-961 (-1036 |#1| (-1084)))) (-970)) (T -1002))
+NIL
+(-13 (-229 |#1| (-1084) (-1003 (-1084)) (-493 (-1003 (-1084)))) (-961 (-1036 |#1| (-1084))))
+((-1415 (((-108) $ $) NIL)) (-1758 (((-707) $) NIL)) (-1611 ((|#1| $) 10)) (-1297 (((-3 |#1| "failed") $) NIL)) (-1483 ((|#1| $) NIL)) (-2733 (((-707) $) 11)) (-2810 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-3992 (($ |#1| (-707)) 9)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2156 (($ $) NIL) (($ $ (-707)) NIL)) (-2189 (((-792) $) NIL) (($ |#1|) NIL)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 15)))
+(((-1003 |#1|) (-242 |#1|) (-784)) (T -1003))
+NIL
+(-242 |#1|)
+((-1390 (((-587 |#2|) (-1 |#2| |#1|) (-1008 |#1|)) 24 (|has| |#1| (-782))) (((-1008 |#2|) (-1 |#2| |#1|) (-1008 |#1|)) 14)))
+(((-1004 |#1| |#2|) (-10 -7 (-15 -1390 ((-1008 |#2|) (-1 |#2| |#1|) (-1008 |#1|))) (IF (|has| |#1| (-782)) (-15 -1390 ((-587 |#2|) (-1 |#2| |#1|) (-1008 |#1|))) |%noBranch|)) (-1119) (-1119)) (T -1004))
+((-1390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1008 *5)) (-4 *5 (-782)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-587 *6)) (-5 *1 (-1004 *5 *6)))) (-1390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1008 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-1008 *6)) (-5 *1 (-1004 *5 *6)))))
+(-10 -7 (-15 -1390 ((-1008 |#2|) (-1 |#2| |#1|) (-1008 |#1|))) (IF (|has| |#1| (-782)) (-15 -1390 ((-587 |#2|) (-1 |#2| |#1|) (-1008 |#1|))) |%noBranch|))
+((-1390 (((-1006 |#2|) (-1 |#2| |#1|) (-1006 |#1|)) 19)))
+(((-1005 |#1| |#2|) (-10 -7 (-15 -1390 ((-1006 |#2|) (-1 |#2| |#1|) (-1006 |#1|)))) (-1119) (-1119)) (T -1005))
+((-1390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1006 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-1006 *6)) (-5 *1 (-1005 *5 *6)))))
+(-10 -7 (-15 -1390 ((-1006 |#2|) (-1 |#2| |#1|) (-1006 |#1|))))
+((-1415 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-1611 (((-1084) $) 11)) (-1539 (((-1008 |#1|) $) 12)) (-3688 (((-1067) $) NIL (|has| |#1| (-1013)))) (-4147 (((-1031) $) NIL (|has| |#1| (-1013)))) (-1608 (($ (-1084) (-1008 |#1|)) 10)) (-2189 (((-792) $) 20 (|has| |#1| (-1013)))) (-1531 (((-108) $ $) 15 (|has| |#1| (-1013)))))
+(((-1006 |#1|) (-13 (-1119) (-10 -8 (-15 -1608 ($ (-1084) (-1008 |#1|))) (-15 -1611 ((-1084) $)) (-15 -1539 ((-1008 |#1|) $)) (IF (|has| |#1| (-1013)) (-6 (-1013)) |%noBranch|))) (-1119)) (T -1006))
+((-1608 (*1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-1008 *4)) (-4 *4 (-1119)) (-5 *1 (-1006 *4)))) (-1611 (*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-1006 *3)) (-4 *3 (-1119)))) (-1539 (*1 *2 *1) (-12 (-5 *2 (-1008 *3)) (-5 *1 (-1006 *3)) (-4 *3 (-1119)))))
+(-13 (-1119) (-10 -8 (-15 -1608 ($ (-1084) (-1008 |#1|))) (-15 -1611 ((-1084) $)) (-15 -1539 ((-1008 |#1|) $)) (IF (|has| |#1| (-1013)) (-6 (-1013)) |%noBranch|)))
+((-1539 (($ |#1| |#1|) 7)) (-3984 ((|#1| $) 10)) (-1449 ((|#1| $) 12)) (-1457 (((-521) $) 8)) (-2195 ((|#1| $) 9)) (-1470 ((|#1| $) 11)) (-1430 (($ |#1|) 6)) (-1673 (($ |#1| |#1|) 14)) (-1346 (($ $ (-521)) 13)))
+(((-1007 |#1|) (-1196) (-1119)) (T -1007))
+((-1673 (*1 *1 *2 *2) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1119)))) (-1346 (*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-4 *1 (-1007 *3)) (-4 *3 (-1119)))) (-1449 (*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1119)))) (-1470 (*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1119)))) (-3984 (*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1119)))) (-2195 (*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1119)))) (-1457 (*1 *2 *1) (-12 (-4 *1 (-1007 *3)) (-4 *3 (-1119)) (-5 *2 (-521)))) (-1539 (*1 *1 *2 *2) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1119)))) (-1430 (*1 *1 *2) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1119)))))
+(-13 (-1119) (-10 -8 (-15 -1673 ($ |t#1| |t#1|)) (-15 -1346 ($ $ (-521))) (-15 -1449 (|t#1| $)) (-15 -1470 (|t#1| $)) (-15 -3984 (|t#1| $)) (-15 -2195 (|t#1| $)) (-15 -1457 ((-521) $)) (-15 -1539 ($ |t#1| |t#1|)) (-15 -1430 ($ |t#1|))))
+(((-1119) . T))
+((-1415 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-1539 (($ |#1| |#1|) 15)) (-1390 (((-587 |#1|) (-1 |#1| |#1|) $) 38 (|has| |#1| (-782)))) (-3984 ((|#1| $) 10)) (-1449 ((|#1| $) 9)) (-3688 (((-1067) $) NIL (|has| |#1| (-1013)))) (-1457 (((-521) $) 14)) (-2195 ((|#1| $) 12)) (-1470 ((|#1| $) 11)) (-4147 (((-1031) $) NIL (|has| |#1| (-1013)))) (-1604 (((-587 |#1|) $) 36 (|has| |#1| (-782))) (((-587 |#1|) (-587 $)) 35 (|has| |#1| (-782)))) (-1430 (($ |#1|) 26)) (-2189 (((-792) $) 25 (|has| |#1| (-1013)))) (-1673 (($ |#1| |#1|) 8)) (-1346 (($ $ (-521)) 16)) (-1531 (((-108) $ $) 19 (|has| |#1| (-1013)))))
+(((-1008 |#1|) (-13 (-1007 |#1|) (-10 -7 (IF (|has| |#1| (-1013)) (-6 (-1013)) |%noBranch|) (IF (|has| |#1| (-782)) (-6 (-1009 |#1| (-587 |#1|))) |%noBranch|))) (-1119)) (T -1008))
+NIL
+(-13 (-1007 |#1|) (-10 -7 (IF (|has| |#1| (-1013)) (-6 (-1013)) |%noBranch|) (IF (|has| |#1| (-782)) (-6 (-1009 |#1| (-587 |#1|))) |%noBranch|)))
+((-1539 (($ |#1| |#1|) 7)) (-1390 ((|#2| (-1 |#1| |#1|) $) 16)) (-3984 ((|#1| $) 10)) (-1449 ((|#1| $) 12)) (-1457 (((-521) $) 8)) (-2195 ((|#1| $) 9)) (-1470 ((|#1| $) 11)) (-1604 ((|#2| (-587 $)) 18) ((|#2| $) 17)) (-1430 (($ |#1|) 6)) (-1673 (($ |#1| |#1|) 14)) (-1346 (($ $ (-521)) 13)))
+(((-1009 |#1| |#2|) (-1196) (-782) (-1058 |t#1|)) (T -1009))
+((-1604 (*1 *2 *3) (-12 (-5 *3 (-587 *1)) (-4 *1 (-1009 *4 *2)) (-4 *4 (-782)) (-4 *2 (-1058 *4)))) (-1604 (*1 *2 *1) (-12 (-4 *1 (-1009 *3 *2)) (-4 *3 (-782)) (-4 *2 (-1058 *3)))) (-1390 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1009 *4 *2)) (-4 *4 (-782)) (-4 *2 (-1058 *4)))))
+(-13 (-1007 |t#1|) (-10 -8 (-15 -1604 (|t#2| (-587 $))) (-15 -1604 (|t#2| $)) (-15 -1390 (|t#2| (-1 |t#1| |t#1|) $))))
+(((-1007 |#1|) . T) ((-1119) . T))
+((-2269 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-1953 (($ $ $) 10)) (-3130 (($ $ $) NIL) (($ $ |#2|) 15)))
+(((-1010 |#1| |#2|) (-10 -8 (-15 -2269 (|#1| |#2| |#1|)) (-15 -2269 (|#1| |#1| |#2|)) (-15 -2269 (|#1| |#1| |#1|)) (-15 -1953 (|#1| |#1| |#1|)) (-15 -3130 (|#1| |#1| |#2|)) (-15 -3130 (|#1| |#1| |#1|))) (-1011 |#2|) (-1013)) (T -1010))
+NIL
+(-10 -8 (-15 -2269 (|#1| |#2| |#1|)) (-15 -2269 (|#1| |#1| |#2|)) (-15 -2269 (|#1| |#1| |#1|)) (-15 -1953 (|#1| |#1| |#1|)) (-15 -3130 (|#1| |#1| |#2|)) (-15 -3130 (|#1| |#1| |#1|)))
+((-1415 (((-108) $ $) 7)) (-2269 (($ $ $) 18) (($ $ |#1|) 17) (($ |#1| $) 16)) (-1953 (($ $ $) 20)) (-2976 (((-108) $ $) 19)) (-2978 (((-108) $ (-707)) 35)) (-1764 (($) 25) (($ (-587 |#1|)) 24)) (-1628 (($ (-1 (-108) |#1|) $) 56 (|has| $ (-6 -4233)))) (-2547 (($) 36 T CONST)) (-2332 (($ $) 59 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-1422 (($ |#1| $) 58 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233)))) (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4233)))) (-3859 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4233)))) (-3831 (((-587 |#1|) $) 43 (|has| $ (-6 -4233)))) (-2139 (((-108) $ (-707)) 34)) (-3757 (((-587 |#1|) $) 44 (|has| $ (-6 -4233)))) (-2221 (((-108) |#1| $) 46 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-3833 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#1| |#1|) $) 38)) (-3574 (((-108) $ (-707)) 33)) (-3688 (((-1067) $) 9)) (-1660 (($ $ $) 23)) (-4147 (((-1031) $) 10)) (-3620 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 52)) (-1789 (((-108) (-1 (-108) |#1|) $) 41 (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 |#1|) (-587 |#1|)) 50 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) 49 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) 48 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 (-269 |#1|))) 47 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-2488 (((-108) $ $) 29)) (-3462 (((-108) $) 32)) (-4024 (($) 31)) (-3130 (($ $ $) 22) (($ $ |#1|) 21)) (-4163 (((-707) |#1| $) 45 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233)))) (((-707) (-1 (-108) |#1|) $) 42 (|has| $ (-6 -4233)))) (-2404 (($ $) 30)) (-1430 (((-497) $) 60 (|has| |#1| (-562 (-497))))) (-2201 (($ (-587 |#1|)) 51)) (-2189 (((-792) $) 11)) (-3387 (($) 27) (($ (-587 |#1|)) 26)) (-3049 (((-108) (-1 (-108) |#1|) $) 40 (|has| $ (-6 -4233)))) (-1531 (((-108) $ $) 6)) (-1549 (((-108) $ $) 28)) (-3475 (((-707) $) 37 (|has| $ (-6 -4233)))))
+(((-1011 |#1|) (-1196) (-1013)) (T -1011))
+((-1549 (*1 *2 *1 *1) (-12 (-4 *1 (-1011 *3)) (-4 *3 (-1013)) (-5 *2 (-108)))) (-3387 (*1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))) (-3387 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1013)) (-4 *1 (-1011 *3)))) (-1764 (*1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))) (-1764 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1013)) (-4 *1 (-1011 *3)))) (-1660 (*1 *1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))) (-3130 (*1 *1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))) (-3130 (*1 *1 *1 *2) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))) (-1953 (*1 *1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))) (-2976 (*1 *2 *1 *1) (-12 (-4 *1 (-1011 *3)) (-4 *3 (-1013)) (-5 *2 (-108)))) (-2269 (*1 *1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))) (-2269 (*1 *1 *1 *2) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))) (-2269 (*1 *1 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))))
+(-13 (-1013) (-139 |t#1|) (-10 -8 (-6 -4223) (-15 -1549 ((-108) $ $)) (-15 -3387 ($)) (-15 -3387 ($ (-587 |t#1|))) (-15 -1764 ($)) (-15 -1764 ($ (-587 |t#1|))) (-15 -1660 ($ $ $)) (-15 -3130 ($ $ $)) (-15 -3130 ($ $ |t#1|)) (-15 -1953 ($ $ $)) (-15 -2976 ((-108) $ $)) (-15 -2269 ($ $ $)) (-15 -2269 ($ $ |t#1|)) (-15 -2269 ($ |t#1| $))))
+(((-33) . T) ((-97) . T) ((-561 (-792)) . T) ((-139 |#1|) . T) ((-562 (-497)) |has| |#1| (-562 (-497))) ((-284 |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-460 |#1|) . T) ((-482 |#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-1013) . T) ((-1119) . T))
+((-3688 (((-1067) $) 10)) (-4147 (((-1031) $) 8)))
+(((-1012 |#1|) (-10 -8 (-15 -3688 ((-1067) |#1|)) (-15 -4147 ((-1031) |#1|))) (-1013)) (T -1012))
+NIL
+(-10 -8 (-15 -3688 ((-1067) |#1|)) (-15 -4147 ((-1031) |#1|)))
+((-1415 (((-108) $ $) 7)) (-3688 (((-1067) $) 9)) (-4147 (((-1031) $) 10)) (-2189 (((-792) $) 11)) (-1531 (((-108) $ $) 6)))
+(((-1013) (-1196)) (T -1013))
+((-4147 (*1 *2 *1) (-12 (-4 *1 (-1013)) (-5 *2 (-1031)))) (-3688 (*1 *2 *1) (-12 (-4 *1 (-1013)) (-5 *2 (-1067)))))
+(-13 (-97) (-561 (-792)) (-10 -8 (-15 -4147 ((-1031) $)) (-15 -3688 ((-1067) $))))
+(((-97) . T) ((-561 (-792)) . T))
+((-1415 (((-108) $ $) NIL)) (-1630 (((-707)) 30)) (-2783 (($ (-587 (-850))) 52)) (-3910 (((-3 $ "failed") $ (-850) (-850)) 57)) (-3250 (($) 32)) (-2221 (((-108) (-850) $) 35)) (-2715 (((-850) $) 50)) (-3688 (((-1067) $) NIL)) (-2716 (($ (-850)) 31)) (-1572 (((-3 $ "failed") $ (-850)) 55)) (-4147 (((-1031) $) NIL)) (-2669 (((-1165 $)) 40)) (-2216 (((-587 (-850)) $) 23)) (-1202 (((-707) $ (-850) (-850)) 56)) (-2189 (((-792) $) 29)) (-1531 (((-108) $ $) 21)))
+(((-1014 |#1| |#2|) (-13 (-342) (-10 -8 (-15 -1572 ((-3 $ "failed") $ (-850))) (-15 -3910 ((-3 $ "failed") $ (-850) (-850))) (-15 -2216 ((-587 (-850)) $)) (-15 -2783 ($ (-587 (-850)))) (-15 -2669 ((-1165 $))) (-15 -2221 ((-108) (-850) $)) (-15 -1202 ((-707) $ (-850) (-850))))) (-850) (-850)) (T -1014))
+((-1572 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-850)) (-5 *1 (-1014 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3910 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-850)) (-5 *1 (-1014 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-2216 (*1 *2 *1) (-12 (-5 *2 (-587 (-850))) (-5 *1 (-1014 *3 *4)) (-14 *3 (-850)) (-14 *4 (-850)))) (-2783 (*1 *1 *2) (-12 (-5 *2 (-587 (-850))) (-5 *1 (-1014 *3 *4)) (-14 *3 (-850)) (-14 *4 (-850)))) (-2669 (*1 *2) (-12 (-5 *2 (-1165 (-1014 *3 *4))) (-5 *1 (-1014 *3 *4)) (-14 *3 (-850)) (-14 *4 (-850)))) (-2221 (*1 *2 *3 *1) (-12 (-5 *3 (-850)) (-5 *2 (-108)) (-5 *1 (-1014 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-1202 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-850)) (-5 *2 (-707)) (-5 *1 (-1014 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
+(-13 (-342) (-10 -8 (-15 -1572 ((-3 $ "failed") $ (-850))) (-15 -3910 ((-3 $ "failed") $ (-850) (-850))) (-15 -2216 ((-587 (-850)) $)) (-15 -2783 ($ (-587 (-850)))) (-15 -2669 ((-1165 $))) (-15 -2221 ((-108) (-850) $)) (-15 -1202 ((-707) $ (-850) (-850)))))
+((-1415 (((-108) $ $) NIL)) (-1609 (($) NIL (|has| |#1| (-342)))) (-2269 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 74)) (-1953 (($ $ $) 72)) (-2976 (((-108) $ $) 73)) (-2978 (((-108) $ (-707)) NIL)) (-1630 (((-707)) NIL (|has| |#1| (-342)))) (-1764 (($ (-587 |#1|)) NIL) (($) 13)) (-4098 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-1628 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2547 (($) NIL T CONST)) (-2332 (($ $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-3023 (($ |#1| $) 67 (|has| $ (-6 -4233))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-1422 (($ |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-3859 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4233)))) (-3250 (($) NIL (|has| |#1| (-342)))) (-3831 (((-587 |#1|) $) 19 (|has| $ (-6 -4233)))) (-2139 (((-108) $ (-707)) NIL)) (-2810 ((|#1| $) 57 (|has| |#1| (-784)))) (-3757 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-2221 (((-108) |#1| $) 66 (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2446 ((|#1| $) 55 (|has| |#1| (-784)))) (-3833 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#1| |#1|) $) 34)) (-2715 (((-850) $) NIL (|has| |#1| (-342)))) (-3574 (((-108) $ (-707)) NIL)) (-3688 (((-1067) $) NIL)) (-1660 (($ $ $) 70)) (-2511 ((|#1| $) 25)) (-3373 (($ |#1| $) 65)) (-2716 (($ (-850)) NIL (|has| |#1| (-342)))) (-4147 (((-1031) $) NIL)) (-3620 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 31)) (-2166 ((|#1| $) 27)) (-1789 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 |#1|))) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-2488 (((-108) $ $) NIL)) (-3462 (((-108) $) 21)) (-4024 (($) 11)) (-3130 (($ $ |#1|) NIL) (($ $ $) 71)) (-1784 (($) NIL) (($ (-587 |#1|)) NIL)) (-4163 (((-707) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (((-707) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2404 (($ $) 16)) (-1430 (((-497) $) 52 (|has| |#1| (-562 (-497))))) (-2201 (($ (-587 |#1|)) 61)) (-3060 (($ $) NIL (|has| |#1| (-342)))) (-2189 (((-792) $) NIL)) (-1282 (((-707) $) NIL)) (-3387 (($ (-587 |#1|)) NIL) (($) 12)) (-4091 (($ (-587 |#1|)) NIL)) (-3049 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-1531 (((-108) $ $) 54)) (-1549 (((-108) $ $) NIL)) (-3475 (((-707) $) 10 (|has| $ (-6 -4233)))))
+(((-1015 |#1|) (-399 |#1|) (-1013)) (T -1015))
+NIL
+(-399 |#1|)
+((-1415 (((-108) $ $) 7)) (-3870 (((-108) $) 32)) (-1488 ((|#2| $) 27)) (-2862 (((-108) $) 33)) (-1507 ((|#1| $) 28)) (-2994 (((-108) $) 35)) (-3794 (((-108) $) 37)) (-2144 (((-108) $) 34)) (-3688 (((-1067) $) 9)) (-2392 (((-108) $) 31)) (-1508 ((|#3| $) 26)) (-4147 (((-1031) $) 10)) (-4089 (((-108) $) 30)) (-3068 ((|#4| $) 25)) (-1575 ((|#5| $) 24)) (-3192 (((-108) $ $) 38)) (-2544 (($ $ (-521)) 14) (($ $ (-587 (-521))) 13)) (-1992 (((-587 $) $) 29)) (-1430 (($ (-587 $)) 23) (($ |#1|) 22) (($ |#2|) 21) (($ |#3|) 20) (($ |#4|) 19) (($ |#5|) 18)) (-2189 (((-792) $) 11)) (-3206 (($ $) 16)) (-3195 (($ $) 17)) (-3934 (((-108) $) 36)) (-1531 (((-108) $ $) 6)) (-3475 (((-521) $) 15)))
+(((-1016 |#1| |#2| |#3| |#4| |#5|) (-1196) (-1013) (-1013) (-1013) (-1013) (-1013)) (T -1016))
+((-3192 (*1 *2 *1 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-108)))) (-3794 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-108)))) (-3934 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-108)))) (-2994 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-108)))) (-2144 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-108)))) (-2862 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-108)))) (-3870 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-108)))) (-2392 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-108)))) (-4089 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-108)))) (-1992 (*1 *2 *1) (-12 (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-587 *1)) (-4 *1 (-1016 *3 *4 *5 *6 *7)))) (-1507 (*1 *2 *1) (-12 (-4 *1 (-1016 *2 *3 *4 *5 *6)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013)))) (-1488 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *2 *4 *5 *6)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013)))) (-1508 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *2 *5 *6)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013)))) (-3068 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *2 *6)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013)))) (-1575 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *2)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013)))) (-1430 (*1 *1 *2) (-12 (-5 *2 (-587 *1)) (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)))) (-1430 (*1 *1 *2) (-12 (-4 *1 (-1016 *2 *3 *4 *5 *6)) (-4 *2 (-1013)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)))) (-1430 (*1 *1 *2) (-12 (-4 *1 (-1016 *3 *2 *4 *5 *6)) (-4 *3 (-1013)) (-4 *2 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)))) (-1430 (*1 *1 *2) (-12 (-4 *1 (-1016 *3 *4 *2 *5 *6)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *2 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)))) (-1430 (*1 *1 *2) (-12 (-4 *1 (-1016 *3 *4 *5 *2 *6)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *2 (-1013)) (-4 *6 (-1013)))) (-1430 (*1 *1 *2) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *2)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013)))) (-3195 (*1 *1 *1) (-12 (-4 *1 (-1016 *2 *3 *4 *5 *6)) (-4 *2 (-1013)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)))) (-3206 (*1 *1 *1) (-12 (-4 *1 (-1016 *2 *3 *4 *5 *6)) (-4 *2 (-1013)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)))) (-3475 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-521)))) (-2544 (*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)))) (-2544 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-521))) (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)))))
+(-13 (-1013) (-10 -8 (-15 -3192 ((-108) $ $)) (-15 -3794 ((-108) $)) (-15 -3934 ((-108) $)) (-15 -2994 ((-108) $)) (-15 -2144 ((-108) $)) (-15 -2862 ((-108) $)) (-15 -3870 ((-108) $)) (-15 -2392 ((-108) $)) (-15 -4089 ((-108) $)) (-15 -1992 ((-587 $) $)) (-15 -1507 (|t#1| $)) (-15 -1488 (|t#2| $)) (-15 -1508 (|t#3| $)) (-15 -3068 (|t#4| $)) (-15 -1575 (|t#5| $)) (-15 -1430 ($ (-587 $))) (-15 -1430 ($ |t#1|)) (-15 -1430 ($ |t#2|)) (-15 -1430 ($ |t#3|)) (-15 -1430 ($ |t#4|)) (-15 -1430 ($ |t#5|)) (-15 -3195 ($ $)) (-15 -3206 ($ $)) (-15 -3475 ((-521) $)) (-15 -2544 ($ $ (-521))) (-15 -2544 ($ $ (-587 (-521))))))
+(((-97) . T) ((-561 (-792)) . T) ((-1013) . T))
+((-1415 (((-108) $ $) NIL)) (-3870 (((-108) $) NIL)) (-1488 (((-1084) $) NIL)) (-2862 (((-108) $) NIL)) (-1507 (((-1067) $) NIL)) (-2994 (((-108) $) NIL)) (-3794 (((-108) $) NIL)) (-2144 (((-108) $) NIL)) (-3688 (((-1067) $) NIL)) (-2392 (((-108) $) NIL)) (-1508 (((-521) $) NIL)) (-4147 (((-1031) $) NIL)) (-4089 (((-108) $) NIL)) (-3068 (((-202) $) NIL)) (-1575 (((-792) $) NIL)) (-3192 (((-108) $ $) NIL)) (-2544 (($ $ (-521)) NIL) (($ $ (-587 (-521))) NIL)) (-1992 (((-587 $) $) NIL)) (-1430 (($ (-587 $)) NIL) (($ (-1067)) NIL) (($ (-1084)) NIL) (($ (-521)) NIL) (($ (-202)) NIL) (($ (-792)) NIL)) (-2189 (((-792) $) NIL)) (-3206 (($ $) NIL)) (-3195 (($ $) NIL)) (-3934 (((-108) $) NIL)) (-1531 (((-108) $ $) NIL)) (-3475 (((-521) $) NIL)))
+(((-1017) (-1016 (-1067) (-1084) (-521) (-202) (-792))) (T -1017))
+NIL
+(-1016 (-1067) (-1084) (-521) (-202) (-792))
+((-1415 (((-108) $ $) NIL)) (-3870 (((-108) $) 38)) (-1488 ((|#2| $) 42)) (-2862 (((-108) $) 37)) (-1507 ((|#1| $) 41)) (-2994 (((-108) $) 35)) (-3794 (((-108) $) 14)) (-2144 (((-108) $) 36)) (-3688 (((-1067) $) NIL)) (-2392 (((-108) $) 39)) (-1508 ((|#3| $) 44)) (-4147 (((-1031) $) NIL)) (-4089 (((-108) $) 40)) (-3068 ((|#4| $) 43)) (-1575 ((|#5| $) 45)) (-3192 (((-108) $ $) 34)) (-2544 (($ $ (-521)) 56) (($ $ (-587 (-521))) 58)) (-1992 (((-587 $) $) 22)) (-1430 (($ (-587 $)) 46) (($ |#1|) 47) (($ |#2|) 48) (($ |#3|) 49) (($ |#4|) 50) (($ |#5|) 51)) (-2189 (((-792) $) 23)) (-3206 (($ $) 21)) (-3195 (($ $) 52)) (-3934 (((-108) $) 18)) (-1531 (((-108) $ $) 33)) (-3475 (((-521) $) 54)))
+(((-1018 |#1| |#2| |#3| |#4| |#5|) (-1016 |#1| |#2| |#3| |#4| |#5|) (-1013) (-1013) (-1013) (-1013) (-1013)) (T -1018))
+NIL
+(-1016 |#1| |#2| |#3| |#4| |#5|)
+((-2009 (((-1170) $) 23)) (-1463 (($ (-1084) (-408) |#2|) 11)) (-2189 (((-792) $) 16)))
+(((-1019 |#1| |#2|) (-13 (-369) (-10 -8 (-15 -1463 ($ (-1084) (-408) |#2|)))) (-784) (-404 |#1|)) (T -1019))
+((-1463 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1084)) (-5 *3 (-408)) (-4 *5 (-784)) (-5 *1 (-1019 *5 *4)) (-4 *4 (-404 *5)))))
+(-13 (-369) (-10 -8 (-15 -1463 ($ (-1084) (-408) |#2|))))
+((-2266 (((-108) |#5| |#5|) 38)) (-1414 (((-108) |#5| |#5|) 52)) (-3521 (((-108) |#5| (-587 |#5|)) 75) (((-108) |#5| |#5|) 61)) (-1250 (((-108) (-587 |#4|) (-587 |#4|)) 58)) (-3391 (((-108) (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|)) (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))) 63)) (-2520 (((-1170)) 33)) (-2841 (((-1170) (-1067) (-1067) (-1067)) 29)) (-3684 (((-587 |#5|) (-587 |#5|)) 82)) (-3560 (((-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))) (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|)))) 80)) (-3470 (((-587 (-2 (|:| -3192 (-587 |#4|)) (|:| -1884 |#5|) (|:| |ineq| (-587 |#4|)))) (-587 |#4|) (-587 |#5|) (-108) (-108)) 102)) (-1934 (((-108) |#5| |#5|) 47)) (-4157 (((-3 (-108) "failed") |#5| |#5|) 71)) (-4186 (((-108) (-587 |#4|) (-587 |#4|)) 57)) (-3103 (((-108) (-587 |#4|) (-587 |#4|)) 59)) (-2146 (((-108) (-587 |#4|) (-587 |#4|)) 60)) (-2582 (((-3 (-2 (|:| -3192 (-587 |#4|)) (|:| -1884 |#5|) (|:| |ineq| (-587 |#4|))) "failed") (-587 |#4|) |#5| (-587 |#4|) (-108) (-108) (-108) (-108) (-108)) 98)) (-3134 (((-587 |#5|) (-587 |#5|)) 43)))
+(((-1020 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2841 ((-1170) (-1067) (-1067) (-1067))) (-15 -2520 ((-1170))) (-15 -2266 ((-108) |#5| |#5|)) (-15 -3134 ((-587 |#5|) (-587 |#5|))) (-15 -1934 ((-108) |#5| |#5|)) (-15 -1414 ((-108) |#5| |#5|)) (-15 -1250 ((-108) (-587 |#4|) (-587 |#4|))) (-15 -4186 ((-108) (-587 |#4|) (-587 |#4|))) (-15 -3103 ((-108) (-587 |#4|) (-587 |#4|))) (-15 -2146 ((-108) (-587 |#4|) (-587 |#4|))) (-15 -4157 ((-3 (-108) "failed") |#5| |#5|)) (-15 -3521 ((-108) |#5| |#5|)) (-15 -3521 ((-108) |#5| (-587 |#5|))) (-15 -3684 ((-587 |#5|) (-587 |#5|))) (-15 -3391 ((-108) (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|)) (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|)))) (-15 -3560 ((-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))) (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))))) (-15 -3470 ((-587 (-2 (|:| -3192 (-587 |#4|)) (|:| -1884 |#5|) (|:| |ineq| (-587 |#4|)))) (-587 |#4|) (-587 |#5|) (-108) (-108))) (-15 -2582 ((-3 (-2 (|:| -3192 (-587 |#4|)) (|:| -1884 |#5|) (|:| |ineq| (-587 |#4|))) "failed") (-587 |#4|) |#5| (-587 |#4|) (-108) (-108) (-108) (-108) (-108)))) (-425) (-729) (-784) (-984 |#1| |#2| |#3|) (-989 |#1| |#2| |#3| |#4|)) (T -1020))
+((-2582 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-108)) (-4 *6 (-425)) (-4 *7 (-729)) (-4 *8 (-784)) (-4 *9 (-984 *6 *7 *8)) (-5 *2 (-2 (|:| -3192 (-587 *9)) (|:| -1884 *4) (|:| |ineq| (-587 *9)))) (-5 *1 (-1020 *6 *7 *8 *9 *4)) (-5 *3 (-587 *9)) (-4 *4 (-989 *6 *7 *8 *9)))) (-3470 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-587 *10)) (-5 *5 (-108)) (-4 *10 (-989 *6 *7 *8 *9)) (-4 *6 (-425)) (-4 *7 (-729)) (-4 *8 (-784)) (-4 *9 (-984 *6 *7 *8)) (-5 *2 (-587 (-2 (|:| -3192 (-587 *9)) (|:| -1884 *10) (|:| |ineq| (-587 *9))))) (-5 *1 (-1020 *6 *7 *8 *9 *10)) (-5 *3 (-587 *9)))) (-3560 (*1 *2 *2) (-12 (-5 *2 (-587 (-2 (|:| |val| (-587 *6)) (|:| -1884 *7)))) (-4 *6 (-984 *3 *4 *5)) (-4 *7 (-989 *3 *4 *5 *6)) (-4 *3 (-425)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *1 (-1020 *3 *4 *5 *6 *7)))) (-3391 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-587 *7)) (|:| -1884 *8))) (-4 *7 (-984 *4 *5 *6)) (-4 *8 (-989 *4 *5 *6 *7)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-108)) (-5 *1 (-1020 *4 *5 *6 *7 *8)))) (-3684 (*1 *2 *2) (-12 (-5 *2 (-587 *7)) (-4 *7 (-989 *3 *4 *5 *6)) (-4 *3 (-425)) (-4 *4 (-729)) (-4 *5 (-784)) (-4 *6 (-984 *3 *4 *5)) (-5 *1 (-1020 *3 *4 *5 *6 *7)))) (-3521 (*1 *2 *3 *4) (-12 (-5 *4 (-587 *3)) (-4 *3 (-989 *5 *6 *7 *8)) (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784)) (-4 *8 (-984 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-1020 *5 *6 *7 *8 *3)))) (-3521 (*1 *2 *3 *3) (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784)) (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-1020 *4 *5 *6 *7 *3)) (-4 *3 (-989 *4 *5 *6 *7)))) (-4157 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784)) (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-1020 *4 *5 *6 *7 *3)) (-4 *3 (-989 *4 *5 *6 *7)))) (-2146 (*1 *2 *3 *3) (-12 (-5 *3 (-587 *7)) (-4 *7 (-984 *4 *5 *6)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-108)) (-5 *1 (-1020 *4 *5 *6 *7 *8)) (-4 *8 (-989 *4 *5 *6 *7)))) (-3103 (*1 *2 *3 *3) (-12 (-5 *3 (-587 *7)) (-4 *7 (-984 *4 *5 *6)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-108)) (-5 *1 (-1020 *4 *5 *6 *7 *8)) (-4 *8 (-989 *4 *5 *6 *7)))) (-4186 (*1 *2 *3 *3) (-12 (-5 *3 (-587 *7)) (-4 *7 (-984 *4 *5 *6)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-108)) (-5 *1 (-1020 *4 *5 *6 *7 *8)) (-4 *8 (-989 *4 *5 *6 *7)))) (-1250 (*1 *2 *3 *3) (-12 (-5 *3 (-587 *7)) (-4 *7 (-984 *4 *5 *6)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-108)) (-5 *1 (-1020 *4 *5 *6 *7 *8)) (-4 *8 (-989 *4 *5 *6 *7)))) (-1414 (*1 *2 *3 *3) (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784)) (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-1020 *4 *5 *6 *7 *3)) (-4 *3 (-989 *4 *5 *6 *7)))) (-1934 (*1 *2 *3 *3) (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784)) (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-1020 *4 *5 *6 *7 *3)) (-4 *3 (-989 *4 *5 *6 *7)))) (-3134 (*1 *2 *2) (-12 (-5 *2 (-587 *7)) (-4 *7 (-989 *3 *4 *5 *6)) (-4 *3 (-425)) (-4 *4 (-729)) (-4 *5 (-784)) (-4 *6 (-984 *3 *4 *5)) (-5 *1 (-1020 *3 *4 *5 *6 *7)))) (-2266 (*1 *2 *3 *3) (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784)) (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-1020 *4 *5 *6 *7 *3)) (-4 *3 (-989 *4 *5 *6 *7)))) (-2520 (*1 *2) (-12 (-4 *3 (-425)) (-4 *4 (-729)) (-4 *5 (-784)) (-4 *6 (-984 *3 *4 *5)) (-5 *2 (-1170)) (-5 *1 (-1020 *3 *4 *5 *6 *7)) (-4 *7 (-989 *3 *4 *5 *6)))) (-2841 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1067)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784)) (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-1170)) (-5 *1 (-1020 *4 *5 *6 *7 *8)) (-4 *8 (-989 *4 *5 *6 *7)))))
+(-10 -7 (-15 -2841 ((-1170) (-1067) (-1067) (-1067))) (-15 -2520 ((-1170))) (-15 -2266 ((-108) |#5| |#5|)) (-15 -3134 ((-587 |#5|) (-587 |#5|))) (-15 -1934 ((-108) |#5| |#5|)) (-15 -1414 ((-108) |#5| |#5|)) (-15 -1250 ((-108) (-587 |#4|) (-587 |#4|))) (-15 -4186 ((-108) (-587 |#4|) (-587 |#4|))) (-15 -3103 ((-108) (-587 |#4|) (-587 |#4|))) (-15 -2146 ((-108) (-587 |#4|) (-587 |#4|))) (-15 -4157 ((-3 (-108) "failed") |#5| |#5|)) (-15 -3521 ((-108) |#5| |#5|)) (-15 -3521 ((-108) |#5| (-587 |#5|))) (-15 -3684 ((-587 |#5|) (-587 |#5|))) (-15 -3391 ((-108) (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|)) (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|)))) (-15 -3560 ((-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))) (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))))) (-15 -3470 ((-587 (-2 (|:| -3192 (-587 |#4|)) (|:| -1884 |#5|) (|:| |ineq| (-587 |#4|)))) (-587 |#4|) (-587 |#5|) (-108) (-108))) (-15 -2582 ((-3 (-2 (|:| -3192 (-587 |#4|)) (|:| -1884 |#5|) (|:| |ineq| (-587 |#4|))) "failed") (-587 |#4|) |#5| (-587 |#4|) (-108) (-108) (-108) (-108) (-108))))
+((-3858 (((-587 (-2 (|:| |val| |#4|) (|:| -1884 |#5|))) |#4| |#5|) 95)) (-3324 (((-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))) |#4| |#4| |#5|) 71)) (-2740 (((-587 (-2 (|:| |val| |#4|) (|:| -1884 |#5|))) |#4| |#4| |#5|) 89)) (-2409 (((-587 |#5|) |#4| |#5|) 110)) (-2950 (((-587 |#5|) |#4| |#5|) 117)) (-4174 (((-587 |#5|) |#4| |#5|) 118)) (-1496 (((-587 (-2 (|:| |val| (-108)) (|:| -1884 |#5|))) |#4| |#5|) 96)) (-3659 (((-587 (-2 (|:| |val| (-108)) (|:| -1884 |#5|))) |#4| |#5|) 116)) (-1601 (((-587 (-2 (|:| |val| (-108)) (|:| -1884 |#5|))) |#4| |#5|) 44) (((-108) |#4| |#5|) 52)) (-1986 (((-587 (-2 (|:| |val| |#4|) (|:| -1884 |#5|))) (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))) |#3| (-108)) 83) (((-587 (-2 (|:| |val| |#4|) (|:| -1884 |#5|))) |#4| |#4| |#5| (-108) (-108)) 49)) (-2138 (((-587 (-2 (|:| |val| |#4|) (|:| -1884 |#5|))) |#4| |#4| |#5|) 78)) (-3811 (((-1170)) 35)) (-2476 (((-1170)) 25)) (-3073 (((-1170) (-1067) (-1067) (-1067)) 31)) (-3993 (((-1170) (-1067) (-1067) (-1067)) 20)))
+(((-1021 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3993 ((-1170) (-1067) (-1067) (-1067))) (-15 -2476 ((-1170))) (-15 -3073 ((-1170) (-1067) (-1067) (-1067))) (-15 -3811 ((-1170))) (-15 -3324 ((-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))) |#4| |#4| |#5|)) (-15 -1986 ((-587 (-2 (|:| |val| |#4|) (|:| -1884 |#5|))) |#4| |#4| |#5| (-108) (-108))) (-15 -1986 ((-587 (-2 (|:| |val| |#4|) (|:| -1884 |#5|))) (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))) |#3| (-108))) (-15 -2138 ((-587 (-2 (|:| |val| |#4|) (|:| -1884 |#5|))) |#4| |#4| |#5|)) (-15 -2740 ((-587 (-2 (|:| |val| |#4|) (|:| -1884 |#5|))) |#4| |#4| |#5|)) (-15 -1601 ((-108) |#4| |#5|)) (-15 -1496 ((-587 (-2 (|:| |val| (-108)) (|:| -1884 |#5|))) |#4| |#5|)) (-15 -2409 ((-587 |#5|) |#4| |#5|)) (-15 -3659 ((-587 (-2 (|:| |val| (-108)) (|:| -1884 |#5|))) |#4| |#5|)) (-15 -2950 ((-587 |#5|) |#4| |#5|)) (-15 -1601 ((-587 (-2 (|:| |val| (-108)) (|:| -1884 |#5|))) |#4| |#5|)) (-15 -4174 ((-587 |#5|) |#4| |#5|)) (-15 -3858 ((-587 (-2 (|:| |val| |#4|) (|:| -1884 |#5|))) |#4| |#5|))) (-425) (-729) (-784) (-984 |#1| |#2| |#3|) (-989 |#1| |#2| |#3| |#4|)) (T -1021))
+((-3858 (*1 *2 *3 *4) (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784)) (-4 *3 (-984 *5 *6 *7)) (-5 *2 (-587 (-2 (|:| |val| *3) (|:| -1884 *4)))) (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))) (-4174 (*1 *2 *3 *4) (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784)) (-4 *3 (-984 *5 *6 *7)) (-5 *2 (-587 *4)) (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))) (-1601 (*1 *2 *3 *4) (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784)) (-4 *3 (-984 *5 *6 *7)) (-5 *2 (-587 (-2 (|:| |val| (-108)) (|:| -1884 *4)))) (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))) (-2950 (*1 *2 *3 *4) (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784)) (-4 *3 (-984 *5 *6 *7)) (-5 *2 (-587 *4)) (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))) (-3659 (*1 *2 *3 *4) (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784)) (-4 *3 (-984 *5 *6 *7)) (-5 *2 (-587 (-2 (|:| |val| (-108)) (|:| -1884 *4)))) (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))) (-2409 (*1 *2 *3 *4) (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784)) (-4 *3 (-984 *5 *6 *7)) (-5 *2 (-587 *4)) (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))) (-1496 (*1 *2 *3 *4) (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784)) (-4 *3 (-984 *5 *6 *7)) (-5 *2 (-587 (-2 (|:| |val| (-108)) (|:| -1884 *4)))) (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))) (-1601 (*1 *2 *3 *4) (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784)) (-4 *3 (-984 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))) (-2740 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784)) (-4 *3 (-984 *5 *6 *7)) (-5 *2 (-587 (-2 (|:| |val| *3) (|:| -1884 *4)))) (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))) (-2138 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784)) (-4 *3 (-984 *5 *6 *7)) (-5 *2 (-587 (-2 (|:| |val| *3) (|:| -1884 *4)))) (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))) (-1986 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-587 (-2 (|:| |val| (-587 *8)) (|:| -1884 *9)))) (-5 *5 (-108)) (-4 *8 (-984 *6 *7 *4)) (-4 *9 (-989 *6 *7 *4 *8)) (-4 *6 (-425)) (-4 *7 (-729)) (-4 *4 (-784)) (-5 *2 (-587 (-2 (|:| |val| *8) (|:| -1884 *9)))) (-5 *1 (-1021 *6 *7 *4 *8 *9)))) (-1986 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-108)) (-4 *6 (-425)) (-4 *7 (-729)) (-4 *8 (-784)) (-4 *3 (-984 *6 *7 *8)) (-5 *2 (-587 (-2 (|:| |val| *3) (|:| -1884 *4)))) (-5 *1 (-1021 *6 *7 *8 *3 *4)) (-4 *4 (-989 *6 *7 *8 *3)))) (-3324 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784)) (-4 *3 (-984 *5 *6 *7)) (-5 *2 (-587 (-2 (|:| |val| (-587 *3)) (|:| -1884 *4)))) (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))) (-3811 (*1 *2) (-12 (-4 *3 (-425)) (-4 *4 (-729)) (-4 *5 (-784)) (-4 *6 (-984 *3 *4 *5)) (-5 *2 (-1170)) (-5 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *7 (-989 *3 *4 *5 *6)))) (-3073 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1067)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784)) (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-1170)) (-5 *1 (-1021 *4 *5 *6 *7 *8)) (-4 *8 (-989 *4 *5 *6 *7)))) (-2476 (*1 *2) (-12 (-4 *3 (-425)) (-4 *4 (-729)) (-4 *5 (-784)) (-4 *6 (-984 *3 *4 *5)) (-5 *2 (-1170)) (-5 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *7 (-989 *3 *4 *5 *6)))) (-3993 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1067)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784)) (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-1170)) (-5 *1 (-1021 *4 *5 *6 *7 *8)) (-4 *8 (-989 *4 *5 *6 *7)))))
+(-10 -7 (-15 -3993 ((-1170) (-1067) (-1067) (-1067))) (-15 -2476 ((-1170))) (-15 -3073 ((-1170) (-1067) (-1067) (-1067))) (-15 -3811 ((-1170))) (-15 -3324 ((-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))) |#4| |#4| |#5|)) (-15 -1986 ((-587 (-2 (|:| |val| |#4|) (|:| -1884 |#5|))) |#4| |#4| |#5| (-108) (-108))) (-15 -1986 ((-587 (-2 (|:| |val| |#4|) (|:| -1884 |#5|))) (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))) |#3| (-108))) (-15 -2138 ((-587 (-2 (|:| |val| |#4|) (|:| -1884 |#5|))) |#4| |#4| |#5|)) (-15 -2740 ((-587 (-2 (|:| |val| |#4|) (|:| -1884 |#5|))) |#4| |#4| |#5|)) (-15 -1601 ((-108) |#4| |#5|)) (-15 -1496 ((-587 (-2 (|:| |val| (-108)) (|:| -1884 |#5|))) |#4| |#5|)) (-15 -2409 ((-587 |#5|) |#4| |#5|)) (-15 -3659 ((-587 (-2 (|:| |val| (-108)) (|:| -1884 |#5|))) |#4| |#5|)) (-15 -2950 ((-587 |#5|) |#4| |#5|)) (-15 -1601 ((-587 (-2 (|:| |val| (-108)) (|:| -1884 |#5|))) |#4| |#5|)) (-15 -4174 ((-587 |#5|) |#4| |#5|)) (-15 -3858 ((-587 (-2 (|:| |val| |#4|) (|:| -1884 |#5|))) |#4| |#5|)))
+((-1415 (((-108) $ $) 7)) (-2113 (((-587 (-2 (|:| -1650 $) (|:| -1544 (-587 |#4|)))) (-587 |#4|)) 85)) (-1906 (((-587 $) (-587 |#4|)) 86) (((-587 $) (-587 |#4|) (-108)) 111)) (-4084 (((-587 |#3|) $) 33)) (-3898 (((-108) $) 26)) (-2466 (((-108) $) 17 (|has| |#1| (-513)))) (-3199 (((-108) |#4| $) 101) (((-108) $) 97)) (-2015 ((|#4| |#4| $) 92)) (-3063 (((-587 (-2 (|:| |val| |#4|) (|:| -1884 $))) |#4| $) 126)) (-3211 (((-2 (|:| |under| $) (|:| -2567 $) (|:| |upper| $)) $ |#3|) 27)) (-2978 (((-108) $ (-707)) 44)) (-1628 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4233))) (((-3 |#4| "failed") $ |#3|) 79)) (-2547 (($) 45 T CONST)) (-3035 (((-108) $) 22 (|has| |#1| (-513)))) (-3091 (((-108) $ $) 24 (|has| |#1| (-513)))) (-3882 (((-108) $ $) 23 (|has| |#1| (-513)))) (-3237 (((-108) $) 25 (|has| |#1| (-513)))) (-2990 (((-587 |#4|) (-587 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 93)) (-3799 (((-587 |#4|) (-587 |#4|) $) 18 (|has| |#1| (-513)))) (-4183 (((-587 |#4|) (-587 |#4|) $) 19 (|has| |#1| (-513)))) (-1297 (((-3 $ "failed") (-587 |#4|)) 36)) (-1483 (($ (-587 |#4|)) 35)) (-2306 (((-3 $ "failed") $) 82)) (-1761 ((|#4| |#4| $) 89)) (-2332 (($ $) 68 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -4233))))) (-1422 (($ |#4| $) 67 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -4233)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4233)))) (-3820 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-513)))) (-3156 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) 102)) (-1970 ((|#4| |#4| $) 87)) (-3859 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -4233)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4233))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4233))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 94)) (-3726 (((-2 (|:| -1650 (-587 |#4|)) (|:| -1544 (-587 |#4|))) $) 105)) (-4124 (((-108) |#4| $) 136)) (-2628 (((-108) |#4| $) 133)) (-3263 (((-108) |#4| $) 137) (((-108) $) 134)) (-3831 (((-587 |#4|) $) 52 (|has| $ (-6 -4233)))) (-3266 (((-108) |#4| $) 104) (((-108) $) 103)) (-3464 ((|#3| $) 34)) (-2139 (((-108) $ (-707)) 43)) (-3757 (((-587 |#4|) $) 53 (|has| $ (-6 -4233)))) (-2221 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -4233))))) (-3833 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#4| |#4|) $) 47)) (-2820 (((-587 |#3|) $) 32)) (-2639 (((-108) |#3| $) 31)) (-3574 (((-108) $ (-707)) 42)) (-3688 (((-1067) $) 9)) (-1767 (((-3 |#4| (-587 $)) |#4| |#4| $) 128)) (-2031 (((-587 (-2 (|:| |val| |#4|) (|:| -1884 $))) |#4| |#4| $) 127)) (-1441 (((-3 |#4| "failed") $) 83)) (-3731 (((-587 $) |#4| $) 129)) (-4168 (((-3 (-108) (-587 $)) |#4| $) 132)) (-3395 (((-587 (-2 (|:| |val| (-108)) (|:| -1884 $))) |#4| $) 131) (((-108) |#4| $) 130)) (-1660 (((-587 $) |#4| $) 125) (((-587 $) (-587 |#4|) $) 124) (((-587 $) (-587 |#4|) (-587 $)) 123) (((-587 $) |#4| (-587 $)) 122)) (-3428 (($ |#4| $) 117) (($ (-587 |#4|) $) 116)) (-2323 (((-587 |#4|) $) 107)) (-3786 (((-108) |#4| $) 99) (((-108) $) 95)) (-1347 ((|#4| |#4| $) 90)) (-2146 (((-108) $ $) 110)) (-1341 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-513)))) (-1972 (((-108) |#4| $) 100) (((-108) $) 96)) (-4065 ((|#4| |#4| $) 91)) (-4147 (((-1031) $) 10)) (-2293 (((-3 |#4| "failed") $) 84)) (-3620 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-2001 (((-3 $ "failed") $ |#4|) 78)) (-2447 (($ $ |#4|) 77) (((-587 $) |#4| $) 115) (((-587 $) |#4| (-587 $)) 114) (((-587 $) (-587 |#4|) $) 113) (((-587 $) (-587 |#4|) (-587 $)) 112)) (-1789 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 |#4|) (-587 |#4|)) 59 (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013)))) (($ $ (-269 |#4|)) 57 (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013)))) (($ $ (-587 (-269 |#4|))) 56 (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013))))) (-2488 (((-108) $ $) 38)) (-3462 (((-108) $) 41)) (-4024 (($) 40)) (-1994 (((-707) $) 106)) (-4163 (((-707) |#4| $) 54 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -4233)))) (((-707) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4233)))) (-2404 (($ $) 39)) (-1430 (((-497) $) 69 (|has| |#4| (-562 (-497))))) (-2201 (($ (-587 |#4|)) 60)) (-3883 (($ $ |#3|) 28)) (-4029 (($ $ |#3|) 30)) (-3173 (($ $) 88)) (-3318 (($ $ |#3|) 29)) (-2189 (((-792) $) 11) (((-587 |#4|) $) 37)) (-3781 (((-707) $) 76 (|has| |#3| (-342)))) (-3234 (((-3 (-2 (|:| |bas| $) (|:| -1354 (-587 |#4|))) "failed") (-587 |#4|) (-1 (-108) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1354 (-587 |#4|))) "failed") (-587 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) 108)) (-3960 (((-108) $ (-1 (-108) |#4| (-587 |#4|))) 98)) (-1933 (((-587 $) |#4| $) 121) (((-587 $) |#4| (-587 $)) 120) (((-587 $) (-587 |#4|) $) 119) (((-587 $) (-587 |#4|) (-587 $)) 118)) (-3049 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4233)))) (-4099 (((-587 |#3|) $) 81)) (-4002 (((-108) |#4| $) 135)) (-2154 (((-108) |#3| $) 80)) (-1531 (((-108) $ $) 6)) (-3475 (((-707) $) 46 (|has| $ (-6 -4233)))))
+(((-1022 |#1| |#2| |#3| |#4|) (-1196) (-425) (-729) (-784) (-984 |t#1| |t#2| |t#3|)) (T -1022))
+NIL
+(-13 (-989 |t#1| |t#2| |t#3| |t#4|))
+(((-33) . T) ((-97) . T) ((-561 (-587 |#4|)) . T) ((-561 (-792)) . T) ((-139 |#4|) . T) ((-562 (-497)) |has| |#4| (-562 (-497))) ((-284 |#4|) -12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013))) ((-460 |#4|) . T) ((-482 |#4| |#4|) -12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013))) ((-902 |#1| |#2| |#3| |#4|) . T) ((-989 |#1| |#2| |#3| |#4|) . T) ((-1013) . T) ((-1113 |#1| |#2| |#3| |#4|) . T) ((-1119) . T))
+((-2496 (((-587 (-521)) (-521) (-521) (-521)) 22)) (-2776 (((-587 (-521)) (-521) (-521) (-521)) 12)) (-2377 (((-587 (-521)) (-521) (-521) (-521)) 18)) (-1728 (((-521) (-521) (-521)) 9)) (-1756 (((-1165 (-521)) (-587 (-521)) (-1165 (-521)) (-521)) 45) (((-1165 (-521)) (-1165 (-521)) (-1165 (-521)) (-521)) 40)) (-3642 (((-587 (-521)) (-587 (-521)) (-587 (-521)) (-108)) 27)) (-2528 (((-627 (-521)) (-587 (-521)) (-587 (-521)) (-627 (-521))) 44)) (-1219 (((-627 (-521)) (-587 (-521)) (-587 (-521))) 32)) (-1946 (((-587 (-627 (-521))) (-587 (-521))) 34)) (-3741 (((-587 (-521)) (-587 (-521)) (-587 (-521)) (-627 (-521))) 47)) (-1894 (((-627 (-521)) (-587 (-521)) (-587 (-521)) (-587 (-521))) 55)))
+(((-1023) (-10 -7 (-15 -1894 ((-627 (-521)) (-587 (-521)) (-587 (-521)) (-587 (-521)))) (-15 -3741 ((-587 (-521)) (-587 (-521)) (-587 (-521)) (-627 (-521)))) (-15 -1946 ((-587 (-627 (-521))) (-587 (-521)))) (-15 -1219 ((-627 (-521)) (-587 (-521)) (-587 (-521)))) (-15 -2528 ((-627 (-521)) (-587 (-521)) (-587 (-521)) (-627 (-521)))) (-15 -3642 ((-587 (-521)) (-587 (-521)) (-587 (-521)) (-108))) (-15 -1756 ((-1165 (-521)) (-1165 (-521)) (-1165 (-521)) (-521))) (-15 -1756 ((-1165 (-521)) (-587 (-521)) (-1165 (-521)) (-521))) (-15 -1728 ((-521) (-521) (-521))) (-15 -2377 ((-587 (-521)) (-521) (-521) (-521))) (-15 -2776 ((-587 (-521)) (-521) (-521) (-521))) (-15 -2496 ((-587 (-521)) (-521) (-521) (-521))))) (T -1023))
+((-2496 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-587 (-521))) (-5 *1 (-1023)) (-5 *3 (-521)))) (-2776 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-587 (-521))) (-5 *1 (-1023)) (-5 *3 (-521)))) (-2377 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-587 (-521))) (-5 *1 (-1023)) (-5 *3 (-521)))) (-1728 (*1 *2 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-1023)))) (-1756 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1165 (-521))) (-5 *3 (-587 (-521))) (-5 *4 (-521)) (-5 *1 (-1023)))) (-1756 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1165 (-521))) (-5 *3 (-521)) (-5 *1 (-1023)))) (-3642 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-587 (-521))) (-5 *3 (-108)) (-5 *1 (-1023)))) (-2528 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-627 (-521))) (-5 *3 (-587 (-521))) (-5 *1 (-1023)))) (-1219 (*1 *2 *3 *3) (-12 (-5 *3 (-587 (-521))) (-5 *2 (-627 (-521))) (-5 *1 (-1023)))) (-1946 (*1 *2 *3) (-12 (-5 *3 (-587 (-521))) (-5 *2 (-587 (-627 (-521)))) (-5 *1 (-1023)))) (-3741 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-587 (-521))) (-5 *3 (-627 (-521))) (-5 *1 (-1023)))) (-1894 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-587 (-521))) (-5 *2 (-627 (-521))) (-5 *1 (-1023)))))
+(-10 -7 (-15 -1894 ((-627 (-521)) (-587 (-521)) (-587 (-521)) (-587 (-521)))) (-15 -3741 ((-587 (-521)) (-587 (-521)) (-587 (-521)) (-627 (-521)))) (-15 -1946 ((-587 (-627 (-521))) (-587 (-521)))) (-15 -1219 ((-627 (-521)) (-587 (-521)) (-587 (-521)))) (-15 -2528 ((-627 (-521)) (-587 (-521)) (-587 (-521)) (-627 (-521)))) (-15 -3642 ((-587 (-521)) (-587 (-521)) (-587 (-521)) (-108))) (-15 -1756 ((-1165 (-521)) (-1165 (-521)) (-1165 (-521)) (-521))) (-15 -1756 ((-1165 (-521)) (-587 (-521)) (-1165 (-521)) (-521))) (-15 -1728 ((-521) (-521) (-521))) (-15 -2377 ((-587 (-521)) (-521) (-521) (-521))) (-15 -2776 ((-587 (-521)) (-521) (-521) (-521))) (-15 -2496 ((-587 (-521)) (-521) (-521) (-521))))
+((-3505 (($ $ (-850)) 12)) (** (($ $ (-850)) 10)))
+(((-1024 |#1|) (-10 -8 (-15 -3505 (|#1| |#1| (-850))) (-15 ** (|#1| |#1| (-850)))) (-1025)) (T -1024))
+NIL
+(-10 -8 (-15 -3505 (|#1| |#1| (-850))) (-15 ** (|#1| |#1| (-850))))
+((-1415 (((-108) $ $) 7)) (-3688 (((-1067) $) 9)) (-4147 (((-1031) $) 10)) (-2189 (((-792) $) 11)) (-3505 (($ $ (-850)) 13)) (-1531 (((-108) $ $) 6)) (** (($ $ (-850)) 14)) (* (($ $ $) 15)))
+(((-1025) (-1196)) (T -1025))
+((* (*1 *1 *1 *1) (-4 *1 (-1025))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1025)) (-5 *2 (-850)))) (-3505 (*1 *1 *1 *2) (-12 (-4 *1 (-1025)) (-5 *2 (-850)))))
+(-13 (-1013) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-850))) (-15 -3505 ($ $ (-850)))))
+(((-97) . T) ((-561 (-792)) . T) ((-1013) . T))
+((-1415 (((-108) $ $) NIL (|has| |#3| (-1013)))) (-2220 (((-108) $) NIL (|has| |#3| (-124)))) (-2720 (($ (-850)) NIL (|has| |#3| (-970)))) (-1903 (((-1170) $ (-521) (-521)) NIL (|has| $ (-6 -4234)))) (-2641 (($ $ $) NIL (|has| |#3| (-729)))) (-1232 (((-3 $ "failed") $ $) NIL (|has| |#3| (-124)))) (-2978 (((-108) $ (-707)) NIL)) (-1630 (((-707)) NIL (|has| |#3| (-342)))) (-1606 (((-521) $) NIL (|has| |#3| (-782)))) (-2378 ((|#3| $ (-521) |#3|) NIL (|has| $ (-6 -4234)))) (-2547 (($) NIL T CONST)) (-1297 (((-3 (-521) "failed") $) NIL (-12 (|has| |#3| (-961 (-521))) (|has| |#3| (-1013)))) (((-3 (-381 (-521)) "failed") $) NIL (-12 (|has| |#3| (-961 (-381 (-521)))) (|has| |#3| (-1013)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1013)))) (-1483 (((-521) $) NIL (-12 (|has| |#3| (-961 (-521))) (|has| |#3| (-1013)))) (((-381 (-521)) $) NIL (-12 (|has| |#3| (-961 (-381 (-521)))) (|has| |#3| (-1013)))) ((|#3| $) NIL (|has| |#3| (-1013)))) (-3279 (((-627 (-521)) (-627 $)) NIL (-12 (|has| |#3| (-583 (-521))) (|has| |#3| (-970)))) (((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (-12 (|has| |#3| (-583 (-521))) (|has| |#3| (-970)))) (((-2 (|:| -1201 (-627 |#3|)) (|:| |vec| (-1165 |#3|))) (-627 $) (-1165 $)) NIL (|has| |#3| (-970))) (((-627 |#3|) (-627 $)) NIL (|has| |#3| (-970)))) (-1257 (((-3 $ "failed") $) NIL (|has| |#3| (-970)))) (-3250 (($) NIL (|has| |#3| (-342)))) (-3849 ((|#3| $ (-521) |#3|) NIL (|has| $ (-6 -4234)))) (-3626 ((|#3| $ (-521)) 12)) (-3951 (((-108) $) NIL (|has| |#3| (-782)))) (-3831 (((-587 |#3|) $) NIL (|has| $ (-6 -4233)))) (-3996 (((-108) $) NIL (|has| |#3| (-970)))) (-2210 (((-108) $) NIL (|has| |#3| (-782)))) (-2139 (((-108) $ (-707)) NIL)) (-2826 (((-521) $) NIL (|has| (-521) (-784)))) (-2810 (($ $ $) NIL (-3703 (|has| |#3| (-729)) (|has| |#3| (-782))))) (-3757 (((-587 |#3|) $) NIL (|has| $ (-6 -4233)))) (-2221 (((-108) |#3| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#3| (-1013))))) (-2597 (((-521) $) NIL (|has| (-521) (-784)))) (-2446 (($ $ $) NIL (-3703 (|has| |#3| (-729)) (|has| |#3| (-782))))) (-3833 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#3| |#3|) $) NIL)) (-2715 (((-850) $) NIL (|has| |#3| (-342)))) (-3574 (((-108) $ (-707)) NIL)) (-3688 (((-1067) $) NIL (|has| |#3| (-1013)))) (-1668 (((-587 (-521)) $) NIL)) (-2941 (((-108) (-521) $) NIL)) (-2716 (($ (-850)) NIL (|has| |#3| (-342)))) (-4147 (((-1031) $) NIL (|has| |#3| (-1013)))) (-2293 ((|#3| $) NIL (|has| (-521) (-784)))) (-3016 (($ $ |#3|) NIL (|has| $ (-6 -4234)))) (-1789 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 |#3|))) NIL (-12 (|has| |#3| (-284 |#3|)) (|has| |#3| (-1013)))) (($ $ (-269 |#3|)) NIL (-12 (|has| |#3| (-284 |#3|)) (|has| |#3| (-1013)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-284 |#3|)) (|has| |#3| (-1013)))) (($ $ (-587 |#3|) (-587 |#3|)) NIL (-12 (|has| |#3| (-284 |#3|)) (|has| |#3| (-1013))))) (-2488 (((-108) $ $) NIL)) (-3821 (((-108) |#3| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#3| (-1013))))) (-2489 (((-587 |#3|) $) NIL)) (-3462 (((-108) $) NIL)) (-4024 (($) NIL)) (-2544 ((|#3| $ (-521) |#3|) NIL) ((|#3| $ (-521)) NIL)) (-1231 ((|#3| $ $) NIL (|has| |#3| (-970)))) (-1961 (($ (-1165 |#3|)) NIL)) (-2359 (((-126)) NIL (|has| |#3| (-337)))) (-2156 (($ $) NIL (-12 (|has| |#3| (-210)) (|has| |#3| (-970)))) (($ $ (-707)) NIL (-12 (|has| |#3| (-210)) (|has| |#3| (-970)))) (($ $ (-1084)) NIL (-12 (|has| |#3| (-829 (-1084))) (|has| |#3| (-970)))) (($ $ (-587 (-1084))) NIL (-12 (|has| |#3| (-829 (-1084))) (|has| |#3| (-970)))) (($ $ (-1084) (-707)) NIL (-12 (|has| |#3| (-829 (-1084))) (|has| |#3| (-970)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (-12 (|has| |#3| (-829 (-1084))) (|has| |#3| (-970)))) (($ $ (-1 |#3| |#3|) (-707)) NIL (|has| |#3| (-970))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-970)))) (-4163 (((-707) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4233))) (((-707) |#3| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#3| (-1013))))) (-2404 (($ $) NIL)) (-2189 (((-1165 |#3|) $) NIL) (($ (-521)) NIL (-3703 (-12 (|has| |#3| (-961 (-521))) (|has| |#3| (-1013))) (|has| |#3| (-970)))) (($ (-381 (-521))) NIL (-12 (|has| |#3| (-961 (-381 (-521)))) (|has| |#3| (-1013)))) (($ |#3|) NIL (|has| |#3| (-1013))) (((-792) $) NIL (|has| |#3| (-561 (-792))))) (-3846 (((-707)) NIL (|has| |#3| (-970)))) (-3049 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4233)))) (-3304 (($ $) NIL (|has| |#3| (-782)))) (-3505 (($ $ (-707)) NIL (|has| |#3| (-970))) (($ $ (-850)) NIL (|has| |#3| (-970)))) (-3561 (($) NIL (|has| |#3| (-124)) CONST)) (-3572 (($) NIL (|has| |#3| (-970)) CONST)) (-2212 (($ $) NIL (-12 (|has| |#3| (-210)) (|has| |#3| (-970)))) (($ $ (-707)) NIL (-12 (|has| |#3| (-210)) (|has| |#3| (-970)))) (($ $ (-1084)) NIL (-12 (|has| |#3| (-829 (-1084))) (|has| |#3| (-970)))) (($ $ (-587 (-1084))) NIL (-12 (|has| |#3| (-829 (-1084))) (|has| |#3| (-970)))) (($ $ (-1084) (-707)) NIL (-12 (|has| |#3| (-829 (-1084))) (|has| |#3| (-970)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (-12 (|has| |#3| (-829 (-1084))) (|has| |#3| (-970)))) (($ $ (-1 |#3| |#3|) (-707)) NIL (|has| |#3| (-970))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-970)))) (-1574 (((-108) $ $) NIL (-3703 (|has| |#3| (-729)) (|has| |#3| (-782))))) (-1558 (((-108) $ $) NIL (-3703 (|has| |#3| (-729)) (|has| |#3| (-782))))) (-1531 (((-108) $ $) NIL (|has| |#3| (-1013)))) (-1566 (((-108) $ $) NIL (-3703 (|has| |#3| (-729)) (|has| |#3| (-782))))) (-1549 (((-108) $ $) 17 (-3703 (|has| |#3| (-729)) (|has| |#3| (-782))))) (-1620 (($ $ |#3|) NIL (|has| |#3| (-337)))) (-1612 (($ $ $) NIL (|has| |#3| (-970))) (($ $) NIL (|has| |#3| (-970)))) (-1602 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-707)) NIL (|has| |#3| (-970))) (($ $ (-850)) NIL (|has| |#3| (-970)))) (* (($ $ $) NIL (|has| |#3| (-970))) (($ (-521) $) NIL (|has| |#3| (-970))) (($ $ |#3|) NIL (|has| |#3| (-663))) (($ |#3| $) NIL (|has| |#3| (-663))) (($ (-707) $) NIL (|has| |#3| (-124))) (($ (-850) $) NIL (|has| |#3| (-25)))) (-3475 (((-707) $) NIL (|has| $ (-6 -4233)))))
+(((-1026 |#1| |#2| |#3|) (-215 |#1| |#3|) (-707) (-707) (-729)) (T -1026))
+NIL
+(-215 |#1| |#3|)
+((-1299 (((-587 (-1138 |#2| |#1|)) (-1138 |#2| |#1|) (-1138 |#2| |#1|)) 37)) (-1965 (((-521) (-1138 |#2| |#1|)) 68 (|has| |#1| (-425)))) (-3732 (((-521) (-1138 |#2| |#1|)) 54)) (-1922 (((-587 (-1138 |#2| |#1|)) (-1138 |#2| |#1|) (-1138 |#2| |#1|)) 45)) (-4100 (((-521) (-1138 |#2| |#1|) (-1138 |#2| |#1|)) 56 (|has| |#1| (-425)))) (-2700 (((-587 |#1|) (-1138 |#2| |#1|) (-1138 |#2| |#1|)) 48)) (-1522 (((-521) (-1138 |#2| |#1|) (-1138 |#2| |#1|)) 53)))
+(((-1027 |#1| |#2|) (-10 -7 (-15 -1299 ((-587 (-1138 |#2| |#1|)) (-1138 |#2| |#1|) (-1138 |#2| |#1|))) (-15 -1922 ((-587 (-1138 |#2| |#1|)) (-1138 |#2| |#1|) (-1138 |#2| |#1|))) (-15 -2700 ((-587 |#1|) (-1138 |#2| |#1|) (-1138 |#2| |#1|))) (-15 -1522 ((-521) (-1138 |#2| |#1|) (-1138 |#2| |#1|))) (-15 -3732 ((-521) (-1138 |#2| |#1|))) (IF (|has| |#1| (-425)) (PROGN (-15 -4100 ((-521) (-1138 |#2| |#1|) (-1138 |#2| |#1|))) (-15 -1965 ((-521) (-1138 |#2| |#1|)))) |%noBranch|)) (-757) (-1084)) (T -1027))
+((-1965 (*1 *2 *3) (-12 (-5 *3 (-1138 *5 *4)) (-4 *4 (-425)) (-4 *4 (-757)) (-14 *5 (-1084)) (-5 *2 (-521)) (-5 *1 (-1027 *4 *5)))) (-4100 (*1 *2 *3 *3) (-12 (-5 *3 (-1138 *5 *4)) (-4 *4 (-425)) (-4 *4 (-757)) (-14 *5 (-1084)) (-5 *2 (-521)) (-5 *1 (-1027 *4 *5)))) (-3732 (*1 *2 *3) (-12 (-5 *3 (-1138 *5 *4)) (-4 *4 (-757)) (-14 *5 (-1084)) (-5 *2 (-521)) (-5 *1 (-1027 *4 *5)))) (-1522 (*1 *2 *3 *3) (-12 (-5 *3 (-1138 *5 *4)) (-4 *4 (-757)) (-14 *5 (-1084)) (-5 *2 (-521)) (-5 *1 (-1027 *4 *5)))) (-2700 (*1 *2 *3 *3) (-12 (-5 *3 (-1138 *5 *4)) (-4 *4 (-757)) (-14 *5 (-1084)) (-5 *2 (-587 *4)) (-5 *1 (-1027 *4 *5)))) (-1922 (*1 *2 *3 *3) (-12 (-4 *4 (-757)) (-14 *5 (-1084)) (-5 *2 (-587 (-1138 *5 *4))) (-5 *1 (-1027 *4 *5)) (-5 *3 (-1138 *5 *4)))) (-1299 (*1 *2 *3 *3) (-12 (-4 *4 (-757)) (-14 *5 (-1084)) (-5 *2 (-587 (-1138 *5 *4))) (-5 *1 (-1027 *4 *5)) (-5 *3 (-1138 *5 *4)))))
+(-10 -7 (-15 -1299 ((-587 (-1138 |#2| |#1|)) (-1138 |#2| |#1|) (-1138 |#2| |#1|))) (-15 -1922 ((-587 (-1138 |#2| |#1|)) (-1138 |#2| |#1|) (-1138 |#2| |#1|))) (-15 -2700 ((-587 |#1|) (-1138 |#2| |#1|) (-1138 |#2| |#1|))) (-15 -1522 ((-521) (-1138 |#2| |#1|) (-1138 |#2| |#1|))) (-15 -3732 ((-521) (-1138 |#2| |#1|))) (IF (|has| |#1| (-425)) (PROGN (-15 -4100 ((-521) (-1138 |#2| |#1|) (-1138 |#2| |#1|))) (-15 -1965 ((-521) (-1138 |#2| |#1|)))) |%noBranch|))
+((-1606 (((-3 (-521) "failed") |#2| (-1084) |#2| (-1067)) 16) (((-3 (-521) "failed") |#2| (-1084) (-777 |#2|)) 14) (((-3 (-521) "failed") |#2|) 51)))
+(((-1028 |#1| |#2|) (-10 -7 (-15 -1606 ((-3 (-521) "failed") |#2|)) (-15 -1606 ((-3 (-521) "failed") |#2| (-1084) (-777 |#2|))) (-15 -1606 ((-3 (-521) "failed") |#2| (-1084) |#2| (-1067)))) (-13 (-513) (-784) (-961 (-521)) (-583 (-521)) (-425)) (-13 (-27) (-1105) (-404 |#1|))) (T -1028))
+((-1606 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1084)) (-5 *5 (-1067)) (-4 *6 (-13 (-513) (-784) (-961 *2) (-583 *2) (-425))) (-5 *2 (-521)) (-5 *1 (-1028 *6 *3)) (-4 *3 (-13 (-27) (-1105) (-404 *6))))) (-1606 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1084)) (-5 *5 (-777 *3)) (-4 *3 (-13 (-27) (-1105) (-404 *6))) (-4 *6 (-13 (-513) (-784) (-961 *2) (-583 *2) (-425))) (-5 *2 (-521)) (-5 *1 (-1028 *6 *3)))) (-1606 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-513) (-784) (-961 *2) (-583 *2) (-425))) (-5 *2 (-521)) (-5 *1 (-1028 *4 *3)) (-4 *3 (-13 (-27) (-1105) (-404 *4))))))
+(-10 -7 (-15 -1606 ((-3 (-521) "failed") |#2|)) (-15 -1606 ((-3 (-521) "failed") |#2| (-1084) (-777 |#2|))) (-15 -1606 ((-3 (-521) "failed") |#2| (-1084) |#2| (-1067))))
+((-1606 (((-3 (-521) "failed") (-381 (-881 |#1|)) (-1084) (-381 (-881 |#1|)) (-1067)) 34) (((-3 (-521) "failed") (-381 (-881 |#1|)) (-1084) (-777 (-381 (-881 |#1|)))) 29) (((-3 (-521) "failed") (-381 (-881 |#1|))) 12)))
+(((-1029 |#1|) (-10 -7 (-15 -1606 ((-3 (-521) "failed") (-381 (-881 |#1|)))) (-15 -1606 ((-3 (-521) "failed") (-381 (-881 |#1|)) (-1084) (-777 (-381 (-881 |#1|))))) (-15 -1606 ((-3 (-521) "failed") (-381 (-881 |#1|)) (-1084) (-381 (-881 |#1|)) (-1067)))) (-425)) (T -1029))
+((-1606 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-381 (-881 *6))) (-5 *4 (-1084)) (-5 *5 (-1067)) (-4 *6 (-425)) (-5 *2 (-521)) (-5 *1 (-1029 *6)))) (-1606 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1084)) (-5 *5 (-777 (-381 (-881 *6)))) (-5 *3 (-381 (-881 *6))) (-4 *6 (-425)) (-5 *2 (-521)) (-5 *1 (-1029 *6)))) (-1606 (*1 *2 *3) (|partial| -12 (-5 *3 (-381 (-881 *4))) (-4 *4 (-425)) (-5 *2 (-521)) (-5 *1 (-1029 *4)))))
+(-10 -7 (-15 -1606 ((-3 (-521) "failed") (-381 (-881 |#1|)))) (-15 -1606 ((-3 (-521) "failed") (-381 (-881 |#1|)) (-1084) (-777 (-381 (-881 |#1|))))) (-15 -1606 ((-3 (-521) "failed") (-381 (-881 |#1|)) (-1084) (-381 (-881 |#1|)) (-1067))))
+((-2254 (((-290 (-521)) (-47)) 11)))
+(((-1030) (-10 -7 (-15 -2254 ((-290 (-521)) (-47))))) (T -1030))
+((-2254 (*1 *2 *3) (-12 (-5 *3 (-47)) (-5 *2 (-290 (-521))) (-5 *1 (-1030)))))
+(-10 -7 (-15 -2254 ((-290 (-521)) (-47))))
+((-1415 (((-108) $ $) NIL)) (-1500 (($ $) 41)) (-2220 (((-108) $) 65)) (-3344 (($ $ $) 48)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) 84)) (-2559 (($ $) NIL)) (-1733 (((-108) $) NIL)) (-3929 (($ $ $) NIL)) (-1232 (((-3 $ "failed") $ $) NIL)) (-3106 (($ $ $ $) 74)) (-3063 (($ $) NIL)) (-3358 (((-392 $) $) NIL)) (-1389 (((-108) $ $) NIL)) (-1606 (((-521) $) NIL)) (-1662 (($ $ $) 71)) (-2547 (($) NIL T CONST)) (-1297 (((-3 (-521) "failed") $) NIL)) (-1483 (((-521) $) NIL)) (-2277 (($ $ $) 59)) (-3279 (((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) 78) (((-627 (-521)) (-627 $)) 28)) (-1257 (((-3 $ "failed") $) NIL)) (-1521 (((-3 (-381 (-521)) "failed") $) NIL)) (-3190 (((-108) $) NIL)) (-2082 (((-381 (-521)) $) NIL)) (-3250 (($) 81) (($ $) 82)) (-2253 (($ $ $) 58)) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) NIL)) (-2710 (((-108) $) NIL)) (-2213 (($ $ $ $) NIL)) (-3158 (($ $ $) 79)) (-3951 (((-108) $) NIL)) (-3189 (($ $ $) NIL)) (-3427 (((-818 (-521) $) $ (-821 (-521)) (-818 (-521) $)) NIL)) (-3996 (((-108) $) 66)) (-1255 (((-108) $) 64)) (-2400 (($ $) 42)) (-3842 (((-3 $ "failed") $) NIL)) (-2210 (((-108) $) 75)) (-1546 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-2283 (($ $ $ $) 72)) (-2810 (($ $ $) 68) (($) 39)) (-2446 (($ $ $) 67) (($) 38)) (-3890 (($ $) NIL)) (-2516 (($ $) 70)) (-2223 (($ $ $) NIL) (($ (-587 $)) NIL)) (-3688 (((-1067) $) NIL)) (-1642 (($ $ $) NIL)) (-3797 (($) NIL T CONST)) (-2953 (($ $) 50)) (-4147 (((-1031) $) NIL) (($ $) 69)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) NIL)) (-2258 (($ $ $) 62) (($ (-587 $)) NIL)) (-3210 (($ $) NIL)) (-1916 (((-392 $) $) NIL)) (-1962 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL)) (-2230 (((-3 $ "failed") $ $) NIL)) (-3854 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-3550 (((-108) $) NIL)) (-4196 (((-707) $) NIL)) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) 61)) (-2156 (($ $ (-707)) NIL) (($ $) NIL)) (-3052 (($ $) 51)) (-2404 (($ $) NIL)) (-1430 (((-521) $) 32) (((-497) $) NIL) (((-821 (-521)) $) NIL) (((-353) $) NIL) (((-202) $) NIL)) (-2189 (((-792) $) 31) (($ (-521)) 80) (($ $) NIL) (($ (-521)) 80)) (-3846 (((-707)) NIL)) (-3968 (((-108) $ $) NIL)) (-2712 (($ $ $) NIL)) (-3351 (($) 37)) (-4210 (((-108) $ $) NIL)) (-3631 (($ $ $ $) 73)) (-3304 (($ $) 63)) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (-2764 (($ $ $) 44)) (-3561 (($) 35 T CONST)) (-3501 (($ $ $) 47)) (-3572 (($) 36 T CONST)) (-2287 (((-1067) $) 21) (((-1067) $ (-108)) 23) (((-1170) (-759) $) 24) (((-1170) (-759) $ (-108)) 25)) (-3512 (($ $) 45)) (-2212 (($ $ (-707)) NIL) (($ $) NIL)) (-3493 (($ $ $) 46)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) 40)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 49)) (-2322 (($ $ $) 43)) (-1612 (($ $) 52) (($ $ $) 54)) (-1602 (($ $ $) 53)) (** (($ $ (-850)) NIL) (($ $ (-707)) 57)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) 34) (($ $ $) 55)))
+(((-1031) (-13 (-506) (-602) (-765) (-10 -8 (-6 -4220) (-6 -4225) (-6 -4221) (-15 -2446 ($)) (-15 -2810 ($)) (-15 -2400 ($ $)) (-15 -1500 ($ $)) (-15 -2322 ($ $ $)) (-15 -2764 ($ $ $)) (-15 -3344 ($ $ $)) (-15 -3512 ($ $)) (-15 -3493 ($ $ $)) (-15 -3501 ($ $ $))))) (T -1031))
+((-2764 (*1 *1 *1 *1) (-5 *1 (-1031))) (-2322 (*1 *1 *1 *1) (-5 *1 (-1031))) (-1500 (*1 *1 *1) (-5 *1 (-1031))) (-2446 (*1 *1) (-5 *1 (-1031))) (-2810 (*1 *1) (-5 *1 (-1031))) (-2400 (*1 *1 *1) (-5 *1 (-1031))) (-3344 (*1 *1 *1 *1) (-5 *1 (-1031))) (-3512 (*1 *1 *1) (-5 *1 (-1031))) (-3493 (*1 *1 *1 *1) (-5 *1 (-1031))) (-3501 (*1 *1 *1 *1) (-5 *1 (-1031))))
+(-13 (-506) (-602) (-765) (-10 -8 (-6 -4220) (-6 -4225) (-6 -4221) (-15 -2446 ($)) (-15 -2810 ($)) (-15 -2400 ($ $)) (-15 -1500 ($ $)) (-15 -2322 ($ $ $)) (-15 -2764 ($ $ $)) (-15 -3344 ($ $ $)) (-15 -3512 ($ $)) (-15 -3493 ($ $ $)) (-15 -3501 ($ $ $))))
+((-1415 (((-108) $ $) 19 (|has| |#1| (-1013)))) (-1354 ((|#1| $) 44)) (-2978 (((-108) $ (-707)) 8)) (-2547 (($) 7 T CONST)) (-2037 ((|#1| |#1| $) 46)) (-1322 ((|#1| $) 45)) (-3831 (((-587 |#1|) $) 30 (|has| $ (-6 -4233)))) (-2139 (((-108) $ (-707)) 9)) (-3757 (((-587 |#1|) $) 29 (|has| $ (-6 -4233)))) (-2221 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-3833 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#1| |#1|) $) 35)) (-3574 (((-108) $ (-707)) 10)) (-3688 (((-1067) $) 22 (|has| |#1| (-1013)))) (-2511 ((|#1| $) 39)) (-3373 (($ |#1| $) 40)) (-4147 (((-1031) $) 21 (|has| |#1| (-1013)))) (-2166 ((|#1| $) 41)) (-1789 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 |#1|))) 26 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) 25 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) 23 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-2488 (((-108) $ $) 14)) (-3462 (((-108) $) 11)) (-4024 (($) 12)) (-1252 (((-707) $) 43)) (-4163 (((-707) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4233))) (((-707) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-2404 (($ $) 13)) (-2189 (((-792) $) 18 (|has| |#1| (-561 (-792))))) (-4091 (($ (-587 |#1|)) 42)) (-3049 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4233)))) (-1531 (((-108) $ $) 20 (|has| |#1| (-1013)))) (-3475 (((-707) $) 6 (|has| $ (-6 -4233)))))
+(((-1032 |#1|) (-1196) (-1119)) (T -1032))
+((-2037 (*1 *2 *2 *1) (-12 (-4 *1 (-1032 *2)) (-4 *2 (-1119)))) (-1322 (*1 *2 *1) (-12 (-4 *1 (-1032 *2)) (-4 *2 (-1119)))) (-1354 (*1 *2 *1) (-12 (-4 *1 (-1032 *2)) (-4 *2 (-1119)))) (-1252 (*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-1119)) (-5 *2 (-707)))))
+(-13 (-102 |t#1|) (-10 -8 (-6 -4233) (-15 -2037 (|t#1| |t#1| $)) (-15 -1322 (|t#1| $)) (-15 -1354 (|t#1| $)) (-15 -1252 ((-707) $))))
+(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1013)) ((-561 (-792)) -3703 (|has| |#1| (-1013)) (|has| |#1| (-561 (-792)))) ((-284 |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-460 |#1|) . T) ((-482 |#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-1013) |has| |#1| (-1013)) ((-1119) . T))
+((-1865 ((|#3| $) 76)) (-1297 (((-3 (-521) "failed") $) NIL) (((-3 (-381 (-521)) "failed") $) NIL) (((-3 |#3| "failed") $) 40)) (-1483 (((-521) $) NIL) (((-381 (-521)) $) NIL) ((|#3| $) 37)) (-3279 (((-627 (-521)) (-627 $)) NIL) (((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL) (((-2 (|:| -1201 (-627 |#3|)) (|:| |vec| (-1165 |#3|))) (-627 $) (-1165 $)) 73) (((-627 |#3|) (-627 $)) 65)) (-2156 (($ $ (-1 |#3| |#3|)) 19) (($ $ (-1 |#3| |#3|) (-707)) NIL) (($ $ (-587 (-1084)) (-587 (-707))) NIL) (($ $ (-1084) (-707)) NIL) (($ $ (-587 (-1084))) NIL) (($ $ (-1084)) NIL) (($ $ (-707)) NIL) (($ $) NIL)) (-1930 ((|#3| $) 78)) (-3328 ((|#4| $) 32)) (-2189 (((-792) $) NIL) (($ (-521)) NIL) (($ (-381 (-521))) NIL) (($ |#3|) 16)) (** (($ $ (-850)) NIL) (($ $ (-707)) 15) (($ $ (-521)) 82)))
+(((-1033 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-521))) (-15 -1930 (|#3| |#1|)) (-15 -1865 (|#3| |#1|)) (-15 -3328 (|#4| |#1|)) (-15 -3279 ((-627 |#3|) (-627 |#1|))) (-15 -3279 ((-2 (|:| -1201 (-627 |#3|)) (|:| |vec| (-1165 |#3|))) (-627 |#1|) (-1165 |#1|))) (-15 -3279 ((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 |#1|) (-1165 |#1|))) (-15 -3279 ((-627 (-521)) (-627 |#1|))) (-15 -1483 (|#3| |#1|)) (-15 -1297 ((-3 |#3| "failed") |#1|)) (-15 -2189 (|#1| |#3|)) (-15 -2189 (|#1| (-381 (-521)))) (-15 -1297 ((-3 (-381 (-521)) "failed") |#1|)) (-15 -1483 ((-381 (-521)) |#1|)) (-15 -1297 ((-3 (-521) "failed") |#1|)) (-15 -1483 ((-521) |#1|)) (-15 -2156 (|#1| |#1|)) (-15 -2156 (|#1| |#1| (-707))) (-15 -2156 (|#1| |#1| (-1084))) (-15 -2156 (|#1| |#1| (-587 (-1084)))) (-15 -2156 (|#1| |#1| (-1084) (-707))) (-15 -2156 (|#1| |#1| (-587 (-1084)) (-587 (-707)))) (-15 -2156 (|#1| |#1| (-1 |#3| |#3|) (-707))) (-15 -2156 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2189 (|#1| (-521))) (-15 ** (|#1| |#1| (-707))) (-15 ** (|#1| |#1| (-850))) (-15 -2189 ((-792) |#1|))) (-1034 |#2| |#3| |#4| |#5|) (-707) (-970) (-215 |#2| |#3|) (-215 |#2| |#3|)) (T -1033))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-521))) (-15 -1930 (|#3| |#1|)) (-15 -1865 (|#3| |#1|)) (-15 -3328 (|#4| |#1|)) (-15 -3279 ((-627 |#3|) (-627 |#1|))) (-15 -3279 ((-2 (|:| -1201 (-627 |#3|)) (|:| |vec| (-1165 |#3|))) (-627 |#1|) (-1165 |#1|))) (-15 -3279 ((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 |#1|) (-1165 |#1|))) (-15 -3279 ((-627 (-521)) (-627 |#1|))) (-15 -1483 (|#3| |#1|)) (-15 -1297 ((-3 |#3| "failed") |#1|)) (-15 -2189 (|#1| |#3|)) (-15 -2189 (|#1| (-381 (-521)))) (-15 -1297 ((-3 (-381 (-521)) "failed") |#1|)) (-15 -1483 ((-381 (-521)) |#1|)) (-15 -1297 ((-3 (-521) "failed") |#1|)) (-15 -1483 ((-521) |#1|)) (-15 -2156 (|#1| |#1|)) (-15 -2156 (|#1| |#1| (-707))) (-15 -2156 (|#1| |#1| (-1084))) (-15 -2156 (|#1| |#1| (-587 (-1084)))) (-15 -2156 (|#1| |#1| (-1084) (-707))) (-15 -2156 (|#1| |#1| (-587 (-1084)) (-587 (-707)))) (-15 -2156 (|#1| |#1| (-1 |#3| |#3|) (-707))) (-15 -2156 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2189 (|#1| (-521))) (-15 ** (|#1| |#1| (-707))) (-15 ** (|#1| |#1| (-850))) (-15 -2189 ((-792) |#1|)))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-1865 ((|#2| $) 72)) (-2304 (((-108) $) 112)) (-1232 (((-3 $ "failed") $ $) 19)) (-2825 (((-108) $) 110)) (-2978 (((-108) $ (-707)) 102)) (-3480 (($ |#2|) 75)) (-2547 (($) 17 T CONST)) (-1311 (($ $) 129 (|has| |#2| (-282)))) (-2672 ((|#3| $ (-521)) 124)) (-1297 (((-3 (-521) "failed") $) 86 (|has| |#2| (-961 (-521)))) (((-3 (-381 (-521)) "failed") $) 84 (|has| |#2| (-961 (-381 (-521))))) (((-3 |#2| "failed") $) 81)) (-1483 (((-521) $) 87 (|has| |#2| (-961 (-521)))) (((-381 (-521)) $) 85 (|has| |#2| (-961 (-381 (-521))))) ((|#2| $) 80)) (-3279 (((-627 (-521)) (-627 $)) 79 (|has| |#2| (-583 (-521)))) (((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) 78 (|has| |#2| (-583 (-521)))) (((-2 (|:| -1201 (-627 |#2|)) (|:| |vec| (-1165 |#2|))) (-627 $) (-1165 $)) 77) (((-627 |#2|) (-627 $)) 76)) (-1257 (((-3 $ "failed") $) 34)) (-3162 (((-707) $) 130 (|has| |#2| (-513)))) (-3626 ((|#2| $ (-521) (-521)) 122)) (-3831 (((-587 |#2|) $) 95 (|has| $ (-6 -4233)))) (-3996 (((-108) $) 31)) (-2097 (((-707) $) 131 (|has| |#2| (-513)))) (-3445 (((-587 |#4|) $) 132 (|has| |#2| (-513)))) (-1410 (((-707) $) 118)) (-1421 (((-707) $) 119)) (-2139 (((-108) $ (-707)) 103)) (-2274 ((|#2| $) 67 (|has| |#2| (-6 (-4235 "*"))))) (-2690 (((-521) $) 114)) (-3222 (((-521) $) 116)) (-3757 (((-587 |#2|) $) 94 (|has| $ (-6 -4233)))) (-2221 (((-108) |#2| $) 92 (-12 (|has| |#2| (-1013)) (|has| $ (-6 -4233))))) (-2207 (((-521) $) 115)) (-2684 (((-521) $) 117)) (-1365 (($ (-587 (-587 |#2|))) 109)) (-3833 (($ (-1 |#2| |#2|) $) 99 (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#2| |#2| |#2|) $ $) 126) (($ (-1 |#2| |#2|) $) 100)) (-1858 (((-587 (-587 |#2|)) $) 120)) (-3574 (((-108) $ (-707)) 104)) (-3688 (((-1067) $) 9)) (-3841 (((-3 $ "failed") $) 66 (|has| |#2| (-337)))) (-4147 (((-1031) $) 10)) (-2230 (((-3 $ "failed") $ |#2|) 127 (|has| |#2| (-513)))) (-1789 (((-108) (-1 (-108) |#2|) $) 97 (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 |#2|))) 91 (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ (-269 |#2|)) 90 (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ |#2| |#2|) 89 (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ (-587 |#2|) (-587 |#2|)) 88 (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))))) (-2488 (((-108) $ $) 108)) (-3462 (((-108) $) 105)) (-4024 (($) 106)) (-2544 ((|#2| $ (-521) (-521) |#2|) 123) ((|#2| $ (-521) (-521)) 121)) (-2156 (($ $ (-1 |#2| |#2|)) 52) (($ $ (-1 |#2| |#2|) (-707)) 51) (($ $ (-587 (-1084)) (-587 (-707))) 44 (|has| |#2| (-829 (-1084)))) (($ $ (-1084) (-707)) 43 (|has| |#2| (-829 (-1084)))) (($ $ (-587 (-1084))) 42 (|has| |#2| (-829 (-1084)))) (($ $ (-1084)) 41 (|has| |#2| (-829 (-1084)))) (($ $ (-707)) 39 (|has| |#2| (-210))) (($ $) 37 (|has| |#2| (-210)))) (-1930 ((|#2| $) 71)) (-2349 (($ (-587 |#2|)) 74)) (-1222 (((-108) $) 111)) (-3328 ((|#3| $) 73)) (-3805 ((|#2| $) 68 (|has| |#2| (-6 (-4235 "*"))))) (-4163 (((-707) (-1 (-108) |#2|) $) 96 (|has| $ (-6 -4233))) (((-707) |#2| $) 93 (-12 (|has| |#2| (-1013)) (|has| $ (-6 -4233))))) (-2404 (($ $) 107)) (-3187 ((|#4| $ (-521)) 125)) (-2189 (((-792) $) 11) (($ (-521)) 28) (($ (-381 (-521))) 83 (|has| |#2| (-961 (-381 (-521))))) (($ |#2|) 82)) (-3846 (((-707)) 29)) (-3049 (((-108) (-1 (-108) |#2|) $) 98 (|has| $ (-6 -4233)))) (-2169 (((-108) $) 113)) (-3505 (($ $ (-850)) 26) (($ $ (-707)) 33)) (-3561 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-2212 (($ $ (-1 |#2| |#2|)) 50) (($ $ (-1 |#2| |#2|) (-707)) 49) (($ $ (-587 (-1084)) (-587 (-707))) 48 (|has| |#2| (-829 (-1084)))) (($ $ (-1084) (-707)) 47 (|has| |#2| (-829 (-1084)))) (($ $ (-587 (-1084))) 46 (|has| |#2| (-829 (-1084)))) (($ $ (-1084)) 45 (|has| |#2| (-829 (-1084)))) (($ $ (-707)) 40 (|has| |#2| (-210))) (($ $) 38 (|has| |#2| (-210)))) (-1531 (((-108) $ $) 6)) (-1620 (($ $ |#2|) 128 (|has| |#2| (-337)))) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-707)) 32) (($ $ (-521)) 65 (|has| |#2| (-337)))) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ $ |#2|) 134) (($ |#2| $) 133) ((|#4| $ |#4|) 70) ((|#3| |#3| $) 69)) (-3475 (((-707) $) 101 (|has| $ (-6 -4233)))))
+(((-1034 |#1| |#2| |#3| |#4|) (-1196) (-707) (-970) (-215 |t#1| |t#2|) (-215 |t#1| |t#2|)) (T -1034))
+((-3480 (*1 *1 *2) (-12 (-4 *2 (-970)) (-4 *1 (-1034 *3 *2 *4 *5)) (-4 *4 (-215 *3 *2)) (-4 *5 (-215 *3 *2)))) (-2349 (*1 *1 *2) (-12 (-5 *2 (-587 *4)) (-4 *4 (-970)) (-4 *1 (-1034 *3 *4 *5 *6)) (-4 *5 (-215 *3 *4)) (-4 *6 (-215 *3 *4)))) (-3328 (*1 *2 *1) (-12 (-4 *1 (-1034 *3 *4 *2 *5)) (-4 *4 (-970)) (-4 *5 (-215 *3 *4)) (-4 *2 (-215 *3 *4)))) (-1865 (*1 *2 *1) (-12 (-4 *1 (-1034 *3 *2 *4 *5)) (-4 *4 (-215 *3 *2)) (-4 *5 (-215 *3 *2)) (-4 *2 (-970)))) (-1930 (*1 *2 *1) (-12 (-4 *1 (-1034 *3 *2 *4 *5)) (-4 *4 (-215 *3 *2)) (-4 *5 (-215 *3 *2)) (-4 *2 (-970)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1034 *3 *4 *5 *2)) (-4 *4 (-970)) (-4 *5 (-215 *3 *4)) (-4 *2 (-215 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1034 *3 *4 *2 *5)) (-4 *4 (-970)) (-4 *2 (-215 *3 *4)) (-4 *5 (-215 *3 *4)))) (-3805 (*1 *2 *1) (-12 (-4 *1 (-1034 *3 *2 *4 *5)) (-4 *4 (-215 *3 *2)) (-4 *5 (-215 *3 *2)) (|has| *2 (-6 (-4235 "*"))) (-4 *2 (-970)))) (-2274 (*1 *2 *1) (-12 (-4 *1 (-1034 *3 *2 *4 *5)) (-4 *4 (-215 *3 *2)) (-4 *5 (-215 *3 *2)) (|has| *2 (-6 (-4235 "*"))) (-4 *2 (-970)))) (-3841 (*1 *1 *1) (|partial| -12 (-4 *1 (-1034 *2 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-215 *2 *3)) (-4 *5 (-215 *2 *3)) (-4 *3 (-337)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-4 *1 (-1034 *3 *4 *5 *6)) (-4 *4 (-970)) (-4 *5 (-215 *3 *4)) (-4 *6 (-215 *3 *4)) (-4 *4 (-337)))))
+(-13 (-208 |t#2|) (-107 |t#2| |t#2|) (-973 |t#1| |t#1| |t#2| |t#3| |t#4|) (-385 |t#2|) (-351 |t#2|) (-10 -8 (IF (|has| |t#2| (-157)) (-6 (-654 |t#2|)) |%noBranch|) (-15 -3480 ($ |t#2|)) (-15 -2349 ($ (-587 |t#2|))) (-15 -3328 (|t#3| $)) (-15 -1865 (|t#2| $)) (-15 -1930 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4235 "*"))) (PROGN (-6 (-37 |t#2|)) (-15 -3805 (|t#2| $)) (-15 -2274 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-337)) (PROGN (-15 -3841 ((-3 $ "failed") $)) (-15 ** ($ $ (-521)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-33) . T) ((-37 |#2|) |has| |#2| (-6 (-4235 "*"))) ((-97) . T) ((-107 |#2| |#2|) . T) ((-124) . T) ((-561 (-792)) . T) ((-208 |#2|) . T) ((-210) |has| |#2| (-210)) ((-284 |#2|) -12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))) ((-351 |#2|) . T) ((-385 |#2|) . T) ((-460 |#2|) . T) ((-482 |#2| |#2|) -12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))) ((-589 |#2|) . T) ((-589 $) . T) ((-583 (-521)) |has| |#2| (-583 (-521))) ((-583 |#2|) . T) ((-654 |#2|) -3703 (|has| |#2| (-157)) (|has| |#2| (-6 (-4235 "*")))) ((-663) . T) ((-829 (-1084)) |has| |#2| (-829 (-1084))) ((-973 |#1| |#1| |#2| |#3| |#4|) . T) ((-961 (-381 (-521))) |has| |#2| (-961 (-381 (-521)))) ((-961 (-521)) |has| |#2| (-961 (-521))) ((-961 |#2|) . T) ((-976 |#2|) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T) ((-1119) . T))
+((-3140 ((|#4| |#4|) 68)) (-2459 ((|#4| |#4|) 63)) (-3902 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2470 (-587 |#3|))) |#4| |#3|) 76)) (-2211 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 67)) (-1692 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 65)))
+(((-1035 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2459 (|#4| |#4|)) (-15 -1692 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3140 (|#4| |#4|)) (-15 -2211 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3902 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2470 (-587 |#3|))) |#4| |#3|))) (-282) (-347 |#1|) (-347 |#1|) (-625 |#1| |#2| |#3|)) (T -1035))
+((-3902 (*1 *2 *3 *4) (-12 (-4 *5 (-282)) (-4 *6 (-347 *5)) (-4 *4 (-347 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2470 (-587 *4)))) (-5 *1 (-1035 *5 *6 *4 *3)) (-4 *3 (-625 *5 *6 *4)))) (-2211 (*1 *2 *3) (-12 (-4 *4 (-282)) (-4 *5 (-347 *4)) (-4 *6 (-347 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1035 *4 *5 *6 *3)) (-4 *3 (-625 *4 *5 *6)))) (-3140 (*1 *2 *2) (-12 (-4 *3 (-282)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)) (-5 *1 (-1035 *3 *4 *5 *2)) (-4 *2 (-625 *3 *4 *5)))) (-1692 (*1 *2 *3) (-12 (-4 *4 (-282)) (-4 *5 (-347 *4)) (-4 *6 (-347 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1035 *4 *5 *6 *3)) (-4 *3 (-625 *4 *5 *6)))) (-2459 (*1 *2 *2) (-12 (-4 *3 (-282)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)) (-5 *1 (-1035 *3 *4 *5 *2)) (-4 *2 (-625 *3 *4 *5)))))
+(-10 -7 (-15 -2459 (|#4| |#4|)) (-15 -1692 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3140 (|#4| |#4|)) (-15 -2211 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3902 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2470 (-587 |#3|))) |#4| |#3|)))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) 17)) (-4084 (((-587 |#2|) $) 159)) (-1280 (((-1080 $) $ |#2|) 53) (((-1080 |#1|) $) 42)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) 109 (|has| |#1| (-513)))) (-2559 (($ $) 111 (|has| |#1| (-513)))) (-1733 (((-108) $) 113 (|has| |#1| (-513)))) (-2256 (((-707) $) NIL) (((-707) $ (-587 |#2|)) 193)) (-1232 (((-3 $ "failed") $ $) NIL)) (-2598 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#1| (-838)))) (-3063 (($ $) NIL (|has| |#1| (-425)))) (-3358 (((-392 $) $) NIL (|has| |#1| (-425)))) (-2569 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) NIL (|has| |#1| (-838)))) (-2547 (($) NIL T CONST)) (-1297 (((-3 |#1| "failed") $) 156) (((-3 (-381 (-521)) "failed") $) NIL (|has| |#1| (-961 (-381 (-521))))) (((-3 (-521) "failed") $) NIL (|has| |#1| (-961 (-521)))) (((-3 |#2| "failed") $) NIL)) (-1483 ((|#1| $) 154) (((-381 (-521)) $) NIL (|has| |#1| (-961 (-381 (-521))))) (((-521) $) NIL (|has| |#1| (-961 (-521)))) ((|#2| $) NIL)) (-2114 (($ $ $ |#2|) NIL (|has| |#1| (-157)))) (-3152 (($ $) 197)) (-3279 (((-627 (-521)) (-627 $)) NIL (|has| |#1| (-583 (-521)))) (((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (|has| |#1| (-583 (-521)))) (((-2 (|:| -1201 (-627 |#1|)) (|:| |vec| (-1165 |#1|))) (-627 $) (-1165 $)) NIL) (((-627 |#1|) (-627 $)) NIL)) (-1257 (((-3 $ "failed") $) 81)) (-3666 (($ $) NIL (|has| |#1| (-425))) (($ $ |#2|) NIL (|has| |#1| (-425)))) (-3144 (((-587 $) $) NIL)) (-2710 (((-108) $) NIL (|has| |#1| (-838)))) (-3528 (($ $ |#1| (-493 |#2|) $) NIL)) (-3427 (((-818 (-353) $) $ (-821 (-353)) (-818 (-353) $)) NIL (-12 (|has| |#1| (-815 (-353))) (|has| |#2| (-815 (-353))))) (((-818 (-521) $) $ (-821 (-521)) (-818 (-521) $)) NIL (-12 (|has| |#1| (-815 (-521))) (|has| |#2| (-815 (-521)))))) (-3996 (((-108) $) 19)) (-2678 (((-707) $) 26)) (-4069 (($ (-1080 |#1|) |#2|) 47) (($ (-1080 $) |#2|) 63)) (-2959 (((-587 $) $) NIL)) (-3649 (((-108) $) 31)) (-4043 (($ |#1| (-493 |#2|)) 70) (($ $ |#2| (-707)) 51) (($ $ (-587 |#2|) (-587 (-707))) NIL)) (-1450 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $ |#2|) NIL)) (-3273 (((-493 |#2|) $) 186) (((-707) $ |#2|) 187) (((-587 (-707)) $ (-587 |#2|)) 188)) (-2810 (($ $ $) NIL (|has| |#1| (-784)))) (-2446 (($ $ $) NIL (|has| |#1| (-784)))) (-3285 (($ (-1 (-493 |#2|) (-493 |#2|)) $) NIL)) (-1390 (($ (-1 |#1| |#1|) $) 121)) (-2477 (((-3 |#2| "failed") $) 161)) (-3125 (($ $) 196)) (-3135 ((|#1| $) 36)) (-2223 (($ (-587 $)) NIL (|has| |#1| (-425))) (($ $ $) NIL (|has| |#1| (-425)))) (-3688 (((-1067) $) NIL)) (-1617 (((-3 (-587 $) "failed") $) NIL)) (-3177 (((-3 (-587 $) "failed") $) NIL)) (-3979 (((-3 (-2 (|:| |var| |#2|) (|:| -2997 (-707))) "failed") $) NIL)) (-4147 (((-1031) $) NIL)) (-3105 (((-108) $) 32)) (-3115 ((|#1| $) NIL)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) 139 (|has| |#1| (-425)))) (-2258 (($ (-587 $)) 144 (|has| |#1| (-425))) (($ $ $) 131 (|has| |#1| (-425)))) (-1912 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#1| (-838)))) (-2165 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#1| (-838)))) (-1916 (((-392 $) $) NIL (|has| |#1| (-838)))) (-2230 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-513))) (((-3 $ "failed") $ $) 119 (|has| |#1| (-513)))) (-2288 (($ $ (-587 (-269 $))) NIL) (($ $ (-269 $)) NIL) (($ $ $ $) NIL) (($ $ (-587 $) (-587 $)) NIL) (($ $ |#2| |#1|) 164) (($ $ (-587 |#2|) (-587 |#1|)) 177) (($ $ |#2| $) 163) (($ $ (-587 |#2|) (-587 $)) 176)) (-4010 (($ $ |#2|) NIL (|has| |#1| (-157)))) (-2156 (($ $ |#2|) 195) (($ $ (-587 |#2|)) NIL) (($ $ |#2| (-707)) NIL) (($ $ (-587 |#2|) (-587 (-707))) NIL)) (-1994 (((-493 |#2|) $) 182) (((-707) $ |#2|) 178) (((-587 (-707)) $ (-587 |#2|)) 180)) (-1430 (((-821 (-353)) $) NIL (-12 (|has| |#1| (-562 (-821 (-353)))) (|has| |#2| (-562 (-821 (-353)))))) (((-821 (-521)) $) NIL (-12 (|has| |#1| (-562 (-821 (-521)))) (|has| |#2| (-562 (-821 (-521)))))) (((-497) $) NIL (-12 (|has| |#1| (-562 (-497))) (|has| |#2| (-562 (-497)))))) (-2403 ((|#1| $) 127 (|has| |#1| (-425))) (($ $ |#2|) 130 (|has| |#1| (-425)))) (-2944 (((-3 (-1165 $) "failed") (-627 $)) NIL (-12 (|has| $ (-133)) (|has| |#1| (-838))))) (-2189 (((-792) $) 150) (($ (-521)) 75) (($ |#1|) 76) (($ |#2|) 28) (($ $) NIL (|has| |#1| (-513))) (($ (-381 (-521))) NIL (-3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-961 (-381 (-521))))))) (-1259 (((-587 |#1|) $) 153)) (-3800 ((|#1| $ (-493 |#2|)) 72) (($ $ |#2| (-707)) NIL) (($ $ (-587 |#2|) (-587 (-707))) NIL)) (-1671 (((-3 $ "failed") $) NIL (-3703 (-12 (|has| $ (-133)) (|has| |#1| (-838))) (|has| |#1| (-133))))) (-3846 (((-707)) 78)) (-1547 (($ $ $ (-707)) NIL (|has| |#1| (-157)))) (-4210 (((-108) $ $) 116 (|has| |#1| (-513)))) (-3505 (($ $ (-850)) 101) (($ $ (-707)) 103)) (-3561 (($) 12 T CONST)) (-3572 (($) 14 T CONST)) (-2212 (($ $ |#2|) NIL) (($ $ (-587 |#2|)) NIL) (($ $ |#2| (-707)) NIL) (($ $ (-587 |#2|) (-587 (-707))) NIL)) (-1574 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1558 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1531 (((-108) $ $) 96)) (-1566 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1549 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1620 (($ $ |#1|) 125 (|has| |#1| (-337)))) (-1612 (($ $) 84) (($ $ $) 94)) (-1602 (($ $ $) 48)) (** (($ $ (-850)) 102) (($ $ (-707)) 99)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) 87) (($ $ $) 64) (($ $ (-381 (-521))) NIL (|has| |#1| (-37 (-381 (-521))))) (($ (-381 (-521)) $) NIL (|has| |#1| (-37 (-381 (-521))))) (($ |#1| $) 89) (($ $ |#1|) NIL)))
+(((-1036 |#1| |#2|) (-878 |#1| (-493 |#2|) |#2|) (-970) (-784)) (T -1036))
+NIL
+(-878 |#1| (-493 |#2|) |#2|)
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-4084 (((-587 |#2|) $) NIL)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) NIL (|has| |#1| (-513)))) (-2559 (($ $) NIL (|has| |#1| (-513)))) (-1733 (((-108) $) NIL (|has| |#1| (-513)))) (-2904 (($ $) 142 (|has| |#1| (-37 (-381 (-521)))))) (-2769 (($ $) 118 (|has| |#1| (-37 (-381 (-521)))))) (-1232 (((-3 $ "failed") $ $) NIL)) (-1927 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2880 (($ $) 138 (|has| |#1| (-37 (-381 (-521)))))) (-2746 (($ $) 114 (|has| |#1| (-37 (-381 (-521)))))) (-2926 (($ $) 146 (|has| |#1| (-37 (-381 (-521)))))) (-2790 (($ $) 122 (|has| |#1| (-37 (-381 (-521)))))) (-2547 (($) NIL T CONST)) (-3152 (($ $) NIL)) (-1257 (((-3 $ "failed") $) NIL)) (-2199 (((-881 |#1|) $ (-707)) NIL) (((-881 |#1|) $ (-707) (-707)) NIL)) (-1325 (((-108) $) NIL)) (-2834 (($) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2733 (((-707) $ |#2|) NIL) (((-707) $ |#2| (-707)) NIL)) (-3996 (((-108) $) NIL)) (-3407 (($ $ (-521)) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3649 (((-108) $) NIL)) (-4043 (($ $ (-587 |#2|) (-587 (-493 |#2|))) NIL) (($ $ |#2| (-493 |#2|)) NIL) (($ |#1| (-493 |#2|)) NIL) (($ $ |#2| (-707)) 58) (($ $ (-587 |#2|) (-587 (-707))) NIL)) (-1390 (($ (-1 |#1| |#1|) $) NIL)) (-1253 (($ $) 112 (|has| |#1| (-37 (-381 (-521)))))) (-3125 (($ $) NIL)) (-3135 ((|#1| $) NIL)) (-3688 (((-1067) $) NIL)) (-2184 (($ $ |#2|) NIL (|has| |#1| (-37 (-381 (-521))))) (($ $ |#2| |#1|) 165 (|has| |#1| (-37 (-381 (-521)))))) (-4147 (((-1031) $) NIL)) (-1908 (($ (-1 $) |#2| |#1|) 164 (|has| |#1| (-37 (-381 (-521)))))) (-2447 (($ $ (-707)) 15)) (-2230 (((-3 $ "failed") $ $) NIL (|has| |#1| (-513)))) (-3261 (($ $) 110 (|has| |#1| (-37 (-381 (-521)))))) (-2288 (($ $ |#2| $) 96) (($ $ (-587 |#2|) (-587 $)) 89) (($ $ (-587 (-269 $))) NIL) (($ $ (-269 $)) NIL) (($ $ $ $) NIL) (($ $ (-587 $) (-587 $)) NIL)) (-2156 (($ $ |#2|) 99) (($ $ (-587 |#2|)) NIL) (($ $ |#2| (-707)) NIL) (($ $ (-587 |#2|) (-587 (-707))) NIL)) (-1994 (((-493 |#2|) $) NIL)) (-3876 (((-1 (-1065 |#3|) |#3|) (-587 |#2|) (-587 (-1065 |#3|))) 79)) (-1738 (($ $) 148 (|has| |#1| (-37 (-381 (-521)))))) (-2800 (($ $) 124 (|has| |#1| (-37 (-381 (-521)))))) (-2915 (($ $) 144 (|has| |#1| (-37 (-381 (-521)))))) (-2780 (($ $) 120 (|has| |#1| (-37 (-381 (-521)))))) (-2892 (($ $) 140 (|has| |#1| (-37 (-381 (-521)))))) (-2758 (($ $) 116 (|has| |#1| (-37 (-381 (-521)))))) (-3448 (($ $) 17)) (-2189 (((-792) $) 180) (($ (-521)) NIL) (($ |#1|) 44 (|has| |#1| (-157))) (($ $) NIL (|has| |#1| (-513))) (($ (-381 (-521))) NIL (|has| |#1| (-37 (-381 (-521))))) (($ |#2|) 65) (($ |#3|) 63)) (-3800 ((|#1| $ (-493 |#2|)) NIL) (($ $ |#2| (-707)) NIL) (($ $ (-587 |#2|) (-587 (-707))) NIL) ((|#3| $ (-707)) 42)) (-1671 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-3846 (((-707)) NIL)) (-1759 (($ $) 154 (|has| |#1| (-37 (-381 (-521)))))) (-2832 (($ $) 130 (|has| |#1| (-37 (-381 (-521)))))) (-4210 (((-108) $ $) NIL (|has| |#1| (-513)))) (-1745 (($ $) 150 (|has| |#1| (-37 (-381 (-521)))))) (-2811 (($ $) 126 (|has| |#1| (-37 (-381 (-521)))))) (-1776 (($ $) 158 (|has| |#1| (-37 (-381 (-521)))))) (-2856 (($ $) 134 (|has| |#1| (-37 (-381 (-521)))))) (-3919 (($ $) 160 (|has| |#1| (-37 (-381 (-521)))))) (-2868 (($ $) 136 (|has| |#1| (-37 (-381 (-521)))))) (-1768 (($ $) 156 (|has| |#1| (-37 (-381 (-521)))))) (-2844 (($ $) 132 (|has| |#1| (-37 (-381 (-521)))))) (-1752 (($ $) 152 (|has| |#1| (-37 (-381 (-521)))))) (-2821 (($ $) 128 (|has| |#1| (-37 (-381 (-521)))))) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (-3561 (($) 18 T CONST)) (-3572 (($) 10 T CONST)) (-2212 (($ $ |#2|) NIL) (($ $ (-587 |#2|)) NIL) (($ $ |#2| (-707)) NIL) (($ $ (-587 |#2|) (-587 (-707))) NIL)) (-1531 (((-108) $ $) NIL)) (-1620 (($ $ |#1|) 182 (|has| |#1| (-337)))) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) 61)) (** (($ $ (-850)) NIL) (($ $ (-707)) 70) (($ $ $) NIL (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) 102 (|has| |#1| (-37 (-381 (-521)))))) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) 60) (($ $ (-381 (-521))) 107 (|has| |#1| (-37 (-381 (-521))))) (($ (-381 (-521)) $) 105 (|has| |#1| (-37 (-381 (-521))))) (($ |#1| $) 47) (($ $ |#1|) 48) (($ |#3| $) 46)))
+(((-1037 |#1| |#2| |#3|) (-13 (-677 |#1| |#2|) (-10 -8 (-15 -3800 (|#3| $ (-707))) (-15 -2189 ($ |#2|)) (-15 -2189 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3876 ((-1 (-1065 |#3|) |#3|) (-587 |#2|) (-587 (-1065 |#3|)))) (IF (|has| |#1| (-37 (-381 (-521)))) (PROGN (-15 -2184 ($ $ |#2| |#1|)) (-15 -1908 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-970) (-784) (-878 |#1| (-493 |#2|) |#2|)) (T -1037))
+((-3800 (*1 *2 *1 *3) (-12 (-5 *3 (-707)) (-4 *2 (-878 *4 (-493 *5) *5)) (-5 *1 (-1037 *4 *5 *2)) (-4 *4 (-970)) (-4 *5 (-784)))) (-2189 (*1 *1 *2) (-12 (-4 *3 (-970)) (-4 *2 (-784)) (-5 *1 (-1037 *3 *2 *4)) (-4 *4 (-878 *3 (-493 *2) *2)))) (-2189 (*1 *1 *2) (-12 (-4 *3 (-970)) (-4 *4 (-784)) (-5 *1 (-1037 *3 *4 *2)) (-4 *2 (-878 *3 (-493 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-970)) (-4 *4 (-784)) (-5 *1 (-1037 *3 *4 *2)) (-4 *2 (-878 *3 (-493 *4) *4)))) (-3876 (*1 *2 *3 *4) (-12 (-5 *3 (-587 *6)) (-5 *4 (-587 (-1065 *7))) (-4 *6 (-784)) (-4 *7 (-878 *5 (-493 *6) *6)) (-4 *5 (-970)) (-5 *2 (-1 (-1065 *7) *7)) (-5 *1 (-1037 *5 *6 *7)))) (-2184 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *3 (-970)) (-4 *2 (-784)) (-5 *1 (-1037 *3 *2 *4)) (-4 *4 (-878 *3 (-493 *2) *2)))) (-1908 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1037 *4 *3 *5))) (-4 *4 (-37 (-381 (-521)))) (-4 *4 (-970)) (-4 *3 (-784)) (-5 *1 (-1037 *4 *3 *5)) (-4 *5 (-878 *4 (-493 *3) *3)))))
+(-13 (-677 |#1| |#2|) (-10 -8 (-15 -3800 (|#3| $ (-707))) (-15 -2189 ($ |#2|)) (-15 -2189 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3876 ((-1 (-1065 |#3|) |#3|) (-587 |#2|) (-587 (-1065 |#3|)))) (IF (|has| |#1| (-37 (-381 (-521)))) (PROGN (-15 -2184 ($ $ |#2| |#1|)) (-15 -1908 ($ (-1 $) |#2| |#1|))) |%noBranch|)))
+((-1415 (((-108) $ $) 7)) (-2113 (((-587 (-2 (|:| -1650 $) (|:| -1544 (-587 |#4|)))) (-587 |#4|)) 85)) (-1906 (((-587 $) (-587 |#4|)) 86) (((-587 $) (-587 |#4|) (-108)) 111)) (-4084 (((-587 |#3|) $) 33)) (-3898 (((-108) $) 26)) (-2466 (((-108) $) 17 (|has| |#1| (-513)))) (-3199 (((-108) |#4| $) 101) (((-108) $) 97)) (-2015 ((|#4| |#4| $) 92)) (-3063 (((-587 (-2 (|:| |val| |#4|) (|:| -1884 $))) |#4| $) 126)) (-3211 (((-2 (|:| |under| $) (|:| -2567 $) (|:| |upper| $)) $ |#3|) 27)) (-2978 (((-108) $ (-707)) 44)) (-1628 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4233))) (((-3 |#4| "failed") $ |#3|) 79)) (-2547 (($) 45 T CONST)) (-3035 (((-108) $) 22 (|has| |#1| (-513)))) (-3091 (((-108) $ $) 24 (|has| |#1| (-513)))) (-3882 (((-108) $ $) 23 (|has| |#1| (-513)))) (-3237 (((-108) $) 25 (|has| |#1| (-513)))) (-2990 (((-587 |#4|) (-587 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 93)) (-3799 (((-587 |#4|) (-587 |#4|) $) 18 (|has| |#1| (-513)))) (-4183 (((-587 |#4|) (-587 |#4|) $) 19 (|has| |#1| (-513)))) (-1297 (((-3 $ "failed") (-587 |#4|)) 36)) (-1483 (($ (-587 |#4|)) 35)) (-2306 (((-3 $ "failed") $) 82)) (-1761 ((|#4| |#4| $) 89)) (-2332 (($ $) 68 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -4233))))) (-1422 (($ |#4| $) 67 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -4233)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4233)))) (-3820 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-513)))) (-3156 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) 102)) (-1970 ((|#4| |#4| $) 87)) (-3859 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -4233)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4233))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4233))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 94)) (-3726 (((-2 (|:| -1650 (-587 |#4|)) (|:| -1544 (-587 |#4|))) $) 105)) (-4124 (((-108) |#4| $) 136)) (-2628 (((-108) |#4| $) 133)) (-3263 (((-108) |#4| $) 137) (((-108) $) 134)) (-3831 (((-587 |#4|) $) 52 (|has| $ (-6 -4233)))) (-3266 (((-108) |#4| $) 104) (((-108) $) 103)) (-3464 ((|#3| $) 34)) (-2139 (((-108) $ (-707)) 43)) (-3757 (((-587 |#4|) $) 53 (|has| $ (-6 -4233)))) (-2221 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -4233))))) (-3833 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#4| |#4|) $) 47)) (-2820 (((-587 |#3|) $) 32)) (-2639 (((-108) |#3| $) 31)) (-3574 (((-108) $ (-707)) 42)) (-3688 (((-1067) $) 9)) (-1767 (((-3 |#4| (-587 $)) |#4| |#4| $) 128)) (-2031 (((-587 (-2 (|:| |val| |#4|) (|:| -1884 $))) |#4| |#4| $) 127)) (-1441 (((-3 |#4| "failed") $) 83)) (-3731 (((-587 $) |#4| $) 129)) (-4168 (((-3 (-108) (-587 $)) |#4| $) 132)) (-3395 (((-587 (-2 (|:| |val| (-108)) (|:| -1884 $))) |#4| $) 131) (((-108) |#4| $) 130)) (-1660 (((-587 $) |#4| $) 125) (((-587 $) (-587 |#4|) $) 124) (((-587 $) (-587 |#4|) (-587 $)) 123) (((-587 $) |#4| (-587 $)) 122)) (-3428 (($ |#4| $) 117) (($ (-587 |#4|) $) 116)) (-2323 (((-587 |#4|) $) 107)) (-3786 (((-108) |#4| $) 99) (((-108) $) 95)) (-1347 ((|#4| |#4| $) 90)) (-2146 (((-108) $ $) 110)) (-1341 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-513)))) (-1972 (((-108) |#4| $) 100) (((-108) $) 96)) (-4065 ((|#4| |#4| $) 91)) (-4147 (((-1031) $) 10)) (-2293 (((-3 |#4| "failed") $) 84)) (-3620 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-2001 (((-3 $ "failed") $ |#4|) 78)) (-2447 (($ $ |#4|) 77) (((-587 $) |#4| $) 115) (((-587 $) |#4| (-587 $)) 114) (((-587 $) (-587 |#4|) $) 113) (((-587 $) (-587 |#4|) (-587 $)) 112)) (-1789 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 |#4|) (-587 |#4|)) 59 (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013)))) (($ $ (-269 |#4|)) 57 (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013)))) (($ $ (-587 (-269 |#4|))) 56 (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013))))) (-2488 (((-108) $ $) 38)) (-3462 (((-108) $) 41)) (-4024 (($) 40)) (-1994 (((-707) $) 106)) (-4163 (((-707) |#4| $) 54 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -4233)))) (((-707) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4233)))) (-2404 (($ $) 39)) (-1430 (((-497) $) 69 (|has| |#4| (-562 (-497))))) (-2201 (($ (-587 |#4|)) 60)) (-3883 (($ $ |#3|) 28)) (-4029 (($ $ |#3|) 30)) (-3173 (($ $) 88)) (-3318 (($ $ |#3|) 29)) (-2189 (((-792) $) 11) (((-587 |#4|) $) 37)) (-3781 (((-707) $) 76 (|has| |#3| (-342)))) (-3234 (((-3 (-2 (|:| |bas| $) (|:| -1354 (-587 |#4|))) "failed") (-587 |#4|) (-1 (-108) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1354 (-587 |#4|))) "failed") (-587 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) 108)) (-3960 (((-108) $ (-1 (-108) |#4| (-587 |#4|))) 98)) (-1933 (((-587 $) |#4| $) 121) (((-587 $) |#4| (-587 $)) 120) (((-587 $) (-587 |#4|) $) 119) (((-587 $) (-587 |#4|) (-587 $)) 118)) (-3049 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4233)))) (-4099 (((-587 |#3|) $) 81)) (-4002 (((-108) |#4| $) 135)) (-2154 (((-108) |#3| $) 80)) (-1531 (((-108) $ $) 6)) (-3475 (((-707) $) 46 (|has| $ (-6 -4233)))))
+(((-1038 |#1| |#2| |#3| |#4|) (-1196) (-425) (-729) (-784) (-984 |t#1| |t#2| |t#3|)) (T -1038))
+NIL
+(-13 (-1022 |t#1| |t#2| |t#3| |t#4|) (-720 |t#1| |t#2| |t#3| |t#4|))
+(((-33) . T) ((-97) . T) ((-561 (-587 |#4|)) . T) ((-561 (-792)) . T) ((-139 |#4|) . T) ((-562 (-497)) |has| |#4| (-562 (-497))) ((-284 |#4|) -12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013))) ((-460 |#4|) . T) ((-482 |#4| |#4|) -12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013))) ((-720 |#1| |#2| |#3| |#4|) . T) ((-902 |#1| |#2| |#3| |#4|) . T) ((-989 |#1| |#2| |#3| |#4|) . T) ((-1013) . T) ((-1022 |#1| |#2| |#3| |#4|) . T) ((-1113 |#1| |#2| |#3| |#4|) . T) ((-1119) . T))
+((-3182 (((-587 |#2|) |#1|) 12)) (-3712 (((-587 |#2|) |#2| |#2| |#2| |#2| |#2|) 37) (((-587 |#2|) |#1|) 47)) (-3087 (((-587 |#2|) |#2| |#2| |#2|) 35) (((-587 |#2|) |#1|) 45)) (-4028 ((|#2| |#1|) 42)) (-2813 (((-2 (|:| |solns| (-587 |#2|)) (|:| |maps| (-587 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 16)) (-2177 (((-587 |#2|) |#2| |#2|) 34) (((-587 |#2|) |#1|) 44)) (-3810 (((-587 |#2|) |#2| |#2| |#2| |#2|) 36) (((-587 |#2|) |#1|) 46)) (-3451 ((|#2| |#2| |#2| |#2| |#2| |#2|) 41)) (-3298 ((|#2| |#2| |#2| |#2|) 39)) (-3336 ((|#2| |#2| |#2|) 38)) (-4164 ((|#2| |#2| |#2| |#2| |#2|) 40)))
+(((-1039 |#1| |#2|) (-10 -7 (-15 -3182 ((-587 |#2|) |#1|)) (-15 -4028 (|#2| |#1|)) (-15 -2813 ((-2 (|:| |solns| (-587 |#2|)) (|:| |maps| (-587 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -2177 ((-587 |#2|) |#1|)) (-15 -3087 ((-587 |#2|) |#1|)) (-15 -3810 ((-587 |#2|) |#1|)) (-15 -3712 ((-587 |#2|) |#1|)) (-15 -2177 ((-587 |#2|) |#2| |#2|)) (-15 -3087 ((-587 |#2|) |#2| |#2| |#2|)) (-15 -3810 ((-587 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3712 ((-587 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3336 (|#2| |#2| |#2|)) (-15 -3298 (|#2| |#2| |#2| |#2|)) (-15 -4164 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3451 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1141 |#2|) (-13 (-337) (-10 -8 (-15 ** ($ $ (-381 (-521))))))) (T -1039))
+((-3451 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-337) (-10 -8 (-15 ** ($ $ (-381 (-521))))))) (-5 *1 (-1039 *3 *2)) (-4 *3 (-1141 *2)))) (-4164 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-337) (-10 -8 (-15 ** ($ $ (-381 (-521))))))) (-5 *1 (-1039 *3 *2)) (-4 *3 (-1141 *2)))) (-3298 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-337) (-10 -8 (-15 ** ($ $ (-381 (-521))))))) (-5 *1 (-1039 *3 *2)) (-4 *3 (-1141 *2)))) (-3336 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-337) (-10 -8 (-15 ** ($ $ (-381 (-521))))))) (-5 *1 (-1039 *3 *2)) (-4 *3 (-1141 *2)))) (-3712 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-337) (-10 -8 (-15 ** ($ $ (-381 (-521))))))) (-5 *2 (-587 *3)) (-5 *1 (-1039 *4 *3)) (-4 *4 (-1141 *3)))) (-3810 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-337) (-10 -8 (-15 ** ($ $ (-381 (-521))))))) (-5 *2 (-587 *3)) (-5 *1 (-1039 *4 *3)) (-4 *4 (-1141 *3)))) (-3087 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-337) (-10 -8 (-15 ** ($ $ (-381 (-521))))))) (-5 *2 (-587 *3)) (-5 *1 (-1039 *4 *3)) (-4 *4 (-1141 *3)))) (-2177 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-337) (-10 -8 (-15 ** ($ $ (-381 (-521))))))) (-5 *2 (-587 *3)) (-5 *1 (-1039 *4 *3)) (-4 *4 (-1141 *3)))) (-3712 (*1 *2 *3) (-12 (-4 *4 (-13 (-337) (-10 -8 (-15 ** ($ $ (-381 (-521))))))) (-5 *2 (-587 *4)) (-5 *1 (-1039 *3 *4)) (-4 *3 (-1141 *4)))) (-3810 (*1 *2 *3) (-12 (-4 *4 (-13 (-337) (-10 -8 (-15 ** ($ $ (-381 (-521))))))) (-5 *2 (-587 *4)) (-5 *1 (-1039 *3 *4)) (-4 *3 (-1141 *4)))) (-3087 (*1 *2 *3) (-12 (-4 *4 (-13 (-337) (-10 -8 (-15 ** ($ $ (-381 (-521))))))) (-5 *2 (-587 *4)) (-5 *1 (-1039 *3 *4)) (-4 *3 (-1141 *4)))) (-2177 (*1 *2 *3) (-12 (-4 *4 (-13 (-337) (-10 -8 (-15 ** ($ $ (-381 (-521))))))) (-5 *2 (-587 *4)) (-5 *1 (-1039 *3 *4)) (-4 *3 (-1141 *4)))) (-2813 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-337) (-10 -8 (-15 ** ($ $ (-381 (-521))))))) (-5 *2 (-2 (|:| |solns| (-587 *5)) (|:| |maps| (-587 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1039 *3 *5)) (-4 *3 (-1141 *5)))) (-4028 (*1 *2 *3) (-12 (-4 *2 (-13 (-337) (-10 -8 (-15 ** ($ $ (-381 (-521))))))) (-5 *1 (-1039 *3 *2)) (-4 *3 (-1141 *2)))) (-3182 (*1 *2 *3) (-12 (-4 *4 (-13 (-337) (-10 -8 (-15 ** ($ $ (-381 (-521))))))) (-5 *2 (-587 *4)) (-5 *1 (-1039 *3 *4)) (-4 *3 (-1141 *4)))))
+(-10 -7 (-15 -3182 ((-587 |#2|) |#1|)) (-15 -4028 (|#2| |#1|)) (-15 -2813 ((-2 (|:| |solns| (-587 |#2|)) (|:| |maps| (-587 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -2177 ((-587 |#2|) |#1|)) (-15 -3087 ((-587 |#2|) |#1|)) (-15 -3810 ((-587 |#2|) |#1|)) (-15 -3712 ((-587 |#2|) |#1|)) (-15 -2177 ((-587 |#2|) |#2| |#2|)) (-15 -3087 ((-587 |#2|) |#2| |#2| |#2|)) (-15 -3810 ((-587 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3712 ((-587 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3336 (|#2| |#2| |#2|)) (-15 -3298 (|#2| |#2| |#2| |#2|)) (-15 -4164 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3451 (|#2| |#2| |#2| |#2| |#2| |#2|)))
+((-3884 (((-587 (-587 (-269 (-290 |#1|)))) (-587 (-269 (-381 (-881 |#1|))))) 95) (((-587 (-587 (-269 (-290 |#1|)))) (-587 (-269 (-381 (-881 |#1|)))) (-587 (-1084))) 94) (((-587 (-587 (-269 (-290 |#1|)))) (-587 (-381 (-881 |#1|)))) 92) (((-587 (-587 (-269 (-290 |#1|)))) (-587 (-381 (-881 |#1|))) (-587 (-1084))) 90) (((-587 (-269 (-290 |#1|))) (-269 (-381 (-881 |#1|)))) 76) (((-587 (-269 (-290 |#1|))) (-269 (-381 (-881 |#1|))) (-1084)) 77) (((-587 (-269 (-290 |#1|))) (-381 (-881 |#1|))) 71) (((-587 (-269 (-290 |#1|))) (-381 (-881 |#1|)) (-1084)) 60)) (-4030 (((-587 (-587 (-290 |#1|))) (-587 (-381 (-881 |#1|))) (-587 (-1084))) 88) (((-587 (-290 |#1|)) (-381 (-881 |#1|)) (-1084)) 43)) (-3031 (((-1074 (-587 (-290 |#1|)) (-587 (-269 (-290 |#1|)))) (-381 (-881 |#1|)) (-1084)) 98) (((-1074 (-587 (-290 |#1|)) (-587 (-269 (-290 |#1|)))) (-269 (-381 (-881 |#1|))) (-1084)) 97)))
+(((-1040 |#1|) (-10 -7 (-15 -3884 ((-587 (-269 (-290 |#1|))) (-381 (-881 |#1|)) (-1084))) (-15 -3884 ((-587 (-269 (-290 |#1|))) (-381 (-881 |#1|)))) (-15 -3884 ((-587 (-269 (-290 |#1|))) (-269 (-381 (-881 |#1|))) (-1084))) (-15 -3884 ((-587 (-269 (-290 |#1|))) (-269 (-381 (-881 |#1|))))) (-15 -3884 ((-587 (-587 (-269 (-290 |#1|)))) (-587 (-381 (-881 |#1|))) (-587 (-1084)))) (-15 -3884 ((-587 (-587 (-269 (-290 |#1|)))) (-587 (-381 (-881 |#1|))))) (-15 -3884 ((-587 (-587 (-269 (-290 |#1|)))) (-587 (-269 (-381 (-881 |#1|)))) (-587 (-1084)))) (-15 -3884 ((-587 (-587 (-269 (-290 |#1|)))) (-587 (-269 (-381 (-881 |#1|)))))) (-15 -4030 ((-587 (-290 |#1|)) (-381 (-881 |#1|)) (-1084))) (-15 -4030 ((-587 (-587 (-290 |#1|))) (-587 (-381 (-881 |#1|))) (-587 (-1084)))) (-15 -3031 ((-1074 (-587 (-290 |#1|)) (-587 (-269 (-290 |#1|)))) (-269 (-381 (-881 |#1|))) (-1084))) (-15 -3031 ((-1074 (-587 (-290 |#1|)) (-587 (-269 (-290 |#1|)))) (-381 (-881 |#1|)) (-1084)))) (-13 (-282) (-784) (-135))) (T -1040))
+((-3031 (*1 *2 *3 *4) (-12 (-5 *3 (-381 (-881 *5))) (-5 *4 (-1084)) (-4 *5 (-13 (-282) (-784) (-135))) (-5 *2 (-1074 (-587 (-290 *5)) (-587 (-269 (-290 *5))))) (-5 *1 (-1040 *5)))) (-3031 (*1 *2 *3 *4) (-12 (-5 *3 (-269 (-381 (-881 *5)))) (-5 *4 (-1084)) (-4 *5 (-13 (-282) (-784) (-135))) (-5 *2 (-1074 (-587 (-290 *5)) (-587 (-269 (-290 *5))))) (-5 *1 (-1040 *5)))) (-4030 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-381 (-881 *5)))) (-5 *4 (-587 (-1084))) (-4 *5 (-13 (-282) (-784) (-135))) (-5 *2 (-587 (-587 (-290 *5)))) (-5 *1 (-1040 *5)))) (-4030 (*1 *2 *3 *4) (-12 (-5 *3 (-381 (-881 *5))) (-5 *4 (-1084)) (-4 *5 (-13 (-282) (-784) (-135))) (-5 *2 (-587 (-290 *5))) (-5 *1 (-1040 *5)))) (-3884 (*1 *2 *3) (-12 (-5 *3 (-587 (-269 (-381 (-881 *4))))) (-4 *4 (-13 (-282) (-784) (-135))) (-5 *2 (-587 (-587 (-269 (-290 *4))))) (-5 *1 (-1040 *4)))) (-3884 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-269 (-381 (-881 *5))))) (-5 *4 (-587 (-1084))) (-4 *5 (-13 (-282) (-784) (-135))) (-5 *2 (-587 (-587 (-269 (-290 *5))))) (-5 *1 (-1040 *5)))) (-3884 (*1 *2 *3) (-12 (-5 *3 (-587 (-381 (-881 *4)))) (-4 *4 (-13 (-282) (-784) (-135))) (-5 *2 (-587 (-587 (-269 (-290 *4))))) (-5 *1 (-1040 *4)))) (-3884 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-381 (-881 *5)))) (-5 *4 (-587 (-1084))) (-4 *5 (-13 (-282) (-784) (-135))) (-5 *2 (-587 (-587 (-269 (-290 *5))))) (-5 *1 (-1040 *5)))) (-3884 (*1 *2 *3) (-12 (-5 *3 (-269 (-381 (-881 *4)))) (-4 *4 (-13 (-282) (-784) (-135))) (-5 *2 (-587 (-269 (-290 *4)))) (-5 *1 (-1040 *4)))) (-3884 (*1 *2 *3 *4) (-12 (-5 *3 (-269 (-381 (-881 *5)))) (-5 *4 (-1084)) (-4 *5 (-13 (-282) (-784) (-135))) (-5 *2 (-587 (-269 (-290 *5)))) (-5 *1 (-1040 *5)))) (-3884 (*1 *2 *3) (-12 (-5 *3 (-381 (-881 *4))) (-4 *4 (-13 (-282) (-784) (-135))) (-5 *2 (-587 (-269 (-290 *4)))) (-5 *1 (-1040 *4)))) (-3884 (*1 *2 *3 *4) (-12 (-5 *3 (-381 (-881 *5))) (-5 *4 (-1084)) (-4 *5 (-13 (-282) (-784) (-135))) (-5 *2 (-587 (-269 (-290 *5)))) (-5 *1 (-1040 *5)))))
+(-10 -7 (-15 -3884 ((-587 (-269 (-290 |#1|))) (-381 (-881 |#1|)) (-1084))) (-15 -3884 ((-587 (-269 (-290 |#1|))) (-381 (-881 |#1|)))) (-15 -3884 ((-587 (-269 (-290 |#1|))) (-269 (-381 (-881 |#1|))) (-1084))) (-15 -3884 ((-587 (-269 (-290 |#1|))) (-269 (-381 (-881 |#1|))))) (-15 -3884 ((-587 (-587 (-269 (-290 |#1|)))) (-587 (-381 (-881 |#1|))) (-587 (-1084)))) (-15 -3884 ((-587 (-587 (-269 (-290 |#1|)))) (-587 (-381 (-881 |#1|))))) (-15 -3884 ((-587 (-587 (-269 (-290 |#1|)))) (-587 (-269 (-381 (-881 |#1|)))) (-587 (-1084)))) (-15 -3884 ((-587 (-587 (-269 (-290 |#1|)))) (-587 (-269 (-381 (-881 |#1|)))))) (-15 -4030 ((-587 (-290 |#1|)) (-381 (-881 |#1|)) (-1084))) (-15 -4030 ((-587 (-587 (-290 |#1|))) (-587 (-381 (-881 |#1|))) (-587 (-1084)))) (-15 -3031 ((-1074 (-587 (-290 |#1|)) (-587 (-269 (-290 |#1|)))) (-269 (-381 (-881 |#1|))) (-1084))) (-15 -3031 ((-1074 (-587 (-290 |#1|)) (-587 (-269 (-290 |#1|)))) (-381 (-881 |#1|)) (-1084))))
+((-1657 (((-381 (-1080 (-290 |#1|))) (-1165 (-290 |#1|)) (-381 (-1080 (-290 |#1|))) (-521)) 27)) (-2989 (((-381 (-1080 (-290 |#1|))) (-381 (-1080 (-290 |#1|))) (-381 (-1080 (-290 |#1|))) (-381 (-1080 (-290 |#1|)))) 39)))
+(((-1041 |#1|) (-10 -7 (-15 -2989 ((-381 (-1080 (-290 |#1|))) (-381 (-1080 (-290 |#1|))) (-381 (-1080 (-290 |#1|))) (-381 (-1080 (-290 |#1|))))) (-15 -1657 ((-381 (-1080 (-290 |#1|))) (-1165 (-290 |#1|)) (-381 (-1080 (-290 |#1|))) (-521)))) (-13 (-513) (-784))) (T -1041))
+((-1657 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-381 (-1080 (-290 *5)))) (-5 *3 (-1165 (-290 *5))) (-5 *4 (-521)) (-4 *5 (-13 (-513) (-784))) (-5 *1 (-1041 *5)))) (-2989 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-381 (-1080 (-290 *3)))) (-4 *3 (-13 (-513) (-784))) (-5 *1 (-1041 *3)))))
+(-10 -7 (-15 -2989 ((-381 (-1080 (-290 |#1|))) (-381 (-1080 (-290 |#1|))) (-381 (-1080 (-290 |#1|))) (-381 (-1080 (-290 |#1|))))) (-15 -1657 ((-381 (-1080 (-290 |#1|))) (-1165 (-290 |#1|)) (-381 (-1080 (-290 |#1|))) (-521))))
+((-3182 (((-587 (-587 (-269 (-290 |#1|)))) (-587 (-269 (-290 |#1|))) (-587 (-1084))) 217) (((-587 (-269 (-290 |#1|))) (-290 |#1|) (-1084)) 20) (((-587 (-269 (-290 |#1|))) (-269 (-290 |#1|)) (-1084)) 26) (((-587 (-269 (-290 |#1|))) (-269 (-290 |#1|))) 25) (((-587 (-269 (-290 |#1|))) (-290 |#1|)) 21)))
+(((-1042 |#1|) (-10 -7 (-15 -3182 ((-587 (-269 (-290 |#1|))) (-290 |#1|))) (-15 -3182 ((-587 (-269 (-290 |#1|))) (-269 (-290 |#1|)))) (-15 -3182 ((-587 (-269 (-290 |#1|))) (-269 (-290 |#1|)) (-1084))) (-15 -3182 ((-587 (-269 (-290 |#1|))) (-290 |#1|) (-1084))) (-15 -3182 ((-587 (-587 (-269 (-290 |#1|)))) (-587 (-269 (-290 |#1|))) (-587 (-1084))))) (-13 (-784) (-282) (-961 (-521)) (-583 (-521)) (-135))) (T -1042))
+((-3182 (*1 *2 *3 *4) (-12 (-5 *4 (-587 (-1084))) (-4 *5 (-13 (-784) (-282) (-961 (-521)) (-583 (-521)) (-135))) (-5 *2 (-587 (-587 (-269 (-290 *5))))) (-5 *1 (-1042 *5)) (-5 *3 (-587 (-269 (-290 *5)))))) (-3182 (*1 *2 *3 *4) (-12 (-5 *4 (-1084)) (-4 *5 (-13 (-784) (-282) (-961 (-521)) (-583 (-521)) (-135))) (-5 *2 (-587 (-269 (-290 *5)))) (-5 *1 (-1042 *5)) (-5 *3 (-290 *5)))) (-3182 (*1 *2 *3 *4) (-12 (-5 *4 (-1084)) (-4 *5 (-13 (-784) (-282) (-961 (-521)) (-583 (-521)) (-135))) (-5 *2 (-587 (-269 (-290 *5)))) (-5 *1 (-1042 *5)) (-5 *3 (-269 (-290 *5))))) (-3182 (*1 *2 *3) (-12 (-4 *4 (-13 (-784) (-282) (-961 (-521)) (-583 (-521)) (-135))) (-5 *2 (-587 (-269 (-290 *4)))) (-5 *1 (-1042 *4)) (-5 *3 (-269 (-290 *4))))) (-3182 (*1 *2 *3) (-12 (-4 *4 (-13 (-784) (-282) (-961 (-521)) (-583 (-521)) (-135))) (-5 *2 (-587 (-269 (-290 *4)))) (-5 *1 (-1042 *4)) (-5 *3 (-290 *4)))))
+(-10 -7 (-15 -3182 ((-587 (-269 (-290 |#1|))) (-290 |#1|))) (-15 -3182 ((-587 (-269 (-290 |#1|))) (-269 (-290 |#1|)))) (-15 -3182 ((-587 (-269 (-290 |#1|))) (-269 (-290 |#1|)) (-1084))) (-15 -3182 ((-587 (-269 (-290 |#1|))) (-290 |#1|) (-1084))) (-15 -3182 ((-587 (-587 (-269 (-290 |#1|)))) (-587 (-269 (-290 |#1|))) (-587 (-1084)))))
+((-1214 ((|#2| |#2|) 20 (|has| |#1| (-784))) ((|#2| |#2| (-1 (-108) |#1| |#1|)) 16)) (-2775 ((|#2| |#2|) 19 (|has| |#1| (-784))) ((|#2| |#2| (-1 (-108) |#1| |#1|)) 15)))
+(((-1043 |#1| |#2|) (-10 -7 (-15 -2775 (|#2| |#2| (-1 (-108) |#1| |#1|))) (-15 -1214 (|#2| |#2| (-1 (-108) |#1| |#1|))) (IF (|has| |#1| (-784)) (PROGN (-15 -2775 (|#2| |#2|)) (-15 -1214 (|#2| |#2|))) |%noBranch|)) (-1119) (-13 (-554 (-521) |#1|) (-10 -7 (-6 -4233) (-6 -4234)))) (T -1043))
+((-1214 (*1 *2 *2) (-12 (-4 *3 (-784)) (-4 *3 (-1119)) (-5 *1 (-1043 *3 *2)) (-4 *2 (-13 (-554 (-521) *3) (-10 -7 (-6 -4233) (-6 -4234)))))) (-2775 (*1 *2 *2) (-12 (-4 *3 (-784)) (-4 *3 (-1119)) (-5 *1 (-1043 *3 *2)) (-4 *2 (-13 (-554 (-521) *3) (-10 -7 (-6 -4233) (-6 -4234)))))) (-1214 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1119)) (-5 *1 (-1043 *4 *2)) (-4 *2 (-13 (-554 (-521) *4) (-10 -7 (-6 -4233) (-6 -4234)))))) (-2775 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1119)) (-5 *1 (-1043 *4 *2)) (-4 *2 (-13 (-554 (-521) *4) (-10 -7 (-6 -4233) (-6 -4234)))))))
+(-10 -7 (-15 -2775 (|#2| |#2| (-1 (-108) |#1| |#1|))) (-15 -1214 (|#2| |#2| (-1 (-108) |#1| |#1|))) (IF (|has| |#1| (-784)) (PROGN (-15 -2775 (|#2| |#2|)) (-15 -1214 (|#2| |#2|))) |%noBranch|))
+((-1415 (((-108) $ $) NIL)) (-1356 (((-1073 3 |#1|) $) 106)) (-2333 (((-108) $) 72)) (-1498 (($ $ (-587 (-872 |#1|))) 20) (($ $ (-587 (-587 |#1|))) 75) (($ (-587 (-872 |#1|))) 74) (((-587 (-872 |#1|)) $) 73)) (-1510 (((-108) $) 41)) (-2735 (($ $ (-872 |#1|)) 46) (($ $ (-587 |#1|)) 51) (($ $ (-707)) 53) (($ (-872 |#1|)) 47) (((-872 |#1|) $) 45)) (-3341 (((-2 (|:| -1461 (-707)) (|:| |curves| (-707)) (|:| |polygons| (-707)) (|:| |constructs| (-707))) $) 104)) (-3457 (((-707) $) 26)) (-1489 (((-707) $) 25)) (-3619 (($ $ (-707) (-872 |#1|)) 39)) (-3479 (((-108) $) 82)) (-3973 (($ $ (-587 (-587 (-872 |#1|))) (-587 (-156)) (-156)) 89) (($ $ (-587 (-587 (-587 |#1|))) (-587 (-156)) (-156)) 91) (($ $ (-587 (-587 (-872 |#1|))) (-108) (-108)) 85) (($ $ (-587 (-587 (-587 |#1|))) (-108) (-108)) 93) (($ (-587 (-587 (-872 |#1|)))) 86) (($ (-587 (-587 (-872 |#1|))) (-108) (-108)) 87) (((-587 (-587 (-872 |#1|))) $) 84)) (-1318 (($ (-587 $)) 28) (($ $ $) 29)) (-2000 (((-587 (-156)) $) 102)) (-4041 (((-587 (-872 |#1|)) $) 97)) (-3877 (((-587 (-587 (-156))) $) 101)) (-3807 (((-587 (-587 (-587 (-872 |#1|)))) $) NIL)) (-3855 (((-587 (-587 (-587 (-707)))) $) 99)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-3591 (((-707) $ (-587 (-872 |#1|))) 37)) (-3791 (((-108) $) 54)) (-2219 (($ $ (-587 (-872 |#1|))) 56) (($ $ (-587 (-587 |#1|))) 62) (($ (-587 (-872 |#1|))) 57) (((-587 (-872 |#1|)) $) 55)) (-3456 (($) 23) (($ (-1073 3 |#1|)) 24)) (-2404 (($ $) 35)) (-1595 (((-587 $) $) 34)) (-1378 (($ (-587 $)) 31)) (-1224 (((-587 $) $) 33)) (-2189 (((-792) $) 110)) (-3129 (((-108) $) 64)) (-2752 (($ $ (-587 (-872 |#1|))) 66) (($ $ (-587 (-587 |#1|))) 69) (($ (-587 (-872 |#1|))) 67) (((-587 (-872 |#1|)) $) 65)) (-4070 (($ $) 105)) (-1531 (((-108) $ $) NIL)))
+(((-1044 |#1|) (-1045 |#1|) (-970)) (T -1044))
+NIL
+(-1045 |#1|)
+((-1415 (((-108) $ $) 7)) (-1356 (((-1073 3 |#1|) $) 13)) (-2333 (((-108) $) 29)) (-1498 (($ $ (-587 (-872 |#1|))) 33) (($ $ (-587 (-587 |#1|))) 32) (($ (-587 (-872 |#1|))) 31) (((-587 (-872 |#1|)) $) 30)) (-1510 (((-108) $) 44)) (-2735 (($ $ (-872 |#1|)) 49) (($ $ (-587 |#1|)) 48) (($ $ (-707)) 47) (($ (-872 |#1|)) 46) (((-872 |#1|) $) 45)) (-3341 (((-2 (|:| -1461 (-707)) (|:| |curves| (-707)) (|:| |polygons| (-707)) (|:| |constructs| (-707))) $) 15)) (-3457 (((-707) $) 58)) (-1489 (((-707) $) 59)) (-3619 (($ $ (-707) (-872 |#1|)) 50)) (-3479 (((-108) $) 21)) (-3973 (($ $ (-587 (-587 (-872 |#1|))) (-587 (-156)) (-156)) 28) (($ $ (-587 (-587 (-587 |#1|))) (-587 (-156)) (-156)) 27) (($ $ (-587 (-587 (-872 |#1|))) (-108) (-108)) 26) (($ $ (-587 (-587 (-587 |#1|))) (-108) (-108)) 25) (($ (-587 (-587 (-872 |#1|)))) 24) (($ (-587 (-587 (-872 |#1|))) (-108) (-108)) 23) (((-587 (-587 (-872 |#1|))) $) 22)) (-1318 (($ (-587 $)) 57) (($ $ $) 56)) (-2000 (((-587 (-156)) $) 16)) (-4041 (((-587 (-872 |#1|)) $) 20)) (-3877 (((-587 (-587 (-156))) $) 17)) (-3807 (((-587 (-587 (-587 (-872 |#1|)))) $) 18)) (-3855 (((-587 (-587 (-587 (-707)))) $) 19)) (-3688 (((-1067) $) 9)) (-4147 (((-1031) $) 10)) (-3591 (((-707) $ (-587 (-872 |#1|))) 51)) (-3791 (((-108) $) 39)) (-2219 (($ $ (-587 (-872 |#1|))) 43) (($ $ (-587 (-587 |#1|))) 42) (($ (-587 (-872 |#1|))) 41) (((-587 (-872 |#1|)) $) 40)) (-3456 (($) 61) (($ (-1073 3 |#1|)) 60)) (-2404 (($ $) 52)) (-1595 (((-587 $) $) 53)) (-1378 (($ (-587 $)) 55)) (-1224 (((-587 $) $) 54)) (-2189 (((-792) $) 11)) (-3129 (((-108) $) 34)) (-2752 (($ $ (-587 (-872 |#1|))) 38) (($ $ (-587 (-587 |#1|))) 37) (($ (-587 (-872 |#1|))) 36) (((-587 (-872 |#1|)) $) 35)) (-4070 (($ $) 14)) (-1531 (((-108) $ $) 6)))
+(((-1045 |#1|) (-1196) (-970)) (T -1045))
+((-2189 (*1 *2 *1) (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970)) (-5 *2 (-792)))) (-3456 (*1 *1) (-12 (-4 *1 (-1045 *2)) (-4 *2 (-970)))) (-3456 (*1 *1 *2) (-12 (-5 *2 (-1073 3 *3)) (-4 *3 (-970)) (-4 *1 (-1045 *3)))) (-1489 (*1 *2 *1) (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970)) (-5 *2 (-707)))) (-3457 (*1 *2 *1) (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970)) (-5 *2 (-707)))) (-1318 (*1 *1 *2) (-12 (-5 *2 (-587 *1)) (-4 *1 (-1045 *3)) (-4 *3 (-970)))) (-1318 (*1 *1 *1 *1) (-12 (-4 *1 (-1045 *2)) (-4 *2 (-970)))) (-1378 (*1 *1 *2) (-12 (-5 *2 (-587 *1)) (-4 *1 (-1045 *3)) (-4 *3 (-970)))) (-1224 (*1 *2 *1) (-12 (-4 *3 (-970)) (-5 *2 (-587 *1)) (-4 *1 (-1045 *3)))) (-1595 (*1 *2 *1) (-12 (-4 *3 (-970)) (-5 *2 (-587 *1)) (-4 *1 (-1045 *3)))) (-2404 (*1 *1 *1) (-12 (-4 *1 (-1045 *2)) (-4 *2 (-970)))) (-3591 (*1 *2 *1 *3) (-12 (-5 *3 (-587 (-872 *4))) (-4 *1 (-1045 *4)) (-4 *4 (-970)) (-5 *2 (-707)))) (-3619 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-707)) (-5 *3 (-872 *4)) (-4 *1 (-1045 *4)) (-4 *4 (-970)))) (-2735 (*1 *1 *1 *2) (-12 (-5 *2 (-872 *3)) (-4 *1 (-1045 *3)) (-4 *3 (-970)))) (-2735 (*1 *1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *1 (-1045 *3)) (-4 *3 (-970)))) (-2735 (*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-4 *1 (-1045 *3)) (-4 *3 (-970)))) (-2735 (*1 *1 *2) (-12 (-5 *2 (-872 *3)) (-4 *3 (-970)) (-4 *1 (-1045 *3)))) (-2735 (*1 *2 *1) (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970)) (-5 *2 (-872 *3)))) (-1510 (*1 *2 *1) (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970)) (-5 *2 (-108)))) (-2219 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-872 *3))) (-4 *1 (-1045 *3)) (-4 *3 (-970)))) (-2219 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-587 *3))) (-4 *1 (-1045 *3)) (-4 *3 (-970)))) (-2219 (*1 *1 *2) (-12 (-5 *2 (-587 (-872 *3))) (-4 *3 (-970)) (-4 *1 (-1045 *3)))) (-2219 (*1 *2 *1) (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970)) (-5 *2 (-587 (-872 *3))))) (-3791 (*1 *2 *1) (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970)) (-5 *2 (-108)))) (-2752 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-872 *3))) (-4 *1 (-1045 *3)) (-4 *3 (-970)))) (-2752 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-587 *3))) (-4 *1 (-1045 *3)) (-4 *3 (-970)))) (-2752 (*1 *1 *2) (-12 (-5 *2 (-587 (-872 *3))) (-4 *3 (-970)) (-4 *1 (-1045 *3)))) (-2752 (*1 *2 *1) (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970)) (-5 *2 (-587 (-872 *3))))) (-3129 (*1 *2 *1) (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970)) (-5 *2 (-108)))) (-1498 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-872 *3))) (-4 *1 (-1045 *3)) (-4 *3 (-970)))) (-1498 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-587 *3))) (-4 *1 (-1045 *3)) (-4 *3 (-970)))) (-1498 (*1 *1 *2) (-12 (-5 *2 (-587 (-872 *3))) (-4 *3 (-970)) (-4 *1 (-1045 *3)))) (-1498 (*1 *2 *1) (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970)) (-5 *2 (-587 (-872 *3))))) (-2333 (*1 *2 *1) (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970)) (-5 *2 (-108)))) (-3973 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-587 (-587 (-872 *5)))) (-5 *3 (-587 (-156))) (-5 *4 (-156)) (-4 *1 (-1045 *5)) (-4 *5 (-970)))) (-3973 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-587 (-587 (-587 *5)))) (-5 *3 (-587 (-156))) (-5 *4 (-156)) (-4 *1 (-1045 *5)) (-4 *5 (-970)))) (-3973 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-587 (-587 (-872 *4)))) (-5 *3 (-108)) (-4 *1 (-1045 *4)) (-4 *4 (-970)))) (-3973 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-587 (-587 (-587 *4)))) (-5 *3 (-108)) (-4 *1 (-1045 *4)) (-4 *4 (-970)))) (-3973 (*1 *1 *2) (-12 (-5 *2 (-587 (-587 (-872 *3)))) (-4 *3 (-970)) (-4 *1 (-1045 *3)))) (-3973 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-587 (-587 (-872 *4)))) (-5 *3 (-108)) (-4 *4 (-970)) (-4 *1 (-1045 *4)))) (-3973 (*1 *2 *1) (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970)) (-5 *2 (-587 (-587 (-872 *3)))))) (-3479 (*1 *2 *1) (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970)) (-5 *2 (-108)))) (-4041 (*1 *2 *1) (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970)) (-5 *2 (-587 (-872 *3))))) (-3855 (*1 *2 *1) (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970)) (-5 *2 (-587 (-587 (-587 (-707))))))) (-3807 (*1 *2 *1) (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970)) (-5 *2 (-587 (-587 (-587 (-872 *3))))))) (-3877 (*1 *2 *1) (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970)) (-5 *2 (-587 (-587 (-156)))))) (-2000 (*1 *2 *1) (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970)) (-5 *2 (-587 (-156))))) (-3341 (*1 *2 *1) (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970)) (-5 *2 (-2 (|:| -1461 (-707)) (|:| |curves| (-707)) (|:| |polygons| (-707)) (|:| |constructs| (-707)))))) (-4070 (*1 *1 *1) (-12 (-4 *1 (-1045 *2)) (-4 *2 (-970)))) (-1356 (*1 *2 *1) (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970)) (-5 *2 (-1073 3 *3)))))
+(-13 (-1013) (-10 -8 (-15 -3456 ($)) (-15 -3456 ($ (-1073 3 |t#1|))) (-15 -1489 ((-707) $)) (-15 -3457 ((-707) $)) (-15 -1318 ($ (-587 $))) (-15 -1318 ($ $ $)) (-15 -1378 ($ (-587 $))) (-15 -1224 ((-587 $) $)) (-15 -1595 ((-587 $) $)) (-15 -2404 ($ $)) (-15 -3591 ((-707) $ (-587 (-872 |t#1|)))) (-15 -3619 ($ $ (-707) (-872 |t#1|))) (-15 -2735 ($ $ (-872 |t#1|))) (-15 -2735 ($ $ (-587 |t#1|))) (-15 -2735 ($ $ (-707))) (-15 -2735 ($ (-872 |t#1|))) (-15 -2735 ((-872 |t#1|) $)) (-15 -1510 ((-108) $)) (-15 -2219 ($ $ (-587 (-872 |t#1|)))) (-15 -2219 ($ $ (-587 (-587 |t#1|)))) (-15 -2219 ($ (-587 (-872 |t#1|)))) (-15 -2219 ((-587 (-872 |t#1|)) $)) (-15 -3791 ((-108) $)) (-15 -2752 ($ $ (-587 (-872 |t#1|)))) (-15 -2752 ($ $ (-587 (-587 |t#1|)))) (-15 -2752 ($ (-587 (-872 |t#1|)))) (-15 -2752 ((-587 (-872 |t#1|)) $)) (-15 -3129 ((-108) $)) (-15 -1498 ($ $ (-587 (-872 |t#1|)))) (-15 -1498 ($ $ (-587 (-587 |t#1|)))) (-15 -1498 ($ (-587 (-872 |t#1|)))) (-15 -1498 ((-587 (-872 |t#1|)) $)) (-15 -2333 ((-108) $)) (-15 -3973 ($ $ (-587 (-587 (-872 |t#1|))) (-587 (-156)) (-156))) (-15 -3973 ($ $ (-587 (-587 (-587 |t#1|))) (-587 (-156)) (-156))) (-15 -3973 ($ $ (-587 (-587 (-872 |t#1|))) (-108) (-108))) (-15 -3973 ($ $ (-587 (-587 (-587 |t#1|))) (-108) (-108))) (-15 -3973 ($ (-587 (-587 (-872 |t#1|))))) (-15 -3973 ($ (-587 (-587 (-872 |t#1|))) (-108) (-108))) (-15 -3973 ((-587 (-587 (-872 |t#1|))) $)) (-15 -3479 ((-108) $)) (-15 -4041 ((-587 (-872 |t#1|)) $)) (-15 -3855 ((-587 (-587 (-587 (-707)))) $)) (-15 -3807 ((-587 (-587 (-587 (-872 |t#1|)))) $)) (-15 -3877 ((-587 (-587 (-156))) $)) (-15 -2000 ((-587 (-156)) $)) (-15 -3341 ((-2 (|:| -1461 (-707)) (|:| |curves| (-707)) (|:| |polygons| (-707)) (|:| |constructs| (-707))) $)) (-15 -4070 ($ $)) (-15 -1356 ((-1073 3 |t#1|) $)) (-15 -2189 ((-792) $))))
+(((-97) . T) ((-561 (-792)) . T) ((-1013) . T))
+((-2579 (((-587 (-1089)) (-1067)) 8)))
+(((-1046) (-10 -7 (-15 -2579 ((-587 (-1089)) (-1067))))) (T -1046))
+((-2579 (*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-587 (-1089))) (-5 *1 (-1046)))))
+(-10 -7 (-15 -2579 ((-587 (-1089)) (-1067))))
+((-2773 (((-1170) (-587 (-792))) 23) (((-1170) (-792)) 22)) (-3967 (((-1170) (-587 (-792))) 21) (((-1170) (-792)) 20)) (-2009 (((-1170) (-587 (-792))) 19) (((-1170) (-792)) 11) (((-1170) (-1067) (-792)) 17)))
+(((-1047) (-10 -7 (-15 -2009 ((-1170) (-1067) (-792))) (-15 -2009 ((-1170) (-792))) (-15 -3967 ((-1170) (-792))) (-15 -2773 ((-1170) (-792))) (-15 -2009 ((-1170) (-587 (-792)))) (-15 -3967 ((-1170) (-587 (-792)))) (-15 -2773 ((-1170) (-587 (-792)))))) (T -1047))
+((-2773 (*1 *2 *3) (-12 (-5 *3 (-587 (-792))) (-5 *2 (-1170)) (-5 *1 (-1047)))) (-3967 (*1 *2 *3) (-12 (-5 *3 (-587 (-792))) (-5 *2 (-1170)) (-5 *1 (-1047)))) (-2009 (*1 *2 *3) (-12 (-5 *3 (-587 (-792))) (-5 *2 (-1170)) (-5 *1 (-1047)))) (-2773 (*1 *2 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1170)) (-5 *1 (-1047)))) (-3967 (*1 *2 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1170)) (-5 *1 (-1047)))) (-2009 (*1 *2 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1170)) (-5 *1 (-1047)))) (-2009 (*1 *2 *3 *4) (-12 (-5 *3 (-1067)) (-5 *4 (-792)) (-5 *2 (-1170)) (-5 *1 (-1047)))))
+(-10 -7 (-15 -2009 ((-1170) (-1067) (-792))) (-15 -2009 ((-1170) (-792))) (-15 -3967 ((-1170) (-792))) (-15 -2773 ((-1170) (-792))) (-15 -2009 ((-1170) (-587 (-792)))) (-15 -3967 ((-1170) (-587 (-792)))) (-15 -2773 ((-1170) (-587 (-792)))))
+((-2607 (($ $ $) 10)) (-2960 (($ $) 9)) (-2205 (($ $ $) 13)) (-1882 (($ $ $) 15)) (-1847 (($ $ $) 12)) (-3879 (($ $ $) 14)) (-2264 (($ $) 17)) (-3774 (($ $) 16)) (-3304 (($ $) 6)) (-3181 (($ $ $) 11) (($ $) 7)) (-1829 (($ $ $) 8)))
+(((-1048) (-1196)) (T -1048))
+((-2264 (*1 *1 *1) (-4 *1 (-1048))) (-3774 (*1 *1 *1) (-4 *1 (-1048))) (-1882 (*1 *1 *1 *1) (-4 *1 (-1048))) (-3879 (*1 *1 *1 *1) (-4 *1 (-1048))) (-2205 (*1 *1 *1 *1) (-4 *1 (-1048))) (-1847 (*1 *1 *1 *1) (-4 *1 (-1048))) (-3181 (*1 *1 *1 *1) (-4 *1 (-1048))) (-2607 (*1 *1 *1 *1) (-4 *1 (-1048))) (-2960 (*1 *1 *1) (-4 *1 (-1048))) (-1829 (*1 *1 *1 *1) (-4 *1 (-1048))) (-3181 (*1 *1 *1) (-4 *1 (-1048))) (-3304 (*1 *1 *1) (-4 *1 (-1048))))
+(-13 (-10 -8 (-15 -3304 ($ $)) (-15 -3181 ($ $)) (-15 -1829 ($ $ $)) (-15 -2960 ($ $)) (-15 -2607 ($ $ $)) (-15 -3181 ($ $ $)) (-15 -1847 ($ $ $)) (-15 -2205 ($ $ $)) (-15 -3879 ($ $ $)) (-15 -1882 ($ $ $)) (-15 -3774 ($ $)) (-15 -2264 ($ $))))
+((-1415 (((-108) $ $) 41)) (-3430 ((|#1| $) 15)) (-1841 (((-108) $ $ (-1 (-108) |#2| |#2|)) 36)) (-2827 (((-108) $) 17)) (-2275 (($ $ |#1|) 28)) (-2461 (($ $ (-108)) 30)) (-1409 (($ $) 31)) (-1485 (($ $ |#2|) 29)) (-3688 (((-1067) $) NIL)) (-1343 (((-108) $ $ (-1 (-108) |#1| |#1|) (-1 (-108) |#2| |#2|)) 35)) (-4147 (((-1031) $) NIL)) (-3462 (((-108) $) 14)) (-4024 (($) 10)) (-2404 (($ $) 27)) (-2201 (($ |#1| |#2| (-108)) 18) (($ |#1| |#2|) 19) (($ (-2 (|:| |val| |#1|) (|:| -1884 |#2|))) 21) (((-587 $) (-587 (-2 (|:| |val| |#1|) (|:| -1884 |#2|)))) 24) (((-587 $) |#1| (-587 |#2|)) 26)) (-1667 ((|#2| $) 16)) (-2189 (((-792) $) 50)) (-1531 (((-108) $ $) 39)))
+(((-1049 |#1| |#2|) (-13 (-1013) (-10 -8 (-15 -4024 ($)) (-15 -3462 ((-108) $)) (-15 -3430 (|#1| $)) (-15 -1667 (|#2| $)) (-15 -2827 ((-108) $)) (-15 -2201 ($ |#1| |#2| (-108))) (-15 -2201 ($ |#1| |#2|)) (-15 -2201 ($ (-2 (|:| |val| |#1|) (|:| -1884 |#2|)))) (-15 -2201 ((-587 $) (-587 (-2 (|:| |val| |#1|) (|:| -1884 |#2|))))) (-15 -2201 ((-587 $) |#1| (-587 |#2|))) (-15 -2404 ($ $)) (-15 -2275 ($ $ |#1|)) (-15 -1485 ($ $ |#2|)) (-15 -2461 ($ $ (-108))) (-15 -1409 ($ $)) (-15 -1343 ((-108) $ $ (-1 (-108) |#1| |#1|) (-1 (-108) |#2| |#2|))) (-15 -1841 ((-108) $ $ (-1 (-108) |#2| |#2|))))) (-13 (-1013) (-33)) (-13 (-1013) (-33))) (T -1049))
+((-4024 (*1 *1) (-12 (-5 *1 (-1049 *2 *3)) (-4 *2 (-13 (-1013) (-33))) (-4 *3 (-13 (-1013) (-33))))) (-3462 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1049 *3 *4)) (-4 *3 (-13 (-1013) (-33))) (-4 *4 (-13 (-1013) (-33))))) (-3430 (*1 *2 *1) (-12 (-4 *2 (-13 (-1013) (-33))) (-5 *1 (-1049 *2 *3)) (-4 *3 (-13 (-1013) (-33))))) (-1667 (*1 *2 *1) (-12 (-4 *2 (-13 (-1013) (-33))) (-5 *1 (-1049 *3 *2)) (-4 *3 (-13 (-1013) (-33))))) (-2827 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1049 *3 *4)) (-4 *3 (-13 (-1013) (-33))) (-4 *4 (-13 (-1013) (-33))))) (-2201 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-108)) (-5 *1 (-1049 *2 *3)) (-4 *2 (-13 (-1013) (-33))) (-4 *3 (-13 (-1013) (-33))))) (-2201 (*1 *1 *2 *3) (-12 (-5 *1 (-1049 *2 *3)) (-4 *2 (-13 (-1013) (-33))) (-4 *3 (-13 (-1013) (-33))))) (-2201 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1884 *4))) (-4 *3 (-13 (-1013) (-33))) (-4 *4 (-13 (-1013) (-33))) (-5 *1 (-1049 *3 *4)))) (-2201 (*1 *2 *3) (-12 (-5 *3 (-587 (-2 (|:| |val| *4) (|:| -1884 *5)))) (-4 *4 (-13 (-1013) (-33))) (-4 *5 (-13 (-1013) (-33))) (-5 *2 (-587 (-1049 *4 *5))) (-5 *1 (-1049 *4 *5)))) (-2201 (*1 *2 *3 *4) (-12 (-5 *4 (-587 *5)) (-4 *5 (-13 (-1013) (-33))) (-5 *2 (-587 (-1049 *3 *5))) (-5 *1 (-1049 *3 *5)) (-4 *3 (-13 (-1013) (-33))))) (-2404 (*1 *1 *1) (-12 (-5 *1 (-1049 *2 *3)) (-4 *2 (-13 (-1013) (-33))) (-4 *3 (-13 (-1013) (-33))))) (-2275 (*1 *1 *1 *2) (-12 (-5 *1 (-1049 *2 *3)) (-4 *2 (-13 (-1013) (-33))) (-4 *3 (-13 (-1013) (-33))))) (-1485 (*1 *1 *1 *2) (-12 (-5 *1 (-1049 *3 *2)) (-4 *3 (-13 (-1013) (-33))) (-4 *2 (-13 (-1013) (-33))))) (-2461 (*1 *1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1049 *3 *4)) (-4 *3 (-13 (-1013) (-33))) (-4 *4 (-13 (-1013) (-33))))) (-1409 (*1 *1 *1) (-12 (-5 *1 (-1049 *2 *3)) (-4 *2 (-13 (-1013) (-33))) (-4 *3 (-13 (-1013) (-33))))) (-1343 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-108) *5 *5)) (-5 *4 (-1 (-108) *6 *6)) (-4 *5 (-13 (-1013) (-33))) (-4 *6 (-13 (-1013) (-33))) (-5 *2 (-108)) (-5 *1 (-1049 *5 *6)))) (-1841 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-108) *5 *5)) (-4 *5 (-13 (-1013) (-33))) (-5 *2 (-108)) (-5 *1 (-1049 *4 *5)) (-4 *4 (-13 (-1013) (-33))))))
+(-13 (-1013) (-10 -8 (-15 -4024 ($)) (-15 -3462 ((-108) $)) (-15 -3430 (|#1| $)) (-15 -1667 (|#2| $)) (-15 -2827 ((-108) $)) (-15 -2201 ($ |#1| |#2| (-108))) (-15 -2201 ($ |#1| |#2|)) (-15 -2201 ($ (-2 (|:| |val| |#1|) (|:| -1884 |#2|)))) (-15 -2201 ((-587 $) (-587 (-2 (|:| |val| |#1|) (|:| -1884 |#2|))))) (-15 -2201 ((-587 $) |#1| (-587 |#2|))) (-15 -2404 ($ $)) (-15 -2275 ($ $ |#1|)) (-15 -1485 ($ $ |#2|)) (-15 -2461 ($ $ (-108))) (-15 -1409 ($ $)) (-15 -1343 ((-108) $ $ (-1 (-108) |#1| |#1|) (-1 (-108) |#2| |#2|))) (-15 -1841 ((-108) $ $ (-1 (-108) |#2| |#2|)))))
+((-1415 (((-108) $ $) NIL (|has| (-1049 |#1| |#2|) (-1013)))) (-3430 (((-1049 |#1| |#2|) $) 25)) (-1203 (($ $) 76)) (-3908 (((-108) (-1049 |#1| |#2|) $ (-1 (-108) |#2| |#2|)) 85)) (-2014 (($ $ $ (-587 (-1049 |#1| |#2|))) 90) (($ $ $ (-587 (-1049 |#1| |#2|)) (-1 (-108) |#2| |#2|)) 91)) (-2978 (((-108) $ (-707)) NIL)) (-2300 (((-1049 |#1| |#2|) $ (-1049 |#1| |#2|)) 43 (|has| $ (-6 -4234)))) (-2378 (((-1049 |#1| |#2|) $ "value" (-1049 |#1| |#2|)) NIL (|has| $ (-6 -4234)))) (-2675 (($ $ (-587 $)) 41 (|has| $ (-6 -4234)))) (-2547 (($) NIL T CONST)) (-1737 (((-587 (-2 (|:| |val| |#1|) (|:| -1884 |#2|))) $) 80)) (-3023 (($ (-1049 |#1| |#2|) $) 39)) (-1422 (($ (-1049 |#1| |#2|) $) 31)) (-3831 (((-587 (-1049 |#1| |#2|)) $) NIL (|has| $ (-6 -4233)))) (-3186 (((-587 $) $) 51)) (-3441 (((-108) (-1049 |#1| |#2|) $) 82)) (-3651 (((-108) $ $) NIL (|has| (-1049 |#1| |#2|) (-1013)))) (-2139 (((-108) $ (-707)) NIL)) (-3757 (((-587 (-1049 |#1| |#2|)) $) 55 (|has| $ (-6 -4233)))) (-2221 (((-108) (-1049 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-1049 |#1| |#2|) (-1013))))) (-3833 (($ (-1 (-1049 |#1| |#2|) (-1049 |#1| |#2|)) $) 47 (|has| $ (-6 -4234)))) (-1390 (($ (-1 (-1049 |#1| |#2|) (-1049 |#1| |#2|)) $) 46)) (-3574 (((-108) $ (-707)) NIL)) (-1278 (((-587 (-1049 |#1| |#2|)) $) 53)) (-2229 (((-108) $) 42)) (-3688 (((-1067) $) NIL (|has| (-1049 |#1| |#2|) (-1013)))) (-4147 (((-1031) $) NIL (|has| (-1049 |#1| |#2|) (-1013)))) (-4031 (((-3 $ "failed") $) 75)) (-1789 (((-108) (-1 (-108) (-1049 |#1| |#2|)) $) NIL (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 (-1049 |#1| |#2|)))) NIL (-12 (|has| (-1049 |#1| |#2|) (-284 (-1049 |#1| |#2|))) (|has| (-1049 |#1| |#2|) (-1013)))) (($ $ (-269 (-1049 |#1| |#2|))) NIL (-12 (|has| (-1049 |#1| |#2|) (-284 (-1049 |#1| |#2|))) (|has| (-1049 |#1| |#2|) (-1013)))) (($ $ (-1049 |#1| |#2|) (-1049 |#1| |#2|)) NIL (-12 (|has| (-1049 |#1| |#2|) (-284 (-1049 |#1| |#2|))) (|has| (-1049 |#1| |#2|) (-1013)))) (($ $ (-587 (-1049 |#1| |#2|)) (-587 (-1049 |#1| |#2|))) NIL (-12 (|has| (-1049 |#1| |#2|) (-284 (-1049 |#1| |#2|))) (|has| (-1049 |#1| |#2|) (-1013))))) (-2488 (((-108) $ $) 50)) (-3462 (((-108) $) 22)) (-4024 (($) 24)) (-2544 (((-1049 |#1| |#2|) $ "value") NIL)) (-2931 (((-521) $ $) NIL)) (-2406 (((-108) $) 44)) (-4163 (((-707) (-1 (-108) (-1049 |#1| |#2|)) $) NIL (|has| $ (-6 -4233))) (((-707) (-1049 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-1049 |#1| |#2|) (-1013))))) (-2404 (($ $) 49)) (-2201 (($ (-1049 |#1| |#2|)) 9) (($ |#1| |#2| (-587 $)) 12) (($ |#1| |#2| (-587 (-1049 |#1| |#2|))) 14) (($ |#1| |#2| |#1| (-587 |#2|)) 17)) (-4125 (((-587 |#2|) $) 81)) (-2189 (((-792) $) 73 (|has| (-1049 |#1| |#2|) (-561 (-792))))) (-3098 (((-587 $) $) 28)) (-2294 (((-108) $ $) NIL (|has| (-1049 |#1| |#2|) (-1013)))) (-3049 (((-108) (-1 (-108) (-1049 |#1| |#2|)) $) NIL (|has| $ (-6 -4233)))) (-1531 (((-108) $ $) 64 (|has| (-1049 |#1| |#2|) (-1013)))) (-3475 (((-707) $) 58 (|has| $ (-6 -4233)))))
+(((-1050 |#1| |#2|) (-13 (-935 (-1049 |#1| |#2|)) (-10 -8 (-6 -4234) (-6 -4233) (-15 -4031 ((-3 $ "failed") $)) (-15 -1203 ($ $)) (-15 -2201 ($ (-1049 |#1| |#2|))) (-15 -2201 ($ |#1| |#2| (-587 $))) (-15 -2201 ($ |#1| |#2| (-587 (-1049 |#1| |#2|)))) (-15 -2201 ($ |#1| |#2| |#1| (-587 |#2|))) (-15 -4125 ((-587 |#2|) $)) (-15 -1737 ((-587 (-2 (|:| |val| |#1|) (|:| -1884 |#2|))) $)) (-15 -3441 ((-108) (-1049 |#1| |#2|) $)) (-15 -3908 ((-108) (-1049 |#1| |#2|) $ (-1 (-108) |#2| |#2|))) (-15 -1422 ($ (-1049 |#1| |#2|) $)) (-15 -3023 ($ (-1049 |#1| |#2|) $)) (-15 -2014 ($ $ $ (-587 (-1049 |#1| |#2|)))) (-15 -2014 ($ $ $ (-587 (-1049 |#1| |#2|)) (-1 (-108) |#2| |#2|))))) (-13 (-1013) (-33)) (-13 (-1013) (-33))) (T -1050))
+((-4031 (*1 *1 *1) (|partial| -12 (-5 *1 (-1050 *2 *3)) (-4 *2 (-13 (-1013) (-33))) (-4 *3 (-13 (-1013) (-33))))) (-1203 (*1 *1 *1) (-12 (-5 *1 (-1050 *2 *3)) (-4 *2 (-13 (-1013) (-33))) (-4 *3 (-13 (-1013) (-33))))) (-2201 (*1 *1 *2) (-12 (-5 *2 (-1049 *3 *4)) (-4 *3 (-13 (-1013) (-33))) (-4 *4 (-13 (-1013) (-33))) (-5 *1 (-1050 *3 *4)))) (-2201 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-587 (-1050 *2 *3))) (-5 *1 (-1050 *2 *3)) (-4 *2 (-13 (-1013) (-33))) (-4 *3 (-13 (-1013) (-33))))) (-2201 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-587 (-1049 *2 *3))) (-4 *2 (-13 (-1013) (-33))) (-4 *3 (-13 (-1013) (-33))) (-5 *1 (-1050 *2 *3)))) (-2201 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-587 *3)) (-4 *3 (-13 (-1013) (-33))) (-5 *1 (-1050 *2 *3)) (-4 *2 (-13 (-1013) (-33))))) (-4125 (*1 *2 *1) (-12 (-5 *2 (-587 *4)) (-5 *1 (-1050 *3 *4)) (-4 *3 (-13 (-1013) (-33))) (-4 *4 (-13 (-1013) (-33))))) (-1737 (*1 *2 *1) (-12 (-5 *2 (-587 (-2 (|:| |val| *3) (|:| -1884 *4)))) (-5 *1 (-1050 *3 *4)) (-4 *3 (-13 (-1013) (-33))) (-4 *4 (-13 (-1013) (-33))))) (-3441 (*1 *2 *3 *1) (-12 (-5 *3 (-1049 *4 *5)) (-4 *4 (-13 (-1013) (-33))) (-4 *5 (-13 (-1013) (-33))) (-5 *2 (-108)) (-5 *1 (-1050 *4 *5)))) (-3908 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1049 *5 *6)) (-5 *4 (-1 (-108) *6 *6)) (-4 *5 (-13 (-1013) (-33))) (-4 *6 (-13 (-1013) (-33))) (-5 *2 (-108)) (-5 *1 (-1050 *5 *6)))) (-1422 (*1 *1 *2 *1) (-12 (-5 *2 (-1049 *3 *4)) (-4 *3 (-13 (-1013) (-33))) (-4 *4 (-13 (-1013) (-33))) (-5 *1 (-1050 *3 *4)))) (-3023 (*1 *1 *2 *1) (-12 (-5 *2 (-1049 *3 *4)) (-4 *3 (-13 (-1013) (-33))) (-4 *4 (-13 (-1013) (-33))) (-5 *1 (-1050 *3 *4)))) (-2014 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-587 (-1049 *3 *4))) (-4 *3 (-13 (-1013) (-33))) (-4 *4 (-13 (-1013) (-33))) (-5 *1 (-1050 *3 *4)))) (-2014 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-587 (-1049 *4 *5))) (-5 *3 (-1 (-108) *5 *5)) (-4 *4 (-13 (-1013) (-33))) (-4 *5 (-13 (-1013) (-33))) (-5 *1 (-1050 *4 *5)))))
+(-13 (-935 (-1049 |#1| |#2|)) (-10 -8 (-6 -4234) (-6 -4233) (-15 -4031 ((-3 $ "failed") $)) (-15 -1203 ($ $)) (-15 -2201 ($ (-1049 |#1| |#2|))) (-15 -2201 ($ |#1| |#2| (-587 $))) (-15 -2201 ($ |#1| |#2| (-587 (-1049 |#1| |#2|)))) (-15 -2201 ($ |#1| |#2| |#1| (-587 |#2|))) (-15 -4125 ((-587 |#2|) $)) (-15 -1737 ((-587 (-2 (|:| |val| |#1|) (|:| -1884 |#2|))) $)) (-15 -3441 ((-108) (-1049 |#1| |#2|) $)) (-15 -3908 ((-108) (-1049 |#1| |#2|) $ (-1 (-108) |#2| |#2|))) (-15 -1422 ($ (-1049 |#1| |#2|) $)) (-15 -3023 ($ (-1049 |#1| |#2|) $)) (-15 -2014 ($ $ $ (-587 (-1049 |#1| |#2|)))) (-15 -2014 ($ $ $ (-587 (-1049 |#1| |#2|)) (-1 (-108) |#2| |#2|)))))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-1304 (($ $) NIL)) (-1865 ((|#2| $) NIL)) (-2304 (((-108) $) NIL)) (-1232 (((-3 $ "failed") $ $) NIL)) (-2284 (($ (-627 |#2|)) 45)) (-2825 (((-108) $) NIL)) (-2978 (((-108) $ (-707)) NIL)) (-3480 (($ |#2|) 9)) (-2547 (($) NIL T CONST)) (-1311 (($ $) 58 (|has| |#2| (-282)))) (-2672 (((-217 |#1| |#2|) $ (-521)) 31)) (-1297 (((-3 (-521) "failed") $) NIL (|has| |#2| (-961 (-521)))) (((-3 (-381 (-521)) "failed") $) NIL (|has| |#2| (-961 (-381 (-521))))) (((-3 |#2| "failed") $) NIL)) (-1483 (((-521) $) NIL (|has| |#2| (-961 (-521)))) (((-381 (-521)) $) NIL (|has| |#2| (-961 (-381 (-521))))) ((|#2| $) NIL)) (-3279 (((-627 (-521)) (-627 $)) NIL (|has| |#2| (-583 (-521)))) (((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (|has| |#2| (-583 (-521)))) (((-2 (|:| -1201 (-627 |#2|)) (|:| |vec| (-1165 |#2|))) (-627 $) (-1165 $)) NIL) (((-627 |#2|) (-627 $)) NIL)) (-1257 (((-3 $ "failed") $) 72)) (-3162 (((-707) $) 60 (|has| |#2| (-513)))) (-3626 ((|#2| $ (-521) (-521)) NIL)) (-3831 (((-587 |#2|) $) NIL (|has| $ (-6 -4233)))) (-3996 (((-108) $) NIL)) (-2097 (((-707) $) 62 (|has| |#2| (-513)))) (-3445 (((-587 (-217 |#1| |#2|)) $) 66 (|has| |#2| (-513)))) (-1410 (((-707) $) NIL)) (-1421 (((-707) $) NIL)) (-2139 (((-108) $ (-707)) NIL)) (-2274 ((|#2| $) 56 (|has| |#2| (-6 (-4235 "*"))))) (-2690 (((-521) $) NIL)) (-3222 (((-521) $) NIL)) (-3757 (((-587 |#2|) $) NIL (|has| $ (-6 -4233)))) (-2221 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#2| (-1013))))) (-2207 (((-521) $) NIL)) (-2684 (((-521) $) NIL)) (-1365 (($ (-587 (-587 |#2|))) 26)) (-3833 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-1858 (((-587 (-587 |#2|)) $) NIL)) (-3574 (((-108) $ (-707)) NIL)) (-3688 (((-1067) $) NIL)) (-3841 (((-3 $ "failed") $) 69 (|has| |#2| (-337)))) (-4147 (((-1031) $) NIL)) (-2230 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-513)))) (-1789 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 |#2|))) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ (-269 |#2|)) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ (-587 |#2|) (-587 |#2|)) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))))) (-2488 (((-108) $ $) NIL)) (-3462 (((-108) $) NIL)) (-4024 (($) NIL)) (-2544 ((|#2| $ (-521) (-521) |#2|) NIL) ((|#2| $ (-521) (-521)) NIL)) (-2156 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-707)) NIL) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| |#2| (-829 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| |#2| (-829 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| |#2| (-829 (-1084)))) (($ $ (-1084)) NIL (|has| |#2| (-829 (-1084)))) (($ $ (-707)) NIL (|has| |#2| (-210))) (($ $) NIL (|has| |#2| (-210)))) (-1930 ((|#2| $) NIL)) (-2349 (($ (-587 |#2|)) 40)) (-1222 (((-108) $) NIL)) (-3328 (((-217 |#1| |#2|) $) NIL)) (-3805 ((|#2| $) 54 (|has| |#2| (-6 (-4235 "*"))))) (-4163 (((-707) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4233))) (((-707) |#2| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#2| (-1013))))) (-2404 (($ $) NIL)) (-1430 (((-497) $) 81 (|has| |#2| (-562 (-497))))) (-3187 (((-217 |#1| |#2|) $ (-521)) 33)) (-2189 (((-792) $) 36) (($ (-521)) NIL) (($ (-381 (-521))) NIL (|has| |#2| (-961 (-381 (-521))))) (($ |#2|) NIL) (((-627 |#2|) $) 42)) (-3846 (((-707)) 17)) (-3049 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4233)))) (-2169 (((-108) $) NIL)) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (-3561 (($) 11 T CONST)) (-3572 (($) 14 T CONST)) (-2212 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-707)) NIL) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| |#2| (-829 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| |#2| (-829 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| |#2| (-829 (-1084)))) (($ $ (-1084)) NIL (|has| |#2| (-829 (-1084)))) (($ $ (-707)) NIL (|has| |#2| (-210))) (($ $) NIL (|has| |#2| (-210)))) (-1531 (((-108) $ $) NIL)) (-1620 (($ $ |#2|) NIL (|has| |#2| (-337)))) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-707)) 52) (($ $ (-521)) 71 (|has| |#2| (-337)))) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-217 |#1| |#2|) $ (-217 |#1| |#2|)) 48) (((-217 |#1| |#2|) (-217 |#1| |#2|) $) 50)) (-3475 (((-707) $) NIL (|has| $ (-6 -4233)))))
+(((-1051 |#1| |#2|) (-13 (-1034 |#1| |#2| (-217 |#1| |#2|) (-217 |#1| |#2|)) (-561 (-627 |#2|)) (-10 -8 (-15 -1304 ($ $)) (-15 -2284 ($ (-627 |#2|))) (-15 -2189 ((-627 |#2|) $)) (IF (|has| |#2| (-6 (-4235 "*"))) (-6 -4222) |%noBranch|) (IF (|has| |#2| (-6 (-4235 "*"))) (IF (|has| |#2| (-6 -4230)) (-6 -4230) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-562 (-497))) (-6 (-562 (-497))) |%noBranch|))) (-707) (-970)) (T -1051))
+((-2189 (*1 *2 *1) (-12 (-5 *2 (-627 *4)) (-5 *1 (-1051 *3 *4)) (-14 *3 (-707)) (-4 *4 (-970)))) (-1304 (*1 *1 *1) (-12 (-5 *1 (-1051 *2 *3)) (-14 *2 (-707)) (-4 *3 (-970)))) (-2284 (*1 *1 *2) (-12 (-5 *2 (-627 *4)) (-4 *4 (-970)) (-5 *1 (-1051 *3 *4)) (-14 *3 (-707)))))
+(-13 (-1034 |#1| |#2| (-217 |#1| |#2|) (-217 |#1| |#2|)) (-561 (-627 |#2|)) (-10 -8 (-15 -1304 ($ $)) (-15 -2284 ($ (-627 |#2|))) (-15 -2189 ((-627 |#2|) $)) (IF (|has| |#2| (-6 (-4235 "*"))) (-6 -4222) |%noBranch|) (IF (|has| |#2| (-6 (-4235 "*"))) (IF (|has| |#2| (-6 -4230)) (-6 -4230) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-562 (-497))) (-6 (-562 (-497))) |%noBranch|)))
+((-3307 (($ $) 19)) (-3053 (($ $ (-132)) 10) (($ $ (-129)) 14)) (-3788 (((-108) $ $) 24)) (-3402 (($ $) 17)) (-2544 (((-132) $ (-521) (-132)) NIL) (((-132) $ (-521)) NIL) (($ $ (-1132 (-521))) NIL) (($ $ $) 29)) (-2189 (($ (-132)) 27) (((-792) $) NIL)))
+(((-1052 |#1|) (-10 -8 (-15 -2189 ((-792) |#1|)) (-15 -2544 (|#1| |#1| |#1|)) (-15 -3053 (|#1| |#1| (-129))) (-15 -3053 (|#1| |#1| (-132))) (-15 -2189 (|#1| (-132))) (-15 -3788 ((-108) |#1| |#1|)) (-15 -3307 (|#1| |#1|)) (-15 -3402 (|#1| |#1|)) (-15 -2544 (|#1| |#1| (-1132 (-521)))) (-15 -2544 ((-132) |#1| (-521))) (-15 -2544 ((-132) |#1| (-521) (-132)))) (-1053)) (T -1052))
+NIL
+(-10 -8 (-15 -2189 ((-792) |#1|)) (-15 -2544 (|#1| |#1| |#1|)) (-15 -3053 (|#1| |#1| (-129))) (-15 -3053 (|#1| |#1| (-132))) (-15 -2189 (|#1| (-132))) (-15 -3788 ((-108) |#1| |#1|)) (-15 -3307 (|#1| |#1|)) (-15 -3402 (|#1| |#1|)) (-15 -2544 (|#1| |#1| (-1132 (-521)))) (-15 -2544 ((-132) |#1| (-521))) (-15 -2544 ((-132) |#1| (-521) (-132))))
+((-1415 (((-108) $ $) 19 (|has| (-132) (-1013)))) (-3281 (($ $) 120)) (-3307 (($ $) 121)) (-3053 (($ $ (-132)) 108) (($ $ (-129)) 107)) (-1903 (((-1170) $ (-521) (-521)) 40 (|has| $ (-6 -4234)))) (-3763 (((-108) $ $) 118)) (-3738 (((-108) $ $ (-521)) 117)) (-3604 (((-587 $) $ (-132)) 110) (((-587 $) $ (-129)) 109)) (-1505 (((-108) (-1 (-108) (-132) (-132)) $) 98) (((-108) $) 92 (|has| (-132) (-784)))) (-1621 (($ (-1 (-108) (-132) (-132)) $) 89 (|has| $ (-6 -4234))) (($ $) 88 (-12 (|has| (-132) (-784)) (|has| $ (-6 -4234))))) (-3211 (($ (-1 (-108) (-132) (-132)) $) 99) (($ $) 93 (|has| (-132) (-784)))) (-2978 (((-108) $ (-707)) 8)) (-2378 (((-132) $ (-521) (-132)) 52 (|has| $ (-6 -4234))) (((-132) $ (-1132 (-521)) (-132)) 58 (|has| $ (-6 -4234)))) (-1628 (($ (-1 (-108) (-132)) $) 75 (|has| $ (-6 -4233)))) (-2547 (($) 7 T CONST)) (-2846 (($ $ (-132)) 104) (($ $ (-129)) 103)) (-3081 (($ $) 90 (|has| $ (-6 -4234)))) (-1862 (($ $) 100)) (-2515 (($ $ (-1132 (-521)) $) 114)) (-2332 (($ $) 78 (-12 (|has| (-132) (-1013)) (|has| $ (-6 -4233))))) (-1422 (($ (-132) $) 77 (-12 (|has| (-132) (-1013)) (|has| $ (-6 -4233)))) (($ (-1 (-108) (-132)) $) 74 (|has| $ (-6 -4233)))) (-3859 (((-132) (-1 (-132) (-132) (-132)) $ (-132) (-132)) 76 (-12 (|has| (-132) (-1013)) (|has| $ (-6 -4233)))) (((-132) (-1 (-132) (-132) (-132)) $ (-132)) 73 (|has| $ (-6 -4233))) (((-132) (-1 (-132) (-132) (-132)) $) 72 (|has| $ (-6 -4233)))) (-3849 (((-132) $ (-521) (-132)) 53 (|has| $ (-6 -4234)))) (-3626 (((-132) $ (-521)) 51)) (-3788 (((-108) $ $) 119)) (-3233 (((-521) (-1 (-108) (-132)) $) 97) (((-521) (-132) $) 96 (|has| (-132) (-1013))) (((-521) (-132) $ (-521)) 95 (|has| (-132) (-1013))) (((-521) $ $ (-521)) 113) (((-521) (-129) $ (-521)) 112)) (-3831 (((-587 (-132)) $) 30 (|has| $ (-6 -4233)))) (-1811 (($ (-707) (-132)) 69)) (-2139 (((-108) $ (-707)) 9)) (-2826 (((-521) $) 43 (|has| (-521) (-784)))) (-2810 (($ $ $) 87 (|has| (-132) (-784)))) (-1318 (($ (-1 (-108) (-132) (-132)) $ $) 101) (($ $ $) 94 (|has| (-132) (-784)))) (-3757 (((-587 (-132)) $) 29 (|has| $ (-6 -4233)))) (-2221 (((-108) (-132) $) 27 (-12 (|has| (-132) (-1013)) (|has| $ (-6 -4233))))) (-2597 (((-521) $) 44 (|has| (-521) (-784)))) (-2446 (($ $ $) 86 (|has| (-132) (-784)))) (-1454 (((-108) $ $ (-132)) 115)) (-4143 (((-707) $ $ (-132)) 116)) (-3833 (($ (-1 (-132) (-132)) $) 34 (|has| $ (-6 -4234)))) (-1390 (($ (-1 (-132) (-132)) $) 35) (($ (-1 (-132) (-132) (-132)) $ $) 64)) (-1940 (($ $) 122)) (-3402 (($ $) 123)) (-3574 (((-108) $ (-707)) 10)) (-2858 (($ $ (-132)) 106) (($ $ (-129)) 105)) (-3688 (((-1067) $) 22 (|has| (-132) (-1013)))) (-1659 (($ (-132) $ (-521)) 60) (($ $ $ (-521)) 59)) (-1668 (((-587 (-521)) $) 46)) (-2941 (((-108) (-521) $) 47)) (-4147 (((-1031) $) 21 (|has| (-132) (-1013)))) (-2293 (((-132) $) 42 (|has| (-521) (-784)))) (-3620 (((-3 (-132) "failed") (-1 (-108) (-132)) $) 71)) (-3016 (($ $ (-132)) 41 (|has| $ (-6 -4234)))) (-1789 (((-108) (-1 (-108) (-132)) $) 32 (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 (-132)))) 26 (-12 (|has| (-132) (-284 (-132))) (|has| (-132) (-1013)))) (($ $ (-269 (-132))) 25 (-12 (|has| (-132) (-284 (-132))) (|has| (-132) (-1013)))) (($ $ (-132) (-132)) 24 (-12 (|has| (-132) (-284 (-132))) (|has| (-132) (-1013)))) (($ $ (-587 (-132)) (-587 (-132))) 23 (-12 (|has| (-132) (-284 (-132))) (|has| (-132) (-1013))))) (-2488 (((-108) $ $) 14)) (-3821 (((-108) (-132) $) 45 (-12 (|has| $ (-6 -4233)) (|has| (-132) (-1013))))) (-2489 (((-587 (-132)) $) 48)) (-3462 (((-108) $) 11)) (-4024 (($) 12)) (-2544 (((-132) $ (-521) (-132)) 50) (((-132) $ (-521)) 49) (($ $ (-1132 (-521))) 63) (($ $ $) 102)) (-3691 (($ $ (-521)) 62) (($ $ (-1132 (-521))) 61)) (-4163 (((-707) (-1 (-108) (-132)) $) 31 (|has| $ (-6 -4233))) (((-707) (-132) $) 28 (-12 (|has| (-132) (-1013)) (|has| $ (-6 -4233))))) (-1497 (($ $ $ (-521)) 91 (|has| $ (-6 -4234)))) (-2404 (($ $) 13)) (-1430 (((-497) $) 79 (|has| (-132) (-562 (-497))))) (-2201 (($ (-587 (-132))) 70)) (-4159 (($ $ (-132)) 68) (($ (-132) $) 67) (($ $ $) 66) (($ (-587 $)) 65)) (-2189 (($ (-132)) 111) (((-792) $) 18 (|has| (-132) (-561 (-792))))) (-3049 (((-108) (-1 (-108) (-132)) $) 33 (|has| $ (-6 -4233)))) (-1574 (((-108) $ $) 84 (|has| (-132) (-784)))) (-1558 (((-108) $ $) 83 (|has| (-132) (-784)))) (-1531 (((-108) $ $) 20 (|has| (-132) (-1013)))) (-1566 (((-108) $ $) 85 (|has| (-132) (-784)))) (-1549 (((-108) $ $) 82 (|has| (-132) (-784)))) (-3475 (((-707) $) 6 (|has| $ (-6 -4233)))))
+(((-1053) (-1196)) (T -1053))
+((-3402 (*1 *1 *1) (-4 *1 (-1053))) (-1940 (*1 *1 *1) (-4 *1 (-1053))) (-3307 (*1 *1 *1) (-4 *1 (-1053))) (-3281 (*1 *1 *1) (-4 *1 (-1053))) (-3788 (*1 *2 *1 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-108)))) (-3763 (*1 *2 *1 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-108)))) (-3738 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (-521)) (-5 *2 (-108)))) (-4143 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (-132)) (-5 *2 (-707)))) (-1454 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (-132)) (-5 *2 (-108)))) (-2515 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-1132 (-521))))) (-3233 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1053)) (-5 *2 (-521)))) (-3233 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1053)) (-5 *2 (-521)) (-5 *3 (-129)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-132)) (-4 *1 (-1053)))) (-3604 (*1 *2 *1 *3) (-12 (-5 *3 (-132)) (-5 *2 (-587 *1)) (-4 *1 (-1053)))) (-3604 (*1 *2 *1 *3) (-12 (-5 *3 (-129)) (-5 *2 (-587 *1)) (-4 *1 (-1053)))) (-3053 (*1 *1 *1 *2) (-12 (-4 *1 (-1053)) (-5 *2 (-132)))) (-3053 (*1 *1 *1 *2) (-12 (-4 *1 (-1053)) (-5 *2 (-129)))) (-2858 (*1 *1 *1 *2) (-12 (-4 *1 (-1053)) (-5 *2 (-132)))) (-2858 (*1 *1 *1 *2) (-12 (-4 *1 (-1053)) (-5 *2 (-129)))) (-2846 (*1 *1 *1 *2) (-12 (-4 *1 (-1053)) (-5 *2 (-132)))) (-2846 (*1 *1 *1 *2) (-12 (-4 *1 (-1053)) (-5 *2 (-129)))) (-2544 (*1 *1 *1 *1) (-4 *1 (-1053))))
+(-13 (-19 (-132)) (-10 -8 (-15 -3402 ($ $)) (-15 -1940 ($ $)) (-15 -3307 ($ $)) (-15 -3281 ($ $)) (-15 -3788 ((-108) $ $)) (-15 -3763 ((-108) $ $)) (-15 -3738 ((-108) $ $ (-521))) (-15 -4143 ((-707) $ $ (-132))) (-15 -1454 ((-108) $ $ (-132))) (-15 -2515 ($ $ (-1132 (-521)) $)) (-15 -3233 ((-521) $ $ (-521))) (-15 -3233 ((-521) (-129) $ (-521))) (-15 -2189 ($ (-132))) (-15 -3604 ((-587 $) $ (-132))) (-15 -3604 ((-587 $) $ (-129))) (-15 -3053 ($ $ (-132))) (-15 -3053 ($ $ (-129))) (-15 -2858 ($ $ (-132))) (-15 -2858 ($ $ (-129))) (-15 -2846 ($ $ (-132))) (-15 -2846 ($ $ (-129))) (-15 -2544 ($ $ $))))
+(((-33) . T) ((-97) -3703 (|has| (-132) (-1013)) (|has| (-132) (-784))) ((-561 (-792)) -3703 (|has| (-132) (-1013)) (|has| (-132) (-784)) (|has| (-132) (-561 (-792)))) ((-139 #0=(-132)) . T) ((-562 (-497)) |has| (-132) (-562 (-497))) ((-261 #1=(-521) #0#) . T) ((-263 #1# #0#) . T) ((-284 #0#) -12 (|has| (-132) (-284 (-132))) (|has| (-132) (-1013))) ((-347 #0#) . T) ((-460 #0#) . T) ((-554 #1# #0#) . T) ((-482 #0# #0#) -12 (|has| (-132) (-284 (-132))) (|has| (-132) (-1013))) ((-592 #0#) . T) ((-19 #0#) . T) ((-784) |has| (-132) (-784)) ((-1013) -3703 (|has| (-132) (-1013)) (|has| (-132) (-784))) ((-1119) . T))
+((-1938 (((-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))) (-587 |#4|) (-587 |#5|) (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))) (-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))))) (-707)) 94)) (-2555 (((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))))) |#4| |#5|) 54) (((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))))) |#4| |#5| (-707)) 53)) (-1905 (((-1170) (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))) (-707)) 85)) (-1466 (((-707) (-587 |#4|) (-587 |#5|)) 27)) (-2928 (((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))))) |#4| |#5|) 56) (((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))))) |#4| |#5| (-707)) 55) (((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))))) |#4| |#5| (-707) (-108)) 57)) (-3686 (((-587 |#5|) (-587 |#4|) (-587 |#5|) (-108) (-108) (-108) (-108) (-108)) 76) (((-587 |#5|) (-587 |#4|) (-587 |#5|) (-108) (-108)) 77)) (-1430 (((-1067) (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))) 80)) (-2087 (((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))))) |#4| |#5|) 52)) (-1951 (((-707) (-587 |#4|) (-587 |#5|)) 19)))
+(((-1054 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1951 ((-707) (-587 |#4|) (-587 |#5|))) (-15 -1466 ((-707) (-587 |#4|) (-587 |#5|))) (-15 -2087 ((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))))) |#4| |#5|)) (-15 -2555 ((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))))) |#4| |#5| (-707))) (-15 -2555 ((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))))) |#4| |#5|)) (-15 -2928 ((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))))) |#4| |#5| (-707) (-108))) (-15 -2928 ((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))))) |#4| |#5| (-707))) (-15 -2928 ((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))))) |#4| |#5|)) (-15 -3686 ((-587 |#5|) (-587 |#4|) (-587 |#5|) (-108) (-108))) (-15 -3686 ((-587 |#5|) (-587 |#4|) (-587 |#5|) (-108) (-108) (-108) (-108) (-108))) (-15 -1938 ((-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))) (-587 |#4|) (-587 |#5|) (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))) (-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))))) (-707))) (-15 -1430 ((-1067) (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|)))) (-15 -1905 ((-1170) (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))) (-707)))) (-425) (-729) (-784) (-984 |#1| |#2| |#3|) (-1022 |#1| |#2| |#3| |#4|)) (T -1054))
+((-1905 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-2 (|:| |val| (-587 *8)) (|:| -1884 *9)))) (-5 *4 (-707)) (-4 *8 (-984 *5 *6 *7)) (-4 *9 (-1022 *5 *6 *7 *8)) (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784)) (-5 *2 (-1170)) (-5 *1 (-1054 *5 *6 *7 *8 *9)))) (-1430 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-587 *7)) (|:| -1884 *8))) (-4 *7 (-984 *4 *5 *6)) (-4 *8 (-1022 *4 *5 *6 *7)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-1067)) (-5 *1 (-1054 *4 *5 *6 *7 *8)))) (-1938 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-587 *11)) (|:| |todo| (-587 (-2 (|:| |val| *3) (|:| -1884 *11)))))) (-5 *6 (-707)) (-5 *2 (-587 (-2 (|:| |val| (-587 *10)) (|:| -1884 *11)))) (-5 *3 (-587 *10)) (-5 *4 (-587 *11)) (-4 *10 (-984 *7 *8 *9)) (-4 *11 (-1022 *7 *8 *9 *10)) (-4 *7 (-425)) (-4 *8 (-729)) (-4 *9 (-784)) (-5 *1 (-1054 *7 *8 *9 *10 *11)))) (-3686 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-587 *9)) (-5 *3 (-587 *8)) (-5 *4 (-108)) (-4 *8 (-984 *5 *6 *7)) (-4 *9 (-1022 *5 *6 *7 *8)) (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784)) (-5 *1 (-1054 *5 *6 *7 *8 *9)))) (-3686 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-587 *9)) (-5 *3 (-587 *8)) (-5 *4 (-108)) (-4 *8 (-984 *5 *6 *7)) (-4 *9 (-1022 *5 *6 *7 *8)) (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784)) (-5 *1 (-1054 *5 *6 *7 *8 *9)))) (-2928 (*1 *2 *3 *4) (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784)) (-4 *3 (-984 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-587 *4)) (|:| |todo| (-587 (-2 (|:| |val| (-587 *3)) (|:| -1884 *4)))))) (-5 *1 (-1054 *5 *6 *7 *3 *4)) (-4 *4 (-1022 *5 *6 *7 *3)))) (-2928 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-707)) (-4 *6 (-425)) (-4 *7 (-729)) (-4 *8 (-784)) (-4 *3 (-984 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-587 *4)) (|:| |todo| (-587 (-2 (|:| |val| (-587 *3)) (|:| -1884 *4)))))) (-5 *1 (-1054 *6 *7 *8 *3 *4)) (-4 *4 (-1022 *6 *7 *8 *3)))) (-2928 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-707)) (-5 *6 (-108)) (-4 *7 (-425)) (-4 *8 (-729)) (-4 *9 (-784)) (-4 *3 (-984 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-587 *4)) (|:| |todo| (-587 (-2 (|:| |val| (-587 *3)) (|:| -1884 *4)))))) (-5 *1 (-1054 *7 *8 *9 *3 *4)) (-4 *4 (-1022 *7 *8 *9 *3)))) (-2555 (*1 *2 *3 *4) (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784)) (-4 *3 (-984 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-587 *4)) (|:| |todo| (-587 (-2 (|:| |val| (-587 *3)) (|:| -1884 *4)))))) (-5 *1 (-1054 *5 *6 *7 *3 *4)) (-4 *4 (-1022 *5 *6 *7 *3)))) (-2555 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-707)) (-4 *6 (-425)) (-4 *7 (-729)) (-4 *8 (-784)) (-4 *3 (-984 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-587 *4)) (|:| |todo| (-587 (-2 (|:| |val| (-587 *3)) (|:| -1884 *4)))))) (-5 *1 (-1054 *6 *7 *8 *3 *4)) (-4 *4 (-1022 *6 *7 *8 *3)))) (-2087 (*1 *2 *3 *4) (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784)) (-4 *3 (-984 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-587 *4)) (|:| |todo| (-587 (-2 (|:| |val| (-587 *3)) (|:| -1884 *4)))))) (-5 *1 (-1054 *5 *6 *7 *3 *4)) (-4 *4 (-1022 *5 *6 *7 *3)))) (-1466 (*1 *2 *3 *4) (-12 (-5 *3 (-587 *8)) (-5 *4 (-587 *9)) (-4 *8 (-984 *5 *6 *7)) (-4 *9 (-1022 *5 *6 *7 *8)) (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784)) (-5 *2 (-707)) (-5 *1 (-1054 *5 *6 *7 *8 *9)))) (-1951 (*1 *2 *3 *4) (-12 (-5 *3 (-587 *8)) (-5 *4 (-587 *9)) (-4 *8 (-984 *5 *6 *7)) (-4 *9 (-1022 *5 *6 *7 *8)) (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784)) (-5 *2 (-707)) (-5 *1 (-1054 *5 *6 *7 *8 *9)))))
+(-10 -7 (-15 -1951 ((-707) (-587 |#4|) (-587 |#5|))) (-15 -1466 ((-707) (-587 |#4|) (-587 |#5|))) (-15 -2087 ((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))))) |#4| |#5|)) (-15 -2555 ((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))))) |#4| |#5| (-707))) (-15 -2555 ((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))))) |#4| |#5|)) (-15 -2928 ((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))))) |#4| |#5| (-707) (-108))) (-15 -2928 ((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))))) |#4| |#5| (-707))) (-15 -2928 ((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))))) |#4| |#5|)) (-15 -3686 ((-587 |#5|) (-587 |#4|) (-587 |#5|) (-108) (-108))) (-15 -3686 ((-587 |#5|) (-587 |#4|) (-587 |#5|) (-108) (-108) (-108) (-108) (-108))) (-15 -1938 ((-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))) (-587 |#4|) (-587 |#5|) (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))) (-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))))) (-707))) (-15 -1430 ((-1067) (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|)))) (-15 -1905 ((-1170) (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1884 |#5|))) (-707))))
+((-1415 (((-108) $ $) NIL)) (-2113 (((-587 (-2 (|:| -1650 $) (|:| -1544 (-587 |#4|)))) (-587 |#4|)) NIL)) (-1906 (((-587 $) (-587 |#4|)) 110) (((-587 $) (-587 |#4|) (-108)) 111) (((-587 $) (-587 |#4|) (-108) (-108)) 109) (((-587 $) (-587 |#4|) (-108) (-108) (-108) (-108)) 112)) (-4084 (((-587 |#3|) $) NIL)) (-3898 (((-108) $) NIL)) (-2466 (((-108) $) NIL (|has| |#1| (-513)))) (-3199 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2015 ((|#4| |#4| $) NIL)) (-3063 (((-587 (-2 (|:| |val| |#4|) (|:| -1884 $))) |#4| $) 84)) (-3211 (((-2 (|:| |under| $) (|:| -2567 $) (|:| |upper| $)) $ |#3|) NIL)) (-2978 (((-108) $ (-707)) NIL)) (-1628 (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4233))) (((-3 |#4| "failed") $ |#3|) 62)) (-2547 (($) NIL T CONST)) (-3035 (((-108) $) 26 (|has| |#1| (-513)))) (-3091 (((-108) $ $) NIL (|has| |#1| (-513)))) (-3882 (((-108) $ $) NIL (|has| |#1| (-513)))) (-3237 (((-108) $) NIL (|has| |#1| (-513)))) (-2990 (((-587 |#4|) (-587 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-3799 (((-587 |#4|) (-587 |#4|) $) NIL (|has| |#1| (-513)))) (-4183 (((-587 |#4|) (-587 |#4|) $) NIL (|has| |#1| (-513)))) (-1297 (((-3 $ "failed") (-587 |#4|)) NIL)) (-1483 (($ (-587 |#4|)) NIL)) (-2306 (((-3 $ "failed") $) 39)) (-1761 ((|#4| |#4| $) 65)) (-2332 (($ $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#4| (-1013))))) (-1422 (($ |#4| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#4| (-1013)))) (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4233)))) (-3820 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 78 (|has| |#1| (-513)))) (-3156 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) NIL)) (-1970 ((|#4| |#4| $) NIL)) (-3859 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4233)) (|has| |#4| (-1013)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4233))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4233))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-3726 (((-2 (|:| -1650 (-587 |#4|)) (|:| -1544 (-587 |#4|))) $) NIL)) (-4124 (((-108) |#4| $) NIL)) (-2628 (((-108) |#4| $) NIL)) (-3263 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3677 (((-2 (|:| |val| (-587 |#4|)) (|:| |towers| (-587 $))) (-587 |#4|) (-108) (-108)) 124)) (-3831 (((-587 |#4|) $) 16 (|has| $ (-6 -4233)))) (-3266 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3464 ((|#3| $) 33)) (-2139 (((-108) $ (-707)) NIL)) (-3757 (((-587 |#4|) $) 17 (|has| $ (-6 -4233)))) (-2221 (((-108) |#4| $) 25 (-12 (|has| $ (-6 -4233)) (|has| |#4| (-1013))))) (-3833 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#4| |#4|) $) 21)) (-2820 (((-587 |#3|) $) NIL)) (-2639 (((-108) |#3| $) NIL)) (-3574 (((-108) $ (-707)) NIL)) (-3688 (((-1067) $) NIL)) (-1767 (((-3 |#4| (-587 $)) |#4| |#4| $) NIL)) (-2031 (((-587 (-2 (|:| |val| |#4|) (|:| -1884 $))) |#4| |#4| $) 103)) (-1441 (((-3 |#4| "failed") $) 37)) (-3731 (((-587 $) |#4| $) 88)) (-4168 (((-3 (-108) (-587 $)) |#4| $) NIL)) (-3395 (((-587 (-2 (|:| |val| (-108)) (|:| -1884 $))) |#4| $) 98) (((-108) |#4| $) 53)) (-1660 (((-587 $) |#4| $) 107) (((-587 $) (-587 |#4|) $) NIL) (((-587 $) (-587 |#4|) (-587 $)) 108) (((-587 $) |#4| (-587 $)) NIL)) (-3624 (((-587 $) (-587 |#4|) (-108) (-108) (-108)) 119)) (-3428 (($ |#4| $) 75) (($ (-587 |#4|) $) 76) (((-587 $) |#4| $ (-108) (-108) (-108) (-108) (-108)) 74)) (-2323 (((-587 |#4|) $) NIL)) (-3786 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-1347 ((|#4| |#4| $) NIL)) (-2146 (((-108) $ $) NIL)) (-1341 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-513)))) (-1972 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-4065 ((|#4| |#4| $) NIL)) (-4147 (((-1031) $) NIL)) (-2293 (((-3 |#4| "failed") $) 35)) (-3620 (((-3 |#4| "failed") (-1 (-108) |#4|) $) NIL)) (-2001 (((-3 $ "failed") $ |#4|) 48)) (-2447 (($ $ |#4|) NIL) (((-587 $) |#4| $) 90) (((-587 $) |#4| (-587 $)) NIL) (((-587 $) (-587 |#4|) $) NIL) (((-587 $) (-587 |#4|) (-587 $)) 86)) (-1789 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 |#4|) (-587 |#4|)) NIL (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013)))) (($ $ (-269 |#4|)) NIL (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013)))) (($ $ (-587 (-269 |#4|))) NIL (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013))))) (-2488 (((-108) $ $) NIL)) (-3462 (((-108) $) 15)) (-4024 (($) 13)) (-1994 (((-707) $) NIL)) (-4163 (((-707) |#4| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#4| (-1013)))) (((-707) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4233)))) (-2404 (($ $) 12)) (-1430 (((-497) $) NIL (|has| |#4| (-562 (-497))))) (-2201 (($ (-587 |#4|)) 20)) (-3883 (($ $ |#3|) 42)) (-4029 (($ $ |#3|) 44)) (-3173 (($ $) NIL)) (-3318 (($ $ |#3|) NIL)) (-2189 (((-792) $) 31) (((-587 |#4|) $) 40)) (-3781 (((-707) $) NIL (|has| |#3| (-342)))) (-3234 (((-3 (-2 (|:| |bas| $) (|:| -1354 (-587 |#4|))) "failed") (-587 |#4|) (-1 (-108) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1354 (-587 |#4|))) "failed") (-587 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-3960 (((-108) $ (-1 (-108) |#4| (-587 |#4|))) NIL)) (-1933 (((-587 $) |#4| $) 54) (((-587 $) |#4| (-587 $)) NIL) (((-587 $) (-587 |#4|) $) NIL) (((-587 $) (-587 |#4|) (-587 $)) NIL)) (-3049 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4233)))) (-4099 (((-587 |#3|) $) NIL)) (-4002 (((-108) |#4| $) NIL)) (-2154 (((-108) |#3| $) 61)) (-1531 (((-108) $ $) NIL)) (-3475 (((-707) $) NIL (|has| $ (-6 -4233)))))
+(((-1055 |#1| |#2| |#3| |#4|) (-13 (-1022 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3428 ((-587 $) |#4| $ (-108) (-108) (-108) (-108) (-108))) (-15 -1906 ((-587 $) (-587 |#4|) (-108) (-108))) (-15 -1906 ((-587 $) (-587 |#4|) (-108) (-108) (-108) (-108))) (-15 -3624 ((-587 $) (-587 |#4|) (-108) (-108) (-108))) (-15 -3677 ((-2 (|:| |val| (-587 |#4|)) (|:| |towers| (-587 $))) (-587 |#4|) (-108) (-108))))) (-425) (-729) (-784) (-984 |#1| |#2| |#3|)) (T -1055))
+((-3428 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784)) (-5 *2 (-587 (-1055 *5 *6 *7 *3))) (-5 *1 (-1055 *5 *6 *7 *3)) (-4 *3 (-984 *5 *6 *7)))) (-1906 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-587 *8)) (-5 *4 (-108)) (-4 *8 (-984 *5 *6 *7)) (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784)) (-5 *2 (-587 (-1055 *5 *6 *7 *8))) (-5 *1 (-1055 *5 *6 *7 *8)))) (-1906 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-587 *8)) (-5 *4 (-108)) (-4 *8 (-984 *5 *6 *7)) (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784)) (-5 *2 (-587 (-1055 *5 *6 *7 *8))) (-5 *1 (-1055 *5 *6 *7 *8)))) (-3624 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-587 *8)) (-5 *4 (-108)) (-4 *8 (-984 *5 *6 *7)) (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784)) (-5 *2 (-587 (-1055 *5 *6 *7 *8))) (-5 *1 (-1055 *5 *6 *7 *8)))) (-3677 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784)) (-4 *8 (-984 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-587 *8)) (|:| |towers| (-587 (-1055 *5 *6 *7 *8))))) (-5 *1 (-1055 *5 *6 *7 *8)) (-5 *3 (-587 *8)))))
+(-13 (-1022 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3428 ((-587 $) |#4| $ (-108) (-108) (-108) (-108) (-108))) (-15 -1906 ((-587 $) (-587 |#4|) (-108) (-108))) (-15 -1906 ((-587 $) (-587 |#4|) (-108) (-108) (-108) (-108))) (-15 -3624 ((-587 $) (-587 |#4|) (-108) (-108) (-108))) (-15 -3677 ((-2 (|:| |val| (-587 |#4|)) (|:| |towers| (-587 $))) (-587 |#4|) (-108) (-108)))))
+((-1415 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-1354 ((|#1| $) 34)) (-3974 (($ (-587 |#1|)) 39)) (-2978 (((-108) $ (-707)) NIL)) (-2547 (($) NIL T CONST)) (-2037 ((|#1| |#1| $) 36)) (-1322 ((|#1| $) 32)) (-3831 (((-587 |#1|) $) 18 (|has| $ (-6 -4233)))) (-2139 (((-108) $ (-707)) NIL)) (-3757 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-2221 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-3833 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#1| |#1|) $) 22)) (-3574 (((-108) $ (-707)) NIL)) (-3688 (((-1067) $) NIL (|has| |#1| (-1013)))) (-2511 ((|#1| $) 35)) (-3373 (($ |#1| $) 37)) (-4147 (((-1031) $) NIL (|has| |#1| (-1013)))) (-2166 ((|#1| $) 33)) (-1789 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 |#1|))) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-2488 (((-108) $ $) NIL)) (-3462 (((-108) $) 31)) (-4024 (($) 38)) (-1252 (((-707) $) 29)) (-4163 (((-707) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (((-707) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2404 (($ $) 27)) (-2189 (((-792) $) 14 (|has| |#1| (-561 (-792))))) (-4091 (($ (-587 |#1|)) NIL)) (-3049 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-1531 (((-108) $ $) 17 (|has| |#1| (-1013)))) (-3475 (((-707) $) 30 (|has| $ (-6 -4233)))))
+(((-1056 |#1|) (-13 (-1032 |#1|) (-10 -8 (-15 -3974 ($ (-587 |#1|))))) (-1119)) (T -1056))
+((-3974 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1119)) (-5 *1 (-1056 *3)))))
+(-13 (-1032 |#1|) (-10 -8 (-15 -3974 ($ (-587 |#1|)))))
+((-2378 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1132 (-521)) |#2|) 44) ((|#2| $ (-521) |#2|) 41)) (-1368 (((-108) $) 12)) (-3833 (($ (-1 |#2| |#2|) $) 39)) (-2293 ((|#2| $) NIL) (($ $ (-707)) 17)) (-3016 (($ $ |#2|) 40)) (-3924 (((-108) $) 11)) (-2544 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1132 (-521))) 31) ((|#2| $ (-521)) 23) ((|#2| $ (-521) |#2|) NIL)) (-3980 (($ $ $) 47) (($ $ |#2|) NIL)) (-4159 (($ $ $) 33) (($ |#2| $) NIL) (($ (-587 $)) 36) (($ $ |#2|) NIL)))
+(((-1057 |#1| |#2|) (-10 -8 (-15 -1368 ((-108) |#1|)) (-15 -3924 ((-108) |#1|)) (-15 -2378 (|#2| |#1| (-521) |#2|)) (-15 -2544 (|#2| |#1| (-521) |#2|)) (-15 -2544 (|#2| |#1| (-521))) (-15 -3016 (|#1| |#1| |#2|)) (-15 -4159 (|#1| |#1| |#2|)) (-15 -4159 (|#1| (-587 |#1|))) (-15 -2544 (|#1| |#1| (-1132 (-521)))) (-15 -2378 (|#2| |#1| (-1132 (-521)) |#2|)) (-15 -2378 (|#2| |#1| "last" |#2|)) (-15 -2378 (|#1| |#1| "rest" |#1|)) (-15 -2378 (|#2| |#1| "first" |#2|)) (-15 -3980 (|#1| |#1| |#2|)) (-15 -3980 (|#1| |#1| |#1|)) (-15 -2544 (|#2| |#1| "last")) (-15 -2544 (|#1| |#1| "rest")) (-15 -2293 (|#1| |#1| (-707))) (-15 -2544 (|#2| |#1| "first")) (-15 -2293 (|#2| |#1|)) (-15 -4159 (|#1| |#2| |#1|)) (-15 -4159 (|#1| |#1| |#1|)) (-15 -2378 (|#2| |#1| "value" |#2|)) (-15 -2544 (|#2| |#1| "value")) (-15 -3833 (|#1| (-1 |#2| |#2|) |#1|))) (-1058 |#2|) (-1119)) (T -1057))
+NIL
+(-10 -8 (-15 -1368 ((-108) |#1|)) (-15 -3924 ((-108) |#1|)) (-15 -2378 (|#2| |#1| (-521) |#2|)) (-15 -2544 (|#2| |#1| (-521) |#2|)) (-15 -2544 (|#2| |#1| (-521))) (-15 -3016 (|#1| |#1| |#2|)) (-15 -4159 (|#1| |#1| |#2|)) (-15 -4159 (|#1| (-587 |#1|))) (-15 -2544 (|#1| |#1| (-1132 (-521)))) (-15 -2378 (|#2| |#1| (-1132 (-521)) |#2|)) (-15 -2378 (|#2| |#1| "last" |#2|)) (-15 -2378 (|#1| |#1| "rest" |#1|)) (-15 -2378 (|#2| |#1| "first" |#2|)) (-15 -3980 (|#1| |#1| |#2|)) (-15 -3980 (|#1| |#1| |#1|)) (-15 -2544 (|#2| |#1| "last")) (-15 -2544 (|#1| |#1| "rest")) (-15 -2293 (|#1| |#1| (-707))) (-15 -2544 (|#2| |#1| "first")) (-15 -2293 (|#2| |#1|)) (-15 -4159 (|#1| |#2| |#1|)) (-15 -4159 (|#1| |#1| |#1|)) (-15 -2378 (|#2| |#1| "value" |#2|)) (-15 -2544 (|#2| |#1| "value")) (-15 -3833 (|#1| (-1 |#2| |#2|) |#1|)))
+((-1415 (((-108) $ $) 19 (|has| |#1| (-1013)))) (-3430 ((|#1| $) 48)) (-2092 ((|#1| $) 65)) (-3830 (($ $) 67)) (-1903 (((-1170) $ (-521) (-521)) 97 (|has| $ (-6 -4234)))) (-3861 (($ $ (-521)) 52 (|has| $ (-6 -4234)))) (-2978 (((-108) $ (-707)) 8)) (-2300 ((|#1| $ |#1|) 39 (|has| $ (-6 -4234)))) (-3739 (($ $ $) 56 (|has| $ (-6 -4234)))) (-1509 ((|#1| $ |#1|) 54 (|has| $ (-6 -4234)))) (-3977 ((|#1| $ |#1|) 58 (|has| $ (-6 -4234)))) (-2378 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4234))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4234))) (($ $ "rest" $) 55 (|has| $ (-6 -4234))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4234))) ((|#1| $ (-1132 (-521)) |#1|) 117 (|has| $ (-6 -4234))) ((|#1| $ (-521) |#1|) 86 (|has| $ (-6 -4234)))) (-2675 (($ $ (-587 $)) 41 (|has| $ (-6 -4234)))) (-1628 (($ (-1 (-108) |#1|) $) 102 (|has| $ (-6 -4233)))) (-2080 ((|#1| $) 66)) (-2547 (($) 7 T CONST)) (-2306 (($ $) 73) (($ $ (-707)) 71)) (-2332 (($ $) 99 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-1422 (($ (-1 (-108) |#1|) $) 103 (|has| $ (-6 -4233))) (($ |#1| $) 100 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-3859 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-3849 ((|#1| $ (-521) |#1|) 85 (|has| $ (-6 -4234)))) (-3626 ((|#1| $ (-521)) 87)) (-1368 (((-108) $) 83)) (-3831 (((-587 |#1|) $) 30 (|has| $ (-6 -4233)))) (-3186 (((-587 $) $) 50)) (-3651 (((-108) $ $) 42 (|has| |#1| (-1013)))) (-1811 (($ (-707) |#1|) 108)) (-2139 (((-108) $ (-707)) 9)) (-2826 (((-521) $) 95 (|has| (-521) (-784)))) (-3757 (((-587 |#1|) $) 29 (|has| $ (-6 -4233)))) (-2221 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-2597 (((-521) $) 94 (|has| (-521) (-784)))) (-3833 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3574 (((-108) $ (-707)) 10)) (-1278 (((-587 |#1|) $) 45)) (-2229 (((-108) $) 49)) (-3688 (((-1067) $) 22 (|has| |#1| (-1013)))) (-1441 ((|#1| $) 70) (($ $ (-707)) 68)) (-1659 (($ $ $ (-521)) 116) (($ |#1| $ (-521)) 115)) (-1668 (((-587 (-521)) $) 92)) (-2941 (((-108) (-521) $) 91)) (-4147 (((-1031) $) 21 (|has| |#1| (-1013)))) (-2293 ((|#1| $) 76) (($ $ (-707)) 74)) (-3620 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 106)) (-3016 (($ $ |#1|) 96 (|has| $ (-6 -4234)))) (-3924 (((-108) $) 84)) (-1789 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 |#1|))) 26 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) 25 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) 23 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-2488 (((-108) $ $) 14)) (-3821 (((-108) |#1| $) 93 (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2489 (((-587 |#1|) $) 90)) (-3462 (((-108) $) 11)) (-4024 (($) 12)) (-2544 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1132 (-521))) 112) ((|#1| $ (-521)) 89) ((|#1| $ (-521) |#1|) 88)) (-2931 (((-521) $ $) 44)) (-3691 (($ $ (-1132 (-521))) 114) (($ $ (-521)) 113)) (-2406 (((-108) $) 46)) (-3207 (($ $) 62)) (-2262 (($ $) 59 (|has| $ (-6 -4234)))) (-3083 (((-707) $) 63)) (-3717 (($ $) 64)) (-4163 (((-707) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4233))) (((-707) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-2404 (($ $) 13)) (-1430 (((-497) $) 98 (|has| |#1| (-562 (-497))))) (-2201 (($ (-587 |#1|)) 107)) (-3980 (($ $ $) 61 (|has| $ (-6 -4234))) (($ $ |#1|) 60 (|has| $ (-6 -4234)))) (-4159 (($ $ $) 78) (($ |#1| $) 77) (($ (-587 $)) 110) (($ $ |#1|) 109)) (-2189 (((-792) $) 18 (|has| |#1| (-561 (-792))))) (-3098 (((-587 $) $) 51)) (-2294 (((-108) $ $) 43 (|has| |#1| (-1013)))) (-3049 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4233)))) (-1531 (((-108) $ $) 20 (|has| |#1| (-1013)))) (-3475 (((-707) $) 6 (|has| $ (-6 -4233)))))
+(((-1058 |#1|) (-1196) (-1119)) (T -1058))
+((-3924 (*1 *2 *1) (-12 (-4 *1 (-1058 *3)) (-4 *3 (-1119)) (-5 *2 (-108)))) (-1368 (*1 *2 *1) (-12 (-4 *1 (-1058 *3)) (-4 *3 (-1119)) (-5 *2 (-108)))))
+(-13 (-1153 |t#1|) (-592 |t#1|) (-10 -8 (-15 -3924 ((-108) $)) (-15 -1368 ((-108) $))))
+(((-33) . T) ((-97) |has| |#1| (-1013)) ((-561 (-792)) -3703 (|has| |#1| (-1013)) (|has| |#1| (-561 (-792)))) ((-139 |#1|) . T) ((-562 (-497)) |has| |#1| (-562 (-497))) ((-261 #0=(-521) |#1|) . T) ((-263 #0# |#1|) . T) ((-284 |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-460 |#1|) . T) ((-554 #0# |#1|) . T) ((-482 |#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-592 |#1|) . T) ((-935 |#1|) . T) ((-1013) |has| |#1| (-1013)) ((-1119) . T) ((-1153 |#1|) . T))
+((-1415 (((-108) $ $) NIL (-3703 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)) (|has| |#2| (-1013))))) (-1800 (($) NIL) (($ (-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) NIL)) (-1903 (((-1170) $ |#1| |#1|) NIL (|has| $ (-6 -4234)))) (-2978 (((-108) $ (-707)) NIL)) (-2378 ((|#2| $ |#1| |#2|) NIL)) (-4098 (($ (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4233)))) (-1628 (($ (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4233)))) (-2748 (((-3 |#2| "failed") |#1| $) NIL)) (-2547 (($) NIL T CONST)) (-2332 (($ $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013))))) (-3023 (($ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) NIL (|has| $ (-6 -4233))) (($ (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-3 |#2| "failed") |#1| $) NIL)) (-1422 (($ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (($ (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4233)))) (-3859 (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) NIL (|has| $ (-6 -4233))) (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4233)))) (-3849 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4234)))) (-3626 ((|#2| $ |#1|) NIL)) (-3831 (((-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-587 |#2|) $) NIL (|has| $ (-6 -4233)))) (-2139 (((-108) $ (-707)) NIL)) (-2826 ((|#1| $) NIL (|has| |#1| (-784)))) (-3757 (((-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-587 |#2|) $) NIL (|has| $ (-6 -4233)))) (-2221 (((-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#2| (-1013))))) (-2597 ((|#1| $) NIL (|has| |#1| (-784)))) (-3833 (($ (-1 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4234))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4234)))) (-1390 (($ (-1 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3574 (((-108) $ (-707)) NIL)) (-3688 (((-1067) $) NIL (-3703 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)) (|has| |#2| (-1013))))) (-2961 (((-587 |#1|) $) NIL)) (-2781 (((-108) |#1| $) NIL)) (-2511 (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) NIL)) (-3373 (($ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) NIL)) (-1668 (((-587 |#1|) $) NIL)) (-2941 (((-108) |#1| $) NIL)) (-4147 (((-1031) $) NIL (-3703 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)) (|has| |#2| (-1013))))) (-2293 ((|#2| $) NIL (|has| |#1| (-784)))) (-3620 (((-3 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) "failed") (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL)) (-3016 (($ $ |#2|) NIL (|has| $ (-6 -4234)))) (-2166 (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) NIL)) (-1789 (((-108) (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))))) NIL (-12 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-284 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (($ $ (-269 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) NIL (-12 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-284 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (($ $ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) NIL (-12 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-284 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (($ $ (-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) (-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) NIL (-12 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-284 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (($ $ (-587 |#2|) (-587 |#2|)) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ (-269 |#2|)) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ (-587 (-269 |#2|))) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))))) (-2488 (((-108) $ $) NIL)) (-3821 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#2| (-1013))))) (-2489 (((-587 |#2|) $) NIL)) (-3462 (((-108) $) NIL)) (-4024 (($) NIL)) (-2544 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1784 (($) NIL) (($ (-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) NIL)) (-4163 (((-707) (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-707) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (((-707) |#2| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#2| (-1013)))) (((-707) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4233)))) (-2404 (($ $) NIL)) (-1430 (((-497) $) NIL (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-562 (-497))))) (-2201 (($ (-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) NIL)) (-2189 (((-792) $) NIL (-3703 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-561 (-792))) (|has| |#2| (-561 (-792)))))) (-4091 (($ (-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) NIL)) (-3049 (((-108) (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4233)))) (-1531 (((-108) $ $) NIL (-3703 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)) (|has| |#2| (-1013))))) (-3475 (((-707) $) NIL (|has| $ (-6 -4233)))))
+(((-1059 |#1| |#2| |#3|) (-1096 |#1| |#2|) (-1013) (-1013) |#2|) (T -1059))
+NIL
+(-1096 |#1| |#2|)
+((-1415 (((-108) $ $) 7)) (-3842 (((-3 $ "failed") $) 13)) (-3688 (((-1067) $) 9)) (-3797 (($) 14 T CONST)) (-4147 (((-1031) $) 10)) (-2189 (((-792) $) 11)) (-1531 (((-108) $ $) 6)))
+(((-1060) (-1196)) (T -1060))
+((-3797 (*1 *1) (-4 *1 (-1060))) (-3842 (*1 *1 *1) (|partial| -4 *1 (-1060))))
+(-13 (-1013) (-10 -8 (-15 -3797 ($) -2676) (-15 -3842 ((-3 $ "failed") $))))
+(((-97) . T) ((-561 (-792)) . T) ((-1013) . T))
+((-1960 (((-1065 |#1|) (-1065 |#1|)) 17)) (-2267 (((-1065 |#1|) (-1065 |#1|)) 13)) (-1637 (((-1065 |#1|) (-1065 |#1|) (-521) (-521)) 20)) (-3122 (((-1065 |#1|) (-1065 |#1|)) 15)))
+(((-1061 |#1|) (-10 -7 (-15 -2267 ((-1065 |#1|) (-1065 |#1|))) (-15 -3122 ((-1065 |#1|) (-1065 |#1|))) (-15 -1960 ((-1065 |#1|) (-1065 |#1|))) (-15 -1637 ((-1065 |#1|) (-1065 |#1|) (-521) (-521)))) (-13 (-513) (-135))) (T -1061))
+((-1637 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1065 *4)) (-5 *3 (-521)) (-4 *4 (-13 (-513) (-135))) (-5 *1 (-1061 *4)))) (-1960 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-13 (-513) (-135))) (-5 *1 (-1061 *3)))) (-3122 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-13 (-513) (-135))) (-5 *1 (-1061 *3)))) (-2267 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-13 (-513) (-135))) (-5 *1 (-1061 *3)))))
+(-10 -7 (-15 -2267 ((-1065 |#1|) (-1065 |#1|))) (-15 -3122 ((-1065 |#1|) (-1065 |#1|))) (-15 -1960 ((-1065 |#1|) (-1065 |#1|))) (-15 -1637 ((-1065 |#1|) (-1065 |#1|) (-521) (-521))))
+((-4159 (((-1065 |#1|) (-1065 (-1065 |#1|))) 15)))
+(((-1062 |#1|) (-10 -7 (-15 -4159 ((-1065 |#1|) (-1065 (-1065 |#1|))))) (-1119)) (T -1062))
+((-4159 (*1 *2 *3) (-12 (-5 *3 (-1065 (-1065 *4))) (-5 *2 (-1065 *4)) (-5 *1 (-1062 *4)) (-4 *4 (-1119)))))
+(-10 -7 (-15 -4159 ((-1065 |#1|) (-1065 (-1065 |#1|)))))
+((-3126 (((-1065 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1065 |#1|)) 25)) (-3859 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1065 |#1|)) 26)) (-1390 (((-1065 |#2|) (-1 |#2| |#1|) (-1065 |#1|)) 16)))
+(((-1063 |#1| |#2|) (-10 -7 (-15 -1390 ((-1065 |#2|) (-1 |#2| |#1|) (-1065 |#1|))) (-15 -3126 ((-1065 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1065 |#1|))) (-15 -3859 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1065 |#1|)))) (-1119) (-1119)) (T -1063))
+((-3859 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1065 *5)) (-4 *5 (-1119)) (-4 *2 (-1119)) (-5 *1 (-1063 *5 *2)))) (-3126 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1065 *6)) (-4 *6 (-1119)) (-4 *3 (-1119)) (-5 *2 (-1065 *3)) (-5 *1 (-1063 *6 *3)))) (-1390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1065 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-1065 *6)) (-5 *1 (-1063 *5 *6)))))
+(-10 -7 (-15 -1390 ((-1065 |#2|) (-1 |#2| |#1|) (-1065 |#1|))) (-15 -3126 ((-1065 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1065 |#1|))) (-15 -3859 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1065 |#1|))))
+((-1390 (((-1065 |#3|) (-1 |#3| |#1| |#2|) (-1065 |#1|) (-1065 |#2|)) 21)))
+(((-1064 |#1| |#2| |#3|) (-10 -7 (-15 -1390 ((-1065 |#3|) (-1 |#3| |#1| |#2|) (-1065 |#1|) (-1065 |#2|)))) (-1119) (-1119) (-1119)) (T -1064))
+((-1390 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1065 *6)) (-5 *5 (-1065 *7)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-4 *8 (-1119)) (-5 *2 (-1065 *8)) (-5 *1 (-1064 *6 *7 *8)))))
+(-10 -7 (-15 -1390 ((-1065 |#3|) (-1 |#3| |#1| |#2|) (-1065 |#1|) (-1065 |#2|))))
+((-1415 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3430 ((|#1| $) NIL)) (-2092 ((|#1| $) NIL)) (-3830 (($ $) 49)) (-1903 (((-1170) $ (-521) (-521)) 74 (|has| $ (-6 -4234)))) (-3861 (($ $ (-521)) 108 (|has| $ (-6 -4234)))) (-2978 (((-108) $ (-707)) NIL)) (-3581 (((-792) $) 38 (|has| |#1| (-1013)))) (-1350 (((-108)) 39 (|has| |#1| (-1013)))) (-2300 ((|#1| $ |#1|) NIL (|has| $ (-6 -4234)))) (-3739 (($ $ $) 96 (|has| $ (-6 -4234))) (($ $ (-521) $) 118)) (-1509 ((|#1| $ |#1|) 105 (|has| $ (-6 -4234)))) (-3977 ((|#1| $ |#1|) 100 (|has| $ (-6 -4234)))) (-2378 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4234))) ((|#1| $ "first" |#1|) 102 (|has| $ (-6 -4234))) (($ $ "rest" $) 104 (|has| $ (-6 -4234))) ((|#1| $ "last" |#1|) 107 (|has| $ (-6 -4234))) ((|#1| $ (-1132 (-521)) |#1|) 87 (|has| $ (-6 -4234))) ((|#1| $ (-521) |#1|) 53 (|has| $ (-6 -4234)))) (-2675 (($ $ (-587 $)) NIL (|has| $ (-6 -4234)))) (-1628 (($ (-1 (-108) |#1|) $) 56)) (-2080 ((|#1| $) NIL)) (-2547 (($) NIL T CONST)) (-3414 (($ $) 14)) (-2306 (($ $) 29) (($ $ (-707)) 86)) (-4079 (((-108) (-587 |#1|) $) 113 (|has| |#1| (-1013)))) (-3232 (($ (-587 |#1|)) 110)) (-2332 (($ $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-1422 (($ |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013)))) (($ (-1 (-108) |#1|) $) 55)) (-3859 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-3849 ((|#1| $ (-521) |#1|) NIL (|has| $ (-6 -4234)))) (-3626 ((|#1| $ (-521)) NIL)) (-1368 (((-108) $) NIL)) (-3831 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-1585 (((-1170) (-521) $) 117 (|has| |#1| (-1013)))) (-2885 (((-707) $) 115)) (-3186 (((-587 $) $) NIL)) (-3651 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-1811 (($ (-707) |#1|) NIL)) (-2139 (((-108) $ (-707)) NIL)) (-2826 (((-521) $) NIL (|has| (-521) (-784)))) (-3757 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-2221 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2597 (((-521) $) NIL (|has| (-521) (-784)))) (-3833 (($ (-1 |#1| |#1|) $) 71 (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#1| |#1|) $) 61) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-3574 (((-108) $ (-707)) NIL)) (-1278 (((-587 |#1|) $) NIL)) (-2229 (((-108) $) NIL)) (-1689 (($ $) 88)) (-3345 (((-108) $) 13)) (-3688 (((-1067) $) NIL (|has| |#1| (-1013)))) (-1441 ((|#1| $) NIL) (($ $ (-707)) NIL)) (-1659 (($ $ $ (-521)) NIL) (($ |#1| $ (-521)) NIL)) (-1668 (((-587 (-521)) $) NIL)) (-2941 (((-108) (-521) $) 72)) (-4147 (((-1031) $) NIL (|has| |#1| (-1013)))) (-1578 (($ (-1 |#1|)) 120) (($ (-1 |#1| |#1|) |#1|) 121)) (-2285 ((|#1| $) 10)) (-2293 ((|#1| $) 28) (($ $ (-707)) 47)) (-3889 (((-2 (|:| |cycle?| (-108)) (|:| -3370 (-707)) (|:| |period| (-707))) (-707) $) 25)) (-3620 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-1614 (($ (-1 (-108) |#1|) $) 122)) (-1622 (($ (-1 (-108) |#1|) $) 123)) (-3016 (($ $ |#1|) 66 (|has| $ (-6 -4234)))) (-2447 (($ $ (-521)) 32)) (-3924 (((-108) $) 70)) (-1661 (((-108) $) 12)) (-3005 (((-108) $) 114)) (-1789 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 |#1|))) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-2488 (((-108) $ $) 20)) (-3821 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2489 (((-587 |#1|) $) NIL)) (-3462 (((-108) $) 15)) (-4024 (($) 41)) (-2544 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1132 (-521))) NIL) ((|#1| $ (-521)) 52) ((|#1| $ (-521) |#1|) NIL)) (-2931 (((-521) $ $) 46)) (-3691 (($ $ (-1132 (-521))) NIL) (($ $ (-521)) NIL)) (-3705 (($ (-1 $)) 45)) (-2406 (((-108) $) 67)) (-3207 (($ $) 68)) (-2262 (($ $) 97 (|has| $ (-6 -4234)))) (-3083 (((-707) $) NIL)) (-3717 (($ $) NIL)) (-4163 (((-707) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (((-707) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2404 (($ $) 42)) (-1430 (((-497) $) NIL (|has| |#1| (-562 (-497))))) (-2201 (($ (-587 |#1|)) 51)) (-3435 (($ |#1| $) 95)) (-3980 (($ $ $) 98 (|has| $ (-6 -4234))) (($ $ |#1|) 99 (|has| $ (-6 -4234)))) (-4159 (($ $ $) 76) (($ |#1| $) 43) (($ (-587 $)) 81) (($ $ |#1|) 75)) (-3448 (($ $) 48)) (-2189 (($ (-587 |#1|)) 109) (((-792) $) 40 (|has| |#1| (-561 (-792))))) (-3098 (((-587 $) $) NIL)) (-2294 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3049 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-1531 (((-108) $ $) 112 (|has| |#1| (-1013)))) (-3475 (((-707) $) NIL (|has| $ (-6 -4233)))))
+(((-1065 |#1|) (-13 (-614 |#1|) (-10 -8 (-6 -4234) (-15 -2189 ($ (-587 |#1|))) (-15 -3232 ($ (-587 |#1|))) (IF (|has| |#1| (-1013)) (-15 -4079 ((-108) (-587 |#1|) $)) |%noBranch|) (-15 -3889 ((-2 (|:| |cycle?| (-108)) (|:| -3370 (-707)) (|:| |period| (-707))) (-707) $)) (-15 -3705 ($ (-1 $))) (-15 -3435 ($ |#1| $)) (IF (|has| |#1| (-1013)) (PROGN (-15 -1585 ((-1170) (-521) $)) (-15 -3581 ((-792) $)) (-15 -1350 ((-108)))) |%noBranch|) (-15 -3739 ($ $ (-521) $)) (-15 -1578 ($ (-1 |#1|))) (-15 -1578 ($ (-1 |#1| |#1|) |#1|)) (-15 -1614 ($ (-1 (-108) |#1|) $)) (-15 -1622 ($ (-1 (-108) |#1|) $)))) (-1119)) (T -1065))
+((-2189 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1119)) (-5 *1 (-1065 *3)))) (-3232 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1119)) (-5 *1 (-1065 *3)))) (-4079 (*1 *2 *3 *1) (-12 (-5 *3 (-587 *4)) (-4 *4 (-1013)) (-4 *4 (-1119)) (-5 *2 (-108)) (-5 *1 (-1065 *4)))) (-3889 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-108)) (|:| -3370 (-707)) (|:| |period| (-707)))) (-5 *1 (-1065 *4)) (-4 *4 (-1119)) (-5 *3 (-707)))) (-3705 (*1 *1 *2) (-12 (-5 *2 (-1 (-1065 *3))) (-5 *1 (-1065 *3)) (-4 *3 (-1119)))) (-3435 (*1 *1 *2 *1) (-12 (-5 *1 (-1065 *2)) (-4 *2 (-1119)))) (-1585 (*1 *2 *3 *1) (-12 (-5 *3 (-521)) (-5 *2 (-1170)) (-5 *1 (-1065 *4)) (-4 *4 (-1013)) (-4 *4 (-1119)))) (-3581 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-1065 *3)) (-4 *3 (-1013)) (-4 *3 (-1119)))) (-1350 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1065 *3)) (-4 *3 (-1013)) (-4 *3 (-1119)))) (-3739 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-1065 *3)) (-4 *3 (-1119)))) (-1578 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1119)) (-5 *1 (-1065 *3)))) (-1578 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1119)) (-5 *1 (-1065 *3)))) (-1614 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1119)) (-5 *1 (-1065 *3)))) (-1622 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1119)) (-5 *1 (-1065 *3)))))
+(-13 (-614 |#1|) (-10 -8 (-6 -4234) (-15 -2189 ($ (-587 |#1|))) (-15 -3232 ($ (-587 |#1|))) (IF (|has| |#1| (-1013)) (-15 -4079 ((-108) (-587 |#1|) $)) |%noBranch|) (-15 -3889 ((-2 (|:| |cycle?| (-108)) (|:| -3370 (-707)) (|:| |period| (-707))) (-707) $)) (-15 -3705 ($ (-1 $))) (-15 -3435 ($ |#1| $)) (IF (|has| |#1| (-1013)) (PROGN (-15 -1585 ((-1170) (-521) $)) (-15 -3581 ((-792) $)) (-15 -1350 ((-108)))) |%noBranch|) (-15 -3739 ($ $ (-521) $)) (-15 -1578 ($ (-1 |#1|))) (-15 -1578 ($ (-1 |#1| |#1|) |#1|)) (-15 -1614 ($ (-1 (-108) |#1|) $)) (-15 -1622 ($ (-1 (-108) |#1|) $))))
+((-1415 (((-108) $ $) 19)) (-3281 (($ $) 120)) (-3307 (($ $) 121)) (-3053 (($ $ (-132)) 108) (($ $ (-129)) 107)) (-1903 (((-1170) $ (-521) (-521)) 40 (|has| $ (-6 -4234)))) (-3763 (((-108) $ $) 118)) (-3738 (((-108) $ $ (-521)) 117)) (-1507 (($ (-521)) 127)) (-3604 (((-587 $) $ (-132)) 110) (((-587 $) $ (-129)) 109)) (-1505 (((-108) (-1 (-108) (-132) (-132)) $) 98) (((-108) $) 92 (|has| (-132) (-784)))) (-1621 (($ (-1 (-108) (-132) (-132)) $) 89 (|has| $ (-6 -4234))) (($ $) 88 (-12 (|has| (-132) (-784)) (|has| $ (-6 -4234))))) (-3211 (($ (-1 (-108) (-132) (-132)) $) 99) (($ $) 93 (|has| (-132) (-784)))) (-2978 (((-108) $ (-707)) 8)) (-2378 (((-132) $ (-521) (-132)) 52 (|has| $ (-6 -4234))) (((-132) $ (-1132 (-521)) (-132)) 58 (|has| $ (-6 -4234)))) (-1628 (($ (-1 (-108) (-132)) $) 75 (|has| $ (-6 -4233)))) (-2547 (($) 7 T CONST)) (-2846 (($ $ (-132)) 104) (($ $ (-129)) 103)) (-3081 (($ $) 90 (|has| $ (-6 -4234)))) (-1862 (($ $) 100)) (-2515 (($ $ (-1132 (-521)) $) 114)) (-2332 (($ $) 78 (-12 (|has| (-132) (-1013)) (|has| $ (-6 -4233))))) (-1422 (($ (-132) $) 77 (-12 (|has| (-132) (-1013)) (|has| $ (-6 -4233)))) (($ (-1 (-108) (-132)) $) 74 (|has| $ (-6 -4233)))) (-3859 (((-132) (-1 (-132) (-132) (-132)) $ (-132) (-132)) 76 (-12 (|has| (-132) (-1013)) (|has| $ (-6 -4233)))) (((-132) (-1 (-132) (-132) (-132)) $ (-132)) 73 (|has| $ (-6 -4233))) (((-132) (-1 (-132) (-132) (-132)) $) 72 (|has| $ (-6 -4233)))) (-3849 (((-132) $ (-521) (-132)) 53 (|has| $ (-6 -4234)))) (-3626 (((-132) $ (-521)) 51)) (-3788 (((-108) $ $) 119)) (-3233 (((-521) (-1 (-108) (-132)) $) 97) (((-521) (-132) $) 96 (|has| (-132) (-1013))) (((-521) (-132) $ (-521)) 95 (|has| (-132) (-1013))) (((-521) $ $ (-521)) 113) (((-521) (-129) $ (-521)) 112)) (-3831 (((-587 (-132)) $) 30 (|has| $ (-6 -4233)))) (-1811 (($ (-707) (-132)) 69)) (-2139 (((-108) $ (-707)) 9)) (-2826 (((-521) $) 43 (|has| (-521) (-784)))) (-2810 (($ $ $) 87 (|has| (-132) (-784)))) (-1318 (($ (-1 (-108) (-132) (-132)) $ $) 101) (($ $ $) 94 (|has| (-132) (-784)))) (-3757 (((-587 (-132)) $) 29 (|has| $ (-6 -4233)))) (-2221 (((-108) (-132) $) 27 (-12 (|has| (-132) (-1013)) (|has| $ (-6 -4233))))) (-2597 (((-521) $) 44 (|has| (-521) (-784)))) (-2446 (($ $ $) 86 (|has| (-132) (-784)))) (-1454 (((-108) $ $ (-132)) 115)) (-4143 (((-707) $ $ (-132)) 116)) (-3833 (($ (-1 (-132) (-132)) $) 34 (|has| $ (-6 -4234)))) (-1390 (($ (-1 (-132) (-132)) $) 35) (($ (-1 (-132) (-132) (-132)) $ $) 64)) (-1940 (($ $) 122)) (-3402 (($ $) 123)) (-3574 (((-108) $ (-707)) 10)) (-2858 (($ $ (-132)) 106) (($ $ (-129)) 105)) (-3688 (((-1067) $) 22)) (-1659 (($ (-132) $ (-521)) 60) (($ $ $ (-521)) 59)) (-1668 (((-587 (-521)) $) 46)) (-2941 (((-108) (-521) $) 47)) (-4147 (((-1031) $) 21)) (-2293 (((-132) $) 42 (|has| (-521) (-784)))) (-3620 (((-3 (-132) "failed") (-1 (-108) (-132)) $) 71)) (-3016 (($ $ (-132)) 41 (|has| $ (-6 -4234)))) (-1789 (((-108) (-1 (-108) (-132)) $) 32 (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 (-132)))) 26 (-12 (|has| (-132) (-284 (-132))) (|has| (-132) (-1013)))) (($ $ (-269 (-132))) 25 (-12 (|has| (-132) (-284 (-132))) (|has| (-132) (-1013)))) (($ $ (-132) (-132)) 24 (-12 (|has| (-132) (-284 (-132))) (|has| (-132) (-1013)))) (($ $ (-587 (-132)) (-587 (-132))) 23 (-12 (|has| (-132) (-284 (-132))) (|has| (-132) (-1013))))) (-2488 (((-108) $ $) 14)) (-3821 (((-108) (-132) $) 45 (-12 (|has| $ (-6 -4233)) (|has| (-132) (-1013))))) (-2489 (((-587 (-132)) $) 48)) (-3462 (((-108) $) 11)) (-4024 (($) 12)) (-2544 (((-132) $ (-521) (-132)) 50) (((-132) $ (-521)) 49) (($ $ (-1132 (-521))) 63) (($ $ $) 102)) (-3691 (($ $ (-521)) 62) (($ $ (-1132 (-521))) 61)) (-4163 (((-707) (-1 (-108) (-132)) $) 31 (|has| $ (-6 -4233))) (((-707) (-132) $) 28 (-12 (|has| (-132) (-1013)) (|has| $ (-6 -4233))))) (-1497 (($ $ $ (-521)) 91 (|has| $ (-6 -4234)))) (-2404 (($ $) 13)) (-1430 (((-497) $) 79 (|has| (-132) (-562 (-497))))) (-2201 (($ (-587 (-132))) 70)) (-4159 (($ $ (-132)) 68) (($ (-132) $) 67) (($ $ $) 66) (($ (-587 $)) 65)) (-2189 (($ (-132)) 111) (((-792) $) 18)) (-3049 (((-108) (-1 (-108) (-132)) $) 33 (|has| $ (-6 -4233)))) (-2287 (((-1067) $) 131) (((-1067) $ (-108)) 130) (((-1170) (-759) $) 129) (((-1170) (-759) $ (-108)) 128)) (-1574 (((-108) $ $) 84 (|has| (-132) (-784)))) (-1558 (((-108) $ $) 83 (|has| (-132) (-784)))) (-1531 (((-108) $ $) 20)) (-1566 (((-108) $ $) 85 (|has| (-132) (-784)))) (-1549 (((-108) $ $) 82 (|has| (-132) (-784)))) (-3475 (((-707) $) 6 (|has| $ (-6 -4233)))))
+(((-1066) (-1196)) (T -1066))
+((-1507 (*1 *1 *2) (-12 (-5 *2 (-521)) (-4 *1 (-1066)))))
+(-13 (-1053) (-1013) (-765) (-10 -8 (-15 -1507 ($ (-521)))))
+(((-33) . T) ((-97) . T) ((-561 (-792)) . T) ((-139 #0=(-132)) . T) ((-562 (-497)) |has| (-132) (-562 (-497))) ((-261 #1=(-521) #0#) . T) ((-263 #1# #0#) . T) ((-284 #0#) -12 (|has| (-132) (-284 (-132))) (|has| (-132) (-1013))) ((-347 #0#) . T) ((-460 #0#) . T) ((-554 #1# #0#) . T) ((-482 #0# #0#) -12 (|has| (-132) (-284 (-132))) (|has| (-132) (-1013))) ((-592 #0#) . T) ((-19 #0#) . T) ((-765) . T) ((-784) |has| (-132) (-784)) ((-1013) . T) ((-1053) . T) ((-1119) . T))
+((-1415 (((-108) $ $) NIL)) (-3281 (($ $) NIL)) (-3307 (($ $) NIL)) (-3053 (($ $ (-132)) NIL) (($ $ (-129)) NIL)) (-1903 (((-1170) $ (-521) (-521)) NIL (|has| $ (-6 -4234)))) (-3763 (((-108) $ $) NIL)) (-3738 (((-108) $ $ (-521)) NIL)) (-1507 (($ (-521)) 7)) (-3604 (((-587 $) $ (-132)) NIL) (((-587 $) $ (-129)) NIL)) (-1505 (((-108) (-1 (-108) (-132) (-132)) $) NIL) (((-108) $) NIL (|has| (-132) (-784)))) (-1621 (($ (-1 (-108) (-132) (-132)) $) NIL (|has| $ (-6 -4234))) (($ $) NIL (-12 (|has| $ (-6 -4234)) (|has| (-132) (-784))))) (-3211 (($ (-1 (-108) (-132) (-132)) $) NIL) (($ $) NIL (|has| (-132) (-784)))) (-2978 (((-108) $ (-707)) NIL)) (-2378 (((-132) $ (-521) (-132)) NIL (|has| $ (-6 -4234))) (((-132) $ (-1132 (-521)) (-132)) NIL (|has| $ (-6 -4234)))) (-1628 (($ (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4233)))) (-2547 (($) NIL T CONST)) (-2846 (($ $ (-132)) NIL) (($ $ (-129)) NIL)) (-3081 (($ $) NIL (|has| $ (-6 -4234)))) (-1862 (($ $) NIL)) (-2515 (($ $ (-1132 (-521)) $) NIL)) (-2332 (($ $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-132) (-1013))))) (-1422 (($ (-132) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-132) (-1013)))) (($ (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4233)))) (-3859 (((-132) (-1 (-132) (-132) (-132)) $ (-132) (-132)) NIL (-12 (|has| $ (-6 -4233)) (|has| (-132) (-1013)))) (((-132) (-1 (-132) (-132) (-132)) $ (-132)) NIL (|has| $ (-6 -4233))) (((-132) (-1 (-132) (-132) (-132)) $) NIL (|has| $ (-6 -4233)))) (-3849 (((-132) $ (-521) (-132)) NIL (|has| $ (-6 -4234)))) (-3626 (((-132) $ (-521)) NIL)) (-3788 (((-108) $ $) NIL)) (-3233 (((-521) (-1 (-108) (-132)) $) NIL) (((-521) (-132) $) NIL (|has| (-132) (-1013))) (((-521) (-132) $ (-521)) NIL (|has| (-132) (-1013))) (((-521) $ $ (-521)) NIL) (((-521) (-129) $ (-521)) NIL)) (-3831 (((-587 (-132)) $) NIL (|has| $ (-6 -4233)))) (-1811 (($ (-707) (-132)) NIL)) (-2139 (((-108) $ (-707)) NIL)) (-2826 (((-521) $) NIL (|has| (-521) (-784)))) (-2810 (($ $ $) NIL (|has| (-132) (-784)))) (-1318 (($ (-1 (-108) (-132) (-132)) $ $) NIL) (($ $ $) NIL (|has| (-132) (-784)))) (-3757 (((-587 (-132)) $) NIL (|has| $ (-6 -4233)))) (-2221 (((-108) (-132) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-132) (-1013))))) (-2597 (((-521) $) NIL (|has| (-521) (-784)))) (-2446 (($ $ $) NIL (|has| (-132) (-784)))) (-1454 (((-108) $ $ (-132)) NIL)) (-4143 (((-707) $ $ (-132)) NIL)) (-3833 (($ (-1 (-132) (-132)) $) NIL (|has| $ (-6 -4234)))) (-1390 (($ (-1 (-132) (-132)) $) NIL) (($ (-1 (-132) (-132) (-132)) $ $) NIL)) (-1940 (($ $) NIL)) (-3402 (($ $) NIL)) (-3574 (((-108) $ (-707)) NIL)) (-2858 (($ $ (-132)) NIL) (($ $ (-129)) NIL)) (-3688 (((-1067) $) NIL)) (-1659 (($ (-132) $ (-521)) NIL) (($ $ $ (-521)) NIL)) (-1668 (((-587 (-521)) $) NIL)) (-2941 (((-108) (-521) $) NIL)) (-4147 (((-1031) $) NIL)) (-2293 (((-132) $) NIL (|has| (-521) (-784)))) (-3620 (((-3 (-132) "failed") (-1 (-108) (-132)) $) NIL)) (-3016 (($ $ (-132)) NIL (|has| $ (-6 -4234)))) (-1789 (((-108) (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 (-132)))) NIL (-12 (|has| (-132) (-284 (-132))) (|has| (-132) (-1013)))) (($ $ (-269 (-132))) NIL (-12 (|has| (-132) (-284 (-132))) (|has| (-132) (-1013)))) (($ $ (-132) (-132)) NIL (-12 (|has| (-132) (-284 (-132))) (|has| (-132) (-1013)))) (($ $ (-587 (-132)) (-587 (-132))) NIL (-12 (|has| (-132) (-284 (-132))) (|has| (-132) (-1013))))) (-2488 (((-108) $ $) NIL)) (-3821 (((-108) (-132) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-132) (-1013))))) (-2489 (((-587 (-132)) $) NIL)) (-3462 (((-108) $) NIL)) (-4024 (($) NIL)) (-2544 (((-132) $ (-521) (-132)) NIL) (((-132) $ (-521)) NIL) (($ $ (-1132 (-521))) NIL) (($ $ $) NIL)) (-3691 (($ $ (-521)) NIL) (($ $ (-1132 (-521))) NIL)) (-4163 (((-707) (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4233))) (((-707) (-132) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-132) (-1013))))) (-1497 (($ $ $ (-521)) NIL (|has| $ (-6 -4234)))) (-2404 (($ $) NIL)) (-1430 (((-497) $) NIL (|has| (-132) (-562 (-497))))) (-2201 (($ (-587 (-132))) NIL)) (-4159 (($ $ (-132)) NIL) (($ (-132) $) NIL) (($ $ $) NIL) (($ (-587 $)) NIL)) (-2189 (($ (-132)) NIL) (((-792) $) NIL)) (-3049 (((-108) (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4233)))) (-2287 (((-1067) $) 18) (((-1067) $ (-108)) 20) (((-1170) (-759) $) 21) (((-1170) (-759) $ (-108)) 22)) (-1574 (((-108) $ $) NIL (|has| (-132) (-784)))) (-1558 (((-108) $ $) NIL (|has| (-132) (-784)))) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL (|has| (-132) (-784)))) (-1549 (((-108) $ $) NIL (|has| (-132) (-784)))) (-3475 (((-707) $) NIL (|has| $ (-6 -4233)))))
+(((-1067) (-1066)) (T -1067))
+NIL
+(-1066)
+((-1415 (((-108) $ $) NIL (-3703 (|has| (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (-1013)) (|has| |#1| (-1013))))) (-1800 (($) NIL) (($ (-587 (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)))) NIL)) (-1903 (((-1170) $ (-1067) (-1067)) NIL (|has| $ (-6 -4234)))) (-2978 (((-108) $ (-707)) NIL)) (-2378 ((|#1| $ (-1067) |#1|) NIL)) (-4098 (($ (-1 (-108) (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|))) $) NIL (|has| $ (-6 -4233)))) (-1628 (($ (-1 (-108) (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|))) $) NIL (|has| $ (-6 -4233)))) (-2748 (((-3 |#1| "failed") (-1067) $) NIL)) (-2547 (($) NIL T CONST)) (-2332 (($ $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (-1013))))) (-3023 (($ (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) $) NIL (|has| $ (-6 -4233))) (($ (-1 (-108) (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|))) $) NIL (|has| $ (-6 -4233))) (((-3 |#1| "failed") (-1067) $) NIL)) (-1422 (($ (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (-1013)))) (($ (-1 (-108) (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|))) $) NIL (|has| $ (-6 -4233)))) (-3859 (((-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (-1 (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|))) $ (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|))) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (-1013)))) (((-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (-1 (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|))) $ (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|))) NIL (|has| $ (-6 -4233))) (((-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (-1 (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|))) $) NIL (|has| $ (-6 -4233)))) (-3849 ((|#1| $ (-1067) |#1|) NIL (|has| $ (-6 -4234)))) (-3626 ((|#1| $ (-1067)) NIL)) (-3831 (((-587 (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|))) $) NIL (|has| $ (-6 -4233))) (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-2139 (((-108) $ (-707)) NIL)) (-2826 (((-1067) $) NIL (|has| (-1067) (-784)))) (-3757 (((-587 (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|))) $) NIL (|has| $ (-6 -4233))) (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-2221 (((-108) (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (-1013)))) (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2597 (((-1067) $) NIL (|has| (-1067) (-784)))) (-3833 (($ (-1 (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|))) $) NIL (|has| $ (-6 -4234))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4234)))) (-1390 (($ (-1 (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3574 (((-108) $ (-707)) NIL)) (-3688 (((-1067) $) NIL (-3703 (|has| (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (-1013)) (|has| |#1| (-1013))))) (-2961 (((-587 (-1067)) $) NIL)) (-2781 (((-108) (-1067) $) NIL)) (-2511 (((-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) $) NIL)) (-3373 (($ (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) $) NIL)) (-1668 (((-587 (-1067)) $) NIL)) (-2941 (((-108) (-1067) $) NIL)) (-4147 (((-1031) $) NIL (-3703 (|has| (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (-1013)) (|has| |#1| (-1013))))) (-2293 ((|#1| $) NIL (|has| (-1067) (-784)))) (-3620 (((-3 (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) "failed") (-1 (-108) (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|))) $) NIL)) (-3016 (($ $ |#1|) NIL (|has| $ (-6 -4234)))) (-2166 (((-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) $) NIL)) (-1789 (((-108) (-1 (-108) (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|))) $) NIL (|has| $ (-6 -4233))) (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|))))) NIL (-12 (|has| (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (-284 (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)))) (|has| (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (-1013)))) (($ $ (-269 (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)))) NIL (-12 (|has| (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (-284 (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)))) (|has| (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (-1013)))) (($ $ (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|))) NIL (-12 (|has| (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (-284 (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)))) (|has| (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (-1013)))) (($ $ (-587 (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|))) (-587 (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)))) NIL (-12 (|has| (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (-284 (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)))) (|has| (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 (-269 |#1|))) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-2488 (((-108) $ $) NIL)) (-3821 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2489 (((-587 |#1|) $) NIL)) (-3462 (((-108) $) NIL)) (-4024 (($) NIL)) (-2544 ((|#1| $ (-1067)) NIL) ((|#1| $ (-1067) |#1|) NIL)) (-1784 (($) NIL) (($ (-587 (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)))) NIL)) (-4163 (((-707) (-1 (-108) (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|))) $) NIL (|has| $ (-6 -4233))) (((-707) (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (-1013)))) (((-707) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013)))) (((-707) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2404 (($ $) NIL)) (-1430 (((-497) $) NIL (|has| (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (-562 (-497))))) (-2201 (($ (-587 (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)))) NIL)) (-2189 (((-792) $) NIL (-3703 (|has| (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (-561 (-792))) (|has| |#1| (-561 (-792)))))) (-4091 (($ (-587 (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)))) NIL)) (-3049 (((-108) (-1 (-108) (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|))) $) NIL (|has| $ (-6 -4233))) (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-1531 (((-108) $ $) NIL (-3703 (|has| (-2 (|:| -2529 (-1067)) (|:| -3045 |#1|)) (-1013)) (|has| |#1| (-1013))))) (-3475 (((-707) $) NIL (|has| $ (-6 -4233)))))
+(((-1068 |#1|) (-13 (-1096 (-1067) |#1|) (-10 -7 (-6 -4233))) (-1013)) (T -1068))
+NIL
+(-13 (-1096 (-1067) |#1|) (-10 -7 (-6 -4233)))
+((-3682 (((-1065 |#1|) (-1065 |#1|)) 77)) (-1257 (((-3 (-1065 |#1|) "failed") (-1065 |#1|)) 37)) (-1832 (((-1065 |#1|) (-381 (-521)) (-1065 |#1|)) 117 (|has| |#1| (-37 (-381 (-521)))))) (-3745 (((-1065 |#1|) |#1| (-1065 |#1|)) 121 (|has| |#1| (-337)))) (-3093 (((-1065 |#1|) (-1065 |#1|)) 90)) (-4014 (((-1065 (-521)) (-521)) 57)) (-1333 (((-1065 |#1|) (-1065 (-1065 |#1|))) 108 (|has| |#1| (-37 (-381 (-521)))))) (-3749 (((-1065 |#1|) (-521) (-521) (-1065 |#1|)) 95)) (-2517 (((-1065 |#1|) |#1| (-521)) 45)) (-1532 (((-1065 |#1|) (-1065 |#1|) (-1065 |#1|)) 60)) (-1855 (((-1065 |#1|) (-1065 |#1|) (-1065 |#1|)) 119 (|has| |#1| (-337)))) (-1464 (((-1065 |#1|) |#1| (-1 (-1065 |#1|))) 107 (|has| |#1| (-37 (-381 (-521)))))) (-1200 (((-1065 |#1|) (-1 |#1| (-521)) |#1| (-1 (-1065 |#1|))) 120 (|has| |#1| (-337)))) (-3265 (((-1065 |#1|) (-1065 |#1|)) 89)) (-1406 (((-1065 |#1|) (-1065 |#1|)) 76)) (-3356 (((-1065 |#1|) (-521) (-521) (-1065 |#1|)) 96)) (-2184 (((-1065 |#1|) |#1| (-1065 |#1|)) 105 (|has| |#1| (-37 (-381 (-521)))))) (-2273 (((-1065 (-521)) (-521)) 56)) (-2072 (((-1065 |#1|) |#1|) 59)) (-2583 (((-1065 |#1|) (-1065 |#1|) (-521) (-521)) 92)) (-4198 (((-1065 |#1|) (-1 |#1| (-521)) (-1065 |#1|)) 66)) (-2230 (((-3 (-1065 |#1|) "failed") (-1065 |#1|) (-1065 |#1|)) 35)) (-1210 (((-1065 |#1|) (-1065 |#1|)) 91)) (-2288 (((-1065 |#1|) (-1065 |#1|) |#1|) 71)) (-2622 (((-1065 |#1|) (-1065 |#1|)) 62)) (-3600 (((-1065 |#1|) (-1065 |#1|) (-1065 |#1|)) 72)) (-2189 (((-1065 |#1|) |#1|) 67)) (-3916 (((-1065 |#1|) (-1065 (-1065 |#1|))) 82)) (-1620 (((-1065 |#1|) (-1065 |#1|) (-1065 |#1|)) 36)) (-1612 (((-1065 |#1|) (-1065 |#1|)) 21) (((-1065 |#1|) (-1065 |#1|) (-1065 |#1|)) 23)) (-1602 (((-1065 |#1|) (-1065 |#1|) (-1065 |#1|)) 17)) (* (((-1065 |#1|) (-1065 |#1|) |#1|) 29) (((-1065 |#1|) |#1| (-1065 |#1|)) 26) (((-1065 |#1|) (-1065 |#1|) (-1065 |#1|)) 27)))
+(((-1069 |#1|) (-10 -7 (-15 -1602 ((-1065 |#1|) (-1065 |#1|) (-1065 |#1|))) (-15 -1612 ((-1065 |#1|) (-1065 |#1|) (-1065 |#1|))) (-15 -1612 ((-1065 |#1|) (-1065 |#1|))) (-15 * ((-1065 |#1|) (-1065 |#1|) (-1065 |#1|))) (-15 * ((-1065 |#1|) |#1| (-1065 |#1|))) (-15 * ((-1065 |#1|) (-1065 |#1|) |#1|)) (-15 -2230 ((-3 (-1065 |#1|) "failed") (-1065 |#1|) (-1065 |#1|))) (-15 -1620 ((-1065 |#1|) (-1065 |#1|) (-1065 |#1|))) (-15 -1257 ((-3 (-1065 |#1|) "failed") (-1065 |#1|))) (-15 -2517 ((-1065 |#1|) |#1| (-521))) (-15 -2273 ((-1065 (-521)) (-521))) (-15 -4014 ((-1065 (-521)) (-521))) (-15 -2072 ((-1065 |#1|) |#1|)) (-15 -1532 ((-1065 |#1|) (-1065 |#1|) (-1065 |#1|))) (-15 -2622 ((-1065 |#1|) (-1065 |#1|))) (-15 -4198 ((-1065 |#1|) (-1 |#1| (-521)) (-1065 |#1|))) (-15 -2189 ((-1065 |#1|) |#1|)) (-15 -2288 ((-1065 |#1|) (-1065 |#1|) |#1|)) (-15 -3600 ((-1065 |#1|) (-1065 |#1|) (-1065 |#1|))) (-15 -1406 ((-1065 |#1|) (-1065 |#1|))) (-15 -3682 ((-1065 |#1|) (-1065 |#1|))) (-15 -3916 ((-1065 |#1|) (-1065 (-1065 |#1|)))) (-15 -3265 ((-1065 |#1|) (-1065 |#1|))) (-15 -3093 ((-1065 |#1|) (-1065 |#1|))) (-15 -1210 ((-1065 |#1|) (-1065 |#1|))) (-15 -2583 ((-1065 |#1|) (-1065 |#1|) (-521) (-521))) (-15 -3749 ((-1065 |#1|) (-521) (-521) (-1065 |#1|))) (-15 -3356 ((-1065 |#1|) (-521) (-521) (-1065 |#1|))) (IF (|has| |#1| (-37 (-381 (-521)))) (PROGN (-15 -2184 ((-1065 |#1|) |#1| (-1065 |#1|))) (-15 -1464 ((-1065 |#1|) |#1| (-1 (-1065 |#1|)))) (-15 -1333 ((-1065 |#1|) (-1065 (-1065 |#1|)))) (-15 -1832 ((-1065 |#1|) (-381 (-521)) (-1065 |#1|)))) |%noBranch|) (IF (|has| |#1| (-337)) (PROGN (-15 -1855 ((-1065 |#1|) (-1065 |#1|) (-1065 |#1|))) (-15 -1200 ((-1065 |#1|) (-1 |#1| (-521)) |#1| (-1 (-1065 |#1|)))) (-15 -3745 ((-1065 |#1|) |#1| (-1065 |#1|)))) |%noBranch|)) (-970)) (T -1069))
+((-3745 (*1 *2 *3 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-337)) (-4 *3 (-970)) (-5 *1 (-1069 *3)))) (-1200 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-521))) (-5 *5 (-1 (-1065 *4))) (-4 *4 (-337)) (-4 *4 (-970)) (-5 *2 (-1065 *4)) (-5 *1 (-1069 *4)))) (-1855 (*1 *2 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-337)) (-4 *3 (-970)) (-5 *1 (-1069 *3)))) (-1832 (*1 *2 *3 *2) (-12 (-5 *2 (-1065 *4)) (-4 *4 (-37 *3)) (-4 *4 (-970)) (-5 *3 (-381 (-521))) (-5 *1 (-1069 *4)))) (-1333 (*1 *2 *3) (-12 (-5 *3 (-1065 (-1065 *4))) (-5 *2 (-1065 *4)) (-5 *1 (-1069 *4)) (-4 *4 (-37 (-381 (-521)))) (-4 *4 (-970)))) (-1464 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1065 *3))) (-5 *2 (-1065 *3)) (-5 *1 (-1069 *3)) (-4 *3 (-37 (-381 (-521)))) (-4 *3 (-970)))) (-2184 (*1 *2 *3 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-4 *3 (-970)) (-5 *1 (-1069 *3)))) (-3356 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1065 *4)) (-5 *3 (-521)) (-4 *4 (-970)) (-5 *1 (-1069 *4)))) (-3749 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1065 *4)) (-5 *3 (-521)) (-4 *4 (-970)) (-5 *1 (-1069 *4)))) (-2583 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1065 *4)) (-5 *3 (-521)) (-4 *4 (-970)) (-5 *1 (-1069 *4)))) (-1210 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-5 *1 (-1069 *3)))) (-3093 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-5 *1 (-1069 *3)))) (-3265 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-5 *1 (-1069 *3)))) (-3916 (*1 *2 *3) (-12 (-5 *3 (-1065 (-1065 *4))) (-5 *2 (-1065 *4)) (-5 *1 (-1069 *4)) (-4 *4 (-970)))) (-3682 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-5 *1 (-1069 *3)))) (-1406 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-5 *1 (-1069 *3)))) (-3600 (*1 *2 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-5 *1 (-1069 *3)))) (-2288 (*1 *2 *2 *3) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-5 *1 (-1069 *3)))) (-2189 (*1 *2 *3) (-12 (-5 *2 (-1065 *3)) (-5 *1 (-1069 *3)) (-4 *3 (-970)))) (-4198 (*1 *2 *3 *2) (-12 (-5 *2 (-1065 *4)) (-5 *3 (-1 *4 (-521))) (-4 *4 (-970)) (-5 *1 (-1069 *4)))) (-2622 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-5 *1 (-1069 *3)))) (-1532 (*1 *2 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-5 *1 (-1069 *3)))) (-2072 (*1 *2 *3) (-12 (-5 *2 (-1065 *3)) (-5 *1 (-1069 *3)) (-4 *3 (-970)))) (-4014 (*1 *2 *3) (-12 (-5 *2 (-1065 (-521))) (-5 *1 (-1069 *4)) (-4 *4 (-970)) (-5 *3 (-521)))) (-2273 (*1 *2 *3) (-12 (-5 *2 (-1065 (-521))) (-5 *1 (-1069 *4)) (-4 *4 (-970)) (-5 *3 (-521)))) (-2517 (*1 *2 *3 *4) (-12 (-5 *4 (-521)) (-5 *2 (-1065 *3)) (-5 *1 (-1069 *3)) (-4 *3 (-970)))) (-1257 (*1 *2 *2) (|partial| -12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-5 *1 (-1069 *3)))) (-1620 (*1 *2 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-5 *1 (-1069 *3)))) (-2230 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-5 *1 (-1069 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-5 *1 (-1069 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-5 *1 (-1069 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-5 *1 (-1069 *3)))) (-1612 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-5 *1 (-1069 *3)))) (-1612 (*1 *2 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-5 *1 (-1069 *3)))) (-1602 (*1 *2 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-5 *1 (-1069 *3)))))
+(-10 -7 (-15 -1602 ((-1065 |#1|) (-1065 |#1|) (-1065 |#1|))) (-15 -1612 ((-1065 |#1|) (-1065 |#1|) (-1065 |#1|))) (-15 -1612 ((-1065 |#1|) (-1065 |#1|))) (-15 * ((-1065 |#1|) (-1065 |#1|) (-1065 |#1|))) (-15 * ((-1065 |#1|) |#1| (-1065 |#1|))) (-15 * ((-1065 |#1|) (-1065 |#1|) |#1|)) (-15 -2230 ((-3 (-1065 |#1|) "failed") (-1065 |#1|) (-1065 |#1|))) (-15 -1620 ((-1065 |#1|) (-1065 |#1|) (-1065 |#1|))) (-15 -1257 ((-3 (-1065 |#1|) "failed") (-1065 |#1|))) (-15 -2517 ((-1065 |#1|) |#1| (-521))) (-15 -2273 ((-1065 (-521)) (-521))) (-15 -4014 ((-1065 (-521)) (-521))) (-15 -2072 ((-1065 |#1|) |#1|)) (-15 -1532 ((-1065 |#1|) (-1065 |#1|) (-1065 |#1|))) (-15 -2622 ((-1065 |#1|) (-1065 |#1|))) (-15 -4198 ((-1065 |#1|) (-1 |#1| (-521)) (-1065 |#1|))) (-15 -2189 ((-1065 |#1|) |#1|)) (-15 -2288 ((-1065 |#1|) (-1065 |#1|) |#1|)) (-15 -3600 ((-1065 |#1|) (-1065 |#1|) (-1065 |#1|))) (-15 -1406 ((-1065 |#1|) (-1065 |#1|))) (-15 -3682 ((-1065 |#1|) (-1065 |#1|))) (-15 -3916 ((-1065 |#1|) (-1065 (-1065 |#1|)))) (-15 -3265 ((-1065 |#1|) (-1065 |#1|))) (-15 -3093 ((-1065 |#1|) (-1065 |#1|))) (-15 -1210 ((-1065 |#1|) (-1065 |#1|))) (-15 -2583 ((-1065 |#1|) (-1065 |#1|) (-521) (-521))) (-15 -3749 ((-1065 |#1|) (-521) (-521) (-1065 |#1|))) (-15 -3356 ((-1065 |#1|) (-521) (-521) (-1065 |#1|))) (IF (|has| |#1| (-37 (-381 (-521)))) (PROGN (-15 -2184 ((-1065 |#1|) |#1| (-1065 |#1|))) (-15 -1464 ((-1065 |#1|) |#1| (-1 (-1065 |#1|)))) (-15 -1333 ((-1065 |#1|) (-1065 (-1065 |#1|)))) (-15 -1832 ((-1065 |#1|) (-381 (-521)) (-1065 |#1|)))) |%noBranch|) (IF (|has| |#1| (-337)) (PROGN (-15 -1855 ((-1065 |#1|) (-1065 |#1|) (-1065 |#1|))) (-15 -1200 ((-1065 |#1|) (-1 |#1| (-521)) |#1| (-1 (-1065 |#1|)))) (-15 -3745 ((-1065 |#1|) |#1| (-1065 |#1|)))) |%noBranch|))
+((-2904 (((-1065 |#1|) (-1065 |#1|)) 57)) (-2769 (((-1065 |#1|) (-1065 |#1|)) 39)) (-2880 (((-1065 |#1|) (-1065 |#1|)) 53)) (-2746 (((-1065 |#1|) (-1065 |#1|)) 35)) (-2926 (((-1065 |#1|) (-1065 |#1|)) 60)) (-2790 (((-1065 |#1|) (-1065 |#1|)) 42)) (-1253 (((-1065 |#1|) (-1065 |#1|)) 31)) (-3261 (((-1065 |#1|) (-1065 |#1|)) 27)) (-1738 (((-1065 |#1|) (-1065 |#1|)) 61)) (-2800 (((-1065 |#1|) (-1065 |#1|)) 43)) (-2915 (((-1065 |#1|) (-1065 |#1|)) 58)) (-2780 (((-1065 |#1|) (-1065 |#1|)) 40)) (-2892 (((-1065 |#1|) (-1065 |#1|)) 55)) (-2758 (((-1065 |#1|) (-1065 |#1|)) 37)) (-1759 (((-1065 |#1|) (-1065 |#1|)) 65)) (-2832 (((-1065 |#1|) (-1065 |#1|)) 47)) (-1745 (((-1065 |#1|) (-1065 |#1|)) 63)) (-2811 (((-1065 |#1|) (-1065 |#1|)) 45)) (-1776 (((-1065 |#1|) (-1065 |#1|)) 68)) (-2856 (((-1065 |#1|) (-1065 |#1|)) 50)) (-3919 (((-1065 |#1|) (-1065 |#1|)) 69)) (-2868 (((-1065 |#1|) (-1065 |#1|)) 51)) (-1768 (((-1065 |#1|) (-1065 |#1|)) 67)) (-2844 (((-1065 |#1|) (-1065 |#1|)) 49)) (-1752 (((-1065 |#1|) (-1065 |#1|)) 66)) (-2821 (((-1065 |#1|) (-1065 |#1|)) 48)) (** (((-1065 |#1|) (-1065 |#1|) (-1065 |#1|)) 33)))
+(((-1070 |#1|) (-10 -7 (-15 -3261 ((-1065 |#1|) (-1065 |#1|))) (-15 -1253 ((-1065 |#1|) (-1065 |#1|))) (-15 ** ((-1065 |#1|) (-1065 |#1|) (-1065 |#1|))) (-15 -2746 ((-1065 |#1|) (-1065 |#1|))) (-15 -2758 ((-1065 |#1|) (-1065 |#1|))) (-15 -2769 ((-1065 |#1|) (-1065 |#1|))) (-15 -2780 ((-1065 |#1|) (-1065 |#1|))) (-15 -2790 ((-1065 |#1|) (-1065 |#1|))) (-15 -2800 ((-1065 |#1|) (-1065 |#1|))) (-15 -2811 ((-1065 |#1|) (-1065 |#1|))) (-15 -2821 ((-1065 |#1|) (-1065 |#1|))) (-15 -2832 ((-1065 |#1|) (-1065 |#1|))) (-15 -2844 ((-1065 |#1|) (-1065 |#1|))) (-15 -2856 ((-1065 |#1|) (-1065 |#1|))) (-15 -2868 ((-1065 |#1|) (-1065 |#1|))) (-15 -2880 ((-1065 |#1|) (-1065 |#1|))) (-15 -2892 ((-1065 |#1|) (-1065 |#1|))) (-15 -2904 ((-1065 |#1|) (-1065 |#1|))) (-15 -2915 ((-1065 |#1|) (-1065 |#1|))) (-15 -2926 ((-1065 |#1|) (-1065 |#1|))) (-15 -1738 ((-1065 |#1|) (-1065 |#1|))) (-15 -1745 ((-1065 |#1|) (-1065 |#1|))) (-15 -1752 ((-1065 |#1|) (-1065 |#1|))) (-15 -1759 ((-1065 |#1|) (-1065 |#1|))) (-15 -1768 ((-1065 |#1|) (-1065 |#1|))) (-15 -1776 ((-1065 |#1|) (-1065 |#1|))) (-15 -3919 ((-1065 |#1|) (-1065 |#1|)))) (-37 (-381 (-521)))) (T -1070))
+((-3919 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1070 *3)))) (-1776 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1070 *3)))) (-1768 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1070 *3)))) (-1759 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1070 *3)))) (-1752 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1070 *3)))) (-1745 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1070 *3)))) (-1738 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1070 *3)))) (-2926 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1070 *3)))) (-2915 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1070 *3)))) (-2904 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1070 *3)))) (-2892 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1070 *3)))) (-2880 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1070 *3)))) (-2868 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1070 *3)))) (-2856 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1070 *3)))) (-2844 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1070 *3)))) (-2832 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1070 *3)))) (-2821 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1070 *3)))) (-2811 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1070 *3)))) (-2800 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1070 *3)))) (-2790 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1070 *3)))) (-2780 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1070 *3)))) (-2769 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1070 *3)))) (-2758 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1070 *3)))) (-2746 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1070 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1070 *3)))) (-1253 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1070 *3)))) (-3261 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1070 *3)))))
+(-10 -7 (-15 -3261 ((-1065 |#1|) (-1065 |#1|))) (-15 -1253 ((-1065 |#1|) (-1065 |#1|))) (-15 ** ((-1065 |#1|) (-1065 |#1|) (-1065 |#1|))) (-15 -2746 ((-1065 |#1|) (-1065 |#1|))) (-15 -2758 ((-1065 |#1|) (-1065 |#1|))) (-15 -2769 ((-1065 |#1|) (-1065 |#1|))) (-15 -2780 ((-1065 |#1|) (-1065 |#1|))) (-15 -2790 ((-1065 |#1|) (-1065 |#1|))) (-15 -2800 ((-1065 |#1|) (-1065 |#1|))) (-15 -2811 ((-1065 |#1|) (-1065 |#1|))) (-15 -2821 ((-1065 |#1|) (-1065 |#1|))) (-15 -2832 ((-1065 |#1|) (-1065 |#1|))) (-15 -2844 ((-1065 |#1|) (-1065 |#1|))) (-15 -2856 ((-1065 |#1|) (-1065 |#1|))) (-15 -2868 ((-1065 |#1|) (-1065 |#1|))) (-15 -2880 ((-1065 |#1|) (-1065 |#1|))) (-15 -2892 ((-1065 |#1|) (-1065 |#1|))) (-15 -2904 ((-1065 |#1|) (-1065 |#1|))) (-15 -2915 ((-1065 |#1|) (-1065 |#1|))) (-15 -2926 ((-1065 |#1|) (-1065 |#1|))) (-15 -1738 ((-1065 |#1|) (-1065 |#1|))) (-15 -1745 ((-1065 |#1|) (-1065 |#1|))) (-15 -1752 ((-1065 |#1|) (-1065 |#1|))) (-15 -1759 ((-1065 |#1|) (-1065 |#1|))) (-15 -1768 ((-1065 |#1|) (-1065 |#1|))) (-15 -1776 ((-1065 |#1|) (-1065 |#1|))) (-15 -3919 ((-1065 |#1|) (-1065 |#1|))))
+((-2904 (((-1065 |#1|) (-1065 |#1|)) 100)) (-2769 (((-1065 |#1|) (-1065 |#1|)) 64)) (-1883 (((-2 (|:| -2880 (-1065 |#1|)) (|:| -2892 (-1065 |#1|))) (-1065 |#1|)) 96)) (-2880 (((-1065 |#1|) (-1065 |#1|)) 97)) (-3268 (((-2 (|:| -2746 (-1065 |#1|)) (|:| -2758 (-1065 |#1|))) (-1065 |#1|)) 53)) (-2746 (((-1065 |#1|) (-1065 |#1|)) 54)) (-2926 (((-1065 |#1|) (-1065 |#1|)) 102)) (-2790 (((-1065 |#1|) (-1065 |#1|)) 71)) (-1253 (((-1065 |#1|) (-1065 |#1|)) 39)) (-3261 (((-1065 |#1|) (-1065 |#1|)) 36)) (-1738 (((-1065 |#1|) (-1065 |#1|)) 103)) (-2800 (((-1065 |#1|) (-1065 |#1|)) 72)) (-2915 (((-1065 |#1|) (-1065 |#1|)) 101)) (-2780 (((-1065 |#1|) (-1065 |#1|)) 67)) (-2892 (((-1065 |#1|) (-1065 |#1|)) 98)) (-2758 (((-1065 |#1|) (-1065 |#1|)) 55)) (-1759 (((-1065 |#1|) (-1065 |#1|)) 111)) (-2832 (((-1065 |#1|) (-1065 |#1|)) 86)) (-1745 (((-1065 |#1|) (-1065 |#1|)) 105)) (-2811 (((-1065 |#1|) (-1065 |#1|)) 82)) (-1776 (((-1065 |#1|) (-1065 |#1|)) 115)) (-2856 (((-1065 |#1|) (-1065 |#1|)) 90)) (-3919 (((-1065 |#1|) (-1065 |#1|)) 117)) (-2868 (((-1065 |#1|) (-1065 |#1|)) 92)) (-1768 (((-1065 |#1|) (-1065 |#1|)) 113)) (-2844 (((-1065 |#1|) (-1065 |#1|)) 88)) (-1752 (((-1065 |#1|) (-1065 |#1|)) 107)) (-2821 (((-1065 |#1|) (-1065 |#1|)) 84)) (** (((-1065 |#1|) (-1065 |#1|) (-1065 |#1|)) 40)))
+(((-1071 |#1|) (-10 -7 (-15 -3261 ((-1065 |#1|) (-1065 |#1|))) (-15 -1253 ((-1065 |#1|) (-1065 |#1|))) (-15 ** ((-1065 |#1|) (-1065 |#1|) (-1065 |#1|))) (-15 -3268 ((-2 (|:| -2746 (-1065 |#1|)) (|:| -2758 (-1065 |#1|))) (-1065 |#1|))) (-15 -2746 ((-1065 |#1|) (-1065 |#1|))) (-15 -2758 ((-1065 |#1|) (-1065 |#1|))) (-15 -2769 ((-1065 |#1|) (-1065 |#1|))) (-15 -2780 ((-1065 |#1|) (-1065 |#1|))) (-15 -2790 ((-1065 |#1|) (-1065 |#1|))) (-15 -2800 ((-1065 |#1|) (-1065 |#1|))) (-15 -2811 ((-1065 |#1|) (-1065 |#1|))) (-15 -2821 ((-1065 |#1|) (-1065 |#1|))) (-15 -2832 ((-1065 |#1|) (-1065 |#1|))) (-15 -2844 ((-1065 |#1|) (-1065 |#1|))) (-15 -2856 ((-1065 |#1|) (-1065 |#1|))) (-15 -2868 ((-1065 |#1|) (-1065 |#1|))) (-15 -1883 ((-2 (|:| -2880 (-1065 |#1|)) (|:| -2892 (-1065 |#1|))) (-1065 |#1|))) (-15 -2880 ((-1065 |#1|) (-1065 |#1|))) (-15 -2892 ((-1065 |#1|) (-1065 |#1|))) (-15 -2904 ((-1065 |#1|) (-1065 |#1|))) (-15 -2915 ((-1065 |#1|) (-1065 |#1|))) (-15 -2926 ((-1065 |#1|) (-1065 |#1|))) (-15 -1738 ((-1065 |#1|) (-1065 |#1|))) (-15 -1745 ((-1065 |#1|) (-1065 |#1|))) (-15 -1752 ((-1065 |#1|) (-1065 |#1|))) (-15 -1759 ((-1065 |#1|) (-1065 |#1|))) (-15 -1768 ((-1065 |#1|) (-1065 |#1|))) (-15 -1776 ((-1065 |#1|) (-1065 |#1|))) (-15 -3919 ((-1065 |#1|) (-1065 |#1|)))) (-37 (-381 (-521)))) (T -1071))
+((-3919 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1071 *3)))) (-1776 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1071 *3)))) (-1768 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1071 *3)))) (-1759 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1071 *3)))) (-1752 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1071 *3)))) (-1745 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1071 *3)))) (-1738 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1071 *3)))) (-2926 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1071 *3)))) (-2915 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1071 *3)))) (-2904 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1071 *3)))) (-2892 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1071 *3)))) (-2880 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1071 *3)))) (-1883 (*1 *2 *3) (-12 (-4 *4 (-37 (-381 (-521)))) (-5 *2 (-2 (|:| -2880 (-1065 *4)) (|:| -2892 (-1065 *4)))) (-5 *1 (-1071 *4)) (-5 *3 (-1065 *4)))) (-2868 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1071 *3)))) (-2856 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1071 *3)))) (-2844 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1071 *3)))) (-2832 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1071 *3)))) (-2821 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1071 *3)))) (-2811 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1071 *3)))) (-2800 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1071 *3)))) (-2790 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1071 *3)))) (-2780 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1071 *3)))) (-2769 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1071 *3)))) (-2758 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1071 *3)))) (-2746 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1071 *3)))) (-3268 (*1 *2 *3) (-12 (-4 *4 (-37 (-381 (-521)))) (-5 *2 (-2 (|:| -2746 (-1065 *4)) (|:| -2758 (-1065 *4)))) (-5 *1 (-1071 *4)) (-5 *3 (-1065 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1071 *3)))) (-1253 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1071 *3)))) (-3261 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1071 *3)))))
+(-10 -7 (-15 -3261 ((-1065 |#1|) (-1065 |#1|))) (-15 -1253 ((-1065 |#1|) (-1065 |#1|))) (-15 ** ((-1065 |#1|) (-1065 |#1|) (-1065 |#1|))) (-15 -3268 ((-2 (|:| -2746 (-1065 |#1|)) (|:| -2758 (-1065 |#1|))) (-1065 |#1|))) (-15 -2746 ((-1065 |#1|) (-1065 |#1|))) (-15 -2758 ((-1065 |#1|) (-1065 |#1|))) (-15 -2769 ((-1065 |#1|) (-1065 |#1|))) (-15 -2780 ((-1065 |#1|) (-1065 |#1|))) (-15 -2790 ((-1065 |#1|) (-1065 |#1|))) (-15 -2800 ((-1065 |#1|) (-1065 |#1|))) (-15 -2811 ((-1065 |#1|) (-1065 |#1|))) (-15 -2821 ((-1065 |#1|) (-1065 |#1|))) (-15 -2832 ((-1065 |#1|) (-1065 |#1|))) (-15 -2844 ((-1065 |#1|) (-1065 |#1|))) (-15 -2856 ((-1065 |#1|) (-1065 |#1|))) (-15 -2868 ((-1065 |#1|) (-1065 |#1|))) (-15 -1883 ((-2 (|:| -2880 (-1065 |#1|)) (|:| -2892 (-1065 |#1|))) (-1065 |#1|))) (-15 -2880 ((-1065 |#1|) (-1065 |#1|))) (-15 -2892 ((-1065 |#1|) (-1065 |#1|))) (-15 -2904 ((-1065 |#1|) (-1065 |#1|))) (-15 -2915 ((-1065 |#1|) (-1065 |#1|))) (-15 -2926 ((-1065 |#1|) (-1065 |#1|))) (-15 -1738 ((-1065 |#1|) (-1065 |#1|))) (-15 -1745 ((-1065 |#1|) (-1065 |#1|))) (-15 -1752 ((-1065 |#1|) (-1065 |#1|))) (-15 -1759 ((-1065 |#1|) (-1065 |#1|))) (-15 -1768 ((-1065 |#1|) (-1065 |#1|))) (-15 -1776 ((-1065 |#1|) (-1065 |#1|))) (-15 -3919 ((-1065 |#1|) (-1065 |#1|))))
+((-1714 (((-886 |#2|) |#2| |#2|) 36)) (-3666 ((|#2| |#2| |#1|) 19 (|has| |#1| (-282)))))
+(((-1072 |#1| |#2|) (-10 -7 (-15 -1714 ((-886 |#2|) |#2| |#2|)) (IF (|has| |#1| (-282)) (-15 -3666 (|#2| |#2| |#1|)) |%noBranch|)) (-513) (-1141 |#1|)) (T -1072))
+((-3666 (*1 *2 *2 *3) (-12 (-4 *3 (-282)) (-4 *3 (-513)) (-5 *1 (-1072 *3 *2)) (-4 *2 (-1141 *3)))) (-1714 (*1 *2 *3 *3) (-12 (-4 *4 (-513)) (-5 *2 (-886 *3)) (-5 *1 (-1072 *4 *3)) (-4 *3 (-1141 *4)))))
+(-10 -7 (-15 -1714 ((-886 |#2|) |#2| |#2|)) (IF (|has| |#1| (-282)) (-15 -3666 (|#2| |#2| |#1|)) |%noBranch|))
+((-1415 (((-108) $ $) NIL)) (-3353 (($ $ (-587 (-707))) 67)) (-1356 (($) 26)) (-1269 (($ $) 42)) (-2067 (((-587 $) $) 51)) (-1405 (((-108) $) 16)) (-2510 (((-587 (-872 |#2|)) $) 74)) (-2471 (($ $) 68)) (-2883 (((-707) $) 37)) (-1811 (($) 25)) (-1966 (($ $ (-587 (-707)) (-872 |#2|)) 60) (($ $ (-587 (-707)) (-707)) 61) (($ $ (-707) (-872 |#2|)) 63)) (-1318 (($ $ $) 48) (($ (-587 $)) 50)) (-1554 (((-707) $) 75)) (-2229 (((-108) $) 15)) (-3688 (((-1067) $) NIL)) (-1273 (((-108) $) 18)) (-4147 (((-1031) $) NIL)) (-1723 (((-156) $) 73)) (-3196 (((-872 |#2|) $) 69)) (-2407 (((-707) $) 70)) (-3123 (((-108) $) 72)) (-3006 (($ $ (-587 (-707)) (-156)) 66)) (-2688 (($ $) 43)) (-2189 (((-792) $) 85)) (-3090 (($ $ (-587 (-707)) (-108)) 65)) (-3098 (((-587 $) $) 11)) (-3229 (($ $ (-707)) 36)) (-3552 (($ $) 32)) (-1867 (($ $ $ (-872 |#2|) (-707)) 56)) (-3378 (($ $ (-872 |#2|)) 55)) (-2514 (($ $ (-587 (-707)) (-872 |#2|)) 54) (($ $ (-587 (-707)) (-707)) 58) (((-707) $ (-872 |#2|)) 59)) (-1531 (((-108) $ $) 79)))
+(((-1073 |#1| |#2|) (-13 (-1013) (-10 -8 (-15 -2229 ((-108) $)) (-15 -1405 ((-108) $)) (-15 -1273 ((-108) $)) (-15 -1811 ($)) (-15 -1356 ($)) (-15 -3552 ($ $)) (-15 -3229 ($ $ (-707))) (-15 -3098 ((-587 $) $)) (-15 -2883 ((-707) $)) (-15 -1269 ($ $)) (-15 -2688 ($ $)) (-15 -1318 ($ $ $)) (-15 -1318 ($ (-587 $))) (-15 -2067 ((-587 $) $)) (-15 -2514 ($ $ (-587 (-707)) (-872 |#2|))) (-15 -3378 ($ $ (-872 |#2|))) (-15 -1867 ($ $ $ (-872 |#2|) (-707))) (-15 -1966 ($ $ (-587 (-707)) (-872 |#2|))) (-15 -2514 ($ $ (-587 (-707)) (-707))) (-15 -1966 ($ $ (-587 (-707)) (-707))) (-15 -2514 ((-707) $ (-872 |#2|))) (-15 -1966 ($ $ (-707) (-872 |#2|))) (-15 -3090 ($ $ (-587 (-707)) (-108))) (-15 -3006 ($ $ (-587 (-707)) (-156))) (-15 -3353 ($ $ (-587 (-707)))) (-15 -3196 ((-872 |#2|) $)) (-15 -2407 ((-707) $)) (-15 -3123 ((-108) $)) (-15 -1723 ((-156) $)) (-15 -1554 ((-707) $)) (-15 -2471 ($ $)) (-15 -2510 ((-587 (-872 |#2|)) $)))) (-850) (-970)) (T -1073))
+((-2229 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1073 *3 *4)) (-14 *3 (-850)) (-4 *4 (-970)))) (-1405 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1073 *3 *4)) (-14 *3 (-850)) (-4 *4 (-970)))) (-1273 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1073 *3 *4)) (-14 *3 (-850)) (-4 *4 (-970)))) (-1811 (*1 *1) (-12 (-5 *1 (-1073 *2 *3)) (-14 *2 (-850)) (-4 *3 (-970)))) (-1356 (*1 *1) (-12 (-5 *1 (-1073 *2 *3)) (-14 *2 (-850)) (-4 *3 (-970)))) (-3552 (*1 *1 *1) (-12 (-5 *1 (-1073 *2 *3)) (-14 *2 (-850)) (-4 *3 (-970)))) (-3229 (*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-1073 *3 *4)) (-14 *3 (-850)) (-4 *4 (-970)))) (-3098 (*1 *2 *1) (-12 (-5 *2 (-587 (-1073 *3 *4))) (-5 *1 (-1073 *3 *4)) (-14 *3 (-850)) (-4 *4 (-970)))) (-2883 (*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-1073 *3 *4)) (-14 *3 (-850)) (-4 *4 (-970)))) (-1269 (*1 *1 *1) (-12 (-5 *1 (-1073 *2 *3)) (-14 *2 (-850)) (-4 *3 (-970)))) (-2688 (*1 *1 *1) (-12 (-5 *1 (-1073 *2 *3)) (-14 *2 (-850)) (-4 *3 (-970)))) (-1318 (*1 *1 *1 *1) (-12 (-5 *1 (-1073 *2 *3)) (-14 *2 (-850)) (-4 *3 (-970)))) (-1318 (*1 *1 *2) (-12 (-5 *2 (-587 (-1073 *3 *4))) (-5 *1 (-1073 *3 *4)) (-14 *3 (-850)) (-4 *4 (-970)))) (-2067 (*1 *2 *1) (-12 (-5 *2 (-587 (-1073 *3 *4))) (-5 *1 (-1073 *3 *4)) (-14 *3 (-850)) (-4 *4 (-970)))) (-2514 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-587 (-707))) (-5 *3 (-872 *5)) (-4 *5 (-970)) (-5 *1 (-1073 *4 *5)) (-14 *4 (-850)))) (-3378 (*1 *1 *1 *2) (-12 (-5 *2 (-872 *4)) (-4 *4 (-970)) (-5 *1 (-1073 *3 *4)) (-14 *3 (-850)))) (-1867 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-872 *5)) (-5 *3 (-707)) (-4 *5 (-970)) (-5 *1 (-1073 *4 *5)) (-14 *4 (-850)))) (-1966 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-587 (-707))) (-5 *3 (-872 *5)) (-4 *5 (-970)) (-5 *1 (-1073 *4 *5)) (-14 *4 (-850)))) (-2514 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-587 (-707))) (-5 *3 (-707)) (-5 *1 (-1073 *4 *5)) (-14 *4 (-850)) (-4 *5 (-970)))) (-1966 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-587 (-707))) (-5 *3 (-707)) (-5 *1 (-1073 *4 *5)) (-14 *4 (-850)) (-4 *5 (-970)))) (-2514 (*1 *2 *1 *3) (-12 (-5 *3 (-872 *5)) (-4 *5 (-970)) (-5 *2 (-707)) (-5 *1 (-1073 *4 *5)) (-14 *4 (-850)))) (-1966 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-707)) (-5 *3 (-872 *5)) (-4 *5 (-970)) (-5 *1 (-1073 *4 *5)) (-14 *4 (-850)))) (-3090 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-587 (-707))) (-5 *3 (-108)) (-5 *1 (-1073 *4 *5)) (-14 *4 (-850)) (-4 *5 (-970)))) (-3006 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-587 (-707))) (-5 *3 (-156)) (-5 *1 (-1073 *4 *5)) (-14 *4 (-850)) (-4 *5 (-970)))) (-3353 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-707))) (-5 *1 (-1073 *3 *4)) (-14 *3 (-850)) (-4 *4 (-970)))) (-3196 (*1 *2 *1) (-12 (-5 *2 (-872 *4)) (-5 *1 (-1073 *3 *4)) (-14 *3 (-850)) (-4 *4 (-970)))) (-2407 (*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-1073 *3 *4)) (-14 *3 (-850)) (-4 *4 (-970)))) (-3123 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1073 *3 *4)) (-14 *3 (-850)) (-4 *4 (-970)))) (-1723 (*1 *2 *1) (-12 (-5 *2 (-156)) (-5 *1 (-1073 *3 *4)) (-14 *3 (-850)) (-4 *4 (-970)))) (-1554 (*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-1073 *3 *4)) (-14 *3 (-850)) (-4 *4 (-970)))) (-2471 (*1 *1 *1) (-12 (-5 *1 (-1073 *2 *3)) (-14 *2 (-850)) (-4 *3 (-970)))) (-2510 (*1 *2 *1) (-12 (-5 *2 (-587 (-872 *4))) (-5 *1 (-1073 *3 *4)) (-14 *3 (-850)) (-4 *4 (-970)))))
+(-13 (-1013) (-10 -8 (-15 -2229 ((-108) $)) (-15 -1405 ((-108) $)) (-15 -1273 ((-108) $)) (-15 -1811 ($)) (-15 -1356 ($)) (-15 -3552 ($ $)) (-15 -3229 ($ $ (-707))) (-15 -3098 ((-587 $) $)) (-15 -2883 ((-707) $)) (-15 -1269 ($ $)) (-15 -2688 ($ $)) (-15 -1318 ($ $ $)) (-15 -1318 ($ (-587 $))) (-15 -2067 ((-587 $) $)) (-15 -2514 ($ $ (-587 (-707)) (-872 |#2|))) (-15 -3378 ($ $ (-872 |#2|))) (-15 -1867 ($ $ $ (-872 |#2|) (-707))) (-15 -1966 ($ $ (-587 (-707)) (-872 |#2|))) (-15 -2514 ($ $ (-587 (-707)) (-707))) (-15 -1966 ($ $ (-587 (-707)) (-707))) (-15 -2514 ((-707) $ (-872 |#2|))) (-15 -1966 ($ $ (-707) (-872 |#2|))) (-15 -3090 ($ $ (-587 (-707)) (-108))) (-15 -3006 ($ $ (-587 (-707)) (-156))) (-15 -3353 ($ $ (-587 (-707)))) (-15 -3196 ((-872 |#2|) $)) (-15 -2407 ((-707) $)) (-15 -3123 ((-108) $)) (-15 -1723 ((-156) $)) (-15 -1554 ((-707) $)) (-15 -2471 ($ $)) (-15 -2510 ((-587 (-872 |#2|)) $))))
+((-1415 (((-108) $ $) NIL)) (-3597 ((|#2| $) 11)) (-3588 ((|#1| $) 10)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2201 (($ |#1| |#2|) 9)) (-2189 (((-792) $) 16)) (-1531 (((-108) $ $) NIL)))
+(((-1074 |#1| |#2|) (-13 (-1013) (-10 -8 (-15 -2201 ($ |#1| |#2|)) (-15 -3588 (|#1| $)) (-15 -3597 (|#2| $)))) (-1013) (-1013)) (T -1074))
+((-2201 (*1 *1 *2 *3) (-12 (-5 *1 (-1074 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))) (-3588 (*1 *2 *1) (-12 (-4 *2 (-1013)) (-5 *1 (-1074 *2 *3)) (-4 *3 (-1013)))) (-3597 (*1 *2 *1) (-12 (-4 *2 (-1013)) (-5 *1 (-1074 *3 *2)) (-4 *3 (-1013)))))
+(-13 (-1013) (-10 -8 (-15 -2201 ($ |#1| |#2|)) (-15 -3588 (|#1| $)) (-15 -3597 (|#2| $))))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-2086 (((-1082 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1082 |#1| |#2| |#3|) (-282)) (|has| |#1| (-337))))) (-4084 (((-587 (-998)) $) NIL)) (-1611 (((-1084) $) 11)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) NIL (-3703 (-12 (|has| (-1082 |#1| |#2| |#3|) (-757)) (|has| |#1| (-337))) (-12 (|has| (-1082 |#1| |#2| |#3|) (-838)) (|has| |#1| (-337))) (|has| |#1| (-513))))) (-2559 (($ $) NIL (-3703 (-12 (|has| (-1082 |#1| |#2| |#3|) (-757)) (|has| |#1| (-337))) (-12 (|has| (-1082 |#1| |#2| |#3|) (-838)) (|has| |#1| (-337))) (|has| |#1| (-513))))) (-1733 (((-108) $) NIL (-3703 (-12 (|has| (-1082 |#1| |#2| |#3|) (-757)) (|has| |#1| (-337))) (-12 (|has| (-1082 |#1| |#2| |#3|) (-838)) (|has| |#1| (-337))) (|has| |#1| (-513))))) (-2977 (($ $ (-521)) NIL) (($ $ (-521) (-521)) 66)) (-3423 (((-1065 (-2 (|:| |k| (-521)) (|:| |c| |#1|))) $) NIL)) (-3708 (((-1082 |#1| |#2| |#3|) $) 36)) (-3121 (((-3 (-1082 |#1| |#2| |#3|) "failed") $) 29)) (-3055 (((-1082 |#1| |#2| |#3|) $) 30)) (-2904 (($ $) 107 (|has| |#1| (-37 (-381 (-521)))))) (-2769 (($ $) 83 (|has| |#1| (-37 (-381 (-521)))))) (-1232 (((-3 $ "failed") $ $) NIL)) (-2598 (((-392 (-1080 $)) (-1080 $)) NIL (-12 (|has| (-1082 |#1| |#2| |#3|) (-838)) (|has| |#1| (-337))))) (-3063 (($ $) NIL (|has| |#1| (-337)))) (-3358 (((-392 $) $) NIL (|has| |#1| (-337)))) (-1927 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2569 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) NIL (-12 (|has| (-1082 |#1| |#2| |#3|) (-838)) (|has| |#1| (-337))))) (-1389 (((-108) $ $) NIL (|has| |#1| (-337)))) (-2880 (($ $) 103 (|has| |#1| (-37 (-381 (-521)))))) (-2746 (($ $) 79 (|has| |#1| (-37 (-381 (-521)))))) (-1606 (((-521) $) NIL (-12 (|has| (-1082 |#1| |#2| |#3|) (-757)) (|has| |#1| (-337))))) (-2770 (($ (-1065 (-2 (|:| |k| (-521)) (|:| |c| |#1|)))) NIL)) (-2926 (($ $) 111 (|has| |#1| (-37 (-381 (-521)))))) (-2790 (($ $) 87 (|has| |#1| (-37 (-381 (-521)))))) (-2547 (($) NIL T CONST)) (-1297 (((-3 (-1082 |#1| |#2| |#3|) "failed") $) 31) (((-3 (-1084) "failed") $) NIL (-12 (|has| (-1082 |#1| |#2| |#3|) (-961 (-1084))) (|has| |#1| (-337)))) (((-3 (-381 (-521)) "failed") $) NIL (-12 (|has| (-1082 |#1| |#2| |#3|) (-961 (-521))) (|has| |#1| (-337)))) (((-3 (-521) "failed") $) NIL (-12 (|has| (-1082 |#1| |#2| |#3|) (-961 (-521))) (|has| |#1| (-337))))) (-1483 (((-1082 |#1| |#2| |#3|) $) 131) (((-1084) $) NIL (-12 (|has| (-1082 |#1| |#2| |#3|) (-961 (-1084))) (|has| |#1| (-337)))) (((-381 (-521)) $) NIL (-12 (|has| (-1082 |#1| |#2| |#3|) (-961 (-521))) (|has| |#1| (-337)))) (((-521) $) NIL (-12 (|has| (-1082 |#1| |#2| |#3|) (-961 (-521))) (|has| |#1| (-337))))) (-1198 (($ $) 34) (($ (-521) $) 35)) (-2277 (($ $ $) NIL (|has| |#1| (-337)))) (-3152 (($ $) NIL)) (-3279 (((-627 (-1082 |#1| |#2| |#3|)) (-627 $)) NIL (|has| |#1| (-337))) (((-2 (|:| -1201 (-627 (-1082 |#1| |#2| |#3|))) (|:| |vec| (-1165 (-1082 |#1| |#2| |#3|)))) (-627 $) (-1165 $)) NIL (|has| |#1| (-337))) (((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (-12 (|has| (-1082 |#1| |#2| |#3|) (-583 (-521))) (|has| |#1| (-337)))) (((-627 (-521)) (-627 $)) NIL (-12 (|has| (-1082 |#1| |#2| |#3|) (-583 (-521))) (|has| |#1| (-337))))) (-1257 (((-3 $ "failed") $) 48)) (-2914 (((-381 (-881 |#1|)) $ (-521)) 65 (|has| |#1| (-513))) (((-381 (-881 |#1|)) $ (-521) (-521)) 67 (|has| |#1| (-513)))) (-3250 (($) NIL (-12 (|has| (-1082 |#1| |#2| |#3|) (-506)) (|has| |#1| (-337))))) (-2253 (($ $ $) NIL (|has| |#1| (-337)))) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) NIL (|has| |#1| (-337)))) (-2710 (((-108) $) NIL (|has| |#1| (-337)))) (-3951 (((-108) $) NIL (-12 (|has| (-1082 |#1| |#2| |#3|) (-757)) (|has| |#1| (-337))))) (-1325 (((-108) $) 25)) (-2834 (($) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3427 (((-818 (-521) $) $ (-821 (-521)) (-818 (-521) $)) NIL (-12 (|has| (-1082 |#1| |#2| |#3|) (-815 (-521))) (|has| |#1| (-337)))) (((-818 (-353) $) $ (-821 (-353)) (-818 (-353) $)) NIL (-12 (|has| (-1082 |#1| |#2| |#3|) (-815 (-353))) (|has| |#1| (-337))))) (-2733 (((-521) $) NIL) (((-521) $ (-521)) 24)) (-3996 (((-108) $) NIL)) (-3257 (($ $) NIL (|has| |#1| (-337)))) (-2801 (((-1082 |#1| |#2| |#3|) $) 38 (|has| |#1| (-337)))) (-3407 (($ $ (-521)) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3842 (((-3 $ "failed") $) NIL (-12 (|has| (-1082 |#1| |#2| |#3|) (-1060)) (|has| |#1| (-337))))) (-2210 (((-108) $) NIL (-12 (|has| (-1082 |#1| |#2| |#3|) (-757)) (|has| |#1| (-337))))) (-1993 (($ $ (-850)) NIL)) (-3131 (($ (-1 |#1| (-521)) $) NIL)) (-1546 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| |#1| (-337)))) (-3649 (((-108) $) NIL)) (-4043 (($ |#1| (-521)) 18) (($ $ (-998) (-521)) NIL) (($ $ (-587 (-998)) (-587 (-521))) NIL)) (-2810 (($ $ $) NIL (-3703 (-12 (|has| (-1082 |#1| |#2| |#3|) (-757)) (|has| |#1| (-337))) (-12 (|has| (-1082 |#1| |#2| |#3|) (-784)) (|has| |#1| (-337)))))) (-2446 (($ $ $) NIL (-3703 (-12 (|has| (-1082 |#1| |#2| |#3|) (-757)) (|has| |#1| (-337))) (-12 (|has| (-1082 |#1| |#2| |#3|) (-784)) (|has| |#1| (-337)))))) (-1390 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1082 |#1| |#2| |#3|) (-1082 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-337)))) (-1253 (($ $) 72 (|has| |#1| (-37 (-381 (-521)))))) (-3125 (($ $) NIL)) (-3135 ((|#1| $) NIL)) (-2223 (($ (-587 $)) NIL (|has| |#1| (-337))) (($ $ $) NIL (|has| |#1| (-337)))) (-3065 (($ (-521) (-1082 |#1| |#2| |#3|)) 33)) (-3688 (((-1067) $) NIL)) (-3095 (($ $) NIL (|has| |#1| (-337)))) (-2184 (($ $) 70 (|has| |#1| (-37 (-381 (-521))))) (($ $ (-1084)) NIL (-3703 (-12 (|has| |#1| (-15 -2184 (|#1| |#1| (-1084)))) (|has| |#1| (-15 -4084 ((-587 (-1084)) |#1|))) (|has| |#1| (-37 (-381 (-521))))) (-12 (|has| |#1| (-29 (-521))) (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-887)) (|has| |#1| (-1105))))) (($ $ (-1161 |#2|)) 71 (|has| |#1| (-37 (-381 (-521)))))) (-3797 (($) NIL (-12 (|has| (-1082 |#1| |#2| |#3|) (-1060)) (|has| |#1| (-337))) CONST)) (-4147 (((-1031) $) NIL)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) NIL (|has| |#1| (-337)))) (-2258 (($ (-587 $)) NIL (|has| |#1| (-337))) (($ $ $) NIL (|has| |#1| (-337)))) (-2850 (($ $) NIL (-12 (|has| (-1082 |#1| |#2| |#3|) (-282)) (|has| |#1| (-337))))) (-2567 (((-1082 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1082 |#1| |#2| |#3|) (-506)) (|has| |#1| (-337))))) (-1912 (((-392 (-1080 $)) (-1080 $)) NIL (-12 (|has| (-1082 |#1| |#2| |#3|) (-838)) (|has| |#1| (-337))))) (-2165 (((-392 (-1080 $)) (-1080 $)) NIL (-12 (|has| (-1082 |#1| |#2| |#3|) (-838)) (|has| |#1| (-337))))) (-1916 (((-392 $) $) NIL (|has| |#1| (-337)))) (-1962 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-337))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL (|has| |#1| (-337)))) (-2447 (($ $ (-521)) 145)) (-2230 (((-3 $ "failed") $ $) 49 (-3703 (-12 (|has| (-1082 |#1| |#2| |#3|) (-757)) (|has| |#1| (-337))) (-12 (|has| (-1082 |#1| |#2| |#3|) (-838)) (|has| |#1| (-337))) (|has| |#1| (-513))))) (-3854 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| |#1| (-337)))) (-3261 (($ $) 73 (|has| |#1| (-37 (-381 (-521)))))) (-2288 (((-1065 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-521))))) (($ $ (-1084) (-1082 |#1| |#2| |#3|)) NIL (-12 (|has| (-1082 |#1| |#2| |#3|) (-482 (-1084) (-1082 |#1| |#2| |#3|))) (|has| |#1| (-337)))) (($ $ (-587 (-1084)) (-587 (-1082 |#1| |#2| |#3|))) NIL (-12 (|has| (-1082 |#1| |#2| |#3|) (-482 (-1084) (-1082 |#1| |#2| |#3|))) (|has| |#1| (-337)))) (($ $ (-587 (-269 (-1082 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1082 |#1| |#2| |#3|) (-284 (-1082 |#1| |#2| |#3|))) (|has| |#1| (-337)))) (($ $ (-269 (-1082 |#1| |#2| |#3|))) NIL (-12 (|has| (-1082 |#1| |#2| |#3|) (-284 (-1082 |#1| |#2| |#3|))) (|has| |#1| (-337)))) (($ $ (-1082 |#1| |#2| |#3|) (-1082 |#1| |#2| |#3|)) NIL (-12 (|has| (-1082 |#1| |#2| |#3|) (-284 (-1082 |#1| |#2| |#3|))) (|has| |#1| (-337)))) (($ $ (-587 (-1082 |#1| |#2| |#3|)) (-587 (-1082 |#1| |#2| |#3|))) NIL (-12 (|has| (-1082 |#1| |#2| |#3|) (-284 (-1082 |#1| |#2| |#3|))) (|has| |#1| (-337))))) (-4196 (((-707) $) NIL (|has| |#1| (-337)))) (-2544 ((|#1| $ (-521)) NIL) (($ $ $) 54 (|has| (-521) (-1025))) (($ $ (-1082 |#1| |#2| |#3|)) NIL (-12 (|has| (-1082 |#1| |#2| |#3|) (-261 (-1082 |#1| |#2| |#3|) (-1082 |#1| |#2| |#3|))) (|has| |#1| (-337))))) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) NIL (|has| |#1| (-337)))) (-2156 (($ $ (-1 (-1082 |#1| |#2| |#3|) (-1082 |#1| |#2| |#3|))) NIL (|has| |#1| (-337))) (($ $ (-1 (-1082 |#1| |#2| |#3|) (-1082 |#1| |#2| |#3|)) (-707)) NIL (|has| |#1| (-337))) (($ $ (-1161 |#2|)) 51) (($ $ (-707)) NIL (-3703 (-12 (|has| (-1082 |#1| |#2| |#3|) (-210)) (|has| |#1| (-337))) (|has| |#1| (-15 * (|#1| (-521) |#1|))))) (($ $) 50 (-3703 (-12 (|has| (-1082 |#1| |#2| |#3|) (-210)) (|has| |#1| (-337))) (|has| |#1| (-15 * (|#1| (-521) |#1|))))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (-3703 (-12 (|has| (-1082 |#1| |#2| |#3|) (-829 (-1084))) (|has| |#1| (-337))) (-12 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (|has| |#1| (-829 (-1084)))))) (($ $ (-1084) (-707)) NIL (-3703 (-12 (|has| (-1082 |#1| |#2| |#3|) (-829 (-1084))) (|has| |#1| (-337))) (-12 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (|has| |#1| (-829 (-1084)))))) (($ $ (-587 (-1084))) NIL (-3703 (-12 (|has| (-1082 |#1| |#2| |#3|) (-829 (-1084))) (|has| |#1| (-337))) (-12 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (|has| |#1| (-829 (-1084)))))) (($ $ (-1084)) NIL (-3703 (-12 (|has| (-1082 |#1| |#2| |#3|) (-829 (-1084))) (|has| |#1| (-337))) (-12 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (|has| |#1| (-829 (-1084))))))) (-4142 (($ $) NIL (|has| |#1| (-337)))) (-2812 (((-1082 |#1| |#2| |#3|) $) 41 (|has| |#1| (-337)))) (-1994 (((-521) $) 37)) (-1738 (($ $) 113 (|has| |#1| (-37 (-381 (-521)))))) (-2800 (($ $) 89 (|has| |#1| (-37 (-381 (-521)))))) (-2915 (($ $) 109 (|has| |#1| (-37 (-381 (-521)))))) (-2780 (($ $) 85 (|has| |#1| (-37 (-381 (-521)))))) (-2892 (($ $) 105 (|has| |#1| (-37 (-381 (-521)))))) (-2758 (($ $) 81 (|has| |#1| (-37 (-381 (-521)))))) (-1430 (((-497) $) NIL (-12 (|has| (-1082 |#1| |#2| |#3|) (-562 (-497))) (|has| |#1| (-337)))) (((-353) $) NIL (-12 (|has| (-1082 |#1| |#2| |#3|) (-946)) (|has| |#1| (-337)))) (((-202) $) NIL (-12 (|has| (-1082 |#1| |#2| |#3|) (-946)) (|has| |#1| (-337)))) (((-821 (-353)) $) NIL (-12 (|has| (-1082 |#1| |#2| |#3|) (-562 (-821 (-353)))) (|has| |#1| (-337)))) (((-821 (-521)) $) NIL (-12 (|has| (-1082 |#1| |#2| |#3|) (-562 (-821 (-521)))) (|has| |#1| (-337))))) (-2944 (((-3 (-1165 $) "failed") (-627 $)) NIL (-12 (|has| $ (-133)) (|has| (-1082 |#1| |#2| |#3|) (-838)) (|has| |#1| (-337))))) (-3448 (($ $) NIL)) (-2189 (((-792) $) 149) (($ (-521)) NIL) (($ |#1|) NIL (|has| |#1| (-157))) (($ (-1082 |#1| |#2| |#3|)) 27) (($ (-1161 |#2|)) 23) (($ (-1084)) NIL (-12 (|has| (-1082 |#1| |#2| |#3|) (-961 (-1084))) (|has| |#1| (-337)))) (($ $) NIL (-3703 (-12 (|has| (-1082 |#1| |#2| |#3|) (-757)) (|has| |#1| (-337))) (-12 (|has| (-1082 |#1| |#2| |#3|) (-838)) (|has| |#1| (-337))) (|has| |#1| (-513)))) (($ (-381 (-521))) NIL (-3703 (-12 (|has| (-1082 |#1| |#2| |#3|) (-961 (-521))) (|has| |#1| (-337))) (|has| |#1| (-37 (-381 (-521))))))) (-3800 ((|#1| $ (-521)) 68)) (-1671 (((-3 $ "failed") $) NIL (-3703 (-12 (|has| $ (-133)) (|has| (-1082 |#1| |#2| |#3|) (-838)) (|has| |#1| (-337))) (-12 (|has| (-1082 |#1| |#2| |#3|) (-133)) (|has| |#1| (-337))) (|has| |#1| (-133))))) (-3846 (((-707)) NIL)) (-1893 ((|#1| $) 12)) (-2382 (((-1082 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1082 |#1| |#2| |#3|) (-506)) (|has| |#1| (-337))))) (-1759 (($ $) 119 (|has| |#1| (-37 (-381 (-521)))))) (-2832 (($ $) 95 (|has| |#1| (-37 (-381 (-521)))))) (-4210 (((-108) $ $) NIL (-3703 (-12 (|has| (-1082 |#1| |#2| |#3|) (-757)) (|has| |#1| (-337))) (-12 (|has| (-1082 |#1| |#2| |#3|) (-838)) (|has| |#1| (-337))) (|has| |#1| (-513))))) (-1745 (($ $) 115 (|has| |#1| (-37 (-381 (-521)))))) (-2811 (($ $) 91 (|has| |#1| (-37 (-381 (-521)))))) (-1776 (($ $) 123 (|has| |#1| (-37 (-381 (-521)))))) (-2856 (($ $) 99 (|has| |#1| (-37 (-381 (-521)))))) (-3894 ((|#1| $ (-521)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-521)))) (|has| |#1| (-15 -2189 (|#1| (-1084))))))) (-3919 (($ $) 125 (|has| |#1| (-37 (-381 (-521)))))) (-2868 (($ $) 101 (|has| |#1| (-37 (-381 (-521)))))) (-1768 (($ $) 121 (|has| |#1| (-37 (-381 (-521)))))) (-2844 (($ $) 97 (|has| |#1| (-37 (-381 (-521)))))) (-1752 (($ $) 117 (|has| |#1| (-37 (-381 (-521)))))) (-2821 (($ $) 93 (|has| |#1| (-37 (-381 (-521)))))) (-3304 (($ $) NIL (-12 (|has| (-1082 |#1| |#2| |#3|) (-757)) (|has| |#1| (-337))))) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL (|has| |#1| (-337)))) (-3561 (($) 20 T CONST)) (-3572 (($) 16 T CONST)) (-2212 (($ $ (-1 (-1082 |#1| |#2| |#3|) (-1082 |#1| |#2| |#3|))) NIL (|has| |#1| (-337))) (($ $ (-1 (-1082 |#1| |#2| |#3|) (-1082 |#1| |#2| |#3|)) (-707)) NIL (|has| |#1| (-337))) (($ $ (-707)) NIL (-3703 (-12 (|has| (-1082 |#1| |#2| |#3|) (-210)) (|has| |#1| (-337))) (|has| |#1| (-15 * (|#1| (-521) |#1|))))) (($ $) NIL (-3703 (-12 (|has| (-1082 |#1| |#2| |#3|) (-210)) (|has| |#1| (-337))) (|has| |#1| (-15 * (|#1| (-521) |#1|))))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (-3703 (-12 (|has| (-1082 |#1| |#2| |#3|) (-829 (-1084))) (|has| |#1| (-337))) (-12 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (|has| |#1| (-829 (-1084)))))) (($ $ (-1084) (-707)) NIL (-3703 (-12 (|has| (-1082 |#1| |#2| |#3|) (-829 (-1084))) (|has| |#1| (-337))) (-12 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (|has| |#1| (-829 (-1084)))))) (($ $ (-587 (-1084))) NIL (-3703 (-12 (|has| (-1082 |#1| |#2| |#3|) (-829 (-1084))) (|has| |#1| (-337))) (-12 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (|has| |#1| (-829 (-1084)))))) (($ $ (-1084)) NIL (-3703 (-12 (|has| (-1082 |#1| |#2| |#3|) (-829 (-1084))) (|has| |#1| (-337))) (-12 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (|has| |#1| (-829 (-1084))))))) (-1574 (((-108) $ $) NIL (-3703 (-12 (|has| (-1082 |#1| |#2| |#3|) (-757)) (|has| |#1| (-337))) (-12 (|has| (-1082 |#1| |#2| |#3|) (-784)) (|has| |#1| (-337)))))) (-1558 (((-108) $ $) NIL (-3703 (-12 (|has| (-1082 |#1| |#2| |#3|) (-757)) (|has| |#1| (-337))) (-12 (|has| (-1082 |#1| |#2| |#3|) (-784)) (|has| |#1| (-337)))))) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL (-3703 (-12 (|has| (-1082 |#1| |#2| |#3|) (-757)) (|has| |#1| (-337))) (-12 (|has| (-1082 |#1| |#2| |#3|) (-784)) (|has| |#1| (-337)))))) (-1549 (((-108) $ $) NIL (-3703 (-12 (|has| (-1082 |#1| |#2| |#3|) (-757)) (|has| |#1| (-337))) (-12 (|has| (-1082 |#1| |#2| |#3|) (-784)) (|has| |#1| (-337)))))) (-1620 (($ $ |#1|) NIL (|has| |#1| (-337))) (($ $ $) 44 (|has| |#1| (-337))) (($ (-1082 |#1| |#2| |#3|) (-1082 |#1| |#2| |#3|)) 45 (|has| |#1| (-337)))) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) 21)) (** (($ $ (-850)) NIL) (($ $ (-707)) 53) (($ $ (-521)) NIL (|has| |#1| (-337))) (($ $ $) 74 (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) 128 (|has| |#1| (-37 (-381 (-521)))))) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) 32) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1082 |#1| |#2| |#3|)) 43 (|has| |#1| (-337))) (($ (-1082 |#1| |#2| |#3|) $) 42 (|has| |#1| (-337))) (($ (-381 (-521)) $) NIL (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) NIL (|has| |#1| (-37 (-381 (-521)))))))
+(((-1075 |#1| |#2| |#3|) (-13 (-1127 |#1| (-1082 |#1| |#2| |#3|)) (-10 -8 (-15 -2189 ($ (-1161 |#2|))) (-15 -2156 ($ $ (-1161 |#2|))) (IF (|has| |#1| (-37 (-381 (-521)))) (-15 -2184 ($ $ (-1161 |#2|))) |%noBranch|))) (-970) (-1084) |#1|) (T -1075))
+((-2189 (*1 *1 *2) (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-1075 *3 *4 *5)) (-4 *3 (-970)) (-14 *5 *3))) (-2156 (*1 *1 *1 *2) (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-1075 *3 *4 *5)) (-4 *3 (-970)) (-14 *5 *3))) (-2184 (*1 *1 *1 *2) (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-1075 *3 *4 *5)) (-4 *3 (-37 (-381 (-521)))) (-4 *3 (-970)) (-14 *5 *3))))
+(-13 (-1127 |#1| (-1082 |#1| |#2| |#3|)) (-10 -8 (-15 -2189 ($ (-1161 |#2|))) (-15 -2156 ($ $ (-1161 |#2|))) (IF (|has| |#1| (-37 (-381 (-521)))) (-15 -2184 ($ $ (-1161 |#2|))) |%noBranch|)))
+((-3513 ((|#2| |#2| (-1006 |#2|)) 26) ((|#2| |#2| (-1084)) 28)))
+(((-1076 |#1| |#2|) (-10 -7 (-15 -3513 (|#2| |#2| (-1084))) (-15 -3513 (|#2| |#2| (-1006 |#2|)))) (-13 (-513) (-784) (-961 (-521)) (-583 (-521))) (-13 (-404 |#1|) (-146) (-27) (-1105))) (T -1076))
+((-3513 (*1 *2 *2 *3) (-12 (-5 *3 (-1006 *2)) (-4 *2 (-13 (-404 *4) (-146) (-27) (-1105))) (-4 *4 (-13 (-513) (-784) (-961 (-521)) (-583 (-521)))) (-5 *1 (-1076 *4 *2)))) (-3513 (*1 *2 *2 *3) (-12 (-5 *3 (-1084)) (-4 *4 (-13 (-513) (-784) (-961 (-521)) (-583 (-521)))) (-5 *1 (-1076 *4 *2)) (-4 *2 (-13 (-404 *4) (-146) (-27) (-1105))))))
+(-10 -7 (-15 -3513 (|#2| |#2| (-1084))) (-15 -3513 (|#2| |#2| (-1006 |#2|))))
+((-3513 (((-3 (-381 (-881 |#1|)) (-290 |#1|)) (-381 (-881 |#1|)) (-1006 (-381 (-881 |#1|)))) 30) (((-381 (-881 |#1|)) (-881 |#1|) (-1006 (-881 |#1|))) 44) (((-3 (-381 (-881 |#1|)) (-290 |#1|)) (-381 (-881 |#1|)) (-1084)) 32) (((-381 (-881 |#1|)) (-881 |#1|) (-1084)) 36)))
+(((-1077 |#1|) (-10 -7 (-15 -3513 ((-381 (-881 |#1|)) (-881 |#1|) (-1084))) (-15 -3513 ((-3 (-381 (-881 |#1|)) (-290 |#1|)) (-381 (-881 |#1|)) (-1084))) (-15 -3513 ((-381 (-881 |#1|)) (-881 |#1|) (-1006 (-881 |#1|)))) (-15 -3513 ((-3 (-381 (-881 |#1|)) (-290 |#1|)) (-381 (-881 |#1|)) (-1006 (-381 (-881 |#1|)))))) (-13 (-513) (-784) (-961 (-521)))) (T -1077))
+((-3513 (*1 *2 *3 *4) (-12 (-5 *4 (-1006 (-381 (-881 *5)))) (-5 *3 (-381 (-881 *5))) (-4 *5 (-13 (-513) (-784) (-961 (-521)))) (-5 *2 (-3 *3 (-290 *5))) (-5 *1 (-1077 *5)))) (-3513 (*1 *2 *3 *4) (-12 (-5 *4 (-1006 (-881 *5))) (-5 *3 (-881 *5)) (-4 *5 (-13 (-513) (-784) (-961 (-521)))) (-5 *2 (-381 *3)) (-5 *1 (-1077 *5)))) (-3513 (*1 *2 *3 *4) (-12 (-5 *4 (-1084)) (-4 *5 (-13 (-513) (-784) (-961 (-521)))) (-5 *2 (-3 (-381 (-881 *5)) (-290 *5))) (-5 *1 (-1077 *5)) (-5 *3 (-381 (-881 *5))))) (-3513 (*1 *2 *3 *4) (-12 (-5 *4 (-1084)) (-4 *5 (-13 (-513) (-784) (-961 (-521)))) (-5 *2 (-381 (-881 *5))) (-5 *1 (-1077 *5)) (-5 *3 (-881 *5)))))
+(-10 -7 (-15 -3513 ((-381 (-881 |#1|)) (-881 |#1|) (-1084))) (-15 -3513 ((-3 (-381 (-881 |#1|)) (-290 |#1|)) (-381 (-881 |#1|)) (-1084))) (-15 -3513 ((-381 (-881 |#1|)) (-881 |#1|) (-1006 (-881 |#1|)))) (-15 -3513 ((-3 (-381 (-881 |#1|)) (-290 |#1|)) (-381 (-881 |#1|)) (-1006 (-381 (-881 |#1|))))))
+((-1390 (((-1080 |#2|) (-1 |#2| |#1|) (-1080 |#1|)) 13)))
+(((-1078 |#1| |#2|) (-10 -7 (-15 -1390 ((-1080 |#2|) (-1 |#2| |#1|) (-1080 |#1|)))) (-970) (-970)) (T -1078))
+((-1390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1080 *5)) (-4 *5 (-970)) (-4 *6 (-970)) (-5 *2 (-1080 *6)) (-5 *1 (-1078 *5 *6)))))
+(-10 -7 (-15 -1390 ((-1080 |#2|) (-1 |#2| |#1|) (-1080 |#1|))))
+((-3358 (((-392 (-1080 (-381 |#4|))) (-1080 (-381 |#4|))) 50)) (-1916 (((-392 (-1080 (-381 |#4|))) (-1080 (-381 |#4|))) 51)))
+(((-1079 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1916 ((-392 (-1080 (-381 |#4|))) (-1080 (-381 |#4|)))) (-15 -3358 ((-392 (-1080 (-381 |#4|))) (-1080 (-381 |#4|))))) (-729) (-784) (-425) (-878 |#3| |#1| |#2|)) (T -1079))
+((-3358 (*1 *2 *3) (-12 (-4 *4 (-729)) (-4 *5 (-784)) (-4 *6 (-425)) (-4 *7 (-878 *6 *4 *5)) (-5 *2 (-392 (-1080 (-381 *7)))) (-5 *1 (-1079 *4 *5 *6 *7)) (-5 *3 (-1080 (-381 *7))))) (-1916 (*1 *2 *3) (-12 (-4 *4 (-729)) (-4 *5 (-784)) (-4 *6 (-425)) (-4 *7 (-878 *6 *4 *5)) (-5 *2 (-392 (-1080 (-381 *7)))) (-5 *1 (-1079 *4 *5 *6 *7)) (-5 *3 (-1080 (-381 *7))))))
+(-10 -7 (-15 -1916 ((-392 (-1080 (-381 |#4|))) (-1080 (-381 |#4|)))) (-15 -3358 ((-392 (-1080 (-381 |#4|))) (-1080 (-381 |#4|)))))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) 30)) (-2141 (((-1165 |#1|) $ (-707)) NIL)) (-4084 (((-587 (-998)) $) NIL)) (-4087 (($ (-1080 |#1|)) NIL)) (-1280 (((-1080 $) $ (-998)) 59) (((-1080 |#1|) $) 48)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) NIL (|has| |#1| (-513)))) (-2559 (($ $) 133 (|has| |#1| (-513)))) (-1733 (((-108) $) NIL (|has| |#1| (-513)))) (-2256 (((-707) $) NIL) (((-707) $ (-587 (-998))) NIL)) (-1232 (((-3 $ "failed") $ $) NIL)) (-3570 (($ $ $) 127 (|has| |#1| (-513)))) (-2598 (((-392 (-1080 $)) (-1080 $)) 72 (|has| |#1| (-838)))) (-3063 (($ $) NIL (|has| |#1| (-425)))) (-3358 (((-392 $) $) NIL (|has| |#1| (-425)))) (-2569 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) 92 (|has| |#1| (-838)))) (-1389 (((-108) $ $) NIL (|has| |#1| (-337)))) (-2451 (($ $ (-707)) 42)) (-2962 (($ $ (-707)) 43)) (-2067 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-425)))) (-2547 (($) NIL T CONST)) (-1297 (((-3 |#1| "failed") $) NIL) (((-3 (-381 (-521)) "failed") $) NIL (|has| |#1| (-961 (-381 (-521))))) (((-3 (-521) "failed") $) NIL (|has| |#1| (-961 (-521)))) (((-3 (-998) "failed") $) NIL)) (-1483 ((|#1| $) NIL) (((-381 (-521)) $) NIL (|has| |#1| (-961 (-381 (-521))))) (((-521) $) NIL (|has| |#1| (-961 (-521)))) (((-998) $) NIL)) (-2114 (($ $ $ (-998)) NIL (|has| |#1| (-157))) ((|#1| $ $) 129 (|has| |#1| (-157)))) (-2277 (($ $ $) NIL (|has| |#1| (-337)))) (-3152 (($ $) 57)) (-3279 (((-627 (-521)) (-627 $)) NIL (|has| |#1| (-583 (-521)))) (((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (|has| |#1| (-583 (-521)))) (((-2 (|:| -1201 (-627 |#1|)) (|:| |vec| (-1165 |#1|))) (-627 $) (-1165 $)) NIL) (((-627 |#1|) (-627 $)) NIL)) (-1257 (((-3 $ "failed") $) NIL)) (-2253 (($ $ $) NIL (|has| |#1| (-337)))) (-1553 (($ $ $) 105)) (-3678 (($ $ $) NIL (|has| |#1| (-513)))) (-2225 (((-2 (|:| -2973 |#1|) (|:| -3727 $) (|:| -3820 $)) $ $) NIL (|has| |#1| (-513)))) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) NIL (|has| |#1| (-337)))) (-3666 (($ $) 134 (|has| |#1| (-425))) (($ $ (-998)) NIL (|has| |#1| (-425)))) (-3144 (((-587 $) $) NIL)) (-2710 (((-108) $) NIL (|has| |#1| (-838)))) (-3528 (($ $ |#1| (-707) $) 46)) (-3427 (((-818 (-353) $) $ (-821 (-353)) (-818 (-353) $)) NIL (-12 (|has| (-998) (-815 (-353))) (|has| |#1| (-815 (-353))))) (((-818 (-521) $) $ (-821 (-521)) (-818 (-521) $)) NIL (-12 (|has| (-998) (-815 (-521))) (|has| |#1| (-815 (-521)))))) (-2531 (((-792) $ (-792)) 118)) (-2733 (((-707) $ $) NIL (|has| |#1| (-513)))) (-3996 (((-108) $) 32)) (-2678 (((-707) $) NIL)) (-3842 (((-3 $ "failed") $) NIL (|has| |#1| (-1060)))) (-4069 (($ (-1080 |#1|) (-998)) 50) (($ (-1080 $) (-998)) 66)) (-1993 (($ $ (-707)) 34)) (-1546 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| |#1| (-337)))) (-2959 (((-587 $) $) NIL)) (-3649 (((-108) $) NIL)) (-4043 (($ |#1| (-707)) 64) (($ $ (-998) (-707)) NIL) (($ $ (-587 (-998)) (-587 (-707))) NIL)) (-1450 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $ (-998)) NIL) (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) 122)) (-3273 (((-707) $) NIL) (((-707) $ (-998)) NIL) (((-587 (-707)) $ (-587 (-998))) NIL)) (-2810 (($ $ $) NIL (|has| |#1| (-784)))) (-2446 (($ $ $) NIL (|has| |#1| (-784)))) (-3285 (($ (-1 (-707) (-707)) $) NIL)) (-1390 (($ (-1 |#1| |#1|) $) NIL)) (-1285 (((-1080 |#1|) $) NIL)) (-2477 (((-3 (-998) "failed") $) NIL)) (-3125 (($ $) NIL)) (-3135 ((|#1| $) 53)) (-2223 (($ (-587 $)) NIL (|has| |#1| (-425))) (($ $ $) NIL (|has| |#1| (-425)))) (-3688 (((-1067) $) NIL)) (-1328 (((-2 (|:| -3727 $) (|:| -3820 $)) $ (-707)) 41)) (-1617 (((-3 (-587 $) "failed") $) NIL)) (-3177 (((-3 (-587 $) "failed") $) NIL)) (-3979 (((-3 (-2 (|:| |var| (-998)) (|:| -2997 (-707))) "failed") $) NIL)) (-2184 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3797 (($) NIL (|has| |#1| (-1060)) CONST)) (-4147 (((-1031) $) NIL)) (-3105 (((-108) $) 33)) (-3115 ((|#1| $) NIL)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) 80 (|has| |#1| (-425)))) (-2258 (($ (-587 $)) NIL (|has| |#1| (-425))) (($ $ $) 136 (|has| |#1| (-425)))) (-3590 (($ $ (-707) |#1| $) 100)) (-1912 (((-392 (-1080 $)) (-1080 $)) 78 (|has| |#1| (-838)))) (-2165 (((-392 (-1080 $)) (-1080 $)) 77 (|has| |#1| (-838)))) (-1916 (((-392 $) $) 85 (|has| |#1| (-838)))) (-1962 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-337))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL (|has| |#1| (-337)))) (-2230 (((-3 $ "failed") $ |#1|) 132 (|has| |#1| (-513))) (((-3 $ "failed") $ $) 101 (|has| |#1| (-513)))) (-3854 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| |#1| (-337)))) (-2288 (($ $ (-587 (-269 $))) NIL) (($ $ (-269 $)) NIL) (($ $ $ $) NIL) (($ $ (-587 $) (-587 $)) NIL) (($ $ (-998) |#1|) NIL) (($ $ (-587 (-998)) (-587 |#1|)) NIL) (($ $ (-998) $) NIL) (($ $ (-587 (-998)) (-587 $)) NIL)) (-4196 (((-707) $) NIL (|has| |#1| (-337)))) (-2544 ((|#1| $ |#1|) 120) (($ $ $) 121) (((-381 $) (-381 $) (-381 $)) NIL (|has| |#1| (-513))) ((|#1| (-381 $) |#1|) NIL (|has| |#1| (-337))) (((-381 $) $ (-381 $)) NIL (|has| |#1| (-513)))) (-2182 (((-3 $ "failed") $ (-707)) 37)) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) 139 (|has| |#1| (-337)))) (-4010 (($ $ (-998)) NIL (|has| |#1| (-157))) ((|#1| $) 125 (|has| |#1| (-157)))) (-2156 (($ $ (-998)) NIL) (($ $ (-587 (-998))) NIL) (($ $ (-998) (-707)) NIL) (($ $ (-587 (-998)) (-587 (-707))) NIL) (($ $ (-707)) NIL) (($ $) NIL) (($ $ (-1084)) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-1 |#1| |#1|) (-707)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-1994 (((-707) $) 55) (((-707) $ (-998)) NIL) (((-587 (-707)) $ (-587 (-998))) NIL)) (-1430 (((-821 (-353)) $) NIL (-12 (|has| (-998) (-562 (-821 (-353)))) (|has| |#1| (-562 (-821 (-353)))))) (((-821 (-521)) $) NIL (-12 (|has| (-998) (-562 (-821 (-521)))) (|has| |#1| (-562 (-821 (-521)))))) (((-497) $) NIL (-12 (|has| (-998) (-562 (-497))) (|has| |#1| (-562 (-497)))))) (-2403 ((|#1| $) 131 (|has| |#1| (-425))) (($ $ (-998)) NIL (|has| |#1| (-425)))) (-2944 (((-3 (-1165 $) "failed") (-627 $)) NIL (-12 (|has| $ (-133)) (|has| |#1| (-838))))) (-1378 (((-3 $ "failed") $ $) NIL (|has| |#1| (-513))) (((-3 (-381 $) "failed") (-381 $) $) NIL (|has| |#1| (-513)))) (-2189 (((-792) $) 119) (($ (-521)) NIL) (($ |#1|) 54) (($ (-998)) NIL) (($ (-381 (-521))) NIL (-3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-961 (-381 (-521)))))) (($ $) NIL (|has| |#1| (-513)))) (-1259 (((-587 |#1|) $) NIL)) (-3800 ((|#1| $ (-707)) NIL) (($ $ (-998) (-707)) NIL) (($ $ (-587 (-998)) (-587 (-707))) NIL)) (-1671 (((-3 $ "failed") $) NIL (-3703 (-12 (|has| $ (-133)) (|has| |#1| (-838))) (|has| |#1| (-133))))) (-3846 (((-707)) NIL)) (-1547 (($ $ $ (-707)) 28 (|has| |#1| (-157)))) (-4210 (((-108) $ $) NIL (|has| |#1| (-513)))) (-3505 (($ $ (-850)) 15) (($ $ (-707)) 16)) (-3561 (($) 17 T CONST)) (-3572 (($) 18 T CONST)) (-2212 (($ $ (-998)) NIL) (($ $ (-587 (-998))) NIL) (($ $ (-998) (-707)) NIL) (($ $ (-587 (-998)) (-587 (-707))) NIL) (($ $ (-707)) NIL) (($ $) NIL) (($ $ (-1084)) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| |#1| (-829 (-1084)))) (($ $ (-1 |#1| |#1|) (-707)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1574 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1558 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1531 (((-108) $ $) 97)) (-1566 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1549 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1620 (($ $ |#1|) 140 (|has| |#1| (-337)))) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) 67)) (** (($ $ (-850)) 14) (($ $ (-707)) 12)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) 27) (($ $ (-381 (-521))) NIL (|has| |#1| (-37 (-381 (-521))))) (($ (-381 (-521)) $) NIL (|has| |#1| (-37 (-381 (-521))))) (($ |#1| $) 103) (($ $ |#1|) NIL)))
+(((-1080 |#1|) (-13 (-1141 |#1|) (-10 -8 (-15 -2531 ((-792) $ (-792))) (-15 -3590 ($ $ (-707) |#1| $)))) (-970)) (T -1080))
+((-2531 (*1 *2 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-1080 *3)) (-4 *3 (-970)))) (-3590 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-707)) (-5 *1 (-1080 *3)) (-4 *3 (-970)))))
+(-13 (-1141 |#1|) (-10 -8 (-15 -2531 ((-792) $ (-792))) (-15 -3590 ($ $ (-707) |#1| $))))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-4084 (((-587 (-998)) $) NIL)) (-1611 (((-1084) $) 11)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) NIL (|has| |#1| (-513)))) (-2559 (($ $) NIL (|has| |#1| (-513)))) (-1733 (((-108) $) NIL (|has| |#1| (-513)))) (-2977 (($ $ (-381 (-521))) NIL) (($ $ (-381 (-521)) (-381 (-521))) NIL)) (-3423 (((-1065 (-2 (|:| |k| (-381 (-521))) (|:| |c| |#1|))) $) NIL)) (-2904 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2769 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-1232 (((-3 $ "failed") $ $) NIL)) (-3063 (($ $) NIL (|has| |#1| (-337)))) (-3358 (((-392 $) $) NIL (|has| |#1| (-337)))) (-1927 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-1389 (((-108) $ $) NIL (|has| |#1| (-337)))) (-2880 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2746 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2770 (($ (-707) (-1065 (-2 (|:| |k| (-381 (-521))) (|:| |c| |#1|)))) NIL)) (-2926 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2790 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2547 (($) NIL T CONST)) (-1297 (((-3 (-1075 |#1| |#2| |#3|) "failed") $) 32) (((-3 (-1082 |#1| |#2| |#3|) "failed") $) 35)) (-1483 (((-1075 |#1| |#2| |#3|) $) NIL) (((-1082 |#1| |#2| |#3|) $) NIL)) (-2277 (($ $ $) NIL (|has| |#1| (-337)))) (-3152 (($ $) NIL)) (-1257 (((-3 $ "failed") $) NIL)) (-1516 (((-381 (-521)) $) 55)) (-2253 (($ $ $) NIL (|has| |#1| (-337)))) (-3075 (($ (-381 (-521)) (-1075 |#1| |#2| |#3|)) NIL)) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) NIL (|has| |#1| (-337)))) (-2710 (((-108) $) NIL (|has| |#1| (-337)))) (-1325 (((-108) $) NIL)) (-2834 (($) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2733 (((-381 (-521)) $) NIL) (((-381 (-521)) $ (-381 (-521))) NIL)) (-3996 (((-108) $) NIL)) (-3407 (($ $ (-521)) NIL (|has| |#1| (-37 (-381 (-521)))))) (-1993 (($ $ (-850)) NIL) (($ $ (-381 (-521))) NIL)) (-1546 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| |#1| (-337)))) (-3649 (((-108) $) NIL)) (-4043 (($ |#1| (-381 (-521))) 19) (($ $ (-998) (-381 (-521))) NIL) (($ $ (-587 (-998)) (-587 (-381 (-521)))) NIL)) (-1390 (($ (-1 |#1| |#1|) $) NIL)) (-1253 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3125 (($ $) NIL)) (-3135 ((|#1| $) NIL)) (-2223 (($ (-587 $)) NIL (|has| |#1| (-337))) (($ $ $) NIL (|has| |#1| (-337)))) (-2718 (((-1075 |#1| |#2| |#3|) $) 40)) (-1401 (((-3 (-1075 |#1| |#2| |#3|) "failed") $) NIL)) (-3065 (((-1075 |#1| |#2| |#3|) $) NIL)) (-3688 (((-1067) $) NIL)) (-3095 (($ $) NIL (|has| |#1| (-337)))) (-2184 (($ $) 38 (|has| |#1| (-37 (-381 (-521))))) (($ $ (-1084)) NIL (-3703 (-12 (|has| |#1| (-15 -2184 (|#1| |#1| (-1084)))) (|has| |#1| (-15 -4084 ((-587 (-1084)) |#1|))) (|has| |#1| (-37 (-381 (-521))))) (-12 (|has| |#1| (-29 (-521))) (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-887)) (|has| |#1| (-1105))))) (($ $ (-1161 |#2|)) 39 (|has| |#1| (-37 (-381 (-521)))))) (-4147 (((-1031) $) NIL)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) NIL (|has| |#1| (-337)))) (-2258 (($ (-587 $)) NIL (|has| |#1| (-337))) (($ $ $) NIL (|has| |#1| (-337)))) (-1916 (((-392 $) $) NIL (|has| |#1| (-337)))) (-1962 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-337))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL (|has| |#1| (-337)))) (-2447 (($ $ (-381 (-521))) NIL)) (-2230 (((-3 $ "failed") $ $) NIL (|has| |#1| (-513)))) (-3854 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| |#1| (-337)))) (-3261 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2288 (((-1065 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-381 (-521))))))) (-4196 (((-707) $) NIL (|has| |#1| (-337)))) (-2544 ((|#1| $ (-381 (-521))) NIL) (($ $ $) NIL (|has| (-381 (-521)) (-1025)))) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) NIL (|has| |#1| (-337)))) (-2156 (($ $ (-587 (-1084)) (-587 (-707))) NIL (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-829 (-1084))))) (($ $ (-1084) (-707)) NIL (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-829 (-1084))))) (($ $ (-587 (-1084))) NIL (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-829 (-1084))))) (($ $ (-1084)) NIL (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-829 (-1084))))) (($ $ (-707)) NIL (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|)))) (($ $) 36 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|)))) (($ $ (-1161 |#2|)) 37)) (-1994 (((-381 (-521)) $) NIL)) (-1738 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2800 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2915 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2780 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2892 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2758 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3448 (($ $) NIL)) (-2189 (((-792) $) 58) (($ (-521)) NIL) (($ |#1|) NIL (|has| |#1| (-157))) (($ (-1075 |#1| |#2| |#3|)) 29) (($ (-1082 |#1| |#2| |#3|)) 30) (($ (-1161 |#2|)) 25) (($ (-381 (-521))) NIL (|has| |#1| (-37 (-381 (-521))))) (($ $) NIL (|has| |#1| (-513)))) (-3800 ((|#1| $ (-381 (-521))) NIL)) (-1671 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-3846 (((-707)) NIL)) (-1893 ((|#1| $) 12)) (-1759 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2832 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-4210 (((-108) $ $) NIL (|has| |#1| (-513)))) (-1745 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2811 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-1776 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2856 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3894 ((|#1| $ (-381 (-521))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-381 (-521))))) (|has| |#1| (-15 -2189 (|#1| (-1084))))))) (-3919 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2868 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-1768 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2844 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-1752 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2821 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL (|has| |#1| (-337)))) (-3561 (($) 21 T CONST)) (-3572 (($) 16 T CONST)) (-2212 (($ $ (-587 (-1084)) (-587 (-707))) NIL (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-829 (-1084))))) (($ $ (-1084) (-707)) NIL (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-829 (-1084))))) (($ $ (-587 (-1084))) NIL (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-829 (-1084))))) (($ $ (-1084)) NIL (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-829 (-1084))))) (($ $ (-707)) NIL (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))))) (-1531 (((-108) $ $) NIL)) (-1620 (($ $ |#1|) NIL (|has| |#1| (-337))) (($ $ $) NIL (|has| |#1| (-337)))) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) 23)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL (|has| |#1| (-337))) (($ $ $) NIL (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) NIL (|has| |#1| (-37 (-381 (-521)))))) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-381 (-521)) $) NIL (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) NIL (|has| |#1| (-37 (-381 (-521)))))))
+(((-1081 |#1| |#2| |#3|) (-13 (-1148 |#1| (-1075 |#1| |#2| |#3|)) (-961 (-1082 |#1| |#2| |#3|)) (-10 -8 (-15 -2189 ($ (-1161 |#2|))) (-15 -2156 ($ $ (-1161 |#2|))) (IF (|has| |#1| (-37 (-381 (-521)))) (-15 -2184 ($ $ (-1161 |#2|))) |%noBranch|))) (-970) (-1084) |#1|) (T -1081))
+((-2189 (*1 *1 *2) (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-1081 *3 *4 *5)) (-4 *3 (-970)) (-14 *5 *3))) (-2156 (*1 *1 *1 *2) (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-1081 *3 *4 *5)) (-4 *3 (-970)) (-14 *5 *3))) (-2184 (*1 *1 *1 *2) (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-1081 *3 *4 *5)) (-4 *3 (-37 (-381 (-521)))) (-4 *3 (-970)) (-14 *5 *3))))
+(-13 (-1148 |#1| (-1075 |#1| |#2| |#3|)) (-961 (-1082 |#1| |#2| |#3|)) (-10 -8 (-15 -2189 ($ (-1161 |#2|))) (-15 -2156 ($ $ (-1161 |#2|))) (IF (|has| |#1| (-37 (-381 (-521)))) (-15 -2184 ($ $ (-1161 |#2|))) |%noBranch|)))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) 125)) (-4084 (((-587 (-998)) $) NIL)) (-1611 (((-1084) $) 116)) (-3770 (((-1138 |#2| |#1|) $ (-707)) 63)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) NIL (|has| |#1| (-513)))) (-2559 (($ $) NIL (|has| |#1| (-513)))) (-1733 (((-108) $) NIL (|has| |#1| (-513)))) (-2977 (($ $ (-707)) 79) (($ $ (-707) (-707)) 76)) (-3423 (((-1065 (-2 (|:| |k| (-707)) (|:| |c| |#1|))) $) 102)) (-2904 (($ $) 169 (|has| |#1| (-37 (-381 (-521)))))) (-2769 (($ $) 145 (|has| |#1| (-37 (-381 (-521)))))) (-1232 (((-3 $ "failed") $ $) NIL)) (-1927 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2880 (($ $) 165 (|has| |#1| (-37 (-381 (-521)))))) (-2746 (($ $) 141 (|has| |#1| (-37 (-381 (-521)))))) (-2770 (($ (-1065 (-2 (|:| |k| (-707)) (|:| |c| |#1|)))) 115) (($ (-1065 |#1|)) 110)) (-2926 (($ $) 173 (|has| |#1| (-37 (-381 (-521)))))) (-2790 (($ $) 149 (|has| |#1| (-37 (-381 (-521)))))) (-2547 (($) NIL T CONST)) (-3152 (($ $) NIL)) (-1257 (((-3 $ "failed") $) 23)) (-2233 (($ $) 26)) (-2199 (((-881 |#1|) $ (-707)) 75) (((-881 |#1|) $ (-707) (-707)) 77)) (-1325 (((-108) $) 120)) (-2834 (($) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2733 (((-707) $) 122) (((-707) $ (-707)) 124)) (-3996 (((-108) $) NIL)) (-3407 (($ $ (-521)) NIL (|has| |#1| (-37 (-381 (-521)))))) (-1993 (($ $ (-850)) NIL)) (-3131 (($ (-1 |#1| (-521)) $) NIL)) (-3649 (((-108) $) NIL)) (-4043 (($ |#1| (-707)) 13) (($ $ (-998) (-707)) NIL) (($ $ (-587 (-998)) (-587 (-707))) NIL)) (-1390 (($ (-1 |#1| |#1|) $) NIL)) (-1253 (($ $) 131 (|has| |#1| (-37 (-381 (-521)))))) (-3125 (($ $) NIL)) (-3135 ((|#1| $) NIL)) (-3688 (((-1067) $) NIL)) (-2184 (($ $) 129 (|has| |#1| (-37 (-381 (-521))))) (($ $ (-1084)) NIL (-3703 (-12 (|has| |#1| (-15 -2184 (|#1| |#1| (-1084)))) (|has| |#1| (-15 -4084 ((-587 (-1084)) |#1|))) (|has| |#1| (-37 (-381 (-521))))) (-12 (|has| |#1| (-29 (-521))) (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-887)) (|has| |#1| (-1105))))) (($ $ (-1161 |#2|)) 130 (|has| |#1| (-37 (-381 (-521)))))) (-4147 (((-1031) $) NIL)) (-2447 (($ $ (-707)) 15)) (-2230 (((-3 $ "failed") $ $) 24 (|has| |#1| (-513)))) (-3261 (($ $) 133 (|has| |#1| (-37 (-381 (-521)))))) (-2288 (((-1065 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-707)))))) (-2544 ((|#1| $ (-707)) 119) (($ $ $) 128 (|has| (-707) (-1025)))) (-2156 (($ $ (-587 (-1084)) (-587 (-707))) NIL (-12 (|has| |#1| (-15 * (|#1| (-707) |#1|))) (|has| |#1| (-829 (-1084))))) (($ $ (-1084) (-707)) NIL (-12 (|has| |#1| (-15 * (|#1| (-707) |#1|))) (|has| |#1| (-829 (-1084))))) (($ $ (-587 (-1084))) NIL (-12 (|has| |#1| (-15 * (|#1| (-707) |#1|))) (|has| |#1| (-829 (-1084))))) (($ $ (-1084)) NIL (-12 (|has| |#1| (-15 * (|#1| (-707) |#1|))) (|has| |#1| (-829 (-1084))))) (($ $ (-707)) NIL (|has| |#1| (-15 * (|#1| (-707) |#1|)))) (($ $) 27 (|has| |#1| (-15 * (|#1| (-707) |#1|)))) (($ $ (-1161 |#2|)) 29)) (-1994 (((-707) $) NIL)) (-1738 (($ $) 175 (|has| |#1| (-37 (-381 (-521)))))) (-2800 (($ $) 151 (|has| |#1| (-37 (-381 (-521)))))) (-2915 (($ $) 171 (|has| |#1| (-37 (-381 (-521)))))) (-2780 (($ $) 147 (|has| |#1| (-37 (-381 (-521)))))) (-2892 (($ $) 167 (|has| |#1| (-37 (-381 (-521)))))) (-2758 (($ $) 143 (|has| |#1| (-37 (-381 (-521)))))) (-3448 (($ $) NIL)) (-2189 (((-792) $) 201) (($ (-521)) NIL) (($ (-381 (-521))) NIL (|has| |#1| (-37 (-381 (-521))))) (($ $) NIL (|has| |#1| (-513))) (($ |#1|) 126 (|has| |#1| (-157))) (($ (-1138 |#2| |#1|)) 51) (($ (-1161 |#2|)) 32)) (-1259 (((-1065 |#1|) $) 98)) (-3800 ((|#1| $ (-707)) 118)) (-1671 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-3846 (((-707)) NIL)) (-1893 ((|#1| $) 54)) (-1759 (($ $) 181 (|has| |#1| (-37 (-381 (-521)))))) (-2832 (($ $) 157 (|has| |#1| (-37 (-381 (-521)))))) (-4210 (((-108) $ $) NIL (|has| |#1| (-513)))) (-1745 (($ $) 177 (|has| |#1| (-37 (-381 (-521)))))) (-2811 (($ $) 153 (|has| |#1| (-37 (-381 (-521)))))) (-1776 (($ $) 185 (|has| |#1| (-37 (-381 (-521)))))) (-2856 (($ $) 161 (|has| |#1| (-37 (-381 (-521)))))) (-3894 ((|#1| $ (-707)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-707)))) (|has| |#1| (-15 -2189 (|#1| (-1084))))))) (-3919 (($ $) 187 (|has| |#1| (-37 (-381 (-521)))))) (-2868 (($ $) 163 (|has| |#1| (-37 (-381 (-521)))))) (-1768 (($ $) 183 (|has| |#1| (-37 (-381 (-521)))))) (-2844 (($ $) 159 (|has| |#1| (-37 (-381 (-521)))))) (-1752 (($ $) 179 (|has| |#1| (-37 (-381 (-521)))))) (-2821 (($ $) 155 (|has| |#1| (-37 (-381 (-521)))))) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (-3561 (($) 17 T CONST)) (-3572 (($) 19 T CONST)) (-2212 (($ $ (-587 (-1084)) (-587 (-707))) NIL (-12 (|has| |#1| (-15 * (|#1| (-707) |#1|))) (|has| |#1| (-829 (-1084))))) (($ $ (-1084) (-707)) NIL (-12 (|has| |#1| (-15 * (|#1| (-707) |#1|))) (|has| |#1| (-829 (-1084))))) (($ $ (-587 (-1084))) NIL (-12 (|has| |#1| (-15 * (|#1| (-707) |#1|))) (|has| |#1| (-829 (-1084))))) (($ $ (-1084)) NIL (-12 (|has| |#1| (-15 * (|#1| (-707) |#1|))) (|has| |#1| (-829 (-1084))))) (($ $ (-707)) NIL (|has| |#1| (-15 * (|#1| (-707) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-707) |#1|))))) (-1531 (((-108) $ $) NIL)) (-1620 (($ $ |#1|) NIL (|has| |#1| (-337)))) (-1612 (($ $) NIL) (($ $ $) 194)) (-1602 (($ $ $) 31)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ |#1|) 198 (|has| |#1| (-337))) (($ $ $) 134 (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) 137 (|has| |#1| (-37 (-381 (-521)))))) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) 132) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-381 (-521)) $) NIL (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) NIL (|has| |#1| (-37 (-381 (-521)))))))
+(((-1082 |#1| |#2| |#3|) (-13 (-1156 |#1|) (-10 -8 (-15 -2189 ($ (-1138 |#2| |#1|))) (-15 -3770 ((-1138 |#2| |#1|) $ (-707))) (-15 -2189 ($ (-1161 |#2|))) (-15 -2156 ($ $ (-1161 |#2|))) (IF (|has| |#1| (-37 (-381 (-521)))) (-15 -2184 ($ $ (-1161 |#2|))) |%noBranch|))) (-970) (-1084) |#1|) (T -1082))
+((-2189 (*1 *1 *2) (-12 (-5 *2 (-1138 *4 *3)) (-4 *3 (-970)) (-14 *4 (-1084)) (-14 *5 *3) (-5 *1 (-1082 *3 *4 *5)))) (-3770 (*1 *2 *1 *3) (-12 (-5 *3 (-707)) (-5 *2 (-1138 *5 *4)) (-5 *1 (-1082 *4 *5 *6)) (-4 *4 (-970)) (-14 *5 (-1084)) (-14 *6 *4))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-1082 *3 *4 *5)) (-4 *3 (-970)) (-14 *5 *3))) (-2156 (*1 *1 *1 *2) (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-1082 *3 *4 *5)) (-4 *3 (-970)) (-14 *5 *3))) (-2184 (*1 *1 *1 *2) (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-1082 *3 *4 *5)) (-4 *3 (-37 (-381 (-521)))) (-4 *3 (-970)) (-14 *5 *3))))
+(-13 (-1156 |#1|) (-10 -8 (-15 -2189 ($ (-1138 |#2| |#1|))) (-15 -3770 ((-1138 |#2| |#1|) $ (-707))) (-15 -2189 ($ (-1161 |#2|))) (-15 -2156 ($ $ (-1161 |#2|))) (IF (|has| |#1| (-37 (-381 (-521)))) (-15 -2184 ($ $ (-1161 |#2|))) |%noBranch|)))
+((-2189 (((-792) $) 22) (($ (-1084)) 24)) (-3703 (($ (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $)) (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $))) 35)) (-3690 (($ (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $))) 28) (($ $) 29)) (-3174 (($ (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $)) (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $))) 30)) (-3165 (($ (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $)) (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $))) 32)) (-3155 (($ (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $)) (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $))) 31)) (-3147 (($ (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $)) (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $))) 33)) (-3082 (($ (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $)) (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $))) 36)) (-12 (($ (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $)) (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $))) 34)))
+(((-1083) (-13 (-561 (-792)) (-10 -8 (-15 -2189 ($ (-1084))) (-15 -3174 ($ (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $)) (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $)))) (-15 -3155 ($ (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $)) (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $)))) (-15 -3165 ($ (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $)) (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $)))) (-15 -3147 ($ (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $)) (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $)))) (-15 -3703 ($ (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $)) (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $)))) (-15 -3082 ($ (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $)) (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $)) (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $)))) (-15 -3690 ($ (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $)))) (-15 -3690 ($ $))))) (T -1083))
+((-2189 (*1 *1 *2) (-12 (-5 *2 (-1084)) (-5 *1 (-1083)))) (-3174 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| (-1083)))) (-5 *1 (-1083)))) (-3155 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| (-1083)))) (-5 *1 (-1083)))) (-3165 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| (-1083)))) (-5 *1 (-1083)))) (-3147 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| (-1083)))) (-5 *1 (-1083)))) (-3703 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| (-1083)))) (-5 *1 (-1083)))) (-3082 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| (-1083)))) (-5 *1 (-1083)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| (-1083)))) (-5 *1 (-1083)))) (-3690 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| (-1083)))) (-5 *1 (-1083)))) (-3690 (*1 *1 *1) (-5 *1 (-1083))))
+(-13 (-561 (-792)) (-10 -8 (-15 -2189 ($ (-1084))) (-15 -3174 ($ (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $)) (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $)))) (-15 -3155 ($ (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $)) (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $)))) (-15 -3165 ($ (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $)) (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $)))) (-15 -3147 ($ (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $)) (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $)))) (-15 -3703 ($ (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $)) (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $)))) (-15 -3082 ($ (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $)) (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $)) (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $)))) (-15 -3690 ($ (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $)))) (-15 -3690 ($ $))))
+((-1415 (((-108) $ $) NIL)) (-1892 (($ $ (-587 (-792))) 58)) (-1197 (($ $ (-587 (-792))) 56)) (-1507 (((-1067) $) 82)) (-2525 (((-2 (|:| -2152 (-587 (-792))) (|:| -2641 (-587 (-792))) (|:| |presup| (-587 (-792))) (|:| -2946 (-587 (-792))) (|:| |args| (-587 (-792)))) $) 85)) (-2091 (((-108) $) 21)) (-1581 (($ $ (-587 (-587 (-792)))) 54) (($ $ (-2 (|:| -2152 (-587 (-792))) (|:| -2641 (-587 (-792))) (|:| |presup| (-587 (-792))) (|:| -2946 (-587 (-792))) (|:| |args| (-587 (-792))))) 80)) (-2547 (($) 123 T CONST)) (-2167 (((-1170)) 104)) (-3427 (((-818 (-521) $) $ (-821 (-521)) (-818 (-521) $)) 65) (((-818 (-353) $) $ (-821 (-353)) (-818 (-353) $)) 71)) (-1811 (($) 93) (($ $) 99)) (-2884 (($ $) 81)) (-2810 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-1580 (((-587 $) $) 105)) (-3688 (((-1067) $) 88)) (-4147 (((-1031) $) NIL)) (-2544 (($ $ (-587 (-792))) 57)) (-1430 (((-497) $) 45) (((-1084) $) 46) (((-821 (-521)) $) 75) (((-821 (-353)) $) 73)) (-2189 (((-792) $) 52) (($ (-1067)) 47)) (-1221 (($ $ (-587 (-792))) 59)) (-2287 (((-1067) $) 33) (((-1067) $ (-108)) 34) (((-1170) (-759) $) 35) (((-1170) (-759) $ (-108)) 36)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) 48)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 49)))
+(((-1084) (-13 (-784) (-562 (-497)) (-765) (-562 (-1084)) (-562 (-821 (-521))) (-562 (-821 (-353))) (-815 (-521)) (-815 (-353)) (-10 -8 (-15 -1811 ($)) (-15 -1811 ($ $)) (-15 -2167 ((-1170))) (-15 -2189 ($ (-1067))) (-15 -2884 ($ $)) (-15 -2091 ((-108) $)) (-15 -2525 ((-2 (|:| -2152 (-587 (-792))) (|:| -2641 (-587 (-792))) (|:| |presup| (-587 (-792))) (|:| -2946 (-587 (-792))) (|:| |args| (-587 (-792)))) $)) (-15 -1581 ($ $ (-587 (-587 (-792))))) (-15 -1581 ($ $ (-2 (|:| -2152 (-587 (-792))) (|:| -2641 (-587 (-792))) (|:| |presup| (-587 (-792))) (|:| -2946 (-587 (-792))) (|:| |args| (-587 (-792)))))) (-15 -1197 ($ $ (-587 (-792)))) (-15 -1892 ($ $ (-587 (-792)))) (-15 -1221 ($ $ (-587 (-792)))) (-15 -2544 ($ $ (-587 (-792)))) (-15 -1507 ((-1067) $)) (-15 -1580 ((-587 $) $)) (-15 -2547 ($) -2676)))) (T -1084))
+((-1811 (*1 *1) (-5 *1 (-1084))) (-1811 (*1 *1 *1) (-5 *1 (-1084))) (-2167 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1084)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-1084)))) (-2884 (*1 *1 *1) (-5 *1 (-1084))) (-2091 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1084)))) (-2525 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2152 (-587 (-792))) (|:| -2641 (-587 (-792))) (|:| |presup| (-587 (-792))) (|:| -2946 (-587 (-792))) (|:| |args| (-587 (-792))))) (-5 *1 (-1084)))) (-1581 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-587 (-792)))) (-5 *1 (-1084)))) (-1581 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2152 (-587 (-792))) (|:| -2641 (-587 (-792))) (|:| |presup| (-587 (-792))) (|:| -2946 (-587 (-792))) (|:| |args| (-587 (-792))))) (-5 *1 (-1084)))) (-1197 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-792))) (-5 *1 (-1084)))) (-1892 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-792))) (-5 *1 (-1084)))) (-1221 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-792))) (-5 *1 (-1084)))) (-2544 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-792))) (-5 *1 (-1084)))) (-1507 (*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-1084)))) (-1580 (*1 *2 *1) (-12 (-5 *2 (-587 (-1084))) (-5 *1 (-1084)))) (-2547 (*1 *1) (-5 *1 (-1084))))
+(-13 (-784) (-562 (-497)) (-765) (-562 (-1084)) (-562 (-821 (-521))) (-562 (-821 (-353))) (-815 (-521)) (-815 (-353)) (-10 -8 (-15 -1811 ($)) (-15 -1811 ($ $)) (-15 -2167 ((-1170))) (-15 -2189 ($ (-1067))) (-15 -2884 ($ $)) (-15 -2091 ((-108) $)) (-15 -2525 ((-2 (|:| -2152 (-587 (-792))) (|:| -2641 (-587 (-792))) (|:| |presup| (-587 (-792))) (|:| -2946 (-587 (-792))) (|:| |args| (-587 (-792)))) $)) (-15 -1581 ($ $ (-587 (-587 (-792))))) (-15 -1581 ($ $ (-2 (|:| -2152 (-587 (-792))) (|:| -2641 (-587 (-792))) (|:| |presup| (-587 (-792))) (|:| -2946 (-587 (-792))) (|:| |args| (-587 (-792)))))) (-15 -1197 ($ $ (-587 (-792)))) (-15 -1892 ($ $ (-587 (-792)))) (-15 -1221 ($ $ (-587 (-792)))) (-15 -2544 ($ $ (-587 (-792)))) (-15 -1507 ((-1067) $)) (-15 -1580 ((-587 $) $)) (-15 -2547 ($) -2676)))
+((-1842 (((-1165 |#1|) |#1| (-850)) 16) (((-1165 |#1|) (-587 |#1|)) 20)))
+(((-1085 |#1|) (-10 -7 (-15 -1842 ((-1165 |#1|) (-587 |#1|))) (-15 -1842 ((-1165 |#1|) |#1| (-850)))) (-970)) (T -1085))
+((-1842 (*1 *2 *3 *4) (-12 (-5 *4 (-850)) (-5 *2 (-1165 *3)) (-5 *1 (-1085 *3)) (-4 *3 (-970)))) (-1842 (*1 *2 *3) (-12 (-5 *3 (-587 *4)) (-4 *4 (-970)) (-5 *2 (-1165 *4)) (-5 *1 (-1085 *4)))))
+(-10 -7 (-15 -1842 ((-1165 |#1|) (-587 |#1|))) (-15 -1842 ((-1165 |#1|) |#1| (-850))))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) NIL (|has| |#1| (-513)))) (-2559 (($ $) NIL (|has| |#1| (-513)))) (-1733 (((-108) $) NIL (|has| |#1| (-513)))) (-1232 (((-3 $ "failed") $ $) NIL)) (-2547 (($) NIL T CONST)) (-1297 (((-3 (-521) "failed") $) NIL (|has| |#1| (-961 (-521)))) (((-3 (-381 (-521)) "failed") $) NIL (|has| |#1| (-961 (-381 (-521))))) (((-3 |#1| "failed") $) NIL)) (-1483 (((-521) $) NIL (|has| |#1| (-961 (-521)))) (((-381 (-521)) $) NIL (|has| |#1| (-961 (-381 (-521))))) ((|#1| $) NIL)) (-3152 (($ $) NIL)) (-1257 (((-3 $ "failed") $) NIL)) (-3666 (($ $) NIL (|has| |#1| (-425)))) (-3528 (($ $ |#1| (-897) $) NIL)) (-3996 (((-108) $) NIL)) (-2678 (((-707) $) NIL)) (-3649 (((-108) $) NIL)) (-4043 (($ |#1| (-897)) NIL)) (-3273 (((-897) $) NIL)) (-3285 (($ (-1 (-897) (-897)) $) NIL)) (-1390 (($ (-1 |#1| |#1|) $) NIL)) (-3125 (($ $) NIL)) (-3135 ((|#1| $) NIL)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-3105 (((-108) $) NIL)) (-3115 ((|#1| $) NIL)) (-3590 (($ $ (-897) |#1| $) NIL (-12 (|has| (-897) (-124)) (|has| |#1| (-513))))) (-2230 (((-3 $ "failed") $ $) NIL (|has| |#1| (-513))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-513)))) (-1994 (((-897) $) NIL)) (-2403 ((|#1| $) NIL (|has| |#1| (-425)))) (-2189 (((-792) $) NIL) (($ (-521)) NIL) (($ $) NIL (|has| |#1| (-513))) (($ |#1|) NIL) (($ (-381 (-521))) NIL (-3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-961 (-381 (-521))))))) (-1259 (((-587 |#1|) $) NIL)) (-3800 ((|#1| $ (-897)) NIL)) (-1671 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-3846 (((-707)) NIL)) (-1547 (($ $ $ (-707)) NIL (|has| |#1| (-157)))) (-4210 (((-108) $ $) NIL (|has| |#1| (-513)))) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (-3561 (($) 9 T CONST)) (-3572 (($) 14 T CONST)) (-1531 (((-108) $ $) 16)) (-1620 (($ $ |#1|) NIL (|has| |#1| (-337)))) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) 19)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) 13) (($ (-381 (-521)) $) NIL (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) NIL (|has| |#1| (-37 (-381 (-521)))))))
+(((-1086 |#1|) (-13 (-300 |#1| (-897)) (-10 -8 (IF (|has| |#1| (-513)) (IF (|has| (-897) (-124)) (-15 -3590 ($ $ (-897) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4231)) (-6 -4231) |%noBranch|))) (-970)) (T -1086))
+((-3590 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-897)) (-4 *2 (-124)) (-5 *1 (-1086 *3)) (-4 *3 (-513)) (-4 *3 (-970)))))
+(-13 (-300 |#1| (-897)) (-10 -8 (IF (|has| |#1| (-513)) (IF (|has| (-897) (-124)) (-15 -3590 ($ $ (-897) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4231)) (-6 -4231) |%noBranch|)))
+((-3696 (((-1088) (-1084) $) 24)) (-2222 (($) 28)) (-1402 (((-3 (|:| |fst| (-408)) (|:| -1366 "void")) (-1084) $) 21)) (-2548 (((-1170) (-1084) (-3 (|:| |fst| (-408)) (|:| -1366 "void")) $) 40) (((-1170) (-1084) (-3 (|:| |fst| (-408)) (|:| -1366 "void"))) 41) (((-1170) (-3 (|:| |fst| (-408)) (|:| -1366 "void"))) 42)) (-3490 (((-1170) (-1084)) 57)) (-1744 (((-1170) (-1084) $) 54) (((-1170) (-1084)) 55) (((-1170)) 56)) (-2839 (((-1170) (-1084)) 36)) (-1819 (((-1084)) 35)) (-4024 (($) 33)) (-3421 (((-411) (-1084) (-411) (-1084) $) 44) (((-411) (-587 (-1084)) (-411) (-1084) $) 48) (((-411) (-1084) (-411)) 45) (((-411) (-1084) (-411) (-1084)) 49)) (-1557 (((-1084)) 34)) (-2189 (((-792) $) 27)) (-3673 (((-1170)) 29) (((-1170) (-1084)) 32)) (-1964 (((-587 (-1084)) (-1084) $) 23)) (-4019 (((-1170) (-1084) (-587 (-1084)) $) 37) (((-1170) (-1084) (-587 (-1084))) 38) (((-1170) (-587 (-1084))) 39)))
+(((-1087) (-13 (-561 (-792)) (-10 -8 (-15 -2222 ($)) (-15 -3673 ((-1170))) (-15 -3673 ((-1170) (-1084))) (-15 -3421 ((-411) (-1084) (-411) (-1084) $)) (-15 -3421 ((-411) (-587 (-1084)) (-411) (-1084) $)) (-15 -3421 ((-411) (-1084) (-411))) (-15 -3421 ((-411) (-1084) (-411) (-1084))) (-15 -2839 ((-1170) (-1084))) (-15 -1557 ((-1084))) (-15 -1819 ((-1084))) (-15 -4019 ((-1170) (-1084) (-587 (-1084)) $)) (-15 -4019 ((-1170) (-1084) (-587 (-1084)))) (-15 -4019 ((-1170) (-587 (-1084)))) (-15 -2548 ((-1170) (-1084) (-3 (|:| |fst| (-408)) (|:| -1366 "void")) $)) (-15 -2548 ((-1170) (-1084) (-3 (|:| |fst| (-408)) (|:| -1366 "void")))) (-15 -2548 ((-1170) (-3 (|:| |fst| (-408)) (|:| -1366 "void")))) (-15 -1744 ((-1170) (-1084) $)) (-15 -1744 ((-1170) (-1084))) (-15 -1744 ((-1170))) (-15 -3490 ((-1170) (-1084))) (-15 -4024 ($)) (-15 -1402 ((-3 (|:| |fst| (-408)) (|:| -1366 "void")) (-1084) $)) (-15 -1964 ((-587 (-1084)) (-1084) $)) (-15 -3696 ((-1088) (-1084) $))))) (T -1087))
+((-2222 (*1 *1) (-5 *1 (-1087))) (-3673 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1087)))) (-3673 (*1 *2 *3) (-12 (-5 *3 (-1084)) (-5 *2 (-1170)) (-5 *1 (-1087)))) (-3421 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-411)) (-5 *3 (-1084)) (-5 *1 (-1087)))) (-3421 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-411)) (-5 *3 (-587 (-1084))) (-5 *4 (-1084)) (-5 *1 (-1087)))) (-3421 (*1 *2 *3 *2) (-12 (-5 *2 (-411)) (-5 *3 (-1084)) (-5 *1 (-1087)))) (-3421 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-411)) (-5 *3 (-1084)) (-5 *1 (-1087)))) (-2839 (*1 *2 *3) (-12 (-5 *3 (-1084)) (-5 *2 (-1170)) (-5 *1 (-1087)))) (-1557 (*1 *2) (-12 (-5 *2 (-1084)) (-5 *1 (-1087)))) (-1819 (*1 *2) (-12 (-5 *2 (-1084)) (-5 *1 (-1087)))) (-4019 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-587 (-1084))) (-5 *3 (-1084)) (-5 *2 (-1170)) (-5 *1 (-1087)))) (-4019 (*1 *2 *3 *4) (-12 (-5 *4 (-587 (-1084))) (-5 *3 (-1084)) (-5 *2 (-1170)) (-5 *1 (-1087)))) (-4019 (*1 *2 *3) (-12 (-5 *3 (-587 (-1084))) (-5 *2 (-1170)) (-5 *1 (-1087)))) (-2548 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1084)) (-5 *4 (-3 (|:| |fst| (-408)) (|:| -1366 "void"))) (-5 *2 (-1170)) (-5 *1 (-1087)))) (-2548 (*1 *2 *3 *4) (-12 (-5 *3 (-1084)) (-5 *4 (-3 (|:| |fst| (-408)) (|:| -1366 "void"))) (-5 *2 (-1170)) (-5 *1 (-1087)))) (-2548 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-408)) (|:| -1366 "void"))) (-5 *2 (-1170)) (-5 *1 (-1087)))) (-1744 (*1 *2 *3 *1) (-12 (-5 *3 (-1084)) (-5 *2 (-1170)) (-5 *1 (-1087)))) (-1744 (*1 *2 *3) (-12 (-5 *3 (-1084)) (-5 *2 (-1170)) (-5 *1 (-1087)))) (-1744 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1087)))) (-3490 (*1 *2 *3) (-12 (-5 *3 (-1084)) (-5 *2 (-1170)) (-5 *1 (-1087)))) (-4024 (*1 *1) (-5 *1 (-1087))) (-1402 (*1 *2 *3 *1) (-12 (-5 *3 (-1084)) (-5 *2 (-3 (|:| |fst| (-408)) (|:| -1366 "void"))) (-5 *1 (-1087)))) (-1964 (*1 *2 *3 *1) (-12 (-5 *2 (-587 (-1084))) (-5 *1 (-1087)) (-5 *3 (-1084)))) (-3696 (*1 *2 *3 *1) (-12 (-5 *3 (-1084)) (-5 *2 (-1088)) (-5 *1 (-1087)))))
+(-13 (-561 (-792)) (-10 -8 (-15 -2222 ($)) (-15 -3673 ((-1170))) (-15 -3673 ((-1170) (-1084))) (-15 -3421 ((-411) (-1084) (-411) (-1084) $)) (-15 -3421 ((-411) (-587 (-1084)) (-411) (-1084) $)) (-15 -3421 ((-411) (-1084) (-411))) (-15 -3421 ((-411) (-1084) (-411) (-1084))) (-15 -2839 ((-1170) (-1084))) (-15 -1557 ((-1084))) (-15 -1819 ((-1084))) (-15 -4019 ((-1170) (-1084) (-587 (-1084)) $)) (-15 -4019 ((-1170) (-1084) (-587 (-1084)))) (-15 -4019 ((-1170) (-587 (-1084)))) (-15 -2548 ((-1170) (-1084) (-3 (|:| |fst| (-408)) (|:| -1366 "void")) $)) (-15 -2548 ((-1170) (-1084) (-3 (|:| |fst| (-408)) (|:| -1366 "void")))) (-15 -2548 ((-1170) (-3 (|:| |fst| (-408)) (|:| -1366 "void")))) (-15 -1744 ((-1170) (-1084) $)) (-15 -1744 ((-1170) (-1084))) (-15 -1744 ((-1170))) (-15 -3490 ((-1170) (-1084))) (-15 -4024 ($)) (-15 -1402 ((-3 (|:| |fst| (-408)) (|:| -1366 "void")) (-1084) $)) (-15 -1964 ((-587 (-1084)) (-1084) $)) (-15 -3696 ((-1088) (-1084) $))))
+((-3440 (((-587 (-587 (-3 (|:| -2884 (-1084)) (|:| |bounds| (-587 (-3 (|:| S (-1084)) (|:| P (-881 (-521))))))))) $) 57)) (-3403 (((-587 (-3 (|:| -2884 (-1084)) (|:| |bounds| (-587 (-3 (|:| S (-1084)) (|:| P (-881 (-521)))))))) (-408) $) 40)) (-1954 (($ (-587 (-2 (|:| -2529 (-1084)) (|:| -3045 (-411))))) 15)) (-3490 (((-1170) $) 65)) (-2316 (((-587 (-1084)) $) 20)) (-3995 (((-1017) $) 53)) (-2025 (((-411) (-1084) $) 27)) (-3556 (((-587 (-1084)) $) 30)) (-4024 (($) 17)) (-3421 (((-411) (-587 (-1084)) (-411) $) 25) (((-411) (-1084) (-411) $) 24)) (-2189 (((-792) $) 9) (((-1093 (-1084) (-411)) $) 11)))
+(((-1088) (-13 (-561 (-792)) (-10 -8 (-15 -2189 ((-1093 (-1084) (-411)) $)) (-15 -4024 ($)) (-15 -3421 ((-411) (-587 (-1084)) (-411) $)) (-15 -3421 ((-411) (-1084) (-411) $)) (-15 -2025 ((-411) (-1084) $)) (-15 -2316 ((-587 (-1084)) $)) (-15 -3403 ((-587 (-3 (|:| -2884 (-1084)) (|:| |bounds| (-587 (-3 (|:| S (-1084)) (|:| P (-881 (-521)))))))) (-408) $)) (-15 -3556 ((-587 (-1084)) $)) (-15 -3440 ((-587 (-587 (-3 (|:| -2884 (-1084)) (|:| |bounds| (-587 (-3 (|:| S (-1084)) (|:| P (-881 (-521))))))))) $)) (-15 -3995 ((-1017) $)) (-15 -3490 ((-1170) $)) (-15 -1954 ($ (-587 (-2 (|:| -2529 (-1084)) (|:| -3045 (-411))))))))) (T -1088))
+((-2189 (*1 *2 *1) (-12 (-5 *2 (-1093 (-1084) (-411))) (-5 *1 (-1088)))) (-4024 (*1 *1) (-5 *1 (-1088))) (-3421 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-411)) (-5 *3 (-587 (-1084))) (-5 *1 (-1088)))) (-3421 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-411)) (-5 *3 (-1084)) (-5 *1 (-1088)))) (-2025 (*1 *2 *3 *1) (-12 (-5 *3 (-1084)) (-5 *2 (-411)) (-5 *1 (-1088)))) (-2316 (*1 *2 *1) (-12 (-5 *2 (-587 (-1084))) (-5 *1 (-1088)))) (-3403 (*1 *2 *3 *1) (-12 (-5 *3 (-408)) (-5 *2 (-587 (-3 (|:| -2884 (-1084)) (|:| |bounds| (-587 (-3 (|:| S (-1084)) (|:| P (-881 (-521))))))))) (-5 *1 (-1088)))) (-3556 (*1 *2 *1) (-12 (-5 *2 (-587 (-1084))) (-5 *1 (-1088)))) (-3440 (*1 *2 *1) (-12 (-5 *2 (-587 (-587 (-3 (|:| -2884 (-1084)) (|:| |bounds| (-587 (-3 (|:| S (-1084)) (|:| P (-881 (-521)))))))))) (-5 *1 (-1088)))) (-3995 (*1 *2 *1) (-12 (-5 *2 (-1017)) (-5 *1 (-1088)))) (-3490 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1088)))) (-1954 (*1 *1 *2) (-12 (-5 *2 (-587 (-2 (|:| -2529 (-1084)) (|:| -3045 (-411))))) (-5 *1 (-1088)))))
+(-13 (-561 (-792)) (-10 -8 (-15 -2189 ((-1093 (-1084) (-411)) $)) (-15 -4024 ($)) (-15 -3421 ((-411) (-587 (-1084)) (-411) $)) (-15 -3421 ((-411) (-1084) (-411) $)) (-15 -2025 ((-411) (-1084) $)) (-15 -2316 ((-587 (-1084)) $)) (-15 -3403 ((-587 (-3 (|:| -2884 (-1084)) (|:| |bounds| (-587 (-3 (|:| S (-1084)) (|:| P (-881 (-521)))))))) (-408) $)) (-15 -3556 ((-587 (-1084)) $)) (-15 -3440 ((-587 (-587 (-3 (|:| -2884 (-1084)) (|:| |bounds| (-587 (-3 (|:| S (-1084)) (|:| P (-881 (-521))))))))) $)) (-15 -3995 ((-1017) $)) (-15 -3490 ((-1170) $)) (-15 -1954 ($ (-587 (-2 (|:| -2529 (-1084)) (|:| -3045 (-411))))))))
+((-2115 (((-108) $) 41)) (-1889 (((-3 (-521) (-202) (-1084) (-1067) $) $) 49)) (-1290 (((-587 $) $) 54)) (-1430 (((-1017) $) 19) (($ (-1017)) 20)) (-3069 (((-108) $) 51)) (-2189 (((-792) $) NIL) (($ (-521)) 22) (((-521) $) 24) (($ (-202)) 26) (((-202) $) 28) (($ (-1084)) 30) (((-1084) $) 32) (($ (-1067)) 34) (((-1067) $) 36)) (-2174 (((-108) $ (|[\|\|]| (-521))) 9) (((-108) $ (|[\|\|]| (-202))) 12) (((-108) $ (|[\|\|]| (-1084))) 18) (((-108) $ (|[\|\|]| (-1067))) 15)) (-4175 (($ (-1084) (-587 $)) 38) (($ $ (-587 $)) 39)) (-2440 (((-521) $) 23) (((-202) $) 27) (((-1084) $) 31) (((-1067) $) 35)))
+(((-1089) (-13 (-1160) (-561 (-792)) (-10 -8 (-15 -1430 ((-1017) $)) (-15 -1430 ($ (-1017))) (-15 -2189 ($ (-521))) (-15 -2189 ((-521) $)) (-15 -2440 ((-521) $)) (-15 -2189 ($ (-202))) (-15 -2189 ((-202) $)) (-15 -2440 ((-202) $)) (-15 -2189 ($ (-1084))) (-15 -2189 ((-1084) $)) (-15 -2440 ((-1084) $)) (-15 -2189 ($ (-1067))) (-15 -2189 ((-1067) $)) (-15 -2440 ((-1067) $)) (-15 -4175 ($ (-1084) (-587 $))) (-15 -4175 ($ $ (-587 $))) (-15 -2115 ((-108) $)) (-15 -1889 ((-3 (-521) (-202) (-1084) (-1067) $) $)) (-15 -1290 ((-587 $) $)) (-15 -3069 ((-108) $)) (-15 -2174 ((-108) $ (|[\|\|]| (-521)))) (-15 -2174 ((-108) $ (|[\|\|]| (-202)))) (-15 -2174 ((-108) $ (|[\|\|]| (-1084)))) (-15 -2174 ((-108) $ (|[\|\|]| (-1067))))))) (T -1089))
+((-1430 (*1 *2 *1) (-12 (-5 *2 (-1017)) (-5 *1 (-1089)))) (-1430 (*1 *1 *2) (-12 (-5 *2 (-1017)) (-5 *1 (-1089)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-1089)))) (-2189 (*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-1089)))) (-2440 (*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-1089)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-202)) (-5 *1 (-1089)))) (-2189 (*1 *2 *1) (-12 (-5 *2 (-202)) (-5 *1 (-1089)))) (-2440 (*1 *2 *1) (-12 (-5 *2 (-202)) (-5 *1 (-1089)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-1084)) (-5 *1 (-1089)))) (-2189 (*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-1089)))) (-2440 (*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-1089)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-1089)))) (-2189 (*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-1089)))) (-2440 (*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-1089)))) (-4175 (*1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-587 (-1089))) (-5 *1 (-1089)))) (-4175 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-1089))) (-5 *1 (-1089)))) (-2115 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1089)))) (-1889 (*1 *2 *1) (-12 (-5 *2 (-3 (-521) (-202) (-1084) (-1067) (-1089))) (-5 *1 (-1089)))) (-1290 (*1 *2 *1) (-12 (-5 *2 (-587 (-1089))) (-5 *1 (-1089)))) (-3069 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1089)))) (-2174 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-521))) (-5 *2 (-108)) (-5 *1 (-1089)))) (-2174 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-202))) (-5 *2 (-108)) (-5 *1 (-1089)))) (-2174 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1084))) (-5 *2 (-108)) (-5 *1 (-1089)))) (-2174 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1067))) (-5 *2 (-108)) (-5 *1 (-1089)))))
+(-13 (-1160) (-561 (-792)) (-10 -8 (-15 -1430 ((-1017) $)) (-15 -1430 ($ (-1017))) (-15 -2189 ($ (-521))) (-15 -2189 ((-521) $)) (-15 -2440 ((-521) $)) (-15 -2189 ($ (-202))) (-15 -2189 ((-202) $)) (-15 -2440 ((-202) $)) (-15 -2189 ($ (-1084))) (-15 -2189 ((-1084) $)) (-15 -2440 ((-1084) $)) (-15 -2189 ($ (-1067))) (-15 -2189 ((-1067) $)) (-15 -2440 ((-1067) $)) (-15 -4175 ($ (-1084) (-587 $))) (-15 -4175 ($ $ (-587 $))) (-15 -2115 ((-108) $)) (-15 -1889 ((-3 (-521) (-202) (-1084) (-1067) $) $)) (-15 -1290 ((-587 $) $)) (-15 -3069 ((-108) $)) (-15 -2174 ((-108) $ (|[\|\|]| (-521)))) (-15 -2174 ((-108) $ (|[\|\|]| (-202)))) (-15 -2174 ((-108) $ (|[\|\|]| (-1084)))) (-15 -2174 ((-108) $ (|[\|\|]| (-1067))))))
+((-4081 (((-587 (-587 (-881 |#1|))) (-587 (-381 (-881 |#1|))) (-587 (-1084))) 55)) (-3182 (((-587 (-269 (-381 (-881 |#1|)))) (-269 (-381 (-881 |#1|)))) 67) (((-587 (-269 (-381 (-881 |#1|)))) (-381 (-881 |#1|))) 63) (((-587 (-269 (-381 (-881 |#1|)))) (-269 (-381 (-881 |#1|))) (-1084)) 68) (((-587 (-269 (-381 (-881 |#1|)))) (-381 (-881 |#1|)) (-1084)) 62) (((-587 (-587 (-269 (-381 (-881 |#1|))))) (-587 (-269 (-381 (-881 |#1|))))) 92) (((-587 (-587 (-269 (-381 (-881 |#1|))))) (-587 (-381 (-881 |#1|)))) 91) (((-587 (-587 (-269 (-381 (-881 |#1|))))) (-587 (-269 (-381 (-881 |#1|)))) (-587 (-1084))) 93) (((-587 (-587 (-269 (-381 (-881 |#1|))))) (-587 (-381 (-881 |#1|))) (-587 (-1084))) 90)))
+(((-1090 |#1|) (-10 -7 (-15 -3182 ((-587 (-587 (-269 (-381 (-881 |#1|))))) (-587 (-381 (-881 |#1|))) (-587 (-1084)))) (-15 -3182 ((-587 (-587 (-269 (-381 (-881 |#1|))))) (-587 (-269 (-381 (-881 |#1|)))) (-587 (-1084)))) (-15 -3182 ((-587 (-587 (-269 (-381 (-881 |#1|))))) (-587 (-381 (-881 |#1|))))) (-15 -3182 ((-587 (-587 (-269 (-381 (-881 |#1|))))) (-587 (-269 (-381 (-881 |#1|)))))) (-15 -3182 ((-587 (-269 (-381 (-881 |#1|)))) (-381 (-881 |#1|)) (-1084))) (-15 -3182 ((-587 (-269 (-381 (-881 |#1|)))) (-269 (-381 (-881 |#1|))) (-1084))) (-15 -3182 ((-587 (-269 (-381 (-881 |#1|)))) (-381 (-881 |#1|)))) (-15 -3182 ((-587 (-269 (-381 (-881 |#1|)))) (-269 (-381 (-881 |#1|))))) (-15 -4081 ((-587 (-587 (-881 |#1|))) (-587 (-381 (-881 |#1|))) (-587 (-1084))))) (-513)) (T -1090))
+((-4081 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-381 (-881 *5)))) (-5 *4 (-587 (-1084))) (-4 *5 (-513)) (-5 *2 (-587 (-587 (-881 *5)))) (-5 *1 (-1090 *5)))) (-3182 (*1 *2 *3) (-12 (-4 *4 (-513)) (-5 *2 (-587 (-269 (-381 (-881 *4))))) (-5 *1 (-1090 *4)) (-5 *3 (-269 (-381 (-881 *4)))))) (-3182 (*1 *2 *3) (-12 (-4 *4 (-513)) (-5 *2 (-587 (-269 (-381 (-881 *4))))) (-5 *1 (-1090 *4)) (-5 *3 (-381 (-881 *4))))) (-3182 (*1 *2 *3 *4) (-12 (-5 *4 (-1084)) (-4 *5 (-513)) (-5 *2 (-587 (-269 (-381 (-881 *5))))) (-5 *1 (-1090 *5)) (-5 *3 (-269 (-381 (-881 *5)))))) (-3182 (*1 *2 *3 *4) (-12 (-5 *4 (-1084)) (-4 *5 (-513)) (-5 *2 (-587 (-269 (-381 (-881 *5))))) (-5 *1 (-1090 *5)) (-5 *3 (-381 (-881 *5))))) (-3182 (*1 *2 *3) (-12 (-4 *4 (-513)) (-5 *2 (-587 (-587 (-269 (-381 (-881 *4)))))) (-5 *1 (-1090 *4)) (-5 *3 (-587 (-269 (-381 (-881 *4))))))) (-3182 (*1 *2 *3) (-12 (-5 *3 (-587 (-381 (-881 *4)))) (-4 *4 (-513)) (-5 *2 (-587 (-587 (-269 (-381 (-881 *4)))))) (-5 *1 (-1090 *4)))) (-3182 (*1 *2 *3 *4) (-12 (-5 *4 (-587 (-1084))) (-4 *5 (-513)) (-5 *2 (-587 (-587 (-269 (-381 (-881 *5)))))) (-5 *1 (-1090 *5)) (-5 *3 (-587 (-269 (-381 (-881 *5))))))) (-3182 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-381 (-881 *5)))) (-5 *4 (-587 (-1084))) (-4 *5 (-513)) (-5 *2 (-587 (-587 (-269 (-381 (-881 *5)))))) (-5 *1 (-1090 *5)))))
+(-10 -7 (-15 -3182 ((-587 (-587 (-269 (-381 (-881 |#1|))))) (-587 (-381 (-881 |#1|))) (-587 (-1084)))) (-15 -3182 ((-587 (-587 (-269 (-381 (-881 |#1|))))) (-587 (-269 (-381 (-881 |#1|)))) (-587 (-1084)))) (-15 -3182 ((-587 (-587 (-269 (-381 (-881 |#1|))))) (-587 (-381 (-881 |#1|))))) (-15 -3182 ((-587 (-587 (-269 (-381 (-881 |#1|))))) (-587 (-269 (-381 (-881 |#1|)))))) (-15 -3182 ((-587 (-269 (-381 (-881 |#1|)))) (-381 (-881 |#1|)) (-1084))) (-15 -3182 ((-587 (-269 (-381 (-881 |#1|)))) (-269 (-381 (-881 |#1|))) (-1084))) (-15 -3182 ((-587 (-269 (-381 (-881 |#1|)))) (-381 (-881 |#1|)))) (-15 -3182 ((-587 (-269 (-381 (-881 |#1|)))) (-269 (-381 (-881 |#1|))))) (-15 -4081 ((-587 (-587 (-881 |#1|))) (-587 (-381 (-881 |#1|))) (-587 (-1084)))))
+((-1573 (((-587 (-587 |#1|)) (-587 (-587 |#1|)) (-587 (-587 (-587 |#1|)))) 38)) (-3653 (((-587 (-587 (-587 |#1|))) (-587 (-587 |#1|))) 24)) (-2680 (((-1092 (-587 |#1|)) (-587 |#1|)) 34)) (-4042 (((-587 (-587 |#1|)) (-587 |#1|)) 30)) (-3918 (((-2 (|:| |f1| (-587 |#1|)) (|:| |f2| (-587 (-587 (-587 |#1|)))) (|:| |f3| (-587 (-587 |#1|))) (|:| |f4| (-587 (-587 (-587 |#1|))))) (-587 (-587 (-587 |#1|)))) 37)) (-1225 (((-2 (|:| |f1| (-587 |#1|)) (|:| |f2| (-587 (-587 (-587 |#1|)))) (|:| |f3| (-587 (-587 |#1|))) (|:| |f4| (-587 (-587 (-587 |#1|))))) (-587 |#1|) (-587 (-587 (-587 |#1|))) (-587 (-587 |#1|)) (-587 (-587 (-587 |#1|))) (-587 (-587 (-587 |#1|))) (-587 (-587 (-587 |#1|)))) 36)) (-1626 (((-587 (-587 |#1|)) (-587 (-587 |#1|))) 28)) (-3841 (((-587 |#1|) (-587 |#1|)) 31)) (-3325 (((-587 (-587 (-587 |#1|))) (-587 |#1|) (-587 (-587 (-587 |#1|)))) 18)) (-3271 (((-587 (-587 (-587 |#1|))) (-1 (-108) |#1| |#1|) (-587 |#1|) (-587 (-587 (-587 |#1|)))) 15)) (-3911 (((-2 (|:| |fs| (-108)) (|:| |sd| (-587 |#1|)) (|:| |td| (-587 (-587 |#1|)))) (-1 (-108) |#1| |#1|) (-587 |#1|) (-587 (-587 |#1|))) 13)) (-3465 (((-587 (-587 |#1|)) (-587 (-587 (-587 |#1|)))) 39)) (-2609 (((-587 (-587 |#1|)) (-1092 (-587 |#1|))) 41)))
+(((-1091 |#1|) (-10 -7 (-15 -3911 ((-2 (|:| |fs| (-108)) (|:| |sd| (-587 |#1|)) (|:| |td| (-587 (-587 |#1|)))) (-1 (-108) |#1| |#1|) (-587 |#1|) (-587 (-587 |#1|)))) (-15 -3271 ((-587 (-587 (-587 |#1|))) (-1 (-108) |#1| |#1|) (-587 |#1|) (-587 (-587 (-587 |#1|))))) (-15 -3325 ((-587 (-587 (-587 |#1|))) (-587 |#1|) (-587 (-587 (-587 |#1|))))) (-15 -1573 ((-587 (-587 |#1|)) (-587 (-587 |#1|)) (-587 (-587 (-587 |#1|))))) (-15 -3465 ((-587 (-587 |#1|)) (-587 (-587 (-587 |#1|))))) (-15 -2609 ((-587 (-587 |#1|)) (-1092 (-587 |#1|)))) (-15 -3653 ((-587 (-587 (-587 |#1|))) (-587 (-587 |#1|)))) (-15 -2680 ((-1092 (-587 |#1|)) (-587 |#1|))) (-15 -1626 ((-587 (-587 |#1|)) (-587 (-587 |#1|)))) (-15 -4042 ((-587 (-587 |#1|)) (-587 |#1|))) (-15 -3841 ((-587 |#1|) (-587 |#1|))) (-15 -1225 ((-2 (|:| |f1| (-587 |#1|)) (|:| |f2| (-587 (-587 (-587 |#1|)))) (|:| |f3| (-587 (-587 |#1|))) (|:| |f4| (-587 (-587 (-587 |#1|))))) (-587 |#1|) (-587 (-587 (-587 |#1|))) (-587 (-587 |#1|)) (-587 (-587 (-587 |#1|))) (-587 (-587 (-587 |#1|))) (-587 (-587 (-587 |#1|))))) (-15 -3918 ((-2 (|:| |f1| (-587 |#1|)) (|:| |f2| (-587 (-587 (-587 |#1|)))) (|:| |f3| (-587 (-587 |#1|))) (|:| |f4| (-587 (-587 (-587 |#1|))))) (-587 (-587 (-587 |#1|)))))) (-784)) (T -1091))
+((-3918 (*1 *2 *3) (-12 (-4 *4 (-784)) (-5 *2 (-2 (|:| |f1| (-587 *4)) (|:| |f2| (-587 (-587 (-587 *4)))) (|:| |f3| (-587 (-587 *4))) (|:| |f4| (-587 (-587 (-587 *4)))))) (-5 *1 (-1091 *4)) (-5 *3 (-587 (-587 (-587 *4)))))) (-1225 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-784)) (-5 *3 (-587 *6)) (-5 *5 (-587 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-587 *5)) (|:| |f3| *5) (|:| |f4| (-587 *5)))) (-5 *1 (-1091 *6)) (-5 *4 (-587 *5)))) (-3841 (*1 *2 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-784)) (-5 *1 (-1091 *3)))) (-4042 (*1 *2 *3) (-12 (-4 *4 (-784)) (-5 *2 (-587 (-587 *4))) (-5 *1 (-1091 *4)) (-5 *3 (-587 *4)))) (-1626 (*1 *2 *2) (-12 (-5 *2 (-587 (-587 *3))) (-4 *3 (-784)) (-5 *1 (-1091 *3)))) (-2680 (*1 *2 *3) (-12 (-4 *4 (-784)) (-5 *2 (-1092 (-587 *4))) (-5 *1 (-1091 *4)) (-5 *3 (-587 *4)))) (-3653 (*1 *2 *3) (-12 (-4 *4 (-784)) (-5 *2 (-587 (-587 (-587 *4)))) (-5 *1 (-1091 *4)) (-5 *3 (-587 (-587 *4))))) (-2609 (*1 *2 *3) (-12 (-5 *3 (-1092 (-587 *4))) (-4 *4 (-784)) (-5 *2 (-587 (-587 *4))) (-5 *1 (-1091 *4)))) (-3465 (*1 *2 *3) (-12 (-5 *3 (-587 (-587 (-587 *4)))) (-5 *2 (-587 (-587 *4))) (-5 *1 (-1091 *4)) (-4 *4 (-784)))) (-1573 (*1 *2 *2 *3) (-12 (-5 *3 (-587 (-587 (-587 *4)))) (-5 *2 (-587 (-587 *4))) (-4 *4 (-784)) (-5 *1 (-1091 *4)))) (-3325 (*1 *2 *3 *2) (-12 (-5 *2 (-587 (-587 (-587 *4)))) (-5 *3 (-587 *4)) (-4 *4 (-784)) (-5 *1 (-1091 *4)))) (-3271 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-587 (-587 (-587 *5)))) (-5 *3 (-1 (-108) *5 *5)) (-5 *4 (-587 *5)) (-4 *5 (-784)) (-5 *1 (-1091 *5)))) (-3911 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-108) *6 *6)) (-4 *6 (-784)) (-5 *4 (-587 *6)) (-5 *2 (-2 (|:| |fs| (-108)) (|:| |sd| *4) (|:| |td| (-587 *4)))) (-5 *1 (-1091 *6)) (-5 *5 (-587 *4)))))
+(-10 -7 (-15 -3911 ((-2 (|:| |fs| (-108)) (|:| |sd| (-587 |#1|)) (|:| |td| (-587 (-587 |#1|)))) (-1 (-108) |#1| |#1|) (-587 |#1|) (-587 (-587 |#1|)))) (-15 -3271 ((-587 (-587 (-587 |#1|))) (-1 (-108) |#1| |#1|) (-587 |#1|) (-587 (-587 (-587 |#1|))))) (-15 -3325 ((-587 (-587 (-587 |#1|))) (-587 |#1|) (-587 (-587 (-587 |#1|))))) (-15 -1573 ((-587 (-587 |#1|)) (-587 (-587 |#1|)) (-587 (-587 (-587 |#1|))))) (-15 -3465 ((-587 (-587 |#1|)) (-587 (-587 (-587 |#1|))))) (-15 -2609 ((-587 (-587 |#1|)) (-1092 (-587 |#1|)))) (-15 -3653 ((-587 (-587 (-587 |#1|))) (-587 (-587 |#1|)))) (-15 -2680 ((-1092 (-587 |#1|)) (-587 |#1|))) (-15 -1626 ((-587 (-587 |#1|)) (-587 (-587 |#1|)))) (-15 -4042 ((-587 (-587 |#1|)) (-587 |#1|))) (-15 -3841 ((-587 |#1|) (-587 |#1|))) (-15 -1225 ((-2 (|:| |f1| (-587 |#1|)) (|:| |f2| (-587 (-587 (-587 |#1|)))) (|:| |f3| (-587 (-587 |#1|))) (|:| |f4| (-587 (-587 (-587 |#1|))))) (-587 |#1|) (-587 (-587 (-587 |#1|))) (-587 (-587 |#1|)) (-587 (-587 (-587 |#1|))) (-587 (-587 (-587 |#1|))) (-587 (-587 (-587 |#1|))))) (-15 -3918 ((-2 (|:| |f1| (-587 |#1|)) (|:| |f2| (-587 (-587 (-587 |#1|)))) (|:| |f3| (-587 (-587 |#1|))) (|:| |f4| (-587 (-587 (-587 |#1|))))) (-587 (-587 (-587 |#1|))))))
+((-2055 (($ (-587 (-587 |#1|))) 9)) (-1858 (((-587 (-587 |#1|)) $) 10)) (-2189 (((-792) $) 25)))
+(((-1092 |#1|) (-10 -8 (-15 -2055 ($ (-587 (-587 |#1|)))) (-15 -1858 ((-587 (-587 |#1|)) $)) (-15 -2189 ((-792) $))) (-1013)) (T -1092))
+((-2189 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-1092 *3)) (-4 *3 (-1013)))) (-1858 (*1 *2 *1) (-12 (-5 *2 (-587 (-587 *3))) (-5 *1 (-1092 *3)) (-4 *3 (-1013)))) (-2055 (*1 *1 *2) (-12 (-5 *2 (-587 (-587 *3))) (-4 *3 (-1013)) (-5 *1 (-1092 *3)))))
+(-10 -8 (-15 -2055 ($ (-587 (-587 |#1|)))) (-15 -1858 ((-587 (-587 |#1|)) $)) (-15 -2189 ((-792) $)))
+((-1415 (((-108) $ $) NIL (-3703 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)) (|has| |#2| (-1013))))) (-1800 (($) NIL) (($ (-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) NIL)) (-1903 (((-1170) $ |#1| |#1|) NIL (|has| $ (-6 -4234)))) (-2978 (((-108) $ (-707)) NIL)) (-2378 ((|#2| $ |#1| |#2|) NIL)) (-4098 (($ (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4233)))) (-1628 (($ (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4233)))) (-2748 (((-3 |#2| "failed") |#1| $) NIL)) (-2547 (($) NIL T CONST)) (-2332 (($ $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013))))) (-3023 (($ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) NIL (|has| $ (-6 -4233))) (($ (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-3 |#2| "failed") |#1| $) NIL)) (-1422 (($ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (($ (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4233)))) (-3859 (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) NIL (|has| $ (-6 -4233))) (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4233)))) (-3849 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4234)))) (-3626 ((|#2| $ |#1|) NIL)) (-3831 (((-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-587 |#2|) $) NIL (|has| $ (-6 -4233)))) (-2139 (((-108) $ (-707)) NIL)) (-2826 ((|#1| $) NIL (|has| |#1| (-784)))) (-3757 (((-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-587 |#2|) $) NIL (|has| $ (-6 -4233)))) (-2221 (((-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#2| (-1013))))) (-2597 ((|#1| $) NIL (|has| |#1| (-784)))) (-3833 (($ (-1 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4234))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4234)))) (-1390 (($ (-1 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3574 (((-108) $ (-707)) NIL)) (-3688 (((-1067) $) NIL (-3703 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)) (|has| |#2| (-1013))))) (-2961 (((-587 |#1|) $) NIL)) (-2781 (((-108) |#1| $) NIL)) (-2511 (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) NIL)) (-3373 (($ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) NIL)) (-1668 (((-587 |#1|) $) NIL)) (-2941 (((-108) |#1| $) NIL)) (-4147 (((-1031) $) NIL (-3703 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)) (|has| |#2| (-1013))))) (-2293 ((|#2| $) NIL (|has| |#1| (-784)))) (-3620 (((-3 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) "failed") (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL)) (-3016 (($ $ |#2|) NIL (|has| $ (-6 -4234)))) (-2166 (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) NIL)) (-1789 (((-108) (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))))) NIL (-12 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-284 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (($ $ (-269 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) NIL (-12 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-284 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (($ $ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) NIL (-12 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-284 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (($ $ (-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) (-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) NIL (-12 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-284 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (($ $ (-587 |#2|) (-587 |#2|)) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ (-269 |#2|)) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ (-587 (-269 |#2|))) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))))) (-2488 (((-108) $ $) NIL)) (-3821 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#2| (-1013))))) (-2489 (((-587 |#2|) $) NIL)) (-3462 (((-108) $) NIL)) (-4024 (($) NIL)) (-2544 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1784 (($) NIL) (($ (-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) NIL)) (-4163 (((-707) (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-707) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (((-707) |#2| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#2| (-1013)))) (((-707) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4233)))) (-2404 (($ $) NIL)) (-1430 (((-497) $) NIL (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-562 (-497))))) (-2201 (($ (-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) NIL)) (-2189 (((-792) $) NIL (-3703 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-561 (-792))) (|has| |#2| (-561 (-792)))))) (-4091 (($ (-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) NIL)) (-3049 (((-108) (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4233)))) (-1531 (((-108) $ $) NIL (-3703 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)) (|has| |#2| (-1013))))) (-3475 (((-707) $) NIL (|has| $ (-6 -4233)))))
+(((-1093 |#1| |#2|) (-13 (-1096 |#1| |#2|) (-10 -7 (-6 -4233))) (-1013) (-1013)) (T -1093))
+NIL
+(-13 (-1096 |#1| |#2|) (-10 -7 (-6 -4233)))
+((-1641 ((|#1| (-587 |#1|)) 32)) (-1491 ((|#1| |#1| (-521)) 18)) (-2410 (((-1080 |#1|) |#1| (-850)) 15)))
+(((-1094 |#1|) (-10 -7 (-15 -1641 (|#1| (-587 |#1|))) (-15 -2410 ((-1080 |#1|) |#1| (-850))) (-15 -1491 (|#1| |#1| (-521)))) (-337)) (T -1094))
+((-1491 (*1 *2 *2 *3) (-12 (-5 *3 (-521)) (-5 *1 (-1094 *2)) (-4 *2 (-337)))) (-2410 (*1 *2 *3 *4) (-12 (-5 *4 (-850)) (-5 *2 (-1080 *3)) (-5 *1 (-1094 *3)) (-4 *3 (-337)))) (-1641 (*1 *2 *3) (-12 (-5 *3 (-587 *2)) (-5 *1 (-1094 *2)) (-4 *2 (-337)))))
+(-10 -7 (-15 -1641 (|#1| (-587 |#1|))) (-15 -2410 ((-1080 |#1|) |#1| (-850))) (-15 -1491 (|#1| |#1| (-521))))
+((-1800 (($) 10) (($ (-587 (-2 (|:| -2529 |#2|) (|:| -3045 |#3|)))) 14)) (-3023 (($ (-2 (|:| -2529 |#2|) (|:| -3045 |#3|)) $) 60) (($ (-1 (-108) (-2 (|:| -2529 |#2|) (|:| -3045 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-3831 (((-587 (-2 (|:| -2529 |#2|) (|:| -3045 |#3|))) $) 39) (((-587 |#3|) $) 41)) (-3833 (($ (-1 (-2 (|:| -2529 |#2|) (|:| -3045 |#3|)) (-2 (|:| -2529 |#2|) (|:| -3045 |#3|))) $) 52) (($ (-1 |#3| |#3|) $) 33)) (-1390 (($ (-1 (-2 (|:| -2529 |#2|) (|:| -3045 |#3|)) (-2 (|:| -2529 |#2|) (|:| -3045 |#3|))) $) 50) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-2511 (((-2 (|:| -2529 |#2|) (|:| -3045 |#3|)) $) 53)) (-3373 (($ (-2 (|:| -2529 |#2|) (|:| -3045 |#3|)) $) 16)) (-1668 (((-587 |#2|) $) 19)) (-2941 (((-108) |#2| $) 58)) (-3620 (((-3 (-2 (|:| -2529 |#2|) (|:| -3045 |#3|)) "failed") (-1 (-108) (-2 (|:| -2529 |#2|) (|:| -3045 |#3|))) $) 57)) (-2166 (((-2 (|:| -2529 |#2|) (|:| -3045 |#3|)) $) 62)) (-1789 (((-108) (-1 (-108) (-2 (|:| -2529 |#2|) (|:| -3045 |#3|))) $) NIL) (((-108) (-1 (-108) |#3|) $) 66)) (-2489 (((-587 |#3|) $) 43)) (-2544 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-4163 (((-707) (-1 (-108) (-2 (|:| -2529 |#2|) (|:| -3045 |#3|))) $) NIL) (((-707) (-2 (|:| -2529 |#2|) (|:| -3045 |#3|)) $) NIL) (((-707) |#3| $) NIL) (((-707) (-1 (-108) |#3|) $) 67)) (-2189 (((-792) $) 27)) (-3049 (((-108) (-1 (-108) (-2 (|:| -2529 |#2|) (|:| -3045 |#3|))) $) NIL) (((-108) (-1 (-108) |#3|) $) 64)) (-1531 (((-108) $ $) 48)))
+(((-1095 |#1| |#2| |#3|) (-10 -8 (-15 -2189 ((-792) |#1|)) (-15 -1531 ((-108) |#1| |#1|)) (-15 -1390 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -1800 (|#1| (-587 (-2 (|:| -2529 |#2|) (|:| -3045 |#3|))))) (-15 -1800 (|#1|)) (-15 -1390 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3833 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3049 ((-108) (-1 (-108) |#3|) |#1|)) (-15 -1789 ((-108) (-1 (-108) |#3|) |#1|)) (-15 -4163 ((-707) (-1 (-108) |#3|) |#1|)) (-15 -3831 ((-587 |#3|) |#1|)) (-15 -4163 ((-707) |#3| |#1|)) (-15 -2544 (|#3| |#1| |#2| |#3|)) (-15 -2544 (|#3| |#1| |#2|)) (-15 -2489 ((-587 |#3|) |#1|)) (-15 -2941 ((-108) |#2| |#1|)) (-15 -1668 ((-587 |#2|) |#1|)) (-15 -3023 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3023 (|#1| (-1 (-108) (-2 (|:| -2529 |#2|) (|:| -3045 |#3|))) |#1|)) (-15 -3023 (|#1| (-2 (|:| -2529 |#2|) (|:| -3045 |#3|)) |#1|)) (-15 -3620 ((-3 (-2 (|:| -2529 |#2|) (|:| -3045 |#3|)) "failed") (-1 (-108) (-2 (|:| -2529 |#2|) (|:| -3045 |#3|))) |#1|)) (-15 -2511 ((-2 (|:| -2529 |#2|) (|:| -3045 |#3|)) |#1|)) (-15 -3373 (|#1| (-2 (|:| -2529 |#2|) (|:| -3045 |#3|)) |#1|)) (-15 -2166 ((-2 (|:| -2529 |#2|) (|:| -3045 |#3|)) |#1|)) (-15 -4163 ((-707) (-2 (|:| -2529 |#2|) (|:| -3045 |#3|)) |#1|)) (-15 -3831 ((-587 (-2 (|:| -2529 |#2|) (|:| -3045 |#3|))) |#1|)) (-15 -4163 ((-707) (-1 (-108) (-2 (|:| -2529 |#2|) (|:| -3045 |#3|))) |#1|)) (-15 -1789 ((-108) (-1 (-108) (-2 (|:| -2529 |#2|) (|:| -3045 |#3|))) |#1|)) (-15 -3049 ((-108) (-1 (-108) (-2 (|:| -2529 |#2|) (|:| -3045 |#3|))) |#1|)) (-15 -3833 (|#1| (-1 (-2 (|:| -2529 |#2|) (|:| -3045 |#3|)) (-2 (|:| -2529 |#2|) (|:| -3045 |#3|))) |#1|)) (-15 -1390 (|#1| (-1 (-2 (|:| -2529 |#2|) (|:| -3045 |#3|)) (-2 (|:| -2529 |#2|) (|:| -3045 |#3|))) |#1|))) (-1096 |#2| |#3|) (-1013) (-1013)) (T -1095))
+NIL
+(-10 -8 (-15 -2189 ((-792) |#1|)) (-15 -1531 ((-108) |#1| |#1|)) (-15 -1390 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -1800 (|#1| (-587 (-2 (|:| -2529 |#2|) (|:| -3045 |#3|))))) (-15 -1800 (|#1|)) (-15 -1390 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3833 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3049 ((-108) (-1 (-108) |#3|) |#1|)) (-15 -1789 ((-108) (-1 (-108) |#3|) |#1|)) (-15 -4163 ((-707) (-1 (-108) |#3|) |#1|)) (-15 -3831 ((-587 |#3|) |#1|)) (-15 -4163 ((-707) |#3| |#1|)) (-15 -2544 (|#3| |#1| |#2| |#3|)) (-15 -2544 (|#3| |#1| |#2|)) (-15 -2489 ((-587 |#3|) |#1|)) (-15 -2941 ((-108) |#2| |#1|)) (-15 -1668 ((-587 |#2|) |#1|)) (-15 -3023 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3023 (|#1| (-1 (-108) (-2 (|:| -2529 |#2|) (|:| -3045 |#3|))) |#1|)) (-15 -3023 (|#1| (-2 (|:| -2529 |#2|) (|:| -3045 |#3|)) |#1|)) (-15 -3620 ((-3 (-2 (|:| -2529 |#2|) (|:| -3045 |#3|)) "failed") (-1 (-108) (-2 (|:| -2529 |#2|) (|:| -3045 |#3|))) |#1|)) (-15 -2511 ((-2 (|:| -2529 |#2|) (|:| -3045 |#3|)) |#1|)) (-15 -3373 (|#1| (-2 (|:| -2529 |#2|) (|:| -3045 |#3|)) |#1|)) (-15 -2166 ((-2 (|:| -2529 |#2|) (|:| -3045 |#3|)) |#1|)) (-15 -4163 ((-707) (-2 (|:| -2529 |#2|) (|:| -3045 |#3|)) |#1|)) (-15 -3831 ((-587 (-2 (|:| -2529 |#2|) (|:| -3045 |#3|))) |#1|)) (-15 -4163 ((-707) (-1 (-108) (-2 (|:| -2529 |#2|) (|:| -3045 |#3|))) |#1|)) (-15 -1789 ((-108) (-1 (-108) (-2 (|:| -2529 |#2|) (|:| -3045 |#3|))) |#1|)) (-15 -3049 ((-108) (-1 (-108) (-2 (|:| -2529 |#2|) (|:| -3045 |#3|))) |#1|)) (-15 -3833 (|#1| (-1 (-2 (|:| -2529 |#2|) (|:| -3045 |#3|)) (-2 (|:| -2529 |#2|) (|:| -3045 |#3|))) |#1|)) (-15 -1390 (|#1| (-1 (-2 (|:| -2529 |#2|) (|:| -3045 |#3|)) (-2 (|:| -2529 |#2|) (|:| -3045 |#3|))) |#1|)))
+((-1415 (((-108) $ $) 19 (-3703 (|has| |#2| (-1013)) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013))))) (-1800 (($) 72) (($ (-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) 71)) (-1903 (((-1170) $ |#1| |#1|) 99 (|has| $ (-6 -4234)))) (-2978 (((-108) $ (-707)) 8)) (-2378 ((|#2| $ |#1| |#2|) 73)) (-4098 (($ (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) 45 (|has| $ (-6 -4233)))) (-1628 (($ (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) 55 (|has| $ (-6 -4233)))) (-2748 (((-3 |#2| "failed") |#1| $) 61)) (-2547 (($) 7 T CONST)) (-2332 (($ $) 58 (-12 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)) (|has| $ (-6 -4233))))) (-3023 (($ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) 47 (|has| $ (-6 -4233))) (($ (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) 46 (|has| $ (-6 -4233))) (((-3 |#2| "failed") |#1| $) 62)) (-1422 (($ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)) (|has| $ (-6 -4233)))) (($ (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) 54 (|has| $ (-6 -4233)))) (-3859 (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) 56 (-12 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)) (|has| $ (-6 -4233)))) (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) 53 (|has| $ (-6 -4233))) (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) 52 (|has| $ (-6 -4233)))) (-3849 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4234)))) (-3626 ((|#2| $ |#1|) 88)) (-3831 (((-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) 30 (|has| $ (-6 -4233))) (((-587 |#2|) $) 79 (|has| $ (-6 -4233)))) (-2139 (((-108) $ (-707)) 9)) (-2826 ((|#1| $) 96 (|has| |#1| (-784)))) (-3757 (((-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) 29 (|has| $ (-6 -4233))) (((-587 |#2|) $) 80 (|has| $ (-6 -4233)))) (-2221 (((-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)) (|has| $ (-6 -4233)))) (((-108) |#2| $) 82 (-12 (|has| |#2| (-1013)) (|has| $ (-6 -4233))))) (-2597 ((|#1| $) 95 (|has| |#1| (-784)))) (-3833 (($ (-1 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) 34 (|has| $ (-6 -4234))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4234)))) (-1390 (($ (-1 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70)) (-3574 (((-108) $ (-707)) 10)) (-3688 (((-1067) $) 22 (-3703 (|has| |#2| (-1013)) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013))))) (-2961 (((-587 |#1|) $) 63)) (-2781 (((-108) |#1| $) 64)) (-2511 (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) 39)) (-3373 (($ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) 40)) (-1668 (((-587 |#1|) $) 93)) (-2941 (((-108) |#1| $) 92)) (-4147 (((-1031) $) 21 (-3703 (|has| |#2| (-1013)) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013))))) (-2293 ((|#2| $) 97 (|has| |#1| (-784)))) (-3620 (((-3 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) "failed") (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) 51)) (-3016 (($ $ |#2|) 98 (|has| $ (-6 -4234)))) (-2166 (((-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) 41)) (-1789 (((-108) (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) 32 (|has| $ (-6 -4233))) (((-108) (-1 (-108) |#2|) $) 77 (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))))) 26 (-12 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-284 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (($ $ (-269 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) 25 (-12 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-284 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (($ $ (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) 24 (-12 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-284 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (($ $ (-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) (-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) 23 (-12 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-284 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)))) (($ $ (-587 |#2|) (-587 |#2|)) 86 (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ (-269 |#2|)) 84 (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ (-587 (-269 |#2|))) 83 (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))))) (-2488 (((-108) $ $) 14)) (-3821 (((-108) |#2| $) 94 (-12 (|has| $ (-6 -4233)) (|has| |#2| (-1013))))) (-2489 (((-587 |#2|) $) 91)) (-3462 (((-108) $) 11)) (-4024 (($) 12)) (-2544 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89)) (-1784 (($) 49) (($ (-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) 48)) (-4163 (((-707) (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) 31 (|has| $ (-6 -4233))) (((-707) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)) (|has| $ (-6 -4233)))) (((-707) |#2| $) 81 (-12 (|has| |#2| (-1013)) (|has| $ (-6 -4233)))) (((-707) (-1 (-108) |#2|) $) 78 (|has| $ (-6 -4233)))) (-2404 (($ $) 13)) (-1430 (((-497) $) 59 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-562 (-497))))) (-2201 (($ (-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) 50)) (-2189 (((-792) $) 18 (-3703 (|has| |#2| (-561 (-792))) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-561 (-792)))))) (-4091 (($ (-587 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) 42)) (-3049 (((-108) (-1 (-108) (-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) $) 33 (|has| $ (-6 -4233))) (((-108) (-1 (-108) |#2|) $) 76 (|has| $ (-6 -4233)))) (-1531 (((-108) $ $) 20 (-3703 (|has| |#2| (-1013)) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013))))) (-3475 (((-707) $) 6 (|has| $ (-6 -4233)))))
+(((-1096 |#1| |#2|) (-1196) (-1013) (-1013)) (T -1096))
+((-2378 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1096 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013)))) (-1800 (*1 *1) (-12 (-4 *1 (-1096 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))) (-1800 (*1 *1 *2) (-12 (-5 *2 (-587 (-2 (|:| -2529 *3) (|:| -3045 *4)))) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *1 (-1096 *3 *4)))) (-1390 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1096 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))))
+(-13 (-558 |t#1| |t#2|) (-554 |t#1| |t#2|) (-10 -8 (-15 -2378 (|t#2| $ |t#1| |t#2|)) (-15 -1800 ($)) (-15 -1800 ($ (-587 (-2 (|:| -2529 |t#1|) (|:| -3045 |t#2|))))) (-15 -1390 ($ (-1 |t#2| |t#2| |t#2|) $ $))))
+(((-33) . T) ((-102 #0=(-2 (|:| -2529 |#1|) (|:| -3045 |#2|))) . T) ((-97) -3703 (|has| |#2| (-1013)) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013))) ((-561 (-792)) -3703 (|has| |#2| (-1013)) (|has| |#2| (-561 (-792))) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013)) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-561 (-792)))) ((-139 #0#) . T) ((-562 (-497)) |has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-562 (-497))) ((-206 #0#) . T) ((-212 #0#) . T) ((-261 |#1| |#2|) . T) ((-263 |#1| |#2|) . T) ((-284 #0#) -12 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-284 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013))) ((-284 |#2|) -12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))) ((-460 #0#) . T) ((-460 |#2|) . T) ((-554 |#1| |#2|) . T) ((-482 #0# #0#) -12 (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-284 (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)))) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013))) ((-482 |#2| |#2|) -12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))) ((-558 |#1| |#2|) . T) ((-1013) -3703 (|has| |#2| (-1013)) (|has| (-2 (|:| -2529 |#1|) (|:| -3045 |#2|)) (-1013))) ((-1119) . T))
+((-2707 (((-108)) 24)) (-1411 (((-1170) (-1067)) 26)) (-2436 (((-108)) 36)) (-2762 (((-1170)) 34)) (-2785 (((-1170) (-1067) (-1067)) 25)) (-3221 (((-108)) 37)) (-3373 (((-1170) |#1| |#2|) 44)) (-2763 (((-1170)) 20)) (-3795 (((-3 |#2| "failed") |#1|) 42)) (-4176 (((-1170)) 35)))
+(((-1097 |#1| |#2|) (-10 -7 (-15 -2763 ((-1170))) (-15 -2785 ((-1170) (-1067) (-1067))) (-15 -1411 ((-1170) (-1067))) (-15 -2762 ((-1170))) (-15 -4176 ((-1170))) (-15 -2707 ((-108))) (-15 -2436 ((-108))) (-15 -3221 ((-108))) (-15 -3795 ((-3 |#2| "failed") |#1|)) (-15 -3373 ((-1170) |#1| |#2|))) (-1013) (-1013)) (T -1097))
+((-3373 (*1 *2 *3 *4) (-12 (-5 *2 (-1170)) (-5 *1 (-1097 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))) (-3795 (*1 *2 *3) (|partial| -12 (-4 *2 (-1013)) (-5 *1 (-1097 *3 *2)) (-4 *3 (-1013)))) (-3221 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1097 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))) (-2436 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1097 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))) (-2707 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1097 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))) (-4176 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1097 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))) (-2762 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1097 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))) (-1411 (*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1097 *4 *5)) (-4 *4 (-1013)) (-4 *5 (-1013)))) (-2785 (*1 *2 *3 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1097 *4 *5)) (-4 *4 (-1013)) (-4 *5 (-1013)))) (-2763 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1097 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))))
+(-10 -7 (-15 -2763 ((-1170))) (-15 -2785 ((-1170) (-1067) (-1067))) (-15 -1411 ((-1170) (-1067))) (-15 -2762 ((-1170))) (-15 -4176 ((-1170))) (-15 -2707 ((-108))) (-15 -2436 ((-108))) (-15 -3221 ((-108))) (-15 -3795 ((-3 |#2| "failed") |#1|)) (-15 -3373 ((-1170) |#1| |#2|)))
+((-3614 (((-1067) (-1067)) 18)) (-2656 (((-51) (-1067)) 21)))
+(((-1098) (-10 -7 (-15 -2656 ((-51) (-1067))) (-15 -3614 ((-1067) (-1067))))) (T -1098))
+((-3614 (*1 *2 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-1098)))) (-2656 (*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-51)) (-5 *1 (-1098)))))
+(-10 -7 (-15 -2656 ((-51) (-1067))) (-15 -3614 ((-1067) (-1067))))
+((-2189 (((-1100) |#1|) 11)))
+(((-1099 |#1|) (-10 -7 (-15 -2189 ((-1100) |#1|))) (-1013)) (T -1099))
+((-2189 (*1 *2 *3) (-12 (-5 *2 (-1100)) (-5 *1 (-1099 *3)) (-4 *3 (-1013)))))
+(-10 -7 (-15 -2189 ((-1100) |#1|)))
+((-1415 (((-108) $ $) NIL)) (-1632 (((-587 (-1067)) $) 33)) (-4055 (((-587 (-1067)) $ (-587 (-1067))) 36)) (-1541 (((-587 (-1067)) $ (-587 (-1067))) 35)) (-1369 (((-587 (-1067)) $ (-587 (-1067))) 37)) (-2561 (((-587 (-1067)) $) 32)) (-1811 (($) 22)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-1740 (((-587 (-1067)) $) 34)) (-1678 (((-1170) $ (-521)) 29) (((-1170) $) 30)) (-1430 (($ (-792) (-521)) 26) (($ (-792) (-521) (-792)) NIL)) (-2189 (((-792) $) 39) (($ (-792)) 24)) (-1531 (((-108) $ $) NIL)))
+(((-1100) (-13 (-1013) (-10 -8 (-15 -2189 ($ (-792))) (-15 -1430 ($ (-792) (-521))) (-15 -1430 ($ (-792) (-521) (-792))) (-15 -1678 ((-1170) $ (-521))) (-15 -1678 ((-1170) $)) (-15 -1740 ((-587 (-1067)) $)) (-15 -1632 ((-587 (-1067)) $)) (-15 -1811 ($)) (-15 -2561 ((-587 (-1067)) $)) (-15 -1369 ((-587 (-1067)) $ (-587 (-1067)))) (-15 -4055 ((-587 (-1067)) $ (-587 (-1067)))) (-15 -1541 ((-587 (-1067)) $ (-587 (-1067))))))) (T -1100))
+((-2189 (*1 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-1100)))) (-1430 (*1 *1 *2 *3) (-12 (-5 *2 (-792)) (-5 *3 (-521)) (-5 *1 (-1100)))) (-1430 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-792)) (-5 *3 (-521)) (-5 *1 (-1100)))) (-1678 (*1 *2 *1 *3) (-12 (-5 *3 (-521)) (-5 *2 (-1170)) (-5 *1 (-1100)))) (-1678 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1100)))) (-1740 (*1 *2 *1) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-1100)))) (-1632 (*1 *2 *1) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-1100)))) (-1811 (*1 *1) (-5 *1 (-1100))) (-2561 (*1 *2 *1) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-1100)))) (-1369 (*1 *2 *1 *2) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-1100)))) (-4055 (*1 *2 *1 *2) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-1100)))) (-1541 (*1 *2 *1 *2) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-1100)))))
+(-13 (-1013) (-10 -8 (-15 -2189 ($ (-792))) (-15 -1430 ($ (-792) (-521))) (-15 -1430 ($ (-792) (-521) (-792))) (-15 -1678 ((-1170) $ (-521))) (-15 -1678 ((-1170) $)) (-15 -1740 ((-587 (-1067)) $)) (-15 -1632 ((-587 (-1067)) $)) (-15 -1811 ($)) (-15 -2561 ((-587 (-1067)) $)) (-15 -1369 ((-587 (-1067)) $ (-587 (-1067)))) (-15 -4055 ((-587 (-1067)) $ (-587 (-1067)))) (-15 -1541 ((-587 (-1067)) $ (-587 (-1067))))))
+((-1415 (((-108) $ $) NIL)) (-1494 (((-1067) $ (-1067)) 15) (((-1067) $) 14)) (-4169 (((-1067) $ (-1067)) 13)) (-2837 (($ $ (-1067)) NIL)) (-2619 (((-3 (-1067) "failed") $) 11)) (-2629 (((-1067) $) 8)) (-3937 (((-3 (-1067) "failed") $) 12)) (-1791 (((-1067) $) 9)) (-1544 (($ (-362)) NIL) (($ (-362) (-1067)) NIL)) (-2884 (((-362) $) NIL)) (-3688 (((-1067) $) NIL)) (-1914 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-1428 (((-108) $) 17)) (-2189 (((-792) $) NIL)) (-2259 (($ $) NIL)) (-1531 (((-108) $ $) NIL)))
+(((-1101) (-13 (-338 (-362) (-1067)) (-10 -8 (-15 -1494 ((-1067) $ (-1067))) (-15 -1494 ((-1067) $)) (-15 -2629 ((-1067) $)) (-15 -2619 ((-3 (-1067) "failed") $)) (-15 -3937 ((-3 (-1067) "failed") $)) (-15 -1428 ((-108) $))))) (T -1101))
+((-1494 (*1 *2 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-1101)))) (-1494 (*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-1101)))) (-2629 (*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-1101)))) (-2619 (*1 *2 *1) (|partial| -12 (-5 *2 (-1067)) (-5 *1 (-1101)))) (-3937 (*1 *2 *1) (|partial| -12 (-5 *2 (-1067)) (-5 *1 (-1101)))) (-1428 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1101)))))
+(-13 (-338 (-362) (-1067)) (-10 -8 (-15 -1494 ((-1067) $ (-1067))) (-15 -1494 ((-1067) $)) (-15 -2629 ((-1067) $)) (-15 -2619 ((-3 (-1067) "failed") $)) (-15 -3937 ((-3 (-1067) "failed") $)) (-15 -1428 ((-108) $))))
+((-1606 (((-3 (-521) "failed") |#1|) 19)) (-4209 (((-3 (-521) "failed") |#1|) 13)) (-1440 (((-521) (-1067)) 28)))
+(((-1102 |#1|) (-10 -7 (-15 -1606 ((-3 (-521) "failed") |#1|)) (-15 -4209 ((-3 (-521) "failed") |#1|)) (-15 -1440 ((-521) (-1067)))) (-970)) (T -1102))
+((-1440 (*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-521)) (-5 *1 (-1102 *4)) (-4 *4 (-970)))) (-4209 (*1 *2 *3) (|partial| -12 (-5 *2 (-521)) (-5 *1 (-1102 *3)) (-4 *3 (-970)))) (-1606 (*1 *2 *3) (|partial| -12 (-5 *2 (-521)) (-5 *1 (-1102 *3)) (-4 *3 (-970)))))
+(-10 -7 (-15 -1606 ((-3 (-521) "failed") |#1|)) (-15 -4209 ((-3 (-521) "failed") |#1|)) (-15 -1440 ((-521) (-1067))))
+((-2838 (((-1044 (-202))) 8)))
+(((-1103) (-10 -7 (-15 -2838 ((-1044 (-202)))))) (T -1103))
+((-2838 (*1 *2) (-12 (-5 *2 (-1044 (-202))) (-5 *1 (-1103)))))
+(-10 -7 (-15 -2838 ((-1044 (-202)))))
+((-2834 (($) 11)) (-1759 (($ $) 35)) (-1745 (($ $) 33)) (-2811 (($ $) 25)) (-1776 (($ $) 17)) (-3919 (($ $) 15)) (-1768 (($ $) 19)) (-2844 (($ $) 30)) (-1752 (($ $) 34)) (-2821 (($ $) 29)))
+(((-1104 |#1|) (-10 -8 (-15 -2834 (|#1|)) (-15 -1759 (|#1| |#1|)) (-15 -1745 (|#1| |#1|)) (-15 -1776 (|#1| |#1|)) (-15 -3919 (|#1| |#1|)) (-15 -1768 (|#1| |#1|)) (-15 -1752 (|#1| |#1|)) (-15 -2811 (|#1| |#1|)) (-15 -2844 (|#1| |#1|)) (-15 -2821 (|#1| |#1|))) (-1105)) (T -1104))
+NIL
+(-10 -8 (-15 -2834 (|#1|)) (-15 -1759 (|#1| |#1|)) (-15 -1745 (|#1| |#1|)) (-15 -1776 (|#1| |#1|)) (-15 -3919 (|#1| |#1|)) (-15 -1768 (|#1| |#1|)) (-15 -1752 (|#1| |#1|)) (-15 -2811 (|#1| |#1|)) (-15 -2844 (|#1| |#1|)) (-15 -2821 (|#1| |#1|)))
+((-2904 (($ $) 26)) (-2769 (($ $) 11)) (-2880 (($ $) 27)) (-2746 (($ $) 10)) (-2926 (($ $) 28)) (-2790 (($ $) 9)) (-2834 (($) 16)) (-1253 (($ $) 19)) (-3261 (($ $) 18)) (-1738 (($ $) 29)) (-2800 (($ $) 8)) (-2915 (($ $) 30)) (-2780 (($ $) 7)) (-2892 (($ $) 31)) (-2758 (($ $) 6)) (-1759 (($ $) 20)) (-2832 (($ $) 32)) (-1745 (($ $) 21)) (-2811 (($ $) 33)) (-1776 (($ $) 22)) (-2856 (($ $) 34)) (-3919 (($ $) 23)) (-2868 (($ $) 35)) (-1768 (($ $) 24)) (-2844 (($ $) 36)) (-1752 (($ $) 25)) (-2821 (($ $) 37)) (** (($ $ $) 17)))
+(((-1105) (-1196)) (T -1105))
+((-2834 (*1 *1) (-4 *1 (-1105))))
+(-13 (-1108) (-91) (-462) (-34) (-259) (-10 -8 (-15 -2834 ($))))
+(((-34) . T) ((-91) . T) ((-259) . T) ((-462) . T) ((-1108) . T))
+((-1415 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3430 ((|#1| $) 17)) (-3469 (($ |#1| (-587 $)) 23) (($ (-587 |#1|)) 27) (($ |#1|) 25)) (-2978 (((-108) $ (-707)) 47)) (-2300 ((|#1| $ |#1|) 14 (|has| $ (-6 -4234)))) (-2378 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4234)))) (-2675 (($ $ (-587 $)) 13 (|has| $ (-6 -4234)))) (-2547 (($) NIL T CONST)) (-3831 (((-587 |#1|) $) 51 (|has| $ (-6 -4233)))) (-3186 (((-587 $) $) 42)) (-3651 (((-108) $ $) 33 (|has| |#1| (-1013)))) (-2139 (((-108) $ (-707)) 40)) (-3757 (((-587 |#1|) $) 52 (|has| $ (-6 -4233)))) (-2221 (((-108) |#1| $) 50 (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-3833 (($ (-1 |#1| |#1|) $) 24 (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#1| |#1|) $) 22)) (-3574 (((-108) $ (-707)) 39)) (-1278 (((-587 |#1|) $) 37)) (-2229 (((-108) $) 36)) (-3688 (((-1067) $) NIL (|has| |#1| (-1013)))) (-4147 (((-1031) $) NIL (|has| |#1| (-1013)))) (-1789 (((-108) (-1 (-108) |#1|) $) 49 (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 |#1|))) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-2488 (((-108) $ $) 74)) (-3462 (((-108) $) 9)) (-4024 (($) 10)) (-2544 ((|#1| $ "value") NIL)) (-2931 (((-521) $ $) 32)) (-2438 (((-587 $) $) 58)) (-3664 (((-108) $ $) 76)) (-2967 (((-587 $) $) 71)) (-1543 (($ $) 72)) (-2406 (((-108) $) 55)) (-4163 (((-707) (-1 (-108) |#1|) $) 20 (|has| $ (-6 -4233))) (((-707) |#1| $) 16 (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2404 (($ $) 57)) (-2189 (((-792) $) 60 (|has| |#1| (-561 (-792))))) (-3098 (((-587 $) $) 12)) (-2294 (((-108) $ $) 29 (|has| |#1| (-1013)))) (-3049 (((-108) (-1 (-108) |#1|) $) 48 (|has| $ (-6 -4233)))) (-1531 (((-108) $ $) 28 (|has| |#1| (-1013)))) (-3475 (((-707) $) 38 (|has| $ (-6 -4233)))))
+(((-1106 |#1|) (-13 (-935 |#1|) (-10 -8 (-6 -4233) (-6 -4234) (-15 -3469 ($ |#1| (-587 $))) (-15 -3469 ($ (-587 |#1|))) (-15 -3469 ($ |#1|)) (-15 -2406 ((-108) $)) (-15 -1543 ($ $)) (-15 -2967 ((-587 $) $)) (-15 -3664 ((-108) $ $)) (-15 -2438 ((-587 $) $)))) (-1013)) (T -1106))
+((-2406 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1106 *3)) (-4 *3 (-1013)))) (-3469 (*1 *1 *2 *3) (-12 (-5 *3 (-587 (-1106 *2))) (-5 *1 (-1106 *2)) (-4 *2 (-1013)))) (-3469 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1013)) (-5 *1 (-1106 *3)))) (-3469 (*1 *1 *2) (-12 (-5 *1 (-1106 *2)) (-4 *2 (-1013)))) (-1543 (*1 *1 *1) (-12 (-5 *1 (-1106 *2)) (-4 *2 (-1013)))) (-2967 (*1 *2 *1) (-12 (-5 *2 (-587 (-1106 *3))) (-5 *1 (-1106 *3)) (-4 *3 (-1013)))) (-3664 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1106 *3)) (-4 *3 (-1013)))) (-2438 (*1 *2 *1) (-12 (-5 *2 (-587 (-1106 *3))) (-5 *1 (-1106 *3)) (-4 *3 (-1013)))))
+(-13 (-935 |#1|) (-10 -8 (-6 -4233) (-6 -4234) (-15 -3469 ($ |#1| (-587 $))) (-15 -3469 ($ (-587 |#1|))) (-15 -3469 ($ |#1|)) (-15 -2406 ((-108) $)) (-15 -1543 ($ $)) (-15 -2967 ((-587 $) $)) (-15 -3664 ((-108) $ $)) (-15 -2438 ((-587 $) $))))
+((-2769 (($ $) 15)) (-2790 (($ $) 12)) (-2800 (($ $) 10)) (-2780 (($ $) 17)))
+(((-1107 |#1|) (-10 -8 (-15 -2780 (|#1| |#1|)) (-15 -2800 (|#1| |#1|)) (-15 -2790 (|#1| |#1|)) (-15 -2769 (|#1| |#1|))) (-1108)) (T -1107))
+NIL
+(-10 -8 (-15 -2780 (|#1| |#1|)) (-15 -2800 (|#1| |#1|)) (-15 -2790 (|#1| |#1|)) (-15 -2769 (|#1| |#1|)))
+((-2769 (($ $) 11)) (-2746 (($ $) 10)) (-2790 (($ $) 9)) (-2800 (($ $) 8)) (-2780 (($ $) 7)) (-2758 (($ $) 6)))
+(((-1108) (-1196)) (T -1108))
+((-2769 (*1 *1 *1) (-4 *1 (-1108))) (-2746 (*1 *1 *1) (-4 *1 (-1108))) (-2790 (*1 *1 *1) (-4 *1 (-1108))) (-2800 (*1 *1 *1) (-4 *1 (-1108))) (-2780 (*1 *1 *1) (-4 *1 (-1108))) (-2758 (*1 *1 *1) (-4 *1 (-1108))))
+(-13 (-10 -8 (-15 -2758 ($ $)) (-15 -2780 ($ $)) (-15 -2800 ($ $)) (-15 -2790 ($ $)) (-15 -2746 ($ $)) (-15 -2769 ($ $))))
+((-3694 ((|#2| |#2|) 85)) (-1459 (((-108) |#2|) 25)) (-1935 ((|#2| |#2|) 29)) (-1948 ((|#2| |#2|) 31)) (-1388 ((|#2| |#2| (-1084)) 79) ((|#2| |#2|) 80)) (-1582 (((-154 |#2|) |#2|) 27)) (-1433 ((|#2| |#2| (-1084)) 81) ((|#2| |#2|) 82)))
+(((-1109 |#1| |#2|) (-10 -7 (-15 -1388 (|#2| |#2|)) (-15 -1388 (|#2| |#2| (-1084))) (-15 -1433 (|#2| |#2|)) (-15 -1433 (|#2| |#2| (-1084))) (-15 -3694 (|#2| |#2|)) (-15 -1935 (|#2| |#2|)) (-15 -1948 (|#2| |#2|)) (-15 -1459 ((-108) |#2|)) (-15 -1582 ((-154 |#2|) |#2|))) (-13 (-425) (-784) (-961 (-521)) (-583 (-521))) (-13 (-27) (-1105) (-404 |#1|))) (T -1109))
+((-1582 (*1 *2 *3) (-12 (-4 *4 (-13 (-425) (-784) (-961 (-521)) (-583 (-521)))) (-5 *2 (-154 *3)) (-5 *1 (-1109 *4 *3)) (-4 *3 (-13 (-27) (-1105) (-404 *4))))) (-1459 (*1 *2 *3) (-12 (-4 *4 (-13 (-425) (-784) (-961 (-521)) (-583 (-521)))) (-5 *2 (-108)) (-5 *1 (-1109 *4 *3)) (-4 *3 (-13 (-27) (-1105) (-404 *4))))) (-1948 (*1 *2 *2) (-12 (-4 *3 (-13 (-425) (-784) (-961 (-521)) (-583 (-521)))) (-5 *1 (-1109 *3 *2)) (-4 *2 (-13 (-27) (-1105) (-404 *3))))) (-1935 (*1 *2 *2) (-12 (-4 *3 (-13 (-425) (-784) (-961 (-521)) (-583 (-521)))) (-5 *1 (-1109 *3 *2)) (-4 *2 (-13 (-27) (-1105) (-404 *3))))) (-3694 (*1 *2 *2) (-12 (-4 *3 (-13 (-425) (-784) (-961 (-521)) (-583 (-521)))) (-5 *1 (-1109 *3 *2)) (-4 *2 (-13 (-27) (-1105) (-404 *3))))) (-1433 (*1 *2 *2 *3) (-12 (-5 *3 (-1084)) (-4 *4 (-13 (-425) (-784) (-961 (-521)) (-583 (-521)))) (-5 *1 (-1109 *4 *2)) (-4 *2 (-13 (-27) (-1105) (-404 *4))))) (-1433 (*1 *2 *2) (-12 (-4 *3 (-13 (-425) (-784) (-961 (-521)) (-583 (-521)))) (-5 *1 (-1109 *3 *2)) (-4 *2 (-13 (-27) (-1105) (-404 *3))))) (-1388 (*1 *2 *2 *3) (-12 (-5 *3 (-1084)) (-4 *4 (-13 (-425) (-784) (-961 (-521)) (-583 (-521)))) (-5 *1 (-1109 *4 *2)) (-4 *2 (-13 (-27) (-1105) (-404 *4))))) (-1388 (*1 *2 *2) (-12 (-4 *3 (-13 (-425) (-784) (-961 (-521)) (-583 (-521)))) (-5 *1 (-1109 *3 *2)) (-4 *2 (-13 (-27) (-1105) (-404 *3))))))
+(-10 -7 (-15 -1388 (|#2| |#2|)) (-15 -1388 (|#2| |#2| (-1084))) (-15 -1433 (|#2| |#2|)) (-15 -1433 (|#2| |#2| (-1084))) (-15 -3694 (|#2| |#2|)) (-15 -1935 (|#2| |#2|)) (-15 -1948 (|#2| |#2|)) (-15 -1459 ((-108) |#2|)) (-15 -1582 ((-154 |#2|) |#2|)))
+((-2799 ((|#4| |#4| |#1|) 27)) (-3303 ((|#4| |#4| |#1|) 28)))
+(((-1110 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2799 (|#4| |#4| |#1|)) (-15 -3303 (|#4| |#4| |#1|))) (-513) (-347 |#1|) (-347 |#1|) (-625 |#1| |#2| |#3|)) (T -1110))
+((-3303 (*1 *2 *2 *3) (-12 (-4 *3 (-513)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)) (-5 *1 (-1110 *3 *4 *5 *2)) (-4 *2 (-625 *3 *4 *5)))) (-2799 (*1 *2 *2 *3) (-12 (-4 *3 (-513)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)) (-5 *1 (-1110 *3 *4 *5 *2)) (-4 *2 (-625 *3 *4 *5)))))
+(-10 -7 (-15 -2799 (|#4| |#4| |#1|)) (-15 -3303 (|#4| |#4| |#1|)))
+((-2227 ((|#2| |#2|) 132)) (-2490 ((|#2| |#2|) 129)) (-3012 ((|#2| |#2|) 120)) (-2340 ((|#2| |#2|) 117)) (-3526 ((|#2| |#2|) 125)) (-4073 ((|#2| |#2|) 113)) (-3785 ((|#2| |#2|) 42)) (-1790 ((|#2| |#2|) 93)) (-2254 ((|#2| |#2|) 73)) (-3508 ((|#2| |#2|) 127)) (-2664 ((|#2| |#2|) 115)) (-2056 ((|#2| |#2|) 137)) (-2631 ((|#2| |#2|) 135)) (-4199 ((|#2| |#2|) 136)) (-3989 ((|#2| |#2|) 134)) (-2023 ((|#2| |#2|) 146)) (-2021 ((|#2| |#2|) 30 (-12 (|has| |#2| (-562 (-821 |#1|))) (|has| |#2| (-815 |#1|)) (|has| |#1| (-562 (-821 |#1|))) (|has| |#1| (-815 |#1|))))) (-3802 ((|#2| |#2|) 74)) (-3218 ((|#2| |#2|) 138)) (-1604 ((|#2| |#2|) 139)) (-4116 ((|#2| |#2|) 126)) (-2084 ((|#2| |#2|) 114)) (-3027 ((|#2| |#2|) 133)) (-1987 ((|#2| |#2|) 131)) (-3873 ((|#2| |#2|) 121)) (-2507 ((|#2| |#2|) 119)) (-2653 ((|#2| |#2|) 123)) (-4105 ((|#2| |#2|) 111)))
+(((-1111 |#1| |#2|) (-10 -7 (-15 -1604 (|#2| |#2|)) (-15 -2254 (|#2| |#2|)) (-15 -2023 (|#2| |#2|)) (-15 -1790 (|#2| |#2|)) (-15 -3785 (|#2| |#2|)) (-15 -3802 (|#2| |#2|)) (-15 -3218 (|#2| |#2|)) (-15 -4105 (|#2| |#2|)) (-15 -2653 (|#2| |#2|)) (-15 -3873 (|#2| |#2|)) (-15 -3027 (|#2| |#2|)) (-15 -2084 (|#2| |#2|)) (-15 -4116 (|#2| |#2|)) (-15 -2664 (|#2| |#2|)) (-15 -3508 (|#2| |#2|)) (-15 -4073 (|#2| |#2|)) (-15 -3526 (|#2| |#2|)) (-15 -3012 (|#2| |#2|)) (-15 -2227 (|#2| |#2|)) (-15 -2340 (|#2| |#2|)) (-15 -2490 (|#2| |#2|)) (-15 -2507 (|#2| |#2|)) (-15 -1987 (|#2| |#2|)) (-15 -3989 (|#2| |#2|)) (-15 -2631 (|#2| |#2|)) (-15 -4199 (|#2| |#2|)) (-15 -2056 (|#2| |#2|)) (IF (|has| |#1| (-815 |#1|)) (IF (|has| |#1| (-562 (-821 |#1|))) (IF (|has| |#2| (-562 (-821 |#1|))) (IF (|has| |#2| (-815 |#1|)) (-15 -2021 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-13 (-784) (-425)) (-13 (-404 |#1|) (-1105))) (T -1111))
+((-2021 (*1 *2 *2) (-12 (-4 *3 (-562 (-821 *3))) (-4 *3 (-815 *3)) (-4 *3 (-13 (-784) (-425))) (-5 *1 (-1111 *3 *2)) (-4 *2 (-562 (-821 *3))) (-4 *2 (-815 *3)) (-4 *2 (-13 (-404 *3) (-1105))))) (-2056 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-425))) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-404 *3) (-1105))))) (-4199 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-425))) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-404 *3) (-1105))))) (-2631 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-425))) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-404 *3) (-1105))))) (-3989 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-425))) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-404 *3) (-1105))))) (-1987 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-425))) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-404 *3) (-1105))))) (-2507 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-425))) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-404 *3) (-1105))))) (-2490 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-425))) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-404 *3) (-1105))))) (-2340 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-425))) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-404 *3) (-1105))))) (-2227 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-425))) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-404 *3) (-1105))))) (-3012 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-425))) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-404 *3) (-1105))))) (-3526 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-425))) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-404 *3) (-1105))))) (-4073 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-425))) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-404 *3) (-1105))))) (-3508 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-425))) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-404 *3) (-1105))))) (-2664 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-425))) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-404 *3) (-1105))))) (-4116 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-425))) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-404 *3) (-1105))))) (-2084 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-425))) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-404 *3) (-1105))))) (-3027 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-425))) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-404 *3) (-1105))))) (-3873 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-425))) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-404 *3) (-1105))))) (-2653 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-425))) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-404 *3) (-1105))))) (-4105 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-425))) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-404 *3) (-1105))))) (-3218 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-425))) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-404 *3) (-1105))))) (-3802 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-425))) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-404 *3) (-1105))))) (-3785 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-425))) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-404 *3) (-1105))))) (-1790 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-425))) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-404 *3) (-1105))))) (-2023 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-425))) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-404 *3) (-1105))))) (-2254 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-425))) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-404 *3) (-1105))))) (-1604 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-425))) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-404 *3) (-1105))))))
+(-10 -7 (-15 -1604 (|#2| |#2|)) (-15 -2254 (|#2| |#2|)) (-15 -2023 (|#2| |#2|)) (-15 -1790 (|#2| |#2|)) (-15 -3785 (|#2| |#2|)) (-15 -3802 (|#2| |#2|)) (-15 -3218 (|#2| |#2|)) (-15 -4105 (|#2| |#2|)) (-15 -2653 (|#2| |#2|)) (-15 -3873 (|#2| |#2|)) (-15 -3027 (|#2| |#2|)) (-15 -2084 (|#2| |#2|)) (-15 -4116 (|#2| |#2|)) (-15 -2664 (|#2| |#2|)) (-15 -3508 (|#2| |#2|)) (-15 -4073 (|#2| |#2|)) (-15 -3526 (|#2| |#2|)) (-15 -3012 (|#2| |#2|)) (-15 -2227 (|#2| |#2|)) (-15 -2340 (|#2| |#2|)) (-15 -2490 (|#2| |#2|)) (-15 -2507 (|#2| |#2|)) (-15 -1987 (|#2| |#2|)) (-15 -3989 (|#2| |#2|)) (-15 -2631 (|#2| |#2|)) (-15 -4199 (|#2| |#2|)) (-15 -2056 (|#2| |#2|)) (IF (|has| |#1| (-815 |#1|)) (IF (|has| |#1| (-562 (-821 |#1|))) (IF (|has| |#2| (-562 (-821 |#1|))) (IF (|has| |#2| (-815 |#1|)) (-15 -2021 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
+((-3199 (((-108) |#5| $) 60) (((-108) $) 102)) (-2015 ((|#5| |#5| $) 75)) (-1628 (($ (-1 (-108) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 119)) (-2990 (((-587 |#5|) (-587 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|)) 73)) (-1297 (((-3 $ "failed") (-587 |#5|)) 126)) (-2306 (((-3 $ "failed") $) 112)) (-1761 ((|#5| |#5| $) 94)) (-3156 (((-108) |#5| $ (-1 (-108) |#5| |#5|)) 31)) (-1970 ((|#5| |#5| $) 98)) (-3859 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|)) 69)) (-3726 (((-2 (|:| -1650 (-587 |#5|)) (|:| -1544 (-587 |#5|))) $) 55)) (-3266 (((-108) |#5| $) 58) (((-108) $) 103)) (-3464 ((|#4| $) 108)) (-1441 (((-3 |#5| "failed") $) 110)) (-2323 (((-587 |#5|) $) 49)) (-3786 (((-108) |#5| $) 67) (((-108) $) 107)) (-1347 ((|#5| |#5| $) 81)) (-2146 (((-108) $ $) 27)) (-1972 (((-108) |#5| $) 63) (((-108) $) 105)) (-4065 ((|#5| |#5| $) 78)) (-2293 (((-3 |#5| "failed") $) 109)) (-2447 (($ $ |#5|) 127)) (-1994 (((-707) $) 52)) (-2201 (($ (-587 |#5|)) 124)) (-3883 (($ $ |#4|) 122)) (-4029 (($ $ |#4|) 121)) (-3173 (($ $) 120)) (-2189 (((-792) $) NIL) (((-587 |#5|) $) 113)) (-3781 (((-707) $) 130)) (-3234 (((-3 (-2 (|:| |bas| $) (|:| -1354 (-587 |#5|))) "failed") (-587 |#5|) (-1 (-108) |#5| |#5|)) 43) (((-3 (-2 (|:| |bas| $) (|:| -1354 (-587 |#5|))) "failed") (-587 |#5|) (-1 (-108) |#5|) (-1 (-108) |#5| |#5|)) 45)) (-3960 (((-108) $ (-1 (-108) |#5| (-587 |#5|))) 100)) (-4099 (((-587 |#4|) $) 115)) (-2154 (((-108) |#4| $) 118)) (-1531 (((-108) $ $) 19)))
+(((-1112 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3781 ((-707) |#1|)) (-15 -2447 (|#1| |#1| |#5|)) (-15 -1628 ((-3 |#5| "failed") |#1| |#4|)) (-15 -2154 ((-108) |#4| |#1|)) (-15 -4099 ((-587 |#4|) |#1|)) (-15 -2306 ((-3 |#1| "failed") |#1|)) (-15 -1441 ((-3 |#5| "failed") |#1|)) (-15 -2293 ((-3 |#5| "failed") |#1|)) (-15 -1970 (|#5| |#5| |#1|)) (-15 -3173 (|#1| |#1|)) (-15 -1761 (|#5| |#5| |#1|)) (-15 -1347 (|#5| |#5| |#1|)) (-15 -4065 (|#5| |#5| |#1|)) (-15 -2015 (|#5| |#5| |#1|)) (-15 -2990 ((-587 |#5|) (-587 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|))) (-15 -3859 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|))) (-15 -3786 ((-108) |#1|)) (-15 -1972 ((-108) |#1|)) (-15 -3199 ((-108) |#1|)) (-15 -3960 ((-108) |#1| (-1 (-108) |#5| (-587 |#5|)))) (-15 -3786 ((-108) |#5| |#1|)) (-15 -1972 ((-108) |#5| |#1|)) (-15 -3199 ((-108) |#5| |#1|)) (-15 -3156 ((-108) |#5| |#1| (-1 (-108) |#5| |#5|))) (-15 -3266 ((-108) |#1|)) (-15 -3266 ((-108) |#5| |#1|)) (-15 -3726 ((-2 (|:| -1650 (-587 |#5|)) (|:| -1544 (-587 |#5|))) |#1|)) (-15 -1994 ((-707) |#1|)) (-15 -2323 ((-587 |#5|) |#1|)) (-15 -3234 ((-3 (-2 (|:| |bas| |#1|) (|:| -1354 (-587 |#5|))) "failed") (-587 |#5|) (-1 (-108) |#5|) (-1 (-108) |#5| |#5|))) (-15 -3234 ((-3 (-2 (|:| |bas| |#1|) (|:| -1354 (-587 |#5|))) "failed") (-587 |#5|) (-1 (-108) |#5| |#5|))) (-15 -2146 ((-108) |#1| |#1|)) (-15 -3883 (|#1| |#1| |#4|)) (-15 -4029 (|#1| |#1| |#4|)) (-15 -3464 (|#4| |#1|)) (-15 -1297 ((-3 |#1| "failed") (-587 |#5|))) (-15 -2189 ((-587 |#5|) |#1|)) (-15 -2201 (|#1| (-587 |#5|))) (-15 -3859 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3859 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -1628 (|#1| (-1 (-108) |#5|) |#1|)) (-15 -3859 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2189 ((-792) |#1|)) (-15 -1531 ((-108) |#1| |#1|))) (-1113 |#2| |#3| |#4| |#5|) (-513) (-729) (-784) (-984 |#2| |#3| |#4|)) (T -1112))
+NIL
+(-10 -8 (-15 -3781 ((-707) |#1|)) (-15 -2447 (|#1| |#1| |#5|)) (-15 -1628 ((-3 |#5| "failed") |#1| |#4|)) (-15 -2154 ((-108) |#4| |#1|)) (-15 -4099 ((-587 |#4|) |#1|)) (-15 -2306 ((-3 |#1| "failed") |#1|)) (-15 -1441 ((-3 |#5| "failed") |#1|)) (-15 -2293 ((-3 |#5| "failed") |#1|)) (-15 -1970 (|#5| |#5| |#1|)) (-15 -3173 (|#1| |#1|)) (-15 -1761 (|#5| |#5| |#1|)) (-15 -1347 (|#5| |#5| |#1|)) (-15 -4065 (|#5| |#5| |#1|)) (-15 -2015 (|#5| |#5| |#1|)) (-15 -2990 ((-587 |#5|) (-587 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|))) (-15 -3859 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|))) (-15 -3786 ((-108) |#1|)) (-15 -1972 ((-108) |#1|)) (-15 -3199 ((-108) |#1|)) (-15 -3960 ((-108) |#1| (-1 (-108) |#5| (-587 |#5|)))) (-15 -3786 ((-108) |#5| |#1|)) (-15 -1972 ((-108) |#5| |#1|)) (-15 -3199 ((-108) |#5| |#1|)) (-15 -3156 ((-108) |#5| |#1| (-1 (-108) |#5| |#5|))) (-15 -3266 ((-108) |#1|)) (-15 -3266 ((-108) |#5| |#1|)) (-15 -3726 ((-2 (|:| -1650 (-587 |#5|)) (|:| -1544 (-587 |#5|))) |#1|)) (-15 -1994 ((-707) |#1|)) (-15 -2323 ((-587 |#5|) |#1|)) (-15 -3234 ((-3 (-2 (|:| |bas| |#1|) (|:| -1354 (-587 |#5|))) "failed") (-587 |#5|) (-1 (-108) |#5|) (-1 (-108) |#5| |#5|))) (-15 -3234 ((-3 (-2 (|:| |bas| |#1|) (|:| -1354 (-587 |#5|))) "failed") (-587 |#5|) (-1 (-108) |#5| |#5|))) (-15 -2146 ((-108) |#1| |#1|)) (-15 -3883 (|#1| |#1| |#4|)) (-15 -4029 (|#1| |#1| |#4|)) (-15 -3464 (|#4| |#1|)) (-15 -1297 ((-3 |#1| "failed") (-587 |#5|))) (-15 -2189 ((-587 |#5|) |#1|)) (-15 -2201 (|#1| (-587 |#5|))) (-15 -3859 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3859 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -1628 (|#1| (-1 (-108) |#5|) |#1|)) (-15 -3859 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2189 ((-792) |#1|)) (-15 -1531 ((-108) |#1| |#1|)))
+((-1415 (((-108) $ $) 7)) (-2113 (((-587 (-2 (|:| -1650 $) (|:| -1544 (-587 |#4|)))) (-587 |#4|)) 85)) (-1906 (((-587 $) (-587 |#4|)) 86)) (-4084 (((-587 |#3|) $) 33)) (-3898 (((-108) $) 26)) (-2466 (((-108) $) 17 (|has| |#1| (-513)))) (-3199 (((-108) |#4| $) 101) (((-108) $) 97)) (-2015 ((|#4| |#4| $) 92)) (-3211 (((-2 (|:| |under| $) (|:| -2567 $) (|:| |upper| $)) $ |#3|) 27)) (-2978 (((-108) $ (-707)) 44)) (-1628 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4233))) (((-3 |#4| "failed") $ |#3|) 79)) (-2547 (($) 45 T CONST)) (-3035 (((-108) $) 22 (|has| |#1| (-513)))) (-3091 (((-108) $ $) 24 (|has| |#1| (-513)))) (-3882 (((-108) $ $) 23 (|has| |#1| (-513)))) (-3237 (((-108) $) 25 (|has| |#1| (-513)))) (-2990 (((-587 |#4|) (-587 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 93)) (-3799 (((-587 |#4|) (-587 |#4|) $) 18 (|has| |#1| (-513)))) (-4183 (((-587 |#4|) (-587 |#4|) $) 19 (|has| |#1| (-513)))) (-1297 (((-3 $ "failed") (-587 |#4|)) 36)) (-1483 (($ (-587 |#4|)) 35)) (-2306 (((-3 $ "failed") $) 82)) (-1761 ((|#4| |#4| $) 89)) (-2332 (($ $) 68 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -4233))))) (-1422 (($ |#4| $) 67 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -4233)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4233)))) (-3820 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-513)))) (-3156 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) 102)) (-1970 ((|#4| |#4| $) 87)) (-3859 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -4233)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4233))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4233))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 94)) (-3726 (((-2 (|:| -1650 (-587 |#4|)) (|:| -1544 (-587 |#4|))) $) 105)) (-3831 (((-587 |#4|) $) 52 (|has| $ (-6 -4233)))) (-3266 (((-108) |#4| $) 104) (((-108) $) 103)) (-3464 ((|#3| $) 34)) (-2139 (((-108) $ (-707)) 43)) (-3757 (((-587 |#4|) $) 53 (|has| $ (-6 -4233)))) (-2221 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -4233))))) (-3833 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#4| |#4|) $) 47)) (-2820 (((-587 |#3|) $) 32)) (-2639 (((-108) |#3| $) 31)) (-3574 (((-108) $ (-707)) 42)) (-3688 (((-1067) $) 9)) (-1441 (((-3 |#4| "failed") $) 83)) (-2323 (((-587 |#4|) $) 107)) (-3786 (((-108) |#4| $) 99) (((-108) $) 95)) (-1347 ((|#4| |#4| $) 90)) (-2146 (((-108) $ $) 110)) (-1341 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-513)))) (-1972 (((-108) |#4| $) 100) (((-108) $) 96)) (-4065 ((|#4| |#4| $) 91)) (-4147 (((-1031) $) 10)) (-2293 (((-3 |#4| "failed") $) 84)) (-3620 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-2001 (((-3 $ "failed") $ |#4|) 78)) (-2447 (($ $ |#4|) 77)) (-1789 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 |#4|) (-587 |#4|)) 59 (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013)))) (($ $ (-269 |#4|)) 57 (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013)))) (($ $ (-587 (-269 |#4|))) 56 (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013))))) (-2488 (((-108) $ $) 38)) (-3462 (((-108) $) 41)) (-4024 (($) 40)) (-1994 (((-707) $) 106)) (-4163 (((-707) |#4| $) 54 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -4233)))) (((-707) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4233)))) (-2404 (($ $) 39)) (-1430 (((-497) $) 69 (|has| |#4| (-562 (-497))))) (-2201 (($ (-587 |#4|)) 60)) (-3883 (($ $ |#3|) 28)) (-4029 (($ $ |#3|) 30)) (-3173 (($ $) 88)) (-3318 (($ $ |#3|) 29)) (-2189 (((-792) $) 11) (((-587 |#4|) $) 37)) (-3781 (((-707) $) 76 (|has| |#3| (-342)))) (-3234 (((-3 (-2 (|:| |bas| $) (|:| -1354 (-587 |#4|))) "failed") (-587 |#4|) (-1 (-108) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1354 (-587 |#4|))) "failed") (-587 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) 108)) (-3960 (((-108) $ (-1 (-108) |#4| (-587 |#4|))) 98)) (-3049 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4233)))) (-4099 (((-587 |#3|) $) 81)) (-2154 (((-108) |#3| $) 80)) (-1531 (((-108) $ $) 6)) (-3475 (((-707) $) 46 (|has| $ (-6 -4233)))))
+(((-1113 |#1| |#2| |#3| |#4|) (-1196) (-513) (-729) (-784) (-984 |t#1| |t#2| |t#3|)) (T -1113))
+((-2146 (*1 *2 *1 *1) (-12 (-4 *1 (-1113 *3 *4 *5 *6)) (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-784)) (-4 *6 (-984 *3 *4 *5)) (-5 *2 (-108)))) (-3234 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-108) *8 *8)) (-4 *8 (-984 *5 *6 *7)) (-4 *5 (-513)) (-4 *6 (-729)) (-4 *7 (-784)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1354 (-587 *8)))) (-5 *3 (-587 *8)) (-4 *1 (-1113 *5 *6 *7 *8)))) (-3234 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-108) *9)) (-5 *5 (-1 (-108) *9 *9)) (-4 *9 (-984 *6 *7 *8)) (-4 *6 (-513)) (-4 *7 (-729)) (-4 *8 (-784)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1354 (-587 *9)))) (-5 *3 (-587 *9)) (-4 *1 (-1113 *6 *7 *8 *9)))) (-2323 (*1 *2 *1) (-12 (-4 *1 (-1113 *3 *4 *5 *6)) (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-784)) (-4 *6 (-984 *3 *4 *5)) (-5 *2 (-587 *6)))) (-1994 (*1 *2 *1) (-12 (-4 *1 (-1113 *3 *4 *5 *6)) (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-784)) (-4 *6 (-984 *3 *4 *5)) (-5 *2 (-707)))) (-3726 (*1 *2 *1) (-12 (-4 *1 (-1113 *3 *4 *5 *6)) (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-784)) (-4 *6 (-984 *3 *4 *5)) (-5 *2 (-2 (|:| -1650 (-587 *6)) (|:| -1544 (-587 *6)))))) (-3266 (*1 *2 *3 *1) (-12 (-4 *1 (-1113 *4 *5 *6 *3)) (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-784)) (-4 *3 (-984 *4 *5 *6)) (-5 *2 (-108)))) (-3266 (*1 *2 *1) (-12 (-4 *1 (-1113 *3 *4 *5 *6)) (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-784)) (-4 *6 (-984 *3 *4 *5)) (-5 *2 (-108)))) (-3156 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-108) *3 *3)) (-4 *1 (-1113 *5 *6 *7 *3)) (-4 *5 (-513)) (-4 *6 (-729)) (-4 *7 (-784)) (-4 *3 (-984 *5 *6 *7)) (-5 *2 (-108)))) (-3199 (*1 *2 *3 *1) (-12 (-4 *1 (-1113 *4 *5 *6 *3)) (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-784)) (-4 *3 (-984 *4 *5 *6)) (-5 *2 (-108)))) (-1972 (*1 *2 *3 *1) (-12 (-4 *1 (-1113 *4 *5 *6 *3)) (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-784)) (-4 *3 (-984 *4 *5 *6)) (-5 *2 (-108)))) (-3786 (*1 *2 *3 *1) (-12 (-4 *1 (-1113 *4 *5 *6 *3)) (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-784)) (-4 *3 (-984 *4 *5 *6)) (-5 *2 (-108)))) (-3960 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-108) *7 (-587 *7))) (-4 *1 (-1113 *4 *5 *6 *7)) (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-784)) (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-108)))) (-3199 (*1 *2 *1) (-12 (-4 *1 (-1113 *3 *4 *5 *6)) (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-784)) (-4 *6 (-984 *3 *4 *5)) (-5 *2 (-108)))) (-1972 (*1 *2 *1) (-12 (-4 *1 (-1113 *3 *4 *5 *6)) (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-784)) (-4 *6 (-984 *3 *4 *5)) (-5 *2 (-108)))) (-3786 (*1 *2 *1) (-12 (-4 *1 (-1113 *3 *4 *5 *6)) (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-784)) (-4 *6 (-984 *3 *4 *5)) (-5 *2 (-108)))) (-3859 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-108) *2 *2)) (-4 *1 (-1113 *5 *6 *7 *2)) (-4 *5 (-513)) (-4 *6 (-729)) (-4 *7 (-784)) (-4 *2 (-984 *5 *6 *7)))) (-2990 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-587 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-108) *8 *8)) (-4 *1 (-1113 *5 *6 *7 *8)) (-4 *5 (-513)) (-4 *6 (-729)) (-4 *7 (-784)) (-4 *8 (-984 *5 *6 *7)))) (-2015 (*1 *2 *2 *1) (-12 (-4 *1 (-1113 *3 *4 *5 *2)) (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-784)) (-4 *2 (-984 *3 *4 *5)))) (-4065 (*1 *2 *2 *1) (-12 (-4 *1 (-1113 *3 *4 *5 *2)) (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-784)) (-4 *2 (-984 *3 *4 *5)))) (-1347 (*1 *2 *2 *1) (-12 (-4 *1 (-1113 *3 *4 *5 *2)) (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-784)) (-4 *2 (-984 *3 *4 *5)))) (-1761 (*1 *2 *2 *1) (-12 (-4 *1 (-1113 *3 *4 *5 *2)) (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-784)) (-4 *2 (-984 *3 *4 *5)))) (-3173 (*1 *1 *1) (-12 (-4 *1 (-1113 *2 *3 *4 *5)) (-4 *2 (-513)) (-4 *3 (-729)) (-4 *4 (-784)) (-4 *5 (-984 *2 *3 *4)))) (-1970 (*1 *2 *2 *1) (-12 (-4 *1 (-1113 *3 *4 *5 *2)) (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-784)) (-4 *2 (-984 *3 *4 *5)))) (-1906 (*1 *2 *3) (-12 (-5 *3 (-587 *7)) (-4 *7 (-984 *4 *5 *6)) (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-587 *1)) (-4 *1 (-1113 *4 *5 *6 *7)))) (-2113 (*1 *2 *3) (-12 (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-784)) (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-587 (-2 (|:| -1650 *1) (|:| -1544 (-587 *7))))) (-5 *3 (-587 *7)) (-4 *1 (-1113 *4 *5 *6 *7)))) (-2293 (*1 *2 *1) (|partial| -12 (-4 *1 (-1113 *3 *4 *5 *2)) (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-784)) (-4 *2 (-984 *3 *4 *5)))) (-1441 (*1 *2 *1) (|partial| -12 (-4 *1 (-1113 *3 *4 *5 *2)) (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-784)) (-4 *2 (-984 *3 *4 *5)))) (-2306 (*1 *1 *1) (|partial| -12 (-4 *1 (-1113 *2 *3 *4 *5)) (-4 *2 (-513)) (-4 *3 (-729)) (-4 *4 (-784)) (-4 *5 (-984 *2 *3 *4)))) (-4099 (*1 *2 *1) (-12 (-4 *1 (-1113 *3 *4 *5 *6)) (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-784)) (-4 *6 (-984 *3 *4 *5)) (-5 *2 (-587 *5)))) (-2154 (*1 *2 *3 *1) (-12 (-4 *1 (-1113 *4 *5 *3 *6)) (-4 *4 (-513)) (-4 *5 (-729)) (-4 *3 (-784)) (-4 *6 (-984 *4 *5 *3)) (-5 *2 (-108)))) (-1628 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1113 *4 *5 *3 *2)) (-4 *4 (-513)) (-4 *5 (-729)) (-4 *3 (-784)) (-4 *2 (-984 *4 *5 *3)))) (-2001 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1113 *3 *4 *5 *2)) (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-784)) (-4 *2 (-984 *3 *4 *5)))) (-2447 (*1 *1 *1 *2) (-12 (-4 *1 (-1113 *3 *4 *5 *2)) (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-784)) (-4 *2 (-984 *3 *4 *5)))) (-3781 (*1 *2 *1) (-12 (-4 *1 (-1113 *3 *4 *5 *6)) (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-784)) (-4 *6 (-984 *3 *4 *5)) (-4 *5 (-342)) (-5 *2 (-707)))))
+(-13 (-902 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4233) (-6 -4234) (-15 -2146 ((-108) $ $)) (-15 -3234 ((-3 (-2 (|:| |bas| $) (|:| -1354 (-587 |t#4|))) "failed") (-587 |t#4|) (-1 (-108) |t#4| |t#4|))) (-15 -3234 ((-3 (-2 (|:| |bas| $) (|:| -1354 (-587 |t#4|))) "failed") (-587 |t#4|) (-1 (-108) |t#4|) (-1 (-108) |t#4| |t#4|))) (-15 -2323 ((-587 |t#4|) $)) (-15 -1994 ((-707) $)) (-15 -3726 ((-2 (|:| -1650 (-587 |t#4|)) (|:| -1544 (-587 |t#4|))) $)) (-15 -3266 ((-108) |t#4| $)) (-15 -3266 ((-108) $)) (-15 -3156 ((-108) |t#4| $ (-1 (-108) |t#4| |t#4|))) (-15 -3199 ((-108) |t#4| $)) (-15 -1972 ((-108) |t#4| $)) (-15 -3786 ((-108) |t#4| $)) (-15 -3960 ((-108) $ (-1 (-108) |t#4| (-587 |t#4|)))) (-15 -3199 ((-108) $)) (-15 -1972 ((-108) $)) (-15 -3786 ((-108) $)) (-15 -3859 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-108) |t#4| |t#4|))) (-15 -2990 ((-587 |t#4|) (-587 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-108) |t#4| |t#4|))) (-15 -2015 (|t#4| |t#4| $)) (-15 -4065 (|t#4| |t#4| $)) (-15 -1347 (|t#4| |t#4| $)) (-15 -1761 (|t#4| |t#4| $)) (-15 -3173 ($ $)) (-15 -1970 (|t#4| |t#4| $)) (-15 -1906 ((-587 $) (-587 |t#4|))) (-15 -2113 ((-587 (-2 (|:| -1650 $) (|:| -1544 (-587 |t#4|)))) (-587 |t#4|))) (-15 -2293 ((-3 |t#4| "failed") $)) (-15 -1441 ((-3 |t#4| "failed") $)) (-15 -2306 ((-3 $ "failed") $)) (-15 -4099 ((-587 |t#3|) $)) (-15 -2154 ((-108) |t#3| $)) (-15 -1628 ((-3 |t#4| "failed") $ |t#3|)) (-15 -2001 ((-3 $ "failed") $ |t#4|)) (-15 -2447 ($ $ |t#4|)) (IF (|has| |t#3| (-342)) (-15 -3781 ((-707) $)) |%noBranch|)))
+(((-33) . T) ((-97) . T) ((-561 (-587 |#4|)) . T) ((-561 (-792)) . T) ((-139 |#4|) . T) ((-562 (-497)) |has| |#4| (-562 (-497))) ((-284 |#4|) -12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013))) ((-460 |#4|) . T) ((-482 |#4| |#4|) -12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013))) ((-902 |#1| |#2| |#3| |#4|) . T) ((-1013) . T) ((-1119) . T))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-4084 (((-587 (-1084)) $) NIL)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) NIL (|has| |#1| (-513)))) (-2559 (($ $) NIL (|has| |#1| (-513)))) (-1733 (((-108) $) NIL (|has| |#1| (-513)))) (-2904 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2769 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-1232 (((-3 $ "failed") $ $) NIL)) (-1927 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2880 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2746 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2926 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2790 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2547 (($) NIL T CONST)) (-3152 (($ $) NIL)) (-1257 (((-3 $ "failed") $) NIL)) (-2199 (((-881 |#1|) $ (-707)) 17) (((-881 |#1|) $ (-707) (-707)) NIL)) (-1325 (((-108) $) NIL)) (-2834 (($) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2733 (((-707) $ (-1084)) NIL) (((-707) $ (-1084) (-707)) NIL)) (-3996 (((-108) $) NIL)) (-3407 (($ $ (-521)) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3649 (((-108) $) NIL)) (-4043 (($ $ (-587 (-1084)) (-587 (-493 (-1084)))) NIL) (($ $ (-1084) (-493 (-1084))) NIL) (($ |#1| (-493 (-1084))) NIL) (($ $ (-1084) (-707)) NIL) (($ $ (-587 (-1084)) (-587 (-707))) NIL)) (-1390 (($ (-1 |#1| |#1|) $) NIL)) (-1253 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3125 (($ $) NIL)) (-3135 ((|#1| $) NIL)) (-3688 (((-1067) $) NIL)) (-2184 (($ $ (-1084)) NIL (|has| |#1| (-37 (-381 (-521))))) (($ $ (-1084) |#1|) NIL (|has| |#1| (-37 (-381 (-521)))))) (-4147 (((-1031) $) NIL)) (-1908 (($ (-1 $) (-1084) |#1|) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2447 (($ $ (-707)) NIL)) (-2230 (((-3 $ "failed") $ $) NIL (|has| |#1| (-513)))) (-3261 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2288 (($ $ (-1084) $) NIL) (($ $ (-587 (-1084)) (-587 $)) NIL) (($ $ (-587 (-269 $))) NIL) (($ $ (-269 $)) NIL) (($ $ $ $) NIL) (($ $ (-587 $) (-587 $)) NIL)) (-2156 (($ $ (-1084)) NIL) (($ $ (-587 (-1084))) NIL) (($ $ (-1084) (-707)) NIL) (($ $ (-587 (-1084)) (-587 (-707))) NIL)) (-1994 (((-493 (-1084)) $) NIL)) (-1738 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2800 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2915 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2780 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2892 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2758 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3448 (($ $) NIL)) (-2189 (((-792) $) NIL) (($ (-521)) NIL) (($ |#1|) NIL (|has| |#1| (-157))) (($ $) NIL (|has| |#1| (-513))) (($ (-381 (-521))) NIL (|has| |#1| (-37 (-381 (-521))))) (($ (-1084)) NIL) (($ (-881 |#1|)) NIL)) (-3800 ((|#1| $ (-493 (-1084))) NIL) (($ $ (-1084) (-707)) NIL) (($ $ (-587 (-1084)) (-587 (-707))) NIL) (((-881 |#1|) $ (-707)) NIL)) (-1671 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-3846 (((-707)) NIL)) (-1759 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2832 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-4210 (((-108) $ $) NIL (|has| |#1| (-513)))) (-1745 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2811 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-1776 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2856 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3919 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2868 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-1768 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2844 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-1752 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2821 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (-3561 (($) NIL T CONST)) (-3572 (($) NIL T CONST)) (-2212 (($ $ (-1084)) NIL) (($ $ (-587 (-1084))) NIL) (($ $ (-1084) (-707)) NIL) (($ $ (-587 (-1084)) (-587 (-707))) NIL)) (-1531 (((-108) $ $) NIL)) (-1620 (($ $ |#1|) NIL (|has| |#1| (-337)))) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ $) NIL (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) NIL (|has| |#1| (-37 (-381 (-521)))))) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ (-381 (-521))) NIL (|has| |#1| (-37 (-381 (-521))))) (($ (-381 (-521)) $) NIL (|has| |#1| (-37 (-381 (-521))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-1114 |#1|) (-13 (-677 |#1| (-1084)) (-10 -8 (-15 -3800 ((-881 |#1|) $ (-707))) (-15 -2189 ($ (-1084))) (-15 -2189 ($ (-881 |#1|))) (IF (|has| |#1| (-37 (-381 (-521)))) (PROGN (-15 -2184 ($ $ (-1084) |#1|)) (-15 -1908 ($ (-1 $) (-1084) |#1|))) |%noBranch|))) (-970)) (T -1114))
+((-3800 (*1 *2 *1 *3) (-12 (-5 *3 (-707)) (-5 *2 (-881 *4)) (-5 *1 (-1114 *4)) (-4 *4 (-970)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-1084)) (-5 *1 (-1114 *3)) (-4 *3 (-970)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-881 *3)) (-4 *3 (-970)) (-5 *1 (-1114 *3)))) (-2184 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *1 (-1114 *3)) (-4 *3 (-37 (-381 (-521)))) (-4 *3 (-970)))) (-1908 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1114 *4))) (-5 *3 (-1084)) (-5 *1 (-1114 *4)) (-4 *4 (-37 (-381 (-521)))) (-4 *4 (-970)))))
+(-13 (-677 |#1| (-1084)) (-10 -8 (-15 -3800 ((-881 |#1|) $ (-707))) (-15 -2189 ($ (-1084))) (-15 -2189 ($ (-881 |#1|))) (IF (|has| |#1| (-37 (-381 (-521)))) (PROGN (-15 -2184 ($ $ (-1084) |#1|)) (-15 -1908 ($ (-1 $) (-1084) |#1|))) |%noBranch|)))
+((-3887 (($ |#1| (-587 (-587 (-872 (-202)))) (-108)) 16)) (-4086 (((-108) $ (-108)) 15)) (-1312 (((-108) $) 14)) (-2818 (((-587 (-587 (-872 (-202)))) $) 10)) (-2910 ((|#1| $) 8)) (-2797 (((-108) $) 12)))
+(((-1115 |#1|) (-10 -8 (-15 -2910 (|#1| $)) (-15 -2818 ((-587 (-587 (-872 (-202)))) $)) (-15 -2797 ((-108) $)) (-15 -1312 ((-108) $)) (-15 -4086 ((-108) $ (-108))) (-15 -3887 ($ |#1| (-587 (-587 (-872 (-202)))) (-108)))) (-900)) (T -1115))
+((-3887 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-587 (-587 (-872 (-202))))) (-5 *4 (-108)) (-5 *1 (-1115 *2)) (-4 *2 (-900)))) (-4086 (*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1115 *3)) (-4 *3 (-900)))) (-1312 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1115 *3)) (-4 *3 (-900)))) (-2797 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1115 *3)) (-4 *3 (-900)))) (-2818 (*1 *2 *1) (-12 (-5 *2 (-587 (-587 (-872 (-202))))) (-5 *1 (-1115 *3)) (-4 *3 (-900)))) (-2910 (*1 *2 *1) (-12 (-5 *1 (-1115 *2)) (-4 *2 (-900)))))
+(-10 -8 (-15 -2910 (|#1| $)) (-15 -2818 ((-587 (-587 (-872 (-202)))) $)) (-15 -2797 ((-108) $)) (-15 -1312 ((-108) $)) (-15 -4086 ((-108) $ (-108))) (-15 -3887 ($ |#1| (-587 (-587 (-872 (-202)))) (-108))))
+((-2720 (((-872 (-202)) (-872 (-202))) 25)) (-2735 (((-872 (-202)) (-202) (-202) (-202) (-202)) 10)) (-1967 (((-587 (-872 (-202))) (-872 (-202)) (-872 (-202)) (-872 (-202)) (-202) (-587 (-587 (-202)))) 37)) (-1231 (((-202) (-872 (-202)) (-872 (-202))) 21)) (-2292 (((-872 (-202)) (-872 (-202)) (-872 (-202))) 22)) (-2078 (((-587 (-587 (-202))) (-521)) 31)) (-1612 (((-872 (-202)) (-872 (-202)) (-872 (-202))) 20)) (-1602 (((-872 (-202)) (-872 (-202)) (-872 (-202))) 19)) (* (((-872 (-202)) (-202) (-872 (-202))) 18)))
+(((-1116) (-10 -7 (-15 -2735 ((-872 (-202)) (-202) (-202) (-202) (-202))) (-15 * ((-872 (-202)) (-202) (-872 (-202)))) (-15 -1602 ((-872 (-202)) (-872 (-202)) (-872 (-202)))) (-15 -1612 ((-872 (-202)) (-872 (-202)) (-872 (-202)))) (-15 -1231 ((-202) (-872 (-202)) (-872 (-202)))) (-15 -2292 ((-872 (-202)) (-872 (-202)) (-872 (-202)))) (-15 -2720 ((-872 (-202)) (-872 (-202)))) (-15 -2078 ((-587 (-587 (-202))) (-521))) (-15 -1967 ((-587 (-872 (-202))) (-872 (-202)) (-872 (-202)) (-872 (-202)) (-202) (-587 (-587 (-202))))))) (T -1116))
+((-1967 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-587 (-587 (-202)))) (-5 *4 (-202)) (-5 *2 (-587 (-872 *4))) (-5 *1 (-1116)) (-5 *3 (-872 *4)))) (-2078 (*1 *2 *3) (-12 (-5 *3 (-521)) (-5 *2 (-587 (-587 (-202)))) (-5 *1 (-1116)))) (-2720 (*1 *2 *2) (-12 (-5 *2 (-872 (-202))) (-5 *1 (-1116)))) (-2292 (*1 *2 *2 *2) (-12 (-5 *2 (-872 (-202))) (-5 *1 (-1116)))) (-1231 (*1 *2 *3 *3) (-12 (-5 *3 (-872 (-202))) (-5 *2 (-202)) (-5 *1 (-1116)))) (-1612 (*1 *2 *2 *2) (-12 (-5 *2 (-872 (-202))) (-5 *1 (-1116)))) (-1602 (*1 *2 *2 *2) (-12 (-5 *2 (-872 (-202))) (-5 *1 (-1116)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-872 (-202))) (-5 *3 (-202)) (-5 *1 (-1116)))) (-2735 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-872 (-202))) (-5 *1 (-1116)) (-5 *3 (-202)))))
+(-10 -7 (-15 -2735 ((-872 (-202)) (-202) (-202) (-202) (-202))) (-15 * ((-872 (-202)) (-202) (-872 (-202)))) (-15 -1602 ((-872 (-202)) (-872 (-202)) (-872 (-202)))) (-15 -1612 ((-872 (-202)) (-872 (-202)) (-872 (-202)))) (-15 -1231 ((-202) (-872 (-202)) (-872 (-202)))) (-15 -2292 ((-872 (-202)) (-872 (-202)) (-872 (-202)))) (-15 -2720 ((-872 (-202)) (-872 (-202)))) (-15 -2078 ((-587 (-587 (-202))) (-521))) (-15 -1967 ((-587 (-872 (-202))) (-872 (-202)) (-872 (-202)) (-872 (-202)) (-202) (-587 (-587 (-202))))))
+((-1415 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-1628 ((|#1| $ (-707)) 13)) (-2516 (((-707) $) 12)) (-3688 (((-1067) $) NIL (|has| |#1| (-1013)))) (-4147 (((-1031) $) NIL (|has| |#1| (-1013)))) (-2189 (((-886 |#1|) $) 10) (($ (-886 |#1|)) 9) (((-792) $) 23 (|has| |#1| (-561 (-792))))) (-1531 (((-108) $ $) 16 (|has| |#1| (-1013)))))
+(((-1117 |#1|) (-13 (-561 (-886 |#1|)) (-10 -8 (-15 -2189 ($ (-886 |#1|))) (-15 -1628 (|#1| $ (-707))) (-15 -2516 ((-707) $)) (IF (|has| |#1| (-561 (-792))) (-6 (-561 (-792))) |%noBranch|) (IF (|has| |#1| (-1013)) (-6 (-1013)) |%noBranch|))) (-1119)) (T -1117))
+((-2189 (*1 *1 *2) (-12 (-5 *2 (-886 *3)) (-4 *3 (-1119)) (-5 *1 (-1117 *3)))) (-1628 (*1 *2 *1 *3) (-12 (-5 *3 (-707)) (-5 *1 (-1117 *2)) (-4 *2 (-1119)))) (-2516 (*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-1117 *3)) (-4 *3 (-1119)))))
+(-13 (-561 (-886 |#1|)) (-10 -8 (-15 -2189 ($ (-886 |#1|))) (-15 -1628 (|#1| $ (-707))) (-15 -2516 ((-707) $)) (IF (|has| |#1| (-561 (-792))) (-6 (-561 (-792))) |%noBranch|) (IF (|has| |#1| (-1013)) (-6 (-1013)) |%noBranch|)))
+((-4141 (((-392 (-1080 (-1080 |#1|))) (-1080 (-1080 |#1|)) (-521)) 79)) (-2930 (((-392 (-1080 (-1080 |#1|))) (-1080 (-1080 |#1|))) 73)) (-1919 (((-392 (-1080 (-1080 |#1|))) (-1080 (-1080 |#1|))) 58)))
+(((-1118 |#1|) (-10 -7 (-15 -2930 ((-392 (-1080 (-1080 |#1|))) (-1080 (-1080 |#1|)))) (-15 -1919 ((-392 (-1080 (-1080 |#1|))) (-1080 (-1080 |#1|)))) (-15 -4141 ((-392 (-1080 (-1080 |#1|))) (-1080 (-1080 |#1|)) (-521)))) (-323)) (T -1118))
+((-4141 (*1 *2 *3 *4) (-12 (-5 *4 (-521)) (-4 *5 (-323)) (-5 *2 (-392 (-1080 (-1080 *5)))) (-5 *1 (-1118 *5)) (-5 *3 (-1080 (-1080 *5))))) (-1919 (*1 *2 *3) (-12 (-4 *4 (-323)) (-5 *2 (-392 (-1080 (-1080 *4)))) (-5 *1 (-1118 *4)) (-5 *3 (-1080 (-1080 *4))))) (-2930 (*1 *2 *3) (-12 (-4 *4 (-323)) (-5 *2 (-392 (-1080 (-1080 *4)))) (-5 *1 (-1118 *4)) (-5 *3 (-1080 (-1080 *4))))))
+(-10 -7 (-15 -2930 ((-392 (-1080 (-1080 |#1|))) (-1080 (-1080 |#1|)))) (-15 -1919 ((-392 (-1080 (-1080 |#1|))) (-1080 (-1080 |#1|)))) (-15 -4141 ((-392 (-1080 (-1080 |#1|))) (-1080 (-1080 |#1|)) (-521))))
+NIL
+(((-1119) (-1196)) (T -1119))
NIL
(-13 (-10 -7 (-6 -2046)))
-((-4195 (((-108)) 15)) (-4015 (((-1169) (-586 |#1|) (-586 |#1|)) 19) (((-1169) (-586 |#1|)) 20)) (-3027 (((-108) |#1| |#1|) 31 (|has| |#1| (-783)))) (-1390 (((-108) |#1| |#1| (-1 (-108) |#1| |#1|)) 27) (((-3 (-108) "failed") |#1| |#1|) 25)) (-3993 ((|#1| (-586 |#1|)) 32 (|has| |#1| (-783))) ((|#1| (-586 |#1|) (-1 (-108) |#1| |#1|)) 28)) (-2625 (((-2 (|:| -2205 (-586 |#1|)) (|:| -3609 (-586 |#1|)))) 17)))
-(((-1119 |#1|) (-10 -7 (-15 -4015 ((-1169) (-586 |#1|))) (-15 -4015 ((-1169) (-586 |#1|) (-586 |#1|))) (-15 -2625 ((-2 (|:| -2205 (-586 |#1|)) (|:| -3609 (-586 |#1|))))) (-15 -1390 ((-3 (-108) "failed") |#1| |#1|)) (-15 -1390 ((-108) |#1| |#1| (-1 (-108) |#1| |#1|))) (-15 -3993 (|#1| (-586 |#1|) (-1 (-108) |#1| |#1|))) (-15 -4195 ((-108))) (IF (|has| |#1| (-783)) (PROGN (-15 -3993 (|#1| (-586 |#1|))) (-15 -3027 ((-108) |#1| |#1|))) |%noBranch|)) (-1012)) (T -1119))
-((-3027 (*1 *2 *3 *3) (-12 (-5 *2 (-108)) (-5 *1 (-1119 *3)) (-4 *3 (-783)) (-4 *3 (-1012)))) (-3993 (*1 *2 *3) (-12 (-5 *3 (-586 *2)) (-4 *2 (-1012)) (-4 *2 (-783)) (-5 *1 (-1119 *2)))) (-4195 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1119 *3)) (-4 *3 (-1012)))) (-3993 (*1 *2 *3 *4) (-12 (-5 *3 (-586 *2)) (-5 *4 (-1 (-108) *2 *2)) (-5 *1 (-1119 *2)) (-4 *2 (-1012)))) (-1390 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-108) *3 *3)) (-4 *3 (-1012)) (-5 *2 (-108)) (-5 *1 (-1119 *3)))) (-1390 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-108)) (-5 *1 (-1119 *3)) (-4 *3 (-1012)))) (-2625 (*1 *2) (-12 (-5 *2 (-2 (|:| -2205 (-586 *3)) (|:| -3609 (-586 *3)))) (-5 *1 (-1119 *3)) (-4 *3 (-1012)))) (-4015 (*1 *2 *3 *3) (-12 (-5 *3 (-586 *4)) (-4 *4 (-1012)) (-5 *2 (-1169)) (-5 *1 (-1119 *4)))) (-4015 (*1 *2 *3) (-12 (-5 *3 (-586 *4)) (-4 *4 (-1012)) (-5 *2 (-1169)) (-5 *1 (-1119 *4)))))
-(-10 -7 (-15 -4015 ((-1169) (-586 |#1|))) (-15 -4015 ((-1169) (-586 |#1|) (-586 |#1|))) (-15 -2625 ((-2 (|:| -2205 (-586 |#1|)) (|:| -3609 (-586 |#1|))))) (-15 -1390 ((-3 (-108) "failed") |#1| |#1|)) (-15 -1390 ((-108) |#1| |#1| (-1 (-108) |#1| |#1|))) (-15 -3993 (|#1| (-586 |#1|) (-1 (-108) |#1| |#1|))) (-15 -4195 ((-108))) (IF (|has| |#1| (-783)) (PROGN (-15 -3993 (|#1| (-586 |#1|))) (-15 -3027 ((-108) |#1| |#1|))) |%noBranch|))
-((-3219 (((-1169) (-586 (-1083)) (-586 (-1083))) 12) (((-1169) (-586 (-1083))) 10)) (-1206 (((-1169)) 13)) (-2249 (((-2 (|:| -3609 (-586 (-1083))) (|:| -2205 (-586 (-1083))))) 17)))
-(((-1120) (-10 -7 (-15 -3219 ((-1169) (-586 (-1083)))) (-15 -3219 ((-1169) (-586 (-1083)) (-586 (-1083)))) (-15 -2249 ((-2 (|:| -3609 (-586 (-1083))) (|:| -2205 (-586 (-1083)))))) (-15 -1206 ((-1169))))) (T -1120))
-((-1206 (*1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-1120)))) (-2249 (*1 *2) (-12 (-5 *2 (-2 (|:| -3609 (-586 (-1083))) (|:| -2205 (-586 (-1083))))) (-5 *1 (-1120)))) (-3219 (*1 *2 *3 *3) (-12 (-5 *3 (-586 (-1083))) (-5 *2 (-1169)) (-5 *1 (-1120)))) (-3219 (*1 *2 *3) (-12 (-5 *3 (-586 (-1083))) (-5 *2 (-1169)) (-5 *1 (-1120)))))
-(-10 -7 (-15 -3219 ((-1169) (-586 (-1083)))) (-15 -3219 ((-1169) (-586 (-1083)) (-586 (-1083)))) (-15 -2249 ((-2 (|:| -3609 (-586 (-1083))) (|:| -2205 (-586 (-1083)))))) (-15 -1206 ((-1169))))
-((-3024 (($ $) 16)) (-2036 (((-108) $) 23)))
-(((-1121 |#1|) (-10 -8 (-15 -3024 (|#1| |#1|)) (-15 -2036 ((-108) |#1|))) (-1122)) (T -1121))
-NIL
-(-10 -8 (-15 -3024 (|#1| |#1|)) (-15 -2036 ((-108) |#1|)))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) 41)) (-2583 (($ $) 40)) (-1671 (((-108) $) 38)) (-1917 (((-3 $ "failed") $ $) 19)) (-3024 (($ $) 51)) (-1507 (((-391 $) $) 52)) (-3961 (($) 17 T CONST)) (-1540 (((-3 $ "failed") $) 34)) (-2036 (((-108) $) 53)) (-1537 (((-108) $) 31)) (-2222 (($ $ $) 46) (($ (-586 $)) 45)) (-1239 (((-1066) $) 9)) (-4142 (((-1030) $) 10)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) 44)) (-2257 (($ $ $) 48) (($ (-586 $)) 47)) (-1916 (((-391 $) $) 50)) (-2230 (((-3 $ "failed") $ $) 42)) (-2188 (((-791) $) 11) (($ (-520)) 28) (($ $) 43)) (-3251 (((-706)) 29)) (-2559 (((-108) $ $) 39)) (-3504 (($ $ (-849)) 26) (($ $ (-706)) 33)) (-3560 (($) 18 T CONST)) (-3570 (($) 30 T CONST)) (-1530 (((-108) $ $) 6)) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-706)) 32)) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ $ $) 24)))
-(((-1122) (-1195)) (T -1122))
-((-2036 (*1 *2 *1) (-12 (-4 *1 (-1122)) (-5 *2 (-108)))) (-1507 (*1 *2 *1) (-12 (-5 *2 (-391 *1)) (-4 *1 (-1122)))) (-3024 (*1 *1 *1) (-4 *1 (-1122))) (-1916 (*1 *2 *1) (-12 (-5 *2 (-391 *1)) (-4 *1 (-1122)))))
-(-13 (-424) (-10 -8 (-15 -2036 ((-108) $)) (-15 -1507 ((-391 $) $)) (-15 -3024 ($ $)) (-15 -1916 ((-391 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-560 (-791)) . T) ((-157) . T) ((-264) . T) ((-424) . T) ((-512) . T) ((-588 $) . T) ((-653 $) . T) ((-662) . T) ((-975 $) . T) ((-969) . T) ((-976) . T) ((-1024) . T) ((-1012) . T))
-((-1389 (((-1128 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1128 |#1| |#3| |#5|)) 23)))
-(((-1123 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1389 ((-1128 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1128 |#1| |#3| |#5|)))) (-969) (-969) (-1083) (-1083) |#1| |#2|) (T -1123))
-((-1389 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1128 *5 *7 *9)) (-4 *5 (-969)) (-4 *6 (-969)) (-14 *7 (-1083)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1128 *6 *8 *10)) (-5 *1 (-1123 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1083)))))
-(-10 -7 (-15 -1389 ((-1128 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1128 |#1| |#3| |#5|))))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-4081 (((-586 (-997)) $) 74)) (-1610 (((-1083) $) 103)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) 51 (|has| |#1| (-512)))) (-2583 (($ $) 52 (|has| |#1| (-512)))) (-1671 (((-108) $) 54 (|has| |#1| (-512)))) (-2406 (($ $ (-520)) 98) (($ $ (-520) (-520)) 97)) (-2088 (((-1064 (-2 (|:| |k| (-520)) (|:| |c| |#1|))) $) 105)) (-2903 (($ $) 135 (|has| |#1| (-37 (-380 (-520)))))) (-2768 (($ $) 118 (|has| |#1| (-37 (-380 (-520)))))) (-1917 (((-3 $ "failed") $ $) 19)) (-3024 (($ $) 162 (|has| |#1| (-336)))) (-1507 (((-391 $) $) 163 (|has| |#1| (-336)))) (-1927 (($ $) 117 (|has| |#1| (-37 (-380 (-520)))))) (-1327 (((-108) $ $) 153 (|has| |#1| (-336)))) (-2879 (($ $) 134 (|has| |#1| (-37 (-380 (-520)))))) (-2745 (($ $) 119 (|has| |#1| (-37 (-380 (-520)))))) (-2769 (($ (-1064 (-2 (|:| |k| (-520)) (|:| |c| |#1|)))) 174)) (-2925 (($ $) 133 (|has| |#1| (-37 (-380 (-520)))))) (-2789 (($ $) 120 (|has| |#1| (-37 (-380 (-520)))))) (-3961 (($) 17 T CONST)) (-2276 (($ $ $) 157 (|has| |#1| (-336)))) (-3150 (($ $) 60)) (-1540 (((-3 $ "failed") $) 34)) (-1570 (((-380 (-880 |#1|)) $ (-520)) 172 (|has| |#1| (-512))) (((-380 (-880 |#1|)) $ (-520) (-520)) 171 (|has| |#1| (-512)))) (-2253 (($ $ $) 156 (|has| |#1| (-336)))) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) 151 (|has| |#1| (-336)))) (-2036 (((-108) $) 164 (|has| |#1| (-336)))) (-1342 (((-108) $) 73)) (-2833 (($) 145 (|has| |#1| (-37 (-380 (-520)))))) (-3989 (((-520) $) 100) (((-520) $ (-520)) 99)) (-1537 (((-108) $) 31)) (-2322 (($ $ (-520)) 116 (|has| |#1| (-37 (-380 (-520)))))) (-2371 (($ $ (-849)) 101)) (-1306 (($ (-1 |#1| (-520)) $) 173)) (-3188 (((-3 (-586 $) "failed") (-586 $) $) 160 (|has| |#1| (-336)))) (-3774 (((-108) $) 62)) (-4039 (($ |#1| (-520)) 61) (($ $ (-997) (-520)) 76) (($ $ (-586 (-997)) (-586 (-520))) 75)) (-1389 (($ (-1 |#1| |#1|) $) 63)) (-1252 (($ $) 142 (|has| |#1| (-37 (-380 (-520)))))) (-3123 (($ $) 65)) (-3133 ((|#1| $) 66)) (-2222 (($ (-586 $)) 149 (|has| |#1| (-336))) (($ $ $) 148 (|has| |#1| (-336)))) (-1239 (((-1066) $) 9)) (-3093 (($ $) 165 (|has| |#1| (-336)))) (-3517 (($ $) 170 (|has| |#1| (-37 (-380 (-520))))) (($ $ (-1083)) 169 (-3700 (-12 (|has| |#1| (-29 (-520))) (|has| |#1| (-886)) (|has| |#1| (-1104)) (|has| |#1| (-37 (-380 (-520))))) (-12 (|has| |#1| (-15 -4081 ((-586 (-1083)) |#1|))) (|has| |#1| (-15 -3517 (|#1| |#1| (-1083)))) (|has| |#1| (-37 (-380 (-520)))))))) (-4142 (((-1030) $) 10)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) 150 (|has| |#1| (-336)))) (-2257 (($ (-586 $)) 147 (|has| |#1| (-336))) (($ $ $) 146 (|has| |#1| (-336)))) (-1916 (((-391 $) $) 161 (|has| |#1| (-336)))) (-1283 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-336))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) 158 (|has| |#1| (-336)))) (-2116 (($ $ (-520)) 95)) (-2230 (((-3 $ "failed") $ $) 50 (|has| |#1| (-512)))) (-2608 (((-3 (-586 $) "failed") (-586 $) $) 152 (|has| |#1| (-336)))) (-3260 (($ $) 143 (|has| |#1| (-37 (-380 (-520)))))) (-2286 (((-1064 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-520)))))) (-3704 (((-706) $) 154 (|has| |#1| (-336)))) (-2543 ((|#1| $ (-520)) 104) (($ $ $) 81 (|has| (-520) (-1024)))) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) 155 (|has| |#1| (-336)))) (-2155 (($ $ (-586 (-1083)) (-586 (-706))) 89 (-12 (|has| |#1| (-828 (-1083))) (|has| |#1| (-15 * (|#1| (-520) |#1|))))) (($ $ (-1083) (-706)) 88 (-12 (|has| |#1| (-828 (-1083))) (|has| |#1| (-15 * (|#1| (-520) |#1|))))) (($ $ (-586 (-1083))) 87 (-12 (|has| |#1| (-828 (-1083))) (|has| |#1| (-15 * (|#1| (-520) |#1|))))) (($ $ (-1083)) 86 (-12 (|has| |#1| (-828 (-1083))) (|has| |#1| (-15 * (|#1| (-520) |#1|))))) (($ $ (-706)) 84 (|has| |#1| (-15 * (|#1| (-520) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-520) |#1|))))) (-2528 (((-520) $) 64)) (-1737 (($ $) 132 (|has| |#1| (-37 (-380 (-520)))))) (-2799 (($ $) 121 (|has| |#1| (-37 (-380 (-520)))))) (-2914 (($ $) 131 (|has| |#1| (-37 (-380 (-520)))))) (-2779 (($ $) 122 (|has| |#1| (-37 (-380 (-520)))))) (-2891 (($ $) 130 (|has| |#1| (-37 (-380 (-520)))))) (-2757 (($ $) 123 (|has| |#1| (-37 (-380 (-520)))))) (-2759 (($ $) 72)) (-2188 (((-791) $) 11) (($ (-520)) 28) (($ |#1|) 47 (|has| |#1| (-157))) (($ (-380 (-520))) 57 (|has| |#1| (-37 (-380 (-520))))) (($ $) 49 (|has| |#1| (-512)))) (-3475 ((|#1| $ (-520)) 59)) (-3796 (((-3 $ "failed") $) 48 (|has| |#1| (-133)))) (-3251 (((-706)) 29)) (-1892 ((|#1| $) 102)) (-1758 (($ $) 141 (|has| |#1| (-37 (-380 (-520)))))) (-2831 (($ $) 129 (|has| |#1| (-37 (-380 (-520)))))) (-2559 (((-108) $ $) 53 (|has| |#1| (-512)))) (-1744 (($ $) 140 (|has| |#1| (-37 (-380 (-520)))))) (-2810 (($ $) 128 (|has| |#1| (-37 (-380 (-520)))))) (-1775 (($ $) 139 (|has| |#1| (-37 (-380 (-520)))))) (-2855 (($ $) 127 (|has| |#1| (-37 (-380 (-520)))))) (-3890 ((|#1| $ (-520)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-520)))) (|has| |#1| (-15 -2188 (|#1| (-1083))))))) (-3915 (($ $) 138 (|has| |#1| (-37 (-380 (-520)))))) (-2867 (($ $) 126 (|has| |#1| (-37 (-380 (-520)))))) (-1767 (($ $) 137 (|has| |#1| (-37 (-380 (-520)))))) (-2843 (($ $) 125 (|has| |#1| (-37 (-380 (-520)))))) (-1751 (($ $) 136 (|has| |#1| (-37 (-380 (-520)))))) (-2820 (($ $) 124 (|has| |#1| (-37 (-380 (-520)))))) (-3504 (($ $ (-849)) 26) (($ $ (-706)) 33) (($ $ (-520)) 166 (|has| |#1| (-336)))) (-3560 (($) 18 T CONST)) (-3570 (($) 30 T CONST)) (-2211 (($ $ (-586 (-1083)) (-586 (-706))) 93 (-12 (|has| |#1| (-828 (-1083))) (|has| |#1| (-15 * (|#1| (-520) |#1|))))) (($ $ (-1083) (-706)) 92 (-12 (|has| |#1| (-828 (-1083))) (|has| |#1| (-15 * (|#1| (-520) |#1|))))) (($ $ (-586 (-1083))) 91 (-12 (|has| |#1| (-828 (-1083))) (|has| |#1| (-15 * (|#1| (-520) |#1|))))) (($ $ (-1083)) 90 (-12 (|has| |#1| (-828 (-1083))) (|has| |#1| (-15 * (|#1| (-520) |#1|))))) (($ $ (-706)) 85 (|has| |#1| (-15 * (|#1| (-520) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-520) |#1|))))) (-1530 (((-108) $ $) 6)) (-1619 (($ $ |#1|) 58 (|has| |#1| (-336))) (($ $ $) 168 (|has| |#1| (-336)))) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-706)) 32) (($ $ (-520)) 167 (|has| |#1| (-336))) (($ $ $) 144 (|has| |#1| (-37 (-380 (-520))))) (($ $ (-380 (-520))) 115 (|has| |#1| (-37 (-380 (-520)))))) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-380 (-520)) $) 56 (|has| |#1| (-37 (-380 (-520))))) (($ $ (-380 (-520))) 55 (|has| |#1| (-37 (-380 (-520)))))))
-(((-1124 |#1|) (-1195) (-969)) (T -1124))
-((-2769 (*1 *1 *2) (-12 (-5 *2 (-1064 (-2 (|:| |k| (-520)) (|:| |c| *3)))) (-4 *3 (-969)) (-4 *1 (-1124 *3)))) (-1306 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-520))) (-4 *1 (-1124 *3)) (-4 *3 (-969)))) (-1570 (*1 *2 *1 *3) (-12 (-5 *3 (-520)) (-4 *1 (-1124 *4)) (-4 *4 (-969)) (-4 *4 (-512)) (-5 *2 (-380 (-880 *4))))) (-1570 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-520)) (-4 *1 (-1124 *4)) (-4 *4 (-969)) (-4 *4 (-512)) (-5 *2 (-380 (-880 *4))))) (-3517 (*1 *1 *1) (-12 (-4 *1 (-1124 *2)) (-4 *2 (-969)) (-4 *2 (-37 (-380 (-520)))))) (-3517 (*1 *1 *1 *2) (-3700 (-12 (-5 *2 (-1083)) (-4 *1 (-1124 *3)) (-4 *3 (-969)) (-12 (-4 *3 (-29 (-520))) (-4 *3 (-886)) (-4 *3 (-1104)) (-4 *3 (-37 (-380 (-520)))))) (-12 (-5 *2 (-1083)) (-4 *1 (-1124 *3)) (-4 *3 (-969)) (-12 (|has| *3 (-15 -4081 ((-586 *2) *3))) (|has| *3 (-15 -3517 (*3 *3 *2))) (-4 *3 (-37 (-380 (-520)))))))))
-(-13 (-1142 |t#1| (-520)) (-10 -8 (-15 -2769 ($ (-1064 (-2 (|:| |k| (-520)) (|:| |c| |t#1|))))) (-15 -1306 ($ (-1 |t#1| (-520)) $)) (IF (|has| |t#1| (-512)) (PROGN (-15 -1570 ((-380 (-880 |t#1|)) $ (-520))) (-15 -1570 ((-380 (-880 |t#1|)) $ (-520) (-520)))) |%noBranch|) (IF (|has| |t#1| (-37 (-380 (-520)))) (PROGN (-15 -3517 ($ $)) (IF (|has| |t#1| (-15 -3517 (|t#1| |t#1| (-1083)))) (IF (|has| |t#1| (-15 -4081 ((-586 (-1083)) |t#1|))) (-15 -3517 ($ $ (-1083))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1104)) (IF (|has| |t#1| (-886)) (IF (|has| |t#1| (-29 (-520))) (-15 -3517 ($ $ (-1083))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-926)) (-6 (-1104))) |%noBranch|) (IF (|has| |t#1| (-336)) (-6 (-336)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-520)) . T) ((-25) . T) ((-37 #1=(-380 (-520))) -3700 (|has| |#1| (-336)) (|has| |#1| (-37 (-380 (-520))))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) -3700 (|has| |#1| (-512)) (|has| |#1| (-336))) ((-34) |has| |#1| (-37 (-380 (-520)))) ((-91) |has| |#1| (-37 (-380 (-520)))) ((-97) . T) ((-107 #1# #1#) -3700 (|has| |#1| (-336)) (|has| |#1| (-37 (-380 (-520))))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3700 (|has| |#1| (-512)) (|has| |#1| (-336)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-560 (-791)) . T) ((-157) -3700 (|has| |#1| (-512)) (|has| |#1| (-336)) (|has| |#1| (-157))) ((-209) |has| |#1| (-15 * (|#1| (-520) |#1|))) ((-219) |has| |#1| (-336)) ((-258) |has| |#1| (-37 (-380 (-520)))) ((-260 $ $) |has| (-520) (-1024)) ((-264) -3700 (|has| |#1| (-512)) (|has| |#1| (-336))) ((-281) |has| |#1| (-336)) ((-336) |has| |#1| (-336)) ((-424) |has| |#1| (-336)) ((-461) |has| |#1| (-37 (-380 (-520)))) ((-512) -3700 (|has| |#1| (-512)) (|has| |#1| (-336))) ((-588 #1#) -3700 (|has| |#1| (-336)) (|has| |#1| (-37 (-380 (-520))))) ((-588 |#1|) . T) ((-588 $) . T) ((-653 #1#) -3700 (|has| |#1| (-336)) (|has| |#1| (-37 (-380 (-520))))) ((-653 |#1|) |has| |#1| (-157)) ((-653 $) -3700 (|has| |#1| (-512)) (|has| |#1| (-336))) ((-662) . T) ((-828 (-1083)) -12 (|has| |#1| (-15 * (|#1| (-520) |#1|))) (|has| |#1| (-828 (-1083)))) ((-898 |#1| #0# (-997)) . T) ((-848) |has| |#1| (-336)) ((-926) |has| |#1| (-37 (-380 (-520)))) ((-975 #1#) -3700 (|has| |#1| (-336)) (|has| |#1| (-37 (-380 (-520))))) ((-975 |#1|) . T) ((-975 $) -3700 (|has| |#1| (-512)) (|has| |#1| (-336)) (|has| |#1| (-157))) ((-969) . T) ((-976) . T) ((-1024) . T) ((-1012) . T) ((-1104) |has| |#1| (-37 (-380 (-520)))) ((-1107) |has| |#1| (-37 (-380 (-520)))) ((-1122) |has| |#1| (-336)) ((-1142 |#1| #0#) . T))
-((-2906 (((-108) $) 12)) (-1296 (((-3 |#3| "failed") $) 17) (((-3 (-1083) "failed") $) NIL) (((-3 (-380 (-520)) "failed") $) NIL) (((-3 (-520) "failed") $) NIL)) (-1482 ((|#3| $) 14) (((-1083) $) NIL) (((-380 (-520)) $) NIL) (((-520) $) NIL)))
-(((-1125 |#1| |#2| |#3|) (-10 -8 (-15 -1482 ((-520) |#1|)) (-15 -1296 ((-3 (-520) "failed") |#1|)) (-15 -1482 ((-380 (-520)) |#1|)) (-15 -1296 ((-3 (-380 (-520)) "failed") |#1|)) (-15 -1482 ((-1083) |#1|)) (-15 -1296 ((-3 (-1083) "failed") |#1|)) (-15 -1482 (|#3| |#1|)) (-15 -1296 ((-3 |#3| "failed") |#1|)) (-15 -2906 ((-108) |#1|))) (-1126 |#2| |#3|) (-969) (-1155 |#2|)) (T -1125))
-NIL
-(-10 -8 (-15 -1482 ((-520) |#1|)) (-15 -1296 ((-3 (-520) "failed") |#1|)) (-15 -1482 ((-380 (-520)) |#1|)) (-15 -1296 ((-3 (-380 (-520)) "failed") |#1|)) (-15 -1482 ((-1083) |#1|)) (-15 -1296 ((-3 (-1083) "failed") |#1|)) (-15 -1482 (|#3| |#1|)) (-15 -1296 ((-3 |#3| "failed") |#1|)) (-15 -2906 ((-108) |#1|)))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-4040 ((|#2| $) 231 (-4006 (|has| |#2| (-281)) (|has| |#1| (-336))))) (-4081 (((-586 (-997)) $) 74)) (-1610 (((-1083) $) 103)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) 51 (|has| |#1| (-512)))) (-2583 (($ $) 52 (|has| |#1| (-512)))) (-1671 (((-108) $) 54 (|has| |#1| (-512)))) (-2406 (($ $ (-520)) 98) (($ $ (-520) (-520)) 97)) (-2088 (((-1064 (-2 (|:| |k| (-520)) (|:| |c| |#1|))) $) 105)) (-4010 ((|#2| $) 267)) (-2486 (((-3 |#2| "failed") $) 263)) (-3053 ((|#2| $) 264)) (-2903 (($ $) 135 (|has| |#1| (-37 (-380 (-520)))))) (-2768 (($ $) 118 (|has| |#1| (-37 (-380 (-520)))))) (-1917 (((-3 $ "failed") $ $) 19)) (-4119 (((-391 (-1079 $)) (-1079 $)) 240 (-4006 (|has| |#2| (-837)) (|has| |#1| (-336))))) (-3024 (($ $) 162 (|has| |#1| (-336)))) (-1507 (((-391 $) $) 163 (|has| |#1| (-336)))) (-1927 (($ $) 117 (|has| |#1| (-37 (-380 (-520)))))) (-3481 (((-3 (-586 (-1079 $)) "failed") (-586 (-1079 $)) (-1079 $)) 237 (-4006 (|has| |#2| (-837)) (|has| |#1| (-336))))) (-1327 (((-108) $ $) 153 (|has| |#1| (-336)))) (-2879 (($ $) 134 (|has| |#1| (-37 (-380 (-520)))))) (-2745 (($ $) 119 (|has| |#1| (-37 (-380 (-520)))))) (-2804 (((-520) $) 249 (-4006 (|has| |#2| (-756)) (|has| |#1| (-336))))) (-2769 (($ (-1064 (-2 (|:| |k| (-520)) (|:| |c| |#1|)))) 174)) (-2925 (($ $) 133 (|has| |#1| (-37 (-380 (-520)))))) (-2789 (($ $) 120 (|has| |#1| (-37 (-380 (-520)))))) (-3961 (($) 17 T CONST)) (-1296 (((-3 |#2| "failed") $) 270) (((-3 (-520) "failed") $) 259 (-4006 (|has| |#2| (-960 (-520))) (|has| |#1| (-336)))) (((-3 (-380 (-520)) "failed") $) 257 (-4006 (|has| |#2| (-960 (-520))) (|has| |#1| (-336)))) (((-3 (-1083) "failed") $) 242 (-4006 (|has| |#2| (-960 (-1083))) (|has| |#1| (-336))))) (-1482 ((|#2| $) 269) (((-520) $) 260 (-4006 (|has| |#2| (-960 (-520))) (|has| |#1| (-336)))) (((-380 (-520)) $) 258 (-4006 (|has| |#2| (-960 (-520))) (|has| |#1| (-336)))) (((-1083) $) 243 (-4006 (|has| |#2| (-960 (-1083))) (|has| |#1| (-336))))) (-2243 (($ $) 266) (($ (-520) $) 265)) (-2276 (($ $ $) 157 (|has| |#1| (-336)))) (-3150 (($ $) 60)) (-2756 (((-626 |#2|) (-626 $)) 221 (|has| |#1| (-336))) (((-2 (|:| -3927 (-626 |#2|)) (|:| |vec| (-1164 |#2|))) (-626 $) (-1164 $)) 220 (|has| |#1| (-336))) (((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 $) (-1164 $)) 219 (-4006 (|has| |#2| (-582 (-520))) (|has| |#1| (-336)))) (((-626 (-520)) (-626 $)) 218 (-4006 (|has| |#2| (-582 (-520))) (|has| |#1| (-336))))) (-1540 (((-3 $ "failed") $) 34)) (-1570 (((-380 (-880 |#1|)) $ (-520)) 172 (|has| |#1| (-512))) (((-380 (-880 |#1|)) $ (-520) (-520)) 171 (|has| |#1| (-512)))) (-3249 (($) 233 (-4006 (|has| |#2| (-505)) (|has| |#1| (-336))))) (-2253 (($ $ $) 156 (|has| |#1| (-336)))) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) 151 (|has| |#1| (-336)))) (-2036 (((-108) $) 164 (|has| |#1| (-336)))) (-2328 (((-108) $) 247 (-4006 (|has| |#2| (-756)) (|has| |#1| (-336))))) (-1342 (((-108) $) 73)) (-2833 (($) 145 (|has| |#1| (-37 (-380 (-520)))))) (-1272 (((-817 (-352) $) $ (-820 (-352)) (-817 (-352) $)) 225 (-4006 (|has| |#2| (-814 (-352))) (|has| |#1| (-336)))) (((-817 (-520) $) $ (-820 (-520)) (-817 (-520) $)) 224 (-4006 (|has| |#2| (-814 (-520))) (|has| |#1| (-336))))) (-3989 (((-520) $) 100) (((-520) $ (-520)) 99)) (-1537 (((-108) $) 31)) (-4115 (($ $) 229 (|has| |#1| (-336)))) (-2800 ((|#2| $) 227 (|has| |#1| (-336)))) (-2322 (($ $ (-520)) 116 (|has| |#1| (-37 (-380 (-520)))))) (-1394 (((-3 $ "failed") $) 261 (-4006 (|has| |#2| (-1059)) (|has| |#1| (-336))))) (-3469 (((-108) $) 248 (-4006 (|has| |#2| (-756)) (|has| |#1| (-336))))) (-2371 (($ $ (-849)) 101)) (-1306 (($ (-1 |#1| (-520)) $) 173)) (-3188 (((-3 (-586 $) "failed") (-586 $) $) 160 (|has| |#1| (-336)))) (-3774 (((-108) $) 62)) (-4039 (($ |#1| (-520)) 61) (($ $ (-997) (-520)) 76) (($ $ (-586 (-997)) (-586 (-520))) 75)) (-2809 (($ $ $) 251 (-4006 (|has| |#2| (-783)) (|has| |#1| (-336))))) (-2446 (($ $ $) 252 (-4006 (|has| |#2| (-783)) (|has| |#1| (-336))))) (-1389 (($ (-1 |#1| |#1|) $) 63) (($ (-1 |#2| |#2|) $) 213 (|has| |#1| (-336)))) (-1252 (($ $) 142 (|has| |#1| (-37 (-380 (-520)))))) (-3123 (($ $) 65)) (-3133 ((|#1| $) 66)) (-2222 (($ (-586 $)) 149 (|has| |#1| (-336))) (($ $ $) 148 (|has| |#1| (-336)))) (-3063 (($ (-520) |#2|) 268)) (-1239 (((-1066) $) 9)) (-3093 (($ $) 165 (|has| |#1| (-336)))) (-3517 (($ $) 170 (|has| |#1| (-37 (-380 (-520))))) (($ $ (-1083)) 169 (-3700 (-12 (|has| |#1| (-29 (-520))) (|has| |#1| (-886)) (|has| |#1| (-1104)) (|has| |#1| (-37 (-380 (-520))))) (-12 (|has| |#1| (-15 -4081 ((-586 (-1083)) |#1|))) (|has| |#1| (-15 -3517 (|#1| |#1| (-1083)))) (|has| |#1| (-37 (-380 (-520)))))))) (-3794 (($) 262 (-4006 (|has| |#2| (-1059)) (|has| |#1| (-336))) CONST)) (-4142 (((-1030) $) 10)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) 150 (|has| |#1| (-336)))) (-2257 (($ (-586 $)) 147 (|has| |#1| (-336))) (($ $ $) 146 (|has| |#1| (-336)))) (-4122 (($ $) 232 (-4006 (|has| |#2| (-281)) (|has| |#1| (-336))))) (-1626 ((|#2| $) 235 (-4006 (|has| |#2| (-505)) (|has| |#1| (-336))))) (-4133 (((-391 (-1079 $)) (-1079 $)) 238 (-4006 (|has| |#2| (-837)) (|has| |#1| (-336))))) (-2017 (((-391 (-1079 $)) (-1079 $)) 239 (-4006 (|has| |#2| (-837)) (|has| |#1| (-336))))) (-1916 (((-391 $) $) 161 (|has| |#1| (-336)))) (-1283 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-336))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) 158 (|has| |#1| (-336)))) (-2116 (($ $ (-520)) 95)) (-2230 (((-3 $ "failed") $ $) 50 (|has| |#1| (-512)))) (-2608 (((-3 (-586 $) "failed") (-586 $) $) 152 (|has| |#1| (-336)))) (-3260 (($ $) 143 (|has| |#1| (-37 (-380 (-520)))))) (-2286 (((-1064 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-520))))) (($ $ (-1083) |#2|) 212 (-4006 (|has| |#2| (-481 (-1083) |#2|)) (|has| |#1| (-336)))) (($ $ (-586 (-1083)) (-586 |#2|)) 211 (-4006 (|has| |#2| (-481 (-1083) |#2|)) (|has| |#1| (-336)))) (($ $ (-586 (-268 |#2|))) 210 (-4006 (|has| |#2| (-283 |#2|)) (|has| |#1| (-336)))) (($ $ (-268 |#2|)) 209 (-4006 (|has| |#2| (-283 |#2|)) (|has| |#1| (-336)))) (($ $ |#2| |#2|) 208 (-4006 (|has| |#2| (-283 |#2|)) (|has| |#1| (-336)))) (($ $ (-586 |#2|) (-586 |#2|)) 207 (-4006 (|has| |#2| (-283 |#2|)) (|has| |#1| (-336))))) (-3704 (((-706) $) 154 (|has| |#1| (-336)))) (-2543 ((|#1| $ (-520)) 104) (($ $ $) 81 (|has| (-520) (-1024))) (($ $ |#2|) 206 (-4006 (|has| |#2| (-260 |#2| |#2|)) (|has| |#1| (-336))))) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) 155 (|has| |#1| (-336)))) (-2155 (($ $ (-1 |#2| |#2|)) 217 (|has| |#1| (-336))) (($ $ (-1 |#2| |#2|) (-706)) 216 (|has| |#1| (-336))) (($ $ (-706)) 84 (-3700 (-4006 (|has| |#2| (-209)) (|has| |#1| (-336))) (|has| |#1| (-15 * (|#1| (-520) |#1|))))) (($ $) 82 (-3700 (-4006 (|has| |#2| (-209)) (|has| |#1| (-336))) (|has| |#1| (-15 * (|#1| (-520) |#1|))))) (($ $ (-586 (-1083)) (-586 (-706))) 89 (-3700 (-4006 (|has| |#2| (-828 (-1083))) (|has| |#1| (-336))) (-12 (|has| |#1| (-828 (-1083))) (|has| |#1| (-15 * (|#1| (-520) |#1|)))))) (($ $ (-1083) (-706)) 88 (-3700 (-4006 (|has| |#2| (-828 (-1083))) (|has| |#1| (-336))) (-12 (|has| |#1| (-828 (-1083))) (|has| |#1| (-15 * (|#1| (-520) |#1|)))))) (($ $ (-586 (-1083))) 87 (-3700 (-4006 (|has| |#2| (-828 (-1083))) (|has| |#1| (-336))) (-12 (|has| |#1| (-828 (-1083))) (|has| |#1| (-15 * (|#1| (-520) |#1|)))))) (($ $ (-1083)) 86 (-3700 (-4006 (|has| |#2| (-828 (-1083))) (|has| |#1| (-336))) (-12 (|has| |#1| (-828 (-1083))) (|has| |#1| (-15 * (|#1| (-520) |#1|))))))) (-3556 (($ $) 230 (|has| |#1| (-336)))) (-2811 ((|#2| $) 228 (|has| |#1| (-336)))) (-2528 (((-520) $) 64)) (-1737 (($ $) 132 (|has| |#1| (-37 (-380 (-520)))))) (-2799 (($ $) 121 (|has| |#1| (-37 (-380 (-520)))))) (-2914 (($ $) 131 (|has| |#1| (-37 (-380 (-520)))))) (-2779 (($ $) 122 (|has| |#1| (-37 (-380 (-520)))))) (-2891 (($ $) 130 (|has| |#1| (-37 (-380 (-520)))))) (-2757 (($ $) 123 (|has| |#1| (-37 (-380 (-520)))))) (-1429 (((-201) $) 246 (-4006 (|has| |#2| (-945)) (|has| |#1| (-336)))) (((-352) $) 245 (-4006 (|has| |#2| (-945)) (|has| |#1| (-336)))) (((-496) $) 244 (-4006 (|has| |#2| (-561 (-496))) (|has| |#1| (-336)))) (((-820 (-352)) $) 223 (-4006 (|has| |#2| (-561 (-820 (-352)))) (|has| |#1| (-336)))) (((-820 (-520)) $) 222 (-4006 (|has| |#2| (-561 (-820 (-520)))) (|has| |#1| (-336))))) (-3784 (((-3 (-1164 $) "failed") (-626 $)) 236 (-4006 (-4006 (|has| $ (-133)) (|has| |#2| (-837))) (|has| |#1| (-336))))) (-2759 (($ $) 72)) (-2188 (((-791) $) 11) (($ (-520)) 28) (($ |#1|) 47 (|has| |#1| (-157))) (($ |#2|) 271) (($ (-1083)) 241 (-4006 (|has| |#2| (-960 (-1083))) (|has| |#1| (-336)))) (($ (-380 (-520))) 57 (|has| |#1| (-37 (-380 (-520))))) (($ $) 49 (|has| |#1| (-512)))) (-3475 ((|#1| $ (-520)) 59)) (-3796 (((-3 $ "failed") $) 48 (-3700 (-4006 (-3700 (|has| |#2| (-133)) (-4006 (|has| $ (-133)) (|has| |#2| (-837)))) (|has| |#1| (-336))) (|has| |#1| (-133))))) (-3251 (((-706)) 29)) (-1892 ((|#1| $) 102)) (-3370 ((|#2| $) 234 (-4006 (|has| |#2| (-505)) (|has| |#1| (-336))))) (-1758 (($ $) 141 (|has| |#1| (-37 (-380 (-520)))))) (-2831 (($ $) 129 (|has| |#1| (-37 (-380 (-520)))))) (-2559 (((-108) $ $) 53 (|has| |#1| (-512)))) (-1744 (($ $) 140 (|has| |#1| (-37 (-380 (-520)))))) (-2810 (($ $) 128 (|has| |#1| (-37 (-380 (-520)))))) (-1775 (($ $) 139 (|has| |#1| (-37 (-380 (-520)))))) (-2855 (($ $) 127 (|has| |#1| (-37 (-380 (-520)))))) (-3890 ((|#1| $ (-520)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-520)))) (|has| |#1| (-15 -2188 (|#1| (-1083))))))) (-3915 (($ $) 138 (|has| |#1| (-37 (-380 (-520)))))) (-2867 (($ $) 126 (|has| |#1| (-37 (-380 (-520)))))) (-1767 (($ $) 137 (|has| |#1| (-37 (-380 (-520)))))) (-2843 (($ $) 125 (|has| |#1| (-37 (-380 (-520)))))) (-1751 (($ $) 136 (|has| |#1| (-37 (-380 (-520)))))) (-2820 (($ $) 124 (|has| |#1| (-37 (-380 (-520)))))) (-2458 (($ $) 250 (-4006 (|has| |#2| (-756)) (|has| |#1| (-336))))) (-3504 (($ $ (-849)) 26) (($ $ (-706)) 33) (($ $ (-520)) 166 (|has| |#1| (-336)))) (-3560 (($) 18 T CONST)) (-3570 (($) 30 T CONST)) (-2211 (($ $ (-1 |#2| |#2|)) 215 (|has| |#1| (-336))) (($ $ (-1 |#2| |#2|) (-706)) 214 (|has| |#1| (-336))) (($ $ (-706)) 85 (-3700 (-4006 (|has| |#2| (-209)) (|has| |#1| (-336))) (|has| |#1| (-15 * (|#1| (-520) |#1|))))) (($ $) 83 (-3700 (-4006 (|has| |#2| (-209)) (|has| |#1| (-336))) (|has| |#1| (-15 * (|#1| (-520) |#1|))))) (($ $ (-586 (-1083)) (-586 (-706))) 93 (-3700 (-4006 (|has| |#2| (-828 (-1083))) (|has| |#1| (-336))) (-12 (|has| |#1| (-828 (-1083))) (|has| |#1| (-15 * (|#1| (-520) |#1|)))))) (($ $ (-1083) (-706)) 92 (-3700 (-4006 (|has| |#2| (-828 (-1083))) (|has| |#1| (-336))) (-12 (|has| |#1| (-828 (-1083))) (|has| |#1| (-15 * (|#1| (-520) |#1|)))))) (($ $ (-586 (-1083))) 91 (-3700 (-4006 (|has| |#2| (-828 (-1083))) (|has| |#1| (-336))) (-12 (|has| |#1| (-828 (-1083))) (|has| |#1| (-15 * (|#1| (-520) |#1|)))))) (($ $ (-1083)) 90 (-3700 (-4006 (|has| |#2| (-828 (-1083))) (|has| |#1| (-336))) (-12 (|has| |#1| (-828 (-1083))) (|has| |#1| (-15 * (|#1| (-520) |#1|))))))) (-1573 (((-108) $ $) 254 (-4006 (|has| |#2| (-783)) (|has| |#1| (-336))))) (-1557 (((-108) $ $) 255 (-4006 (|has| |#2| (-783)) (|has| |#1| (-336))))) (-1530 (((-108) $ $) 6)) (-1565 (((-108) $ $) 253 (-4006 (|has| |#2| (-783)) (|has| |#1| (-336))))) (-1548 (((-108) $ $) 256 (-4006 (|has| |#2| (-783)) (|has| |#1| (-336))))) (-1619 (($ $ |#1|) 58 (|has| |#1| (-336))) (($ $ $) 168 (|has| |#1| (-336))) (($ |#2| |#2|) 226 (|has| |#1| (-336)))) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-706)) 32) (($ $ (-520)) 167 (|has| |#1| (-336))) (($ $ $) 144 (|has| |#1| (-37 (-380 (-520))))) (($ $ (-380 (-520))) 115 (|has| |#1| (-37 (-380 (-520)))))) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ |#2|) 205 (|has| |#1| (-336))) (($ |#2| $) 204 (|has| |#1| (-336))) (($ (-380 (-520)) $) 56 (|has| |#1| (-37 (-380 (-520))))) (($ $ (-380 (-520))) 55 (|has| |#1| (-37 (-380 (-520)))))))
-(((-1126 |#1| |#2|) (-1195) (-969) (-1155 |t#1|)) (T -1126))
-((-2528 (*1 *2 *1) (-12 (-4 *1 (-1126 *3 *4)) (-4 *3 (-969)) (-4 *4 (-1155 *3)) (-5 *2 (-520)))) (-2188 (*1 *1 *2) (-12 (-4 *3 (-969)) (-4 *1 (-1126 *3 *2)) (-4 *2 (-1155 *3)))) (-3063 (*1 *1 *2 *3) (-12 (-5 *2 (-520)) (-4 *4 (-969)) (-4 *1 (-1126 *4 *3)) (-4 *3 (-1155 *4)))) (-4010 (*1 *2 *1) (-12 (-4 *1 (-1126 *3 *2)) (-4 *3 (-969)) (-4 *2 (-1155 *3)))) (-2243 (*1 *1 *1) (-12 (-4 *1 (-1126 *2 *3)) (-4 *2 (-969)) (-4 *3 (-1155 *2)))) (-2243 (*1 *1 *2 *1) (-12 (-5 *2 (-520)) (-4 *1 (-1126 *3 *4)) (-4 *3 (-969)) (-4 *4 (-1155 *3)))) (-3053 (*1 *2 *1) (-12 (-4 *1 (-1126 *3 *2)) (-4 *3 (-969)) (-4 *2 (-1155 *3)))) (-2486 (*1 *2 *1) (|partial| -12 (-4 *1 (-1126 *3 *2)) (-4 *3 (-969)) (-4 *2 (-1155 *3)))))
-(-13 (-1124 |t#1|) (-960 |t#2|) (-10 -8 (-15 -3063 ($ (-520) |t#2|)) (-15 -2528 ((-520) $)) (-15 -4010 (|t#2| $)) (-15 -2243 ($ $)) (-15 -2243 ($ (-520) $)) (-15 -2188 ($ |t#2|)) (-15 -3053 (|t#2| $)) (-15 -2486 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-336)) (-6 (-917 |t#2|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-520)) . T) ((-25) . T) ((-37 #1=(-380 (-520))) -3700 (|has| |#1| (-336)) (|has| |#1| (-37 (-380 (-520))))) ((-37 |#1|) |has| |#1| (-157)) ((-37 |#2|) |has| |#1| (-336)) ((-37 $) -3700 (|has| |#1| (-512)) (|has| |#1| (-336))) ((-34) |has| |#1| (-37 (-380 (-520)))) ((-91) |has| |#1| (-37 (-380 (-520)))) ((-97) . T) ((-107 #1# #1#) -3700 (|has| |#1| (-336)) (|has| |#1| (-37 (-380 (-520))))) ((-107 |#1| |#1|) . T) ((-107 |#2| |#2|) |has| |#1| (-336)) ((-107 $ $) -3700 (|has| |#1| (-512)) (|has| |#1| (-336)) (|has| |#1| (-157))) ((-124) . T) ((-133) -3700 (-12 (|has| |#1| (-336)) (|has| |#2| (-133))) (|has| |#1| (-133))) ((-135) -3700 (-12 (|has| |#1| (-336)) (|has| |#2| (-135))) (|has| |#1| (-135))) ((-560 (-791)) . T) ((-157) -3700 (|has| |#1| (-512)) (|has| |#1| (-336)) (|has| |#1| (-157))) ((-561 (-201)) -12 (|has| |#1| (-336)) (|has| |#2| (-945))) ((-561 (-352)) -12 (|has| |#1| (-336)) (|has| |#2| (-945))) ((-561 (-496)) -12 (|has| |#1| (-336)) (|has| |#2| (-561 (-496)))) ((-561 (-820 (-352))) -12 (|has| |#1| (-336)) (|has| |#2| (-561 (-820 (-352))))) ((-561 (-820 (-520))) -12 (|has| |#1| (-336)) (|has| |#2| (-561 (-820 (-520))))) ((-207 |#2|) |has| |#1| (-336)) ((-209) -3700 (-12 (|has| |#1| (-336)) (|has| |#2| (-209))) (|has| |#1| (-15 * (|#1| (-520) |#1|)))) ((-219) |has| |#1| (-336)) ((-258) |has| |#1| (-37 (-380 (-520)))) ((-260 |#2| $) -12 (|has| |#1| (-336)) (|has| |#2| (-260 |#2| |#2|))) ((-260 $ $) |has| (-520) (-1024)) ((-264) -3700 (|has| |#1| (-512)) (|has| |#1| (-336))) ((-281) |has| |#1| (-336)) ((-283 |#2|) -12 (|has| |#1| (-336)) (|has| |#2| (-283 |#2|))) ((-336) |has| |#1| (-336)) ((-311 |#2|) |has| |#1| (-336)) ((-350 |#2|) |has| |#1| (-336)) ((-373 |#2|) |has| |#1| (-336)) ((-424) |has| |#1| (-336)) ((-461) |has| |#1| (-37 (-380 (-520)))) ((-481 (-1083) |#2|) -12 (|has| |#1| (-336)) (|has| |#2| (-481 (-1083) |#2|))) ((-481 |#2| |#2|) -12 (|has| |#1| (-336)) (|has| |#2| (-283 |#2|))) ((-512) -3700 (|has| |#1| (-512)) (|has| |#1| (-336))) ((-588 #1#) -3700 (|has| |#1| (-336)) (|has| |#1| (-37 (-380 (-520))))) ((-588 |#1|) . T) ((-588 |#2|) |has| |#1| (-336)) ((-588 $) . T) ((-582 (-520)) -12 (|has| |#1| (-336)) (|has| |#2| (-582 (-520)))) ((-582 |#2|) |has| |#1| (-336)) ((-653 #1#) -3700 (|has| |#1| (-336)) (|has| |#1| (-37 (-380 (-520))))) ((-653 |#1|) |has| |#1| (-157)) ((-653 |#2|) |has| |#1| (-336)) ((-653 $) -3700 (|has| |#1| (-512)) (|has| |#1| (-336))) ((-662) . T) ((-726) -12 (|has| |#1| (-336)) (|has| |#2| (-756))) ((-727) -12 (|has| |#1| (-336)) (|has| |#2| (-756))) ((-729) -12 (|has| |#1| (-336)) (|has| |#2| (-756))) ((-731) -12 (|has| |#1| (-336)) (|has| |#2| (-756))) ((-756) -12 (|has| |#1| (-336)) (|has| |#2| (-756))) ((-781) -12 (|has| |#1| (-336)) (|has| |#2| (-756))) ((-783) -3700 (-12 (|has| |#1| (-336)) (|has| |#2| (-783))) (-12 (|has| |#1| (-336)) (|has| |#2| (-756)))) ((-828 (-1083)) -3700 (-12 (|has| |#1| (-336)) (|has| |#2| (-828 (-1083)))) (-12 (|has| |#1| (-15 * (|#1| (-520) |#1|))) (|has| |#1| (-828 (-1083))))) ((-814 (-352)) -12 (|has| |#1| (-336)) (|has| |#2| (-814 (-352)))) ((-814 (-520)) -12 (|has| |#1| (-336)) (|has| |#2| (-814 (-520)))) ((-812 |#2|) |has| |#1| (-336)) ((-837) -12 (|has| |#1| (-336)) (|has| |#2| (-837))) ((-898 |#1| #0# (-997)) . T) ((-848) |has| |#1| (-336)) ((-917 |#2|) |has| |#1| (-336)) ((-926) |has| |#1| (-37 (-380 (-520)))) ((-945) -12 (|has| |#1| (-336)) (|has| |#2| (-945))) ((-960 (-380 (-520))) -12 (|has| |#1| (-336)) (|has| |#2| (-960 (-520)))) ((-960 (-520)) -12 (|has| |#1| (-336)) (|has| |#2| (-960 (-520)))) ((-960 (-1083)) -12 (|has| |#1| (-336)) (|has| |#2| (-960 (-1083)))) ((-960 |#2|) . T) ((-975 #1#) -3700 (|has| |#1| (-336)) (|has| |#1| (-37 (-380 (-520))))) ((-975 |#1|) . T) ((-975 |#2|) |has| |#1| (-336)) ((-975 $) -3700 (|has| |#1| (-512)) (|has| |#1| (-336)) (|has| |#1| (-157))) ((-969) . T) ((-976) . T) ((-1024) . T) ((-1012) . T) ((-1059) -12 (|has| |#1| (-336)) (|has| |#2| (-1059))) ((-1104) |has| |#1| (-37 (-380 (-520)))) ((-1107) |has| |#1| (-37 (-380 (-520)))) ((-1118) |has| |#1| (-336)) ((-1122) |has| |#1| (-336)) ((-1124 |#1|) . T) ((-1142 |#1| #0#) . T))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) 70)) (-4040 ((|#2| $) NIL (-12 (|has| |#2| (-281)) (|has| |#1| (-336))))) (-4081 (((-586 (-997)) $) NIL)) (-1610 (((-1083) $) 88)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) NIL (|has| |#1| (-512)))) (-2583 (($ $) NIL (|has| |#1| (-512)))) (-1671 (((-108) $) NIL (|has| |#1| (-512)))) (-2406 (($ $ (-520)) 97) (($ $ (-520) (-520)) 99)) (-2088 (((-1064 (-2 (|:| |k| (-520)) (|:| |c| |#1|))) $) 47)) (-4010 ((|#2| $) 11)) (-2486 (((-3 |#2| "failed") $) 30)) (-3053 ((|#2| $) 31)) (-2903 (($ $) 192 (|has| |#1| (-37 (-380 (-520)))))) (-2768 (($ $) 168 (|has| |#1| (-37 (-380 (-520)))))) (-1917 (((-3 $ "failed") $ $) NIL)) (-4119 (((-391 (-1079 $)) (-1079 $)) NIL (-12 (|has| |#2| (-837)) (|has| |#1| (-336))))) (-3024 (($ $) NIL (|has| |#1| (-336)))) (-1507 (((-391 $) $) NIL (|has| |#1| (-336)))) (-1927 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-3481 (((-3 (-586 (-1079 $)) "failed") (-586 (-1079 $)) (-1079 $)) NIL (-12 (|has| |#2| (-837)) (|has| |#1| (-336))))) (-1327 (((-108) $ $) NIL (|has| |#1| (-336)))) (-2879 (($ $) 188 (|has| |#1| (-37 (-380 (-520)))))) (-2745 (($ $) 164 (|has| |#1| (-37 (-380 (-520)))))) (-2804 (((-520) $) NIL (-12 (|has| |#2| (-756)) (|has| |#1| (-336))))) (-2769 (($ (-1064 (-2 (|:| |k| (-520)) (|:| |c| |#1|)))) 57)) (-2925 (($ $) 196 (|has| |#1| (-37 (-380 (-520)))))) (-2789 (($ $) 172 (|has| |#1| (-37 (-380 (-520)))))) (-3961 (($) NIL T CONST)) (-1296 (((-3 |#2| "failed") $) 144) (((-3 (-520) "failed") $) NIL (-12 (|has| |#2| (-960 (-520))) (|has| |#1| (-336)))) (((-3 (-380 (-520)) "failed") $) NIL (-12 (|has| |#2| (-960 (-520))) (|has| |#1| (-336)))) (((-3 (-1083) "failed") $) NIL (-12 (|has| |#2| (-960 (-1083))) (|has| |#1| (-336))))) (-1482 ((|#2| $) 143) (((-520) $) NIL (-12 (|has| |#2| (-960 (-520))) (|has| |#1| (-336)))) (((-380 (-520)) $) NIL (-12 (|has| |#2| (-960 (-520))) (|has| |#1| (-336)))) (((-1083) $) NIL (-12 (|has| |#2| (-960 (-1083))) (|has| |#1| (-336))))) (-2243 (($ $) 61) (($ (-520) $) 24)) (-2276 (($ $ $) NIL (|has| |#1| (-336)))) (-3150 (($ $) NIL)) (-2756 (((-626 |#2|) (-626 $)) NIL (|has| |#1| (-336))) (((-2 (|:| -3927 (-626 |#2|)) (|:| |vec| (-1164 |#2|))) (-626 $) (-1164 $)) NIL (|has| |#1| (-336))) (((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 $) (-1164 $)) NIL (-12 (|has| |#2| (-582 (-520))) (|has| |#1| (-336)))) (((-626 (-520)) (-626 $)) NIL (-12 (|has| |#2| (-582 (-520))) (|has| |#1| (-336))))) (-1540 (((-3 $ "failed") $) 77)) (-1570 (((-380 (-880 |#1|)) $ (-520)) 112 (|has| |#1| (-512))) (((-380 (-880 |#1|)) $ (-520) (-520)) 114 (|has| |#1| (-512)))) (-3249 (($) NIL (-12 (|has| |#2| (-505)) (|has| |#1| (-336))))) (-2253 (($ $ $) NIL (|has| |#1| (-336)))) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) NIL (|has| |#1| (-336)))) (-2036 (((-108) $) NIL (|has| |#1| (-336)))) (-2328 (((-108) $) NIL (-12 (|has| |#2| (-756)) (|has| |#1| (-336))))) (-1342 (((-108) $) 64)) (-2833 (($) NIL (|has| |#1| (-37 (-380 (-520)))))) (-1272 (((-817 (-352) $) $ (-820 (-352)) (-817 (-352) $)) NIL (-12 (|has| |#2| (-814 (-352))) (|has| |#1| (-336)))) (((-817 (-520) $) $ (-820 (-520)) (-817 (-520) $)) NIL (-12 (|has| |#2| (-814 (-520))) (|has| |#1| (-336))))) (-3989 (((-520) $) 93) (((-520) $ (-520)) 95)) (-1537 (((-108) $) NIL)) (-4115 (($ $) NIL (|has| |#1| (-336)))) (-2800 ((|#2| $) 151 (|has| |#1| (-336)))) (-2322 (($ $ (-520)) NIL (|has| |#1| (-37 (-380 (-520)))))) (-1394 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1059)) (|has| |#1| (-336))))) (-3469 (((-108) $) NIL (-12 (|has| |#2| (-756)) (|has| |#1| (-336))))) (-2371 (($ $ (-849)) 136)) (-1306 (($ (-1 |#1| (-520)) $) 132)) (-3188 (((-3 (-586 $) "failed") (-586 $) $) NIL (|has| |#1| (-336)))) (-3774 (((-108) $) NIL)) (-4039 (($ |#1| (-520)) 19) (($ $ (-997) (-520)) NIL) (($ $ (-586 (-997)) (-586 (-520))) NIL)) (-2809 (($ $ $) NIL (-12 (|has| |#2| (-783)) (|has| |#1| (-336))))) (-2446 (($ $ $) NIL (-12 (|has| |#2| (-783)) (|has| |#1| (-336))))) (-1389 (($ (-1 |#1| |#1|) $) 129) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-336)))) (-1252 (($ $) 162 (|has| |#1| (-37 (-380 (-520)))))) (-3123 (($ $) NIL)) (-3133 ((|#1| $) NIL)) (-2222 (($ (-586 $)) NIL (|has| |#1| (-336))) (($ $ $) NIL (|has| |#1| (-336)))) (-3063 (($ (-520) |#2|) 10)) (-1239 (((-1066) $) NIL)) (-3093 (($ $) 145 (|has| |#1| (-336)))) (-3517 (($ $) 214 (|has| |#1| (-37 (-380 (-520))))) (($ $ (-1083)) 219 (-3700 (-12 (|has| |#1| (-15 -3517 (|#1| |#1| (-1083)))) (|has| |#1| (-15 -4081 ((-586 (-1083)) |#1|))) (|has| |#1| (-37 (-380 (-520))))) (-12 (|has| |#1| (-29 (-520))) (|has| |#1| (-37 (-380 (-520)))) (|has| |#1| (-886)) (|has| |#1| (-1104)))))) (-3794 (($) NIL (-12 (|has| |#2| (-1059)) (|has| |#1| (-336))) CONST)) (-4142 (((-1030) $) NIL)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) NIL (|has| |#1| (-336)))) (-2257 (($ (-586 $)) NIL (|has| |#1| (-336))) (($ $ $) NIL (|has| |#1| (-336)))) (-4122 (($ $) NIL (-12 (|has| |#2| (-281)) (|has| |#1| (-336))))) (-1626 ((|#2| $) NIL (-12 (|has| |#2| (-505)) (|has| |#1| (-336))))) (-4133 (((-391 (-1079 $)) (-1079 $)) NIL (-12 (|has| |#2| (-837)) (|has| |#1| (-336))))) (-2017 (((-391 (-1079 $)) (-1079 $)) NIL (-12 (|has| |#2| (-837)) (|has| |#1| (-336))))) (-1916 (((-391 $) $) NIL (|has| |#1| (-336)))) (-1283 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-336))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) NIL (|has| |#1| (-336)))) (-2116 (($ $ (-520)) 126)) (-2230 (((-3 $ "failed") $ $) 116 (|has| |#1| (-512)))) (-2608 (((-3 (-586 $) "failed") (-586 $) $) NIL (|has| |#1| (-336)))) (-3260 (($ $) 160 (|has| |#1| (-37 (-380 (-520)))))) (-2286 (((-1064 |#1|) $ |#1|) 85 (|has| |#1| (-15 ** (|#1| |#1| (-520))))) (($ $ (-1083) |#2|) NIL (-12 (|has| |#2| (-481 (-1083) |#2|)) (|has| |#1| (-336)))) (($ $ (-586 (-1083)) (-586 |#2|)) NIL (-12 (|has| |#2| (-481 (-1083) |#2|)) (|has| |#1| (-336)))) (($ $ (-586 (-268 |#2|))) NIL (-12 (|has| |#2| (-283 |#2|)) (|has| |#1| (-336)))) (($ $ (-268 |#2|)) NIL (-12 (|has| |#2| (-283 |#2|)) (|has| |#1| (-336)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-283 |#2|)) (|has| |#1| (-336)))) (($ $ (-586 |#2|) (-586 |#2|)) NIL (-12 (|has| |#2| (-283 |#2|)) (|has| |#1| (-336))))) (-3704 (((-706) $) NIL (|has| |#1| (-336)))) (-2543 ((|#1| $ (-520)) 91) (($ $ $) 79 (|has| (-520) (-1024))) (($ $ |#2|) NIL (-12 (|has| |#2| (-260 |#2| |#2|)) (|has| |#1| (-336))))) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) NIL (|has| |#1| (-336)))) (-2155 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-336))) (($ $ (-1 |#2| |#2|) (-706)) NIL (|has| |#1| (-336))) (($ $ (-706)) NIL (-3700 (-12 (|has| |#2| (-209)) (|has| |#1| (-336))) (|has| |#1| (-15 * (|#1| (-520) |#1|))))) (($ $) 137 (-3700 (-12 (|has| |#2| (-209)) (|has| |#1| (-336))) (|has| |#1| (-15 * (|#1| (-520) |#1|))))) (($ $ (-586 (-1083)) (-586 (-706))) NIL (-3700 (-12 (|has| |#2| (-828 (-1083))) (|has| |#1| (-336))) (-12 (|has| |#1| (-15 * (|#1| (-520) |#1|))) (|has| |#1| (-828 (-1083)))))) (($ $ (-1083) (-706)) NIL (-3700 (-12 (|has| |#2| (-828 (-1083))) (|has| |#1| (-336))) (-12 (|has| |#1| (-15 * (|#1| (-520) |#1|))) (|has| |#1| (-828 (-1083)))))) (($ $ (-586 (-1083))) NIL (-3700 (-12 (|has| |#2| (-828 (-1083))) (|has| |#1| (-336))) (-12 (|has| |#1| (-15 * (|#1| (-520) |#1|))) (|has| |#1| (-828 (-1083)))))) (($ $ (-1083)) 140 (-3700 (-12 (|has| |#2| (-828 (-1083))) (|has| |#1| (-336))) (-12 (|has| |#1| (-15 * (|#1| (-520) |#1|))) (|has| |#1| (-828 (-1083))))))) (-3556 (($ $) NIL (|has| |#1| (-336)))) (-2811 ((|#2| $) 152 (|has| |#1| (-336)))) (-2528 (((-520) $) 12)) (-1737 (($ $) 198 (|has| |#1| (-37 (-380 (-520)))))) (-2799 (($ $) 174 (|has| |#1| (-37 (-380 (-520)))))) (-2914 (($ $) 194 (|has| |#1| (-37 (-380 (-520)))))) (-2779 (($ $) 170 (|has| |#1| (-37 (-380 (-520)))))) (-2891 (($ $) 190 (|has| |#1| (-37 (-380 (-520)))))) (-2757 (($ $) 166 (|has| |#1| (-37 (-380 (-520)))))) (-1429 (((-201) $) NIL (-12 (|has| |#2| (-945)) (|has| |#1| (-336)))) (((-352) $) NIL (-12 (|has| |#2| (-945)) (|has| |#1| (-336)))) (((-496) $) NIL (-12 (|has| |#2| (-561 (-496))) (|has| |#1| (-336)))) (((-820 (-352)) $) NIL (-12 (|has| |#2| (-561 (-820 (-352)))) (|has| |#1| (-336)))) (((-820 (-520)) $) NIL (-12 (|has| |#2| (-561 (-820 (-520)))) (|has| |#1| (-336))))) (-3784 (((-3 (-1164 $) "failed") (-626 $)) NIL (-12 (|has| $ (-133)) (|has| |#2| (-837)) (|has| |#1| (-336))))) (-2759 (($ $) 124)) (-2188 (((-791) $) 243) (($ (-520)) 23) (($ |#1|) 21 (|has| |#1| (-157))) (($ |#2|) 20) (($ (-1083)) NIL (-12 (|has| |#2| (-960 (-1083))) (|has| |#1| (-336)))) (($ (-380 (-520))) 155 (|has| |#1| (-37 (-380 (-520))))) (($ $) NIL (|has| |#1| (-512)))) (-3475 ((|#1| $ (-520)) 74)) (-3796 (((-3 $ "failed") $) NIL (-3700 (-12 (|has| $ (-133)) (|has| |#2| (-837)) (|has| |#1| (-336))) (-12 (|has| |#2| (-133)) (|has| |#1| (-336))) (|has| |#1| (-133))))) (-3251 (((-706)) 142)) (-1892 ((|#1| $) 90)) (-3370 ((|#2| $) NIL (-12 (|has| |#2| (-505)) (|has| |#1| (-336))))) (-1758 (($ $) 204 (|has| |#1| (-37 (-380 (-520)))))) (-2831 (($ $) 180 (|has| |#1| (-37 (-380 (-520)))))) (-2559 (((-108) $ $) NIL (|has| |#1| (-512)))) (-1744 (($ $) 200 (|has| |#1| (-37 (-380 (-520)))))) (-2810 (($ $) 176 (|has| |#1| (-37 (-380 (-520)))))) (-1775 (($ $) 208 (|has| |#1| (-37 (-380 (-520)))))) (-2855 (($ $) 184 (|has| |#1| (-37 (-380 (-520)))))) (-3890 ((|#1| $ (-520)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-520)))) (|has| |#1| (-15 -2188 (|#1| (-1083))))))) (-3915 (($ $) 210 (|has| |#1| (-37 (-380 (-520)))))) (-2867 (($ $) 186 (|has| |#1| (-37 (-380 (-520)))))) (-1767 (($ $) 206 (|has| |#1| (-37 (-380 (-520)))))) (-2843 (($ $) 182 (|has| |#1| (-37 (-380 (-520)))))) (-1751 (($ $) 202 (|has| |#1| (-37 (-380 (-520)))))) (-2820 (($ $) 178 (|has| |#1| (-37 (-380 (-520)))))) (-2458 (($ $) NIL (-12 (|has| |#2| (-756)) (|has| |#1| (-336))))) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL (|has| |#1| (-336)))) (-3560 (($) 13 T CONST)) (-3570 (($) 17 T CONST)) (-2211 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-336))) (($ $ (-1 |#2| |#2|) (-706)) NIL (|has| |#1| (-336))) (($ $ (-706)) NIL (-3700 (-12 (|has| |#2| (-209)) (|has| |#1| (-336))) (|has| |#1| (-15 * (|#1| (-520) |#1|))))) (($ $) NIL (-3700 (-12 (|has| |#2| (-209)) (|has| |#1| (-336))) (|has| |#1| (-15 * (|#1| (-520) |#1|))))) (($ $ (-586 (-1083)) (-586 (-706))) NIL (-3700 (-12 (|has| |#2| (-828 (-1083))) (|has| |#1| (-336))) (-12 (|has| |#1| (-15 * (|#1| (-520) |#1|))) (|has| |#1| (-828 (-1083)))))) (($ $ (-1083) (-706)) NIL (-3700 (-12 (|has| |#2| (-828 (-1083))) (|has| |#1| (-336))) (-12 (|has| |#1| (-15 * (|#1| (-520) |#1|))) (|has| |#1| (-828 (-1083)))))) (($ $ (-586 (-1083))) NIL (-3700 (-12 (|has| |#2| (-828 (-1083))) (|has| |#1| (-336))) (-12 (|has| |#1| (-15 * (|#1| (-520) |#1|))) (|has| |#1| (-828 (-1083)))))) (($ $ (-1083)) NIL (-3700 (-12 (|has| |#2| (-828 (-1083))) (|has| |#1| (-336))) (-12 (|has| |#1| (-15 * (|#1| (-520) |#1|))) (|has| |#1| (-828 (-1083))))))) (-1573 (((-108) $ $) NIL (-12 (|has| |#2| (-783)) (|has| |#1| (-336))))) (-1557 (((-108) $ $) NIL (-12 (|has| |#2| (-783)) (|has| |#1| (-336))))) (-1530 (((-108) $ $) 63)) (-1565 (((-108) $ $) NIL (-12 (|has| |#2| (-783)) (|has| |#1| (-336))))) (-1548 (((-108) $ $) NIL (-12 (|has| |#2| (-783)) (|has| |#1| (-336))))) (-1619 (($ $ |#1|) NIL (|has| |#1| (-336))) (($ $ $) 149 (|has| |#1| (-336))) (($ |#2| |#2|) 150 (|has| |#1| (-336)))) (-1611 (($ $) 213) (($ $ $) 68)) (-1601 (($ $ $) 66)) (** (($ $ (-849)) NIL) (($ $ (-706)) 73) (($ $ (-520)) 146 (|has| |#1| (-336))) (($ $ $) NIL (|has| |#1| (-37 (-380 (-520))))) (($ $ (-380 (-520))) 158 (|has| |#1| (-37 (-380 (-520)))))) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 139) (($ $ |#2|) 148 (|has| |#1| (-336))) (($ |#2| $) 147 (|has| |#1| (-336))) (($ (-380 (-520)) $) NIL (|has| |#1| (-37 (-380 (-520))))) (($ $ (-380 (-520))) NIL (|has| |#1| (-37 (-380 (-520)))))))
-(((-1127 |#1| |#2|) (-1126 |#1| |#2|) (-969) (-1155 |#1|)) (T -1127))
-NIL
-(-1126 |#1| |#2|)
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-4040 (((-1156 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-281)) (|has| |#1| (-336))))) (-4081 (((-586 (-997)) $) NIL)) (-1610 (((-1083) $) 10)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) NIL (-3700 (-12 (|has| (-1156 |#1| |#2| |#3|) (-756)) (|has| |#1| (-336))) (-12 (|has| (-1156 |#1| |#2| |#3|) (-837)) (|has| |#1| (-336))) (|has| |#1| (-512))))) (-2583 (($ $) NIL (-3700 (-12 (|has| (-1156 |#1| |#2| |#3|) (-756)) (|has| |#1| (-336))) (-12 (|has| (-1156 |#1| |#2| |#3|) (-837)) (|has| |#1| (-336))) (|has| |#1| (-512))))) (-1671 (((-108) $) NIL (-3700 (-12 (|has| (-1156 |#1| |#2| |#3|) (-756)) (|has| |#1| (-336))) (-12 (|has| (-1156 |#1| |#2| |#3|) (-837)) (|has| |#1| (-336))) (|has| |#1| (-512))))) (-2406 (($ $ (-520)) NIL) (($ $ (-520) (-520)) NIL)) (-2088 (((-1064 (-2 (|:| |k| (-520)) (|:| |c| |#1|))) $) NIL)) (-4010 (((-1156 |#1| |#2| |#3|) $) NIL)) (-2486 (((-3 (-1156 |#1| |#2| |#3|) "failed") $) NIL)) (-3053 (((-1156 |#1| |#2| |#3|) $) NIL)) (-2903 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2768 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-1917 (((-3 $ "failed") $ $) NIL)) (-4119 (((-391 (-1079 $)) (-1079 $)) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-837)) (|has| |#1| (-336))))) (-3024 (($ $) NIL (|has| |#1| (-336)))) (-1507 (((-391 $) $) NIL (|has| |#1| (-336)))) (-1927 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-3481 (((-3 (-586 (-1079 $)) "failed") (-586 (-1079 $)) (-1079 $)) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-837)) (|has| |#1| (-336))))) (-1327 (((-108) $ $) NIL (|has| |#1| (-336)))) (-2879 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2745 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2804 (((-520) $) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-756)) (|has| |#1| (-336))))) (-2769 (($ (-1064 (-2 (|:| |k| (-520)) (|:| |c| |#1|)))) NIL)) (-2925 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2789 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-3961 (($) NIL T CONST)) (-1296 (((-3 (-1156 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1083) "failed") $) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-960 (-1083))) (|has| |#1| (-336)))) (((-3 (-380 (-520)) "failed") $) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-960 (-520))) (|has| |#1| (-336)))) (((-3 (-520) "failed") $) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-960 (-520))) (|has| |#1| (-336))))) (-1482 (((-1156 |#1| |#2| |#3|) $) NIL) (((-1083) $) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-960 (-1083))) (|has| |#1| (-336)))) (((-380 (-520)) $) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-960 (-520))) (|has| |#1| (-336)))) (((-520) $) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-960 (-520))) (|has| |#1| (-336))))) (-2243 (($ $) NIL) (($ (-520) $) NIL)) (-2276 (($ $ $) NIL (|has| |#1| (-336)))) (-3150 (($ $) NIL)) (-2756 (((-626 (-1156 |#1| |#2| |#3|)) (-626 $)) NIL (|has| |#1| (-336))) (((-2 (|:| -3927 (-626 (-1156 |#1| |#2| |#3|))) (|:| |vec| (-1164 (-1156 |#1| |#2| |#3|)))) (-626 $) (-1164 $)) NIL (|has| |#1| (-336))) (((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 $) (-1164 $)) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-582 (-520))) (|has| |#1| (-336)))) (((-626 (-520)) (-626 $)) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-582 (-520))) (|has| |#1| (-336))))) (-1540 (((-3 $ "failed") $) NIL)) (-1570 (((-380 (-880 |#1|)) $ (-520)) NIL (|has| |#1| (-512))) (((-380 (-880 |#1|)) $ (-520) (-520)) NIL (|has| |#1| (-512)))) (-3249 (($) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-505)) (|has| |#1| (-336))))) (-2253 (($ $ $) NIL (|has| |#1| (-336)))) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) NIL (|has| |#1| (-336)))) (-2036 (((-108) $) NIL (|has| |#1| (-336)))) (-2328 (((-108) $) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-756)) (|has| |#1| (-336))))) (-1342 (((-108) $) NIL)) (-2833 (($) NIL (|has| |#1| (-37 (-380 (-520)))))) (-1272 (((-817 (-520) $) $ (-820 (-520)) (-817 (-520) $)) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-814 (-520))) (|has| |#1| (-336)))) (((-817 (-352) $) $ (-820 (-352)) (-817 (-352) $)) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-814 (-352))) (|has| |#1| (-336))))) (-3989 (((-520) $) NIL) (((-520) $ (-520)) NIL)) (-1537 (((-108) $) NIL)) (-4115 (($ $) NIL (|has| |#1| (-336)))) (-2800 (((-1156 |#1| |#2| |#3|) $) NIL (|has| |#1| (-336)))) (-2322 (($ $ (-520)) NIL (|has| |#1| (-37 (-380 (-520)))))) (-1394 (((-3 $ "failed") $) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-1059)) (|has| |#1| (-336))))) (-3469 (((-108) $) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-756)) (|has| |#1| (-336))))) (-2371 (($ $ (-849)) NIL)) (-1306 (($ (-1 |#1| (-520)) $) NIL)) (-3188 (((-3 (-586 $) "failed") (-586 $) $) NIL (|has| |#1| (-336)))) (-3774 (((-108) $) NIL)) (-4039 (($ |#1| (-520)) 17) (($ $ (-997) (-520)) NIL) (($ $ (-586 (-997)) (-586 (-520))) NIL)) (-2809 (($ $ $) NIL (-3700 (-12 (|has| (-1156 |#1| |#2| |#3|) (-756)) (|has| |#1| (-336))) (-12 (|has| (-1156 |#1| |#2| |#3|) (-783)) (|has| |#1| (-336)))))) (-2446 (($ $ $) NIL (-3700 (-12 (|has| (-1156 |#1| |#2| |#3|) (-756)) (|has| |#1| (-336))) (-12 (|has| (-1156 |#1| |#2| |#3|) (-783)) (|has| |#1| (-336)))))) (-1389 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1156 |#1| |#2| |#3|) (-1156 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-336)))) (-1252 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-3123 (($ $) NIL)) (-3133 ((|#1| $) NIL)) (-2222 (($ (-586 $)) NIL (|has| |#1| (-336))) (($ $ $) NIL (|has| |#1| (-336)))) (-3063 (($ (-520) (-1156 |#1| |#2| |#3|)) NIL)) (-1239 (((-1066) $) NIL)) (-3093 (($ $) NIL (|has| |#1| (-336)))) (-3517 (($ $) 25 (|has| |#1| (-37 (-380 (-520))))) (($ $ (-1083)) NIL (-3700 (-12 (|has| |#1| (-15 -3517 (|#1| |#1| (-1083)))) (|has| |#1| (-15 -4081 ((-586 (-1083)) |#1|))) (|has| |#1| (-37 (-380 (-520))))) (-12 (|has| |#1| (-29 (-520))) (|has| |#1| (-37 (-380 (-520)))) (|has| |#1| (-886)) (|has| |#1| (-1104))))) (($ $ (-1160 |#2|)) 26 (|has| |#1| (-37 (-380 (-520)))))) (-3794 (($) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-1059)) (|has| |#1| (-336))) CONST)) (-4142 (((-1030) $) NIL)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) NIL (|has| |#1| (-336)))) (-2257 (($ (-586 $)) NIL (|has| |#1| (-336))) (($ $ $) NIL (|has| |#1| (-336)))) (-4122 (($ $) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-281)) (|has| |#1| (-336))))) (-1626 (((-1156 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-505)) (|has| |#1| (-336))))) (-4133 (((-391 (-1079 $)) (-1079 $)) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-837)) (|has| |#1| (-336))))) (-2017 (((-391 (-1079 $)) (-1079 $)) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-837)) (|has| |#1| (-336))))) (-1916 (((-391 $) $) NIL (|has| |#1| (-336)))) (-1283 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-336))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) NIL (|has| |#1| (-336)))) (-2116 (($ $ (-520)) NIL)) (-2230 (((-3 $ "failed") $ $) NIL (-3700 (-12 (|has| (-1156 |#1| |#2| |#3|) (-756)) (|has| |#1| (-336))) (-12 (|has| (-1156 |#1| |#2| |#3|) (-837)) (|has| |#1| (-336))) (|has| |#1| (-512))))) (-2608 (((-3 (-586 $) "failed") (-586 $) $) NIL (|has| |#1| (-336)))) (-3260 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2286 (((-1064 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-520))))) (($ $ (-1083) (-1156 |#1| |#2| |#3|)) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-481 (-1083) (-1156 |#1| |#2| |#3|))) (|has| |#1| (-336)))) (($ $ (-586 (-1083)) (-586 (-1156 |#1| |#2| |#3|))) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-481 (-1083) (-1156 |#1| |#2| |#3|))) (|has| |#1| (-336)))) (($ $ (-586 (-268 (-1156 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-283 (-1156 |#1| |#2| |#3|))) (|has| |#1| (-336)))) (($ $ (-268 (-1156 |#1| |#2| |#3|))) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-283 (-1156 |#1| |#2| |#3|))) (|has| |#1| (-336)))) (($ $ (-1156 |#1| |#2| |#3|) (-1156 |#1| |#2| |#3|)) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-283 (-1156 |#1| |#2| |#3|))) (|has| |#1| (-336)))) (($ $ (-586 (-1156 |#1| |#2| |#3|)) (-586 (-1156 |#1| |#2| |#3|))) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-283 (-1156 |#1| |#2| |#3|))) (|has| |#1| (-336))))) (-3704 (((-706) $) NIL (|has| |#1| (-336)))) (-2543 ((|#1| $ (-520)) NIL) (($ $ $) NIL (|has| (-520) (-1024))) (($ $ (-1156 |#1| |#2| |#3|)) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-260 (-1156 |#1| |#2| |#3|) (-1156 |#1| |#2| |#3|))) (|has| |#1| (-336))))) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) NIL (|has| |#1| (-336)))) (-2155 (($ $ (-1 (-1156 |#1| |#2| |#3|) (-1156 |#1| |#2| |#3|))) NIL (|has| |#1| (-336))) (($ $ (-1 (-1156 |#1| |#2| |#3|) (-1156 |#1| |#2| |#3|)) (-706)) NIL (|has| |#1| (-336))) (($ $ (-1160 |#2|)) 24) (($ $ (-706)) NIL (-3700 (-12 (|has| (-1156 |#1| |#2| |#3|) (-209)) (|has| |#1| (-336))) (|has| |#1| (-15 * (|#1| (-520) |#1|))))) (($ $) 23 (-3700 (-12 (|has| (-1156 |#1| |#2| |#3|) (-209)) (|has| |#1| (-336))) (|has| |#1| (-15 * (|#1| (-520) |#1|))))) (($ $ (-586 (-1083)) (-586 (-706))) NIL (-3700 (-12 (|has| (-1156 |#1| |#2| |#3|) (-828 (-1083))) (|has| |#1| (-336))) (-12 (|has| |#1| (-15 * (|#1| (-520) |#1|))) (|has| |#1| (-828 (-1083)))))) (($ $ (-1083) (-706)) NIL (-3700 (-12 (|has| (-1156 |#1| |#2| |#3|) (-828 (-1083))) (|has| |#1| (-336))) (-12 (|has| |#1| (-15 * (|#1| (-520) |#1|))) (|has| |#1| (-828 (-1083)))))) (($ $ (-586 (-1083))) NIL (-3700 (-12 (|has| (-1156 |#1| |#2| |#3|) (-828 (-1083))) (|has| |#1| (-336))) (-12 (|has| |#1| (-15 * (|#1| (-520) |#1|))) (|has| |#1| (-828 (-1083)))))) (($ $ (-1083)) NIL (-3700 (-12 (|has| (-1156 |#1| |#2| |#3|) (-828 (-1083))) (|has| |#1| (-336))) (-12 (|has| |#1| (-15 * (|#1| (-520) |#1|))) (|has| |#1| (-828 (-1083))))))) (-3556 (($ $) NIL (|has| |#1| (-336)))) (-2811 (((-1156 |#1| |#2| |#3|) $) NIL (|has| |#1| (-336)))) (-2528 (((-520) $) NIL)) (-1737 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2799 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2914 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2779 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2891 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2757 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-1429 (((-496) $) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-561 (-496))) (|has| |#1| (-336)))) (((-352) $) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-945)) (|has| |#1| (-336)))) (((-201) $) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-945)) (|has| |#1| (-336)))) (((-820 (-352)) $) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-561 (-820 (-352)))) (|has| |#1| (-336)))) (((-820 (-520)) $) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-561 (-820 (-520)))) (|has| |#1| (-336))))) (-3784 (((-3 (-1164 $) "failed") (-626 $)) NIL (-12 (|has| $ (-133)) (|has| (-1156 |#1| |#2| |#3|) (-837)) (|has| |#1| (-336))))) (-2759 (($ $) NIL)) (-2188 (((-791) $) NIL) (($ (-520)) NIL) (($ |#1|) NIL (|has| |#1| (-157))) (($ (-1156 |#1| |#2| |#3|)) NIL) (($ (-1160 |#2|)) 22) (($ (-1083)) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-960 (-1083))) (|has| |#1| (-336)))) (($ $) NIL (-3700 (-12 (|has| (-1156 |#1| |#2| |#3|) (-756)) (|has| |#1| (-336))) (-12 (|has| (-1156 |#1| |#2| |#3|) (-837)) (|has| |#1| (-336))) (|has| |#1| (-512)))) (($ (-380 (-520))) NIL (-3700 (-12 (|has| (-1156 |#1| |#2| |#3|) (-960 (-520))) (|has| |#1| (-336))) (|has| |#1| (-37 (-380 (-520))))))) (-3475 ((|#1| $ (-520)) NIL)) (-3796 (((-3 $ "failed") $) NIL (-3700 (-12 (|has| $ (-133)) (|has| (-1156 |#1| |#2| |#3|) (-837)) (|has| |#1| (-336))) (-12 (|has| (-1156 |#1| |#2| |#3|) (-133)) (|has| |#1| (-336))) (|has| |#1| (-133))))) (-3251 (((-706)) NIL)) (-1892 ((|#1| $) 11)) (-3370 (((-1156 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-505)) (|has| |#1| (-336))))) (-1758 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2831 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2559 (((-108) $ $) NIL (-3700 (-12 (|has| (-1156 |#1| |#2| |#3|) (-756)) (|has| |#1| (-336))) (-12 (|has| (-1156 |#1| |#2| |#3|) (-837)) (|has| |#1| (-336))) (|has| |#1| (-512))))) (-1744 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2810 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-1775 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2855 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-3890 ((|#1| $ (-520)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-520)))) (|has| |#1| (-15 -2188 (|#1| (-1083))))))) (-3915 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2867 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-1767 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2843 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-1751 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2820 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2458 (($ $) NIL (-12 (|has| (-1156 |#1| |#2| |#3|) (-756)) (|has| |#1| (-336))))) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL (|has| |#1| (-336)))) (-3560 (($) 19 T CONST)) (-3570 (($) 15 T CONST)) (-2211 (($ $ (-1 (-1156 |#1| |#2| |#3|) (-1156 |#1| |#2| |#3|))) NIL (|has| |#1| (-336))) (($ $ (-1 (-1156 |#1| |#2| |#3|) (-1156 |#1| |#2| |#3|)) (-706)) NIL (|has| |#1| (-336))) (($ $ (-706)) NIL (-3700 (-12 (|has| (-1156 |#1| |#2| |#3|) (-209)) (|has| |#1| (-336))) (|has| |#1| (-15 * (|#1| (-520) |#1|))))) (($ $) NIL (-3700 (-12 (|has| (-1156 |#1| |#2| |#3|) (-209)) (|has| |#1| (-336))) (|has| |#1| (-15 * (|#1| (-520) |#1|))))) (($ $ (-586 (-1083)) (-586 (-706))) NIL (-3700 (-12 (|has| (-1156 |#1| |#2| |#3|) (-828 (-1083))) (|has| |#1| (-336))) (-12 (|has| |#1| (-15 * (|#1| (-520) |#1|))) (|has| |#1| (-828 (-1083)))))) (($ $ (-1083) (-706)) NIL (-3700 (-12 (|has| (-1156 |#1| |#2| |#3|) (-828 (-1083))) (|has| |#1| (-336))) (-12 (|has| |#1| (-15 * (|#1| (-520) |#1|))) (|has| |#1| (-828 (-1083)))))) (($ $ (-586 (-1083))) NIL (-3700 (-12 (|has| (-1156 |#1| |#2| |#3|) (-828 (-1083))) (|has| |#1| (-336))) (-12 (|has| |#1| (-15 * (|#1| (-520) |#1|))) (|has| |#1| (-828 (-1083)))))) (($ $ (-1083)) NIL (-3700 (-12 (|has| (-1156 |#1| |#2| |#3|) (-828 (-1083))) (|has| |#1| (-336))) (-12 (|has| |#1| (-15 * (|#1| (-520) |#1|))) (|has| |#1| (-828 (-1083))))))) (-1573 (((-108) $ $) NIL (-3700 (-12 (|has| (-1156 |#1| |#2| |#3|) (-756)) (|has| |#1| (-336))) (-12 (|has| (-1156 |#1| |#2| |#3|) (-783)) (|has| |#1| (-336)))))) (-1557 (((-108) $ $) NIL (-3700 (-12 (|has| (-1156 |#1| |#2| |#3|) (-756)) (|has| |#1| (-336))) (-12 (|has| (-1156 |#1| |#2| |#3|) (-783)) (|has| |#1| (-336)))))) (-1530 (((-108) $ $) NIL)) (-1565 (((-108) $ $) NIL (-3700 (-12 (|has| (-1156 |#1| |#2| |#3|) (-756)) (|has| |#1| (-336))) (-12 (|has| (-1156 |#1| |#2| |#3|) (-783)) (|has| |#1| (-336)))))) (-1548 (((-108) $ $) NIL (-3700 (-12 (|has| (-1156 |#1| |#2| |#3|) (-756)) (|has| |#1| (-336))) (-12 (|has| (-1156 |#1| |#2| |#3|) (-783)) (|has| |#1| (-336)))))) (-1619 (($ $ |#1|) NIL (|has| |#1| (-336))) (($ $ $) NIL (|has| |#1| (-336))) (($ (-1156 |#1| |#2| |#3|) (-1156 |#1| |#2| |#3|)) NIL (|has| |#1| (-336)))) (-1611 (($ $) NIL) (($ $ $) NIL)) (-1601 (($ $ $) 20)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL (|has| |#1| (-336))) (($ $ $) NIL (|has| |#1| (-37 (-380 (-520))))) (($ $ (-380 (-520))) NIL (|has| |#1| (-37 (-380 (-520)))))) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1156 |#1| |#2| |#3|)) NIL (|has| |#1| (-336))) (($ (-1156 |#1| |#2| |#3|) $) NIL (|has| |#1| (-336))) (($ (-380 (-520)) $) NIL (|has| |#1| (-37 (-380 (-520))))) (($ $ (-380 (-520))) NIL (|has| |#1| (-37 (-380 (-520)))))))
-(((-1128 |#1| |#2| |#3|) (-13 (-1126 |#1| (-1156 |#1| |#2| |#3|)) (-10 -8 (-15 -2188 ($ (-1160 |#2|))) (-15 -2155 ($ $ (-1160 |#2|))) (IF (|has| |#1| (-37 (-380 (-520)))) (-15 -3517 ($ $ (-1160 |#2|))) |%noBranch|))) (-969) (-1083) |#1|) (T -1128))
-((-2188 (*1 *1 *2) (-12 (-5 *2 (-1160 *4)) (-14 *4 (-1083)) (-5 *1 (-1128 *3 *4 *5)) (-4 *3 (-969)) (-14 *5 *3))) (-2155 (*1 *1 *1 *2) (-12 (-5 *2 (-1160 *4)) (-14 *4 (-1083)) (-5 *1 (-1128 *3 *4 *5)) (-4 *3 (-969)) (-14 *5 *3))) (-3517 (*1 *1 *1 *2) (-12 (-5 *2 (-1160 *4)) (-14 *4 (-1083)) (-5 *1 (-1128 *3 *4 *5)) (-4 *3 (-37 (-380 (-520)))) (-4 *3 (-969)) (-14 *5 *3))))
-(-13 (-1126 |#1| (-1156 |#1| |#2| |#3|)) (-10 -8 (-15 -2188 ($ (-1160 |#2|))) (-15 -2155 ($ $ (-1160 |#2|))) (IF (|has| |#1| (-37 (-380 (-520)))) (-15 -3517 ($ $ (-1160 |#2|))) |%noBranch|)))
-((-1513 (((-2 (|:| |contp| (-520)) (|:| -3493 (-586 (-2 (|:| |irr| |#1|) (|:| -2421 (-520)))))) |#1| (-108)) 10)) (-3257 (((-391 |#1|) |#1|) 21)) (-1916 (((-391 |#1|) |#1|) 20)))
-(((-1129 |#1|) (-10 -7 (-15 -1916 ((-391 |#1|) |#1|)) (-15 -3257 ((-391 |#1|) |#1|)) (-15 -1513 ((-2 (|:| |contp| (-520)) (|:| -3493 (-586 (-2 (|:| |irr| |#1|) (|:| -2421 (-520)))))) |#1| (-108)))) (-1140 (-520))) (T -1129))
-((-1513 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-5 *2 (-2 (|:| |contp| (-520)) (|:| -3493 (-586 (-2 (|:| |irr| *3) (|:| -2421 (-520))))))) (-5 *1 (-1129 *3)) (-4 *3 (-1140 (-520))))) (-3257 (*1 *2 *3) (-12 (-5 *2 (-391 *3)) (-5 *1 (-1129 *3)) (-4 *3 (-1140 (-520))))) (-1916 (*1 *2 *3) (-12 (-5 *2 (-391 *3)) (-5 *1 (-1129 *3)) (-4 *3 (-1140 (-520))))))
-(-10 -7 (-15 -1916 ((-391 |#1|) |#1|)) (-15 -3257 ((-391 |#1|) |#1|)) (-15 -1513 ((-2 (|:| |contp| (-520)) (|:| -3493 (-586 (-2 (|:| |irr| |#1|) (|:| -2421 (-520)))))) |#1| (-108))))
-((-1389 (((-1064 |#2|) (-1 |#2| |#1|) (-1131 |#1|)) 23 (|has| |#1| (-781))) (((-1131 |#2|) (-1 |#2| |#1|) (-1131 |#1|)) 17)))
-(((-1130 |#1| |#2|) (-10 -7 (-15 -1389 ((-1131 |#2|) (-1 |#2| |#1|) (-1131 |#1|))) (IF (|has| |#1| (-781)) (-15 -1389 ((-1064 |#2|) (-1 |#2| |#1|) (-1131 |#1|))) |%noBranch|)) (-1118) (-1118)) (T -1130))
-((-1389 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1131 *5)) (-4 *5 (-781)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-5 *2 (-1064 *6)) (-5 *1 (-1130 *5 *6)))) (-1389 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1131 *5)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-5 *2 (-1131 *6)) (-5 *1 (-1130 *5 *6)))))
-(-10 -7 (-15 -1389 ((-1131 |#2|) (-1 |#2| |#1|) (-1131 |#1|))) (IF (|has| |#1| (-781)) (-15 -1389 ((-1064 |#2|) (-1 |#2| |#1|) (-1131 |#1|))) |%noBranch|))
-((-1414 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-1538 (($ |#1| |#1|) 9) (($ |#1|) 8)) (-1389 (((-1064 |#1|) (-1 |#1| |#1|) $) 41 (|has| |#1| (-781)))) (-2205 ((|#1| $) 14)) (-1448 ((|#1| $) 10)) (-1239 (((-1066) $) NIL (|has| |#1| (-1012)))) (-1459 (((-520) $) 18)) (-3609 ((|#1| $) 17)) (-1469 ((|#1| $) 11)) (-4142 (((-1030) $) NIL (|has| |#1| (-1012)))) (-4163 (((-108) $) 16)) (-1603 (((-1064 |#1|) $) 38 (|has| |#1| (-781))) (((-1064 |#1|) (-586 $)) 37 (|has| |#1| (-781)))) (-1429 (($ |#1|) 25)) (-2188 (($ (-1007 |#1|)) 24) (((-791) $) 34 (|has| |#1| (-1012)))) (-1672 (($ |#1| |#1|) 20) (($ |#1|) 19)) (-1344 (($ $ (-520)) 13)) (-1530 (((-108) $ $) 27 (|has| |#1| (-1012)))))
-(((-1131 |#1|) (-13 (-1006 |#1|) (-10 -8 (-15 -1672 ($ |#1|)) (-15 -1538 ($ |#1|)) (-15 -2188 ($ (-1007 |#1|))) (-15 -4163 ((-108) $)) (IF (|has| |#1| (-1012)) (-6 (-1012)) |%noBranch|) (IF (|has| |#1| (-781)) (-6 (-1008 |#1| (-1064 |#1|))) |%noBranch|))) (-1118)) (T -1131))
-((-1672 (*1 *1 *2) (-12 (-5 *1 (-1131 *2)) (-4 *2 (-1118)))) (-1538 (*1 *1 *2) (-12 (-5 *1 (-1131 *2)) (-4 *2 (-1118)))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-1007 *3)) (-4 *3 (-1118)) (-5 *1 (-1131 *3)))) (-4163 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1131 *3)) (-4 *3 (-1118)))))
-(-13 (-1006 |#1|) (-10 -8 (-15 -1672 ($ |#1|)) (-15 -1538 ($ |#1|)) (-15 -2188 ($ (-1007 |#1|))) (-15 -4163 ((-108) $)) (IF (|has| |#1| (-1012)) (-6 (-1012)) |%noBranch|) (IF (|has| |#1| (-781)) (-6 (-1008 |#1| (-1064 |#1|))) |%noBranch|)))
-((-1389 (((-1137 |#3| |#4|) (-1 |#4| |#2|) (-1137 |#1| |#2|)) 15)))
-(((-1132 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1389 ((-1137 |#3| |#4|) (-1 |#4| |#2|) (-1137 |#1| |#2|)))) (-1083) (-969) (-1083) (-969)) (T -1132))
-((-1389 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1137 *5 *6)) (-14 *5 (-1083)) (-4 *6 (-969)) (-4 *8 (-969)) (-5 *2 (-1137 *7 *8)) (-5 *1 (-1132 *5 *6 *7 *8)) (-14 *7 (-1083)))))
-(-10 -7 (-15 -1389 ((-1137 |#3| |#4|) (-1 |#4| |#2|) (-1137 |#1| |#2|))))
-((-3029 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-2412 ((|#1| |#3|) 13)) (-1387 ((|#3| |#3|) 19)))
-(((-1133 |#1| |#2| |#3|) (-10 -7 (-15 -2412 (|#1| |#3|)) (-15 -1387 (|#3| |#3|)) (-15 -3029 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-512) (-917 |#1|) (-1140 |#2|)) (T -1133))
-((-3029 (*1 *2 *3) (-12 (-4 *4 (-512)) (-4 *5 (-917 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1133 *4 *5 *3)) (-4 *3 (-1140 *5)))) (-1387 (*1 *2 *2) (-12 (-4 *3 (-512)) (-4 *4 (-917 *3)) (-5 *1 (-1133 *3 *4 *2)) (-4 *2 (-1140 *4)))) (-2412 (*1 *2 *3) (-12 (-4 *4 (-917 *2)) (-4 *2 (-512)) (-5 *1 (-1133 *2 *4 *3)) (-4 *3 (-1140 *4)))))
-(-10 -7 (-15 -2412 (|#1| |#3|)) (-15 -1387 (|#3| |#3|)) (-15 -3029 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
-((-1310 (((-3 |#2| "failed") |#2| (-706) |#1|) 29)) (-1282 (((-3 |#2| "failed") |#2| (-706)) 30)) (-1941 (((-3 (-2 (|:| -1912 |#2|) (|:| -1924 |#2|)) "failed") |#2|) 43)) (-2814 (((-586 |#2|) |#2|) 45)) (-1226 (((-3 |#2| "failed") |#2| |#2|) 40)))
-(((-1134 |#1| |#2|) (-10 -7 (-15 -1282 ((-3 |#2| "failed") |#2| (-706))) (-15 -1310 ((-3 |#2| "failed") |#2| (-706) |#1|)) (-15 -1226 ((-3 |#2| "failed") |#2| |#2|)) (-15 -1941 ((-3 (-2 (|:| -1912 |#2|) (|:| -1924 |#2|)) "failed") |#2|)) (-15 -2814 ((-586 |#2|) |#2|))) (-13 (-512) (-135)) (-1140 |#1|)) (T -1134))
-((-2814 (*1 *2 *3) (-12 (-4 *4 (-13 (-512) (-135))) (-5 *2 (-586 *3)) (-5 *1 (-1134 *4 *3)) (-4 *3 (-1140 *4)))) (-1941 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-512) (-135))) (-5 *2 (-2 (|:| -1912 *3) (|:| -1924 *3))) (-5 *1 (-1134 *4 *3)) (-4 *3 (-1140 *4)))) (-1226 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-512) (-135))) (-5 *1 (-1134 *3 *2)) (-4 *2 (-1140 *3)))) (-1310 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-706)) (-4 *4 (-13 (-512) (-135))) (-5 *1 (-1134 *4 *2)) (-4 *2 (-1140 *4)))) (-1282 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-706)) (-4 *4 (-13 (-512) (-135))) (-5 *1 (-1134 *4 *2)) (-4 *2 (-1140 *4)))))
-(-10 -7 (-15 -1282 ((-3 |#2| "failed") |#2| (-706))) (-15 -1310 ((-3 |#2| "failed") |#2| (-706) |#1|)) (-15 -1226 ((-3 |#2| "failed") |#2| |#2|)) (-15 -1941 ((-3 (-2 (|:| -1912 |#2|) (|:| -1924 |#2|)) "failed") |#2|)) (-15 -2814 ((-586 |#2|) |#2|)))
-((-1358 (((-3 (-2 (|:| -2060 |#2|) (|:| -3753 |#2|)) "failed") |#2| |#2|) 32)))
-(((-1135 |#1| |#2|) (-10 -7 (-15 -1358 ((-3 (-2 (|:| -2060 |#2|) (|:| -3753 |#2|)) "failed") |#2| |#2|))) (-512) (-1140 |#1|)) (T -1135))
-((-1358 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-512)) (-5 *2 (-2 (|:| -2060 *3) (|:| -3753 *3))) (-5 *1 (-1135 *4 *3)) (-4 *3 (-1140 *4)))))
-(-10 -7 (-15 -1358 ((-3 (-2 (|:| -2060 |#2|) (|:| -3753 |#2|)) "failed") |#2| |#2|)))
-((-3574 ((|#2| |#2| |#2|) 19)) (-4075 ((|#2| |#2| |#2|) 30)) (-3354 ((|#2| |#2| |#2| (-706) (-706)) 36)))
-(((-1136 |#1| |#2|) (-10 -7 (-15 -3574 (|#2| |#2| |#2|)) (-15 -4075 (|#2| |#2| |#2|)) (-15 -3354 (|#2| |#2| |#2| (-706) (-706)))) (-969) (-1140 |#1|)) (T -1136))
-((-3354 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-706)) (-4 *4 (-969)) (-5 *1 (-1136 *4 *2)) (-4 *2 (-1140 *4)))) (-4075 (*1 *2 *2 *2) (-12 (-4 *3 (-969)) (-5 *1 (-1136 *3 *2)) (-4 *2 (-1140 *3)))) (-3574 (*1 *2 *2 *2) (-12 (-4 *3 (-969)) (-5 *1 (-1136 *3 *2)) (-4 *2 (-1140 *3)))))
-(-10 -7 (-15 -3574 (|#2| |#2| |#2|)) (-15 -4075 (|#2| |#2| |#2|)) (-15 -3354 (|#2| |#2| |#2| (-706) (-706))))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-2580 (((-1164 |#2|) $ (-706)) NIL)) (-4081 (((-586 (-997)) $) NIL)) (-2083 (($ (-1079 |#2|)) NIL)) (-1278 (((-1079 $) $ (-997)) NIL) (((-1079 |#2|) $) NIL)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) NIL (|has| |#2| (-512)))) (-2583 (($ $) NIL (|has| |#2| (-512)))) (-1671 (((-108) $) NIL (|has| |#2| (-512)))) (-3665 (((-706) $) NIL) (((-706) $ (-586 (-997))) NIL)) (-1917 (((-3 $ "failed") $ $) NIL)) (-3309 (($ $ $) NIL (|has| |#2| (-512)))) (-4119 (((-391 (-1079 $)) (-1079 $)) NIL (|has| |#2| (-837)))) (-3024 (($ $) NIL (|has| |#2| (-424)))) (-1507 (((-391 $) $) NIL (|has| |#2| (-424)))) (-3481 (((-3 (-586 (-1079 $)) "failed") (-586 (-1079 $)) (-1079 $)) NIL (|has| |#2| (-837)))) (-1327 (((-108) $ $) NIL (|has| |#2| (-336)))) (-3392 (($ $ (-706)) NIL)) (-1371 (($ $ (-706)) NIL)) (-1285 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-424)))) (-3961 (($) NIL T CONST)) (-1296 (((-3 |#2| "failed") $) NIL) (((-3 (-380 (-520)) "failed") $) NIL (|has| |#2| (-960 (-380 (-520))))) (((-3 (-520) "failed") $) NIL (|has| |#2| (-960 (-520)))) (((-3 (-997) "failed") $) NIL)) (-1482 ((|#2| $) NIL) (((-380 (-520)) $) NIL (|has| |#2| (-960 (-380 (-520))))) (((-520) $) NIL (|has| |#2| (-960 (-520)))) (((-997) $) NIL)) (-2413 (($ $ $ (-997)) NIL (|has| |#2| (-157))) ((|#2| $ $) NIL (|has| |#2| (-157)))) (-2276 (($ $ $) NIL (|has| |#2| (-336)))) (-3150 (($ $) NIL)) (-2756 (((-626 (-520)) (-626 $)) NIL (|has| |#2| (-582 (-520)))) (((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 $) (-1164 $)) NIL (|has| |#2| (-582 (-520)))) (((-2 (|:| -3927 (-626 |#2|)) (|:| |vec| (-1164 |#2|))) (-626 $) (-1164 $)) NIL) (((-626 |#2|) (-626 $)) NIL)) (-1540 (((-3 $ "failed") $) NIL)) (-2253 (($ $ $) NIL (|has| |#2| (-336)))) (-3521 (($ $ $) NIL)) (-2847 (($ $ $) NIL (|has| |#2| (-512)))) (-1973 (((-2 (|:| -2972 |#2|) (|:| -2060 $) (|:| -3753 $)) $ $) NIL (|has| |#2| (-512)))) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) NIL (|has| |#2| (-336)))) (-3923 (($ $) NIL (|has| |#2| (-424))) (($ $ (-997)) NIL (|has| |#2| (-424)))) (-3142 (((-586 $) $) NIL)) (-2036 (((-108) $) NIL (|has| |#2| (-837)))) (-3397 (($ $ |#2| (-706) $) NIL)) (-1272 (((-817 (-352) $) $ (-820 (-352)) (-817 (-352) $)) NIL (-12 (|has| (-997) (-814 (-352))) (|has| |#2| (-814 (-352))))) (((-817 (-520) $) $ (-820 (-520)) (-817 (-520) $)) NIL (-12 (|has| (-997) (-814 (-520))) (|has| |#2| (-814 (-520)))))) (-3989 (((-706) $ $) NIL (|has| |#2| (-512)))) (-1537 (((-108) $) NIL)) (-1315 (((-706) $) NIL)) (-1394 (((-3 $ "failed") $) NIL (|has| |#2| (-1059)))) (-4065 (($ (-1079 |#2|) (-997)) NIL) (($ (-1079 $) (-997)) NIL)) (-2371 (($ $ (-706)) NIL)) (-3188 (((-3 (-586 $) "failed") (-586 $) $) NIL (|has| |#2| (-336)))) (-1992 (((-586 $) $) NIL)) (-3774 (((-108) $) NIL)) (-4039 (($ |#2| (-706)) 17) (($ $ (-997) (-706)) NIL) (($ $ (-586 (-997)) (-586 (-706))) NIL)) (-1910 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $ (-997)) NIL) (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) NIL)) (-3562 (((-706) $) NIL) (((-706) $ (-997)) NIL) (((-586 (-706)) $ (-586 (-997))) NIL)) (-2809 (($ $ $) NIL (|has| |#2| (-783)))) (-2446 (($ $ $) NIL (|has| |#2| (-783)))) (-3295 (($ (-1 (-706) (-706)) $) NIL)) (-1389 (($ (-1 |#2| |#2|) $) NIL)) (-3416 (((-1079 |#2|) $) NIL)) (-3186 (((-3 (-997) "failed") $) NIL)) (-3123 (($ $) NIL)) (-3133 ((|#2| $) NIL)) (-2222 (($ (-586 $)) NIL (|has| |#2| (-424))) (($ $ $) NIL (|has| |#2| (-424)))) (-1239 (((-1066) $) NIL)) (-3721 (((-2 (|:| -2060 $) (|:| -3753 $)) $ (-706)) NIL)) (-3548 (((-3 (-586 $) "failed") $) NIL)) (-1205 (((-3 (-586 $) "failed") $) NIL)) (-2568 (((-3 (-2 (|:| |var| (-997)) (|:| -2647 (-706))) "failed") $) NIL)) (-3517 (($ $) NIL (|has| |#2| (-37 (-380 (-520)))))) (-3794 (($) NIL (|has| |#2| (-1059)) CONST)) (-4142 (((-1030) $) NIL)) (-3103 (((-108) $) NIL)) (-3113 ((|#2| $) NIL)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) NIL (|has| |#2| (-424)))) (-2257 (($ (-586 $)) NIL (|has| |#2| (-424))) (($ $ $) NIL (|has| |#2| (-424)))) (-4118 (($ $ (-706) |#2| $) NIL)) (-4133 (((-391 (-1079 $)) (-1079 $)) NIL (|has| |#2| (-837)))) (-2017 (((-391 (-1079 $)) (-1079 $)) NIL (|has| |#2| (-837)))) (-1916 (((-391 $) $) NIL (|has| |#2| (-837)))) (-1283 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-336))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) NIL (|has| |#2| (-336)))) (-2230 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-512))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-512)))) (-2608 (((-3 (-586 $) "failed") (-586 $) $) NIL (|has| |#2| (-336)))) (-2286 (($ $ (-586 (-268 $))) NIL) (($ $ (-268 $)) NIL) (($ $ $ $) NIL) (($ $ (-586 $) (-586 $)) NIL) (($ $ (-997) |#2|) NIL) (($ $ (-586 (-997)) (-586 |#2|)) NIL) (($ $ (-997) $) NIL) (($ $ (-586 (-997)) (-586 $)) NIL)) (-3704 (((-706) $) NIL (|has| |#2| (-336)))) (-2543 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-380 $) (-380 $) (-380 $)) NIL (|has| |#2| (-512))) ((|#2| (-380 $) |#2|) NIL (|has| |#2| (-336))) (((-380 $) $ (-380 $)) NIL (|has| |#2| (-512)))) (-1554 (((-3 $ "failed") $ (-706)) NIL)) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) NIL (|has| |#2| (-336)))) (-2732 (($ $ (-997)) NIL (|has| |#2| (-157))) ((|#2| $) NIL (|has| |#2| (-157)))) (-2155 (($ $ (-997)) NIL) (($ $ (-586 (-997))) NIL) (($ $ (-997) (-706)) NIL) (($ $ (-586 (-997)) (-586 (-706))) NIL) (($ $ (-706)) NIL) (($ $) NIL) (($ $ (-1083)) NIL (|has| |#2| (-828 (-1083)))) (($ $ (-586 (-1083))) NIL (|has| |#2| (-828 (-1083)))) (($ $ (-1083) (-706)) NIL (|has| |#2| (-828 (-1083)))) (($ $ (-586 (-1083)) (-586 (-706))) NIL (|has| |#2| (-828 (-1083)))) (($ $ (-1 |#2| |#2|) (-706)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-2528 (((-706) $) NIL) (((-706) $ (-997)) NIL) (((-586 (-706)) $ (-586 (-997))) NIL)) (-1429 (((-820 (-352)) $) NIL (-12 (|has| (-997) (-561 (-820 (-352)))) (|has| |#2| (-561 (-820 (-352)))))) (((-820 (-520)) $) NIL (-12 (|has| (-997) (-561 (-820 (-520)))) (|has| |#2| (-561 (-820 (-520)))))) (((-496) $) NIL (-12 (|has| (-997) (-561 (-496))) (|has| |#2| (-561 (-496)))))) (-1233 ((|#2| $) NIL (|has| |#2| (-424))) (($ $ (-997)) NIL (|has| |#2| (-424)))) (-3784 (((-3 (-1164 $) "failed") (-626 $)) NIL (-12 (|has| $ (-133)) (|has| |#2| (-837))))) (-3240 (((-3 $ "failed") $ $) NIL (|has| |#2| (-512))) (((-3 (-380 $) "failed") (-380 $) $) NIL (|has| |#2| (-512)))) (-2188 (((-791) $) 13) (($ (-520)) NIL) (($ |#2|) NIL) (($ (-997)) NIL) (($ (-1160 |#1|)) 19) (($ (-380 (-520))) NIL (-3700 (|has| |#2| (-37 (-380 (-520)))) (|has| |#2| (-960 (-380 (-520)))))) (($ $) NIL (|has| |#2| (-512)))) (-4113 (((-586 |#2|) $) NIL)) (-3475 ((|#2| $ (-706)) NIL) (($ $ (-997) (-706)) NIL) (($ $ (-586 (-997)) (-586 (-706))) NIL)) (-3796 (((-3 $ "failed") $) NIL (-3700 (-12 (|has| $ (-133)) (|has| |#2| (-837))) (|has| |#2| (-133))))) (-3251 (((-706)) NIL)) (-1782 (($ $ $ (-706)) NIL (|has| |#2| (-157)))) (-2559 (((-108) $ $) NIL (|has| |#2| (-512)))) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (-3560 (($) NIL T CONST)) (-3570 (($) 14 T CONST)) (-2211 (($ $ (-997)) NIL) (($ $ (-586 (-997))) NIL) (($ $ (-997) (-706)) NIL) (($ $ (-586 (-997)) (-586 (-706))) NIL) (($ $ (-706)) NIL) (($ $) NIL) (($ $ (-1083)) NIL (|has| |#2| (-828 (-1083)))) (($ $ (-586 (-1083))) NIL (|has| |#2| (-828 (-1083)))) (($ $ (-1083) (-706)) NIL (|has| |#2| (-828 (-1083)))) (($ $ (-586 (-1083)) (-586 (-706))) NIL (|has| |#2| (-828 (-1083)))) (($ $ (-1 |#2| |#2|) (-706)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1573 (((-108) $ $) NIL (|has| |#2| (-783)))) (-1557 (((-108) $ $) NIL (|has| |#2| (-783)))) (-1530 (((-108) $ $) NIL)) (-1565 (((-108) $ $) NIL (|has| |#2| (-783)))) (-1548 (((-108) $ $) NIL (|has| |#2| (-783)))) (-1619 (($ $ |#2|) NIL (|has| |#2| (-336)))) (-1611 (($ $) NIL) (($ $ $) NIL)) (-1601 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) NIL) (($ $ (-380 (-520))) NIL (|has| |#2| (-37 (-380 (-520))))) (($ (-380 (-520)) $) NIL (|has| |#2| (-37 (-380 (-520))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-1137 |#1| |#2|) (-13 (-1140 |#2|) (-10 -8 (-15 -2188 ($ (-1160 |#1|))) (-15 -4118 ($ $ (-706) |#2| $)))) (-1083) (-969)) (T -1137))
-((-2188 (*1 *1 *2) (-12 (-5 *2 (-1160 *3)) (-14 *3 (-1083)) (-5 *1 (-1137 *3 *4)) (-4 *4 (-969)))) (-4118 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-706)) (-5 *1 (-1137 *4 *3)) (-14 *4 (-1083)) (-4 *3 (-969)))))
-(-13 (-1140 |#2|) (-10 -8 (-15 -2188 ($ (-1160 |#1|))) (-15 -4118 ($ $ (-706) |#2| $))))
-((-1389 ((|#4| (-1 |#3| |#1|) |#2|) 23)))
-(((-1138 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1389 (|#4| (-1 |#3| |#1|) |#2|))) (-969) (-1140 |#1|) (-969) (-1140 |#3|)) (T -1138))
-((-1389 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-969)) (-4 *6 (-969)) (-4 *2 (-1140 *6)) (-5 *1 (-1138 *5 *4 *6 *2)) (-4 *4 (-1140 *5)))))
-(-10 -7 (-15 -1389 (|#4| (-1 |#3| |#1|) |#2|)))
-((-2580 (((-1164 |#2|) $ (-706)) 113)) (-4081 (((-586 (-997)) $) 15)) (-2083 (($ (-1079 |#2|)) 66)) (-3665 (((-706) $) NIL) (((-706) $ (-586 (-997))) 18)) (-4119 (((-391 (-1079 $)) (-1079 $)) 184)) (-3024 (($ $) 174)) (-1507 (((-391 $) $) 172)) (-3481 (((-3 (-586 (-1079 $)) "failed") (-586 (-1079 $)) (-1079 $)) 81)) (-3392 (($ $ (-706)) 70)) (-1371 (($ $ (-706)) 72)) (-1285 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 129)) (-1296 (((-3 |#2| "failed") $) 116) (((-3 (-380 (-520)) "failed") $) NIL) (((-3 (-520) "failed") $) NIL) (((-3 (-997) "failed") $) NIL)) (-1482 ((|#2| $) 114) (((-380 (-520)) $) NIL) (((-520) $) NIL) (((-997) $) NIL)) (-2847 (($ $ $) 150)) (-1973 (((-2 (|:| -2972 |#2|) (|:| -2060 $) (|:| -3753 $)) $ $) 152)) (-3989 (((-706) $ $) 169)) (-1394 (((-3 $ "failed") $) 122)) (-4039 (($ |#2| (-706)) NIL) (($ $ (-997) (-706)) 46) (($ $ (-586 (-997)) (-586 (-706))) NIL)) (-3562 (((-706) $) NIL) (((-706) $ (-997)) 41) (((-586 (-706)) $ (-586 (-997))) 42)) (-3416 (((-1079 |#2|) $) 58)) (-3186 (((-3 (-997) "failed") $) 39)) (-3721 (((-2 (|:| -2060 $) (|:| -3753 $)) $ (-706)) 69)) (-3517 (($ $) 195)) (-3794 (($) 118)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) 181)) (-4133 (((-391 (-1079 $)) (-1079 $)) 87)) (-2017 (((-391 (-1079 $)) (-1079 $)) 85)) (-1916 (((-391 $) $) 105)) (-2286 (($ $ (-586 (-268 $))) 38) (($ $ (-268 $)) NIL) (($ $ $ $) NIL) (($ $ (-586 $) (-586 $)) NIL) (($ $ (-997) |#2|) 31) (($ $ (-586 (-997)) (-586 |#2|)) 28) (($ $ (-997) $) 25) (($ $ (-586 (-997)) (-586 $)) 23)) (-3704 (((-706) $) 187)) (-2543 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-380 $) (-380 $) (-380 $)) 146) ((|#2| (-380 $) |#2|) 186) (((-380 $) $ (-380 $)) 168)) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) 190)) (-2155 (($ $ (-997)) 139) (($ $ (-586 (-997))) NIL) (($ $ (-997) (-706)) NIL) (($ $ (-586 (-997)) (-586 (-706))) NIL) (($ $ (-706)) NIL) (($ $) 137) (($ $ (-1083)) NIL) (($ $ (-586 (-1083))) NIL) (($ $ (-1083) (-706)) NIL) (($ $ (-586 (-1083)) (-586 (-706))) NIL) (($ $ (-1 |#2| |#2|) (-706)) NIL) (($ $ (-1 |#2| |#2|)) 136) (($ $ (-1 |#2| |#2|) $) 133)) (-2528 (((-706) $) NIL) (((-706) $ (-997)) 16) (((-586 (-706)) $ (-586 (-997))) 20)) (-1233 ((|#2| $) NIL) (($ $ (-997)) 124)) (-3240 (((-3 $ "failed") $ $) 160) (((-3 (-380 $) "failed") (-380 $) $) 156)) (-2188 (((-791) $) NIL) (($ (-520)) NIL) (($ |#2|) NIL) (($ (-997)) 50) (($ (-380 (-520))) NIL) (($ $) NIL)))
-(((-1139 |#1| |#2|) (-10 -8 (-15 -2188 (|#1| |#1|)) (-15 -3653 ((-1079 |#1|) (-1079 |#1|) (-1079 |#1|))) (-15 -1507 ((-391 |#1|) |#1|)) (-15 -3024 (|#1| |#1|)) (-15 -2188 (|#1| (-380 (-520)))) (-15 -3794 (|#1|)) (-15 -1394 ((-3 |#1| "failed") |#1|)) (-15 -2543 ((-380 |#1|) |#1| (-380 |#1|))) (-15 -3704 ((-706) |#1|)) (-15 -2806 ((-2 (|:| -2060 |#1|) (|:| -3753 |#1|)) |#1| |#1|)) (-15 -3517 (|#1| |#1|)) (-15 -2543 (|#2| (-380 |#1|) |#2|)) (-15 -1285 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -1973 ((-2 (|:| -2972 |#2|) (|:| -2060 |#1|) (|:| -3753 |#1|)) |#1| |#1|)) (-15 -2847 (|#1| |#1| |#1|)) (-15 -3240 ((-3 (-380 |#1|) "failed") (-380 |#1|) |#1|)) (-15 -3240 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3989 ((-706) |#1| |#1|)) (-15 -2543 ((-380 |#1|) (-380 |#1|) (-380 |#1|))) (-15 -2155 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -1371 (|#1| |#1| (-706))) (-15 -3392 (|#1| |#1| (-706))) (-15 -3721 ((-2 (|:| -2060 |#1|) (|:| -3753 |#1|)) |#1| (-706))) (-15 -2083 (|#1| (-1079 |#2|))) (-15 -3416 ((-1079 |#2|) |#1|)) (-15 -2580 ((-1164 |#2|) |#1| (-706))) (-15 -2155 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2155 (|#1| |#1| (-1 |#2| |#2|) (-706))) (-15 -2155 (|#1| |#1| (-586 (-1083)) (-586 (-706)))) (-15 -2155 (|#1| |#1| (-1083) (-706))) (-15 -2155 (|#1| |#1| (-586 (-1083)))) (-15 -2155 (|#1| |#1| (-1083))) (-15 -2155 (|#1| |#1|)) (-15 -2155 (|#1| |#1| (-706))) (-15 -2543 (|#1| |#1| |#1|)) (-15 -2543 (|#2| |#1| |#2|)) (-15 -1916 ((-391 |#1|) |#1|)) (-15 -4119 ((-391 (-1079 |#1|)) (-1079 |#1|))) (-15 -2017 ((-391 (-1079 |#1|)) (-1079 |#1|))) (-15 -4133 ((-391 (-1079 |#1|)) (-1079 |#1|))) (-15 -3481 ((-3 (-586 (-1079 |#1|)) "failed") (-586 (-1079 |#1|)) (-1079 |#1|))) (-15 -1233 (|#1| |#1| (-997))) (-15 -4081 ((-586 (-997)) |#1|)) (-15 -3665 ((-706) |#1| (-586 (-997)))) (-15 -3665 ((-706) |#1|)) (-15 -4039 (|#1| |#1| (-586 (-997)) (-586 (-706)))) (-15 -4039 (|#1| |#1| (-997) (-706))) (-15 -3562 ((-586 (-706)) |#1| (-586 (-997)))) (-15 -3562 ((-706) |#1| (-997))) (-15 -3186 ((-3 (-997) "failed") |#1|)) (-15 -2528 ((-586 (-706)) |#1| (-586 (-997)))) (-15 -2528 ((-706) |#1| (-997))) (-15 -1482 ((-997) |#1|)) (-15 -1296 ((-3 (-997) "failed") |#1|)) (-15 -2188 (|#1| (-997))) (-15 -2286 (|#1| |#1| (-586 (-997)) (-586 |#1|))) (-15 -2286 (|#1| |#1| (-997) |#1|)) (-15 -2286 (|#1| |#1| (-586 (-997)) (-586 |#2|))) (-15 -2286 (|#1| |#1| (-997) |#2|)) (-15 -2286 (|#1| |#1| (-586 |#1|) (-586 |#1|))) (-15 -2286 (|#1| |#1| |#1| |#1|)) (-15 -2286 (|#1| |#1| (-268 |#1|))) (-15 -2286 (|#1| |#1| (-586 (-268 |#1|)))) (-15 -2528 ((-706) |#1|)) (-15 -4039 (|#1| |#2| (-706))) (-15 -1482 ((-520) |#1|)) (-15 -1296 ((-3 (-520) "failed") |#1|)) (-15 -1482 ((-380 (-520)) |#1|)) (-15 -1296 ((-3 (-380 (-520)) "failed") |#1|)) (-15 -2188 (|#1| |#2|)) (-15 -1296 ((-3 |#2| "failed") |#1|)) (-15 -1482 (|#2| |#1|)) (-15 -3562 ((-706) |#1|)) (-15 -1233 (|#2| |#1|)) (-15 -2155 (|#1| |#1| (-586 (-997)) (-586 (-706)))) (-15 -2155 (|#1| |#1| (-997) (-706))) (-15 -2155 (|#1| |#1| (-586 (-997)))) (-15 -2155 (|#1| |#1| (-997))) (-15 -2188 (|#1| (-520))) (-15 -2188 ((-791) |#1|))) (-1140 |#2|) (-969)) (T -1139))
-NIL
-(-10 -8 (-15 -2188 (|#1| |#1|)) (-15 -3653 ((-1079 |#1|) (-1079 |#1|) (-1079 |#1|))) (-15 -1507 ((-391 |#1|) |#1|)) (-15 -3024 (|#1| |#1|)) (-15 -2188 (|#1| (-380 (-520)))) (-15 -3794 (|#1|)) (-15 -1394 ((-3 |#1| "failed") |#1|)) (-15 -2543 ((-380 |#1|) |#1| (-380 |#1|))) (-15 -3704 ((-706) |#1|)) (-15 -2806 ((-2 (|:| -2060 |#1|) (|:| -3753 |#1|)) |#1| |#1|)) (-15 -3517 (|#1| |#1|)) (-15 -2543 (|#2| (-380 |#1|) |#2|)) (-15 -1285 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -1973 ((-2 (|:| -2972 |#2|) (|:| -2060 |#1|) (|:| -3753 |#1|)) |#1| |#1|)) (-15 -2847 (|#1| |#1| |#1|)) (-15 -3240 ((-3 (-380 |#1|) "failed") (-380 |#1|) |#1|)) (-15 -3240 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3989 ((-706) |#1| |#1|)) (-15 -2543 ((-380 |#1|) (-380 |#1|) (-380 |#1|))) (-15 -2155 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -1371 (|#1| |#1| (-706))) (-15 -3392 (|#1| |#1| (-706))) (-15 -3721 ((-2 (|:| -2060 |#1|) (|:| -3753 |#1|)) |#1| (-706))) (-15 -2083 (|#1| (-1079 |#2|))) (-15 -3416 ((-1079 |#2|) |#1|)) (-15 -2580 ((-1164 |#2|) |#1| (-706))) (-15 -2155 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2155 (|#1| |#1| (-1 |#2| |#2|) (-706))) (-15 -2155 (|#1| |#1| (-586 (-1083)) (-586 (-706)))) (-15 -2155 (|#1| |#1| (-1083) (-706))) (-15 -2155 (|#1| |#1| (-586 (-1083)))) (-15 -2155 (|#1| |#1| (-1083))) (-15 -2155 (|#1| |#1|)) (-15 -2155 (|#1| |#1| (-706))) (-15 -2543 (|#1| |#1| |#1|)) (-15 -2543 (|#2| |#1| |#2|)) (-15 -1916 ((-391 |#1|) |#1|)) (-15 -4119 ((-391 (-1079 |#1|)) (-1079 |#1|))) (-15 -2017 ((-391 (-1079 |#1|)) (-1079 |#1|))) (-15 -4133 ((-391 (-1079 |#1|)) (-1079 |#1|))) (-15 -3481 ((-3 (-586 (-1079 |#1|)) "failed") (-586 (-1079 |#1|)) (-1079 |#1|))) (-15 -1233 (|#1| |#1| (-997))) (-15 -4081 ((-586 (-997)) |#1|)) (-15 -3665 ((-706) |#1| (-586 (-997)))) (-15 -3665 ((-706) |#1|)) (-15 -4039 (|#1| |#1| (-586 (-997)) (-586 (-706)))) (-15 -4039 (|#1| |#1| (-997) (-706))) (-15 -3562 ((-586 (-706)) |#1| (-586 (-997)))) (-15 -3562 ((-706) |#1| (-997))) (-15 -3186 ((-3 (-997) "failed") |#1|)) (-15 -2528 ((-586 (-706)) |#1| (-586 (-997)))) (-15 -2528 ((-706) |#1| (-997))) (-15 -1482 ((-997) |#1|)) (-15 -1296 ((-3 (-997) "failed") |#1|)) (-15 -2188 (|#1| (-997))) (-15 -2286 (|#1| |#1| (-586 (-997)) (-586 |#1|))) (-15 -2286 (|#1| |#1| (-997) |#1|)) (-15 -2286 (|#1| |#1| (-586 (-997)) (-586 |#2|))) (-15 -2286 (|#1| |#1| (-997) |#2|)) (-15 -2286 (|#1| |#1| (-586 |#1|) (-586 |#1|))) (-15 -2286 (|#1| |#1| |#1| |#1|)) (-15 -2286 (|#1| |#1| (-268 |#1|))) (-15 -2286 (|#1| |#1| (-586 (-268 |#1|)))) (-15 -2528 ((-706) |#1|)) (-15 -4039 (|#1| |#2| (-706))) (-15 -1482 ((-520) |#1|)) (-15 -1296 ((-3 (-520) "failed") |#1|)) (-15 -1482 ((-380 (-520)) |#1|)) (-15 -1296 ((-3 (-380 (-520)) "failed") |#1|)) (-15 -2188 (|#1| |#2|)) (-15 -1296 ((-3 |#2| "failed") |#1|)) (-15 -1482 (|#2| |#1|)) (-15 -3562 ((-706) |#1|)) (-15 -1233 (|#2| |#1|)) (-15 -2155 (|#1| |#1| (-586 (-997)) (-586 (-706)))) (-15 -2155 (|#1| |#1| (-997) (-706))) (-15 -2155 (|#1| |#1| (-586 (-997)))) (-15 -2155 (|#1| |#1| (-997))) (-15 -2188 (|#1| (-520))) (-15 -2188 ((-791) |#1|)))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-2580 (((-1164 |#1|) $ (-706)) 238)) (-4081 (((-586 (-997)) $) 110)) (-2083 (($ (-1079 |#1|)) 236)) (-1278 (((-1079 $) $ (-997)) 125) (((-1079 |#1|) $) 124)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) 87 (|has| |#1| (-512)))) (-2583 (($ $) 88 (|has| |#1| (-512)))) (-1671 (((-108) $) 90 (|has| |#1| (-512)))) (-3665 (((-706) $) 112) (((-706) $ (-586 (-997))) 111)) (-1917 (((-3 $ "failed") $ $) 19)) (-3309 (($ $ $) 223 (|has| |#1| (-512)))) (-4119 (((-391 (-1079 $)) (-1079 $)) 100 (|has| |#1| (-837)))) (-3024 (($ $) 98 (|has| |#1| (-424)))) (-1507 (((-391 $) $) 97 (|has| |#1| (-424)))) (-3481 (((-3 (-586 (-1079 $)) "failed") (-586 (-1079 $)) (-1079 $)) 103 (|has| |#1| (-837)))) (-1327 (((-108) $ $) 208 (|has| |#1| (-336)))) (-3392 (($ $ (-706)) 231)) (-1371 (($ $ (-706)) 230)) (-1285 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 218 (|has| |#1| (-424)))) (-3961 (($) 17 T CONST)) (-1296 (((-3 |#1| "failed") $) 164) (((-3 (-380 (-520)) "failed") $) 162 (|has| |#1| (-960 (-380 (-520))))) (((-3 (-520) "failed") $) 160 (|has| |#1| (-960 (-520)))) (((-3 (-997) "failed") $) 136)) (-1482 ((|#1| $) 165) (((-380 (-520)) $) 161 (|has| |#1| (-960 (-380 (-520))))) (((-520) $) 159 (|has| |#1| (-960 (-520)))) (((-997) $) 135)) (-2413 (($ $ $ (-997)) 108 (|has| |#1| (-157))) ((|#1| $ $) 226 (|has| |#1| (-157)))) (-2276 (($ $ $) 212 (|has| |#1| (-336)))) (-3150 (($ $) 154)) (-2756 (((-626 (-520)) (-626 $)) 134 (|has| |#1| (-582 (-520)))) (((-2 (|:| -3927 (-626 (-520))) (|:| |vec| (-1164 (-520)))) (-626 $) (-1164 $)) 133 (|has| |#1| (-582 (-520)))) (((-2 (|:| -3927 (-626 |#1|)) (|:| |vec| (-1164 |#1|))) (-626 $) (-1164 $)) 132) (((-626 |#1|) (-626 $)) 131)) (-1540 (((-3 $ "failed") $) 34)) (-2253 (($ $ $) 211 (|has| |#1| (-336)))) (-3521 (($ $ $) 229)) (-2847 (($ $ $) 220 (|has| |#1| (-512)))) (-1973 (((-2 (|:| -2972 |#1|) (|:| -2060 $) (|:| -3753 $)) $ $) 219 (|has| |#1| (-512)))) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) 206 (|has| |#1| (-336)))) (-3923 (($ $) 176 (|has| |#1| (-424))) (($ $ (-997)) 105 (|has| |#1| (-424)))) (-3142 (((-586 $) $) 109)) (-2036 (((-108) $) 96 (|has| |#1| (-837)))) (-3397 (($ $ |#1| (-706) $) 172)) (-1272 (((-817 (-352) $) $ (-820 (-352)) (-817 (-352) $)) 84 (-12 (|has| (-997) (-814 (-352))) (|has| |#1| (-814 (-352))))) (((-817 (-520) $) $ (-820 (-520)) (-817 (-520) $)) 83 (-12 (|has| (-997) (-814 (-520))) (|has| |#1| (-814 (-520)))))) (-3989 (((-706) $ $) 224 (|has| |#1| (-512)))) (-1537 (((-108) $) 31)) (-1315 (((-706) $) 169)) (-1394 (((-3 $ "failed") $) 204 (|has| |#1| (-1059)))) (-4065 (($ (-1079 |#1|) (-997)) 117) (($ (-1079 $) (-997)) 116)) (-2371 (($ $ (-706)) 235)) (-3188 (((-3 (-586 $) "failed") (-586 $) $) 215 (|has| |#1| (-336)))) (-1992 (((-586 $) $) 126)) (-3774 (((-108) $) 152)) (-4039 (($ |#1| (-706)) 153) (($ $ (-997) (-706)) 119) (($ $ (-586 (-997)) (-586 (-706))) 118)) (-1910 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $ (-997)) 120) (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) 233)) (-3562 (((-706) $) 170) (((-706) $ (-997)) 122) (((-586 (-706)) $ (-586 (-997))) 121)) (-2809 (($ $ $) 79 (|has| |#1| (-783)))) (-2446 (($ $ $) 78 (|has| |#1| (-783)))) (-3295 (($ (-1 (-706) (-706)) $) 171)) (-1389 (($ (-1 |#1| |#1|) $) 151)) (-3416 (((-1079 |#1|) $) 237)) (-3186 (((-3 (-997) "failed") $) 123)) (-3123 (($ $) 149)) (-3133 ((|#1| $) 148)) (-2222 (($ (-586 $)) 94 (|has| |#1| (-424))) (($ $ $) 93 (|has| |#1| (-424)))) (-1239 (((-1066) $) 9)) (-3721 (((-2 (|:| -2060 $) (|:| -3753 $)) $ (-706)) 232)) (-3548 (((-3 (-586 $) "failed") $) 114)) (-1205 (((-3 (-586 $) "failed") $) 115)) (-2568 (((-3 (-2 (|:| |var| (-997)) (|:| -2647 (-706))) "failed") $) 113)) (-3517 (($ $) 216 (|has| |#1| (-37 (-380 (-520)))))) (-3794 (($) 203 (|has| |#1| (-1059)) CONST)) (-4142 (((-1030) $) 10)) (-3103 (((-108) $) 166)) (-3113 ((|#1| $) 167)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) 95 (|has| |#1| (-424)))) (-2257 (($ (-586 $)) 92 (|has| |#1| (-424))) (($ $ $) 91 (|has| |#1| (-424)))) (-4133 (((-391 (-1079 $)) (-1079 $)) 102 (|has| |#1| (-837)))) (-2017 (((-391 (-1079 $)) (-1079 $)) 101 (|has| |#1| (-837)))) (-1916 (((-391 $) $) 99 (|has| |#1| (-837)))) (-1283 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 214 (|has| |#1| (-336))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) 213 (|has| |#1| (-336)))) (-2230 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-512))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-512)))) (-2608 (((-3 (-586 $) "failed") (-586 $) $) 207 (|has| |#1| (-336)))) (-2286 (($ $ (-586 (-268 $))) 145) (($ $ (-268 $)) 144) (($ $ $ $) 143) (($ $ (-586 $) (-586 $)) 142) (($ $ (-997) |#1|) 141) (($ $ (-586 (-997)) (-586 |#1|)) 140) (($ $ (-997) $) 139) (($ $ (-586 (-997)) (-586 $)) 138)) (-3704 (((-706) $) 209 (|has| |#1| (-336)))) (-2543 ((|#1| $ |#1|) 256) (($ $ $) 255) (((-380 $) (-380 $) (-380 $)) 225 (|has| |#1| (-512))) ((|#1| (-380 $) |#1|) 217 (|has| |#1| (-336))) (((-380 $) $ (-380 $)) 205 (|has| |#1| (-512)))) (-1554 (((-3 $ "failed") $ (-706)) 234)) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) 210 (|has| |#1| (-336)))) (-2732 (($ $ (-997)) 107 (|has| |#1| (-157))) ((|#1| $) 227 (|has| |#1| (-157)))) (-2155 (($ $ (-997)) 42) (($ $ (-586 (-997))) 41) (($ $ (-997) (-706)) 40) (($ $ (-586 (-997)) (-586 (-706))) 39) (($ $ (-706)) 253) (($ $) 251) (($ $ (-1083)) 250 (|has| |#1| (-828 (-1083)))) (($ $ (-586 (-1083))) 249 (|has| |#1| (-828 (-1083)))) (($ $ (-1083) (-706)) 248 (|has| |#1| (-828 (-1083)))) (($ $ (-586 (-1083)) (-586 (-706))) 247 (|has| |#1| (-828 (-1083)))) (($ $ (-1 |#1| |#1|) (-706)) 240) (($ $ (-1 |#1| |#1|)) 239) (($ $ (-1 |#1| |#1|) $) 228)) (-2528 (((-706) $) 150) (((-706) $ (-997)) 130) (((-586 (-706)) $ (-586 (-997))) 129)) (-1429 (((-820 (-352)) $) 82 (-12 (|has| (-997) (-561 (-820 (-352)))) (|has| |#1| (-561 (-820 (-352)))))) (((-820 (-520)) $) 81 (-12 (|has| (-997) (-561 (-820 (-520)))) (|has| |#1| (-561 (-820 (-520)))))) (((-496) $) 80 (-12 (|has| (-997) (-561 (-496))) (|has| |#1| (-561 (-496)))))) (-1233 ((|#1| $) 175 (|has| |#1| (-424))) (($ $ (-997)) 106 (|has| |#1| (-424)))) (-3784 (((-3 (-1164 $) "failed") (-626 $)) 104 (-4006 (|has| $ (-133)) (|has| |#1| (-837))))) (-3240 (((-3 $ "failed") $ $) 222 (|has| |#1| (-512))) (((-3 (-380 $) "failed") (-380 $) $) 221 (|has| |#1| (-512)))) (-2188 (((-791) $) 11) (($ (-520)) 28) (($ |#1|) 163) (($ (-997)) 137) (($ (-380 (-520))) 72 (-3700 (|has| |#1| (-960 (-380 (-520)))) (|has| |#1| (-37 (-380 (-520)))))) (($ $) 85 (|has| |#1| (-512)))) (-4113 (((-586 |#1|) $) 168)) (-3475 ((|#1| $ (-706)) 155) (($ $ (-997) (-706)) 128) (($ $ (-586 (-997)) (-586 (-706))) 127)) (-3796 (((-3 $ "failed") $) 73 (-3700 (-4006 (|has| $ (-133)) (|has| |#1| (-837))) (|has| |#1| (-133))))) (-3251 (((-706)) 29)) (-1782 (($ $ $ (-706)) 173 (|has| |#1| (-157)))) (-2559 (((-108) $ $) 89 (|has| |#1| (-512)))) (-3504 (($ $ (-849)) 26) (($ $ (-706)) 33)) (-3560 (($) 18 T CONST)) (-3570 (($) 30 T CONST)) (-2211 (($ $ (-997)) 38) (($ $ (-586 (-997))) 37) (($ $ (-997) (-706)) 36) (($ $ (-586 (-997)) (-586 (-706))) 35) (($ $ (-706)) 254) (($ $) 252) (($ $ (-1083)) 246 (|has| |#1| (-828 (-1083)))) (($ $ (-586 (-1083))) 245 (|has| |#1| (-828 (-1083)))) (($ $ (-1083) (-706)) 244 (|has| |#1| (-828 (-1083)))) (($ $ (-586 (-1083)) (-586 (-706))) 243 (|has| |#1| (-828 (-1083)))) (($ $ (-1 |#1| |#1|) (-706)) 242) (($ $ (-1 |#1| |#1|)) 241)) (-1573 (((-108) $ $) 76 (|has| |#1| (-783)))) (-1557 (((-108) $ $) 75 (|has| |#1| (-783)))) (-1530 (((-108) $ $) 6)) (-1565 (((-108) $ $) 77 (|has| |#1| (-783)))) (-1548 (((-108) $ $) 74 (|has| |#1| (-783)))) (-1619 (($ $ |#1|) 156 (|has| |#1| (-336)))) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-706)) 32)) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ $ $) 24) (($ $ (-380 (-520))) 158 (|has| |#1| (-37 (-380 (-520))))) (($ (-380 (-520)) $) 157 (|has| |#1| (-37 (-380 (-520))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
-(((-1140 |#1|) (-1195) (-969)) (T -1140))
-((-2580 (*1 *2 *1 *3) (-12 (-5 *3 (-706)) (-4 *1 (-1140 *4)) (-4 *4 (-969)) (-5 *2 (-1164 *4)))) (-3416 (*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-969)) (-5 *2 (-1079 *3)))) (-2083 (*1 *1 *2) (-12 (-5 *2 (-1079 *3)) (-4 *3 (-969)) (-4 *1 (-1140 *3)))) (-2371 (*1 *1 *1 *2) (-12 (-5 *2 (-706)) (-4 *1 (-1140 *3)) (-4 *3 (-969)))) (-1554 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-706)) (-4 *1 (-1140 *3)) (-4 *3 (-969)))) (-1910 (*1 *2 *1 *1) (-12 (-4 *3 (-969)) (-5 *2 (-2 (|:| -2060 *1) (|:| -3753 *1))) (-4 *1 (-1140 *3)))) (-3721 (*1 *2 *1 *3) (-12 (-5 *3 (-706)) (-4 *4 (-969)) (-5 *2 (-2 (|:| -2060 *1) (|:| -3753 *1))) (-4 *1 (-1140 *4)))) (-3392 (*1 *1 *1 *2) (-12 (-5 *2 (-706)) (-4 *1 (-1140 *3)) (-4 *3 (-969)))) (-1371 (*1 *1 *1 *2) (-12 (-5 *2 (-706)) (-4 *1 (-1140 *3)) (-4 *3 (-969)))) (-3521 (*1 *1 *1 *1) (-12 (-4 *1 (-1140 *2)) (-4 *2 (-969)))) (-2155 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1140 *3)) (-4 *3 (-969)))) (-2732 (*1 *2 *1) (-12 (-4 *1 (-1140 *2)) (-4 *2 (-969)) (-4 *2 (-157)))) (-2413 (*1 *2 *1 *1) (-12 (-4 *1 (-1140 *2)) (-4 *2 (-969)) (-4 *2 (-157)))) (-2543 (*1 *2 *2 *2) (-12 (-5 *2 (-380 *1)) (-4 *1 (-1140 *3)) (-4 *3 (-969)) (-4 *3 (-512)))) (-3989 (*1 *2 *1 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-969)) (-4 *3 (-512)) (-5 *2 (-706)))) (-3309 (*1 *1 *1 *1) (-12 (-4 *1 (-1140 *2)) (-4 *2 (-969)) (-4 *2 (-512)))) (-3240 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1140 *2)) (-4 *2 (-969)) (-4 *2 (-512)))) (-3240 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-380 *1)) (-4 *1 (-1140 *3)) (-4 *3 (-969)) (-4 *3 (-512)))) (-2847 (*1 *1 *1 *1) (-12 (-4 *1 (-1140 *2)) (-4 *2 (-969)) (-4 *2 (-512)))) (-1973 (*1 *2 *1 *1) (-12 (-4 *3 (-512)) (-4 *3 (-969)) (-5 *2 (-2 (|:| -2972 *3) (|:| -2060 *1) (|:| -3753 *1))) (-4 *1 (-1140 *3)))) (-1285 (*1 *2 *1 *1) (-12 (-4 *3 (-424)) (-4 *3 (-969)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1140 *3)))) (-2543 (*1 *2 *3 *2) (-12 (-5 *3 (-380 *1)) (-4 *1 (-1140 *2)) (-4 *2 (-969)) (-4 *2 (-336)))) (-3517 (*1 *1 *1) (-12 (-4 *1 (-1140 *2)) (-4 *2 (-969)) (-4 *2 (-37 (-380 (-520)))))))
-(-13 (-877 |t#1| (-706) (-997)) (-260 |t#1| |t#1|) (-260 $ $) (-209) (-207 |t#1|) (-10 -8 (-15 -2580 ((-1164 |t#1|) $ (-706))) (-15 -3416 ((-1079 |t#1|) $)) (-15 -2083 ($ (-1079 |t#1|))) (-15 -2371 ($ $ (-706))) (-15 -1554 ((-3 $ "failed") $ (-706))) (-15 -1910 ((-2 (|:| -2060 $) (|:| -3753 $)) $ $)) (-15 -3721 ((-2 (|:| -2060 $) (|:| -3753 $)) $ (-706))) (-15 -3392 ($ $ (-706))) (-15 -1371 ($ $ (-706))) (-15 -3521 ($ $ $)) (-15 -2155 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1059)) (-6 (-1059)) |%noBranch|) (IF (|has| |t#1| (-157)) (PROGN (-15 -2732 (|t#1| $)) (-15 -2413 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-512)) (PROGN (-6 (-260 (-380 $) (-380 $))) (-15 -2543 ((-380 $) (-380 $) (-380 $))) (-15 -3989 ((-706) $ $)) (-15 -3309 ($ $ $)) (-15 -3240 ((-3 $ "failed") $ $)) (-15 -3240 ((-3 (-380 $) "failed") (-380 $) $)) (-15 -2847 ($ $ $)) (-15 -1973 ((-2 (|:| -2972 |t#1|) (|:| -2060 $) (|:| -3753 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-424)) (-15 -1285 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-336)) (PROGN (-6 (-281)) (-6 -4225) (-15 -2543 (|t#1| (-380 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-37 (-380 (-520)))) (-15 -3517 ($ $)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-706)) . T) ((-25) . T) ((-37 #1=(-380 (-520))) |has| |#1| (-37 (-380 (-520)))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) -3700 (|has| |#1| (-837)) (|has| |#1| (-512)) (|has| |#1| (-424)) (|has| |#1| (-336))) ((-97) . T) ((-107 #1# #1#) |has| |#1| (-37 (-380 (-520)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3700 (|has| |#1| (-837)) (|has| |#1| (-512)) (|has| |#1| (-424)) (|has| |#1| (-336)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-560 (-791)) . T) ((-157) -3700 (|has| |#1| (-837)) (|has| |#1| (-512)) (|has| |#1| (-424)) (|has| |#1| (-336)) (|has| |#1| (-157))) ((-561 (-496)) -12 (|has| (-997) (-561 (-496))) (|has| |#1| (-561 (-496)))) ((-561 (-820 (-352))) -12 (|has| (-997) (-561 (-820 (-352)))) (|has| |#1| (-561 (-820 (-352))))) ((-561 (-820 (-520))) -12 (|has| (-997) (-561 (-820 (-520)))) (|has| |#1| (-561 (-820 (-520))))) ((-207 |#1|) . T) ((-209) . T) ((-260 (-380 $) (-380 $)) |has| |#1| (-512)) ((-260 |#1| |#1|) . T) ((-260 $ $) . T) ((-264) -3700 (|has| |#1| (-837)) (|has| |#1| (-512)) (|has| |#1| (-424)) (|has| |#1| (-336))) ((-281) |has| |#1| (-336)) ((-283 $) . T) ((-299 |#1| #0#) . T) ((-350 |#1|) . T) ((-384 |#1|) . T) ((-424) -3700 (|has| |#1| (-837)) (|has| |#1| (-424)) (|has| |#1| (-336))) ((-481 #2=(-997) |#1|) . T) ((-481 #2# $) . T) ((-481 $ $) . T) ((-512) -3700 (|has| |#1| (-837)) (|has| |#1| (-512)) (|has| |#1| (-424)) (|has| |#1| (-336))) ((-588 #1#) |has| |#1| (-37 (-380 (-520)))) ((-588 |#1|) . T) ((-588 $) . T) ((-582 (-520)) |has| |#1| (-582 (-520))) ((-582 |#1|) . T) ((-653 #1#) |has| |#1| (-37 (-380 (-520)))) ((-653 |#1|) |has| |#1| (-157)) ((-653 $) -3700 (|has| |#1| (-837)) (|has| |#1| (-512)) (|has| |#1| (-424)) (|has| |#1| (-336))) ((-662) . T) ((-783) |has| |#1| (-783)) ((-828 #2#) . T) ((-828 (-1083)) |has| |#1| (-828 (-1083))) ((-814 (-352)) -12 (|has| (-997) (-814 (-352))) (|has| |#1| (-814 (-352)))) ((-814 (-520)) -12 (|has| (-997) (-814 (-520))) (|has| |#1| (-814 (-520)))) ((-877 |#1| #0# #2#) . T) ((-837) |has| |#1| (-837)) ((-848) |has| |#1| (-336)) ((-960 (-380 (-520))) |has| |#1| (-960 (-380 (-520)))) ((-960 (-520)) |has| |#1| (-960 (-520))) ((-960 #2#) . T) ((-960 |#1|) . T) ((-975 #1#) |has| |#1| (-37 (-380 (-520)))) ((-975 |#1|) . T) ((-975 $) -3700 (|has| |#1| (-837)) (|has| |#1| (-512)) (|has| |#1| (-424)) (|has| |#1| (-336)) (|has| |#1| (-157))) ((-969) . T) ((-976) . T) ((-1024) . T) ((-1012) . T) ((-1059) |has| |#1| (-1059)) ((-1122) |has| |#1| (-837)))
-((-4081 (((-586 (-997)) $) 28)) (-3150 (($ $) 25)) (-4039 (($ |#2| |#3|) NIL) (($ $ (-997) |#3|) 22) (($ $ (-586 (-997)) (-586 |#3|)) 20)) (-3123 (($ $) 14)) (-3133 ((|#2| $) 12)) (-2528 ((|#3| $) 10)))
-(((-1141 |#1| |#2| |#3|) (-10 -8 (-15 -4081 ((-586 (-997)) |#1|)) (-15 -4039 (|#1| |#1| (-586 (-997)) (-586 |#3|))) (-15 -4039 (|#1| |#1| (-997) |#3|)) (-15 -3150 (|#1| |#1|)) (-15 -4039 (|#1| |#2| |#3|)) (-15 -2528 (|#3| |#1|)) (-15 -3123 (|#1| |#1|)) (-15 -3133 (|#2| |#1|))) (-1142 |#2| |#3|) (-969) (-727)) (T -1141))
-NIL
-(-10 -8 (-15 -4081 ((-586 (-997)) |#1|)) (-15 -4039 (|#1| |#1| (-586 (-997)) (-586 |#3|))) (-15 -4039 (|#1| |#1| (-997) |#3|)) (-15 -3150 (|#1| |#1|)) (-15 -4039 (|#1| |#2| |#3|)) (-15 -2528 (|#3| |#1|)) (-15 -3123 (|#1| |#1|)) (-15 -3133 (|#2| |#1|)))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-4081 (((-586 (-997)) $) 74)) (-1610 (((-1083) $) 103)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) 51 (|has| |#1| (-512)))) (-2583 (($ $) 52 (|has| |#1| (-512)))) (-1671 (((-108) $) 54 (|has| |#1| (-512)))) (-2406 (($ $ |#2|) 98) (($ $ |#2| |#2|) 97)) (-2088 (((-1064 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 105)) (-1917 (((-3 $ "failed") $ $) 19)) (-3961 (($) 17 T CONST)) (-3150 (($ $) 60)) (-1540 (((-3 $ "failed") $) 34)) (-1342 (((-108) $) 73)) (-3989 ((|#2| $) 100) ((|#2| $ |#2|) 99)) (-1537 (((-108) $) 31)) (-2371 (($ $ (-849)) 101)) (-3774 (((-108) $) 62)) (-4039 (($ |#1| |#2|) 61) (($ $ (-997) |#2|) 76) (($ $ (-586 (-997)) (-586 |#2|)) 75)) (-1389 (($ (-1 |#1| |#1|) $) 63)) (-3123 (($ $) 65)) (-3133 ((|#1| $) 66)) (-1239 (((-1066) $) 9)) (-4142 (((-1030) $) 10)) (-2116 (($ $ |#2|) 95)) (-2230 (((-3 $ "failed") $ $) 50 (|has| |#1| (-512)))) (-2286 (((-1064 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-2543 ((|#1| $ |#2|) 104) (($ $ $) 81 (|has| |#2| (-1024)))) (-2155 (($ $ (-586 (-1083)) (-586 (-706))) 89 (-12 (|has| |#1| (-828 (-1083))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1083) (-706)) 88 (-12 (|has| |#1| (-828 (-1083))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-586 (-1083))) 87 (-12 (|has| |#1| (-828 (-1083))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1083)) 86 (-12 (|has| |#1| (-828 (-1083))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-706)) 84 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2528 ((|#2| $) 64)) (-2759 (($ $) 72)) (-2188 (((-791) $) 11) (($ (-520)) 28) (($ (-380 (-520))) 57 (|has| |#1| (-37 (-380 (-520))))) (($ $) 49 (|has| |#1| (-512))) (($ |#1|) 47 (|has| |#1| (-157)))) (-3475 ((|#1| $ |#2|) 59)) (-3796 (((-3 $ "failed") $) 48 (|has| |#1| (-133)))) (-3251 (((-706)) 29)) (-1892 ((|#1| $) 102)) (-2559 (((-108) $ $) 53 (|has| |#1| (-512)))) (-3890 ((|#1| $ |#2|) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -2188 (|#1| (-1083))))))) (-3504 (($ $ (-849)) 26) (($ $ (-706)) 33)) (-3560 (($) 18 T CONST)) (-3570 (($) 30 T CONST)) (-2211 (($ $ (-586 (-1083)) (-586 (-706))) 93 (-12 (|has| |#1| (-828 (-1083))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1083) (-706)) 92 (-12 (|has| |#1| (-828 (-1083))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-586 (-1083))) 91 (-12 (|has| |#1| (-828 (-1083))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1083)) 90 (-12 (|has| |#1| (-828 (-1083))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-706)) 85 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-1530 (((-108) $ $) 6)) (-1619 (($ $ |#1|) 58 (|has| |#1| (-336)))) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-706)) 32)) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-380 (-520)) $) 56 (|has| |#1| (-37 (-380 (-520))))) (($ $ (-380 (-520))) 55 (|has| |#1| (-37 (-380 (-520)))))))
-(((-1142 |#1| |#2|) (-1195) (-969) (-727)) (T -1142))
-((-2088 (*1 *2 *1) (-12 (-4 *1 (-1142 *3 *4)) (-4 *3 (-969)) (-4 *4 (-727)) (-5 *2 (-1064 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-2543 (*1 *2 *1 *3) (-12 (-4 *1 (-1142 *2 *3)) (-4 *3 (-727)) (-4 *2 (-969)))) (-1610 (*1 *2 *1) (-12 (-4 *1 (-1142 *3 *4)) (-4 *3 (-969)) (-4 *4 (-727)) (-5 *2 (-1083)))) (-1892 (*1 *2 *1) (-12 (-4 *1 (-1142 *2 *3)) (-4 *3 (-727)) (-4 *2 (-969)))) (-2371 (*1 *1 *1 *2) (-12 (-5 *2 (-849)) (-4 *1 (-1142 *3 *4)) (-4 *3 (-969)) (-4 *4 (-727)))) (-3989 (*1 *2 *1) (-12 (-4 *1 (-1142 *3 *2)) (-4 *3 (-969)) (-4 *2 (-727)))) (-3989 (*1 *2 *1 *2) (-12 (-4 *1 (-1142 *3 *2)) (-4 *3 (-969)) (-4 *2 (-727)))) (-2406 (*1 *1 *1 *2) (-12 (-4 *1 (-1142 *3 *2)) (-4 *3 (-969)) (-4 *2 (-727)))) (-2406 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1142 *3 *2)) (-4 *3 (-969)) (-4 *2 (-727)))) (-3890 (*1 *2 *1 *3) (-12 (-4 *1 (-1142 *2 *3)) (-4 *3 (-727)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2188 (*2 (-1083)))) (-4 *2 (-969)))) (-2116 (*1 *1 *1 *2) (-12 (-4 *1 (-1142 *3 *2)) (-4 *3 (-969)) (-4 *2 (-727)))) (-2286 (*1 *2 *1 *3) (-12 (-4 *1 (-1142 *3 *4)) (-4 *3 (-969)) (-4 *4 (-727)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1064 *3)))))
-(-13 (-898 |t#1| |t#2| (-997)) (-10 -8 (-15 -2088 ((-1064 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -2543 (|t#1| $ |t#2|)) (-15 -1610 ((-1083) $)) (-15 -1892 (|t#1| $)) (-15 -2371 ($ $ (-849))) (-15 -3989 (|t#2| $)) (-15 -3989 (|t#2| $ |t#2|)) (-15 -2406 ($ $ |t#2|)) (-15 -2406 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -2188 (|t#1| (-1083)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3890 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -2116 ($ $ |t#2|)) (IF (|has| |t#2| (-1024)) (-6 (-260 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-209)) (IF (|has| |t#1| (-828 (-1083))) (-6 (-828 (-1083))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2286 ((-1064 |t#1|) $ |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-380 (-520))) |has| |#1| (-37 (-380 (-520)))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) |has| |#1| (-512)) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-380 (-520)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3700 (|has| |#1| (-512)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-560 (-791)) . T) ((-157) -3700 (|has| |#1| (-512)) (|has| |#1| (-157))) ((-209) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-260 $ $) |has| |#2| (-1024)) ((-264) |has| |#1| (-512)) ((-512) |has| |#1| (-512)) ((-588 #0#) |has| |#1| (-37 (-380 (-520)))) ((-588 |#1|) . T) ((-588 $) . T) ((-653 #0#) |has| |#1| (-37 (-380 (-520)))) ((-653 |#1|) |has| |#1| (-157)) ((-653 $) |has| |#1| (-512)) ((-662) . T) ((-828 (-1083)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-828 (-1083)))) ((-898 |#1| |#2| (-997)) . T) ((-975 #0#) |has| |#1| (-37 (-380 (-520)))) ((-975 |#1|) . T) ((-975 $) -3700 (|has| |#1| (-512)) (|has| |#1| (-157))) ((-969) . T) ((-976) . T) ((-1024) . T) ((-1012) . T))
-((-3024 ((|#2| |#2|) 12)) (-1507 (((-391 |#2|) |#2|) 14)) (-2389 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-520))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-520)))) 30)))
-(((-1143 |#1| |#2|) (-10 -7 (-15 -1507 ((-391 |#2|) |#2|)) (-15 -3024 (|#2| |#2|)) (-15 -2389 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-520))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-520)))))) (-512) (-13 (-1140 |#1|) (-512) (-10 -8 (-15 -2257 ($ $ $))))) (T -1143))
-((-2389 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-520)))) (-4 *4 (-13 (-1140 *3) (-512) (-10 -8 (-15 -2257 ($ $ $))))) (-4 *3 (-512)) (-5 *1 (-1143 *3 *4)))) (-3024 (*1 *2 *2) (-12 (-4 *3 (-512)) (-5 *1 (-1143 *3 *2)) (-4 *2 (-13 (-1140 *3) (-512) (-10 -8 (-15 -2257 ($ $ $))))))) (-1507 (*1 *2 *3) (-12 (-4 *4 (-512)) (-5 *2 (-391 *3)) (-5 *1 (-1143 *4 *3)) (-4 *3 (-13 (-1140 *4) (-512) (-10 -8 (-15 -2257 ($ $ $))))))))
-(-10 -7 (-15 -1507 ((-391 |#2|) |#2|)) (-15 -3024 (|#2| |#2|)) (-15 -2389 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-520))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-520))))))
-((-1389 (((-1149 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1149 |#1| |#3| |#5|)) 23)))
-(((-1144 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1389 ((-1149 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1149 |#1| |#3| |#5|)))) (-969) (-969) (-1083) (-1083) |#1| |#2|) (T -1144))
-((-1389 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1149 *5 *7 *9)) (-4 *5 (-969)) (-4 *6 (-969)) (-14 *7 (-1083)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1149 *6 *8 *10)) (-5 *1 (-1144 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1083)))))
-(-10 -7 (-15 -1389 ((-1149 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1149 |#1| |#3| |#5|))))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-4081 (((-586 (-997)) $) 74)) (-1610 (((-1083) $) 103)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) 51 (|has| |#1| (-512)))) (-2583 (($ $) 52 (|has| |#1| (-512)))) (-1671 (((-108) $) 54 (|has| |#1| (-512)))) (-2406 (($ $ (-380 (-520))) 98) (($ $ (-380 (-520)) (-380 (-520))) 97)) (-2088 (((-1064 (-2 (|:| |k| (-380 (-520))) (|:| |c| |#1|))) $) 105)) (-2903 (($ $) 135 (|has| |#1| (-37 (-380 (-520)))))) (-2768 (($ $) 118 (|has| |#1| (-37 (-380 (-520)))))) (-1917 (((-3 $ "failed") $ $) 19)) (-3024 (($ $) 162 (|has| |#1| (-336)))) (-1507 (((-391 $) $) 163 (|has| |#1| (-336)))) (-1927 (($ $) 117 (|has| |#1| (-37 (-380 (-520)))))) (-1327 (((-108) $ $) 153 (|has| |#1| (-336)))) (-2879 (($ $) 134 (|has| |#1| (-37 (-380 (-520)))))) (-2745 (($ $) 119 (|has| |#1| (-37 (-380 (-520)))))) (-2769 (($ (-706) (-1064 (-2 (|:| |k| (-380 (-520))) (|:| |c| |#1|)))) 172)) (-2925 (($ $) 133 (|has| |#1| (-37 (-380 (-520)))))) (-2789 (($ $) 120 (|has| |#1| (-37 (-380 (-520)))))) (-3961 (($) 17 T CONST)) (-2276 (($ $ $) 157 (|has| |#1| (-336)))) (-3150 (($ $) 60)) (-1540 (((-3 $ "failed") $) 34)) (-2253 (($ $ $) 156 (|has| |#1| (-336)))) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) 151 (|has| |#1| (-336)))) (-2036 (((-108) $) 164 (|has| |#1| (-336)))) (-1342 (((-108) $) 73)) (-2833 (($) 145 (|has| |#1| (-37 (-380 (-520)))))) (-3989 (((-380 (-520)) $) 100) (((-380 (-520)) $ (-380 (-520))) 99)) (-1537 (((-108) $) 31)) (-2322 (($ $ (-520)) 116 (|has| |#1| (-37 (-380 (-520)))))) (-2371 (($ $ (-849)) 101) (($ $ (-380 (-520))) 171)) (-3188 (((-3 (-586 $) "failed") (-586 $) $) 160 (|has| |#1| (-336)))) (-3774 (((-108) $) 62)) (-4039 (($ |#1| (-380 (-520))) 61) (($ $ (-997) (-380 (-520))) 76) (($ $ (-586 (-997)) (-586 (-380 (-520)))) 75)) (-1389 (($ (-1 |#1| |#1|) $) 63)) (-1252 (($ $) 142 (|has| |#1| (-37 (-380 (-520)))))) (-3123 (($ $) 65)) (-3133 ((|#1| $) 66)) (-2222 (($ (-586 $)) 149 (|has| |#1| (-336))) (($ $ $) 148 (|has| |#1| (-336)))) (-1239 (((-1066) $) 9)) (-3093 (($ $) 165 (|has| |#1| (-336)))) (-3517 (($ $) 170 (|has| |#1| (-37 (-380 (-520))))) (($ $ (-1083)) 169 (-3700 (-12 (|has| |#1| (-29 (-520))) (|has| |#1| (-886)) (|has| |#1| (-1104)) (|has| |#1| (-37 (-380 (-520))))) (-12 (|has| |#1| (-15 -4081 ((-586 (-1083)) |#1|))) (|has| |#1| (-15 -3517 (|#1| |#1| (-1083)))) (|has| |#1| (-37 (-380 (-520)))))))) (-4142 (((-1030) $) 10)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) 150 (|has| |#1| (-336)))) (-2257 (($ (-586 $)) 147 (|has| |#1| (-336))) (($ $ $) 146 (|has| |#1| (-336)))) (-1916 (((-391 $) $) 161 (|has| |#1| (-336)))) (-1283 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-336))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) 158 (|has| |#1| (-336)))) (-2116 (($ $ (-380 (-520))) 95)) (-2230 (((-3 $ "failed") $ $) 50 (|has| |#1| (-512)))) (-2608 (((-3 (-586 $) "failed") (-586 $) $) 152 (|has| |#1| (-336)))) (-3260 (($ $) 143 (|has| |#1| (-37 (-380 (-520)))))) (-2286 (((-1064 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-380 (-520))))))) (-3704 (((-706) $) 154 (|has| |#1| (-336)))) (-2543 ((|#1| $ (-380 (-520))) 104) (($ $ $) 81 (|has| (-380 (-520)) (-1024)))) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) 155 (|has| |#1| (-336)))) (-2155 (($ $ (-586 (-1083)) (-586 (-706))) 89 (-12 (|has| |#1| (-828 (-1083))) (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|))))) (($ $ (-1083) (-706)) 88 (-12 (|has| |#1| (-828 (-1083))) (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|))))) (($ $ (-586 (-1083))) 87 (-12 (|has| |#1| (-828 (-1083))) (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|))))) (($ $ (-1083)) 86 (-12 (|has| |#1| (-828 (-1083))) (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|))))) (($ $ (-706)) 84 (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|))))) (-2528 (((-380 (-520)) $) 64)) (-1737 (($ $) 132 (|has| |#1| (-37 (-380 (-520)))))) (-2799 (($ $) 121 (|has| |#1| (-37 (-380 (-520)))))) (-2914 (($ $) 131 (|has| |#1| (-37 (-380 (-520)))))) (-2779 (($ $) 122 (|has| |#1| (-37 (-380 (-520)))))) (-2891 (($ $) 130 (|has| |#1| (-37 (-380 (-520)))))) (-2757 (($ $) 123 (|has| |#1| (-37 (-380 (-520)))))) (-2759 (($ $) 72)) (-2188 (((-791) $) 11) (($ (-520)) 28) (($ |#1|) 47 (|has| |#1| (-157))) (($ (-380 (-520))) 57 (|has| |#1| (-37 (-380 (-520))))) (($ $) 49 (|has| |#1| (-512)))) (-3475 ((|#1| $ (-380 (-520))) 59)) (-3796 (((-3 $ "failed") $) 48 (|has| |#1| (-133)))) (-3251 (((-706)) 29)) (-1892 ((|#1| $) 102)) (-1758 (($ $) 141 (|has| |#1| (-37 (-380 (-520)))))) (-2831 (($ $) 129 (|has| |#1| (-37 (-380 (-520)))))) (-2559 (((-108) $ $) 53 (|has| |#1| (-512)))) (-1744 (($ $) 140 (|has| |#1| (-37 (-380 (-520)))))) (-2810 (($ $) 128 (|has| |#1| (-37 (-380 (-520)))))) (-1775 (($ $) 139 (|has| |#1| (-37 (-380 (-520)))))) (-2855 (($ $) 127 (|has| |#1| (-37 (-380 (-520)))))) (-3890 ((|#1| $ (-380 (-520))) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-380 (-520))))) (|has| |#1| (-15 -2188 (|#1| (-1083))))))) (-3915 (($ $) 138 (|has| |#1| (-37 (-380 (-520)))))) (-2867 (($ $) 126 (|has| |#1| (-37 (-380 (-520)))))) (-1767 (($ $) 137 (|has| |#1| (-37 (-380 (-520)))))) (-2843 (($ $) 125 (|has| |#1| (-37 (-380 (-520)))))) (-1751 (($ $) 136 (|has| |#1| (-37 (-380 (-520)))))) (-2820 (($ $) 124 (|has| |#1| (-37 (-380 (-520)))))) (-3504 (($ $ (-849)) 26) (($ $ (-706)) 33) (($ $ (-520)) 166 (|has| |#1| (-336)))) (-3560 (($) 18 T CONST)) (-3570 (($) 30 T CONST)) (-2211 (($ $ (-586 (-1083)) (-586 (-706))) 93 (-12 (|has| |#1| (-828 (-1083))) (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|))))) (($ $ (-1083) (-706)) 92 (-12 (|has| |#1| (-828 (-1083))) (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|))))) (($ $ (-586 (-1083))) 91 (-12 (|has| |#1| (-828 (-1083))) (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|))))) (($ $ (-1083)) 90 (-12 (|has| |#1| (-828 (-1083))) (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|))))) (($ $ (-706)) 85 (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|))))) (-1530 (((-108) $ $) 6)) (-1619 (($ $ |#1|) 58 (|has| |#1| (-336))) (($ $ $) 168 (|has| |#1| (-336)))) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-706)) 32) (($ $ (-520)) 167 (|has| |#1| (-336))) (($ $ $) 144 (|has| |#1| (-37 (-380 (-520))))) (($ $ (-380 (-520))) 115 (|has| |#1| (-37 (-380 (-520)))))) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-380 (-520)) $) 56 (|has| |#1| (-37 (-380 (-520))))) (($ $ (-380 (-520))) 55 (|has| |#1| (-37 (-380 (-520)))))))
-(((-1145 |#1|) (-1195) (-969)) (T -1145))
-((-2769 (*1 *1 *2 *3) (-12 (-5 *2 (-706)) (-5 *3 (-1064 (-2 (|:| |k| (-380 (-520))) (|:| |c| *4)))) (-4 *4 (-969)) (-4 *1 (-1145 *4)))) (-2371 (*1 *1 *1 *2) (-12 (-5 *2 (-380 (-520))) (-4 *1 (-1145 *3)) (-4 *3 (-969)))) (-3517 (*1 *1 *1) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-969)) (-4 *2 (-37 (-380 (-520)))))) (-3517 (*1 *1 *1 *2) (-3700 (-12 (-5 *2 (-1083)) (-4 *1 (-1145 *3)) (-4 *3 (-969)) (-12 (-4 *3 (-29 (-520))) (-4 *3 (-886)) (-4 *3 (-1104)) (-4 *3 (-37 (-380 (-520)))))) (-12 (-5 *2 (-1083)) (-4 *1 (-1145 *3)) (-4 *3 (-969)) (-12 (|has| *3 (-15 -4081 ((-586 *2) *3))) (|has| *3 (-15 -3517 (*3 *3 *2))) (-4 *3 (-37 (-380 (-520)))))))))
-(-13 (-1142 |t#1| (-380 (-520))) (-10 -8 (-15 -2769 ($ (-706) (-1064 (-2 (|:| |k| (-380 (-520))) (|:| |c| |t#1|))))) (-15 -2371 ($ $ (-380 (-520)))) (IF (|has| |t#1| (-37 (-380 (-520)))) (PROGN (-15 -3517 ($ $)) (IF (|has| |t#1| (-15 -3517 (|t#1| |t#1| (-1083)))) (IF (|has| |t#1| (-15 -4081 ((-586 (-1083)) |t#1|))) (-15 -3517 ($ $ (-1083))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1104)) (IF (|has| |t#1| (-886)) (IF (|has| |t#1| (-29 (-520))) (-15 -3517 ($ $ (-1083))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-926)) (-6 (-1104))) |%noBranch|) (IF (|has| |t#1| (-336)) (-6 (-336)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-380 (-520))) . T) ((-25) . T) ((-37 #1=(-380 (-520))) -3700 (|has| |#1| (-336)) (|has| |#1| (-37 (-380 (-520))))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) -3700 (|has| |#1| (-512)) (|has| |#1| (-336))) ((-34) |has| |#1| (-37 (-380 (-520)))) ((-91) |has| |#1| (-37 (-380 (-520)))) ((-97) . T) ((-107 #1# #1#) -3700 (|has| |#1| (-336)) (|has| |#1| (-37 (-380 (-520))))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3700 (|has| |#1| (-512)) (|has| |#1| (-336)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-560 (-791)) . T) ((-157) -3700 (|has| |#1| (-512)) (|has| |#1| (-336)) (|has| |#1| (-157))) ((-209) |has| |#1| (-15 * (|#1| (-380 (-520)) |#1|))) ((-219) |has| |#1| (-336)) ((-258) |has| |#1| (-37 (-380 (-520)))) ((-260 $ $) |has| (-380 (-520)) (-1024)) ((-264) -3700 (|has| |#1| (-512)) (|has| |#1| (-336))) ((-281) |has| |#1| (-336)) ((-336) |has| |#1| (-336)) ((-424) |has| |#1| (-336)) ((-461) |has| |#1| (-37 (-380 (-520)))) ((-512) -3700 (|has| |#1| (-512)) (|has| |#1| (-336))) ((-588 #1#) -3700 (|has| |#1| (-336)) (|has| |#1| (-37 (-380 (-520))))) ((-588 |#1|) . T) ((-588 $) . T) ((-653 #1#) -3700 (|has| |#1| (-336)) (|has| |#1| (-37 (-380 (-520))))) ((-653 |#1|) |has| |#1| (-157)) ((-653 $) -3700 (|has| |#1| (-512)) (|has| |#1| (-336))) ((-662) . T) ((-828 (-1083)) -12 (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|))) (|has| |#1| (-828 (-1083)))) ((-898 |#1| #0# (-997)) . T) ((-848) |has| |#1| (-336)) ((-926) |has| |#1| (-37 (-380 (-520)))) ((-975 #1#) -3700 (|has| |#1| (-336)) (|has| |#1| (-37 (-380 (-520))))) ((-975 |#1|) . T) ((-975 $) -3700 (|has| |#1| (-512)) (|has| |#1| (-336)) (|has| |#1| (-157))) ((-969) . T) ((-976) . T) ((-1024) . T) ((-1012) . T) ((-1104) |has| |#1| (-37 (-380 (-520)))) ((-1107) |has| |#1| (-37 (-380 (-520)))) ((-1122) |has| |#1| (-336)) ((-1142 |#1| #0#) . T))
-((-2906 (((-108) $) 12)) (-1296 (((-3 |#3| "failed") $) 17)) (-1482 ((|#3| $) 14)))
-(((-1146 |#1| |#2| |#3|) (-10 -8 (-15 -1482 (|#3| |#1|)) (-15 -1296 ((-3 |#3| "failed") |#1|)) (-15 -2906 ((-108) |#1|))) (-1147 |#2| |#3|) (-969) (-1124 |#2|)) (T -1146))
-NIL
-(-10 -8 (-15 -1482 (|#3| |#1|)) (-15 -1296 ((-3 |#3| "failed") |#1|)) (-15 -2906 ((-108) |#1|)))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-4081 (((-586 (-997)) $) 74)) (-1610 (((-1083) $) 103)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) 51 (|has| |#1| (-512)))) (-2583 (($ $) 52 (|has| |#1| (-512)))) (-1671 (((-108) $) 54 (|has| |#1| (-512)))) (-2406 (($ $ (-380 (-520))) 98) (($ $ (-380 (-520)) (-380 (-520))) 97)) (-2088 (((-1064 (-2 (|:| |k| (-380 (-520))) (|:| |c| |#1|))) $) 105)) (-2903 (($ $) 135 (|has| |#1| (-37 (-380 (-520)))))) (-2768 (($ $) 118 (|has| |#1| (-37 (-380 (-520)))))) (-1917 (((-3 $ "failed") $ $) 19)) (-3024 (($ $) 162 (|has| |#1| (-336)))) (-1507 (((-391 $) $) 163 (|has| |#1| (-336)))) (-1927 (($ $) 117 (|has| |#1| (-37 (-380 (-520)))))) (-1327 (((-108) $ $) 153 (|has| |#1| (-336)))) (-2879 (($ $) 134 (|has| |#1| (-37 (-380 (-520)))))) (-2745 (($ $) 119 (|has| |#1| (-37 (-380 (-520)))))) (-2769 (($ (-706) (-1064 (-2 (|:| |k| (-380 (-520))) (|:| |c| |#1|)))) 172)) (-2925 (($ $) 133 (|has| |#1| (-37 (-380 (-520)))))) (-2789 (($ $) 120 (|has| |#1| (-37 (-380 (-520)))))) (-3961 (($) 17 T CONST)) (-1296 (((-3 |#2| "failed") $) 183)) (-1482 ((|#2| $) 182)) (-2276 (($ $ $) 157 (|has| |#1| (-336)))) (-3150 (($ $) 60)) (-1540 (((-3 $ "failed") $) 34)) (-2966 (((-380 (-520)) $) 180)) (-2253 (($ $ $) 156 (|has| |#1| (-336)))) (-3073 (($ (-380 (-520)) |#2|) 181)) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) 151 (|has| |#1| (-336)))) (-2036 (((-108) $) 164 (|has| |#1| (-336)))) (-1342 (((-108) $) 73)) (-2833 (($) 145 (|has| |#1| (-37 (-380 (-520)))))) (-3989 (((-380 (-520)) $) 100) (((-380 (-520)) $ (-380 (-520))) 99)) (-1537 (((-108) $) 31)) (-2322 (($ $ (-520)) 116 (|has| |#1| (-37 (-380 (-520)))))) (-2371 (($ $ (-849)) 101) (($ $ (-380 (-520))) 171)) (-3188 (((-3 (-586 $) "failed") (-586 $) $) 160 (|has| |#1| (-336)))) (-3774 (((-108) $) 62)) (-4039 (($ |#1| (-380 (-520))) 61) (($ $ (-997) (-380 (-520))) 76) (($ $ (-586 (-997)) (-586 (-380 (-520)))) 75)) (-1389 (($ (-1 |#1| |#1|) $) 63)) (-1252 (($ $) 142 (|has| |#1| (-37 (-380 (-520)))))) (-3123 (($ $) 65)) (-3133 ((|#1| $) 66)) (-2222 (($ (-586 $)) 149 (|has| |#1| (-336))) (($ $ $) 148 (|has| |#1| (-336)))) (-3267 ((|#2| $) 179)) (-3581 (((-3 |#2| "failed") $) 177)) (-3063 ((|#2| $) 178)) (-1239 (((-1066) $) 9)) (-3093 (($ $) 165 (|has| |#1| (-336)))) (-3517 (($ $) 170 (|has| |#1| (-37 (-380 (-520))))) (($ $ (-1083)) 169 (-3700 (-12 (|has| |#1| (-29 (-520))) (|has| |#1| (-886)) (|has| |#1| (-1104)) (|has| |#1| (-37 (-380 (-520))))) (-12 (|has| |#1| (-15 -4081 ((-586 (-1083)) |#1|))) (|has| |#1| (-15 -3517 (|#1| |#1| (-1083)))) (|has| |#1| (-37 (-380 (-520)))))))) (-4142 (((-1030) $) 10)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) 150 (|has| |#1| (-336)))) (-2257 (($ (-586 $)) 147 (|has| |#1| (-336))) (($ $ $) 146 (|has| |#1| (-336)))) (-1916 (((-391 $) $) 161 (|has| |#1| (-336)))) (-1283 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-336))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) 158 (|has| |#1| (-336)))) (-2116 (($ $ (-380 (-520))) 95)) (-2230 (((-3 $ "failed") $ $) 50 (|has| |#1| (-512)))) (-2608 (((-3 (-586 $) "failed") (-586 $) $) 152 (|has| |#1| (-336)))) (-3260 (($ $) 143 (|has| |#1| (-37 (-380 (-520)))))) (-2286 (((-1064 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-380 (-520))))))) (-3704 (((-706) $) 154 (|has| |#1| (-336)))) (-2543 ((|#1| $ (-380 (-520))) 104) (($ $ $) 81 (|has| (-380 (-520)) (-1024)))) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) 155 (|has| |#1| (-336)))) (-2155 (($ $ (-586 (-1083)) (-586 (-706))) 89 (-12 (|has| |#1| (-828 (-1083))) (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|))))) (($ $ (-1083) (-706)) 88 (-12 (|has| |#1| (-828 (-1083))) (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|))))) (($ $ (-586 (-1083))) 87 (-12 (|has| |#1| (-828 (-1083))) (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|))))) (($ $ (-1083)) 86 (-12 (|has| |#1| (-828 (-1083))) (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|))))) (($ $ (-706)) 84 (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|))))) (-2528 (((-380 (-520)) $) 64)) (-1737 (($ $) 132 (|has| |#1| (-37 (-380 (-520)))))) (-2799 (($ $) 121 (|has| |#1| (-37 (-380 (-520)))))) (-2914 (($ $) 131 (|has| |#1| (-37 (-380 (-520)))))) (-2779 (($ $) 122 (|has| |#1| (-37 (-380 (-520)))))) (-2891 (($ $) 130 (|has| |#1| (-37 (-380 (-520)))))) (-2757 (($ $) 123 (|has| |#1| (-37 (-380 (-520)))))) (-2759 (($ $) 72)) (-2188 (((-791) $) 11) (($ (-520)) 28) (($ |#1|) 47 (|has| |#1| (-157))) (($ |#2|) 184) (($ (-380 (-520))) 57 (|has| |#1| (-37 (-380 (-520))))) (($ $) 49 (|has| |#1| (-512)))) (-3475 ((|#1| $ (-380 (-520))) 59)) (-3796 (((-3 $ "failed") $) 48 (|has| |#1| (-133)))) (-3251 (((-706)) 29)) (-1892 ((|#1| $) 102)) (-1758 (($ $) 141 (|has| |#1| (-37 (-380 (-520)))))) (-2831 (($ $) 129 (|has| |#1| (-37 (-380 (-520)))))) (-2559 (((-108) $ $) 53 (|has| |#1| (-512)))) (-1744 (($ $) 140 (|has| |#1| (-37 (-380 (-520)))))) (-2810 (($ $) 128 (|has| |#1| (-37 (-380 (-520)))))) (-1775 (($ $) 139 (|has| |#1| (-37 (-380 (-520)))))) (-2855 (($ $) 127 (|has| |#1| (-37 (-380 (-520)))))) (-3890 ((|#1| $ (-380 (-520))) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-380 (-520))))) (|has| |#1| (-15 -2188 (|#1| (-1083))))))) (-3915 (($ $) 138 (|has| |#1| (-37 (-380 (-520)))))) (-2867 (($ $) 126 (|has| |#1| (-37 (-380 (-520)))))) (-1767 (($ $) 137 (|has| |#1| (-37 (-380 (-520)))))) (-2843 (($ $) 125 (|has| |#1| (-37 (-380 (-520)))))) (-1751 (($ $) 136 (|has| |#1| (-37 (-380 (-520)))))) (-2820 (($ $) 124 (|has| |#1| (-37 (-380 (-520)))))) (-3504 (($ $ (-849)) 26) (($ $ (-706)) 33) (($ $ (-520)) 166 (|has| |#1| (-336)))) (-3560 (($) 18 T CONST)) (-3570 (($) 30 T CONST)) (-2211 (($ $ (-586 (-1083)) (-586 (-706))) 93 (-12 (|has| |#1| (-828 (-1083))) (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|))))) (($ $ (-1083) (-706)) 92 (-12 (|has| |#1| (-828 (-1083))) (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|))))) (($ $ (-586 (-1083))) 91 (-12 (|has| |#1| (-828 (-1083))) (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|))))) (($ $ (-1083)) 90 (-12 (|has| |#1| (-828 (-1083))) (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|))))) (($ $ (-706)) 85 (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|))))) (-1530 (((-108) $ $) 6)) (-1619 (($ $ |#1|) 58 (|has| |#1| (-336))) (($ $ $) 168 (|has| |#1| (-336)))) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-706)) 32) (($ $ (-520)) 167 (|has| |#1| (-336))) (($ $ $) 144 (|has| |#1| (-37 (-380 (-520))))) (($ $ (-380 (-520))) 115 (|has| |#1| (-37 (-380 (-520)))))) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-380 (-520)) $) 56 (|has| |#1| (-37 (-380 (-520))))) (($ $ (-380 (-520))) 55 (|has| |#1| (-37 (-380 (-520)))))))
-(((-1147 |#1| |#2|) (-1195) (-969) (-1124 |t#1|)) (T -1147))
-((-2528 (*1 *2 *1) (-12 (-4 *1 (-1147 *3 *4)) (-4 *3 (-969)) (-4 *4 (-1124 *3)) (-5 *2 (-380 (-520))))) (-2188 (*1 *1 *2) (-12 (-4 *3 (-969)) (-4 *1 (-1147 *3 *2)) (-4 *2 (-1124 *3)))) (-3073 (*1 *1 *2 *3) (-12 (-5 *2 (-380 (-520))) (-4 *4 (-969)) (-4 *1 (-1147 *4 *3)) (-4 *3 (-1124 *4)))) (-2966 (*1 *2 *1) (-12 (-4 *1 (-1147 *3 *4)) (-4 *3 (-969)) (-4 *4 (-1124 *3)) (-5 *2 (-380 (-520))))) (-3267 (*1 *2 *1) (-12 (-4 *1 (-1147 *3 *2)) (-4 *3 (-969)) (-4 *2 (-1124 *3)))) (-3063 (*1 *2 *1) (-12 (-4 *1 (-1147 *3 *2)) (-4 *3 (-969)) (-4 *2 (-1124 *3)))) (-3581 (*1 *2 *1) (|partial| -12 (-4 *1 (-1147 *3 *2)) (-4 *3 (-969)) (-4 *2 (-1124 *3)))))
-(-13 (-1145 |t#1|) (-960 |t#2|) (-10 -8 (-15 -3073 ($ (-380 (-520)) |t#2|)) (-15 -2966 ((-380 (-520)) $)) (-15 -3267 (|t#2| $)) (-15 -2528 ((-380 (-520)) $)) (-15 -2188 ($ |t#2|)) (-15 -3063 (|t#2| $)) (-15 -3581 ((-3 |t#2| "failed") $))))
-(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-380 (-520))) . T) ((-25) . T) ((-37 #1=(-380 (-520))) -3700 (|has| |#1| (-336)) (|has| |#1| (-37 (-380 (-520))))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) -3700 (|has| |#1| (-512)) (|has| |#1| (-336))) ((-34) |has| |#1| (-37 (-380 (-520)))) ((-91) |has| |#1| (-37 (-380 (-520)))) ((-97) . T) ((-107 #1# #1#) -3700 (|has| |#1| (-336)) (|has| |#1| (-37 (-380 (-520))))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3700 (|has| |#1| (-512)) (|has| |#1| (-336)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-560 (-791)) . T) ((-157) -3700 (|has| |#1| (-512)) (|has| |#1| (-336)) (|has| |#1| (-157))) ((-209) |has| |#1| (-15 * (|#1| (-380 (-520)) |#1|))) ((-219) |has| |#1| (-336)) ((-258) |has| |#1| (-37 (-380 (-520)))) ((-260 $ $) |has| (-380 (-520)) (-1024)) ((-264) -3700 (|has| |#1| (-512)) (|has| |#1| (-336))) ((-281) |has| |#1| (-336)) ((-336) |has| |#1| (-336)) ((-424) |has| |#1| (-336)) ((-461) |has| |#1| (-37 (-380 (-520)))) ((-512) -3700 (|has| |#1| (-512)) (|has| |#1| (-336))) ((-588 #1#) -3700 (|has| |#1| (-336)) (|has| |#1| (-37 (-380 (-520))))) ((-588 |#1|) . T) ((-588 $) . T) ((-653 #1#) -3700 (|has| |#1| (-336)) (|has| |#1| (-37 (-380 (-520))))) ((-653 |#1|) |has| |#1| (-157)) ((-653 $) -3700 (|has| |#1| (-512)) (|has| |#1| (-336))) ((-662) . T) ((-828 (-1083)) -12 (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|))) (|has| |#1| (-828 (-1083)))) ((-898 |#1| #0# (-997)) . T) ((-848) |has| |#1| (-336)) ((-926) |has| |#1| (-37 (-380 (-520)))) ((-960 |#2|) . T) ((-975 #1#) -3700 (|has| |#1| (-336)) (|has| |#1| (-37 (-380 (-520))))) ((-975 |#1|) . T) ((-975 $) -3700 (|has| |#1| (-512)) (|has| |#1| (-336)) (|has| |#1| (-157))) ((-969) . T) ((-976) . T) ((-1024) . T) ((-1012) . T) ((-1104) |has| |#1| (-37 (-380 (-520)))) ((-1107) |has| |#1| (-37 (-380 (-520)))) ((-1122) |has| |#1| (-336)) ((-1142 |#1| #0#) . T) ((-1145 |#1|) . T))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-4081 (((-586 (-997)) $) NIL)) (-1610 (((-1083) $) 96)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) NIL (|has| |#1| (-512)))) (-2583 (($ $) NIL (|has| |#1| (-512)))) (-1671 (((-108) $) NIL (|has| |#1| (-512)))) (-2406 (($ $ (-380 (-520))) 106) (($ $ (-380 (-520)) (-380 (-520))) 108)) (-2088 (((-1064 (-2 (|:| |k| (-380 (-520))) (|:| |c| |#1|))) $) 51)) (-2903 (($ $) 179 (|has| |#1| (-37 (-380 (-520)))))) (-2768 (($ $) 155 (|has| |#1| (-37 (-380 (-520)))))) (-1917 (((-3 $ "failed") $ $) NIL)) (-3024 (($ $) NIL (|has| |#1| (-336)))) (-1507 (((-391 $) $) NIL (|has| |#1| (-336)))) (-1927 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-1327 (((-108) $ $) NIL (|has| |#1| (-336)))) (-2879 (($ $) 175 (|has| |#1| (-37 (-380 (-520)))))) (-2745 (($ $) 151 (|has| |#1| (-37 (-380 (-520)))))) (-2769 (($ (-706) (-1064 (-2 (|:| |k| (-380 (-520))) (|:| |c| |#1|)))) 61)) (-2925 (($ $) 183 (|has| |#1| (-37 (-380 (-520)))))) (-2789 (($ $) 159 (|has| |#1| (-37 (-380 (-520)))))) (-3961 (($) NIL T CONST)) (-1296 (((-3 |#2| "failed") $) NIL)) (-1482 ((|#2| $) NIL)) (-2276 (($ $ $) NIL (|has| |#1| (-336)))) (-3150 (($ $) NIL)) (-1540 (((-3 $ "failed") $) 79)) (-2966 (((-380 (-520)) $) 12)) (-2253 (($ $ $) NIL (|has| |#1| (-336)))) (-3073 (($ (-380 (-520)) |#2|) 10)) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) NIL (|has| |#1| (-336)))) (-2036 (((-108) $) NIL (|has| |#1| (-336)))) (-1342 (((-108) $) 68)) (-2833 (($) NIL (|has| |#1| (-37 (-380 (-520)))))) (-3989 (((-380 (-520)) $) 103) (((-380 (-520)) $ (-380 (-520))) 104)) (-1537 (((-108) $) NIL)) (-2322 (($ $ (-520)) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2371 (($ $ (-849)) 120) (($ $ (-380 (-520))) 118)) (-3188 (((-3 (-586 $) "failed") (-586 $) $) NIL (|has| |#1| (-336)))) (-3774 (((-108) $) NIL)) (-4039 (($ |#1| (-380 (-520))) 31) (($ $ (-997) (-380 (-520))) NIL) (($ $ (-586 (-997)) (-586 (-380 (-520)))) NIL)) (-1389 (($ (-1 |#1| |#1|) $) 115)) (-1252 (($ $) 149 (|has| |#1| (-37 (-380 (-520)))))) (-3123 (($ $) NIL)) (-3133 ((|#1| $) NIL)) (-2222 (($ (-586 $)) NIL (|has| |#1| (-336))) (($ $ $) NIL (|has| |#1| (-336)))) (-3267 ((|#2| $) 11)) (-3581 (((-3 |#2| "failed") $) 41)) (-3063 ((|#2| $) 42)) (-1239 (((-1066) $) NIL)) (-3093 (($ $) 93 (|has| |#1| (-336)))) (-3517 (($ $) 135 (|has| |#1| (-37 (-380 (-520))))) (($ $ (-1083)) 140 (-3700 (-12 (|has| |#1| (-15 -3517 (|#1| |#1| (-1083)))) (|has| |#1| (-15 -4081 ((-586 (-1083)) |#1|))) (|has| |#1| (-37 (-380 (-520))))) (-12 (|has| |#1| (-29 (-520))) (|has| |#1| (-37 (-380 (-520)))) (|has| |#1| (-886)) (|has| |#1| (-1104)))))) (-4142 (((-1030) $) NIL)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) NIL (|has| |#1| (-336)))) (-2257 (($ (-586 $)) NIL (|has| |#1| (-336))) (($ $ $) NIL (|has| |#1| (-336)))) (-1916 (((-391 $) $) NIL (|has| |#1| (-336)))) (-1283 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-336))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) NIL (|has| |#1| (-336)))) (-2116 (($ $ (-380 (-520))) 112)) (-2230 (((-3 $ "failed") $ $) NIL (|has| |#1| (-512)))) (-2608 (((-3 (-586 $) "failed") (-586 $) $) NIL (|has| |#1| (-336)))) (-3260 (($ $) 147 (|has| |#1| (-37 (-380 (-520)))))) (-2286 (((-1064 |#1|) $ |#1|) 90 (|has| |#1| (-15 ** (|#1| |#1| (-380 (-520))))))) (-3704 (((-706) $) NIL (|has| |#1| (-336)))) (-2543 ((|#1| $ (-380 (-520))) 100) (($ $ $) 86 (|has| (-380 (-520)) (-1024)))) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) NIL (|has| |#1| (-336)))) (-2155 (($ $ (-586 (-1083)) (-586 (-706))) NIL (-12 (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|))) (|has| |#1| (-828 (-1083))))) (($ $ (-1083) (-706)) NIL (-12 (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|))) (|has| |#1| (-828 (-1083))))) (($ $ (-586 (-1083))) NIL (-12 (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|))) (|has| |#1| (-828 (-1083))))) (($ $ (-1083)) 127 (-12 (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|))) (|has| |#1| (-828 (-1083))))) (($ $ (-706)) NIL (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|)))) (($ $) 124 (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|))))) (-2528 (((-380 (-520)) $) 16)) (-1737 (($ $) 185 (|has| |#1| (-37 (-380 (-520)))))) (-2799 (($ $) 161 (|has| |#1| (-37 (-380 (-520)))))) (-2914 (($ $) 181 (|has| |#1| (-37 (-380 (-520)))))) (-2779 (($ $) 157 (|has| |#1| (-37 (-380 (-520)))))) (-2891 (($ $) 177 (|has| |#1| (-37 (-380 (-520)))))) (-2757 (($ $) 153 (|has| |#1| (-37 (-380 (-520)))))) (-2759 (($ $) 110)) (-2188 (((-791) $) NIL) (($ (-520)) 35) (($ |#1|) 27 (|has| |#1| (-157))) (($ |#2|) 32) (($ (-380 (-520))) 128 (|has| |#1| (-37 (-380 (-520))))) (($ $) NIL (|has| |#1| (-512)))) (-3475 ((|#1| $ (-380 (-520))) 99)) (-3796 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-3251 (((-706)) 117)) (-1892 ((|#1| $) 98)) (-1758 (($ $) 191 (|has| |#1| (-37 (-380 (-520)))))) (-2831 (($ $) 167 (|has| |#1| (-37 (-380 (-520)))))) (-2559 (((-108) $ $) NIL (|has| |#1| (-512)))) (-1744 (($ $) 187 (|has| |#1| (-37 (-380 (-520)))))) (-2810 (($ $) 163 (|has| |#1| (-37 (-380 (-520)))))) (-1775 (($ $) 195 (|has| |#1| (-37 (-380 (-520)))))) (-2855 (($ $) 171 (|has| |#1| (-37 (-380 (-520)))))) (-3890 ((|#1| $ (-380 (-520))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-380 (-520))))) (|has| |#1| (-15 -2188 (|#1| (-1083))))))) (-3915 (($ $) 197 (|has| |#1| (-37 (-380 (-520)))))) (-2867 (($ $) 173 (|has| |#1| (-37 (-380 (-520)))))) (-1767 (($ $) 193 (|has| |#1| (-37 (-380 (-520)))))) (-2843 (($ $) 169 (|has| |#1| (-37 (-380 (-520)))))) (-1751 (($ $) 189 (|has| |#1| (-37 (-380 (-520)))))) (-2820 (($ $) 165 (|has| |#1| (-37 (-380 (-520)))))) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL (|has| |#1| (-336)))) (-3560 (($) 21 T CONST)) (-3570 (($) 17 T CONST)) (-2211 (($ $ (-586 (-1083)) (-586 (-706))) NIL (-12 (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|))) (|has| |#1| (-828 (-1083))))) (($ $ (-1083) (-706)) NIL (-12 (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|))) (|has| |#1| (-828 (-1083))))) (($ $ (-586 (-1083))) NIL (-12 (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|))) (|has| |#1| (-828 (-1083))))) (($ $ (-1083)) NIL (-12 (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|))) (|has| |#1| (-828 (-1083))))) (($ $ (-706)) NIL (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|))))) (-1530 (((-108) $ $) 66)) (-1619 (($ $ |#1|) NIL (|has| |#1| (-336))) (($ $ $) 92 (|has| |#1| (-336)))) (-1611 (($ $) 131) (($ $ $) 72)) (-1601 (($ $ $) 70)) (** (($ $ (-849)) NIL) (($ $ (-706)) 76) (($ $ (-520)) 144 (|has| |#1| (-336))) (($ $ $) NIL (|has| |#1| (-37 (-380 (-520))))) (($ $ (-380 (-520))) 145 (|has| |#1| (-37 (-380 (-520)))))) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) 74) (($ $ |#1|) NIL) (($ |#1| $) 126) (($ (-380 (-520)) $) NIL (|has| |#1| (-37 (-380 (-520))))) (($ $ (-380 (-520))) NIL (|has| |#1| (-37 (-380 (-520)))))))
-(((-1148 |#1| |#2|) (-1147 |#1| |#2|) (-969) (-1124 |#1|)) (T -1148))
-NIL
-(-1147 |#1| |#2|)
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-4081 (((-586 (-997)) $) NIL)) (-1610 (((-1083) $) 11)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) NIL (|has| |#1| (-512)))) (-2583 (($ $) NIL (|has| |#1| (-512)))) (-1671 (((-108) $) NIL (|has| |#1| (-512)))) (-2406 (($ $ (-380 (-520))) NIL) (($ $ (-380 (-520)) (-380 (-520))) NIL)) (-2088 (((-1064 (-2 (|:| |k| (-380 (-520))) (|:| |c| |#1|))) $) NIL)) (-2903 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2768 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-1917 (((-3 $ "failed") $ $) NIL)) (-3024 (($ $) NIL (|has| |#1| (-336)))) (-1507 (((-391 $) $) NIL (|has| |#1| (-336)))) (-1927 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-1327 (((-108) $ $) NIL (|has| |#1| (-336)))) (-2879 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2745 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2769 (($ (-706) (-1064 (-2 (|:| |k| (-380 (-520))) (|:| |c| |#1|)))) NIL)) (-2925 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2789 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-3961 (($) NIL T CONST)) (-1296 (((-3 (-1128 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1156 |#1| |#2| |#3|) "failed") $) 22)) (-1482 (((-1128 |#1| |#2| |#3|) $) NIL) (((-1156 |#1| |#2| |#3|) $) NIL)) (-2276 (($ $ $) NIL (|has| |#1| (-336)))) (-3150 (($ $) NIL)) (-1540 (((-3 $ "failed") $) NIL)) (-2966 (((-380 (-520)) $) 57)) (-2253 (($ $ $) NIL (|has| |#1| (-336)))) (-3073 (($ (-380 (-520)) (-1128 |#1| |#2| |#3|)) NIL)) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) NIL (|has| |#1| (-336)))) (-2036 (((-108) $) NIL (|has| |#1| (-336)))) (-1342 (((-108) $) NIL)) (-2833 (($) NIL (|has| |#1| (-37 (-380 (-520)))))) (-3989 (((-380 (-520)) $) NIL) (((-380 (-520)) $ (-380 (-520))) NIL)) (-1537 (((-108) $) NIL)) (-2322 (($ $ (-520)) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2371 (($ $ (-849)) NIL) (($ $ (-380 (-520))) NIL)) (-3188 (((-3 (-586 $) "failed") (-586 $) $) NIL (|has| |#1| (-336)))) (-3774 (((-108) $) NIL)) (-4039 (($ |#1| (-380 (-520))) 29) (($ $ (-997) (-380 (-520))) NIL) (($ $ (-586 (-997)) (-586 (-380 (-520)))) NIL)) (-1389 (($ (-1 |#1| |#1|) $) NIL)) (-1252 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-3123 (($ $) NIL)) (-3133 ((|#1| $) NIL)) (-2222 (($ (-586 $)) NIL (|has| |#1| (-336))) (($ $ $) NIL (|has| |#1| (-336)))) (-3267 (((-1128 |#1| |#2| |#3|) $) 60)) (-3581 (((-3 (-1128 |#1| |#2| |#3|) "failed") $) NIL)) (-3063 (((-1128 |#1| |#2| |#3|) $) NIL)) (-1239 (((-1066) $) NIL)) (-3093 (($ $) NIL (|has| |#1| (-336)))) (-3517 (($ $) 38 (|has| |#1| (-37 (-380 (-520))))) (($ $ (-1083)) NIL (-3700 (-12 (|has| |#1| (-15 -3517 (|#1| |#1| (-1083)))) (|has| |#1| (-15 -4081 ((-586 (-1083)) |#1|))) (|has| |#1| (-37 (-380 (-520))))) (-12 (|has| |#1| (-29 (-520))) (|has| |#1| (-37 (-380 (-520)))) (|has| |#1| (-886)) (|has| |#1| (-1104))))) (($ $ (-1160 |#2|)) 39 (|has| |#1| (-37 (-380 (-520)))))) (-4142 (((-1030) $) NIL)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) NIL (|has| |#1| (-336)))) (-2257 (($ (-586 $)) NIL (|has| |#1| (-336))) (($ $ $) NIL (|has| |#1| (-336)))) (-1916 (((-391 $) $) NIL (|has| |#1| (-336)))) (-1283 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-336))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) NIL (|has| |#1| (-336)))) (-2116 (($ $ (-380 (-520))) NIL)) (-2230 (((-3 $ "failed") $ $) NIL (|has| |#1| (-512)))) (-2608 (((-3 (-586 $) "failed") (-586 $) $) NIL (|has| |#1| (-336)))) (-3260 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2286 (((-1064 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-380 (-520))))))) (-3704 (((-706) $) NIL (|has| |#1| (-336)))) (-2543 ((|#1| $ (-380 (-520))) NIL) (($ $ $) NIL (|has| (-380 (-520)) (-1024)))) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) NIL (|has| |#1| (-336)))) (-2155 (($ $ (-586 (-1083)) (-586 (-706))) NIL (-12 (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|))) (|has| |#1| (-828 (-1083))))) (($ $ (-1083) (-706)) NIL (-12 (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|))) (|has| |#1| (-828 (-1083))))) (($ $ (-586 (-1083))) NIL (-12 (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|))) (|has| |#1| (-828 (-1083))))) (($ $ (-1083)) NIL (-12 (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|))) (|has| |#1| (-828 (-1083))))) (($ $ (-706)) NIL (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|)))) (($ $) 36 (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|)))) (($ $ (-1160 |#2|)) 37)) (-2528 (((-380 (-520)) $) NIL)) (-1737 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2799 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2914 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2779 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2891 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2757 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2759 (($ $) NIL)) (-2188 (((-791) $) 88) (($ (-520)) NIL) (($ |#1|) NIL (|has| |#1| (-157))) (($ (-1128 |#1| |#2| |#3|)) 16) (($ (-1156 |#1| |#2| |#3|)) 17) (($ (-1160 |#2|)) 35) (($ (-380 (-520))) NIL (|has| |#1| (-37 (-380 (-520))))) (($ $) NIL (|has| |#1| (-512)))) (-3475 ((|#1| $ (-380 (-520))) NIL)) (-3796 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-3251 (((-706)) NIL)) (-1892 ((|#1| $) 12)) (-1758 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2831 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2559 (((-108) $ $) NIL (|has| |#1| (-512)))) (-1744 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2810 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-1775 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2855 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-3890 ((|#1| $ (-380 (-520))) 62 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-380 (-520))))) (|has| |#1| (-15 -2188 (|#1| (-1083))))))) (-3915 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2867 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-1767 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2843 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-1751 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2820 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL (|has| |#1| (-336)))) (-3560 (($) 31 T CONST)) (-3570 (($) 26 T CONST)) (-2211 (($ $ (-586 (-1083)) (-586 (-706))) NIL (-12 (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|))) (|has| |#1| (-828 (-1083))))) (($ $ (-1083) (-706)) NIL (-12 (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|))) (|has| |#1| (-828 (-1083))))) (($ $ (-586 (-1083))) NIL (-12 (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|))) (|has| |#1| (-828 (-1083))))) (($ $ (-1083)) NIL (-12 (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|))) (|has| |#1| (-828 (-1083))))) (($ $ (-706)) NIL (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-380 (-520)) |#1|))))) (-1530 (((-108) $ $) NIL)) (-1619 (($ $ |#1|) NIL (|has| |#1| (-336))) (($ $ $) NIL (|has| |#1| (-336)))) (-1611 (($ $) NIL) (($ $ $) NIL)) (-1601 (($ $ $) 33)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ (-520)) NIL (|has| |#1| (-336))) (($ $ $) NIL (|has| |#1| (-37 (-380 (-520))))) (($ $ (-380 (-520))) NIL (|has| |#1| (-37 (-380 (-520)))))) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-380 (-520)) $) NIL (|has| |#1| (-37 (-380 (-520))))) (($ $ (-380 (-520))) NIL (|has| |#1| (-37 (-380 (-520)))))))
-(((-1149 |#1| |#2| |#3|) (-13 (-1147 |#1| (-1128 |#1| |#2| |#3|)) (-960 (-1156 |#1| |#2| |#3|)) (-10 -8 (-15 -2188 ($ (-1160 |#2|))) (-15 -2155 ($ $ (-1160 |#2|))) (IF (|has| |#1| (-37 (-380 (-520)))) (-15 -3517 ($ $ (-1160 |#2|))) |%noBranch|))) (-969) (-1083) |#1|) (T -1149))
-((-2188 (*1 *1 *2) (-12 (-5 *2 (-1160 *4)) (-14 *4 (-1083)) (-5 *1 (-1149 *3 *4 *5)) (-4 *3 (-969)) (-14 *5 *3))) (-2155 (*1 *1 *1 *2) (-12 (-5 *2 (-1160 *4)) (-14 *4 (-1083)) (-5 *1 (-1149 *3 *4 *5)) (-4 *3 (-969)) (-14 *5 *3))) (-3517 (*1 *1 *1 *2) (-12 (-5 *2 (-1160 *4)) (-14 *4 (-1083)) (-5 *1 (-1149 *3 *4 *5)) (-4 *3 (-37 (-380 (-520)))) (-4 *3 (-969)) (-14 *5 *3))))
-(-13 (-1147 |#1| (-1128 |#1| |#2| |#3|)) (-960 (-1156 |#1| |#2| |#3|)) (-10 -8 (-15 -2188 ($ (-1160 |#2|))) (-15 -2155 ($ $ (-1160 |#2|))) (IF (|has| |#1| (-37 (-380 (-520)))) (-15 -3517 ($ $ (-1160 |#2|))) |%noBranch|)))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) 32)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) NIL)) (-2583 (($ $) NIL)) (-1671 (((-108) $) NIL)) (-1917 (((-3 $ "failed") $ $) NIL)) (-3961 (($) NIL T CONST)) (-1296 (((-3 (-520) "failed") $) NIL (|has| (-1149 |#2| |#3| |#4|) (-960 (-520)))) (((-3 (-380 (-520)) "failed") $) NIL (|has| (-1149 |#2| |#3| |#4|) (-960 (-380 (-520))))) (((-3 (-1149 |#2| |#3| |#4|) "failed") $) 20)) (-1482 (((-520) $) NIL (|has| (-1149 |#2| |#3| |#4|) (-960 (-520)))) (((-380 (-520)) $) NIL (|has| (-1149 |#2| |#3| |#4|) (-960 (-380 (-520))))) (((-1149 |#2| |#3| |#4|) $) NIL)) (-3150 (($ $) 33)) (-1540 (((-3 $ "failed") $) 25)) (-3923 (($ $) NIL (|has| (-1149 |#2| |#3| |#4|) (-424)))) (-3397 (($ $ (-1149 |#2| |#3| |#4|) (-292 |#2| |#3| |#4|) $) NIL)) (-1537 (((-108) $) NIL)) (-1315 (((-706) $) 11)) (-3774 (((-108) $) NIL)) (-4039 (($ (-1149 |#2| |#3| |#4|) (-292 |#2| |#3| |#4|)) 23)) (-3562 (((-292 |#2| |#3| |#4|) $) NIL)) (-3295 (($ (-1 (-292 |#2| |#3| |#4|) (-292 |#2| |#3| |#4|)) $) NIL)) (-1389 (($ (-1 (-1149 |#2| |#3| |#4|) (-1149 |#2| |#3| |#4|)) $) NIL)) (-3042 (((-3 (-776 |#2|) "failed") $) 73)) (-3123 (($ $) NIL)) (-3133 (((-1149 |#2| |#3| |#4|) $) 18)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-3103 (((-108) $) NIL)) (-3113 (((-1149 |#2| |#3| |#4|) $) NIL)) (-2230 (((-3 $ "failed") $ (-1149 |#2| |#3| |#4|)) NIL (|has| (-1149 |#2| |#3| |#4|) (-512))) (((-3 $ "failed") $ $) NIL)) (-1235 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1149 |#2| |#3| |#4|)) (|:| |%expon| (-292 |#2| |#3| |#4|)) (|:| |%expTerms| (-586 (-2 (|:| |k| (-380 (-520))) (|:| |c| |#2|)))))) (|:| |%type| (-1066))) "failed") $) 56)) (-2528 (((-292 |#2| |#3| |#4|) $) 14)) (-1233 (((-1149 |#2| |#3| |#4|) $) NIL (|has| (-1149 |#2| |#3| |#4|) (-424)))) (-2188 (((-791) $) NIL) (($ (-520)) NIL) (($ (-1149 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-380 (-520))) NIL (-3700 (|has| (-1149 |#2| |#3| |#4|) (-37 (-380 (-520)))) (|has| (-1149 |#2| |#3| |#4|) (-960 (-380 (-520))))))) (-4113 (((-586 (-1149 |#2| |#3| |#4|)) $) NIL)) (-3475 (((-1149 |#2| |#3| |#4|) $ (-292 |#2| |#3| |#4|)) NIL)) (-3796 (((-3 $ "failed") $) NIL (|has| (-1149 |#2| |#3| |#4|) (-133)))) (-3251 (((-706)) NIL)) (-1782 (($ $ $ (-706)) NIL (|has| (-1149 |#2| |#3| |#4|) (-157)))) (-2559 (((-108) $ $) NIL)) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (-3560 (($) 61 T CONST)) (-3570 (($) NIL T CONST)) (-1530 (((-108) $ $) NIL)) (-1619 (($ $ (-1149 |#2| |#3| |#4|)) NIL (|has| (-1149 |#2| |#3| |#4|) (-336)))) (-1611 (($ $) NIL) (($ $ $) NIL)) (-1601 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) NIL) (($ $ (-1149 |#2| |#3| |#4|)) NIL) (($ (-1149 |#2| |#3| |#4|) $) NIL) (($ (-380 (-520)) $) NIL (|has| (-1149 |#2| |#3| |#4|) (-37 (-380 (-520))))) (($ $ (-380 (-520))) NIL (|has| (-1149 |#2| |#3| |#4|) (-37 (-380 (-520)))))))
-(((-1150 |#1| |#2| |#3| |#4|) (-13 (-299 (-1149 |#2| |#3| |#4|) (-292 |#2| |#3| |#4|)) (-512) (-10 -8 (-15 -3042 ((-3 (-776 |#2|) "failed") $)) (-15 -1235 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1149 |#2| |#3| |#4|)) (|:| |%expon| (-292 |#2| |#3| |#4|)) (|:| |%expTerms| (-586 (-2 (|:| |k| (-380 (-520))) (|:| |c| |#2|)))))) (|:| |%type| (-1066))) "failed") $)))) (-13 (-783) (-960 (-520)) (-582 (-520)) (-424)) (-13 (-27) (-1104) (-403 |#1|)) (-1083) |#2|) (T -1150))
-((-3042 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-783) (-960 (-520)) (-582 (-520)) (-424))) (-5 *2 (-776 *4)) (-5 *1 (-1150 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1104) (-403 *3))) (-14 *5 (-1083)) (-14 *6 *4))) (-1235 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-783) (-960 (-520)) (-582 (-520)) (-424))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1149 *4 *5 *6)) (|:| |%expon| (-292 *4 *5 *6)) (|:| |%expTerms| (-586 (-2 (|:| |k| (-380 (-520))) (|:| |c| *4)))))) (|:| |%type| (-1066)))) (-5 *1 (-1150 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1104) (-403 *3))) (-14 *5 (-1083)) (-14 *6 *4))))
-(-13 (-299 (-1149 |#2| |#3| |#4|) (-292 |#2| |#3| |#4|)) (-512) (-10 -8 (-15 -3042 ((-3 (-776 |#2|) "failed") $)) (-15 -1235 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1149 |#2| |#3| |#4|)) (|:| |%expon| (-292 |#2| |#3| |#4|)) (|:| |%expTerms| (-586 (-2 (|:| |k| (-380 (-520))) (|:| |c| |#2|)))))) (|:| |%type| (-1066))) "failed") $))))
-((-3429 ((|#2| $) 29)) (-2091 ((|#2| $) 18)) (-3827 (($ $) 36)) (-1198 (($ $ (-520)) 64)) (-2063 (((-108) $ (-706)) 33)) (-2888 ((|#2| $ |#2|) 61)) (-3819 ((|#2| $ |#2|) 59)) (-2377 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 52) (($ $ "rest" $) 56) ((|#2| $ "last" |#2|) 54)) (-3061 (($ $ (-586 $)) 60)) (-2079 ((|#2| $) 17)) (-2305 (($ $) NIL) (($ $ (-706)) 42)) (-3405 (((-586 $) $) 26)) (-1885 (((-108) $ $) 50)) (-3027 (((-108) $ (-706)) 32)) (-1390 (((-108) $ (-706)) 31)) (-1740 (((-108) $) 28)) (-1440 ((|#2| $) 24) (($ $ (-706)) 46)) (-2543 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-1975 (((-108) $) 22)) (-3436 (($ $) 39)) (-1521 (($ $) 65)) (-3341 (((-706) $) 41)) (-1696 (($ $) 40)) (-4156 (($ $ $) 58) (($ |#2| $) NIL)) (-2438 (((-586 $) $) 27)) (-1530 (((-108) $ $) 48)) (-3474 (((-706) $) 35)))
-(((-1151 |#1| |#2|) (-10 -8 (-15 -1198 (|#1| |#1| (-520))) (-15 -2377 (|#2| |#1| "last" |#2|)) (-15 -3819 (|#2| |#1| |#2|)) (-15 -2377 (|#1| |#1| "rest" |#1|)) (-15 -2377 (|#2| |#1| "first" |#2|)) (-15 -1521 (|#1| |#1|)) (-15 -3436 (|#1| |#1|)) (-15 -3341 ((-706) |#1|)) (-15 -1696 (|#1| |#1|)) (-15 -2091 (|#2| |#1|)) (-15 -2079 (|#2| |#1|)) (-15 -3827 (|#1| |#1|)) (-15 -1440 (|#1| |#1| (-706))) (-15 -2543 (|#2| |#1| "last")) (-15 -1440 (|#2| |#1|)) (-15 -2305 (|#1| |#1| (-706))) (-15 -2543 (|#1| |#1| "rest")) (-15 -2305 (|#1| |#1|)) (-15 -2543 (|#2| |#1| "first")) (-15 -4156 (|#1| |#2| |#1|)) (-15 -4156 (|#1| |#1| |#1|)) (-15 -2888 (|#2| |#1| |#2|)) (-15 -2377 (|#2| |#1| "value" |#2|)) (-15 -3061 (|#1| |#1| (-586 |#1|))) (-15 -1885 ((-108) |#1| |#1|)) (-15 -1975 ((-108) |#1|)) (-15 -2543 (|#2| |#1| "value")) (-15 -3429 (|#2| |#1|)) (-15 -1740 ((-108) |#1|)) (-15 -3405 ((-586 |#1|) |#1|)) (-15 -2438 ((-586 |#1|) |#1|)) (-15 -1530 ((-108) |#1| |#1|)) (-15 -3474 ((-706) |#1|)) (-15 -2063 ((-108) |#1| (-706))) (-15 -3027 ((-108) |#1| (-706))) (-15 -1390 ((-108) |#1| (-706)))) (-1152 |#2|) (-1118)) (T -1151))
-NIL
-(-10 -8 (-15 -1198 (|#1| |#1| (-520))) (-15 -2377 (|#2| |#1| "last" |#2|)) (-15 -3819 (|#2| |#1| |#2|)) (-15 -2377 (|#1| |#1| "rest" |#1|)) (-15 -2377 (|#2| |#1| "first" |#2|)) (-15 -1521 (|#1| |#1|)) (-15 -3436 (|#1| |#1|)) (-15 -3341 ((-706) |#1|)) (-15 -1696 (|#1| |#1|)) (-15 -2091 (|#2| |#1|)) (-15 -2079 (|#2| |#1|)) (-15 -3827 (|#1| |#1|)) (-15 -1440 (|#1| |#1| (-706))) (-15 -2543 (|#2| |#1| "last")) (-15 -1440 (|#2| |#1|)) (-15 -2305 (|#1| |#1| (-706))) (-15 -2543 (|#1| |#1| "rest")) (-15 -2305 (|#1| |#1|)) (-15 -2543 (|#2| |#1| "first")) (-15 -4156 (|#1| |#2| |#1|)) (-15 -4156 (|#1| |#1| |#1|)) (-15 -2888 (|#2| |#1| |#2|)) (-15 -2377 (|#2| |#1| "value" |#2|)) (-15 -3061 (|#1| |#1| (-586 |#1|))) (-15 -1885 ((-108) |#1| |#1|)) (-15 -1975 ((-108) |#1|)) (-15 -2543 (|#2| |#1| "value")) (-15 -3429 (|#2| |#1|)) (-15 -1740 ((-108) |#1|)) (-15 -3405 ((-586 |#1|) |#1|)) (-15 -2438 ((-586 |#1|) |#1|)) (-15 -1530 ((-108) |#1| |#1|)) (-15 -3474 ((-706) |#1|)) (-15 -2063 ((-108) |#1| (-706))) (-15 -3027 ((-108) |#1| (-706))) (-15 -1390 ((-108) |#1| (-706))))
-((-1414 (((-108) $ $) 19 (|has| |#1| (-1012)))) (-3429 ((|#1| $) 48)) (-2091 ((|#1| $) 65)) (-3827 (($ $) 67)) (-1198 (($ $ (-520)) 52 (|has| $ (-6 -4230)))) (-2063 (((-108) $ (-706)) 8)) (-2888 ((|#1| $ |#1|) 39 (|has| $ (-6 -4230)))) (-2719 (($ $ $) 56 (|has| $ (-6 -4230)))) (-3819 ((|#1| $ |#1|) 54 (|has| $ (-6 -4230)))) (-1598 ((|#1| $ |#1|) 58 (|has| $ (-6 -4230)))) (-2377 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4230))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4230))) (($ $ "rest" $) 55 (|has| $ (-6 -4230))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4230)))) (-3061 (($ $ (-586 $)) 41 (|has| $ (-6 -4230)))) (-2079 ((|#1| $) 66)) (-3961 (($) 7 T CONST)) (-2305 (($ $) 73) (($ $ (-706)) 71)) (-3828 (((-586 |#1|) $) 30 (|has| $ (-6 -4229)))) (-3405 (((-586 $) $) 50)) (-1885 (((-108) $ $) 42 (|has| |#1| (-1012)))) (-3027 (((-108) $ (-706)) 9)) (-3702 (((-586 |#1|) $) 29 (|has| $ (-6 -4229)))) (-2422 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-3830 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#1| |#1|) $) 35)) (-1390 (((-108) $ (-706)) 10)) (-1277 (((-586 |#1|) $) 45)) (-1740 (((-108) $) 49)) (-1239 (((-1066) $) 22 (|has| |#1| (-1012)))) (-1440 ((|#1| $) 70) (($ $ (-706)) 68)) (-4142 (((-1030) $) 21 (|has| |#1| (-1012)))) (-2293 ((|#1| $) 76) (($ $ (-706)) 74)) (-4155 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 |#1|))) 26 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-268 |#1|)) 25 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-586 |#1|) (-586 |#1|)) 23 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))) (-2533 (((-108) $ $) 14)) (-4018 (((-108) $) 11)) (-2238 (($) 12)) (-2543 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69)) (-3765 (((-520) $ $) 44)) (-1975 (((-108) $) 46)) (-3436 (($ $) 62)) (-1521 (($ $) 59 (|has| $ (-6 -4230)))) (-3341 (((-706) $) 63)) (-1696 (($ $) 64)) (-4159 (((-706) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4229))) (((-706) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-2403 (($ $) 13)) (-2251 (($ $ $) 61 (|has| $ (-6 -4230))) (($ $ |#1|) 60 (|has| $ (-6 -4230)))) (-4156 (($ $ $) 78) (($ |#1| $) 77)) (-2188 (((-791) $) 18 (|has| |#1| (-560 (-791))))) (-2438 (((-586 $) $) 51)) (-1639 (((-108) $ $) 43 (|has| |#1| (-1012)))) (-1662 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4229)))) (-1530 (((-108) $ $) 20 (|has| |#1| (-1012)))) (-3474 (((-706) $) 6 (|has| $ (-6 -4229)))))
-(((-1152 |#1|) (-1195) (-1118)) (T -1152))
-((-4156 (*1 *1 *1 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1118)))) (-4156 (*1 *1 *2 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1118)))) (-2293 (*1 *2 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1118)))) (-2543 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1152 *2)) (-4 *2 (-1118)))) (-2293 (*1 *1 *1 *2) (-12 (-5 *2 (-706)) (-4 *1 (-1152 *3)) (-4 *3 (-1118)))) (-2305 (*1 *1 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1118)))) (-2543 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1152 *3)) (-4 *3 (-1118)))) (-2305 (*1 *1 *1 *2) (-12 (-5 *2 (-706)) (-4 *1 (-1152 *3)) (-4 *3 (-1118)))) (-1440 (*1 *2 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1118)))) (-2543 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1152 *2)) (-4 *2 (-1118)))) (-1440 (*1 *1 *1 *2) (-12 (-5 *2 (-706)) (-4 *1 (-1152 *3)) (-4 *3 (-1118)))) (-3827 (*1 *1 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1118)))) (-2079 (*1 *2 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1118)))) (-2091 (*1 *2 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1118)))) (-1696 (*1 *1 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1118)))) (-3341 (*1 *2 *1) (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1118)) (-5 *2 (-706)))) (-3436 (*1 *1 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1118)))) (-2251 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4230)) (-4 *1 (-1152 *2)) (-4 *2 (-1118)))) (-2251 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4230)) (-4 *1 (-1152 *2)) (-4 *2 (-1118)))) (-1521 (*1 *1 *1) (-12 (|has| *1 (-6 -4230)) (-4 *1 (-1152 *2)) (-4 *2 (-1118)))) (-1598 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4230)) (-4 *1 (-1152 *2)) (-4 *2 (-1118)))) (-2377 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4230)) (-4 *1 (-1152 *2)) (-4 *2 (-1118)))) (-2719 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4230)) (-4 *1 (-1152 *2)) (-4 *2 (-1118)))) (-2377 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4230)) (-4 *1 (-1152 *3)) (-4 *3 (-1118)))) (-3819 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4230)) (-4 *1 (-1152 *2)) (-4 *2 (-1118)))) (-2377 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4230)) (-4 *1 (-1152 *2)) (-4 *2 (-1118)))) (-1198 (*1 *1 *1 *2) (-12 (-5 *2 (-520)) (|has| *1 (-6 -4230)) (-4 *1 (-1152 *3)) (-4 *3 (-1118)))))
-(-13 (-934 |t#1|) (-10 -8 (-15 -4156 ($ $ $)) (-15 -4156 ($ |t#1| $)) (-15 -2293 (|t#1| $)) (-15 -2543 (|t#1| $ "first")) (-15 -2293 ($ $ (-706))) (-15 -2305 ($ $)) (-15 -2543 ($ $ "rest")) (-15 -2305 ($ $ (-706))) (-15 -1440 (|t#1| $)) (-15 -2543 (|t#1| $ "last")) (-15 -1440 ($ $ (-706))) (-15 -3827 ($ $)) (-15 -2079 (|t#1| $)) (-15 -2091 (|t#1| $)) (-15 -1696 ($ $)) (-15 -3341 ((-706) $)) (-15 -3436 ($ $)) (IF (|has| $ (-6 -4230)) (PROGN (-15 -2251 ($ $ $)) (-15 -2251 ($ $ |t#1|)) (-15 -1521 ($ $)) (-15 -1598 (|t#1| $ |t#1|)) (-15 -2377 (|t#1| $ "first" |t#1|)) (-15 -2719 ($ $ $)) (-15 -2377 ($ $ "rest" $)) (-15 -3819 (|t#1| $ |t#1|)) (-15 -2377 (|t#1| $ "last" |t#1|)) (-15 -1198 ($ $ (-520)))) |%noBranch|)))
-(((-33) . T) ((-97) |has| |#1| (-1012)) ((-560 (-791)) -3700 (|has| |#1| (-1012)) (|has| |#1| (-560 (-791)))) ((-283 |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))) ((-459 |#1|) . T) ((-481 |#1| |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))) ((-934 |#1|) . T) ((-1012) |has| |#1| (-1012)) ((-1118) . T))
-((-1389 ((|#4| (-1 |#2| |#1|) |#3|) 17)))
-(((-1153 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1389 (|#4| (-1 |#2| |#1|) |#3|))) (-969) (-969) (-1155 |#1|) (-1155 |#2|)) (T -1153))
-((-1389 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-969)) (-4 *6 (-969)) (-4 *2 (-1155 *6)) (-5 *1 (-1153 *5 *6 *4 *2)) (-4 *4 (-1155 *5)))))
-(-10 -7 (-15 -1389 (|#4| (-1 |#2| |#1|) |#3|)))
-((-2906 (((-108) $) 15)) (-2903 (($ $) 91)) (-2768 (($ $) 67)) (-2879 (($ $) 87)) (-2745 (($ $) 63)) (-2925 (($ $) 95)) (-2789 (($ $) 71)) (-1252 (($ $) 61)) (-3260 (($ $) 59)) (-1737 (($ $) 97)) (-2799 (($ $) 73)) (-2914 (($ $) 93)) (-2779 (($ $) 69)) (-2891 (($ $) 89)) (-2757 (($ $) 65)) (-2188 (((-791) $) 47) (($ (-520)) NIL) (($ (-380 (-520))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-1758 (($ $) 103)) (-2831 (($ $) 79)) (-1744 (($ $) 99)) (-2810 (($ $) 75)) (-1775 (($ $) 107)) (-2855 (($ $) 83)) (-3915 (($ $) 109)) (-2867 (($ $) 85)) (-1767 (($ $) 105)) (-2843 (($ $) 81)) (-1751 (($ $) 101)) (-2820 (($ $) 77)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ |#2|) 51) (($ $ $) 54) (($ $ (-380 (-520))) 57)))
-(((-1154 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-380 (-520)))) (-15 -2768 (|#1| |#1|)) (-15 -2745 (|#1| |#1|)) (-15 -2789 (|#1| |#1|)) (-15 -2799 (|#1| |#1|)) (-15 -2779 (|#1| |#1|)) (-15 -2757 (|#1| |#1|)) (-15 -2820 (|#1| |#1|)) (-15 -2843 (|#1| |#1|)) (-15 -2867 (|#1| |#1|)) (-15 -2855 (|#1| |#1|)) (-15 -2810 (|#1| |#1|)) (-15 -2831 (|#1| |#1|)) (-15 -2891 (|#1| |#1|)) (-15 -2914 (|#1| |#1|)) (-15 -1737 (|#1| |#1|)) (-15 -2925 (|#1| |#1|)) (-15 -2879 (|#1| |#1|)) (-15 -2903 (|#1| |#1|)) (-15 -1751 (|#1| |#1|)) (-15 -1767 (|#1| |#1|)) (-15 -3915 (|#1| |#1|)) (-15 -1775 (|#1| |#1|)) (-15 -1744 (|#1| |#1|)) (-15 -1758 (|#1| |#1|)) (-15 -1252 (|#1| |#1|)) (-15 -3260 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2188 (|#1| |#2|)) (-15 -2188 (|#1| |#1|)) (-15 -2188 (|#1| (-380 (-520)))) (-15 -2188 (|#1| (-520))) (-15 ** (|#1| |#1| (-706))) (-15 ** (|#1| |#1| (-849))) (-15 -2906 ((-108) |#1|)) (-15 -2188 ((-791) |#1|))) (-1155 |#2|) (-969)) (T -1154))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-380 (-520)))) (-15 -2768 (|#1| |#1|)) (-15 -2745 (|#1| |#1|)) (-15 -2789 (|#1| |#1|)) (-15 -2799 (|#1| |#1|)) (-15 -2779 (|#1| |#1|)) (-15 -2757 (|#1| |#1|)) (-15 -2820 (|#1| |#1|)) (-15 -2843 (|#1| |#1|)) (-15 -2867 (|#1| |#1|)) (-15 -2855 (|#1| |#1|)) (-15 -2810 (|#1| |#1|)) (-15 -2831 (|#1| |#1|)) (-15 -2891 (|#1| |#1|)) (-15 -2914 (|#1| |#1|)) (-15 -1737 (|#1| |#1|)) (-15 -2925 (|#1| |#1|)) (-15 -2879 (|#1| |#1|)) (-15 -2903 (|#1| |#1|)) (-15 -1751 (|#1| |#1|)) (-15 -1767 (|#1| |#1|)) (-15 -3915 (|#1| |#1|)) (-15 -1775 (|#1| |#1|)) (-15 -1744 (|#1| |#1|)) (-15 -1758 (|#1| |#1|)) (-15 -1252 (|#1| |#1|)) (-15 -3260 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2188 (|#1| |#2|)) (-15 -2188 (|#1| |#1|)) (-15 -2188 (|#1| (-380 (-520)))) (-15 -2188 (|#1| (-520))) (-15 ** (|#1| |#1| (-706))) (-15 ** (|#1| |#1| (-849))) (-15 -2906 ((-108) |#1|)) (-15 -2188 ((-791) |#1|)))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-4081 (((-586 (-997)) $) 74)) (-1610 (((-1083) $) 103)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) 51 (|has| |#1| (-512)))) (-2583 (($ $) 52 (|has| |#1| (-512)))) (-1671 (((-108) $) 54 (|has| |#1| (-512)))) (-2406 (($ $ (-706)) 98) (($ $ (-706) (-706)) 97)) (-2088 (((-1064 (-2 (|:| |k| (-706)) (|:| |c| |#1|))) $) 105)) (-2903 (($ $) 135 (|has| |#1| (-37 (-380 (-520)))))) (-2768 (($ $) 118 (|has| |#1| (-37 (-380 (-520)))))) (-1917 (((-3 $ "failed") $ $) 19)) (-1927 (($ $) 117 (|has| |#1| (-37 (-380 (-520)))))) (-2879 (($ $) 134 (|has| |#1| (-37 (-380 (-520)))))) (-2745 (($ $) 119 (|has| |#1| (-37 (-380 (-520)))))) (-2769 (($ (-1064 (-2 (|:| |k| (-706)) (|:| |c| |#1|)))) 155) (($ (-1064 |#1|)) 153)) (-2925 (($ $) 133 (|has| |#1| (-37 (-380 (-520)))))) (-2789 (($ $) 120 (|has| |#1| (-37 (-380 (-520)))))) (-3961 (($) 17 T CONST)) (-3150 (($ $) 60)) (-1540 (((-3 $ "failed") $) 34)) (-1287 (($ $) 152)) (-2198 (((-880 |#1|) $ (-706)) 150) (((-880 |#1|) $ (-706) (-706)) 149)) (-1342 (((-108) $) 73)) (-2833 (($) 145 (|has| |#1| (-37 (-380 (-520)))))) (-3989 (((-706) $) 100) (((-706) $ (-706)) 99)) (-1537 (((-108) $) 31)) (-2322 (($ $ (-520)) 116 (|has| |#1| (-37 (-380 (-520)))))) (-2371 (($ $ (-849)) 101)) (-1306 (($ (-1 |#1| (-520)) $) 151)) (-3774 (((-108) $) 62)) (-4039 (($ |#1| (-706)) 61) (($ $ (-997) (-706)) 76) (($ $ (-586 (-997)) (-586 (-706))) 75)) (-1389 (($ (-1 |#1| |#1|) $) 63)) (-1252 (($ $) 142 (|has| |#1| (-37 (-380 (-520)))))) (-3123 (($ $) 65)) (-3133 ((|#1| $) 66)) (-1239 (((-1066) $) 9)) (-3517 (($ $) 147 (|has| |#1| (-37 (-380 (-520))))) (($ $ (-1083)) 146 (-3700 (-12 (|has| |#1| (-29 (-520))) (|has| |#1| (-886)) (|has| |#1| (-1104)) (|has| |#1| (-37 (-380 (-520))))) (-12 (|has| |#1| (-15 -4081 ((-586 (-1083)) |#1|))) (|has| |#1| (-15 -3517 (|#1| |#1| (-1083)))) (|has| |#1| (-37 (-380 (-520)))))))) (-4142 (((-1030) $) 10)) (-2116 (($ $ (-706)) 95)) (-2230 (((-3 $ "failed") $ $) 50 (|has| |#1| (-512)))) (-3260 (($ $) 143 (|has| |#1| (-37 (-380 (-520)))))) (-2286 (((-1064 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-706)))))) (-2543 ((|#1| $ (-706)) 104) (($ $ $) 81 (|has| (-706) (-1024)))) (-2155 (($ $ (-586 (-1083)) (-586 (-706))) 89 (-12 (|has| |#1| (-828 (-1083))) (|has| |#1| (-15 * (|#1| (-706) |#1|))))) (($ $ (-1083) (-706)) 88 (-12 (|has| |#1| (-828 (-1083))) (|has| |#1| (-15 * (|#1| (-706) |#1|))))) (($ $ (-586 (-1083))) 87 (-12 (|has| |#1| (-828 (-1083))) (|has| |#1| (-15 * (|#1| (-706) |#1|))))) (($ $ (-1083)) 86 (-12 (|has| |#1| (-828 (-1083))) (|has| |#1| (-15 * (|#1| (-706) |#1|))))) (($ $ (-706)) 84 (|has| |#1| (-15 * (|#1| (-706) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-706) |#1|))))) (-2528 (((-706) $) 64)) (-1737 (($ $) 132 (|has| |#1| (-37 (-380 (-520)))))) (-2799 (($ $) 121 (|has| |#1| (-37 (-380 (-520)))))) (-2914 (($ $) 131 (|has| |#1| (-37 (-380 (-520)))))) (-2779 (($ $) 122 (|has| |#1| (-37 (-380 (-520)))))) (-2891 (($ $) 130 (|has| |#1| (-37 (-380 (-520)))))) (-2757 (($ $) 123 (|has| |#1| (-37 (-380 (-520)))))) (-2759 (($ $) 72)) (-2188 (((-791) $) 11) (($ (-520)) 28) (($ (-380 (-520))) 57 (|has| |#1| (-37 (-380 (-520))))) (($ $) 49 (|has| |#1| (-512))) (($ |#1|) 47 (|has| |#1| (-157)))) (-4113 (((-1064 |#1|) $) 154)) (-3475 ((|#1| $ (-706)) 59)) (-3796 (((-3 $ "failed") $) 48 (|has| |#1| (-133)))) (-3251 (((-706)) 29)) (-1892 ((|#1| $) 102)) (-1758 (($ $) 141 (|has| |#1| (-37 (-380 (-520)))))) (-2831 (($ $) 129 (|has| |#1| (-37 (-380 (-520)))))) (-2559 (((-108) $ $) 53 (|has| |#1| (-512)))) (-1744 (($ $) 140 (|has| |#1| (-37 (-380 (-520)))))) (-2810 (($ $) 128 (|has| |#1| (-37 (-380 (-520)))))) (-1775 (($ $) 139 (|has| |#1| (-37 (-380 (-520)))))) (-2855 (($ $) 127 (|has| |#1| (-37 (-380 (-520)))))) (-3890 ((|#1| $ (-706)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-706)))) (|has| |#1| (-15 -2188 (|#1| (-1083))))))) (-3915 (($ $) 138 (|has| |#1| (-37 (-380 (-520)))))) (-2867 (($ $) 126 (|has| |#1| (-37 (-380 (-520)))))) (-1767 (($ $) 137 (|has| |#1| (-37 (-380 (-520)))))) (-2843 (($ $) 125 (|has| |#1| (-37 (-380 (-520)))))) (-1751 (($ $) 136 (|has| |#1| (-37 (-380 (-520)))))) (-2820 (($ $) 124 (|has| |#1| (-37 (-380 (-520)))))) (-3504 (($ $ (-849)) 26) (($ $ (-706)) 33)) (-3560 (($) 18 T CONST)) (-3570 (($) 30 T CONST)) (-2211 (($ $ (-586 (-1083)) (-586 (-706))) 93 (-12 (|has| |#1| (-828 (-1083))) (|has| |#1| (-15 * (|#1| (-706) |#1|))))) (($ $ (-1083) (-706)) 92 (-12 (|has| |#1| (-828 (-1083))) (|has| |#1| (-15 * (|#1| (-706) |#1|))))) (($ $ (-586 (-1083))) 91 (-12 (|has| |#1| (-828 (-1083))) (|has| |#1| (-15 * (|#1| (-706) |#1|))))) (($ $ (-1083)) 90 (-12 (|has| |#1| (-828 (-1083))) (|has| |#1| (-15 * (|#1| (-706) |#1|))))) (($ $ (-706)) 85 (|has| |#1| (-15 * (|#1| (-706) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-706) |#1|))))) (-1530 (((-108) $ $) 6)) (-1619 (($ $ |#1|) 58 (|has| |#1| (-336)))) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-706)) 32) (($ $ |#1|) 148 (|has| |#1| (-336))) (($ $ $) 144 (|has| |#1| (-37 (-380 (-520))))) (($ $ (-380 (-520))) 115 (|has| |#1| (-37 (-380 (-520)))))) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-380 (-520)) $) 56 (|has| |#1| (-37 (-380 (-520))))) (($ $ (-380 (-520))) 55 (|has| |#1| (-37 (-380 (-520)))))))
-(((-1155 |#1|) (-1195) (-969)) (T -1155))
-((-2769 (*1 *1 *2) (-12 (-5 *2 (-1064 (-2 (|:| |k| (-706)) (|:| |c| *3)))) (-4 *3 (-969)) (-4 *1 (-1155 *3)))) (-4113 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-969)) (-5 *2 (-1064 *3)))) (-2769 (*1 *1 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-969)) (-4 *1 (-1155 *3)))) (-1287 (*1 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-969)))) (-1306 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-520))) (-4 *1 (-1155 *3)) (-4 *3 (-969)))) (-2198 (*1 *2 *1 *3) (-12 (-5 *3 (-706)) (-4 *1 (-1155 *4)) (-4 *4 (-969)) (-5 *2 (-880 *4)))) (-2198 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-706)) (-4 *1 (-1155 *4)) (-4 *4 (-969)) (-5 *2 (-880 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-969)) (-4 *2 (-336)))) (-3517 (*1 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-969)) (-4 *2 (-37 (-380 (-520)))))) (-3517 (*1 *1 *1 *2) (-3700 (-12 (-5 *2 (-1083)) (-4 *1 (-1155 *3)) (-4 *3 (-969)) (-12 (-4 *3 (-29 (-520))) (-4 *3 (-886)) (-4 *3 (-1104)) (-4 *3 (-37 (-380 (-520)))))) (-12 (-5 *2 (-1083)) (-4 *1 (-1155 *3)) (-4 *3 (-969)) (-12 (|has| *3 (-15 -4081 ((-586 *2) *3))) (|has| *3 (-15 -3517 (*3 *3 *2))) (-4 *3 (-37 (-380 (-520)))))))))
-(-13 (-1142 |t#1| (-706)) (-10 -8 (-15 -2769 ($ (-1064 (-2 (|:| |k| (-706)) (|:| |c| |t#1|))))) (-15 -4113 ((-1064 |t#1|) $)) (-15 -2769 ($ (-1064 |t#1|))) (-15 -1287 ($ $)) (-15 -1306 ($ (-1 |t#1| (-520)) $)) (-15 -2198 ((-880 |t#1|) $ (-706))) (-15 -2198 ((-880 |t#1|) $ (-706) (-706))) (IF (|has| |t#1| (-336)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-37 (-380 (-520)))) (PROGN (-15 -3517 ($ $)) (IF (|has| |t#1| (-15 -3517 (|t#1| |t#1| (-1083)))) (IF (|has| |t#1| (-15 -4081 ((-586 (-1083)) |t#1|))) (-15 -3517 ($ $ (-1083))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1104)) (IF (|has| |t#1| (-886)) (IF (|has| |t#1| (-29 (-520))) (-15 -3517 ($ $ (-1083))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-926)) (-6 (-1104))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-706)) . T) ((-25) . T) ((-37 #1=(-380 (-520))) |has| |#1| (-37 (-380 (-520)))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) |has| |#1| (-512)) ((-34) |has| |#1| (-37 (-380 (-520)))) ((-91) |has| |#1| (-37 (-380 (-520)))) ((-97) . T) ((-107 #1# #1#) |has| |#1| (-37 (-380 (-520)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3700 (|has| |#1| (-512)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-560 (-791)) . T) ((-157) -3700 (|has| |#1| (-512)) (|has| |#1| (-157))) ((-209) |has| |#1| (-15 * (|#1| (-706) |#1|))) ((-258) |has| |#1| (-37 (-380 (-520)))) ((-260 $ $) |has| (-706) (-1024)) ((-264) |has| |#1| (-512)) ((-461) |has| |#1| (-37 (-380 (-520)))) ((-512) |has| |#1| (-512)) ((-588 #1#) |has| |#1| (-37 (-380 (-520)))) ((-588 |#1|) . T) ((-588 $) . T) ((-653 #1#) |has| |#1| (-37 (-380 (-520)))) ((-653 |#1|) |has| |#1| (-157)) ((-653 $) |has| |#1| (-512)) ((-662) . T) ((-828 (-1083)) -12 (|has| |#1| (-15 * (|#1| (-706) |#1|))) (|has| |#1| (-828 (-1083)))) ((-898 |#1| #0# (-997)) . T) ((-926) |has| |#1| (-37 (-380 (-520)))) ((-975 #1#) |has| |#1| (-37 (-380 (-520)))) ((-975 |#1|) . T) ((-975 $) -3700 (|has| |#1| (-512)) (|has| |#1| (-157))) ((-969) . T) ((-976) . T) ((-1024) . T) ((-1012) . T) ((-1104) |has| |#1| (-37 (-380 (-520)))) ((-1107) |has| |#1| (-37 (-380 (-520)))) ((-1142 |#1| #0#) . T))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-4081 (((-586 (-997)) $) NIL)) (-1610 (((-1083) $) 87)) (-3372 (((-1137 |#2| |#1|) $ (-706)) 73)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) NIL (|has| |#1| (-512)))) (-2583 (($ $) NIL (|has| |#1| (-512)))) (-1671 (((-108) $) 136 (|has| |#1| (-512)))) (-2406 (($ $ (-706)) 121) (($ $ (-706) (-706)) 123)) (-2088 (((-1064 (-2 (|:| |k| (-706)) (|:| |c| |#1|))) $) 42)) (-2903 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2768 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-1917 (((-3 $ "failed") $ $) NIL)) (-1927 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2879 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2745 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2769 (($ (-1064 (-2 (|:| |k| (-706)) (|:| |c| |#1|)))) 53) (($ (-1064 |#1|)) NIL)) (-2925 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2789 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-3961 (($) NIL T CONST)) (-2861 (($ $) 127)) (-3150 (($ $) NIL)) (-1540 (((-3 $ "failed") $) NIL)) (-1287 (($ $) 134)) (-2198 (((-880 |#1|) $ (-706)) 63) (((-880 |#1|) $ (-706) (-706)) 65)) (-1342 (((-108) $) NIL)) (-2833 (($) NIL (|has| |#1| (-37 (-380 (-520)))))) (-3989 (((-706) $) NIL) (((-706) $ (-706)) NIL)) (-1537 (((-108) $) NIL)) (-1929 (($ $) 111)) (-2322 (($ $ (-520)) NIL (|has| |#1| (-37 (-380 (-520)))))) (-3860 (($ (-520) (-520) $) 129)) (-2371 (($ $ (-849)) 133)) (-1306 (($ (-1 |#1| (-520)) $) 105)) (-3774 (((-108) $) NIL)) (-4039 (($ |#1| (-706)) 15) (($ $ (-997) (-706)) NIL) (($ $ (-586 (-997)) (-586 (-706))) NIL)) (-1389 (($ (-1 |#1| |#1|) $) 93)) (-1252 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-3123 (($ $) NIL)) (-3133 ((|#1| $) NIL)) (-1239 (((-1066) $) NIL)) (-1308 (($ $) 109)) (-3089 (($ $) 107)) (-1868 (($ (-520) (-520) $) 131)) (-3517 (($ $) 144 (|has| |#1| (-37 (-380 (-520))))) (($ $ (-1083)) 150 (-3700 (-12 (|has| |#1| (-15 -3517 (|#1| |#1| (-1083)))) (|has| |#1| (-15 -4081 ((-586 (-1083)) |#1|))) (|has| |#1| (-37 (-380 (-520))))) (-12 (|has| |#1| (-29 (-520))) (|has| |#1| (-37 (-380 (-520)))) (|has| |#1| (-886)) (|has| |#1| (-1104))))) (($ $ (-1160 |#2|)) 145 (|has| |#1| (-37 (-380 (-520)))))) (-4142 (((-1030) $) NIL)) (-3656 (($ $ (-520) (-520)) 115)) (-2116 (($ $ (-706)) 117)) (-2230 (((-3 $ "failed") $ $) NIL (|has| |#1| (-512)))) (-3260 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2581 (($ $) 113)) (-2286 (((-1064 |#1|) $ |#1|) 95 (|has| |#1| (-15 ** (|#1| |#1| (-706)))))) (-2543 ((|#1| $ (-706)) 90) (($ $ $) 125 (|has| (-706) (-1024)))) (-2155 (($ $ (-586 (-1083)) (-586 (-706))) NIL (-12 (|has| |#1| (-15 * (|#1| (-706) |#1|))) (|has| |#1| (-828 (-1083))))) (($ $ (-1083) (-706)) NIL (-12 (|has| |#1| (-15 * (|#1| (-706) |#1|))) (|has| |#1| (-828 (-1083))))) (($ $ (-586 (-1083))) NIL (-12 (|has| |#1| (-15 * (|#1| (-706) |#1|))) (|has| |#1| (-828 (-1083))))) (($ $ (-1083)) 102 (-12 (|has| |#1| (-15 * (|#1| (-706) |#1|))) (|has| |#1| (-828 (-1083))))) (($ $ (-706)) NIL (|has| |#1| (-15 * (|#1| (-706) |#1|)))) (($ $) 97 (|has| |#1| (-15 * (|#1| (-706) |#1|)))) (($ $ (-1160 |#2|)) 98)) (-2528 (((-706) $) NIL)) (-1737 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2799 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2914 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2779 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2891 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2757 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2759 (($ $) 119)) (-2188 (((-791) $) NIL) (($ (-520)) 24) (($ (-380 (-520))) 142 (|has| |#1| (-37 (-380 (-520))))) (($ $) NIL (|has| |#1| (-512))) (($ |#1|) 23 (|has| |#1| (-157))) (($ (-1137 |#2| |#1|)) 80) (($ (-1160 |#2|)) 20)) (-4113 (((-1064 |#1|) $) NIL)) (-3475 ((|#1| $ (-706)) 89)) (-3796 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-3251 (((-706)) NIL)) (-1892 ((|#1| $) 88)) (-1758 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2831 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2559 (((-108) $ $) NIL (|has| |#1| (-512)))) (-1744 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2810 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-1775 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2855 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-3890 ((|#1| $ (-706)) 86 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-706)))) (|has| |#1| (-15 -2188 (|#1| (-1083))))))) (-3915 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2867 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-1767 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2843 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-1751 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-2820 (($ $) NIL (|has| |#1| (-37 (-380 (-520)))))) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (-3560 (($) 17 T CONST)) (-3570 (($) 13 T CONST)) (-2211 (($ $ (-586 (-1083)) (-586 (-706))) NIL (-12 (|has| |#1| (-15 * (|#1| (-706) |#1|))) (|has| |#1| (-828 (-1083))))) (($ $ (-1083) (-706)) NIL (-12 (|has| |#1| (-15 * (|#1| (-706) |#1|))) (|has| |#1| (-828 (-1083))))) (($ $ (-586 (-1083))) NIL (-12 (|has| |#1| (-15 * (|#1| (-706) |#1|))) (|has| |#1| (-828 (-1083))))) (($ $ (-1083)) NIL (-12 (|has| |#1| (-15 * (|#1| (-706) |#1|))) (|has| |#1| (-828 (-1083))))) (($ $ (-706)) NIL (|has| |#1| (-15 * (|#1| (-706) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-706) |#1|))))) (-1530 (((-108) $ $) NIL)) (-1619 (($ $ |#1|) NIL (|has| |#1| (-336)))) (-1611 (($ $) NIL) (($ $ $) 101)) (-1601 (($ $ $) 18)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL) (($ $ |#1|) 139 (|has| |#1| (-336))) (($ $ $) NIL (|has| |#1| (-37 (-380 (-520))))) (($ $ (-380 (-520))) NIL (|has| |#1| (-37 (-380 (-520)))))) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 100) (($ (-380 (-520)) $) NIL (|has| |#1| (-37 (-380 (-520))))) (($ $ (-380 (-520))) NIL (|has| |#1| (-37 (-380 (-520)))))))
-(((-1156 |#1| |#2| |#3|) (-13 (-1155 |#1|) (-10 -8 (-15 -2188 ($ (-1137 |#2| |#1|))) (-15 -3372 ((-1137 |#2| |#1|) $ (-706))) (-15 -2188 ($ (-1160 |#2|))) (-15 -2155 ($ $ (-1160 |#2|))) (-15 -3089 ($ $)) (-15 -1308 ($ $)) (-15 -1929 ($ $)) (-15 -2581 ($ $)) (-15 -3656 ($ $ (-520) (-520))) (-15 -2861 ($ $)) (-15 -3860 ($ (-520) (-520) $)) (-15 -1868 ($ (-520) (-520) $)) (IF (|has| |#1| (-37 (-380 (-520)))) (-15 -3517 ($ $ (-1160 |#2|))) |%noBranch|))) (-969) (-1083) |#1|) (T -1156))
-((-2188 (*1 *1 *2) (-12 (-5 *2 (-1137 *4 *3)) (-4 *3 (-969)) (-14 *4 (-1083)) (-14 *5 *3) (-5 *1 (-1156 *3 *4 *5)))) (-3372 (*1 *2 *1 *3) (-12 (-5 *3 (-706)) (-5 *2 (-1137 *5 *4)) (-5 *1 (-1156 *4 *5 *6)) (-4 *4 (-969)) (-14 *5 (-1083)) (-14 *6 *4))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-1160 *4)) (-14 *4 (-1083)) (-5 *1 (-1156 *3 *4 *5)) (-4 *3 (-969)) (-14 *5 *3))) (-2155 (*1 *1 *1 *2) (-12 (-5 *2 (-1160 *4)) (-14 *4 (-1083)) (-5 *1 (-1156 *3 *4 *5)) (-4 *3 (-969)) (-14 *5 *3))) (-3089 (*1 *1 *1) (-12 (-5 *1 (-1156 *2 *3 *4)) (-4 *2 (-969)) (-14 *3 (-1083)) (-14 *4 *2))) (-1308 (*1 *1 *1) (-12 (-5 *1 (-1156 *2 *3 *4)) (-4 *2 (-969)) (-14 *3 (-1083)) (-14 *4 *2))) (-1929 (*1 *1 *1) (-12 (-5 *1 (-1156 *2 *3 *4)) (-4 *2 (-969)) (-14 *3 (-1083)) (-14 *4 *2))) (-2581 (*1 *1 *1) (-12 (-5 *1 (-1156 *2 *3 *4)) (-4 *2 (-969)) (-14 *3 (-1083)) (-14 *4 *2))) (-3656 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-520)) (-5 *1 (-1156 *3 *4 *5)) (-4 *3 (-969)) (-14 *4 (-1083)) (-14 *5 *3))) (-2861 (*1 *1 *1) (-12 (-5 *1 (-1156 *2 *3 *4)) (-4 *2 (-969)) (-14 *3 (-1083)) (-14 *4 *2))) (-3860 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-1156 *3 *4 *5)) (-4 *3 (-969)) (-14 *4 (-1083)) (-14 *5 *3))) (-1868 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-1156 *3 *4 *5)) (-4 *3 (-969)) (-14 *4 (-1083)) (-14 *5 *3))) (-3517 (*1 *1 *1 *2) (-12 (-5 *2 (-1160 *4)) (-14 *4 (-1083)) (-5 *1 (-1156 *3 *4 *5)) (-4 *3 (-37 (-380 (-520)))) (-4 *3 (-969)) (-14 *5 *3))))
-(-13 (-1155 |#1|) (-10 -8 (-15 -2188 ($ (-1137 |#2| |#1|))) (-15 -3372 ((-1137 |#2| |#1|) $ (-706))) (-15 -2188 ($ (-1160 |#2|))) (-15 -2155 ($ $ (-1160 |#2|))) (-15 -3089 ($ $)) (-15 -1308 ($ $)) (-15 -1929 ($ $)) (-15 -2581 ($ $)) (-15 -3656 ($ $ (-520) (-520))) (-15 -2861 ($ $)) (-15 -3860 ($ (-520) (-520) $)) (-15 -1868 ($ (-520) (-520) $)) (IF (|has| |#1| (-37 (-380 (-520)))) (-15 -3517 ($ $ (-1160 |#2|))) |%noBranch|)))
-((-3937 (((-1 (-1064 |#1|) (-586 (-1064 |#1|))) (-1 |#2| (-586 |#2|))) 24)) (-2030 (((-1 (-1064 |#1|) (-1064 |#1|) (-1064 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-3616 (((-1 (-1064 |#1|) (-1064 |#1|)) (-1 |#2| |#2|)) 13)) (-3555 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-2309 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-3327 ((|#2| (-1 |#2| (-586 |#2|)) (-586 |#1|)) 54)) (-2026 (((-586 |#2|) (-586 |#1|) (-586 (-1 |#2| (-586 |#2|)))) 61)) (-3051 ((|#2| |#2| |#2|) 43)))
-(((-1157 |#1| |#2|) (-10 -7 (-15 -3616 ((-1 (-1064 |#1|) (-1064 |#1|)) (-1 |#2| |#2|))) (-15 -2030 ((-1 (-1064 |#1|) (-1064 |#1|) (-1064 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3937 ((-1 (-1064 |#1|) (-586 (-1064 |#1|))) (-1 |#2| (-586 |#2|)))) (-15 -3051 (|#2| |#2| |#2|)) (-15 -2309 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3555 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3327 (|#2| (-1 |#2| (-586 |#2|)) (-586 |#1|))) (-15 -2026 ((-586 |#2|) (-586 |#1|) (-586 (-1 |#2| (-586 |#2|)))))) (-37 (-380 (-520))) (-1155 |#1|)) (T -1157))
-((-2026 (*1 *2 *3 *4) (-12 (-5 *3 (-586 *5)) (-5 *4 (-586 (-1 *6 (-586 *6)))) (-4 *5 (-37 (-380 (-520)))) (-4 *6 (-1155 *5)) (-5 *2 (-586 *6)) (-5 *1 (-1157 *5 *6)))) (-3327 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-586 *2))) (-5 *4 (-586 *5)) (-4 *5 (-37 (-380 (-520)))) (-4 *2 (-1155 *5)) (-5 *1 (-1157 *5 *2)))) (-3555 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1155 *4)) (-5 *1 (-1157 *4 *2)) (-4 *4 (-37 (-380 (-520)))))) (-2309 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1155 *4)) (-5 *1 (-1157 *4 *2)) (-4 *4 (-37 (-380 (-520)))))) (-3051 (*1 *2 *2 *2) (-12 (-4 *3 (-37 (-380 (-520)))) (-5 *1 (-1157 *3 *2)) (-4 *2 (-1155 *3)))) (-3937 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-586 *5))) (-4 *5 (-1155 *4)) (-4 *4 (-37 (-380 (-520)))) (-5 *2 (-1 (-1064 *4) (-586 (-1064 *4)))) (-5 *1 (-1157 *4 *5)))) (-2030 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1155 *4)) (-4 *4 (-37 (-380 (-520)))) (-5 *2 (-1 (-1064 *4) (-1064 *4) (-1064 *4))) (-5 *1 (-1157 *4 *5)))) (-3616 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1155 *4)) (-4 *4 (-37 (-380 (-520)))) (-5 *2 (-1 (-1064 *4) (-1064 *4))) (-5 *1 (-1157 *4 *5)))))
-(-10 -7 (-15 -3616 ((-1 (-1064 |#1|) (-1064 |#1|)) (-1 |#2| |#2|))) (-15 -2030 ((-1 (-1064 |#1|) (-1064 |#1|) (-1064 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3937 ((-1 (-1064 |#1|) (-586 (-1064 |#1|))) (-1 |#2| (-586 |#2|)))) (-15 -3051 (|#2| |#2| |#2|)) (-15 -2309 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3555 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3327 (|#2| (-1 |#2| (-586 |#2|)) (-586 |#1|))) (-15 -2026 ((-586 |#2|) (-586 |#1|) (-586 (-1 |#2| (-586 |#2|))))))
-((-2954 ((|#2| |#4| (-706)) 30)) (-2183 ((|#4| |#2|) 25)) (-2122 ((|#4| (-380 |#2|)) 51 (|has| |#1| (-512)))) (-4035 (((-1 |#4| (-586 |#4|)) |#3|) 45)))
-(((-1158 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2183 (|#4| |#2|)) (-15 -2954 (|#2| |#4| (-706))) (-15 -4035 ((-1 |#4| (-586 |#4|)) |#3|)) (IF (|has| |#1| (-512)) (-15 -2122 (|#4| (-380 |#2|))) |%noBranch|)) (-969) (-1140 |#1|) (-596 |#2|) (-1155 |#1|)) (T -1158))
-((-2122 (*1 *2 *3) (-12 (-5 *3 (-380 *5)) (-4 *5 (-1140 *4)) (-4 *4 (-512)) (-4 *4 (-969)) (-4 *2 (-1155 *4)) (-5 *1 (-1158 *4 *5 *6 *2)) (-4 *6 (-596 *5)))) (-4035 (*1 *2 *3) (-12 (-4 *4 (-969)) (-4 *5 (-1140 *4)) (-5 *2 (-1 *6 (-586 *6))) (-5 *1 (-1158 *4 *5 *3 *6)) (-4 *3 (-596 *5)) (-4 *6 (-1155 *4)))) (-2954 (*1 *2 *3 *4) (-12 (-5 *4 (-706)) (-4 *5 (-969)) (-4 *2 (-1140 *5)) (-5 *1 (-1158 *5 *2 *6 *3)) (-4 *6 (-596 *2)) (-4 *3 (-1155 *5)))) (-2183 (*1 *2 *3) (-12 (-4 *4 (-969)) (-4 *3 (-1140 *4)) (-4 *2 (-1155 *4)) (-5 *1 (-1158 *4 *3 *5 *2)) (-4 *5 (-596 *3)))))
-(-10 -7 (-15 -2183 (|#4| |#2|)) (-15 -2954 (|#2| |#4| (-706))) (-15 -4035 ((-1 |#4| (-586 |#4|)) |#3|)) (IF (|has| |#1| (-512)) (-15 -2122 (|#4| (-380 |#2|))) |%noBranch|))
-NIL
-(((-1159) (-1195)) (T -1159))
+((-1495 (((-108)) 15)) (-3375 (((-1170) (-587 |#1|) (-587 |#1|)) 19) (((-1170) (-587 |#1|)) 20)) (-2139 (((-108) |#1| |#1|) 31 (|has| |#1| (-784)))) (-3574 (((-108) |#1| |#1| (-1 (-108) |#1| |#1|)) 27) (((-3 (-108) "failed") |#1| |#1|) 25)) (-3056 ((|#1| (-587 |#1|)) 32 (|has| |#1| (-784))) ((|#1| (-587 |#1|) (-1 (-108) |#1| |#1|)) 28)) (-2456 (((-2 (|:| -3984 (-587 |#1|)) (|:| -2195 (-587 |#1|)))) 17)))
+(((-1120 |#1|) (-10 -7 (-15 -3375 ((-1170) (-587 |#1|))) (-15 -3375 ((-1170) (-587 |#1|) (-587 |#1|))) (-15 -2456 ((-2 (|:| -3984 (-587 |#1|)) (|:| -2195 (-587 |#1|))))) (-15 -3574 ((-3 (-108) "failed") |#1| |#1|)) (-15 -3574 ((-108) |#1| |#1| (-1 (-108) |#1| |#1|))) (-15 -3056 (|#1| (-587 |#1|) (-1 (-108) |#1| |#1|))) (-15 -1495 ((-108))) (IF (|has| |#1| (-784)) (PROGN (-15 -3056 (|#1| (-587 |#1|))) (-15 -2139 ((-108) |#1| |#1|))) |%noBranch|)) (-1013)) (T -1120))
+((-2139 (*1 *2 *3 *3) (-12 (-5 *2 (-108)) (-5 *1 (-1120 *3)) (-4 *3 (-784)) (-4 *3 (-1013)))) (-3056 (*1 *2 *3) (-12 (-5 *3 (-587 *2)) (-4 *2 (-1013)) (-4 *2 (-784)) (-5 *1 (-1120 *2)))) (-1495 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1120 *3)) (-4 *3 (-1013)))) (-3056 (*1 *2 *3 *4) (-12 (-5 *3 (-587 *2)) (-5 *4 (-1 (-108) *2 *2)) (-5 *1 (-1120 *2)) (-4 *2 (-1013)))) (-3574 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-108) *3 *3)) (-4 *3 (-1013)) (-5 *2 (-108)) (-5 *1 (-1120 *3)))) (-3574 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-108)) (-5 *1 (-1120 *3)) (-4 *3 (-1013)))) (-2456 (*1 *2) (-12 (-5 *2 (-2 (|:| -3984 (-587 *3)) (|:| -2195 (-587 *3)))) (-5 *1 (-1120 *3)) (-4 *3 (-1013)))) (-3375 (*1 *2 *3 *3) (-12 (-5 *3 (-587 *4)) (-4 *4 (-1013)) (-5 *2 (-1170)) (-5 *1 (-1120 *4)))) (-3375 (*1 *2 *3) (-12 (-5 *3 (-587 *4)) (-4 *4 (-1013)) (-5 *2 (-1170)) (-5 *1 (-1120 *4)))))
+(-10 -7 (-15 -3375 ((-1170) (-587 |#1|))) (-15 -3375 ((-1170) (-587 |#1|) (-587 |#1|))) (-15 -2456 ((-2 (|:| -3984 (-587 |#1|)) (|:| -2195 (-587 |#1|))))) (-15 -3574 ((-3 (-108) "failed") |#1| |#1|)) (-15 -3574 ((-108) |#1| |#1| (-1 (-108) |#1| |#1|))) (-15 -3056 (|#1| (-587 |#1|) (-1 (-108) |#1| |#1|))) (-15 -1495 ((-108))) (IF (|has| |#1| (-784)) (PROGN (-15 -3056 (|#1| (-587 |#1|))) (-15 -2139 ((-108) |#1| |#1|))) |%noBranch|))
+((-3746 (((-1170) (-587 (-1084)) (-587 (-1084))) 12) (((-1170) (-587 (-1084))) 10)) (-3240 (((-1170)) 13)) (-3760 (((-2 (|:| -2195 (-587 (-1084))) (|:| -3984 (-587 (-1084))))) 17)))
+(((-1121) (-10 -7 (-15 -3746 ((-1170) (-587 (-1084)))) (-15 -3746 ((-1170) (-587 (-1084)) (-587 (-1084)))) (-15 -3760 ((-2 (|:| -2195 (-587 (-1084))) (|:| -3984 (-587 (-1084)))))) (-15 -3240 ((-1170))))) (T -1121))
+((-3240 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1121)))) (-3760 (*1 *2) (-12 (-5 *2 (-2 (|:| -2195 (-587 (-1084))) (|:| -3984 (-587 (-1084))))) (-5 *1 (-1121)))) (-3746 (*1 *2 *3 *3) (-12 (-5 *3 (-587 (-1084))) (-5 *2 (-1170)) (-5 *1 (-1121)))) (-3746 (*1 *2 *3) (-12 (-5 *3 (-587 (-1084))) (-5 *2 (-1170)) (-5 *1 (-1121)))))
+(-10 -7 (-15 -3746 ((-1170) (-587 (-1084)))) (-15 -3746 ((-1170) (-587 (-1084)) (-587 (-1084)))) (-15 -3760 ((-2 (|:| -2195 (-587 (-1084))) (|:| -3984 (-587 (-1084)))))) (-15 -3240 ((-1170))))
+((-3063 (($ $) 16)) (-2710 (((-108) $) 23)))
+(((-1122 |#1|) (-10 -8 (-15 -3063 (|#1| |#1|)) (-15 -2710 ((-108) |#1|))) (-1123)) (T -1122))
+NIL
+(-10 -8 (-15 -3063 (|#1| |#1|)) (-15 -2710 ((-108) |#1|)))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) 41)) (-2559 (($ $) 40)) (-1733 (((-108) $) 38)) (-1232 (((-3 $ "failed") $ $) 19)) (-3063 (($ $) 51)) (-3358 (((-392 $) $) 52)) (-2547 (($) 17 T CONST)) (-1257 (((-3 $ "failed") $) 34)) (-2710 (((-108) $) 53)) (-3996 (((-108) $) 31)) (-2223 (($ $ $) 46) (($ (-587 $)) 45)) (-3688 (((-1067) $) 9)) (-4147 (((-1031) $) 10)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) 44)) (-2258 (($ $ $) 48) (($ (-587 $)) 47)) (-1916 (((-392 $) $) 50)) (-2230 (((-3 $ "failed") $ $) 42)) (-2189 (((-792) $) 11) (($ (-521)) 28) (($ $) 43)) (-3846 (((-707)) 29)) (-4210 (((-108) $ $) 39)) (-3505 (($ $ (-850)) 26) (($ $ (-707)) 33)) (-3561 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-707)) 32)) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24)))
+(((-1123) (-1196)) (T -1123))
+((-2710 (*1 *2 *1) (-12 (-4 *1 (-1123)) (-5 *2 (-108)))) (-3358 (*1 *2 *1) (-12 (-5 *2 (-392 *1)) (-4 *1 (-1123)))) (-3063 (*1 *1 *1) (-4 *1 (-1123))) (-1916 (*1 *2 *1) (-12 (-5 *2 (-392 *1)) (-4 *1 (-1123)))))
+(-13 (-425) (-10 -8 (-15 -2710 ((-108) $)) (-15 -3358 ((-392 $) $)) (-15 -3063 ($ $)) (-15 -1916 ((-392 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-561 (-792)) . T) ((-157) . T) ((-265) . T) ((-425) . T) ((-513) . T) ((-589 $) . T) ((-654 $) . T) ((-663) . T) ((-976 $) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T))
+((-1390 (((-1129 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1129 |#1| |#3| |#5|)) 23)))
+(((-1124 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1390 ((-1129 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1129 |#1| |#3| |#5|)))) (-970) (-970) (-1084) (-1084) |#1| |#2|) (T -1124))
+((-1390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1129 *5 *7 *9)) (-4 *5 (-970)) (-4 *6 (-970)) (-14 *7 (-1084)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1129 *6 *8 *10)) (-5 *1 (-1124 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1084)))))
+(-10 -7 (-15 -1390 ((-1129 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1129 |#1| |#3| |#5|))))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-4084 (((-587 (-998)) $) 74)) (-1611 (((-1084) $) 103)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) 51 (|has| |#1| (-513)))) (-2559 (($ $) 52 (|has| |#1| (-513)))) (-1733 (((-108) $) 54 (|has| |#1| (-513)))) (-2977 (($ $ (-521)) 98) (($ $ (-521) (-521)) 97)) (-3423 (((-1065 (-2 (|:| |k| (-521)) (|:| |c| |#1|))) $) 105)) (-2904 (($ $) 135 (|has| |#1| (-37 (-381 (-521)))))) (-2769 (($ $) 118 (|has| |#1| (-37 (-381 (-521)))))) (-1232 (((-3 $ "failed") $ $) 19)) (-3063 (($ $) 162 (|has| |#1| (-337)))) (-3358 (((-392 $) $) 163 (|has| |#1| (-337)))) (-1927 (($ $) 117 (|has| |#1| (-37 (-381 (-521)))))) (-1389 (((-108) $ $) 153 (|has| |#1| (-337)))) (-2880 (($ $) 134 (|has| |#1| (-37 (-381 (-521)))))) (-2746 (($ $) 119 (|has| |#1| (-37 (-381 (-521)))))) (-2770 (($ (-1065 (-2 (|:| |k| (-521)) (|:| |c| |#1|)))) 174)) (-2926 (($ $) 133 (|has| |#1| (-37 (-381 (-521)))))) (-2790 (($ $) 120 (|has| |#1| (-37 (-381 (-521)))))) (-2547 (($) 17 T CONST)) (-2277 (($ $ $) 157 (|has| |#1| (-337)))) (-3152 (($ $) 60)) (-1257 (((-3 $ "failed") $) 34)) (-2914 (((-381 (-881 |#1|)) $ (-521)) 172 (|has| |#1| (-513))) (((-381 (-881 |#1|)) $ (-521) (-521)) 171 (|has| |#1| (-513)))) (-2253 (($ $ $) 156 (|has| |#1| (-337)))) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) 151 (|has| |#1| (-337)))) (-2710 (((-108) $) 164 (|has| |#1| (-337)))) (-1325 (((-108) $) 73)) (-2834 (($) 145 (|has| |#1| (-37 (-381 (-521)))))) (-2733 (((-521) $) 100) (((-521) $ (-521)) 99)) (-3996 (((-108) $) 31)) (-3407 (($ $ (-521)) 116 (|has| |#1| (-37 (-381 (-521)))))) (-1993 (($ $ (-850)) 101)) (-3131 (($ (-1 |#1| (-521)) $) 173)) (-1546 (((-3 (-587 $) "failed") (-587 $) $) 160 (|has| |#1| (-337)))) (-3649 (((-108) $) 62)) (-4043 (($ |#1| (-521)) 61) (($ $ (-998) (-521)) 76) (($ $ (-587 (-998)) (-587 (-521))) 75)) (-1390 (($ (-1 |#1| |#1|) $) 63)) (-1253 (($ $) 142 (|has| |#1| (-37 (-381 (-521)))))) (-3125 (($ $) 65)) (-3135 ((|#1| $) 66)) (-2223 (($ (-587 $)) 149 (|has| |#1| (-337))) (($ $ $) 148 (|has| |#1| (-337)))) (-3688 (((-1067) $) 9)) (-3095 (($ $) 165 (|has| |#1| (-337)))) (-2184 (($ $) 170 (|has| |#1| (-37 (-381 (-521))))) (($ $ (-1084)) 169 (-3703 (-12 (|has| |#1| (-29 (-521))) (|has| |#1| (-887)) (|has| |#1| (-1105)) (|has| |#1| (-37 (-381 (-521))))) (-12 (|has| |#1| (-15 -4084 ((-587 (-1084)) |#1|))) (|has| |#1| (-15 -2184 (|#1| |#1| (-1084)))) (|has| |#1| (-37 (-381 (-521)))))))) (-4147 (((-1031) $) 10)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) 150 (|has| |#1| (-337)))) (-2258 (($ (-587 $)) 147 (|has| |#1| (-337))) (($ $ $) 146 (|has| |#1| (-337)))) (-1916 (((-392 $) $) 161 (|has| |#1| (-337)))) (-1962 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-337))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) 158 (|has| |#1| (-337)))) (-2447 (($ $ (-521)) 95)) (-2230 (((-3 $ "failed") $ $) 50 (|has| |#1| (-513)))) (-3854 (((-3 (-587 $) "failed") (-587 $) $) 152 (|has| |#1| (-337)))) (-3261 (($ $) 143 (|has| |#1| (-37 (-381 (-521)))))) (-2288 (((-1065 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-521)))))) (-4196 (((-707) $) 154 (|has| |#1| (-337)))) (-2544 ((|#1| $ (-521)) 104) (($ $ $) 81 (|has| (-521) (-1025)))) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) 155 (|has| |#1| (-337)))) (-2156 (($ $ (-587 (-1084)) (-587 (-707))) 89 (-12 (|has| |#1| (-829 (-1084))) (|has| |#1| (-15 * (|#1| (-521) |#1|))))) (($ $ (-1084) (-707)) 88 (-12 (|has| |#1| (-829 (-1084))) (|has| |#1| (-15 * (|#1| (-521) |#1|))))) (($ $ (-587 (-1084))) 87 (-12 (|has| |#1| (-829 (-1084))) (|has| |#1| (-15 * (|#1| (-521) |#1|))))) (($ $ (-1084)) 86 (-12 (|has| |#1| (-829 (-1084))) (|has| |#1| (-15 * (|#1| (-521) |#1|))))) (($ $ (-707)) 84 (|has| |#1| (-15 * (|#1| (-521) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-521) |#1|))))) (-1994 (((-521) $) 64)) (-1738 (($ $) 132 (|has| |#1| (-37 (-381 (-521)))))) (-2800 (($ $) 121 (|has| |#1| (-37 (-381 (-521)))))) (-2915 (($ $) 131 (|has| |#1| (-37 (-381 (-521)))))) (-2780 (($ $) 122 (|has| |#1| (-37 (-381 (-521)))))) (-2892 (($ $) 130 (|has| |#1| (-37 (-381 (-521)))))) (-2758 (($ $) 123 (|has| |#1| (-37 (-381 (-521)))))) (-3448 (($ $) 72)) (-2189 (((-792) $) 11) (($ (-521)) 28) (($ |#1|) 47 (|has| |#1| (-157))) (($ (-381 (-521))) 57 (|has| |#1| (-37 (-381 (-521))))) (($ $) 49 (|has| |#1| (-513)))) (-3800 ((|#1| $ (-521)) 59)) (-1671 (((-3 $ "failed") $) 48 (|has| |#1| (-133)))) (-3846 (((-707)) 29)) (-1893 ((|#1| $) 102)) (-1759 (($ $) 141 (|has| |#1| (-37 (-381 (-521)))))) (-2832 (($ $) 129 (|has| |#1| (-37 (-381 (-521)))))) (-4210 (((-108) $ $) 53 (|has| |#1| (-513)))) (-1745 (($ $) 140 (|has| |#1| (-37 (-381 (-521)))))) (-2811 (($ $) 128 (|has| |#1| (-37 (-381 (-521)))))) (-1776 (($ $) 139 (|has| |#1| (-37 (-381 (-521)))))) (-2856 (($ $) 127 (|has| |#1| (-37 (-381 (-521)))))) (-3894 ((|#1| $ (-521)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-521)))) (|has| |#1| (-15 -2189 (|#1| (-1084))))))) (-3919 (($ $) 138 (|has| |#1| (-37 (-381 (-521)))))) (-2868 (($ $) 126 (|has| |#1| (-37 (-381 (-521)))))) (-1768 (($ $) 137 (|has| |#1| (-37 (-381 (-521)))))) (-2844 (($ $) 125 (|has| |#1| (-37 (-381 (-521)))))) (-1752 (($ $) 136 (|has| |#1| (-37 (-381 (-521)))))) (-2821 (($ $) 124 (|has| |#1| (-37 (-381 (-521)))))) (-3505 (($ $ (-850)) 26) (($ $ (-707)) 33) (($ $ (-521)) 166 (|has| |#1| (-337)))) (-3561 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-2212 (($ $ (-587 (-1084)) (-587 (-707))) 93 (-12 (|has| |#1| (-829 (-1084))) (|has| |#1| (-15 * (|#1| (-521) |#1|))))) (($ $ (-1084) (-707)) 92 (-12 (|has| |#1| (-829 (-1084))) (|has| |#1| (-15 * (|#1| (-521) |#1|))))) (($ $ (-587 (-1084))) 91 (-12 (|has| |#1| (-829 (-1084))) (|has| |#1| (-15 * (|#1| (-521) |#1|))))) (($ $ (-1084)) 90 (-12 (|has| |#1| (-829 (-1084))) (|has| |#1| (-15 * (|#1| (-521) |#1|))))) (($ $ (-707)) 85 (|has| |#1| (-15 * (|#1| (-521) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-521) |#1|))))) (-1531 (((-108) $ $) 6)) (-1620 (($ $ |#1|) 58 (|has| |#1| (-337))) (($ $ $) 168 (|has| |#1| (-337)))) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-707)) 32) (($ $ (-521)) 167 (|has| |#1| (-337))) (($ $ $) 144 (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) 115 (|has| |#1| (-37 (-381 (-521)))))) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-381 (-521)) $) 56 (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) 55 (|has| |#1| (-37 (-381 (-521)))))))
+(((-1125 |#1|) (-1196) (-970)) (T -1125))
+((-2770 (*1 *1 *2) (-12 (-5 *2 (-1065 (-2 (|:| |k| (-521)) (|:| |c| *3)))) (-4 *3 (-970)) (-4 *1 (-1125 *3)))) (-3131 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-521))) (-4 *1 (-1125 *3)) (-4 *3 (-970)))) (-2914 (*1 *2 *1 *3) (-12 (-5 *3 (-521)) (-4 *1 (-1125 *4)) (-4 *4 (-970)) (-4 *4 (-513)) (-5 *2 (-381 (-881 *4))))) (-2914 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-521)) (-4 *1 (-1125 *4)) (-4 *4 (-970)) (-4 *4 (-513)) (-5 *2 (-381 (-881 *4))))) (-2184 (*1 *1 *1) (-12 (-4 *1 (-1125 *2)) (-4 *2 (-970)) (-4 *2 (-37 (-381 (-521)))))) (-2184 (*1 *1 *1 *2) (-3703 (-12 (-5 *2 (-1084)) (-4 *1 (-1125 *3)) (-4 *3 (-970)) (-12 (-4 *3 (-29 (-521))) (-4 *3 (-887)) (-4 *3 (-1105)) (-4 *3 (-37 (-381 (-521)))))) (-12 (-5 *2 (-1084)) (-4 *1 (-1125 *3)) (-4 *3 (-970)) (-12 (|has| *3 (-15 -4084 ((-587 *2) *3))) (|has| *3 (-15 -2184 (*3 *3 *2))) (-4 *3 (-37 (-381 (-521)))))))))
+(-13 (-1143 |t#1| (-521)) (-10 -8 (-15 -2770 ($ (-1065 (-2 (|:| |k| (-521)) (|:| |c| |t#1|))))) (-15 -3131 ($ (-1 |t#1| (-521)) $)) (IF (|has| |t#1| (-513)) (PROGN (-15 -2914 ((-381 (-881 |t#1|)) $ (-521))) (-15 -2914 ((-381 (-881 |t#1|)) $ (-521) (-521)))) |%noBranch|) (IF (|has| |t#1| (-37 (-381 (-521)))) (PROGN (-15 -2184 ($ $)) (IF (|has| |t#1| (-15 -2184 (|t#1| |t#1| (-1084)))) (IF (|has| |t#1| (-15 -4084 ((-587 (-1084)) |t#1|))) (-15 -2184 ($ $ (-1084))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1105)) (IF (|has| |t#1| (-887)) (IF (|has| |t#1| (-29 (-521))) (-15 -2184 ($ $ (-1084))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-927)) (-6 (-1105))) |%noBranch|) (IF (|has| |t#1| (-337)) (-6 (-337)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-521)) . T) ((-25) . T) ((-37 #1=(-381 (-521))) -3703 (|has| |#1| (-337)) (|has| |#1| (-37 (-381 (-521))))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) -3703 (|has| |#1| (-513)) (|has| |#1| (-337))) ((-34) |has| |#1| (-37 (-381 (-521)))) ((-91) |has| |#1| (-37 (-381 (-521)))) ((-97) . T) ((-107 #1# #1#) -3703 (|has| |#1| (-337)) (|has| |#1| (-37 (-381 (-521))))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3703 (|has| |#1| (-513)) (|has| |#1| (-337)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-561 (-792)) . T) ((-157) -3703 (|has| |#1| (-513)) (|has| |#1| (-337)) (|has| |#1| (-157))) ((-210) |has| |#1| (-15 * (|#1| (-521) |#1|))) ((-220) |has| |#1| (-337)) ((-259) |has| |#1| (-37 (-381 (-521)))) ((-261 $ $) |has| (-521) (-1025)) ((-265) -3703 (|has| |#1| (-513)) (|has| |#1| (-337))) ((-282) |has| |#1| (-337)) ((-337) |has| |#1| (-337)) ((-425) |has| |#1| (-337)) ((-462) |has| |#1| (-37 (-381 (-521)))) ((-513) -3703 (|has| |#1| (-513)) (|has| |#1| (-337))) ((-589 #1#) -3703 (|has| |#1| (-337)) (|has| |#1| (-37 (-381 (-521))))) ((-589 |#1|) . T) ((-589 $) . T) ((-654 #1#) -3703 (|has| |#1| (-337)) (|has| |#1| (-37 (-381 (-521))))) ((-654 |#1|) |has| |#1| (-157)) ((-654 $) -3703 (|has| |#1| (-513)) (|has| |#1| (-337))) ((-663) . T) ((-829 (-1084)) -12 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (|has| |#1| (-829 (-1084)))) ((-899 |#1| #0# (-998)) . T) ((-849) |has| |#1| (-337)) ((-927) |has| |#1| (-37 (-381 (-521)))) ((-976 #1#) -3703 (|has| |#1| (-337)) (|has| |#1| (-37 (-381 (-521))))) ((-976 |#1|) . T) ((-976 $) -3703 (|has| |#1| (-513)) (|has| |#1| (-337)) (|has| |#1| (-157))) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T) ((-1105) |has| |#1| (-37 (-381 (-521)))) ((-1108) |has| |#1| (-37 (-381 (-521)))) ((-1123) |has| |#1| (-337)) ((-1143 |#1| #0#) . T))
+((-2220 (((-108) $) 12)) (-1297 (((-3 |#3| "failed") $) 17) (((-3 (-1084) "failed") $) NIL) (((-3 (-381 (-521)) "failed") $) NIL) (((-3 (-521) "failed") $) NIL)) (-1483 ((|#3| $) 14) (((-1084) $) NIL) (((-381 (-521)) $) NIL) (((-521) $) NIL)))
+(((-1126 |#1| |#2| |#3|) (-10 -8 (-15 -1483 ((-521) |#1|)) (-15 -1297 ((-3 (-521) "failed") |#1|)) (-15 -1483 ((-381 (-521)) |#1|)) (-15 -1297 ((-3 (-381 (-521)) "failed") |#1|)) (-15 -1483 ((-1084) |#1|)) (-15 -1297 ((-3 (-1084) "failed") |#1|)) (-15 -1483 (|#3| |#1|)) (-15 -1297 ((-3 |#3| "failed") |#1|)) (-15 -2220 ((-108) |#1|))) (-1127 |#2| |#3|) (-970) (-1156 |#2|)) (T -1126))
+NIL
+(-10 -8 (-15 -1483 ((-521) |#1|)) (-15 -1297 ((-3 (-521) "failed") |#1|)) (-15 -1483 ((-381 (-521)) |#1|)) (-15 -1297 ((-3 (-381 (-521)) "failed") |#1|)) (-15 -1483 ((-1084) |#1|)) (-15 -1297 ((-3 (-1084) "failed") |#1|)) (-15 -1483 (|#3| |#1|)) (-15 -1297 ((-3 |#3| "failed") |#1|)) (-15 -2220 ((-108) |#1|)))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-2086 ((|#2| $) 231 (-4009 (|has| |#2| (-282)) (|has| |#1| (-337))))) (-4084 (((-587 (-998)) $) 74)) (-1611 (((-1084) $) 103)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) 51 (|has| |#1| (-513)))) (-2559 (($ $) 52 (|has| |#1| (-513)))) (-1733 (((-108) $) 54 (|has| |#1| (-513)))) (-2977 (($ $ (-521)) 98) (($ $ (-521) (-521)) 97)) (-3423 (((-1065 (-2 (|:| |k| (-521)) (|:| |c| |#1|))) $) 105)) (-3708 ((|#2| $) 267)) (-3121 (((-3 |#2| "failed") $) 263)) (-3055 ((|#2| $) 264)) (-2904 (($ $) 135 (|has| |#1| (-37 (-381 (-521)))))) (-2769 (($ $) 118 (|has| |#1| (-37 (-381 (-521)))))) (-1232 (((-3 $ "failed") $ $) 19)) (-2598 (((-392 (-1080 $)) (-1080 $)) 240 (-4009 (|has| |#2| (-838)) (|has| |#1| (-337))))) (-3063 (($ $) 162 (|has| |#1| (-337)))) (-3358 (((-392 $) $) 163 (|has| |#1| (-337)))) (-1927 (($ $) 117 (|has| |#1| (-37 (-381 (-521)))))) (-2569 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) 237 (-4009 (|has| |#2| (-838)) (|has| |#1| (-337))))) (-1389 (((-108) $ $) 153 (|has| |#1| (-337)))) (-2880 (($ $) 134 (|has| |#1| (-37 (-381 (-521)))))) (-2746 (($ $) 119 (|has| |#1| (-37 (-381 (-521)))))) (-1606 (((-521) $) 249 (-4009 (|has| |#2| (-757)) (|has| |#1| (-337))))) (-2770 (($ (-1065 (-2 (|:| |k| (-521)) (|:| |c| |#1|)))) 174)) (-2926 (($ $) 133 (|has| |#1| (-37 (-381 (-521)))))) (-2790 (($ $) 120 (|has| |#1| (-37 (-381 (-521)))))) (-2547 (($) 17 T CONST)) (-1297 (((-3 |#2| "failed") $) 270) (((-3 (-521) "failed") $) 259 (-4009 (|has| |#2| (-961 (-521))) (|has| |#1| (-337)))) (((-3 (-381 (-521)) "failed") $) 257 (-4009 (|has| |#2| (-961 (-521))) (|has| |#1| (-337)))) (((-3 (-1084) "failed") $) 242 (-4009 (|has| |#2| (-961 (-1084))) (|has| |#1| (-337))))) (-1483 ((|#2| $) 269) (((-521) $) 260 (-4009 (|has| |#2| (-961 (-521))) (|has| |#1| (-337)))) (((-381 (-521)) $) 258 (-4009 (|has| |#2| (-961 (-521))) (|has| |#1| (-337)))) (((-1084) $) 243 (-4009 (|has| |#2| (-961 (-1084))) (|has| |#1| (-337))))) (-1198 (($ $) 266) (($ (-521) $) 265)) (-2277 (($ $ $) 157 (|has| |#1| (-337)))) (-3152 (($ $) 60)) (-3279 (((-627 |#2|) (-627 $)) 221 (|has| |#1| (-337))) (((-2 (|:| -1201 (-627 |#2|)) (|:| |vec| (-1165 |#2|))) (-627 $) (-1165 $)) 220 (|has| |#1| (-337))) (((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) 219 (-4009 (|has| |#2| (-583 (-521))) (|has| |#1| (-337)))) (((-627 (-521)) (-627 $)) 218 (-4009 (|has| |#2| (-583 (-521))) (|has| |#1| (-337))))) (-1257 (((-3 $ "failed") $) 34)) (-2914 (((-381 (-881 |#1|)) $ (-521)) 172 (|has| |#1| (-513))) (((-381 (-881 |#1|)) $ (-521) (-521)) 171 (|has| |#1| (-513)))) (-3250 (($) 233 (-4009 (|has| |#2| (-506)) (|has| |#1| (-337))))) (-2253 (($ $ $) 156 (|has| |#1| (-337)))) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) 151 (|has| |#1| (-337)))) (-2710 (((-108) $) 164 (|has| |#1| (-337)))) (-3951 (((-108) $) 247 (-4009 (|has| |#2| (-757)) (|has| |#1| (-337))))) (-1325 (((-108) $) 73)) (-2834 (($) 145 (|has| |#1| (-37 (-381 (-521)))))) (-3427 (((-818 (-353) $) $ (-821 (-353)) (-818 (-353) $)) 225 (-4009 (|has| |#2| (-815 (-353))) (|has| |#1| (-337)))) (((-818 (-521) $) $ (-821 (-521)) (-818 (-521) $)) 224 (-4009 (|has| |#2| (-815 (-521))) (|has| |#1| (-337))))) (-2733 (((-521) $) 100) (((-521) $ (-521)) 99)) (-3996 (((-108) $) 31)) (-3257 (($ $) 229 (|has| |#1| (-337)))) (-2801 ((|#2| $) 227 (|has| |#1| (-337)))) (-3407 (($ $ (-521)) 116 (|has| |#1| (-37 (-381 (-521)))))) (-3842 (((-3 $ "failed") $) 261 (-4009 (|has| |#2| (-1060)) (|has| |#1| (-337))))) (-2210 (((-108) $) 248 (-4009 (|has| |#2| (-757)) (|has| |#1| (-337))))) (-1993 (($ $ (-850)) 101)) (-3131 (($ (-1 |#1| (-521)) $) 173)) (-1546 (((-3 (-587 $) "failed") (-587 $) $) 160 (|has| |#1| (-337)))) (-3649 (((-108) $) 62)) (-4043 (($ |#1| (-521)) 61) (($ $ (-998) (-521)) 76) (($ $ (-587 (-998)) (-587 (-521))) 75)) (-2810 (($ $ $) 251 (-4009 (|has| |#2| (-784)) (|has| |#1| (-337))))) (-2446 (($ $ $) 252 (-4009 (|has| |#2| (-784)) (|has| |#1| (-337))))) (-1390 (($ (-1 |#1| |#1|) $) 63) (($ (-1 |#2| |#2|) $) 213 (|has| |#1| (-337)))) (-1253 (($ $) 142 (|has| |#1| (-37 (-381 (-521)))))) (-3125 (($ $) 65)) (-3135 ((|#1| $) 66)) (-2223 (($ (-587 $)) 149 (|has| |#1| (-337))) (($ $ $) 148 (|has| |#1| (-337)))) (-3065 (($ (-521) |#2|) 268)) (-3688 (((-1067) $) 9)) (-3095 (($ $) 165 (|has| |#1| (-337)))) (-2184 (($ $) 170 (|has| |#1| (-37 (-381 (-521))))) (($ $ (-1084)) 169 (-3703 (-12 (|has| |#1| (-29 (-521))) (|has| |#1| (-887)) (|has| |#1| (-1105)) (|has| |#1| (-37 (-381 (-521))))) (-12 (|has| |#1| (-15 -4084 ((-587 (-1084)) |#1|))) (|has| |#1| (-15 -2184 (|#1| |#1| (-1084)))) (|has| |#1| (-37 (-381 (-521)))))))) (-3797 (($) 262 (-4009 (|has| |#2| (-1060)) (|has| |#1| (-337))) CONST)) (-4147 (((-1031) $) 10)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) 150 (|has| |#1| (-337)))) (-2258 (($ (-587 $)) 147 (|has| |#1| (-337))) (($ $ $) 146 (|has| |#1| (-337)))) (-2850 (($ $) 232 (-4009 (|has| |#2| (-282)) (|has| |#1| (-337))))) (-2567 ((|#2| $) 235 (-4009 (|has| |#2| (-506)) (|has| |#1| (-337))))) (-1912 (((-392 (-1080 $)) (-1080 $)) 238 (-4009 (|has| |#2| (-838)) (|has| |#1| (-337))))) (-2165 (((-392 (-1080 $)) (-1080 $)) 239 (-4009 (|has| |#2| (-838)) (|has| |#1| (-337))))) (-1916 (((-392 $) $) 161 (|has| |#1| (-337)))) (-1962 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-337))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) 158 (|has| |#1| (-337)))) (-2447 (($ $ (-521)) 95)) (-2230 (((-3 $ "failed") $ $) 50 (|has| |#1| (-513)))) (-3854 (((-3 (-587 $) "failed") (-587 $) $) 152 (|has| |#1| (-337)))) (-3261 (($ $) 143 (|has| |#1| (-37 (-381 (-521)))))) (-2288 (((-1065 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-521))))) (($ $ (-1084) |#2|) 212 (-4009 (|has| |#2| (-482 (-1084) |#2|)) (|has| |#1| (-337)))) (($ $ (-587 (-1084)) (-587 |#2|)) 211 (-4009 (|has| |#2| (-482 (-1084) |#2|)) (|has| |#1| (-337)))) (($ $ (-587 (-269 |#2|))) 210 (-4009 (|has| |#2| (-284 |#2|)) (|has| |#1| (-337)))) (($ $ (-269 |#2|)) 209 (-4009 (|has| |#2| (-284 |#2|)) (|has| |#1| (-337)))) (($ $ |#2| |#2|) 208 (-4009 (|has| |#2| (-284 |#2|)) (|has| |#1| (-337)))) (($ $ (-587 |#2|) (-587 |#2|)) 207 (-4009 (|has| |#2| (-284 |#2|)) (|has| |#1| (-337))))) (-4196 (((-707) $) 154 (|has| |#1| (-337)))) (-2544 ((|#1| $ (-521)) 104) (($ $ $) 81 (|has| (-521) (-1025))) (($ $ |#2|) 206 (-4009 (|has| |#2| (-261 |#2| |#2|)) (|has| |#1| (-337))))) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) 155 (|has| |#1| (-337)))) (-2156 (($ $ (-1 |#2| |#2|)) 217 (|has| |#1| (-337))) (($ $ (-1 |#2| |#2|) (-707)) 216 (|has| |#1| (-337))) (($ $ (-707)) 84 (-3703 (-4009 (|has| |#2| (-210)) (|has| |#1| (-337))) (|has| |#1| (-15 * (|#1| (-521) |#1|))))) (($ $) 82 (-3703 (-4009 (|has| |#2| (-210)) (|has| |#1| (-337))) (|has| |#1| (-15 * (|#1| (-521) |#1|))))) (($ $ (-587 (-1084)) (-587 (-707))) 89 (-3703 (-4009 (|has| |#2| (-829 (-1084))) (|has| |#1| (-337))) (-12 (|has| |#1| (-829 (-1084))) (|has| |#1| (-15 * (|#1| (-521) |#1|)))))) (($ $ (-1084) (-707)) 88 (-3703 (-4009 (|has| |#2| (-829 (-1084))) (|has| |#1| (-337))) (-12 (|has| |#1| (-829 (-1084))) (|has| |#1| (-15 * (|#1| (-521) |#1|)))))) (($ $ (-587 (-1084))) 87 (-3703 (-4009 (|has| |#2| (-829 (-1084))) (|has| |#1| (-337))) (-12 (|has| |#1| (-829 (-1084))) (|has| |#1| (-15 * (|#1| (-521) |#1|)))))) (($ $ (-1084)) 86 (-3703 (-4009 (|has| |#2| (-829 (-1084))) (|has| |#1| (-337))) (-12 (|has| |#1| (-829 (-1084))) (|has| |#1| (-15 * (|#1| (-521) |#1|))))))) (-4142 (($ $) 230 (|has| |#1| (-337)))) (-2812 ((|#2| $) 228 (|has| |#1| (-337)))) (-1994 (((-521) $) 64)) (-1738 (($ $) 132 (|has| |#1| (-37 (-381 (-521)))))) (-2800 (($ $) 121 (|has| |#1| (-37 (-381 (-521)))))) (-2915 (($ $) 131 (|has| |#1| (-37 (-381 (-521)))))) (-2780 (($ $) 122 (|has| |#1| (-37 (-381 (-521)))))) (-2892 (($ $) 130 (|has| |#1| (-37 (-381 (-521)))))) (-2758 (($ $) 123 (|has| |#1| (-37 (-381 (-521)))))) (-1430 (((-202) $) 246 (-4009 (|has| |#2| (-946)) (|has| |#1| (-337)))) (((-353) $) 245 (-4009 (|has| |#2| (-946)) (|has| |#1| (-337)))) (((-497) $) 244 (-4009 (|has| |#2| (-562 (-497))) (|has| |#1| (-337)))) (((-821 (-353)) $) 223 (-4009 (|has| |#2| (-562 (-821 (-353)))) (|has| |#1| (-337)))) (((-821 (-521)) $) 222 (-4009 (|has| |#2| (-562 (-821 (-521)))) (|has| |#1| (-337))))) (-2944 (((-3 (-1165 $) "failed") (-627 $)) 236 (-4009 (-4009 (|has| $ (-133)) (|has| |#2| (-838))) (|has| |#1| (-337))))) (-3448 (($ $) 72)) (-2189 (((-792) $) 11) (($ (-521)) 28) (($ |#1|) 47 (|has| |#1| (-157))) (($ |#2|) 271) (($ (-1084)) 241 (-4009 (|has| |#2| (-961 (-1084))) (|has| |#1| (-337)))) (($ (-381 (-521))) 57 (|has| |#1| (-37 (-381 (-521))))) (($ $) 49 (|has| |#1| (-513)))) (-3800 ((|#1| $ (-521)) 59)) (-1671 (((-3 $ "failed") $) 48 (-3703 (-4009 (-3703 (|has| |#2| (-133)) (-4009 (|has| $ (-133)) (|has| |#2| (-838)))) (|has| |#1| (-337))) (|has| |#1| (-133))))) (-3846 (((-707)) 29)) (-1893 ((|#1| $) 102)) (-2382 ((|#2| $) 234 (-4009 (|has| |#2| (-506)) (|has| |#1| (-337))))) (-1759 (($ $) 141 (|has| |#1| (-37 (-381 (-521)))))) (-2832 (($ $) 129 (|has| |#1| (-37 (-381 (-521)))))) (-4210 (((-108) $ $) 53 (|has| |#1| (-513)))) (-1745 (($ $) 140 (|has| |#1| (-37 (-381 (-521)))))) (-2811 (($ $) 128 (|has| |#1| (-37 (-381 (-521)))))) (-1776 (($ $) 139 (|has| |#1| (-37 (-381 (-521)))))) (-2856 (($ $) 127 (|has| |#1| (-37 (-381 (-521)))))) (-3894 ((|#1| $ (-521)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-521)))) (|has| |#1| (-15 -2189 (|#1| (-1084))))))) (-3919 (($ $) 138 (|has| |#1| (-37 (-381 (-521)))))) (-2868 (($ $) 126 (|has| |#1| (-37 (-381 (-521)))))) (-1768 (($ $) 137 (|has| |#1| (-37 (-381 (-521)))))) (-2844 (($ $) 125 (|has| |#1| (-37 (-381 (-521)))))) (-1752 (($ $) 136 (|has| |#1| (-37 (-381 (-521)))))) (-2821 (($ $) 124 (|has| |#1| (-37 (-381 (-521)))))) (-3304 (($ $) 250 (-4009 (|has| |#2| (-757)) (|has| |#1| (-337))))) (-3505 (($ $ (-850)) 26) (($ $ (-707)) 33) (($ $ (-521)) 166 (|has| |#1| (-337)))) (-3561 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-2212 (($ $ (-1 |#2| |#2|)) 215 (|has| |#1| (-337))) (($ $ (-1 |#2| |#2|) (-707)) 214 (|has| |#1| (-337))) (($ $ (-707)) 85 (-3703 (-4009 (|has| |#2| (-210)) (|has| |#1| (-337))) (|has| |#1| (-15 * (|#1| (-521) |#1|))))) (($ $) 83 (-3703 (-4009 (|has| |#2| (-210)) (|has| |#1| (-337))) (|has| |#1| (-15 * (|#1| (-521) |#1|))))) (($ $ (-587 (-1084)) (-587 (-707))) 93 (-3703 (-4009 (|has| |#2| (-829 (-1084))) (|has| |#1| (-337))) (-12 (|has| |#1| (-829 (-1084))) (|has| |#1| (-15 * (|#1| (-521) |#1|)))))) (($ $ (-1084) (-707)) 92 (-3703 (-4009 (|has| |#2| (-829 (-1084))) (|has| |#1| (-337))) (-12 (|has| |#1| (-829 (-1084))) (|has| |#1| (-15 * (|#1| (-521) |#1|)))))) (($ $ (-587 (-1084))) 91 (-3703 (-4009 (|has| |#2| (-829 (-1084))) (|has| |#1| (-337))) (-12 (|has| |#1| (-829 (-1084))) (|has| |#1| (-15 * (|#1| (-521) |#1|)))))) (($ $ (-1084)) 90 (-3703 (-4009 (|has| |#2| (-829 (-1084))) (|has| |#1| (-337))) (-12 (|has| |#1| (-829 (-1084))) (|has| |#1| (-15 * (|#1| (-521) |#1|))))))) (-1574 (((-108) $ $) 254 (-4009 (|has| |#2| (-784)) (|has| |#1| (-337))))) (-1558 (((-108) $ $) 255 (-4009 (|has| |#2| (-784)) (|has| |#1| (-337))))) (-1531 (((-108) $ $) 6)) (-1566 (((-108) $ $) 253 (-4009 (|has| |#2| (-784)) (|has| |#1| (-337))))) (-1549 (((-108) $ $) 256 (-4009 (|has| |#2| (-784)) (|has| |#1| (-337))))) (-1620 (($ $ |#1|) 58 (|has| |#1| (-337))) (($ $ $) 168 (|has| |#1| (-337))) (($ |#2| |#2|) 226 (|has| |#1| (-337)))) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-707)) 32) (($ $ (-521)) 167 (|has| |#1| (-337))) (($ $ $) 144 (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) 115 (|has| |#1| (-37 (-381 (-521)))))) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ |#2|) 205 (|has| |#1| (-337))) (($ |#2| $) 204 (|has| |#1| (-337))) (($ (-381 (-521)) $) 56 (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) 55 (|has| |#1| (-37 (-381 (-521)))))))
+(((-1127 |#1| |#2|) (-1196) (-970) (-1156 |t#1|)) (T -1127))
+((-1994 (*1 *2 *1) (-12 (-4 *1 (-1127 *3 *4)) (-4 *3 (-970)) (-4 *4 (-1156 *3)) (-5 *2 (-521)))) (-2189 (*1 *1 *2) (-12 (-4 *3 (-970)) (-4 *1 (-1127 *3 *2)) (-4 *2 (-1156 *3)))) (-3065 (*1 *1 *2 *3) (-12 (-5 *2 (-521)) (-4 *4 (-970)) (-4 *1 (-1127 *4 *3)) (-4 *3 (-1156 *4)))) (-3708 (*1 *2 *1) (-12 (-4 *1 (-1127 *3 *2)) (-4 *3 (-970)) (-4 *2 (-1156 *3)))) (-1198 (*1 *1 *1) (-12 (-4 *1 (-1127 *2 *3)) (-4 *2 (-970)) (-4 *3 (-1156 *2)))) (-1198 (*1 *1 *2 *1) (-12 (-5 *2 (-521)) (-4 *1 (-1127 *3 *4)) (-4 *3 (-970)) (-4 *4 (-1156 *3)))) (-3055 (*1 *2 *1) (-12 (-4 *1 (-1127 *3 *2)) (-4 *3 (-970)) (-4 *2 (-1156 *3)))) (-3121 (*1 *2 *1) (|partial| -12 (-4 *1 (-1127 *3 *2)) (-4 *3 (-970)) (-4 *2 (-1156 *3)))))
+(-13 (-1125 |t#1|) (-961 |t#2|) (-10 -8 (-15 -3065 ($ (-521) |t#2|)) (-15 -1994 ((-521) $)) (-15 -3708 (|t#2| $)) (-15 -1198 ($ $)) (-15 -1198 ($ (-521) $)) (-15 -2189 ($ |t#2|)) (-15 -3055 (|t#2| $)) (-15 -3121 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-337)) (-6 (-918 |t#2|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-521)) . T) ((-25) . T) ((-37 #1=(-381 (-521))) -3703 (|has| |#1| (-337)) (|has| |#1| (-37 (-381 (-521))))) ((-37 |#1|) |has| |#1| (-157)) ((-37 |#2|) |has| |#1| (-337)) ((-37 $) -3703 (|has| |#1| (-513)) (|has| |#1| (-337))) ((-34) |has| |#1| (-37 (-381 (-521)))) ((-91) |has| |#1| (-37 (-381 (-521)))) ((-97) . T) ((-107 #1# #1#) -3703 (|has| |#1| (-337)) (|has| |#1| (-37 (-381 (-521))))) ((-107 |#1| |#1|) . T) ((-107 |#2| |#2|) |has| |#1| (-337)) ((-107 $ $) -3703 (|has| |#1| (-513)) (|has| |#1| (-337)) (|has| |#1| (-157))) ((-124) . T) ((-133) -3703 (-12 (|has| |#1| (-337)) (|has| |#2| (-133))) (|has| |#1| (-133))) ((-135) -3703 (-12 (|has| |#1| (-337)) (|has| |#2| (-135))) (|has| |#1| (-135))) ((-561 (-792)) . T) ((-157) -3703 (|has| |#1| (-513)) (|has| |#1| (-337)) (|has| |#1| (-157))) ((-562 (-202)) -12 (|has| |#1| (-337)) (|has| |#2| (-946))) ((-562 (-353)) -12 (|has| |#1| (-337)) (|has| |#2| (-946))) ((-562 (-497)) -12 (|has| |#1| (-337)) (|has| |#2| (-562 (-497)))) ((-562 (-821 (-353))) -12 (|has| |#1| (-337)) (|has| |#2| (-562 (-821 (-353))))) ((-562 (-821 (-521))) -12 (|has| |#1| (-337)) (|has| |#2| (-562 (-821 (-521))))) ((-208 |#2|) |has| |#1| (-337)) ((-210) -3703 (-12 (|has| |#1| (-337)) (|has| |#2| (-210))) (|has| |#1| (-15 * (|#1| (-521) |#1|)))) ((-220) |has| |#1| (-337)) ((-259) |has| |#1| (-37 (-381 (-521)))) ((-261 |#2| $) -12 (|has| |#1| (-337)) (|has| |#2| (-261 |#2| |#2|))) ((-261 $ $) |has| (-521) (-1025)) ((-265) -3703 (|has| |#1| (-513)) (|has| |#1| (-337))) ((-282) |has| |#1| (-337)) ((-284 |#2|) -12 (|has| |#1| (-337)) (|has| |#2| (-284 |#2|))) ((-337) |has| |#1| (-337)) ((-312 |#2|) |has| |#1| (-337)) ((-351 |#2|) |has| |#1| (-337)) ((-374 |#2|) |has| |#1| (-337)) ((-425) |has| |#1| (-337)) ((-462) |has| |#1| (-37 (-381 (-521)))) ((-482 (-1084) |#2|) -12 (|has| |#1| (-337)) (|has| |#2| (-482 (-1084) |#2|))) ((-482 |#2| |#2|) -12 (|has| |#1| (-337)) (|has| |#2| (-284 |#2|))) ((-513) -3703 (|has| |#1| (-513)) (|has| |#1| (-337))) ((-589 #1#) -3703 (|has| |#1| (-337)) (|has| |#1| (-37 (-381 (-521))))) ((-589 |#1|) . T) ((-589 |#2|) |has| |#1| (-337)) ((-589 $) . T) ((-583 (-521)) -12 (|has| |#1| (-337)) (|has| |#2| (-583 (-521)))) ((-583 |#2|) |has| |#1| (-337)) ((-654 #1#) -3703 (|has| |#1| (-337)) (|has| |#1| (-37 (-381 (-521))))) ((-654 |#1|) |has| |#1| (-157)) ((-654 |#2|) |has| |#1| (-337)) ((-654 $) -3703 (|has| |#1| (-513)) (|has| |#1| (-337))) ((-663) . T) ((-727) -12 (|has| |#1| (-337)) (|has| |#2| (-757))) ((-728) -12 (|has| |#1| (-337)) (|has| |#2| (-757))) ((-730) -12 (|has| |#1| (-337)) (|has| |#2| (-757))) ((-732) -12 (|has| |#1| (-337)) (|has| |#2| (-757))) ((-757) -12 (|has| |#1| (-337)) (|has| |#2| (-757))) ((-782) -12 (|has| |#1| (-337)) (|has| |#2| (-757))) ((-784) -3703 (-12 (|has| |#1| (-337)) (|has| |#2| (-784))) (-12 (|has| |#1| (-337)) (|has| |#2| (-757)))) ((-829 (-1084)) -3703 (-12 (|has| |#1| (-337)) (|has| |#2| (-829 (-1084)))) (-12 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (|has| |#1| (-829 (-1084))))) ((-815 (-353)) -12 (|has| |#1| (-337)) (|has| |#2| (-815 (-353)))) ((-815 (-521)) -12 (|has| |#1| (-337)) (|has| |#2| (-815 (-521)))) ((-813 |#2|) |has| |#1| (-337)) ((-838) -12 (|has| |#1| (-337)) (|has| |#2| (-838))) ((-899 |#1| #0# (-998)) . T) ((-849) |has| |#1| (-337)) ((-918 |#2|) |has| |#1| (-337)) ((-927) |has| |#1| (-37 (-381 (-521)))) ((-946) -12 (|has| |#1| (-337)) (|has| |#2| (-946))) ((-961 (-381 (-521))) -12 (|has| |#1| (-337)) (|has| |#2| (-961 (-521)))) ((-961 (-521)) -12 (|has| |#1| (-337)) (|has| |#2| (-961 (-521)))) ((-961 (-1084)) -12 (|has| |#1| (-337)) (|has| |#2| (-961 (-1084)))) ((-961 |#2|) . T) ((-976 #1#) -3703 (|has| |#1| (-337)) (|has| |#1| (-37 (-381 (-521))))) ((-976 |#1|) . T) ((-976 |#2|) |has| |#1| (-337)) ((-976 $) -3703 (|has| |#1| (-513)) (|has| |#1| (-337)) (|has| |#1| (-157))) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T) ((-1060) -12 (|has| |#1| (-337)) (|has| |#2| (-1060))) ((-1105) |has| |#1| (-37 (-381 (-521)))) ((-1108) |has| |#1| (-37 (-381 (-521)))) ((-1119) |has| |#1| (-337)) ((-1123) |has| |#1| (-337)) ((-1125 |#1|) . T) ((-1143 |#1| #0#) . T))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) 70)) (-2086 ((|#2| $) NIL (-12 (|has| |#2| (-282)) (|has| |#1| (-337))))) (-4084 (((-587 (-998)) $) NIL)) (-1611 (((-1084) $) 88)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) NIL (|has| |#1| (-513)))) (-2559 (($ $) NIL (|has| |#1| (-513)))) (-1733 (((-108) $) NIL (|has| |#1| (-513)))) (-2977 (($ $ (-521)) 97) (($ $ (-521) (-521)) 99)) (-3423 (((-1065 (-2 (|:| |k| (-521)) (|:| |c| |#1|))) $) 47)) (-3708 ((|#2| $) 11)) (-3121 (((-3 |#2| "failed") $) 30)) (-3055 ((|#2| $) 31)) (-2904 (($ $) 192 (|has| |#1| (-37 (-381 (-521)))))) (-2769 (($ $) 168 (|has| |#1| (-37 (-381 (-521)))))) (-1232 (((-3 $ "failed") $ $) NIL)) (-2598 (((-392 (-1080 $)) (-1080 $)) NIL (-12 (|has| |#2| (-838)) (|has| |#1| (-337))))) (-3063 (($ $) NIL (|has| |#1| (-337)))) (-3358 (((-392 $) $) NIL (|has| |#1| (-337)))) (-1927 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2569 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) NIL (-12 (|has| |#2| (-838)) (|has| |#1| (-337))))) (-1389 (((-108) $ $) NIL (|has| |#1| (-337)))) (-2880 (($ $) 188 (|has| |#1| (-37 (-381 (-521)))))) (-2746 (($ $) 164 (|has| |#1| (-37 (-381 (-521)))))) (-1606 (((-521) $) NIL (-12 (|has| |#2| (-757)) (|has| |#1| (-337))))) (-2770 (($ (-1065 (-2 (|:| |k| (-521)) (|:| |c| |#1|)))) 57)) (-2926 (($ $) 196 (|has| |#1| (-37 (-381 (-521)))))) (-2790 (($ $) 172 (|has| |#1| (-37 (-381 (-521)))))) (-2547 (($) NIL T CONST)) (-1297 (((-3 |#2| "failed") $) 144) (((-3 (-521) "failed") $) NIL (-12 (|has| |#2| (-961 (-521))) (|has| |#1| (-337)))) (((-3 (-381 (-521)) "failed") $) NIL (-12 (|has| |#2| (-961 (-521))) (|has| |#1| (-337)))) (((-3 (-1084) "failed") $) NIL (-12 (|has| |#2| (-961 (-1084))) (|has| |#1| (-337))))) (-1483 ((|#2| $) 143) (((-521) $) NIL (-12 (|has| |#2| (-961 (-521))) (|has| |#1| (-337)))) (((-381 (-521)) $) NIL (-12 (|has| |#2| (-961 (-521))) (|has| |#1| (-337)))) (((-1084) $) NIL (-12 (|has| |#2| (-961 (-1084))) (|has| |#1| (-337))))) (-1198 (($ $) 61) (($ (-521) $) 24)) (-2277 (($ $ $) NIL (|has| |#1| (-337)))) (-3152 (($ $) NIL)) (-3279 (((-627 |#2|) (-627 $)) NIL (|has| |#1| (-337))) (((-2 (|:| -1201 (-627 |#2|)) (|:| |vec| (-1165 |#2|))) (-627 $) (-1165 $)) NIL (|has| |#1| (-337))) (((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (-12 (|has| |#2| (-583 (-521))) (|has| |#1| (-337)))) (((-627 (-521)) (-627 $)) NIL (-12 (|has| |#2| (-583 (-521))) (|has| |#1| (-337))))) (-1257 (((-3 $ "failed") $) 77)) (-2914 (((-381 (-881 |#1|)) $ (-521)) 112 (|has| |#1| (-513))) (((-381 (-881 |#1|)) $ (-521) (-521)) 114 (|has| |#1| (-513)))) (-3250 (($) NIL (-12 (|has| |#2| (-506)) (|has| |#1| (-337))))) (-2253 (($ $ $) NIL (|has| |#1| (-337)))) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) NIL (|has| |#1| (-337)))) (-2710 (((-108) $) NIL (|has| |#1| (-337)))) (-3951 (((-108) $) NIL (-12 (|has| |#2| (-757)) (|has| |#1| (-337))))) (-1325 (((-108) $) 64)) (-2834 (($) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3427 (((-818 (-353) $) $ (-821 (-353)) (-818 (-353) $)) NIL (-12 (|has| |#2| (-815 (-353))) (|has| |#1| (-337)))) (((-818 (-521) $) $ (-821 (-521)) (-818 (-521) $)) NIL (-12 (|has| |#2| (-815 (-521))) (|has| |#1| (-337))))) (-2733 (((-521) $) 93) (((-521) $ (-521)) 95)) (-3996 (((-108) $) NIL)) (-3257 (($ $) NIL (|has| |#1| (-337)))) (-2801 ((|#2| $) 151 (|has| |#1| (-337)))) (-3407 (($ $ (-521)) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3842 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1060)) (|has| |#1| (-337))))) (-2210 (((-108) $) NIL (-12 (|has| |#2| (-757)) (|has| |#1| (-337))))) (-1993 (($ $ (-850)) 136)) (-3131 (($ (-1 |#1| (-521)) $) 132)) (-1546 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| |#1| (-337)))) (-3649 (((-108) $) NIL)) (-4043 (($ |#1| (-521)) 19) (($ $ (-998) (-521)) NIL) (($ $ (-587 (-998)) (-587 (-521))) NIL)) (-2810 (($ $ $) NIL (-12 (|has| |#2| (-784)) (|has| |#1| (-337))))) (-2446 (($ $ $) NIL (-12 (|has| |#2| (-784)) (|has| |#1| (-337))))) (-1390 (($ (-1 |#1| |#1|) $) 129) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-337)))) (-1253 (($ $) 162 (|has| |#1| (-37 (-381 (-521)))))) (-3125 (($ $) NIL)) (-3135 ((|#1| $) NIL)) (-2223 (($ (-587 $)) NIL (|has| |#1| (-337))) (($ $ $) NIL (|has| |#1| (-337)))) (-3065 (($ (-521) |#2|) 10)) (-3688 (((-1067) $) NIL)) (-3095 (($ $) 145 (|has| |#1| (-337)))) (-2184 (($ $) 214 (|has| |#1| (-37 (-381 (-521))))) (($ $ (-1084)) 219 (-3703 (-12 (|has| |#1| (-15 -2184 (|#1| |#1| (-1084)))) (|has| |#1| (-15 -4084 ((-587 (-1084)) |#1|))) (|has| |#1| (-37 (-381 (-521))))) (-12 (|has| |#1| (-29 (-521))) (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-887)) (|has| |#1| (-1105)))))) (-3797 (($) NIL (-12 (|has| |#2| (-1060)) (|has| |#1| (-337))) CONST)) (-4147 (((-1031) $) NIL)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) NIL (|has| |#1| (-337)))) (-2258 (($ (-587 $)) NIL (|has| |#1| (-337))) (($ $ $) NIL (|has| |#1| (-337)))) (-2850 (($ $) NIL (-12 (|has| |#2| (-282)) (|has| |#1| (-337))))) (-2567 ((|#2| $) NIL (-12 (|has| |#2| (-506)) (|has| |#1| (-337))))) (-1912 (((-392 (-1080 $)) (-1080 $)) NIL (-12 (|has| |#2| (-838)) (|has| |#1| (-337))))) (-2165 (((-392 (-1080 $)) (-1080 $)) NIL (-12 (|has| |#2| (-838)) (|has| |#1| (-337))))) (-1916 (((-392 $) $) NIL (|has| |#1| (-337)))) (-1962 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-337))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL (|has| |#1| (-337)))) (-2447 (($ $ (-521)) 126)) (-2230 (((-3 $ "failed") $ $) 116 (|has| |#1| (-513)))) (-3854 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| |#1| (-337)))) (-3261 (($ $) 160 (|has| |#1| (-37 (-381 (-521)))))) (-2288 (((-1065 |#1|) $ |#1|) 85 (|has| |#1| (-15 ** (|#1| |#1| (-521))))) (($ $ (-1084) |#2|) NIL (-12 (|has| |#2| (-482 (-1084) |#2|)) (|has| |#1| (-337)))) (($ $ (-587 (-1084)) (-587 |#2|)) NIL (-12 (|has| |#2| (-482 (-1084) |#2|)) (|has| |#1| (-337)))) (($ $ (-587 (-269 |#2|))) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#1| (-337)))) (($ $ (-269 |#2|)) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#1| (-337)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#1| (-337)))) (($ $ (-587 |#2|) (-587 |#2|)) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#1| (-337))))) (-4196 (((-707) $) NIL (|has| |#1| (-337)))) (-2544 ((|#1| $ (-521)) 91) (($ $ $) 79 (|has| (-521) (-1025))) (($ $ |#2|) NIL (-12 (|has| |#2| (-261 |#2| |#2|)) (|has| |#1| (-337))))) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) NIL (|has| |#1| (-337)))) (-2156 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-337))) (($ $ (-1 |#2| |#2|) (-707)) NIL (|has| |#1| (-337))) (($ $ (-707)) NIL (-3703 (-12 (|has| |#2| (-210)) (|has| |#1| (-337))) (|has| |#1| (-15 * (|#1| (-521) |#1|))))) (($ $) 137 (-3703 (-12 (|has| |#2| (-210)) (|has| |#1| (-337))) (|has| |#1| (-15 * (|#1| (-521) |#1|))))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (-3703 (-12 (|has| |#2| (-829 (-1084))) (|has| |#1| (-337))) (-12 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (|has| |#1| (-829 (-1084)))))) (($ $ (-1084) (-707)) NIL (-3703 (-12 (|has| |#2| (-829 (-1084))) (|has| |#1| (-337))) (-12 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (|has| |#1| (-829 (-1084)))))) (($ $ (-587 (-1084))) NIL (-3703 (-12 (|has| |#2| (-829 (-1084))) (|has| |#1| (-337))) (-12 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (|has| |#1| (-829 (-1084)))))) (($ $ (-1084)) 140 (-3703 (-12 (|has| |#2| (-829 (-1084))) (|has| |#1| (-337))) (-12 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (|has| |#1| (-829 (-1084))))))) (-4142 (($ $) NIL (|has| |#1| (-337)))) (-2812 ((|#2| $) 152 (|has| |#1| (-337)))) (-1994 (((-521) $) 12)) (-1738 (($ $) 198 (|has| |#1| (-37 (-381 (-521)))))) (-2800 (($ $) 174 (|has| |#1| (-37 (-381 (-521)))))) (-2915 (($ $) 194 (|has| |#1| (-37 (-381 (-521)))))) (-2780 (($ $) 170 (|has| |#1| (-37 (-381 (-521)))))) (-2892 (($ $) 190 (|has| |#1| (-37 (-381 (-521)))))) (-2758 (($ $) 166 (|has| |#1| (-37 (-381 (-521)))))) (-1430 (((-202) $) NIL (-12 (|has| |#2| (-946)) (|has| |#1| (-337)))) (((-353) $) NIL (-12 (|has| |#2| (-946)) (|has| |#1| (-337)))) (((-497) $) NIL (-12 (|has| |#2| (-562 (-497))) (|has| |#1| (-337)))) (((-821 (-353)) $) NIL (-12 (|has| |#2| (-562 (-821 (-353)))) (|has| |#1| (-337)))) (((-821 (-521)) $) NIL (-12 (|has| |#2| (-562 (-821 (-521)))) (|has| |#1| (-337))))) (-2944 (((-3 (-1165 $) "failed") (-627 $)) NIL (-12 (|has| $ (-133)) (|has| |#2| (-838)) (|has| |#1| (-337))))) (-3448 (($ $) 124)) (-2189 (((-792) $) 243) (($ (-521)) 23) (($ |#1|) 21 (|has| |#1| (-157))) (($ |#2|) 20) (($ (-1084)) NIL (-12 (|has| |#2| (-961 (-1084))) (|has| |#1| (-337)))) (($ (-381 (-521))) 155 (|has| |#1| (-37 (-381 (-521))))) (($ $) NIL (|has| |#1| (-513)))) (-3800 ((|#1| $ (-521)) 74)) (-1671 (((-3 $ "failed") $) NIL (-3703 (-12 (|has| $ (-133)) (|has| |#2| (-838)) (|has| |#1| (-337))) (-12 (|has| |#2| (-133)) (|has| |#1| (-337))) (|has| |#1| (-133))))) (-3846 (((-707)) 142)) (-1893 ((|#1| $) 90)) (-2382 ((|#2| $) NIL (-12 (|has| |#2| (-506)) (|has| |#1| (-337))))) (-1759 (($ $) 204 (|has| |#1| (-37 (-381 (-521)))))) (-2832 (($ $) 180 (|has| |#1| (-37 (-381 (-521)))))) (-4210 (((-108) $ $) NIL (|has| |#1| (-513)))) (-1745 (($ $) 200 (|has| |#1| (-37 (-381 (-521)))))) (-2811 (($ $) 176 (|has| |#1| (-37 (-381 (-521)))))) (-1776 (($ $) 208 (|has| |#1| (-37 (-381 (-521)))))) (-2856 (($ $) 184 (|has| |#1| (-37 (-381 (-521)))))) (-3894 ((|#1| $ (-521)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-521)))) (|has| |#1| (-15 -2189 (|#1| (-1084))))))) (-3919 (($ $) 210 (|has| |#1| (-37 (-381 (-521)))))) (-2868 (($ $) 186 (|has| |#1| (-37 (-381 (-521)))))) (-1768 (($ $) 206 (|has| |#1| (-37 (-381 (-521)))))) (-2844 (($ $) 182 (|has| |#1| (-37 (-381 (-521)))))) (-1752 (($ $) 202 (|has| |#1| (-37 (-381 (-521)))))) (-2821 (($ $) 178 (|has| |#1| (-37 (-381 (-521)))))) (-3304 (($ $) NIL (-12 (|has| |#2| (-757)) (|has| |#1| (-337))))) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL (|has| |#1| (-337)))) (-3561 (($) 13 T CONST)) (-3572 (($) 17 T CONST)) (-2212 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-337))) (($ $ (-1 |#2| |#2|) (-707)) NIL (|has| |#1| (-337))) (($ $ (-707)) NIL (-3703 (-12 (|has| |#2| (-210)) (|has| |#1| (-337))) (|has| |#1| (-15 * (|#1| (-521) |#1|))))) (($ $) NIL (-3703 (-12 (|has| |#2| (-210)) (|has| |#1| (-337))) (|has| |#1| (-15 * (|#1| (-521) |#1|))))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (-3703 (-12 (|has| |#2| (-829 (-1084))) (|has| |#1| (-337))) (-12 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (|has| |#1| (-829 (-1084)))))) (($ $ (-1084) (-707)) NIL (-3703 (-12 (|has| |#2| (-829 (-1084))) (|has| |#1| (-337))) (-12 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (|has| |#1| (-829 (-1084)))))) (($ $ (-587 (-1084))) NIL (-3703 (-12 (|has| |#2| (-829 (-1084))) (|has| |#1| (-337))) (-12 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (|has| |#1| (-829 (-1084)))))) (($ $ (-1084)) NIL (-3703 (-12 (|has| |#2| (-829 (-1084))) (|has| |#1| (-337))) (-12 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (|has| |#1| (-829 (-1084))))))) (-1574 (((-108) $ $) NIL (-12 (|has| |#2| (-784)) (|has| |#1| (-337))))) (-1558 (((-108) $ $) NIL (-12 (|has| |#2| (-784)) (|has| |#1| (-337))))) (-1531 (((-108) $ $) 63)) (-1566 (((-108) $ $) NIL (-12 (|has| |#2| (-784)) (|has| |#1| (-337))))) (-1549 (((-108) $ $) NIL (-12 (|has| |#2| (-784)) (|has| |#1| (-337))))) (-1620 (($ $ |#1|) NIL (|has| |#1| (-337))) (($ $ $) 149 (|has| |#1| (-337))) (($ |#2| |#2|) 150 (|has| |#1| (-337)))) (-1612 (($ $) 213) (($ $ $) 68)) (-1602 (($ $ $) 66)) (** (($ $ (-850)) NIL) (($ $ (-707)) 73) (($ $ (-521)) 146 (|has| |#1| (-337))) (($ $ $) NIL (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) 158 (|has| |#1| (-37 (-381 (-521)))))) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 139) (($ $ |#2|) 148 (|has| |#1| (-337))) (($ |#2| $) 147 (|has| |#1| (-337))) (($ (-381 (-521)) $) NIL (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) NIL (|has| |#1| (-37 (-381 (-521)))))))
+(((-1128 |#1| |#2|) (-1127 |#1| |#2|) (-970) (-1156 |#1|)) (T -1128))
+NIL
+(-1127 |#1| |#2|)
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-2086 (((-1157 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1157 |#1| |#2| |#3|) (-282)) (|has| |#1| (-337))))) (-4084 (((-587 (-998)) $) NIL)) (-1611 (((-1084) $) 10)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) NIL (-3703 (-12 (|has| (-1157 |#1| |#2| |#3|) (-757)) (|has| |#1| (-337))) (-12 (|has| (-1157 |#1| |#2| |#3|) (-838)) (|has| |#1| (-337))) (|has| |#1| (-513))))) (-2559 (($ $) NIL (-3703 (-12 (|has| (-1157 |#1| |#2| |#3|) (-757)) (|has| |#1| (-337))) (-12 (|has| (-1157 |#1| |#2| |#3|) (-838)) (|has| |#1| (-337))) (|has| |#1| (-513))))) (-1733 (((-108) $) NIL (-3703 (-12 (|has| (-1157 |#1| |#2| |#3|) (-757)) (|has| |#1| (-337))) (-12 (|has| (-1157 |#1| |#2| |#3|) (-838)) (|has| |#1| (-337))) (|has| |#1| (-513))))) (-2977 (($ $ (-521)) NIL) (($ $ (-521) (-521)) NIL)) (-3423 (((-1065 (-2 (|:| |k| (-521)) (|:| |c| |#1|))) $) NIL)) (-3708 (((-1157 |#1| |#2| |#3|) $) NIL)) (-3121 (((-3 (-1157 |#1| |#2| |#3|) "failed") $) NIL)) (-3055 (((-1157 |#1| |#2| |#3|) $) NIL)) (-2904 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2769 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-1232 (((-3 $ "failed") $ $) NIL)) (-2598 (((-392 (-1080 $)) (-1080 $)) NIL (-12 (|has| (-1157 |#1| |#2| |#3|) (-838)) (|has| |#1| (-337))))) (-3063 (($ $) NIL (|has| |#1| (-337)))) (-3358 (((-392 $) $) NIL (|has| |#1| (-337)))) (-1927 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2569 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) NIL (-12 (|has| (-1157 |#1| |#2| |#3|) (-838)) (|has| |#1| (-337))))) (-1389 (((-108) $ $) NIL (|has| |#1| (-337)))) (-2880 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2746 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-1606 (((-521) $) NIL (-12 (|has| (-1157 |#1| |#2| |#3|) (-757)) (|has| |#1| (-337))))) (-2770 (($ (-1065 (-2 (|:| |k| (-521)) (|:| |c| |#1|)))) NIL)) (-2926 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2790 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2547 (($) NIL T CONST)) (-1297 (((-3 (-1157 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1084) "failed") $) NIL (-12 (|has| (-1157 |#1| |#2| |#3|) (-961 (-1084))) (|has| |#1| (-337)))) (((-3 (-381 (-521)) "failed") $) NIL (-12 (|has| (-1157 |#1| |#2| |#3|) (-961 (-521))) (|has| |#1| (-337)))) (((-3 (-521) "failed") $) NIL (-12 (|has| (-1157 |#1| |#2| |#3|) (-961 (-521))) (|has| |#1| (-337))))) (-1483 (((-1157 |#1| |#2| |#3|) $) NIL) (((-1084) $) NIL (-12 (|has| (-1157 |#1| |#2| |#3|) (-961 (-1084))) (|has| |#1| (-337)))) (((-381 (-521)) $) NIL (-12 (|has| (-1157 |#1| |#2| |#3|) (-961 (-521))) (|has| |#1| (-337)))) (((-521) $) NIL (-12 (|has| (-1157 |#1| |#2| |#3|) (-961 (-521))) (|has| |#1| (-337))))) (-1198 (($ $) NIL) (($ (-521) $) NIL)) (-2277 (($ $ $) NIL (|has| |#1| (-337)))) (-3152 (($ $) NIL)) (-3279 (((-627 (-1157 |#1| |#2| |#3|)) (-627 $)) NIL (|has| |#1| (-337))) (((-2 (|:| -1201 (-627 (-1157 |#1| |#2| |#3|))) (|:| |vec| (-1165 (-1157 |#1| |#2| |#3|)))) (-627 $) (-1165 $)) NIL (|has| |#1| (-337))) (((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (-12 (|has| (-1157 |#1| |#2| |#3|) (-583 (-521))) (|has| |#1| (-337)))) (((-627 (-521)) (-627 $)) NIL (-12 (|has| (-1157 |#1| |#2| |#3|) (-583 (-521))) (|has| |#1| (-337))))) (-1257 (((-3 $ "failed") $) NIL)) (-2914 (((-381 (-881 |#1|)) $ (-521)) NIL (|has| |#1| (-513))) (((-381 (-881 |#1|)) $ (-521) (-521)) NIL (|has| |#1| (-513)))) (-3250 (($) NIL (-12 (|has| (-1157 |#1| |#2| |#3|) (-506)) (|has| |#1| (-337))))) (-2253 (($ $ $) NIL (|has| |#1| (-337)))) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) NIL (|has| |#1| (-337)))) (-2710 (((-108) $) NIL (|has| |#1| (-337)))) (-3951 (((-108) $) NIL (-12 (|has| (-1157 |#1| |#2| |#3|) (-757)) (|has| |#1| (-337))))) (-1325 (((-108) $) NIL)) (-2834 (($) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3427 (((-818 (-521) $) $ (-821 (-521)) (-818 (-521) $)) NIL (-12 (|has| (-1157 |#1| |#2| |#3|) (-815 (-521))) (|has| |#1| (-337)))) (((-818 (-353) $) $ (-821 (-353)) (-818 (-353) $)) NIL (-12 (|has| (-1157 |#1| |#2| |#3|) (-815 (-353))) (|has| |#1| (-337))))) (-2733 (((-521) $) NIL) (((-521) $ (-521)) NIL)) (-3996 (((-108) $) NIL)) (-3257 (($ $) NIL (|has| |#1| (-337)))) (-2801 (((-1157 |#1| |#2| |#3|) $) NIL (|has| |#1| (-337)))) (-3407 (($ $ (-521)) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3842 (((-3 $ "failed") $) NIL (-12 (|has| (-1157 |#1| |#2| |#3|) (-1060)) (|has| |#1| (-337))))) (-2210 (((-108) $) NIL (-12 (|has| (-1157 |#1| |#2| |#3|) (-757)) (|has| |#1| (-337))))) (-1993 (($ $ (-850)) NIL)) (-3131 (($ (-1 |#1| (-521)) $) NIL)) (-1546 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| |#1| (-337)))) (-3649 (((-108) $) NIL)) (-4043 (($ |#1| (-521)) 17) (($ $ (-998) (-521)) NIL) (($ $ (-587 (-998)) (-587 (-521))) NIL)) (-2810 (($ $ $) NIL (-3703 (-12 (|has| (-1157 |#1| |#2| |#3|) (-757)) (|has| |#1| (-337))) (-12 (|has| (-1157 |#1| |#2| |#3|) (-784)) (|has| |#1| (-337)))))) (-2446 (($ $ $) NIL (-3703 (-12 (|has| (-1157 |#1| |#2| |#3|) (-757)) (|has| |#1| (-337))) (-12 (|has| (-1157 |#1| |#2| |#3|) (-784)) (|has| |#1| (-337)))))) (-1390 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1157 |#1| |#2| |#3|) (-1157 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-337)))) (-1253 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3125 (($ $) NIL)) (-3135 ((|#1| $) NIL)) (-2223 (($ (-587 $)) NIL (|has| |#1| (-337))) (($ $ $) NIL (|has| |#1| (-337)))) (-3065 (($ (-521) (-1157 |#1| |#2| |#3|)) NIL)) (-3688 (((-1067) $) NIL)) (-3095 (($ $) NIL (|has| |#1| (-337)))) (-2184 (($ $) 25 (|has| |#1| (-37 (-381 (-521))))) (($ $ (-1084)) NIL (-3703 (-12 (|has| |#1| (-15 -2184 (|#1| |#1| (-1084)))) (|has| |#1| (-15 -4084 ((-587 (-1084)) |#1|))) (|has| |#1| (-37 (-381 (-521))))) (-12 (|has| |#1| (-29 (-521))) (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-887)) (|has| |#1| (-1105))))) (($ $ (-1161 |#2|)) 26 (|has| |#1| (-37 (-381 (-521)))))) (-3797 (($) NIL (-12 (|has| (-1157 |#1| |#2| |#3|) (-1060)) (|has| |#1| (-337))) CONST)) (-4147 (((-1031) $) NIL)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) NIL (|has| |#1| (-337)))) (-2258 (($ (-587 $)) NIL (|has| |#1| (-337))) (($ $ $) NIL (|has| |#1| (-337)))) (-2850 (($ $) NIL (-12 (|has| (-1157 |#1| |#2| |#3|) (-282)) (|has| |#1| (-337))))) (-2567 (((-1157 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1157 |#1| |#2| |#3|) (-506)) (|has| |#1| (-337))))) (-1912 (((-392 (-1080 $)) (-1080 $)) NIL (-12 (|has| (-1157 |#1| |#2| |#3|) (-838)) (|has| |#1| (-337))))) (-2165 (((-392 (-1080 $)) (-1080 $)) NIL (-12 (|has| (-1157 |#1| |#2| |#3|) (-838)) (|has| |#1| (-337))))) (-1916 (((-392 $) $) NIL (|has| |#1| (-337)))) (-1962 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-337))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL (|has| |#1| (-337)))) (-2447 (($ $ (-521)) NIL)) (-2230 (((-3 $ "failed") $ $) NIL (-3703 (-12 (|has| (-1157 |#1| |#2| |#3|) (-757)) (|has| |#1| (-337))) (-12 (|has| (-1157 |#1| |#2| |#3|) (-838)) (|has| |#1| (-337))) (|has| |#1| (-513))))) (-3854 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| |#1| (-337)))) (-3261 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2288 (((-1065 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-521))))) (($ $ (-1084) (-1157 |#1| |#2| |#3|)) NIL (-12 (|has| (-1157 |#1| |#2| |#3|) (-482 (-1084) (-1157 |#1| |#2| |#3|))) (|has| |#1| (-337)))) (($ $ (-587 (-1084)) (-587 (-1157 |#1| |#2| |#3|))) NIL (-12 (|has| (-1157 |#1| |#2| |#3|) (-482 (-1084) (-1157 |#1| |#2| |#3|))) (|has| |#1| (-337)))) (($ $ (-587 (-269 (-1157 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1157 |#1| |#2| |#3|) (-284 (-1157 |#1| |#2| |#3|))) (|has| |#1| (-337)))) (($ $ (-269 (-1157 |#1| |#2| |#3|))) NIL (-12 (|has| (-1157 |#1| |#2| |#3|) (-284 (-1157 |#1| |#2| |#3|))) (|has| |#1| (-337)))) (($ $ (-1157 |#1| |#2| |#3|) (-1157 |#1| |#2| |#3|)) NIL (-12 (|has| (-1157 |#1| |#2| |#3|) (-284 (-1157 |#1| |#2| |#3|))) (|has| |#1| (-337)))) (($ $ (-587 (-1157 |#1| |#2| |#3|)) (-587 (-1157 |#1| |#2| |#3|))) NIL (-12 (|has| (-1157 |#1| |#2| |#3|) (-284 (-1157 |#1| |#2| |#3|))) (|has| |#1| (-337))))) (-4196 (((-707) $) NIL (|has| |#1| (-337)))) (-2544 ((|#1| $ (-521)) NIL) (($ $ $) NIL (|has| (-521) (-1025))) (($ $ (-1157 |#1| |#2| |#3|)) NIL (-12 (|has| (-1157 |#1| |#2| |#3|) (-261 (-1157 |#1| |#2| |#3|) (-1157 |#1| |#2| |#3|))) (|has| |#1| (-337))))) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) NIL (|has| |#1| (-337)))) (-2156 (($ $ (-1 (-1157 |#1| |#2| |#3|) (-1157 |#1| |#2| |#3|))) NIL (|has| |#1| (-337))) (($ $ (-1 (-1157 |#1| |#2| |#3|) (-1157 |#1| |#2| |#3|)) (-707)) NIL (|has| |#1| (-337))) (($ $ (-1161 |#2|)) 24) (($ $ (-707)) NIL (-3703 (-12 (|has| (-1157 |#1| |#2| |#3|) (-210)) (|has| |#1| (-337))) (|has| |#1| (-15 * (|#1| (-521) |#1|))))) (($ $) 23 (-3703 (-12 (|has| (-1157 |#1| |#2| |#3|) (-210)) (|has| |#1| (-337))) (|has| |#1| (-15 * (|#1| (-521) |#1|))))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (-3703 (-12 (|has| (-1157 |#1| |#2| |#3|) (-829 (-1084))) (|has| |#1| (-337))) (-12 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (|has| |#1| (-829 (-1084)))))) (($ $ (-1084) (-707)) NIL (-3703 (-12 (|has| (-1157 |#1| |#2| |#3|) (-829 (-1084))) (|has| |#1| (-337))) (-12 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (|has| |#1| (-829 (-1084)))))) (($ $ (-587 (-1084))) NIL (-3703 (-12 (|has| (-1157 |#1| |#2| |#3|) (-829 (-1084))) (|has| |#1| (-337))) (-12 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (|has| |#1| (-829 (-1084)))))) (($ $ (-1084)) NIL (-3703 (-12 (|has| (-1157 |#1| |#2| |#3|) (-829 (-1084))) (|has| |#1| (-337))) (-12 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (|has| |#1| (-829 (-1084))))))) (-4142 (($ $) NIL (|has| |#1| (-337)))) (-2812 (((-1157 |#1| |#2| |#3|) $) NIL (|has| |#1| (-337)))) (-1994 (((-521) $) NIL)) (-1738 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2800 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2915 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2780 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2892 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2758 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-1430 (((-497) $) NIL (-12 (|has| (-1157 |#1| |#2| |#3|) (-562 (-497))) (|has| |#1| (-337)))) (((-353) $) NIL (-12 (|has| (-1157 |#1| |#2| |#3|) (-946)) (|has| |#1| (-337)))) (((-202) $) NIL (-12 (|has| (-1157 |#1| |#2| |#3|) (-946)) (|has| |#1| (-337)))) (((-821 (-353)) $) NIL (-12 (|has| (-1157 |#1| |#2| |#3|) (-562 (-821 (-353)))) (|has| |#1| (-337)))) (((-821 (-521)) $) NIL (-12 (|has| (-1157 |#1| |#2| |#3|) (-562 (-821 (-521)))) (|has| |#1| (-337))))) (-2944 (((-3 (-1165 $) "failed") (-627 $)) NIL (-12 (|has| $ (-133)) (|has| (-1157 |#1| |#2| |#3|) (-838)) (|has| |#1| (-337))))) (-3448 (($ $) NIL)) (-2189 (((-792) $) NIL) (($ (-521)) NIL) (($ |#1|) NIL (|has| |#1| (-157))) (($ (-1157 |#1| |#2| |#3|)) NIL) (($ (-1161 |#2|)) 22) (($ (-1084)) NIL (-12 (|has| (-1157 |#1| |#2| |#3|) (-961 (-1084))) (|has| |#1| (-337)))) (($ $) NIL (-3703 (-12 (|has| (-1157 |#1| |#2| |#3|) (-757)) (|has| |#1| (-337))) (-12 (|has| (-1157 |#1| |#2| |#3|) (-838)) (|has| |#1| (-337))) (|has| |#1| (-513)))) (($ (-381 (-521))) NIL (-3703 (-12 (|has| (-1157 |#1| |#2| |#3|) (-961 (-521))) (|has| |#1| (-337))) (|has| |#1| (-37 (-381 (-521))))))) (-3800 ((|#1| $ (-521)) NIL)) (-1671 (((-3 $ "failed") $) NIL (-3703 (-12 (|has| $ (-133)) (|has| (-1157 |#1| |#2| |#3|) (-838)) (|has| |#1| (-337))) (-12 (|has| (-1157 |#1| |#2| |#3|) (-133)) (|has| |#1| (-337))) (|has| |#1| (-133))))) (-3846 (((-707)) NIL)) (-1893 ((|#1| $) 11)) (-2382 (((-1157 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1157 |#1| |#2| |#3|) (-506)) (|has| |#1| (-337))))) (-1759 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2832 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-4210 (((-108) $ $) NIL (-3703 (-12 (|has| (-1157 |#1| |#2| |#3|) (-757)) (|has| |#1| (-337))) (-12 (|has| (-1157 |#1| |#2| |#3|) (-838)) (|has| |#1| (-337))) (|has| |#1| (-513))))) (-1745 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2811 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-1776 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2856 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3894 ((|#1| $ (-521)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-521)))) (|has| |#1| (-15 -2189 (|#1| (-1084))))))) (-3919 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2868 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-1768 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2844 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-1752 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2821 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3304 (($ $) NIL (-12 (|has| (-1157 |#1| |#2| |#3|) (-757)) (|has| |#1| (-337))))) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL (|has| |#1| (-337)))) (-3561 (($) 19 T CONST)) (-3572 (($) 15 T CONST)) (-2212 (($ $ (-1 (-1157 |#1| |#2| |#3|) (-1157 |#1| |#2| |#3|))) NIL (|has| |#1| (-337))) (($ $ (-1 (-1157 |#1| |#2| |#3|) (-1157 |#1| |#2| |#3|)) (-707)) NIL (|has| |#1| (-337))) (($ $ (-707)) NIL (-3703 (-12 (|has| (-1157 |#1| |#2| |#3|) (-210)) (|has| |#1| (-337))) (|has| |#1| (-15 * (|#1| (-521) |#1|))))) (($ $) NIL (-3703 (-12 (|has| (-1157 |#1| |#2| |#3|) (-210)) (|has| |#1| (-337))) (|has| |#1| (-15 * (|#1| (-521) |#1|))))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (-3703 (-12 (|has| (-1157 |#1| |#2| |#3|) (-829 (-1084))) (|has| |#1| (-337))) (-12 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (|has| |#1| (-829 (-1084)))))) (($ $ (-1084) (-707)) NIL (-3703 (-12 (|has| (-1157 |#1| |#2| |#3|) (-829 (-1084))) (|has| |#1| (-337))) (-12 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (|has| |#1| (-829 (-1084)))))) (($ $ (-587 (-1084))) NIL (-3703 (-12 (|has| (-1157 |#1| |#2| |#3|) (-829 (-1084))) (|has| |#1| (-337))) (-12 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (|has| |#1| (-829 (-1084)))))) (($ $ (-1084)) NIL (-3703 (-12 (|has| (-1157 |#1| |#2| |#3|) (-829 (-1084))) (|has| |#1| (-337))) (-12 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (|has| |#1| (-829 (-1084))))))) (-1574 (((-108) $ $) NIL (-3703 (-12 (|has| (-1157 |#1| |#2| |#3|) (-757)) (|has| |#1| (-337))) (-12 (|has| (-1157 |#1| |#2| |#3|) (-784)) (|has| |#1| (-337)))))) (-1558 (((-108) $ $) NIL (-3703 (-12 (|has| (-1157 |#1| |#2| |#3|) (-757)) (|has| |#1| (-337))) (-12 (|has| (-1157 |#1| |#2| |#3|) (-784)) (|has| |#1| (-337)))))) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL (-3703 (-12 (|has| (-1157 |#1| |#2| |#3|) (-757)) (|has| |#1| (-337))) (-12 (|has| (-1157 |#1| |#2| |#3|) (-784)) (|has| |#1| (-337)))))) (-1549 (((-108) $ $) NIL (-3703 (-12 (|has| (-1157 |#1| |#2| |#3|) (-757)) (|has| |#1| (-337))) (-12 (|has| (-1157 |#1| |#2| |#3|) (-784)) (|has| |#1| (-337)))))) (-1620 (($ $ |#1|) NIL (|has| |#1| (-337))) (($ $ $) NIL (|has| |#1| (-337))) (($ (-1157 |#1| |#2| |#3|) (-1157 |#1| |#2| |#3|)) NIL (|has| |#1| (-337)))) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) 20)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL (|has| |#1| (-337))) (($ $ $) NIL (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) NIL (|has| |#1| (-37 (-381 (-521)))))) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1157 |#1| |#2| |#3|)) NIL (|has| |#1| (-337))) (($ (-1157 |#1| |#2| |#3|) $) NIL (|has| |#1| (-337))) (($ (-381 (-521)) $) NIL (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) NIL (|has| |#1| (-37 (-381 (-521)))))))
+(((-1129 |#1| |#2| |#3|) (-13 (-1127 |#1| (-1157 |#1| |#2| |#3|)) (-10 -8 (-15 -2189 ($ (-1161 |#2|))) (-15 -2156 ($ $ (-1161 |#2|))) (IF (|has| |#1| (-37 (-381 (-521)))) (-15 -2184 ($ $ (-1161 |#2|))) |%noBranch|))) (-970) (-1084) |#1|) (T -1129))
+((-2189 (*1 *1 *2) (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-1129 *3 *4 *5)) (-4 *3 (-970)) (-14 *5 *3))) (-2156 (*1 *1 *1 *2) (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-1129 *3 *4 *5)) (-4 *3 (-970)) (-14 *5 *3))) (-2184 (*1 *1 *1 *2) (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-1129 *3 *4 *5)) (-4 *3 (-37 (-381 (-521)))) (-4 *3 (-970)) (-14 *5 *3))))
+(-13 (-1127 |#1| (-1157 |#1| |#2| |#3|)) (-10 -8 (-15 -2189 ($ (-1161 |#2|))) (-15 -2156 ($ $ (-1161 |#2|))) (IF (|has| |#1| (-37 (-381 (-521)))) (-15 -2184 ($ $ (-1161 |#2|))) |%noBranch|)))
+((-2708 (((-2 (|:| |contp| (-521)) (|:| -1514 (-587 (-2 (|:| |irr| |#1|) (|:| -2132 (-521)))))) |#1| (-108)) 10)) (-3168 (((-392 |#1|) |#1|) 21)) (-1916 (((-392 |#1|) |#1|) 20)))
+(((-1130 |#1|) (-10 -7 (-15 -1916 ((-392 |#1|) |#1|)) (-15 -3168 ((-392 |#1|) |#1|)) (-15 -2708 ((-2 (|:| |contp| (-521)) (|:| -1514 (-587 (-2 (|:| |irr| |#1|) (|:| -2132 (-521)))))) |#1| (-108)))) (-1141 (-521))) (T -1130))
+((-2708 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-5 *2 (-2 (|:| |contp| (-521)) (|:| -1514 (-587 (-2 (|:| |irr| *3) (|:| -2132 (-521))))))) (-5 *1 (-1130 *3)) (-4 *3 (-1141 (-521))))) (-3168 (*1 *2 *3) (-12 (-5 *2 (-392 *3)) (-5 *1 (-1130 *3)) (-4 *3 (-1141 (-521))))) (-1916 (*1 *2 *3) (-12 (-5 *2 (-392 *3)) (-5 *1 (-1130 *3)) (-4 *3 (-1141 (-521))))))
+(-10 -7 (-15 -1916 ((-392 |#1|) |#1|)) (-15 -3168 ((-392 |#1|) |#1|)) (-15 -2708 ((-2 (|:| |contp| (-521)) (|:| -1514 (-587 (-2 (|:| |irr| |#1|) (|:| -2132 (-521)))))) |#1| (-108))))
+((-1390 (((-1065 |#2|) (-1 |#2| |#1|) (-1132 |#1|)) 23 (|has| |#1| (-782))) (((-1132 |#2|) (-1 |#2| |#1|) (-1132 |#1|)) 17)))
+(((-1131 |#1| |#2|) (-10 -7 (-15 -1390 ((-1132 |#2|) (-1 |#2| |#1|) (-1132 |#1|))) (IF (|has| |#1| (-782)) (-15 -1390 ((-1065 |#2|) (-1 |#2| |#1|) (-1132 |#1|))) |%noBranch|)) (-1119) (-1119)) (T -1131))
+((-1390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1132 *5)) (-4 *5 (-782)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-1065 *6)) (-5 *1 (-1131 *5 *6)))) (-1390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1132 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-1132 *6)) (-5 *1 (-1131 *5 *6)))))
+(-10 -7 (-15 -1390 ((-1132 |#2|) (-1 |#2| |#1|) (-1132 |#1|))) (IF (|has| |#1| (-782)) (-15 -1390 ((-1065 |#2|) (-1 |#2| |#1|) (-1132 |#1|))) |%noBranch|))
+((-1415 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-1539 (($ |#1| |#1|) 9) (($ |#1|) 8)) (-1390 (((-1065 |#1|) (-1 |#1| |#1|) $) 41 (|has| |#1| (-782)))) (-3984 ((|#1| $) 14)) (-1449 ((|#1| $) 10)) (-3688 (((-1067) $) NIL (|has| |#1| (-1013)))) (-1457 (((-521) $) 18)) (-2195 ((|#1| $) 17)) (-1470 ((|#1| $) 11)) (-4147 (((-1031) $) NIL (|has| |#1| (-1013)))) (-2302 (((-108) $) 16)) (-1604 (((-1065 |#1|) $) 38 (|has| |#1| (-782))) (((-1065 |#1|) (-587 $)) 37 (|has| |#1| (-782)))) (-1430 (($ |#1|) 25)) (-2189 (($ (-1008 |#1|)) 24) (((-792) $) 34 (|has| |#1| (-1013)))) (-1673 (($ |#1| |#1|) 20) (($ |#1|) 19)) (-1346 (($ $ (-521)) 13)) (-1531 (((-108) $ $) 27 (|has| |#1| (-1013)))))
+(((-1132 |#1|) (-13 (-1007 |#1|) (-10 -8 (-15 -1673 ($ |#1|)) (-15 -1539 ($ |#1|)) (-15 -2189 ($ (-1008 |#1|))) (-15 -2302 ((-108) $)) (IF (|has| |#1| (-1013)) (-6 (-1013)) |%noBranch|) (IF (|has| |#1| (-782)) (-6 (-1009 |#1| (-1065 |#1|))) |%noBranch|))) (-1119)) (T -1132))
+((-1673 (*1 *1 *2) (-12 (-5 *1 (-1132 *2)) (-4 *2 (-1119)))) (-1539 (*1 *1 *2) (-12 (-5 *1 (-1132 *2)) (-4 *2 (-1119)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-1008 *3)) (-4 *3 (-1119)) (-5 *1 (-1132 *3)))) (-2302 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1132 *3)) (-4 *3 (-1119)))))
+(-13 (-1007 |#1|) (-10 -8 (-15 -1673 ($ |#1|)) (-15 -1539 ($ |#1|)) (-15 -2189 ($ (-1008 |#1|))) (-15 -2302 ((-108) $)) (IF (|has| |#1| (-1013)) (-6 (-1013)) |%noBranch|) (IF (|has| |#1| (-782)) (-6 (-1009 |#1| (-1065 |#1|))) |%noBranch|)))
+((-1390 (((-1138 |#3| |#4|) (-1 |#4| |#2|) (-1138 |#1| |#2|)) 15)))
+(((-1133 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1390 ((-1138 |#3| |#4|) (-1 |#4| |#2|) (-1138 |#1| |#2|)))) (-1084) (-970) (-1084) (-970)) (T -1133))
+((-1390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1138 *5 *6)) (-14 *5 (-1084)) (-4 *6 (-970)) (-4 *8 (-970)) (-5 *2 (-1138 *7 *8)) (-5 *1 (-1133 *5 *6 *7 *8)) (-14 *7 (-1084)))))
+(-10 -7 (-15 -1390 ((-1138 |#3| |#4|) (-1 |#4| |#2|) (-1138 |#1| |#2|))))
+((-2338 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-1452 ((|#1| |#3|) 13)) (-2673 ((|#3| |#3|) 19)))
+(((-1134 |#1| |#2| |#3|) (-10 -7 (-15 -1452 (|#1| |#3|)) (-15 -2673 (|#3| |#3|)) (-15 -2338 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-513) (-918 |#1|) (-1141 |#2|)) (T -1134))
+((-2338 (*1 *2 *3) (-12 (-4 *4 (-513)) (-4 *5 (-918 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1134 *4 *5 *3)) (-4 *3 (-1141 *5)))) (-2673 (*1 *2 *2) (-12 (-4 *3 (-513)) (-4 *4 (-918 *3)) (-5 *1 (-1134 *3 *4 *2)) (-4 *2 (-1141 *4)))) (-1452 (*1 *2 *3) (-12 (-4 *4 (-918 *2)) (-4 *2 (-513)) (-5 *1 (-1134 *2 *4 *3)) (-4 *3 (-1141 *4)))))
+(-10 -7 (-15 -1452 (|#1| |#3|)) (-15 -2673 (|#3| |#3|)) (-15 -2338 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
+((-3410 (((-3 |#2| "failed") |#2| (-707) |#1|) 29)) (-1877 (((-3 |#2| "failed") |#2| (-707)) 30)) (-2692 (((-3 (-2 (|:| -1913 |#2|) (|:| -1925 |#2|)) "failed") |#2|) 43)) (-3253 (((-587 |#2|) |#2|) 45)) (-2831 (((-3 |#2| "failed") |#2| |#2|) 40)))
+(((-1135 |#1| |#2|) (-10 -7 (-15 -1877 ((-3 |#2| "failed") |#2| (-707))) (-15 -3410 ((-3 |#2| "failed") |#2| (-707) |#1|)) (-15 -2831 ((-3 |#2| "failed") |#2| |#2|)) (-15 -2692 ((-3 (-2 (|:| -1913 |#2|) (|:| -1925 |#2|)) "failed") |#2|)) (-15 -3253 ((-587 |#2|) |#2|))) (-13 (-513) (-135)) (-1141 |#1|)) (T -1135))
+((-3253 (*1 *2 *3) (-12 (-4 *4 (-13 (-513) (-135))) (-5 *2 (-587 *3)) (-5 *1 (-1135 *4 *3)) (-4 *3 (-1141 *4)))) (-2692 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-513) (-135))) (-5 *2 (-2 (|:| -1913 *3) (|:| -1925 *3))) (-5 *1 (-1135 *4 *3)) (-4 *3 (-1141 *4)))) (-2831 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-513) (-135))) (-5 *1 (-1135 *3 *2)) (-4 *2 (-1141 *3)))) (-3410 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-707)) (-4 *4 (-13 (-513) (-135))) (-5 *1 (-1135 *4 *2)) (-4 *2 (-1141 *4)))) (-1877 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-707)) (-4 *4 (-13 (-513) (-135))) (-5 *1 (-1135 *4 *2)) (-4 *2 (-1141 *4)))))
+(-10 -7 (-15 -1877 ((-3 |#2| "failed") |#2| (-707))) (-15 -3410 ((-3 |#2| "failed") |#2| (-707) |#1|)) (-15 -2831 ((-3 |#2| "failed") |#2| |#2|)) (-15 -2692 ((-3 (-2 (|:| -1913 |#2|) (|:| -1925 |#2|)) "failed") |#2|)) (-15 -3253 ((-587 |#2|) |#2|)))
+((-3681 (((-3 (-2 (|:| -3727 |#2|) (|:| -3820 |#2|)) "failed") |#2| |#2|) 32)))
+(((-1136 |#1| |#2|) (-10 -7 (-15 -3681 ((-3 (-2 (|:| -3727 |#2|) (|:| -3820 |#2|)) "failed") |#2| |#2|))) (-513) (-1141 |#1|)) (T -1136))
+((-3681 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-513)) (-5 *2 (-2 (|:| -3727 *3) (|:| -3820 *3))) (-5 *1 (-1136 *4 *3)) (-4 *3 (-1141 *4)))))
+(-10 -7 (-15 -3681 ((-3 (-2 (|:| -3727 |#2|) (|:| -3820 |#2|)) "failed") |#2| |#2|)))
+((-3018 ((|#2| |#2| |#2|) 19)) (-2777 ((|#2| |#2| |#2|) 30)) (-2702 ((|#2| |#2| |#2| (-707) (-707)) 36)))
+(((-1137 |#1| |#2|) (-10 -7 (-15 -3018 (|#2| |#2| |#2|)) (-15 -2777 (|#2| |#2| |#2|)) (-15 -2702 (|#2| |#2| |#2| (-707) (-707)))) (-970) (-1141 |#1|)) (T -1137))
+((-2702 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-707)) (-4 *4 (-970)) (-5 *1 (-1137 *4 *2)) (-4 *2 (-1141 *4)))) (-2777 (*1 *2 *2 *2) (-12 (-4 *3 (-970)) (-5 *1 (-1137 *3 *2)) (-4 *2 (-1141 *3)))) (-3018 (*1 *2 *2 *2) (-12 (-4 *3 (-970)) (-5 *1 (-1137 *3 *2)) (-4 *2 (-1141 *3)))))
+(-10 -7 (-15 -3018 (|#2| |#2| |#2|)) (-15 -2777 (|#2| |#2| |#2|)) (-15 -2702 (|#2| |#2| |#2| (-707) (-707))))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-2141 (((-1165 |#2|) $ (-707)) NIL)) (-4084 (((-587 (-998)) $) NIL)) (-4087 (($ (-1080 |#2|)) NIL)) (-1280 (((-1080 $) $ (-998)) NIL) (((-1080 |#2|) $) NIL)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) NIL (|has| |#2| (-513)))) (-2559 (($ $) NIL (|has| |#2| (-513)))) (-1733 (((-108) $) NIL (|has| |#2| (-513)))) (-2256 (((-707) $) NIL) (((-707) $ (-587 (-998))) NIL)) (-1232 (((-3 $ "failed") $ $) NIL)) (-3570 (($ $ $) NIL (|has| |#2| (-513)))) (-2598 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#2| (-838)))) (-3063 (($ $) NIL (|has| |#2| (-425)))) (-3358 (((-392 $) $) NIL (|has| |#2| (-425)))) (-2569 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) NIL (|has| |#2| (-838)))) (-1389 (((-108) $ $) NIL (|has| |#2| (-337)))) (-2451 (($ $ (-707)) NIL)) (-2962 (($ $ (-707)) NIL)) (-2067 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-425)))) (-2547 (($) NIL T CONST)) (-1297 (((-3 |#2| "failed") $) NIL) (((-3 (-381 (-521)) "failed") $) NIL (|has| |#2| (-961 (-381 (-521))))) (((-3 (-521) "failed") $) NIL (|has| |#2| (-961 (-521)))) (((-3 (-998) "failed") $) NIL)) (-1483 ((|#2| $) NIL) (((-381 (-521)) $) NIL (|has| |#2| (-961 (-381 (-521))))) (((-521) $) NIL (|has| |#2| (-961 (-521)))) (((-998) $) NIL)) (-2114 (($ $ $ (-998)) NIL (|has| |#2| (-157))) ((|#2| $ $) NIL (|has| |#2| (-157)))) (-2277 (($ $ $) NIL (|has| |#2| (-337)))) (-3152 (($ $) NIL)) (-3279 (((-627 (-521)) (-627 $)) NIL (|has| |#2| (-583 (-521)))) (((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (|has| |#2| (-583 (-521)))) (((-2 (|:| -1201 (-627 |#2|)) (|:| |vec| (-1165 |#2|))) (-627 $) (-1165 $)) NIL) (((-627 |#2|) (-627 $)) NIL)) (-1257 (((-3 $ "failed") $) NIL)) (-2253 (($ $ $) NIL (|has| |#2| (-337)))) (-1553 (($ $ $) NIL)) (-3678 (($ $ $) NIL (|has| |#2| (-513)))) (-2225 (((-2 (|:| -2973 |#2|) (|:| -3727 $) (|:| -3820 $)) $ $) NIL (|has| |#2| (-513)))) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) NIL (|has| |#2| (-337)))) (-3666 (($ $) NIL (|has| |#2| (-425))) (($ $ (-998)) NIL (|has| |#2| (-425)))) (-3144 (((-587 $) $) NIL)) (-2710 (((-108) $) NIL (|has| |#2| (-838)))) (-3528 (($ $ |#2| (-707) $) NIL)) (-3427 (((-818 (-353) $) $ (-821 (-353)) (-818 (-353) $)) NIL (-12 (|has| (-998) (-815 (-353))) (|has| |#2| (-815 (-353))))) (((-818 (-521) $) $ (-821 (-521)) (-818 (-521) $)) NIL (-12 (|has| (-998) (-815 (-521))) (|has| |#2| (-815 (-521)))))) (-2733 (((-707) $ $) NIL (|has| |#2| (-513)))) (-3996 (((-108) $) NIL)) (-2678 (((-707) $) NIL)) (-3842 (((-3 $ "failed") $) NIL (|has| |#2| (-1060)))) (-4069 (($ (-1080 |#2|) (-998)) NIL) (($ (-1080 $) (-998)) NIL)) (-1993 (($ $ (-707)) NIL)) (-1546 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| |#2| (-337)))) (-2959 (((-587 $) $) NIL)) (-3649 (((-108) $) NIL)) (-4043 (($ |#2| (-707)) 17) (($ $ (-998) (-707)) NIL) (($ $ (-587 (-998)) (-587 (-707))) NIL)) (-1450 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $ (-998)) NIL) (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) NIL)) (-3273 (((-707) $) NIL) (((-707) $ (-998)) NIL) (((-587 (-707)) $ (-587 (-998))) NIL)) (-2810 (($ $ $) NIL (|has| |#2| (-784)))) (-2446 (($ $ $) NIL (|has| |#2| (-784)))) (-3285 (($ (-1 (-707) (-707)) $) NIL)) (-1390 (($ (-1 |#2| |#2|) $) NIL)) (-1285 (((-1080 |#2|) $) NIL)) (-2477 (((-3 (-998) "failed") $) NIL)) (-3125 (($ $) NIL)) (-3135 ((|#2| $) NIL)) (-2223 (($ (-587 $)) NIL (|has| |#2| (-425))) (($ $ $) NIL (|has| |#2| (-425)))) (-3688 (((-1067) $) NIL)) (-1328 (((-2 (|:| -3727 $) (|:| -3820 $)) $ (-707)) NIL)) (-1617 (((-3 (-587 $) "failed") $) NIL)) (-3177 (((-3 (-587 $) "failed") $) NIL)) (-3979 (((-3 (-2 (|:| |var| (-998)) (|:| -2997 (-707))) "failed") $) NIL)) (-2184 (($ $) NIL (|has| |#2| (-37 (-381 (-521)))))) (-3797 (($) NIL (|has| |#2| (-1060)) CONST)) (-4147 (((-1031) $) NIL)) (-3105 (((-108) $) NIL)) (-3115 ((|#2| $) NIL)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) NIL (|has| |#2| (-425)))) (-2258 (($ (-587 $)) NIL (|has| |#2| (-425))) (($ $ $) NIL (|has| |#2| (-425)))) (-3590 (($ $ (-707) |#2| $) NIL)) (-1912 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#2| (-838)))) (-2165 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#2| (-838)))) (-1916 (((-392 $) $) NIL (|has| |#2| (-838)))) (-1962 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-337))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL (|has| |#2| (-337)))) (-2230 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-513))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-513)))) (-3854 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| |#2| (-337)))) (-2288 (($ $ (-587 (-269 $))) NIL) (($ $ (-269 $)) NIL) (($ $ $ $) NIL) (($ $ (-587 $) (-587 $)) NIL) (($ $ (-998) |#2|) NIL) (($ $ (-587 (-998)) (-587 |#2|)) NIL) (($ $ (-998) $) NIL) (($ $ (-587 (-998)) (-587 $)) NIL)) (-4196 (((-707) $) NIL (|has| |#2| (-337)))) (-2544 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-381 $) (-381 $) (-381 $)) NIL (|has| |#2| (-513))) ((|#2| (-381 $) |#2|) NIL (|has| |#2| (-337))) (((-381 $) $ (-381 $)) NIL (|has| |#2| (-513)))) (-2182 (((-3 $ "failed") $ (-707)) NIL)) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) NIL (|has| |#2| (-337)))) (-4010 (($ $ (-998)) NIL (|has| |#2| (-157))) ((|#2| $) NIL (|has| |#2| (-157)))) (-2156 (($ $ (-998)) NIL) (($ $ (-587 (-998))) NIL) (($ $ (-998) (-707)) NIL) (($ $ (-587 (-998)) (-587 (-707))) NIL) (($ $ (-707)) NIL) (($ $) NIL) (($ $ (-1084)) NIL (|has| |#2| (-829 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| |#2| (-829 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| |#2| (-829 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| |#2| (-829 (-1084)))) (($ $ (-1 |#2| |#2|) (-707)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-1994 (((-707) $) NIL) (((-707) $ (-998)) NIL) (((-587 (-707)) $ (-587 (-998))) NIL)) (-1430 (((-821 (-353)) $) NIL (-12 (|has| (-998) (-562 (-821 (-353)))) (|has| |#2| (-562 (-821 (-353)))))) (((-821 (-521)) $) NIL (-12 (|has| (-998) (-562 (-821 (-521)))) (|has| |#2| (-562 (-821 (-521)))))) (((-497) $) NIL (-12 (|has| (-998) (-562 (-497))) (|has| |#2| (-562 (-497)))))) (-2403 ((|#2| $) NIL (|has| |#2| (-425))) (($ $ (-998)) NIL (|has| |#2| (-425)))) (-2944 (((-3 (-1165 $) "failed") (-627 $)) NIL (-12 (|has| $ (-133)) (|has| |#2| (-838))))) (-1378 (((-3 $ "failed") $ $) NIL (|has| |#2| (-513))) (((-3 (-381 $) "failed") (-381 $) $) NIL (|has| |#2| (-513)))) (-2189 (((-792) $) 13) (($ (-521)) NIL) (($ |#2|) NIL) (($ (-998)) NIL) (($ (-1161 |#1|)) 19) (($ (-381 (-521))) NIL (-3703 (|has| |#2| (-37 (-381 (-521)))) (|has| |#2| (-961 (-381 (-521)))))) (($ $) NIL (|has| |#2| (-513)))) (-1259 (((-587 |#2|) $) NIL)) (-3800 ((|#2| $ (-707)) NIL) (($ $ (-998) (-707)) NIL) (($ $ (-587 (-998)) (-587 (-707))) NIL)) (-1671 (((-3 $ "failed") $) NIL (-3703 (-12 (|has| $ (-133)) (|has| |#2| (-838))) (|has| |#2| (-133))))) (-3846 (((-707)) NIL)) (-1547 (($ $ $ (-707)) NIL (|has| |#2| (-157)))) (-4210 (((-108) $ $) NIL (|has| |#2| (-513)))) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (-3561 (($) NIL T CONST)) (-3572 (($) 14 T CONST)) (-2212 (($ $ (-998)) NIL) (($ $ (-587 (-998))) NIL) (($ $ (-998) (-707)) NIL) (($ $ (-587 (-998)) (-587 (-707))) NIL) (($ $ (-707)) NIL) (($ $) NIL) (($ $ (-1084)) NIL (|has| |#2| (-829 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| |#2| (-829 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| |#2| (-829 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| |#2| (-829 (-1084)))) (($ $ (-1 |#2| |#2|) (-707)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1574 (((-108) $ $) NIL (|has| |#2| (-784)))) (-1558 (((-108) $ $) NIL (|has| |#2| (-784)))) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL (|has| |#2| (-784)))) (-1549 (((-108) $ $) NIL (|has| |#2| (-784)))) (-1620 (($ $ |#2|) NIL (|has| |#2| (-337)))) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ (-381 (-521))) NIL (|has| |#2| (-37 (-381 (-521))))) (($ (-381 (-521)) $) NIL (|has| |#2| (-37 (-381 (-521))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-1138 |#1| |#2|) (-13 (-1141 |#2|) (-10 -8 (-15 -2189 ($ (-1161 |#1|))) (-15 -3590 ($ $ (-707) |#2| $)))) (-1084) (-970)) (T -1138))
+((-2189 (*1 *1 *2) (-12 (-5 *2 (-1161 *3)) (-14 *3 (-1084)) (-5 *1 (-1138 *3 *4)) (-4 *4 (-970)))) (-3590 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-707)) (-5 *1 (-1138 *4 *3)) (-14 *4 (-1084)) (-4 *3 (-970)))))
+(-13 (-1141 |#2|) (-10 -8 (-15 -2189 ($ (-1161 |#1|))) (-15 -3590 ($ $ (-707) |#2| $))))
+((-1390 ((|#4| (-1 |#3| |#1|) |#2|) 23)))
+(((-1139 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1390 (|#4| (-1 |#3| |#1|) |#2|))) (-970) (-1141 |#1|) (-970) (-1141 |#3|)) (T -1139))
+((-1390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-970)) (-4 *6 (-970)) (-4 *2 (-1141 *6)) (-5 *1 (-1139 *5 *4 *6 *2)) (-4 *4 (-1141 *5)))))
+(-10 -7 (-15 -1390 (|#4| (-1 |#3| |#1|) |#2|)))
+((-2141 (((-1165 |#2|) $ (-707)) 113)) (-4084 (((-587 (-998)) $) 15)) (-4087 (($ (-1080 |#2|)) 66)) (-2256 (((-707) $) NIL) (((-707) $ (-587 (-998))) 18)) (-2598 (((-392 (-1080 $)) (-1080 $)) 184)) (-3063 (($ $) 174)) (-3358 (((-392 $) $) 172)) (-2569 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) 81)) (-2451 (($ $ (-707)) 70)) (-2962 (($ $ (-707)) 72)) (-2067 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 129)) (-1297 (((-3 |#2| "failed") $) 116) (((-3 (-381 (-521)) "failed") $) NIL) (((-3 (-521) "failed") $) NIL) (((-3 (-998) "failed") $) NIL)) (-1483 ((|#2| $) 114) (((-381 (-521)) $) NIL) (((-521) $) NIL) (((-998) $) NIL)) (-3678 (($ $ $) 150)) (-2225 (((-2 (|:| -2973 |#2|) (|:| -3727 $) (|:| -3820 $)) $ $) 152)) (-2733 (((-707) $ $) 169)) (-3842 (((-3 $ "failed") $) 122)) (-4043 (($ |#2| (-707)) NIL) (($ $ (-998) (-707)) 46) (($ $ (-587 (-998)) (-587 (-707))) NIL)) (-3273 (((-707) $) NIL) (((-707) $ (-998)) 41) (((-587 (-707)) $ (-587 (-998))) 42)) (-1285 (((-1080 |#2|) $) 58)) (-2477 (((-3 (-998) "failed") $) 39)) (-1328 (((-2 (|:| -3727 $) (|:| -3820 $)) $ (-707)) 69)) (-2184 (($ $) 195)) (-3797 (($) 118)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) 181)) (-1912 (((-392 (-1080 $)) (-1080 $)) 87)) (-2165 (((-392 (-1080 $)) (-1080 $)) 85)) (-1916 (((-392 $) $) 105)) (-2288 (($ $ (-587 (-269 $))) 38) (($ $ (-269 $)) NIL) (($ $ $ $) NIL) (($ $ (-587 $) (-587 $)) NIL) (($ $ (-998) |#2|) 31) (($ $ (-587 (-998)) (-587 |#2|)) 28) (($ $ (-998) $) 25) (($ $ (-587 (-998)) (-587 $)) 23)) (-4196 (((-707) $) 187)) (-2544 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-381 $) (-381 $) (-381 $)) 146) ((|#2| (-381 $) |#2|) 186) (((-381 $) $ (-381 $)) 168)) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) 190)) (-2156 (($ $ (-998)) 139) (($ $ (-587 (-998))) NIL) (($ $ (-998) (-707)) NIL) (($ $ (-587 (-998)) (-587 (-707))) NIL) (($ $ (-707)) NIL) (($ $) 137) (($ $ (-1084)) NIL) (($ $ (-587 (-1084))) NIL) (($ $ (-1084) (-707)) NIL) (($ $ (-587 (-1084)) (-587 (-707))) NIL) (($ $ (-1 |#2| |#2|) (-707)) NIL) (($ $ (-1 |#2| |#2|)) 136) (($ $ (-1 |#2| |#2|) $) 133)) (-1994 (((-707) $) NIL) (((-707) $ (-998)) 16) (((-587 (-707)) $ (-587 (-998))) 20)) (-2403 ((|#2| $) NIL) (($ $ (-998)) 124)) (-1378 (((-3 $ "failed") $ $) 160) (((-3 (-381 $) "failed") (-381 $) $) 156)) (-2189 (((-792) $) NIL) (($ (-521)) NIL) (($ |#2|) NIL) (($ (-998)) 50) (($ (-381 (-521))) NIL) (($ $) NIL)))
+(((-1140 |#1| |#2|) (-10 -8 (-15 -2189 (|#1| |#1|)) (-15 -2513 ((-1080 |#1|) (-1080 |#1|) (-1080 |#1|))) (-15 -3358 ((-392 |#1|) |#1|)) (-15 -3063 (|#1| |#1|)) (-15 -2189 (|#1| (-381 (-521)))) (-15 -3797 (|#1|)) (-15 -3842 ((-3 |#1| "failed") |#1|)) (-15 -2544 ((-381 |#1|) |#1| (-381 |#1|))) (-15 -4196 ((-707) |#1|)) (-15 -1830 ((-2 (|:| -3727 |#1|) (|:| -3820 |#1|)) |#1| |#1|)) (-15 -2184 (|#1| |#1|)) (-15 -2544 (|#2| (-381 |#1|) |#2|)) (-15 -2067 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -2225 ((-2 (|:| -2973 |#2|) (|:| -3727 |#1|) (|:| -3820 |#1|)) |#1| |#1|)) (-15 -3678 (|#1| |#1| |#1|)) (-15 -1378 ((-3 (-381 |#1|) "failed") (-381 |#1|) |#1|)) (-15 -1378 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2733 ((-707) |#1| |#1|)) (-15 -2544 ((-381 |#1|) (-381 |#1|) (-381 |#1|))) (-15 -2156 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2962 (|#1| |#1| (-707))) (-15 -2451 (|#1| |#1| (-707))) (-15 -1328 ((-2 (|:| -3727 |#1|) (|:| -3820 |#1|)) |#1| (-707))) (-15 -4087 (|#1| (-1080 |#2|))) (-15 -1285 ((-1080 |#2|) |#1|)) (-15 -2141 ((-1165 |#2|) |#1| (-707))) (-15 -2156 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2156 (|#1| |#1| (-1 |#2| |#2|) (-707))) (-15 -2156 (|#1| |#1| (-587 (-1084)) (-587 (-707)))) (-15 -2156 (|#1| |#1| (-1084) (-707))) (-15 -2156 (|#1| |#1| (-587 (-1084)))) (-15 -2156 (|#1| |#1| (-1084))) (-15 -2156 (|#1| |#1|)) (-15 -2156 (|#1| |#1| (-707))) (-15 -2544 (|#1| |#1| |#1|)) (-15 -2544 (|#2| |#1| |#2|)) (-15 -1916 ((-392 |#1|) |#1|)) (-15 -2598 ((-392 (-1080 |#1|)) (-1080 |#1|))) (-15 -2165 ((-392 (-1080 |#1|)) (-1080 |#1|))) (-15 -1912 ((-392 (-1080 |#1|)) (-1080 |#1|))) (-15 -2569 ((-3 (-587 (-1080 |#1|)) "failed") (-587 (-1080 |#1|)) (-1080 |#1|))) (-15 -2403 (|#1| |#1| (-998))) (-15 -4084 ((-587 (-998)) |#1|)) (-15 -2256 ((-707) |#1| (-587 (-998)))) (-15 -2256 ((-707) |#1|)) (-15 -4043 (|#1| |#1| (-587 (-998)) (-587 (-707)))) (-15 -4043 (|#1| |#1| (-998) (-707))) (-15 -3273 ((-587 (-707)) |#1| (-587 (-998)))) (-15 -3273 ((-707) |#1| (-998))) (-15 -2477 ((-3 (-998) "failed") |#1|)) (-15 -1994 ((-587 (-707)) |#1| (-587 (-998)))) (-15 -1994 ((-707) |#1| (-998))) (-15 -1483 ((-998) |#1|)) (-15 -1297 ((-3 (-998) "failed") |#1|)) (-15 -2189 (|#1| (-998))) (-15 -2288 (|#1| |#1| (-587 (-998)) (-587 |#1|))) (-15 -2288 (|#1| |#1| (-998) |#1|)) (-15 -2288 (|#1| |#1| (-587 (-998)) (-587 |#2|))) (-15 -2288 (|#1| |#1| (-998) |#2|)) (-15 -2288 (|#1| |#1| (-587 |#1|) (-587 |#1|))) (-15 -2288 (|#1| |#1| |#1| |#1|)) (-15 -2288 (|#1| |#1| (-269 |#1|))) (-15 -2288 (|#1| |#1| (-587 (-269 |#1|)))) (-15 -1994 ((-707) |#1|)) (-15 -4043 (|#1| |#2| (-707))) (-15 -1483 ((-521) |#1|)) (-15 -1297 ((-3 (-521) "failed") |#1|)) (-15 -1483 ((-381 (-521)) |#1|)) (-15 -1297 ((-3 (-381 (-521)) "failed") |#1|)) (-15 -2189 (|#1| |#2|)) (-15 -1297 ((-3 |#2| "failed") |#1|)) (-15 -1483 (|#2| |#1|)) (-15 -3273 ((-707) |#1|)) (-15 -2403 (|#2| |#1|)) (-15 -2156 (|#1| |#1| (-587 (-998)) (-587 (-707)))) (-15 -2156 (|#1| |#1| (-998) (-707))) (-15 -2156 (|#1| |#1| (-587 (-998)))) (-15 -2156 (|#1| |#1| (-998))) (-15 -2189 (|#1| (-521))) (-15 -2189 ((-792) |#1|))) (-1141 |#2|) (-970)) (T -1140))
+NIL
+(-10 -8 (-15 -2189 (|#1| |#1|)) (-15 -2513 ((-1080 |#1|) (-1080 |#1|) (-1080 |#1|))) (-15 -3358 ((-392 |#1|) |#1|)) (-15 -3063 (|#1| |#1|)) (-15 -2189 (|#1| (-381 (-521)))) (-15 -3797 (|#1|)) (-15 -3842 ((-3 |#1| "failed") |#1|)) (-15 -2544 ((-381 |#1|) |#1| (-381 |#1|))) (-15 -4196 ((-707) |#1|)) (-15 -1830 ((-2 (|:| -3727 |#1|) (|:| -3820 |#1|)) |#1| |#1|)) (-15 -2184 (|#1| |#1|)) (-15 -2544 (|#2| (-381 |#1|) |#2|)) (-15 -2067 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -2225 ((-2 (|:| -2973 |#2|) (|:| -3727 |#1|) (|:| -3820 |#1|)) |#1| |#1|)) (-15 -3678 (|#1| |#1| |#1|)) (-15 -1378 ((-3 (-381 |#1|) "failed") (-381 |#1|) |#1|)) (-15 -1378 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2733 ((-707) |#1| |#1|)) (-15 -2544 ((-381 |#1|) (-381 |#1|) (-381 |#1|))) (-15 -2156 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2962 (|#1| |#1| (-707))) (-15 -2451 (|#1| |#1| (-707))) (-15 -1328 ((-2 (|:| -3727 |#1|) (|:| -3820 |#1|)) |#1| (-707))) (-15 -4087 (|#1| (-1080 |#2|))) (-15 -1285 ((-1080 |#2|) |#1|)) (-15 -2141 ((-1165 |#2|) |#1| (-707))) (-15 -2156 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2156 (|#1| |#1| (-1 |#2| |#2|) (-707))) (-15 -2156 (|#1| |#1| (-587 (-1084)) (-587 (-707)))) (-15 -2156 (|#1| |#1| (-1084) (-707))) (-15 -2156 (|#1| |#1| (-587 (-1084)))) (-15 -2156 (|#1| |#1| (-1084))) (-15 -2156 (|#1| |#1|)) (-15 -2156 (|#1| |#1| (-707))) (-15 -2544 (|#1| |#1| |#1|)) (-15 -2544 (|#2| |#1| |#2|)) (-15 -1916 ((-392 |#1|) |#1|)) (-15 -2598 ((-392 (-1080 |#1|)) (-1080 |#1|))) (-15 -2165 ((-392 (-1080 |#1|)) (-1080 |#1|))) (-15 -1912 ((-392 (-1080 |#1|)) (-1080 |#1|))) (-15 -2569 ((-3 (-587 (-1080 |#1|)) "failed") (-587 (-1080 |#1|)) (-1080 |#1|))) (-15 -2403 (|#1| |#1| (-998))) (-15 -4084 ((-587 (-998)) |#1|)) (-15 -2256 ((-707) |#1| (-587 (-998)))) (-15 -2256 ((-707) |#1|)) (-15 -4043 (|#1| |#1| (-587 (-998)) (-587 (-707)))) (-15 -4043 (|#1| |#1| (-998) (-707))) (-15 -3273 ((-587 (-707)) |#1| (-587 (-998)))) (-15 -3273 ((-707) |#1| (-998))) (-15 -2477 ((-3 (-998) "failed") |#1|)) (-15 -1994 ((-587 (-707)) |#1| (-587 (-998)))) (-15 -1994 ((-707) |#1| (-998))) (-15 -1483 ((-998) |#1|)) (-15 -1297 ((-3 (-998) "failed") |#1|)) (-15 -2189 (|#1| (-998))) (-15 -2288 (|#1| |#1| (-587 (-998)) (-587 |#1|))) (-15 -2288 (|#1| |#1| (-998) |#1|)) (-15 -2288 (|#1| |#1| (-587 (-998)) (-587 |#2|))) (-15 -2288 (|#1| |#1| (-998) |#2|)) (-15 -2288 (|#1| |#1| (-587 |#1|) (-587 |#1|))) (-15 -2288 (|#1| |#1| |#1| |#1|)) (-15 -2288 (|#1| |#1| (-269 |#1|))) (-15 -2288 (|#1| |#1| (-587 (-269 |#1|)))) (-15 -1994 ((-707) |#1|)) (-15 -4043 (|#1| |#2| (-707))) (-15 -1483 ((-521) |#1|)) (-15 -1297 ((-3 (-521) "failed") |#1|)) (-15 -1483 ((-381 (-521)) |#1|)) (-15 -1297 ((-3 (-381 (-521)) "failed") |#1|)) (-15 -2189 (|#1| |#2|)) (-15 -1297 ((-3 |#2| "failed") |#1|)) (-15 -1483 (|#2| |#1|)) (-15 -3273 ((-707) |#1|)) (-15 -2403 (|#2| |#1|)) (-15 -2156 (|#1| |#1| (-587 (-998)) (-587 (-707)))) (-15 -2156 (|#1| |#1| (-998) (-707))) (-15 -2156 (|#1| |#1| (-587 (-998)))) (-15 -2156 (|#1| |#1| (-998))) (-15 -2189 (|#1| (-521))) (-15 -2189 ((-792) |#1|)))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-2141 (((-1165 |#1|) $ (-707)) 238)) (-4084 (((-587 (-998)) $) 110)) (-4087 (($ (-1080 |#1|)) 236)) (-1280 (((-1080 $) $ (-998)) 125) (((-1080 |#1|) $) 124)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) 87 (|has| |#1| (-513)))) (-2559 (($ $) 88 (|has| |#1| (-513)))) (-1733 (((-108) $) 90 (|has| |#1| (-513)))) (-2256 (((-707) $) 112) (((-707) $ (-587 (-998))) 111)) (-1232 (((-3 $ "failed") $ $) 19)) (-3570 (($ $ $) 223 (|has| |#1| (-513)))) (-2598 (((-392 (-1080 $)) (-1080 $)) 100 (|has| |#1| (-838)))) (-3063 (($ $) 98 (|has| |#1| (-425)))) (-3358 (((-392 $) $) 97 (|has| |#1| (-425)))) (-2569 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) 103 (|has| |#1| (-838)))) (-1389 (((-108) $ $) 208 (|has| |#1| (-337)))) (-2451 (($ $ (-707)) 231)) (-2962 (($ $ (-707)) 230)) (-2067 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 218 (|has| |#1| (-425)))) (-2547 (($) 17 T CONST)) (-1297 (((-3 |#1| "failed") $) 164) (((-3 (-381 (-521)) "failed") $) 162 (|has| |#1| (-961 (-381 (-521))))) (((-3 (-521) "failed") $) 160 (|has| |#1| (-961 (-521)))) (((-3 (-998) "failed") $) 136)) (-1483 ((|#1| $) 165) (((-381 (-521)) $) 161 (|has| |#1| (-961 (-381 (-521))))) (((-521) $) 159 (|has| |#1| (-961 (-521)))) (((-998) $) 135)) (-2114 (($ $ $ (-998)) 108 (|has| |#1| (-157))) ((|#1| $ $) 226 (|has| |#1| (-157)))) (-2277 (($ $ $) 212 (|has| |#1| (-337)))) (-3152 (($ $) 154)) (-3279 (((-627 (-521)) (-627 $)) 134 (|has| |#1| (-583 (-521)))) (((-2 (|:| -1201 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) 133 (|has| |#1| (-583 (-521)))) (((-2 (|:| -1201 (-627 |#1|)) (|:| |vec| (-1165 |#1|))) (-627 $) (-1165 $)) 132) (((-627 |#1|) (-627 $)) 131)) (-1257 (((-3 $ "failed") $) 34)) (-2253 (($ $ $) 211 (|has| |#1| (-337)))) (-1553 (($ $ $) 229)) (-3678 (($ $ $) 220 (|has| |#1| (-513)))) (-2225 (((-2 (|:| -2973 |#1|) (|:| -3727 $) (|:| -3820 $)) $ $) 219 (|has| |#1| (-513)))) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) 206 (|has| |#1| (-337)))) (-3666 (($ $) 176 (|has| |#1| (-425))) (($ $ (-998)) 105 (|has| |#1| (-425)))) (-3144 (((-587 $) $) 109)) (-2710 (((-108) $) 96 (|has| |#1| (-838)))) (-3528 (($ $ |#1| (-707) $) 172)) (-3427 (((-818 (-353) $) $ (-821 (-353)) (-818 (-353) $)) 84 (-12 (|has| (-998) (-815 (-353))) (|has| |#1| (-815 (-353))))) (((-818 (-521) $) $ (-821 (-521)) (-818 (-521) $)) 83 (-12 (|has| (-998) (-815 (-521))) (|has| |#1| (-815 (-521)))))) (-2733 (((-707) $ $) 224 (|has| |#1| (-513)))) (-3996 (((-108) $) 31)) (-2678 (((-707) $) 169)) (-3842 (((-3 $ "failed") $) 204 (|has| |#1| (-1060)))) (-4069 (($ (-1080 |#1|) (-998)) 117) (($ (-1080 $) (-998)) 116)) (-1993 (($ $ (-707)) 235)) (-1546 (((-3 (-587 $) "failed") (-587 $) $) 215 (|has| |#1| (-337)))) (-2959 (((-587 $) $) 126)) (-3649 (((-108) $) 152)) (-4043 (($ |#1| (-707)) 153) (($ $ (-998) (-707)) 119) (($ $ (-587 (-998)) (-587 (-707))) 118)) (-1450 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $ (-998)) 120) (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) 233)) (-3273 (((-707) $) 170) (((-707) $ (-998)) 122) (((-587 (-707)) $ (-587 (-998))) 121)) (-2810 (($ $ $) 79 (|has| |#1| (-784)))) (-2446 (($ $ $) 78 (|has| |#1| (-784)))) (-3285 (($ (-1 (-707) (-707)) $) 171)) (-1390 (($ (-1 |#1| |#1|) $) 151)) (-1285 (((-1080 |#1|) $) 237)) (-2477 (((-3 (-998) "failed") $) 123)) (-3125 (($ $) 149)) (-3135 ((|#1| $) 148)) (-2223 (($ (-587 $)) 94 (|has| |#1| (-425))) (($ $ $) 93 (|has| |#1| (-425)))) (-3688 (((-1067) $) 9)) (-1328 (((-2 (|:| -3727 $) (|:| -3820 $)) $ (-707)) 232)) (-1617 (((-3 (-587 $) "failed") $) 114)) (-3177 (((-3 (-587 $) "failed") $) 115)) (-3979 (((-3 (-2 (|:| |var| (-998)) (|:| -2997 (-707))) "failed") $) 113)) (-2184 (($ $) 216 (|has| |#1| (-37 (-381 (-521)))))) (-3797 (($) 203 (|has| |#1| (-1060)) CONST)) (-4147 (((-1031) $) 10)) (-3105 (((-108) $) 166)) (-3115 ((|#1| $) 167)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) 95 (|has| |#1| (-425)))) (-2258 (($ (-587 $)) 92 (|has| |#1| (-425))) (($ $ $) 91 (|has| |#1| (-425)))) (-1912 (((-392 (-1080 $)) (-1080 $)) 102 (|has| |#1| (-838)))) (-2165 (((-392 (-1080 $)) (-1080 $)) 101 (|has| |#1| (-838)))) (-1916 (((-392 $) $) 99 (|has| |#1| (-838)))) (-1962 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 214 (|has| |#1| (-337))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) 213 (|has| |#1| (-337)))) (-2230 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-513))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-513)))) (-3854 (((-3 (-587 $) "failed") (-587 $) $) 207 (|has| |#1| (-337)))) (-2288 (($ $ (-587 (-269 $))) 145) (($ $ (-269 $)) 144) (($ $ $ $) 143) (($ $ (-587 $) (-587 $)) 142) (($ $ (-998) |#1|) 141) (($ $ (-587 (-998)) (-587 |#1|)) 140) (($ $ (-998) $) 139) (($ $ (-587 (-998)) (-587 $)) 138)) (-4196 (((-707) $) 209 (|has| |#1| (-337)))) (-2544 ((|#1| $ |#1|) 256) (($ $ $) 255) (((-381 $) (-381 $) (-381 $)) 225 (|has| |#1| (-513))) ((|#1| (-381 $) |#1|) 217 (|has| |#1| (-337))) (((-381 $) $ (-381 $)) 205 (|has| |#1| (-513)))) (-2182 (((-3 $ "failed") $ (-707)) 234)) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) 210 (|has| |#1| (-337)))) (-4010 (($ $ (-998)) 107 (|has| |#1| (-157))) ((|#1| $) 227 (|has| |#1| (-157)))) (-2156 (($ $ (-998)) 42) (($ $ (-587 (-998))) 41) (($ $ (-998) (-707)) 40) (($ $ (-587 (-998)) (-587 (-707))) 39) (($ $ (-707)) 253) (($ $) 251) (($ $ (-1084)) 250 (|has| |#1| (-829 (-1084)))) (($ $ (-587 (-1084))) 249 (|has| |#1| (-829 (-1084)))) (($ $ (-1084) (-707)) 248 (|has| |#1| (-829 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) 247 (|has| |#1| (-829 (-1084)))) (($ $ (-1 |#1| |#1|) (-707)) 240) (($ $ (-1 |#1| |#1|)) 239) (($ $ (-1 |#1| |#1|) $) 228)) (-1994 (((-707) $) 150) (((-707) $ (-998)) 130) (((-587 (-707)) $ (-587 (-998))) 129)) (-1430 (((-821 (-353)) $) 82 (-12 (|has| (-998) (-562 (-821 (-353)))) (|has| |#1| (-562 (-821 (-353)))))) (((-821 (-521)) $) 81 (-12 (|has| (-998) (-562 (-821 (-521)))) (|has| |#1| (-562 (-821 (-521)))))) (((-497) $) 80 (-12 (|has| (-998) (-562 (-497))) (|has| |#1| (-562 (-497)))))) (-2403 ((|#1| $) 175 (|has| |#1| (-425))) (($ $ (-998)) 106 (|has| |#1| (-425)))) (-2944 (((-3 (-1165 $) "failed") (-627 $)) 104 (-4009 (|has| $ (-133)) (|has| |#1| (-838))))) (-1378 (((-3 $ "failed") $ $) 222 (|has| |#1| (-513))) (((-3 (-381 $) "failed") (-381 $) $) 221 (|has| |#1| (-513)))) (-2189 (((-792) $) 11) (($ (-521)) 28) (($ |#1|) 163) (($ (-998)) 137) (($ (-381 (-521))) 72 (-3703 (|has| |#1| (-961 (-381 (-521)))) (|has| |#1| (-37 (-381 (-521)))))) (($ $) 85 (|has| |#1| (-513)))) (-1259 (((-587 |#1|) $) 168)) (-3800 ((|#1| $ (-707)) 155) (($ $ (-998) (-707)) 128) (($ $ (-587 (-998)) (-587 (-707))) 127)) (-1671 (((-3 $ "failed") $) 73 (-3703 (-4009 (|has| $ (-133)) (|has| |#1| (-838))) (|has| |#1| (-133))))) (-3846 (((-707)) 29)) (-1547 (($ $ $ (-707)) 173 (|has| |#1| (-157)))) (-4210 (((-108) $ $) 89 (|has| |#1| (-513)))) (-3505 (($ $ (-850)) 26) (($ $ (-707)) 33)) (-3561 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-2212 (($ $ (-998)) 38) (($ $ (-587 (-998))) 37) (($ $ (-998) (-707)) 36) (($ $ (-587 (-998)) (-587 (-707))) 35) (($ $ (-707)) 254) (($ $) 252) (($ $ (-1084)) 246 (|has| |#1| (-829 (-1084)))) (($ $ (-587 (-1084))) 245 (|has| |#1| (-829 (-1084)))) (($ $ (-1084) (-707)) 244 (|has| |#1| (-829 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) 243 (|has| |#1| (-829 (-1084)))) (($ $ (-1 |#1| |#1|) (-707)) 242) (($ $ (-1 |#1| |#1|)) 241)) (-1574 (((-108) $ $) 76 (|has| |#1| (-784)))) (-1558 (((-108) $ $) 75 (|has| |#1| (-784)))) (-1531 (((-108) $ $) 6)) (-1566 (((-108) $ $) 77 (|has| |#1| (-784)))) (-1549 (((-108) $ $) 74 (|has| |#1| (-784)))) (-1620 (($ $ |#1|) 156 (|has| |#1| (-337)))) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-707)) 32)) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ $ (-381 (-521))) 158 (|has| |#1| (-37 (-381 (-521))))) (($ (-381 (-521)) $) 157 (|has| |#1| (-37 (-381 (-521))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
+(((-1141 |#1|) (-1196) (-970)) (T -1141))
+((-2141 (*1 *2 *1 *3) (-12 (-5 *3 (-707)) (-4 *1 (-1141 *4)) (-4 *4 (-970)) (-5 *2 (-1165 *4)))) (-1285 (*1 *2 *1) (-12 (-4 *1 (-1141 *3)) (-4 *3 (-970)) (-5 *2 (-1080 *3)))) (-4087 (*1 *1 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-970)) (-4 *1 (-1141 *3)))) (-1993 (*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-4 *1 (-1141 *3)) (-4 *3 (-970)))) (-2182 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-707)) (-4 *1 (-1141 *3)) (-4 *3 (-970)))) (-1450 (*1 *2 *1 *1) (-12 (-4 *3 (-970)) (-5 *2 (-2 (|:| -3727 *1) (|:| -3820 *1))) (-4 *1 (-1141 *3)))) (-1328 (*1 *2 *1 *3) (-12 (-5 *3 (-707)) (-4 *4 (-970)) (-5 *2 (-2 (|:| -3727 *1) (|:| -3820 *1))) (-4 *1 (-1141 *4)))) (-2451 (*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-4 *1 (-1141 *3)) (-4 *3 (-970)))) (-2962 (*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-4 *1 (-1141 *3)) (-4 *3 (-970)))) (-1553 (*1 *1 *1 *1) (-12 (-4 *1 (-1141 *2)) (-4 *2 (-970)))) (-2156 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1141 *3)) (-4 *3 (-970)))) (-4010 (*1 *2 *1) (-12 (-4 *1 (-1141 *2)) (-4 *2 (-970)) (-4 *2 (-157)))) (-2114 (*1 *2 *1 *1) (-12 (-4 *1 (-1141 *2)) (-4 *2 (-970)) (-4 *2 (-157)))) (-2544 (*1 *2 *2 *2) (-12 (-5 *2 (-381 *1)) (-4 *1 (-1141 *3)) (-4 *3 (-970)) (-4 *3 (-513)))) (-2733 (*1 *2 *1 *1) (-12 (-4 *1 (-1141 *3)) (-4 *3 (-970)) (-4 *3 (-513)) (-5 *2 (-707)))) (-3570 (*1 *1 *1 *1) (-12 (-4 *1 (-1141 *2)) (-4 *2 (-970)) (-4 *2 (-513)))) (-1378 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1141 *2)) (-4 *2 (-970)) (-4 *2 (-513)))) (-1378 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-381 *1)) (-4 *1 (-1141 *3)) (-4 *3 (-970)) (-4 *3 (-513)))) (-3678 (*1 *1 *1 *1) (-12 (-4 *1 (-1141 *2)) (-4 *2 (-970)) (-4 *2 (-513)))) (-2225 (*1 *2 *1 *1) (-12 (-4 *3 (-513)) (-4 *3 (-970)) (-5 *2 (-2 (|:| -2973 *3) (|:| -3727 *1) (|:| -3820 *1))) (-4 *1 (-1141 *3)))) (-2067 (*1 *2 *1 *1) (-12 (-4 *3 (-425)) (-4 *3 (-970)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1141 *3)))) (-2544 (*1 *2 *3 *2) (-12 (-5 *3 (-381 *1)) (-4 *1 (-1141 *2)) (-4 *2 (-970)) (-4 *2 (-337)))) (-2184 (*1 *1 *1) (-12 (-4 *1 (-1141 *2)) (-4 *2 (-970)) (-4 *2 (-37 (-381 (-521)))))))
+(-13 (-878 |t#1| (-707) (-998)) (-261 |t#1| |t#1|) (-261 $ $) (-210) (-208 |t#1|) (-10 -8 (-15 -2141 ((-1165 |t#1|) $ (-707))) (-15 -1285 ((-1080 |t#1|) $)) (-15 -4087 ($ (-1080 |t#1|))) (-15 -1993 ($ $ (-707))) (-15 -2182 ((-3 $ "failed") $ (-707))) (-15 -1450 ((-2 (|:| -3727 $) (|:| -3820 $)) $ $)) (-15 -1328 ((-2 (|:| -3727 $) (|:| -3820 $)) $ (-707))) (-15 -2451 ($ $ (-707))) (-15 -2962 ($ $ (-707))) (-15 -1553 ($ $ $)) (-15 -2156 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1060)) (-6 (-1060)) |%noBranch|) (IF (|has| |t#1| (-157)) (PROGN (-15 -4010 (|t#1| $)) (-15 -2114 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-513)) (PROGN (-6 (-261 (-381 $) (-381 $))) (-15 -2544 ((-381 $) (-381 $) (-381 $))) (-15 -2733 ((-707) $ $)) (-15 -3570 ($ $ $)) (-15 -1378 ((-3 $ "failed") $ $)) (-15 -1378 ((-3 (-381 $) "failed") (-381 $) $)) (-15 -3678 ($ $ $)) (-15 -2225 ((-2 (|:| -2973 |t#1|) (|:| -3727 $) (|:| -3820 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-425)) (-15 -2067 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-337)) (PROGN (-6 (-282)) (-6 -4229) (-15 -2544 (|t#1| (-381 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-37 (-381 (-521)))) (-15 -2184 ($ $)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-707)) . T) ((-25) . T) ((-37 #1=(-381 (-521))) |has| |#1| (-37 (-381 (-521)))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) -3703 (|has| |#1| (-838)) (|has| |#1| (-513)) (|has| |#1| (-425)) (|has| |#1| (-337))) ((-97) . T) ((-107 #1# #1#) |has| |#1| (-37 (-381 (-521)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3703 (|has| |#1| (-838)) (|has| |#1| (-513)) (|has| |#1| (-425)) (|has| |#1| (-337)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-561 (-792)) . T) ((-157) -3703 (|has| |#1| (-838)) (|has| |#1| (-513)) (|has| |#1| (-425)) (|has| |#1| (-337)) (|has| |#1| (-157))) ((-562 (-497)) -12 (|has| (-998) (-562 (-497))) (|has| |#1| (-562 (-497)))) ((-562 (-821 (-353))) -12 (|has| (-998) (-562 (-821 (-353)))) (|has| |#1| (-562 (-821 (-353))))) ((-562 (-821 (-521))) -12 (|has| (-998) (-562 (-821 (-521)))) (|has| |#1| (-562 (-821 (-521))))) ((-208 |#1|) . T) ((-210) . T) ((-261 (-381 $) (-381 $)) |has| |#1| (-513)) ((-261 |#1| |#1|) . T) ((-261 $ $) . T) ((-265) -3703 (|has| |#1| (-838)) (|has| |#1| (-513)) (|has| |#1| (-425)) (|has| |#1| (-337))) ((-282) |has| |#1| (-337)) ((-284 $) . T) ((-300 |#1| #0#) . T) ((-351 |#1|) . T) ((-385 |#1|) . T) ((-425) -3703 (|has| |#1| (-838)) (|has| |#1| (-425)) (|has| |#1| (-337))) ((-482 #2=(-998) |#1|) . T) ((-482 #2# $) . T) ((-482 $ $) . T) ((-513) -3703 (|has| |#1| (-838)) (|has| |#1| (-513)) (|has| |#1| (-425)) (|has| |#1| (-337))) ((-589 #1#) |has| |#1| (-37 (-381 (-521)))) ((-589 |#1|) . T) ((-589 $) . T) ((-583 (-521)) |has| |#1| (-583 (-521))) ((-583 |#1|) . T) ((-654 #1#) |has| |#1| (-37 (-381 (-521)))) ((-654 |#1|) |has| |#1| (-157)) ((-654 $) -3703 (|has| |#1| (-838)) (|has| |#1| (-513)) (|has| |#1| (-425)) (|has| |#1| (-337))) ((-663) . T) ((-784) |has| |#1| (-784)) ((-829 #2#) . T) ((-829 (-1084)) |has| |#1| (-829 (-1084))) ((-815 (-353)) -12 (|has| (-998) (-815 (-353))) (|has| |#1| (-815 (-353)))) ((-815 (-521)) -12 (|has| (-998) (-815 (-521))) (|has| |#1| (-815 (-521)))) ((-878 |#1| #0# #2#) . T) ((-838) |has| |#1| (-838)) ((-849) |has| |#1| (-337)) ((-961 (-381 (-521))) |has| |#1| (-961 (-381 (-521)))) ((-961 (-521)) |has| |#1| (-961 (-521))) ((-961 #2#) . T) ((-961 |#1|) . T) ((-976 #1#) |has| |#1| (-37 (-381 (-521)))) ((-976 |#1|) . T) ((-976 $) -3703 (|has| |#1| (-838)) (|has| |#1| (-513)) (|has| |#1| (-425)) (|has| |#1| (-337)) (|has| |#1| (-157))) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T) ((-1060) |has| |#1| (-1060)) ((-1123) |has| |#1| (-838)))
+((-4084 (((-587 (-998)) $) 28)) (-3152 (($ $) 25)) (-4043 (($ |#2| |#3|) NIL) (($ $ (-998) |#3|) 22) (($ $ (-587 (-998)) (-587 |#3|)) 20)) (-3125 (($ $) 14)) (-3135 ((|#2| $) 12)) (-1994 ((|#3| $) 10)))
+(((-1142 |#1| |#2| |#3|) (-10 -8 (-15 -4084 ((-587 (-998)) |#1|)) (-15 -4043 (|#1| |#1| (-587 (-998)) (-587 |#3|))) (-15 -4043 (|#1| |#1| (-998) |#3|)) (-15 -3152 (|#1| |#1|)) (-15 -4043 (|#1| |#2| |#3|)) (-15 -1994 (|#3| |#1|)) (-15 -3125 (|#1| |#1|)) (-15 -3135 (|#2| |#1|))) (-1143 |#2| |#3|) (-970) (-728)) (T -1142))
+NIL
+(-10 -8 (-15 -4084 ((-587 (-998)) |#1|)) (-15 -4043 (|#1| |#1| (-587 (-998)) (-587 |#3|))) (-15 -4043 (|#1| |#1| (-998) |#3|)) (-15 -3152 (|#1| |#1|)) (-15 -4043 (|#1| |#2| |#3|)) (-15 -1994 (|#3| |#1|)) (-15 -3125 (|#1| |#1|)) (-15 -3135 (|#2| |#1|)))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-4084 (((-587 (-998)) $) 74)) (-1611 (((-1084) $) 103)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) 51 (|has| |#1| (-513)))) (-2559 (($ $) 52 (|has| |#1| (-513)))) (-1733 (((-108) $) 54 (|has| |#1| (-513)))) (-2977 (($ $ |#2|) 98) (($ $ |#2| |#2|) 97)) (-3423 (((-1065 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 105)) (-1232 (((-3 $ "failed") $ $) 19)) (-2547 (($) 17 T CONST)) (-3152 (($ $) 60)) (-1257 (((-3 $ "failed") $) 34)) (-1325 (((-108) $) 73)) (-2733 ((|#2| $) 100) ((|#2| $ |#2|) 99)) (-3996 (((-108) $) 31)) (-1993 (($ $ (-850)) 101)) (-3649 (((-108) $) 62)) (-4043 (($ |#1| |#2|) 61) (($ $ (-998) |#2|) 76) (($ $ (-587 (-998)) (-587 |#2|)) 75)) (-1390 (($ (-1 |#1| |#1|) $) 63)) (-3125 (($ $) 65)) (-3135 ((|#1| $) 66)) (-3688 (((-1067) $) 9)) (-4147 (((-1031) $) 10)) (-2447 (($ $ |#2|) 95)) (-2230 (((-3 $ "failed") $ $) 50 (|has| |#1| (-513)))) (-2288 (((-1065 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-2544 ((|#1| $ |#2|) 104) (($ $ $) 81 (|has| |#2| (-1025)))) (-2156 (($ $ (-587 (-1084)) (-587 (-707))) 89 (-12 (|has| |#1| (-829 (-1084))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1084) (-707)) 88 (-12 (|has| |#1| (-829 (-1084))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-587 (-1084))) 87 (-12 (|has| |#1| (-829 (-1084))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1084)) 86 (-12 (|has| |#1| (-829 (-1084))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-707)) 84 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-1994 ((|#2| $) 64)) (-3448 (($ $) 72)) (-2189 (((-792) $) 11) (($ (-521)) 28) (($ (-381 (-521))) 57 (|has| |#1| (-37 (-381 (-521))))) (($ $) 49 (|has| |#1| (-513))) (($ |#1|) 47 (|has| |#1| (-157)))) (-3800 ((|#1| $ |#2|) 59)) (-1671 (((-3 $ "failed") $) 48 (|has| |#1| (-133)))) (-3846 (((-707)) 29)) (-1893 ((|#1| $) 102)) (-4210 (((-108) $ $) 53 (|has| |#1| (-513)))) (-3894 ((|#1| $ |#2|) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -2189 (|#1| (-1084))))))) (-3505 (($ $ (-850)) 26) (($ $ (-707)) 33)) (-3561 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-2212 (($ $ (-587 (-1084)) (-587 (-707))) 93 (-12 (|has| |#1| (-829 (-1084))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1084) (-707)) 92 (-12 (|has| |#1| (-829 (-1084))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-587 (-1084))) 91 (-12 (|has| |#1| (-829 (-1084))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1084)) 90 (-12 (|has| |#1| (-829 (-1084))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-707)) 85 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-1531 (((-108) $ $) 6)) (-1620 (($ $ |#1|) 58 (|has| |#1| (-337)))) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-707)) 32)) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-381 (-521)) $) 56 (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) 55 (|has| |#1| (-37 (-381 (-521)))))))
+(((-1143 |#1| |#2|) (-1196) (-970) (-728)) (T -1143))
+((-3423 (*1 *2 *1) (-12 (-4 *1 (-1143 *3 *4)) (-4 *3 (-970)) (-4 *4 (-728)) (-5 *2 (-1065 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-2544 (*1 *2 *1 *3) (-12 (-4 *1 (-1143 *2 *3)) (-4 *3 (-728)) (-4 *2 (-970)))) (-1611 (*1 *2 *1) (-12 (-4 *1 (-1143 *3 *4)) (-4 *3 (-970)) (-4 *4 (-728)) (-5 *2 (-1084)))) (-1893 (*1 *2 *1) (-12 (-4 *1 (-1143 *2 *3)) (-4 *3 (-728)) (-4 *2 (-970)))) (-1993 (*1 *1 *1 *2) (-12 (-5 *2 (-850)) (-4 *1 (-1143 *3 *4)) (-4 *3 (-970)) (-4 *4 (-728)))) (-2733 (*1 *2 *1) (-12 (-4 *1 (-1143 *3 *2)) (-4 *3 (-970)) (-4 *2 (-728)))) (-2733 (*1 *2 *1 *2) (-12 (-4 *1 (-1143 *3 *2)) (-4 *3 (-970)) (-4 *2 (-728)))) (-2977 (*1 *1 *1 *2) (-12 (-4 *1 (-1143 *3 *2)) (-4 *3 (-970)) (-4 *2 (-728)))) (-2977 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1143 *3 *2)) (-4 *3 (-970)) (-4 *2 (-728)))) (-3894 (*1 *2 *1 *3) (-12 (-4 *1 (-1143 *2 *3)) (-4 *3 (-728)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2189 (*2 (-1084)))) (-4 *2 (-970)))) (-2447 (*1 *1 *1 *2) (-12 (-4 *1 (-1143 *3 *2)) (-4 *3 (-970)) (-4 *2 (-728)))) (-2288 (*1 *2 *1 *3) (-12 (-4 *1 (-1143 *3 *4)) (-4 *3 (-970)) (-4 *4 (-728)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1065 *3)))))
+(-13 (-899 |t#1| |t#2| (-998)) (-10 -8 (-15 -3423 ((-1065 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -2544 (|t#1| $ |t#2|)) (-15 -1611 ((-1084) $)) (-15 -1893 (|t#1| $)) (-15 -1993 ($ $ (-850))) (-15 -2733 (|t#2| $)) (-15 -2733 (|t#2| $ |t#2|)) (-15 -2977 ($ $ |t#2|)) (-15 -2977 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -2189 (|t#1| (-1084)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3894 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -2447 ($ $ |t#2|)) (IF (|has| |t#2| (-1025)) (-6 (-261 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-210)) (IF (|has| |t#1| (-829 (-1084))) (-6 (-829 (-1084))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2288 ((-1065 |t#1|) $ |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-381 (-521))) |has| |#1| (-37 (-381 (-521)))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) |has| |#1| (-513)) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-381 (-521)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3703 (|has| |#1| (-513)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-561 (-792)) . T) ((-157) -3703 (|has| |#1| (-513)) (|has| |#1| (-157))) ((-210) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-261 $ $) |has| |#2| (-1025)) ((-265) |has| |#1| (-513)) ((-513) |has| |#1| (-513)) ((-589 #0#) |has| |#1| (-37 (-381 (-521)))) ((-589 |#1|) . T) ((-589 $) . T) ((-654 #0#) |has| |#1| (-37 (-381 (-521)))) ((-654 |#1|) |has| |#1| (-157)) ((-654 $) |has| |#1| (-513)) ((-663) . T) ((-829 (-1084)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-829 (-1084)))) ((-899 |#1| |#2| (-998)) . T) ((-976 #0#) |has| |#1| (-37 (-381 (-521)))) ((-976 |#1|) . T) ((-976 $) -3703 (|has| |#1| (-513)) (|has| |#1| (-157))) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T))
+((-3063 ((|#2| |#2|) 12)) (-3358 (((-392 |#2|) |#2|) 14)) (-4039 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-521))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-521)))) 30)))
+(((-1144 |#1| |#2|) (-10 -7 (-15 -3358 ((-392 |#2|) |#2|)) (-15 -3063 (|#2| |#2|)) (-15 -4039 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-521))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-521)))))) (-513) (-13 (-1141 |#1|) (-513) (-10 -8 (-15 -2258 ($ $ $))))) (T -1144))
+((-4039 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-521)))) (-4 *4 (-13 (-1141 *3) (-513) (-10 -8 (-15 -2258 ($ $ $))))) (-4 *3 (-513)) (-5 *1 (-1144 *3 *4)))) (-3063 (*1 *2 *2) (-12 (-4 *3 (-513)) (-5 *1 (-1144 *3 *2)) (-4 *2 (-13 (-1141 *3) (-513) (-10 -8 (-15 -2258 ($ $ $))))))) (-3358 (*1 *2 *3) (-12 (-4 *4 (-513)) (-5 *2 (-392 *3)) (-5 *1 (-1144 *4 *3)) (-4 *3 (-13 (-1141 *4) (-513) (-10 -8 (-15 -2258 ($ $ $))))))))
+(-10 -7 (-15 -3358 ((-392 |#2|) |#2|)) (-15 -3063 (|#2| |#2|)) (-15 -4039 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-521))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-521))))))
+((-1390 (((-1150 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1150 |#1| |#3| |#5|)) 23)))
+(((-1145 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1390 ((-1150 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1150 |#1| |#3| |#5|)))) (-970) (-970) (-1084) (-1084) |#1| |#2|) (T -1145))
+((-1390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1150 *5 *7 *9)) (-4 *5 (-970)) (-4 *6 (-970)) (-14 *7 (-1084)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1150 *6 *8 *10)) (-5 *1 (-1145 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1084)))))
+(-10 -7 (-15 -1390 ((-1150 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1150 |#1| |#3| |#5|))))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-4084 (((-587 (-998)) $) 74)) (-1611 (((-1084) $) 103)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) 51 (|has| |#1| (-513)))) (-2559 (($ $) 52 (|has| |#1| (-513)))) (-1733 (((-108) $) 54 (|has| |#1| (-513)))) (-2977 (($ $ (-381 (-521))) 98) (($ $ (-381 (-521)) (-381 (-521))) 97)) (-3423 (((-1065 (-2 (|:| |k| (-381 (-521))) (|:| |c| |#1|))) $) 105)) (-2904 (($ $) 135 (|has| |#1| (-37 (-381 (-521)))))) (-2769 (($ $) 118 (|has| |#1| (-37 (-381 (-521)))))) (-1232 (((-3 $ "failed") $ $) 19)) (-3063 (($ $) 162 (|has| |#1| (-337)))) (-3358 (((-392 $) $) 163 (|has| |#1| (-337)))) (-1927 (($ $) 117 (|has| |#1| (-37 (-381 (-521)))))) (-1389 (((-108) $ $) 153 (|has| |#1| (-337)))) (-2880 (($ $) 134 (|has| |#1| (-37 (-381 (-521)))))) (-2746 (($ $) 119 (|has| |#1| (-37 (-381 (-521)))))) (-2770 (($ (-707) (-1065 (-2 (|:| |k| (-381 (-521))) (|:| |c| |#1|)))) 172)) (-2926 (($ $) 133 (|has| |#1| (-37 (-381 (-521)))))) (-2790 (($ $) 120 (|has| |#1| (-37 (-381 (-521)))))) (-2547 (($) 17 T CONST)) (-2277 (($ $ $) 157 (|has| |#1| (-337)))) (-3152 (($ $) 60)) (-1257 (((-3 $ "failed") $) 34)) (-2253 (($ $ $) 156 (|has| |#1| (-337)))) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) 151 (|has| |#1| (-337)))) (-2710 (((-108) $) 164 (|has| |#1| (-337)))) (-1325 (((-108) $) 73)) (-2834 (($) 145 (|has| |#1| (-37 (-381 (-521)))))) (-2733 (((-381 (-521)) $) 100) (((-381 (-521)) $ (-381 (-521))) 99)) (-3996 (((-108) $) 31)) (-3407 (($ $ (-521)) 116 (|has| |#1| (-37 (-381 (-521)))))) (-1993 (($ $ (-850)) 101) (($ $ (-381 (-521))) 171)) (-1546 (((-3 (-587 $) "failed") (-587 $) $) 160 (|has| |#1| (-337)))) (-3649 (((-108) $) 62)) (-4043 (($ |#1| (-381 (-521))) 61) (($ $ (-998) (-381 (-521))) 76) (($ $ (-587 (-998)) (-587 (-381 (-521)))) 75)) (-1390 (($ (-1 |#1| |#1|) $) 63)) (-1253 (($ $) 142 (|has| |#1| (-37 (-381 (-521)))))) (-3125 (($ $) 65)) (-3135 ((|#1| $) 66)) (-2223 (($ (-587 $)) 149 (|has| |#1| (-337))) (($ $ $) 148 (|has| |#1| (-337)))) (-3688 (((-1067) $) 9)) (-3095 (($ $) 165 (|has| |#1| (-337)))) (-2184 (($ $) 170 (|has| |#1| (-37 (-381 (-521))))) (($ $ (-1084)) 169 (-3703 (-12 (|has| |#1| (-29 (-521))) (|has| |#1| (-887)) (|has| |#1| (-1105)) (|has| |#1| (-37 (-381 (-521))))) (-12 (|has| |#1| (-15 -4084 ((-587 (-1084)) |#1|))) (|has| |#1| (-15 -2184 (|#1| |#1| (-1084)))) (|has| |#1| (-37 (-381 (-521)))))))) (-4147 (((-1031) $) 10)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) 150 (|has| |#1| (-337)))) (-2258 (($ (-587 $)) 147 (|has| |#1| (-337))) (($ $ $) 146 (|has| |#1| (-337)))) (-1916 (((-392 $) $) 161 (|has| |#1| (-337)))) (-1962 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-337))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) 158 (|has| |#1| (-337)))) (-2447 (($ $ (-381 (-521))) 95)) (-2230 (((-3 $ "failed") $ $) 50 (|has| |#1| (-513)))) (-3854 (((-3 (-587 $) "failed") (-587 $) $) 152 (|has| |#1| (-337)))) (-3261 (($ $) 143 (|has| |#1| (-37 (-381 (-521)))))) (-2288 (((-1065 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-381 (-521))))))) (-4196 (((-707) $) 154 (|has| |#1| (-337)))) (-2544 ((|#1| $ (-381 (-521))) 104) (($ $ $) 81 (|has| (-381 (-521)) (-1025)))) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) 155 (|has| |#1| (-337)))) (-2156 (($ $ (-587 (-1084)) (-587 (-707))) 89 (-12 (|has| |#1| (-829 (-1084))) (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))))) (($ $ (-1084) (-707)) 88 (-12 (|has| |#1| (-829 (-1084))) (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))))) (($ $ (-587 (-1084))) 87 (-12 (|has| |#1| (-829 (-1084))) (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))))) (($ $ (-1084)) 86 (-12 (|has| |#1| (-829 (-1084))) (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))))) (($ $ (-707)) 84 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))))) (-1994 (((-381 (-521)) $) 64)) (-1738 (($ $) 132 (|has| |#1| (-37 (-381 (-521)))))) (-2800 (($ $) 121 (|has| |#1| (-37 (-381 (-521)))))) (-2915 (($ $) 131 (|has| |#1| (-37 (-381 (-521)))))) (-2780 (($ $) 122 (|has| |#1| (-37 (-381 (-521)))))) (-2892 (($ $) 130 (|has| |#1| (-37 (-381 (-521)))))) (-2758 (($ $) 123 (|has| |#1| (-37 (-381 (-521)))))) (-3448 (($ $) 72)) (-2189 (((-792) $) 11) (($ (-521)) 28) (($ |#1|) 47 (|has| |#1| (-157))) (($ (-381 (-521))) 57 (|has| |#1| (-37 (-381 (-521))))) (($ $) 49 (|has| |#1| (-513)))) (-3800 ((|#1| $ (-381 (-521))) 59)) (-1671 (((-3 $ "failed") $) 48 (|has| |#1| (-133)))) (-3846 (((-707)) 29)) (-1893 ((|#1| $) 102)) (-1759 (($ $) 141 (|has| |#1| (-37 (-381 (-521)))))) (-2832 (($ $) 129 (|has| |#1| (-37 (-381 (-521)))))) (-4210 (((-108) $ $) 53 (|has| |#1| (-513)))) (-1745 (($ $) 140 (|has| |#1| (-37 (-381 (-521)))))) (-2811 (($ $) 128 (|has| |#1| (-37 (-381 (-521)))))) (-1776 (($ $) 139 (|has| |#1| (-37 (-381 (-521)))))) (-2856 (($ $) 127 (|has| |#1| (-37 (-381 (-521)))))) (-3894 ((|#1| $ (-381 (-521))) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-381 (-521))))) (|has| |#1| (-15 -2189 (|#1| (-1084))))))) (-3919 (($ $) 138 (|has| |#1| (-37 (-381 (-521)))))) (-2868 (($ $) 126 (|has| |#1| (-37 (-381 (-521)))))) (-1768 (($ $) 137 (|has| |#1| (-37 (-381 (-521)))))) (-2844 (($ $) 125 (|has| |#1| (-37 (-381 (-521)))))) (-1752 (($ $) 136 (|has| |#1| (-37 (-381 (-521)))))) (-2821 (($ $) 124 (|has| |#1| (-37 (-381 (-521)))))) (-3505 (($ $ (-850)) 26) (($ $ (-707)) 33) (($ $ (-521)) 166 (|has| |#1| (-337)))) (-3561 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-2212 (($ $ (-587 (-1084)) (-587 (-707))) 93 (-12 (|has| |#1| (-829 (-1084))) (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))))) (($ $ (-1084) (-707)) 92 (-12 (|has| |#1| (-829 (-1084))) (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))))) (($ $ (-587 (-1084))) 91 (-12 (|has| |#1| (-829 (-1084))) (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))))) (($ $ (-1084)) 90 (-12 (|has| |#1| (-829 (-1084))) (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))))) (($ $ (-707)) 85 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))))) (-1531 (((-108) $ $) 6)) (-1620 (($ $ |#1|) 58 (|has| |#1| (-337))) (($ $ $) 168 (|has| |#1| (-337)))) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-707)) 32) (($ $ (-521)) 167 (|has| |#1| (-337))) (($ $ $) 144 (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) 115 (|has| |#1| (-37 (-381 (-521)))))) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-381 (-521)) $) 56 (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) 55 (|has| |#1| (-37 (-381 (-521)))))))
+(((-1146 |#1|) (-1196) (-970)) (T -1146))
+((-2770 (*1 *1 *2 *3) (-12 (-5 *2 (-707)) (-5 *3 (-1065 (-2 (|:| |k| (-381 (-521))) (|:| |c| *4)))) (-4 *4 (-970)) (-4 *1 (-1146 *4)))) (-1993 (*1 *1 *1 *2) (-12 (-5 *2 (-381 (-521))) (-4 *1 (-1146 *3)) (-4 *3 (-970)))) (-2184 (*1 *1 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-970)) (-4 *2 (-37 (-381 (-521)))))) (-2184 (*1 *1 *1 *2) (-3703 (-12 (-5 *2 (-1084)) (-4 *1 (-1146 *3)) (-4 *3 (-970)) (-12 (-4 *3 (-29 (-521))) (-4 *3 (-887)) (-4 *3 (-1105)) (-4 *3 (-37 (-381 (-521)))))) (-12 (-5 *2 (-1084)) (-4 *1 (-1146 *3)) (-4 *3 (-970)) (-12 (|has| *3 (-15 -4084 ((-587 *2) *3))) (|has| *3 (-15 -2184 (*3 *3 *2))) (-4 *3 (-37 (-381 (-521)))))))))
+(-13 (-1143 |t#1| (-381 (-521))) (-10 -8 (-15 -2770 ($ (-707) (-1065 (-2 (|:| |k| (-381 (-521))) (|:| |c| |t#1|))))) (-15 -1993 ($ $ (-381 (-521)))) (IF (|has| |t#1| (-37 (-381 (-521)))) (PROGN (-15 -2184 ($ $)) (IF (|has| |t#1| (-15 -2184 (|t#1| |t#1| (-1084)))) (IF (|has| |t#1| (-15 -4084 ((-587 (-1084)) |t#1|))) (-15 -2184 ($ $ (-1084))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1105)) (IF (|has| |t#1| (-887)) (IF (|has| |t#1| (-29 (-521))) (-15 -2184 ($ $ (-1084))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-927)) (-6 (-1105))) |%noBranch|) (IF (|has| |t#1| (-337)) (-6 (-337)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-381 (-521))) . T) ((-25) . T) ((-37 #1=(-381 (-521))) -3703 (|has| |#1| (-337)) (|has| |#1| (-37 (-381 (-521))))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) -3703 (|has| |#1| (-513)) (|has| |#1| (-337))) ((-34) |has| |#1| (-37 (-381 (-521)))) ((-91) |has| |#1| (-37 (-381 (-521)))) ((-97) . T) ((-107 #1# #1#) -3703 (|has| |#1| (-337)) (|has| |#1| (-37 (-381 (-521))))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3703 (|has| |#1| (-513)) (|has| |#1| (-337)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-561 (-792)) . T) ((-157) -3703 (|has| |#1| (-513)) (|has| |#1| (-337)) (|has| |#1| (-157))) ((-210) |has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) ((-220) |has| |#1| (-337)) ((-259) |has| |#1| (-37 (-381 (-521)))) ((-261 $ $) |has| (-381 (-521)) (-1025)) ((-265) -3703 (|has| |#1| (-513)) (|has| |#1| (-337))) ((-282) |has| |#1| (-337)) ((-337) |has| |#1| (-337)) ((-425) |has| |#1| (-337)) ((-462) |has| |#1| (-37 (-381 (-521)))) ((-513) -3703 (|has| |#1| (-513)) (|has| |#1| (-337))) ((-589 #1#) -3703 (|has| |#1| (-337)) (|has| |#1| (-37 (-381 (-521))))) ((-589 |#1|) . T) ((-589 $) . T) ((-654 #1#) -3703 (|has| |#1| (-337)) (|has| |#1| (-37 (-381 (-521))))) ((-654 |#1|) |has| |#1| (-157)) ((-654 $) -3703 (|has| |#1| (-513)) (|has| |#1| (-337))) ((-663) . T) ((-829 (-1084)) -12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-829 (-1084)))) ((-899 |#1| #0# (-998)) . T) ((-849) |has| |#1| (-337)) ((-927) |has| |#1| (-37 (-381 (-521)))) ((-976 #1#) -3703 (|has| |#1| (-337)) (|has| |#1| (-37 (-381 (-521))))) ((-976 |#1|) . T) ((-976 $) -3703 (|has| |#1| (-513)) (|has| |#1| (-337)) (|has| |#1| (-157))) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T) ((-1105) |has| |#1| (-37 (-381 (-521)))) ((-1108) |has| |#1| (-37 (-381 (-521)))) ((-1123) |has| |#1| (-337)) ((-1143 |#1| #0#) . T))
+((-2220 (((-108) $) 12)) (-1297 (((-3 |#3| "failed") $) 17)) (-1483 ((|#3| $) 14)))
+(((-1147 |#1| |#2| |#3|) (-10 -8 (-15 -1483 (|#3| |#1|)) (-15 -1297 ((-3 |#3| "failed") |#1|)) (-15 -2220 ((-108) |#1|))) (-1148 |#2| |#3|) (-970) (-1125 |#2|)) (T -1147))
+NIL
+(-10 -8 (-15 -1483 (|#3| |#1|)) (-15 -1297 ((-3 |#3| "failed") |#1|)) (-15 -2220 ((-108) |#1|)))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-4084 (((-587 (-998)) $) 74)) (-1611 (((-1084) $) 103)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) 51 (|has| |#1| (-513)))) (-2559 (($ $) 52 (|has| |#1| (-513)))) (-1733 (((-108) $) 54 (|has| |#1| (-513)))) (-2977 (($ $ (-381 (-521))) 98) (($ $ (-381 (-521)) (-381 (-521))) 97)) (-3423 (((-1065 (-2 (|:| |k| (-381 (-521))) (|:| |c| |#1|))) $) 105)) (-2904 (($ $) 135 (|has| |#1| (-37 (-381 (-521)))))) (-2769 (($ $) 118 (|has| |#1| (-37 (-381 (-521)))))) (-1232 (((-3 $ "failed") $ $) 19)) (-3063 (($ $) 162 (|has| |#1| (-337)))) (-3358 (((-392 $) $) 163 (|has| |#1| (-337)))) (-1927 (($ $) 117 (|has| |#1| (-37 (-381 (-521)))))) (-1389 (((-108) $ $) 153 (|has| |#1| (-337)))) (-2880 (($ $) 134 (|has| |#1| (-37 (-381 (-521)))))) (-2746 (($ $) 119 (|has| |#1| (-37 (-381 (-521)))))) (-2770 (($ (-707) (-1065 (-2 (|:| |k| (-381 (-521))) (|:| |c| |#1|)))) 172)) (-2926 (($ $) 133 (|has| |#1| (-37 (-381 (-521)))))) (-2790 (($ $) 120 (|has| |#1| (-37 (-381 (-521)))))) (-2547 (($) 17 T CONST)) (-1297 (((-3 |#2| "failed") $) 183)) (-1483 ((|#2| $) 182)) (-2277 (($ $ $) 157 (|has| |#1| (-337)))) (-3152 (($ $) 60)) (-1257 (((-3 $ "failed") $) 34)) (-1516 (((-381 (-521)) $) 180)) (-2253 (($ $ $) 156 (|has| |#1| (-337)))) (-3075 (($ (-381 (-521)) |#2|) 181)) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) 151 (|has| |#1| (-337)))) (-2710 (((-108) $) 164 (|has| |#1| (-337)))) (-1325 (((-108) $) 73)) (-2834 (($) 145 (|has| |#1| (-37 (-381 (-521)))))) (-2733 (((-381 (-521)) $) 100) (((-381 (-521)) $ (-381 (-521))) 99)) (-3996 (((-108) $) 31)) (-3407 (($ $ (-521)) 116 (|has| |#1| (-37 (-381 (-521)))))) (-1993 (($ $ (-850)) 101) (($ $ (-381 (-521))) 171)) (-1546 (((-3 (-587 $) "failed") (-587 $) $) 160 (|has| |#1| (-337)))) (-3649 (((-108) $) 62)) (-4043 (($ |#1| (-381 (-521))) 61) (($ $ (-998) (-381 (-521))) 76) (($ $ (-587 (-998)) (-587 (-381 (-521)))) 75)) (-1390 (($ (-1 |#1| |#1|) $) 63)) (-1253 (($ $) 142 (|has| |#1| (-37 (-381 (-521)))))) (-3125 (($ $) 65)) (-3135 ((|#1| $) 66)) (-2223 (($ (-587 $)) 149 (|has| |#1| (-337))) (($ $ $) 148 (|has| |#1| (-337)))) (-2718 ((|#2| $) 179)) (-1401 (((-3 |#2| "failed") $) 177)) (-3065 ((|#2| $) 178)) (-3688 (((-1067) $) 9)) (-3095 (($ $) 165 (|has| |#1| (-337)))) (-2184 (($ $) 170 (|has| |#1| (-37 (-381 (-521))))) (($ $ (-1084)) 169 (-3703 (-12 (|has| |#1| (-29 (-521))) (|has| |#1| (-887)) (|has| |#1| (-1105)) (|has| |#1| (-37 (-381 (-521))))) (-12 (|has| |#1| (-15 -4084 ((-587 (-1084)) |#1|))) (|has| |#1| (-15 -2184 (|#1| |#1| (-1084)))) (|has| |#1| (-37 (-381 (-521)))))))) (-4147 (((-1031) $) 10)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) 150 (|has| |#1| (-337)))) (-2258 (($ (-587 $)) 147 (|has| |#1| (-337))) (($ $ $) 146 (|has| |#1| (-337)))) (-1916 (((-392 $) $) 161 (|has| |#1| (-337)))) (-1962 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-337))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) 158 (|has| |#1| (-337)))) (-2447 (($ $ (-381 (-521))) 95)) (-2230 (((-3 $ "failed") $ $) 50 (|has| |#1| (-513)))) (-3854 (((-3 (-587 $) "failed") (-587 $) $) 152 (|has| |#1| (-337)))) (-3261 (($ $) 143 (|has| |#1| (-37 (-381 (-521)))))) (-2288 (((-1065 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-381 (-521))))))) (-4196 (((-707) $) 154 (|has| |#1| (-337)))) (-2544 ((|#1| $ (-381 (-521))) 104) (($ $ $) 81 (|has| (-381 (-521)) (-1025)))) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) 155 (|has| |#1| (-337)))) (-2156 (($ $ (-587 (-1084)) (-587 (-707))) 89 (-12 (|has| |#1| (-829 (-1084))) (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))))) (($ $ (-1084) (-707)) 88 (-12 (|has| |#1| (-829 (-1084))) (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))))) (($ $ (-587 (-1084))) 87 (-12 (|has| |#1| (-829 (-1084))) (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))))) (($ $ (-1084)) 86 (-12 (|has| |#1| (-829 (-1084))) (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))))) (($ $ (-707)) 84 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))))) (-1994 (((-381 (-521)) $) 64)) (-1738 (($ $) 132 (|has| |#1| (-37 (-381 (-521)))))) (-2800 (($ $) 121 (|has| |#1| (-37 (-381 (-521)))))) (-2915 (($ $) 131 (|has| |#1| (-37 (-381 (-521)))))) (-2780 (($ $) 122 (|has| |#1| (-37 (-381 (-521)))))) (-2892 (($ $) 130 (|has| |#1| (-37 (-381 (-521)))))) (-2758 (($ $) 123 (|has| |#1| (-37 (-381 (-521)))))) (-3448 (($ $) 72)) (-2189 (((-792) $) 11) (($ (-521)) 28) (($ |#1|) 47 (|has| |#1| (-157))) (($ |#2|) 184) (($ (-381 (-521))) 57 (|has| |#1| (-37 (-381 (-521))))) (($ $) 49 (|has| |#1| (-513)))) (-3800 ((|#1| $ (-381 (-521))) 59)) (-1671 (((-3 $ "failed") $) 48 (|has| |#1| (-133)))) (-3846 (((-707)) 29)) (-1893 ((|#1| $) 102)) (-1759 (($ $) 141 (|has| |#1| (-37 (-381 (-521)))))) (-2832 (($ $) 129 (|has| |#1| (-37 (-381 (-521)))))) (-4210 (((-108) $ $) 53 (|has| |#1| (-513)))) (-1745 (($ $) 140 (|has| |#1| (-37 (-381 (-521)))))) (-2811 (($ $) 128 (|has| |#1| (-37 (-381 (-521)))))) (-1776 (($ $) 139 (|has| |#1| (-37 (-381 (-521)))))) (-2856 (($ $) 127 (|has| |#1| (-37 (-381 (-521)))))) (-3894 ((|#1| $ (-381 (-521))) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-381 (-521))))) (|has| |#1| (-15 -2189 (|#1| (-1084))))))) (-3919 (($ $) 138 (|has| |#1| (-37 (-381 (-521)))))) (-2868 (($ $) 126 (|has| |#1| (-37 (-381 (-521)))))) (-1768 (($ $) 137 (|has| |#1| (-37 (-381 (-521)))))) (-2844 (($ $) 125 (|has| |#1| (-37 (-381 (-521)))))) (-1752 (($ $) 136 (|has| |#1| (-37 (-381 (-521)))))) (-2821 (($ $) 124 (|has| |#1| (-37 (-381 (-521)))))) (-3505 (($ $ (-850)) 26) (($ $ (-707)) 33) (($ $ (-521)) 166 (|has| |#1| (-337)))) (-3561 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-2212 (($ $ (-587 (-1084)) (-587 (-707))) 93 (-12 (|has| |#1| (-829 (-1084))) (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))))) (($ $ (-1084) (-707)) 92 (-12 (|has| |#1| (-829 (-1084))) (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))))) (($ $ (-587 (-1084))) 91 (-12 (|has| |#1| (-829 (-1084))) (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))))) (($ $ (-1084)) 90 (-12 (|has| |#1| (-829 (-1084))) (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))))) (($ $ (-707)) 85 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))))) (-1531 (((-108) $ $) 6)) (-1620 (($ $ |#1|) 58 (|has| |#1| (-337))) (($ $ $) 168 (|has| |#1| (-337)))) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-707)) 32) (($ $ (-521)) 167 (|has| |#1| (-337))) (($ $ $) 144 (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) 115 (|has| |#1| (-37 (-381 (-521)))))) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-381 (-521)) $) 56 (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) 55 (|has| |#1| (-37 (-381 (-521)))))))
+(((-1148 |#1| |#2|) (-1196) (-970) (-1125 |t#1|)) (T -1148))
+((-1994 (*1 *2 *1) (-12 (-4 *1 (-1148 *3 *4)) (-4 *3 (-970)) (-4 *4 (-1125 *3)) (-5 *2 (-381 (-521))))) (-2189 (*1 *1 *2) (-12 (-4 *3 (-970)) (-4 *1 (-1148 *3 *2)) (-4 *2 (-1125 *3)))) (-3075 (*1 *1 *2 *3) (-12 (-5 *2 (-381 (-521))) (-4 *4 (-970)) (-4 *1 (-1148 *4 *3)) (-4 *3 (-1125 *4)))) (-1516 (*1 *2 *1) (-12 (-4 *1 (-1148 *3 *4)) (-4 *3 (-970)) (-4 *4 (-1125 *3)) (-5 *2 (-381 (-521))))) (-2718 (*1 *2 *1) (-12 (-4 *1 (-1148 *3 *2)) (-4 *3 (-970)) (-4 *2 (-1125 *3)))) (-3065 (*1 *2 *1) (-12 (-4 *1 (-1148 *3 *2)) (-4 *3 (-970)) (-4 *2 (-1125 *3)))) (-1401 (*1 *2 *1) (|partial| -12 (-4 *1 (-1148 *3 *2)) (-4 *3 (-970)) (-4 *2 (-1125 *3)))))
+(-13 (-1146 |t#1|) (-961 |t#2|) (-10 -8 (-15 -3075 ($ (-381 (-521)) |t#2|)) (-15 -1516 ((-381 (-521)) $)) (-15 -2718 (|t#2| $)) (-15 -1994 ((-381 (-521)) $)) (-15 -2189 ($ |t#2|)) (-15 -3065 (|t#2| $)) (-15 -1401 ((-3 |t#2| "failed") $))))
+(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-381 (-521))) . T) ((-25) . T) ((-37 #1=(-381 (-521))) -3703 (|has| |#1| (-337)) (|has| |#1| (-37 (-381 (-521))))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) -3703 (|has| |#1| (-513)) (|has| |#1| (-337))) ((-34) |has| |#1| (-37 (-381 (-521)))) ((-91) |has| |#1| (-37 (-381 (-521)))) ((-97) . T) ((-107 #1# #1#) -3703 (|has| |#1| (-337)) (|has| |#1| (-37 (-381 (-521))))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3703 (|has| |#1| (-513)) (|has| |#1| (-337)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-561 (-792)) . T) ((-157) -3703 (|has| |#1| (-513)) (|has| |#1| (-337)) (|has| |#1| (-157))) ((-210) |has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) ((-220) |has| |#1| (-337)) ((-259) |has| |#1| (-37 (-381 (-521)))) ((-261 $ $) |has| (-381 (-521)) (-1025)) ((-265) -3703 (|has| |#1| (-513)) (|has| |#1| (-337))) ((-282) |has| |#1| (-337)) ((-337) |has| |#1| (-337)) ((-425) |has| |#1| (-337)) ((-462) |has| |#1| (-37 (-381 (-521)))) ((-513) -3703 (|has| |#1| (-513)) (|has| |#1| (-337))) ((-589 #1#) -3703 (|has| |#1| (-337)) (|has| |#1| (-37 (-381 (-521))))) ((-589 |#1|) . T) ((-589 $) . T) ((-654 #1#) -3703 (|has| |#1| (-337)) (|has| |#1| (-37 (-381 (-521))))) ((-654 |#1|) |has| |#1| (-157)) ((-654 $) -3703 (|has| |#1| (-513)) (|has| |#1| (-337))) ((-663) . T) ((-829 (-1084)) -12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-829 (-1084)))) ((-899 |#1| #0# (-998)) . T) ((-849) |has| |#1| (-337)) ((-927) |has| |#1| (-37 (-381 (-521)))) ((-961 |#2|) . T) ((-976 #1#) -3703 (|has| |#1| (-337)) (|has| |#1| (-37 (-381 (-521))))) ((-976 |#1|) . T) ((-976 $) -3703 (|has| |#1| (-513)) (|has| |#1| (-337)) (|has| |#1| (-157))) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T) ((-1105) |has| |#1| (-37 (-381 (-521)))) ((-1108) |has| |#1| (-37 (-381 (-521)))) ((-1123) |has| |#1| (-337)) ((-1143 |#1| #0#) . T) ((-1146 |#1|) . T))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-4084 (((-587 (-998)) $) NIL)) (-1611 (((-1084) $) 96)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) NIL (|has| |#1| (-513)))) (-2559 (($ $) NIL (|has| |#1| (-513)))) (-1733 (((-108) $) NIL (|has| |#1| (-513)))) (-2977 (($ $ (-381 (-521))) 106) (($ $ (-381 (-521)) (-381 (-521))) 108)) (-3423 (((-1065 (-2 (|:| |k| (-381 (-521))) (|:| |c| |#1|))) $) 51)) (-2904 (($ $) 179 (|has| |#1| (-37 (-381 (-521)))))) (-2769 (($ $) 155 (|has| |#1| (-37 (-381 (-521)))))) (-1232 (((-3 $ "failed") $ $) NIL)) (-3063 (($ $) NIL (|has| |#1| (-337)))) (-3358 (((-392 $) $) NIL (|has| |#1| (-337)))) (-1927 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-1389 (((-108) $ $) NIL (|has| |#1| (-337)))) (-2880 (($ $) 175 (|has| |#1| (-37 (-381 (-521)))))) (-2746 (($ $) 151 (|has| |#1| (-37 (-381 (-521)))))) (-2770 (($ (-707) (-1065 (-2 (|:| |k| (-381 (-521))) (|:| |c| |#1|)))) 61)) (-2926 (($ $) 183 (|has| |#1| (-37 (-381 (-521)))))) (-2790 (($ $) 159 (|has| |#1| (-37 (-381 (-521)))))) (-2547 (($) NIL T CONST)) (-1297 (((-3 |#2| "failed") $) NIL)) (-1483 ((|#2| $) NIL)) (-2277 (($ $ $) NIL (|has| |#1| (-337)))) (-3152 (($ $) NIL)) (-1257 (((-3 $ "failed") $) 79)) (-1516 (((-381 (-521)) $) 12)) (-2253 (($ $ $) NIL (|has| |#1| (-337)))) (-3075 (($ (-381 (-521)) |#2|) 10)) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) NIL (|has| |#1| (-337)))) (-2710 (((-108) $) NIL (|has| |#1| (-337)))) (-1325 (((-108) $) 68)) (-2834 (($) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2733 (((-381 (-521)) $) 103) (((-381 (-521)) $ (-381 (-521))) 104)) (-3996 (((-108) $) NIL)) (-3407 (($ $ (-521)) NIL (|has| |#1| (-37 (-381 (-521)))))) (-1993 (($ $ (-850)) 120) (($ $ (-381 (-521))) 118)) (-1546 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| |#1| (-337)))) (-3649 (((-108) $) NIL)) (-4043 (($ |#1| (-381 (-521))) 31) (($ $ (-998) (-381 (-521))) NIL) (($ $ (-587 (-998)) (-587 (-381 (-521)))) NIL)) (-1390 (($ (-1 |#1| |#1|) $) 115)) (-1253 (($ $) 149 (|has| |#1| (-37 (-381 (-521)))))) (-3125 (($ $) NIL)) (-3135 ((|#1| $) NIL)) (-2223 (($ (-587 $)) NIL (|has| |#1| (-337))) (($ $ $) NIL (|has| |#1| (-337)))) (-2718 ((|#2| $) 11)) (-1401 (((-3 |#2| "failed") $) 41)) (-3065 ((|#2| $) 42)) (-3688 (((-1067) $) NIL)) (-3095 (($ $) 93 (|has| |#1| (-337)))) (-2184 (($ $) 135 (|has| |#1| (-37 (-381 (-521))))) (($ $ (-1084)) 140 (-3703 (-12 (|has| |#1| (-15 -2184 (|#1| |#1| (-1084)))) (|has| |#1| (-15 -4084 ((-587 (-1084)) |#1|))) (|has| |#1| (-37 (-381 (-521))))) (-12 (|has| |#1| (-29 (-521))) (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-887)) (|has| |#1| (-1105)))))) (-4147 (((-1031) $) NIL)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) NIL (|has| |#1| (-337)))) (-2258 (($ (-587 $)) NIL (|has| |#1| (-337))) (($ $ $) NIL (|has| |#1| (-337)))) (-1916 (((-392 $) $) NIL (|has| |#1| (-337)))) (-1962 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-337))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL (|has| |#1| (-337)))) (-2447 (($ $ (-381 (-521))) 112)) (-2230 (((-3 $ "failed") $ $) NIL (|has| |#1| (-513)))) (-3854 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| |#1| (-337)))) (-3261 (($ $) 147 (|has| |#1| (-37 (-381 (-521)))))) (-2288 (((-1065 |#1|) $ |#1|) 90 (|has| |#1| (-15 ** (|#1| |#1| (-381 (-521))))))) (-4196 (((-707) $) NIL (|has| |#1| (-337)))) (-2544 ((|#1| $ (-381 (-521))) 100) (($ $ $) 86 (|has| (-381 (-521)) (-1025)))) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) NIL (|has| |#1| (-337)))) (-2156 (($ $ (-587 (-1084)) (-587 (-707))) NIL (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-829 (-1084))))) (($ $ (-1084) (-707)) NIL (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-829 (-1084))))) (($ $ (-587 (-1084))) NIL (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-829 (-1084))))) (($ $ (-1084)) 127 (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-829 (-1084))))) (($ $ (-707)) NIL (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|)))) (($ $) 124 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))))) (-1994 (((-381 (-521)) $) 16)) (-1738 (($ $) 185 (|has| |#1| (-37 (-381 (-521)))))) (-2800 (($ $) 161 (|has| |#1| (-37 (-381 (-521)))))) (-2915 (($ $) 181 (|has| |#1| (-37 (-381 (-521)))))) (-2780 (($ $) 157 (|has| |#1| (-37 (-381 (-521)))))) (-2892 (($ $) 177 (|has| |#1| (-37 (-381 (-521)))))) (-2758 (($ $) 153 (|has| |#1| (-37 (-381 (-521)))))) (-3448 (($ $) 110)) (-2189 (((-792) $) NIL) (($ (-521)) 35) (($ |#1|) 27 (|has| |#1| (-157))) (($ |#2|) 32) (($ (-381 (-521))) 128 (|has| |#1| (-37 (-381 (-521))))) (($ $) NIL (|has| |#1| (-513)))) (-3800 ((|#1| $ (-381 (-521))) 99)) (-1671 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-3846 (((-707)) 117)) (-1893 ((|#1| $) 98)) (-1759 (($ $) 191 (|has| |#1| (-37 (-381 (-521)))))) (-2832 (($ $) 167 (|has| |#1| (-37 (-381 (-521)))))) (-4210 (((-108) $ $) NIL (|has| |#1| (-513)))) (-1745 (($ $) 187 (|has| |#1| (-37 (-381 (-521)))))) (-2811 (($ $) 163 (|has| |#1| (-37 (-381 (-521)))))) (-1776 (($ $) 195 (|has| |#1| (-37 (-381 (-521)))))) (-2856 (($ $) 171 (|has| |#1| (-37 (-381 (-521)))))) (-3894 ((|#1| $ (-381 (-521))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-381 (-521))))) (|has| |#1| (-15 -2189 (|#1| (-1084))))))) (-3919 (($ $) 197 (|has| |#1| (-37 (-381 (-521)))))) (-2868 (($ $) 173 (|has| |#1| (-37 (-381 (-521)))))) (-1768 (($ $) 193 (|has| |#1| (-37 (-381 (-521)))))) (-2844 (($ $) 169 (|has| |#1| (-37 (-381 (-521)))))) (-1752 (($ $) 189 (|has| |#1| (-37 (-381 (-521)))))) (-2821 (($ $) 165 (|has| |#1| (-37 (-381 (-521)))))) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL (|has| |#1| (-337)))) (-3561 (($) 21 T CONST)) (-3572 (($) 17 T CONST)) (-2212 (($ $ (-587 (-1084)) (-587 (-707))) NIL (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-829 (-1084))))) (($ $ (-1084) (-707)) NIL (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-829 (-1084))))) (($ $ (-587 (-1084))) NIL (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-829 (-1084))))) (($ $ (-1084)) NIL (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-829 (-1084))))) (($ $ (-707)) NIL (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))))) (-1531 (((-108) $ $) 66)) (-1620 (($ $ |#1|) NIL (|has| |#1| (-337))) (($ $ $) 92 (|has| |#1| (-337)))) (-1612 (($ $) 131) (($ $ $) 72)) (-1602 (($ $ $) 70)) (** (($ $ (-850)) NIL) (($ $ (-707)) 76) (($ $ (-521)) 144 (|has| |#1| (-337))) (($ $ $) NIL (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) 145 (|has| |#1| (-37 (-381 (-521)))))) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) 74) (($ $ |#1|) NIL) (($ |#1| $) 126) (($ (-381 (-521)) $) NIL (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) NIL (|has| |#1| (-37 (-381 (-521)))))))
+(((-1149 |#1| |#2|) (-1148 |#1| |#2|) (-970) (-1125 |#1|)) (T -1149))
+NIL
+(-1148 |#1| |#2|)
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-4084 (((-587 (-998)) $) NIL)) (-1611 (((-1084) $) 11)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) NIL (|has| |#1| (-513)))) (-2559 (($ $) NIL (|has| |#1| (-513)))) (-1733 (((-108) $) NIL (|has| |#1| (-513)))) (-2977 (($ $ (-381 (-521))) NIL) (($ $ (-381 (-521)) (-381 (-521))) NIL)) (-3423 (((-1065 (-2 (|:| |k| (-381 (-521))) (|:| |c| |#1|))) $) NIL)) (-2904 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2769 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-1232 (((-3 $ "failed") $ $) NIL)) (-3063 (($ $) NIL (|has| |#1| (-337)))) (-3358 (((-392 $) $) NIL (|has| |#1| (-337)))) (-1927 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-1389 (((-108) $ $) NIL (|has| |#1| (-337)))) (-2880 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2746 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2770 (($ (-707) (-1065 (-2 (|:| |k| (-381 (-521))) (|:| |c| |#1|)))) NIL)) (-2926 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2790 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2547 (($) NIL T CONST)) (-1297 (((-3 (-1129 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1157 |#1| |#2| |#3|) "failed") $) 22)) (-1483 (((-1129 |#1| |#2| |#3|) $) NIL) (((-1157 |#1| |#2| |#3|) $) NIL)) (-2277 (($ $ $) NIL (|has| |#1| (-337)))) (-3152 (($ $) NIL)) (-1257 (((-3 $ "failed") $) NIL)) (-1516 (((-381 (-521)) $) 57)) (-2253 (($ $ $) NIL (|has| |#1| (-337)))) (-3075 (($ (-381 (-521)) (-1129 |#1| |#2| |#3|)) NIL)) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) NIL (|has| |#1| (-337)))) (-2710 (((-108) $) NIL (|has| |#1| (-337)))) (-1325 (((-108) $) NIL)) (-2834 (($) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2733 (((-381 (-521)) $) NIL) (((-381 (-521)) $ (-381 (-521))) NIL)) (-3996 (((-108) $) NIL)) (-3407 (($ $ (-521)) NIL (|has| |#1| (-37 (-381 (-521)))))) (-1993 (($ $ (-850)) NIL) (($ $ (-381 (-521))) NIL)) (-1546 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| |#1| (-337)))) (-3649 (((-108) $) NIL)) (-4043 (($ |#1| (-381 (-521))) 29) (($ $ (-998) (-381 (-521))) NIL) (($ $ (-587 (-998)) (-587 (-381 (-521)))) NIL)) (-1390 (($ (-1 |#1| |#1|) $) NIL)) (-1253 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3125 (($ $) NIL)) (-3135 ((|#1| $) NIL)) (-2223 (($ (-587 $)) NIL (|has| |#1| (-337))) (($ $ $) NIL (|has| |#1| (-337)))) (-2718 (((-1129 |#1| |#2| |#3|) $) 60)) (-1401 (((-3 (-1129 |#1| |#2| |#3|) "failed") $) NIL)) (-3065 (((-1129 |#1| |#2| |#3|) $) NIL)) (-3688 (((-1067) $) NIL)) (-3095 (($ $) NIL (|has| |#1| (-337)))) (-2184 (($ $) 38 (|has| |#1| (-37 (-381 (-521))))) (($ $ (-1084)) NIL (-3703 (-12 (|has| |#1| (-15 -2184 (|#1| |#1| (-1084)))) (|has| |#1| (-15 -4084 ((-587 (-1084)) |#1|))) (|has| |#1| (-37 (-381 (-521))))) (-12 (|has| |#1| (-29 (-521))) (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-887)) (|has| |#1| (-1105))))) (($ $ (-1161 |#2|)) 39 (|has| |#1| (-37 (-381 (-521)))))) (-4147 (((-1031) $) NIL)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) NIL (|has| |#1| (-337)))) (-2258 (($ (-587 $)) NIL (|has| |#1| (-337))) (($ $ $) NIL (|has| |#1| (-337)))) (-1916 (((-392 $) $) NIL (|has| |#1| (-337)))) (-1962 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-337))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL (|has| |#1| (-337)))) (-2447 (($ $ (-381 (-521))) NIL)) (-2230 (((-3 $ "failed") $ $) NIL (|has| |#1| (-513)))) (-3854 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| |#1| (-337)))) (-3261 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2288 (((-1065 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-381 (-521))))))) (-4196 (((-707) $) NIL (|has| |#1| (-337)))) (-2544 ((|#1| $ (-381 (-521))) NIL) (($ $ $) NIL (|has| (-381 (-521)) (-1025)))) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) NIL (|has| |#1| (-337)))) (-2156 (($ $ (-587 (-1084)) (-587 (-707))) NIL (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-829 (-1084))))) (($ $ (-1084) (-707)) NIL (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-829 (-1084))))) (($ $ (-587 (-1084))) NIL (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-829 (-1084))))) (($ $ (-1084)) NIL (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-829 (-1084))))) (($ $ (-707)) NIL (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|)))) (($ $) 36 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|)))) (($ $ (-1161 |#2|)) 37)) (-1994 (((-381 (-521)) $) NIL)) (-1738 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2800 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2915 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2780 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2892 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2758 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3448 (($ $) NIL)) (-2189 (((-792) $) 88) (($ (-521)) NIL) (($ |#1|) NIL (|has| |#1| (-157))) (($ (-1129 |#1| |#2| |#3|)) 16) (($ (-1157 |#1| |#2| |#3|)) 17) (($ (-1161 |#2|)) 35) (($ (-381 (-521))) NIL (|has| |#1| (-37 (-381 (-521))))) (($ $) NIL (|has| |#1| (-513)))) (-3800 ((|#1| $ (-381 (-521))) NIL)) (-1671 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-3846 (((-707)) NIL)) (-1893 ((|#1| $) 12)) (-1759 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2832 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-4210 (((-108) $ $) NIL (|has| |#1| (-513)))) (-1745 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2811 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-1776 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2856 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3894 ((|#1| $ (-381 (-521))) 62 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-381 (-521))))) (|has| |#1| (-15 -2189 (|#1| (-1084))))))) (-3919 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2868 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-1768 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2844 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-1752 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2821 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL (|has| |#1| (-337)))) (-3561 (($) 31 T CONST)) (-3572 (($) 26 T CONST)) (-2212 (($ $ (-587 (-1084)) (-587 (-707))) NIL (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-829 (-1084))))) (($ $ (-1084) (-707)) NIL (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-829 (-1084))))) (($ $ (-587 (-1084))) NIL (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-829 (-1084))))) (($ $ (-1084)) NIL (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-829 (-1084))))) (($ $ (-707)) NIL (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))))) (-1531 (((-108) $ $) NIL)) (-1620 (($ $ |#1|) NIL (|has| |#1| (-337))) (($ $ $) NIL (|has| |#1| (-337)))) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) 33)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL (|has| |#1| (-337))) (($ $ $) NIL (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) NIL (|has| |#1| (-37 (-381 (-521)))))) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-381 (-521)) $) NIL (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) NIL (|has| |#1| (-37 (-381 (-521)))))))
+(((-1150 |#1| |#2| |#3|) (-13 (-1148 |#1| (-1129 |#1| |#2| |#3|)) (-961 (-1157 |#1| |#2| |#3|)) (-10 -8 (-15 -2189 ($ (-1161 |#2|))) (-15 -2156 ($ $ (-1161 |#2|))) (IF (|has| |#1| (-37 (-381 (-521)))) (-15 -2184 ($ $ (-1161 |#2|))) |%noBranch|))) (-970) (-1084) |#1|) (T -1150))
+((-2189 (*1 *1 *2) (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-1150 *3 *4 *5)) (-4 *3 (-970)) (-14 *5 *3))) (-2156 (*1 *1 *1 *2) (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-1150 *3 *4 *5)) (-4 *3 (-970)) (-14 *5 *3))) (-2184 (*1 *1 *1 *2) (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-1150 *3 *4 *5)) (-4 *3 (-37 (-381 (-521)))) (-4 *3 (-970)) (-14 *5 *3))))
+(-13 (-1148 |#1| (-1129 |#1| |#2| |#3|)) (-961 (-1157 |#1| |#2| |#3|)) (-10 -8 (-15 -2189 ($ (-1161 |#2|))) (-15 -2156 ($ $ (-1161 |#2|))) (IF (|has| |#1| (-37 (-381 (-521)))) (-15 -2184 ($ $ (-1161 |#2|))) |%noBranch|)))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) 32)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-2559 (($ $) NIL)) (-1733 (((-108) $) NIL)) (-1232 (((-3 $ "failed") $ $) NIL)) (-2547 (($) NIL T CONST)) (-1297 (((-3 (-521) "failed") $) NIL (|has| (-1150 |#2| |#3| |#4|) (-961 (-521)))) (((-3 (-381 (-521)) "failed") $) NIL (|has| (-1150 |#2| |#3| |#4|) (-961 (-381 (-521))))) (((-3 (-1150 |#2| |#3| |#4|) "failed") $) 20)) (-1483 (((-521) $) NIL (|has| (-1150 |#2| |#3| |#4|) (-961 (-521)))) (((-381 (-521)) $) NIL (|has| (-1150 |#2| |#3| |#4|) (-961 (-381 (-521))))) (((-1150 |#2| |#3| |#4|) $) NIL)) (-3152 (($ $) 33)) (-1257 (((-3 $ "failed") $) 25)) (-3666 (($ $) NIL (|has| (-1150 |#2| |#3| |#4|) (-425)))) (-3528 (($ $ (-1150 |#2| |#3| |#4|) (-293 |#2| |#3| |#4|) $) NIL)) (-3996 (((-108) $) NIL)) (-2678 (((-707) $) 11)) (-3649 (((-108) $) NIL)) (-4043 (($ (-1150 |#2| |#3| |#4|) (-293 |#2| |#3| |#4|)) 23)) (-3273 (((-293 |#2| |#3| |#4|) $) NIL)) (-3285 (($ (-1 (-293 |#2| |#3| |#4|) (-293 |#2| |#3| |#4|)) $) NIL)) (-1390 (($ (-1 (-1150 |#2| |#3| |#4|) (-1150 |#2| |#3| |#4|)) $) NIL)) (-2936 (((-3 (-777 |#2|) "failed") $) 73)) (-3125 (($ $) NIL)) (-3135 (((-1150 |#2| |#3| |#4|) $) 18)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-3105 (((-108) $) NIL)) (-3115 (((-1150 |#2| |#3| |#4|) $) NIL)) (-2230 (((-3 $ "failed") $ (-1150 |#2| |#3| |#4|)) NIL (|has| (-1150 |#2| |#3| |#4|) (-513))) (((-3 $ "failed") $ $) NIL)) (-1486 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1150 |#2| |#3| |#4|)) (|:| |%expon| (-293 |#2| |#3| |#4|)) (|:| |%expTerms| (-587 (-2 (|:| |k| (-381 (-521))) (|:| |c| |#2|)))))) (|:| |%type| (-1067))) "failed") $) 56)) (-1994 (((-293 |#2| |#3| |#4|) $) 14)) (-2403 (((-1150 |#2| |#3| |#4|) $) NIL (|has| (-1150 |#2| |#3| |#4|) (-425)))) (-2189 (((-792) $) NIL) (($ (-521)) NIL) (($ (-1150 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-381 (-521))) NIL (-3703 (|has| (-1150 |#2| |#3| |#4|) (-37 (-381 (-521)))) (|has| (-1150 |#2| |#3| |#4|) (-961 (-381 (-521))))))) (-1259 (((-587 (-1150 |#2| |#3| |#4|)) $) NIL)) (-3800 (((-1150 |#2| |#3| |#4|) $ (-293 |#2| |#3| |#4|)) NIL)) (-1671 (((-3 $ "failed") $) NIL (|has| (-1150 |#2| |#3| |#4|) (-133)))) (-3846 (((-707)) NIL)) (-1547 (($ $ $ (-707)) NIL (|has| (-1150 |#2| |#3| |#4|) (-157)))) (-4210 (((-108) $ $) NIL)) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (-3561 (($) 61 T CONST)) (-3572 (($) NIL T CONST)) (-1531 (((-108) $ $) NIL)) (-1620 (($ $ (-1150 |#2| |#3| |#4|)) NIL (|has| (-1150 |#2| |#3| |#4|) (-337)))) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ (-1150 |#2| |#3| |#4|)) NIL) (($ (-1150 |#2| |#3| |#4|) $) NIL) (($ (-381 (-521)) $) NIL (|has| (-1150 |#2| |#3| |#4|) (-37 (-381 (-521))))) (($ $ (-381 (-521))) NIL (|has| (-1150 |#2| |#3| |#4|) (-37 (-381 (-521)))))))
+(((-1151 |#1| |#2| |#3| |#4|) (-13 (-300 (-1150 |#2| |#3| |#4|) (-293 |#2| |#3| |#4|)) (-513) (-10 -8 (-15 -2936 ((-3 (-777 |#2|) "failed") $)) (-15 -1486 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1150 |#2| |#3| |#4|)) (|:| |%expon| (-293 |#2| |#3| |#4|)) (|:| |%expTerms| (-587 (-2 (|:| |k| (-381 (-521))) (|:| |c| |#2|)))))) (|:| |%type| (-1067))) "failed") $)))) (-13 (-784) (-961 (-521)) (-583 (-521)) (-425)) (-13 (-27) (-1105) (-404 |#1|)) (-1084) |#2|) (T -1151))
+((-2936 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-784) (-961 (-521)) (-583 (-521)) (-425))) (-5 *2 (-777 *4)) (-5 *1 (-1151 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1105) (-404 *3))) (-14 *5 (-1084)) (-14 *6 *4))) (-1486 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-784) (-961 (-521)) (-583 (-521)) (-425))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1150 *4 *5 *6)) (|:| |%expon| (-293 *4 *5 *6)) (|:| |%expTerms| (-587 (-2 (|:| |k| (-381 (-521))) (|:| |c| *4)))))) (|:| |%type| (-1067)))) (-5 *1 (-1151 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1105) (-404 *3))) (-14 *5 (-1084)) (-14 *6 *4))))
+(-13 (-300 (-1150 |#2| |#3| |#4|) (-293 |#2| |#3| |#4|)) (-513) (-10 -8 (-15 -2936 ((-3 (-777 |#2|) "failed") $)) (-15 -1486 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1150 |#2| |#3| |#4|)) (|:| |%expon| (-293 |#2| |#3| |#4|)) (|:| |%expTerms| (-587 (-2 (|:| |k| (-381 (-521))) (|:| |c| |#2|)))))) (|:| |%type| (-1067))) "failed") $))))
+((-3430 ((|#2| $) 29)) (-2092 ((|#2| $) 18)) (-3830 (($ $) 36)) (-3861 (($ $ (-521)) 64)) (-2978 (((-108) $ (-707)) 33)) (-2300 ((|#2| $ |#2|) 61)) (-1509 ((|#2| $ |#2|) 59)) (-2378 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 52) (($ $ "rest" $) 56) ((|#2| $ "last" |#2|) 54)) (-2675 (($ $ (-587 $)) 60)) (-2080 ((|#2| $) 17)) (-2306 (($ $) NIL) (($ $ (-707)) 42)) (-3186 (((-587 $) $) 26)) (-3651 (((-108) $ $) 50)) (-2139 (((-108) $ (-707)) 32)) (-3574 (((-108) $ (-707)) 31)) (-2229 (((-108) $) 28)) (-1441 ((|#2| $) 24) (($ $ (-707)) 46)) (-2544 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-2406 (((-108) $) 22)) (-3207 (($ $) 39)) (-2262 (($ $) 65)) (-3083 (((-707) $) 41)) (-3717 (($ $) 40)) (-4159 (($ $ $) 58) (($ |#2| $) NIL)) (-3098 (((-587 $) $) 27)) (-1531 (((-108) $ $) 48)) (-3475 (((-707) $) 35)))
+(((-1152 |#1| |#2|) (-10 -8 (-15 -3861 (|#1| |#1| (-521))) (-15 -2378 (|#2| |#1| "last" |#2|)) (-15 -1509 (|#2| |#1| |#2|)) (-15 -2378 (|#1| |#1| "rest" |#1|)) (-15 -2378 (|#2| |#1| "first" |#2|)) (-15 -2262 (|#1| |#1|)) (-15 -3207 (|#1| |#1|)) (-15 -3083 ((-707) |#1|)) (-15 -3717 (|#1| |#1|)) (-15 -2092 (|#2| |#1|)) (-15 -2080 (|#2| |#1|)) (-15 -3830 (|#1| |#1|)) (-15 -1441 (|#1| |#1| (-707))) (-15 -2544 (|#2| |#1| "last")) (-15 -1441 (|#2| |#1|)) (-15 -2306 (|#1| |#1| (-707))) (-15 -2544 (|#1| |#1| "rest")) (-15 -2306 (|#1| |#1|)) (-15 -2544 (|#2| |#1| "first")) (-15 -4159 (|#1| |#2| |#1|)) (-15 -4159 (|#1| |#1| |#1|)) (-15 -2300 (|#2| |#1| |#2|)) (-15 -2378 (|#2| |#1| "value" |#2|)) (-15 -2675 (|#1| |#1| (-587 |#1|))) (-15 -3651 ((-108) |#1| |#1|)) (-15 -2406 ((-108) |#1|)) (-15 -2544 (|#2| |#1| "value")) (-15 -3430 (|#2| |#1|)) (-15 -2229 ((-108) |#1|)) (-15 -3186 ((-587 |#1|) |#1|)) (-15 -3098 ((-587 |#1|) |#1|)) (-15 -1531 ((-108) |#1| |#1|)) (-15 -3475 ((-707) |#1|)) (-15 -2978 ((-108) |#1| (-707))) (-15 -2139 ((-108) |#1| (-707))) (-15 -3574 ((-108) |#1| (-707)))) (-1153 |#2|) (-1119)) (T -1152))
+NIL
+(-10 -8 (-15 -3861 (|#1| |#1| (-521))) (-15 -2378 (|#2| |#1| "last" |#2|)) (-15 -1509 (|#2| |#1| |#2|)) (-15 -2378 (|#1| |#1| "rest" |#1|)) (-15 -2378 (|#2| |#1| "first" |#2|)) (-15 -2262 (|#1| |#1|)) (-15 -3207 (|#1| |#1|)) (-15 -3083 ((-707) |#1|)) (-15 -3717 (|#1| |#1|)) (-15 -2092 (|#2| |#1|)) (-15 -2080 (|#2| |#1|)) (-15 -3830 (|#1| |#1|)) (-15 -1441 (|#1| |#1| (-707))) (-15 -2544 (|#2| |#1| "last")) (-15 -1441 (|#2| |#1|)) (-15 -2306 (|#1| |#1| (-707))) (-15 -2544 (|#1| |#1| "rest")) (-15 -2306 (|#1| |#1|)) (-15 -2544 (|#2| |#1| "first")) (-15 -4159 (|#1| |#2| |#1|)) (-15 -4159 (|#1| |#1| |#1|)) (-15 -2300 (|#2| |#1| |#2|)) (-15 -2378 (|#2| |#1| "value" |#2|)) (-15 -2675 (|#1| |#1| (-587 |#1|))) (-15 -3651 ((-108) |#1| |#1|)) (-15 -2406 ((-108) |#1|)) (-15 -2544 (|#2| |#1| "value")) (-15 -3430 (|#2| |#1|)) (-15 -2229 ((-108) |#1|)) (-15 -3186 ((-587 |#1|) |#1|)) (-15 -3098 ((-587 |#1|) |#1|)) (-15 -1531 ((-108) |#1| |#1|)) (-15 -3475 ((-707) |#1|)) (-15 -2978 ((-108) |#1| (-707))) (-15 -2139 ((-108) |#1| (-707))) (-15 -3574 ((-108) |#1| (-707))))
+((-1415 (((-108) $ $) 19 (|has| |#1| (-1013)))) (-3430 ((|#1| $) 48)) (-2092 ((|#1| $) 65)) (-3830 (($ $) 67)) (-3861 (($ $ (-521)) 52 (|has| $ (-6 -4234)))) (-2978 (((-108) $ (-707)) 8)) (-2300 ((|#1| $ |#1|) 39 (|has| $ (-6 -4234)))) (-3739 (($ $ $) 56 (|has| $ (-6 -4234)))) (-1509 ((|#1| $ |#1|) 54 (|has| $ (-6 -4234)))) (-3977 ((|#1| $ |#1|) 58 (|has| $ (-6 -4234)))) (-2378 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4234))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4234))) (($ $ "rest" $) 55 (|has| $ (-6 -4234))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4234)))) (-2675 (($ $ (-587 $)) 41 (|has| $ (-6 -4234)))) (-2080 ((|#1| $) 66)) (-2547 (($) 7 T CONST)) (-2306 (($ $) 73) (($ $ (-707)) 71)) (-3831 (((-587 |#1|) $) 30 (|has| $ (-6 -4233)))) (-3186 (((-587 $) $) 50)) (-3651 (((-108) $ $) 42 (|has| |#1| (-1013)))) (-2139 (((-108) $ (-707)) 9)) (-3757 (((-587 |#1|) $) 29 (|has| $ (-6 -4233)))) (-2221 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-3833 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#1| |#1|) $) 35)) (-3574 (((-108) $ (-707)) 10)) (-1278 (((-587 |#1|) $) 45)) (-2229 (((-108) $) 49)) (-3688 (((-1067) $) 22 (|has| |#1| (-1013)))) (-1441 ((|#1| $) 70) (($ $ (-707)) 68)) (-4147 (((-1031) $) 21 (|has| |#1| (-1013)))) (-2293 ((|#1| $) 76) (($ $ (-707)) 74)) (-1789 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 |#1|))) 26 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) 25 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) 23 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-2488 (((-108) $ $) 14)) (-3462 (((-108) $) 11)) (-4024 (($) 12)) (-2544 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69)) (-2931 (((-521) $ $) 44)) (-2406 (((-108) $) 46)) (-3207 (($ $) 62)) (-2262 (($ $) 59 (|has| $ (-6 -4234)))) (-3083 (((-707) $) 63)) (-3717 (($ $) 64)) (-4163 (((-707) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4233))) (((-707) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-2404 (($ $) 13)) (-3980 (($ $ $) 61 (|has| $ (-6 -4234))) (($ $ |#1|) 60 (|has| $ (-6 -4234)))) (-4159 (($ $ $) 78) (($ |#1| $) 77)) (-2189 (((-792) $) 18 (|has| |#1| (-561 (-792))))) (-3098 (((-587 $) $) 51)) (-2294 (((-108) $ $) 43 (|has| |#1| (-1013)))) (-3049 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4233)))) (-1531 (((-108) $ $) 20 (|has| |#1| (-1013)))) (-3475 (((-707) $) 6 (|has| $ (-6 -4233)))))
+(((-1153 |#1|) (-1196) (-1119)) (T -1153))
+((-4159 (*1 *1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1119)))) (-4159 (*1 *1 *2 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1119)))) (-2293 (*1 *2 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1119)))) (-2544 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1153 *2)) (-4 *2 (-1119)))) (-2293 (*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-4 *1 (-1153 *3)) (-4 *3 (-1119)))) (-2306 (*1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1119)))) (-2544 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1153 *3)) (-4 *3 (-1119)))) (-2306 (*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-4 *1 (-1153 *3)) (-4 *3 (-1119)))) (-1441 (*1 *2 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1119)))) (-2544 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1153 *2)) (-4 *2 (-1119)))) (-1441 (*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-4 *1 (-1153 *3)) (-4 *3 (-1119)))) (-3830 (*1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1119)))) (-2080 (*1 *2 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1119)))) (-2092 (*1 *2 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1119)))) (-3717 (*1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1119)))) (-3083 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1119)) (-5 *2 (-707)))) (-3207 (*1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1119)))) (-3980 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4234)) (-4 *1 (-1153 *2)) (-4 *2 (-1119)))) (-3980 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4234)) (-4 *1 (-1153 *2)) (-4 *2 (-1119)))) (-2262 (*1 *1 *1) (-12 (|has| *1 (-6 -4234)) (-4 *1 (-1153 *2)) (-4 *2 (-1119)))) (-3977 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4234)) (-4 *1 (-1153 *2)) (-4 *2 (-1119)))) (-2378 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4234)) (-4 *1 (-1153 *2)) (-4 *2 (-1119)))) (-3739 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4234)) (-4 *1 (-1153 *2)) (-4 *2 (-1119)))) (-2378 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4234)) (-4 *1 (-1153 *3)) (-4 *3 (-1119)))) (-1509 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4234)) (-4 *1 (-1153 *2)) (-4 *2 (-1119)))) (-2378 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4234)) (-4 *1 (-1153 *2)) (-4 *2 (-1119)))) (-3861 (*1 *1 *1 *2) (-12 (-5 *2 (-521)) (|has| *1 (-6 -4234)) (-4 *1 (-1153 *3)) (-4 *3 (-1119)))))
+(-13 (-935 |t#1|) (-10 -8 (-15 -4159 ($ $ $)) (-15 -4159 ($ |t#1| $)) (-15 -2293 (|t#1| $)) (-15 -2544 (|t#1| $ "first")) (-15 -2293 ($ $ (-707))) (-15 -2306 ($ $)) (-15 -2544 ($ $ "rest")) (-15 -2306 ($ $ (-707))) (-15 -1441 (|t#1| $)) (-15 -2544 (|t#1| $ "last")) (-15 -1441 ($ $ (-707))) (-15 -3830 ($ $)) (-15 -2080 (|t#1| $)) (-15 -2092 (|t#1| $)) (-15 -3717 ($ $)) (-15 -3083 ((-707) $)) (-15 -3207 ($ $)) (IF (|has| $ (-6 -4234)) (PROGN (-15 -3980 ($ $ $)) (-15 -3980 ($ $ |t#1|)) (-15 -2262 ($ $)) (-15 -3977 (|t#1| $ |t#1|)) (-15 -2378 (|t#1| $ "first" |t#1|)) (-15 -3739 ($ $ $)) (-15 -2378 ($ $ "rest" $)) (-15 -1509 (|t#1| $ |t#1|)) (-15 -2378 (|t#1| $ "last" |t#1|)) (-15 -3861 ($ $ (-521)))) |%noBranch|)))
+(((-33) . T) ((-97) |has| |#1| (-1013)) ((-561 (-792)) -3703 (|has| |#1| (-1013)) (|has| |#1| (-561 (-792)))) ((-284 |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-460 |#1|) . T) ((-482 |#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-935 |#1|) . T) ((-1013) |has| |#1| (-1013)) ((-1119) . T))
+((-1390 ((|#4| (-1 |#2| |#1|) |#3|) 17)))
+(((-1154 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1390 (|#4| (-1 |#2| |#1|) |#3|))) (-970) (-970) (-1156 |#1|) (-1156 |#2|)) (T -1154))
+((-1390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-970)) (-4 *6 (-970)) (-4 *2 (-1156 *6)) (-5 *1 (-1154 *5 *6 *4 *2)) (-4 *4 (-1156 *5)))))
+(-10 -7 (-15 -1390 (|#4| (-1 |#2| |#1|) |#3|)))
+((-2220 (((-108) $) 15)) (-2904 (($ $) 91)) (-2769 (($ $) 67)) (-2880 (($ $) 87)) (-2746 (($ $) 63)) (-2926 (($ $) 95)) (-2790 (($ $) 71)) (-1253 (($ $) 61)) (-3261 (($ $) 59)) (-1738 (($ $) 97)) (-2800 (($ $) 73)) (-2915 (($ $) 93)) (-2780 (($ $) 69)) (-2892 (($ $) 89)) (-2758 (($ $) 65)) (-2189 (((-792) $) 47) (($ (-521)) NIL) (($ (-381 (-521))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-1759 (($ $) 103)) (-2832 (($ $) 79)) (-1745 (($ $) 99)) (-2811 (($ $) 75)) (-1776 (($ $) 107)) (-2856 (($ $) 83)) (-3919 (($ $) 109)) (-2868 (($ $) 85)) (-1768 (($ $) 105)) (-2844 (($ $) 81)) (-1752 (($ $) 101)) (-2821 (($ $) 77)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ |#2|) 51) (($ $ $) 54) (($ $ (-381 (-521))) 57)))
+(((-1155 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-381 (-521)))) (-15 -2769 (|#1| |#1|)) (-15 -2746 (|#1| |#1|)) (-15 -2790 (|#1| |#1|)) (-15 -2800 (|#1| |#1|)) (-15 -2780 (|#1| |#1|)) (-15 -2758 (|#1| |#1|)) (-15 -2821 (|#1| |#1|)) (-15 -2844 (|#1| |#1|)) (-15 -2868 (|#1| |#1|)) (-15 -2856 (|#1| |#1|)) (-15 -2811 (|#1| |#1|)) (-15 -2832 (|#1| |#1|)) (-15 -2892 (|#1| |#1|)) (-15 -2915 (|#1| |#1|)) (-15 -1738 (|#1| |#1|)) (-15 -2926 (|#1| |#1|)) (-15 -2880 (|#1| |#1|)) (-15 -2904 (|#1| |#1|)) (-15 -1752 (|#1| |#1|)) (-15 -1768 (|#1| |#1|)) (-15 -3919 (|#1| |#1|)) (-15 -1776 (|#1| |#1|)) (-15 -1745 (|#1| |#1|)) (-15 -1759 (|#1| |#1|)) (-15 -1253 (|#1| |#1|)) (-15 -3261 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2189 (|#1| |#2|)) (-15 -2189 (|#1| |#1|)) (-15 -2189 (|#1| (-381 (-521)))) (-15 -2189 (|#1| (-521))) (-15 ** (|#1| |#1| (-707))) (-15 ** (|#1| |#1| (-850))) (-15 -2220 ((-108) |#1|)) (-15 -2189 ((-792) |#1|))) (-1156 |#2|) (-970)) (T -1155))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-381 (-521)))) (-15 -2769 (|#1| |#1|)) (-15 -2746 (|#1| |#1|)) (-15 -2790 (|#1| |#1|)) (-15 -2800 (|#1| |#1|)) (-15 -2780 (|#1| |#1|)) (-15 -2758 (|#1| |#1|)) (-15 -2821 (|#1| |#1|)) (-15 -2844 (|#1| |#1|)) (-15 -2868 (|#1| |#1|)) (-15 -2856 (|#1| |#1|)) (-15 -2811 (|#1| |#1|)) (-15 -2832 (|#1| |#1|)) (-15 -2892 (|#1| |#1|)) (-15 -2915 (|#1| |#1|)) (-15 -1738 (|#1| |#1|)) (-15 -2926 (|#1| |#1|)) (-15 -2880 (|#1| |#1|)) (-15 -2904 (|#1| |#1|)) (-15 -1752 (|#1| |#1|)) (-15 -1768 (|#1| |#1|)) (-15 -3919 (|#1| |#1|)) (-15 -1776 (|#1| |#1|)) (-15 -1745 (|#1| |#1|)) (-15 -1759 (|#1| |#1|)) (-15 -1253 (|#1| |#1|)) (-15 -3261 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2189 (|#1| |#2|)) (-15 -2189 (|#1| |#1|)) (-15 -2189 (|#1| (-381 (-521)))) (-15 -2189 (|#1| (-521))) (-15 ** (|#1| |#1| (-707))) (-15 ** (|#1| |#1| (-850))) (-15 -2220 ((-108) |#1|)) (-15 -2189 ((-792) |#1|)))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-4084 (((-587 (-998)) $) 74)) (-1611 (((-1084) $) 103)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) 51 (|has| |#1| (-513)))) (-2559 (($ $) 52 (|has| |#1| (-513)))) (-1733 (((-108) $) 54 (|has| |#1| (-513)))) (-2977 (($ $ (-707)) 98) (($ $ (-707) (-707)) 97)) (-3423 (((-1065 (-2 (|:| |k| (-707)) (|:| |c| |#1|))) $) 105)) (-2904 (($ $) 135 (|has| |#1| (-37 (-381 (-521)))))) (-2769 (($ $) 118 (|has| |#1| (-37 (-381 (-521)))))) (-1232 (((-3 $ "failed") $ $) 19)) (-1927 (($ $) 117 (|has| |#1| (-37 (-381 (-521)))))) (-2880 (($ $) 134 (|has| |#1| (-37 (-381 (-521)))))) (-2746 (($ $) 119 (|has| |#1| (-37 (-381 (-521)))))) (-2770 (($ (-1065 (-2 (|:| |k| (-707)) (|:| |c| |#1|)))) 155) (($ (-1065 |#1|)) 153)) (-2926 (($ $) 133 (|has| |#1| (-37 (-381 (-521)))))) (-2790 (($ $) 120 (|has| |#1| (-37 (-381 (-521)))))) (-2547 (($) 17 T CONST)) (-3152 (($ $) 60)) (-1257 (((-3 $ "failed") $) 34)) (-2233 (($ $) 152)) (-2199 (((-881 |#1|) $ (-707)) 150) (((-881 |#1|) $ (-707) (-707)) 149)) (-1325 (((-108) $) 73)) (-2834 (($) 145 (|has| |#1| (-37 (-381 (-521)))))) (-2733 (((-707) $) 100) (((-707) $ (-707)) 99)) (-3996 (((-108) $) 31)) (-3407 (($ $ (-521)) 116 (|has| |#1| (-37 (-381 (-521)))))) (-1993 (($ $ (-850)) 101)) (-3131 (($ (-1 |#1| (-521)) $) 151)) (-3649 (((-108) $) 62)) (-4043 (($ |#1| (-707)) 61) (($ $ (-998) (-707)) 76) (($ $ (-587 (-998)) (-587 (-707))) 75)) (-1390 (($ (-1 |#1| |#1|) $) 63)) (-1253 (($ $) 142 (|has| |#1| (-37 (-381 (-521)))))) (-3125 (($ $) 65)) (-3135 ((|#1| $) 66)) (-3688 (((-1067) $) 9)) (-2184 (($ $) 147 (|has| |#1| (-37 (-381 (-521))))) (($ $ (-1084)) 146 (-3703 (-12 (|has| |#1| (-29 (-521))) (|has| |#1| (-887)) (|has| |#1| (-1105)) (|has| |#1| (-37 (-381 (-521))))) (-12 (|has| |#1| (-15 -4084 ((-587 (-1084)) |#1|))) (|has| |#1| (-15 -2184 (|#1| |#1| (-1084)))) (|has| |#1| (-37 (-381 (-521)))))))) (-4147 (((-1031) $) 10)) (-2447 (($ $ (-707)) 95)) (-2230 (((-3 $ "failed") $ $) 50 (|has| |#1| (-513)))) (-3261 (($ $) 143 (|has| |#1| (-37 (-381 (-521)))))) (-2288 (((-1065 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-707)))))) (-2544 ((|#1| $ (-707)) 104) (($ $ $) 81 (|has| (-707) (-1025)))) (-2156 (($ $ (-587 (-1084)) (-587 (-707))) 89 (-12 (|has| |#1| (-829 (-1084))) (|has| |#1| (-15 * (|#1| (-707) |#1|))))) (($ $ (-1084) (-707)) 88 (-12 (|has| |#1| (-829 (-1084))) (|has| |#1| (-15 * (|#1| (-707) |#1|))))) (($ $ (-587 (-1084))) 87 (-12 (|has| |#1| (-829 (-1084))) (|has| |#1| (-15 * (|#1| (-707) |#1|))))) (($ $ (-1084)) 86 (-12 (|has| |#1| (-829 (-1084))) (|has| |#1| (-15 * (|#1| (-707) |#1|))))) (($ $ (-707)) 84 (|has| |#1| (-15 * (|#1| (-707) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-707) |#1|))))) (-1994 (((-707) $) 64)) (-1738 (($ $) 132 (|has| |#1| (-37 (-381 (-521)))))) (-2800 (($ $) 121 (|has| |#1| (-37 (-381 (-521)))))) (-2915 (($ $) 131 (|has| |#1| (-37 (-381 (-521)))))) (-2780 (($ $) 122 (|has| |#1| (-37 (-381 (-521)))))) (-2892 (($ $) 130 (|has| |#1| (-37 (-381 (-521)))))) (-2758 (($ $) 123 (|has| |#1| (-37 (-381 (-521)))))) (-3448 (($ $) 72)) (-2189 (((-792) $) 11) (($ (-521)) 28) (($ (-381 (-521))) 57 (|has| |#1| (-37 (-381 (-521))))) (($ $) 49 (|has| |#1| (-513))) (($ |#1|) 47 (|has| |#1| (-157)))) (-1259 (((-1065 |#1|) $) 154)) (-3800 ((|#1| $ (-707)) 59)) (-1671 (((-3 $ "failed") $) 48 (|has| |#1| (-133)))) (-3846 (((-707)) 29)) (-1893 ((|#1| $) 102)) (-1759 (($ $) 141 (|has| |#1| (-37 (-381 (-521)))))) (-2832 (($ $) 129 (|has| |#1| (-37 (-381 (-521)))))) (-4210 (((-108) $ $) 53 (|has| |#1| (-513)))) (-1745 (($ $) 140 (|has| |#1| (-37 (-381 (-521)))))) (-2811 (($ $) 128 (|has| |#1| (-37 (-381 (-521)))))) (-1776 (($ $) 139 (|has| |#1| (-37 (-381 (-521)))))) (-2856 (($ $) 127 (|has| |#1| (-37 (-381 (-521)))))) (-3894 ((|#1| $ (-707)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-707)))) (|has| |#1| (-15 -2189 (|#1| (-1084))))))) (-3919 (($ $) 138 (|has| |#1| (-37 (-381 (-521)))))) (-2868 (($ $) 126 (|has| |#1| (-37 (-381 (-521)))))) (-1768 (($ $) 137 (|has| |#1| (-37 (-381 (-521)))))) (-2844 (($ $) 125 (|has| |#1| (-37 (-381 (-521)))))) (-1752 (($ $) 136 (|has| |#1| (-37 (-381 (-521)))))) (-2821 (($ $) 124 (|has| |#1| (-37 (-381 (-521)))))) (-3505 (($ $ (-850)) 26) (($ $ (-707)) 33)) (-3561 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-2212 (($ $ (-587 (-1084)) (-587 (-707))) 93 (-12 (|has| |#1| (-829 (-1084))) (|has| |#1| (-15 * (|#1| (-707) |#1|))))) (($ $ (-1084) (-707)) 92 (-12 (|has| |#1| (-829 (-1084))) (|has| |#1| (-15 * (|#1| (-707) |#1|))))) (($ $ (-587 (-1084))) 91 (-12 (|has| |#1| (-829 (-1084))) (|has| |#1| (-15 * (|#1| (-707) |#1|))))) (($ $ (-1084)) 90 (-12 (|has| |#1| (-829 (-1084))) (|has| |#1| (-15 * (|#1| (-707) |#1|))))) (($ $ (-707)) 85 (|has| |#1| (-15 * (|#1| (-707) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-707) |#1|))))) (-1531 (((-108) $ $) 6)) (-1620 (($ $ |#1|) 58 (|has| |#1| (-337)))) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-707)) 32) (($ $ |#1|) 148 (|has| |#1| (-337))) (($ $ $) 144 (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) 115 (|has| |#1| (-37 (-381 (-521)))))) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-381 (-521)) $) 56 (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) 55 (|has| |#1| (-37 (-381 (-521)))))))
+(((-1156 |#1|) (-1196) (-970)) (T -1156))
+((-2770 (*1 *1 *2) (-12 (-5 *2 (-1065 (-2 (|:| |k| (-707)) (|:| |c| *3)))) (-4 *3 (-970)) (-4 *1 (-1156 *3)))) (-1259 (*1 *2 *1) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-970)) (-5 *2 (-1065 *3)))) (-2770 (*1 *1 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-4 *1 (-1156 *3)))) (-2233 (*1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-970)))) (-3131 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-521))) (-4 *1 (-1156 *3)) (-4 *3 (-970)))) (-2199 (*1 *2 *1 *3) (-12 (-5 *3 (-707)) (-4 *1 (-1156 *4)) (-4 *4 (-970)) (-5 *2 (-881 *4)))) (-2199 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-707)) (-4 *1 (-1156 *4)) (-4 *4 (-970)) (-5 *2 (-881 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-970)) (-4 *2 (-337)))) (-2184 (*1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-970)) (-4 *2 (-37 (-381 (-521)))))) (-2184 (*1 *1 *1 *2) (-3703 (-12 (-5 *2 (-1084)) (-4 *1 (-1156 *3)) (-4 *3 (-970)) (-12 (-4 *3 (-29 (-521))) (-4 *3 (-887)) (-4 *3 (-1105)) (-4 *3 (-37 (-381 (-521)))))) (-12 (-5 *2 (-1084)) (-4 *1 (-1156 *3)) (-4 *3 (-970)) (-12 (|has| *3 (-15 -4084 ((-587 *2) *3))) (|has| *3 (-15 -2184 (*3 *3 *2))) (-4 *3 (-37 (-381 (-521)))))))))
+(-13 (-1143 |t#1| (-707)) (-10 -8 (-15 -2770 ($ (-1065 (-2 (|:| |k| (-707)) (|:| |c| |t#1|))))) (-15 -1259 ((-1065 |t#1|) $)) (-15 -2770 ($ (-1065 |t#1|))) (-15 -2233 ($ $)) (-15 -3131 ($ (-1 |t#1| (-521)) $)) (-15 -2199 ((-881 |t#1|) $ (-707))) (-15 -2199 ((-881 |t#1|) $ (-707) (-707))) (IF (|has| |t#1| (-337)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-37 (-381 (-521)))) (PROGN (-15 -2184 ($ $)) (IF (|has| |t#1| (-15 -2184 (|t#1| |t#1| (-1084)))) (IF (|has| |t#1| (-15 -4084 ((-587 (-1084)) |t#1|))) (-15 -2184 ($ $ (-1084))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1105)) (IF (|has| |t#1| (-887)) (IF (|has| |t#1| (-29 (-521))) (-15 -2184 ($ $ (-1084))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-927)) (-6 (-1105))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-707)) . T) ((-25) . T) ((-37 #1=(-381 (-521))) |has| |#1| (-37 (-381 (-521)))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) |has| |#1| (-513)) ((-34) |has| |#1| (-37 (-381 (-521)))) ((-91) |has| |#1| (-37 (-381 (-521)))) ((-97) . T) ((-107 #1# #1#) |has| |#1| (-37 (-381 (-521)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3703 (|has| |#1| (-513)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-561 (-792)) . T) ((-157) -3703 (|has| |#1| (-513)) (|has| |#1| (-157))) ((-210) |has| |#1| (-15 * (|#1| (-707) |#1|))) ((-259) |has| |#1| (-37 (-381 (-521)))) ((-261 $ $) |has| (-707) (-1025)) ((-265) |has| |#1| (-513)) ((-462) |has| |#1| (-37 (-381 (-521)))) ((-513) |has| |#1| (-513)) ((-589 #1#) |has| |#1| (-37 (-381 (-521)))) ((-589 |#1|) . T) ((-589 $) . T) ((-654 #1#) |has| |#1| (-37 (-381 (-521)))) ((-654 |#1|) |has| |#1| (-157)) ((-654 $) |has| |#1| (-513)) ((-663) . T) ((-829 (-1084)) -12 (|has| |#1| (-15 * (|#1| (-707) |#1|))) (|has| |#1| (-829 (-1084)))) ((-899 |#1| #0# (-998)) . T) ((-927) |has| |#1| (-37 (-381 (-521)))) ((-976 #1#) |has| |#1| (-37 (-381 (-521)))) ((-976 |#1|) . T) ((-976 $) -3703 (|has| |#1| (-513)) (|has| |#1| (-157))) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T) ((-1105) |has| |#1| (-37 (-381 (-521)))) ((-1108) |has| |#1| (-37 (-381 (-521)))) ((-1143 |#1| #0#) . T))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-4084 (((-587 (-998)) $) NIL)) (-1611 (((-1084) $) 87)) (-3770 (((-1138 |#2| |#1|) $ (-707)) 73)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) NIL (|has| |#1| (-513)))) (-2559 (($ $) NIL (|has| |#1| (-513)))) (-1733 (((-108) $) 136 (|has| |#1| (-513)))) (-2977 (($ $ (-707)) 121) (($ $ (-707) (-707)) 123)) (-3423 (((-1065 (-2 (|:| |k| (-707)) (|:| |c| |#1|))) $) 42)) (-2904 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2769 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-1232 (((-3 $ "failed") $ $) NIL)) (-1927 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2880 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2746 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2770 (($ (-1065 (-2 (|:| |k| (-707)) (|:| |c| |#1|)))) 53) (($ (-1065 |#1|)) NIL)) (-2926 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2790 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2547 (($) NIL T CONST)) (-3682 (($ $) 127)) (-3152 (($ $) NIL)) (-1257 (((-3 $ "failed") $) NIL)) (-2233 (($ $) 134)) (-2199 (((-881 |#1|) $ (-707)) 63) (((-881 |#1|) $ (-707) (-707)) 65)) (-1325 (((-108) $) NIL)) (-2834 (($) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2733 (((-707) $) NIL) (((-707) $ (-707)) NIL)) (-3996 (((-108) $) NIL)) (-3093 (($ $) 111)) (-3407 (($ $ (-521)) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3749 (($ (-521) (-521) $) 129)) (-1993 (($ $ (-850)) 133)) (-3131 (($ (-1 |#1| (-521)) $) 105)) (-3649 (((-108) $) NIL)) (-4043 (($ |#1| (-707)) 15) (($ $ (-998) (-707)) NIL) (($ $ (-587 (-998)) (-587 (-707))) NIL)) (-1390 (($ (-1 |#1| |#1|) $) 93)) (-1253 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3125 (($ $) NIL)) (-3135 ((|#1| $) NIL)) (-3688 (((-1067) $) NIL)) (-3265 (($ $) 109)) (-1406 (($ $) 107)) (-3356 (($ (-521) (-521) $) 131)) (-2184 (($ $) 144 (|has| |#1| (-37 (-381 (-521))))) (($ $ (-1084)) 150 (-3703 (-12 (|has| |#1| (-15 -2184 (|#1| |#1| (-1084)))) (|has| |#1| (-15 -4084 ((-587 (-1084)) |#1|))) (|has| |#1| (-37 (-381 (-521))))) (-12 (|has| |#1| (-29 (-521))) (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-887)) (|has| |#1| (-1105))))) (($ $ (-1161 |#2|)) 145 (|has| |#1| (-37 (-381 (-521)))))) (-4147 (((-1031) $) NIL)) (-2583 (($ $ (-521) (-521)) 115)) (-2447 (($ $ (-707)) 117)) (-2230 (((-3 $ "failed") $ $) NIL (|has| |#1| (-513)))) (-3261 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-1210 (($ $) 113)) (-2288 (((-1065 |#1|) $ |#1|) 95 (|has| |#1| (-15 ** (|#1| |#1| (-707)))))) (-2544 ((|#1| $ (-707)) 90) (($ $ $) 125 (|has| (-707) (-1025)))) (-2156 (($ $ (-587 (-1084)) (-587 (-707))) NIL (-12 (|has| |#1| (-15 * (|#1| (-707) |#1|))) (|has| |#1| (-829 (-1084))))) (($ $ (-1084) (-707)) NIL (-12 (|has| |#1| (-15 * (|#1| (-707) |#1|))) (|has| |#1| (-829 (-1084))))) (($ $ (-587 (-1084))) NIL (-12 (|has| |#1| (-15 * (|#1| (-707) |#1|))) (|has| |#1| (-829 (-1084))))) (($ $ (-1084)) 102 (-12 (|has| |#1| (-15 * (|#1| (-707) |#1|))) (|has| |#1| (-829 (-1084))))) (($ $ (-707)) NIL (|has| |#1| (-15 * (|#1| (-707) |#1|)))) (($ $) 97 (|has| |#1| (-15 * (|#1| (-707) |#1|)))) (($ $ (-1161 |#2|)) 98)) (-1994 (((-707) $) NIL)) (-1738 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2800 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2915 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2780 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2892 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2758 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3448 (($ $) 119)) (-2189 (((-792) $) NIL) (($ (-521)) 24) (($ (-381 (-521))) 142 (|has| |#1| (-37 (-381 (-521))))) (($ $) NIL (|has| |#1| (-513))) (($ |#1|) 23 (|has| |#1| (-157))) (($ (-1138 |#2| |#1|)) 80) (($ (-1161 |#2|)) 20)) (-1259 (((-1065 |#1|) $) NIL)) (-3800 ((|#1| $ (-707)) 89)) (-1671 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-3846 (((-707)) NIL)) (-1893 ((|#1| $) 88)) (-1759 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2832 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-4210 (((-108) $ $) NIL (|has| |#1| (-513)))) (-1745 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2811 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-1776 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2856 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3894 ((|#1| $ (-707)) 86 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-707)))) (|has| |#1| (-15 -2189 (|#1| (-1084))))))) (-3919 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2868 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-1768 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2844 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-1752 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2821 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (-3561 (($) 17 T CONST)) (-3572 (($) 13 T CONST)) (-2212 (($ $ (-587 (-1084)) (-587 (-707))) NIL (-12 (|has| |#1| (-15 * (|#1| (-707) |#1|))) (|has| |#1| (-829 (-1084))))) (($ $ (-1084) (-707)) NIL (-12 (|has| |#1| (-15 * (|#1| (-707) |#1|))) (|has| |#1| (-829 (-1084))))) (($ $ (-587 (-1084))) NIL (-12 (|has| |#1| (-15 * (|#1| (-707) |#1|))) (|has| |#1| (-829 (-1084))))) (($ $ (-1084)) NIL (-12 (|has| |#1| (-15 * (|#1| (-707) |#1|))) (|has| |#1| (-829 (-1084))))) (($ $ (-707)) NIL (|has| |#1| (-15 * (|#1| (-707) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-707) |#1|))))) (-1531 (((-108) $ $) NIL)) (-1620 (($ $ |#1|) NIL (|has| |#1| (-337)))) (-1612 (($ $) NIL) (($ $ $) 101)) (-1602 (($ $ $) 18)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL) (($ $ |#1|) 139 (|has| |#1| (-337))) (($ $ $) NIL (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) NIL (|has| |#1| (-37 (-381 (-521)))))) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 100) (($ (-381 (-521)) $) NIL (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) NIL (|has| |#1| (-37 (-381 (-521)))))))
+(((-1157 |#1| |#2| |#3|) (-13 (-1156 |#1|) (-10 -8 (-15 -2189 ($ (-1138 |#2| |#1|))) (-15 -3770 ((-1138 |#2| |#1|) $ (-707))) (-15 -2189 ($ (-1161 |#2|))) (-15 -2156 ($ $ (-1161 |#2|))) (-15 -1406 ($ $)) (-15 -3265 ($ $)) (-15 -3093 ($ $)) (-15 -1210 ($ $)) (-15 -2583 ($ $ (-521) (-521))) (-15 -3682 ($ $)) (-15 -3749 ($ (-521) (-521) $)) (-15 -3356 ($ (-521) (-521) $)) (IF (|has| |#1| (-37 (-381 (-521)))) (-15 -2184 ($ $ (-1161 |#2|))) |%noBranch|))) (-970) (-1084) |#1|) (T -1157))
+((-2189 (*1 *1 *2) (-12 (-5 *2 (-1138 *4 *3)) (-4 *3 (-970)) (-14 *4 (-1084)) (-14 *5 *3) (-5 *1 (-1157 *3 *4 *5)))) (-3770 (*1 *2 *1 *3) (-12 (-5 *3 (-707)) (-5 *2 (-1138 *5 *4)) (-5 *1 (-1157 *4 *5 *6)) (-4 *4 (-970)) (-14 *5 (-1084)) (-14 *6 *4))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-1157 *3 *4 *5)) (-4 *3 (-970)) (-14 *5 *3))) (-2156 (*1 *1 *1 *2) (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-1157 *3 *4 *5)) (-4 *3 (-970)) (-14 *5 *3))) (-1406 (*1 *1 *1) (-12 (-5 *1 (-1157 *2 *3 *4)) (-4 *2 (-970)) (-14 *3 (-1084)) (-14 *4 *2))) (-3265 (*1 *1 *1) (-12 (-5 *1 (-1157 *2 *3 *4)) (-4 *2 (-970)) (-14 *3 (-1084)) (-14 *4 *2))) (-3093 (*1 *1 *1) (-12 (-5 *1 (-1157 *2 *3 *4)) (-4 *2 (-970)) (-14 *3 (-1084)) (-14 *4 *2))) (-1210 (*1 *1 *1) (-12 (-5 *1 (-1157 *2 *3 *4)) (-4 *2 (-970)) (-14 *3 (-1084)) (-14 *4 *2))) (-2583 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-1157 *3 *4 *5)) (-4 *3 (-970)) (-14 *4 (-1084)) (-14 *5 *3))) (-3682 (*1 *1 *1) (-12 (-5 *1 (-1157 *2 *3 *4)) (-4 *2 (-970)) (-14 *3 (-1084)) (-14 *4 *2))) (-3749 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-1157 *3 *4 *5)) (-4 *3 (-970)) (-14 *4 (-1084)) (-14 *5 *3))) (-3356 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-1157 *3 *4 *5)) (-4 *3 (-970)) (-14 *4 (-1084)) (-14 *5 *3))) (-2184 (*1 *1 *1 *2) (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-1157 *3 *4 *5)) (-4 *3 (-37 (-381 (-521)))) (-4 *3 (-970)) (-14 *5 *3))))
+(-13 (-1156 |#1|) (-10 -8 (-15 -2189 ($ (-1138 |#2| |#1|))) (-15 -3770 ((-1138 |#2| |#1|) $ (-707))) (-15 -2189 ($ (-1161 |#2|))) (-15 -2156 ($ $ (-1161 |#2|))) (-15 -1406 ($ $)) (-15 -3265 ($ $)) (-15 -3093 ($ $)) (-15 -1210 ($ $)) (-15 -2583 ($ $ (-521) (-521))) (-15 -3682 ($ $)) (-15 -3749 ($ (-521) (-521) $)) (-15 -3356 ($ (-521) (-521) $)) (IF (|has| |#1| (-37 (-381 (-521)))) (-15 -2184 ($ $ (-1161 |#2|))) |%noBranch|)))
+((-1478 (((-1 (-1065 |#1|) (-587 (-1065 |#1|))) (-1 |#2| (-587 |#2|))) 24)) (-3249 (((-1 (-1065 |#1|) (-1065 |#1|) (-1065 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-3633 (((-1 (-1065 |#1|) (-1065 |#1|)) (-1 |#2| |#2|)) 13)) (-4037 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-1270 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-1589 ((|#2| (-1 |#2| (-587 |#2|)) (-587 |#1|)) 54)) (-3904 (((-587 |#2|) (-587 |#1|) (-587 (-1 |#2| (-587 |#2|)))) 61)) (-2324 ((|#2| |#2| |#2|) 43)))
+(((-1158 |#1| |#2|) (-10 -7 (-15 -3633 ((-1 (-1065 |#1|) (-1065 |#1|)) (-1 |#2| |#2|))) (-15 -3249 ((-1 (-1065 |#1|) (-1065 |#1|) (-1065 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -1478 ((-1 (-1065 |#1|) (-587 (-1065 |#1|))) (-1 |#2| (-587 |#2|)))) (-15 -2324 (|#2| |#2| |#2|)) (-15 -1270 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -4037 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1589 (|#2| (-1 |#2| (-587 |#2|)) (-587 |#1|))) (-15 -3904 ((-587 |#2|) (-587 |#1|) (-587 (-1 |#2| (-587 |#2|)))))) (-37 (-381 (-521))) (-1156 |#1|)) (T -1158))
+((-3904 (*1 *2 *3 *4) (-12 (-5 *3 (-587 *5)) (-5 *4 (-587 (-1 *6 (-587 *6)))) (-4 *5 (-37 (-381 (-521)))) (-4 *6 (-1156 *5)) (-5 *2 (-587 *6)) (-5 *1 (-1158 *5 *6)))) (-1589 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-587 *2))) (-5 *4 (-587 *5)) (-4 *5 (-37 (-381 (-521)))) (-4 *2 (-1156 *5)) (-5 *1 (-1158 *5 *2)))) (-4037 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1156 *4)) (-5 *1 (-1158 *4 *2)) (-4 *4 (-37 (-381 (-521)))))) (-1270 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1156 *4)) (-5 *1 (-1158 *4 *2)) (-4 *4 (-37 (-381 (-521)))))) (-2324 (*1 *2 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1158 *3 *2)) (-4 *2 (-1156 *3)))) (-1478 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-587 *5))) (-4 *5 (-1156 *4)) (-4 *4 (-37 (-381 (-521)))) (-5 *2 (-1 (-1065 *4) (-587 (-1065 *4)))) (-5 *1 (-1158 *4 *5)))) (-3249 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1156 *4)) (-4 *4 (-37 (-381 (-521)))) (-5 *2 (-1 (-1065 *4) (-1065 *4) (-1065 *4))) (-5 *1 (-1158 *4 *5)))) (-3633 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1156 *4)) (-4 *4 (-37 (-381 (-521)))) (-5 *2 (-1 (-1065 *4) (-1065 *4))) (-5 *1 (-1158 *4 *5)))))
+(-10 -7 (-15 -3633 ((-1 (-1065 |#1|) (-1065 |#1|)) (-1 |#2| |#2|))) (-15 -3249 ((-1 (-1065 |#1|) (-1065 |#1|) (-1065 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -1478 ((-1 (-1065 |#1|) (-587 (-1065 |#1|))) (-1 |#2| (-587 |#2|)))) (-15 -2324 (|#2| |#2| |#2|)) (-15 -1270 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -4037 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1589 (|#2| (-1 |#2| (-587 |#2|)) (-587 |#1|))) (-15 -3904 ((-587 |#2|) (-587 |#1|) (-587 (-1 |#2| (-587 |#2|))))))
+((-2719 ((|#2| |#4| (-707)) 30)) (-4095 ((|#4| |#2|) 25)) (-2901 ((|#4| (-381 |#2|)) 51 (|has| |#1| (-513)))) (-3611 (((-1 |#4| (-587 |#4|)) |#3|) 45)))
+(((-1159 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4095 (|#4| |#2|)) (-15 -2719 (|#2| |#4| (-707))) (-15 -3611 ((-1 |#4| (-587 |#4|)) |#3|)) (IF (|has| |#1| (-513)) (-15 -2901 (|#4| (-381 |#2|))) |%noBranch|)) (-970) (-1141 |#1|) (-597 |#2|) (-1156 |#1|)) (T -1159))
+((-2901 (*1 *2 *3) (-12 (-5 *3 (-381 *5)) (-4 *5 (-1141 *4)) (-4 *4 (-513)) (-4 *4 (-970)) (-4 *2 (-1156 *4)) (-5 *1 (-1159 *4 *5 *6 *2)) (-4 *6 (-597 *5)))) (-3611 (*1 *2 *3) (-12 (-4 *4 (-970)) (-4 *5 (-1141 *4)) (-5 *2 (-1 *6 (-587 *6))) (-5 *1 (-1159 *4 *5 *3 *6)) (-4 *3 (-597 *5)) (-4 *6 (-1156 *4)))) (-2719 (*1 *2 *3 *4) (-12 (-5 *4 (-707)) (-4 *5 (-970)) (-4 *2 (-1141 *5)) (-5 *1 (-1159 *5 *2 *6 *3)) (-4 *6 (-597 *2)) (-4 *3 (-1156 *5)))) (-4095 (*1 *2 *3) (-12 (-4 *4 (-970)) (-4 *3 (-1141 *4)) (-4 *2 (-1156 *4)) (-5 *1 (-1159 *4 *3 *5 *2)) (-4 *5 (-597 *3)))))
+(-10 -7 (-15 -4095 (|#4| |#2|)) (-15 -2719 (|#2| |#4| (-707))) (-15 -3611 ((-1 |#4| (-587 |#4|)) |#3|)) (IF (|has| |#1| (-513)) (-15 -2901 (|#4| (-381 |#2|))) |%noBranch|))
+NIL
+(((-1160) (-1196)) (T -1160))
NIL
(-13 (-10 -7 (-6 -2046)))
-((-1414 (((-108) $ $) NIL)) (-1610 (((-1083)) 12)) (-1239 (((-1066) $) 17)) (-4142 (((-1030) $) NIL)) (-2188 (((-791) $) 11) (((-1083) $) 8)) (-1530 (((-108) $ $) 14)))
-(((-1160 |#1|) (-13 (-1012) (-560 (-1083)) (-10 -8 (-15 -2188 ((-1083) $)) (-15 -1610 ((-1083))))) (-1083)) (T -1160))
-((-2188 (*1 *2 *1) (-12 (-5 *2 (-1083)) (-5 *1 (-1160 *3)) (-14 *3 *2))) (-1610 (*1 *2) (-12 (-5 *2 (-1083)) (-5 *1 (-1160 *3)) (-14 *3 *2))))
-(-13 (-1012) (-560 (-1083)) (-10 -8 (-15 -2188 ((-1083) $)) (-15 -1610 ((-1083)))))
-((-3477 (($ (-706)) 16)) (-3948 (((-626 |#2|) $ $) 37)) (-3224 ((|#2| $) 46)) (-2515 ((|#2| $) 45)) (-3639 ((|#2| $ $) 33)) (-1480 (($ $ $) 42)) (-1611 (($ $) 20) (($ $ $) 26)) (-1601 (($ $ $) 13)) (* (($ (-520) $) 23) (($ |#2| $) 29) (($ $ |#2|) 28)))
-(((-1161 |#1| |#2|) (-10 -8 (-15 -3224 (|#2| |#1|)) (-15 -2515 (|#2| |#1|)) (-15 -1480 (|#1| |#1| |#1|)) (-15 -3948 ((-626 |#2|) |#1| |#1|)) (-15 -3639 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-520) |#1|)) (-15 -1611 (|#1| |#1| |#1|)) (-15 -1611 (|#1| |#1|)) (-15 -3477 (|#1| (-706))) (-15 -1601 (|#1| |#1| |#1|))) (-1162 |#2|) (-1118)) (T -1161))
-NIL
-(-10 -8 (-15 -3224 (|#2| |#1|)) (-15 -2515 (|#2| |#1|)) (-15 -1480 (|#1| |#1| |#1|)) (-15 -3948 ((-626 |#2|) |#1| |#1|)) (-15 -3639 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-520) |#1|)) (-15 -1611 (|#1| |#1| |#1|)) (-15 -1611 (|#1| |#1|)) (-15 -3477 (|#1| (-706))) (-15 -1601 (|#1| |#1| |#1|)))
-((-1414 (((-108) $ $) 19 (|has| |#1| (-1012)))) (-3477 (($ (-706)) 112 (|has| |#1| (-23)))) (-1476 (((-1169) $ (-520) (-520)) 40 (|has| $ (-6 -4230)))) (-4029 (((-108) (-1 (-108) |#1| |#1|) $) 98) (((-108) $) 92 (|has| |#1| (-783)))) (-3587 (($ (-1 (-108) |#1| |#1|) $) 89 (|has| $ (-6 -4230))) (($ $) 88 (-12 (|has| |#1| (-783)) (|has| $ (-6 -4230))))) (-3210 (($ (-1 (-108) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-783)))) (-2063 (((-108) $ (-706)) 8)) (-2377 ((|#1| $ (-520) |#1|) 52 (|has| $ (-6 -4230))) ((|#1| $ (-1131 (-520)) |#1|) 58 (|has| $ (-6 -4230)))) (-1627 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4229)))) (-3961 (($) 7 T CONST)) (-2447 (($ $) 90 (|has| $ (-6 -4230)))) (-1861 (($ $) 100)) (-2331 (($ $) 78 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-1421 (($ |#1| $) 77 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4229)))) (-3856 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4229))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4229)))) (-3846 ((|#1| $ (-520) |#1|) 53 (|has| $ (-6 -4230)))) (-3623 ((|#1| $ (-520)) 51)) (-3232 (((-520) (-1 (-108) |#1|) $) 97) (((-520) |#1| $) 96 (|has| |#1| (-1012))) (((-520) |#1| $ (-520)) 95 (|has| |#1| (-1012)))) (-3828 (((-586 |#1|) $) 30 (|has| $ (-6 -4229)))) (-3948 (((-626 |#1|) $ $) 105 (|has| |#1| (-969)))) (-1810 (($ (-706) |#1|) 69)) (-3027 (((-108) $ (-706)) 9)) (-2567 (((-520) $) 43 (|has| (-520) (-783)))) (-2809 (($ $ $) 87 (|has| |#1| (-783)))) (-1819 (($ (-1 (-108) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-783)))) (-3702 (((-586 |#1|) $) 29 (|has| $ (-6 -4229)))) (-2422 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-1752 (((-520) $) 44 (|has| (-520) (-783)))) (-2446 (($ $ $) 86 (|has| |#1| (-783)))) (-3830 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3224 ((|#1| $) 102 (-12 (|has| |#1| (-969)) (|has| |#1| (-926))))) (-1390 (((-108) $ (-706)) 10)) (-2515 ((|#1| $) 103 (-12 (|has| |#1| (-969)) (|has| |#1| (-926))))) (-1239 (((-1066) $) 22 (|has| |#1| (-1012)))) (-1659 (($ |#1| $ (-520)) 60) (($ $ $ (-520)) 59)) (-3622 (((-586 (-520)) $) 46)) (-2603 (((-108) (-520) $) 47)) (-4142 (((-1030) $) 21 (|has| |#1| (-1012)))) (-2293 ((|#1| $) 42 (|has| (-520) (-783)))) (-2985 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-2936 (($ $ |#1|) 41 (|has| $ (-6 -4230)))) (-4155 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 |#1|))) 26 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-268 |#1|)) 25 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-586 |#1|) (-586 |#1|)) 23 (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))) (-2533 (((-108) $ $) 14)) (-2094 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-1523 (((-586 |#1|) $) 48)) (-4018 (((-108) $) 11)) (-2238 (($) 12)) (-2543 ((|#1| $ (-520) |#1|) 50) ((|#1| $ (-520)) 49) (($ $ (-1131 (-520))) 63)) (-3639 ((|#1| $ $) 106 (|has| |#1| (-969)))) (-3690 (($ $ (-520)) 62) (($ $ (-1131 (-520))) 61)) (-1480 (($ $ $) 104 (|has| |#1| (-969)))) (-4159 (((-706) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4229))) (((-706) |#1| $) 28 (-12 (|has| |#1| (-1012)) (|has| $ (-6 -4229))))) (-1913 (($ $ $ (-520)) 91 (|has| $ (-6 -4230)))) (-2403 (($ $) 13)) (-1429 (((-496) $) 79 (|has| |#1| (-561 (-496))))) (-2200 (($ (-586 |#1|)) 70)) (-4156 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-586 $)) 65)) (-2188 (((-791) $) 18 (|has| |#1| (-560 (-791))))) (-1662 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4229)))) (-1573 (((-108) $ $) 84 (|has| |#1| (-783)))) (-1557 (((-108) $ $) 83 (|has| |#1| (-783)))) (-1530 (((-108) $ $) 20 (|has| |#1| (-1012)))) (-1565 (((-108) $ $) 85 (|has| |#1| (-783)))) (-1548 (((-108) $ $) 82 (|has| |#1| (-783)))) (-1611 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-1601 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-520) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-662))) (($ $ |#1|) 107 (|has| |#1| (-662)))) (-3474 (((-706) $) 6 (|has| $ (-6 -4229)))))
-(((-1162 |#1|) (-1195) (-1118)) (T -1162))
-((-1601 (*1 *1 *1 *1) (-12 (-4 *1 (-1162 *2)) (-4 *2 (-1118)) (-4 *2 (-25)))) (-3477 (*1 *1 *2) (-12 (-5 *2 (-706)) (-4 *1 (-1162 *3)) (-4 *3 (-23)) (-4 *3 (-1118)))) (-1611 (*1 *1 *1) (-12 (-4 *1 (-1162 *2)) (-4 *2 (-1118)) (-4 *2 (-21)))) (-1611 (*1 *1 *1 *1) (-12 (-4 *1 (-1162 *2)) (-4 *2 (-1118)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-520)) (-4 *1 (-1162 *3)) (-4 *3 (-1118)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1162 *2)) (-4 *2 (-1118)) (-4 *2 (-662)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1162 *2)) (-4 *2 (-1118)) (-4 *2 (-662)))) (-3639 (*1 *2 *1 *1) (-12 (-4 *1 (-1162 *2)) (-4 *2 (-1118)) (-4 *2 (-969)))) (-3948 (*1 *2 *1 *1) (-12 (-4 *1 (-1162 *3)) (-4 *3 (-1118)) (-4 *3 (-969)) (-5 *2 (-626 *3)))) (-1480 (*1 *1 *1 *1) (-12 (-4 *1 (-1162 *2)) (-4 *2 (-1118)) (-4 *2 (-969)))) (-2515 (*1 *2 *1) (-12 (-4 *1 (-1162 *2)) (-4 *2 (-1118)) (-4 *2 (-926)) (-4 *2 (-969)))) (-3224 (*1 *2 *1) (-12 (-4 *1 (-1162 *2)) (-4 *2 (-1118)) (-4 *2 (-926)) (-4 *2 (-969)))))
-(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -1601 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -3477 ($ (-706))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -1611 ($ $)) (-15 -1611 ($ $ $)) (-15 * ($ (-520) $))) |%noBranch|) (IF (|has| |t#1| (-662)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-969)) (PROGN (-15 -3639 (|t#1| $ $)) (-15 -3948 ((-626 |t#1|) $ $)) (-15 -1480 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-926)) (IF (|has| |t#1| (-969)) (PROGN (-15 -2515 (|t#1| $)) (-15 -3224 (|t#1| $))) |%noBranch|) |%noBranch|)))
-(((-33) . T) ((-97) -3700 (|has| |#1| (-1012)) (|has| |#1| (-783))) ((-560 (-791)) -3700 (|has| |#1| (-1012)) (|has| |#1| (-783)) (|has| |#1| (-560 (-791)))) ((-139 |#1|) . T) ((-561 (-496)) |has| |#1| (-561 (-496))) ((-260 #0=(-520) |#1|) . T) ((-262 #0# |#1|) . T) ((-283 |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))) ((-346 |#1|) . T) ((-459 |#1|) . T) ((-553 #0# |#1|) . T) ((-481 |#1| |#1|) -12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))) ((-591 |#1|) . T) ((-19 |#1|) . T) ((-783) |has| |#1| (-783)) ((-1012) -3700 (|has| |#1| (-1012)) (|has| |#1| (-783))) ((-1118) . T))
-((-1404 (((-1164 |#2|) (-1 |#2| |#1| |#2|) (-1164 |#1|) |#2|) 13)) (-3856 ((|#2| (-1 |#2| |#1| |#2|) (-1164 |#1|) |#2|) 15)) (-1389 (((-3 (-1164 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1164 |#1|)) 28) (((-1164 |#2|) (-1 |#2| |#1|) (-1164 |#1|)) 18)))
-(((-1163 |#1| |#2|) (-10 -7 (-15 -1404 ((-1164 |#2|) (-1 |#2| |#1| |#2|) (-1164 |#1|) |#2|)) (-15 -3856 (|#2| (-1 |#2| |#1| |#2|) (-1164 |#1|) |#2|)) (-15 -1389 ((-1164 |#2|) (-1 |#2| |#1|) (-1164 |#1|))) (-15 -1389 ((-3 (-1164 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1164 |#1|)))) (-1118) (-1118)) (T -1163))
-((-1389 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1164 *5)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-5 *2 (-1164 *6)) (-5 *1 (-1163 *5 *6)))) (-1389 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1164 *5)) (-4 *5 (-1118)) (-4 *6 (-1118)) (-5 *2 (-1164 *6)) (-5 *1 (-1163 *5 *6)))) (-3856 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1164 *5)) (-4 *5 (-1118)) (-4 *2 (-1118)) (-5 *1 (-1163 *5 *2)))) (-1404 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1164 *6)) (-4 *6 (-1118)) (-4 *5 (-1118)) (-5 *2 (-1164 *5)) (-5 *1 (-1163 *6 *5)))))
-(-10 -7 (-15 -1404 ((-1164 |#2|) (-1 |#2| |#1| |#2|) (-1164 |#1|) |#2|)) (-15 -3856 (|#2| (-1 |#2| |#1| |#2|) (-1164 |#1|) |#2|)) (-15 -1389 ((-1164 |#2|) (-1 |#2| |#1|) (-1164 |#1|))) (-15 -1389 ((-3 (-1164 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1164 |#1|))))
-((-1414 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-3477 (($ (-706)) NIL (|has| |#1| (-23)))) (-2144 (($ (-586 |#1|)) 9)) (-1476 (((-1169) $ (-520) (-520)) NIL (|has| $ (-6 -4230)))) (-4029 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-783)))) (-3587 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4230))) (($ $) NIL (-12 (|has| $ (-6 -4230)) (|has| |#1| (-783))))) (-3210 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-783)))) (-2063 (((-108) $ (-706)) NIL)) (-2377 ((|#1| $ (-520) |#1|) NIL (|has| $ (-6 -4230))) ((|#1| $ (-1131 (-520)) |#1|) NIL (|has| $ (-6 -4230)))) (-1627 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-3961 (($) NIL T CONST)) (-2447 (($ $) NIL (|has| $ (-6 -4230)))) (-1861 (($ $) NIL)) (-2331 (($ $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-1421 (($ |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-3856 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4229))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4229)))) (-3846 ((|#1| $ (-520) |#1|) NIL (|has| $ (-6 -4230)))) (-3623 ((|#1| $ (-520)) NIL)) (-3232 (((-520) (-1 (-108) |#1|) $) NIL) (((-520) |#1| $) NIL (|has| |#1| (-1012))) (((-520) |#1| $ (-520)) NIL (|has| |#1| (-1012)))) (-3828 (((-586 |#1|) $) 15 (|has| $ (-6 -4229)))) (-3948 (((-626 |#1|) $ $) NIL (|has| |#1| (-969)))) (-1810 (($ (-706) |#1|) NIL)) (-3027 (((-108) $ (-706)) NIL)) (-2567 (((-520) $) NIL (|has| (-520) (-783)))) (-2809 (($ $ $) NIL (|has| |#1| (-783)))) (-1819 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-783)))) (-3702 (((-586 |#1|) $) NIL (|has| $ (-6 -4229)))) (-2422 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-1752 (((-520) $) NIL (|has| (-520) (-783)))) (-2446 (($ $ $) NIL (|has| |#1| (-783)))) (-3830 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3224 ((|#1| $) NIL (-12 (|has| |#1| (-926)) (|has| |#1| (-969))))) (-1390 (((-108) $ (-706)) NIL)) (-2515 ((|#1| $) NIL (-12 (|has| |#1| (-926)) (|has| |#1| (-969))))) (-1239 (((-1066) $) NIL (|has| |#1| (-1012)))) (-1659 (($ |#1| $ (-520)) NIL) (($ $ $ (-520)) NIL)) (-3622 (((-586 (-520)) $) NIL)) (-2603 (((-108) (-520) $) NIL)) (-4142 (((-1030) $) NIL (|has| |#1| (-1012)))) (-2293 ((|#1| $) NIL (|has| (-520) (-783)))) (-2985 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-2936 (($ $ |#1|) NIL (|has| $ (-6 -4230)))) (-4155 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 (-268 |#1|))) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-268 |#1|)) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012)))) (($ $ (-586 |#1|) (-586 |#1|)) NIL (-12 (|has| |#1| (-283 |#1|)) (|has| |#1| (-1012))))) (-2533 (((-108) $ $) NIL)) (-2094 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-1523 (((-586 |#1|) $) NIL)) (-4018 (((-108) $) NIL)) (-2238 (($) NIL)) (-2543 ((|#1| $ (-520) |#1|) NIL) ((|#1| $ (-520)) NIL) (($ $ (-1131 (-520))) NIL)) (-3639 ((|#1| $ $) NIL (|has| |#1| (-969)))) (-3690 (($ $ (-520)) NIL) (($ $ (-1131 (-520))) NIL)) (-1480 (($ $ $) NIL (|has| |#1| (-969)))) (-4159 (((-706) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229))) (((-706) |#1| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#1| (-1012))))) (-1913 (($ $ $ (-520)) NIL (|has| $ (-6 -4230)))) (-2403 (($ $) NIL)) (-1429 (((-496) $) 19 (|has| |#1| (-561 (-496))))) (-2200 (($ (-586 |#1|)) 8)) (-4156 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-586 $)) NIL)) (-2188 (((-791) $) NIL (|has| |#1| (-560 (-791))))) (-1662 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4229)))) (-1573 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1557 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1530 (((-108) $ $) NIL (|has| |#1| (-1012)))) (-1565 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1548 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1611 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1601 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-520) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-662))) (($ $ |#1|) NIL (|has| |#1| (-662)))) (-3474 (((-706) $) NIL (|has| $ (-6 -4229)))))
-(((-1164 |#1|) (-13 (-1162 |#1|) (-10 -8 (-15 -2144 ($ (-586 |#1|))))) (-1118)) (T -1164))
-((-2144 (*1 *1 *2) (-12 (-5 *2 (-586 *3)) (-4 *3 (-1118)) (-5 *1 (-1164 *3)))))
-(-13 (-1162 |#1|) (-10 -8 (-15 -2144 ($ (-586 |#1|)))))
-((-1414 (((-108) $ $) NIL)) (-3960 (((-1066) $ (-1066)) 87) (((-1066) $ (-1066) (-1066)) 85) (((-1066) $ (-1066) (-586 (-1066))) 84)) (-1410 (($) 56)) (-3176 (((-1169) $ (-440) (-849)) 42)) (-1967 (((-1169) $ (-849) (-1066)) 70) (((-1169) $ (-849) (-802)) 71)) (-2466 (((-1169) $ (-849) (-352) (-352)) 45)) (-2950 (((-1169) $ (-1066)) 66)) (-1844 (((-1169) $ (-849) (-1066)) 75)) (-1640 (((-1169) $ (-849) (-352) (-352)) 46)) (-2523 (((-1169) $ (-849) (-849)) 43)) (-3934 (((-1169) $) 67)) (-3039 (((-1169) $ (-849) (-1066)) 74)) (-3779 (((-1169) $ (-440) (-849)) 30)) (-4129 (((-1169) $ (-849) (-1066)) 73)) (-2535 (((-586 (-238)) $) 22) (($ $ (-586 (-238))) 23)) (-3181 (((-1169) $ (-706) (-706)) 40)) (-2896 (($ $) 57) (($ (-440) (-586 (-238))) 58)) (-1239 (((-1066) $) NIL)) (-2526 (((-520) $) 37)) (-4142 (((-1030) $) NIL)) (-3195 (((-1164 (-3 (-440) "undefined")) $) 36)) (-3817 (((-1164 (-2 (|:| |scaleX| (-201)) (|:| |scaleY| (-201)) (|:| |deltaX| (-201)) (|:| |deltaY| (-201)) (|:| -4129 (-520)) (|:| -3959 (-520)) (|:| |spline| (-520)) (|:| -2815 (-520)) (|:| |axesColor| (-802)) (|:| -1967 (-520)) (|:| |unitsColor| (-802)) (|:| |showing| (-520)))) $) 35)) (-4203 (((-1169) $ (-849) (-201) (-201) (-201) (-201) (-520) (-520) (-520) (-520) (-802) (-520) (-802) (-520)) 65)) (-2674 (((-586 (-871 (-201))) $) NIL)) (-3080 (((-440) $ (-849)) 32)) (-2470 (((-1169) $ (-706) (-706) (-849) (-849)) 39)) (-2103 (((-1169) $ (-1066)) 76)) (-3959 (((-1169) $ (-849) (-1066)) 72)) (-2188 (((-791) $) 82)) (-1649 (((-1169) $) 77)) (-2815 (((-1169) $ (-849) (-1066)) 68) (((-1169) $ (-849) (-802)) 69)) (-1530 (((-108) $ $) NIL)))
-(((-1165) (-13 (-1012) (-10 -8 (-15 -2674 ((-586 (-871 (-201))) $)) (-15 -1410 ($)) (-15 -2896 ($ $)) (-15 -2535 ((-586 (-238)) $)) (-15 -2535 ($ $ (-586 (-238)))) (-15 -2896 ($ (-440) (-586 (-238)))) (-15 -4203 ((-1169) $ (-849) (-201) (-201) (-201) (-201) (-520) (-520) (-520) (-520) (-802) (-520) (-802) (-520))) (-15 -3817 ((-1164 (-2 (|:| |scaleX| (-201)) (|:| |scaleY| (-201)) (|:| |deltaX| (-201)) (|:| |deltaY| (-201)) (|:| -4129 (-520)) (|:| -3959 (-520)) (|:| |spline| (-520)) (|:| -2815 (-520)) (|:| |axesColor| (-802)) (|:| -1967 (-520)) (|:| |unitsColor| (-802)) (|:| |showing| (-520)))) $)) (-15 -3195 ((-1164 (-3 (-440) "undefined")) $)) (-15 -2950 ((-1169) $ (-1066))) (-15 -3779 ((-1169) $ (-440) (-849))) (-15 -3080 ((-440) $ (-849))) (-15 -2815 ((-1169) $ (-849) (-1066))) (-15 -2815 ((-1169) $ (-849) (-802))) (-15 -1967 ((-1169) $ (-849) (-1066))) (-15 -1967 ((-1169) $ (-849) (-802))) (-15 -4129 ((-1169) $ (-849) (-1066))) (-15 -3039 ((-1169) $ (-849) (-1066))) (-15 -3959 ((-1169) $ (-849) (-1066))) (-15 -2103 ((-1169) $ (-1066))) (-15 -1649 ((-1169) $)) (-15 -2470 ((-1169) $ (-706) (-706) (-849) (-849))) (-15 -1640 ((-1169) $ (-849) (-352) (-352))) (-15 -2466 ((-1169) $ (-849) (-352) (-352))) (-15 -1844 ((-1169) $ (-849) (-1066))) (-15 -3181 ((-1169) $ (-706) (-706))) (-15 -3176 ((-1169) $ (-440) (-849))) (-15 -2523 ((-1169) $ (-849) (-849))) (-15 -3960 ((-1066) $ (-1066))) (-15 -3960 ((-1066) $ (-1066) (-1066))) (-15 -3960 ((-1066) $ (-1066) (-586 (-1066)))) (-15 -3934 ((-1169) $)) (-15 -2526 ((-520) $)) (-15 -2188 ((-791) $))))) (T -1165))
-((-2188 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-1165)))) (-2674 (*1 *2 *1) (-12 (-5 *2 (-586 (-871 (-201)))) (-5 *1 (-1165)))) (-1410 (*1 *1) (-5 *1 (-1165))) (-2896 (*1 *1 *1) (-5 *1 (-1165))) (-2535 (*1 *2 *1) (-12 (-5 *2 (-586 (-238))) (-5 *1 (-1165)))) (-2535 (*1 *1 *1 *2) (-12 (-5 *2 (-586 (-238))) (-5 *1 (-1165)))) (-2896 (*1 *1 *2 *3) (-12 (-5 *2 (-440)) (-5 *3 (-586 (-238))) (-5 *1 (-1165)))) (-4203 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-849)) (-5 *4 (-201)) (-5 *5 (-520)) (-5 *6 (-802)) (-5 *2 (-1169)) (-5 *1 (-1165)))) (-3817 (*1 *2 *1) (-12 (-5 *2 (-1164 (-2 (|:| |scaleX| (-201)) (|:| |scaleY| (-201)) (|:| |deltaX| (-201)) (|:| |deltaY| (-201)) (|:| -4129 (-520)) (|:| -3959 (-520)) (|:| |spline| (-520)) (|:| -2815 (-520)) (|:| |axesColor| (-802)) (|:| -1967 (-520)) (|:| |unitsColor| (-802)) (|:| |showing| (-520))))) (-5 *1 (-1165)))) (-3195 (*1 *2 *1) (-12 (-5 *2 (-1164 (-3 (-440) "undefined"))) (-5 *1 (-1165)))) (-2950 (*1 *2 *1 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-1169)) (-5 *1 (-1165)))) (-3779 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-440)) (-5 *4 (-849)) (-5 *2 (-1169)) (-5 *1 (-1165)))) (-3080 (*1 *2 *1 *3) (-12 (-5 *3 (-849)) (-5 *2 (-440)) (-5 *1 (-1165)))) (-2815 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-849)) (-5 *4 (-1066)) (-5 *2 (-1169)) (-5 *1 (-1165)))) (-2815 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-849)) (-5 *4 (-802)) (-5 *2 (-1169)) (-5 *1 (-1165)))) (-1967 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-849)) (-5 *4 (-1066)) (-5 *2 (-1169)) (-5 *1 (-1165)))) (-1967 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-849)) (-5 *4 (-802)) (-5 *2 (-1169)) (-5 *1 (-1165)))) (-4129 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-849)) (-5 *4 (-1066)) (-5 *2 (-1169)) (-5 *1 (-1165)))) (-3039 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-849)) (-5 *4 (-1066)) (-5 *2 (-1169)) (-5 *1 (-1165)))) (-3959 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-849)) (-5 *4 (-1066)) (-5 *2 (-1169)) (-5 *1 (-1165)))) (-2103 (*1 *2 *1 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-1169)) (-5 *1 (-1165)))) (-1649 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-1165)))) (-2470 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-706)) (-5 *4 (-849)) (-5 *2 (-1169)) (-5 *1 (-1165)))) (-1640 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-849)) (-5 *4 (-352)) (-5 *2 (-1169)) (-5 *1 (-1165)))) (-2466 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-849)) (-5 *4 (-352)) (-5 *2 (-1169)) (-5 *1 (-1165)))) (-1844 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-849)) (-5 *4 (-1066)) (-5 *2 (-1169)) (-5 *1 (-1165)))) (-3181 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-706)) (-5 *2 (-1169)) (-5 *1 (-1165)))) (-3176 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-440)) (-5 *4 (-849)) (-5 *2 (-1169)) (-5 *1 (-1165)))) (-2523 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-849)) (-5 *2 (-1169)) (-5 *1 (-1165)))) (-3960 (*1 *2 *1 *2) (-12 (-5 *2 (-1066)) (-5 *1 (-1165)))) (-3960 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1066)) (-5 *1 (-1165)))) (-3960 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-586 (-1066))) (-5 *2 (-1066)) (-5 *1 (-1165)))) (-3934 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-1165)))) (-2526 (*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-1165)))))
-(-13 (-1012) (-10 -8 (-15 -2674 ((-586 (-871 (-201))) $)) (-15 -1410 ($)) (-15 -2896 ($ $)) (-15 -2535 ((-586 (-238)) $)) (-15 -2535 ($ $ (-586 (-238)))) (-15 -2896 ($ (-440) (-586 (-238)))) (-15 -4203 ((-1169) $ (-849) (-201) (-201) (-201) (-201) (-520) (-520) (-520) (-520) (-802) (-520) (-802) (-520))) (-15 -3817 ((-1164 (-2 (|:| |scaleX| (-201)) (|:| |scaleY| (-201)) (|:| |deltaX| (-201)) (|:| |deltaY| (-201)) (|:| -4129 (-520)) (|:| -3959 (-520)) (|:| |spline| (-520)) (|:| -2815 (-520)) (|:| |axesColor| (-802)) (|:| -1967 (-520)) (|:| |unitsColor| (-802)) (|:| |showing| (-520)))) $)) (-15 -3195 ((-1164 (-3 (-440) "undefined")) $)) (-15 -2950 ((-1169) $ (-1066))) (-15 -3779 ((-1169) $ (-440) (-849))) (-15 -3080 ((-440) $ (-849))) (-15 -2815 ((-1169) $ (-849) (-1066))) (-15 -2815 ((-1169) $ (-849) (-802))) (-15 -1967 ((-1169) $ (-849) (-1066))) (-15 -1967 ((-1169) $ (-849) (-802))) (-15 -4129 ((-1169) $ (-849) (-1066))) (-15 -3039 ((-1169) $ (-849) (-1066))) (-15 -3959 ((-1169) $ (-849) (-1066))) (-15 -2103 ((-1169) $ (-1066))) (-15 -1649 ((-1169) $)) (-15 -2470 ((-1169) $ (-706) (-706) (-849) (-849))) (-15 -1640 ((-1169) $ (-849) (-352) (-352))) (-15 -2466 ((-1169) $ (-849) (-352) (-352))) (-15 -1844 ((-1169) $ (-849) (-1066))) (-15 -3181 ((-1169) $ (-706) (-706))) (-15 -3176 ((-1169) $ (-440) (-849))) (-15 -2523 ((-1169) $ (-849) (-849))) (-15 -3960 ((-1066) $ (-1066))) (-15 -3960 ((-1066) $ (-1066) (-1066))) (-15 -3960 ((-1066) $ (-1066) (-586 (-1066)))) (-15 -3934 ((-1169) $)) (-15 -2526 ((-520) $)) (-15 -2188 ((-791) $))))
-((-1414 (((-108) $ $) NIL)) (-4150 (((-1169) $ (-352)) 138) (((-1169) $ (-352) (-352) (-352)) 139)) (-3960 (((-1066) $ (-1066)) 146) (((-1066) $ (-1066) (-1066)) 144) (((-1066) $ (-1066) (-586 (-1066))) 143)) (-1842 (($) 49)) (-1707 (((-1169) $ (-352) (-352) (-352) (-352) (-352)) 114) (((-2 (|:| |theta| (-201)) (|:| |phi| (-201)) (|:| -1640 (-201)) (|:| |scaleX| (-201)) (|:| |scaleY| (-201)) (|:| |scaleZ| (-201)) (|:| |deltaX| (-201)) (|:| |deltaY| (-201))) $) 112) (((-1169) $ (-2 (|:| |theta| (-201)) (|:| |phi| (-201)) (|:| -1640 (-201)) (|:| |scaleX| (-201)) (|:| |scaleY| (-201)) (|:| |scaleZ| (-201)) (|:| |deltaX| (-201)) (|:| |deltaY| (-201)))) 113) (((-1169) $ (-520) (-520) (-352) (-352) (-352)) 115) (((-1169) $ (-352) (-352)) 116) (((-1169) $ (-352) (-352) (-352)) 123)) (-2939 (((-352)) 96) (((-352) (-352)) 97)) (-2591 (((-352)) 91) (((-352) (-352)) 93)) (-2194 (((-352)) 94) (((-352) (-352)) 95)) (-1657 (((-352)) 100) (((-352) (-352)) 101)) (-2527 (((-352)) 98) (((-352) (-352)) 99)) (-2466 (((-1169) $ (-352) (-352)) 140)) (-2950 (((-1169) $ (-1066)) 124)) (-2263 (((-1043 (-201)) $) 50) (($ $ (-1043 (-201))) 51)) (-2463 (((-1169) $ (-1066)) 152)) (-4008 (((-1169) $ (-1066)) 153)) (-1684 (((-1169) $ (-352) (-352)) 122) (((-1169) $ (-520) (-520)) 137)) (-2523 (((-1169) $ (-849) (-849)) 130)) (-3934 (((-1169) $) 110)) (-1319 (((-1169) $ (-1066)) 151)) (-3227 (((-1169) $ (-1066)) 107)) (-2535 (((-586 (-238)) $) 52) (($ $ (-586 (-238))) 53)) (-3181 (((-1169) $ (-706) (-706)) 129)) (-2349 (((-1169) $ (-706) (-871 (-201))) 158)) (-3693 (($ $) 56) (($ (-1043 (-201)) (-1066)) 57) (($ (-1043 (-201)) (-586 (-238))) 58)) (-3973 (((-1169) $ (-352) (-352) (-352)) 104)) (-1239 (((-1066) $) NIL)) (-2526 (((-520) $) 102)) (-3644 (((-1169) $ (-352)) 141)) (-2959 (((-1169) $ (-352)) 156)) (-4142 (((-1030) $) NIL)) (-1835 (((-1169) $ (-352)) 155)) (-3467 (((-1169) $ (-1066)) 109)) (-2470 (((-1169) $ (-706) (-706) (-849) (-849)) 128)) (-2582 (((-1169) $ (-1066)) 106)) (-2103 (((-1169) $ (-1066)) 108)) (-4033 (((-1169) $ (-143) (-143)) 127)) (-2188 (((-791) $) 135)) (-1649 (((-1169) $) 111)) (-2256 (((-1169) $ (-1066)) 154)) (-2815 (((-1169) $ (-1066)) 105)) (-1530 (((-108) $ $) NIL)))
-(((-1166) (-13 (-1012) (-10 -8 (-15 -2591 ((-352))) (-15 -2591 ((-352) (-352))) (-15 -2194 ((-352))) (-15 -2194 ((-352) (-352))) (-15 -2939 ((-352))) (-15 -2939 ((-352) (-352))) (-15 -2527 ((-352))) (-15 -2527 ((-352) (-352))) (-15 -1657 ((-352))) (-15 -1657 ((-352) (-352))) (-15 -1842 ($)) (-15 -3693 ($ $)) (-15 -3693 ($ (-1043 (-201)) (-1066))) (-15 -3693 ($ (-1043 (-201)) (-586 (-238)))) (-15 -2263 ((-1043 (-201)) $)) (-15 -2263 ($ $ (-1043 (-201)))) (-15 -2349 ((-1169) $ (-706) (-871 (-201)))) (-15 -2535 ((-586 (-238)) $)) (-15 -2535 ($ $ (-586 (-238)))) (-15 -3181 ((-1169) $ (-706) (-706))) (-15 -2523 ((-1169) $ (-849) (-849))) (-15 -2950 ((-1169) $ (-1066))) (-15 -2470 ((-1169) $ (-706) (-706) (-849) (-849))) (-15 -1707 ((-1169) $ (-352) (-352) (-352) (-352) (-352))) (-15 -1707 ((-2 (|:| |theta| (-201)) (|:| |phi| (-201)) (|:| -1640 (-201)) (|:| |scaleX| (-201)) (|:| |scaleY| (-201)) (|:| |scaleZ| (-201)) (|:| |deltaX| (-201)) (|:| |deltaY| (-201))) $)) (-15 -1707 ((-1169) $ (-2 (|:| |theta| (-201)) (|:| |phi| (-201)) (|:| -1640 (-201)) (|:| |scaleX| (-201)) (|:| |scaleY| (-201)) (|:| |scaleZ| (-201)) (|:| |deltaX| (-201)) (|:| |deltaY| (-201))))) (-15 -1707 ((-1169) $ (-520) (-520) (-352) (-352) (-352))) (-15 -1707 ((-1169) $ (-352) (-352))) (-15 -1707 ((-1169) $ (-352) (-352) (-352))) (-15 -2103 ((-1169) $ (-1066))) (-15 -2815 ((-1169) $ (-1066))) (-15 -2582 ((-1169) $ (-1066))) (-15 -3227 ((-1169) $ (-1066))) (-15 -3467 ((-1169) $ (-1066))) (-15 -1684 ((-1169) $ (-352) (-352))) (-15 -1684 ((-1169) $ (-520) (-520))) (-15 -4150 ((-1169) $ (-352))) (-15 -4150 ((-1169) $ (-352) (-352) (-352))) (-15 -2466 ((-1169) $ (-352) (-352))) (-15 -1319 ((-1169) $ (-1066))) (-15 -1835 ((-1169) $ (-352))) (-15 -2959 ((-1169) $ (-352))) (-15 -2463 ((-1169) $ (-1066))) (-15 -4008 ((-1169) $ (-1066))) (-15 -2256 ((-1169) $ (-1066))) (-15 -3973 ((-1169) $ (-352) (-352) (-352))) (-15 -3644 ((-1169) $ (-352))) (-15 -3934 ((-1169) $)) (-15 -4033 ((-1169) $ (-143) (-143))) (-15 -3960 ((-1066) $ (-1066))) (-15 -3960 ((-1066) $ (-1066) (-1066))) (-15 -3960 ((-1066) $ (-1066) (-586 (-1066)))) (-15 -1649 ((-1169) $)) (-15 -2526 ((-520) $))))) (T -1166))
-((-2591 (*1 *2) (-12 (-5 *2 (-352)) (-5 *1 (-1166)))) (-2591 (*1 *2 *2) (-12 (-5 *2 (-352)) (-5 *1 (-1166)))) (-2194 (*1 *2) (-12 (-5 *2 (-352)) (-5 *1 (-1166)))) (-2194 (*1 *2 *2) (-12 (-5 *2 (-352)) (-5 *1 (-1166)))) (-2939 (*1 *2) (-12 (-5 *2 (-352)) (-5 *1 (-1166)))) (-2939 (*1 *2 *2) (-12 (-5 *2 (-352)) (-5 *1 (-1166)))) (-2527 (*1 *2) (-12 (-5 *2 (-352)) (-5 *1 (-1166)))) (-2527 (*1 *2 *2) (-12 (-5 *2 (-352)) (-5 *1 (-1166)))) (-1657 (*1 *2) (-12 (-5 *2 (-352)) (-5 *1 (-1166)))) (-1657 (*1 *2 *2) (-12 (-5 *2 (-352)) (-5 *1 (-1166)))) (-1842 (*1 *1) (-5 *1 (-1166))) (-3693 (*1 *1 *1) (-5 *1 (-1166))) (-3693 (*1 *1 *2 *3) (-12 (-5 *2 (-1043 (-201))) (-5 *3 (-1066)) (-5 *1 (-1166)))) (-3693 (*1 *1 *2 *3) (-12 (-5 *2 (-1043 (-201))) (-5 *3 (-586 (-238))) (-5 *1 (-1166)))) (-2263 (*1 *2 *1) (-12 (-5 *2 (-1043 (-201))) (-5 *1 (-1166)))) (-2263 (*1 *1 *1 *2) (-12 (-5 *2 (-1043 (-201))) (-5 *1 (-1166)))) (-2349 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-706)) (-5 *4 (-871 (-201))) (-5 *2 (-1169)) (-5 *1 (-1166)))) (-2535 (*1 *2 *1) (-12 (-5 *2 (-586 (-238))) (-5 *1 (-1166)))) (-2535 (*1 *1 *1 *2) (-12 (-5 *2 (-586 (-238))) (-5 *1 (-1166)))) (-3181 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-706)) (-5 *2 (-1169)) (-5 *1 (-1166)))) (-2523 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-849)) (-5 *2 (-1169)) (-5 *1 (-1166)))) (-2950 (*1 *2 *1 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-1169)) (-5 *1 (-1166)))) (-2470 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-706)) (-5 *4 (-849)) (-5 *2 (-1169)) (-5 *1 (-1166)))) (-1707 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-352)) (-5 *2 (-1169)) (-5 *1 (-1166)))) (-1707 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-201)) (|:| |phi| (-201)) (|:| -1640 (-201)) (|:| |scaleX| (-201)) (|:| |scaleY| (-201)) (|:| |scaleZ| (-201)) (|:| |deltaX| (-201)) (|:| |deltaY| (-201)))) (-5 *1 (-1166)))) (-1707 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-201)) (|:| |phi| (-201)) (|:| -1640 (-201)) (|:| |scaleX| (-201)) (|:| |scaleY| (-201)) (|:| |scaleZ| (-201)) (|:| |deltaX| (-201)) (|:| |deltaY| (-201)))) (-5 *2 (-1169)) (-5 *1 (-1166)))) (-1707 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-520)) (-5 *4 (-352)) (-5 *2 (-1169)) (-5 *1 (-1166)))) (-1707 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-352)) (-5 *2 (-1169)) (-5 *1 (-1166)))) (-1707 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-352)) (-5 *2 (-1169)) (-5 *1 (-1166)))) (-2103 (*1 *2 *1 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-1169)) (-5 *1 (-1166)))) (-2815 (*1 *2 *1 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-1169)) (-5 *1 (-1166)))) (-2582 (*1 *2 *1 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-1169)) (-5 *1 (-1166)))) (-3227 (*1 *2 *1 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-1169)) (-5 *1 (-1166)))) (-3467 (*1 *2 *1 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-1169)) (-5 *1 (-1166)))) (-1684 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-352)) (-5 *2 (-1169)) (-5 *1 (-1166)))) (-1684 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-520)) (-5 *2 (-1169)) (-5 *1 (-1166)))) (-4150 (*1 *2 *1 *3) (-12 (-5 *3 (-352)) (-5 *2 (-1169)) (-5 *1 (-1166)))) (-4150 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-352)) (-5 *2 (-1169)) (-5 *1 (-1166)))) (-2466 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-352)) (-5 *2 (-1169)) (-5 *1 (-1166)))) (-1319 (*1 *2 *1 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-1169)) (-5 *1 (-1166)))) (-1835 (*1 *2 *1 *3) (-12 (-5 *3 (-352)) (-5 *2 (-1169)) (-5 *1 (-1166)))) (-2959 (*1 *2 *1 *3) (-12 (-5 *3 (-352)) (-5 *2 (-1169)) (-5 *1 (-1166)))) (-2463 (*1 *2 *1 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-1169)) (-5 *1 (-1166)))) (-4008 (*1 *2 *1 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-1169)) (-5 *1 (-1166)))) (-2256 (*1 *2 *1 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-1169)) (-5 *1 (-1166)))) (-3973 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-352)) (-5 *2 (-1169)) (-5 *1 (-1166)))) (-3644 (*1 *2 *1 *3) (-12 (-5 *3 (-352)) (-5 *2 (-1169)) (-5 *1 (-1166)))) (-3934 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-1166)))) (-4033 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-143)) (-5 *2 (-1169)) (-5 *1 (-1166)))) (-3960 (*1 *2 *1 *2) (-12 (-5 *2 (-1066)) (-5 *1 (-1166)))) (-3960 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1066)) (-5 *1 (-1166)))) (-3960 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-586 (-1066))) (-5 *2 (-1066)) (-5 *1 (-1166)))) (-1649 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-1166)))) (-2526 (*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-1166)))))
-(-13 (-1012) (-10 -8 (-15 -2591 ((-352))) (-15 -2591 ((-352) (-352))) (-15 -2194 ((-352))) (-15 -2194 ((-352) (-352))) (-15 -2939 ((-352))) (-15 -2939 ((-352) (-352))) (-15 -2527 ((-352))) (-15 -2527 ((-352) (-352))) (-15 -1657 ((-352))) (-15 -1657 ((-352) (-352))) (-15 -1842 ($)) (-15 -3693 ($ $)) (-15 -3693 ($ (-1043 (-201)) (-1066))) (-15 -3693 ($ (-1043 (-201)) (-586 (-238)))) (-15 -2263 ((-1043 (-201)) $)) (-15 -2263 ($ $ (-1043 (-201)))) (-15 -2349 ((-1169) $ (-706) (-871 (-201)))) (-15 -2535 ((-586 (-238)) $)) (-15 -2535 ($ $ (-586 (-238)))) (-15 -3181 ((-1169) $ (-706) (-706))) (-15 -2523 ((-1169) $ (-849) (-849))) (-15 -2950 ((-1169) $ (-1066))) (-15 -2470 ((-1169) $ (-706) (-706) (-849) (-849))) (-15 -1707 ((-1169) $ (-352) (-352) (-352) (-352) (-352))) (-15 -1707 ((-2 (|:| |theta| (-201)) (|:| |phi| (-201)) (|:| -1640 (-201)) (|:| |scaleX| (-201)) (|:| |scaleY| (-201)) (|:| |scaleZ| (-201)) (|:| |deltaX| (-201)) (|:| |deltaY| (-201))) $)) (-15 -1707 ((-1169) $ (-2 (|:| |theta| (-201)) (|:| |phi| (-201)) (|:| -1640 (-201)) (|:| |scaleX| (-201)) (|:| |scaleY| (-201)) (|:| |scaleZ| (-201)) (|:| |deltaX| (-201)) (|:| |deltaY| (-201))))) (-15 -1707 ((-1169) $ (-520) (-520) (-352) (-352) (-352))) (-15 -1707 ((-1169) $ (-352) (-352))) (-15 -1707 ((-1169) $ (-352) (-352) (-352))) (-15 -2103 ((-1169) $ (-1066))) (-15 -2815 ((-1169) $ (-1066))) (-15 -2582 ((-1169) $ (-1066))) (-15 -3227 ((-1169) $ (-1066))) (-15 -3467 ((-1169) $ (-1066))) (-15 -1684 ((-1169) $ (-352) (-352))) (-15 -1684 ((-1169) $ (-520) (-520))) (-15 -4150 ((-1169) $ (-352))) (-15 -4150 ((-1169) $ (-352) (-352) (-352))) (-15 -2466 ((-1169) $ (-352) (-352))) (-15 -1319 ((-1169) $ (-1066))) (-15 -1835 ((-1169) $ (-352))) (-15 -2959 ((-1169) $ (-352))) (-15 -2463 ((-1169) $ (-1066))) (-15 -4008 ((-1169) $ (-1066))) (-15 -2256 ((-1169) $ (-1066))) (-15 -3973 ((-1169) $ (-352) (-352) (-352))) (-15 -3644 ((-1169) $ (-352))) (-15 -3934 ((-1169) $)) (-15 -4033 ((-1169) $ (-143) (-143))) (-15 -3960 ((-1066) $ (-1066))) (-15 -3960 ((-1066) $ (-1066) (-1066))) (-15 -3960 ((-1066) $ (-1066) (-586 (-1066)))) (-15 -1649 ((-1169) $)) (-15 -2526 ((-520) $))))
-((-2386 (((-586 (-1066)) (-586 (-1066))) 94) (((-586 (-1066))) 89)) (-3524 (((-586 (-1066))) 87)) (-1228 (((-586 (-849)) (-586 (-849))) 62) (((-586 (-849))) 59)) (-1879 (((-586 (-706)) (-586 (-706))) 56) (((-586 (-706))) 52)) (-2287 (((-1169)) 64)) (-1896 (((-849) (-849)) 80) (((-849)) 79)) (-3378 (((-849) (-849)) 78) (((-849)) 77)) (-3324 (((-802) (-802)) 74) (((-802)) 73)) (-2136 (((-201)) 84) (((-201) (-352)) 86)) (-3679 (((-849)) 81) (((-849) (-849)) 82)) (-3567 (((-849) (-849)) 76) (((-849)) 75)) (-2126 (((-802) (-802)) 68) (((-802)) 66)) (-3528 (((-802) (-802)) 70) (((-802)) 69)) (-2242 (((-802) (-802)) 72) (((-802)) 71)))
-(((-1167) (-10 -7 (-15 -2126 ((-802))) (-15 -2126 ((-802) (-802))) (-15 -3528 ((-802))) (-15 -3528 ((-802) (-802))) (-15 -2242 ((-802))) (-15 -2242 ((-802) (-802))) (-15 -3324 ((-802))) (-15 -3324 ((-802) (-802))) (-15 -3567 ((-849))) (-15 -3567 ((-849) (-849))) (-15 -1879 ((-586 (-706)))) (-15 -1879 ((-586 (-706)) (-586 (-706)))) (-15 -1228 ((-586 (-849)))) (-15 -1228 ((-586 (-849)) (-586 (-849)))) (-15 -2287 ((-1169))) (-15 -2386 ((-586 (-1066)))) (-15 -2386 ((-586 (-1066)) (-586 (-1066)))) (-15 -3524 ((-586 (-1066)))) (-15 -3378 ((-849))) (-15 -1896 ((-849))) (-15 -3378 ((-849) (-849))) (-15 -1896 ((-849) (-849))) (-15 -3679 ((-849) (-849))) (-15 -3679 ((-849))) (-15 -2136 ((-201) (-352))) (-15 -2136 ((-201))))) (T -1167))
-((-2136 (*1 *2) (-12 (-5 *2 (-201)) (-5 *1 (-1167)))) (-2136 (*1 *2 *3) (-12 (-5 *3 (-352)) (-5 *2 (-201)) (-5 *1 (-1167)))) (-3679 (*1 *2) (-12 (-5 *2 (-849)) (-5 *1 (-1167)))) (-3679 (*1 *2 *2) (-12 (-5 *2 (-849)) (-5 *1 (-1167)))) (-1896 (*1 *2 *2) (-12 (-5 *2 (-849)) (-5 *1 (-1167)))) (-3378 (*1 *2 *2) (-12 (-5 *2 (-849)) (-5 *1 (-1167)))) (-1896 (*1 *2) (-12 (-5 *2 (-849)) (-5 *1 (-1167)))) (-3378 (*1 *2) (-12 (-5 *2 (-849)) (-5 *1 (-1167)))) (-3524 (*1 *2) (-12 (-5 *2 (-586 (-1066))) (-5 *1 (-1167)))) (-2386 (*1 *2 *2) (-12 (-5 *2 (-586 (-1066))) (-5 *1 (-1167)))) (-2386 (*1 *2) (-12 (-5 *2 (-586 (-1066))) (-5 *1 (-1167)))) (-2287 (*1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-1167)))) (-1228 (*1 *2 *2) (-12 (-5 *2 (-586 (-849))) (-5 *1 (-1167)))) (-1228 (*1 *2) (-12 (-5 *2 (-586 (-849))) (-5 *1 (-1167)))) (-1879 (*1 *2 *2) (-12 (-5 *2 (-586 (-706))) (-5 *1 (-1167)))) (-1879 (*1 *2) (-12 (-5 *2 (-586 (-706))) (-5 *1 (-1167)))) (-3567 (*1 *2 *2) (-12 (-5 *2 (-849)) (-5 *1 (-1167)))) (-3567 (*1 *2) (-12 (-5 *2 (-849)) (-5 *1 (-1167)))) (-3324 (*1 *2 *2) (-12 (-5 *2 (-802)) (-5 *1 (-1167)))) (-3324 (*1 *2) (-12 (-5 *2 (-802)) (-5 *1 (-1167)))) (-2242 (*1 *2 *2) (-12 (-5 *2 (-802)) (-5 *1 (-1167)))) (-2242 (*1 *2) (-12 (-5 *2 (-802)) (-5 *1 (-1167)))) (-3528 (*1 *2 *2) (-12 (-5 *2 (-802)) (-5 *1 (-1167)))) (-3528 (*1 *2) (-12 (-5 *2 (-802)) (-5 *1 (-1167)))) (-2126 (*1 *2 *2) (-12 (-5 *2 (-802)) (-5 *1 (-1167)))) (-2126 (*1 *2) (-12 (-5 *2 (-802)) (-5 *1 (-1167)))))
-(-10 -7 (-15 -2126 ((-802))) (-15 -2126 ((-802) (-802))) (-15 -3528 ((-802))) (-15 -3528 ((-802) (-802))) (-15 -2242 ((-802))) (-15 -2242 ((-802) (-802))) (-15 -3324 ((-802))) (-15 -3324 ((-802) (-802))) (-15 -3567 ((-849))) (-15 -3567 ((-849) (-849))) (-15 -1879 ((-586 (-706)))) (-15 -1879 ((-586 (-706)) (-586 (-706)))) (-15 -1228 ((-586 (-849)))) (-15 -1228 ((-586 (-849)) (-586 (-849)))) (-15 -2287 ((-1169))) (-15 -2386 ((-586 (-1066)))) (-15 -2386 ((-586 (-1066)) (-586 (-1066)))) (-15 -3524 ((-586 (-1066)))) (-15 -3378 ((-849))) (-15 -1896 ((-849))) (-15 -3378 ((-849) (-849))) (-15 -1896 ((-849) (-849))) (-15 -3679 ((-849) (-849))) (-15 -3679 ((-849))) (-15 -2136 ((-201) (-352))) (-15 -2136 ((-201))))
-((-2504 (((-440) (-586 (-586 (-871 (-201)))) (-586 (-238))) 17) (((-440) (-586 (-586 (-871 (-201))))) 16) (((-440) (-586 (-586 (-871 (-201)))) (-802) (-802) (-849) (-586 (-238))) 15)) (-2657 (((-1165) (-586 (-586 (-871 (-201)))) (-586 (-238))) 23) (((-1165) (-586 (-586 (-871 (-201)))) (-802) (-802) (-849) (-586 (-238))) 22)) (-2188 (((-1165) (-440)) 34)))
-(((-1168) (-10 -7 (-15 -2504 ((-440) (-586 (-586 (-871 (-201)))) (-802) (-802) (-849) (-586 (-238)))) (-15 -2504 ((-440) (-586 (-586 (-871 (-201)))))) (-15 -2504 ((-440) (-586 (-586 (-871 (-201)))) (-586 (-238)))) (-15 -2657 ((-1165) (-586 (-586 (-871 (-201)))) (-802) (-802) (-849) (-586 (-238)))) (-15 -2657 ((-1165) (-586 (-586 (-871 (-201)))) (-586 (-238)))) (-15 -2188 ((-1165) (-440))))) (T -1168))
-((-2188 (*1 *2 *3) (-12 (-5 *3 (-440)) (-5 *2 (-1165)) (-5 *1 (-1168)))) (-2657 (*1 *2 *3 *4) (-12 (-5 *3 (-586 (-586 (-871 (-201))))) (-5 *4 (-586 (-238))) (-5 *2 (-1165)) (-5 *1 (-1168)))) (-2657 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-586 (-586 (-871 (-201))))) (-5 *4 (-802)) (-5 *5 (-849)) (-5 *6 (-586 (-238))) (-5 *2 (-1165)) (-5 *1 (-1168)))) (-2504 (*1 *2 *3 *4) (-12 (-5 *3 (-586 (-586 (-871 (-201))))) (-5 *4 (-586 (-238))) (-5 *2 (-440)) (-5 *1 (-1168)))) (-2504 (*1 *2 *3) (-12 (-5 *3 (-586 (-586 (-871 (-201))))) (-5 *2 (-440)) (-5 *1 (-1168)))) (-2504 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-586 (-586 (-871 (-201))))) (-5 *4 (-802)) (-5 *5 (-849)) (-5 *6 (-586 (-238))) (-5 *2 (-440)) (-5 *1 (-1168)))))
-(-10 -7 (-15 -2504 ((-440) (-586 (-586 (-871 (-201)))) (-802) (-802) (-849) (-586 (-238)))) (-15 -2504 ((-440) (-586 (-586 (-871 (-201)))))) (-15 -2504 ((-440) (-586 (-586 (-871 (-201)))) (-586 (-238)))) (-15 -2657 ((-1165) (-586 (-586 (-871 (-201)))) (-802) (-802) (-849) (-586 (-238)))) (-15 -2657 ((-1165) (-586 (-586 (-871 (-201)))) (-586 (-238)))) (-15 -2188 ((-1165) (-440))))
-((-1365 (($) 7)) (-2188 (((-791) $) 10)))
-(((-1169) (-10 -8 (-15 -1365 ($)) (-15 -2188 ((-791) $)))) (T -1169))
-((-2188 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-1169)))) (-1365 (*1 *1) (-5 *1 (-1169))))
-(-10 -8 (-15 -1365 ($)) (-15 -2188 ((-791) $)))
-((-1619 (($ $ |#2|) 10)))
-(((-1170 |#1| |#2|) (-10 -8 (-15 -1619 (|#1| |#1| |#2|))) (-1171 |#2|) (-336)) (T -1170))
-NIL
-(-10 -8 (-15 -1619 (|#1| |#1| |#2|)))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-1917 (((-3 $ "failed") $ $) 19)) (-3961 (($) 17 T CONST)) (-1239 (((-1066) $) 9)) (-4142 (((-1030) $) 10)) (-1556 (((-126)) 28)) (-2188 (((-791) $) 11)) (-3560 (($) 18 T CONST)) (-1530 (((-108) $ $) 6)) (-1619 (($ $ |#1|) 29)) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
-(((-1171 |#1|) (-1195) (-336)) (T -1171))
-((-1619 (*1 *1 *1 *2) (-12 (-4 *1 (-1171 *2)) (-4 *2 (-336)))) (-1556 (*1 *2) (-12 (-4 *1 (-1171 *3)) (-4 *3 (-336)) (-5 *2 (-126)))))
-(-13 (-653 |t#1|) (-10 -8 (-15 -1619 ($ $ |t#1|)) (-15 -1556 ((-126)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-560 (-791)) . T) ((-588 |#1|) . T) ((-653 |#1|) . T) ((-975 |#1|) . T) ((-1012) . T))
-((-1876 (((-586 (-1113 |#1|)) (-1083) (-1113 |#1|)) 78)) (-3177 (((-1064 (-1064 (-880 |#1|))) (-1083) (-1064 (-880 |#1|))) 57)) (-2491 (((-1 (-1064 (-1113 |#1|)) (-1064 (-1113 |#1|))) (-706) (-1113 |#1|) (-1064 (-1113 |#1|))) 68)) (-3014 (((-1 (-1064 (-880 |#1|)) (-1064 (-880 |#1|))) (-706)) 59)) (-2244 (((-1 (-1079 (-880 |#1|)) (-880 |#1|)) (-1083)) 27)) (-4050 (((-1 (-1064 (-880 |#1|)) (-1064 (-880 |#1|))) (-706)) 58)))
-(((-1172 |#1|) (-10 -7 (-15 -3014 ((-1 (-1064 (-880 |#1|)) (-1064 (-880 |#1|))) (-706))) (-15 -4050 ((-1 (-1064 (-880 |#1|)) (-1064 (-880 |#1|))) (-706))) (-15 -3177 ((-1064 (-1064 (-880 |#1|))) (-1083) (-1064 (-880 |#1|)))) (-15 -2244 ((-1 (-1079 (-880 |#1|)) (-880 |#1|)) (-1083))) (-15 -1876 ((-586 (-1113 |#1|)) (-1083) (-1113 |#1|))) (-15 -2491 ((-1 (-1064 (-1113 |#1|)) (-1064 (-1113 |#1|))) (-706) (-1113 |#1|) (-1064 (-1113 |#1|))))) (-336)) (T -1172))
-((-2491 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-706)) (-4 *6 (-336)) (-5 *4 (-1113 *6)) (-5 *2 (-1 (-1064 *4) (-1064 *4))) (-5 *1 (-1172 *6)) (-5 *5 (-1064 *4)))) (-1876 (*1 *2 *3 *4) (-12 (-5 *3 (-1083)) (-4 *5 (-336)) (-5 *2 (-586 (-1113 *5))) (-5 *1 (-1172 *5)) (-5 *4 (-1113 *5)))) (-2244 (*1 *2 *3) (-12 (-5 *3 (-1083)) (-5 *2 (-1 (-1079 (-880 *4)) (-880 *4))) (-5 *1 (-1172 *4)) (-4 *4 (-336)))) (-3177 (*1 *2 *3 *4) (-12 (-5 *3 (-1083)) (-4 *5 (-336)) (-5 *2 (-1064 (-1064 (-880 *5)))) (-5 *1 (-1172 *5)) (-5 *4 (-1064 (-880 *5))))) (-4050 (*1 *2 *3) (-12 (-5 *3 (-706)) (-5 *2 (-1 (-1064 (-880 *4)) (-1064 (-880 *4)))) (-5 *1 (-1172 *4)) (-4 *4 (-336)))) (-3014 (*1 *2 *3) (-12 (-5 *3 (-706)) (-5 *2 (-1 (-1064 (-880 *4)) (-1064 (-880 *4)))) (-5 *1 (-1172 *4)) (-4 *4 (-336)))))
-(-10 -7 (-15 -3014 ((-1 (-1064 (-880 |#1|)) (-1064 (-880 |#1|))) (-706))) (-15 -4050 ((-1 (-1064 (-880 |#1|)) (-1064 (-880 |#1|))) (-706))) (-15 -3177 ((-1064 (-1064 (-880 |#1|))) (-1083) (-1064 (-880 |#1|)))) (-15 -2244 ((-1 (-1079 (-880 |#1|)) (-880 |#1|)) (-1083))) (-15 -1876 ((-586 (-1113 |#1|)) (-1083) (-1113 |#1|))) (-15 -2491 ((-1 (-1064 (-1113 |#1|)) (-1064 (-1113 |#1|))) (-706) (-1113 |#1|) (-1064 (-1113 |#1|)))))
-((-4182 (((-2 (|:| -1831 (-626 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-626 |#2|))) |#2|) 74)) (-2323 (((-2 (|:| -1831 (-626 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-626 |#2|)))) 73)))
-(((-1173 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2323 ((-2 (|:| -1831 (-626 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-626 |#2|))))) (-15 -4182 ((-2 (|:| -1831 (-626 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-626 |#2|))) |#2|))) (-322) (-1140 |#1|) (-1140 |#2|) (-382 |#2| |#3|)) (T -1173))
-((-4182 (*1 *2 *3) (-12 (-4 *4 (-322)) (-4 *3 (-1140 *4)) (-4 *5 (-1140 *3)) (-5 *2 (-2 (|:| -1831 (-626 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-626 *3)))) (-5 *1 (-1173 *4 *3 *5 *6)) (-4 *6 (-382 *3 *5)))) (-2323 (*1 *2) (-12 (-4 *3 (-322)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 *4)) (-5 *2 (-2 (|:| -1831 (-626 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-626 *4)))) (-5 *1 (-1173 *3 *4 *5 *6)) (-4 *6 (-382 *4 *5)))))
-(-10 -7 (-15 -2323 ((-2 (|:| -1831 (-626 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-626 |#2|))))) (-15 -4182 ((-2 (|:| -1831 (-626 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-626 |#2|))) |#2|)))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) 42)) (-1917 (((-3 $ "failed") $ $) NIL)) (-3961 (($) NIL T CONST)) (-1540 (((-3 $ "failed") $) NIL)) (-1537 (((-108) $) NIL)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2188 (((-791) $) 63) (($ (-520)) NIL) ((|#4| $) 53) (($ |#4|) 48) (($ |#1|) NIL (|has| |#1| (-157)))) (-3251 (((-706)) NIL)) (-3507 (((-1169) (-706)) 16)) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (-3560 (($) 27 T CONST)) (-3570 (($) 66 T CONST)) (-1530 (((-108) $ $) 68)) (-1619 (((-3 $ "failed") $ $) NIL (|has| |#1| (-336)))) (-1611 (($ $) 70) (($ $ $) NIL)) (-1601 (($ $ $) 46)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) 72) (($ |#1| $) NIL (|has| |#1| (-157))) (($ $ |#1|) NIL (|has| |#1| (-157)))))
-(((-1174 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-969) (-10 -8 (IF (|has| |#1| (-157)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2188 (|#4| $)) (IF (|has| |#1| (-336)) (-15 -1619 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2188 ($ |#4|)) (-15 -3507 ((-1169) (-706))))) (-969) (-783) (-728) (-877 |#1| |#3| |#2|) (-586 |#2|) (-586 (-706)) (-706)) (T -1174))
-((-2188 (*1 *2 *1) (-12 (-4 *2 (-877 *3 *5 *4)) (-5 *1 (-1174 *3 *4 *5 *2 *6 *7 *8)) (-4 *3 (-969)) (-4 *4 (-783)) (-4 *5 (-728)) (-14 *6 (-586 *4)) (-14 *7 (-586 (-706))) (-14 *8 (-706)))) (-1619 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-336)) (-4 *2 (-969)) (-4 *3 (-783)) (-4 *4 (-728)) (-14 *6 (-586 *3)) (-5 *1 (-1174 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-877 *2 *4 *3)) (-14 *7 (-586 (-706))) (-14 *8 (-706)))) (-2188 (*1 *1 *2) (-12 (-4 *3 (-969)) (-4 *4 (-783)) (-4 *5 (-728)) (-14 *6 (-586 *4)) (-5 *1 (-1174 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-877 *3 *5 *4)) (-14 *7 (-586 (-706))) (-14 *8 (-706)))) (-3507 (*1 *2 *3) (-12 (-5 *3 (-706)) (-4 *4 (-969)) (-4 *5 (-783)) (-4 *6 (-728)) (-14 *8 (-586 *5)) (-5 *2 (-1169)) (-5 *1 (-1174 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-877 *4 *6 *5)) (-14 *9 (-586 *3)) (-14 *10 *3))))
-(-13 (-969) (-10 -8 (IF (|has| |#1| (-157)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2188 (|#4| $)) (IF (|has| |#1| (-336)) (-15 -1619 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2188 ($ |#4|)) (-15 -3507 ((-1169) (-706)))))
-((-1414 (((-108) $ $) NIL)) (-3769 (((-586 (-2 (|:| -1649 $) (|:| -1543 (-586 |#4|)))) (-586 |#4|)) NIL)) (-3767 (((-586 $) (-586 |#4|)) 88)) (-4081 (((-586 |#3|) $) NIL)) (-2373 (((-108) $) NIL)) (-1937 (((-108) $) NIL (|has| |#1| (-512)))) (-3804 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3954 ((|#4| |#4| $) NIL)) (-3210 (((-2 (|:| |under| $) (|:| -1626 $) (|:| |upper| $)) $ |#3|) NIL)) (-2063 (((-108) $ (-706)) NIL)) (-1627 (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4229))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3961 (($) NIL T CONST)) (-2215 (((-108) $) NIL (|has| |#1| (-512)))) (-3078 (((-108) $ $) NIL (|has| |#1| (-512)))) (-3675 (((-108) $ $) NIL (|has| |#1| (-512)))) (-2786 (((-108) $) NIL (|has| |#1| (-512)))) (-2589 (((-586 |#4|) (-586 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 28)) (-4167 (((-586 |#4|) (-586 |#4|) $) 25 (|has| |#1| (-512)))) (-3415 (((-586 |#4|) (-586 |#4|) $) NIL (|has| |#1| (-512)))) (-1296 (((-3 $ "failed") (-586 |#4|)) NIL)) (-1482 (($ (-586 |#4|)) NIL)) (-2305 (((-3 $ "failed") $) 70)) (-1618 ((|#4| |#4| $) 75)) (-2331 (($ $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#4| (-1012))))) (-1421 (($ |#4| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#4| (-1012)))) (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4229)))) (-3753 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-512)))) (-3738 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) NIL)) (-2762 ((|#4| |#4| $) NIL)) (-3856 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4229)) (|has| |#4| (-1012)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4229))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4229))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-2025 (((-2 (|:| -1649 (-586 |#4|)) (|:| -1543 (-586 |#4|))) $) NIL)) (-3828 (((-586 |#4|) $) NIL (|has| $ (-6 -4229)))) (-2311 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3871 ((|#3| $) 76)) (-3027 (((-108) $ (-706)) NIL)) (-3702 (((-586 |#4|) $) 29 (|has| $ (-6 -4229)))) (-2422 (((-108) |#4| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#4| (-1012))))) (-1303 (((-3 $ "failed") (-586 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|)) 32) (((-3 $ "failed") (-586 |#4|)) 35)) (-3830 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4230)))) (-1389 (($ (-1 |#4| |#4|) $) NIL)) (-2602 (((-586 |#3|) $) NIL)) (-3394 (((-108) |#3| $) NIL)) (-1390 (((-108) $ (-706)) NIL)) (-1239 (((-1066) $) NIL)) (-1440 (((-3 |#4| "failed") $) NIL)) (-2623 (((-586 |#4|) $) 50)) (-2428 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2778 ((|#4| |#4| $) 74)) (-3444 (((-108) $ $) 85)) (-2130 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-512)))) (-1322 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3499 ((|#4| |#4| $) NIL)) (-4142 (((-1030) $) NIL)) (-2293 (((-3 |#4| "failed") $) 69)) (-2985 (((-3 |#4| "failed") (-1 (-108) |#4|) $) NIL)) (-2885 (((-3 $ "failed") $ |#4|) NIL)) (-2116 (($ $ |#4|) NIL)) (-4155 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4229)))) (-2286 (($ $ (-586 |#4|) (-586 |#4|)) NIL (-12 (|has| |#4| (-283 |#4|)) (|has| |#4| (-1012)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-283 |#4|)) (|has| |#4| (-1012)))) (($ $ (-268 |#4|)) NIL (-12 (|has| |#4| (-283 |#4|)) (|has| |#4| (-1012)))) (($ $ (-586 (-268 |#4|))) NIL (-12 (|has| |#4| (-283 |#4|)) (|has| |#4| (-1012))))) (-2533 (((-108) $ $) NIL)) (-4018 (((-108) $) 67)) (-2238 (($) 42)) (-2528 (((-706) $) NIL)) (-4159 (((-706) |#4| $) NIL (-12 (|has| $ (-6 -4229)) (|has| |#4| (-1012)))) (((-706) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4229)))) (-2403 (($ $) NIL)) (-1429 (((-496) $) NIL (|has| |#4| (-561 (-496))))) (-2200 (($ (-586 |#4|)) NIL)) (-3399 (($ $ |#3|) NIL)) (-4067 (($ $ |#3|) NIL)) (-3932 (($ $) NIL)) (-2513 (($ $ |#3|) NIL)) (-2188 (((-791) $) NIL) (((-586 |#4|) $) 57)) (-3898 (((-706) $) NIL (|has| |#3| (-341)))) (-3248 (((-3 $ "failed") (-586 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|)) 40) (((-3 $ "failed") (-586 |#4|)) 41)) (-3197 (((-586 $) (-586 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|)) 65) (((-586 $) (-586 |#4|)) 66)) (-1652 (((-3 (-2 (|:| |bas| $) (|:| -1353 (-586 |#4|))) "failed") (-586 |#4|) (-1 (-108) |#4| |#4|)) 24) (((-3 (-2 (|:| |bas| $) (|:| -1353 (-586 |#4|))) "failed") (-586 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-3146 (((-108) $ (-1 (-108) |#4| (-586 |#4|))) NIL)) (-1662 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4229)))) (-1600 (((-586 |#3|) $) NIL)) (-3718 (((-108) |#3| $) NIL)) (-1530 (((-108) $ $) NIL)) (-3474 (((-706) $) NIL (|has| $ (-6 -4229)))))
-(((-1175 |#1| |#2| |#3| |#4|) (-13 (-1112 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1303 ((-3 $ "failed") (-586 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1303 ((-3 $ "failed") (-586 |#4|))) (-15 -3248 ((-3 $ "failed") (-586 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3248 ((-3 $ "failed") (-586 |#4|))) (-15 -3197 ((-586 $) (-586 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3197 ((-586 $) (-586 |#4|))))) (-512) (-728) (-783) (-983 |#1| |#2| |#3|)) (T -1175))
-((-1303 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-586 *8)) (-5 *3 (-1 (-108) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-983 *5 *6 *7)) (-4 *5 (-512)) (-4 *6 (-728)) (-4 *7 (-783)) (-5 *1 (-1175 *5 *6 *7 *8)))) (-1303 (*1 *1 *2) (|partial| -12 (-5 *2 (-586 *6)) (-4 *6 (-983 *3 *4 *5)) (-4 *3 (-512)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *1 (-1175 *3 *4 *5 *6)))) (-3248 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-586 *8)) (-5 *3 (-1 (-108) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-983 *5 *6 *7)) (-4 *5 (-512)) (-4 *6 (-728)) (-4 *7 (-783)) (-5 *1 (-1175 *5 *6 *7 *8)))) (-3248 (*1 *1 *2) (|partial| -12 (-5 *2 (-586 *6)) (-4 *6 (-983 *3 *4 *5)) (-4 *3 (-512)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *1 (-1175 *3 *4 *5 *6)))) (-3197 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-586 *9)) (-5 *4 (-1 (-108) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-983 *6 *7 *8)) (-4 *6 (-512)) (-4 *7 (-728)) (-4 *8 (-783)) (-5 *2 (-586 (-1175 *6 *7 *8 *9))) (-5 *1 (-1175 *6 *7 *8 *9)))) (-3197 (*1 *2 *3) (-12 (-5 *3 (-586 *7)) (-4 *7 (-983 *4 *5 *6)) (-4 *4 (-512)) (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-586 (-1175 *4 *5 *6 *7))) (-5 *1 (-1175 *4 *5 *6 *7)))))
-(-13 (-1112 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1303 ((-3 $ "failed") (-586 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1303 ((-3 $ "failed") (-586 |#4|))) (-15 -3248 ((-3 $ "failed") (-586 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3248 ((-3 $ "failed") (-586 |#4|))) (-15 -3197 ((-586 $) (-586 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3197 ((-586 $) (-586 |#4|)))))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-1917 (((-3 $ "failed") $ $) 19)) (-3961 (($) 17 T CONST)) (-1540 (((-3 $ "failed") $) 34)) (-1537 (((-108) $) 31)) (-1239 (((-1066) $) 9)) (-4142 (((-1030) $) 10)) (-2188 (((-791) $) 11) (($ (-520)) 28) (($ |#1|) 38)) (-3251 (((-706)) 29)) (-3504 (($ $ (-849)) 26) (($ $ (-706)) 33)) (-3560 (($) 18 T CONST)) (-3570 (($) 30 T CONST)) (-1530 (((-108) $ $) 6)) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-706)) 32)) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39)))
-(((-1176 |#1|) (-1195) (-969)) (T -1176))
-((-2188 (*1 *1 *2) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-969)))))
-(-13 (-969) (-107 |t#1| |t#1|) (-10 -8 (-15 -2188 ($ |t#1|)) (IF (|has| |t#1| (-157)) (-6 (-37 |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-157)) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-560 (-791)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-653 |#1|) |has| |#1| (-157)) ((-662) . T) ((-975 |#1|) . T) ((-969) . T) ((-976) . T) ((-1024) . T) ((-1012) . T))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-4097 (((-586 |#1|) $) 45)) (-3131 (($ $ (-706)) 39)) (-1917 (((-3 $ "failed") $ $) NIL)) (-2737 (($ $ (-706)) 17 (|has| |#2| (-157))) (($ $ $) 18 (|has| |#2| (-157)))) (-3961 (($) NIL T CONST)) (-3140 (($ $ $) 62) (($ $ (-755 |#1|)) 49) (($ $ |#1|) 53)) (-1296 (((-3 (-755 |#1|) "failed") $) NIL)) (-1482 (((-755 |#1|) $) NIL)) (-3150 (($ $) 32)) (-1540 (((-3 $ "failed") $) NIL)) (-1375 (((-108) $) NIL)) (-4127 (($ $) NIL)) (-1537 (((-108) $) NIL)) (-1315 (((-706) $) NIL)) (-1992 (((-586 $) $) NIL)) (-3774 (((-108) $) NIL)) (-2516 (($ (-755 |#1|) |#2|) 31)) (-1355 (($ $) 33)) (-2842 (((-2 (|:| |k| (-755 |#1|)) (|:| |c| |#2|)) $) 11)) (-4201 (((-755 |#1|) $) NIL)) (-2089 (((-755 |#1|) $) 34)) (-1389 (($ (-1 |#2| |#2|) $) NIL)) (-1204 (($ $ $) 61) (($ $ (-755 |#1|)) 51) (($ $ |#1|) 55)) (-2432 (((-2 (|:| |k| (-755 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3123 (((-755 |#1|) $) 28)) (-3133 ((|#2| $) 30)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-2528 (((-706) $) 36)) (-3256 (((-108) $) 40)) (-2675 ((|#2| $) NIL)) (-2188 (((-791) $) NIL) (($ (-755 |#1|)) 24) (($ |#1|) 25) (($ |#2|) NIL) (($ (-520)) NIL)) (-4113 (((-586 |#2|) $) NIL)) (-3475 ((|#2| $ (-755 |#1|)) NIL)) (-2972 ((|#2| $ $) 64) ((|#2| $ (-755 |#1|)) NIL)) (-3251 (((-706)) NIL)) (-3504 (($ $ (-706)) NIL) (($ $ (-849)) NIL)) (-3560 (($) 12 T CONST)) (-3570 (($) 14 T CONST)) (-4164 (((-586 (-2 (|:| |k| (-755 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1530 (((-108) $ $) 38)) (-1611 (($ $) NIL) (($ $ $) NIL)) (-1601 (($ $ $) 21)) (** (($ $ (-706)) NIL) (($ $ (-849)) NIL)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ |#2| $) 20) (($ $ |#2|) 60) (($ |#2| (-755 |#1|)) NIL) (($ |#1| $) 27) (($ $ $) NIL)))
-(((-1177 |#1| |#2|) (-13 (-355 |#2| (-755 |#1|)) (-1183 |#1| |#2|)) (-783) (-969)) (T -1177))
-NIL
-(-13 (-355 |#2| (-755 |#1|)) (-1183 |#1| |#2|))
-((-1252 ((|#3| |#3| (-706)) 23)) (-3260 ((|#3| |#3| (-706)) 28)) (-3167 ((|#3| |#3| |#3| (-706)) 29)))
-(((-1178 |#1| |#2| |#3|) (-10 -7 (-15 -3260 (|#3| |#3| (-706))) (-15 -1252 (|#3| |#3| (-706))) (-15 -3167 (|#3| |#3| |#3| (-706)))) (-13 (-969) (-653 (-380 (-520)))) (-783) (-1183 |#2| |#1|)) (T -1178))
-((-3167 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-706)) (-4 *4 (-13 (-969) (-653 (-380 (-520))))) (-4 *5 (-783)) (-5 *1 (-1178 *4 *5 *2)) (-4 *2 (-1183 *5 *4)))) (-1252 (*1 *2 *2 *3) (-12 (-5 *3 (-706)) (-4 *4 (-13 (-969) (-653 (-380 (-520))))) (-4 *5 (-783)) (-5 *1 (-1178 *4 *5 *2)) (-4 *2 (-1183 *5 *4)))) (-3260 (*1 *2 *2 *3) (-12 (-5 *3 (-706)) (-4 *4 (-13 (-969) (-653 (-380 (-520))))) (-4 *5 (-783)) (-5 *1 (-1178 *4 *5 *2)) (-4 *2 (-1183 *5 *4)))))
-(-10 -7 (-15 -3260 (|#3| |#3| (-706))) (-15 -1252 (|#3| |#3| (-706))) (-15 -3167 (|#3| |#3| |#3| (-706))))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-4097 (((-586 |#1|) $) 40)) (-1917 (((-3 $ "failed") $ $) 19)) (-2737 (($ $ $) 43 (|has| |#2| (-157))) (($ $ (-706)) 42 (|has| |#2| (-157)))) (-3961 (($) 17 T CONST)) (-3140 (($ $ |#1|) 54) (($ $ (-755 |#1|)) 53) (($ $ $) 52)) (-1296 (((-3 (-755 |#1|) "failed") $) 64)) (-1482 (((-755 |#1|) $) 63)) (-1540 (((-3 $ "failed") $) 34)) (-1375 (((-108) $) 45)) (-4127 (($ $) 44)) (-1537 (((-108) $) 31)) (-3774 (((-108) $) 50)) (-2516 (($ (-755 |#1|) |#2|) 51)) (-1355 (($ $) 49)) (-2842 (((-2 (|:| |k| (-755 |#1|)) (|:| |c| |#2|)) $) 60)) (-4201 (((-755 |#1|) $) 61)) (-1389 (($ (-1 |#2| |#2|) $) 41)) (-1204 (($ $ |#1|) 57) (($ $ (-755 |#1|)) 56) (($ $ $) 55)) (-1239 (((-1066) $) 9)) (-4142 (((-1030) $) 10)) (-3256 (((-108) $) 47)) (-2675 ((|#2| $) 46)) (-2188 (((-791) $) 11) (($ (-520)) 28) (($ |#2|) 68) (($ (-755 |#1|)) 65) (($ |#1|) 48)) (-2972 ((|#2| $ (-755 |#1|)) 59) ((|#2| $ $) 58)) (-3251 (((-706)) 29)) (-3504 (($ $ (-849)) 26) (($ $ (-706)) 33)) (-3560 (($) 18 T CONST)) (-3570 (($) 30 T CONST)) (-1530 (((-108) $ $) 6)) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-706)) 32)) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ $ $) 24) (($ |#2| $) 67) (($ $ |#2|) 66) (($ |#1| $) 62)))
-(((-1179 |#1| |#2|) (-1195) (-783) (-969)) (T -1179))
-((* (*1 *1 *1 *2) (-12 (-4 *1 (-1179 *3 *2)) (-4 *3 (-783)) (-4 *2 (-969)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1179 *2 *3)) (-4 *2 (-783)) (-4 *3 (-969)))) (-4201 (*1 *2 *1) (-12 (-4 *1 (-1179 *3 *4)) (-4 *3 (-783)) (-4 *4 (-969)) (-5 *2 (-755 *3)))) (-2842 (*1 *2 *1) (-12 (-4 *1 (-1179 *3 *4)) (-4 *3 (-783)) (-4 *4 (-969)) (-5 *2 (-2 (|:| |k| (-755 *3)) (|:| |c| *4))))) (-2972 (*1 *2 *1 *3) (-12 (-5 *3 (-755 *4)) (-4 *1 (-1179 *4 *2)) (-4 *4 (-783)) (-4 *2 (-969)))) (-2972 (*1 *2 *1 *1) (-12 (-4 *1 (-1179 *3 *2)) (-4 *3 (-783)) (-4 *2 (-969)))) (-1204 (*1 *1 *1 *2) (-12 (-4 *1 (-1179 *2 *3)) (-4 *2 (-783)) (-4 *3 (-969)))) (-1204 (*1 *1 *1 *2) (-12 (-5 *2 (-755 *3)) (-4 *1 (-1179 *3 *4)) (-4 *3 (-783)) (-4 *4 (-969)))) (-1204 (*1 *1 *1 *1) (-12 (-4 *1 (-1179 *2 *3)) (-4 *2 (-783)) (-4 *3 (-969)))) (-3140 (*1 *1 *1 *2) (-12 (-4 *1 (-1179 *2 *3)) (-4 *2 (-783)) (-4 *3 (-969)))) (-3140 (*1 *1 *1 *2) (-12 (-5 *2 (-755 *3)) (-4 *1 (-1179 *3 *4)) (-4 *3 (-783)) (-4 *4 (-969)))) (-3140 (*1 *1 *1 *1) (-12 (-4 *1 (-1179 *2 *3)) (-4 *2 (-783)) (-4 *3 (-969)))) (-2516 (*1 *1 *2 *3) (-12 (-5 *2 (-755 *4)) (-4 *4 (-783)) (-4 *1 (-1179 *4 *3)) (-4 *3 (-969)))) (-3774 (*1 *2 *1) (-12 (-4 *1 (-1179 *3 *4)) (-4 *3 (-783)) (-4 *4 (-969)) (-5 *2 (-108)))) (-1355 (*1 *1 *1) (-12 (-4 *1 (-1179 *2 *3)) (-4 *2 (-783)) (-4 *3 (-969)))) (-2188 (*1 *1 *2) (-12 (-4 *1 (-1179 *2 *3)) (-4 *2 (-783)) (-4 *3 (-969)))) (-3256 (*1 *2 *1) (-12 (-4 *1 (-1179 *3 *4)) (-4 *3 (-783)) (-4 *4 (-969)) (-5 *2 (-108)))) (-2675 (*1 *2 *1) (-12 (-4 *1 (-1179 *3 *2)) (-4 *3 (-783)) (-4 *2 (-969)))) (-1375 (*1 *2 *1) (-12 (-4 *1 (-1179 *3 *4)) (-4 *3 (-783)) (-4 *4 (-969)) (-5 *2 (-108)))) (-4127 (*1 *1 *1) (-12 (-4 *1 (-1179 *2 *3)) (-4 *2 (-783)) (-4 *3 (-969)))) (-2737 (*1 *1 *1 *1) (-12 (-4 *1 (-1179 *2 *3)) (-4 *2 (-783)) (-4 *3 (-969)) (-4 *3 (-157)))) (-2737 (*1 *1 *1 *2) (-12 (-5 *2 (-706)) (-4 *1 (-1179 *3 *4)) (-4 *3 (-783)) (-4 *4 (-969)) (-4 *4 (-157)))) (-1389 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1179 *3 *4)) (-4 *3 (-783)) (-4 *4 (-969)))) (-4097 (*1 *2 *1) (-12 (-4 *1 (-1179 *3 *4)) (-4 *3 (-783)) (-4 *4 (-969)) (-5 *2 (-586 *3)))))
-(-13 (-969) (-1176 |t#2|) (-960 (-755 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -4201 ((-755 |t#1|) $)) (-15 -2842 ((-2 (|:| |k| (-755 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -2972 (|t#2| $ (-755 |t#1|))) (-15 -2972 (|t#2| $ $)) (-15 -1204 ($ $ |t#1|)) (-15 -1204 ($ $ (-755 |t#1|))) (-15 -1204 ($ $ $)) (-15 -3140 ($ $ |t#1|)) (-15 -3140 ($ $ (-755 |t#1|))) (-15 -3140 ($ $ $)) (-15 -2516 ($ (-755 |t#1|) |t#2|)) (-15 -3774 ((-108) $)) (-15 -1355 ($ $)) (-15 -2188 ($ |t#1|)) (-15 -3256 ((-108) $)) (-15 -2675 (|t#2| $)) (-15 -1375 ((-108) $)) (-15 -4127 ($ $)) (IF (|has| |t#2| (-157)) (PROGN (-15 -2737 ($ $ $)) (-15 -2737 ($ $ (-706)))) |%noBranch|) (-15 -1389 ($ (-1 |t#2| |t#2|) $)) (-15 -4097 ((-586 |t#1|) $)) (IF (|has| |t#2| (-6 -4222)) (-6 -4222) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#2|) |has| |#2| (-157)) ((-97) . T) ((-107 |#2| |#2|) . T) ((-124) . T) ((-560 (-791)) . T) ((-588 |#2|) . T) ((-588 $) . T) ((-653 |#2|) |has| |#2| (-157)) ((-662) . T) ((-960 (-755 |#1|)) . T) ((-975 |#2|) . T) ((-969) . T) ((-976) . T) ((-1024) . T) ((-1012) . T) ((-1176 |#2|) . T))
-((-3412 (((-108) $) 14)) (-3718 (((-108) $) 13)) (-3751 (($ $) 18) (($ $ (-706)) 19)))
-(((-1180 |#1| |#2|) (-10 -8 (-15 -3751 (|#1| |#1| (-706))) (-15 -3751 (|#1| |#1|)) (-15 -3412 ((-108) |#1|)) (-15 -3718 ((-108) |#1|))) (-1181 |#2|) (-336)) (T -1180))
-NIL
-(-10 -8 (-15 -3751 (|#1| |#1| (-706))) (-15 -3751 (|#1| |#1|)) (-15 -3412 ((-108) |#1|)) (-15 -3718 ((-108) |#1|)))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-1240 (((-2 (|:| -4036 $) (|:| -4216 $) (|:| |associate| $)) $) 41)) (-2583 (($ $) 40)) (-1671 (((-108) $) 38)) (-3412 (((-108) $) 94)) (-2668 (((-706)) 90)) (-1917 (((-3 $ "failed") $ $) 19)) (-3024 (($ $) 73)) (-1507 (((-391 $) $) 72)) (-1327 (((-108) $ $) 59)) (-3961 (($) 17 T CONST)) (-1296 (((-3 |#1| "failed") $) 101)) (-1482 ((|#1| $) 100)) (-2276 (($ $ $) 55)) (-1540 (((-3 $ "failed") $) 34)) (-2253 (($ $ $) 56)) (-2917 (((-2 (|:| -2972 (-586 $)) (|:| -1382 $)) (-586 $)) 51)) (-1346 (($ $ (-706)) 87 (-3700 (|has| |#1| (-133)) (|has| |#1| (-341)))) (($ $) 86 (-3700 (|has| |#1| (-133)) (|has| |#1| (-341))))) (-2036 (((-108) $) 71)) (-3989 (((-769 (-849)) $) 84 (-3700 (|has| |#1| (-133)) (|has| |#1| (-341))))) (-1537 (((-108) $) 31)) (-3188 (((-3 (-586 $) "failed") (-586 $) $) 52)) (-2222 (($ $ $) 46) (($ (-586 $)) 45)) (-1239 (((-1066) $) 9)) (-3093 (($ $) 70)) (-3304 (((-108) $) 93)) (-4142 (((-1030) $) 10)) (-3653 (((-1079 $) (-1079 $) (-1079 $)) 44)) (-2257 (($ $ $) 48) (($ (-586 $)) 47)) (-1916 (((-391 $) $) 74)) (-2206 (((-769 (-849))) 91)) (-1283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1382 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2230 (((-3 $ "failed") $ $) 42)) (-2608 (((-3 (-586 $) "failed") (-586 $) $) 50)) (-3704 (((-706) $) 58)) (-2806 (((-2 (|:| -2060 $) (|:| -3753 $)) $ $) 57)) (-2062 (((-3 (-706) "failed") $ $) 85 (-3700 (|has| |#1| (-133)) (|has| |#1| (-341))))) (-1556 (((-126)) 99)) (-2528 (((-769 (-849)) $) 92)) (-2188 (((-791) $) 11) (($ (-520)) 28) (($ $) 43) (($ (-380 (-520))) 65) (($ |#1|) 102)) (-3796 (((-3 $ "failed") $) 83 (-3700 (|has| |#1| (-133)) (|has| |#1| (-341))))) (-3251 (((-706)) 29)) (-2559 (((-108) $ $) 39)) (-3718 (((-108) $) 95)) (-3504 (($ $ (-849)) 26) (($ $ (-706)) 33) (($ $ (-520)) 69)) (-3560 (($) 18 T CONST)) (-3570 (($) 30 T CONST)) (-3751 (($ $) 89 (|has| |#1| (-341))) (($ $ (-706)) 88 (|has| |#1| (-341)))) (-1530 (((-108) $ $) 6)) (-1619 (($ $ $) 64) (($ $ |#1|) 98)) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-706)) 32) (($ $ (-520)) 68)) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ $ $) 24) (($ $ (-380 (-520))) 67) (($ (-380 (-520)) $) 66) (($ $ |#1|) 97) (($ |#1| $) 96)))
-(((-1181 |#1|) (-1195) (-336)) (T -1181))
-((-3718 (*1 *2 *1) (-12 (-4 *1 (-1181 *3)) (-4 *3 (-336)) (-5 *2 (-108)))) (-3412 (*1 *2 *1) (-12 (-4 *1 (-1181 *3)) (-4 *3 (-336)) (-5 *2 (-108)))) (-3304 (*1 *2 *1) (-12 (-4 *1 (-1181 *3)) (-4 *3 (-336)) (-5 *2 (-108)))) (-2528 (*1 *2 *1) (-12 (-4 *1 (-1181 *3)) (-4 *3 (-336)) (-5 *2 (-769 (-849))))) (-2206 (*1 *2) (-12 (-4 *1 (-1181 *3)) (-4 *3 (-336)) (-5 *2 (-769 (-849))))) (-2668 (*1 *2) (-12 (-4 *1 (-1181 *3)) (-4 *3 (-336)) (-5 *2 (-706)))) (-3751 (*1 *1 *1) (-12 (-4 *1 (-1181 *2)) (-4 *2 (-336)) (-4 *2 (-341)))) (-3751 (*1 *1 *1 *2) (-12 (-5 *2 (-706)) (-4 *1 (-1181 *3)) (-4 *3 (-336)) (-4 *3 (-341)))))
-(-13 (-336) (-960 |t#1|) (-1171 |t#1|) (-10 -8 (IF (|has| |t#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |t#1| (-133)) (-6 (-375)) |%noBranch|) (-15 -3718 ((-108) $)) (-15 -3412 ((-108) $)) (-15 -3304 ((-108) $)) (-15 -2528 ((-769 (-849)) $)) (-15 -2206 ((-769 (-849)))) (-15 -2668 ((-706))) (IF (|has| |t#1| (-341)) (PROGN (-6 (-375)) (-15 -3751 ($ $)) (-15 -3751 ($ $ (-706)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-380 (-520))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 |#1| |#1|) . T) ((-107 $ $) . T) ((-124) . T) ((-133) -3700 (|has| |#1| (-341)) (|has| |#1| (-133))) ((-135) |has| |#1| (-135)) ((-560 (-791)) . T) ((-157) . T) ((-219) . T) ((-264) . T) ((-281) . T) ((-336) . T) ((-375) -3700 (|has| |#1| (-341)) (|has| |#1| (-133))) ((-424) . T) ((-512) . T) ((-588 #0#) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-653 #0#) . T) ((-653 |#1|) . T) ((-653 $) . T) ((-662) . T) ((-848) . T) ((-960 |#1|) . T) ((-975 #0#) . T) ((-975 |#1|) . T) ((-975 $) . T) ((-969) . T) ((-976) . T) ((-1024) . T) ((-1012) . T) ((-1122) . T) ((-1171 |#1|) . T))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-4097 (((-586 |#1|) $) 85)) (-3131 (($ $ (-706)) 88)) (-1917 (((-3 $ "failed") $ $) NIL)) (-2737 (($ $ $) NIL (|has| |#2| (-157))) (($ $ (-706)) NIL (|has| |#2| (-157)))) (-3961 (($) NIL T CONST)) (-3140 (($ $ |#1|) NIL) (($ $ (-755 |#1|)) NIL) (($ $ $) NIL)) (-1296 (((-3 (-755 |#1|) "failed") $) NIL) (((-3 (-821 |#1|) "failed") $) NIL)) (-1482 (((-755 |#1|) $) NIL) (((-821 |#1|) $) NIL)) (-3150 (($ $) 87)) (-1540 (((-3 $ "failed") $) NIL)) (-1375 (((-108) $) 76)) (-4127 (($ $) 80)) (-1700 (($ $ $ (-706)) 89)) (-1537 (((-108) $) NIL)) (-1315 (((-706) $) NIL)) (-1992 (((-586 $) $) NIL)) (-3774 (((-108) $) NIL)) (-2516 (($ (-755 |#1|) |#2|) NIL) (($ (-821 |#1|) |#2|) 26)) (-1355 (($ $) 102)) (-2842 (((-2 (|:| |k| (-755 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4201 (((-755 |#1|) $) NIL)) (-2089 (((-755 |#1|) $) NIL)) (-1389 (($ (-1 |#2| |#2|) $) NIL)) (-1204 (($ $ |#1|) NIL) (($ $ (-755 |#1|)) NIL) (($ $ $) NIL)) (-1252 (($ $ (-706)) 96 (|has| |#2| (-653 (-380 (-520)))))) (-2432 (((-2 (|:| |k| (-821 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3123 (((-821 |#1|) $) 70)) (-3133 ((|#2| $) NIL)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-3260 (($ $ (-706)) 93 (|has| |#2| (-653 (-380 (-520)))))) (-2528 (((-706) $) 86)) (-3256 (((-108) $) 71)) (-2675 ((|#2| $) 75)) (-2188 (((-791) $) 57) (($ (-520)) NIL) (($ |#2|) 51) (($ (-755 |#1|)) NIL) (($ |#1|) 59) (($ (-821 |#1|)) NIL) (($ (-604 |#1| |#2|)) 43) (((-1177 |#1| |#2|) $) 64) (((-1186 |#1| |#2|) $) 69)) (-4113 (((-586 |#2|) $) NIL)) (-3475 ((|#2| $ (-821 |#1|)) NIL)) (-2972 ((|#2| $ (-755 |#1|)) NIL) ((|#2| $ $) NIL)) (-3251 (((-706)) NIL)) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (-3560 (($) 21 T CONST)) (-3570 (($) 25 T CONST)) (-4164 (((-586 (-2 (|:| |k| (-821 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3081 (((-3 (-604 |#1| |#2|) "failed") $) 101)) (-1530 (((-108) $ $) 65)) (-1611 (($ $) 95) (($ $ $) 94)) (-1601 (($ $ $) 20)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) 44) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-821 |#1|)) NIL)))
-(((-1182 |#1| |#2|) (-13 (-1183 |#1| |#2|) (-355 |#2| (-821 |#1|)) (-10 -8 (-15 -2188 ($ (-604 |#1| |#2|))) (-15 -2188 ((-1177 |#1| |#2|) $)) (-15 -2188 ((-1186 |#1| |#2|) $)) (-15 -3081 ((-3 (-604 |#1| |#2|) "failed") $)) (-15 -1700 ($ $ $ (-706))) (IF (|has| |#2| (-653 (-380 (-520)))) (PROGN (-15 -3260 ($ $ (-706))) (-15 -1252 ($ $ (-706)))) |%noBranch|))) (-783) (-157)) (T -1182))
-((-2188 (*1 *1 *2) (-12 (-5 *2 (-604 *3 *4)) (-4 *3 (-783)) (-4 *4 (-157)) (-5 *1 (-1182 *3 *4)))) (-2188 (*1 *2 *1) (-12 (-5 *2 (-1177 *3 *4)) (-5 *1 (-1182 *3 *4)) (-4 *3 (-783)) (-4 *4 (-157)))) (-2188 (*1 *2 *1) (-12 (-5 *2 (-1186 *3 *4)) (-5 *1 (-1182 *3 *4)) (-4 *3 (-783)) (-4 *4 (-157)))) (-3081 (*1 *2 *1) (|partial| -12 (-5 *2 (-604 *3 *4)) (-5 *1 (-1182 *3 *4)) (-4 *3 (-783)) (-4 *4 (-157)))) (-1700 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-706)) (-5 *1 (-1182 *3 *4)) (-4 *3 (-783)) (-4 *4 (-157)))) (-3260 (*1 *1 *1 *2) (-12 (-5 *2 (-706)) (-5 *1 (-1182 *3 *4)) (-4 *4 (-653 (-380 (-520)))) (-4 *3 (-783)) (-4 *4 (-157)))) (-1252 (*1 *1 *1 *2) (-12 (-5 *2 (-706)) (-5 *1 (-1182 *3 *4)) (-4 *4 (-653 (-380 (-520)))) (-4 *3 (-783)) (-4 *4 (-157)))))
-(-13 (-1183 |#1| |#2|) (-355 |#2| (-821 |#1|)) (-10 -8 (-15 -2188 ($ (-604 |#1| |#2|))) (-15 -2188 ((-1177 |#1| |#2|) $)) (-15 -2188 ((-1186 |#1| |#2|) $)) (-15 -3081 ((-3 (-604 |#1| |#2|) "failed") $)) (-15 -1700 ($ $ $ (-706))) (IF (|has| |#2| (-653 (-380 (-520)))) (PROGN (-15 -3260 ($ $ (-706))) (-15 -1252 ($ $ (-706)))) |%noBranch|)))
-((-1414 (((-108) $ $) 7)) (-2906 (((-108) $) 16)) (-4097 (((-586 |#1|) $) 40)) (-3131 (($ $ (-706)) 73)) (-1917 (((-3 $ "failed") $ $) 19)) (-2737 (($ $ $) 43 (|has| |#2| (-157))) (($ $ (-706)) 42 (|has| |#2| (-157)))) (-3961 (($) 17 T CONST)) (-3140 (($ $ |#1|) 54) (($ $ (-755 |#1|)) 53) (($ $ $) 52)) (-1296 (((-3 (-755 |#1|) "failed") $) 64)) (-1482 (((-755 |#1|) $) 63)) (-1540 (((-3 $ "failed") $) 34)) (-1375 (((-108) $) 45)) (-4127 (($ $) 44)) (-1537 (((-108) $) 31)) (-3774 (((-108) $) 50)) (-2516 (($ (-755 |#1|) |#2|) 51)) (-1355 (($ $) 49)) (-2842 (((-2 (|:| |k| (-755 |#1|)) (|:| |c| |#2|)) $) 60)) (-4201 (((-755 |#1|) $) 61)) (-2089 (((-755 |#1|) $) 75)) (-1389 (($ (-1 |#2| |#2|) $) 41)) (-1204 (($ $ |#1|) 57) (($ $ (-755 |#1|)) 56) (($ $ $) 55)) (-1239 (((-1066) $) 9)) (-4142 (((-1030) $) 10)) (-2528 (((-706) $) 74)) (-3256 (((-108) $) 47)) (-2675 ((|#2| $) 46)) (-2188 (((-791) $) 11) (($ (-520)) 28) (($ |#2|) 68) (($ (-755 |#1|)) 65) (($ |#1|) 48)) (-2972 ((|#2| $ (-755 |#1|)) 59) ((|#2| $ $) 58)) (-3251 (((-706)) 29)) (-3504 (($ $ (-849)) 26) (($ $ (-706)) 33)) (-3560 (($) 18 T CONST)) (-3570 (($) 30 T CONST)) (-1530 (((-108) $ $) 6)) (-1611 (($ $) 22) (($ $ $) 21)) (-1601 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-706)) 32)) (* (($ (-849) $) 13) (($ (-706) $) 15) (($ (-520) $) 20) (($ $ $) 24) (($ |#2| $) 67) (($ $ |#2|) 66) (($ |#1| $) 62)))
-(((-1183 |#1| |#2|) (-1195) (-783) (-969)) (T -1183))
-((-2089 (*1 *2 *1) (-12 (-4 *1 (-1183 *3 *4)) (-4 *3 (-783)) (-4 *4 (-969)) (-5 *2 (-755 *3)))) (-2528 (*1 *2 *1) (-12 (-4 *1 (-1183 *3 *4)) (-4 *3 (-783)) (-4 *4 (-969)) (-5 *2 (-706)))) (-3131 (*1 *1 *1 *2) (-12 (-5 *2 (-706)) (-4 *1 (-1183 *3 *4)) (-4 *3 (-783)) (-4 *4 (-969)))))
-(-13 (-1179 |t#1| |t#2|) (-10 -8 (-15 -2089 ((-755 |t#1|) $)) (-15 -2528 ((-706) $)) (-15 -3131 ($ $ (-706)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#2|) |has| |#2| (-157)) ((-97) . T) ((-107 |#2| |#2|) . T) ((-124) . T) ((-560 (-791)) . T) ((-588 |#2|) . T) ((-588 $) . T) ((-653 |#2|) |has| |#2| (-157)) ((-662) . T) ((-960 (-755 |#1|)) . T) ((-975 |#2|) . T) ((-969) . T) ((-976) . T) ((-1024) . T) ((-1012) . T) ((-1176 |#2|) . T) ((-1179 |#1| |#2|) . T))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-4097 (((-586 (-1083)) $) NIL)) (-1564 (($ (-1177 (-1083) |#1|)) NIL)) (-3131 (($ $ (-706)) NIL)) (-1917 (((-3 $ "failed") $ $) NIL)) (-2737 (($ $ $) NIL (|has| |#1| (-157))) (($ $ (-706)) NIL (|has| |#1| (-157)))) (-3961 (($) NIL T CONST)) (-3140 (($ $ (-1083)) NIL) (($ $ (-755 (-1083))) NIL) (($ $ $) NIL)) (-1296 (((-3 (-755 (-1083)) "failed") $) NIL)) (-1482 (((-755 (-1083)) $) NIL)) (-1540 (((-3 $ "failed") $) NIL)) (-1375 (((-108) $) NIL)) (-4127 (($ $) NIL)) (-1537 (((-108) $) NIL)) (-3774 (((-108) $) NIL)) (-2516 (($ (-755 (-1083)) |#1|) NIL)) (-1355 (($ $) NIL)) (-2842 (((-2 (|:| |k| (-755 (-1083))) (|:| |c| |#1|)) $) NIL)) (-4201 (((-755 (-1083)) $) NIL)) (-2089 (((-755 (-1083)) $) NIL)) (-1389 (($ (-1 |#1| |#1|) $) NIL)) (-1204 (($ $ (-1083)) NIL) (($ $ (-755 (-1083))) NIL) (($ $ $) NIL)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-1603 (((-1177 (-1083) |#1|) $) NIL)) (-2528 (((-706) $) NIL)) (-3256 (((-108) $) NIL)) (-2675 ((|#1| $) NIL)) (-2188 (((-791) $) NIL) (($ (-520)) NIL) (($ |#1|) NIL) (($ (-755 (-1083))) NIL) (($ (-1083)) NIL)) (-2972 ((|#1| $ (-755 (-1083))) NIL) ((|#1| $ $) NIL)) (-3251 (((-706)) NIL)) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (-3560 (($) NIL T CONST)) (-3124 (((-586 (-2 (|:| |k| (-1083)) (|:| |c| $))) $) NIL)) (-3570 (($) NIL T CONST)) (-1530 (((-108) $ $) NIL)) (-1611 (($ $) NIL) (($ $ $) NIL)) (-1601 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1083) $) NIL)))
-(((-1184 |#1|) (-13 (-1183 (-1083) |#1|) (-10 -8 (-15 -1603 ((-1177 (-1083) |#1|) $)) (-15 -1564 ($ (-1177 (-1083) |#1|))) (-15 -3124 ((-586 (-2 (|:| |k| (-1083)) (|:| |c| $))) $)))) (-969)) (T -1184))
-((-1603 (*1 *2 *1) (-12 (-5 *2 (-1177 (-1083) *3)) (-5 *1 (-1184 *3)) (-4 *3 (-969)))) (-1564 (*1 *1 *2) (-12 (-5 *2 (-1177 (-1083) *3)) (-4 *3 (-969)) (-5 *1 (-1184 *3)))) (-3124 (*1 *2 *1) (-12 (-5 *2 (-586 (-2 (|:| |k| (-1083)) (|:| |c| (-1184 *3))))) (-5 *1 (-1184 *3)) (-4 *3 (-969)))))
-(-13 (-1183 (-1083) |#1|) (-10 -8 (-15 -1603 ((-1177 (-1083) |#1|) $)) (-15 -1564 ($ (-1177 (-1083) |#1|))) (-15 -3124 ((-586 (-2 (|:| |k| (-1083)) (|:| |c| $))) $))))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-1917 (((-3 $ "failed") $ $) NIL)) (-3961 (($) NIL T CONST)) (-1296 (((-3 |#2| "failed") $) NIL)) (-1482 ((|#2| $) NIL)) (-3150 (($ $) NIL)) (-1540 (((-3 $ "failed") $) 35)) (-1375 (((-108) $) 30)) (-4127 (($ $) 31)) (-1537 (((-108) $) NIL)) (-1315 (((-706) $) NIL)) (-1992 (((-586 $) $) NIL)) (-3774 (((-108) $) NIL)) (-2516 (($ |#2| |#1|) NIL)) (-4201 ((|#2| $) 19)) (-2089 ((|#2| $) 16)) (-1389 (($ (-1 |#1| |#1|) $) NIL)) (-2432 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-3123 ((|#2| $) NIL)) (-3133 ((|#1| $) NIL)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-3256 (((-108) $) 27)) (-2675 ((|#1| $) 28)) (-2188 (((-791) $) 54) (($ (-520)) 39) (($ |#1|) 34) (($ |#2|) NIL)) (-4113 (((-586 |#1|) $) NIL)) (-3475 ((|#1| $ |#2|) NIL)) (-2972 ((|#1| $ |#2|) 24)) (-3251 (((-706)) 14)) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (-3560 (($) 25 T CONST)) (-3570 (($) 11 T CONST)) (-4164 (((-586 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-1530 (((-108) $ $) 26)) (-1619 (($ $ |#1|) 56 (|has| |#1| (-336)))) (-1611 (($ $) NIL) (($ $ $) NIL)) (-1601 (($ $ $) 43)) (** (($ $ (-849)) NIL) (($ $ (-706)) 45)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) NIL) (($ $ $) 44) (($ |#1| $) 40) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-3474 (((-706) $) 15)))
-(((-1185 |#1| |#2|) (-13 (-969) (-1176 |#1|) (-355 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3474 ((-706) $)) (-15 -2188 ($ |#2|)) (-15 -2089 (|#2| $)) (-15 -4201 (|#2| $)) (-15 -3150 ($ $)) (-15 -2972 (|#1| $ |#2|)) (-15 -3256 ((-108) $)) (-15 -2675 (|#1| $)) (-15 -1375 ((-108) $)) (-15 -4127 ($ $)) (-15 -1389 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-336)) (-15 -1619 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4222)) (-6 -4222) |%noBranch|) (IF (|has| |#1| (-6 -4226)) (-6 -4226) |%noBranch|) (IF (|has| |#1| (-6 -4227)) (-6 -4227) |%noBranch|))) (-969) (-779)) (T -1185))
-((* (*1 *1 *1 *2) (-12 (-5 *1 (-1185 *2 *3)) (-4 *2 (-969)) (-4 *3 (-779)))) (-3150 (*1 *1 *1) (-12 (-5 *1 (-1185 *2 *3)) (-4 *2 (-969)) (-4 *3 (-779)))) (-1389 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-969)) (-5 *1 (-1185 *3 *4)) (-4 *4 (-779)))) (-2188 (*1 *1 *2) (-12 (-5 *1 (-1185 *3 *2)) (-4 *3 (-969)) (-4 *2 (-779)))) (-3474 (*1 *2 *1) (-12 (-5 *2 (-706)) (-5 *1 (-1185 *3 *4)) (-4 *3 (-969)) (-4 *4 (-779)))) (-2089 (*1 *2 *1) (-12 (-4 *2 (-779)) (-5 *1 (-1185 *3 *2)) (-4 *3 (-969)))) (-4201 (*1 *2 *1) (-12 (-4 *2 (-779)) (-5 *1 (-1185 *3 *2)) (-4 *3 (-969)))) (-2972 (*1 *2 *1 *3) (-12 (-4 *2 (-969)) (-5 *1 (-1185 *2 *3)) (-4 *3 (-779)))) (-3256 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1185 *3 *4)) (-4 *3 (-969)) (-4 *4 (-779)))) (-2675 (*1 *2 *1) (-12 (-4 *2 (-969)) (-5 *1 (-1185 *2 *3)) (-4 *3 (-779)))) (-1375 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1185 *3 *4)) (-4 *3 (-969)) (-4 *4 (-779)))) (-4127 (*1 *1 *1) (-12 (-5 *1 (-1185 *2 *3)) (-4 *2 (-969)) (-4 *3 (-779)))) (-1619 (*1 *1 *1 *2) (-12 (-5 *1 (-1185 *2 *3)) (-4 *2 (-336)) (-4 *2 (-969)) (-4 *3 (-779)))))
-(-13 (-969) (-1176 |#1|) (-355 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3474 ((-706) $)) (-15 -2188 ($ |#2|)) (-15 -2089 (|#2| $)) (-15 -4201 (|#2| $)) (-15 -3150 ($ $)) (-15 -2972 (|#1| $ |#2|)) (-15 -3256 ((-108) $)) (-15 -2675 (|#1| $)) (-15 -1375 ((-108) $)) (-15 -4127 ($ $)) (-15 -1389 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-336)) (-15 -1619 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4222)) (-6 -4222) |%noBranch|) (IF (|has| |#1| (-6 -4226)) (-6 -4226) |%noBranch|) (IF (|has| |#1| (-6 -4227)) (-6 -4227) |%noBranch|)))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) NIL)) (-4097 (((-586 |#1|) $) 120)) (-1564 (($ (-1177 |#1| |#2|)) 44)) (-3131 (($ $ (-706)) 32)) (-1917 (((-3 $ "failed") $ $) NIL)) (-2737 (($ $ $) 48 (|has| |#2| (-157))) (($ $ (-706)) 46 (|has| |#2| (-157)))) (-3961 (($) NIL T CONST)) (-3140 (($ $ |#1|) 102) (($ $ (-755 |#1|)) 103) (($ $ $) 25)) (-1296 (((-3 (-755 |#1|) "failed") $) NIL)) (-1482 (((-755 |#1|) $) NIL)) (-1540 (((-3 $ "failed") $) 110)) (-1375 (((-108) $) 105)) (-4127 (($ $) 106)) (-1537 (((-108) $) NIL)) (-3774 (((-108) $) NIL)) (-2516 (($ (-755 |#1|) |#2|) 19)) (-1355 (($ $) NIL)) (-2842 (((-2 (|:| |k| (-755 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4201 (((-755 |#1|) $) 111)) (-2089 (((-755 |#1|) $) 114)) (-1389 (($ (-1 |#2| |#2|) $) 119)) (-1204 (($ $ |#1|) 100) (($ $ (-755 |#1|)) 101) (($ $ $) 56)) (-1239 (((-1066) $) NIL)) (-4142 (((-1030) $) NIL)) (-1603 (((-1177 |#1| |#2|) $) 84)) (-2528 (((-706) $) 117)) (-3256 (((-108) $) 70)) (-2675 ((|#2| $) 28)) (-2188 (((-791) $) 63) (($ (-520)) 77) (($ |#2|) 74) (($ (-755 |#1|)) 17) (($ |#1|) 73)) (-2972 ((|#2| $ (-755 |#1|)) 104) ((|#2| $ $) 27)) (-3251 (((-706)) 108)) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (-3560 (($) 14 T CONST)) (-3124 (((-586 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 53)) (-3570 (($) 29 T CONST)) (-1530 (((-108) $ $) 13)) (-1611 (($ $) 88) (($ $ $) 91)) (-1601 (($ $ $) 55)) (** (($ $ (-849)) NIL) (($ $ (-706)) 49)) (* (($ (-849) $) NIL) (($ (-706) $) 47) (($ (-520) $) 94) (($ $ $) 21) (($ |#2| $) 18) (($ $ |#2|) 20) (($ |#1| $) 82)))
-(((-1186 |#1| |#2|) (-13 (-1183 |#1| |#2|) (-10 -8 (-15 -1603 ((-1177 |#1| |#2|) $)) (-15 -1564 ($ (-1177 |#1| |#2|))) (-15 -3124 ((-586 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-783) (-969)) (T -1186))
-((-1603 (*1 *2 *1) (-12 (-5 *2 (-1177 *3 *4)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-783)) (-4 *4 (-969)))) (-1564 (*1 *1 *2) (-12 (-5 *2 (-1177 *3 *4)) (-4 *3 (-783)) (-4 *4 (-969)) (-5 *1 (-1186 *3 *4)))) (-3124 (*1 *2 *1) (-12 (-5 *2 (-586 (-2 (|:| |k| *3) (|:| |c| (-1186 *3 *4))))) (-5 *1 (-1186 *3 *4)) (-4 *3 (-783)) (-4 *4 (-969)))))
-(-13 (-1183 |#1| |#2|) (-10 -8 (-15 -1603 ((-1177 |#1| |#2|) $)) (-15 -1564 ($ (-1177 |#1| |#2|))) (-15 -3124 ((-586 (-2 (|:| |k| |#1|) (|:| |c| $))) $))))
-((-1350 (((-586 (-1064 |#1|)) (-1 (-586 (-1064 |#1|)) (-586 (-1064 |#1|))) (-520)) 15) (((-1064 |#1|) (-1 (-1064 |#1|) (-1064 |#1|))) 11)))
-(((-1187 |#1|) (-10 -7 (-15 -1350 ((-1064 |#1|) (-1 (-1064 |#1|) (-1064 |#1|)))) (-15 -1350 ((-586 (-1064 |#1|)) (-1 (-586 (-1064 |#1|)) (-586 (-1064 |#1|))) (-520)))) (-1118)) (T -1187))
-((-1350 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-586 (-1064 *5)) (-586 (-1064 *5)))) (-5 *4 (-520)) (-5 *2 (-586 (-1064 *5))) (-5 *1 (-1187 *5)) (-4 *5 (-1118)))) (-1350 (*1 *2 *3) (-12 (-5 *3 (-1 (-1064 *4) (-1064 *4))) (-5 *2 (-1064 *4)) (-5 *1 (-1187 *4)) (-4 *4 (-1118)))))
-(-10 -7 (-15 -1350 ((-1064 |#1|) (-1 (-1064 |#1|) (-1064 |#1|)))) (-15 -1350 ((-586 (-1064 |#1|)) (-1 (-586 (-1064 |#1|)) (-586 (-1064 |#1|))) (-520))))
-((-3729 (((-586 (-2 (|:| -1714 (-1079 |#1|)) (|:| -3790 (-586 (-880 |#1|))))) (-586 (-880 |#1|))) 146) (((-586 (-2 (|:| -1714 (-1079 |#1|)) (|:| -3790 (-586 (-880 |#1|))))) (-586 (-880 |#1|)) (-108)) 145) (((-586 (-2 (|:| -1714 (-1079 |#1|)) (|:| -3790 (-586 (-880 |#1|))))) (-586 (-880 |#1|)) (-108) (-108)) 144) (((-586 (-2 (|:| -1714 (-1079 |#1|)) (|:| -3790 (-586 (-880 |#1|))))) (-586 (-880 |#1|)) (-108) (-108) (-108)) 143) (((-586 (-2 (|:| -1714 (-1079 |#1|)) (|:| -3790 (-586 (-880 |#1|))))) (-966 |#1| |#2|)) 128)) (-2871 (((-586 (-966 |#1| |#2|)) (-586 (-880 |#1|))) 71) (((-586 (-966 |#1| |#2|)) (-586 (-880 |#1|)) (-108)) 70) (((-586 (-966 |#1| |#2|)) (-586 (-880 |#1|)) (-108) (-108)) 69)) (-1507 (((-586 (-1054 |#1| (-492 (-793 |#3|)) (-793 |#3|) (-715 |#1| (-793 |#3|)))) (-966 |#1| |#2|)) 60)) (-3062 (((-586 (-586 (-947 (-380 |#1|)))) (-586 (-880 |#1|))) 113) (((-586 (-586 (-947 (-380 |#1|)))) (-586 (-880 |#1|)) (-108)) 112) (((-586 (-586 (-947 (-380 |#1|)))) (-586 (-880 |#1|)) (-108) (-108)) 111) (((-586 (-586 (-947 (-380 |#1|)))) (-586 (-880 |#1|)) (-108) (-108) (-108)) 110) (((-586 (-586 (-947 (-380 |#1|)))) (-966 |#1| |#2|)) 105)) (-2931 (((-586 (-586 (-947 (-380 |#1|)))) (-586 (-880 |#1|))) 118) (((-586 (-586 (-947 (-380 |#1|)))) (-586 (-880 |#1|)) (-108)) 117) (((-586 (-586 (-947 (-380 |#1|)))) (-586 (-880 |#1|)) (-108) (-108)) 116) (((-586 (-586 (-947 (-380 |#1|)))) (-966 |#1| |#2|)) 115)) (-1429 (((-586 (-715 |#1| (-793 |#3|))) (-1054 |#1| (-492 (-793 |#3|)) (-793 |#3|) (-715 |#1| (-793 |#3|)))) 97) (((-1079 (-947 (-380 |#1|))) (-1079 |#1|)) 88) (((-880 (-947 (-380 |#1|))) (-715 |#1| (-793 |#3|))) 95) (((-880 (-947 (-380 |#1|))) (-880 |#1|)) 93) (((-715 |#1| (-793 |#3|)) (-715 |#1| (-793 |#2|))) 33)))
-(((-1188 |#1| |#2| |#3|) (-10 -7 (-15 -2871 ((-586 (-966 |#1| |#2|)) (-586 (-880 |#1|)) (-108) (-108))) (-15 -2871 ((-586 (-966 |#1| |#2|)) (-586 (-880 |#1|)) (-108))) (-15 -2871 ((-586 (-966 |#1| |#2|)) (-586 (-880 |#1|)))) (-15 -3729 ((-586 (-2 (|:| -1714 (-1079 |#1|)) (|:| -3790 (-586 (-880 |#1|))))) (-966 |#1| |#2|))) (-15 -3729 ((-586 (-2 (|:| -1714 (-1079 |#1|)) (|:| -3790 (-586 (-880 |#1|))))) (-586 (-880 |#1|)) (-108) (-108) (-108))) (-15 -3729 ((-586 (-2 (|:| -1714 (-1079 |#1|)) (|:| -3790 (-586 (-880 |#1|))))) (-586 (-880 |#1|)) (-108) (-108))) (-15 -3729 ((-586 (-2 (|:| -1714 (-1079 |#1|)) (|:| -3790 (-586 (-880 |#1|))))) (-586 (-880 |#1|)) (-108))) (-15 -3729 ((-586 (-2 (|:| -1714 (-1079 |#1|)) (|:| -3790 (-586 (-880 |#1|))))) (-586 (-880 |#1|)))) (-15 -3062 ((-586 (-586 (-947 (-380 |#1|)))) (-966 |#1| |#2|))) (-15 -3062 ((-586 (-586 (-947 (-380 |#1|)))) (-586 (-880 |#1|)) (-108) (-108) (-108))) (-15 -3062 ((-586 (-586 (-947 (-380 |#1|)))) (-586 (-880 |#1|)) (-108) (-108))) (-15 -3062 ((-586 (-586 (-947 (-380 |#1|)))) (-586 (-880 |#1|)) (-108))) (-15 -3062 ((-586 (-586 (-947 (-380 |#1|)))) (-586 (-880 |#1|)))) (-15 -2931 ((-586 (-586 (-947 (-380 |#1|)))) (-966 |#1| |#2|))) (-15 -2931 ((-586 (-586 (-947 (-380 |#1|)))) (-586 (-880 |#1|)) (-108) (-108))) (-15 -2931 ((-586 (-586 (-947 (-380 |#1|)))) (-586 (-880 |#1|)) (-108))) (-15 -2931 ((-586 (-586 (-947 (-380 |#1|)))) (-586 (-880 |#1|)))) (-15 -1507 ((-586 (-1054 |#1| (-492 (-793 |#3|)) (-793 |#3|) (-715 |#1| (-793 |#3|)))) (-966 |#1| |#2|))) (-15 -1429 ((-715 |#1| (-793 |#3|)) (-715 |#1| (-793 |#2|)))) (-15 -1429 ((-880 (-947 (-380 |#1|))) (-880 |#1|))) (-15 -1429 ((-880 (-947 (-380 |#1|))) (-715 |#1| (-793 |#3|)))) (-15 -1429 ((-1079 (-947 (-380 |#1|))) (-1079 |#1|))) (-15 -1429 ((-586 (-715 |#1| (-793 |#3|))) (-1054 |#1| (-492 (-793 |#3|)) (-793 |#3|) (-715 |#1| (-793 |#3|)))))) (-13 (-781) (-281) (-135) (-945)) (-586 (-1083)) (-586 (-1083))) (T -1188))
-((-1429 (*1 *2 *3) (-12 (-5 *3 (-1054 *4 (-492 (-793 *6)) (-793 *6) (-715 *4 (-793 *6)))) (-4 *4 (-13 (-781) (-281) (-135) (-945))) (-14 *6 (-586 (-1083))) (-5 *2 (-586 (-715 *4 (-793 *6)))) (-5 *1 (-1188 *4 *5 *6)) (-14 *5 (-586 (-1083))))) (-1429 (*1 *2 *3) (-12 (-5 *3 (-1079 *4)) (-4 *4 (-13 (-781) (-281) (-135) (-945))) (-5 *2 (-1079 (-947 (-380 *4)))) (-5 *1 (-1188 *4 *5 *6)) (-14 *5 (-586 (-1083))) (-14 *6 (-586 (-1083))))) (-1429 (*1 *2 *3) (-12 (-5 *3 (-715 *4 (-793 *6))) (-4 *4 (-13 (-781) (-281) (-135) (-945))) (-14 *6 (-586 (-1083))) (-5 *2 (-880 (-947 (-380 *4)))) (-5 *1 (-1188 *4 *5 *6)) (-14 *5 (-586 (-1083))))) (-1429 (*1 *2 *3) (-12 (-5 *3 (-880 *4)) (-4 *4 (-13 (-781) (-281) (-135) (-945))) (-5 *2 (-880 (-947 (-380 *4)))) (-5 *1 (-1188 *4 *5 *6)) (-14 *5 (-586 (-1083))) (-14 *6 (-586 (-1083))))) (-1429 (*1 *2 *3) (-12 (-5 *3 (-715 *4 (-793 *5))) (-4 *4 (-13 (-781) (-281) (-135) (-945))) (-14 *5 (-586 (-1083))) (-5 *2 (-715 *4 (-793 *6))) (-5 *1 (-1188 *4 *5 *6)) (-14 *6 (-586 (-1083))))) (-1507 (*1 *2 *3) (-12 (-5 *3 (-966 *4 *5)) (-4 *4 (-13 (-781) (-281) (-135) (-945))) (-14 *5 (-586 (-1083))) (-5 *2 (-586 (-1054 *4 (-492 (-793 *6)) (-793 *6) (-715 *4 (-793 *6))))) (-5 *1 (-1188 *4 *5 *6)) (-14 *6 (-586 (-1083))))) (-2931 (*1 *2 *3) (-12 (-5 *3 (-586 (-880 *4))) (-4 *4 (-13 (-781) (-281) (-135) (-945))) (-5 *2 (-586 (-586 (-947 (-380 *4))))) (-5 *1 (-1188 *4 *5 *6)) (-14 *5 (-586 (-1083))) (-14 *6 (-586 (-1083))))) (-2931 (*1 *2 *3 *4) (-12 (-5 *3 (-586 (-880 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-781) (-281) (-135) (-945))) (-5 *2 (-586 (-586 (-947 (-380 *5))))) (-5 *1 (-1188 *5 *6 *7)) (-14 *6 (-586 (-1083))) (-14 *7 (-586 (-1083))))) (-2931 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-586 (-880 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-781) (-281) (-135) (-945))) (-5 *2 (-586 (-586 (-947 (-380 *5))))) (-5 *1 (-1188 *5 *6 *7)) (-14 *6 (-586 (-1083))) (-14 *7 (-586 (-1083))))) (-2931 (*1 *2 *3) (-12 (-5 *3 (-966 *4 *5)) (-4 *4 (-13 (-781) (-281) (-135) (-945))) (-14 *5 (-586 (-1083))) (-5 *2 (-586 (-586 (-947 (-380 *4))))) (-5 *1 (-1188 *4 *5 *6)) (-14 *6 (-586 (-1083))))) (-3062 (*1 *2 *3) (-12 (-5 *3 (-586 (-880 *4))) (-4 *4 (-13 (-781) (-281) (-135) (-945))) (-5 *2 (-586 (-586 (-947 (-380 *4))))) (-5 *1 (-1188 *4 *5 *6)) (-14 *5 (-586 (-1083))) (-14 *6 (-586 (-1083))))) (-3062 (*1 *2 *3 *4) (-12 (-5 *3 (-586 (-880 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-781) (-281) (-135) (-945))) (-5 *2 (-586 (-586 (-947 (-380 *5))))) (-5 *1 (-1188 *5 *6 *7)) (-14 *6 (-586 (-1083))) (-14 *7 (-586 (-1083))))) (-3062 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-586 (-880 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-781) (-281) (-135) (-945))) (-5 *2 (-586 (-586 (-947 (-380 *5))))) (-5 *1 (-1188 *5 *6 *7)) (-14 *6 (-586 (-1083))) (-14 *7 (-586 (-1083))))) (-3062 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-586 (-880 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-781) (-281) (-135) (-945))) (-5 *2 (-586 (-586 (-947 (-380 *5))))) (-5 *1 (-1188 *5 *6 *7)) (-14 *6 (-586 (-1083))) (-14 *7 (-586 (-1083))))) (-3062 (*1 *2 *3) (-12 (-5 *3 (-966 *4 *5)) (-4 *4 (-13 (-781) (-281) (-135) (-945))) (-14 *5 (-586 (-1083))) (-5 *2 (-586 (-586 (-947 (-380 *4))))) (-5 *1 (-1188 *4 *5 *6)) (-14 *6 (-586 (-1083))))) (-3729 (*1 *2 *3) (-12 (-4 *4 (-13 (-781) (-281) (-135) (-945))) (-5 *2 (-586 (-2 (|:| -1714 (-1079 *4)) (|:| -3790 (-586 (-880 *4)))))) (-5 *1 (-1188 *4 *5 *6)) (-5 *3 (-586 (-880 *4))) (-14 *5 (-586 (-1083))) (-14 *6 (-586 (-1083))))) (-3729 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-781) (-281) (-135) (-945))) (-5 *2 (-586 (-2 (|:| -1714 (-1079 *5)) (|:| -3790 (-586 (-880 *5)))))) (-5 *1 (-1188 *5 *6 *7)) (-5 *3 (-586 (-880 *5))) (-14 *6 (-586 (-1083))) (-14 *7 (-586 (-1083))))) (-3729 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-781) (-281) (-135) (-945))) (-5 *2 (-586 (-2 (|:| -1714 (-1079 *5)) (|:| -3790 (-586 (-880 *5)))))) (-5 *1 (-1188 *5 *6 *7)) (-5 *3 (-586 (-880 *5))) (-14 *6 (-586 (-1083))) (-14 *7 (-586 (-1083))))) (-3729 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-781) (-281) (-135) (-945))) (-5 *2 (-586 (-2 (|:| -1714 (-1079 *5)) (|:| -3790 (-586 (-880 *5)))))) (-5 *1 (-1188 *5 *6 *7)) (-5 *3 (-586 (-880 *5))) (-14 *6 (-586 (-1083))) (-14 *7 (-586 (-1083))))) (-3729 (*1 *2 *3) (-12 (-5 *3 (-966 *4 *5)) (-4 *4 (-13 (-781) (-281) (-135) (-945))) (-14 *5 (-586 (-1083))) (-5 *2 (-586 (-2 (|:| -1714 (-1079 *4)) (|:| -3790 (-586 (-880 *4)))))) (-5 *1 (-1188 *4 *5 *6)) (-14 *6 (-586 (-1083))))) (-2871 (*1 *2 *3) (-12 (-5 *3 (-586 (-880 *4))) (-4 *4 (-13 (-781) (-281) (-135) (-945))) (-5 *2 (-586 (-966 *4 *5))) (-5 *1 (-1188 *4 *5 *6)) (-14 *5 (-586 (-1083))) (-14 *6 (-586 (-1083))))) (-2871 (*1 *2 *3 *4) (-12 (-5 *3 (-586 (-880 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-781) (-281) (-135) (-945))) (-5 *2 (-586 (-966 *5 *6))) (-5 *1 (-1188 *5 *6 *7)) (-14 *6 (-586 (-1083))) (-14 *7 (-586 (-1083))))) (-2871 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-586 (-880 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-781) (-281) (-135) (-945))) (-5 *2 (-586 (-966 *5 *6))) (-5 *1 (-1188 *5 *6 *7)) (-14 *6 (-586 (-1083))) (-14 *7 (-586 (-1083))))))
-(-10 -7 (-15 -2871 ((-586 (-966 |#1| |#2|)) (-586 (-880 |#1|)) (-108) (-108))) (-15 -2871 ((-586 (-966 |#1| |#2|)) (-586 (-880 |#1|)) (-108))) (-15 -2871 ((-586 (-966 |#1| |#2|)) (-586 (-880 |#1|)))) (-15 -3729 ((-586 (-2 (|:| -1714 (-1079 |#1|)) (|:| -3790 (-586 (-880 |#1|))))) (-966 |#1| |#2|))) (-15 -3729 ((-586 (-2 (|:| -1714 (-1079 |#1|)) (|:| -3790 (-586 (-880 |#1|))))) (-586 (-880 |#1|)) (-108) (-108) (-108))) (-15 -3729 ((-586 (-2 (|:| -1714 (-1079 |#1|)) (|:| -3790 (-586 (-880 |#1|))))) (-586 (-880 |#1|)) (-108) (-108))) (-15 -3729 ((-586 (-2 (|:| -1714 (-1079 |#1|)) (|:| -3790 (-586 (-880 |#1|))))) (-586 (-880 |#1|)) (-108))) (-15 -3729 ((-586 (-2 (|:| -1714 (-1079 |#1|)) (|:| -3790 (-586 (-880 |#1|))))) (-586 (-880 |#1|)))) (-15 -3062 ((-586 (-586 (-947 (-380 |#1|)))) (-966 |#1| |#2|))) (-15 -3062 ((-586 (-586 (-947 (-380 |#1|)))) (-586 (-880 |#1|)) (-108) (-108) (-108))) (-15 -3062 ((-586 (-586 (-947 (-380 |#1|)))) (-586 (-880 |#1|)) (-108) (-108))) (-15 -3062 ((-586 (-586 (-947 (-380 |#1|)))) (-586 (-880 |#1|)) (-108))) (-15 -3062 ((-586 (-586 (-947 (-380 |#1|)))) (-586 (-880 |#1|)))) (-15 -2931 ((-586 (-586 (-947 (-380 |#1|)))) (-966 |#1| |#2|))) (-15 -2931 ((-586 (-586 (-947 (-380 |#1|)))) (-586 (-880 |#1|)) (-108) (-108))) (-15 -2931 ((-586 (-586 (-947 (-380 |#1|)))) (-586 (-880 |#1|)) (-108))) (-15 -2931 ((-586 (-586 (-947 (-380 |#1|)))) (-586 (-880 |#1|)))) (-15 -1507 ((-586 (-1054 |#1| (-492 (-793 |#3|)) (-793 |#3|) (-715 |#1| (-793 |#3|)))) (-966 |#1| |#2|))) (-15 -1429 ((-715 |#1| (-793 |#3|)) (-715 |#1| (-793 |#2|)))) (-15 -1429 ((-880 (-947 (-380 |#1|))) (-880 |#1|))) (-15 -1429 ((-880 (-947 (-380 |#1|))) (-715 |#1| (-793 |#3|)))) (-15 -1429 ((-1079 (-947 (-380 |#1|))) (-1079 |#1|))) (-15 -1429 ((-586 (-715 |#1| (-793 |#3|))) (-1054 |#1| (-492 (-793 |#3|)) (-793 |#3|) (-715 |#1| (-793 |#3|))))))
-((-2264 (((-3 (-1164 (-380 (-520))) "failed") (-1164 |#1|) |#1|) 17)) (-2708 (((-108) (-1164 |#1|)) 11)) (-2360 (((-3 (-1164 (-520)) "failed") (-1164 |#1|)) 14)))
-(((-1189 |#1|) (-10 -7 (-15 -2708 ((-108) (-1164 |#1|))) (-15 -2360 ((-3 (-1164 (-520)) "failed") (-1164 |#1|))) (-15 -2264 ((-3 (-1164 (-380 (-520))) "failed") (-1164 |#1|) |#1|))) (-582 (-520))) (T -1189))
-((-2264 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1164 *4)) (-4 *4 (-582 (-520))) (-5 *2 (-1164 (-380 (-520)))) (-5 *1 (-1189 *4)))) (-2360 (*1 *2 *3) (|partial| -12 (-5 *3 (-1164 *4)) (-4 *4 (-582 (-520))) (-5 *2 (-1164 (-520))) (-5 *1 (-1189 *4)))) (-2708 (*1 *2 *3) (-12 (-5 *3 (-1164 *4)) (-4 *4 (-582 (-520))) (-5 *2 (-108)) (-5 *1 (-1189 *4)))))
-(-10 -7 (-15 -2708 ((-108) (-1164 |#1|))) (-15 -2360 ((-3 (-1164 (-520)) "failed") (-1164 |#1|))) (-15 -2264 ((-3 (-1164 (-380 (-520))) "failed") (-1164 |#1|) |#1|)))
-((-1414 (((-108) $ $) NIL)) (-2906 (((-108) $) 11)) (-1917 (((-3 $ "failed") $ $) NIL)) (-1628 (((-706)) 8)) (-3961 (($) NIL T CONST)) (-1540 (((-3 $ "failed") $) 43)) (-3249 (($) 36)) (-1537 (((-108) $) NIL)) (-1394 (((-3 $ "failed") $) 29)) (-3040 (((-849) $) 15)) (-1239 (((-1066) $) NIL)) (-3794 (($) 25 T CONST)) (-2716 (($ (-849)) 37)) (-4142 (((-1030) $) NIL)) (-1429 (((-520) $) 13)) (-2188 (((-791) $) 22) (($ (-520)) 19)) (-3251 (((-706)) 9)) (-3504 (($ $ (-849)) NIL) (($ $ (-706)) NIL)) (-3560 (($) 23 T CONST)) (-3570 (($) 24 T CONST)) (-1530 (((-108) $ $) 27)) (-1611 (($ $) 38) (($ $ $) 35)) (-1601 (($ $ $) 26)) (** (($ $ (-849)) NIL) (($ $ (-706)) 40)) (* (($ (-849) $) NIL) (($ (-706) $) NIL) (($ (-520) $) 32) (($ $ $) 31)))
-(((-1190 |#1|) (-13 (-157) (-341) (-561 (-520)) (-1059)) (-849)) (T -1190))
-NIL
-(-13 (-157) (-341) (-561 (-520)) (-1059))
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-((-1195 3135840 3135845 3135850 "NIL" NIL T NIL (NIL) NIL NIL NIL) (-3 3135825 3135830 3135835 "NIL" NIL NIL NIL (NIL) -8 NIL NIL) (-2 3135810 3135815 3135820 "NIL" NIL NIL NIL (NIL) -8 NIL NIL) (-1 3135795 3135800 3135805 "NIL" NIL NIL NIL (NIL) -8 NIL NIL) (0 3135780 3135785 3135790 "NIL" NIL NIL NIL (NIL) -8 NIL NIL) (-1190 3134910 3135655 3135732 "ZMOD" 3135737 NIL ZMOD (NIL NIL) -8 NIL NIL) (-1189 3134020 3134184 3134393 "ZLINDEP" 3134742 NIL ZLINDEP (NIL T) -7 NIL NIL) (-1188 3123424 3125169 3127121 "ZDSOLVE" 3132169 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL) (-1187 3122670 3122811 3123000 "YSTREAM" 3123270 NIL YSTREAM (NIL T) -7 NIL NIL) (-1186 3120438 3121975 3122178 "XRPOLY" 3122513 NIL XRPOLY (NIL T T) -8 NIL NIL) (-1185 3116900 3118229 3118811 "XPR" 3119902 NIL XPR (NIL T T) -8 NIL NIL) (-1184 3114614 3116235 3116438 "XPOLY" 3116731 NIL XPOLY (NIL T) -8 NIL NIL) (-1183 3112427 3113805 3113860 "XPOLYC" 3114145 NIL XPOLYC (NIL T T) -9 NIL 3114258) (-1182 3108799 3110944 3111332 "XPBWPOLY" 3112085 NIL XPBWPOLY (NIL T T) -8 NIL NIL) (-1181 3104726 3107039 3107082 "XF" 3107703 NIL XF (NIL T) -9 NIL 3108102) (-1180 3104347 3104435 3104604 "XF-" 3104609 NIL XF- (NIL T T) -8 NIL NIL) (-1179 3099726 3101025 3101080 "XFALG" 3103228 NIL XFALG (NIL T T) -9 NIL 3104015) (-1178 3098863 3098967 3099171 "XEXPPKG" 3099618 NIL XEXPPKG (NIL T T T) -7 NIL NIL) (-1177 3096961 3098714 3098809 "XDPOLY" 3098814 NIL XDPOLY (NIL T T) -8 NIL NIL) (-1176 3095839 3096449 3096492 "XALG" 3096554 NIL XALG (NIL T) -9 NIL 3096673) (-1175 3089315 3093823 3094316 "WUTSET" 3095431 NIL WUTSET (NIL T T T T) -8 NIL NIL) (-1174 3087127 3087934 3088285 "WP" 3089097 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL) (-1173 3086013 3086211 3086506 "WFFINTBS" 3086924 NIL WFFINTBS (NIL T T T T) -7 NIL NIL) (-1172 3083917 3084344 3084806 "WEIER" 3085585 NIL WEIER (NIL T) -7 NIL NIL) (-1171 3083065 3083489 3083532 "VSPACE" 3083668 NIL VSPACE (NIL T) -9 NIL 3083742) (-1170 3082903 3082930 3083021 "VSPACE-" 3083026 NIL VSPACE- (NIL T T) -8 NIL NIL) (-1169 3082649 3082692 3082763 "VOID" 3082854 T VOID (NIL) -8 NIL NIL) (-1168 3080785 3081144 3081550 "VIEW" 3082265 T VIEW (NIL) -7 NIL NIL) (-1167 3077210 3077848 3078585 "VIEWDEF" 3080070 T VIEWDEF (NIL) -7 NIL NIL) (-1166 3066549 3068758 3070931 "VIEW3D" 3075059 T VIEW3D (NIL) -8 NIL NIL) (-1165 3058831 3060460 3062039 "VIEW2D" 3064992 T VIEW2D (NIL) -8 NIL NIL) (-1164 3054240 3058601 3058693 "VECTOR" 3058774 NIL VECTOR (NIL T) -8 NIL NIL) (-1163 3052817 3053076 3053394 "VECTOR2" 3053970 NIL VECTOR2 (NIL T T) -7 NIL NIL) (-1162 3046356 3050608 3050652 "VECTCAT" 3051640 NIL VECTCAT (NIL T) -9 NIL 3052224) (-1161 3045370 3045624 3046014 "VECTCAT-" 3046019 NIL VECTCAT- (NIL T T) -8 NIL NIL) (-1160 3044851 3045021 3045141 "VARIABLE" 3045285 NIL VARIABLE (NIL NIL) -8 NIL NIL) (-1159 3044783 3044788 3044819 "UTYPE" 3044824 T UTYPE (NIL) -9 NIL NIL) (-1158 3043618 3043772 3044033 "UTSODETL" 3044609 NIL UTSODETL (NIL T T T T) -7 NIL NIL) (-1157 3041058 3041518 3042042 "UTSODE" 3043159 NIL UTSODE (NIL T T) -7 NIL NIL) (-1156 3032905 3038698 3039186 "UTS" 3040627 NIL UTS (NIL T NIL NIL) -8 NIL NIL) (-1155 3024253 3029615 3029658 "UTSCAT" 3030759 NIL UTSCAT (NIL T) -9 NIL 3031516) (-1154 3021609 3022324 3023312 "UTSCAT-" 3023317 NIL UTSCAT- (NIL T T) -8 NIL NIL) (-1153 3021240 3021283 3021414 "UTS2" 3021560 NIL UTS2 (NIL T T T T) -7 NIL NIL) (-1152 3015515 3018080 3018124 "URAGG" 3020194 NIL URAGG (NIL T) -9 NIL 3020916) (-1151 3012454 3013317 3014440 "URAGG-" 3014445 NIL URAGG- (NIL T T) -8 NIL NIL) (-1150 3008140 3011071 3011542 "UPXSSING" 3012118 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL) (-1149 3000034 3007261 3007541 "UPXS" 3007917 NIL UPXS (NIL T NIL NIL) -8 NIL NIL) (-1148 2993066 2999939 3000010 "UPXSCONS" 3000015 NIL UPXSCONS (NIL T T) -8 NIL NIL) (-1147 2983358 2990185 2990247 "UPXSCCA" 2990896 NIL UPXSCCA (NIL T T) -9 NIL 2991137) (-1146 2982997 2983082 2983255 "UPXSCCA-" 2983260 NIL UPXSCCA- (NIL T T T) -8 NIL NIL) (-1145 2973211 2979811 2979854 "UPXSCAT" 2980497 NIL UPXSCAT (NIL T) -9 NIL 2981105) (-1144 2972645 2972724 2972901 "UPXS2" 2973126 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1143 2971299 2971552 2971903 "UPSQFREE" 2972388 NIL UPSQFREE (NIL T T) -7 NIL NIL) (-1142 2965194 2968246 2968301 "UPSCAT" 2969450 NIL UPSCAT (NIL T T) -9 NIL 2970223) (-1141 2964408 2964612 2964935 "UPSCAT-" 2964940 NIL UPSCAT- (NIL T T T) -8 NIL NIL) (-1140 2950540 2958537 2958580 "UPOLYC" 2960658 NIL UPOLYC (NIL T) -9 NIL 2961878) (-1139 2941933 2944337 2947462 "UPOLYC-" 2947467 NIL UPOLYC- (NIL T T) -8 NIL NIL) (-1138 2941564 2941607 2941738 "UPOLYC2" 2941884 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL) (-1137 2933023 2941133 2941270 "UP" 2941474 NIL UP (NIL NIL T) -8 NIL NIL) (-1136 2932366 2932473 2932636 "UPMP" 2932912 NIL UPMP (NIL T T) -7 NIL NIL) (-1135 2931919 2932000 2932139 "UPDIVP" 2932279 NIL UPDIVP (NIL T T) -7 NIL NIL) (-1134 2930487 2930736 2931052 "UPDECOMP" 2931668 NIL UPDECOMP (NIL T T) -7 NIL NIL) (-1133 2929722 2929834 2930019 "UPCDEN" 2930371 NIL UPCDEN (NIL T T T) -7 NIL NIL) (-1132 2929245 2929314 2929461 "UP2" 2929647 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL) (-1131 2927762 2928449 2928726 "UNISEG" 2929003 NIL UNISEG (NIL T) -8 NIL NIL) (-1130 2926977 2927104 2927309 "UNISEG2" 2927605 NIL UNISEG2 (NIL T T) -7 NIL NIL) (-1129 2926037 2926217 2926443 "UNIFACT" 2926793 NIL UNIFACT (NIL T) -7 NIL NIL) (-1128 2909936 2925218 2925468 "ULS" 2925844 NIL ULS (NIL T NIL NIL) -8 NIL NIL) (-1127 2897904 2909841 2909912 "ULSCONS" 2909917 NIL ULSCONS (NIL T T) -8 NIL NIL) (-1126 2880657 2892667 2892729 "ULSCCAT" 2893441 NIL ULSCCAT (NIL T T) -9 NIL 2893737) (-1125 2879708 2879953 2880340 "ULSCCAT-" 2880345 NIL ULSCCAT- (NIL T T T) -8 NIL NIL) (-1124 2869701 2876215 2876258 "ULSCAT" 2877114 NIL ULSCAT (NIL T) -9 NIL 2877844) (-1123 2869135 2869214 2869391 "ULS2" 2869616 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1122 2867532 2868499 2868530 "UFD" 2868742 T UFD (NIL) -9 NIL 2868856) (-1121 2867326 2867372 2867467 "UFD-" 2867472 NIL UFD- (NIL T) -8 NIL NIL) (-1120 2866408 2866591 2866807 "UDVO" 2867132 T UDVO (NIL) -7 NIL NIL) (-1119 2864224 2864633 2865104 "UDPO" 2865972 NIL UDPO (NIL T) -7 NIL NIL) (-1118 2864156 2864161 2864192 "TYPE" 2864197 T TYPE (NIL) -9 NIL NIL) (-1117 2863127 2863329 2863569 "TWOFACT" 2863950 NIL TWOFACT (NIL T) -7 NIL NIL) (-1116 2862065 2862402 2862665 "TUPLE" 2862899 NIL TUPLE (NIL T) -8 NIL NIL) (-1115 2859756 2860275 2860814 "TUBETOOL" 2861548 T TUBETOOL (NIL) -7 NIL NIL) (-1114 2858605 2858810 2859051 "TUBE" 2859549 NIL TUBE (NIL T) -8 NIL NIL) (-1113 2853329 2857583 2857865 "TS" 2858357 NIL TS (NIL T) -8 NIL NIL) (-1112 2842032 2846124 2846221 "TSETCAT" 2851455 NIL TSETCAT (NIL T T T T) -9 NIL 2852986) (-1111 2836767 2838365 2840255 "TSETCAT-" 2840260 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL) (-1110 2831030 2831876 2832818 "TRMANIP" 2835903 NIL TRMANIP (NIL T T) -7 NIL NIL) (-1109 2830471 2830534 2830697 "TRIMAT" 2830962 NIL TRIMAT (NIL T T T T) -7 NIL NIL) (-1108 2828277 2828514 2828877 "TRIGMNIP" 2830220 NIL TRIGMNIP (NIL T T) -7 NIL NIL) (-1107 2827796 2827909 2827940 "TRIGCAT" 2828153 T TRIGCAT (NIL) -9 NIL NIL) (-1106 2827465 2827544 2827685 "TRIGCAT-" 2827690 NIL TRIGCAT- (NIL T) -8 NIL NIL) (-1105 2824364 2826325 2826605 "TREE" 2827220 NIL TREE (NIL T) -8 NIL NIL) (-1104 2823637 2824165 2824196 "TRANFUN" 2824231 T TRANFUN (NIL) -9 NIL 2824297) (-1103 2822916 2823107 2823387 "TRANFUN-" 2823392 NIL TRANFUN- (NIL T) -8 NIL NIL) (-1102 2822720 2822752 2822813 "TOPSP" 2822877 T TOPSP (NIL) -7 NIL NIL) (-1101 2822072 2822187 2822340 "TOOLSIGN" 2822601 NIL TOOLSIGN (NIL T) -7 NIL NIL) (-1100 2820733 2821249 2821488 "TEXTFILE" 2821855 T TEXTFILE (NIL) -8 NIL NIL) (-1099 2818598 2819112 2819550 "TEX" 2820317 T TEX (NIL) -8 NIL NIL) (-1098 2818379 2818410 2818482 "TEX1" 2818561 NIL TEX1 (NIL T) -7 NIL NIL) (-1097 2818027 2818090 2818180 "TEMUTL" 2818311 T TEMUTL (NIL) -7 NIL NIL) (-1096 2816181 2816461 2816786 "TBCMPPK" 2817750 NIL TBCMPPK (NIL T T) -7 NIL NIL) (-1095 2808069 2814341 2814398 "TBAGG" 2814798 NIL TBAGG (NIL T T) -9 NIL 2815009) (-1094 2803139 2804627 2806381 "TBAGG-" 2806386 NIL TBAGG- (NIL T T T) -8 NIL NIL) (-1093 2802523 2802630 2802775 "TANEXP" 2803028 NIL TANEXP (NIL T) -7 NIL NIL) (-1092 2796024 2802380 2802473 "TABLE" 2802478 NIL TABLE (NIL T T) -8 NIL NIL) (-1091 2795437 2795535 2795673 "TABLEAU" 2795921 NIL TABLEAU (NIL T) -8 NIL NIL) (-1090 2790045 2791265 2792513 "TABLBUMP" 2794223 NIL TABLBUMP (NIL T) -7 NIL NIL) (-1089 2786508 2787203 2787986 "SYSSOLP" 2789296 NIL SYSSOLP (NIL T) -7 NIL NIL) (-1088 2782892 2783495 2784235 "SYNTAX" 2785790 T SYNTAX (NIL) -8 NIL NIL) (-1087 2780026 2780634 2781272 "SYMTAB" 2782276 T SYMTAB (NIL) -8 NIL NIL) (-1086 2775275 2776177 2777160 "SYMS" 2779065 T SYMS (NIL) -8 NIL NIL) (-1085 2772508 2774735 2774964 "SYMPOLY" 2775080 NIL SYMPOLY (NIL T) -8 NIL NIL) (-1084 2772028 2772103 2772225 "SYMFUNC" 2772420 NIL SYMFUNC (NIL T) -7 NIL NIL) (-1083 2768006 2769265 2770087 "SYMBOL" 2771228 T SYMBOL (NIL) -8 NIL NIL) (-1082 2761545 2763234 2764954 "SWITCH" 2766308 T SWITCH (NIL) -8 NIL NIL) (-1081 2754778 2760372 2760674 "SUTS" 2761300 NIL SUTS (NIL T NIL NIL) -8 NIL NIL) (-1080 2746671 2753899 2754179 "SUPXS" 2754555 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL) (-1079 2738203 2746292 2746417 "SUP" 2746580 NIL SUP (NIL T) -8 NIL NIL) (-1078 2737362 2737489 2737706 "SUPFRACF" 2738071 NIL SUPFRACF (NIL T T T T) -7 NIL NIL) (-1077 2736987 2737046 2737157 "SUP2" 2737297 NIL SUP2 (NIL T T) -7 NIL NIL) (-1076 2735405 2735679 2736041 "SUMRF" 2736686 NIL SUMRF (NIL T) -7 NIL NIL) (-1075 2734722 2734788 2734986 "SUMFS" 2735326 NIL SUMFS (NIL T T) -7 NIL NIL) (-1074 2718661 2733903 2734153 "SULS" 2734529 NIL SULS (NIL T NIL NIL) -8 NIL NIL) (-1073 2717983 2718186 2718326 "SUCH" 2718569 NIL SUCH (NIL T T) -8 NIL NIL) (-1072 2711910 2712922 2713880 "SUBSPACE" 2717071 NIL SUBSPACE (NIL NIL T) -8 NIL NIL) (-1071 2711340 2711430 2711594 "SUBRESP" 2711798 NIL SUBRESP (NIL T T) -7 NIL NIL) (-1070 2704709 2706005 2707316 "STTF" 2710076 NIL STTF (NIL T) -7 NIL NIL) (-1069 2698882 2700002 2701149 "STTFNC" 2703609 NIL STTFNC (NIL T) -7 NIL NIL) (-1068 2690233 2692100 2693893 "STTAYLOR" 2697123 NIL STTAYLOR (NIL T) -7 NIL NIL) (-1067 2683477 2690097 2690180 "STRTBL" 2690185 NIL STRTBL (NIL T) -8 NIL NIL) (-1066 2678868 2683432 2683463 "STRING" 2683468 T STRING (NIL) -8 NIL NIL) (-1065 2673756 2678241 2678272 "STRICAT" 2678331 T STRICAT (NIL) -9 NIL 2678393) (-1064 2666472 2671279 2671899 "STREAM" 2673171 NIL STREAM (NIL T) -8 NIL NIL) (-1063 2665982 2666059 2666203 "STREAM3" 2666389 NIL STREAM3 (NIL T T T) -7 NIL NIL) (-1062 2664964 2665147 2665382 "STREAM2" 2665795 NIL STREAM2 (NIL T T) -7 NIL NIL) (-1061 2664652 2664704 2664797 "STREAM1" 2664906 NIL STREAM1 (NIL T) -7 NIL NIL) (-1060 2663668 2663849 2664080 "STINPROD" 2664468 NIL STINPROD (NIL T) -7 NIL NIL) (-1059 2663246 2663430 2663461 "STEP" 2663541 T STEP (NIL) -9 NIL 2663619) (-1058 2656789 2663145 2663222 "STBL" 2663227 NIL STBL (NIL T T NIL) -8 NIL NIL) (-1057 2651964 2656011 2656055 "STAGG" 2656208 NIL STAGG (NIL T) -9 NIL 2656297) (-1056 2649666 2650268 2651140 "STAGG-" 2651145 NIL STAGG- (NIL T T) -8 NIL NIL) (-1055 2647861 2649436 2649528 "STACK" 2649609 NIL STACK (NIL T) -8 NIL NIL) (-1054 2640592 2646008 2646463 "SREGSET" 2647491 NIL SREGSET (NIL T T T T) -8 NIL NIL) (-1053 2633032 2634400 2635912 "SRDCMPK" 2639198 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL) (-1052 2625999 2630472 2630503 "SRAGG" 2631806 T SRAGG (NIL) -9 NIL 2632414) (-1051 2625016 2625271 2625650 "SRAGG-" 2625655 NIL SRAGG- (NIL T) -8 NIL NIL) (-1050 2619465 2623935 2624362 "SQMATRIX" 2624635 NIL SQMATRIX (NIL NIL T) -8 NIL NIL) (-1049 2613217 2616185 2616911 "SPLTREE" 2618811 NIL SPLTREE (NIL T T) -8 NIL NIL) (-1048 2609207 2609873 2610519 "SPLNODE" 2612643 NIL SPLNODE (NIL T T) -8 NIL NIL) (-1047 2608253 2608486 2608517 "SPFCAT" 2608961 T SPFCAT (NIL) -9 NIL NIL) (-1046 2606990 2607200 2607464 "SPECOUT" 2608011 T SPECOUT (NIL) -7 NIL NIL) (-1045 2606751 2606791 2606860 "SPADPRSR" 2606943 T SPADPRSR (NIL) -7 NIL NIL) (-1044 2598773 2600520 2600563 "SPACEC" 2604886 NIL SPACEC (NIL T) -9 NIL 2606702) (-1043 2596945 2598706 2598754 "SPACE3" 2598759 NIL SPACE3 (NIL T) -8 NIL NIL) (-1042 2595697 2595868 2596159 "SORTPAK" 2596750 NIL SORTPAK (NIL T T) -7 NIL NIL) (-1041 2593753 2594056 2594474 "SOLVETRA" 2595361 NIL SOLVETRA (NIL T) -7 NIL NIL) (-1040 2592764 2592986 2593260 "SOLVESER" 2593526 NIL SOLVESER (NIL T) -7 NIL NIL) (-1039 2587984 2588865 2589867 "SOLVERAD" 2591816 NIL SOLVERAD (NIL T) -7 NIL NIL) (-1038 2583799 2584408 2585137 "SOLVEFOR" 2587351 NIL SOLVEFOR (NIL T T) -7 NIL NIL) (-1037 2578098 2583150 2583247 "SNTSCAT" 2583252 NIL SNTSCAT (NIL T T T T) -9 NIL 2583322) (-1036 2572203 2576429 2576819 "SMTS" 2577788 NIL SMTS (NIL T T T) -8 NIL NIL) (-1035 2566614 2572092 2572168 "SMP" 2572173 NIL SMP (NIL T T) -8 NIL NIL) (-1034 2564773 2565074 2565472 "SMITH" 2566311 NIL SMITH (NIL T T T T) -7 NIL NIL) (-1033 2557737 2561933 2562036 "SMATCAT" 2563376 NIL SMATCAT (NIL NIL T T T) -9 NIL 2563925) (-1032 2554678 2555501 2556678 "SMATCAT-" 2556683 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL) (-1031 2552391 2553914 2553958 "SKAGG" 2554219 NIL SKAGG (NIL T) -9 NIL 2554354) (-1030 2548449 2551495 2551773 "SINT" 2552135 T SINT (NIL) -8 NIL NIL) (-1029 2548221 2548259 2548325 "SIMPAN" 2548405 T SIMPAN (NIL) -7 NIL NIL) (-1028 2547059 2547280 2547555 "SIGNRF" 2547980 NIL SIGNRF (NIL T) -7 NIL NIL) (-1027 2545868 2546019 2546309 "SIGNEF" 2546888 NIL SIGNEF (NIL T T) -7 NIL NIL) (-1026 2543558 2544012 2544518 "SHP" 2545409 NIL SHP (NIL T NIL) -7 NIL NIL) (-1025 2537411 2543459 2543535 "SHDP" 2543540 NIL SHDP (NIL NIL NIL T) -8 NIL NIL) (-1024 2536900 2537092 2537123 "SGROUP" 2537275 T SGROUP (NIL) -9 NIL 2537362) (-1023 2536670 2536722 2536826 "SGROUP-" 2536831 NIL SGROUP- (NIL T) -8 NIL NIL) (-1022 2533506 2534203 2534926 "SGCF" 2535969 T SGCF (NIL) -7 NIL NIL) (-1021 2527904 2532956 2533053 "SFRTCAT" 2533058 NIL SFRTCAT (NIL T T T T) -9 NIL 2533096) (-1020 2521364 2522379 2523513 "SFRGCD" 2526887 NIL SFRGCD (NIL T T T T T) -7 NIL NIL) (-1019 2514530 2515601 2516785 "SFQCMPK" 2520297 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL) (-1018 2514152 2514241 2514351 "SFORT" 2514471 NIL SFORT (NIL T T) -8 NIL NIL) (-1017 2513297 2513992 2514113 "SEXOF" 2514118 NIL SEXOF (NIL T T T T T) -8 NIL NIL) (-1016 2512431 2513178 2513246 "SEX" 2513251 T SEX (NIL) -8 NIL NIL) (-1015 2507207 2507896 2507992 "SEXCAT" 2511763 NIL SEXCAT (NIL T T T T T) -9 NIL 2512382) (-1014 2504387 2507141 2507189 "SET" 2507194 NIL SET (NIL T) -8 NIL NIL) (-1013 2502638 2503100 2503405 "SETMN" 2504128 NIL SETMN (NIL NIL NIL) -8 NIL NIL) (-1012 2502245 2502371 2502402 "SETCAT" 2502519 T SETCAT (NIL) -9 NIL 2502603) (-1011 2502025 2502077 2502176 "SETCAT-" 2502181 NIL SETCAT- (NIL T) -8 NIL NIL) (-1010 2498412 2500486 2500530 "SETAGG" 2501400 NIL SETAGG (NIL T) -9 NIL 2501740) (-1009 2497870 2497986 2498223 "SETAGG-" 2498228 NIL SETAGG- (NIL T T) -8 NIL NIL) (-1008 2497073 2497366 2497428 "SEGXCAT" 2497714 NIL SEGXCAT (NIL T T) -9 NIL 2497834) (-1007 2496129 2496739 2496921 "SEG" 2496926 NIL SEG (NIL T) -8 NIL NIL) (-1006 2495035 2495248 2495292 "SEGCAT" 2495874 NIL SEGCAT (NIL T) -9 NIL 2496112) (-1005 2494084 2494414 2494614 "SEGBIND" 2494870 NIL SEGBIND (NIL T) -8 NIL NIL) (-1004 2493705 2493764 2493877 "SEGBIND2" 2494019 NIL SEGBIND2 (NIL T T) -7 NIL NIL) (-1003 2492924 2493050 2493254 "SEG2" 2493549 NIL SEG2 (NIL T T) -7 NIL NIL) (-1002 2492361 2492859 2492906 "SDVAR" 2492911 NIL SDVAR (NIL T) -8 NIL NIL) (-1001 2484613 2492134 2492262 "SDPOL" 2492267 NIL SDPOL (NIL T) -8 NIL NIL) (-1000 2483206 2483472 2483791 "SCPKG" 2484328 NIL SCPKG (NIL T) -7 NIL NIL) (-999 2482351 2482530 2482728 "SCOPE" 2483028 T SCOPE (NIL) -8 NIL NIL) (-998 2481578 2481711 2481888 "SCACHE" 2482206 NIL SCACHE (NIL T) -7 NIL NIL) (-997 2481021 2481342 2481425 "SAOS" 2481515 T SAOS (NIL) -8 NIL NIL) (-996 2480589 2480624 2480795 "SAERFFC" 2480980 NIL SAERFFC (NIL T T T) -7 NIL NIL) (-995 2474485 2480488 2480566 "SAE" 2480571 NIL SAE (NIL T T NIL) -8 NIL NIL) (-994 2474081 2474116 2474273 "SAEFACT" 2474444 NIL SAEFACT (NIL T T T) -7 NIL NIL) (-993 2472407 2472721 2473120 "RURPK" 2473747 NIL RURPK (NIL T NIL) -7 NIL NIL) (-992 2471060 2471337 2471644 "RULESET" 2472243 NIL RULESET (NIL T T T) -8 NIL NIL) (-991 2468268 2468771 2469232 "RULE" 2470742 NIL RULE (NIL T T T) -8 NIL NIL) (-990 2467910 2468065 2468146 "RULECOLD" 2468220 NIL RULECOLD (NIL NIL) -8 NIL NIL) (-989 2462802 2463596 2464512 "RSETGCD" 2467109 NIL RSETGCD (NIL T T T T T) -7 NIL NIL) (-988 2452116 2457168 2457263 "RSETCAT" 2461328 NIL RSETCAT (NIL T T T T) -9 NIL 2462425) (-987 2450047 2450586 2451406 "RSETCAT-" 2451411 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL) (-986 2442477 2443852 2445368 "RSDCMPK" 2448646 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL) (-985 2440494 2440935 2441008 "RRCC" 2442084 NIL RRCC (NIL T T) -9 NIL 2442428) (-984 2439848 2440022 2440298 "RRCC-" 2440303 NIL RRCC- (NIL T T T) -8 NIL NIL) (-983 2414214 2423839 2423904 "RPOLCAT" 2434406 NIL RPOLCAT (NIL T T T) -9 NIL 2437564) (-982 2405718 2408056 2411174 "RPOLCAT-" 2411179 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL) (-981 2396784 2403948 2404428 "ROUTINE" 2405258 T ROUTINE (NIL) -8 NIL NIL) (-980 2393489 2396340 2396487 "ROMAN" 2396657 T ROMAN (NIL) -8 NIL NIL) (-979 2391775 2392360 2392617 "ROIRC" 2393295 NIL ROIRC (NIL T T) -8 NIL NIL) (-978 2388179 2390483 2390512 "RNS" 2390808 T RNS (NIL) -9 NIL 2391078) (-977 2386693 2387076 2387607 "RNS-" 2387680 NIL RNS- (NIL T) -8 NIL NIL) (-976 2386118 2386526 2386555 "RNG" 2386560 T RNG (NIL) -9 NIL 2386581) (-975 2385515 2385877 2385918 "RMODULE" 2385978 NIL RMODULE (NIL T) -9 NIL 2386020) (-974 2384367 2384461 2384791 "RMCAT2" 2385416 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL) (-973 2381081 2383550 2383871 "RMATRIX" 2384102 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL) (-972 2374077 2376311 2376424 "RMATCAT" 2379733 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2380715) (-971 2373456 2373603 2373906 "RMATCAT-" 2373911 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL) (-970 2373026 2373101 2373227 "RINTERP" 2373375 NIL RINTERP (NIL NIL T) -7 NIL NIL) (-969 2372076 2372640 2372669 "RING" 2372779 T RING (NIL) -9 NIL 2372873) (-968 2371871 2371915 2372009 "RING-" 2372014 NIL RING- (NIL T) -8 NIL NIL) (-967 2370719 2370956 2371212 "RIDIST" 2371635 T RIDIST (NIL) -7 NIL NIL) (-966 2362041 2370193 2370396 "RGCHAIN" 2370568 NIL RGCHAIN (NIL T NIL) -8 NIL NIL) (-965 2359046 2359660 2360328 "RF" 2361405 NIL RF (NIL T) -7 NIL NIL) (-964 2358695 2358758 2358859 "RFFACTOR" 2358977 NIL RFFACTOR (NIL T) -7 NIL NIL) (-963 2358423 2358458 2358553 "RFFACT" 2358654 NIL RFFACT (NIL T) -7 NIL NIL) (-962 2356553 2356917 2357297 "RFDIST" 2358063 T RFDIST (NIL) -7 NIL NIL) (-961 2356011 2356103 2356263 "RETSOL" 2356455 NIL RETSOL (NIL T T) -7 NIL NIL) (-960 2355603 2355683 2355725 "RETRACT" 2355915 NIL RETRACT (NIL T) -9 NIL NIL) (-959 2355455 2355480 2355564 "RETRACT-" 2355569 NIL RETRACT- (NIL T T) -8 NIL NIL) (-958 2348313 2355112 2355237 "RESULT" 2355350 T RESULT (NIL) -8 NIL NIL) (-957 2346898 2347587 2347784 "RESRING" 2348216 NIL RESRING (NIL T T T T NIL) -8 NIL NIL) (-956 2346538 2346587 2346683 "RESLATC" 2346835 NIL RESLATC (NIL T) -7 NIL NIL) (-955 2346247 2346281 2346386 "REPSQ" 2346497 NIL REPSQ (NIL T) -7 NIL NIL) (-954 2343678 2344258 2344858 "REP" 2345667 T REP (NIL) -7 NIL NIL) (-953 2343379 2343413 2343522 "REPDB" 2343637 NIL REPDB (NIL T) -7 NIL NIL) (-952 2337324 2338703 2339923 "REP2" 2342191 NIL REP2 (NIL T) -7 NIL NIL) (-951 2333730 2334411 2335216 "REP1" 2336551 NIL REP1 (NIL T) -7 NIL NIL) (-950 2326476 2331891 2332343 "REGSET" 2333361 NIL REGSET (NIL T T T T) -8 NIL NIL) (-949 2325297 2325632 2325880 "REF" 2326261 NIL REF (NIL T) -8 NIL NIL) (-948 2324678 2324781 2324946 "REDORDER" 2325181 NIL REDORDER (NIL T T) -7 NIL NIL) (-947 2320647 2323912 2324133 "RECLOS" 2324509 NIL RECLOS (NIL T) -8 NIL NIL) (-946 2319704 2319885 2320098 "REALSOLV" 2320454 T REALSOLV (NIL) -7 NIL NIL) (-945 2319551 2319592 2319621 "REAL" 2319626 T REAL (NIL) -9 NIL 2319661) (-944 2316042 2316844 2317726 "REAL0Q" 2318716 NIL REAL0Q (NIL T) -7 NIL NIL) (-943 2311653 2312641 2313700 "REAL0" 2315023 NIL REAL0 (NIL T) -7 NIL NIL) (-942 2311061 2311133 2311338 "RDIV" 2311575 NIL RDIV (NIL T T T T T) -7 NIL NIL) (-941 2310134 2310308 2310519 "RDIST" 2310883 NIL RDIST (NIL T) -7 NIL NIL) (-940 2308738 2309025 2309394 "RDETRS" 2309842 NIL RDETRS (NIL T T) -7 NIL NIL) (-939 2306559 2307013 2307548 "RDETR" 2308280 NIL RDETR (NIL T T) -7 NIL NIL) (-938 2305175 2305453 2305854 "RDEEFS" 2306275 NIL RDEEFS (NIL T T) -7 NIL NIL) (-937 2303675 2303981 2304410 "RDEEF" 2304863 NIL RDEEF (NIL T T) -7 NIL NIL) (-936 2297959 2300891 2300920 "RCFIELD" 2302197 T RCFIELD (NIL) -9 NIL 2302927) (-935 2296028 2296532 2297225 "RCFIELD-" 2297298 NIL RCFIELD- (NIL T) -8 NIL NIL) (-934 2292359 2294144 2294186 "RCAGG" 2295257 NIL RCAGG (NIL T) -9 NIL 2295722) (-933 2291990 2292084 2292244 "RCAGG-" 2292249 NIL RCAGG- (NIL T T) -8 NIL NIL) (-932 2291335 2291446 2291608 "RATRET" 2291874 NIL RATRET (NIL T) -7 NIL NIL) (-931 2290892 2290959 2291078 "RATFACT" 2291263 NIL RATFACT (NIL T) -7 NIL NIL) (-930 2290207 2290327 2290477 "RANDSRC" 2290762 T RANDSRC (NIL) -7 NIL NIL) (-929 2289944 2289988 2290059 "RADUTIL" 2290156 T RADUTIL (NIL) -7 NIL NIL) (-928 2282951 2288687 2289004 "RADIX" 2289659 NIL RADIX (NIL NIL) -8 NIL NIL) (-927 2274521 2282795 2282923 "RADFF" 2282928 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL) (-926 2274172 2274247 2274276 "RADCAT" 2274433 T RADCAT (NIL) -9 NIL NIL) (-925 2273957 2274005 2274102 "RADCAT-" 2274107 NIL RADCAT- (NIL T) -8 NIL NIL) (-924 2272108 2273732 2273821 "QUEUE" 2273901 NIL QUEUE (NIL T) -8 NIL NIL) (-923 2268605 2272045 2272090 "QUAT" 2272095 NIL QUAT (NIL T) -8 NIL NIL) (-922 2268243 2268286 2268413 "QUATCT2" 2268556 NIL QUATCT2 (NIL T T T T) -7 NIL NIL) (-921 2262036 2265416 2265457 "QUATCAT" 2266236 NIL QUATCAT (NIL T) -9 NIL 2267001) (-920 2258180 2259217 2260604 "QUATCAT-" 2260698 NIL QUATCAT- (NIL T T) -8 NIL NIL) (-919 2255700 2257264 2257306 "QUAGG" 2257681 NIL QUAGG (NIL T) -9 NIL 2257856) (-918 2254625 2255098 2255270 "QFORM" 2255572 NIL QFORM (NIL NIL T) -8 NIL NIL) (-917 2245921 2251179 2251220 "QFCAT" 2251878 NIL QFCAT (NIL T) -9 NIL 2252871) (-916 2241493 2242694 2244285 "QFCAT-" 2244379 NIL QFCAT- (NIL T T) -8 NIL NIL) (-915 2241131 2241174 2241301 "QFCAT2" 2241444 NIL QFCAT2 (NIL T T T T) -7 NIL NIL) (-914 2240591 2240701 2240831 "QEQUAT" 2241021 T QEQUAT (NIL) -8 NIL NIL) (-913 2233777 2234848 2236030 "QCMPACK" 2239524 NIL QCMPACK (NIL T T T T T) -7 NIL NIL) (-912 2231353 2231774 2232202 "QALGSET" 2233432 NIL QALGSET (NIL T T T T) -8 NIL NIL) (-911 2230598 2230772 2231004 "QALGSET2" 2231173 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL) (-910 2229289 2229512 2229829 "PWFFINTB" 2230371 NIL PWFFINTB (NIL T T T T) -7 NIL NIL) (-909 2227477 2227645 2227998 "PUSHVAR" 2229103 NIL PUSHVAR (NIL T T T T) -7 NIL NIL) (-908 2223394 2224448 2224490 "PTRANFN" 2226374 NIL PTRANFN (NIL T) -9 NIL NIL) (-907 2221806 2222097 2222418 "PTPACK" 2223105 NIL PTPACK (NIL T) -7 NIL NIL) (-906 2221442 2221499 2221606 "PTFUNC2" 2221743 NIL PTFUNC2 (NIL T T) -7 NIL NIL) (-905 2215918 2220259 2220300 "PTCAT" 2220668 NIL PTCAT (NIL T) -9 NIL 2220830) (-904 2215576 2215611 2215735 "PSQFR" 2215877 NIL PSQFR (NIL T T T T) -7 NIL NIL) (-903 2214171 2214469 2214803 "PSEUDLIN" 2215274 NIL PSEUDLIN (NIL T) -7 NIL NIL) (-902 2200979 2203343 2205666 "PSETPK" 2211931 NIL PSETPK (NIL T T T T) -7 NIL NIL) (-901 2194065 2196779 2196874 "PSETCAT" 2199855 NIL PSETCAT (NIL T T T T) -9 NIL 2200669) (-900 2191903 2192537 2193356 "PSETCAT-" 2193361 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL) (-899 2191251 2191416 2191445 "PSCURVE" 2191713 T PSCURVE (NIL) -9 NIL 2191880) (-898 2187702 2189228 2189293 "PSCAT" 2190129 NIL PSCAT (NIL T T T) -9 NIL 2190369) (-897 2186766 2186982 2187381 "PSCAT-" 2187386 NIL PSCAT- (NIL T T T T) -8 NIL NIL) (-896 2185419 2186051 2186265 "PRTITION" 2186572 T PRTITION (NIL) -8 NIL NIL) (-895 2174517 2176723 2178911 "PRS" 2183281 NIL PRS (NIL T T) -7 NIL NIL) (-894 2172375 2173867 2173908 "PRQAGG" 2174091 NIL PRQAGG (NIL T) -9 NIL 2174193) (-893 2171945 2172047 2172076 "PROPLOG" 2172261 T PROPLOG (NIL) -9 NIL NIL) (-892 2169068 2169633 2170160 "PROPFRML" 2171450 NIL PROPFRML (NIL T) -8 NIL NIL) (-891 2162842 2167234 2168054 "PRODUCT" 2168294 NIL PRODUCT (NIL T T) -8 NIL NIL) (-890 2160118 2162302 2162535 "PR" 2162653 NIL PR (NIL T T) -8 NIL NIL) (-889 2159914 2159946 2160005 "PRINT" 2160079 T PRINT (NIL) -7 NIL NIL) (-888 2159254 2159371 2159523 "PRIMES" 2159794 NIL PRIMES (NIL T) -7 NIL NIL) (-887 2157319 2157720 2158186 "PRIMELT" 2158833 NIL PRIMELT (NIL T) -7 NIL NIL) (-886 2157047 2157096 2157125 "PRIMCAT" 2157249 T PRIMCAT (NIL) -9 NIL NIL) (-885 2153208 2156985 2157030 "PRIMARR" 2157035 NIL PRIMARR (NIL T) -8 NIL NIL) (-884 2152215 2152393 2152621 "PRIMARR2" 2153026 NIL PRIMARR2 (NIL T T) -7 NIL NIL) (-883 2151858 2151914 2152025 "PREASSOC" 2152153 NIL PREASSOC (NIL T T) -7 NIL NIL) (-882 2151332 2151465 2151494 "PPCURVE" 2151699 T PPCURVE (NIL) -9 NIL 2151835) (-881 2148691 2149090 2149682 "POLYROOT" 2150913 NIL POLYROOT (NIL T T T T T) -7 NIL NIL) (-880 2142597 2148297 2148456 "POLY" 2148564 NIL POLY (NIL T) -8 NIL NIL) (-879 2141982 2142040 2142273 "POLYLIFT" 2142533 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL) (-878 2138267 2138716 2139344 "POLYCATQ" 2141527 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL) (-877 2125307 2130704 2130769 "POLYCAT" 2134254 NIL POLYCAT (NIL T T T) -9 NIL 2136181) (-876 2118758 2120619 2123002 "POLYCAT-" 2123007 NIL POLYCAT- (NIL T T T T) -8 NIL NIL) (-875 2118347 2118415 2118534 "POLY2UP" 2118684 NIL POLY2UP (NIL NIL T) -7 NIL NIL) (-874 2117983 2118040 2118147 "POLY2" 2118284 NIL POLY2 (NIL T T) -7 NIL NIL) (-873 2116668 2116907 2117183 "POLUTIL" 2117757 NIL POLUTIL (NIL T T) -7 NIL NIL) (-872 2115030 2115307 2115637 "POLTOPOL" 2116390 NIL POLTOPOL (NIL NIL T) -7 NIL NIL) (-871 2110553 2114967 2115012 "POINT" 2115017 NIL POINT (NIL T) -8 NIL NIL) (-870 2108740 2109097 2109472 "PNTHEORY" 2110198 T PNTHEORY (NIL) -7 NIL NIL) (-869 2107168 2107465 2107874 "PMTOOLS" 2108438 NIL PMTOOLS (NIL T T T) -7 NIL NIL) (-868 2106761 2106839 2106956 "PMSYM" 2107084 NIL PMSYM (NIL T) -7 NIL NIL) (-867 2106271 2106340 2106514 "PMQFCAT" 2106686 NIL PMQFCAT (NIL T T T) -7 NIL NIL) (-866 2105626 2105736 2105892 "PMPRED" 2106148 NIL PMPRED (NIL T) -7 NIL NIL) (-865 2105022 2105108 2105269 "PMPREDFS" 2105527 NIL PMPREDFS (NIL T T T) -7 NIL NIL) (-864 2103668 2103876 2104260 "PMPLCAT" 2104784 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL) (-863 2103200 2103279 2103431 "PMLSAGG" 2103583 NIL PMLSAGG (NIL T T T) -7 NIL NIL) (-862 2102677 2102753 2102933 "PMKERNEL" 2103118 NIL PMKERNEL (NIL T T) -7 NIL NIL) (-861 2102294 2102369 2102482 "PMINS" 2102596 NIL PMINS (NIL T) -7 NIL NIL) (-860 2101724 2101793 2102008 "PMFS" 2102219 NIL PMFS (NIL T T T) -7 NIL NIL) (-859 2100955 2101073 2101277 "PMDOWN" 2101601 NIL PMDOWN (NIL T T T) -7 NIL NIL) (-858 2100118 2100277 2100459 "PMASS" 2100793 T PMASS (NIL) -7 NIL NIL) (-857 2099392 2099503 2099666 "PMASSFS" 2100004 NIL PMASSFS (NIL T T) -7 NIL NIL) (-856 2099047 2099115 2099209 "PLOTTOOL" 2099318 T PLOTTOOL (NIL) -7 NIL NIL) (-855 2093669 2094858 2096006 "PLOT" 2097919 T PLOT (NIL) -8 NIL NIL) (-854 2089483 2090517 2091438 "PLOT3D" 2092768 T PLOT3D (NIL) -8 NIL NIL) (-853 2088395 2088572 2088807 "PLOT1" 2089287 NIL PLOT1 (NIL T) -7 NIL NIL) (-852 2063790 2068461 2073312 "PLEQN" 2083661 NIL PLEQN (NIL T T T T) -7 NIL NIL) (-851 2063108 2063230 2063410 "PINTERP" 2063655 NIL PINTERP (NIL NIL T) -7 NIL NIL) (-850 2062801 2062848 2062951 "PINTERPA" 2063055 NIL PINTERPA (NIL T T) -7 NIL NIL) (-849 2062028 2062595 2062688 "PI" 2062728 T PI (NIL) -8 NIL NIL) (-848 2060419 2061404 2061433 "PID" 2061615 T PID (NIL) -9 NIL 2061749) (-847 2060144 2060181 2060269 "PICOERCE" 2060376 NIL PICOERCE (NIL T) -7 NIL NIL) (-846 2059465 2059603 2059779 "PGROEB" 2060000 NIL PGROEB (NIL T) -7 NIL NIL) (-845 2055052 2055866 2056771 "PGE" 2058580 T PGE (NIL) -7 NIL NIL) (-844 2053176 2053422 2053788 "PGCD" 2054769 NIL PGCD (NIL T T T T) -7 NIL NIL) (-843 2052514 2052617 2052778 "PFRPAC" 2053060 NIL PFRPAC (NIL T) -7 NIL NIL) (-842 2049129 2051062 2051415 "PFR" 2052193 NIL PFR (NIL T) -8 NIL NIL) (-841 2047518 2047762 2048087 "PFOTOOLS" 2048876 NIL PFOTOOLS (NIL T T) -7 NIL NIL) (-840 2046051 2046290 2046641 "PFOQ" 2047275 NIL PFOQ (NIL T T T) -7 NIL NIL) (-839 2044528 2044740 2045102 "PFO" 2045835 NIL PFO (NIL T T T T T) -7 NIL NIL) (-838 2041051 2044417 2044486 "PF" 2044491 NIL PF (NIL NIL) -8 NIL NIL) (-837 2038479 2039760 2039789 "PFECAT" 2040374 T PFECAT (NIL) -9 NIL 2040758) (-836 2037924 2038078 2038292 "PFECAT-" 2038297 NIL PFECAT- (NIL T) -8 NIL NIL) (-835 2036528 2036779 2037080 "PFBRU" 2037673 NIL PFBRU (NIL T T) -7 NIL NIL) (-834 2034395 2034746 2035178 "PFBR" 2036179 NIL PFBR (NIL T T T T) -7 NIL NIL) (-833 2030247 2031771 2032447 "PERM" 2033752 NIL PERM (NIL T) -8 NIL NIL) (-832 2025513 2026454 2027324 "PERMGRP" 2029410 NIL PERMGRP (NIL T) -8 NIL NIL) (-831 2023583 2024576 2024618 "PERMCAT" 2025064 NIL PERMCAT (NIL T) -9 NIL 2025369) (-830 2023238 2023279 2023402 "PERMAN" 2023536 NIL PERMAN (NIL NIL T) -7 NIL NIL) (-829 2020678 2022807 2022938 "PENDTREE" 2023140 NIL PENDTREE (NIL T) -8 NIL NIL) (-828 2018750 2019528 2019570 "PDRING" 2020227 NIL PDRING (NIL T) -9 NIL 2020512) (-827 2017853 2018071 2018433 "PDRING-" 2018438 NIL PDRING- (NIL T T) -8 NIL NIL) (-826 2014995 2015745 2016436 "PDEPROB" 2017182 T PDEPROB (NIL) -8 NIL NIL) (-825 2012566 2013062 2013611 "PDEPACK" 2014466 T PDEPACK (NIL) -7 NIL NIL) (-824 2011478 2011668 2011919 "PDECOMP" 2012365 NIL PDECOMP (NIL T T) -7 NIL NIL) (-823 2009089 2009904 2009933 "PDECAT" 2010718 T PDECAT (NIL) -9 NIL 2011429) (-822 2008842 2008875 2008964 "PCOMP" 2009050 NIL PCOMP (NIL T T) -7 NIL NIL) (-821 2007049 2007645 2007941 "PBWLB" 2008572 NIL PBWLB (NIL T) -8 NIL NIL) (-820 1999558 2001126 2002462 "PATTERN" 2005734 NIL PATTERN (NIL T) -8 NIL NIL) (-819 1999190 1999247 1999356 "PATTERN2" 1999495 NIL PATTERN2 (NIL T T) -7 NIL NIL) (-818 1996947 1997335 1997792 "PATTERN1" 1998779 NIL PATTERN1 (NIL T T) -7 NIL NIL) (-817 1994342 1994896 1995377 "PATRES" 1996512 NIL PATRES (NIL T T) -8 NIL NIL) (-816 1993906 1993973 1994105 "PATRES2" 1994269 NIL PATRES2 (NIL T T T) -7 NIL NIL) (-815 1991803 1992203 1992608 "PATMATCH" 1993575 NIL PATMATCH (NIL T T T) -7 NIL NIL) (-814 1991339 1991522 1991564 "PATMAB" 1991671 NIL PATMAB (NIL T) -9 NIL 1991754) (-813 1989884 1990193 1990451 "PATLRES" 1991144 NIL PATLRES (NIL T T T) -8 NIL NIL) (-812 1989429 1989552 1989594 "PATAB" 1989599 NIL PATAB (NIL T) -9 NIL 1989771) (-811 1986910 1987442 1988015 "PARTPERM" 1988876 T PARTPERM (NIL) -7 NIL NIL) (-810 1986531 1986594 1986696 "PARSURF" 1986841 NIL PARSURF (NIL T) -8 NIL NIL) (-809 1986163 1986220 1986329 "PARSU2" 1986468 NIL PARSU2 (NIL T T) -7 NIL NIL) (-808 1985927 1985967 1986034 "PARSER" 1986116 T PARSER (NIL) -7 NIL NIL) (-807 1985548 1985611 1985713 "PARSCURV" 1985858 NIL PARSCURV (NIL T) -8 NIL NIL) (-806 1985180 1985237 1985346 "PARSC2" 1985485 NIL PARSC2 (NIL T T) -7 NIL NIL) (-805 1984819 1984877 1984974 "PARPCURV" 1985116 NIL PARPCURV (NIL T) -8 NIL NIL) (-804 1984451 1984508 1984617 "PARPC2" 1984756 NIL PARPC2 (NIL T T) -7 NIL NIL) (-803 1983971 1984057 1984176 "PAN2EXPR" 1984352 T PAN2EXPR (NIL) -7 NIL NIL) (-802 1982777 1983092 1983320 "PALETTE" 1983763 T PALETTE (NIL) -8 NIL NIL) (-801 1981245 1981782 1982142 "PAIR" 1982463 NIL PAIR (NIL T T) -8 NIL NIL) (-800 1975095 1980504 1980698 "PADICRC" 1981100 NIL PADICRC (NIL NIL T) -8 NIL NIL) (-799 1968303 1974441 1974625 "PADICRAT" 1974943 NIL PADICRAT (NIL NIL) -8 NIL NIL) (-798 1966607 1968240 1968285 "PADIC" 1968290 NIL PADIC (NIL NIL) -8 NIL NIL) (-797 1963811 1965385 1965426 "PADICCT" 1966007 NIL PADICCT (NIL NIL) -9 NIL 1966289) (-796 1962768 1962968 1963236 "PADEPAC" 1963598 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL) (-795 1961980 1962113 1962319 "PADE" 1962630 NIL PADE (NIL T T T) -7 NIL NIL) (-794 1959991 1960823 1961138 "OWP" 1961748 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL) (-793 1959100 1959596 1959768 "OVAR" 1959859 NIL OVAR (NIL NIL) -8 NIL NIL) (-792 1958364 1958485 1958646 "OUT" 1958959 T OUT (NIL) -7 NIL NIL) (-791 1947410 1949589 1951759 "OUTFORM" 1956214 T OUTFORM (NIL) -8 NIL NIL) (-790 1946818 1947139 1947228 "OSI" 1947341 T OSI (NIL) -8 NIL NIL) (-789 1945563 1945790 1946075 "ORTHPOL" 1946565 NIL ORTHPOL (NIL T) -7 NIL NIL) (-788 1942934 1945224 1945362 "OREUP" 1945506 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL) (-787 1940330 1942627 1942753 "ORESUP" 1942876 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL) (-786 1937865 1938365 1938925 "OREPCTO" 1939819 NIL OREPCTO (NIL T T) -7 NIL NIL) (-785 1931774 1933980 1934021 "OREPCAT" 1936342 NIL OREPCAT (NIL T) -9 NIL 1937445) (-784 1928922 1929704 1930761 "OREPCAT-" 1930766 NIL OREPCAT- (NIL T T) -8 NIL NIL) (-783 1928099 1928371 1928400 "ORDSET" 1928709 T ORDSET (NIL) -9 NIL 1928873) (-782 1927618 1927740 1927933 "ORDSET-" 1927938 NIL ORDSET- (NIL T) -8 NIL NIL) (-781 1926231 1927032 1927061 "ORDRING" 1927263 T ORDRING (NIL) -9 NIL 1927387) (-780 1925876 1925970 1926114 "ORDRING-" 1926119 NIL ORDRING- (NIL T) -8 NIL NIL) (-779 1925251 1925732 1925761 "ORDMON" 1925766 T ORDMON (NIL) -9 NIL 1925787) (-778 1924413 1924560 1924755 "ORDFUNS" 1925100 NIL ORDFUNS (NIL NIL T) -7 NIL NIL) (-777 1923924 1924283 1924312 "ORDFIN" 1924317 T ORDFIN (NIL) -9 NIL 1924338) (-776 1920436 1922510 1922919 "ORDCOMP" 1923548 NIL ORDCOMP (NIL T) -8 NIL NIL) (-775 1919702 1919829 1920015 "ORDCOMP2" 1920296 NIL ORDCOMP2 (NIL T T) -7 NIL NIL) (-774 1916210 1917092 1917929 "OPTPROB" 1918885 T OPTPROB (NIL) -8 NIL NIL) (-773 1913052 1913681 1914375 "OPTPACK" 1915536 T OPTPACK (NIL) -7 NIL NIL) (-772 1910777 1911513 1911542 "OPTCAT" 1912357 T OPTCAT (NIL) -9 NIL 1913003) (-771 1910545 1910584 1910650 "OPQUERY" 1910731 T OPQUERY (NIL) -7 NIL NIL) (-770 1907681 1908872 1909372 "OP" 1910077 NIL OP (NIL T) -8 NIL NIL) (-769 1904446 1906478 1906847 "ONECOMP" 1907345 NIL ONECOMP (NIL T) -8 NIL NIL) (-768 1903751 1903866 1904040 "ONECOMP2" 1904318 NIL ONECOMP2 (NIL T T) -7 NIL NIL) (-767 1903170 1903276 1903406 "OMSERVER" 1903641 T OMSERVER (NIL) -7 NIL NIL) (-766 1900058 1902610 1902651 "OMSAGG" 1902712 NIL OMSAGG (NIL T) -9 NIL 1902776) (-765 1898681 1898944 1899226 "OMPKG" 1899796 T OMPKG (NIL) -7 NIL NIL) (-764 1898110 1898213 1898242 "OM" 1898541 T OM (NIL) -9 NIL NIL) (-763 1896649 1897662 1897830 "OMLO" 1897991 NIL OMLO (NIL T T) -8 NIL NIL) (-762 1895579 1895726 1895952 "OMEXPR" 1896475 NIL OMEXPR (NIL T) -7 NIL NIL) (-761 1894897 1895125 1895261 "OMERR" 1895463 T OMERR (NIL) -8 NIL NIL) (-760 1894075 1894318 1894478 "OMERRK" 1894757 T OMERRK (NIL) -8 NIL NIL) (-759 1893553 1893752 1893860 "OMENC" 1893987 T OMENC (NIL) -8 NIL NIL) (-758 1887448 1888633 1889804 "OMDEV" 1892402 T OMDEV (NIL) -8 NIL NIL) (-757 1886517 1886688 1886882 "OMCONN" 1887274 T OMCONN (NIL) -8 NIL NIL) (-756 1885132 1886118 1886147 "OINTDOM" 1886152 T OINTDOM (NIL) -9 NIL 1886173) (-755 1880894 1882124 1882839 "OFMONOID" 1884449 NIL OFMONOID (NIL T) -8 NIL NIL) (-754 1880332 1880831 1880876 "ODVAR" 1880881 NIL ODVAR (NIL T) -8 NIL NIL) (-753 1877457 1879829 1880014 "ODR" 1880207 NIL ODR (NIL T T NIL) -8 NIL NIL) (-752 1869763 1877236 1877360 "ODPOL" 1877365 NIL ODPOL (NIL T) -8 NIL NIL) (-751 1863586 1869635 1869740 "ODP" 1869745 NIL ODP (NIL NIL T NIL) -8 NIL NIL) (-750 1862352 1862567 1862842 "ODETOOLS" 1863360 NIL ODETOOLS (NIL T T) -7 NIL NIL) (-749 1859321 1859977 1860693 "ODESYS" 1861685 NIL ODESYS (NIL T T) -7 NIL NIL) (-748 1854225 1855133 1856156 "ODERTRIC" 1858396 NIL ODERTRIC (NIL T T) -7 NIL NIL) (-747 1853651 1853733 1853927 "ODERED" 1854137 NIL ODERED (NIL T T T T T) -7 NIL NIL) (-746 1850553 1851101 1851776 "ODERAT" 1853074 NIL ODERAT (NIL T T) -7 NIL NIL) (-745 1847521 1847985 1848581 "ODEPRRIC" 1850082 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL) (-744 1845392 1845959 1846468 "ODEPROB" 1847032 T ODEPROB (NIL) -8 NIL NIL) (-743 1841924 1842407 1843053 "ODEPRIM" 1844871 NIL ODEPRIM (NIL T T T T) -7 NIL NIL) (-742 1841177 1841279 1841537 "ODEPAL" 1841816 NIL ODEPAL (NIL T T T T) -7 NIL NIL) (-741 1837379 1838160 1839014 "ODEPACK" 1840343 T ODEPACK (NIL) -7 NIL NIL) (-740 1836416 1836523 1836751 "ODEINT" 1837268 NIL ODEINT (NIL T T) -7 NIL NIL) (-739 1830517 1831942 1833389 "ODEIFTBL" 1834989 T ODEIFTBL (NIL) -8 NIL NIL) (-738 1825861 1826647 1827605 "ODEEF" 1829676 NIL ODEEF (NIL T T) -7 NIL NIL) (-737 1825198 1825287 1825516 "ODECONST" 1825766 NIL ODECONST (NIL T T T) -7 NIL NIL) (-736 1823355 1823988 1824017 "ODECAT" 1824620 T ODECAT (NIL) -9 NIL 1825149) (-735 1820227 1823067 1823186 "OCT" 1823268 NIL OCT (NIL T) -8 NIL NIL) (-734 1819865 1819908 1820035 "OCTCT2" 1820178 NIL OCTCT2 (NIL T T T T) -7 NIL NIL) (-733 1814698 1817136 1817177 "OC" 1818273 NIL OC (NIL T) -9 NIL 1819130) (-732 1811925 1812673 1813663 "OC-" 1813757 NIL OC- (NIL T T) -8 NIL NIL) (-731 1811303 1811745 1811774 "OCAMON" 1811779 T OCAMON (NIL) -9 NIL 1811800) (-730 1810763 1810873 1811003 "OBJPROP" 1811193 T OBJPROP (NIL) -8 NIL NIL) (-729 1810216 1810623 1810652 "OASGP" 1810657 T OASGP (NIL) -9 NIL 1810677) (-728 1809503 1809966 1809995 "OAMONS" 1810035 T OAMONS (NIL) -9 NIL 1810078) (-727 1808943 1809350 1809379 "OAMON" 1809384 T OAMON (NIL) -9 NIL 1809404) (-726 1808247 1808739 1808768 "OAGROUP" 1808773 T OAGROUP (NIL) -9 NIL 1808793) (-725 1807937 1807987 1808075 "NUMTUBE" 1808191 NIL NUMTUBE (NIL T) -7 NIL NIL) (-724 1801510 1803028 1804564 "NUMQUAD" 1806421 T NUMQUAD (NIL) -7 NIL NIL) (-723 1797266 1798254 1799279 "NUMODE" 1800505 T NUMODE (NIL) -7 NIL NIL) (-722 1794669 1795515 1795544 "NUMINT" 1796461 T NUMINT (NIL) -9 NIL 1797217) (-721 1793617 1793814 1794032 "NUMFMT" 1794471 T NUMFMT (NIL) -7 NIL NIL) (-720 1779999 1782933 1785463 "NUMERIC" 1791126 NIL NUMERIC (NIL T) -7 NIL NIL) (-719 1774399 1779451 1779546 "NTSCAT" 1779551 NIL NTSCAT (NIL T T T T) -9 NIL 1779589) (-718 1773593 1773758 1773951 "NTPOLFN" 1774238 NIL NTPOLFN (NIL T) -7 NIL NIL) (-717 1761449 1770435 1771245 "NSUP" 1772815 NIL NSUP (NIL T) -8 NIL NIL) (-716 1761085 1761142 1761249 "NSUP2" 1761386 NIL NSUP2 (NIL T T) -7 NIL NIL) (-715 1751047 1760864 1760994 "NSMP" 1760999 NIL NSMP (NIL T T) -8 NIL NIL) (-714 1749479 1749780 1750137 "NREP" 1750735 NIL NREP (NIL T) -7 NIL NIL) (-713 1748070 1748322 1748680 "NPCOEF" 1749222 NIL NPCOEF (NIL T T T T T) -7 NIL NIL) (-712 1747136 1747251 1747467 "NORMRETR" 1747951 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL) (-711 1745189 1745479 1745886 "NORMPK" 1746844 NIL NORMPK (NIL T T T T T) -7 NIL NIL) (-710 1744874 1744902 1745026 "NORMMA" 1745155 NIL NORMMA (NIL T T T T) -7 NIL NIL) (-709 1744701 1744831 1744860 "NONE" 1744865 T NONE (NIL) -8 NIL NIL) (-708 1744490 1744519 1744588 "NONE1" 1744665 NIL NONE1 (NIL T) -7 NIL NIL) (-707 1743975 1744037 1744222 "NODE1" 1744422 NIL NODE1 (NIL T T) -7 NIL NIL) (-706 1742268 1743138 1743393 "NNI" 1743740 T NNI (NIL) -8 NIL NIL) (-705 1740688 1741001 1741365 "NLINSOL" 1741936 NIL NLINSOL (NIL T) -7 NIL NIL) (-704 1736856 1737823 1738745 "NIPROB" 1739786 T NIPROB (NIL) -8 NIL NIL) (-703 1735613 1735847 1736149 "NFINTBAS" 1736618 NIL NFINTBAS (NIL T T) -7 NIL NIL) (-702 1734321 1734552 1734833 "NCODIV" 1735381 NIL NCODIV (NIL T T) -7 NIL NIL) (-701 1734083 1734120 1734195 "NCNTFRAC" 1734278 NIL NCNTFRAC (NIL T) -7 NIL NIL) (-700 1732263 1732627 1733047 "NCEP" 1733708 NIL NCEP (NIL T) -7 NIL NIL) (-699 1731174 1731913 1731942 "NASRING" 1732052 T NASRING (NIL) -9 NIL 1732126) (-698 1730969 1731013 1731107 "NASRING-" 1731112 NIL NASRING- (NIL T) -8 NIL NIL) (-697 1730122 1730621 1730650 "NARNG" 1730767 T NARNG (NIL) -9 NIL 1730858) (-696 1729814 1729881 1730015 "NARNG-" 1730020 NIL NARNG- (NIL T) -8 NIL NIL) (-695 1728693 1728900 1729135 "NAGSP" 1729599 T NAGSP (NIL) -7 NIL NIL) (-694 1720117 1721763 1723398 "NAGS" 1727078 T NAGS (NIL) -7 NIL NIL) (-693 1718681 1718985 1719312 "NAGF07" 1719810 T NAGF07 (NIL) -7 NIL NIL) (-692 1713263 1714543 1715839 "NAGF04" 1717405 T NAGF04 (NIL) -7 NIL NIL) (-691 1706295 1707893 1709510 "NAGF02" 1711666 T NAGF02 (NIL) -7 NIL NIL) (-690 1701559 1702649 1703756 "NAGF01" 1705208 T NAGF01 (NIL) -7 NIL NIL) (-689 1695219 1696777 1698354 "NAGE04" 1700002 T NAGE04 (NIL) -7 NIL NIL) (-688 1686460 1688563 1690675 "NAGE02" 1693127 T NAGE02 (NIL) -7 NIL NIL) (-687 1682453 1683390 1684344 "NAGE01" 1685526 T NAGE01 (NIL) -7 NIL NIL) (-686 1680260 1680791 1681346 "NAGD03" 1681918 T NAGD03 (NIL) -7 NIL NIL) (-685 1672046 1673965 1675910 "NAGD02" 1678335 T NAGD02 (NIL) -7 NIL NIL) (-684 1665905 1667318 1668746 "NAGD01" 1670638 T NAGD01 (NIL) -7 NIL NIL) (-683 1662162 1662972 1663797 "NAGC06" 1665100 T NAGC06 (NIL) -7 NIL NIL) (-682 1660639 1660968 1661321 "NAGC05" 1661829 T NAGC05 (NIL) -7 NIL NIL) (-681 1660023 1660140 1660282 "NAGC02" 1660517 T NAGC02 (NIL) -7 NIL NIL) (-680 1659084 1659641 1659682 "NAALG" 1659761 NIL NAALG (NIL T) -9 NIL 1659822) (-679 1658919 1658948 1659038 "NAALG-" 1659043 NIL NAALG- (NIL T T) -8 NIL NIL) (-678 1652869 1653977 1655164 "MULTSQFR" 1657815 NIL MULTSQFR (NIL T T T T) -7 NIL NIL) (-677 1652188 1652263 1652447 "MULTFACT" 1652781 NIL MULTFACT (NIL T T T T) -7 NIL NIL) (-676 1645381 1649292 1649345 "MTSCAT" 1650405 NIL MTSCAT (NIL T T) -9 NIL 1650919) (-675 1645093 1645147 1645239 "MTHING" 1645321 NIL MTHING (NIL T) -7 NIL NIL) (-674 1644885 1644918 1644978 "MSYSCMD" 1645053 T MSYSCMD (NIL) -7 NIL NIL) (-673 1640997 1643640 1643960 "MSET" 1644598 NIL MSET (NIL T) -8 NIL NIL) (-672 1638092 1640558 1640600 "MSETAGG" 1640605 NIL MSETAGG (NIL T) -9 NIL 1640639) (-671 1633948 1635490 1636231 "MRING" 1637395 NIL MRING (NIL T T) -8 NIL NIL) (-670 1633518 1633585 1633714 "MRF2" 1633875 NIL MRF2 (NIL T T T) -7 NIL NIL) (-669 1633136 1633171 1633315 "MRATFAC" 1633477 NIL MRATFAC (NIL T T T T) -7 NIL NIL) (-668 1630748 1631043 1631474 "MPRFF" 1632841 NIL MPRFF (NIL T T T T) -7 NIL NIL) (-667 1624768 1630603 1630699 "MPOLY" 1630704 NIL MPOLY (NIL NIL T) -8 NIL NIL) (-666 1624258 1624293 1624501 "MPCPF" 1624727 NIL MPCPF (NIL T T T T) -7 NIL NIL) (-665 1623774 1623817 1624000 "MPC3" 1624209 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL) (-664 1622975 1623056 1623275 "MPC2" 1623689 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL) (-663 1621276 1621613 1622003 "MONOTOOL" 1622635 NIL MONOTOOL (NIL T T) -7 NIL NIL) (-662 1620400 1620735 1620764 "MONOID" 1621041 T MONOID (NIL) -9 NIL 1621213) (-661 1619778 1619941 1620184 "MONOID-" 1620189 NIL MONOID- (NIL T) -8 NIL NIL) (-660 1610758 1616744 1616804 "MONOGEN" 1617478 NIL MONOGEN (NIL T T) -9 NIL 1617934) (-659 1607976 1608711 1609711 "MONOGEN-" 1609830 NIL MONOGEN- (NIL T T T) -8 NIL NIL) (-658 1606835 1607255 1607284 "MONADWU" 1607676 T MONADWU (NIL) -9 NIL 1607914) (-657 1606207 1606366 1606614 "MONADWU-" 1606619 NIL MONADWU- (NIL T) -8 NIL NIL) (-656 1605592 1605810 1605839 "MONAD" 1606046 T MONAD (NIL) -9 NIL 1606158) (-655 1605277 1605355 1605487 "MONAD-" 1605492 NIL MONAD- (NIL T) -8 NIL NIL) (-654 1603528 1604190 1604469 "MOEBIUS" 1605030 NIL MOEBIUS (NIL T) -8 NIL NIL) (-653 1602921 1603299 1603340 "MODULE" 1603345 NIL MODULE (NIL T) -9 NIL 1603371) (-652 1602489 1602585 1602775 "MODULE-" 1602780 NIL MODULE- (NIL T T) -8 NIL NIL) (-651 1600160 1600855 1601181 "MODRING" 1602314 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL) (-650 1597116 1598281 1598798 "MODOP" 1599692 NIL MODOP (NIL T T) -8 NIL NIL) (-649 1595303 1595755 1596096 "MODMONOM" 1596915 NIL MODMONOM (NIL T T NIL) -8 NIL NIL) (-648 1585021 1593507 1593929 "MODMON" 1594931 NIL MODMON (NIL T T) -8 NIL NIL) (-647 1582147 1583865 1584141 "MODFIELD" 1584896 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL) (-646 1581673 1581716 1581895 "MMAP" 1582098 NIL MMAP (NIL T T T T T T) -7 NIL NIL) (-645 1579909 1580686 1580727 "MLO" 1581144 NIL MLO (NIL T) -9 NIL 1581385) (-644 1577276 1577791 1578393 "MLIFT" 1579390 NIL MLIFT (NIL T T T T) -7 NIL NIL) (-643 1576667 1576751 1576905 "MKUCFUNC" 1577187 NIL MKUCFUNC (NIL T T T) -7 NIL NIL) (-642 1576266 1576336 1576459 "MKRECORD" 1576590 NIL MKRECORD (NIL T T) -7 NIL NIL) (-641 1575314 1575475 1575703 "MKFUNC" 1576077 NIL MKFUNC (NIL T) -7 NIL NIL) (-640 1574702 1574806 1574962 "MKFLCFN" 1575197 NIL MKFLCFN (NIL T) -7 NIL NIL) (-639 1574128 1574495 1574584 "MKCHSET" 1574646 NIL MKCHSET (NIL T) -8 NIL NIL) (-638 1573405 1573507 1573692 "MKBCFUNC" 1574021 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL) (-637 1570089 1572959 1573095 "MINT" 1573289 T MINT (NIL) -8 NIL NIL) (-636 1568901 1569144 1569421 "MHROWRED" 1569844 NIL MHROWRED (NIL T) -7 NIL NIL) (-635 1564172 1567346 1567770 "MFLOAT" 1568497 T MFLOAT (NIL) -8 NIL NIL) (-634 1563529 1563605 1563776 "MFINFACT" 1564084 NIL MFINFACT (NIL T T T T) -7 NIL NIL) (-633 1559844 1560692 1561576 "MESH" 1562665 T MESH (NIL) -7 NIL NIL) (-632 1558234 1558546 1558899 "MDDFACT" 1559531 NIL MDDFACT (NIL T) -7 NIL NIL) (-631 1555076 1557393 1557435 "MDAGG" 1557690 NIL MDAGG (NIL T) -9 NIL 1557833) (-630 1544774 1554369 1554576 "MCMPLX" 1554889 T MCMPLX (NIL) -8 NIL NIL) (-629 1543915 1544061 1544261 "MCDEN" 1544623 NIL MCDEN (NIL T T) -7 NIL NIL) (-628 1541805 1542075 1542455 "MCALCFN" 1543645 NIL MCALCFN (NIL T T T T) -7 NIL NIL) (-627 1539427 1539950 1540511 "MATSTOR" 1541276 NIL MATSTOR (NIL T) -7 NIL NIL) (-626 1535435 1538802 1539049 "MATRIX" 1539212 NIL MATRIX (NIL T) -8 NIL NIL) (-625 1531205 1531908 1532644 "MATLIN" 1534792 NIL MATLIN (NIL T T T T) -7 NIL NIL) (-624 1521402 1524540 1524617 "MATCAT" 1529455 NIL MATCAT (NIL T T T) -9 NIL 1530872) (-623 1517767 1518780 1520135 "MATCAT-" 1520140 NIL MATCAT- (NIL T T T T) -8 NIL NIL) (-622 1516369 1516522 1516853 "MATCAT2" 1517602 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-621 1514481 1514805 1515189 "MAPPKG3" 1516044 NIL MAPPKG3 (NIL T T T) -7 NIL NIL) (-620 1513462 1513635 1513857 "MAPPKG2" 1514305 NIL MAPPKG2 (NIL T T) -7 NIL NIL) (-619 1511961 1512245 1512572 "MAPPKG1" 1513168 NIL MAPPKG1 (NIL T) -7 NIL NIL) (-618 1511572 1511630 1511753 "MAPHACK3" 1511897 NIL MAPHACK3 (NIL T T T) -7 NIL NIL) (-617 1511164 1511225 1511339 "MAPHACK2" 1511504 NIL MAPHACK2 (NIL T T) -7 NIL NIL) (-616 1510602 1510705 1510847 "MAPHACK1" 1511055 NIL MAPHACK1 (NIL T) -7 NIL NIL) (-615 1508710 1509304 1509607 "MAGMA" 1510331 NIL MAGMA (NIL T) -8 NIL NIL) (-614 1505184 1506954 1507414 "M3D" 1508283 NIL M3D (NIL T) -8 NIL NIL) (-613 1499339 1503554 1503596 "LZSTAGG" 1504378 NIL LZSTAGG (NIL T) -9 NIL 1504673) (-612 1495312 1496470 1497927 "LZSTAGG-" 1497932 NIL LZSTAGG- (NIL T T) -8 NIL NIL) (-611 1492428 1493205 1493691 "LWORD" 1494858 NIL LWORD (NIL T) -8 NIL NIL) (-610 1485588 1492199 1492333 "LSQM" 1492338 NIL LSQM (NIL NIL T) -8 NIL NIL) (-609 1484812 1484951 1485179 "LSPP" 1485443 NIL LSPP (NIL T T T T) -7 NIL NIL) (-608 1482624 1482925 1483381 "LSMP" 1484501 NIL LSMP (NIL T T T T) -7 NIL NIL) (-607 1479403 1480077 1480807 "LSMP1" 1481926 NIL LSMP1 (NIL T) -7 NIL NIL) (-606 1473329 1478571 1478613 "LSAGG" 1478675 NIL LSAGG (NIL T) -9 NIL 1478753) (-605 1470024 1470948 1472161 "LSAGG-" 1472166 NIL LSAGG- (NIL T T) -8 NIL NIL) (-604 1467650 1469168 1469417 "LPOLY" 1469819 NIL LPOLY (NIL T T) -8 NIL NIL) (-603 1467232 1467317 1467440 "LPEFRAC" 1467559 NIL LPEFRAC (NIL T) -7 NIL NIL) (-602 1465579 1466326 1466579 "LO" 1467064 NIL LO (NIL T T T) -8 NIL NIL) (-601 1465232 1465344 1465373 "LOGIC" 1465484 T LOGIC (NIL) -9 NIL 1465564) (-600 1465094 1465117 1465188 "LOGIC-" 1465193 NIL LOGIC- (NIL T) -8 NIL NIL) (-599 1464287 1464427 1464620 "LODOOPS" 1464950 NIL LODOOPS (NIL T T) -7 NIL NIL) (-598 1461705 1464204 1464269 "LODO" 1464274 NIL LODO (NIL T NIL) -8 NIL NIL) (-597 1460251 1460486 1460837 "LODOF" 1461452 NIL LODOF (NIL T T) -7 NIL NIL) (-596 1456670 1459106 1459147 "LODOCAT" 1459579 NIL LODOCAT (NIL T) -9 NIL 1459790) (-595 1456404 1456462 1456588 "LODOCAT-" 1456593 NIL LODOCAT- (NIL T T) -8 NIL NIL) (-594 1453718 1456245 1456363 "LODO2" 1456368 NIL LODO2 (NIL T T) -8 NIL NIL) (-593 1451147 1453655 1453700 "LODO1" 1453705 NIL LODO1 (NIL T) -8 NIL NIL) (-592 1450010 1450175 1450486 "LODEEF" 1450970 NIL LODEEF (NIL T T T) -7 NIL NIL) (-591 1445296 1448140 1448182 "LNAGG" 1449129 NIL LNAGG (NIL T) -9 NIL 1449573) (-590 1444443 1444657 1444999 "LNAGG-" 1445004 NIL LNAGG- (NIL T T) -8 NIL NIL) (-589 1440608 1441370 1442008 "LMOPS" 1443859 NIL LMOPS (NIL T T NIL) -8 NIL NIL) (-588 1440005 1440367 1440408 "LMODULE" 1440468 NIL LMODULE (NIL T) -9 NIL 1440510) (-587 1437251 1439650 1439773 "LMDICT" 1439915 NIL LMDICT (NIL T) -8 NIL NIL) (-586 1430478 1436197 1436495 "LIST" 1436986 NIL LIST (NIL T) -8 NIL NIL) (-585 1430003 1430077 1430216 "LIST3" 1430398 NIL LIST3 (NIL T T T) -7 NIL NIL) (-584 1429010 1429188 1429416 "LIST2" 1429821 NIL LIST2 (NIL T T) -7 NIL NIL) (-583 1427144 1427456 1427855 "LIST2MAP" 1428657 NIL LIST2MAP (NIL T T) -7 NIL NIL) (-582 1425856 1426536 1426577 "LINEXP" 1426830 NIL LINEXP (NIL T) -9 NIL 1426978) (-581 1424503 1424763 1425060 "LINDEP" 1425608 NIL LINDEP (NIL T T) -7 NIL NIL) (-580 1421270 1421989 1422766 "LIMITRF" 1423758 NIL LIMITRF (NIL T) -7 NIL NIL) (-579 1419550 1419845 1420260 "LIMITPS" 1420965 NIL LIMITPS (NIL T T) -7 NIL NIL) (-578 1414005 1419061 1419289 "LIE" 1419371 NIL LIE (NIL T T) -8 NIL NIL) (-577 1413055 1413498 1413539 "LIECAT" 1413679 NIL LIECAT (NIL T) -9 NIL 1413830) (-576 1412896 1412923 1413011 "LIECAT-" 1413016 NIL LIECAT- (NIL T T) -8 NIL NIL) (-575 1405508 1412345 1412510 "LIB" 1412751 T LIB (NIL) -8 NIL NIL) (-574 1401145 1402026 1402961 "LGROBP" 1404625 NIL LGROBP (NIL NIL T) -7 NIL NIL) (-573 1399011 1399285 1399647 "LF" 1400866 NIL LF (NIL T T) -7 NIL NIL) (-572 1397850 1398542 1398571 "LFCAT" 1398778 T LFCAT (NIL) -9 NIL 1398917) (-571 1394762 1395388 1396074 "LEXTRIPK" 1397216 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL) (-570 1391468 1392332 1392835 "LEXP" 1394342 NIL LEXP (NIL T T NIL) -8 NIL NIL) (-569 1389866 1390179 1390580 "LEADCDET" 1391150 NIL LEADCDET (NIL T T T T) -7 NIL NIL) (-568 1389062 1389136 1389363 "LAZM3PK" 1389787 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL) (-567 1383978 1387141 1387678 "LAUPOL" 1388575 NIL LAUPOL (NIL T T) -8 NIL NIL) (-566 1383545 1383589 1383756 "LAPLACE" 1383928 NIL LAPLACE (NIL T T) -7 NIL NIL) (-565 1381473 1382646 1382897 "LA" 1383378 NIL LA (NIL T T T) -8 NIL NIL) (-564 1380535 1381129 1381170 "LALG" 1381231 NIL LALG (NIL T) -9 NIL 1381289) (-563 1380250 1380309 1380444 "LALG-" 1380449 NIL LALG- (NIL T T) -8 NIL NIL) (-562 1379160 1379347 1379644 "KOVACIC" 1380050 NIL KOVACIC (NIL T T) -7 NIL NIL) (-561 1378994 1379018 1379060 "KONVERT" 1379122 NIL KONVERT (NIL T) -9 NIL NIL) (-560 1378828 1378852 1378894 "KOERCE" 1378956 NIL KOERCE (NIL T) -9 NIL NIL) (-559 1376562 1377322 1377715 "KERNEL" 1378467 NIL KERNEL (NIL T) -8 NIL NIL) (-558 1376064 1376145 1376275 "KERNEL2" 1376476 NIL KERNEL2 (NIL T T) -7 NIL NIL) (-557 1369915 1374603 1374658 "KDAGG" 1375035 NIL KDAGG (NIL T T) -9 NIL 1375241) (-556 1369444 1369568 1369773 "KDAGG-" 1369778 NIL KDAGG- (NIL T T T) -8 NIL NIL) (-555 1362619 1369105 1369260 "KAFILE" 1369322 NIL KAFILE (NIL T) -8 NIL NIL) (-554 1357074 1362130 1362358 "JORDAN" 1362440 NIL JORDAN (NIL T T) -8 NIL NIL) (-553 1353373 1355279 1355334 "IXAGG" 1356263 NIL IXAGG (NIL T T) -9 NIL 1356722) (-552 1352292 1352598 1353017 "IXAGG-" 1353022 NIL IXAGG- (NIL T T T) -8 NIL NIL) (-551 1347877 1352214 1352273 "IVECTOR" 1352278 NIL IVECTOR (NIL T NIL) -8 NIL NIL) (-550 1346643 1346880 1347146 "ITUPLE" 1347644 NIL ITUPLE (NIL T) -8 NIL NIL) (-549 1345079 1345256 1345562 "ITRIGMNP" 1346465 NIL ITRIGMNP (NIL T T T) -7 NIL NIL) (-548 1343824 1344028 1344311 "ITFUN3" 1344855 NIL ITFUN3 (NIL T T T) -7 NIL NIL) (-547 1343456 1343513 1343622 "ITFUN2" 1343761 NIL ITFUN2 (NIL T T) -7 NIL NIL) (-546 1341258 1342329 1342626 "ITAYLOR" 1343191 NIL ITAYLOR (NIL T) -8 NIL NIL) (-545 1330249 1335444 1336603 "ISUPS" 1340131 NIL ISUPS (NIL T) -8 NIL NIL) (-544 1329353 1329493 1329729 "ISUMP" 1330096 NIL ISUMP (NIL T T T T) -7 NIL NIL) (-543 1324617 1329154 1329233 "ISTRING" 1329306 NIL ISTRING (NIL NIL) -8 NIL NIL) (-542 1323830 1323911 1324126 "IRURPK" 1324531 NIL IRURPK (NIL T T T T T) -7 NIL NIL) (-541 1322766 1322967 1323207 "IRSN" 1323610 T IRSN (NIL) -7 NIL NIL) (-540 1320801 1321156 1321591 "IRRF2F" 1322404 NIL IRRF2F (NIL T) -7 NIL NIL) (-539 1320548 1320586 1320662 "IRREDFFX" 1320757 NIL IRREDFFX (NIL T) -7 NIL NIL) (-538 1319163 1319422 1319721 "IROOT" 1320281 NIL IROOT (NIL T) -7 NIL NIL) (-537 1315801 1316852 1317542 "IR" 1318505 NIL IR (NIL T) -8 NIL NIL) (-536 1313414 1313909 1314475 "IR2" 1315279 NIL IR2 (NIL T T) -7 NIL NIL) (-535 1312490 1312603 1312823 "IR2F" 1313297 NIL IR2F (NIL T T) -7 NIL NIL) (-534 1312281 1312315 1312375 "IPRNTPK" 1312450 T IPRNTPK (NIL) -7 NIL NIL) (-533 1308835 1312170 1312239 "IPF" 1312244 NIL IPF (NIL NIL) -8 NIL NIL) (-532 1307152 1308760 1308817 "IPADIC" 1308822 NIL IPADIC (NIL NIL NIL) -8 NIL NIL) (-531 1306651 1306709 1306898 "INVLAPLA" 1307088 NIL INVLAPLA (NIL T T) -7 NIL NIL) (-530 1296300 1298653 1301039 "INTTR" 1304315 NIL INTTR (NIL T T) -7 NIL NIL) (-529 1292648 1293389 1294252 "INTTOOLS" 1295486 NIL INTTOOLS (NIL T T) -7 NIL NIL) (-528 1292234 1292325 1292442 "INTSLPE" 1292551 T INTSLPE (NIL) -7 NIL NIL) (-527 1290184 1292157 1292216 "INTRVL" 1292221 NIL INTRVL (NIL T) -8 NIL NIL) (-526 1287791 1288303 1288877 "INTRF" 1289669 NIL INTRF (NIL T) -7 NIL NIL) (-525 1287206 1287303 1287444 "INTRET" 1287689 NIL INTRET (NIL T) -7 NIL NIL) (-524 1285208 1285597 1286066 "INTRAT" 1286814 NIL INTRAT (NIL T T) -7 NIL NIL) (-523 1282441 1283024 1283649 "INTPM" 1284693 NIL INTPM (NIL T T) -7 NIL NIL) (-522 1279150 1279749 1280493 "INTPAF" 1281827 NIL INTPAF (NIL T T T) -7 NIL NIL) (-521 1274393 1275339 1276374 "INTPACK" 1278135 T INTPACK (NIL) -7 NIL NIL) (-520 1271247 1274122 1274249 "INT" 1274286 T INT (NIL) -8 NIL NIL) (-519 1270499 1270651 1270859 "INTHERTR" 1271089 NIL INTHERTR (NIL T T) -7 NIL NIL) (-518 1269938 1270018 1270206 "INTHERAL" 1270413 NIL INTHERAL (NIL T T T T) -7 NIL NIL) (-517 1267784 1268227 1268684 "INTHEORY" 1269501 T INTHEORY (NIL) -7 NIL NIL) (-516 1259107 1260727 1262505 "INTG0" 1266136 NIL INTG0 (NIL T T T) -7 NIL NIL) (-515 1239680 1244470 1249280 "INTFTBL" 1254317 T INTFTBL (NIL) -8 NIL NIL) (-514 1238929 1239067 1239240 "INTFACT" 1239539 NIL INTFACT (NIL T) -7 NIL NIL) (-513 1236320 1236766 1237329 "INTEF" 1238483 NIL INTEF (NIL T T) -7 NIL NIL) (-512 1234781 1235530 1235559 "INTDOM" 1235860 T INTDOM (NIL) -9 NIL 1236067) (-511 1234150 1234324 1234566 "INTDOM-" 1234571 NIL INTDOM- (NIL T) -8 NIL NIL) (-510 1230642 1232574 1232629 "INTCAT" 1233428 NIL INTCAT (NIL T) -9 NIL 1233747) (-509 1230115 1230217 1230345 "INTBIT" 1230534 T INTBIT (NIL) -7 NIL NIL) (-508 1228790 1228944 1229257 "INTALG" 1229960 NIL INTALG (NIL T T T T T) -7 NIL NIL) (-507 1228247 1228337 1228507 "INTAF" 1228694 NIL INTAF (NIL T T) -7 NIL NIL) (-506 1221701 1228057 1228197 "INTABL" 1228202 NIL INTABL (NIL T T T) -8 NIL NIL) (-505 1216651 1219380 1219409 "INS" 1220377 T INS (NIL) -9 NIL 1221058) (-504 1213891 1214662 1215636 "INS-" 1215709 NIL INS- (NIL T) -8 NIL NIL) (-503 1212670 1212897 1213194 "INPSIGN" 1213644 NIL INPSIGN (NIL T T) -7 NIL NIL) (-502 1211788 1211905 1212102 "INPRODPF" 1212550 NIL INPRODPF (NIL T T) -7 NIL NIL) (-501 1210682 1210799 1211036 "INPRODFF" 1211668 NIL INPRODFF (NIL T T T T) -7 NIL NIL) (-500 1209682 1209834 1210094 "INNMFACT" 1210518 NIL INNMFACT (NIL T T T T) -7 NIL NIL) (-499 1208879 1208976 1209164 "INMODGCD" 1209581 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL) (-498 1207388 1207632 1207956 "INFSP" 1208624 NIL INFSP (NIL T T T) -7 NIL NIL) (-497 1206572 1206689 1206872 "INFPROD0" 1207268 NIL INFPROD0 (NIL T T) -7 NIL NIL) (-496 1203582 1204741 1205232 "INFORM" 1206089 T INFORM (NIL) -8 NIL NIL) (-495 1203192 1203252 1203350 "INFORM1" 1203517 NIL INFORM1 (NIL T) -7 NIL NIL) (-494 1202715 1202804 1202918 "INFINITY" 1203098 T INFINITY (NIL) -7 NIL NIL) (-493 1201333 1201581 1201902 "INEP" 1202463 NIL INEP (NIL T T T) -7 NIL NIL) (-492 1200609 1201230 1201295 "INDE" 1201300 NIL INDE (NIL T) -8 NIL NIL) (-491 1200173 1200241 1200358 "INCRMAPS" 1200536 NIL INCRMAPS (NIL T) -7 NIL NIL) (-490 1195484 1196409 1197353 "INBFF" 1199261 NIL INBFF (NIL T) -7 NIL NIL) (-489 1191979 1195329 1195432 "IMATRIX" 1195437 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL) (-488 1190691 1190814 1191129 "IMATQF" 1191835 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL) (-487 1188911 1189138 1189475 "IMATLIN" 1190447 NIL IMATLIN (NIL T T T T) -7 NIL NIL) (-486 1183537 1188835 1188893 "ILIST" 1188898 NIL ILIST (NIL T NIL) -8 NIL NIL) (-485 1181490 1183397 1183510 "IIARRAY2" 1183515 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL) (-484 1176858 1181401 1181465 "IFF" 1181470 NIL IFF (NIL NIL NIL) -8 NIL NIL) (-483 1171901 1176150 1176338 "IFARRAY" 1176715 NIL IFARRAY (NIL T NIL) -8 NIL NIL) (-482 1171108 1171805 1171878 "IFAMON" 1171883 NIL IFAMON (NIL T T NIL) -8 NIL NIL) (-481 1170691 1170756 1170811 "IEVALAB" 1171018 NIL IEVALAB (NIL T T) -9 NIL NIL) (-480 1170366 1170434 1170594 "IEVALAB-" 1170599 NIL IEVALAB- (NIL T T T) -8 NIL NIL) (-479 1170024 1170280 1170343 "IDPO" 1170348 NIL IDPO (NIL T T) -8 NIL NIL) (-478 1169301 1169913 1169988 "IDPOAMS" 1169993 NIL IDPOAMS (NIL T T) -8 NIL NIL) (-477 1168635 1169190 1169265 "IDPOAM" 1169270 NIL IDPOAM (NIL T T) -8 NIL NIL) (-476 1167720 1167970 1168024 "IDPC" 1168437 NIL IDPC (NIL T T) -9 NIL 1168586) (-475 1167216 1167612 1167685 "IDPAM" 1167690 NIL IDPAM (NIL T T) -8 NIL NIL) (-474 1166619 1167108 1167181 "IDPAG" 1167186 NIL IDPAG (NIL T T) -8 NIL NIL) (-473 1162874 1163722 1164617 "IDECOMP" 1165776 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL) (-472 1155748 1156797 1157844 "IDEAL" 1161910 NIL IDEAL (NIL T T T T) -8 NIL NIL) (-471 1154912 1155024 1155223 "ICDEN" 1155632 NIL ICDEN (NIL T T T T) -7 NIL NIL) (-470 1154011 1154392 1154539 "ICARD" 1154785 T ICARD (NIL) -8 NIL NIL) (-469 1152083 1152396 1152799 "IBPTOOLS" 1153688 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL) (-468 1147697 1151703 1151816 "IBITS" 1152002 NIL IBITS (NIL NIL) -8 NIL NIL) (-467 1144420 1144996 1145691 "IBATOOL" 1147114 NIL IBATOOL (NIL T T T) -7 NIL NIL) (-466 1142200 1142661 1143194 "IBACHIN" 1143955 NIL IBACHIN (NIL T T T) -7 NIL NIL) (-465 1140077 1142046 1142149 "IARRAY2" 1142154 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL) (-464 1136230 1140003 1140060 "IARRAY1" 1140065 NIL IARRAY1 (NIL T NIL) -8 NIL NIL) (-463 1130169 1134648 1135126 "IAN" 1135772 T IAN (NIL) -8 NIL NIL) (-462 1129680 1129737 1129910 "IALGFACT" 1130106 NIL IALGFACT (NIL T T T T) -7 NIL NIL) (-461 1129207 1129320 1129349 "HYPCAT" 1129556 T HYPCAT (NIL) -9 NIL NIL) (-460 1128745 1128862 1129048 "HYPCAT-" 1129053 NIL HYPCAT- (NIL T) -8 NIL NIL) (-459 1125424 1126755 1126797 "HOAGG" 1127778 NIL HOAGG (NIL T) -9 NIL 1128457) (-458 1124018 1124417 1124943 "HOAGG-" 1124948 NIL HOAGG- (NIL T T) -8 NIL NIL) (-457 1117849 1123459 1123625 "HEXADEC" 1123872 T HEXADEC (NIL) -8 NIL NIL) (-456 1116597 1116819 1117082 "HEUGCD" 1117626 NIL HEUGCD (NIL T) -7 NIL NIL) (-455 1115700 1116434 1116564 "HELLFDIV" 1116569 NIL HELLFDIV (NIL T T T T) -8 NIL NIL) (-454 1113928 1115477 1115565 "HEAP" 1115644 NIL HEAP (NIL T) -8 NIL NIL) (-453 1107795 1113843 1113905 "HDP" 1113910 NIL HDP (NIL NIL T) -8 NIL NIL) (-452 1101507 1107432 1107583 "HDMP" 1107696 NIL HDMP (NIL NIL T) -8 NIL NIL) (-451 1100832 1100971 1101135 "HB" 1101363 T HB (NIL) -7 NIL NIL) (-450 1094329 1100678 1100782 "HASHTBL" 1100787 NIL HASHTBL (NIL T T NIL) -8 NIL NIL) (-449 1092082 1093957 1094136 "HACKPI" 1094170 T HACKPI (NIL) -8 NIL NIL) (-448 1087778 1091936 1092048 "GTSET" 1092053 NIL GTSET (NIL T T T T) -8 NIL NIL) (-447 1081304 1087656 1087754 "GSTBL" 1087759 NIL GSTBL (NIL T T T NIL) -8 NIL NIL) (-446 1073540 1080340 1080604 "GSERIES" 1081095 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL) (-445 1072562 1073015 1073044 "GROUP" 1073305 T GROUP (NIL) -9 NIL 1073464) (-444 1071678 1071901 1072245 "GROUP-" 1072250 NIL GROUP- (NIL T) -8 NIL NIL) (-443 1070047 1070366 1070753 "GROEBSOL" 1071355 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL) (-442 1068987 1069249 1069301 "GRMOD" 1069830 NIL GRMOD (NIL T T) -9 NIL 1069998) (-441 1068755 1068791 1068919 "GRMOD-" 1068924 NIL GRMOD- (NIL T T T) -8 NIL NIL) (-440 1064083 1065109 1066109 "GRIMAGE" 1067775 T GRIMAGE (NIL) -8 NIL NIL) (-439 1062550 1062810 1063134 "GRDEF" 1063779 T GRDEF (NIL) -7 NIL NIL) (-438 1061994 1062110 1062251 "GRAY" 1062429 T GRAY (NIL) -7 NIL NIL) (-437 1061227 1061607 1061659 "GRALG" 1061812 NIL GRALG (NIL T T) -9 NIL 1061904) (-436 1060888 1060961 1061124 "GRALG-" 1061129 NIL GRALG- (NIL T T T) -8 NIL NIL) (-435 1057696 1060477 1060653 "GPOLSET" 1060795 NIL GPOLSET (NIL T T T T) -8 NIL NIL) (-434 1057052 1057109 1057366 "GOSPER" 1057633 NIL GOSPER (NIL T T T T T) -7 NIL NIL) (-433 1052811 1053490 1054016 "GMODPOL" 1056751 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL) (-432 1051816 1052000 1052238 "GHENSEL" 1052623 NIL GHENSEL (NIL T T) -7 NIL NIL) (-431 1045882 1046725 1047751 "GENUPS" 1050900 NIL GENUPS (NIL T T) -7 NIL NIL) (-430 1045579 1045630 1045719 "GENUFACT" 1045825 NIL GENUFACT (NIL T) -7 NIL NIL) (-429 1044991 1045068 1045233 "GENPGCD" 1045497 NIL GENPGCD (NIL T T T T) -7 NIL NIL) (-428 1044465 1044500 1044713 "GENMFACT" 1044950 NIL GENMFACT (NIL T T T T T) -7 NIL NIL) (-427 1043033 1043288 1043595 "GENEEZ" 1044208 NIL GENEEZ (NIL T T) -7 NIL NIL) (-426 1036907 1042646 1042807 "GDMP" 1042956 NIL GDMP (NIL NIL T T) -8 NIL NIL) (-425 1026289 1030678 1031784 "GCNAALG" 1035890 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL) (-424 1024710 1025582 1025611 "GCDDOM" 1025866 T GCDDOM (NIL) -9 NIL 1026023) (-423 1024180 1024307 1024522 "GCDDOM-" 1024527 NIL GCDDOM- (NIL T) -8 NIL NIL) (-422 1022852 1023037 1023341 "GB" 1023959 NIL GB (NIL T T T T) -7 NIL NIL) (-421 1011472 1013798 1016190 "GBINTERN" 1020543 NIL GBINTERN (NIL T T T T) -7 NIL NIL) (-420 1009309 1009601 1010022 "GBF" 1011147 NIL GBF (NIL T T T T) -7 NIL NIL) (-419 1008090 1008255 1008522 "GBEUCLID" 1009125 NIL GBEUCLID (NIL T T T T) -7 NIL NIL) (-418 1007439 1007564 1007713 "GAUSSFAC" 1007961 T GAUSSFAC (NIL) -7 NIL NIL) (-417 1005816 1006118 1006431 "GALUTIL" 1007158 NIL GALUTIL (NIL T) -7 NIL NIL) (-416 1004133 1004407 1004730 "GALPOLYU" 1005543 NIL GALPOLYU (NIL T T) -7 NIL NIL) (-415 1001522 1001812 1002217 "GALFACTU" 1003830 NIL GALFACTU (NIL T T T) -7 NIL NIL) (-414 993328 994827 996435 "GALFACT" 999954 NIL GALFACT (NIL T) -7 NIL NIL) (-413 990715 991373 991402 "FVFUN" 992558 T FVFUN (NIL) -9 NIL 993278) (-412 989980 990162 990191 "FVC" 990482 T FVC (NIL) -9 NIL 990665) (-411 989622 989777 989858 "FUNCTION" 989932 NIL FUNCTION (NIL NIL) -8 NIL NIL) (-410 987292 987843 988332 "FT" 989153 T FT (NIL) -8 NIL NIL) (-409 986110 986593 986796 "FTEM" 987109 T FTEM (NIL) -8 NIL NIL) (-408 984375 984663 985065 "FSUPFACT" 985802 NIL FSUPFACT (NIL T T T) -7 NIL NIL) (-407 982772 983061 983393 "FST" 984063 T FST (NIL) -8 NIL NIL) (-406 981947 982053 982247 "FSRED" 982654 NIL FSRED (NIL T T) -7 NIL NIL) (-405 980626 980881 981235 "FSPRMELT" 981662 NIL FSPRMELT (NIL T T) -7 NIL NIL) (-404 977711 978149 978648 "FSPECF" 980189 NIL FSPECF (NIL T T) -7 NIL NIL) (-403 960084 968641 968682 "FS" 972520 NIL FS (NIL T) -9 NIL 974802) (-402 948734 951724 955780 "FS-" 956077 NIL FS- (NIL T T) -8 NIL NIL) (-401 948250 948304 948480 "FSINT" 948675 NIL FSINT (NIL T T) -7 NIL NIL) (-400 946531 947243 947546 "FSERIES" 948029 NIL FSERIES (NIL T T) -8 NIL NIL) (-399 945549 945665 945895 "FSCINT" 946411 NIL FSCINT (NIL T T) -7 NIL NIL) (-398 941783 944493 944535 "FSAGG" 944905 NIL FSAGG (NIL T) -9 NIL 945164) (-397 939545 940146 940942 "FSAGG-" 941037 NIL FSAGG- (NIL T T) -8 NIL NIL) (-396 938587 938730 938957 "FSAGG2" 939398 NIL FSAGG2 (NIL T T T T) -7 NIL NIL) (-395 936246 936525 937078 "FS2UPS" 938305 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL) (-394 935832 935875 936028 "FS2" 936197 NIL FS2 (NIL T T T T) -7 NIL NIL) (-393 934692 934863 935171 "FS2EXPXP" 935657 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL) (-392 934118 934233 934385 "FRUTIL" 934572 NIL FRUTIL (NIL T) -7 NIL NIL) (-391 925539 929617 930973 "FR" 932794 NIL FR (NIL T) -8 NIL NIL) (-390 920615 923258 923299 "FRNAALG" 924695 NIL FRNAALG (NIL T) -9 NIL 925302) (-389 916294 917364 918639 "FRNAALG-" 919389 NIL FRNAALG- (NIL T T) -8 NIL NIL) (-388 915932 915975 916102 "FRNAAF2" 916245 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL) (-387 914297 914789 915083 "FRMOD" 915745 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL) (-386 912020 912688 913004 "FRIDEAL" 914088 NIL FRIDEAL (NIL T T T T) -8 NIL NIL) (-385 911219 911306 911593 "FRIDEAL2" 911927 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL) (-384 910476 910884 910926 "FRETRCT" 910931 NIL FRETRCT (NIL T) -9 NIL 911102) (-383 909588 909819 910170 "FRETRCT-" 910175 NIL FRETRCT- (NIL T T) -8 NIL NIL) (-382 906797 908017 908077 "FRAMALG" 908959 NIL FRAMALG (NIL T T) -9 NIL 909251) (-381 904930 905386 906016 "FRAMALG-" 906239 NIL FRAMALG- (NIL T T T) -8 NIL NIL) (-380 898832 904405 904681 "FRAC" 904686 NIL FRAC (NIL T) -8 NIL NIL) (-379 898468 898525 898632 "FRAC2" 898769 NIL FRAC2 (NIL T T) -7 NIL NIL) (-378 898104 898161 898268 "FR2" 898405 NIL FR2 (NIL T T) -7 NIL NIL) (-377 892777 895690 895719 "FPS" 896838 T FPS (NIL) -9 NIL 897394) (-376 892226 892335 892499 "FPS-" 892645 NIL FPS- (NIL T) -8 NIL NIL) (-375 889674 891371 891400 "FPC" 891625 T FPC (NIL) -9 NIL 891767) (-374 889467 889507 889604 "FPC-" 889609 NIL FPC- (NIL T) -8 NIL NIL) (-373 888345 888955 888997 "FPATMAB" 889002 NIL FPATMAB (NIL T) -9 NIL 889154) (-372 886045 886521 886947 "FPARFRAC" 887982 NIL FPARFRAC (NIL T T) -8 NIL NIL) (-371 881440 881937 882619 "FORTRAN" 885477 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL) (-370 879156 879656 880195 "FORT" 880921 T FORT (NIL) -7 NIL NIL) (-369 876831 877393 877422 "FORTFN" 878482 T FORTFN (NIL) -9 NIL 879106) (-368 876594 876644 876673 "FORTCAT" 876732 T FORTCAT (NIL) -9 NIL 876794) (-367 874654 875137 875536 "FORMULA" 876215 T FORMULA (NIL) -8 NIL NIL) (-366 874442 874472 874541 "FORMULA1" 874618 NIL FORMULA1 (NIL T) -7 NIL NIL) (-365 873965 874017 874190 "FORDER" 874384 NIL FORDER (NIL T T T T) -7 NIL NIL) (-364 873061 873225 873418 "FOP" 873792 T FOP (NIL) -7 NIL NIL) (-363 871669 872341 872515 "FNLA" 872943 NIL FNLA (NIL NIL NIL T) -8 NIL NIL) (-362 870337 870726 870755 "FNCAT" 871327 T FNCAT (NIL) -9 NIL 871620) (-361 869903 870296 870324 "FNAME" 870329 T FNAME (NIL) -8 NIL NIL) (-360 868562 869535 869564 "FMTC" 869569 T FMTC (NIL) -9 NIL 869604) (-359 864880 866087 866715 "FMONOID" 867967 NIL FMONOID (NIL T) -8 NIL NIL) (-358 864100 864623 864771 "FM" 864776 NIL FM (NIL T T) -8 NIL NIL) (-357 861523 862169 862198 "FMFUN" 863342 T FMFUN (NIL) -9 NIL 864050) (-356 860791 860972 861001 "FMC" 861291 T FMC (NIL) -9 NIL 861473) (-355 858020 858854 858908 "FMCAT" 860090 NIL FMCAT (NIL T T) -9 NIL 860584) (-354 856915 857788 857887 "FM1" 857965 NIL FM1 (NIL T T) -8 NIL NIL) (-353 854689 855105 855599 "FLOATRP" 856466 NIL FLOATRP (NIL T) -7 NIL NIL) (-352 848175 852345 852975 "FLOAT" 854079 T FLOAT (NIL) -8 NIL NIL) (-351 845613 846113 846691 "FLOATCP" 847642 NIL FLOATCP (NIL T) -7 NIL NIL) (-350 844401 845249 845290 "FLINEXP" 845295 NIL FLINEXP (NIL T) -9 NIL 845388) (-349 843556 843791 844118 "FLINEXP-" 844123 NIL FLINEXP- (NIL T T) -8 NIL NIL) (-348 842632 842776 843000 "FLASORT" 843408 NIL FLASORT (NIL T T) -7 NIL NIL) (-347 839850 840692 840745 "FLALG" 841972 NIL FLALG (NIL T T) -9 NIL 842439) (-346 833634 837336 837378 "FLAGG" 838640 NIL FLAGG (NIL T) -9 NIL 839292) (-345 832360 832699 833189 "FLAGG-" 833194 NIL FLAGG- (NIL T T) -8 NIL NIL) (-344 831402 831545 831772 "FLAGG2" 832213 NIL FLAGG2 (NIL T T T T) -7 NIL NIL) (-343 828374 829392 829452 "FINRALG" 830580 NIL FINRALG (NIL T T) -9 NIL 831088) (-342 827534 827763 828102 "FINRALG-" 828107 NIL FINRALG- (NIL T T T) -8 NIL NIL) (-341 826940 827153 827182 "FINITE" 827378 T FINITE (NIL) -9 NIL 827485) (-340 819399 821560 821601 "FINAALG" 825268 NIL FINAALG (NIL T) -9 NIL 826721) (-339 814740 815781 816925 "FINAALG-" 818304 NIL FINAALG- (NIL T T) -8 NIL NIL) (-338 814135 814495 814598 "FILE" 814670 NIL FILE (NIL T) -8 NIL NIL) (-337 812819 813131 813186 "FILECAT" 813870 NIL FILECAT (NIL T T) -9 NIL 814086) (-336 810681 812237 812266 "FIELD" 812306 T FIELD (NIL) -9 NIL 812386) (-335 809301 809686 810197 "FIELD-" 810202 NIL FIELD- (NIL T) -8 NIL NIL) (-334 807116 807938 808284 "FGROUP" 808988 NIL FGROUP (NIL T) -8 NIL NIL) (-333 806206 806370 806590 "FGLMICPK" 806948 NIL FGLMICPK (NIL T NIL) -7 NIL NIL) (-332 802008 806131 806188 "FFX" 806193 NIL FFX (NIL T NIL) -8 NIL NIL) (-331 801609 801670 801805 "FFSLPE" 801941 NIL FFSLPE (NIL T T T) -7 NIL NIL) (-330 797604 798381 799177 "FFPOLY" 800845 NIL FFPOLY (NIL T) -7 NIL NIL) (-329 797108 797144 797353 "FFPOLY2" 797562 NIL FFPOLY2 (NIL T T) -7 NIL NIL) (-328 792930 797027 797090 "FFP" 797095 NIL FFP (NIL T NIL) -8 NIL NIL) (-327 788298 792841 792905 "FF" 792910 NIL FF (NIL NIL NIL) -8 NIL NIL) (-326 783394 787641 787831 "FFNBX" 788152 NIL FFNBX (NIL T NIL) -8 NIL NIL) (-325 778304 782529 782787 "FFNBP" 783248 NIL FFNBP (NIL T NIL) -8 NIL NIL) (-324 772907 777588 777799 "FFNB" 778137 NIL FFNB (NIL NIL NIL) -8 NIL NIL) (-323 771739 771937 772252 "FFINTBAS" 772704 NIL FFINTBAS (NIL T T T) -7 NIL NIL) (-322 767962 770202 770231 "FFIELDC" 770851 T FFIELDC (NIL) -9 NIL 771227) (-321 766625 766995 767492 "FFIELDC-" 767497 NIL FFIELDC- (NIL T) -8 NIL NIL) (-320 766195 766240 766364 "FFHOM" 766567 NIL FFHOM (NIL T T T) -7 NIL NIL) (-319 763893 764377 764894 "FFF" 765710 NIL FFF (NIL T) -7 NIL NIL) (-318 759481 763635 763736 "FFCGX" 763836 NIL FFCGX (NIL T NIL) -8 NIL NIL) (-317 755083 759213 759320 "FFCGP" 759424 NIL FFCGP (NIL T NIL) -8 NIL NIL) (-316 750236 754810 754918 "FFCG" 755019 NIL FFCG (NIL NIL NIL) -8 NIL NIL) (-315 732181 741304 741391 "FFCAT" 746556 NIL FFCAT (NIL T T T) -9 NIL 748043) (-314 727379 728426 729740 "FFCAT-" 730970 NIL FFCAT- (NIL T T T T) -8 NIL NIL) (-313 726790 726833 727068 "FFCAT2" 727330 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-312 715990 719780 720997 "FEXPR" 725645 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL) (-311 714989 715424 715466 "FEVALAB" 715550 NIL FEVALAB (NIL T) -9 NIL 715811) (-310 714148 714358 714696 "FEVALAB-" 714701 NIL FEVALAB- (NIL T T) -8 NIL NIL) (-309 712741 713531 713734 "FDIV" 714047 NIL FDIV (NIL T T T T) -8 NIL NIL) (-308 709807 710522 710638 "FDIVCAT" 712206 NIL FDIVCAT (NIL T T T T) -9 NIL 712643) (-307 709569 709596 709766 "FDIVCAT-" 709771 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL) (-306 708789 708876 709153 "FDIV2" 709476 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL) (-305 707475 707734 708023 "FCPAK1" 708520 T FCPAK1 (NIL) -7 NIL NIL) (-304 706603 706975 707116 "FCOMP" 707366 NIL FCOMP (NIL T) -8 NIL NIL) (-303 690231 693646 697209 "FC" 703060 T FC (NIL) -8 NIL NIL) (-302 682826 686872 686913 "FAXF" 688715 NIL FAXF (NIL T) -9 NIL 689406) (-301 680105 680760 681585 "FAXF-" 682050 NIL FAXF- (NIL T T) -8 NIL NIL) (-300 675205 679481 679657 "FARRAY" 679962 NIL FARRAY (NIL T) -8 NIL NIL) (-299 670595 672666 672719 "FAMR" 673731 NIL FAMR (NIL T T) -9 NIL 674191) (-298 669486 669788 670222 "FAMR-" 670227 NIL FAMR- (NIL T T T) -8 NIL NIL) (-297 668682 669408 669461 "FAMONOID" 669466 NIL FAMONOID (NIL T) -8 NIL NIL) (-296 666514 667198 667252 "FAMONC" 668193 NIL FAMONC (NIL T T) -9 NIL 668578) (-295 665206 666268 666405 "FAGROUP" 666410 NIL FAGROUP (NIL T) -8 NIL NIL) (-294 663009 663328 663730 "FACUTIL" 664887 NIL FACUTIL (NIL T T T T) -7 NIL NIL) (-293 662108 662293 662515 "FACTFUNC" 662819 NIL FACTFUNC (NIL T) -7 NIL NIL) (-292 654431 661359 661571 "EXPUPXS" 661964 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL) (-291 651914 652454 653040 "EXPRTUBE" 653865 T EXPRTUBE (NIL) -7 NIL NIL) (-290 648108 648700 649437 "EXPRODE" 651253 NIL EXPRODE (NIL T T) -7 NIL NIL) (-289 633267 646767 647193 "EXPR" 647714 NIL EXPR (NIL T) -8 NIL NIL) (-288 627695 628282 629094 "EXPR2UPS" 632565 NIL EXPR2UPS (NIL T T) -7 NIL NIL) (-287 627331 627388 627495 "EXPR2" 627632 NIL EXPR2 (NIL T T) -7 NIL NIL) (-286 618685 626468 626763 "EXPEXPAN" 627169 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL) (-285 618512 618642 618671 "EXIT" 618676 T EXIT (NIL) -8 NIL NIL) (-284 618139 618201 618314 "EVALCYC" 618444 NIL EVALCYC (NIL T) -7 NIL NIL) (-283 617679 617797 617839 "EVALAB" 618009 NIL EVALAB (NIL T) -9 NIL 618113) (-282 617160 617282 617503 "EVALAB-" 617508 NIL EVALAB- (NIL T T) -8 NIL NIL) (-281 614622 615934 615963 "EUCDOM" 616518 T EUCDOM (NIL) -9 NIL 616868) (-280 613027 613469 614059 "EUCDOM-" 614064 NIL EUCDOM- (NIL T) -8 NIL NIL) (-279 600605 603353 606093 "ESTOOLS" 610307 T ESTOOLS (NIL) -7 NIL NIL) (-278 600241 600298 600405 "ESTOOLS2" 600542 NIL ESTOOLS2 (NIL T T) -7 NIL NIL) (-277 599992 600034 600114 "ESTOOLS1" 600193 NIL ESTOOLS1 (NIL T) -7 NIL NIL) (-276 593929 595653 595682 "ES" 598446 T ES (NIL) -9 NIL 599852) (-275 588877 590163 591980 "ES-" 592144 NIL ES- (NIL T) -8 NIL NIL) (-274 585252 586012 586792 "ESCONT" 588117 T ESCONT (NIL) -7 NIL NIL) (-273 584997 585029 585111 "ESCONT1" 585214 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL) (-272 584672 584722 584822 "ES2" 584941 NIL ES2 (NIL T T) -7 NIL NIL) (-271 584302 584360 584469 "ES1" 584608 NIL ES1 (NIL T T) -7 NIL NIL) (-270 583518 583647 583823 "ERROR" 584146 T ERROR (NIL) -7 NIL NIL) (-269 577021 583377 583468 "EQTBL" 583473 NIL EQTBL (NIL T T) -8 NIL NIL) (-268 569458 572339 573786 "EQ" 575607 NIL -3079 (NIL T) -8 NIL NIL) (-267 569090 569147 569256 "EQ2" 569395 NIL EQ2 (NIL T T) -7 NIL NIL) (-266 564382 565428 566521 "EP" 568029 NIL EP (NIL T) -7 NIL NIL) (-265 562969 563268 563584 "ENV" 564086 T ENV (NIL) -8 NIL NIL) (-264 562128 562692 562721 "ENTIRER" 562726 T ENTIRER (NIL) -9 NIL 562771) (-263 558584 560083 560453 "EMR" 561927 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL) (-262 557727 557912 557967 "ELTAGG" 558347 NIL ELTAGG (NIL T T) -9 NIL 558558) (-261 557446 557508 557649 "ELTAGG-" 557654 NIL ELTAGG- (NIL T T T) -8 NIL NIL) (-260 557234 557263 557318 "ELTAB" 557402 NIL ELTAB (NIL T T) -9 NIL NIL) (-259 556360 556506 556705 "ELFUTS" 557085 NIL ELFUTS (NIL T T) -7 NIL NIL) (-258 556101 556157 556186 "ELEMFUN" 556291 T ELEMFUN (NIL) -9 NIL NIL) (-257 555971 555992 556060 "ELEMFUN-" 556065 NIL ELEMFUN- (NIL T) -8 NIL NIL) (-256 550862 554071 554113 "ELAGG" 555053 NIL ELAGG (NIL T) -9 NIL 555516) (-255 549147 549581 550244 "ELAGG-" 550249 NIL ELAGG- (NIL T T) -8 NIL NIL) (-254 542015 543814 544641 "EFUPXS" 548423 NIL EFUPXS (NIL T T T T) -8 NIL NIL) (-253 535465 537266 538076 "EFULS" 541291 NIL EFULS (NIL T T T) -8 NIL NIL) (-252 532896 533254 533732 "EFSTRUC" 535097 NIL EFSTRUC (NIL T T) -7 NIL NIL) (-251 521968 523533 525093 "EF" 531411 NIL EF (NIL T T) -7 NIL NIL) (-250 521069 521453 521602 "EAB" 521839 T EAB (NIL) -8 NIL NIL) (-249 520282 521028 521056 "E04UCFA" 521061 T E04UCFA (NIL) -8 NIL NIL) (-248 519495 520241 520269 "E04NAFA" 520274 T E04NAFA (NIL) -8 NIL NIL) (-247 518708 519454 519482 "E04MBFA" 519487 T E04MBFA (NIL) -8 NIL NIL) (-246 517921 518667 518695 "E04JAFA" 518700 T E04JAFA (NIL) -8 NIL NIL) (-245 517136 517880 517908 "E04GCFA" 517913 T E04GCFA (NIL) -8 NIL NIL) (-244 516351 517095 517123 "E04FDFA" 517128 T E04FDFA (NIL) -8 NIL NIL) (-243 515564 516310 516338 "E04DGFA" 516343 T E04DGFA (NIL) -8 NIL NIL) (-242 509749 511094 512456 "E04AGNT" 514222 T E04AGNT (NIL) -7 NIL NIL) (-241 508475 508955 508996 "DVARCAT" 509471 NIL DVARCAT (NIL T) -9 NIL 509669) (-240 507679 507891 508205 "DVARCAT-" 508210 NIL DVARCAT- (NIL T T) -8 NIL NIL) (-239 500541 507481 507608 "DSMP" 507613 NIL DSMP (NIL T T T) -8 NIL NIL) (-238 495351 496486 497554 "DROPT" 499493 T DROPT (NIL) -8 NIL NIL) (-237 495016 495075 495173 "DROPT1" 495286 NIL DROPT1 (NIL T) -7 NIL NIL) (-236 490131 491257 492394 "DROPT0" 493899 T DROPT0 (NIL) -7 NIL NIL) (-235 488476 488801 489187 "DRAWPT" 489765 T DRAWPT (NIL) -7 NIL NIL) (-234 483063 483986 485065 "DRAW" 487450 NIL DRAW (NIL T) -7 NIL NIL) (-233 482696 482749 482867 "DRAWHACK" 483004 NIL DRAWHACK (NIL T) -7 NIL NIL) (-232 481427 481696 481987 "DRAWCX" 482425 T DRAWCX (NIL) -7 NIL NIL) (-231 480945 481013 481163 "DRAWCURV" 481353 NIL DRAWCURV (NIL T T) -7 NIL NIL) (-230 471417 473375 475490 "DRAWCFUN" 478850 T DRAWCFUN (NIL) -7 NIL NIL) (-229 468230 470112 470154 "DQAGG" 470783 NIL DQAGG (NIL T) -9 NIL 471056) (-228 456736 463474 463557 "DPOLCAT" 465395 NIL DPOLCAT (NIL T T T T) -9 NIL 465939) (-227 451576 452922 454879 "DPOLCAT-" 454884 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL) (-226 445660 451438 451535 "DPMO" 451540 NIL DPMO (NIL NIL T T) -8 NIL NIL) (-225 439647 445441 445607 "DPMM" 445612 NIL DPMM (NIL NIL T T T) -8 NIL NIL) (-224 439280 439356 439454 "DOMAIN" 439569 T DOMAIN (NIL) -8 NIL NIL) (-223 432992 438917 439068 "DMP" 439181 NIL DMP (NIL NIL T) -8 NIL NIL) (-222 432592 432648 432792 "DLP" 432930 NIL DLP (NIL T) -7 NIL NIL) (-221 426236 431693 431920 "DLIST" 432397 NIL DLIST (NIL T) -8 NIL NIL) (-220 423082 425091 425133 "DLAGG" 425683 NIL DLAGG (NIL T) -9 NIL 425912) (-219 421791 422483 422512 "DIVRING" 422662 T DIVRING (NIL) -9 NIL 422770) (-218 420779 421032 421425 "DIVRING-" 421430 NIL DIVRING- (NIL T) -8 NIL NIL) (-217 418881 419238 419644 "DISPLAY" 420393 T DISPLAY (NIL) -7 NIL NIL) (-216 412770 418795 418858 "DIRPROD" 418863 NIL DIRPROD (NIL NIL T) -8 NIL NIL) (-215 411618 411821 412086 "DIRPROD2" 412563 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL) (-214 401248 407253 407307 "DIRPCAT" 407715 NIL DIRPCAT (NIL NIL T) -9 NIL 408542) (-213 398574 399216 400097 "DIRPCAT-" 400434 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL) (-212 397861 398021 398207 "DIOSP" 398408 T DIOSP (NIL) -7 NIL NIL) (-211 394563 396773 396815 "DIOPS" 397249 NIL DIOPS (NIL T) -9 NIL 397478) (-210 394112 394226 394417 "DIOPS-" 394422 NIL DIOPS- (NIL T T) -8 NIL NIL) (-209 392983 393621 393650 "DIFRING" 393837 T DIFRING (NIL) -9 NIL 393946) (-208 392629 392706 392858 "DIFRING-" 392863 NIL DIFRING- (NIL T) -8 NIL NIL) (-207 390418 391700 391741 "DIFEXT" 392100 NIL DIFEXT (NIL T) -9 NIL 392393) (-206 388704 389132 389797 "DIFEXT-" 389802 NIL DIFEXT- (NIL T T) -8 NIL NIL) (-205 386026 388236 388278 "DIAGG" 388283 NIL DIAGG (NIL T) -9 NIL 388303) (-204 385410 385567 385819 "DIAGG-" 385824 NIL DIAGG- (NIL T T) -8 NIL NIL) (-203 380875 384369 384646 "DHMATRIX" 385179 NIL DHMATRIX (NIL T) -8 NIL NIL) (-202 376487 377396 378406 "DFSFUN" 379885 T DFSFUN (NIL) -7 NIL NIL) (-201 371273 375201 375566 "DFLOAT" 376142 T DFLOAT (NIL) -8 NIL NIL) (-200 369506 369787 370182 "DFINTTLS" 370981 NIL DFINTTLS (NIL T T) -7 NIL NIL) (-199 366539 367541 367939 "DERHAM" 369173 NIL DERHAM (NIL T NIL) -8 NIL NIL) (-198 364388 366314 366403 "DEQUEUE" 366483 NIL DEQUEUE (NIL T) -8 NIL NIL) (-197 363606 363739 363934 "DEGRED" 364250 NIL DEGRED (NIL T T) -7 NIL NIL) (-196 360006 360751 361603 "DEFINTRF" 362834 NIL DEFINTRF (NIL T) -7 NIL NIL) (-195 357537 358006 358604 "DEFINTEF" 359525 NIL DEFINTEF (NIL T T) -7 NIL NIL) (-194 351368 356978 357144 "DECIMAL" 357391 T DECIMAL (NIL) -8 NIL NIL) (-193 348880 349338 349844 "DDFACT" 350912 NIL DDFACT (NIL T T) -7 NIL NIL) (-192 348476 348519 348670 "DBLRESP" 348831 NIL DBLRESP (NIL T T T T) -7 NIL NIL) (-191 346186 346520 346889 "DBASE" 348234 NIL DBASE (NIL T) -8 NIL NIL) (-190 345321 346145 346173 "D03FAFA" 346178 T D03FAFA (NIL) -8 NIL NIL) (-189 344457 345280 345308 "D03EEFA" 345313 T D03EEFA (NIL) -8 NIL NIL) (-188 342407 342873 343362 "D03AGNT" 343988 T D03AGNT (NIL) -7 NIL NIL) (-187 341725 342366 342394 "D02EJFA" 342399 T D02EJFA (NIL) -8 NIL NIL) (-186 341043 341684 341712 "D02CJFA" 341717 T D02CJFA (NIL) -8 NIL NIL) (-185 340361 341002 341030 "D02BHFA" 341035 T D02BHFA (NIL) -8 NIL NIL) (-184 339679 340320 340348 "D02BBFA" 340353 T D02BBFA (NIL) -8 NIL NIL) (-183 332877 334465 336071 "D02AGNT" 338093 T D02AGNT (NIL) -7 NIL NIL) (-182 330646 331168 331714 "D01WGTS" 332351 T D01WGTS (NIL) -7 NIL NIL) (-181 329749 330605 330633 "D01TRNS" 330638 T D01TRNS (NIL) -8 NIL NIL) (-180 328852 329708 329736 "D01GBFA" 329741 T D01GBFA (NIL) -8 NIL NIL) (-179 327955 328811 328839 "D01FCFA" 328844 T D01FCFA (NIL) -8 NIL NIL) (-178 327058 327914 327942 "D01ASFA" 327947 T D01ASFA (NIL) -8 NIL NIL) (-177 326161 327017 327045 "D01AQFA" 327050 T D01AQFA (NIL) -8 NIL NIL) (-176 325264 326120 326148 "D01APFA" 326153 T D01APFA (NIL) -8 NIL NIL) (-175 324367 325223 325251 "D01ANFA" 325256 T D01ANFA (NIL) -8 NIL NIL) (-174 323470 324326 324354 "D01AMFA" 324359 T D01AMFA (NIL) -8 NIL NIL) (-173 322573 323429 323457 "D01ALFA" 323462 T D01ALFA (NIL) -8 NIL NIL) (-172 321676 322532 322560 "D01AKFA" 322565 T D01AKFA (NIL) -8 NIL NIL) (-171 320779 321635 321663 "D01AJFA" 321668 T D01AJFA (NIL) -8 NIL NIL) (-170 314083 315632 317191 "D01AGNT" 319240 T D01AGNT (NIL) -7 NIL NIL) (-169 313420 313548 313700 "CYCLOTOM" 313951 T CYCLOTOM (NIL) -7 NIL NIL) (-168 310155 310868 311595 "CYCLES" 312713 T CYCLES (NIL) -7 NIL NIL) (-167 309467 309601 309772 "CVMP" 310016 NIL CVMP (NIL T) -7 NIL NIL) (-166 307249 307506 307881 "CTRIGMNP" 309195 NIL CTRIGMNP (NIL T T) -7 NIL NIL) (-165 306623 306722 306875 "CSTTOOLS" 307146 NIL CSTTOOLS (NIL T T) -7 NIL NIL) (-164 302422 303079 303837 "CRFP" 305935 NIL CRFP (NIL T T) -7 NIL NIL) (-163 301469 301654 301882 "CRAPACK" 302226 NIL CRAPACK (NIL T) -7 NIL NIL) (-162 300853 300954 301158 "CPMATCH" 301345 NIL CPMATCH (NIL T T T) -7 NIL NIL) (-161 300578 300606 300712 "CPIMA" 300819 NIL CPIMA (NIL T T T) -7 NIL NIL) (-160 296942 297614 298332 "COORDSYS" 299913 NIL COORDSYS (NIL T) -7 NIL NIL) (-159 296326 296455 296605 "CONTOUR" 296812 T CONTOUR (NIL) -8 NIL NIL) (-158 292187 294329 294821 "CONTFRAC" 295866 NIL CONTFRAC (NIL T) -8 NIL NIL) (-157 291340 291904 291933 "COMRING" 291938 T COMRING (NIL) -9 NIL 291989) (-156 290421 290698 290882 "COMPPROP" 291176 T COMPPROP (NIL) -8 NIL NIL) (-155 290082 290117 290245 "COMPLPAT" 290380 NIL COMPLPAT (NIL T T T) -7 NIL NIL) (-154 280063 289891 290000 "COMPLEX" 290005 NIL COMPLEX (NIL T) -8 NIL NIL) (-153 279699 279756 279863 "COMPLEX2" 280000 NIL COMPLEX2 (NIL T T) -7 NIL NIL) (-152 279417 279452 279550 "COMPFACT" 279658 NIL COMPFACT (NIL T T) -7 NIL NIL) (-151 263751 274045 274086 "COMPCAT" 275088 NIL COMPCAT (NIL T) -9 NIL 276481) (-150 253266 256190 259817 "COMPCAT-" 260173 NIL COMPCAT- (NIL T T) -8 NIL NIL) (-149 252997 253025 253127 "COMMUPC" 253232 NIL COMMUPC (NIL T T T) -7 NIL NIL) (-148 252792 252825 252884 "COMMONOP" 252958 T COMMONOP (NIL) -7 NIL NIL) (-147 252375 252543 252630 "COMM" 252725 T COMM (NIL) -8 NIL NIL) (-146 251623 251817 251846 "COMBOPC" 252184 T COMBOPC (NIL) -9 NIL 252359) (-145 250519 250729 250971 "COMBINAT" 251413 NIL COMBINAT (NIL T) -7 NIL NIL) (-144 246717 247290 247930 "COMBF" 249941 NIL COMBF (NIL T T) -7 NIL NIL) (-143 245503 245833 246068 "COLOR" 246502 T COLOR (NIL) -8 NIL NIL) (-142 245143 245190 245315 "CMPLXRT" 245450 NIL CMPLXRT (NIL T T) -7 NIL NIL) (-141 240645 241673 242753 "CLIP" 244083 T CLIP (NIL) -7 NIL NIL) (-140 238983 239753 239991 "CLIF" 240473 NIL CLIF (NIL NIL T NIL) -8 NIL NIL) (-139 235205 237129 237171 "CLAGG" 238100 NIL CLAGG (NIL T) -9 NIL 238636) (-138 233627 234084 234667 "CLAGG-" 234672 NIL CLAGG- (NIL T T) -8 NIL NIL) (-137 233171 233256 233396 "CINTSLPE" 233536 NIL CINTSLPE (NIL T T) -7 NIL NIL) (-136 230672 231143 231691 "CHVAR" 232699 NIL CHVAR (NIL T T T) -7 NIL NIL) (-135 229894 230458 230487 "CHARZ" 230492 T CHARZ (NIL) -9 NIL 230506) (-134 229648 229688 229766 "CHARPOL" 229848 NIL CHARPOL (NIL T) -7 NIL NIL) (-133 228754 229351 229380 "CHARNZ" 229427 T CHARNZ (NIL) -9 NIL 229482) (-132 226777 227444 227779 "CHAR" 228439 T CHAR (NIL) -8 NIL NIL) (-131 226502 226563 226592 "CFCAT" 226703 T CFCAT (NIL) -9 NIL NIL) (-130 225747 225858 226040 "CDEN" 226386 NIL CDEN (NIL T T T) -7 NIL NIL) (-129 221739 224900 225180 "CCLASS" 225487 T CCLASS (NIL) -8 NIL NIL) (-128 216792 217768 218521 "CARTEN" 221042 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL) (-127 215900 216048 216269 "CARTEN2" 216639 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL) (-126 214197 215052 215308 "CARD" 215664 T CARD (NIL) -8 NIL NIL) (-125 213569 213897 213926 "CACHSET" 214058 T CACHSET (NIL) -9 NIL 214135) (-124 213065 213361 213390 "CABMON" 213440 T CABMON (NIL) -9 NIL 213496) (-123 210622 212757 212864 "BTREE" 212991 NIL BTREE (NIL T) -8 NIL NIL) (-122 208120 210270 210392 "BTOURN" 210532 NIL BTOURN (NIL T) -8 NIL NIL) (-121 205538 207591 207633 "BTCAT" 207701 NIL BTCAT (NIL T) -9 NIL 207778) (-120 205205 205285 205434 "BTCAT-" 205439 NIL BTCAT- (NIL T T) -8 NIL NIL) (-119 200425 204296 204325 "BTAGG" 204581 T BTAGG (NIL) -9 NIL 204760) (-118 199848 199992 200222 "BTAGG-" 200227 NIL BTAGG- (NIL T) -8 NIL NIL) (-117 196892 199126 199341 "BSTREE" 199665 NIL BSTREE (NIL T) -8 NIL NIL) (-116 196030 196156 196340 "BRILL" 196748 NIL BRILL (NIL T) -7 NIL NIL) (-115 192731 194758 194800 "BRAGG" 195449 NIL BRAGG (NIL T) -9 NIL 195706) (-114 191260 191666 192221 "BRAGG-" 192226 NIL BRAGG- (NIL T T) -8 NIL NIL) (-113 184468 190606 190790 "BPADICRT" 191108 NIL BPADICRT (NIL NIL) -8 NIL NIL) (-112 182772 184405 184450 "BPADIC" 184455 NIL BPADIC (NIL NIL) -8 NIL NIL) (-111 182472 182502 182615 "BOUNDZRO" 182736 NIL BOUNDZRO (NIL T T) -7 NIL NIL) (-110 177987 179078 179945 "BOP" 181625 T BOP (NIL) -8 NIL NIL) (-109 175608 176052 176572 "BOP1" 177500 NIL BOP1 (NIL T) -7 NIL NIL) (-108 174227 174938 175161 "BOOLEAN" 175405 T BOOLEAN (NIL) -8 NIL NIL) (-107 173593 173971 174024 "BMODULE" 174029 NIL BMODULE (NIL T T) -9 NIL 174093) (-106 169403 173391 173464 "BITS" 173540 T BITS (NIL) -8 NIL NIL) (-105 168500 168935 169087 "BINFILE" 169271 T BINFILE (NIL) -8 NIL NIL) (-104 167912 168034 168176 "BINDING" 168378 T BINDING (NIL) -8 NIL NIL) (-103 161747 167356 167521 "BINARY" 167767 T BINARY (NIL) -8 NIL NIL) (-102 159574 161002 161044 "BGAGG" 161304 NIL BGAGG (NIL T) -9 NIL 161441) (-101 159405 159437 159528 "BGAGG-" 159533 NIL BGAGG- (NIL T T) -8 NIL NIL) (-100 158503 158789 158994 "BFUNCT" 159220 T BFUNCT (NIL) -8 NIL NIL) (-99 157204 157382 157667 "BEZOUT" 158327 NIL BEZOUT (NIL T T T T T) -7 NIL NIL) (-98 153729 156064 156392 "BBTREE" 156907 NIL BBTREE (NIL T) -8 NIL NIL) (-97 153466 153519 153546 "BASTYPE" 153663 T BASTYPE (NIL) -9 NIL NIL) (-96 153321 153350 153420 "BASTYPE-" 153425 NIL BASTYPE- (NIL T) -8 NIL NIL) (-95 152759 152835 152985 "BALFACT" 153232 NIL BALFACT (NIL T T) -7 NIL NIL) (-94 151581 152178 152363 "AUTOMOR" 152604 NIL AUTOMOR (NIL T) -8 NIL NIL) (-93 151306 151311 151338 "ATTREG" 151343 T ATTREG (NIL) -9 NIL NIL) (-92 149585 150003 150355 "ATTRBUT" 150972 T ATTRBUT (NIL) -8 NIL NIL) (-91 149120 149233 149260 "ATRIG" 149461 T ATRIG (NIL) -9 NIL NIL) (-90 148929 148970 149057 "ATRIG-" 149062 NIL ATRIG- (NIL T) -8 NIL NIL) (-89 147126 148705 148793 "ASTACK" 148872 NIL ASTACK (NIL T) -8 NIL NIL) (-88 145631 145928 146293 "ASSOCEQ" 146808 NIL ASSOCEQ (NIL T T) -7 NIL NIL) (-87 144663 145290 145414 "ASP9" 145538 NIL ASP9 (NIL NIL) -8 NIL NIL) (-86 144427 144611 144650 "ASP8" 144655 NIL ASP8 (NIL NIL) -8 NIL NIL) (-85 143297 144032 144174 "ASP80" 144316 NIL ASP80 (NIL NIL) -8 NIL NIL) (-84 142196 142932 143064 "ASP7" 143196 NIL ASP7 (NIL NIL) -8 NIL NIL) (-83 141152 141873 141991 "ASP78" 142109 NIL ASP78 (NIL NIL) -8 NIL NIL) (-82 140123 140832 140949 "ASP77" 141066 NIL ASP77 (NIL NIL) -8 NIL NIL) (-81 139038 139761 139892 "ASP74" 140023 NIL ASP74 (NIL NIL) -8 NIL NIL) (-80 137939 138673 138805 "ASP73" 138937 NIL ASP73 (NIL NIL) -8 NIL NIL) (-79 136894 137616 137734 "ASP6" 137852 NIL ASP6 (NIL NIL) -8 NIL NIL) (-78 135843 136571 136689 "ASP55" 136807 NIL ASP55 (NIL NIL) -8 NIL NIL) (-77 134793 135517 135636 "ASP50" 135755 NIL ASP50 (NIL NIL) -8 NIL NIL) (-76 133881 134494 134604 "ASP4" 134714 NIL ASP4 (NIL NIL) -8 NIL NIL) (-75 132969 133582 133692 "ASP49" 133802 NIL ASP49 (NIL NIL) -8 NIL NIL) (-74 131754 132508 132676 "ASP42" 132858 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL) (-73 130532 131287 131457 "ASP41" 131641 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL) (-72 129484 130209 130327 "ASP35" 130445 NIL ASP35 (NIL NIL) -8 NIL NIL) (-71 129249 129432 129471 "ASP34" 129476 NIL ASP34 (NIL NIL) -8 NIL NIL) (-70 128986 129053 129129 "ASP33" 129204 NIL ASP33 (NIL NIL) -8 NIL NIL) (-69 127882 128621 128753 "ASP31" 128885 NIL ASP31 (NIL NIL) -8 NIL NIL) (-68 127647 127830 127869 "ASP30" 127874 NIL ASP30 (NIL NIL) -8 NIL NIL) (-67 127382 127451 127527 "ASP29" 127602 NIL ASP29 (NIL NIL) -8 NIL NIL) (-66 127147 127330 127369 "ASP28" 127374 NIL ASP28 (NIL NIL) -8 NIL NIL) (-65 126912 127095 127134 "ASP27" 127139 NIL ASP27 (NIL NIL) -8 NIL NIL) (-64 125996 126610 126721 "ASP24" 126832 NIL ASP24 (NIL NIL) -8 NIL NIL) (-63 124913 125637 125767 "ASP20" 125897 NIL ASP20 (NIL NIL) -8 NIL NIL) (-62 124001 124614 124724 "ASP1" 124834 NIL ASP1 (NIL NIL) -8 NIL NIL) (-61 122945 123675 123794 "ASP19" 123913 NIL ASP19 (NIL NIL) -8 NIL NIL) (-60 122682 122749 122825 "ASP12" 122900 NIL ASP12 (NIL NIL) -8 NIL NIL) (-59 121535 122281 122425 "ASP10" 122569 NIL ASP10 (NIL NIL) -8 NIL NIL) (-58 119434 121379 121470 "ARRAY2" 121475 NIL ARRAY2 (NIL T) -8 NIL NIL) (-57 115250 119082 119196 "ARRAY1" 119351 NIL ARRAY1 (NIL T) -8 NIL NIL) (-56 114282 114455 114676 "ARRAY12" 115073 NIL ARRAY12 (NIL T T) -7 NIL NIL) (-55 108641 110512 110588 "ARR2CAT" 113218 NIL ARR2CAT (NIL T T T) -9 NIL 113976) (-54 106075 106819 107773 "ARR2CAT-" 107778 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL) (-53 104835 104985 105288 "APPRULE" 105913 NIL APPRULE (NIL T T T) -7 NIL NIL) (-52 104488 104536 104654 "APPLYORE" 104781 NIL APPLYORE (NIL T T T) -7 NIL NIL) (-51 103462 103753 103948 "ANY" 104311 T ANY (NIL) -8 NIL NIL) (-50 102740 102863 103020 "ANY1" 103336 NIL ANY1 (NIL T) -7 NIL NIL) (-49 100272 101190 101515 "ANTISYM" 102465 NIL ANTISYM (NIL T NIL) -8 NIL NIL) (-48 100099 100231 100258 "ANON" 100263 T ANON (NIL) -8 NIL NIL) (-47 94176 98644 99095 "AN" 99666 T AN (NIL) -8 NIL NIL) (-46 90529 91927 91978 "AMR" 92717 NIL AMR (NIL T T) -9 NIL 93316) (-45 89642 89863 90225 "AMR-" 90230 NIL AMR- (NIL T T T) -8 NIL NIL) (-44 74192 89559 89620 "ALIST" 89625 NIL ALIST (NIL T T) -8 NIL NIL) (-43 71029 73786 73955 "ALGSC" 74110 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL) (-42 67585 68139 68746 "ALGPKG" 70469 NIL ALGPKG (NIL T T) -7 NIL NIL) (-41 66862 66963 67147 "ALGMFACT" 67471 NIL ALGMFACT (NIL T T T) -7 NIL NIL) (-40 62612 63292 63946 "ALGMANIP" 66386 NIL ALGMANIP (NIL T T) -7 NIL NIL) (-39 53931 62238 62388 "ALGFF" 62545 NIL ALGFF (NIL T T T NIL) -8 NIL NIL) (-38 53127 53258 53437 "ALGFACT" 53789 NIL ALGFACT (NIL T) -7 NIL NIL) (-37 52117 52727 52766 "ALGEBRA" 52826 NIL ALGEBRA (NIL T) -9 NIL 52884) (-36 51835 51894 52026 "ALGEBRA-" 52031 NIL ALGEBRA- (NIL T T) -8 NIL NIL) (-35 34095 49838 49891 "ALAGG" 50027 NIL ALAGG (NIL T T) -9 NIL 50188) (-34 33630 33743 33770 "AHYP" 33971 T AHYP (NIL) -9 NIL NIL) (-33 32560 32808 32835 "AGG" 33334 T AGG (NIL) -9 NIL 33613) (-32 31994 32156 32370 "AGG-" 32375 NIL AGG- (NIL T) -8 NIL NIL) (-31 29681 30099 30516 "AF" 31637 NIL AF (NIL T T) -7 NIL NIL) (-30 28950 29208 29364 "ACPLOT" 29543 T ACPLOT (NIL) -8 NIL NIL) (-29 18416 26362 26414 "ACFS" 27125 NIL ACFS (NIL T) -9 NIL 27364) (-28 16430 16920 17695 "ACFS-" 17700 NIL ACFS- (NIL T T) -8 NIL NIL) (-27 12697 14653 14680 "ACF" 15559 T ACF (NIL) -9 NIL 15971) (-26 11401 11735 12228 "ACF-" 12233 NIL ACF- (NIL T) -8 NIL NIL) (-25 10999 11168 11195 "ABELSG" 11287 T ABELSG (NIL) -9 NIL 11352) (-24 10866 10891 10957 "ABELSG-" 10962 NIL ABELSG- (NIL T) -8 NIL NIL) (-23 10235 10496 10523 "ABELMON" 10693 T ABELMON (NIL) -9 NIL 10805) (-22 9899 9983 10121 "ABELMON-" 10126 NIL ABELMON- (NIL T) -8 NIL NIL) (-21 9233 9579 9606 "ABELGRP" 9731 T ABELGRP (NIL) -9 NIL 9813) (-20 8696 8825 9041 "ABELGRP-" 9046 NIL ABELGRP- (NIL T) -8 NIL NIL) (-19 4333 8035 8075 "A1AGG" 8080 NIL A1AGG (NIL T) -9 NIL 8120) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL)) \ No newline at end of file
+((-1415 (((-108) $ $) NIL)) (-1611 (((-1084)) 12)) (-3688 (((-1067) $) 17)) (-4147 (((-1031) $) NIL)) (-2189 (((-792) $) 11) (((-1084) $) 8)) (-1531 (((-108) $ $) 14)))
+(((-1161 |#1|) (-13 (-1013) (-561 (-1084)) (-10 -8 (-15 -2189 ((-1084) $)) (-15 -1611 ((-1084))))) (-1084)) (T -1161))
+((-2189 (*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-1161 *3)) (-14 *3 *2))) (-1611 (*1 *2) (-12 (-5 *2 (-1084)) (-5 *1 (-1161 *3)) (-14 *3 *2))))
+(-13 (-1013) (-561 (-1084)) (-10 -8 (-15 -2189 ((-1084) $)) (-15 -1611 ((-1084)))))
+((-3478 (($ (-707)) 16)) (-3952 (((-627 |#2|) $ $) 37)) (-3366 ((|#2| $) 46)) (-2516 ((|#2| $) 45)) (-1231 ((|#2| $ $) 33)) (-2292 (($ $ $) 42)) (-1612 (($ $) 20) (($ $ $) 26)) (-1602 (($ $ $) 13)) (* (($ (-521) $) 23) (($ |#2| $) 29) (($ $ |#2|) 28)))
+(((-1162 |#1| |#2|) (-10 -8 (-15 -3366 (|#2| |#1|)) (-15 -2516 (|#2| |#1|)) (-15 -2292 (|#1| |#1| |#1|)) (-15 -3952 ((-627 |#2|) |#1| |#1|)) (-15 -1231 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-521) |#1|)) (-15 -1612 (|#1| |#1| |#1|)) (-15 -1612 (|#1| |#1|)) (-15 -3478 (|#1| (-707))) (-15 -1602 (|#1| |#1| |#1|))) (-1163 |#2|) (-1119)) (T -1162))
+NIL
+(-10 -8 (-15 -3366 (|#2| |#1|)) (-15 -2516 (|#2| |#1|)) (-15 -2292 (|#1| |#1| |#1|)) (-15 -3952 ((-627 |#2|) |#1| |#1|)) (-15 -1231 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-521) |#1|)) (-15 -1612 (|#1| |#1| |#1|)) (-15 -1612 (|#1| |#1|)) (-15 -3478 (|#1| (-707))) (-15 -1602 (|#1| |#1| |#1|)))
+((-1415 (((-108) $ $) 19 (|has| |#1| (-1013)))) (-3478 (($ (-707)) 112 (|has| |#1| (-23)))) (-1903 (((-1170) $ (-521) (-521)) 40 (|has| $ (-6 -4234)))) (-1505 (((-108) (-1 (-108) |#1| |#1|) $) 98) (((-108) $) 92 (|has| |#1| (-784)))) (-1621 (($ (-1 (-108) |#1| |#1|) $) 89 (|has| $ (-6 -4234))) (($ $) 88 (-12 (|has| |#1| (-784)) (|has| $ (-6 -4234))))) (-3211 (($ (-1 (-108) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-784)))) (-2978 (((-108) $ (-707)) 8)) (-2378 ((|#1| $ (-521) |#1|) 52 (|has| $ (-6 -4234))) ((|#1| $ (-1132 (-521)) |#1|) 58 (|has| $ (-6 -4234)))) (-1628 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4233)))) (-2547 (($) 7 T CONST)) (-3081 (($ $) 90 (|has| $ (-6 -4234)))) (-1862 (($ $) 100)) (-2332 (($ $) 78 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-1422 (($ |#1| $) 77 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4233)))) (-3859 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4233)))) (-3849 ((|#1| $ (-521) |#1|) 53 (|has| $ (-6 -4234)))) (-3626 ((|#1| $ (-521)) 51)) (-3233 (((-521) (-1 (-108) |#1|) $) 97) (((-521) |#1| $) 96 (|has| |#1| (-1013))) (((-521) |#1| $ (-521)) 95 (|has| |#1| (-1013)))) (-3831 (((-587 |#1|) $) 30 (|has| $ (-6 -4233)))) (-3952 (((-627 |#1|) $ $) 105 (|has| |#1| (-970)))) (-1811 (($ (-707) |#1|) 69)) (-2139 (((-108) $ (-707)) 9)) (-2826 (((-521) $) 43 (|has| (-521) (-784)))) (-2810 (($ $ $) 87 (|has| |#1| (-784)))) (-1318 (($ (-1 (-108) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-784)))) (-3757 (((-587 |#1|) $) 29 (|has| $ (-6 -4233)))) (-2221 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-2597 (((-521) $) 44 (|has| (-521) (-784)))) (-2446 (($ $ $) 86 (|has| |#1| (-784)))) (-3833 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3366 ((|#1| $) 102 (-12 (|has| |#1| (-970)) (|has| |#1| (-927))))) (-3574 (((-108) $ (-707)) 10)) (-2516 ((|#1| $) 103 (-12 (|has| |#1| (-970)) (|has| |#1| (-927))))) (-3688 (((-1067) $) 22 (|has| |#1| (-1013)))) (-1659 (($ |#1| $ (-521)) 60) (($ $ $ (-521)) 59)) (-1668 (((-587 (-521)) $) 46)) (-2941 (((-108) (-521) $) 47)) (-4147 (((-1031) $) 21 (|has| |#1| (-1013)))) (-2293 ((|#1| $) 42 (|has| (-521) (-784)))) (-3620 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-3016 (($ $ |#1|) 41 (|has| $ (-6 -4234)))) (-1789 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 |#1|))) 26 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) 25 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) 23 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-2488 (((-108) $ $) 14)) (-3821 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2489 (((-587 |#1|) $) 48)) (-3462 (((-108) $) 11)) (-4024 (($) 12)) (-2544 ((|#1| $ (-521) |#1|) 50) ((|#1| $ (-521)) 49) (($ $ (-1132 (-521))) 63)) (-1231 ((|#1| $ $) 106 (|has| |#1| (-970)))) (-3691 (($ $ (-521)) 62) (($ $ (-1132 (-521))) 61)) (-2292 (($ $ $) 104 (|has| |#1| (-970)))) (-4163 (((-707) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4233))) (((-707) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-1497 (($ $ $ (-521)) 91 (|has| $ (-6 -4234)))) (-2404 (($ $) 13)) (-1430 (((-497) $) 79 (|has| |#1| (-562 (-497))))) (-2201 (($ (-587 |#1|)) 70)) (-4159 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-587 $)) 65)) (-2189 (((-792) $) 18 (|has| |#1| (-561 (-792))))) (-3049 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4233)))) (-1574 (((-108) $ $) 84 (|has| |#1| (-784)))) (-1558 (((-108) $ $) 83 (|has| |#1| (-784)))) (-1531 (((-108) $ $) 20 (|has| |#1| (-1013)))) (-1566 (((-108) $ $) 85 (|has| |#1| (-784)))) (-1549 (((-108) $ $) 82 (|has| |#1| (-784)))) (-1612 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-1602 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-521) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-663))) (($ $ |#1|) 107 (|has| |#1| (-663)))) (-3475 (((-707) $) 6 (|has| $ (-6 -4233)))))
+(((-1163 |#1|) (-1196) (-1119)) (T -1163))
+((-1602 (*1 *1 *1 *1) (-12 (-4 *1 (-1163 *2)) (-4 *2 (-1119)) (-4 *2 (-25)))) (-3478 (*1 *1 *2) (-12 (-5 *2 (-707)) (-4 *1 (-1163 *3)) (-4 *3 (-23)) (-4 *3 (-1119)))) (-1612 (*1 *1 *1) (-12 (-4 *1 (-1163 *2)) (-4 *2 (-1119)) (-4 *2 (-21)))) (-1612 (*1 *1 *1 *1) (-12 (-4 *1 (-1163 *2)) (-4 *2 (-1119)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-521)) (-4 *1 (-1163 *3)) (-4 *3 (-1119)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1163 *2)) (-4 *2 (-1119)) (-4 *2 (-663)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1163 *2)) (-4 *2 (-1119)) (-4 *2 (-663)))) (-1231 (*1 *2 *1 *1) (-12 (-4 *1 (-1163 *2)) (-4 *2 (-1119)) (-4 *2 (-970)))) (-3952 (*1 *2 *1 *1) (-12 (-4 *1 (-1163 *3)) (-4 *3 (-1119)) (-4 *3 (-970)) (-5 *2 (-627 *3)))) (-2292 (*1 *1 *1 *1) (-12 (-4 *1 (-1163 *2)) (-4 *2 (-1119)) (-4 *2 (-970)))) (-2516 (*1 *2 *1) (-12 (-4 *1 (-1163 *2)) (-4 *2 (-1119)) (-4 *2 (-927)) (-4 *2 (-970)))) (-3366 (*1 *2 *1) (-12 (-4 *1 (-1163 *2)) (-4 *2 (-1119)) (-4 *2 (-927)) (-4 *2 (-970)))))
+(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -1602 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -3478 ($ (-707))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -1612 ($ $)) (-15 -1612 ($ $ $)) (-15 * ($ (-521) $))) |%noBranch|) (IF (|has| |t#1| (-663)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-970)) (PROGN (-15 -1231 (|t#1| $ $)) (-15 -3952 ((-627 |t#1|) $ $)) (-15 -2292 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-927)) (IF (|has| |t#1| (-970)) (PROGN (-15 -2516 (|t#1| $)) (-15 -3366 (|t#1| $))) |%noBranch|) |%noBranch|)))
+(((-33) . T) ((-97) -3703 (|has| |#1| (-1013)) (|has| |#1| (-784))) ((-561 (-792)) -3703 (|has| |#1| (-1013)) (|has| |#1| (-784)) (|has| |#1| (-561 (-792)))) ((-139 |#1|) . T) ((-562 (-497)) |has| |#1| (-562 (-497))) ((-261 #0=(-521) |#1|) . T) ((-263 #0# |#1|) . T) ((-284 |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-347 |#1|) . T) ((-460 |#1|) . T) ((-554 #0# |#1|) . T) ((-482 |#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-592 |#1|) . T) ((-19 |#1|) . T) ((-784) |has| |#1| (-784)) ((-1013) -3703 (|has| |#1| (-1013)) (|has| |#1| (-784))) ((-1119) . T))
+((-3126 (((-1165 |#2|) (-1 |#2| |#1| |#2|) (-1165 |#1|) |#2|) 13)) (-3859 ((|#2| (-1 |#2| |#1| |#2|) (-1165 |#1|) |#2|) 15)) (-1390 (((-3 (-1165 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1165 |#1|)) 28) (((-1165 |#2|) (-1 |#2| |#1|) (-1165 |#1|)) 18)))
+(((-1164 |#1| |#2|) (-10 -7 (-15 -3126 ((-1165 |#2|) (-1 |#2| |#1| |#2|) (-1165 |#1|) |#2|)) (-15 -3859 (|#2| (-1 |#2| |#1| |#2|) (-1165 |#1|) |#2|)) (-15 -1390 ((-1165 |#2|) (-1 |#2| |#1|) (-1165 |#1|))) (-15 -1390 ((-3 (-1165 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1165 |#1|)))) (-1119) (-1119)) (T -1164))
+((-1390 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1165 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-1165 *6)) (-5 *1 (-1164 *5 *6)))) (-1390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1165 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-1165 *6)) (-5 *1 (-1164 *5 *6)))) (-3859 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1165 *5)) (-4 *5 (-1119)) (-4 *2 (-1119)) (-5 *1 (-1164 *5 *2)))) (-3126 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1165 *6)) (-4 *6 (-1119)) (-4 *5 (-1119)) (-5 *2 (-1165 *5)) (-5 *1 (-1164 *6 *5)))))
+(-10 -7 (-15 -3126 ((-1165 |#2|) (-1 |#2| |#1| |#2|) (-1165 |#1|) |#2|)) (-15 -3859 (|#2| (-1 |#2| |#1| |#2|) (-1165 |#1|) |#2|)) (-15 -1390 ((-1165 |#2|) (-1 |#2| |#1|) (-1165 |#1|))) (-15 -1390 ((-3 (-1165 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1165 |#1|))))
+((-1415 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3478 (($ (-707)) NIL (|has| |#1| (-23)))) (-2145 (($ (-587 |#1|)) 9)) (-1903 (((-1170) $ (-521) (-521)) NIL (|has| $ (-6 -4234)))) (-1505 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-784)))) (-1621 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4234))) (($ $) NIL (-12 (|has| $ (-6 -4234)) (|has| |#1| (-784))))) (-3211 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-784)))) (-2978 (((-108) $ (-707)) NIL)) (-2378 ((|#1| $ (-521) |#1|) NIL (|has| $ (-6 -4234))) ((|#1| $ (-1132 (-521)) |#1|) NIL (|has| $ (-6 -4234)))) (-1628 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2547 (($) NIL T CONST)) (-3081 (($ $) NIL (|has| $ (-6 -4234)))) (-1862 (($ $) NIL)) (-2332 (($ $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-1422 (($ |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-3859 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4233)))) (-3849 ((|#1| $ (-521) |#1|) NIL (|has| $ (-6 -4234)))) (-3626 ((|#1| $ (-521)) NIL)) (-3233 (((-521) (-1 (-108) |#1|) $) NIL) (((-521) |#1| $) NIL (|has| |#1| (-1013))) (((-521) |#1| $ (-521)) NIL (|has| |#1| (-1013)))) (-3831 (((-587 |#1|) $) 15 (|has| $ (-6 -4233)))) (-3952 (((-627 |#1|) $ $) NIL (|has| |#1| (-970)))) (-1811 (($ (-707) |#1|) NIL)) (-2139 (((-108) $ (-707)) NIL)) (-2826 (((-521) $) NIL (|has| (-521) (-784)))) (-2810 (($ $ $) NIL (|has| |#1| (-784)))) (-1318 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-784)))) (-3757 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-2221 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2597 (((-521) $) NIL (|has| (-521) (-784)))) (-2446 (($ $ $) NIL (|has| |#1| (-784)))) (-3833 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3366 ((|#1| $) NIL (-12 (|has| |#1| (-927)) (|has| |#1| (-970))))) (-3574 (((-108) $ (-707)) NIL)) (-2516 ((|#1| $) NIL (-12 (|has| |#1| (-927)) (|has| |#1| (-970))))) (-3688 (((-1067) $) NIL (|has| |#1| (-1013)))) (-1659 (($ |#1| $ (-521)) NIL) (($ $ $ (-521)) NIL)) (-1668 (((-587 (-521)) $) NIL)) (-2941 (((-108) (-521) $) NIL)) (-4147 (((-1031) $) NIL (|has| |#1| (-1013)))) (-2293 ((|#1| $) NIL (|has| (-521) (-784)))) (-3620 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-3016 (($ $ |#1|) NIL (|has| $ (-6 -4234)))) (-1789 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 (-269 |#1|))) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-2488 (((-108) $ $) NIL)) (-3821 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2489 (((-587 |#1|) $) NIL)) (-3462 (((-108) $) NIL)) (-4024 (($) NIL)) (-2544 ((|#1| $ (-521) |#1|) NIL) ((|#1| $ (-521)) NIL) (($ $ (-1132 (-521))) NIL)) (-1231 ((|#1| $ $) NIL (|has| |#1| (-970)))) (-3691 (($ $ (-521)) NIL) (($ $ (-1132 (-521))) NIL)) (-2292 (($ $ $) NIL (|has| |#1| (-970)))) (-4163 (((-707) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (((-707) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-1497 (($ $ $ (-521)) NIL (|has| $ (-6 -4234)))) (-2404 (($ $) NIL)) (-1430 (((-497) $) 19 (|has| |#1| (-562 (-497))))) (-2201 (($ (-587 |#1|)) 8)) (-4159 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-587 $)) NIL)) (-2189 (((-792) $) NIL (|has| |#1| (-561 (-792))))) (-3049 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-1574 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1558 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1531 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-1566 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1549 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1612 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1602 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-521) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-663))) (($ $ |#1|) NIL (|has| |#1| (-663)))) (-3475 (((-707) $) NIL (|has| $ (-6 -4233)))))
+(((-1165 |#1|) (-13 (-1163 |#1|) (-10 -8 (-15 -2145 ($ (-587 |#1|))))) (-1119)) (T -1165))
+((-2145 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1119)) (-5 *1 (-1165 *3)))))
+(-13 (-1163 |#1|) (-10 -8 (-15 -2145 ($ (-587 |#1|)))))
+((-1415 (((-108) $ $) NIL)) (-3964 (((-1067) $ (-1067)) 87) (((-1067) $ (-1067) (-1067)) 85) (((-1067) $ (-1067) (-587 (-1067))) 84)) (-3519 (($) 56)) (-3178 (((-1170) $ (-441) (-850)) 42)) (-1968 (((-1170) $ (-850) (-1067)) 70) (((-1170) $ (-850) (-803)) 71)) (-2467 (((-1170) $ (-850) (-353) (-353)) 45)) (-2951 (((-1170) $ (-1067)) 66)) (-1845 (((-1170) $ (-850) (-1067)) 75)) (-2428 (((-1170) $ (-850) (-353) (-353)) 46)) (-2809 (((-1170) $ (-850) (-850)) 43)) (-3938 (((-1170) $) 67)) (-2605 (((-1170) $ (-850) (-1067)) 74)) (-1229 (((-1170) $ (-441) (-850)) 30)) (-1461 (((-1170) $ (-850) (-1067)) 73)) (-2536 (((-587 (-239)) $) 22) (($ $ (-587 (-239))) 23)) (-3025 (((-1170) $ (-707) (-707)) 40)) (-2722 (($ $) 57) (($ (-441) (-587 (-239))) 58)) (-3688 (((-1067) $) NIL)) (-2529 (((-521) $) 37)) (-4147 (((-1031) $) NIL)) (-3956 (((-1165 (-3 (-441) "undefined")) $) 36)) (-2411 (((-1165 (-2 (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202)) (|:| -1461 (-521)) (|:| -2483 (-521)) (|:| |spline| (-521)) (|:| -3385 (-521)) (|:| |axesColor| (-803)) (|:| -1968 (-521)) (|:| |unitsColor| (-803)) (|:| |showing| (-521)))) $) 35)) (-3840 (((-1170) $ (-850) (-202) (-202) (-202) (-202) (-521) (-521) (-521) (-521) (-803) (-521) (-803) (-521)) 65)) (-2814 (((-587 (-872 (-202))) $) NIL)) (-1499 (((-441) $ (-850)) 32)) (-3251 (((-1170) $ (-707) (-707) (-850) (-850)) 39)) (-1246 (((-1170) $ (-1067)) 76)) (-2483 (((-1170) $ (-850) (-1067)) 72)) (-2189 (((-792) $) 82)) (-1650 (((-1170) $) 77)) (-3385 (((-1170) $ (-850) (-1067)) 68) (((-1170) $ (-850) (-803)) 69)) (-1531 (((-108) $ $) NIL)))
+(((-1166) (-13 (-1013) (-10 -8 (-15 -2814 ((-587 (-872 (-202))) $)) (-15 -3519 ($)) (-15 -2722 ($ $)) (-15 -2536 ((-587 (-239)) $)) (-15 -2536 ($ $ (-587 (-239)))) (-15 -2722 ($ (-441) (-587 (-239)))) (-15 -3840 ((-1170) $ (-850) (-202) (-202) (-202) (-202) (-521) (-521) (-521) (-521) (-803) (-521) (-803) (-521))) (-15 -2411 ((-1165 (-2 (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202)) (|:| -1461 (-521)) (|:| -2483 (-521)) (|:| |spline| (-521)) (|:| -3385 (-521)) (|:| |axesColor| (-803)) (|:| -1968 (-521)) (|:| |unitsColor| (-803)) (|:| |showing| (-521)))) $)) (-15 -3956 ((-1165 (-3 (-441) "undefined")) $)) (-15 -2951 ((-1170) $ (-1067))) (-15 -1229 ((-1170) $ (-441) (-850))) (-15 -1499 ((-441) $ (-850))) (-15 -3385 ((-1170) $ (-850) (-1067))) (-15 -3385 ((-1170) $ (-850) (-803))) (-15 -1968 ((-1170) $ (-850) (-1067))) (-15 -1968 ((-1170) $ (-850) (-803))) (-15 -1461 ((-1170) $ (-850) (-1067))) (-15 -2605 ((-1170) $ (-850) (-1067))) (-15 -2483 ((-1170) $ (-850) (-1067))) (-15 -1246 ((-1170) $ (-1067))) (-15 -1650 ((-1170) $)) (-15 -3251 ((-1170) $ (-707) (-707) (-850) (-850))) (-15 -2428 ((-1170) $ (-850) (-353) (-353))) (-15 -2467 ((-1170) $ (-850) (-353) (-353))) (-15 -1845 ((-1170) $ (-850) (-1067))) (-15 -3025 ((-1170) $ (-707) (-707))) (-15 -3178 ((-1170) $ (-441) (-850))) (-15 -2809 ((-1170) $ (-850) (-850))) (-15 -3964 ((-1067) $ (-1067))) (-15 -3964 ((-1067) $ (-1067) (-1067))) (-15 -3964 ((-1067) $ (-1067) (-587 (-1067)))) (-15 -3938 ((-1170) $)) (-15 -2529 ((-521) $)) (-15 -2189 ((-792) $))))) (T -1166))
+((-2189 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-1166)))) (-2814 (*1 *2 *1) (-12 (-5 *2 (-587 (-872 (-202)))) (-5 *1 (-1166)))) (-3519 (*1 *1) (-5 *1 (-1166))) (-2722 (*1 *1 *1) (-5 *1 (-1166))) (-2536 (*1 *2 *1) (-12 (-5 *2 (-587 (-239))) (-5 *1 (-1166)))) (-2536 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-239))) (-5 *1 (-1166)))) (-2722 (*1 *1 *2 *3) (-12 (-5 *2 (-441)) (-5 *3 (-587 (-239))) (-5 *1 (-1166)))) (-3840 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-850)) (-5 *4 (-202)) (-5 *5 (-521)) (-5 *6 (-803)) (-5 *2 (-1170)) (-5 *1 (-1166)))) (-2411 (*1 *2 *1) (-12 (-5 *2 (-1165 (-2 (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202)) (|:| -1461 (-521)) (|:| -2483 (-521)) (|:| |spline| (-521)) (|:| -3385 (-521)) (|:| |axesColor| (-803)) (|:| -1968 (-521)) (|:| |unitsColor| (-803)) (|:| |showing| (-521))))) (-5 *1 (-1166)))) (-3956 (*1 *2 *1) (-12 (-5 *2 (-1165 (-3 (-441) "undefined"))) (-5 *1 (-1166)))) (-2951 (*1 *2 *1 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1166)))) (-1229 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-441)) (-5 *4 (-850)) (-5 *2 (-1170)) (-5 *1 (-1166)))) (-1499 (*1 *2 *1 *3) (-12 (-5 *3 (-850)) (-5 *2 (-441)) (-5 *1 (-1166)))) (-3385 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-850)) (-5 *4 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1166)))) (-3385 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-850)) (-5 *4 (-803)) (-5 *2 (-1170)) (-5 *1 (-1166)))) (-1968 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-850)) (-5 *4 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1166)))) (-1968 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-850)) (-5 *4 (-803)) (-5 *2 (-1170)) (-5 *1 (-1166)))) (-1461 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-850)) (-5 *4 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1166)))) (-2605 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-850)) (-5 *4 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1166)))) (-2483 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-850)) (-5 *4 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1166)))) (-1246 (*1 *2 *1 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1166)))) (-1650 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1166)))) (-3251 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-707)) (-5 *4 (-850)) (-5 *2 (-1170)) (-5 *1 (-1166)))) (-2428 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-850)) (-5 *4 (-353)) (-5 *2 (-1170)) (-5 *1 (-1166)))) (-2467 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-850)) (-5 *4 (-353)) (-5 *2 (-1170)) (-5 *1 (-1166)))) (-1845 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-850)) (-5 *4 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1166)))) (-3025 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-707)) (-5 *2 (-1170)) (-5 *1 (-1166)))) (-3178 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-441)) (-5 *4 (-850)) (-5 *2 (-1170)) (-5 *1 (-1166)))) (-2809 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1170)) (-5 *1 (-1166)))) (-3964 (*1 *2 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-1166)))) (-3964 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-1166)))) (-3964 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-587 (-1067))) (-5 *2 (-1067)) (-5 *1 (-1166)))) (-3938 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1166)))) (-2529 (*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-1166)))))
+(-13 (-1013) (-10 -8 (-15 -2814 ((-587 (-872 (-202))) $)) (-15 -3519 ($)) (-15 -2722 ($ $)) (-15 -2536 ((-587 (-239)) $)) (-15 -2536 ($ $ (-587 (-239)))) (-15 -2722 ($ (-441) (-587 (-239)))) (-15 -3840 ((-1170) $ (-850) (-202) (-202) (-202) (-202) (-521) (-521) (-521) (-521) (-803) (-521) (-803) (-521))) (-15 -2411 ((-1165 (-2 (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202)) (|:| -1461 (-521)) (|:| -2483 (-521)) (|:| |spline| (-521)) (|:| -3385 (-521)) (|:| |axesColor| (-803)) (|:| -1968 (-521)) (|:| |unitsColor| (-803)) (|:| |showing| (-521)))) $)) (-15 -3956 ((-1165 (-3 (-441) "undefined")) $)) (-15 -2951 ((-1170) $ (-1067))) (-15 -1229 ((-1170) $ (-441) (-850))) (-15 -1499 ((-441) $ (-850))) (-15 -3385 ((-1170) $ (-850) (-1067))) (-15 -3385 ((-1170) $ (-850) (-803))) (-15 -1968 ((-1170) $ (-850) (-1067))) (-15 -1968 ((-1170) $ (-850) (-803))) (-15 -1461 ((-1170) $ (-850) (-1067))) (-15 -2605 ((-1170) $ (-850) (-1067))) (-15 -2483 ((-1170) $ (-850) (-1067))) (-15 -1246 ((-1170) $ (-1067))) (-15 -1650 ((-1170) $)) (-15 -3251 ((-1170) $ (-707) (-707) (-850) (-850))) (-15 -2428 ((-1170) $ (-850) (-353) (-353))) (-15 -2467 ((-1170) $ (-850) (-353) (-353))) (-15 -1845 ((-1170) $ (-850) (-1067))) (-15 -3025 ((-1170) $ (-707) (-707))) (-15 -3178 ((-1170) $ (-441) (-850))) (-15 -2809 ((-1170) $ (-850) (-850))) (-15 -3964 ((-1067) $ (-1067))) (-15 -3964 ((-1067) $ (-1067) (-1067))) (-15 -3964 ((-1067) $ (-1067) (-587 (-1067)))) (-15 -3938 ((-1170) $)) (-15 -2529 ((-521) $)) (-15 -2189 ((-792) $))))
+((-1415 (((-108) $ $) NIL)) (-3114 (((-1170) $ (-353)) 138) (((-1170) $ (-353) (-353) (-353)) 139)) (-3964 (((-1067) $ (-1067)) 146) (((-1067) $ (-1067) (-1067)) 144) (((-1067) $ (-1067) (-587 (-1067))) 143)) (-3179 (($) 49)) (-4044 (((-1170) $ (-353) (-353) (-353) (-353) (-353)) 114) (((-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -2428 (-202)) (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202))) $) 112) (((-1170) $ (-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -2428 (-202)) (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202)))) 113) (((-1170) $ (-521) (-521) (-353) (-353) (-353)) 115) (((-1170) $ (-353) (-353)) 116) (((-1170) $ (-353) (-353) (-353)) 123)) (-2662 (((-353)) 96) (((-353) (-353)) 97)) (-1978 (((-353)) 91) (((-353) (-353)) 93)) (-2246 (((-353)) 94) (((-353) (-353)) 95)) (-2681 (((-353)) 100) (((-353) (-353)) 101)) (-3058 (((-353)) 98) (((-353) (-353)) 99)) (-2467 (((-1170) $ (-353) (-353)) 140)) (-2951 (((-1170) $ (-1067)) 124)) (-1356 (((-1044 (-202)) $) 50) (($ $ (-1044 (-202))) 51)) (-3753 (((-1170) $ (-1067)) 152)) (-1468 (((-1170) $ (-1067)) 153)) (-3601 (((-1170) $ (-353) (-353)) 122) (((-1170) $ (-521) (-521)) 137)) (-2809 (((-1170) $ (-850) (-850)) 130)) (-3938 (((-1170) $) 110)) (-2918 (((-1170) $ (-1067)) 151)) (-3551 (((-1170) $ (-1067)) 107)) (-2536 (((-587 (-239)) $) 52) (($ $ (-587 (-239))) 53)) (-3025 (((-1170) $ (-707) (-707)) 129)) (-3619 (((-1170) $ (-707) (-872 (-202))) 158)) (-3764 (($ $) 56) (($ (-1044 (-202)) (-1067)) 57) (($ (-1044 (-202)) (-587 (-239))) 58)) (-2343 (((-1170) $ (-353) (-353) (-353)) 104)) (-3688 (((-1067) $) NIL)) (-2529 (((-521) $) 102)) (-2886 (((-1170) $ (-353)) 141)) (-1798 (((-1170) $ (-353)) 156)) (-4147 (((-1031) $) NIL)) (-1751 (((-1170) $ (-353)) 155)) (-2143 (((-1170) $ (-1067)) 109)) (-3251 (((-1170) $ (-707) (-707) (-850) (-850)) 128)) (-2494 (((-1170) $ (-1067)) 106)) (-1246 (((-1170) $ (-1067)) 108)) (-3482 (((-1170) $ (-143) (-143)) 127)) (-2189 (((-792) $) 135)) (-1650 (((-1170) $) 111)) (-3184 (((-1170) $ (-1067)) 154)) (-3385 (((-1170) $ (-1067)) 105)) (-1531 (((-108) $ $) NIL)))
+(((-1167) (-13 (-1013) (-10 -8 (-15 -1978 ((-353))) (-15 -1978 ((-353) (-353))) (-15 -2246 ((-353))) (-15 -2246 ((-353) (-353))) (-15 -2662 ((-353))) (-15 -2662 ((-353) (-353))) (-15 -3058 ((-353))) (-15 -3058 ((-353) (-353))) (-15 -2681 ((-353))) (-15 -2681 ((-353) (-353))) (-15 -3179 ($)) (-15 -3764 ($ $)) (-15 -3764 ($ (-1044 (-202)) (-1067))) (-15 -3764 ($ (-1044 (-202)) (-587 (-239)))) (-15 -1356 ((-1044 (-202)) $)) (-15 -1356 ($ $ (-1044 (-202)))) (-15 -3619 ((-1170) $ (-707) (-872 (-202)))) (-15 -2536 ((-587 (-239)) $)) (-15 -2536 ($ $ (-587 (-239)))) (-15 -3025 ((-1170) $ (-707) (-707))) (-15 -2809 ((-1170) $ (-850) (-850))) (-15 -2951 ((-1170) $ (-1067))) (-15 -3251 ((-1170) $ (-707) (-707) (-850) (-850))) (-15 -4044 ((-1170) $ (-353) (-353) (-353) (-353) (-353))) (-15 -4044 ((-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -2428 (-202)) (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202))) $)) (-15 -4044 ((-1170) $ (-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -2428 (-202)) (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202))))) (-15 -4044 ((-1170) $ (-521) (-521) (-353) (-353) (-353))) (-15 -4044 ((-1170) $ (-353) (-353))) (-15 -4044 ((-1170) $ (-353) (-353) (-353))) (-15 -1246 ((-1170) $ (-1067))) (-15 -3385 ((-1170) $ (-1067))) (-15 -2494 ((-1170) $ (-1067))) (-15 -3551 ((-1170) $ (-1067))) (-15 -2143 ((-1170) $ (-1067))) (-15 -3601 ((-1170) $ (-353) (-353))) (-15 -3601 ((-1170) $ (-521) (-521))) (-15 -3114 ((-1170) $ (-353))) (-15 -3114 ((-1170) $ (-353) (-353) (-353))) (-15 -2467 ((-1170) $ (-353) (-353))) (-15 -2918 ((-1170) $ (-1067))) (-15 -1751 ((-1170) $ (-353))) (-15 -1798 ((-1170) $ (-353))) (-15 -3753 ((-1170) $ (-1067))) (-15 -1468 ((-1170) $ (-1067))) (-15 -3184 ((-1170) $ (-1067))) (-15 -2343 ((-1170) $ (-353) (-353) (-353))) (-15 -2886 ((-1170) $ (-353))) (-15 -3938 ((-1170) $)) (-15 -3482 ((-1170) $ (-143) (-143))) (-15 -3964 ((-1067) $ (-1067))) (-15 -3964 ((-1067) $ (-1067) (-1067))) (-15 -3964 ((-1067) $ (-1067) (-587 (-1067)))) (-15 -1650 ((-1170) $)) (-15 -2529 ((-521) $))))) (T -1167))
+((-1978 (*1 *2) (-12 (-5 *2 (-353)) (-5 *1 (-1167)))) (-1978 (*1 *2 *2) (-12 (-5 *2 (-353)) (-5 *1 (-1167)))) (-2246 (*1 *2) (-12 (-5 *2 (-353)) (-5 *1 (-1167)))) (-2246 (*1 *2 *2) (-12 (-5 *2 (-353)) (-5 *1 (-1167)))) (-2662 (*1 *2) (-12 (-5 *2 (-353)) (-5 *1 (-1167)))) (-2662 (*1 *2 *2) (-12 (-5 *2 (-353)) (-5 *1 (-1167)))) (-3058 (*1 *2) (-12 (-5 *2 (-353)) (-5 *1 (-1167)))) (-3058 (*1 *2 *2) (-12 (-5 *2 (-353)) (-5 *1 (-1167)))) (-2681 (*1 *2) (-12 (-5 *2 (-353)) (-5 *1 (-1167)))) (-2681 (*1 *2 *2) (-12 (-5 *2 (-353)) (-5 *1 (-1167)))) (-3179 (*1 *1) (-5 *1 (-1167))) (-3764 (*1 *1 *1) (-5 *1 (-1167))) (-3764 (*1 *1 *2 *3) (-12 (-5 *2 (-1044 (-202))) (-5 *3 (-1067)) (-5 *1 (-1167)))) (-3764 (*1 *1 *2 *3) (-12 (-5 *2 (-1044 (-202))) (-5 *3 (-587 (-239))) (-5 *1 (-1167)))) (-1356 (*1 *2 *1) (-12 (-5 *2 (-1044 (-202))) (-5 *1 (-1167)))) (-1356 (*1 *1 *1 *2) (-12 (-5 *2 (-1044 (-202))) (-5 *1 (-1167)))) (-3619 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-707)) (-5 *4 (-872 (-202))) (-5 *2 (-1170)) (-5 *1 (-1167)))) (-2536 (*1 *2 *1) (-12 (-5 *2 (-587 (-239))) (-5 *1 (-1167)))) (-2536 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-239))) (-5 *1 (-1167)))) (-3025 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-707)) (-5 *2 (-1170)) (-5 *1 (-1167)))) (-2809 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1170)) (-5 *1 (-1167)))) (-2951 (*1 *2 *1 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1167)))) (-3251 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-707)) (-5 *4 (-850)) (-5 *2 (-1170)) (-5 *1 (-1167)))) (-4044 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-353)) (-5 *2 (-1170)) (-5 *1 (-1167)))) (-4044 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -2428 (-202)) (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202)))) (-5 *1 (-1167)))) (-4044 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -2428 (-202)) (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202)))) (-5 *2 (-1170)) (-5 *1 (-1167)))) (-4044 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-521)) (-5 *4 (-353)) (-5 *2 (-1170)) (-5 *1 (-1167)))) (-4044 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-353)) (-5 *2 (-1170)) (-5 *1 (-1167)))) (-4044 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-353)) (-5 *2 (-1170)) (-5 *1 (-1167)))) (-1246 (*1 *2 *1 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1167)))) (-3385 (*1 *2 *1 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1167)))) (-2494 (*1 *2 *1 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1167)))) (-3551 (*1 *2 *1 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1167)))) (-2143 (*1 *2 *1 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1167)))) (-3601 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-353)) (-5 *2 (-1170)) (-5 *1 (-1167)))) (-3601 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-521)) (-5 *2 (-1170)) (-5 *1 (-1167)))) (-3114 (*1 *2 *1 *3) (-12 (-5 *3 (-353)) (-5 *2 (-1170)) (-5 *1 (-1167)))) (-3114 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-353)) (-5 *2 (-1170)) (-5 *1 (-1167)))) (-2467 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-353)) (-5 *2 (-1170)) (-5 *1 (-1167)))) (-2918 (*1 *2 *1 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1167)))) (-1751 (*1 *2 *1 *3) (-12 (-5 *3 (-353)) (-5 *2 (-1170)) (-5 *1 (-1167)))) (-1798 (*1 *2 *1 *3) (-12 (-5 *3 (-353)) (-5 *2 (-1170)) (-5 *1 (-1167)))) (-3753 (*1 *2 *1 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1167)))) (-1468 (*1 *2 *1 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1167)))) (-3184 (*1 *2 *1 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1167)))) (-2343 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-353)) (-5 *2 (-1170)) (-5 *1 (-1167)))) (-2886 (*1 *2 *1 *3) (-12 (-5 *3 (-353)) (-5 *2 (-1170)) (-5 *1 (-1167)))) (-3938 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1167)))) (-3482 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-143)) (-5 *2 (-1170)) (-5 *1 (-1167)))) (-3964 (*1 *2 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-1167)))) (-3964 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-1167)))) (-3964 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-587 (-1067))) (-5 *2 (-1067)) (-5 *1 (-1167)))) (-1650 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1167)))) (-2529 (*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-1167)))))
+(-13 (-1013) (-10 -8 (-15 -1978 ((-353))) (-15 -1978 ((-353) (-353))) (-15 -2246 ((-353))) (-15 -2246 ((-353) (-353))) (-15 -2662 ((-353))) (-15 -2662 ((-353) (-353))) (-15 -3058 ((-353))) (-15 -3058 ((-353) (-353))) (-15 -2681 ((-353))) (-15 -2681 ((-353) (-353))) (-15 -3179 ($)) (-15 -3764 ($ $)) (-15 -3764 ($ (-1044 (-202)) (-1067))) (-15 -3764 ($ (-1044 (-202)) (-587 (-239)))) (-15 -1356 ((-1044 (-202)) $)) (-15 -1356 ($ $ (-1044 (-202)))) (-15 -3619 ((-1170) $ (-707) (-872 (-202)))) (-15 -2536 ((-587 (-239)) $)) (-15 -2536 ($ $ (-587 (-239)))) (-15 -3025 ((-1170) $ (-707) (-707))) (-15 -2809 ((-1170) $ (-850) (-850))) (-15 -2951 ((-1170) $ (-1067))) (-15 -3251 ((-1170) $ (-707) (-707) (-850) (-850))) (-15 -4044 ((-1170) $ (-353) (-353) (-353) (-353) (-353))) (-15 -4044 ((-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -2428 (-202)) (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202))) $)) (-15 -4044 ((-1170) $ (-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -2428 (-202)) (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202))))) (-15 -4044 ((-1170) $ (-521) (-521) (-353) (-353) (-353))) (-15 -4044 ((-1170) $ (-353) (-353))) (-15 -4044 ((-1170) $ (-353) (-353) (-353))) (-15 -1246 ((-1170) $ (-1067))) (-15 -3385 ((-1170) $ (-1067))) (-15 -2494 ((-1170) $ (-1067))) (-15 -3551 ((-1170) $ (-1067))) (-15 -2143 ((-1170) $ (-1067))) (-15 -3601 ((-1170) $ (-353) (-353))) (-15 -3601 ((-1170) $ (-521) (-521))) (-15 -3114 ((-1170) $ (-353))) (-15 -3114 ((-1170) $ (-353) (-353) (-353))) (-15 -2467 ((-1170) $ (-353) (-353))) (-15 -2918 ((-1170) $ (-1067))) (-15 -1751 ((-1170) $ (-353))) (-15 -1798 ((-1170) $ (-353))) (-15 -3753 ((-1170) $ (-1067))) (-15 -1468 ((-1170) $ (-1067))) (-15 -3184 ((-1170) $ (-1067))) (-15 -2343 ((-1170) $ (-353) (-353) (-353))) (-15 -2886 ((-1170) $ (-353))) (-15 -3938 ((-1170) $)) (-15 -3482 ((-1170) $ (-143) (-143))) (-15 -3964 ((-1067) $ (-1067))) (-15 -3964 ((-1067) $ (-1067) (-1067))) (-15 -3964 ((-1067) $ (-1067) (-587 (-1067)))) (-15 -1650 ((-1170) $)) (-15 -2529 ((-521) $))))
+((-3714 (((-587 (-1067)) (-587 (-1067))) 94) (((-587 (-1067))) 89)) (-1902 (((-587 (-1067))) 87)) (-3077 (((-587 (-850)) (-587 (-850))) 62) (((-587 (-850))) 59)) (-3227 (((-587 (-707)) (-587 (-707))) 56) (((-587 (-707))) 52)) (-3578 (((-1170)) 64)) (-2043 (((-850) (-850)) 80) (((-850)) 79)) (-2714 (((-850) (-850)) 78) (((-850)) 77)) (-1460 (((-803) (-803)) 74) (((-803)) 73)) (-4061 (((-202)) 84) (((-202) (-353)) 86)) (-2585 (((-850)) 81) (((-850) (-850)) 82)) (-2546 (((-850) (-850)) 76) (((-850)) 75)) (-2090 (((-803) (-803)) 68) (((-803)) 66)) (-3193 (((-803) (-803)) 70) (((-803)) 69)) (-4057 (((-803) (-803)) 72) (((-803)) 71)))
+(((-1168) (-10 -7 (-15 -2090 ((-803))) (-15 -2090 ((-803) (-803))) (-15 -3193 ((-803))) (-15 -3193 ((-803) (-803))) (-15 -4057 ((-803))) (-15 -4057 ((-803) (-803))) (-15 -1460 ((-803))) (-15 -1460 ((-803) (-803))) (-15 -2546 ((-850))) (-15 -2546 ((-850) (-850))) (-15 -3227 ((-587 (-707)))) (-15 -3227 ((-587 (-707)) (-587 (-707)))) (-15 -3077 ((-587 (-850)))) (-15 -3077 ((-587 (-850)) (-587 (-850)))) (-15 -3578 ((-1170))) (-15 -3714 ((-587 (-1067)))) (-15 -3714 ((-587 (-1067)) (-587 (-1067)))) (-15 -1902 ((-587 (-1067)))) (-15 -2714 ((-850))) (-15 -2043 ((-850))) (-15 -2714 ((-850) (-850))) (-15 -2043 ((-850) (-850))) (-15 -2585 ((-850) (-850))) (-15 -2585 ((-850))) (-15 -4061 ((-202) (-353))) (-15 -4061 ((-202))))) (T -1168))
+((-4061 (*1 *2) (-12 (-5 *2 (-202)) (-5 *1 (-1168)))) (-4061 (*1 *2 *3) (-12 (-5 *3 (-353)) (-5 *2 (-202)) (-5 *1 (-1168)))) (-2585 (*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1168)))) (-2585 (*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1168)))) (-2043 (*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1168)))) (-2714 (*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1168)))) (-2043 (*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1168)))) (-2714 (*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1168)))) (-1902 (*1 *2) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-1168)))) (-3714 (*1 *2 *2) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-1168)))) (-3714 (*1 *2) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-1168)))) (-3578 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1168)))) (-3077 (*1 *2 *2) (-12 (-5 *2 (-587 (-850))) (-5 *1 (-1168)))) (-3077 (*1 *2) (-12 (-5 *2 (-587 (-850))) (-5 *1 (-1168)))) (-3227 (*1 *2 *2) (-12 (-5 *2 (-587 (-707))) (-5 *1 (-1168)))) (-3227 (*1 *2) (-12 (-5 *2 (-587 (-707))) (-5 *1 (-1168)))) (-2546 (*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1168)))) (-2546 (*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1168)))) (-1460 (*1 *2 *2) (-12 (-5 *2 (-803)) (-5 *1 (-1168)))) (-1460 (*1 *2) (-12 (-5 *2 (-803)) (-5 *1 (-1168)))) (-4057 (*1 *2 *2) (-12 (-5 *2 (-803)) (-5 *1 (-1168)))) (-4057 (*1 *2) (-12 (-5 *2 (-803)) (-5 *1 (-1168)))) (-3193 (*1 *2 *2) (-12 (-5 *2 (-803)) (-5 *1 (-1168)))) (-3193 (*1 *2) (-12 (-5 *2 (-803)) (-5 *1 (-1168)))) (-2090 (*1 *2 *2) (-12 (-5 *2 (-803)) (-5 *1 (-1168)))) (-2090 (*1 *2) (-12 (-5 *2 (-803)) (-5 *1 (-1168)))))
+(-10 -7 (-15 -2090 ((-803))) (-15 -2090 ((-803) (-803))) (-15 -3193 ((-803))) (-15 -3193 ((-803) (-803))) (-15 -4057 ((-803))) (-15 -4057 ((-803) (-803))) (-15 -1460 ((-803))) (-15 -1460 ((-803) (-803))) (-15 -2546 ((-850))) (-15 -2546 ((-850) (-850))) (-15 -3227 ((-587 (-707)))) (-15 -3227 ((-587 (-707)) (-587 (-707)))) (-15 -3077 ((-587 (-850)))) (-15 -3077 ((-587 (-850)) (-587 (-850)))) (-15 -3578 ((-1170))) (-15 -3714 ((-587 (-1067)))) (-15 -3714 ((-587 (-1067)) (-587 (-1067)))) (-15 -1902 ((-587 (-1067)))) (-15 -2714 ((-850))) (-15 -2043 ((-850))) (-15 -2714 ((-850) (-850))) (-15 -2043 ((-850) (-850))) (-15 -2585 ((-850) (-850))) (-15 -2585 ((-850))) (-15 -4061 ((-202) (-353))) (-15 -4061 ((-202))))
+((-3709 (((-441) (-587 (-587 (-872 (-202)))) (-587 (-239))) 17) (((-441) (-587 (-587 (-872 (-202))))) 16) (((-441) (-587 (-587 (-872 (-202)))) (-803) (-803) (-850) (-587 (-239))) 15)) (-2131 (((-1166) (-587 (-587 (-872 (-202)))) (-587 (-239))) 23) (((-1166) (-587 (-587 (-872 (-202)))) (-803) (-803) (-850) (-587 (-239))) 22)) (-2189 (((-1166) (-441)) 34)))
+(((-1169) (-10 -7 (-15 -3709 ((-441) (-587 (-587 (-872 (-202)))) (-803) (-803) (-850) (-587 (-239)))) (-15 -3709 ((-441) (-587 (-587 (-872 (-202)))))) (-15 -3709 ((-441) (-587 (-587 (-872 (-202)))) (-587 (-239)))) (-15 -2131 ((-1166) (-587 (-587 (-872 (-202)))) (-803) (-803) (-850) (-587 (-239)))) (-15 -2131 ((-1166) (-587 (-587 (-872 (-202)))) (-587 (-239)))) (-15 -2189 ((-1166) (-441))))) (T -1169))
+((-2189 (*1 *2 *3) (-12 (-5 *3 (-441)) (-5 *2 (-1166)) (-5 *1 (-1169)))) (-2131 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-587 (-872 (-202))))) (-5 *4 (-587 (-239))) (-5 *2 (-1166)) (-5 *1 (-1169)))) (-2131 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-587 (-587 (-872 (-202))))) (-5 *4 (-803)) (-5 *5 (-850)) (-5 *6 (-587 (-239))) (-5 *2 (-1166)) (-5 *1 (-1169)))) (-3709 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-587 (-872 (-202))))) (-5 *4 (-587 (-239))) (-5 *2 (-441)) (-5 *1 (-1169)))) (-3709 (*1 *2 *3) (-12 (-5 *3 (-587 (-587 (-872 (-202))))) (-5 *2 (-441)) (-5 *1 (-1169)))) (-3709 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-587 (-587 (-872 (-202))))) (-5 *4 (-803)) (-5 *5 (-850)) (-5 *6 (-587 (-239))) (-5 *2 (-441)) (-5 *1 (-1169)))))
+(-10 -7 (-15 -3709 ((-441) (-587 (-587 (-872 (-202)))) (-803) (-803) (-850) (-587 (-239)))) (-15 -3709 ((-441) (-587 (-587 (-872 (-202)))))) (-15 -3709 ((-441) (-587 (-587 (-872 (-202)))) (-587 (-239)))) (-15 -2131 ((-1166) (-587 (-587 (-872 (-202)))) (-803) (-803) (-850) (-587 (-239)))) (-15 -2131 ((-1166) (-587 (-587 (-872 (-202)))) (-587 (-239)))) (-15 -2189 ((-1166) (-441))))
+((-1366 (($) 7)) (-2189 (((-792) $) 10)))
+(((-1170) (-10 -8 (-15 -1366 ($)) (-15 -2189 ((-792) $)))) (T -1170))
+((-2189 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-1170)))) (-1366 (*1 *1) (-5 *1 (-1170))))
+(-10 -8 (-15 -1366 ($)) (-15 -2189 ((-792) $)))
+((-1620 (($ $ |#2|) 10)))
+(((-1171 |#1| |#2|) (-10 -8 (-15 -1620 (|#1| |#1| |#2|))) (-1172 |#2|) (-337)) (T -1171))
+NIL
+(-10 -8 (-15 -1620 (|#1| |#1| |#2|)))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-1232 (((-3 $ "failed") $ $) 19)) (-2547 (($) 17 T CONST)) (-3688 (((-1067) $) 9)) (-4147 (((-1031) $) 10)) (-2359 (((-126)) 28)) (-2189 (((-792) $) 11)) (-3561 (($) 18 T CONST)) (-1531 (((-108) $ $) 6)) (-1620 (($ $ |#1|) 29)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
+(((-1172 |#1|) (-1196) (-337)) (T -1172))
+((-1620 (*1 *1 *1 *2) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-337)))) (-2359 (*1 *2) (-12 (-4 *1 (-1172 *3)) (-4 *3 (-337)) (-5 *2 (-126)))))
+(-13 (-654 |t#1|) (-10 -8 (-15 -1620 ($ $ |t#1|)) (-15 -2359 ((-126)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-561 (-792)) . T) ((-589 |#1|) . T) ((-654 |#1|) . T) ((-976 |#1|) . T) ((-1013) . T))
+((-4149 (((-587 (-1114 |#1|)) (-1084) (-1114 |#1|)) 78)) (-2612 (((-1065 (-1065 (-881 |#1|))) (-1084) (-1065 (-881 |#1|))) 57)) (-2898 (((-1 (-1065 (-1114 |#1|)) (-1065 (-1114 |#1|))) (-707) (-1114 |#1|) (-1065 (-1114 |#1|))) 68)) (-4160 (((-1 (-1065 (-881 |#1|)) (-1065 (-881 |#1|))) (-707)) 59)) (-1301 (((-1 (-1080 (-881 |#1|)) (-881 |#1|)) (-1084)) 27)) (-3357 (((-1 (-1065 (-881 |#1|)) (-1065 (-881 |#1|))) (-707)) 58)))
+(((-1173 |#1|) (-10 -7 (-15 -4160 ((-1 (-1065 (-881 |#1|)) (-1065 (-881 |#1|))) (-707))) (-15 -3357 ((-1 (-1065 (-881 |#1|)) (-1065 (-881 |#1|))) (-707))) (-15 -2612 ((-1065 (-1065 (-881 |#1|))) (-1084) (-1065 (-881 |#1|)))) (-15 -1301 ((-1 (-1080 (-881 |#1|)) (-881 |#1|)) (-1084))) (-15 -4149 ((-587 (-1114 |#1|)) (-1084) (-1114 |#1|))) (-15 -2898 ((-1 (-1065 (-1114 |#1|)) (-1065 (-1114 |#1|))) (-707) (-1114 |#1|) (-1065 (-1114 |#1|))))) (-337)) (T -1173))
+((-2898 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-707)) (-4 *6 (-337)) (-5 *4 (-1114 *6)) (-5 *2 (-1 (-1065 *4) (-1065 *4))) (-5 *1 (-1173 *6)) (-5 *5 (-1065 *4)))) (-4149 (*1 *2 *3 *4) (-12 (-5 *3 (-1084)) (-4 *5 (-337)) (-5 *2 (-587 (-1114 *5))) (-5 *1 (-1173 *5)) (-5 *4 (-1114 *5)))) (-1301 (*1 *2 *3) (-12 (-5 *3 (-1084)) (-5 *2 (-1 (-1080 (-881 *4)) (-881 *4))) (-5 *1 (-1173 *4)) (-4 *4 (-337)))) (-2612 (*1 *2 *3 *4) (-12 (-5 *3 (-1084)) (-4 *5 (-337)) (-5 *2 (-1065 (-1065 (-881 *5)))) (-5 *1 (-1173 *5)) (-5 *4 (-1065 (-881 *5))))) (-3357 (*1 *2 *3) (-12 (-5 *3 (-707)) (-5 *2 (-1 (-1065 (-881 *4)) (-1065 (-881 *4)))) (-5 *1 (-1173 *4)) (-4 *4 (-337)))) (-4160 (*1 *2 *3) (-12 (-5 *3 (-707)) (-5 *2 (-1 (-1065 (-881 *4)) (-1065 (-881 *4)))) (-5 *1 (-1173 *4)) (-4 *4 (-337)))))
+(-10 -7 (-15 -4160 ((-1 (-1065 (-881 |#1|)) (-1065 (-881 |#1|))) (-707))) (-15 -3357 ((-1 (-1065 (-881 |#1|)) (-1065 (-881 |#1|))) (-707))) (-15 -2612 ((-1065 (-1065 (-881 |#1|))) (-1084) (-1065 (-881 |#1|)))) (-15 -1301 ((-1 (-1080 (-881 |#1|)) (-881 |#1|)) (-1084))) (-15 -4149 ((-587 (-1114 |#1|)) (-1084) (-1114 |#1|))) (-15 -2898 ((-1 (-1065 (-1114 |#1|)) (-1065 (-1114 |#1|))) (-707) (-1114 |#1|) (-1065 (-1114 |#1|)))))
+((-2615 (((-2 (|:| -2470 (-627 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-627 |#2|))) |#2|) 74)) (-3545 (((-2 (|:| -2470 (-627 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-627 |#2|)))) 73)))
+(((-1174 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3545 ((-2 (|:| -2470 (-627 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-627 |#2|))))) (-15 -2615 ((-2 (|:| -2470 (-627 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-627 |#2|))) |#2|))) (-323) (-1141 |#1|) (-1141 |#2|) (-383 |#2| |#3|)) (T -1174))
+((-2615 (*1 *2 *3) (-12 (-4 *4 (-323)) (-4 *3 (-1141 *4)) (-4 *5 (-1141 *3)) (-5 *2 (-2 (|:| -2470 (-627 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-627 *3)))) (-5 *1 (-1174 *4 *3 *5 *6)) (-4 *6 (-383 *3 *5)))) (-3545 (*1 *2) (-12 (-4 *3 (-323)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 *4)) (-5 *2 (-2 (|:| -2470 (-627 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-627 *4)))) (-5 *1 (-1174 *3 *4 *5 *6)) (-4 *6 (-383 *4 *5)))))
+(-10 -7 (-15 -3545 ((-2 (|:| -2470 (-627 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-627 |#2|))))) (-15 -2615 ((-2 (|:| -2470 (-627 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-627 |#2|))) |#2|)))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) 42)) (-1232 (((-3 $ "failed") $ $) NIL)) (-2547 (($) NIL T CONST)) (-1257 (((-3 $ "failed") $) NIL)) (-3996 (((-108) $) NIL)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-2189 (((-792) $) 63) (($ (-521)) NIL) ((|#4| $) 53) (($ |#4|) 48) (($ |#1|) NIL (|has| |#1| (-157)))) (-3846 (((-707)) NIL)) (-3472 (((-1170) (-707)) 16)) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (-3561 (($) 27 T CONST)) (-3572 (($) 66 T CONST)) (-1531 (((-108) $ $) 68)) (-1620 (((-3 $ "failed") $ $) NIL (|has| |#1| (-337)))) (-1612 (($ $) 70) (($ $ $) NIL)) (-1602 (($ $ $) 46)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) 72) (($ |#1| $) NIL (|has| |#1| (-157))) (($ $ |#1|) NIL (|has| |#1| (-157)))))
+(((-1175 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-970) (-10 -8 (IF (|has| |#1| (-157)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2189 (|#4| $)) (IF (|has| |#1| (-337)) (-15 -1620 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2189 ($ |#4|)) (-15 -3472 ((-1170) (-707))))) (-970) (-784) (-729) (-878 |#1| |#3| |#2|) (-587 |#2|) (-587 (-707)) (-707)) (T -1175))
+((-2189 (*1 *2 *1) (-12 (-4 *2 (-878 *3 *5 *4)) (-5 *1 (-1175 *3 *4 *5 *2 *6 *7 *8)) (-4 *3 (-970)) (-4 *4 (-784)) (-4 *5 (-729)) (-14 *6 (-587 *4)) (-14 *7 (-587 (-707))) (-14 *8 (-707)))) (-1620 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-337)) (-4 *2 (-970)) (-4 *3 (-784)) (-4 *4 (-729)) (-14 *6 (-587 *3)) (-5 *1 (-1175 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-878 *2 *4 *3)) (-14 *7 (-587 (-707))) (-14 *8 (-707)))) (-2189 (*1 *1 *2) (-12 (-4 *3 (-970)) (-4 *4 (-784)) (-4 *5 (-729)) (-14 *6 (-587 *4)) (-5 *1 (-1175 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-878 *3 *5 *4)) (-14 *7 (-587 (-707))) (-14 *8 (-707)))) (-3472 (*1 *2 *3) (-12 (-5 *3 (-707)) (-4 *4 (-970)) (-4 *5 (-784)) (-4 *6 (-729)) (-14 *8 (-587 *5)) (-5 *2 (-1170)) (-5 *1 (-1175 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-878 *4 *6 *5)) (-14 *9 (-587 *3)) (-14 *10 *3))))
+(-13 (-970) (-10 -8 (IF (|has| |#1| (-157)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2189 (|#4| $)) (IF (|has| |#1| (-337)) (-15 -1620 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2189 ($ |#4|)) (-15 -3472 ((-1170) (-707)))))
+((-1415 (((-108) $ $) NIL)) (-2113 (((-587 (-2 (|:| -1650 $) (|:| -1544 (-587 |#4|)))) (-587 |#4|)) NIL)) (-1906 (((-587 $) (-587 |#4|)) 88)) (-4084 (((-587 |#3|) $) NIL)) (-3898 (((-108) $) NIL)) (-2466 (((-108) $) NIL (|has| |#1| (-513)))) (-3199 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2015 ((|#4| |#4| $) NIL)) (-3211 (((-2 (|:| |under| $) (|:| -2567 $) (|:| |upper| $)) $ |#3|) NIL)) (-2978 (((-108) $ (-707)) NIL)) (-1628 (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4233))) (((-3 |#4| "failed") $ |#3|) NIL)) (-2547 (($) NIL T CONST)) (-3035 (((-108) $) NIL (|has| |#1| (-513)))) (-3091 (((-108) $ $) NIL (|has| |#1| (-513)))) (-3882 (((-108) $ $) NIL (|has| |#1| (-513)))) (-3237 (((-108) $) NIL (|has| |#1| (-513)))) (-2990 (((-587 |#4|) (-587 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 28)) (-3799 (((-587 |#4|) (-587 |#4|) $) 25 (|has| |#1| (-513)))) (-4183 (((-587 |#4|) (-587 |#4|) $) NIL (|has| |#1| (-513)))) (-1297 (((-3 $ "failed") (-587 |#4|)) NIL)) (-1483 (($ (-587 |#4|)) NIL)) (-2306 (((-3 $ "failed") $) 70)) (-1761 ((|#4| |#4| $) 75)) (-2332 (($ $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#4| (-1013))))) (-1422 (($ |#4| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#4| (-1013)))) (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4233)))) (-3820 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-513)))) (-3156 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) NIL)) (-1970 ((|#4| |#4| $) NIL)) (-3859 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4233)) (|has| |#4| (-1013)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4233))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4233))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-3726 (((-2 (|:| -1650 (-587 |#4|)) (|:| -1544 (-587 |#4|))) $) NIL)) (-3831 (((-587 |#4|) $) NIL (|has| $ (-6 -4233)))) (-3266 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3464 ((|#3| $) 76)) (-2139 (((-108) $ (-707)) NIL)) (-3757 (((-587 |#4|) $) 29 (|has| $ (-6 -4233)))) (-2221 (((-108) |#4| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#4| (-1013))))) (-4123 (((-3 $ "failed") (-587 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|)) 32) (((-3 $ "failed") (-587 |#4|)) 35)) (-3833 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4234)))) (-1390 (($ (-1 |#4| |#4|) $) NIL)) (-2820 (((-587 |#3|) $) NIL)) (-2639 (((-108) |#3| $) NIL)) (-3574 (((-108) $ (-707)) NIL)) (-3688 (((-1067) $) NIL)) (-1441 (((-3 |#4| "failed") $) NIL)) (-2323 (((-587 |#4|) $) 50)) (-3786 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-1347 ((|#4| |#4| $) 74)) (-2146 (((-108) $ $) 85)) (-1341 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-513)))) (-1972 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-4065 ((|#4| |#4| $) NIL)) (-4147 (((-1031) $) NIL)) (-2293 (((-3 |#4| "failed") $) 69)) (-3620 (((-3 |#4| "failed") (-1 (-108) |#4|) $) NIL)) (-2001 (((-3 $ "failed") $ |#4|) NIL)) (-2447 (($ $ |#4|) NIL)) (-1789 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4233)))) (-2288 (($ $ (-587 |#4|) (-587 |#4|)) NIL (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013)))) (($ $ (-269 |#4|)) NIL (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013)))) (($ $ (-587 (-269 |#4|))) NIL (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013))))) (-2488 (((-108) $ $) NIL)) (-3462 (((-108) $) 67)) (-4024 (($) 42)) (-1994 (((-707) $) NIL)) (-4163 (((-707) |#4| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#4| (-1013)))) (((-707) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4233)))) (-2404 (($ $) NIL)) (-1430 (((-497) $) NIL (|has| |#4| (-562 (-497))))) (-2201 (($ (-587 |#4|)) NIL)) (-3883 (($ $ |#3|) NIL)) (-4029 (($ $ |#3|) NIL)) (-3173 (($ $) NIL)) (-3318 (($ $ |#3|) NIL)) (-2189 (((-792) $) NIL) (((-587 |#4|) $) 57)) (-3781 (((-707) $) NIL (|has| |#3| (-342)))) (-3629 (((-3 $ "failed") (-587 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|)) 40) (((-3 $ "failed") (-587 |#4|)) 41)) (-1306 (((-587 $) (-587 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|)) 65) (((-587 $) (-587 |#4|)) 66)) (-3234 (((-3 (-2 (|:| |bas| $) (|:| -1354 (-587 |#4|))) "failed") (-587 |#4|) (-1 (-108) |#4| |#4|)) 24) (((-3 (-2 (|:| |bas| $) (|:| -1354 (-587 |#4|))) "failed") (-587 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-3960 (((-108) $ (-1 (-108) |#4| (-587 |#4|))) NIL)) (-3049 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4233)))) (-4099 (((-587 |#3|) $) NIL)) (-2154 (((-108) |#3| $) NIL)) (-1531 (((-108) $ $) NIL)) (-3475 (((-707) $) NIL (|has| $ (-6 -4233)))))
+(((-1176 |#1| |#2| |#3| |#4|) (-13 (-1113 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4123 ((-3 $ "failed") (-587 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4123 ((-3 $ "failed") (-587 |#4|))) (-15 -3629 ((-3 $ "failed") (-587 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3629 ((-3 $ "failed") (-587 |#4|))) (-15 -1306 ((-587 $) (-587 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1306 ((-587 $) (-587 |#4|))))) (-513) (-729) (-784) (-984 |#1| |#2| |#3|)) (T -1176))
+((-4123 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-587 *8)) (-5 *3 (-1 (-108) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-984 *5 *6 *7)) (-4 *5 (-513)) (-4 *6 (-729)) (-4 *7 (-784)) (-5 *1 (-1176 *5 *6 *7 *8)))) (-4123 (*1 *1 *2) (|partial| -12 (-5 *2 (-587 *6)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *1 (-1176 *3 *4 *5 *6)))) (-3629 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-587 *8)) (-5 *3 (-1 (-108) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-984 *5 *6 *7)) (-4 *5 (-513)) (-4 *6 (-729)) (-4 *7 (-784)) (-5 *1 (-1176 *5 *6 *7 *8)))) (-3629 (*1 *1 *2) (|partial| -12 (-5 *2 (-587 *6)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *1 (-1176 *3 *4 *5 *6)))) (-1306 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-587 *9)) (-5 *4 (-1 (-108) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-984 *6 *7 *8)) (-4 *6 (-513)) (-4 *7 (-729)) (-4 *8 (-784)) (-5 *2 (-587 (-1176 *6 *7 *8 *9))) (-5 *1 (-1176 *6 *7 *8 *9)))) (-1306 (*1 *2 *3) (-12 (-5 *3 (-587 *7)) (-4 *7 (-984 *4 *5 *6)) (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-587 (-1176 *4 *5 *6 *7))) (-5 *1 (-1176 *4 *5 *6 *7)))))
+(-13 (-1113 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4123 ((-3 $ "failed") (-587 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4123 ((-3 $ "failed") (-587 |#4|))) (-15 -3629 ((-3 $ "failed") (-587 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3629 ((-3 $ "failed") (-587 |#4|))) (-15 -1306 ((-587 $) (-587 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1306 ((-587 $) (-587 |#4|)))))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-1232 (((-3 $ "failed") $ $) 19)) (-2547 (($) 17 T CONST)) (-1257 (((-3 $ "failed") $) 34)) (-3996 (((-108) $) 31)) (-3688 (((-1067) $) 9)) (-4147 (((-1031) $) 10)) (-2189 (((-792) $) 11) (($ (-521)) 28) (($ |#1|) 38)) (-3846 (((-707)) 29)) (-3505 (($ $ (-850)) 26) (($ $ (-707)) 33)) (-3561 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-707)) 32)) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39)))
+(((-1177 |#1|) (-1196) (-970)) (T -1177))
+((-2189 (*1 *1 *2) (-12 (-4 *1 (-1177 *2)) (-4 *2 (-970)))))
+(-13 (-970) (-107 |t#1| |t#1|) (-10 -8 (-15 -2189 ($ |t#1|)) (IF (|has| |t#1| (-157)) (-6 (-37 |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-157)) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-561 (-792)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-654 |#1|) |has| |#1| (-157)) ((-663) . T) ((-976 |#1|) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-4101 (((-587 |#1|) $) 45)) (-1806 (($ $ (-707)) 39)) (-1232 (((-3 $ "failed") $ $) NIL)) (-3109 (($ $ (-707)) 17 (|has| |#2| (-157))) (($ $ $) 18 (|has| |#2| (-157)))) (-2547 (($) NIL T CONST)) (-3634 (($ $ $) 62) (($ $ (-756 |#1|)) 49) (($ $ |#1|) 53)) (-1297 (((-3 (-756 |#1|) "failed") $) NIL)) (-1483 (((-756 |#1|) $) NIL)) (-3152 (($ $) 32)) (-1257 (((-3 $ "failed") $) NIL)) (-1619 (((-108) $) NIL)) (-2350 (($ $) NIL)) (-3996 (((-108) $) NIL)) (-2678 (((-707) $) NIL)) (-2959 (((-587 $) $) NIL)) (-3649 (((-108) $) NIL)) (-2517 (($ (-756 |#1|) |#2|) 31)) (-2239 (($ $) 33)) (-1694 (((-2 (|:| |k| (-756 |#1|)) (|:| |c| |#2|)) $) 11)) (-3657 (((-756 |#1|) $) NIL)) (-3137 (((-756 |#1|) $) 34)) (-1390 (($ (-1 |#2| |#2|) $) NIL)) (-3111 (($ $ $) 61) (($ $ (-756 |#1|)) 51) (($ $ |#1|) 55)) (-1267 (((-2 (|:| |k| (-756 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3125 (((-756 |#1|) $) 28)) (-3135 ((|#2| $) 30)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-1994 (((-707) $) 36)) (-3101 (((-108) $) 40)) (-2676 ((|#2| $) NIL)) (-2189 (((-792) $) NIL) (($ (-756 |#1|)) 24) (($ |#1|) 25) (($ |#2|) NIL) (($ (-521)) NIL)) (-1259 (((-587 |#2|) $) NIL)) (-3800 ((|#2| $ (-756 |#1|)) NIL)) (-2973 ((|#2| $ $) 64) ((|#2| $ (-756 |#1|)) NIL)) (-3846 (((-707)) NIL)) (-3505 (($ $ (-707)) NIL) (($ $ (-850)) NIL)) (-3561 (($) 12 T CONST)) (-3572 (($) 14 T CONST)) (-2352 (((-587 (-2 (|:| |k| (-756 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1531 (((-108) $ $) 38)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) 21)) (** (($ $ (-707)) NIL) (($ $ (-850)) NIL)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ |#2| $) 20) (($ $ |#2|) 60) (($ |#2| (-756 |#1|)) NIL) (($ |#1| $) 27) (($ $ $) NIL)))
+(((-1178 |#1| |#2|) (-13 (-356 |#2| (-756 |#1|)) (-1184 |#1| |#2|)) (-784) (-970)) (T -1178))
+NIL
+(-13 (-356 |#2| (-756 |#1|)) (-1184 |#1| |#2|))
+((-1253 ((|#3| |#3| (-707)) 23)) (-3261 ((|#3| |#3| (-707)) 28)) (-2414 ((|#3| |#3| |#3| (-707)) 29)))
+(((-1179 |#1| |#2| |#3|) (-10 -7 (-15 -3261 (|#3| |#3| (-707))) (-15 -1253 (|#3| |#3| (-707))) (-15 -2414 (|#3| |#3| |#3| (-707)))) (-13 (-970) (-654 (-381 (-521)))) (-784) (-1184 |#2| |#1|)) (T -1179))
+((-2414 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-707)) (-4 *4 (-13 (-970) (-654 (-381 (-521))))) (-4 *5 (-784)) (-5 *1 (-1179 *4 *5 *2)) (-4 *2 (-1184 *5 *4)))) (-1253 (*1 *2 *2 *3) (-12 (-5 *3 (-707)) (-4 *4 (-13 (-970) (-654 (-381 (-521))))) (-4 *5 (-784)) (-5 *1 (-1179 *4 *5 *2)) (-4 *2 (-1184 *5 *4)))) (-3261 (*1 *2 *2 *3) (-12 (-5 *3 (-707)) (-4 *4 (-13 (-970) (-654 (-381 (-521))))) (-4 *5 (-784)) (-5 *1 (-1179 *4 *5 *2)) (-4 *2 (-1184 *5 *4)))))
+(-10 -7 (-15 -3261 (|#3| |#3| (-707))) (-15 -1253 (|#3| |#3| (-707))) (-15 -2414 (|#3| |#3| |#3| (-707))))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-4101 (((-587 |#1|) $) 40)) (-1232 (((-3 $ "failed") $ $) 19)) (-3109 (($ $ $) 43 (|has| |#2| (-157))) (($ $ (-707)) 42 (|has| |#2| (-157)))) (-2547 (($) 17 T CONST)) (-3634 (($ $ |#1|) 54) (($ $ (-756 |#1|)) 53) (($ $ $) 52)) (-1297 (((-3 (-756 |#1|) "failed") $) 64)) (-1483 (((-756 |#1|) $) 63)) (-1257 (((-3 $ "failed") $) 34)) (-1619 (((-108) $) 45)) (-2350 (($ $) 44)) (-3996 (((-108) $) 31)) (-3649 (((-108) $) 50)) (-2517 (($ (-756 |#1|) |#2|) 51)) (-2239 (($ $) 49)) (-1694 (((-2 (|:| |k| (-756 |#1|)) (|:| |c| |#2|)) $) 60)) (-3657 (((-756 |#1|) $) 61)) (-1390 (($ (-1 |#2| |#2|) $) 41)) (-3111 (($ $ |#1|) 57) (($ $ (-756 |#1|)) 56) (($ $ $) 55)) (-3688 (((-1067) $) 9)) (-4147 (((-1031) $) 10)) (-3101 (((-108) $) 47)) (-2676 ((|#2| $) 46)) (-2189 (((-792) $) 11) (($ (-521)) 28) (($ |#2|) 68) (($ (-756 |#1|)) 65) (($ |#1|) 48)) (-2973 ((|#2| $ (-756 |#1|)) 59) ((|#2| $ $) 58)) (-3846 (((-707)) 29)) (-3505 (($ $ (-850)) 26) (($ $ (-707)) 33)) (-3561 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-707)) 32)) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ |#2| $) 67) (($ $ |#2|) 66) (($ |#1| $) 62)))
+(((-1180 |#1| |#2|) (-1196) (-784) (-970)) (T -1180))
+((* (*1 *1 *1 *2) (-12 (-4 *1 (-1180 *3 *2)) (-4 *3 (-784)) (-4 *2 (-970)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1180 *2 *3)) (-4 *2 (-784)) (-4 *3 (-970)))) (-3657 (*1 *2 *1) (-12 (-4 *1 (-1180 *3 *4)) (-4 *3 (-784)) (-4 *4 (-970)) (-5 *2 (-756 *3)))) (-1694 (*1 *2 *1) (-12 (-4 *1 (-1180 *3 *4)) (-4 *3 (-784)) (-4 *4 (-970)) (-5 *2 (-2 (|:| |k| (-756 *3)) (|:| |c| *4))))) (-2973 (*1 *2 *1 *3) (-12 (-5 *3 (-756 *4)) (-4 *1 (-1180 *4 *2)) (-4 *4 (-784)) (-4 *2 (-970)))) (-2973 (*1 *2 *1 *1) (-12 (-4 *1 (-1180 *3 *2)) (-4 *3 (-784)) (-4 *2 (-970)))) (-3111 (*1 *1 *1 *2) (-12 (-4 *1 (-1180 *2 *3)) (-4 *2 (-784)) (-4 *3 (-970)))) (-3111 (*1 *1 *1 *2) (-12 (-5 *2 (-756 *3)) (-4 *1 (-1180 *3 *4)) (-4 *3 (-784)) (-4 *4 (-970)))) (-3111 (*1 *1 *1 *1) (-12 (-4 *1 (-1180 *2 *3)) (-4 *2 (-784)) (-4 *3 (-970)))) (-3634 (*1 *1 *1 *2) (-12 (-4 *1 (-1180 *2 *3)) (-4 *2 (-784)) (-4 *3 (-970)))) (-3634 (*1 *1 *1 *2) (-12 (-5 *2 (-756 *3)) (-4 *1 (-1180 *3 *4)) (-4 *3 (-784)) (-4 *4 (-970)))) (-3634 (*1 *1 *1 *1) (-12 (-4 *1 (-1180 *2 *3)) (-4 *2 (-784)) (-4 *3 (-970)))) (-2517 (*1 *1 *2 *3) (-12 (-5 *2 (-756 *4)) (-4 *4 (-784)) (-4 *1 (-1180 *4 *3)) (-4 *3 (-970)))) (-3649 (*1 *2 *1) (-12 (-4 *1 (-1180 *3 *4)) (-4 *3 (-784)) (-4 *4 (-970)) (-5 *2 (-108)))) (-2239 (*1 *1 *1) (-12 (-4 *1 (-1180 *2 *3)) (-4 *2 (-784)) (-4 *3 (-970)))) (-2189 (*1 *1 *2) (-12 (-4 *1 (-1180 *2 *3)) (-4 *2 (-784)) (-4 *3 (-970)))) (-3101 (*1 *2 *1) (-12 (-4 *1 (-1180 *3 *4)) (-4 *3 (-784)) (-4 *4 (-970)) (-5 *2 (-108)))) (-2676 (*1 *2 *1) (-12 (-4 *1 (-1180 *3 *2)) (-4 *3 (-784)) (-4 *2 (-970)))) (-1619 (*1 *2 *1) (-12 (-4 *1 (-1180 *3 *4)) (-4 *3 (-784)) (-4 *4 (-970)) (-5 *2 (-108)))) (-2350 (*1 *1 *1) (-12 (-4 *1 (-1180 *2 *3)) (-4 *2 (-784)) (-4 *3 (-970)))) (-3109 (*1 *1 *1 *1) (-12 (-4 *1 (-1180 *2 *3)) (-4 *2 (-784)) (-4 *3 (-970)) (-4 *3 (-157)))) (-3109 (*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-4 *1 (-1180 *3 *4)) (-4 *3 (-784)) (-4 *4 (-970)) (-4 *4 (-157)))) (-1390 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1180 *3 *4)) (-4 *3 (-784)) (-4 *4 (-970)))) (-4101 (*1 *2 *1) (-12 (-4 *1 (-1180 *3 *4)) (-4 *3 (-784)) (-4 *4 (-970)) (-5 *2 (-587 *3)))))
+(-13 (-970) (-1177 |t#2|) (-961 (-756 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -3657 ((-756 |t#1|) $)) (-15 -1694 ((-2 (|:| |k| (-756 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -2973 (|t#2| $ (-756 |t#1|))) (-15 -2973 (|t#2| $ $)) (-15 -3111 ($ $ |t#1|)) (-15 -3111 ($ $ (-756 |t#1|))) (-15 -3111 ($ $ $)) (-15 -3634 ($ $ |t#1|)) (-15 -3634 ($ $ (-756 |t#1|))) (-15 -3634 ($ $ $)) (-15 -2517 ($ (-756 |t#1|) |t#2|)) (-15 -3649 ((-108) $)) (-15 -2239 ($ $)) (-15 -2189 ($ |t#1|)) (-15 -3101 ((-108) $)) (-15 -2676 (|t#2| $)) (-15 -1619 ((-108) $)) (-15 -2350 ($ $)) (IF (|has| |t#2| (-157)) (PROGN (-15 -3109 ($ $ $)) (-15 -3109 ($ $ (-707)))) |%noBranch|) (-15 -1390 ($ (-1 |t#2| |t#2|) $)) (-15 -4101 ((-587 |t#1|) $)) (IF (|has| |t#2| (-6 -4226)) (-6 -4226) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#2|) |has| |#2| (-157)) ((-97) . T) ((-107 |#2| |#2|) . T) ((-124) . T) ((-561 (-792)) . T) ((-589 |#2|) . T) ((-589 $) . T) ((-654 |#2|) |has| |#2| (-157)) ((-663) . T) ((-961 (-756 |#1|)) . T) ((-976 |#2|) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T) ((-1177 |#2|) . T))
+((-1779 (((-108) $) 14)) (-2154 (((-108) $) 13)) (-3654 (($ $) 18) (($ $ (-707)) 19)))
+(((-1181 |#1| |#2|) (-10 -8 (-15 -3654 (|#1| |#1| (-707))) (-15 -3654 (|#1| |#1|)) (-15 -1779 ((-108) |#1|)) (-15 -2154 ((-108) |#1|))) (-1182 |#2|) (-337)) (T -1181))
+NIL
+(-10 -8 (-15 -3654 (|#1| |#1| (-707))) (-15 -3654 (|#1| |#1|)) (-15 -1779 ((-108) |#1|)) (-15 -2154 ((-108) |#1|)))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-3847 (((-2 (|:| -3689 $) (|:| -4220 $) (|:| |associate| $)) $) 41)) (-2559 (($ $) 40)) (-1733 (((-108) $) 38)) (-1779 (((-108) $) 94)) (-3471 (((-707)) 90)) (-1232 (((-3 $ "failed") $ $) 19)) (-3063 (($ $) 73)) (-3358 (((-392 $) $) 72)) (-1389 (((-108) $ $) 59)) (-2547 (($) 17 T CONST)) (-1297 (((-3 |#1| "failed") $) 101)) (-1483 ((|#1| $) 100)) (-2277 (($ $ $) 55)) (-1257 (((-3 $ "failed") $) 34)) (-2253 (($ $ $) 56)) (-3780 (((-2 (|:| -2973 (-587 $)) (|:| -1383 $)) (-587 $)) 51)) (-2833 (($ $ (-707)) 87 (-3703 (|has| |#1| (-133)) (|has| |#1| (-342)))) (($ $) 86 (-3703 (|has| |#1| (-133)) (|has| |#1| (-342))))) (-2710 (((-108) $) 71)) (-2733 (((-770 (-850)) $) 84 (-3703 (|has| |#1| (-133)) (|has| |#1| (-342))))) (-3996 (((-108) $) 31)) (-1546 (((-3 (-587 $) "failed") (-587 $) $) 52)) (-2223 (($ $ $) 46) (($ (-587 $)) 45)) (-3688 (((-1067) $) 9)) (-3095 (($ $) 70)) (-2218 (((-108) $) 93)) (-4147 (((-1031) $) 10)) (-2513 (((-1080 $) (-1080 $) (-1080 $)) 44)) (-2258 (($ $ $) 48) (($ (-587 $)) 47)) (-1916 (((-392 $) $) 74)) (-4178 (((-770 (-850))) 91)) (-1962 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2230 (((-3 $ "failed") $ $) 42)) (-3854 (((-3 (-587 $) "failed") (-587 $) $) 50)) (-4196 (((-707) $) 58)) (-1830 (((-2 (|:| -3727 $) (|:| -3820 $)) $ $) 57)) (-4067 (((-3 (-707) "failed") $ $) 85 (-3703 (|has| |#1| (-133)) (|has| |#1| (-342))))) (-2359 (((-126)) 99)) (-1994 (((-770 (-850)) $) 92)) (-2189 (((-792) $) 11) (($ (-521)) 28) (($ $) 43) (($ (-381 (-521))) 65) (($ |#1|) 102)) (-1671 (((-3 $ "failed") $) 83 (-3703 (|has| |#1| (-133)) (|has| |#1| (-342))))) (-3846 (((-707)) 29)) (-4210 (((-108) $ $) 39)) (-2154 (((-108) $) 95)) (-3505 (($ $ (-850)) 26) (($ $ (-707)) 33) (($ $ (-521)) 69)) (-3561 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-3654 (($ $) 89 (|has| |#1| (-342))) (($ $ (-707)) 88 (|has| |#1| (-342)))) (-1531 (((-108) $ $) 6)) (-1620 (($ $ $) 64) (($ $ |#1|) 98)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-707)) 32) (($ $ (-521)) 68)) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ $ (-381 (-521))) 67) (($ (-381 (-521)) $) 66) (($ $ |#1|) 97) (($ |#1| $) 96)))
+(((-1182 |#1|) (-1196) (-337)) (T -1182))
+((-2154 (*1 *2 *1) (-12 (-4 *1 (-1182 *3)) (-4 *3 (-337)) (-5 *2 (-108)))) (-1779 (*1 *2 *1) (-12 (-4 *1 (-1182 *3)) (-4 *3 (-337)) (-5 *2 (-108)))) (-2218 (*1 *2 *1) (-12 (-4 *1 (-1182 *3)) (-4 *3 (-337)) (-5 *2 (-108)))) (-1994 (*1 *2 *1) (-12 (-4 *1 (-1182 *3)) (-4 *3 (-337)) (-5 *2 (-770 (-850))))) (-4178 (*1 *2) (-12 (-4 *1 (-1182 *3)) (-4 *3 (-337)) (-5 *2 (-770 (-850))))) (-3471 (*1 *2) (-12 (-4 *1 (-1182 *3)) (-4 *3 (-337)) (-5 *2 (-707)))) (-3654 (*1 *1 *1) (-12 (-4 *1 (-1182 *2)) (-4 *2 (-337)) (-4 *2 (-342)))) (-3654 (*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-4 *1 (-1182 *3)) (-4 *3 (-337)) (-4 *3 (-342)))))
+(-13 (-337) (-961 |t#1|) (-1172 |t#1|) (-10 -8 (IF (|has| |t#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |t#1| (-133)) (-6 (-376)) |%noBranch|) (-15 -2154 ((-108) $)) (-15 -1779 ((-108) $)) (-15 -2218 ((-108) $)) (-15 -1994 ((-770 (-850)) $)) (-15 -4178 ((-770 (-850)))) (-15 -3471 ((-707))) (IF (|has| |t#1| (-342)) (PROGN (-6 (-376)) (-15 -3654 ($ $)) (-15 -3654 ($ $ (-707)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-381 (-521))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 |#1| |#1|) . T) ((-107 $ $) . T) ((-124) . T) ((-133) -3703 (|has| |#1| (-342)) (|has| |#1| (-133))) ((-135) |has| |#1| (-135)) ((-561 (-792)) . T) ((-157) . T) ((-220) . T) ((-265) . T) ((-282) . T) ((-337) . T) ((-376) -3703 (|has| |#1| (-342)) (|has| |#1| (-133))) ((-425) . T) ((-513) . T) ((-589 #0#) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-654 #0#) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-663) . T) ((-849) . T) ((-961 |#1|) . T) ((-976 #0#) . T) ((-976 |#1|) . T) ((-976 $) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T) ((-1123) . T) ((-1172 |#1|) . T))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-4101 (((-587 |#1|) $) 85)) (-1806 (($ $ (-707)) 88)) (-1232 (((-3 $ "failed") $ $) NIL)) (-3109 (($ $ $) NIL (|has| |#2| (-157))) (($ $ (-707)) NIL (|has| |#2| (-157)))) (-2547 (($) NIL T CONST)) (-3634 (($ $ |#1|) NIL) (($ $ (-756 |#1|)) NIL) (($ $ $) NIL)) (-1297 (((-3 (-756 |#1|) "failed") $) NIL) (((-3 (-822 |#1|) "failed") $) NIL)) (-1483 (((-756 |#1|) $) NIL) (((-822 |#1|) $) NIL)) (-3152 (($ $) 87)) (-1257 (((-3 $ "failed") $) NIL)) (-1619 (((-108) $) 76)) (-2350 (($ $) 80)) (-2339 (($ $ $ (-707)) 89)) (-3996 (((-108) $) NIL)) (-2678 (((-707) $) NIL)) (-2959 (((-587 $) $) NIL)) (-3649 (((-108) $) NIL)) (-2517 (($ (-756 |#1|) |#2|) NIL) (($ (-822 |#1|) |#2|) 26)) (-2239 (($ $) 102)) (-1694 (((-2 (|:| |k| (-756 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3657 (((-756 |#1|) $) NIL)) (-3137 (((-756 |#1|) $) NIL)) (-1390 (($ (-1 |#2| |#2|) $) NIL)) (-3111 (($ $ |#1|) NIL) (($ $ (-756 |#1|)) NIL) (($ $ $) NIL)) (-1253 (($ $ (-707)) 96 (|has| |#2| (-654 (-381 (-521)))))) (-1267 (((-2 (|:| |k| (-822 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3125 (((-822 |#1|) $) 70)) (-3135 ((|#2| $) NIL)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-3261 (($ $ (-707)) 93 (|has| |#2| (-654 (-381 (-521)))))) (-1994 (((-707) $) 86)) (-3101 (((-108) $) 71)) (-2676 ((|#2| $) 75)) (-2189 (((-792) $) 57) (($ (-521)) NIL) (($ |#2|) 51) (($ (-756 |#1|)) NIL) (($ |#1|) 59) (($ (-822 |#1|)) NIL) (($ (-605 |#1| |#2|)) 43) (((-1178 |#1| |#2|) $) 64) (((-1187 |#1| |#2|) $) 69)) (-1259 (((-587 |#2|) $) NIL)) (-3800 ((|#2| $ (-822 |#1|)) NIL)) (-2973 ((|#2| $ (-756 |#1|)) NIL) ((|#2| $ $) NIL)) (-3846 (((-707)) NIL)) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (-3561 (($) 21 T CONST)) (-3572 (($) 25 T CONST)) (-2352 (((-587 (-2 (|:| |k| (-822 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3213 (((-3 (-605 |#1| |#2|) "failed") $) 101)) (-1531 (((-108) $ $) 65)) (-1612 (($ $) 95) (($ $ $) 94)) (-1602 (($ $ $) 20)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) 44) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-822 |#1|)) NIL)))
+(((-1183 |#1| |#2|) (-13 (-1184 |#1| |#2|) (-356 |#2| (-822 |#1|)) (-10 -8 (-15 -2189 ($ (-605 |#1| |#2|))) (-15 -2189 ((-1178 |#1| |#2|) $)) (-15 -2189 ((-1187 |#1| |#2|) $)) (-15 -3213 ((-3 (-605 |#1| |#2|) "failed") $)) (-15 -2339 ($ $ $ (-707))) (IF (|has| |#2| (-654 (-381 (-521)))) (PROGN (-15 -3261 ($ $ (-707))) (-15 -1253 ($ $ (-707)))) |%noBranch|))) (-784) (-157)) (T -1183))
+((-2189 (*1 *1 *2) (-12 (-5 *2 (-605 *3 *4)) (-4 *3 (-784)) (-4 *4 (-157)) (-5 *1 (-1183 *3 *4)))) (-2189 (*1 *2 *1) (-12 (-5 *2 (-1178 *3 *4)) (-5 *1 (-1183 *3 *4)) (-4 *3 (-784)) (-4 *4 (-157)))) (-2189 (*1 *2 *1) (-12 (-5 *2 (-1187 *3 *4)) (-5 *1 (-1183 *3 *4)) (-4 *3 (-784)) (-4 *4 (-157)))) (-3213 (*1 *2 *1) (|partial| -12 (-5 *2 (-605 *3 *4)) (-5 *1 (-1183 *3 *4)) (-4 *3 (-784)) (-4 *4 (-157)))) (-2339 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-1183 *3 *4)) (-4 *3 (-784)) (-4 *4 (-157)))) (-3261 (*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-1183 *3 *4)) (-4 *4 (-654 (-381 (-521)))) (-4 *3 (-784)) (-4 *4 (-157)))) (-1253 (*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-1183 *3 *4)) (-4 *4 (-654 (-381 (-521)))) (-4 *3 (-784)) (-4 *4 (-157)))))
+(-13 (-1184 |#1| |#2|) (-356 |#2| (-822 |#1|)) (-10 -8 (-15 -2189 ($ (-605 |#1| |#2|))) (-15 -2189 ((-1178 |#1| |#2|) $)) (-15 -2189 ((-1187 |#1| |#2|) $)) (-15 -3213 ((-3 (-605 |#1| |#2|) "failed") $)) (-15 -2339 ($ $ $ (-707))) (IF (|has| |#2| (-654 (-381 (-521)))) (PROGN (-15 -3261 ($ $ (-707))) (-15 -1253 ($ $ (-707)))) |%noBranch|)))
+((-1415 (((-108) $ $) 7)) (-2220 (((-108) $) 16)) (-4101 (((-587 |#1|) $) 40)) (-1806 (($ $ (-707)) 73)) (-1232 (((-3 $ "failed") $ $) 19)) (-3109 (($ $ $) 43 (|has| |#2| (-157))) (($ $ (-707)) 42 (|has| |#2| (-157)))) (-2547 (($) 17 T CONST)) (-3634 (($ $ |#1|) 54) (($ $ (-756 |#1|)) 53) (($ $ $) 52)) (-1297 (((-3 (-756 |#1|) "failed") $) 64)) (-1483 (((-756 |#1|) $) 63)) (-1257 (((-3 $ "failed") $) 34)) (-1619 (((-108) $) 45)) (-2350 (($ $) 44)) (-3996 (((-108) $) 31)) (-3649 (((-108) $) 50)) (-2517 (($ (-756 |#1|) |#2|) 51)) (-2239 (($ $) 49)) (-1694 (((-2 (|:| |k| (-756 |#1|)) (|:| |c| |#2|)) $) 60)) (-3657 (((-756 |#1|) $) 61)) (-3137 (((-756 |#1|) $) 75)) (-1390 (($ (-1 |#2| |#2|) $) 41)) (-3111 (($ $ |#1|) 57) (($ $ (-756 |#1|)) 56) (($ $ $) 55)) (-3688 (((-1067) $) 9)) (-4147 (((-1031) $) 10)) (-1994 (((-707) $) 74)) (-3101 (((-108) $) 47)) (-2676 ((|#2| $) 46)) (-2189 (((-792) $) 11) (($ (-521)) 28) (($ |#2|) 68) (($ (-756 |#1|)) 65) (($ |#1|) 48)) (-2973 ((|#2| $ (-756 |#1|)) 59) ((|#2| $ $) 58)) (-3846 (((-707)) 29)) (-3505 (($ $ (-850)) 26) (($ $ (-707)) 33)) (-3561 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-707)) 32)) (* (($ (-850) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ |#2| $) 67) (($ $ |#2|) 66) (($ |#1| $) 62)))
+(((-1184 |#1| |#2|) (-1196) (-784) (-970)) (T -1184))
+((-3137 (*1 *2 *1) (-12 (-4 *1 (-1184 *3 *4)) (-4 *3 (-784)) (-4 *4 (-970)) (-5 *2 (-756 *3)))) (-1994 (*1 *2 *1) (-12 (-4 *1 (-1184 *3 *4)) (-4 *3 (-784)) (-4 *4 (-970)) (-5 *2 (-707)))) (-1806 (*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-4 *1 (-1184 *3 *4)) (-4 *3 (-784)) (-4 *4 (-970)))))
+(-13 (-1180 |t#1| |t#2|) (-10 -8 (-15 -3137 ((-756 |t#1|) $)) (-15 -1994 ((-707) $)) (-15 -1806 ($ $ (-707)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#2|) |has| |#2| (-157)) ((-97) . T) ((-107 |#2| |#2|) . T) ((-124) . T) ((-561 (-792)) . T) ((-589 |#2|) . T) ((-589 $) . T) ((-654 |#2|) |has| |#2| (-157)) ((-663) . T) ((-961 (-756 |#1|)) . T) ((-976 |#2|) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T) ((-1177 |#2|) . T) ((-1180 |#1| |#2|) . T))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-4101 (((-587 (-1084)) $) NIL)) (-1330 (($ (-1178 (-1084) |#1|)) NIL)) (-1806 (($ $ (-707)) NIL)) (-1232 (((-3 $ "failed") $ $) NIL)) (-3109 (($ $ $) NIL (|has| |#1| (-157))) (($ $ (-707)) NIL (|has| |#1| (-157)))) (-2547 (($) NIL T CONST)) (-3634 (($ $ (-1084)) NIL) (($ $ (-756 (-1084))) NIL) (($ $ $) NIL)) (-1297 (((-3 (-756 (-1084)) "failed") $) NIL)) (-1483 (((-756 (-1084)) $) NIL)) (-1257 (((-3 $ "failed") $) NIL)) (-1619 (((-108) $) NIL)) (-2350 (($ $) NIL)) (-3996 (((-108) $) NIL)) (-3649 (((-108) $) NIL)) (-2517 (($ (-756 (-1084)) |#1|) NIL)) (-2239 (($ $) NIL)) (-1694 (((-2 (|:| |k| (-756 (-1084))) (|:| |c| |#1|)) $) NIL)) (-3657 (((-756 (-1084)) $) NIL)) (-3137 (((-756 (-1084)) $) NIL)) (-1390 (($ (-1 |#1| |#1|) $) NIL)) (-3111 (($ $ (-1084)) NIL) (($ $ (-756 (-1084))) NIL) (($ $ $) NIL)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-1604 (((-1178 (-1084) |#1|) $) NIL)) (-1994 (((-707) $) NIL)) (-3101 (((-108) $) NIL)) (-2676 ((|#1| $) NIL)) (-2189 (((-792) $) NIL) (($ (-521)) NIL) (($ |#1|) NIL) (($ (-756 (-1084))) NIL) (($ (-1084)) NIL)) (-2973 ((|#1| $ (-756 (-1084))) NIL) ((|#1| $ $) NIL)) (-3846 (((-707)) NIL)) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (-3561 (($) NIL T CONST)) (-3048 (((-587 (-2 (|:| |k| (-1084)) (|:| |c| $))) $) NIL)) (-3572 (($) NIL T CONST)) (-1531 (((-108) $ $) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1084) $) NIL)))
+(((-1185 |#1|) (-13 (-1184 (-1084) |#1|) (-10 -8 (-15 -1604 ((-1178 (-1084) |#1|) $)) (-15 -1330 ($ (-1178 (-1084) |#1|))) (-15 -3048 ((-587 (-2 (|:| |k| (-1084)) (|:| |c| $))) $)))) (-970)) (T -1185))
+((-1604 (*1 *2 *1) (-12 (-5 *2 (-1178 (-1084) *3)) (-5 *1 (-1185 *3)) (-4 *3 (-970)))) (-1330 (*1 *1 *2) (-12 (-5 *2 (-1178 (-1084) *3)) (-4 *3 (-970)) (-5 *1 (-1185 *3)))) (-3048 (*1 *2 *1) (-12 (-5 *2 (-587 (-2 (|:| |k| (-1084)) (|:| |c| (-1185 *3))))) (-5 *1 (-1185 *3)) (-4 *3 (-970)))))
+(-13 (-1184 (-1084) |#1|) (-10 -8 (-15 -1604 ((-1178 (-1084) |#1|) $)) (-15 -1330 ($ (-1178 (-1084) |#1|))) (-15 -3048 ((-587 (-2 (|:| |k| (-1084)) (|:| |c| $))) $))))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-1232 (((-3 $ "failed") $ $) NIL)) (-2547 (($) NIL T CONST)) (-1297 (((-3 |#2| "failed") $) NIL)) (-1483 ((|#2| $) NIL)) (-3152 (($ $) NIL)) (-1257 (((-3 $ "failed") $) 35)) (-1619 (((-108) $) 30)) (-2350 (($ $) 31)) (-3996 (((-108) $) NIL)) (-2678 (((-707) $) NIL)) (-2959 (((-587 $) $) NIL)) (-3649 (((-108) $) NIL)) (-2517 (($ |#2| |#1|) NIL)) (-3657 ((|#2| $) 19)) (-3137 ((|#2| $) 16)) (-1390 (($ (-1 |#1| |#1|) $) NIL)) (-1267 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-3125 ((|#2| $) NIL)) (-3135 ((|#1| $) NIL)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-3101 (((-108) $) 27)) (-2676 ((|#1| $) 28)) (-2189 (((-792) $) 54) (($ (-521)) 39) (($ |#1|) 34) (($ |#2|) NIL)) (-1259 (((-587 |#1|) $) NIL)) (-3800 ((|#1| $ |#2|) NIL)) (-2973 ((|#1| $ |#2|) 24)) (-3846 (((-707)) 14)) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (-3561 (($) 25 T CONST)) (-3572 (($) 11 T CONST)) (-2352 (((-587 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-1531 (((-108) $ $) 26)) (-1620 (($ $ |#1|) 56 (|has| |#1| (-337)))) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) 43)) (** (($ $ (-850)) NIL) (($ $ (-707)) 45)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) 44) (($ |#1| $) 40) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-3475 (((-707) $) 15)))
+(((-1186 |#1| |#2|) (-13 (-970) (-1177 |#1|) (-356 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3475 ((-707) $)) (-15 -2189 ($ |#2|)) (-15 -3137 (|#2| $)) (-15 -3657 (|#2| $)) (-15 -3152 ($ $)) (-15 -2973 (|#1| $ |#2|)) (-15 -3101 ((-108) $)) (-15 -2676 (|#1| $)) (-15 -1619 ((-108) $)) (-15 -2350 ($ $)) (-15 -1390 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-337)) (-15 -1620 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4226)) (-6 -4226) |%noBranch|) (IF (|has| |#1| (-6 -4230)) (-6 -4230) |%noBranch|) (IF (|has| |#1| (-6 -4231)) (-6 -4231) |%noBranch|))) (-970) (-780)) (T -1186))
+((* (*1 *1 *1 *2) (-12 (-5 *1 (-1186 *2 *3)) (-4 *2 (-970)) (-4 *3 (-780)))) (-3152 (*1 *1 *1) (-12 (-5 *1 (-1186 *2 *3)) (-4 *2 (-970)) (-4 *3 (-780)))) (-1390 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-970)) (-5 *1 (-1186 *3 *4)) (-4 *4 (-780)))) (-2189 (*1 *1 *2) (-12 (-5 *1 (-1186 *3 *2)) (-4 *3 (-970)) (-4 *2 (-780)))) (-3475 (*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-970)) (-4 *4 (-780)))) (-3137 (*1 *2 *1) (-12 (-4 *2 (-780)) (-5 *1 (-1186 *3 *2)) (-4 *3 (-970)))) (-3657 (*1 *2 *1) (-12 (-4 *2 (-780)) (-5 *1 (-1186 *3 *2)) (-4 *3 (-970)))) (-2973 (*1 *2 *1 *3) (-12 (-4 *2 (-970)) (-5 *1 (-1186 *2 *3)) (-4 *3 (-780)))) (-3101 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-970)) (-4 *4 (-780)))) (-2676 (*1 *2 *1) (-12 (-4 *2 (-970)) (-5 *1 (-1186 *2 *3)) (-4 *3 (-780)))) (-1619 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-970)) (-4 *4 (-780)))) (-2350 (*1 *1 *1) (-12 (-5 *1 (-1186 *2 *3)) (-4 *2 (-970)) (-4 *3 (-780)))) (-1620 (*1 *1 *1 *2) (-12 (-5 *1 (-1186 *2 *3)) (-4 *2 (-337)) (-4 *2 (-970)) (-4 *3 (-780)))))
+(-13 (-970) (-1177 |#1|) (-356 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3475 ((-707) $)) (-15 -2189 ($ |#2|)) (-15 -3137 (|#2| $)) (-15 -3657 (|#2| $)) (-15 -3152 ($ $)) (-15 -2973 (|#1| $ |#2|)) (-15 -3101 ((-108) $)) (-15 -2676 (|#1| $)) (-15 -1619 ((-108) $)) (-15 -2350 ($ $)) (-15 -1390 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-337)) (-15 -1620 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4226)) (-6 -4226) |%noBranch|) (IF (|has| |#1| (-6 -4230)) (-6 -4230) |%noBranch|) (IF (|has| |#1| (-6 -4231)) (-6 -4231) |%noBranch|)))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) NIL)) (-4101 (((-587 |#1|) $) 120)) (-1330 (($ (-1178 |#1| |#2|)) 44)) (-1806 (($ $ (-707)) 32)) (-1232 (((-3 $ "failed") $ $) NIL)) (-3109 (($ $ $) 48 (|has| |#2| (-157))) (($ $ (-707)) 46 (|has| |#2| (-157)))) (-2547 (($) NIL T CONST)) (-3634 (($ $ |#1|) 102) (($ $ (-756 |#1|)) 103) (($ $ $) 25)) (-1297 (((-3 (-756 |#1|) "failed") $) NIL)) (-1483 (((-756 |#1|) $) NIL)) (-1257 (((-3 $ "failed") $) 110)) (-1619 (((-108) $) 105)) (-2350 (($ $) 106)) (-3996 (((-108) $) NIL)) (-3649 (((-108) $) NIL)) (-2517 (($ (-756 |#1|) |#2|) 19)) (-2239 (($ $) NIL)) (-1694 (((-2 (|:| |k| (-756 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3657 (((-756 |#1|) $) 111)) (-3137 (((-756 |#1|) $) 114)) (-1390 (($ (-1 |#2| |#2|) $) 119)) (-3111 (($ $ |#1|) 100) (($ $ (-756 |#1|)) 101) (($ $ $) 56)) (-3688 (((-1067) $) NIL)) (-4147 (((-1031) $) NIL)) (-1604 (((-1178 |#1| |#2|) $) 84)) (-1994 (((-707) $) 117)) (-3101 (((-108) $) 70)) (-2676 ((|#2| $) 28)) (-2189 (((-792) $) 63) (($ (-521)) 77) (($ |#2|) 74) (($ (-756 |#1|)) 17) (($ |#1|) 73)) (-2973 ((|#2| $ (-756 |#1|)) 104) ((|#2| $ $) 27)) (-3846 (((-707)) 108)) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (-3561 (($) 14 T CONST)) (-3048 (((-587 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 53)) (-3572 (($) 29 T CONST)) (-1531 (((-108) $ $) 13)) (-1612 (($ $) 88) (($ $ $) 91)) (-1602 (($ $ $) 55)) (** (($ $ (-850)) NIL) (($ $ (-707)) 49)) (* (($ (-850) $) NIL) (($ (-707) $) 47) (($ (-521) $) 94) (($ $ $) 21) (($ |#2| $) 18) (($ $ |#2|) 20) (($ |#1| $) 82)))
+(((-1187 |#1| |#2|) (-13 (-1184 |#1| |#2|) (-10 -8 (-15 -1604 ((-1178 |#1| |#2|) $)) (-15 -1330 ($ (-1178 |#1| |#2|))) (-15 -3048 ((-587 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-784) (-970)) (T -1187))
+((-1604 (*1 *2 *1) (-12 (-5 *2 (-1178 *3 *4)) (-5 *1 (-1187 *3 *4)) (-4 *3 (-784)) (-4 *4 (-970)))) (-1330 (*1 *1 *2) (-12 (-5 *2 (-1178 *3 *4)) (-4 *3 (-784)) (-4 *4 (-970)) (-5 *1 (-1187 *3 *4)))) (-3048 (*1 *2 *1) (-12 (-5 *2 (-587 (-2 (|:| |k| *3) (|:| |c| (-1187 *3 *4))))) (-5 *1 (-1187 *3 *4)) (-4 *3 (-784)) (-4 *4 (-970)))))
+(-13 (-1184 |#1| |#2|) (-10 -8 (-15 -1604 ((-1178 |#1| |#2|) $)) (-15 -1330 ($ (-1178 |#1| |#2|))) (-15 -3048 ((-587 (-2 (|:| |k| |#1|) (|:| |c| $))) $))))
+((-1351 (((-587 (-1065 |#1|)) (-1 (-587 (-1065 |#1|)) (-587 (-1065 |#1|))) (-521)) 15) (((-1065 |#1|) (-1 (-1065 |#1|) (-1065 |#1|))) 11)))
+(((-1188 |#1|) (-10 -7 (-15 -1351 ((-1065 |#1|) (-1 (-1065 |#1|) (-1065 |#1|)))) (-15 -1351 ((-587 (-1065 |#1|)) (-1 (-587 (-1065 |#1|)) (-587 (-1065 |#1|))) (-521)))) (-1119)) (T -1188))
+((-1351 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-587 (-1065 *5)) (-587 (-1065 *5)))) (-5 *4 (-521)) (-5 *2 (-587 (-1065 *5))) (-5 *1 (-1188 *5)) (-4 *5 (-1119)))) (-1351 (*1 *2 *3) (-12 (-5 *3 (-1 (-1065 *4) (-1065 *4))) (-5 *2 (-1065 *4)) (-5 *1 (-1188 *4)) (-4 *4 (-1119)))))
+(-10 -7 (-15 -1351 ((-1065 |#1|) (-1 (-1065 |#1|) (-1065 |#1|)))) (-15 -1351 ((-587 (-1065 |#1|)) (-1 (-587 (-1065 |#1|)) (-587 (-1065 |#1|))) (-521))))
+((-2387 (((-587 (-2 (|:| -3183 (-1080 |#1|)) (|:| -2234 (-587 (-881 |#1|))))) (-587 (-881 |#1|))) 146) (((-587 (-2 (|:| -3183 (-1080 |#1|)) (|:| -2234 (-587 (-881 |#1|))))) (-587 (-881 |#1|)) (-108)) 145) (((-587 (-2 (|:| -3183 (-1080 |#1|)) (|:| -2234 (-587 (-881 |#1|))))) (-587 (-881 |#1|)) (-108) (-108)) 144) (((-587 (-2 (|:| -3183 (-1080 |#1|)) (|:| -2234 (-587 (-881 |#1|))))) (-587 (-881 |#1|)) (-108) (-108) (-108)) 143) (((-587 (-2 (|:| -3183 (-1080 |#1|)) (|:| -2234 (-587 (-881 |#1|))))) (-967 |#1| |#2|)) 128)) (-3969 (((-587 (-967 |#1| |#2|)) (-587 (-881 |#1|))) 71) (((-587 (-967 |#1| |#2|)) (-587 (-881 |#1|)) (-108)) 70) (((-587 (-967 |#1| |#2|)) (-587 (-881 |#1|)) (-108) (-108)) 69)) (-3358 (((-587 (-1055 |#1| (-493 (-794 |#3|)) (-794 |#3|) (-716 |#1| (-794 |#3|)))) (-967 |#1| |#2|)) 60)) (-2779 (((-587 (-587 (-948 (-381 |#1|)))) (-587 (-881 |#1|))) 113) (((-587 (-587 (-948 (-381 |#1|)))) (-587 (-881 |#1|)) (-108)) 112) (((-587 (-587 (-948 (-381 |#1|)))) (-587 (-881 |#1|)) (-108) (-108)) 111) (((-587 (-587 (-948 (-381 |#1|)))) (-587 (-881 |#1|)) (-108) (-108) (-108)) 110) (((-587 (-587 (-948 (-381 |#1|)))) (-967 |#1| |#2|)) 105)) (-1672 (((-587 (-587 (-948 (-381 |#1|)))) (-587 (-881 |#1|))) 118) (((-587 (-587 (-948 (-381 |#1|)))) (-587 (-881 |#1|)) (-108)) 117) (((-587 (-587 (-948 (-381 |#1|)))) (-587 (-881 |#1|)) (-108) (-108)) 116) (((-587 (-587 (-948 (-381 |#1|)))) (-967 |#1| |#2|)) 115)) (-1430 (((-587 (-716 |#1| (-794 |#3|))) (-1055 |#1| (-493 (-794 |#3|)) (-794 |#3|) (-716 |#1| (-794 |#3|)))) 97) (((-1080 (-948 (-381 |#1|))) (-1080 |#1|)) 88) (((-881 (-948 (-381 |#1|))) (-716 |#1| (-794 |#3|))) 95) (((-881 (-948 (-381 |#1|))) (-881 |#1|)) 93) (((-716 |#1| (-794 |#3|)) (-716 |#1| (-794 |#2|))) 33)))
+(((-1189 |#1| |#2| |#3|) (-10 -7 (-15 -3969 ((-587 (-967 |#1| |#2|)) (-587 (-881 |#1|)) (-108) (-108))) (-15 -3969 ((-587 (-967 |#1| |#2|)) (-587 (-881 |#1|)) (-108))) (-15 -3969 ((-587 (-967 |#1| |#2|)) (-587 (-881 |#1|)))) (-15 -2387 ((-587 (-2 (|:| -3183 (-1080 |#1|)) (|:| -2234 (-587 (-881 |#1|))))) (-967 |#1| |#2|))) (-15 -2387 ((-587 (-2 (|:| -3183 (-1080 |#1|)) (|:| -2234 (-587 (-881 |#1|))))) (-587 (-881 |#1|)) (-108) (-108) (-108))) (-15 -2387 ((-587 (-2 (|:| -3183 (-1080 |#1|)) (|:| -2234 (-587 (-881 |#1|))))) (-587 (-881 |#1|)) (-108) (-108))) (-15 -2387 ((-587 (-2 (|:| -3183 (-1080 |#1|)) (|:| -2234 (-587 (-881 |#1|))))) (-587 (-881 |#1|)) (-108))) (-15 -2387 ((-587 (-2 (|:| -3183 (-1080 |#1|)) (|:| -2234 (-587 (-881 |#1|))))) (-587 (-881 |#1|)))) (-15 -2779 ((-587 (-587 (-948 (-381 |#1|)))) (-967 |#1| |#2|))) (-15 -2779 ((-587 (-587 (-948 (-381 |#1|)))) (-587 (-881 |#1|)) (-108) (-108) (-108))) (-15 -2779 ((-587 (-587 (-948 (-381 |#1|)))) (-587 (-881 |#1|)) (-108) (-108))) (-15 -2779 ((-587 (-587 (-948 (-381 |#1|)))) (-587 (-881 |#1|)) (-108))) (-15 -2779 ((-587 (-587 (-948 (-381 |#1|)))) (-587 (-881 |#1|)))) (-15 -1672 ((-587 (-587 (-948 (-381 |#1|)))) (-967 |#1| |#2|))) (-15 -1672 ((-587 (-587 (-948 (-381 |#1|)))) (-587 (-881 |#1|)) (-108) (-108))) (-15 -1672 ((-587 (-587 (-948 (-381 |#1|)))) (-587 (-881 |#1|)) (-108))) (-15 -1672 ((-587 (-587 (-948 (-381 |#1|)))) (-587 (-881 |#1|)))) (-15 -3358 ((-587 (-1055 |#1| (-493 (-794 |#3|)) (-794 |#3|) (-716 |#1| (-794 |#3|)))) (-967 |#1| |#2|))) (-15 -1430 ((-716 |#1| (-794 |#3|)) (-716 |#1| (-794 |#2|)))) (-15 -1430 ((-881 (-948 (-381 |#1|))) (-881 |#1|))) (-15 -1430 ((-881 (-948 (-381 |#1|))) (-716 |#1| (-794 |#3|)))) (-15 -1430 ((-1080 (-948 (-381 |#1|))) (-1080 |#1|))) (-15 -1430 ((-587 (-716 |#1| (-794 |#3|))) (-1055 |#1| (-493 (-794 |#3|)) (-794 |#3|) (-716 |#1| (-794 |#3|)))))) (-13 (-782) (-282) (-135) (-946)) (-587 (-1084)) (-587 (-1084))) (T -1189))
+((-1430 (*1 *2 *3) (-12 (-5 *3 (-1055 *4 (-493 (-794 *6)) (-794 *6) (-716 *4 (-794 *6)))) (-4 *4 (-13 (-782) (-282) (-135) (-946))) (-14 *6 (-587 (-1084))) (-5 *2 (-587 (-716 *4 (-794 *6)))) (-5 *1 (-1189 *4 *5 *6)) (-14 *5 (-587 (-1084))))) (-1430 (*1 *2 *3) (-12 (-5 *3 (-1080 *4)) (-4 *4 (-13 (-782) (-282) (-135) (-946))) (-5 *2 (-1080 (-948 (-381 *4)))) (-5 *1 (-1189 *4 *5 *6)) (-14 *5 (-587 (-1084))) (-14 *6 (-587 (-1084))))) (-1430 (*1 *2 *3) (-12 (-5 *3 (-716 *4 (-794 *6))) (-4 *4 (-13 (-782) (-282) (-135) (-946))) (-14 *6 (-587 (-1084))) (-5 *2 (-881 (-948 (-381 *4)))) (-5 *1 (-1189 *4 *5 *6)) (-14 *5 (-587 (-1084))))) (-1430 (*1 *2 *3) (-12 (-5 *3 (-881 *4)) (-4 *4 (-13 (-782) (-282) (-135) (-946))) (-5 *2 (-881 (-948 (-381 *4)))) (-5 *1 (-1189 *4 *5 *6)) (-14 *5 (-587 (-1084))) (-14 *6 (-587 (-1084))))) (-1430 (*1 *2 *3) (-12 (-5 *3 (-716 *4 (-794 *5))) (-4 *4 (-13 (-782) (-282) (-135) (-946))) (-14 *5 (-587 (-1084))) (-5 *2 (-716 *4 (-794 *6))) (-5 *1 (-1189 *4 *5 *6)) (-14 *6 (-587 (-1084))))) (-3358 (*1 *2 *3) (-12 (-5 *3 (-967 *4 *5)) (-4 *4 (-13 (-782) (-282) (-135) (-946))) (-14 *5 (-587 (-1084))) (-5 *2 (-587 (-1055 *4 (-493 (-794 *6)) (-794 *6) (-716 *4 (-794 *6))))) (-5 *1 (-1189 *4 *5 *6)) (-14 *6 (-587 (-1084))))) (-1672 (*1 *2 *3) (-12 (-5 *3 (-587 (-881 *4))) (-4 *4 (-13 (-782) (-282) (-135) (-946))) (-5 *2 (-587 (-587 (-948 (-381 *4))))) (-5 *1 (-1189 *4 *5 *6)) (-14 *5 (-587 (-1084))) (-14 *6 (-587 (-1084))))) (-1672 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-881 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-782) (-282) (-135) (-946))) (-5 *2 (-587 (-587 (-948 (-381 *5))))) (-5 *1 (-1189 *5 *6 *7)) (-14 *6 (-587 (-1084))) (-14 *7 (-587 (-1084))))) (-1672 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-587 (-881 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-782) (-282) (-135) (-946))) (-5 *2 (-587 (-587 (-948 (-381 *5))))) (-5 *1 (-1189 *5 *6 *7)) (-14 *6 (-587 (-1084))) (-14 *7 (-587 (-1084))))) (-1672 (*1 *2 *3) (-12 (-5 *3 (-967 *4 *5)) (-4 *4 (-13 (-782) (-282) (-135) (-946))) (-14 *5 (-587 (-1084))) (-5 *2 (-587 (-587 (-948 (-381 *4))))) (-5 *1 (-1189 *4 *5 *6)) (-14 *6 (-587 (-1084))))) (-2779 (*1 *2 *3) (-12 (-5 *3 (-587 (-881 *4))) (-4 *4 (-13 (-782) (-282) (-135) (-946))) (-5 *2 (-587 (-587 (-948 (-381 *4))))) (-5 *1 (-1189 *4 *5 *6)) (-14 *5 (-587 (-1084))) (-14 *6 (-587 (-1084))))) (-2779 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-881 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-782) (-282) (-135) (-946))) (-5 *2 (-587 (-587 (-948 (-381 *5))))) (-5 *1 (-1189 *5 *6 *7)) (-14 *6 (-587 (-1084))) (-14 *7 (-587 (-1084))))) (-2779 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-587 (-881 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-782) (-282) (-135) (-946))) (-5 *2 (-587 (-587 (-948 (-381 *5))))) (-5 *1 (-1189 *5 *6 *7)) (-14 *6 (-587 (-1084))) (-14 *7 (-587 (-1084))))) (-2779 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-587 (-881 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-782) (-282) (-135) (-946))) (-5 *2 (-587 (-587 (-948 (-381 *5))))) (-5 *1 (-1189 *5 *6 *7)) (-14 *6 (-587 (-1084))) (-14 *7 (-587 (-1084))))) (-2779 (*1 *2 *3) (-12 (-5 *3 (-967 *4 *5)) (-4 *4 (-13 (-782) (-282) (-135) (-946))) (-14 *5 (-587 (-1084))) (-5 *2 (-587 (-587 (-948 (-381 *4))))) (-5 *1 (-1189 *4 *5 *6)) (-14 *6 (-587 (-1084))))) (-2387 (*1 *2 *3) (-12 (-4 *4 (-13 (-782) (-282) (-135) (-946))) (-5 *2 (-587 (-2 (|:| -3183 (-1080 *4)) (|:| -2234 (-587 (-881 *4)))))) (-5 *1 (-1189 *4 *5 *6)) (-5 *3 (-587 (-881 *4))) (-14 *5 (-587 (-1084))) (-14 *6 (-587 (-1084))))) (-2387 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-782) (-282) (-135) (-946))) (-5 *2 (-587 (-2 (|:| -3183 (-1080 *5)) (|:| -2234 (-587 (-881 *5)))))) (-5 *1 (-1189 *5 *6 *7)) (-5 *3 (-587 (-881 *5))) (-14 *6 (-587 (-1084))) (-14 *7 (-587 (-1084))))) (-2387 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-782) (-282) (-135) (-946))) (-5 *2 (-587 (-2 (|:| -3183 (-1080 *5)) (|:| -2234 (-587 (-881 *5)))))) (-5 *1 (-1189 *5 *6 *7)) (-5 *3 (-587 (-881 *5))) (-14 *6 (-587 (-1084))) (-14 *7 (-587 (-1084))))) (-2387 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-782) (-282) (-135) (-946))) (-5 *2 (-587 (-2 (|:| -3183 (-1080 *5)) (|:| -2234 (-587 (-881 *5)))))) (-5 *1 (-1189 *5 *6 *7)) (-5 *3 (-587 (-881 *5))) (-14 *6 (-587 (-1084))) (-14 *7 (-587 (-1084))))) (-2387 (*1 *2 *3) (-12 (-5 *3 (-967 *4 *5)) (-4 *4 (-13 (-782) (-282) (-135) (-946))) (-14 *5 (-587 (-1084))) (-5 *2 (-587 (-2 (|:| -3183 (-1080 *4)) (|:| -2234 (-587 (-881 *4)))))) (-5 *1 (-1189 *4 *5 *6)) (-14 *6 (-587 (-1084))))) (-3969 (*1 *2 *3) (-12 (-5 *3 (-587 (-881 *4))) (-4 *4 (-13 (-782) (-282) (-135) (-946))) (-5 *2 (-587 (-967 *4 *5))) (-5 *1 (-1189 *4 *5 *6)) (-14 *5 (-587 (-1084))) (-14 *6 (-587 (-1084))))) (-3969 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-881 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-782) (-282) (-135) (-946))) (-5 *2 (-587 (-967 *5 *6))) (-5 *1 (-1189 *5 *6 *7)) (-14 *6 (-587 (-1084))) (-14 *7 (-587 (-1084))))) (-3969 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-587 (-881 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-782) (-282) (-135) (-946))) (-5 *2 (-587 (-967 *5 *6))) (-5 *1 (-1189 *5 *6 *7)) (-14 *6 (-587 (-1084))) (-14 *7 (-587 (-1084))))))
+(-10 -7 (-15 -3969 ((-587 (-967 |#1| |#2|)) (-587 (-881 |#1|)) (-108) (-108))) (-15 -3969 ((-587 (-967 |#1| |#2|)) (-587 (-881 |#1|)) (-108))) (-15 -3969 ((-587 (-967 |#1| |#2|)) (-587 (-881 |#1|)))) (-15 -2387 ((-587 (-2 (|:| -3183 (-1080 |#1|)) (|:| -2234 (-587 (-881 |#1|))))) (-967 |#1| |#2|))) (-15 -2387 ((-587 (-2 (|:| -3183 (-1080 |#1|)) (|:| -2234 (-587 (-881 |#1|))))) (-587 (-881 |#1|)) (-108) (-108) (-108))) (-15 -2387 ((-587 (-2 (|:| -3183 (-1080 |#1|)) (|:| -2234 (-587 (-881 |#1|))))) (-587 (-881 |#1|)) (-108) (-108))) (-15 -2387 ((-587 (-2 (|:| -3183 (-1080 |#1|)) (|:| -2234 (-587 (-881 |#1|))))) (-587 (-881 |#1|)) (-108))) (-15 -2387 ((-587 (-2 (|:| -3183 (-1080 |#1|)) (|:| -2234 (-587 (-881 |#1|))))) (-587 (-881 |#1|)))) (-15 -2779 ((-587 (-587 (-948 (-381 |#1|)))) (-967 |#1| |#2|))) (-15 -2779 ((-587 (-587 (-948 (-381 |#1|)))) (-587 (-881 |#1|)) (-108) (-108) (-108))) (-15 -2779 ((-587 (-587 (-948 (-381 |#1|)))) (-587 (-881 |#1|)) (-108) (-108))) (-15 -2779 ((-587 (-587 (-948 (-381 |#1|)))) (-587 (-881 |#1|)) (-108))) (-15 -2779 ((-587 (-587 (-948 (-381 |#1|)))) (-587 (-881 |#1|)))) (-15 -1672 ((-587 (-587 (-948 (-381 |#1|)))) (-967 |#1| |#2|))) (-15 -1672 ((-587 (-587 (-948 (-381 |#1|)))) (-587 (-881 |#1|)) (-108) (-108))) (-15 -1672 ((-587 (-587 (-948 (-381 |#1|)))) (-587 (-881 |#1|)) (-108))) (-15 -1672 ((-587 (-587 (-948 (-381 |#1|)))) (-587 (-881 |#1|)))) (-15 -3358 ((-587 (-1055 |#1| (-493 (-794 |#3|)) (-794 |#3|) (-716 |#1| (-794 |#3|)))) (-967 |#1| |#2|))) (-15 -1430 ((-716 |#1| (-794 |#3|)) (-716 |#1| (-794 |#2|)))) (-15 -1430 ((-881 (-948 (-381 |#1|))) (-881 |#1|))) (-15 -1430 ((-881 (-948 (-381 |#1|))) (-716 |#1| (-794 |#3|)))) (-15 -1430 ((-1080 (-948 (-381 |#1|))) (-1080 |#1|))) (-15 -1430 ((-587 (-716 |#1| (-794 |#3|))) (-1055 |#1| (-493 (-794 |#3|)) (-794 |#3|) (-716 |#1| (-794 |#3|))))))
+((-3203 (((-3 (-1165 (-381 (-521))) "failed") (-1165 |#1|) |#1|) 17)) (-4032 (((-108) (-1165 |#1|)) 11)) (-1636 (((-3 (-1165 (-521)) "failed") (-1165 |#1|)) 14)))
+(((-1190 |#1|) (-10 -7 (-15 -4032 ((-108) (-1165 |#1|))) (-15 -1636 ((-3 (-1165 (-521)) "failed") (-1165 |#1|))) (-15 -3203 ((-3 (-1165 (-381 (-521))) "failed") (-1165 |#1|) |#1|))) (-583 (-521))) (T -1190))
+((-3203 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1165 *4)) (-4 *4 (-583 (-521))) (-5 *2 (-1165 (-381 (-521)))) (-5 *1 (-1190 *4)))) (-1636 (*1 *2 *3) (|partial| -12 (-5 *3 (-1165 *4)) (-4 *4 (-583 (-521))) (-5 *2 (-1165 (-521))) (-5 *1 (-1190 *4)))) (-4032 (*1 *2 *3) (-12 (-5 *3 (-1165 *4)) (-4 *4 (-583 (-521))) (-5 *2 (-108)) (-5 *1 (-1190 *4)))))
+(-10 -7 (-15 -4032 ((-108) (-1165 |#1|))) (-15 -1636 ((-3 (-1165 (-521)) "failed") (-1165 |#1|))) (-15 -3203 ((-3 (-1165 (-381 (-521))) "failed") (-1165 |#1|) |#1|)))
+((-1415 (((-108) $ $) NIL)) (-2220 (((-108) $) 11)) (-1232 (((-3 $ "failed") $ $) NIL)) (-1630 (((-707)) 8)) (-2547 (($) NIL T CONST)) (-1257 (((-3 $ "failed") $) 43)) (-3250 (($) 36)) (-3996 (((-108) $) NIL)) (-3842 (((-3 $ "failed") $) 29)) (-2715 (((-850) $) 15)) (-3688 (((-1067) $) NIL)) (-3797 (($) 25 T CONST)) (-2716 (($ (-850)) 37)) (-4147 (((-1031) $) NIL)) (-1430 (((-521) $) 13)) (-2189 (((-792) $) 22) (($ (-521)) 19)) (-3846 (((-707)) 9)) (-3505 (($ $ (-850)) NIL) (($ $ (-707)) NIL)) (-3561 (($) 23 T CONST)) (-3572 (($) 24 T CONST)) (-1531 (((-108) $ $) 27)) (-1612 (($ $) 38) (($ $ $) 35)) (-1602 (($ $ $) 26)) (** (($ $ (-850)) NIL) (($ $ (-707)) 40)) (* (($ (-850) $) NIL) (($ (-707) $) NIL) (($ (-521) $) 32) (($ $ $) 31)))
+(((-1191 |#1|) (-13 (-157) (-342) (-562 (-521)) (-1060)) (-850)) (T -1191))
+NIL
+(-13 (-157) (-342) (-562 (-521)) (-1060))
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+((-1196 3136367 3136372 3136377 "NIL" NIL T NIL (NIL) NIL NIL NIL) (-3 3136352 3136357 3136362 "NIL" NIL NIL NIL (NIL) -8 NIL NIL) (-2 3136337 3136342 3136347 "NIL" NIL NIL NIL (NIL) -8 NIL NIL) (-1 3136322 3136327 3136332 "NIL" NIL NIL NIL (NIL) -8 NIL NIL) (0 3136307 3136312 3136317 "NIL" NIL NIL NIL (NIL) -8 NIL NIL) (-1191 3135437 3136182 3136259 "ZMOD" 3136264 NIL ZMOD (NIL NIL) -8 NIL NIL) (-1190 3134547 3134711 3134920 "ZLINDEP" 3135269 NIL ZLINDEP (NIL T) -7 NIL NIL) (-1189 3123951 3125696 3127648 "ZDSOLVE" 3132696 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL) (-1188 3123197 3123338 3123527 "YSTREAM" 3123797 NIL YSTREAM (NIL T) -7 NIL NIL) (-1187 3120965 3122502 3122705 "XRPOLY" 3123040 NIL XRPOLY (NIL T T) -8 NIL NIL) (-1186 3117427 3118756 3119338 "XPR" 3120429 NIL XPR (NIL T T) -8 NIL NIL) (-1185 3115141 3116762 3116965 "XPOLY" 3117258 NIL XPOLY (NIL T) -8 NIL NIL) (-1184 3112954 3114332 3114387 "XPOLYC" 3114672 NIL XPOLYC (NIL T T) -9 NIL 3114785) (-1183 3109326 3111471 3111859 "XPBWPOLY" 3112612 NIL XPBWPOLY (NIL T T) -8 NIL NIL) (-1182 3105253 3107566 3107609 "XF" 3108230 NIL XF (NIL T) -9 NIL 3108629) (-1181 3104874 3104962 3105131 "XF-" 3105136 NIL XF- (NIL T T) -8 NIL NIL) (-1180 3100253 3101552 3101607 "XFALG" 3103755 NIL XFALG (NIL T T) -9 NIL 3104542) (-1179 3099390 3099494 3099698 "XEXPPKG" 3100145 NIL XEXPPKG (NIL T T T) -7 NIL NIL) (-1178 3097488 3099241 3099336 "XDPOLY" 3099341 NIL XDPOLY (NIL T T) -8 NIL NIL) (-1177 3096366 3096976 3097019 "XALG" 3097081 NIL XALG (NIL T) -9 NIL 3097200) (-1176 3089842 3094350 3094843 "WUTSET" 3095958 NIL WUTSET (NIL T T T T) -8 NIL NIL) (-1175 3087654 3088461 3088812 "WP" 3089624 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL) (-1174 3086540 3086738 3087033 "WFFINTBS" 3087451 NIL WFFINTBS (NIL T T T T) -7 NIL NIL) (-1173 3084444 3084871 3085333 "WEIER" 3086112 NIL WEIER (NIL T) -7 NIL NIL) (-1172 3083592 3084016 3084059 "VSPACE" 3084195 NIL VSPACE (NIL T) -9 NIL 3084269) (-1171 3083430 3083457 3083548 "VSPACE-" 3083553 NIL VSPACE- (NIL T T) -8 NIL NIL) (-1170 3083176 3083219 3083290 "VOID" 3083381 T VOID (NIL) -8 NIL NIL) (-1169 3081312 3081671 3082077 "VIEW" 3082792 T VIEW (NIL) -7 NIL NIL) (-1168 3077737 3078375 3079112 "VIEWDEF" 3080597 T VIEWDEF (NIL) -7 NIL NIL) (-1167 3067076 3069285 3071458 "VIEW3D" 3075586 T VIEW3D (NIL) -8 NIL NIL) (-1166 3059358 3060987 3062566 "VIEW2D" 3065519 T VIEW2D (NIL) -8 NIL NIL) (-1165 3054767 3059128 3059220 "VECTOR" 3059301 NIL VECTOR (NIL T) -8 NIL NIL) (-1164 3053344 3053603 3053921 "VECTOR2" 3054497 NIL VECTOR2 (NIL T T) -7 NIL NIL) (-1163 3046883 3051135 3051179 "VECTCAT" 3052167 NIL VECTCAT (NIL T) -9 NIL 3052751) (-1162 3045897 3046151 3046541 "VECTCAT-" 3046546 NIL VECTCAT- (NIL T T) -8 NIL NIL) (-1161 3045378 3045548 3045668 "VARIABLE" 3045812 NIL VARIABLE (NIL NIL) -8 NIL NIL) (-1160 3045310 3045315 3045346 "UTYPE" 3045351 T UTYPE (NIL) -9 NIL NIL) (-1159 3044145 3044299 3044560 "UTSODETL" 3045136 NIL UTSODETL (NIL T T T T) -7 NIL NIL) (-1158 3041585 3042045 3042569 "UTSODE" 3043686 NIL UTSODE (NIL T T) -7 NIL NIL) (-1157 3033432 3039225 3039713 "UTS" 3041154 NIL UTS (NIL T NIL NIL) -8 NIL NIL) (-1156 3024780 3030142 3030185 "UTSCAT" 3031286 NIL UTSCAT (NIL T) -9 NIL 3032043) (-1155 3022136 3022851 3023839 "UTSCAT-" 3023844 NIL UTSCAT- (NIL T T) -8 NIL NIL) (-1154 3021767 3021810 3021941 "UTS2" 3022087 NIL UTS2 (NIL T T T T) -7 NIL NIL) (-1153 3016042 3018607 3018651 "URAGG" 3020721 NIL URAGG (NIL T) -9 NIL 3021443) (-1152 3012981 3013844 3014967 "URAGG-" 3014972 NIL URAGG- (NIL T T) -8 NIL NIL) (-1151 3008667 3011598 3012069 "UPXSSING" 3012645 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL) (-1150 3000561 3007788 3008068 "UPXS" 3008444 NIL UPXS (NIL T NIL NIL) -8 NIL NIL) (-1149 2993593 3000466 3000537 "UPXSCONS" 3000542 NIL UPXSCONS (NIL T T) -8 NIL NIL) (-1148 2983885 2990712 2990774 "UPXSCCA" 2991423 NIL UPXSCCA (NIL T T) -9 NIL 2991664) (-1147 2983524 2983609 2983782 "UPXSCCA-" 2983787 NIL UPXSCCA- (NIL T T T) -8 NIL NIL) (-1146 2973738 2980338 2980381 "UPXSCAT" 2981024 NIL UPXSCAT (NIL T) -9 NIL 2981632) (-1145 2973172 2973251 2973428 "UPXS2" 2973653 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1144 2971826 2972079 2972430 "UPSQFREE" 2972915 NIL UPSQFREE (NIL T T) -7 NIL NIL) (-1143 2965721 2968773 2968828 "UPSCAT" 2969977 NIL UPSCAT (NIL T T) -9 NIL 2970750) (-1142 2964935 2965139 2965462 "UPSCAT-" 2965467 NIL UPSCAT- (NIL T T T) -8 NIL NIL) (-1141 2951067 2959064 2959107 "UPOLYC" 2961185 NIL UPOLYC (NIL T) -9 NIL 2962405) (-1140 2942460 2944864 2947989 "UPOLYC-" 2947994 NIL UPOLYC- (NIL T T) -8 NIL NIL) (-1139 2942091 2942134 2942265 "UPOLYC2" 2942411 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL) (-1138 2933550 2941660 2941797 "UP" 2942001 NIL UP (NIL NIL T) -8 NIL NIL) (-1137 2932893 2933000 2933163 "UPMP" 2933439 NIL UPMP (NIL T T) -7 NIL NIL) (-1136 2932446 2932527 2932666 "UPDIVP" 2932806 NIL UPDIVP (NIL T T) -7 NIL NIL) (-1135 2931014 2931263 2931579 "UPDECOMP" 2932195 NIL UPDECOMP (NIL T T) -7 NIL NIL) (-1134 2930249 2930361 2930546 "UPCDEN" 2930898 NIL UPCDEN (NIL T T T) -7 NIL NIL) (-1133 2929772 2929841 2929988 "UP2" 2930174 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL) (-1132 2928289 2928976 2929253 "UNISEG" 2929530 NIL UNISEG (NIL T) -8 NIL NIL) (-1131 2927504 2927631 2927836 "UNISEG2" 2928132 NIL UNISEG2 (NIL T T) -7 NIL NIL) (-1130 2926564 2926744 2926970 "UNIFACT" 2927320 NIL UNIFACT (NIL T) -7 NIL NIL) (-1129 2910463 2925745 2925995 "ULS" 2926371 NIL ULS (NIL T NIL NIL) -8 NIL NIL) (-1128 2898431 2910368 2910439 "ULSCONS" 2910444 NIL ULSCONS (NIL T T) -8 NIL NIL) (-1127 2881184 2893194 2893256 "ULSCCAT" 2893968 NIL ULSCCAT (NIL T T) -9 NIL 2894264) (-1126 2880235 2880480 2880867 "ULSCCAT-" 2880872 NIL ULSCCAT- (NIL T T T) -8 NIL NIL) (-1125 2870228 2876742 2876785 "ULSCAT" 2877641 NIL ULSCAT (NIL T) -9 NIL 2878371) (-1124 2869662 2869741 2869918 "ULS2" 2870143 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1123 2868059 2869026 2869057 "UFD" 2869269 T UFD (NIL) -9 NIL 2869383) (-1122 2867853 2867899 2867994 "UFD-" 2867999 NIL UFD- (NIL T) -8 NIL NIL) (-1121 2866935 2867118 2867334 "UDVO" 2867659 T UDVO (NIL) -7 NIL NIL) (-1120 2864751 2865160 2865631 "UDPO" 2866499 NIL UDPO (NIL T) -7 NIL NIL) (-1119 2864683 2864688 2864719 "TYPE" 2864724 T TYPE (NIL) -9 NIL NIL) (-1118 2863654 2863856 2864096 "TWOFACT" 2864477 NIL TWOFACT (NIL T) -7 NIL NIL) (-1117 2862592 2862929 2863192 "TUPLE" 2863426 NIL TUPLE (NIL T) -8 NIL NIL) (-1116 2860283 2860802 2861341 "TUBETOOL" 2862075 T TUBETOOL (NIL) -7 NIL NIL) (-1115 2859132 2859337 2859578 "TUBE" 2860076 NIL TUBE (NIL T) -8 NIL NIL) (-1114 2853856 2858110 2858392 "TS" 2858884 NIL TS (NIL T) -8 NIL NIL) (-1113 2842559 2846651 2846748 "TSETCAT" 2851982 NIL TSETCAT (NIL T T T T) -9 NIL 2853513) (-1112 2837294 2838892 2840782 "TSETCAT-" 2840787 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL) (-1111 2831557 2832403 2833345 "TRMANIP" 2836430 NIL TRMANIP (NIL T T) -7 NIL NIL) (-1110 2830998 2831061 2831224 "TRIMAT" 2831489 NIL TRIMAT (NIL T T T T) -7 NIL NIL) (-1109 2828804 2829041 2829404 "TRIGMNIP" 2830747 NIL TRIGMNIP (NIL T T) -7 NIL NIL) (-1108 2828323 2828436 2828467 "TRIGCAT" 2828680 T TRIGCAT (NIL) -9 NIL NIL) (-1107 2827992 2828071 2828212 "TRIGCAT-" 2828217 NIL TRIGCAT- (NIL T) -8 NIL NIL) (-1106 2824891 2826852 2827132 "TREE" 2827747 NIL TREE (NIL T) -8 NIL NIL) (-1105 2824164 2824692 2824723 "TRANFUN" 2824758 T TRANFUN (NIL) -9 NIL 2824824) (-1104 2823443 2823634 2823914 "TRANFUN-" 2823919 NIL TRANFUN- (NIL T) -8 NIL NIL) (-1103 2823247 2823279 2823340 "TOPSP" 2823404 T TOPSP (NIL) -7 NIL NIL) (-1102 2822599 2822714 2822867 "TOOLSIGN" 2823128 NIL TOOLSIGN (NIL T) -7 NIL NIL) (-1101 2821260 2821776 2822015 "TEXTFILE" 2822382 T TEXTFILE (NIL) -8 NIL NIL) (-1100 2819125 2819639 2820077 "TEX" 2820844 T TEX (NIL) -8 NIL NIL) (-1099 2818906 2818937 2819009 "TEX1" 2819088 NIL TEX1 (NIL T) -7 NIL NIL) (-1098 2818554 2818617 2818707 "TEMUTL" 2818838 T TEMUTL (NIL) -7 NIL NIL) (-1097 2816708 2816988 2817313 "TBCMPPK" 2818277 NIL TBCMPPK (NIL T T) -7 NIL NIL) (-1096 2808596 2814868 2814925 "TBAGG" 2815325 NIL TBAGG (NIL T T) -9 NIL 2815536) (-1095 2803666 2805154 2806908 "TBAGG-" 2806913 NIL TBAGG- (NIL T T T) -8 NIL NIL) (-1094 2803050 2803157 2803302 "TANEXP" 2803555 NIL TANEXP (NIL T) -7 NIL NIL) (-1093 2796551 2802907 2803000 "TABLE" 2803005 NIL TABLE (NIL T T) -8 NIL NIL) (-1092 2795964 2796062 2796200 "TABLEAU" 2796448 NIL TABLEAU (NIL T) -8 NIL NIL) (-1091 2790572 2791792 2793040 "TABLBUMP" 2794750 NIL TABLBUMP (NIL T) -7 NIL NIL) (-1090 2787035 2787730 2788513 "SYSSOLP" 2789823 NIL SYSSOLP (NIL T) -7 NIL NIL) (-1089 2783419 2784022 2784762 "SYNTAX" 2786317 T SYNTAX (NIL) -8 NIL NIL) (-1088 2780553 2781161 2781799 "SYMTAB" 2782803 T SYMTAB (NIL) -8 NIL NIL) (-1087 2775802 2776704 2777687 "SYMS" 2779592 T SYMS (NIL) -8 NIL NIL) (-1086 2773035 2775262 2775491 "SYMPOLY" 2775607 NIL SYMPOLY (NIL T) -8 NIL NIL) (-1085 2772555 2772630 2772752 "SYMFUNC" 2772947 NIL SYMFUNC (NIL T) -7 NIL NIL) (-1084 2768533 2769792 2770614 "SYMBOL" 2771755 T SYMBOL (NIL) -8 NIL NIL) (-1083 2762072 2763761 2765481 "SWITCH" 2766835 T SWITCH (NIL) -8 NIL NIL) (-1082 2755305 2760899 2761201 "SUTS" 2761827 NIL SUTS (NIL T NIL NIL) -8 NIL NIL) (-1081 2747198 2754426 2754706 "SUPXS" 2755082 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL) (-1080 2738730 2746819 2746944 "SUP" 2747107 NIL SUP (NIL T) -8 NIL NIL) (-1079 2737889 2738016 2738233 "SUPFRACF" 2738598 NIL SUPFRACF (NIL T T T T) -7 NIL NIL) (-1078 2737514 2737573 2737684 "SUP2" 2737824 NIL SUP2 (NIL T T) -7 NIL NIL) (-1077 2735932 2736206 2736568 "SUMRF" 2737213 NIL SUMRF (NIL T) -7 NIL NIL) (-1076 2735249 2735315 2735513 "SUMFS" 2735853 NIL SUMFS (NIL T T) -7 NIL NIL) (-1075 2719188 2734430 2734680 "SULS" 2735056 NIL SULS (NIL T NIL NIL) -8 NIL NIL) (-1074 2718510 2718713 2718853 "SUCH" 2719096 NIL SUCH (NIL T T) -8 NIL NIL) (-1073 2712437 2713449 2714407 "SUBSPACE" 2717598 NIL SUBSPACE (NIL NIL T) -8 NIL NIL) (-1072 2711867 2711957 2712121 "SUBRESP" 2712325 NIL SUBRESP (NIL T T) -7 NIL NIL) (-1071 2705236 2706532 2707843 "STTF" 2710603 NIL STTF (NIL T) -7 NIL NIL) (-1070 2699409 2700529 2701676 "STTFNC" 2704136 NIL STTFNC (NIL T) -7 NIL NIL) (-1069 2690760 2692627 2694420 "STTAYLOR" 2697650 NIL STTAYLOR (NIL T) -7 NIL NIL) (-1068 2684004 2690624 2690707 "STRTBL" 2690712 NIL STRTBL (NIL T) -8 NIL NIL) (-1067 2679395 2683959 2683990 "STRING" 2683995 T STRING (NIL) -8 NIL NIL) (-1066 2674283 2678768 2678799 "STRICAT" 2678858 T STRICAT (NIL) -9 NIL 2678920) (-1065 2666999 2671806 2672426 "STREAM" 2673698 NIL STREAM (NIL T) -8 NIL NIL) (-1064 2666509 2666586 2666730 "STREAM3" 2666916 NIL STREAM3 (NIL T T T) -7 NIL NIL) (-1063 2665491 2665674 2665909 "STREAM2" 2666322 NIL STREAM2 (NIL T T) -7 NIL NIL) (-1062 2665179 2665231 2665324 "STREAM1" 2665433 NIL STREAM1 (NIL T) -7 NIL NIL) (-1061 2664195 2664376 2664607 "STINPROD" 2664995 NIL STINPROD (NIL T) -7 NIL NIL) (-1060 2663773 2663957 2663988 "STEP" 2664068 T STEP (NIL) -9 NIL 2664146) (-1059 2657316 2663672 2663749 "STBL" 2663754 NIL STBL (NIL T T NIL) -8 NIL NIL) (-1058 2652491 2656538 2656582 "STAGG" 2656735 NIL STAGG (NIL T) -9 NIL 2656824) (-1057 2650193 2650795 2651667 "STAGG-" 2651672 NIL STAGG- (NIL T T) -8 NIL NIL) (-1056 2648388 2649963 2650055 "STACK" 2650136 NIL STACK (NIL T) -8 NIL NIL) (-1055 2641119 2646535 2646990 "SREGSET" 2648018 NIL SREGSET (NIL T T T T) -8 NIL NIL) (-1054 2633559 2634927 2636439 "SRDCMPK" 2639725 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL) (-1053 2626526 2630999 2631030 "SRAGG" 2632333 T SRAGG (NIL) -9 NIL 2632941) (-1052 2625543 2625798 2626177 "SRAGG-" 2626182 NIL SRAGG- (NIL T) -8 NIL NIL) (-1051 2619992 2624462 2624889 "SQMATRIX" 2625162 NIL SQMATRIX (NIL NIL T) -8 NIL NIL) (-1050 2613744 2616712 2617438 "SPLTREE" 2619338 NIL SPLTREE (NIL T T) -8 NIL NIL) (-1049 2609734 2610400 2611046 "SPLNODE" 2613170 NIL SPLNODE (NIL T T) -8 NIL NIL) (-1048 2608780 2609013 2609044 "SPFCAT" 2609488 T SPFCAT (NIL) -9 NIL NIL) (-1047 2607517 2607727 2607991 "SPECOUT" 2608538 T SPECOUT (NIL) -7 NIL NIL) (-1046 2607278 2607318 2607387 "SPADPRSR" 2607470 T SPADPRSR (NIL) -7 NIL NIL) (-1045 2599300 2601047 2601090 "SPACEC" 2605413 NIL SPACEC (NIL T) -9 NIL 2607229) (-1044 2597472 2599233 2599281 "SPACE3" 2599286 NIL SPACE3 (NIL T) -8 NIL NIL) (-1043 2596224 2596395 2596686 "SORTPAK" 2597277 NIL SORTPAK (NIL T T) -7 NIL NIL) (-1042 2594280 2594583 2595001 "SOLVETRA" 2595888 NIL SOLVETRA (NIL T) -7 NIL NIL) (-1041 2593291 2593513 2593787 "SOLVESER" 2594053 NIL SOLVESER (NIL T) -7 NIL NIL) (-1040 2588511 2589392 2590394 "SOLVERAD" 2592343 NIL SOLVERAD (NIL T) -7 NIL NIL) (-1039 2584326 2584935 2585664 "SOLVEFOR" 2587878 NIL SOLVEFOR (NIL T T) -7 NIL NIL) (-1038 2578625 2583677 2583774 "SNTSCAT" 2583779 NIL SNTSCAT (NIL T T T T) -9 NIL 2583849) (-1037 2572730 2576956 2577346 "SMTS" 2578315 NIL SMTS (NIL T T T) -8 NIL NIL) (-1036 2567141 2572619 2572695 "SMP" 2572700 NIL SMP (NIL T T) -8 NIL NIL) (-1035 2565300 2565601 2565999 "SMITH" 2566838 NIL SMITH (NIL T T T T) -7 NIL NIL) (-1034 2558264 2562460 2562563 "SMATCAT" 2563903 NIL SMATCAT (NIL NIL T T T) -9 NIL 2564452) (-1033 2555205 2556028 2557205 "SMATCAT-" 2557210 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL) (-1032 2552918 2554441 2554485 "SKAGG" 2554746 NIL SKAGG (NIL T) -9 NIL 2554881) (-1031 2548976 2552022 2552300 "SINT" 2552662 T SINT (NIL) -8 NIL NIL) (-1030 2548748 2548786 2548852 "SIMPAN" 2548932 T SIMPAN (NIL) -7 NIL NIL) (-1029 2547586 2547807 2548082 "SIGNRF" 2548507 NIL SIGNRF (NIL T) -7 NIL NIL) (-1028 2546395 2546546 2546836 "SIGNEF" 2547415 NIL SIGNEF (NIL T T) -7 NIL NIL) (-1027 2544085 2544539 2545045 "SHP" 2545936 NIL SHP (NIL T NIL) -7 NIL NIL) (-1026 2537938 2543986 2544062 "SHDP" 2544067 NIL SHDP (NIL NIL NIL T) -8 NIL NIL) (-1025 2537427 2537619 2537650 "SGROUP" 2537802 T SGROUP (NIL) -9 NIL 2537889) (-1024 2537197 2537249 2537353 "SGROUP-" 2537358 NIL SGROUP- (NIL T) -8 NIL NIL) (-1023 2534033 2534730 2535453 "SGCF" 2536496 T SGCF (NIL) -7 NIL NIL) (-1022 2528431 2533483 2533580 "SFRTCAT" 2533585 NIL SFRTCAT (NIL T T T T) -9 NIL 2533623) (-1021 2521891 2522906 2524040 "SFRGCD" 2527414 NIL SFRGCD (NIL T T T T T) -7 NIL NIL) (-1020 2515057 2516128 2517312 "SFQCMPK" 2520824 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL) (-1019 2514679 2514768 2514878 "SFORT" 2514998 NIL SFORT (NIL T T) -8 NIL NIL) (-1018 2513824 2514519 2514640 "SEXOF" 2514645 NIL SEXOF (NIL T T T T T) -8 NIL NIL) (-1017 2512958 2513705 2513773 "SEX" 2513778 T SEX (NIL) -8 NIL NIL) (-1016 2507734 2508423 2508519 "SEXCAT" 2512290 NIL SEXCAT (NIL T T T T T) -9 NIL 2512909) (-1015 2504914 2507668 2507716 "SET" 2507721 NIL SET (NIL T) -8 NIL NIL) (-1014 2503165 2503627 2503932 "SETMN" 2504655 NIL SETMN (NIL NIL NIL) -8 NIL NIL) (-1013 2502772 2502898 2502929 "SETCAT" 2503046 T SETCAT (NIL) -9 NIL 2503130) (-1012 2502552 2502604 2502703 "SETCAT-" 2502708 NIL SETCAT- (NIL T) -8 NIL NIL) (-1011 2498939 2501013 2501057 "SETAGG" 2501927 NIL SETAGG (NIL T) -9 NIL 2502267) (-1010 2498397 2498513 2498750 "SETAGG-" 2498755 NIL SETAGG- (NIL T T) -8 NIL NIL) (-1009 2497600 2497893 2497955 "SEGXCAT" 2498241 NIL SEGXCAT (NIL T T) -9 NIL 2498361) (-1008 2496656 2497266 2497448 "SEG" 2497453 NIL SEG (NIL T) -8 NIL NIL) (-1007 2495562 2495775 2495819 "SEGCAT" 2496401 NIL SEGCAT (NIL T) -9 NIL 2496639) (-1006 2494611 2494941 2495141 "SEGBIND" 2495397 NIL SEGBIND (NIL T) -8 NIL NIL) (-1005 2494232 2494291 2494404 "SEGBIND2" 2494546 NIL SEGBIND2 (NIL T T) -7 NIL NIL) (-1004 2493451 2493577 2493781 "SEG2" 2494076 NIL SEG2 (NIL T T) -7 NIL NIL) (-1003 2492888 2493386 2493433 "SDVAR" 2493438 NIL SDVAR (NIL T) -8 NIL NIL) (-1002 2485140 2492661 2492789 "SDPOL" 2492794 NIL SDPOL (NIL T) -8 NIL NIL) (-1001 2483733 2483999 2484318 "SCPKG" 2484855 NIL SCPKG (NIL T) -7 NIL NIL) (-1000 2482870 2483049 2483249 "SCOPE" 2483555 T SCOPE (NIL) -8 NIL NIL) (-999 2482097 2482230 2482407 "SCACHE" 2482725 NIL SCACHE (NIL T) -7 NIL NIL) (-998 2481540 2481861 2481944 "SAOS" 2482034 T SAOS (NIL) -8 NIL NIL) (-997 2481108 2481143 2481314 "SAERFFC" 2481499 NIL SAERFFC (NIL T T T) -7 NIL NIL) (-996 2475004 2481007 2481085 "SAE" 2481090 NIL SAE (NIL T T NIL) -8 NIL NIL) (-995 2474600 2474635 2474792 "SAEFACT" 2474963 NIL SAEFACT (NIL T T T) -7 NIL NIL) (-994 2472926 2473240 2473639 "RURPK" 2474266 NIL RURPK (NIL T NIL) -7 NIL NIL) (-993 2471579 2471856 2472163 "RULESET" 2472762 NIL RULESET (NIL T T T) -8 NIL NIL) (-992 2468787 2469290 2469751 "RULE" 2471261 NIL RULE (NIL T T T) -8 NIL NIL) (-991 2468429 2468584 2468665 "RULECOLD" 2468739 NIL RULECOLD (NIL NIL) -8 NIL NIL) (-990 2463321 2464115 2465031 "RSETGCD" 2467628 NIL RSETGCD (NIL T T T T T) -7 NIL NIL) (-989 2452635 2457687 2457782 "RSETCAT" 2461847 NIL RSETCAT (NIL T T T T) -9 NIL 2462944) (-988 2450566 2451105 2451925 "RSETCAT-" 2451930 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL) (-987 2442996 2444371 2445887 "RSDCMPK" 2449165 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL) (-986 2441013 2441454 2441527 "RRCC" 2442603 NIL RRCC (NIL T T) -9 NIL 2442947) (-985 2440367 2440541 2440817 "RRCC-" 2440822 NIL RRCC- (NIL T T T) -8 NIL NIL) (-984 2414733 2424358 2424423 "RPOLCAT" 2434925 NIL RPOLCAT (NIL T T T) -9 NIL 2438083) (-983 2406237 2408575 2411693 "RPOLCAT-" 2411698 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL) (-982 2397303 2404467 2404947 "ROUTINE" 2405777 T ROUTINE (NIL) -8 NIL NIL) (-981 2394008 2396859 2397006 "ROMAN" 2397176 T ROMAN (NIL) -8 NIL NIL) (-980 2392294 2392879 2393136 "ROIRC" 2393814 NIL ROIRC (NIL T T) -8 NIL NIL) (-979 2388698 2391002 2391031 "RNS" 2391327 T RNS (NIL) -9 NIL 2391597) (-978 2387212 2387595 2388126 "RNS-" 2388199 NIL RNS- (NIL T) -8 NIL NIL) (-977 2386637 2387045 2387074 "RNG" 2387079 T RNG (NIL) -9 NIL 2387100) (-976 2386034 2386396 2386437 "RMODULE" 2386497 NIL RMODULE (NIL T) -9 NIL 2386539) (-975 2384886 2384980 2385310 "RMCAT2" 2385935 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL) (-974 2381600 2384069 2384390 "RMATRIX" 2384621 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL) (-973 2374596 2376830 2376943 "RMATCAT" 2380252 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2381234) (-972 2373975 2374122 2374425 "RMATCAT-" 2374430 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL) (-971 2373545 2373620 2373746 "RINTERP" 2373894 NIL RINTERP (NIL NIL T) -7 NIL NIL) (-970 2372595 2373159 2373188 "RING" 2373298 T RING (NIL) -9 NIL 2373392) (-969 2372390 2372434 2372528 "RING-" 2372533 NIL RING- (NIL T) -8 NIL NIL) (-968 2371238 2371475 2371731 "RIDIST" 2372154 T RIDIST (NIL) -7 NIL NIL) (-967 2362560 2370712 2370915 "RGCHAIN" 2371087 NIL RGCHAIN (NIL T NIL) -8 NIL NIL) (-966 2359565 2360179 2360847 "RF" 2361924 NIL RF (NIL T) -7 NIL NIL) (-965 2359214 2359277 2359378 "RFFACTOR" 2359496 NIL RFFACTOR (NIL T) -7 NIL NIL) (-964 2358942 2358977 2359072 "RFFACT" 2359173 NIL RFFACT (NIL T) -7 NIL NIL) (-963 2357072 2357436 2357816 "RFDIST" 2358582 T RFDIST (NIL) -7 NIL NIL) (-962 2356530 2356622 2356782 "RETSOL" 2356974 NIL RETSOL (NIL T T) -7 NIL NIL) (-961 2356122 2356202 2356244 "RETRACT" 2356434 NIL RETRACT (NIL T) -9 NIL NIL) (-960 2355974 2355999 2356083 "RETRACT-" 2356088 NIL RETRACT- (NIL T T) -8 NIL NIL) (-959 2348832 2355631 2355756 "RESULT" 2355869 T RESULT (NIL) -8 NIL NIL) (-958 2347417 2348106 2348303 "RESRING" 2348735 NIL RESRING (NIL T T T T NIL) -8 NIL NIL) (-957 2347057 2347106 2347202 "RESLATC" 2347354 NIL RESLATC (NIL T) -7 NIL NIL) (-956 2346766 2346800 2346905 "REPSQ" 2347016 NIL REPSQ (NIL T) -7 NIL NIL) (-955 2344197 2344777 2345377 "REP" 2346186 T REP (NIL) -7 NIL NIL) (-954 2343898 2343932 2344041 "REPDB" 2344156 NIL REPDB (NIL T) -7 NIL NIL) (-953 2337843 2339222 2340442 "REP2" 2342710 NIL REP2 (NIL T) -7 NIL NIL) (-952 2334249 2334930 2335735 "REP1" 2337070 NIL REP1 (NIL T) -7 NIL NIL) (-951 2326995 2332410 2332862 "REGSET" 2333880 NIL REGSET (NIL T T T T) -8 NIL NIL) (-950 2325816 2326151 2326399 "REF" 2326780 NIL REF (NIL T) -8 NIL NIL) (-949 2325197 2325300 2325465 "REDORDER" 2325700 NIL REDORDER (NIL T T) -7 NIL NIL) (-948 2321166 2324431 2324652 "RECLOS" 2325028 NIL RECLOS (NIL T) -8 NIL NIL) (-947 2320223 2320404 2320617 "REALSOLV" 2320973 T REALSOLV (NIL) -7 NIL NIL) (-946 2320070 2320111 2320140 "REAL" 2320145 T REAL (NIL) -9 NIL 2320180) (-945 2316561 2317363 2318245 "REAL0Q" 2319235 NIL REAL0Q (NIL T) -7 NIL NIL) (-944 2312172 2313160 2314219 "REAL0" 2315542 NIL REAL0 (NIL T) -7 NIL NIL) (-943 2311580 2311652 2311857 "RDIV" 2312094 NIL RDIV (NIL T T T T T) -7 NIL NIL) (-942 2310653 2310827 2311038 "RDIST" 2311402 NIL RDIST (NIL T) -7 NIL NIL) (-941 2309257 2309544 2309913 "RDETRS" 2310361 NIL RDETRS (NIL T T) -7 NIL NIL) (-940 2307078 2307532 2308067 "RDETR" 2308799 NIL RDETR (NIL T T) -7 NIL NIL) (-939 2305694 2305972 2306373 "RDEEFS" 2306794 NIL RDEEFS (NIL T T) -7 NIL NIL) (-938 2304194 2304500 2304929 "RDEEF" 2305382 NIL RDEEF (NIL T T) -7 NIL NIL) (-937 2298478 2301410 2301439 "RCFIELD" 2302716 T RCFIELD (NIL) -9 NIL 2303446) (-936 2296547 2297051 2297744 "RCFIELD-" 2297817 NIL RCFIELD- (NIL T) -8 NIL NIL) (-935 2292878 2294663 2294705 "RCAGG" 2295776 NIL RCAGG (NIL T) -9 NIL 2296241) (-934 2292509 2292603 2292763 "RCAGG-" 2292768 NIL RCAGG- (NIL T T) -8 NIL NIL) (-933 2291854 2291965 2292127 "RATRET" 2292393 NIL RATRET (NIL T) -7 NIL NIL) (-932 2291411 2291478 2291597 "RATFACT" 2291782 NIL RATFACT (NIL T) -7 NIL NIL) (-931 2290726 2290846 2290996 "RANDSRC" 2291281 T RANDSRC (NIL) -7 NIL NIL) (-930 2290463 2290507 2290578 "RADUTIL" 2290675 T RADUTIL (NIL) -7 NIL NIL) (-929 2283470 2289206 2289523 "RADIX" 2290178 NIL RADIX (NIL NIL) -8 NIL NIL) (-928 2275040 2283314 2283442 "RADFF" 2283447 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL) (-927 2274691 2274766 2274795 "RADCAT" 2274952 T RADCAT (NIL) -9 NIL NIL) (-926 2274476 2274524 2274621 "RADCAT-" 2274626 NIL RADCAT- (NIL T) -8 NIL NIL) (-925 2272627 2274251 2274340 "QUEUE" 2274420 NIL QUEUE (NIL T) -8 NIL NIL) (-924 2269124 2272564 2272609 "QUAT" 2272614 NIL QUAT (NIL T) -8 NIL NIL) (-923 2268762 2268805 2268932 "QUATCT2" 2269075 NIL QUATCT2 (NIL T T T T) -7 NIL NIL) (-922 2262555 2265935 2265976 "QUATCAT" 2266755 NIL QUATCAT (NIL T) -9 NIL 2267520) (-921 2258699 2259736 2261123 "QUATCAT-" 2261217 NIL QUATCAT- (NIL T T) -8 NIL NIL) (-920 2256219 2257783 2257825 "QUAGG" 2258200 NIL QUAGG (NIL T) -9 NIL 2258375) (-919 2255144 2255617 2255789 "QFORM" 2256091 NIL QFORM (NIL NIL T) -8 NIL NIL) (-918 2246440 2251698 2251739 "QFCAT" 2252397 NIL QFCAT (NIL T) -9 NIL 2253390) (-917 2242012 2243213 2244804 "QFCAT-" 2244898 NIL QFCAT- (NIL T T) -8 NIL NIL) (-916 2241650 2241693 2241820 "QFCAT2" 2241963 NIL QFCAT2 (NIL T T T T) -7 NIL NIL) (-915 2241110 2241220 2241350 "QEQUAT" 2241540 T QEQUAT (NIL) -8 NIL NIL) (-914 2234296 2235367 2236549 "QCMPACK" 2240043 NIL QCMPACK (NIL T T T T T) -7 NIL NIL) (-913 2231872 2232293 2232721 "QALGSET" 2233951 NIL QALGSET (NIL T T T T) -8 NIL NIL) (-912 2231117 2231291 2231523 "QALGSET2" 2231692 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL) (-911 2229808 2230031 2230348 "PWFFINTB" 2230890 NIL PWFFINTB (NIL T T T T) -7 NIL NIL) (-910 2227996 2228164 2228517 "PUSHVAR" 2229622 NIL PUSHVAR (NIL T T T T) -7 NIL NIL) (-909 2223913 2224967 2225009 "PTRANFN" 2226893 NIL PTRANFN (NIL T) -9 NIL NIL) (-908 2222325 2222616 2222937 "PTPACK" 2223624 NIL PTPACK (NIL T) -7 NIL NIL) (-907 2221961 2222018 2222125 "PTFUNC2" 2222262 NIL PTFUNC2 (NIL T T) -7 NIL NIL) (-906 2216437 2220778 2220819 "PTCAT" 2221187 NIL PTCAT (NIL T) -9 NIL 2221349) (-905 2216095 2216130 2216254 "PSQFR" 2216396 NIL PSQFR (NIL T T T T) -7 NIL NIL) (-904 2214690 2214988 2215322 "PSEUDLIN" 2215793 NIL PSEUDLIN (NIL T) -7 NIL NIL) (-903 2201498 2203862 2206185 "PSETPK" 2212450 NIL PSETPK (NIL T T T T) -7 NIL NIL) (-902 2194584 2197298 2197393 "PSETCAT" 2200374 NIL PSETCAT (NIL T T T T) -9 NIL 2201188) (-901 2192422 2193056 2193875 "PSETCAT-" 2193880 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL) (-900 2191770 2191935 2191964 "PSCURVE" 2192232 T PSCURVE (NIL) -9 NIL 2192399) (-899 2188221 2189747 2189812 "PSCAT" 2190648 NIL PSCAT (NIL T T T) -9 NIL 2190888) (-898 2187285 2187501 2187900 "PSCAT-" 2187905 NIL PSCAT- (NIL T T T T) -8 NIL NIL) (-897 2185938 2186570 2186784 "PRTITION" 2187091 T PRTITION (NIL) -8 NIL NIL) (-896 2175036 2177242 2179430 "PRS" 2183800 NIL PRS (NIL T T) -7 NIL NIL) (-895 2172894 2174386 2174427 "PRQAGG" 2174610 NIL PRQAGG (NIL T) -9 NIL 2174712) (-894 2172464 2172566 2172595 "PROPLOG" 2172780 T PROPLOG (NIL) -9 NIL NIL) (-893 2169587 2170152 2170679 "PROPFRML" 2171969 NIL PROPFRML (NIL T) -8 NIL NIL) (-892 2163361 2167753 2168573 "PRODUCT" 2168813 NIL PRODUCT (NIL T T) -8 NIL NIL) (-891 2160637 2162821 2163054 "PR" 2163172 NIL PR (NIL T T) -8 NIL NIL) (-890 2160433 2160465 2160524 "PRINT" 2160598 T PRINT (NIL) -7 NIL NIL) (-889 2159773 2159890 2160042 "PRIMES" 2160313 NIL PRIMES (NIL T) -7 NIL NIL) (-888 2157838 2158239 2158705 "PRIMELT" 2159352 NIL PRIMELT (NIL T) -7 NIL NIL) (-887 2157566 2157615 2157644 "PRIMCAT" 2157768 T PRIMCAT (NIL) -9 NIL NIL) (-886 2153727 2157504 2157549 "PRIMARR" 2157554 NIL PRIMARR (NIL T) -8 NIL NIL) (-885 2152734 2152912 2153140 "PRIMARR2" 2153545 NIL PRIMARR2 (NIL T T) -7 NIL NIL) (-884 2152377 2152433 2152544 "PREASSOC" 2152672 NIL PREASSOC (NIL T T) -7 NIL NIL) (-883 2151851 2151984 2152013 "PPCURVE" 2152218 T PPCURVE (NIL) -9 NIL 2152354) (-882 2149210 2149609 2150201 "POLYROOT" 2151432 NIL POLYROOT (NIL T T T T T) -7 NIL NIL) (-881 2143116 2148816 2148975 "POLY" 2149083 NIL POLY (NIL T) -8 NIL NIL) (-880 2142501 2142559 2142792 "POLYLIFT" 2143052 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL) (-879 2138786 2139235 2139863 "POLYCATQ" 2142046 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL) (-878 2125826 2131223 2131288 "POLYCAT" 2134773 NIL POLYCAT (NIL T T T) -9 NIL 2136700) (-877 2119277 2121138 2123521 "POLYCAT-" 2123526 NIL POLYCAT- (NIL T T T T) -8 NIL NIL) (-876 2118866 2118934 2119053 "POLY2UP" 2119203 NIL POLY2UP (NIL NIL T) -7 NIL NIL) (-875 2118502 2118559 2118666 "POLY2" 2118803 NIL POLY2 (NIL T T) -7 NIL NIL) (-874 2117187 2117426 2117702 "POLUTIL" 2118276 NIL POLUTIL (NIL T T) -7 NIL NIL) (-873 2115549 2115826 2116156 "POLTOPOL" 2116909 NIL POLTOPOL (NIL NIL T) -7 NIL NIL) (-872 2111072 2115486 2115531 "POINT" 2115536 NIL POINT (NIL T) -8 NIL NIL) (-871 2109259 2109616 2109991 "PNTHEORY" 2110717 T PNTHEORY (NIL) -7 NIL NIL) (-870 2107687 2107984 2108393 "PMTOOLS" 2108957 NIL PMTOOLS (NIL T T T) -7 NIL NIL) (-869 2107280 2107358 2107475 "PMSYM" 2107603 NIL PMSYM (NIL T) -7 NIL NIL) (-868 2106790 2106859 2107033 "PMQFCAT" 2107205 NIL PMQFCAT (NIL T T T) -7 NIL NIL) (-867 2106145 2106255 2106411 "PMPRED" 2106667 NIL PMPRED (NIL T) -7 NIL NIL) (-866 2105541 2105627 2105788 "PMPREDFS" 2106046 NIL PMPREDFS (NIL T T T) -7 NIL NIL) (-865 2104187 2104395 2104779 "PMPLCAT" 2105303 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL) (-864 2103719 2103798 2103950 "PMLSAGG" 2104102 NIL PMLSAGG (NIL T T T) -7 NIL NIL) (-863 2103196 2103272 2103452 "PMKERNEL" 2103637 NIL PMKERNEL (NIL T T) -7 NIL NIL) (-862 2102813 2102888 2103001 "PMINS" 2103115 NIL PMINS (NIL T) -7 NIL NIL) (-861 2102243 2102312 2102527 "PMFS" 2102738 NIL PMFS (NIL T T T) -7 NIL NIL) (-860 2101474 2101592 2101796 "PMDOWN" 2102120 NIL PMDOWN (NIL T T T) -7 NIL NIL) (-859 2100637 2100796 2100978 "PMASS" 2101312 T PMASS (NIL) -7 NIL NIL) (-858 2099911 2100022 2100185 "PMASSFS" 2100523 NIL PMASSFS (NIL T T) -7 NIL NIL) (-857 2099566 2099634 2099728 "PLOTTOOL" 2099837 T PLOTTOOL (NIL) -7 NIL NIL) (-856 2094188 2095377 2096525 "PLOT" 2098438 T PLOT (NIL) -8 NIL NIL) (-855 2090002 2091036 2091957 "PLOT3D" 2093287 T PLOT3D (NIL) -8 NIL NIL) (-854 2088914 2089091 2089326 "PLOT1" 2089806 NIL PLOT1 (NIL T) -7 NIL NIL) (-853 2064309 2068980 2073831 "PLEQN" 2084180 NIL PLEQN (NIL T T T T) -7 NIL NIL) (-852 2063627 2063749 2063929 "PINTERP" 2064174 NIL PINTERP (NIL NIL T) -7 NIL NIL) (-851 2063320 2063367 2063470 "PINTERPA" 2063574 NIL PINTERPA (NIL T T) -7 NIL NIL) (-850 2062547 2063114 2063207 "PI" 2063247 T PI (NIL) -8 NIL NIL) (-849 2060938 2061923 2061952 "PID" 2062134 T PID (NIL) -9 NIL 2062268) (-848 2060663 2060700 2060788 "PICOERCE" 2060895 NIL PICOERCE (NIL T) -7 NIL NIL) (-847 2059984 2060122 2060298 "PGROEB" 2060519 NIL PGROEB (NIL T) -7 NIL NIL) (-846 2055571 2056385 2057290 "PGE" 2059099 T PGE (NIL) -7 NIL NIL) (-845 2053695 2053941 2054307 "PGCD" 2055288 NIL PGCD (NIL T T T T) -7 NIL NIL) (-844 2053033 2053136 2053297 "PFRPAC" 2053579 NIL PFRPAC (NIL T) -7 NIL NIL) (-843 2049648 2051581 2051934 "PFR" 2052712 NIL PFR (NIL T) -8 NIL NIL) (-842 2048037 2048281 2048606 "PFOTOOLS" 2049395 NIL PFOTOOLS (NIL T T) -7 NIL NIL) (-841 2046570 2046809 2047160 "PFOQ" 2047794 NIL PFOQ (NIL T T T) -7 NIL NIL) (-840 2045047 2045259 2045621 "PFO" 2046354 NIL PFO (NIL T T T T T) -7 NIL NIL) (-839 2041570 2044936 2045005 "PF" 2045010 NIL PF (NIL NIL) -8 NIL NIL) (-838 2038998 2040279 2040308 "PFECAT" 2040893 T PFECAT (NIL) -9 NIL 2041277) (-837 2038443 2038597 2038811 "PFECAT-" 2038816 NIL PFECAT- (NIL T) -8 NIL NIL) (-836 2037047 2037298 2037599 "PFBRU" 2038192 NIL PFBRU (NIL T T) -7 NIL NIL) (-835 2034914 2035265 2035697 "PFBR" 2036698 NIL PFBR (NIL T T T T) -7 NIL NIL) (-834 2030766 2032290 2032966 "PERM" 2034271 NIL PERM (NIL T) -8 NIL NIL) (-833 2026032 2026973 2027843 "PERMGRP" 2029929 NIL PERMGRP (NIL T) -8 NIL NIL) (-832 2024102 2025095 2025137 "PERMCAT" 2025583 NIL PERMCAT (NIL T) -9 NIL 2025888) (-831 2023757 2023798 2023921 "PERMAN" 2024055 NIL PERMAN (NIL NIL T) -7 NIL NIL) (-830 2021197 2023326 2023457 "PENDTREE" 2023659 NIL PENDTREE (NIL T) -8 NIL NIL) (-829 2019269 2020047 2020089 "PDRING" 2020746 NIL PDRING (NIL T) -9 NIL 2021031) (-828 2018372 2018590 2018952 "PDRING-" 2018957 NIL PDRING- (NIL T T) -8 NIL NIL) (-827 2015514 2016264 2016955 "PDEPROB" 2017701 T PDEPROB (NIL) -8 NIL NIL) (-826 2013085 2013581 2014130 "PDEPACK" 2014985 T PDEPACK (NIL) -7 NIL NIL) (-825 2011997 2012187 2012438 "PDECOMP" 2012884 NIL PDECOMP (NIL T T) -7 NIL NIL) (-824 2009608 2010423 2010452 "PDECAT" 2011237 T PDECAT (NIL) -9 NIL 2011948) (-823 2009361 2009394 2009483 "PCOMP" 2009569 NIL PCOMP (NIL T T) -7 NIL NIL) (-822 2007568 2008164 2008460 "PBWLB" 2009091 NIL PBWLB (NIL T) -8 NIL NIL) (-821 2000077 2001645 2002981 "PATTERN" 2006253 NIL PATTERN (NIL T) -8 NIL NIL) (-820 1999709 1999766 1999875 "PATTERN2" 2000014 NIL PATTERN2 (NIL T T) -7 NIL NIL) (-819 1997466 1997854 1998311 "PATTERN1" 1999298 NIL PATTERN1 (NIL T T) -7 NIL NIL) (-818 1994861 1995415 1995896 "PATRES" 1997031 NIL PATRES (NIL T T) -8 NIL NIL) (-817 1994425 1994492 1994624 "PATRES2" 1994788 NIL PATRES2 (NIL T T T) -7 NIL NIL) (-816 1992322 1992722 1993127 "PATMATCH" 1994094 NIL PATMATCH (NIL T T T) -7 NIL NIL) (-815 1991858 1992041 1992083 "PATMAB" 1992190 NIL PATMAB (NIL T) -9 NIL 1992273) (-814 1990403 1990712 1990970 "PATLRES" 1991663 NIL PATLRES (NIL T T T) -8 NIL NIL) (-813 1989948 1990071 1990113 "PATAB" 1990118 NIL PATAB (NIL T) -9 NIL 1990290) (-812 1987429 1987961 1988534 "PARTPERM" 1989395 T PARTPERM (NIL) -7 NIL NIL) (-811 1987050 1987113 1987215 "PARSURF" 1987360 NIL PARSURF (NIL T) -8 NIL NIL) (-810 1986682 1986739 1986848 "PARSU2" 1986987 NIL PARSU2 (NIL T T) -7 NIL NIL) (-809 1986446 1986486 1986553 "PARSER" 1986635 T PARSER (NIL) -7 NIL NIL) (-808 1986067 1986130 1986232 "PARSCURV" 1986377 NIL PARSCURV (NIL T) -8 NIL NIL) (-807 1985699 1985756 1985865 "PARSC2" 1986004 NIL PARSC2 (NIL T T) -7 NIL NIL) (-806 1985338 1985396 1985493 "PARPCURV" 1985635 NIL PARPCURV (NIL T) -8 NIL NIL) (-805 1984970 1985027 1985136 "PARPC2" 1985275 NIL PARPC2 (NIL T T) -7 NIL NIL) (-804 1984490 1984576 1984695 "PAN2EXPR" 1984871 T PAN2EXPR (NIL) -7 NIL NIL) (-803 1983296 1983611 1983839 "PALETTE" 1984282 T PALETTE (NIL) -8 NIL NIL) (-802 1981764 1982301 1982661 "PAIR" 1982982 NIL PAIR (NIL T T) -8 NIL NIL) (-801 1975614 1981023 1981217 "PADICRC" 1981619 NIL PADICRC (NIL NIL T) -8 NIL NIL) (-800 1968822 1974960 1975144 "PADICRAT" 1975462 NIL PADICRAT (NIL NIL) -8 NIL NIL) (-799 1967126 1968759 1968804 "PADIC" 1968809 NIL PADIC (NIL NIL) -8 NIL NIL) (-798 1964330 1965904 1965945 "PADICCT" 1966526 NIL PADICCT (NIL NIL) -9 NIL 1966808) (-797 1963287 1963487 1963755 "PADEPAC" 1964117 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL) (-796 1962499 1962632 1962838 "PADE" 1963149 NIL PADE (NIL T T T) -7 NIL NIL) (-795 1960510 1961342 1961657 "OWP" 1962267 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL) (-794 1959619 1960115 1960287 "OVAR" 1960378 NIL OVAR (NIL NIL) -8 NIL NIL) (-793 1958883 1959004 1959165 "OUT" 1959478 T OUT (NIL) -7 NIL NIL) (-792 1947929 1950108 1952278 "OUTFORM" 1956733 T OUTFORM (NIL) -8 NIL NIL) (-791 1947337 1947658 1947747 "OSI" 1947860 T OSI (NIL) -8 NIL NIL) (-790 1946082 1946309 1946594 "ORTHPOL" 1947084 NIL ORTHPOL (NIL T) -7 NIL NIL) (-789 1943453 1945743 1945881 "OREUP" 1946025 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL) (-788 1940849 1943146 1943272 "ORESUP" 1943395 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL) (-787 1938384 1938884 1939444 "OREPCTO" 1940338 NIL OREPCTO (NIL T T) -7 NIL NIL) (-786 1932293 1934499 1934540 "OREPCAT" 1936861 NIL OREPCAT (NIL T) -9 NIL 1937964) (-785 1929441 1930223 1931280 "OREPCAT-" 1931285 NIL OREPCAT- (NIL T T) -8 NIL NIL) (-784 1928618 1928890 1928919 "ORDSET" 1929228 T ORDSET (NIL) -9 NIL 1929392) (-783 1928137 1928259 1928452 "ORDSET-" 1928457 NIL ORDSET- (NIL T) -8 NIL NIL) (-782 1926750 1927551 1927580 "ORDRING" 1927782 T ORDRING (NIL) -9 NIL 1927906) (-781 1926395 1926489 1926633 "ORDRING-" 1926638 NIL ORDRING- (NIL T) -8 NIL NIL) (-780 1925770 1926251 1926280 "ORDMON" 1926285 T ORDMON (NIL) -9 NIL 1926306) (-779 1924932 1925079 1925274 "ORDFUNS" 1925619 NIL ORDFUNS (NIL NIL T) -7 NIL NIL) (-778 1924443 1924802 1924831 "ORDFIN" 1924836 T ORDFIN (NIL) -9 NIL 1924857) (-777 1920955 1923029 1923438 "ORDCOMP" 1924067 NIL ORDCOMP (NIL T) -8 NIL NIL) (-776 1920221 1920348 1920534 "ORDCOMP2" 1920815 NIL ORDCOMP2 (NIL T T) -7 NIL NIL) (-775 1916729 1917611 1918448 "OPTPROB" 1919404 T OPTPROB (NIL) -8 NIL NIL) (-774 1913571 1914200 1914894 "OPTPACK" 1916055 T OPTPACK (NIL) -7 NIL NIL) (-773 1911296 1912032 1912061 "OPTCAT" 1912876 T OPTCAT (NIL) -9 NIL 1913522) (-772 1911064 1911103 1911169 "OPQUERY" 1911250 T OPQUERY (NIL) -7 NIL NIL) (-771 1908200 1909391 1909891 "OP" 1910596 NIL OP (NIL T) -8 NIL NIL) (-770 1904965 1906997 1907366 "ONECOMP" 1907864 NIL ONECOMP (NIL T) -8 NIL NIL) (-769 1904270 1904385 1904559 "ONECOMP2" 1904837 NIL ONECOMP2 (NIL T T) -7 NIL NIL) (-768 1903689 1903795 1903925 "OMSERVER" 1904160 T OMSERVER (NIL) -7 NIL NIL) (-767 1900577 1903129 1903170 "OMSAGG" 1903231 NIL OMSAGG (NIL T) -9 NIL 1903295) (-766 1899200 1899463 1899745 "OMPKG" 1900315 T OMPKG (NIL) -7 NIL NIL) (-765 1898629 1898732 1898761 "OM" 1899060 T OM (NIL) -9 NIL NIL) (-764 1897168 1898181 1898349 "OMLO" 1898510 NIL OMLO (NIL T T) -8 NIL NIL) (-763 1896098 1896245 1896471 "OMEXPR" 1896994 NIL OMEXPR (NIL T) -7 NIL NIL) (-762 1895416 1895644 1895780 "OMERR" 1895982 T OMERR (NIL) -8 NIL NIL) (-761 1894594 1894837 1894997 "OMERRK" 1895276 T OMERRK (NIL) -8 NIL NIL) (-760 1894072 1894271 1894379 "OMENC" 1894506 T OMENC (NIL) -8 NIL NIL) (-759 1887967 1889152 1890323 "OMDEV" 1892921 T OMDEV (NIL) -8 NIL NIL) (-758 1887036 1887207 1887401 "OMCONN" 1887793 T OMCONN (NIL) -8 NIL NIL) (-757 1885651 1886637 1886666 "OINTDOM" 1886671 T OINTDOM (NIL) -9 NIL 1886692) (-756 1881413 1882643 1883358 "OFMONOID" 1884968 NIL OFMONOID (NIL T) -8 NIL NIL) (-755 1880851 1881350 1881395 "ODVAR" 1881400 NIL ODVAR (NIL T) -8 NIL NIL) (-754 1877976 1880348 1880533 "ODR" 1880726 NIL ODR (NIL T T NIL) -8 NIL NIL) (-753 1870282 1877755 1877879 "ODPOL" 1877884 NIL ODPOL (NIL T) -8 NIL NIL) (-752 1864105 1870154 1870259 "ODP" 1870264 NIL ODP (NIL NIL T NIL) -8 NIL NIL) (-751 1862871 1863086 1863361 "ODETOOLS" 1863879 NIL ODETOOLS (NIL T T) -7 NIL NIL) (-750 1859840 1860496 1861212 "ODESYS" 1862204 NIL ODESYS (NIL T T) -7 NIL NIL) (-749 1854744 1855652 1856675 "ODERTRIC" 1858915 NIL ODERTRIC (NIL T T) -7 NIL NIL) (-748 1854170 1854252 1854446 "ODERED" 1854656 NIL ODERED (NIL T T T T T) -7 NIL NIL) (-747 1851072 1851620 1852295 "ODERAT" 1853593 NIL ODERAT (NIL T T) -7 NIL NIL) (-746 1848040 1848504 1849100 "ODEPRRIC" 1850601 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL) (-745 1845911 1846478 1846987 "ODEPROB" 1847551 T ODEPROB (NIL) -8 NIL NIL) (-744 1842443 1842926 1843572 "ODEPRIM" 1845390 NIL ODEPRIM (NIL T T T T) -7 NIL NIL) (-743 1841696 1841798 1842056 "ODEPAL" 1842335 NIL ODEPAL (NIL T T T T) -7 NIL NIL) (-742 1837898 1838679 1839533 "ODEPACK" 1840862 T ODEPACK (NIL) -7 NIL NIL) (-741 1836935 1837042 1837270 "ODEINT" 1837787 NIL ODEINT (NIL T T) -7 NIL NIL) (-740 1831036 1832461 1833908 "ODEIFTBL" 1835508 T ODEIFTBL (NIL) -8 NIL NIL) (-739 1826380 1827166 1828124 "ODEEF" 1830195 NIL ODEEF (NIL T T) -7 NIL NIL) (-738 1825717 1825806 1826035 "ODECONST" 1826285 NIL ODECONST (NIL T T T) -7 NIL NIL) (-737 1823874 1824507 1824536 "ODECAT" 1825139 T ODECAT (NIL) -9 NIL 1825668) (-736 1820746 1823586 1823705 "OCT" 1823787 NIL OCT (NIL T) -8 NIL NIL) (-735 1820384 1820427 1820554 "OCTCT2" 1820697 NIL OCTCT2 (NIL T T T T) -7 NIL NIL) (-734 1815217 1817655 1817696 "OC" 1818792 NIL OC (NIL T) -9 NIL 1819649) (-733 1812444 1813192 1814182 "OC-" 1814276 NIL OC- (NIL T T) -8 NIL NIL) (-732 1811822 1812264 1812293 "OCAMON" 1812298 T OCAMON (NIL) -9 NIL 1812319) (-731 1811282 1811392 1811522 "OBJPROP" 1811712 T OBJPROP (NIL) -8 NIL NIL) (-730 1810735 1811142 1811171 "OASGP" 1811176 T OASGP (NIL) -9 NIL 1811196) (-729 1810022 1810485 1810514 "OAMONS" 1810554 T OAMONS (NIL) -9 NIL 1810597) (-728 1809462 1809869 1809898 "OAMON" 1809903 T OAMON (NIL) -9 NIL 1809923) (-727 1808766 1809258 1809287 "OAGROUP" 1809292 T OAGROUP (NIL) -9 NIL 1809312) (-726 1808456 1808506 1808594 "NUMTUBE" 1808710 NIL NUMTUBE (NIL T) -7 NIL NIL) (-725 1802029 1803547 1805083 "NUMQUAD" 1806940 T NUMQUAD (NIL) -7 NIL NIL) (-724 1797785 1798773 1799798 "NUMODE" 1801024 T NUMODE (NIL) -7 NIL NIL) (-723 1795188 1796034 1796063 "NUMINT" 1796980 T NUMINT (NIL) -9 NIL 1797736) (-722 1794136 1794333 1794551 "NUMFMT" 1794990 T NUMFMT (NIL) -7 NIL NIL) (-721 1780518 1783452 1785982 "NUMERIC" 1791645 NIL NUMERIC (NIL T) -7 NIL NIL) (-720 1774918 1779970 1780065 "NTSCAT" 1780070 NIL NTSCAT (NIL T T T T) -9 NIL 1780108) (-719 1774112 1774277 1774470 "NTPOLFN" 1774757 NIL NTPOLFN (NIL T) -7 NIL NIL) (-718 1761968 1770954 1771764 "NSUP" 1773334 NIL NSUP (NIL T) -8 NIL NIL) (-717 1761604 1761661 1761768 "NSUP2" 1761905 NIL NSUP2 (NIL T T) -7 NIL NIL) (-716 1751566 1761383 1761513 "NSMP" 1761518 NIL NSMP (NIL T T) -8 NIL NIL) (-715 1749998 1750299 1750656 "NREP" 1751254 NIL NREP (NIL T) -7 NIL NIL) (-714 1748589 1748841 1749199 "NPCOEF" 1749741 NIL NPCOEF (NIL T T T T T) -7 NIL NIL) (-713 1747655 1747770 1747986 "NORMRETR" 1748470 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL) (-712 1745708 1745998 1746405 "NORMPK" 1747363 NIL NORMPK (NIL T T T T T) -7 NIL NIL) (-711 1745393 1745421 1745545 "NORMMA" 1745674 NIL NORMMA (NIL T T T T) -7 NIL NIL) (-710 1745220 1745350 1745379 "NONE" 1745384 T NONE (NIL) -8 NIL NIL) (-709 1745009 1745038 1745107 "NONE1" 1745184 NIL NONE1 (NIL T) -7 NIL NIL) (-708 1744494 1744556 1744741 "NODE1" 1744941 NIL NODE1 (NIL T T) -7 NIL NIL) (-707 1742787 1743657 1743912 "NNI" 1744259 T NNI (NIL) -8 NIL NIL) (-706 1741207 1741520 1741884 "NLINSOL" 1742455 NIL NLINSOL (NIL T) -7 NIL NIL) (-705 1737375 1738342 1739264 "NIPROB" 1740305 T NIPROB (NIL) -8 NIL NIL) (-704 1736132 1736366 1736668 "NFINTBAS" 1737137 NIL NFINTBAS (NIL T T) -7 NIL NIL) (-703 1734840 1735071 1735352 "NCODIV" 1735900 NIL NCODIV (NIL T T) -7 NIL NIL) (-702 1734602 1734639 1734714 "NCNTFRAC" 1734797 NIL NCNTFRAC (NIL T) -7 NIL NIL) (-701 1732782 1733146 1733566 "NCEP" 1734227 NIL NCEP (NIL T) -7 NIL NIL) (-700 1731693 1732432 1732461 "NASRING" 1732571 T NASRING (NIL) -9 NIL 1732645) (-699 1731488 1731532 1731626 "NASRING-" 1731631 NIL NASRING- (NIL T) -8 NIL NIL) (-698 1730641 1731140 1731169 "NARNG" 1731286 T NARNG (NIL) -9 NIL 1731377) (-697 1730333 1730400 1730534 "NARNG-" 1730539 NIL NARNG- (NIL T) -8 NIL NIL) (-696 1729212 1729419 1729654 "NAGSP" 1730118 T NAGSP (NIL) -7 NIL NIL) (-695 1720636 1722282 1723917 "NAGS" 1727597 T NAGS (NIL) -7 NIL NIL) (-694 1719200 1719504 1719831 "NAGF07" 1720329 T NAGF07 (NIL) -7 NIL NIL) (-693 1713782 1715062 1716358 "NAGF04" 1717924 T NAGF04 (NIL) -7 NIL NIL) (-692 1706814 1708412 1710029 "NAGF02" 1712185 T NAGF02 (NIL) -7 NIL NIL) (-691 1702078 1703168 1704275 "NAGF01" 1705727 T NAGF01 (NIL) -7 NIL NIL) (-690 1695738 1697296 1698873 "NAGE04" 1700521 T NAGE04 (NIL) -7 NIL NIL) (-689 1686979 1689082 1691194 "NAGE02" 1693646 T NAGE02 (NIL) -7 NIL NIL) (-688 1682972 1683909 1684863 "NAGE01" 1686045 T NAGE01 (NIL) -7 NIL NIL) (-687 1680779 1681310 1681865 "NAGD03" 1682437 T NAGD03 (NIL) -7 NIL NIL) (-686 1672565 1674484 1676429 "NAGD02" 1678854 T NAGD02 (NIL) -7 NIL NIL) (-685 1666424 1667837 1669265 "NAGD01" 1671157 T NAGD01 (NIL) -7 NIL NIL) (-684 1662681 1663491 1664316 "NAGC06" 1665619 T NAGC06 (NIL) -7 NIL NIL) (-683 1661158 1661487 1661840 "NAGC05" 1662348 T NAGC05 (NIL) -7 NIL NIL) (-682 1660542 1660659 1660801 "NAGC02" 1661036 T NAGC02 (NIL) -7 NIL NIL) (-681 1659603 1660160 1660201 "NAALG" 1660280 NIL NAALG (NIL T) -9 NIL 1660341) (-680 1659438 1659467 1659557 "NAALG-" 1659562 NIL NAALG- (NIL T T) -8 NIL NIL) (-679 1653388 1654496 1655683 "MULTSQFR" 1658334 NIL MULTSQFR (NIL T T T T) -7 NIL NIL) (-678 1652707 1652782 1652966 "MULTFACT" 1653300 NIL MULTFACT (NIL T T T T) -7 NIL NIL) (-677 1645900 1649811 1649864 "MTSCAT" 1650924 NIL MTSCAT (NIL T T) -9 NIL 1651438) (-676 1645612 1645666 1645758 "MTHING" 1645840 NIL MTHING (NIL T) -7 NIL NIL) (-675 1645404 1645437 1645497 "MSYSCMD" 1645572 T MSYSCMD (NIL) -7 NIL NIL) (-674 1641516 1644159 1644479 "MSET" 1645117 NIL MSET (NIL T) -8 NIL NIL) (-673 1638611 1641077 1641119 "MSETAGG" 1641124 NIL MSETAGG (NIL T) -9 NIL 1641158) (-672 1634467 1636009 1636750 "MRING" 1637914 NIL MRING (NIL T T) -8 NIL NIL) (-671 1634037 1634104 1634233 "MRF2" 1634394 NIL MRF2 (NIL T T T) -7 NIL NIL) (-670 1633655 1633690 1633834 "MRATFAC" 1633996 NIL MRATFAC (NIL T T T T) -7 NIL NIL) (-669 1631267 1631562 1631993 "MPRFF" 1633360 NIL MPRFF (NIL T T T T) -7 NIL NIL) (-668 1625287 1631122 1631218 "MPOLY" 1631223 NIL MPOLY (NIL NIL T) -8 NIL NIL) (-667 1624777 1624812 1625020 "MPCPF" 1625246 NIL MPCPF (NIL T T T T) -7 NIL NIL) (-666 1624293 1624336 1624519 "MPC3" 1624728 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL) (-665 1623494 1623575 1623794 "MPC2" 1624208 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL) (-664 1621795 1622132 1622522 "MONOTOOL" 1623154 NIL MONOTOOL (NIL T T) -7 NIL NIL) (-663 1620919 1621254 1621283 "MONOID" 1621560 T MONOID (NIL) -9 NIL 1621732) (-662 1620297 1620460 1620703 "MONOID-" 1620708 NIL MONOID- (NIL T) -8 NIL NIL) (-661 1611277 1617263 1617323 "MONOGEN" 1617997 NIL MONOGEN (NIL T T) -9 NIL 1618453) (-660 1608495 1609230 1610230 "MONOGEN-" 1610349 NIL MONOGEN- (NIL T T T) -8 NIL NIL) (-659 1607354 1607774 1607803 "MONADWU" 1608195 T MONADWU (NIL) -9 NIL 1608433) (-658 1606726 1606885 1607133 "MONADWU-" 1607138 NIL MONADWU- (NIL T) -8 NIL NIL) (-657 1606111 1606329 1606358 "MONAD" 1606565 T MONAD (NIL) -9 NIL 1606677) (-656 1605796 1605874 1606006 "MONAD-" 1606011 NIL MONAD- (NIL T) -8 NIL NIL) (-655 1604047 1604709 1604988 "MOEBIUS" 1605549 NIL MOEBIUS (NIL T) -8 NIL NIL) (-654 1603440 1603818 1603859 "MODULE" 1603864 NIL MODULE (NIL T) -9 NIL 1603890) (-653 1603008 1603104 1603294 "MODULE-" 1603299 NIL MODULE- (NIL T T) -8 NIL NIL) (-652 1600679 1601374 1601700 "MODRING" 1602833 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL) (-651 1597635 1598800 1599317 "MODOP" 1600211 NIL MODOP (NIL T T) -8 NIL NIL) (-650 1595822 1596274 1596615 "MODMONOM" 1597434 NIL MODMONOM (NIL T T NIL) -8 NIL NIL) (-649 1585540 1594026 1594448 "MODMON" 1595450 NIL MODMON (NIL T T) -8 NIL NIL) (-648 1582666 1584384 1584660 "MODFIELD" 1585415 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL) (-647 1582192 1582235 1582414 "MMAP" 1582617 NIL MMAP (NIL T T T T T T) -7 NIL NIL) (-646 1580428 1581205 1581246 "MLO" 1581663 NIL MLO (NIL T) -9 NIL 1581904) (-645 1577795 1578310 1578912 "MLIFT" 1579909 NIL MLIFT (NIL T T T T) -7 NIL NIL) (-644 1577186 1577270 1577424 "MKUCFUNC" 1577706 NIL MKUCFUNC (NIL T T T) -7 NIL NIL) (-643 1576785 1576855 1576978 "MKRECORD" 1577109 NIL MKRECORD (NIL T T) -7 NIL NIL) (-642 1575833 1575994 1576222 "MKFUNC" 1576596 NIL MKFUNC (NIL T) -7 NIL NIL) (-641 1575221 1575325 1575481 "MKFLCFN" 1575716 NIL MKFLCFN (NIL T) -7 NIL NIL) (-640 1574647 1575014 1575103 "MKCHSET" 1575165 NIL MKCHSET (NIL T) -8 NIL NIL) (-639 1573924 1574026 1574211 "MKBCFUNC" 1574540 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL) (-638 1570608 1573478 1573614 "MINT" 1573808 T MINT (NIL) -8 NIL NIL) (-637 1569420 1569663 1569940 "MHROWRED" 1570363 NIL MHROWRED (NIL T) -7 NIL NIL) (-636 1564691 1567865 1568289 "MFLOAT" 1569016 T MFLOAT (NIL) -8 NIL NIL) (-635 1564048 1564124 1564295 "MFINFACT" 1564603 NIL MFINFACT (NIL T T T T) -7 NIL NIL) (-634 1560363 1561211 1562095 "MESH" 1563184 T MESH (NIL) -7 NIL NIL) (-633 1558753 1559065 1559418 "MDDFACT" 1560050 NIL MDDFACT (NIL T) -7 NIL NIL) (-632 1555595 1557912 1557954 "MDAGG" 1558209 NIL MDAGG (NIL T) -9 NIL 1558352) (-631 1545293 1554888 1555095 "MCMPLX" 1555408 T MCMPLX (NIL) -8 NIL NIL) (-630 1544434 1544580 1544780 "MCDEN" 1545142 NIL MCDEN (NIL T T) -7 NIL NIL) (-629 1542324 1542594 1542974 "MCALCFN" 1544164 NIL MCALCFN (NIL T T T T) -7 NIL NIL) (-628 1539946 1540469 1541030 "MATSTOR" 1541795 NIL MATSTOR (NIL T) -7 NIL NIL) (-627 1535954 1539321 1539568 "MATRIX" 1539731 NIL MATRIX (NIL T) -8 NIL NIL) (-626 1531724 1532427 1533163 "MATLIN" 1535311 NIL MATLIN (NIL T T T T) -7 NIL NIL) (-625 1521921 1525059 1525136 "MATCAT" 1529974 NIL MATCAT (NIL T T T) -9 NIL 1531391) (-624 1518286 1519299 1520654 "MATCAT-" 1520659 NIL MATCAT- (NIL T T T T) -8 NIL NIL) (-623 1516888 1517041 1517372 "MATCAT2" 1518121 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-622 1515000 1515324 1515708 "MAPPKG3" 1516563 NIL MAPPKG3 (NIL T T T) -7 NIL NIL) (-621 1513981 1514154 1514376 "MAPPKG2" 1514824 NIL MAPPKG2 (NIL T T) -7 NIL NIL) (-620 1512480 1512764 1513091 "MAPPKG1" 1513687 NIL MAPPKG1 (NIL T) -7 NIL NIL) (-619 1512091 1512149 1512272 "MAPHACK3" 1512416 NIL MAPHACK3 (NIL T T T) -7 NIL NIL) (-618 1511683 1511744 1511858 "MAPHACK2" 1512023 NIL MAPHACK2 (NIL T T) -7 NIL NIL) (-617 1511121 1511224 1511366 "MAPHACK1" 1511574 NIL MAPHACK1 (NIL T) -7 NIL NIL) (-616 1509229 1509823 1510126 "MAGMA" 1510850 NIL MAGMA (NIL T) -8 NIL NIL) (-615 1505703 1507473 1507933 "M3D" 1508802 NIL M3D (NIL T) -8 NIL NIL) (-614 1499858 1504073 1504115 "LZSTAGG" 1504897 NIL LZSTAGG (NIL T) -9 NIL 1505192) (-613 1495831 1496989 1498446 "LZSTAGG-" 1498451 NIL LZSTAGG- (NIL T T) -8 NIL NIL) (-612 1492947 1493724 1494210 "LWORD" 1495377 NIL LWORD (NIL T) -8 NIL NIL) (-611 1486107 1492718 1492852 "LSQM" 1492857 NIL LSQM (NIL NIL T) -8 NIL NIL) (-610 1485331 1485470 1485698 "LSPP" 1485962 NIL LSPP (NIL T T T T) -7 NIL NIL) (-609 1483143 1483444 1483900 "LSMP" 1485020 NIL LSMP (NIL T T T T) -7 NIL NIL) (-608 1479922 1480596 1481326 "LSMP1" 1482445 NIL LSMP1 (NIL T) -7 NIL NIL) (-607 1473848 1479090 1479132 "LSAGG" 1479194 NIL LSAGG (NIL T) -9 NIL 1479272) (-606 1470543 1471467 1472680 "LSAGG-" 1472685 NIL LSAGG- (NIL T T) -8 NIL NIL) (-605 1468169 1469687 1469936 "LPOLY" 1470338 NIL LPOLY (NIL T T) -8 NIL NIL) (-604 1467751 1467836 1467959 "LPEFRAC" 1468078 NIL LPEFRAC (NIL T) -7 NIL NIL) (-603 1466098 1466845 1467098 "LO" 1467583 NIL LO (NIL T T T) -8 NIL NIL) (-602 1465751 1465863 1465892 "LOGIC" 1466003 T LOGIC (NIL) -9 NIL 1466083) (-601 1465613 1465636 1465707 "LOGIC-" 1465712 NIL LOGIC- (NIL T) -8 NIL NIL) (-600 1464806 1464946 1465139 "LODOOPS" 1465469 NIL LODOOPS (NIL T T) -7 NIL NIL) (-599 1462224 1464723 1464788 "LODO" 1464793 NIL LODO (NIL T NIL) -8 NIL NIL) (-598 1460770 1461005 1461356 "LODOF" 1461971 NIL LODOF (NIL T T) -7 NIL NIL) (-597 1457189 1459625 1459666 "LODOCAT" 1460098 NIL LODOCAT (NIL T) -9 NIL 1460309) (-596 1456923 1456981 1457107 "LODOCAT-" 1457112 NIL LODOCAT- (NIL T T) -8 NIL NIL) (-595 1454237 1456764 1456882 "LODO2" 1456887 NIL LODO2 (NIL T T) -8 NIL NIL) (-594 1451666 1454174 1454219 "LODO1" 1454224 NIL LODO1 (NIL T) -8 NIL NIL) (-593 1450529 1450694 1451005 "LODEEF" 1451489 NIL LODEEF (NIL T T T) -7 NIL NIL) (-592 1445815 1448659 1448701 "LNAGG" 1449648 NIL LNAGG (NIL T) -9 NIL 1450092) (-591 1444962 1445176 1445518 "LNAGG-" 1445523 NIL LNAGG- (NIL T T) -8 NIL NIL) (-590 1441127 1441889 1442527 "LMOPS" 1444378 NIL LMOPS (NIL T T NIL) -8 NIL NIL) (-589 1440524 1440886 1440927 "LMODULE" 1440987 NIL LMODULE (NIL T) -9 NIL 1441029) (-588 1437770 1440169 1440292 "LMDICT" 1440434 NIL LMDICT (NIL T) -8 NIL NIL) (-587 1430997 1436716 1437014 "LIST" 1437505 NIL LIST (NIL T) -8 NIL NIL) (-586 1430522 1430596 1430735 "LIST3" 1430917 NIL LIST3 (NIL T T T) -7 NIL NIL) (-585 1429529 1429707 1429935 "LIST2" 1430340 NIL LIST2 (NIL T T) -7 NIL NIL) (-584 1427663 1427975 1428374 "LIST2MAP" 1429176 NIL LIST2MAP (NIL T T) -7 NIL NIL) (-583 1426375 1427055 1427096 "LINEXP" 1427349 NIL LINEXP (NIL T) -9 NIL 1427497) (-582 1425022 1425282 1425579 "LINDEP" 1426127 NIL LINDEP (NIL T T) -7 NIL NIL) (-581 1421789 1422508 1423285 "LIMITRF" 1424277 NIL LIMITRF (NIL T) -7 NIL NIL) (-580 1420069 1420364 1420779 "LIMITPS" 1421484 NIL LIMITPS (NIL T T) -7 NIL NIL) (-579 1414524 1419580 1419808 "LIE" 1419890 NIL LIE (NIL T T) -8 NIL NIL) (-578 1413574 1414017 1414058 "LIECAT" 1414198 NIL LIECAT (NIL T) -9 NIL 1414349) (-577 1413415 1413442 1413530 "LIECAT-" 1413535 NIL LIECAT- (NIL T T) -8 NIL NIL) (-576 1406027 1412864 1413029 "LIB" 1413270 T LIB (NIL) -8 NIL NIL) (-575 1401664 1402545 1403480 "LGROBP" 1405144 NIL LGROBP (NIL NIL T) -7 NIL NIL) (-574 1399530 1399804 1400166 "LF" 1401385 NIL LF (NIL T T) -7 NIL NIL) (-573 1398369 1399061 1399090 "LFCAT" 1399297 T LFCAT (NIL) -9 NIL 1399436) (-572 1395281 1395907 1396593 "LEXTRIPK" 1397735 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL) (-571 1391987 1392851 1393354 "LEXP" 1394861 NIL LEXP (NIL T T NIL) -8 NIL NIL) (-570 1390385 1390698 1391099 "LEADCDET" 1391669 NIL LEADCDET (NIL T T T T) -7 NIL NIL) (-569 1389581 1389655 1389882 "LAZM3PK" 1390306 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL) (-568 1384497 1387660 1388197 "LAUPOL" 1389094 NIL LAUPOL (NIL T T) -8 NIL NIL) (-567 1384064 1384108 1384275 "LAPLACE" 1384447 NIL LAPLACE (NIL T T) -7 NIL NIL) (-566 1381992 1383165 1383416 "LA" 1383897 NIL LA (NIL T T T) -8 NIL NIL) (-565 1381054 1381648 1381689 "LALG" 1381750 NIL LALG (NIL T) -9 NIL 1381808) (-564 1380769 1380828 1380963 "LALG-" 1380968 NIL LALG- (NIL T T) -8 NIL NIL) (-563 1379679 1379866 1380163 "KOVACIC" 1380569 NIL KOVACIC (NIL T T) -7 NIL NIL) (-562 1379513 1379537 1379579 "KONVERT" 1379641 NIL KONVERT (NIL T) -9 NIL NIL) (-561 1379347 1379371 1379413 "KOERCE" 1379475 NIL KOERCE (NIL T) -9 NIL NIL) (-560 1377081 1377841 1378234 "KERNEL" 1378986 NIL KERNEL (NIL T) -8 NIL NIL) (-559 1376583 1376664 1376794 "KERNEL2" 1376995 NIL KERNEL2 (NIL T T) -7 NIL NIL) (-558 1370434 1375122 1375177 "KDAGG" 1375554 NIL KDAGG (NIL T T) -9 NIL 1375760) (-557 1369963 1370087 1370292 "KDAGG-" 1370297 NIL KDAGG- (NIL T T T) -8 NIL NIL) (-556 1363138 1369624 1369779 "KAFILE" 1369841 NIL KAFILE (NIL T) -8 NIL NIL) (-555 1357593 1362649 1362877 "JORDAN" 1362959 NIL JORDAN (NIL T T) -8 NIL NIL) (-554 1353892 1355798 1355853 "IXAGG" 1356782 NIL IXAGG (NIL T T) -9 NIL 1357241) (-553 1352811 1353117 1353536 "IXAGG-" 1353541 NIL IXAGG- (NIL T T T) -8 NIL NIL) (-552 1348396 1352733 1352792 "IVECTOR" 1352797 NIL IVECTOR (NIL T NIL) -8 NIL NIL) (-551 1347162 1347399 1347665 "ITUPLE" 1348163 NIL ITUPLE (NIL T) -8 NIL NIL) (-550 1345598 1345775 1346081 "ITRIGMNP" 1346984 NIL ITRIGMNP (NIL T T T) -7 NIL NIL) (-549 1344343 1344547 1344830 "ITFUN3" 1345374 NIL ITFUN3 (NIL T T T) -7 NIL NIL) (-548 1343975 1344032 1344141 "ITFUN2" 1344280 NIL ITFUN2 (NIL T T) -7 NIL NIL) (-547 1341777 1342848 1343145 "ITAYLOR" 1343710 NIL ITAYLOR (NIL T) -8 NIL NIL) (-546 1330768 1335963 1337122 "ISUPS" 1340650 NIL ISUPS (NIL T) -8 NIL NIL) (-545 1329872 1330012 1330248 "ISUMP" 1330615 NIL ISUMP (NIL T T T T) -7 NIL NIL) (-544 1325136 1329673 1329752 "ISTRING" 1329825 NIL ISTRING (NIL NIL) -8 NIL NIL) (-543 1324349 1324430 1324645 "IRURPK" 1325050 NIL IRURPK (NIL T T T T T) -7 NIL NIL) (-542 1323285 1323486 1323726 "IRSN" 1324129 T IRSN (NIL) -7 NIL NIL) (-541 1321320 1321675 1322110 "IRRF2F" 1322923 NIL IRRF2F (NIL T) -7 NIL NIL) (-540 1321067 1321105 1321181 "IRREDFFX" 1321276 NIL IRREDFFX (NIL T) -7 NIL NIL) (-539 1319682 1319941 1320240 "IROOT" 1320800 NIL IROOT (NIL T) -7 NIL NIL) (-538 1316320 1317371 1318061 "IR" 1319024 NIL IR (NIL T) -8 NIL NIL) (-537 1313933 1314428 1314994 "IR2" 1315798 NIL IR2 (NIL T T) -7 NIL NIL) (-536 1313009 1313122 1313342 "IR2F" 1313816 NIL IR2F (NIL T T) -7 NIL NIL) (-535 1312800 1312834 1312894 "IPRNTPK" 1312969 T IPRNTPK (NIL) -7 NIL NIL) (-534 1309354 1312689 1312758 "IPF" 1312763 NIL IPF (NIL NIL) -8 NIL NIL) (-533 1307671 1309279 1309336 "IPADIC" 1309341 NIL IPADIC (NIL NIL NIL) -8 NIL NIL) (-532 1307170 1307228 1307417 "INVLAPLA" 1307607 NIL INVLAPLA (NIL T T) -7 NIL NIL) (-531 1296819 1299172 1301558 "INTTR" 1304834 NIL INTTR (NIL T T) -7 NIL NIL) (-530 1293167 1293908 1294771 "INTTOOLS" 1296005 NIL INTTOOLS (NIL T T) -7 NIL NIL) (-529 1292753 1292844 1292961 "INTSLPE" 1293070 T INTSLPE (NIL) -7 NIL NIL) (-528 1290703 1292676 1292735 "INTRVL" 1292740 NIL INTRVL (NIL T) -8 NIL NIL) (-527 1288310 1288822 1289396 "INTRF" 1290188 NIL INTRF (NIL T) -7 NIL NIL) (-526 1287725 1287822 1287963 "INTRET" 1288208 NIL INTRET (NIL T) -7 NIL NIL) (-525 1285727 1286116 1286585 "INTRAT" 1287333 NIL INTRAT (NIL T T) -7 NIL NIL) (-524 1282960 1283543 1284168 "INTPM" 1285212 NIL INTPM (NIL T T) -7 NIL NIL) (-523 1279669 1280268 1281012 "INTPAF" 1282346 NIL INTPAF (NIL T T T) -7 NIL NIL) (-522 1274912 1275858 1276893 "INTPACK" 1278654 T INTPACK (NIL) -7 NIL NIL) (-521 1271766 1274641 1274768 "INT" 1274805 T INT (NIL) -8 NIL NIL) (-520 1271018 1271170 1271378 "INTHERTR" 1271608 NIL INTHERTR (NIL T T) -7 NIL NIL) (-519 1270457 1270537 1270725 "INTHERAL" 1270932 NIL INTHERAL (NIL T T T T) -7 NIL NIL) (-518 1268303 1268746 1269203 "INTHEORY" 1270020 T INTHEORY (NIL) -7 NIL NIL) (-517 1259626 1261246 1263024 "INTG0" 1266655 NIL INTG0 (NIL T T T) -7 NIL NIL) (-516 1240199 1244989 1249799 "INTFTBL" 1254836 T INTFTBL (NIL) -8 NIL NIL) (-515 1239448 1239586 1239759 "INTFACT" 1240058 NIL INTFACT (NIL T) -7 NIL NIL) (-514 1236839 1237285 1237848 "INTEF" 1239002 NIL INTEF (NIL T T) -7 NIL NIL) (-513 1235300 1236049 1236078 "INTDOM" 1236379 T INTDOM (NIL) -9 NIL 1236586) (-512 1234669 1234843 1235085 "INTDOM-" 1235090 NIL INTDOM- (NIL T) -8 NIL NIL) (-511 1231161 1233093 1233148 "INTCAT" 1233947 NIL INTCAT (NIL T) -9 NIL 1234266) (-510 1230634 1230736 1230864 "INTBIT" 1231053 T INTBIT (NIL) -7 NIL NIL) (-509 1229309 1229463 1229776 "INTALG" 1230479 NIL INTALG (NIL T T T T T) -7 NIL NIL) (-508 1228766 1228856 1229026 "INTAF" 1229213 NIL INTAF (NIL T T) -7 NIL NIL) (-507 1222220 1228576 1228716 "INTABL" 1228721 NIL INTABL (NIL T T T) -8 NIL NIL) (-506 1217170 1219899 1219928 "INS" 1220896 T INS (NIL) -9 NIL 1221577) (-505 1214410 1215181 1216155 "INS-" 1216228 NIL INS- (NIL T) -8 NIL NIL) (-504 1213189 1213416 1213713 "INPSIGN" 1214163 NIL INPSIGN (NIL T T) -7 NIL NIL) (-503 1212307 1212424 1212621 "INPRODPF" 1213069 NIL INPRODPF (NIL T T) -7 NIL NIL) (-502 1211201 1211318 1211555 "INPRODFF" 1212187 NIL INPRODFF (NIL T T T T) -7 NIL NIL) (-501 1210201 1210353 1210613 "INNMFACT" 1211037 NIL INNMFACT (NIL T T T T) -7 NIL NIL) (-500 1209398 1209495 1209683 "INMODGCD" 1210100 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL) (-499 1207907 1208151 1208475 "INFSP" 1209143 NIL INFSP (NIL T T T) -7 NIL NIL) (-498 1207091 1207208 1207391 "INFPROD0" 1207787 NIL INFPROD0 (NIL T T) -7 NIL NIL) (-497 1204101 1205260 1205751 "INFORM" 1206608 T INFORM (NIL) -8 NIL NIL) (-496 1203711 1203771 1203869 "INFORM1" 1204036 NIL INFORM1 (NIL T) -7 NIL NIL) (-495 1203234 1203323 1203437 "INFINITY" 1203617 T INFINITY (NIL) -7 NIL NIL) (-494 1201852 1202100 1202421 "INEP" 1202982 NIL INEP (NIL T T T) -7 NIL NIL) (-493 1201128 1201749 1201814 "INDE" 1201819 NIL INDE (NIL T) -8 NIL NIL) (-492 1200692 1200760 1200877 "INCRMAPS" 1201055 NIL INCRMAPS (NIL T) -7 NIL NIL) (-491 1196003 1196928 1197872 "INBFF" 1199780 NIL INBFF (NIL T) -7 NIL NIL) (-490 1192498 1195848 1195951 "IMATRIX" 1195956 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL) (-489 1191210 1191333 1191648 "IMATQF" 1192354 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL) (-488 1189430 1189657 1189994 "IMATLIN" 1190966 NIL IMATLIN (NIL T T T T) -7 NIL NIL) (-487 1184056 1189354 1189412 "ILIST" 1189417 NIL ILIST (NIL T NIL) -8 NIL NIL) (-486 1182009 1183916 1184029 "IIARRAY2" 1184034 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL) (-485 1177377 1181920 1181984 "IFF" 1181989 NIL IFF (NIL NIL NIL) -8 NIL NIL) (-484 1172420 1176669 1176857 "IFARRAY" 1177234 NIL IFARRAY (NIL T NIL) -8 NIL NIL) (-483 1171627 1172324 1172397 "IFAMON" 1172402 NIL IFAMON (NIL T T NIL) -8 NIL NIL) (-482 1171210 1171275 1171330 "IEVALAB" 1171537 NIL IEVALAB (NIL T T) -9 NIL NIL) (-481 1170885 1170953 1171113 "IEVALAB-" 1171118 NIL IEVALAB- (NIL T T T) -8 NIL NIL) (-480 1170543 1170799 1170862 "IDPO" 1170867 NIL IDPO (NIL T T) -8 NIL NIL) (-479 1169820 1170432 1170507 "IDPOAMS" 1170512 NIL IDPOAMS (NIL T T) -8 NIL NIL) (-478 1169154 1169709 1169784 "IDPOAM" 1169789 NIL IDPOAM (NIL T T) -8 NIL NIL) (-477 1168239 1168489 1168543 "IDPC" 1168956 NIL IDPC (NIL T T) -9 NIL 1169105) (-476 1167735 1168131 1168204 "IDPAM" 1168209 NIL IDPAM (NIL T T) -8 NIL NIL) (-475 1167138 1167627 1167700 "IDPAG" 1167705 NIL IDPAG (NIL T T) -8 NIL NIL) (-474 1163393 1164241 1165136 "IDECOMP" 1166295 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL) (-473 1156267 1157316 1158363 "IDEAL" 1162429 NIL IDEAL (NIL T T T T) -8 NIL NIL) (-472 1155431 1155543 1155742 "ICDEN" 1156151 NIL ICDEN (NIL T T T T) -7 NIL NIL) (-471 1154530 1154911 1155058 "ICARD" 1155304 T ICARD (NIL) -8 NIL NIL) (-470 1152602 1152915 1153318 "IBPTOOLS" 1154207 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL) (-469 1148216 1152222 1152335 "IBITS" 1152521 NIL IBITS (NIL NIL) -8 NIL NIL) (-468 1144939 1145515 1146210 "IBATOOL" 1147633 NIL IBATOOL (NIL T T T) -7 NIL NIL) (-467 1142719 1143180 1143713 "IBACHIN" 1144474 NIL IBACHIN (NIL T T T) -7 NIL NIL) (-466 1140596 1142565 1142668 "IARRAY2" 1142673 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL) (-465 1136749 1140522 1140579 "IARRAY1" 1140584 NIL IARRAY1 (NIL T NIL) -8 NIL NIL) (-464 1130688 1135167 1135645 "IAN" 1136291 T IAN (NIL) -8 NIL NIL) (-463 1130199 1130256 1130429 "IALGFACT" 1130625 NIL IALGFACT (NIL T T T T) -7 NIL NIL) (-462 1129726 1129839 1129868 "HYPCAT" 1130075 T HYPCAT (NIL) -9 NIL NIL) (-461 1129264 1129381 1129567 "HYPCAT-" 1129572 NIL HYPCAT- (NIL T) -8 NIL NIL) (-460 1125943 1127274 1127316 "HOAGG" 1128297 NIL HOAGG (NIL T) -9 NIL 1128976) (-459 1124537 1124936 1125462 "HOAGG-" 1125467 NIL HOAGG- (NIL T T) -8 NIL NIL) (-458 1118368 1123978 1124144 "HEXADEC" 1124391 T HEXADEC (NIL) -8 NIL NIL) (-457 1117116 1117338 1117601 "HEUGCD" 1118145 NIL HEUGCD (NIL T) -7 NIL NIL) (-456 1116219 1116953 1117083 "HELLFDIV" 1117088 NIL HELLFDIV (NIL T T T T) -8 NIL NIL) (-455 1114447 1115996 1116084 "HEAP" 1116163 NIL HEAP (NIL T) -8 NIL NIL) (-454 1108314 1114362 1114424 "HDP" 1114429 NIL HDP (NIL NIL T) -8 NIL NIL) (-453 1102026 1107951 1108102 "HDMP" 1108215 NIL HDMP (NIL NIL T) -8 NIL NIL) (-452 1101351 1101490 1101654 "HB" 1101882 T HB (NIL) -7 NIL NIL) (-451 1094848 1101197 1101301 "HASHTBL" 1101306 NIL HASHTBL (NIL T T NIL) -8 NIL NIL) (-450 1092601 1094476 1094655 "HACKPI" 1094689 T HACKPI (NIL) -8 NIL NIL) (-449 1088297 1092455 1092567 "GTSET" 1092572 NIL GTSET (NIL T T T T) -8 NIL NIL) (-448 1081823 1088175 1088273 "GSTBL" 1088278 NIL GSTBL (NIL T T T NIL) -8 NIL NIL) (-447 1074059 1080859 1081123 "GSERIES" 1081614 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL) (-446 1073081 1073534 1073563 "GROUP" 1073824 T GROUP (NIL) -9 NIL 1073983) (-445 1072197 1072420 1072764 "GROUP-" 1072769 NIL GROUP- (NIL T) -8 NIL NIL) (-444 1070566 1070885 1071272 "GROEBSOL" 1071874 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL) (-443 1069506 1069768 1069820 "GRMOD" 1070349 NIL GRMOD (NIL T T) -9 NIL 1070517) (-442 1069274 1069310 1069438 "GRMOD-" 1069443 NIL GRMOD- (NIL T T T) -8 NIL NIL) (-441 1064602 1065628 1066628 "GRIMAGE" 1068294 T GRIMAGE (NIL) -8 NIL NIL) (-440 1063069 1063329 1063653 "GRDEF" 1064298 T GRDEF (NIL) -7 NIL NIL) (-439 1062513 1062629 1062770 "GRAY" 1062948 T GRAY (NIL) -7 NIL NIL) (-438 1061746 1062126 1062178 "GRALG" 1062331 NIL GRALG (NIL T T) -9 NIL 1062423) (-437 1061407 1061480 1061643 "GRALG-" 1061648 NIL GRALG- (NIL T T T) -8 NIL NIL) (-436 1058215 1060996 1061172 "GPOLSET" 1061314 NIL GPOLSET (NIL T T T T) -8 NIL NIL) (-435 1057571 1057628 1057885 "GOSPER" 1058152 NIL GOSPER (NIL T T T T T) -7 NIL NIL) (-434 1053330 1054009 1054535 "GMODPOL" 1057270 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL) (-433 1052335 1052519 1052757 "GHENSEL" 1053142 NIL GHENSEL (NIL T T) -7 NIL NIL) (-432 1046401 1047244 1048270 "GENUPS" 1051419 NIL GENUPS (NIL T T) -7 NIL NIL) (-431 1046098 1046149 1046238 "GENUFACT" 1046344 NIL GENUFACT (NIL T) -7 NIL NIL) (-430 1045510 1045587 1045752 "GENPGCD" 1046016 NIL GENPGCD (NIL T T T T) -7 NIL NIL) (-429 1044984 1045019 1045232 "GENMFACT" 1045469 NIL GENMFACT (NIL T T T T T) -7 NIL NIL) (-428 1043552 1043807 1044114 "GENEEZ" 1044727 NIL GENEEZ (NIL T T) -7 NIL NIL) (-427 1037426 1043165 1043326 "GDMP" 1043475 NIL GDMP (NIL NIL T T) -8 NIL NIL) (-426 1026808 1031197 1032303 "GCNAALG" 1036409 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL) (-425 1025229 1026101 1026130 "GCDDOM" 1026385 T GCDDOM (NIL) -9 NIL 1026542) (-424 1024699 1024826 1025041 "GCDDOM-" 1025046 NIL GCDDOM- (NIL T) -8 NIL NIL) (-423 1023371 1023556 1023860 "GB" 1024478 NIL GB (NIL T T T T) -7 NIL NIL) (-422 1011991 1014317 1016709 "GBINTERN" 1021062 NIL GBINTERN (NIL T T T T) -7 NIL NIL) (-421 1009828 1010120 1010541 "GBF" 1011666 NIL GBF (NIL T T T T) -7 NIL NIL) (-420 1008609 1008774 1009041 "GBEUCLID" 1009644 NIL GBEUCLID (NIL T T T T) -7 NIL NIL) (-419 1007958 1008083 1008232 "GAUSSFAC" 1008480 T GAUSSFAC (NIL) -7 NIL NIL) (-418 1006335 1006637 1006950 "GALUTIL" 1007677 NIL GALUTIL (NIL T) -7 NIL NIL) (-417 1004652 1004926 1005249 "GALPOLYU" 1006062 NIL GALPOLYU (NIL T T) -7 NIL NIL) (-416 1002041 1002331 1002736 "GALFACTU" 1004349 NIL GALFACTU (NIL T T T) -7 NIL NIL) (-415 993847 995346 996954 "GALFACT" 1000473 NIL GALFACT (NIL T) -7 NIL NIL) (-414 991234 991892 991921 "FVFUN" 993077 T FVFUN (NIL) -9 NIL 993797) (-413 990499 990681 990710 "FVC" 991001 T FVC (NIL) -9 NIL 991184) (-412 990141 990296 990377 "FUNCTION" 990451 NIL FUNCTION (NIL NIL) -8 NIL NIL) (-411 987811 988362 988851 "FT" 989672 T FT (NIL) -8 NIL NIL) (-410 986629 987112 987315 "FTEM" 987628 T FTEM (NIL) -8 NIL NIL) (-409 984894 985182 985584 "FSUPFACT" 986321 NIL FSUPFACT (NIL T T T) -7 NIL NIL) (-408 983291 983580 983912 "FST" 984582 T FST (NIL) -8 NIL NIL) (-407 982466 982572 982766 "FSRED" 983173 NIL FSRED (NIL T T) -7 NIL NIL) (-406 981145 981400 981754 "FSPRMELT" 982181 NIL FSPRMELT (NIL T T) -7 NIL NIL) (-405 978230 978668 979167 "FSPECF" 980708 NIL FSPECF (NIL T T) -7 NIL NIL) (-404 960603 969160 969201 "FS" 973039 NIL FS (NIL T) -9 NIL 975321) (-403 949253 952243 956299 "FS-" 956596 NIL FS- (NIL T T) -8 NIL NIL) (-402 948769 948823 948999 "FSINT" 949194 NIL FSINT (NIL T T) -7 NIL NIL) (-401 947050 947762 948065 "FSERIES" 948548 NIL FSERIES (NIL T T) -8 NIL NIL) (-400 946068 946184 946414 "FSCINT" 946930 NIL FSCINT (NIL T T) -7 NIL NIL) (-399 942302 945012 945054 "FSAGG" 945424 NIL FSAGG (NIL T) -9 NIL 945683) (-398 940064 940665 941461 "FSAGG-" 941556 NIL FSAGG- (NIL T T) -8 NIL NIL) (-397 939106 939249 939476 "FSAGG2" 939917 NIL FSAGG2 (NIL T T T T) -7 NIL NIL) (-396 936765 937044 937597 "FS2UPS" 938824 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL) (-395 936351 936394 936547 "FS2" 936716 NIL FS2 (NIL T T T T) -7 NIL NIL) (-394 935211 935382 935690 "FS2EXPXP" 936176 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL) (-393 934637 934752 934904 "FRUTIL" 935091 NIL FRUTIL (NIL T) -7 NIL NIL) (-392 926058 930136 931492 "FR" 933313 NIL FR (NIL T) -8 NIL NIL) (-391 921134 923777 923818 "FRNAALG" 925214 NIL FRNAALG (NIL T) -9 NIL 925821) (-390 916813 917883 919158 "FRNAALG-" 919908 NIL FRNAALG- (NIL T T) -8 NIL NIL) (-389 916451 916494 916621 "FRNAAF2" 916764 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL) (-388 914816 915308 915602 "FRMOD" 916264 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL) (-387 912539 913207 913523 "FRIDEAL" 914607 NIL FRIDEAL (NIL T T T T) -8 NIL NIL) (-386 911738 911825 912112 "FRIDEAL2" 912446 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL) (-385 910995 911403 911445 "FRETRCT" 911450 NIL FRETRCT (NIL T) -9 NIL 911621) (-384 910107 910338 910689 "FRETRCT-" 910694 NIL FRETRCT- (NIL T T) -8 NIL NIL) (-383 907316 908536 908596 "FRAMALG" 909478 NIL FRAMALG (NIL T T) -9 NIL 909770) (-382 905449 905905 906535 "FRAMALG-" 906758 NIL FRAMALG- (NIL T T T) -8 NIL NIL) (-381 899351 904924 905200 "FRAC" 905205 NIL FRAC (NIL T) -8 NIL NIL) (-380 898987 899044 899151 "FRAC2" 899288 NIL FRAC2 (NIL T T) -7 NIL NIL) (-379 898623 898680 898787 "FR2" 898924 NIL FR2 (NIL T T) -7 NIL NIL) (-378 893296 896209 896238 "FPS" 897357 T FPS (NIL) -9 NIL 897913) (-377 892745 892854 893018 "FPS-" 893164 NIL FPS- (NIL T) -8 NIL NIL) (-376 890193 891890 891919 "FPC" 892144 T FPC (NIL) -9 NIL 892286) (-375 889986 890026 890123 "FPC-" 890128 NIL FPC- (NIL T) -8 NIL NIL) (-374 888864 889474 889516 "FPATMAB" 889521 NIL FPATMAB (NIL T) -9 NIL 889673) (-373 886564 887040 887466 "FPARFRAC" 888501 NIL FPARFRAC (NIL T T) -8 NIL NIL) (-372 881959 882456 883138 "FORTRAN" 885996 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL) (-371 879675 880175 880714 "FORT" 881440 T FORT (NIL) -7 NIL NIL) (-370 877350 877912 877941 "FORTFN" 879001 T FORTFN (NIL) -9 NIL 879625) (-369 877113 877163 877192 "FORTCAT" 877251 T FORTCAT (NIL) -9 NIL 877313) (-368 875173 875656 876055 "FORMULA" 876734 T FORMULA (NIL) -8 NIL NIL) (-367 874961 874991 875060 "FORMULA1" 875137 NIL FORMULA1 (NIL T) -7 NIL NIL) (-366 874484 874536 874709 "FORDER" 874903 NIL FORDER (NIL T T T T) -7 NIL NIL) (-365 873580 873744 873937 "FOP" 874311 T FOP (NIL) -7 NIL NIL) (-364 872188 872860 873034 "FNLA" 873462 NIL FNLA (NIL NIL NIL T) -8 NIL NIL) (-363 870856 871245 871274 "FNCAT" 871846 T FNCAT (NIL) -9 NIL 872139) (-362 870422 870815 870843 "FNAME" 870848 T FNAME (NIL) -8 NIL NIL) (-361 869081 870054 870083 "FMTC" 870088 T FMTC (NIL) -9 NIL 870123) (-360 865399 866606 867234 "FMONOID" 868486 NIL FMONOID (NIL T) -8 NIL NIL) (-359 864619 865142 865290 "FM" 865295 NIL FM (NIL T T) -8 NIL NIL) (-358 862042 862688 862717 "FMFUN" 863861 T FMFUN (NIL) -9 NIL 864569) (-357 861310 861491 861520 "FMC" 861810 T FMC (NIL) -9 NIL 861992) (-356 858539 859373 859427 "FMCAT" 860609 NIL FMCAT (NIL T T) -9 NIL 861103) (-355 857434 858307 858406 "FM1" 858484 NIL FM1 (NIL T T) -8 NIL NIL) (-354 855208 855624 856118 "FLOATRP" 856985 NIL FLOATRP (NIL T) -7 NIL NIL) (-353 848694 852864 853494 "FLOAT" 854598 T FLOAT (NIL) -8 NIL NIL) (-352 846132 846632 847210 "FLOATCP" 848161 NIL FLOATCP (NIL T) -7 NIL NIL) (-351 844920 845768 845809 "FLINEXP" 845814 NIL FLINEXP (NIL T) -9 NIL 845907) (-350 844075 844310 844637 "FLINEXP-" 844642 NIL FLINEXP- (NIL T T) -8 NIL NIL) (-349 843151 843295 843519 "FLASORT" 843927 NIL FLASORT (NIL T T) -7 NIL NIL) (-348 840369 841211 841264 "FLALG" 842491 NIL FLALG (NIL T T) -9 NIL 842958) (-347 834153 837855 837897 "FLAGG" 839159 NIL FLAGG (NIL T) -9 NIL 839811) (-346 832879 833218 833708 "FLAGG-" 833713 NIL FLAGG- (NIL T T) -8 NIL NIL) (-345 831921 832064 832291 "FLAGG2" 832732 NIL FLAGG2 (NIL T T T T) -7 NIL NIL) (-344 828893 829911 829971 "FINRALG" 831099 NIL FINRALG (NIL T T) -9 NIL 831607) (-343 828053 828282 828621 "FINRALG-" 828626 NIL FINRALG- (NIL T T T) -8 NIL NIL) (-342 827459 827672 827701 "FINITE" 827897 T FINITE (NIL) -9 NIL 828004) (-341 819918 822079 822120 "FINAALG" 825787 NIL FINAALG (NIL T) -9 NIL 827240) (-340 815259 816300 817444 "FINAALG-" 818823 NIL FINAALG- (NIL T T) -8 NIL NIL) (-339 814654 815014 815117 "FILE" 815189 NIL FILE (NIL T) -8 NIL NIL) (-338 813338 813650 813705 "FILECAT" 814389 NIL FILECAT (NIL T T) -9 NIL 814605) (-337 811200 812756 812785 "FIELD" 812825 T FIELD (NIL) -9 NIL 812905) (-336 809820 810205 810716 "FIELD-" 810721 NIL FIELD- (NIL T) -8 NIL NIL) (-335 807635 808457 808803 "FGROUP" 809507 NIL FGROUP (NIL T) -8 NIL NIL) (-334 806725 806889 807109 "FGLMICPK" 807467 NIL FGLMICPK (NIL T NIL) -7 NIL NIL) (-333 802527 806650 806707 "FFX" 806712 NIL FFX (NIL T NIL) -8 NIL NIL) (-332 802128 802189 802324 "FFSLPE" 802460 NIL FFSLPE (NIL T T T) -7 NIL NIL) (-331 798123 798900 799696 "FFPOLY" 801364 NIL FFPOLY (NIL T) -7 NIL NIL) (-330 797627 797663 797872 "FFPOLY2" 798081 NIL FFPOLY2 (NIL T T) -7 NIL NIL) (-329 793449 797546 797609 "FFP" 797614 NIL FFP (NIL T NIL) -8 NIL NIL) (-328 788817 793360 793424 "FF" 793429 NIL FF (NIL NIL NIL) -8 NIL NIL) (-327 783913 788160 788350 "FFNBX" 788671 NIL FFNBX (NIL T NIL) -8 NIL NIL) (-326 778823 783048 783306 "FFNBP" 783767 NIL FFNBP (NIL T NIL) -8 NIL NIL) (-325 773426 778107 778318 "FFNB" 778656 NIL FFNB (NIL NIL NIL) -8 NIL NIL) (-324 772258 772456 772771 "FFINTBAS" 773223 NIL FFINTBAS (NIL T T T) -7 NIL NIL) (-323 768481 770721 770750 "FFIELDC" 771370 T FFIELDC (NIL) -9 NIL 771746) (-322 767144 767514 768011 "FFIELDC-" 768016 NIL FFIELDC- (NIL T) -8 NIL NIL) (-321 766714 766759 766883 "FFHOM" 767086 NIL FFHOM (NIL T T T) -7 NIL NIL) (-320 764412 764896 765413 "FFF" 766229 NIL FFF (NIL T) -7 NIL NIL) (-319 760000 764154 764255 "FFCGX" 764355 NIL FFCGX (NIL T NIL) -8 NIL NIL) (-318 755602 759732 759839 "FFCGP" 759943 NIL FFCGP (NIL T NIL) -8 NIL NIL) (-317 750755 755329 755437 "FFCG" 755538 NIL FFCG (NIL NIL NIL) -8 NIL NIL) (-316 732700 741823 741910 "FFCAT" 747075 NIL FFCAT (NIL T T T) -9 NIL 748562) (-315 727898 728945 730259 "FFCAT-" 731489 NIL FFCAT- (NIL T T T T) -8 NIL NIL) (-314 727309 727352 727587 "FFCAT2" 727849 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-313 716509 720299 721516 "FEXPR" 726164 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL) (-312 715508 715943 715985 "FEVALAB" 716069 NIL FEVALAB (NIL T) -9 NIL 716330) (-311 714667 714877 715215 "FEVALAB-" 715220 NIL FEVALAB- (NIL T T) -8 NIL NIL) (-310 713260 714050 714253 "FDIV" 714566 NIL FDIV (NIL T T T T) -8 NIL NIL) (-309 710326 711041 711157 "FDIVCAT" 712725 NIL FDIVCAT (NIL T T T T) -9 NIL 713162) (-308 710088 710115 710285 "FDIVCAT-" 710290 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL) (-307 709308 709395 709672 "FDIV2" 709995 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL) (-306 707994 708253 708542 "FCPAK1" 709039 T FCPAK1 (NIL) -7 NIL NIL) (-305 707122 707494 707635 "FCOMP" 707885 NIL FCOMP (NIL T) -8 NIL NIL) (-304 690750 694165 697728 "FC" 703579 T FC (NIL) -8 NIL NIL) (-303 683345 687391 687432 "FAXF" 689234 NIL FAXF (NIL T) -9 NIL 689925) (-302 680624 681279 682104 "FAXF-" 682569 NIL FAXF- (NIL T T) -8 NIL NIL) (-301 675724 680000 680176 "FARRAY" 680481 NIL FARRAY (NIL T) -8 NIL NIL) (-300 671114 673185 673238 "FAMR" 674250 NIL FAMR (NIL T T) -9 NIL 674710) (-299 670005 670307 670741 "FAMR-" 670746 NIL FAMR- (NIL T T T) -8 NIL NIL) (-298 669201 669927 669980 "FAMONOID" 669985 NIL FAMONOID (NIL T) -8 NIL NIL) (-297 667033 667717 667771 "FAMONC" 668712 NIL FAMONC (NIL T T) -9 NIL 669097) (-296 665725 666787 666924 "FAGROUP" 666929 NIL FAGROUP (NIL T) -8 NIL NIL) (-295 663528 663847 664249 "FACUTIL" 665406 NIL FACUTIL (NIL T T T T) -7 NIL NIL) (-294 662627 662812 663034 "FACTFUNC" 663338 NIL FACTFUNC (NIL T) -7 NIL NIL) (-293 654950 661878 662090 "EXPUPXS" 662483 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL) (-292 652433 652973 653559 "EXPRTUBE" 654384 T EXPRTUBE (NIL) -7 NIL NIL) (-291 648627 649219 649956 "EXPRODE" 651772 NIL EXPRODE (NIL T T) -7 NIL NIL) (-290 633786 647286 647712 "EXPR" 648233 NIL EXPR (NIL T) -8 NIL NIL) (-289 628214 628801 629613 "EXPR2UPS" 633084 NIL EXPR2UPS (NIL T T) -7 NIL NIL) (-288 627850 627907 628014 "EXPR2" 628151 NIL EXPR2 (NIL T T) -7 NIL NIL) (-287 619204 626987 627282 "EXPEXPAN" 627688 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL) (-286 619031 619161 619190 "EXIT" 619195 T EXIT (NIL) -8 NIL NIL) (-285 618658 618720 618833 "EVALCYC" 618963 NIL EVALCYC (NIL T) -7 NIL NIL) (-284 618198 618316 618358 "EVALAB" 618528 NIL EVALAB (NIL T) -9 NIL 618632) (-283 617679 617801 618022 "EVALAB-" 618027 NIL EVALAB- (NIL T T) -8 NIL NIL) (-282 615141 616453 616482 "EUCDOM" 617037 T EUCDOM (NIL) -9 NIL 617387) (-281 613546 613988 614578 "EUCDOM-" 614583 NIL EUCDOM- (NIL T) -8 NIL NIL) (-280 601124 603872 606612 "ESTOOLS" 610826 T ESTOOLS (NIL) -7 NIL NIL) (-279 600760 600817 600924 "ESTOOLS2" 601061 NIL ESTOOLS2 (NIL T T) -7 NIL NIL) (-278 600511 600553 600633 "ESTOOLS1" 600712 NIL ESTOOLS1 (NIL T) -7 NIL NIL) (-277 594448 596172 596201 "ES" 598965 T ES (NIL) -9 NIL 600371) (-276 589396 590682 592499 "ES-" 592663 NIL ES- (NIL T) -8 NIL NIL) (-275 585771 586531 587311 "ESCONT" 588636 T ESCONT (NIL) -7 NIL NIL) (-274 585516 585548 585630 "ESCONT1" 585733 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL) (-273 585191 585241 585341 "ES2" 585460 NIL ES2 (NIL T T) -7 NIL NIL) (-272 584821 584879 584988 "ES1" 585127 NIL ES1 (NIL T T) -7 NIL NIL) (-271 584037 584166 584342 "ERROR" 584665 T ERROR (NIL) -7 NIL NIL) (-270 577540 583896 583987 "EQTBL" 583992 NIL EQTBL (NIL T T) -8 NIL NIL) (-269 569977 572858 574305 "EQ" 576126 NIL -3082 (NIL T) -8 NIL NIL) (-268 569609 569666 569775 "EQ2" 569914 NIL EQ2 (NIL T T) -7 NIL NIL) (-267 564901 565947 567040 "EP" 568548 NIL EP (NIL T) -7 NIL NIL) (-266 563484 563784 564101 "ENV" 564604 T ENV (NIL) -8 NIL NIL) (-265 562643 563207 563236 "ENTIRER" 563241 T ENTIRER (NIL) -9 NIL 563286) (-264 559099 560598 560968 "EMR" 562442 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL) (-263 558242 558427 558482 "ELTAGG" 558862 NIL ELTAGG (NIL T T) -9 NIL 559073) (-262 557961 558023 558164 "ELTAGG-" 558169 NIL ELTAGG- (NIL T T T) -8 NIL NIL) (-261 557749 557778 557833 "ELTAB" 557917 NIL ELTAB (NIL T T) -9 NIL NIL) (-260 556875 557021 557220 "ELFUTS" 557600 NIL ELFUTS (NIL T T) -7 NIL NIL) (-259 556616 556672 556701 "ELEMFUN" 556806 T ELEMFUN (NIL) -9 NIL NIL) (-258 556486 556507 556575 "ELEMFUN-" 556580 NIL ELEMFUN- (NIL T) -8 NIL NIL) (-257 551377 554586 554628 "ELAGG" 555568 NIL ELAGG (NIL T) -9 NIL 556031) (-256 549662 550096 550759 "ELAGG-" 550764 NIL ELAGG- (NIL T T) -8 NIL NIL) (-255 542530 544329 545156 "EFUPXS" 548938 NIL EFUPXS (NIL T T T T) -8 NIL NIL) (-254 535980 537781 538591 "EFULS" 541806 NIL EFULS (NIL T T T) -8 NIL NIL) (-253 533411 533769 534247 "EFSTRUC" 535612 NIL EFSTRUC (NIL T T) -7 NIL NIL) (-252 522483 524048 525608 "EF" 531926 NIL EF (NIL T T) -7 NIL NIL) (-251 521584 521968 522117 "EAB" 522354 T EAB (NIL) -8 NIL NIL) (-250 520797 521543 521571 "E04UCFA" 521576 T E04UCFA (NIL) -8 NIL NIL) (-249 520010 520756 520784 "E04NAFA" 520789 T E04NAFA (NIL) -8 NIL NIL) (-248 519223 519969 519997 "E04MBFA" 520002 T E04MBFA (NIL) -8 NIL NIL) (-247 518436 519182 519210 "E04JAFA" 519215 T E04JAFA (NIL) -8 NIL NIL) (-246 517651 518395 518423 "E04GCFA" 518428 T E04GCFA (NIL) -8 NIL NIL) (-245 516866 517610 517638 "E04FDFA" 517643 T E04FDFA (NIL) -8 NIL NIL) (-244 516079 516825 516853 "E04DGFA" 516858 T E04DGFA (NIL) -8 NIL NIL) (-243 510264 511609 512971 "E04AGNT" 514737 T E04AGNT (NIL) -7 NIL NIL) (-242 508990 509470 509511 "DVARCAT" 509986 NIL DVARCAT (NIL T) -9 NIL 510184) (-241 508194 508406 508720 "DVARCAT-" 508725 NIL DVARCAT- (NIL T T) -8 NIL NIL) (-240 501056 507996 508123 "DSMP" 508128 NIL DSMP (NIL T T T) -8 NIL NIL) (-239 495866 497001 498069 "DROPT" 500008 T DROPT (NIL) -8 NIL NIL) (-238 495531 495590 495688 "DROPT1" 495801 NIL DROPT1 (NIL T) -7 NIL NIL) (-237 490646 491772 492909 "DROPT0" 494414 T DROPT0 (NIL) -7 NIL NIL) (-236 488991 489316 489702 "DRAWPT" 490280 T DRAWPT (NIL) -7 NIL NIL) (-235 483578 484501 485580 "DRAW" 487965 NIL DRAW (NIL T) -7 NIL NIL) (-234 483211 483264 483382 "DRAWHACK" 483519 NIL DRAWHACK (NIL T) -7 NIL NIL) (-233 481942 482211 482502 "DRAWCX" 482940 T DRAWCX (NIL) -7 NIL NIL) (-232 481460 481528 481678 "DRAWCURV" 481868 NIL DRAWCURV (NIL T T) -7 NIL NIL) (-231 471932 473890 476005 "DRAWCFUN" 479365 T DRAWCFUN (NIL) -7 NIL NIL) (-230 468745 470627 470669 "DQAGG" 471298 NIL DQAGG (NIL T) -9 NIL 471571) (-229 457251 463989 464072 "DPOLCAT" 465910 NIL DPOLCAT (NIL T T T T) -9 NIL 466454) (-228 452091 453437 455394 "DPOLCAT-" 455399 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL) (-227 446175 451953 452050 "DPMO" 452055 NIL DPMO (NIL NIL T T) -8 NIL NIL) (-226 440162 445956 446122 "DPMM" 446127 NIL DPMM (NIL NIL T T T) -8 NIL NIL) (-225 439675 439773 439893 "DOMAIN" 440062 T DOMAIN (NIL) -8 NIL NIL) (-224 433387 439312 439463 "DMP" 439576 NIL DMP (NIL NIL T) -8 NIL NIL) (-223 432987 433043 433187 "DLP" 433325 NIL DLP (NIL T) -7 NIL NIL) (-222 426631 432088 432315 "DLIST" 432792 NIL DLIST (NIL T) -8 NIL NIL) (-221 423477 425486 425528 "DLAGG" 426078 NIL DLAGG (NIL T) -9 NIL 426307) (-220 422186 422878 422907 "DIVRING" 423057 T DIVRING (NIL) -9 NIL 423165) (-219 421174 421427 421820 "DIVRING-" 421825 NIL DIVRING- (NIL T) -8 NIL NIL) (-218 419276 419633 420039 "DISPLAY" 420788 T DISPLAY (NIL) -7 NIL NIL) (-217 413165 419190 419253 "DIRPROD" 419258 NIL DIRPROD (NIL NIL T) -8 NIL NIL) (-216 412013 412216 412481 "DIRPROD2" 412958 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL) (-215 401643 407648 407702 "DIRPCAT" 408110 NIL DIRPCAT (NIL NIL T) -9 NIL 408937) (-214 398969 399611 400492 "DIRPCAT-" 400829 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL) (-213 398256 398416 398602 "DIOSP" 398803 T DIOSP (NIL) -7 NIL NIL) (-212 394958 397168 397210 "DIOPS" 397644 NIL DIOPS (NIL T) -9 NIL 397873) (-211 394507 394621 394812 "DIOPS-" 394817 NIL DIOPS- (NIL T T) -8 NIL NIL) (-210 393378 394016 394045 "DIFRING" 394232 T DIFRING (NIL) -9 NIL 394341) (-209 393024 393101 393253 "DIFRING-" 393258 NIL DIFRING- (NIL T) -8 NIL NIL) (-208 390813 392095 392136 "DIFEXT" 392495 NIL DIFEXT (NIL T) -9 NIL 392788) (-207 389099 389527 390192 "DIFEXT-" 390197 NIL DIFEXT- (NIL T T) -8 NIL NIL) (-206 386421 388631 388673 "DIAGG" 388678 NIL DIAGG (NIL T) -9 NIL 388698) (-205 385805 385962 386214 "DIAGG-" 386219 NIL DIAGG- (NIL T T) -8 NIL NIL) (-204 381270 384764 385041 "DHMATRIX" 385574 NIL DHMATRIX (NIL T) -8 NIL NIL) (-203 376882 377791 378801 "DFSFUN" 380280 T DFSFUN (NIL) -7 NIL NIL) (-202 371668 375596 375961 "DFLOAT" 376537 T DFLOAT (NIL) -8 NIL NIL) (-201 369901 370182 370577 "DFINTTLS" 371376 NIL DFINTTLS (NIL T T) -7 NIL NIL) (-200 366934 367936 368334 "DERHAM" 369568 NIL DERHAM (NIL T NIL) -8 NIL NIL) (-199 364783 366709 366798 "DEQUEUE" 366878 NIL DEQUEUE (NIL T) -8 NIL NIL) (-198 364001 364134 364329 "DEGRED" 364645 NIL DEGRED (NIL T T) -7 NIL NIL) (-197 360401 361146 361998 "DEFINTRF" 363229 NIL DEFINTRF (NIL T) -7 NIL NIL) (-196 357932 358401 358999 "DEFINTEF" 359920 NIL DEFINTEF (NIL T T) -7 NIL NIL) (-195 351763 357373 357539 "DECIMAL" 357786 T DECIMAL (NIL) -8 NIL NIL) (-194 349275 349733 350239 "DDFACT" 351307 NIL DDFACT (NIL T T) -7 NIL NIL) (-193 348871 348914 349065 "DBLRESP" 349226 NIL DBLRESP (NIL T T T T) -7 NIL NIL) (-192 346581 346915 347284 "DBASE" 348629 NIL DBASE (NIL T) -8 NIL NIL) (-191 345716 346540 346568 "D03FAFA" 346573 T D03FAFA (NIL) -8 NIL NIL) (-190 344852 345675 345703 "D03EEFA" 345708 T D03EEFA (NIL) -8 NIL NIL) (-189 342802 343268 343757 "D03AGNT" 344383 T D03AGNT (NIL) -7 NIL NIL) (-188 342120 342761 342789 "D02EJFA" 342794 T D02EJFA (NIL) -8 NIL NIL) (-187 341438 342079 342107 "D02CJFA" 342112 T D02CJFA (NIL) -8 NIL NIL) (-186 340756 341397 341425 "D02BHFA" 341430 T D02BHFA (NIL) -8 NIL NIL) (-185 340074 340715 340743 "D02BBFA" 340748 T D02BBFA (NIL) -8 NIL NIL) (-184 333272 334860 336466 "D02AGNT" 338488 T D02AGNT (NIL) -7 NIL NIL) (-183 331041 331563 332109 "D01WGTS" 332746 T D01WGTS (NIL) -7 NIL NIL) (-182 330144 331000 331028 "D01TRNS" 331033 T D01TRNS (NIL) -8 NIL NIL) (-181 329247 330103 330131 "D01GBFA" 330136 T D01GBFA (NIL) -8 NIL NIL) (-180 328350 329206 329234 "D01FCFA" 329239 T D01FCFA (NIL) -8 NIL NIL) (-179 327453 328309 328337 "D01ASFA" 328342 T D01ASFA (NIL) -8 NIL NIL) (-178 326556 327412 327440 "D01AQFA" 327445 T D01AQFA (NIL) -8 NIL NIL) (-177 325659 326515 326543 "D01APFA" 326548 T D01APFA (NIL) -8 NIL NIL) (-176 324762 325618 325646 "D01ANFA" 325651 T D01ANFA (NIL) -8 NIL NIL) (-175 323865 324721 324749 "D01AMFA" 324754 T D01AMFA (NIL) -8 NIL NIL) (-174 322968 323824 323852 "D01ALFA" 323857 T D01ALFA (NIL) -8 NIL NIL) (-173 322071 322927 322955 "D01AKFA" 322960 T D01AKFA (NIL) -8 NIL NIL) (-172 321174 322030 322058 "D01AJFA" 322063 T D01AJFA (NIL) -8 NIL NIL) (-171 314478 316027 317586 "D01AGNT" 319635 T D01AGNT (NIL) -7 NIL NIL) (-170 313815 313943 314095 "CYCLOTOM" 314346 T CYCLOTOM (NIL) -7 NIL NIL) (-169 310550 311263 311990 "CYCLES" 313108 T CYCLES (NIL) -7 NIL NIL) (-168 309862 309996 310167 "CVMP" 310411 NIL CVMP (NIL T) -7 NIL NIL) (-167 307644 307901 308276 "CTRIGMNP" 309590 NIL CTRIGMNP (NIL T T) -7 NIL NIL) (-166 307249 307332 307437 "CTORCALL" 307559 T CTORCALL (NIL) -8 NIL NIL) (-165 306623 306722 306875 "CSTTOOLS" 307146 NIL CSTTOOLS (NIL T T) -7 NIL NIL) (-164 302422 303079 303837 "CRFP" 305935 NIL CRFP (NIL T T) -7 NIL NIL) (-163 301469 301654 301882 "CRAPACK" 302226 NIL CRAPACK (NIL T) -7 NIL NIL) (-162 300853 300954 301158 "CPMATCH" 301345 NIL CPMATCH (NIL T T T) -7 NIL NIL) (-161 300578 300606 300712 "CPIMA" 300819 NIL CPIMA (NIL T T T) -7 NIL NIL) (-160 296942 297614 298332 "COORDSYS" 299913 NIL COORDSYS (NIL T) -7 NIL NIL) (-159 296326 296455 296605 "CONTOUR" 296812 T CONTOUR (NIL) -8 NIL NIL) (-158 292187 294329 294821 "CONTFRAC" 295866 NIL CONTFRAC (NIL T) -8 NIL NIL) (-157 291340 291904 291933 "COMRING" 291938 T COMRING (NIL) -9 NIL 291989) (-156 290421 290698 290882 "COMPPROP" 291176 T COMPPROP (NIL) -8 NIL NIL) (-155 290082 290117 290245 "COMPLPAT" 290380 NIL COMPLPAT (NIL T T T) -7 NIL NIL) (-154 280063 289891 290000 "COMPLEX" 290005 NIL COMPLEX (NIL T) -8 NIL NIL) (-153 279699 279756 279863 "COMPLEX2" 280000 NIL COMPLEX2 (NIL T T) -7 NIL NIL) (-152 279417 279452 279550 "COMPFACT" 279658 NIL COMPFACT (NIL T T) -7 NIL NIL) (-151 263751 274045 274086 "COMPCAT" 275088 NIL COMPCAT (NIL T) -9 NIL 276481) (-150 253266 256190 259817 "COMPCAT-" 260173 NIL COMPCAT- (NIL T T) -8 NIL NIL) (-149 252997 253025 253127 "COMMUPC" 253232 NIL COMMUPC (NIL T T T) -7 NIL NIL) (-148 252792 252825 252884 "COMMONOP" 252958 T COMMONOP (NIL) -7 NIL NIL) (-147 252375 252543 252630 "COMM" 252725 T COMM (NIL) -8 NIL NIL) (-146 251623 251817 251846 "COMBOPC" 252184 T COMBOPC (NIL) -9 NIL 252359) (-145 250519 250729 250971 "COMBINAT" 251413 NIL COMBINAT (NIL T) -7 NIL NIL) (-144 246717 247290 247930 "COMBF" 249941 NIL COMBF (NIL T T) -7 NIL NIL) (-143 245503 245833 246068 "COLOR" 246502 T COLOR (NIL) -8 NIL NIL) (-142 245143 245190 245315 "CMPLXRT" 245450 NIL CMPLXRT (NIL T T) -7 NIL NIL) (-141 240645 241673 242753 "CLIP" 244083 T CLIP (NIL) -7 NIL NIL) (-140 238983 239753 239991 "CLIF" 240473 NIL CLIF (NIL NIL T NIL) -8 NIL NIL) (-139 235205 237129 237171 "CLAGG" 238100 NIL CLAGG (NIL T) -9 NIL 238636) (-138 233627 234084 234667 "CLAGG-" 234672 NIL CLAGG- (NIL T T) -8 NIL NIL) (-137 233171 233256 233396 "CINTSLPE" 233536 NIL CINTSLPE (NIL T T) -7 NIL NIL) (-136 230672 231143 231691 "CHVAR" 232699 NIL CHVAR (NIL T T T) -7 NIL NIL) (-135 229894 230458 230487 "CHARZ" 230492 T CHARZ (NIL) -9 NIL 230506) (-134 229648 229688 229766 "CHARPOL" 229848 NIL CHARPOL (NIL T) -7 NIL NIL) (-133 228754 229351 229380 "CHARNZ" 229427 T CHARNZ (NIL) -9 NIL 229482) (-132 226777 227444 227779 "CHAR" 228439 T CHAR (NIL) -8 NIL NIL) (-131 226502 226563 226592 "CFCAT" 226703 T CFCAT (NIL) -9 NIL NIL) (-130 225747 225858 226040 "CDEN" 226386 NIL CDEN (NIL T T T) -7 NIL NIL) (-129 221739 224900 225180 "CCLASS" 225487 T CCLASS (NIL) -8 NIL NIL) (-128 216792 217768 218521 "CARTEN" 221042 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL) (-127 215900 216048 216269 "CARTEN2" 216639 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL) (-126 214197 215052 215308 "CARD" 215664 T CARD (NIL) -8 NIL NIL) (-125 213569 213897 213926 "CACHSET" 214058 T CACHSET (NIL) -9 NIL 214135) (-124 213065 213361 213390 "CABMON" 213440 T CABMON (NIL) -9 NIL 213496) (-123 210622 212757 212864 "BTREE" 212991 NIL BTREE (NIL T) -8 NIL NIL) (-122 208120 210270 210392 "BTOURN" 210532 NIL BTOURN (NIL T) -8 NIL NIL) (-121 205538 207591 207633 "BTCAT" 207701 NIL BTCAT (NIL T) -9 NIL 207778) (-120 205205 205285 205434 "BTCAT-" 205439 NIL BTCAT- (NIL T T) -8 NIL NIL) (-119 200425 204296 204325 "BTAGG" 204581 T BTAGG (NIL) -9 NIL 204760) (-118 199848 199992 200222 "BTAGG-" 200227 NIL BTAGG- (NIL T) -8 NIL NIL) (-117 196892 199126 199341 "BSTREE" 199665 NIL BSTREE (NIL T) -8 NIL NIL) (-116 196030 196156 196340 "BRILL" 196748 NIL BRILL (NIL T) -7 NIL NIL) (-115 192731 194758 194800 "BRAGG" 195449 NIL BRAGG (NIL T) -9 NIL 195706) (-114 191260 191666 192221 "BRAGG-" 192226 NIL BRAGG- (NIL T T) -8 NIL NIL) (-113 184468 190606 190790 "BPADICRT" 191108 NIL BPADICRT (NIL NIL) -8 NIL NIL) (-112 182772 184405 184450 "BPADIC" 184455 NIL BPADIC (NIL NIL) -8 NIL NIL) (-111 182472 182502 182615 "BOUNDZRO" 182736 NIL BOUNDZRO (NIL T T) -7 NIL NIL) (-110 177987 179078 179945 "BOP" 181625 T BOP (NIL) -8 NIL NIL) (-109 175608 176052 176572 "BOP1" 177500 NIL BOP1 (NIL T) -7 NIL NIL) (-108 174227 174938 175161 "BOOLEAN" 175405 T BOOLEAN (NIL) -8 NIL NIL) (-107 173593 173971 174024 "BMODULE" 174029 NIL BMODULE (NIL T T) -9 NIL 174093) (-106 169403 173391 173464 "BITS" 173540 T BITS (NIL) -8 NIL NIL) (-105 168500 168935 169087 "BINFILE" 169271 T BINFILE (NIL) -8 NIL NIL) (-104 167912 168034 168176 "BINDING" 168378 T BINDING (NIL) -8 NIL NIL) (-103 161747 167356 167521 "BINARY" 167767 T BINARY (NIL) -8 NIL NIL) (-102 159574 161002 161044 "BGAGG" 161304 NIL BGAGG (NIL T) -9 NIL 161441) (-101 159405 159437 159528 "BGAGG-" 159533 NIL BGAGG- (NIL T T) -8 NIL NIL) (-100 158503 158789 158994 "BFUNCT" 159220 T BFUNCT (NIL) -8 NIL NIL) (-99 157204 157382 157667 "BEZOUT" 158327 NIL BEZOUT (NIL T T T T T) -7 NIL NIL) (-98 153729 156064 156392 "BBTREE" 156907 NIL BBTREE (NIL T) -8 NIL NIL) (-97 153466 153519 153546 "BASTYPE" 153663 T BASTYPE (NIL) -9 NIL NIL) (-96 153321 153350 153420 "BASTYPE-" 153425 NIL BASTYPE- (NIL T) -8 NIL NIL) (-95 152759 152835 152985 "BALFACT" 153232 NIL BALFACT (NIL T T) -7 NIL NIL) (-94 151581 152178 152363 "AUTOMOR" 152604 NIL AUTOMOR (NIL T) -8 NIL NIL) (-93 151306 151311 151338 "ATTREG" 151343 T ATTREG (NIL) -9 NIL NIL) (-92 149585 150003 150355 "ATTRBUT" 150972 T ATTRBUT (NIL) -8 NIL NIL) (-91 149120 149233 149260 "ATRIG" 149461 T ATRIG (NIL) -9 NIL NIL) (-90 148929 148970 149057 "ATRIG-" 149062 NIL ATRIG- (NIL T) -8 NIL NIL) (-89 147126 148705 148793 "ASTACK" 148872 NIL ASTACK (NIL T) -8 NIL NIL) (-88 145631 145928 146293 "ASSOCEQ" 146808 NIL ASSOCEQ (NIL T T) -7 NIL NIL) (-87 144663 145290 145414 "ASP9" 145538 NIL ASP9 (NIL NIL) -8 NIL NIL) (-86 144427 144611 144650 "ASP8" 144655 NIL ASP8 (NIL NIL) -8 NIL NIL) (-85 143297 144032 144174 "ASP80" 144316 NIL ASP80 (NIL NIL) -8 NIL NIL) (-84 142196 142932 143064 "ASP7" 143196 NIL ASP7 (NIL NIL) -8 NIL NIL) (-83 141152 141873 141991 "ASP78" 142109 NIL ASP78 (NIL NIL) -8 NIL NIL) (-82 140123 140832 140949 "ASP77" 141066 NIL ASP77 (NIL NIL) -8 NIL NIL) (-81 139038 139761 139892 "ASP74" 140023 NIL ASP74 (NIL NIL) -8 NIL NIL) (-80 137939 138673 138805 "ASP73" 138937 NIL ASP73 (NIL NIL) -8 NIL NIL) (-79 136894 137616 137734 "ASP6" 137852 NIL ASP6 (NIL NIL) -8 NIL NIL) (-78 135843 136571 136689 "ASP55" 136807 NIL ASP55 (NIL NIL) -8 NIL NIL) (-77 134793 135517 135636 "ASP50" 135755 NIL ASP50 (NIL NIL) -8 NIL NIL) (-76 133881 134494 134604 "ASP4" 134714 NIL ASP4 (NIL NIL) -8 NIL NIL) (-75 132969 133582 133692 "ASP49" 133802 NIL ASP49 (NIL NIL) -8 NIL NIL) (-74 131754 132508 132676 "ASP42" 132858 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL) (-73 130532 131287 131457 "ASP41" 131641 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL) (-72 129484 130209 130327 "ASP35" 130445 NIL ASP35 (NIL NIL) -8 NIL NIL) (-71 129249 129432 129471 "ASP34" 129476 NIL ASP34 (NIL NIL) -8 NIL NIL) (-70 128986 129053 129129 "ASP33" 129204 NIL ASP33 (NIL NIL) -8 NIL NIL) (-69 127882 128621 128753 "ASP31" 128885 NIL ASP31 (NIL NIL) -8 NIL NIL) (-68 127647 127830 127869 "ASP30" 127874 NIL ASP30 (NIL NIL) -8 NIL NIL) (-67 127382 127451 127527 "ASP29" 127602 NIL ASP29 (NIL NIL) -8 NIL NIL) (-66 127147 127330 127369 "ASP28" 127374 NIL ASP28 (NIL NIL) -8 NIL NIL) (-65 126912 127095 127134 "ASP27" 127139 NIL ASP27 (NIL NIL) -8 NIL NIL) (-64 125996 126610 126721 "ASP24" 126832 NIL ASP24 (NIL NIL) -8 NIL NIL) (-63 124913 125637 125767 "ASP20" 125897 NIL ASP20 (NIL NIL) -8 NIL NIL) (-62 124001 124614 124724 "ASP1" 124834 NIL ASP1 (NIL NIL) -8 NIL NIL) (-61 122945 123675 123794 "ASP19" 123913 NIL ASP19 (NIL NIL) -8 NIL NIL) (-60 122682 122749 122825 "ASP12" 122900 NIL ASP12 (NIL NIL) -8 NIL NIL) (-59 121535 122281 122425 "ASP10" 122569 NIL ASP10 (NIL NIL) -8 NIL NIL) (-58 119434 121379 121470 "ARRAY2" 121475 NIL ARRAY2 (NIL T) -8 NIL NIL) (-57 115250 119082 119196 "ARRAY1" 119351 NIL ARRAY1 (NIL T) -8 NIL NIL) (-56 114282 114455 114676 "ARRAY12" 115073 NIL ARRAY12 (NIL T T) -7 NIL NIL) (-55 108641 110512 110588 "ARR2CAT" 113218 NIL ARR2CAT (NIL T T T) -9 NIL 113976) (-54 106075 106819 107773 "ARR2CAT-" 107778 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL) (-53 104835 104985 105288 "APPRULE" 105913 NIL APPRULE (NIL T T T) -7 NIL NIL) (-52 104488 104536 104654 "APPLYORE" 104781 NIL APPLYORE (NIL T T T) -7 NIL NIL) (-51 103462 103753 103948 "ANY" 104311 T ANY (NIL) -8 NIL NIL) (-50 102740 102863 103020 "ANY1" 103336 NIL ANY1 (NIL T) -7 NIL NIL) (-49 100272 101190 101515 "ANTISYM" 102465 NIL ANTISYM (NIL T NIL) -8 NIL NIL) (-48 100099 100231 100258 "ANON" 100263 T ANON (NIL) -8 NIL NIL) (-47 94176 98644 99095 "AN" 99666 T AN (NIL) -8 NIL NIL) (-46 90529 91927 91978 "AMR" 92717 NIL AMR (NIL T T) -9 NIL 93316) (-45 89642 89863 90225 "AMR-" 90230 NIL AMR- (NIL T T T) -8 NIL NIL) (-44 74192 89559 89620 "ALIST" 89625 NIL ALIST (NIL T T) -8 NIL NIL) (-43 71029 73786 73955 "ALGSC" 74110 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL) (-42 67585 68139 68746 "ALGPKG" 70469 NIL ALGPKG (NIL T T) -7 NIL NIL) (-41 66862 66963 67147 "ALGMFACT" 67471 NIL ALGMFACT (NIL T T T) -7 NIL NIL) (-40 62612 63292 63946 "ALGMANIP" 66386 NIL ALGMANIP (NIL T T) -7 NIL NIL) (-39 53931 62238 62388 "ALGFF" 62545 NIL ALGFF (NIL T T T NIL) -8 NIL NIL) (-38 53127 53258 53437 "ALGFACT" 53789 NIL ALGFACT (NIL T) -7 NIL NIL) (-37 52117 52727 52766 "ALGEBRA" 52826 NIL ALGEBRA (NIL T) -9 NIL 52884) (-36 51835 51894 52026 "ALGEBRA-" 52031 NIL ALGEBRA- (NIL T T) -8 NIL NIL) (-35 34095 49838 49891 "ALAGG" 50027 NIL ALAGG (NIL T T) -9 NIL 50188) (-34 33630 33743 33770 "AHYP" 33971 T AHYP (NIL) -9 NIL NIL) (-33 32560 32808 32835 "AGG" 33334 T AGG (NIL) -9 NIL 33613) (-32 31994 32156 32370 "AGG-" 32375 NIL AGG- (NIL T) -8 NIL NIL) (-31 29681 30099 30516 "AF" 31637 NIL AF (NIL T T) -7 NIL NIL) (-30 28950 29208 29364 "ACPLOT" 29543 T ACPLOT (NIL) -8 NIL NIL) (-29 18416 26362 26414 "ACFS" 27125 NIL ACFS (NIL T) -9 NIL 27364) (-28 16430 16920 17695 "ACFS-" 17700 NIL ACFS- (NIL T T) -8 NIL NIL) (-27 12697 14653 14680 "ACF" 15559 T ACF (NIL) -9 NIL 15971) (-26 11401 11735 12228 "ACF-" 12233 NIL ACF- (NIL T) -8 NIL NIL) (-25 10999 11168 11195 "ABELSG" 11287 T ABELSG (NIL) -9 NIL 11352) (-24 10866 10891 10957 "ABELSG-" 10962 NIL ABELSG- (NIL T) -8 NIL NIL) (-23 10235 10496 10523 "ABELMON" 10693 T ABELMON (NIL) -9 NIL 10805) (-22 9899 9983 10121 "ABELMON-" 10126 NIL ABELMON- (NIL T) -8 NIL NIL) (-21 9233 9579 9606 "ABELGRP" 9731 T ABELGRP (NIL) -9 NIL 9813) (-20 8696 8825 9041 "ABELGRP-" 9046 NIL ABELGRP- (NIL T) -8 NIL NIL) (-19 4333 8035 8075 "A1AGG" 8080 NIL A1AGG (NIL T) -9 NIL 8120) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL)) \ No newline at end of file
diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase
index cea17ebd..2d7596fb 100644
--- a/src/share/algebra/operation.daase
+++ b/src/share/algebra/operation.daase
@@ -1,226 +1,179 @@
-(724857 . 3409760520)
-(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7)
- (-12 (-5 *3 (-626 (-201))) (-5 *4 (-520)) (-5 *5 (-201))
- (-5 *6 (-3 (|:| |fn| (-361)) (|:| |fp| (-59 COEFFN))))
- (-5 *7 (-3 (|:| |fn| (-361)) (|:| |fp| (-85 BDYVAL))))
- (-5 *2 (-958)) (-5 *1 (-685))))
- ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8)
- (-12 (-5 *3 (-626 (-201))) (-5 *4 (-520)) (-5 *5 (-201))
- (-5 *6 (-3 (|:| |fn| (-361)) (|:| |fp| (-59 COEFFN))))
- (-5 *7 (-3 (|:| |fn| (-361)) (|:| |fp| (-85 BDYVAL))))
- (-5 *8 (-361)) (-5 *2 (-958)) (-5 *1 (-685)))))
-(((*1 *2)
- (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-339 *3 *4))
- (-4 *3 (-340 *4))))
- ((*1 *2) (-12 (-4 *1 (-340 *3)) (-4 *3 (-157)) (-5 *2 (-108)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1079 *9)) (-5 *4 (-586 *7)) (-5 *5 (-586 (-586 *8)))
- (-4 *7 (-783)) (-4 *8 (-281)) (-4 *9 (-877 *8 *6 *7)) (-4 *6 (-728))
- (-5 *2
- (-2 (|:| |upol| (-1079 *8)) (|:| |Lval| (-586 *8))
- (|:| |Lfact|
- (-586 (-2 (|:| -1916 (-1079 *8)) (|:| -2647 (-520)))))
- (|:| |ctpol| *8)))
- (-5 *1 (-678 *6 *7 *8 *9)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1079 *4)) (-4 *4 (-322))
- (-5 *2 (-1164 (-586 (-2 (|:| -3429 *4) (|:| -2716 (-1030))))))
- (-5 *1 (-319 *4)))))
+(725028 . 3409778143)
+(((*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-353)) (-5 *1 (-722)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5)
+ (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202)))
+ (-5 *5 (-3 (|:| |fn| (-362)) (|:| |fp| (-64 FUNCT1))))
+ (-5 *2 (-959)) (-5 *1 (-690)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-201)) (-5 *4 (-520)) (-5 *2 (-958)) (-5 *1 (-694)))))
+ (-12 (-5 *3 (-587 *6)) (-5 *4 (-1084)) (-4 *6 (-404 *5))
+ (-4 *5 (-784)) (-5 *2 (-587 (-560 *6))) (-5 *1 (-530 *5 *6)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-513)) (-5 *2 (-108)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-969))
- (-4 *2 (-13 (-377) (-960 *4) (-336) (-1104) (-258)))
- (-5 *1 (-415 *4 *3 *2)) (-4 *3 (-1140 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-849)) (-4 *5 (-969))
- (-4 *2 (-13 (-377) (-960 *5) (-336) (-1104) (-258)))
- (-5 *1 (-415 *5 *3 *2)) (-4 *3 (-1140 *5)))))
-(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5)
- (-12 (-5 *3 (-849)) (-5 *4 (-201)) (-5 *5 (-520)) (-5 *6 (-802))
- (-5 *2 (-1169)) (-5 *1 (-1165)))))
-(((*1 *2 *3 *2)
+ (|partial| -12 (-5 *2 (-521)) (-5 *1 (-1102 *3)) (-4 *3 (-970)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-521)) (-5 *3 (-850)) (-5 *1 (-636))))
+ ((*1 *2 *2 *2 *3 *4)
+ (-12 (-5 *2 (-627 *5)) (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5))
+ (-4 *5 (-337)) (-5 *1 (-904 *5)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1080 *3)) (-5 *1 (-843 *3)) (-4 *3 (-282)))))
+(((*1 *2 *1)
(-12
(-5 *2
- (-586
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-706)) (|:| |poli| *3)
- (|:| |polj| *3))))
- (-4 *5 (-728)) (-4 *3 (-877 *4 *5 *6)) (-4 *4 (-424)) (-4 *6 (-783))
- (-5 *1 (-421 *4 *5 *6 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1179 *3 *4)) (-4 *3 (-783)) (-4 *4 (-969))
- (-5 *2 (-755 *3))))
- ((*1 *2 *1) (-12 (-4 *2 (-779)) (-5 *1 (-1185 *3 *2)) (-4 *3 (-969)))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-110)) (-5 *4 (-706)) (-4 *5 (-424)) (-4 *5 (-783))
- (-4 *5 (-960 (-520))) (-4 *5 (-512)) (-5 *1 (-40 *5 *2))
- (-4 *2 (-403 *5))
- (-4 *2
- (-13 (-336) (-276)
- (-10 -8 (-15 -2800 ((-1035 *5 (-559 $)) $))
- (-15 -2811 ((-1035 *5 (-559 $)) $))
- (-15 -2188 ($ (-1035 *5 (-559 $))))))))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-154 (-201))) (-5 *5 (-520)) (-5 *6 (-1066))
- (-5 *3 (-201)) (-5 *2 (-958)) (-5 *1 (-694)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-424)) (-4 *3 (-783)) (-4 *3 (-960 (-520)))
- (-4 *3 (-512)) (-5 *1 (-40 *3 *2)) (-4 *2 (-403 *3))
- (-4 *2
- (-13 (-336) (-276)
- (-10 -8 (-15 -2800 ((-1035 *3 (-559 $)) $))
- (-15 -2811 ((-1035 *3 (-559 $)) $))
- (-15 -2188 ($ (-1035 *3 (-559 $))))))))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3)
- (-12 (-5 *4 (-626 (-201))) (-5 *5 (-626 (-520))) (-5 *6 (-201))
- (-5 *3 (-520)) (-5 *2 (-958)) (-5 *1 (-688)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1083)) (-5 *2 (-1 (-201) (-201))) (-5 *1 (-640 *3))
- (-4 *3 (-561 (-496)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1083)) (-5 *2 (-1 (-201) (-201) (-201)))
- (-5 *1 (-640 *3)) (-4 *3 (-561 (-496))))))
-(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1119 *3)) (-4 *3 (-1012)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-728))
- (-4 *3 (-13 (-783) (-10 -8 (-15 -1429 ((-1083) $))))) (-4 *5 (-512))
- (-5 *1 (-668 *4 *3 *5 *2)) (-4 *2 (-877 (-380 (-880 *5)) *4 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *4 (-969)) (-4 *5 (-728))
- (-4 *3
- (-13 (-783)
- (-10 -8 (-15 -1429 ((-1083) $))
- (-15 -1610 ((-3 $ "failed") (-1083))))))
- (-5 *1 (-909 *4 *5 *3 *2)) (-4 *2 (-877 (-880 *4) *5 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-586 *6))
- (-4 *6
- (-13 (-783)
- (-10 -8 (-15 -1429 ((-1083) $))
- (-15 -1610 ((-3 $ "failed") (-1083))))))
- (-4 *4 (-969)) (-4 *5 (-728)) (-5 *1 (-909 *4 *5 *6 *2))
- (-4 *2 (-877 (-880 *4) *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-520)) (-4 *4 (-1140 (-380 *3))) (-5 *2 (-849))
- (-5 *1 (-841 *4 *5)) (-4 *5 (-1140 (-380 *4))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-757)) (-5 *4 (-51)) (-5 *2 (-1169)) (-5 *1 (-767)))))
-(((*1 *2 *3) (-12 (-5 *3 (-108)) (-5 *2 (-1066)) (-5 *1 (-51)))))
-(((*1 *2)
- (-12 (-4 *3 (-512)) (-5 *2 (-586 (-626 *3))) (-5 *1 (-42 *3 *4))
- (-4 *4 (-390 *3)))))
+ (-587
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3)
+ (|:| |xpnt| (-521)))))
+ (-5 *1 (-392 *3)) (-4 *3 (-513))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *4 (-707)) (-4 *3 (-323)) (-4 *5 (-1141 *3))
+ (-5 *2 (-587 (-1080 *3))) (-5 *1 (-467 *3 *5 *6))
+ (-4 *6 (-1141 *5)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-380 (-520))) (-4 *1 (-510 *3))
- (-4 *3 (-13 (-377) (-1104)))))
- ((*1 *1 *2) (-12 (-4 *1 (-510 *2)) (-4 *2 (-13 (-377) (-1104)))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-510 *2)) (-4 *2 (-13 (-377) (-1104))))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-1164 *5)) (-5 *3 (-706)) (-5 *4 (-1030)) (-4 *5 (-322))
- (-5 *1 (-490 *5)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1164 *6)) (-5 *4 (-1164 (-520))) (-5 *5 (-520))
- (-4 *6 (-1012)) (-5 *2 (-1 *6)) (-5 *1 (-941 *6)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-586 (-380 *6))) (-5 *3 (-380 *6))
- (-4 *6 (-1140 *5)) (-4 *5 (-13 (-336) (-135) (-960 (-520))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-586 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-524 *5 *6)))))
+ (-12
+ (-5 *2
+ (-2 (|:| |mval| (-627 *3)) (|:| |invmval| (-627 *3))
+ (|:| |genIdeal| (-473 *3 *4 *5 *6))))
+ (-4 *3 (-337)) (-4 *4 (-729)) (-4 *5 (-784))
+ (-5 *1 (-473 *3 *4 *5 *6)) (-4 *6 (-878 *3 *4 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-803)) (-5 *1 (-239))))
+ ((*1 *1 *2) (-12 (-5 *2 (-353)) (-5 *1 (-239)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1051 *3 *4)) (-14 *3 (-850)) (-4 *4 (-337))
+ (-5 *1 (-919 *3 *4)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-108)) (-5 *1 (-590 *3 *4 *5)) (-4 *3 (-1013))
+ (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-310 *5 *6 *7 *8)) (-4 *5 (-404 *4))
+ (-4 *6 (-1141 *5)) (-4 *7 (-1141 (-381 *6)))
+ (-4 *8 (-316 *5 *6 *7)) (-4 *4 (-13 (-784) (-513) (-961 (-521))))
+ (-5 *2 (-2 (|:| -2733 (-707)) (|:| -2093 *8)))
+ (-5 *1 (-840 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-310 (-381 (-521)) *4 *5 *6))
+ (-4 *4 (-1141 (-381 (-521)))) (-4 *5 (-1141 (-381 *4)))
+ (-4 *6 (-316 (-381 (-521)) *4 *5))
+ (-5 *2 (-2 (|:| -2733 (-707)) (|:| -2093 *6)))
+ (-5 *1 (-841 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-970)) (-5 *2 (-521)) (-5 *1 (-416 *4 *3 *5))
+ (-4 *3 (-1141 *4))
+ (-4 *5 (-13 (-378) (-961 *4) (-337) (-1105) (-259))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-425))) (-5 *1 (-1111 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-1105))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1065 *4)) (-5 *3 (-1 *4 (-521))) (-4 *4 (-970))
+ (-5 *1 (-1069 *4)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1131 (-520))) (-4 *1 (-256 *3)) (-4 *3 (-1118))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-520)) (-4 *1 (-256 *3)) (-4 *3 (-1118)))))
-(((*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1169)) (-5 *1 (-1046))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-586 (-791))) (-5 *2 (-1169)) (-5 *1 (-1046)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1164 *3)) (-4 *3 (-1140 *4)) (-4 *4 (-1122))
- (-4 *1 (-315 *4 *3 *5)) (-4 *5 (-1140 (-380 *3))))))
+ (-12 (-5 *2 (-587 (-521))) (-5 *1 (-224 *3 *4))
+ (-14 *3 (-587 (-1084))) (-4 *4 (-970))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-587 (-521))) (-14 *3 (-587 (-1084)))
+ (-5 *1 (-427 *3 *4 *5)) (-4 *4 (-970))
+ (-4 *5 (-215 (-3475 *3) (-707)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-587 (-521))) (-5 *1 (-453 *3 *4))
+ (-14 *3 (-587 (-1084))) (-4 *4 (-970)))))
+(((*1 *2 *1) (-12 (-4 *1 (-282)) (-5 *2 (-707)))))
(((*1 *2 *3)
- (-12 (-4 *3 (-13 (-281) (-10 -8 (-15 -1507 ((-391 $) $)))))
- (-4 *4 (-1140 *3))
+ (-12 (-5 *3 (-587 *4)) (-4 *4 (-782)) (-4 *4 (-337)) (-5 *2 (-707))
+ (-5 *1 (-874 *4 *5)) (-4 *5 (-1141 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-856))
(-5 *2
- (-2 (|:| -1831 (-626 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-626 *3))))
- (-5 *1 (-323 *3 *4 *5)) (-4 *5 (-382 *3 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-520)) (-4 *4 (-1140 *3))
+ (-2 (|:| |brans| (-587 (-587 (-872 (-202)))))
+ (|:| |xValues| (-1008 (-202))) (|:| |yValues| (-1008 (-202)))))
+ (-5 *1 (-141))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-856)) (-5 *4 (-381 (-521)))
(-5 *2
- (-2 (|:| -1831 (-626 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-626 *3))))
- (-5 *1 (-703 *4 *5)) (-4 *5 (-382 *3 *4))))
+ (-2 (|:| |brans| (-587 (-587 (-872 (-202)))))
+ (|:| |xValues| (-1008 (-202))) (|:| |yValues| (-1008 (-202)))))
+ (-5 *1 (-141))))
((*1 *2 *3)
- (-12 (-4 *4 (-322)) (-4 *3 (-1140 *4)) (-4 *5 (-1140 *3))
+ (-12
(-5 *2
- (-2 (|:| -1831 (-626 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-626 *3))))
- (-5 *1 (-910 *4 *3 *5 *6)) (-4 *6 (-660 *3 *5))))
+ (-2 (|:| |brans| (-587 (-587 (-872 (-202)))))
+ (|:| |xValues| (-1008 (-202))) (|:| |yValues| (-1008 (-202)))))
+ (-5 *1 (-141)) (-5 *3 (-587 (-872 (-202))))))
((*1 *2 *3)
- (-12 (-4 *4 (-322)) (-4 *3 (-1140 *4)) (-4 *5 (-1140 *3))
- (-5 *2
- (-2 (|:| -1831 (-626 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-626 *3))))
- (-5 *1 (-1173 *4 *3 *5 *6)) (-4 *6 (-382 *3 *5)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-706)) (-4 *6 (-424)) (-4 *7 (-728)) (-4 *8 (-783))
- (-4 *3 (-983 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-586 *4))
- (|:| |todo| (-586 (-2 (|:| |val| (-586 *3)) (|:| -1883 *4))))))
- (-5 *1 (-986 *6 *7 *8 *3 *4)) (-4 *4 (-988 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783))
- (-4 *3 (-983 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-586 *4))
- (|:| |todo| (-586 (-2 (|:| |val| (-586 *3)) (|:| -1883 *4))))))
- (-5 *1 (-986 *5 *6 *7 *3 *4)) (-4 *4 (-988 *5 *6 *7 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-706)) (-4 *6 (-424)) (-4 *7 (-728)) (-4 *8 (-783))
- (-4 *3 (-983 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-586 *4))
- (|:| |todo| (-586 (-2 (|:| |val| (-586 *3)) (|:| -1883 *4))))))
- (-5 *1 (-1053 *6 *7 *8 *3 *4)) (-4 *4 (-1021 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783))
- (-4 *3 (-983 *5 *6 *7))
+ (-12
(-5 *2
- (-2 (|:| |done| (-586 *4))
- (|:| |todo| (-586 (-2 (|:| |val| (-586 *3)) (|:| -1883 *4))))))
- (-5 *1 (-1053 *5 *6 *7 *3 *4)) (-4 *4 (-1021 *5 *6 *7 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-849)) (-5 *1 (-721)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-336))
- (-5 *2 (-586 (-2 (|:| C (-626 *5)) (|:| |g| (-1164 *5)))))
- (-5 *1 (-903 *5)) (-5 *3 (-626 *5)) (-5 *4 (-1164 *5)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-322))
- (-5 *2 (-586 (-2 (|:| |deg| (-706)) (|:| -1772 *3))))
- (-5 *1 (-193 *4 *3)) (-4 *3 (-1140 *4)))))
+ (-2 (|:| |brans| (-587 (-587 (-872 (-202)))))
+ (|:| |xValues| (-1008 (-202))) (|:| |yValues| (-1008 (-202)))))
+ (-5 *1 (-141)) (-5 *3 (-587 (-587 (-872 (-202)))))))
+ ((*1 *1 *2) (-12 (-5 *2 (-587 (-1008 (-353)))) (-5 *1 (-239))))
+ ((*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-239)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-108) *2)) (-4 *2 (-125)) (-5 *1 (-999 *2))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-521) *2 *2)) (-4 *2 (-125)) (-5 *1 (-999 *2)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-706)) (-4 *4 (-336)) (-4 *5 (-1140 *4)) (-5 *2 (-1169))
- (-5 *1 (-39 *4 *5 *6 *7)) (-4 *6 (-1140 (-380 *5))) (-14 *7 *6))))
-(((*1 *1 *1) (-4 *1 (-1052))))
-(((*1 *1 *2 *3 *3 *4 *4)
- (-12 (-5 *2 (-880 (-520))) (-5 *3 (-1083))
- (-5 *4 (-1007 (-380 (-520)))) (-5 *1 (-30)))))
-(((*1 *1) (-5 *1 (-143))))
-(((*1 *1 *2) (-12 (-5 *2 (-586 *3)) (-4 *3 (-783)) (-5 *1 (-122 *3)))))
+ (-12 (-4 *4 (-513)) (-5 *2 (-707)) (-5 *1 (-42 *4 *3))
+ (-4 *3 (-391 *4)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-401 *3 *2)) (-4 *3 (-13 (-157) (-37 (-381 (-521)))))
+ (-4 *2 (-13 (-784) (-21))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-587 *2)) (-4 *2 (-506)) (-5 *1 (-145 *2)))))
+(((*1 *2 *3) (-12 (-5 *3 (-707)) (-5 *2 (-1 (-353))) (-5 *1 (-963)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-759)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-337)) (-4 *6 (-1141 (-381 *2)))
+ (-4 *2 (-1141 *5)) (-5 *1 (-193 *5 *2 *6 *3))
+ (-4 *3 (-316 *5 *2 *6)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-587 *7)) (-4 *7 (-984 *4 *5 *6)) (-4 *4 (-425))
+ (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-108))
+ (-5 *1 (-914 *4 *5 *6 *7 *8)) (-4 *8 (-989 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-587 *7)) (-4 *7 (-984 *4 *5 *6)) (-4 *4 (-425))
+ (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-108))
+ (-5 *1 (-1020 *4 *5 *6 *7 *8)) (-4 *8 (-989 *4 *5 *6 *7)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-707)) (-5 *1 (-790 *2)) (-4 *2 (-157)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-587 *6)) (-4 *1 (-902 *3 *4 *5 *6)) (-4 *3 (-970))
+ (-4 *4 (-729)) (-4 *5 (-784)) (-4 *6 (-984 *3 *4 *5))
+ (-4 *3 (-513)))))
+(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6)
+ (-12 (-5 *3 (-521)) (-5 *5 (-627 (-202)))
+ (-5 *6 (-3 (|:| |fn| (-362)) (|:| |fp| (-68 APROD)))) (-5 *4 (-202))
+ (-5 *2 (-959)) (-5 *1 (-693)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-521)) (-5 *1 (-353)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *2 (-586 *1))
- (-4 *1 (-983 *3 *4 *5)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-983 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-728))
- (-4 *4 (-783)) (-4 *2 (-512)))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9)
- (-12 (-5 *4 (-520)) (-5 *5 (-1066)) (-5 *6 (-626 (-201)))
- (-5 *7 (-3 (|:| |fn| (-361)) (|:| |fp| (-87 G))))
- (-5 *8 (-3 (|:| |fn| (-361)) (|:| |fp| (-84 FCN))))
- (-5 *9 (-3 (|:| |fn| (-361)) (|:| |fp| (-86 OUTPUT))))
- (-5 *3 (-201)) (-5 *2 (-958)) (-5 *1 (-685)))))
+ (-12 (-4 *1 (-303 *3)) (-4 *3 (-337)) (-4 *3 (-342))
+ (-5 *2 (-1080 *3)))))
+(((*1 *2)
+ (-12 (-4 *4 (-337)) (-5 *2 (-850)) (-5 *1 (-302 *3 *4))
+ (-4 *3 (-303 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-337)) (-5 *2 (-770 (-850))) (-5 *1 (-302 *3 *4))
+ (-4 *3 (-303 *4))))
+ ((*1 *2) (-12 (-4 *1 (-303 *3)) (-4 *3 (-337)) (-5 *2 (-850))))
+ ((*1 *2)
+ (-12 (-4 *1 (-1182 *3)) (-4 *3 (-337)) (-5 *2 (-770 (-850))))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-970)) (-4 *5 (-729)) (-4 *3 (-784))
+ (-5 *2 (-2 (|:| -2973 *1) (|:| |gap| (-707)) (|:| -3820 *1)))
+ (-4 *1 (-984 *4 *5 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784))
+ (-5 *2 (-2 (|:| -2973 *1) (|:| |gap| (-707)) (|:| -3820 *1)))
+ (-4 *1 (-984 *3 *4 *5)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1170)) (-5 *1 (-1097 *3 *4)) (-4 *3 (-1013))
+ (-4 *4 (-1013)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-587 (-1089))) (-5 *1 (-1089))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1084)) (-5 *3 (-587 (-1089))) (-5 *1 (-1089)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784))
+ (-4 *3 (-984 *5 *6 *7)) (-5 *2 (-587 *4))
+ (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))))
(((*1 *2 *1)
(-12
(-5 *2
@@ -232,5957 +185,6092 @@
(|:| |Continue| "continue")
(|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save")
(|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")))
- (-5 *1 (-303)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-586 *3)) (-4 *3 (-1012)) (-5 *1 (-98 *3)))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-586 *6)) (-4 *1 (-901 *3 *4 *5 *6)) (-4 *3 (-969))
- (-4 *4 (-728)) (-4 *5 (-783)) (-4 *6 (-983 *3 *4 *5))
- (-4 *3 (-512)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1079 *1)) (-4 *1 (-936)))))
-(((*1 *2 *2) (-12 (-5 *2 (-520)) (-5 *1 (-517)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-355 *3 *4)) (-4 *3 (-969)) (-4 *4 (-1012))
- (-5 *2 (-586 (-2 (|:| |k| *4) (|:| |c| *3))))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-586 (-2 (|:| |k| (-821 *3)) (|:| |c| *4))))
- (-5 *1 (-570 *3 *4 *5)) (-4 *3 (-783))
- (-4 *4 (-13 (-157) (-653 (-380 (-520))))) (-14 *5 (-849))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-586 (-611 *3))) (-5 *1 (-821 *3)) (-4 *3 (-783)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1131 *3)) (-4 *3 (-1118)))))
-(((*1 *1 *2 *2) (-12 (-5 *1 (-805 *2)) (-4 *2 (-1118))))
- ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-807 *2)) (-4 *2 (-1118))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1044 *3)) (-4 *3 (-969)) (-5 *2 (-586 (-871 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-586 (-871 *3))) (-4 *3 (-969)) (-4 *1 (-1044 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-586 (-586 *3))) (-4 *1 (-1044 *3)) (-4 *3 (-969))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-586 (-871 *3))) (-4 *1 (-1044 *3)) (-4 *3 (-969)))))
-(((*1 *2) (-12 (-5 *2 (-706)) (-5 *1 (-417 *3)) (-4 *3 (-969)))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1083))
- (-4 *5 (-13 (-512) (-960 (-520)) (-135)))
- (-5 *2
- (-2 (|:| -4016 (-380 (-880 *5))) (|:| |coeff| (-380 (-880 *5)))))
- (-5 *1 (-526 *5)) (-5 *3 (-380 (-880 *5))))))
+ (-5 *1 (-304)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-202) (-202))) (-5 *1 (-292)) (-5 *3 (-202)))))
+(((*1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-636))))
+ ((*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-636)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-337)) (-5 *2 (-587 *3)) (-5 *1 (-874 *4 *3))
+ (-4 *3 (-1141 *4)))))
+(((*1 *2 *1 *2)
+ (-12 (-4 *1 (-338 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013)))))
(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4229)) (-4 *1 (-459 *3)) (-4 *3 (-1118))
- (-4 *3 (-1012)) (-5 *2 (-706))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4229)) (-4 *1 (-459 *4))
- (-4 *4 (-1118)) (-5 *2 (-706)))))
+ (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784))
+ (-4 *3 (-984 *4 *5 *6)) (-5 *2 (-3 (-108) (-587 *1)))
+ (-4 *1 (-989 *4 *5 *6 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1080 *4)) (-4 *4 (-323))
+ (-5 *2 (-1165 (-587 (-2 (|:| -3430 *4) (|:| -2716 (-1031))))))
+ (-5 *1 (-320 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1119)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-108) (-110) (-110))) (-5 *1 (-110)))))
+(((*1 *2 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-337) (-10 -8 (-15 ** ($ $ (-381 (-521)))))))
+ (-5 *1 (-1039 *3 *2)) (-4 *3 (-1141 *2)))))
(((*1 *2 *3 *1)
- (-12 (-5 *2 (-586 (-1083))) (-5 *1 (-1086)) (-5 *3 (-1083)))))
+ (-12 (|has| *1 (-6 -4233)) (-4 *1 (-460 *3)) (-4 *3 (-1119))
+ (-4 *3 (-1013)) (-5 *2 (-707))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4233)) (-4 *1 (-460 *4))
+ (-4 *4 (-1119)) (-5 *2 (-707)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-980 (-948 *4) (-1080 (-948 *4)))) (-5 *3 (-792))
+ (-5 *1 (-948 *4)) (-4 *4 (-13 (-782) (-337) (-946))))))
+(((*1 *2 *3 *3 *3 *3)
+ (-12 (-4 *4 (-425)) (-4 *3 (-729)) (-4 *5 (-784)) (-5 *2 (-108))
+ (-5 *1 (-422 *4 *3 *5 *6)) (-4 *6 (-878 *4 *3 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-707)) (-5 *2 (-1 (-1065 (-881 *4)) (-1065 (-881 *4))))
+ (-5 *1 (-1173 *4)) (-4 *4 (-337)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-959)) (-5 *1 (-280))))
+ ((*1 *2 *3) (-12 (-5 *3 (-587 (-959))) (-5 *2 (-959)) (-5 *1 (-280))))
+ ((*1 *1 *2) (-12 (-5 *2 (-587 *1)) (-4 *1 (-592 *3)) (-4 *3 (-1119))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-592 *2)) (-4 *2 (-1119))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-592 *2)) (-4 *2 (-1119))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-592 *2)) (-4 *2 (-1119))))
+ ((*1 *1 *1 *1) (-5 *1 (-982)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1065 (-1065 *4))) (-5 *2 (-1065 *4)) (-5 *1 (-1062 *4))
+ (-4 *4 (-1119))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1119))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1119)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-893 *3)) (-4 *3 (-894)))))
+(((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784))
+ (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-108))
+ (-5 *1 (-914 *4 *5 *6 *7 *3)) (-4 *3 (-989 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784))
+ (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-108))
+ (-5 *1 (-1020 *4 *5 *6 *7 *3)) (-4 *3 (-989 *4 *5 *6 *7)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729))
+ (-4 *4 (-784)) (-4 *2 (-513)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-513)) (-5 *2 (-707)) (-5 *1 (-42 *4 *3))
+ (-4 *3 (-391 *4)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4234)) (-4 *1 (-221 *2)) (-4 *2 (-1119)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-627 (-381 (-881 (-521)))))
+ (-5 *2 (-587 (-627 (-290 (-521))))) (-5 *1 (-955)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-759)))))
+(((*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-377 *3)) (-4 *3 (-378))))
+ ((*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-377 *3)) (-4 *3 (-378))))
+ ((*1 *2 *2) (-12 (-5 *2 (-850)) (|has| *1 (-6 -4224)) (-4 *1 (-378))))
+ ((*1 *2) (-12 (-4 *1 (-378)) (-5 *2 (-850))))
+ ((*1 *2 *1) (-12 (-4 *1 (-798 *3)) (-5 *2 (-1065 (-521))))))
+(((*1 *2 *1) (-12 (-4 *1 (-230 *3)) (-4 *3 (-1119)) (-5 *2 (-707))))
+ ((*1 *2 *1) (-12 (-4 *1 (-277)) (-5 *2 (-707))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-970))
+ (-4 *2 (-13 (-378) (-961 *4) (-337) (-1105) (-259)))
+ (-5 *1 (-416 *4 *3 *2)) (-4 *3 (-1141 *4))))
+ ((*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-560 *3)) (-4 *3 (-784))))
+ ((*1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-792))))
+ ((*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-792)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-201)) (-5 *4 (-520)) (-5 *2 (-958)) (-5 *1 (-694)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-958)) (-5 *1 (-279))))
- ((*1 *2 *3) (-12 (-5 *3 (-586 (-958))) (-5 *2 (-958)) (-5 *1 (-279))))
- ((*1 *1 *2) (-12 (-5 *2 (-586 *1)) (-4 *1 (-591 *3)) (-4 *3 (-1118))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-591 *2)) (-4 *2 (-1118))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-591 *2)) (-4 *2 (-1118))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-591 *2)) (-4 *2 (-1118))))
- ((*1 *1 *1 *1) (-5 *1 (-981)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1064 (-1064 *4))) (-5 *2 (-1064 *4)) (-5 *1 (-1061 *4))
- (-4 *4 (-1118))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1118))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1118)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4229)) (-4 *1 (-459 *4))
- (-4 *4 (-1118)) (-5 *2 (-108)))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *2 (-958))
- (-5 *1 (-691)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-520)) (-5 *1 (-391 *2)) (-4 *2 (-512)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-958)) (-5 *3 (-1083)) (-5 *1 (-242)))))
-(((*1 *1 *1 *1) (-4 *1 (-131)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-144 *3 *2))
- (-4 *2 (-403 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *1 (-145 *2)) (-4 *2 (-505)))))
-(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1007 (-201))) (-5 *1 (-854))))
- ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1007 (-201))) (-5 *1 (-855))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1007 (-201))) (-5 *1 (-855))))
- ((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-352)) (-5 *2 (-1169)) (-5 *1 (-1166))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-352)) (-5 *2 (-1169)) (-5 *1 (-1166)))))
-(((*1 *2 *1) (-12 (-4 *1 (-919 *2)) (-4 *2 (-1118)))))
-(((*1 *2 *1) (-12 (-4 *1 (-733 *2)) (-4 *2 (-157)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1044 *3)) (-4 *3 (-969))
- (-5 *2 (-586 (-586 (-871 *3))))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-586 (-586 (-871 *4)))) (-5 *3 (-108)) (-4 *4 (-969))
- (-4 *1 (-1044 *4))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-586 (-586 (-871 *3)))) (-4 *3 (-969))
- (-4 *1 (-1044 *3))))
- ((*1 *1 *1 *2 *3 *3)
- (-12 (-5 *2 (-586 (-586 (-586 *4)))) (-5 *3 (-108))
- (-4 *1 (-1044 *4)) (-4 *4 (-969))))
- ((*1 *1 *1 *2 *3 *3)
- (-12 (-5 *2 (-586 (-586 (-871 *4)))) (-5 *3 (-108))
- (-4 *1 (-1044 *4)) (-4 *4 (-969))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-586 (-586 (-586 *5)))) (-5 *3 (-586 (-156)))
- (-5 *4 (-156)) (-4 *1 (-1044 *5)) (-4 *5 (-969))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-586 (-586 (-871 *5)))) (-5 *3 (-586 (-156)))
- (-5 *4 (-156)) (-4 *1 (-1044 *5)) (-4 *5 (-969)))))
-(((*1 *2 *1) (-12 (-4 *1 (-229 *3)) (-4 *3 (-1118)) (-5 *2 (-706))))
- ((*1 *2 *1) (-12 (-4 *1 (-276)) (-5 *2 (-706))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-969))
- (-4 *2 (-13 (-377) (-960 *4) (-336) (-1104) (-258)))
- (-5 *1 (-415 *4 *3 *2)) (-4 *3 (-1140 *4))))
- ((*1 *2 *1) (-12 (-5 *2 (-706)) (-5 *1 (-559 *3)) (-4 *3 (-783))))
- ((*1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-791))))
- ((*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-791)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-346 *2)) (-4 *5 (-346 *2)) (-4 *2 (-336))
- (-5 *1 (-487 *2 *4 *5 *3)) (-4 *3 (-624 *2 *4 *5))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-624 *2 *3 *4)) (-4 *3 (-346 *2)) (-4 *4 (-346 *2))
- (|has| *2 (-6 (-4231 "*"))) (-4 *2 (-969))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-346 *2)) (-4 *5 (-346 *2)) (-4 *2 (-157))
- (-5 *1 (-625 *2 *4 *5 *3)) (-4 *3 (-624 *2 *4 *5))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1033 *3 *2 *4 *5)) (-4 *4 (-214 *3 *2))
- (-4 *5 (-214 *3 *2)) (|has| *2 (-6 (-4231 "*"))) (-4 *2 (-969)))))
-(((*1 *2 *3 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-520)) (-5 *5 (-626 (-201))) (-5 *4 (-201))
- (-5 *2 (-958)) (-5 *1 (-688)))))
+ (-12 (-5 *3 (-1084)) (-4 *5 (-337)) (-5 *2 (-587 (-1114 *5)))
+ (-5 *1 (-1173 *5)) (-5 *4 (-1114 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-759)))))
+(((*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-202))))
+ ((*1 *1 *1) (-4 *1 (-506)))
+ ((*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-544 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-4 *1 (-1013)) (-5 *2 (-1031)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-424))) (-5 *1 (-1110 *3 *2))
- (-4 *2 (-13 (-403 *3) (-1104))))))
-(((*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-201))))
- ((*1 *1 *1) (-4 *1 (-505)))
- ((*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-543 *3)) (-14 *3 *2)))
- ((*1 *2 *1) (-12 (-4 *1 (-1012)) (-5 *2 (-1030)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2257 (-717 *3)) (|:| |coef1| (-717 *3))))
- (-5 *1 (-717 *3)) (-4 *3 (-512)) (-4 *3 (-969))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-512)) (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783))
- (-5 *2 (-2 (|:| -2257 *1) (|:| |coef1| *1)))
- (-4 *1 (-983 *3 *4 *5)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1140 *5))
- (-4 *5 (-13 (-27) (-403 *4)))
- (-4 *4 (-13 (-783) (-512) (-960 (-520))))
- (-4 *7 (-1140 (-380 *6))) (-5 *1 (-508 *4 *5 *6 *7 *2))
- (-4 *2 (-315 *5 *6 *7)))))
+ (-12 (-4 *3 (-425)) (-4 *4 (-729)) (-4 *5 (-784))
+ (-4 *6 (-984 *3 *4 *5)) (-5 *1 (-569 *3 *4 *5 *6 *7 *2))
+ (-4 *7 (-989 *3 *4 *5 *6)) (-4 *2 (-1022 *3 *4 *5 *6)))))
+(((*1 *1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-707)) (-4 *1 (-984 *3 *4 *5)) (-4 *3 (-970))
+ (-4 *4 (-729)) (-4 *5 (-784)) (-4 *3 (-513)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-587 (-521))) (-5 *1 (-929 *3)) (-14 *3 (-521)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-586 *5)) (-5 *4 (-586 *6)) (-4 *5 (-1012))
- (-4 *6 (-1118)) (-5 *2 (-1 *6 *5)) (-5 *1 (-583 *5 *6))))
+ (-12 (-5 *3 (-587 *5)) (-5 *4 (-587 *6)) (-4 *5 (-1013))
+ (-4 *6 (-1119)) (-5 *2 (-1 *6 *5)) (-5 *1 (-584 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-586 *5)) (-5 *4 (-586 *2)) (-4 *5 (-1012))
- (-4 *2 (-1118)) (-5 *1 (-583 *5 *2))))
+ (-12 (-5 *3 (-587 *5)) (-5 *4 (-587 *2)) (-4 *5 (-1013))
+ (-4 *2 (-1119)) (-5 *1 (-584 *5 *2))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-586 *6)) (-5 *4 (-586 *5)) (-4 *6 (-1012))
- (-4 *5 (-1118)) (-5 *2 (-1 *5 *6)) (-5 *1 (-583 *6 *5))))
+ (-12 (-5 *3 (-587 *6)) (-5 *4 (-587 *5)) (-4 *6 (-1013))
+ (-4 *5 (-1119)) (-5 *2 (-1 *5 *6)) (-5 *1 (-584 *6 *5))))
((*1 *2 *3 *4 *5 *2)
- (-12 (-5 *3 (-586 *5)) (-5 *4 (-586 *2)) (-4 *5 (-1012))
- (-4 *2 (-1118)) (-5 *1 (-583 *5 *2))))
+ (-12 (-5 *3 (-587 *5)) (-5 *4 (-587 *2)) (-4 *5 (-1013))
+ (-4 *2 (-1119)) (-5 *1 (-584 *5 *2))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-586 *5)) (-5 *4 (-586 *6))
- (-4 *5 (-1012)) (-4 *6 (-1118)) (-5 *1 (-583 *5 *6))))
+ (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-587 *5)) (-5 *4 (-587 *6))
+ (-4 *5 (-1013)) (-4 *6 (-1119)) (-5 *1 (-584 *5 *6))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-586 *5)) (-5 *4 (-586 *2)) (-5 *6 (-1 *2 *5))
- (-4 *5 (-1012)) (-4 *2 (-1118)) (-5 *1 (-583 *5 *2))))
- ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (-132)) (-5 *2 (-706)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-586 (-2 (|:| |totdeg| (-706)) (|:| -3075 *3))))
- (-5 *4 (-706)) (-4 *3 (-877 *5 *6 *7)) (-4 *5 (-424)) (-4 *6 (-728))
- (-4 *7 (-783)) (-5 *1 (-421 *5 *6 *7 *3)))))
-(((*1 *2)
- (-12 (-4 *1 (-315 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-1140 *3))
- (-4 *5 (-1140 (-380 *4))) (-5 *2 (-626 (-380 *4))))))
-(((*1 *1 *2) (-12 (-5 *2 (-289 (-154 (-352)))) (-5 *1 (-303))))
- ((*1 *1 *2) (-12 (-5 *2 (-289 (-520))) (-5 *1 (-303))))
- ((*1 *1 *2) (-12 (-5 *2 (-289 (-352))) (-5 *1 (-303))))
- ((*1 *1 *2) (-12 (-5 *2 (-289 (-630))) (-5 *1 (-303))))
- ((*1 *1 *2) (-12 (-5 *2 (-289 (-637))) (-5 *1 (-303))))
- ((*1 *1 *2) (-12 (-5 *2 (-289 (-635))) (-5 *1 (-303))))
- ((*1 *1) (-5 *1 (-303))))
-(((*1 *1 *2) (-12 (-5 *2 (-586 (-303))) (-5 *1 (-303)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-276)) (-5 *3 (-1083)) (-5 *2 (-108))))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-276)) (-5 *2 (-108)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-837)) (-5 *2 (-391 (-1079 *1))) (-5 *3 (-1079 *1)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-1 (-586 *2) *2 *2 *2)) (-4 *2 (-1012))
- (-5 *1 (-98 *2))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1012)) (-5 *1 (-98 *2)))))
+ (-12 (-5 *3 (-587 *5)) (-5 *4 (-587 *2)) (-5 *6 (-1 *2 *5))
+ (-4 *5 (-1013)) (-4 *2 (-1119)) (-5 *1 (-584 *5 *2))))
+ ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (-132)) (-5 *2 (-707)))))
+(((*1 *1 *1) (-12 (-4 *1 (-404 *2)) (-4 *2 (-784)) (-4 *2 (-513))))
+ ((*1 *1 *1) (-12 (-4 *1 (-918 *2)) (-4 *2 (-513)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-521)) (-4 *5 (-323)) (-5 *2 (-392 (-1080 (-1080 *5))))
+ (-5 *1 (-1118 *5)) (-5 *3 (-1080 (-1080 *5))))))
+(((*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-855)))))
+(((*1 *2 *3 *4 *5 *5 *4 *6)
+ (-12 (-5 *5 (-560 *4)) (-5 *6 (-1080 *4))
+ (-4 *4 (-13 (-404 *7) (-27) (-1105)))
+ (-4 *7 (-13 (-425) (-961 (-521)) (-784) (-135) (-583 (-521))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2470 (-587 *4))))
+ (-5 *1 (-517 *7 *4 *3)) (-4 *3 (-597 *4)) (-4 *3 (-1013))))
+ ((*1 *2 *3 *4 *5 *5 *5 *4 *6)
+ (-12 (-5 *5 (-560 *4)) (-5 *6 (-381 (-1080 *4)))
+ (-4 *4 (-13 (-404 *7) (-27) (-1105)))
+ (-4 *7 (-13 (-425) (-961 (-521)) (-784) (-135) (-583 (-521))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2470 (-587 *4))))
+ (-5 *1 (-517 *7 *4 *3)) (-4 *3 (-597 *4)) (-4 *3 (-1013)))))
+(((*1 *2 *1 *3 *4 *4 *5)
+ (-12 (-5 *3 (-872 (-202))) (-5 *4 (-803)) (-5 *5 (-850))
+ (-5 *2 (-1170)) (-5 *1 (-441))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-872 (-202))) (-5 *2 (-1170)) (-5 *1 (-441))))
+ ((*1 *2 *1 *3 *4 *4 *5)
+ (-12 (-5 *3 (-587 (-872 (-202)))) (-5 *4 (-803)) (-5 *5 (-850))
+ (-5 *2 (-1170)) (-5 *1 (-441)))))
+(((*1 *1) (-12 (-5 *1 (-204 *2)) (-4 *2 (-13 (-337) (-1105))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1164 *4)) (-4 *4 (-969)) (-4 *2 (-1140 *4))
- (-5 *1 (-416 *4 *2))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-380 (-1079 (-289 *5)))) (-5 *3 (-1164 (-289 *5)))
- (-5 *4 (-520)) (-4 *5 (-13 (-512) (-783))) (-5 *1 (-1040 *5)))))
-(((*1 *2)
- (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-339 *3 *4))
- (-4 *3 (-340 *4))))
- ((*1 *2) (-12 (-4 *1 (-340 *3)) (-4 *3 (-157)) (-5 *2 (-108)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-849)) (-5 *4 (-1066)) (-5 *2 (-1169)) (-5 *1 (-1165)))))
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-202)) (|:| |xend| (-202))
+ (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202)))
+ (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202)))
+ (|:| |abserr| (-202)) (|:| |relerr| (-202))))
+ (-5 *2 (-353)) (-5 *1 (-184)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-587 *6)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-425))
+ (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-784))
+ (-5 *1 (-903 *3 *4 *5 *6)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-834 *4)) (-4 *4 (-1013)) (-5 *2 (-587 (-707)))
+ (-5 *1 (-833 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-380 (-520))) (-4 *5 (-728)) (-4 *6 (-783))
- (-4 *7 (-512)) (-4 *8 (-877 *7 *5 *6))
- (-5 *2 (-2 (|:| -2647 (-706)) (|:| -2972 *9) (|:| |radicand| *9)))
- (-5 *1 (-881 *5 *6 *7 *8 *9)) (-5 *4 (-706))
- (-4 *9
- (-13 (-336)
- (-10 -8 (-15 -2800 (*8 $)) (-15 -2811 (*8 $)) (-15 -2188 ($ *8))))))))
-(((*1 *1 *1) (-12 (-4 *1 (-1179 *2 *3)) (-4 *2 (-783)) (-4 *3 (-969))))
- ((*1 *1 *1) (-12 (-5 *1 (-1185 *2 *3)) (-4 *2 (-969)) (-4 *3 (-779)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-908 *2)) (-4 *2 (-1104)))))
-(((*1 *1 *2) (-12 (-5 *2 (-143)) (-5 *1 (-802)))))
-(((*1 *2 *2) (-12 (-5 *2 (-586 (-289 (-201)))) (-5 *1 (-242)))))
+ (-12 (-5 *3 (-587 *8)) (-5 *4 (-587 *7)) (-4 *7 (-784))
+ (-4 *8 (-878 *5 *6 *7)) (-4 *5 (-513)) (-4 *6 (-729))
+ (-5 *2
+ (-2 (|:| |particular| (-3 (-1165 (-381 *8)) "failed"))
+ (|:| -2470 (-587 (-1165 (-381 *8))))))
+ (-5 *1 (-610 *5 *6 *7 *8)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *1 (-590 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-587 (-850))) (-5 *2 (-833 (-521))) (-5 *1 (-846)))))
+(((*1 *2 *3)
+ (-12 (-14 *4 (-587 (-1084))) (-4 *5 (-425))
+ (-5 *2
+ (-2 (|:| |glbase| (-587 (-224 *4 *5))) (|:| |glval| (-587 (-521)))))
+ (-5 *1 (-575 *4 *5)) (-5 *3 (-587 (-224 *4 *5))))))
+(((*1 *1 *2 *3 *3 *4 *5)
+ (-12 (-5 *2 (-587 (-587 (-872 (-202))))) (-5 *3 (-587 (-803)))
+ (-5 *4 (-587 (-850))) (-5 *5 (-587 (-239))) (-5 *1 (-441))))
+ ((*1 *1 *2 *3 *3 *4)
+ (-12 (-5 *2 (-587 (-587 (-872 (-202))))) (-5 *3 (-587 (-803)))
+ (-5 *4 (-587 (-850))) (-5 *1 (-441))))
+ ((*1 *1 *2) (-12 (-5 *2 (-587 (-587 (-872 (-202))))) (-5 *1 (-441))))
+ ((*1 *1 *1) (-5 *1 (-441))))
+(((*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-331 *3)) (-4 *3 (-323)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-587 *7)) (-4 *7 (-984 *4 *5 *6)) (-4 *4 (-513))
+ (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-108))
+ (-5 *1 (-903 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-759)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-586 (-1105 *3))) (-5 *1 (-1105 *3)) (-4 *3 (-1012)))))
-(((*1 *2 *1) (-12 (-5 *2 (-380 (-520))) (-5 *1 (-103))))
- ((*1 *2 *1) (-12 (-5 *2 (-380 (-520))) (-5 *1 (-194))))
- ((*1 *2 *1) (-12 (-5 *2 (-380 (-520))) (-5 *1 (-457))))
- ((*1 *1 *1) (-12 (-4 *1 (-917 *2)) (-4 *2 (-512)) (-4 *2 (-281))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-380 (-520))) (-5 *1 (-928 *3)) (-14 *3 (-520))))
- ((*1 *1 *1) (-4 *1 (-978))))
+ (-12 (-5 *2 (-587 *4)) (-5 *1 (-1050 *3 *4))
+ (-4 *3 (-13 (-1013) (-33))) (-4 *4 (-13 (-1013) (-33))))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-989 *4 *5 *6 *3)) (-4 *4 (-425)) (-4 *5 (-729))
+ (-4 *6 (-784)) (-4 *3 (-984 *4 *5 *6)) (-5 *2 (-108)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-849)) (-4 *1 (-214 *3 *4)) (-4 *4 (-969))
- (-4 *4 (-1118))))
- ((*1 *1 *2)
- (-12 (-14 *3 (-586 (-1083))) (-4 *4 (-157))
- (-4 *5 (-214 (-3474 *3) (-706)))
- (-14 *6
- (-1 (-108) (-2 (|:| -2716 *2) (|:| -2647 *5))
- (-2 (|:| -2716 *2) (|:| -2647 *5))))
- (-5 *1 (-433 *3 *4 *2 *5 *6 *7)) (-4 *2 (-783))
- (-4 *7 (-877 *4 *5 (-793 *3)))))
- ((*1 *2 *2) (-12 (-5 *2 (-871 (-201))) (-5 *1 (-1115)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-586 *4)) (-5 *1 (-1049 *3 *4))
- (-4 *3 (-13 (-1012) (-33))) (-4 *4 (-13 (-1012) (-33))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-391 (-1079 *1))) (-5 *1 (-289 *4)) (-5 *3 (-1079 *1))
- (-4 *4 (-424)) (-4 *4 (-512)) (-4 *4 (-783))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-837)) (-5 *2 (-391 (-1079 *1))) (-5 *3 (-1079 *1)))))
-(((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-706)) (-5 *1 (-717 *3)) (-4 *3 (-969))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *1 (-890 *3 *2)) (-4 *2 (-124)) (-4 *3 (-512))
- (-4 *3 (-969)) (-4 *2 (-727))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-706)) (-5 *1 (-1079 *3)) (-4 *3 (-969))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-896)) (-4 *2 (-124)) (-5 *1 (-1085 *3)) (-4 *3 (-512))
- (-4 *3 (-969))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-706)) (-5 *1 (-1137 *4 *3)) (-14 *4 (-1083))
- (-4 *3 (-969)))))
-(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-123 *2)) (-4 *2 (-1012))))
- ((*1 *1 *2) (-12 (-5 *1 (-123 *2)) (-4 *2 (-1012)))))
+ (|partial| -12 (-5 *2 (-587 *6)) (-4 *6 (-984 *3 *4 *5))
+ (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-784))
+ (-5 *1 (-1176 *3 *4 *5 *6))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-587 *8)) (-5 *3 (-1 (-108) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-984 *5 *6 *7)) (-4 *5 (-513))
+ (-4 *6 (-729)) (-4 *7 (-784)) (-5 *1 (-1176 *5 *6 *7 *8)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-597 *2)) (-4 *2 (-970)) (-4 *2 (-337))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-337)) (-5 *1 (-600 *4 *2))
+ (-4 *2 (-597 *4)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-612 *3)) (-4 *3 (-784)) (-4 *1 (-348 *3 *4))
+ (-4 *4 (-157)))))
+(((*1 *1 *2) (-12 (-5 *2 (-587 (-304))) (-5 *1 (-304)))))
+(((*1 *2 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959))
+ (-5 *1 (-688)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-337)) (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-108))
+ (-5 *1 (-473 *4 *5 *6 *3)) (-4 *3 (-878 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-759)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-425))) (-5 *1 (-1111 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-1105))))))
+(((*1 *2 *1) (-12 (-4 *1 (-734 *2)) (-4 *2 (-157)))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5 (-1 (-3 (-2 (|:| -3100 *6) (|:| |coeff| *6)) "failed") *6))
+ (-4 *6 (-337)) (-4 *7 (-1141 *6))
+ (-5 *2
+ (-3 (-2 (|:| |answer| (-381 *7)) (|:| |a0| *6))
+ (-2 (|:| -3100 (-381 *7)) (|:| |coeff| (-381 *7))) "failed"))
+ (-5 *1 (-531 *6 *7)) (-5 *3 (-381 *7)))))
+(((*1 *2 *3 *3 *3 *4 *5 *4 *6)
+ (-12 (-5 *3 (-290 (-521))) (-5 *4 (-1 (-202) (-202)))
+ (-5 *5 (-1008 (-202))) (-5 *6 (-521)) (-5 *2 (-1115 (-855)))
+ (-5 *1 (-292))))
+ ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7)
+ (-12 (-5 *3 (-290 (-521))) (-5 *4 (-1 (-202) (-202)))
+ (-5 *5 (-1008 (-202))) (-5 *6 (-521)) (-5 *7 (-1067))
+ (-5 *2 (-1115 (-855))) (-5 *1 (-292))))
+ ((*1 *2 *3 *3 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-290 (-521))) (-5 *4 (-1 (-202) (-202)))
+ (-5 *5 (-1008 (-202))) (-5 *6 (-202)) (-5 *7 (-521))
+ (-5 *2 (-1115 (-855))) (-5 *1 (-292))))
+ ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8)
+ (-12 (-5 *3 (-290 (-521))) (-5 *4 (-1 (-202) (-202)))
+ (-5 *5 (-1008 (-202))) (-5 *6 (-202)) (-5 *7 (-521)) (-5 *8 (-1067))
+ (-5 *2 (-1115 (-855))) (-5 *1 (-292)))))
+(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-126)))))
+(((*1 *1 *1 *1) (-5 *1 (-792))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-586 (-380 (-880 (-154 (-520))))))
- (-5 *2 (-586 (-586 (-268 (-880 (-154 *4)))))) (-5 *1 (-351 *4))
- (-4 *4 (-13 (-336) (-781)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-586 (-268 (-380 (-880 (-154 (-520)))))))
- (-5 *2 (-586 (-586 (-268 (-880 (-154 *4)))))) (-5 *1 (-351 *4))
- (-4 *4 (-13 (-336) (-781)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-380 (-880 (-154 (-520)))))
- (-5 *2 (-586 (-268 (-880 (-154 *4))))) (-5 *1 (-351 *4))
- (-4 *4 (-13 (-336) (-781)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-268 (-380 (-880 (-154 (-520))))))
- (-5 *2 (-586 (-268 (-880 (-154 *4))))) (-5 *1 (-351 *4))
- (-4 *4 (-13 (-336) (-781))))))
-(((*1 *1 *1) (-12 (-4 *1 (-403 *2)) (-4 *2 (-783)) (-4 *2 (-969))))
- ((*1 *1 *1) (-12 (-4 *1 (-917 *2)) (-4 *2 (-512)))))
-(((*1 *2 *3 *4 *4 *5 *3)
- (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *5 (-201))
- (-5 *2 (-958)) (-5 *1 (-688)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-299 *3 *4)) (-4 *3 (-969)) (-4 *4 (-727))
- (-5 *2 (-586 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-355 *3 *4)) (-4 *3 (-969)) (-4 *4 (-1012))
- (-5 *2 (-586 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1064 *3)) (-5 *1 (-546 *3)) (-4 *3 (-969))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-586 *3)) (-5 *1 (-671 *3 *4)) (-4 *3 (-969))
- (-4 *4 (-662))))
- ((*1 *2 *1) (-12 (-4 *1 (-785 *3)) (-4 *3 (-969)) (-5 *2 (-586 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1155 *3)) (-4 *3 (-969)) (-5 *2 (-1064 *3)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-624 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-346 *2))
- (-4 *4 (-346 *2)))))
-(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7)
- (-12 (-5 *3 (-1066)) (-5 *5 (-626 (-201))) (-5 *6 (-201))
- (-5 *7 (-626 (-520))) (-5 *4 (-520)) (-5 *2 (-958)) (-5 *1 (-688)))))
-(((*1 *2 *3) (-12 (-5 *3 (-706)) (-5 *2 (-1169)) (-5 *1 (-352))))
- ((*1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-352)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-586 *4)) (-4 *4 (-336)) (-5 *2 (-1164 *4))
- (-5 *1 (-750 *4 *3)) (-4 *3 (-596 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-340 *3)) (-4 *3 (-157)) (-4 *3 (-512))
- (-5 *2 (-1079 *3)))))
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-970)) (-4 *7 (-970))
+ (-4 *6 (-1141 *5)) (-5 *2 (-1080 (-1080 *7)))
+ (-5 *1 (-470 *5 *6 *4 *7)) (-4 *4 (-1141 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-545 *2)) (-4 *2 (-37 (-380 (-520)))) (-4 *2 (-969)))))
-(((*1 *2)
- (-12 (-5 *2 (-885 (-1030))) (-5 *1 (-316 *3 *4)) (-14 *3 (-849))
- (-14 *4 (-849))))
- ((*1 *2)
- (-12 (-5 *2 (-885 (-1030))) (-5 *1 (-317 *3 *4)) (-4 *3 (-322))
- (-14 *4 (-1079 *3))))
- ((*1 *2)
- (-12 (-5 *2 (-885 (-1030))) (-5 *1 (-318 *3 *4)) (-4 *3 (-322))
- (-14 *4 (-849)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783))
- (-4 *7 (-983 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-913 *4 *5 *6 *7 *3))
- (-4 *3 (-988 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783))
- (-4 *7 (-983 *4 *5 *6)) (-5 *2 (-108))
- (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-988 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1066)) (-5 *4 (-520)) (-5 *5 (-626 (-201)))
- (-5 *2 (-958)) (-5 *1 (-693)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-586 (-586 *3))) (-4 *3 (-1012)) (-5 *1 (-833 *3)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1083)) (-5 *2 (-410)) (-5 *1 (-1087)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-728))
- (-4 *3 (-13 (-783) (-10 -8 (-15 -1429 ((-1083) $))))) (-4 *5 (-512))
- (-5 *1 (-668 *4 *3 *5 *2)) (-4 *2 (-877 (-380 (-880 *5)) *4 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *4 (-969)) (-4 *5 (-728))
- (-4 *3
- (-13 (-783)
- (-10 -8 (-15 -1429 ((-1083) $))
- (-15 -1610 ((-3 $ "failed") (-1083))))))
- (-5 *1 (-909 *4 *5 *3 *2)) (-4 *2 (-877 (-880 *4) *5 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-586 *6))
- (-4 *6
- (-13 (-783)
- (-10 -8 (-15 -1429 ((-1083) $))
- (-15 -1610 ((-3 $ "failed") (-1083))))))
- (-4 *4 (-969)) (-4 *5 (-728)) (-5 *1 (-909 *4 *5 *6 *2))
- (-4 *2 (-877 (-880 *4) *5 *6)))))
+ (-12 (-4 *1 (-229 *2 *3 *4 *5)) (-4 *2 (-970)) (-4 *3 (-784))
+ (-4 *4 (-242 *3)) (-4 *5 (-729)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-626 (-380 (-880 (-520)))))
- (-5 *2
- (-586
- (-2 (|:| |radval| (-289 (-520))) (|:| |radmult| (-520))
- (|:| |radvect| (-586 (-626 (-289 (-520))))))))
- (-5 *1 (-954)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-706)) (-4 *4 (-322)) (-5 *1 (-193 *4 *2))
- (-4 *2 (-1140 *4))))
- ((*1 *2 *2 *3 *2 *3)
- (-12 (-5 *3 (-520)) (-5 *1 (-632 *2)) (-4 *2 (-1140 *3)))))
+ (-12 (-5 *3 (-1084)) (-4 *5 (-1123)) (-4 *6 (-1141 *5))
+ (-4 *7 (-1141 (-381 *6))) (-5 *2 (-587 (-881 *5)))
+ (-5 *1 (-315 *4 *5 *6 *7)) (-4 *4 (-316 *5 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1084)) (-4 *1 (-316 *4 *5 *6)) (-4 *4 (-1123))
+ (-4 *5 (-1141 *4)) (-4 *6 (-1141 (-381 *5))) (-4 *4 (-337))
+ (-5 *2 (-587 (-881 *4))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-154 *5)) (-4 *5 (-13 (-403 *4) (-926) (-1104)))
- (-4 *4 (-13 (-512) (-783)))
- (-4 *2 (-13 (-403 (-154 *4)) (-926) (-1104)))
- (-5 *1 (-549 *4 *5 *2)))))
+ (-12 (-4 *4 (-513)) (-5 *2 (-707)) (-5 *1 (-42 *4 *3))
+ (-4 *3 (-391 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-425))) (-5 *1 (-1111 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-1105))))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-707)) (-4 *1 (-597 *3)) (-4 *3 (-970)) (-4 *3 (-337))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-707)) (-5 *4 (-1 *5 *5)) (-4 *5 (-337))
+ (-5 *1 (-600 *5 *2)) (-4 *2 (-597 *5)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-337)) (-5 *1 (-703 *2 *3)) (-4 *2 (-646 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-970)) (-4 *2 (-337)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202)))))
+ (-5 *2 (-353)) (-5 *1 (-243))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1165 (-290 (-202)))) (-5 *2 (-353)) (-5 *1 (-280)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-706)) (-5 *2 (-586 (-1083))) (-5 *1 (-188))
- (-5 *3 (-1083))))
+ (-12 (-5 *4 (-707)) (-5 *2 (-587 (-1084))) (-5 *1 (-189))
+ (-5 *3 (-1084))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-289 (-201))) (-5 *4 (-706)) (-5 *2 (-586 (-1083)))
- (-5 *1 (-242))))
+ (-12 (-5 *3 (-290 (-202))) (-5 *4 (-707)) (-5 *2 (-587 (-1084)))
+ (-5 *1 (-243))))
((*1 *2 *1)
- (-12 (-4 *1 (-347 *3 *4)) (-4 *3 (-783)) (-4 *4 (-157))
- (-5 *2 (-586 *3))))
+ (-12 (-4 *1 (-348 *3 *4)) (-4 *3 (-784)) (-4 *4 (-157))
+ (-5 *2 (-587 *3))))
((*1 *2 *1)
- (-12 (-5 *2 (-586 *3)) (-5 *1 (-570 *3 *4 *5)) (-4 *3 (-783))
- (-4 *4 (-13 (-157) (-653 (-380 (-520))))) (-14 *5 (-849))))
- ((*1 *2 *1) (-12 (-5 *2 (-586 *3)) (-5 *1 (-611 *3)) (-4 *3 (-783))))
- ((*1 *2 *1) (-12 (-5 *2 (-586 *3)) (-5 *1 (-615 *3)) (-4 *3 (-783))))
- ((*1 *2 *1) (-12 (-5 *2 (-586 *3)) (-5 *1 (-755 *3)) (-4 *3 (-783))))
- ((*1 *2 *1) (-12 (-5 *2 (-586 *3)) (-5 *1 (-821 *3)) (-4 *3 (-783))))
+ (-12 (-5 *2 (-587 *3)) (-5 *1 (-571 *3 *4 *5)) (-4 *3 (-784))
+ (-4 *4 (-13 (-157) (-654 (-381 (-521))))) (-14 *5 (-850))))
+ ((*1 *2 *1) (-12 (-5 *2 (-587 *3)) (-5 *1 (-612 *3)) (-4 *3 (-784))))
+ ((*1 *2 *1) (-12 (-5 *2 (-587 *3)) (-5 *1 (-616 *3)) (-4 *3 (-784))))
+ ((*1 *2 *1) (-12 (-5 *2 (-587 *3)) (-5 *1 (-756 *3)) (-4 *3 (-784))))
+ ((*1 *2 *1) (-12 (-5 *2 (-587 *3)) (-5 *1 (-822 *3)) (-4 *3 (-784))))
((*1 *2 *1)
- (-12 (-4 *1 (-1179 *3 *4)) (-4 *3 (-783)) (-4 *4 (-969))
- (-5 *2 (-586 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-520)) (-5 *1 (-632 *2)) (-4 *2 (-1140 *3)))))
+ (-12 (-4 *1 (-1180 *3 *4)) (-4 *3 (-784)) (-4 *4 (-970))
+ (-5 *2 (-587 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1138 *5 *4)) (-4 *4 (-425)) (-4 *4 (-757))
+ (-14 *5 (-1084)) (-5 *2 (-521)) (-5 *1 (-1027 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1113 *3 *4 *5 *6)) (-4 *3 (-513)) (-4 *4 (-729))
+ (-4 *5 (-784)) (-4 *6 (-984 *3 *4 *5)) (-5 *2 (-587 *5)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4233)) (-4 *1 (-212 *3))
+ (-4 *3 (-1013))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-257 *3)) (-4 *3 (-1119)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-625 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-347 *2))
+ (-4 *4 (-347 *2)))))
(((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-586 (-559 *6))) (-5 *4 (-1083)) (-5 *2 (-559 *6))
- (-4 *6 (-403 *5)) (-4 *5 (-783)) (-5 *1 (-529 *5 *6)))))
-(((*1 *2)
- (-12 (-4 *4 (-157)) (-5 *2 (-586 (-1164 *4))) (-5 *1 (-339 *3 *4))
- (-4 *3 (-340 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-340 *3)) (-4 *3 (-157)) (-4 *3 (-512))
- (-5 *2 (-586 (-1164 *3))))))
+ (|partial| -12
+ (-5 *3
+ (-1 (-3 (-2 (|:| -3100 *4) (|:| |coeff| *4)) "failed") *4))
+ (-4 *4 (-337)) (-5 *1 (-531 *4 *2)) (-4 *2 (-1141 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1164 (-586 (-2 (|:| -3429 *4) (|:| -2716 (-1030))))))
- (-4 *4 (-322)) (-5 *2 (-626 *4)) (-5 *1 (-319 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-586 *2)) (-4 *2 (-505)) (-5 *1 (-145 *2)))))
-(((*1 *1 *1 *1) (-5 *1 (-791))))
-(((*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-958)) (-5 *1 (-773))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-586 (-289 (-352)))) (-5 *4 (-586 (-352)))
- (-5 *2 (-958)) (-5 *1 (-773)))))
+ (-12 (-4 *4 (-970)) (-4 *3 (-1141 *4)) (-4 *2 (-1156 *4))
+ (-5 *1 (-1159 *4 *3 *5 *2)) (-4 *5 (-597 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-453 *4 *5)) (-14 *4 (-587 (-1084))) (-4 *5 (-970))
+ (-5 *2 (-224 *4 *5)) (-5 *1 (-873 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-646 *3)) (-5 *1 (-764 *2 *3)) (-4 *3 (-970)))))
(((*1 *2 *3 *2)
- (-12 (-5 *1 (-617 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1012)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-336)) (-5 *1 (-259 *3 *2)) (-4 *2 (-1155 *3)))))
-(((*1 *1) (-5 *1 (-129))))
-(((*1 *2)
- (-12 (-4 *1 (-315 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-1140 *3))
- (-4 *5 (-1140 (-380 *4))) (-5 *2 (-108)))))
-(((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-1066)) (-5 *4 (-154 (-201))) (-5 *5 (-520))
- (-5 *2 (-958)) (-5 *1 (-694)))))
+ (-12 (-5 *1 (-618 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013)))))
+(((*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1119)) (-4 *1 (-102 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-380 (-520))) (-5 *1 (-292 *3 *4 *5))
- (-4 *3 (-13 (-336) (-783))) (-14 *4 (-1083)) (-14 *5 *3))))
-(((*1 *2 *3)
- (-12 (-4 *3 (-1140 *2)) (-4 *2 (-1140 *4)) (-5 *1 (-910 *4 *2 *3 *5))
- (-4 *4 (-322)) (-4 *5 (-660 *2 *3)))))
-(((*1 *1 *1 *1) (-5 *1 (-791))))
+ (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013))
+ (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-108)))))
+(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3)
+ (-12 (-5 *5 (-627 (-202))) (-5 *6 (-627 (-521))) (-5 *3 (-521))
+ (-5 *4 (-202)) (-5 *2 (-959)) (-5 *1 (-689)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1080 *3)) (-4 *3 (-970)) (-4 *1 (-1141 *3)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1115 *3)) (-4 *3 (-900)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-587 (-881 *5))) (-5 *4 (-587 (-1084))) (-4 *5 (-513))
+ (-5 *2 (-587 (-587 (-269 (-381 (-881 *5)))))) (-5 *1 (-706 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-587 (-881 *4))) (-4 *4 (-513))
+ (-5 *2 (-587 (-587 (-269 (-381 (-881 *4)))))) (-5 *1 (-706 *4))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-627 *7))
+ (-5 *5
+ (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2470 (-587 *6)))
+ *7 *6))
+ (-4 *6 (-337)) (-4 *7 (-597 *6))
+ (-5 *2
+ (-2 (|:| |particular| (-3 (-1165 *6) "failed"))
+ (|:| -2470 (-587 (-1165 *6)))))
+ (-5 *1 (-750 *6 *7)) (-5 *4 (-1165 *6)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |lfn| (-586 (-289 (-201)))) (|:| -3794 (-586 (-201)))))
- (-5 *2 (-586 (-1083))) (-5 *1 (-242))))
+ (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202)))))
+ (-5 *2 (-587 (-1084))) (-5 *1 (-243))))
((*1 *2 *3)
- (-12 (-5 *3 (-1079 *7)) (-4 *7 (-877 *6 *4 *5)) (-4 *4 (-728))
- (-4 *5 (-783)) (-4 *6 (-969)) (-5 *2 (-586 *5))
- (-5 *1 (-294 *4 *5 *6 *7))))
+ (-12 (-5 *3 (-1080 *7)) (-4 *7 (-878 *6 *4 *5)) (-4 *4 (-729))
+ (-4 *5 (-784)) (-4 *6 (-970)) (-5 *2 (-587 *5))
+ (-5 *1 (-295 *4 *5 *6 *7))))
((*1 *2 *1)
- (-12 (-5 *2 (-586 (-1083))) (-5 *1 (-312 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 *2) (-4 *5 (-360))))
+ (-12 (-5 *2 (-587 (-1084))) (-5 *1 (-313 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 *2) (-4 *5 (-361))))
((*1 *2 *1)
- (-12 (-4 *1 (-403 *3)) (-4 *3 (-783)) (-5 *2 (-586 (-1083)))))
+ (-12 (-4 *1 (-404 *3)) (-4 *3 (-784)) (-5 *2 (-587 (-1084)))))
((*1 *2 *1)
- (-12 (-5 *2 (-586 (-820 *3))) (-5 *1 (-820 *3)) (-4 *3 (-1012))))
+ (-12 (-5 *2 (-587 (-821 *3))) (-5 *1 (-821 *3)) (-4 *3 (-1013))))
((*1 *2 *1)
- (-12 (-4 *1 (-877 *3 *4 *5)) (-4 *3 (-969)) (-4 *4 (-728))
- (-4 *5 (-783)) (-5 *2 (-586 *5))))
+ (-12 (-4 *1 (-878 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-729))
+ (-4 *5 (-784)) (-5 *2 (-587 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-728)) (-4 *5 (-783)) (-4 *6 (-969))
- (-4 *7 (-877 *6 *4 *5)) (-5 *2 (-586 *5))
- (-5 *1 (-878 *4 *5 *6 *7 *3))
+ (-12 (-4 *4 (-729)) (-4 *5 (-784)) (-4 *6 (-970))
+ (-4 *7 (-878 *6 *4 *5)) (-5 *2 (-587 *5))
+ (-5 *1 (-879 *4 *5 *6 *7 *3))
(-4 *3
- (-13 (-336)
- (-10 -8 (-15 -2188 ($ *7)) (-15 -2800 (*7 $)) (-15 -2811 (*7 $)))))))
+ (-13 (-337)
+ (-10 -8 (-15 -2189 ($ *7)) (-15 -2801 (*7 $)) (-15 -2812 (*7 $)))))))
((*1 *2 *1)
- (-12 (-5 *2 (-1014 (-1083))) (-5 *1 (-892 *3)) (-4 *3 (-893))))
+ (-12 (-5 *2 (-1015 (-1084))) (-5 *1 (-893 *3)) (-4 *3 (-894))))
((*1 *2 *1)
- (-12 (-4 *1 (-898 *3 *4 *5)) (-4 *3 (-969)) (-4 *4 (-727))
- (-4 *5 (-783)) (-5 *2 (-586 *5))))
+ (-12 (-4 *1 (-899 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-728))
+ (-4 *5 (-784)) (-5 *2 (-587 *5))))
((*1 *2 *1)
- (-12 (-4 *1 (-901 *3 *4 *5 *6)) (-4 *3 (-969)) (-4 *4 (-728))
- (-4 *5 (-783)) (-4 *6 (-983 *3 *4 *5)) (-5 *2 (-586 *5))))
+ (-12 (-4 *1 (-902 *3 *4 *5 *6)) (-4 *3 (-970)) (-4 *4 (-729))
+ (-4 *5 (-784)) (-4 *6 (-984 *3 *4 *5)) (-5 *2 (-587 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-380 (-880 *4))) (-4 *4 (-512)) (-5 *2 (-586 (-1083)))
- (-5 *1 (-965 *4)))))
+ (-12 (-5 *3 (-381 (-881 *4))) (-4 *4 (-513)) (-5 *2 (-587 (-1084)))
+ (-5 *1 (-966 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-337)) (-4 *1 (-303 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1141 *4)) (-4 *4 (-1123))
+ (-4 *1 (-316 *4 *3 *5)) (-4 *5 (-1141 (-381 *3)))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1165 *4)) (-5 *3 (-1165 *1)) (-4 *4 (-157))
+ (-4 *1 (-341 *4))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1165 *4)) (-5 *3 (-1165 *1)) (-4 *4 (-157))
+ (-4 *1 (-344 *4 *5)) (-4 *5 (-1141 *4))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-157)) (-4 *1 (-383 *3 *4))
+ (-4 *4 (-1141 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-157)) (-4 *1 (-391 *3)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1119)) (-5 *1 (-349 *4 *2))
+ (-4 *2 (-13 (-347 *4) (-10 -7 (-6 -4234)))))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1083))
- (-4 *5 (-13 (-281) (-783) (-135) (-960 (-520)) (-582 (-520))))
- (-5 *2 (-537 *3)) (-5 *1 (-399 *5 *3))
- (-4 *3 (-13 (-1104) (-29 *5))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1137 *5 *4)) (-4 *4 (-424)) (-4 *4 (-756))
- (-14 *5 (-1083)) (-5 *2 (-520)) (-5 *1 (-1026 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1079 *4)) (-4 *4 (-322)) (-5 *2 (-885 (-1030)))
- (-5 *1 (-319 *4)))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *5 (-706)) (-4 *6 (-1012)) (-4 *7 (-828 *6))
- (-5 *2 (-626 *7)) (-5 *1 (-628 *6 *7 *3 *4)) (-4 *3 (-346 *7))
- (-4 *4 (-13 (-346 *6) (-10 -7 (-6 -4229)))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-336) (-960 (-380 *2)))) (-5 *2 (-520))
- (-5 *1 (-111 *4 *3)) (-4 *3 (-1140 *4)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-969)) (-5 *1 (-1136 *3 *2)) (-4 *2 (-1140 *3)))))
-(((*1 *2 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-520)) (-5 *4 (-626 (-154 (-201)))) (-5 *2 (-958))
- (-5 *1 (-690)))))
+ (-12 (-5 *3 (-587 (-381 (-881 *5)))) (-5 *4 (-587 (-1084)))
+ (-4 *5 (-513)) (-5 *2 (-587 (-587 (-881 *5)))) (-5 *1 (-1090 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-587 (-1000))) (-5 *1 (-266)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-587 *4)) (-4 *4 (-1013)) (-4 *4 (-1119)) (-5 *2 (-108))
+ (-5 *1 (-1065 *4)))))
(((*1 *2 *2 *3)
- (-12 (-5 *1 (-617 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1012)))))
+ (-12 (-5 *1 (-618 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-707)) (|:| |poli| *2)
+ (|:| |polj| *2)))
+ (-4 *5 (-729)) (-4 *2 (-878 *4 *5 *6)) (-5 *1 (-422 *4 *5 *6 *2))
+ (-4 *4 (-425)) (-4 *6 (-784)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 (-154 (-202)) (-154 (-202)))) (-5 *4 (-1008 (-202)))
+ (-5 *2 (-1167)) (-5 *1 (-233)))))
(((*1 *2 *3 *3)
- (-12 (-4 *3 (-1122)) (-4 *5 (-1140 *3)) (-4 *6 (-1140 (-380 *5)))
- (-5 *2 (-108)) (-5 *1 (-314 *4 *3 *5 *6)) (-4 *4 (-315 *3 *5 *6))))
- ((*1 *2 *3 *3)
- (-12 (-4 *1 (-315 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-1140 *3))
- (-4 *5 (-1140 (-380 *4))) (-5 *2 (-108)))))
+ (-12 (-4 *4 (-1141 *2)) (-4 *2 (-1123)) (-5 *1 (-136 *2 *4 *3))
+ (-4 *3 (-1141 (-381 *4))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-512)) (-5 *2 (-1079 *3)) (-5 *1 (-40 *4 *3))
- (-4 *3
- (-13 (-336) (-276)
- (-10 -8 (-15 -2800 ((-1035 *4 (-559 $)) $))
- (-15 -2811 ((-1035 *4 (-559 $)) $))
- (-15 -2188 ($ (-1035 *4 (-559 $))))))))))
-(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-958)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-586 (-791))) (-5 *1 (-1083)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-758)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-901 *3 *4 *2 *5)) (-4 *3 (-969)) (-4 *4 (-728))
- (-4 *2 (-783)) (-4 *5 (-983 *3 *4 *2)))))
-(((*1 *2 *2) (|partial| -12 (-5 *2 (-289 (-201))) (-5 *1 (-279))))
+ (-12 (-4 *4 (-13 (-513) (-784)))
+ (-4 *2 (-13 (-404 *4) (-927) (-1105))) (-5 *1 (-550 *4 *2 *3))
+ (-4 *3 (-13 (-404 (-154 *4)) (-927) (-1105))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-425))) (-5 *1 (-1111 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-1105))))))
+(((*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-518)))))
+(((*1 *2 *2) (|partial| -12 (-5 *2 (-290 (-202))) (-5 *1 (-280))))
((*1 *2 *1)
(|partial| -12
- (-5 *2 (-2 (|:| |num| (-820 *3)) (|:| |den| (-820 *3))))
- (-5 *1 (-820 *3)) (-4 *3 (-1012)))))
+ (-5 *2 (-2 (|:| |num| (-821 *3)) (|:| |den| (-821 *3))))
+ (-5 *1 (-821 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-587 (-2 (|:| -1916 (-1080 *6)) (|:| -2997 (-521)))))
+ (-4 *6 (-282)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *2 (-108))
+ (-5 *1 (-679 *4 *5 *6 *7)) (-4 *7 (-878 *6 *4 *5))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1045 *2)) (-4 *2 (-970)))))
(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1079 (-380 (-1079 *2)))) (-5 *4 (-559 *2))
- (-4 *2 (-13 (-403 *5) (-27) (-1104)))
- (-4 *5 (-13 (-424) (-960 (-520)) (-783) (-135) (-582 (-520))))
- (-5 *1 (-516 *5 *2 *6)) (-4 *6 (-1012))))
+ (-12 (-5 *3 (-1080 (-381 (-1080 *2)))) (-5 *4 (-560 *2))
+ (-4 *2 (-13 (-404 *5) (-27) (-1105)))
+ (-4 *5 (-13 (-425) (-961 (-521)) (-784) (-135) (-583 (-521))))
+ (-5 *1 (-517 *5 *2 *6)) (-4 *6 (-1013))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1079 *1)) (-4 *1 (-877 *4 *5 *3)) (-4 *4 (-969))
- (-4 *5 (-728)) (-4 *3 (-783))))
+ (-12 (-5 *2 (-1080 *1)) (-4 *1 (-878 *4 *5 *3)) (-4 *4 (-970))
+ (-4 *5 (-729)) (-4 *3 (-784))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1079 *4)) (-4 *4 (-969)) (-4 *1 (-877 *4 *5 *3))
- (-4 *5 (-728)) (-4 *3 (-783))))
+ (-12 (-5 *2 (-1080 *4)) (-4 *4 (-970)) (-4 *1 (-878 *4 *5 *3))
+ (-4 *5 (-729)) (-4 *3 (-784))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-380 (-1079 *2))) (-4 *5 (-728)) (-4 *4 (-783))
- (-4 *6 (-969))
+ (-12 (-5 *3 (-381 (-1080 *2))) (-4 *5 (-729)) (-4 *4 (-784))
+ (-4 *6 (-970))
(-4 *2
- (-13 (-336)
- (-10 -8 (-15 -2188 ($ *7)) (-15 -2800 (*7 $)) (-15 -2811 (*7 $)))))
- (-5 *1 (-878 *5 *4 *6 *7 *2)) (-4 *7 (-877 *6 *5 *4))))
+ (-13 (-337)
+ (-10 -8 (-15 -2189 ($ *7)) (-15 -2801 (*7 $)) (-15 -2812 (*7 $)))))
+ (-5 *1 (-879 *5 *4 *6 *7 *2)) (-4 *7 (-878 *6 *5 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-380 (-1079 (-380 (-880 *5))))) (-5 *4 (-1083))
- (-5 *2 (-380 (-880 *5))) (-5 *1 (-965 *5)) (-4 *5 (-512)))))
-(((*1 *2 *3 *4 *3 *3)
- (-12 (-5 *3 (-268 *6)) (-5 *4 (-110)) (-4 *6 (-403 *5))
- (-4 *5 (-13 (-783) (-512) (-561 (-496)))) (-5 *2 (-51))
- (-5 *1 (-290 *5 *6))))
- ((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-268 *7)) (-5 *4 (-110)) (-5 *5 (-586 *7))
- (-4 *7 (-403 *6)) (-4 *6 (-13 (-783) (-512) (-561 (-496))))
- (-5 *2 (-51)) (-5 *1 (-290 *6 *7))))
- ((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-586 (-268 *7))) (-5 *4 (-586 (-110))) (-5 *5 (-268 *7))
- (-4 *7 (-403 *6)) (-4 *6 (-13 (-783) (-512) (-561 (-496))))
- (-5 *2 (-51)) (-5 *1 (-290 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-586 (-268 *8))) (-5 *4 (-586 (-110))) (-5 *5 (-268 *8))
- (-5 *6 (-586 *8)) (-4 *8 (-403 *7))
- (-4 *7 (-13 (-783) (-512) (-561 (-496)))) (-5 *2 (-51))
- (-5 *1 (-290 *7 *8))))
- ((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-586 *7)) (-5 *4 (-586 (-110))) (-5 *5 (-268 *7))
- (-4 *7 (-403 *6)) (-4 *6 (-13 (-783) (-512) (-561 (-496))))
- (-5 *2 (-51)) (-5 *1 (-290 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-586 *8)) (-5 *4 (-586 (-110))) (-5 *6 (-586 (-268 *8)))
- (-4 *8 (-403 *7)) (-5 *5 (-268 *8))
- (-4 *7 (-13 (-783) (-512) (-561 (-496)))) (-5 *2 (-51))
- (-5 *1 (-290 *7 *8))))
- ((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-268 *5)) (-5 *4 (-110)) (-4 *5 (-403 *6))
- (-4 *6 (-13 (-783) (-512) (-561 (-496)))) (-5 *2 (-51))
- (-5 *1 (-290 *6 *5))))
- ((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-110)) (-5 *5 (-268 *3)) (-4 *3 (-403 *6))
- (-4 *6 (-13 (-783) (-512) (-561 (-496)))) (-5 *2 (-51))
- (-5 *1 (-290 *6 *3))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-110)) (-5 *5 (-268 *3)) (-4 *3 (-403 *6))
- (-4 *6 (-13 (-783) (-512) (-561 (-496)))) (-5 *2 (-51))
- (-5 *1 (-290 *6 *3))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-110)) (-5 *5 (-268 *3)) (-5 *6 (-586 *3))
- (-4 *3 (-403 *7)) (-4 *7 (-13 (-783) (-512) (-561 (-496))))
- (-5 *2 (-51)) (-5 *1 (-290 *7 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-969)) (-4 *4 (-1140 *3)) (-5 *1 (-149 *3 *4 *2))
- (-4 *2 (-1140 *4))))
- ((*1 *1 *1) (-12 (-5 *1 (-268 *2)) (-4 *2 (-1118)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-849)) (-5 *3 (-586 (-238))) (-5 *1 (-236))))
- ((*1 *1 *2) (-12 (-5 *2 (-849)) (-5 *1 (-238)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-512)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2257 *3)))
- (-5 *1 (-895 *4 *3)) (-4 *3 (-1140 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-776 (-352))) (-5 *2 (-776 (-201))) (-5 *1 (-279)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
- (-12 (-5 *3 (-1066)) (-5 *4 (-520)) (-5 *5 (-626 (-154 (-201))))
- (-5 *2 (-958)) (-5 *1 (-690)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-586 (-880 *4))) (-4 *4 (-424)) (-5 *2 (-108))
- (-5 *1 (-333 *4 *5)) (-14 *5 (-586 (-1083)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-586 (-715 *4 (-793 *5)))) (-4 *4 (-424))
- (-14 *5 (-586 (-1083))) (-5 *2 (-108)) (-5 *1 (-571 *4 *5)))))
+ (-12 (-5 *3 (-381 (-1080 (-381 (-881 *5))))) (-5 *4 (-1084))
+ (-5 *2 (-381 (-881 *5))) (-5 *1 (-966 *5)) (-4 *5 (-513)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-1 (-202) (-202) (-202)))
+ (-5 *4 (-3 (-1 (-202) (-202) (-202) (-202)) "undefined"))
+ (-5 *5 (-1008 (-202))) (-5 *6 (-587 (-239))) (-5 *2 (-1044 (-202)))
+ (-5 *1 (-634)))))
+(((*1 *2 *1) (-12 (-4 *1 (-323)) (-5 *2 (-707))))
+ ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-376)) (-5 *2 (-707)))))
+(((*1 *1 *1) (-12 (-5 *1 (-158 *2)) (-4 *2 (-282)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729))
+ (-4 *4 (-784))))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1113 *3 *4 *5 *2)) (-4 *3 (-513)) (-4 *4 (-729))
+ (-4 *5 (-784)) (-4 *2 (-984 *3 *4 *5)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-587 (-269 *4))) (-5 *1 (-571 *3 *4 *5)) (-4 *3 (-784))
+ (-4 *4 (-13 (-157) (-654 (-381 (-521))))) (-14 *5 (-850)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-521)) (-5 *1 (-418 *3)) (-4 *3 (-378)) (-4 *3 (-970)))))
+(((*1 *1) (-5 *1 (-411))))
+(((*1 *2 *3) (-12 (-5 *3 (-353)) (-5 *2 (-202)) (-5 *1 (-1168))))
+ ((*1 *2) (-12 (-5 *2 (-202)) (-5 *1 (-1168)))))
+(((*1 *1 *1) (-5 *1 (-982))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-512))
- (-5 *2 (-2 (|:| -3927 (-626 *5)) (|:| |vec| (-1164 (-586 (-849))))))
- (-5 *1 (-88 *5 *3)) (-5 *4 (-849)) (-4 *3 (-596 *5)))))
-(((*1 *1 *1 *2 *2 *1)
- (-12 (-5 *2 (-520)) (-4 *1 (-624 *3 *4 *5)) (-4 *3 (-969))
- (-4 *4 (-346 *3)) (-4 *5 (-346 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-151 *3)) (-4 *3 (-157)) (-4 *3 (-505))
- (-5 *2 (-380 (-520)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-380 (-520))) (-5 *1 (-391 *3)) (-4 *3 (-505))
- (-4 *3 (-512))))
- ((*1 *2 *1) (-12 (-4 *1 (-505)) (-5 *2 (-380 (-520)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-733 *3)) (-4 *3 (-157)) (-4 *3 (-505))
- (-5 *2 (-380 (-520)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-380 (-520))) (-5 *1 (-769 *3)) (-4 *3 (-505))
- (-4 *3 (-1012))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-380 (-520))) (-5 *1 (-776 *3)) (-4 *3 (-505))
- (-4 *3 (-1012))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-921 *3)) (-4 *3 (-157)) (-4 *3 (-505))
- (-5 *2 (-380 (-520)))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-380 (-520))) (-5 *1 (-932 *3)) (-4 *3 (-960 *2)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-908 *2)) (-4 *2 (-1104)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-983 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-728))
- (-4 *4 (-783)) (-4 *2 (-424)))))
-(((*1 *1 *1) (-5 *1 (-981))))
-(((*1 *2 *2 *2) (-12 (-5 *1 (-145 *2)) (-4 *2 (-505)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-706)) (-5 *2 (-1 (-1064 (-880 *4)) (-1064 (-880 *4))))
- (-5 *1 (-1172 *4)) (-4 *4 (-336)))))
+ (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-707)) (-5 *1 (-539 *2)) (-4 *2 (-506)))))
+(((*1 *2) (-12 (-5 *2 (-803)) (-5 *1 (-1168))))
+ ((*1 *2 *2) (-12 (-5 *2 (-803)) (-5 *1 (-1168)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-970)) (-4 *2 (-625 *4 *5 *6))
+ (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1141 *4)) (-4 *5 (-347 *4))
+ (-4 *6 (-347 *4)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-1100)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-821 *3)) (-4 *3 (-1013)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-593 *4)) (-4 *4 (-315 *5 *6 *7))
- (-4 *5 (-13 (-336) (-135) (-960 (-520)) (-960 (-380 (-520)))))
- (-4 *6 (-1140 *5)) (-4 *7 (-1140 (-380 *6)))
+ (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))))
+(((*1 *1 *2 *2)
+ (-12 (-5 *2 (-587 (-521))) (-5 *1 (-929 *3)) (-14 *3 (-521)))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9)
+ (-12 (-5 *4 (-521)) (-5 *5 (-1067)) (-5 *6 (-627 (-202)))
+ (-5 *7 (-3 (|:| |fn| (-362)) (|:| |fp| (-87 G))))
+ (-5 *8 (-3 (|:| |fn| (-362)) (|:| |fp| (-84 FCN))))
+ (-5 *9 (-3 (|:| |fn| (-362)) (|:| |fp| (-86 OUTPUT))))
+ (-5 *3 (-202)) (-5 *2 (-959)) (-5 *1 (-686)))))
+(((*1 *2 *1) (-12 (-5 *2 (-761)) (-5 *1 (-762)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-707)) (-5 *2 (-1 (-353))) (-5 *1 (-963)))))
+(((*1 *2 *3 *4 *3 *4 *4 *4)
+ (-12 (-5 *3 (-627 (-202))) (-5 *4 (-521)) (-5 *2 (-959))
+ (-5 *1 (-693)))))
+(((*1 *2 *3 *4 *4 *5)
+ (|partial| -12 (-5 *4 (-560 *3)) (-5 *5 (-587 *3))
+ (-4 *3 (-13 (-404 *6) (-27) (-1105)))
+ (-4 *6 (-13 (-425) (-961 (-521)) (-784) (-135) (-583 (-521))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-587 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-523 *6 *3 *7)) (-4 *7 (-1013)))))
+(((*1 *2) (-12 (-5 *2 (-1056 (-1067))) (-5 *1 (-365)))))
+(((*1 *2)
+ (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-340 *3 *4))
+ (-4 *3 (-341 *4))))
+ ((*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-5 *2 (-108)))))
+(((*1 *2 *3 *2)
+ (-12
(-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1831 (-586 *4))))
- (-5 *1 (-742 *5 *6 *7 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-728)) (-4 *6 (-783)) (-4 *3 (-512))
- (-4 *7 (-877 *3 *5 *6))
- (-5 *2 (-2 (|:| -2647 (-706)) (|:| -2972 *8) (|:| |radicand| *8)))
- (-5 *1 (-881 *5 *6 *3 *7 *8)) (-5 *4 (-706))
- (-4 *8
- (-13 (-336)
- (-10 -8 (-15 -2800 (*7 $)) (-15 -2811 (*7 $)) (-15 -2188 ($ *7))))))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-108)) (-5 *5 (-1014 (-706))) (-5 *6 (-706))
+ (-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -2428 (-202))
+ (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202))
+ (|:| |deltaX| (-202)) (|:| |deltaY| (-202))))
+ (-5 *3 (-587 (-239))) (-5 *1 (-237))))
+ ((*1 *1 *2)
+ (-12
(-5 *2
- (-2 (|:| |contp| (-520))
- (|:| -3493 (-586 (-2 (|:| |irr| *3) (|:| -2421 (-520)))))))
- (-5 *1 (-414 *3)) (-4 *3 (-1140 (-520))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1140 (-380 *2))) (-5 *2 (-520)) (-5 *1 (-841 *4 *3))
- (-4 *3 (-1140 (-380 *4))))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-706)) (-5 *2 (-1 (-352))) (-5 *1 (-962)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-892 *3)) (-4 *3 (-893)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-27))
- (-4 *4 (-13 (-336) (-135) (-960 (-520)) (-960 (-380 (-520)))))
- (-4 *5 (-1140 *4)) (-5 *2 (-586 (-593 (-380 *5))))
- (-5 *1 (-597 *4 *5)) (-5 *3 (-593 (-380 *5))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2))
- (-4 *2 (-13 (-403 *3) (-926))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-626 (-289 (-201))))
+ (-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -2428 (-202))
+ (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202))
+ (|:| |deltaX| (-202)) (|:| |deltaY| (-202))))
+ (-5 *1 (-239))))
+ ((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-353)) (-5 *2 (-1170)) (-5 *1 (-1167))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-353)) (-5 *2 (-1170)) (-5 *1 (-1167))))
+ ((*1 *2 *1 *3 *3 *4 *4 *4)
+ (-12 (-5 *3 (-521)) (-5 *4 (-353)) (-5 *2 (-1170)) (-5 *1 (-1167))))
+ ((*1 *2 *1 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -2428 (-202))
+ (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202))
+ (|:| |deltaX| (-202)) (|:| |deltaY| (-202))))
+ (-5 *2 (-1170)) (-5 *1 (-1167))))
+ ((*1 *2 *1)
+ (-12
(-5 *2
- (-2 (|:| |stiffnessFactor| (-352)) (|:| |stabilityFactor| (-352))))
- (-5 *1 (-183)))))
-(((*1 *2 *1) (-12 (-5 *1 (-158 *2)) (-4 *2 (-281))))
- ((*1 *2 *1) (-12 (-5 *1 (-842 *2)) (-4 *2 (-281))))
- ((*1 *2 *1) (-12 (-4 *1 (-917 *2)) (-4 *2 (-512)) (-4 *2 (-281))))
- ((*1 *2 *1) (-12 (-4 *1 (-978)) (-5 *2 (-520)))))
+ (-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -2428 (-202))
+ (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202))
+ (|:| |deltaX| (-202)) (|:| |deltaY| (-202))))
+ (-5 *1 (-1167))))
+ ((*1 *2 *1 *3 *3 *3 *3 *3)
+ (-12 (-5 *3 (-353)) (-5 *2 (-1170)) (-5 *1 (-1167)))))
(((*1 *1 *2 *3)
- (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-969)) (-4 *3 (-727))))
+ (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-970)) (-4 *3 (-728))))
((*1 *1 *2 *3)
- (-12 (-5 *3 (-586 (-849))) (-5 *1 (-140 *4 *2 *5)) (-14 *4 (-849))
- (-4 *2 (-336)) (-14 *5 (-918 *4 *2))))
+ (-12 (-5 *3 (-587 (-850))) (-5 *1 (-140 *4 *2 *5)) (-14 *4 (-850))
+ (-4 *2 (-337)) (-14 *5 (-919 *4 *2))))
((*1 *1 *2 *3)
- (-12 (-5 *3 (-649 *5 *6 *7)) (-4 *5 (-783))
- (-4 *6 (-214 (-3474 *4) (-706)))
+ (-12 (-5 *3 (-650 *5 *6 *7)) (-4 *5 (-784))
+ (-4 *6 (-215 (-3475 *4) (-707)))
(-14 *7
- (-1 (-108) (-2 (|:| -2716 *5) (|:| -2647 *6))
- (-2 (|:| -2716 *5) (|:| -2647 *6))))
- (-14 *4 (-586 (-1083))) (-4 *2 (-157))
- (-5 *1 (-433 *4 *2 *5 *6 *7 *8)) (-4 *8 (-877 *2 *6 (-793 *4)))))
+ (-1 (-108) (-2 (|:| -2716 *5) (|:| -2997 *6))
+ (-2 (|:| -2716 *5) (|:| -2997 *6))))
+ (-14 *4 (-587 (-1084))) (-4 *2 (-157))
+ (-5 *1 (-434 *4 *2 *5 *6 *7 *8)) (-4 *8 (-878 *2 *6 (-794 *4)))))
((*1 *1 *2 *3)
- (-12 (-4 *1 (-476 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-783))))
+ (-12 (-4 *1 (-477 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-784))))
((*1 *1 *2 *3)
- (-12 (-5 *3 (-520)) (-4 *2 (-512)) (-5 *1 (-567 *2 *4))
- (-4 *4 (-1140 *2))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-706)) (-4 *1 (-645 *2)) (-4 *2 (-969))))
+ (-12 (-5 *3 (-521)) (-4 *2 (-513)) (-5 *1 (-568 *2 *4))
+ (-4 *4 (-1141 *2))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-707)) (-4 *1 (-646 *2)) (-4 *2 (-970))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-671 *2 *3)) (-4 *2 (-969)) (-4 *3 (-662))))
+ (-12 (-5 *1 (-672 *2 *3)) (-4 *2 (-970)) (-4 *3 (-663))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-586 *5)) (-5 *3 (-586 (-706))) (-4 *1 (-676 *4 *5))
- (-4 *4 (-969)) (-4 *5 (-783))))
+ (-12 (-5 *2 (-587 *5)) (-5 *3 (-587 (-707))) (-4 *1 (-677 *4 *5))
+ (-4 *4 (-970)) (-4 *5 (-784))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-706)) (-4 *1 (-676 *4 *2)) (-4 *4 (-969))
- (-4 *2 (-783))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-706)) (-4 *1 (-785 *2)) (-4 *2 (-969))))
+ (-12 (-5 *3 (-707)) (-4 *1 (-677 *4 *2)) (-4 *4 (-970))
+ (-4 *2 (-784))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-707)) (-4 *1 (-786 *2)) (-4 *2 (-970))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-586 *6)) (-5 *3 (-586 (-706))) (-4 *1 (-877 *4 *5 *6))
- (-4 *4 (-969)) (-4 *5 (-728)) (-4 *6 (-783))))
+ (-12 (-5 *2 (-587 *6)) (-5 *3 (-587 (-707))) (-4 *1 (-878 *4 *5 *6))
+ (-4 *4 (-970)) (-4 *5 (-729)) (-4 *6 (-784))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-706)) (-4 *1 (-877 *4 *5 *2)) (-4 *4 (-969))
- (-4 *5 (-728)) (-4 *2 (-783))))
+ (-12 (-5 *3 (-707)) (-4 *1 (-878 *4 *5 *2)) (-4 *4 (-970))
+ (-4 *5 (-729)) (-4 *2 (-784))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-586 *6)) (-5 *3 (-586 *5)) (-4 *1 (-898 *4 *5 *6))
- (-4 *4 (-969)) (-4 *5 (-727)) (-4 *6 (-783))))
+ (-12 (-5 *2 (-587 *6)) (-5 *3 (-587 *5)) (-4 *1 (-899 *4 *5 *6))
+ (-4 *4 (-970)) (-4 *5 (-728)) (-4 *6 (-784))))
((*1 *1 *1 *2 *3)
- (-12 (-4 *1 (-898 *4 *3 *2)) (-4 *4 (-969)) (-4 *3 (-727))
- (-4 *2 (-783)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1044 *3)) (-4 *3 (-969)) (-5 *2 (-586 (-871 *3))))))
-(((*1 *2 *3 *3 *4 *5 *5)
- (-12 (-5 *5 (-108)) (-4 *6 (-424)) (-4 *7 (-728)) (-4 *8 (-783))
- (-4 *3 (-983 *6 *7 *8))
- (-5 *2 (-586 (-2 (|:| |val| *3) (|:| -1883 *4))))
- (-5 *1 (-1020 *6 *7 *8 *3 *4)) (-4 *4 (-988 *6 *7 *8 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-586 (-2 (|:| |val| (-586 *8)) (|:| -1883 *9))))
- (-5 *5 (-108)) (-4 *8 (-983 *6 *7 *4)) (-4 *9 (-988 *6 *7 *4 *8))
- (-4 *6 (-424)) (-4 *7 (-728)) (-4 *4 (-783))
- (-5 *2 (-586 (-2 (|:| |val| *8) (|:| -1883 *9))))
- (-5 *1 (-1020 *6 *7 *4 *8 *9)))))
-(((*1 *1 *2) (-12 (-5 *2 (-586 (-352))) (-5 *1 (-238))))
- ((*1 *1)
- (|partial| -12 (-4 *1 (-340 *2)) (-4 *2 (-512)) (-4 *2 (-157))))
- ((*1 *2 *1) (-12 (-5 *1 (-391 *2)) (-4 *2 (-512)))))
+ (-12 (-4 *1 (-899 *4 *3 *2)) (-4 *4 (-970)) (-4 *3 (-728))
+ (-4 *2 (-784)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-969)) (-4 *5 (-1140 *4)) (-5 *2 (-1 *6 (-586 *6)))
- (-5 *1 (-1158 *4 *5 *3 *6)) (-4 *3 (-596 *5)) (-4 *6 (-1155 *4)))))
-(((*1 *1) (-5 *1 (-759))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-143)) (-5 *2 (-1169)) (-5 *1 (-1166)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1164 *4)) (-5 *3 (-1030)) (-4 *4 (-322))
- (-5 *1 (-490 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-304 *3)) (-4 *3 (-783)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *2 (-958))
- (-5 *1 (-691)))))
+ (-12 (-4 *4 (-784)) (-5 *2 (-587 (-587 *4))) (-5 *1 (-1091 *4))
+ (-5 *3 (-587 *4)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-346 *3)) (-4 *3 (-1118)) (-4 *3 (-783)) (-5 *2 (-108))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *1 (-346 *4)) (-4 *4 (-1118))
- (-5 *2 (-108)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-626 *5)) (-5 *4 (-1164 *5)) (-4 *5 (-336))
- (-5 *2 (-108)) (-5 *1 (-607 *5))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-336)) (-4 *6 (-13 (-346 *5) (-10 -7 (-6 -4230))))
- (-4 *4 (-13 (-346 *5) (-10 -7 (-6 -4230)))) (-5 *2 (-108))
- (-5 *1 (-608 *5 *6 *4 *3)) (-4 *3 (-624 *5 *6 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-855))
- (-5 *2
- (-2 (|:| |brans| (-586 (-586 (-871 (-201)))))
- (|:| |xValues| (-1007 (-201))) (|:| |yValues| (-1007 (-201)))))
- (-5 *1 (-141))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-855)) (-5 *4 (-380 (-520)))
- (-5 *2
- (-2 (|:| |brans| (-586 (-586 (-871 (-201)))))
- (|:| |xValues| (-1007 (-201))) (|:| |yValues| (-1007 (-201)))))
- (-5 *1 (-141))))
- ((*1 *2 *3)
- (-12
- (-5 *2
- (-2 (|:| |brans| (-586 (-586 (-871 (-201)))))
- (|:| |xValues| (-1007 (-201))) (|:| |yValues| (-1007 (-201)))))
- (-5 *1 (-141)) (-5 *3 (-586 (-871 (-201))))))
- ((*1 *2 *3)
+ (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970)) (-5 *2 (-587 (-872 *3))))))
+(((*1 *2 *2) (|partial| -12 (-5 *2 (-290 (-202))) (-5 *1 (-243)))))
+(((*1 *2 *2)
(-12
(-5 *2
- (-2 (|:| |brans| (-586 (-586 (-871 (-201)))))
- (|:| |xValues| (-1007 (-201))) (|:| |yValues| (-1007 (-201)))))
- (-5 *1 (-141)) (-5 *3 (-586 (-586 (-871 (-201)))))))
- ((*1 *1 *2) (-12 (-5 *2 (-586 (-1007 (-352)))) (-5 *1 (-238))))
- ((*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-238)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1114 *3)) (-4 *3 (-899)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-908 *2)) (-4 *2 (-1104)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1164 *1)) (-4 *1 (-340 *4)) (-4 *4 (-157))
- (-5 *2 (-626 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-157)) (-5 *2 (-626 *4)) (-5 *1 (-389 *3 *4))
- (-4 *3 (-390 *4))))
- ((*1 *2) (-12 (-4 *1 (-390 *3)) (-4 *3 (-157)) (-5 *2 (-626 *3)))))
-(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-352)) (-5 *3 (-1066)) (-5 *1 (-92))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-352)) (-5 *3 (-1066)) (-5 *1 (-92)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1066)) (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783))
- (-4 *7 (-983 *4 *5 *6)) (-5 *2 (-1169))
- (-5 *1 (-989 *4 *5 *6 *7 *8)) (-4 *8 (-988 *4 *5 *6 *7))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1066)) (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783))
- (-4 *7 (-983 *4 *5 *6)) (-5 *2 (-1169))
- (-5 *1 (-1020 *4 *5 *6 *7 *8)) (-4 *8 (-988 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-758)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-791)) (-5 *1 (-363 *3 *4 *5)) (-14 *3 (-706))
- (-14 *4 (-706)) (-4 *5 (-157)))))
-(((*1 *2 *3) (-12 (-5 *3 (-289 (-201))) (-5 *2 (-108)) (-5 *1 (-242)))))
-(((*1 *2 *1) (-12 (-4 *1 (-33)) (-5 *2 (-108))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-424)) (-4 *4 (-783)) (-4 *5 (-728)) (-5 *2 (-108))
- (-5 *1 (-912 *3 *4 *5 *6)) (-4 *6 (-877 *3 *5 *4))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-1048 *3 *4)) (-4 *3 (-13 (-1012) (-33)))
- (-4 *4 (-13 (-1012) (-33))))))
-(((*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-1012))))
- ((*1 *1 *1) (-5 *1 (-575))))
-(((*1 *2 *1) (-12 (-5 *1 (-537 *2)) (-4 *2 (-336)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-586 *4)) (-4 *4 (-1012)) (-5 *2 (-1169))
- (-5 *1 (-1119 *4))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-586 *4)) (-4 *4 (-1012)) (-5 *2 (-1169))
- (-5 *1 (-1119 *4)))))
-(((*1 *2 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-336) (-10 -8 (-15 ** ($ $ (-380 (-520)))))))
- (-5 *1 (-1038 *3 *2)) (-4 *3 (-1140 *2)))))
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4)
+ (|:| |xpnt| (-521))))
+ (-4 *4 (-13 (-1141 *3) (-513) (-10 -8 (-15 -2258 ($ $ $)))))
+ (-4 *3 (-513)) (-5 *1 (-1144 *3 *4)))))
+(((*1 *2 *3 *4 *4 *3 *5)
+ (-12 (-5 *4 (-560 *3)) (-5 *5 (-1080 *3))
+ (-4 *3 (-13 (-404 *6) (-27) (-1105)))
+ (-4 *6 (-13 (-425) (-961 (-521)) (-784) (-135) (-583 (-521))))
+ (-5 *2 (-538 *3)) (-5 *1 (-517 *6 *3 *7)) (-4 *7 (-1013))))
+ ((*1 *2 *3 *4 *4 *4 *3 *5)
+ (-12 (-5 *4 (-560 *3)) (-5 *5 (-381 (-1080 *3)))
+ (-4 *3 (-13 (-404 *6) (-27) (-1105)))
+ (-4 *6 (-13 (-425) (-961 (-521)) (-784) (-135) (-583 (-521))))
+ (-5 *2 (-538 *3)) (-5 *1 (-517 *6 *3 *7)) (-4 *7 (-1013)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1156 *4)) (-5 *1 (-1158 *4 *2))
+ (-4 *4 (-37 (-381 (-521)))))))
+(((*1 *1 *1 *1) (-5 *1 (-792))))
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1084)) (-5 *6 (-587 (-560 *3)))
+ (-5 *5 (-560 *3)) (-4 *3 (-13 (-27) (-1105) (-404 *7)))
+ (-4 *7 (-13 (-425) (-784) (-135) (-961 (-521)) (-583 (-521))))
+ (-5 *2 (-2 (|:| -3100 *3) (|:| |coeff| *3)))
+ (-5 *1 (-514 *7 *3)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-586 *7)) (-4 *7 (-983 *4 *5 *6)) (-4 *4 (-424))
- (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-108))
- (-5 *1 (-913 *4 *5 *6 *7 *8)) (-4 *8 (-988 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-586 *7)) (-4 *7 (-983 *4 *5 *6)) (-4 *4 (-424))
- (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-108))
- (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-988 *4 *5 *6 *7)))))
+ (-12 (-4 *2 (-513)) (-4 *2 (-425)) (-5 *1 (-896 *2 *3))
+ (-4 *3 (-1141 *2)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-1084))
+ (-4 *4 (-13 (-425) (-784) (-135) (-961 (-521)) (-583 (-521))))
+ (-5 *1 (-514 *4 *2)) (-4 *2 (-13 (-27) (-1105) (-404 *4))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1165 *4)) (-4 *4 (-583 (-521))) (-5 *2 (-108))
+ (-5 *1 (-1190 *4)))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-1050 *2 *3)) (-4 *2 (-13 (-1013) (-33)))
+ (-4 *3 (-13 (-1013) (-33))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-380 (-880 *5))) (-5 *4 (-1083))
- (-4 *5 (-13 (-281) (-783) (-135))) (-5 *2 (-586 (-289 *5)))
- (-5 *1 (-1039 *5))))
+ (-12 (-5 *3 (-381 (-881 *5))) (-5 *4 (-1084))
+ (-4 *5 (-13 (-282) (-784) (-135))) (-5 *2 (-587 (-290 *5)))
+ (-5 *1 (-1040 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-586 (-380 (-880 *5)))) (-5 *4 (-586 (-1083)))
- (-4 *5 (-13 (-281) (-783) (-135))) (-5 *2 (-586 (-586 (-289 *5))))
- (-5 *1 (-1039 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-380 (-880 *4))) (-4 *4 (-281))
- (-5 *2 (-380 (-391 (-880 *4)))) (-5 *1 (-964 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1126 *3 *2)) (-4 *3 (-969)) (-4 *2 (-1155 *3)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-820 *4)) (-4 *4 (-1012)) (-5 *1 (-817 *4 *3))
- (-4 *3 (-1012)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-1169)) (-5 *1 (-1166)))))
-(((*1 *2 *1) (-12 (-4 *1 (-340 *2)) (-4 *2 (-157)))))
-(((*1 *1 *1 *1) (-4 *1 (-119))) ((*1 *1 *1 *1) (-5 *1 (-791)))
- ((*1 *1 *1 *1) (-4 *1 (-893))))
-(((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-1064 (-2 (|:| |k| (-520)) (|:| |c| *6))))
- (-5 *4 (-949 (-776 (-520)))) (-5 *5 (-1083)) (-5 *7 (-380 (-520)))
- (-4 *6 (-969)) (-5 *2 (-791)) (-5 *1 (-545 *6)))))
+ (-12 (-5 *3 (-587 (-381 (-881 *5)))) (-5 *4 (-587 (-1084)))
+ (-4 *5 (-13 (-282) (-784) (-135))) (-5 *2 (-587 (-587 (-290 *5))))
+ (-5 *1 (-1040 *5)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-108)) (-5 *1 (-1048 *3 *4)) (-4 *3 (-13 (-1012) (-33)))
- (-4 *4 (-13 (-1012) (-33))))))
+ (-12 (-4 *1 (-902 *3 *4 *2 *5)) (-4 *3 (-970)) (-4 *4 (-729))
+ (-4 *2 (-784)) (-4 *5 (-984 *3 *4 *2)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-108)) (-5 *3 (-586 (-238))) (-5 *1 (-236))))
- ((*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-238)))))
+ (|partial| -12 (-5 *2 (-1165 *4)) (-5 *3 (-627 *4)) (-4 *4 (-337))
+ (-5 *1 (-608 *4))))
+ ((*1 *2 *3 *2)
+ (|partial| -12 (-4 *4 (-337))
+ (-4 *5 (-13 (-347 *4) (-10 -7 (-6 -4234))))
+ (-4 *2 (-13 (-347 *4) (-10 -7 (-6 -4234))))
+ (-5 *1 (-609 *4 *5 *2 *3)) (-4 *3 (-625 *4 *5 *2))))
+ ((*1 *2 *3 *2 *4 *5)
+ (|partial| -12 (-5 *4 (-587 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-337))
+ (-5 *1 (-751 *2 *3)) (-4 *3 (-597 *2))))
+ ((*1 *2 *3)
+ (-12 (-4 *2 (-13 (-337) (-10 -8 (-15 ** ($ $ (-381 (-521)))))))
+ (-5 *1 (-1039 *3 *2)) (-4 *3 (-1141 *2)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-850)) (-5 *4 (-392 *6)) (-4 *6 (-1141 *5))
+ (-4 *5 (-970)) (-5 *2 (-587 *6)) (-5 *1 (-417 *5 *6)))))
(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783))
- (-4 *3 (-983 *5 *6 *7))
- (-5 *2 (-586 (-2 (|:| |val| (-586 *3)) (|:| -1883 *4))))
- (-5 *1 (-989 *5 *6 *7 *3 *4)) (-4 *4 (-988 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3)
- (-12 (-5 *4 (-626 (-201))) (-5 *5 (-626 (-520))) (-5 *3 (-520))
- (-5 *2 (-958)) (-5 *1 (-692)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-352) (-352))) (-5 *4 (-352))
+ (-12 (-5 *4 (-707)) (-4 *5 (-513))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-896 *5 *3)) (-4 *3 (-1141 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784))
+ (-4 *3 (-984 *5 *6 *7))
+ (-5 *2 (-587 (-2 (|:| |val| (-108)) (|:| -1884 *4))))
+ (-5 *1 (-712 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))))
+(((*1 *1) (-4 *1 (-33))) ((*1 *1) (-5 *1 (-266)))
+ ((*1 *1) (-5 *1 (-792)))
+ ((*1 *1)
+ (-12 (-4 *2 (-425)) (-4 *3 (-784)) (-4 *4 (-729))
+ (-5 *1 (-913 *2 *3 *4 *5)) (-4 *5 (-878 *2 *4 *3))))
+ ((*1 *1) (-5 *1 (-1000)))
+ ((*1 *1)
+ (-12 (-5 *1 (-1049 *2 *3)) (-4 *2 (-13 (-1013) (-33)))
+ (-4 *3 (-13 (-1013) (-33)))))
+ ((*1 *1) (-5 *1 (-1087))) ((*1 *1) (-5 *1 (-1088))))
+(((*1 *2 *2 *3)
+ (-12
(-5 *2
- (-2 (|:| -3429 *4) (|:| -2967 *4) (|:| |totalpts| (-520))
- (|:| |success| (-108))))
- (-5 *1 (-724)) (-5 *5 (-520)))))
-(((*1 *2)
- (-12 (-5 *2 (-380 (-880 *3))) (-5 *1 (-425 *3 *4 *5 *6))
- (-4 *3 (-512)) (-4 *3 (-157)) (-14 *4 (-849))
- (-14 *5 (-586 (-1083))) (-14 *6 (-1164 (-626 *3))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-801 (-892 *3) (-892 *3))) (-5 *1 (-892 *3))
- (-4 *3 (-893)))))
-(((*1 *2 *2) (-12 (-5 *2 (-201)) (-5 *1 (-202))))
- ((*1 *2 *2) (-12 (-5 *2 (-154 (-201))) (-5 *1 (-202)))))
+ (-2 (|:| |partsol| (-1165 (-381 (-881 *4))))
+ (|:| -2470 (-587 (-1165 (-381 (-881 *4)))))))
+ (-5 *3 (-587 *7)) (-4 *4 (-13 (-282) (-135)))
+ (-4 *7 (-878 *4 *6 *5)) (-4 *5 (-13 (-784) (-562 (-1084))))
+ (-4 *6 (-729)) (-5 *1 (-853 *4 *5 *6 *7)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-820 *4)) (-4 *4 (-1012)) (-5 *2 (-1 (-108) *5))
- (-5 *1 (-818 *4 *5)) (-4 *5 (-1118)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1137 *5 *4)) (-4 *4 (-756)) (-14 *5 (-1083))
- (-5 *2 (-520)) (-5 *1 (-1026 *4 *5)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1164 *5)) (-4 *5 (-727)) (-5 *2 (-108))
- (-5 *1 (-778 *4 *5)) (-14 *4 (-706)))))
+ (-12 (-4 *4 (-27))
+ (-4 *4 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521)))))
+ (-4 *5 (-1141 *4)) (-5 *2 (-587 (-594 (-381 *5))))
+ (-5 *1 (-598 *4 *5)) (-5 *3 (-594 (-381 *5))))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-473 (-381 (-521)) (-217 *5 (-707)) (-794 *4)
+ (-224 *4 (-381 (-521)))))
+ (-14 *4 (-587 (-1084))) (-14 *5 (-707)) (-5 *2 (-108))
+ (-5 *1 (-474 *4 *5)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-392 *3)) (-4 *3 (-513)) (-5 *1 (-393 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-587 (-1084))) (-5 *2 (-1170)) (-5 *1 (-1087))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-587 (-1084))) (-5 *3 (-1084)) (-5 *2 (-1170))
+ (-5 *1 (-1087))))
+ ((*1 *2 *3 *4 *1)
+ (-12 (-5 *4 (-587 (-1084))) (-5 *3 (-1084)) (-5 *2 (-1170))
+ (-5 *1 (-1087)))))
+(((*1 *1 *1) (-4 *1 (-798 *2))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-586 *2)) (-5 *4 (-1 (-108) *2 *2)) (-5 *1 (-1119 *2))
- (-4 *2 (-1012))))
+ (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))))
+(((*1 *1 *1 *1) (-4 *1 (-277))) ((*1 *1 *1) (-4 *1 (-277))))
+(((*1 *2)
+ (-12 (-5 *2 (-850)) (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-850)) (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1065 (-521))) (-5 *1 (-1069 *4)) (-4 *4 (-970))
+ (-5 *3 (-521)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-756 *4)) (-4 *4 (-784)) (-5 *2 (-108))
+ (-5 *1 (-612 *4)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))))
+(((*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1013)) (-5 *1 (-199 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1119)) (-4 *1 (-230 *3))))
+ ((*1 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1119)))))
+(((*1 *2) (-12 (-4 *2 (-157)) (-5 *1 (-150 *3 *2)) (-4 *3 (-151 *2))))
((*1 *2 *3)
- (-12 (-5 *3 (-586 *2)) (-4 *2 (-1012)) (-4 *2 (-783))
- (-5 *1 (-1119 *2)))))
+ (-12 (-5 *3 (-1165 *1)) (-4 *1 (-344 *2 *4)) (-4 *4 (-1141 *2))
+ (-4 *2 (-157))))
+ ((*1 *2)
+ (-12 (-4 *4 (-1141 *2)) (-4 *2 (-157)) (-5 *1 (-382 *3 *2 *4))
+ (-4 *3 (-383 *2 *4))))
+ ((*1 *2) (-12 (-4 *1 (-383 *2 *3)) (-4 *3 (-1141 *2)) (-4 *2 (-157))))
+ ((*1 *2)
+ (-12 (-4 *3 (-1141 *2)) (-5 *2 (-521)) (-5 *1 (-704 *3 *4))
+ (-4 *4 (-383 *2 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-878 *3 *4 *2)) (-4 *3 (-970)) (-4 *4 (-729))
+ (-4 *2 (-784)) (-4 *3 (-157))))
+ ((*1 *2 *3)
+ (-12 (-4 *2 (-513)) (-5 *1 (-896 *2 *3)) (-4 *3 (-1141 *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1141 *2)) (-4 *2 (-970)) (-4 *2 (-157)))))
+(((*1 *1 *1 *1) (-4 *1 (-119))) ((*1 *1 *1 *1) (-5 *1 (-792)))
+ ((*1 *1 *1 *1) (-4 *1 (-894))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -2114 *3) (|:| |coef1| (-718 *3))))
+ (-5 *1 (-718 *3)) (-4 *3 (-513)) (-4 *3 (-970)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4234)) (-4 *1 (-115 *2)) (-4 *2 (-1119)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))))
+(((*1 *1) (-5 *1 (-760))))
+(((*1 *2 *2 *3 *4 *4)
+ (-12 (-5 *4 (-521)) (-4 *3 (-157)) (-4 *5 (-347 *3))
+ (-4 *6 (-347 *3)) (-5 *1 (-626 *3 *5 *6 *2))
+ (-4 *2 (-625 *3 *5 *6)))))
+(((*1 *2 *3 *2 *4 *5)
+ (-12 (-5 *2 (-587 *3)) (-5 *5 (-850)) (-4 *3 (-1141 *4))
+ (-4 *4 (-282)) (-5 *1 (-433 *4 *3)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-989 *4 *5 *6 *3)) (-4 *4 (-425)) (-4 *5 (-729))
+ (-4 *6 (-784)) (-4 *3 (-984 *4 *5 *6)) (-5 *2 (-108)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-200 *2 *3)) (-4 *2 (-13 (-970) (-784)))
+ (-14 *3 (-587 (-1084))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-821 *4)) (-4 *4 (-1013)) (-5 *2 (-1 (-108) *5))
+ (-5 *1 (-819 *4 *5)) (-4 *5 (-1119)))))
+(((*1 *2 *2 *2)
+ (|partial| -12 (-4 *3 (-337)) (-5 *1 (-703 *2 *3)) (-4 *2 (-646 *3))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-4 *1 (-786 *2)) (-4 *2 (-970)) (-4 *2 (-337)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-927))))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-13 (-782) (-337))) (-5 *2 (-108)) (-5 *1 (-980 *4 *3))
+ (-4 *3 (-1141 *4)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1064 (-520))) (-5 *1 (-928 *3)) (-14 *3 (-520)))))
-(((*1 *1 *1 *1) (-4 *1 (-119))) ((*1 *1 *1 *1) (-5 *1 (-791)))
- ((*1 *1 *1 *1) (-4 *1 (-893))))
-(((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-757)))))
+ (-12 (-4 *3 (-337)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *2 (-108))
+ (-5 *1 (-473 *3 *4 *5 *6)) (-4 *6 (-878 *3 *4 *5))))
+ ((*1 *2 *1) (-12 (-4 *1 (-659)) (-5 *2 (-108))))
+ ((*1 *2 *1) (-12 (-4 *1 (-663)) (-5 *2 (-108)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1017)) (-5 *1 (-1088)))))
+(((*1 *1 *1 *1) (-4 *1 (-119))) ((*1 *1 *1 *1) (-5 *1 (-792)))
+ ((*1 *1 *1 *1) (-4 *1 (-894))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1067)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784))
+ (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-1170))
+ (-5 *1 (-990 *4 *5 *6 *7 *8)) (-4 *8 (-989 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1067)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784))
+ (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-1170))
+ (-5 *1 (-1021 *4 *5 *6 *7 *8)) (-4 *8 (-989 *4 *5 *6 *7)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-228 *3 *4 *5 *6)) (-4 *3 (-969)) (-4 *4 (-783))
- (-4 *5 (-241 *4)) (-4 *6 (-728)) (-5 *2 (-706))))
+ (-12 (-4 *3 (-210)) (-4 *3 (-970)) (-4 *4 (-784)) (-4 *5 (-242 *4))
+ (-4 *6 (-729)) (-5 *2 (-1 *1 (-707))) (-4 *1 (-229 *3 *4 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-970)) (-4 *3 (-784)) (-4 *5 (-242 *3)) (-4 *6 (-729))
+ (-5 *2 (-1 *1 (-707))) (-4 *1 (-229 *4 *3 *5 *6))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-707)) (-4 *1 (-242 *2)) (-4 *2 (-784)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-587 *4)) (-4 *4 (-337)) (-5 *2 (-627 *4))
+ (-5 *1 (-751 *4 *5)) (-4 *5 (-597 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-587 *5)) (-5 *4 (-707)) (-4 *5 (-337))
+ (-5 *2 (-627 *5)) (-5 *1 (-751 *5 *6)) (-4 *6 (-597 *5)))))
+(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3)
+ (-12 (-5 *4 (-627 (-202))) (-5 *5 (-627 (-521))) (-5 *3 (-521))
+ (-5 *2 (-959)) (-5 *1 (-693)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-425))) (-5 *1 (-1111 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-1105))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-587 *5)) (-5 *4 (-850)) (-4 *5 (-784))
+ (-5 *2 (-587 (-612 *5))) (-5 *1 (-612 *5)))))
+(((*1 *2)
+ (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-340 *3 *4))
+ (-4 *3 (-341 *4))))
+ ((*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-5 *2 (-108)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-1084)) (-5 *2 (-587 (-731))) (-5 *1 (-266)))))
+(((*1 *1) (-5 *1 (-266))))
+(((*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1119)))))
+(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959))
+ (-5 *1 (-684)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-821 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-927))))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4234)) (-4 *1 (-221 *2)) (-4 *2 (-1119))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-257 *2)) (-4 *2 (-1119))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-257 *2)) (-4 *2 (-1119))))
+ ((*1 *1 *1 *2)
+ (-12 (|has| *1 (-6 -4234)) (-4 *1 (-1153 *2)) (-4 *2 (-1119))))
+ ((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4234)) (-4 *1 (-1153 *2)) (-4 *2 (-1119)))))
+(((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-1084)) (-4 *4 (-970)) (-4 *4 (-784))
+ (-5 *2 (-2 (|:| |var| (-560 *1)) (|:| -2997 (-521))))
+ (-4 *1 (-404 *4))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-228 *4 *3 *5 *6)) (-4 *4 (-969)) (-4 *3 (-783))
- (-4 *5 (-241 *3)) (-4 *6 (-728)) (-5 *2 (-706))))
- ((*1 *2 *1) (-12 (-4 *1 (-241 *3)) (-4 *3 (-783)) (-5 *2 (-706))))
- ((*1 *2 *1) (-12 (-4 *1 (-322)) (-5 *2 (-849))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-309 *4 *5 *6 *7)) (-4 *4 (-13 (-341) (-336)))
- (-4 *5 (-1140 *4)) (-4 *6 (-1140 (-380 *5))) (-4 *7 (-315 *4 *5 *6))
- (-5 *2 (-706)) (-5 *1 (-365 *4 *5 *6 *7))))
- ((*1 *2 *1) (-12 (-4 *1 (-375)) (-5 *2 (-769 (-849)))))
- ((*1 *2 *1) (-12 (-4 *1 (-377)) (-5 *2 (-520))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-706)) (-5 *1 (-546 *3)) (-4 *3 (-969))))
- ((*1 *2 *1) (-12 (-5 *2 (-706)) (-5 *1 (-546 *3)) (-4 *3 (-969))))
+ (|partial| -12 (-5 *3 (-110)) (-4 *4 (-970)) (-4 *4 (-784))
+ (-5 *2 (-2 (|:| |var| (-560 *1)) (|:| -2997 (-521))))
+ (-4 *1 (-404 *4))))
((*1 *2 *1)
- (-12 (-4 *3 (-512)) (-5 *2 (-520)) (-5 *1 (-567 *3 *4))
- (-4 *4 (-1140 *3))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *2 (-706)) (-4 *1 (-676 *4 *3)) (-4 *4 (-969))
- (-4 *3 (-783))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-676 *4 *3)) (-4 *4 (-969)) (-4 *3 (-783))
- (-5 *2 (-706))))
- ((*1 *2 *1) (-12 (-4 *1 (-797 *3)) (-5 *2 (-706))))
- ((*1 *2 *1) (-12 (-5 *2 (-706)) (-5 *1 (-832 *3)) (-4 *3 (-1012))))
- ((*1 *2 *1) (-12 (-5 *2 (-706)) (-5 *1 (-833 *3)) (-4 *3 (-1012))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-309 *5 *6 *7 *8)) (-4 *5 (-403 *4))
- (-4 *6 (-1140 *5)) (-4 *7 (-1140 (-380 *6)))
- (-4 *8 (-315 *5 *6 *7)) (-4 *4 (-13 (-783) (-512) (-960 (-520))))
- (-5 *2 (-706)) (-5 *1 (-839 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-309 (-380 (-520)) *4 *5 *6))
- (-4 *4 (-1140 (-380 (-520)))) (-4 *5 (-1140 (-380 *4)))
- (-4 *6 (-315 (-380 (-520)) *4 *5)) (-5 *2 (-706))
- (-5 *1 (-840 *4 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-309 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-336))
- (-4 *7 (-1140 *6)) (-4 *4 (-1140 (-380 *7))) (-4 *8 (-315 *6 *7 *4))
- (-4 *9 (-13 (-341) (-336))) (-5 *2 (-706))
- (-5 *1 (-942 *6 *7 *4 *8 *9))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1140 *3)) (-4 *3 (-969)) (-4 *3 (-512)) (-5 *2 (-706))))
- ((*1 *2 *1 *2)
- (-12 (-4 *1 (-1142 *3 *2)) (-4 *3 (-969)) (-4 *2 (-727))))
- ((*1 *2 *1) (-12 (-4 *1 (-1142 *3 *2)) (-4 *3 (-969)) (-4 *2 (-727)))))
+ (|partial| -12 (-4 *3 (-1025)) (-4 *3 (-784))
+ (-5 *2 (-2 (|:| |var| (-560 *1)) (|:| -2997 (-521))))
+ (-4 *1 (-404 *3))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |val| (-821 *3)) (|:| -2997 (-707))))
+ (-5 *1 (-821 *3)) (-4 *3 (-1013))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-878 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-729))
+ (-4 *5 (-784)) (-5 *2 (-2 (|:| |var| *5) (|:| -2997 (-707))))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-729)) (-4 *5 (-784)) (-4 *6 (-970))
+ (-4 *7 (-878 *6 *4 *5))
+ (-5 *2 (-2 (|:| |var| *5) (|:| -2997 (-521))))
+ (-5 *1 (-879 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-337)
+ (-10 -8 (-15 -2189 ($ *7)) (-15 -2801 (*7 $))
+ (-15 -2812 (*7 $))))))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-587 (-1080 *7))) (-5 *3 (-1080 *7))
+ (-4 *7 (-878 *5 *6 *4)) (-4 *5 (-838)) (-4 *6 (-729))
+ (-4 *4 (-784)) (-5 *1 (-835 *5 *6 *4 *7)))))
+(((*1 *2 *1 *2)
+ (-12 (|has| *1 (-6 -4234)) (-4 *1 (-1153 *2)) (-4 *2 (-1119)))))
(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-512) (-783) (-960 (-520))))
- (-4 *5 (-403 *4)) (-5 *2 (-391 (-1079 (-380 (-520)))))
- (-5 *1 (-408 *4 *5 *3)) (-4 *3 (-1140 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1083)) (-5 *1 (-758)))))
+ (-12 (-4 *4 (-13 (-337) (-135) (-961 (-381 (-521)))))
+ (-4 *5 (-1141 *4))
+ (-5 *2 (-587 (-2 (|:| |deg| (-707)) (|:| -3192 *5))))
+ (-5 *1 (-746 *4 *5 *3 *6)) (-4 *3 (-597 *5))
+ (-4 *6 (-597 (-381 *5))))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729))
+ (-4 *4 (-784)) (-4 *2 (-425)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-587 *3)) (-4 *3 (-1119)) (-5 *1 (-1056 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970))
+ (-5 *2 (-587 (-587 (-872 *3))))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-587 (-587 (-872 *4)))) (-5 *3 (-108)) (-4 *4 (-970))
+ (-4 *1 (-1045 *4))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-587 (-587 (-872 *3)))) (-4 *3 (-970))
+ (-4 *1 (-1045 *3))))
+ ((*1 *1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-587 (-587 (-587 *4)))) (-5 *3 (-108))
+ (-4 *1 (-1045 *4)) (-4 *4 (-970))))
+ ((*1 *1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-587 (-587 (-872 *4)))) (-5 *3 (-108))
+ (-4 *1 (-1045 *4)) (-4 *4 (-970))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-587 (-587 (-587 *5)))) (-5 *3 (-587 (-156)))
+ (-5 *4 (-156)) (-4 *1 (-1045 *5)) (-4 *5 (-970))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-587 (-587 (-872 *5)))) (-5 *3 (-587 (-156)))
+ (-5 *4 (-156)) (-4 *1 (-1045 *5)) (-4 *5 (-970)))))
+(((*1 *1 *2 *3 *4)
+ (-12
+ (-5 *3
+ (-587
+ (-2 (|:| |scalar| (-381 (-521))) (|:| |coeff| (-1080 *2))
+ (|:| |logand| (-1080 *2)))))
+ (-5 *4 (-587 (-2 (|:| |integrand| *2) (|:| |intvar| *2))))
+ (-4 *2 (-337)) (-5 *1 (-538 *2)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-850)) (-5 *2 (-1170)) (-5 *1 (-192 *4))
+ (-4 *4
+ (-13 (-784)
+ (-10 -8 (-15 -2544 ((-1067) $ (-1084))) (-15 -1678 (*2 $))
+ (-15 -3971 (*2 $)))))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1170)) (-5 *1 (-192 *3))
+ (-4 *3
+ (-13 (-784)
+ (-10 -8 (-15 -2544 ((-1067) $ (-1084))) (-15 -1678 (*2 $))
+ (-15 -3971 (*2 $)))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-471)))))
+(((*1 *1) (-5 *1 (-304))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-587 (-881 *5))) (-5 *4 (-108))
+ (-4 *5 (-13 (-782) (-282) (-135) (-946)))
+ (-5 *2 (-587 (-967 *5 *6))) (-5 *1 (-1189 *5 *6 *7))
+ (-14 *6 (-587 (-1084))) (-14 *7 (-587 (-1084)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-587 (-881 *5))) (-5 *4 (-108))
+ (-4 *5 (-13 (-782) (-282) (-135) (-946)))
+ (-5 *2 (-587 (-967 *5 *6))) (-5 *1 (-1189 *5 *6 *7))
+ (-14 *6 (-587 (-1084))) (-14 *7 (-587 (-1084)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-587 (-881 *4)))
+ (-4 *4 (-13 (-782) (-282) (-135) (-946)))
+ (-5 *2 (-587 (-967 *4 *5))) (-5 *1 (-1189 *4 *5 *6))
+ (-14 *5 (-587 (-1084))) (-14 *6 (-587 (-1084))))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-506)) (-5 *2 (-108)))))
+(((*1 *2 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1170)) (-5 *1 (-1047))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-587 (-792))) (-5 *2 (-1170)) (-5 *1 (-1047)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1165 *1)) (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123))
+ (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-586 (-715 *5 (-793 *6)))) (-5 *4 (-108)) (-4 *5 (-424))
- (-14 *6 (-586 (-1083)))
+ (-12 (-5 *4 (-521)) (-5 *2 (-587 (-2 (|:| -1916 *3) (|:| -1994 *4))))
+ (-5 *1 (-633 *3)) (-4 *3 (-1141 *4)))))
+(((*1 *2 *1 *2 *3)
+ (-12 (-5 *3 (-587 (-1067))) (-5 *2 (-1067)) (-5 *1 (-1166))))
+ ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-1166))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-1166))))
+ ((*1 *2 *1 *2 *3)
+ (-12 (-5 *3 (-587 (-1067))) (-5 *2 (-1067)) (-5 *1 (-1167))))
+ ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-1167))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-1167)))))
+(((*1 *2 *3 *3 *3 *4 *5)
+ (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1141 *6))
+ (-4 *6 (-13 (-337) (-135) (-961 *4))) (-5 *4 (-521))
(-5 *2
- (-586 (-1054 *5 (-492 (-793 *6)) (-793 *6) (-715 *5 (-793 *6)))))
- (-5 *1 (-571 *5 *6)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-706)) (-5 *1 (-538 *2)) (-4 *2 (-505)))))
+ (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-108))))
+ (|:| -3192
+ (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3)
+ (|:| |beta| *3)))))
+ (-5 *1 (-940 *6 *3)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-627 *3)) (-4 *3 (-282)) (-5 *1 (-637 *3)))))
+(((*1 *2 *3 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-707)) (|:| |poli| *7)
+ (|:| |polj| *7)))
+ (-4 *5 (-729)) (-4 *7 (-878 *4 *5 *6)) (-4 *4 (-425)) (-4 *6 (-784))
+ (-5 *2 (-108)) (-5 *1 (-422 *4 *5 *6 *7)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1164 *1)) (-4 *1 (-340 *4)) (-4 *4 (-157))
- (-5 *2 (-626 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-390 *3)) (-4 *3 (-157)) (-5 *2 (-626 *3)))))
+ (-12 (-5 *3 (-1 (-108) *7 (-587 *7))) (-4 *1 (-1113 *4 *5 *6 *7))
+ (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-784)) (-4 *7 (-984 *4 *5 *6))
+ (-5 *2 (-108)))))
(((*1 *2 *3)
- (|partial| -12 (-4 *2 (-1012)) (-5 *1 (-1096 *3 *2)) (-4 *3 (-1012)))))
-(((*1 *2)
- (-12 (-4 *4 (-1122)) (-4 *5 (-1140 *4)) (-4 *6 (-1140 (-380 *5)))
- (-5 *2 (-108)) (-5 *1 (-314 *3 *4 *5 *6)) (-4 *3 (-315 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-315 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-1140 *3))
- (-4 *5 (-1140 (-380 *4))) (-5 *2 (-108)))))
-(((*1 *1) (-5 *1 (-265))))
-(((*1 *2 *3 *3 *3 *4 *5 *6)
- (-12 (-5 *3 (-289 (-520))) (-5 *4 (-1 (-201) (-201)))
- (-5 *5 (-1007 (-201))) (-5 *6 (-586 (-238))) (-5 *2 (-1043 (-201)))
- (-5 *1 (-633)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-303)))))
+ (-12 (-5 *3 (-290 (-202))) (-5 *2 (-290 (-353))) (-5 *1 (-280)))))
+(((*1 *1) (-12 (-4 *1 (-303 *2)) (-4 *2 (-342)) (-4 *2 (-337))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-850)) (-5 *2 (-1165 *4)) (-5 *1 (-491 *4))
+ (-4 *4 (-323)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-927))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1086 (-381 (-521)))) (-5 *1 (-169)) (-5 *3 (-521))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1165 (-3 (-441) "undefined"))) (-5 *1 (-1166)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-1084)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-639 *3 *5 *6 *7))
+ (-4 *3 (-562 (-497))) (-4 *5 (-1119)) (-4 *6 (-1119))
+ (-4 *7 (-1119))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1084)) (-5 *2 (-1 *6 *5)) (-5 *1 (-644 *3 *5 *6))
+ (-4 *3 (-562 (-497))) (-4 *5 (-1119)) (-4 *6 (-1119)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-1084))
+ (-4 *4 (-13 (-282) (-784) (-135) (-961 (-521)) (-583 (-521))))
+ (-5 *1 (-567 *4 *2)) (-4 *2 (-13 (-1105) (-887) (-29 *4))))))
(((*1 *2)
- (-12 (-4 *4 (-157)) (-5 *2 (-1079 (-880 *4))) (-5 *1 (-389 *3 *4))
- (-4 *3 (-390 *4))))
+ (-12 (-5 *2 (-627 (-839 *3))) (-5 *1 (-325 *3 *4)) (-14 *3 (-850))
+ (-14 *4 (-850))))
((*1 *2)
- (-12 (-4 *1 (-390 *3)) (-4 *3 (-157)) (-4 *3 (-336))
- (-5 *2 (-1079 (-880 *3)))))
+ (-12 (-5 *2 (-627 *3)) (-5 *1 (-326 *3 *4)) (-4 *3 (-323))
+ (-14 *4
+ (-3 (-1080 *3)
+ (-1165 (-587 (-2 (|:| -3430 *3) (|:| -2716 (-1031)))))))))
((*1 *2)
- (-12 (-5 *2 (-1079 (-380 (-880 *3)))) (-5 *1 (-425 *3 *4 *5 *6))
- (-4 *3 (-512)) (-4 *3 (-157)) (-14 *4 (-849))
- (-14 *5 (-586 (-1083))) (-14 *6 (-1164 (-626 *3))))))
-(((*1 *2)
- (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-339 *3 *4))
- (-4 *3 (-340 *4))))
- ((*1 *2) (-12 (-4 *1 (-340 *3)) (-4 *3 (-157)) (-5 *2 (-108)))))
-(((*1 *2) (-12 (-4 *3 (-157)) (-5 *2 (-1164 *1)) (-4 *1 (-340 *3)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-706)) (-4 *4 (-512)) (-5 *1 (-895 *4 *2))
- (-4 *2 (-1140 *4)))))
-(((*1 *1) (-5 *1 (-303))))
-(((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-352)) (-5 *2 (-1169)) (-5 *1 (-1166)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| -3927 (-626 (-380 (-880 *4))))
- (|:| |vec| (-586 (-380 (-880 *4)))) (|:| -3160 (-706))
- (|:| |rows| (-586 (-520))) (|:| |cols| (-586 (-520)))))
- (-4 *4 (-13 (-281) (-135))) (-4 *5 (-13 (-783) (-561 (-1083))))
- (-4 *6 (-728))
- (-5 *2
- (-2 (|:| |partsol| (-1164 (-380 (-880 *4))))
- (|:| -1831 (-586 (-1164 (-380 (-880 *4)))))))
- (-5 *1 (-852 *4 *5 *6 *7)) (-4 *7 (-877 *4 *6 *5)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1083)) (-5 *1 (-981)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-586 *3)) (-4 *3 (-1118)) (-5 *1 (-1055 *3)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1083)) (-5 *3 (-352)) (-5 *1 (-981)))))
+ (-12 (-5 *2 (-627 *3)) (-5 *1 (-327 *3 *4)) (-4 *3 (-323))
+ (-14 *4 (-850)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1163 *3)) (-4 *3 (-1119)) (-4 *3 (-970))
+ (-5 *2 (-627 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-337 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012))
- (-5 *2 (-1066)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-104)) (-5 *1 (-159)))))
-(((*1 *1) (-5 *1 (-143))))
+ (-12 (-4 *1 (-511 *3)) (-4 *3 (-13 (-378) (-1105))) (-5 *2 (-108))))
+ ((*1 *2 *1) (-12 (-4 *1 (-782)) (-5 *2 (-108))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-986 *4 *3)) (-4 *4 (-13 (-782) (-337)))
+ (-4 *3 (-1141 *4)) (-5 *2 (-108)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-707)) (-4 *5 (-513))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-896 *5 *3)) (-4 *3 (-1141 *5)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1083)) (-5 *1 (-304)))))
+(((*1 *1 *1 *1) (-5 *1 (-792))) ((*1 *1 *1) (-5 *1 (-792)))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1080 (-521))) (-5 *3 (-521)) (-4 *1 (-798 *4)))))
+(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2)
+ (-12 (-4 *1 (-734 *2)) (-4 *2 (-157))))
+ ((*1 *1 *2 *2)
+ (-12 (-5 *2 (-924 *3)) (-4 *3 (-157)) (-5 *1 (-736 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-1067)))))
+(((*1 *2 *3 *4 *3 *3)
+ (-12 (-5 *3 (-269 *6)) (-5 *4 (-110)) (-4 *6 (-404 *5))
+ (-4 *5 (-13 (-784) (-513) (-562 (-497)))) (-5 *2 (-51))
+ (-5 *1 (-291 *5 *6))))
+ ((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-269 *7)) (-5 *4 (-110)) (-5 *5 (-587 *7))
+ (-4 *7 (-404 *6)) (-4 *6 (-13 (-784) (-513) (-562 (-497))))
+ (-5 *2 (-51)) (-5 *1 (-291 *6 *7))))
+ ((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-587 (-269 *7))) (-5 *4 (-587 (-110))) (-5 *5 (-269 *7))
+ (-4 *7 (-404 *6)) (-4 *6 (-13 (-784) (-513) (-562 (-497))))
+ (-5 *2 (-51)) (-5 *1 (-291 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-587 (-269 *8))) (-5 *4 (-587 (-110))) (-5 *5 (-269 *8))
+ (-5 *6 (-587 *8)) (-4 *8 (-404 *7))
+ (-4 *7 (-13 (-784) (-513) (-562 (-497)))) (-5 *2 (-51))
+ (-5 *1 (-291 *7 *8))))
+ ((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-587 *7)) (-5 *4 (-587 (-110))) (-5 *5 (-269 *7))
+ (-4 *7 (-404 *6)) (-4 *6 (-13 (-784) (-513) (-562 (-497))))
+ (-5 *2 (-51)) (-5 *1 (-291 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-587 *8)) (-5 *4 (-587 (-110))) (-5 *6 (-587 (-269 *8)))
+ (-4 *8 (-404 *7)) (-5 *5 (-269 *8))
+ (-4 *7 (-13 (-784) (-513) (-562 (-497)))) (-5 *2 (-51))
+ (-5 *1 (-291 *7 *8))))
+ ((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-269 *5)) (-5 *4 (-110)) (-4 *5 (-404 *6))
+ (-4 *6 (-13 (-784) (-513) (-562 (-497)))) (-5 *2 (-51))
+ (-5 *1 (-291 *6 *5))))
+ ((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-110)) (-5 *5 (-269 *3)) (-4 *3 (-404 *6))
+ (-4 *6 (-13 (-784) (-513) (-562 (-497)))) (-5 *2 (-51))
+ (-5 *1 (-291 *6 *3))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-110)) (-5 *5 (-269 *3)) (-4 *3 (-404 *6))
+ (-4 *6 (-13 (-784) (-513) (-562 (-497)))) (-5 *2 (-51))
+ (-5 *1 (-291 *6 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-110)) (-5 *5 (-269 *3)) (-5 *6 (-587 *3))
+ (-4 *3 (-404 *7)) (-4 *7 (-13 (-784) (-513) (-562 (-497))))
+ (-5 *2 (-51)) (-5 *1 (-291 *7 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-587 (-159))) (-5 *1 (-1000)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-718 *2)) (-4 *2 (-970)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *5 (-961 (-47)))
+ (-4 *4 (-13 (-513) (-784) (-961 (-521)))) (-4 *5 (-404 *4))
+ (-5 *2 (-392 (-1080 (-47)))) (-5 *1 (-409 *4 *5 *3))
+ (-4 *3 (-1141 *5)))))
(((*1 *2 *2)
- (-12
- (-5 *2
- (-912 (-380 (-520)) (-793 *3) (-216 *4 (-706))
- (-223 *3 (-380 (-520)))))
- (-14 *3 (-586 (-1083))) (-14 *4 (-706)) (-5 *1 (-911 *3 *4)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *4 (-520)) (-5 *6 (-1 (-1169) (-1164 *5) (-1164 *5) (-352)))
- (-5 *3 (-1164 (-352))) (-5 *5 (-352)) (-5 *2 (-1169))
- (-5 *1 (-723))))
- ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3)
- (-12 (-5 *4 (-520)) (-5 *6 (-1 (-1169) (-1164 *5) (-1164 *5) (-352)))
- (-5 *3 (-1164 (-352))) (-5 *5 (-352)) (-5 *2 (-1169))
- (-5 *1 (-723)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1091 (-586 *4))) (-4 *4 (-783))
- (-5 *2 (-586 (-586 *4))) (-5 *1 (-1090 *4)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-336)) (-5 *1 (-702 *2 *3)) (-4 *2 (-645 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-785 *2)) (-4 *2 (-969)) (-4 *2 (-336)))))
-(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-33)))
- ((*1 *1)
- (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-520)) (-14 *3 (-706))
- (-4 *4 (-157))))
- ((*1 *1) (-4 *1 (-662))) ((*1 *1) (-5 *1 (-1083))))
-(((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-586 (-1066))) (-5 *2 (-1066)) (-5 *1 (-1165))))
- ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1066)) (-5 *1 (-1165))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1066)) (-5 *1 (-1165))))
- ((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-586 (-1066))) (-5 *2 (-1066)) (-5 *1 (-1166))))
- ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1066)) (-5 *1 (-1166))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1066)) (-5 *1 (-1166)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-849)) (-5 *4 (-1066)) (-5 *2 (-1169)) (-5 *1 (-1165)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-3 (-108) "failed")) (-4 *3 (-424)) (-4 *4 (-783))
- (-4 *5 (-728)) (-5 *1 (-912 *3 *4 *5 *6)) (-4 *6 (-877 *3 *5 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-758)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-626 *3)) (-4 *3 (-969)) (-5 *1 (-627 *3)))))
+ (-12 (-5 *2 (-587 *6)) (-4 *6 (-878 *3 *4 *5)) (-4 *3 (-282))
+ (-4 *4 (-729)) (-4 *5 (-784)) (-5 *1 (-420 *3 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-587 *7)) (-5 *3 (-1067)) (-4 *7 (-878 *4 *5 *6))
+ (-4 *4 (-282)) (-4 *5 (-729)) (-4 *6 (-784))
+ (-5 *1 (-420 *4 *5 *6 *7))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-587 *7)) (-5 *3 (-1067)) (-4 *7 (-878 *4 *5 *6))
+ (-4 *4 (-282)) (-4 *5 (-729)) (-4 *6 (-784))
+ (-5 *1 (-420 *4 *5 *6 *7)))))
(((*1 *2)
- (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-339 *3 *4))
- (-4 *3 (-340 *4))))
- ((*1 *2) (-12 (-4 *1 (-340 *3)) (-4 *3 (-157)) (-5 *2 (-108)))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1112 *3 *4 *5 *2)) (-4 *3 (-512)) (-4 *4 (-728))
- (-4 *5 (-783)) (-4 *2 (-983 *3 *4 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1079 *1)) (-5 *4 (-1083)) (-4 *1 (-27))
- (-5 *2 (-586 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-1079 *1)) (-4 *1 (-27)) (-5 *2 (-586 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-880 *1)) (-4 *1 (-27)) (-5 *2 (-586 *1))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1083)) (-4 *4 (-13 (-783) (-512))) (-5 *2 (-586 *1))
- (-4 *1 (-29 *4))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *2 (-586 *1)) (-4 *1 (-29 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-289 (-201))) (-5 *4 (-586 (-1083)))
- (-5 *5 (-1007 (-776 (-201)))) (-5 *2 (-1064 (-201))) (-5 *1 (-274)))))
-(((*1 *2 *1) (-12 (-4 *1 (-613 *3)) (-4 *3 (-1118)) (-5 *2 (-108)))))
-(((*1 *1 *2) (-12 (-5 *2 (-706)) (-5 *1 (-126)))))
-(((*1 *2 *3) (-12 (-5 *3 (-871 *2)) (-5 *1 (-907 *2)) (-4 *2 (-969)))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5
- *7 *3 *8)
- (-12 (-5 *5 (-626 (-201))) (-5 *6 (-108)) (-5 *7 (-626 (-520)))
- (-5 *8 (-3 (|:| |fn| (-361)) (|:| |fp| (-63 QPHESS))))
- (-5 *3 (-520)) (-5 *4 (-201)) (-5 *2 (-958)) (-5 *1 (-689)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1162 *3)) (-4 *3 (-1118)) (-4 *3 (-969))
- (-5 *2 (-626 *3)))))
+ (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3))
+ (-4 *5 (-1141 (-381 *4))) (-5 *2 (-627 (-381 *4))))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-586 (-520))) (-5 *2 (-1085 (-380 (-520))))
- (-5 *1 (-168)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-586 (-1079 *7))) (-5 *3 (-1079 *7))
- (-4 *7 (-877 *4 *5 *6)) (-4 *4 (-837)) (-4 *5 (-728))
- (-4 *6 (-783)) (-5 *1 (-834 *4 *5 *6 *7))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-586 (-1079 *5))) (-5 *3 (-1079 *5))
- (-4 *5 (-1140 *4)) (-4 *4 (-837)) (-5 *1 (-835 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1083)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-638 *4 *5 *6 *7))
- (-4 *4 (-561 (-496))) (-4 *5 (-1118)) (-4 *6 (-1118))
- (-4 *7 (-1118)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *2 (-520)) (-5 *1 (-1101 *3)) (-4 *3 (-969)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-586 (-380 (-880 *5)))) (-5 *4 (-586 (-1083)))
- (-4 *5 (-512)) (-5 *2 (-586 (-586 (-880 *5)))) (-5 *1 (-1089 *5)))))
-(((*1 *1 *1 *1) (-4 *1 (-505))))
-(((*1 *2 *3)
- (-12 (-14 *4 (-586 (-1083))) (-14 *5 (-706))
+ (-12 (-4 *4 (-513)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2114 *4)))
+ (-5 *1 (-896 *4 *3)) (-4 *3 (-1141 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1166))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1167)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1031)) (-5 *1 (-105))))
+ ((*1 *2 *1) (|partial| -12 (-5 *1 (-339 *2)) (-4 *2 (-1013))))
+ ((*1 *2 *1) (|partial| -12 (-5 *2 (-1067)) (-5 *1 (-1101)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-707)) (-5 *1 (-790 *2)) (-4 *2 (-157))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1080 (-521))) (-5 *1 (-871)) (-5 *3 (-521)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-4 *6 (-1141 *9)) (-4 *7 (-729)) (-4 *8 (-784)) (-4 *9 (-282))
+ (-4 *10 (-878 *9 *7 *8))
(-5 *2
- (-586
- (-472 (-380 (-520)) (-216 *5 (-706)) (-793 *4)
- (-223 *4 (-380 (-520))))))
- (-5 *1 (-473 *4 *5))
- (-5 *3
- (-472 (-380 (-520)) (-216 *5 (-706)) (-793 *4)
- (-223 *4 (-380 (-520))))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-586 *5)) (-4 *5 (-403 *4)) (-4 *4 (-13 (-783) (-512)))
- (-5 *2 (-791)) (-5 *1 (-31 *4 *5)))))
+ (-2 (|:| |deter| (-587 (-1080 *10)))
+ (|:| |dterm|
+ (-587 (-587 (-2 (|:| -2096 (-707)) (|:| |pcoef| *10)))))
+ (|:| |nfacts| (-587 *6)) (|:| |nlead| (-587 *10))))
+ (-5 *1 (-714 *6 *7 *8 *9 *10)) (-5 *3 (-1080 *10)) (-5 *4 (-587 *6))
+ (-5 *5 (-587 *10)))))
(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-979 (-947 *3) (-1079 (-947 *3))))
- (-5 *1 (-947 *3)) (-4 *3 (-13 (-781) (-336) (-945))))))
-(((*1 *2 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *2 (-958))
- (-5 *1 (-687)))))
+ (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013))
+ (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-108)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 (-586 *5))) (-4 *5 (-1155 *4))
- (-4 *4 (-37 (-380 (-520))))
- (-5 *2 (-1 (-1064 *4) (-586 (-1064 *4)))) (-5 *1 (-1157 *4 *5)))))
-(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4)
- (-12 (-5 *3 (-1066)) (-5 *4 (-520)) (-5 *5 (-626 (-201)))
- (-5 *6 (-201)) (-5 *2 (-958)) (-5 *1 (-688)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-626 *8)) (-4 *8 (-877 *5 *7 *6))
- (-4 *5 (-13 (-281) (-135))) (-4 *6 (-13 (-783) (-561 (-1083))))
- (-4 *7 (-728))
+ (-12 (-5 *3 (-587 (-560 *5))) (-4 *4 (-784)) (-5 *2 (-560 *5))
+ (-5 *1 (-530 *4 *5)) (-4 *5 (-404 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-282) (-135))) (-4 *5 (-13 (-784) (-562 (-1084))))
+ (-4 *6 (-729)) (-4 *7 (-878 *4 *6 *5))
(-5 *2
- (-586
- (-2 (|:| -3160 (-706))
- (|:| |eqns|
- (-586
- (-2 (|:| |det| *8) (|:| |rows| (-586 (-520)))
- (|:| |cols| (-586 (-520))))))
- (|:| |fgb| (-586 *8)))))
- (-5 *1 (-852 *5 *6 *7 *8)) (-5 *4 (-706)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-1165))))
- ((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-1166)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-545 *2)) (-4 *2 (-37 (-380 (-520)))) (-4 *2 (-969)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1112 *2 *3 *4 *5)) (-4 *2 (-512)) (-4 *3 (-728))
- (-4 *4 (-783)) (-4 *5 (-983 *2 *3 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-969))
- (-4 *2 (-13 (-377) (-960 *4) (-336) (-1104) (-258)))
- (-5 *1 (-415 *4 *3 *2)) (-4 *3 (-1140 *4)))))
-(((*1 *2 *3 *3 *2 *4)
- (-12 (-5 *3 (-626 *2)) (-5 *4 (-520))
- (-4 *2 (-13 (-281) (-10 -8 (-15 -1507 ((-391 $) $)))))
- (-4 *5 (-1140 *2)) (-5 *1 (-467 *2 *5 *6)) (-4 *6 (-382 *2 *5)))))
+ (-2 (|:| |sysok| (-108)) (|:| |z0| (-587 *7)) (|:| |n0| (-587 *7))))
+ (-5 *1 (-853 *4 *5 *6 *7)) (-5 *3 (-587 *7)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-25)) (-4 *3 (-783))
- (-5 *2 (-2 (|:| -2972 (-520)) (|:| |var| (-559 *1))))
- (-4 *1 (-403 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1057 *3)) (-4 *3 (-1118)) (-5 *2 (-108)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-586 (-201))) (-5 *4 (-706)) (-5 *2 (-626 (-201)))
- (-5 *1 (-279)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *1 (-589 *2 *3 *4)) (-4 *2 (-1012)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-520)) (-5 *1 (-417 *3)) (-4 *3 (-377)) (-4 *3 (-969)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-424))) (-5 *1 (-1110 *3 *2))
- (-4 *2 (-13 (-403 *3) (-1104))))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-299 *2 *3)) (-4 *2 (-969)) (-4 *3 (-727))
- (-4 *2 (-424))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-315 *2 *3 *4)) (-4 *2 (-1122)) (-4 *3 (-1140 *2))
- (-4 *4 (-1140 (-380 *3)))))
- ((*1 *1 *1) (-12 (-4 *1 (-785 *2)) (-4 *2 (-969)) (-4 *2 (-424))))
+ (-12 (-4 *3 (-337)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4)))
+ (-5 *2 (-1165 *6)) (-5 *1 (-310 *3 *4 *5 *6))
+ (-4 *6 (-316 *3 *4 *5)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-587 (-560 (-47)))) (-5 *1 (-47))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-560 (-47))) (-5 *1 (-47))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1080 (-47))) (-5 *3 (-587 (-560 (-47)))) (-5 *1 (-47))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1080 (-47))) (-5 *3 (-560 (-47))) (-5 *1 (-47))))
+ ((*1 *2 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157))))
+ ((*1 *2 *3)
+ (-12 (-4 *2 (-13 (-337) (-782))) (-5 *1 (-164 *2 *3))
+ (-4 *3 (-1141 (-154 *2)))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-877 *3 *4 *2)) (-4 *3 (-969)) (-4 *4 (-728))
- (-4 *2 (-783)) (-4 *3 (-424))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-877 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-728))
- (-4 *4 (-783)) (-4 *2 (-424))))
+ (-12 (-5 *2 (-850)) (-4 *1 (-303 *3)) (-4 *3 (-337)) (-4 *3 (-342))))
+ ((*1 *2 *1) (-12 (-4 *1 (-303 *2)) (-4 *2 (-337))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-344 *2 *3)) (-4 *3 (-1141 *2)) (-4 *2 (-157))))
+ ((*1 *2 *1)
+ (-12 (-4 *4 (-1141 *2)) (-4 *2 (-918 *3)) (-5 *1 (-387 *3 *2 *4 *5))
+ (-4 *3 (-282)) (-4 *5 (-13 (-383 *2 *4) (-961 *2)))))
+ ((*1 *2 *1)
+ (-12 (-4 *4 (-1141 *2)) (-4 *2 (-918 *3))
+ (-5 *1 (-388 *3 *2 *4 *5 *6)) (-4 *3 (-282)) (-4 *5 (-383 *2 *4))
+ (-14 *6 (-1165 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-850)) (-4 *5 (-970))
+ (-4 *2 (-13 (-378) (-961 *5) (-337) (-1105) (-259)))
+ (-5 *1 (-416 *5 *3 *2)) (-4 *3 (-1141 *5))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-587 (-560 (-464)))) (-5 *1 (-464))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-560 (-464))) (-5 *1 (-464))))
((*1 *2 *2 *3)
- (-12 (-4 *3 (-281)) (-4 *3 (-512)) (-5 *1 (-1071 *3 *2))
- (-4 *2 (-1140 *3)))))
-(((*1 *1 *1) (-5 *1 (-981))))
-(((*1 *1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-1012)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-586 (-1066))) (-5 *1 (-367))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-586 (-1066))) (-5 *1 (-1099)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-849)) (-5 *2 (-1079 *3)) (-5 *1 (-1093 *3))
- (-4 *3 (-336)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-656)) (-5 *2 (-849))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-658)) (-5 *2 (-706)))))
+ (-12 (-5 *2 (-1080 (-464))) (-5 *3 (-587 (-560 (-464))))
+ (-5 *1 (-464))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1080 (-464))) (-5 *3 (-560 (-464))) (-5 *1 (-464))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1165 *4)) (-5 *3 (-850)) (-4 *4 (-323))
+ (-5 *1 (-491 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-425)) (-4 *5 (-661 *4 *2)) (-4 *2 (-1141 *4))
+ (-5 *1 (-711 *4 *2 *5 *3)) (-4 *3 (-1141 *5))))
+ ((*1 *2 *1) (-12 (-4 *1 (-734 *2)) (-4 *2 (-157))))
+ ((*1 *2 *1) (-12 (-4 *1 (-922 *2)) (-4 *2 (-157))))
+ ((*1 *1 *1) (-4 *1 (-979))))
+(((*1 *1 *1 *1) (-4 *1 (-506))))
+(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7)
+ (-12 (-5 *3 (-521)) (-5 *5 (-627 (-202)))
+ (-5 *6 (-3 (|:| |fn| (-362)) (|:| |fp| (-65 DOT))))
+ (-5 *7 (-3 (|:| |fn| (-362)) (|:| |fp| (-66 IMAGE)))) (-5 *4 (-202))
+ (-5 *2 (-959)) (-5 *1 (-692))))
+ ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8)
+ (-12 (-5 *3 (-521)) (-5 *5 (-627 (-202)))
+ (-5 *6 (-3 (|:| |fn| (-362)) (|:| |fp| (-65 DOT))))
+ (-5 *7 (-3 (|:| |fn| (-362)) (|:| |fp| (-66 IMAGE)))) (-5 *8 (-362))
+ (-5 *4 (-202)) (-5 *2 (-959)) (-5 *1 (-692)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-587 *3)) (-4 *3 (-1013)) (-5 *1 (-98 *3)))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959))
+ (-5 *1 (-692)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-545 *2)) (-4 *2 (-37 (-380 (-520)))) (-4 *2 (-969)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-983 *3 *4 *5)) (-4 *3 (-969)) (-4 *4 (-728))
- (-4 *5 (-783)) (-5 *2 (-108)))))
+ (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1058 *3)) (-4 *3 (-1119)) (-5 *2 (-108)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-1 (-202) (-202) (-202)))
+ (-5 *4 (-1 (-202) (-202) (-202) (-202)))
+ (-5 *2 (-1 (-872 (-202)) (-202) (-202))) (-5 *1 (-634)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-970))
+ (-4 *2 (-13 (-378) (-961 *4) (-337) (-1105) (-259)))
+ (-5 *1 (-416 *4 *3 *2)) (-4 *3 (-1141 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-850)) (-4 *5 (-970))
+ (-4 *2 (-13 (-378) (-961 *5) (-337) (-1105) (-259)))
+ (-5 *1 (-416 *5 *3 *2)) (-4 *3 (-1141 *5)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3 (-521))) (-4 *3 (-970)) (-5 *1 (-94 *3))))
+ ((*1 *1 *2 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-970)) (-5 *1 (-94 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-970)) (-5 *1 (-94 *3)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-381 *4)) (-4 *4 (-1141 *3)) (-4 *3 (-13 (-337) (-135)))
+ (-5 *1 (-373 *3 *4)))))
(((*1 *1 *1) (-4 *1 (-34)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2))
- (-4 *2 (-13 (-403 *3) (-926)))))
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-927)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1155 *3))
- (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1126 *3 *4))))
+ (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3))
+ (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1124 *3))
- (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1147 *3 *4)) (-4 *5 (-908 *4))))
+ (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3))
+ (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520))))
- (-5 *1 (-1069 *3))))
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
+ (-5 *1 (-1070 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520))))
- (-5 *1 (-1070 *3)))))
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
+ (-5 *1 (-1071 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-783))
+ (-12 (-4 *4 (-784))
(-5 *2
- (-2 (|:| |f1| (-586 *4)) (|:| |f2| (-586 (-586 (-586 *4))))
- (|:| |f3| (-586 (-586 *4))) (|:| |f4| (-586 (-586 (-586 *4))))))
- (-5 *1 (-1090 *4)) (-5 *3 (-586 (-586 (-586 *4)))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-758)))))
+ (-2 (|:| |f1| (-587 *4)) (|:| |f2| (-587 (-587 (-587 *4))))
+ (|:| |f3| (-587 (-587 *4))) (|:| |f4| (-587 (-587 (-587 *4))))))
+ (-5 *1 (-1091 *4)) (-5 *3 (-587 (-587 (-587 *4)))))))
+(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7)
+ (-12 (-5 *3 (-1067)) (-5 *5 (-627 (-202))) (-5 *6 (-202))
+ (-5 *7 (-627 (-521))) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-689)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1065 (-1065 *4))) (-5 *2 (-1065 *4)) (-5 *1 (-1069 *4))
+ (-4 *4 (-970)))))
+(((*1 *2 *3) (-12 (-5 *3 (-775)) (-5 *2 (-959)) (-5 *1 (-774))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-587 (-290 (-353)))) (-5 *4 (-587 (-353)))
+ (-5 *2 (-959)) (-5 *1 (-774)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-969)) (-5 *1 (-1068 *3)))))
-(((*1 *1 *2 *2) (-12 (-5 *2 (-520)) (-5 *1 (-791)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-512)) (-5 *2 (-586 *3)) (-5 *1 (-895 *4 *3))
- (-4 *3 (-1140 *4)))))
-(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-13 (-336) (-135) (-960 (-520))))
- (-4 *5 (-1140 *4))
- (-5 *2 (-2 (|:| -4016 (-380 *5)) (|:| |coeff| (-380 *5))))
- (-5 *1 (-524 *4 *5)) (-5 *3 (-380 *5)))))
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-927))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-108)) (-5 *3 (-587 (-239))) (-5 *1 (-237))))
+ ((*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-239)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1140 *6))
- (-4 *6 (-13 (-27) (-403 *5)))
- (-4 *5 (-13 (-783) (-512) (-960 (-520)))) (-4 *8 (-1140 (-380 *7)))
- (-5 *2 (-537 *3)) (-5 *1 (-508 *5 *6 *7 *8 *3))
- (-4 *3 (-315 *6 *7 *8)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-512)) (-4 *4 (-346 *3)) (-4 *5 (-346 *3))
- (-5 *1 (-1109 *3 *4 *5 *2)) (-4 *2 (-624 *3 *4 *5)))))
-(((*1 *1 *1) (-12 (-4 *1 (-220 *2)) (-4 *2 (-1118))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-983 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-728))
- (-4 *4 (-783)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-586 (-559 *5))) (-5 *3 (-1083)) (-4 *5 (-403 *4))
- (-4 *4 (-783)) (-5 *1 (-529 *4 *5)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *6 (-849)) (-4 *5 (-281)) (-4 *3 (-1140 *5))
- (-5 *2 (-2 (|:| |plist| (-586 *3)) (|:| |modulo| *5)))
- (-5 *1 (-432 *5 *3)) (-5 *4 (-586 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783))
- (-4 *2 (-983 *4 *5 *6)) (-5 *1 (-711 *4 *5 *6 *2 *3))
- (-4 *3 (-988 *4 *5 *6 *2)))))
+ (-12 (-5 *4 (-1084))
+ (-4 *5 (-13 (-784) (-961 (-521)) (-425) (-583 (-521))))
+ (-5 *2 (-2 (|:| -2655 *3) (|:| |nconst| *3))) (-5 *1 (-524 *5 *3))
+ (-4 *3 (-13 (-27) (-1105) (-404 *5))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 (-108) *6 *6)) (-4 *6 (-784)) (-5 *4 (-587 *6))
+ (-5 *2 (-2 (|:| |fs| (-108)) (|:| |sd| *4) (|:| |td| (-587 *4))))
+ (-5 *1 (-1091 *6)) (-5 *5 (-587 *4)))))
+(((*1 *1 *1 *2 *2)
+ (|partial| -12 (-5 *2 (-850)) (-5 *1 (-1014 *3 *4)) (-14 *3 *2)
+ (-14 *4 *2))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |lfn| (-586 (-289 (-201)))) (|:| -3794 (-586 (-201)))))
- (-5 *2 (-352)) (-5 *1 (-242))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1164 (-289 (-201)))) (-5 *2 (-352)) (-5 *1 (-279)))))
+ (-12 (-5 *3 (-381 (-881 *4))) (-4 *4 (-282))
+ (-5 *2 (-381 (-392 (-881 *4)))) (-5 *1 (-965 *4)))))
+(((*1 *2 *3 *1 *4)
+ (-12 (-5 *3 (-1049 *5 *6)) (-5 *4 (-1 (-108) *6 *6))
+ (-4 *5 (-13 (-1013) (-33))) (-4 *6 (-13 (-1013) (-33)))
+ (-5 *2 (-108)) (-5 *1 (-1050 *5 *6)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1165 *1)) (-4 *1 (-341 *4)) (-4 *4 (-157))
+ (-5 *2 (-627 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-391 *3)) (-4 *3 (-157)) (-5 *2 (-627 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-927))))))
(((*1 *1 *2 *2) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157)))))
-(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3)
- (-12 (-5 *4 (-626 (-201))) (-5 *5 (-626 (-520))) (-5 *3 (-520))
- (-5 *2 (-958)) (-5 *1 (-692)))))
-(((*1 *1 *1) (-5 *1 (-201))) ((*1 *1 *1) (-5 *1 (-352)))
- ((*1 *1) (-5 *1 (-352))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1112 *3 *4 *5 *6)) (-4 *3 (-512)) (-4 *4 (-728))
- (-4 *5 (-783)) (-4 *6 (-983 *3 *4 *5)) (-4 *5 (-341))
- (-5 *2 (-706)))))
-(((*1 *1 *2) (-12 (-5 *2 (-586 *3)) (-4 *3 (-1012)) (-5 *1 (-673 *3))))
- ((*1 *1 *2) (-12 (-5 *1 (-673 *2)) (-4 *2 (-1012))))
- ((*1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-1012)))))
-(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-921 *2)) (-4 *2 (-157)))))
-(((*1 *2)
- (-12 (-4 *1 (-315 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-1140 *3))
- (-4 *5 (-1140 (-380 *4))) (-5 *2 (-626 (-380 *4))))))
-(((*1 *1) (-5 *1 (-981))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-587 *5)) (-5 *4 (-587 (-1 *6 (-587 *6))))
+ (-4 *5 (-37 (-381 (-521)))) (-4 *6 (-1156 *5)) (-5 *2 (-587 *6))
+ (-5 *1 (-1158 *5 *6)))))
+(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
+ (-12 (-5 *3 (-1067)) (-5 *4 (-521)) (-5 *5 (-627 (-154 (-202))))
+ (-5 *2 (-959)) (-5 *1 (-691)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-282)) (-4 *6 (-347 *5)) (-4 *4 (-347 *5))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2470 (-587 *4))))
+ (-5 *1 (-1035 *5 *6 *4 *3)) (-4 *3 (-625 *5 *6 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-981))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1084)) (-5 *1 (-981)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-586 *6)) (-4 *6 (-983 *3 *4 *5)) (-4 *3 (-512))
- (-4 *4 (-728)) (-4 *5 (-783)) (-5 *1 (-902 *3 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-880 *5)) (-4 *5 (-969)) (-5 *2 (-452 *4 *5))
- (-5 *1 (-872 *4 *5)) (-14 *4 (-586 (-1083))))))
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-927))))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-277)) (-5 *3 (-1084)) (-5 *2 (-108))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-277)) (-5 *2 (-108)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-902 *3 *4 *5 *6)) (-4 *3 (-970)) (-4 *4 (-729))
+ (-4 *5 (-784)) (-4 *6 (-984 *3 *4 *5)) (-5 *2 (-108)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-759)))))
(((*1 *2 *2 *2)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-969)) (-5 *1 (-1068 *3)))))
+ (-12
+ (-5 *2
+ (-2 (|:| -2470 (-627 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-627 *3))))
+ (-4 *3 (-13 (-282) (-10 -8 (-15 -3358 ((-392 $) $)))))
+ (-4 *4 (-1141 *3)) (-5 *1 (-468 *3 *4 *5)) (-4 *5 (-383 *3 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-381 (-521))) (-5 *1 (-458)))))
(((*1 *2 *1 *3)
- (-12 (-5 *2 (-380 (-520))) (-5 *1 (-113 *4)) (-14 *4 *3)
- (-5 *3 (-520))))
- ((*1 *2 *1 *2) (-12 (-4 *1 (-797 *3)) (-5 *2 (-520))))
+ (-12 (-5 *2 (-381 (-521))) (-5 *1 (-113 *4)) (-14 *4 *3)
+ (-5 *3 (-521))))
+ ((*1 *2 *1 *2) (-12 (-4 *1 (-798 *3)) (-5 *2 (-521))))
((*1 *2 *1 *3)
- (-12 (-5 *2 (-380 (-520))) (-5 *1 (-799 *4)) (-14 *4 *3)
- (-5 *3 (-520))))
+ (-12 (-5 *2 (-381 (-521))) (-5 *1 (-800 *4)) (-14 *4 *3)
+ (-5 *3 (-521))))
((*1 *2 *1 *3)
- (-12 (-14 *4 *3) (-5 *2 (-380 (-520))) (-5 *1 (-800 *4 *5))
- (-5 *3 (-520)) (-4 *5 (-797 *4))))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-936)) (-5 *2 (-380 (-520)))))
+ (-12 (-14 *4 *3) (-5 *2 (-381 (-521))) (-5 *1 (-801 *4 *5))
+ (-5 *3 (-521)) (-4 *5 (-798 *4))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-937)) (-5 *2 (-381 (-521)))))
((*1 *2 *3 *1 *2)
- (-12 (-4 *1 (-985 *2 *3)) (-4 *2 (-13 (-781) (-336)))
- (-4 *3 (-1140 *2))))
+ (-12 (-4 *1 (-986 *2 *3)) (-4 *2 (-13 (-782) (-337)))
+ (-4 *3 (-1141 *2))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1142 *2 *3)) (-4 *3 (-727))
- (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2188 (*2 (-1083))))
- (-4 *2 (-969)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-315 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-1140 *3))
- (-4 *5 (-1140 (-380 *4)))
- (-5 *2 (-2 (|:| |num| (-1164 *4)) (|:| |den| *4))))))
+ (-12 (-4 *1 (-1143 *2 *3)) (-4 *3 (-728))
+ (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2189 (*2 (-1084))))
+ (-4 *2 (-970)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-512)) (-5 *2 (-706)) (-5 *1 (-42 *4 *3))
- (-4 *3 (-390 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783))
- (-4 *3 (-983 *5 *6 *7)) (-5 *2 (-586 *4))
- (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-988 *5 *6 *7 *3)))))
-(((*1 *1 *1) (-4 *1 (-505))))
-(((*1 *2 *1) (-12 (-4 *1 (-613 *2)) (-4 *2 (-1118)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1164 *1)) (-4 *1 (-340 *4)) (-4 *4 (-157))
- (-5 *2 (-626 *4))))
+ (-12 (-5 *3 (-1165 (-587 (-2 (|:| -3430 *4) (|:| -2716 (-1031))))))
+ (-4 *4 (-323)) (-5 *2 (-707)) (-5 *1 (-320 *4))))
((*1 *2)
- (-12 (-4 *4 (-157)) (-5 *2 (-626 *4)) (-5 *1 (-389 *3 *4))
- (-4 *3 (-390 *4))))
- ((*1 *2) (-12 (-4 *1 (-390 *3)) (-4 *3 (-157)) (-5 *2 (-626 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-512) (-783) (-960 (-520)))) (-4 *5 (-403 *4))
- (-5 *2
- (-3 (|:| |overq| (-1079 (-380 (-520))))
- (|:| |overan| (-1079 (-47))) (|:| -3076 (-108))))
- (-5 *1 (-408 *4 *5 *3)) (-4 *3 (-1140 *5)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1066)) (-5 *1 (-110)))))
-(((*1 *1 *1) (-12 (-4 *1 (-398 *2)) (-4 *2 (-1012)) (-4 *2 (-341)))))
+ (-12 (-5 *2 (-707)) (-5 *1 (-325 *3 *4)) (-14 *3 (-850))
+ (-14 *4 (-850))))
+ ((*1 *2)
+ (-12 (-5 *2 (-707)) (-5 *1 (-326 *3 *4)) (-4 *3 (-323))
+ (-14 *4
+ (-3 (-1080 *3)
+ (-1165 (-587 (-2 (|:| -3430 *3) (|:| -2716 (-1031)))))))))
+ ((*1 *2)
+ (-12 (-5 *2 (-707)) (-5 *1 (-327 *3 *4)) (-4 *3 (-323))
+ (-14 *4 (-850)))))
(((*1 *2 *3)
+ (-12 (-5 *3 (-587 *2)) (-4 *2 (-404 *4)) (-5 *1 (-144 *4 *2))
+ (-4 *4 (-13 (-784) (-513))))))
+(((*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-856)))))
+(((*1 *1 *1) (-4 *1 (-506))))
+(((*1 *2 *3 *1)
(-12
(-5 *2
- (-586 (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520))))))
- (-5 *1 (-943 *3)) (-4 *3 (-1140 (-520)))))
- ((*1 *2 *3 *4)
- (-12
- (-5 *2
- (-586 (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520))))))
- (-5 *1 (-943 *3)) (-4 *3 (-1140 (-520)))
- (-5 *4 (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520)))))))
+ (-2 (|:| |cycle?| (-108)) (|:| -3370 (-707)) (|:| |period| (-707))))
+ (-5 *1 (-1065 *4)) (-4 *4 (-1119)) (-5 *3 (-707)))))
+(((*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-5 *2 (-1080 *3)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-202)) (-5 *5 (-521)) (-5 *2 (-1115 *3))
+ (-5 *1 (-726 *3)) (-4 *3 (-900))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *3 (-587 (-587 (-872 (-202))))) (-5 *4 (-108))
+ (-5 *1 (-1115 *2)) (-4 *2 (-900)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-521)) (-5 *1 (-290 *3)) (-4 *3 (-513)) (-4 *3 (-784)))))
+(((*1 *2 *1) (-12 (-5 *2 (-587 (-1089))) (-5 *1 (-166)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-381 (-881 *5))) (-5 *4 (-1084))
+ (-4 *5 (-13 (-282) (-784) (-135))) (-5 *2 (-587 (-269 (-290 *5))))
+ (-5 *1 (-1040 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-381 (-881 *4))) (-4 *4 (-13 (-282) (-784) (-135)))
+ (-5 *2 (-587 (-269 (-290 *4)))) (-5 *1 (-1040 *4))))
((*1 *2 *3 *4)
- (-12
- (-5 *2
- (-586 (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520))))))
- (-5 *1 (-943 *3)) (-4 *3 (-1140 (-520))) (-5 *4 (-380 (-520)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-380 (-520)))
- (-5 *2 (-586 (-2 (|:| -1912 *5) (|:| -1924 *5)))) (-5 *1 (-943 *3))
- (-4 *3 (-1140 (-520))) (-5 *4 (-2 (|:| -1912 *5) (|:| -1924 *5)))))
+ (-12 (-5 *3 (-269 (-381 (-881 *5)))) (-5 *4 (-1084))
+ (-4 *5 (-13 (-282) (-784) (-135))) (-5 *2 (-587 (-269 (-290 *5))))
+ (-5 *1 (-1040 *5))))
((*1 *2 *3)
- (-12
- (-5 *2
- (-586 (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520))))))
- (-5 *1 (-944 *3)) (-4 *3 (-1140 (-380 (-520))))))
+ (-12 (-5 *3 (-269 (-381 (-881 *4))))
+ (-4 *4 (-13 (-282) (-784) (-135))) (-5 *2 (-587 (-269 (-290 *4))))
+ (-5 *1 (-1040 *4))))
((*1 *2 *3 *4)
- (-12
- (-5 *2
- (-586 (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520))))))
- (-5 *1 (-944 *3)) (-4 *3 (-1140 (-380 (-520))))
- (-5 *4 (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520)))))))
+ (-12 (-5 *3 (-587 (-381 (-881 *5)))) (-5 *4 (-587 (-1084)))
+ (-4 *5 (-13 (-282) (-784) (-135)))
+ (-5 *2 (-587 (-587 (-269 (-290 *5))))) (-5 *1 (-1040 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-587 (-381 (-881 *4))))
+ (-4 *4 (-13 (-282) (-784) (-135)))
+ (-5 *2 (-587 (-587 (-269 (-290 *4))))) (-5 *1 (-1040 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-380 (-520)))
- (-5 *2 (-586 (-2 (|:| -1912 *4) (|:| -1924 *4)))) (-5 *1 (-944 *3))
- (-4 *3 (-1140 *4))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-380 (-520)))
- (-5 *2 (-586 (-2 (|:| -1912 *5) (|:| -1924 *5)))) (-5 *1 (-944 *3))
- (-4 *3 (-1140 *5)) (-5 *4 (-2 (|:| -1912 *5) (|:| -1924 *5))))))
+ (-12 (-5 *3 (-587 (-269 (-381 (-881 *5))))) (-5 *4 (-587 (-1084)))
+ (-4 *5 (-13 (-282) (-784) (-135)))
+ (-5 *2 (-587 (-587 (-269 (-290 *5))))) (-5 *1 (-1040 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-587 (-269 (-381 (-881 *4)))))
+ (-4 *4 (-13 (-282) (-784) (-135)))
+ (-5 *2 (-587 (-587 (-269 (-290 *4))))) (-5 *1 (-1040 *4)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-586 (-51))) (-5 *1 (-820 *3)) (-4 *3 (-1012)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-586 (-2 (|:| -1916 (-1079 *6)) (|:| -2647 (-520)))))
- (-4 *6 (-281)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *2 (-520))
- (-5 *1 (-678 *4 *5 *6 *7)) (-4 *7 (-877 *6 *4 *5)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-110)) (-4 *3 (-13 (-783) (-512))) (-5 *1 (-31 *3 *4))
- (-4 *4 (-403 *3))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1083)) (-5 *3 (-706)) (-5 *1 (-110))))
- ((*1 *1 *2) (-12 (-5 *2 (-1083)) (-5 *1 (-110))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-110)) (-4 *3 (-13 (-783) (-512))) (-5 *1 (-144 *3 *4))
- (-4 *4 (-403 *3))))
- ((*1 *2 *3) (-12 (-5 *3 (-1083)) (-5 *2 (-110)) (-5 *1 (-148))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-110)) (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *4))
- (-4 *4 (-13 (-403 *3) (-926)))))
- ((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-275 *3)) (-4 *3 (-276))))
- ((*1 *2 *2) (-12 (-4 *1 (-276)) (-5 *2 (-110))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-110)) (-4 *4 (-783)) (-5 *1 (-402 *3 *4))
- (-4 *3 (-403 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-110)) (-4 *3 (-13 (-783) (-512))) (-5 *1 (-404 *3 *4))
- (-4 *4 (-403 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-559 *3)) (-4 *3 (-783))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-110)) (-4 *3 (-13 (-783) (-512))) (-5 *1 (-573 *3 *4))
- (-4 *4 (-13 (-403 *3) (-926) (-1104))))))
+ (-12 (-4 *1 (-902 *3 *4 *2 *5)) (-4 *3 (-970)) (-4 *4 (-729))
+ (-4 *2 (-784)) (-4 *5 (-984 *3 *4 *2)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-902 *3 *4 *5 *6)) (-4 *3 (-970)) (-4 *4 (-729))
+ (-4 *5 (-784)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-513))
+ (-5 *2 (-108)))))
+(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1067)) (-5 *4 (-521)) (-5 *5 (-627 (-202)))
+ (-5 *6 (-202)) (-5 *2 (-959)) (-5 *1 (-689)))))
+(((*1 *1 *1) (-5 *1 (-202))) ((*1 *1 *1) (-5 *1 (-353)))
+ ((*1 *1) (-5 *1 (-353))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-405 *3 *2))
+ (-4 *2 (-404 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1048))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2))
- (-4 *2 (-13 (-403 *3) (-926))))))
-(((*1 *1) (-5 *1 (-143))))
-(((*1 *2)
- (-12 (-4 *3 (-424)) (-4 *4 (-728)) (-4 *5 (-783))
- (-4 *6 (-983 *3 *4 *5)) (-5 *2 (-1169))
- (-5 *1 (-913 *3 *4 *5 *6 *7)) (-4 *7 (-988 *3 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *3 (-424)) (-4 *4 (-728)) (-4 *5 (-783))
- (-4 *6 (-983 *3 *4 *5)) (-5 *2 (-1169))
- (-5 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *7 (-988 *3 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-791)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-336)) (-5 *1 (-702 *2 *3)) (-4 *2 (-645 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-785 *2)) (-4 *2 (-969)) (-4 *2 (-336)))))
+ (-12 (-4 *3 (-513)) (-5 *1 (-40 *3 *2))
+ (-4 *2
+ (-13 (-337) (-277)
+ (-10 -8 (-15 -2801 ((-1036 *3 (-560 $)) $))
+ (-15 -2812 ((-1036 *3 (-560 $)) $))
+ (-15 -2189 ($ (-1036 *3 (-560 $))))))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-901 *3 *4 *2 *5)) (-4 *3 (-969)) (-4 *4 (-728))
- (-4 *5 (-983 *3 *4 *2)) (-4 *2 (-783))))
+ (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970)) (-5 *2 (-587 (-587 (-156)))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-587 *6)) (-5 *4 (-587 (-1065 *7))) (-4 *6 (-784))
+ (-4 *7 (-878 *5 (-493 *6) *6)) (-4 *5 (-970))
+ (-5 *2 (-1 (-1065 *7) *7)) (-5 *1 (-1037 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-792)))))
+(((*1 *2 *3 *3 *2)
+ (|partial| -12 (-5 *2 (-707))
+ (-4 *3 (-13 (-663) (-342) (-10 -7 (-15 ** (*3 *3 (-521))))))
+ (-5 *1 (-223 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-425))) (-5 *1 (-1111 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-1105))))))
+(((*1 *1 *1 *1) (-5 *1 (-108))) ((*1 *1 *1 *1) (-4 *1 (-119))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-405 *3 *2))
+ (-4 *2 (-404 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-821 *3)) (-4 *3 (-1013))))
((*1 *2 *1)
- (-12 (-4 *1 (-983 *3 *4 *2)) (-4 *3 (-969)) (-4 *4 (-728))
- (-4 *2 (-783)))))
+ (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013))
+ (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-108)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *7 (-425)) (-4 *5 (-729)) (-4 *6 (-784)) (-4 *7 (-513))
+ (-4 *8 (-878 *7 *5 *6))
+ (-5 *2 (-2 (|:| -2997 (-707)) (|:| -2973 *3) (|:| |radicand| *3)))
+ (-5 *1 (-882 *5 *6 *7 *8 *3)) (-5 *4 (-707))
+ (-4 *3
+ (-13 (-337)
+ (-10 -8 (-15 -2801 (*8 $)) (-15 -2812 (*8 $)) (-15 -2189 ($ *8))))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1141 *5)) (-4 *5 (-337))
+ (-4 *7 (-1141 (-381 *6)))
+ (-5 *2 (-2 (|:| |answer| *3) (|:| -1357 *3)))
+ (-5 *1 (-519 *5 *6 *7 *3)) (-4 *3 (-316 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1141 *5)) (-4 *5 (-337))
+ (-5 *2
+ (-2 (|:| |answer| (-381 *6)) (|:| -1357 (-381 *6))
+ (|:| |specpart| (-381 *6)) (|:| |polypart| *6)))
+ (-5 *1 (-520 *5 *6)) (-5 *3 (-381 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1012)) (-4 *6 (-1012))
- (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-621 *4 *5 *6)) (-4 *5 (-1012)))))
-(((*1 *1) (-5 *1 (-410))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-717 *2)) (-4 *2 (-969))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-983 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-728))
- (-4 *4 (-783)))))
-(((*1 *1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-143))))
- ((*1 *2 *3) (-12 (-5 *3 (-871 *2)) (-5 *1 (-907 *2)) (-4 *2 (-969)))))
-(((*1 *2 *3 *4 *5 *6 *7 *8 *9)
- (|partial| -12 (-5 *4 (-586 *11)) (-5 *5 (-586 (-1079 *9)))
- (-5 *6 (-586 *9)) (-5 *7 (-586 *12)) (-5 *8 (-586 (-706)))
- (-4 *11 (-783)) (-4 *9 (-281)) (-4 *12 (-877 *9 *10 *11))
- (-4 *10 (-728)) (-5 *2 (-586 (-1079 *12)))
- (-5 *1 (-644 *10 *11 *9 *12)) (-5 *3 (-1079 *12)))))
-(((*1 *2 *3) (-12 (-5 *3 (-352)) (-5 *2 (-201)) (-5 *1 (-279)))))
-(((*1 *1) (-4 *1 (-322))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-228 *2 *3 *4 *5)) (-4 *2 (-969)) (-4 *3 (-783))
- (-4 *4 (-241 *3)) (-4 *5 (-728)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-13 (-781) (-336))) (-5 *2 (-108)) (-5 *1 (-979 *4 *3))
- (-4 *3 (-1140 *4)))))
-(((*1 *2 *3 *3 *2)
- (|partial| -12 (-5 *2 (-706))
- (-4 *3 (-13 (-662) (-341) (-10 -7 (-15 ** (*3 *3 (-520))))))
- (-5 *1 (-222 *3)))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-1064 *4)) (-5 *3 (-520)) (-4 *4 (-969))
- (-5 *1 (-1068 *4))))
- ((*1 *1 *2 *2 *1)
- (-12 (-5 *2 (-520)) (-5 *1 (-1156 *3 *4 *5)) (-4 *3 (-969))
- (-14 *4 (-1083)) (-14 *5 *3))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-352)) (-5 *3 (-586 (-238))) (-5 *1 (-236))))
- ((*1 *1 *2) (-12 (-5 *2 (-352)) (-5 *1 (-238)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-706)) (-5 *1 (-789 *2)) (-4 *2 (-37 (-380 (-520))))
- (-4 *2 (-157)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *2 (-958))
- (-5 *1 (-691)))))
+ (-12
+ (-5 *3
+ (-587 (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521))))))
+ (-5 *2 (-587 (-202))) (-5 *1 (-280)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-970)) (-4 *4 (-1141 *3)) (-5 *1 (-149 *3 *4 *2))
+ (-4 *2 (-1141 *4))))
+ ((*1 *1 *1) (-12 (-5 *1 (-269 *2)) (-4 *2 (-1119)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-229 *3 *4 *5 *6)) (-4 *3 (-970)) (-4 *4 (-784))
+ (-4 *5 (-242 *4)) (-4 *6 (-729)) (-5 *2 (-587 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-132)))))
+(((*1 *2 *3) (-12 (-5 *3 (-707)) (-5 *2 (-353)) (-5 *1 (-963)))))
+(((*1 *2 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-521)) (-5 *4 (-1067)) (-5 *5 (-627 (-202)))
+ (-5 *2 (-959)) (-5 *1 (-684)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-521)) (|has| *1 (-6 -4234)) (-4 *1 (-1153 *3))
+ (-4 *3 (-1119)))))
+(((*1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-792)))))
(((*1 *1 *1) (-5 *1 (-47)))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-57 *5)) (-4 *5 (-1118))
- (-4 *2 (-1118)) (-5 *1 (-56 *5 *2))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-57 *5)) (-4 *5 (-1119))
+ (-4 *2 (-1119)) (-5 *1 (-56 *5 *2))))
((*1 *2 *3 *1 *2 *2)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1012)) (|has| *1 (-6 -4229))
- (-4 *1 (-139 *2)) (-4 *2 (-1118))))
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1013)) (|has| *1 (-6 -4233))
+ (-4 *1 (-139 *2)) (-4 *2 (-1119))))
((*1 *2 *3 *1 *2)
- (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4229)) (-4 *1 (-139 *2))
- (-4 *2 (-1118))))
+ (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4233)) (-4 *1 (-139 *2))
+ (-4 *2 (-1119))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4229)) (-4 *1 (-139 *2))
- (-4 *2 (-1118))))
+ (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4233)) (-4 *1 (-139 *2))
+ (-4 *2 (-1119))))
((*1 *2 *3)
- (-12 (-4 *4 (-969))
- (-5 *2 (-2 (|:| -3075 (-1079 *4)) (|:| |deg| (-849))))
- (-5 *1 (-197 *4 *5)) (-5 *3 (-1079 *4)) (-4 *5 (-13 (-512) (-783)))))
+ (-12 (-4 *4 (-970))
+ (-5 *2 (-2 (|:| -3736 (-1080 *4)) (|:| |deg| (-850))))
+ (-5 *1 (-198 *4 *5)) (-5 *3 (-1080 *4)) (-4 *5 (-13 (-513) (-784)))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-216 *5 *6)) (-14 *5 (-706))
- (-4 *6 (-1118)) (-4 *2 (-1118)) (-5 *1 (-215 *5 *6 *2))))
+ (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-217 *5 *6)) (-14 *5 (-707))
+ (-4 *6 (-1119)) (-4 *2 (-1119)) (-5 *1 (-216 *5 *6 *2))))
((*1 *1 *2 *3)
- (-12 (-4 *4 (-157)) (-5 *1 (-263 *4 *2 *3 *5 *6 *7))
- (-4 *2 (-1140 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3))
+ (-12 (-4 *4 (-157)) (-5 *1 (-264 *4 *2 *3 *5 *6 *7))
+ (-4 *2 (-1141 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3))
(-14 *6 (-1 (-3 *3 "failed") *3 *3))
(-14 *7 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-5 *1 (-289 *2)) (-4 *2 (-512)) (-4 *2 (-783))))
+ ((*1 *1 *1) (-12 (-5 *1 (-290 *2)) (-4 *2 (-513)) (-4 *2 (-784))))
((*1 *1 *1)
- (-12 (-4 *1 (-308 *2 *3 *4 *5)) (-4 *2 (-336)) (-4 *3 (-1140 *2))
- (-4 *4 (-1140 (-380 *3))) (-4 *5 (-315 *2 *3 *4))))
+ (-12 (-4 *1 (-309 *2 *3 *4 *5)) (-4 *2 (-337)) (-4 *3 (-1141 *2))
+ (-4 *4 (-1141 (-381 *3))) (-4 *5 (-316 *2 *3 *4))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1118)) (-4 *2 (-1118))
- (-5 *1 (-344 *5 *4 *2 *6)) (-4 *4 (-346 *5)) (-4 *6 (-346 *2))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1119)) (-4 *2 (-1119))
+ (-5 *1 (-345 *5 *4 *2 *6)) (-4 *4 (-347 *5)) (-4 *6 (-347 *2))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1012)) (-4 *2 (-1012))
- (-5 *1 (-396 *5 *4 *2 *6)) (-4 *4 (-398 *5)) (-4 *6 (-398 *2))))
- ((*1 *1 *1) (-5 *1 (-463)))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1013)) (-4 *2 (-1013))
+ (-5 *1 (-397 *5 *4 *2 *6)) (-4 *4 (-399 *5)) (-4 *6 (-399 *2))))
+ ((*1 *1 *1) (-5 *1 (-464)))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-586 *5)) (-4 *5 (-1118))
- (-4 *2 (-1118)) (-5 *1 (-584 *5 *2))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-587 *5)) (-4 *5 (-1119))
+ (-4 *2 (-1119)) (-5 *1 (-585 *5 *2))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-969)) (-4 *2 (-969))
- (-4 *6 (-346 *5)) (-4 *7 (-346 *5)) (-4 *8 (-346 *2))
- (-4 *9 (-346 *2)) (-5 *1 (-622 *5 *6 *7 *4 *2 *8 *9 *10))
- (-4 *4 (-624 *5 *6 *7)) (-4 *10 (-624 *2 *8 *9))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-970)) (-4 *2 (-970))
+ (-4 *6 (-347 *5)) (-4 *7 (-347 *5)) (-4 *8 (-347 *2))
+ (-4 *9 (-347 *2)) (-5 *1 (-623 *5 *6 *7 *4 *2 *8 *9 *10))
+ (-4 *4 (-625 *5 *6 *7)) (-4 *10 (-625 *2 *8 *9))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-647 *2 *3 *4 *5 *6)) (-4 *2 (-157)) (-4 *3 (-23))
+ (-12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-157)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *1 *2)
- (-12 (-4 *3 (-969)) (-5 *1 (-648 *3 *2)) (-4 *2 (-1140 *3))))
+ (-12 (-4 *3 (-970)) (-5 *1 (-649 *3 *2)) (-4 *2 (-1141 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-651 *2 *3 *4 *5 *6)) (-4 *2 (-157)) (-4 *3 (-23))
+ (-12 (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *2 (-157)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-380 *4)) (-4 *4 (-1140 *3)) (-4 *3 (-336))
- (-4 *3 (-157)) (-4 *1 (-660 *3 *4))))
+ (|partial| -12 (-5 *2 (-381 *4)) (-4 *4 (-1141 *3)) (-4 *3 (-337))
+ (-4 *3 (-157)) (-4 *1 (-661 *3 *4))))
((*1 *1 *2)
- (-12 (-4 *3 (-157)) (-4 *1 (-660 *3 *2)) (-4 *2 (-1140 *3))))
+ (-12 (-4 *3 (-157)) (-4 *1 (-661 *3 *2)) (-4 *2 (-1141 *3))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-885 *5)) (-4 *5 (-1118))
- (-4 *2 (-1118)) (-5 *1 (-884 *5 *2))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-886 *5)) (-4 *5 (-1119))
+ (-4 *2 (-1119)) (-5 *1 (-885 *5 *2))))
((*1 *1 *2)
- (-12 (-4 *3 (-336)) (-4 *4 (-728)) (-4 *5 (-783))
- (-5 *1 (-957 *3 *4 *5 *2 *6)) (-4 *2 (-877 *3 *4 *5))
- (-14 *6 (-586 *2))))
+ (-12 (-4 *3 (-337)) (-4 *4 (-729)) (-4 *5 (-784))
+ (-5 *1 (-958 *3 *4 *5 *2 *6)) (-4 *2 (-878 *3 *4 *5))
+ (-14 *6 (-587 *2))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-969)) (-4 *2 (-969))
- (-14 *5 (-706)) (-14 *6 (-706)) (-4 *8 (-214 *6 *7))
- (-4 *9 (-214 *5 *7)) (-4 *10 (-214 *6 *2)) (-4 *11 (-214 *5 *2))
- (-5 *1 (-974 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12))
- (-4 *4 (-972 *5 *6 *7 *8 *9)) (-4 *12 (-972 *5 *6 *2 *10 *11))))
+ (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-970)) (-4 *2 (-970))
+ (-14 *5 (-707)) (-14 *6 (-707)) (-4 *8 (-215 *6 *7))
+ (-4 *9 (-215 *5 *7)) (-4 *10 (-215 *6 *2)) (-4 *11 (-215 *5 *2))
+ (-5 *1 (-975 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12))
+ (-4 *4 (-973 *5 *6 *7 *8 *9)) (-4 *12 (-973 *5 *6 *2 *10 *11))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1064 *5)) (-4 *5 (-1118))
- (-4 *2 (-1118)) (-5 *1 (-1062 *5 *2))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1065 *5)) (-4 *5 (-1119))
+ (-4 *2 (-1119)) (-5 *1 (-1063 *5 *2))))
((*1 *2 *2 *1 *3 *4)
(-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-108) *2 *2))
- (-4 *1 (-1112 *5 *6 *7 *2)) (-4 *5 (-512)) (-4 *6 (-728))
- (-4 *7 (-783)) (-4 *2 (-983 *5 *6 *7))))
+ (-4 *1 (-1113 *5 *6 *7 *2)) (-4 *5 (-513)) (-4 *6 (-729))
+ (-4 *7 (-784)) (-4 *2 (-984 *5 *6 *7))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1164 *5)) (-4 *5 (-1118))
- (-4 *2 (-1118)) (-5 *1 (-1163 *5 *2)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-135)) (-4 *2 (-281)) (-4 *2 (-424)) (-4 *3 (-783))
- (-4 *4 (-728)) (-5 *1 (-912 *2 *3 *4 *5)) (-4 *5 (-877 *2 *4 *3))))
- ((*1 *2 *3) (-12 (-5 *3 (-47)) (-5 *2 (-289 (-520))) (-5 *1 (-1029))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-424))) (-5 *1 (-1110 *3 *2))
- (-4 *2 (-13 (-403 *3) (-1104))))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1165 *5)) (-4 *5 (-1119))
+ (-4 *2 (-1119)) (-5 *1 (-1164 *5 *2)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784))
+ (-4 *3 (-984 *5 *6 *7))
+ (-5 *2 (-587 (-2 (|:| |val| *3) (|:| -1884 *4))))
+ (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))))
+(((*1 *1 *1) (-5 *1 (-497))))
+(((*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-5 *2 (-108)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970))
+ (-5 *2 (-587 (-587 (-587 (-707))))))))
+(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-587 *1)) (-4 *1 (-849)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1141 *5)) (-4 *5 (-337))
+ (-5 *2 (-2 (|:| -3658 (-392 *3)) (|:| |special| (-392 *3))))
+ (-5 *1 (-664 *5 *3)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-586 *2)) (-4 *2 (-877 *4 *5 *6)) (-4 *4 (-336))
- (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783))
- (-5 *1 (-422 *4 *5 *6 *2))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-94 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-336))
- (-5 *2
- (-2 (|:| R (-626 *6)) (|:| A (-626 *6)) (|:| |Ainv| (-626 *6))))
- (-5 *1 (-903 *6)) (-5 *3 (-626 *6)))))
-(((*1 *1 *1) (-5 *1 (-496))))
-(((*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-832 (-520))) (-5 *1 (-845))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-586 (-520))) (-5 *2 (-832 (-520))) (-5 *1 (-845)))))
-(((*1 *2 *3) (-12 (-5 *3 (-871 *2)) (-5 *1 (-907 *2)) (-4 *2 (-969)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1064 (-586 (-520)))) (-5 *1 (-811))
- (-5 *3 (-586 (-520)))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1064 (-586 (-520)))) (-5 *1 (-811))
- (-5 *3 (-586 (-520))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1064 *4)) (-4 *4 (-37 *3)) (-4 *4 (-969))
- (-5 *3 (-380 (-520))) (-5 *1 (-1068 *4)))))
-(((*1 *1 *1) (-12 (-4 *1 (-596 *2)) (-4 *2 (-969)) (-4 *2 (-336)))))
-(((*1 *2 *1) (-12 (-5 *2 (-201)) (-5 *1 (-758)))))
+ (-12 (-5 *3 (-1084)) (-4 *4 (-513)) (-4 *4 (-784))
+ (-5 *1 (-530 *4 *2)) (-4 *2 (-404 *4)))))
+(((*1 *1)
+ (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-521)) (-14 *3 (-707))
+ (-4 *4 (-157)))))
+(((*1 *1) (-5 *1 (-411))))
(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-520)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1118))
- (-4 *4 (-346 *2)) (-4 *5 (-346 *2))))
+ (-12 (-5 *3 (-521)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1119))
+ (-4 *4 (-347 *2)) (-4 *5 (-347 *2))))
((*1 *2 *1 *3 *2)
- (-12 (|has| *1 (-6 -4230)) (-4 *1 (-262 *3 *2)) (-4 *3 (-1012))
- (-4 *2 (-1118)))))
-(((*1 *1 *2)
- (-12
- (-5 *2
- (-586
- (-2
- (|:| -2526
- (-2 (|:| |xinit| (-201)) (|:| |xend| (-201))
- (|:| |fn| (-1164 (-289 (-201))))
- (|:| |yinit| (-586 (-201))) (|:| |intvals| (-586 (-201)))
- (|:| |g| (-289 (-201))) (|:| |abserr| (-201))
- (|:| |relerr| (-201))))
- (|:| -3043
- (-2 (|:| |stiffness| (-352)) (|:| |stability| (-352))
- (|:| |expense| (-352)) (|:| |accuracy| (-352))
- (|:| |intermediateResults| (-352)))))))
- (-5 *1 (-739)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-626 (-154 (-380 (-520)))))
- (-5 *2
- (-586
- (-2 (|:| |outval| (-154 *4)) (|:| |outmult| (-520))
- (|:| |outvect| (-586 (-626 (-154 *4)))))))
- (-5 *1 (-700 *4)) (-4 *4 (-13 (-336) (-781))))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1012)) (-4 *6 (-814 *5)) (-5 *2 (-813 *5 *6 (-586 *6)))
- (-5 *1 (-815 *5 *6 *4)) (-5 *3 (-586 *6)) (-4 *4 (-561 (-820 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1012)) (-5 *2 (-586 (-268 *3))) (-5 *1 (-815 *5 *3 *4))
- (-4 *3 (-960 (-1083))) (-4 *3 (-814 *5)) (-4 *4 (-561 (-820 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1012)) (-5 *2 (-586 (-268 (-880 *3))))
- (-5 *1 (-815 *5 *3 *4)) (-4 *3 (-969))
- (-2399 (-4 *3 (-960 (-1083)))) (-4 *3 (-814 *5))
- (-4 *4 (-561 (-820 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1012)) (-5 *2 (-817 *5 *3)) (-5 *1 (-815 *5 *3 *4))
- (-2399 (-4 *3 (-960 (-1083)))) (-2399 (-4 *3 (-969)))
- (-4 *3 (-814 *5)) (-4 *4 (-561 (-820 *5))))))
-(((*1 *2 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *2 (-958))
- (-5 *1 (-687)))))
+ (-12 (|has| *1 (-6 -4234)) (-4 *1 (-263 *3 *2)) (-4 *3 (-1013))
+ (-4 *2 (-1119)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-587 (-587 (-872 (-202)))))
+ (-5 *2 (-587 (-1008 (-202)))) (-5 *1 (-857)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-2 (|:| -3689 *1) (|:| -4220 *1) (|:| |associate| *1)))
+ (-4 *1 (-513)))))
+(((*1 *2)
+ (-12 (-4 *4 (-157)) (-5 *2 (-707)) (-5 *1 (-150 *3 *4))
+ (-4 *3 (-151 *4))))
+ ((*1 *2)
+ (-12 (-14 *4 *2) (-4 *5 (-1119)) (-5 *2 (-707))
+ (-5 *1 (-214 *3 *4 *5)) (-4 *3 (-215 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *4 (-784)) (-5 *2 (-707)) (-5 *1 (-403 *3 *4))
+ (-4 *3 (-404 *4))))
+ ((*1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-505 *3)) (-4 *3 (-506))))
+ ((*1 *2) (-12 (-4 *1 (-700)) (-5 *2 (-707))))
+ ((*1 *2)
+ (-12 (-4 *4 (-157)) (-5 *2 (-707)) (-5 *1 (-733 *3 *4))
+ (-4 *3 (-734 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-513)) (-5 *2 (-707)) (-5 *1 (-917 *3 *4))
+ (-4 *3 (-918 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-157)) (-5 *2 (-707)) (-5 *1 (-921 *3 *4))
+ (-4 *3 (-922 *4))))
+ ((*1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-936 *3)) (-4 *3 (-937))))
+ ((*1 *2) (-12 (-4 *1 (-970)) (-5 *2 (-707))))
+ ((*1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-978 *3)) (-4 *3 (-979)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-707)) (-5 *1 (-418 *3)) (-4 *3 (-378)) (-4 *3 (-970))))
+ ((*1 *2)
+ (-12 (-5 *2 (-707)) (-5 *1 (-418 *3)) (-4 *3 (-378)) (-4 *3 (-970)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-559 *6)) (-4 *6 (-13 (-403 *5) (-27) (-1104)))
- (-4 *5 (-13 (-424) (-960 (-520)) (-783) (-135) (-582 (-520))))
- (-5 *2 (-1079 (-380 (-1079 *6)))) (-5 *1 (-516 *5 *6 *7))
- (-5 *3 (-1079 *6)) (-4 *7 (-1012))))
+ (-12 (-5 *4 (-560 *6)) (-4 *6 (-13 (-404 *5) (-27) (-1105)))
+ (-4 *5 (-13 (-425) (-961 (-521)) (-784) (-135) (-583 (-521))))
+ (-5 *2 (-1080 (-381 (-1080 *6)))) (-5 *1 (-517 *5 *6 *7))
+ (-5 *3 (-1080 *6)) (-4 *7 (-1013))))
((*1 *2 *1)
- (-12 (-4 *2 (-1140 *3)) (-5 *1 (-648 *3 *2)) (-4 *3 (-969))))
+ (-12 (-4 *2 (-1141 *3)) (-5 *1 (-649 *3 *2)) (-4 *3 (-970))))
((*1 *2 *1)
- (-12 (-4 *1 (-660 *3 *2)) (-4 *3 (-157)) (-4 *2 (-1140 *3))))
+ (-12 (-4 *1 (-661 *3 *2)) (-4 *3 (-157)) (-4 *2 (-1141 *3))))
((*1 *2 *3 *4 *4 *5 *6 *7 *8)
- (|partial| -12 (-5 *4 (-1079 *11)) (-5 *6 (-586 *10))
- (-5 *7 (-586 (-706))) (-5 *8 (-586 *11)) (-4 *10 (-783))
- (-4 *11 (-281)) (-4 *9 (-728)) (-4 *5 (-877 *11 *9 *10))
- (-5 *2 (-586 (-1079 *5))) (-5 *1 (-678 *9 *10 *11 *5))
- (-5 *3 (-1079 *5))))
+ (|partial| -12 (-5 *4 (-1080 *11)) (-5 *6 (-587 *10))
+ (-5 *7 (-587 (-707))) (-5 *8 (-587 *11)) (-4 *10 (-784))
+ (-4 *11 (-282)) (-4 *9 (-729)) (-4 *5 (-878 *11 *9 *10))
+ (-5 *2 (-587 (-1080 *5))) (-5 *1 (-679 *9 *10 *11 *5))
+ (-5 *3 (-1080 *5))))
((*1 *2 *1)
- (-12 (-4 *2 (-877 *3 *4 *5)) (-5 *1 (-957 *3 *4 *5 *2 *6))
- (-4 *3 (-336)) (-4 *4 (-728)) (-4 *5 (-783)) (-14 *6 (-586 *2)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-302 *3)) (-4 *3 (-336)) (-4 *3 (-341))
- (-5 *2 (-1079 *3)))))
-(((*1 *2 *3 *2)
- (|partial| -12 (-5 *2 (-1164 *4)) (-5 *3 (-626 *4)) (-4 *4 (-336))
- (-5 *1 (-607 *4))))
- ((*1 *2 *3 *2)
- (|partial| -12 (-4 *4 (-336))
- (-4 *5 (-13 (-346 *4) (-10 -7 (-6 -4230))))
- (-4 *2 (-13 (-346 *4) (-10 -7 (-6 -4230))))
- (-5 *1 (-608 *4 *5 *2 *3)) (-4 *3 (-624 *4 *5 *2))))
- ((*1 *2 *3 *2 *4 *5)
- (|partial| -12 (-5 *4 (-586 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-336))
- (-5 *1 (-750 *2 *3)) (-4 *3 (-596 *2))))
- ((*1 *2 *3)
- (-12 (-4 *2 (-13 (-336) (-10 -8 (-15 ** ($ $ (-380 (-520)))))))
- (-5 *1 (-1038 *3 *2)) (-4 *3 (-1140 *2)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-201)) (-5 *1 (-202))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-154 (-201))) (-5 *1 (-202))))
+ (-12 (-4 *2 (-878 *3 *4 *5)) (-5 *1 (-958 *3 *4 *5 *2 *6))
+ (-4 *3 (-337)) (-4 *4 (-729)) (-4 *5 (-784)) (-14 *6 (-587 *2)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-587 *6)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-513))
+ (-4 *4 (-729)) (-4 *5 (-784)) (-5 *1 (-903 *3 *4 *5 *6))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-587 *3))
+ (-5 *1 (-903 *4 *5 *6 *3)) (-4 *3 (-984 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-587 *3)) (-4 *3 (-984 *4 *5 *6)) (-4 *4 (-513))
+ (-4 *5 (-729)) (-4 *6 (-784)) (-5 *1 (-903 *4 *5 *6 *3))))
((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-404 *3 *2))
- (-4 *2 (-403 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1047))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-424)) (-4 *3 (-783)) (-4 *4 (-728))
- (-5 *1 (-912 *2 *3 *4 *5)) (-4 *5 (-877 *2 *4 *3)))))
-(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3)
- (-12 (-5 *3 (-520)) (-5 *5 (-626 (-201))) (-5 *4 (-201))
- (-5 *2 (-958)) (-5 *1 (-692)))))
+ (-12 (-5 *2 (-587 *6)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-513))
+ (-4 *4 (-729)) (-4 *5 (-784)) (-5 *1 (-903 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-587 *7) (-587 *7))) (-5 *2 (-587 *7))
+ (-4 *7 (-984 *4 *5 *6)) (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-784))
+ (-5 *1 (-903 *4 *5 *6 *7)))))
+(((*1 *1 *1) (|partial| -4 *1 (-1060))))
+(((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-337)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3))
+ (-5 *1 (-488 *3 *4 *5 *2)) (-4 *2 (-625 *3 *4 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-513)) (-4 *5 (-347 *4)) (-4 *6 (-347 *4))
+ (-4 *7 (-918 *4)) (-4 *2 (-625 *7 *8 *9))
+ (-5 *1 (-489 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-625 *4 *5 *6))
+ (-4 *8 (-347 *7)) (-4 *9 (-347 *7))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-625 *2 *3 *4)) (-4 *2 (-970))
+ (-4 *3 (-347 *2)) (-4 *4 (-347 *2)) (-4 *2 (-337))))
+ ((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-337)) (-4 *3 (-157)) (-4 *4 (-347 *3))
+ (-4 *5 (-347 *3)) (-5 *1 (-626 *3 *4 *5 *2))
+ (-4 *2 (-625 *3 *4 *5))))
+ ((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-627 *2)) (-4 *2 (-337)) (-4 *2 (-970))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-1034 *2 *3 *4 *5)) (-4 *3 (-970))
+ (-4 *4 (-215 *2 *3)) (-4 *5 (-215 *2 *3)) (-4 *3 (-337))))
+ ((*1 *2 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-784)) (-5 *1 (-1091 *3)))))
+(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5)
+ (-12 (-5 *3 (-850)) (-5 *4 (-202)) (-5 *5 (-521)) (-5 *6 (-803))
+ (-5 *2 (-1170)) (-5 *1 (-1166)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-353) (-353))) (-5 *4 (-353))
+ (-5 *2
+ (-2 (|:| -3430 *4) (|:| -2968 *4) (|:| |totalpts| (-521))
+ (|:| |success| (-108))))
+ (-5 *1 (-725)) (-5 *5 (-521)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-322)) (-4 *5 (-302 *4)) (-4 *6 (-1140 *5))
- (-5 *2 (-586 *3)) (-5 *1 (-712 *4 *5 *6 *3 *7)) (-4 *3 (-1140 *6))
- (-14 *7 (-849)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-520)) (-4 *1 (-55 *4 *5 *3)) (-4 *4 (-1118))
- (-4 *5 (-346 *4)) (-4 *3 (-346 *4)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-936)) (-5 *2 (-791)))))
-(((*1 *2)
- (-12 (-4 *3 (-512)) (-5 *2 (-586 (-626 *3))) (-5 *1 (-42 *3 *4))
- (-4 *4 (-390 *3)))))
-(((*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-520))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-706))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-849))))
+ (-12 (-5 *3 (-1084))
+ (-4 *4 (-13 (-784) (-282) (-961 (-521)) (-583 (-521)) (-135)))
+ (-5 *2 (-1 *5 *5)) (-5 *1 (-741 *4 *5))
+ (-4 *5 (-13 (-29 *4) (-1105) (-887))))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-587 *2)) (-5 *1 (-163 *2)) (-4 *2 (-282))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *3 (-587 (-587 *4))) (-5 *2 (-587 *4)) (-4 *4 (-282))
+ (-5 *1 (-163 *4))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-587 *8))
+ (-5 *4
+ (-587
+ (-2 (|:| -2470 (-627 *7)) (|:| |basisDen| *7)
+ (|:| |basisInv| (-627 *7)))))
+ (-5 *5 (-707)) (-4 *8 (-1141 *7)) (-4 *7 (-1141 *6)) (-4 *6 (-323))
+ (-5 *2
+ (-2 (|:| -2470 (-627 *7)) (|:| |basisDen| *7)
+ (|:| |basisInv| (-627 *7))))
+ (-5 *1 (-467 *6 *7 *8))))
+ ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-518)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-625 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-347 *2))
+ (-4 *4 (-347 *2)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-707)) (-4 *4 (-323)) (-5 *1 (-194 *4 *2))
+ (-4 *2 (-1141 *4)))))
+(((*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-521))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-707))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-850))))
((*1 *1 *1 *1)
- (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-520)) (-14 *3 (-706))
+ (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-521)) (-14 *3 (-707))
(-4 *4 (-157))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-201)) (-5 *1 (-143))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-849)) (-5 *1 (-143))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-202)) (-5 *1 (-143))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-850)) (-5 *1 (-143))))
((*1 *2 *1 *2)
- (-12 (-5 *2 (-871 *3)) (-4 *3 (-13 (-336) (-1104)))
- (-5 *1 (-203 *3))))
+ (-12 (-5 *2 (-872 *3)) (-4 *3 (-13 (-337) (-1105)))
+ (-5 *1 (-204 *3))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-214 *3 *2)) (-4 *2 (-1118)) (-4 *2 (-662))))
+ (-12 (-4 *1 (-215 *3 *2)) (-4 *2 (-1119)) (-4 *2 (-663))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-214 *3 *2)) (-4 *2 (-1118)) (-4 *2 (-662))))
+ (-12 (-4 *1 (-215 *3 *2)) (-4 *2 (-1119)) (-4 *2 (-663))))
((*1 *1 *2 *1)
- (-12 (-5 *1 (-268 *2)) (-4 *2 (-1024)) (-4 *2 (-1118))))
+ (-12 (-5 *1 (-269 *2)) (-4 *2 (-1025)) (-4 *2 (-1119))))
((*1 *1 *1 *2)
- (-12 (-5 *1 (-268 *2)) (-4 *2 (-1024)) (-4 *2 (-1118))))
+ (-12 (-5 *1 (-269 *2)) (-4 *2 (-1025)) (-4 *2 (-1119))))
((*1 *1 *2 *3)
- (-12 (-4 *1 (-296 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-124))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-334 *2)) (-4 *2 (-1012))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-334 *2)) (-4 *2 (-1012))))
+ (-12 (-4 *1 (-297 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-124))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-335 *2)) (-4 *2 (-1013))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-335 *2)) (-4 *2 (-1013))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-354 *3 *2)) (-4 *3 (-969)) (-4 *2 (-783))))
+ (-12 (-5 *1 (-355 *3 *2)) (-4 *3 (-970)) (-4 *2 (-784))))
((*1 *1 *2 *3)
- (-12 (-4 *1 (-355 *2 *3)) (-4 *2 (-969)) (-4 *3 (-1012))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-359 *2)) (-4 *2 (-1012))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-359 *2)) (-4 *2 (-1012))))
+ (-12 (-4 *1 (-356 *2 *3)) (-4 *2 (-970)) (-4 *3 (-1013))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-360 *2)) (-4 *2 (-1013))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-360 *2)) (-4 *2 (-1013))))
((*1 *1 *2 *1)
- (-12 (-14 *3 (-586 (-1083))) (-4 *4 (-157))
- (-4 *6 (-214 (-3474 *3) (-706)))
+ (-12 (-14 *3 (-587 (-1084))) (-4 *4 (-157))
+ (-4 *6 (-215 (-3475 *3) (-707)))
(-14 *7
- (-1 (-108) (-2 (|:| -2716 *5) (|:| -2647 *6))
- (-2 (|:| -2716 *5) (|:| -2647 *6))))
- (-5 *1 (-433 *3 *4 *5 *6 *7 *2)) (-4 *5 (-783))
- (-4 *2 (-877 *4 *6 (-793 *3)))))
+ (-1 (-108) (-2 (|:| -2716 *5) (|:| -2997 *6))
+ (-2 (|:| -2716 *5) (|:| -2997 *6))))
+ (-5 *1 (-434 *3 *4 *5 *6 *7 *2)) (-4 *5 (-784))
+ (-4 *2 (-878 *4 *6 (-794 *3)))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-442 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23))))
+ (-12 (-4 *1 (-443 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-442 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23))))
+ (-12 (-4 *1 (-443 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23))))
((*1 *1 *1 *1)
- (-12 (-4 *2 (-336)) (-4 *3 (-728)) (-4 *4 (-783))
- (-5 *1 (-472 *2 *3 *4 *5)) (-4 *5 (-877 *2 *3 *4))))
+ (-12 (-4 *2 (-337)) (-4 *3 (-729)) (-4 *4 (-784))
+ (-5 *1 (-473 *2 *3 *4 *5)) (-4 *5 (-878 *2 *3 *4))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1164 *3)) (-4 *3 (-322)) (-5 *1 (-490 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-496)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-546 *3)) (-4 *3 (-969))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-546 *2)) (-4 *2 (-969))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-546 *2)) (-4 *2 (-969))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-588 *2)) (-4 *2 (-976))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-615 *2)) (-4 *2 (-783))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1012))
- (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-1 *7 *5))
- (-5 *1 (-621 *5 *6 *7))))
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-323)) (-5 *1 (-491 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-497)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-547 *3)) (-4 *3 (-970))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-547 *2)) (-4 *2 (-970))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-970))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-589 *2)) (-4 *2 (-977))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-616 *2)) (-4 *2 (-784))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1013))
+ (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-1 *7 *5))
+ (-5 *1 (-622 *5 *6 *7))))
((*1 *2 *2 *1)
- (-12 (-4 *1 (-624 *3 *2 *4)) (-4 *3 (-969)) (-4 *2 (-346 *3))
- (-4 *4 (-346 *3))))
+ (-12 (-4 *1 (-625 *3 *2 *4)) (-4 *3 (-970)) (-4 *2 (-347 *3))
+ (-4 *4 (-347 *3))))
((*1 *2 *1 *2)
- (-12 (-4 *1 (-624 *3 *4 *2)) (-4 *3 (-969)) (-4 *4 (-346 *3))
- (-4 *2 (-346 *3))))
+ (-12 (-4 *1 (-625 *3 *4 *2)) (-4 *3 (-970)) (-4 *4 (-347 *3))
+ (-4 *2 (-347 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-520)) (-4 *1 (-624 *3 *4 *5)) (-4 *3 (-969))
- (-4 *4 (-346 *3)) (-4 *5 (-346 *3))))
+ (-12 (-5 *2 (-521)) (-4 *1 (-625 *3 *4 *5)) (-4 *3 (-970))
+ (-4 *4 (-347 *3)) (-4 *5 (-347 *3))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-624 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-346 *2))
- (-4 *4 (-346 *2))))
+ (-12 (-4 *1 (-625 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-347 *2))
+ (-4 *4 (-347 *2))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-624 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-346 *2))
- (-4 *4 (-346 *2))))
+ (-12 (-4 *1 (-625 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-347 *2))
+ (-4 *4 (-347 *2))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-624 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-346 *2))
- (-4 *4 (-346 *2))))
- ((*1 *1 *1 *1) (-4 *1 (-656)))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-755 *2)) (-4 *2 (-783))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-755 *2)) (-4 *2 (-783))))
- ((*1 *1 *1 *1) (-5 *1 (-791)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-1012))))
+ (-12 (-4 *1 (-625 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-347 *2))
+ (-4 *4 (-347 *2))))
+ ((*1 *1 *1 *1) (-4 *1 (-657)))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-756 *2)) (-4 *2 (-784))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-756 *2)) (-4 *2 (-784))))
+ ((*1 *1 *1 *1) (-5 *1 (-792)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-821 *2)) (-4 *2 (-1013))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-1164 *4)) (-4 *4 (-1140 *3)) (-4 *3 (-512))
- (-5 *1 (-895 *3 *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-975 *2)) (-4 *2 (-976))))
- ((*1 *1 *1 *1) (-4 *1 (-1024)))
+ (-12 (-5 *2 (-1165 *4)) (-4 *4 (-1141 *3)) (-4 *3 (-513))
+ (-5 *1 (-896 *3 *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-976 *2)) (-4 *2 (-977))))
+ ((*1 *1 *1 *1) (-4 *1 (-1025)))
((*1 *2 *2 *1)
- (-12 (-4 *1 (-1033 *3 *4 *2 *5)) (-4 *4 (-969)) (-4 *2 (-214 *3 *4))
- (-4 *5 (-214 *3 *4))))
+ (-12 (-4 *1 (-1034 *3 *4 *2 *5)) (-4 *4 (-970)) (-4 *2 (-215 *3 *4))
+ (-4 *5 (-215 *3 *4))))
((*1 *2 *1 *2)
- (-12 (-4 *1 (-1033 *3 *4 *5 *2)) (-4 *4 (-969)) (-4 *5 (-214 *3 *4))
- (-4 *2 (-214 *3 *4))))
+ (-12 (-4 *1 (-1034 *3 *4 *5 *2)) (-4 *4 (-970)) (-4 *5 (-215 *3 *4))
+ (-4 *2 (-215 *3 *4))))
((*1 *1 *2 *1)
- (-12 (-4 *3 (-969)) (-4 *4 (-783)) (-5 *1 (-1036 *3 *4 *2))
- (-4 *2 (-877 *3 (-492 *4) *4))))
+ (-12 (-4 *3 (-970)) (-4 *4 (-784)) (-5 *1 (-1037 *3 *4 *2))
+ (-4 *2 (-878 *3 (-493 *4) *4))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-969)) (-5 *1 (-1068 *3))))
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-5 *1 (-1069 *3))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-969)) (-5 *1 (-1068 *3))))
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-5 *1 (-1069 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-969)) (-5 *1 (-1068 *3))))
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-5 *1 (-1069 *3))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-871 (-201))) (-5 *3 (-201)) (-5 *1 (-1115))))
+ (-12 (-5 *2 (-872 (-202))) (-5 *3 (-202)) (-5 *1 (-1116))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1162 *2)) (-4 *2 (-1118)) (-4 *2 (-662))))
+ (-12 (-4 *1 (-1163 *2)) (-4 *2 (-1119)) (-4 *2 (-663))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-1162 *2)) (-4 *2 (-1118)) (-4 *2 (-662))))
+ (-12 (-4 *1 (-1163 *2)) (-4 *2 (-1119)) (-4 *2 (-663))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-520)) (-4 *1 (-1162 *3)) (-4 *3 (-1118)) (-4 *3 (-21))))
+ (-12 (-5 *2 (-521)) (-4 *1 (-1163 *3)) (-4 *3 (-1119)) (-4 *3 (-21))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-1179 *2 *3)) (-4 *2 (-783)) (-4 *3 (-969))))
+ (-12 (-4 *1 (-1180 *2 *3)) (-4 *2 (-784)) (-4 *3 (-970))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1179 *3 *2)) (-4 *3 (-783)) (-4 *2 (-969))))
+ (-12 (-4 *1 (-1180 *3 *2)) (-4 *3 (-784)) (-4 *2 (-970))))
((*1 *1 *1 *2)
- (-12 (-5 *1 (-1185 *2 *3)) (-4 *2 (-969)) (-4 *3 (-779)))))
+ (-12 (-5 *1 (-1186 *2 *3)) (-4 *2 (-970)) (-4 *3 (-780)))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1118))
- (-4 *4 (-346 *3)) (-4 *5 (-346 *3))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1119))
+ (-4 *4 (-347 *3)) (-4 *5 (-347 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4230)) (-4 *1 (-459 *3))
- (-4 *3 (-1118)))))
-(((*1 *2 *1)
- (-12
- (-5 *2
- (-586
- (-2 (|:| |scalar| (-380 (-520))) (|:| |coeff| (-1079 *3))
- (|:| |logand| (-1079 *3)))))
- (-5 *1 (-537 *3)) (-4 *3 (-336)))))
+ (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4234)) (-4 *1 (-460 *3))
+ (-4 *3 (-1119)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784))
+ (-4 *3 (-984 *5 *6 *7))
+ (-5 *2 (-587 (-2 (|:| |val| (-587 *3)) (|:| -1884 *4))))
+ (-5 *1 (-990 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1118)) (-4 *4 (-346 *3))
- (-4 *5 (-346 *3)) (-5 *2 (-586 *3))))
+ (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-347 *3))
+ (-4 *5 (-347 *3)) (-5 *2 (-587 *3))))
((*1 *2 *1)
- (-12 (|has| *1 (-6 -4229)) (-4 *1 (-459 *3)) (-4 *3 (-1118))
- (-5 *2 (-586 *3)))))
-(((*1 *1 *1) (-12 (-4 *1 (-220 *2)) (-4 *2 (-1118))))
+ (-12 (|has| *1 (-6 -4233)) (-4 *1 (-460 *3)) (-4 *3 (-1119))
+ (-5 *2 (-587 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-221 *2)) (-4 *2 (-1119))))
((*1 *1 *1)
- (-12 (-4 *1 (-983 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-728))
- (-4 *4 (-783))))
- ((*1 *1 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1118)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
- (-12 (-5 *3 (-520)) (-5 *4 (-108)) (-5 *5 (-626 (-201)))
- (-5 *2 (-958)) (-5 *1 (-691)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-626 *3)) (-4 *3 (-281)) (-5 *1 (-636 *3)))))
+ (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729))
+ (-4 *4 (-784))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1119)))))
+(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7)
+ (-12 (-5 *4 (-521)) (-5 *5 (-627 (-202)))
+ (-5 *6 (-3 (|:| |fn| (-362)) (|:| |fp| (-87 G))))
+ (-5 *7 (-3 (|:| |fn| (-362)) (|:| |fp| (-84 FCN)))) (-5 *3 (-202))
+ (-5 *2 (-959)) (-5 *1 (-686)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-381 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1141 *5))
+ (-5 *1 (-664 *5 *2)) (-4 *5 (-337)))))
+(((*1 *2 *3) (-12 (-5 *2 (-587 (-521))) (-5 *1 (-419)) (-5 *3 (-521)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-627 *7)) (-5 *3 (-587 *7)) (-4 *7 (-878 *4 *6 *5))
+ (-4 *4 (-13 (-282) (-135))) (-4 *5 (-13 (-784) (-562 (-1084))))
+ (-4 *6 (-729)) (-5 *1 (-853 *4 *5 *6 *7)))))
+(((*1 *2 *1)
+ (-12 (-4 *4 (-1013)) (-5 *2 (-818 *3 *5)) (-5 *1 (-814 *3 *4 *5))
+ (-4 *3 (-1013)) (-4 *5 (-607 *4)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-108)) (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521))))))
+(((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-707)) (-4 *5 (-337)) (-5 *2 (-381 *6))
+ (-5 *1 (-796 *5 *4 *6)) (-4 *4 (-1156 *5)) (-4 *6 (-1141 *5))))
+ ((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-707)) (-5 *4 (-1157 *5 *6 *7)) (-4 *5 (-337))
+ (-14 *6 (-1084)) (-14 *7 *5) (-5 *2 (-381 (-1138 *6 *5)))
+ (-5 *1 (-797 *5 *6 *7))))
+ ((*1 *2 *3 *3 *4)
+ (|partial| -12 (-5 *3 (-707)) (-5 *4 (-1157 *5 *6 *7)) (-4 *5 (-337))
+ (-14 *6 (-1084)) (-14 *7 *5) (-5 *2 (-381 (-1138 *6 *5)))
+ (-5 *1 (-797 *5 *6 *7)))))
+(((*1 *2 *3 *1)
+ (-12 (|has| *1 (-6 -4233)) (-4 *1 (-554 *4 *3)) (-4 *4 (-1013))
+ (-4 *3 (-1119)) (-4 *3 (-1013)) (-5 *2 (-108)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-902 *4 *5 *6 *3)) (-4 *4 (-970)) (-4 *5 (-729))
+ (-4 *6 (-784)) (-4 *3 (-984 *4 *5 *6)) (-4 *4 (-513))
+ (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1065 (-2 (|:| |k| (-521)) (|:| |c| *3))))
+ (-5 *1 (-546 *3)) (-4 *3 (-970)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-587 *6)) (-4 *6 (-784)) (-4 *4 (-337)) (-4 *5 (-729))
+ (-5 *2
+ (-2 (|:| |mval| (-627 *4)) (|:| |invmval| (-627 *4))
+ (|:| |genIdeal| (-473 *4 *5 *6 *7))))
+ (-5 *1 (-473 *4 *5 *6 *7)) (-4 *7 (-878 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-627 (-381 (-881 *4)))) (-4 *4 (-425))
+ (-5 *2 (-587 (-3 (-381 (-881 *4)) (-1074 (-1084) (-881 *4)))))
+ (-5 *1 (-267 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-900)) (-5 *2 (-1008 (-202))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-513)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2114 *4)))
+ (-5 *1 (-896 *4 *3)) (-4 *3 (-1141 *4)))))
+(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-440))))
+ ((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-440)))))
+(((*1 *2 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959))
+ (-5 *1 (-684)))))
+(((*1 *2 *3) (-12 (-5 *3 (-381 (-521))) (-5 *2 (-202)) (-5 *1 (-280)))))
(((*1 *2)
- (|partial| -12 (-4 *3 (-512)) (-4 *3 (-157))
- (-5 *2 (-2 (|:| |particular| *1) (|:| -1831 (-586 *1))))
- (-4 *1 (-340 *3))))
+ (-12 (-4 *3 (-425)) (-4 *4 (-729)) (-4 *5 (-784))
+ (-4 *6 (-984 *3 *4 *5)) (-5 *2 (-1170))
+ (-5 *1 (-990 *3 *4 *5 *6 *7)) (-4 *7 (-989 *3 *4 *5 *6))))
((*1 *2)
- (|partial| -12
- (-5 *2
- (-2 (|:| |particular| (-425 *3 *4 *5 *6))
- (|:| -1831 (-586 (-425 *3 *4 *5 *6)))))
- (-5 *1 (-425 *3 *4 *5 *6)) (-4 *3 (-157)) (-14 *4 (-849))
- (-14 *5 (-586 (-1083))) (-14 *6 (-1164 (-626 *3))))))
-(((*1 *2 *1)
- (-12 (-4 *4 (-1012)) (-5 *2 (-817 *3 *5)) (-5 *1 (-813 *3 *4 *5))
- (-4 *3 (-1012)) (-4 *5 (-606 *4)))))
+ (-12 (-4 *3 (-425)) (-4 *4 (-729)) (-4 *5 (-784))
+ (-4 *6 (-984 *3 *4 *5)) (-5 *2 (-1170))
+ (-5 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *7 (-989 *3 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-849)) (-5 *2 (-1079 *4)) (-5 *1 (-330 *4))
- (-4 *4 (-322)))))
+ (-12 (-4 *4 (-13 (-337) (-10 -8 (-15 ** ($ $ (-381 (-521)))))))
+ (-5 *2 (-587 *4)) (-5 *1 (-1039 *3 *4)) (-4 *3 (-1141 *4))))
+ ((*1 *2 *3 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-337) (-10 -8 (-15 ** ($ $ (-381 (-521)))))))
+ (-5 *2 (-587 *3)) (-5 *1 (-1039 *4 *3)) (-4 *4 (-1141 *3)))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *6) (|:| -1925 *6) (|:| |sol?| (-108))) (-521)
+ *6))
+ (-4 *6 (-337)) (-4 *7 (-1141 *6))
+ (-5 *2
+ (-3 (-2 (|:| |answer| (-381 *7)) (|:| |a0| *6))
+ (-2 (|:| -3100 (-381 *7)) (|:| |coeff| (-381 *7))) "failed"))
+ (-5 *1 (-531 *6 *7)) (-5 *3 (-381 *7)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-586 (-520))) (-5 *2 (-520)) (-5 *1 (-456 *4))
- (-4 *4 (-1140 *2)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-380 *6)) (-4 *5 (-1122)) (-4 *6 (-1140 *5))
- (-5 *2 (-2 (|:| -2647 (-706)) (|:| -2972 *3) (|:| |radicand| *6)))
- (-5 *1 (-136 *5 *6 *7)) (-5 *4 (-706)) (-4 *7 (-1140 *3)))))
-(((*1 *2 *1 *2)
- (-12 (|has| *1 (-6 -4230)) (-4 *1 (-1152 *2)) (-4 *2 (-1118)))))
-(((*1 *1 *1) (-4 *1 (-572)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-573 *3 *2))
- (-4 *2 (-13 (-403 *3) (-926) (-1104))))))
+ (-12 (-5 *2 (-1 (-872 *3) (-872 *3))) (-5 *1 (-160 *3))
+ (-4 *3 (-13 (-337) (-1105) (-927))))))
(((*1 *2 *1)
- (-12
- (-5 *2
- (-1164
- (-2 (|:| |scaleX| (-201)) (|:| |scaleY| (-201))
- (|:| |deltaX| (-201)) (|:| |deltaY| (-201)) (|:| -4129 (-520))
- (|:| -3959 (-520)) (|:| |spline| (-520)) (|:| -2815 (-520))
- (|:| |axesColor| (-802)) (|:| -1967 (-520))
- (|:| |unitsColor| (-802)) (|:| |showing| (-520)))))
- (-5 *1 (-1165)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-802)) (-5 *3 (-586 (-238))) (-5 *1 (-236)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-586 *3)) (-5 *1 (-888 *3)) (-4 *3 (-505)))))
-(((*1 *2 *2) (-12 (-5 *2 (-289 (-201))) (-5 *1 (-188)))))
-(((*1 *2 *1) (-12 (-4 *1 (-899)) (-5 *2 (-1007 (-201))))))
-(((*1 *1 *1) (-12 (-4 *1 (-919 *2)) (-4 *2 (-1118)))))
+ (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970))
+ (-5 *2 (-587 (-587 (-587 (-872 *3))))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-586 (-1079 (-520)))) (-5 *1 (-169)) (-5 *3 (-520)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1118)) (-5 *1 (-1042 *4 *2))
- (-4 *2 (-13 (-553 (-520) *4) (-10 -7 (-6 -4229) (-6 -4230))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-783)) (-4 *3 (-1118)) (-5 *1 (-1042 *3 *2))
- (-4 *2 (-13 (-553 (-520) *3) (-10 -7 (-6 -4229) (-6 -4230)))))))
-(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3)
- (-12 (-5 *6 (-586 (-108))) (-5 *7 (-626 (-201)))
- (-5 *8 (-626 (-520))) (-5 *3 (-520)) (-5 *4 (-201)) (-5 *5 (-108))
- (-5 *2 (-958)) (-5 *1 (-690)))))
+ (-12
+ (-5 *3
+ (-587
+ (-2 (|:| -3162 (-707))
+ (|:| |eqns|
+ (-587
+ (-2 (|:| |det| *7) (|:| |rows| (-587 (-521)))
+ (|:| |cols| (-587 (-521))))))
+ (|:| |fgb| (-587 *7)))))
+ (-4 *7 (-878 *4 *6 *5)) (-4 *4 (-13 (-282) (-135)))
+ (-4 *5 (-13 (-784) (-562 (-1084)))) (-4 *6 (-729)) (-5 *2 (-707))
+ (-5 *1 (-853 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-347 *2)) (-4 *5 (-347 *2)) (-4 *2 (-337))
+ (-5 *1 (-488 *2 *4 *5 *3)) (-4 *3 (-625 *2 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-625 *2 *3 *4)) (-4 *3 (-347 *2)) (-4 *4 (-347 *2))
+ (|has| *2 (-6 (-4235 "*"))) (-4 *2 (-970))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-347 *2)) (-4 *5 (-347 *2)) (-4 *2 (-157))
+ (-5 *1 (-626 *2 *4 *5 *3)) (-4 *3 (-625 *2 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1034 *3 *2 *4 *5)) (-4 *4 (-215 *3 *2))
+ (-4 *5 (-215 *3 *2)) (|has| *2 (-6 (-4235 "*"))) (-4 *2 (-970)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-156)))))
+(((*1 *2 *1) (-12 (-4 *1 (-883)) (-5 *2 (-1008 (-202)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-900)) (-5 *2 (-1008 (-202))))))
(((*1 *2 *2)
- (-12 (-5 *2 (-871 *3)) (-4 *3 (-13 (-336) (-1104) (-926)))
- (-5 *1 (-160 *3)))))
+ (-12 (-4 *3 (-13 (-784) (-425))) (-5 *1 (-1111 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-1105))))))
+(((*1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-440))))
+ ((*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-440))))
+ ((*1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-856)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-728)) (-4 *2 (-970))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *2 (-970)) (-5 *1 (-49 *2 *3)) (-14 *3 (-587 (-1084)))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-587 (-850))) (-4 *2 (-337)) (-5 *1 (-140 *4 *2 *5))
+ (-14 *4 (-850)) (-14 *5 (-919 *4 *2))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-290 *3)) (-5 *1 (-200 *3 *4))
+ (-4 *3 (-13 (-970) (-784))) (-14 *4 (-587 (-1084)))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-297 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-124))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-356 *2 *3)) (-4 *3 (-1013)) (-4 *2 (-970))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-521)) (-4 *2 (-513)) (-5 *1 (-568 *2 *4))
+ (-4 *4 (-1141 *2))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-707)) (-4 *1 (-646 *2)) (-4 *2 (-970))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *2 (-970)) (-5 *1 (-672 *2 *3)) (-4 *3 (-663))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-587 *5)) (-5 *3 (-587 (-707))) (-4 *1 (-677 *4 *5))
+ (-4 *4 (-970)) (-4 *5 (-784))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-707)) (-4 *1 (-677 *4 *2)) (-4 *4 (-970))
+ (-4 *2 (-784))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-707)) (-4 *1 (-786 *2)) (-4 *2 (-970))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-587 *6)) (-5 *3 (-587 (-707))) (-4 *1 (-878 *4 *5 *6))
+ (-4 *4 (-970)) (-4 *5 (-729)) (-4 *6 (-784))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-707)) (-4 *1 (-878 *4 *5 *2)) (-4 *4 (-970))
+ (-4 *5 (-729)) (-4 *2 (-784))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-707)) (-4 *2 (-878 *4 (-493 *5) *5))
+ (-5 *1 (-1037 *4 *5 *2)) (-4 *4 (-970)) (-4 *5 (-784))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-707)) (-5 *2 (-881 *4)) (-5 *1 (-1114 *4))
+ (-4 *4 (-970)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-587 *6)) (-4 *1 (-902 *3 *4 *5 *6)) (-4 *3 (-970))
+ (-4 *4 (-729)) (-4 *5 (-784)) (-4 *6 (-984 *3 *4 *5))
+ (-4 *3 (-513)))))
+(((*1 *2) (-12 (-5 *2 (-353)) (-5 *1 (-963)))))
(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-268 *2)) (-4 *2 (-662)) (-4 *2 (-1118)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-108) *8)) (-4 *8 (-983 *5 *6 *7)) (-4 *5 (-512))
- (-4 *6 (-728)) (-4 *7 (-783))
- (-5 *2 (-2 (|:| |goodPols| (-586 *8)) (|:| |badPols| (-586 *8))))
- (-5 *1 (-902 *5 *6 *7 *8)) (-5 *4 (-586 *8)))))
-(((*1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-695)))))
+ (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729))
+ (-4 *4 (-784))))
+ ((*1 *1) (-4 *1 (-1060))))
+(((*1 *2 *3 *4 *5 *3 *6 *3)
+ (-12 (-5 *3 (-521)) (-5 *5 (-154 (-202))) (-5 *6 (-1067))
+ (-5 *4 (-202)) (-5 *2 (-959)) (-5 *1 (-695)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *2 (-1013)) (-5 *1 (-1097 *3 *2)) (-4 *3 (-1013)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1112 *3 *4 *5 *6)) (-4 *3 (-512)) (-4 *4 (-728))
- (-4 *5 (-783)) (-4 *6 (-983 *3 *4 *5)) (-5 *2 (-108))))
+ (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013))
+ (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-108)))))
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1 *8 *8))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *7) (|:| -1925 *7) (|:| |sol?| (-108)))
+ (-521) *7))
+ (-5 *6 (-587 (-381 *8))) (-4 *7 (-337)) (-4 *8 (-1141 *7))
+ (-5 *3 (-381 *8))
+ (-5 *2
+ (-2
+ (|:| |answer|
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-587 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (|:| |a0| *7)))
+ (-5 *1 (-531 *7 *8)))))
+(((*1 *2)
+ (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3))
+ (-4 *5 (-1141 (-381 *4))) (-5 *2 (-108)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970)) (-5 *2 (-108)))))
+(((*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-132)))))
+(((*1 *2 *1) (-12 (-4 *1 (-883)) (-5 *2 (-1008 (-202)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-900)) (-5 *2 (-1008 (-202))))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-108)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-587 (-587 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
+ (-5 *4 (-587 (-3 (|:| |array| (-587 *3)) (|:| |scalar| (-1084)))))
+ (-5 *6 (-587 (-1084))) (-5 *3 (-1084)) (-5 *2 (-1017))
+ (-5 *1 (-371))))
+ ((*1 *2 *3 *4 *5 *6 *3)
+ (-12 (-5 *5 (-587 (-587 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
+ (-5 *4 (-587 (-3 (|:| |array| (-587 *3)) (|:| |scalar| (-1084)))))
+ (-5 *6 (-587 (-1084))) (-5 *3 (-1084)) (-5 *2 (-1017))
+ (-5 *1 (-371))))
+ ((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *4 (-587 (-1084))) (-5 *5 (-1087)) (-5 *3 (-1084))
+ (-5 *2 (-1017)) (-5 *1 (-371)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-587 *1)) (-4 *1 (-984 *4 *5 *6)) (-4 *4 (-970))
+ (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-108))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-984 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-729))
+ (-4 *5 (-784)) (-5 *2 (-108))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1113 *3 *4 *5 *6)) (-4 *3 (-513)) (-4 *4 (-729))
+ (-4 *5 (-784)) (-4 *6 (-984 *3 *4 *5)) (-5 *2 (-108))))
((*1 *2 *3 *1)
- (-12 (-4 *1 (-1112 *4 *5 *6 *3)) (-4 *4 (-512)) (-4 *5 (-728))
- (-4 *6 (-783)) (-4 *3 (-983 *4 *5 *6)) (-5 *2 (-108)))))
-(((*1 *2 *1) (-12 (-5 *2 (-586 (-586 (-201)))) (-5 *1 (-854)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-979 (-947 *4) (-1079 (-947 *4)))) (-5 *3 (-791))
- (-5 *1 (-947 *4)) (-4 *4 (-13 (-781) (-336) (-945))))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-505)) (-5 *2 (-108)))))
-(((*1 *2 *1) (-12 (-4 *1 (-882)) (-5 *2 (-1007 (-201)))))
- ((*1 *2 *1) (-12 (-4 *1 (-899)) (-5 *2 (-1007 (-201))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-512)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2413 *4)))
- (-5 *1 (-895 *4 *3)) (-4 *3 (-1140 *4)))))
-(((*1 *2 *2) (|partial| -12 (-5 *1 (-514 *2)) (-4 *2 (-505)))))
-(((*1 *2 *3 *3 *1)
- (-12 (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783))
- (-4 *3 (-983 *4 *5 *6)) (-5 *2 (-3 *3 (-586 *1)))
- (-4 *1 (-988 *4 *5 *6 *3)))))
-(((*1 *1 *1) (|partial| -4 *1 (-133))) ((*1 *1 *1) (-4 *1 (-322)))
- ((*1 *1 *1) (|partial| -12 (-4 *1 (-133)) (-4 *1 (-837)))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-849)) (-5 *1 (-1013 *3 *4)) (-14 *3 *2)
- (-14 *4 *2))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-983 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-728))
- (-4 *4 (-783))))
- ((*1 *1) (-4 *1 (-1059))))
+ (-12 (-4 *1 (-1113 *4 *5 *6 *3)) (-4 *4 (-513)) (-4 *5 (-729))
+ (-4 *6 (-784)) (-4 *3 (-984 *4 *5 *6)) (-5 *2 (-108)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2))
- (-4 *2 (-13 (-403 *3) (-926))))))
+ (-12 (-4 *3 (-13 (-784) (-425))) (-5 *1 (-1111 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-1105))))))
+(((*1 *2 *3 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-685)))))
+(((*1 *2 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-157)))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3)
+ (-12 (-5 *3 (-521)) (-5 *5 (-108)) (-5 *6 (-627 (-202)))
+ (-5 *4 (-202)) (-5 *2 (-959)) (-5 *1 (-692)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1113 *3 *4 *5 *6)) (-4 *3 (-513)) (-4 *4 (-729))
+ (-4 *5 (-784)) (-4 *6 (-984 *3 *4 *5)) (-4 *5 (-342))
+ (-5 *2 (-707)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-586 (-2 (|:| -3429 *4) (|:| -1785 (-520)))))
- (-4 *4 (-1012)) (-5 *2 (-1 *4)) (-5 *1 (-941 *4)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-717 *2)) (-4 *2 (-969)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 (-871 (-201)) (-871 (-201)))) (-5 *1 (-238))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1164 *1)) (-4 *1 (-302 *4)) (-4 *4 (-336))
- (-5 *2 (-626 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-302 *3)) (-4 *3 (-336)) (-5 *2 (-1164 *3))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-1164 *1)) (-4 *1 (-340 *4)) (-4 *4 (-157))
- (-5 *2 (-626 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1164 *1)) (-4 *1 (-340 *4)) (-4 *4 (-157))
- (-5 *2 (-1164 *4))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-1164 *1)) (-4 *1 (-343 *4 *5)) (-4 *4 (-157))
- (-4 *5 (-1140 *4)) (-5 *2 (-626 *4))))
+ (-12 (-4 *1 (-849)) (-5 *2 (-2 (|:| -2973 (-587 *1)) (|:| -1383 *1)))
+ (-5 *3 (-587 *1)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-353)) (-5 *1 (-982)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-850)) (-5 *3 (-587 (-239))) (-5 *1 (-237))))
+ ((*1 *1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-239)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1084)) (-4 *5 (-562 (-821 (-521))))
+ (-4 *5 (-815 (-521)))
+ (-4 *5 (-13 (-784) (-961 (-521)) (-425) (-583 (-521))))
+ (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
+ (-5 *1 (-524 *5 *3)) (-4 *3 (-573))
+ (-4 *3 (-13 (-27) (-1105) (-404 *5))))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-521)) (-5 *1 (-392 *2)) (-4 *2 (-513)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-151 *3)) (-4 *3 (-157)) (-4 *3 (-979)) (-4 *3 (-1105))
+ (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))))
+(((*1 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203))))
+ ((*1 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-405 *3 *2))
+ (-4 *2 (-404 *3))))
+ ((*1 *1 *1) (-4 *1 (-1048))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-627 *3)) (-4 *3 (-970)) (-5 *1 (-628 *3))))
+ ((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-627 *3)) (-4 *3 (-970)) (-5 *1 (-628 *3)))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-627 *2)) (-5 *4 (-707))
+ (-4 *2 (-13 (-282) (-10 -8 (-15 -3358 ((-392 $) $)))))
+ (-4 *5 (-1141 *2)) (-5 *1 (-468 *2 *5 *6)) (-4 *6 (-383 *2 *5)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-707)) (-5 *2 (-1138 *5 *4)) (-5 *1 (-1082 *4 *5 *6))
+ (-4 *4 (-970)) (-14 *5 (-1084)) (-14 *6 *4)))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-1164 *1)) (-4 *1 (-343 *4 *5)) (-4 *4 (-157))
- (-4 *5 (-1140 *4)) (-5 *2 (-1164 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1164 *1)) (-4 *1 (-382 *4 *5)) (-4 *4 (-157))
- (-4 *5 (-1140 *4)) (-5 *2 (-626 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-157)) (-4 *4 (-1140 *3))
- (-5 *2 (-1164 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1164 *1)) (-4 *1 (-390 *4)) (-4 *4 (-157))
- (-5 *2 (-626 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-390 *3)) (-4 *3 (-157)) (-5 *2 (-1164 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-586 (-626 *5))) (-5 *3 (-626 *5)) (-4 *5 (-336))
- (-5 *2 (-1164 *5)) (-5 *1 (-1000 *5)))))
+ (-12 (-5 *3 (-707)) (-5 *2 (-1138 *5 *4)) (-5 *1 (-1157 *4 *5 *6))
+ (-4 *4 (-970)) (-14 *5 (-1084)) (-14 *6 *4))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-201)) (-5 *4 (-520)) (-5 *2 (-958)) (-5 *1 (-694)))))
-(((*1 *2 *1) (-12 (-5 *2 (-706)) (-5 *1 (-833 *3)) (-4 *3 (-1012)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-586 *6)) (-4 *6 (-877 *3 *4 *5)) (-4 *3 (-424))
- (-4 *4 (-728)) (-4 *5 (-783)) (-5 *1 (-421 *3 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-4 *1 (-882)) (-5 *2 (-1007 (-201)))))
- ((*1 *2 *1) (-12 (-4 *1 (-899)) (-5 *2 (-1007 (-201))))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-108)))))
+ (-12 (-5 *3 (-587 (-1 (-108) *8))) (-4 *8 (-984 *5 *6 *7))
+ (-4 *5 (-513)) (-4 *6 (-729)) (-4 *7 (-784))
+ (-5 *2 (-2 (|:| |goodPols| (-587 *8)) (|:| |badPols| (-587 *8))))
+ (-5 *1 (-903 *5 *6 *7 *8)) (-5 *4 (-587 *8)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-626 *1)) (-4 *1 (-322)) (-5 *2 (-1164 *1))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-626 *1)) (-4 *1 (-133)) (-4 *1 (-837))
- (-5 *2 (-1164 *1)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-706)) (-5 *1 (-1072 *3 *4)) (-14 *3 (-849))
- (-4 *4 (-969)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1016)) (-5 *1 (-303)))))
-(((*1 *2 *3) (-12 (-5 *3 (-706)) (-5 *2 (-1169)) (-5 *1 (-352))))
- ((*1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-352)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-849)) (-5 *3 (-586 (-238))) (-5 *1 (-236))))
- ((*1 *1 *2) (-12 (-5 *2 (-849)) (-5 *1 (-238)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-440)) (-5 *4 (-849)) (-5 *2 (-1169)) (-5 *1 (-1165)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-586 *4)) (-4 *4 (-1012)) (-4 *4 (-1118)) (-5 *2 (-108))
- (-5 *1 (-1064 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1169)) (-5 *1 (-1046))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-586 (-791))) (-5 *2 (-1169)) (-5 *1 (-1046)))))
+ (-12 (-5 *3 (-821 *4)) (-4 *4 (-1013)) (-5 *2 (-587 *5))
+ (-5 *1 (-819 *4 *5)) (-4 *5 (-1119)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-587 *2)) (-4 *2 (-984 *4 *5 *6)) (-4 *4 (-513))
+ (-4 *5 (-729)) (-4 *6 (-784)) (-5 *1 (-903 *4 *5 *6 *2)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-706)) (-5 *1 (-417 *3)) (-4 *3 (-377)) (-4 *3 (-969))))
+ (-12 (-5 *2 (-587 *6)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-513))
+ (-4 *4 (-729)) (-4 *5 (-784)) (-5 *1 (-903 *3 *4 *5 *6)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-401 *3 *2)) (-4 *3 (-13 (-157) (-37 (-381 (-521)))))
+ (-4 *2 (-13 (-784) (-21))))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1044 (-202))) (-5 *3 (-587 (-239))) (-5 *1 (-1167))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1044 (-202))) (-5 *3 (-1067)) (-5 *1 (-1167))))
+ ((*1 *1 *1) (-5 *1 (-1167))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-108)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))))
+(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3)
+ (-12 (-5 *4 (-587 (-108))) (-5 *5 (-627 (-202)))
+ (-5 *6 (-627 (-521))) (-5 *7 (-202)) (-5 *3 (-521)) (-5 *2 (-959))
+ (-5 *1 (-691)))))
+(((*1 *2)
+ (-12
+ (-5 *2 (-2 (|:| -2195 (-587 (-1084))) (|:| -3984 (-587 (-1084)))))
+ (-5 *1 (-1121)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-337)) (-5 *1 (-260 *3 *2)) (-4 *2 (-1156 *3)))))
+(((*1 *2)
+ (|partial| -12 (-4 *3 (-513)) (-4 *3 (-157))
+ (-5 *2 (-2 (|:| |particular| *1) (|:| -2470 (-587 *1))))
+ (-4 *1 (-341 *3))))
((*1 *2)
- (-12 (-5 *2 (-706)) (-5 *1 (-417 *3)) (-4 *3 (-377)) (-4 *3 (-969)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1164 *1)) (-4 *1 (-340 *4)) (-4 *4 (-157))
- (-5 *2 (-626 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-390 *3)) (-4 *3 (-157)) (-5 *2 (-626 *3)))))
+ (|partial| -12
+ (-5 *2
+ (-2 (|:| |particular| (-426 *3 *4 *5 *6))
+ (|:| -2470 (-587 (-426 *3 *4 *5 *6)))))
+ (-5 *1 (-426 *3 *4 *5 *6)) (-4 *3 (-157)) (-14 *4 (-850))
+ (-14 *5 (-587 (-1084))) (-14 *6 (-1165 (-627 *3))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-46 *3 *4)) (-4 *3 (-969)) (-4 *4 (-727))
- (-5 *2 (-108))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-355 *3 *4)) (-4 *3 (-969)) (-4 *4 (-1012))
- (-5 *2 (-108))))
- ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-545 *3)) (-4 *3 (-969))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-512)) (-5 *2 (-108)) (-5 *1 (-567 *3 *4))
- (-4 *4 (-1140 *3))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-671 *3 *4)) (-4 *3 (-969))
- (-4 *4 (-662))))
+ (-12 (|has| *1 (-6 -4233)) (-4 *1 (-460 *3)) (-4 *3 (-1119))
+ (-5 *2 (-587 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-587 *3)) (-5 *1 (-674 *3)) (-4 *3 (-1013)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *3 (-521)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime"))
+ (-5 *1 (-392 *2)) (-4 *2 (-513)))))
+(((*1 *2 *1)
+ (-12 (-4 *4 (-1013)) (-5 *2 (-108)) (-5 *1 (-814 *3 *4 *5))
+ (-4 *3 (-1013)) (-4 *5 (-607 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-1179 *3 *4)) (-4 *3 (-783)) (-4 *4 (-969))
- (-5 *2 (-108)))))
+ (-12 (-5 *2 (-108)) (-5 *1 (-818 *3 *4)) (-4 *3 (-1013))
+ (-4 *4 (-1013)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-586 (-1105 *3))) (-5 *1 (-1105 *3)) (-4 *3 (-1012)))))
-(((*1 *2 *1) (|partial| -12 (-4 *1 (-936)) (-5 *2 (-791)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-783) (-512) (-960 (-520)))) (-5 *2 (-380 (-520)))
- (-5 *1 (-406 *4 *3)) (-4 *3 (-403 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-559 *3)) (-4 *3 (-403 *5))
- (-4 *5 (-13 (-783) (-512) (-960 (-520))))
- (-5 *2 (-1079 (-380 (-520)))) (-5 *1 (-406 *5 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-586 *3)) (-4 *3 (-783)) (-5 *1 (-117 *3)))))
+ (-12 (-4 *3 (-337)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *2 (-108))
+ (-5 *1 (-473 *3 *4 *5 *6)) (-4 *6 (-878 *3 *4 *5))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-587 *6)) (-4 *6 (-784)) (-4 *4 (-337)) (-4 *5 (-729))
+ (-5 *2 (-108)) (-5 *1 (-473 *4 *5 *6 *7)) (-4 *7 (-878 *4 *5 *6)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1167)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1080 *3)) (-4 *3 (-323)) (-5 *1 (-331 *3)))))
+(((*1 *2 *3 *4 *4 *4 *5 *5 *3)
+ (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *5 (-202))
+ (-5 *2 (-959)) (-5 *1 (-688)))))
+(((*1 *2 *3) (-12 (-5 *3 (-707)) (-5 *2 (-1170)) (-5 *1 (-353))))
+ ((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-353)))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-1065 *4)) (-5 *3 (-521)) (-4 *4 (-970))
+ (-5 *1 (-1069 *4))))
+ ((*1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-521)) (-5 *1 (-1157 *3 *4 *5)) (-4 *3 (-970))
+ (-14 *4 (-1084)) (-14 *5 *3))))
+(((*1 *2 *2) (-12 (-5 *1 (-539 *2)) (-4 *2 (-506)))))
+(((*1 *2 *3 *4 *3 *4 *3)
+ (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959))
+ (-5 *1 (-693)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-512)) (-4 *5 (-728)) (-4 *6 (-783))
- (-4 *7 (-983 *4 *5 *6))
- (-5 *2 (-586 (-2 (|:| -1649 *1) (|:| -1543 (-586 *7)))))
- (-5 *3 (-586 *7)) (-4 *1 (-1112 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-586 (-238))) (-5 *4 (-1083)) (-5 *2 (-108))
- (-5 *1 (-238)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-586 *8)) (-5 *4 (-108)) (-4 *8 (-983 *5 *6 *7))
- (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783)) (-5 *2 (-586 *10))
- (-5 *1 (-568 *5 *6 *7 *8 *9 *10)) (-4 *9 (-988 *5 *6 *7 *8))
- (-4 *10 (-1021 *5 *6 *7 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-586 (-715 *5 (-793 *6)))) (-5 *4 (-108)) (-4 *5 (-424))
- (-14 *6 (-586 (-1083))) (-5 *2 (-586 (-966 *5 *6)))
- (-5 *1 (-571 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-586 (-715 *5 (-793 *6)))) (-5 *4 (-108)) (-4 *5 (-424))
- (-14 *6 (-586 (-1083)))
- (-5 *2
- (-586 (-1054 *5 (-492 (-793 *6)) (-793 *6) (-715 *5 (-793 *6)))))
- (-5 *1 (-571 *5 *6))))
- ((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-586 *8)) (-5 *4 (-108)) (-4 *8 (-983 *5 *6 *7))
- (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783))
- (-5 *2 (-586 (-950 *5 *6 *7 *8))) (-5 *1 (-950 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-586 *8)) (-5 *4 (-108)) (-4 *8 (-983 *5 *6 *7))
- (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783))
- (-5 *2 (-586 (-950 *5 *6 *7 *8))) (-5 *1 (-950 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-586 (-715 *5 (-793 *6)))) (-5 *4 (-108)) (-4 *5 (-424))
- (-14 *6 (-586 (-1083))) (-5 *2 (-586 (-966 *5 *6)))
- (-5 *1 (-966 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-586 *8)) (-5 *4 (-108)) (-4 *8 (-983 *5 *6 *7))
- (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783)) (-5 *2 (-586 *1))
- (-4 *1 (-988 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-586 *8)) (-5 *4 (-108)) (-4 *8 (-983 *5 *6 *7))
- (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783))
- (-5 *2 (-586 (-1054 *5 *6 *7 *8))) (-5 *1 (-1054 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-586 *8)) (-5 *4 (-108)) (-4 *8 (-983 *5 *6 *7))
- (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783))
- (-5 *2 (-586 (-1054 *5 *6 *7 *8))) (-5 *1 (-1054 *5 *6 *7 *8))))
+ (-12 (-5 *3 (-587 (-1084))) (-5 *2 (-1170)) (-5 *1 (-1121))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-587 (-1084))) (-5 *2 (-1170)) (-5 *1 (-1121)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-337)) (-4 *3 (-970))
+ (-5 *1 (-1069 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-587 (-521))) (-5 *2 (-707)) (-5 *1 (-542)))))
+(((*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-518))))
((*1 *2 *3)
- (-12 (-5 *3 (-586 *7)) (-4 *7 (-983 *4 *5 *6)) (-4 *4 (-512))
- (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-586 *1))
- (-4 *1 (-1112 *4 *5 *6 *7)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4229)) (-4 *1 (-211 *3))
- (-4 *3 (-1012))))
- ((*1 *1 *2 *1)
- (-12 (|has| *1 (-6 -4229)) (-4 *1 (-211 *2)) (-4 *2 (-1012))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-256 *2)) (-4 *2 (-1118)) (-4 *2 (-1012))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-256 *3)) (-4 *3 (-1118))))
- ((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-557 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1012))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *2 (-1 (-108) *4)) (-5 *3 (-520)) (-4 *4 (-1012))
- (-5 *1 (-673 *4))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-520)) (-5 *1 (-673 *2)) (-4 *2 (-1012))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1048 *3 *4)) (-4 *3 (-13 (-1012) (-33)))
- (-4 *4 (-13 (-1012) (-33))) (-5 *1 (-1049 *3 *4)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-934 *3)) (-4 *3 (-1118)) (-5 *2 (-520)))))
-(((*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-802))))
- ((*1 *2 *3) (-12 (-5 *3 (-871 *2)) (-5 *1 (-907 *2)) (-4 *2 (-969)))))
-(((*1 *2 *1) (-12 (-4 *1 (-882)) (-5 *2 (-586 (-586 (-871 (-201)))))))
- ((*1 *2 *1) (-12 (-4 *1 (-899)) (-5 *2 (-586 (-586 (-871 (-201))))))))
-(((*1 *2 *3) (-12 (-5 *3 (-706)) (-5 *2 (-1169)) (-5 *1 (-352)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-108)))))
-(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
- (|partial| -12 (-5 *5 (-108)) (-4 *6 (-424)) (-4 *7 (-728))
- (-4 *8 (-783)) (-4 *9 (-983 *6 *7 *8))
- (-5 *2
- (-2 (|:| -3190 (-586 *9)) (|:| -1883 *4) (|:| |ineq| (-586 *9))))
- (-5 *1 (-913 *6 *7 *8 *9 *4)) (-5 *3 (-586 *9))
- (-4 *4 (-988 *6 *7 *8 *9))))
- ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
- (|partial| -12 (-5 *5 (-108)) (-4 *6 (-424)) (-4 *7 (-728))
- (-4 *8 (-783)) (-4 *9 (-983 *6 *7 *8))
- (-5 *2
- (-2 (|:| -3190 (-586 *9)) (|:| -1883 *4) (|:| |ineq| (-586 *9))))
- (-5 *1 (-1019 *6 *7 *8 *9 *4)) (-5 *3 (-586 *9))
- (-4 *4 (-988 *6 *7 *8 *9)))))
+ (-12 (-5 *2 (-1080 (-381 (-521)))) (-5 *1 (-871)) (-5 *3 (-521)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959))
+ (-5 *1 (-684)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-587 (-521))) (-5 *3 (-627 (-521))) (-5 *1 (-1023)))))
+(((*1 *2 *3 *2)
+ (-12
+ (-5 *2
+ (-587
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-707)) (|:| |poli| *3)
+ (|:| |polj| *3))))
+ (-4 *5 (-729)) (-4 *3 (-878 *4 *5 *6)) (-4 *4 (-425)) (-4 *6 (-784))
+ (-5 *1 (-422 *4 *5 *6 *3)))))
+(((*1 *1 *1 *2 *1)
+ (-12 (-5 *2 (-521)) (-5 *1 (-1065 *3)) (-4 *3 (-1119))))
+ ((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4234)) (-4 *1 (-1153 *2)) (-4 *2 (-1119)))))
+(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (-521)) (-5 *2 (-108)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -2258 (-718 *3)) (|:| |coef2| (-718 *3))))
+ (-5 *1 (-718 *3)) (-4 *3 (-513)) (-4 *3 (-970))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-513)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784))
+ (-5 *2 (-2 (|:| -2258 *1) (|:| |coef2| *1)))
+ (-4 *1 (-984 *3 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1165 *4)) (-4 *4 (-323)) (-5 *2 (-1080 *4))
+ (-5 *1 (-491 *4)))))
+(((*1 *2 *3 *4 *4 *3)
+ (|partial| -12 (-5 *4 (-560 *3))
+ (-4 *3 (-13 (-404 *5) (-27) (-1105)))
+ (-4 *5 (-13 (-425) (-961 (-521)) (-784) (-135) (-583 (-521))))
+ (-5 *2 (-2 (|:| -3100 *3) (|:| |coeff| *3)))
+ (-5 *1 (-523 *5 *3 *6)) (-4 *6 (-1013)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-871 *5)) (-4 *5 (-969)) (-5 *2 (-706))
- (-5 *1 (-1072 *4 *5)) (-14 *4 (-849))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-586 (-706))) (-5 *3 (-706)) (-5 *1 (-1072 *4 *5))
- (-14 *4 (-849)) (-4 *5 (-969))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-586 (-706))) (-5 *3 (-871 *5)) (-4 *5 (-969))
- (-5 *1 (-1072 *4 *5)) (-14 *4 (-849)))))
-(((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1083)) (-5 *1 (-614 *3)) (-4 *3 (-1012)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783))
- (-4 *3 (-983 *4 *5 *6)) (-5 *2 (-3 (-108) (-586 *1)))
- (-4 *1 (-988 *4 *5 *6 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-969)) (-4 *2 (-624 *4 *5 *6))
- (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1140 *4)) (-4 *5 (-346 *4))
- (-4 *6 (-346 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-424))) (-5 *1 (-1110 *3 *2))
- (-4 *2 (-13 (-403 *3) (-1104))))))
-(((*1 *2 *3 *1 *4)
- (-12 (-5 *3 (-1048 *5 *6)) (-5 *4 (-1 (-108) *6 *6))
- (-4 *5 (-13 (-1012) (-33))) (-4 *6 (-13 (-1012) (-33)))
- (-5 *2 (-108)) (-5 *1 (-1049 *5 *6)))))
+ (-12 (-5 *3 (-1165 *1)) (-4 *1 (-341 *4)) (-4 *4 (-157))
+ (-5 *2 (-627 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-391 *3)) (-4 *3 (-157)) (-5 *2 (-627 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-734 *2)) (-4 *2 (-157))))
+ ((*1 *2 *1) (-12 (-4 *1 (-922 *2)) (-4 *2 (-157)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1138 *5 *4)) (-4 *4 (-757)) (-14 *5 (-1084))
+ (-5 *2 (-521)) (-5 *1 (-1027 *4 *5)))))
(((*1 *2 *3 *1)
- (-12 (-4 *1 (-901 *4 *5 *6 *3)) (-4 *4 (-969)) (-4 *5 (-728))
- (-4 *6 (-783)) (-4 *3 (-983 *4 *5 *6)) (-4 *4 (-512))
- (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))))
-(((*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-757)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-322)) (-4 *4 (-302 *3)) (-4 *5 (-1140 *4))
- (-5 *1 (-712 *3 *4 *5 *2 *6)) (-4 *2 (-1140 *5)) (-14 *6 (-849))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-706)) (-4 *1 (-1181 *3)) (-4 *3 (-336)) (-4 *3 (-341))))
- ((*1 *1 *1) (-12 (-4 *1 (-1181 *2)) (-4 *2 (-336)) (-4 *2 (-341)))))
+ (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784))
+ (-4 *3 (-984 *4 *5 *6)) (-5 *2 (-587 *1))
+ (-4 *1 (-989 *4 *5 *6 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-759)) (-5 *1 (-758)))))
+(((*1 *1 *1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-521)) (-4 *1 (-625 *3 *4 *5)) (-4 *3 (-970))
+ (-4 *4 (-347 *3)) (-4 *5 (-347 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-518)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *3 (-337)) (-4 *4 (-729)) (-4 *5 (-784))
+ (-5 *1 (-473 *3 *4 *5 *2)) (-4 *2 (-878 *3 *4 *5))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-337)) (-4 *3 (-729)) (-4 *4 (-784))
+ (-5 *1 (-473 *2 *3 *4 *5)) (-4 *5 (-878 *2 *3 *4)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-791)) (-5 *1 (-1064 *3)) (-4 *3 (-1012))
- (-4 *3 (-1118)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1079 *9)) (-5 *4 (-586 *7)) (-4 *7 (-783))
- (-4 *9 (-877 *8 *6 *7)) (-4 *6 (-728)) (-4 *8 (-281))
- (-5 *2 (-586 (-706))) (-5 *1 (-678 *6 *7 *8 *9)) (-5 *5 (-706)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-626 *4)) (-4 *4 (-969)) (-5 *1 (-1050 *3 *4))
- (-14 *3 (-706)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-626 (-380 (-880 (-520))))) (-5 *2 (-586 (-289 (-520))))
- (-5 *1 (-954)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1088)))))
-(((*1 *2 *2)
- (-12 (-4 *2 (-157)) (-4 *2 (-969)) (-5 *1 (-650 *2 *3))
- (-4 *3 (-588 *2))))
- ((*1 *2 *2) (-12 (-5 *1 (-770 *2)) (-4 *2 (-157)) (-4 *2 (-969)))))
+ (-12 (-4 *1 (-1113 *3 *4 *5 *6)) (-4 *3 (-513)) (-4 *4 (-729))
+ (-4 *5 (-784)) (-4 *6 (-984 *3 *4 *5))
+ (-5 *2 (-2 (|:| -1650 (-587 *6)) (|:| -1544 (-587 *6)))))))
(((*1 *2 *3)
+ (-12 (-5 *2 (-1086 (-381 (-521)))) (-5 *1 (-169)) (-5 *3 (-521)))))
+(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
+ (-12 (-5 *3 (-1067)) (-5 *4 (-521)) (-5 *5 (-627 (-202)))
+ (-5 *2 (-959)) (-5 *1 (-691)))))
+(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6)
+ (-12 (-5 *4 (-521)) (-5 *5 (-627 (-202)))
+ (-5 *6 (-3 (|:| |fn| (-362)) (|:| |fp| (-62 -4049)))) (-5 *3 (-202))
+ (-5 *2 (-959)) (-5 *1 (-685)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3))
+ (-4 *5 (-1141 (-381 *4))) (-5 *2 (-108)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-893 *3)) (-4 *3 (-894)))))
+(((*1 *1) (-5 *1 (-132))) ((*1 *1 *1) (-5 *1 (-792))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-3 (-381 (-881 *6)) (-1074 (-1084) (-881 *6))))
+ (-5 *5 (-707)) (-4 *6 (-425)) (-5 *2 (-587 (-627 (-381 (-881 *6)))))
+ (-5 *1 (-267 *6)) (-5 *4 (-627 (-381 (-881 *6))))))
+ ((*1 *2 *3 *4)
(-12
(-5 *3
- (-586
- (-2 (|:| -3160 (-706))
- (|:| |eqns|
- (-586
- (-2 (|:| |det| *7) (|:| |rows| (-586 (-520)))
- (|:| |cols| (-586 (-520))))))
- (|:| |fgb| (-586 *7)))))
- (-4 *7 (-877 *4 *6 *5)) (-4 *4 (-13 (-281) (-135)))
- (-4 *5 (-13 (-783) (-561 (-1083)))) (-4 *6 (-728)) (-5 *2 (-706))
- (-5 *1 (-852 *4 *5 *6 *7)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-586 (-880 *4))) (-5 *3 (-586 (-1083))) (-4 *4 (-424))
- (-5 *1 (-846 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1044 *3)) (-4 *3 (-969)) (-5 *2 (-108)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3)
- (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *2 (-958))
- (-5 *1 (-688)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-820 *4)) (-4 *4 (-1012)) (-4 *2 (-1012))
- (-5 *1 (-817 *4 *2)))))
-(((*1 *1 *2) (-12 (-5 *2 (-802)) (-5 *1 (-238))))
- ((*1 *1 *2) (-12 (-5 *2 (-352)) (-5 *1 (-238)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-586 *1)) (-4 *1 (-983 *4 *5 *6)) (-4 *4 (-969))
- (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-108))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-983 *3 *4 *5)) (-4 *3 (-969)) (-4 *4 (-728))
- (-4 *5 (-783)) (-5 *2 (-108))))
- ((*1 *2 *3 *1 *4)
- (-12 (-5 *4 (-1 (-108) *3 *3)) (-4 *1 (-1112 *5 *6 *7 *3))
- (-4 *5 (-512)) (-4 *6 (-728)) (-4 *7 (-783)) (-4 *3 (-983 *5 *6 *7))
- (-5 *2 (-108)))))
-(((*1 *2 *3)
+ (-2 (|:| |eigval| (-3 (-381 (-881 *5)) (-1074 (-1084) (-881 *5))))
+ (|:| |eigmult| (-707)) (|:| |eigvec| (-587 *4))))
+ (-4 *5 (-425)) (-5 *2 (-587 (-627 (-381 (-881 *5)))))
+ (-5 *1 (-267 *5)) (-5 *4 (-627 (-381 (-881 *5)))))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-353)) (-5 *1 (-184))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-587 (-353))) (-5 *2 (-353)) (-5 *1 (-184)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1119)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1065 *3)) (-5 *1 (-158 *3)) (-4 *3 (-282)))))
+(((*1 *1 *2 *2)
(-12
- (-5 *3
- (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201)))
- (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201))
- (|:| |relerr| (-201))))
- (-5 *2 (-520)) (-5 *1 (-182)))))
-(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (-520)) (-5 *2 (-108)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1049 *2 *3)) (-4 *2 (-13 (-1012) (-33)))
- (-4 *3 (-13 (-1012) (-33))))))
-(((*1 *2 *1) (-12 (-5 *2 (-760)) (-5 *1 (-761)))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *2 (-958))
- (-5 *1 (-691)))))
-(((*1 *2) (-12 (-5 *2 (-352)) (-5 *1 (-962)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-315 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-1140 *3))
- (-4 *5 (-1140 (-380 *4)))
- (-5 *2 (-2 (|:| |num| (-1164 *4)) (|:| |den| *4))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-626 (-380 (-880 (-520)))))
- (-5 *2 (-586 (-626 (-289 (-520))))) (-5 *1 (-954))
- (-5 *3 (-289 (-520))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-966 *4 *5)) (-4 *4 (-13 (-781) (-281) (-135) (-945)))
- (-14 *5 (-586 (-1083)))
- (-5 *2
- (-586 (-2 (|:| -1714 (-1079 *4)) (|:| -3790 (-586 (-880 *4))))))
- (-5 *1 (-1188 *4 *5 *6)) (-14 *6 (-586 (-1083)))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *4 (-108)) (-4 *5 (-13 (-781) (-281) (-135) (-945)))
(-5 *2
- (-586 (-2 (|:| -1714 (-1079 *5)) (|:| -3790 (-586 (-880 *5))))))
- (-5 *1 (-1188 *5 *6 *7)) (-5 *3 (-586 (-880 *5)))
- (-14 *6 (-586 (-1083))) (-14 *7 (-586 (-1083)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-108)) (-4 *5 (-13 (-781) (-281) (-135) (-945)))
- (-5 *2
- (-586 (-2 (|:| -1714 (-1079 *5)) (|:| -3790 (-586 (-880 *5))))))
- (-5 *1 (-1188 *5 *6 *7)) (-5 *3 (-586 (-880 *5)))
- (-14 *6 (-586 (-1083))) (-14 *7 (-586 (-1083)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-108)) (-4 *5 (-13 (-781) (-281) (-135) (-945)))
- (-5 *2
- (-586 (-2 (|:| -1714 (-1079 *5)) (|:| -3790 (-586 (-880 *5))))))
- (-5 *1 (-1188 *5 *6 *7)) (-5 *3 (-586 (-880 *5)))
- (-14 *6 (-586 (-1083))) (-14 *7 (-586 (-1083)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-781) (-281) (-135) (-945)))
- (-5 *2
- (-586 (-2 (|:| -1714 (-1079 *4)) (|:| -3790 (-586 (-880 *4))))))
- (-5 *1 (-1188 *4 *5 *6)) (-5 *3 (-586 (-880 *4)))
- (-14 *5 (-586 (-1083))) (-14 *6 (-586 (-1083))))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-706)) (-5 *1 (-110)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-520)) (-5 *2 (-1169)) (-5 *1 (-758)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-586 (-1083))) (-4 *4 (-13 (-281) (-135)))
- (-4 *5 (-13 (-783) (-561 (-1083)))) (-4 *6 (-728))
- (-5 *2 (-586 (-380 (-880 *4)))) (-5 *1 (-852 *4 *5 *6 *7))
- (-4 *7 (-877 *4 *6 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1064 (-586 (-520)))) (-5 *1 (-811)) (-5 *3 (-520)))))
-(((*1 *2 *3 *3)
- (-12 (|has| *2 (-6 (-4231 "*"))) (-4 *5 (-346 *2)) (-4 *6 (-346 *2))
- (-4 *2 (-969)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1140 *2))
- (-4 *4 (-624 *2 *5 *6)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-424))) (-5 *1 (-1110 *3 *2))
- (-4 *2 (-13 (-403 *3) (-1104))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-626 (-380 (-520))))
- (-5 *2
- (-586
- (-2 (|:| |outval| *4) (|:| |outmult| (-520))
- (|:| |outvect| (-586 (-626 *4))))))
- (-5 *1 (-714 *4)) (-4 *4 (-13 (-336) (-781))))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-706)) (-4 *4 (-969))
- (-5 *2 (-2 (|:| -2060 *1) (|:| -3753 *1))) (-4 *1 (-1140 *4)))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *3)
- (-12 (-5 *3 (-520)) (-5 *4 (-1066)) (-5 *5 (-626 (-201)))
- (-5 *2 (-958)) (-5 *1 (-683)))))
-(((*1 *2 *3)
- (-12 (-14 *4 (-586 (-1083))) (-4 *5 (-424))
- (-5 *2
- (-2 (|:| |glbase| (-586 (-223 *4 *5))) (|:| |glval| (-586 (-520)))))
- (-5 *1 (-574 *4 *5)) (-5 *3 (-586 (-223 *4 *5))))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1112 *4 *5 *3 *6)) (-4 *4 (-512)) (-4 *5 (-728))
- (-4 *3 (-783)) (-4 *6 (-983 *4 *5 *3)) (-5 *2 (-108))))
- ((*1 *2 *1) (-12 (-4 *1 (-1181 *3)) (-4 *3 (-336)) (-5 *2 (-108)))))
+ (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353)))
+ (|:| CF (-290 (-154 (-353)))) (|:| |switch| (-1083))))
+ (-5 *1 (-1083)))))
+(((*1 *2) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-1168))))
+ ((*1 *2 *2) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-1168)))))
+(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3)
+ (-12 (-5 *4 (-627 (-202))) (-5 *5 (-627 (-521))) (-5 *3 (-521))
+ (-5 *2 (-959)) (-5 *1 (-693)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-586 *4)) (-4 *4 (-969)) (-5 *2 (-1164 *4))
- (-5 *1 (-1084 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-849)) (-5 *2 (-1164 *3)) (-5 *1 (-1084 *3))
- (-4 *3 (-969)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-760)))))
-(((*1 *2 *3 *4 *3 *4 *4 *4)
- (-12 (-5 *3 (-626 (-201))) (-5 *4 (-520)) (-5 *2 (-958))
- (-5 *1 (-692)))))
+ (-12 (-4 *4 (-13 (-337) (-10 -8 (-15 ** ($ $ (-381 (-521)))))))
+ (-5 *2 (-587 *4)) (-5 *1 (-1039 *3 *4)) (-4 *3 (-1141 *4))))
+ ((*1 *2 *3 *3 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-337) (-10 -8 (-15 ** ($ $ (-381 (-521)))))))
+ (-5 *2 (-587 *3)) (-5 *1 (-1039 *4 *3)) (-4 *4 (-1141 *3)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-510)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1164 (-289 (-201)))) (-5 *4 (-586 (-1083)))
- (-5 *2 (-626 (-289 (-201)))) (-5 *1 (-183))))
+ (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))))
+(((*1 *2 *3 *4 *4 *5 *6)
+ (-12 (-5 *3 (-587 (-587 (-872 (-202))))) (-5 *4 (-803))
+ (-5 *5 (-850)) (-5 *6 (-587 (-239))) (-5 *2 (-441)) (-5 *1 (-1169))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-587 (-587 (-872 (-202))))) (-5 *2 (-441))
+ (-5 *1 (-1169))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-1012)) (-4 *6 (-828 *5)) (-5 *2 (-626 *6))
- (-5 *1 (-628 *5 *6 *3 *4)) (-4 *3 (-346 *6))
- (-4 *4 (-13 (-346 *5) (-10 -7 (-6 -4229)))))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-586 *6)) (-4 *6 (-783)) (-4 *4 (-336)) (-4 *5 (-728))
- (-5 *2
- (-2 (|:| |mval| (-626 *4)) (|:| |invmval| (-626 *4))
- (|:| |genIdeal| (-472 *4 *5 *6 *7))))
- (-5 *1 (-472 *4 *5 *6 *7)) (-4 *7 (-877 *4 *5 *6)))))
+ (-12 (-5 *3 (-587 (-587 (-872 (-202))))) (-5 *4 (-587 (-239)))
+ (-5 *2 (-441)) (-5 *1 (-1169)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1127 *3 *2)) (-4 *3 (-970)) (-4 *2 (-1156 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-759)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-513)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2258 *3)))
+ (-5 *1 (-896 *4 *3)) (-4 *3 (-1141 *4)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-1065 *3))) (-5 *1 (-1065 *3)) (-4 *3 (-1119)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1013))
+ (-4 *4 (-13 (-970) (-815 *3) (-784) (-562 (-821 *3))))
+ (-5 *2 (-587 (-1084))) (-5 *1 (-992 *3 *4 *5))
+ (-4 *5 (-13 (-404 *4) (-815 *3) (-562 (-821 *3)))))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-289 (-520))) (|:| -4045 (-289 (-352)))
- (|:| CF (-289 (-154 (-352)))) (|:| |switch| (-1082))))
- (-5 *1 (-1082)))))
-(((*1 *2 *3) (-12 (-5 *3 (-871 *2)) (-5 *1 (-907 *2)) (-4 *2 (-969)))))
-(((*1 *1 *1 *1) (-4 *1 (-697))))
-(((*1 *2 *3 *1 *4 *4 *4 *4 *4)
- (-12 (-5 *4 (-108)) (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783))
- (-5 *2 (-586 (-950 *5 *6 *7 *3))) (-5 *1 (-950 *5 *6 *7 *3))
- (-4 *3 (-983 *5 *6 *7))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-586 *6)) (-4 *1 (-988 *3 *4 *5 *6)) (-4 *3 (-424))
- (-4 *4 (-728)) (-4 *5 (-783)) (-4 *6 (-983 *3 *4 *5))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-988 *3 *4 *5 *2)) (-4 *3 (-424)) (-4 *4 (-728))
- (-4 *5 (-783)) (-4 *2 (-983 *3 *4 *5))))
- ((*1 *2 *3 *1 *4 *4 *4 *4 *4)
- (-12 (-5 *4 (-108)) (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783))
- (-5 *2 (-586 (-1054 *5 *6 *7 *3))) (-5 *1 (-1054 *5 *6 *7 *3))
- (-4 *3 (-983 *5 *6 *7)))))
-(((*1 *1 *1 *1) (-4 *1 (-505))))
-(((*1 *2 *2) (-12 (-5 *2 (-352)) (-5 *1 (-92)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-545 *2)) (-4 *2 (-37 (-380 (-520)))) (-4 *2 (-969)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1164 *3)) (-4 *3 (-336)) (-4 *1 (-302 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1164 *3)) (-4 *3 (-1140 *4)) (-4 *4 (-1122))
- (-4 *1 (-315 *4 *3 *5)) (-4 *5 (-1140 (-380 *3)))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1164 *4)) (-5 *3 (-1164 *1)) (-4 *4 (-157))
- (-4 *1 (-340 *4))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1164 *4)) (-5 *3 (-1164 *1)) (-4 *4 (-157))
- (-4 *1 (-343 *4 *5)) (-4 *5 (-1140 *4))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1164 *3)) (-4 *3 (-157)) (-4 *1 (-382 *3 *4))
- (-4 *4 (-1140 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1164 *3)) (-4 *3 (-157)) (-4 *1 (-390 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-281)) (-5 *2 (-706)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2))
- (-4 *2 (-13 (-403 *3) (-926))))))
-(((*1 *2 *1)
- (-12 (|has| *1 (-6 -4229)) (-4 *1 (-459 *3)) (-4 *3 (-1118))
- (-5 *2 (-586 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-586 *3)) (-5 *1 (-673 *3)) (-4 *3 (-1012)))))
+ (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353)))
+ (|:| CF (-290 (-154 (-353)))) (|:| |switch| (-1083))))
+ (-5 *1 (-1083)))))
+(((*1 *1 *2 *3 *1 *3)
+ (-12 (-5 *2 (-821 *4)) (-4 *4 (-1013)) (-5 *1 (-818 *4 *3))
+ (-4 *3 (-1013)))))
+(((*1 *2 *3 *3 *4 *5 *3 *6)
+ (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *5 (-202))
+ (-5 *6 (-3 (|:| |fn| (-362)) (|:| |fp| (-79 FCN)))) (-5 *2 (-959))
+ (-5 *1 (-683)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-520)) (-4 *1 (-296 *4 *2)) (-4 *4 (-1012))
- (-4 *2 (-124)))))
-(((*1 *1 *2 *2)
- (-12
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1141 *4)) (-4 *4 (-1123))
+ (-4 *6 (-1141 (-381 *5)))
(-5 *2
- (-3 (|:| I (-289 (-520))) (|:| -4045 (-289 (-352)))
- (|:| CF (-289 (-154 (-352)))) (|:| |switch| (-1082))))
- (-5 *1 (-1082)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783))
- (-4 *7 (-983 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-913 *4 *5 *6 *7 *3))
- (-4 *3 (-988 *4 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-586 *3)) (-4 *3 (-988 *5 *6 *7 *8)) (-4 *5 (-424))
- (-4 *6 (-728)) (-4 *7 (-783)) (-4 *8 (-983 *5 *6 *7)) (-5 *2 (-108))
- (-5 *1 (-913 *5 *6 *7 *8 *3))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783))
- (-4 *7 (-983 *4 *5 *6)) (-5 *2 (-108))
- (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-988 *4 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-586 *3)) (-4 *3 (-988 *5 *6 *7 *8)) (-4 *5 (-424))
- (-4 *6 (-728)) (-4 *7 (-783)) (-4 *8 (-983 *5 *6 *7)) (-5 *2 (-108))
- (-5 *1 (-1019 *5 *6 *7 *8 *3)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2413 *3) (|:| |coef2| (-717 *3))))
- (-5 *1 (-717 *3)) (-4 *3 (-512)) (-4 *3 (-969)))))
-(((*1 *1 *1) (-12 (-5 *1 (-842 *2)) (-4 *2 (-281)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-969)) (-5 *2 (-1164 *3)) (-5 *1 (-648 *3 *4))
- (-4 *4 (-1140 *3)))))
+ (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5)
+ (|:| |gd| *5)))
+ (-4 *1 (-316 *4 *5 *6)))))
+(((*1 *1) (-5 *1 (-129))))
(((*1 *2 *1)
- (|partial| -12
- (-5 *2 (-2 (|:| -1418 (-110)) (|:| |arg| (-586 (-820 *3)))))
- (-5 *1 (-820 *3)) (-4 *3 (-1012))))
- ((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-110)) (-5 *2 (-586 (-820 *4)))
- (-5 *1 (-820 *4)) (-4 *4 (-1012)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-520)) (-5 *1 (-289 *3)) (-4 *3 (-512)) (-4 *3 (-783)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1043 (-201))) (-5 *3 (-586 (-238))) (-5 *1 (-1166))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1043 (-201))) (-5 *3 (-1066)) (-5 *1 (-1166))))
- ((*1 *1 *1) (-5 *1 (-1166))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-586 (-289 (-201)))) (-5 *2 (-108)) (-5 *1 (-242))))
- ((*1 *2 *3) (-12 (-5 *3 (-289 (-201))) (-5 *2 (-108)) (-5 *1 (-242))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-512)) (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-108))
- (-5 *1 (-902 *4 *5 *6 *3)) (-4 *3 (-983 *4 *5 *6)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-520)) (-4 *1 (-296 *2 *4)) (-4 *4 (-124))
- (-4 *2 (-1012))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-520)) (-5 *1 (-334 *2)) (-4 *2 (-1012))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-520)) (-5 *1 (-359 *2)) (-4 *2 (-1012))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-520)) (-5 *1 (-391 *2)) (-4 *2 (-512))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-520)) (-4 *2 (-1012)) (-5 *1 (-589 *2 *4 *5))
- (-4 *4 (-23)) (-14 *5 *4)))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-520)) (-5 *1 (-755 *2)) (-4 *2 (-783)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1131 (-520))) (-4 *1 (-591 *3)) (-4 *3 (-1118))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-520)) (-4 *1 (-591 *3)) (-4 *3 (-1118)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-831 *3)) (-4 *3 (-1012)) (-5 *2 (-1014 *3))))
+ (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3))
+ (-4 *5 (-1141 (-381 *4)))
+ (-5 *2 (-2 (|:| |num| (-1165 *4)) (|:| |den| *4))))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110)))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-1084)) (-5 *2 (-1088)) (-5 *1 (-1087)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-335 *3)) (-4 *3 (-1013))))
((*1 *2 *1 *3)
- (-12 (-4 *4 (-1012)) (-5 *2 (-1014 (-586 *4))) (-5 *1 (-832 *4))
- (-5 *3 (-586 *4))))
+ (-12 (-5 *3 (-521)) (-5 *2 (-707)) (-5 *1 (-360 *4)) (-4 *4 (-1013))))
((*1 *2 *1 *3)
- (-12 (-4 *4 (-1012)) (-5 *2 (-1014 (-1014 *4))) (-5 *1 (-832 *4))
- (-5 *3 (-1014 *4))))
+ (-12 (-5 *3 (-521)) (-4 *2 (-23)) (-5 *1 (-590 *4 *2 *5))
+ (-4 *4 (-1013)) (-14 *5 *2)))
((*1 *2 *1 *3)
- (-12 (-5 *2 (-1014 *3)) (-5 *1 (-832 *3)) (-4 *3 (-1012)))))
-(((*1 *2 *3) (-12 (-5 *3 (-586 *2)) (-5 *1 (-1093 *2)) (-4 *2 (-336)))))
-(((*1 *1 *1) (-5 *1 (-1082)))
+ (-12 (-5 *3 (-521)) (-5 *2 (-707)) (-5 *1 (-756 *4)) (-4 *4 (-784)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-513) (-784) (-961 (-521)))) (-5 *1 (-167 *3 *2))
+ (-4 *2 (-13 (-27) (-1105) (-404 (-154 *3))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-425) (-784) (-961 (-521)) (-583 (-521))))
+ (-5 *1 (-1109 *3 *2)) (-4 *2 (-13 (-27) (-1105) (-404 *3))))))
+(((*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1013)) (-5 *1 (-674 *3))))
+ ((*1 *1 *2) (-12 (-5 *1 (-674 *2)) (-4 *2 (-1013))))
+ ((*1 *1) (-12 (-5 *1 (-674 *2)) (-4 *2 (-1013)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-425)) (-4 *3 (-784)) (-4 *4 (-729))
+ (-5 *1 (-913 *2 *3 *4 *5)) (-4 *5 (-878 *2 *4 *3)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1132 (-521))) (-4 *1 (-592 *3)) (-4 *3 (-1119))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-4 *1 (-592 *3)) (-4 *3 (-1119)))))
+(((*1 *1 *1) (-5 *1 (-1083)))
((*1 *1 *2)
(-12
(-5 *2
- (-3 (|:| I (-289 (-520))) (|:| -4045 (-289 (-352)))
- (|:| CF (-289 (-154 (-352)))) (|:| |switch| (-1082))))
- (-5 *1 (-1082)))))
-(((*1 *1 *2) (-12 (-5 *2 (-380 (-520))) (-5 *1 (-194)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-1048 *3 *2)) (-4 *3 (-13 (-1012) (-33)))
- (-4 *2 (-13 (-1012) (-33))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-201)) (-5 *4 (-520)) (-5 *2 (-958)) (-5 *1 (-694)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-586 *3)) (-4 *3 (-877 *4 *6 *5)) (-4 *4 (-424))
- (-4 *5 (-783)) (-4 *6 (-728)) (-5 *1 (-912 *4 *5 *6 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-593 (-380 *2))) (-4 *2 (-1140 *4)) (-5 *1 (-746 *4 *2))
- (-4 *4 (-13 (-336) (-135) (-960 (-520)) (-960 (-380 (-520)))))))
+ (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353)))
+ (|:| CF (-290 (-154 (-353)))) (|:| |switch| (-1083))))
+ (-5 *1 (-1083)))))
+(((*1 *1 *2) (-12 (-5 *2 (-587 (-353))) (-5 *1 (-239))))
+ ((*1 *1)
+ (|partial| -12 (-4 *1 (-341 *2)) (-4 *2 (-513)) (-4 *2 (-157))))
+ ((*1 *2 *1) (-12 (-5 *1 (-392 *2)) (-4 *2 (-513)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1013)) (-5 *2 (-1067)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-587 (-2 (|:| |gen| *3) (|:| -3261 *4))))
+ (-5 *1 (-590 *3 *4 *5)) (-4 *3 (-1013)) (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-309 *3 *4 *5 *6)) (-4 *3 (-337)) (-4 *4 (-1141 *3))
+ (-4 *5 (-1141 (-381 *4))) (-4 *6 (-316 *3 *4 *5))
+ (-5 *2
+ (-2 (|:| -1781 (-387 *4 (-381 *4) *5 *6)) (|:| |principalPart| *6)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1141 *5)) (-4 *5 (-337))
+ (-5 *2
+ (-2 (|:| |poly| *6) (|:| -3658 (-381 *6))
+ (|:| |special| (-381 *6))))
+ (-5 *1 (-664 *5 *6)) (-5 *3 (-381 *6))))
((*1 *2 *3)
- (-12 (-5 *3 (-594 *2 (-380 *2))) (-4 *2 (-1140 *4))
- (-5 *1 (-746 *4 *2))
- (-4 *4 (-13 (-336) (-135) (-960 (-520)) (-960 (-380 (-520))))))))
-(((*1 *2 *3 *3 *3 *3 *4 *5)
- (-12 (-5 *3 (-201)) (-5 *4 (-520))
- (-5 *5 (-3 (|:| |fn| (-361)) (|:| |fp| (-62 -4045)))) (-5 *2 (-958))
- (-5 *1 (-682)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-463)))))
-(((*1 *2 *2) (-12 (-5 *2 (-849)) (-5 *1 (-1167))))
- ((*1 *2) (-12 (-5 *2 (-849)) (-5 *1 (-1167)))))
+ (-12 (-4 *4 (-337)) (-5 *2 (-587 *3)) (-5 *1 (-825 *3 *4))
+ (-4 *3 (-1141 *4))))
+ ((*1 *2 *3 *4 *4)
+ (|partial| -12 (-5 *4 (-707)) (-4 *5 (-337))
+ (-5 *2 (-2 (|:| -1913 *3) (|:| -1925 *3))) (-5 *1 (-825 *3 *5))
+ (-4 *3 (-1141 *5))))
+ ((*1 *2 *3 *2 *4 *4)
+ (-12 (-5 *2 (-587 *9)) (-5 *3 (-587 *8)) (-5 *4 (-108))
+ (-4 *8 (-984 *5 *6 *7)) (-4 *9 (-989 *5 *6 *7 *8)) (-4 *5 (-425))
+ (-4 *6 (-729)) (-4 *7 (-784)) (-5 *1 (-987 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
+ (-12 (-5 *2 (-587 *9)) (-5 *3 (-587 *8)) (-5 *4 (-108))
+ (-4 *8 (-984 *5 *6 *7)) (-4 *9 (-989 *5 *6 *7 *8)) (-4 *5 (-425))
+ (-4 *6 (-729)) (-4 *7 (-784)) (-5 *1 (-987 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *2 *4 *4)
+ (-12 (-5 *2 (-587 *9)) (-5 *3 (-587 *8)) (-5 *4 (-108))
+ (-4 *8 (-984 *5 *6 *7)) (-4 *9 (-1022 *5 *6 *7 *8)) (-4 *5 (-425))
+ (-4 *6 (-729)) (-4 *7 (-784)) (-5 *1 (-1054 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
+ (-12 (-5 *2 (-587 *9)) (-5 *3 (-587 *8)) (-5 *4 (-108))
+ (-4 *8 (-984 *5 *6 *7)) (-4 *9 (-1022 *5 *6 *7 *8)) (-4 *5 (-425))
+ (-4 *6 (-729)) (-4 *7 (-784)) (-5 *1 (-1054 *5 *6 *7 *8 *9)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-587 *7)) (-4 *7 (-989 *3 *4 *5 *6)) (-4 *3 (-425))
+ (-4 *4 (-729)) (-4 *5 (-784)) (-4 *6 (-984 *3 *4 *5))
+ (-5 *1 (-914 *3 *4 *5 *6 *7))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-587 *7)) (-4 *7 (-989 *3 *4 *5 *6)) (-4 *3 (-425))
+ (-4 *4 (-729)) (-4 *5 (-784)) (-4 *6 (-984 *3 *4 *5))
+ (-5 *1 (-1020 *3 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-353)) (-5 *3 (-1067)) (-5 *1 (-92))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-353)) (-5 *3 (-1067)) (-5 *1 (-92)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-5 *1 (-1069 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1157 *2 *3 *4)) (-4 *2 (-970)) (-14 *3 (-1084))
+ (-14 *4 *2))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-586 *7)) (-4 *7 (-983 *4 *5 *6)) (-4 *4 (-512))
- (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-108))
- (-5 *1 (-902 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-309 *5 *6 *7 *8)) (-4 *5 (-403 *4))
- (-4 *6 (-1140 *5)) (-4 *7 (-1140 (-380 *6)))
- (-4 *8 (-315 *5 *6 *7)) (-4 *4 (-13 (-783) (-512) (-960 (-520))))
- (-5 *2 (-2 (|:| -3989 (-706)) (|:| -2092 *8)))
- (-5 *1 (-839 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-309 (-380 (-520)) *4 *5 *6))
- (-4 *4 (-1140 (-380 (-520)))) (-4 *5 (-1140 (-380 *4)))
- (-4 *6 (-315 (-380 (-520)) *4 *5))
- (-5 *2 (-2 (|:| -3989 (-706)) (|:| -2092 *6)))
- (-5 *1 (-840 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-586 (-1083))) (-5 *2 (-1169)) (-5 *1 (-1086))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-586 (-1083))) (-5 *3 (-1083)) (-5 *2 (-1169))
- (-5 *1 (-1086))))
- ((*1 *2 *3 *4 *1)
- (-12 (-5 *4 (-586 (-1083))) (-5 *3 (-1083)) (-5 *2 (-1169))
- (-5 *1 (-1086)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-901 *3 *4 *5 *6)) (-4 *3 (-969)) (-4 *4 (-728))
- (-4 *5 (-783)) (-4 *6 (-983 *3 *4 *5)) (-4 *3 (-512))
- (-5 *2 (-108)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783))
- (-4 *3 (-983 *4 *5 *6)) (-5 *2 (-586 *1))
- (-4 *1 (-988 *4 *5 *6 *3)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-586 *2)) (-4 *2 (-1118)))))
-(((*1 *2)
- (-12 (-4 *3 (-13 (-783) (-512) (-960 (-520)))) (-5 *2 (-1169))
- (-5 *1 (-406 *3 *4)) (-4 *4 (-403 *3)))))
+ (|partial| -12 (-4 *4 (-513))
+ (-5 *2 (-2 (|:| -3727 *3) (|:| -3820 *3))) (-5 *1 (-1136 *4 *3))
+ (-4 *3 (-1141 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-759)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-707)) (-4 *4 (-337)) (-5 *1 (-825 *2 *4))
+ (-4 *2 (-1141 *4)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1141 *2)) (-4 *2 (-970)) (-4 *2 (-513)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-108)) (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784))
+ (-4 *8 (-984 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |val| (-587 *8)) (|:| |towers| (-587 (-951 *5 *6 *7 *8)))))
+ (-5 *1 (-951 *5 *6 *7 *8)) (-5 *3 (-587 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-108)) (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784))
+ (-4 *8 (-984 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |val| (-587 *8))
+ (|:| |towers| (-587 (-1055 *5 *6 *7 *8)))))
+ (-5 *1 (-1055 *5 *6 *7 *8)) (-5 *3 (-587 *8)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-587 *2)) (-4 *2 (-1119)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201)))
- (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201))
- (|:| |relerr| (-201))))
+ (-12 (-5 *3 (-587 (-453 *4 *5))) (-14 *4 (-587 (-1084)))
+ (-4 *5 (-425))
(-5 *2
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite| "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite| "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))
- (-5 *1 (-170)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783))
- (-4 *3 (-983 *5 *6 *7))
- (-5 *2 (-586 (-2 (|:| |val| *3) (|:| -1883 *4))))
- (-5 *1 (-989 *5 *6 *7 *3 *4)) (-4 *4 (-988 *5 *6 *7 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-624 *3 *4 *5)) (-4 *3 (-969)) (-4 *4 (-346 *3))
- (-4 *5 (-346 *3)) (-5 *2 (-108))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-972 *3 *4 *5 *6 *7)) (-4 *5 (-969))
- (-4 *6 (-214 *4 *5)) (-4 *7 (-214 *3 *5)) (-5 *2 (-108)))))
+ (-2 (|:| |gblist| (-587 (-224 *4 *5)))
+ (|:| |gvlist| (-587 (-521)))))
+ (-5 *1 (-575 *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1084))
+ (-4 *5 (-13 (-513) (-784) (-961 (-521)) (-583 (-521))))
+ (-5 *2
+ (-2 (|:| |func| *3) (|:| |kers| (-587 (-560 *3)))
+ (|:| |vals| (-587 *3))))
+ (-5 *1 (-253 *5 *3)) (-4 *3 (-13 (-27) (-1105) (-404 *5))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1084)) (-5 *2 (-1170)) (-5 *1 (-1087))))
+ ((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1087)))))
+(((*1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-856)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1080 *1)) (-4 *1 (-937)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-627 *8)) (-4 *8 (-878 *5 *7 *6))
+ (-4 *5 (-13 (-282) (-135))) (-4 *6 (-13 (-784) (-562 (-1084))))
+ (-4 *7 (-729))
+ (-5 *2
+ (-587
+ (-2 (|:| -3162 (-707))
+ (|:| |eqns|
+ (-587
+ (-2 (|:| |det| *8) (|:| |rows| (-587 (-521)))
+ (|:| |cols| (-587 (-521))))))
+ (|:| |fgb| (-587 *8)))))
+ (-5 *1 (-853 *5 *6 *7 *8)) (-5 *4 (-707)))))
+(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3)
+ (-12 (-5 *4 (-627 (-202))) (-5 *5 (-627 (-521))) (-5 *6 (-202))
+ (-5 *3 (-521)) (-5 *2 (-959)) (-5 *1 (-688)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-202)) (-5 *4 (-521))
+ (-5 *5 (-3 (|:| |fn| (-362)) (|:| |fp| (-62 -4049)))) (-5 *2 (-959))
+ (-5 *1 (-685)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-337)) (-4 *3 (-729)) (-4 *4 (-784))
+ (-5 *1 (-473 *2 *3 *4 *5)) (-4 *5 (-878 *2 *3 *4)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-300 *2 *3)) (-4 *2 (-970)) (-4 *3 (-728))
+ (-4 *2 (-425))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-316 *2 *3 *4)) (-4 *2 (-1123)) (-4 *3 (-1141 *2))
+ (-4 *4 (-1141 (-381 *3)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-970)) (-4 *2 (-425))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-878 *3 *4 *2)) (-4 *3 (-970)) (-4 *4 (-729))
+ (-4 *2 (-784)) (-4 *3 (-425))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-878 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729))
+ (-4 *4 (-784)) (-4 *2 (-425))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *3 (-282)) (-4 *3 (-513)) (-5 *1 (-1072 *3 *2))
+ (-4 *2 (-1141 *3)))))
+(((*1 *2 *1 *2 *3)
+ (|partial| -12 (-5 *2 (-1067)) (-5 *3 (-521)) (-5 *1 (-982)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-108)) (-5 *1 (-1106 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-3 (-381 (-881 *5)) (-1074 (-1084) (-881 *5))))
+ (-4 *5 (-425)) (-5 *2 (-587 (-627 (-381 (-881 *5)))))
+ (-5 *1 (-267 *5)) (-5 *4 (-627 (-381 (-881 *5)))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-424))) (-5 *1 (-1110 *3 *2))
- (-4 *2 (-13 (-403 *3) (-1104))))))
-(((*1 *1 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1118)) (-4 *2 (-1012))))
- ((*1 *1 *1) (-12 (-4 *1 (-631 *2)) (-4 *2 (-1012)))))
+ (-12 (-4 *3 (-425)) (-4 *3 (-784)) (-4 *3 (-961 (-521)))
+ (-4 *3 (-513)) (-5 *1 (-40 *3 *2)) (-4 *2 (-404 *3))
+ (-4 *2
+ (-13 (-337) (-277)
+ (-10 -8 (-15 -2801 ((-1036 *3 (-560 $)) $))
+ (-15 -2812 ((-1036 *3 (-560 $)) $))
+ (-15 -2189 ($ (-1036 *3 (-560 $))))))))))
+(((*1 *2)
+ (-12 (-4 *3 (-970)) (-5 *2 (-886 (-649 *3 *4))) (-5 *1 (-649 *3 *4))
+ (-4 *4 (-1141 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1012)) (-4 *5 (-1012))
- (-5 *2 (-1 *5 *4)) (-5 *1 (-620 *4 *5)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-586 *6)) (-4 *1 (-877 *4 *5 *6)) (-4 *4 (-969))
- (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-706))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-877 *3 *4 *5)) (-4 *3 (-969)) (-4 *4 (-728))
- (-4 *5 (-783)) (-5 *2 (-706)))))
+ (-12 (-4 *4 (-323)) (-5 *2 (-886 (-1080 *4))) (-5 *1 (-331 *4))
+ (-5 *3 (-1080 *4)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1079 *7))
- (-4 *5 (-969)) (-4 *7 (-969)) (-4 *2 (-1140 *5))
- (-5 *1 (-469 *5 *2 *6 *7)) (-4 *6 (-1140 *2)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-520)) (-5 *2 (-586 (-586 (-201)))) (-5 *1 (-1115)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3)
- (-12 (-5 *3 (-520)) (-5 *5 (-626 (-201))) (-5 *4 (-201))
- (-5 *2 (-958)) (-5 *1 (-688)))))
-(((*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-832 (-520))) (-5 *1 (-845))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-586 (-520))) (-5 *2 (-832 (-520))) (-5 *1 (-845)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1079 *3)) (-4 *3 (-322)) (-5 *1 (-330 *3)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1085 (-380 (-520)))) (-5 *1 (-168)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-586 (-520))) (-5 *1 (-1022)) (-5 *3 (-520)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-586 (-1066))) (-5 *2 (-1066)) (-5 *1 (-170))))
- ((*1 *1 *2) (-12 (-5 *2 (-586 (-791))) (-5 *1 (-791)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1064 *4)) (-5 *3 (-520)) (-4 *4 (-969))
- (-5 *1 (-1068 *4))))
- ((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-520)) (-5 *1 (-1156 *3 *4 *5)) (-4 *3 (-969))
- (-14 *4 (-1083)) (-14 *5 *3))))
+ (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784))
+ (-4 *3 (-984 *5 *6 *7))
+ (-5 *2 (-587 (-2 (|:| |val| (-108)) (|:| -1884 *4))))
+ (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))))
(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-352))) (-5 *1 (-962)) (-5 *3 (-352)))))
+ (-12 (-5 *2 (-1 (-353))) (-5 *1 (-963)) (-5 *3 (-353)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1180 *3 *4)) (-4 *3 (-784)) (-4 *4 (-970))
+ (-5 *2 (-756 *3))))
+ ((*1 *2 *1) (-12 (-4 *2 (-780)) (-5 *1 (-1186 *3 *2)) (-4 *3 (-970)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-1084))
+ (-4 *6 (-13 (-784) (-282) (-961 (-521)) (-583 (-521)) (-135)))
+ (-4 *4 (-13 (-29 *6) (-1105) (-887)))
+ (-5 *2 (-2 (|:| |particular| *4) (|:| -2470 (-587 *4))))
+ (-5 *1 (-738 *6 *4 *3)) (-4 *3 (-597 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-729)) (-4 *5 (-784)) (-4 *6 (-282))
+ (-5 *2 (-587 (-707))) (-5 *1 (-714 *3 *4 *5 *6 *7))
+ (-4 *3 (-1141 *6)) (-4 *7 (-878 *6 *4 *5)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-424))) (-5 *1 (-1110 *3 *2))
- (-4 *2 (-13 (-403 *3) (-1104))))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1079 *1)) (-4 *1 (-424))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1079 *6)) (-4 *6 (-877 *5 *3 *4)) (-4 *3 (-728))
- (-4 *4 (-783)) (-4 *5 (-837)) (-5 *1 (-429 *3 *4 *5 *6))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-1079 *1)) (-4 *1 (-837)))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6)
- (-12 (-5 *3 (-626 (-201))) (-5 *4 (-520)) (-5 *5 (-201))
- (-5 *6 (-3 (|:| |fn| (-361)) (|:| |fp| (-84 FCN)))) (-5 *2 (-958))
- (-5 *1 (-685)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 (-201) (-201) (-201) (-201))) (-5 *1 (-238))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 (-201) (-201) (-201))) (-5 *1 (-238))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 (-201) (-201))) (-5 *1 (-238)))))
-(((*1 *1 *2) (-12 (-5 *2 (-586 *3)) (-4 *3 (-1012)) (-5 *1 (-924 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-520)) (-5 *1 (-517)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-223 *4 *5)) (-14 *4 (-586 (-1083))) (-4 *5 (-424))
- (-5 *2 (-452 *4 *5)) (-5 *1 (-574 *4 *5)))))
+ (-12 (-4 *3 (-323)) (-4 *4 (-303 *3)) (-4 *5 (-1141 *4))
+ (-5 *1 (-713 *3 *4 *5 *2 *6)) (-4 *2 (-1141 *5)) (-14 *6 (-850))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-707)) (-4 *1 (-1182 *3)) (-4 *3 (-337)) (-4 *3 (-342))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1182 *2)) (-4 *2 (-337)) (-4 *2 (-342)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-108)) (-5 *1 (-38 *3)) (-4 *3 (-1140 (-47))))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1066)) (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783))
- (-4 *7 (-983 *4 *5 *6)) (-5 *2 (-1169))
- (-5 *1 (-989 *4 *5 *6 *7 *8)) (-4 *8 (-988 *4 *5 *6 *7))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1066)) (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783))
- (-4 *7 (-983 *4 *5 *6)) (-5 *2 (-1169))
- (-5 *1 (-1020 *4 *5 *6 *7 *8)) (-4 *8 (-988 *4 *5 *6 *7)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1012)) (-5 *2 (-108)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-352)) (-5 *2 (-1169)) (-5 *1 (-1166)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-586 (-559 *2))) (-5 *4 (-586 (-1083)))
- (-4 *2 (-13 (-403 (-154 *5)) (-926) (-1104)))
- (-4 *5 (-13 (-512) (-783))) (-5 *1 (-549 *5 *6 *2))
- (-4 *6 (-13 (-403 *5) (-926) (-1104))))))
-(((*1 *1) (-12 (-4 *1 (-302 *2)) (-4 *2 (-341)) (-4 *2 (-336)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 (-108) *6)) (-4 *6 (-13 (-1012) (-960 *5)))
- (-4 *5 (-814 *4)) (-4 *4 (-1012)) (-5 *2 (-1 (-108) *5))
- (-5 *1 (-859 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-586 (-520))) (-5 *2 (-1085 (-380 (-520))))
- (-5 *1 (-168)))))
+ (-12 (-4 *4 (-784)) (-5 *2 (-587 (-587 (-587 *4))))
+ (-5 *1 (-1091 *4)) (-5 *3 (-587 (-587 *4))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-587 (-1165 *5))) (-5 *4 (-521)) (-5 *2 (-1165 *5))
+ (-5 *1 (-953 *5)) (-4 *5 (-337)) (-4 *5 (-342)) (-4 *5 (-970)))))
(((*1 *2 *1 *1)
- (-12 (-4 *1 (-214 *3 *2)) (-4 *2 (-1118)) (-4 *2 (-969))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-706)) (-5 *1 (-791))))
- ((*1 *1 *1) (-5 *1 (-791)))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-871 (-201))) (-5 *2 (-201)) (-5 *1 (-1115))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1162 *2)) (-4 *2 (-1118)) (-4 *2 (-969)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-586 *7)) (-4 *7 (-983 *4 *5 *6)) (-4 *4 (-512))
- (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-108))
- (-5 *1 (-902 *4 *5 *6 *7)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-706)) (-4 *5 (-512))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-895 *5 *3)) (-4 *3 (-1140 *5)))))
+ (-12 (-4 *1 (-935 *3)) (-4 *3 (-1119)) (-4 *3 (-1013))
+ (-5 *2 (-108)))))
+(((*1 *1) (-5 *1 (-1000))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-46 *3 *4)) (-4 *3 (-970)) (-4 *4 (-728))
+ (-5 *2 (-108))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-356 *3 *4)) (-4 *3 (-970)) (-4 *4 (-1013))
+ (-5 *2 (-108))))
+ ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-546 *3)) (-4 *3 (-970))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-513)) (-5 *2 (-108)) (-5 *1 (-568 *3 *4))
+ (-4 *4 (-1141 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-108)) (-5 *1 (-672 *3 *4)) (-4 *3 (-970))
+ (-4 *4 (-663))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1180 *3 *4)) (-4 *3 (-784)) (-4 *4 (-970))
+ (-5 *2 (-108)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-425)) (-4 *3 (-784)) (-4 *3 (-961 (-521)))
+ (-4 *3 (-513)) (-5 *1 (-40 *3 *2)) (-4 *2 (-404 *3))
+ (-4 *2
+ (-13 (-337) (-277)
+ (-10 -8 (-15 -2801 ((-1036 *3 (-560 $)) $))
+ (-15 -2812 ((-1036 *3 (-560 $)) $))
+ (-15 -2189 ($ (-1036 *3 (-560 $))))))))))
+(((*1 *2) (-12 (-5 *2 (-353)) (-5 *1 (-963)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))))
+(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7)
+ (-12 (-5 *4 (-521)) (-5 *5 (-627 (-202)))
+ (-5 *6 (-3 (|:| |fn| (-362)) (|:| |fp| (-84 FCN))))
+ (-5 *7 (-3 (|:| |fn| (-362)) (|:| |fp| (-86 OUTPUT))))
+ (-5 *3 (-202)) (-5 *2 (-959)) (-5 *1 (-686)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-201) (-201))) (-5 *1 (-291)) (-5 *3 (-201)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-760)))))
+ (-12 (-5 *3 (-587 (-521))) (-5 *2 (-833 (-521))) (-5 *1 (-846))))
+ ((*1 *2) (-12 (-5 *2 (-833 (-521))) (-5 *1 (-846)))))
(((*1 *2)
- (-12 (-5 *2 (-380 (-880 *3))) (-5 *1 (-425 *3 *4 *5 *6))
- (-4 *3 (-512)) (-4 *3 (-157)) (-14 *4 (-849))
- (-14 *5 (-586 (-1083))) (-14 *6 (-1164 (-626 *3))))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-785 *2)) (-4 *2 (-969)) (-4 *2 (-336)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-1169)) (-5 *1 (-674)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-586 *3)) (-4 *3 (-1140 *5)) (-4 *5 (-281))
- (-5 *2 (-706)) (-5 *1 (-427 *5 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-1169)) (-5 *1 (-791)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-352) (-352))) (-5 *4 (-352))
- (-5 *2
- (-2 (|:| -3429 *4) (|:| -2967 *4) (|:| |totalpts| (-520))
- (|:| |success| (-108))))
- (-5 *1 (-724)) (-5 *5 (-520)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1007 (-201))) (-5 *1 (-854))))
- ((*1 *2 *1) (-12 (-5 *2 (-1007 (-201))) (-5 *1 (-855)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
- (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201)))
- (-5 *5 (-3 (|:| |fn| (-361)) (|:| |fp| (-61 LSFUN2))))
- (-5 *2 (-958)) (-5 *1 (-689)))))
-(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
- (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *2 (-958))
- (-5 *1 (-687)))))
+ (-12 (-4 *4 (-1123)) (-4 *5 (-1141 *4)) (-4 *6 (-1141 (-381 *5)))
+ (-5 *2 (-108)) (-5 *1 (-315 *3 *4 *5 *6)) (-4 *3 (-316 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3))
+ (-4 *5 (-1141 (-381 *4))) (-5 *2 (-108)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-587 (-521))) (-5 *3 (-108)) (-5 *1 (-1023)))))
+(((*1 *2 *3 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-521)) (-5 *5 (-627 (-202))) (-5 *4 (-202))
+ (-5 *2 (-959)) (-5 *1 (-689)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-627 *3)) (-4 *3 (-970)) (-5 *1 (-628 *3)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-707)) (-5 *1 (-110)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-521)) (-4 *6 (-729)) (-4 *7 (-784)) (-4 *8 (-282))
+ (-4 *9 (-878 *8 *6 *7))
+ (-5 *2 (-2 (|:| -3736 (-1080 *9)) (|:| |polval| (-1080 *8))))
+ (-5 *1 (-679 *6 *7 *8 *9)) (-5 *3 (-1080 *9)) (-5 *4 (-1080 *8)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-353)) (-5 *3 (-587 (-239))) (-5 *1 (-237))))
+ ((*1 *1 *2) (-12 (-5 *2 (-353)) (-5 *1 (-239)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-587 (-2 (|:| |gen| *3) (|:| -3261 *4))))
+ (-4 *3 (-1013)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-590 *3 *4 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-675)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-1187 *3 *4)) (-4 *1 (-348 *3 *4)) (-4 *3 (-784))
+ (-4 *4 (-157))))
+ ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-360 *2)) (-4 *2 (-1013))))
+ ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-756 *2)) (-4 *2 (-784))))
+ ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-756 *2)) (-4 *2 (-784))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1180 *2 *3)) (-4 *2 (-784)) (-4 *3 (-970))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-756 *3)) (-4 *1 (-1180 *3 *4)) (-4 *3 (-784))
+ (-4 *4 (-970))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1180 *2 *3)) (-4 *2 (-784)) (-4 *3 (-970)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1083)) (-5 *2 (-496)) (-5 *1 (-495 *4))
- (-4 *4 (-1118)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-908 *2)) (-4 *2 (-1104)))))
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1156 *4))
+ (-4 *4 (-37 (-381 (-521)))) (-5 *2 (-1 (-1065 *4) (-1065 *4)))
+ (-5 *1 (-1158 *4 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-51)) (-5 *1 (-766)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-506))))
+(((*1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-492 *3)) (-4 *3 (-13 (-663) (-25))))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-587 *6)) (-4 *6 (-984 *3 *4 *5))
+ (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-784))
+ (-5 *1 (-1176 *3 *4 *5 *6))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-587 *8)) (-5 *3 (-1 (-108) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-984 *5 *6 *7)) (-4 *5 (-513))
+ (-4 *6 (-729)) (-4 *7 (-784)) (-5 *1 (-1176 *5 *6 *7 *8)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1080 *6)) (-5 *3 (-521)) (-4 *6 (-282)) (-4 *4 (-729))
+ (-4 *5 (-784)) (-5 *1 (-679 *4 *5 *6 *7)) (-4 *7 (-878 *6 *4 *5)))))
+(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-440))))
+ ((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-440)))))
(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-520)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-346 *2))
- (-4 *5 (-346 *2)) (-4 *2 (-1118))))
+ (-12 (-5 *3 (-521)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-347 *2))
+ (-4 *5 (-347 *2)) (-4 *2 (-1119))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-262 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1118))))
+ (-12 (-4 *1 (-263 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1119))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-520)) (-4 *1 (-972 *4 *5 *2 *6 *7))
- (-4 *6 (-214 *5 *2)) (-4 *7 (-214 *4 *2)) (-4 *2 (-969)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-553 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1118))
- (-5 *2 (-586 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1031 *2)) (-4 *2 (-1118)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-336)) (-4 *6 (-1140 (-380 *2)))
- (-4 *2 (-1140 *5)) (-5 *1 (-192 *5 *2 *6 *3))
- (-4 *3 (-315 *5 *2 *6)))))
-(((*1 *1 *1) (-12 (-5 *1 (-158 *2)) (-4 *2 (-281)))))
-(((*1 *1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1118))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-117 *2)) (-4 *2 (-783))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-783))))
- ((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-520)) (-4 *1 (-256 *3)) (-4 *3 (-1118))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-520)) (-4 *1 (-256 *2)) (-4 *2 (-1118))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-2
- (|:| -2526
- (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201)))
- (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201))
- (|:| |relerr| (-201))))
- (|:| -3043
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1064 (-201)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -1667
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite|
- "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))))))
- (-5 *1 (-515))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-706)) (-4 *1 (-631 *2)) (-4 *2 (-1012))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-2
- (|:| -2526
- (-2 (|:| |xinit| (-201)) (|:| |xend| (-201))
- (|:| |fn| (-1164 (-289 (-201)))) (|:| |yinit| (-586 (-201)))
- (|:| |intvals| (-586 (-201))) (|:| |g| (-289 (-201)))
- (|:| |abserr| (-201)) (|:| |relerr| (-201))))
- (|:| -3043
- (-2 (|:| |stiffness| (-352)) (|:| |stability| (-352))
- (|:| |expense| (-352)) (|:| |accuracy| (-352))
- (|:| |intermediateResults| (-352))))))
- (-5 *1 (-739))))
- ((*1 *2 *3 *4)
- (-12 (-5 *2 (-1169)) (-5 *1 (-1096 *3 *4)) (-4 *3 (-1012))
- (-4 *4 (-1012)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-110)) (-4 *2 (-1012)) (-4 *2 (-783))
- (-5 *1 (-109 *2)))))
+ (-12 (-5 *3 (-521)) (-4 *1 (-973 *4 *5 *2 *6 *7))
+ (-4 *6 (-215 *5 *2)) (-4 *7 (-215 *4 *2)) (-4 *2 (-970)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-927))))))
+(((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *3 (-587 *8)) (-5 *4 (-108)) (-4 *8 (-984 *5 *6 *7))
+ (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784))
+ (-5 *2 (-587 (-951 *5 *6 *7 *8))) (-5 *1 (-951 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *3 (-587 *8)) (-5 *4 (-108)) (-4 *8 (-984 *5 *6 *7))
+ (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784))
+ (-5 *2 (-587 (-1055 *5 *6 *7 *8))) (-5 *1 (-1055 *5 *6 *7 *8)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-587 *6)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-425))
+ (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-784))
+ (-5 *1 (-903 *3 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-587 *7)) (-5 *3 (-108)) (-4 *7 (-984 *4 *5 *6))
+ (-4 *4 (-425)) (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-784))
+ (-5 *1 (-903 *4 *5 *6 *7)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1155 *4))
- (-4 *4 (-37 (-380 (-520)))) (-5 *2 (-1 (-1064 *4) (-1064 *4)))
- (-5 *1 (-1157 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-960 (-520))) (-4 *1 (-276)) (-5 *2 (-108))))
- ((*1 *2 *1) (-12 (-4 *1 (-505)) (-5 *2 (-108))))
- ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-833 *3)) (-4 *3 (-1012)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-154 (-201))) (-5 *5 (-520)) (-5 *6 (-1066))
- (-5 *3 (-201)) (-5 *2 (-958)) (-5 *1 (-694)))))
-(((*1 *1 *1) (-12 (-4 *1 (-220 *2)) (-4 *2 (-1118)))))
+ (-12 (-4 *1 (-316 *4 *3 *5)) (-4 *4 (-1123)) (-4 *3 (-1141 *4))
+ (-4 *5 (-1141 (-381 *3))) (-5 *2 (-108))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3))
+ (-4 *5 (-1141 (-381 *4))) (-5 *2 (-108)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1064 (-1064 *4))) (-5 *2 (-1064 *4)) (-5 *1 (-1068 *4))
- (-4 *4 (-37 (-380 (-520)))) (-4 *4 (-969)))))
+ (-12 (-4 *4 (-13 (-784) (-513))) (-5 *2 (-108)) (-5 *1 (-252 *4 *3))
+ (-4 *3 (-13 (-404 *4) (-927))))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-1 (-108) *2)) (-4 *1 (-139 *2))
+ (-4 *2 (-1119)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-707)) (-5 *3 (-872 *4)) (-4 *1 (-1045 *4))
+ (-4 *4 (-970))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-707)) (-5 *4 (-872 (-202))) (-5 *2 (-1170))
+ (-5 *1 (-1167)))))
+(((*1 *2 *3 *2)
+ (-12 (-4 *1 (-723)) (-5 *2 (-959))
+ (-5 *3
+ (-2 (|:| |fn| (-290 (-202)))
+ (|:| -2442 (-587 (-1008 (-777 (-202))))) (|:| |abserr| (-202))
+ (|:| |relerr| (-202))))))
+ ((*1 *2 *3 *2)
+ (-12 (-4 *1 (-723)) (-5 *2 (-959))
+ (-5 *3
+ (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202)))
+ (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202))
+ (|:| |relerr| (-202)))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2))
- (-4 *2 (-13 (-403 *3) (-926))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-289 *4)) (-4 *4 (-13 (-764) (-783) (-969)))
- (-5 *2 (-1066)) (-5 *1 (-762 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-289 *5)) (-5 *4 (-108))
- (-4 *5 (-13 (-764) (-783) (-969))) (-5 *2 (-1066))
- (-5 *1 (-762 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-758)) (-5 *4 (-289 *5))
- (-4 *5 (-13 (-764) (-783) (-969))) (-5 *2 (-1169))
- (-5 *1 (-762 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-758)) (-5 *4 (-289 *6)) (-5 *5 (-108))
- (-4 *6 (-13 (-764) (-783) (-969))) (-5 *2 (-1169))
- (-5 *1 (-762 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-764)) (-5 *2 (-1066))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-764)) (-5 *3 (-108)) (-5 *2 (-1066))))
- ((*1 *2 *3 *1) (-12 (-4 *1 (-764)) (-5 *3 (-758)) (-5 *2 (-1169))))
- ((*1 *2 *3 *1 *4)
- (-12 (-4 *1 (-764)) (-5 *3 (-758)) (-5 *4 (-108)) (-5 *2 (-1169)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1118)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8))
- (-5 *4 (-626 (-1079 *8))) (-4 *5 (-969)) (-4 *8 (-969))
- (-4 *6 (-1140 *5)) (-5 *2 (-626 *6)) (-5 *1 (-469 *5 *6 *7 *8))
- (-4 *7 (-1140 *6)))))
-(((*1 *1 *1 *1) (-4 *1 (-445))) ((*1 *1 *1 *1) (-4 *1 (-697))))
+ (-12 (-4 *3 (-13 (-513) (-784) (-961 (-521)) (-583 (-521))))
+ (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-27) (-1105) (-404 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1084))
+ (-4 *4 (-13 (-513) (-784) (-961 (-521)) (-583 (-521))))
+ (-5 *1 (-253 *4 *2)) (-4 *2 (-13 (-27) (-1105) (-404 *4))))))
+(((*1 *1 *1) (-12 (-4 *1 (-221 *2)) (-4 *2 (-1119)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-587 (-521))) (-5 *1 (-929 *3)) (-14 *3 (-521)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-1098)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-513)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2258 *3)))
+ (-5 *1 (-896 *4 *3)) (-4 *3 (-1141 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-856)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-512)) (-5 *2 (-1164 (-626 *4))) (-5 *1 (-88 *4 *5))
- (-5 *3 (-626 *4)) (-4 *5 (-596 *4)))))
+ (-12 (-4 *4 (-970)) (-4 *5 (-1141 *4)) (-5 *2 (-1 *6 (-587 *6)))
+ (-5 *1 (-1159 *4 *5 *3 *6)) (-4 *3 (-597 *5)) (-4 *6 (-1156 *4)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959))
+ (-5 *1 (-694)))))
+(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-521)) (-5 *4 (-627 (-154 (-202)))) (-5 *2 (-959))
+ (-5 *1 (-693)))))
+(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4)
+ (-12 (-5 *3 (-627 (-202))) (-5 *4 (-521)) (-5 *2 (-959))
+ (-5 *1 (-692)))))
+(((*1 *2)
+ (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3))
+ (-4 *5 (-1141 (-381 *4))) (-5 *2 (-108)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-201)) (-5 *4 (-520)) (-5 *2 (-958)) (-5 *1 (-694)))))
+ (-12 (-5 *4 (-627 (-381 (-881 (-521)))))
+ (-5 *2 (-587 (-627 (-290 (-521))))) (-5 *1 (-955))
+ (-5 *3 (-290 (-521))))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1164 *1)) (-4 *1 (-343 *4 *5)) (-4 *4 (-157))
- (-4 *5 (-1140 *4)) (-5 *2 (-626 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-157)) (-4 *4 (-1140 *3))
- (-5 *2 (-626 *3)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-14 *5 (-586 (-1083))) (-4 *2 (-157))
- (-4 *4 (-214 (-3474 *5) (-706)))
- (-14 *6
- (-1 (-108) (-2 (|:| -2716 *3) (|:| -2647 *4))
- (-2 (|:| -2716 *3) (|:| -2647 *4))))
- (-5 *1 (-433 *5 *2 *3 *4 *6 *7)) (-4 *3 (-783))
- (-4 *7 (-877 *2 *4 (-793 *5))))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-336)) (-5 *1 (-702 *2 *3)) (-4 *2 (-645 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-785 *2)) (-4 *2 (-969)) (-4 *2 (-336)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-201)) (-5 *4 (-520)) (-5 *2 (-958)) (-5 *1 (-694)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-586 (-380 (-880 (-520)))))
- (-5 *2 (-586 (-586 (-268 (-880 *4))))) (-5 *1 (-353 *4))
- (-4 *4 (-13 (-781) (-336)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-586 (-268 (-380 (-880 (-520))))))
- (-5 *2 (-586 (-586 (-268 (-880 *4))))) (-5 *1 (-353 *4))
- (-4 *4 (-13 (-781) (-336)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-380 (-880 (-520)))) (-5 *2 (-586 (-268 (-880 *4))))
- (-5 *1 (-353 *4)) (-4 *4 (-13 (-781) (-336)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-268 (-380 (-880 (-520)))))
- (-5 *2 (-586 (-268 (-880 *4)))) (-5 *1 (-353 *4))
- (-4 *4 (-13 (-781) (-336)))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1083))
- (-4 *6 (-13 (-783) (-281) (-960 (-520)) (-582 (-520)) (-135)))
- (-4 *4 (-13 (-29 *6) (-1104) (-886)))
- (-5 *2 (-2 (|:| |particular| *4) (|:| -1831 (-586 *4))))
- (-5 *1 (-592 *6 *4 *3)) (-4 *3 (-596 *4))))
- ((*1 *2 *3 *2 *4 *2 *5)
- (|partial| -12 (-5 *4 (-1083)) (-5 *5 (-586 *2))
- (-4 *2 (-13 (-29 *6) (-1104) (-886)))
- (-4 *6 (-13 (-783) (-281) (-960 (-520)) (-582 (-520)) (-135)))
- (-5 *1 (-592 *6 *2 *3)) (-4 *3 (-596 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-626 *5)) (-4 *5 (-336))
- (-5 *2
- (-2 (|:| |particular| (-3 (-1164 *5) "failed"))
- (|:| -1831 (-586 (-1164 *5)))))
- (-5 *1 (-607 *5)) (-5 *4 (-1164 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-586 (-586 *5))) (-4 *5 (-336))
- (-5 *2
- (-2 (|:| |particular| (-3 (-1164 *5) "failed"))
- (|:| -1831 (-586 (-1164 *5)))))
- (-5 *1 (-607 *5)) (-5 *4 (-1164 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-626 *5)) (-4 *5 (-336))
- (-5 *2
- (-586
- (-2 (|:| |particular| (-3 (-1164 *5) "failed"))
- (|:| -1831 (-586 (-1164 *5))))))
- (-5 *1 (-607 *5)) (-5 *4 (-586 (-1164 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-586 (-586 *5))) (-4 *5 (-336))
- (-5 *2
- (-586
- (-2 (|:| |particular| (-3 (-1164 *5) "failed"))
- (|:| -1831 (-586 (-1164 *5))))))
- (-5 *1 (-607 *5)) (-5 *4 (-586 (-1164 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-336)) (-4 *6 (-13 (-346 *5) (-10 -7 (-6 -4230))))
- (-4 *4 (-13 (-346 *5) (-10 -7 (-6 -4230))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1831 (-586 *4))))
- (-5 *1 (-608 *5 *6 *4 *3)) (-4 *3 (-624 *5 *6 *4))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-336)) (-4 *6 (-13 (-346 *5) (-10 -7 (-6 -4230))))
- (-4 *7 (-13 (-346 *5) (-10 -7 (-6 -4230))))
- (-5 *2
- (-586
- (-2 (|:| |particular| (-3 *7 "failed")) (|:| -1831 (-586 *7)))))
- (-5 *1 (-608 *5 *6 *7 *3)) (-5 *4 (-586 *7))
- (-4 *3 (-624 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-586 (-880 *5))) (-5 *4 (-586 (-1083))) (-4 *5 (-512))
- (-5 *2 (-586 (-586 (-268 (-380 (-880 *5)))))) (-5 *1 (-705 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-586 (-880 *4))) (-4 *4 (-512))
- (-5 *2 (-586 (-586 (-268 (-380 (-880 *4)))))) (-5 *1 (-705 *4))))
- ((*1 *2 *2 *2 *3 *4)
- (|partial| -12 (-5 *3 (-110)) (-5 *4 (-1083))
- (-4 *5 (-13 (-783) (-281) (-960 (-520)) (-582 (-520)) (-135)))
- (-5 *1 (-707 *5 *2)) (-4 *2 (-13 (-29 *5) (-1104) (-886)))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-626 *7)) (-5 *5 (-1083))
- (-4 *7 (-13 (-29 *6) (-1104) (-886)))
- (-4 *6 (-13 (-783) (-281) (-960 (-520)) (-582 (-520)) (-135)))
- (-5 *2
- (-2 (|:| |particular| (-1164 *7)) (|:| -1831 (-586 (-1164 *7)))))
- (-5 *1 (-738 *6 *7)) (-5 *4 (-1164 *7))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-626 *6)) (-5 *4 (-1083))
- (-4 *6 (-13 (-29 *5) (-1104) (-886)))
- (-4 *5 (-13 (-783) (-281) (-960 (-520)) (-582 (-520)) (-135)))
- (-5 *2 (-586 (-1164 *6))) (-5 *1 (-738 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-586 (-268 *7))) (-5 *4 (-586 (-110)))
- (-5 *5 (-1083)) (-4 *7 (-13 (-29 *6) (-1104) (-886)))
- (-4 *6 (-13 (-783) (-281) (-960 (-520)) (-582 (-520)) (-135)))
- (-5 *2
- (-2 (|:| |particular| (-1164 *7)) (|:| -1831 (-586 (-1164 *7)))))
- (-5 *1 (-738 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-586 *7)) (-5 *4 (-586 (-110)))
- (-5 *5 (-1083)) (-4 *7 (-13 (-29 *6) (-1104) (-886)))
- (-4 *6 (-13 (-783) (-281) (-960 (-520)) (-582 (-520)) (-135)))
- (-5 *2
- (-2 (|:| |particular| (-1164 *7)) (|:| -1831 (-586 (-1164 *7)))))
- (-5 *1 (-738 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-268 *7)) (-5 *4 (-110)) (-5 *5 (-1083))
- (-4 *7 (-13 (-29 *6) (-1104) (-886)))
- (-4 *6 (-13 (-783) (-281) (-960 (-520)) (-582 (-520)) (-135)))
- (-5 *2
- (-3 (-2 (|:| |particular| *7) (|:| -1831 (-586 *7))) *7 "failed"))
- (-5 *1 (-738 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-110)) (-5 *5 (-1083))
- (-4 *6 (-13 (-783) (-281) (-960 (-520)) (-582 (-520)) (-135)))
- (-5 *2
- (-3 (-2 (|:| |particular| *3) (|:| -1831 (-586 *3))) *3 "failed"))
- (-5 *1 (-738 *6 *3)) (-4 *3 (-13 (-29 *6) (-1104) (-886)))))
- ((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *3 (-268 *2)) (-5 *4 (-110)) (-5 *5 (-586 *2))
- (-4 *2 (-13 (-29 *6) (-1104) (-886))) (-5 *1 (-738 *6 *2))
- (-4 *6 (-13 (-783) (-281) (-960 (-520)) (-582 (-520)) (-135)))))
- ((*1 *2 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-110)) (-5 *4 (-268 *2)) (-5 *5 (-586 *2))
- (-4 *2 (-13 (-29 *6) (-1104) (-886)))
- (-4 *6 (-13 (-783) (-281) (-960 (-520)) (-582 (-520)) (-135)))
- (-5 *1 (-738 *6 *2))))
- ((*1 *2 *3) (-12 (-5 *3 (-744)) (-5 *2 (-958)) (-5 *1 (-741))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-744)) (-5 *4 (-981)) (-5 *2 (-958)) (-5 *1 (-741))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1164 (-289 (-352)))) (-5 *4 (-352)) (-5 *5 (-586 *4))
- (-5 *2 (-958)) (-5 *1 (-741))))
- ((*1 *2 *3 *4 *4 *5 *4)
- (-12 (-5 *3 (-1164 (-289 (-352)))) (-5 *4 (-352)) (-5 *5 (-586 *4))
- (-5 *2 (-958)) (-5 *1 (-741))))
- ((*1 *2 *3 *4 *4 *5 *6 *4)
- (-12 (-5 *3 (-1164 (-289 *4))) (-5 *5 (-586 (-352)))
- (-5 *6 (-289 (-352))) (-5 *4 (-352)) (-5 *2 (-958)) (-5 *1 (-741))))
- ((*1 *2 *3 *4 *4 *5 *5 *4)
- (-12 (-5 *3 (-1164 (-289 (-352)))) (-5 *4 (-352)) (-5 *5 (-586 *4))
- (-5 *2 (-958)) (-5 *1 (-741))))
- ((*1 *2 *3 *4 *4 *5 *6 *5 *4)
- (-12 (-5 *3 (-1164 (-289 *4))) (-5 *5 (-586 (-352)))
- (-5 *6 (-289 (-352))) (-5 *4 (-352)) (-5 *2 (-958)) (-5 *1 (-741))))
- ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4)
- (-12 (-5 *3 (-1164 (-289 *4))) (-5 *5 (-586 (-352)))
- (-5 *6 (-289 (-352))) (-5 *4 (-352)) (-5 *2 (-958)) (-5 *1 (-741))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12
- (-5 *5
- (-1
- (-3 (-2 (|:| |particular| *6) (|:| -1831 (-586 *6))) "failed")
- *7 *6))
- (-4 *6 (-336)) (-4 *7 (-596 *6))
- (-5 *2 (-2 (|:| |particular| (-1164 *6)) (|:| -1831 (-626 *6))))
- (-5 *1 (-749 *6 *7)) (-5 *3 (-626 *6)) (-5 *4 (-1164 *6))))
- ((*1 *2 *3) (-12 (-5 *3 (-826)) (-5 *2 (-958)) (-5 *1 (-825))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-826)) (-5 *4 (-981)) (-5 *2 (-958)) (-5 *1 (-825))))
- ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8)
- (-12 (-5 *4 (-706)) (-5 *6 (-586 (-586 (-289 *3)))) (-5 *7 (-1066))
- (-5 *8 (-201)) (-5 *5 (-586 (-289 (-352)))) (-5 *3 (-352))
- (-5 *2 (-958)) (-5 *1 (-825))))
- ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7)
- (-12 (-5 *4 (-706)) (-5 *6 (-586 (-586 (-289 *3)))) (-5 *7 (-1066))
- (-5 *5 (-586 (-289 (-352)))) (-5 *3 (-352)) (-5 *2 (-958))
- (-5 *1 (-825))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-880 (-380 (-520)))) (-5 *2 (-586 (-352)))
- (-5 *1 (-946)) (-5 *4 (-352))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-880 (-520))) (-5 *2 (-586 (-352))) (-5 *1 (-946))
- (-5 *4 (-352))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-336) (-10 -8 (-15 ** ($ $ (-380 (-520)))))))
- (-5 *2 (-586 *4)) (-5 *1 (-1038 *3 *4)) (-4 *3 (-1140 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-783) (-281) (-960 (-520)) (-582 (-520)) (-135)))
- (-5 *2 (-586 (-268 (-289 *4)))) (-5 *1 (-1041 *4))
- (-5 *3 (-289 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-783) (-281) (-960 (-520)) (-582 (-520)) (-135)))
- (-5 *2 (-586 (-268 (-289 *4)))) (-5 *1 (-1041 *4))
- (-5 *3 (-268 (-289 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1083))
- (-4 *5 (-13 (-783) (-281) (-960 (-520)) (-582 (-520)) (-135)))
- (-5 *2 (-586 (-268 (-289 *5)))) (-5 *1 (-1041 *5))
- (-5 *3 (-268 (-289 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1083))
- (-4 *5 (-13 (-783) (-281) (-960 (-520)) (-582 (-520)) (-135)))
- (-5 *2 (-586 (-268 (-289 *5)))) (-5 *1 (-1041 *5))
- (-5 *3 (-289 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-586 (-1083)))
- (-4 *5 (-13 (-783) (-281) (-960 (-520)) (-582 (-520)) (-135)))
- (-5 *2 (-586 (-586 (-268 (-289 *5))))) (-5 *1 (-1041 *5))
- (-5 *3 (-586 (-268 (-289 *5))))))
+ (-12 (-5 *3 (-521)) (-4 *1 (-297 *4 *2)) (-4 *4 (-1013))
+ (-4 *2 (-124)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-392 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1141 (-47)))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *2 (-2 (|:| |less| (-117 *3)) (|:| |greater| (-117 *3))))
+ (-5 *1 (-117 *3)) (-4 *3 (-784))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-538 *4)) (-4 *4 (-13 (-29 *3) (-1105)))
+ (-4 *3 (-13 (-425) (-961 (-521)) (-784) (-583 (-521))))
+ (-5 *1 (-536 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-538 (-381 (-881 *3))))
+ (-4 *3 (-13 (-425) (-961 (-521)) (-784) (-583 (-521))))
+ (-5 *1 (-541 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-586 (-380 (-880 *5)))) (-5 *4 (-586 (-1083)))
- (-4 *5 (-512)) (-5 *2 (-586 (-586 (-268 (-380 (-880 *5))))))
- (-5 *1 (-1089 *5))))
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1141 *5)) (-4 *5 (-337))
+ (-5 *2 (-2 (|:| -3658 *3) (|:| |special| *3))) (-5 *1 (-664 *5 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-586 (-1083))) (-4 *5 (-512))
- (-5 *2 (-586 (-586 (-268 (-380 (-880 *5)))))) (-5 *1 (-1089 *5))
- (-5 *3 (-586 (-268 (-380 (-880 *5)))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-586 (-380 (-880 *4)))) (-4 *4 (-512))
- (-5 *2 (-586 (-586 (-268 (-380 (-880 *4)))))) (-5 *1 (-1089 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-512)) (-5 *2 (-586 (-586 (-268 (-380 (-880 *4))))))
- (-5 *1 (-1089 *4)) (-5 *3 (-586 (-268 (-380 (-880 *4)))))))
+ (-12 (-5 *4 (-1165 *5)) (-4 *5 (-337)) (-4 *5 (-970))
+ (-5 *2 (-587 (-587 (-627 *5)))) (-5 *1 (-953 *5))
+ (-5 *3 (-587 (-627 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1083)) (-4 *5 (-512))
- (-5 *2 (-586 (-268 (-380 (-880 *5))))) (-5 *1 (-1089 *5))
- (-5 *3 (-380 (-880 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1083)) (-4 *5 (-512))
- (-5 *2 (-586 (-268 (-380 (-880 *5))))) (-5 *1 (-1089 *5))
- (-5 *3 (-268 (-380 (-880 *5))))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-512)) (-5 *2 (-586 (-268 (-380 (-880 *4)))))
- (-5 *1 (-1089 *4)) (-5 *3 (-380 (-880 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-512)) (-5 *2 (-586 (-268 (-380 (-880 *4)))))
- (-5 *1 (-1089 *4)) (-5 *3 (-268 (-380 (-880 *4)))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-842 *3)) (-4 *3 (-281)))))
-(((*1 *1 *2) (-12 (-5 *2 (-143)) (-5 *1 (-802)))))
+ (-12 (-5 *4 (-1165 (-1165 *5))) (-4 *5 (-337)) (-4 *5 (-970))
+ (-5 *2 (-587 (-587 (-627 *5)))) (-5 *1 (-953 *5))
+ (-5 *3 (-587 (-627 *5)))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-129)) (-5 *2 (-587 *1)) (-4 *1 (-1053))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-132)) (-5 *2 (-587 *1)) (-4 *1 (-1053)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-166)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-626 (-380 (-880 (-520)))))
- (-5 *2 (-586 (-626 (-289 (-520))))) (-5 *1 (-954)))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-1049 *2 *3)) (-4 *2 (-13 (-1012) (-33)))
- (-4 *3 (-13 (-1012) (-33))))))
-(((*1 *2 *1) (-12 (-5 *1 (-268 *2)) (-4 *2 (-1118))))
+ (-12 (-5 *3 (-777 (-353))) (-5 *2 (-777 (-202))) (-5 *1 (-280)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-521)) (-5 *2 (-1170)) (-5 *1 (-1167))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-353)) (-5 *2 (-1170)) (-5 *1 (-1167)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-970)) (-5 *1 (-823 *2 *3)) (-4 *2 (-1141 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-5 *1 (-1069 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-872 *3)) (-4 *3 (-13 (-337) (-1105) (-927)))
+ (-5 *1 (-160 *3)))))
+(((*1 *2 *1) (-12 (-5 *1 (-269 *2)) (-4 *2 (-1119))))
((*1 *2 *1)
- (-12 (-4 *3 (-1012))
- (-4 *2 (-13 (-403 *4) (-814 *3) (-561 (-820 *3))))
- (-5 *1 (-991 *3 *4 *2))
- (-4 *4 (-13 (-969) (-814 *3) (-783) (-561 (-820 *3))))))
+ (-12 (-4 *3 (-1013))
+ (-4 *2 (-13 (-404 *4) (-815 *3) (-562 (-821 *3))))
+ (-5 *1 (-992 *3 *4 *2))
+ (-4 *4 (-13 (-970) (-815 *3) (-784) (-562 (-821 *3))))))
((*1 *2 *1)
- (-12 (-4 *2 (-1012)) (-5 *1 (-1073 *3 *2)) (-4 *3 (-1012)))))
-(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2)
- (-12 (-4 *1 (-733 *2)) (-4 *2 (-157))))
- ((*1 *1 *2 *2)
- (-12 (-5 *2 (-923 *3)) (-4 *3 (-157)) (-5 *1 (-735 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1064 (-2 (|:| |k| (-520)) (|:| |c| *3))))
- (-5 *1 (-545 *3)) (-4 *3 (-969)))))
-(((*1 *2 *2) (-12 (-5 *2 (-520)) (-5 *1 (-517)))))
+ (-12 (-4 *2 (-1013)) (-5 *1 (-1074 *3 *2)) (-4 *3 (-1013)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-201)) (-5 *4 (-520)) (-5 *2 (-958)) (-5 *1 (-694)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-758)))))
+ (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1141 *6))
+ (-4 *6 (-13 (-27) (-404 *5)))
+ (-4 *5 (-13 (-784) (-513) (-961 (-521)))) (-4 *8 (-1141 (-381 *7)))
+ (-5 *2 (-538 *3)) (-5 *1 (-509 *5 *6 *7 *8 *3))
+ (-4 *3 (-316 *6 *7 *8)))))
(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-586 (-820 *3))) (-5 *1 (-820 *3))
- (-4 *3 (-1012)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-108)) (-5 *3 (-586 (-238))) (-5 *1 (-236))))
- ((*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-238))))
- ((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-439))))
- ((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-439)))))
-(((*1 *1 *1)
- (-12 (|has| *1 (-6 -4230)) (-4 *1 (-346 *2)) (-4 *2 (-1118))
- (-4 *2 (-783))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-108) *3 *3)) (|has| *1 (-6 -4230))
- (-4 *1 (-346 *3)) (-4 *3 (-1118)))))
-(((*1 *2 *1) (-12 (-5 *1 (-268 *2)) (-4 *2 (-1118))))
+ (-12 (-5 *2 (-1015 *3)) (-5 *1 (-834 *3)) (-4 *3 (-342))
+ (-4 *3 (-1013)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-2 (|:| -1999 (-521)) (|:| -1514 (-587 *3))))
+ (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521))))))
+(((*1 *1) (-5 *1 (-266))))
+(((*1 *1 *1) (-5 *1 (-982))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-587 (-872 *4))) (-4 *1 (-1045 *4)) (-4 *4 (-970))
+ (-5 *2 (-707)))))
+(((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-707)) (-5 *1 (-718 *3)) (-4 *3 (-970))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *1 (-891 *3 *2)) (-4 *2 (-124)) (-4 *3 (-513))
+ (-4 *3 (-970)) (-4 *2 (-728))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-707)) (-5 *1 (-1080 *3)) (-4 *3 (-970))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-897)) (-4 *2 (-124)) (-5 *1 (-1086 *3)) (-4 *3 (-513))
+ (-4 *3 (-970))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-707)) (-5 *1 (-1138 *4 *3)) (-14 *4 (-1084))
+ (-4 *3 (-970)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-290 *3)) (-4 *3 (-13 (-970) (-784)))
+ (-5 *1 (-200 *3 *4)) (-14 *4 (-587 (-1084))))))
+(((*1 *2 *1) (-12 (-5 *1 (-269 *2)) (-4 *2 (-1119))))
((*1 *2 *1)
- (-12 (-4 *3 (-1012))
- (-4 *2 (-13 (-403 *4) (-814 *3) (-561 (-820 *3))))
- (-5 *1 (-991 *3 *4 *2))
- (-4 *4 (-13 (-969) (-814 *3) (-783) (-561 (-820 *3))))))
+ (-12 (-4 *3 (-1013))
+ (-4 *2 (-13 (-404 *4) (-815 *3) (-562 (-821 *3))))
+ (-5 *1 (-992 *3 *4 *2))
+ (-4 *4 (-13 (-970) (-815 *3) (-784) (-562 (-821 *3))))))
((*1 *2 *1)
- (-12 (-4 *2 (-1012)) (-5 *1 (-1073 *2 *3)) (-4 *3 (-1012)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-281) (-135))) (-4 *5 (-13 (-783) (-561 (-1083))))
- (-4 *6 (-728)) (-5 *2 (-380 (-880 *4))) (-5 *1 (-852 *4 *5 *6 *3))
- (-4 *3 (-877 *4 *6 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-626 *7)) (-4 *7 (-877 *4 *6 *5))
- (-4 *4 (-13 (-281) (-135))) (-4 *5 (-13 (-783) (-561 (-1083))))
- (-4 *6 (-728)) (-5 *2 (-626 (-380 (-880 *4))))
- (-5 *1 (-852 *4 *5 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-586 *7)) (-4 *7 (-877 *4 *6 *5))
- (-4 *4 (-13 (-281) (-135))) (-4 *5 (-13 (-783) (-561 (-1083))))
- (-4 *6 (-728)) (-5 *2 (-586 (-380 (-880 *4))))
- (-5 *1 (-852 *4 *5 *6 *7)))))
+ (-12 (-4 *2 (-1013)) (-5 *1 (-1074 *2 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-968)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1012))
- (-4 *6 (-1012)) (-4 *2 (-1012)) (-5 *1 (-618 *5 *6 *2)))))
+ (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1013))
+ (-4 *6 (-1013)) (-4 *2 (-1013)) (-5 *1 (-619 *5 *6 *2)))))
(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-132)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-586 (-520))) (-5 *4 (-833 (-520)))
- (-5 *2 (-626 (-520))) (-5 *1 (-541))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-586 (-520))) (-5 *2 (-586 (-626 (-520))))
- (-5 *1 (-541))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-586 (-520))) (-5 *4 (-586 (-833 (-520))))
- (-5 *2 (-586 (-626 (-520)))) (-5 *1 (-541)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1147 *3 *2)) (-4 *3 (-969))
- (-4 *2 (-1124 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-201)) (-5 *4 (-520)) (-5 *2 (-958)) (-5 *1 (-694)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-537 *2)) (-4 *2 (-13 (-29 *4) (-1104)))
- (-5 *1 (-535 *4 *2))
- (-4 *4 (-13 (-424) (-960 (-520)) (-783) (-582 (-520))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-537 (-380 (-880 *4))))
- (-4 *4 (-13 (-424) (-960 (-520)) (-783) (-582 (-520))))
- (-5 *2 (-289 *4)) (-5 *1 (-540 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-424))) (-5 *1 (-1110 *3 *2))
- (-4 *2 (-13 (-403 *3) (-1104))))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-545 *2)) (-4 *2 (-37 (-380 (-520)))) (-4 *2 (-969)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-424))
- (-5 *2
- (-586
- (-2 (|:| |eigval| (-3 (-380 (-880 *4)) (-1073 (-1083) (-880 *4))))
- (|:| |geneigvec| (-586 (-626 (-380 (-880 *4))))))))
- (-5 *1 (-266 *4)) (-5 *3 (-626 (-380 (-880 *4)))))))
-(((*1 *1 *2 *1) (-12 (-5 *1 (-117 *2)) (-4 *2 (-783)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-969)) (-5 *1 (-1136 *3 *2)) (-4 *2 (-1140 *3)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783))
- (-4 *3 (-983 *5 *6 *7))
- (-5 *2 (-586 (-2 (|:| |val| *3) (|:| -1883 *4))))
- (-5 *1 (-989 *5 *6 *7 *3 *4)) (-4 *4 (-988 *5 *6 *7 *3)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-586 *6)) (-4 *6 (-877 *3 *4 *5)) (-4 *3 (-336))
- (-4 *4 (-728)) (-4 *5 (-783)) (-5 *1 (-472 *3 *4 *5 *6)))))
-(((*1 *2)
- (-12 (-4 *3 (-512)) (-5 *2 (-586 *4)) (-5 *1 (-42 *3 *4))
- (-4 *4 (-390 *3)))))
-(((*1 *1) (-12 (-4 *1 (-437 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23))))
- ((*1 *1) (-5 *1 (-496))) ((*1 *1) (-4 *1 (-658)))
- ((*1 *1) (-4 *1 (-662)))
- ((*1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-1012))))
- ((*1 *1) (-12 (-5 *1 (-821 *2)) (-4 *2 (-783)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-424)) (-4 *4 (-512))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| -1267 *4))) (-5 *1 (-895 *4 *3))
- (-4 *3 (-1140 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-1140 (-380 (-520)))) (-5 *1 (-841 *3 *2))
- (-4 *2 (-1140 (-380 *3))))))
-(((*1 *2) (-12 (-5 *2 (-849)) (-5 *1 (-1167))))
- ((*1 *2 *2) (-12 (-5 *2 (-849)) (-5 *1 (-1167)))))
-(((*1 *2 *1) (-12 (-5 *2 (-586 (-1083))) (-5 *1 (-1087)))))
+ (-12 (-4 *4 (-513)) (-5 *2 (-587 *3)) (-5 *1 (-42 *4 *3))
+ (-4 *3 (-391 *4)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-360 *2)) (-4 *2 (-1013))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-756 *2)) (-4 *2 (-784)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201)))
- (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201))
- (|:| |relerr| (-201))))
- (-5 *2 (-1064 (-201))) (-5 *1 (-170))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-289 (-201))) (-5 *4 (-586 (-1083)))
- (-5 *5 (-1007 (-776 (-201)))) (-5 *2 (-1064 (-201))) (-5 *1 (-274))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1164 (-289 (-201)))) (-5 *4 (-586 (-1083)))
- (-5 *5 (-1007 (-776 (-201)))) (-5 *2 (-1064 (-201))) (-5 *1 (-274)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-336)) (-5 *2 (-2 (|:| -2060 *3) (|:| -3753 *3)))
- (-5 *1 (-702 *3 *4)) (-4 *3 (-645 *4))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-336)) (-4 *3 (-969))
- (-5 *2 (-2 (|:| -2060 *1) (|:| -3753 *1))) (-4 *1 (-785 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-94 *5)) (-4 *5 (-336)) (-4 *5 (-969))
- (-5 *2 (-2 (|:| -2060 *3) (|:| -3753 *3))) (-5 *1 (-786 *5 *3))
- (-4 *3 (-785 *5)))))
-(((*1 *1) (-5 *1 (-132)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-586 (-238))) (-5 *2 (-1043 (-201))) (-5 *1 (-236))))
- ((*1 *1 *2) (-12 (-5 *2 (-1043 (-201))) (-5 *1 (-238)))))
-(((*1 *2 *1) (-12 (-4 *1 (-299 *3 *2)) (-4 *3 (-969)) (-4 *2 (-727))))
- ((*1 *2 *1) (-12 (-4 *1 (-645 *3)) (-4 *3 (-969)) (-5 *2 (-706))))
- ((*1 *2 *1) (-12 (-4 *1 (-785 *3)) (-4 *3 (-969)) (-5 *2 (-706))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-586 *6)) (-4 *1 (-877 *4 *5 *6)) (-4 *4 (-969))
- (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-586 (-706)))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-877 *4 *5 *3)) (-4 *4 (-969)) (-4 *5 (-728))
- (-4 *3 (-783)) (-5 *2 (-706)))))
-(((*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-832 (-520))) (-5 *1 (-845))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-586 (-520))) (-5 *2 (-832 (-520))) (-5 *1 (-845)))))
-(((*1 *1) (-4 *1 (-23)))
- ((*1 *1) (-12 (-4 *1 (-442 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23))))
- ((*1 *1) (-5 *1 (-496)))
- ((*1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-1012)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-281)) (-4 *4 (-346 *3)) (-4 *5 (-346 *3))
- (-5 *1 (-1034 *3 *4 *5 *2)) (-4 *2 (-624 *3 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-706)) (-5 *2 (-626 (-880 *4))) (-5 *1 (-951 *4))
- (-4 *4 (-969)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1083)) (-5 *1 (-758)))))
-(((*1 *1 *1) (-12 (-4 *1 (-403 *2)) (-4 *2 (-783)) (-4 *2 (-512))))
- ((*1 *1 *1) (-12 (-4 *1 (-917 *2)) (-4 *2 (-512)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1155 *4)) (-5 *1 (-1157 *4 *2))
- (-4 *4 (-37 (-380 (-520)))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1064 (-1064 *4))) (-5 *2 (-1064 *4)) (-5 *1 (-1068 *4))
- (-4 *4 (-969)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-424))) (-5 *1 (-1110 *3 *2))
- (-4 *2 (-13 (-403 *3) (-1104))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1083)) (-5 *2 (-1169)) (-5 *1 (-1086))))
- ((*1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-1086)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-424))) (-5 *1 (-1110 *3 *2))
- (-4 *2 (-13 (-403 *3) (-1104))))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-520)) (-5 *1 (-1022)))))
-(((*1 *2 *1) (-12 (-4 *1 (-613 *3)) (-4 *3 (-1118)) (-5 *2 (-108)))))
+ (-587 (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521))))))
+ (-5 *2 (-587 (-381 (-521)))) (-5 *1 (-944 *4))
+ (-4 *4 (-1141 (-521))))))
(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1024)) (-4 *3 (-783)) (-5 *2 (-586 *1))
- (-4 *1 (-403 *3))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-586 (-820 *3))) (-5 *1 (-820 *3))
- (-4 *3 (-1012))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783))
- (-5 *2 (-586 *1)) (-4 *1 (-877 *3 *4 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-728)) (-4 *5 (-783)) (-4 *6 (-969))
- (-4 *7 (-877 *6 *4 *5)) (-5 *2 (-586 *3))
- (-5 *1 (-878 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-336)
- (-10 -8 (-15 -2188 ($ *7)) (-15 -2800 (*7 $))
- (-15 -2811 (*7 $))))))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-969)) (-5 *1 (-416 *3 *2)) (-4 *2 (-1140 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-362)) (-5 *2 (-108)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-586 (-791))) (-5 *1 (-791)))))
+ (-12 (-5 *2 (-792)) (-5 *1 (-1065 *3)) (-4 *3 (-1013))
+ (-4 *3 (-1119)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-360 *2)) (-4 *2 (-1013))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-756 *2)) (-4 *2 (-784)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3)
+ (-12 (-5 *3 (-521)) (-5 *5 (-627 (-202))) (-5 *4 (-202))
+ (-5 *2 (-959)) (-5 *1 (-689)))))
+(((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1168)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-707)) (-5 *1 (-98 *3)) (-4 *3 (-1013)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-201)) (-5 *4 (-520)) (-5 *2 (-958)) (-5 *1 (-694)))))
-(((*1 *1 *1) (-12 (-5 *1 (-268 *2)) (-4 *2 (-21)) (-4 *2 (-1118)))))
-(((*1 *2 *2 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-336) (-10 -8 (-15 ** ($ $ (-380 (-520)))))))
- (-5 *1 (-1038 *3 *2)) (-4 *3 (-1140 *2)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-586 (-706))) (-5 *1 (-1072 *3 *4)) (-14 *3 (-849))
- (-4 *4 (-969)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-545 *2)) (-4 *2 (-37 (-380 (-520)))) (-4 *2 (-969)))))
+ (-12 (-5 *4 (-587 (-794 *5))) (-14 *5 (-587 (-1084))) (-4 *6 (-425))
+ (-5 *2 (-587 (-587 (-224 *5 *6)))) (-5 *1 (-444 *5 *6 *7))
+ (-5 *3 (-587 (-224 *5 *6))) (-4 *7 (-425)))))
+(((*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-518)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-707)) (-5 *2 (-108))))
+ ((*1 *2 *3 *3)
+ (|partial| -12 (-5 *2 (-108)) (-5 *1 (-1120 *3)) (-4 *3 (-1013))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-1 (-108) *3 *3)) (-4 *3 (-1013)) (-5 *2 (-108))
+ (-5 *1 (-1120 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-201)) (-5 *4 (-520)) (-5 *2 (-958)) (-5 *1 (-694)))))
+ (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))))
+(((*1 *1) (-12 (-4 *1 (-438 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23))))
+ ((*1 *1) (-5 *1 (-497))) ((*1 *1) (-4 *1 (-659)))
+ ((*1 *1) (-4 *1 (-663)))
+ ((*1 *1) (-12 (-5 *1 (-821 *2)) (-4 *2 (-1013))))
+ ((*1 *1) (-12 (-5 *1 (-822 *2)) (-4 *2 (-784)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-821 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-513)) (-5 *1 (-896 *3 *2)) (-4 *2 (-1141 *3))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729))
+ (-4 *4 (-784)) (-4 *2 (-513))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1141 *2)) (-4 *2 (-970)) (-4 *2 (-513)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-586 *4)) (-4 *4 (-783)) (-5 *2 (-586 (-604 *4 *5)))
- (-5 *1 (-570 *4 *5 *6)) (-4 *5 (-13 (-157) (-653 (-380 (-520)))))
- (-14 *6 (-849)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-512))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-895 *4 *3)) (-4 *3 (-1140 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-586 (-880 *5))) (-5 *4 (-586 (-1083))) (-4 *5 (-512))
- (-5 *2 (-586 (-586 (-268 (-380 (-880 *5)))))) (-5 *1 (-705 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-586 (-880 *4))) (-4 *4 (-512))
- (-5 *2 (-586 (-586 (-268 (-380 (-880 *4)))))) (-5 *1 (-705 *4))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-626 *7))
- (-5 *5
- (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -1831 (-586 *6)))
- *7 *6))
- (-4 *6 (-336)) (-4 *7 (-596 *6))
- (-5 *2
- (-2 (|:| |particular| (-3 (-1164 *6) "failed"))
- (|:| -1831 (-586 (-1164 *6)))))
- (-5 *1 (-749 *6 *7)) (-5 *4 (-1164 *6)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-281) (-135))) (-4 *5 (-13 (-783) (-561 (-1083))))
- (-4 *6 (-728)) (-4 *7 (-877 *4 *6 *5))
- (-5 *2
- (-2 (|:| |sysok| (-108)) (|:| |z0| (-586 *7)) (|:| |n0| (-586 *7))))
- (-5 *1 (-852 *4 *5 *6 *7)) (-5 *3 (-586 *7)))))
+ (-12 (-4 *1 (-737))
+ (-5 *3
+ (-2 (|:| |xinit| (-202)) (|:| |xend| (-202))
+ (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202)))
+ (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202)))
+ (|:| |abserr| (-202)) (|:| |relerr| (-202))))
+ (-5 *2 (-959)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-521)) (-5 *2 (-1170)) (-5 *1 (-759)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1083)) (-4 *5 (-561 (-820 (-520))))
- (-4 *5 (-814 (-520)))
- (-4 *5 (-13 (-783) (-960 (-520)) (-424) (-582 (-520))))
- (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
- (-5 *1 (-523 *5 *3)) (-4 *3 (-572))
- (-4 *3 (-13 (-27) (-1104) (-403 *5))))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-586 *6)) (-4 *6 (-983 *3 *4 *5)) (-4 *3 (-424))
- (-4 *3 (-512)) (-4 *4 (-728)) (-4 *5 (-783))
- (-5 *1 (-902 *3 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-586 *7)) (-5 *3 (-108)) (-4 *7 (-983 *4 *5 *6))
- (-4 *4 (-424)) (-4 *4 (-512)) (-4 *5 (-728)) (-4 *6 (-783))
- (-5 *1 (-902 *4 *5 *6 *7)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-336) (-10 -8 (-15 ** ($ $ (-380 (-520)))))))
- (-5 *1 (-1038 *3 *2)) (-4 *3 (-1140 *2)))))
-(((*1 *2)
- (-12 (-4 *1 (-315 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-1140 *3))
- (-4 *5 (-1140 (-380 *4))) (-5 *2 (-626 (-380 *4))))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-315 *4 *3 *5)) (-4 *4 (-1122)) (-4 *3 (-1140 *4))
- (-4 *5 (-1140 (-380 *3))) (-5 *2 (-108))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-315 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-1140 *3))
- (-4 *5 (-1140 (-380 *4))) (-5 *2 (-108)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-201)) (-5 *1 (-202))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-154 (-201))) (-5 *1 (-202)))))
-(((*1 *2) (-12 (-5 *2 (-802)) (-5 *1 (-1167))))
- ((*1 *2 *2) (-12 (-5 *2 (-802)) (-5 *1 (-1167)))))
-(((*1 *1 *2) (-12 (-5 *2 (-802)) (-5 *1 (-238))))
- ((*1 *1 *2) (-12 (-5 *2 (-352)) (-5 *1 (-238)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-512) (-783)))
- (-4 *2 (-13 (-403 *4) (-926) (-1104))) (-5 *1 (-549 *4 *2 *3))
- (-4 *3 (-13 (-403 (-154 *4)) (-926) (-1104))))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-820 *3)) (-4 *3 (-1012))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012))
- (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-108)))))
-(((*1 *2) (-12 (-5 *2 (-586 (-1066))) (-5 *1 (-1167)))))
+ (-12 (-5 *3 (-627 (-154 (-381 (-521))))) (-5 *2 (-587 (-154 *4)))
+ (-5 *1 (-701 *4)) (-4 *4 (-13 (-337) (-782))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-850)) (-5 *1 (-722)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-586 *2)) (-4 *2 (-403 *4)) (-5 *1 (-144 *4 *2))
- (-4 *4 (-13 (-783) (-512))))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-336)) (-5 *1 (-948 *3 *2)) (-4 *2 (-596 *3))))
+ (-12 (-5 *3 (-587 (-521))) (-5 *2 (-833 (-521))) (-5 *1 (-846))))
+ ((*1 *2 *3) (-12 (-5 *3 (-897)) (-5 *2 (-833 (-521))) (-5 *1 (-846)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-513))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4010 *4)))
+ (-5 *1 (-896 *4 *3)) (-4 *3 (-1141 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-309 *3 *4 *5 *6)) (-4 *3 (-337)) (-4 *4 (-1141 *3))
+ (-4 *5 (-1141 (-381 *4))) (-4 *6 (-316 *3 *4 *5))
+ (-5 *2 (-387 *4 (-381 *4) *5 *6))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1165 *6)) (-4 *6 (-13 (-383 *4 *5) (-961 *4)))
+ (-4 *4 (-918 *3)) (-4 *5 (-1141 *4)) (-4 *3 (-282))
+ (-5 *1 (-387 *3 *4 *5 *6))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-587 *6)) (-4 *6 (-878 *3 *4 *5)) (-4 *3 (-337))
+ (-4 *4 (-729)) (-4 *5 (-784)) (-5 *1 (-473 *3 *4 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-337))
+ (-5 *2
+ (-2 (|:| A (-627 *5))
+ (|:| |eqs|
+ (-587
+ (-2 (|:| C (-627 *5)) (|:| |g| (-1165 *5)) (|:| -3192 *6)
+ (|:| |rh| *5))))))
+ (-5 *1 (-750 *5 *6)) (-5 *3 (-627 *5)) (-5 *4 (-1165 *5))
+ (-4 *6 (-597 *5))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-336)) (-5 *2 (-2 (|:| -3190 *3) (|:| -1418 (-586 *5))))
- (-5 *1 (-948 *5 *3)) (-5 *4 (-586 *5)) (-4 *3 (-596 *5)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1140 *2)) (-4 *2 (-969)))))
+ (-12 (-4 *5 (-337)) (-4 *6 (-597 *5))
+ (-5 *2 (-2 (|:| -1201 (-627 *6)) (|:| |vec| (-1165 *5))))
+ (-5 *1 (-750 *5 *6)) (-5 *3 (-627 *6)) (-5 *4 (-1165 *5)))))
+(((*1 *1) (-4 *1 (-23)))
+ ((*1 *1) (-12 (-4 *1 (-443 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23))))
+ ((*1 *1) (-5 *1 (-497)))
+ ((*1 *1) (-12 (-5 *1 (-821 *2)) (-4 *2 (-1013)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-587 (-2 (|:| |val| (-587 *6)) (|:| -1884 *7))))
+ (-4 *6 (-984 *3 *4 *5)) (-4 *7 (-989 *3 *4 *5 *6)) (-4 *3 (-425))
+ (-4 *4 (-729)) (-4 *5 (-784)) (-5 *1 (-914 *3 *4 *5 *6 *7))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-587 (-2 (|:| |val| (-587 *6)) (|:| -1884 *7))))
+ (-4 *6 (-984 *3 *4 *5)) (-4 *7 (-989 *3 *4 *5 *6)) (-4 *3 (-425))
+ (-4 *4 (-729)) (-4 *5 (-784)) (-5 *1 (-1020 *3 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-521)) (-5 *5 (-627 (-202))) (-5 *4 (-202))
+ (-5 *2 (-959)) (-5 *1 (-693)))))
+(((*1 *2 *3) (-12 (-5 *3 (-872 *2)) (-5 *1 (-908 *2)) (-4 *2 (-970)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1066)) (-5 *2 (-520)) (-5 *1 (-1101 *4))
- (-4 *4 (-969)))))
-(((*1 *2)
- (-12 (-4 *3 (-424)) (-4 *4 (-728)) (-4 *5 (-783))
- (-4 *6 (-983 *3 *4 *5)) (-5 *2 (-1169))
- (-5 *1 (-989 *3 *4 *5 *6 *7)) (-4 *7 (-988 *3 *4 *5 *6))))
+ (-12 (-5 *3 (-1165 *1)) (-4 *1 (-341 *4)) (-4 *4 (-157))
+ (-5 *2 (-587 (-881 *4)))))
((*1 *2)
- (-12 (-4 *3 (-424)) (-4 *4 (-728)) (-4 *5 (-783))
- (-4 *6 (-983 *3 *4 *5)) (-5 *2 (-1169))
- (-5 *1 (-1020 *3 *4 *5 *6 *7)) (-4 *7 (-988 *3 *4 *5 *6)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-969)) (-5 *1 (-416 *3 *2)) (-4 *2 (-1140 *3)))))
+ (-12 (-4 *4 (-157)) (-5 *2 (-587 (-881 *4))) (-5 *1 (-390 *3 *4))
+ (-4 *3 (-391 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-391 *3)) (-4 *3 (-157)) (-5 *2 (-587 (-881 *3)))))
+ ((*1 *2)
+ (-12 (-5 *2 (-587 (-881 *3))) (-5 *1 (-426 *3 *4 *5 *6))
+ (-4 *3 (-513)) (-4 *3 (-157)) (-14 *4 (-850))
+ (-14 *5 (-587 (-1084))) (-14 *6 (-1165 (-627 *3)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1165 (-426 *4 *5 *6 *7))) (-5 *2 (-587 (-881 *4)))
+ (-5 *1 (-426 *4 *5 *6 *7)) (-4 *4 (-513)) (-4 *4 (-157))
+ (-14 *5 (-850)) (-14 *6 (-587 (-1084))) (-14 *7 (-1165 (-627 *4))))))
+(((*1 *2 *1) (-12 (-5 *2 (-587 (-1084))) (-5 *1 (-1088)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-759)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-821 *4)) (-4 *4 (-1013)) (-5 *1 (-818 *4 *3))
+ (-4 *3 (-1013)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1005 (-776 *3))) (-4 *3 (-13 (-1104) (-886) (-29 *5)))
- (-4 *5 (-13 (-281) (-783) (-135) (-960 (-520)) (-582 (-520))))
+ (-12 (-5 *4 (-587 (-794 *5))) (-14 *5 (-587 (-1084))) (-4 *6 (-425))
(-5 *2
- (-3 (|:| |f1| (-776 *3)) (|:| |f2| (-586 (-776 *3)))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-195 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1005 (-776 *3))) (-5 *5 (-1066))
- (-4 *3 (-13 (-1104) (-886) (-29 *6)))
- (-4 *6 (-13 (-281) (-783) (-135) (-960 (-520)) (-582 (-520))))
+ (-2 (|:| |dpolys| (-587 (-224 *5 *6)))
+ (|:| |coords| (-587 (-521)))))
+ (-5 *1 (-444 *5 *6 *7)) (-5 *3 (-587 (-224 *5 *6))) (-4 *7 (-425)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1073 *2 *3)) (-14 *2 (-850)) (-4 *3 (-970)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1167)))))
+(((*1 *2 *1) (-12 (-4 *1 (-961 (-521))) (-4 *1 (-277)) (-5 *2 (-108))))
+ ((*1 *2 *1) (-12 (-4 *1 (-506)) (-5 *2 (-108))))
+ ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-834 *3)) (-4 *3 (-1013)))))
+(((*1 *1) (-5 *1 (-760))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-850)) (-4 *4 (-342)) (-4 *4 (-337)) (-5 *2 (-1080 *1))
+ (-4 *1 (-303 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-303 *3)) (-4 *3 (-337)) (-5 *2 (-1080 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-344 *3 *2)) (-4 *3 (-157)) (-4 *3 (-337))
+ (-4 *2 (-1141 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1165 *4)) (-4 *4 (-323)) (-5 *2 (-1080 *4))
+ (-5 *1 (-491 *4)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-587 (-269 *3))) (-5 *1 (-269 *3)) (-4 *3 (-513))
+ (-4 *3 (-1119)))))
+(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
+ (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959))
+ (-5 *1 (-688)))))
+(((*1 *2)
+ (-12 (-4 *3 (-1123)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4)))
+ (-5 *2 (-1165 *1)) (-4 *1 (-316 *3 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *3 (-13 (-282) (-10 -8 (-15 -3358 ((-392 $) $)))))
+ (-4 *4 (-1141 *3))
(-5 *2
- (-3 (|:| |f1| (-776 *3)) (|:| |f2| (-586 (-776 *3)))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-195 *6 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-380 (-880 *5))) (-5 *4 (-1005 (-776 (-289 *5))))
- (-4 *5 (-13 (-281) (-783) (-135) (-960 (-520)) (-582 (-520))))
+ (-2 (|:| -2470 (-627 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-627 *3))))
+ (-5 *1 (-324 *3 *4 *5)) (-4 *5 (-383 *3 *4))))
+ ((*1 *2)
+ (-12 (-4 *3 (-1141 (-521)))
(-5 *2
- (-3 (|:| |f1| (-776 (-289 *5))) (|:| |f2| (-586 (-776 (-289 *5))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-196 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-380 (-880 *6))) (-5 *4 (-1005 (-776 (-289 *6))))
- (-5 *5 (-1066))
- (-4 *6 (-13 (-281) (-783) (-135) (-960 (-520)) (-582 (-520))))
+ (-2 (|:| -2470 (-627 (-521))) (|:| |basisDen| (-521))
+ (|:| |basisInv| (-627 (-521)))))
+ (-5 *1 (-704 *3 *4)) (-4 *4 (-383 (-521) *3))))
+ ((*1 *2)
+ (-12 (-4 *3 (-323)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 *4))
(-5 *2
- (-3 (|:| |f1| (-776 (-289 *6))) (|:| |f2| (-586 (-776 (-289 *6))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-196 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1005 (-776 (-380 (-880 *5))))) (-5 *3 (-380 (-880 *5)))
- (-4 *5 (-13 (-281) (-783) (-135) (-960 (-520)) (-582 (-520))))
+ (-2 (|:| -2470 (-627 *4)) (|:| |basisDen| *4)
+ (|:| |basisInv| (-627 *4))))
+ (-5 *1 (-911 *3 *4 *5 *6)) (-4 *6 (-661 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *3 (-323)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 *4))
(-5 *2
- (-3 (|:| |f1| (-776 (-289 *5))) (|:| |f2| (-586 (-776 (-289 *5))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-196 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1005 (-776 (-380 (-880 *6))))) (-5 *5 (-1066))
- (-5 *3 (-380 (-880 *6)))
- (-4 *6 (-13 (-281) (-783) (-135) (-960 (-520)) (-582 (-520))))
+ (-2 (|:| -2470 (-627 *4)) (|:| |basisDen| *4)
+ (|:| |basisInv| (-627 *4))))
+ (-5 *1 (-1174 *3 *4 *5 *6)) (-4 *6 (-383 *4 *5)))))
+(((*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-331 *3)) (-4 *3 (-323)))))
+(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-959)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3)
+ (-12 (-5 *4 (-627 (-521))) (-5 *5 (-108)) (-5 *7 (-627 (-202)))
+ (-5 *3 (-521)) (-5 *6 (-202)) (-5 *2 (-959)) (-5 *1 (-691)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-108))
+ (-5 *1 (-903 *4 *5 *6 *3)) (-4 *3 (-984 *4 *5 *6)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-309 *3 *4 *5 *6)) (-4 *3 (-337)) (-4 *4 (-1141 *3))
+ (-4 *5 (-1141 (-381 *4))) (-4 *6 (-316 *3 *4 *5)) (-5 *2 (-108)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-408)))))
+(((*1 *2)
+ (-12 (-4 *3 (-513)) (-5 *2 (-587 *4)) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-391 *3)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-587 (-51))) (-5 *1 (-821 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-587 *3)) (-4 *3 (-282)) (-5 *1 (-163 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-425)) (-4 *4 (-784)) (-4 *5 (-729)) (-5 *2 (-587 *6))
+ (-5 *1 (-913 *3 *4 *5 *6)) (-4 *6 (-878 *3 *5 *4)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-353) (-353))) (-5 *4 (-353))
(-5 *2
- (-3 (|:| |f1| (-776 (-289 *6))) (|:| |f2| (-586 (-776 (-289 *6))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-196 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1083))
- (-4 *5 (-13 (-281) (-783) (-135) (-960 (-520)) (-582 (-520))))
- (-5 *2 (-3 *3 (-586 *3))) (-5 *1 (-401 *5 *3))
- (-4 *3 (-13 (-1104) (-886) (-29 *5)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1160 *4)) (-14 *4 (-1083)) (-5 *1 (-446 *3 *4 *5))
- (-4 *3 (-37 (-380 (-520)))) (-4 *3 (-969)) (-14 *5 *3)))
- ((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-289 (-352))) (-5 *4 (-1007 (-776 (-352))))
- (-5 *5 (-352)) (-5 *6 (-981)) (-5 *2 (-958)) (-5 *1 (-521))))
- ((*1 *2 *3) (-12 (-5 *3 (-704)) (-5 *2 (-958)) (-5 *1 (-521))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-289 (-352))) (-5 *4 (-1007 (-776 (-352))))
- (-5 *5 (-352)) (-5 *2 (-958)) (-5 *1 (-521))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-289 (-352))) (-5 *4 (-1007 (-776 (-352))))
- (-5 *5 (-352)) (-5 *2 (-958)) (-5 *1 (-521))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-289 (-352))) (-5 *4 (-1007 (-776 (-352))))
- (-5 *2 (-958)) (-5 *1 (-521))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-289 (-352))) (-5 *4 (-586 (-1007 (-776 (-352)))))
- (-5 *2 (-958)) (-5 *1 (-521))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-289 (-352))) (-5 *4 (-586 (-1007 (-776 (-352)))))
- (-5 *5 (-352)) (-5 *2 (-958)) (-5 *1 (-521))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-289 (-352))) (-5 *4 (-586 (-1007 (-776 (-352)))))
- (-5 *5 (-352)) (-5 *2 (-958)) (-5 *1 (-521))))
- ((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-289 (-352))) (-5 *4 (-586 (-1007 (-776 (-352)))))
- (-5 *5 (-352)) (-5 *6 (-981)) (-5 *2 (-958)) (-5 *1 (-521))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-289 (-352))) (-5 *4 (-1005 (-776 (-352))))
- (-5 *5 (-1066)) (-5 *2 (-958)) (-5 *1 (-521))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-289 (-352))) (-5 *4 (-1005 (-776 (-352))))
- (-5 *5 (-1083)) (-5 *2 (-958)) (-5 *1 (-521))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-336) (-135) (-960 (-520)))) (-4 *5 (-1140 *4))
- (-5 *2 (-537 (-380 *5))) (-5 *1 (-524 *4 *5)) (-5 *3 (-380 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-380 (-880 *5))) (-5 *4 (-1083)) (-4 *5 (-135))
- (-4 *5 (-13 (-424) (-960 (-520)) (-783) (-582 (-520))))
- (-5 *2 (-3 (-289 *5) (-586 (-289 *5)))) (-5 *1 (-540 *5))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-545 *2)) (-4 *2 (-37 (-380 (-520)))) (-4 *2 (-969))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-676 *3 *2)) (-4 *3 (-969)) (-4 *2 (-783))
- (-4 *3 (-37 (-380 (-520))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1083)) (-5 *1 (-880 *3)) (-4 *3 (-37 (-380 (-520))))
- (-4 *3 (-969))))
- ((*1 *1 *1 *2 *3)
- (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *3 (-969)) (-4 *2 (-783))
- (-5 *1 (-1036 *3 *2 *4)) (-4 *4 (-877 *3 (-492 *2) *2))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520)))) (-4 *3 (-969))
- (-5 *1 (-1068 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1160 *4)) (-14 *4 (-1083)) (-5 *1 (-1074 *3 *4 *5))
- (-4 *3 (-37 (-380 (-520)))) (-4 *3 (-969)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1160 *4)) (-14 *4 (-1083)) (-5 *1 (-1080 *3 *4 *5))
- (-4 *3 (-37 (-380 (-520)))) (-4 *3 (-969)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1160 *4)) (-14 *4 (-1083)) (-5 *1 (-1081 *3 *4 *5))
- (-4 *3 (-37 (-380 (-520)))) (-4 *3 (-969)) (-14 *5 *3)))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1083)) (-5 *1 (-1113 *3)) (-4 *3 (-37 (-380 (-520))))
- (-4 *3 (-969))))
- ((*1 *1 *1 *2)
- (-3700
- (-12 (-5 *2 (-1083)) (-4 *1 (-1124 *3)) (-4 *3 (-969))
- (-12 (-4 *3 (-29 (-520))) (-4 *3 (-886)) (-4 *3 (-1104))
- (-4 *3 (-37 (-380 (-520))))))
- (-12 (-5 *2 (-1083)) (-4 *1 (-1124 *3)) (-4 *3 (-969))
- (-12 (|has| *3 (-15 -4081 ((-586 *2) *3)))
- (|has| *3 (-15 -3517 (*3 *3 *2))) (-4 *3 (-37 (-380 (-520))))))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1124 *2)) (-4 *2 (-969)) (-4 *2 (-37 (-380 (-520))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1160 *4)) (-14 *4 (-1083)) (-5 *1 (-1128 *3 *4 *5))
- (-4 *3 (-37 (-380 (-520)))) (-4 *3 (-969)) (-14 *5 *3)))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1140 *2)) (-4 *2 (-969)) (-4 *2 (-37 (-380 (-520))))))
- ((*1 *1 *1 *2)
- (-3700
- (-12 (-5 *2 (-1083)) (-4 *1 (-1145 *3)) (-4 *3 (-969))
- (-12 (-4 *3 (-29 (-520))) (-4 *3 (-886)) (-4 *3 (-1104))
- (-4 *3 (-37 (-380 (-520))))))
- (-12 (-5 *2 (-1083)) (-4 *1 (-1145 *3)) (-4 *3 (-969))
- (-12 (|has| *3 (-15 -4081 ((-586 *2) *3)))
- (|has| *3 (-15 -3517 (*3 *3 *2))) (-4 *3 (-37 (-380 (-520))))))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1145 *2)) (-4 *2 (-969)) (-4 *2 (-37 (-380 (-520))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1160 *4)) (-14 *4 (-1083)) (-5 *1 (-1149 *3 *4 *5))
- (-4 *3 (-37 (-380 (-520)))) (-4 *3 (-969)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-3700
- (-12 (-5 *2 (-1083)) (-4 *1 (-1155 *3)) (-4 *3 (-969))
- (-12 (-4 *3 (-29 (-520))) (-4 *3 (-886)) (-4 *3 (-1104))
- (-4 *3 (-37 (-380 (-520))))))
- (-12 (-5 *2 (-1083)) (-4 *1 (-1155 *3)) (-4 *3 (-969))
- (-12 (|has| *3 (-15 -4081 ((-586 *2) *3)))
- (|has| *3 (-15 -3517 (*3 *3 *2))) (-4 *3 (-37 (-380 (-520))))))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1155 *2)) (-4 *2 (-969)) (-4 *2 (-37 (-380 (-520))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1160 *4)) (-14 *4 (-1083)) (-5 *1 (-1156 *3 *4 *5))
- (-4 *3 (-37 (-380 (-520)))) (-4 *3 (-969)) (-14 *5 *3))))
-(((*1 *2 *3 *4 *5 *6 *5 *3 *7)
- (-12 (-5 *4 (-520))
- (-5 *6
- (-2 (|:| |try| (-352)) (|:| |did| (-352)) (|:| -3613 (-352))))
- (-5 *7 (-1 (-1169) (-1164 *5) (-1164 *5) (-352)))
- (-5 *3 (-1164 (-352))) (-5 *5 (-352)) (-5 *2 (-1169))
- (-5 *1 (-723))))
- ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3)
- (-12 (-5 *4 (-520))
- (-5 *6
- (-2 (|:| |try| (-352)) (|:| |did| (-352)) (|:| -3613 (-352))))
- (-5 *7 (-1 (-1169) (-1164 *5) (-1164 *5) (-352)))
- (-5 *3 (-1164 (-352))) (-5 *5 (-352)) (-5 *2 (-1169))
- (-5 *1 (-723)))))
+ (-2 (|:| -3430 *4) (|:| -2968 *4) (|:| |totalpts| (-521))
+ (|:| |success| (-108))))
+ (-5 *1 (-725)) (-5 *5 (-521)))))
+(((*1 *1)
+ (-12 (-5 *1 (-590 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-229 *4 *3 *5 *6)) (-4 *4 (-970)) (-4 *3 (-784))
+ (-4 *5 (-242 *3)) (-4 *6 (-729)) (-5 *2 (-587 (-707)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-229 *3 *4 *5 *6)) (-4 *3 (-970)) (-4 *4 (-784))
+ (-4 *5 (-242 *4)) (-4 *6 (-729)) (-5 *2 (-587 (-707))))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-337)) (-5 *1 (-703 *2 *3)) (-4 *2 (-646 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-970)) (-4 *2 (-337)))))
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1 *8 *8))
+ (-5 *5
+ (-1 (-3 (-2 (|:| -3100 *7) (|:| |coeff| *7)) "failed") *7))
+ (-5 *6 (-587 (-381 *8))) (-4 *7 (-337)) (-4 *8 (-1141 *7))
+ (-5 *3 (-381 *8))
+ (-5 *2
+ (-2
+ (|:| |answer|
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-587 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (|:| |a0| *7)))
+ (-5 *1 (-531 *7 *8)))))
+(((*1 *1 *1 *2 *3 *1)
+ (-12 (-4 *1 (-300 *2 *3)) (-4 *2 (-970)) (-4 *3 (-728)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-586 *7)) (-4 *7 (-983 *4 *5 *6)) (-4 *4 (-424))
- (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-108))
- (-5 *1 (-913 *4 *5 *6 *7 *8)) (-4 *8 (-988 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-586 *7)) (-4 *7 (-983 *4 *5 *6)) (-4 *4 (-424))
- (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-108))
- (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-988 *4 *5 *6 *7)))))
+ (-12 (-4 *4 (-513)) (-5 *2 (-587 *3)) (-5 *1 (-896 *4 *3))
+ (-4 *3 (-1141 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-425))) (-5 *1 (-1111 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-1105))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-791)) (-5 *1 (-363 *3 *4 *5)) (-14 *3 (-706))
- (-14 *4 (-706)) (-4 *5 (-157)))))
-(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-855)))))
+ (-12 (-5 *2 (-381 (-881 *3))) (-5 *1 (-426 *3 *4 *5 *6))
+ (-4 *3 (-513)) (-4 *3 (-157)) (-14 *4 (-850))
+ (-14 *5 (-587 (-1084))) (-14 *6 (-1165 (-627 *3))))))
+(((*1 *2)
+ (|partial| -12 (-4 *3 (-513)) (-4 *3 (-157))
+ (-5 *2 (-2 (|:| |particular| *1) (|:| -2470 (-587 *1))))
+ (-4 *1 (-341 *3))))
+ ((*1 *2)
+ (|partial| -12
+ (-5 *2
+ (-2 (|:| |particular| (-426 *3 *4 *5 *6))
+ (|:| -2470 (-587 (-426 *3 *4 *5 *6)))))
+ (-5 *1 (-426 *3 *4 *5 *6)) (-4 *3 (-157)) (-14 *4 (-850))
+ (-14 *5 (-587 (-1084))) (-14 *6 (-1165 (-627 *3))))))
+(((*1 *2)
+ (-12 (-4 *3 (-729)) (-4 *4 (-784)) (-4 *2 (-838))
+ (-5 *1 (-430 *3 *4 *2 *5)) (-4 *5 (-878 *2 *3 *4))))
+ ((*1 *2)
+ (-12 (-4 *3 (-729)) (-4 *4 (-784)) (-4 *2 (-838))
+ (-5 *1 (-835 *2 *3 *4 *5)) (-4 *5 (-878 *2 *3 *4))))
+ ((*1 *2) (-12 (-4 *2 (-838)) (-5 *1 (-836 *2 *3)) (-4 *3 (-1141 *2)))))
+(((*1 *1 *1) (-5 *1 (-982))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784))
+ (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-914 *4 *5 *6 *7 *3))
+ (-4 *3 (-989 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-587 *3)) (-4 *3 (-989 *5 *6 *7 *8)) (-4 *5 (-425))
+ (-4 *6 (-729)) (-4 *7 (-784)) (-4 *8 (-984 *5 *6 *7)) (-5 *2 (-108))
+ (-5 *1 (-914 *5 *6 *7 *8 *3))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784))
+ (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-108))
+ (-5 *1 (-1020 *4 *5 *6 *7 *3)) (-4 *3 (-989 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-587 *3)) (-4 *3 (-989 *5 *6 *7 *8)) (-4 *5 (-425))
+ (-4 *6 (-729)) (-4 *7 (-784)) (-4 *8 (-984 *5 *6 *7)) (-5 *2 (-108))
+ (-5 *1 (-1020 *5 *6 *7 *8 *3)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-521)) (-4 *1 (-55 *4 *5 *3)) (-4 *4 (-1119))
+ (-4 *5 (-347 *4)) (-4 *3 (-347 *4)))))
+(((*1 *1) (-5 *1 (-1166))))
+(((*1 *2 *3) (-12 (-5 *3 (-1165 *1)) (-4 *1 (-341 *2)) (-4 *2 (-157))))
+ ((*1 *2) (-12 (-4 *2 (-157)) (-5 *1 (-390 *3 *2)) (-4 *3 (-391 *2))))
+ ((*1 *2) (-12 (-4 *1 (-391 *2)) (-4 *2 (-157)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1013)) (-5 *1 (-98 *3))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-98 *2)) (-4 *2 (-1013)))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-269 *2)) (-4 *2 (-663)) (-4 *2 (-1119)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1086 (-381 (-521)))) (-5 *1 (-169)) (-5 *3 (-521)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-984 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-729))
+ (-4 *5 (-784)) (-5 *2 (-108)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-1007 *3)) (-4 *3 (-877 *7 *6 *4)) (-4 *6 (-728))
- (-4 *4 (-783)) (-4 *7 (-512))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-520))))
- (-5 *1 (-544 *6 *4 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-728)) (-4 *4 (-783)) (-4 *6 (-512))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-520))))
- (-5 *1 (-544 *5 *4 *6 *3)) (-4 *3 (-877 *6 *5 *4))))
- ((*1 *1 *1 *1 *1) (-5 *1 (-791))) ((*1 *1 *1 *1) (-5 *1 (-791)))
- ((*1 *1 *1) (-5 *1 (-791)))
+ (-12 (-5 *5 (-1008 *3)) (-4 *3 (-878 *7 *6 *4)) (-4 *6 (-729))
+ (-4 *4 (-784)) (-4 *7 (-513))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-521))))
+ (-5 *1 (-545 *6 *4 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-729)) (-4 *4 (-784)) (-4 *6 (-513))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-521))))
+ (-5 *1 (-545 *5 *4 *6 *3)) (-4 *3 (-878 *6 *5 *4))))
+ ((*1 *1 *1 *1 *1) (-5 *1 (-792))) ((*1 *1 *1 *1) (-5 *1 (-792)))
+ ((*1 *1 *1) (-5 *1 (-792)))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1083))
- (-4 *4 (-13 (-512) (-783) (-960 (-520)) (-582 (-520))))
- (-5 *1 (-1075 *4 *2)) (-4 *2 (-13 (-403 *4) (-146) (-27) (-1104)))))
+ (-12 (-5 *3 (-1084))
+ (-4 *4 (-13 (-513) (-784) (-961 (-521)) (-583 (-521))))
+ (-5 *1 (-1076 *4 *2)) (-4 *2 (-13 (-404 *4) (-146) (-27) (-1105)))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1005 *2)) (-4 *2 (-13 (-403 *4) (-146) (-27) (-1104)))
- (-4 *4 (-13 (-512) (-783) (-960 (-520)) (-582 (-520))))
- (-5 *1 (-1075 *4 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1083)) (-4 *5 (-13 (-512) (-783) (-960 (-520))))
- (-5 *2 (-380 (-880 *5))) (-5 *1 (-1076 *5)) (-5 *3 (-880 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1083)) (-4 *5 (-13 (-512) (-783) (-960 (-520))))
- (-5 *2 (-3 (-380 (-880 *5)) (-289 *5))) (-5 *1 (-1076 *5))
- (-5 *3 (-380 (-880 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1005 (-880 *5))) (-5 *3 (-880 *5))
- (-4 *5 (-13 (-512) (-783) (-960 (-520)))) (-5 *2 (-380 *3))
- (-5 *1 (-1076 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1005 (-380 (-880 *5)))) (-5 *3 (-380 (-880 *5)))
- (-4 *5 (-13 (-512) (-783) (-960 (-520)))) (-5 *2 (-3 *3 (-289 *5)))
- (-5 *1 (-1076 *5)))))
-(((*1 *1 *1) (-12 (-5 *1 (-468 *2)) (-14 *2 (-520))))
- ((*1 *1 *1) (-5 *1 (-1030))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1137 *5 *4)) (-4 *4 (-756)) (-14 *5 (-1083))
- (-5 *2 (-586 *4)) (-5 *1 (-1026 *4 *5)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-983 *3 *4 *2)) (-4 *3 (-969)) (-4 *4 (-728))
- (-4 *2 (-783))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-983 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-728))
- (-4 *4 (-783)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-228 *4 *3 *5 *6)) (-4 *4 (-969)) (-4 *3 (-783))
- (-4 *5 (-241 *3)) (-4 *6 (-728)) (-5 *2 (-586 (-706)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-228 *3 *4 *5 *6)) (-4 *3 (-969)) (-4 *4 (-783))
- (-4 *5 (-241 *4)) (-4 *6 (-728)) (-5 *2 (-586 (-706))))))
+ (-12 (-5 *3 (-1006 *2)) (-4 *2 (-13 (-404 *4) (-146) (-27) (-1105)))
+ (-4 *4 (-13 (-513) (-784) (-961 (-521)) (-583 (-521))))
+ (-5 *1 (-1076 *4 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1084)) (-4 *5 (-13 (-513) (-784) (-961 (-521))))
+ (-5 *2 (-381 (-881 *5))) (-5 *1 (-1077 *5)) (-5 *3 (-881 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1084)) (-4 *5 (-13 (-513) (-784) (-961 (-521))))
+ (-5 *2 (-3 (-381 (-881 *5)) (-290 *5))) (-5 *1 (-1077 *5))
+ (-5 *3 (-381 (-881 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1006 (-881 *5))) (-5 *3 (-881 *5))
+ (-4 *5 (-13 (-513) (-784) (-961 (-521)))) (-5 *2 (-381 *3))
+ (-5 *1 (-1077 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1006 (-381 (-881 *5)))) (-5 *3 (-381 (-881 *5)))
+ (-4 *5 (-13 (-513) (-784) (-961 (-521)))) (-5 *2 (-3 *3 (-290 *5)))
+ (-5 *1 (-1077 *5)))))
+(((*1 *1 *1) (-12 (-5 *1 (-469 *2)) (-14 *2 (-521))))
+ ((*1 *1 *1) (-5 *1 (-1031))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-707)) (-4 *5 (-513))
+ (-5 *2
+ (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-896 *5 *3)) (-4 *3 (-1141 *5)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-707)) (-4 *5 (-323)) (-4 *6 (-1141 *5))
+ (-5 *2
+ (-587
+ (-2 (|:| -2470 (-627 *6)) (|:| |basisDen| *6)
+ (|:| |basisInv| (-627 *6)))))
+ (-5 *1 (-467 *5 *6 *7))
+ (-5 *3
+ (-2 (|:| -2470 (-627 *6)) (|:| |basisDen| *6)
+ (|:| |basisInv| (-627 *6))))
+ (-4 *7 (-1141 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-706)) (-5 *2 (-1169)) (-5 *1 (-794 *4 *5 *6 *7))
- (-4 *4 (-969)) (-14 *5 (-586 (-1083))) (-14 *6 (-586 *3))
- (-14 *7 *3)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-706)) (-4 *4 (-969)) (-4 *5 (-783)) (-4 *6 (-728))
- (-14 *8 (-586 *5)) (-5 *2 (-1169))
- (-5 *1 (-1174 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-877 *4 *6 *5))
- (-14 *9 (-586 *3)) (-14 *10 *3))))
+ (-12 (-5 *3 (-587 *2)) (-4 *2 (-404 *4)) (-5 *1 (-144 *4 *2))
+ (-4 *4 (-13 (-784) (-513))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-425))) (-5 *1 (-1111 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-1105))))))
(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |xinit| (-201)) (|:| |xend| (-201))
- (|:| |fn| (-1164 (-289 (-201)))) (|:| |yinit| (-586 (-201)))
- (|:| |intvals| (-586 (-201))) (|:| |g| (-289 (-201)))
- (|:| |abserr| (-201)) (|:| |relerr| (-201))))
- (-5 *2
- (-2 (|:| |stiffness| (-352)) (|:| |stability| (-352))
- (|:| |expense| (-352)) (|:| |accuracy| (-352))
- (|:| |intermediateResults| (-352))))
- (-5 *1 (-739)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
- (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201)))
- (-5 *5 (-3 (|:| |fn| (-361)) (|:| |fp| (-77 LSFUN1))))
- (-5 *2 (-958)) (-5 *1 (-689)))))
+ (-12 (-5 *3 (-587 (-1084))) (-4 *4 (-13 (-282) (-135)))
+ (-4 *5 (-13 (-784) (-562 (-1084)))) (-4 *6 (-729))
+ (-5 *2 (-587 (-381 (-881 *4)))) (-5 *1 (-853 *4 *5 *6 *7))
+ (-4 *7 (-878 *4 *6 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *6 (-513)) (-4 *2 (-878 *3 *5 *4))
+ (-5 *1 (-669 *5 *4 *6 *2)) (-5 *3 (-381 (-881 *6))) (-4 *5 (-729))
+ (-4 *4 (-13 (-784) (-10 -8 (-15 -1430 ((-1084) $))))))))
(((*1 *1 *1) (-5 *1 (-108))) ((*1 *1 *1) (-4 *1 (-119)))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-219)) (-5 *2 (-520))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-445)) (-5 *2 (-520))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-662)) (-5 *2 (-706))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1024)) (-5 *2 (-849)))))
-(((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-626 *11)) (-5 *4 (-586 (-380 (-880 *8))))
- (-5 *5 (-706)) (-5 *6 (-1066)) (-4 *8 (-13 (-281) (-135)))
- (-4 *11 (-877 *8 *10 *9)) (-4 *9 (-13 (-783) (-561 (-1083))))
- (-4 *10 (-728))
- (-5 *2
- (-2
- (|:| |rgl|
- (-586
- (-2 (|:| |eqzro| (-586 *11)) (|:| |neqzro| (-586 *11))
- (|:| |wcond| (-586 (-880 *8)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1164 (-380 (-880 *8))))
- (|:| -1831 (-586 (-1164 (-380 (-880 *8))))))))))
- (|:| |rgsz| (-520))))
- (-5 *1 (-852 *8 *9 *10 *11)) (-5 *7 (-520)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-336)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *2 (-108))
- (-5 *1 (-472 *3 *4 *5 *6)) (-4 *6 (-877 *3 *4 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1066)) (-5 *1 (-132))))
- ((*1 *1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-132)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-468 *2)) (-14 *2 (-520))))
- ((*1 *1 *1 *1) (-5 *1 (-1030))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-983 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-728))
- (-4 *4 (-783))))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-1112 *3 *4 *5 *2)) (-4 *3 (-512)) (-4 *4 (-728))
- (-4 *5 (-783)) (-4 *2 (-983 *3 *4 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-520)) (-5 *1 (-855)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1 (-871 (-201)) (-201) (-201)))
- (-5 *3 (-1 (-201) (-201) (-201) (-201))) (-5 *1 (-230)))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-220)) (-5 *2 (-521))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-446)) (-5 *2 (-521))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-663)) (-5 *2 (-707))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1025)) (-5 *2 (-850)))))
+(((*1 *2 *1) (-12 (-4 *1 (-734 *2)) (-4 *2 (-157)))))
+(((*1 *2 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157)) (-4 *2 (-1105))))
+ ((*1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-784))))
+ ((*1 *2 *1) (-12 (-5 *2 (-587 *3)) (-5 *1 (-560 *3)) (-4 *3 (-784)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-132))))
+ ((*1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-132)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-469 *2)) (-14 *2 (-521))))
+ ((*1 *1 *1 *1) (-5 *1 (-1031))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3)
+ (-12 (-5 *3 (-521)) (-5 *4 (-1067)) (-5 *5 (-627 (-202)))
+ (-5 *2 (-959)) (-5 *1 (-684)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1165 *1)) (-4 *1 (-344 *4 *5)) (-4 *4 (-157))
+ (-4 *5 (-1141 *4)) (-5 *2 (-627 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-157)) (-4 *4 (-1141 *3))
+ (-5 *2 (-627 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1066)) (-5 *2 (-586 (-1088))) (-5 *1 (-808)))))
+ (-12
+ (-5 *3
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1065 (-202)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -2442
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))))
+ (-5 *2 (-959)) (-5 *1 (-280)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-970)) (-4 *2 (-337)))))
+(((*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-539 *3)) (-4 *3 (-506)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-626 *8)) (-5 *4 (-706)) (-4 *8 (-877 *5 *7 *6))
- (-4 *5 (-13 (-281) (-135))) (-4 *6 (-13 (-783) (-561 (-1083))))
- (-4 *7 (-728))
- (-5 *2
- (-586
- (-2 (|:| |det| *8) (|:| |rows| (-586 (-520)))
- (|:| |cols| (-586 (-520))))))
- (-5 *1 (-852 *5 *6 *7 *8)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1083)) (-5 *5 (-1007 (-201))) (-5 *2 (-855))
- (-5 *1 (-853 *3)) (-4 *3 (-561 (-496)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1083)) (-5 *2 (-855)) (-5 *1 (-853 *3))
- (-4 *3 (-561 (-496)))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 (-201) (-201))) (-5 *1 (-855))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-201) (-201))) (-5 *3 (-1007 (-201)))
- (-5 *1 (-855)))))
+ (-12 (-4 *5 (-337))
+ (-5 *2 (-587 (-2 (|:| C (-627 *5)) (|:| |g| (-1165 *5)))))
+ (-5 *1 (-904 *5)) (-5 *3 (-627 *5)) (-5 *4 (-1165 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-587 (-202))) (-5 *2 (-1165 (-636))) (-5 *1 (-280)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-469 *2)) (-14 *2 (-521))))
+ ((*1 *1 *1 *1) (-5 *1 (-1031))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-627 *3)) (-4 *3 (-282)) (-5 *1 (-637 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-927))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1084)) (-5 *2 (-1170)) (-5 *1 (-1087))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1088)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-872 *3)) (-4 *3 (-13 (-337) (-1105) (-927)))
+ (-5 *1 (-160 *3)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-586 (-2 (|:| |gen| *3) (|:| -3260 (-520)))))
- (-5 *1 (-334 *3)) (-4 *3 (-1012))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-586 (-2 (|:| |gen| *3) (|:| -3260 (-706)))))
- (-5 *1 (-359 *3)) (-4 *3 (-1012))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-586 (-2 (|:| -1916 *3) (|:| -2647 (-520)))))
- (-5 *1 (-391 *3)) (-4 *3 (-512))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-586 (-2 (|:| |gen| *3) (|:| -3260 (-706)))))
- (-5 *1 (-755 *3)) (-4 *3 (-783)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-468 *2)) (-14 *2 (-520))))
- ((*1 *1 *1 *1) (-5 *1 (-1030))))
+ (-12 (-5 *2 (-1080 (-381 (-881 *3)))) (-5 *1 (-426 *3 *4 *5 *6))
+ (-4 *3 (-513)) (-4 *3 (-157)) (-14 *4 (-850))
+ (-14 *5 (-587 (-1084))) (-14 *6 (-1165 (-627 *3))))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202)))
+ (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202))
+ (|:| |relerr| (-202))))
+ (-5 *2 (-1065 (-202))) (-5 *1 (-171))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-290 (-202))) (-5 *4 (-587 (-1084)))
+ (-5 *5 (-1008 (-777 (-202)))) (-5 *2 (-1065 (-202))) (-5 *1 (-275))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1165 (-290 (-202)))) (-5 *4 (-587 (-1084)))
+ (-5 *5 (-1008 (-777 (-202)))) (-5 *2 (-1065 (-202))) (-5 *1 (-275)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-512))
+ (-12 (-4 *4 (-1123)) (-4 *5 (-1141 *4))
(-5 *2
- (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-895 *4 *3)) (-4 *3 (-1140 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-512)) (-5 *2 (-586 *3)) (-5 *1 (-42 *4 *3))
- (-4 *3 (-390 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-586 (-289 (-201)))) (-5 *2 (-108)) (-5 *1 (-242)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1064 *3)) (-5 *1 (-158 *3)) (-4 *3 (-281)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-545 *2)) (-4 *2 (-37 (-380 (-520)))) (-4 *2 (-969)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1030)) (-5 *1 (-303)))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *6)
- (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *5 (-201))
- (-5 *6 (-3 (|:| |fn| (-361)) (|:| |fp| (-72 FCN)))) (-5 *2 (-958))
- (-5 *1 (-682)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-960 (-520))) (-4 *3 (-13 (-783) (-512)))
- (-5 *1 (-31 *3 *2)) (-4 *2 (-403 *3))))
- ((*1 *2)
- (-12 (-4 *4 (-157)) (-5 *2 (-1079 *4)) (-5 *1 (-150 *3 *4))
- (-4 *3 (-151 *4))))
- ((*1 *1 *1) (-12 (-4 *1 (-969)) (-4 *1 (-276))))
- ((*1 *2) (-12 (-4 *1 (-302 *3)) (-4 *3 (-336)) (-5 *2 (-1079 *3))))
- ((*1 *2) (-12 (-4 *1 (-660 *3 *2)) (-4 *3 (-157)) (-4 *2 (-1140 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-985 *3 *2)) (-4 *3 (-13 (-781) (-336)))
- (-4 *2 (-1140 *3)))))
+ (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-381 *5))
+ (|:| |c2| (-381 *5)) (|:| |deg| (-707))))
+ (-5 *1 (-136 *4 *5 *3)) (-4 *3 (-1141 (-381 *5))))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1080 *1)) (-5 *3 (-1084)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1080 *1)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-881 *1)) (-4 *1 (-27))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1084)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-784) (-513)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-784) (-513))))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959))
+ (-5 *1 (-692)))))
+(((*1 *1 *1) (-12 (-4 *1 (-597 *2)) (-4 *2 (-970)) (-4 *2 (-337)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-143)) (-5 *2 (-1170)) (-5 *1 (-1167)))))
+(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-123 *2)) (-4 *2 (-1013))))
+ ((*1 *1 *2) (-12 (-5 *1 (-123 *2)) (-4 *2 (-1013)))))
(((*1 *1 *2 *3)
- (-12 (-5 *2 (-760)) (-5 *3 (-586 (-1083))) (-5 *1 (-761)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-586 (-880 *4))) (-5 *3 (-586 (-1083))) (-4 *4 (-424))
- (-5 *1 (-846 *4)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-586 (-1079 *5))) (-5 *3 (-1079 *5))
- (-4 *5 (-151 *4)) (-4 *4 (-505)) (-5 *1 (-137 *4 *5))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-586 *3)) (-4 *3 (-1140 *5))
- (-4 *5 (-1140 *4)) (-4 *4 (-322)) (-5 *1 (-331 *4 *5 *3))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-586 (-1079 (-520)))) (-5 *3 (-1079 (-520)))
- (-5 *1 (-528))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-586 (-1079 *1))) (-5 *3 (-1079 *1))
- (-4 *1 (-837)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-908 *2)) (-4 *2 (-1104)))))
-(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783))
- (-4 *7 (-983 *4 *5 *6)) (-5 *2 (-108))
- (-5 *1 (-913 *4 *5 *6 *7 *3)) (-4 *3 (-988 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783))
- (-4 *7 (-983 *4 *5 *6)) (-5 *2 (-108))
- (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-988 *4 *5 *6 *7)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2))
- (-4 *2 (-13 (-403 *3) (-926))))))
+ (-12 (-5 *2 (-707)) (-4 *3 (-970)) (-4 *1 (-625 *3 *4 *5))
+ (-4 *4 (-347 *3)) (-4 *5 (-347 *3))))
+ ((*1 *1 *2)
+ (-12 (-4 *2 (-970)) (-4 *1 (-1034 *3 *2 *4 *5)) (-4 *4 (-215 *3 *2))
+ (-4 *5 (-215 *3 *2)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970)) (-5 *2 (-108)))))
(((*1 *1 *2 *2)
- (-12 (-5 *2 (-706)) (-4 *3 (-969)) (-4 *1 (-624 *3 *4 *5))
- (-4 *4 (-346 *3)) (-4 *5 (-346 *3))))
+ (-12 (-5 *2 (-707)) (-4 *3 (-970)) (-4 *1 (-625 *3 *4 *5))
+ (-4 *4 (-347 *3)) (-4 *5 (-347 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-706)) (-4 *1 (-1162 *3)) (-4 *3 (-23)) (-4 *3 (-1118)))))
-(((*1 *1 *1 *1) (-5 *1 (-108))) ((*1 *1 *1 *1) (-4 *1 (-119))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-727)) (-4 *2 (-969))))
- ((*1 *2 *1 *1)
- (-12 (-4 *2 (-969)) (-5 *1 (-49 *2 *3)) (-14 *3 (-586 (-1083)))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-586 (-849))) (-4 *2 (-336)) (-5 *1 (-140 *4 *2 *5))
- (-14 *4 (-849)) (-14 *5 (-918 *4 *2))))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-289 *3)) (-5 *1 (-199 *3 *4))
- (-4 *3 (-13 (-969) (-783))) (-14 *4 (-586 (-1083)))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-296 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-124))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-355 *2 *3)) (-4 *3 (-1012)) (-4 *2 (-969))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-520)) (-4 *2 (-512)) (-5 *1 (-567 *2 *4))
- (-4 *4 (-1140 *2))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-706)) (-4 *1 (-645 *2)) (-4 *2 (-969))))
- ((*1 *2 *1 *3)
- (-12 (-4 *2 (-969)) (-5 *1 (-671 *2 *3)) (-4 *3 (-662))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-586 *5)) (-5 *3 (-586 (-706))) (-4 *1 (-676 *4 *5))
- (-4 *4 (-969)) (-4 *5 (-783))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-706)) (-4 *1 (-676 *4 *2)) (-4 *4 (-969))
- (-4 *2 (-783))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-706)) (-4 *1 (-785 *2)) (-4 *2 (-969))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-586 *6)) (-5 *3 (-586 (-706))) (-4 *1 (-877 *4 *5 *6))
- (-4 *4 (-969)) (-4 *5 (-728)) (-4 *6 (-783))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-706)) (-4 *1 (-877 *4 *5 *2)) (-4 *4 (-969))
- (-4 *5 (-728)) (-4 *2 (-783))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-706)) (-4 *2 (-877 *4 (-492 *5) *5))
- (-5 *1 (-1036 *4 *5 *2)) (-4 *4 (-969)) (-4 *5 (-783))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-706)) (-5 *2 (-880 *4)) (-5 *1 (-1113 *4))
- (-4 *4 (-969)))))
-(((*1 *2 *1) (-12 (|has| *1 (-6 -4229)) (-4 *1 (-33)) (-5 *2 (-706))))
+ (-12 (-5 *2 (-707)) (-4 *1 (-1163 *3)) (-4 *3 (-23)) (-4 *3 (-1119)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1141 *5))
+ (-4 *5 (-13 (-27) (-404 *4)))
+ (-4 *4 (-13 (-784) (-513) (-961 (-521))))
+ (-4 *7 (-1141 (-381 *6))) (-5 *1 (-509 *4 *5 *6 *7 *2))
+ (-4 *2 (-316 *5 *6 *7)))))
+(((*1 *2 *3 *4 *5 *6 *2 *7 *8)
+ (|partial| -12 (-5 *2 (-587 (-1080 *11))) (-5 *3 (-1080 *11))
+ (-5 *4 (-587 *10)) (-5 *5 (-587 *8)) (-5 *6 (-587 (-707)))
+ (-5 *7 (-1165 (-587 (-1080 *8)))) (-4 *10 (-784))
+ (-4 *8 (-282)) (-4 *11 (-878 *8 *9 *10)) (-4 *9 (-729))
+ (-5 *1 (-645 *9 *10 *8 *11)))))
+(((*1 *2 *1) (-12 (|has| *1 (-6 -4233)) (-4 *1 (-33)) (-5 *2 (-707))))
((*1 *2 *1)
- (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012))
- (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-520))))
+ (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013))
+ (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-521))))
((*1 *2 *1)
- (-12 (-5 *2 (-706)) (-5 *1 (-1185 *3 *4)) (-4 *3 (-969))
- (-4 *4 (-779)))))
+ (-12 (-5 *2 (-707)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-970))
+ (-4 *4 (-780)))))
+(((*1 *1) (-5 *1 (-202))) ((*1 *1) (-5 *1 (-353))))
+(((*1 *1) (-5 *1 (-441))))
(((*1 *2 *3)
- (-12 (-4 *4 (-322)) (-5 *2 (-885 (-1079 *4))) (-5 *1 (-330 *4))
- (-5 *3 (-1079 *4)))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *2 (-958))
- (-5 *1 (-691)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1085 (-380 (-520)))) (-5 *1 (-168)) (-5 *3 (-520)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-380 (-520))) (-5 *4 (-520)) (-5 *2 (-51))
- (-5 *1 (-929)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-510 *3)) (-4 *3 (-13 (-377) (-1104))) (-5 *2 (-108))))
- ((*1 *2 *1) (-12 (-4 *1 (-781)) (-5 *2 (-108))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-985 *4 *3)) (-4 *4 (-13 (-781) (-336)))
- (-4 *3 (-1140 *4)) (-5 *2 (-108)))))
-(((*1 *1 *2) (-12 (-5 *1 (-1105 *2)) (-4 *2 (-1012))))
+ (-12 (-5 *3 (-707)) (-5 *2 (-1170)) (-5 *1 (-795 *4 *5 *6 *7))
+ (-4 *4 (-970)) (-14 *5 (-587 (-1084))) (-14 *6 (-587 *3))
+ (-14 *7 *3)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-707)) (-4 *4 (-970)) (-4 *5 (-784)) (-4 *6 (-729))
+ (-14 *8 (-587 *5)) (-5 *2 (-1170))
+ (-5 *1 (-1175 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-878 *4 *6 *5))
+ (-14 *9 (-587 *3)) (-14 *10 *3))))
+(((*1 *2)
+ (-12 (-4 *4 (-337)) (-5 *2 (-707)) (-5 *1 (-302 *3 *4))
+ (-4 *3 (-303 *4))))
+ ((*1 *2) (-12 (-4 *1 (-1182 *3)) (-4 *3 (-337)) (-5 *2 (-707)))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-587 *10)) (-5 *5 (-108)) (-4 *10 (-989 *6 *7 *8 *9))
+ (-4 *6 (-425)) (-4 *7 (-729)) (-4 *8 (-784)) (-4 *9 (-984 *6 *7 *8))
+ (-5 *2
+ (-587
+ (-2 (|:| -3192 (-587 *9)) (|:| -1884 *10) (|:| |ineq| (-587 *9)))))
+ (-5 *1 (-914 *6 *7 *8 *9 *10)) (-5 *3 (-587 *9))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-587 *10)) (-5 *5 (-108)) (-4 *10 (-989 *6 *7 *8 *9))
+ (-4 *6 (-425)) (-4 *7 (-729)) (-4 *8 (-784)) (-4 *9 (-984 *6 *7 *8))
+ (-5 *2
+ (-587
+ (-2 (|:| -3192 (-587 *9)) (|:| -1884 *10) (|:| |ineq| (-587 *9)))))
+ (-5 *1 (-1020 *6 *7 *8 *9 *10)) (-5 *3 (-587 *9)))))
+(((*1 *1 *2) (-12 (-5 *1 (-1106 *2)) (-4 *2 (-1013))))
((*1 *1 *2)
- (-12 (-5 *2 (-586 *3)) (-4 *3 (-1012)) (-5 *1 (-1105 *3))))
+ (-12 (-5 *2 (-587 *3)) (-4 *3 (-1013)) (-5 *1 (-1106 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *3 (-586 (-1105 *2))) (-5 *1 (-1105 *2)) (-4 *2 (-1012)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-1169)) (-5 *1 (-1166)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1007 (-776 (-201)))) (-5 *1 (-279)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-512)) (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783))
- (-5 *2 (-586 *1)) (-4 *1 (-983 *3 *4 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-624 *3 *4 *5)) (-4 *3 (-969)) (-4 *4 (-346 *3))
- (-4 *5 (-346 *3)) (-5 *2 (-586 (-586 *3)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-972 *3 *4 *5 *6 *7)) (-4 *5 (-969))
- (-4 *6 (-214 *4 *5)) (-4 *7 (-214 *3 *5)) (-5 *2 (-586 (-586 *5)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-586 (-586 *3))) (-5 *1 (-1091 *3)) (-4 *3 (-1012)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-626 *3)) (-4 *3 (-969)) (-5 *1 (-627 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1064 *3)) (-5 *1 (-158 *3)) (-4 *3 (-281)))))
+ (-12 (-5 *3 (-587 (-1106 *2))) (-5 *1 (-1106 *2)) (-4 *2 (-1013)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-337)) (-5 *1 (-260 *3 *2)) (-4 *2 (-1156 *3)))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-586 (-452 *4 *5))) (-5 *3 (-586 (-793 *4)))
- (-14 *4 (-586 (-1083))) (-4 *5 (-424)) (-5 *1 (-443 *4 *5 *6))
- (-4 *6 (-424)))))
+ (|partial| -12 (-5 *3 (-707)) (-5 *1 (-539 *2)) (-4 *2 (-506))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-2 (|:| -3351 *3) (|:| -2997 (-707)))) (-5 *1 (-539 *3))
+ (-4 *3 (-506)))))
+(((*1 *1 *1) (-5 *1 (-982))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1012)) (-4 *6 (-1012))
- (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-621 *4 *5 *6)) (-4 *4 (-1012)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-154 (-201))) (-5 *5 (-520)) (-5 *6 (-1066))
- (-5 *3 (-201)) (-5 *2 (-958)) (-5 *1 (-694)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-908 *2)) (-4 *2 (-1104)))))
-(((*1 *1 *1) (-12 (-4 *1 (-220 *2)) (-4 *2 (-1118)))))
+ (-12 (-5 *3 (-587 (-587 (-587 *4)))) (-5 *2 (-587 (-587 *4)))
+ (-5 *1 (-1091 *4)) (-4 *4 (-784)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-1072 *3 *4)) (-14 *3 (-849))
- (-4 *4 (-969)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1064 *4)) (-5 *3 (-1 *4 (-520))) (-4 *4 (-969))
- (-5 *1 (-1068 *4)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1118)) (-5 *1 (-348 *4 *2))
- (-4 *2 (-13 (-346 *4) (-10 -7 (-6 -4230)))))))
-(((*1 *1 *1 *1) (-4 *1 (-276))) ((*1 *1 *1) (-4 *1 (-276))))
+ (-12 (-4 *1 (-902 *3 *4 *2 *5)) (-4 *3 (-970)) (-4 *4 (-729))
+ (-4 *5 (-984 *3 *4 *2)) (-4 *2 (-784))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-984 *3 *4 *2)) (-4 *3 (-970)) (-4 *4 (-729))
+ (-4 *2 (-784)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))))
+(((*1 *2 *1) (-12 (-4 *1 (-33)) (-5 *2 (-108))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-425)) (-4 *4 (-784)) (-4 *5 (-729)) (-5 *2 (-108))
+ (-5 *1 (-913 *3 *4 *5 *6)) (-4 *6 (-878 *3 *5 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-108)) (-5 *1 (-1049 *3 *4)) (-4 *3 (-13 (-1013) (-33)))
+ (-4 *4 (-13 (-1013) (-33))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012))
- (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-108)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-706)) (-4 *4 (-322)) (-5 *1 (-193 *4 *2))
- (-4 *2 (-1140 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-586 *2)) (-4 *2 (-983 *4 *5 *6)) (-4 *4 (-512))
- (-4 *5 (-728)) (-4 *6 (-783)) (-5 *1 (-902 *4 *5 *6 *2)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-706)) (-4 *4 (-336)) (-5 *1 (-824 *2 *4))
- (-4 *2 (-1140 *4)))))
+ (-12 (-5 *2 (-381 (-881 *3))) (-5 *1 (-426 *3 *4 *5 *6))
+ (-4 *3 (-513)) (-4 *3 (-157)) (-14 *4 (-850))
+ (-14 *5 (-587 (-1084))) (-14 *6 (-1165 (-627 *3))))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-512)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2257 *3)))
- (-5 *1 (-895 *4 *3)) (-4 *3 (-1140 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-407))))
+ (|partial| -12 (-4 *4 (-13 (-337) (-135) (-961 (-521))))
+ (-4 *5 (-1141 *4))
+ (-5 *2 (-2 (|:| -3100 (-381 *5)) (|:| |coeff| (-381 *5))))
+ (-5 *1 (-525 *4 *5)) (-5 *3 (-381 *5)))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959))
+ (-5 *1 (-692)))))
+(((*1 *1 *1) (-12 (-4 *1 (-221 *2)) (-4 *2 (-1119)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970)) (-5 *2 (-707)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1073 3 *3)) (-4 *3 (-970)) (-4 *1 (-1045 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1045 *2)) (-4 *2 (-970)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729))
+ (-4 *4 (-784)) (-4 *2 (-513))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729))
+ (-4 *4 (-784)) (-4 *2 (-513)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-729)) (-4 *5 (-784)) (-4 *6 (-282)) (-5 *2 (-392 *3))
+ (-5 *1 (-679 *4 *5 *6 *3)) (-4 *3 (-878 *6 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-316 *4 *3 *5)) (-4 *4 (-1123)) (-4 *3 (-1141 *4))
+ (-4 *5 (-1141 (-381 *3))) (-5 *2 (-108))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3))
+ (-4 *5 (-1141 (-381 *4))) (-5 *2 (-108)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-759)))))
+(((*1 *2 *2 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-337) (-10 -8 (-15 ** ($ $ (-381 (-521)))))))
+ (-5 *1 (-1039 *3 *2)) (-4 *3 (-1141 *2)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6
+ *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8
+ *9)
+ (-12 (-5 *4 (-627 (-202))) (-5 *5 (-108)) (-5 *6 (-202))
+ (-5 *7 (-627 (-521)))
+ (-5 *8 (-3 (|:| |fn| (-362)) (|:| |fp| (-78 CONFUN))))
+ (-5 *9 (-3 (|:| |fn| (-362)) (|:| |fp| (-75 OBJFUN))))
+ (-5 *3 (-521)) (-5 *2 (-959)) (-5 *1 (-690)))))
+(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10)
+ (-12 (-5 *4 (-521)) (-5 *5 (-1067)) (-5 *6 (-627 (-202)))
+ (-5 *7 (-3 (|:| |fn| (-362)) (|:| |fp| (-87 G))))
+ (-5 *8 (-3 (|:| |fn| (-362)) (|:| |fp| (-84 FCN))))
+ (-5 *9 (-3 (|:| |fn| (-362)) (|:| |fp| (-69 PEDERV))))
+ (-5 *10 (-3 (|:| |fn| (-362)) (|:| |fp| (-86 OUTPUT))))
+ (-5 *3 (-202)) (-5 *2 (-959)) (-5 *1 (-686)))))
+(((*1 *1 *1) (-12 (-5 *1 (-158 *2)) (-4 *2 (-282))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1086 (-381 (-521)))) (-5 *1 (-169)) (-5 *3 (-521))))
+ ((*1 *1 *1) (-12 (-4 *1 (-614 *2)) (-4 *2 (-1119))))
+ ((*1 *1 *1) (-4 *1 (-798 *2)))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-899 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-728))
+ (-4 *4 (-784)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-850)) (-5 *2 (-1080 *4)) (-5 *1 (-540 *4))
+ (-4 *4 (-323)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-878 *3 *5 *4)) (-5 *1 (-913 *3 *4 *5 *2))
+ (-4 *3 (-425)) (-4 *4 (-784)) (-4 *5 (-729)))))
+(((*1 *2 *3)
+ (-12 (|has| *6 (-6 -4234)) (-4 *4 (-337)) (-4 *5 (-347 *4))
+ (-4 *6 (-347 *4)) (-5 *2 (-587 *6)) (-5 *1 (-488 *4 *5 *6 *3))
+ (-4 *3 (-625 *4 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (|has| *9 (-6 -4234)) (-4 *4 (-513)) (-4 *5 (-347 *4))
+ (-4 *6 (-347 *4)) (-4 *7 (-918 *4)) (-4 *8 (-347 *7))
+ (-4 *9 (-347 *7)) (-5 *2 (-587 *6))
+ (-5 *1 (-489 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-625 *4 *5 *6))
+ (-4 *10 (-625 *7 *8 *9))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-625 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-347 *3))
+ (-4 *5 (-347 *3)) (-4 *3 (-513)) (-5 *2 (-587 *5))))
((*1 *2 *3)
- (-12 (-5 *2 (-108)) (-5 *1 (-525 *3)) (-4 *3 (-960 (-520)))))
+ (-12 (-4 *4 (-513)) (-4 *4 (-157)) (-4 *5 (-347 *4))
+ (-4 *6 (-347 *4)) (-5 *2 (-587 *6)) (-5 *1 (-626 *4 *5 *6 *3))
+ (-4 *3 (-625 *4 *5 *6))))
((*1 *2 *1)
- (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012))
- (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-108)))))
-(((*1 *2 *2)
- (-12
- (-5 *2
- (-586
- (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-706)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *4 (-728)) (-4 *6 (-877 *3 *4 *5)) (-4 *3 (-424)) (-4 *5 (-783))
- (-5 *1 (-421 *3 *4 *5 *6)))))
-(((*1 *1 *2) (-12 (-5 *2 (-586 *3)) (-4 *3 (-1012)) (-4 *1 (-831 *3)))))
+ (-12 (-4 *1 (-973 *3 *4 *5 *6 *7)) (-4 *5 (-970))
+ (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-4 *5 (-513))
+ (-5 *2 (-587 *7)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-586 *7)) (-4 *7 (-983 *4 *5 *6)) (-4 *4 (-424))
- (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-108))
- (-5 *1 (-913 *4 *5 *6 *7 *8)) (-4 *8 (-988 *4 *5 *6 *7))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-983 *3 *4 *5)) (-4 *3 (-969)) (-4 *4 (-728))
- (-4 *5 (-783)) (-5 *2 (-108))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-586 *7)) (-4 *7 (-983 *4 *5 *6)) (-4 *4 (-424))
- (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-108))
- (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-988 *4 *5 *6 *7))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1112 *3 *4 *5 *6)) (-4 *3 (-512)) (-4 *4 (-728))
- (-4 *5 (-783)) (-4 *6 (-983 *3 *4 *5)) (-5 *2 (-108)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-849)) (-5 *2 (-1079 *4)) (-5 *1 (-330 *4))
- (-4 *4 (-322)))))
-(((*1 *2)
- (-12 (-4 *3 (-1122)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-380 *4)))
- (-5 *2 (-1164 *1)) (-4 *1 (-315 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-586 (-1083))) (-5 *1 (-761)))))
-(((*1 *2 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157)) (-4 *2 (-1104))))
- ((*1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-783))))
- ((*1 *2 *1) (-12 (-5 *2 (-586 *3)) (-5 *1 (-559 *3)) (-4 *3 (-783)))))
+ (-12 (-5 *2 (-1065 (-587 (-521)))) (-5 *1 (-812))
+ (-5 *3 (-587 (-521))))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-392 *3)) (-4 *3 (-513)))))
+(((*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1067)) (-5 *1 (-722)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1049 *4 *5)) (-4 *4 (-13 (-1013) (-33)))
+ (-4 *5 (-13 (-1013) (-33))) (-5 *2 (-108)) (-5 *1 (-1050 *4 *5)))))
(((*1 *2 *1)
(-12
(-5 *2
- (-586
- (-586
- (-3 (|:| -2883 (-1083))
- (|:| |bounds| (-586 (-3 (|:| S (-1083)) (|:| P (-880 (-520))))))))))
- (-5 *1 (-1087)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-706)) (-5 *2 (-380 (-520))) (-5 *1 (-201))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-706)) (-5 *2 (-380 (-520))) (-5 *1 (-201))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-706)) (-5 *2 (-380 (-520))) (-5 *1 (-352))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-706)) (-5 *2 (-380 (-520))) (-5 *1 (-352)))))
+ (-587
+ (-587
+ (-3 (|:| -2884 (-1084))
+ (|:| |bounds| (-587 (-3 (|:| S (-1084)) (|:| P (-881 (-521))))))))))
+ (-5 *1 (-1088)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-759)))))
(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-586 (-586 (-586 *5)))) (-5 *3 (-1 (-108) *5 *5))
- (-5 *4 (-586 *5)) (-4 *5 (-783)) (-5 *1 (-1090 *5)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1118)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-871 *3) (-871 *3))) (-5 *1 (-160 *3))
- (-4 *3 (-13 (-336) (-1104) (-926))))))
-(((*1 *1 *2 *1) (-12 (-5 *1 (-586 *2)) (-4 *2 (-1118))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-1064 *2)) (-4 *2 (-1118)))))
-(((*1 *1 *2) (-12 (-5 *1 (-203 *2)) (-4 *2 (-13 (-336) (-1104))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1140 *2)) (-4 *2 (-1122)) (-5 *1 (-136 *2 *4 *3))
- (-4 *3 (-1140 (-380 *4))))))
+ (-12 (-5 *3 (-1 *2 (-707) *2)) (-5 *4 (-707)) (-4 *2 (-1013))
+ (-5 *1 (-617 *2))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1 *3 (-707) *3)) (-4 *3 (-1013)) (-5 *1 (-620 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-520)) (-5 *2 (-586 (-2 (|:| -1916 *3) (|:| -2528 *4))))
- (-5 *1 (-632 *3)) (-4 *3 (-1140 *4)))))
+ (|partial| -12 (-5 *4 (-1084)) (-4 *5 (-562 (-821 (-521))))
+ (-4 *5 (-815 (-521)))
+ (-4 *5 (-13 (-784) (-961 (-521)) (-425) (-583 (-521))))
+ (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
+ (-5 *1 (-524 *5 *3)) (-4 *3 (-573))
+ (-4 *3 (-13 (-27) (-1105) (-404 *5)))))
+ ((*1 *2 *2 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-1084)) (-5 *4 (-777 *2)) (-4 *2 (-1048))
+ (-4 *2 (-13 (-27) (-1105) (-404 *5)))
+ (-4 *5 (-562 (-821 (-521)))) (-4 *5 (-815 (-521)))
+ (-4 *5 (-13 (-784) (-961 (-521)) (-425) (-583 (-521))))
+ (-5 *1 (-524 *5 *2)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-380 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1140 *5))
- (-5 *1 (-663 *5 *2)) (-4 *5 (-336)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1016)) (-5 *1 (-730))))
- ((*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-790))))
- ((*1 *2 *1) (-12 (-5 *2 (-1066)) (-5 *1 (-914))))
- ((*1 *2 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-1118))))
+ (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1080 *7)) (-4 *5 (-970))
+ (-4 *7 (-970)) (-4 *2 (-1141 *5)) (-5 *1 (-470 *5 *2 *6 *7))
+ (-4 *6 (-1141 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-970)) (-4 *7 (-970))
+ (-4 *4 (-1141 *5)) (-5 *2 (-1080 *7)) (-5 *1 (-470 *5 *4 *6 *7))
+ (-4 *6 (-1141 *4)))))
+(((*1 *1 *2 *1) (-12 (-5 *1 (-587 *2)) (-4 *2 (-1119))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-1065 *2)) (-4 *2 (-1119)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-535)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-707)) (-5 *2 (-1080 *4)) (-5 *1 (-491 *4))
+ (-4 *4 (-323)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-353)) (-5 *1 (-92))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-353)) (-5 *1 (-92)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-323))
+ (-5 *2 (-587 (-2 (|:| |deg| (-707)) (|:| -2576 *3))))
+ (-5 *1 (-194 *4 *3)) (-4 *3 (-1141 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1017)) (-5 *1 (-731))))
+ ((*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-791))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-915))))
+ ((*1 *2 *1) (-12 (-4 *1 (-935 *2)) (-4 *2 (-1119))))
((*1 *2 *1)
- (-12 (-4 *2 (-13 (-1012) (-33))) (-5 *1 (-1048 *2 *3))
- (-4 *3 (-13 (-1012) (-33))))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-626 *3)) (-4 *3 (-969)) (-5 *1 (-627 *3))))
- ((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-626 *3)) (-4 *3 (-969)) (-5 *1 (-627 *3)))))
+ (-12 (-4 *2 (-13 (-1013) (-33))) (-5 *1 (-1049 *2 *3))
+ (-4 *3 (-13 (-1013) (-33))))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-587 (-718 *3))) (-5 *1 (-718 *3)) (-4 *3 (-513))
+ (-4 *3 (-970)))))
+(((*1 *2 *3 *1 *4 *4 *4 *4 *4)
+ (-12 (-5 *4 (-108)) (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784))
+ (-5 *2 (-587 (-951 *5 *6 *7 *3))) (-5 *1 (-951 *5 *6 *7 *3))
+ (-4 *3 (-984 *5 *6 *7))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-587 *6)) (-4 *1 (-989 *3 *4 *5 *6)) (-4 *3 (-425))
+ (-4 *4 (-729)) (-4 *5 (-784)) (-4 *6 (-984 *3 *4 *5))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-989 *3 *4 *5 *2)) (-4 *3 (-425)) (-4 *4 (-729))
+ (-4 *5 (-784)) (-4 *2 (-984 *3 *4 *5))))
+ ((*1 *2 *3 *1 *4 *4 *4 *4 *4)
+ (-12 (-5 *4 (-108)) (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784))
+ (-5 *2 (-587 (-1055 *5 *6 *7 *3))) (-5 *1 (-1055 *5 *6 *7 *3))
+ (-4 *3 (-984 *5 *6 *7)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-818 *5 *3)) (-5 *4 (-821 *5)) (-4 *5 (-1013))
+ (-4 *3 (-151 *6)) (-4 (-881 *6) (-815 *5))
+ (-4 *6 (-13 (-815 *5) (-157))) (-5 *1 (-162 *5 *6 *3))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *2 (-818 *4 *1)) (-5 *3 (-821 *4)) (-4 *1 (-815 *4))
+ (-4 *4 (-1013))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-818 *5 *6)) (-5 *4 (-821 *5)) (-4 *5 (-1013))
+ (-4 *6 (-13 (-1013) (-961 *3))) (-4 *3 (-815 *5))
+ (-5 *1 (-860 *5 *3 *6))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-818 *5 *3)) (-4 *5 (-1013))
+ (-4 *3 (-13 (-404 *6) (-562 *4) (-815 *5) (-961 (-560 $))))
+ (-5 *4 (-821 *5)) (-4 *6 (-13 (-513) (-784) (-815 *5)))
+ (-5 *1 (-861 *5 *6 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-818 (-521) *3)) (-5 *4 (-821 (-521))) (-4 *3 (-506))
+ (-5 *1 (-862 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-818 *5 *6)) (-5 *3 (-560 *6)) (-4 *5 (-1013))
+ (-4 *6 (-13 (-784) (-961 (-560 $)) (-562 *4) (-815 *5)))
+ (-5 *4 (-821 *5)) (-5 *1 (-863 *5 *6))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-814 *5 *6 *3)) (-5 *4 (-821 *5)) (-4 *5 (-1013))
+ (-4 *6 (-815 *5)) (-4 *3 (-607 *6)) (-5 *1 (-864 *5 *6 *3))))
+ ((*1 *2 *3 *4 *2 *5)
+ (-12 (-5 *5 (-1 (-818 *6 *3) *8 (-821 *6) (-818 *6 *3)))
+ (-4 *8 (-784)) (-5 *2 (-818 *6 *3)) (-5 *4 (-821 *6))
+ (-4 *6 (-1013)) (-4 *3 (-13 (-878 *9 *7 *8) (-562 *4)))
+ (-4 *7 (-729)) (-4 *9 (-13 (-970) (-784) (-815 *6)))
+ (-5 *1 (-865 *6 *7 *8 *9 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-818 *5 *3)) (-4 *5 (-1013))
+ (-4 *3 (-13 (-878 *8 *6 *7) (-562 *4))) (-5 *4 (-821 *5))
+ (-4 *7 (-815 *5)) (-4 *6 (-729)) (-4 *7 (-784))
+ (-4 *8 (-13 (-970) (-784) (-815 *5))) (-5 *1 (-865 *5 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-818 *5 *3)) (-4 *5 (-1013)) (-4 *3 (-918 *6))
+ (-4 *6 (-13 (-513) (-815 *5) (-562 *4))) (-5 *4 (-821 *5))
+ (-5 *1 (-868 *5 *6 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-818 *5 (-1084))) (-5 *3 (-1084)) (-5 *4 (-821 *5))
+ (-4 *5 (-1013)) (-5 *1 (-869 *5))))
+ ((*1 *2 *3 *4 *5 *2 *6)
+ (-12 (-5 *4 (-587 (-821 *7))) (-5 *5 (-1 *9 (-587 *9)))
+ (-5 *6 (-1 (-818 *7 *9) *9 (-821 *7) (-818 *7 *9))) (-4 *7 (-1013))
+ (-4 *9 (-13 (-970) (-562 (-821 *7)) (-961 *8))) (-5 *2 (-818 *7 *9))
+ (-5 *3 (-587 *9)) (-4 *8 (-13 (-970) (-784)))
+ (-5 *1 (-870 *7 *8 *9)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-14 *5 (-587 (-1084))) (-4 *2 (-157))
+ (-4 *4 (-215 (-3475 *5) (-707)))
+ (-14 *6
+ (-1 (-108) (-2 (|:| -2716 *3) (|:| -2997 *4))
+ (-2 (|:| -2716 *3) (|:| -2997 *4))))
+ (-5 *1 (-434 *5 *2 *3 *4 *6 *7)) (-4 *3 (-784))
+ (-4 *7 (-878 *2 *4 (-794 *5))))))
+(((*1 *2 *2) (-12 (-5 *2 (-353)) (-5 *1 (-92)))))
+(((*1 *2 *1) (-12 (-5 *2 (-202)) (-5 *1 (-759)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-297 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-124))
+ (-5 *2 (-587 (-2 (|:| |gen| *3) (|:| -3261 *4))))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-587 (-2 (|:| -2973 *3) (|:| -2517 *4))))
+ (-5 *1 (-672 *3 *4)) (-4 *3 (-970)) (-4 *4 (-663))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1143 *3 *4)) (-4 *3 (-970)) (-4 *4 (-728))
+ (-5 *2 (-1065 (-2 (|:| |k| *4) (|:| |c| *3)))))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783))
- (-4 *3 (-983 *5 *6 *7))
- (-5 *2 (-586 (-2 (|:| |val| (-108)) (|:| -1883 *4))))
- (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-988 *5 *6 *7 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-586 (-520))) (-5 *2 (-832 (-520))) (-5 *1 (-845))))
- ((*1 *2 *3) (-12 (-5 *3 (-896)) (-5 *2 (-832 (-520))) (-5 *1 (-845)))))
-(((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-706)) (-4 *5 (-336)) (-5 *2 (-158 *6))
- (-5 *1 (-795 *5 *4 *6)) (-4 *4 (-1155 *5)) (-4 *6 (-1140 *5)))))
-(((*1 *2 *3 *4 *4 *2 *2 *2 *2)
- (-12 (-5 *2 (-520))
- (-5 *3
- (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-706)) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-4 *6 (-728)) (-4 *4 (-877 *5 *6 *7)) (-4 *5 (-424)) (-4 *7 (-783))
- (-5 *1 (-421 *5 *6 *7 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-871 *2)) (-5 *1 (-907 *2)) (-4 *2 (-969)))))
-(((*1 *2 *3)
- (-12 (-4 *2 (-336)) (-4 *2 (-781)) (-5 *1 (-873 *2 *3))
- (-4 *3 (-1140 *2)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-545 *2)) (-4 *2 (-37 (-380 (-520)))) (-4 *2 (-969)))))
+ (-12 (-5 *3 (-1 (-108) *8)) (-4 *8 (-984 *5 *6 *7)) (-4 *5 (-513))
+ (-4 *6 (-729)) (-4 *7 (-784))
+ (-5 *2 (-2 (|:| |goodPols| (-587 *8)) (|:| |badPols| (-587 *8))))
+ (-5 *1 (-903 *5 *6 *7 *8)) (-5 *4 (-587 *8)))))
(((*1 *2 *3 *2 *3)
- (-12 (-5 *2 (-410)) (-5 *3 (-1083)) (-5 *1 (-1086))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-410)) (-5 *3 (-1083)) (-5 *1 (-1086))))
+ (-12 (-5 *2 (-411)) (-5 *3 (-1084)) (-5 *1 (-1087))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-411)) (-5 *3 (-1084)) (-5 *1 (-1087))))
((*1 *2 *3 *2 *4 *1)
- (-12 (-5 *2 (-410)) (-5 *3 (-586 (-1083))) (-5 *4 (-1083))
- (-5 *1 (-1086))))
+ (-12 (-5 *2 (-411)) (-5 *3 (-587 (-1084))) (-5 *4 (-1084))
+ (-5 *1 (-1087))))
((*1 *2 *3 *2 *3 *1)
- (-12 (-5 *2 (-410)) (-5 *3 (-1083)) (-5 *1 (-1086))))
+ (-12 (-5 *2 (-411)) (-5 *3 (-1084)) (-5 *1 (-1087))))
((*1 *2 *3 *2 *1)
- (-12 (-5 *2 (-410)) (-5 *3 (-1083)) (-5 *1 (-1087))))
+ (-12 (-5 *2 (-411)) (-5 *3 (-1084)) (-5 *1 (-1088))))
((*1 *2 *3 *2 *1)
- (-12 (-5 *2 (-410)) (-5 *3 (-586 (-1083))) (-5 *1 (-1087)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2))
- (-4 *2 (-13 (-403 *3) (-926))))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-908 *2)) (-4 *2 (-1104)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783))
- (-4 *3 (-983 *5 *6 *7))
- (-5 *2 (-586 (-2 (|:| |val| (-108)) (|:| -1883 *4))))
- (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-988 *5 *6 *7 *3)))))
+ (-12 (-5 *2 (-411)) (-5 *3 (-587 (-1084))) (-5 *1 (-1088)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-337)) (-5 *2 (-2 (|:| -3727 *3) (|:| -3820 *3)))
+ (-5 *1 (-703 *3 *4)) (-4 *3 (-646 *4))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-337)) (-4 *3 (-970))
+ (-5 *2 (-2 (|:| -3727 *1) (|:| -3820 *1))) (-4 *1 (-786 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-94 *5)) (-4 *5 (-337)) (-4 *5 (-970))
+ (-5 *2 (-2 (|:| -3727 *3) (|:| -3820 *3))) (-5 *1 (-787 *5 *3))
+ (-4 *3 (-786 *5)))))
+(((*1 *2 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-782)) (-5 *1 (-278 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-970)) (-5 *2 (-521)) (-5 *1 (-416 *4 *3 *5))
+ (-4 *3 (-1141 *4))
+ (-4 *5 (-13 (-378) (-961 *4) (-337) (-1105) (-259))))))
+(((*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-301 *3)) (-4 *3 (-1119))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-707)) (-5 *1 (-484 *3 *4)) (-4 *3 (-1119))
+ (-14 *4 (-521)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-984 *3 *4 *2)) (-4 *3 (-970)) (-4 *4 (-729))
+ (-4 *2 (-784))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729))
+ (-4 *4 (-784)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-620 *3)) (-4 *3 (-1013)))))
+(((*1 *1 *1) (-12 (-4 *1 (-614 *2)) (-4 *2 (-1119)))))
+(((*1 *2 *3) (-12 (-5 *3 (-202)) (-5 *2 (-290 (-353))) (-5 *1 (-280)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1084)) (-5 *2 (-497)) (-5 *1 (-496 *4))
+ (-4 *4 (-1119)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 (-587 *7) *7 (-1080 *7))) (-5 *5 (-1 (-392 *7) *7))
+ (-4 *7 (-1141 *6)) (-4 *6 (-13 (-337) (-135) (-961 (-381 (-521)))))
+ (-5 *2 (-587 (-2 (|:| |frac| (-381 *7)) (|:| -3192 *3))))
+ (-5 *1 (-746 *6 *7 *3 *8)) (-4 *3 (-597 *7))
+ (-4 *8 (-597 (-381 *7)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-392 *6) *6)) (-4 *6 (-1141 *5))
+ (-4 *5 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521)))))
+ (-5 *2
+ (-587 (-2 (|:| |frac| (-381 *6)) (|:| -3192 (-595 *6 (-381 *6))))))
+ (-5 *1 (-749 *5 *6)) (-5 *3 (-595 *6 (-381 *6))))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-707)) (-4 *4 (-13 (-513) (-135)))
+ (-5 *1 (-1135 *4 *2)) (-4 *2 (-1141 *4)))))
+(((*1 *2 *2 *2) (-12 (-5 *1 (-145 *2)) (-4 *2 (-506)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1140 *3)) (-4 *3 (-969)) (-5 *2 (-1079 *3)))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-586 *6)) (-4 *1 (-901 *3 *4 *5 *6)) (-4 *3 (-969))
- (-4 *4 (-728)) (-4 *5 (-783)) (-4 *6 (-983 *3 *4 *5))
- (-4 *3 (-512)))))
-(((*1 *2 *3 *2 *4 *5)
- (-12 (-5 *2 (-586 *3)) (-5 *5 (-849)) (-4 *3 (-1140 *4))
- (-4 *4 (-281)) (-5 *1 (-432 *4 *3)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-520)) (-5 *2 (-1169)) (-5 *1 (-832 *4))
- (-4 *4 (-1012))))
- ((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-832 *3)) (-4 *3 (-1012)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1181 *3)) (-4 *3 (-336)) (-5 *2 (-108)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-758)))))
-(((*1 *2 *3 *3 *3 *4 *5)
- (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1140 *6))
- (-4 *6 (-13 (-336) (-135) (-960 *4))) (-5 *4 (-520))
+ (-12 (-5 *2 (-108)) (-5 *1 (-49 *3 *4)) (-4 *3 (-970))
+ (-14 *4 (-587 (-1084)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-108)) (-5 *1 (-200 *3 *4)) (-4 *3 (-13 (-970) (-784)))
+ (-14 *4 (-587 (-1084))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-392 *5)) (-4 *5 (-513))
(-5 *2
- (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-108))))
- (|:| -3190
- (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3)
- (|:| |beta| *3)))))
- (-5 *1 (-939 *6 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1083)) (-5 *2 (-1169)) (-5 *1 (-1086)))))
-(((*1 *1 *1 *2 *2 *2 *2)
- (-12 (-5 *2 (-520)) (-4 *1 (-624 *3 *4 *5)) (-4 *3 (-969))
- (-4 *4 (-346 *3)) (-4 *5 (-346 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-424))) (-5 *1 (-1110 *3 *2))
- (-4 *2 (-13 (-403 *3) (-1104))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-728)) (-4 *5 (-783)) (-4 *6 (-281)) (-5 *2 (-391 *3))
- (-5 *1 (-678 *4 *5 *6 *3)) (-4 *3 (-877 *6 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *3 (-1118)) (-5 *2 (-586 *1)) (-4 *1 (-934 *3)))))
+ (-2 (|:| -2997 (-707)) (|:| -2973 *5) (|:| |radicand| (-587 *5))))
+ (-5 *1 (-294 *5)) (-5 *4 (-707))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-927)) (-5 *2 (-521)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-353) (-353))) (-5 *4 (-353))
+ (-5 *2
+ (-2 (|:| -3430 *4) (|:| -2968 *4) (|:| |totalpts| (-521))
+ (|:| |success| (-108))))
+ (-5 *1 (-725)) (-5 *5 (-521)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1164 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-336))
- (-4 *1 (-660 *5 *6)) (-4 *5 (-157)) (-4 *6 (-1140 *5))
- (-5 *2 (-626 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-820 *3)) (-4 *3 (-1012)))))
-(((*1 *2 *2) (-12 (-5 *2 (-849)) (-5 *1 (-330 *3)) (-4 *3 (-322)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-758)))))
-(((*1 *1) (-5 *1 (-759))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-901 *3 *4 *2 *5)) (-4 *3 (-969)) (-4 *4 (-728))
- (-4 *2 (-783)) (-4 *5 (-983 *3 *4 *2)))))
+ (-12 (-5 *4 (-521)) (-4 *2 (-404 *3)) (-5 *1 (-31 *3 *2))
+ (-4 *3 (-961 *4)) (-4 *3 (-13 (-784) (-513))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-586 (-452 *4 *5))) (-14 *4 (-586 (-1083)))
- (-4 *5 (-424))
+ (-12 (-5 *2 (-521)) (-5 *1 (-418 *3)) (-4 *3 (-378)) (-4 *3 (-970)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-408))
(-5 *2
- (-2 (|:| |gblist| (-586 (-223 *4 *5)))
- (|:| |gvlist| (-586 (-520)))))
- (-5 *1 (-574 *4 *5)))))
-(((*1 *1 *1 *2 *3 *1)
- (-12 (-4 *1 (-299 *2 *3)) (-4 *2 (-969)) (-4 *3 (-727)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1064 *3)) (-5 *1 (-158 *3)) (-4 *3 (-281)))))
+ (-587
+ (-3 (|:| -2884 (-1084))
+ (|:| |bounds| (-587 (-3 (|:| S (-1084)) (|:| P (-881 (-521)))))))))
+ (-5 *1 (-1088)))))
+(((*1 *1) (-5 *1 (-129))) ((*1 *1 *1) (-5 *1 (-132)))
+ ((*1 *1 *1) (-4 *1 (-1053))))
+(((*1 *2 *3 *4 *2 *5)
+ (-12 (-5 *3 (-587 *8)) (-5 *4 (-587 (-821 *6)))
+ (-5 *5 (-1 (-818 *6 *8) *8 (-821 *6) (-818 *6 *8))) (-4 *6 (-1013))
+ (-4 *8 (-13 (-970) (-562 (-821 *6)) (-961 *7))) (-5 *2 (-818 *6 *8))
+ (-4 *7 (-13 (-970) (-784))) (-5 *1 (-870 *6 *7 *8)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-707)) (|:| |poli| *7)
+ (|:| |polj| *7)))
+ (-4 *5 (-729)) (-4 *7 (-878 *4 *5 *6)) (-4 *4 (-425)) (-4 *6 (-784))
+ (-5 *2 (-108)) (-5 *1 (-422 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-513)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2114 *4)))
+ (-5 *1 (-896 *4 *3)) (-4 *3 (-1141 *4)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-1065 *2)) (-4 *2 (-282)) (-5 *1 (-158 *2)))))
+(((*1 *2 *3) (-12 (-5 *3 (-202)) (-5 *2 (-636)) (-5 *1 (-280)))))
(((*1 *1 *1) (-5 *1 (-108))))
(((*1 *2 *3 *1)
- (-12 (-4 *1 (-901 *4 *5 *3 *6)) (-4 *4 (-969)) (-4 *5 (-728))
- (-4 *3 (-783)) (-4 *6 (-983 *4 *5 *3)) (-5 *2 (-108)))))
-(((*1 *2)
- (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-339 *3 *4))
- (-4 *3 (-340 *4))))
- ((*1 *2) (-12 (-4 *1 (-340 *3)) (-4 *3 (-157)) (-5 *2 (-108)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-706)) (-4 *1 (-1140 *3)) (-4 *3 (-969)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-520))
- (-5 *1 (-421 *4 *5 *6 *3)) (-4 *3 (-877 *4 *5 *6)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-424))) (-5 *1 (-1110 *3 *2))
- (-4 *2 (-13 (-403 *3) (-1104))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-586 (-2 (|:| |gen| *3) (|:| -3260 *4))))
- (-5 *1 (-589 *3 *4 *5)) (-4 *3 (-1012)) (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *2 *3) (-12 (-5 *3 (-520)) (-5 *2 (-1169)) (-5 *1 (-930)))))
-(((*1 *2 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *2 (-958))
+ (-12 (-4 *1 (-989 *4 *5 *6 *3)) (-4 *4 (-425)) (-4 *5 (-729))
+ (-4 *6 (-784)) (-4 *3 (-984 *4 *5 *6)) (-5 *2 (-108))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784))
+ (-4 *3 (-984 *4 *5 *6))
+ (-5 *2 (-587 (-2 (|:| |val| (-108)) (|:| -1884 *1))))
+ (-4 *1 (-989 *4 *5 *6 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-734 *2)) (-4 *2 (-157)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959))
(-5 *1 (-692)))))
-(((*1 *1 *2) (-12 (-5 *2 (-586 (-791))) (-5 *1 (-791))))
- ((*1 *1 *1) (-5 *1 (-791)))
- ((*1 *1 *2)
- (-12 (-5 *2 (-586 *3)) (-4 *3 (-1012)) (-4 *1 (-1010 *3))))
- ((*1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1012)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1066)) (-5 *3 (-759)) (-5 *1 (-758)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-586 (-1083))) (-4 *4 (-1012))
- (-4 *5 (-13 (-969) (-814 *4) (-783) (-561 (-820 *4))))
- (-5 *1 (-53 *4 *5 *2))
- (-4 *2 (-13 (-403 *5) (-814 *4) (-561 (-820 *4)))))))
-(((*1 *2 *2) (-12 (-5 *1 (-888 *2)) (-4 *2 (-505)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1064 (-380 *3))) (-5 *1 (-158 *3)) (-4 *3 (-281)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-315 *4 *3 *5)) (-4 *4 (-1122)) (-4 *3 (-1140 *4))
- (-4 *5 (-1140 (-380 *3))) (-5 *2 (-108))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-315 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-1140 *3))
- (-4 *5 (-1140 (-380 *4))) (-5 *2 (-108)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2))
- (-4 *2 (-13 (-403 *3) (-926))))))
+ (-12 (-5 *3 (-1067)) (-5 *2 (-192 (-471))) (-5 *1 (-772)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-587 *7)) (|:| -1884 *8)))
+ (-4 *7 (-984 *4 *5 *6)) (-4 *8 (-989 *4 *5 *6 *7)) (-4 *4 (-425))
+ (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-108))
+ (-5 *1 (-914 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-587 *7)) (|:| -1884 *8)))
+ (-4 *7 (-984 *4 *5 *6)) (-4 *8 (-989 *4 *5 *6 *7)) (-4 *4 (-425))
+ (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-108))
+ (-5 *1 (-1020 *4 *5 *6 *7 *8)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1080 *9)) (-5 *4 (-587 *7)) (-5 *5 (-587 *8))
+ (-4 *7 (-784)) (-4 *8 (-970)) (-4 *9 (-878 *8 *6 *7)) (-4 *6 (-729))
+ (-5 *2 (-1080 *8)) (-5 *1 (-295 *6 *7 *8 *9)))))
+(((*1 *1 *1) (-5 *1 (-982))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1013)) (-4 *6 (-1013))
+ (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-622 *4 *5 *6)) (-4 *5 (-1013)))))
+(((*1 *1 *2) (-12 (-5 *2 (-587 (-792))) (-5 *1 (-792))))
+ ((*1 *1 *1) (-5 *1 (-792)))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-587 *3)) (-4 *3 (-1013)) (-4 *1 (-1011 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3)
+ (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959))
+ (-5 *1 (-689)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-850)) (-5 *4 (-803)) (-5 *2 (-1170)) (-5 *1 (-1166))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-850)) (-5 *4 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1166))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1167)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1141 *6))
+ (-4 *6 (-13 (-27) (-404 *5)))
+ (-4 *5 (-13 (-784) (-513) (-961 (-521)))) (-4 *8 (-1141 (-381 *7)))
+ (-5 *2 (-538 *3)) (-5 *1 (-509 *5 *6 *7 *8 *3))
+ (-4 *3 (-316 *6 *7 *8)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-850)) (-5 *3 (-587 (-239))) (-5 *1 (-237))))
+ ((*1 *1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-239)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-110)) (-5 *3 (-586 (-1 *4 (-586 *4)))) (-4 *4 (-1012))
- (-5 *1 (-109 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1012))
- (-5 *1 (-109 *4))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-110)) (-5 *2 (-586 (-1 *4 (-586 *4))))
- (-5 *1 (-109 *4)) (-4 *4 (-1012)))))
-(((*1 *2) (-12 (-5 *2 (-849)) (-5 *1 (-1167))))
- ((*1 *2 *2) (-12 (-5 *2 (-849)) (-5 *1 (-1167)))))
-(((*1 *2 *3) (-12 (-5 *3 (-757)) (-5 *2 (-51)) (-5 *1 (-767)))))
+ (-12 (-5 *2 (-587 (-587 (-872 (-202))))) (-5 *3 (-587 (-803)))
+ (-5 *1 (-441)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-587 *6)) (-5 *4 (-587 (-1084))) (-4 *6 (-337))
+ (-5 *2 (-587 (-269 (-881 *6)))) (-5 *1 (-499 *5 *6 *7))
+ (-4 *5 (-425)) (-4 *7 (-13 (-337) (-782))))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-125)) (-5 *3 (-707)) (-5 *2 (-1170)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-108)) (-4 *5 (-13 (-337) (-782)))
+ (-5 *2 (-587 (-2 (|:| -1514 (-587 *3)) (|:| -2968 *5))))
+ (-5 *1 (-164 *5 *3)) (-4 *3 (-1141 (-154 *5)))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-337) (-782)))
+ (-5 *2 (-587 (-2 (|:| -1514 (-587 *3)) (|:| -2968 *4))))
+ (-5 *1 (-164 *4 *3)) (-4 *3 (-1141 (-154 *4))))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-872 *4)) (-4 *4 (-970)) (-5 *1 (-1073 *3 *4))
+ (-14 *3 (-850)))))
(((*1 *2)
- (-12 (-5 *2 (-108)) (-5 *1 (-414 *3)) (-4 *3 (-1140 (-520))))))
-(((*1 *2 *3 *4 *4 *3)
- (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *2 (-958))
- (-5 *1 (-687)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-424))) (-5 *1 (-1110 *3 *2))
- (-4 *2 (-13 (-403 *3) (-1104))))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-1 (-201) (-201) (-201)))
- (-5 *4 (-1 (-201) (-201) (-201) (-201)))
- (-5 *2 (-1 (-871 (-201)) (-201) (-201))) (-5 *1 (-633)))))
+ (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3))
+ (-4 *5 (-1141 (-381 *4))) (-5 *2 (-108)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-937)) (-5 *2 (-792)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-587 *4)) (-4 *4 (-1013)) (-5 *2 (-1170))
+ (-5 *1 (-1120 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-587 *4)) (-4 *4 (-1013)) (-5 *2 (-1170))
+ (-5 *1 (-1120 *4)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-706)) (-5 *2 (-1137 *5 *4)) (-5 *1 (-1081 *4 *5 *6))
- (-4 *4 (-969)) (-14 *5 (-1083)) (-14 *6 *4)))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-706)) (-5 *2 (-1137 *5 *4)) (-5 *1 (-1156 *4 *5 *6))
- (-4 *4 (-969)) (-14 *5 (-1083)) (-14 *6 *4))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-386 *3 *4 *5 *6)) (-4 *6 (-960 *4)) (-4 *3 (-281))
- (-4 *4 (-917 *3)) (-4 *5 (-1140 *4)) (-4 *6 (-382 *4 *5))
- (-14 *7 (-1164 *6)) (-5 *1 (-387 *3 *4 *5 *6 *7))))
+ (-12 (-5 *3 (-872 (-202))) (-5 *2 (-1170)) (-5 *1 (-441)))))
+(((*1 *1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1119))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-117 *2)) (-4 *2 (-784))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-784))))
+ ((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-521)) (-4 *1 (-257 *3)) (-4 *3 (-1119))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-521)) (-4 *1 (-257 *2)) (-4 *2 (-1119))))
((*1 *1 *2)
- (-12 (-5 *2 (-1164 *6)) (-4 *6 (-382 *4 *5)) (-4 *4 (-917 *3))
- (-4 *5 (-1140 *4)) (-4 *3 (-281)) (-5 *1 (-387 *3 *4 *5 *6 *7))
- (-14 *7 *2))))
-(((*1 *2 *1) (-12 (-4 *1 (-917 *2)) (-4 *2 (-512)) (-4 *2 (-505))))
- ((*1 *1 *1) (-4 *1 (-978))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-586 (-791))) (-5 *1 (-791)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-505))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-296 *3 *4)) (-4 *3 (-1012))
- (-4 *4 (-124)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-783)) (-4 *5 (-728))
- (-4 *6 (-512)) (-4 *7 (-877 *6 *5 *3))
- (-5 *1 (-434 *5 *3 *6 *7 *2))
- (-4 *2
- (-13 (-960 (-380 (-520))) (-336)
- (-10 -8 (-15 -2188 ($ *7)) (-15 -2800 (*7 $))
- (-15 -2811 (*7 $))))))))
+ (-12
+ (-5 *2
+ (-2
+ (|:| -2529
+ (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202)))
+ (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202))
+ (|:| |relerr| (-202))))
+ (|:| -3045
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1065 (-202)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -2442
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite|
+ "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))))))
+ (-5 *1 (-516))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-707)) (-4 *1 (-632 *2)) (-4 *2 (-1013))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2
+ (|:| -2529
+ (-2 (|:| |xinit| (-202)) (|:| |xend| (-202))
+ (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202)))
+ (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202)))
+ (|:| |abserr| (-202)) (|:| |relerr| (-202))))
+ (|:| -3045
+ (-2 (|:| |stiffness| (-353)) (|:| |stability| (-353))
+ (|:| |expense| (-353)) (|:| |accuracy| (-353))
+ (|:| |intermediateResults| (-353))))))
+ (-5 *1 (-740))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *2 (-1170)) (-5 *1 (-1097 *3 *4)) (-4 *3 (-1013))
+ (-4 *4 (-1013)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-521)) (-5 *1 (-392 *2)) (-4 *2 (-513)))))
+(((*1 *2) (-12 (-5 *2 (-833 (-521))) (-5 *1 (-846)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-587 (-792))) (-5 *1 (-792)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-587 (-381 (-881 (-154 (-521))))))
+ (-5 *2 (-587 (-587 (-269 (-881 (-154 *4)))))) (-5 *1 (-352 *4))
+ (-4 *4 (-13 (-337) (-782)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-587 (-269 (-381 (-881 (-154 (-521)))))))
+ (-5 *2 (-587 (-587 (-269 (-881 (-154 *4)))))) (-5 *1 (-352 *4))
+ (-4 *4 (-13 (-337) (-782)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-381 (-881 (-154 (-521)))))
+ (-5 *2 (-587 (-269 (-881 (-154 *4))))) (-5 *1 (-352 *4))
+ (-4 *4 (-13 (-337) (-782)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-269 (-381 (-881 (-154 (-521))))))
+ (-5 *2 (-587 (-269 (-881 (-154 *4))))) (-5 *1 (-352 *4))
+ (-4 *4 (-13 (-337) (-782))))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))))
+(((*1 *2 *3 *4)
+ (-12
+ (-5 *3
+ (-587
+ (-2 (|:| |eqzro| (-587 *8)) (|:| |neqzro| (-587 *8))
+ (|:| |wcond| (-587 (-881 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1165 (-381 (-881 *5))))
+ (|:| -2470 (-587 (-1165 (-381 (-881 *5))))))))))
+ (-5 *4 (-1067)) (-4 *5 (-13 (-282) (-135))) (-4 *8 (-878 *5 *7 *6))
+ (-4 *6 (-13 (-784) (-562 (-1084)))) (-4 *7 (-729)) (-5 *2 (-521))
+ (-5 *1 (-853 *5 *6 *7 *8)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-228 *3 *4 *5 *6)) (-4 *3 (-969)) (-4 *4 (-783))
- (-4 *5 (-241 *4)) (-4 *6 (-728)) (-5 *2 (-108)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783))
- (-4 *7 (-983 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-913 *4 *5 *6 *7 *3))
- (-4 *3 (-988 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783))
- (-4 *7 (-983 *4 *5 *6)) (-5 *2 (-108))
- (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-988 *4 *5 *6 *7)))))
+ (-12 (-4 *1 (-1163 *2)) (-4 *2 (-1119)) (-4 *2 (-927))
+ (-4 *2 (-970)))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-849)) (-5 *1 (-953 *2))
- (-4 *2 (-13 (-1012) (-10 -8 (-15 -1601 ($ $ $))))))))
+ (-12 (-5 *3 (-850)) (-5 *1 (-954 *2))
+ (-4 *2 (-13 (-1013) (-10 -8 (-15 -1602 ($ $ $))))))))
+(((*1 *1 *2) (-12 (-5 *2 (-587 (-792))) (-5 *1 (-792)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-586 (-715 *5 (-793 *6)))) (-5 *4 (-108)) (-4 *5 (-424))
- (-14 *6 (-586 (-1083))) (-5 *2 (-586 (-966 *5 *6)))
- (-5 *1 (-571 *5 *6)))))
+ (|partial| -12 (-5 *4 (-269 (-770 *3)))
+ (-4 *5 (-13 (-425) (-784) (-961 (-521)) (-583 (-521))))
+ (-5 *2 (-770 *3)) (-5 *1 (-580 *5 *3))
+ (-4 *3 (-13 (-27) (-1105) (-404 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-269 (-770 (-881 *5)))) (-4 *5 (-425))
+ (-5 *2 (-770 (-381 (-881 *5)))) (-5 *1 (-581 *5))
+ (-5 *3 (-381 (-881 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-269 (-381 (-881 *5)))) (-5 *3 (-381 (-881 *5)))
+ (-4 *5 (-425)) (-5 *2 (-770 *3)) (-5 *1 (-581 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-706)) (-4 *5 (-969)) (-5 *2 (-520))
- (-5 *1 (-415 *5 *3 *6)) (-4 *3 (-1140 *5))
- (-4 *6 (-13 (-377) (-960 *5) (-336) (-1104) (-258)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-969)) (-5 *2 (-520)) (-5 *1 (-415 *4 *3 *5))
- (-4 *3 (-1140 *4))
- (-4 *5 (-13 (-377) (-960 *4) (-336) (-1104) (-258))))))
-(((*1 *2 *1)
- (-12 (-14 *3 (-586 (-1083))) (-4 *4 (-157))
- (-4 *5 (-214 (-3474 *3) (-706)))
- (-14 *6
- (-1 (-108) (-2 (|:| -2716 *2) (|:| -2647 *5))
- (-2 (|:| -2716 *2) (|:| -2647 *5))))
- (-4 *2 (-783)) (-5 *1 (-433 *3 *4 *2 *5 *6 *7))
- (-4 *7 (-877 *4 *5 (-793 *3))))))
+ (-12 (-5 *4 (-587 *3)) (-4 *3 (-1022 *5 *6 *7 *8))
+ (-4 *5 (-13 (-282) (-135))) (-4 *6 (-729)) (-4 *7 (-784))
+ (-4 *8 (-984 *5 *6 *7)) (-5 *2 (-108))
+ (-5 *1 (-543 *5 *6 *7 *8 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1084)) (-4 *4 (-13 (-784) (-513))) (-5 *1 (-144 *4 *2))
+ (-4 *2 (-404 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1006 *2)) (-4 *2 (-404 *4)) (-4 *4 (-13 (-784) (-513)))
+ (-5 *1 (-144 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1006 *1)) (-4 *1 (-146))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-146)) (-5 *2 (-1084)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-770 *3)) (-4 *3 (-1013))))
+ ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-777 *3)) (-4 *3 (-1013)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-586 (-201))) (-5 *2 (-586 (-1066))) (-5 *1 (-170))))
+ (-12 (-5 *3 (-1165 *1)) (-4 *1 (-341 *4)) (-4 *4 (-157))
+ (-5 *2 (-1165 (-627 *4)))))
+ ((*1 *2)
+ (-12 (-4 *4 (-157)) (-5 *2 (-1165 (-627 *4))) (-5 *1 (-390 *3 *4))
+ (-4 *3 (-391 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-391 *3)) (-4 *3 (-157)) (-5 *2 (-1165 (-627 *3)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-587 (-1084))) (-4 *5 (-337))
+ (-5 *2 (-1165 (-627 (-381 (-881 *5))))) (-5 *1 (-1001 *5))
+ (-5 *4 (-627 (-381 (-881 *5))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-587 (-1084))) (-4 *5 (-337))
+ (-5 *2 (-1165 (-627 (-881 *5)))) (-5 *1 (-1001 *5))
+ (-5 *4 (-627 (-881 *5)))))
((*1 *2 *3)
- (-12 (-5 *3 (-586 (-201))) (-5 *2 (-586 (-1066))) (-5 *1 (-274))))
+ (-12 (-5 *3 (-587 (-627 *4))) (-4 *4 (-337))
+ (-5 *2 (-1165 (-627 *4))) (-5 *1 (-1001 *4)))))
+(((*1 *2 *3) (-12 (-5 *2 (-392 *3)) (-5 *1 (-515 *3)) (-4 *3 (-506))))
((*1 *2 *3)
- (-12 (-5 *3 (-586 (-201))) (-5 *2 (-586 (-1066))) (-5 *1 (-279)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-908 *2)) (-4 *2 (-1104)))))
-(((*1 *2 *1) (-12 (-4 *1 (-276)) (-5 *2 (-586 (-110))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-586 (-626 *5))) (-4 *5 (-281)) (-4 *5 (-969))
- (-5 *2 (-1164 (-1164 *5))) (-5 *1 (-952 *5)) (-5 *4 (-1164 *5)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-586 (-586 (-871 (-201))))) (-5 *1 (-1114 *3))
- (-4 *3 (-899)))))
-(((*1 *2 *2 *2 *3 *3)
- (-12 (-5 *3 (-706)) (-4 *4 (-969)) (-5 *1 (-1136 *4 *2))
- (-4 *2 (-1140 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2))
- (-4 *2 (-13 (-403 *3) (-926))))))
-(((*1 *2 *1) (-12 (-4 *1 (-377)) (-5 *2 (-520))))
- ((*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-635)))))
-(((*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1118)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-104)) (-5 *1 (-999)))))
-(((*1 *2) (-12 (-4 *1 (-377)) (-5 *2 (-849)))) ((*1 *1) (-4 *1 (-505)))
- ((*1 *2 *2) (-12 (-5 *2 (-849)) (-5 *1 (-635))))
- ((*1 *2) (-12 (-5 *2 (-849)) (-5 *1 (-635))))
- ((*1 *2 *1) (-12 (-5 *2 (-586 *3)) (-5 *1 (-832 *3)) (-4 *3 (-1012)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *2 (-958))
- (-5 *1 (-691)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
- (-12 (-5 *3 (-520)) (-5 *4 (-108)) (-5 *5 (-626 (-154 (-201))))
- (-5 *2 (-958)) (-5 *1 (-691)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-624 *2 *3 *4)) (-4 *3 (-346 *2)) (-4 *4 (-346 *2))
- (|has| *2 (-6 (-4231 "*"))) (-4 *2 (-969))))
+ (-12 (-4 *4 (-729)) (-4 *5 (-784)) (-4 *6 (-282)) (-5 *2 (-392 *3))
+ (-5 *1 (-679 *4 *5 *6 *3)) (-4 *3 (-878 *6 *4 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-346 *2)) (-4 *5 (-346 *2)) (-4 *2 (-157))
- (-5 *1 (-625 *2 *4 *5 *3)) (-4 *3 (-624 *2 *4 *5))))
+ (-12 (-4 *4 (-729)) (-4 *5 (-784)) (-4 *6 (-282))
+ (-4 *7 (-878 *6 *4 *5)) (-5 *2 (-392 (-1080 *7)))
+ (-5 *1 (-679 *4 *5 *6 *7)) (-5 *3 (-1080 *7))))
((*1 *2 *1)
- (-12 (-4 *1 (-1033 *3 *2 *4 *5)) (-4 *4 (-214 *3 *2))
- (-4 *5 (-214 *3 *2)) (|has| *2 (-6 (-4231 "*"))) (-4 *2 (-969)))))
-(((*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1118)))))
-(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5)
- (-12 (-5 *3 (-201)) (-5 *4 (-520))
- (-5 *5 (-3 (|:| |fn| (-361)) (|:| |fp| (-62 G)))) (-5 *2 (-958))
- (-5 *1 (-684)))))
-(((*1 *1 *1 *1) (-5 *1 (-108))) ((*1 *1 *1 *1) (-4 *1 (-119)))
- ((*1 *1 *1 *1) (-5 *1 (-1030))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1066))
- (-4 *4 (-13 (-424) (-783) (-960 (-520)) (-582 (-520))))
- (-5 *2 (-108)) (-5 *1 (-200 *4 *5)) (-4 *5 (-13 (-1104) (-29 *4))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1118)) (-5 *2 (-706)))))
-(((*1 *2 *3) (-12 (-5 *2 (-380 (-520))) (-5 *1 (-517)) (-5 *3 (-520))))
+ (-12 (-4 *3 (-425)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784))
+ (-5 *2 (-392 *1)) (-4 *1 (-878 *3 *4 *5))))
((*1 *2 *3)
- (-12 (-5 *2 (-1079 (-380 (-520)))) (-5 *1 (-870)) (-5 *3 (-520)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1044 *3)) (-4 *3 (-969))
+ (-12 (-4 *4 (-784)) (-4 *5 (-729)) (-4 *6 (-425)) (-5 *2 (-392 *3))
+ (-5 *1 (-905 *4 *5 *6 *3)) (-4 *3 (-878 *6 *5 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-729)) (-4 *5 (-784)) (-4 *6 (-425))
+ (-4 *7 (-878 *6 *4 *5)) (-5 *2 (-392 (-1080 (-381 *7))))
+ (-5 *1 (-1079 *4 *5 *6 *7)) (-5 *3 (-1080 (-381 *7)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-392 *1)) (-4 *1 (-1123))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-513)) (-5 *2 (-392 *3)) (-5 *1 (-1144 *4 *3))
+ (-4 *3 (-13 (-1141 *4) (-513) (-10 -8 (-15 -2258 ($ $ $)))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-967 *4 *5)) (-4 *4 (-13 (-782) (-282) (-135) (-946)))
+ (-14 *5 (-587 (-1084)))
(-5 *2
- (-2 (|:| -4129 (-706)) (|:| |curves| (-706))
- (|:| |polygons| (-706)) (|:| |constructs| (-706)))))))
-(((*1 *2 *3 *4 *4 *3)
- (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *2 (-958))
- (-5 *1 (-688)))))
-(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-958)) (-5 *3 (-1083)) (-5 *1 (-170)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-336) (-135) (-960 (-520)))) (-4 *5 (-1140 *4))
- (-5 *2 (-2 (|:| |ans| (-380 *5)) (|:| |nosol| (-108))))
- (-5 *1 (-939 *4 *5)) (-5 *3 (-380 *5)))))
+ (-587 (-1055 *4 (-493 (-794 *6)) (-794 *6) (-716 *4 (-794 *6)))))
+ (-5 *1 (-1189 *4 *5 *6)) (-14 *6 (-587 (-1084))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-586 *2)) (-4 *2 (-1140 *4)) (-5 *1 (-499 *4 *2 *5 *6))
- (-4 *4 (-281)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-706))))))
-(((*1 *2 *1) (-12 (-5 *1 (-949 *2)) (-4 *2 (-1118)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1072 *2 *3)) (-14 *2 (-849)) (-4 *3 (-969)))))
-(((*1 *1 *1 *1) (-4 *1 (-893))))
-(((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-969)) (-4 *5 (-728)) (-4 *3 (-783))
- (-5 *2 (-2 (|:| -2972 *1) (|:| |gap| (-706)) (|:| -3753 *1)))
- (-4 *1 (-983 *4 *5 *3))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783))
- (-5 *2 (-2 (|:| -2972 *1) (|:| |gap| (-706)) (|:| -3753 *1)))
- (-4 *1 (-983 *3 *4 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-201)) (-5 *4 (-520)) (-5 *2 (-958)) (-5 *1 (-694)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-717 *2)) (-4 *2 (-969)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-783)) (-5 *2 (-1091 (-586 *4))) (-5 *1 (-1090 *4))
- (-5 *3 (-586 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 (-586 *2))) (-5 *4 (-586 *5))
- (-4 *5 (-37 (-380 (-520)))) (-4 *2 (-1155 *5))
- (-5 *1 (-1157 *5 *2)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1044 *3)) (-4 *3 (-969)) (-5 *2 (-108)))))
+ (-12 (-5 *3 (-707)) (-5 *2 (-1 (-1065 (-881 *4)) (-1065 (-881 *4))))
+ (-5 *1 (-1173 *4)) (-4 *4 (-337)))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-1065 *4)) (-5 *3 (-521)) (-4 *4 (-970))
+ (-5 *1 (-1069 *4))))
+ ((*1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-521)) (-5 *1 (-1157 *3 *4 *5)) (-4 *3 (-970))
+ (-14 *4 (-1084)) (-14 *5 *3))))
+(((*1 *2 *1)
+ (-12 (-14 *3 (-587 (-1084))) (-4 *4 (-157))
+ (-14 *6
+ (-1 (-108) (-2 (|:| -2716 *5) (|:| -2997 *2))
+ (-2 (|:| -2716 *5) (|:| -2997 *2))))
+ (-4 *2 (-215 (-3475 *3) (-707))) (-5 *1 (-434 *3 *4 *5 *2 *6 *7))
+ (-4 *5 (-784)) (-4 *7 (-878 *4 *2 (-794 *3))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2))
- (-4 *2 (-13 (-403 *3) (-926))))))
-(((*1 *2) (-12 (-5 *2 (-802)) (-5 *1 (-1167))))
- ((*1 *2 *2) (-12 (-5 *2 (-802)) (-5 *1 (-1167)))))
-(((*1 *1)
- (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-520)) (-14 *3 (-706))
- (-4 *4 (-157)))))
-(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7)
- (-12 (-5 *4 (-520)) (-5 *5 (-626 (-201)))
- (-5 *6 (-3 (|:| |fn| (-361)) (|:| |fp| (-84 FCN))))
- (-5 *7 (-3 (|:| |fn| (-361)) (|:| |fp| (-86 OUTPUT))))
- (-5 *3 (-201)) (-5 *2 (-958)) (-5 *1 (-685)))))
-(((*1 *2 *3 *3 *3 *4 *5)
- (-12 (-5 *5 (-586 (-586 (-201)))) (-5 *4 (-201))
- (-5 *2 (-586 (-871 *4))) (-5 *1 (-1115)) (-5 *3 (-871 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1164 (-1164 (-520)))) (-5 *3 (-849)) (-5 *1 (-438)))))
-(((*1 *1 *2) (-12 (-5 *2 (-586 *3)) (-4 *3 (-783)) (-5 *1 (-221 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-520)) (-5 *1 (-517)))))
-(((*1 *1) (-5 *1 (-410))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-281) (-135))) (-4 *5 (-728)) (-4 *6 (-783))
- (-4 *7 (-877 *4 *5 *6)) (-5 *2 (-586 (-586 *7)))
- (-5 *1 (-420 *4 *5 *6 *7)) (-5 *3 (-586 *7))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-108)) (-4 *5 (-13 (-281) (-135))) (-4 *6 (-728))
- (-4 *7 (-783)) (-4 *8 (-877 *5 *6 *7)) (-5 *2 (-586 (-586 *8)))
- (-5 *1 (-420 *5 *6 *7 *8)) (-5 *3 (-586 *8))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-281) (-135))) (-4 *5 (-728)) (-4 *6 (-783))
- (-4 *7 (-877 *4 *5 *6)) (-5 *2 (-586 (-586 *7)))
- (-5 *1 (-420 *4 *5 *6 *7)) (-5 *3 (-586 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-108)) (-4 *5 (-13 (-281) (-135))) (-4 *6 (-728))
- (-4 *7 (-783)) (-4 *8 (-877 *5 *6 *7)) (-5 *2 (-586 (-586 *8)))
- (-5 *1 (-420 *5 *6 *7 *8)) (-5 *3 (-586 *8)))))
+ (-12 (-5 *2 (-587 *6)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-513))
+ (-4 *4 (-729)) (-4 *5 (-784)) (-5 *1 (-903 *3 *4 *5 *6)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-587 (-707))) (-5 *1 (-1073 *3 *4)) (-14 *3 (-850))
+ (-4 *4 (-970)))))
+(((*1 *2 *1) (-12 (-4 *1 (-378)) (-5 *2 (-521))))
+ ((*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-636)))))
+(((*1 *2) (-12 (-4 *1 (-378)) (-5 *2 (-850)))) ((*1 *1) (-4 *1 (-506)))
+ ((*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-636))))
+ ((*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-636))))
+ ((*1 *2 *1) (-12 (-5 *2 (-587 *3)) (-5 *1 (-833 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-620 *2)) (-4 *2 (-1013))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-587 *5) (-587 *5))) (-5 *4 (-521))
+ (-5 *2 (-587 *5)) (-5 *1 (-620 *5)) (-4 *5 (-1013)))))
+(((*1 *1 *2) (-12 (-5 *2 (-587 (-792))) (-5 *1 (-792))))
+ ((*1 *1 *1) (-5 *1 (-792))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-707)) (-4 *4 (-337)) (-4 *5 (-1141 *4)) (-5 *2 (-1170))
+ (-5 *1 (-39 *4 *5 *6 *7)) (-4 *6 (-1141 (-381 *5))) (-14 *7 *6))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-154 (-202))) (-5 *5 (-521)) (-5 *6 (-1067))
+ (-5 *3 (-202)) (-5 *2 (-959)) (-5 *1 (-695)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-586 (-1066))) (-5 *1 (-765)) (-5 *3 (-1066)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1118)) (-5 *1 (-1042 *4 *2))
- (-4 *2 (-13 (-553 (-520) *4) (-10 -7 (-6 -4229) (-6 -4230))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-783)) (-4 *3 (-1118)) (-5 *1 (-1042 *3 *2))
- (-4 *2 (-13 (-553 (-520) *3) (-10 -7 (-6 -4229) (-6 -4230)))))))
-(((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-2 (|:| -4016 *6) (|:| |coeff| *6)) "failed") *6))
- (-4 *6 (-336)) (-4 *7 (-1140 *6))
+ (-12 (-5 *3 (-1008 (-777 (-202)))) (-5 *2 (-202)) (-5 *1 (-171))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1008 (-777 (-202)))) (-5 *2 (-202)) (-5 *1 (-275))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1008 (-777 (-202)))) (-5 *2 (-202)) (-5 *1 (-280)))))
+(((*1 *2 *1) (-12 (-4 *1 (-614 *3)) (-4 *3 (-1119)) (-5 *2 (-108)))))
+(((*1 *1 *1 *1) (-5 *1 (-108))) ((*1 *1 *1 *1) (-4 *1 (-119)))
+ ((*1 *1 *1 *1) (-5 *1 (-1031))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-707)) (-5 *1 (-615 *3)) (-4 *3 (-970)) (-4 *3 (-1013)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-14 *4 (-587 (-1084))) (-4 *2 (-157))
+ (-4 *3 (-215 (-3475 *4) (-707)))
+ (-14 *6
+ (-1 (-108) (-2 (|:| -2716 *5) (|:| -2997 *3))
+ (-2 (|:| -2716 *5) (|:| -2997 *3))))
+ (-5 *1 (-434 *4 *2 *5 *3 *6 *7)) (-4 *5 (-784))
+ (-4 *7 (-878 *2 *3 (-794 *4))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970))
(-5 *2
- (-3 (-2 (|:| |answer| (-380 *7)) (|:| |a0| *6))
- (-2 (|:| -4016 (-380 *7)) (|:| |coeff| (-380 *7))) "failed"))
- (-5 *1 (-530 *6 *7)) (-5 *3 (-380 *7)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-586 (-586 (-871 (-201))))) (-5 *3 (-586 (-802)))
- (-5 *1 (-440)))))
+ (-2 (|:| -1461 (-707)) (|:| |curves| (-707))
+ (|:| |polygons| (-707)) (|:| |constructs| (-707)))))))
+(((*1 *2 *3 *3 *2 *4)
+ (-12 (-5 *3 (-627 *2)) (-5 *4 (-521))
+ (-4 *2 (-13 (-282) (-10 -8 (-15 -3358 ((-392 $) $)))))
+ (-4 *5 (-1141 *2)) (-5 *1 (-468 *2 *5 *6)) (-4 *6 (-383 *2 *5)))))
(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-1122)) (-4 *5 (-1140 *4))
- (-5 *2 (-2 (|:| |radicand| (-380 *5)) (|:| |deg| (-706))))
- (-5 *1 (-136 *4 *5 *3)) (-4 *3 (-1140 (-380 *5))))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-586 (-520))) (-5 *3 (-108)) (-5 *1 (-1022)))))
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |xinit| (-202)) (|:| |xend| (-202))
+ (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202)))
+ (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202)))
+ (|:| |abserr| (-202)) (|:| |relerr| (-202))))
+ (-5 *2
+ (-2 (|:| |stiffness| (-353)) (|:| |stability| (-353))
+ (|:| |expense| (-353)) (|:| |accuracy| (-353))
+ (|:| |intermediateResults| (-353))))
+ (-5 *1 (-740)))))
+(((*1 *1) (-5 *1 (-132)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-587 (-239))) (-5 *2 (-1044 (-202))) (-5 *1 (-237))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1044 (-202))) (-5 *1 (-239)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-337)) (-4 *3 (-970))
+ (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1383 *1)))
+ (-4 *1 (-786 *3)))))
(((*1 *2 *2 *2)
- (-12 (-4 *3 (-512)) (-5 *1 (-895 *3 *2)) (-4 *2 (-1140 *3))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-983 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-728))
- (-4 *4 (-783)) (-4 *2 (-512))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1140 *2)) (-4 *2 (-969)) (-4 *2 (-512)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1164 (-289 (-201)))) (-5 *2 (-1164 (-289 (-352))))
- (-5 *1 (-279)))))
+ (-12 (-4 *2 (-13 (-337) (-10 -8 (-15 ** ($ $ (-381 (-521)))))))
+ (-5 *1 (-1039 *3 *2)) (-4 *3 (-1141 *2)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-337)) (-5 *1 (-703 *2 *3)) (-4 *2 (-646 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-970)) (-4 *2 (-337)))))
+(((*1 *1 *1 *1) (-4 *1 (-894))))
+(((*1 *2 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-157)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1012)) (-4 *3 (-828 *5)) (-5 *2 (-626 *3))
- (-5 *1 (-628 *5 *3 *6 *4)) (-4 *6 (-346 *3))
- (-4 *4 (-13 (-346 *5) (-10 -7 (-6 -4229)))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2))
- (-4 *2 (-13 (-403 *3) (-926))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-631 *3)) (-4 *3 (-1012))
- (-5 *2 (-586 (-2 (|:| -3043 *3) (|:| -4159 (-706))))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1181 *3)) (-4 *3 (-336)) (-5 *2 (-108)))))
-(((*1 *2 *3 *4 *4 *4 *5 *6 *7)
- (|partial| -12 (-5 *5 (-1083))
- (-5 *6
- (-1
- (-3
- (-2 (|:| |mainpart| *4)
- (|:| |limitedlogs|
- (-586 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
- "failed")
- *4 (-586 *4)))
- (-5 *7
- (-1 (-3 (-2 (|:| -4016 *4) (|:| |coeff| *4)) "failed") *4 *4))
- (-4 *4 (-13 (-1104) (-27) (-403 *8)))
- (-4 *8 (-13 (-424) (-783) (-135) (-960 *3) (-582 *3)))
- (-5 *3 (-520)) (-5 *2 (-586 *4)) (-5 *1 (-938 *8 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-512) (-135))) (-5 *1 (-497 *3 *2))
- (-4 *2 (-1155 *3))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-336) (-341) (-561 (-520)))) (-4 *4 (-1140 *3))
- (-4 *5 (-660 *3 *4)) (-5 *1 (-501 *3 *4 *5 *2)) (-4 *2 (-1155 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-336) (-341) (-561 (-520)))) (-5 *1 (-502 *3 *2))
- (-4 *2 (-1155 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-13 (-512) (-135)))
- (-5 *1 (-1060 *3)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-1105 *3)) (-4 *3 (-1012)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-586 (-871 *4))) (-4 *1 (-1044 *4)) (-4 *4 (-969))
- (-5 *2 (-706)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-268 *2)) (-4 *2 (-276)) (-4 *2 (-1118))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-586 (-559 *1))) (-5 *3 (-586 *1)) (-4 *1 (-276))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-586 (-268 *1))) (-4 *1 (-276))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-268 *1)) (-4 *1 (-276)))))
+ (-12 (-5 *2 (-587 (-154 *4))) (-5 *1 (-142 *3 *4))
+ (-4 *3 (-1141 (-154 (-521)))) (-4 *4 (-13 (-337) (-782)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-337) (-782))) (-5 *2 (-587 (-154 *4)))
+ (-5 *1 (-164 *4 *3)) (-4 *3 (-1141 (-154 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *4 (-13 (-337) (-782))) (-5 *2 (-587 (-154 *4)))
+ (-5 *1 (-164 *4 *3)) (-4 *3 (-1141 (-154 *4))))))
+(((*1 *1) (-5 *1 (-411))))
(((*1 *2 *1)
- (-12 (-5 *2 (-380 (-880 *3))) (-5 *1 (-425 *3 *4 *5 *6))
- (-4 *3 (-512)) (-4 *3 (-157)) (-14 *4 (-849))
- (-14 *5 (-586 (-1083))) (-14 *6 (-1164 (-626 *3))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-758)))))
-(((*1 *1 *2) (-12 (-5 *2 (-586 (-791))) (-5 *1 (-791)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-299 *3 *4)) (-4 *3 (-969))
- (-4 *4 (-727)))))
-(((*1 *2)
- (-12 (-5 *2 (-108)) (-5 *1 (-1096 *3 *4)) (-4 *3 (-1012))
- (-4 *4 (-1012)))))
+ (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-4 *3 (-513))
+ (-5 *2 (-1080 *3)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1084)) (-5 *3 (-587 (-731))) (-5 *1 (-104)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1012))
- (-4 *4 (-13 (-969) (-814 *3) (-783) (-561 (-820 *3))))
- (-5 *2 (-586 (-991 *3 *4 *5))) (-5 *1 (-992 *3 *4 *5))
- (-4 *5 (-13 (-403 *4) (-814 *3) (-561 (-820 *3)))))))
-(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3)
- (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *5 (-201))
- (-5 *2 (-958)) (-5 *1 (-687)))))
-(((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| |lm| (-359 *3)) (|:| |mm| (-359 *3)) (|:| |rm| (-359 *3))))
- (-5 *1 (-359 *3)) (-4 *3 (-1012))))
- ((*1 *2 *1 *1)
- (-12
+ (-12 (-4 *1 (-1034 *3 *4 *2 *5)) (-4 *4 (-970)) (-4 *5 (-215 *3 *4))
+ (-4 *2 (-215 *3 *4)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-587 (-2 (|:| |totdeg| (-707)) (|:| -3736 *3))))
+ (-5 *4 (-707)) (-4 *3 (-878 *5 *6 *7)) (-4 *5 (-425)) (-4 *6 (-729))
+ (-4 *7 (-784)) (-5 *1 (-422 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-353) (-353))) (-5 *4 (-353))
(-5 *2
- (-2 (|:| |lm| (-755 *3)) (|:| |mm| (-755 *3)) (|:| |rm| (-755 *3))))
- (-5 *1 (-755 *3)) (-4 *3 (-783)))))
+ (-2 (|:| -3430 *4) (|:| -2968 *4) (|:| |totalpts| (-521))
+ (|:| |success| (-108))))
+ (-5 *1 (-725)) (-5 *5 (-521)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-587 (-587 (-587 *4)))) (-5 *3 (-587 *4)) (-4 *4 (-784))
+ (-5 *1 (-1091 *4)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784))
+ (-4 *3 (-984 *5 *6 *7))
+ (-5 *2 (-587 (-2 (|:| |val| (-587 *3)) (|:| -1884 *4))))
+ (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-927))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-969)) (-5 *2 (-520)) (-5 *1 (-415 *4 *3 *5))
- (-4 *3 (-1140 *4))
- (-4 *5 (-13 (-377) (-960 *4) (-336) (-1104) (-258))))))
-(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3)
- (-12 (-5 *5 (-626 (-201))) (-5 *6 (-626 (-520))) (-5 *3 (-520))
- (-5 *4 (-201)) (-5 *2 (-958)) (-5 *1 (-688)))))
+ (-12 (-5 *3 (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521)))))
+ (-5 *2 (-381 (-521))) (-5 *1 (-944 *4)) (-4 *4 (-1141 (-521))))))
(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-849)) (-5 *2 (-1169)) (-5 *1 (-191 *4))
- (-4 *4
- (-13 (-783)
- (-10 -8 (-15 -2543 ((-1066) $ (-1083))) (-15 -1677 (*2 $))
- (-15 -3288 (*2 $)))))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1169)) (-5 *1 (-191 *3))
- (-4 *3
- (-13 (-783)
- (-10 -8 (-15 -2543 ((-1066) $ (-1083))) (-15 -1677 (*2 $))
- (-15 -3288 (*2 $)))))))
- ((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-470)))))
+ (-12 (-5 *3 (-707)) (-5 *2 (-381 (-521))) (-5 *1 (-202))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-707)) (-5 *2 (-381 (-521))) (-5 *1 (-202))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-707)) (-5 *2 (-381 (-521))) (-5 *1 (-353))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-707)) (-5 *2 (-381 (-521))) (-5 *1 (-353)))))
+(((*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-784)) (-5 *1 (-222 *3)))))
(((*1 *2 *3)
+ (-12 (-5 *3 (-881 *5)) (-4 *5 (-970)) (-5 *2 (-224 *4 *5))
+ (-5 *1 (-873 *4 *5)) (-14 *4 (-587 (-1084))))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-902 *3 *4 *2 *5)) (-4 *3 (-970)) (-4 *4 (-729))
+ (-4 *2 (-784)) (-4 *5 (-984 *3 *4 *2)))))
+(((*1 *1 *2)
(-12
+ (-5 *2
+ (-587
+ (-2
+ (|:| -2529
+ (-2 (|:| |xinit| (-202)) (|:| |xend| (-202))
+ (|:| |fn| (-1165 (-290 (-202))))
+ (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202)))
+ (|:| |g| (-290 (-202))) (|:| |abserr| (-202))
+ (|:| |relerr| (-202))))
+ (|:| -3045
+ (-2 (|:| |stiffness| (-353)) (|:| |stability| (-353))
+ (|:| |expense| (-353)) (|:| |accuracy| (-353))
+ (|:| |intermediateResults| (-353)))))))
+ (-5 *1 (-740)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))))
+(((*1 *2 *3)
+ (-12 (-14 *4 (-587 (-1084))) (-14 *5 (-707))
+ (-5 *2
+ (-587
+ (-473 (-381 (-521)) (-217 *5 (-707)) (-794 *4)
+ (-224 *4 (-381 (-521))))))
+ (-5 *1 (-474 *4 *5))
(-5 *3
- (-586 (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520))))))
- (-5 *2 (-586 (-201))) (-5 *1 (-279)))))
+ (-473 (-381 (-521)) (-217 *5 (-707)) (-794 *4)
+ (-224 *4 (-381 (-521))))))))
+(((*1 *2 *2)
+ (-12 (-4 *2 (-13 (-337) (-782))) (-5 *1 (-164 *2 *3))
+ (-4 *3 (-1141 (-154 *2))))))
+(((*1 *1) (-5 *1 (-411))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-821 *4)) (-4 *4 (-1013)) (-4 *2 (-1013))
+ (-5 *1 (-818 *4 *2)))))
+(((*1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-218)))))
+(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3)
+ (-12 (-5 *3 (-521)) (-5 *5 (-627 (-202))) (-5 *4 (-202))
+ (-5 *2 (-959)) (-5 *1 (-692)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-337)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3))
+ (-5 *1 (-488 *3 *4 *5 *2)) (-4 *2 (-625 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-734 *2)) (-4 *2 (-157))))
+ ((*1 *2 *1) (-12 (-4 *1 (-922 *2)) (-4 *2 (-157)))))
+(((*1 *1) (-5 *1 (-129))) ((*1 *1 *1) (-5 *1 (-132)))
+ ((*1 *1 *1) (-4 *1 (-1053))))
+(((*1 *2 *2) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-371)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-286)) (-5 *1 (-766)))))
+(((*1 *1 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157)) (-4 *2 (-979))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-313 *2 *3 *4)) (-14 *2 (-587 (-1084)))
+ (-14 *3 (-587 (-1084))) (-4 *4 (-361))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-405 *3 *2))
+ (-4 *2 (-404 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-734 *2)) (-4 *2 (-157)) (-4 *2 (-979))))
+ ((*1 *1 *1) (-4 *1 (-782)))
+ ((*1 *2 *1) (-12 (-4 *1 (-922 *2)) (-4 *2 (-157)) (-4 *2 (-979))))
+ ((*1 *1 *1) (-4 *1 (-979))) ((*1 *1 *1) (-4 *1 (-1048))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-513)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3))
+ (-5 *1 (-1110 *3 *4 *5 *2)) (-4 *2 (-625 *3 *4 *5)))))
(((*1 *1 *2 *3)
- (-12 (-5 *1 (-400 *3 *2)) (-4 *3 (-13 (-157) (-37 (-380 (-520)))))
- (-4 *2 (-13 (-783) (-21))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-758)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1079 *3)) (-4 *3 (-341)) (-4 *1 (-302 *3))
- (-4 *3 (-336)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1085 (-380 (-520)))) (-5 *1 (-168)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-289 (-201))) (-5 *2 (-289 (-380 (-520))))
- (-5 *1 (-279)))))
-(((*1 *2) (-12 (-5 *2 (-1055 (-1066))) (-5 *1 (-364)))))
-(((*1 *2 *1) (-12 (-4 *3 (-969)) (-5 *2 (-586 *1)) (-4 *1 (-1044 *3)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5
- (-1 (-2 (|:| |ans| *6) (|:| -1924 *6) (|:| |sol?| (-108))) (-520)
- *6))
- (-4 *6 (-336)) (-4 *7 (-1140 *6))
- (-5 *2 (-2 (|:| |answer| (-537 (-380 *7))) (|:| |a0| *6)))
- (-5 *1 (-530 *6 *7)) (-5 *3 (-380 *7)))))
-(((*1 *2 *3 *3 *3)
- (|partial| -12 (-4 *4 (-13 (-336) (-135) (-960 (-520))))
- (-4 *5 (-1140 *4)) (-5 *2 (-586 (-380 *5))) (-5 *1 (-940 *4 *5))
- (-5 *3 (-380 *5)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-908 *2)) (-4 *2 (-1104)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-110)) (-5 *4 (-586 *2)) (-5 *1 (-109 *2))
- (-4 *2 (-1012))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 (-586 *4))) (-4 *4 (-1012))
- (-5 *1 (-109 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1012))
- (-5 *1 (-109 *4))))
+ (-12 (-5 *2 (-1165 (-1084))) (-5 *3 (-1165 (-426 *4 *5 *6 *7)))
+ (-5 *1 (-426 *4 *5 *6 *7)) (-4 *4 (-157)) (-14 *5 (-850))
+ (-14 *6 (-587 (-1084))) (-14 *7 (-1165 (-627 *4)))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1084)) (-5 *3 (-1165 (-426 *4 *5 *6 *7)))
+ (-5 *1 (-426 *4 *5 *6 *7)) (-4 *4 (-157)) (-14 *5 (-850))
+ (-14 *6 (-587 *2)) (-14 *7 (-1165 (-627 *4)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1165 (-426 *3 *4 *5 *6))) (-5 *1 (-426 *3 *4 *5 *6))
+ (-4 *3 (-157)) (-14 *4 (-850)) (-14 *5 (-587 (-1084)))
+ (-14 *6 (-1165 (-627 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1165 (-1084))) (-5 *1 (-426 *3 *4 *5 *6))
+ (-4 *3 (-157)) (-14 *4 (-850)) (-14 *5 (-587 (-1084)))
+ (-14 *6 (-1165 (-627 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1084)) (-5 *1 (-426 *3 *4 *5 *6)) (-4 *3 (-157))
+ (-14 *4 (-850)) (-14 *5 (-587 *2)) (-14 *6 (-1165 (-627 *3)))))
+ ((*1 *1)
+ (-12 (-5 *1 (-426 *2 *3 *4 *5)) (-4 *2 (-157)) (-14 *3 (-850))
+ (-14 *4 (-587 (-1084))) (-14 *5 (-1165 (-627 *2))))))
+(((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-627 (-202))) (-5 *4 (-521)) (-5 *2 (-959))
+ (-5 *1 (-692)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-269 *2)) (-4 *2 (-277)) (-4 *2 (-1119))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-587 (-560 *1))) (-5 *3 (-587 *1)) (-4 *1 (-277))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-587 (-269 *1))) (-4 *1 (-277))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-269 *1)) (-4 *1 (-277)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-518))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-110)) (-5 *2 (-1 *4 (-586 *4)))
- (-5 *1 (-109 *4)) (-4 *4 (-1012))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-588 *3)) (-4 *3 (-969))
- (-5 *1 (-650 *3 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-969)) (-5 *1 (-770 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1064 (-520))) (-5 *1 (-1068 *4)) (-4 *4 (-969))
- (-5 *3 (-520)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-586 (-452 *5 *6))) (-5 *4 (-793 *5))
- (-14 *5 (-586 (-1083))) (-5 *2 (-452 *5 *6)) (-5 *1 (-574 *5 *6))
- (-4 *6 (-424))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-586 (-452 *5 *6))) (-5 *4 (-793 *5))
- (-14 *5 (-586 (-1083))) (-5 *2 (-452 *5 *6)) (-5 *1 (-574 *5 *6))
- (-4 *6 (-424)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-849)) (-4 *1 (-680 *3)) (-4 *3 (-157)))))
+ (-12 (-5 *2 (-1080 (-381 (-521)))) (-5 *1 (-871)) (-5 *3 (-521)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-337) (-10 -8 (-15 ** ($ $ (-381 (-521)))))))
+ (-5 *1 (-1039 *3 *2)) (-4 *3 (-1141 *2)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-586 *1)) (-5 *3 (-586 *7)) (-4 *1 (-988 *4 *5 *6 *7))
- (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783))
- (-4 *7 (-983 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-586 *7)) (-4 *7 (-983 *4 *5 *6)) (-4 *4 (-424))
- (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-586 *1))
- (-4 *1 (-988 *4 *5 *6 *7))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-586 *1)) (-4 *1 (-988 *4 *5 *6 *3)) (-4 *4 (-424))
- (-4 *5 (-728)) (-4 *6 (-783)) (-4 *3 (-983 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783))
- (-4 *3 (-983 *4 *5 *6)) (-5 *2 (-586 *1))
- (-4 *1 (-988 *4 *5 *6 *3)))))
+ (-12 (-5 *2 (-108)) (-5 *3 (-587 (-239))) (-5 *1 (-237)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-970)) (-5 *2 (-1165 *3)) (-5 *1 (-649 *3 *4))
+ (-4 *4 (-1141 *3)))))
+(((*1 *2 *3 *3 *3 *3)
+ (-12 (-5 *3 (-521)) (-5 *2 (-108)) (-5 *1 (-452)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1013))
+ (-4 *4 (-13 (-970) (-815 *3) (-784) (-562 (-821 *3))))
+ (-5 *2 (-587 (-992 *3 *4 *5))) (-5 *1 (-993 *3 *4 *5))
+ (-4 *5 (-13 (-404 *4) (-815 *3) (-562 (-821 *3)))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-587 *3)) (-4 *3 (-282)) (-5 *1 (-163 *3)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-2 (|:| -4016 *6) (|:| |coeff| *6)) "failed") *6))
- (-4 *6 (-336)) (-4 *7 (-1140 *6))
- (-5 *2 (-2 (|:| |answer| (-537 (-380 *7))) (|:| |a0| *6)))
- (-5 *1 (-530 *6 *7)) (-5 *3 (-380 *7)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1066)) (-5 *1 (-201)))))
+ (-12 (-5 *3 (-587 (-381 (-881 (-521))))) (-5 *4 (-587 (-1084)))
+ (-5 *2 (-587 (-587 *5))) (-5 *1 (-354 *5))
+ (-4 *5 (-13 (-782) (-337)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-381 (-881 (-521)))) (-5 *2 (-587 *4)) (-5 *1 (-354 *4))
+ (-4 *4 (-13 (-782) (-337))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-587 (-587 (-872 (-202))))) (-5 *2 (-587 (-202)))
+ (-5 *1 (-441)))))
+(((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-696)))))
(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-627 *3)) (-4 *3 (-970)) (-5 *1 (-952 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-587 (-627 *3))) (-4 *3 (-970)) (-5 *1 (-952 *3))))
+ ((*1 *2 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-970)) (-5 *1 (-952 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-587 (-627 *3))) (-4 *3 (-970)) (-5 *1 (-952 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-759)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-594 *4)) (-4 *4 (-316 *5 *6 *7))
+ (-4 *5 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521)))))
+ (-4 *6 (-1141 *5)) (-4 *7 (-1141 (-381 *6)))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2470 (-587 *4))))
+ (-5 *1 (-743 *5 *6 *7 *4)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-108))
+ (-4 *6 (-13 (-425) (-784) (-961 (-521)) (-583 (-521))))
+ (-4 *3 (-13 (-27) (-1105) (-404 *6) (-10 -8 (-15 -2189 ($ *7)))))
+ (-4 *7 (-782))
+ (-4 *8
+ (-13 (-1143 *3 *7) (-337) (-1105)
+ (-10 -8 (-15 -2156 ($ $)) (-15 -2184 ($ $)))))
+ (-5 *2
+ (-3 (|:| |%series| *8)
+ (|:| |%problem| (-2 (|:| |func| (-1067)) (|:| |prob| (-1067))))))
+ (-5 *1 (-396 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1067)) (-4 *9 (-909 *8))
+ (-14 *10 (-1084)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-300 *3 *4)) (-4 *3 (-970))
+ (-4 *4 (-728)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-707)) (-4 *5 (-513))
+ (-5 *2
+ (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-896 *5 *3)) (-4 *3 (-1141 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-108)))))
+(((*1 *2 *1) (-12 (-5 *1 (-843 *2)) (-4 *2 (-282)))))
+(((*1 *1 *1) (-4 *1 (-1053))))
+(((*1 *1 *2 *3 *3 *3 *4)
+ (-12 (-4 *4 (-337)) (-4 *3 (-1141 *4)) (-4 *5 (-1141 (-381 *3)))
+ (-4 *1 (-309 *4 *3 *5 *2)) (-4 *2 (-316 *4 *3 *5))))
+ ((*1 *1 *2 *2 *3)
+ (-12 (-5 *3 (-521)) (-4 *2 (-337)) (-4 *4 (-1141 *2))
+ (-4 *5 (-1141 (-381 *4))) (-4 *1 (-309 *2 *4 *5 *6))
+ (-4 *6 (-316 *2 *4 *5))))
+ ((*1 *1 *2 *2)
+ (-12 (-4 *2 (-337)) (-4 *3 (-1141 *2)) (-4 *4 (-1141 (-381 *3)))
+ (-4 *1 (-309 *2 *3 *4 *5)) (-4 *5 (-316 *2 *3 *4))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-337)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4)))
+ (-4 *1 (-309 *3 *4 *5 *2)) (-4 *2 (-316 *3 *4 *5))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-387 *4 (-381 *4) *5 *6)) (-4 *4 (-1141 *3))
+ (-4 *5 (-1141 (-381 *4))) (-4 *6 (-316 *3 *4 *5)) (-4 *3 (-337))
+ (-4 *1 (-309 *3 *4 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-627 *1)) (-5 *4 (-1165 *1)) (-4 *1 (-583 *5))
+ (-4 *5 (-970))
+ (-5 *2 (-2 (|:| -1201 (-627 *5)) (|:| |vec| (-1165 *5))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-627 *1)) (-4 *1 (-583 *4)) (-4 *4 (-970))
+ (-5 *2 (-627 *4)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-959)) (-5 *3 (-1084)) (-5 *1 (-243)))))
+(((*1 *2 *1) (-12 (-5 *2 (-759)) (-5 *1 (-758)))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-154 (-202)) (-154 (-202)))) (-5 *4 (-1008 (-202)))
+ (-5 *5 (-108)) (-5 *2 (-1167)) (-5 *1 (-233)))))
+(((*1 *2 *1) (-12 (-4 *1 (-300 *3 *2)) (-4 *3 (-970)) (-4 *2 (-728))))
+ ((*1 *2 *1) (-12 (-4 *1 (-646 *3)) (-4 *3 (-970)) (-5 *2 (-707))))
+ ((*1 *2 *1) (-12 (-4 *1 (-786 *3)) (-4 *3 (-970)) (-5 *2 (-707))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-587 *6)) (-4 *1 (-878 *4 *5 *6)) (-4 *4 (-970))
+ (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-587 (-707)))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-878 *4 *5 *3)) (-4 *4 (-970)) (-4 *5 (-729))
+ (-4 *3 (-784)) (-5 *2 (-707)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-132)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-587 (-587 (-587 *5)))) (-5 *3 (-1 (-108) *5 *5))
+ (-5 *4 (-587 *5)) (-4 *5 (-784)) (-5 *1 (-1091 *5)))))
+(((*1 *2 *1 *1)
(-12
(-5 *2
- (-586
- (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-706)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *4 (-728)) (-4 *6 (-877 *3 *4 *5)) (-4 *3 (-424)) (-4 *5 (-783))
- (-5 *1 (-421 *3 *4 *5 *6)))))
-(((*1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-439))))
- ((*1 *2 *2) (-12 (-5 *2 (-520)) (-5 *1 (-439))))
- ((*1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-855)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1147 *3 *2)) (-4 *3 (-969)) (-4 *2 (-1124 *3)))))
+ (-2 (|:| -2258 (-718 *3)) (|:| |coef1| (-718 *3))
+ (|:| |coef2| (-718 *3))))
+ (-5 *1 (-718 *3)) (-4 *3 (-513)) (-4 *3 (-970))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-513)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784))
+ (-5 *2 (-2 (|:| -2258 *1) (|:| |coef1| *1) (|:| |coef2| *1)))
+ (-4 *1 (-984 *3 *4 *5)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-586 *2)) (-4 *2 (-877 *4 *5 *6)) (-4 *4 (-424))
- (-4 *5 (-728)) (-4 *6 (-783)) (-5 *1 (-421 *4 *5 *6 *2)))))
+ (-12 (-5 *3 (-587 *2)) (-4 *2 (-878 *4 *5 *6)) (-4 *4 (-282))
+ (-4 *5 (-729)) (-4 *6 (-784)) (-5 *1 (-420 *4 *5 *6 *2)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-37 (-381 (-521))))
+ (-5 *2 (-2 (|:| -2746 (-1065 *4)) (|:| -2758 (-1065 *4))))
+ (-5 *1 (-1071 *4)) (-5 *3 (-1065 *4)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-25)) (-4 *3 (-784))
+ (-5 *2 (-2 (|:| -2973 (-521)) (|:| |var| (-560 *1))))
+ (-4 *1 (-404 *3)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-587 *1)) (-4 *1 (-984 *4 *5 *6)) (-4 *4 (-970))
+ (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-108))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-984 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-729))
+ (-4 *5 (-784)) (-5 *2 (-108))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1113 *3 *4 *5 *6)) (-4 *3 (-513)) (-4 *4 (-729))
+ (-4 *5 (-784)) (-4 *6 (-984 *3 *4 *5)) (-5 *2 (-108))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1113 *4 *5 *6 *3)) (-4 *4 (-513)) (-4 *5 (-729))
+ (-4 *6 (-784)) (-4 *3 (-984 *4 *5 *6)) (-5 *2 (-108)))))
(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-1118)) (-5 *1 (-165 *3 *2))
- (-4 *2 (-613 *3)))))
-(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-520)) (-5 *1 (-967)))))
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-5 *1 (-1069 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1157 *2 *3 *4)) (-4 *2 (-970)) (-14 *3 (-1084))
+ (-14 *4 *2))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1085 (-380 (-520)))) (-5 *1 (-168)) (-5 *3 (-520)))))
-(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10)
- (-12 (-5 *4 (-520)) (-5 *5 (-1066)) (-5 *6 (-626 (-201)))
- (-5 *7 (-3 (|:| |fn| (-361)) (|:| |fp| (-87 G))))
- (-5 *8 (-3 (|:| |fn| (-361)) (|:| |fp| (-84 FCN))))
- (-5 *9 (-3 (|:| |fn| (-361)) (|:| |fp| (-69 PEDERV))))
- (-5 *10 (-3 (|:| |fn| (-361)) (|:| |fp| (-86 OUTPUT))))
- (-5 *3 (-201)) (-5 *2 (-958)) (-5 *1 (-685)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-871 *4)) (-4 *4 (-969)) (-5 *1 (-1072 *3 *4))
- (-14 *3 (-849)))))
+ (-12 (-4 *4 (-323)) (-4 *5 (-303 *4)) (-4 *6 (-1141 *5))
+ (-5 *2 (-587 *3)) (-5 *1 (-713 *4 *5 *6 *3 *7)) (-4 *3 (-1141 *6))
+ (-14 *7 (-850)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-989 *3 *4 *5 *6)) (-4 *3 (-425)) (-4 *4 (-729))
+ (-4 *5 (-784)) (-4 *6 (-984 *3 *4 *5)) (-5 *2 (-108))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-989 *4 *5 *6 *3)) (-4 *4 (-425)) (-4 *5 (-729))
+ (-4 *6 (-784)) (-4 *3 (-984 *4 *5 *6)) (-5 *2 (-108)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-156)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-586 (-520))) (-5 *1 (-49 *3 *4)) (-4 *3 (-969))
- (-14 *4 (-586 (-1083)))))
+ (-12 (-5 *2 (-587 (-521))) (-5 *1 (-49 *3 *4)) (-4 *3 (-970))
+ (-14 *4 (-587 (-1084)))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2))
- (-4 *2 (-13 (-403 *3) (-926)))))
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-927)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1155 *3))
- (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1126 *3 *4))))
+ (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3))
+ (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1124 *3))
- (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1147 *3 *4)) (-4 *5 (-908 *4))))
- ((*1 *1 *1) (-4 *1 (-258)))
+ (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3))
+ (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4))))
+ ((*1 *1 *1) (-4 *1 (-259)))
((*1 *1 *1)
- (-12 (-5 *1 (-312 *2 *3 *4)) (-14 *2 (-586 (-1083)))
- (-14 *3 (-586 (-1083))) (-4 *4 (-360))))
+ (-12 (-5 *1 (-313 *2 *3 *4)) (-14 *2 (-587 (-1084)))
+ (-14 *3 (-587 (-1084))) (-4 *4 (-361))))
((*1 *1 *2)
- (-12 (-5 *2 (-604 *3 *4)) (-4 *3 (-783))
- (-4 *4 (-13 (-157) (-653 (-380 (-520))))) (-5 *1 (-570 *3 *4 *5))
- (-14 *5 (-849))))
+ (-12 (-5 *2 (-605 *3 *4)) (-4 *3 (-784))
+ (-4 *4 (-13 (-157) (-654 (-381 (-521))))) (-5 *1 (-571 *3 *4 *5))
+ (-14 *5 (-850))))
((*1 *2 *2)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520))))
- (-5 *1 (-1069 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520))))
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
(-5 *1 (-1070 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
+ (-5 *1 (-1071 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-706)) (-4 *4 (-13 (-969) (-653 (-380 (-520)))))
- (-4 *5 (-783)) (-5 *1 (-1178 *4 *5 *2)) (-4 *2 (-1183 *5 *4))))
+ (-12 (-5 *3 (-707)) (-4 *4 (-13 (-970) (-654 (-381 (-521)))))
+ (-4 *5 (-784)) (-5 *1 (-1179 *4 *5 *2)) (-4 *2 (-1184 *5 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-706)) (-5 *1 (-1182 *3 *4))
- (-4 *4 (-653 (-380 (-520)))) (-4 *3 (-783)) (-4 *4 (-157)))))
-(((*1 *2 *2) (-12 (-5 *2 (-586 (-1066))) (-5 *1 (-370)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-586 *3)) (-4 *3 (-1118)) (-5 *1 (-1064 *3)))))
+ (-12 (-5 *2 (-707)) (-5 *1 (-1183 *3 *4))
+ (-4 *4 (-654 (-381 (-521)))) (-4 *3 (-784)) (-4 *4 (-157)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-282) (-135))) (-4 *5 (-729)) (-4 *6 (-784))
+ (-4 *7 (-878 *4 *5 *6)) (-5 *2 (-587 (-587 *7)))
+ (-5 *1 (-421 *4 *5 *6 *7)) (-5 *3 (-587 *7))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-108)) (-4 *5 (-13 (-282) (-135))) (-4 *6 (-729))
+ (-4 *7 (-784)) (-4 *8 (-878 *5 *6 *7)) (-5 *2 (-587 (-587 *8)))
+ (-5 *1 (-421 *5 *6 *7 *8)) (-5 *3 (-587 *8))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-282) (-135))) (-4 *5 (-729)) (-4 *6 (-784))
+ (-4 *7 (-878 *4 *5 *6)) (-5 *2 (-587 (-587 *7)))
+ (-5 *1 (-421 *4 *5 *6 *7)) (-5 *3 (-587 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-108)) (-4 *5 (-13 (-282) (-135))) (-4 *6 (-729))
+ (-4 *7 (-784)) (-4 *8 (-878 *5 *6 *7)) (-5 *2 (-587 (-587 *8)))
+ (-5 *1 (-421 *5 *6 *7 *8)) (-5 *3 (-587 *8)))))
+(((*1 *1 *1) (-12 (-4 *1 (-404 *2)) (-4 *2 (-784)) (-4 *2 (-970))))
+ ((*1 *1 *1) (-12 (-4 *1 (-918 *2)) (-4 *2 (-513)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-322)) (-5 *2 (-391 *3)) (-5 *1 (-193 *4 *3))
- (-4 *3 (-1140 *4))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-391 *3)) (-5 *1 (-414 *3)) (-4 *3 (-1140 (-520)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-706)) (-5 *2 (-391 *3)) (-5 *1 (-414 *3))
- (-4 *3 (-1140 (-520)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-586 (-706))) (-5 *2 (-391 *3)) (-5 *1 (-414 *3))
- (-4 *3 (-1140 (-520)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-586 (-706))) (-5 *5 (-706)) (-5 *2 (-391 *3))
- (-5 *1 (-414 *3)) (-4 *3 (-1140 (-520)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-706)) (-5 *2 (-391 *3)) (-5 *1 (-414 *3))
- (-4 *3 (-1140 (-520)))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-391 *3)) (-5 *1 (-931 *3))
- (-4 *3 (-1140 (-380 (-520))))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-391 *3)) (-5 *1 (-1129 *3)) (-4 *3 (-1140 (-520))))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-820 *3)) (-4 *3 (-1012))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1179 *3 *4)) (-4 *3 (-783)) (-4 *4 (-969))
- (-5 *2 (-108))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-1185 *3 *4)) (-4 *3 (-969))
- (-4 *4 (-779)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-380 (-520))) (-5 *1 (-545 *3)) (-4 *3 (-37 *2))
- (-4 *3 (-969)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-400 *3 *2)) (-4 *3 (-13 (-157) (-37 (-380 (-520)))))
- (-4 *2 (-13 (-783) (-21))))))
+ (-12 (-5 *3 (-1165 (-627 *4))) (-4 *4 (-157))
+ (-5 *2 (-1165 (-627 (-881 *4)))) (-5 *1 (-168 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-331 *3)) (-4 *3 (-323)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-706)) (|:| |poli| *2)
- (|:| |polj| *2)))
- (-4 *5 (-728)) (-4 *2 (-877 *4 *5 *6)) (-5 *1 (-421 *4 *5 *6 *2))
- (-4 *4 (-424)) (-4 *6 (-783)))))
-(((*1 *2)
- (-12 (-4 *1 (-315 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-1140 *3))
- (-4 *5 (-1140 (-380 *4))) (-5 *2 (-626 (-380 *4))))))
-(((*1 *2)
- (-12 (-4 *4 (-157)) (-5 *2 (-706)) (-5 *1 (-150 *3 *4))
- (-4 *3 (-151 *4))))
- ((*1 *2)
- (-12 (-14 *4 *2) (-4 *5 (-1118)) (-5 *2 (-706))
- (-5 *1 (-213 *3 *4 *5)) (-4 *3 (-214 *4 *5))))
- ((*1 *2)
- (-12 (-4 *4 (-783)) (-5 *2 (-706)) (-5 *1 (-402 *3 *4))
- (-4 *3 (-403 *4))))
- ((*1 *2) (-12 (-5 *2 (-706)) (-5 *1 (-504 *3)) (-4 *3 (-505))))
- ((*1 *2) (-12 (-4 *1 (-699)) (-5 *2 (-706))))
- ((*1 *2)
- (-12 (-4 *4 (-157)) (-5 *2 (-706)) (-5 *1 (-732 *3 *4))
- (-4 *3 (-733 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-512)) (-5 *2 (-706)) (-5 *1 (-916 *3 *4))
- (-4 *3 (-917 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-157)) (-5 *2 (-706)) (-5 *1 (-920 *3 *4))
- (-4 *3 (-921 *4))))
- ((*1 *2) (-12 (-5 *2 (-706)) (-5 *1 (-935 *3)) (-4 *3 (-936))))
- ((*1 *2) (-12 (-4 *1 (-969)) (-5 *2 (-706))))
- ((*1 *2) (-12 (-5 *2 (-706)) (-5 *1 (-977 *3)) (-4 *3 (-978)))))
-(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6)
- (-12 (-5 *4 (-520)) (-5 *5 (-626 (-201)))
- (-5 *6 (-3 (|:| |fn| (-361)) (|:| |fp| (-62 -4045)))) (-5 *3 (-201))
- (-5 *2 (-958)) (-5 *1 (-684)))))
+ (-12 (-4 *4 (-13 (-513) (-135))) (-5 *2 (-587 *3))
+ (-5 *1 (-1135 *4 *3)) (-4 *3 (-1141 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-849)) (-5 *2 (-1079 *4)) (-5 *1 (-330 *4))
- (-4 *4 (-322))))
+ (-12 (-5 *3 (-587 (-521))) (-5 *2 (-833 (-521))) (-5 *1 (-846))))
+ ((*1 *2) (-12 (-5 *2 (-833 (-521))) (-5 *1 (-846)))))
+(((*1 *2 *1 *3 *3 *4 *4)
+ (-12 (-5 *3 (-707)) (-5 *4 (-850)) (-5 *2 (-1170)) (-5 *1 (-1166))))
+ ((*1 *2 *1 *3 *3 *4 *4)
+ (-12 (-5 *3 (-707)) (-5 *4 (-850)) (-5 *2 (-1170)) (-5 *1 (-1167)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-850)) (-5 *2 (-1080 *4)) (-5 *1 (-331 *4))
+ (-4 *4 (-323))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-849)) (-5 *2 (-1079 *4)) (-5 *1 (-330 *4))
- (-4 *4 (-322))))
- ((*1 *1) (-4 *1 (-341)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-849)) (-5 *2 (-1164 *4)) (-5 *1 (-490 *4))
- (-4 *4 (-322))))
- ((*1 *1 *1) (-4 *1 (-505))) ((*1 *1) (-4 *1 (-505)))
- ((*1 *1 *1) (-5 *1 (-520))) ((*1 *1 *1) (-5 *1 (-706)))
- ((*1 *2 *1) (-12 (-5 *2 (-833 *3)) (-5 *1 (-832 *3)) (-4 *3 (-1012))))
+ (-12 (-5 *3 (-850)) (-5 *2 (-1080 *4)) (-5 *1 (-331 *4))
+ (-4 *4 (-323))))
+ ((*1 *1) (-4 *1 (-342)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-850)) (-5 *2 (-1165 *4)) (-5 *1 (-491 *4))
+ (-4 *4 (-323))))
+ ((*1 *1 *1) (-4 *1 (-506))) ((*1 *1) (-4 *1 (-506)))
+ ((*1 *1 *1) (-5 *1 (-521))) ((*1 *1 *1) (-5 *1 (-707)))
+ ((*1 *2 *1) (-12 (-5 *2 (-834 *3)) (-5 *1 (-833 *3)) (-4 *3 (-1013))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-520)) (-5 *2 (-833 *4)) (-5 *1 (-832 *4))
- (-4 *4 (-1012))))
- ((*1 *1) (-12 (-4 *1 (-917 *2)) (-4 *2 (-505)) (-4 *2 (-512)))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-586 *6)) (-4 *6 (-983 *3 *4 *5))
- (-4 *3 (-512)) (-4 *4 (-728)) (-4 *5 (-783))
- (-5 *1 (-1175 *3 *4 *5 *6))))
- ((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-586 *8)) (-5 *3 (-1 (-108) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-983 *5 *6 *7)) (-4 *5 (-512))
- (-4 *6 (-728)) (-4 *7 (-783)) (-5 *1 (-1175 *5 *6 *7 *8)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-586 (-586 (-520)))) (-5 *1 (-896))
- (-5 *3 (-586 (-520))))))
-(((*1 *2 *2) (-12 (-5 *2 (-289 (-201))) (-5 *1 (-242)))))
+ (-12 (-5 *3 (-521)) (-5 *2 (-834 *4)) (-5 *1 (-833 *4))
+ (-4 *4 (-1013))))
+ ((*1 *1) (-12 (-4 *1 (-918 *2)) (-4 *2 (-506)) (-4 *2 (-513)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1156 *4))
+ (-4 *4 (-37 (-381 (-521))))
+ (-5 *2 (-1 (-1065 *4) (-1065 *4) (-1065 *4))) (-5 *1 (-1158 *4 *5)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-718 *2)) (-4 *2 (-970))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729))
+ (-4 *4 (-784)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-381 (-521)))
+ (-4 *4 (-13 (-513) (-784) (-961 (-521)) (-583 (-521))))
+ (-5 *1 (-253 *4 *2)) (-4 *2 (-13 (-27) (-1105) (-404 *4))))))
(((*1 *2 *2)
- (-12 (-5 *2 (-1164 *1)) (-4 *1 (-315 *3 *4 *5)) (-4 *3 (-1122))
- (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-380 *4))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-512) (-783) (-960 (-520))))
- (-5 *2 (-154 (-289 *4))) (-5 *1 (-166 *4 *3))
- (-4 *3 (-13 (-27) (-1104) (-403 (-154 *4))))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-424) (-783) (-960 (-520)) (-582 (-520))))
- (-5 *2 (-154 *3)) (-5 *1 (-1108 *4 *3))
- (-4 *3 (-13 (-27) (-1104) (-403 *4))))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-352) (-352))) (-5 *4 (-352))
- (-5 *2
- (-2 (|:| -3429 *4) (|:| -2967 *4) (|:| |totalpts| (-520))
- (|:| |success| (-108))))
- (-5 *1 (-724)) (-5 *5 (-520)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-49 *3 *4)) (-4 *3 (-969))
- (-14 *4 (-586 (-1083)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-51)) (-5 *2 (-108)) (-5 *1 (-50 *4)) (-4 *4 (-1118))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-199 *3 *4)) (-4 *3 (-13 (-969) (-783)))
- (-14 *4 (-586 (-1083)))))
- ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-611 *3)) (-4 *3 (-783))))
- ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-615 *3)) (-4 *3 (-783))))
- ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-821 *3)) (-4 *3 (-783)))))
-(((*1 *1 *1) (-4 *1 (-572)))
+ (-12 (-4 *3 (-513)) (-4 *3 (-157)) (-4 *4 (-347 *3))
+ (-4 *5 (-347 *3)) (-5 *1 (-626 *3 *4 *5 *2))
+ (-4 *2 (-625 *3 *4 *5)))))
+(((*1 *2)
+ (-12 (-4 *3 (-513)) (-5 *2 (-587 (-627 *3))) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-391 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-513) (-784) (-961 (-521)) (-583 (-521))))
+ (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-27) (-1105) (-404 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1084))
+ (-4 *4 (-13 (-513) (-784) (-961 (-521)) (-583 (-521))))
+ (-5 *1 (-253 *4 *2)) (-4 *2 (-13 (-27) (-1105) (-404 *4)))))
+ ((*1 *1 *1) (-5 *1 (-353)))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784))
+ (-4 *3 (-984 *5 *6 *7))
+ (-5 *2 (-587 (-2 (|:| |val| *3) (|:| -1884 *4))))
+ (-5 *1 (-712 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-707)) (-5 *1 (-806 *2)) (-4 *2 (-1119))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-707)) (-5 *1 (-808 *2)) (-4 *2 (-1119))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-707)) (-5 *1 (-811 *2)) (-4 *2 (-1119)))))
+(((*1 *1 *1) (-4 *1 (-573)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-573 *3 *2))
- (-4 *2 (-13 (-403 *3) (-926) (-1104))))))
-(((*1 *1 *2) (-12 (-5 *2 (-586 *1)) (-4 *1 (-1044 *3)) (-4 *3 (-969))))
- ((*1 *2 *2 *1)
- (|partial| -12 (-5 *2 (-380 *1)) (-4 *1 (-1140 *3)) (-4 *3 (-969))
- (-4 *3 (-512))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-1140 *2)) (-4 *2 (-969)) (-4 *2 (-512)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-223 *4 *5)) (-14 *4 (-586 (-1083))) (-4 *5 (-969))
- (-5 *2 (-880 *5)) (-5 *1 (-872 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-586 (-1083))) (-5 *1 (-1087)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-407))
- (-5 *2
- (-586
- (-3 (|:| -2883 (-1083))
- (|:| |bounds| (-586 (-3 (|:| S (-1083)) (|:| P (-880 (-520)))))))))
- (-5 *1 (-1087)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1164 (-1083))) (-5 *3 (-1164 (-425 *4 *5 *6 *7)))
- (-5 *1 (-425 *4 *5 *6 *7)) (-4 *4 (-157)) (-14 *5 (-849))
- (-14 *6 (-586 (-1083))) (-14 *7 (-1164 (-626 *4)))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1083)) (-5 *3 (-1164 (-425 *4 *5 *6 *7)))
- (-5 *1 (-425 *4 *5 *6 *7)) (-4 *4 (-157)) (-14 *5 (-849))
- (-14 *6 (-586 *2)) (-14 *7 (-1164 (-626 *4)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1164 (-425 *3 *4 *5 *6))) (-5 *1 (-425 *3 *4 *5 *6))
- (-4 *3 (-157)) (-14 *4 (-849)) (-14 *5 (-586 (-1083)))
- (-14 *6 (-1164 (-626 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1164 (-1083))) (-5 *1 (-425 *3 *4 *5 *6))
- (-4 *3 (-157)) (-14 *4 (-849)) (-14 *5 (-586 (-1083)))
- (-14 *6 (-1164 (-626 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1083)) (-5 *1 (-425 *3 *4 *5 *6)) (-4 *3 (-157))
- (-14 *4 (-849)) (-14 *5 (-586 *2)) (-14 *6 (-1164 (-626 *3)))))
- ((*1 *1)
- (-12 (-5 *1 (-425 *2 *3 *4 *5)) (-4 *2 (-157)) (-14 *3 (-849))
- (-14 *4 (-586 (-1083))) (-14 *5 (-1164 (-626 *2))))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1118)) (-4 *2 (-783))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-256 *3)) (-4 *3 (-1118))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-894 *2)) (-4 *2 (-783)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1164 (-289 (-201))))
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-574 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-927) (-1105))))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
+ (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202)))
+ (-5 *5 (-3 (|:| |fn| (-362)) (|:| |fp| (-77 LSFUN1))))
+ (-5 *2 (-959)) (-5 *1 (-690)))))
+(((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1121)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-872 *3)) (-4 *3 (-13 (-337) (-1105) (-927)))
+ (-5 *1 (-160 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-803)) (-5 *1 (-239))))
+ ((*1 *1 *2) (-12 (-5 *2 (-353)) (-5 *1 (-239)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-902 *3 *4 *5 *6)) (-4 *3 (-970)) (-4 *4 (-729))
+ (-4 *5 (-784)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-513))
+ (-5 *2 (-108)))))
+(((*1 *1 *1) (-12 (-4 *1 (-221 *2)) (-4 *2 (-1119))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729))
+ (-4 *4 (-784)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-627 (-154 (-381 (-521)))))
(-5 *2
- (-2 (|:| |additions| (-520)) (|:| |multiplications| (-520))
- (|:| |exponentiations| (-520)) (|:| |functionCalls| (-520))))
- (-5 *1 (-279)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-880 (-520))) (-5 *2 (-586 *1)) (-4 *1 (-936))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-880 (-380 (-520)))) (-5 *2 (-586 *1)) (-4 *1 (-936))))
- ((*1 *2 *3) (-12 (-5 *3 (-880 *1)) (-4 *1 (-936)) (-5 *2 (-586 *1))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1079 (-520))) (-5 *2 (-586 *1)) (-4 *1 (-936))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1079 (-380 (-520)))) (-5 *2 (-586 *1)) (-4 *1 (-936))))
- ((*1 *2 *3) (-12 (-5 *3 (-1079 *1)) (-4 *1 (-936)) (-5 *2 (-586 *1))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-781) (-336))) (-4 *3 (-1140 *4)) (-5 *2 (-586 *1))
- (-4 *1 (-985 *4 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1030)) (-5 *1 (-105))))
- ((*1 *2 *1) (-12 (-4 *1 (-125)) (-5 *2 (-706))))
+ (-587
+ (-2 (|:| |outval| (-154 *4)) (|:| |outmult| (-521))
+ (|:| |outvect| (-587 (-627 (-154 *4)))))))
+ (-5 *1 (-701 *4)) (-4 *4 (-13 (-337) (-782))))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1 (-108) *9)) (-5 *5 (-1 (-108) *9 *9))
+ (-4 *9 (-984 *6 *7 *8)) (-4 *6 (-513)) (-4 *7 (-729))
+ (-4 *8 (-784)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1354 (-587 *9))))
+ (-5 *3 (-587 *9)) (-4 *1 (-1113 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1 (-108) *8 *8)) (-4 *8 (-984 *5 *6 *7))
+ (-4 *5 (-513)) (-4 *6 (-729)) (-4 *7 (-784))
+ (-5 *2 (-2 (|:| |bas| *1) (|:| -1354 (-587 *8))))
+ (-5 *3 (-587 *8)) (-4 *1 (-1113 *5 *6 *7 *8)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1031)) (-5 *1 (-105))))
+ ((*1 *2 *1) (-12 (-4 *1 (-125)) (-5 *2 (-707))))
((*1 *2 *3 *1 *2)
- (-12 (-5 *2 (-520)) (-4 *1 (-346 *3)) (-4 *3 (-1118))
- (-4 *3 (-1012))))
+ (-12 (-5 *2 (-521)) (-4 *1 (-347 *3)) (-4 *3 (-1119))
+ (-4 *3 (-1013))))
((*1 *2 *3 *1)
- (-12 (-4 *1 (-346 *3)) (-4 *3 (-1118)) (-4 *3 (-1012))
- (-5 *2 (-520))))
+ (-12 (-4 *1 (-347 *3)) (-4 *3 (-1119)) (-4 *3 (-1013))
+ (-5 *2 (-521))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-108) *4)) (-4 *1 (-346 *4)) (-4 *4 (-1118))
- (-5 *2 (-520))))
- ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1052)) (-5 *2 (-520)) (-5 *3 (-129))))
- ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1052)) (-5 *2 (-520)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-586 (-849))) (-5 *2 (-832 (-520))) (-5 *1 (-845)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-988 *4 *5 *6 *3)) (-4 *4 (-424)) (-4 *5 (-728))
- (-4 *6 (-783)) (-4 *3 (-983 *4 *5 *6)) (-5 *2 (-108)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-626 (-380 (-880 *4)))) (-4 *4 (-424))
- (-5 *2 (-586 (-3 (-380 (-880 *4)) (-1073 (-1083) (-880 *4)))))
- (-5 *1 (-266 *4)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-108)) (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783))
- (-4 *8 (-983 *5 *6 *7))
- (-5 *2
- (-2 (|:| |val| (-586 *8)) (|:| |towers| (-586 (-950 *5 *6 *7 *8)))))
- (-5 *1 (-950 *5 *6 *7 *8)) (-5 *3 (-586 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-108)) (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783))
- (-4 *8 (-983 *5 *6 *7))
- (-5 *2
- (-2 (|:| |val| (-586 *8))
- (|:| |towers| (-586 (-1054 *5 *6 *7 *8)))))
- (-5 *1 (-1054 *5 *6 *7 *8)) (-5 *3 (-586 *8)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-1169)) (-5 *1 (-1166)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-380 (-520)))
- (-4 *4 (-13 (-512) (-783) (-960 (-520)) (-582 (-520))))
- (-5 *1 (-252 *4 *2)) (-4 *2 (-13 (-27) (-1104) (-403 *4))))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3)
- (-12 (-5 *3 (-520)) (-5 *4 (-1066)) (-5 *5 (-626 (-201)))
- (-5 *2 (-958)) (-5 *1 (-683)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1162 *2)) (-4 *2 (-1118)) (-4 *2 (-926))
- (-4 *2 (-969)))))
+ (-12 (-5 *3 (-1 (-108) *4)) (-4 *1 (-347 *4)) (-4 *4 (-1119))
+ (-5 *2 (-521))))
+ ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1053)) (-5 *2 (-521)) (-5 *3 (-129))))
+ ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1053)) (-5 *2 (-521)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-587 *3)) (-4 *3 (-1119)) (-5 *1 (-1065 *3)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1084)) (-5 *5 (-587 (-381 (-881 *6))))
+ (-5 *3 (-381 (-881 *6)))
+ (-4 *6 (-13 (-513) (-961 (-521)) (-135)))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-587 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-527 *6)))))
+(((*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1013)) (-5 *1 (-89 *3)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-706)) (-5 *1 (-1072 *3 *4)) (-14 *3 (-849))
- (-4 *4 (-969)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-758)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-1169)) (-5 *1 (-758)))))
+ (-12 (-5 *2 (-707)) (-5 *1 (-1073 *3 *4)) (-14 *3 (-850))
+ (-4 *4 (-970)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1083))
- (-4 *5 (-13 (-783) (-960 (-520)) (-424) (-582 (-520))))
- (-5 *2 (-2 (|:| -2011 *3) (|:| |nconst| *3))) (-5 *1 (-523 *5 *3))
- (-4 *3 (-13 (-27) (-1104) (-403 *5))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-586 (-1083))) (-5 *2 (-1169)) (-5 *1 (-1120))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-586 (-1083))) (-5 *2 (-1169)) (-5 *1 (-1120)))))
-(((*1 *1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-108)) (-5 *1 (-545 *3)) (-4 *3 (-969)))))
-(((*1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-854)))))
-(((*1 *1 *2) (-12 (-5 *2 (-706)) (-5 *1 (-250)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-520)) (-5 *1 (-1093 *2)) (-4 *2 (-336)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-520)) (-5 *2 (-108)) (-5 *1 (-509)))))
+ (-12 (-5 *4 (-1084))
+ (-4 *5 (-13 (-425) (-784) (-135) (-961 (-521)) (-583 (-521))))
+ (-5 *2 (-538 *3)) (-5 *1 (-514 *5 *3))
+ (-4 *3 (-13 (-27) (-1105) (-404 *5))))))
+(((*1 *2) (-12 (-5 *2 (-587 (-707))) (-5 *1 (-1168))))
+ ((*1 *2 *2) (-12 (-5 *2 (-587 (-707))) (-5 *1 (-1168)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -2258 (-718 *3)) (|:| |coef1| (-718 *3))))
+ (-5 *1 (-718 *3)) (-4 *3 (-513)) (-4 *3 (-970))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-513)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784))
+ (-5 *2 (-2 (|:| -2258 *1) (|:| |coef1| *1)))
+ (-4 *1 (-984 *3 *4 *5)))))
+(((*1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-855)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-729)) (-4 *6 (-784)) (-4 *3 (-513))
+ (-4 *7 (-878 *3 *5 *6))
+ (-5 *2 (-2 (|:| -2997 (-707)) (|:| -2973 *8) (|:| |radicand| *8)))
+ (-5 *1 (-882 *5 *6 *3 *7 *8)) (-5 *4 (-707))
+ (-4 *8
+ (-13 (-337)
+ (-10 -8 (-15 -2801 (*7 $)) (-15 -2812 (*7 $)) (-15 -2189 ($ *7))))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-347 *3))
+ (-4 *5 (-347 *3)) (-5 *2 (-521))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-973 *3 *4 *5 *6 *7)) (-4 *5 (-970))
+ (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-521)))))
(((*1 *2)
- (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-339 *3 *4))
- (-4 *3 (-340 *4))))
- ((*1 *2) (-12 (-4 *1 (-340 *3)) (-4 *3 (-157)) (-5 *2 (-108)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-586 (-223 *4 *5))) (-5 *2 (-223 *4 *5))
- (-14 *4 (-586 (-1083))) (-4 *5 (-424)) (-5 *1 (-574 *4 *5)))))
+ (-12 (-5 *2 (-108)) (-5 *1 (-1097 *3 *4)) (-4 *3 (-1013))
+ (-4 *4 (-1013)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-257 *2)) (-4 *2 (-1119)) (-4 *2 (-784))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-257 *3)) (-4 *3 (-1119))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-895 *2)) (-4 *2 (-784)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-282) (-135))) (-4 *5 (-13 (-784) (-562 (-1084))))
+ (-4 *6 (-729)) (-5 *2 (-587 *3)) (-5 *1 (-853 *4 *5 *6 *3))
+ (-4 *3 (-878 *4 *6 *5)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-586 *3)) (-4 *3 (-1140 (-520))) (-5 *1 (-456 *3)))))
-(((*1 *1 *1) (-12 (-4 *1 (-346 *2)) (-4 *2 (-1118)) (-4 *2 (-783))))
+ (-12 (-4 *3 (-13 (-784) (-425))) (-5 *1 (-1111 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-1105))))))
+(((*1 *1 *2 *3 *3 *4 *4)
+ (-12 (-5 *2 (-881 (-521))) (-5 *3 (-1084))
+ (-5 *4 (-1008 (-381 (-521)))) (-5 *1 (-30)))))
+(((*1 *1 *2) (-12 (-5 *2 (-381 (-521))) (-5 *1 (-103))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-587 (-497))) (-5 *1 (-497)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-521)) (-4 *1 (-625 *3 *4 *5)) (-4 *3 (-970))
+ (-4 *4 (-347 *3)) (-4 *5 (-347 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1165 *1)) (-4 *1 (-344 *4 *5)) (-4 *4 (-157))
+ (-4 *5 (-1141 *4)) (-5 *2 (-627 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-157)) (-4 *5 (-1141 *4)) (-5 *2 (-627 *4))
+ (-5 *1 (-382 *3 *4 *5)) (-4 *3 (-383 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-157)) (-4 *4 (-1141 *3))
+ (-5 *2 (-627 *3)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1178 *3 *4)) (-4 *3 (-784)) (-4 *4 (-157))
+ (-5 *1 (-605 *3 *4))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-605 *3 *4)) (-5 *1 (-1183 *3 *4))
+ (-4 *3 (-784)) (-4 *4 (-157)))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-108)) (-5 *5 (-521)) (-4 *6 (-337)) (-4 *6 (-342))
+ (-4 *6 (-970)) (-5 *2 (-587 (-587 (-627 *6)))) (-5 *1 (-953 *6))
+ (-5 *3 (-587 (-627 *6)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-337)) (-4 *4 (-342)) (-4 *4 (-970))
+ (-5 *2 (-587 (-587 (-627 *4)))) (-5 *1 (-953 *4))
+ (-5 *3 (-587 (-627 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-108)) (-4 *5 (-337)) (-4 *5 (-342)) (-4 *5 (-970))
+ (-5 *2 (-587 (-587 (-627 *5)))) (-5 *1 (-953 *5))
+ (-5 *3 (-587 (-627 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-850)) (-4 *5 (-337)) (-4 *5 (-342)) (-4 *5 (-970))
+ (-5 *2 (-587 (-587 (-627 *5)))) (-5 *1 (-953 *5))
+ (-5 *3 (-587 (-627 *5))))))
+(((*1 *1 *1) (-12 (-4 *1 (-347 *2)) (-4 *2 (-1119)) (-4 *2 (-784))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-346 *3)) (-4 *3 (-1118))))
+ (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-347 *3)) (-4 *3 (-1119))))
((*1 *2 *2)
- (-12 (-5 *2 (-586 (-833 *3))) (-5 *1 (-833 *3)) (-4 *3 (-1012))))
+ (-12 (-5 *2 (-587 (-834 *3))) (-5 *1 (-834 *3)) (-4 *3 (-1013))))
((*1 *2 *1 *3)
- (-12 (-4 *4 (-969)) (-4 *5 (-728)) (-4 *3 (-783))
- (-4 *6 (-983 *4 *5 *3))
- (-5 *2 (-2 (|:| |under| *1) (|:| -1626 *1) (|:| |upper| *1)))
- (-4 *1 (-901 *4 *5 *3 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-758)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-820 *3)) (-4 *3 (-1012)))))
-(((*1 *2 *1) (-12 (-4 *1 (-613 *3)) (-4 *3 (-1118)) (-5 *2 (-706)))))
+ (-12 (-4 *4 (-970)) (-4 *5 (-729)) (-4 *3 (-784))
+ (-4 *6 (-984 *4 *5 *3))
+ (-5 *2 (-2 (|:| |under| *1) (|:| -2567 *1) (|:| |upper| *1)))
+ (-4 *1 (-902 *4 *5 *3 *6)))))
+(((*1 *1 *1) (-4 *1 (-131)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-144 *3 *2))
+ (-4 *2 (-404 *3))))
+ ((*1 *2 *2) (-12 (-5 *1 (-145 *2)) (-4 *2 (-506)))))
+(((*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-833 (-521))) (-5 *1 (-846))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-587 (-521))) (-5 *2 (-833 (-521))) (-5 *1 (-846)))))
+(((*1 *1 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-1013))))
+ ((*1 *1 *1) (-5 *1 (-576))))
+(((*1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1119)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-1015 *2 *3 *4 *5 *6)) (-4 *2 (-1012)) (-4 *3 (-1012))
- (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-586 (-880 *6))) (-5 *4 (-586 (-1083)))
- (-4 *6 (-13 (-512) (-960 *5))) (-4 *5 (-512))
- (-5 *2 (-586 (-586 (-268 (-380 (-880 *6)))))) (-5 *1 (-961 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-126)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-783) (-512))) (-5 *2 (-108)) (-5 *1 (-251 *4 *3))
- (-4 *3 (-13 (-403 *4) (-926))))))
+ (-12 (-4 *1 (-1016 *2 *3 *4 *5 *6)) (-4 *2 (-1013)) (-4 *3 (-1013))
+ (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)))))
+(((*1 *2)
+ (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3))
+ (-4 *5 (-1141 (-381 *4))) (-5 *2 (-627 (-381 *4))))))
+(((*1 *2)
+ (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3))
+ (-4 *5 (-1141 (-381 *4))) (-5 *2 (-627 (-381 *4))))))
(((*1 *2 *3 *4)
- (-12 (-4 *6 (-512)) (-4 *2 (-877 *3 *5 *4))
- (-5 *1 (-668 *5 *4 *6 *2)) (-5 *3 (-380 (-880 *6))) (-4 *5 (-728))
- (-4 *4 (-13 (-783) (-10 -8 (-15 -1429 ((-1083) $))))))))
+ (|partial| -12 (-5 *3 (-1165 *4)) (-4 *4 (-583 (-521)))
+ (-5 *2 (-1165 (-381 (-521)))) (-5 *1 (-1190 *4)))))
(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-706)) (-4 *2 (-1012))
- (-5 *1 (-616 *2)))))
-(((*1 *2 *3 *4 *2 *5)
- (-12 (-5 *3 (-586 *8)) (-5 *4 (-586 (-820 *6)))
- (-5 *5 (-1 (-817 *6 *8) *8 (-820 *6) (-817 *6 *8))) (-4 *6 (-1012))
- (-4 *8 (-13 (-969) (-561 (-820 *6)) (-960 *7))) (-5 *2 (-817 *6 *8))
- (-4 *7 (-13 (-969) (-783))) (-5 *1 (-869 *6 *7 *8)))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-154 (-201)) (-154 (-201)))) (-5 *4 (-1007 (-201)))
- (-5 *5 (-108)) (-5 *2 (-1166)) (-5 *1 (-232)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1079 *6)) (-4 *6 (-969)) (-4 *4 (-728)) (-4 *5 (-783))
- (-5 *2 (-1079 *7)) (-5 *1 (-294 *4 *5 *6 *7))
- (-4 *7 (-877 *6 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-586 *7)) (-4 *7 (-983 *4 *5 *6)) (-4 *4 (-512))
- (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-586 (-1175 *4 *5 *6 *7)))
- (-5 *1 (-1175 *4 *5 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-586 *9)) (-5 *4 (-1 (-108) *9 *9))
- (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-983 *6 *7 *8)) (-4 *6 (-512))
- (-4 *7 (-728)) (-4 *8 (-783)) (-5 *2 (-586 (-1175 *6 *7 *8 *9)))
- (-5 *1 (-1175 *6 *7 *8 *9)))))
-(((*1 *1 *1 *1 *1 *2)
- (-12 (-5 *2 (-706)) (-4 *1 (-983 *3 *4 *5)) (-4 *3 (-969))
- (-4 *4 (-728)) (-4 *5 (-783)) (-4 *3 (-512)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1085 (-380 (-520)))) (-5 *1 (-168)) (-5 *3 (-520))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1164 (-3 (-440) "undefined"))) (-5 *1 (-1165)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1015 *2 *3 *4 *5 *6)) (-4 *2 (-1012)) (-4 *3 (-1012))
- (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)))))
-(((*1 *2 *1) (-12 (-4 *1 (-340 *2)) (-4 *2 (-157)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-410)))))
-(((*1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-1086))))
- ((*1 *2 *3) (-12 (-5 *3 (-1083)) (-5 *2 (-1169)) (-5 *1 (-1086))))
- ((*1 *2 *3 *1) (-12 (-5 *3 (-1083)) (-5 *2 (-1169)) (-5 *1 (-1086)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012))
- (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-108)))))
+ (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-707)) (-4 *2 (-1013))
+ (-5 *1 (-617 *2)))))
+(((*1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-931)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1119)) (-5 *1 (-349 *4 *2))
+ (-4 *2 (-13 (-347 *4) (-10 -7 (-6 -4234)))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1164 (-706))) (-5 *1 (-614 *3)) (-4 *3 (-1012)))))
-(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-586 *1)) (-4 *1 (-281)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-908 *2)) (-4 *2 (-1104)))))
+ (-12 (-4 *1 (-1113 *3 *4 *5 *6)) (-4 *3 (-513)) (-4 *4 (-729))
+ (-4 *5 (-784)) (-4 *6 (-984 *3 *4 *5)) (-5 *2 (-108))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1113 *4 *5 *6 *3)) (-4 *4 (-513)) (-4 *5 (-729))
+ (-4 *6 (-784)) (-4 *3 (-984 *4 *5 *6)) (-5 *2 (-108)))))
+(((*1 *1 *1 *1)
+ (|partial| -12 (-4 *1 (-786 *2)) (-4 *2 (-970)) (-4 *2 (-337)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-877 *3 *4 *2)) (-4 *3 (-969)) (-4 *4 (-728))
- (-4 *2 (-783))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-728)) (-4 *5 (-969)) (-4 *6 (-877 *5 *4 *2))
- (-4 *2 (-783)) (-5 *1 (-878 *4 *2 *5 *6 *3))
- (-4 *3
- (-13 (-336)
- (-10 -8 (-15 -2188 ($ *6)) (-15 -2800 (*6 $))
- (-15 -2811 (*6 $)))))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-380 (-880 *4))) (-4 *4 (-512))
- (-5 *2 (-1083)) (-5 *1 (-965 *4)))))
+ (-12 (-5 *2 (-872 *4)) (-5 *1 (-1073 *3 *4)) (-14 *3 (-850))
+ (-4 *4 (-970)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-983 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-728))
- (-4 *4 (-783)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-281)) (-4 *5 (-346 *4)) (-4 *6 (-346 *4))
- (-5 *2
- (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3)))
- (-5 *1 (-1034 *4 *5 *6 *3)) (-4 *3 (-624 *4 *5 *6)))))
-(((*1 *2)
- (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-339 *3 *4))
- (-4 *3 (-340 *4))))
- ((*1 *2) (-12 (-4 *1 (-340 *3)) (-4 *3 (-157)) (-5 *2 (-108)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-626 *2)) (-4 *4 (-1140 *2))
- (-4 *2 (-13 (-281) (-10 -8 (-15 -1507 ((-391 $) $)))))
- (-5 *1 (-467 *2 *4 *5)) (-4 *5 (-382 *2 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1033 *3 *2 *4 *5)) (-4 *4 (-214 *3 *2))
- (-4 *5 (-214 *3 *2)) (-4 *2 (-969)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-706)) (-5 *2 (-1169)) (-5 *1 (-1165))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-706)) (-5 *2 (-1169)) (-5 *1 (-1166)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1085 (-380 (-520)))) (-5 *1 (-168)) (-5 *3 (-520)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1064 *3)) (-5 *1 (-158 *3)) (-4 *3 (-281)))))
+ (-12 (-4 *1 (-1016 *2 *3 *4 *5 *6)) (-4 *2 (-1013)) (-4 *3 (-1013))
+ (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)))))
+(((*1 *2 *3) (-12 (-5 *3 (-353)) (-5 *2 (-1067)) (-5 *1 (-280)))))
+(((*1 *2) (-12 (-5 *2 (-803)) (-5 *1 (-1168))))
+ ((*1 *2 *2) (-12 (-5 *2 (-803)) (-5 *1 (-1168)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013))
+ (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-108)))))
+(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7)
+ (-12 (-5 *3 (-627 (-202))) (-5 *4 (-521)) (-5 *5 (-202))
+ (-5 *6 (-3 (|:| |fn| (-362)) (|:| |fp| (-59 COEFFN))))
+ (-5 *7 (-3 (|:| |fn| (-362)) (|:| |fp| (-85 BDYVAL))))
+ (-5 *2 (-959)) (-5 *1 (-686))))
+ ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8)
+ (-12 (-5 *3 (-627 (-202))) (-5 *4 (-521)) (-5 *5 (-202))
+ (-5 *6 (-3 (|:| |fn| (-362)) (|:| |fp| (-59 COEFFN))))
+ (-5 *7 (-3 (|:| |fn| (-362)) (|:| |fp| (-85 BDYVAL))))
+ (-5 *8 (-362)) (-5 *2 (-959)) (-5 *1 (-686)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-157)) (-4 *2 (-23)) (-5 *1 (-263 *3 *4 *2 *5 *6 *7))
- (-4 *4 (-1140 *3)) (-14 *5 (-1 *4 *4 *2))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2))
- (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2))))
+ (-12 (-4 *1 (-151 *3)) (-4 *3 (-157)) (-4 *3 (-506)) (-5 *2 (-108))))
((*1 *2 *1)
- (-12 (-4 *2 (-23)) (-5 *1 (-647 *3 *2 *4 *5 *6)) (-4 *3 (-157))
- (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
- (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
- ((*1 *2) (-12 (-4 *2 (-1140 *3)) (-5 *1 (-648 *3 *2)) (-4 *3 (-969))))
+ (-12 (-5 *2 (-108)) (-5 *1 (-392 *3)) (-4 *3 (-506)) (-4 *3 (-513))))
+ ((*1 *2 *1) (-12 (-4 *1 (-506)) (-5 *2 (-108))))
((*1 *2 *1)
- (-12 (-4 *2 (-23)) (-5 *1 (-651 *3 *2 *4 *5 *6)) (-4 *3 (-157))
- (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
- (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
- ((*1 *2) (-12 (-4 *1 (-797 *3)) (-5 *2 (-520)))))
+ (-12 (-4 *1 (-734 *3)) (-4 *3 (-157)) (-4 *3 (-506)) (-5 *2 (-108))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-108)) (-5 *1 (-770 *3)) (-4 *3 (-506)) (-4 *3 (-1013))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-108)) (-5 *1 (-777 *3)) (-4 *3 (-506)) (-4 *3 (-1013))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-922 *3)) (-4 *3 (-157)) (-4 *3 (-506)) (-5 *2 (-108))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-108)) (-5 *1 (-933 *3)) (-4 *3 (-961 (-381 (-521)))))))
+(((*1 *1 *1 *1) (-4 *1 (-131)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-144 *3 *2))
+ (-4 *2 (-404 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *1 (-145 *2)) (-4 *2 (-506)))))
+(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6)
+ (-12 (-5 *4 (-521)) (-5 *6 (-1 (-1170) (-1165 *5) (-1165 *5) (-353)))
+ (-5 *3 (-1165 (-353))) (-5 *5 (-353)) (-5 *2 (-1170))
+ (-5 *1 (-724)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-521)) (-4 *1 (-55 *4 *5 *2)) (-4 *4 (-1119))
+ (-4 *5 (-347 *4)) (-4 *2 (-347 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-521)) (-4 *1 (-973 *4 *5 *6 *7 *2)) (-4 *6 (-970))
+ (-4 *7 (-215 *5 *6)) (-4 *2 (-215 *4 *6)))))
+(((*1 *2 *1) (-12 (-4 *3 (-1119)) (-5 *2 (-587 *1)) (-4 *1 (-935 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-143))))
+ ((*1 *2 *3) (-12 (-5 *3 (-872 *2)) (-5 *1 (-908 *2)) (-4 *2 (-970)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1167)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1083)) (-4 *5 (-336)) (-5 *2 (-1064 (-1064 (-880 *5))))
- (-5 *1 (-1172 *5)) (-5 *4 (-1064 (-880 *5))))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-440)) (-5 *4 (-849)) (-5 *2 (-1169)) (-5 *1 (-1165)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-391 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1140 (-47)))))
- ((*1 *2 *3 *1)
- (-12 (-5 *2 (-2 (|:| |less| (-117 *3)) (|:| |greater| (-117 *3))))
- (-5 *1 (-117 *3)) (-4 *3 (-783))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-537 *4)) (-4 *4 (-13 (-29 *3) (-1104)))
- (-4 *3 (-13 (-424) (-960 (-520)) (-783) (-582 (-520))))
- (-5 *1 (-535 *3 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-537 (-380 (-880 *3))))
- (-4 *3 (-13 (-424) (-960 (-520)) (-783) (-582 (-520))))
- (-5 *1 (-540 *3))))
+ (-12 (-5 *3 (-381 (-881 (-154 (-521))))) (-5 *2 (-587 (-154 *4)))
+ (-5 *1 (-352 *4)) (-4 *4 (-13 (-337) (-782)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-587 (-381 (-881 (-154 (-521))))))
+ (-5 *4 (-587 (-1084))) (-5 *2 (-587 (-587 (-154 *5))))
+ (-5 *1 (-352 *5)) (-4 *5 (-13 (-337) (-782))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-587 (-381 (-881 (-521)))))
+ (-5 *2 (-587 (-587 (-269 (-881 *4))))) (-5 *1 (-354 *4))
+ (-4 *4 (-13 (-782) (-337)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1140 *5)) (-4 *5 (-336))
- (-5 *2 (-2 (|:| -3655 *3) (|:| |special| *3))) (-5 *1 (-663 *5 *3))))
+ (-12 (-5 *3 (-587 (-269 (-381 (-881 (-521))))))
+ (-5 *2 (-587 (-587 (-269 (-881 *4))))) (-5 *1 (-354 *4))
+ (-4 *4 (-13 (-782) (-337)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1164 *5)) (-4 *5 (-336)) (-4 *5 (-969))
- (-5 *2 (-586 (-586 (-626 *5)))) (-5 *1 (-952 *5))
- (-5 *3 (-586 (-626 *5)))))
+ (-12 (-5 *3 (-381 (-881 (-521)))) (-5 *2 (-587 (-269 (-881 *4))))
+ (-5 *1 (-354 *4)) (-4 *4 (-13 (-782) (-337)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1164 (-1164 *5))) (-4 *5 (-336)) (-4 *5 (-969))
- (-5 *2 (-586 (-586 (-626 *5)))) (-5 *1 (-952 *5))
- (-5 *3 (-586 (-626 *5)))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-129)) (-5 *2 (-586 *1)) (-4 *1 (-1052))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-132)) (-5 *2 (-586 *1)) (-4 *1 (-1052)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-969)) (-5 *2 (-108)) (-5 *1 (-416 *4 *3))
- (-4 *3 (-1140 *4))))
+ (-12 (-5 *3 (-269 (-381 (-881 (-521)))))
+ (-5 *2 (-587 (-269 (-881 *4)))) (-5 *1 (-354 *4))
+ (-4 *4 (-13 (-782) (-337)))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-1084))
+ (-4 *6 (-13 (-784) (-282) (-961 (-521)) (-583 (-521)) (-135)))
+ (-4 *4 (-13 (-29 *6) (-1105) (-887)))
+ (-5 *2 (-2 (|:| |particular| *4) (|:| -2470 (-587 *4))))
+ (-5 *1 (-593 *6 *4 *3)) (-4 *3 (-597 *4))))
+ ((*1 *2 *3 *2 *4 *2 *5)
+ (|partial| -12 (-5 *4 (-1084)) (-5 *5 (-587 *2))
+ (-4 *2 (-13 (-29 *6) (-1105) (-887)))
+ (-4 *6 (-13 (-784) (-282) (-961 (-521)) (-583 (-521)) (-135)))
+ (-5 *1 (-593 *6 *2 *3)) (-4 *3 (-597 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-627 *5)) (-4 *5 (-337))
+ (-5 *2
+ (-2 (|:| |particular| (-3 (-1165 *5) "failed"))
+ (|:| -2470 (-587 (-1165 *5)))))
+ (-5 *1 (-608 *5)) (-5 *4 (-1165 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-587 (-587 *5))) (-4 *5 (-337))
+ (-5 *2
+ (-2 (|:| |particular| (-3 (-1165 *5) "failed"))
+ (|:| -2470 (-587 (-1165 *5)))))
+ (-5 *1 (-608 *5)) (-5 *4 (-1165 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-627 *5)) (-4 *5 (-337))
+ (-5 *2
+ (-587
+ (-2 (|:| |particular| (-3 (-1165 *5) "failed"))
+ (|:| -2470 (-587 (-1165 *5))))))
+ (-5 *1 (-608 *5)) (-5 *4 (-587 (-1165 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-587 (-587 *5))) (-4 *5 (-337))
+ (-5 *2
+ (-587
+ (-2 (|:| |particular| (-3 (-1165 *5) "failed"))
+ (|:| -2470 (-587 (-1165 *5))))))
+ (-5 *1 (-608 *5)) (-5 *4 (-587 (-1165 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-337)) (-4 *6 (-13 (-347 *5) (-10 -7 (-6 -4234))))
+ (-4 *4 (-13 (-347 *5) (-10 -7 (-6 -4234))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2470 (-587 *4))))
+ (-5 *1 (-609 *5 *6 *4 *3)) (-4 *3 (-625 *5 *6 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-337)) (-4 *6 (-13 (-347 *5) (-10 -7 (-6 -4234))))
+ (-4 *7 (-13 (-347 *5) (-10 -7 (-6 -4234))))
+ (-5 *2
+ (-587
+ (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2470 (-587 *7)))))
+ (-5 *1 (-609 *5 *6 *7 *3)) (-5 *4 (-587 *7))
+ (-4 *3 (-625 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-587 (-881 *5))) (-5 *4 (-587 (-1084))) (-4 *5 (-513))
+ (-5 *2 (-587 (-587 (-269 (-381 (-881 *5)))))) (-5 *1 (-706 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-587 (-881 *4))) (-4 *4 (-513))
+ (-5 *2 (-587 (-587 (-269 (-381 (-881 *4)))))) (-5 *1 (-706 *4))))
+ ((*1 *2 *2 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-110)) (-5 *4 (-1084))
+ (-4 *5 (-13 (-784) (-282) (-961 (-521)) (-583 (-521)) (-135)))
+ (-5 *1 (-708 *5 *2)) (-4 *2 (-13 (-29 *5) (-1105) (-887)))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-627 *7)) (-5 *5 (-1084))
+ (-4 *7 (-13 (-29 *6) (-1105) (-887)))
+ (-4 *6 (-13 (-784) (-282) (-961 (-521)) (-583 (-521)) (-135)))
+ (-5 *2
+ (-2 (|:| |particular| (-1165 *7)) (|:| -2470 (-587 (-1165 *7)))))
+ (-5 *1 (-739 *6 *7)) (-5 *4 (-1165 *7))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-627 *6)) (-5 *4 (-1084))
+ (-4 *6 (-13 (-29 *5) (-1105) (-887)))
+ (-4 *5 (-13 (-784) (-282) (-961 (-521)) (-583 (-521)) (-135)))
+ (-5 *2 (-587 (-1165 *6))) (-5 *1 (-739 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-587 (-269 *7))) (-5 *4 (-587 (-110)))
+ (-5 *5 (-1084)) (-4 *7 (-13 (-29 *6) (-1105) (-887)))
+ (-4 *6 (-13 (-784) (-282) (-961 (-521)) (-583 (-521)) (-135)))
+ (-5 *2
+ (-2 (|:| |particular| (-1165 *7)) (|:| -2470 (-587 (-1165 *7)))))
+ (-5 *1 (-739 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-587 *7)) (-5 *4 (-587 (-110)))
+ (-5 *5 (-1084)) (-4 *7 (-13 (-29 *6) (-1105) (-887)))
+ (-4 *6 (-13 (-784) (-282) (-961 (-521)) (-583 (-521)) (-135)))
+ (-5 *2
+ (-2 (|:| |particular| (-1165 *7)) (|:| -2470 (-587 (-1165 *7)))))
+ (-5 *1 (-739 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-269 *7)) (-5 *4 (-110)) (-5 *5 (-1084))
+ (-4 *7 (-13 (-29 *6) (-1105) (-887)))
+ (-4 *6 (-13 (-784) (-282) (-961 (-521)) (-583 (-521)) (-135)))
+ (-5 *2
+ (-3 (-2 (|:| |particular| *7) (|:| -2470 (-587 *7))) *7 "failed"))
+ (-5 *1 (-739 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-110)) (-5 *5 (-1084))
+ (-4 *6 (-13 (-784) (-282) (-961 (-521)) (-583 (-521)) (-135)))
+ (-5 *2
+ (-3 (-2 (|:| |particular| *3) (|:| -2470 (-587 *3))) *3 "failed"))
+ (-5 *1 (-739 *6 *3)) (-4 *3 (-13 (-29 *6) (-1105) (-887)))))
+ ((*1 *2 *3 *4 *3 *5)
+ (|partial| -12 (-5 *3 (-269 *2)) (-5 *4 (-110)) (-5 *5 (-587 *2))
+ (-4 *2 (-13 (-29 *6) (-1105) (-887))) (-5 *1 (-739 *6 *2))
+ (-4 *6 (-13 (-784) (-282) (-961 (-521)) (-583 (-521)) (-135)))))
+ ((*1 *2 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-110)) (-5 *4 (-269 *2)) (-5 *5 (-587 *2))
+ (-4 *2 (-13 (-29 *6) (-1105) (-887)))
+ (-4 *6 (-13 (-784) (-282) (-961 (-521)) (-583 (-521)) (-135)))
+ (-5 *1 (-739 *6 *2))))
+ ((*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-959)) (-5 *1 (-742))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-745)) (-5 *4 (-982)) (-5 *2 (-959)) (-5 *1 (-742))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1165 (-290 (-353)))) (-5 *4 (-353)) (-5 *5 (-587 *4))
+ (-5 *2 (-959)) (-5 *1 (-742))))
+ ((*1 *2 *3 *4 *4 *5 *4)
+ (-12 (-5 *3 (-1165 (-290 (-353)))) (-5 *4 (-353)) (-5 *5 (-587 *4))
+ (-5 *2 (-959)) (-5 *1 (-742))))
+ ((*1 *2 *3 *4 *4 *5 *6 *4)
+ (-12 (-5 *3 (-1165 (-290 *4))) (-5 *5 (-587 (-353)))
+ (-5 *6 (-290 (-353))) (-5 *4 (-353)) (-5 *2 (-959)) (-5 *1 (-742))))
+ ((*1 *2 *3 *4 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1165 (-290 (-353)))) (-5 *4 (-353)) (-5 *5 (-587 *4))
+ (-5 *2 (-959)) (-5 *1 (-742))))
+ ((*1 *2 *3 *4 *4 *5 *6 *5 *4)
+ (-12 (-5 *3 (-1165 (-290 *4))) (-5 *5 (-587 (-353)))
+ (-5 *6 (-290 (-353))) (-5 *4 (-353)) (-5 *2 (-959)) (-5 *1 (-742))))
+ ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4)
+ (-12 (-5 *3 (-1165 (-290 *4))) (-5 *5 (-587 (-353)))
+ (-5 *6 (-290 (-353))) (-5 *4 (-353)) (-5 *2 (-959)) (-5 *1 (-742))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12
+ (-5 *5
+ (-1
+ (-3 (-2 (|:| |particular| *6) (|:| -2470 (-587 *6))) "failed")
+ *7 *6))
+ (-4 *6 (-337)) (-4 *7 (-597 *6))
+ (-5 *2 (-2 (|:| |particular| (-1165 *6)) (|:| -2470 (-627 *6))))
+ (-5 *1 (-750 *6 *7)) (-5 *3 (-627 *6)) (-5 *4 (-1165 *6))))
+ ((*1 *2 *3) (-12 (-5 *3 (-827)) (-5 *2 (-959)) (-5 *1 (-826))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-827)) (-5 *4 (-982)) (-5 *2 (-959)) (-5 *1 (-826))))
+ ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8)
+ (-12 (-5 *4 (-707)) (-5 *6 (-587 (-587 (-290 *3)))) (-5 *7 (-1067))
+ (-5 *8 (-202)) (-5 *5 (-587 (-290 (-353)))) (-5 *3 (-353))
+ (-5 *2 (-959)) (-5 *1 (-826))))
+ ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7)
+ (-12 (-5 *4 (-707)) (-5 *6 (-587 (-587 (-290 *3)))) (-5 *7 (-1067))
+ (-5 *5 (-587 (-290 (-353)))) (-5 *3 (-353)) (-5 *2 (-959))
+ (-5 *1 (-826))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-881 (-381 (-521)))) (-5 *2 (-587 (-353)))
+ (-5 *1 (-947)) (-5 *4 (-353))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-881 (-521))) (-5 *2 (-587 (-353))) (-5 *1 (-947))
+ (-5 *4 (-353))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-337) (-10 -8 (-15 ** ($ $ (-381 (-521)))))))
+ (-5 *2 (-587 *4)) (-5 *1 (-1039 *3 *4)) (-4 *3 (-1141 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-784) (-282) (-961 (-521)) (-583 (-521)) (-135)))
+ (-5 *2 (-587 (-269 (-290 *4)))) (-5 *1 (-1042 *4))
+ (-5 *3 (-290 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-784) (-282) (-961 (-521)) (-583 (-521)) (-135)))
+ (-5 *2 (-587 (-269 (-290 *4)))) (-5 *1 (-1042 *4))
+ (-5 *3 (-269 (-290 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1084))
+ (-4 *5 (-13 (-784) (-282) (-961 (-521)) (-583 (-521)) (-135)))
+ (-5 *2 (-587 (-269 (-290 *5)))) (-5 *1 (-1042 *5))
+ (-5 *3 (-269 (-290 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1084))
+ (-4 *5 (-13 (-784) (-282) (-961 (-521)) (-583 (-521)) (-135)))
+ (-5 *2 (-587 (-269 (-290 *5)))) (-5 *1 (-1042 *5))
+ (-5 *3 (-290 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-587 (-1084)))
+ (-4 *5 (-13 (-784) (-282) (-961 (-521)) (-583 (-521)) (-135)))
+ (-5 *2 (-587 (-587 (-269 (-290 *5))))) (-5 *1 (-1042 *5))
+ (-5 *3 (-587 (-269 (-290 *5))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-587 (-381 (-881 *5)))) (-5 *4 (-587 (-1084)))
+ (-4 *5 (-513)) (-5 *2 (-587 (-587 (-269 (-381 (-881 *5))))))
+ (-5 *1 (-1090 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-587 (-1084))) (-4 *5 (-513))
+ (-5 *2 (-587 (-587 (-269 (-381 (-881 *5)))))) (-5 *1 (-1090 *5))
+ (-5 *3 (-587 (-269 (-381 (-881 *5)))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-587 (-381 (-881 *4)))) (-4 *4 (-513))
+ (-5 *2 (-587 (-587 (-269 (-381 (-881 *4)))))) (-5 *1 (-1090 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-513)) (-5 *2 (-587 (-587 (-269 (-381 (-881 *4))))))
+ (-5 *1 (-1090 *4)) (-5 *3 (-587 (-269 (-381 (-881 *4)))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1084)) (-4 *5 (-513))
+ (-5 *2 (-587 (-269 (-381 (-881 *5))))) (-5 *1 (-1090 *5))
+ (-5 *3 (-381 (-881 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1084)) (-4 *5 (-513))
+ (-5 *2 (-587 (-269 (-381 (-881 *5))))) (-5 *1 (-1090 *5))
+ (-5 *3 (-269 (-381 (-881 *5))))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-513)) (-5 *2 (-587 (-269 (-381 (-881 *4)))))
+ (-5 *1 (-1090 *4)) (-5 *3 (-381 (-881 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-513)) (-5 *2 (-587 (-269 (-381 (-881 *4)))))
+ (-5 *1 (-1090 *4)) (-5 *3 (-269 (-381 (-881 *4)))))))
+(((*1 *1 *1) (-5 *1 (-202)))
+ ((*1 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203))))
+ ((*1 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-405 *3 *2))
+ (-4 *2 (-404 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-405 *3 *2))
+ (-4 *2 (-404 *3))))
+ ((*1 *1 *1) (-4 *1 (-1048))) ((*1 *1 *1 *1) (-4 *1 (-1048))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))))
+(((*1 *1) (-5 *1 (-1167))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-441)) (-5 *4 (-850)) (-5 *2 (-1170)) (-5 *1 (-1166)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-25)) (-4 *3 (-784)) (-5 *2 (-587 *1))
+ (-4 *1 (-404 *3))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-587 (-821 *3))) (-5 *1 (-821 *3))
+ (-4 *3 (-1013))))
((*1 *2 *1)
- (-12 (-4 *1 (-983 *3 *4 *5)) (-4 *3 (-969)) (-4 *4 (-728))
- (-4 *5 (-783)) (-5 *2 (-108)))))
+ (|partial| -12 (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784))
+ (-5 *2 (-587 *1)) (-4 *1 (-878 *3 *4 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-729)) (-4 *5 (-784)) (-4 *6 (-970))
+ (-4 *7 (-878 *6 *4 *5)) (-5 *2 (-587 *3))
+ (-5 *1 (-879 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-337)
+ (-10 -8 (-15 -2189 ($ *7)) (-15 -2801 (*7 $))
+ (-15 -2812 (*7 $))))))))
+(((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-341 *2)) (-4 *2 (-157)) (-4 *2 (-513))))
+ ((*1 *1 *1) (|partial| -4 *1 (-659))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-3
+ (|:| |noa|
+ (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202)))
+ (|:| |lb| (-587 (-777 (-202))))
+ (|:| |cf| (-587 (-290 (-202))))
+ (|:| |ub| (-587 (-777 (-202))))))
+ (|:| |lsa|
+ (-2 (|:| |lfn| (-587 (-290 (-202))))
+ (|:| -3797 (-587 (-202)))))))
+ (-5 *2 (-587 (-1067))) (-5 *1 (-243)))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-289 (-520))) (|:| -4045 (-289 (-352)))
- (|:| CF (-289 (-154 (-352)))) (|:| |switch| (-1082))))
- (-5 *1 (-1082)))))
+ (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353)))
+ (|:| CF (-290 (-154 (-353)))) (|:| |switch| (-1083))))
+ (-5 *1 (-1083)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1113 *2 *3 *4 *5)) (-4 *2 (-513)) (-4 *3 (-729))
+ (-4 *4 (-784)) (-4 *5 (-984 *2 *3 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-587 (-881 (-521)))) (-5 *1 (-411))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1084)) (-5 *4 (-627 (-202))) (-5 *2 (-1017))
+ (-5 *1 (-696))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1084)) (-5 *4 (-627 (-521))) (-5 *2 (-1017))
+ (-5 *1 (-696)))))
+(((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-1065 (-2 (|:| |k| (-521)) (|:| |c| *6))))
+ (-5 *4 (-950 (-777 (-521)))) (-5 *5 (-1084)) (-5 *7 (-381 (-521)))
+ (-4 *6 (-970)) (-5 *2 (-792)) (-5 *1 (-546 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1084))
+ (-4 *5 (-13 (-282) (-784) (-135) (-961 (-521)) (-583 (-521))))
+ (-5 *2 (-538 *3)) (-5 *1 (-400 *5 *3))
+ (-4 *3 (-13 (-1105) (-29 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1084)) (-4 *5 (-13 (-513) (-961 (-521)) (-135)))
+ (-5 *2 (-538 (-381 (-881 *5)))) (-5 *1 (-527 *5))
+ (-5 *3 (-381 (-881 *5))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-520)) (-5 *1 (-417 *3)) (-4 *3 (-377)) (-4 *3 (-969)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-586 *6)) (-4 *6 (-877 *3 *4 *5)) (-4 *3 (-281))
- (-4 *4 (-728)) (-4 *5 (-783)) (-5 *1 (-419 *3 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-586 *7)) (-5 *3 (-1066)) (-4 *7 (-877 *4 *5 *6))
- (-4 *4 (-281)) (-4 *5 (-728)) (-4 *6 (-783))
- (-5 *1 (-419 *4 *5 *6 *7))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-586 *7)) (-5 *3 (-1066)) (-4 *7 (-877 *4 *5 *6))
- (-4 *4 (-281)) (-4 *5 (-728)) (-4 *6 (-783))
- (-5 *1 (-419 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7)
- (-12 (-5 *4 (-520)) (-5 *5 (-626 (-201)))
- (-5 *6 (-3 (|:| |fn| (-361)) (|:| |fp| (-87 G))))
- (-5 *7 (-3 (|:| |fn| (-361)) (|:| |fp| (-84 FCN)))) (-5 *3 (-201))
- (-5 *2 (-958)) (-5 *1 (-685)))))
-(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
- (-12 (-5 *3 (-1066)) (-5 *4 (-520)) (-5 *5 (-626 (-201)))
- (-5 *2 (-958)) (-5 *1 (-690)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1079 *6)) (-5 *3 (-520)) (-4 *6 (-281)) (-4 *4 (-728))
- (-4 *5 (-783)) (-5 *1 (-678 *4 *5 *6 *7)) (-4 *7 (-877 *6 *4 *5)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-706)) (-4 *4 (-13 (-969) (-653 (-380 (-520)))))
- (-4 *5 (-783)) (-5 *1 (-1178 *4 *5 *2)) (-4 *2 (-1183 *5 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-892 *3)) (-4 *3 (-893)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-407)))))
+ (-12 (-5 *3 (-1080 *6)) (-4 *6 (-970)) (-4 *4 (-729)) (-4 *5 (-784))
+ (-5 *2 (-1080 *7)) (-5 *1 (-295 *4 *5 *6 *7))
+ (-4 *7 (-878 *6 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-323)) (-5 *2 (-392 *3)) (-5 *1 (-194 *4 *3))
+ (-4 *3 (-1141 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-392 *3)) (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-707)) (-5 *2 (-392 *3)) (-5 *1 (-415 *3))
+ (-4 *3 (-1141 (-521)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-587 (-707))) (-5 *2 (-392 *3)) (-5 *1 (-415 *3))
+ (-4 *3 (-1141 (-521)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-587 (-707))) (-5 *5 (-707)) (-5 *2 (-392 *3))
+ (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-707)) (-5 *2 (-392 *3)) (-5 *1 (-415 *3))
+ (-4 *3 (-1141 (-521)))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-392 *3)) (-5 *1 (-932 *3))
+ (-4 *3 (-1141 (-381 (-521))))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-392 *3)) (-5 *1 (-1130 *3)) (-4 *3 (-1141 (-521))))))
(((*1 *1)
- (|partial| -12 (-4 *1 (-340 *2)) (-4 *2 (-512)) (-4 *2 (-157)))))
+ (|partial| -12 (-4 *1 (-341 *2)) (-4 *2 (-513)) (-4 *2 (-157)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-587 (-2 (|:| |deg| (-707)) (|:| -2576 *5))))
+ (-4 *5 (-1141 *4)) (-4 *4 (-323)) (-5 *2 (-587 *5))
+ (-5 *1 (-194 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-587 (-2 (|:| -1916 *5) (|:| -1994 (-521)))))
+ (-5 *4 (-521)) (-4 *5 (-1141 *4)) (-5 *2 (-587 *5))
+ (-5 *1 (-633 *5)))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-289 (-520))) (|:| -4045 (-289 (-352)))
- (|:| CF (-289 (-154 (-352)))) (|:| |switch| (-1082))))
- (-5 *1 (-1082)))))
+ (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353)))
+ (|:| CF (-290 (-154 (-353)))) (|:| |switch| (-1083))))
+ (-5 *1 (-1083)))))
(((*1 *2 *3 *3)
- (-12 (-4 *2 (-512)) (-5 *1 (-895 *2 *3)) (-4 *3 (-1140 *2)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1079 (-380 (-880 *3)))) (-5 *1 (-425 *3 *4 *5 *6))
- (-4 *3 (-512)) (-4 *3 (-157)) (-14 *4 (-849))
- (-14 *5 (-586 (-1083))) (-14 *6 (-1164 (-626 *3))))))
+ (-12 (-4 *4 (-513))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2114 *4)))
+ (-5 *1 (-896 *4 *3)) (-4 *3 (-1141 *4)))))
+(((*1 *2 *3 *3 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-1 (-202) (-202) (-202)))
+ (-5 *4 (-3 (-1 (-202) (-202) (-202) (-202)) "undefined"))
+ (-5 *5 (-1008 (-202))) (-5 *6 (-587 (-239))) (-5 *2 (-1044 (-202)))
+ (-5 *1 (-634))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-872 (-202)) (-202) (-202))) (-5 *4 (-1008 (-202)))
+ (-5 *5 (-587 (-239))) (-5 *2 (-1044 (-202))) (-5 *1 (-634))))
+ ((*1 *2 *2 *3 *4 *4 *5)
+ (-12 (-5 *2 (-1044 (-202))) (-5 *3 (-1 (-872 (-202)) (-202) (-202)))
+ (-5 *4 (-1008 (-202))) (-5 *5 (-587 (-239))) (-5 *1 (-634)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-706)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-520))
+ (-12 (-5 *2 (-707)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-521))
(-14 *4 *2) (-4 *5 (-157))))
((*1 *2)
- (-12 (-4 *4 (-157)) (-5 *2 (-849)) (-5 *1 (-150 *3 *4))
+ (-12 (-4 *4 (-157)) (-5 *2 (-850)) (-5 *1 (-150 *3 *4))
(-4 *3 (-151 *4))))
- ((*1 *2) (-12 (-4 *1 (-340 *3)) (-4 *3 (-157)) (-5 *2 (-849))))
+ ((*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-5 *2 (-850))))
((*1 *2)
- (-12 (-4 *1 (-343 *3 *4)) (-4 *3 (-157)) (-4 *4 (-1140 *3))
- (-5 *2 (-849))))
+ (-12 (-4 *1 (-344 *3 *4)) (-4 *3 (-157)) (-4 *4 (-1141 *3))
+ (-5 *2 (-850))))
((*1 *2 *3)
- (-12 (-4 *4 (-336)) (-4 *5 (-346 *4)) (-4 *6 (-346 *4))
- (-5 *2 (-706)) (-5 *1 (-487 *4 *5 *6 *3)) (-4 *3 (-624 *4 *5 *6))))
+ (-12 (-4 *4 (-337)) (-4 *5 (-347 *4)) (-4 *6 (-347 *4))
+ (-5 *2 (-707)) (-5 *1 (-488 *4 *5 *6 *3)) (-4 *3 (-625 *4 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-626 *5)) (-5 *4 (-1164 *5)) (-4 *5 (-336))
- (-5 *2 (-706)) (-5 *1 (-607 *5))))
+ (-12 (-5 *3 (-627 *5)) (-5 *4 (-1165 *5)) (-4 *5 (-337))
+ (-5 *2 (-707)) (-5 *1 (-608 *5))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-336)) (-4 *6 (-13 (-346 *5) (-10 -7 (-6 -4230))))
- (-4 *4 (-13 (-346 *5) (-10 -7 (-6 -4230)))) (-5 *2 (-706))
- (-5 *1 (-608 *5 *6 *4 *3)) (-4 *3 (-624 *5 *6 *4))))
+ (-12 (-4 *5 (-337)) (-4 *6 (-13 (-347 *5) (-10 -7 (-6 -4234))))
+ (-4 *4 (-13 (-347 *5) (-10 -7 (-6 -4234)))) (-5 *2 (-707))
+ (-5 *1 (-609 *5 *6 *4 *3)) (-4 *3 (-625 *5 *6 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-624 *3 *4 *5)) (-4 *3 (-969)) (-4 *4 (-346 *3))
- (-4 *5 (-346 *3)) (-4 *3 (-512)) (-5 *2 (-706))))
+ (-12 (-4 *1 (-625 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-347 *3))
+ (-4 *5 (-347 *3)) (-4 *3 (-513)) (-5 *2 (-707))))
((*1 *2 *3)
- (-12 (-4 *4 (-512)) (-4 *4 (-157)) (-4 *5 (-346 *4))
- (-4 *6 (-346 *4)) (-5 *2 (-706)) (-5 *1 (-625 *4 *5 *6 *3))
- (-4 *3 (-624 *4 *5 *6))))
+ (-12 (-4 *4 (-513)) (-4 *4 (-157)) (-4 *5 (-347 *4))
+ (-4 *6 (-347 *4)) (-5 *2 (-707)) (-5 *1 (-626 *4 *5 *6 *3))
+ (-4 *3 (-625 *4 *5 *6))))
((*1 *2 *1)
- (-12 (-4 *1 (-972 *3 *4 *5 *6 *7)) (-4 *5 (-969))
- (-4 *6 (-214 *4 *5)) (-4 *7 (-214 *3 *5)) (-4 *5 (-512))
- (-5 *2 (-706)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1083)) (-5 *3 (-586 (-880 (-520))))
- (-5 *4 (-289 (-154 (-352)))) (-5 *1 (-303))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1083)) (-5 *3 (-586 (-880 (-520))))
- (-5 *4 (-289 (-352))) (-5 *1 (-303))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1083)) (-5 *3 (-586 (-880 (-520))))
- (-5 *4 (-289 (-520))) (-5 *1 (-303))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1083)) (-5 *3 (-1164 (-289 (-154 (-352)))))
- (-5 *1 (-303))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1083)) (-5 *3 (-1164 (-289 (-352)))) (-5 *1 (-303))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1083)) (-5 *3 (-1164 (-289 (-520)))) (-5 *1 (-303))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1083)) (-5 *3 (-626 (-289 (-154 (-352)))))
- (-5 *1 (-303))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1083)) (-5 *3 (-626 (-289 (-352)))) (-5 *1 (-303))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1083)) (-5 *3 (-626 (-289 (-520)))) (-5 *1 (-303))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1083)) (-5 *3 (-289 (-154 (-352)))) (-5 *1 (-303))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1083)) (-5 *3 (-289 (-352))) (-5 *1 (-303))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1083)) (-5 *3 (-289 (-520))) (-5 *1 (-303))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1083)) (-5 *3 (-586 (-880 (-520))))
- (-5 *4 (-289 (-630))) (-5 *1 (-303))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1083)) (-5 *3 (-586 (-880 (-520))))
- (-5 *4 (-289 (-635))) (-5 *1 (-303))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1083)) (-5 *3 (-586 (-880 (-520))))
- (-5 *4 (-289 (-637))) (-5 *1 (-303))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1083)) (-5 *3 (-1164 (-289 (-630)))) (-5 *1 (-303))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1083)) (-5 *3 (-1164 (-289 (-635)))) (-5 *1 (-303))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1083)) (-5 *3 (-1164 (-289 (-637)))) (-5 *1 (-303))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1083)) (-5 *3 (-626 (-289 (-630)))) (-5 *1 (-303))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1083)) (-5 *3 (-626 (-289 (-635)))) (-5 *1 (-303))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1083)) (-5 *3 (-626 (-289 (-637)))) (-5 *1 (-303))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1083)) (-5 *3 (-1164 (-630))) (-5 *1 (-303))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1083)) (-5 *3 (-1164 (-635))) (-5 *1 (-303))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1083)) (-5 *3 (-1164 (-637))) (-5 *1 (-303))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1083)) (-5 *3 (-626 (-630))) (-5 *1 (-303))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1083)) (-5 *3 (-626 (-635))) (-5 *1 (-303))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1083)) (-5 *3 (-626 (-637))) (-5 *1 (-303))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1083)) (-5 *3 (-289 (-630))) (-5 *1 (-303))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1083)) (-5 *3 (-289 (-635))) (-5 *1 (-303))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1083)) (-5 *3 (-289 (-637))) (-5 *1 (-303))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1083)) (-5 *3 (-1066)) (-5 *1 (-303))))
- ((*1 *1 *1 *1) (-5 *1 (-791))))
-(((*1 *2 *3) (-12 (-5 *3 (-706)) (-5 *2 (-1169)) (-5 *1 (-352))))
- ((*1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-352)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-759)) (-5 *2 (-1169)) (-5 *1 (-758)))))
-(((*1 *2 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-520)) (-5 *4 (-1066)) (-5 *5 (-626 (-201)))
- (-5 *2 (-958)) (-5 *1 (-683)))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-586 *6)) (-5 *4 (-586 (-223 *5 *6))) (-4 *6 (-424))
- (-5 *2 (-223 *5 *6)) (-14 *5 (-586 (-1083))) (-5 *1 (-574 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-626 (-289 (-201)))) (-5 *2 (-352)) (-5 *1 (-183)))))
+ (-12 (-4 *1 (-973 *3 *4 *5 *6 *7)) (-4 *5 (-970))
+ (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-4 *5 (-513))
+ (-5 *2 (-707)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-202)) (-5 *1 (-30))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-392 *4) *4)) (-4 *4 (-513)) (-5 *2 (-392 *4))
+ (-5 *1 (-393 *4))))
+ ((*1 *1 *1) (-5 *1 (-855)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1008 (-202))) (-5 *1 (-855))))
+ ((*1 *1 *1) (-5 *1 (-856)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1008 (-202))) (-5 *1 (-856))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521)))))
+ (-5 *4 (-381 (-521))) (-5 *1 (-944 *3)) (-4 *3 (-1141 (-521)))))
+ ((*1 *2 *3 *2 *2)
+ (|partial| -12
+ (-5 *2 (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521)))))
+ (-5 *1 (-944 *3)) (-4 *3 (-1141 (-521)))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521)))))
+ (-5 *4 (-381 (-521))) (-5 *1 (-945 *3)) (-4 *3 (-1141 *4))))
+ ((*1 *2 *3 *2 *2)
+ (|partial| -12
+ (-5 *2 (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521)))))
+ (-5 *1 (-945 *3)) (-4 *3 (-1141 (-381 (-521))))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-13 (-782) (-337))) (-5 *1 (-980 *2 *3))
+ (-4 *3 (-1141 *2)))))
+(((*1 *2)
+ (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-340 *3 *4))
+ (-4 *3 (-341 *4))))
+ ((*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-5 *2 (-108)))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *5 (-202))
+ (-5 *2 (-959)) (-5 *1 (-689)))))
+(((*1 *1 *1 *1) (-4 *1 (-506))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-521)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime"))
+ (-5 *1 (-392 *4)) (-4 *4 (-513)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-587 *1)) (-4 *1 (-984 *4 *5 *6)) (-4 *4 (-970))
+ (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-108))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-984 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-729))
+ (-4 *5 (-784)) (-5 *2 (-108))))
+ ((*1 *2 *3 *1 *4)
+ (-12 (-5 *4 (-1 (-108) *3 *3)) (-4 *1 (-1113 *5 *6 *7 *3))
+ (-4 *5 (-513)) (-4 *6 (-729)) (-4 *7 (-784)) (-4 *3 (-984 *5 *6 *7))
+ (-5 *2 (-108)))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-289 (-520))) (|:| -4045 (-289 (-352)))
- (|:| CF (-289 (-154 (-352)))) (|:| |switch| (-1082))))
- (-5 *1 (-1082)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1079 (-880 *6))) (-4 *6 (-512))
- (-4 *2 (-877 (-380 (-880 *6)) *5 *4)) (-5 *1 (-668 *5 *4 *6 *2))
- (-4 *5 (-728))
- (-4 *4 (-13 (-783) (-10 -8 (-15 -1429 ((-1083) $))))))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-296 *3 *4)) (-4 *3 (-1012))
- (-4 *4 (-124))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1012)) (-5 *1 (-334 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1012)) (-5 *1 (-359 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1012)) (-5 *1 (-589 *3 *4 *5))
- (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-969)) (-4 *3 (-727))))
+ (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353)))
+ (|:| CF (-290 (-154 (-353)))) (|:| |switch| (-1083))))
+ (-5 *1 (-1083)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1165 (-1165 (-521)))) (-5 *3 (-850)) (-5 *1 (-439)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-587 (-560 *5))) (-5 *3 (-1084)) (-4 *5 (-404 *4))
+ (-4 *4 (-784)) (-5 *1 (-530 *4 *5)))))
+(((*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-970)) (-4 *3 (-728))))
((*1 *1 *1)
- (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-969)) (-14 *3 (-586 (-1083)))))
+ (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-970)) (-14 *3 (-587 (-1084)))))
((*1 *1 *1)
- (-12 (-5 *1 (-199 *2 *3)) (-4 *2 (-13 (-969) (-783)))
- (-14 *3 (-586 (-1083)))))
- ((*1 *1 *1) (-12 (-4 *1 (-355 *2 *3)) (-4 *2 (-969)) (-4 *3 (-1012))))
+ (-12 (-5 *1 (-200 *2 *3)) (-4 *2 (-13 (-970) (-784)))
+ (-14 *3 (-587 (-1084)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-356 *2 *3)) (-4 *2 (-970)) (-4 *3 (-1013))))
((*1 *1 *1)
- (-12 (-14 *2 (-586 (-1083))) (-4 *3 (-157))
- (-4 *5 (-214 (-3474 *2) (-706)))
+ (-12 (-14 *2 (-587 (-1084))) (-4 *3 (-157))
+ (-4 *5 (-215 (-3475 *2) (-707)))
(-14 *6
- (-1 (-108) (-2 (|:| -2716 *4) (|:| -2647 *5))
- (-2 (|:| -2716 *4) (|:| -2647 *5))))
- (-5 *1 (-433 *2 *3 *4 *5 *6 *7)) (-4 *4 (-783))
- (-4 *7 (-877 *3 *5 (-793 *2)))))
- ((*1 *1 *1) (-12 (-4 *1 (-476 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-783))))
+ (-1 (-108) (-2 (|:| -2716 *4) (|:| -2997 *5))
+ (-2 (|:| -2716 *4) (|:| -2997 *5))))
+ (-5 *1 (-434 *2 *3 *4 *5 *6 *7)) (-4 *4 (-784))
+ (-4 *7 (-878 *3 *5 (-794 *2)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-477 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-784))))
((*1 *1 *1)
- (-12 (-4 *2 (-512)) (-5 *1 (-567 *2 *3)) (-4 *3 (-1140 *2))))
- ((*1 *1 *1) (-12 (-4 *1 (-645 *2)) (-4 *2 (-969))))
+ (-12 (-4 *2 (-513)) (-5 *1 (-568 *2 *3)) (-4 *3 (-1141 *2))))
+ ((*1 *1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-970))))
((*1 *1 *1)
- (-12 (-5 *1 (-671 *2 *3)) (-4 *3 (-783)) (-4 *2 (-969))
- (-4 *3 (-662))))
- ((*1 *1 *1) (-12 (-4 *1 (-785 *2)) (-4 *2 (-969))))
+ (-12 (-5 *1 (-672 *2 *3)) (-4 *3 (-784)) (-4 *2 (-970))
+ (-4 *3 (-663))))
+ ((*1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-970))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-983 *3 *4 *2)) (-4 *3 (-969)) (-4 *4 (-728))
- (-4 *2 (-783))))
- ((*1 *1 *1) (-12 (-5 *1 (-1185 *2 *3)) (-4 *2 (-969)) (-4 *3 (-779)))))
+ (-12 (-4 *1 (-984 *3 *4 *2)) (-4 *3 (-970)) (-4 *4 (-729))
+ (-4 *2 (-784))))
+ ((*1 *1 *1) (-12 (-5 *1 (-1186 *2 *3)) (-4 *2 (-970)) (-4 *3 (-780)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1013)) (-4 *6 (-815 *5)) (-5 *2 (-814 *5 *6 (-587 *6)))
+ (-5 *1 (-816 *5 *6 *4)) (-5 *3 (-587 *6)) (-4 *4 (-562 (-821 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1013)) (-5 *2 (-587 (-269 *3))) (-5 *1 (-816 *5 *3 *4))
+ (-4 *3 (-961 (-1084))) (-4 *3 (-815 *5)) (-4 *4 (-562 (-821 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1013)) (-5 *2 (-587 (-269 (-881 *3))))
+ (-5 *1 (-816 *5 *3 *4)) (-4 *3 (-970))
+ (-2400 (-4 *3 (-961 (-1084)))) (-4 *3 (-815 *5))
+ (-4 *4 (-562 (-821 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1013)) (-5 *2 (-818 *5 *3)) (-5 *1 (-816 *5 *3 *4))
+ (-2400 (-4 *3 (-961 (-1084)))) (-2400 (-4 *3 (-970)))
+ (-4 *3 (-815 *5)) (-4 *4 (-562 (-821 *5))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-624 *3 *4 *5)) (-4 *3 (-969)) (-4 *4 (-346 *3))
- (-4 *5 (-346 *3)) (-5 *2 (-108))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-972 *3 *4 *5 *6 *7)) (-4 *5 (-969))
- (-4 *6 (-214 *4 *5)) (-4 *7 (-214 *3 *5)) (-5 *2 (-108)))))
-(((*1 *1 *2 *3 *3 *4 *5)
- (-12 (-5 *2 (-586 (-586 (-871 (-201))))) (-5 *3 (-586 (-802)))
- (-5 *4 (-586 (-849))) (-5 *5 (-586 (-238))) (-5 *1 (-440))))
- ((*1 *1 *2 *3 *3 *4)
- (-12 (-5 *2 (-586 (-586 (-871 (-201))))) (-5 *3 (-586 (-802)))
- (-5 *4 (-586 (-849))) (-5 *1 (-440))))
- ((*1 *1 *2) (-12 (-5 *2 (-586 (-586 (-871 (-201))))) (-5 *1 (-440))))
- ((*1 *1 *1) (-5 *1 (-440))))
-(((*1 *2 *2) (|partial| -12 (-5 *2 (-289 (-201))) (-5 *1 (-242)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 (-108) *7 (-586 *7))) (-4 *1 (-1112 *4 *5 *6 *7))
- (-4 *4 (-512)) (-4 *5 (-728)) (-4 *6 (-783)) (-4 *7 (-983 *4 *5 *6))
- (-5 *2 (-108)))))
+ (-12 (-5 *2 (-587 (-2 (|:| |integrand| *3) (|:| |intvar| *3))))
+ (-5 *1 (-538 *3)) (-4 *3 (-337)))))
+(((*1 *1) (-5 *1 (-143))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-850))
+ (-5 *2
+ (-3 (-1080 *4)
+ (-1165 (-587 (-2 (|:| -3430 *4) (|:| -2716 (-1031)))))))
+ (-5 *1 (-320 *4)) (-4 *4 (-323)))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-289 (-520))) (|:| -4045 (-289 (-352)))
- (|:| CF (-289 (-154 (-352)))) (|:| |switch| (-1082))))
- (-5 *1 (-1082)))))
+ (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353)))
+ (|:| CF (-290 (-154 (-353)))) (|:| |switch| (-1083))))
+ (-5 *1 (-1083)))))
+(((*1 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-872 *3) (-872 *3))) (-5 *1 (-160 *3))
+ (-4 *3 (-13 (-337) (-1105) (-927))))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *2 (-587 *1))
+ (-4 *1 (-878 *3 *4 *5)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959))
+ (-5 *1 (-684)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-759)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-512)) (-5 *1 (-40 *3 *2))
- (-4 *2
- (-13 (-336) (-276)
- (-10 -8 (-15 -2800 ((-1035 *3 (-559 $)) $))
- (-15 -2811 ((-1035 *3 (-559 $)) $))
- (-15 -2188 ($ (-1035 *3 (-559 $))))))))))
-(((*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-132)))))
+ (-12 (-4 *3 (-282)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3))
+ (-5 *1 (-1035 *3 *4 *5 *2)) (-4 *2 (-625 *3 *4 *5)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-1119)) (-5 *1 (-165 *3 *2)) (-4 *2 (-614 *3)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7)
+ (-12 (-5 *3 (-521)) (-5 *5 (-627 (-202)))
+ (-5 *6 (-3 (|:| |fn| (-362)) (|:| |fp| (-73 FCN JACOBF JACEPS))))
+ (-5 *7 (-3 (|:| |fn| (-362)) (|:| |fp| (-74 G JACOBG JACGEP))))
+ (-5 *4 (-202)) (-5 *2 (-959)) (-5 *1 (-686)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *2 (-586 *1))
- (-4 *1 (-877 *3 *4 *5)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-352)) (-5 *1 (-183))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-586 (-352))) (-5 *2 (-352)) (-5 *1 (-183)))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-1186 *3 *4)) (-4 *1 (-347 *3 *4)) (-4 *3 (-783))
- (-4 *4 (-157))))
- ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-359 *2)) (-4 *2 (-1012))))
- ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-755 *2)) (-4 *2 (-783))))
- ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-755 *2)) (-4 *2 (-783))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1179 *2 *3)) (-4 *2 (-783)) (-4 *3 (-969))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-755 *3)) (-4 *1 (-1179 *3 *4)) (-4 *3 (-783))
- (-4 *4 (-969))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1179 *2 *3)) (-4 *2 (-783)) (-4 *3 (-969)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-520)) (-4 *4 (-157)) (-4 *5 (-346 *4))
- (-4 *6 (-346 *4)) (-5 *1 (-625 *4 *5 *6 *2))
- (-4 *2 (-624 *4 *5 *6)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-1083)) (-5 *2 (-104)) (-5 *1 (-159))))
- ((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-1083)) (-5 *2 (-104)) (-5 *1 (-999)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1083)) (-5 *2 (-352)) (-5 *1 (-981)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1012)) (-4 *3 (-828 *5)) (-5 *2 (-1164 *3))
- (-5 *1 (-628 *5 *3 *6 *4)) (-4 *6 (-346 *3))
- (-4 *4 (-13 (-346 *5) (-10 -7 (-6 -4229)))))))
-(((*1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-854)))))
-(((*1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-854)))))
-(((*1 *2 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-727)) (-4 *2 (-969))))
+ (-12 (-4 *1 (-1184 *3 *4)) (-4 *3 (-784)) (-4 *4 (-970))
+ (-5 *2 (-756 *3))))
+ ((*1 *2 *1) (-12 (-4 *2 (-780)) (-5 *1 (-1186 *3 *2)) (-4 *3 (-970)))))
+(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3)
+ (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *5 (-202))
+ (-5 *2 (-959)) (-5 *1 (-688)))))
+(((*1 *2 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-728)) (-4 *2 (-970))))
((*1 *2 *1)
- (-12 (-4 *2 (-969)) (-5 *1 (-49 *2 *3)) (-14 *3 (-586 (-1083)))))
+ (-12 (-4 *2 (-970)) (-5 *1 (-49 *2 *3)) (-14 *3 (-587 (-1084)))))
((*1 *2 *1)
- (-12 (-5 *2 (-289 *3)) (-5 *1 (-199 *3 *4))
- (-4 *3 (-13 (-969) (-783))) (-14 *4 (-586 (-1083)))))
- ((*1 *2 *1) (-12 (-4 *1 (-355 *2 *3)) (-4 *3 (-1012)) (-4 *2 (-969))))
+ (-12 (-5 *2 (-290 *3)) (-5 *1 (-200 *3 *4))
+ (-4 *3 (-13 (-970) (-784))) (-14 *4 (-587 (-1084)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-356 *2 *3)) (-4 *3 (-1013)) (-4 *2 (-970))))
((*1 *2 *1)
- (-12 (-14 *3 (-586 (-1083))) (-4 *5 (-214 (-3474 *3) (-706)))
+ (-12 (-14 *3 (-587 (-1084))) (-4 *5 (-215 (-3475 *3) (-707)))
(-14 *6
- (-1 (-108) (-2 (|:| -2716 *4) (|:| -2647 *5))
- (-2 (|:| -2716 *4) (|:| -2647 *5))))
- (-4 *2 (-157)) (-5 *1 (-433 *3 *2 *4 *5 *6 *7)) (-4 *4 (-783))
- (-4 *7 (-877 *2 *5 (-793 *3)))))
- ((*1 *2 *1) (-12 (-4 *1 (-476 *2 *3)) (-4 *3 (-783)) (-4 *2 (-1012))))
+ (-1 (-108) (-2 (|:| -2716 *4) (|:| -2997 *5))
+ (-2 (|:| -2716 *4) (|:| -2997 *5))))
+ (-4 *2 (-157)) (-5 *1 (-434 *3 *2 *4 *5 *6 *7)) (-4 *4 (-784))
+ (-4 *7 (-878 *2 *5 (-794 *3)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-477 *2 *3)) (-4 *3 (-784)) (-4 *2 (-1013))))
((*1 *2 *1)
- (-12 (-4 *2 (-512)) (-5 *1 (-567 *2 *3)) (-4 *3 (-1140 *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-645 *2)) (-4 *2 (-969))))
+ (-12 (-4 *2 (-513)) (-5 *1 (-568 *2 *3)) (-4 *3 (-1141 *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-970))))
((*1 *2 *1)
- (-12 (-4 *2 (-969)) (-5 *1 (-671 *2 *3)) (-4 *3 (-783))
- (-4 *3 (-662))))
- ((*1 *2 *1) (-12 (-4 *1 (-785 *2)) (-4 *2 (-969))))
+ (-12 (-4 *2 (-970)) (-5 *1 (-672 *2 *3)) (-4 *3 (-784))
+ (-4 *3 (-663))))
+ ((*1 *2 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-970))))
((*1 *2 *1)
- (-12 (-4 *1 (-898 *2 *3 *4)) (-4 *3 (-727)) (-4 *4 (-783))
- (-4 *2 (-969))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-983 *3 *4 *2)) (-4 *3 (-969)) (-4 *4 (-728))
- (-4 *2 (-783)))))
-(((*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-51)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-706)) (-4 *1 (-347 *3 *4)) (-4 *3 (-783))
- (-4 *4 (-157))))
+ (-12 (-4 *1 (-899 *2 *3 *4)) (-4 *3 (-728)) (-4 *4 (-784))
+ (-4 *2 (-970))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-706)) (-4 *1 (-1183 *3 *4)) (-4 *3 (-783))
- (-4 *4 (-969)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-201)) (-5 *4 (-520)) (-5 *2 (-958)) (-5 *1 (-694)))))
+ (-12 (-4 *1 (-984 *3 *4 *2)) (-4 *3 (-970)) (-4 *4 (-729))
+ (-4 *2 (-784)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-587 *7)) (-4 *7 (-989 *3 *4 *5 *6)) (-4 *3 (-425))
+ (-4 *4 (-729)) (-4 *5 (-784)) (-4 *6 (-984 *3 *4 *5))
+ (-5 *1 (-914 *3 *4 *5 *6 *7))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-587 *7)) (-4 *7 (-989 *3 *4 *5 *6)) (-4 *3 (-425))
+ (-4 *4 (-729)) (-4 *5 (-784)) (-4 *6 (-984 *3 *4 *5))
+ (-5 *1 (-1020 *3 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-1067)) (-4 *6 (-425)) (-4 *7 (-729)) (-4 *8 (-784))
+ (-4 *4 (-984 *6 *7 *8)) (-5 *2 (-1170))
+ (-5 *1 (-712 *6 *7 *8 *4 *5)) (-4 *5 (-989 *6 *7 *8 *4)))))
+(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-202)) (-5 *4 (-521))
+ (-5 *5 (-3 (|:| |fn| (-362)) (|:| |fp| (-62 G)))) (-5 *2 (-959))
+ (-5 *1 (-685)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 (-521))) (-4 *3 (-970)) (-5 *1 (-546 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 (-521))) (-4 *1 (-1125 *3)) (-4 *3 (-970))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 (-521))) (-4 *1 (-1156 *3)) (-4 *3 (-970)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970)) (-5 *2 (-108)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-586 *8)) (-5 *4 (-128 *5 *6 *7)) (-14 *5 (-520))
- (-14 *6 (-706)) (-4 *7 (-157)) (-4 *8 (-157))
+ (-12 (-5 *3 (-587 *8)) (-5 *4 (-128 *5 *6 *7)) (-14 *5 (-521))
+ (-14 *6 (-707)) (-4 *7 (-157)) (-4 *8 (-157))
(-5 *2 (-128 *5 *6 *8)) (-5 *1 (-127 *5 *6 *7 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-586 *9)) (-4 *9 (-969)) (-4 *5 (-783)) (-4 *6 (-728))
- (-4 *8 (-969)) (-4 *2 (-877 *9 *7 *5))
- (-5 *1 (-664 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-728))
- (-4 *4 (-877 *8 *6 *5)))))
-(((*1 *2)
- (-12 (-4 *1 (-315 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-1140 *3))
- (-4 *5 (-1140 (-380 *4))) (-5 *2 (-108)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-969)) (-5 *2 (-1164 *3)) (-5 *1 (-648 *3 *4))
- (-4 *4 (-1140 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-586 *3)) (-4 *3 (-1012)) (-5 *1 (-89 *3)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7)
- (-12 (-5 *3 (-520)) (-5 *5 (-626 (-201)))
- (-5 *6 (-3 (|:| |fn| (-361)) (|:| |fp| (-73 FCN JACOBF JACEPS))))
- (-5 *7 (-3 (|:| |fn| (-361)) (|:| |fp| (-74 G JACOBG JACGEP))))
- (-5 *4 (-201)) (-5 *2 (-958)) (-5 *1 (-685)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-586 (-2 (|:| |k| (-1083)) (|:| |c| (-1184 *3)))))
- (-5 *1 (-1184 *3)) (-4 *3 (-969))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-586 (-2 (|:| |k| *3) (|:| |c| (-1186 *3 *4)))))
- (-5 *1 (-1186 *3 *4)) (-4 *3 (-783)) (-4 *4 (-969)))))
-(((*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-969)) (-4 *3 (-727))))
- ((*1 *2 *1) (-12 (-4 *1 (-355 *3 *2)) (-4 *3 (-969)) (-4 *2 (-1012))))
+ (-12 (-5 *3 (-587 *9)) (-4 *9 (-970)) (-4 *5 (-784)) (-4 *6 (-729))
+ (-4 *8 (-970)) (-4 *2 (-878 *9 *7 *5))
+ (-5 *1 (-665 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-729))
+ (-4 *4 (-878 *8 *6 *5)))))
+(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
+ (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959))
+ (-5 *1 (-688)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-57 *6)) (-4 *6 (-1119))
+ (-4 *5 (-1119)) (-5 *2 (-57 *5)) (-5 *1 (-56 *6 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-217 *6 *7)) (-14 *6 (-707))
+ (-4 *7 (-1119)) (-4 *5 (-1119)) (-5 *2 (-217 *6 *5))
+ (-5 *1 (-216 *6 *7 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1119)) (-4 *5 (-1119))
+ (-4 *2 (-347 *5)) (-5 *1 (-345 *6 *4 *5 *2)) (-4 *4 (-347 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1013)) (-4 *5 (-1013))
+ (-4 *2 (-399 *5)) (-5 *1 (-397 *6 *4 *5 *2)) (-4 *4 (-399 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-587 *6)) (-4 *6 (-1119))
+ (-4 *5 (-1119)) (-5 *2 (-587 *5)) (-5 *1 (-585 *6 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-886 *6)) (-4 *6 (-1119))
+ (-4 *5 (-1119)) (-5 *2 (-886 *5)) (-5 *1 (-885 *6 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1065 *6)) (-4 *6 (-1119))
+ (-4 *3 (-1119)) (-5 *2 (-1065 *3)) (-5 *1 (-1063 *6 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1165 *6)) (-4 *6 (-1119))
+ (-4 *5 (-1119)) (-5 *2 (-1165 *5)) (-5 *1 (-1164 *6 *5)))))
+(((*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-970)) (-4 *3 (-728))))
+ ((*1 *2 *1) (-12 (-4 *1 (-356 *3 *2)) (-4 *3 (-970)) (-4 *2 (-1013))))
((*1 *2 *1)
- (-12 (-14 *3 (-586 (-1083))) (-4 *4 (-157))
- (-4 *6 (-214 (-3474 *3) (-706)))
+ (-12 (-14 *3 (-587 (-1084))) (-4 *4 (-157))
+ (-4 *6 (-215 (-3475 *3) (-707)))
(-14 *7
- (-1 (-108) (-2 (|:| -2716 *5) (|:| -2647 *6))
- (-2 (|:| -2716 *5) (|:| -2647 *6))))
- (-5 *2 (-649 *5 *6 *7)) (-5 *1 (-433 *3 *4 *5 *6 *7 *8))
- (-4 *5 (-783)) (-4 *8 (-877 *4 *6 (-793 *3)))))
+ (-1 (-108) (-2 (|:| -2716 *5) (|:| -2997 *6))
+ (-2 (|:| -2716 *5) (|:| -2997 *6))))
+ (-5 *2 (-650 *5 *6 *7)) (-5 *1 (-434 *3 *4 *5 *6 *7 *8))
+ (-4 *5 (-784)) (-4 *8 (-878 *4 *6 (-794 *3)))))
((*1 *2 *1)
- (-12 (-4 *2 (-662)) (-4 *2 (-783)) (-5 *1 (-671 *3 *2))
- (-4 *3 (-969))))
+ (-12 (-4 *2 (-663)) (-4 *2 (-784)) (-5 *1 (-672 *3 *2))
+ (-4 *3 (-970))))
((*1 *1 *1)
- (-12 (-4 *1 (-898 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-727))
- (-4 *4 (-783)))))
-(((*1 *2 *3) (-12 (-5 *3 (-706)) (-5 *2 (-1 (-352))) (-5 *1 (-962)))))
-(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1083)) (-5 *6 (-586 (-559 *3)))
- (-5 *5 (-559 *3)) (-4 *3 (-13 (-27) (-1104) (-403 *7)))
- (-4 *7 (-13 (-424) (-783) (-135) (-960 (-520)) (-582 (-520))))
- (-5 *2 (-2 (|:| -4016 *3) (|:| |coeff| *3)))
- (-5 *1 (-513 *7 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2))
- (-4 *2 (-13 (-403 *3) (-926))))))
-(((*1 *2 *3 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-201)) (-5 *4 (-520)) (-5 *2 (-958)) (-5 *1 (-684)))))
-(((*1 *2 *1) (-12 (-4 *1 (-362)) (-5 *2 (-1066)))))
+ (-12 (-4 *1 (-899 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-728))
+ (-4 *4 (-784)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1165 (-290 (-202))))
+ (-5 *2
+ (-2 (|:| |additions| (-521)) (|:| |multiplications| (-521))
+ (|:| |exponentiations| (-521)) (|:| |functionCalls| (-521))))
+ (-5 *1 (-280)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-108)) (-5 *1 (-1073 *3 *4)) (-14 *3 (-850))
+ (-4 *4 (-970)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-586 *7)) (-4 *7 (-988 *3 *4 *5 *6)) (-4 *3 (-424))
- (-4 *4 (-728)) (-4 *5 (-783)) (-4 *6 (-983 *3 *4 *5))
- (-5 *1 (-913 *3 *4 *5 *6 *7))))
+ (-12 (-4 *3 (-13 (-513) (-135))) (-5 *1 (-498 *3 *2))
+ (-4 *2 (-1156 *3))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-337) (-342) (-562 (-521)))) (-4 *4 (-1141 *3))
+ (-4 *5 (-661 *3 *4)) (-5 *1 (-502 *3 *4 *5 *2)) (-4 *2 (-1156 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-337) (-342) (-562 (-521)))) (-5 *1 (-503 *3 *2))
+ (-4 *2 (-1156 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-586 *7)) (-4 *7 (-988 *3 *4 *5 *6)) (-4 *3 (-424))
- (-4 *4 (-728)) (-4 *5 (-783)) (-4 *6 (-983 *3 *4 *5))
- (-5 *1 (-1019 *3 *4 *5 *6 *7)))))
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-13 (-513) (-135)))
+ (-5 *1 (-1061 *3)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-586 *5)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-520))
- (-14 *4 (-706)) (-4 *5 (-157)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-512)) (-5 *2 (-586 *3)) (-5 *1 (-42 *4 *3))
- (-4 *3 (-390 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-586 (-626 (-289 (-520))))) (-5 *1 (-954)))))
-(((*1 *2 *1) (-12 (-4 *1 (-299 *2 *3)) (-4 *3 (-727)) (-4 *2 (-969))))
- ((*1 *2 *1) (-12 (-4 *1 (-403 *2)) (-4 *2 (-783)))))
+ (|partial| -12 (-4 *1 (-1127 *3 *2)) (-4 *3 (-970))
+ (-4 *2 (-1156 *3)))))
+(((*1 *2 *3 *4 *5 *6 *7 *8 *9)
+ (|partial| -12 (-5 *4 (-587 *11)) (-5 *5 (-587 (-1080 *9)))
+ (-5 *6 (-587 *9)) (-5 *7 (-587 *12)) (-5 *8 (-587 (-707)))
+ (-4 *11 (-784)) (-4 *9 (-282)) (-4 *12 (-878 *9 *10 *11))
+ (-4 *10 (-729)) (-5 *2 (-587 (-1080 *12)))
+ (-5 *1 (-645 *10 *11 *9 *12)) (-5 *3 (-1080 *12)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-108)) (-5 *5 (-1015 (-707))) (-5 *6 (-707))
+ (-5 *2
+ (-2 (|:| |contp| (-521))
+ (|:| -1514 (-587 (-2 (|:| |irr| *3) (|:| -2132 (-521)))))))
+ (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521))))))
+(((*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-1067)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-587 *5)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-521))
+ (-14 *4 (-707)) (-4 *5 (-157)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-759)))))
+(((*1 *2 *1) (-12 (-4 *1 (-300 *2 *3)) (-4 *3 (-728)) (-4 *2 (-970))))
+ ((*1 *2 *1) (-12 (-4 *1 (-404 *2)) (-4 *2 (-784)))))
+(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1008 (-202))) (-5 *1 (-855))))
+ ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1008 (-202))) (-5 *1 (-856))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1008 (-202))) (-5 *1 (-856))))
+ ((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-353)) (-5 *2 (-1170)) (-5 *1 (-1167))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-353)) (-5 *2 (-1170)) (-5 *1 (-1167)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1079 *5)) (-4 *5 (-424)) (-5 *2 (-586 *6))
- (-5 *1 (-498 *5 *6 *4)) (-4 *6 (-336)) (-4 *4 (-13 (-336) (-781)))))
+ (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1013)) (-4 *5 (-1013))
+ (-5 *2 (-1 *5)) (-5 *1 (-621 *4 *5)))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1141 *5)) (-4 *5 (-337))
+ (-5 *2 (-2 (|:| -3100 (-381 *6)) (|:| |coeff| (-381 *6))))
+ (-5 *1 (-531 *5 *6)) (-5 *3 (-381 *6)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-1187 *3 *4)) (-4 *1 (-348 *3 *4)) (-4 *3 (-784))
+ (-4 *4 (-157))))
+ ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-360 *2)) (-4 *2 (-1013))))
+ ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-756 *2)) (-4 *2 (-784))))
+ ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-756 *2)) (-4 *2 (-784))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1180 *2 *3)) (-4 *2 (-784)) (-4 *3 (-970))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-756 *3)) (-4 *1 (-1180 *3 *4)) (-4 *3 (-784))
+ (-4 *4 (-970))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1180 *2 *3)) (-4 *2 (-784)) (-4 *3 (-970)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-627 *2)) (-4 *2 (-157)) (-5 *1 (-134 *2))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-157)) (-4 *2 (-1141 *4)) (-5 *1 (-161 *4 *2 *3))
+ (-4 *3 (-661 *4 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-880 *5)) (-4 *5 (-424)) (-5 *2 (-586 *6))
- (-5 *1 (-498 *5 *6 *4)) (-4 *6 (-336)) (-4 *4 (-13 (-336) (-781))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1079 (-520))) (-5 *1 (-870)) (-5 *3 (-520)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-849)) (-5 *2 (-1079 *4)) (-5 *1 (-330 *4))
- (-4 *4 (-322)))))
-(((*1 *2 *1 *2) (-12 (-5 *1 (-949 *2)) (-4 *2 (-1118)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-108)) (-5 *1 (-765)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1064 (-380 *3))) (-5 *1 (-158 *3)) (-4 *3 (-281)))))
-(((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| |polnum| (-717 *3)) (|:| |polden| *3) (|:| -1798 (-706))))
- (-5 *1 (-717 *3)) (-4 *3 (-969))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783))
- (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -1798 (-706))))
- (-4 *1 (-983 *3 *4 *5)))))
-(((*1 *2 *2 *3 *4 *5)
- (-12 (-5 *2 (-586 *9)) (-5 *3 (-1 (-108) *9))
- (-5 *4 (-1 (-108) *9 *9)) (-5 *5 (-1 *9 *9 *9))
- (-4 *9 (-983 *6 *7 *8)) (-4 *6 (-512)) (-4 *7 (-728)) (-4 *8 (-783))
- (-5 *1 (-902 *6 *7 *8 *9)))))
+ (-12 (-5 *3 (-627 (-381 (-881 *5)))) (-5 *4 (-1084))
+ (-5 *2 (-881 *5)) (-5 *1 (-267 *5)) (-4 *5 (-425))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-627 (-381 (-881 *4)))) (-5 *2 (-881 *4))
+ (-5 *1 (-267 *4)) (-4 *4 (-425))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-344 *3 *2)) (-4 *3 (-157)) (-4 *2 (-1141 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-627 (-154 (-381 (-521)))))
+ (-5 *2 (-881 (-154 (-381 (-521))))) (-5 *1 (-701 *4))
+ (-4 *4 (-13 (-337) (-782)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-627 (-154 (-381 (-521))))) (-5 *4 (-1084))
+ (-5 *2 (-881 (-154 (-381 (-521))))) (-5 *1 (-701 *5))
+ (-4 *5 (-13 (-337) (-782)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-627 (-381 (-521)))) (-5 *2 (-881 (-381 (-521))))
+ (-5 *1 (-715 *4)) (-4 *4 (-13 (-337) (-782)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-627 (-381 (-521)))) (-5 *4 (-1084))
+ (-5 *2 (-881 (-381 (-521)))) (-5 *1 (-715 *5))
+ (-4 *5 (-13 (-337) (-782))))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-707)) (-4 *1 (-1180 *3 *4)) (-4 *3 (-784))
+ (-4 *4 (-970)) (-4 *4 (-157))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1180 *2 *3)) (-4 *2 (-784)) (-4 *3 (-970))
+ (-4 *3 (-157)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-586 (-520))) (-5 *2 (-832 (-520))) (-5 *1 (-845))))
- ((*1 *2) (-12 (-5 *2 (-832 (-520))) (-5 *1 (-845)))))
+ (|partial| -12 (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-784))
+ (-4 *7 (-984 *4 *5 *6))
+ (-5 *2 (-2 (|:| |bas| (-449 *4 *5 *6 *7)) (|:| -1354 (-587 *7))))
+ (-5 *1 (-903 *4 *5 *6 *7)) (-5 *3 (-587 *7)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-506))))
(((*1 *2 *1)
- (-12 (-4 *1 (-299 *3 *4)) (-4 *3 (-969)) (-4 *4 (-727))
+ (-12 (-4 *1 (-300 *3 *4)) (-4 *3 (-970)) (-4 *4 (-728))
(-5 *2 (-108))))
- ((*1 *2 *1) (-12 (-4 *1 (-403 *3)) (-4 *3 (-783)) (-5 *2 (-108)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-424))) (-5 *1 (-1110 *3 *2))
- (-4 *2 (-13 (-403 *3) (-1104))))))
-(((*1 *2 *2) (-12 (-5 *2 (-626 (-289 (-520)))) (-5 *1 (-954)))))
-(((*1 *2 *1) (-12 (-4 *1 (-229 *2)) (-4 *2 (-1118)))))
-(((*1 *2 *1) (-12 (-5 *2 (-586 (-1066))) (-5 *1 (-367))))
- ((*1 *2 *1) (-12 (-5 *2 (-586 (-1066))) (-5 *1 (-1099)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4230)) (-4 *1 (-115 *2)) (-4 *2 (-1118)))))
-(((*1 *2 *1) (-12 (-5 *1 (-1114 *2)) (-4 *2 (-899)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1044 *3)) (-4 *3 (-969))
- (-5 *2 (-586 (-586 (-586 (-871 *3))))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-801 (-892 *3) (-892 *3))) (-5 *1 (-892 *3))
- (-4 *3 (-893)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-512) (-783))) (-5 *2 (-154 *5))
- (-5 *1 (-549 *4 *5 *3)) (-4 *5 (-13 (-403 *4) (-926) (-1104)))
- (-4 *3 (-13 (-403 (-154 *4)) (-926) (-1104))))))
-(((*1 *1 *1) (-4 *1 (-219)))
+ ((*1 *2 *1) (-12 (-4 *1 (-404 *3)) (-4 *3 (-784)) (-5 *2 (-108)))))
+(((*1 *1 *2) (-12 (-5 *2 (-587 (-792))) (-5 *1 (-792))))
+ ((*1 *1 *1 *1) (-5 *1 (-792))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-587 *7)) (-4 *7 (-984 *4 *5 *6)) (-4 *4 (-425))
+ (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-108))
+ (-5 *1 (-914 *4 *5 *6 *7 *8)) (-4 *8 (-989 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-587 *7)) (-4 *7 (-984 *4 *5 *6)) (-4 *4 (-425))
+ (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-108))
+ (-5 *1 (-1020 *4 *5 *6 *7 *8)) (-4 *8 (-989 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1080 *1)) (-5 *4 (-1084)) (-4 *1 (-27))
+ (-5 *2 (-587 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1080 *1)) (-4 *1 (-27)) (-5 *2 (-587 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-881 *1)) (-4 *1 (-27)) (-5 *2 (-587 *1))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1084)) (-4 *4 (-13 (-784) (-513))) (-5 *2 (-587 *1))
+ (-4 *1 (-29 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *2 (-587 *1)) (-4 *1 (-29 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-290 (-202))) (-5 *4 (-587 (-1084)))
+ (-5 *5 (-1008 (-777 (-202)))) (-5 *2 (-1065 (-202))) (-5 *1 (-275)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-821 *3)) (-4 *3 (-1013))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1180 *3 *4)) (-4 *3 (-784)) (-4 *4 (-970))
+ (-5 *2 (-108))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-108)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-970))
+ (-4 *4 (-780)))))
+(((*1 *2 *1) (-12 (-5 *1 (-538 *2)) (-4 *2 (-337)))))
+(((*1 *2 *1 *3 *3 *3 *2)
+ (-12 (-5 *3 (-707)) (-5 *1 (-615 *2)) (-4 *2 (-1013)))))
+(((*1 *2 *1) (-12 (-4 *3 (-1119)) (-5 *2 (-587 *1)) (-4 *1 (-935 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-587 (-1073 *3 *4))) (-5 *1 (-1073 *3 *4))
+ (-14 *3 (-850)) (-4 *4 (-970)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1008 (-202))) (-5 *1 (-855))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1008 (-202))) (-5 *1 (-856)))))
+(((*1 *2 *2 *3 *4 *4)
+ (-12 (-5 *4 (-521)) (-4 *3 (-157)) (-4 *5 (-347 *3))
+ (-4 *6 (-347 *3)) (-5 *1 (-626 *3 *5 *6 *2))
+ (-4 *2 (-625 *3 *5 *6)))))
+(((*1 *1 *1) (-4 *1 (-220)))
((*1 *1 *1)
- (-12 (-4 *2 (-157)) (-5 *1 (-263 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1140 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-12 (-4 *2 (-157)) (-5 *1 (-264 *2 *3 *4 *5 *6 *7))
+ (-4 *3 (-1141 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
(-14 *6 (-1 (-3 *4 "failed") *4 *4))
(-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
((*1 *1 *1)
- (-3700 (-12 (-5 *1 (-268 *2)) (-4 *2 (-336)) (-4 *2 (-1118)))
- (-12 (-5 *1 (-268 *2)) (-4 *2 (-445)) (-4 *2 (-1118)))))
- ((*1 *1 *1) (-4 *1 (-445)))
- ((*1 *2 *2) (-12 (-5 *2 (-1164 *3)) (-4 *3 (-322)) (-5 *1 (-490 *3))))
+ (-3703 (-12 (-5 *1 (-269 *2)) (-4 *2 (-337)) (-4 *2 (-1119)))
+ (-12 (-5 *1 (-269 *2)) (-4 *2 (-446)) (-4 *2 (-1119)))))
+ ((*1 *1 *1) (-4 *1 (-446)))
+ ((*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-323)) (-5 *1 (-491 *3))))
((*1 *1 *1)
- (-12 (-5 *1 (-651 *2 *3 *4 *5 *6)) (-4 *2 (-157)) (-4 *3 (-23))
+ (-12 (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *2 (-157)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-4 *1 (-733 *2)) (-4 *2 (-157)) (-4 *2 (-336)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-734 *2)) (-4 *2 (-157)) (-4 *2 (-337)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-969)) (-5 *2 (-520)) (-5 *1 (-415 *4 *3 *5))
- (-4 *3 (-1140 *4))
- (-4 *5 (-13 (-377) (-960 *4) (-336) (-1104) (-258))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-586 (-2 (|:| |integrand| *3) (|:| |intvar| *3))))
- (-5 *1 (-537 *3)) (-4 *3 (-336)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-520)) (-4 *2 (-403 *3)) (-5 *1 (-31 *3 *2))
- (-4 *3 (-960 *4)) (-4 *3 (-13 (-783) (-512))))))
+ (-12 (-5 *3 (-587 *4)) (-4 *4 (-784)) (-5 *2 (-587 (-605 *4 *5)))
+ (-5 *1 (-571 *4 *5 *6)) (-4 *5 (-13 (-157) (-654 (-381 (-521)))))
+ (-14 *6 (-850)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-969)) (-5 *1 (-1068 *3))))
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-5 *1 (-1069 *3))))
((*1 *1 *1)
- (-12 (-5 *1 (-1156 *2 *3 *4)) (-4 *2 (-969)) (-14 *3 (-1083))
+ (-12 (-5 *1 (-1157 *2 *3 *4)) (-4 *2 (-970)) (-14 *3 (-1084))
(-14 *4 *2))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-404 *3 *2))
- (-4 *2 (-403 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-586 *7)) (-4 *7 (-983 *4 *5 *6)) (-4 *4 (-424))
- (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-108))
- (-5 *1 (-913 *4 *5 *6 *7 *8)) (-4 *8 (-988 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-586 *7)) (-4 *7 (-983 *4 *5 *6)) (-4 *4 (-424))
- (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-108))
- (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-988 *4 *5 *6 *7)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-336)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-380 *4)))
- (-5 *2 (-1164 *6)) (-5 *1 (-309 *3 *4 *5 *6))
- (-4 *6 (-315 *3 *4 *5)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-707)) (-5 *5 (-587 *3)) (-4 *3 (-282)) (-4 *6 (-784))
+ (-4 *7 (-729)) (-5 *2 (-108)) (-5 *1 (-570 *6 *7 *3 *8))
+ (-4 *8 (-878 *3 *7 *6)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-902 *3 *4 *5 *6)) (-4 *3 (-970)) (-4 *4 (-729))
+ (-4 *5 (-784)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-513))
+ (-5 *2 (-108)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-587 (-707))) (-5 *3 (-108)) (-5 *1 (-1073 *4 *5))
+ (-14 *4 (-850)) (-4 *5 (-970)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1165 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-337))
+ (-4 *1 (-661 *5 *6)) (-4 *5 (-157)) (-4 *6 (-1141 *5))
+ (-5 *2 (-627 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1137 *5 *4)) (-4 *4 (-756)) (-14 *5 (-1083))
- (-5 *2 (-520)) (-5 *1 (-1026 *4 *5)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-359 *2)) (-4 *2 (-1012))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-755 *2)) (-4 *2 (-783)))))
+ (-12 (-4 *4 (-13 (-513) (-784) (-961 (-521)))) (-4 *5 (-404 *4))
+ (-5 *2 (-392 *3)) (-5 *1 (-409 *4 *5 *3)) (-4 *3 (-1141 *5)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1064 (-201)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -1667
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite| "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))))
- (-5 *2 (-958)) (-5 *1 (-279)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-108)) (-5 *1 (-414 *3)) (-4 *3 (-1140 (-520))))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1177 *3 *4)) (-4 *3 (-783)) (-4 *4 (-157))
- (-5 *1 (-604 *3 *4))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-604 *3 *4)) (-5 *1 (-1182 *3 *4))
- (-4 *3 (-783)) (-4 *4 (-157)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-849)) (-5 *2 (-440)) (-5 *1 (-1165)))))
+ (-12 (-4 *4 (-13 (-337) (-10 -8 (-15 ** ($ $ (-381 (-521)))))))
+ (-5 *2 (-587 *4)) (-5 *1 (-1039 *3 *4)) (-4 *3 (-1141 *4))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-337) (-10 -8 (-15 ** ($ $ (-381 (-521)))))))
+ (-5 *2 (-587 *3)) (-5 *1 (-1039 *4 *3)) (-4 *4 (-1141 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-707)) (-5 *2 (-108)) (-5 *1 (-539 *3)) (-4 *3 (-506)))))
+(((*1 *2 *2 *3)
+ (|partial| -12
+ (-5 *3 (-587 (-2 (|:| |func| *2) (|:| |pole| (-108)))))
+ (-4 *2 (-13 (-404 *4) (-927))) (-4 *4 (-13 (-784) (-513)))
+ (-5 *1 (-252 *4 *2)))))
+(((*1 *1 *1) (-5 *1 (-982))))
+(((*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1119)) (-5 *2 (-707)))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-289 (-520))) (|:| -4045 (-289 (-352)))
- (|:| CF (-289 (-154 (-352)))) (|:| |switch| (-1082))))
- (-5 *1 (-1082)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-901 *3 *4 *5 *6)) (-4 *3 (-969)) (-4 *4 (-728))
- (-4 *5 (-783)) (-4 *6 (-983 *3 *4 *5)) (-4 *3 (-512))
- (-5 *2 (-108)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-586 (-586 (-871 (-201)))))
- (-5 *2 (-586 (-1007 (-201)))) (-5 *1 (-856)))))
+ (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353)))
+ (|:| CF (-290 (-154 (-353)))) (|:| |switch| (-1083))))
+ (-5 *1 (-1083)))))
+(((*1 *1 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1119))))
+ ((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4234)) (-4 *1 (-347 *2)) (-4 *2 (-1119))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-590 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-587 (-290 (-202)))) (-5 *4 (-707))
+ (-5 *2 (-627 (-202))) (-5 *1 (-243)))))
(((*1 *1)
- (-12 (-4 *3 (-1012)) (-5 *1 (-813 *2 *3 *4)) (-4 *2 (-1012))
- (-4 *4 (-606 *3))))
- ((*1 *1) (-12 (-5 *1 (-817 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1012)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1164 *4)) (-4 *4 (-322)) (-5 *2 (-1079 *4))
- (-5 *1 (-490 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-201)) (-5 *2 (-380 (-520))) (-5 *1 (-279)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1083))
- (-4 *4 (-13 (-424) (-783) (-960 (-520)) (-582 (-520))))
- (-5 *2 (-51)) (-5 *1 (-288 *4 *5))
- (-4 *5 (-13 (-27) (-1104) (-403 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-424) (-783) (-960 (-520)) (-582 (-520))))
- (-5 *2 (-51)) (-5 *1 (-288 *4 *3))
- (-4 *3 (-13 (-27) (-1104) (-403 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-380 (-520)))
- (-4 *5 (-13 (-424) (-783) (-960 (-520)) (-582 (-520))))
- (-5 *2 (-51)) (-5 *1 (-288 *5 *3))
- (-4 *3 (-13 (-27) (-1104) (-403 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-268 *3)) (-4 *3 (-13 (-27) (-1104) (-403 *5)))
- (-4 *5 (-13 (-424) (-783) (-960 (-520)) (-582 (-520))))
- (-5 *2 (-51)) (-5 *1 (-288 *5 *3))))
+ (-12 (-4 *3 (-1013)) (-5 *1 (-814 *2 *3 *4)) (-4 *2 (-1013))
+ (-4 *4 (-607 *3))))
+ ((*1 *1) (-12 (-5 *1 (-818 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-872 *3) (-872 *3))) (-5 *1 (-160 *3))
+ (-4 *3 (-13 (-337) (-1105) (-927))))))
+(((*1 *2) (-12 (-5 *2 (-587 (-850))) (-5 *1 (-1168))))
+ ((*1 *2 *2) (-12 (-5 *2 (-587 (-850))) (-5 *1 (-1168)))))
+(((*1 *1 *1) (-12 (-5 *1 (-392 *2)) (-4 *2 (-513)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1084))
+ (-4 *4 (-13 (-425) (-784) (-961 (-521)) (-583 (-521))))
+ (-5 *2 (-51)) (-5 *1 (-289 *4 *5))
+ (-4 *5 (-13 (-27) (-1105) (-404 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-425) (-784) (-961 (-521)) (-583 (-521))))
+ (-5 *2 (-51)) (-5 *1 (-289 *4 *3))
+ (-4 *3 (-13 (-27) (-1105) (-404 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-381 (-521)))
+ (-4 *5 (-13 (-425) (-784) (-961 (-521)) (-583 (-521))))
+ (-5 *2 (-51)) (-5 *1 (-289 *5 *3))
+ (-4 *3 (-13 (-27) (-1105) (-404 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-269 *3)) (-4 *3 (-13 (-27) (-1105) (-404 *5)))
+ (-4 *5 (-13 (-425) (-784) (-961 (-521)) (-583 (-521))))
+ (-5 *2 (-51)) (-5 *1 (-289 *5 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-268 *3)) (-5 *5 (-380 (-520)))
- (-4 *3 (-13 (-27) (-1104) (-403 *6)))
- (-4 *6 (-13 (-424) (-783) (-960 (-520)) (-582 (-520))))
- (-5 *2 (-51)) (-5 *1 (-288 *6 *3))))
+ (-12 (-5 *4 (-269 *3)) (-5 *5 (-381 (-521)))
+ (-4 *3 (-13 (-27) (-1105) (-404 *6)))
+ (-4 *6 (-13 (-425) (-784) (-961 (-521)) (-583 (-521))))
+ (-5 *2 (-51)) (-5 *1 (-289 *6 *3))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-1 *8 (-380 (-520)))) (-5 *4 (-268 *8))
- (-5 *5 (-1131 (-380 (-520)))) (-5 *6 (-380 (-520)))
- (-4 *8 (-13 (-27) (-1104) (-403 *7)))
- (-4 *7 (-13 (-512) (-783) (-960 (-520)) (-582 (-520))))
- (-5 *2 (-51)) (-5 *1 (-431 *7 *8))))
+ (-12 (-5 *3 (-1 *8 (-381 (-521)))) (-5 *4 (-269 *8))
+ (-5 *5 (-1132 (-381 (-521)))) (-5 *6 (-381 (-521)))
+ (-4 *8 (-13 (-27) (-1105) (-404 *7)))
+ (-4 *7 (-13 (-513) (-784) (-961 (-521)) (-583 (-521))))
+ (-5 *2 (-51)) (-5 *1 (-432 *7 *8))))
((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *4 (-1083)) (-5 *5 (-268 *3)) (-5 *6 (-1131 (-380 (-520))))
- (-5 *7 (-380 (-520))) (-4 *3 (-13 (-27) (-1104) (-403 *8)))
- (-4 *8 (-13 (-512) (-783) (-960 (-520)) (-582 (-520))))
- (-5 *2 (-51)) (-5 *1 (-431 *8 *3))))
+ (-12 (-5 *4 (-1084)) (-5 *5 (-269 *3)) (-5 *6 (-1132 (-381 (-521))))
+ (-5 *7 (-381 (-521))) (-4 *3 (-13 (-27) (-1105) (-404 *8)))
+ (-4 *8 (-13 (-513) (-784) (-961 (-521)) (-583 (-521))))
+ (-5 *2 (-51)) (-5 *1 (-432 *8 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-380 (-520))) (-4 *4 (-969)) (-4 *1 (-1147 *4 *3))
- (-4 *3 (-1124 *4)))))
-(((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-820 *4)) (-4 *4 (-1012)) (-5 *2 (-108))
- (-5 *1 (-817 *4 *5)) (-4 *5 (-1012))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-820 *5)) (-4 *5 (-1012)) (-5 *2 (-108))
- (-5 *1 (-818 *5 *3)) (-4 *3 (-1118))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-586 *6)) (-5 *4 (-820 *5)) (-4 *5 (-1012))
- (-4 *6 (-1118)) (-5 *2 (-108)) (-5 *1 (-818 *5 *6)))))
-(((*1 *1 *2) (-12 (-5 *2 (-143)) (-5 *1 (-802)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-772))
- (-5 *3
- (-2 (|:| |fn| (-289 (-201))) (|:| -3794 (-586 (-201)))
- (|:| |lb| (-586 (-776 (-201)))) (|:| |cf| (-586 (-289 (-201))))
- (|:| |ub| (-586 (-776 (-201))))))
- (-5 *2 (-958))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-772))
- (-5 *3
- (-2 (|:| |lfn| (-586 (-289 (-201)))) (|:| -3794 (-586 (-201)))))
- (-5 *2 (-958)))))
-(((*1 *2) (-12 (-5 *2 (-1083)) (-5 *1 (-1086)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-871 *3)) (-4 *3 (-13 (-336) (-1104) (-926)))
- (-5 *1 (-160 *3)))))
-(((*1 *2)
- (-12 (-4 *3 (-512)) (-5 *2 (-586 *4)) (-5 *1 (-42 *3 *4))
- (-4 *4 (-390 *3)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-520)) (-5 *3 (-849)) (-4 *1 (-377))))
- ((*1 *1 *2 *2) (-12 (-5 *2 (-520)) (-4 *1 (-377))))
+ (-12 (-5 *2 (-381 (-521))) (-4 *4 (-970)) (-4 *1 (-1148 *4 *3))
+ (-4 *3 (-1125 *4)))))
+(((*1 *1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1084)) (-5 *3 (-108)) (-5 *1 (-821 *4))
+ (-4 *4 (-1013)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1067)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784))
+ (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-1170))
+ (-5 *1 (-990 *4 *5 *6 *7 *8)) (-4 *8 (-989 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1067)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784))
+ (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-1170))
+ (-5 *1 (-1021 *4 *5 *6 *7 *8)) (-4 *8 (-989 *4 *5 *6 *7)))))
+(((*1 *1 *2) (-12 (-5 *2 (-587 *1)) (-4 *1 (-277))))
+ ((*1 *1 *1) (-4 *1 (-277)))
+ ((*1 *1 *2) (-12 (-5 *2 (-587 (-792))) (-5 *1 (-792))))
+ ((*1 *1 *1) (-5 *1 (-792))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-627 (-381 (-881 (-521)))))
+ (-5 *2
+ (-587
+ (-2 (|:| |radval| (-290 (-521))) (|:| |radmult| (-521))
+ (|:| |radvect| (-587 (-627 (-290 (-521))))))))
+ (-5 *1 (-955)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-729)) (-4 *4 (-784)) (-4 *6 (-282)) (-5 *2 (-392 *3))
+ (-5 *1 (-679 *5 *4 *6 *3)) (-4 *3 (-878 *6 *5 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1089)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-521)) (-5 *3 (-850)) (-4 *1 (-378))))
+ ((*1 *1 *2 *2) (-12 (-5 *2 (-521)) (-4 *1 (-378))))
((*1 *2 *1)
- (-12 (-4 *1 (-1015 *3 *4 *5 *2 *6)) (-4 *3 (-1012)) (-4 *4 (-1012))
- (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *2 (-1012)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-908 *2)) (-4 *2 (-1104)))))
-(((*1 *2 *1)
- (-12 (-4 *4 (-1012)) (-5 *2 (-817 *3 *4)) (-5 *1 (-813 *3 *4 *5))
- (-4 *3 (-1012)) (-4 *5 (-606 *4)))))
+ (-12 (-4 *1 (-1016 *3 *4 *5 *2 *6)) (-4 *3 (-1013)) (-4 *4 (-1013))
+ (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-970)) (-4 *2 (-337)))))
+(((*1 *2)
+ (-12 (-4 *3 (-513)) (-5 *2 (-587 *4)) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-391 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1083))
- (-4 *4 (-13 (-424) (-783) (-960 (-520)) (-582 (-520))))
- (-5 *2 (-51)) (-5 *1 (-288 *4 *5))
- (-4 *5 (-13 (-27) (-1104) (-403 *4)))))
+ (-12 (-5 *3 (-1084))
+ (-4 *4 (-13 (-425) (-784) (-961 (-521)) (-583 (-521))))
+ (-5 *2 (-51)) (-5 *1 (-289 *4 *5))
+ (-4 *5 (-13 (-27) (-1105) (-404 *4)))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-424) (-783) (-960 (-520)) (-582 (-520))))
- (-5 *2 (-51)) (-5 *1 (-288 *4 *3))
- (-4 *3 (-13 (-27) (-1104) (-403 *4)))))
+ (-12 (-4 *4 (-13 (-425) (-784) (-961 (-521)) (-583 (-521))))
+ (-5 *2 (-51)) (-5 *1 (-289 *4 *3))
+ (-4 *3 (-13 (-27) (-1105) (-404 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-520)) (-4 *5 (-13 (-424) (-783) (-960 *4) (-582 *4)))
- (-5 *2 (-51)) (-5 *1 (-288 *5 *3))
- (-4 *3 (-13 (-27) (-1104) (-403 *5)))))
+ (-12 (-5 *4 (-521)) (-4 *5 (-13 (-425) (-784) (-961 *4) (-583 *4)))
+ (-5 *2 (-51)) (-5 *1 (-289 *5 *3))
+ (-4 *3 (-13 (-27) (-1105) (-404 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-268 *3)) (-4 *3 (-13 (-27) (-1104) (-403 *5)))
- (-4 *5 (-13 (-424) (-783) (-960 (-520)) (-582 (-520))))
- (-5 *2 (-51)) (-5 *1 (-288 *5 *3))))
+ (-12 (-5 *4 (-269 *3)) (-4 *3 (-13 (-27) (-1105) (-404 *5)))
+ (-4 *5 (-13 (-425) (-784) (-961 (-521)) (-583 (-521))))
+ (-5 *2 (-51)) (-5 *1 (-289 *5 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-268 *3)) (-4 *3 (-13 (-27) (-1104) (-403 *6)))
- (-4 *6 (-13 (-424) (-783) (-960 *5) (-582 *5))) (-5 *5 (-520))
- (-5 *2 (-51)) (-5 *1 (-288 *6 *3))))
+ (-12 (-5 *4 (-269 *3)) (-4 *3 (-13 (-27) (-1105) (-404 *6)))
+ (-4 *6 (-13 (-425) (-784) (-961 *5) (-583 *5))) (-5 *5 (-521))
+ (-5 *2 (-51)) (-5 *1 (-289 *6 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-520))) (-5 *4 (-268 *7)) (-5 *5 (-1131 (-520)))
- (-4 *7 (-13 (-27) (-1104) (-403 *6)))
- (-4 *6 (-13 (-512) (-783) (-960 (-520)) (-582 (-520))))
- (-5 *2 (-51)) (-5 *1 (-431 *6 *7))))
+ (-12 (-5 *3 (-1 *7 (-521))) (-5 *4 (-269 *7)) (-5 *5 (-1132 (-521)))
+ (-4 *7 (-13 (-27) (-1105) (-404 *6)))
+ (-4 *6 (-13 (-513) (-784) (-961 (-521)) (-583 (-521))))
+ (-5 *2 (-51)) (-5 *1 (-432 *6 *7))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1083)) (-5 *5 (-268 *3)) (-5 *6 (-1131 (-520)))
- (-4 *3 (-13 (-27) (-1104) (-403 *7)))
- (-4 *7 (-13 (-512) (-783) (-960 (-520)) (-582 (-520))))
- (-5 *2 (-51)) (-5 *1 (-431 *7 *3))))
+ (-12 (-5 *4 (-1084)) (-5 *5 (-269 *3)) (-5 *6 (-1132 (-521)))
+ (-4 *3 (-13 (-27) (-1105) (-404 *7)))
+ (-4 *7 (-13 (-513) (-784) (-961 (-521)) (-583 (-521))))
+ (-5 *2 (-51)) (-5 *1 (-432 *7 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-520)) (-4 *4 (-969)) (-4 *1 (-1126 *4 *3))
- (-4 *3 (-1155 *4))))
+ (-12 (-5 *2 (-521)) (-4 *4 (-970)) (-4 *1 (-1127 *4 *3))
+ (-4 *3 (-1156 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-1147 *3 *2)) (-4 *3 (-969)) (-4 *2 (-1124 *3)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-586 (-880 (-520)))) (-5 *4 (-586 (-1083)))
- (-5 *2 (-586 (-586 (-352)))) (-5 *1 (-946)) (-5 *5 (-352))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-966 *4 *5)) (-4 *4 (-13 (-781) (-281) (-135) (-945)))
- (-14 *5 (-586 (-1083))) (-5 *2 (-586 (-586 (-947 (-380 *4)))))
- (-5 *1 (-1188 *4 *5 *6)) (-14 *6 (-586 (-1083)))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-586 (-880 *5))) (-5 *4 (-108))
- (-4 *5 (-13 (-781) (-281) (-135) (-945)))
- (-5 *2 (-586 (-586 (-947 (-380 *5))))) (-5 *1 (-1188 *5 *6 *7))
- (-14 *6 (-586 (-1083))) (-14 *7 (-586 (-1083)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-586 (-880 *5))) (-5 *4 (-108))
- (-4 *5 (-13 (-781) (-281) (-135) (-945)))
- (-5 *2 (-586 (-586 (-947 (-380 *5))))) (-5 *1 (-1188 *5 *6 *7))
- (-14 *6 (-586 (-1083))) (-14 *7 (-586 (-1083)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-586 (-880 *5))) (-5 *4 (-108))
- (-4 *5 (-13 (-781) (-281) (-135) (-945)))
- (-5 *2 (-586 (-586 (-947 (-380 *5))))) (-5 *1 (-1188 *5 *6 *7))
- (-14 *6 (-586 (-1083))) (-14 *7 (-586 (-1083)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-586 (-880 *4)))
- (-4 *4 (-13 (-781) (-281) (-135) (-945)))
- (-5 *2 (-586 (-586 (-947 (-380 *4))))) (-5 *1 (-1188 *4 *5 *6))
- (-14 *5 (-586 (-1083))) (-14 *6 (-586 (-1083))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-586 *1)) (|has| *1 (-6 -4230)) (-4 *1 (-934 *3))
- (-4 *3 (-1118)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-871 *3)) (-4 *3 (-13 (-336) (-1104) (-926)))
- (-5 *1 (-160 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-755 *3)) (-4 *3 (-783)) (-5 *1 (-611 *3)))))
-(((*1 *2 *1 *3 *4 *4 *5)
- (-12 (-5 *3 (-871 (-201))) (-5 *4 (-802)) (-5 *5 (-849))
- (-5 *2 (-1169)) (-5 *1 (-440))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-871 (-201))) (-5 *2 (-1169)) (-5 *1 (-440))))
- ((*1 *2 *1 *3 *4 *4 *5)
- (-12 (-5 *3 (-586 (-871 (-201)))) (-5 *4 (-802)) (-5 *5 (-849))
- (-5 *2 (-1169)) (-5 *1 (-440)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-908 *2)) (-4 *2 (-1104)))))
+ (-12 (-4 *1 (-1148 *3 *2)) (-4 *3 (-970)) (-4 *2 (-1125 *3)))))
+(((*1 *2)
+ (-12 (-5 *2 (-108)) (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521))))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-878 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729))
+ (-4 *4 (-784)) (-4 *2 (-425))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784))
+ (-4 *3 (-984 *4 *5 *6))
+ (-5 *2 (-587 (-2 (|:| |val| *3) (|:| -1884 *1))))
+ (-4 *1 (-989 *4 *5 *6 *3))))
+ ((*1 *1 *1) (-4 *1 (-1123)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-513)) (-5 *1 (-1144 *3 *2))
+ (-4 *2 (-13 (-1141 *3) (-513) (-10 -8 (-15 -2258 ($ $ $))))))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-587 (-716 *5 (-794 *6)))) (-5 *4 (-108)) (-4 *5 (-425))
+ (-14 *6 (-587 (-1084))) (-5 *2 (-587 (-967 *5 *6)))
+ (-5 *1 (-572 *5 *6)))))
+(((*1 *1 *1) (-12 (-4 *1 (-399 *2)) (-4 *2 (-1013)) (-4 *2 (-342)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202)))
+ (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202))
+ (|:| |relerr| (-202))))
+ (-5 *2 (-521)) (-5 *1 (-183)))))
+(((*1 *2 *2) (-12 (-5 *2 (-353)) (-5 *1 (-1167))))
+ ((*1 *2) (-12 (-5 *2 (-353)) (-5 *1 (-1167)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-380 (-520))) (-4 *4 (-960 (-520)))
- (-4 *4 (-13 (-783) (-512))) (-5 *1 (-31 *4 *2)) (-4 *2 (-403 *4))))
+ (-12 (-5 *3 (-381 (-521))) (-4 *4 (-961 (-521)))
+ (-4 *4 (-13 (-784) (-513))) (-5 *1 (-31 *4 *2)) (-4 *2 (-404 *4))))
((*1 *1 *1 *1) (-5 *1 (-126)))
((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-144 *3 *2))
- (-4 *2 (-403 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-201)))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-219)) (-5 *2 (-520))))
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-144 *3 *2))
+ (-4 *2 (-404 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-202)))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-220)) (-5 *2 (-521))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-380 (-520))) (-4 *4 (-336)) (-4 *4 (-37 *3))
- (-4 *5 (-1155 *4)) (-5 *1 (-253 *4 *5 *2)) (-4 *2 (-1126 *4 *5))))
+ (-12 (-5 *3 (-381 (-521))) (-4 *4 (-337)) (-4 *4 (-37 *3))
+ (-4 *5 (-1156 *4)) (-5 *1 (-254 *4 *5 *2)) (-4 *2 (-1127 *4 *5))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-380 (-520))) (-4 *4 (-336)) (-4 *4 (-37 *3))
- (-4 *5 (-1124 *4)) (-5 *1 (-254 *4 *5 *2 *6)) (-4 *2 (-1147 *4 *5))
- (-4 *6 (-908 *5))))
- ((*1 *1 *1 *1) (-4 *1 (-258)))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-520)) (-5 *1 (-334 *2)) (-4 *2 (-1012))))
- ((*1 *1 *1 *1) (-5 *1 (-352)))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-706)) (-5 *1 (-359 *2)) (-4 *2 (-1012))))
+ (-12 (-5 *3 (-381 (-521))) (-4 *4 (-337)) (-4 *4 (-37 *3))
+ (-4 *5 (-1125 *4)) (-5 *1 (-255 *4 *5 *2 *6)) (-4 *2 (-1148 *4 *5))
+ (-4 *6 (-909 *5))))
+ ((*1 *1 *1 *1) (-4 *1 (-259)))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-521)) (-5 *1 (-335 *2)) (-4 *2 (-1013))))
+ ((*1 *1 *1 *1) (-5 *1 (-353)))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-707)) (-5 *1 (-360 *2)) (-4 *2 (-1013))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-706)) (-4 *1 (-403 *3)) (-4 *3 (-783)) (-4 *3 (-1024))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-445)) (-5 *2 (-520))))
+ (-12 (-5 *2 (-707)) (-4 *1 (-404 *3)) (-4 *3 (-784)) (-4 *3 (-1025))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-446)) (-5 *2 (-521))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-706)) (-4 *3 (-336)) (-4 *4 (-728)) (-4 *5 (-783))
- (-5 *1 (-472 *3 *4 *5 *6)) (-4 *6 (-877 *3 *4 *5))))
+ (-12 (-5 *2 (-707)) (-4 *3 (-337)) (-4 *4 (-729)) (-4 *5 (-784))
+ (-5 *1 (-473 *3 *4 *5 *6)) (-4 *6 (-878 *3 *4 *5))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1164 *4)) (-5 *3 (-520)) (-4 *4 (-322))
- (-5 *1 (-490 *4))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-496))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-706)) (-5 *1 (-496))))
+ (-12 (-5 *2 (-1165 *4)) (-5 *3 (-521)) (-4 *4 (-323))
+ (-5 *1 (-491 *4))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-497))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-497))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-706)) (-4 *4 (-1012))
- (-5 *1 (-619 *4))))
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-707)) (-4 *4 (-1013))
+ (-5 *1 (-620 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-520)) (-4 *1 (-624 *3 *4 *5)) (-4 *3 (-969))
- (-4 *4 (-346 *3)) (-4 *5 (-346 *3)) (-4 *3 (-336))))
+ (-12 (-5 *2 (-521)) (-4 *1 (-625 *3 *4 *5)) (-4 *3 (-970))
+ (-4 *4 (-347 *3)) (-4 *5 (-347 *3)) (-4 *3 (-337))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-706)) (-4 *1 (-624 *3 *4 *5)) (-4 *3 (-969))
- (-4 *4 (-346 *3)) (-4 *5 (-346 *3))))
+ (-12 (-5 *2 (-707)) (-4 *1 (-625 *3 *4 *5)) (-4 *3 (-970))
+ (-4 *4 (-347 *3)) (-4 *5 (-347 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-626 *4)) (-5 *3 (-706)) (-4 *4 (-969))
- (-5 *1 (-627 *4))))
+ (-12 (-5 *2 (-627 *4)) (-5 *3 (-707)) (-4 *4 (-970))
+ (-5 *1 (-628 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-520)) (-4 *3 (-969)) (-5 *1 (-650 *3 *4))
- (-4 *4 (-588 *3))))
+ (-12 (-5 *2 (-521)) (-4 *3 (-970)) (-5 *1 (-651 *3 *4))
+ (-4 *4 (-589 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-110)) (-5 *3 (-520)) (-4 *4 (-969))
- (-5 *1 (-650 *4 *5)) (-4 *5 (-588 *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-656)) (-5 *2 (-849))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-658)) (-5 *2 (-706))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-662)) (-5 *2 (-706))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-706)) (-5 *1 (-755 *2)) (-4 *2 (-783))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-770 *3)) (-4 *3 (-969))))
+ (-12 (-5 *2 (-110)) (-5 *3 (-521)) (-4 *4 (-970))
+ (-5 *1 (-651 *4 *5)) (-4 *5 (-589 *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-657)) (-5 *2 (-850))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-707))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-663)) (-5 *2 (-707))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-707)) (-5 *1 (-756 *2)) (-4 *2 (-784))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-771 *3)) (-4 *3 (-970))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-110)) (-5 *3 (-520)) (-5 *1 (-770 *4)) (-4 *4 (-969))))
- ((*1 *1 *1 *1) (-5 *1 (-791)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-1012))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-706)) (-5 *1 (-820 *3)) (-4 *3 (-1012))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-926)) (-5 *2 (-380 (-520)))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1024)) (-5 *2 (-849))))
+ (-12 (-5 *2 (-110)) (-5 *3 (-521)) (-5 *1 (-771 *4)) (-4 *4 (-970))))
+ ((*1 *1 *1 *1) (-5 *1 (-792)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-821 *2)) (-4 *2 (-1013))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-821 *3)) (-4 *3 (-1013))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-927)) (-5 *2 (-381 (-521)))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1025)) (-5 *2 (-850))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-520)) (-4 *1 (-1033 *3 *4 *5 *6)) (-4 *4 (-969))
- (-4 *5 (-214 *3 *4)) (-4 *6 (-214 *3 *4)) (-4 *4 (-336))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520))))
- (-5 *1 (-1069 *3))))
+ (-12 (-5 *2 (-521)) (-4 *1 (-1034 *3 *4 *5 *6)) (-4 *4 (-970))
+ (-4 *5 (-215 *3 *4)) (-4 *6 (-215 *3 *4)) (-4 *4 (-337))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520))))
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
(-5 *1 (-1070 *3))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-969)) (-4 *2 (-336)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-586 *2)) (-5 *1 (-163 *2)) (-4 *2 (-281))))
- ((*1 *2 *3 *2)
- (-12 (-5 *3 (-586 (-586 *4))) (-5 *2 (-586 *4)) (-4 *4 (-281))
- (-5 *1 (-163 *4))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-586 *8))
- (-5 *4
- (-586
- (-2 (|:| -1831 (-626 *7)) (|:| |basisDen| *7)
- (|:| |basisInv| (-626 *7)))))
- (-5 *5 (-706)) (-4 *8 (-1140 *7)) (-4 *7 (-1140 *6)) (-4 *6 (-322))
- (-5 *2
- (-2 (|:| -1831 (-626 *7)) (|:| |basisDen| *7)
- (|:| |basisInv| (-626 *7))))
- (-5 *1 (-466 *6 *7 *8))))
- ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-520)) (-5 *1 (-517)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-336)) (-4 *3 (-728)) (-4 *4 (-783))
- (-5 *1 (-472 *2 *3 *4 *5)) (-4 *5 (-877 *2 *3 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1083))
- (-4 *4 (-13 (-424) (-783) (-960 (-520)) (-582 (-520))))
- (-5 *2 (-51)) (-5 *1 (-288 *4 *5))
- (-4 *5 (-13 (-27) (-1104) (-403 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-424) (-783) (-960 (-520)) (-582 (-520))))
- (-5 *2 (-51)) (-5 *1 (-288 *4 *3))
- (-4 *3 (-13 (-27) (-1104) (-403 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-706))
- (-4 *5 (-13 (-424) (-783) (-960 (-520)) (-582 (-520))))
- (-5 *2 (-51)) (-5 *1 (-288 *5 *3))
- (-4 *3 (-13 (-27) (-1104) (-403 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-268 *3)) (-4 *3 (-13 (-27) (-1104) (-403 *5)))
- (-4 *5 (-13 (-424) (-783) (-960 (-520)) (-582 (-520))))
- (-5 *2 (-51)) (-5 *1 (-288 *5 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
+ (-5 *1 (-1071 *3))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-970)) (-4 *2 (-337)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-587 *2)) (-5 *4 (-1 (-108) *2 *2)) (-5 *1 (-1120 *2))
+ (-4 *2 (-1013))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-587 *2)) (-4 *2 (-1013)) (-4 *2 (-784))
+ (-5 *1 (-1120 *2)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1084))
+ (-4 *4 (-13 (-425) (-784) (-961 (-521)) (-583 (-521))))
+ (-5 *2 (-51)) (-5 *1 (-289 *4 *5))
+ (-4 *5 (-13 (-27) (-1105) (-404 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-425) (-784) (-961 (-521)) (-583 (-521))))
+ (-5 *2 (-51)) (-5 *1 (-289 *4 *3))
+ (-4 *3 (-13 (-27) (-1105) (-404 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-707))
+ (-4 *5 (-13 (-425) (-784) (-961 (-521)) (-583 (-521))))
+ (-5 *2 (-51)) (-5 *1 (-289 *5 *3))
+ (-4 *3 (-13 (-27) (-1105) (-404 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-269 *3)) (-4 *3 (-13 (-27) (-1105) (-404 *5)))
+ (-4 *5 (-13 (-425) (-784) (-961 (-521)) (-583 (-521))))
+ (-5 *2 (-51)) (-5 *1 (-289 *5 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-268 *3)) (-5 *5 (-706))
- (-4 *3 (-13 (-27) (-1104) (-403 *6)))
- (-4 *6 (-13 (-424) (-783) (-960 (-520)) (-582 (-520))))
- (-5 *2 (-51)) (-5 *1 (-288 *6 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 (-520))) (-5 *4 (-268 *6))
- (-4 *6 (-13 (-27) (-1104) (-403 *5)))
- (-4 *5 (-13 (-512) (-783) (-960 (-520)) (-582 (-520))))
- (-5 *2 (-51)) (-5 *1 (-431 *5 *6))))
+ (-12 (-5 *4 (-269 *3)) (-5 *5 (-707))
+ (-4 *3 (-13 (-27) (-1105) (-404 *6)))
+ (-4 *6 (-13 (-425) (-784) (-961 (-521)) (-583 (-521))))
+ (-5 *2 (-51)) (-5 *1 (-289 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 (-521))) (-5 *4 (-269 *6))
+ (-4 *6 (-13 (-27) (-1105) (-404 *5)))
+ (-4 *5 (-13 (-513) (-784) (-961 (-521)) (-583 (-521))))
+ (-5 *2 (-51)) (-5 *1 (-432 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1083)) (-5 *5 (-268 *3))
- (-4 *3 (-13 (-27) (-1104) (-403 *6)))
- (-4 *6 (-13 (-512) (-783) (-960 (-520)) (-582 (-520))))
- (-5 *2 (-51)) (-5 *1 (-431 *6 *3))))
+ (-12 (-5 *4 (-1084)) (-5 *5 (-269 *3))
+ (-4 *3 (-13 (-27) (-1105) (-404 *6)))
+ (-4 *6 (-13 (-513) (-784) (-961 (-521)) (-583 (-521))))
+ (-5 *2 (-51)) (-5 *1 (-432 *6 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-520))) (-5 *4 (-268 *7)) (-5 *5 (-1131 (-706)))
- (-4 *7 (-13 (-27) (-1104) (-403 *6)))
- (-4 *6 (-13 (-512) (-783) (-960 (-520)) (-582 (-520))))
- (-5 *2 (-51)) (-5 *1 (-431 *6 *7))))
+ (-12 (-5 *3 (-1 *7 (-521))) (-5 *4 (-269 *7)) (-5 *5 (-1132 (-707)))
+ (-4 *7 (-13 (-27) (-1105) (-404 *6)))
+ (-4 *6 (-13 (-513) (-784) (-961 (-521)) (-583 (-521))))
+ (-5 *2 (-51)) (-5 *1 (-432 *6 *7))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1083)) (-5 *5 (-268 *3)) (-5 *6 (-1131 (-706)))
- (-4 *3 (-13 (-27) (-1104) (-403 *7)))
- (-4 *7 (-13 (-512) (-783) (-960 (-520)) (-582 (-520))))
- (-5 *2 (-51)) (-5 *1 (-431 *7 *3))))
+ (-12 (-5 *4 (-1084)) (-5 *5 (-269 *3)) (-5 *6 (-1132 (-707)))
+ (-4 *3 (-13 (-27) (-1105) (-404 *7)))
+ (-4 *7 (-13 (-513) (-784) (-961 (-521)) (-583 (-521))))
+ (-5 *2 (-51)) (-5 *1 (-432 *7 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-1126 *3 *2)) (-4 *3 (-969)) (-4 *2 (-1155 *3)))))
-(((*1 *1)
- (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-520)) (-14 *3 (-706))
- (-4 *4 (-157)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-37 (-380 (-520)))) (-5 *1 (-1157 *3 *2))
- (-4 *2 (-1155 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-586 (-626 *5))) (-5 *4 (-1164 *5)) (-4 *5 (-281))
- (-4 *5 (-969)) (-5 *2 (-626 *5)) (-5 *1 (-952 *5)))))
-(((*1 *1 *1 *1) (-5 *1 (-791))))
-(((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-758)))))
-(((*1 *1 *1) (-4 *1 (-505))))
-(((*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-842 *3)) (-4 *3 (-281)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-586 (-791))) (-5 *1 (-1083)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |stiffness| (-352)) (|:| |stability| (-352))
- (|:| |expense| (-352)) (|:| |accuracy| (-352))
- (|:| |intermediateResults| (-352))))
- (-5 *2 (-958)) (-5 *1 (-279)))))
+ (-12 (-4 *1 (-1127 *3 *2)) (-4 *3 (-970)) (-4 *2 (-1156 *3)))))
+(((*1 *2 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959))
+ (-5 *1 (-688)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1053)) (-5 *2 (-129))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1053)) (-5 *2 (-132)))))
+(((*1 *1 *1) (-4 *1 (-506))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-538 *3)) (-4 *3 (-337)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5 (-1 (-3 (-2 (|:| -3100 *6) (|:| |coeff| *6)) "failed") *6))
+ (-4 *6 (-337)) (-4 *7 (-1141 *6))
+ (-5 *2 (-2 (|:| |answer| (-538 (-381 *7))) (|:| |a0| *6)))
+ (-5 *1 (-531 *6 *7)) (-5 *3 (-381 *7)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4233)) (-4 *1 (-460 *4))
+ (-4 *4 (-1119)) (-5 *2 (-108)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-587 (-2 (|:| |k| (-1084)) (|:| |c| (-1185 *3)))))
+ (-5 *1 (-1185 *3)) (-4 *3 (-970))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-587 (-2 (|:| |k| *3) (|:| |c| (-1187 *3 *4)))))
+ (-5 *1 (-1187 *3 *4)) (-4 *3 (-784)) (-4 *4 (-970)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-657)) (-5 *2 (-850))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-707)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-425)) (-4 *3 (-729)) (-4 *5 (-784)) (-5 *2 (-108))
+ (-5 *1 (-422 *4 *3 *5 *6)) (-4 *6 (-878 *4 *3 *5)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201)))
- (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201))
- (|:| |relerr| (-201))))
+ (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202)))
+ (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202))
+ (|:| |relerr| (-202))))
(-5 *2
(-2
(|:| |endPointContinuity|
@@ -6196,10392 +6284,10369 @@
(|:| |notEvaluated|
"End point continuity not yet evaluated")))
(|:| |singularitiesStream|
- (-3 (|:| |str| (-1064 (-201)))
+ (-3 (|:| |str| (-1065 (-202)))
(|:| |notEvaluated|
"Internal singularities not yet evaluated")))
- (|:| -1667
+ (|:| -2442
(-3 (|:| |finite| "The range is finite")
(|:| |lowerInfinite| "The bottom of range is infinite")
(|:| |upperInfinite| "The top of range is infinite")
(|:| |bothInfinite|
"Both top and bottom points are infinite")
(|:| |notEvaluated| "Range not yet evaluated")))))
- (-5 *1 (-515)))))
+ (-5 *1 (-516)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-587 *2)) (-4 *2 (-404 *4)) (-5 *1 (-144 *4 *2))
+ (-4 *4 (-13 (-784) (-513))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-927))))))
+(((*1 *2 *2) (-12 (-5 *2 (-587 (-290 (-202)))) (-5 *1 (-243)))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-811 *2)) (-4 *2 (-1119)))))
+(((*1 *2)
+ (-12 (-4 *1 (-323))
+ (-5 *2 (-587 (-2 (|:| -1916 (-521)) (|:| -2997 (-521))))))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-587 *5)) (-5 *4 (-521)) (-4 *5 (-782)) (-4 *5 (-337))
+ (-5 *2 (-707)) (-5 *1 (-874 *5 *6)) (-4 *6 (-1141 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1141 (-381 *2))) (-5 *2 (-521)) (-5 *1 (-842 *4 *3))
+ (-4 *3 (-1141 (-381 *4))))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-408)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1031)) (-5 *1 (-304)))))
(((*1 *2 *1)
- (|partial| -12
- (-4 *3 (-13 (-783) (-960 (-520)) (-582 (-520)) (-424)))
- (-5 *2 (-776 *4)) (-5 *1 (-286 *3 *4 *5 *6))
- (-4 *4 (-13 (-27) (-1104) (-403 *3))) (-14 *5 (-1083))
- (-14 *6 *4)))
- ((*1 *2 *1)
- (|partial| -12
- (-4 *3 (-13 (-783) (-960 (-520)) (-582 (-520)) (-424)))
- (-5 *2 (-776 *4)) (-5 *1 (-1150 *3 *4 *5 *6))
- (-4 *4 (-13 (-27) (-1104) (-403 *3))) (-14 *5 (-1083))
- (-14 *6 *4))))
-(((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *3 (-626 (-201))) (-5 *4 (-520)) (-5 *5 (-108))
- (-5 *2 (-958)) (-5 *1 (-681)))))
-(((*1 *2 *1) (-12 (-4 *1 (-341)) (-5 *2 (-849))))
+ (-12 (-4 *1 (-902 *3 *4 *5 *6)) (-4 *3 (-970)) (-4 *4 (-729))
+ (-4 *5 (-784)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-513))
+ (-5 *2 (-108)))))
+(((*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-856)))))
+(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-121 *2)) (-4 *2 (-1013)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-881 (-521))) (-5 *2 (-587 *1)) (-4 *1 (-937))))
((*1 *2 *3)
- (-12 (-5 *3 (-1164 *4)) (-4 *4 (-322)) (-5 *2 (-849))
- (-5 *1 (-490 *4)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-849)) (-5 *4 (-1066)) (-5 *2 (-1169)) (-5 *1 (-1165)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7)
- (-12 (-5 *3 (-201)) (-5 *4 (-520)) (-5 *5 (-1066))
- (-5 *6 (-3 (|:| |fn| (-361)) (|:| |fp| (-80 PDEF))))
- (-5 *7 (-3 (|:| |fn| (-361)) (|:| |fp| (-81 BNDY)))) (-5 *2 (-958))
- (-5 *1 (-686)))))
+ (-12 (-5 *3 (-881 (-381 (-521)))) (-5 *2 (-587 *1)) (-4 *1 (-937))))
+ ((*1 *2 *3) (-12 (-5 *3 (-881 *1)) (-4 *1 (-937)) (-5 *2 (-587 *1))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1080 (-521))) (-5 *2 (-587 *1)) (-4 *1 (-937))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1080 (-381 (-521)))) (-5 *2 (-587 *1)) (-4 *1 (-937))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1080 *1)) (-4 *1 (-937)) (-5 *2 (-587 *1))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-782) (-337))) (-4 *3 (-1141 *4)) (-5 *2 (-587 *1))
+ (-4 *1 (-986 *4 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-269 (-381 (-881 *5)))) (-5 *4 (-1084))
+ (-4 *5 (-13 (-282) (-784) (-135)))
+ (-5 *2 (-1074 (-587 (-290 *5)) (-587 (-269 (-290 *5)))))
+ (-5 *1 (-1040 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-381 (-881 *5))) (-5 *4 (-1084))
+ (-4 *5 (-13 (-282) (-784) (-135)))
+ (-5 *2 (-1074 (-587 (-290 *5)) (-587 (-269 (-290 *5)))))
+ (-5 *1 (-1040 *5)))))
+(((*1 *1 *1) (-12 (-4 *1 (-920 *2)) (-4 *2 (-1119)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-880 (-380 (-520)))) (-5 *4 (-1083))
- (-5 *5 (-1007 (-776 (-201)))) (-5 *2 (-586 (-201))) (-5 *1 (-274)))))
-(((*1 *1) (-5 *1 (-129))))
-(((*1 *1 *1 *1) (-5 *1 (-791))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-201)) (|:| |xend| (-201))
- (|:| |fn| (-1164 (-289 (-201)))) (|:| |yinit| (-586 (-201)))
- (|:| |intvals| (-586 (-201))) (|:| |g| (-289 (-201)))
- (|:| |abserr| (-201)) (|:| |relerr| (-201))))
- (-5 *2 (-352)) (-5 *1 (-183)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-300 *3)) (-4 *3 (-1118))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-520)) (-5 *1 (-483 *3 *4)) (-4 *3 (-1118)) (-14 *4 *2))))
-(((*1 *2) (-12 (-5 *2 (-849)) (-5 *1 (-143)))))
-(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-121 *2)) (-4 *2 (-1012)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-512)) (-5 *2 (-706)) (-5 *1 (-42 *4 *3))
- (-4 *3 (-390 *4)))))
+ (-12 (-5 *3 (-1165 *6)) (-5 *4 (-1165 (-521))) (-5 *5 (-521))
+ (-4 *6 (-1013)) (-5 *2 (-1 *6)) (-5 *1 (-942 *6)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-587 *6)) (-4 *6 (-878 *3 *4 *5)) (-4 *3 (-425))
+ (-4 *4 (-729)) (-4 *5 (-784)) (-5 *1 (-422 *3 *4 *5 *6)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-425))) (-5 *1 (-1111 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-1105))))))
+(((*1 *2 *1) (-12 (-5 *2 (-166)) (-5 *1 (-225)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-707)) (-5 *2 (-1170)) (-5 *1 (-1166))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-707)) (-5 *2 (-1170)) (-5 *1 (-1167)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-512)) (-4 *5 (-917 *4))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-130 *4 *5 *3))
- (-4 *3 (-346 *5))))
+ (-12 (-4 *1 (-316 *4 *3 *5)) (-4 *4 (-1123)) (-4 *3 (-1141 *4))
+ (-4 *5 (-1141 (-381 *3))) (-5 *2 (-108))))
((*1 *2 *3)
- (-12 (-4 *4 (-512)) (-4 *5 (-917 *4))
- (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4)))
- (-5 *1 (-471 *4 *5 *6 *3)) (-4 *6 (-346 *4)) (-4 *3 (-346 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-626 *5)) (-4 *5 (-917 *4)) (-4 *4 (-512))
- (-5 *2 (-2 (|:| |num| (-626 *4)) (|:| |den| *4)))
- (-5 *1 (-629 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-336) (-135) (-960 (-380 (-520)))))
- (-4 *6 (-1140 *5))
- (-5 *2 (-2 (|:| -3190 *7) (|:| |rh| (-586 (-380 *6)))))
- (-5 *1 (-743 *5 *6 *7 *3)) (-5 *4 (-586 (-380 *6)))
- (-4 *7 (-596 *6)) (-4 *3 (-596 (-380 *6)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-512)) (-4 *5 (-917 *4))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1133 *4 *5 *3))
- (-4 *3 (-1140 *5)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-505))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-706)) (-5 *2 (-108))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-108)) (-5 *1 (-1119 *3)) (-4 *3 (-783))
- (-4 *3 (-1012)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-586 *7)) (-4 *7 (-877 *4 *5 *6)) (-4 *6 (-561 (-1083)))
- (-4 *4 (-336)) (-4 *5 (-728)) (-4 *6 (-783))
- (-5 *2 (-1073 (-586 (-880 *4)) (-586 (-268 (-880 *4)))))
- (-5 *1 (-472 *4 *5 *6 *7)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-908 *2)) (-4 *2 (-1104)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-877 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-728))
- (-4 *4 (-783)) (-4 *2 (-424))))
+ (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3))
+ (-4 *5 (-1141 (-381 *4))) (-5 *2 (-108)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4233)) (-4 *1 (-212 *3))
+ (-4 *3 (-1013))))
+ ((*1 *1 *2 *1)
+ (-12 (|has| *1 (-6 -4233)) (-4 *1 (-212 *2)) (-4 *2 (-1013))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-257 *2)) (-4 *2 (-1119)) (-4 *2 (-1013))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-257 *3)) (-4 *3 (-1119))))
((*1 *2 *3 *1)
- (-12 (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783))
- (-4 *3 (-983 *4 *5 *6))
- (-5 *2 (-586 (-2 (|:| |val| *3) (|:| -1883 *1))))
- (-4 *1 (-988 *4 *5 *6 *3))))
- ((*1 *1 *1) (-4 *1 (-1122)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-512)) (-5 *1 (-1143 *3 *2))
- (-4 *2 (-13 (-1140 *3) (-512) (-10 -8 (-15 -2257 ($ $ $))))))))
-(((*1 *2 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *2 (-958))
- (-5 *1 (-690)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-586 *5)) (-4 *5 (-157)) (-5 *1 (-128 *3 *4 *5))
- (-14 *3 (-520)) (-14 *4 (-706)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1044 *3)) (-4 *3 (-969)) (-5 *2 (-586 (-871 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-586 (-871 *3))) (-4 *3 (-969)) (-4 *1 (-1044 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-586 (-586 *3))) (-4 *1 (-1044 *3)) (-4 *3 (-969))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-586 (-871 *3))) (-4 *1 (-1044 *3)) (-4 *3 (-969)))))
-(((*1 *2)
- (-12 (-5 *2 (-1164 (-1013 *3 *4))) (-5 *1 (-1013 *3 *4))
- (-14 *3 (-849)) (-14 *4 (-849)))))
+ (|partial| -12 (-4 *1 (-558 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *2 (-1 (-108) *4)) (-5 *3 (-521)) (-4 *4 (-1013))
+ (-5 *1 (-674 *4))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-521)) (-5 *1 (-674 *2)) (-4 *2 (-1013))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1049 *3 *4)) (-4 *3 (-13 (-1013) (-33)))
+ (-4 *4 (-13 (-1013) (-33))) (-5 *1 (-1050 *3 *4)))))
(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1079 *3)) (-4 *3 (-322)) (-5 *1 (-330 *3)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1149 *3 *4 *5)) (-4 *3 (-13 (-336) (-783)))
- (-14 *4 (-1083)) (-14 *5 *3) (-5 *1 (-292 *3 *4 *5))))
- ((*1 *2 *3) (-12 (-5 *2 (-1 (-352))) (-5 *1 (-962)) (-5 *3 (-352)))))
+ (-12 (-5 *2 (-587 *3)) (-4 *3 (-1141 (-521))) (-5 *1 (-457 *3)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202)))
+ (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202))
+ (|:| |relerr| (-202))))
+ (-5 *2 (-353)) (-5 *1 (-171)))))
+(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3)
+ (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *5 (-202))
+ (-5 *2 (-959)) (-5 *1 (-688)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-546 *2)) (-4 *2 (-970)))))
(((*1 *2 *2 *2)
- (-12 (-5 *2 (-706))
- (-4 *3 (-13 (-281) (-10 -8 (-15 -1507 ((-391 $) $)))))
- (-4 *4 (-1140 *3)) (-5 *1 (-467 *3 *4 *5)) (-4 *5 (-382 *3 *4)))))
-(((*1 *1 *1 *1) (-5 *1 (-791))))
-(((*1 *2 *3 *4 *4 *3)
- (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *2 (-958))
- (-5 *1 (-683)))))
+ (-12 (-4 *3 (-970)) (-5 *1 (-1137 *3 *2)) (-4 *2 (-1141 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-706)) (-5 *2 (-1 (-1064 (-880 *4)) (-1064 (-880 *4))))
- (-5 *1 (-1172 *4)) (-4 *4 (-336)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-624 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-346 *2))
- (-4 *4 (-346 *2)))))
+ (-12 (-5 *3 (-587 *7)) (-4 *7 (-878 *4 *5 *6)) (-4 *4 (-425))
+ (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-1170))
+ (-5 *1 (-422 *4 *5 *6 *7)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-55 *2 *3 *4)) (-4 *2 (-1119)) (-4 *3 (-347 *2))
+ (-4 *4 (-347 *2))))
+ ((*1 *1 *1 *2)
+ (-12 (|has| *1 (-6 -4234)) (-4 *1 (-554 *3 *2)) (-4 *3 (-1013))
+ (-4 *2 (-1119)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-587 (-2 (|:| -1916 *4) (|:| -1994 (-521)))))
+ (-4 *4 (-1141 (-521))) (-5 *2 (-674 (-707))) (-5 *1 (-415 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-392 *5)) (-4 *5 (-1141 *4)) (-4 *4 (-970))
+ (-5 *2 (-674 (-707))) (-5 *1 (-417 *4 *5)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-586 (-238))) (-5 *4 (-1083))
- (-5 *1 (-237 *2)) (-4 *2 (-1118))))
+ (|partial| -12 (-5 *3 (-587 (-239))) (-5 *4 (-1084))
+ (-5 *1 (-238 *2)) (-4 *2 (-1119))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-586 (-238))) (-5 *4 (-1083)) (-5 *2 (-51))
- (-5 *1 (-238)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-586 (-520))) (-5 *1 (-928 *3)) (-14 *3 (-520)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1164 *5)) (-4 *5 (-727)) (-5 *2 (-108))
- (-5 *1 (-778 *4 *5)) (-14 *4 (-706)))))
-(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-126)))))
-(((*1 *2)
- (-12 (-4 *1 (-315 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-1140 *3))
- (-4 *5 (-1140 (-380 *4))) (-5 *2 (-108)))))
+ (|partial| -12 (-5 *3 (-587 (-239))) (-5 *4 (-1084)) (-5 *2 (-51))
+ (-5 *1 (-239)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-561 (-820 *3))) (-4 *3 (-814 *3))
- (-4 *3 (-13 (-783) (-424))) (-5 *1 (-1110 *3 *2))
- (-4 *2 (-561 (-820 *3))) (-4 *2 (-814 *3))
- (-4 *2 (-13 (-403 *3) (-1104))))))
-(((*1 *1 *1) (-12 (-5 *1 (-892 *2)) (-4 *2 (-893)))))
-(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-855)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-156)) (-5 *1 (-1072 *3 *4)) (-14 *3 (-849))
- (-4 *4 (-969)))))
-(((*1 *1) (-5 *1 (-129))) ((*1 *1 *1) (-5 *1 (-132)))
- ((*1 *1 *1) (-4 *1 (-1052))))
-(((*1 *2 *1) (-12 (-4 *1 (-362)) (-5 *2 (-108)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-801 (-892 *3) (-892 *3))) (-5 *1 (-892 *3))
- (-4 *3 (-893)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1079 *5)) (-4 *5 (-336)) (-5 *2 (-586 *6))
- (-5 *1 (-493 *5 *6 *4)) (-4 *6 (-336)) (-4 *4 (-13 (-336) (-781))))))
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-144 *3 *2))
+ (-4 *2 (-404 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1084)) (-4 *4 (-13 (-784) (-513))) (-5 *1 (-144 *4 *2))
+ (-4 *2 (-404 *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-146)) (-5 *2 (-1084))))
+ ((*1 *1 *1) (-4 *1 (-146))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-424))) (-5 *1 (-1110 *3 *2))
- (-4 *2 (-13 (-403 *3) (-1104))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-849)) (-5 *4 (-391 *6)) (-4 *6 (-1140 *5))
- (-4 *5 (-969)) (-5 *2 (-586 *6)) (-5 *1 (-416 *5 *6)))))
-(((*1 *2 *1) (-12 (-4 *1 (-340 *2)) (-4 *2 (-157)))))
+ (-12 (-4 *3 (-13 (-784) (-425))) (-5 *1 (-1111 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-1105))))))
+(((*1 *1 *2) (-12 (-5 *1 (-950 *2)) (-4 *2 (-1119)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-587 (-992 *4 *5 *2))) (-4 *4 (-1013))
+ (-4 *5 (-13 (-970) (-815 *4) (-784) (-562 (-821 *4))))
+ (-4 *2 (-13 (-404 *5) (-815 *4) (-562 (-821 *4))))
+ (-5 *1 (-53 *4 *5 *2))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-587 (-992 *5 *6 *2))) (-5 *4 (-850)) (-4 *5 (-1013))
+ (-4 *6 (-13 (-970) (-815 *5) (-784) (-562 (-821 *5))))
+ (-4 *2 (-13 (-404 *6) (-815 *5) (-562 (-821 *5))))
+ (-5 *1 (-53 *5 *6 *2)))))
+(((*1 *2 *1) (-12 (-4 *1 (-920 *2)) (-4 *2 (-1119)))))
+(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-856)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-821 *3)) (-4 *3 (-1013)))))
(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-706)) (-5 *3 (-871 *5)) (-4 *5 (-969))
- (-5 *1 (-1072 *4 *5)) (-14 *4 (-849))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-586 (-706))) (-5 *3 (-706)) (-5 *1 (-1072 *4 *5))
- (-14 *4 (-849)) (-4 *5 (-969))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-586 (-706))) (-5 *3 (-871 *5)) (-4 *5 (-969))
- (-5 *1 (-1072 *4 *5)) (-14 *4 (-849)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-201)) (-5 *4 (-520)) (-5 *2 (-958)) (-5 *1 (-694)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *2 (-958))
- (-5 *1 (-683)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1030)) (-5 *1 (-303)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1114 *3)) (-4 *3 (-899)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-201)) (-5 *4 (-520)) (-5 *2 (-958)) (-5 *1 (-694)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-706)) (-5 *1 (-789 *2)) (-4 *2 (-157))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1079 (-520))) (-5 *1 (-870)) (-5 *3 (-520)))))
+ (-12 (-5 *2 (-587 (-707))) (-5 *3 (-156)) (-5 *1 (-1073 *4 *5))
+ (-14 *4 (-850)) (-4 *5 (-970)))))
+(((*1 *2 *1) (-12 (-4 *1 (-614 *3)) (-4 *3 (-1119)) (-5 *2 (-108)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1066)) (-4 *4 (-13 (-281) (-135)))
- (-4 *5 (-13 (-783) (-561 (-1083)))) (-4 *6 (-728))
- (-5 *2
- (-586
- (-2 (|:| |eqzro| (-586 *7)) (|:| |neqzro| (-586 *7))
- (|:| |wcond| (-586 (-880 *4)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1164 (-380 (-880 *4))))
- (|:| -1831 (-586 (-1164 (-380 (-880 *4))))))))))
- (-5 *1 (-852 *4 *5 *6 *7)) (-4 *7 (-877 *4 *6 *5)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1079 *3)) (-4 *3 (-322)) (-5 *1 (-330 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1012))
- (-4 *4 (-13 (-969) (-814 *3) (-783) (-561 (-820 *3))))
- (-5 *2 (-586 (-1083))) (-5 *1 (-991 *3 *4 *5))
- (-4 *5 (-13 (-403 *4) (-814 *3) (-561 (-820 *3)))))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-1 (-108) *2)) (-4 *1 (-139 *2))
- (-4 *2 (-1118)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-586 (-2 (|:| |val| (-586 *6)) (|:| -1883 *7))))
- (-4 *6 (-983 *3 *4 *5)) (-4 *7 (-988 *3 *4 *5 *6)) (-4 *3 (-424))
- (-4 *4 (-728)) (-4 *5 (-783)) (-5 *1 (-913 *3 *4 *5 *6 *7))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-586 (-2 (|:| |val| (-586 *6)) (|:| -1883 *7))))
- (-4 *6 (-983 *3 *4 *5)) (-4 *7 (-988 *3 *4 *5 *6)) (-4 *3 (-424))
- (-4 *4 (-728)) (-4 *5 (-783)) (-5 *1 (-1019 *3 *4 *5 *6 *7)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-871 *3)) (-4 *3 (-13 (-336) (-1104) (-926)))
- (-5 *1 (-160 *3)))))
+ (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-521))
+ (-5 *1 (-422 *4 *5 *6 *3)) (-4 *3 (-878 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |stiffness| (-353)) (|:| |stability| (-353))
+ (|:| |expense| (-353)) (|:| |accuracy| (-353))
+ (|:| |intermediateResults| (-353))))
+ (-5 *2 (-959)) (-5 *1 (-280)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-587 *3)) (-4 *3 (-878 *4 *6 *5)) (-4 *4 (-425))
+ (-4 *5 (-784)) (-4 *6 (-729)) (-5 *1 (-913 *4 *5 *6 *3)))))
+(((*1 *1 *1 *1) (-5 *1 (-792))))
+(((*1 *2 *3) (-12 (-5 *3 (-707)) (-5 *2 (-1170)) (-5 *1 (-353))))
+ ((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-353)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-323)) (-5 *1 (-331 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-166)) (-5 *1 (-225)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1118)) (-4 *4 (-346 *3))
- (-4 *5 (-346 *3)) (-5 *2 (-520))))
+ (-12 (-5 *2 (-1150 *3 *4 *5)) (-5 *1 (-293 *3 *4 *5))
+ (-4 *3 (-13 (-337) (-784))) (-14 *4 (-1084)) (-14 *5 *3)))
+ ((*1 *2 *1) (-12 (-4 *1 (-378)) (-5 *2 (-521))))
+ ((*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-392 *3)) (-4 *3 (-513))))
+ ((*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-636))))
((*1 *2 *1)
- (-12 (-4 *1 (-972 *3 *4 *5 *6 *7)) (-4 *5 (-969))
- (-4 *6 (-214 *4 *5)) (-4 *7 (-214 *3 *5)) (-5 *2 (-520)))))
-(((*1 *2 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1140 *5))
- (-4 *5 (-13 (-336) (-135) (-960 (-520))))
- (-5 *2
- (-2 (|:| |a| *6) (|:| |b| (-380 *6)) (|:| |c| (-380 *6))
- (|:| -1638 *6)))
- (-5 *1 (-939 *5 *6)) (-5 *3 (-380 *6)))))
+ (-12 (-4 *2 (-1013)) (-5 *1 (-650 *3 *2 *4)) (-4 *3 (-784))
+ (-14 *4
+ (-1 (-108) (-2 (|:| -2716 *3) (|:| -2997 *2))
+ (-2 (|:| -2716 *3) (|:| -2997 *2)))))))
+(((*1 *2 *3) (-12 (-5 *2 (-381 (-521))) (-5 *1 (-518)) (-5 *3 (-521))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1080 (-381 (-521)))) (-5 *1 (-871)) (-5 *3 (-521)))))
+(((*1 *1 *2) (-12 (-5 *1 (-204 *2)) (-4 *2 (-13 (-337) (-1105))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013))
+ (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-108)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-132)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-587 (-627 *4))) (-5 *2 (-627 *4)) (-4 *4 (-970))
+ (-5 *1 (-953 *4)))))
+(((*1 *2 *3 *4 *4 *5 *6 *7)
+ (-12 (-5 *5 (-1084))
+ (-5 *6
+ (-1
+ (-3
+ (-2 (|:| |mainpart| *4)
+ (|:| |limitedlogs|
+ (-587 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
+ "failed")
+ *4 (-587 *4)))
+ (-5 *7
+ (-1 (-3 (-2 (|:| -3100 *4) (|:| |coeff| *4)) "failed") *4 *4))
+ (-4 *4 (-13 (-1105) (-27) (-404 *8)))
+ (-4 *8 (-13 (-425) (-784) (-135) (-961 *3) (-583 *3)))
+ (-5 *3 (-521))
+ (-5 *2 (-2 (|:| |ans| *4) (|:| -1925 *4) (|:| |sol?| (-108))))
+ (-5 *1 (-938 *8 *4)))))
+(((*1 *2 *2 *1 *3 *4)
+ (-12 (-5 *2 (-587 *8)) (-5 *3 (-1 *8 *8 *8))
+ (-5 *4 (-1 (-108) *8 *8)) (-4 *1 (-1113 *5 *6 *7 *8)) (-4 *5 (-513))
+ (-4 *6 (-729)) (-4 *7 (-784)) (-4 *8 (-984 *5 *6 *7)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-381 (-1080 (-290 *3)))) (-4 *3 (-13 (-513) (-784)))
+ (-5 *1 (-1041 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-513))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-896 *4 *3)) (-4 *3 (-1141 *4)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-392 *2)) (-4 *2 (-282)) (-5 *1 (-843 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-381 (-881 *5))) (-5 *4 (-1084))
+ (-4 *5 (-13 (-282) (-135))) (-5 *2 (-51)) (-5 *1 (-844 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-392 (-881 *6))) (-5 *5 (-1084)) (-5 *3 (-881 *6))
+ (-4 *6 (-13 (-282) (-135))) (-5 *2 (-51)) (-5 *1 (-844 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-126))))
+ ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-770 *3)) (-4 *3 (-1013))))
+ ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-777 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-707)) (-4 *4 (-323)) (-5 *1 (-194 *4 *2))
+ (-4 *2 (-1141 *4))))
+ ((*1 *2 *2 *3 *2 *3)
+ (-12 (-5 *3 (-521)) (-5 *1 (-633 *2)) (-4 *2 (-1141 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-201)) (-5 *4 (-520)) (-5 *2 (-958)) (-5 *1 (-694)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3)
- (-12 (-5 *3 (-520)) (-5 *5 (-626 (-201))) (-5 *4 (-201))
- (-5 *2 (-958)) (-5 *1 (-688)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1066)) (-5 *1 (-110))))
+ (-12 (-4 *5 (-1013)) (-4 *2 (-829 *5)) (-5 *1 (-629 *5 *2 *3 *4))
+ (-4 *3 (-347 *2)) (-4 *4 (-13 (-347 *5) (-10 -7 (-6 -4233)))))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-920 *2)) (-4 *2 (-1119)))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *6)
+ (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *5 (-202))
+ (-5 *6 (-3 (|:| |fn| (-362)) (|:| |fp| (-72 FCN)))) (-5 *2 (-959))
+ (-5 *1 (-683)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7)
+ (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *5 (-1067))
+ (-5 *6 (-3 (|:| |fn| (-362)) (|:| |fp| (-80 PDEF))))
+ (-5 *7 (-3 (|:| |fn| (-362)) (|:| |fp| (-81 BNDY)))) (-5 *2 (-959))
+ (-5 *1 (-687)))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *5 (-707)) (-4 *6 (-1013)) (-4 *7 (-829 *6))
+ (-5 *2 (-627 *7)) (-5 *1 (-629 *6 *7 *3 *4)) (-4 *3 (-347 *7))
+ (-4 *4 (-13 (-347 *6) (-10 -7 (-6 -4233)))))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-110))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1066)) (-4 *4 (-783)) (-5 *1 (-857 *4 *2))
- (-4 *2 (-403 *4))))
+ (-12 (-5 *3 (-1067)) (-4 *4 (-784)) (-5 *1 (-858 *4 *2))
+ (-4 *2 (-404 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1083)) (-5 *4 (-1066)) (-5 *2 (-289 (-520)))
- (-5 *1 (-858)))))
-(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7)
- (-12 (-5 *4 (-520)) (-5 *5 (-626 (-201)))
- (-5 *6 (-3 (|:| |fn| (-361)) (|:| |fp| (-82 FCNF))))
- (-5 *7 (-3 (|:| |fn| (-361)) (|:| |fp| (-83 FCNG)))) (-5 *3 (-201))
- (-5 *2 (-958)) (-5 *1 (-685)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-13 (-336) (-135) (-960 (-380 (-520)))))
- (-4 *3 (-1140 *4)) (-5 *1 (-745 *4 *3 *2 *5)) (-4 *2 (-596 *3))
- (-4 *5 (-596 (-380 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-380 *5))
- (-4 *4 (-13 (-336) (-135) (-960 (-380 (-520))))) (-4 *5 (-1140 *4))
- (-5 *1 (-745 *4 *5 *2 *6)) (-4 *2 (-596 *5)) (-4 *6 (-596 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1083))
- (-4 *5 (-13 (-512) (-783) (-960 (-520)) (-582 (-520))))
+ (-12 (-5 *3 (-1084)) (-5 *4 (-1067)) (-5 *2 (-290 (-521)))
+ (-5 *1 (-859)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-707)) (-5 *2 (-108)))))
+(((*1 *1 *1) (-4 *1 (-979)))
+ ((*1 *1 *1 *2 *2)
+ (-12 (-4 *1 (-1143 *3 *2)) (-4 *3 (-970)) (-4 *2 (-728))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1143 *3 *2)) (-4 *3 (-970)) (-4 *2 (-728)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1011 *3)) (-4 *3 (-1013)) (-5 *2 (-108)))))
+(((*1 *2 *3)
+ (-12
(-5 *2
- (-2 (|:| |func| *3) (|:| |kers| (-586 (-559 *3)))
- (|:| |vals| (-586 *3))))
- (-5 *1 (-252 *5 *3)) (-4 *3 (-13 (-27) (-1104) (-403 *5))))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-969)) (-5 *1 (-822 *2 *3)) (-4 *2 (-1140 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-969)) (-5 *1 (-1068 *3)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3)
- (-12 (-5 *4 (-626 (-520))) (-5 *5 (-108)) (-5 *7 (-626 (-201)))
- (-5 *3 (-520)) (-5 *6 (-201)) (-5 *2 (-958)) (-5 *1 (-690)))))
+ (-587 (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521))))))
+ (-5 *1 (-944 *3)) (-4 *3 (-1141 (-521)))))
+ ((*1 *2 *3 *4)
+ (-12
+ (-5 *2
+ (-587 (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521))))))
+ (-5 *1 (-944 *3)) (-4 *3 (-1141 (-521)))
+ (-5 *4 (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521)))))))
+ ((*1 *2 *3 *4)
+ (-12
+ (-5 *2
+ (-587 (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521))))))
+ (-5 *1 (-944 *3)) (-4 *3 (-1141 (-521))) (-5 *4 (-381 (-521)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-381 (-521)))
+ (-5 *2 (-587 (-2 (|:| -1913 *5) (|:| -1925 *5)))) (-5 *1 (-944 *3))
+ (-4 *3 (-1141 (-521))) (-5 *4 (-2 (|:| -1913 *5) (|:| -1925 *5)))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *2
+ (-587 (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521))))))
+ (-5 *1 (-945 *3)) (-4 *3 (-1141 (-381 (-521))))))
+ ((*1 *2 *3 *4)
+ (-12
+ (-5 *2
+ (-587 (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521))))))
+ (-5 *1 (-945 *3)) (-4 *3 (-1141 (-381 (-521))))
+ (-5 *4 (-2 (|:| -1913 (-381 (-521))) (|:| -1925 (-381 (-521)))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-381 (-521)))
+ (-5 *2 (-587 (-2 (|:| -1913 *4) (|:| -1925 *4)))) (-5 *1 (-945 *3))
+ (-4 *3 (-1141 *4))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-381 (-521)))
+ (-5 *2 (-587 (-2 (|:| -1913 *5) (|:| -1925 *5)))) (-5 *1 (-945 *3))
+ (-4 *3 (-1141 *5)) (-5 *4 (-2 (|:| -1913 *5) (|:| -1925 *5))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-707)) (-4 *5 (-970)) (-5 *2 (-521))
+ (-5 *1 (-416 *5 *3 *6)) (-4 *3 (-1141 *5))
+ (-4 *6 (-13 (-378) (-961 *5) (-337) (-1105) (-259)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-970)) (-5 *2 (-521)) (-5 *1 (-416 *4 *3 *5))
+ (-4 *3 (-1141 *4))
+ (-4 *5 (-13 (-378) (-961 *4) (-337) (-1105) (-259))))))
(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1186 *4 *2)) (-4 *1 (-347 *4 *2)) (-4 *4 (-783))
+ (-12 (-5 *3 (-1187 *4 *2)) (-4 *1 (-348 *4 *2)) (-4 *4 (-784))
(-4 *2 (-157))))
((*1 *2 *1 *1)
- (-12 (-4 *1 (-1179 *3 *2)) (-4 *3 (-783)) (-4 *2 (-969))))
+ (-12 (-4 *1 (-1180 *3 *2)) (-4 *3 (-784)) (-4 *2 (-970))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-755 *4)) (-4 *1 (-1179 *4 *2)) (-4 *4 (-783))
- (-4 *2 (-969))))
+ (-12 (-5 *3 (-756 *4)) (-4 *1 (-1180 *4 *2)) (-4 *4 (-784))
+ (-4 *2 (-970))))
((*1 *2 *1 *3)
- (-12 (-4 *2 (-969)) (-5 *1 (-1185 *2 *3)) (-4 *3 (-779)))))
-(((*1 *1) (-5 *1 (-440))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-849)) (-5 *2 (-1079 *4)) (-5 *1 (-330 *4))
- (-4 *4 (-322)))))
-(((*1 *2 *3 *3 *1)
- (|partial| -12 (-5 *3 (-1083)) (-5 *2 (-1016)) (-5 *1 (-265)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-108)) (-5 *1 (-110)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-285)) (-5 *1 (-270))))
+ (-12 (-4 *2 (-970)) (-5 *1 (-1186 *2 *3)) (-4 *3 (-780)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959))
+ (-5 *1 (-684)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729))
+ (-4 *4 (-784)))))
+(((*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-392 *3)) (-4 *3 (-513))))
((*1 *2 *3)
- (-12 (-5 *3 (-586 (-1066))) (-5 *2 (-285)) (-5 *1 (-270))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-285)) (-5 *1 (-270))))
+ (-12 (-5 *3 (-587 (-2 (|:| -1916 *4) (|:| -1994 (-521)))))
+ (-4 *4 (-1141 (-521))) (-5 *2 (-707)) (-5 *1 (-415 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-286)) (-5 *1 (-271))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-587 (-1067))) (-5 *2 (-286)) (-5 *1 (-271))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-286)) (-5 *1 (-271))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-586 (-1066))) (-5 *3 (-1066)) (-5 *2 (-285))
- (-5 *1 (-270)))))
+ (-12 (-5 *4 (-587 (-1067))) (-5 *3 (-1067)) (-5 *2 (-286))
+ (-5 *1 (-271)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1147 *3 *4)) (-4 *3 (-969)) (-4 *4 (-1124 *3))
- (-5 *2 (-380 (-520))))))
-(((*1 *2 *2) (-12 (-5 *2 (-1066)) (-5 *1 (-695)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-352)) (-5 *1 (-721)))))
+ (-12 (-5 *2 (-587 (-1106 *3))) (-5 *1 (-1106 *3)) (-4 *3 (-1013)))))
(((*1 *2)
- (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-339 *3 *4))
- (-4 *3 (-340 *4))))
- ((*1 *2) (-12 (-4 *1 (-340 *3)) (-4 *3 (-157)) (-5 *2 (-108)))))
+ (-12 (-4 *2 (-13 (-404 *3) (-927))) (-5 *1 (-252 *3 *2))
+ (-4 *3 (-13 (-784) (-513))))))
+(((*1 *1) (-5 *1 (-760))))
+(((*1 *2 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-202)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-849)) (-5 *1 (-140 *3 *4 *5)) (-14 *3 *2)
- (-4 *4 (-336)) (-14 *5 (-918 *3 *4)))))
-(((*1 *1) (-4 *1 (-322)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-586 *5)) (-4 *5 (-403 *4))
- (-4 *4 (-13 (-512) (-783) (-135)))
- (-5 *2
- (-2 (|:| |primelt| *5) (|:| |poly| (-586 (-1079 *5)))
- (|:| |prim| (-1079 *5))))
- (-5 *1 (-405 *4 *5))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-512) (-783) (-135)))
- (-5 *2
- (-2 (|:| |primelt| *3) (|:| |pol1| (-1079 *3))
- (|:| |pol2| (-1079 *3)) (|:| |prim| (-1079 *3))))
- (-5 *1 (-405 *4 *3)) (-4 *3 (-27)) (-4 *3 (-403 *4))))
- ((*1 *2 *3 *4 *3 *4)
- (-12 (-5 *3 (-880 *5)) (-5 *4 (-1083)) (-4 *5 (-13 (-336) (-135)))
- (-5 *2
- (-2 (|:| |coef1| (-520)) (|:| |coef2| (-520))
- (|:| |prim| (-1079 *5))))
- (-5 *1 (-887 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-586 (-880 *5))) (-5 *4 (-586 (-1083)))
- (-4 *5 (-13 (-336) (-135)))
- (-5 *2
- (-2 (|:| -2972 (-586 (-520))) (|:| |poly| (-586 (-1079 *5)))
- (|:| |prim| (-1079 *5))))
- (-5 *1 (-887 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-586 (-880 *6))) (-5 *4 (-586 (-1083))) (-5 *5 (-1083))
- (-4 *6 (-13 (-336) (-135)))
- (-5 *2
- (-2 (|:| -2972 (-586 (-520))) (|:| |poly| (-586 (-1079 *6)))
- (|:| |prim| (-1079 *6))))
- (-5 *1 (-887 *6)))))
+ (-12 (-5 *2 (-850)) (-5 *1 (-140 *3 *4 *5)) (-14 *3 *2)
+ (-4 *4 (-337)) (-14 *5 (-919 *3 *4)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-4 *1 (-1141 *3)) (-4 *3 (-970)))))
(((*1 *2 *1)
(-12
(-5 *2
- (-586
- (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201)))
- (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201))
- (|:| |relerr| (-201)))))
- (-5 *1 (-515))))
+ (-587
+ (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202)))
+ (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202))
+ (|:| |relerr| (-202)))))
+ (-5 *1 (-516))))
((*1 *2 *1)
- (-12 (-4 *1 (-557 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012))
- (-5 *2 (-586 *3))))
+ (-12 (-4 *1 (-558 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013))
+ (-5 *2 (-587 *3))))
((*1 *2 *1)
(-12
(-5 *2
- (-586
- (-2 (|:| |xinit| (-201)) (|:| |xend| (-201))
- (|:| |fn| (-1164 (-289 (-201)))) (|:| |yinit| (-586 (-201)))
- (|:| |intvals| (-586 (-201))) (|:| |g| (-289 (-201)))
- (|:| |abserr| (-201)) (|:| |relerr| (-201)))))
- (-5 *1 (-739)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-352)) (-5 *2 (-1169)) (-5 *1 (-1166)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-586 *7)) (-4 *7 (-783)) (-4 *5 (-837)) (-4 *6 (-728))
- (-4 *8 (-877 *5 *6 *7)) (-5 *2 (-391 (-1079 *8)))
- (-5 *1 (-834 *5 *6 *7 *8)) (-5 *4 (-1079 *8))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-837)) (-4 *5 (-1140 *4)) (-5 *2 (-391 (-1079 *5)))
- (-5 *1 (-835 *4 *5)) (-5 *3 (-1079 *5)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-303)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-983 *3 *4 *5)) (-4 *3 (-969)) (-4 *4 (-728))
- (-4 *5 (-783)) (-5 *2 (-706)))))
+ (-587
+ (-2 (|:| |xinit| (-202)) (|:| |xend| (-202))
+ (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202)))
+ (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202)))
+ (|:| |abserr| (-202)) (|:| |relerr| (-202)))))
+ (-5 *1 (-740)))))
+(((*1 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203))))
+ ((*1 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-405 *3 *2))
+ (-4 *2 (-404 *3))))
+ ((*1 *1 *1) (-4 *1 (-1048))))
(((*1 *2 *1)
- (-12 (-4 *4 (-1012)) (-5 *2 (-108)) (-5 *1 (-813 *3 *4 *5))
- (-4 *3 (-1012)) (-4 *5 (-606 *4))))
+ (-12 (-4 *3 (-970)) (-4 *4 (-1013)) (-5 *2 (-587 *1))
+ (-4 *1 (-356 *3 *4))))
((*1 *2 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-817 *3 *4)) (-4 *3 (-1012))
- (-4 *4 (-1012)))))
+ (-12 (-5 *2 (-587 (-672 *3 *4))) (-5 *1 (-672 *3 *4)) (-4 *3 (-970))
+ (-4 *4 (-663))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *2 (-587 *1))
+ (-4 *1 (-878 *3 *4 *5)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1165 *4)) (-4 *4 (-583 *5)) (-4 *5 (-337))
+ (-4 *5 (-513)) (-5 *2 (-1165 *5)) (-5 *1 (-582 *5 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1165 *4)) (-4 *4 (-583 *5))
+ (-2400 (-4 *5 (-337))) (-4 *5 (-513)) (-5 *2 (-1165 (-381 *5)))
+ (-5 *1 (-582 *5 *4)))))
+(((*1 *2 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959))
+ (-5 *1 (-691)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-706)) (-4 *5 (-969)) (-4 *2 (-1140 *5))
- (-5 *1 (-1158 *5 *2 *6 *3)) (-4 *6 (-596 *2)) (-4 *3 (-1155 *5)))))
+ (-12 (-5 *3 (-1165 (-587 (-2 (|:| -3430 *4) (|:| -2716 (-1031))))))
+ (-4 *4 (-323)) (-5 *2 (-1170)) (-5 *1 (-491 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-849)) (-5 *2 (-1079 *4)) (-5 *1 (-539 *4))
- (-4 *4 (-322)))))
-(((*1 *1 *1) (-4 *1 (-505))))
+ (-12 (-5 *3 (-587 (-521))) (-5 *2 (-833 (-521))) (-5 *1 (-846))))
+ ((*1 *2) (-12 (-5 *2 (-833 (-521))) (-5 *1 (-846)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-872 *3)) (-4 *3 (-13 (-337) (-1105) (-927)))
+ (-5 *1 (-160 *3)))))
+(((*1 *1 *1) (-4 *1 (-506))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-807 (-1 (-201) (-201)))) (-5 *4 (-1007 (-352)))
- (-5 *5 (-586 (-238))) (-5 *2 (-1043 (-201))) (-5 *1 (-230))))
+ (-12 (-5 *3 (-808 (-1 (-202) (-202)))) (-5 *4 (-1008 (-353)))
+ (-5 *5 (-587 (-239))) (-5 *2 (-1044 (-202))) (-5 *1 (-231))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-807 (-1 (-201) (-201)))) (-5 *4 (-1007 (-352)))
- (-5 *2 (-1043 (-201))) (-5 *1 (-230))))
+ (-12 (-5 *3 (-808 (-1 (-202) (-202)))) (-5 *4 (-1008 (-353)))
+ (-5 *2 (-1044 (-202))) (-5 *1 (-231))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-871 (-201)) (-201))) (-5 *4 (-1007 (-352)))
- (-5 *5 (-586 (-238))) (-5 *2 (-1043 (-201))) (-5 *1 (-230))))
+ (-12 (-5 *3 (-1 (-872 (-202)) (-202))) (-5 *4 (-1008 (-353)))
+ (-5 *5 (-587 (-239))) (-5 *2 (-1044 (-202))) (-5 *1 (-231))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-871 (-201)) (-201))) (-5 *4 (-1007 (-352)))
- (-5 *2 (-1043 (-201))) (-5 *1 (-230))))
+ (-12 (-5 *3 (-1 (-872 (-202)) (-202))) (-5 *4 (-1008 (-353)))
+ (-5 *2 (-1044 (-202))) (-5 *1 (-231))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-201) (-201) (-201))) (-5 *4 (-1007 (-352)))
- (-5 *5 (-586 (-238))) (-5 *2 (-1043 (-201))) (-5 *1 (-230))))
+ (-12 (-5 *3 (-1 (-202) (-202) (-202))) (-5 *4 (-1008 (-353)))
+ (-5 *5 (-587 (-239))) (-5 *2 (-1044 (-202))) (-5 *1 (-231))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-201) (-201) (-201))) (-5 *4 (-1007 (-352)))
- (-5 *2 (-1043 (-201))) (-5 *1 (-230))))
+ (-12 (-5 *3 (-1 (-202) (-202) (-202))) (-5 *4 (-1008 (-353)))
+ (-5 *2 (-1044 (-202))) (-5 *1 (-231))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-871 (-201)) (-201) (-201))) (-5 *4 (-1007 (-352)))
- (-5 *5 (-586 (-238))) (-5 *2 (-1043 (-201))) (-5 *1 (-230))))
+ (-12 (-5 *3 (-1 (-872 (-202)) (-202) (-202))) (-5 *4 (-1008 (-353)))
+ (-5 *5 (-587 (-239))) (-5 *2 (-1044 (-202))) (-5 *1 (-231))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-871 (-201)) (-201) (-201))) (-5 *4 (-1007 (-352)))
- (-5 *2 (-1043 (-201))) (-5 *1 (-230))))
+ (-12 (-5 *3 (-1 (-872 (-202)) (-202) (-202))) (-5 *4 (-1008 (-353)))
+ (-5 *2 (-1044 (-202))) (-5 *1 (-231))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-810 (-1 (-201) (-201) (-201)))) (-5 *4 (-1007 (-352)))
- (-5 *5 (-586 (-238))) (-5 *2 (-1043 (-201))) (-5 *1 (-230))))
+ (-12 (-5 *3 (-811 (-1 (-202) (-202) (-202)))) (-5 *4 (-1008 (-353)))
+ (-5 *5 (-587 (-239))) (-5 *2 (-1044 (-202))) (-5 *1 (-231))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-810 (-1 (-201) (-201) (-201)))) (-5 *4 (-1007 (-352)))
- (-5 *2 (-1043 (-201))) (-5 *1 (-230))))
+ (-12 (-5 *3 (-811 (-1 (-202) (-202) (-202)))) (-5 *4 (-1008 (-353)))
+ (-5 *2 (-1044 (-202))) (-5 *1 (-231))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-807 *6)) (-5 *4 (-1005 (-352))) (-5 *5 (-586 (-238)))
- (-4 *6 (-13 (-561 (-496)) (-1012))) (-5 *2 (-1043 (-201)))
- (-5 *1 (-234 *6))))
+ (-12 (-5 *3 (-808 *6)) (-5 *4 (-1006 (-353))) (-5 *5 (-587 (-239)))
+ (-4 *6 (-13 (-562 (-497)) (-1013))) (-5 *2 (-1044 (-202)))
+ (-5 *1 (-235 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-807 *5)) (-5 *4 (-1005 (-352)))
- (-4 *5 (-13 (-561 (-496)) (-1012))) (-5 *2 (-1043 (-201)))
- (-5 *1 (-234 *5))))
+ (-12 (-5 *3 (-808 *5)) (-5 *4 (-1006 (-353)))
+ (-4 *5 (-13 (-562 (-497)) (-1013))) (-5 *2 (-1044 (-202)))
+ (-5 *1 (-235 *5))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-1005 (-352))) (-5 *5 (-586 (-238)))
- (-5 *2 (-1043 (-201))) (-5 *1 (-234 *3))
- (-4 *3 (-13 (-561 (-496)) (-1012)))))
+ (-12 (-5 *4 (-1006 (-353))) (-5 *5 (-587 (-239)))
+ (-5 *2 (-1044 (-202))) (-5 *1 (-235 *3))
+ (-4 *3 (-13 (-562 (-497)) (-1013)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1005 (-352))) (-5 *2 (-1043 (-201))) (-5 *1 (-234 *3))
- (-4 *3 (-13 (-561 (-496)) (-1012)))))
+ (-12 (-5 *4 (-1006 (-353))) (-5 *2 (-1044 (-202))) (-5 *1 (-235 *3))
+ (-4 *3 (-13 (-562 (-497)) (-1013)))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-810 *6)) (-5 *4 (-1005 (-352))) (-5 *5 (-586 (-238)))
- (-4 *6 (-13 (-561 (-496)) (-1012))) (-5 *2 (-1043 (-201)))
- (-5 *1 (-234 *6))))
+ (-12 (-5 *3 (-811 *6)) (-5 *4 (-1006 (-353))) (-5 *5 (-587 (-239)))
+ (-4 *6 (-13 (-562 (-497)) (-1013))) (-5 *2 (-1044 (-202)))
+ (-5 *1 (-235 *6))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-810 *5)) (-5 *4 (-1005 (-352)))
- (-4 *5 (-13 (-561 (-496)) (-1012))) (-5 *2 (-1043 (-201)))
- (-5 *1 (-234 *5)))))
+ (-12 (-5 *3 (-811 *5)) (-5 *4 (-1006 (-353)))
+ (-4 *5 (-13 (-562 (-497)) (-1013))) (-5 *2 (-1044 (-202)))
+ (-5 *1 (-235 *5)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1066)) (-5 *3 (-586 (-238))) (-5 *1 (-236))))
- ((*1 *1 *2) (-12 (-5 *2 (-1066)) (-5 *1 (-238))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-1169)) (-5 *1 (-1165))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-1169)) (-5 *1 (-1166)))))
+ (-12 (-5 *2 (-1067)) (-5 *3 (-587 (-239))) (-5 *1 (-237))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-239))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1166))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1167)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784))
+ (-4 *3 (-984 *5 *6 *7)) (-5 *2 (-587 *4))
+ (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-612 *3)) (-4 *3 (-784))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-616 *3)) (-4 *3 (-784))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-756 *3)) (-4 *3 (-784)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-627 *3)) (-4 *3 (-970)) (-5 *1 (-628 *3)))))
+(((*1 *1) (-5 *1 (-143))))
+(((*1 *1 *1 *1) (-5 *1 (-792))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-3
- (|:| |noa|
- (-2 (|:| |fn| (-289 (-201))) (|:| -3794 (-586 (-201)))
- (|:| |lb| (-586 (-776 (-201))))
- (|:| |cf| (-586 (-289 (-201))))
- (|:| |ub| (-586 (-776 (-201))))))
- (|:| |lsa|
- (-2 (|:| |lfn| (-586 (-289 (-201))))
- (|:| -3794 (-586 (-201)))))))
- (-5 *2 (-586 (-1066))) (-5 *1 (-242)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-626 *2)) (-4 *2 (-157)) (-5 *1 (-134 *2))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-157)) (-4 *2 (-1140 *4)) (-5 *1 (-161 *4 *2 *3))
- (-4 *3 (-660 *4 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-626 (-380 (-880 *5)))) (-5 *4 (-1083))
- (-5 *2 (-880 *5)) (-5 *1 (-266 *5)) (-4 *5 (-424))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-626 (-380 (-880 *4)))) (-5 *2 (-880 *4))
- (-5 *1 (-266 *4)) (-4 *4 (-424))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-343 *3 *2)) (-4 *3 (-157)) (-4 *2 (-1140 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-626 (-154 (-380 (-520)))))
- (-5 *2 (-880 (-154 (-380 (-520))))) (-5 *1 (-700 *4))
- (-4 *4 (-13 (-336) (-781)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-626 (-154 (-380 (-520))))) (-5 *4 (-1083))
- (-5 *2 (-880 (-154 (-380 (-520))))) (-5 *1 (-700 *5))
- (-4 *5 (-13 (-336) (-781)))))
+ (-12 (|has| *2 (-6 (-4235 "*"))) (-4 *5 (-347 *2)) (-4 *6 (-347 *2))
+ (-4 *2 (-970)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1141 *2))
+ (-4 *4 (-625 *2 *5 *6)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-627 *1)) (-4 *1 (-323)) (-5 *2 (-1165 *1))))
((*1 *2 *3)
- (-12 (-5 *3 (-626 (-380 (-520)))) (-5 *2 (-880 (-380 (-520))))
- (-5 *1 (-714 *4)) (-4 *4 (-13 (-336) (-781)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-626 (-380 (-520)))) (-5 *4 (-1083))
- (-5 *2 (-880 (-380 (-520)))) (-5 *1 (-714 *5))
- (-4 *5 (-13 (-336) (-781))))))
+ (|partial| -12 (-5 *3 (-627 *1)) (-4 *1 (-133)) (-4 *1 (-838))
+ (-5 *2 (-1165 *1)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-586 *3)) (-4 *3 (-1021 *5 *6 *7 *8))
- (-4 *5 (-13 (-281) (-135))) (-4 *6 (-728)) (-4 *7 (-783))
- (-4 *8 (-983 *5 *6 *7)) (-5 *2 (-108))
- (-5 *1 (-542 *5 *6 *7 *8 *3)))))
-(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-126)))))
-(((*1 *1 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157))))
- ((*1 *1 *1 *1) (-4 *1 (-445)))
- ((*1 *1 *1) (-12 (-4 *1 (-733 *2)) (-4 *2 (-157))))
- ((*1 *2 *2) (-12 (-5 *2 (-586 (-520))) (-5 *1 (-811))))
- ((*1 *1 *1) (-5 *1 (-896)))
- ((*1 *1 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-157)))))
-(((*1 *1 *1) (-4 *1 (-797 *2))))
-(((*1 *2 *2 *2)
- (-12
- (-5 *2
- (-2 (|:| -1831 (-626 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-626 *3))))
- (-4 *3 (-13 (-281) (-10 -8 (-15 -1507 ((-391 $) $)))))
- (-4 *4 (-1140 *3)) (-5 *1 (-467 *3 *4 *5)) (-4 *5 (-382 *3 *4)))))
+ (|partial| -12 (-5 *4 (-587 (-381 *6))) (-5 *3 (-381 *6))
+ (-4 *6 (-1141 *5)) (-4 *5 (-13 (-337) (-135) (-961 (-521))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-587 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-525 *5 *6)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1065 (-521))) (-5 *1 (-929 *3)) (-14 *3 (-521)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-554 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1119))
+ (-5 *2 (-108)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-3 (-380 (-880 *5)) (-1073 (-1083) (-880 *5))))
- (-4 *5 (-424)) (-5 *2 (-586 (-626 (-380 (-880 *5)))))
- (-5 *1 (-266 *5)) (-5 *4 (-626 (-380 (-880 *5)))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-512))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2732 *4)))
- (-5 *1 (-895 *4 *3)) (-4 *3 (-1140 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-452 *4 *5)) (-14 *4 (-586 (-1083))) (-4 *5 (-969))
- (-5 *2 (-880 *5)) (-5 *1 (-872 *4 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-352)) (-5 *1 (-1166))))
- ((*1 *2) (-12 (-5 *2 (-352)) (-5 *1 (-1166)))))
-(((*1 *2 *1) (-12 (-4 *1 (-229 *2)) (-4 *2 (-1118)))))
+ (-12 (-5 *3 (-587 (-627 *5))) (-4 *5 (-282)) (-4 *5 (-970))
+ (-5 *2 (-1165 (-1165 *5))) (-5 *1 (-953 *5)) (-5 *4 (-1165 *5)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-587 (-587 (-707)))) (-5 *1 (-833 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *2 *2 *2 *3)
+ (-12 (-4 *3 (-513)) (-5 *1 (-896 *3 *2)) (-4 *2 (-1141 *3)))))
+(((*1 *1) (-5 *1 (-411))))
+(((*1 *2 *1)
+ (|partial| -12
+ (-4 *3 (-13 (-784) (-961 (-521)) (-583 (-521)) (-425)))
+ (-5 *2 (-777 *4)) (-5 *1 (-287 *3 *4 *5 *6))
+ (-4 *4 (-13 (-27) (-1105) (-404 *3))) (-14 *5 (-1084))
+ (-14 *6 *4)))
+ ((*1 *2 *1)
+ (|partial| -12
+ (-4 *3 (-13 (-784) (-961 (-521)) (-583 (-521)) (-425)))
+ (-5 *2 (-777 *4)) (-5 *1 (-1151 *3 *4 *5 *6))
+ (-4 *4 (-13 (-27) (-1105) (-404 *3))) (-14 *5 (-1084))
+ (-14 *6 *4))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784))
+ (-4 *3 (-984 *5 *6 *7))
+ (-5 *2 (-587 (-2 (|:| |val| *3) (|:| -1884 *4))))
+ (-5 *1 (-990 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-1072 *2 *3)) (-14 *2 (-849)) (-4 *3 (-969)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-55 *2 *3 *4)) (-4 *2 (-1118)) (-4 *3 (-346 *2))
- (-4 *4 (-346 *2))))
- ((*1 *1 *1 *2)
- (-12 (|has| *1 (-6 -4230)) (-4 *1 (-553 *3 *2)) (-4 *3 (-1012))
- (-4 *2 (-1118)))))
-(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-439))))
- ((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-439)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1140 *4)) (-4 *4 (-1122))
- (-4 *6 (-1140 (-380 *5)))
+ (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-927))))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-937)) (-5 *2 (-792)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-935 *3)) (-4 *3 (-1119)) (-5 *2 (-521)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-323)) (-5 *2 (-392 (-1080 (-1080 *4))))
+ (-5 *1 (-1118 *4)) (-5 *3 (-1080 (-1080 *4))))))
+(((*1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-365)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-707)) (-5 *6 (-108)) (-4 *7 (-425)) (-4 *8 (-729))
+ (-4 *9 (-784)) (-4 *3 (-984 *7 *8 *9))
(-5 *2
- (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5)
- (|:| |gd| *5)))
- (-4 *1 (-315 *4 *5 *6)))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-755 *3)) (-4 *3 (-783)) (-5 *1 (-611 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-362)) (-5 *2 (-108)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-966 *4 *5)) (-4 *4 (-13 (-781) (-281) (-135) (-945)))
- (-14 *5 (-586 (-1083))) (-5 *2 (-586 (-586 (-947 (-380 *4)))))
- (-5 *1 (-1188 *4 *5 *6)) (-14 *6 (-586 (-1083)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-586 (-880 *5))) (-5 *4 (-108))
- (-4 *5 (-13 (-781) (-281) (-135) (-945)))
- (-5 *2 (-586 (-586 (-947 (-380 *5))))) (-5 *1 (-1188 *5 *6 *7))
- (-14 *6 (-586 (-1083))) (-14 *7 (-586 (-1083)))))
+ (-2 (|:| |done| (-587 *4))
+ (|:| |todo| (-587 (-2 (|:| |val| (-587 *3)) (|:| -1884 *4))))))
+ (-5 *1 (-987 *7 *8 *9 *3 *4)) (-4 *4 (-989 *7 *8 *9 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-707)) (-4 *6 (-425)) (-4 *7 (-729)) (-4 *8 (-784))
+ (-4 *3 (-984 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-587 *4))
+ (|:| |todo| (-587 (-2 (|:| |val| (-587 *3)) (|:| -1884 *4))))))
+ (-5 *1 (-987 *6 *7 *8 *3 *4)) (-4 *4 (-989 *6 *7 *8 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-586 (-880 *5))) (-5 *4 (-108))
- (-4 *5 (-13 (-781) (-281) (-135) (-945)))
- (-5 *2 (-586 (-586 (-947 (-380 *5))))) (-5 *1 (-1188 *5 *6 *7))
- (-14 *6 (-586 (-1083))) (-14 *7 (-586 (-1083)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-586 (-880 *4)))
- (-4 *4 (-13 (-781) (-281) (-135) (-945)))
- (-5 *2 (-586 (-586 (-947 (-380 *4))))) (-5 *1 (-1188 *4 *5 *6))
- (-14 *5 (-586 (-1083))) (-14 *6 (-586 (-1083))))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201)))
- (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201))
- (|:| |relerr| (-201))))
- (-5 *2 (-108)) (-5 *1 (-274)))))
-(((*1 *2 *3 *3 *3 *3 *4)
- (-12 (-5 *3 (-201)) (-5 *4 (-520)) (-5 *2 (-958)) (-5 *1 (-694)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201)))
- (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201))
- (|:| |relerr| (-201))))
+ (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784))
+ (-4 *3 (-984 *5 *6 *7))
(-5 *2
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular| "There are singularities at both end points")
- (|:| |notEvaluated| "End point continuity not yet evaluated")))
- (-5 *1 (-170)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-407)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-201)) (|:| |xend| (-201))
- (|:| |fn| (-1164 (-289 (-201)))) (|:| |yinit| (-586 (-201)))
- (|:| |intvals| (-586 (-201))) (|:| |g| (-289 (-201)))
- (|:| |abserr| (-201)) (|:| |relerr| (-201))))
- (-5 *2 (-352)) (-5 *1 (-183)))))
+ (-2 (|:| |done| (-587 *4))
+ (|:| |todo| (-587 (-2 (|:| |val| (-587 *3)) (|:| -1884 *4))))))
+ (-5 *1 (-987 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-707)) (-5 *6 (-108)) (-4 *7 (-425)) (-4 *8 (-729))
+ (-4 *9 (-784)) (-4 *3 (-984 *7 *8 *9))
+ (-5 *2
+ (-2 (|:| |done| (-587 *4))
+ (|:| |todo| (-587 (-2 (|:| |val| (-587 *3)) (|:| -1884 *4))))))
+ (-5 *1 (-1054 *7 *8 *9 *3 *4)) (-4 *4 (-1022 *7 *8 *9 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-707)) (-4 *6 (-425)) (-4 *7 (-729)) (-4 *8 (-784))
+ (-4 *3 (-984 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-587 *4))
+ (|:| |todo| (-587 (-2 (|:| |val| (-587 *3)) (|:| -1884 *4))))))
+ (-5 *1 (-1054 *6 *7 *8 *3 *4)) (-4 *4 (-1022 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784))
+ (-4 *3 (-984 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-587 *4))
+ (|:| |todo| (-587 (-2 (|:| |val| (-587 *3)) (|:| -1884 *4))))))
+ (-5 *1 (-1054 *5 *6 *7 *3 *4)) (-4 *4 (-1022 *5 *6 *7 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-513)) (-5 *2 (-587 *4)) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-391 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2))
- (-4 *2 (-13 (-403 *3) (-926)))))
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-927)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1155 *3))
- (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1126 *3 *4))))
+ (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3))
+ (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1124 *3))
- (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1147 *3 *4)) (-4 *5 (-908 *4))))
- ((*1 *1 *1) (-4 *1 (-461)))
+ (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3))
+ (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4))))
+ ((*1 *1 *1) (-4 *1 (-462)))
((*1 *2 *2)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520))))
- (-5 *1 (-1069 *3))))
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
+ (-5 *1 (-1070 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520))))
- (-5 *1 (-1070 *3)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-380 (-880 *3))) (-5 *1 (-425 *3 *4 *5 *6))
- (-4 *3 (-512)) (-4 *3 (-157)) (-14 *4 (-849))
- (-14 *5 (-586 (-1083))) (-14 *6 (-1164 (-626 *3))))))
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
+ (-5 *1 (-1071 *3)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-587 (-1008 (-353)))) (-5 *3 (-587 (-239)))
+ (-5 *1 (-237))))
+ ((*1 *1 *2) (-12 (-5 *2 (-587 (-1008 (-353)))) (-5 *1 (-239))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-587 (-1008 (-353)))) (-5 *1 (-441))))
+ ((*1 *2 *1) (-12 (-5 *2 (-587 (-1008 (-353)))) (-5 *1 (-441)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-880 (-201))) (-5 *2 (-289 (-352))) (-5 *1 (-279)))))
-(((*1 *1 *1 *1) (-4 *1 (-893))))
-(((*1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-515)))))
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-202)) (|:| |xend| (-202))
+ (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202)))
+ (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202)))
+ (|:| |abserr| (-202)) (|:| |relerr| (-202))))
+ (-5 *2 (-353)) (-5 *1 (-184)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-760)) (-5 *2 (-1170)) (-5 *1 (-759)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-698))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-201)) (-5 *4 (-520)) (-5 *2 (-958)) (-5 *1 (-694)))))
+ (-12 (-5 *3 (-1165 (-290 (-202)))) (-5 *4 (-587 (-1084)))
+ (-5 *2 (-627 (-290 (-202)))) (-5 *1 (-184))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1013)) (-4 *6 (-829 *5)) (-5 *2 (-627 *6))
+ (-5 *1 (-629 *5 *6 *3 *4)) (-4 *3 (-347 *6))
+ (-4 *4 (-13 (-347 *5) (-10 -7 (-6 -4233)))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012))
- (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-108)))))
-(((*1 *1 *1 *1) (-5 *1 (-791))) ((*1 *1 *1) (-5 *1 (-791)))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1079 (-520))) (-5 *3 (-520)) (-4 *1 (-797 *4)))))
+ (-12 (-5 *2 (-792)) (-5 *1 (-364 *3 *4 *5)) (-14 *3 (-707))
+ (-14 *4 (-707)) (-4 *5 (-157)))))
+(((*1 *1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-126)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1167)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-848)) (-5 *2 (-2 (|:| -2972 (-586 *1)) (|:| -1382 *1)))
- (-5 *3 (-586 *1)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-1083))
- (-4 *6 (-13 (-783) (-281) (-960 (-520)) (-582 (-520)) (-135)))
- (-4 *4 (-13 (-29 *6) (-1104) (-886)))
- (-5 *2 (-2 (|:| |particular| *4) (|:| -1831 (-586 *4))))
- (-5 *1 (-737 *6 *4 *3)) (-4 *3 (-596 *4)))))
+ (-12 (-4 *4 (-838)) (-4 *5 (-729)) (-4 *6 (-784))
+ (-4 *7 (-878 *4 *5 *6)) (-5 *2 (-392 (-1080 *7)))
+ (-5 *1 (-835 *4 *5 *6 *7)) (-5 *3 (-1080 *7))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-838)) (-4 *5 (-1141 *4)) (-5 *2 (-392 (-1080 *5)))
+ (-5 *1 (-836 *4 *5)) (-5 *3 (-1080 *5)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-201) (-201))) (-5 *4 (-1007 (-352)))
- (-5 *5 (-586 (-238))) (-5 *2 (-1165)) (-5 *1 (-230))))
+ (-12 (-5 *3 (-1 (-202) (-202))) (-5 *4 (-1008 (-353)))
+ (-5 *5 (-587 (-239))) (-5 *2 (-1166)) (-5 *1 (-231))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-201) (-201))) (-5 *4 (-1007 (-352)))
- (-5 *2 (-1165)) (-5 *1 (-230))))
+ (-12 (-5 *3 (-1 (-202) (-202))) (-5 *4 (-1008 (-353)))
+ (-5 *2 (-1166)) (-5 *1 (-231))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-805 (-1 (-201) (-201)))) (-5 *4 (-1007 (-352)))
- (-5 *5 (-586 (-238))) (-5 *2 (-1165)) (-5 *1 (-230))))
+ (-12 (-5 *3 (-806 (-1 (-202) (-202)))) (-5 *4 (-1008 (-353)))
+ (-5 *5 (-587 (-239))) (-5 *2 (-1166)) (-5 *1 (-231))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-805 (-1 (-201) (-201)))) (-5 *4 (-1007 (-352)))
- (-5 *2 (-1165)) (-5 *1 (-230))))
+ (-12 (-5 *3 (-806 (-1 (-202) (-202)))) (-5 *4 (-1008 (-353)))
+ (-5 *2 (-1166)) (-5 *1 (-231))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-807 (-1 (-201) (-201)))) (-5 *4 (-1007 (-352)))
- (-5 *5 (-586 (-238))) (-5 *2 (-1166)) (-5 *1 (-230))))
+ (-12 (-5 *3 (-808 (-1 (-202) (-202)))) (-5 *4 (-1008 (-353)))
+ (-5 *5 (-587 (-239))) (-5 *2 (-1167)) (-5 *1 (-231))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-807 (-1 (-201) (-201)))) (-5 *4 (-1007 (-352)))
- (-5 *2 (-1166)) (-5 *1 (-230))))
+ (-12 (-5 *3 (-808 (-1 (-202) (-202)))) (-5 *4 (-1008 (-353)))
+ (-5 *2 (-1167)) (-5 *1 (-231))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-871 (-201)) (-201))) (-5 *4 (-1007 (-352)))
- (-5 *5 (-586 (-238))) (-5 *2 (-1166)) (-5 *1 (-230))))
+ (-12 (-5 *3 (-1 (-872 (-202)) (-202))) (-5 *4 (-1008 (-353)))
+ (-5 *5 (-587 (-239))) (-5 *2 (-1167)) (-5 *1 (-231))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-871 (-201)) (-201))) (-5 *4 (-1007 (-352)))
- (-5 *2 (-1166)) (-5 *1 (-230))))
+ (-12 (-5 *3 (-1 (-872 (-202)) (-202))) (-5 *4 (-1008 (-353)))
+ (-5 *2 (-1167)) (-5 *1 (-231))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-201) (-201) (-201))) (-5 *4 (-1007 (-352)))
- (-5 *5 (-586 (-238))) (-5 *2 (-1166)) (-5 *1 (-230))))
+ (-12 (-5 *3 (-1 (-202) (-202) (-202))) (-5 *4 (-1008 (-353)))
+ (-5 *5 (-587 (-239))) (-5 *2 (-1167)) (-5 *1 (-231))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-201) (-201) (-201))) (-5 *4 (-1007 (-352)))
- (-5 *2 (-1166)) (-5 *1 (-230))))
+ (-12 (-5 *3 (-1 (-202) (-202) (-202))) (-5 *4 (-1008 (-353)))
+ (-5 *2 (-1167)) (-5 *1 (-231))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-871 (-201)) (-201) (-201))) (-5 *4 (-1007 (-352)))
- (-5 *5 (-586 (-238))) (-5 *2 (-1166)) (-5 *1 (-230))))
+ (-12 (-5 *3 (-1 (-872 (-202)) (-202) (-202))) (-5 *4 (-1008 (-353)))
+ (-5 *5 (-587 (-239))) (-5 *2 (-1167)) (-5 *1 (-231))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-871 (-201)) (-201) (-201))) (-5 *4 (-1007 (-352)))
- (-5 *2 (-1166)) (-5 *1 (-230))))
+ (-12 (-5 *3 (-1 (-872 (-202)) (-202) (-202))) (-5 *4 (-1008 (-353)))
+ (-5 *2 (-1167)) (-5 *1 (-231))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-810 (-1 (-201) (-201) (-201)))) (-5 *4 (-1007 (-352)))
- (-5 *5 (-586 (-238))) (-5 *2 (-1166)) (-5 *1 (-230))))
+ (-12 (-5 *3 (-811 (-1 (-202) (-202) (-202)))) (-5 *4 (-1008 (-353)))
+ (-5 *5 (-587 (-239))) (-5 *2 (-1167)) (-5 *1 (-231))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-810 (-1 (-201) (-201) (-201)))) (-5 *4 (-1007 (-352)))
- (-5 *2 (-1166)) (-5 *1 (-230))))
+ (-12 (-5 *3 (-811 (-1 (-202) (-202) (-202)))) (-5 *4 (-1008 (-353)))
+ (-5 *2 (-1167)) (-5 *1 (-231))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-268 *7)) (-5 *4 (-1083)) (-5 *5 (-586 (-238)))
- (-4 *7 (-403 *6)) (-4 *6 (-13 (-512) (-783) (-960 (-520))))
- (-5 *2 (-1165)) (-5 *1 (-231 *6 *7))))
+ (-12 (-5 *3 (-269 *7)) (-5 *4 (-1084)) (-5 *5 (-587 (-239)))
+ (-4 *7 (-404 *6)) (-4 *6 (-13 (-513) (-784) (-961 (-521))))
+ (-5 *2 (-1166)) (-5 *1 (-232 *6 *7))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1005 (-352))) (-5 *5 (-586 (-238))) (-5 *2 (-1165))
- (-5 *1 (-234 *3)) (-4 *3 (-13 (-561 (-496)) (-1012)))))
+ (-12 (-5 *4 (-1006 (-353))) (-5 *5 (-587 (-239))) (-5 *2 (-1166))
+ (-5 *1 (-235 *3)) (-4 *3 (-13 (-562 (-497)) (-1013)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1005 (-352))) (-5 *2 (-1165)) (-5 *1 (-234 *3))
- (-4 *3 (-13 (-561 (-496)) (-1012)))))
+ (-12 (-5 *4 (-1006 (-353))) (-5 *2 (-1166)) (-5 *1 (-235 *3))
+ (-4 *3 (-13 (-562 (-497)) (-1013)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-805 *6)) (-5 *4 (-1005 (-352))) (-5 *5 (-586 (-238)))
- (-4 *6 (-13 (-561 (-496)) (-1012))) (-5 *2 (-1165))
- (-5 *1 (-234 *6))))
+ (-12 (-5 *3 (-806 *6)) (-5 *4 (-1006 (-353))) (-5 *5 (-587 (-239)))
+ (-4 *6 (-13 (-562 (-497)) (-1013))) (-5 *2 (-1166))
+ (-5 *1 (-235 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-805 *5)) (-5 *4 (-1005 (-352)))
- (-4 *5 (-13 (-561 (-496)) (-1012))) (-5 *2 (-1165))
- (-5 *1 (-234 *5))))
+ (-12 (-5 *3 (-806 *5)) (-5 *4 (-1006 (-353)))
+ (-4 *5 (-13 (-562 (-497)) (-1013))) (-5 *2 (-1166))
+ (-5 *1 (-235 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-807 *6)) (-5 *4 (-1005 (-352))) (-5 *5 (-586 (-238)))
- (-4 *6 (-13 (-561 (-496)) (-1012))) (-5 *2 (-1166))
- (-5 *1 (-234 *6))))
+ (-12 (-5 *3 (-808 *6)) (-5 *4 (-1006 (-353))) (-5 *5 (-587 (-239)))
+ (-4 *6 (-13 (-562 (-497)) (-1013))) (-5 *2 (-1167))
+ (-5 *1 (-235 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-807 *5)) (-5 *4 (-1005 (-352)))
- (-4 *5 (-13 (-561 (-496)) (-1012))) (-5 *2 (-1166))
- (-5 *1 (-234 *5))))
+ (-12 (-5 *3 (-808 *5)) (-5 *4 (-1006 (-353)))
+ (-4 *5 (-13 (-562 (-497)) (-1013))) (-5 *2 (-1167))
+ (-5 *1 (-235 *5))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-1005 (-352))) (-5 *5 (-586 (-238))) (-5 *2 (-1166))
- (-5 *1 (-234 *3)) (-4 *3 (-13 (-561 (-496)) (-1012)))))
+ (-12 (-5 *4 (-1006 (-353))) (-5 *5 (-587 (-239))) (-5 *2 (-1167))
+ (-5 *1 (-235 *3)) (-4 *3 (-13 (-562 (-497)) (-1013)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1005 (-352))) (-5 *2 (-1166)) (-5 *1 (-234 *3))
- (-4 *3 (-13 (-561 (-496)) (-1012)))))
+ (-12 (-5 *4 (-1006 (-353))) (-5 *2 (-1167)) (-5 *1 (-235 *3))
+ (-4 *3 (-13 (-562 (-497)) (-1013)))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-810 *6)) (-5 *4 (-1005 (-352))) (-5 *5 (-586 (-238)))
- (-4 *6 (-13 (-561 (-496)) (-1012))) (-5 *2 (-1166))
- (-5 *1 (-234 *6))))
+ (-12 (-5 *3 (-811 *6)) (-5 *4 (-1006 (-353))) (-5 *5 (-587 (-239)))
+ (-4 *6 (-13 (-562 (-497)) (-1013))) (-5 *2 (-1167))
+ (-5 *1 (-235 *6))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-810 *5)) (-5 *4 (-1005 (-352)))
- (-4 *5 (-13 (-561 (-496)) (-1012))) (-5 *2 (-1166))
- (-5 *1 (-234 *5))))
+ (-12 (-5 *3 (-811 *5)) (-5 *4 (-1006 (-353)))
+ (-4 *5 (-13 (-562 (-497)) (-1013))) (-5 *2 (-1167))
+ (-5 *1 (-235 *5))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-586 (-201))) (-5 *2 (-1165)) (-5 *1 (-235))))
+ (-12 (-5 *3 (-587 (-202))) (-5 *2 (-1166)) (-5 *1 (-236))))
((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-586 (-201))) (-5 *4 (-586 (-238))) (-5 *2 (-1165))
- (-5 *1 (-235))))
+ (-12 (-5 *3 (-587 (-202))) (-5 *4 (-587 (-239))) (-5 *2 (-1166))
+ (-5 *1 (-236))))
((*1 *2 *3)
- (-12 (-5 *3 (-586 (-871 (-201)))) (-5 *2 (-1165)) (-5 *1 (-235))))
+ (-12 (-5 *3 (-587 (-872 (-202)))) (-5 *2 (-1166)) (-5 *1 (-236))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-586 (-871 (-201)))) (-5 *4 (-586 (-238)))
- (-5 *2 (-1165)) (-5 *1 (-235))))
+ (-12 (-5 *3 (-587 (-872 (-202)))) (-5 *4 (-587 (-239)))
+ (-5 *2 (-1166)) (-5 *1 (-236))))
((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-586 (-201))) (-5 *2 (-1166)) (-5 *1 (-235))))
+ (-12 (-5 *3 (-587 (-202))) (-5 *2 (-1167)) (-5 *1 (-236))))
((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-586 (-201))) (-5 *4 (-586 (-238))) (-5 *2 (-1166))
- (-5 *1 (-235)))))
+ (-12 (-5 *3 (-587 (-202))) (-5 *4 (-587 (-239))) (-5 *2 (-1167))
+ (-5 *1 (-236)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2))
- (-4 *2 (-13 (-403 *3) (-926)))))
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-927)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1155 *3))
- (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1126 *3 *4))))
+ (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3))
+ (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1124 *3))
- (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1147 *3 *4)) (-4 *5 (-908 *4))))
- ((*1 *1 *1) (-4 *1 (-461)))
+ (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3))
+ (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4))))
+ ((*1 *1 *1) (-4 *1 (-462)))
((*1 *2 *2)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520))))
- (-5 *1 (-1069 *3))))
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
+ (-5 *1 (-1070 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520))))
- (-5 *1 (-1070 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-340 *3)) (-4 *3 (-157)) (-5 *2 (-1079 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2))
- (-4 *2 (-13 (-403 *3) (-926))))))
-(((*1 *1 *2 *3)
- (-12
- (-5 *3
- (-586
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2)
- (|:| |xpnt| (-520)))))
- (-4 *2 (-512)) (-5 *1 (-391 *2))))
- ((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |contp| (-520))
- (|:| -3493 (-586 (-2 (|:| |irr| *4) (|:| -2421 (-520)))))))
- (-4 *4 (-1140 (-520))) (-5 *2 (-391 *4)) (-5 *1 (-414 *4)))))
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
+ (-5 *1 (-1071 *3)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-521)) (-4 *1 (-1125 *4)) (-4 *4 (-970)) (-4 *4 (-513))
+ (-5 *2 (-381 (-881 *4)))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-521)) (-4 *1 (-1125 *4)) (-4 *4 (-970)) (-4 *4 (-513))
+ (-5 *2 (-381 (-881 *4))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-871 *3) (-871 *3))) (-5 *1 (-160 *3))
- (-4 *3 (-13 (-336) (-1104) (-926))))))
+ (-12 (-5 *2 (-1086 (-381 (-521)))) (-5 *1 (-169)) (-5 *3 (-521)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-380 (-880 *3))) (-5 *1 (-425 *3 *4 *5 *6))
- (-4 *3 (-512)) (-4 *3 (-157)) (-14 *4 (-849))
- (-14 *5 (-586 (-1083))) (-14 *6 (-1164 (-626 *3))))))
-(((*1 *1 *2) (-12 (-5 *2 (-1030)) (-5 *1 (-757)))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-559 *3)) (-5 *5 (-1 (-1079 *3) (-1079 *3)))
- (-4 *3 (-13 (-27) (-403 *6))) (-4 *6 (-13 (-783) (-512)))
- (-5 *2 (-537 *3)) (-5 *1 (-507 *6 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-108))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-336)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *2 (-108))
- (-5 *1 (-472 *3 *4 *5 *6)) (-4 *6 (-877 *3 *4 *5))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-985 *4 *3)) (-4 *4 (-13 (-781) (-336)))
- (-4 *3 (-1140 *4)) (-5 *2 (-108)))))
-(((*1 *1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-791)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-586 *1)) (-4 *1 (-276))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-276)) (-5 *2 (-110))))
- ((*1 *1 *2) (-12 (-5 *2 (-1083)) (-5 *1 (-559 *3)) (-4 *3 (-783))))
+ (-12 (-5 *2 (-2 (|:| |cd| (-1067)) (|:| -2884 (-1067))))
+ (-5 *1 (-759)))))
+(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-202)) (-5 *4 (-521))
+ (-5 *5 (-3 (|:| |fn| (-362)) (|:| |fp| (-62 -4049)))) (-5 *2 (-959))
+ (-5 *1 (-685)))))
+(((*1 *2 *1) (-12 (-5 *1 (-1115 *2)) (-4 *2 (-900)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784))
+ (-4 *3 (-984 *5 *6 *7))
+ (-5 *2 (-587 (-2 (|:| |val| *3) (|:| -1884 *4))))
+ (-5 *1 (-990 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959))
+ (-5 *1 (-689)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-154 *5)) (-4 *5 (-13 (-404 *4) (-927) (-1105)))
+ (-4 *4 (-13 (-513) (-784)))
+ (-4 *2 (-13 (-404 (-154 *4)) (-927) (-1105)))
+ (-5 *1 (-550 *4 *5 *2)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-521)) (-5 *1 (-392 *2)) (-4 *2 (-513)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-587 *1)) (-4 *1 (-277))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-277)) (-5 *2 (-110))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1084)) (-5 *1 (-560 *3)) (-4 *3 (-784))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-110)) (-5 *3 (-586 *5)) (-5 *4 (-706)) (-4 *5 (-783))
- (-5 *1 (-559 *5)))))
+ (-12 (-5 *2 (-110)) (-5 *3 (-587 *5)) (-5 *4 (-707)) (-4 *5 (-784))
+ (-5 *1 (-560 *5)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2))
- (-4 *2 (-13 (-403 *3) (-926)))))
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-927)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1155 *3))
- (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1126 *3 *4))))
+ (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3))
+ (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1124 *3))
- (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1147 *3 *4)) (-4 *5 (-908 *4))))
+ (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3))
+ (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-312 *2 *3 *4)) (-14 *2 (-586 (-1083)))
- (-14 *3 (-586 (-1083))) (-4 *4 (-360))))
- ((*1 *1 *1) (-4 *1 (-461)))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520))))
- (-5 *1 (-1069 *3))))
+ (-12 (-5 *1 (-313 *2 *3 *4)) (-14 *2 (-587 (-1084)))
+ (-14 *3 (-587 (-1084))) (-4 *4 (-361))))
+ ((*1 *1 *1) (-4 *1 (-462)))
((*1 *2 *2)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520))))
- (-5 *1 (-1070 *3)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-586 (-586 *3))) (-4 *3 (-1012)) (-5 *1 (-1091 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-586 *8)) (-5 *4 (-586 *9)) (-4 *8 (-983 *5 *6 *7))
- (-4 *9 (-988 *5 *6 *7 *8)) (-4 *5 (-424)) (-4 *6 (-728))
- (-4 *7 (-783)) (-5 *2 (-706)) (-5 *1 (-986 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-586 *8)) (-5 *4 (-586 *9)) (-4 *8 (-983 *5 *6 *7))
- (-4 *9 (-1021 *5 *6 *7 *8)) (-4 *5 (-424)) (-4 *6 (-728))
- (-4 *7 (-783)) (-5 *2 (-706)) (-5 *1 (-1053 *5 *6 *7 *8 *9)))))
-(((*1 *1 *1 *1 *2 *3)
- (-12 (-5 *2 (-871 *5)) (-5 *3 (-706)) (-4 *5 (-969))
- (-5 *1 (-1072 *4 *5)) (-14 *4 (-849)))))
-(((*1 *2 *2) (-12 (-5 *2 (-201)) (-5 *1 (-202))))
- ((*1 *2 *2) (-12 (-5 *2 (-154 (-201))) (-5 *1 (-202))))
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
+ (-5 *1 (-1070 *3))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-404 *3 *2))
- (-4 *2 (-403 *3))))
- ((*1 *1 *1) (-4 *1 (-1047))))
-(((*1 *1 *1 *1) (-5 *1 (-791))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1066)) (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783))
- (-4 *7 (-983 *4 *5 *6)) (-5 *2 (-1169))
- (-5 *1 (-913 *4 *5 *6 *7 *8)) (-4 *8 (-988 *4 *5 *6 *7))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1066)) (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783))
- (-4 *7 (-983 *4 *5 *6)) (-5 *2 (-1169))
- (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-988 *4 *5 *6 *7)))))
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
+ (-5 *1 (-1071 *3)))))
+(((*1 *1 *1 *1) (-5 *1 (-792))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-594 (-381 *2))) (-4 *2 (-1141 *4)) (-5 *1 (-747 *4 *2))
+ (-4 *4 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521)))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-595 *2 (-381 *2))) (-4 *2 (-1141 *4))
+ (-5 *1 (-747 *4 *2))
+ (-4 *4 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521))))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-381 *5)) (-4 *5 (-1141 *4)) (-4 *4 (-513))
+ (-4 *4 (-970)) (-4 *2 (-1156 *4)) (-5 *1 (-1159 *4 *5 *6 *2))
+ (-4 *6 (-597 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-784))
+ (-4 *7 (-984 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-587 *7)) (|:| |badPols| (-587 *7))))
+ (-5 *1 (-903 *4 *5 *6 *7)) (-5 *3 (-587 *7)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1084))
+ (-5 *2
+ (-2 (|:| |zeros| (-1065 (-202))) (|:| |ones| (-1065 (-202)))
+ (|:| |singularities| (-1065 (-202)))))
+ (-5 *1 (-100)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-707)) (-4 *6 (-337)) (-5 *4 (-1114 *6))
+ (-5 *2 (-1 (-1065 *4) (-1065 *4))) (-5 *1 (-1173 *6))
+ (-5 *5 (-1065 *4)))))
(((*1 *1 *2 *3)
- (-12 (-5 *2 (-440)) (-5 *3 (-586 (-238))) (-5 *1 (-1165))))
- ((*1 *1 *1) (-5 *1 (-1165))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1066)) (-5 *1 (-1100)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-855)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-44 (-1066) (-709))) (-5 *1 (-110)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1016)) (-5 *1 (-51)))))
+ (-12 (-5 *1 (-590 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-587 (-1080 (-521)))) (-5 *1 (-170)) (-5 *3 (-521)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-587 (-51))) (-5 *1 (-821 *3)) (-4 *3 (-1013)))))
+(((*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-638))))
+ ((*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-638)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1017)) (-5 *1 (-51)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2))
- (-4 *2 (-13 (-403 *3) (-926)))))
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-927)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1155 *3))
- (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1126 *3 *4))))
+ (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3))
+ (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1124 *3))
- (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1147 *3 *4)) (-4 *5 (-908 *4))))
+ (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3))
+ (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-312 *2 *3 *4)) (-14 *2 (-586 (-1083)))
- (-14 *3 (-586 (-1083))) (-4 *4 (-360))))
- ((*1 *1 *1) (-4 *1 (-461)))
+ (-12 (-5 *1 (-313 *2 *3 *4)) (-14 *2 (-587 (-1084)))
+ (-14 *3 (-587 (-1084))) (-4 *4 (-361))))
+ ((*1 *1 *1) (-4 *1 (-462)))
((*1 *2 *2)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520))))
- (-5 *1 (-1069 *3))))
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
+ (-5 *1 (-1070 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520))))
- (-5 *1 (-1070 *3)))))
-(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-586 (-626 *6))) (-5 *4 (-108)) (-5 *5 (-520))
- (-5 *2 (-626 *6)) (-5 *1 (-952 *6)) (-4 *6 (-336)) (-4 *6 (-969))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-586 (-626 *4))) (-5 *2 (-626 *4)) (-5 *1 (-952 *4))
- (-4 *4 (-336)) (-4 *4 (-969))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-586 (-626 *5))) (-5 *4 (-520)) (-5 *2 (-626 *5))
- (-5 *1 (-952 *5)) (-4 *5 (-336)) (-4 *5 (-969)))))
-(((*1 *1 *1 *1 *1) (-5 *1 (-791)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-586 (-791))) (-5 *1 (-791)))))
-(((*1 *2 *1 *2)
- (-12 (|has| *1 (-6 -4230)) (-4 *1 (-934 *2)) (-4 *2 (-1118)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-586 (-833 *3))) (-4 *3 (-1012)) (-5 *1 (-832 *3)))))
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
+ (-5 *1 (-1071 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *4 (-1013)) (-5 *2 (-818 *3 *4)) (-5 *1 (-814 *3 *4 *5))
+ (-4 *3 (-1013)) (-4 *5 (-607 *4)))))
+(((*1 *1 *1) (-5 *1 (-792))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1086 (-381 (-521)))) (-5 *1 (-169)))))
(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201)))
- (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201))
- (|:| |relerr| (-201))))
- (-5 *2 (-586 (-201))) (-5 *1 (-182)))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-1112 *3 *4 *5 *2)) (-4 *3 (-512))
- (-4 *4 (-728)) (-4 *5 (-783)) (-4 *2 (-983 *3 *4 *5)))))
+ (-12 (-4 *4 (-13 (-337) (-961 (-381 *2)))) (-5 *2 (-521))
+ (-5 *1 (-111 *4 *3)) (-4 *3 (-1141 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1012)) (-4 *5 (-1012))
- (-5 *2 (-1 *5)) (-5 *1 (-620 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1083)) (-5 *1 (-104))))
- ((*1 *2 *1) (-12 (-5 *2 (-1083)) (-5 *1 (-110))))
+ (-12 (-5 *3 (-587 *5)) (-5 *4 (-850)) (-4 *5 (-784))
+ (-5 *2 (-57 (-587 (-612 *5)))) (-5 *1 (-612 *5)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-353)) (-5 *2 (-1170)) (-5 *1 (-1167)))))
+(((*1 *2 *1) (-12 (-4 *1 (-614 *3)) (-4 *3 (-1119)) (-5 *2 (-707)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-104))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-110))))
((*1 *2 *1)
- (-12 (-4 *1 (-337 *2 *3)) (-4 *3 (-1012)) (-4 *2 (-1012))))
- ((*1 *2 *1) (-12 (-4 *1 (-362)) (-5 *2 (-1066))))
- ((*1 *2 *1) (-12 (-5 *2 (-1083)) (-5 *1 (-411 *3)) (-14 *3 *2)))
- ((*1 *2 *1) (-12 (-5 *2 (-1083)) (-5 *1 (-559 *3)) (-4 *3 (-783))))
- ((*1 *2 *1) (-12 (-5 *2 (-1083)) (-5 *1 (-730))))
- ((*1 *2 *1) (-12 (-5 *2 (-1083)) (-5 *1 (-990 *3)) (-14 *3 *2)))
- ((*1 *1 *1) (-5 *1 (-1083))))
-(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3)
- (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *5 (-201))
- (-5 *2 (-958)) (-5 *1 (-687)))))
-(((*1 *2) (-12 (-5 *2 (-776 (-520))) (-5 *1 (-494))))
- ((*1 *1) (-12 (-5 *1 (-776 *2)) (-4 *2 (-1012)))))
-(((*1 *2) (-12 (-5 *2 (-1066)) (-5 *1 (-364)))))
+ (-12 (-4 *1 (-338 *2 *3)) (-4 *3 (-1013)) (-4 *2 (-1013))))
+ ((*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-1067))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-412 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-560 *3)) (-4 *3 (-784))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-731))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-991 *3)) (-14 *3 *2)))
+ ((*1 *1 *1) (-5 *1 (-1084))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-707)) (-5 *1 (-1073 *3 *4)) (-14 *3 (-850))
+ (-4 *4 (-970)))))
+(((*1 *2) (-12 (-5 *2 (-777 (-521))) (-5 *1 (-495))))
+ ((*1 *1) (-12 (-5 *1 (-777 *2)) (-4 *2 (-1013)))))
+(((*1 *2 *2 *2)
+ (-12
+ (-5 *2
+ (-587
+ (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-707)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *4 (-729)) (-4 *6 (-878 *3 *4 *5)) (-4 *3 (-425)) (-4 *5 (-784))
+ (-5 *1 (-422 *3 *4 *5 *6)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2))
- (-4 *2 (-13 (-403 *3) (-926)))))
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-927)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1155 *3))
- (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1126 *3 *4))))
+ (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3))
+ (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1124 *3))
- (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1147 *3 *4)) (-4 *5 (-908 *4))))
+ (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3))
+ (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-312 *2 *3 *4)) (-14 *2 (-586 (-1083)))
- (-14 *3 (-586 (-1083))) (-4 *4 (-360))))
- ((*1 *1 *1) (-4 *1 (-461)))
+ (-12 (-5 *1 (-313 *2 *3 *4)) (-14 *2 (-587 (-1084)))
+ (-14 *3 (-587 (-1084))) (-4 *4 (-361))))
+ ((*1 *1 *1) (-4 *1 (-462)))
((*1 *2 *2)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520))))
- (-5 *1 (-1069 *3))))
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
+ (-5 *1 (-1070 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520))))
- (-5 *1 (-1070 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-624 *3 *4 *5)) (-4 *3 (-969)) (-4 *4 (-346 *3))
- (-4 *5 (-346 *3)) (-5 *2 (-108))))
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
+ (-5 *1 (-1071 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-961 (-521))) (-4 *3 (-13 (-784) (-513)))
+ (-5 *1 (-31 *3 *2)) (-4 *2 (-404 *3))))
+ ((*1 *2)
+ (-12 (-4 *4 (-157)) (-5 *2 (-1080 *4)) (-5 *1 (-150 *3 *4))
+ (-4 *3 (-151 *4))))
+ ((*1 *1 *1) (-12 (-4 *1 (-970)) (-4 *1 (-277))))
+ ((*1 *2) (-12 (-4 *1 (-303 *3)) (-4 *3 (-337)) (-5 *2 (-1080 *3))))
+ ((*1 *2) (-12 (-4 *1 (-661 *3 *2)) (-4 *3 (-157)) (-4 *2 (-1141 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-972 *3 *4 *5 *6 *7)) (-4 *5 (-969))
- (-4 *6 (-214 *4 *5)) (-4 *7 (-214 *3 *5)) (-5 *2 (-108)))))
-(((*1 *1 *2) (-12 (-5 *2 (-586 (-791))) (-5 *1 (-791))))
- ((*1 *1 *1 *1) (-5 *1 (-791))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1079 *7)) (-5 *3 (-520)) (-4 *7 (-877 *6 *4 *5))
- (-4 *4 (-728)) (-4 *5 (-783)) (-4 *6 (-969))
- (-5 *1 (-294 *4 *5 *6 *7)))))
+ (-12 (-4 *1 (-986 *3 *2)) (-4 *3 (-13 (-782) (-337)))
+ (-4 *2 (-1141 *3)))))
+(((*1 *2 *3 *4 *4 *3 *3 *5)
+ (|partial| -12 (-5 *4 (-560 *3)) (-5 *5 (-1080 *3))
+ (-4 *3 (-13 (-404 *6) (-27) (-1105)))
+ (-4 *6 (-13 (-425) (-961 (-521)) (-784) (-135) (-583 (-521))))
+ (-5 *2 (-2 (|:| -3100 *3) (|:| |coeff| *3)))
+ (-5 *1 (-517 *6 *3 *7)) (-4 *7 (-1013))))
+ ((*1 *2 *3 *4 *4 *3 *4 *3 *5)
+ (|partial| -12 (-5 *4 (-560 *3)) (-5 *5 (-381 (-1080 *3)))
+ (-4 *3 (-13 (-404 *6) (-27) (-1105)))
+ (-4 *6 (-13 (-425) (-961 (-521)) (-784) (-135) (-583 (-521))))
+ (-5 *2 (-2 (|:| -3100 *3) (|:| |coeff| *3)))
+ (-5 *1 (-517 *6 *3 *7)) (-4 *7 (-1013)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-834 (-521))) (-5 *4 (-521)) (-5 *2 (-627 *4))
+ (-5 *1 (-952 *5)) (-4 *5 (-970))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-587 (-521))) (-5 *2 (-627 (-521))) (-5 *1 (-952 *4))
+ (-4 *4 (-970))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-587 (-834 (-521)))) (-5 *4 (-521))
+ (-5 *2 (-587 (-627 *4))) (-5 *1 (-952 *5)) (-4 *5 (-970))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-587 (-587 (-521)))) (-5 *2 (-587 (-627 (-521))))
+ (-5 *1 (-952 *4)) (-4 *4 (-970)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-587 (-587 *8))) (-5 *3 (-587 *8))
+ (-4 *8 (-984 *5 *6 *7)) (-4 *5 (-513)) (-4 *6 (-729)) (-4 *7 (-784))
+ (-5 *2 (-108)) (-5 *1 (-903 *5 *6 *7 *8)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-132)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729))
+ (-4 *4 (-784)) (-4 *2 (-425)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1079 *7)) (-4 *7 (-877 *6 *4 *5)) (-4 *4 (-728))
- (-4 *5 (-783)) (-4 *6 (-969)) (-5 *2 (-1079 *6))
- (-5 *1 (-294 *4 *5 *6 *7)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-512))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2257 *3)))
- (-5 *1 (-895 *4 *3)) (-4 *3 (-1140 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-108) *2)) (-4 *2 (-125)) (-5 *1 (-998 *2))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-520) *2 *2)) (-4 *2 (-125)) (-5 *1 (-998 *2)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-586 (-268 *4))) (-5 *1 (-570 *3 *4 *5)) (-4 *3 (-783))
- (-4 *4 (-13 (-157) (-653 (-380 (-520))))) (-14 *5 (-849)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-586 (-880 *5))) (-5 *4 (-108))
- (-4 *5 (-13 (-781) (-281) (-135) (-945)))
- (-5 *2 (-586 (-966 *5 *6))) (-5 *1 (-1188 *5 *6 *7))
- (-14 *6 (-586 (-1083))) (-14 *7 (-586 (-1083)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-586 (-880 *5))) (-5 *4 (-108))
- (-4 *5 (-13 (-781) (-281) (-135) (-945)))
- (-5 *2 (-586 (-966 *5 *6))) (-5 *1 (-1188 *5 *6 *7))
- (-14 *6 (-586 (-1083))) (-14 *7 (-586 (-1083)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-586 (-880 *4)))
- (-4 *4 (-13 (-781) (-281) (-135) (-945)))
- (-5 *2 (-586 (-966 *4 *5))) (-5 *1 (-1188 *4 *5 *6))
- (-14 *5 (-586 (-1083))) (-14 *6 (-586 (-1083))))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-988 *4 *5 *6 *3)) (-4 *4 (-424)) (-4 *5 (-728))
- (-4 *6 (-783)) (-4 *3 (-983 *4 *5 *6)) (-5 *2 (-108)))))
-(((*1 *2) (-12 (-5 *2 (-586 *3)) (-5 *1 (-998 *3)) (-4 *3 (-125)))))
-(((*1 *2) (-12 (-5 *2 (-776 (-520))) (-5 *1 (-494))))
- ((*1 *1) (-12 (-5 *1 (-776 *2)) (-4 *2 (-1012)))))
+ (-12
+ (-5 *3
+ (-2 (|:| |pde| (-587 (-290 (-202))))
+ (|:| |constraints|
+ (-587
+ (-2 (|:| |start| (-202)) (|:| |finish| (-202))
+ (|:| |grid| (-707)) (|:| |boundaryType| (-521))
+ (|:| |dStart| (-627 (-202))) (|:| |dFinish| (-627 (-202))))))
+ (|:| |f| (-587 (-587 (-290 (-202))))) (|:| |st| (-1067))
+ (|:| |tol| (-202))))
+ (-5 *2 (-108)) (-5 *1 (-189)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-587 (-1084))) (-5 *3 (-51)) (-5 *1 (-821 *4))
+ (-4 *4 (-1013)))))
+(((*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-233)))))
+(((*1 *2) (-12 (-5 *2 (-587 *3)) (-5 *1 (-999 *3)) (-4 *3 (-125)))))
+(((*1 *2) (-12 (-5 *2 (-777 (-521))) (-5 *1 (-495))))
+ ((*1 *1) (-12 (-5 *1 (-777 *2)) (-4 *2 (-1013)))))
(((*1 *1 *1) (-4 *1 (-91)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2))
- (-4 *2 (-13 (-403 *3) (-926)))))
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-927)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1155 *3))
- (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1126 *3 *4))))
+ (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3))
+ (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1124 *3))
- (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1147 *3 *4)) (-4 *5 (-908 *4))))
+ (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3))
+ (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520))))
- (-5 *1 (-1069 *3))))
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
+ (-5 *1 (-1070 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520))))
- (-5 *1 (-1070 *3)))))
-(((*1 *2) (-12 (-5 *2 (-1083)) (-5 *1 (-1086)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-593 (-380 *6))) (-5 *4 (-380 *6)) (-4 *6 (-1140 *5))
- (-4 *5 (-13 (-336) (-135) (-960 (-520)) (-960 (-380 (-520)))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1831 (-586 *4))))
- (-5 *1 (-746 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-593 (-380 *6))) (-4 *6 (-1140 *5))
- (-4 *5 (-13 (-336) (-135) (-960 (-520)) (-960 (-380 (-520)))))
- (-5 *2 (-2 (|:| -1831 (-586 (-380 *6))) (|:| -3927 (-626 *5))))
- (-5 *1 (-746 *5 *6)) (-5 *4 (-586 (-380 *6)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-594 *6 (-380 *6))) (-5 *4 (-380 *6)) (-4 *6 (-1140 *5))
- (-4 *5 (-13 (-336) (-135) (-960 (-520)) (-960 (-380 (-520)))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1831 (-586 *4))))
- (-5 *1 (-746 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-594 *6 (-380 *6))) (-4 *6 (-1140 *5))
- (-4 *5 (-13 (-336) (-135) (-960 (-520)) (-960 (-380 (-520)))))
- (-5 *2 (-2 (|:| -1831 (-586 (-380 *6))) (|:| -3927 (-626 *5))))
- (-5 *1 (-746 *5 *6)) (-5 *4 (-586 (-380 *6))))))
-(((*1 *2 *1) (-12 (-5 *2 (-586 (-999))) (-5 *1 (-265)))))
-(((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-586 (-559 *2))) (-5 *4 (-1083))
- (-4 *2 (-13 (-27) (-1104) (-403 *5)))
- (-4 *5 (-13 (-512) (-783) (-960 (-520)) (-582 (-520))))
- (-5 *1 (-252 *5 *2)))))
-(((*1 *1 *1 *2 *2)
- (|partial| -12 (-5 *2 (-849)) (-5 *1 (-1013 *3 *4)) (-14 *3 *2)
- (-14 *4 *2))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-969)) (-5 *1 (-1068 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1156 *2 *3 *4)) (-4 *2 (-969)) (-14 *3 (-1083))
- (-14 *4 *2))))
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
+ (-5 *1 (-1071 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-337) (-135) (-961 (-381 (-521)))))
+ (-4 *5 (-1141 *4)) (-5 *2 (-587 (-2 (|:| -1893 *5) (|:| -1608 *5))))
+ (-5 *1 (-744 *4 *5 *3 *6)) (-4 *3 (-597 *5))
+ (-4 *6 (-597 (-381 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-13 (-337) (-135) (-961 (-381 (-521)))))
+ (-4 *4 (-1141 *5)) (-5 *2 (-587 (-2 (|:| -1893 *4) (|:| -1608 *4))))
+ (-5 *1 (-744 *5 *4 *3 *6)) (-4 *3 (-597 *4))
+ (-4 *6 (-597 (-381 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-337) (-135) (-961 (-381 (-521)))))
+ (-4 *5 (-1141 *4)) (-5 *2 (-587 (-2 (|:| -1893 *5) (|:| -1608 *5))))
+ (-5 *1 (-744 *4 *5 *6 *3)) (-4 *6 (-597 *5))
+ (-4 *3 (-597 (-381 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-13 (-337) (-135) (-961 (-381 (-521)))))
+ (-4 *4 (-1141 *5)) (-5 *2 (-587 (-2 (|:| -1893 *4) (|:| -1608 *4))))
+ (-5 *1 (-744 *5 *4 *6 *3)) (-4 *6 (-597 *4))
+ (-4 *3 (-597 (-381 *4))))))
+(((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *3 (-627 (-202))) (-5 *4 (-521)) (-5 *5 (-108))
+ (-5 *2 (-959)) (-5 *1 (-682)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-586 *5)) (-4 *5 (-1140 *3)) (-4 *3 (-281))
- (-5 *2 (-108)) (-5 *1 (-427 *3 *5)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-512))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2413 *4)))
- (-5 *1 (-895 *4 *3)) (-4 *3 (-1140 *4)))))
-(((*1 *1 *1 *1) (-5 *1 (-791))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1052)) (-5 *2 (-129))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1052)) (-5 *2 (-132)))))
-(((*1 *2 *1) (-12 (-5 *2 (-709)) (-5 *1 (-51)))))
+ (|partial| -12 (-5 *4 (-850)) (-4 *5 (-513)) (-5 *2 (-627 *5))
+ (-5 *1 (-884 *5 *3)) (-4 *3 (-597 *5)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-881 (-381 (-521)))) (-5 *4 (-1084))
+ (-5 *5 (-1008 (-777 (-202)))) (-5 *2 (-587 (-202))) (-5 *1 (-275)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-984 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-729))
+ (-4 *5 (-784)) (-5 *2 (-707)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013))
+ (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-108)))))
+(((*1 *2)
+ (-12 (-4 *3 (-513)) (-5 *2 (-587 *4)) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-391 *3)))))
+(((*1 *2 *3 *4 *5 *5 *4 *6)
+ (-12 (-5 *4 (-521)) (-5 *6 (-1 (-1170) (-1165 *5) (-1165 *5) (-353)))
+ (-5 *3 (-1165 (-353))) (-5 *5 (-353)) (-5 *2 (-1170))
+ (-5 *1 (-724)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1132 (-521))) (-4 *1 (-257 *3)) (-4 *3 (-1119))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-4 *1 (-257 *3)) (-4 *3 (-1119)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1053)) (-5 *2 (-129))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1053)) (-5 *2 (-132)))))
+(((*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-51)))))
(((*1 *1 *1) (-4 *1 (-91)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2))
- (-4 *2 (-13 (-403 *3) (-926)))))
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-927)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1155 *3))
- (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1126 *3 *4))))
+ (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3))
+ (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1124 *3))
- (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1147 *3 *4)) (-4 *5 (-908 *4))))
+ (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3))
+ (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520))))
- (-5 *1 (-1069 *3))))
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
+ (-5 *1 (-1070 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520))))
- (-5 *1 (-1070 *3)))))
-(((*1 *2) (-12 (-5 *2 (-832 (-520))) (-5 *1 (-845)))))
-(((*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-757)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *2 (-586 *1))
- (-4 *1 (-983 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-476 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-783)))))
-(((*1 *2 *2) (-12 (-5 *2 (-849)) (-5 *1 (-376 *3)) (-4 *3 (-377))))
- ((*1 *2) (-12 (-5 *2 (-849)) (-5 *1 (-376 *3)) (-4 *3 (-377))))
- ((*1 *2 *2) (-12 (-5 *2 (-849)) (|has| *1 (-6 -4220)) (-4 *1 (-377))))
- ((*1 *2) (-12 (-4 *1 (-377)) (-5 *2 (-849))))
- ((*1 *2 *1) (-12 (-4 *1 (-797 *3)) (-5 *2 (-1064 (-520))))))
-(((*1 *1 *1) (-12 (-4 *1 (-613 *2)) (-4 *2 (-1118)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-201)) (|:| |xend| (-201))
- (|:| |fn| (-1164 (-289 (-201)))) (|:| |yinit| (-586 (-201)))
- (|:| |intvals| (-586 (-201))) (|:| |g| (-289 (-201)))
- (|:| |abserr| (-201)) (|:| |relerr| (-201))))
- (-5 *2 (-352)) (-5 *1 (-183)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1140 *2)) (-4 *2 (-969)) (-4 *2 (-512)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-359 *2)) (-4 *2 (-1012))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-755 *2)) (-4 *2 (-783)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1052)) (-5 *2 (-129))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1052)) (-5 *2 (-132)))))
-(((*1 *2) (-12 (-5 *2 (-769 (-520))) (-5 *1 (-494))))
- ((*1 *1) (-12 (-5 *1 (-769 *2)) (-4 *2 (-1012)))))
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
+ (-5 *1 (-1071 *3)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-1 (-538 *3) *3 (-1084)))
+ (-5 *6
+ (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3
+ (-1084)))
+ (-4 *3 (-259)) (-4 *3 (-573)) (-4 *3 (-961 *4)) (-4 *3 (-404 *7))
+ (-5 *4 (-1084)) (-4 *7 (-562 (-821 (-521)))) (-4 *7 (-425))
+ (-4 *7 (-815 (-521))) (-4 *7 (-784)) (-5 *2 (-538 *3))
+ (-5 *1 (-530 *7 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1119)) (-5 *1 (-301 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-587 *3)) (-4 *3 (-1119)) (-5 *1 (-484 *3 *4))
+ (-14 *4 (-521)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-729)) (-4 *6 (-784)) (-4 *7 (-513))
+ (-4 *3 (-878 *7 *5 *6))
+ (-5 *2
+ (-2 (|:| -2997 (-707)) (|:| -2973 *3) (|:| |radicand| (-587 *3))))
+ (-5 *1 (-882 *5 *6 *7 *3 *8)) (-5 *4 (-707))
+ (-4 *8
+ (-13 (-337)
+ (-10 -8 (-15 -2801 (*3 $)) (-15 -2812 (*3 $)) (-15 -2189 ($ *3))))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1065 *3)) (-5 *1 (-158 *3)) (-4 *3 (-282)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-759)))))
+(((*1 *2 *1) (-12 (-5 *2 (-381 (-521))) (-5 *1 (-103))))
+ ((*1 *2 *1) (-12 (-5 *2 (-381 (-521))) (-5 *1 (-195))))
+ ((*1 *2 *1) (-12 (-5 *2 (-381 (-521))) (-5 *1 (-458))))
+ ((*1 *1 *1) (-12 (-4 *1 (-918 *2)) (-4 *2 (-513)) (-4 *2 (-282))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-381 (-521))) (-5 *1 (-929 *3)) (-14 *3 (-521))))
+ ((*1 *1 *1) (-4 *1 (-979))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-587 *5)) (-4 *5 (-157)) (-5 *1 (-128 *3 *4 *5))
+ (-14 *3 (-521)) (-14 *4 (-707)))))
+(((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *3 (-627 (-202))) (-5 *4 (-521)) (-5 *5 (-108))
+ (-5 *2 (-959)) (-5 *1 (-682)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-587 *6)) (-4 *6 (-878 *3 *4 *5)) (-4 *3 (-337))
+ (-4 *4 (-729)) (-4 *5 (-784)) (-5 *1 (-473 *3 *4 *5 *6)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1053)) (-5 *2 (-129))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1053)) (-5 *2 (-132)))))
+(((*1 *2) (-12 (-5 *2 (-770 (-521))) (-5 *1 (-495))))
+ ((*1 *1) (-12 (-5 *1 (-770 *2)) (-4 *2 (-1013)))))
(((*1 *1 *1) (-4 *1 (-91)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2))
- (-4 *2 (-13 (-403 *3) (-926)))))
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-927)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1155 *3))
- (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1126 *3 *4))))
+ (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3))
+ (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1124 *3))
- (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1147 *3 *4)) (-4 *5 (-908 *4))))
+ (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3))
+ (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520))))
- (-5 *1 (-1069 *3))))
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
+ (-5 *1 (-1070 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520))))
- (-5 *1 (-1070 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1179 *3 *4)) (-4 *3 (-783)) (-4 *4 (-969))
- (-5 *2 (-2 (|:| |k| (-755 *3)) (|:| |c| *4))))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-820 *3)) (-4 *3 (-1012)))))
-(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-854)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-352) (-352))) (-5 *4 (-352))
- (-5 *2
- (-2 (|:| -3429 *4) (|:| -2967 *4) (|:| |totalpts| (-520))
- (|:| |success| (-108))))
- (-5 *1 (-724)) (-5 *5 (-520)))))
-(((*1 *1 *2)
- (-12
- (-5 *2
- (-586
- (-2
- (|:| -2526
- (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201)))
- (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201))
- (|:| |relerr| (-201))))
- (|:| -3043
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1064 (-201)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -1667
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite|
- "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated"))))))))
- (-5 *1 (-515)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-108)) (-4 *6 (-424)) (-4 *7 (-728)) (-4 *8 (-783))
- (-4 *3 (-983 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-586 *4))
- (|:| |todo| (-586 (-2 (|:| |val| (-586 *3)) (|:| -1883 *4))))))
- (-5 *1 (-986 *6 *7 *8 *3 *4)) (-4 *4 (-988 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783))
- (-4 *3 (-983 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-586 *4))
- (|:| |todo| (-586 (-2 (|:| |val| (-586 *3)) (|:| -1883 *4))))))
- (-5 *1 (-1053 *5 *6 *7 *3 *4)) (-4 *4 (-1021 *5 *6 *7 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-512)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2732 *4)))
- (-5 *1 (-895 *4 *3)) (-4 *3 (-1140 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-512)) (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-108))
- (-5 *1 (-902 *4 *5 *6 *3)) (-4 *3 (-983 *4 *5 *6)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1066)) (-5 *1 (-791)))))
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
+ (-5 *1 (-1071 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-758)))))
+(((*1 *2 *2 *2) (-12 (-5 *1 (-145 *2)) (-4 *2 (-506)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1067)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784))
+ (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-1170))
+ (-5 *1 (-914 *4 *5 *6 *7 *8)) (-4 *8 (-989 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1067)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784))
+ (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-1170))
+ (-5 *1 (-1020 *4 *5 *6 *7 *8)) (-4 *8 (-989 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-803))))
+ ((*1 *2 *3) (-12 (-5 *3 (-872 *2)) (-5 *1 (-908 *2)) (-4 *2 (-970)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1084)) (-5 *2 (-1170)) (-5 *1 (-1087)))))
+(((*1 *2) (-12 (-5 *2 (-1044 (-202))) (-5 *1 (-1103)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1067)) (-4 *1 (-338 *3 *4)) (-4 *3 (-1013))
+ (-4 *4 (-1013)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-282) (-135))) (-4 *5 (-13 (-784) (-562 (-1084))))
+ (-4 *6 (-729)) (-5 *2 (-587 (-587 (-521))))
+ (-5 *1 (-853 *4 *5 *6 *7)) (-5 *3 (-521)) (-4 *7 (-878 *4 *6 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-792)))))
(((*1 *2)
- (-12 (-4 *2 (-13 (-403 *3) (-926))) (-5 *1 (-251 *3 *2))
- (-4 *3 (-13 (-783) (-512)))))
+ (-12 (-4 *2 (-13 (-404 *3) (-927))) (-5 *1 (-252 *3 *2))
+ (-4 *3 (-13 (-784) (-513)))))
((*1 *1)
- (-12 (-5 *1 (-312 *2 *3 *4)) (-14 *2 (-586 (-1083)))
- (-14 *3 (-586 (-1083))) (-4 *4 (-360))))
- ((*1 *1) (-5 *1 (-449))) ((*1 *1) (-4 *1 (-1104))))
-(((*1 *2 *1) (-12 (-5 *2 (-1066)) (-5 *1 (-496)))))
-(((*1 *1 *1) (-4 *1 (-91))) ((*1 *1 *1 *1) (-5 *1 (-201)))
+ (-12 (-5 *1 (-313 *2 *3 *4)) (-14 *2 (-587 (-1084)))
+ (-14 *3 (-587 (-1084))) (-4 *4 (-361))))
+ ((*1 *1) (-5 *1 (-450))) ((*1 *1) (-4 *1 (-1105))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-376)) (-5 *2 (-707))))
+ ((*1 *1 *1) (-4 *1 (-376))))
+(((*1 *1 *1) (-4 *1 (-91))) ((*1 *1 *1 *1) (-5 *1 (-202)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2))
- (-4 *2 (-13 (-403 *3) (-926)))))
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-927)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1155 *3))
- (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1126 *3 *4))))
+ (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3))
+ (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1124 *3))
- (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1147 *3 *4)) (-4 *5 (-908 *4))))
+ (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3))
+ (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-312 *2 *3 *4)) (-14 *2 (-586 (-1083)))
- (-14 *3 (-586 (-1083))) (-4 *4 (-360))))
- ((*1 *1 *1 *1) (-5 *1 (-352)))
+ (-12 (-5 *1 (-313 *2 *3 *4)) (-14 *2 (-587 (-1084)))
+ (-14 *3 (-587 (-1084))) (-4 *4 (-361))))
+ ((*1 *1 *1 *1) (-5 *1 (-353)))
((*1 *2 *2)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520))))
- (-5 *1 (-1069 *3))))
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
+ (-5 *1 (-1070 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520))))
- (-5 *1 (-1070 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1083)) (-5 *2 (-1169)) (-5 *1 (-1086))))
- ((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-1087)))))
-(((*1 *2 *3) (-12 (-5 *3 (-201)) (-5 *2 (-289 (-352))) (-5 *1 (-279)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-586 (-586 (-586 *4)))) (-5 *3 (-586 *4)) (-4 *4 (-783))
- (-5 *1 (-1090 *4)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-706)) (-5 *1 (-805 *2)) (-4 *2 (-1118))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-706)) (-5 *1 (-807 *2)) (-4 *2 (-1118))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-706)) (-5 *1 (-810 *2)) (-4 *2 (-1118)))))
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
+ (-5 *1 (-1071 *3)))))
+(((*1 *2 *2 *2)
+ (|partial| -12 (-4 *3 (-13 (-513) (-135))) (-5 *1 (-1135 *3 *2))
+ (-4 *2 (-1141 *3)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-657)) (-5 *2 (-850))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-707)))))
+(((*1 *2 *2)
+ (-12
+ (-5 *2
+ (-913 (-381 (-521)) (-794 *3) (-217 *4 (-707))
+ (-224 *3 (-381 (-521)))))
+ (-14 *3 (-587 (-1084))) (-14 *4 (-707)) (-5 *1 (-912 *3 *4)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1065 (-587 (-521)))) (-5 *1 (-812)) (-5 *3 (-521))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1065 (-587 (-521)))) (-5 *1 (-812)) (-5 *3 (-521))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1065 (-587 (-521)))) (-5 *1 (-812)) (-5 *3 (-521)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-424)) (-4 *4 (-783)) (-4 *5 (-728))
- (-5 *2 (-108)) (-5 *1 (-912 *3 *4 *5 *6))
- (-4 *6 (-877 *3 *5 *4))))
+ (|partial| -12 (-4 *3 (-425)) (-4 *4 (-784)) (-4 *5 (-729))
+ (-5 *2 (-108)) (-5 *1 (-913 *3 *4 *5 *6))
+ (-4 *6 (-878 *3 *5 *4))))
((*1 *2 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-1048 *3 *4)) (-4 *3 (-13 (-1012) (-33)))
- (-4 *4 (-13 (-1012) (-33))))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *2 (-958))
- (-5 *1 (-683)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-586 *2)) (-4 *2 (-403 *4)) (-5 *1 (-144 *4 *2))
- (-4 *4 (-13 (-783) (-512))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-512)) (-5 *2 (-706)) (-5 *1 (-42 *4 *3))
- (-4 *3 (-390 *4)))))
-(((*1 *2)
- (-12 (-5 *2 (-849)) (-5 *1 (-414 *3)) (-4 *3 (-1140 (-520)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-849)) (-5 *1 (-414 *3)) (-4 *3 (-1140 (-520))))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-132)))))
+ (-12 (-5 *2 (-108)) (-5 *1 (-1049 *3 *4)) (-4 *3 (-13 (-1013) (-33)))
+ (-4 *4 (-13 (-1013) (-33))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-554 *2 *3)) (-4 *3 (-1119)) (-4 *2 (-1013))
+ (-4 *2 (-784)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-625 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-347 *3))
+ (-4 *5 (-347 *3)) (-5 *2 (-108))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-973 *3 *4 *5 *6 *7)) (-4 *5 (-970))
+ (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-108)))))
+(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-856)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-521)) (-5 *1 (-633 *2)) (-4 *2 (-1141 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-521)) (-5 *1 (-218))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-587 (-1067))) (-5 *2 (-521)) (-5 *1 (-218)))))
(((*1 *1 *1) (-4 *1 (-91)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2))
- (-4 *2 (-13 (-403 *3) (-926)))))
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-927)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1155 *3))
- (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1126 *3 *4))))
+ (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3))
+ (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1124 *3))
- (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1147 *3 *4)) (-4 *5 (-908 *4))))
+ (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3))
+ (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-312 *2 *3 *4)) (-14 *2 (-586 (-1083)))
- (-14 *3 (-586 (-1083))) (-4 *4 (-360))))
+ (-12 (-5 *1 (-313 *2 *3 *4)) (-14 *2 (-587 (-1084)))
+ (-14 *3 (-587 (-1084))) (-4 *4 (-361))))
((*1 *2 *2)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520))))
- (-5 *1 (-1069 *3))))
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
+ (-5 *1 (-1070 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520))))
- (-5 *1 (-1070 *3)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 (-1064 *3))) (-5 *1 (-1064 *3)) (-4 *3 (-1118)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-736))
- (-5 *3
- (-2 (|:| |xinit| (-201)) (|:| |xend| (-201))
- (|:| |fn| (-1164 (-289 (-201)))) (|:| |yinit| (-586 (-201)))
- (|:| |intvals| (-586 (-201))) (|:| |g| (-289 (-201)))
- (|:| |abserr| (-201)) (|:| |relerr| (-201))))
- (-5 *2 (-958)))))
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
+ (-5 *1 (-1071 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-902 *3 *4 *5 *6)) (-4 *3 (-970)) (-4 *4 (-729))
+ (-4 *5 (-784)) (-4 *6 (-984 *3 *4 *5)) (-5 *2 (-587 *5)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-381 (-881 *3))) (-5 *1 (-426 *3 *4 *5 *6))
+ (-4 *3 (-513)) (-4 *3 (-157)) (-14 *4 (-850))
+ (-14 *5 (-587 (-1084))) (-14 *6 (-1165 (-627 *3))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-587 (-587 (-872 (-202))))) (-5 *1 (-1115 *3))
+ (-4 *3 (-900)))))
+(((*1 *2 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-521)) (-5 *4 (-1067)) (-5 *5 (-627 (-202)))
+ (-5 *2 (-959)) (-5 *1 (-684)))))
+(((*1 *2 *3) (-12 (-5 *3 (-872 *2)) (-5 *1 (-908 *2)) (-4 *2 (-970)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-201)) (-5 *4 (-520)) (-5 *2 (-958)) (-5 *1 (-694)))))
-(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1 *8 *8))
- (-5 *5
- (-1 (-3 (-2 (|:| -4016 *7) (|:| |coeff| *7)) "failed") *7))
- (-5 *6 (-586 (-380 *8))) (-4 *7 (-336)) (-4 *8 (-1140 *7))
- (-5 *3 (-380 *8))
- (-5 *2
- (-2
- (|:| |answer|
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-586 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (|:| |a0| *7)))
- (-5 *1 (-530 *7 *8)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-849)) (-5 *4 (-802)) (-5 *2 (-1169)) (-5 *1 (-1165))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-849)) (-5 *4 (-1066)) (-5 *2 (-1169)) (-5 *1 (-1165))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-1169)) (-5 *1 (-1166)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-512) (-135))) (-5 *2 (-586 *3))
- (-5 *1 (-1134 *4 *3)) (-4 *3 (-1140 *4)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-201)) (-5 *4 (-520)) (-5 *2 (-958)) (-5 *1 (-694)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4230)) (-4 *1 (-220 *2)) (-4 *2 (-1118)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1035 (-520) (-559 (-47)))) (-5 *1 (-47))))
+ (-12 (-5 *4 (-587 *3)) (-4 *3 (-878 *5 *6 *7)) (-4 *5 (-425))
+ (-4 *6 (-729)) (-4 *7 (-784))
+ (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5)))
+ (-5 *1 (-422 *5 *6 *7 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-587 (-872 (-202)))) (-5 *1 (-1166)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *5 *5))
+ (-4 *5 (-13 (-337) (-10 -8 (-15 ** ($ $ (-381 (-521)))))))
+ (-5 *2
+ (-2 (|:| |solns| (-587 *5))
+ (|:| |maps| (-587 (-2 (|:| |arg| *5) (|:| |res| *5))))))
+ (-5 *1 (-1039 *3 *5)) (-4 *3 (-1141 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1036 (-521) (-560 (-47)))) (-5 *1 (-47))))
((*1 *2 *1)
- (-12 (-4 *3 (-917 *2)) (-4 *4 (-1140 *3)) (-4 *2 (-281))
- (-5 *1 (-386 *2 *3 *4 *5)) (-4 *5 (-13 (-382 *3 *4) (-960 *3)))))
+ (-12 (-4 *3 (-918 *2)) (-4 *4 (-1141 *3)) (-4 *2 (-282))
+ (-5 *1 (-387 *2 *3 *4 *5)) (-4 *5 (-13 (-383 *3 *4) (-961 *3)))))
((*1 *2 *1)
- (-12 (-4 *3 (-512)) (-4 *3 (-783)) (-5 *2 (-1035 *3 (-559 *1)))
- (-4 *1 (-403 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1035 (-520) (-559 (-463)))) (-5 *1 (-463))))
+ (-12 (-4 *3 (-513)) (-4 *3 (-784)) (-5 *2 (-1036 *3 (-560 *1)))
+ (-4 *1 (-404 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1036 (-521) (-560 (-464)))) (-5 *1 (-464))))
((*1 *2 *1)
- (-12 (-4 *4 (-157)) (-4 *2 (|SubsetCategory| (-662) *4))
- (-5 *1 (-565 *3 *4 *2)) (-4 *3 (-37 *4))))
+ (-12 (-4 *4 (-157)) (-4 *2 (|SubsetCategory| (-663) *4))
+ (-5 *1 (-566 *3 *4 *2)) (-4 *3 (-37 *4))))
((*1 *2 *1)
- (-12 (-4 *4 (-157)) (-4 *2 (|SubsetCategory| (-662) *4))
- (-5 *1 (-602 *3 *4 *2)) (-4 *3 (-653 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-917 *2)) (-4 *2 (-512)))))
+ (-12 (-4 *4 (-157)) (-4 *2 (|SubsetCategory| (-663) *4))
+ (-5 *1 (-603 *3 *4 *2)) (-4 *3 (-654 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-918 *2)) (-4 *2 (-513)))))
(((*1 *1 *1) (-4 *1 (-91)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2))
- (-4 *2 (-13 (-403 *3) (-926)))))
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-927)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1155 *3))
- (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1126 *3 *4))))
+ (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3))
+ (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1124 *3))
- (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1147 *3 *4)) (-4 *5 (-908 *4))))
+ (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3))
+ (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-312 *2 *3 *4)) (-14 *2 (-586 (-1083)))
- (-14 *3 (-586 (-1083))) (-4 *4 (-360))))
+ (-12 (-5 *1 (-313 *2 *3 *4)) (-14 *2 (-587 (-1084)))
+ (-14 *3 (-587 (-1084))) (-4 *4 (-361))))
((*1 *2 *2)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520))))
- (-5 *1 (-1069 *3))))
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
+ (-5 *1 (-1070 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520))))
- (-5 *1 (-1070 *3)))))
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
+ (-5 *1 (-1071 *3)))))
(((*1 *1)
- (-12 (-4 *1 (-377)) (-2399 (|has| *1 (-6 -4220)))
- (-2399 (|has| *1 (-6 -4212)))))
- ((*1 *2 *1) (-12 (-4 *1 (-398 *2)) (-4 *2 (-1012)) (-4 *2 (-783))))
- ((*1 *2 *1) (-12 (-4 *1 (-766 *2)) (-4 *2 (-783))))
- ((*1 *1 *1 *1) (-4 *1 (-783))) ((*1 *1) (-5 *1 (-1030))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *2 (-586 (-1079 *7))) (-5 *3 (-1079 *7))
- (-4 *7 (-877 *5 *6 *4)) (-4 *5 (-837)) (-4 *6 (-728))
- (-4 *4 (-783)) (-5 *1 (-834 *5 *6 *4 *7)))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-626 *2)) (-5 *4 (-706))
- (-4 *2 (-13 (-281) (-10 -8 (-15 -1507 ((-391 $) $)))))
- (-4 *5 (-1140 *2)) (-5 *1 (-467 *2 *5 *6)) (-4 *6 (-382 *2 *5)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2060 *1) (|:| -3753 *1))) (-4 *1 (-281))))
- ((*1 *2 *1 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |lm| (-359 *3)) (|:| |rm| (-359 *3))))
- (-5 *1 (-359 *3)) (-4 *3 (-1012))))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2060 (-706)) (|:| -3753 (-706))))
- (-5 *1 (-706))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-512)) (-5 *2 (-2 (|:| -2060 *3) (|:| -3753 *3)))
- (-5 *1 (-895 *4 *3)) (-4 *3 (-1140 *4)))))
-(((*1 *1 *2 *2) (-12 (-4 *1 (-510 *2)) (-4 *2 (-13 (-377) (-1104))))))
-(((*1 *2 *1) (-12 (-4 *1 (-781)) (-5 *2 (-520))))
- ((*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-833 *3)) (-4 *3 (-1012))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-985 *4 *3)) (-4 *4 (-13 (-781) (-336)))
- (-4 *3 (-1140 *4)) (-5 *2 (-520))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-512) (-783) (-960 *2) (-582 *2) (-424)))
- (-5 *2 (-520)) (-5 *1 (-1027 *4 *3))
- (-4 *3 (-13 (-27) (-1104) (-403 *4)))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1083)) (-5 *5 (-776 *3))
- (-4 *3 (-13 (-27) (-1104) (-403 *6)))
- (-4 *6 (-13 (-512) (-783) (-960 *2) (-582 *2) (-424)))
- (-5 *2 (-520)) (-5 *1 (-1027 *6 *3))))
- ((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *4 (-1083)) (-5 *5 (-1066))
- (-4 *6 (-13 (-512) (-783) (-960 *2) (-582 *2) (-424)))
- (-5 *2 (-520)) (-5 *1 (-1027 *6 *3))
- (-4 *3 (-13 (-27) (-1104) (-403 *6)))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-380 (-880 *4))) (-4 *4 (-424)) (-5 *2 (-520))
- (-5 *1 (-1028 *4))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1083)) (-5 *5 (-776 (-380 (-880 *6))))
- (-5 *3 (-380 (-880 *6))) (-4 *6 (-424)) (-5 *2 (-520))
- (-5 *1 (-1028 *6))))
- ((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *3 (-380 (-880 *6))) (-5 *4 (-1083))
- (-5 *5 (-1066)) (-4 *6 (-424)) (-5 *2 (-520)) (-5 *1 (-1028 *6))))
+ (-12 (-4 *1 (-378)) (-2400 (|has| *1 (-6 -4224)))
+ (-2400 (|has| *1 (-6 -4216)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-399 *2)) (-4 *2 (-1013)) (-4 *2 (-784))))
+ ((*1 *2 *1) (-12 (-4 *1 (-767 *2)) (-4 *2 (-784))))
+ ((*1 *1 *1 *1) (-4 *1 (-784))) ((*1 *1) (-5 *1 (-1031))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-850)) (-5 *2 (-1170)) (-5 *1 (-1166))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-850)) (-5 *2 (-1170)) (-5 *1 (-1167)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-110)) (-5 *3 (-587 (-1 *4 (-587 *4)))) (-4 *4 (-1013))
+ (-5 *1 (-109 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1013))
+ (-5 *1 (-109 *4))))
((*1 *2 *3)
- (|partial| -12 (-5 *2 (-520)) (-5 *1 (-1101 *3)) (-4 *3 (-969)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1044 *3)) (-4 *3 (-969)) (-5 *2 (-586 (-871 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-586 (-871 *3))) (-4 *3 (-969)) (-4 *1 (-1044 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-586 (-586 *3))) (-4 *1 (-1044 *3)) (-4 *3 (-969))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-586 (-871 *3))) (-4 *1 (-1044 *3)) (-4 *3 (-969)))))
-(((*1 *2 *1 *3 *3 *4)
- (-12 (-5 *3 (-1 (-791) (-791) (-791))) (-5 *4 (-520)) (-5 *2 (-791))
- (-5 *1 (-589 *5 *6 *7)) (-4 *5 (-1012)) (-4 *6 (-23)) (-14 *7 *6)))
- ((*1 *2 *1 *2)
- (-12 (-5 *2 (-791)) (-5 *1 (-787 *3 *4 *5)) (-4 *3 (-969))
- (-14 *4 (-94 *3)) (-14 *5 (-1 *3 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-201)) (-5 *1 (-791))))
- ((*1 *1 *2) (-12 (-5 *2 (-1066)) (-5 *1 (-791))))
- ((*1 *1 *2) (-12 (-5 *2 (-1083)) (-5 *1 (-791))))
- ((*1 *1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-791))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-1079 *3)) (-4 *3 (-969)))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1083))
- (-4 *5 (-13 (-424) (-783) (-135) (-960 (-520)) (-582 (-520))))
- (-5 *2 (-2 (|:| -4016 *3) (|:| |coeff| *3))) (-5 *1 (-513 *5 *3))
- (-4 *3 (-13 (-27) (-1104) (-403 *5))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1035 (-520) (-559 (-47)))) (-5 *1 (-47))))
+ (|partial| -12 (-5 *3 (-110)) (-5 *2 (-587 (-1 *4 (-587 *4))))
+ (-5 *1 (-109 *4)) (-4 *4 (-1013)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-587 *6)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-135))
+ (-4 *3 (-282)) (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-784))
+ (-5 *1 (-903 *3 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-110)) (-5 *1 (-109 *3)) (-4 *3 (-784)) (-4 *3 (-1013)))))
+(((*1 *2)
+ (-12 (-4 *4 (-1123)) (-4 *5 (-1141 *4)) (-4 *6 (-1141 (-381 *5)))
+ (-5 *2 (-587 (-587 *4))) (-5 *1 (-315 *3 *4 *5 *6))
+ (-4 *3 (-316 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3))
+ (-4 *5 (-1141 (-381 *4))) (-4 *3 (-342)) (-5 *2 (-587 (-587 *3))))))
+(((*1 *2 *3) (-12 (-5 *3 (-290 (-202))) (-5 *2 (-202)) (-5 *1 (-280)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-587 *6)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-425))
+ (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-784))
+ (-5 *1 (-903 *3 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-587 (-2 (|:| -1916 (-1080 *6)) (|:| -2997 (-521)))))
+ (-4 *6 (-282)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *2 (-521))
+ (-5 *1 (-679 *4 *5 *6 *7)) (-4 *7 (-878 *6 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1036 (-521) (-560 (-47)))) (-5 *1 (-47))))
((*1 *2 *1)
- (-12 (-4 *3 (-281)) (-4 *4 (-917 *3)) (-4 *5 (-1140 *4))
- (-5 *2 (-1164 *6)) (-5 *1 (-386 *3 *4 *5 *6))
- (-4 *6 (-13 (-382 *4 *5) (-960 *4)))))
+ (-12 (-4 *3 (-282)) (-4 *4 (-918 *3)) (-4 *5 (-1141 *4))
+ (-5 *2 (-1165 *6)) (-5 *1 (-387 *3 *4 *5 *6))
+ (-4 *6 (-13 (-383 *4 *5) (-961 *4)))))
((*1 *2 *1)
- (-12 (-4 *3 (-969)) (-4 *3 (-783)) (-5 *2 (-1035 *3 (-559 *1)))
- (-4 *1 (-403 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1035 (-520) (-559 (-463)))) (-5 *1 (-463))))
+ (-12 (-4 *3 (-970)) (-4 *3 (-784)) (-5 *2 (-1036 *3 (-560 *1)))
+ (-4 *1 (-404 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1036 (-521) (-560 (-464)))) (-5 *1 (-464))))
((*1 *2 *1)
- (-12 (-4 *3 (-157)) (-4 *2 (-37 *3)) (-5 *1 (-565 *2 *3 *4))
- (-4 *4 (|SubsetCategory| (-662) *3))))
+ (-12 (-4 *3 (-157)) (-4 *2 (-37 *3)) (-5 *1 (-566 *2 *3 *4))
+ (-4 *4 (|SubsetCategory| (-663) *3))))
((*1 *2 *1)
- (-12 (-4 *3 (-157)) (-4 *2 (-653 *3)) (-5 *1 (-602 *2 *3 *4))
- (-4 *4 (|SubsetCategory| (-662) *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-917 *2)) (-4 *2 (-512)))))
+ (-12 (-4 *3 (-157)) (-4 *2 (-654 *3)) (-5 *1 (-603 *2 *3 *4))
+ (-4 *4 (|SubsetCategory| (-663) *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-918 *2)) (-4 *2 (-513)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2))
- (-4 *2 (-13 (-403 *3) (-926)))))
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-927)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1155 *3))
- (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1126 *3 *4))))
+ (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3))
+ (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1124 *3))
- (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1147 *3 *4)) (-4 *5 (-908 *4))))
+ (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3))
+ (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520))))
- (-5 *1 (-1069 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520))))
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
(-5 *1 (-1070 *3))))
- ((*1 *1 *1) (-4 *1 (-1107))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6)
- (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *5 (-201))
- (-5 *6 (-3 (|:| |fn| (-361)) (|:| |fp| (-76 FUNCTN))))
- (-5 *2 (-958)) (-5 *1 (-684)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-969)) (-4 *2 (-624 *4 *5 *6))
- (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1140 *4)) (-4 *5 (-346 *4))
- (-4 *6 (-346 *4)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
+ (-5 *1 (-1071 *3))))
+ ((*1 *1 *1) (-4 *1 (-1108))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-513)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3))
+ (-5 *1 (-1110 *3 *4 *5 *2)) (-4 *2 (-625 *3 *4 *5)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-949 (-776 (-520)))) (-5 *1 (-545 *3)) (-4 *3 (-969)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-969)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783))
- (-4 *3 (-983 *5 *6 *7))
- (-5 *2 (-586 (-2 (|:| |val| *3) (|:| -1883 *4))))
- (-5 *1 (-989 *5 *6 *7 *3 *4)) (-4 *4 (-988 *5 *6 *7 *3)))))
-(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *2 (-958))
- (-5 *1 (-688)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-1066)) (-5 *4 (-1030)) (-5 *2 (-108)) (-5 *1 (-757)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-626 *3)) (-4 *3 (-969)) (-5 *1 (-627 *3)))))
-(((*1 *2)
- (|partial| -12 (-4 *3 (-512)) (-4 *3 (-157))
- (-5 *2 (-2 (|:| |particular| *1) (|:| -1831 (-586 *1))))
- (-4 *1 (-340 *3))))
- ((*1 *2)
- (|partial| -12
- (-5 *2
- (-2 (|:| |particular| (-425 *3 *4 *5 *6))
- (|:| -1831 (-586 (-425 *3 *4 *5 *6)))))
- (-5 *1 (-425 *3 *4 *5 *6)) (-4 *3 (-157)) (-14 *4 (-849))
- (-14 *5 (-586 (-1083))) (-14 *6 (-1164 (-626 *3))))))
+ (-12 (-4 *1 (-984 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-729))
+ (-4 *5 (-784)) (-5 *2 (-108)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-156))))
+ ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1115 *3)) (-4 *3 (-900)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-452)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-792)) (-5 *1 (-364 *3 *4 *5)) (-14 *3 (-707))
+ (-14 *4 (-707)) (-4 *5 (-157)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1119)))))
+(((*1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-440))))
+ ((*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-440))))
+ ((*1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-856)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-761)) (-5 *3 (-587 (-1084))) (-5 *1 (-762)))))
+(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-959)) (-5 *3 (-1084)) (-5 *1 (-171)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2))
- (-4 *2 (-13 (-403 *3) (-926)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1155 *3))
- (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1126 *3 *4))))
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-927)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1124 *3))
- (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1147 *3 *4)) (-4 *5 (-908 *4))))
+ (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3))
+ (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520))))
- (-5 *1 (-1069 *3))))
+ (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3))
+ (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520))))
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
(-5 *1 (-1070 *3))))
- ((*1 *1 *1) (-4 *1 (-1107))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-586 (-520))) (-5 *3 (-626 (-520))) (-5 *1 (-1022)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-512)) (-5 *1 (-40 *3 *2))
- (-4 *2
- (-13 (-336) (-276)
- (-10 -8 (-15 -2800 ((-1035 *3 (-559 $)) $))
- (-15 -2811 ((-1035 *3 (-559 $)) $))
- (-15 -2188 ($ (-1035 *3 (-559 $)))))))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-512)) (-5 *1 (-40 *3 *2))
- (-4 *2
- (-13 (-336) (-276)
- (-10 -8 (-15 -2800 ((-1035 *3 (-559 $)) $))
- (-15 -2811 ((-1035 *3 (-559 $)) $))
- (-15 -2188 ($ (-1035 *3 (-559 $)))))))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-586 *2))
- (-4 *2
- (-13 (-336) (-276)
- (-10 -8 (-15 -2800 ((-1035 *4 (-559 $)) $))
- (-15 -2811 ((-1035 *4 (-559 $)) $))
- (-15 -2188 ($ (-1035 *4 (-559 $)))))))
- (-4 *4 (-512)) (-5 *1 (-40 *4 *2))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-586 (-559 *2)))
- (-4 *2
- (-13 (-336) (-276)
- (-10 -8 (-15 -2800 ((-1035 *4 (-559 $)) $))
- (-15 -2811 ((-1035 *4 (-559 $)) $))
- (-15 -2188 ($ (-1035 *4 (-559 $)))))))
- (-4 *4 (-512)) (-5 *1 (-40 *4 *2)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-901 *3 *4 *5 *6)) (-4 *3 (-969)) (-4 *4 (-728))
- (-4 *5 (-783)) (-4 *6 (-983 *3 *4 *5)) (-4 *3 (-512))
- (-5 *2 (-108)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
+ (-5 *1 (-1071 *3))))
+ ((*1 *1 *1) (-4 *1 (-1108))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-310 *5 *6 *7 *8)) (-4 *5 (-404 *4)) (-4 *6 (-1141 *5))
+ (-4 *7 (-1141 (-381 *6))) (-4 *8 (-316 *5 *6 *7))
+ (-4 *4 (-13 (-784) (-513) (-961 (-521)))) (-5 *2 (-108))
+ (-5 *1 (-840 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-310 (-381 (-521)) *4 *5 *6))
+ (-4 *4 (-1141 (-381 (-521)))) (-4 *5 (-1141 (-381 *4)))
+ (-4 *6 (-316 (-381 (-521)) *4 *5)) (-5 *2 (-108))
+ (-5 *1 (-841 *4 *5 *6)))))
+(((*1 *2 *3 *3 *3 *3 *4 *5)
+ (-12 (-5 *3 (-202)) (-5 *4 (-521))
+ (-5 *5 (-3 (|:| |fn| (-362)) (|:| |fp| (-62 -4049)))) (-5 *2 (-959))
+ (-5 *1 (-683)))))
+(((*1 *2 *3) (-12 (-5 *2 (-392 *3)) (-5 *1 (-515 *3)) (-4 *3 (-506)))))
+(((*1 *1) (-5 *1 (-132))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1097 *4 *5))
+ (-4 *4 (-1013)) (-4 *5 (-1013)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| -1796 (-352)) (|:| -2883 (-1066))
- (|:| |explanations| (-586 (-1066)))))
- (-5 *2 (-958)) (-5 *1 (-279))))
- ((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| -1796 (-352)) (|:| -2883 (-1066))
- (|:| |explanations| (-586 (-1066))) (|:| |extra| (-958))))
- (-5 *2 (-958)) (-5 *1 (-279)))))
+ (-12 (-4 *4 (-729))
+ (-4 *5 (-13 (-784) (-10 -8 (-15 -1430 ((-1084) $))))) (-4 *6 (-513))
+ (-5 *2 (-2 (|:| -2641 (-881 *6)) (|:| -2618 (-881 *6))))
+ (-5 *1 (-669 *4 *5 *6 *3)) (-4 *3 (-878 (-381 (-881 *6)) *4 *5)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-1050 *3 *4)) (-14 *3 (-849)) (-4 *4 (-336))
- (-5 *1 (-918 *3 *4)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-545 *2)) (-4 *2 (-37 (-380 (-520)))) (-4 *2 (-969)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-51)) (-5 *1 (-1097)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-769 *3)) (-4 *3 (-1012))))
- ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-776 *3)) (-4 *3 (-1012)))))
+ (-12 (-5 *2 (-587 (-850))) (-5 *1 (-1014 *3 *4)) (-14 *3 (-850))
+ (-14 *4 (-850)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-289 (-201))) (-5 *2 (-380 (-520))) (-5 *1 (-279)))))
+ (-12 (-5 *3 (-224 *4 *5)) (-14 *4 (-587 (-1084))) (-4 *5 (-970))
+ (-5 *2 (-453 *4 *5)) (-5 *1 (-873 *4 *5)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-558 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013))
+ (-5 *2 (-108)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2))
- (-4 *2 (-13 (-403 *3) (-926)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1155 *3))
- (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1126 *3 *4))))
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-927)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1124 *3))
- (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1147 *3 *4)) (-4 *5 (-908 *4))))
+ (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3))
+ (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520))))
- (-5 *1 (-1069 *3))))
+ (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3))
+ (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520))))
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
(-5 *1 (-1070 *3))))
- ((*1 *1 *1) (-4 *1 (-1107))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-983 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-728))
- (-4 *4 (-783))))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-1112 *3 *4 *5 *2)) (-4 *3 (-512)) (-4 *4 (-728))
- (-4 *5 (-783)) (-4 *2 (-983 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-960 (-520))) (-4 *1 (-276)) (-5 *2 (-108))))
- ((*1 *2 *1) (-12 (-4 *1 (-505)) (-5 *2 (-108))))
- ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-833 *3)) (-4 *3 (-1012)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-223 *4 *5)) (-14 *4 (-586 (-1083))) (-4 *5 (-969))
- (-5 *2 (-452 *4 *5)) (-5 *1 (-872 *4 *5)))))
-(((*1 *1) (-5 *1 (-739))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-158 (-380 (-520)))) (-5 *1 (-113 *3)) (-14 *3 (-520))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *3 (-1064 *2)) (-4 *2 (-281)) (-5 *1 (-158 *2))))
- ((*1 *1 *2) (-12 (-5 *2 (-380 *3)) (-4 *3 (-281)) (-5 *1 (-158 *3))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-158 (-520))) (-5 *1 (-701 *3)) (-4 *3 (-377))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-158 (-380 (-520)))) (-5 *1 (-799 *3)) (-14 *3 (-520))))
- ((*1 *2 *1)
- (-12 (-14 *3 (-520)) (-5 *2 (-158 (-380 (-520))))
- (-5 *1 (-800 *3 *4)) (-4 *4 (-797 *3)))))
-(((*1 *2) (-12 (-5 *2 (-586 (-1066))) (-5 *1 (-765)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-512) (-783) (-960 (-520)))) (-5 *1 (-166 *3 *2))
- (-4 *2 (-13 (-27) (-1104) (-403 (-154 *3))))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-424) (-783) (-960 (-520)) (-582 (-520))))
- (-5 *1 (-1108 *3 *2)) (-4 *2 (-13 (-27) (-1104) (-403 *3))))))
-(((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-586 *8)) (-5 *4 (-108)) (-4 *8 (-983 *5 *6 *7))
- (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783))
- (-5 *2 (-586 (-950 *5 *6 *7 *8))) (-5 *1 (-950 *5 *6 *7 *8))))
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
+ (-5 *1 (-1071 *3))))
+ ((*1 *1 *1) (-4 *1 (-1108))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-587 (-881 (-521)))) (-5 *4 (-587 (-1084)))
+ (-5 *2 (-587 (-587 (-353)))) (-5 *1 (-947)) (-5 *5 (-353))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-967 *4 *5)) (-4 *4 (-13 (-782) (-282) (-135) (-946)))
+ (-14 *5 (-587 (-1084))) (-5 *2 (-587 (-587 (-948 (-381 *4)))))
+ (-5 *1 (-1189 *4 *5 *6)) (-14 *6 (-587 (-1084)))))
((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-586 *8)) (-5 *4 (-108)) (-4 *8 (-983 *5 *6 *7))
- (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783))
- (-5 *2 (-586 (-1054 *5 *6 *7 *8))) (-5 *1 (-1054 *5 *6 *7 *8)))))
-(((*1 *2 *3 *3 *4 *4)
- (-12 (-5 *3 (-626 (-201))) (-5 *4 (-520)) (-5 *2 (-958))
- (-5 *1 (-684)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1083))
- (-4 *4 (-13 (-424) (-783) (-960 (-520)) (-582 (-520))))
- (-5 *2 (-51)) (-5 *1 (-288 *4 *5))
- (-4 *5 (-13 (-27) (-1104) (-403 *4)))))
+ (-12 (-5 *3 (-587 (-881 *5))) (-5 *4 (-108))
+ (-4 *5 (-13 (-782) (-282) (-135) (-946)))
+ (-5 *2 (-587 (-587 (-948 (-381 *5))))) (-5 *1 (-1189 *5 *6 *7))
+ (-14 *6 (-587 (-1084))) (-14 *7 (-587 (-1084)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-587 (-881 *5))) (-5 *4 (-108))
+ (-4 *5 (-13 (-782) (-282) (-135) (-946)))
+ (-5 *2 (-587 (-587 (-948 (-381 *5))))) (-5 *1 (-1189 *5 *6 *7))
+ (-14 *6 (-587 (-1084))) (-14 *7 (-587 (-1084)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-587 (-881 *5))) (-5 *4 (-108))
+ (-4 *5 (-13 (-782) (-282) (-135) (-946)))
+ (-5 *2 (-587 (-587 (-948 (-381 *5))))) (-5 *1 (-1189 *5 *6 *7))
+ (-14 *6 (-587 (-1084))) (-14 *7 (-587 (-1084)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-587 (-881 *4)))
+ (-4 *4 (-13 (-782) (-282) (-135) (-946)))
+ (-5 *2 (-587 (-587 (-948 (-381 *4))))) (-5 *1 (-1189 *4 *5 *6))
+ (-14 *5 (-587 (-1084))) (-14 *6 (-587 (-1084))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1065 *3)) (-5 *1 (-158 *3)) (-4 *3 (-282)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-970)) (-5 *1 (-1137 *3 *2)) (-4 *2 (-1141 *3)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-587 (-521))) (-5 *1 (-1023)) (-5 *3 (-521)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1119)) (-5 *1 (-1043 *4 *2))
+ (-4 *2 (-13 (-554 (-521) *4) (-10 -7 (-6 -4233) (-6 -4234))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-784)) (-4 *3 (-1119)) (-5 *1 (-1043 *3 *2))
+ (-4 *2 (-13 (-554 (-521) *3) (-10 -7 (-6 -4233) (-6 -4234)))))))
+(((*1 *2 *3) (-12 (-5 *3 (-872 *2)) (-5 *1 (-908 *2)) (-4 *2 (-970)))))
+(((*1 *2 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1170)) (-5 *1 (-1047))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-424) (-783) (-960 (-520)) (-582 (-520))))
- (-5 *2 (-51)) (-5 *1 (-288 *4 *3))
- (-4 *3 (-13 (-27) (-1104) (-403 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-380 (-520)))
- (-4 *5 (-13 (-424) (-783) (-960 (-520)) (-582 (-520))))
- (-5 *2 (-51)) (-5 *1 (-288 *5 *3))
- (-4 *3 (-13 (-27) (-1104) (-403 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-268 *3)) (-4 *3 (-13 (-27) (-1104) (-403 *5)))
- (-4 *5 (-13 (-424) (-783) (-960 (-520)) (-582 (-520))))
- (-5 *2 (-51)) (-5 *1 (-288 *5 *3))))
+ (-12 (-5 *3 (-587 (-792))) (-5 *2 (-1170)) (-5 *1 (-1047)))))
+(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10)
+ (|partial| -12 (-5 *2 (-587 (-1080 *13))) (-5 *3 (-1080 *13))
+ (-5 *4 (-587 *12)) (-5 *5 (-587 *10)) (-5 *6 (-587 *13))
+ (-5 *7 (-587 (-587 (-2 (|:| -2096 (-707)) (|:| |pcoef| *13)))))
+ (-5 *8 (-587 (-707))) (-5 *9 (-1165 (-587 (-1080 *10))))
+ (-4 *12 (-784)) (-4 *10 (-282)) (-4 *13 (-878 *10 *11 *12))
+ (-4 *11 (-729)) (-5 *1 (-645 *11 *12 *10 *13)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-587 (-560 *2))) (-5 *4 (-587 (-1084)))
+ (-4 *2 (-13 (-404 (-154 *5)) (-927) (-1105)))
+ (-4 *5 (-13 (-513) (-784))) (-5 *1 (-550 *5 *6 *2))
+ (-4 *6 (-13 (-404 *5) (-927) (-1105))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1084))
+ (-4 *4 (-13 (-425) (-784) (-961 (-521)) (-583 (-521))))
+ (-5 *2 (-51)) (-5 *1 (-289 *4 *5))
+ (-4 *5 (-13 (-27) (-1105) (-404 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-425) (-784) (-961 (-521)) (-583 (-521))))
+ (-5 *2 (-51)) (-5 *1 (-289 *4 *3))
+ (-4 *3 (-13 (-27) (-1105) (-404 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-381 (-521)))
+ (-4 *5 (-13 (-425) (-784) (-961 (-521)) (-583 (-521))))
+ (-5 *2 (-51)) (-5 *1 (-289 *5 *3))
+ (-4 *3 (-13 (-27) (-1105) (-404 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-269 *3)) (-4 *3 (-13 (-27) (-1105) (-404 *5)))
+ (-4 *5 (-13 (-425) (-784) (-961 (-521)) (-583 (-521))))
+ (-5 *2 (-51)) (-5 *1 (-289 *5 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-268 *3)) (-5 *5 (-380 (-520)))
- (-4 *3 (-13 (-27) (-1104) (-403 *6)))
- (-4 *6 (-13 (-424) (-783) (-960 (-520)) (-582 (-520))))
- (-5 *2 (-51)) (-5 *1 (-288 *6 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 (-520))) (-5 *4 (-268 *6))
- (-4 *6 (-13 (-27) (-1104) (-403 *5)))
- (-4 *5 (-13 (-512) (-783) (-960 (-520)) (-582 (-520))))
- (-5 *2 (-51)) (-5 *1 (-431 *5 *6))))
+ (-12 (-5 *4 (-269 *3)) (-5 *5 (-381 (-521)))
+ (-4 *3 (-13 (-27) (-1105) (-404 *6)))
+ (-4 *6 (-13 (-425) (-784) (-961 (-521)) (-583 (-521))))
+ (-5 *2 (-51)) (-5 *1 (-289 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 (-521))) (-5 *4 (-269 *6))
+ (-4 *6 (-13 (-27) (-1105) (-404 *5)))
+ (-4 *5 (-13 (-513) (-784) (-961 (-521)) (-583 (-521))))
+ (-5 *2 (-51)) (-5 *1 (-432 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1083)) (-5 *5 (-268 *3))
- (-4 *3 (-13 (-27) (-1104) (-403 *6)))
- (-4 *6 (-13 (-512) (-783) (-960 (-520)) (-582 (-520))))
- (-5 *2 (-51)) (-5 *1 (-431 *6 *3))))
+ (-12 (-5 *4 (-1084)) (-5 *5 (-269 *3))
+ (-4 *3 (-13 (-27) (-1105) (-404 *6)))
+ (-4 *6 (-13 (-513) (-784) (-961 (-521)) (-583 (-521))))
+ (-5 *2 (-51)) (-5 *1 (-432 *6 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-520))) (-5 *4 (-268 *7)) (-5 *5 (-1131 (-520)))
- (-4 *7 (-13 (-27) (-1104) (-403 *6)))
- (-4 *6 (-13 (-512) (-783) (-960 (-520)) (-582 (-520))))
- (-5 *2 (-51)) (-5 *1 (-431 *6 *7))))
+ (-12 (-5 *3 (-1 *7 (-521))) (-5 *4 (-269 *7)) (-5 *5 (-1132 (-521)))
+ (-4 *7 (-13 (-27) (-1105) (-404 *6)))
+ (-4 *6 (-13 (-513) (-784) (-961 (-521)) (-583 (-521))))
+ (-5 *2 (-51)) (-5 *1 (-432 *6 *7))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1083)) (-5 *5 (-268 *3)) (-5 *6 (-1131 (-520)))
- (-4 *3 (-13 (-27) (-1104) (-403 *7)))
- (-4 *7 (-13 (-512) (-783) (-960 (-520)) (-582 (-520))))
- (-5 *2 (-51)) (-5 *1 (-431 *7 *3))))
+ (-12 (-5 *4 (-1084)) (-5 *5 (-269 *3)) (-5 *6 (-1132 (-521)))
+ (-4 *3 (-13 (-27) (-1105) (-404 *7)))
+ (-4 *7 (-13 (-513) (-784) (-961 (-521)) (-583 (-521))))
+ (-5 *2 (-51)) (-5 *1 (-432 *7 *3))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-1 *8 (-380 (-520)))) (-5 *4 (-268 *8))
- (-5 *5 (-1131 (-380 (-520)))) (-5 *6 (-380 (-520)))
- (-4 *8 (-13 (-27) (-1104) (-403 *7)))
- (-4 *7 (-13 (-512) (-783) (-960 (-520)) (-582 (-520))))
- (-5 *2 (-51)) (-5 *1 (-431 *7 *8))))
+ (-12 (-5 *3 (-1 *8 (-381 (-521)))) (-5 *4 (-269 *8))
+ (-5 *5 (-1132 (-381 (-521)))) (-5 *6 (-381 (-521)))
+ (-4 *8 (-13 (-27) (-1105) (-404 *7)))
+ (-4 *7 (-13 (-513) (-784) (-961 (-521)) (-583 (-521))))
+ (-5 *2 (-51)) (-5 *1 (-432 *7 *8))))
((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *4 (-1083)) (-5 *5 (-268 *3)) (-5 *6 (-1131 (-380 (-520))))
- (-5 *7 (-380 (-520))) (-4 *3 (-13 (-27) (-1104) (-403 *8)))
- (-4 *8 (-13 (-512) (-783) (-960 (-520)) (-582 (-520))))
- (-5 *2 (-51)) (-5 *1 (-431 *8 *3))))
+ (-12 (-5 *4 (-1084)) (-5 *5 (-269 *3)) (-5 *6 (-1132 (-381 (-521))))
+ (-5 *7 (-381 (-521))) (-4 *3 (-13 (-27) (-1105) (-404 *8)))
+ (-4 *8 (-13 (-513) (-784) (-961 (-521)) (-583 (-521))))
+ (-5 *2 (-51)) (-5 *1 (-432 *8 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1064 (-2 (|:| |k| (-520)) (|:| |c| *3))))
- (-4 *3 (-969)) (-5 *1 (-545 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-969)) (-5 *1 (-546 *3))))
+ (-12 (-5 *2 (-1065 (-2 (|:| |k| (-521)) (|:| |c| *3))))
+ (-4 *3 (-970)) (-5 *1 (-546 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-5 *1 (-547 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1064 (-2 (|:| |k| (-520)) (|:| |c| *3))))
- (-4 *3 (-969)) (-4 *1 (-1124 *3))))
+ (-12 (-5 *2 (-1065 (-2 (|:| |k| (-521)) (|:| |c| *3))))
+ (-4 *3 (-970)) (-4 *1 (-1125 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-706))
- (-5 *3 (-1064 (-2 (|:| |k| (-380 (-520))) (|:| |c| *4))))
- (-4 *4 (-969)) (-4 *1 (-1145 *4))))
+ (-12 (-5 *2 (-707))
+ (-5 *3 (-1065 (-2 (|:| |k| (-381 (-521))) (|:| |c| *4))))
+ (-4 *4 (-970)) (-4 *1 (-1146 *4))))
((*1 *1 *2)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-969)) (-4 *1 (-1155 *3))))
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-4 *1 (-1156 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1064 (-2 (|:| |k| (-706)) (|:| |c| *3))))
- (-4 *3 (-969)) (-4 *1 (-1155 *3)))))
+ (-12 (-5 *2 (-1065 (-2 (|:| |k| (-707)) (|:| |c| *3))))
+ (-4 *3 (-970)) (-4 *1 (-1156 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2))
- (-4 *2 (-13 (-403 *3) (-926)))))
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-927)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1155 *3))
- (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1126 *3 *4))))
+ (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3))
+ (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1124 *3))
- (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1147 *3 *4)) (-4 *5 (-908 *4))))
+ (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3))
+ (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-312 *2 *3 *4)) (-14 *2 (-586 (-1083)))
- (-14 *3 (-586 (-1083))) (-4 *4 (-360))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520))))
- (-5 *1 (-1069 *3))))
+ (-12 (-5 *1 (-313 *2 *3 *4)) (-14 *2 (-587 (-1084)))
+ (-14 *3 (-587 (-1084))) (-4 *4 (-361))))
((*1 *2 *2)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520))))
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
(-5 *1 (-1070 *3))))
- ((*1 *1 *1) (-4 *1 (-1107))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-706)) (-5 *1 (-718 *2)) (-4 *2 (-37 (-380 (-520))))
- (-4 *2 (-157)))))
-(((*1 *2 *3 *2 *2)
- (-12 (-5 *2 (-586 (-452 *4 *5))) (-5 *3 (-793 *4))
- (-14 *4 (-586 (-1083))) (-4 *5 (-424)) (-5 *1 (-574 *4 *5)))))
-(((*1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-1083)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-1083)) (-5 *3 (-586 (-730))) (-5 *1 (-265)))))
-(((*1 *1 *1 *1) (-4 *1 (-601))) ((*1 *1 *1 *1) (-5 *1 (-1030))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1112 *3 *4 *5 *2)) (-4 *3 (-512)) (-4 *4 (-728))
- (-4 *5 (-783)) (-4 *2 (-983 *3 *4 *5)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |var| (-586 (-1083))) (|:| |pred| (-51))))
- (-5 *1 (-820 *3)) (-4 *3 (-1012)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-983 *3 *4 *5)) (-4 *3 (-969)) (-4 *4 (-728))
- (-4 *5 (-783)) (-5 *2 (-108)))))
-(((*1 *1 *1) (-12 (-5 *1 (-158 *2)) (-4 *2 (-281))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1085 (-380 (-520)))) (-5 *1 (-168)) (-5 *3 (-520))))
- ((*1 *1 *1) (-12 (-4 *1 (-613 *2)) (-4 *2 (-1118))))
- ((*1 *1 *1) (-4 *1 (-797 *2)))
- ((*1 *1 *1)
- (-12 (-4 *1 (-898 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-727))
- (-4 *4 (-783)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-154 (-201))) (-5 *5 (-520)) (-5 *6 (-1066))
- (-5 *3 (-201)) (-5 *2 (-958)) (-5 *1 (-694)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
+ (-5 *1 (-1071 *3))))
+ ((*1 *1 *1) (-4 *1 (-1108))))
+(((*1 *2 *3 *3 *4 *5 *5)
+ (-12 (-5 *5 (-108)) (-4 *6 (-425)) (-4 *7 (-729)) (-4 *8 (-784))
+ (-4 *3 (-984 *6 *7 *8))
+ (-5 *2 (-587 (-2 (|:| |val| *3) (|:| -1884 *4))))
+ (-5 *1 (-990 *6 *7 *8 *3 *4)) (-4 *4 (-989 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-587 (-2 (|:| |val| (-587 *8)) (|:| -1884 *9))))
+ (-5 *5 (-108)) (-4 *8 (-984 *6 *7 *4)) (-4 *9 (-989 *6 *7 *4 *8))
+ (-4 *6 (-425)) (-4 *7 (-729)) (-4 *4 (-784))
+ (-5 *2 (-587 (-2 (|:| |val| *8) (|:| -1884 *9))))
+ (-5 *1 (-990 *6 *7 *4 *8 *9)))))
+(((*1 *1) (-5 *1 (-411))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-627 *5)) (-4 *5 (-970)) (-5 *1 (-974 *3 *4 *5))
+ (-14 *3 (-707)) (-14 *4 (-707)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1084)) (-5 *5 (-1008 (-202))) (-5 *2 (-856))
+ (-5 *1 (-854 *3)) (-4 *3 (-562 (-497)))))
+ ((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *4 (-1084)) (-5 *5 (-1008 (-202))) (-5 *2 (-856))
+ (-5 *1 (-854 *3)) (-4 *3 (-562 (-497)))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1008 (-202))) (-5 *1 (-855))))
+ ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-202) (-202))) (-5 *3 (-1008 (-202)))
+ (-5 *1 (-855))))
+ ((*1 *1 *2 *2 *2 *2 *3)
+ (-12 (-5 *2 (-1 (-202) (-202))) (-5 *3 (-1008 (-202)))
+ (-5 *1 (-855))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1008 (-202))) (-5 *1 (-856))))
+ ((*1 *1 *2 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-202) (-202))) (-5 *3 (-1008 (-202)))
+ (-5 *1 (-856))))
+ ((*1 *1 *2 *2 *3)
+ (-12 (-5 *2 (-1 (-202) (-202))) (-5 *3 (-1008 (-202)))
+ (-5 *1 (-856))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-587 (-1 (-202) (-202)))) (-5 *3 (-1008 (-202)))
+ (-5 *1 (-856))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-587 (-1 (-202) (-202)))) (-5 *3 (-1008 (-202)))
+ (-5 *1 (-856))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-202) (-202))) (-5 *3 (-1008 (-202)))
+ (-5 *1 (-856))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-202) (-202))) (-5 *3 (-1008 (-202)))
+ (-5 *1 (-856)))))
+(((*1 *1 *1 *1) (-4 *1 (-602))) ((*1 *1 *1 *1) (-5 *1 (-1031))))
+(((*1 *2)
+ (-12 (-5 *2 (-1170)) (-5 *1 (-1097 *3 *4)) (-4 *3 (-1013))
+ (-4 *4 (-1013)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1170)) (-5 *1 (-1097 *3 *4)) (-4 *3 (-1013))
+ (-4 *4 (-1013)))))
+(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959))
+ (-5 *1 (-689)))))
+(((*1 *2)
+ (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-340 *3 *4))
+ (-4 *3 (-341 *4))))
+ ((*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-5 *2 (-108)))))
+(((*1 *2)
+ (-12 (-4 *3 (-513)) (-5 *2 (-587 *4)) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-391 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2))
- (-4 *2 (-13 (-403 *3) (-926)))))
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-927)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1155 *3))
- (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1126 *3 *4))))
+ (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3))
+ (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1124 *3))
- (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1147 *3 *4)) (-4 *5 (-908 *4))))
- ((*1 *1 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-783))))
+ (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3))
+ (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4))))
+ ((*1 *1 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-784))))
((*1 *1 *1)
- (-12 (-5 *1 (-312 *2 *3 *4)) (-14 *2 (-586 (-1083)))
- (-14 *3 (-586 (-1083))) (-4 *4 (-360))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520))))
- (-5 *1 (-1069 *3))))
+ (-12 (-5 *1 (-313 *2 *3 *4)) (-14 *2 (-587 (-1084)))
+ (-14 *3 (-587 (-1084))) (-4 *4 (-361))))
((*1 *2 *2)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520))))
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
(-5 *1 (-1070 *3))))
- ((*1 *1 *1) (-4 *1 (-1107))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-626 *1)) (-5 *4 (-1164 *1)) (-4 *1 (-582 *5))
- (-4 *5 (-969))
- (-5 *2 (-2 (|:| -3927 (-626 *5)) (|:| |vec| (-1164 *5))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-626 *1)) (-4 *1 (-582 *4)) (-4 *4 (-969))
- (-5 *2 (-626 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-380 (-520))) (-5 *1 (-103))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-586 (-496))) (-5 *1 (-496)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1044 *3)) (-4 *3 (-969)) (-5 *2 (-108)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1088)) (-5 *1 (-224)))))
-(((*1 *1) (-5 *1 (-303))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783))
- (-4 *3 (-983 *5 *6 *7)) (-5 *2 (-586 *4))
- (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-988 *5 *6 *7 *3)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
+ (-5 *1 (-1071 *3))))
+ ((*1 *1 *1) (-4 *1 (-1108))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-353) (-353))) (-5 *4 (-353))
+ (-5 *2
+ (-2 (|:| -3430 *4) (|:| -2968 *4) (|:| |totalpts| (-521))
+ (|:| |success| (-108))))
+ (-5 *1 (-725)) (-5 *5 (-521)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-108)) (-4 *4 (-13 (-337) (-782))) (-5 *2 (-392 *3))
+ (-5 *1 (-164 *4 *3)) (-4 *3 (-1141 (-154 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *4 (-13 (-337) (-782))) (-5 *2 (-392 *3))
+ (-5 *1 (-164 *4 *3)) (-4 *3 (-1141 (-154 *4))))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-587 (-453 *4 *5))) (-5 *3 (-587 (-794 *4)))
+ (-14 *4 (-587 (-1084))) (-4 *5 (-425)) (-5 *1 (-444 *4 *5 *6))
+ (-4 *6 (-425)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1123)) (-4 *5 (-1141 *4))
+ (-5 *2 (-2 (|:| -2973 (-381 *5)) (|:| |poly| *3)))
+ (-5 *1 (-136 *4 *5 *3)) (-4 *3 (-1141 (-381 *5))))))
+(((*1 *1) (-5 *1 (-304))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970)) (-5 *2 (-587 (-872 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-587 (-872 *3))) (-4 *3 (-970)) (-4 *1 (-1045 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-587 (-587 *3))) (-4 *1 (-1045 *3)) (-4 *3 (-970))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-587 (-872 *3))) (-4 *1 (-1045 *3)) (-4 *3 (-970)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-201)) (-5 *4 (-520)) (-5 *2 (-958)) (-5 *1 (-694)))))
+ (-12 (-5 *3 (-587 (-881 *6))) (-5 *4 (-587 (-1084)))
+ (-4 *6 (-13 (-513) (-961 *5))) (-4 *5 (-513))
+ (-5 *2 (-587 (-587 (-269 (-381 (-881 *6)))))) (-5 *1 (-962 *5 *6)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1044 *3)) (-4 *3 (-969))
- (-5 *2 (-586 (-586 (-586 (-706))))))))
+ (-12 (-5 *2 (-802 (-893 *3) (-893 *3))) (-5 *1 (-893 *3))
+ (-4 *3 (-894)))))
(((*1 *1 *2 *3)
- (-12 (-5 *1 (-801 *2 *3)) (-4 *2 (-1118)) (-4 *3 (-1118)))))
+ (-12 (-5 *1 (-802 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-1119)))))
(((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-557 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1012)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1079 *4)) (-4 *4 (-322))
- (-4 *2
- (-13 (-375)
- (-10 -7 (-15 -2188 (*2 *4)) (-15 -3040 ((-849) *2))
- (-15 -1831 ((-1164 *2) (-849))) (-15 -3751 (*2 *2)))))
- (-5 *1 (-329 *2 *4)))))
+ (|partial| -12 (-4 *1 (-558 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1141 *5)) (-4 *5 (-337))
+ (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3)))
+ (-5 *1 (-531 *5 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2))
- (-4 *2 (-13 (-403 *3) (-926)))))
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-927)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1155 *3))
- (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1126 *3 *4))))
+ (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3))
+ (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1124 *3))
- (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1147 *3 *4)) (-4 *5 (-908 *4))))
- ((*1 *1 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-783))))
+ (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3))
+ (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4))))
+ ((*1 *1 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-784))))
((*1 *1 *1)
- (-12 (-5 *1 (-312 *2 *3 *4)) (-14 *2 (-586 (-1083)))
- (-14 *3 (-586 (-1083))) (-4 *4 (-360))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520))))
- (-5 *1 (-1069 *3))))
+ (-12 (-5 *1 (-313 *2 *3 *4)) (-14 *2 (-587 (-1084)))
+ (-14 *3 (-587 (-1084))) (-4 *4 (-361))))
((*1 *2 *2)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520))))
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
(-5 *1 (-1070 *3))))
- ((*1 *1 *1) (-4 *1 (-1107))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2))
- (-4 *2 (-13 (-403 *3) (-926))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *5 *5))
- (-4 *5 (-13 (-336) (-10 -8 (-15 ** ($ $ (-380 (-520)))))))
- (-5 *2
- (-2 (|:| |solns| (-586 *5))
- (|:| |maps| (-586 (-2 (|:| |arg| *5) (|:| |res| *5))))))
- (-5 *1 (-1038 *3 *5)) (-4 *3 (-1140 *5)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-281)) (-5 *1 (-427 *3 *2)) (-4 *2 (-1140 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *3 (-281)) (-5 *1 (-432 *3 *2)) (-4 *2 (-1140 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *3 (-281)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-706)))
- (-5 *1 (-499 *3 *2 *4 *5)) (-4 *2 (-1140 *3)))))
-(((*1 *2 *3 *4 *4 *5 *3 *6)
- (|partial| -12 (-5 *4 (-559 *3)) (-5 *5 (-586 *3)) (-5 *6 (-1079 *3))
- (-4 *3 (-13 (-403 *7) (-27) (-1104)))
- (-4 *7 (-13 (-424) (-960 (-520)) (-783) (-135) (-582 (-520))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-586 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-516 *7 *3 *8)) (-4 *8 (-1012))))
- ((*1 *2 *3 *4 *4 *5 *4 *3 *6)
- (|partial| -12 (-5 *4 (-559 *3)) (-5 *5 (-586 *3))
- (-5 *6 (-380 (-1079 *3))) (-4 *3 (-13 (-403 *7) (-27) (-1104)))
- (-4 *7 (-13 (-424) (-960 (-520)) (-783) (-135) (-582 (-520))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-586 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-516 *7 *3 *8)) (-4 *8 (-1012)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-302 *3)) (-4 *3 (-336)) (-4 *3 (-341)) (-5 *2 (-108))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1079 *4)) (-4 *4 (-322)) (-5 *2 (-108))
- (-5 *1 (-330 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
+ (-5 *1 (-1071 *3))))
+ ((*1 *1 *1) (-4 *1 (-1108))))
+(((*1 *2 *3 *2)
+ (-12 (-4 *2 (-13 (-337) (-782))) (-5 *1 (-164 *2 *3))
+ (-4 *3 (-1141 (-154 *2)))))
((*1 *2 *3)
- (-12 (-5 *3 (-1164 *4)) (-4 *4 (-322)) (-5 *2 (-108))
- (-5 *1 (-490 *4)))))
-(((*1 *2)
- (-12 (-5 *2 (-1169)) (-5 *1 (-1096 *3 *4)) (-4 *3 (-1012))
- (-4 *4 (-1012)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-586 (-2 (|:| |deg| (-706)) (|:| -1772 *5))))
- (-4 *5 (-1140 *4)) (-4 *4 (-322)) (-5 *2 (-586 *5))
- (-5 *1 (-193 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-586 (-2 (|:| -1916 *5) (|:| -2528 (-520)))))
- (-5 *4 (-520)) (-4 *5 (-1140 *4)) (-5 *2 (-586 *5))
- (-5 *1 (-632 *5)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-706)) (-4 *1 (-1179 *3 *4)) (-4 *3 (-783))
- (-4 *4 (-969)) (-4 *4 (-157))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1179 *2 *3)) (-4 *2 (-783)) (-4 *3 (-969))
- (-4 *3 (-157)))))
-(((*1 *2)
- (-12
- (-5 *2
- (-1164 (-586 (-2 (|:| -3429 (-838 *3)) (|:| -2716 (-1030))))))
- (-5 *1 (-324 *3 *4)) (-14 *3 (-849)) (-14 *4 (-849))))
- ((*1 *2)
- (-12 (-5 *2 (-1164 (-586 (-2 (|:| -3429 *3) (|:| -2716 (-1030))))))
- (-5 *1 (-325 *3 *4)) (-4 *3 (-322)) (-14 *4 (-3 (-1079 *3) *2))))
- ((*1 *2)
- (-12 (-5 *2 (-1164 (-586 (-2 (|:| -3429 *3) (|:| -2716 (-1030))))))
- (-5 *1 (-326 *3 *4)) (-4 *3 (-322)) (-14 *4 (-849)))))
+ (-12 (-4 *2 (-13 (-337) (-782))) (-5 *1 (-164 *2 *3))
+ (-4 *3 (-1141 (-154 *2))))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-893 *3)) (-4 *3 (-894)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-337)) (-4 *3 (-970))
+ (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1383 *1)))
+ (-4 *1 (-786 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-883)) (-5 *2 (-587 (-587 (-872 (-202)))))))
+ ((*1 *2 *1) (-12 (-4 *1 (-900)) (-5 *2 (-587 (-587 (-872 (-202))))))))
+(((*1 *1) (-5 *1 (-129))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784))
+ (-4 *3 (-984 *5 *6 *7))
+ (-5 *2 (-587 (-2 (|:| |val| *3) (|:| -1884 *4))))
+ (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))))
+(((*1 *2 *2 *3 *3 *4)
+ (-12 (-5 *4 (-707)) (-4 *3 (-513)) (-5 *1 (-896 *3 *2))
+ (-4 *2 (-1141 *3)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-381 (-521))) (-5 *1 (-948 *3))
+ (-4 *3 (-13 (-782) (-337) (-946)))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-4 *2 (-13 (-782) (-337))) (-5 *1 (-980 *2 *3))
+ (-4 *3 (-1141 *2))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-4 *1 (-986 *2 *3)) (-4 *2 (-13 (-782) (-337)))
+ (-4 *3 (-1141 *2)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1083)) (-4 *5 (-1122)) (-4 *6 (-1140 *5))
- (-4 *7 (-1140 (-380 *6))) (-5 *2 (-586 (-880 *5)))
- (-5 *1 (-314 *4 *5 *6 *7)) (-4 *4 (-315 *5 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1083)) (-4 *1 (-315 *4 *5 *6)) (-4 *4 (-1122))
- (-4 *5 (-1140 *4)) (-4 *6 (-1140 (-380 *5))) (-4 *4 (-336))
- (-5 *2 (-586 (-880 *4))))))
+ (-12 (-5 *3 (-850)) (-5 *2 (-1165 (-1165 (-521)))) (-5 *1 (-439)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1017)) (-5 *1 (-304)))))
(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-871 (-201))) (-5 *4 (-802)) (-5 *2 (-1169))
- (-5 *1 (-440))))
- ((*1 *1 *2) (-12 (-5 *2 (-586 *3)) (-4 *3 (-969)) (-4 *1 (-905 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-1044 *3)) (-4 *3 (-969)) (-5 *2 (-871 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-871 *3)) (-4 *3 (-969)) (-4 *1 (-1044 *3))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-706)) (-4 *1 (-1044 *3)) (-4 *3 (-969))))
+ (-12 (-5 *3 (-872 (-202))) (-5 *4 (-803)) (-5 *2 (-1170))
+ (-5 *1 (-441))))
+ ((*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-970)) (-4 *1 (-906 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970)) (-5 *2 (-872 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-872 *3)) (-4 *3 (-970)) (-4 *1 (-1045 *3))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-4 *1 (-1045 *3)) (-4 *3 (-970))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-586 *3)) (-4 *1 (-1044 *3)) (-4 *3 (-969))))
+ (-12 (-5 *2 (-587 *3)) (-4 *1 (-1045 *3)) (-4 *3 (-970))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-871 *3)) (-4 *1 (-1044 *3)) (-4 *3 (-969))))
+ (-12 (-5 *2 (-872 *3)) (-4 *1 (-1045 *3)) (-4 *3 (-970))))
((*1 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-871 (-201))) (-5 *1 (-1115)) (-5 *3 (-201)))))
-(((*1 *1 *1) (-4 *1 (-572)))
+ (-12 (-5 *2 (-872 (-202))) (-5 *1 (-1116)) (-5 *3 (-202)))))
+(((*1 *1 *1) (-4 *1 (-573)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-573 *3 *2))
- (-4 *2 (-13 (-403 *3) (-926) (-1104))))))
-(((*1 *2) (-12 (-4 *2 (-157)) (-5 *1 (-150 *3 *2)) (-4 *3 (-151 *2))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1164 *1)) (-4 *1 (-343 *2 *4)) (-4 *4 (-1140 *2))
- (-4 *2 (-157))))
- ((*1 *2)
- (-12 (-4 *4 (-1140 *2)) (-4 *2 (-157)) (-5 *1 (-381 *3 *2 *4))
- (-4 *3 (-382 *2 *4))))
- ((*1 *2) (-12 (-4 *1 (-382 *2 *3)) (-4 *3 (-1140 *2)) (-4 *2 (-157))))
- ((*1 *2)
- (-12 (-4 *3 (-1140 *2)) (-5 *2 (-520)) (-5 *1 (-703 *3 *4))
- (-4 *4 (-382 *2 *3))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-877 *3 *4 *2)) (-4 *3 (-969)) (-4 *4 (-728))
- (-4 *2 (-783)) (-4 *3 (-157))))
- ((*1 *2 *3)
- (-12 (-4 *2 (-512)) (-5 *1 (-895 *2 *3)) (-4 *3 (-1140 *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-1140 *2)) (-4 *2 (-969)) (-4 *2 (-157)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783))
- (-4 *3 (-983 *5 *6 *7))
- (-5 *2 (-586 (-2 (|:| |val| *3) (|:| -1883 *4))))
- (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-988 *5 *6 *7 *3)))))
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-574 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-927) (-1105))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-315 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-1140 *3))
- (-4 *5 (-1140 (-380 *4))) (-5 *2 (-108)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-512) (-783) (-960 (-520)) (-582 (-520))))
- (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-27) (-1104) (-403 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1083))
- (-4 *4 (-13 (-512) (-783) (-960 (-520)) (-582 (-520))))
- (-5 *1 (-252 *4 *2)) (-4 *2 (-13 (-27) (-1104) (-403 *4))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1066)) (-5 *1 (-758)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-626 (-154 (-380 (-520))))) (-5 *2 (-586 (-154 *4)))
- (-5 *1 (-700 *4)) (-4 *4 (-13 (-336) (-781))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1044 *3)) (-4 *3 (-969)) (-5 *2 (-706)))))
+ (-12 (-4 *1 (-229 *3 *4 *5 *6)) (-4 *3 (-970)) (-4 *4 (-784))
+ (-4 *5 (-242 *4)) (-4 *6 (-729)) (-5 *2 (-707))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-229 *4 *3 *5 *6)) (-4 *4 (-970)) (-4 *3 (-784))
+ (-4 *5 (-242 *3)) (-4 *6 (-729)) (-5 *2 (-707))))
+ ((*1 *2 *1) (-12 (-4 *1 (-242 *3)) (-4 *3 (-784)) (-5 *2 (-707))))
+ ((*1 *2 *1) (-12 (-4 *1 (-323)) (-5 *2 (-850))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-310 *4 *5 *6 *7)) (-4 *4 (-13 (-342) (-337)))
+ (-4 *5 (-1141 *4)) (-4 *6 (-1141 (-381 *5))) (-4 *7 (-316 *4 *5 *6))
+ (-5 *2 (-707)) (-5 *1 (-366 *4 *5 *6 *7))))
+ ((*1 *2 *1) (-12 (-4 *1 (-376)) (-5 *2 (-770 (-850)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-378)) (-5 *2 (-521))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-547 *3)) (-4 *3 (-970))))
+ ((*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-547 *3)) (-4 *3 (-970))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-513)) (-5 *2 (-521)) (-5 *1 (-568 *3 *4))
+ (-4 *4 (-1141 *3))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *2 (-707)) (-4 *1 (-677 *4 *3)) (-4 *4 (-970))
+ (-4 *3 (-784))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-677 *4 *3)) (-4 *4 (-970)) (-4 *3 (-784))
+ (-5 *2 (-707))))
+ ((*1 *2 *1) (-12 (-4 *1 (-798 *3)) (-5 *2 (-707))))
+ ((*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-833 *3)) (-4 *3 (-1013))))
+ ((*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-834 *3)) (-4 *3 (-1013))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-310 *5 *6 *7 *8)) (-4 *5 (-404 *4))
+ (-4 *6 (-1141 *5)) (-4 *7 (-1141 (-381 *6)))
+ (-4 *8 (-316 *5 *6 *7)) (-4 *4 (-13 (-784) (-513) (-961 (-521))))
+ (-5 *2 (-707)) (-5 *1 (-840 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-310 (-381 (-521)) *4 *5 *6))
+ (-4 *4 (-1141 (-381 (-521)))) (-4 *5 (-1141 (-381 *4)))
+ (-4 *6 (-316 (-381 (-521)) *4 *5)) (-5 *2 (-707))
+ (-5 *1 (-841 *4 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-310 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-337))
+ (-4 *7 (-1141 *6)) (-4 *4 (-1141 (-381 *7))) (-4 *8 (-316 *6 *7 *4))
+ (-4 *9 (-13 (-342) (-337))) (-5 *2 (-707))
+ (-5 *1 (-943 *6 *7 *4 *8 *9))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1141 *3)) (-4 *3 (-970)) (-4 *3 (-513)) (-5 *2 (-707))))
+ ((*1 *2 *1 *2)
+ (-12 (-4 *1 (-1143 *3 *2)) (-4 *3 (-970)) (-4 *2 (-728))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1143 *3 *2)) (-4 *3 (-970)) (-4 *2 (-728)))))
+(((*1 *2 *3)
+ (-12 (-4 *2 (-1141 *4)) (-5 *1 (-746 *4 *2 *3 *5))
+ (-4 *4 (-13 (-337) (-135) (-961 (-381 (-521))))) (-4 *3 (-597 *2))
+ (-4 *5 (-597 (-381 *2))))))
+(((*1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-440))))
+ ((*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-440))))
+ ((*1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-856)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1015 *3)) (-5 *1 (-833 *3)) (-4 *3 (-1013))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1015 *3)) (-5 *1 (-834 *3)) (-4 *3 (-1013)))))
+(((*1 *1 *2) (-12 (-5 *2 (-587 (-792))) (-5 *1 (-792))))
+ ((*1 *1 *1 *1) (-5 *1 (-792))))
+(((*1 *2 *1 *1)
+ (|partial| -12 (-4 *1 (-303 *3)) (-4 *3 (-337)) (-4 *3 (-342))
+ (-5 *2 (-1080 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-303 *3)) (-4 *3 (-337)) (-4 *3 (-342))
+ (-5 *2 (-1080 *3)))))
(((*1 *2 *2)
- (-12 (-4 *2 (-13 (-336) (-781))) (-5 *1 (-164 *2 *3))
- (-4 *3 (-1140 (-154 *2))))))
-(((*1 *1 *1) (-4 *1 (-131)))
+ (-12 (-5 *2 (-110)) (-4 *3 (-13 (-784) (-513))) (-5 *1 (-31 *3 *4))
+ (-4 *4 (-404 *3))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-707)) (-5 *1 (-110))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1084)) (-5 *1 (-110))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-144 *3 *2))
- (-4 *2 (-403 *3))))
- ((*1 *2 *2) (-12 (-5 *1 (-145 *2)) (-4 *2 (-505)))))
-(((*1 *1) (-5 *1 (-999))))
+ (-12 (-5 *2 (-110)) (-4 *3 (-13 (-784) (-513))) (-5 *1 (-144 *3 *4))
+ (-4 *4 (-404 *3))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1084)) (-5 *2 (-110)) (-5 *1 (-148))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-110)) (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *4))
+ (-4 *4 (-13 (-404 *3) (-927)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-276 *3)) (-4 *3 (-277))))
+ ((*1 *2 *2) (-12 (-4 *1 (-277)) (-5 *2 (-110))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-110)) (-4 *4 (-784)) (-5 *1 (-403 *3 *4))
+ (-4 *3 (-404 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-110)) (-4 *3 (-13 (-784) (-513))) (-5 *1 (-405 *3 *4))
+ (-4 *4 (-404 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-560 *3)) (-4 *3 (-784))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-110)) (-4 *3 (-13 (-784) (-513))) (-5 *1 (-574 *3 *4))
+ (-4 *4 (-13 (-404 *3) (-927) (-1105))))))
(((*1 *2 *1)
- (-12 (-4 *2 (-13 (-781) (-336))) (-5 *1 (-979 *2 *3))
- (-4 *3 (-1140 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-820 *3)) (-4 *3 (-1012)))))
-(((*1 *2 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-520)) (-5 *4 (-1066)) (-5 *5 (-626 (-201)))
- (-5 *2 (-958)) (-5 *1 (-683)))))
-(((*1 *1 *1 *2 *1)
- (-12 (-5 *2 (-520)) (-5 *1 (-1064 *3)) (-4 *3 (-1118))))
- ((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4230)) (-4 *1 (-1152 *2)) (-4 *2 (-1118)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *2 (-626 *3)) (-4 *3 (-969)) (-5 *1 (-627 *3)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-512)) (-4 *5 (-728)) (-4 *6 (-783))
- (-4 *7 (-983 *4 *5 *6))
- (-5 *2 (-2 (|:| |bas| (-448 *4 *5 *6 *7)) (|:| -1353 (-586 *7))))
- (-5 *1 (-902 *4 *5 *6 *7)) (-5 *3 (-586 *7)))))
-(((*1 *1 *2) (-12 (-5 *2 (-849)) (-4 *1 (-341))))
+ (-12 (-4 *2 (-513)) (-5 *1 (-568 *2 *3)) (-4 *3 (-1141 *2)))))
+(((*1 *1 *1) (-12 (-5 *1 (-269 *2)) (-4 *2 (-21)) (-4 *2 (-1119)))))
+(((*1 *2 *1 *1)
+ (|partial| -12 (-4 *1 (-984 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-729))
+ (-4 *5 (-784)) (-5 *2 (-108)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-759)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-441)) (-5 *3 (-587 (-239))) (-5 *1 (-1166))))
+ ((*1 *1 *1) (-5 *1 (-1166))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-587 *6)) (-5 *4 (-587 (-224 *5 *6))) (-4 *6 (-425))
+ (-5 *2 (-224 *5 *6)) (-14 *5 (-587 (-1084))) (-5 *1 (-575 *5 *6)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-850)) (-4 *1 (-215 *3 *4)) (-4 *4 (-970))
+ (-4 *4 (-1119))))
+ ((*1 *1 *2)
+ (-12 (-14 *3 (-587 (-1084))) (-4 *4 (-157))
+ (-4 *5 (-215 (-3475 *3) (-707)))
+ (-14 *6
+ (-1 (-108) (-2 (|:| -2716 *2) (|:| -2997 *5))
+ (-2 (|:| -2716 *2) (|:| -2997 *5))))
+ (-5 *1 (-434 *3 *4 *2 *5 *6 *7)) (-4 *2 (-784))
+ (-4 *7 (-878 *4 *5 (-794 *3)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-872 (-202))) (-5 *1 (-1116)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-707)) (-4 *5 (-970)) (-4 *2 (-1141 *5))
+ (-5 *1 (-1159 *5 *2 *6 *3)) (-4 *6 (-597 *2)) (-4 *3 (-1156 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1148 *3 *2)) (-4 *3 (-970)) (-4 *2 (-1125 *3)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5
+ *7 *3 *8)
+ (-12 (-5 *5 (-627 (-202))) (-5 *6 (-108)) (-5 *7 (-627 (-521)))
+ (-5 *8 (-3 (|:| |fn| (-362)) (|:| |fp| (-63 QPHESS))))
+ (-5 *3 (-521)) (-5 *4 (-202)) (-5 *2 (-959)) (-5 *1 (-690)))))
+(((*1 *1 *2) (-12 (-5 *2 (-850)) (-4 *1 (-342))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-849)) (-5 *2 (-1164 *4)) (-5 *1 (-490 *4))
- (-4 *4 (-322))))
+ (-12 (-5 *3 (-850)) (-5 *2 (-1165 *4)) (-5 *1 (-491 *4))
+ (-4 *4 (-323))))
((*1 *2 *1)
- (-12 (-4 *2 (-783)) (-5 *1 (-649 *2 *3 *4)) (-4 *3 (-1012))
+ (-12 (-4 *2 (-784)) (-5 *1 (-650 *2 *3 *4)) (-4 *3 (-1013))
(-14 *4
- (-1 (-108) (-2 (|:| -2716 *2) (|:| -2647 *3))
- (-2 (|:| -2716 *2) (|:| -2647 *3)))))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1164 *4)) (-4 *4 (-582 *5)) (-4 *5 (-336))
- (-4 *5 (-512)) (-5 *2 (-1164 *5)) (-5 *1 (-581 *5 *4))))
+ (-1 (-108) (-2 (|:| -2716 *2) (|:| -2997 *3))
+ (-2 (|:| -2716 *2) (|:| -2997 *3)))))))
+(((*1 *2 *1) (-12 (-4 *1 (-342)) (-5 *2 (-850))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1165 *4)) (-4 *4 (-323)) (-5 *2 (-850))
+ (-5 *1 (-491 *4)))))
+(((*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1168))))
+ ((*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1168)))))
+(((*1 *2 *3)
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202)))
+ (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202))
+ (|:| |relerr| (-202))))
+ (-5 *2 (-2 (|:| -1419 (-110)) (|:| |w| (-202)))) (-5 *1 (-183)))))
+(((*1 *1 *1 *1) (-4 *1 (-131)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-144 *3 *2))
+ (-4 *2 (-404 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *1 (-145 *2)) (-4 *2 (-506))))
+ ((*1 *1 *1 *1) (-5 *1 (-792)))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1164 *4)) (-4 *4 (-582 *5))
- (-2399 (-4 *5 (-336))) (-4 *5 (-512)) (-5 *2 (-1164 (-380 *5)))
- (-5 *1 (-581 *5 *4)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-1 (-537 *3) *3 (-1083)))
- (-5 *6
- (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3
- (-1083)))
- (-4 *3 (-258)) (-4 *3 (-572)) (-4 *3 (-960 *4)) (-4 *3 (-403 *7))
- (-5 *4 (-1083)) (-4 *7 (-561 (-820 (-520)))) (-4 *7 (-424))
- (-4 *7 (-814 (-520))) (-4 *7 (-783)) (-5 *2 (-537 *3))
- (-5 *1 (-529 *7 *3)))))
-(((*1 *2)
- (-12 (-5 *2 (-108)) (-5 *1 (-1064 *3)) (-4 *3 (-1012))
- (-4 *3 (-1118)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-706)) (-4 *2 (-512)) (-5 *1 (-895 *2 *4))
- (-4 *4 (-1140 *2)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-424)) (-4 *4 (-728)) (-4 *5 (-783))
- (-5 *1 (-421 *3 *4 *5 *2)) (-4 *2 (-877 *3 *4 *5)))))
+ (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-521))) (-5 *1 (-968))
+ (-5 *3 (-521)))))
(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *4 (-1083)) (-5 *6 (-108))
- (-4 *7 (-13 (-281) (-783) (-135) (-960 (-520)) (-582 (-520))))
- (-4 *3 (-13 (-1104) (-886) (-29 *7)))
- (-5 *2
- (-3 (|:| |f1| (-776 *3)) (|:| |f2| (-586 (-776 *3)))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-195 *7 *3)) (-5 *5 (-776 *3)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-706)) (-5 *1 (-789 *2)) (-4 *2 (-157)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1164 *4)) (-4 *4 (-582 (-520))) (-5 *2 (-108))
- (-5 *1 (-1189 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *7 (-424)) (-4 *5 (-728)) (-4 *6 (-783)) (-4 *7 (-512))
- (-4 *8 (-877 *7 *5 *6))
- (-5 *2 (-2 (|:| -2647 (-706)) (|:| -2972 *3) (|:| |radicand| *3)))
- (-5 *1 (-881 *5 *6 *7 *8 *3)) (-5 *4 (-706))
- (-4 *3
- (-13 (-336)
- (-10 -8 (-15 -2800 (*8 $)) (-15 -2811 (*8 $)) (-15 -2188 ($ *8))))))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-334 *3)) (-4 *3 (-1012))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-520)) (-5 *2 (-706)) (-5 *1 (-359 *4)) (-4 *4 (-1012))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-520)) (-4 *2 (-23)) (-5 *1 (-589 *4 *2 *5))
- (-4 *4 (-1012)) (-14 *5 *2)))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-520)) (-5 *2 (-706)) (-5 *1 (-755 *4)) (-4 *4 (-783)))))
-(((*1 *2 *2)
+ (-12 (-5 *4 (-521)) (-5 *6 (-1 (-1170) (-1165 *5) (-1165 *5) (-353)))
+ (-5 *3 (-1165 (-353))) (-5 *5 (-353)) (-5 *2 (-1170))
+ (-5 *1 (-724))))
+ ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3)
+ (-12 (-5 *4 (-521)) (-5 *6 (-1 (-1170) (-1165 *5) (-1165 *5) (-353)))
+ (-5 *3 (-1165 (-353))) (-5 *5 (-353)) (-5 *2 (-1170))
+ (-5 *1 (-724)))))
+(((*1 *2 *3) (-12 (-5 *3 (-154 (-521))) (-5 *2 (-108)) (-5 *1 (-419))))
+ ((*1 *2 *3)
(-12
- (-5 *2
- (-2 (|:| |fn| (-289 (-201))) (|:| -3794 (-586 (-201)))
- (|:| |lb| (-586 (-776 (-201)))) (|:| |cf| (-586 (-289 (-201))))
- (|:| |ub| (-586 (-776 (-201))))))
- (-5 *1 (-242)))))
-(((*1 *1 *1) (-4 *1 (-572)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-573 *3 *2))
- (-4 *2 (-13 (-403 *3) (-926) (-1104))))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-13 (-336) (-135)))
- (-5 *2 (-586 (-2 (|:| -2647 (-706)) (|:| -1892 *4) (|:| |num| *4))))
- (-5 *1 (-372 *3 *4)) (-4 *4 (-1140 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *4 (-336)) (-5 *2 (-586 (-1064 *4))) (-5 *1 (-259 *4 *5))
- (-5 *3 (-1064 *4)) (-4 *5 (-1155 *4)))))
-(((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-1066)) (-5 *4 (-154 (-201))) (-5 *5 (-520))
- (-5 *2 (-958)) (-5 *1 (-694)))))
+ (-5 *3
+ (-473 (-381 (-521)) (-217 *5 (-707)) (-794 *4)
+ (-224 *4 (-381 (-521)))))
+ (-14 *4 (-587 (-1084))) (-14 *5 (-707)) (-5 *2 (-108))
+ (-5 *1 (-474 *4 *5))))
+ ((*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-889 *3)) (-4 *3 (-506))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1123)) (-5 *2 (-108)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-337) (-135) (-961 (-521)))) (-4 *5 (-1141 *4))
+ (-5 *2 (-2 (|:| |ans| (-381 *5)) (|:| |nosol| (-108))))
+ (-5 *1 (-940 *4 *5)) (-5 *3 (-381 *5)))))
(((*1 *2 *3 *4)
(-12 (-5 *4 (-108))
- (-4 *5 (-13 (-424) (-783) (-960 (-520)) (-582 (-520))))
(-5 *2
- (-3 (|:| |%expansion| (-286 *5 *3 *6 *7))
- (|:| |%problem| (-2 (|:| |func| (-1066)) (|:| |prob| (-1066))))))
- (-5 *1 (-393 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1104) (-403 *5)))
- (-14 *6 (-1083)) (-14 *7 *3))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-308 *3 *4 *5 *6)) (-4 *3 (-336)) (-4 *4 (-1140 *3))
- (-4 *5 (-1140 (-380 *4))) (-4 *6 (-315 *3 *4 *5))
- (-5 *2
- (-2 (|:| -1780 (-386 *4 (-380 *4) *5 *6)) (|:| |principalPart| *6)))))
+ (-2 (|:| |contp| (-521))
+ (|:| -1514 (-587 (-2 (|:| |irr| *3) (|:| -2132 (-521)))))))
+ (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1140 *5)) (-4 *5 (-336))
+ (-12 (-5 *4 (-108))
(-5 *2
- (-2 (|:| |poly| *6) (|:| -3655 (-380 *6))
- (|:| |special| (-380 *6))))
- (-5 *1 (-663 *5 *6)) (-5 *3 (-380 *6))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-336)) (-5 *2 (-586 *3)) (-5 *1 (-824 *3 *4))
- (-4 *3 (-1140 *4))))
- ((*1 *2 *3 *4 *4)
- (|partial| -12 (-5 *4 (-706)) (-4 *5 (-336))
- (-5 *2 (-2 (|:| -1912 *3) (|:| -1924 *3))) (-5 *1 (-824 *3 *5))
- (-4 *3 (-1140 *5))))
- ((*1 *2 *3 *2 *4 *4)
- (-12 (-5 *2 (-586 *9)) (-5 *3 (-586 *8)) (-5 *4 (-108))
- (-4 *8 (-983 *5 *6 *7)) (-4 *9 (-988 *5 *6 *7 *8)) (-4 *5 (-424))
- (-4 *6 (-728)) (-4 *7 (-783)) (-5 *1 (-986 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
- (-12 (-5 *2 (-586 *9)) (-5 *3 (-586 *8)) (-5 *4 (-108))
- (-4 *8 (-983 *5 *6 *7)) (-4 *9 (-988 *5 *6 *7 *8)) (-4 *5 (-424))
- (-4 *6 (-728)) (-4 *7 (-783)) (-5 *1 (-986 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *2 *4 *4)
- (-12 (-5 *2 (-586 *9)) (-5 *3 (-586 *8)) (-5 *4 (-108))
- (-4 *8 (-983 *5 *6 *7)) (-4 *9 (-1021 *5 *6 *7 *8)) (-4 *5 (-424))
- (-4 *6 (-728)) (-4 *7 (-783)) (-5 *1 (-1053 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
- (-12 (-5 *2 (-586 *9)) (-5 *3 (-586 *8)) (-5 *4 (-108))
- (-4 *8 (-983 *5 *6 *7)) (-4 *9 (-1021 *5 *6 *7 *8)) (-4 *5 (-424))
- (-4 *6 (-728)) (-4 *7 (-783)) (-5 *1 (-1053 *5 *6 *7 *8 *9)))))
-(((*1 *2 *3 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1140 *5))
- (-4 *5 (-13 (-336) (-135) (-960 (-520))))
- (-5 *2
- (-2 (|:| |a| *6) (|:| |b| (-380 *6)) (|:| |h| *6)
- (|:| |c1| (-380 *6)) (|:| |c2| (-380 *6)) (|:| -1638 *6)))
- (-5 *1 (-940 *5 *6)) (-5 *3 (-380 *6)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-783)) (-5 *1 (-857 *3 *2)) (-4 *2 (-403 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1083)) (-5 *2 (-289 (-520))) (-5 *1 (-858)))))
-(((*1 *1 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-1 (-871 (-201)) (-201))) (-5 *3 (-1007 (-201)))
- (-5 *1 (-854))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-871 (-201)) (-201))) (-5 *3 (-1007 (-201)))
- (-5 *1 (-854))))
- ((*1 *1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1 (-871 (-201)) (-201))) (-5 *3 (-1007 (-201)))
- (-5 *1 (-855))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-871 (-201)) (-201))) (-5 *3 (-1007 (-201)))
- (-5 *1 (-855)))))
+ (-2 (|:| |contp| (-521))
+ (|:| -1514 (-587 (-2 (|:| |irr| *3) (|:| -2132 (-521)))))))
+ (-5 *1 (-1130 *3)) (-4 *3 (-1141 (-521))))))
+(((*1 *2)
+ (-12 (-5 *2 (-108)) (-5 *1 (-1097 *3 *4)) (-4 *3 (-1013))
+ (-4 *4 (-1013)))))
+(((*1 *2 *3) (-12 (-5 *3 (-290 (-202))) (-5 *2 (-108)) (-5 *1 (-243)))))
+(((*1 *1 *1) (-4 *1 (-573)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-574 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-927) (-1105))))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-157)) (-4 *2 (-23)) (-5 *1 (-264 *3 *4 *2 *5 *6 *7))
+ (-4 *4 (-1141 *3)) (-14 *5 (-1 *4 *4 *2))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-23)) (-5 *1 (-648 *3 *2 *4 *5 *6)) (-4 *3 (-157))
+ (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
+ ((*1 *2) (-12 (-4 *2 (-1141 *3)) (-5 *1 (-649 *3 *2)) (-4 *3 (-970))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-23)) (-5 *1 (-652 *3 *2 *4 *5 *6)) (-4 *3 (-157))
+ (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
+ ((*1 *2) (-12 (-4 *1 (-798 *3)) (-5 *2 (-521)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-707)) (-5 *3 (-108)) (-5 *1 (-106))))
+ ((*1 *2 *2) (-12 (-5 *2 (-850)) (|has| *1 (-6 -4224)) (-4 *1 (-378))))
+ ((*1 *2) (-12 (-4 *1 (-378)) (-5 *2 (-850)))))
+(((*1 *2 *2 *2 *3 *3)
+ (-12 (-5 *3 (-707)) (-4 *4 (-970)) (-5 *1 (-1137 *4 *2))
+ (-4 *2 (-1141 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1164 *5)) (-4 *5 (-727)) (-5 *2 (-108))
- (-5 *1 (-778 *4 *5)) (-14 *4 (-706)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-586 *6)) (-4 *6 (-983 *3 *4 *5)) (-4 *3 (-135))
- (-4 *3 (-281)) (-4 *3 (-512)) (-4 *4 (-728)) (-4 *5 (-783))
- (-5 *1 (-902 *3 *4 *5 *6)))))
+ (-12 (-5 *3 (-1138 *5 *4)) (-4 *4 (-757)) (-14 *5 (-1084))
+ (-5 *2 (-587 *4)) (-5 *1 (-1027 *4 *5)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))))
(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1079 *3)) (-4 *3 (-322)) (-5 *1 (-330 *3)))))
+ (-12 (-4 *3 (-784)) (-5 *1 (-858 *3 *2)) (-4 *2 (-404 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1084)) (-5 *2 (-290 (-521))) (-5 *1 (-859)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-587 (-560 *6))) (-5 *4 (-1084)) (-5 *2 (-560 *6))
+ (-4 *6 (-404 *5)) (-4 *5 (-784)) (-5 *1 (-530 *5 *6)))))
(((*1 *1 *2 *3)
- (-12 (-5 *2 (-949 (-776 (-520))))
- (-5 *3 (-1064 (-2 (|:| |k| (-520)) (|:| |c| *4)))) (-4 *4 (-969))
- (-5 *1 (-545 *4)))))
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1141 *4)) (-4 *4 (-1123))
+ (-4 *1 (-316 *4 *3 *5)) (-4 *5 (-1141 (-381 *3))))))
(((*1 *2)
- (|partial| -12 (-4 *4 (-1122)) (-4 *5 (-1140 (-380 *2)))
- (-4 *2 (-1140 *4)) (-5 *1 (-314 *3 *4 *2 *5))
- (-4 *3 (-315 *4 *2 *5))))
+ (-12 (-4 *4 (-1123)) (-4 *5 (-1141 *4)) (-4 *6 (-1141 (-381 *5)))
+ (-5 *2 (-707)) (-5 *1 (-315 *3 *4 *5 *6)) (-4 *3 (-316 *4 *5 *6))))
((*1 *2)
- (|partial| -12 (-4 *1 (-315 *3 *2 *4)) (-4 *3 (-1122))
- (-4 *4 (-1140 (-380 *2))) (-4 *2 (-1140 *3)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-559 *1)) (-4 *1 (-276)))))
-(((*1 *2 *1) (-12 (-4 *1 (-733 *2)) (-4 *2 (-157))))
- ((*1 *2 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-157)))))
-(((*1 *2 *2) (-12 (-5 *2 (-520)) (-5 *1 (-855)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-586 (-586 (-706)))) (-5 *1 (-832 *3)) (-4 *3 (-1012)))))
+ (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3))
+ (-4 *5 (-1141 (-381 *4))) (-5 *2 (-707)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-110)) (-5 *1 (-109 *3)) (-4 *3 (-783)) (-4 *3 (-1012)))))
+ (-12 (-5 *3 (-881 (-202))) (-5 *2 (-290 (-353))) (-5 *1 (-280)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-512) (-783) (-960 (-520)))) (-5 *2 (-108))
- (-5 *1 (-166 *4 *3)) (-4 *3 (-13 (-27) (-1104) (-403 (-154 *4))))))
- ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-407))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-424) (-783) (-960 (-520)) (-582 (-520))))
- (-5 *2 (-108)) (-5 *1 (-1108 *4 *3))
- (-4 *3 (-13 (-27) (-1104) (-403 *4))))))
-(((*1 *2)
- (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-339 *3 *4))
- (-4 *3 (-340 *4))))
- ((*1 *2) (-12 (-4 *1 (-340 *3)) (-4 *3 (-157)) (-5 *2 (-108)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-758)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-586 (-1079 *4))) (-5 *3 (-1079 *4))
- (-4 *4 (-837)) (-5 *1 (-603 *4)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-586 (-452 *3 *4))) (-14 *3 (-586 (-1083)))
- (-4 *4 (-424)) (-5 *1 (-574 *3 *4)))))
+ (-12 (-5 *2 (-1065 (-587 (-521)))) (-5 *1 (-812)) (-5 *3 (-521)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-13 (-513) (-135)))
+ (-5 *2 (-2 (|:| -1913 *3) (|:| -1925 *3))) (-5 *1 (-1135 *4 *3))
+ (-4 *3 (-1141 *4)))))
+(((*1 *2 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-521)) (-5 *4 (-627 (-154 (-202)))) (-5 *2 (-959))
+ (-5 *1 (-691)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-347 *3))
+ (-4 *5 (-347 *3)) (-5 *2 (-521))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-973 *3 *4 *5 *6 *7)) (-4 *5 (-970))
+ (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-521)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1073 *2 *3)) (-14 *2 (-850)) (-4 *3 (-970)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-425)) (-4 *4 (-513))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| -4034 *4))) (-5 *1 (-896 *4 *3))
+ (-4 *3 (-1141 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-792)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-464)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-347 *3))
+ (-4 *5 (-347 *3)) (-5 *2 (-521))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-973 *3 *4 *5 *6 *7)) (-4 *5 (-970))
+ (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-521)))))
+(((*1 *1 *1) (-12 (-5 *1 (-843 *2)) (-4 *2 (-282)))))
+(((*1 *2 *2) (-12 (-5 *2 (-362)) (-5 *1 (-410))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-362)) (-5 *1 (-410)))))
+(((*1 *2 *2) (-12 (-5 *2 (-353)) (-5 *1 (-1167))))
+ ((*1 *2) (-12 (-5 *2 (-353)) (-5 *1 (-1167)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-784)) (-5 *2 (-1092 (-587 *4))) (-5 *1 (-1091 *4))
+ (-5 *3 (-587 *4)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1083))
- (-4 *4 (-13 (-783) (-281) (-960 (-520)) (-582 (-520)) (-135)))
- (-5 *1 (-740 *4 *2)) (-4 *2 (-13 (-29 *4) (-1104) (-886)))))
- ((*1 *1 *1 *1 *1) (-5 *1 (-791))) ((*1 *1 *1 *1) (-5 *1 (-791)))
- ((*1 *1 *1) (-5 *1 (-791)))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1064 *3)) (-5 *1 (-1068 *3)) (-4 *3 (-969)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-201)) (-5 *4 (-520)) (-5 *2 (-958)) (-5 *1 (-694)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-728)) (-4 *4 (-783)) (-4 *6 (-281)) (-5 *2 (-391 *3))
- (-5 *1 (-678 *5 *4 *6 *3)) (-4 *3 (-877 *6 *5 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1012)) (-4 *2 (-828 *5)) (-5 *1 (-628 *5 *2 *3 *4))
- (-4 *3 (-346 *2)) (-4 *4 (-13 (-346 *5) (-10 -7 (-6 -4229)))))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-520)) (-5 *1 (-391 *2)) (-4 *2 (-512)))))
+ (-12 (-5 *2 (-587 (-881 *4))) (-5 *3 (-587 (-1084))) (-4 *4 (-425))
+ (-5 *1 (-847 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-300 *3 *4)) (-4 *3 (-970)) (-4 *4 (-728))
+ (-5 *2 (-707))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-356 *3 *4)) (-4 *3 (-970)) (-4 *4 (-1013))
+ (-5 *2 (-707))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-707)) (-5 *1 (-672 *3 *4)) (-4 *3 (-970))
+ (-4 *4 (-663)))))
+(((*1 *1) (-12 (-4 *1 (-303 *2)) (-4 *2 (-342)) (-4 *2 (-337)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5)) (-4 *5 (-1012)) (-5 *2 (-1 *5 *4))
- (-5 *1 (-620 *4 *5)) (-4 *4 (-1012))))
+ (-12 (-5 *3 (-1 *5)) (-4 *5 (-1013)) (-5 *2 (-1 *5 *4))
+ (-5 *1 (-621 *4 *5)) (-4 *4 (-1013))))
((*1 *2 *2)
- (-12 (-4 *3 (-783)) (-5 *1 (-857 *3 *2)) (-4 *2 (-403 *3))))
+ (-12 (-4 *3 (-784)) (-5 *1 (-858 *3 *2)) (-4 *2 (-404 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1084)) (-5 *2 (-290 (-521))) (-5 *1 (-859))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1180 *3 *2)) (-4 *3 (-784)) (-4 *2 (-970))))
+ ((*1 *2 *1) (-12 (-4 *2 (-970)) (-5 *1 (-1186 *2 *3)) (-4 *3 (-780)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-587 *1)) (|has| *1 (-6 -4234)) (-4 *1 (-935 *3))
+ (-4 *3 (-1119)))))
+(((*1 *1 *1 *1) (-4 *1 (-446))) ((*1 *1 *1 *1) (-4 *1 (-698))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-513)) (-4 *4 (-918 *3)) (-5 *1 (-130 *3 *4 *2))
+ (-4 *2 (-347 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-1083)) (-5 *2 (-289 (-520))) (-5 *1 (-858))))
- ((*1 *2 *1) (-12 (-4 *1 (-1179 *3 *2)) (-4 *3 (-783)) (-4 *2 (-969))))
- ((*1 *2 *1) (-12 (-4 *2 (-969)) (-5 *1 (-1185 *2 *3)) (-4 *3 (-779)))))
-(((*1 *2 *1) (-12 (-5 *2 (-586 (-871 (-201)))) (-5 *1 (-1165)))))
+ (-12 (-4 *4 (-513)) (-4 *5 (-918 *4)) (-4 *2 (-347 *4))
+ (-5 *1 (-472 *4 *5 *2 *3)) (-4 *3 (-347 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-627 *5)) (-4 *5 (-918 *4)) (-4 *4 (-513))
+ (-5 *2 (-627 *4)) (-5 *1 (-630 *4 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-513)) (-4 *4 (-918 *3)) (-5 *1 (-1134 *3 *4 *2))
+ (-4 *2 (-1141 *4)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-521)) (-4 *1 (-55 *4 *2 *5)) (-4 *4 (-1119))
+ (-4 *5 (-347 *4)) (-4 *2 (-347 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-521)) (-4 *1 (-973 *4 *5 *6 *2 *7)) (-4 *6 (-970))
+ (-4 *7 (-215 *4 *6)) (-4 *2 (-215 *5 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-849)) (-5 *2 (-1164 (-1164 (-520)))) (-5 *1 (-438)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-586 (-586 *3))) (-4 *3 (-1012)) (-4 *1 (-831 *3)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-108)) (-5 *1 (-765)))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-626 (-520))) (-5 *3 (-586 (-520))) (-5 *1 (-1022)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-308 *3 *4 *5 *6)) (-4 *3 (-336)) (-4 *4 (-1140 *3))
- (-4 *5 (-1140 (-380 *4))) (-4 *6 (-315 *3 *4 *5)) (-5 *2 (-108)))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1013)) (-4 *6 (-1013))
+ (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-622 *4 *5 *6)) (-4 *4 (-1013)))))
+(((*1 *1 *1 *1) (-5 *1 (-147)))
+ ((*1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-147)))))
(((*1 *2)
- (-12 (-4 *4 (-336)) (-5 *2 (-706)) (-5 *1 (-301 *3 *4))
- (-4 *3 (-302 *4))))
- ((*1 *2) (-12 (-4 *1 (-1181 *3)) (-4 *3 (-336)) (-5 *2 (-706)))))
+ (-12 (-5 *2 (-1165 (-1014 *3 *4))) (-5 *1 (-1014 *3 *4))
+ (-14 *3 (-850)) (-14 *4 (-850)))))
+(((*1 *2 *3) (-12 (-5 *3 (-759)) (-5 *2 (-51)) (-5 *1 (-766)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-587 (-587 *3))) (-4 *3 (-1013)) (-4 *1 (-832 *3)))))
+(((*1 *1) (-5 *1 (-740))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-970)) (-5 *1 (-649 *3 *4))
+ (-4 *4 (-1141 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-425))) (-5 *1 (-1111 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-1105))))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-706)) (|:| |poli| *7)
- (|:| |polj| *7)))
- (-4 *5 (-728)) (-4 *7 (-877 *4 *5 *6)) (-4 *4 (-424)) (-4 *6 (-783))
- (-5 *2 (-108)) (-5 *1 (-421 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-521)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784))
+ (-5 *2 (-1170)) (-5 *1 (-422 *4 *5 *6 *7)) (-4 *7 (-878 *4 *5 *6)))))
+(((*1 *2 *2) (-12 (-5 *2 (-353)) (-5 *1 (-1167))))
+ ((*1 *2) (-12 (-5 *2 (-353)) (-5 *1 (-1167)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-587 *6)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-425))
+ (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-784))
+ (-5 *1 (-903 *3 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520)))))
- (-5 *2 (-380 (-520))) (-5 *1 (-943 *4)) (-4 *4 (-1140 (-520))))))
+ (-12 (-5 *3 (-587 (-1067))) (-5 *2 (-1067)) (-5 *1 (-171))))
+ ((*1 *1 *2) (-12 (-5 *2 (-587 (-792))) (-5 *1 (-792)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1165 *4)) (-5 *3 (-1031)) (-4 *4 (-323))
+ (-5 *1 (-491 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1164 (-626 *4))) (-4 *4 (-157))
- (-5 *2 (-1164 (-626 (-880 *4)))) (-5 *1 (-167 *4)))))
-(((*1 *1) (-5 *1 (-132))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-201)) (-5 *4 (-520)) (-5 *2 (-958)) (-5 *1 (-694)))))
-(((*1 *2 *1) (-12 (-4 *1 (-510 *2)) (-4 *2 (-13 (-377) (-1104))))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-586 *4)) (-4 *4 (-336)) (-4 *2 (-1140 *4))
- (-5 *1 (-850 *4 *2)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-626 (-380 (-520)))) (-5 *2 (-586 *4)) (-5 *1 (-714 *4))
- (-4 *4 (-13 (-336) (-781))))))
-(((*1 *1 *2 *2 *3 *1)
- (-12 (-5 *2 (-1083)) (-5 *3 (-1016)) (-5 *1 (-265)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-586 (-776 (-201)))) (-5 *4 (-201)) (-5 *2 (-586 *4))
- (-5 *1 (-242)))))
-(((*1 *2 *3 *4 *4 *5 *6)
- (-12 (-5 *3 (-586 (-586 (-871 (-201))))) (-5 *4 (-802))
- (-5 *5 (-849)) (-5 *6 (-586 (-238))) (-5 *2 (-1165))
- (-5 *1 (-1168))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-586 (-586 (-871 (-201))))) (-5 *4 (-586 (-238)))
- (-5 *2 (-1165)) (-5 *1 (-1168)))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6)
- (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *5 (-201))
- (-5 *6 (-3 (|:| |fn| (-361)) (|:| |fp| (-76 FUNCTN))))
- (-5 *2 (-958)) (-5 *1 (-684)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *2 (-958))
- (-5 *1 (-688)))))
-(((*1 *2)
- (-12 (-4 *1 (-322))
- (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
+ (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-521))) (-5 *1 (-968)))))
+(((*1 *2 *2) (-12 (-5 *2 (-707)) (-5 *1 (-418 *3)) (-4 *3 (-970))))
+ ((*1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-418 *3)) (-4 *3 (-970)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-51)) (-5 *1 (-1098)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-621 *4 *3)) (-4 *4 (-1013))
+ (-4 *3 (-1013)))))
+(((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-92)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-425))) (-5 *1 (-1111 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-1105))))))
+(((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-341 *2)) (-4 *2 (-157)) (-4 *2 (-513))))
+ ((*1 *1 *1) (|partial| -4 *1 (-659))))
+(((*1 *1 *1 *1) (-5 *1 (-792))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-405 *3 *2))
+ (-4 *2 (-404 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-707)) (-5 *2 (-1170)) (-5 *1 (-353)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-850)) (-5 *2 (-1080 *4)) (-5 *1 (-331 *4))
+ (-4 *4 (-323)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-1067)) (-5 *4 (-1031)) (-5 *2 (-108)) (-5 *1 (-758)))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1079 *2)) (-4 *2 (-403 *4)) (-4 *4 (-13 (-783) (-512)))
- (-5 *1 (-31 *4 *2)))))
-(((*1 *1 *1) (-5 *1 (-981))))
+ (-12 (-5 *3 (-707)) (-5 *1 (-719 *2)) (-4 *2 (-37 (-381 (-521))))
+ (-4 *2 (-157)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-761)))))
+(((*1 *2 *1) (-12 (-4 *1 (-511 *2)) (-4 *2 (-13 (-378) (-1105)))))
+ ((*1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-792))))
+ ((*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-792)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-759)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-927))))))
+(((*1 *2 *1) (-12 (-4 *1 (-511 *2)) (-4 *2 (-13 (-378) (-1105)))))
+ ((*1 *1 *1 *1) (-4 *1 (-729))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-927))))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-902 *4 *5 *3 *6)) (-4 *4 (-970)) (-4 *5 (-729))
+ (-4 *3 (-784)) (-4 *6 (-984 *4 *5 *3)) (-5 *2 (-108)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-108)) (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-627 (-290 (-202)))) (-5 *2 (-353)) (-5 *1 (-184)))))
+(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3)
+ (-12 (-5 *6 (-587 (-108))) (-5 *7 (-627 (-202)))
+ (-5 *8 (-627 (-521))) (-5 *3 (-521)) (-5 *4 (-202)) (-5 *5 (-108))
+ (-5 *2 (-959)) (-5 *1 (-691)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1080 *7)) (-5 *3 (-521)) (-4 *7 (-878 *6 *4 *5))
+ (-4 *4 (-729)) (-4 *5 (-784)) (-4 *6 (-970))
+ (-5 *1 (-295 *4 *5 *6 *7)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1083)) (-4 *4 (-13 (-783) (-512))) (-5 *1 (-144 *4 *2))
- (-4 *2 (-403 *4))))
+ (-12 (-4 *3 (-282)) (-5 *1 (-428 *3 *2)) (-4 *2 (-1141 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1005 *2)) (-4 *2 (-403 *4)) (-4 *4 (-13 (-783) (-512)))
- (-5 *1 (-144 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1005 *1)) (-4 *1 (-146))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-146)) (-5 *2 (-1083)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-706)) (-4 *5 (-512))
- (-5 *2
- (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-895 *5 *3)) (-4 *3 (-1140 *5)))))
-(((*1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-930)))))
-(((*1 *1 *2) (-12 (-5 *2 (-586 (-791))) (-5 *1 (-791))))
- ((*1 *1 *1 *1) (-5 *1 (-791))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1149 *3 *4 *5)) (-5 *1 (-292 *3 *4 *5))
- (-4 *3 (-13 (-336) (-783))) (-14 *4 (-1083)) (-14 *5 *3)))
- ((*1 *2 *1) (-12 (-4 *1 (-377)) (-5 *2 (-520))))
- ((*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-391 *3)) (-4 *3 (-512))))
- ((*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-635))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1012)) (-5 *1 (-649 *3 *2 *4)) (-4 *3 (-783))
- (-14 *4
- (-1 (-108) (-2 (|:| -2716 *3) (|:| -2647 *2))
- (-2 (|:| -2716 *3) (|:| -2647 *2)))))))
+ (-12 (-4 *3 (-282)) (-5 *1 (-433 *3 *2)) (-4 *2 (-1141 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *3 (-282)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-707)))
+ (-5 *1 (-500 *3 *2 *4 *5)) (-4 *2 (-1141 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-587 *2)) (-4 *2 (-878 *4 *5 *6)) (-4 *4 (-425))
+ (-4 *5 (-729)) (-4 *6 (-784)) (-5 *1 (-422 *4 *5 *6 *2)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-425))) (-5 *1 (-1111 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-1105))))))
+(((*1 *1 *1 *1) (-4 *1 (-894))))
+(((*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-1101)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-989 *4 *5 *6 *3)) (-4 *4 (-425)) (-4 *5 (-729))
+ (-4 *6 (-784)) (-4 *3 (-984 *4 *5 *6)) (-5 *2 (-108)))))
+(((*1 *2 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-157)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729))
+ (-4 *4 (-784)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1137 *5 *4)) (-4 *4 (-424)) (-4 *4 (-756))
- (-14 *5 (-1083)) (-5 *2 (-520)) (-5 *1 (-1026 *4 *5)))))
-(((*1 *1) (-12 (-4 *1 (-302 *2)) (-4 *2 (-341)) (-4 *2 (-336))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-849)) (-5 *2 (-1164 *4)) (-5 *1 (-490 *4))
- (-4 *4 (-322)))))
-(((*1 *2 *1) (-12 (-4 *1 (-510 *2)) (-4 *2 (-13 (-377) (-1104)))))
- ((*1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-791))))
- ((*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-791)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1044 *3)) (-4 *3 (-969)) (-5 *2 (-108)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-505))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1012)) (-5 *1 (-98 *3))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-98 *2)) (-4 *2 (-1012)))))
+ (-12 (-5 *3 (-587 (-521))) (-5 *2 (-1086 (-381 (-521))))
+ (-5 *1 (-169)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))))
+(((*1 *2 *3 *2)
+ (|partial| -12 (-5 *3 (-850)) (-5 *1 (-415 *2))
+ (-4 *2 (-1141 (-521)))))
+ ((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-850)) (-5 *4 (-707)) (-5 *1 (-415 *2))
+ (-4 *2 (-1141 (-521)))))
+ ((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-850)) (-5 *4 (-587 (-707))) (-5 *1 (-415 *2))
+ (-4 *2 (-1141 (-521)))))
+ ((*1 *2 *3 *2 *4 *5)
+ (|partial| -12 (-5 *3 (-850)) (-5 *4 (-587 (-707))) (-5 *5 (-707))
+ (-5 *1 (-415 *2)) (-4 *2 (-1141 (-521)))))
+ ((*1 *2 *3 *2 *4 *5 *6)
+ (|partial| -12 (-5 *3 (-850)) (-5 *4 (-587 (-707))) (-5 *5 (-707))
+ (-5 *6 (-108)) (-5 *1 (-415 *2)) (-4 *2 (-1141 (-521)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-850)) (-5 *4 (-392 *2)) (-4 *2 (-1141 *5))
+ (-5 *1 (-417 *5 *2)) (-4 *5 (-970)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-424))) (-5 *1 (-1110 *3 *2))
- (-4 *2 (-13 (-403 *3) (-1104))))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-336)) (-5 *1 (-259 *3 *2)) (-4 *2 (-1155 *3)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *2 (-13 (-336) (-10 -8 (-15 ** ($ $ (-380 (-520)))))))
- (-5 *1 (-1038 *3 *2)) (-4 *3 (-1140 *2)))))
-(((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-785 *2)) (-4 *2 (-969)) (-4 *2 (-336)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 (-706) *2)) (-5 *4 (-706)) (-4 *2 (-1012))
- (-5 *1 (-616 *2))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1 *3 (-706) *3)) (-4 *3 (-1012)) (-5 *1 (-619 *3)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-108))
- (-4 *6 (-13 (-424) (-783) (-960 (-520)) (-582 (-520))))
- (-4 *3 (-13 (-27) (-1104) (-403 *6) (-10 -8 (-15 -2188 ($ *7)))))
- (-4 *7 (-781))
- (-4 *8
- (-13 (-1142 *3 *7) (-336) (-1104)
- (-10 -8 (-15 -2155 ($ $)) (-15 -3517 ($ $)))))
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-5 *1 (-1069 *3)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-323)) (-4 *2 (-970)) (-5 *1 (-649 *2 *3))
+ (-4 *3 (-1141 *2)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-587 *6)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-135))
+ (-4 *3 (-282)) (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-784))
+ (-5 *1 (-903 *3 *4 *5 *6)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1067)) (-5 *1 (-1101)))))
+(((*1 *2 *1) (-12 (-4 *1 (-511 *2)) (-4 *2 (-13 (-378) (-1105))))))
+(((*1 *1 *2) (-12 (-5 *2 (-143)) (-5 *1 (-803)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-587 *2)) (-4 *2 (-1141 *4)) (-5 *1 (-500 *4 *2 *5 *6))
+ (-4 *4 (-282)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-707))))))
+(((*1 *2 *3)
+ (-12 (-4 *3 (-13 (-282) (-10 -8 (-15 -3358 ((-392 $) $)))))
+ (-4 *4 (-1141 *3))
(-5 *2
- (-3 (|:| |%series| *8)
- (|:| |%problem| (-2 (|:| |func| (-1066)) (|:| |prob| (-1066))))))
- (-5 *1 (-395 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1066)) (-4 *9 (-908 *8))
- (-14 *10 (-1083)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-728)) (-4 *4 (-783)) (-4 *5 (-281))
- (-5 *1 (-844 *3 *4 *5 *2)) (-4 *2 (-877 *5 *3 *4))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1079 *6)) (-4 *6 (-877 *5 *3 *4)) (-4 *3 (-728))
- (-4 *4 (-783)) (-4 *5 (-281)) (-5 *1 (-844 *3 *4 *5 *6))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-586 *2)) (-4 *2 (-877 *6 *4 *5))
- (-5 *1 (-844 *4 *5 *6 *2)) (-4 *4 (-728)) (-4 *5 (-783))
- (-4 *6 (-281)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-512)) (-5 *2 (-706)) (-5 *1 (-42 *4 *3))
- (-4 *3 (-390 *4)))))
-(((*1 *1 *1) (-5 *1 (-981))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-908 *2)) (-4 *2 (-1104)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-37 (-380 (-520))))
- (-5 *2 (-2 (|:| -2879 (-1064 *4)) (|:| -2891 (-1064 *4))))
- (-5 *1 (-1070 *4)) (-5 *3 (-1064 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-143))))
- ((*1 *2 *1) (-12 (-5 *2 (-143)) (-5 *1 (-802))))
- ((*1 *2 *3) (-12 (-5 *3 (-871 *2)) (-5 *1 (-907 *2)) (-4 *2 (-969)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *5 (-559 *4)) (-5 *6 (-1083))
- (-4 *4 (-13 (-403 *7) (-27) (-1104)))
- (-4 *7 (-13 (-424) (-960 (-520)) (-783) (-135) (-582 (-520))))
+ (-2 (|:| -2470 (-627 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-627 *3))))
+ (-5 *1 (-324 *3 *4 *5)) (-4 *5 (-383 *3 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-521)) (-4 *4 (-1141 *3))
(-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1831 (-586 *4))))
- (-5 *1 (-522 *7 *4 *3)) (-4 *3 (-596 *4)) (-4 *3 (-1012)))))
+ (-2 (|:| -2470 (-627 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-627 *3))))
+ (-5 *1 (-704 *4 *5)) (-4 *5 (-383 *3 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-323)) (-4 *3 (-1141 *4)) (-4 *5 (-1141 *3))
+ (-5 *2
+ (-2 (|:| -2470 (-627 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-627 *3))))
+ (-5 *1 (-911 *4 *3 *5 *6)) (-4 *6 (-661 *3 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-323)) (-4 *3 (-1141 *4)) (-4 *5 (-1141 *3))
+ (-5 *2
+ (-2 (|:| -2470 (-627 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-627 *3))))
+ (-5 *1 (-1174 *4 *3 *5 *6)) (-4 *6 (-383 *3 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-707)) (-5 *2 (-1170)) (-5 *1 (-353))))
+ ((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-353)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-126)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1084)) (-4 *5 (-337)) (-5 *2 (-1065 (-1065 (-881 *5))))
+ (-5 *1 (-1173 *5)) (-5 *4 (-1065 (-881 *5))))))
+(((*1 *2 *3) (-12 (-5 *3 (-758)) (-5 *2 (-51)) (-5 *1 (-768)))))
+(((*1 *1 *1) (-12 (-5 *1 (-843 *2)) (-4 *2 (-282)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-289 (-352))) (-5 *2 (-289 (-201))) (-5 *1 (-279)))))
-(((*1 *1 *1 *1) (-5 *1 (-108))) ((*1 *1 *1 *1) (-4 *1 (-119))))
-(((*1 *2)
- (-12 (-5 *2 (-2 (|:| -2205 (-586 *3)) (|:| -3609 (-586 *3))))
- (-5 *1 (-1119 *3)) (-4 *3 (-1012)))))
-(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-586 (-880 *6))) (-5 *4 (-586 (-1083))) (-4 *6 (-424))
- (-5 *2 (-586 (-586 *7))) (-5 *1 (-498 *6 *7 *5)) (-4 *7 (-336))
- (-4 *5 (-13 (-336) (-781))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1112 *3 *4 *5 *6)) (-4 *3 (-512)) (-4 *4 (-728))
- (-4 *5 (-783)) (-4 *6 (-983 *3 *4 *5)) (-5 *2 (-586 *6)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-201)) (-5 *1 (-202))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-154 (-201))) (-5 *1 (-202))))
+ (-12 (-5 *3 (-1092 (-587 *4))) (-4 *4 (-784))
+ (-5 *2 (-587 (-587 *4))) (-5 *1 (-1091 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *3 (-1123)) (-4 *5 (-1141 *3)) (-4 *6 (-1141 (-381 *5)))
+ (-5 *2 (-108)) (-5 *1 (-315 *4 *3 *5 *6)) (-4 *4 (-316 *3 *5 *6))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3))
+ (-4 *5 (-1141 (-381 *4))) (-5 *2 (-108)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-202)) (-5 *3 (-707)) (-5 *1 (-203))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-154 (-202))) (-5 *3 (-707)) (-5 *1 (-203))))
((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-404 *3 *2))
- (-4 *2 (-403 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1047))))
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-405 *3 *2))
+ (-4 *2 (-404 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1048))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1083)) (-5 *1 (-304)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-850)) (-5 *4 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1166)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-1141 (-381 (-521)))) (-5 *1 (-842 *3 *2))
+ (-4 *2 (-1141 (-381 *3))))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1138 *4 *5)) (-5 *3 (-587 *5)) (-14 *4 (-1084))
+ (-4 *5 (-337)) (-5 *1 (-852 *4 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-587 *5)) (-4 *5 (-337)) (-5 *2 (-1080 *5))
+ (-5 *1 (-852 *4 *5)) (-14 *4 (-1084))))
+ ((*1 *2 *3 *3 *4 *4)
+ (-12 (-5 *3 (-587 *6)) (-5 *4 (-707)) (-4 *6 (-337))
+ (-5 *2 (-381 (-881 *6))) (-5 *1 (-971 *5 *6)) (-14 *5 (-1084)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-336)) (-4 *5 (-346 *4)) (-4 *6 (-346 *4))
- (-5 *2 (-706)) (-5 *1 (-487 *4 *5 *6 *3)) (-4 *3 (-624 *4 *5 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-624 *3 *4 *5)) (-4 *3 (-969)) (-4 *4 (-346 *3))
- (-4 *5 (-346 *3)) (-4 *3 (-512)) (-5 *2 (-706))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-512)) (-4 *4 (-157)) (-4 *5 (-346 *4))
- (-4 *6 (-346 *4)) (-5 *2 (-706)) (-5 *1 (-625 *4 *5 *6 *3))
- (-4 *3 (-624 *4 *5 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-972 *3 *4 *5 *6 *7)) (-4 *5 (-969))
- (-4 *6 (-214 *4 *5)) (-4 *7 (-214 *3 *5)) (-4 *5 (-512))
- (-5 *2 (-706)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-424)) (-4 *4 (-512))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1267 *4)))
- (-5 *1 (-895 *4 *3)) (-4 *3 (-1140 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-586 (-626 *5))) (-5 *4 (-520)) (-4 *5 (-336))
- (-4 *5 (-969)) (-5 *2 (-108)) (-5 *1 (-952 *5))))
+ (|partial| -12 (-4 *4 (-13 (-513) (-784) (-961 (-521))))
+ (-4 *5 (-404 *4)) (-5 *2 (-392 (-1080 (-381 (-521)))))
+ (-5 *1 (-409 *4 *5 *3)) (-4 *3 (-1141 *5)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-154 (-202))) (-5 *5 (-521)) (-5 *6 (-1067))
+ (-5 *3 (-202)) (-5 *2 (-959)) (-5 *1 (-695)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-202)) (-5 *4 (-521))
+ (-5 *5 (-3 (|:| |fn| (-362)) (|:| |fp| (-62 -4049)))) (-5 *2 (-959))
+ (-5 *1 (-685)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 (-108) *6)) (-4 *6 (-13 (-1013) (-961 *5)))
+ (-4 *5 (-815 *4)) (-4 *4 (-1013)) (-5 *2 (-1 (-108) *5))
+ (-5 *1 (-860 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-392 (-1080 *1))) (-5 *1 (-290 *4)) (-5 *3 (-1080 *1))
+ (-4 *4 (-425)) (-4 *4 (-513)) (-4 *4 (-784))))
((*1 *2 *3)
- (-12 (-5 *3 (-586 (-626 *4))) (-4 *4 (-336)) (-4 *4 (-969))
- (-5 *2 (-108)) (-5 *1 (-952 *4)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-586 (-706))) (-5 *3 (-156)) (-5 *1 (-1072 *4 *5))
- (-14 *4 (-849)) (-4 *5 (-969)))))
+ (-12 (-4 *1 (-838)) (-5 *2 (-392 (-1080 *1))) (-5 *3 (-1080 *1)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-554 *2 *3)) (-4 *3 (-1119)) (-4 *2 (-1013))
+ (-4 *2 (-784)))))
(((*1 *2)
- (-12 (-4 *3 (-512)) (-5 *2 (-586 *4)) (-5 *1 (-42 *3 *4))
- (-4 *4 (-390 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-281) (-135))) (-4 *5 (-13 (-783) (-561 (-1083))))
- (-4 *6 (-728)) (-5 *2 (-586 (-586 (-520))))
- (-5 *1 (-852 *4 *5 *6 *7)) (-5 *3 (-520)) (-4 *7 (-877 *4 *6 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-143)) (-5 *1 (-802)))))
-(((*1 *2 *3 *3 *4 *5 *5)
- (-12 (-5 *5 (-108)) (-4 *6 (-424)) (-4 *7 (-728)) (-4 *8 (-783))
- (-4 *3 (-983 *6 *7 *8))
- (-5 *2 (-586 (-2 (|:| |val| *3) (|:| -1883 *4))))
- (-5 *1 (-989 *6 *7 *8 *3 *4)) (-4 *4 (-988 *6 *7 *8 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-586 (-2 (|:| |val| (-586 *8)) (|:| -1883 *9))))
- (-5 *5 (-108)) (-4 *8 (-983 *6 *7 *4)) (-4 *9 (-988 *6 *7 *4 *8))
- (-4 *6 (-424)) (-4 *7 (-728)) (-4 *4 (-783))
- (-5 *2 (-586 (-2 (|:| |val| *8) (|:| -1883 *9))))
- (-5 *1 (-989 *6 *7 *4 *8 *9)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-520)) (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783))
- (-5 *2 (-1169)) (-5 *1 (-421 *4 *5 *6 *7)) (-4 *7 (-877 *4 *5 *6)))))
-(((*1 *2 *3 *4 *2 *2 *5)
- (|partial| -12 (-5 *2 (-776 *4)) (-5 *3 (-559 *4)) (-5 *5 (-108))
- (-4 *4 (-13 (-1104) (-29 *6)))
- (-4 *6 (-13 (-424) (-783) (-960 (-520)) (-582 (-520))))
- (-5 *1 (-200 *6 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-756)) (-14 *5 (-1083)) (-5 *2 (-586 (-1137 *5 *4)))
- (-5 *1 (-1026 *4 *5)) (-5 *3 (-1137 *5 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-336)) (-5 *2 (-586 *3)) (-5 *1 (-873 *4 *3))
- (-4 *3 (-1140 *4)))))
+ (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-340 *3 *4))
+ (-4 *3 (-341 *4))))
+ ((*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-5 *2 (-108)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-337)) (-5 *1 (-260 *3 *2)) (-4 *2 (-1156 *3)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-521)) (-4 *1 (-625 *3 *4 *5)) (-4 *3 (-970))
+ (-4 *4 (-347 *3)) (-4 *5 (-347 *3)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5 (-1 (-3 (-587 *6) "failed") (-521) *6 *6)) (-4 *6 (-337))
+ (-4 *7 (-1141 *6))
+ (-5 *2 (-2 (|:| |answer| (-538 (-381 *7))) (|:| |a0| *6)))
+ (-5 *1 (-531 *6 *7)) (-5 *3 (-381 *7)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-927))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-586 *4)) (-4 *4 (-336)) (-5 *2 (-626 *4))
- (-5 *1 (-750 *4 *5)) (-4 *5 (-596 *4))))
+ (-12 (-5 *2 (-154 *4)) (-5 *1 (-164 *4 *3))
+ (-4 *4 (-13 (-337) (-782))) (-4 *3 (-1141 *2)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1080 *1)) (-5 *3 (-1084)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1080 *1)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-881 *1)) (-4 *1 (-27))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1084)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-784) (-513)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-784) (-513)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-586 *5)) (-5 *4 (-706)) (-4 *5 (-336))
- (-5 *2 (-626 *5)) (-5 *1 (-750 *5 *6)) (-4 *6 (-596 *5)))))
-(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-586 *1)) (-4 *1 (-848)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-758)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-2 (|:| |totdeg| (-706)) (|:| -3075 *4))) (-5 *5 (-706))
- (-4 *4 (-877 *6 *7 *8)) (-4 *6 (-424)) (-4 *7 (-728)) (-4 *8 (-783))
- (-5 *2
- (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-5 *1 (-421 *6 *7 *8 *4)))))
+ (-12 (-5 *3 (-1080 *2)) (-5 *4 (-1084)) (-4 *2 (-404 *5))
+ (-5 *1 (-31 *5 *2)) (-4 *5 (-13 (-784) (-513)))))
+ ((*1 *1 *2 *3)
+ (|partial| -12 (-5 *2 (-1080 *1)) (-5 *3 (-850)) (-4 *1 (-937))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-1080 *1)) (-5 *3 (-850)) (-5 *4 (-792))
+ (-4 *1 (-937))))
+ ((*1 *1 *2 *3)
+ (|partial| -12 (-5 *3 (-850)) (-4 *4 (-13 (-782) (-337)))
+ (-4 *1 (-986 *4 *2)) (-4 *2 (-1141 *4)))))
+(((*1 *2 *2 *2 *3 *3 *4 *2 *5)
+ (|partial| -12 (-5 *3 (-560 *2))
+ (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1084))) (-5 *5 (-1080 *2))
+ (-4 *2 (-13 (-404 *6) (-27) (-1105)))
+ (-4 *6 (-13 (-425) (-961 (-521)) (-784) (-135) (-583 (-521))))
+ (-5 *1 (-517 *6 *2 *7)) (-4 *7 (-1013))))
+ ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5)
+ (|partial| -12 (-5 *3 (-560 *2))
+ (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1084)))
+ (-5 *5 (-381 (-1080 *2))) (-4 *2 (-13 (-404 *6) (-27) (-1105)))
+ (-4 *6 (-13 (-425) (-961 (-521)) (-784) (-135) (-583 (-521))))
+ (-5 *1 (-517 *6 *2 *7)) (-4 *7 (-1013)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-707)) (-4 *4 (-513)) (-5 *1 (-896 *4 *2))
+ (-4 *2 (-1141 *4)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-108)) (-5 *1 (-766)))))
+(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1083)) (-5 *1 (-304))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1083)) (-5 *1 (-304)))))
+(((*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1168))))
+ ((*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1168)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1065 (-587 (-521)))) (-5 *3 (-587 (-521)))
+ (-5 *1 (-812)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1065 *4)) (-5 *3 (-521)) (-4 *4 (-970))
+ (-5 *1 (-1069 *4))))
+ ((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-521)) (-5 *1 (-1157 *3 *4 *5)) (-4 *3 (-970))
+ (-14 *4 (-1084)) (-14 *5 *3))))
+(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
+ (|partial| -12 (-5 *5 (-108)) (-4 *6 (-425)) (-4 *7 (-729))
+ (-4 *8 (-784)) (-4 *9 (-984 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| -3192 (-587 *9)) (|:| -1884 *4) (|:| |ineq| (-587 *9))))
+ (-5 *1 (-914 *6 *7 *8 *9 *4)) (-5 *3 (-587 *9))
+ (-4 *4 (-989 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
+ (|partial| -12 (-5 *5 (-108)) (-4 *6 (-425)) (-4 *7 (-729))
+ (-4 *8 (-784)) (-4 *9 (-984 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| -3192 (-587 *9)) (|:| -1884 *4) (|:| |ineq| (-587 *9))))
+ (-5 *1 (-1020 *6 *7 *8 *9 *4)) (-5 *3 (-587 *9))
+ (-4 *4 (-989 *6 *7 *8 *9)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-984 *3 *4 *2)) (-4 *3 (-970)) (-4 *4 (-729))
+ (-4 *2 (-784))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729))
+ (-4 *4 (-784)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1084))
+ (-4 *4 (-13 (-282) (-784) (-135) (-961 (-521)) (-583 (-521))))
+ (-5 *1 (-400 *4 *2)) (-4 *2 (-13 (-1105) (-29 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-381 (-881 *5))) (-5 *4 (-1084)) (-4 *5 (-135))
+ (-4 *5 (-13 (-425) (-961 (-521)) (-784) (-583 (-521))))
+ (-5 *2 (-290 *5)) (-5 *1 (-541 *5)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-871 *3) (-871 *3))) (-5 *1 (-160 *3))
- (-4 *3 (-13 (-336) (-1104) (-926)))))
- ((*1 *2)
- (|partial| -12 (-4 *4 (-1122)) (-4 *5 (-1140 (-380 *2)))
- (-4 *2 (-1140 *4)) (-5 *1 (-314 *3 *4 *2 *5))
- (-4 *3 (-315 *4 *2 *5))))
+ (-12 (-5 *3 (-1067)) (-5 *2 (-587 (-1089))) (-5 *1 (-1046)))))
+(((*1 *2)
+ (-12 (-4 *4 (-157)) (-5 *2 (-587 (-1165 *4))) (-5 *1 (-340 *3 *4))
+ (-4 *3 (-341 *4))))
((*1 *2)
- (|partial| -12 (-4 *1 (-315 *3 *2 *4)) (-4 *3 (-1122))
- (-4 *4 (-1140 (-380 *2))) (-4 *2 (-1140 *3)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-785 *2)) (-4 *2 (-969)) (-4 *2 (-336)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-553 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1118))
- (-5 *2 (-108)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-901 *3 *4 *5 *6)) (-4 *3 (-969)) (-4 *4 (-728))
- (-4 *5 (-783)) (-4 *6 (-983 *3 *4 *5)) (-5 *2 (-586 *5)))))
+ (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-4 *3 (-513))
+ (-5 *2 (-587 (-1165 *3))))))
+(((*1 *1) (-5 *1 (-143))))
+(((*1 *1 *1 *1 *1) (-5 *1 (-792))) ((*1 *1 *1 *1) (-5 *1 (-792)))
+ ((*1 *1 *1) (-5 *1 (-792))))
(((*1 *2 *3)
- (-12 (-4 *2 (-1140 *4)) (-5 *1 (-745 *4 *2 *3 *5))
- (-4 *4 (-13 (-336) (-135) (-960 (-380 (-520))))) (-4 *3 (-596 *2))
- (-4 *5 (-596 (-380 *2))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-424))) (-5 *1 (-1110 *3 *2))
- (-4 *2 (-13 (-403 *3) (-1104))))))
+ (-12 (-4 *4 (-513)) (-5 *2 (-1165 (-627 *4))) (-5 *1 (-88 *4 *5))
+ (-5 *3 (-627 *4)) (-4 *5 (-597 *4)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2))
- (-4 *2 (-13 (-403 *3) (-926))))))
-(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-958)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *2 (-958))
- (-5 *1 (-691)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-352) (-352))) (-5 *4 (-352))
- (-5 *2
- (-2 (|:| -3429 *4) (|:| -2967 *4) (|:| |totalpts| (-520))
- (|:| |success| (-108))))
- (-5 *1 (-724)) (-5 *5 (-520)))))
-(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3)
- (-12 (-5 *3 (-520)) (-5 *5 (-626 (-201))) (-5 *4 (-201))
- (-5 *2 (-958)) (-5 *1 (-691)))))
+ (|partial| -12 (-5 *2 (-1080 *3)) (-4 *3 (-323)) (-5 *1 (-331 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-587 (-792))) (-5 *1 (-304)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-893 *3)) (-4 *3 (-894)))))
(((*1 *2 *2 *3)
- (-12 (-4 *3 (-336)) (-5 *1 (-259 *3 *2)) (-4 *2 (-1155 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-512) (-783) (-960 (-520)) (-582 (-520))))
- (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-27) (-1104) (-403 *3)))))
+ (|partial| -12 (-5 *2 (-587 (-1080 *5))) (-5 *3 (-1080 *5))
+ (-4 *5 (-151 *4)) (-4 *4 (-506)) (-5 *1 (-137 *4 *5))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1083))
- (-4 *4 (-13 (-512) (-783) (-960 (-520)) (-582 (-520))))
- (-5 *1 (-252 *4 *2)) (-4 *2 (-13 (-27) (-1104) (-403 *4)))))
- ((*1 *1 *1) (-5 *1 (-352)))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783))
- (-4 *3 (-983 *5 *6 *7))
- (-5 *2 (-586 (-2 (|:| |val| *3) (|:| -1883 *4))))
- (-5 *1 (-711 *5 *6 *7 *3 *4)) (-4 *4 (-988 *5 *6 *7 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-586 (-880 (-520)))) (-5 *1 (-410))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1083)) (-5 *4 (-626 (-201))) (-5 *2 (-1016))
- (-5 *1 (-695))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1083)) (-5 *4 (-626 (-520))) (-5 *2 (-1016))
- (-5 *1 (-695)))))
-(((*1 *2 *2) (-12 (-5 *2 (-352)) (-5 *1 (-1166))))
- ((*1 *2) (-12 (-5 *2 (-352)) (-5 *1 (-1166)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-334 (-110))) (-4 *2 (-969)) (-5 *1 (-650 *2 *4))
- (-4 *4 (-588 *2))))
- ((*1 *1 *2 *3)
- (-12 (-5 *3 (-334 (-110))) (-5 *1 (-770 *2)) (-4 *2 (-969)))))
-(((*1 *2 *2 *1 *3 *4)
- (-12 (-5 *2 (-586 *8)) (-5 *3 (-1 *8 *8 *8))
- (-5 *4 (-1 (-108) *8 *8)) (-4 *1 (-1112 *5 *6 *7 *8)) (-4 *5 (-512))
- (-4 *6 (-728)) (-4 *7 (-783)) (-4 *8 (-983 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-512)) (-4 *5 (-728)) (-4 *6 (-783))
- (-4 *7 (-983 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-586 *7)) (|:| |badPols| (-586 *7))))
- (-5 *1 (-902 *4 *5 *6 *7)) (-5 *3 (-586 *7)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-156))))
- ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1114 *3)) (-4 *3 (-899)))))
-(((*1 *1 *1 *1) (-4 *1 (-131)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-144 *3 *2))
- (-4 *2 (-403 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *1 (-145 *2)) (-4 *2 (-505))))
- ((*1 *1 *1 *1) (-5 *1 (-791)))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-520))) (-5 *1 (-967))
- (-5 *3 (-520)))))
-(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-303))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-303)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1066)) (-5 *1 (-1100)))))
-(((*1 *1 *1) (-4 *1 (-512))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-1169)) (-5 *1 (-1166)))))
+ (|partial| -12 (-5 *2 (-587 *3)) (-4 *3 (-1141 *5))
+ (-4 *5 (-1141 *4)) (-4 *4 (-323)) (-5 *1 (-332 *4 *5 *3))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-587 (-1080 (-521)))) (-5 *3 (-1080 (-521)))
+ (-5 *1 (-529))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-587 (-1080 *1))) (-5 *3 (-1080 *1))
+ (-4 *1 (-838)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-969)) (-5 *1 (-1068 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1156 *2 *3 *4)) (-4 *2 (-969)) (-14 *3 (-1083))
- (-14 *4 *2))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-706)) (-4 *1 (-1140 *4)) (-4 *4 (-969))
- (-5 *2 (-1164 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-854)))))
+ (|partial| -12 (-4 *3 (-1119)) (-5 *1 (-165 *3 *2))
+ (-4 *2 (-614 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-918 *2)) (-4 *2 (-513)) (-4 *2 (-506))))
+ ((*1 *1 *1) (-4 *1 (-979))))
+(((*1 *2 *3 *4 *2 *2 *5)
+ (|partial| -12 (-5 *2 (-777 *4)) (-5 *3 (-560 *4)) (-5 *5 (-108))
+ (-4 *4 (-13 (-1105) (-29 *6)))
+ (-4 *6 (-13 (-425) (-784) (-961 (-521)) (-583 (-521))))
+ (-5 *1 (-201 *6 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1066)) (-5 *2 (-586 (-1088))) (-5 *1 (-1045)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-983 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-728))
- (-4 *4 (-783)) (-4 *2 (-512)))))
-(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-512)) (-4 *3 (-157)) (-4 *4 (-346 *3))
- (-4 *5 (-346 *3)) (-5 *1 (-625 *3 *4 *5 *2))
- (-4 *2 (-624 *3 *4 *5)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1030)) (-5 *2 (-1169)) (-5 *1 (-767)))))
-(((*1 *1) (-5 *1 (-201))) ((*1 *1) (-5 *1 (-352))))
+ (-12 (-4 *4 (-838)) (-4 *5 (-729)) (-4 *6 (-784))
+ (-4 *7 (-878 *4 *5 *6)) (-5 *2 (-392 (-1080 *7)))
+ (-5 *1 (-835 *4 *5 *6 *7)) (-5 *3 (-1080 *7))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-838)) (-4 *5 (-1141 *4)) (-5 *2 (-392 (-1080 *5)))
+ (-5 *1 (-836 *4 *5)) (-5 *3 (-1080 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-586 *6)) (-5 *4 (-586 (-1083))) (-4 *6 (-336))
- (-5 *2 (-586 (-268 (-880 *6)))) (-5 *1 (-498 *5 *6 *7))
- (-4 *5 (-424)) (-4 *7 (-13 (-336) (-781))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-586 (-380 (-880 (-520))))) (-5 *4 (-586 (-1083)))
- (-5 *2 (-586 (-586 *5))) (-5 *1 (-353 *5))
- (-4 *5 (-13 (-781) (-336)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-380 (-880 (-520)))) (-5 *2 (-586 *4)) (-5 *1 (-353 *4))
- (-4 *4 (-13 (-781) (-336))))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-108)) (-5 *5 (-520)) (-4 *6 (-336)) (-4 *6 (-341))
- (-4 *6 (-969)) (-5 *2 (-586 (-586 (-626 *6)))) (-5 *1 (-952 *6))
- (-5 *3 (-586 (-626 *6)))))
+ (-12 (-5 *3 (-1080 (-881 *6))) (-4 *6 (-513))
+ (-4 *2 (-878 (-381 (-881 *6)) *5 *4)) (-5 *1 (-669 *5 *4 *6 *2))
+ (-4 *5 (-729))
+ (-4 *4 (-13 (-784) (-10 -8 (-15 -1430 ((-1084) $))))))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-353) (-353))) (-5 *4 (-353))
+ (-5 *2
+ (-2 (|:| -3430 *4) (|:| -2968 *4) (|:| |totalpts| (-521))
+ (|:| |success| (-108))))
+ (-5 *1 (-725)) (-5 *5 (-521)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))))
+(((*1 *2 *1) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-368))))
+ ((*1 *2 *1) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-1100)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-759)))))
+(((*1 *1 *1) (-4 *1 (-513))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-202)) (|:| |xend| (-202))
+ (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202)))
+ (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202)))
+ (|:| |abserr| (-202)) (|:| |relerr| (-202))))
+ (-5 *2 (-353)) (-5 *1 (-184)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1080 (-521))) (-5 *1 (-170)) (-5 *3 (-521))))
+ ((*1 *2 *3 *2) (-12 (-5 *3 (-707)) (-5 *1 (-719 *2)) (-4 *2 (-157))))
((*1 *2 *3)
- (-12 (-4 *4 (-336)) (-4 *4 (-341)) (-4 *4 (-969))
- (-5 *2 (-586 (-586 (-626 *4)))) (-5 *1 (-952 *4))
- (-5 *3 (-586 (-626 *4)))))
+ (-12 (-5 *2 (-1080 (-521))) (-5 *1 (-871)) (-5 *3 (-521)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1031)) (-5 *1 (-777 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-707)) (-4 *6 (-425)) (-4 *7 (-729)) (-4 *8 (-784))
+ (-4 *3 (-984 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-587 *4))
+ (|:| |todo| (-587 (-2 (|:| |val| (-587 *3)) (|:| -1884 *4))))))
+ (-5 *1 (-987 *6 *7 *8 *3 *4)) (-4 *4 (-989 *6 *7 *8 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-108)) (-4 *5 (-336)) (-4 *5 (-341)) (-4 *5 (-969))
- (-5 *2 (-586 (-586 (-626 *5)))) (-5 *1 (-952 *5))
- (-5 *3 (-586 (-626 *5)))))
+ (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784))
+ (-4 *3 (-984 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-587 *4))
+ (|:| |todo| (-587 (-2 (|:| |val| (-587 *3)) (|:| -1884 *4))))))
+ (-5 *1 (-987 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-707)) (-4 *6 (-425)) (-4 *7 (-729)) (-4 *8 (-784))
+ (-4 *3 (-984 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-587 *4))
+ (|:| |todo| (-587 (-2 (|:| |val| (-587 *3)) (|:| -1884 *4))))))
+ (-5 *1 (-1054 *6 *7 *8 *3 *4)) (-4 *4 (-1022 *6 *7 *8 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-849)) (-4 *5 (-336)) (-4 *5 (-341)) (-4 *5 (-969))
- (-5 *2 (-586 (-586 (-626 *5)))) (-5 *1 (-952 *5))
- (-5 *3 (-586 (-626 *5))))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-586 *7)) (-5 *3 (-520)) (-4 *7 (-877 *4 *5 *6))
- (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783))
- (-5 *1 (-421 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-892 *3)) (-4 *3 (-893)))))
-(((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-1083)) (-4 *4 (-969)) (-4 *4 (-783))
- (-5 *2 (-2 (|:| |var| (-559 *1)) (|:| -2647 (-520))))
- (-4 *1 (-403 *4))))
- ((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-110)) (-4 *4 (-969)) (-4 *4 (-783))
- (-5 *2 (-2 (|:| |var| (-559 *1)) (|:| -2647 (-520))))
- (-4 *1 (-403 *4))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1024)) (-4 *3 (-783))
- (-5 *2 (-2 (|:| |var| (-559 *1)) (|:| -2647 (-520))))
- (-4 *1 (-403 *3))))
+ (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784))
+ (-4 *3 (-984 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-587 *4))
+ (|:| |todo| (-587 (-2 (|:| |val| (-587 *3)) (|:| -1884 *4))))))
+ (-5 *1 (-1054 *5 *6 *7 *3 *4)) (-4 *4 (-1022 *5 *6 *7 *3)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-158 (-381 (-521)))) (-5 *1 (-113 *3)) (-14 *3 (-521))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *3 (-1065 *2)) (-4 *2 (-282)) (-5 *1 (-158 *2))))
+ ((*1 *1 *2) (-12 (-5 *2 (-381 *3)) (-4 *3 (-282)) (-5 *1 (-158 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-158 (-521))) (-5 *1 (-702 *3)) (-4 *3 (-378))))
((*1 *2 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |val| (-820 *3)) (|:| -2647 (-706))))
- (-5 *1 (-820 *3)) (-4 *3 (-1012))))
+ (-12 (-5 *2 (-158 (-381 (-521)))) (-5 *1 (-800 *3)) (-14 *3 (-521))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-877 *3 *4 *5)) (-4 *3 (-969)) (-4 *4 (-728))
- (-4 *5 (-783)) (-5 *2 (-2 (|:| |var| *5) (|:| -2647 (-706))))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-728)) (-4 *5 (-783)) (-4 *6 (-969))
- (-4 *7 (-877 *6 *4 *5))
- (-5 *2 (-2 (|:| |var| *5) (|:| -2647 (-520))))
- (-5 *1 (-878 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-336)
- (-10 -8 (-15 -2188 ($ *7)) (-15 -2800 (*7 $))
- (-15 -2811 (*7 $))))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-553 *2 *3)) (-4 *3 (-1118)) (-4 *2 (-1012))
- (-4 *2 (-783)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *2 (-958))
- (-5 *1 (-683)))))
-(((*1 *2)
- (-12 (-5 *2 (-706)) (-5 *1 (-116 *3)) (-4 *3 (-1140 (-520)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-706)) (-5 *1 (-116 *3)) (-4 *3 (-1140 (-520))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-706)) (-5 *1 (-1072 *3 *4)) (-14 *3 (-849))
- (-4 *4 (-969)))))
-(((*1 *2 *3) (-12 (-5 *3 (-352)) (-5 *2 (-1066)) (-5 *1 (-279)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1079 *7)) (-4 *5 (-969))
- (-4 *7 (-969)) (-4 *2 (-1140 *5)) (-5 *1 (-469 *5 *2 *6 *7))
- (-4 *6 (-1140 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-969)) (-4 *7 (-969))
- (-4 *4 (-1140 *5)) (-5 *2 (-1079 *7)) (-5 *1 (-469 *5 *4 *6 *7))
- (-4 *6 (-1140 *4)))))
-(((*1 *2)
- (-12 (-4 *3 (-512)) (-5 *2 (-586 *4)) (-5 *1 (-42 *3 *4))
- (-4 *4 (-390 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-424)) (-4 *4 (-728)) (-4 *5 (-783))
- (-4 *6 (-983 *3 *4 *5)) (-5 *1 (-568 *3 *4 *5 *6 *7 *2))
- (-4 *7 (-988 *3 *4 *5 *6)) (-4 *2 (-1021 *3 *4 *5 *6)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-512)) (-5 *2 (-108)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-586 *5)) (-5 *4 (-849)) (-4 *5 (-783))
- (-5 *2 (-586 (-611 *5))) (-5 *1 (-611 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-228 *3 *4 *5 *6)) (-4 *3 (-969)) (-4 *4 (-783))
- (-4 *5 (-241 *4)) (-4 *6 (-728)) (-5 *2 (-586 *4)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1083)) (-5 *2 (-1087)) (-5 *1 (-1086)))))
-(((*1 *2 *2) (-12 (-5 *2 (-849)) (-5 *1 (-330 *3)) (-4 *3 (-322)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-706)) (-5 *1 (-789 *2)) (-4 *2 (-157))))
- ((*1 *2 *3 *3 *2)
- (-12 (-5 *3 (-706)) (-5 *1 (-789 *2)) (-4 *2 (-157)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-404 *3 *2))
- (-4 *2 (-403 *3)))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1066)) (-4 *1 (-362)))))
-(((*1 *1 *1) (-5 *1 (-201)))
- ((*1 *2 *2) (-12 (-5 *2 (-201)) (-5 *1 (-202))))
- ((*1 *2 *2) (-12 (-5 *2 (-154 (-201))) (-5 *1 (-202))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-404 *3 *2))
- (-4 *2 (-403 *3))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-404 *3 *2))
- (-4 *2 (-403 *3))))
- ((*1 *1 *1) (-4 *1 (-1047))) ((*1 *1 *1 *1) (-4 *1 (-1047))))
+ (-12 (-14 *3 (-521)) (-5 *2 (-158 (-381 (-521))))
+ (-5 *1 (-801 *3 *4)) (-4 *4 (-798 *3)))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1067)) (-4 *1 (-363)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-586 (-520))) (-5 *2 (-832 (-520))) (-5 *1 (-845))))
- ((*1 *2) (-12 (-5 *2 (-832 (-520))) (-5 *1 (-845)))))
+ (-12 (-5 *3 (-587 (-521))) (-5 *2 (-833 (-521))) (-5 *1 (-846))))
+ ((*1 *2) (-12 (-5 *2 (-833 (-521))) (-5 *1 (-846)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-424))) (-5 *1 (-1110 *3 *2))
- (-4 *2 (-13 (-403 *3) (-1104))))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-586 (-586 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
- (-5 *4 (-586 (-3 (|:| |array| (-586 *3)) (|:| |scalar| (-1083)))))
- (-5 *6 (-586 (-1083))) (-5 *3 (-1083)) (-5 *2 (-1016))
- (-5 *1 (-370))))
- ((*1 *2 *3 *4 *5 *6 *3)
- (-12 (-5 *5 (-586 (-586 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
- (-5 *4 (-586 (-3 (|:| |array| (-586 *3)) (|:| |scalar| (-1083)))))
- (-5 *6 (-586 (-1083))) (-5 *3 (-1083)) (-5 *2 (-1016))
- (-5 *1 (-370))))
- ((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *4 (-586 (-1083))) (-5 *5 (-1086)) (-5 *3 (-1083))
- (-5 *2 (-1016)) (-5 *1 (-370)))))
-(((*1 *2 *3 *4 *4 *5 *4 *4 *5)
- (-12 (-5 *3 (-1066)) (-5 *4 (-520)) (-5 *5 (-626 (-201)))
- (-5 *2 (-958)) (-5 *1 (-693)))))
+ (-12 (-5 *2 (-872 *3)) (-4 *3 (-13 (-337) (-1105) (-927)))
+ (-5 *1 (-160 *3)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-424)) (-4 *3 (-728)) (-4 *5 (-783)) (-5 *2 (-108))
- (-5 *1 (-421 *4 *3 *5 *6)) (-4 *6 (-877 *4 *3 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783))
- (-4 *3 (-983 *5 *6 *7)) (-5 *2 (-586 *4))
- (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-988 *5 *6 *7 *3)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-656)) (-5 *2 (-849))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-658)) (-5 *2 (-706)))))
+ (-12 (-5 *3 (-587 *4)) (-4 *4 (-337)) (-4 *2 (-1141 *4))
+ (-5 *1 (-851 *4 *2)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-627 *4)) (-4 *4 (-337)) (-5 *2 (-1080 *4))
+ (-5 *1 (-494 *4 *5 *6)) (-4 *5 (-337)) (-4 *6 (-13 (-337) (-782))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-3 (|:| |fst| (-408)) (|:| -1366 "void")))
+ (-5 *2 (-1170)) (-5 *1 (-1087))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1084))
+ (-5 *4 (-3 (|:| |fst| (-408)) (|:| -1366 "void"))) (-5 *2 (-1170))
+ (-5 *1 (-1087))))
+ ((*1 *2 *3 *4 *1)
+ (-12 (-5 *3 (-1084))
+ (-5 *4 (-3 (|:| |fst| (-408)) (|:| -1366 "void"))) (-5 *2 (-1170))
+ (-5 *1 (-1087)))))
+(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-33)))
+ ((*1 *1)
+ (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-521)) (-14 *3 (-707))
+ (-4 *4 (-157))))
+ ((*1 *1) (-4 *1 (-663))) ((*1 *1) (-5 *1 (-1084))))
+(((*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1168))))
+ ((*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1168)))))
+(((*1 *2 *3 *4 *4 *5 *3 *6)
+ (|partial| -12 (-5 *4 (-560 *3)) (-5 *5 (-587 *3)) (-5 *6 (-1080 *3))
+ (-4 *3 (-13 (-404 *7) (-27) (-1105)))
+ (-4 *7 (-13 (-425) (-961 (-521)) (-784) (-135) (-583 (-521))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-587 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-517 *7 *3 *8)) (-4 *8 (-1013))))
+ ((*1 *2 *3 *4 *4 *5 *4 *3 *6)
+ (|partial| -12 (-5 *4 (-560 *3)) (-5 *5 (-587 *3))
+ (-5 *6 (-381 (-1080 *3))) (-4 *3 (-13 (-404 *7) (-27) (-1105)))
+ (-4 *7 (-13 (-425) (-961 (-521)) (-784) (-135) (-583 (-521))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-587 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-517 *7 *3 *8)) (-4 *8 (-1013)))))
(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-520)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1118))
- (-4 *4 (-346 *2)) (-4 *5 (-346 *2))))
+ (-12 (-5 *3 (-521)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1119))
+ (-4 *4 (-347 *2)) (-4 *5 (-347 *2))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-520)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-346 *2))
- (-4 *5 (-346 *2)) (-4 *2 (-1118))))
+ (-12 (-5 *3 (-521)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-347 *2))
+ (-4 *5 (-347 *2)) (-4 *2 (-1119))))
((*1 *1 *1 *2)
- (-12 (-5 *2 "right") (-4 *1 (-115 *3)) (-4 *3 (-1118))))
- ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-115 *3)) (-4 *3 (-1118))))
+ (-12 (-5 *2 "right") (-4 *1 (-115 *3)) (-4 *3 (-1119))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-115 *3)) (-4 *3 (-1119))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-586 (-520))) (-4 *2 (-157)) (-5 *1 (-128 *4 *5 *2))
- (-14 *4 (-520)) (-14 *5 (-706))))
+ (-12 (-5 *3 (-587 (-521))) (-4 *2 (-157)) (-5 *1 (-128 *4 *5 *2))
+ (-14 *4 (-521)) (-14 *5 (-707))))
((*1 *2 *1 *3 *3 *3 *3)
- (-12 (-5 *3 (-520)) (-4 *2 (-157)) (-5 *1 (-128 *4 *5 *2))
- (-14 *4 *3) (-14 *5 (-706))))
+ (-12 (-5 *3 (-521)) (-4 *2 (-157)) (-5 *1 (-128 *4 *5 *2))
+ (-14 *4 *3) (-14 *5 (-707))))
((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-520)) (-4 *2 (-157)) (-5 *1 (-128 *4 *5 *2))
- (-14 *4 *3) (-14 *5 (-706))))
+ (-12 (-5 *3 (-521)) (-4 *2 (-157)) (-5 *1 (-128 *4 *5 *2))
+ (-14 *4 *3) (-14 *5 (-707))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-520)) (-4 *2 (-157)) (-5 *1 (-128 *4 *5 *2))
- (-14 *4 *3) (-14 *5 (-706))))
+ (-12 (-5 *3 (-521)) (-4 *2 (-157)) (-5 *1 (-128 *4 *5 *2))
+ (-14 *4 *3) (-14 *5 (-707))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-520)) (-4 *2 (-157)) (-5 *1 (-128 *4 *5 *2))
- (-14 *4 *3) (-14 *5 (-706))))
+ (-12 (-5 *3 (-521)) (-4 *2 (-157)) (-5 *1 (-128 *4 *5 *2))
+ (-14 *4 *3) (-14 *5 (-707))))
((*1 *2 *1)
- (-12 (-4 *2 (-157)) (-5 *1 (-128 *3 *4 *2)) (-14 *3 (-520))
- (-14 *4 (-706))))
+ (-12 (-4 *2 (-157)) (-5 *1 (-128 *3 *4 *2)) (-14 *3 (-521))
+ (-14 *4 (-707))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-1083)) (-5 *2 (-221 (-1066))) (-5 *1 (-191 *4))
+ (-12 (-5 *3 (-1084)) (-5 *2 (-222 (-1067))) (-5 *1 (-192 *4))
(-4 *4
- (-13 (-783)
- (-10 -8 (-15 -2543 ((-1066) $ *3)) (-15 -1677 ((-1169) $))
- (-15 -3288 ((-1169) $)))))))
+ (-13 (-784)
+ (-10 -8 (-15 -2544 ((-1067) $ *3)) (-15 -1678 ((-1170) $))
+ (-15 -3971 ((-1170) $)))))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-914)) (-5 *1 (-191 *3))
+ (-12 (-5 *2 (-915)) (-5 *1 (-192 *3))
(-4 *3
- (-13 (-783)
- (-10 -8 (-15 -2543 ((-1066) $ (-1083))) (-15 -1677 ((-1169) $))
- (-15 -3288 ((-1169) $)))))))
+ (-13 (-784)
+ (-10 -8 (-15 -2544 ((-1067) $ (-1084))) (-15 -1678 ((-1170) $))
+ (-15 -3971 ((-1170) $)))))))
((*1 *2 *1 *3)
- (-12 (-5 *3 "count") (-5 *2 (-706)) (-5 *1 (-221 *4)) (-4 *4 (-783))))
- ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-221 *3)) (-4 *3 (-783))))
+ (-12 (-5 *3 "count") (-5 *2 (-707)) (-5 *1 (-222 *4)) (-4 *4 (-784))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-222 *3)) (-4 *3 (-784))))
((*1 *1 *1 *2)
- (-12 (-5 *2 "unique") (-5 *1 (-221 *3)) (-4 *3 (-783))))
+ (-12 (-5 *2 "unique") (-5 *1 (-222 *3)) (-4 *3 (-784))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-260 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1118))))
+ (-12 (-4 *1 (-261 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1119))))
((*1 *2 *1 *3 *2)
- (-12 (-4 *1 (-262 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1118))))
+ (-12 (-4 *1 (-263 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1119))))
((*1 *2 *1 *2)
- (-12 (-4 *3 (-157)) (-5 *1 (-263 *3 *2 *4 *5 *6 *7))
- (-4 *2 (-1140 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4))
+ (-12 (-4 *3 (-157)) (-5 *1 (-264 *3 *2 *4 *5 *6 *7))
+ (-4 *2 (-1141 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4))
(-14 *6 (-1 (-3 *4 "failed") *4 *4))
(-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-586 *1)) (-4 *1 (-276))))
- ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-276)) (-5 *2 (-110))))
- ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-276)) (-5 *2 (-110))))
- ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-276)) (-5 *2 (-110))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-276)) (-5 *2 (-110))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-587 *1)) (-4 *1 (-277))))
+ ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-277)) (-5 *2 (-110))))
+ ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-277)) (-5 *2 (-110))))
+ ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-277)) (-5 *2 (-110))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-277)) (-5 *2 (-110))))
((*1 *2 *1 *2 *2)
- (-12 (-4 *1 (-315 *2 *3 *4)) (-4 *2 (-1122)) (-4 *3 (-1140 *2))
- (-4 *4 (-1140 (-380 *3)))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-520)) (-4 *1 (-390 *2)) (-4 *2 (-157))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1083)) (-5 *2 (-1066)) (-5 *1 (-470))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1083)) (-5 *2 (-51)) (-5 *1 (-575))))
+ (-12 (-4 *1 (-316 *2 *3 *4)) (-4 *2 (-1123)) (-4 *3 (-1141 *2))
+ (-4 *4 (-1141 (-381 *3)))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-521)) (-4 *1 (-391 *2)) (-4 *2 (-157))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1084)) (-5 *2 (-1067)) (-5 *1 (-471))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1084)) (-5 *2 (-51)) (-5 *1 (-576))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1131 (-520))) (-4 *1 (-591 *3)) (-4 *3 (-1118))))
+ (-12 (-5 *2 (-1132 (-521))) (-4 *1 (-592 *3)) (-4 *3 (-1119))))
((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-706)) (-5 *1 (-614 *2)) (-4 *2 (-1012))))
+ (-12 (-5 *3 (-707)) (-5 *1 (-615 *2)) (-4 *2 (-1013))))
((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-586 (-520))) (-4 *1 (-624 *3 *4 *5)) (-4 *3 (-969))
- (-4 *4 (-346 *3)) (-4 *5 (-346 *3))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-586 (-791))) (-5 *1 (-791))))
+ (-12 (-5 *2 (-587 (-521))) (-4 *1 (-625 *3 *4 *5)) (-4 *3 (-970))
+ (-4 *4 (-347 *3)) (-4 *5 (-347 *3))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-587 (-792))) (-5 *1 (-792))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-110)) (-5 *3 (-586 (-820 *4))) (-5 *1 (-820 *4))
- (-4 *4 (-1012))))
- ((*1 *2 *1 *2) (-12 (-4 *1 (-831 *2)) (-4 *2 (-1012))))
+ (-12 (-5 *2 (-110)) (-5 *3 (-587 (-821 *4))) (-5 *1 (-821 *4))
+ (-4 *4 (-1013))))
+ ((*1 *2 *1 *2) (-12 (-4 *1 (-832 *2)) (-4 *2 (-1013))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-706)) (-5 *2 (-833 *4)) (-5 *1 (-832 *4))
- (-4 *4 (-1012))))
+ (-12 (-5 *3 (-707)) (-5 *2 (-834 *4)) (-5 *1 (-833 *4))
+ (-4 *4 (-1013))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-216 *4 *2)) (-14 *4 (-849)) (-4 *2 (-336))
- (-5 *1 (-918 *4 *2))))
+ (-12 (-5 *3 (-217 *4 *2)) (-14 *4 (-850)) (-4 *2 (-337))
+ (-5 *1 (-919 *4 *2))))
((*1 *2 *1 *3)
- (-12 (-5 *3 "value") (-4 *1 (-934 *2)) (-4 *2 (-1118))))
- ((*1 *2 *1) (-12 (-5 *1 (-949 *2)) (-4 *2 (-1118))))
+ (-12 (-5 *3 "value") (-4 *1 (-935 *2)) (-4 *2 (-1119))))
+ ((*1 *2 *1) (-12 (-5 *1 (-950 *2)) (-4 *2 (-1119))))
((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-520)) (-4 *1 (-972 *4 *5 *2 *6 *7)) (-4 *2 (-969))
- (-4 *6 (-214 *5 *2)) (-4 *7 (-214 *4 *2))))
+ (-12 (-5 *3 (-521)) (-4 *1 (-973 *4 *5 *2 *6 *7)) (-4 *2 (-970))
+ (-4 *6 (-215 *5 *2)) (-4 *7 (-215 *4 *2))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-520)) (-4 *1 (-972 *4 *5 *2 *6 *7))
- (-4 *6 (-214 *5 *2)) (-4 *7 (-214 *4 *2)) (-4 *2 (-969))))
- ((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-849)) (-4 *4 (-1012))
- (-4 *5 (-13 (-969) (-814 *4) (-783) (-561 (-820 *4))))
- (-5 *1 (-991 *4 *5 *2))
- (-4 *2 (-13 (-403 *5) (-814 *4) (-561 (-820 *4))))))
+ (-12 (-5 *3 (-521)) (-4 *1 (-973 *4 *5 *2 *6 *7))
+ (-4 *6 (-215 *5 *2)) (-4 *7 (-215 *4 *2)) (-4 *2 (-970))))
((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-849)) (-4 *4 (-1012))
- (-4 *5 (-13 (-969) (-814 *4) (-783) (-561 (-820 *4))))
+ (-12 (-5 *3 (-850)) (-4 *4 (-1013))
+ (-4 *5 (-13 (-970) (-815 *4) (-784) (-562 (-821 *4))))
(-5 *1 (-992 *4 *5 *2))
- (-4 *2 (-13 (-403 *5) (-814 *4) (-561 (-820 *4))))))
+ (-4 *2 (-13 (-404 *5) (-815 *4) (-562 (-821 *4))))))
+ ((*1 *2 *1 *2 *3)
+ (-12 (-5 *3 (-850)) (-4 *4 (-1013))
+ (-4 *5 (-13 (-970) (-815 *4) (-784) (-562 (-821 *4))))
+ (-5 *1 (-993 *4 *5 *2))
+ (-4 *2 (-13 (-404 *5) (-815 *4) (-562 (-821 *4))))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-586 (-520))) (-4 *1 (-1015 *3 *4 *5 *6 *7))
- (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012))
- (-4 *7 (-1012))))
+ (-12 (-5 *2 (-587 (-521))) (-4 *1 (-1016 *3 *4 *5 *6 *7))
+ (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013))
+ (-4 *7 (-1013))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-520)) (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012))
- (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012))))
- ((*1 *1 *1 *1) (-4 *1 (-1052)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-586 (-791))) (-5 *1 (-1083))))
+ (-12 (-5 *2 (-521)) (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013))
+ (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013))))
+ ((*1 *1 *1 *1) (-4 *1 (-1053)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-587 (-792))) (-5 *1 (-1084))))
((*1 *2 *3 *2)
- (-12 (-5 *3 (-380 *1)) (-4 *1 (-1140 *2)) (-4 *2 (-969))
- (-4 *2 (-336))))
+ (-12 (-5 *3 (-381 *1)) (-4 *1 (-1141 *2)) (-4 *2 (-970))
+ (-4 *2 (-337))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-380 *1)) (-4 *1 (-1140 *3)) (-4 *3 (-969))
- (-4 *3 (-512))))
+ (-12 (-5 *2 (-381 *1)) (-4 *1 (-1141 *3)) (-4 *3 (-970))
+ (-4 *3 (-513))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1142 *2 *3)) (-4 *3 (-727)) (-4 *2 (-969))))
+ (-12 (-4 *1 (-1143 *2 *3)) (-4 *3 (-728)) (-4 *2 (-970))))
((*1 *2 *1 *3)
- (-12 (-5 *3 "last") (-4 *1 (-1152 *2)) (-4 *2 (-1118))))
+ (-12 (-5 *3 "last") (-4 *1 (-1153 *2)) (-4 *2 (-1119))))
((*1 *1 *1 *2)
- (-12 (-5 *2 "rest") (-4 *1 (-1152 *3)) (-4 *3 (-1118))))
+ (-12 (-5 *2 "rest") (-4 *1 (-1153 *3)) (-4 *3 (-1119))))
((*1 *2 *1 *3)
- (-12 (-5 *3 "first") (-4 *1 (-1152 *2)) (-4 *2 (-1118)))))
-(((*1 *2 *1 *1)
- (|partial| -12 (-4 *1 (-983 *3 *4 *5)) (-4 *3 (-969)) (-4 *4 (-728))
- (-4 *5 (-783)) (-5 *2 (-108)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-322)) (-4 *2 (-969)) (-5 *1 (-648 *2 *3))
- (-4 *3 (-1140 *2)))))
-(((*1 *2 *3) (-12 (-5 *2 (-586 (-520))) (-5 *1 (-517)) (-5 *3 (-520)))))
-(((*1 *2)
- (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-339 *3 *4))
- (-4 *3 (-340 *4))))
- ((*1 *2) (-12 (-4 *1 (-340 *3)) (-4 *3 (-157)) (-5 *2 (-108)))))
+ (-12 (-5 *3 "first") (-4 *1 (-1153 *2)) (-4 *2 (-1119)))))
+(((*1 *1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-792)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-759)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-856)))))
(((*1 *1 *2 *3)
- (-12 (-5 *3 (-586 (-1083))) (-5 *2 (-1083)) (-5 *1 (-303)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-424))) (-5 *1 (-1110 *3 *2))
- (-4 *2 (-13 (-403 *3) (-1104))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-586 (-559 *5))) (-4 *4 (-783)) (-5 *2 (-559 *5))
- (-5 *1 (-529 *4 *5)) (-4 *5 (-403 *4)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-586 (-238))) (-5 *1 (-1165))))
- ((*1 *2 *1) (-12 (-5 *2 (-586 (-238))) (-5 *1 (-1165))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-586 (-238))) (-5 *1 (-1166))))
- ((*1 *2 *1) (-12 (-5 *2 (-586 (-238))) (-5 *1 (-1166)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *3 (-520)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime"))
- (-5 *1 (-391 *2)) (-4 *2 (-512)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-33)) (-5 *2 (-108)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-281) (-135))) (-4 *4 (-13 (-783) (-561 (-1083))))
- (-4 *5 (-728)) (-5 *1 (-852 *3 *4 *5 *2)) (-4 *2 (-877 *3 *5 *4)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-586 *7)) (-5 *5 (-586 (-586 *8))) (-4 *7 (-783))
- (-4 *8 (-281)) (-4 *6 (-728)) (-4 *9 (-877 *8 *6 *7))
- (-5 *2
- (-2 (|:| |unitPart| *9)
- (|:| |suPart|
- (-586 (-2 (|:| -1916 (-1079 *9)) (|:| -2647 (-520)))))))
- (-5 *1 (-678 *6 *7 *8 *9)) (-5 *3 (-1079 *9)))))
-(((*1 *1 *1 *1) (-5 *1 (-791))))
-(((*1 *2 *3 *4 *4 *2 *2 *2)
- (-12 (-5 *2 (-520))
- (-5 *3
- (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-706)) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-4 *6 (-728)) (-4 *4 (-877 *5 *6 *7)) (-4 *5 (-424)) (-4 *7 (-783))
- (-5 *1 (-421 *5 *6 *7 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-46 *3 *2)) (-4 *3 (-969)) (-4 *2 (-727))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-706)) (-5 *1 (-49 *3 *4)) (-4 *3 (-969))
- (-14 *4 (-586 (-1083)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-520)) (-5 *1 (-199 *3 *4)) (-4 *3 (-13 (-969) (-783)))
- (-14 *4 (-586 (-1083)))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-228 *4 *3 *5 *6)) (-4 *4 (-969)) (-4 *3 (-783))
- (-4 *5 (-241 *3)) (-4 *6 (-728)) (-5 *2 (-706))))
- ((*1 *2 *1) (-12 (-5 *2 (-706)) (-5 *1 (-250))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1079 *8)) (-5 *4 (-586 *6)) (-4 *6 (-783))
- (-4 *8 (-877 *7 *5 *6)) (-4 *5 (-728)) (-4 *7 (-969))
- (-5 *2 (-586 (-706))) (-5 *1 (-294 *5 *6 *7 *8))))
- ((*1 *2 *1) (-12 (-4 *1 (-302 *3)) (-4 *3 (-336)) (-5 *2 (-849))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-347 *3 *4)) (-4 *3 (-783)) (-4 *4 (-157))
- (-5 *2 (-706))))
- ((*1 *2 *1) (-12 (-4 *1 (-442 *3 *2)) (-4 *3 (-157)) (-4 *2 (-23))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-512)) (-5 *2 (-520)) (-5 *1 (-567 *3 *4))
- (-4 *4 (-1140 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-645 *3)) (-4 *3 (-969)) (-5 *2 (-706))))
- ((*1 *2 *1) (-12 (-4 *1 (-785 *3)) (-4 *3 (-969)) (-5 *2 (-706))))
- ((*1 *2 *1) (-12 (-5 *2 (-706)) (-5 *1 (-832 *3)) (-4 *3 (-1012))))
- ((*1 *2 *1) (-12 (-5 *2 (-706)) (-5 *1 (-833 *3)) (-4 *3 (-1012))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-586 *6)) (-4 *1 (-877 *4 *5 *6)) (-4 *4 (-969))
- (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-586 (-706)))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-877 *4 *5 *3)) (-4 *4 (-969)) (-4 *5 (-728))
- (-4 *3 (-783)) (-5 *2 (-706))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-898 *3 *2 *4)) (-4 *3 (-969)) (-4 *4 (-783))
- (-4 *2 (-727))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1112 *3 *4 *5 *6)) (-4 *3 (-512)) (-4 *4 (-728))
- (-4 *5 (-783)) (-4 *6 (-983 *3 *4 *5)) (-5 *2 (-706))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1126 *3 *4)) (-4 *3 (-969)) (-4 *4 (-1155 *3))
- (-5 *2 (-520))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1147 *3 *4)) (-4 *3 (-969)) (-4 *4 (-1124 *3))
- (-5 *2 (-380 (-520)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1181 *3)) (-4 *3 (-336)) (-5 *2 (-769 (-849)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1183 *3 *4)) (-4 *3 (-783)) (-4 *4 (-969))
- (-5 *2 (-706)))))
-(((*1 *2 *2) (-12 (-5 *2 (-352)) (-5 *1 (-1166))))
- ((*1 *2) (-12 (-5 *2 (-352)) (-5 *1 (-1166)))))
-(((*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-440))))
- ((*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-1165))))
- ((*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-1166)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-586 (-1007 (-352)))) (-5 *3 (-586 (-238)))
- (-5 *1 (-236))))
- ((*1 *1 *2) (-12 (-5 *2 (-586 (-1007 (-352)))) (-5 *1 (-238))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-586 (-1007 (-352)))) (-5 *1 (-440))))
- ((*1 *2 *1) (-12 (-5 *2 (-586 (-1007 (-352)))) (-5 *1 (-440)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-586 (-791))) (-5 *1 (-791))))
+ (-12 (-5 *3 (-587 (-1084))) (-5 *2 (-1084)) (-5 *1 (-304)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-513)) (-5 *2 (-1080 *3)) (-5 *1 (-40 *4 *3))
+ (-4 *3
+ (-13 (-337) (-277)
+ (-10 -8 (-15 -2801 ((-1036 *4 (-560 $)) $))
+ (-15 -2812 ((-1036 *4 (-560 $)) $))
+ (-15 -2189 ($ (-1036 *4 (-560 $))))))))))
+(((*1 *1 *1 *1) (-5 *1 (-108))) ((*1 *1 *1 *1) (-4 *1 (-119))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-44 (-1067) (-710))) (-5 *1 (-110)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-587 (-239))) (-5 *1 (-1166))))
+ ((*1 *2 *1) (-12 (-5 *2 (-587 (-239))) (-5 *1 (-1166))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-587 (-239))) (-5 *1 (-1167))))
+ ((*1 *2 *1) (-12 (-5 *2 (-587 (-239))) (-5 *1 (-1167)))))
+(((*1 *1) (-5 *1 (-998))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-587 (-2 (|:| |den| (-521)) (|:| |gcdnum| (-521)))))
+ (-4 *4 (-1141 (-381 *2))) (-5 *2 (-521)) (-5 *1 (-842 *4 *5))
+ (-4 *5 (-1141 (-381 *4))))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-337)) (-5 *1 (-703 *2 *3)) (-4 *2 (-646 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-970)) (-4 *2 (-337)))))
+(((*1 *2 *1 *3 *3 *4)
+ (-12 (-5 *3 (-1 (-792) (-792) (-792))) (-5 *4 (-521)) (-5 *2 (-792))
+ (-5 *1 (-590 *5 *6 *7)) (-4 *5 (-1013)) (-4 *6 (-23)) (-14 *7 *6)))
+ ((*1 *2 *1 *2)
+ (-12 (-5 *2 (-792)) (-5 *1 (-788 *3 *4 *5)) (-4 *3 (-970))
+ (-14 *4 (-94 *3)) (-14 *5 (-1 *3 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-202)) (-5 *1 (-792))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-792))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1084)) (-5 *1 (-792))))
+ ((*1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-792))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-1080 *3)) (-4 *3 (-970)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-104)) (-5 *1 (-1000)))))
+(((*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-441))))
+ ((*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-1166))))
+ ((*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-1167)))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-627 (-521))) (-5 *3 (-587 (-521))) (-5 *1 (-1023)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-560 *5)) (-4 *5 (-404 *4)) (-4 *4 (-961 (-521)))
+ (-4 *4 (-13 (-784) (-513))) (-5 *2 (-1080 *5)) (-5 *1 (-31 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-560 *1)) (-4 *1 (-970)) (-4 *1 (-277))
+ (-5 *2 (-1080 *1)))))
+(((*1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-696)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-587 (-792))) (-5 *1 (-792))))
((*1 *2 *1)
(-12
(-5 *2
- (-2 (|:| -4082 (-586 (-791))) (|:| -1224 (-586 (-791)))
- (|:| |presup| (-586 (-791))) (|:| -1661 (-586 (-791)))
- (|:| |args| (-586 (-791)))))
- (-5 *1 (-1083)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-849)) (-5 *2 (-1169)) (-5 *1 (-1165))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-849)) (-5 *2 (-1169)) (-5 *1 (-1166)))))
-(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201)))
- (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201))
- (|:| |relerr| (-201))))
- (-5 *2 (-2 (|:| -1418 (-110)) (|:| |w| (-201)))) (-5 *1 (-182)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-424))) (-5 *1 (-1110 *3 *2))
- (-4 *2 (-13 (-403 *3) (-1104))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-586 (-520))) (-5 *2 (-832 (-520))) (-5 *1 (-845))))
- ((*1 *2) (-12 (-5 *2 (-832 (-520))) (-5 *1 (-845)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-424)) (-4 *4 (-783)) (-4 *5 (-728)) (-5 *2 (-586 *6))
- (-5 *1 (-912 *3 *4 *5 *6)) (-4 *6 (-877 *3 *5 *4)))))
+ (-2 (|:| -2152 (-587 (-792))) (|:| -2641 (-587 (-792)))
+ (|:| |presup| (-587 (-792))) (|:| -2946 (-587 (-792)))
+ (|:| |args| (-587 (-792)))))
+ (-5 *1 (-1084)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-587 *8)) (-5 *3 (-1 (-108) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-984 *5 *6 *7)) (-4 *5 (-513))
+ (-4 *6 (-729)) (-4 *7 (-784)) (-5 *1 (-903 *5 *6 *7 *8)))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-706)) (-5 *1 (-538 *2)) (-4 *2 (-505))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-2 (|:| -3349 *3) (|:| -2647 (-706)))) (-5 *1 (-538 *3))
- (-4 *3 (-505)))))
-(((*1 *2 *1) (-12 (-4 *1 (-733 *2)) (-4 *2 (-157)))))
+ (-12 (-5 *2 (-821 *4)) (-4 *4 (-1013)) (-5 *1 (-819 *4 *3))
+ (-4 *3 (-1119))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-821 *3)) (-4 *3 (-1013)))))
+(((*1 *1 *1) (-4 *1 (-573)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-574 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-927) (-1105))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-856))
+ (-5 *2
+ (-2 (|:| |brans| (-587 (-587 (-872 (-202)))))
+ (|:| |xValues| (-1008 (-202))) (|:| |yValues| (-1008 (-202)))))
+ (-5 *1 (-141))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-856)) (-5 *4 (-381 (-521)))
+ (-5 *2
+ (-2 (|:| |brans| (-587 (-587 (-872 (-202)))))
+ (|:| |xValues| (-1008 (-202))) (|:| |yValues| (-1008 (-202)))))
+ (-5 *1 (-141)))))
+(((*1 *2)
+ (-12 (-4 *3 (-425)) (-4 *4 (-729)) (-4 *5 (-784))
+ (-4 *6 (-984 *3 *4 *5)) (-5 *2 (-1170))
+ (-5 *1 (-914 *3 *4 *5 *6 *7)) (-4 *7 (-989 *3 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *3 (-425)) (-4 *4 (-729)) (-4 *5 (-784))
+ (-4 *6 (-984 *3 *4 *5)) (-5 *2 (-1170))
+ (-5 *1 (-1020 *3 *4 *5 *6 *7)) (-4 *7 (-989 *3 *4 *5 *6)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-850)) (-5 *3 (-587 (-239))) (-5 *1 (-237))))
+ ((*1 *1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-239)))))
+(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4)
+ (-12 (-5 *3 (-1067)) (-5 *5 (-627 (-202))) (-5 *6 (-202))
+ (-5 *7 (-627 (-521))) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-689)))))
(((*1 *1 *2 *3)
- (-12 (-4 *1 (-355 *3 *2)) (-4 *3 (-969)) (-4 *2 (-1012))))
+ (-12 (-4 *1 (-356 *3 *2)) (-4 *3 (-970)) (-4 *2 (-1013))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-520)) (-5 *2 (-1064 *3)) (-5 *1 (-1068 *3))
- (-4 *3 (-969))))
+ (-12 (-5 *4 (-521)) (-5 *2 (-1065 *3)) (-5 *1 (-1069 *3))
+ (-4 *3 (-970))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-755 *4)) (-4 *4 (-783)) (-4 *1 (-1179 *4 *3))
- (-4 *3 (-969)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-969))
- (-4 *2 (-13 (-377) (-960 *4) (-336) (-1104) (-258)))
- (-5 *1 (-415 *4 *3 *2)) (-4 *3 (-1140 *4))))
- ((*1 *1 *1) (-4 *1 (-505)))
- ((*1 *2 *1) (-12 (-5 *2 (-849)) (-5 *1 (-611 *3)) (-4 *3 (-783))))
- ((*1 *2 *1) (-12 (-5 *2 (-849)) (-5 *1 (-615 *3)) (-4 *3 (-783))))
- ((*1 *2 *1) (-12 (-5 *2 (-706)) (-5 *1 (-755 *3)) (-4 *3 (-783))))
- ((*1 *2 *1) (-12 (-5 *2 (-706)) (-5 *1 (-821 *3)) (-4 *3 (-783))))
- ((*1 *2 *1) (-12 (-4 *1 (-919 *3)) (-4 *3 (-1118)) (-5 *2 (-706))))
- ((*1 *2 *1) (-12 (-5 *2 (-706)) (-5 *1 (-1116 *3)) (-4 *3 (-1118))))
+ (-12 (-5 *2 (-756 *4)) (-4 *4 (-784)) (-4 *1 (-1180 *4 *3))
+ (-4 *3 (-970)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-970))
+ (-4 *2 (-13 (-378) (-961 *4) (-337) (-1105) (-259)))
+ (-5 *1 (-416 *4 *3 *2)) (-4 *3 (-1141 *4))))
+ ((*1 *1 *1) (-4 *1 (-506)))
+ ((*1 *2 *1) (-12 (-5 *2 (-850)) (-5 *1 (-612 *3)) (-4 *3 (-784))))
+ ((*1 *2 *1) (-12 (-5 *2 (-850)) (-5 *1 (-616 *3)) (-4 *3 (-784))))
+ ((*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-756 *3)) (-4 *3 (-784))))
+ ((*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-822 *3)) (-4 *3 (-784))))
+ ((*1 *2 *1) (-12 (-4 *1 (-920 *3)) (-4 *3 (-1119)) (-5 *2 (-707))))
+ ((*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-1117 *3)) (-4 *3 (-1119))))
((*1 *2 *1)
- (-12 (-4 *1 (-1162 *2)) (-4 *2 (-1118)) (-4 *2 (-926))
- (-4 *2 (-969)))))
-(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-1131 (-520))))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-901 *3 *4 *2 *5)) (-4 *3 (-969)) (-4 *4 (-728))
- (-4 *2 (-783)) (-4 *5 (-983 *3 *4 *2)))))
+ (-12 (-4 *1 (-1163 *2)) (-4 *2 (-1119)) (-4 *2 (-927))
+ (-4 *2 (-970)))))
+(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-1132 (-521))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-872 *5)) (-4 *5 (-970)) (-5 *2 (-707))
+ (-5 *1 (-1073 *4 *5)) (-14 *4 (-850))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-587 (-707))) (-5 *3 (-707)) (-5 *1 (-1073 *4 *5))
+ (-14 *4 (-850)) (-4 *5 (-970))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-587 (-707))) (-5 *3 (-872 *5)) (-4 *5 (-970))
+ (-5 *1 (-1073 *4 *5)) (-14 *4 (-850)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1080 *1)) (-4 *1 (-425))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1080 *6)) (-4 *6 (-878 *5 *3 *4)) (-4 *3 (-729))
+ (-4 *4 (-784)) (-4 *5 (-838)) (-5 *1 (-430 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1080 *1)) (-4 *1 (-838)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-521)) (-5 *2 (-108)) (-5 *1 (-510)))))
+(((*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1119)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-587 (-872 *4))) (-5 *1 (-1073 *3 *4)) (-14 *3 (-850))
+ (-4 *4 (-970)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-586 (-520))) (-5 *2 (-832 (-520))) (-5 *1 (-845))))
- ((*1 *2) (-12 (-5 *2 (-832 (-520))) (-5 *1 (-845)))))
-(((*1 *2 *3 *3 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-1 (-201) (-201) (-201)))
- (-5 *4 (-3 (-1 (-201) (-201) (-201) (-201)) "undefined"))
- (-5 *5 (-1007 (-201))) (-5 *6 (-586 (-238))) (-5 *2 (-1043 (-201)))
- (-5 *1 (-633))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-871 (-201)) (-201) (-201))) (-5 *4 (-1007 (-201)))
- (-5 *5 (-586 (-238))) (-5 *2 (-1043 (-201))) (-5 *1 (-633))))
- ((*1 *2 *2 *3 *4 *4 *5)
- (-12 (-5 *2 (-1043 (-201))) (-5 *3 (-1 (-871 (-201)) (-201) (-201)))
- (-5 *4 (-1007 (-201))) (-5 *5 (-586 (-238))) (-5 *1 (-633)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1083)) (-5 *5 (-586 *3))
- (-4 *3 (-13 (-27) (-1104) (-403 *6)))
- (-4 *6 (-13 (-424) (-783) (-135) (-960 (-520)) (-582 (-520))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-586 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-513 *6 *3)))))
-(((*1 *2 *1) (-12 (-4 *3 (-969)) (-5 *2 (-586 *1)) (-4 *1 (-1044 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-586 *8)) (-5 *4 (-586 *7)) (-4 *7 (-783))
- (-4 *8 (-877 *5 *6 *7)) (-4 *5 (-512)) (-4 *6 (-728))
+ (-12 (-5 *3 (-269 (-881 (-521))))
(-5 *2
- (-2 (|:| |particular| (-3 (-1164 (-380 *8)) "failed"))
- (|:| -1831 (-586 (-1164 (-380 *8))))))
- (-5 *1 (-609 *5 *6 *7 *8)))))
-(((*1 *2 *2 *3 *4 *4)
- (-12 (-5 *4 (-520)) (-4 *3 (-157)) (-4 *5 (-346 *3))
- (-4 *6 (-346 *3)) (-5 *1 (-625 *3 *5 *6 *2))
- (-4 *2 (-624 *3 *5 *6)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-108) *6 *6)) (-4 *6 (-783)) (-5 *4 (-586 *6))
- (-5 *2 (-2 (|:| |fs| (-108)) (|:| |sd| *4) (|:| |td| (-586 *4))))
- (-5 *1 (-1090 *6)) (-5 *5 (-586 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012))
- (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-108)))))
-(((*1 *2 *3 *4 *4 *5 *6)
- (-12 (-5 *3 (-586 (-586 (-871 (-201))))) (-5 *4 (-802))
- (-5 *5 (-849)) (-5 *6 (-586 (-238))) (-5 *2 (-440)) (-5 *1 (-1168))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-586 (-586 (-871 (-201))))) (-5 *2 (-440))
- (-5 *1 (-1168))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-586 (-586 (-871 (-201))))) (-5 *4 (-586 (-238)))
- (-5 *2 (-440)) (-5 *1 (-1168)))))
-(((*1 *2 *1 *1 *3)
- (-12 (-5 *3 (-1 (-108) *5 *5)) (-4 *5 (-13 (-1012) (-33)))
- (-5 *2 (-108)) (-5 *1 (-1048 *4 *5)) (-4 *4 (-13 (-1012) (-33))))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-892 *3)) (-4 *3 (-893)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-758)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-125)) (-5 *3 (-706)) (-5 *2 (-1169)))))
-(((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-626 (-201))) (-5 *4 (-520)) (-5 *2 (-958))
- (-5 *1 (-691)))))
+ (-2 (|:| |varOrder| (-587 (-1084)))
+ (|:| |inhom| (-3 (-587 (-1165 (-707))) "failed"))
+ (|:| |hom| (-587 (-1165 (-707))))))
+ (-5 *1 (-213)))))
+(((*1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-636))))
+ ((*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-636)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-969)) (-5 *1 (-648 *3 *2)) (-4 *2 (-1140 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-586 (-1088))) (-5 *1 (-1088)))))
-(((*1 *2 *1) (-12 (-4 *1 (-229 *2)) (-4 *2 (-1118)))))
+ (-12 (-4 *3 (-13 (-784) (-425))) (-5 *1 (-1111 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-1105))))))
+(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-301 *3)) (-4 *3 (-1119))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-108)) (-5 *1 (-484 *3 *4)) (-4 *3 (-1119))
+ (-14 *4 (-521)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1165 *4)) (-5 *3 (-707)) (-4 *4 (-323))
+ (-5 *1 (-491 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-233)))))
+(((*1 *2 *3) (-12 (-5 *2 (-381 (-521))) (-5 *1 (-518)) (-5 *3 (-521)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-297 *3 *4)) (-4 *3 (-1013))
+ (-4 *4 (-124))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1013)) (-5 *1 (-335 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1013)) (-5 *1 (-360 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1013)) (-5 *1 (-590 *3 *4 *5))
+ (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1084)) (-5 *4 (-881 (-521))) (-5 *2 (-304))
+ (-5 *1 (-306)))))
+(((*1 *1 *1 *1) (-5 *1 (-792))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-707)) (-4 *4 (-323)) (-5 *1 (-194 *4 *2))
+ (-4 *2 (-1141 *4)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-387 *3 *4 *5 *6)) (-4 *6 (-961 *4)) (-4 *3 (-282))
+ (-4 *4 (-918 *3)) (-4 *5 (-1141 *4)) (-4 *6 (-383 *4 *5))
+ (-14 *7 (-1165 *6)) (-5 *1 (-388 *3 *4 *5 *6 *7))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1165 *6)) (-4 *6 (-383 *4 *5)) (-4 *4 (-918 *3))
+ (-4 *5 (-1141 *4)) (-4 *3 (-282)) (-5 *1 (-388 *3 *4 *5 *6 *7))
+ (-14 *7 *2))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-587 (-521))) (-5 *1 (-1023)) (-5 *3 (-521)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-586 *2)) (-4 *2 (-403 *4)) (-5 *1 (-144 *4 *2))
- (-4 *4 (-13 (-783) (-512))))))
+ (-12 (-5 *3 (-587 (-2 (|:| -3430 *4) (|:| -1758 (-521)))))
+ (-4 *4 (-1013)) (-5 *2 (-1 *4)) (-5 *1 (-942 *4)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1167)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-301 *3)) (-4 *3 (-1119))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-521)) (-5 *1 (-484 *3 *4)) (-4 *3 (-1119)) (-14 *4 *2))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-381 (-521))) (-4 *5 (-729)) (-4 *6 (-784))
+ (-4 *7 (-513)) (-4 *8 (-878 *7 *5 *6))
+ (-5 *2 (-2 (|:| -2997 (-707)) (|:| -2973 *9) (|:| |radicand| *9)))
+ (-5 *1 (-882 *5 *6 *7 *8 *9)) (-5 *4 (-707))
+ (-4 *9
+ (-13 (-337)
+ (-10 -8 (-15 -2801 (*8 $)) (-15 -2812 (*8 $)) (-15 -2189 ($ *8))))))))
+(((*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-143)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2))
- (-4 *2 (-13 (-403 *3) (-926))))))
-(((*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-791)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-472 (-380 (-520)) (-216 *5 (-706)) (-793 *4)
- (-223 *4 (-380 (-520)))))
- (-14 *4 (-586 (-1083))) (-14 *5 (-706)) (-5 *2 (-108))
- (-5 *1 (-473 *4 *5)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-706)) (-4 *6 (-336)) (-5 *4 (-1113 *6))
- (-5 *2 (-1 (-1064 *4) (-1064 *4))) (-5 *1 (-1172 *6))
- (-5 *5 (-1064 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-820 *4)) (-4 *4 (-1012)) (-5 *2 (-586 *5))
- (-5 *1 (-818 *4 *5)) (-4 *5 (-1118)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-380 (-520))) (-5 *1 (-947 *3))
- (-4 *3 (-13 (-781) (-336) (-945)))))
- ((*1 *2 *3 *1 *2)
- (-12 (-4 *2 (-13 (-781) (-336))) (-5 *1 (-979 *2 *3))
- (-4 *3 (-1140 *2))))
- ((*1 *2 *3 *1 *2)
- (-12 (-4 *1 (-985 *2 *3)) (-4 *2 (-13 (-781) (-336)))
- (-4 *3 (-1140 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-758)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1064 *2)) (-4 *2 (-281)) (-5 *1 (-158 *2)))))
+ (-12 (-4 *3 (-13 (-784) (-425))) (-5 *1 (-1111 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-1105))))))
(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1126 *3 *2)) (-4 *3 (-969))
- (-4 *2 (-1155 *3)))))
+ (-12
+ (-5 *2
+ (-587
+ (-2
+ (|:| -2529
+ (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202)))
+ (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202))
+ (|:| |relerr| (-202))))
+ (|:| -3045
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1065 (-202)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -2442
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite|
+ "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated"))))))))
+ (-5 *1 (-516))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-554 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1119))
+ (-5 *2 (-587 *4)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-33)) (-5 *2 (-108)))))
+(((*1 *1) (-5 *1 (-760))))
(((*1 *2 *2 *2 *3 *4)
- (-12 (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-969))
- (-5 *1 (-786 *5 *2)) (-4 *2 (-785 *5)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-988 *4 *5 *6 *3)) (-4 *4 (-424)) (-4 *5 (-728))
- (-4 *6 (-783)) (-4 *3 (-983 *4 *5 *6)) (-5 *2 (-108))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783))
- (-4 *3 (-983 *4 *5 *6))
- (-5 *2 (-586 (-2 (|:| |val| (-108)) (|:| -1883 *1))))
- (-4 *1 (-988 *4 *5 *6 *3)))))
+ (-12 (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-970))
+ (-5 *1 (-787 *5 *2)) (-4 *2 (-786 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-201)) (-5 *4 (-520)) (-5 *2 (-958)) (-5 *1 (-694)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-626 *7)) (-5 *3 (-586 *7)) (-4 *7 (-877 *4 *6 *5))
- (-4 *4 (-13 (-281) (-135))) (-4 *5 (-13 (-783) (-561 (-1083))))
- (-4 *6 (-728)) (-5 *1 (-852 *4 *5 *6 *7)))))
-(((*1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-417 *3)) (-4 *3 (-969)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-908 *2)) (-4 *2 (-1104)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2))
- (-4 *2 (-13 (-403 *3) (-926))))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4230)) (-4 *1 (-115 *2)) (-4 *2 (-1118)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-586 (-201))) (-5 *2 (-1164 (-635))) (-5 *1 (-279)))))
-(((*1 *2 *2) (-12 (-5 *2 (-586 *3)) (-4 *3 (-781)) (-5 *1 (-277 *3)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-336)) (-4 *3 (-969))
- (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1382 *1)))
- (-4 *1 (-785 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-849)) (-5 *1 (-330 *3)) (-4 *3 (-322)))))
-(((*1 *1 *1)
- (|partial| -12 (-4 *1 (-340 *2)) (-4 *2 (-157)) (-4 *2 (-512))))
- ((*1 *1 *1) (|partial| -4 *1 (-658))))
-(((*1 *2 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-1169)) (-5 *1 (-534)))))
+ (-12 (-5 *3 (-627 (-381 (-521)))) (-5 *2 (-587 *4)) (-5 *1 (-715 *4))
+ (-4 *4 (-13 (-337) (-782))))))
+(((*1 *2)
+ (-12 (-5 *2 (-108)) (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521))))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-850)) (-5 *4 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1166)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-408)))))
(((*1 *2 *3 *4)
- (-12 (-5 *2 (-586 (-154 *4))) (-5 *1 (-142 *3 *4))
- (-4 *3 (-1140 (-154 (-520)))) (-4 *4 (-13 (-336) (-781)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-336) (-781))) (-5 *2 (-586 (-154 *4)))
- (-5 *1 (-164 *4 *3)) (-4 *3 (-1140 (-154 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-336) (-781))) (-5 *2 (-586 (-154 *4)))
- (-5 *1 (-164 *4 *3)) (-4 *3 (-1140 (-154 *4))))))
-(((*1 *2 *1 *3 *3 *4 *4)
- (-12 (-5 *3 (-706)) (-5 *4 (-849)) (-5 *2 (-1169)) (-5 *1 (-1165))))
- ((*1 *2 *1 *3 *3 *4 *4)
- (-12 (-5 *3 (-706)) (-5 *4 (-849)) (-5 *2 (-1169)) (-5 *1 (-1166)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-201)) (-5 *1 (-30))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-391 *4) *4)) (-4 *4 (-512)) (-5 *2 (-391 *4))
- (-5 *1 (-392 *4))))
- ((*1 *1 *1) (-5 *1 (-854)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1007 (-201))) (-5 *1 (-854))))
- ((*1 *1 *1) (-5 *1 (-855)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1007 (-201))) (-5 *1 (-855))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520)))))
- (-5 *4 (-380 (-520))) (-5 *1 (-943 *3)) (-4 *3 (-1140 (-520)))))
- ((*1 *2 *3 *2 *2)
- (|partial| -12
- (-5 *2 (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520)))))
- (-5 *1 (-943 *3)) (-4 *3 (-1140 (-520)))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520)))))
- (-5 *4 (-380 (-520))) (-5 *1 (-944 *3)) (-4 *3 (-1140 *4))))
- ((*1 *2 *3 *2 *2)
- (|partial| -12
- (-5 *2 (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520)))))
- (-5 *1 (-944 *3)) (-4 *3 (-1140 (-380 (-520))))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-13 (-781) (-336))) (-5 *1 (-979 *2 *3))
- (-4 *3 (-1140 *2)))))
-(((*1 *1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1083)) (-5 *3 (-108)) (-5 *1 (-820 *4))
- (-4 *4 (-1012)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5)
- (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201)))
- (-5 *5 (-3 (|:| |fn| (-361)) (|:| |fp| (-64 FUNCT1))))
- (-5 *2 (-958)) (-5 *1 (-689)))))
-(((*1 *1 *2 *2 *2)
- (-12 (-5 *1 (-203 *2)) (-4 *2 (-13 (-336) (-1104)))))
- ((*1 *2 *1 *3 *4 *4)
- (-12 (-5 *3 (-849)) (-5 *4 (-352)) (-5 *2 (-1169)) (-5 *1 (-1165))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-352)) (-5 *2 (-1169)) (-5 *1 (-1166)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-783)) (-5 *2 (-586 (-586 *4))) (-5 *1 (-1090 *4))
- (-5 *3 (-586 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-586 (-159))) (-5 *1 (-999)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-1169)) (-5 *1 (-1166)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-289 *3)) (-4 *3 (-13 (-969) (-783)))
- (-5 *1 (-199 *3 *4)) (-14 *4 (-586 (-1083))))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-132)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-520)) (-4 *1 (-55 *4 *5 *2)) (-4 *4 (-1118))
- (-4 *5 (-346 *4)) (-4 *2 (-346 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-520)) (-4 *1 (-972 *4 *5 *6 *7 *2)) (-4 *6 (-969))
- (-4 *7 (-214 *5 *6)) (-4 *2 (-214 *4 *6)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-877 *3 *5 *4)) (-5 *1 (-912 *3 *4 *5 *2))
- (-4 *3 (-424)) (-4 *4 (-783)) (-4 *5 (-728)))))
-(((*1 *1 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157)) (-4 *2 (-978))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-312 *2 *3 *4)) (-14 *2 (-586 (-1083)))
- (-14 *3 (-586 (-1083))) (-4 *4 (-360))))
+ (-12 (-5 *3 (-154 (-202))) (-5 *4 (-521)) (-5 *2 (-959))
+ (-5 *1 (-695)))))
+(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8)
+ (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *5 (-108))
+ (-5 *6 (-202)) (-5 *7 (-3 (|:| |fn| (-362)) (|:| |fp| (-66 APROD))))
+ (-5 *8 (-3 (|:| |fn| (-362)) (|:| |fp| (-71 MSOLVE))))
+ (-5 *2 (-959)) (-5 *1 (-693)))))
+(((*1 *2)
+ (-12 (-5 *2 (-707)) (-5 *1 (-116 *3)) (-4 *3 (-1141 (-521)))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-404 *3 *2))
- (-4 *2 (-403 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-733 *2)) (-4 *2 (-157)) (-4 *2 (-978))))
- ((*1 *1 *1) (-4 *1 (-781)))
- ((*1 *2 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-157)) (-4 *2 (-978))))
- ((*1 *1 *1) (-4 *1 (-978))) ((*1 *1 *1) (-4 *1 (-1047))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-520) (-520))) (-5 *1 (-334 *3)) (-4 *3 (-1012))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-706) (-706))) (-5 *1 (-359 *3)) (-4 *3 (-1012))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4)
- (-5 *1 (-589 *3 *4 *5)) (-4 *3 (-1012)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-1169)) (-5 *1 (-217))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-586 (-1066))) (-5 *2 (-1169)) (-5 *1 (-217)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-336)) (-4 *3 (-969))
- (-5 *2 (-2 (|:| -2060 *1) (|:| -3753 *1))) (-4 *1 (-785 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-94 *5)) (-4 *5 (-336)) (-4 *5 (-969))
- (-5 *2 (-2 (|:| -2060 *3) (|:| -3753 *3))) (-5 *1 (-786 *5 *3))
- (-4 *3 (-785 *5)))))
-(((*1 *2 *3 *4 *4 *5)
- (|partial| -12 (-5 *4 (-559 *3)) (-5 *5 (-586 *3))
- (-4 *3 (-13 (-403 *6) (-27) (-1104)))
- (-4 *6 (-13 (-424) (-960 (-520)) (-783) (-135) (-582 (-520))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-586 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-522 *6 *3 *7)) (-4 *7 (-1012)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-336) (-10 -8 (-15 ** ($ $ (-380 (-520)))))))
- (-5 *2 (-586 *4)) (-5 *1 (-1038 *3 *4)) (-4 *3 (-1140 *4))))
- ((*1 *2 *3 *3 *3 *3)
- (-12 (-4 *3 (-13 (-336) (-10 -8 (-15 ** ($ $ (-380 (-520)))))))
- (-5 *2 (-586 *3)) (-5 *1 (-1038 *4 *3)) (-4 *4 (-1140 *3)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-880 (-154 *4))) (-4 *4 (-157))
- (-4 *4 (-561 (-352))) (-5 *2 (-154 (-352))) (-5 *1 (-720 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-880 (-154 *5))) (-5 *4 (-849)) (-4 *5 (-157))
- (-4 *5 (-561 (-352))) (-5 *2 (-154 (-352))) (-5 *1 (-720 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-880 *4)) (-4 *4 (-969)) (-4 *4 (-561 (-352)))
- (-5 *2 (-154 (-352))) (-5 *1 (-720 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-880 *5)) (-5 *4 (-849)) (-4 *5 (-969))
- (-4 *5 (-561 (-352))) (-5 *2 (-154 (-352))) (-5 *1 (-720 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-380 (-880 *4))) (-4 *4 (-512))
- (-4 *4 (-561 (-352))) (-5 *2 (-154 (-352))) (-5 *1 (-720 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-380 (-880 *5))) (-5 *4 (-849)) (-4 *5 (-512))
- (-4 *5 (-561 (-352))) (-5 *2 (-154 (-352))) (-5 *1 (-720 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-380 (-880 (-154 *4)))) (-4 *4 (-512))
- (-4 *4 (-561 (-352))) (-5 *2 (-154 (-352))) (-5 *1 (-720 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-380 (-880 (-154 *5)))) (-5 *4 (-849))
- (-4 *5 (-512)) (-4 *5 (-561 (-352))) (-5 *2 (-154 (-352)))
- (-5 *1 (-720 *5))))
+ (-12 (-5 *2 (-707)) (-5 *1 (-116 *3)) (-4 *3 (-1141 (-521))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-290 (-202))) (-5 *4 (-1084))
+ (-5 *5 (-1008 (-777 (-202)))) (-5 *2 (-587 (-202))) (-5 *1 (-171))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-290 (-202))) (-5 *4 (-1084))
+ (-5 *5 (-1008 (-777 (-202)))) (-5 *2 (-587 (-202))) (-5 *1 (-275)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-878 *3 *4 *2)) (-4 *3 (-970)) (-4 *4 (-729))
+ (-4 *2 (-784))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-289 *4)) (-4 *4 (-512)) (-4 *4 (-783))
- (-4 *4 (-561 (-352))) (-5 *2 (-154 (-352))) (-5 *1 (-720 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-289 *5)) (-5 *4 (-849)) (-4 *5 (-512))
- (-4 *5 (-783)) (-4 *5 (-561 (-352))) (-5 *2 (-154 (-352)))
- (-5 *1 (-720 *5))))
+ (|partial| -12 (-4 *4 (-729)) (-4 *5 (-970)) (-4 *6 (-878 *5 *4 *2))
+ (-4 *2 (-784)) (-5 *1 (-879 *4 *2 *5 *6 *3))
+ (-4 *3
+ (-13 (-337)
+ (-10 -8 (-15 -2189 ($ *6)) (-15 -2801 (*6 $))
+ (-15 -2812 (*6 $)))))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-289 (-154 *4))) (-4 *4 (-512)) (-4 *4 (-783))
- (-4 *4 (-561 (-352))) (-5 *2 (-154 (-352))) (-5 *1 (-720 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-289 (-154 *5))) (-5 *4 (-849)) (-4 *5 (-512))
- (-4 *5 (-783)) (-4 *5 (-561 (-352))) (-5 *2 (-154 (-352)))
- (-5 *1 (-720 *5)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1 (-871 (-201)) (-871 (-201)))) (-5 *3 (-586 (-238)))
- (-5 *1 (-236))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1 (-871 (-201)) (-871 (-201)))) (-5 *1 (-238))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-586 (-452 *5 *6))) (-5 *3 (-452 *5 *6))
- (-14 *5 (-586 (-1083))) (-4 *6 (-424)) (-5 *2 (-1164 *6))
- (-5 *1 (-574 *5 *6)))))
-(((*1 *2 *3 *4 *3 *5 *3)
- (-12 (-5 *4 (-626 (-201))) (-5 *5 (-626 (-520))) (-5 *3 (-520))
- (-5 *2 (-958)) (-5 *1 (-690)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783))
- (-4 *3 (-983 *5 *6 *7))
- (-5 *2 (-586 (-2 (|:| |val| *3) (|:| -1883 *4))))
- (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-988 *5 *6 *7 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1044 *3)) (-4 *3 (-969)) (-5 *2 (-586 (-156))))))
-(((*1 *1 *1) (-12 (-4 *1 (-229 *2)) (-4 *2 (-1118))))
- ((*1 *1 *1)
- (-12 (|has| *1 (-6 -4230)) (-4 *1 (-346 *2)) (-4 *2 (-1118))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-589 *2 *3 *4)) (-4 *2 (-1012)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *1)
- (-12 (-4 *1 (-377)) (-2399 (|has| *1 (-6 -4220)))
- (-2399 (|has| *1 (-6 -4212)))))
- ((*1 *2 *1) (-12 (-4 *1 (-398 *2)) (-4 *2 (-1012)) (-4 *2 (-783))))
- ((*1 *1 *1 *1) (-4 *1 (-783)))
- ((*1 *2 *1) (-12 (-4 *1 (-894 *2)) (-4 *2 (-783))))
- ((*1 *1) (-5 *1 (-1030))))
-(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4
- *4 *6 *4)
- (-12 (-5 *4 (-520)) (-5 *5 (-626 (-201))) (-5 *6 (-614 (-201)))
- (-5 *3 (-201)) (-5 *2 (-958)) (-5 *1 (-686)))))
-(((*1 *2 *3)
- (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-520))) (-5 *1 (-967)))))
-(((*1 *1 *1) (-12 (-4 *1 (-613 *2)) (-4 *2 (-1118)))))
-(((*1 *1) (-12 (-4 *1 (-398 *2)) (-4 *2 (-341)) (-4 *2 (-1012)))))
+ (|partial| -12 (-5 *3 (-381 (-881 *4))) (-4 *4 (-513))
+ (-5 *2 (-1084)) (-5 *1 (-966 *4)))))
+(((*1 *2)
+ (-12 (-4 *3 (-425)) (-4 *4 (-729)) (-4 *5 (-784))
+ (-4 *6 (-984 *3 *4 *5)) (-5 *2 (-1170))
+ (-5 *1 (-990 *3 *4 *5 *6 *7)) (-4 *7 (-989 *3 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *3 (-425)) (-4 *4 (-729)) (-4 *5 (-784))
+ (-4 *6 (-984 *3 *4 *5)) (-5 *2 (-1170))
+ (-5 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *7 (-989 *3 *4 *5 *6)))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-587 (-627 *6))) (-5 *4 (-108)) (-5 *5 (-521))
+ (-5 *2 (-627 *6)) (-5 *1 (-953 *6)) (-4 *6 (-337)) (-4 *6 (-970))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-587 (-627 *4))) (-5 *2 (-627 *4)) (-5 *1 (-953 *4))
+ (-4 *4 (-337)) (-4 *4 (-970))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-587 (-627 *5))) (-5 *4 (-521)) (-5 *2 (-627 *5))
+ (-5 *1 (-953 *5)) (-4 *5 (-337)) (-4 *5 (-970)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1118)) (-5 *2 (-706)) (-5 *1 (-165 *4 *3))
- (-4 *3 (-613 *4)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *2 (-958))
- (-5 *1 (-688)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1066)) (-5 *1 (-1088))))
- ((*1 *2 *1) (-12 (-5 *2 (-1083)) (-5 *1 (-1088))))
- ((*1 *2 *1) (-12 (-5 *2 (-201)) (-5 *1 (-1088))))
- ((*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-1088)))))
-(((*1 *2 *1) (-12 (-4 *3 (-1118)) (-5 *2 (-586 *1)) (-4 *1 (-934 *3))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-586 (-1072 *3 *4))) (-5 *1 (-1072 *3 *4))
- (-14 *3 (-849)) (-4 *4 (-969)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-586 (-626 *4))) (-5 *2 (-626 *4)) (-4 *4 (-969))
- (-5 *1 (-952 *4)))))
-(((*1 *2 *3 *4 *4 *3 *3 *5)
- (|partial| -12 (-5 *4 (-559 *3)) (-5 *5 (-1079 *3))
- (-4 *3 (-13 (-403 *6) (-27) (-1104)))
- (-4 *6 (-13 (-424) (-960 (-520)) (-783) (-135) (-582 (-520))))
- (-5 *2 (-2 (|:| -4016 *3) (|:| |coeff| *3)))
- (-5 *1 (-516 *6 *3 *7)) (-4 *7 (-1012))))
- ((*1 *2 *3 *4 *4 *3 *4 *3 *5)
- (|partial| -12 (-5 *4 (-559 *3)) (-5 *5 (-380 (-1079 *3)))
- (-4 *3 (-13 (-403 *6) (-27) (-1104)))
- (-4 *6 (-13 (-424) (-960 (-520)) (-783) (-135) (-582 (-520))))
- (-5 *2 (-2 (|:| -4016 *3) (|:| |coeff| *3)))
- (-5 *1 (-516 *6 *3 *7)) (-4 *7 (-1012)))))
+ (-12 (-5 *3 (-521)) (-4 *4 (-1141 (-381 *3))) (-5 *2 (-850))
+ (-5 *1 (-842 *4 *5)) (-4 *5 (-1141 (-381 *4))))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729))
+ (-4 *4 (-784)) (-4 *2 (-425)))))
(((*1 *2)
- (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-339 *3 *4))
- (-4 *3 (-340 *4))))
- ((*1 *2) (-12 (-4 *1 (-340 *3)) (-4 *3 (-157)) (-5 *2 (-108)))))
+ (-12 (-4 *3 (-13 (-784) (-513) (-961 (-521)))) (-5 *2 (-1170))
+ (-5 *1 (-407 *3 *4)) (-4 *4 (-404 *3)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-1072 *2 *3)) (-14 *2 (-849)) (-4 *3 (-969)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-559 *5)) (-4 *5 (-403 *4)) (-4 *4 (-960 (-520)))
- (-4 *4 (-13 (-783) (-512))) (-5 *2 (-1079 *5)) (-5 *1 (-31 *4 *5))))
+ (-12 (-5 *1 (-1073 *2 *3)) (-14 *2 (-850)) (-4 *3 (-970)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1165 *4)) (-4 *4 (-391 *3)) (-4 *3 (-282))
+ (-4 *3 (-513)) (-5 *1 (-42 *3 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-850)) (-4 *4 (-337)) (-5 *2 (-1165 *1))
+ (-4 *1 (-303 *4))))
+ ((*1 *2) (-12 (-4 *3 (-337)) (-5 *2 (-1165 *1)) (-4 *1 (-303 *3))))
+ ((*1 *2)
+ (-12 (-4 *3 (-157)) (-4 *4 (-1141 *3)) (-5 *2 (-1165 *1))
+ (-4 *1 (-383 *3 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-282)) (-4 *4 (-918 *3)) (-4 *5 (-1141 *4))
+ (-5 *2 (-1165 *6)) (-5 *1 (-387 *3 *4 *5 *6))
+ (-4 *6 (-13 (-383 *4 *5) (-961 *4)))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-282)) (-4 *4 (-918 *3)) (-4 *5 (-1141 *4))
+ (-5 *2 (-1165 *6)) (-5 *1 (-388 *3 *4 *5 *6 *7))
+ (-4 *6 (-383 *4 *5)) (-14 *7 *2)))
+ ((*1 *2) (-12 (-4 *3 (-157)) (-5 *2 (-1165 *1)) (-4 *1 (-391 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-559 *1)) (-4 *1 (-969)) (-4 *1 (-276))
- (-5 *2 (-1079 *1)))))
+ (-12 (-5 *3 (-850)) (-5 *2 (-1165 (-1165 *4))) (-5 *1 (-491 *4))
+ (-4 *4 (-323)))))
+(((*1 *2 *3 *4 *3 *4 *3)
+ (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959))
+ (-5 *1 (-693)))))
+(((*1 *1 *1) (-12 (-4 *1 (-257 *2)) (-4 *2 (-1119)) (-4 *2 (-1013))))
+ ((*1 *1 *1) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1013)))))
+(((*1 *1 *2 *2 *2)
+ (-12 (-5 *1 (-204 *2)) (-4 *2 (-13 (-337) (-1105)))))
+ ((*1 *2 *1 *3 *4 *4)
+ (-12 (-5 *3 (-850)) (-5 *4 (-353)) (-5 *2 (-1170)) (-5 *1 (-1166))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-353)) (-5 *2 (-1170)) (-5 *1 (-1167)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-355 *3 *4)) (-4 *3 (-969)) (-4 *4 (-1012))
- (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-611 *3)) (-4 *3 (-783)) (-4 *1 (-347 *3 *4))
- (-4 *4 (-157)))))
-(((*1 *2 *2 *3)
+ (-12 (-4 *1 (-902 *3 *4 *5 *6)) (-4 *3 (-970)) (-4 *4 (-729))
+ (-4 *5 (-784)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-513))
+ (-5 *2 (-108)))))
+(((*1 *1 *2) (-12 (-5 *2 (-587 (-792))) (-5 *1 (-792)))))
+(((*1 *1 *1 *1) (-4 *1 (-698))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))))
+(((*1 *2 *2)
(-12
(-5 *2
- (-2 (|:| |partsol| (-1164 (-380 (-880 *4))))
- (|:| -1831 (-586 (-1164 (-380 (-880 *4)))))))
- (-5 *3 (-586 *7)) (-4 *4 (-13 (-281) (-135)))
- (-4 *7 (-877 *4 *6 *5)) (-4 *5 (-13 (-783) (-561 (-1083))))
- (-4 *6 (-728)) (-5 *1 (-852 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-4 *1 (-340 *3)) (-4 *3 (-157)) (-5 *2 (-1079 *3)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-586 *1)) (-4 *1 (-983 *4 *5 *6)) (-4 *4 (-969))
- (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-108))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-983 *3 *4 *5)) (-4 *3 (-969)) (-4 *4 (-728))
- (-4 *5 (-783)) (-5 *2 (-108))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1112 *3 *4 *5 *6)) (-4 *3 (-512)) (-4 *4 (-728))
- (-4 *5 (-783)) (-4 *6 (-983 *3 *4 *5)) (-5 *2 (-108))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1112 *4 *5 *6 *3)) (-4 *4 (-512)) (-4 *5 (-728))
- (-4 *6 (-783)) (-4 *3 (-983 *4 *5 *6)) (-5 *2 (-108)))))
-(((*1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-855)))))
-(((*1 *1 *1 *1) (-5 *1 (-791))))
-(((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-626 *3)) (-4 *3 (-969)) (-5 *1 (-627 *3)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-586 *6)) (-4 *6 (-783)) (-4 *4 (-336)) (-4 *5 (-728))
- (-5 *1 (-472 *4 *5 *6 *2)) (-4 *2 (-877 *4 *5 *6))))
- ((*1 *1 *1 *2)
- (-12 (-4 *3 (-336)) (-4 *4 (-728)) (-4 *5 (-783))
- (-5 *1 (-472 *3 *4 *5 *2)) (-4 *2 (-877 *3 *4 *5)))))
+ (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202)))
+ (|:| |lb| (-587 (-777 (-202)))) (|:| |cf| (-587 (-290 (-202))))
+ (|:| |ub| (-587 (-777 (-202))))))
+ (-5 *1 (-243)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-108)) (-5 *1 (-1049 *3 *4)) (-4 *3 (-13 (-1013) (-33)))
+ (-4 *4 (-13 (-1013) (-33))))))
+(((*1 *2 *3) (-12 (-5 *3 (-872 *2)) (-5 *1 (-908 *2)) (-4 *2 (-970)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-586 *7)) (-4 *7 (-877 *4 *6 *5))
- (-4 *4 (-13 (-281) (-135))) (-4 *5 (-13 (-783) (-561 (-1083))))
- (-4 *6 (-728)) (-5 *2 (-108)) (-5 *1 (-852 *4 *5 *6 *7))))
+ (-12 (-5 *2 (-1080 (-521))) (-5 *1 (-871)) (-5 *3 (-521))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-282)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3))
+ (-5 *1 (-1035 *3 *4 *5 *2)) (-4 *2 (-625 *3 *4 *5)))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959))
+ (-5 *1 (-692)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-218))))
((*1 *2 *3)
- (-12 (-5 *3 (-586 (-880 *4))) (-4 *4 (-13 (-281) (-135)))
- (-4 *5 (-13 (-783) (-561 (-1083)))) (-4 *6 (-728)) (-5 *2 (-108))
- (-5 *1 (-852 *4 *5 *6 *7)) (-4 *7 (-877 *4 *6 *5)))))
-(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4229)) (-4 *1 (-459 *3)) (-4 *3 (-1118))
- (-4 *3 (-1012)) (-5 *2 (-108))))
+ (-12 (-5 *3 (-587 (-1067))) (-5 *2 (-1170)) (-5 *1 (-218)))))
+(((*1 *2)
+ (-12 (-5 *2 (-2 (|:| -3984 (-587 *3)) (|:| -2195 (-587 *3))))
+ (-5 *1 (-1120 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959))
+ (-5 *1 (-692)))))
+(((*1 *1 *2) (-12 (-5 *2 (-587 (-792))) (-5 *1 (-792)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-627 *4)) (-5 *3 (-850)) (|has| *4 (-6 (-4235 "*")))
+ (-4 *4 (-970)) (-5 *1 (-952 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-587 (-627 *4))) (-5 *3 (-850))
+ (|has| *4 (-6 (-4235 "*"))) (-4 *4 (-970)) (-5 *1 (-952 *4)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1084)) (-5 *4 (-881 (-521))) (-5 *2 (-304))
+ (-5 *1 (-306))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1084)) (-5 *4 (-1006 (-881 (-521)))) (-5 *2 (-304))
+ (-5 *1 (-306))))
+ ((*1 *1 *2 *2 *2)
+ (-12 (-5 *2 (-707)) (-5 *1 (-615 *3)) (-4 *3 (-970)) (-4 *3 (-1013)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-4 *1 (-1141 *3)) (-4 *3 (-970)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-707)) (-4 *4 (-513)) (-5 *1 (-896 *4 *2))
+ (-4 *2 (-1141 *4)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-627 *3)) (-4 *3 (-970)) (-5 *1 (-628 *3)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-158 *3)) (-4 *3 (-282))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-4 *1 (-614 *3)) (-4 *3 (-1119))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-707)) (-4 *1 (-677 *3 *4)) (-4 *3 (-970))
+ (-4 *4 (-784))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-798 *3)) (-5 *2 (-521))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-587 *3)) (-4 *1 (-906 *3)) (-4 *3 (-970))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-587 *1)) (-5 *3 (-587 *7)) (-4 *1 (-989 *4 *5 *6 *7))
+ (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784))
+ (-4 *7 (-984 *4 *5 *6))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-833 *4)) (-4 *4 (-1012)) (-5 *2 (-108))
- (-5 *1 (-832 *4))))
+ (-12 (-5 *3 (-587 *7)) (-4 *7 (-984 *4 *5 *6)) (-4 *4 (-425))
+ (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-587 *1))
+ (-4 *1 (-989 *4 *5 *6 *7))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-587 *1)) (-4 *1 (-989 *4 *5 *6 *3)) (-4 *4 (-425))
+ (-4 *5 (-729)) (-4 *6 (-784)) (-4 *3 (-984 *4 *5 *6))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-849)) (-5 *2 (-108)) (-5 *1 (-1013 *4 *5)) (-14 *4 *3)
- (-14 *5 *3))))
+ (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784))
+ (-4 *3 (-984 *4 *5 *6)) (-5 *2 (-587 *1))
+ (-4 *1 (-989 *4 *5 *6 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1113 *3 *4 *5 *2)) (-4 *3 (-513)) (-4 *4 (-729))
+ (-4 *5 (-784)) (-4 *2 (-984 *3 *4 *5))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1143 *3 *2)) (-4 *3 (-970)) (-4 *2 (-728)))))
+(((*1 *1)
+ (-12 (-4 *1 (-378)) (-2400 (|has| *1 (-6 -4224)))
+ (-2400 (|has| *1 (-6 -4216)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-399 *2)) (-4 *2 (-1013)) (-4 *2 (-784))))
+ ((*1 *1 *1 *1) (-4 *1 (-784)))
+ ((*1 *2 *1) (-12 (-4 *1 (-895 *2)) (-4 *2 (-784))))
+ ((*1 *1) (-5 *1 (-1031))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-513) (-784))) (-5 *2 (-154 *5))
+ (-5 *1 (-550 *4 *5 *3)) (-4 *5 (-13 (-404 *4) (-927) (-1105)))
+ (-4 *3 (-13 (-404 (-154 *4)) (-927) (-1105))))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-381 *4)) (-4 *4 (-1141 *3))
+ (-4 *3 (-13 (-337) (-135) (-961 (-521)))) (-5 *1 (-525 *3 *4)))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-587 (-881 *6))) (-5 *4 (-587 (-1084))) (-4 *6 (-425))
+ (-5 *2 (-587 (-587 *7))) (-5 *1 (-499 *6 *7 *5)) (-4 *7 (-337))
+ (-4 *5 (-13 (-337) (-782))))))
+(((*1 *1 *2) (-12 (-5 *2 (-587 (-1008 (-381 (-521))))) (-5 *1 (-239))))
+ ((*1 *1 *2) (-12 (-5 *2 (-587 (-1008 (-353)))) (-5 *1 (-239)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-587 (-521))) (-5 *2 (-833 (-521))) (-5 *1 (-846))))
+ ((*1 *2) (-12 (-5 *2 (-833 (-521))) (-5 *1 (-846)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-1089))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-1089))))
+ ((*1 *2 *1) (-12 (-5 *2 (-202)) (-5 *1 (-1089))))
+ ((*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-1089)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-587 (-2 (|:| |k| (-612 *3)) (|:| |c| *4))))
+ (-5 *1 (-571 *3 *4 *5)) (-4 *3 (-784))
+ (-4 *4 (-13 (-157) (-654 (-381 (-521))))) (-14 *5 (-850)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-587 (-1106 *3))) (-5 *1 (-1106 *3)) (-4 *3 (-1013)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1031)) (-5 *1 (-758)))))
(((*1 *2)
- (-12 (-4 *3 (-969)) (-5 *2 (-885 (-648 *3 *4))) (-5 *1 (-648 *3 *4))
- (-4 *4 (-1140 *3)))))
+ (-12 (-5 *2 (-108)) (-5 *1 (-1097 *3 *4)) (-4 *3 (-1013))
+ (-4 *4 (-1013)))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6)
+ (-12 (-5 *3 (-627 (-202))) (-5 *4 (-521)) (-5 *5 (-202))
+ (-5 *6 (-3 (|:| |fn| (-362)) (|:| |fp| (-84 FCN)))) (-5 *2 (-959))
+ (-5 *1 (-686)))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-706)) (-4 *1 (-908 *2)) (-4 *2 (-1104)))))
+ (-12 (-5 *3 (-560 *2)) (-4 *2 (-13 (-27) (-1105) (-404 *4)))
+ (-4 *4 (-13 (-513) (-784) (-961 (-521)) (-583 (-521))))
+ (-5 *1 (-253 *4 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-759)))))
+(((*1 *1) (-5 *1 (-516))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-521)) (-4 *4 (-157)) (-4 *5 (-347 *4))
+ (-4 *6 (-347 *4)) (-5 *1 (-626 *4 *5 *6 *2))
+ (-4 *2 (-625 *4 *5 *6)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-2 (|:| |totdeg| (-707)) (|:| -3736 *4))) (-5 *5 (-707))
+ (-4 *4 (-878 *6 *7 *8)) (-4 *6 (-425)) (-4 *7 (-729)) (-4 *8 (-784))
+ (-5 *2
+ (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (-5 *1 (-422 *6 *7 *8 *4)))))
+(((*1 *2 *1 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| -2114 *3) (|:| |coef1| (-718 *3)) (|:| |coef2| (-718 *3))))
+ (-5 *1 (-718 *3)) (-4 *3 (-513)) (-4 *3 (-970)))))
+(((*1 *1 *2 *2 *2)
+ (-12 (-5 *1 (-204 *2)) (-4 *2 (-13 (-337) (-1105)))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-337))))
+ ((*1 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-337))))
+ ((*1 *2 *1 *3 *4 *4)
+ (-12 (-5 *3 (-850)) (-5 *4 (-353)) (-5 *2 (-1170)) (-5 *1 (-1166)))))
+(((*1 *1 *1 *1) (-5 *1 (-792))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-224 *4 *5)) (-14 *4 (-587 (-1084))) (-4 *5 (-970))
+ (-5 *2 (-881 *5)) (-5 *1 (-873 *4 *5)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1080 *3)) (-4 *3 (-323)) (-5 *1 (-331 *3)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-512)) (-5 *2 (-586 (-706))) (-5 *1 (-895 *4 *3))
- (-4 *3 (-1140 *4)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-201)) (-5 *1 (-202))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-154 (-201))) (-5 *1 (-202))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-404 *3 *2))
- (-4 *2 (-403 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1047))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-983 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-728))
- (-4 *4 (-783)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-833 (-520))) (-5 *4 (-520)) (-5 *2 (-626 *4))
- (-5 *1 (-951 *5)) (-4 *5 (-969))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-586 (-520))) (-5 *2 (-626 (-520))) (-5 *1 (-951 *4))
- (-4 *4 (-969))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-586 (-833 (-520)))) (-5 *4 (-520))
- (-5 *2 (-586 (-626 *4))) (-5 *1 (-951 *5)) (-4 *5 (-969))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-586 (-586 (-520)))) (-5 *2 (-586 (-626 (-520))))
- (-5 *1 (-951 *4)) (-4 *4 (-969)))))
-(((*1 *2 *1) (-12 (-5 *2 (-586 (-730))) (-5 *1 (-104))))
- ((*1 *2 *1) (-12 (-5 *2 (-44 (-1066) (-709))) (-5 *1 (-110)))))
+ (-12 (|has| *2 (-6 (-4235 "*"))) (-4 *5 (-347 *2)) (-4 *6 (-347 *2))
+ (-4 *2 (-970)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1141 *2))
+ (-4 *4 (-625 *2 *5 *6)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1164 *5)) (-4 *5 (-582 *4)) (-4 *4 (-512))
- (-5 *2 (-1164 *4)) (-5 *1 (-581 *4 *5)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-877 *3 *4 *2)) (-4 *3 (-969)) (-4 *4 (-728))
- (-4 *2 (-783)) (-4 *3 (-157))))
- ((*1 *2 *3 *3)
- (-12 (-4 *2 (-512)) (-5 *1 (-895 *2 *3)) (-4 *3 (-1140 *2))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-983 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-728))
- (-4 *4 (-783)) (-4 *2 (-512))))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-1140 *2)) (-4 *2 (-969)) (-4 *2 (-157)))))
+ (-12 (-4 *4 (-425))
+ (-5 *2
+ (-587
+ (-2 (|:| |eigval| (-3 (-381 (-881 *4)) (-1074 (-1084) (-881 *4))))
+ (|:| |eigmult| (-707))
+ (|:| |eigvec| (-587 (-627 (-381 (-881 *4))))))))
+ (-5 *1 (-267 *4)) (-5 *3 (-627 (-381 (-881 *4)))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-144 *3 *2))
+ (-4 *2 (-404 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-759)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-337) (-782))) (-5 *1 (-164 *3 *2))
+ (-4 *2 (-1141 (-154 *3))))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1067)) (-5 *4 (-521)) (-5 *5 (-627 (-154 (-202))))
+ (-5 *2 (-959)) (-5 *1 (-691)))))
+(((*1 *1)
+ (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-521)) (-14 *3 (-707))
+ (-4 *4 (-157)))))
+(((*1 *2 *1)
+ (|partial| -12
+ (-5 *2 (-2 (|:| -1419 (-110)) (|:| |arg| (-587 (-821 *3)))))
+ (-5 *1 (-821 *3)) (-4 *3 (-1013))))
+ ((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-110)) (-5 *2 (-587 (-821 *4)))
+ (-5 *1 (-821 *4)) (-4 *4 (-1013)))))
+(((*1 *2 *1) (-12 (-5 *2 (-587 (-731))) (-5 *1 (-104))))
+ ((*1 *2 *1) (-12 (-5 *2 (-44 (-1067) (-710))) (-5 *1 (-110)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-917 *2)) (-4 *2 (-512)) (-5 *1 (-130 *2 *4 *3))
- (-4 *3 (-346 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-917 *2)) (-4 *2 (-512)) (-5 *1 (-471 *2 *4 *5 *3))
- (-4 *5 (-346 *2)) (-4 *3 (-346 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-626 *4)) (-4 *4 (-917 *2)) (-4 *2 (-512))
- (-5 *1 (-629 *2 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-917 *2)) (-4 *2 (-512)) (-5 *1 (-1133 *2 *4 *3))
- (-4 *3 (-1140 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-407)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1083)) (-5 *1 (-537 *2)) (-4 *2 (-960 *3))
- (-4 *2 (-336))))
- ((*1 *1 *2 *2) (-12 (-5 *1 (-537 *2)) (-4 *2 (-336))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1083)) (-4 *4 (-13 (-783) (-512))) (-5 *1 (-573 *4 *2))
- (-4 *2 (-13 (-403 *4) (-926) (-1104)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1005 *2)) (-4 *2 (-13 (-403 *4) (-926) (-1104)))
- (-4 *4 (-13 (-783) (-512))) (-5 *1 (-573 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-886)) (-5 *2 (-1083))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1005 *1)) (-4 *1 (-886)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1050 *4 *2)) (-14 *4 (-849))
- (-4 *2 (-13 (-969) (-10 -7 (-6 (-4231 "*"))))) (-5 *1 (-830 *4 *2)))))
-(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-654 *2)) (-4 *2 (-336)))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1140 *5)) (-4 *5 (-336))
- (-5 *2 (-2 (|:| -4016 (-380 *6)) (|:| |coeff| (-380 *6))))
- (-5 *1 (-530 *5 *6)) (-5 *3 (-380 *6)))))
-(((*1 *1 *1) (-4 *1 (-978)))
- ((*1 *1 *1 *2 *2)
- (-12 (-4 *1 (-1142 *3 *2)) (-4 *3 (-969)) (-4 *2 (-727))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1142 *3 *2)) (-4 *3 (-969)) (-4 *2 (-727)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1066)) (-4 *1 (-337 *3 *4)) (-4 *3 (-1012))
- (-4 *4 (-1012)))))
-(((*1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-92)))))
+ (-12 (-4 *4 (-513)) (-5 *2 (-587 *3)) (-5 *1 (-42 *4 *3))
+ (-4 *3 (-391 *4)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-707)) (-4 *4 (-13 (-970) (-654 (-381 (-521)))))
+ (-4 *5 (-784)) (-5 *1 (-1179 *4 *5 *2)) (-4 *2 (-1184 *5 *4)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-707)) (-5 *1 (-57 *3)) (-4 *3 (-1119))))
+ ((*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1119)) (-5 *1 (-57 *3)))))
+(((*1 *2 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1141 *5))
+ (-4 *5 (-13 (-337) (-135) (-961 (-521))))
+ (-5 *2
+ (-2 (|:| |a| *6) (|:| |b| (-381 *6)) (|:| |c| (-381 *6))
+ (|:| -1639 *6)))
+ (-5 *1 (-940 *5 *6)) (-5 *3 (-381 *6)))))
+(((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-1165
+ (-2 (|:| |scaleX| (-202)) (|:| |scaleY| (-202))
+ (|:| |deltaX| (-202)) (|:| |deltaY| (-202)) (|:| -1461 (-521))
+ (|:| -2483 (-521)) (|:| |spline| (-521)) (|:| -3385 (-521))
+ (|:| |axesColor| (-803)) (|:| -1968 (-521))
+ (|:| |unitsColor| (-803)) (|:| |showing| (-521)))))
+ (-5 *1 (-1166)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-850)) (-5 *2 (-1080 *3)) (-5 *1 (-1094 *3))
+ (-4 *3 (-337)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784))
+ (-4 *3 (-984 *5 *6 *7)) (-5 *2 (-587 *4))
+ (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-282) (-135))) (-4 *4 (-13 (-784) (-562 (-1084))))
+ (-4 *5 (-729)) (-5 *1 (-853 *3 *4 *5 *2)) (-4 *2 (-878 *3 *5 *4)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-707)) (-5 *1 (-1073 *3 *4)) (-14 *3 (-850))
+ (-4 *4 (-970)))))
+(((*1 *2 *1) (-12 (-4 *1 (-935 *3)) (-4 *3 (-1119)) (-5 *2 (-108))))
+ ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1106 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-513)) (-5 *2 (-707)) (-5 *1 (-42 *4 *3))
+ (-4 *3 (-391 *4)))))
(((*1 *1 *1) (-4 *1 (-33))) ((*1 *1 *1) (-5 *1 (-110)))
- ((*1 *1 *1) (-5 *1 (-156))) ((*1 *1 *1) (-4 *1 (-505)))
- ((*1 *1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-1012))))
- ((*1 *1 *1) (-12 (-4 *1 (-1044 *2)) (-4 *2 (-969))))
+ ((*1 *1 *1) (-5 *1 (-156))) ((*1 *1 *1) (-4 *1 (-506)))
+ ((*1 *1 *1) (-12 (-5 *1 (-821 *2)) (-4 *2 (-1013))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1045 *2)) (-4 *2 (-970))))
((*1 *1 *1)
- (-12 (-5 *1 (-1048 *2 *3)) (-4 *2 (-13 (-1012) (-33)))
- (-4 *3 (-13 (-1012) (-33))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-315 *4 *5 *6)) (-4 *4 (-1122))
- (-4 *5 (-1140 *4)) (-4 *6 (-1140 (-380 *5)))
- (-5 *2 (-2 (|:| |num| (-626 *5)) (|:| |den| *5))))))
+ (-12 (-5 *1 (-1049 *2 *3)) (-4 *2 (-13 (-1013) (-33)))
+ (-4 *3 (-13 (-1013) (-33))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-1072 *3 *4)) (-14 *3 (-849))
- (-4 *4 (-969)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-268 (-380 (-880 *5)))) (-5 *4 (-1083))
- (-4 *5 (-13 (-281) (-783) (-135)))
- (-5 *2 (-1073 (-586 (-289 *5)) (-586 (-268 (-289 *5)))))
- (-5 *1 (-1039 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-380 (-880 *5))) (-5 *4 (-1083))
- (-4 *5 (-13 (-281) (-783) (-135)))
- (-5 *2 (-1073 (-586 (-289 *5)) (-586 (-268 (-289 *5)))))
- (-5 *1 (-1039 *5)))))
-(((*1 *1 *1) (-4 *1 (-119))) ((*1 *1 *1) (-5 *1 (-791)))
- ((*1 *1 *1) (-4 *1 (-893))) ((*1 *1 *1) (-5 *1 (-1030))))
-(((*1 *2 *2 *2 *2 *3)
- (-12 (-4 *3 (-512)) (-5 *1 (-895 *3 *2)) (-4 *2 (-1140 *3)))))
+ (-12 (-4 *1 (-300 *2 *3)) (-4 *3 (-728)) (-4 *2 (-970))
+ (-4 *2 (-425))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-587 *4)) (-4 *4 (-1141 (-521))) (-5 *2 (-587 (-521)))
+ (-5 *1 (-457 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-970)) (-4 *2 (-425))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-878 *3 *4 *2)) (-4 *3 (-970)) (-4 *4 (-729))
+ (-4 *2 (-784)) (-4 *3 (-425)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-761)))))
+(((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-1067)) (-5 *4 (-154 (-202))) (-5 *5 (-521))
+ (-5 *2 (-959)) (-5 *1 (-695)))))
+(((*1 *1 *1) (-4 *1 (-119))) ((*1 *1 *1) (-5 *1 (-792)))
+ ((*1 *1 *1) (-4 *1 (-894))) ((*1 *1 *1) (-5 *1 (-1031))))
+(((*1 *1 *1) (-12 (-4 *1 (-597 *2)) (-4 *2 (-970))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-513)) (-4 *4 (-157)) (-4 *5 (-347 *4))
+ (-4 *6 (-347 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4)))
+ (-5 *1 (-626 *4 *5 *6 *3)) (-4 *3 (-625 *4 *5 *6))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-157)) (-4 *2 (-970)) (-5 *1 (-651 *2 *3))
+ (-4 *3 (-589 *2))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-157)) (-4 *2 (-970)) (-5 *1 (-651 *2 *3))
+ (-4 *3 (-589 *2))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-771 *2)) (-4 *2 (-157)) (-4 *2 (-970))))
+ ((*1 *1 *1) (-12 (-5 *1 (-771 *2)) (-4 *2 (-157)) (-4 *2 (-970)))))
(((*1 *1 *1 *1)
- (-12 (-5 *1 (-589 *2 *3 *4)) (-4 *2 (-1012)) (-4 *3 (-23))
+ (-12 (-5 *1 (-590 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23))
(-14 *4 *3)))
((*1 *1 *2 *3 *1)
- (-12 (-5 *1 (-589 *2 *3 *4)) (-4 *2 (-1012)) (-4 *3 (-23))
+ (-12 (-5 *1 (-590 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23))
(-14 *4 *3)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-614 *2)) (-4 *2 (-969)) (-4 *2 (-1012)))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-615 *2)) (-4 *2 (-970)) (-4 *2 (-1013)))))
(((*1 *2 *2)
(-12
(-5 *2
- (-472 (-380 (-520)) (-216 *4 (-706)) (-793 *3)
- (-223 *3 (-380 (-520)))))
- (-14 *3 (-586 (-1083))) (-14 *4 (-706)) (-5 *1 (-473 *3 *4)))))
-(((*1 *2) (-12 (-5 *2 (-1043 (-201))) (-5 *1 (-1102)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783))
- (-4 *3 (-983 *5 *6 *7))
- (-5 *2 (-586 (-2 (|:| |val| *3) (|:| -1883 *4))))
- (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-988 *5 *6 *7 *3)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-706)) (-5 *1 (-718 *2)) (-4 *2 (-37 (-380 (-520))))
- (-4 *2 (-157)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1066)) (-5 *3 (-709)) (-5 *1 (-110)))))
-(((*1 *2 *2) (|partial| -12 (-5 *1 (-538 *2)) (-4 *2 (-505)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-512)) (-5 *2 (-706)) (-5 *1 (-42 *4 *3))
- (-4 *3 (-390 *4)))))
-(((*1 *2 *2)
+ (-473 (-381 (-521)) (-217 *4 (-707)) (-794 *3)
+ (-224 *3 (-381 (-521)))))
+ (-14 *3 (-587 (-1084))) (-14 *4 (-707)) (-5 *1 (-474 *3 *4)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-3 (-108) "failed")) (-4 *3 (-425)) (-4 *4 (-784))
+ (-4 *5 (-729)) (-5 *1 (-913 *3 *4 *5 *6)) (-4 *6 (-878 *3 *5 *4)))))
+(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-855)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-110)) (-5 *4 (-587 *2)) (-5 *1 (-109 *2))
+ (-4 *2 (-1013))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 (-587 *4))) (-4 *4 (-1013))
+ (-5 *1 (-109 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1013))
+ (-5 *1 (-109 *4))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-110)) (-5 *2 (-1 *4 (-587 *4)))
+ (-5 *1 (-109 *4)) (-4 *4 (-1013))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-589 *3)) (-4 *3 (-970))
+ (-5 *1 (-651 *3 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-970)) (-5 *1 (-771 *3)))))
+(((*1 *2 *3 *3 *3 *4 *5 *6)
+ (-12 (-5 *3 (-290 (-521))) (-5 *4 (-1 (-202) (-202)))
+ (-5 *5 (-1008 (-202))) (-5 *6 (-587 (-239))) (-5 *2 (-1044 (-202)))
+ (-5 *1 (-634)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-408))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-108)) (-5 *1 (-526 *3)) (-4 *3 (-961 (-521)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013))
+ (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-108)))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1084))
+ (-4 *5 (-13 (-425) (-784) (-135) (-961 (-521)) (-583 (-521))))
+ (-5 *2 (-2 (|:| -3100 *3) (|:| |coeff| *3))) (-5 *1 (-514 *5 *3))
+ (-4 *3 (-13 (-27) (-1105) (-404 *5))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-587 *7)) (-5 *5 (-587 (-587 *8))) (-4 *7 (-784))
+ (-4 *8 (-282)) (-4 *6 (-729)) (-4 *9 (-878 *8 *6 *7))
+ (-5 *2
+ (-2 (|:| |unitPart| *9)
+ (|:| |suPart|
+ (-587 (-2 (|:| -1916 (-1080 *9)) (|:| -2997 (-521)))))))
+ (-5 *1 (-679 *6 *7 *8 *9)) (-5 *3 (-1080 *9)))))
+(((*1 *2 *1 *1)
(-12
(-5 *2
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4)
- (|:| |xpnt| (-520))))
- (-4 *4 (-13 (-1140 *3) (-512) (-10 -8 (-15 -2257 ($ $ $)))))
- (-4 *3 (-512)) (-5 *1 (-1143 *3 *4)))))
-(((*1 *2 *3) (-12 (-5 *2 (-352)) (-5 *1 (-720 *3)) (-4 *3 (-561 *2))))
+ (-2 (|:| -2973 *3) (|:| |gap| (-707)) (|:| -3727 (-718 *3))
+ (|:| -3820 (-718 *3))))
+ (-5 *1 (-718 *3)) (-4 *3 (-970))))
+ ((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-970)) (-4 *5 (-729)) (-4 *3 (-784))
+ (-5 *2
+ (-2 (|:| -2973 *1) (|:| |gap| (-707)) (|:| -3727 *1)
+ (|:| -3820 *1)))
+ (-4 *1 (-984 *4 *5 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784))
+ (-5 *2
+ (-2 (|:| -2973 *1) (|:| |gap| (-707)) (|:| -3727 *1)
+ (|:| -3820 *1)))
+ (-4 *1 (-984 *3 *4 *5)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-707)) (-4 *2 (-513)) (-5 *1 (-896 *2 *4))
+ (-4 *4 (-1141 *2)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-967 *4 *5)) (-4 *4 (-13 (-782) (-282) (-135) (-946)))
+ (-14 *5 (-587 (-1084)))
+ (-5 *2
+ (-587 (-2 (|:| -3183 (-1080 *4)) (|:| -2234 (-587 (-881 *4))))))
+ (-5 *1 (-1189 *4 *5 *6)) (-14 *6 (-587 (-1084)))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *4 (-108)) (-4 *5 (-13 (-782) (-282) (-135) (-946)))
+ (-5 *2
+ (-587 (-2 (|:| -3183 (-1080 *5)) (|:| -2234 (-587 (-881 *5))))))
+ (-5 *1 (-1189 *5 *6 *7)) (-5 *3 (-587 (-881 *5)))
+ (-14 *6 (-587 (-1084))) (-14 *7 (-587 (-1084)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-108)) (-4 *5 (-13 (-782) (-282) (-135) (-946)))
+ (-5 *2
+ (-587 (-2 (|:| -3183 (-1080 *5)) (|:| -2234 (-587 (-881 *5))))))
+ (-5 *1 (-1189 *5 *6 *7)) (-5 *3 (-587 (-881 *5)))
+ (-14 *6 (-587 (-1084))) (-14 *7 (-587 (-1084)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-849)) (-5 *2 (-352)) (-5 *1 (-720 *3))
- (-4 *3 (-561 *2))))
+ (-12 (-5 *4 (-108)) (-4 *5 (-13 (-782) (-282) (-135) (-946)))
+ (-5 *2
+ (-587 (-2 (|:| -3183 (-1080 *5)) (|:| -2234 (-587 (-881 *5))))))
+ (-5 *1 (-1189 *5 *6 *7)) (-5 *3 (-587 (-881 *5)))
+ (-14 *6 (-587 (-1084))) (-14 *7 (-587 (-1084)))))
((*1 *2 *3)
- (-12 (-5 *3 (-880 *4)) (-4 *4 (-969)) (-4 *4 (-561 *2))
- (-5 *2 (-352)) (-5 *1 (-720 *4))))
+ (-12 (-4 *4 (-13 (-782) (-282) (-135) (-946)))
+ (-5 *2
+ (-587 (-2 (|:| -3183 (-1080 *4)) (|:| -2234 (-587 (-881 *4))))))
+ (-5 *1 (-1189 *4 *5 *6)) (-5 *3 (-587 (-881 *4)))
+ (-14 *5 (-587 (-1084))) (-14 *6 (-587 (-1084))))))
+(((*1 *2 *3) (-12 (-5 *2 (-353)) (-5 *1 (-721 *3)) (-4 *3 (-562 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-880 *5)) (-5 *4 (-849)) (-4 *5 (-969))
- (-4 *5 (-561 *2)) (-5 *2 (-352)) (-5 *1 (-720 *5))))
+ (-12 (-5 *4 (-850)) (-5 *2 (-353)) (-5 *1 (-721 *3))
+ (-4 *3 (-562 *2))))
((*1 *2 *3)
- (-12 (-5 *3 (-380 (-880 *4))) (-4 *4 (-512)) (-4 *4 (-561 *2))
- (-5 *2 (-352)) (-5 *1 (-720 *4))))
+ (-12 (-5 *3 (-881 *4)) (-4 *4 (-970)) (-4 *4 (-562 *2))
+ (-5 *2 (-353)) (-5 *1 (-721 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-380 (-880 *5))) (-5 *4 (-849)) (-4 *5 (-512))
- (-4 *5 (-561 *2)) (-5 *2 (-352)) (-5 *1 (-720 *5))))
+ (-12 (-5 *3 (-881 *5)) (-5 *4 (-850)) (-4 *5 (-970))
+ (-4 *5 (-562 *2)) (-5 *2 (-353)) (-5 *1 (-721 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-289 *4)) (-4 *4 (-512)) (-4 *4 (-783))
- (-4 *4 (-561 *2)) (-5 *2 (-352)) (-5 *1 (-720 *4))))
+ (-12 (-5 *3 (-381 (-881 *4))) (-4 *4 (-513)) (-4 *4 (-562 *2))
+ (-5 *2 (-353)) (-5 *1 (-721 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-289 *5)) (-5 *4 (-849)) (-4 *5 (-512)) (-4 *5 (-783))
- (-4 *5 (-561 *2)) (-5 *2 (-352)) (-5 *1 (-720 *5)))))
-(((*1 *2 *3) (-12 (-5 *2 (-586 (-520))) (-5 *1 (-418)) (-5 *3 (-520)))))
-(((*1 *2) (-12 (-5 *2 (-586 (-1066))) (-5 *1 (-1167))))
- ((*1 *2 *2) (-12 (-5 *2 (-586 (-1066))) (-5 *1 (-1167)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-1169))
- (-5 *1 (-421 *4 *5 *6 *3)) (-4 *3 (-877 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-108)) (-5 *1 (-414 *3)) (-4 *3 (-1140 (-520))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-424)) (-4 *4 (-512)) (-4 *5 (-728)) (-4 *6 (-783))
- (-5 *2 (-586 *3)) (-5 *1 (-902 *4 *5 *6 *3))
- (-4 *3 (-983 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-758)))))
-(((*1 *2) (-12 (-5 *2 (-1066)) (-5 *1 (-695)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1083)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-638 *3 *5 *6 *7))
- (-4 *3 (-561 (-496))) (-4 *5 (-1118)) (-4 *6 (-1118))
- (-4 *7 (-1118))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1083)) (-5 *2 (-1 *6 *5)) (-5 *1 (-643 *3 *5 *6))
- (-4 *3 (-561 (-496))) (-4 *5 (-1118)) (-4 *6 (-1118)))))
-(((*1 *2 *2) (-12 (-5 *2 (-706)) (-5 *1 (-417 *3)) (-4 *3 (-969))))
- ((*1 *2) (-12 (-5 *2 (-706)) (-5 *1 (-417 *3)) (-4 *3 (-969)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-315 *4 *3 *5)) (-4 *4 (-1122)) (-4 *3 (-1140 *4))
- (-4 *5 (-1140 (-380 *3))) (-5 *2 (-108))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-315 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-1140 *3))
- (-4 *5 (-1140 (-380 *4))) (-5 *2 (-108))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-315 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-1140 *3))
- (-4 *5 (-1140 (-380 *4))) (-5 *2 (-108)))))
+ (-12 (-5 *3 (-381 (-881 *5))) (-5 *4 (-850)) (-4 *5 (-513))
+ (-4 *5 (-562 *2)) (-5 *2 (-353)) (-5 *1 (-721 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-290 *4)) (-4 *4 (-513)) (-4 *4 (-784))
+ (-4 *4 (-562 *2)) (-5 *2 (-353)) (-5 *1 (-721 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-290 *5)) (-5 *4 (-850)) (-4 *5 (-513)) (-4 *5 (-784))
+ (-4 *5 (-562 *2)) (-5 *2 (-353)) (-5 *1 (-721 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-305 *3)) (-4 *3 (-784)))))
+(((*1 *1 *1 *1 *1) (-5 *1 (-792)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-587 (-792))) (-5 *1 (-792)))))
+(((*1 *2)
+ (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-340 *3 *4))
+ (-4 *3 (-341 *4))))
+ ((*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-5 *2 (-108)))))
+(((*1 *2 *1) (-12 (-4 *1 (-918 *2)) (-4 *2 (-513)) (-4 *2 (-506))))
+ ((*1 *1 *1) (-4 *1 (-979))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-927))))))
+(((*1 *2 *3 *3 *4 *4)
+ (-12 (-5 *3 (-627 (-202))) (-5 *4 (-521)) (-5 *2 (-959))
+ (-5 *1 (-685)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-353)) (-5 *1 (-92)))))
(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-520)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1118))
- (-4 *4 (-346 *2)) (-4 *5 (-346 *2))))
+ (-12 (-5 *3 (-521)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1119))
+ (-4 *4 (-347 *2)) (-4 *5 (-347 *2))))
((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "right") (|has| *1 (-6 -4230)) (-4 *1 (-115 *3))
- (-4 *3 (-1118))))
+ (-12 (-5 *2 "right") (|has| *1 (-6 -4234)) (-4 *1 (-115 *3))
+ (-4 *3 (-1119))))
((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "left") (|has| *1 (-6 -4230)) (-4 *1 (-115 *3))
- (-4 *3 (-1118))))
+ (-12 (-5 *2 "left") (|has| *1 (-6 -4234)) (-4 *1 (-115 *3))
+ (-4 *3 (-1119))))
((*1 *2 *1 *3 *2)
- (-12 (|has| *1 (-6 -4230)) (-4 *1 (-262 *3 *2)) (-4 *3 (-1012))
- (-4 *2 (-1118))))
- ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1083)) (-5 *1 (-575))))
+ (-12 (|has| *1 (-6 -4234)) (-4 *1 (-263 *3 *2)) (-4 *3 (-1013))
+ (-4 *2 (-1119))))
+ ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1084)) (-5 *1 (-576))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *3 (-1131 (-520))) (|has| *1 (-6 -4230)) (-4 *1 (-591 *2))
- (-4 *2 (-1118))))
+ (-12 (-5 *3 (-1132 (-521))) (|has| *1 (-6 -4234)) (-4 *1 (-592 *2))
+ (-4 *2 (-1119))))
((*1 *1 *1 *2 *2 *1)
- (-12 (-5 *2 (-586 (-520))) (-4 *1 (-624 *3 *4 *5)) (-4 *3 (-969))
- (-4 *4 (-346 *3)) (-4 *5 (-346 *3))))
+ (-12 (-5 *2 (-587 (-521))) (-4 *1 (-625 *3 *4 *5)) (-4 *3 (-970))
+ (-4 *4 (-347 *3)) (-4 *5 (-347 *3))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "value") (|has| *1 (-6 -4230)) (-4 *1 (-934 *2))
- (-4 *2 (-1118))))
- ((*1 *2 *1 *2) (-12 (-5 *1 (-949 *2)) (-4 *2 (-1118))))
+ (-12 (-5 *3 "value") (|has| *1 (-6 -4234)) (-4 *1 (-935 *2))
+ (-4 *2 (-1119))))
+ ((*1 *2 *1 *2) (-12 (-5 *1 (-950 *2)) (-4 *2 (-1119))))
((*1 *2 *1 *3 *2)
- (-12 (-4 *1 (-1095 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1012))))
+ (-12 (-4 *1 (-1096 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "last") (|has| *1 (-6 -4230)) (-4 *1 (-1152 *2))
- (-4 *2 (-1118))))
+ (-12 (-5 *3 "last") (|has| *1 (-6 -4234)) (-4 *1 (-1153 *2))
+ (-4 *2 (-1119))))
((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "rest") (|has| *1 (-6 -4230)) (-4 *1 (-1152 *3))
- (-4 *3 (-1118))))
+ (-12 (-5 *2 "rest") (|has| *1 (-6 -4234)) (-4 *1 (-1153 *3))
+ (-4 *3 (-1119))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "first") (|has| *1 (-6 -4230)) (-4 *1 (-1152 *2))
- (-4 *2 (-1118)))))
-(((*1 *2)
- (-12 (-4 *3 (-512)) (-5 *2 (-586 *4)) (-5 *1 (-42 *3 *4))
- (-4 *4 (-390 *3)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-833 *4)) (-4 *4 (-1012)) (-5 *2 (-586 (-706)))
- (-5 *1 (-832 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-268 (-776 *3))) (-4 *3 (-13 (-27) (-1104) (-403 *5)))
- (-4 *5 (-13 (-424) (-783) (-960 (-520)) (-582 (-520))))
- (-5 *2
- (-3 (-776 *3)
- (-2 (|:| |leftHandLimit| (-3 (-776 *3) "failed"))
- (|:| |rightHandLimit| (-3 (-776 *3) "failed")))
- "failed"))
- (-5 *1 (-579 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-268 *3)) (-5 *5 (-1066))
- (-4 *3 (-13 (-27) (-1104) (-403 *6)))
- (-4 *6 (-13 (-424) (-783) (-960 (-520)) (-582 (-520))))
- (-5 *2 (-776 *3)) (-5 *1 (-579 *6 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-268 (-776 (-880 *5)))) (-4 *5 (-424))
+ (-12 (-5 *3 "first") (|has| *1 (-6 -4234)) (-4 *1 (-1153 *2))
+ (-4 *2 (-1119)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-587 (-521))) (-5 *1 (-1023)) (-5 *3 (-521)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1013)) (-4 *5 (-1013))
+ (-5 *2 (-1 *5 *4)) (-5 *1 (-621 *4 *5)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-587 *6)) (-4 *6 (-784)) (-4 *4 (-337)) (-4 *5 (-729))
+ (-5 *1 (-473 *4 *5 *6 *2)) (-4 *2 (-878 *4 *5 *6))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *3 (-337)) (-4 *4 (-729)) (-4 *5 (-784))
+ (-5 *1 (-473 *3 *4 *5 *2)) (-4 *2 (-878 *3 *4 *5)))))
+(((*1 *2 *3 *3 *1)
+ (|partial| -12 (-5 *3 (-1084)) (-5 *2 (-1017)) (-5 *1 (-266)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-202)) (|:| |xend| (-202))
+ (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202)))
+ (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202)))
+ (|:| |abserr| (-202)) (|:| |relerr| (-202))))
(-5 *2
- (-3 (-776 (-380 (-880 *5)))
- (-2 (|:| |leftHandLimit| (-3 (-776 (-380 (-880 *5))) "failed"))
- (|:| |rightHandLimit| (-3 (-776 (-380 (-880 *5))) "failed")))
- "failed"))
- (-5 *1 (-580 *5)) (-5 *3 (-380 (-880 *5)))))
+ (-2 (|:| |stiffnessFactor| (-353)) (|:| |stabilityFactor| (-353))))
+ (-5 *1 (-184)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-521)) (-5 *4 (-108)) (-5 *5 (-627 (-154 (-202))))
+ (-5 *2 (-959)) (-5 *1 (-692)))))
+(((*1 *2 *1) (-12 (-4 *1 (-323)) (-5 *2 (-108))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1080 *4)) (-4 *4 (-323)) (-5 *2 (-108))
+ (-5 *1 (-331 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-5 *2 (-1080 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-927))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1080 *9)) (-5 *4 (-587 *7)) (-4 *7 (-784))
+ (-4 *9 (-878 *8 *6 *7)) (-4 *6 (-729)) (-4 *8 (-282))
+ (-5 *2 (-587 (-707))) (-5 *1 (-679 *6 *7 *8 *9)) (-5 *5 (-707)))))
+(((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-51)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-718 *2)) (-4 *2 (-970)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1086 (-381 (-521)))) (-5 *1 (-169)) (-5 *3 (-521)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-425) (-135))) (-5 *2 (-392 *3))
+ (-5 *1 (-95 *4 *3)) (-4 *3 (-1141 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-268 (-380 (-880 *5)))) (-5 *3 (-380 (-880 *5)))
- (-4 *5 (-424))
+ (-12 (-5 *4 (-587 *3)) (-4 *3 (-1141 *5)) (-4 *5 (-13 (-425) (-135)))
+ (-5 *2 (-392 *3)) (-5 *1 (-95 *5 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-587 (-627 (-290 (-521))))) (-5 *1 (-955)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1084)) (-4 *4 (-425)) (-4 *4 (-784))
+ (-5 *1 (-530 *4 *2)) (-4 *2 (-259)) (-4 *2 (-404 *4)))))
+(((*1 *2 *3 *4 *5 *6 *7 *7 *8)
+ (-12
+ (-5 *3
+ (-2 (|:| |det| *12) (|:| |rows| (-587 (-521)))
+ (|:| |cols| (-587 (-521)))))
+ (-5 *4 (-627 *12)) (-5 *5 (-587 (-381 (-881 *9))))
+ (-5 *6 (-587 (-587 *12))) (-5 *7 (-707)) (-5 *8 (-521))
+ (-4 *9 (-13 (-282) (-135))) (-4 *12 (-878 *9 *11 *10))
+ (-4 *10 (-13 (-784) (-562 (-1084)))) (-4 *11 (-729))
(-5 *2
- (-3 (-776 *3)
- (-2 (|:| |leftHandLimit| (-3 (-776 *3) "failed"))
- (|:| |rightHandLimit| (-3 (-776 *3) "failed")))
- "failed"))
- (-5 *1 (-580 *5))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-268 (-380 (-880 *6)))) (-5 *5 (-1066))
- (-5 *3 (-380 (-880 *6))) (-4 *6 (-424)) (-5 *2 (-776 *3))
- (-5 *1 (-580 *6)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-901 *3 *4 *5 *6)) (-4 *3 (-969)) (-4 *4 (-728))
- (-4 *5 (-783)) (-4 *6 (-983 *3 *4 *5)) (-5 *2 (-108)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-505))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-706)) (-4 *1 (-1140 *3)) (-4 *3 (-969))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-849)) (-4 *1 (-1142 *3 *4)) (-4 *3 (-969))
- (-4 *4 (-727))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-380 (-520))) (-4 *1 (-1145 *3)) (-4 *3 (-969)))))
+ (-2 (|:| |eqzro| (-587 *12)) (|:| |neqzro| (-587 *12))
+ (|:| |wcond| (-587 (-881 *9)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1165 (-381 (-881 *9))))
+ (|:| -2470 (-587 (-1165 (-381 (-881 *9)))))))))
+ (-5 *1 (-853 *9 *10 *11 *12)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1083)) (-4 *4 (-424)) (-4 *4 (-783))
- (-5 *1 (-529 *4 *2)) (-4 *2 (-258)) (-4 *2 (-403 *4)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-586 (-1066))) (-5 *1 (-367))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-586 (-1066))) (-5 *1 (-1099)))))
+ (-12 (-5 *2 (-1165 *4)) (-5 *3 (-521)) (-4 *4 (-323))
+ (-5 *1 (-491 *4)))))
(((*1 *2)
- (-12 (-4 *4 (-1122)) (-4 *5 (-1140 *4)) (-4 *6 (-1140 (-380 *5)))
- (-5 *2 (-706)) (-5 *1 (-314 *3 *4 *5 *6)) (-4 *3 (-315 *4 *5 *6))))
+ (-12 (-14 *4 (-707)) (-4 *5 (-1119)) (-5 *2 (-126))
+ (-5 *1 (-214 *3 *4 *5)) (-4 *3 (-215 *4 *5))))
((*1 *2)
- (-12 (-4 *1 (-315 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-1140 *3))
- (-4 *5 (-1140 (-380 *4))) (-5 *2 (-706))))
- ((*1 *2 *1) (-12 (-4 *1 (-1044 *3)) (-4 *3 (-969)) (-5 *2 (-706)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-1005 (-880 (-520)))) (-5 *3 (-880 (-520)))
- (-5 *1 (-303))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1005 (-880 (-520)))) (-5 *1 (-303)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-108) (-110) (-110))) (-5 *1 (-110)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-586 (-2 (|:| -1916 (-1079 *6)) (|:| -2647 (-520)))))
- (-4 *6 (-281)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *2 (-108))
- (-5 *1 (-678 *4 *5 *6 *7)) (-4 *7 (-877 *6 *4 *5))))
- ((*1 *1 *1) (-12 (-4 *1 (-1044 *2)) (-4 *2 (-969)))))
+ (-12 (-4 *4 (-337)) (-5 *2 (-126)) (-5 *1 (-302 *3 *4))
+ (-4 *3 (-303 *4))))
+ ((*1 *2)
+ (-12 (-5 *2 (-707)) (-5 *1 (-364 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
+ (-4 *5 (-157))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-337)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *2 (-521))
+ (-5 *1 (-473 *3 *4 *5 *6)) (-4 *6 (-878 *3 *4 *5))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-587 *6)) (-4 *6 (-784)) (-4 *4 (-337)) (-4 *5 (-729))
+ (-5 *2 (-521)) (-5 *1 (-473 *4 *5 *6 *7)) (-4 *7 (-878 *4 *5 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-906 *3)) (-4 *3 (-970)) (-5 *2 (-850))))
+ ((*1 *2) (-12 (-4 *1 (-1172 *3)) (-4 *3 (-337)) (-5 *2 (-126)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783))
- (-4 *3 (-983 *5 *6 *7)) (-5 *2 (-586 *4))
- (-5 *1 (-989 *5 *6 *7 *3 *4)) (-4 *4 (-988 *5 *6 *7 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-849)) (-5 *1 (-721)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-281)) (-4 *5 (-346 *4)) (-4 *6 (-346 *4))
- (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3)))
- (-5 *1 (-1034 *4 *5 *6 *3)) (-4 *3 (-624 *4 *5 *6)))))
+ (-12 (-5 *3 (-758)) (-5 *4 (-51)) (-5 *2 (-1170)) (-5 *1 (-768)))))
+(((*1 *2 *1) (-12 (-5 *2 (-587 (-587 (-872 (-202))))) (-5 *1 (-441)))))
+(((*1 *2)
+ (-12 (-5 *2 (-850)) (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-850)) (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521))))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729))
+ (-4 *4 (-784)))))
+(((*1 *2 *1) (|partial| -12 (-4 *1 (-937)) (-5 *2 (-792)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-381 (-881 *4))) (-5 *3 (-1084))
+ (-4 *4 (-13 (-513) (-961 (-521)) (-135))) (-5 *1 (-527 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-356 *3 *4)) (-4 *3 (-970)) (-4 *4 (-1013))
+ (-5 *2 (-587 (-2 (|:| |k| *4) (|:| |c| *3))))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-587 (-2 (|:| |k| (-822 *3)) (|:| |c| *4))))
+ (-5 *1 (-571 *3 *4 *5)) (-4 *3 (-784))
+ (-4 *4 (-13 (-157) (-654 (-381 (-521))))) (-14 *5 (-850))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-587 (-612 *3))) (-5 *1 (-822 *3)) (-4 *3 (-784)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2))
- (-4 *2 (-13 (-403 *3) (-926))))))
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-927))))))
+(((*1 *1 *1) (-12 (-4 *1 (-1180 *2 *3)) (-4 *2 (-784)) (-4 *3 (-970))))
+ ((*1 *1 *1) (-12 (-5 *1 (-1186 *2 *3)) (-4 *2 (-970)) (-4 *3 (-780)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-587 *1)) (-4 *3 (-970)) (-4 *1 (-625 *3 *4 *5))
+ (-4 *4 (-347 *3)) (-4 *5 (-347 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-587 *3)) (-4 *3 (-970)) (-4 *1 (-625 *3 *4 *5))
+ (-4 *4 (-347 *3)) (-4 *5 (-347 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-970)) (-5 *1 (-627 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-587 *4)) (-4 *4 (-970)) (-4 *1 (-1034 *3 *4 *5 *6))
+ (-4 *5 (-215 *3 *4)) (-4 *6 (-215 *3 *4)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1164 *4)) (-4 *4 (-582 (-520)))
- (-5 *2 (-1164 (-520))) (-5 *1 (-1189 *4)))))
+ (-12 (-5 *3 (-538 *2)) (-4 *2 (-13 (-29 *4) (-1105)))
+ (-5 *1 (-536 *4 *2))
+ (-4 *4 (-13 (-425) (-961 (-521)) (-784) (-583 (-521))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-538 (-381 (-881 *4))))
+ (-4 *4 (-13 (-425) (-961 (-521)) (-784) (-583 (-521))))
+ (-5 *2 (-290 *4)) (-5 *1 (-541 *4)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *2 (-586 *1))
- (-4 *1 (-983 *3 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-586 *2)) (-4 *2 (-403 *4)) (-5 *1 (-144 *4 *2))
- (-4 *4 (-13 (-783) (-512))))))
-(((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *4 (-201))
- (-5 *2
- (-2 (|:| |brans| (-586 (-586 (-871 *4))))
- (|:| |xValues| (-1007 *4)) (|:| |yValues| (-1007 *4))))
- (-5 *1 (-141)) (-5 *3 (-586 (-586 (-871 *4)))))))
-(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8)
- (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *5 (-108))
- (-5 *6 (-201)) (-5 *7 (-3 (|:| |fn| (-361)) (|:| |fp| (-66 APROD))))
- (-5 *8 (-3 (|:| |fn| (-361)) (|:| |fp| (-71 MSOLVE))))
- (-5 *2 (-958)) (-5 *1 (-692)))))
-(((*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-51)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-586 *3)) (-4 *3 (-783)) (-5 *1 (-675 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-520)) (-5 *4 (-391 *2)) (-4 *2 (-877 *7 *5 *6))
- (-5 *1 (-678 *5 *6 *7 *2)) (-4 *5 (-728)) (-4 *6 (-783))
- (-4 *7 (-281)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1164 *1)) (-4 *1 (-315 *3 *4 *5)) (-4 *3 (-1122))
- (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-380 *4))))))
+ (-12 (-4 *3 (-13 (-337) (-135)))
+ (-5 *2 (-587 (-2 (|:| -2997 (-707)) (|:| -1893 *4) (|:| |num| *4))))
+ (-5 *1 (-373 *3 *4)) (-4 *4 (-1141 *3)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-1084)) (-5 *2 (-104)) (-5 *1 (-159))))
+ ((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-1084)) (-5 *2 (-104)) (-5 *1 (-1000)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-108)) (-5 *1 (-414 *3)) (-4 *3 (-1140 (-520))))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-706)) (-5 *3 (-871 *4)) (-4 *1 (-1044 *4))
- (-4 *4 (-969))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-706)) (-5 *4 (-871 (-201))) (-5 *2 (-1169))
- (-5 *1 (-1166)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-1164 (-520))) (-5 *3 (-520)) (-5 *1 (-1022))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-1164 (-520))) (-5 *3 (-586 (-520))) (-5 *4 (-520))
- (-5 *1 (-1022)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-983 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-728))
- (-4 *4 (-783)))))
-(((*1 *1 *2) (-12 (-5 *2 (-586 *3)) (-4 *3 (-1012)) (-5 *1 (-833 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-758)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-520)) (|has| *1 (-6 -4220)) (-4 *1 (-377))
- (-5 *2 (-849)))))
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-927))))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-1013)) (-4 *2 (-829 *4)) (-5 *1 (-629 *4 *2 *5 *3))
+ (-4 *5 (-347 *2)) (-4 *3 (-13 (-347 *4) (-10 -7 (-6 -4233)))))))
+(((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-353)) (-5 *2 (-1170)) (-5 *1 (-1167)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-108)) (-4 *5 (-323))
+ (-5 *2
+ (-2 (|:| |cont| *5)
+ (|:| -1514 (-587 (-2 (|:| |irr| *3) (|:| -2132 (-521)))))))
+ (-5 *1 (-194 *5 *3)) (-4 *3 (-1141 *5)))))
+(((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-707)) (-4 *5 (-337)) (-5 *2 (-158 *6))
+ (-5 *1 (-796 *5 *4 *6)) (-4 *4 (-1156 *5)) (-4 *6 (-1141 *5)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-512) (-783) (-960 (-520)))) (-5 *1 (-166 *3 *2))
- (-4 *2 (-13 (-27) (-1104) (-403 (-154 *3))))))
+ (-12 (-4 *3 (-13 (-784) (-425))) (-5 *1 (-1111 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-1105))))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-521)) (-14 *3 (-707))
+ (-4 *4 (-157))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1083)) (-4 *4 (-13 (-512) (-783) (-960 (-520))))
- (-5 *1 (-166 *4 *2)) (-4 *2 (-13 (-27) (-1104) (-403 (-154 *4))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-424) (-783) (-960 (-520)) (-582 (-520))))
- (-5 *1 (-1108 *3 *2)) (-4 *2 (-13 (-27) (-1104) (-403 *3)))))
+ (-12 (-5 *3 (-1084)) (-4 *4 (-13 (-784) (-513))) (-5 *1 (-144 *4 *2))
+ (-4 *2 (-404 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1083))
- (-4 *4 (-13 (-424) (-783) (-960 (-520)) (-582 (-520))))
- (-5 *1 (-1108 *4 *2)) (-4 *2 (-13 (-27) (-1104) (-403 *4))))))
+ (-12 (-5 *3 (-1006 *2)) (-4 *2 (-404 *4)) (-4 *4 (-13 (-784) (-513)))
+ (-5 *1 (-144 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1006 *1)) (-4 *1 (-146))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-146)) (-5 *2 (-1084))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-438 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23))))
+ ((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-707)) (-5 *1 (-1183 *3 *4)) (-4 *3 (-784))
+ (-4 *4 (-157)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-391 (-1079 (-520)))) (-5 *1 (-169)) (-5 *3 (-520)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-706)) (-5 *1 (-57 *3)) (-4 *3 (-1118))))
- ((*1 *1 *2) (-12 (-5 *2 (-586 *3)) (-4 *3 (-1118)) (-5 *1 (-57 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-624 *3 *4 *5)) (-4 *3 (-969)) (-4 *4 (-346 *3))
- (-4 *5 (-346 *3)) (-5 *2 (-108))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-972 *3 *4 *5 *6 *7)) (-4 *5 (-969))
- (-4 *6 (-214 *4 *5)) (-4 *7 (-214 *3 *5)) (-5 *2 (-108)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-545 *2)) (-4 *2 (-37 (-380 (-520)))) (-4 *2 (-969)))))
-(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4)
- (-12 (-5 *4 (-626 (-201))) (-5 *5 (-626 (-520))) (-5 *3 (-520))
- (-5 *2 (-958)) (-5 *1 (-692)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-545 *2)) (-4 *2 (-37 (-380 (-520)))) (-4 *2 (-969)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1083)) (-5 *4 (-880 (-520))) (-5 *2 (-303))
- (-5 *1 (-305))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1083)) (-5 *4 (-1005 (-880 (-520)))) (-5 *2 (-303))
- (-5 *1 (-305))))
- ((*1 *1 *2 *2 *2)
- (-12 (-5 *2 (-706)) (-5 *1 (-614 *3)) (-4 *3 (-969)) (-4 *3 (-1012)))))
+ (-12 (-4 *4 (-513)) (-4 *5 (-918 *4))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-130 *4 *5 *3))
+ (-4 *3 (-347 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-513)) (-4 *5 (-918 *4))
+ (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4)))
+ (-5 *1 (-472 *4 *5 *6 *3)) (-4 *6 (-347 *4)) (-4 *3 (-347 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-627 *5)) (-4 *5 (-918 *4)) (-4 *4 (-513))
+ (-5 *2 (-2 (|:| |num| (-627 *4)) (|:| |den| *4)))
+ (-5 *1 (-630 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-13 (-337) (-135) (-961 (-381 (-521)))))
+ (-4 *6 (-1141 *5))
+ (-5 *2 (-2 (|:| -3192 *7) (|:| |rh| (-587 (-381 *6)))))
+ (-5 *1 (-744 *5 *6 *7 *3)) (-5 *4 (-587 (-381 *6)))
+ (-4 *7 (-597 *6)) (-4 *3 (-597 (-381 *6)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-513)) (-4 *5 (-918 *4))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1134 *4 *5 *3))
+ (-4 *3 (-1141 *5)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-1084)) (-5 *1 (-538 *2)) (-4 *2 (-961 *3))
+ (-4 *2 (-337))))
+ ((*1 *1 *2 *2) (-12 (-5 *1 (-538 *2)) (-4 *2 (-337))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1084)) (-4 *4 (-13 (-784) (-513))) (-5 *1 (-574 *4 *2))
+ (-4 *2 (-13 (-404 *4) (-927) (-1105)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1006 *2)) (-4 *2 (-13 (-404 *4) (-927) (-1105)))
+ (-4 *4 (-13 (-784) (-513))) (-5 *1 (-574 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-887)) (-5 *2 (-1084))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1006 *1)) (-4 *1 (-887)))))
(((*1 *2)
- (-12 (-4 *2 (-13 (-403 *3) (-926))) (-5 *1 (-251 *3 *2))
- (-4 *3 (-13 (-783) (-512))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-586 (-849))) (-5 *1 (-1013 *3 *4)) (-14 *3 (-849))
- (-14 *4 (-849)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1085 (-380 (-520)))) (-5 *2 (-380 (-520)))
- (-5 *1 (-168)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-1066)) (-5 *2 (-1169)) (-5 *1 (-758)))))
+ (-12 (-4 *2 (-13 (-404 *3) (-927))) (-5 *1 (-252 *3 *2))
+ (-4 *3 (-13 (-784) (-513))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-707)) (-5 *1 (-719 *2)) (-4 *2 (-37 (-381 (-521))))
+ (-4 *2 (-157)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202)))
+ (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202))
+ (|:| |relerr| (-202))))
+ (-5 *2
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite| "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))
+ (-5 *1 (-171)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970)) (-5 *2 (-108)))))
(((*1 *1 *1)
- (-12 (|has| *1 (-6 -4229)) (-4 *1 (-139 *2)) (-4 *2 (-1118))
- (-4 *2 (-1012)))))
+ (-12 (|has| *1 (-6 -4233)) (-4 *1 (-139 *2)) (-4 *2 (-1119))
+ (-4 *2 (-1013)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-893 *3)) (-4 *3 (-894)))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *4 (-560 *3)) (-5 *5 (-1 (-1080 *3) (-1080 *3)))
+ (-4 *3 (-13 (-27) (-404 *6))) (-4 *6 (-13 (-784) (-513)))
+ (-5 *2 (-538 *3)) (-5 *1 (-508 *6 *3)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783))
- (-4 *3 (-983 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-989 *5 *6 *7 *3 *4))
- (-4 *4 (-988 *5 *6 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783))
- (-4 *3 (-983 *5 *6 *7))
- (-5 *2 (-586 (-2 (|:| |val| (-108)) (|:| -1883 *4))))
- (-5 *1 (-989 *5 *6 *7 *3 *4)) (-4 *4 (-988 *5 *6 *7 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-645 *3)) (-5 *1 (-763 *2 *3)) (-4 *3 (-969)))))
+ (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1017)) (-5 *3 (-710)) (-5 *1 (-51)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-627 (-381 (-881 (-521)))))
+ (-5 *2 (-627 (-290 (-521)))) (-5 *1 (-955)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1158 *3 *2))
+ (-4 *2 (-1156 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-510 *3)) (-4 *3 (-13 (-377) (-1104))) (-5 *2 (-108))))
- ((*1 *2 *1) (-12 (-4 *1 (-781)) (-5 *2 (-108))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-985 *4 *3)) (-4 *4 (-13 (-781) (-336)))
- (-4 *3 (-1140 *4)) (-5 *2 (-108)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-586 *6)) (-4 *6 (-983 *3 *4 *5)) (-4 *3 (-512))
- (-4 *4 (-728)) (-4 *5 (-783)) (-5 *1 (-902 *3 *4 *5 *6))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-512)) (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-586 *3))
- (-5 *1 (-902 *4 *5 *6 *3)) (-4 *3 (-983 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-586 *3)) (-4 *3 (-983 *4 *5 *6)) (-4 *4 (-512))
- (-4 *5 (-728)) (-4 *6 (-783)) (-5 *1 (-902 *4 *5 *6 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-586 *6)) (-4 *6 (-983 *3 *4 *5)) (-4 *3 (-512))
- (-4 *4 (-728)) (-4 *5 (-783)) (-5 *1 (-902 *3 *4 *5 *6))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 (-586 *7) (-586 *7))) (-5 *2 (-586 *7))
- (-4 *7 (-983 *4 *5 *6)) (-4 *4 (-512)) (-4 *5 (-728)) (-4 *6 (-783))
- (-5 *1 (-902 *4 *5 *6 *7)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1016)) (-5 *3 (-709)) (-5 *1 (-51)))))
-(((*1 *2 *3 *4 *3 *4 *3)
- (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *2 (-958))
- (-5 *1 (-692)))))
-(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-439))))
- ((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-439)))))
-(((*1 *2)
- (-12 (-4 *3 (-1122)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-380 *4)))
- (-5 *2 (-1164 *1)) (-4 *1 (-315 *3 *4 *5))))
- ((*1 *2)
- (-12 (-4 *3 (-13 (-281) (-10 -8 (-15 -1507 ((-391 $) $)))))
- (-4 *4 (-1140 *3))
- (-5 *2
- (-2 (|:| -1831 (-626 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-626 *3))))
- (-5 *1 (-323 *3 *4 *5)) (-4 *5 (-382 *3 *4))))
- ((*1 *2)
- (-12 (-4 *3 (-1140 (-520)))
+ (-12 (-4 *1 (-1113 *3 *4 *5 *6)) (-4 *3 (-513)) (-4 *4 (-729))
+ (-4 *5 (-784)) (-4 *6 (-984 *3 *4 *5)) (-5 *2 (-587 *6)))))
+(((*1 *1 *1 *1) (-4 *1 (-602))) ((*1 *1 *1 *1) (-5 *1 (-1031))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-587 (-881 *4))) (-4 *4 (-425)) (-5 *2 (-108))
+ (-5 *1 (-334 *4 *5)) (-14 *5 (-587 (-1084)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-587 (-716 *4 (-794 *5)))) (-4 *4 (-425))
+ (-14 *5 (-587 (-1084))) (-5 *2 (-108)) (-5 *1 (-572 *4 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-587 *1)) (-4 *1 (-277))))
+ ((*1 *1 *1) (-4 *1 (-277))) ((*1 *1 *1) (-5 *1 (-792))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-202) (-202) (-202) (-202))) (-5 *1 (-239))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 (-202) (-202) (-202))) (-5 *1 (-239))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 (-202) (-202))) (-5 *1 (-239)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-108)) (-4 *5 (-13 (-282) (-135))) (-4 *6 (-729))
+ (-4 *7 (-784)) (-4 *8 (-984 *5 *6 *7)) (-5 *2 (-587 *3))
+ (-5 *1 (-543 *5 *6 *7 *8 *3)) (-4 *3 (-1022 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-108)) (-4 *5 (-13 (-282) (-135)))
(-5 *2
- (-2 (|:| -1831 (-626 (-520))) (|:| |basisDen| (-520))
- (|:| |basisInv| (-626 (-520)))))
- (-5 *1 (-703 *3 *4)) (-4 *4 (-382 (-520) *3))))
- ((*1 *2)
- (-12 (-4 *3 (-322)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 *4))
+ (-587 (-2 (|:| -3183 (-1080 *5)) (|:| -2234 (-587 (-881 *5))))))
+ (-5 *1 (-994 *5 *6)) (-5 *3 (-587 (-881 *5)))
+ (-14 *6 (-587 (-1084)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-282) (-135)))
(-5 *2
- (-2 (|:| -1831 (-626 *4)) (|:| |basisDen| *4)
- (|:| |basisInv| (-626 *4))))
- (-5 *1 (-910 *3 *4 *5 *6)) (-4 *6 (-660 *4 *5))))
- ((*1 *2)
- (-12 (-4 *3 (-322)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 *4))
+ (-587 (-2 (|:| -3183 (-1080 *4)) (|:| -2234 (-587 (-881 *4))))))
+ (-5 *1 (-994 *4 *5)) (-5 *3 (-587 (-881 *4)))
+ (-14 *5 (-587 (-1084)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-108)) (-4 *5 (-13 (-282) (-135)))
(-5 *2
- (-2 (|:| -1831 (-626 *4)) (|:| |basisDen| *4)
- (|:| |basisInv| (-626 *4))))
- (-5 *1 (-1173 *3 *4 *5 *6)) (-4 *6 (-382 *4 *5)))))
+ (-587 (-2 (|:| -3183 (-1080 *5)) (|:| -2234 (-587 (-881 *5))))))
+ (-5 *1 (-994 *5 *6)) (-5 *3 (-587 (-881 *5)))
+ (-14 *6 (-587 (-1084))))))
+(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-1013)))))
+(((*1 *2 *1) (-12 (-5 *2 (-587 (-1084))) (-5 *1 (-1088)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-381 (-521))) (-5 *1 (-293 *3 *4 *5))
+ (-4 *3 (-13 (-337) (-784))) (-14 *4 (-1084)) (-14 *5 *3))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-588 *3)) (-4 *3 (-1013)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-391 *5)) (-4 *5 (-512))
- (-5 *2
- (-2 (|:| -2647 (-706)) (|:| -2972 *5) (|:| |radicand| (-586 *5))))
- (-5 *1 (-293 *5)) (-5 *4 (-706))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-926)) (-5 *2 (-520)))))
-(((*1 *1 *1 *1) (-4 *1 (-601))) ((*1 *1 *1 *1) (-5 *1 (-1030))))
-(((*1 *2 *1 *1)
+ (-12 (-5 *3 (-1080 *5)) (-4 *5 (-425)) (-5 *2 (-587 *6))
+ (-5 *1 (-499 *5 *6 *4)) (-4 *6 (-337)) (-4 *4 (-13 (-337) (-782)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-881 *5)) (-4 *5 (-425)) (-5 *2 (-587 *6))
+ (-5 *1 (-499 *5 *6 *4)) (-4 *6 (-337)) (-4 *4 (-13 (-337) (-782))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-632 *3)) (-4 *3 (-1013))
+ (-5 *2 (-587 (-2 (|:| -3045 *3) (|:| -4163 (-707))))))))
+(((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *4 (-1 (-3 (-521) "failed") *5)) (-4 *5 (-970))
+ (-5 *2 (-521)) (-5 *1 (-504 *5 *3)) (-4 *3 (-1141 *5))))
+ ((*1 *2 *3 *4 *2 *5)
+ (|partial| -12 (-5 *5 (-1 (-3 (-521) "failed") *4)) (-4 *4 (-970))
+ (-5 *2 (-521)) (-5 *1 (-504 *4 *3)) (-4 *3 (-1141 *4))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-1 (-3 (-521) "failed") *4)) (-4 *4 (-970))
+ (-5 *2 (-521)) (-5 *1 (-504 *4 *3)) (-4 *3 (-1141 *4)))))
+(((*1 *2 *2 *3 *3)
+ (|partial| -12 (-5 *3 (-1084))
+ (-4 *4 (-13 (-282) (-784) (-135) (-961 (-521)) (-583 (-521))))
+ (-5 *1 (-532 *4 *2))
+ (-4 *2 (-13 (-1105) (-887) (-1048) (-29 *4))))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-368)))))
+(((*1 *2 *2)
(-12
(-5 *2
- (-2 (|:| -2257 (-717 *3)) (|:| |coef1| (-717 *3))
- (|:| |coef2| (-717 *3))))
- (-5 *1 (-717 *3)) (-4 *3 (-512)) (-4 *3 (-969))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-512)) (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783))
- (-5 *2 (-2 (|:| -2257 *1) (|:| |coef1| *1) (|:| |coef2| *1)))
- (-4 *1 (-983 *3 *4 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-586 *1)) (-4 *1 (-276))))
- ((*1 *1 *1) (-4 *1 (-276))) ((*1 *1 *1) (-5 *1 (-791))))
-(((*1 *2 *1) (-12 (-4 *1 (-340 *2)) (-4 *2 (-157)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-823))
- (-5 *3
- (-2 (|:| |pde| (-586 (-289 (-201))))
- (|:| |constraints|
- (-586
- (-2 (|:| |start| (-201)) (|:| |finish| (-201))
- (|:| |grid| (-706)) (|:| |boundaryType| (-520))
- (|:| |dStart| (-626 (-201))) (|:| |dFinish| (-626 (-201))))))
- (|:| |f| (-586 (-586 (-289 (-201))))) (|:| |st| (-1066))
- (|:| |tol| (-201))))
- (-5 *2 (-958)))))
-(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-587 *2)) (-4 *2 (-1012)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2413 *3) (|:| |coef1| (-717 *3))))
- (-5 *1 (-717 *3)) (-4 *3 (-512)) (-4 *3 (-969)))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3)
- (-12 (-5 *3 (-520)) (-5 *5 (-108)) (-5 *6 (-626 (-201)))
- (-5 *4 (-201)) (-5 *2 (-958)) (-5 *1 (-691)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-336)) (-4 *3 (-969))
- (-5 *1 (-1068 *3)))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3)
- (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *5 (-108))
- (-5 *2 (-958)) (-5 *1 (-689)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-586 *1)) (-4 *1 (-983 *4 *5 *6)) (-4 *4 (-969))
- (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-108))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-983 *3 *4 *5)) (-4 *3 (-969)) (-4 *4 (-728))
- (-4 *5 (-783)) (-5 *2 (-108))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1112 *3 *4 *5 *6)) (-4 *3 (-512)) (-4 *4 (-728))
- (-4 *5 (-783)) (-4 *6 (-983 *3 *4 *5)) (-5 *2 (-108))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1112 *4 *5 *6 *3)) (-4 *4 (-512)) (-4 *5 (-728))
- (-4 *6 (-783)) (-4 *3 (-983 *4 *5 *6)) (-5 *2 (-108)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-512) (-783) (-960 (-520)))) (-5 *1 (-166 *3 *2))
- (-4 *2 (-13 (-27) (-1104) (-403 (-154 *3))))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1083)) (-4 *4 (-13 (-512) (-783) (-960 (-520))))
- (-5 *1 (-166 *4 *2)) (-4 *2 (-13 (-27) (-1104) (-403 (-154 *4))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-424) (-783) (-960 (-520)) (-582 (-520))))
- (-5 *1 (-1108 *3 *2)) (-4 *2 (-13 (-27) (-1104) (-403 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1083))
- (-4 *4 (-13 (-424) (-783) (-960 (-520)) (-582 (-520))))
- (-5 *1 (-1108 *4 *2)) (-4 *2 (-13 (-27) (-1104) (-403 *4))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1155 *4)) (-5 *1 (-1157 *4 *2))
- (-4 *4 (-37 (-380 (-520)))))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-154 (-201)) (-154 (-201)))) (-5 *4 (-1007 (-201)))
- (-5 *2 (-1166)) (-5 *1 (-232)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2))
- (-4 *2 (-13 (-403 *3) (-926))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1064 *3)) (-5 *1 (-158 *3)) (-4 *3 (-281)))))
-(((*1 *1 *1) (-12 (-5 *1 (-615 *2)) (-4 *2 (-783))))
- ((*1 *1 *1) (-12 (-5 *1 (-755 *2)) (-4 *2 (-783))))
- ((*1 *1 *1) (-12 (-5 *1 (-821 *2)) (-4 *2 (-783))))
+ (-587
+ (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-707)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *4 (-729)) (-4 *6 (-878 *3 *4 *5)) (-4 *3 (-425)) (-4 *5 (-784))
+ (-5 *1 (-422 *3 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1141 (-521))))))
+(((*1 *1 *1) (-12 (-5 *1 (-616 *2)) (-4 *2 (-784))))
+ ((*1 *1 *1) (-12 (-5 *1 (-756 *2)) (-4 *2 (-784))))
+ ((*1 *1 *1) (-12 (-5 *1 (-822 *2)) (-4 *2 (-784))))
((*1 *1 *1)
- (|partial| -12 (-4 *1 (-1112 *2 *3 *4 *5)) (-4 *2 (-512))
- (-4 *3 (-728)) (-4 *4 (-783)) (-4 *5 (-983 *2 *3 *4))))
+ (|partial| -12 (-4 *1 (-1113 *2 *3 *4 *5)) (-4 *2 (-513))
+ (-4 *3 (-729)) (-4 *4 (-784)) (-4 *5 (-984 *2 *3 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-706)) (-4 *1 (-1152 *3)) (-4 *3 (-1118))))
- ((*1 *1 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1118)))))
-(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-520)) (-5 *4 (-626 (-154 (-201)))) (-5 *2 (-958))
- (-5 *1 (-692)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-424))) (-5 *1 (-1110 *3 *2))
- (-4 *2 (-13 (-403 *3) (-1104))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-586 *3)) (-4 *3 (-281)) (-5 *1 (-163 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-380 (-880 *3))) (-5 *1 (-425 *3 *4 *5 *6))
- (-4 *3 (-512)) (-4 *3 (-157)) (-14 *4 (-849))
- (-14 *5 (-586 (-1083))) (-14 *6 (-1164 (-626 *3))))))
-(((*1 *2) (-12 (-5 *2 (-1066)) (-5 *1 (-217)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1066)) (-5 *2 (-1169)) (-5 *1 (-1096 *4 *5))
- (-4 *4 (-1012)) (-4 *5 (-1012)))))
+ (-12 (-5 *2 (-707)) (-4 *1 (-1153 *3)) (-4 *3 (-1119))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1119)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-520)) (|has| *1 (-6 -4220)) (-4 *1 (-377))
- (-5 *2 (-849)))))
-(((*1 *1 *2) (-12 (-5 *2 (-586 (-791))) (-5 *1 (-791)))))
-(((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *4 (-1 (-3 (-520) "failed") *5)) (-4 *5 (-969))
- (-5 *2 (-520)) (-5 *1 (-503 *5 *3)) (-4 *3 (-1140 *5))))
- ((*1 *2 *3 *4 *2 *5)
- (|partial| -12 (-5 *5 (-1 (-3 (-520) "failed") *4)) (-4 *4 (-969))
- (-5 *2 (-520)) (-5 *1 (-503 *4 *3)) (-4 *3 (-1140 *4))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1 (-3 (-520) "failed") *4)) (-4 *4 (-969))
- (-5 *2 (-520)) (-5 *1 (-503 *4 *3)) (-4 *3 (-1140 *4)))))
+ (-12 (-5 *2 (-560 *4)) (-5 *1 (-559 *3 *4)) (-4 *3 (-784))
+ (-4 *4 (-784)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |preimage| (-586 *3)) (|:| |image| (-586 *3))))
- (-5 *1 (-833 *3)) (-4 *3 (-1012)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-802)) (-5 *3 (-586 (-238))) (-5 *1 (-236)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-553 *3 *2)) (-4 *3 (-1012)) (-4 *3 (-783))
- (-4 *2 (-1118))))
- ((*1 *2 *1) (-12 (-5 *1 (-615 *2)) (-4 *2 (-783))))
- ((*1 *2 *1) (-12 (-5 *1 (-755 *2)) (-4 *2 (-783))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1118)) (-5 *1 (-801 *2 *3)) (-4 *3 (-1118))))
- ((*1 *2 *1) (-12 (-5 *2 (-611 *3)) (-5 *1 (-821 *3)) (-4 *3 (-783))))
+ (-12 (-4 *1 (-625 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-347 *3))
+ (-4 *5 (-347 *3)) (-5 *2 (-108))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1112 *3 *4 *5 *2)) (-4 *3 (-512))
- (-4 *4 (-728)) (-4 *5 (-783)) (-4 *2 (-983 *3 *4 *5))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-706)) (-4 *1 (-1152 *3)) (-4 *3 (-1118))))
- ((*1 *2 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1118)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-545 *2)) (-4 *2 (-37 (-380 (-520)))) (-4 *2 (-969)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1164 (-586 (-2 (|:| -3429 *4) (|:| -2716 (-1030))))))
- (-4 *4 (-322)) (-5 *2 (-1169)) (-5 *1 (-490 *4)))))
+ (-12 (-4 *1 (-973 *3 *4 *5 *6 *7)) (-4 *5 (-970))
+ (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-108)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-586 *3)) (-4 *3 (-877 *5 *6 *7)) (-4 *5 (-424))
- (-4 *6 (-728)) (-4 *7 (-783))
- (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5)))
- (-5 *1 (-421 *5 *6 *7 *3)))))
+ (-12 (-5 *3 (-381 (-521))) (-5 *4 (-521)) (-5 *2 (-51))
+ (-5 *1 (-930)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1132 *3)) (-4 *3 (-1119)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959))
+ (-5 *1 (-692)))))
+(((*1 *2 *1 *2)
+ (-12 (|has| *1 (-6 -4234)) (-4 *1 (-935 *2)) (-4 *2 (-1119)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-627 *3))
+ (-4 *3 (-13 (-282) (-10 -8 (-15 -3358 ((-392 $) $)))))
+ (-4 *4 (-1141 *3)) (-5 *1 (-468 *3 *4 *5)) (-4 *5 (-383 *3 *4)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-587 (-1080 *4))) (-5 *3 (-1080 *4))
+ (-4 *4 (-838)) (-5 *1 (-604 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-1141 *3)) (-5 *1 (-373 *3 *2))
+ (-4 *3 (-13 (-337) (-135))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-927))))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-587 (-521))) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-521))
+ (-14 *4 (-707)) (-4 *5 (-157)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-935 *3)) (-4 *3 (-1119)) (-4 *3 (-1013))
+ (-5 *2 (-108)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1118)) (-4 *4 (-346 *3))
- (-4 *5 (-346 *3)) (-5 *2 (-520))))
+ (-12 (-4 *1 (-554 *3 *2)) (-4 *3 (-1013)) (-4 *3 (-784))
+ (-4 *2 (-1119))))
+ ((*1 *2 *1) (-12 (-5 *1 (-616 *2)) (-4 *2 (-784))))
+ ((*1 *2 *1) (-12 (-5 *1 (-756 *2)) (-4 *2 (-784))))
((*1 *2 *1)
- (-12 (-4 *1 (-972 *3 *4 *5 *6 *7)) (-4 *5 (-969))
- (-4 *6 (-214 *4 *5)) (-4 *7 (-214 *3 *5)) (-5 *2 (-520)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1079 *1)) (-5 *3 (-1083)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-1079 *1)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-880 *1)) (-4 *1 (-27))))
+ (-12 (-4 *2 (-1119)) (-5 *1 (-802 *2 *3)) (-4 *3 (-1119))))
+ ((*1 *2 *1) (-12 (-5 *2 (-612 *3)) (-5 *1 (-822 *3)) (-4 *3 (-784))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-1113 *3 *4 *5 *2)) (-4 *3 (-513))
+ (-4 *4 (-729)) (-4 *5 (-784)) (-4 *2 (-984 *3 *4 *5))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1083)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-783) (-512)))))
- ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-783) (-512)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1079 *2)) (-5 *4 (-1083)) (-4 *2 (-403 *5))
- (-5 *1 (-31 *5 *2)) (-4 *5 (-13 (-783) (-512)))))
- ((*1 *1 *2 *3)
- (|partial| -12 (-5 *2 (-1079 *1)) (-5 *3 (-849)) (-4 *1 (-936))))
- ((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-1079 *1)) (-5 *3 (-849)) (-5 *4 (-791))
- (-4 *1 (-936))))
- ((*1 *1 *2 *3)
- (|partial| -12 (-5 *3 (-849)) (-4 *4 (-13 (-781) (-336)))
- (-4 *1 (-985 *4 *2)) (-4 *2 (-1140 *4)))))
-(((*1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-1167)))))
+ (-12 (-5 *2 (-707)) (-4 *1 (-1153 *3)) (-4 *3 (-1119))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1119)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-970))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-872 (-202))) (-5 *1 (-1116))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1163 *2)) (-4 *2 (-1119)) (-4 *2 (-970)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-587 *7)) (-4 *7 (-878 *4 *6 *5))
+ (-4 *4 (-13 (-282) (-135))) (-4 *5 (-13 (-784) (-562 (-1084))))
+ (-4 *6 (-729)) (-5 *2 (-108)) (-5 *1 (-853 *4 *5 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-587 (-881 *4))) (-4 *4 (-13 (-282) (-135)))
+ (-4 *5 (-13 (-784) (-562 (-1084)))) (-4 *6 (-729)) (-5 *2 (-108))
+ (-5 *1 (-853 *4 *5 *6 *7)) (-4 *7 (-878 *4 *6 *5)))))
+(((*1 *1 *2 *2 *3 *1)
+ (-12 (-5 *2 (-1084)) (-5 *3 (-1017)) (-5 *1 (-266)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-108)) (-5 *1 (-110)))))
(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-380 *5)) (-4 *4 (-1122)) (-4 *5 (-1140 *4))
- (-5 *1 (-136 *4 *5 *2)) (-4 *2 (-1140 *3))))
+ (-12 (-5 *3 (-381 *5)) (-4 *4 (-1123)) (-4 *5 (-1141 *4))
+ (-5 *1 (-136 *4 *5 *2)) (-4 *2 (-1141 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-1085 (-380 (-520)))) (-5 *2 (-380 (-520)))
- (-5 *1 (-168))))
+ (-12 (-5 *3 (-1086 (-381 (-521)))) (-5 *2 (-381 (-521)))
+ (-5 *1 (-169))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-626 (-289 (-201)))) (-5 *3 (-586 (-1083)))
- (-5 *4 (-1164 (-289 (-201)))) (-5 *1 (-183))))
+ (-12 (-5 *2 (-627 (-290 (-202)))) (-5 *3 (-587 (-1084)))
+ (-5 *4 (-1165 (-290 (-202)))) (-5 *1 (-184))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-586 (-268 *3))) (-4 *3 (-283 *3)) (-4 *3 (-1012))
- (-4 *3 (-1118)) (-5 *1 (-268 *3))))
+ (-12 (-5 *2 (-587 (-269 *3))) (-4 *3 (-284 *3)) (-4 *3 (-1013))
+ (-4 *3 (-1119)) (-5 *1 (-269 *3))))
((*1 *1 *1 *1)
- (-12 (-4 *2 (-283 *2)) (-4 *2 (-1012)) (-4 *2 (-1118))
- (-5 *1 (-268 *2))))
+ (-12 (-4 *2 (-284 *2)) (-4 *2 (-1013)) (-4 *2 (-1119))
+ (-5 *1 (-269 *2))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-110)) (-5 *3 (-1 *1 *1)) (-4 *1 (-276))))
+ (-12 (-5 *2 (-110)) (-5 *3 (-1 *1 *1)) (-4 *1 (-277))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-110)) (-5 *3 (-1 *1 (-586 *1))) (-4 *1 (-276))))
+ (-12 (-5 *2 (-110)) (-5 *3 (-1 *1 (-587 *1))) (-4 *1 (-277))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-586 (-110))) (-5 *3 (-586 (-1 *1 (-586 *1))))
- (-4 *1 (-276))))
+ (-12 (-5 *2 (-587 (-110))) (-5 *3 (-587 (-1 *1 (-587 *1))))
+ (-4 *1 (-277))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-586 (-110))) (-5 *3 (-586 (-1 *1 *1))) (-4 *1 (-276))))
+ (-12 (-5 *2 (-587 (-110))) (-5 *3 (-587 (-1 *1 *1))) (-4 *1 (-277))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1083)) (-5 *3 (-1 *1 *1)) (-4 *1 (-276))))
+ (-12 (-5 *2 (-1084)) (-5 *3 (-1 *1 *1)) (-4 *1 (-277))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1083)) (-5 *3 (-1 *1 (-586 *1))) (-4 *1 (-276))))
+ (-12 (-5 *2 (-1084)) (-5 *3 (-1 *1 (-587 *1))) (-4 *1 (-277))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-586 (-1083))) (-5 *3 (-586 (-1 *1 (-586 *1))))
- (-4 *1 (-276))))
+ (-12 (-5 *2 (-587 (-1084))) (-5 *3 (-587 (-1 *1 (-587 *1))))
+ (-4 *1 (-277))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-586 (-1083))) (-5 *3 (-586 (-1 *1 *1))) (-4 *1 (-276))))
+ (-12 (-5 *2 (-587 (-1084))) (-5 *3 (-587 (-1 *1 *1))) (-4 *1 (-277))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-586 (-268 *3))) (-4 *1 (-283 *3)) (-4 *3 (-1012))))
+ (-12 (-5 *2 (-587 (-269 *3))) (-4 *1 (-284 *3)) (-4 *3 (-1013))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-268 *3)) (-4 *1 (-283 *3)) (-4 *3 (-1012))))
+ (-12 (-5 *2 (-269 *3)) (-4 *1 (-284 *3)) (-4 *3 (-1013))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 (-520))) (-5 *4 (-1085 (-380 (-520))))
- (-5 *1 (-284 *2)) (-4 *2 (-37 (-380 (-520))))))
+ (-12 (-5 *3 (-1 *2 (-521))) (-5 *4 (-1086 (-381 (-521))))
+ (-5 *1 (-285 *2)) (-4 *2 (-37 (-381 (-521))))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-586 *4)) (-5 *3 (-586 *1)) (-4 *1 (-347 *4 *5))
- (-4 *4 (-783)) (-4 *5 (-157))))
+ (-12 (-5 *2 (-587 *4)) (-5 *3 (-587 *1)) (-4 *1 (-348 *4 *5))
+ (-4 *4 (-784)) (-4 *5 (-157))))
((*1 *1 *1 *2 *1)
- (-12 (-4 *1 (-347 *2 *3)) (-4 *2 (-783)) (-4 *3 (-157))))
+ (-12 (-4 *1 (-348 *2 *3)) (-4 *2 (-784)) (-4 *3 (-157))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1083)) (-5 *3 (-706)) (-5 *4 (-1 *1 *1))
- (-4 *1 (-403 *5)) (-4 *5 (-783)) (-4 *5 (-969))))
+ (-12 (-5 *2 (-1084)) (-5 *3 (-707)) (-5 *4 (-1 *1 *1))
+ (-4 *1 (-404 *5)) (-4 *5 (-784)) (-4 *5 (-970))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1083)) (-5 *3 (-706)) (-5 *4 (-1 *1 (-586 *1)))
- (-4 *1 (-403 *5)) (-4 *5 (-783)) (-4 *5 (-969))))
+ (-12 (-5 *2 (-1084)) (-5 *3 (-707)) (-5 *4 (-1 *1 (-587 *1)))
+ (-4 *1 (-404 *5)) (-4 *5 (-784)) (-4 *5 (-970))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-586 (-1083))) (-5 *3 (-586 (-706)))
- (-5 *4 (-586 (-1 *1 (-586 *1)))) (-4 *1 (-403 *5)) (-4 *5 (-783))
- (-4 *5 (-969))))
+ (-12 (-5 *2 (-587 (-1084))) (-5 *3 (-587 (-707)))
+ (-5 *4 (-587 (-1 *1 (-587 *1)))) (-4 *1 (-404 *5)) (-4 *5 (-784))
+ (-4 *5 (-970))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-586 (-1083))) (-5 *3 (-586 (-706)))
- (-5 *4 (-586 (-1 *1 *1))) (-4 *1 (-403 *5)) (-4 *5 (-783))
- (-4 *5 (-969))))
+ (-12 (-5 *2 (-587 (-1084))) (-5 *3 (-587 (-707)))
+ (-5 *4 (-587 (-1 *1 *1))) (-4 *1 (-404 *5)) (-4 *5 (-784))
+ (-4 *5 (-970))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-586 (-110))) (-5 *3 (-586 *1)) (-5 *4 (-1083))
- (-4 *1 (-403 *5)) (-4 *5 (-783)) (-4 *5 (-561 (-496)))))
+ (-12 (-5 *2 (-587 (-110))) (-5 *3 (-587 *1)) (-5 *4 (-1084))
+ (-4 *1 (-404 *5)) (-4 *5 (-784)) (-4 *5 (-562 (-497)))))
((*1 *1 *1 *2 *1 *3)
- (-12 (-5 *2 (-110)) (-5 *3 (-1083)) (-4 *1 (-403 *4)) (-4 *4 (-783))
- (-4 *4 (-561 (-496)))))
+ (-12 (-5 *2 (-110)) (-5 *3 (-1084)) (-4 *1 (-404 *4)) (-4 *4 (-784))
+ (-4 *4 (-562 (-497)))))
((*1 *1 *1)
- (-12 (-4 *1 (-403 *2)) (-4 *2 (-783)) (-4 *2 (-561 (-496)))))
+ (-12 (-4 *1 (-404 *2)) (-4 *2 (-784)) (-4 *2 (-562 (-497)))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-586 (-1083))) (-4 *1 (-403 *3)) (-4 *3 (-783))
- (-4 *3 (-561 (-496)))))
+ (-12 (-5 *2 (-587 (-1084))) (-4 *1 (-404 *3)) (-4 *3 (-784))
+ (-4 *3 (-562 (-497)))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1083)) (-4 *1 (-403 *3)) (-4 *3 (-783))
- (-4 *3 (-561 (-496)))))
+ (-12 (-5 *2 (-1084)) (-4 *1 (-404 *3)) (-4 *3 (-784))
+ (-4 *3 (-562 (-497)))))
((*1 *1 *1 *2 *3)
- (-12 (-4 *1 (-481 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1118))))
+ (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1119))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-586 *4)) (-5 *3 (-586 *5)) (-4 *1 (-481 *4 *5))
- (-4 *4 (-1012)) (-4 *5 (-1118))))
+ (-12 (-5 *2 (-587 *4)) (-5 *3 (-587 *5)) (-4 *1 (-482 *4 *5))
+ (-4 *4 (-1013)) (-4 *5 (-1119))))
((*1 *2 *1 *2)
- (-12 (-5 *2 (-769 *3)) (-4 *3 (-336)) (-5 *1 (-654 *3))))
- ((*1 *2 *1 *2) (-12 (-5 *1 (-654 *2)) (-4 *2 (-336))))
- ((*1 *2 *1 *2) (-12 (-4 *1 (-831 *2)) (-4 *2 (-1012))))
+ (-12 (-5 *2 (-770 *3)) (-4 *3 (-337)) (-5 *1 (-655 *3))))
+ ((*1 *2 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-337))))
+ ((*1 *2 *1 *2) (-12 (-4 *1 (-832 *2)) (-4 *2 (-1013))))
((*1 *2 *2 *3 *2)
- (-12 (-5 *2 (-380 (-880 *4))) (-5 *3 (-1083)) (-4 *4 (-512))
- (-5 *1 (-965 *4))))
+ (-12 (-5 *2 (-381 (-881 *4))) (-5 *3 (-1084)) (-4 *4 (-513))
+ (-5 *1 (-966 *4))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-586 (-1083))) (-5 *4 (-586 (-380 (-880 *5))))
- (-5 *2 (-380 (-880 *5))) (-4 *5 (-512)) (-5 *1 (-965 *5))))
+ (-12 (-5 *3 (-587 (-1084))) (-5 *4 (-587 (-381 (-881 *5))))
+ (-5 *2 (-381 (-881 *5))) (-4 *5 (-513)) (-5 *1 (-966 *5))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-268 (-380 (-880 *4)))) (-5 *2 (-380 (-880 *4)))
- (-4 *4 (-512)) (-5 *1 (-965 *4))))
+ (-12 (-5 *3 (-269 (-381 (-881 *4)))) (-5 *2 (-381 (-881 *4)))
+ (-4 *4 (-513)) (-5 *1 (-966 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-586 (-268 (-380 (-880 *4))))) (-5 *2 (-380 (-880 *4)))
- (-4 *4 (-512)) (-5 *1 (-965 *4))))
+ (-12 (-5 *3 (-587 (-269 (-381 (-881 *4))))) (-5 *2 (-381 (-881 *4)))
+ (-4 *4 (-513)) (-5 *1 (-966 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-969)) (-5 *1 (-1068 *3))))
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-5 *1 (-1069 *3))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1142 *3 *4)) (-4 *3 (-969)) (-4 *4 (-727))
- (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1064 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-586 (-586 (-586 *4)))) (-5 *2 (-586 (-586 *4)))
- (-5 *1 (-1090 *4)) (-4 *4 (-783)))))
+ (-12 (-4 *1 (-1143 *3 *4)) (-4 *3 (-970)) (-4 *4 (-728))
+ (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1065 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1164 *1)) (-4 *1 (-340 *4)) (-4 *4 (-157))
- (-5 *2 (-1164 (-626 *4)))))
- ((*1 *2)
- (-12 (-4 *4 (-157)) (-5 *2 (-1164 (-626 *4))) (-5 *1 (-389 *3 *4))
- (-4 *3 (-390 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-390 *3)) (-4 *3 (-157)) (-5 *2 (-1164 (-626 *3)))))
+ (-12 (-5 *3 (-290 *4)) (-4 *4 (-13 (-765) (-784) (-970)))
+ (-5 *2 (-1067)) (-5 *1 (-763 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-586 (-1083))) (-4 *5 (-336))
- (-5 *2 (-1164 (-626 (-380 (-880 *5))))) (-5 *1 (-1000 *5))
- (-5 *4 (-626 (-380 (-880 *5))))))
+ (-12 (-5 *3 (-290 *5)) (-5 *4 (-108))
+ (-4 *5 (-13 (-765) (-784) (-970))) (-5 *2 (-1067))
+ (-5 *1 (-763 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-586 (-1083))) (-4 *5 (-336))
- (-5 *2 (-1164 (-626 (-880 *5)))) (-5 *1 (-1000 *5))
- (-5 *4 (-626 (-880 *5)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-586 (-626 *4))) (-4 *4 (-336))
- (-5 *2 (-1164 (-626 *4))) (-5 *1 (-1000 *4)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-545 *2)) (-4 *2 (-37 (-380 (-520)))) (-4 *2 (-969)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-520)) (-5 *3 (-706)) (-5 *1 (-517)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1007 (-776 (-201)))) (-5 *2 (-201)) (-5 *1 (-170))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1007 (-776 (-201)))) (-5 *2 (-201)) (-5 *1 (-274))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1007 (-776 (-201)))) (-5 *2 (-201)) (-5 *1 (-279)))))
+ (-12 (-5 *3 (-759)) (-5 *4 (-290 *5))
+ (-4 *5 (-13 (-765) (-784) (-970))) (-5 *2 (-1170))
+ (-5 *1 (-763 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-759)) (-5 *4 (-290 *6)) (-5 *5 (-108))
+ (-4 *6 (-13 (-765) (-784) (-970))) (-5 *2 (-1170))
+ (-5 *1 (-763 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-765)) (-5 *2 (-1067))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-765)) (-5 *3 (-108)) (-5 *2 (-1067))))
+ ((*1 *2 *3 *1) (-12 (-4 *1 (-765)) (-5 *3 (-759)) (-5 *2 (-1170))))
+ ((*1 *2 *3 *1 *4)
+ (-12 (-4 *1 (-765)) (-5 *3 (-759)) (-5 *4 (-108)) (-5 *2 (-1170)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-759)))))
+(((*1 *2 *1) (-12 (-4 *1 (-614 *2)) (-4 *2 (-1119)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-627 *4)) (-4 *4 (-970)) (-5 *1 (-1051 *3 *4))
+ (-14 *3 (-707)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-506))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-970)) (-5 *1 (-417 *3 *2)) (-4 *2 (-1141 *3)))))
(((*1 *1) (-5 *1 (-108))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-151 *3)) (-4 *3 (-157)) (-4 *3 (-505))
- (-5 *2 (-380 (-520)))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-380 (-520))) (-5 *1 (-391 *3)) (-4 *3 (-505))
- (-4 *3 (-512))))
- ((*1 *2 *1) (|partial| -12 (-4 *1 (-505)) (-5 *2 (-380 (-520)))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-733 *3)) (-4 *3 (-157)) (-4 *3 (-505))
- (-5 *2 (-380 (-520)))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-380 (-520))) (-5 *1 (-769 *3)) (-4 *3 (-505))
- (-4 *3 (-1012))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-380 (-520))) (-5 *1 (-776 *3)) (-4 *3 (-505))
- (-4 *3 (-1012))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-921 *3)) (-4 *3 (-157)) (-4 *3 (-505))
- (-5 *2 (-380 (-520)))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *2 (-380 (-520))) (-5 *1 (-932 *3))
- (-4 *3 (-960 *2)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-1072 *3 *4)) (-14 *3 (-849))
- (-4 *4 (-969)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-908 *2)) (-4 *2 (-1104)))))
-(((*1 *1 *1 *1) (-4 *1 (-281))) ((*1 *1 *1 *1) (-5 *1 (-706)))
- ((*1 *1 *1 *1) (-5 *1 (-791))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-559 *4)) (-5 *1 (-558 *3 *4)) (-4 *3 (-783))
- (-4 *4 (-783)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-336)) (-5 *2 (-586 *3)) (-5 *1 (-873 *4 *3))
- (-4 *3 (-1140 *4)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-969)) (-14 *3 (-586 (-1083)))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-199 *2 *3)) (-4 *2 (-13 (-969) (-783)))
- (-14 *3 (-586 (-1083))))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1 (-1036 *4 *3 *5))) (-4 *4 (-37 (-380 (-520))))
- (-4 *4 (-969)) (-4 *3 (-783)) (-5 *1 (-1036 *4 *3 *5))
- (-4 *5 (-877 *4 (-492 *3) *3))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1 (-1113 *4))) (-5 *3 (-1083)) (-5 *1 (-1113 *4))
- (-4 *4 (-37 (-380 (-520)))) (-4 *4 (-969)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1064 (-586 (-520)))) (-5 *3 (-586 (-520)))
- (-5 *1 (-811)))))
(((*1 *2 *3)
- (-12
+ (-12 (-5 *3 (-587 (-290 (-202)))) (-5 *2 (-108)) (-5 *1 (-243)))))
+(((*1 *2) (-12 (-5 *2 (-353)) (-5 *1 (-963)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *3 (-282)) (-4 *3 (-157)) (-4 *4 (-347 *3))
+ (-4 *5 (-347 *3)) (-5 *2 (-2 (|:| -3727 *3) (|:| -3820 *3)))
+ (-5 *1 (-626 *3 *4 *5 *6)) (-4 *6 (-625 *3 *4 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-2 (|:| -3727 *3) (|:| -3820 *3))) (-5 *1 (-637 *3))
+ (-4 *3 (-282)))))
+(((*1 *1 *1 *1) (-4 *1 (-282))) ((*1 *1 *1 *1) (-5 *1 (-707)))
+ ((*1 *1 *1 *1) (-5 *1 (-792))))
+(((*1 *2 *3 *4 *4 *2 *2 *2 *2)
+ (-12 (-5 *2 (-521))
(-5 *3
- (-586 (-2 (|:| -1912 (-380 (-520))) (|:| -1924 (-380 (-520))))))
- (-5 *2 (-586 (-380 (-520)))) (-5 *1 (-943 *4))
- (-4 *4 (-1140 (-520))))))
+ (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-707)) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (-4 *6 (-729)) (-4 *4 (-878 *5 *6 *7)) (-4 *5 (-425)) (-4 *7 (-784))
+ (-5 *1 (-422 *5 *6 *7 *4)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-1049 *2 *3)) (-4 *2 (-13 (-1013) (-33)))
+ (-4 *3 (-13 (-1013) (-33))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-625 *2 *3 *4)) (-4 *3 (-347 *2)) (-4 *4 (-347 *2))
+ (|has| *2 (-6 (-4235 "*"))) (-4 *2 (-970))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-347 *2)) (-4 *5 (-347 *2)) (-4 *2 (-157))
+ (-5 *1 (-626 *2 *4 *5 *3)) (-4 *3 (-625 *2 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1034 *3 *2 *4 *5)) (-4 *4 (-215 *3 *2))
+ (-4 *5 (-215 *3 *2)) (|has| *2 (-6 (-4235 "*"))) (-4 *2 (-970)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-586 *2)) (-4 *2 (-403 *4)) (-5 *1 (-144 *4 *2))
- (-4 *4 (-13 (-783) (-512))))))
+ (-12 (-5 *2 (-1065 (-521))) (-5 *1 (-1069 *4)) (-4 *4 (-970))
+ (-5 *3 (-521)))))
+(((*1 *1 *1) (-5 *1 (-982))))
+(((*1 *2 *3 *4 *5 *5 *2)
+ (|partial| -12 (-5 *2 (-108)) (-5 *3 (-881 *6)) (-5 *4 (-1084))
+ (-5 *5 (-777 *7))
+ (-4 *6 (-13 (-425) (-784) (-961 (-521)) (-583 (-521))))
+ (-4 *7 (-13 (-1105) (-29 *6))) (-5 *1 (-201 *6 *7))))
+ ((*1 *2 *3 *4 *4 *2)
+ (|partial| -12 (-5 *2 (-108)) (-5 *3 (-1080 *6)) (-5 *4 (-777 *6))
+ (-4 *6 (-13 (-1105) (-29 *5)))
+ (-4 *5 (-13 (-425) (-784) (-961 (-521)) (-583 (-521))))
+ (-5 *1 (-201 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1080 *1)) (-5 *4 (-1084)) (-4 *1 (-27))
+ (-5 *2 (-587 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1080 *1)) (-4 *1 (-27)) (-5 *2 (-587 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-881 *1)) (-4 *1 (-27)) (-5 *2 (-587 *1))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1084)) (-4 *4 (-13 (-784) (-513))) (-5 *2 (-587 *1))
+ (-4 *1 (-29 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *2 (-587 *1)) (-4 *1 (-29 *3)))))
(((*1 *2 *2 *2)
- (-12 (-5 *2 (-586 (-559 *4))) (-4 *4 (-403 *3)) (-4 *3 (-783))
- (-5 *1 (-529 *3 *4))))
+ (-12 (-5 *2 (-587 (-560 *4))) (-4 *4 (-404 *3)) (-4 *3 (-784))
+ (-5 *1 (-530 *3 *4))))
((*1 *1 *1 *1)
- (-12 (-5 *1 (-817 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1012))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1012))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1012))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1012)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1083)) (-4 *5 (-561 (-820 (-520))))
- (-4 *5 (-814 (-520)))
- (-4 *5 (-13 (-783) (-960 (-520)) (-424) (-582 (-520))))
- (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
- (-5 *1 (-523 *5 *3)) (-4 *3 (-572))
- (-4 *3 (-13 (-27) (-1104) (-403 *5)))))
- ((*1 *2 *2 *3 *4 *4)
- (|partial| -12 (-5 *3 (-1083)) (-5 *4 (-776 *2)) (-4 *2 (-1047))
- (-4 *2 (-13 (-27) (-1104) (-403 *5)))
- (-4 *5 (-561 (-820 (-520)))) (-4 *5 (-814 (-520)))
- (-4 *5 (-13 (-783) (-960 (-520)) (-424) (-582 (-520))))
- (-5 *1 (-523 *5 *2)))))
-(((*1 *2 *1) (-12 (-4 *1 (-613 *3)) (-4 *3 (-1118)) (-5 *2 (-108)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-586 *2)) (-4 *2 (-877 *4 *5 *6)) (-4 *4 (-281))
- (-4 *5 (-728)) (-4 *6 (-783)) (-5 *1 (-419 *4 *5 *6 *2)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1164 *4)) (-4 *4 (-582 (-520)))
- (-5 *2 (-1164 (-380 (-520)))) (-5 *1 (-1189 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1044 *3)) (-4 *3 (-969)) (-5 *2 (-1072 3 *3))))
- ((*1 *1) (-12 (-5 *1 (-1072 *2 *3)) (-14 *2 (-849)) (-4 *3 (-969))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1043 (-201))) (-5 *1 (-1166))))
- ((*1 *2 *1) (-12 (-5 *2 (-1043 (-201))) (-5 *1 (-1166)))))
-(((*1 *1 *2) (-12 (-5 *1 (-203 *2)) (-4 *2 (-13 (-336) (-1104))))))
-(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6)
- (-12 (-5 *3 (-520)) (-5 *5 (-626 (-201)))
- (-5 *6 (-3 (|:| |fn| (-361)) (|:| |fp| (-68 APROD)))) (-5 *4 (-201))
- (-5 *2 (-958)) (-5 *1 (-692)))))
-(((*1 *2)
- (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-339 *3 *4))
- (-4 *3 (-340 *4))))
- ((*1 *2) (-12 (-4 *1 (-340 *3)) (-4 *3 (-157)) (-5 *2 (-108)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-706)) (-5 *1 (-789 *2)) (-4 *2 (-157))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1079 (-520))) (-5 *1 (-870)) (-5 *3 (-520)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-156)))))
-(((*1 *1 *2) (-12 (-5 *2 (-586 *1)) (-4 *1 (-424))))
- ((*1 *1 *1 *1) (-4 *1 (-424)))
+ (-12 (-5 *1 (-818 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))))
+(((*1 *1 *1 *1) (-5 *1 (-792))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-513) (-135))) (-5 *1 (-498 *3 *2))
+ (-4 *2 (-1156 *3))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-337) (-342) (-562 (-521)))) (-4 *4 (-1141 *3))
+ (-4 *5 (-661 *3 *4)) (-5 *1 (-502 *3 *4 *5 *2)) (-4 *2 (-1156 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-337) (-342) (-562 (-521)))) (-5 *1 (-503 *3 *2))
+ (-4 *2 (-1156 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-13 (-513) (-135)))
+ (-5 *1 (-1061 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784))
+ (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-914 *4 *5 *6 *7 *3))
+ (-4 *3 (-989 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784))
+ (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-108))
+ (-5 *1 (-1020 *4 *5 *6 *7 *3)) (-4 *3 (-989 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1119)))))
+(((*1 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203))))
+ ((*1 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-405 *3 *2))
+ (-4 *2 (-404 *3))))
+ ((*1 *1 *1) (-4 *1 (-1048))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6)
+ (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *5 (-202))
+ (-5 *6 (-3 (|:| |fn| (-362)) (|:| |fp| (-76 FUNCTN))))
+ (-5 *2 (-959)) (-5 *1 (-685)))))
+(((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4234)) (-4 *1 (-1153 *2)) (-4 *2 (-1119)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784))
+ (-4 *3 (-984 *5 *6 *7))
+ (-5 *2 (-587 (-2 (|:| |val| *3) (|:| -1884 *4))))
+ (-5 *1 (-990 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1084)) (-5 *2 (-353)) (-5 *1 (-982)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-338 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))))
+(((*1 *1 *2) (-12 (-5 *2 (-587 *1)) (-4 *1 (-425))))
+ ((*1 *1 *1 *1) (-4 *1 (-425)))
((*1 *2 *3)
- (-12 (-5 *3 (-586 *2)) (-5 *1 (-456 *2)) (-4 *2 (-1140 (-520)))))
+ (-12 (-5 *3 (-587 *2)) (-5 *1 (-457 *2)) (-4 *2 (-1141 (-521)))))
((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-520)) (-5 *1 (-632 *2)) (-4 *2 (-1140 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-706)))
+ (-12 (-5 *3 (-521)) (-5 *1 (-633 *2)) (-4 *2 (-1141 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-707)))
((*1 *2 *2 *2)
- (-12 (-4 *3 (-728)) (-4 *4 (-783)) (-4 *5 (-281))
- (-5 *1 (-844 *3 *4 *5 *2)) (-4 *2 (-877 *5 *3 *4))))
+ (-12 (-4 *3 (-729)) (-4 *4 (-784)) (-4 *5 (-282))
+ (-5 *1 (-845 *3 *4 *5 *2)) (-4 *2 (-878 *5 *3 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-586 *2)) (-4 *2 (-877 *6 *4 *5))
- (-5 *1 (-844 *4 *5 *6 *2)) (-4 *4 (-728)) (-4 *5 (-783))
- (-4 *6 (-281))))
+ (-12 (-5 *3 (-587 *2)) (-4 *2 (-878 *6 *4 *5))
+ (-5 *1 (-845 *4 *5 *6 *2)) (-4 *4 (-729)) (-4 *5 (-784))
+ (-4 *6 (-282))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1079 *6)) (-4 *6 (-877 *5 *3 *4)) (-4 *3 (-728))
- (-4 *4 (-783)) (-4 *5 (-281)) (-5 *1 (-844 *3 *4 *5 *6))))
+ (-12 (-5 *2 (-1080 *6)) (-4 *6 (-878 *5 *3 *4)) (-4 *3 (-729))
+ (-4 *4 (-784)) (-4 *5 (-282)) (-5 *1 (-845 *3 *4 *5 *6))))
((*1 *2 *3)
- (-12 (-5 *3 (-586 (-1079 *7))) (-4 *4 (-728)) (-4 *5 (-783))
- (-4 *6 (-281)) (-5 *2 (-1079 *7)) (-5 *1 (-844 *4 *5 *6 *7))
- (-4 *7 (-877 *6 *4 *5))))
- ((*1 *1 *1 *1) (-5 *1 (-849)))
+ (-12 (-5 *3 (-587 (-1080 *7))) (-4 *4 (-729)) (-4 *5 (-784))
+ (-4 *6 (-282)) (-5 *2 (-1080 *7)) (-5 *1 (-845 *4 *5 *6 *7))
+ (-4 *7 (-878 *6 *4 *5))))
+ ((*1 *1 *1 *1) (-5 *1 (-850)))
((*1 *2 *2 *2)
- (-12 (-4 *3 (-424)) (-4 *3 (-512)) (-5 *1 (-895 *3 *2))
- (-4 *2 (-1140 *3))))
+ (-12 (-4 *3 (-425)) (-4 *3 (-513)) (-5 *1 (-896 *3 *2))
+ (-4 *2 (-1141 *3))))
((*1 *2 *2 *1)
- (-12 (-4 *1 (-983 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-728))
- (-4 *4 (-783)) (-4 *2 (-424)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-1169)) (-5 *1 (-1166)))))
+ (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729))
+ (-4 *4 (-784)) (-4 *2 (-425)))))
+(((*1 *1 *2) (-12 (-5 *2 (-587 (-132))) (-5 *1 (-129))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-129)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-587 *6)) (-4 *1 (-878 *4 *5 *6)) (-4 *4 (-970))
+ (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-707))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-878 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-729))
+ (-4 *5 (-784)) (-5 *2 (-707)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-512) (-783) (-960 (-520)))) (-4 *5 (-403 *4))
- (-5 *2 (-391 *3)) (-5 *1 (-408 *4 *5 *3)) (-4 *3 (-1140 *5)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4230)) (-4 *1 (-220 *2)) (-4 *2 (-1118)))))
-(((*1 *1 *1 *1) (-4 *1 (-281))) ((*1 *1 *1 *1) (-5 *1 (-706)))
- ((*1 *1 *1 *1) (-5 *1 (-791))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-596 *2)) (-4 *2 (-969)) (-4 *2 (-336))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-336)) (-5 *1 (-599 *4 *2))
- (-4 *2 (-596 *4)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4230)) (-4 *1 (-220 *2)) (-4 *2 (-1118))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1118))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1118))))
- ((*1 *1 *1 *2)
- (-12 (|has| *1 (-6 -4230)) (-4 *1 (-1152 *2)) (-4 *2 (-1118))))
- ((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4230)) (-4 *1 (-1152 *2)) (-4 *2 (-1118)))))
+ (-12 (-4 *4 (-13 (-784) (-513) (-961 (-521)))) (-5 *2 (-381 (-521)))
+ (-5 *1 (-407 *4 *3)) (-4 *3 (-404 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-560 *3)) (-4 *3 (-404 *5))
+ (-4 *5 (-13 (-784) (-513) (-961 (-521))))
+ (-5 *2 (-1080 (-381 (-521)))) (-5 *1 (-407 *5 *3)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-135)) (-4 *2 (-282)) (-4 *2 (-425)) (-4 *3 (-784))
+ (-4 *4 (-729)) (-5 *1 (-913 *2 *3 *4 *5)) (-4 *5 (-878 *2 *4 *3))))
+ ((*1 *2 *3) (-12 (-5 *3 (-47)) (-5 *2 (-290 (-521))) (-5 *1 (-1030))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-425))) (-5 *1 (-1111 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-1105))))))
+(((*1 *1 *1 *1) (-4 *1 (-282))) ((*1 *1 *1 *1) (-5 *1 (-707)))
+ ((*1 *1 *1 *1) (-5 *1 (-792))))
+(((*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1013)) (-5 *1 (-925 *3)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-707)) (-5 *1 (-790 *2)) (-4 *2 (-157))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1080 (-521))) (-5 *1 (-871)) (-5 *3 (-521)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-587 (-627 *5))) (-5 *4 (-1165 *5)) (-4 *5 (-282))
+ (-4 *5 (-970)) (-5 *2 (-627 *5)) (-5 *1 (-953 *5)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-587 *3)) (-4 *3 (-784)) (-5 *1 (-676 *3)))))
+(((*1 *2 *3 *2 *2)
+ (-12 (-5 *2 (-587 (-453 *4 *5))) (-5 *3 (-794 *4))
+ (-14 *4 (-587 (-1084))) (-4 *5 (-425)) (-5 *1 (-575 *4 *5)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-803)) (-5 *3 (-587 (-239))) (-5 *1 (-237)))))
+(((*1 *2 *2) (-12 (-5 *2 (-353)) (-5 *1 (-1167))))
+ ((*1 *2) (-12 (-5 *2 (-353)) (-5 *1 (-1167)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-424))) (-5 *1 (-1110 *3 *2))
- (-4 *2 (-13 (-403 *3) (-1104))))))
-(((*1 *2)
- (-12
- (-5 *2 (-2 (|:| -3609 (-586 (-1083))) (|:| -2205 (-586 (-1083)))))
- (-5 *1 (-1120)))))
-(((*1 *2) (-12 (-5 *2 (-352)) (-5 *1 (-962)))))
-(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
- (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *2 (-958))
- (-5 *1 (-687)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-586 (-586 (-871 (-201))))) (-5 *2 (-586 (-201)))
- (-5 *1 (-440)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-512))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2413 *4)))
- (-5 *1 (-895 *4 *3)) (-4 *3 (-1140 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1083)) (-5 *2 (-1 (-1079 (-880 *4)) (-880 *4)))
- (-5 *1 (-1172 *4)) (-4 *4 (-336)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-113 *3)) (-14 *3 *2)))
- ((*1 *1 *1) (-12 (-5 *1 (-113 *2)) (-14 *2 (-520))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-799 *3)) (-14 *3 *2)))
- ((*1 *1 *1) (-12 (-5 *1 (-799 *2)) (-14 *2 (-520))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-520)) (-14 *3 *2) (-5 *1 (-800 *3 *4))
- (-4 *4 (-797 *3))))
- ((*1 *1 *1)
- (-12 (-14 *2 (-520)) (-5 *1 (-800 *2 *3)) (-4 *3 (-797 *2))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-520)) (-4 *1 (-1126 *3 *4)) (-4 *3 (-969))
- (-4 *4 (-1155 *3))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1126 *2 *3)) (-4 *2 (-969)) (-4 *3 (-1155 *2)))))
-(((*1 *2) (-12 (-5 *2 (-802)) (-5 *1 (-1167))))
- ((*1 *2 *2) (-12 (-5 *2 (-802)) (-5 *1 (-1167)))))
+ (-12 (-4 *3 (-425)) (-4 *4 (-729)) (-4 *5 (-784))
+ (-5 *1 (-422 *3 *4 *5 *2)) (-4 *2 (-878 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-408)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-353) (-353))) (-5 *4 (-353))
+ (-5 *2
+ (-2 (|:| -3430 *4) (|:| -2968 *4) (|:| |totalpts| (-521))
+ (|:| |success| (-108))))
+ (-5 *1 (-725)) (-5 *5 (-521)))))
(((*1 *2 *1 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |lm| (-755 *3)) (|:| |rm| (-755 *3))))
- (-5 *1 (-755 *3)) (-4 *3 (-783))))
- ((*1 *1 *1 *1) (-5 *1 (-791))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-586 *6)) (-4 *6 (-983 *3 *4 *5)) (-4 *3 (-512))
- (-4 *4 (-728)) (-4 *5 (-783)) (-5 *1 (-902 *3 *4 *5 *6)))))
-(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-336)) (-5 *1 (-824 *2 *3))
- (-4 *2 (-1140 *3)))))
-(((*1 *1) (-4 *1 (-33))) ((*1 *1) (-5 *1 (-265)))
- ((*1 *1) (-5 *1 (-791)))
- ((*1 *1)
- (-12 (-4 *2 (-424)) (-4 *3 (-783)) (-4 *4 (-728))
- (-5 *1 (-912 *2 *3 *4 *5)) (-4 *5 (-877 *2 *4 *3))))
- ((*1 *1) (-5 *1 (-999)))
- ((*1 *1)
- (-12 (-5 *1 (-1048 *2 *3)) (-4 *2 (-13 (-1012) (-33)))
- (-4 *3 (-13 (-1012) (-33)))))
- ((*1 *1) (-5 *1 (-1086))) ((*1 *1) (-5 *1 (-1087))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-586 (-1066))) (-5 *1 (-217)) (-5 *3 (-1066))))
- ((*1 *2 *2) (-12 (-5 *2 (-586 (-1066))) (-5 *1 (-217))))
- ((*1 *1 *2) (-12 (-5 *2 (-143)) (-5 *1 (-802)))))
+ (|partial| -12 (-5 *2 (-2 (|:| |lm| (-756 *3)) (|:| |rm| (-756 *3))))
+ (-5 *1 (-756 *3)) (-4 *3 (-784))))
+ ((*1 *1 *1 *1) (-5 *1 (-792))))
+(((*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-855)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-218)) (-5 *3 (-1067))))
+ ((*1 *2 *2) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-218))))
+ ((*1 *1 *2) (-12 (-5 *2 (-143)) (-5 *1 (-803)))))
+(((*1 *1 *1) (-12 (-4 *1 (-348 *2 *3)) (-4 *2 (-784)) (-4 *3 (-157))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-571 *2 *3 *4)) (-4 *2 (-784))
+ (-4 *3 (-13 (-157) (-654 (-381 (-521))))) (-14 *4 (-850))))
+ ((*1 *1 *1) (-12 (-5 *1 (-616 *2)) (-4 *2 (-784))))
+ ((*1 *1 *1) (-12 (-5 *1 (-756 *2)) (-4 *2 (-784))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1180 *2 *3)) (-4 *2 (-784)) (-4 *3 (-970)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3)
+ (-12 (-5 *3 (-521)) (-5 *5 (-627 (-202))) (-5 *4 (-202))
+ (-5 *2 (-959)) (-5 *1 (-689)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-281)) (-4 *6 (-346 *5)) (-4 *4 (-346 *5))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1831 (-586 *4))))
- (-5 *1 (-1034 *5 *6 *4 *3)) (-4 *3 (-624 *5 *6 *4)))))
-(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3)
- (-12 (-5 *4 (-586 (-108))) (-5 *5 (-626 (-201)))
- (-5 *6 (-626 (-520))) (-5 *7 (-201)) (-5 *3 (-520)) (-5 *2 (-958))
- (-5 *1 (-690)))))
+ (-12 (-4 *5 (-513))
+ (-5 *2 (-2 (|:| -1201 (-627 *5)) (|:| |vec| (-1165 (-587 (-850))))))
+ (-5 *1 (-88 *5 *3)) (-5 *4 (-850)) (-4 *3 (-597 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-108)) (-5 *2 (-1067)) (-5 *1 (-51)))))
(((*1 *2)
- (-12 (-4 *3 (-969)) (-5 *2 (-885 (-648 *3 *4))) (-5 *1 (-648 *3 *4))
- (-4 *4 (-1140 *3)))))
+ (-12 (-4 *3 (-513)) (-5 *2 (-587 (-627 *3))) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-391 *3)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-872 (-202)) (-872 (-202)))) (-5 *1 (-239))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1165 *1)) (-4 *1 (-303 *4)) (-4 *4 (-337))
+ (-5 *2 (-627 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-303 *3)) (-4 *3 (-337)) (-5 *2 (-1165 *3))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1165 *1)) (-4 *1 (-341 *4)) (-4 *4 (-157))
+ (-5 *2 (-627 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1165 *1)) (-4 *1 (-341 *4)) (-4 *4 (-157))
+ (-5 *2 (-1165 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1165 *1)) (-4 *1 (-344 *4 *5)) (-4 *4 (-157))
+ (-4 *5 (-1141 *4)) (-5 *2 (-627 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1165 *1)) (-4 *1 (-344 *4 *5)) (-4 *4 (-157))
+ (-4 *5 (-1141 *4)) (-5 *2 (-1165 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1165 *1)) (-4 *1 (-383 *4 *5)) (-4 *4 (-157))
+ (-4 *5 (-1141 *4)) (-5 *2 (-627 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-157)) (-4 *4 (-1141 *3))
+ (-5 *2 (-1165 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1165 *1)) (-4 *1 (-391 *4)) (-4 *4 (-157))
+ (-5 *2 (-627 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-391 *3)) (-4 *3 (-157)) (-5 *2 (-1165 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-587 (-627 *5))) (-5 *3 (-627 *5)) (-4 *5 (-337))
+ (-5 *2 (-1165 *5)) (-5 *1 (-1001 *5)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-970)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-520)) (-4 *4 (-728)) (-4 *5 (-783)) (-4 *2 (-969))
- (-5 *1 (-294 *4 *5 *2 *6)) (-4 *6 (-877 *2 *4 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-586 (-1 (-108) *8))) (-4 *8 (-983 *5 *6 *7))
- (-4 *5 (-512)) (-4 *6 (-728)) (-4 *7 (-783))
- (-5 *2 (-2 (|:| |goodPols| (-586 *8)) (|:| |badPols| (-586 *8))))
- (-5 *1 (-902 *5 *6 *7 *8)) (-5 *4 (-586 *8)))))
+ (-12 (-4 *3 (-1141 *2)) (-4 *2 (-1141 *4)) (-5 *1 (-911 *4 *2 *3 *5))
+ (-4 *4 (-323)) (-4 *5 (-661 *2 *3)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-559 *4)) (-4 *4 (-783)) (-4 *2 (-783))
- (-5 *1 (-558 *2 *4)))))
+ (-12 (-5 *2 (-1080 (-521))) (-5 *1 (-871)) (-5 *3 (-521)))))
(((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-151 *2)) (-4 *2 (-157)) (-4 *2 (-512))))
+ (|partial| -12 (-4 *1 (-151 *2)) (-4 *2 (-157)) (-4 *2 (-513))))
((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-299 *2 *3)) (-4 *2 (-969)) (-4 *3 (-727))
- (-4 *2 (-512))))
- ((*1 *1 *1 *1) (|partial| -4 *1 (-512)))
+ (|partial| -12 (-4 *1 (-300 *2 *3)) (-4 *2 (-970)) (-4 *3 (-728))
+ (-4 *2 (-513))))
+ ((*1 *1 *1 *1) (|partial| -4 *1 (-513)))
((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-624 *2 *3 *4)) (-4 *2 (-969))
- (-4 *3 (-346 *2)) (-4 *4 (-346 *2)) (-4 *2 (-512))))
- ((*1 *1 *1 *1) (|partial| -5 *1 (-706)))
+ (|partial| -12 (-4 *1 (-625 *2 *3 *4)) (-4 *2 (-970))
+ (-4 *3 (-347 *2)) (-4 *4 (-347 *2)) (-4 *2 (-513))))
+ ((*1 *1 *1 *1) (|partial| -5 *1 (-707)))
((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-785 *2)) (-4 *2 (-969)) (-4 *2 (-512))))
- ((*1 *1 *1 *1) (-5 *1 (-791)))
+ (|partial| -12 (-4 *1 (-786 *2)) (-4 *2 (-970)) (-4 *2 (-513))))
+ ((*1 *1 *1 *1) (-5 *1 (-792)))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1164 *4)) (-4 *4 (-1140 *3)) (-4 *3 (-512))
- (-5 *1 (-895 *3 *4))))
+ (-12 (-5 *2 (-1165 *4)) (-4 *4 (-1141 *3)) (-4 *3 (-513))
+ (-5 *1 (-896 *3 *4))))
((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-972 *3 *4 *2 *5 *6)) (-4 *2 (-969))
- (-4 *5 (-214 *4 *2)) (-4 *6 (-214 *3 *2)) (-4 *2 (-512))))
+ (|partial| -12 (-4 *1 (-973 *3 *4 *2 *5 *6)) (-4 *2 (-970))
+ (-4 *5 (-215 *4 *2)) (-4 *6 (-215 *3 *2)) (-4 *2 (-513))))
((*1 *2 *2 *2)
- (|partial| -12 (-5 *2 (-1064 *3)) (-4 *3 (-969)) (-5 *1 (-1068 *3)))))
+ (|partial| -12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-5 *1 (-1069 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-935 *3)) (-4 *3 (-1119)) (-5 *2 (-108))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-108)) (-5 *1 (-1073 *3 *4)) (-14 *3 (-850))
+ (-4 *4 (-970)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-587 (-224 *4 *5))) (-5 *2 (-224 *4 *5))
+ (-14 *4 (-587 (-1084))) (-4 *5 (-425)) (-5 *1 (-575 *4 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-425))) (-5 *1 (-1111 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-1105))))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *4 (-337)) (-5 *2 (-587 (-1065 *4))) (-5 *1 (-260 *4 *5))
+ (-5 *3 (-1065 *4)) (-4 *5 (-1156 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-513))
+ (-5 *2 (-2 (|:| -2973 *4) (|:| -3727 *3) (|:| -3820 *3)))
+ (-5 *1 (-896 *4 *3)) (-4 *3 (-1141 *4))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784))
+ (-5 *2 (-2 (|:| -3727 *1) (|:| -3820 *1))) (-4 *1 (-984 *3 *4 *5))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-513)) (-4 *3 (-970))
+ (-5 *2 (-2 (|:| -2973 *3) (|:| -3727 *1) (|:| -3820 *1)))
+ (-4 *1 (-1141 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-586 (-452 *4 *5))) (-14 *4 (-586 (-1083)))
- (-4 *5 (-424)) (-5 *2 (-586 (-223 *4 *5))) (-5 *1 (-574 *4 *5)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-983 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-728))
- (-4 *4 (-783)) (-4 *2 (-512))))
+ (-12 (-5 *3 (-627 (-290 (-202))))
+ (-5 *2
+ (-2 (|:| |stiffnessFactor| (-353)) (|:| |stabilityFactor| (-353))))
+ (-5 *1 (-184)))))
+(((*1 *1 *2) (-12 (-5 *2 (-587 *1)) (-4 *1 (-425))))
+ ((*1 *1 *1 *1) (-4 *1 (-425))))
+(((*1 *1) (-5 *1 (-1087))))
+(((*1 *2 *3 *1)
+ (-12 (|has| *1 (-6 -4233)) (-4 *1 (-460 *3)) (-4 *3 (-1119))
+ (-4 *3 (-1013)) (-5 *2 (-108))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-834 *4)) (-4 *4 (-1013)) (-5 *2 (-108))
+ (-5 *1 (-833 *4))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-850)) (-5 *2 (-108)) (-5 *1 (-1014 *4 *5)) (-14 *4 *3)
+ (-14 *5 *3))))
+(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-108))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-337)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *2 (-108))
+ (-5 *1 (-473 *3 *4 *5 *6)) (-4 *6 (-878 *3 *4 *5))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-986 *4 *3)) (-4 *4 (-13 (-782) (-337)))
+ (-4 *3 (-1141 *4)) (-5 *2 (-108)))))
+(((*1 *1 *2 *2) (-12 (-5 *1 (-806 *2)) (-4 *2 (-1119))))
+ ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-808 *2)) (-4 *2 (-1119))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970)) (-5 *2 (-587 (-872 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-587 (-872 *3))) (-4 *3 (-970)) (-4 *1 (-1045 *3))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-983 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-728))
- (-4 *4 (-783)) (-4 *2 (-512)))))
-(((*1 *2 *3 *4)
- (-12
- (-5 *3
- (-586
- (-2 (|:| |eqzro| (-586 *8)) (|:| |neqzro| (-586 *8))
- (|:| |wcond| (-586 (-880 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1164 (-380 (-880 *5))))
- (|:| -1831 (-586 (-1164 (-380 (-880 *5))))))))))
- (-5 *4 (-1066)) (-4 *5 (-13 (-281) (-135))) (-4 *8 (-877 *5 *7 *6))
- (-4 *6 (-13 (-783) (-561 (-1083)))) (-4 *7 (-728)) (-5 *2 (-520))
- (-5 *1 (-852 *5 *6 *7 *8)))))
-(((*1 *2)
- (-12 (-5 *2 (-108)) (-5 *1 (-1096 *3 *4)) (-4 *3 (-1012))
- (-4 *4 (-1012)))))
-(((*1 *2 *1) (-12 (-5 *1 (-892 *2)) (-4 *2 (-893)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-785 *2)) (-4 *2 (-969)) (-4 *2 (-336)))))
-(((*1 *1) (-5 *1 (-129))))
-(((*1 *1 *2) (-12 (-5 *2 (-586 *1)) (-4 *1 (-424))))
- ((*1 *1 *1 *1) (-4 *1 (-424))))
-(((*1 *1) (-12 (-5 *1 (-203 *2)) (-4 *2 (-13 (-336) (-1104))))))
-(((*1 *1 *2 *3 *4)
- (-12
- (-5 *3
- (-586
- (-2 (|:| |scalar| (-380 (-520))) (|:| |coeff| (-1079 *2))
- (|:| |logand| (-1079 *2)))))
- (-5 *4 (-586 (-2 (|:| |integrand| *2) (|:| |intvar| *2))))
- (-4 *2 (-336)) (-5 *1 (-537 *2)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-849)) (-5 *2 (-1079 *4)) (-5 *1 (-330 *4))
- (-4 *4 (-322)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-586 (-586 *6))) (-4 *6 (-877 *3 *5 *4))
- (-4 *3 (-13 (-281) (-135))) (-4 *4 (-13 (-783) (-561 (-1083))))
- (-4 *5 (-728)) (-5 *1 (-852 *3 *4 *5 *6)))))
-(((*1 *2) (-12 (-5 *2 (-352)) (-5 *1 (-962)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-758)))))
+ (-12 (-5 *2 (-587 (-587 *3))) (-4 *1 (-1045 *3)) (-4 *3 (-970))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-587 (-872 *3))) (-4 *1 (-1045 *3)) (-4 *3 (-970)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1182 *3)) (-4 *3 (-337)) (-5 *2 (-108)))))
+(((*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-833 (-521))) (-5 *1 (-846))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-587 (-521))) (-5 *2 (-833 (-521))) (-5 *1 (-846)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-901 *3 *4 *5 *6)) (-4 *3 (-969)) (-4 *4 (-728))
- (-4 *5 (-783)) (-4 *6 (-983 *3 *4 *5)) (-4 *3 (-512))
- (-5 *2 (-108)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-697))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-520)) (-5 *1 (-451)))))
-(((*1 *2 *2) (-12 (-5 *2 (-361)) (-5 *1 (-409))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-361)) (-5 *1 (-409)))))
+ (-12 (-5 *2 (-587 (-850))) (-5 *1 (-1014 *3 *4)) (-14 *3 (-850))
+ (-14 *4 (-850)))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1067)) (-5 *4 (-521)) (-5 *5 (-627 (-202)))
+ (-5 *2 (-959)) (-5 *1 (-694)))))
+(((*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1013)) (-4 *1 (-832 *3)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-506))))
(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-706)) (-4 *1 (-207 *4))
- (-4 *4 (-969))))
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-707)) (-4 *1 (-208 *4))
+ (-4 *4 (-970))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-207 *3)) (-4 *3 (-969))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-209)) (-5 *2 (-706))))
- ((*1 *1 *1) (-4 *1 (-209)))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-208 *3)) (-4 *3 (-970))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-210)) (-5 *2 (-707))))
+ ((*1 *1 *1) (-4 *1 (-210)))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-706)) (-4 *3 (-13 (-336) (-135))) (-5 *1 (-372 *3 *4))
- (-4 *4 (-1140 *3))))
+ (-12 (-5 *2 (-707)) (-4 *3 (-13 (-337) (-135))) (-5 *1 (-373 *3 *4))
+ (-4 *4 (-1141 *3))))
((*1 *1 *1)
- (-12 (-4 *2 (-13 (-336) (-135))) (-5 *1 (-372 *2 *3))
- (-4 *3 (-1140 *2))))
- ((*1 *1) (-12 (-4 *1 (-596 *2)) (-4 *2 (-969))))
+ (-12 (-4 *2 (-13 (-337) (-135))) (-5 *1 (-373 *2 *3))
+ (-4 *3 (-1141 *2))))
+ ((*1 *1) (-12 (-4 *1 (-597 *2)) (-4 *2 (-970))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-586 *4)) (-5 *3 (-586 (-706))) (-4 *1 (-828 *4))
- (-4 *4 (-1012))))
+ (-12 (-5 *2 (-587 *4)) (-5 *3 (-587 (-707))) (-4 *1 (-829 *4))
+ (-4 *4 (-1013))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-706)) (-4 *1 (-828 *2)) (-4 *2 (-1012))))
+ (-12 (-5 *3 (-707)) (-4 *1 (-829 *2)) (-4 *2 (-1013))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-586 *3)) (-4 *1 (-828 *3)) (-4 *3 (-1012))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-828 *2)) (-4 *2 (-1012)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 (-586 *7) *7 (-1079 *7))) (-5 *5 (-1 (-391 *7) *7))
- (-4 *7 (-1140 *6)) (-4 *6 (-13 (-336) (-135) (-960 (-380 (-520)))))
- (-5 *2 (-586 (-2 (|:| |frac| (-380 *7)) (|:| -3190 *3))))
- (-5 *1 (-745 *6 *7 *3 *8)) (-4 *3 (-596 *7))
- (-4 *8 (-596 (-380 *7)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-391 *6) *6)) (-4 *6 (-1140 *5))
- (-4 *5 (-13 (-336) (-135) (-960 (-520)) (-960 (-380 (-520)))))
+ (-12 (-5 *2 (-587 *3)) (-4 *1 (-829 *3)) (-4 *3 (-1013))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1013)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-282)) (-4 *5 (-347 *4)) (-4 *6 (-347 *4))
(-5 *2
- (-586 (-2 (|:| |frac| (-380 *6)) (|:| -3190 (-594 *6 (-380 *6))))))
- (-5 *1 (-748 *5 *6)) (-5 *3 (-594 *6 (-380 *6))))))
-(((*1 *1) (-5 *1 (-129))) ((*1 *1 *1) (-5 *1 (-132)))
- ((*1 *1 *1) (-4 *1 (-1052))))
-(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6)
- (-12 (-5 *4 (-520)) (-5 *6 (-1 (-1169) (-1164 *5) (-1164 *5) (-352)))
- (-5 *3 (-1164 (-352))) (-5 *5 (-352)) (-5 *2 (-1169))
- (-5 *1 (-723)))))
+ (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3)))
+ (-5 *1 (-1035 *4 *5 *6 *3)) (-4 *3 (-625 *4 *5 *6)))))
(((*1 *2 *1)
- (-12 (-4 *2 (-1012)) (-5 *1 (-891 *3 *2)) (-4 *3 (-1012)))))
-(((*1 *2)
- (-12 (-4 *4 (-336)) (-5 *2 (-849)) (-5 *1 (-301 *3 *4))
- (-4 *3 (-302 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-336)) (-5 *2 (-769 (-849))) (-5 *1 (-301 *3 *4))
- (-4 *3 (-302 *4))))
- ((*1 *2) (-12 (-4 *1 (-302 *3)) (-4 *3 (-336)) (-5 *2 (-849))))
- ((*1 *2)
- (-12 (-4 *1 (-1181 *3)) (-4 *3 (-336)) (-5 *2 (-769 (-849))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1118)))))
-(((*1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-439))))
- ((*1 *2 *2) (-12 (-5 *2 (-520)) (-5 *1 (-439))))
- ((*1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-855)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-407)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-871 *3)) (-4 *3 (-13 (-336) (-1104) (-926)))
- (-5 *1 (-160 *3)))))
-(((*1 *1) (-5 *1 (-143))))
-(((*1 *1 *2) (-12 (-5 *2 (-586 *3)) (-4 *3 (-1118)) (-4 *1 (-139 *3))))
+ (-12 (-4 *1 (-511 *3)) (-4 *3 (-13 (-378) (-1105))) (-5 *2 (-108))))
+ ((*1 *2 *1) (-12 (-4 *1 (-782)) (-5 *2 (-108))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-986 *4 *3)) (-4 *4 (-13 (-782) (-337)))
+ (-4 *3 (-1141 *4)) (-5 *2 (-108)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| -1201 (-627 (-381 (-881 *4))))
+ (|:| |vec| (-587 (-381 (-881 *4)))) (|:| -3162 (-707))
+ (|:| |rows| (-587 (-521))) (|:| |cols| (-587 (-521)))))
+ (-4 *4 (-13 (-282) (-135))) (-4 *5 (-13 (-784) (-562 (-1084))))
+ (-4 *6 (-729))
+ (-5 *2
+ (-2 (|:| |partsol| (-1165 (-381 (-881 *4))))
+ (|:| -2470 (-587 (-1165 (-381 (-881 *4)))))))
+ (-5 *1 (-853 *4 *5 *6 *7)) (-4 *7 (-878 *4 *6 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-587 (-777 (-202)))) (-5 *4 (-202)) (-5 *2 (-587 *4))
+ (-5 *1 (-243)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-347 *3))
+ (-4 *5 (-347 *3)) (-5 *2 (-521))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-973 *3 *4 *5 *6 *7)) (-4 *5 (-970))
+ (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-521)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-405 *3 *2))
+ (-4 *2 (-404 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1048))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-587 (-834 *3))) (-4 *3 (-1013)) (-5 *1 (-833 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-627 (-381 (-881 (-521))))) (-5 *2 (-587 (-290 (-521))))
+ (-5 *1 (-955)))))
+(((*1 *2 *1) (-12 (-5 *2 (-587 (-521))) (-5 *1 (-251)))))
+(((*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1119)) (-4 *1 (-139 *3))))
((*1 *1 *2)
(-12
- (-5 *2 (-586 (-2 (|:| -2647 (-706)) (|:| -1892 *4) (|:| |num| *4))))
- (-4 *4 (-1140 *3)) (-4 *3 (-13 (-336) (-135))) (-5 *1 (-372 *3 *4))))
+ (-5 *2 (-587 (-2 (|:| -2997 (-707)) (|:| -1893 *4) (|:| |num| *4))))
+ (-4 *4 (-1141 *3)) (-4 *3 (-13 (-337) (-135))) (-5 *1 (-373 *3 *4))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-3 (|:| |fst| (-407)) (|:| -1365 "void")))
- (-5 *3 (-586 (-880 (-520)))) (-5 *4 (-108)) (-5 *1 (-410))))
+ (-12 (-5 *2 (-3 (|:| |fst| (-408)) (|:| -1366 "void")))
+ (-5 *3 (-587 (-881 (-521)))) (-5 *4 (-108)) (-5 *1 (-411))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-3 (|:| |fst| (-407)) (|:| -1365 "void")))
- (-5 *3 (-586 (-1083))) (-5 *4 (-108)) (-5 *1 (-410))))
+ (-12 (-5 *2 (-3 (|:| |fst| (-408)) (|:| -1366 "void")))
+ (-5 *3 (-587 (-1084))) (-5 *4 (-108)) (-5 *1 (-411))))
((*1 *2 *1)
- (-12 (-5 *2 (-1064 *3)) (-5 *1 (-550 *3)) (-4 *3 (-1118))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-577 *2)) (-4 *2 (-157))))
+ (-12 (-5 *2 (-1065 *3)) (-5 *1 (-551 *3)) (-4 *3 (-1119))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-578 *2)) (-4 *2 (-157))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-611 *3)) (-4 *3 (-783)) (-5 *1 (-604 *3 *4))
+ (-12 (-5 *2 (-612 *3)) (-4 *3 (-784)) (-5 *1 (-605 *3 *4))
(-4 *4 (-157))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-611 *3)) (-4 *3 (-783)) (-5 *1 (-604 *3 *4))
+ (-12 (-5 *2 (-612 *3)) (-4 *3 (-784)) (-5 *1 (-605 *3 *4))
(-4 *4 (-157))))
((*1 *1 *2 *2)
- (-12 (-5 *2 (-611 *3)) (-4 *3 (-783)) (-5 *1 (-604 *3 *4))
+ (-12 (-5 *2 (-612 *3)) (-4 *3 (-784)) (-5 *1 (-605 *3 *4))
(-4 *4 (-157))))
((*1 *1 *2)
- (-12 (-5 *2 (-586 (-586 (-586 *3)))) (-4 *3 (-1012))
- (-5 *1 (-614 *3))))
+ (-12 (-5 *2 (-587 (-587 (-587 *3)))) (-4 *3 (-1013))
+ (-5 *1 (-615 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-649 *2 *3 *4)) (-4 *2 (-783)) (-4 *3 (-1012))
+ (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-784)) (-4 *3 (-1013))
(-14 *4
- (-1 (-108) (-2 (|:| -2716 *2) (|:| -2647 *3))
- (-2 (|:| -2716 *2) (|:| -2647 *3))))))
+ (-1 (-108) (-2 (|:| -2716 *2) (|:| -2997 *3))
+ (-2 (|:| -2716 *2) (|:| -2997 *3))))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-801 *2 *3)) (-4 *2 (-1118)) (-4 *3 (-1118))))
+ (-12 (-5 *1 (-802 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-1119))))
((*1 *1 *2)
- (-12 (-5 *2 (-586 (-2 (|:| -2526 (-1083)) (|:| -3043 *4))))
- (-4 *4 (-1012)) (-5 *1 (-817 *3 *4)) (-4 *3 (-1012))))
+ (-12 (-5 *2 (-587 (-2 (|:| -2529 (-1084)) (|:| -3045 *4))))
+ (-4 *4 (-1013)) (-5 *1 (-818 *3 *4)) (-4 *3 (-1013))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-586 *5)) (-4 *5 (-13 (-1012) (-33)))
- (-5 *2 (-586 (-1048 *3 *5))) (-5 *1 (-1048 *3 *5))
- (-4 *3 (-13 (-1012) (-33)))))
+ (-12 (-5 *4 (-587 *5)) (-4 *5 (-13 (-1013) (-33)))
+ (-5 *2 (-587 (-1049 *3 *5))) (-5 *1 (-1049 *3 *5))
+ (-4 *3 (-13 (-1013) (-33)))))
((*1 *2 *3)
- (-12 (-5 *3 (-586 (-2 (|:| |val| *4) (|:| -1883 *5))))
- (-4 *4 (-13 (-1012) (-33))) (-4 *5 (-13 (-1012) (-33)))
- (-5 *2 (-586 (-1048 *4 *5))) (-5 *1 (-1048 *4 *5))))
+ (-12 (-5 *3 (-587 (-2 (|:| |val| *4) (|:| -1884 *5))))
+ (-4 *4 (-13 (-1013) (-33))) (-4 *5 (-13 (-1013) (-33)))
+ (-5 *2 (-587 (-1049 *4 *5))) (-5 *1 (-1049 *4 *5))))
((*1 *1 *2)
- (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1883 *4)))
- (-4 *3 (-13 (-1012) (-33))) (-4 *4 (-13 (-1012) (-33)))
- (-5 *1 (-1048 *3 *4))))
+ (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1884 *4)))
+ (-4 *3 (-13 (-1013) (-33))) (-4 *4 (-13 (-1013) (-33)))
+ (-5 *1 (-1049 *3 *4))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-1048 *2 *3)) (-4 *2 (-13 (-1012) (-33)))
- (-4 *3 (-13 (-1012) (-33)))))
+ (-12 (-5 *1 (-1049 *2 *3)) (-4 *2 (-13 (-1013) (-33)))
+ (-4 *3 (-13 (-1013) (-33)))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-108)) (-5 *1 (-1048 *2 *3)) (-4 *2 (-13 (-1012) (-33)))
- (-4 *3 (-13 (-1012) (-33)))))
+ (-12 (-5 *4 (-108)) (-5 *1 (-1049 *2 *3)) (-4 *2 (-13 (-1013) (-33)))
+ (-4 *3 (-13 (-1013) (-33)))))
((*1 *1 *2 *3 *2 *4)
- (-12 (-5 *4 (-586 *3)) (-4 *3 (-13 (-1012) (-33)))
- (-5 *1 (-1049 *2 *3)) (-4 *2 (-13 (-1012) (-33)))))
+ (-12 (-5 *4 (-587 *3)) (-4 *3 (-13 (-1013) (-33)))
+ (-5 *1 (-1050 *2 *3)) (-4 *2 (-13 (-1013) (-33)))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-586 (-1048 *2 *3))) (-4 *2 (-13 (-1012) (-33)))
- (-4 *3 (-13 (-1012) (-33))) (-5 *1 (-1049 *2 *3))))
+ (-12 (-5 *4 (-587 (-1049 *2 *3))) (-4 *2 (-13 (-1013) (-33)))
+ (-4 *3 (-13 (-1013) (-33))) (-5 *1 (-1050 *2 *3))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-586 (-1049 *2 *3))) (-5 *1 (-1049 *2 *3))
- (-4 *2 (-13 (-1012) (-33))) (-4 *3 (-13 (-1012) (-33)))))
+ (-12 (-5 *4 (-587 (-1050 *2 *3))) (-5 *1 (-1050 *2 *3))
+ (-4 *2 (-13 (-1013) (-33))) (-4 *3 (-13 (-1013) (-33)))))
((*1 *1 *2)
- (-12 (-5 *2 (-1048 *3 *4)) (-4 *3 (-13 (-1012) (-33)))
- (-4 *4 (-13 (-1012) (-33))) (-5 *1 (-1049 *3 *4))))
+ (-12 (-5 *2 (-1049 *3 *4)) (-4 *3 (-13 (-1013) (-33)))
+ (-4 *4 (-13 (-1013) (-33))) (-5 *1 (-1050 *3 *4))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-1073 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1012)))))
-(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5)
- (-12 (-5 *3 (-1066)) (-5 *5 (-626 (-201))) (-5 *6 (-626 (-520)))
- (-5 *4 (-520)) (-5 *2 (-958)) (-5 *1 (-693)))))
+ (-12 (-5 *1 (-1074 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-759)))))
(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-706)) (-4 *1 (-676 *4 *5)) (-4 *4 (-969))
- (-4 *5 (-783)) (-5 *2 (-880 *4))))
+ (-12 (-5 *3 (-707)) (-4 *1 (-677 *4 *5)) (-4 *4 (-970))
+ (-4 *5 (-784)) (-5 *2 (-881 *4))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-706)) (-4 *1 (-676 *4 *5)) (-4 *4 (-969))
- (-4 *5 (-783)) (-5 *2 (-880 *4))))
+ (-12 (-5 *3 (-707)) (-4 *1 (-677 *4 *5)) (-4 *4 (-970))
+ (-4 *5 (-784)) (-5 *2 (-881 *4))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-706)) (-4 *1 (-1155 *4)) (-4 *4 (-969))
- (-5 *2 (-880 *4))))
+ (-12 (-5 *3 (-707)) (-4 *1 (-1156 *4)) (-4 *4 (-970))
+ (-5 *2 (-881 *4))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-706)) (-4 *1 (-1155 *4)) (-4 *4 (-969))
- (-5 *2 (-880 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-586 *8)) (-5 *4 (-586 *9)) (-4 *8 (-983 *5 *6 *7))
- (-4 *9 (-988 *5 *6 *7 *8)) (-4 *5 (-424)) (-4 *6 (-728))
- (-4 *7 (-783)) (-5 *2 (-706)) (-5 *1 (-986 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-586 *8)) (-5 *4 (-586 *9)) (-4 *8 (-983 *5 *6 *7))
- (-4 *9 (-1021 *5 *6 *7 *8)) (-4 *5 (-424)) (-4 *6 (-728))
- (-4 *7 (-783)) (-5 *2 (-706)) (-5 *1 (-1053 *5 *6 *7 *8 *9)))))
-(((*1 *1) (-5 *1 (-759))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-586 (-520))) (-5 *1 (-1022)) (-5 *3 (-520)))))
-(((*1 *2 *2) (-12 (-5 *2 (-352)) (-5 *1 (-1166))))
- ((*1 *2) (-12 (-5 *2 (-352)) (-5 *1 (-1166)))))
-(((*1 *2 *3 *3 *4 *4 *4 *4 *3)
- (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *2 (-958))
- (-5 *1 (-688)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-908 *2)) (-4 *2 (-1104)))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-810 *2)) (-4 *2 (-1118)))))
+ (-12 (-5 *3 (-707)) (-4 *1 (-1156 *4)) (-4 *4 (-970))
+ (-5 *2 (-881 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-759)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-984 *3 *4 *2)) (-4 *3 (-970)) (-4 *4 (-729))
+ (-4 *2 (-784))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729))
+ (-4 *4 (-784)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1119)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-586 (-520))) (-5 *2 (-832 (-520))) (-5 *1 (-845))))
- ((*1 *2) (-12 (-5 *2 (-832 (-520))) (-5 *1 (-845)))))
-(((*1 *2 *2) (-12 (-5 *2 (-520)) (-5 *1 (-232)))))
+ (-12 (-5 *3 (-1051 *4 *2)) (-14 *4 (-850))
+ (-4 *2 (-13 (-970) (-10 -7 (-6 (-4235 "*"))))) (-5 *1 (-831 *4 *2)))))
+(((*1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-696)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-627 *3)) (-4 *3 (-970)) (-5 *1 (-628 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-759)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-297 *3 *4)) (-4 *3 (-1013))
+ (-4 *4 (-124)))))
(((*1 *1 *2) (-12 (-4 *1 (-37 *2)) (-4 *2 (-157))))
((*1 *1 *2)
- (-12 (-5 *2 (-1164 *3)) (-4 *3 (-336)) (-14 *6 (-1164 (-626 *3)))
- (-5 *1 (-43 *3 *4 *5 *6)) (-14 *4 (-849)) (-14 *5 (-586 (-1083)))))
- ((*1 *1 *2) (-12 (-5 *2 (-1035 (-520) (-559 (-47)))) (-5 *1 (-47))))
- ((*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-50 *3)) (-4 *3 (-1118))))
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-337)) (-14 *6 (-1165 (-627 *3)))
+ (-5 *1 (-43 *3 *4 *5 *6)) (-14 *4 (-850)) (-14 *5 (-587 (-1084)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1036 (-521) (-560 (-47)))) (-5 *1 (-47))))
+ ((*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-50 *3)) (-4 *3 (-1119))))
((*1 *1 *2)
- (-12 (-5 *2 (-1164 (-312 (-2200 'JINT 'X 'ELAM) (-2200) (-635))))
- (-5 *1 (-59 *3)) (-14 *3 (-1083))))
+ (-12 (-5 *2 (-1165 (-313 (-2201 'JINT 'X 'ELAM) (-2201) (-636))))
+ (-5 *1 (-59 *3)) (-14 *3 (-1084))))
((*1 *1 *2)
- (-12 (-5 *2 (-1164 (-312 (-2200) (-2200 'XC) (-635))))
- (-5 *1 (-61 *3)) (-14 *3 (-1083))))
+ (-12 (-5 *2 (-1165 (-313 (-2201) (-2201 'XC) (-636))))
+ (-5 *1 (-61 *3)) (-14 *3 (-1084))))
((*1 *1 *2)
- (-12 (-5 *2 (-312 (-2200 'X) (-2200) (-635))) (-5 *1 (-62 *3))
- (-14 *3 (-1083))))
+ (-12 (-5 *2 (-313 (-2201 'X) (-2201) (-636))) (-5 *1 (-62 *3))
+ (-14 *3 (-1084))))
((*1 *1 *2)
- (-12 (-5 *2 (-626 (-312 (-2200) (-2200 'X 'HESS) (-635))))
- (-5 *1 (-63 *3)) (-14 *3 (-1083))))
+ (-12 (-5 *2 (-627 (-313 (-2201) (-2201 'X 'HESS) (-636))))
+ (-5 *1 (-63 *3)) (-14 *3 (-1084))))
((*1 *1 *2)
- (-12 (-5 *2 (-312 (-2200) (-2200 'XC) (-635))) (-5 *1 (-64 *3))
- (-14 *3 (-1083))))
+ (-12 (-5 *2 (-313 (-2201) (-2201 'XC) (-636))) (-5 *1 (-64 *3))
+ (-14 *3 (-1084))))
((*1 *1 *2)
- (-12 (-5 *2 (-1164 (-312 (-2200 'X) (-2200 '-1350) (-635))))
- (-5 *1 (-69 *3)) (-14 *3 (-1083))))
+ (-12 (-5 *2 (-1165 (-313 (-2201 'X) (-2201 '-1351) (-636))))
+ (-5 *1 (-69 *3)) (-14 *3 (-1084))))
((*1 *1 *2)
- (-12 (-5 *2 (-1164 (-312 (-2200) (-2200 'X) (-635))))
- (-5 *1 (-72 *3)) (-14 *3 (-1083))))
+ (-12 (-5 *2 (-1165 (-313 (-2201) (-2201 'X) (-636))))
+ (-5 *1 (-72 *3)) (-14 *3 (-1084))))
((*1 *1 *2)
- (-12 (-5 *2 (-1164 (-312 (-2200 'X 'EPS) (-2200 '-1350) (-635))))
- (-5 *1 (-73 *3 *4 *5)) (-14 *3 (-1083)) (-14 *4 (-1083))
- (-14 *5 (-1083))))
+ (-12 (-5 *2 (-1165 (-313 (-2201 'X 'EPS) (-2201 '-1351) (-636))))
+ (-5 *1 (-73 *3 *4 *5)) (-14 *3 (-1084)) (-14 *4 (-1084))
+ (-14 *5 (-1084))))
((*1 *1 *2)
- (-12 (-5 *2 (-1164 (-312 (-2200 'EPS) (-2200 'YA 'YB) (-635))))
- (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1083)) (-14 *4 (-1083))
- (-14 *5 (-1083))))
+ (-12 (-5 *2 (-1165 (-313 (-2201 'EPS) (-2201 'YA 'YB) (-636))))
+ (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1084)) (-14 *4 (-1084))
+ (-14 *5 (-1084))))
((*1 *1 *2)
- (-12 (-5 *2 (-312 (-2200) (-2200 'X) (-635))) (-5 *1 (-75 *3))
- (-14 *3 (-1083))))
+ (-12 (-5 *2 (-313 (-2201) (-2201 'X) (-636))) (-5 *1 (-75 *3))
+ (-14 *3 (-1084))))
((*1 *1 *2)
- (-12 (-5 *2 (-312 (-2200) (-2200 'X) (-635))) (-5 *1 (-76 *3))
- (-14 *3 (-1083))))
+ (-12 (-5 *2 (-313 (-2201) (-2201 'X) (-636))) (-5 *1 (-76 *3))
+ (-14 *3 (-1084))))
((*1 *1 *2)
- (-12 (-5 *2 (-1164 (-312 (-2200) (-2200 'XC) (-635))))
- (-5 *1 (-77 *3)) (-14 *3 (-1083))))
+ (-12 (-5 *2 (-1165 (-313 (-2201) (-2201 'XC) (-636))))
+ (-5 *1 (-77 *3)) (-14 *3 (-1084))))
((*1 *1 *2)
- (-12 (-5 *2 (-1164 (-312 (-2200) (-2200 'X) (-635))))
- (-5 *1 (-78 *3)) (-14 *3 (-1083))))
+ (-12 (-5 *2 (-1165 (-313 (-2201) (-2201 'X) (-636))))
+ (-5 *1 (-78 *3)) (-14 *3 (-1084))))
((*1 *1 *2)
- (-12 (-5 *2 (-1164 (-312 (-2200) (-2200 'X) (-635))))
- (-5 *1 (-79 *3)) (-14 *3 (-1083))))
+ (-12 (-5 *2 (-1165 (-313 (-2201) (-2201 'X) (-636))))
+ (-5 *1 (-79 *3)) (-14 *3 (-1084))))
((*1 *1 *2)
- (-12 (-5 *2 (-1164 (-312 (-2200 'X '-1350) (-2200) (-635))))
- (-5 *1 (-80 *3)) (-14 *3 (-1083))))
+ (-12 (-5 *2 (-1165 (-313 (-2201 'X '-1351) (-2201) (-636))))
+ (-5 *1 (-80 *3)) (-14 *3 (-1084))))
((*1 *1 *2)
- (-12 (-5 *2 (-626 (-312 (-2200 'X '-1350) (-2200) (-635))))
- (-5 *1 (-81 *3)) (-14 *3 (-1083))))
+ (-12 (-5 *2 (-627 (-313 (-2201 'X '-1351) (-2201) (-636))))
+ (-5 *1 (-81 *3)) (-14 *3 (-1084))))
((*1 *1 *2)
- (-12 (-5 *2 (-626 (-312 (-2200 'X) (-2200) (-635)))) (-5 *1 (-82 *3))
- (-14 *3 (-1083))))
+ (-12 (-5 *2 (-627 (-313 (-2201 'X) (-2201) (-636)))) (-5 *1 (-82 *3))
+ (-14 *3 (-1084))))
((*1 *1 *2)
- (-12 (-5 *2 (-1164 (-312 (-2200 'X) (-2200) (-635))))
- (-5 *1 (-83 *3)) (-14 *3 (-1083))))
+ (-12 (-5 *2 (-1165 (-313 (-2201 'X) (-2201) (-636))))
+ (-5 *1 (-83 *3)) (-14 *3 (-1084))))
((*1 *1 *2)
- (-12 (-5 *2 (-1164 (-312 (-2200 'X) (-2200 '-1350) (-635))))
- (-5 *1 (-84 *3)) (-14 *3 (-1083))))
+ (-12 (-5 *2 (-1165 (-313 (-2201 'X) (-2201 '-1351) (-636))))
+ (-5 *1 (-84 *3)) (-14 *3 (-1084))))
((*1 *1 *2)
- (-12 (-5 *2 (-626 (-312 (-2200 'XL 'XR 'ELAM) (-2200) (-635))))
- (-5 *1 (-85 *3)) (-14 *3 (-1083))))
+ (-12 (-5 *2 (-627 (-313 (-2201 'XL 'XR 'ELAM) (-2201) (-636))))
+ (-5 *1 (-85 *3)) (-14 *3 (-1084))))
((*1 *1 *2)
- (-12 (-5 *2 (-312 (-2200 'X) (-2200 '-1350) (-635))) (-5 *1 (-87 *3))
- (-14 *3 (-1083))))
- ((*1 *2 *1) (-12 (-5 *2 (-928 2)) (-5 *1 (-103))))
- ((*1 *2 *1) (-12 (-5 *2 (-380 (-520))) (-5 *1 (-103))))
+ (-12 (-5 *2 (-313 (-2201 'X) (-2201 '-1351) (-636))) (-5 *1 (-87 *3))
+ (-14 *3 (-1084))))
+ ((*1 *2 *1) (-12 (-5 *2 (-929 2)) (-5 *1 (-103))))
+ ((*1 *2 *1) (-12 (-5 *2 (-381 (-521))) (-5 *1 (-103))))
((*1 *1 *2)
- (-12 (-5 *2 (-586 (-128 *3 *4 *5))) (-5 *1 (-128 *3 *4 *5))
- (-14 *3 (-520)) (-14 *4 (-706)) (-4 *5 (-157))))
+ (-12 (-5 *2 (-587 (-128 *3 *4 *5))) (-5 *1 (-128 *3 *4 *5))
+ (-14 *3 (-521)) (-14 *4 (-707)) (-4 *5 (-157))))
((*1 *1 *2)
- (-12 (-5 *2 (-586 *5)) (-4 *5 (-157)) (-5 *1 (-128 *3 *4 *5))
- (-14 *3 (-520)) (-14 *4 (-706))))
+ (-12 (-5 *2 (-587 *5)) (-4 *5 (-157)) (-5 *1 (-128 *3 *4 *5))
+ (-14 *3 (-521)) (-14 *4 (-707))))
((*1 *1 *2)
- (-12 (-5 *2 (-1050 *4 *5)) (-14 *4 (-706)) (-4 *5 (-157))
- (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-520))))
+ (-12 (-5 *2 (-1051 *4 *5)) (-14 *4 (-707)) (-4 *5 (-157))
+ (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-521))))
((*1 *1 *2)
- (-12 (-5 *2 (-216 *4 *5)) (-14 *4 (-706)) (-4 *5 (-157))
- (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-520))))
+ (-12 (-5 *2 (-217 *4 *5)) (-14 *4 (-707)) (-4 *5 (-157))
+ (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-521))))
((*1 *2 *3)
- (-12 (-5 *3 (-1164 (-626 *4))) (-4 *4 (-157))
- (-5 *2 (-1164 (-626 (-380 (-880 *4))))) (-5 *1 (-167 *4))))
+ (-12 (-5 *3 (-1165 (-627 *4))) (-4 *4 (-157))
+ (-5 *2 (-1165 (-627 (-381 (-881 *4))))) (-5 *1 (-168 *4))))
((*1 *1 *2)
- (-12 (-5 *2 (-586 *3))
+ (-12 (-5 *2 (-587 *3))
(-4 *3
- (-13 (-783)
- (-10 -8 (-15 -2543 ((-1066) $ (-1083))) (-15 -1677 ((-1169) $))
- (-15 -3288 ((-1169) $)))))
- (-5 *1 (-191 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-928 10)) (-5 *1 (-194))))
- ((*1 *2 *1) (-12 (-5 *2 (-380 (-520))) (-5 *1 (-194))))
- ((*1 *2 *1) (-12 (-5 *2 (-586 *3)) (-5 *1 (-221 *3)) (-4 *3 (-783))))
- ((*1 *1 *2) (-12 (-5 *2 (-586 *3)) (-4 *3 (-783)) (-5 *1 (-221 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1005 (-289 *4)))
- (-4 *4 (-13 (-783) (-512) (-561 (-352)))) (-5 *2 (-1005 (-352)))
- (-5 *1 (-233 *4))))
- ((*1 *1 *2) (-12 (-4 *1 (-241 *2)) (-4 *2 (-783))))
- ((*1 *1 *2) (-12 (-5 *2 (-586 (-520))) (-5 *1 (-250))))
+ (-13 (-784)
+ (-10 -8 (-15 -2544 ((-1067) $ (-1084))) (-15 -1678 ((-1170) $))
+ (-15 -3971 ((-1170) $)))))
+ (-5 *1 (-192 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-929 10)) (-5 *1 (-195))))
+ ((*1 *2 *1) (-12 (-5 *2 (-381 (-521))) (-5 *1 (-195))))
+ ((*1 *2 *1) (-12 (-5 *2 (-587 *3)) (-5 *1 (-222 *3)) (-4 *3 (-784))))
+ ((*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-784)) (-5 *1 (-222 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1006 (-290 *4)))
+ (-4 *4 (-13 (-784) (-513) (-562 (-353)))) (-5 *2 (-1006 (-353)))
+ (-5 *1 (-234 *4))))
+ ((*1 *1 *2) (-12 (-4 *1 (-242 *2)) (-4 *2 (-784))))
+ ((*1 *1 *2) (-12 (-5 *2 (-587 (-521))) (-5 *1 (-251))))
((*1 *2 *1)
- (-12 (-4 *2 (-1140 *3)) (-5 *1 (-263 *3 *2 *4 *5 *6 *7))
+ (-12 (-4 *2 (-1141 *3)) (-5 *1 (-264 *3 *2 *4 *5 *6 *7))
(-4 *3 (-157)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4))
(-14 *6 (-1 (-3 *4 "failed") *4 *4))
(-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))
((*1 *1 *2)
- (-12 (-5 *2 (-1149 *4 *5 *6)) (-4 *4 (-13 (-27) (-1104) (-403 *3)))
- (-14 *5 (-1083)) (-14 *6 *4)
- (-4 *3 (-13 (-783) (-960 (-520)) (-582 (-520)) (-424)))
- (-5 *1 (-286 *3 *4 *5 *6))))
- ((*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-303))))
+ (-12 (-5 *2 (-1150 *4 *5 *6)) (-4 *4 (-13 (-27) (-1105) (-404 *3)))
+ (-14 *5 (-1084)) (-14 *6 *4)
+ (-4 *3 (-13 (-784) (-961 (-521)) (-583 (-521)) (-425)))
+ (-5 *1 (-287 *3 *4 *5 *6))))
+ ((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-304))))
((*1 *2 *1)
- (-12 (-5 *2 (-289 *5)) (-5 *1 (-312 *3 *4 *5))
- (-14 *3 (-586 (-1083))) (-14 *4 (-586 (-1083))) (-4 *5 (-360))))
+ (-12 (-5 *2 (-290 *5)) (-5 *1 (-313 *3 *4 *5))
+ (-14 *3 (-587 (-1084))) (-14 *4 (-587 (-1084))) (-4 *5 (-361))))
((*1 *2 *3)
- (-12 (-4 *4 (-322)) (-4 *2 (-302 *4)) (-5 *1 (-320 *3 *4 *2))
- (-4 *3 (-302 *4))))
+ (-12 (-4 *4 (-323)) (-4 *2 (-303 *4)) (-5 *1 (-321 *3 *4 *2))
+ (-4 *3 (-303 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-322)) (-4 *2 (-302 *4)) (-5 *1 (-320 *2 *4 *3))
- (-4 *3 (-302 *4))))
+ (-12 (-4 *4 (-323)) (-4 *2 (-303 *4)) (-5 *1 (-321 *2 *4 *3))
+ (-4 *3 (-303 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-347 *3 *4)) (-4 *3 (-783)) (-4 *4 (-157))
- (-5 *2 (-1186 *3 *4))))
+ (-12 (-4 *1 (-348 *3 *4)) (-4 *3 (-784)) (-4 *4 (-157))
+ (-5 *2 (-1187 *3 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-347 *3 *4)) (-4 *3 (-783)) (-4 *4 (-157))
- (-5 *2 (-1177 *3 *4))))
- ((*1 *1 *2) (-12 (-4 *1 (-347 *2 *3)) (-4 *2 (-783)) (-4 *3 (-157))))
+ (-12 (-4 *1 (-348 *3 *4)) (-4 *3 (-784)) (-4 *4 (-157))
+ (-5 *2 (-1178 *3 *4))))
+ ((*1 *1 *2) (-12 (-4 *1 (-348 *2 *3)) (-4 *2 (-784)) (-4 *3 (-157))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1087)) (|:| -2031 (-586 (-303)))))
- (-4 *1 (-356))))
- ((*1 *1 *2) (-12 (-5 *2 (-303)) (-4 *1 (-356))))
- ((*1 *1 *2) (-12 (-5 *2 (-586 (-303))) (-4 *1 (-356))))
- ((*1 *1 *2) (-12 (-5 *2 (-626 (-635))) (-4 *1 (-356))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1088)) (|:| -2032 (-587 (-304)))))
+ (-4 *1 (-357))))
+ ((*1 *1 *2) (-12 (-5 *2 (-304)) (-4 *1 (-357))))
+ ((*1 *1 *2) (-12 (-5 *2 (-587 (-304))) (-4 *1 (-357))))
+ ((*1 *1 *2) (-12 (-5 *2 (-627 (-636))) (-4 *1 (-357))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1087)) (|:| -2031 (-586 (-303)))))
- (-4 *1 (-357))))
- ((*1 *1 *2) (-12 (-5 *2 (-303)) (-4 *1 (-357))))
- ((*1 *1 *2) (-12 (-5 *2 (-586 (-303))) (-4 *1 (-357))))
- ((*1 *2 *1) (-12 (-4 *1 (-362)) (-5 *2 (-1066))))
- ((*1 *1 *2) (-12 (-5 *2 (-1066)) (-4 *1 (-362))))
- ((*1 *2 *3) (-12 (-5 *2 (-367)) (-5 *1 (-366 *3)) (-4 *3 (-1012))))
- ((*1 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-367))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1088)) (|:| -2032 (-587 (-304)))))
+ (-4 *1 (-358))))
+ ((*1 *1 *2) (-12 (-5 *2 (-304)) (-4 *1 (-358))))
+ ((*1 *1 *2) (-12 (-5 *2 (-587 (-304))) (-4 *1 (-358))))
+ ((*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-1067))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1067)) (-4 *1 (-363))))
+ ((*1 *2 *3) (-12 (-5 *2 (-368)) (-5 *1 (-367 *3)) (-4 *3 (-1013))))
+ ((*1 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-368))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1087)) (|:| -2031 (-586 (-303)))))
- (-4 *1 (-369))))
- ((*1 *1 *2) (-12 (-5 *2 (-303)) (-4 *1 (-369))))
- ((*1 *1 *2) (-12 (-5 *2 (-586 (-303))) (-4 *1 (-369))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1088)) (|:| -2032 (-587 (-304)))))
+ (-4 *1 (-370))))
+ ((*1 *1 *2) (-12 (-5 *2 (-304)) (-4 *1 (-370))))
+ ((*1 *1 *2) (-12 (-5 *2 (-587 (-304))) (-4 *1 (-370))))
((*1 *1 *2)
- (-12 (-5 *2 (-268 (-289 (-154 (-352))))) (-5 *1 (-371 *3 *4 *5 *6))
- (-14 *3 (-1083)) (-14 *4 (-3 (|:| |fst| (-407)) (|:| -1365 "void")))
- (-14 *5 (-586 (-1083))) (-14 *6 (-1087))))
+ (-12 (-5 *2 (-269 (-290 (-154 (-353))))) (-5 *1 (-372 *3 *4 *5 *6))
+ (-14 *3 (-1084)) (-14 *4 (-3 (|:| |fst| (-408)) (|:| -1366 "void")))
+ (-14 *5 (-587 (-1084))) (-14 *6 (-1088))))
((*1 *1 *2)
- (-12 (-5 *2 (-268 (-289 (-352)))) (-5 *1 (-371 *3 *4 *5 *6))
- (-14 *3 (-1083)) (-14 *4 (-3 (|:| |fst| (-407)) (|:| -1365 "void")))
- (-14 *5 (-586 (-1083))) (-14 *6 (-1087))))
+ (-12 (-5 *2 (-269 (-290 (-353)))) (-5 *1 (-372 *3 *4 *5 *6))
+ (-14 *3 (-1084)) (-14 *4 (-3 (|:| |fst| (-408)) (|:| -1366 "void")))
+ (-14 *5 (-587 (-1084))) (-14 *6 (-1088))))
((*1 *1 *2)
- (-12 (-5 *2 (-268 (-289 (-520)))) (-5 *1 (-371 *3 *4 *5 *6))
- (-14 *3 (-1083)) (-14 *4 (-3 (|:| |fst| (-407)) (|:| -1365 "void")))
- (-14 *5 (-586 (-1083))) (-14 *6 (-1087))))
+ (-12 (-5 *2 (-269 (-290 (-521)))) (-5 *1 (-372 *3 *4 *5 *6))
+ (-14 *3 (-1084)) (-14 *4 (-3 (|:| |fst| (-408)) (|:| -1366 "void")))
+ (-14 *5 (-587 (-1084))) (-14 *6 (-1088))))
((*1 *1 *2)
- (-12 (-5 *2 (-289 (-154 (-352)))) (-5 *1 (-371 *3 *4 *5 *6))
- (-14 *3 (-1083)) (-14 *4 (-3 (|:| |fst| (-407)) (|:| -1365 "void")))
- (-14 *5 (-586 (-1083))) (-14 *6 (-1087))))
+ (-12 (-5 *2 (-290 (-154 (-353)))) (-5 *1 (-372 *3 *4 *5 *6))
+ (-14 *3 (-1084)) (-14 *4 (-3 (|:| |fst| (-408)) (|:| -1366 "void")))
+ (-14 *5 (-587 (-1084))) (-14 *6 (-1088))))
((*1 *1 *2)
- (-12 (-5 *2 (-289 (-352))) (-5 *1 (-371 *3 *4 *5 *6))
- (-14 *3 (-1083)) (-14 *4 (-3 (|:| |fst| (-407)) (|:| -1365 "void")))
- (-14 *5 (-586 (-1083))) (-14 *6 (-1087))))
+ (-12 (-5 *2 (-290 (-353))) (-5 *1 (-372 *3 *4 *5 *6))
+ (-14 *3 (-1084)) (-14 *4 (-3 (|:| |fst| (-408)) (|:| -1366 "void")))
+ (-14 *5 (-587 (-1084))) (-14 *6 (-1088))))
((*1 *1 *2)
- (-12 (-5 *2 (-289 (-520))) (-5 *1 (-371 *3 *4 *5 *6))
- (-14 *3 (-1083)) (-14 *4 (-3 (|:| |fst| (-407)) (|:| -1365 "void")))
- (-14 *5 (-586 (-1083))) (-14 *6 (-1087))))
+ (-12 (-5 *2 (-290 (-521))) (-5 *1 (-372 *3 *4 *5 *6))
+ (-14 *3 (-1084)) (-14 *4 (-3 (|:| |fst| (-408)) (|:| -1366 "void")))
+ (-14 *5 (-587 (-1084))) (-14 *6 (-1088))))
((*1 *1 *2)
- (-12 (-5 *2 (-268 (-289 (-630)))) (-5 *1 (-371 *3 *4 *5 *6))
- (-14 *3 (-1083)) (-14 *4 (-3 (|:| |fst| (-407)) (|:| -1365 "void")))
- (-14 *5 (-586 (-1083))) (-14 *6 (-1087))))
+ (-12 (-5 *2 (-269 (-290 (-631)))) (-5 *1 (-372 *3 *4 *5 *6))
+ (-14 *3 (-1084)) (-14 *4 (-3 (|:| |fst| (-408)) (|:| -1366 "void")))
+ (-14 *5 (-587 (-1084))) (-14 *6 (-1088))))
((*1 *1 *2)
- (-12 (-5 *2 (-268 (-289 (-635)))) (-5 *1 (-371 *3 *4 *5 *6))
- (-14 *3 (-1083)) (-14 *4 (-3 (|:| |fst| (-407)) (|:| -1365 "void")))
- (-14 *5 (-586 (-1083))) (-14 *6 (-1087))))
+ (-12 (-5 *2 (-269 (-290 (-636)))) (-5 *1 (-372 *3 *4 *5 *6))
+ (-14 *3 (-1084)) (-14 *4 (-3 (|:| |fst| (-408)) (|:| -1366 "void")))
+ (-14 *5 (-587 (-1084))) (-14 *6 (-1088))))
((*1 *1 *2)
- (-12 (-5 *2 (-268 (-289 (-637)))) (-5 *1 (-371 *3 *4 *5 *6))
- (-14 *3 (-1083)) (-14 *4 (-3 (|:| |fst| (-407)) (|:| -1365 "void")))
- (-14 *5 (-586 (-1083))) (-14 *6 (-1087))))
+ (-12 (-5 *2 (-269 (-290 (-638)))) (-5 *1 (-372 *3 *4 *5 *6))
+ (-14 *3 (-1084)) (-14 *4 (-3 (|:| |fst| (-408)) (|:| -1366 "void")))
+ (-14 *5 (-587 (-1084))) (-14 *6 (-1088))))
((*1 *1 *2)
- (-12 (-5 *2 (-289 (-630))) (-5 *1 (-371 *3 *4 *5 *6))
- (-14 *3 (-1083)) (-14 *4 (-3 (|:| |fst| (-407)) (|:| -1365 "void")))
- (-14 *5 (-586 (-1083))) (-14 *6 (-1087))))
+ (-12 (-5 *2 (-290 (-631))) (-5 *1 (-372 *3 *4 *5 *6))
+ (-14 *3 (-1084)) (-14 *4 (-3 (|:| |fst| (-408)) (|:| -1366 "void")))
+ (-14 *5 (-587 (-1084))) (-14 *6 (-1088))))
((*1 *1 *2)
- (-12 (-5 *2 (-289 (-635))) (-5 *1 (-371 *3 *4 *5 *6))
- (-14 *3 (-1083)) (-14 *4 (-3 (|:| |fst| (-407)) (|:| -1365 "void")))
- (-14 *5 (-586 (-1083))) (-14 *6 (-1087))))
+ (-12 (-5 *2 (-290 (-636))) (-5 *1 (-372 *3 *4 *5 *6))
+ (-14 *3 (-1084)) (-14 *4 (-3 (|:| |fst| (-408)) (|:| -1366 "void")))
+ (-14 *5 (-587 (-1084))) (-14 *6 (-1088))))
((*1 *1 *2)
- (-12 (-5 *2 (-289 (-637))) (-5 *1 (-371 *3 *4 *5 *6))
- (-14 *3 (-1083)) (-14 *4 (-3 (|:| |fst| (-407)) (|:| -1365 "void")))
- (-14 *5 (-586 (-1083))) (-14 *6 (-1087))))
+ (-12 (-5 *2 (-290 (-638))) (-5 *1 (-372 *3 *4 *5 *6))
+ (-14 *3 (-1084)) (-14 *4 (-3 (|:| |fst| (-408)) (|:| -1366 "void")))
+ (-14 *5 (-587 (-1084))) (-14 *6 (-1088))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1087)) (|:| -2031 (-586 (-303)))))
- (-5 *1 (-371 *3 *4 *5 *6)) (-14 *3 (-1083))
- (-14 *4 (-3 (|:| |fst| (-407)) (|:| -1365 "void")))
- (-14 *5 (-586 (-1083))) (-14 *6 (-1087))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1088)) (|:| -2032 (-587 (-304)))))
+ (-5 *1 (-372 *3 *4 *5 *6)) (-14 *3 (-1084))
+ (-14 *4 (-3 (|:| |fst| (-408)) (|:| -1366 "void")))
+ (-14 *5 (-587 (-1084))) (-14 *6 (-1088))))
((*1 *1 *2)
- (-12 (-5 *2 (-586 (-303))) (-5 *1 (-371 *3 *4 *5 *6))
- (-14 *3 (-1083)) (-14 *4 (-3 (|:| |fst| (-407)) (|:| -1365 "void")))
- (-14 *5 (-586 (-1083))) (-14 *6 (-1087))))
+ (-12 (-5 *2 (-587 (-304))) (-5 *1 (-372 *3 *4 *5 *6))
+ (-14 *3 (-1084)) (-14 *4 (-3 (|:| |fst| (-408)) (|:| -1366 "void")))
+ (-14 *5 (-587 (-1084))) (-14 *6 (-1088))))
((*1 *1 *2)
- (-12 (-5 *2 (-303)) (-5 *1 (-371 *3 *4 *5 *6)) (-14 *3 (-1083))
- (-14 *4 (-3 (|:| |fst| (-407)) (|:| -1365 "void")))
- (-14 *5 (-586 (-1083))) (-14 *6 (-1087))))
+ (-12 (-5 *2 (-304)) (-5 *1 (-372 *3 *4 *5 *6)) (-14 *3 (-1084))
+ (-14 *4 (-3 (|:| |fst| (-408)) (|:| -1366 "void")))
+ (-14 *5 (-587 (-1084))) (-14 *6 (-1088))))
((*1 *1 *2)
- (-12 (-5 *2 (-304 *4)) (-4 *4 (-13 (-783) (-21)))
- (-5 *1 (-400 *3 *4)) (-4 *3 (-13 (-157) (-37 (-380 (-520)))))))
+ (-12 (-5 *2 (-305 *4)) (-4 *4 (-13 (-784) (-21)))
+ (-5 *1 (-401 *3 *4)) (-4 *3 (-13 (-157) (-37 (-381 (-521)))))))
((*1 *1 *2)
- (-12 (-5 *1 (-400 *2 *3)) (-4 *2 (-13 (-157) (-37 (-380 (-520)))))
- (-4 *3 (-13 (-783) (-21)))))
+ (-12 (-5 *1 (-401 *2 *3)) (-4 *2 (-13 (-157) (-37 (-381 (-521)))))
+ (-4 *3 (-13 (-784) (-21)))))
((*1 *1 *2)
- (-12 (-5 *2 (-380 (-880 (-380 *3)))) (-4 *3 (-512)) (-4 *3 (-783))
- (-4 *1 (-403 *3))))
+ (-12 (-5 *2 (-381 (-881 (-381 *3)))) (-4 *3 (-513)) (-4 *3 (-784))
+ (-4 *1 (-404 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-880 (-380 *3))) (-4 *3 (-512)) (-4 *3 (-783))
- (-4 *1 (-403 *3))))
+ (-12 (-5 *2 (-881 (-381 *3))) (-4 *3 (-513)) (-4 *3 (-784))
+ (-4 *1 (-404 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-380 *3)) (-4 *3 (-512)) (-4 *3 (-783))
- (-4 *1 (-403 *3))))
+ (-12 (-5 *2 (-381 *3)) (-4 *3 (-513)) (-4 *3 (-784))
+ (-4 *1 (-404 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1035 *3 (-559 *1))) (-4 *3 (-969)) (-4 *3 (-783))
- (-4 *1 (-403 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1016)) (-5 *1 (-407))))
- ((*1 *2 *1) (-12 (-5 *2 (-1083)) (-5 *1 (-407))))
- ((*1 *1 *2) (-12 (-5 *2 (-1083)) (-5 *1 (-407))))
- ((*1 *1 *2) (-12 (-5 *2 (-1066)) (-5 *1 (-407))))
- ((*1 *1 *2) (-12 (-5 *2 (-407)) (-5 *1 (-410))))
- ((*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-410))))
+ (-12 (-5 *2 (-1036 *3 (-560 *1))) (-4 *3 (-970)) (-4 *3 (-784))
+ (-4 *1 (-404 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1017)) (-5 *1 (-408))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-408))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1084)) (-5 *1 (-408))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-408))))
+ ((*1 *1 *2) (-12 (-5 *2 (-408)) (-5 *1 (-411))))
+ ((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-411))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1087)) (|:| -2031 (-586 (-303)))))
- (-4 *1 (-412))))
- ((*1 *1 *2) (-12 (-5 *2 (-303)) (-4 *1 (-412))))
- ((*1 *1 *2) (-12 (-5 *2 (-586 (-303))) (-4 *1 (-412))))
- ((*1 *1 *2) (-12 (-5 *2 (-1164 (-635))) (-4 *1 (-412))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1088)) (|:| -2032 (-587 (-304)))))
+ (-4 *1 (-413))))
+ ((*1 *1 *2) (-12 (-5 *2 (-304)) (-4 *1 (-413))))
+ ((*1 *1 *2) (-12 (-5 *2 (-587 (-304))) (-4 *1 (-413))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1165 (-636))) (-4 *1 (-413))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1087)) (|:| -2031 (-586 (-303)))))
- (-4 *1 (-413))))
- ((*1 *1 *2) (-12 (-5 *2 (-303)) (-4 *1 (-413))))
- ((*1 *1 *2) (-12 (-5 *2 (-586 (-303))) (-4 *1 (-413))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1088)) (|:| -2032 (-587 (-304)))))
+ (-4 *1 (-414))))
+ ((*1 *1 *2) (-12 (-5 *2 (-304)) (-4 *1 (-414))))
+ ((*1 *1 *2) (-12 (-5 *2 (-587 (-304))) (-4 *1 (-414))))
((*1 *1 *2)
- (-12 (-5 *2 (-1164 (-380 (-880 *3)))) (-4 *3 (-157))
- (-14 *6 (-1164 (-626 *3))) (-5 *1 (-425 *3 *4 *5 *6))
- (-14 *4 (-849)) (-14 *5 (-586 (-1083)))))
- ((*1 *1 *2) (-12 (-5 *2 (-586 (-586 (-871 (-201))))) (-5 *1 (-440))))
- ((*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-440))))
+ (-12 (-5 *2 (-1165 (-381 (-881 *3)))) (-4 *3 (-157))
+ (-14 *6 (-1165 (-627 *3))) (-5 *1 (-426 *3 *4 *5 *6))
+ (-14 *4 (-850)) (-14 *5 (-587 (-1084)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-587 (-587 (-872 (-202))))) (-5 *1 (-441))))
+ ((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-441))))
((*1 *1 *2)
- (-12 (-5 *2 (-1149 *3 *4 *5)) (-4 *3 (-969)) (-14 *4 (-1083))
- (-14 *5 *3) (-5 *1 (-446 *3 *4 *5))))
+ (-12 (-5 *2 (-1150 *3 *4 *5)) (-4 *3 (-970)) (-14 *4 (-1084))
+ (-14 *5 *3) (-5 *1 (-447 *3 *4 *5))))
((*1 *1 *2)
- (-12 (-5 *2 (-1160 *4)) (-14 *4 (-1083)) (-5 *1 (-446 *3 *4 *5))
- (-4 *3 (-969)) (-14 *5 *3)))
- ((*1 *2 *1) (-12 (-5 *2 (-928 16)) (-5 *1 (-457))))
- ((*1 *2 *1) (-12 (-5 *2 (-380 (-520))) (-5 *1 (-457))))
- ((*1 *1 *2) (-12 (-5 *2 (-1035 (-520) (-559 (-463)))) (-5 *1 (-463))))
- ((*1 *1 *2) (-12 (-5 *2 (-1066)) (-5 *1 (-470))))
+ (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-447 *3 *4 *5))
+ (-4 *3 (-970)) (-14 *5 *3)))
+ ((*1 *2 *1) (-12 (-5 *2 (-929 16)) (-5 *1 (-458))))
+ ((*1 *2 *1) (-12 (-5 *2 (-381 (-521))) (-5 *1 (-458))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1036 (-521) (-560 (-464)))) (-5 *1 (-464))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-471))))
((*1 *1 *2)
- (-12 (-5 *2 (-586 *6)) (-4 *6 (-877 *3 *4 *5)) (-4 *3 (-336))
- (-4 *4 (-728)) (-4 *5 (-783)) (-5 *1 (-472 *3 *4 *5 *6))))
+ (-12 (-5 *2 (-587 *6)) (-4 *6 (-878 *3 *4 *5)) (-4 *3 (-337))
+ (-4 *4 (-729)) (-4 *5 (-784)) (-5 *1 (-473 *3 *4 *5 *6))))
((*1 *1 *2)
- (-12 (-4 *3 (-157)) (-5 *1 (-554 *3 *2)) (-4 *2 (-680 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-560 *2)) (-4 *2 (-1118))))
- ((*1 *1 *2) (-12 (-4 *1 (-564 *2)) (-4 *2 (-969))))
+ (-12 (-4 *3 (-157)) (-5 *1 (-555 *3 *2)) (-4 *2 (-681 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-561 *2)) (-4 *2 (-1119))))
+ ((*1 *1 *2) (-12 (-4 *1 (-565 *2)) (-4 *2 (-970))))
((*1 *2 *1)
- (-12 (-5 *2 (-1182 *3 *4)) (-5 *1 (-570 *3 *4 *5)) (-4 *3 (-783))
- (-4 *4 (-13 (-157) (-653 (-380 (-520))))) (-14 *5 (-849))))
+ (-12 (-5 *2 (-1183 *3 *4)) (-5 *1 (-571 *3 *4 *5)) (-4 *3 (-784))
+ (-4 *4 (-13 (-157) (-654 (-381 (-521))))) (-14 *5 (-850))))
((*1 *2 *1)
- (-12 (-5 *2 (-1177 *3 *4)) (-5 *1 (-570 *3 *4 *5)) (-4 *3 (-783))
- (-4 *4 (-13 (-157) (-653 (-380 (-520))))) (-14 *5 (-849))))
+ (-12 (-5 *2 (-1178 *3 *4)) (-5 *1 (-571 *3 *4 *5)) (-4 *3 (-784))
+ (-4 *4 (-13 (-157) (-654 (-381 (-521))))) (-14 *5 (-850))))
((*1 *1 *2)
- (-12 (-4 *3 (-157)) (-5 *1 (-578 *3 *2)) (-4 *2 (-680 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-615 *3)) (-5 *1 (-611 *3)) (-4 *3 (-783))))
- ((*1 *2 *1) (-12 (-5 *2 (-755 *3)) (-5 *1 (-611 *3)) (-4 *3 (-783))))
+ (-12 (-4 *3 (-157)) (-5 *1 (-579 *3 *2)) (-4 *2 (-681 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-616 *3)) (-5 *1 (-612 *3)) (-4 *3 (-784))))
+ ((*1 *2 *1) (-12 (-5 *2 (-756 *3)) (-5 *1 (-612 *3)) (-4 *3 (-784))))
((*1 *2 *1)
- (-12 (-5 *2 (-885 (-885 (-885 *3)))) (-5 *1 (-614 *3))
- (-4 *3 (-1012))))
+ (-12 (-5 *2 (-886 (-886 (-886 *3)))) (-5 *1 (-615 *3))
+ (-4 *3 (-1013))))
((*1 *1 *2)
- (-12 (-5 *2 (-885 (-885 (-885 *3)))) (-4 *3 (-1012))
- (-5 *1 (-614 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-755 *3)) (-5 *1 (-615 *3)) (-4 *3 (-783))))
- ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-619 *3)) (-4 *3 (-1012))))
+ (-12 (-5 *2 (-886 (-886 (-886 *3)))) (-4 *3 (-1013))
+ (-5 *1 (-615 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-756 *3)) (-5 *1 (-616 *3)) (-4 *3 (-784))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-620 *3)) (-4 *3 (-1013))))
((*1 *1 *2)
- (-12 (-4 *3 (-969)) (-4 *1 (-624 *3 *4 *2)) (-4 *4 (-346 *3))
- (-4 *2 (-346 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-154 (-352))) (-5 *1 (-630))))
- ((*1 *1 *2) (-12 (-5 *2 (-154 (-637))) (-5 *1 (-630))))
- ((*1 *1 *2) (-12 (-5 *2 (-154 (-635))) (-5 *1 (-630))))
- ((*1 *1 *2) (-12 (-5 *2 (-154 (-520))) (-5 *1 (-630))))
- ((*1 *1 *2) (-12 (-5 *2 (-154 (-352))) (-5 *1 (-630))))
- ((*1 *1 *2) (-12 (-5 *2 (-637)) (-5 *1 (-635))))
- ((*1 *2 *1) (-12 (-5 *2 (-352)) (-5 *1 (-635))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-289 (-520))) (-5 *2 (-289 (-637))) (-5 *1 (-637))))
- ((*1 *1 *2) (-12 (-5 *1 (-639 *2)) (-4 *2 (-1012))))
+ (-12 (-4 *3 (-970)) (-4 *1 (-625 *3 *4 *2)) (-4 *4 (-347 *3))
+ (-4 *2 (-347 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-154 (-353))) (-5 *1 (-631))))
+ ((*1 *1 *2) (-12 (-5 *2 (-154 (-638))) (-5 *1 (-631))))
+ ((*1 *1 *2) (-12 (-5 *2 (-154 (-636))) (-5 *1 (-631))))
+ ((*1 *1 *2) (-12 (-5 *2 (-154 (-521))) (-5 *1 (-631))))
+ ((*1 *1 *2) (-12 (-5 *2 (-154 (-353))) (-5 *1 (-631))))
+ ((*1 *1 *2) (-12 (-5 *2 (-638)) (-5 *1 (-636))))
+ ((*1 *2 *1) (-12 (-5 *2 (-353)) (-5 *1 (-636))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-290 (-521))) (-5 *2 (-290 (-638))) (-5 *1 (-638))))
+ ((*1 *1 *2) (-12 (-5 *1 (-640 *2)) (-4 *2 (-1013))))
((*1 *2 *1)
- (-12 (-4 *2 (-157)) (-5 *1 (-647 *2 *3 *4 *5 *6)) (-4 *3 (-23))
+ (-12 (-4 *2 (-157)) (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *1 *2)
- (-12 (-4 *3 (-969)) (-5 *1 (-648 *3 *2)) (-4 *2 (-1140 *3))))
+ (-12 (-4 *3 (-970)) (-5 *1 (-649 *3 *2)) (-4 *2 (-1141 *3))))
((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| -2716 *3) (|:| -2647 *4)))
- (-5 *1 (-649 *3 *4 *5)) (-4 *3 (-783)) (-4 *4 (-1012))
+ (-12 (-5 *2 (-2 (|:| -2716 *3) (|:| -2997 *4)))
+ (-5 *1 (-650 *3 *4 *5)) (-4 *3 (-784)) (-4 *4 (-1013))
(-14 *5 (-1 (-108) *2 *2))))
((*1 *1 *2)
- (-12 (-5 *2 (-2 (|:| -2716 *3) (|:| -2647 *4))) (-4 *3 (-783))
- (-4 *4 (-1012)) (-5 *1 (-649 *3 *4 *5)) (-14 *5 (-1 (-108) *2 *2))))
+ (-12 (-5 *2 (-2 (|:| -2716 *3) (|:| -2997 *4))) (-4 *3 (-784))
+ (-4 *4 (-1013)) (-5 *1 (-650 *3 *4 *5)) (-14 *5 (-1 (-108) *2 *2))))
((*1 *2 *1)
- (-12 (-4 *2 (-157)) (-5 *1 (-651 *2 *3 *4 *5 *6)) (-4 *3 (-23))
+ (-12 (-4 *2 (-157)) (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-586 (-2 (|:| -2972 *3) (|:| -2516 *4)))) (-4 *3 (-969))
- (-4 *4 (-662)) (-5 *1 (-671 *3 *4))))
- ((*1 *1 *2) (-12 (-5 *2 (-520)) (-4 *1 (-699))))
+ (-12 (-5 *2 (-587 (-2 (|:| -2973 *3) (|:| -2517 *4)))) (-4 *3 (-970))
+ (-4 *4 (-663)) (-5 *1 (-672 *3 *4))))
+ ((*1 *1 *2) (-12 (-5 *2 (-521)) (-4 *1 (-700))))
((*1 *1 *2)
(-12
(-5 *2
(-3
(|:| |nia|
- (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201)))
- (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201))
- (|:| |relerr| (-201))))
+ (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202)))
+ (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202))
+ (|:| |relerr| (-202))))
(|:| |mdnia|
- (-2 (|:| |fn| (-289 (-201)))
- (|:| -1667 (-586 (-1007 (-776 (-201)))))
- (|:| |abserr| (-201)) (|:| |relerr| (-201))))))
- (-5 *1 (-704))))
+ (-2 (|:| |fn| (-290 (-202)))
+ (|:| -2442 (-587 (-1008 (-777 (-202)))))
+ (|:| |abserr| (-202)) (|:| |relerr| (-202))))))
+ (-5 *1 (-705))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |fn| (-289 (-201)))
- (|:| -1667 (-586 (-1007 (-776 (-201))))) (|:| |abserr| (-201))
- (|:| |relerr| (-201))))
- (-5 *1 (-704))))
+ (-2 (|:| |fn| (-290 (-202)))
+ (|:| -2442 (-587 (-1008 (-777 (-202))))) (|:| |abserr| (-202))
+ (|:| |relerr| (-202))))
+ (-5 *1 (-705))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201)))
- (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201))
- (|:| |relerr| (-201))))
- (-5 *1 (-704))))
- ((*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-704))))
- ((*1 *2 *3) (-12 (-5 *2 (-709)) (-5 *1 (-708 *3)) (-4 *3 (-1118))))
+ (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202)))
+ (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202))
+ (|:| |relerr| (-202))))
+ (-5 *1 (-705))))
+ ((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-705))))
+ ((*1 *2 *3) (-12 (-5 *2 (-710)) (-5 *1 (-709 *3)) (-4 *3 (-1119))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |xinit| (-201)) (|:| |xend| (-201))
- (|:| |fn| (-1164 (-289 (-201)))) (|:| |yinit| (-586 (-201)))
- (|:| |intvals| (-586 (-201))) (|:| |g| (-289 (-201)))
- (|:| |abserr| (-201)) (|:| |relerr| (-201))))
- (-5 *1 (-744))))
- ((*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-744))))
+ (-2 (|:| |xinit| (-202)) (|:| |xend| (-202))
+ (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202)))
+ (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202)))
+ (|:| |abserr| (-202)) (|:| |relerr| (-202))))
+ (-5 *1 (-745))))
+ ((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-745))))
((*1 *2 *1)
- (-12 (-4 *2 (-828 *3)) (-5 *1 (-753 *3 *2 *4)) (-4 *3 (-1012))
+ (-12 (-4 *2 (-829 *3)) (-5 *1 (-754 *3 *2 *4)) (-4 *3 (-1013))
(-14 *4 *3)))
((*1 *1 *2)
- (-12 (-4 *3 (-1012)) (-14 *4 *3) (-5 *1 (-753 *3 *2 *4))
- (-4 *2 (-828 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1083)) (-5 *1 (-760))))
+ (-12 (-4 *3 (-1013)) (-14 *4 *3) (-5 *1 (-754 *3 *2 *4))
+ (-4 *2 (-829 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1084)) (-5 *1 (-761))))
((*1 *1 *2)
(-12
(-5 *2
(-3
(|:| |noa|
- (-2 (|:| |fn| (-289 (-201))) (|:| -3794 (-586 (-201)))
- (|:| |lb| (-586 (-776 (-201))))
- (|:| |cf| (-586 (-289 (-201))))
- (|:| |ub| (-586 (-776 (-201))))))
+ (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202)))
+ (|:| |lb| (-587 (-777 (-202))))
+ (|:| |cf| (-587 (-290 (-202))))
+ (|:| |ub| (-587 (-777 (-202))))))
(|:| |lsa|
- (-2 (|:| |lfn| (-586 (-289 (-201))))
- (|:| -3794 (-586 (-201)))))))
- (-5 *1 (-774))))
+ (-2 (|:| |lfn| (-587 (-290 (-202))))
+ (|:| -3797 (-587 (-202)))))))
+ (-5 *1 (-775))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |lfn| (-586 (-289 (-201)))) (|:| -3794 (-586 (-201)))))
- (-5 *1 (-774))))
+ (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202)))))
+ (-5 *1 (-775))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |fn| (-289 (-201))) (|:| -3794 (-586 (-201)))
- (|:| |lb| (-586 (-776 (-201)))) (|:| |cf| (-586 (-289 (-201))))
- (|:| |ub| (-586 (-776 (-201))))))
- (-5 *1 (-774))))
- ((*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-774))))
+ (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202)))
+ (|:| |lb| (-587 (-777 (-202)))) (|:| |cf| (-587 (-290 (-202))))
+ (|:| |ub| (-587 (-777 (-202))))))
+ (-5 *1 (-775))))
+ ((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-775))))
((*1 *1 *2)
- (-12 (-5 *2 (-1160 *3)) (-14 *3 (-1083)) (-5 *1 (-788 *3 *4 *5 *6))
- (-4 *4 (-969)) (-14 *5 (-94 *4)) (-14 *6 (-1 *4 *4))))
- ((*1 *1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-790))))
+ (-12 (-5 *2 (-1161 *3)) (-14 *3 (-1084)) (-5 *1 (-789 *3 *4 *5 *6))
+ (-4 *4 (-970)) (-14 *5 (-94 *4)) (-14 *6 (-1 *4 *4))))
+ ((*1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-791))))
((*1 *1 *2)
- (-12 (-5 *2 (-880 *3)) (-4 *3 (-969)) (-5 *1 (-794 *3 *4 *5 *6))
- (-14 *4 (-586 (-1083))) (-14 *5 (-586 (-706))) (-14 *6 (-706))))
+ (-12 (-5 *2 (-881 *3)) (-4 *3 (-970)) (-5 *1 (-795 *3 *4 *5 *6))
+ (-14 *4 (-587 (-1084))) (-14 *5 (-587 (-707))) (-14 *6 (-707))))
((*1 *2 *1)
- (-12 (-5 *2 (-880 *3)) (-5 *1 (-794 *3 *4 *5 *6)) (-4 *3 (-969))
- (-14 *4 (-586 (-1083))) (-14 *5 (-586 (-706))) (-14 *6 (-706))))
- ((*1 *1 *2) (-12 (-5 *2 (-143)) (-5 *1 (-802))))
+ (-12 (-5 *2 (-881 *3)) (-5 *1 (-795 *3 *4 *5 *6)) (-4 *3 (-970))
+ (-14 *4 (-587 (-1084))) (-14 *5 (-587 (-707))) (-14 *6 (-707))))
+ ((*1 *1 *2) (-12 (-5 *2 (-143)) (-5 *1 (-803))))
((*1 *2 *3)
- (-12 (-5 *3 (-880 (-47))) (-5 *2 (-289 (-520))) (-5 *1 (-803))))
+ (-12 (-5 *3 (-881 (-47))) (-5 *2 (-290 (-521))) (-5 *1 (-804))))
((*1 *2 *3)
- (-12 (-5 *3 (-380 (-880 (-47)))) (-5 *2 (-289 (-520)))
- (-5 *1 (-803))))
- ((*1 *1 *2) (-12 (-5 *1 (-821 *2)) (-4 *2 (-783))))
- ((*1 *2 *1) (-12 (-5 *2 (-755 *3)) (-5 *1 (-821 *3)) (-4 *3 (-783))))
+ (-12 (-5 *3 (-381 (-881 (-47)))) (-5 *2 (-290 (-521)))
+ (-5 *1 (-804))))
+ ((*1 *1 *2) (-12 (-5 *1 (-822 *2)) (-4 *2 (-784))))
+ ((*1 *2 *1) (-12 (-5 *2 (-756 *3)) (-5 *1 (-822 *3)) (-4 *3 (-784))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |pde| (-586 (-289 (-201))))
+ (-2 (|:| |pde| (-587 (-290 (-202))))
(|:| |constraints|
- (-586
- (-2 (|:| |start| (-201)) (|:| |finish| (-201))
- (|:| |grid| (-706)) (|:| |boundaryType| (-520))
- (|:| |dStart| (-626 (-201))) (|:| |dFinish| (-626 (-201))))))
- (|:| |f| (-586 (-586 (-289 (-201))))) (|:| |st| (-1066))
- (|:| |tol| (-201))))
- (-5 *1 (-826))))
- ((*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-826))))
+ (-587
+ (-2 (|:| |start| (-202)) (|:| |finish| (-202))
+ (|:| |grid| (-707)) (|:| |boundaryType| (-521))
+ (|:| |dStart| (-627 (-202))) (|:| |dFinish| (-627 (-202))))))
+ (|:| |f| (-587 (-587 (-290 (-202))))) (|:| |st| (-1067))
+ (|:| |tol| (-202))))
+ (-5 *1 (-827))))
+ ((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-827))))
((*1 *2 *1)
- (-12 (-5 *2 (-1105 *3)) (-5 *1 (-829 *3)) (-4 *3 (-1012))))
+ (-12 (-5 *2 (-1106 *3)) (-5 *1 (-830 *3)) (-4 *3 (-1013))))
((*1 *1 *2)
- (-12 (-5 *2 (-586 (-833 *3))) (-4 *3 (-1012)) (-5 *1 (-832 *3))))
+ (-12 (-5 *2 (-587 (-834 *3))) (-4 *3 (-1013)) (-5 *1 (-833 *3))))
((*1 *2 *1)
- (-12 (-5 *2 (-586 (-833 *3))) (-5 *1 (-832 *3)) (-4 *3 (-1012))))
- ((*1 *1 *2) (-12 (-5 *2 (-586 *3)) (-4 *3 (-1012)) (-5 *1 (-833 *3))))
+ (-12 (-5 *2 (-587 (-834 *3))) (-5 *1 (-833 *3)) (-4 *3 (-1013))))
+ ((*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1013)) (-5 *1 (-834 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-586 (-586 *3))) (-4 *3 (-1012)) (-5 *1 (-833 *3))))
+ (-12 (-5 *2 (-587 (-587 *3))) (-4 *3 (-1013)) (-5 *1 (-834 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-380 (-391 *3))) (-4 *3 (-281)) (-5 *1 (-842 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-380 *3)) (-5 *1 (-842 *3)) (-4 *3 (-281))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-449)) (-5 *2 (-289 *4)) (-5 *1 (-847 *4))
- (-4 *4 (-13 (-783) (-512)))))
- ((*1 *1 *2) (-12 (-5 *2 (-1083)) (-5 *1 (-892 *3)) (-4 *3 (-893))))
- ((*1 *1 *2) (-12 (-5 *1 (-892 *2)) (-4 *2 (-893))))
- ((*1 *2 *1) (-12 (-5 *2 (-586 (-520))) (-5 *1 (-896))))
+ (-12 (-5 *2 (-381 (-392 *3))) (-4 *3 (-282)) (-5 *1 (-843 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-381 *3)) (-5 *1 (-843 *3)) (-4 *3 (-282))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-450)) (-5 *2 (-290 *4)) (-5 *1 (-848 *4))
+ (-4 *4 (-13 (-784) (-513)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1084)) (-5 *1 (-893 *3)) (-4 *3 (-894))))
+ ((*1 *1 *2) (-12 (-5 *1 (-893 *2)) (-4 *2 (-894))))
+ ((*1 *2 *1) (-12 (-5 *2 (-587 (-521))) (-5 *1 (-897))))
((*1 *2 *1)
- (-12 (-5 *2 (-380 (-520))) (-5 *1 (-928 *3)) (-14 *3 (-520))))
- ((*1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *1 (-956 *3)) (-4 *3 (-1118))))
- ((*1 *2 *3) (-12 (-5 *3 (-285)) (-5 *1 (-956 *2)) (-4 *2 (-1118))))
+ (-12 (-5 *2 (-381 (-521))) (-5 *1 (-929 *3)) (-14 *3 (-521))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *1 (-957 *3)) (-4 *3 (-1119))))
+ ((*1 *2 *3) (-12 (-5 *3 (-286)) (-5 *1 (-957 *2)) (-4 *2 (-1119))))
((*1 *1 *2)
- (-12 (-4 *3 (-336)) (-4 *4 (-728)) (-4 *5 (-783))
- (-5 *1 (-957 *3 *4 *5 *2 *6)) (-4 *2 (-877 *3 *4 *5))
- (-14 *6 (-586 *2))))
- ((*1 *1 *2) (-12 (-4 *1 (-960 *2)) (-4 *2 (-1118))))
+ (-12 (-4 *3 (-337)) (-4 *4 (-729)) (-4 *5 (-784))
+ (-5 *1 (-958 *3 *4 *5 *2 *6)) (-4 *2 (-878 *3 *4 *5))
+ (-14 *6 (-587 *2))))
+ ((*1 *1 *2) (-12 (-4 *1 (-961 *2)) (-4 *2 (-1119))))
((*1 *2 *3)
- (-12 (-5 *2 (-380 (-880 *3))) (-5 *1 (-965 *3)) (-4 *3 (-512))))
- ((*1 *1 *2) (-12 (-5 *2 (-520)) (-4 *1 (-969))))
+ (-12 (-5 *2 (-381 (-881 *3))) (-5 *1 (-966 *3)) (-4 *3 (-513))))
+ ((*1 *1 *2) (-12 (-5 *2 (-521)) (-4 *1 (-970))))
((*1 *2 *1)
- (-12 (-5 *2 (-626 *5)) (-5 *1 (-973 *3 *4 *5)) (-14 *3 (-706))
- (-14 *4 (-706)) (-4 *5 (-969))))
+ (-12 (-5 *2 (-627 *5)) (-5 *1 (-974 *3 *4 *5)) (-14 *3 (-707))
+ (-14 *4 (-707)) (-4 *5 (-970))))
((*1 *1 *2)
- (-12 (-4 *3 (-969)) (-4 *4 (-783)) (-5 *1 (-1036 *3 *4 *2))
- (-4 *2 (-877 *3 (-492 *4) *4))))
+ (-12 (-4 *3 (-970)) (-4 *4 (-784)) (-5 *1 (-1037 *3 *4 *2))
+ (-4 *2 (-878 *3 (-493 *4) *4))))
((*1 *1 *2)
- (-12 (-4 *3 (-969)) (-4 *2 (-783)) (-5 *1 (-1036 *3 *2 *4))
- (-4 *4 (-877 *3 (-492 *2) *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-1044 *3)) (-4 *3 (-969)) (-5 *2 (-791))))
+ (-12 (-4 *3 (-970)) (-4 *2 (-784)) (-5 *1 (-1037 *3 *2 *4))
+ (-4 *4 (-878 *3 (-493 *2) *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970)) (-5 *2 (-792))))
((*1 *2 *1)
- (-12 (-5 *2 (-626 *4)) (-5 *1 (-1050 *3 *4)) (-14 *3 (-706))
- (-4 *4 (-969))))
- ((*1 *1 *2) (-12 (-5 *2 (-132)) (-4 *1 (-1052))))
+ (-12 (-5 *2 (-627 *4)) (-5 *1 (-1051 *3 *4)) (-14 *3 (-707))
+ (-4 *4 (-970))))
+ ((*1 *1 *2) (-12 (-5 *2 (-132)) (-4 *1 (-1053))))
((*1 *1 *2)
- (-12 (-5 *2 (-586 *3)) (-4 *3 (-1118)) (-5 *1 (-1064 *3))))
+ (-12 (-5 *2 (-587 *3)) (-4 *3 (-1119)) (-5 *1 (-1065 *3))))
((*1 *2 *3)
- (-12 (-5 *2 (-1064 *3)) (-5 *1 (-1068 *3)) (-4 *3 (-969))))
+ (-12 (-5 *2 (-1065 *3)) (-5 *1 (-1069 *3)) (-4 *3 (-970))))
((*1 *1 *2)
- (-12 (-5 *2 (-1160 *4)) (-14 *4 (-1083)) (-5 *1 (-1074 *3 *4 *5))
- (-4 *3 (-969)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-1075 *3 *4 *5))
+ (-4 *3 (-970)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1160 *4)) (-14 *4 (-1083)) (-5 *1 (-1080 *3 *4 *5))
- (-4 *3 (-969)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-1081 *3 *4 *5))
+ (-4 *3 (-970)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1160 *4)) (-14 *4 (-1083)) (-5 *1 (-1081 *3 *4 *5))
- (-4 *3 (-969)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-1082 *3 *4 *5))
+ (-4 *3 (-970)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1137 *4 *3)) (-4 *3 (-969)) (-14 *4 (-1083))
- (-14 *5 *3) (-5 *1 (-1081 *3 *4 *5))))
- ((*1 *1 *2) (-12 (-5 *2 (-1083)) (-5 *1 (-1082))))
- ((*1 *1 *2) (-12 (-5 *2 (-1066)) (-5 *1 (-1083))))
- ((*1 *2 *1) (-12 (-5 *2 (-1092 (-1083) (-410))) (-5 *1 (-1087))))
- ((*1 *2 *1) (-12 (-5 *2 (-1066)) (-5 *1 (-1088))))
- ((*1 *1 *2) (-12 (-5 *2 (-1066)) (-5 *1 (-1088))))
- ((*1 *2 *1) (-12 (-5 *2 (-1083)) (-5 *1 (-1088))))
- ((*1 *1 *2) (-12 (-5 *2 (-1083)) (-5 *1 (-1088))))
- ((*1 *2 *1) (-12 (-5 *2 (-201)) (-5 *1 (-1088))))
- ((*1 *1 *2) (-12 (-5 *2 (-201)) (-5 *1 (-1088))))
- ((*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-1088))))
- ((*1 *1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-1088))))
- ((*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-1091 *3)) (-4 *3 (-1012))))
- ((*1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *1 (-1098 *3)) (-4 *3 (-1012))))
- ((*1 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-1099))))
- ((*1 *1 *2) (-12 (-5 *2 (-880 *3)) (-4 *3 (-969)) (-5 *1 (-1113 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1083)) (-5 *1 (-1113 *3)) (-4 *3 (-969))))
+ (-12 (-5 *2 (-1138 *4 *3)) (-4 *3 (-970)) (-14 *4 (-1084))
+ (-14 *5 *3) (-5 *1 (-1082 *3 *4 *5))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1084)) (-5 *1 (-1083))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-1084))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1093 (-1084) (-411))) (-5 *1 (-1088))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-1089))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-1089))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-1089))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1084)) (-5 *1 (-1089))))
+ ((*1 *2 *1) (-12 (-5 *2 (-202)) (-5 *1 (-1089))))
+ ((*1 *1 *2) (-12 (-5 *2 (-202)) (-5 *1 (-1089))))
+ ((*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-1089))))
+ ((*1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-1089))))
+ ((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-1092 *3)) (-4 *3 (-1013))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1100)) (-5 *1 (-1099 *3)) (-4 *3 (-1013))))
+ ((*1 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-1100))))
+ ((*1 *1 *2) (-12 (-5 *2 (-881 *3)) (-4 *3 (-970)) (-5 *1 (-1114 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1084)) (-5 *1 (-1114 *3)) (-4 *3 (-970))))
((*1 *1 *2)
- (-12 (-5 *2 (-885 *3)) (-4 *3 (-1118)) (-5 *1 (-1116 *3))))
+ (-12 (-5 *2 (-886 *3)) (-4 *3 (-1119)) (-5 *1 (-1117 *3))))
((*1 *1 *2)
- (-12 (-4 *3 (-969)) (-4 *1 (-1126 *3 *2)) (-4 *2 (-1155 *3))))
+ (-12 (-4 *3 (-970)) (-4 *1 (-1127 *3 *2)) (-4 *2 (-1156 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1160 *4)) (-14 *4 (-1083)) (-5 *1 (-1128 *3 *4 *5))
- (-4 *3 (-969)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-1129 *3 *4 *5))
+ (-4 *3 (-970)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1007 *3)) (-4 *3 (-1118)) (-5 *1 (-1131 *3))))
+ (-12 (-5 *2 (-1008 *3)) (-4 *3 (-1119)) (-5 *1 (-1132 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1160 *3)) (-14 *3 (-1083)) (-5 *1 (-1137 *3 *4))
- (-4 *4 (-969))))
+ (-12 (-5 *2 (-1161 *3)) (-14 *3 (-1084)) (-5 *1 (-1138 *3 *4))
+ (-4 *4 (-970))))
((*1 *1 *2)
- (-12 (-4 *3 (-969)) (-4 *1 (-1147 *3 *2)) (-4 *2 (-1124 *3))))
+ (-12 (-4 *3 (-970)) (-4 *1 (-1148 *3 *2)) (-4 *2 (-1125 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1160 *4)) (-14 *4 (-1083)) (-5 *1 (-1149 *3 *4 *5))
- (-4 *3 (-969)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-1150 *3 *4 *5))
+ (-4 *3 (-970)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1160 *4)) (-14 *4 (-1083)) (-5 *1 (-1156 *3 *4 *5))
- (-4 *3 (-969)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-1157 *3 *4 *5))
+ (-4 *3 (-970)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1137 *4 *3)) (-4 *3 (-969)) (-14 *4 (-1083))
- (-14 *5 *3) (-5 *1 (-1156 *3 *4 *5))))
- ((*1 *2 *1) (-12 (-5 *2 (-1083)) (-5 *1 (-1160 *3)) (-14 *3 *2)))
- ((*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-1165))))
- ((*1 *2 *3) (-12 (-5 *3 (-440)) (-5 *2 (-1165)) (-5 *1 (-1168))))
- ((*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-1169))))
+ (-12 (-5 *2 (-1138 *4 *3)) (-4 *3 (-970)) (-14 *4 (-1084))
+ (-14 *5 *3) (-5 *1 (-1157 *3 *4 *5))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-1161 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-1166))))
+ ((*1 *2 *3) (-12 (-5 *3 (-441)) (-5 *2 (-1166)) (-5 *1 (-1169))))
+ ((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-1170))))
((*1 *1 *2)
- (-12 (-4 *3 (-969)) (-4 *4 (-783)) (-4 *5 (-728)) (-14 *6 (-586 *4))
- (-5 *1 (-1174 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-877 *3 *5 *4))
- (-14 *7 (-586 (-706))) (-14 *8 (-706))))
+ (-12 (-4 *3 (-970)) (-4 *4 (-784)) (-4 *5 (-729)) (-14 *6 (-587 *4))
+ (-5 *1 (-1175 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-878 *3 *5 *4))
+ (-14 *7 (-587 (-707))) (-14 *8 (-707))))
((*1 *2 *1)
- (-12 (-4 *2 (-877 *3 *5 *4)) (-5 *1 (-1174 *3 *4 *5 *2 *6 *7 *8))
- (-4 *3 (-969)) (-4 *4 (-783)) (-4 *5 (-728)) (-14 *6 (-586 *4))
- (-14 *7 (-586 (-706))) (-14 *8 (-706))))
- ((*1 *1 *2) (-12 (-4 *1 (-1176 *2)) (-4 *2 (-969))))
- ((*1 *1 *2) (-12 (-4 *1 (-1179 *2 *3)) (-4 *2 (-783)) (-4 *3 (-969))))
+ (-12 (-4 *2 (-878 *3 *5 *4)) (-5 *1 (-1175 *3 *4 *5 *2 *6 *7 *8))
+ (-4 *3 (-970)) (-4 *4 (-784)) (-4 *5 (-729)) (-14 *6 (-587 *4))
+ (-14 *7 (-587 (-707))) (-14 *8 (-707))))
+ ((*1 *1 *2) (-12 (-4 *1 (-1177 *2)) (-4 *2 (-970))))
+ ((*1 *1 *2) (-12 (-4 *1 (-1180 *2 *3)) (-4 *2 (-784)) (-4 *3 (-970))))
((*1 *2 *1)
- (-12 (-5 *2 (-1186 *3 *4)) (-5 *1 (-1182 *3 *4)) (-4 *3 (-783))
+ (-12 (-5 *2 (-1187 *3 *4)) (-5 *1 (-1183 *3 *4)) (-4 *3 (-784))
(-4 *4 (-157))))
((*1 *2 *1)
- (-12 (-5 *2 (-1177 *3 *4)) (-5 *1 (-1182 *3 *4)) (-4 *3 (-783))
+ (-12 (-5 *2 (-1178 *3 *4)) (-5 *1 (-1183 *3 *4)) (-4 *3 (-784))
(-4 *4 (-157))))
((*1 *1 *2)
- (-12 (-5 *2 (-604 *3 *4)) (-4 *3 (-783)) (-4 *4 (-157))
- (-5 *1 (-1182 *3 *4))))
- ((*1 *1 *2) (-12 (-5 *1 (-1185 *3 *2)) (-4 *3 (-969)) (-4 *2 (-779)))))
+ (-12 (-5 *2 (-605 *3 *4)) (-4 *3 (-784)) (-4 *4 (-157))
+ (-5 *1 (-1183 *3 *4))))
+ ((*1 *1 *2) (-12 (-5 *1 (-1186 *3 *2)) (-4 *3 (-970)) (-4 *2 (-780)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-1165 *5)) (-4 *5 (-583 *4)) (-4 *4 (-513))
+ (-5 *2 (-1165 *4)) (-5 *1 (-582 *4 *5)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729))
+ (-4 *4 (-784)) (-4 *2 (-513))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729))
+ (-4 *4 (-784)) (-4 *2 (-513)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-511 *3)) (-4 *3 (-13 (-378) (-1105))) (-5 *2 (-108)))))
+(((*1 *2 *3) (-12 (-5 *3 (-872 *2)) (-5 *1 (-908 *2)) (-4 *2 (-970)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1140 *5)) (-4 *5 (-336))
- (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3)))
- (-5 *1 (-530 *5 *3)))))
-(((*1 *2 *3 *2)
- (|partial| -12 (-5 *3 (-849)) (-5 *1 (-414 *2))
- (-4 *2 (-1140 (-520)))))
- ((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-849)) (-5 *4 (-706)) (-5 *1 (-414 *2))
- (-4 *2 (-1140 (-520)))))
- ((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-849)) (-5 *4 (-586 (-706))) (-5 *1 (-414 *2))
- (-4 *2 (-1140 (-520)))))
- ((*1 *2 *3 *2 *4 *5)
- (|partial| -12 (-5 *3 (-849)) (-5 *4 (-586 (-706))) (-5 *5 (-706))
- (-5 *1 (-414 *2)) (-4 *2 (-1140 (-520)))))
- ((*1 *2 *3 *2 *4 *5 *6)
- (|partial| -12 (-5 *3 (-849)) (-5 *4 (-586 (-706))) (-5 *5 (-706))
- (-5 *6 (-108)) (-5 *1 (-414 *2)) (-4 *2 (-1140 (-520)))))
+ (-12 (-5 *4 (-1006 (-777 *3))) (-4 *3 (-13 (-1105) (-887) (-29 *5)))
+ (-4 *5 (-13 (-282) (-784) (-135) (-961 (-521)) (-583 (-521))))
+ (-5 *2
+ (-3 (|:| |f1| (-777 *3)) (|:| |f2| (-587 (-777 *3)))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-196 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1006 (-777 *3))) (-5 *5 (-1067))
+ (-4 *3 (-13 (-1105) (-887) (-29 *6)))
+ (-4 *6 (-13 (-282) (-784) (-135) (-961 (-521)) (-583 (-521))))
+ (-5 *2
+ (-3 (|:| |f1| (-777 *3)) (|:| |f2| (-587 (-777 *3)))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-196 *6 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-849)) (-5 *4 (-391 *2)) (-4 *2 (-1140 *5))
- (-5 *1 (-416 *5 *2)) (-4 *5 (-969)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-268 (-880 (-520))))
+ (-12 (-5 *3 (-381 (-881 *5))) (-5 *4 (-1006 (-777 (-290 *5))))
+ (-4 *5 (-13 (-282) (-784) (-135) (-961 (-521)) (-583 (-521))))
(-5 *2
- (-2 (|:| |varOrder| (-586 (-1083)))
- (|:| |inhom| (-3 (-586 (-1164 (-706))) "failed"))
- (|:| |hom| (-586 (-1164 (-706))))))
- (-5 *1 (-212)))))
-(((*1 *1 *1) (-4 *1 (-572)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-573 *3 *2))
- (-4 *2 (-13 (-403 *3) (-926) (-1104))))))
+ (-3 (|:| |f1| (-777 (-290 *5))) (|:| |f2| (-587 (-777 (-290 *5))))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-197 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-381 (-881 *6))) (-5 *4 (-1006 (-777 (-290 *6))))
+ (-5 *5 (-1067))
+ (-4 *6 (-13 (-282) (-784) (-135) (-961 (-521)) (-583 (-521))))
+ (-5 *2
+ (-3 (|:| |f1| (-777 (-290 *6))) (|:| |f2| (-587 (-777 (-290 *6))))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-197 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1006 (-777 (-381 (-881 *5))))) (-5 *3 (-381 (-881 *5)))
+ (-4 *5 (-13 (-282) (-784) (-135) (-961 (-521)) (-583 (-521))))
+ (-5 *2
+ (-3 (|:| |f1| (-777 (-290 *5))) (|:| |f2| (-587 (-777 (-290 *5))))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-197 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1006 (-777 (-381 (-881 *6))))) (-5 *5 (-1067))
+ (-5 *3 (-381 (-881 *6)))
+ (-4 *6 (-13 (-282) (-784) (-135) (-961 (-521)) (-583 (-521))))
+ (-5 *2
+ (-3 (|:| |f1| (-777 (-290 *6))) (|:| |f2| (-587 (-777 (-290 *6))))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-197 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1084))
+ (-4 *5 (-13 (-282) (-784) (-135) (-961 (-521)) (-583 (-521))))
+ (-5 *2 (-3 *3 (-587 *3))) (-5 *1 (-402 *5 *3))
+ (-4 *3 (-13 (-1105) (-887) (-29 *5)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-447 *3 *4 *5))
+ (-4 *3 (-37 (-381 (-521)))) (-4 *3 (-970)) (-14 *5 *3)))
+ ((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-290 (-353))) (-5 *4 (-1008 (-777 (-353))))
+ (-5 *5 (-353)) (-5 *6 (-982)) (-5 *2 (-959)) (-5 *1 (-522))))
+ ((*1 *2 *3) (-12 (-5 *3 (-705)) (-5 *2 (-959)) (-5 *1 (-522))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-290 (-353))) (-5 *4 (-1008 (-777 (-353))))
+ (-5 *5 (-353)) (-5 *2 (-959)) (-5 *1 (-522))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-290 (-353))) (-5 *4 (-1008 (-777 (-353))))
+ (-5 *5 (-353)) (-5 *2 (-959)) (-5 *1 (-522))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-290 (-353))) (-5 *4 (-1008 (-777 (-353))))
+ (-5 *2 (-959)) (-5 *1 (-522))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-290 (-353))) (-5 *4 (-587 (-1008 (-777 (-353)))))
+ (-5 *2 (-959)) (-5 *1 (-522))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-290 (-353))) (-5 *4 (-587 (-1008 (-777 (-353)))))
+ (-5 *5 (-353)) (-5 *2 (-959)) (-5 *1 (-522))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-290 (-353))) (-5 *4 (-587 (-1008 (-777 (-353)))))
+ (-5 *5 (-353)) (-5 *2 (-959)) (-5 *1 (-522))))
+ ((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-290 (-353))) (-5 *4 (-587 (-1008 (-777 (-353)))))
+ (-5 *5 (-353)) (-5 *6 (-982)) (-5 *2 (-959)) (-5 *1 (-522))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-290 (-353))) (-5 *4 (-1006 (-777 (-353))))
+ (-5 *5 (-1067)) (-5 *2 (-959)) (-5 *1 (-522))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-290 (-353))) (-5 *4 (-1006 (-777 (-353))))
+ (-5 *5 (-1084)) (-5 *2 (-959)) (-5 *1 (-522))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-337) (-135) (-961 (-521)))) (-4 *5 (-1141 *4))
+ (-5 *2 (-538 (-381 *5))) (-5 *1 (-525 *4 *5)) (-5 *3 (-381 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-381 (-881 *5))) (-5 *4 (-1084)) (-4 *5 (-135))
+ (-4 *5 (-13 (-425) (-961 (-521)) (-784) (-583 (-521))))
+ (-5 *2 (-3 (-290 *5) (-587 (-290 *5)))) (-5 *1 (-541 *5))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-677 *3 *2)) (-4 *3 (-970)) (-4 *2 (-784))
+ (-4 *3 (-37 (-381 (-521))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1084)) (-5 *1 (-881 *3)) (-4 *3 (-37 (-381 (-521))))
+ (-4 *3 (-970))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *3 (-970)) (-4 *2 (-784))
+ (-5 *1 (-1037 *3 *2 *4)) (-4 *4 (-878 *3 (-493 *2) *2))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-4 *3 (-970))
+ (-5 *1 (-1069 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-1075 *3 *4 *5))
+ (-4 *3 (-37 (-381 (-521)))) (-4 *3 (-970)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-1081 *3 *4 *5))
+ (-4 *3 (-37 (-381 (-521)))) (-4 *3 (-970)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-1082 *3 *4 *5))
+ (-4 *3 (-37 (-381 (-521)))) (-4 *3 (-970)) (-14 *5 *3)))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1084)) (-5 *1 (-1114 *3)) (-4 *3 (-37 (-381 (-521))))
+ (-4 *3 (-970))))
+ ((*1 *1 *1 *2)
+ (-3703
+ (-12 (-5 *2 (-1084)) (-4 *1 (-1125 *3)) (-4 *3 (-970))
+ (-12 (-4 *3 (-29 (-521))) (-4 *3 (-887)) (-4 *3 (-1105))
+ (-4 *3 (-37 (-381 (-521))))))
+ (-12 (-5 *2 (-1084)) (-4 *1 (-1125 *3)) (-4 *3 (-970))
+ (-12 (|has| *3 (-15 -4084 ((-587 *2) *3)))
+ (|has| *3 (-15 -2184 (*3 *3 *2))) (-4 *3 (-37 (-381 (-521))))))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1125 *2)) (-4 *2 (-970)) (-4 *2 (-37 (-381 (-521))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-1129 *3 *4 *5))
+ (-4 *3 (-37 (-381 (-521)))) (-4 *3 (-970)) (-14 *5 *3)))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1141 *2)) (-4 *2 (-970)) (-4 *2 (-37 (-381 (-521))))))
+ ((*1 *1 *1 *2)
+ (-3703
+ (-12 (-5 *2 (-1084)) (-4 *1 (-1146 *3)) (-4 *3 (-970))
+ (-12 (-4 *3 (-29 (-521))) (-4 *3 (-887)) (-4 *3 (-1105))
+ (-4 *3 (-37 (-381 (-521))))))
+ (-12 (-5 *2 (-1084)) (-4 *1 (-1146 *3)) (-4 *3 (-970))
+ (-12 (|has| *3 (-15 -4084 ((-587 *2) *3)))
+ (|has| *3 (-15 -2184 (*3 *3 *2))) (-4 *3 (-37 (-381 (-521))))))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1146 *2)) (-4 *2 (-970)) (-4 *2 (-37 (-381 (-521))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-1150 *3 *4 *5))
+ (-4 *3 (-37 (-381 (-521)))) (-4 *3 (-970)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-3703
+ (-12 (-5 *2 (-1084)) (-4 *1 (-1156 *3)) (-4 *3 (-970))
+ (-12 (-4 *3 (-29 (-521))) (-4 *3 (-887)) (-4 *3 (-1105))
+ (-4 *3 (-37 (-381 (-521))))))
+ (-12 (-5 *2 (-1084)) (-4 *1 (-1156 *3)) (-4 *3 (-970))
+ (-12 (|has| *3 (-15 -4084 ((-587 *2) *3)))
+ (|has| *3 (-15 -2184 (*3 *3 *2))) (-4 *3 (-37 (-381 (-521))))))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1156 *2)) (-4 *2 (-970)) (-4 *2 (-37 (-381 (-521))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-1157 *3 *4 *5))
+ (-4 *3 (-37 (-381 (-521)))) (-4 *3 (-970)) (-14 *5 *3))))
(((*1 *2 *3)
- (-12 (-4 *4 (-969)) (-4 *3 (-1140 *4)) (-4 *2 (-1155 *4))
- (-5 *1 (-1158 *4 *3 *5 *2)) (-4 *5 (-596 *3)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-1083))
- (-4 *4 (-13 (-281) (-783) (-135) (-960 (-520)) (-582 (-520))))
- (-5 *1 (-566 *4 *2)) (-4 *2 (-13 (-1104) (-886) (-29 *4))))))
-(((*1 *1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-791)))))
-(((*1 *2 *2) (-12 (-5 *1 (-538 *2)) (-4 *2 (-505)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-520)) (-4 *6 (-728)) (-4 *7 (-783)) (-4 *8 (-281))
- (-4 *9 (-877 *8 *6 *7))
- (-5 *2 (-2 (|:| -3075 (-1079 *9)) (|:| |polval| (-1079 *8))))
- (-5 *1 (-678 *6 *7 *8 *9)) (-5 *3 (-1079 *9)) (-5 *4 (-1079 *8)))))
+ (-12 (-5 *3 (-1080 (-521))) (-5 *2 (-521)) (-5 *1 (-871)))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-5 *2 (-707)) (-4 *1 (-1141 *3)) (-4 *3 (-970)))))
(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1079 *3)) (-4 *3 (-322)) (-5 *1 (-330 *3)))))
+ (-12 (-5 *2 (-587 (-453 *3 *4))) (-14 *3 (-587 (-1084)))
+ (-4 *4 (-425)) (-5 *1 (-575 *3 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-108)) (-4 *5 (-322))
+ (-12 (-4 *5 (-1013)) (-4 *3 (-829 *5)) (-5 *2 (-1165 *3))
+ (-5 *1 (-629 *5 *3 *6 *4)) (-4 *6 (-347 *3))
+ (-4 *4 (-13 (-347 *5) (-10 -7 (-6 -4233)))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-108))
+ (-4 *6 (-13 (-425) (-784) (-961 (-521)) (-583 (-521))))
+ (-4 *3 (-13 (-27) (-1105) (-404 *6) (-10 -8 (-15 -2189 ($ *7)))))
+ (-4 *7 (-782))
+ (-4 *8
+ (-13 (-1143 *3 *7) (-337) (-1105)
+ (-10 -8 (-15 -2156 ($ $)) (-15 -2184 ($ $)))))
(-5 *2
- (-2 (|:| |cont| *5)
- (|:| -3493 (-586 (-2 (|:| |irr| *3) (|:| -2421 (-520)))))))
- (-5 *1 (-193 *5 *3)) (-4 *3 (-1140 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-512) (-135))) (-5 *1 (-497 *3 *2))
- (-4 *2 (-1155 *3))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-336) (-341) (-561 (-520)))) (-4 *4 (-1140 *3))
- (-4 *5 (-660 *3 *4)) (-5 *1 (-501 *3 *4 *5 *2)) (-4 *2 (-1155 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-336) (-341) (-561 (-520)))) (-5 *1 (-502 *3 *2))
- (-4 *2 (-1155 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-13 (-512) (-135)))
- (-5 *1 (-1060 *3)))))
+ (-3 (|:| |%series| *8)
+ (|:| |%problem| (-2 (|:| |func| (-1067)) (|:| |prob| (-1067))))))
+ (-5 *1 (-396 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1067)) (-4 *9 (-909 *8))
+ (-14 *10 (-1084)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-337)) (-5 *2 (-587 *3)) (-5 *1 (-874 *4 *3))
+ (-4 *3 (-1141 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-336) (-10 -8 (-15 ** ($ $ (-380 (-520)))))))
- (-5 *2 (-586 *4)) (-5 *1 (-1038 *3 *4)) (-4 *3 (-1140 *4))))
+ (-12 (-4 *4 (-13 (-337) (-10 -8 (-15 ** ($ $ (-381 (-521)))))))
+ (-5 *2 (-587 *4)) (-5 *1 (-1039 *3 *4)) (-4 *3 (-1141 *4))))
((*1 *2 *3 *3)
- (-12 (-4 *3 (-13 (-336) (-10 -8 (-15 ** ($ $ (-380 (-520)))))))
- (-5 *2 (-586 *3)) (-5 *1 (-1038 *4 *3)) (-4 *4 (-1140 *3)))))
+ (-12 (-4 *3 (-13 (-337) (-10 -8 (-15 ** ($ $ (-381 (-521)))))))
+ (-5 *2 (-587 *3)) (-5 *1 (-1039 *4 *3)) (-4 *4 (-1141 *3)))))
+(((*1 *2 *2) (-12 (-5 *1 (-889 *2)) (-4 *2 (-506)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-587 *2)) (-4 *2 (-878 *4 *5 *6)) (-4 *4 (-337))
+ (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784))
+ (-5 *1 (-423 *4 *5 *6 *2))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-94 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-337))
+ (-5 *2
+ (-2 (|:| R (-627 *6)) (|:| A (-627 *6)) (|:| |Ainv| (-627 *6))))
+ (-5 *1 (-904 *6)) (-5 *3 (-627 *6)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-1066))) (-5 *2 (-108)) (-5 *1 (-1088))))
+ (-12 (-5 *3 (|[\|\|]| (-1067))) (-5 *2 (-108)) (-5 *1 (-1089))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-1083))) (-5 *2 (-108)) (-5 *1 (-1088))))
+ (-12 (-5 *3 (|[\|\|]| (-1084))) (-5 *2 (-108)) (-5 *1 (-1089))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-201))) (-5 *2 (-108)) (-5 *1 (-1088))))
+ (-12 (-5 *3 (|[\|\|]| (-202))) (-5 *2 (-108)) (-5 *1 (-1089))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-520))) (-5 *2 (-108)) (-5 *1 (-1088)))))
-(((*1 *2 *2) (-12 (-5 *2 (-849)) (|has| *1 (-6 -4220)) (-4 *1 (-377))))
- ((*1 *2) (-12 (-4 *1 (-377)) (-5 *2 (-849))))
- ((*1 *2 *2) (-12 (-5 *2 (-849)) (-5 *1 (-635))))
- ((*1 *2) (-12 (-5 *2 (-849)) (-5 *1 (-635)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-510 *3)) (-4 *3 (-13 (-377) (-1104))) (-5 *2 (-108)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-352)) (-5 *1 (-92))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-352)) (-5 *1 (-92)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-717 *2)) (-4 *2 (-512)) (-4 *2 (-969))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-512)) (-5 *1 (-895 *3 *2)) (-4 *2 (-1140 *3))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-983 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-728))
- (-4 *4 (-783)) (-4 *2 (-512))))
- ((*1 *2 *3 *3 *1)
- (-12 (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783))
- (-4 *3 (-983 *4 *5 *6))
- (-5 *2 (-586 (-2 (|:| |val| *3) (|:| -1883 *1))))
- (-4 *1 (-988 *4 *5 *6 *3)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-820 *4)) (-4 *4 (-1012)) (-5 *1 (-817 *4 *3))
- (-4 *3 (-1012)))))
-(((*1 *1 *2) (-12 (-5 *1 (-949 *2)) (-4 *2 (-1118)))))
+ (-12 (-5 *3 (|[\|\|]| (-521))) (-5 *2 (-108)) (-5 *1 (-1089)))))
+(((*1 *2 *2) (-12 (-5 *2 (-850)) (|has| *1 (-6 -4224)) (-4 *1 (-378))))
+ ((*1 *2) (-12 (-4 *1 (-378)) (-5 *2 (-850))))
+ ((*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-636))))
+ ((*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-636)))))
+(((*1 *1)
+ (|partial| -12 (-4 *1 (-341 *2)) (-4 *2 (-513)) (-4 *2 (-157)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1067)) (-4 *4 (-13 (-282) (-135)))
+ (-4 *5 (-13 (-784) (-562 (-1084)))) (-4 *6 (-729))
+ (-5 *2
+ (-587
+ (-2 (|:| |eqzro| (-587 *7)) (|:| |neqzro| (-587 *7))
+ (|:| |wcond| (-587 (-881 *4)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1165 (-381 (-881 *4))))
+ (|:| -2470 (-587 (-1165 (-381 (-881 *4))))))))))
+ (-5 *1 (-853 *4 *5 *6 *7)) (-4 *7 (-878 *4 *6 *5)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |cd| (-1066)) (|:| -2883 (-1066))))
- (-5 *1 (-758)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1064 (-586 (-520)))) (-5 *1 (-811)) (-5 *3 (-520))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1064 (-586 (-520)))) (-5 *1 (-811)) (-5 *3 (-520))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-1064 (-586 (-520)))) (-5 *1 (-811)) (-5 *3 (-520)))))
-(((*1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-439))))
- ((*1 *2 *2) (-12 (-5 *2 (-520)) (-5 *1 (-439))))
- ((*1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-855)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-586 *6)) (-4 *6 (-983 *3 *4 *5)) (-4 *3 (-424))
- (-4 *3 (-512)) (-4 *4 (-728)) (-4 *5 (-783))
- (-5 *1 (-902 *3 *4 *5 *6)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-908 *2)) (-4 *2 (-1104)))))
-(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-300 *3)) (-4 *3 (-1118))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-108)) (-5 *1 (-483 *3 *4)) (-4 *3 (-1118))
- (-14 *4 (-520)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-512)) (-4 *5 (-728)) (-4 *6 (-783))
- (-4 *7 (-983 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-586 *7)) (|:| |badPols| (-586 *7))))
- (-5 *1 (-902 *4 *5 *6 *7)) (-5 *3 (-586 *7)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-758)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-1 (-201) (-201) (-201)))
- (-5 *4 (-3 (-1 (-201) (-201) (-201) (-201)) "undefined"))
- (-5 *5 (-1007 (-201))) (-5 *6 (-586 (-238))) (-5 *2 (-1043 (-201)))
- (-5 *1 (-633)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-983 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-728))
- (-4 *4 (-783)) (-4 *2 (-424)))))
+ (-12 (-5 *2 (-2 (|:| |preimage| (-587 *3)) (|:| |image| (-587 *3))))
+ (-5 *1 (-834 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-625 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-347 *3))
+ (-4 *5 (-347 *3)) (-5 *2 (-108))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-973 *3 *4 *5 *6 *7)) (-4 *5 (-970))
+ (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-108)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1164 (-586 (-2 (|:| -3429 *4) (|:| -2716 (-1030))))))
- (-4 *4 (-322)) (-5 *2 (-706)) (-5 *1 (-319 *4))))
- ((*1 *2)
- (-12 (-5 *2 (-706)) (-5 *1 (-324 *3 *4)) (-14 *3 (-849))
- (-14 *4 (-849))))
- ((*1 *2)
- (-12 (-5 *2 (-706)) (-5 *1 (-325 *3 *4)) (-4 *3 (-322))
- (-14 *4
- (-3 (-1079 *3)
- (-1164 (-586 (-2 (|:| -3429 *3) (|:| -2716 (-1030)))))))))
+ (-12 (-5 *3 (-1165 *1)) (-4 *1 (-341 *4)) (-4 *4 (-157))
+ (-5 *2 (-627 *4))))
((*1 *2)
- (-12 (-5 *2 (-706)) (-5 *1 (-326 *3 *4)) (-4 *3 (-322))
- (-14 *4 (-849)))))
+ (-12 (-4 *4 (-157)) (-5 *2 (-627 *4)) (-5 *1 (-390 *3 *4))
+ (-4 *3 (-391 *4))))
+ ((*1 *2) (-12 (-4 *1 (-391 *3)) (-4 *3 (-157)) (-5 *2 (-627 *3)))))
+(((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1084)))))
+(((*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1119)))))
(((*1 *2 *3)
+ (-12 (-5 *2 (-392 (-1080 *1))) (-5 *1 (-290 *4)) (-5 *3 (-1080 *1))
+ (-4 *4 (-425)) (-4 *4 (-513)) (-4 *4 (-784))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-838)) (-5 *2 (-392 (-1080 *1))) (-5 *3 (-1080 *1)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1080 *7))
+ (-4 *5 (-970)) (-4 *7 (-970)) (-4 *2 (-1141 *5))
+ (-5 *1 (-470 *5 *2 *6 *7)) (-4 *6 (-1141 *2)))))
+(((*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-784)) (-5 *1 (-117 *3)))))
+(((*1 *1 *2)
(-12
- (-5 *3
- (-586
- (-2 (|:| -3160 (-706))
- (|:| |eqns|
- (-586
- (-2 (|:| |det| *7) (|:| |rows| (-586 (-520)))
- (|:| |cols| (-586 (-520))))))
- (|:| |fgb| (-586 *7)))))
- (-4 *7 (-877 *4 *6 *5)) (-4 *4 (-13 (-281) (-135)))
- (-4 *5 (-13 (-783) (-561 (-1083)))) (-4 *6 (-728)) (-5 *2 (-706))
- (-5 *1 (-852 *4 *5 *6 *7)))))
+ (-5 *2
+ (-587
+ (-2
+ (|:| -2529
+ (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202)))
+ (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202))
+ (|:| |relerr| (-202))))
+ (|:| -3045
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1065 (-202)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -2442
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite|
+ "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated"))))))))
+ (-5 *1 (-516)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1015 (-1015 *3))) (-5 *1 (-833 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-518)))))
+(((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-1067)) (-5 *4 (-154 (-202))) (-5 *5 (-521))
+ (-5 *2 (-959)) (-5 *1 (-695)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-587 (-453 *5 *6))) (-5 *4 (-794 *5))
+ (-14 *5 (-587 (-1084))) (-5 *2 (-453 *5 *6)) (-5 *1 (-575 *5 *6))
+ (-4 *6 (-425))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-587 (-453 *5 *6))) (-5 *4 (-794 *5))
+ (-14 *5 (-587 (-1084))) (-5 *2 (-453 *5 *6)) (-5 *1 (-575 *5 *6))
+ (-4 *6 (-425)))))
+(((*1 *1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-521)) (-4 *1 (-625 *3 *4 *5)) (-4 *3 (-970))
+ (-4 *4 (-347 *3)) (-4 *5 (-347 *3)))))
(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-706)) (-4 *1 (-207 *4))
- (-4 *4 (-969))))
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-707)) (-4 *1 (-208 *4))
+ (-4 *4 (-970))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-207 *3)) (-4 *3 (-969))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-209)) (-5 *2 (-706))))
- ((*1 *1 *1) (-4 *1 (-209)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-706)) (-4 *1 (-241 *3)) (-4 *3 (-783))))
- ((*1 *1 *1) (-12 (-4 *1 (-241 *2)) (-4 *2 (-783))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-208 *3)) (-4 *3 (-970))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-210)) (-5 *2 (-707))))
+ ((*1 *1 *1) (-4 *1 (-210)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-4 *1 (-242 *3)) (-4 *3 (-784))))
+ ((*1 *1 *1) (-12 (-4 *1 (-242 *2)) (-4 *2 (-784))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-315 *3 *4 *5)) (-4 *3 (-1122))
- (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-380 *4)))))
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123))
+ (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4)))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-706)) (-4 *3 (-13 (-336) (-135))) (-5 *1 (-372 *3 *4))
- (-4 *4 (-1140 *3))))
+ (-12 (-5 *2 (-707)) (-4 *3 (-13 (-337) (-135))) (-5 *1 (-373 *3 *4))
+ (-4 *4 (-1141 *3))))
((*1 *1 *1)
- (-12 (-4 *2 (-13 (-336) (-135))) (-5 *1 (-372 *2 *3))
- (-4 *3 (-1140 *2))))
+ (-12 (-4 *2 (-13 (-337) (-135))) (-5 *1 (-373 *2 *3))
+ (-4 *3 (-1141 *2))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1160 *4)) (-14 *4 (-1083)) (-5 *1 (-446 *3 *4 *5))
- (-4 *3 (-969)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-447 *3 *4 *5))
+ (-4 *3 (-970)) (-14 *5 *3)))
((*1 *2 *1 *3)
- (-12 (-4 *2 (-336)) (-4 *2 (-828 *3)) (-5 *1 (-537 *2))
- (-5 *3 (-1083))))
+ (-12 (-4 *2 (-337)) (-4 *2 (-829 *3)) (-5 *1 (-538 *2))
+ (-5 *3 (-1084))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-537 *2)) (-4 *2 (-336))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-706)) (-5 *1 (-791))))
+ (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-538 *2)) (-4 *2 (-337))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-792))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-586 *4)) (-5 *3 (-586 (-706))) (-4 *1 (-828 *4))
- (-4 *4 (-1012))))
+ (-12 (-5 *2 (-587 *4)) (-5 *3 (-587 (-707))) (-4 *1 (-829 *4))
+ (-4 *4 (-1013))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-706)) (-4 *1 (-828 *2)) (-4 *2 (-1012))))
+ (-12 (-5 *3 (-707)) (-4 *1 (-829 *2)) (-4 *2 (-1013))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-586 *3)) (-4 *1 (-828 *3)) (-4 *3 (-1012))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-828 *2)) (-4 *2 (-1012))))
+ (-12 (-5 *2 (-587 *3)) (-4 *1 (-829 *3)) (-4 *3 (-1013))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1013))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1160 *4)) (-14 *4 (-1083)) (-5 *1 (-1074 *3 *4 *5))
- (-4 *3 (-969)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-1075 *3 *4 *5))
+ (-4 *3 (-970)) (-14 *5 *3)))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1160 *4)) (-14 *4 (-1083)) (-5 *1 (-1080 *3 *4 *5))
- (-4 *3 (-969)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-1081 *3 *4 *5))
+ (-4 *3 (-970)) (-14 *5 *3)))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1160 *4)) (-14 *4 (-1083)) (-5 *1 (-1081 *3 *4 *5))
- (-4 *3 (-969)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-1082 *3 *4 *5))
+ (-4 *3 (-970)) (-14 *5 *3)))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1160 *4)) (-14 *4 (-1083)) (-5 *1 (-1128 *3 *4 *5))
- (-4 *3 (-969)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-1129 *3 *4 *5))
+ (-4 *3 (-970)) (-14 *5 *3)))
((*1 *1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1140 *3)) (-4 *3 (-969))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1141 *3)) (-4 *3 (-970))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1160 *4)) (-14 *4 (-1083)) (-5 *1 (-1149 *3 *4 *5))
- (-4 *3 (-969)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-1150 *3 *4 *5))
+ (-4 *3 (-970)) (-14 *5 *3)))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1160 *4)) (-14 *4 (-1083)) (-5 *1 (-1156 *3 *4 *5))
- (-4 *3 (-969)) (-14 *5 *3))))
-(((*1 *2 *2) (-12 (-5 *2 (-520)) (-5 *1 (-517))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1079 (-380 (-520)))) (-5 *1 (-870)) (-5 *3 (-520)))))
+ (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-1157 *3 *4 *5))
+ (-4 *3 (-970)) (-14 *5 *3))))
(((*1 *2 *3)
- (-12 (-5 *3 (-586 (-520))) (-5 *2 (-832 (-520))) (-5 *1 (-845))))
- ((*1 *2) (-12 (-5 *2 (-832 (-520))) (-5 *1 (-845)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-820 *3)) (-4 *3 (-1012)))))
-(((*1 *2 *1) (-12 (-5 *2 (-586 (-586 (-871 (-201))))) (-5 *1 (-440)))))
+ (|partial| -12 (-5 *3 (-881 *4)) (-4 *4 (-970)) (-4 *4 (-562 *2))
+ (-5 *2 (-353)) (-5 *1 (-721 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-881 *5)) (-5 *4 (-850)) (-4 *5 (-970))
+ (-4 *5 (-562 *2)) (-5 *2 (-353)) (-5 *1 (-721 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-381 (-881 *4))) (-4 *4 (-513))
+ (-4 *4 (-562 *2)) (-5 *2 (-353)) (-5 *1 (-721 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-381 (-881 *5))) (-5 *4 (-850)) (-4 *5 (-513))
+ (-4 *5 (-562 *2)) (-5 *2 (-353)) (-5 *1 (-721 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-290 *4)) (-4 *4 (-513)) (-4 *4 (-784))
+ (-4 *4 (-562 *2)) (-5 *2 (-353)) (-5 *1 (-721 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-290 *5)) (-5 *4 (-850)) (-4 *5 (-513))
+ (-4 *5 (-784)) (-4 *5 (-562 *2)) (-5 *2 (-353))
+ (-5 *1 (-721 *5)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1113 *4 *5 *3 *6)) (-4 *4 (-513)) (-4 *5 (-729))
+ (-4 *3 (-784)) (-4 *6 (-984 *4 *5 *3)) (-5 *2 (-108))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1182 *3)) (-4 *3 (-337)) (-5 *2 (-108)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1079 *1)) (-5 *4 (-1083)) (-4 *1 (-27))
- (-5 *2 (-586 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-1079 *1)) (-4 *1 (-27)) (-5 *2 (-586 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-880 *1)) (-4 *1 (-27)) (-5 *2 (-586 *1))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1083)) (-4 *4 (-13 (-783) (-512))) (-5 *2 (-586 *1))
- (-4 *1 (-29 *4))))
+ (-12 (-5 *4 (-587 (-587 *8))) (-5 *3 (-587 *8))
+ (-4 *8 (-878 *5 *7 *6)) (-4 *5 (-13 (-282) (-135)))
+ (-4 *6 (-13 (-784) (-562 (-1084)))) (-4 *7 (-729)) (-5 *2 (-108))
+ (-5 *1 (-853 *5 *6 *7 *8)))))
+(((*1 *1 *1 *1) (-5 *1 (-792))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-850)) (-5 *2 (-1080 *4)) (-5 *1 (-331 *4))
+ (-4 *4 (-323)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-337)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *2 (-587 *6))
+ (-5 *1 (-473 *3 *4 *5 *6)) (-4 *6 (-878 *3 *4 *5))))
((*1 *2 *1)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *2 (-586 *1)) (-4 *1 (-29 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-758)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-336)) (-4 *7 (-1140 *5)) (-4 *4 (-660 *5 *7))
- (-5 *2 (-2 (|:| -3927 (-626 *6)) (|:| |vec| (-1164 *5))))
- (-5 *1 (-747 *5 *6 *7 *4 *3)) (-4 *6 (-596 *5)) (-4 *3 (-596 *4)))))
+ (-12 (-5 *2 (-587 (-834 *3))) (-5 *1 (-833 *3)) (-4 *3 (-1013)))))
+(((*1 *1) (-5 *1 (-129))))
+(((*1 *1 *1 *1) (-5 *1 (-792))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-424))) (-5 *1 (-1110 *3 *2))
- (-4 *2 (-13 (-403 *3) (-1104))))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-132)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-520)) (-4 *1 (-55 *4 *3 *5)) (-4 *4 (-1118))
- (-4 *3 (-346 *4)) (-4 *5 (-346 *4)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-586 *3)) (-4 *3 (-1118)) (-5 *1 (-1164 *3)))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-586 *10)) (-5 *5 (-108)) (-4 *10 (-988 *6 *7 *8 *9))
- (-4 *6 (-424)) (-4 *7 (-728)) (-4 *8 (-783)) (-4 *9 (-983 *6 *7 *8))
- (-5 *2
- (-586
- (-2 (|:| -3190 (-586 *9)) (|:| -1883 *10) (|:| |ineq| (-586 *9)))))
- (-5 *1 (-913 *6 *7 *8 *9 *10)) (-5 *3 (-586 *9))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-586 *10)) (-5 *5 (-108)) (-4 *10 (-988 *6 *7 *8 *9))
- (-4 *6 (-424)) (-4 *7 (-728)) (-4 *8 (-783)) (-4 *9 (-983 *6 *7 *8))
- (-5 *2
- (-586
- (-2 (|:| -3190 (-586 *9)) (|:| -1883 *10) (|:| |ineq| (-586 *9)))))
- (-5 *1 (-1019 *6 *7 *8 *9 *10)) (-5 *3 (-586 *9)))))
+ (-12 (-4 *3 (-513)) (-5 *1 (-40 *3 *2))
+ (-4 *2
+ (-13 (-337) (-277)
+ (-10 -8 (-15 -2801 ((-1036 *3 (-560 $)) $))
+ (-15 -2812 ((-1036 *3 (-560 $)) $))
+ (-15 -2189 ($ (-1036 *3 (-560 $)))))))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-513)) (-5 *1 (-40 *3 *2))
+ (-4 *2
+ (-13 (-337) (-277)
+ (-10 -8 (-15 -2801 ((-1036 *3 (-560 $)) $))
+ (-15 -2812 ((-1036 *3 (-560 $)) $))
+ (-15 -2189 ($ (-1036 *3 (-560 $)))))))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-587 *2))
+ (-4 *2
+ (-13 (-337) (-277)
+ (-10 -8 (-15 -2801 ((-1036 *4 (-560 $)) $))
+ (-15 -2812 ((-1036 *4 (-560 $)) $))
+ (-15 -2189 ($ (-1036 *4 (-560 $)))))))
+ (-4 *4 (-513)) (-5 *1 (-40 *4 *2))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-587 (-560 *2)))
+ (-4 *2
+ (-13 (-337) (-277)
+ (-10 -8 (-15 -2801 ((-1036 *4 (-560 $)) $))
+ (-15 -2812 ((-1036 *4 (-560 $)) $))
+ (-15 -2189 ($ (-1036 *4 (-560 $)))))))
+ (-4 *4 (-513)) (-5 *1 (-40 *4 *2)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-512)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2413 *4)))
- (-5 *1 (-895 *4 *3)) (-4 *3 (-1140 *4)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-285)) (-5 *1 (-765)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-512)) (-4 *3 (-157)) (-4 *4 (-346 *3))
- (-4 *5 (-346 *3)) (-5 *1 (-625 *3 *4 *5 *2))
- (-4 *2 (-624 *3 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-849))
- (-5 *2
- (-3 (-1079 *4)
- (-1164 (-586 (-2 (|:| -3429 *4) (|:| -2716 (-1030)))))))
- (-5 *1 (-319 *4)) (-4 *4 (-322)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1088)))))
+ (-12 (-5 *3 (-587 *7)) (-4 *7 (-984 *4 *5 *6)) (-4 *4 (-425))
+ (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-108))
+ (-5 *1 (-914 *4 *5 *6 *7 *8)) (-4 *8 (-989 *4 *5 *6 *7))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-984 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-729))
+ (-4 *5 (-784)) (-5 *2 (-108))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-587 *7)) (-4 *7 (-984 *4 *5 *6)) (-4 *4 (-425))
+ (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-108))
+ (-5 *1 (-1020 *4 *5 *6 *7 *8)) (-4 *8 (-989 *4 *5 *6 *7))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1113 *3 *4 *5 *6)) (-4 *3 (-513)) (-4 *4 (-729))
+ (-4 *5 (-784)) (-4 *6 (-984 *3 *4 *5)) (-5 *2 (-108)))))
(((*1 *1 *2)
- (-12
- (-5 *2
- (-2 (|:| |mval| (-626 *3)) (|:| |invmval| (-626 *3))
- (|:| |genIdeal| (-472 *3 *4 *5 *6))))
- (-4 *3 (-336)) (-4 *4 (-728)) (-4 *5 (-783))
- (-5 *1 (-472 *3 *4 *5 *6)) (-4 *6 (-877 *3 *4 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-352)) (-5 *2 (-201)) (-5 *1 (-1167))))
- ((*1 *2) (-12 (-5 *2 (-201)) (-5 *1 (-1167)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-512)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2413 *4)))
- (-5 *1 (-895 *4 *3)) (-4 *3 (-1140 *4)))))
-(((*1 *2)
- (-12 (-4 *3 (-424)) (-4 *4 (-728)) (-4 *5 (-783))
- (-4 *6 (-983 *3 *4 *5)) (-5 *2 (-1169))
- (-5 *1 (-989 *3 *4 *5 *6 *7)) (-4 *7 (-988 *3 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *3 (-424)) (-4 *4 (-728)) (-4 *5 (-783))
- (-4 *6 (-983 *3 *4 *5)) (-5 *2 (-1169))
- (-5 *1 (-1020 *3 *4 *5 *6 *7)) (-4 *7 (-988 *3 *4 *5 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-201)) (-5 *4 (-520)) (-5 *2 (-958)) (-5 *1 (-694)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1140 *6))
- (-4 *6 (-13 (-27) (-403 *5)))
- (-4 *5 (-13 (-783) (-512) (-960 (-520)))) (-4 *8 (-1140 (-380 *7)))
- (-5 *2 (-537 *3)) (-5 *1 (-508 *5 *6 *7 *8 *3))
- (-4 *3 (-315 *6 *7 *8)))))
+ (-12 (-5 *2 (-587 *3)) (-4 *3 (-1119)) (-5 *1 (-1165 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013))
+ (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-108)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1167)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1084)) (-5 *1 (-982)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-707)) (-4 *1 (-1141 *4)) (-4 *4 (-970))
+ (-5 *2 (-1165 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-627 (-290 (-521)))) (-5 *1 (-955)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-707)) (-5 *2 (-108))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-108)) (-5 *1 (-1120 *3)) (-4 *3 (-784))
+ (-4 *3 (-1013)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784))
+ (-4 *3 (-984 *5 *6 *7))
+ (-5 *2 (-587 (-2 (|:| |val| *3) (|:| -1884 *4))))
+ (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-590 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23))
+ (-14 *4 *3))))
(((*1 *2 *3)
- (-12
+ (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1141 (-521)))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1141 (-521))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1165 *5)) (-4 *5 (-583 *4)) (-4 *4 (-513))
+ (-5 *2 (-108)) (-5 *1 (-582 *4 *5)))))
+(((*1 *2 *3 *4 *4 *2 *2 *2)
+ (-12 (-5 *2 (-521))
(-5 *3
- (-2 (|:| |xinit| (-201)) (|:| |xend| (-201))
- (|:| |fn| (-1164 (-289 (-201)))) (|:| |yinit| (-586 (-201)))
- (|:| |intvals| (-586 (-201))) (|:| |g| (-289 (-201)))
- (|:| |abserr| (-201)) (|:| |relerr| (-201))))
- (-5 *2
- (-2 (|:| |stiffnessFactor| (-352)) (|:| |stabilityFactor| (-352))))
- (-5 *1 (-183)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-901 *4 *5 *6 *3)) (-4 *4 (-969)) (-4 *5 (-728))
- (-4 *6 (-783)) (-4 *3 (-983 *4 *5 *6)) (-4 *4 (-512))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-424) (-135))) (-5 *2 (-391 *3))
- (-5 *1 (-95 *4 *3)) (-4 *3 (-1140 *4))))
+ (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-707)) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (-4 *6 (-729)) (-4 *4 (-878 *5 *6 *7)) (-4 *5 (-425)) (-4 *7 (-784))
+ (-5 *1 (-422 *5 *6 *7 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-792)))))
+(((*1 *2)
+ (-12 (-4 *3 (-970)) (-5 *2 (-886 (-649 *3 *4))) (-5 *1 (-649 *3 *4))
+ (-4 *4 (-1141 *3)))))
+(((*1 *2 *3 *4 *4 *5 *6)
+ (-12 (-5 *3 (-587 (-587 (-872 (-202))))) (-5 *4 (-803))
+ (-5 *5 (-850)) (-5 *6 (-587 (-239))) (-5 *2 (-1166))
+ (-5 *1 (-1169))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-586 *3)) (-4 *3 (-1140 *5)) (-4 *5 (-13 (-424) (-135)))
- (-5 *2 (-391 *3)) (-5 *1 (-95 *5 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783))
- (-4 *7 (-983 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-913 *4 *5 *6 *7 *3))
- (-4 *3 (-988 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783))
- (-4 *7 (-983 *4 *5 *6)) (-5 *2 (-108))
- (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-988 *4 *5 *6 *7)))))
-(((*1 *2 *2) (-12 (-5 *1 (-888 *2)) (-4 *2 (-505)))))
-(((*1 *2) (-12 (-5 *2 (-802)) (-5 *1 (-1167))))
- ((*1 *2 *2) (-12 (-5 *2 (-802)) (-5 *1 (-1167)))))
-(((*1 *2 *3) (-12 (-5 *3 (-201)) (-5 *2 (-1066)) (-5 *1 (-170))))
- ((*1 *2 *3) (-12 (-5 *3 (-201)) (-5 *2 (-1066)) (-5 *1 (-274))))
- ((*1 *2 *3) (-12 (-5 *3 (-201)) (-5 *2 (-1066)) (-5 *1 (-279)))))
+ (-12 (-5 *3 (-587 (-587 (-872 (-202))))) (-5 *4 (-587 (-239)))
+ (-5 *2 (-1166)) (-5 *1 (-1169)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-1164 *1)) (-4 *1 (-315 *3 *4 *5)) (-4 *3 (-1122))
- (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-380 *4))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-424))) (-5 *1 (-1110 *3 *2))
- (-4 *2 (-13 (-403 *3) (-1104))))))
+ (-12 (-4 *3 (-13 (-337) (-782))) (-5 *1 (-164 *3 *2))
+ (-4 *2 (-1141 (-154 *3))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-380 *5)) (-4 *5 (-1140 *4)) (-4 *4 (-512))
- (-4 *4 (-969)) (-4 *2 (-1155 *4)) (-5 *1 (-1158 *4 *5 *6 *2))
- (-4 *6 (-596 *5)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-626 *5)) (-4 *5 (-969)) (-5 *1 (-973 *3 *4 *5))
- (-14 *3 (-706)) (-14 *4 (-706)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-520)) (-4 *1 (-55 *4 *2 *5)) (-4 *4 (-1118))
- (-4 *5 (-346 *4)) (-4 *2 (-346 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-520)) (-4 *1 (-972 *4 *5 *6 *2 *7)) (-4 *6 (-969))
- (-4 *7 (-214 *4 *6)) (-4 *2 (-214 *5 *6)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-545 *2)) (-4 *2 (-37 (-380 (-520)))) (-4 *2 (-969)))))
+ (-12 (-5 *3 (-1015 *4)) (-4 *4 (-1013)) (-5 *2 (-1 *4))
+ (-5 *1 (-942 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-353))) (-5 *1 (-963)) (-5 *3 (-353))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1008 (-521))) (-5 *2 (-1 (-521))) (-5 *1 (-968)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1083)) (-5 *4 (-880 (-520))) (-5 *2 (-303))
- (-5 *1 (-305)))))
-(((*1 *2 *2) (-12 (-5 *2 (-201)) (-5 *1 (-232)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-158 *3)) (-4 *3 (-281))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-520)) (-4 *1 (-613 *3)) (-4 *3 (-1118))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-706)) (-4 *1 (-676 *3 *4)) (-4 *3 (-969))
- (-4 *4 (-783))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-797 *3)) (-5 *2 (-520))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-586 *3)) (-4 *1 (-905 *3)) (-4 *3 (-969))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-586 *1)) (-5 *3 (-586 *7)) (-4 *1 (-988 *4 *5 *6 *7))
- (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783))
- (-4 *7 (-983 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-586 *7)) (-4 *7 (-983 *4 *5 *6)) (-4 *4 (-424))
- (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-586 *1))
- (-4 *1 (-988 *4 *5 *6 *7))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-586 *1)) (-4 *1 (-988 *4 *5 *6 *3)) (-4 *4 (-424))
- (-4 *5 (-728)) (-4 *6 (-783)) (-4 *3 (-983 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783))
- (-4 *3 (-983 *4 *5 *6)) (-5 *2 (-586 *1))
- (-4 *1 (-988 *4 *5 *6 *3))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1112 *3 *4 *5 *2)) (-4 *3 (-512)) (-4 *4 (-728))
- (-4 *5 (-783)) (-4 *2 (-983 *3 *4 *5))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1142 *3 *2)) (-4 *3 (-969)) (-4 *2 (-727)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-586 *1)) (-4 *3 (-969)) (-4 *1 (-624 *3 *4 *5))
- (-4 *4 (-346 *3)) (-4 *5 (-346 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-586 *3)) (-4 *3 (-969)) (-4 *1 (-624 *3 *4 *5))
- (-4 *4 (-346 *3)) (-4 *5 (-346 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1164 *3)) (-4 *3 (-969)) (-5 *1 (-626 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-586 *4)) (-4 *4 (-969)) (-4 *1 (-1033 *3 *4 *5 *6))
- (-4 *5 (-214 *3 *4)) (-4 *6 (-214 *3 *4)))))
-(((*1 *2)
- (-12 (-4 *3 (-512)) (-5 *2 (-586 (-626 *3))) (-5 *1 (-42 *3 *4))
- (-4 *4 (-390 *3)))))
-(((*1 *1) (-5 *1 (-129))))
-(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-855)))))
+ (-12 (-5 *3 (-707)) (-5 *4 (-1165 *2)) (-4 *5 (-282))
+ (-4 *6 (-918 *5)) (-4 *2 (-13 (-383 *6 *7) (-961 *6)))
+ (-5 *1 (-387 *5 *6 *7 *2)) (-4 *7 (-1141 *6)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-593 (-380 *6))) (-5 *4 (-1 (-586 *5) *6))
- (-4 *5 (-13 (-336) (-135) (-960 (-520)) (-960 (-380 (-520)))))
- (-4 *6 (-1140 *5)) (-5 *2 (-586 (-380 *6))) (-5 *1 (-748 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-593 (-380 *7))) (-5 *4 (-1 (-586 *6) *7))
- (-5 *5 (-1 (-391 *7) *7))
- (-4 *6 (-13 (-336) (-135) (-960 (-520)) (-960 (-380 (-520)))))
- (-4 *7 (-1140 *6)) (-5 *2 (-586 (-380 *7))) (-5 *1 (-748 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-594 *6 (-380 *6))) (-5 *4 (-1 (-586 *5) *6))
- (-4 *5 (-13 (-336) (-135) (-960 (-520)) (-960 (-380 (-520)))))
- (-4 *6 (-1140 *5)) (-5 *2 (-586 (-380 *6))) (-5 *1 (-748 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-594 *7 (-380 *7))) (-5 *4 (-1 (-586 *6) *7))
- (-5 *5 (-1 (-391 *7) *7))
- (-4 *6 (-13 (-336) (-135) (-960 (-520)) (-960 (-380 (-520)))))
- (-4 *7 (-1140 *6)) (-5 *2 (-586 (-380 *7))) (-5 *1 (-748 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-593 (-380 *5))) (-4 *5 (-1140 *4)) (-4 *4 (-27))
- (-4 *4 (-13 (-336) (-135) (-960 (-520)) (-960 (-380 (-520)))))
- (-5 *2 (-586 (-380 *5))) (-5 *1 (-748 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-593 (-380 *6))) (-5 *4 (-1 (-391 *6) *6))
- (-4 *6 (-1140 *5)) (-4 *5 (-27))
- (-4 *5 (-13 (-336) (-135) (-960 (-520)) (-960 (-380 (-520)))))
- (-5 *2 (-586 (-380 *6))) (-5 *1 (-748 *5 *6))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-594 *5 (-380 *5))) (-4 *5 (-1140 *4)) (-4 *4 (-27))
- (-4 *4 (-13 (-336) (-135) (-960 (-520)) (-960 (-380 (-520)))))
- (-5 *2 (-586 (-380 *5))) (-5 *1 (-748 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-594 *6 (-380 *6))) (-5 *4 (-1 (-391 *6) *6))
- (-4 *6 (-1140 *5)) (-4 *5 (-27))
- (-4 *5 (-13 (-336) (-135) (-960 (-520)) (-960 (-380 (-520)))))
- (-5 *2 (-586 (-380 *6))) (-5 *1 (-748 *5 *6)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2))
- (-4 *2 (-13 (-403 *3) (-926))))))
+ (-12 (-4 *5 (-337)) (-4 *5 (-513))
+ (-5 *2
+ (-2 (|:| |minor| (-587 (-850))) (|:| -3192 *3)
+ (|:| |minors| (-587 (-587 (-850)))) (|:| |ops| (-587 *3))))
+ (-5 *1 (-88 *5 *3)) (-5 *4 (-850)) (-4 *3 (-597 *5)))))
(((*1 *2)
- (-12 (-4 *2 (-13 (-403 *3) (-926))) (-5 *1 (-251 *3 *2))
- (-4 *3 (-13 (-783) (-512))))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-983 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-728))
- (-4 *4 (-783)) (-4 *2 (-424)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-728))
- (-4 *5 (-13 (-783) (-10 -8 (-15 -1429 ((-1083) $))))) (-4 *6 (-512))
- (-5 *2 (-2 (|:| -1224 (-880 *6)) (|:| -2662 (-880 *6))))
- (-5 *1 (-668 *4 *5 *6 *3)) (-4 *3 (-877 (-380 (-880 *6)) *4 *5)))))
+ (-12 (-4 *3 (-513)) (-5 *2 (-587 (-627 *3))) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-391 *3)))))
+(((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-418 *3)) (-4 *3 (-970)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1065 *3)) (-5 *1 (-158 *3)) (-4 *3 (-282)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1067)) (-5 *3 (-760)) (-5 *1 (-759)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-521)) (-5 *1 (-392 *2)) (-4 *2 (-513)))))
+(((*1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-418 *3)) (-4 *3 (-970)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-587 *2)) (-4 *2 (-404 *4)) (-5 *1 (-144 *4 *2))
+ (-4 *4 (-13 (-784) (-513))))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-587 *3)) (-5 *1 (-889 *3)) (-4 *3 (-506)))))
+(((*1 *2)
+ (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-340 *3 *4))
+ (-4 *3 (-341 *4))))
+ ((*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-5 *2 (-108)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-587 (-587 *3))) (-4 *3 (-1013)) (-5 *1 (-834 *3)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-545 *2)) (-4 *2 (-37 (-380 (-520)))) (-4 *2 (-969)))))
-(((*1 *2 *2 *2 *3 *3 *4 *2 *5)
- (|partial| -12 (-5 *3 (-559 *2))
- (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1083))) (-5 *5 (-1079 *2))
- (-4 *2 (-13 (-403 *6) (-27) (-1104)))
- (-4 *6 (-13 (-424) (-960 (-520)) (-783) (-135) (-582 (-520))))
- (-5 *1 (-516 *6 *2 *7)) (-4 *7 (-1012))))
- ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5)
- (|partial| -12 (-5 *3 (-559 *2))
- (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1083)))
- (-5 *5 (-380 (-1079 *2))) (-4 *2 (-13 (-403 *6) (-27) (-1104)))
- (-4 *6 (-13 (-424) (-960 (-520)) (-783) (-135) (-582 (-520))))
- (-5 *1 (-516 *6 *2 *7)) (-4 *7 (-1012)))))
-(((*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-1066)) (-5 *1 (-721)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-1169)) (-5 *1 (-1165))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-1169)) (-5 *1 (-1166)))))
+ (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1089)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-878 *3 *4 *2)) (-4 *3 (-970)) (-4 *4 (-729))
+ (-4 *2 (-784)) (-4 *3 (-157))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *2 (-513)) (-5 *1 (-896 *2 *3)) (-4 *3 (-1141 *2))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729))
+ (-4 *4 (-784)) (-4 *2 (-513))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-1141 *2)) (-4 *2 (-970)) (-4 *2 (-157)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-784))
+ (-4 *7 (-984 *4 *5 *6))
+ (-5 *2 (-587 (-2 (|:| -1650 *1) (|:| -1544 (-587 *7)))))
+ (-5 *3 (-587 *7)) (-4 *1 (-1113 *4 *5 *6 *7)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))))
+(((*1 *2 *3)
+ (-12 (-4 *2 (-337)) (-4 *2 (-782)) (-5 *1 (-874 *2 *3))
+ (-4 *3 (-1141 *2)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-586 (-520))) (-5 *1 (-928 *3)) (-14 *3 (-520)))))
+ (-12 (-14 *3 (-587 (-1084))) (-4 *4 (-157))
+ (-4 *5 (-215 (-3475 *3) (-707)))
+ (-14 *6
+ (-1 (-108) (-2 (|:| -2716 *2) (|:| -2997 *5))
+ (-2 (|:| -2716 *2) (|:| -2997 *5))))
+ (-4 *2 (-784)) (-5 *1 (-434 *3 *4 *2 *5 *6 *7))
+ (-4 *7 (-878 *4 *5 (-794 *3))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-755 *4)) (-4 *4 (-783)) (-5 *2 (-108))
- (-5 *1 (-611 *4)))))
-(((*1 *1 *1) (-5 *1 (-981))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-3 (|:| |fst| (-407)) (|:| -1365 "void")))
- (-5 *1 (-410)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-51)) (-5 *1 (-765)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1083)) (-5 *2 (-1169)) (-5 *1 (-758)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-833 *4)) (-4 *4 (-1012)) (-5 *2 (-586 (-706)))
- (-5 *1 (-832 *4)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-520)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 (-706)) (-4 *5 (-157))))
- ((*1 *1 *1 *2 *1 *2)
- (-12 (-5 *2 (-520)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 (-706)) (-4 *5 (-157))))
- ((*1 *2 *2 *3)
- (-12
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202)))
+ (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202))
+ (|:| |relerr| (-202))))
+ (-5 *2 (-587 (-202))) (-5 *1 (-183)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-970)) (-4 *2 (-625 *4 *5 *6))
+ (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1141 *4)) (-4 *5 (-347 *4))
+ (-4 *6 (-347 *4)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-784)) (-4 *5 (-729))
+ (-4 *6 (-513)) (-4 *7 (-878 *6 *5 *3))
+ (-5 *1 (-435 *5 *3 *6 *7 *2))
+ (-4 *2
+ (-13 (-961 (-381 (-521))) (-337)
+ (-10 -8 (-15 -2189 ($ *7)) (-15 -2801 (*7 $))
+ (-15 -2812 (*7 $))))))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1086 (-381 (-521)))) (-5 *2 (-381 (-521)))
+ (-5 *1 (-169)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-337)) (-4 *7 (-1141 *5)) (-4 *4 (-661 *5 *7))
+ (-5 *2 (-2 (|:| -1201 (-627 *6)) (|:| |vec| (-1165 *5))))
+ (-5 *1 (-748 *5 *6 *7 *4 *3)) (-4 *6 (-597 *5)) (-4 *3 (-597 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))))
+(((*1 *1) (-4 *1 (-323)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-587 *5)) (-4 *5 (-404 *4))
+ (-4 *4 (-13 (-513) (-784) (-135)))
(-5 *2
- (-472 (-380 (-520)) (-216 *5 (-706)) (-793 *4)
- (-223 *4 (-380 (-520)))))
- (-5 *3 (-586 (-793 *4))) (-14 *4 (-586 (-1083))) (-14 *5 (-706))
- (-5 *1 (-473 *4 *5)))))
-(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4229)) (-4 *1 (-553 *4 *3)) (-4 *4 (-1012))
- (-4 *3 (-1118)) (-4 *3 (-1012)) (-5 *2 (-108)))))
+ (-2 (|:| |primelt| *5) (|:| |poly| (-587 (-1080 *5)))
+ (|:| |prim| (-1080 *5))))
+ (-5 *1 (-406 *4 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-513) (-784) (-135)))
+ (-5 *2
+ (-2 (|:| |primelt| *3) (|:| |pol1| (-1080 *3))
+ (|:| |pol2| (-1080 *3)) (|:| |prim| (-1080 *3))))
+ (-5 *1 (-406 *4 *3)) (-4 *3 (-27)) (-4 *3 (-404 *4))))
+ ((*1 *2 *3 *4 *3 *4)
+ (-12 (-5 *3 (-881 *5)) (-5 *4 (-1084)) (-4 *5 (-13 (-337) (-135)))
+ (-5 *2
+ (-2 (|:| |coef1| (-521)) (|:| |coef2| (-521))
+ (|:| |prim| (-1080 *5))))
+ (-5 *1 (-888 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-587 (-881 *5))) (-5 *4 (-587 (-1084)))
+ (-4 *5 (-13 (-337) (-135)))
+ (-5 *2
+ (-2 (|:| -2973 (-587 (-521))) (|:| |poly| (-587 (-1080 *5)))
+ (|:| |prim| (-1080 *5))))
+ (-5 *1 (-888 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-587 (-881 *6))) (-5 *4 (-587 (-1084))) (-5 *5 (-1084))
+ (-4 *6 (-13 (-337) (-135)))
+ (-5 *2
+ (-2 (|:| -2973 (-587 (-521))) (|:| |poly| (-587 (-1080 *6)))
+ (|:| |prim| (-1080 *6))))
+ (-5 *1 (-888 *6)))))
(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-568 *4 *5))
+ (-5 *3
+ (-1 (-2 (|:| |ans| *4) (|:| -1925 *4) (|:| |sol?| (-108)))
+ (-521) *4))
+ (-4 *4 (-337)) (-4 *5 (-1141 *4)) (-5 *1 (-531 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-587 (-51))) (-5 *1 (-821 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-353)) (-5 *1 (-92))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-353)) (-5 *1 (-92)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-589 *3)) (-4 *3 (-970))
+ (-5 *1 (-651 *3 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-970)) (-5 *1 (-771 *3)))))
+(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5)
+ (-12 (-5 *3 (-202)) (-5 *4 (-521))
+ (-5 *5 (-3 (|:| |fn| (-362)) (|:| |fp| (-62 G)))) (-5 *2 (-959))
+ (-5 *1 (-685)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-337)) (-4 *5 (-347 *4)) (-4 *6 (-347 *4))
+ (-5 *2 (-707)) (-5 *1 (-488 *4 *5 *6 *3)) (-4 *3 (-625 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-625 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-347 *3))
+ (-4 *5 (-347 *3)) (-4 *3 (-513)) (-5 *2 (-707))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-513)) (-4 *4 (-157)) (-4 *5 (-347 *4))
+ (-4 *6 (-347 *4)) (-5 *2 (-707)) (-5 *1 (-626 *4 *5 *6 *3))
+ (-4 *3 (-625 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-973 *3 *4 *5 *6 *7)) (-4 *5 (-970))
+ (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-4 *5 (-513))
+ (-5 *2 (-707)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-850)) (-5 *1 (-956 *2))
+ (-4 *2 (-13 (-1013) (-10 -8 (-15 * ($ $ $))))))))
+(((*1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-855)))))
+(((*1 *2 *3 *3 *3)
(|partial| -12
- (-5 *3 (-586 (-2 (|:| |func| *2) (|:| |pole| (-108)))))
- (-4 *2 (-13 (-403 *4) (-926))) (-4 *4 (-13 (-783) (-512)))
- (-5 *1 (-251 *4 *2)))))
+ (-4 *4 (-13 (-135) (-27) (-961 (-521)) (-961 (-381 (-521)))))
+ (-4 *5 (-1141 *4)) (-5 *2 (-1080 (-381 *5))) (-5 *1 (-563 *4 *5))
+ (-5 *3 (-381 *5))))
+ ((*1 *2 *3 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 (-392 *6) *6)) (-4 *6 (-1141 *5))
+ (-4 *5 (-13 (-135) (-27) (-961 (-521)) (-961 (-381 (-521)))))
+ (-5 *2 (-1080 (-381 *6))) (-5 *1 (-563 *5 *6)) (-5 *3 (-381 *6)))))
(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-586 (-1083))) (-5 *3 (-1083)) (-5 *1 (-496))))
+ (-12 (-5 *2 (-587 (-1084))) (-5 *3 (-1084)) (-5 *1 (-497))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-1083)) (-5 *1 (-641 *3)) (-4 *3 (-561 (-496)))))
+ (-12 (-5 *2 (-1084)) (-5 *1 (-642 *3)) (-4 *3 (-562 (-497)))))
((*1 *2 *3 *2 *2)
- (-12 (-5 *2 (-1083)) (-5 *1 (-641 *3)) (-4 *3 (-561 (-496)))))
+ (-12 (-5 *2 (-1084)) (-5 *1 (-642 *3)) (-4 *3 (-562 (-497)))))
((*1 *2 *3 *2 *2 *2)
- (-12 (-5 *2 (-1083)) (-5 *1 (-641 *3)) (-4 *3 (-561 (-496)))))
+ (-12 (-5 *2 (-1084)) (-5 *1 (-642 *3)) (-4 *3 (-562 (-497)))))
((*1 *2 *3 *2 *4)
- (-12 (-5 *4 (-586 (-1083))) (-5 *2 (-1083)) (-5 *1 (-641 *3))
- (-4 *3 (-561 (-496))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1118)))))
+ (-12 (-5 *4 (-587 (-1084))) (-5 *2 (-1084)) (-5 *1 (-642 *3))
+ (-4 *3 (-562 (-497))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1119)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1084)))))
+(((*1 *2) (-12 (-5 *2 (-803)) (-5 *1 (-1168))))
+ ((*1 *2 *2) (-12 (-5 *2 (-803)) (-5 *1 (-1168)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *2 (-513)) (-5 *1 (-896 *2 *3)) (-4 *3 (-1141 *2)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-521)) (-5 *2 (-1170)) (-5 *1 (-833 *4))
+ (-4 *4 (-1013))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-833 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-108)) (-4 *6 (-425)) (-4 *7 (-729)) (-4 *8 (-784))
+ (-4 *3 (-984 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-587 *4))
+ (|:| |todo| (-587 (-2 (|:| |val| (-587 *3)) (|:| -1884 *4))))))
+ (-5 *1 (-987 *6 *7 *8 *3 *4)) (-4 *4 (-989 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784))
+ (-4 *3 (-984 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-587 *4))
+ (|:| |todo| (-587 (-2 (|:| |val| (-587 *3)) (|:| -1884 *4))))))
+ (-5 *1 (-1054 *5 *6 *7 *3 *4)) (-4 *4 (-1022 *5 *6 *7 *3)))))
+(((*1 *2 *1) (-12 (-5 *1 (-158 *2)) (-4 *2 (-282))))
+ ((*1 *2 *1) (-12 (-5 *1 (-843 *2)) (-4 *2 (-282))))
+ ((*1 *2 *1) (-12 (-4 *1 (-918 *2)) (-4 *2 (-513)) (-4 *2 (-282))))
+ ((*1 *2 *1) (-12 (-4 *1 (-979)) (-5 *2 (-521)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-587 *3)) (-4 *3 (-1141 (-521))) (-5 *1 (-457 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-425))) (-5 *1 (-1111 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-1105))))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-969)) (-4 *3 (-783))
- (-5 *2 (-2 (|:| |val| *1) (|:| -2647 (-520)))) (-4 *1 (-403 *3))))
+ (-12 (-4 *1 (-151 *3)) (-4 *3 (-157)) (-4 *3 (-506))
+ (-5 *2 (-381 (-521)))))
((*1 *2 *1)
- (|partial| -12
- (-5 *2 (-2 (|:| |val| (-820 *3)) (|:| -2647 (-820 *3))))
- (-5 *1 (-820 *3)) (-4 *3 (-1012))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-728)) (-4 *5 (-783)) (-4 *6 (-969))
- (-4 *7 (-877 *6 *4 *5))
- (-5 *2 (-2 (|:| |val| *3) (|:| -2647 (-520))))
- (-5 *1 (-878 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-336)
- (-10 -8 (-15 -2188 ($ *7)) (-15 -2800 (*7 $))
- (-15 -2811 (*7 $))))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1183 *3 *4)) (-4 *3 (-783)) (-4 *4 (-969))
- (-5 *2 (-755 *3))))
- ((*1 *2 *1) (-12 (-4 *2 (-779)) (-5 *1 (-1185 *3 *2)) (-4 *3 (-969)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-296 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-124))
- (-5 *2 (-586 (-2 (|:| |gen| *3) (|:| -3260 *4))))))
+ (-12 (-5 *2 (-381 (-521))) (-5 *1 (-392 *3)) (-4 *3 (-506))
+ (-4 *3 (-513))))
+ ((*1 *2 *1) (-12 (-4 *1 (-506)) (-5 *2 (-381 (-521)))))
((*1 *2 *1)
- (-12 (-5 *2 (-586 (-2 (|:| -2972 *3) (|:| -2516 *4))))
- (-5 *1 (-671 *3 *4)) (-4 *3 (-969)) (-4 *4 (-662))))
+ (-12 (-4 *1 (-734 *3)) (-4 *3 (-157)) (-4 *3 (-506))
+ (-5 *2 (-381 (-521)))))
((*1 *2 *1)
- (-12 (-4 *1 (-1142 *3 *4)) (-4 *3 (-969)) (-4 *4 (-727))
- (-5 *2 (-1064 (-2 (|:| |k| *4) (|:| |c| *3)))))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783))
- (-4 *3 (-983 *5 *6 *7))
- (-5 *2 (-586 (-2 (|:| |val| (-586 *3)) (|:| -1883 *4))))
- (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-988 *5 *6 *7 *3)))))
-(((*1 *2) (-12 (-5 *2 (-586 (-1083))) (-5 *1 (-100)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-336)) (-4 *4 (-346 *3)) (-4 *5 (-346 *3))
- (-5 *1 (-487 *3 *4 *5 *2)) (-4 *2 (-624 *3 *4 *5))))
+ (-12 (-5 *2 (-381 (-521))) (-5 *1 (-770 *3)) (-4 *3 (-506))
+ (-4 *3 (-1013))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-381 (-521))) (-5 *1 (-777 *3)) (-4 *3 (-506))
+ (-4 *3 (-1013))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-922 *3)) (-4 *3 (-157)) (-4 *3 (-506))
+ (-5 *2 (-381 (-521)))))
((*1 *2 *3)
- (-12 (-4 *4 (-512)) (-4 *5 (-346 *4)) (-4 *6 (-346 *4))
- (-4 *7 (-917 *4)) (-4 *2 (-624 *7 *8 *9))
- (-5 *1 (-488 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-624 *4 *5 *6))
- (-4 *8 (-346 *7)) (-4 *9 (-346 *7))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-624 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-346 *2))
- (-4 *4 (-346 *2)) (-4 *2 (-281))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-281)) (-4 *3 (-157)) (-4 *4 (-346 *3))
- (-4 *5 (-346 *3)) (-5 *1 (-625 *3 *4 *5 *2))
- (-4 *2 (-624 *3 *4 *5))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-626 *3)) (-4 *3 (-281)) (-5 *1 (-636 *3))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-972 *2 *3 *4 *5 *6)) (-4 *4 (-969))
- (-4 *5 (-214 *3 *4)) (-4 *6 (-214 *2 *4)) (-4 *4 (-281)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-589 *3 *4 *5)) (-4 *3 (-1012))
- (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1079 *3)) (-4 *3 (-969)) (-4 *1 (-1140 *3)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-268 (-769 *3)))
- (-4 *5 (-13 (-424) (-783) (-960 (-520)) (-582 (-520))))
- (-5 *2 (-769 *3)) (-5 *1 (-579 *5 *3))
- (-4 *3 (-13 (-27) (-1104) (-403 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-268 (-769 (-880 *5)))) (-4 *5 (-424))
- (-5 *2 (-769 (-380 (-880 *5)))) (-5 *1 (-580 *5))
- (-5 *3 (-380 (-880 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-268 (-380 (-880 *5)))) (-5 *3 (-380 (-880 *5)))
- (-4 *5 (-424)) (-5 *2 (-769 *3)) (-5 *1 (-580 *5)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-545 *2)) (-4 *2 (-37 (-380 (-520)))) (-4 *2 (-969)))))
+ (-12 (-5 *2 (-381 (-521))) (-5 *1 (-933 *3)) (-4 *3 (-961 *2)))))
+(((*1 *2 *3) (-12 (-5 *3 (-353)) (-5 *2 (-1067)) (-5 *1 (-280)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-1119)) (-5 *1 (-802 *3 *2)) (-4 *3 (-1119))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1119)))))
+(((*1 *2 *3 *3 *4 *4 *4 *4 *3)
+ (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959))
+ (-5 *1 (-689)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-315 *4 *3 *5)) (-4 *4 (-1122)) (-4 *3 (-1140 *4))
- (-4 *5 (-1140 (-380 *3))) (-5 *2 (-108))))
+ (-12 (-5 *3 (-521)) (-5 *2 (-587 (-587 (-202)))) (-5 *1 (-1116)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784))
+ (-4 *3 (-984 *5 *6 *7)) (-5 *2 (-587 *4))
+ (-5 *1 (-990 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-833 (-521))) (-5 *1 (-846))))
((*1 *2 *3)
- (-12 (-4 *1 (-315 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-1140 *3))
- (-4 *5 (-1140 (-380 *4))) (-5 *2 (-108)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-1118)) (-5 *1 (-801 *3 *2)) (-4 *3 (-1118))))
- ((*1 *2 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1118)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-545 *2)) (-4 *2 (-37 (-380 (-520)))) (-4 *2 (-969)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-586 (-472 *3 *4 *5 *6))) (-4 *3 (-336)) (-4 *4 (-728))
- (-4 *5 (-783)) (-5 *1 (-472 *3 *4 *5 *6)) (-4 *6 (-877 *3 *4 *5))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-336)) (-4 *3 (-728)) (-4 *4 (-783))
- (-5 *1 (-472 *2 *3 *4 *5)) (-4 *5 (-877 *2 *3 *4))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-586 *1)) (-4 *1 (-988 *4 *5 *6 *3)) (-4 *4 (-424))
- (-4 *5 (-728)) (-4 *6 (-783)) (-4 *3 (-983 *4 *5 *6))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-586 *1)) (-5 *3 (-586 *7)) (-4 *1 (-988 *4 *5 *6 *7))
- (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783))
- (-4 *7 (-983 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-586 *7)) (-4 *7 (-983 *4 *5 *6)) (-4 *4 (-424))
- (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-586 *1))
- (-4 *1 (-988 *4 *5 *6 *7))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783))
- (-4 *3 (-983 *4 *5 *6)) (-5 *2 (-586 *1))
- (-4 *1 (-988 *4 *5 *6 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1012)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-512)) (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-586 *3))
- (-5 *1 (-902 *4 *5 *6 *3)) (-4 *3 (-983 *4 *5 *6)))))
-(((*1 *2 *3 *4 *5 *6 *7 *7 *8)
- (-12
- (-5 *3
- (-2 (|:| |det| *12) (|:| |rows| (-586 (-520)))
- (|:| |cols| (-586 (-520)))))
- (-5 *4 (-626 *12)) (-5 *5 (-586 (-380 (-880 *9))))
- (-5 *6 (-586 (-586 *12))) (-5 *7 (-706)) (-5 *8 (-520))
- (-4 *9 (-13 (-281) (-135))) (-4 *12 (-877 *9 *11 *10))
- (-4 *10 (-13 (-783) (-561 (-1083)))) (-4 *11 (-728))
+ (-12 (-5 *3 (-587 (-521))) (-5 *2 (-833 (-521))) (-5 *1 (-846)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1084))
+ (-4 *5 (-13 (-282) (-784) (-135) (-961 (-521)) (-583 (-521))))
+ (-5 *2 (-538 *3)) (-5 *1 (-400 *5 *3))
+ (-4 *3 (-13 (-1105) (-29 *5))))))
+(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-856)))))
+(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7)
+ (-12 (-5 *4 (-521)) (-5 *5 (-627 (-202)))
+ (-5 *6 (-3 (|:| |fn| (-362)) (|:| |fp| (-82 FCNF))))
+ (-5 *7 (-3 (|:| |fn| (-362)) (|:| |fp| (-83 FCNG)))) (-5 *3 (-202))
+ (-5 *2 (-959)) (-5 *1 (-686)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1084))
+ (-4 *4 (-13 (-784) (-282) (-961 (-521)) (-583 (-521)) (-135)))
+ (-5 *1 (-741 *4 *2)) (-4 *2 (-13 (-29 *4) (-1105) (-887)))))
+ ((*1 *1 *1 *1 *1) (-5 *1 (-792))) ((*1 *1 *1 *1) (-5 *1 (-792)))
+ ((*1 *1 *1) (-5 *1 (-792)))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1065 *3)) (-5 *1 (-1069 *3)) (-4 *3 (-970)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-108))
+ (-4 *5 (-13 (-425) (-784) (-961 (-521)) (-583 (-521))))
(-5 *2
- (-2 (|:| |eqzro| (-586 *12)) (|:| |neqzro| (-586 *12))
- (|:| |wcond| (-586 (-880 *9)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1164 (-380 (-880 *9))))
- (|:| -1831 (-586 (-1164 (-380 (-880 *9)))))))))
- (-5 *1 (-852 *9 *10 *11 *12)))))
-(((*1 *2 *3 *4 *5 *5 *2)
- (|partial| -12 (-5 *2 (-108)) (-5 *3 (-880 *6)) (-5 *4 (-1083))
- (-5 *5 (-776 *7))
- (-4 *6 (-13 (-424) (-783) (-960 (-520)) (-582 (-520))))
- (-4 *7 (-13 (-1104) (-29 *6))) (-5 *1 (-200 *6 *7))))
- ((*1 *2 *3 *4 *4 *2)
- (|partial| -12 (-5 *2 (-108)) (-5 *3 (-1079 *6)) (-5 *4 (-776 *6))
- (-4 *6 (-13 (-1104) (-29 *5)))
- (-4 *5 (-13 (-424) (-783) (-960 (-520)) (-582 (-520))))
- (-5 *1 (-200 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1079 (-520))) (-5 *2 (-520)) (-5 *1 (-870)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
- (-12 (-5 *3 (-1066)) (-5 *4 (-520)) (-5 *5 (-626 (-201)))
- (-5 *2 (-958)) (-5 *1 (-690)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-596 *2)) (-4 *2 (-969)) (-4 *2 (-336))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-336)) (-5 *1 (-599 *4 *2))
- (-4 *2 (-596 *4)))))
+ (-3 (|:| |%expansion| (-287 *5 *3 *6 *7))
+ (|:| |%problem| (-2 (|:| |func| (-1067)) (|:| |prob| (-1067))))))
+ (-5 *1 (-394 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1105) (-404 *5)))
+ (-14 *6 (-1084)) (-14 *7 *3))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-1084)) (-5 *3 (-587 (-731))) (-5 *1 (-266)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-1067)) (-5 *3 (-521)) (-5 *1 (-218)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-513)) (-4 *3 (-970))
+ (-5 *2 (-2 (|:| -3727 *1) (|:| -3820 *1))) (-4 *1 (-786 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-94 *5)) (-4 *5 (-513)) (-4 *5 (-970))
+ (-5 *2 (-2 (|:| -3727 *3) (|:| -3820 *3))) (-5 *1 (-787 *5 *3))
+ (-4 *3 (-786 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-201)) (-5 *2 (-108)) (-5 *1 (-273 *4 *5)) (-14 *4 *3)
- (-14 *5 *3)))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1007 (-776 (-201)))) (-5 *3 (-201)) (-5 *2 (-108))
- (-5 *1 (-279))))
+ (-12 (-4 *4 (-337)) (-4 *4 (-513)) (-4 *5 (-1141 *4))
+ (-5 *2 (-2 (|:| -2297 (-568 *4 *5)) (|:| -2347 (-381 *5))))
+ (-5 *1 (-568 *4 *5)) (-5 *3 (-381 *5))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-587 (-1073 *3 *4))) (-5 *1 (-1073 *3 *4))
+ (-14 *3 (-850)) (-4 *4 (-970))))
((*1 *2 *1 *1)
- (-12 (-4 *3 (-336)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *2 (-108))
- (-5 *1 (-472 *3 *4 *5 *6)) (-4 *6 (-877 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-760)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-391 *3)) (-4 *3 (-512)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-14 *4 (-586 (-1083))) (-4 *2 (-157))
- (-4 *3 (-214 (-3474 *4) (-706)))
- (-14 *6
- (-1 (-108) (-2 (|:| -2716 *5) (|:| -2647 *3))
- (-2 (|:| -2716 *5) (|:| -2647 *3))))
- (-5 *1 (-433 *4 *2 *5 *3 *6 *7)) (-4 *5 (-783))
- (-4 *7 (-877 *2 *3 (-793 *4))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-37 (-380 (-520))))
- (-5 *2 (-2 (|:| -2745 (-1064 *4)) (|:| -2757 (-1064 *4))))
- (-5 *1 (-1070 *4)) (-5 *3 (-1064 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1083))
- (-4 *5 (-13 (-281) (-783) (-135) (-960 (-520)) (-582 (-520))))
- (-5 *2 (-537 *3)) (-5 *1 (-399 *5 *3))
- (-4 *3 (-13 (-1104) (-29 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1083)) (-4 *5 (-13 (-512) (-960 (-520)) (-135)))
- (-5 *2 (-537 (-380 (-880 *5)))) (-5 *1 (-526 *5))
- (-5 *3 (-380 (-880 *5))))))
+ (-12 (-4 *3 (-425)) (-4 *3 (-970))
+ (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1)))
+ (-4 *1 (-1141 *3)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-707)) (-4 *1 (-909 *2)) (-4 *2 (-1105)))))
+(((*1 *2 *1 *2) (-12 (-5 *1 (-950 *2)) (-4 *2 (-1119)))))
+(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7)
+ (-12 (-5 *3 (-521)) (-5 *5 (-108)) (-5 *6 (-627 (-202)))
+ (-5 *7 (-3 (|:| |fn| (-362)) (|:| |fp| (-75 OBJFUN))))
+ (-5 *4 (-202)) (-5 *2 (-959)) (-5 *1 (-690)))))
+(((*1 *2 *3 *4 *4 *4 *5 *6 *7)
+ (|partial| -12 (-5 *5 (-1084))
+ (-5 *6
+ (-1
+ (-3
+ (-2 (|:| |mainpart| *4)
+ (|:| |limitedlogs|
+ (-587 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
+ "failed")
+ *4 (-587 *4)))
+ (-5 *7
+ (-1 (-3 (-2 (|:| -3100 *4) (|:| |coeff| *4)) "failed") *4 *4))
+ (-4 *4 (-13 (-1105) (-27) (-404 *8)))
+ (-4 *8 (-13 (-425) (-784) (-135) (-961 *3) (-583 *3)))
+ (-5 *3 (-521)) (-5 *2 (-587 *4)) (-5 *1 (-939 *8 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-143)) (-5 *1 (-803)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-784))
+ (-4 *7 (-984 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-587 *7)) (|:| |badPols| (-587 *7))))
+ (-5 *1 (-903 *4 *5 *6 *7)) (-5 *3 (-587 *7)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-224 *4 *5)) (-14 *4 (-587 (-1084))) (-4 *5 (-425))
+ (-5 *2 (-453 *4 *5)) (-5 *1 (-575 *4 *5)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-513) (-784) (-961 (-521)))) (-4 *5 (-404 *4))
+ (-5 *2
+ (-3 (|:| |overq| (-1080 (-381 (-521))))
+ (|:| |overan| (-1080 (-47))) (|:| -3079 (-108))))
+ (-5 *1 (-409 *4 *5 *3)) (-4 *3 (-1141 *5)))))
(((*1 *2)
- (-12 (-5 *2 (-108)) (-5 *1 (-414 *3)) (-4 *3 (-1140 (-520))))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-706)) (-5 *2 (-108)))))
-(((*1 *2 *1) (-12 (-4 *1 (-322)) (-5 *2 (-706))))
- ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-375)) (-5 *2 (-706)))))
+ (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-340 *3 *4))
+ (-4 *3 (-341 *4))))
+ ((*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-5 *2 (-108)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-425))) (-5 *1 (-1111 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-1105))))))
(((*1 *1 *2)
- (-12 (-5 *2 (-380 *4)) (-4 *4 (-1140 *3)) (-4 *3 (-13 (-336) (-135)))
- (-5 *1 (-372 *3 *4)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *3 (-336)) (-4 *4 (-728)) (-4 *5 (-783))
- (-5 *1 (-472 *3 *4 *5 *2)) (-4 *2 (-877 *3 *4 *5))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-336)) (-4 *3 (-728)) (-4 *4 (-783))
- (-5 *1 (-472 *2 *3 *4 *5)) (-4 *5 (-877 *2 *3 *4)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-706)) (-5 *1 (-98 *3)) (-4 *3 (-1012)))))
-(((*1 *1 *2 *3 *3 *3 *4)
- (-12 (-4 *4 (-336)) (-4 *3 (-1140 *4)) (-4 *5 (-1140 (-380 *3)))
- (-4 *1 (-308 *4 *3 *5 *2)) (-4 *2 (-315 *4 *3 *5))))
- ((*1 *1 *2 *2 *3)
- (-12 (-5 *3 (-520)) (-4 *2 (-336)) (-4 *4 (-1140 *2))
- (-4 *5 (-1140 (-380 *4))) (-4 *1 (-308 *2 *4 *5 *6))
- (-4 *6 (-315 *2 *4 *5))))
- ((*1 *1 *2 *2)
- (-12 (-4 *2 (-336)) (-4 *3 (-1140 *2)) (-4 *4 (-1140 (-380 *3)))
- (-4 *1 (-308 *2 *3 *4 *5)) (-4 *5 (-315 *2 *3 *4))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-336)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-380 *4)))
- (-4 *1 (-308 *3 *4 *5 *2)) (-4 *2 (-315 *3 *4 *5))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-386 *4 (-380 *4) *5 *6)) (-4 *4 (-1140 *3))
- (-4 *5 (-1140 (-380 *4))) (-4 *6 (-315 *3 *4 *5)) (-4 *3 (-336))
- (-4 *1 (-308 *3 *4 *5 *6)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1079 *1)) (-5 *3 (-1083)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-1079 *1)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-880 *1)) (-4 *1 (-27))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1083)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-783) (-512)))))
- ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-783) (-512))))))
-(((*1 *2 *3) (-12 (-5 *3 (-201)) (-5 *2 (-635)) (-5 *1 (-279)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-880 *5)) (-4 *5 (-969)) (-5 *2 (-223 *4 *5))
- (-5 *1 (-872 *4 *5)) (-14 *4 (-586 (-1083))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-626 *6)) (-5 *5 (-1 (-391 (-1079 *6)) (-1079 *6)))
- (-4 *6 (-336))
- (-5 *2
- (-586
- (-2 (|:| |outval| *7) (|:| |outmult| (-520))
- (|:| |outvect| (-586 (-626 *7))))))
- (-5 *1 (-493 *6 *7 *4)) (-4 *7 (-336)) (-4 *4 (-13 (-336) (-781))))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-545 *2)) (-4 *2 (-37 (-380 (-520)))) (-4 *2 (-969)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-391 *3)) (-4 *3 (-512)) (-5 *1 (-392 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-380 (-880 *5))) (-5 *4 (-1083))
- (-4 *5 (-13 (-281) (-783) (-135))) (-5 *2 (-586 (-268 (-289 *5))))
- (-5 *1 (-1039 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-380 (-880 *4))) (-4 *4 (-13 (-281) (-783) (-135)))
- (-5 *2 (-586 (-268 (-289 *4)))) (-5 *1 (-1039 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-268 (-380 (-880 *5)))) (-5 *4 (-1083))
- (-4 *5 (-13 (-281) (-783) (-135))) (-5 *2 (-586 (-268 (-289 *5))))
- (-5 *1 (-1039 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-268 (-380 (-880 *4))))
- (-4 *4 (-13 (-281) (-783) (-135))) (-5 *2 (-586 (-268 (-289 *4))))
- (-5 *1 (-1039 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-586 (-380 (-880 *5)))) (-5 *4 (-586 (-1083)))
- (-4 *5 (-13 (-281) (-783) (-135)))
- (-5 *2 (-586 (-586 (-268 (-289 *5))))) (-5 *1 (-1039 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-586 (-380 (-880 *4))))
- (-4 *4 (-13 (-281) (-783) (-135)))
- (-5 *2 (-586 (-586 (-268 (-289 *4))))) (-5 *1 (-1039 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-586 (-268 (-380 (-880 *5))))) (-5 *4 (-586 (-1083)))
- (-4 *5 (-13 (-281) (-783) (-135)))
- (-5 *2 (-586 (-586 (-268 (-289 *5))))) (-5 *1 (-1039 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-586 (-268 (-380 (-880 *4)))))
- (-4 *4 (-13 (-281) (-783) (-135)))
- (-5 *2 (-586 (-586 (-268 (-289 *4))))) (-5 *1 (-1039 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-791))))
- ((*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1169)) (-5 *1 (-889)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-586 (-520))) (-5 *2 (-626 (-520))) (-5 *1 (-1022)))))
-(((*1 *1 *1) (-4 *1 (-572)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-573 *3 *2))
- (-4 *2 (-13 (-403 *3) (-926) (-1104))))))
-(((*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-758)))))
-(((*1 *1) (-12 (-5 *1 (-586 *2)) (-4 *2 (-1118)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1140 *5)) (-4 *5 (-336))
- (-5 *2
- (-2 (|:| |ir| (-537 (-380 *6))) (|:| |specpart| (-380 *6))
- (|:| |polypart| *6)))
- (-5 *1 (-530 *5 *6)) (-5 *3 (-380 *6)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-281)) (-4 *3 (-917 *2)) (-4 *4 (-1140 *3))
- (-5 *1 (-386 *2 *3 *4 *5)) (-4 *5 (-13 (-382 *3 *4) (-960 *3))))))
+ (-12 (-5 *2 (-587 (-587 *3))) (-4 *3 (-1013)) (-5 *1 (-1092 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-855)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-144 *3 *2))
- (-4 *2 (-403 *3)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-626 (-380 (-880 (-520)))))
- (-5 *2 (-626 (-289 (-520)))) (-5 *1 (-954)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1014 (-1014 *3))) (-5 *1 (-832 *3)) (-4 *3 (-1012)))))
+ (-12 (-5 *2 (-108)) (-5 *1 (-313 *3 *4 *5)) (-14 *3 (-587 (-1084)))
+ (-14 *4 (-587 (-1084))) (-4 *5 (-361))))
+ ((*1 *2)
+ (-12 (-5 *2 (-108)) (-5 *1 (-313 *3 *4 *5)) (-14 *3 (-587 (-1084)))
+ (-14 *4 (-587 (-1084))) (-4 *5 (-361)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-792))))
+ ((*1 *2 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1170)) (-5 *1 (-890)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-821 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-759)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-850)) (-4 *1 (-681 *3)) (-4 *3 (-157)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))))
+(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-337)))))
+(((*1 *1) (-12 (-5 *1 (-587 *2)) (-4 *2 (-1119)))))
+(((*1 *1 *1) (-12 (-5 *1 (-546 *2)) (-4 *2 (-970)))))
+(((*1 *2 *1) (-12 (-4 *1 (-734 *2)) (-4 *2 (-157)))))
+(((*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1168))))
+ ((*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1168)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-353)) (-5 *1 (-982)))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6)
+ (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *5 (-202))
+ (-5 *6 (-3 (|:| |fn| (-362)) (|:| |fp| (-76 FUNCTN))))
+ (-5 *2 (-959)) (-5 *1 (-685)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1008 (-777 (-202)))) (-5 *1 (-280)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1083))
- (-4 *4 (-13 (-783) (-281) (-960 (-520)) (-582 (-520)) (-135)))
- (-5 *1 (-740 *4 *2)) (-4 *2 (-13 (-29 *4) (-1104) (-886))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-706)) (-5 *5 (-586 *3)) (-4 *3 (-281)) (-4 *6 (-783))
- (-4 *7 (-728)) (-5 *2 (-108)) (-5 *1 (-569 *6 *7 *3 *8))
- (-4 *8 (-877 *3 *7 *6)))))
-(((*1 *1) (-5 *1 (-410))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-229 *2)) (-4 *2 (-1118)))))
-(((*1 *2 *3) (-12 (-5 *3 (-154 (-520))) (-5 *2 (-108)) (-5 *1 (-418))))
- ((*1 *2 *3)
- (-12
- (-5 *3
- (-472 (-380 (-520)) (-216 *5 (-706)) (-793 *4)
- (-223 *4 (-380 (-520)))))
- (-14 *4 (-586 (-1083))) (-14 *5 (-706)) (-5 *2 (-108))
- (-5 *1 (-473 *4 *5))))
- ((*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-888 *3)) (-4 *3 (-505))))
- ((*1 *2 *1) (-12 (-4 *1 (-1122)) (-5 *2 (-108)))))
-(((*1 *1 *2) (-12 (-5 *2 (-586 (-791))) (-5 *1 (-303)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-849)) (-4 *4 (-341)) (-4 *4 (-336)) (-5 *2 (-1079 *1))
- (-4 *1 (-302 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-302 *3)) (-4 *3 (-336)) (-5 *2 (-1079 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-343 *3 *2)) (-4 *3 (-157)) (-4 *3 (-336))
- (-4 *2 (-1140 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1164 *4)) (-4 *4 (-322)) (-5 *2 (-1079 *4))
- (-5 *1 (-490 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-352)) (-5 *1 (-92))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-352)) (-5 *1 (-92)))))
-(((*1 *1 *2) (-12 (-5 *2 (-586 (-791))) (-5 *1 (-791))))
- ((*1 *1 *1) (-5 *1 (-791))))
+ (-12 (-5 *3 (-1084))
+ (-4 *4 (-13 (-784) (-282) (-961 (-521)) (-583 (-521)) (-135)))
+ (-5 *1 (-741 *4 *2)) (-4 *2 (-13 (-29 *4) (-1105) (-887))))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1067)) (-5 *4 (-521)) (-5 *5 (-627 (-202)))
+ (-5 *2 (-959)) (-5 *1 (-691)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-1032 *2)) (-4 *2 (-1119)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-587 (-834 *3))) (-5 *1 (-833 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-587 *7)) (-4 *7 (-878 *4 *5 *6)) (-4 *6 (-562 (-1084)))
+ (-4 *4 (-337)) (-4 *5 (-729)) (-4 *6 (-784))
+ (-5 *2 (-1074 (-587 (-881 *4)) (-587 (-269 (-881 *4)))))
+ (-5 *1 (-473 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-850)) (-5 *2 (-1080 *4)) (-5 *1 (-331 *4))
+ (-4 *4 (-323)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *2 (-627 *3)) (-4 *3 (-970)) (-5 *1 (-628 *3)))))
(((*1 *2 *1)
(-12
(-5 *2
(-3 (|:| |nullBranch| "null")
(|:| |assignmentBranch|
- (-2 (|:| |var| (-1083))
- (|:| |arrayIndex| (-586 (-880 (-520))))
+ (-2 (|:| |var| (-1084))
+ (|:| |arrayIndex| (-587 (-881 (-521))))
(|:| |rand|
- (-2 (|:| |ints2Floats?| (-108)) (|:| -1574 (-791))))))
+ (-2 (|:| |ints2Floats?| (-108)) (|:| -1575 (-792))))))
(|:| |arrayAssignmentBranch|
- (-2 (|:| |var| (-1083)) (|:| |rand| (-791))
+ (-2 (|:| |var| (-1084)) (|:| |rand| (-792))
(|:| |ints2Floats?| (-108))))
(|:| |conditionalBranch|
- (-2 (|:| |switch| (-1082)) (|:| |thenClause| (-303))
- (|:| |elseClause| (-303))))
+ (-2 (|:| |switch| (-1083)) (|:| |thenClause| (-304))
+ (|:| |elseClause| (-304))))
(|:| |returnBranch|
- (-2 (|:| -4018 (-108))
- (|:| -3429
- (-2 (|:| |ints2Floats?| (-108)) (|:| -1574 (-791))))))
- (|:| |blockBranch| (-586 (-303)))
- (|:| |commentBranch| (-586 (-1066))) (|:| |callBranch| (-1066))
+ (-2 (|:| -3462 (-108))
+ (|:| -3430
+ (-2 (|:| |ints2Floats?| (-108)) (|:| -1575 (-792))))))
+ (|:| |blockBranch| (-587 (-304)))
+ (|:| |commentBranch| (-587 (-1067))) (|:| |callBranch| (-1067))
(|:| |forBranch|
- (-2 (|:| -1667 (-1005 (-880 (-520))))
- (|:| |span| (-880 (-520))) (|:| |body| (-303))))
- (|:| |labelBranch| (-1030))
- (|:| |loopBranch| (-2 (|:| |switch| (-1082)) (|:| |body| (-303))))
+ (-2 (|:| -2442 (-1006 (-881 (-521))))
+ (|:| |span| (-881 (-521))) (|:| |body| (-304))))
+ (|:| |labelBranch| (-1031))
+ (|:| |loopBranch| (-2 (|:| |switch| (-1083)) (|:| |body| (-304))))
(|:| |commonBranch|
- (-2 (|:| -2883 (-1083)) (|:| |contents| (-586 (-1083)))))
- (|:| |printBranch| (-586 (-791)))))
- (-5 *1 (-303)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1155 *4))
- (-4 *4 (-37 (-380 (-520))))
- (-5 *2 (-1 (-1064 *4) (-1064 *4) (-1064 *4))) (-5 *1 (-1157 *4 *5)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1066)) (-5 *2 (-352)) (-5 *1 (-721)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-891 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1012)))))
+ (-2 (|:| -2884 (-1084)) (|:| |contents| (-587 (-1084)))))
+ (|:| |printBranch| (-587 (-792)))))
+ (-5 *1 (-304)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-718 *2)) (-4 *2 (-513)) (-4 *2 (-970))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-513)) (-5 *1 (-896 *3 *2)) (-4 *2 (-1141 *3))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729))
+ (-4 *4 (-784)) (-4 *2 (-513))))
+ ((*1 *2 *3 *3 *1)
+ (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784))
+ (-4 *3 (-984 *4 *5 *6))
+ (-5 *2 (-587 (-2 (|:| |val| *3) (|:| -1884 *1))))
+ (-4 *1 (-989 *4 *5 *6 *3)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783))
- (-4 *3 (-983 *5 *6 *7))
- (-5 *2 (-586 (-2 (|:| |val| (-108)) (|:| -1883 *4))))
- (-5 *1 (-711 *5 *6 *7 *3 *4)) (-4 *4 (-988 *5 *6 *7 *3)))))
+ (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1013)) (-4 *4 (-1013))
+ (-4 *6 (-1013)) (-5 *2 (-1 *6 *5)) (-5 *1 (-622 *5 *4 *6)))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1084))
+ (-4 *5 (-13 (-513) (-961 (-521)) (-135)))
+ (-5 *2
+ (-2 (|:| -3100 (-381 (-881 *5))) (|:| |coeff| (-381 (-881 *5)))))
+ (-5 *1 (-527 *5)) (-5 *3 (-381 (-881 *5))))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-202)) (|:| |xend| (-202))
+ (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202)))
+ (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202)))
+ (|:| |abserr| (-202)) (|:| |relerr| (-202))))
+ (-5 *2 (-353)) (-5 *1 (-184)))))
+(((*1 *2 *3 *4 *5 *6 *5 *3 *7)
+ (-12 (-5 *4 (-521))
+ (-5 *6
+ (-2 (|:| |try| (-353)) (|:| |did| (-353)) (|:| -3616 (-353))))
+ (-5 *7 (-1 (-1170) (-1165 *5) (-1165 *5) (-353)))
+ (-5 *3 (-1165 (-353))) (-5 *5 (-353)) (-5 *2 (-1170))
+ (-5 *1 (-724))))
+ ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3)
+ (-12 (-5 *4 (-521))
+ (-5 *6
+ (-2 (|:| |try| (-353)) (|:| |did| (-353)) (|:| -3616 (-353))))
+ (-5 *7 (-1 (-1170) (-1165 *5) (-1165 *5) (-353)))
+ (-5 *3 (-1165 (-353))) (-5 *5 (-353)) (-5 *2 (-1170))
+ (-5 *1 (-724)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-586 *5)) (-5 *4 (-586 (-1 *6 (-586 *6))))
- (-4 *5 (-37 (-380 (-520)))) (-4 *6 (-1155 *5)) (-5 *2 (-586 *6))
- (-5 *1 (-1157 *5 *6)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1112 *3 *4 *5 *6)) (-4 *3 (-512)) (-4 *4 (-728))
- (-4 *5 (-783)) (-4 *6 (-983 *3 *4 *5))
- (-5 *2 (-2 (|:| -1649 (-586 *6)) (|:| -1543 (-586 *6)))))))
-(((*1 *2 *1) (-12 (-4 *1 (-919 *2)) (-4 *2 (-1118)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-110)) (-4 *4 (-969)) (-5 *1 (-650 *4 *2))
- (-4 *2 (-588 *4))))
- ((*1 *2 *3 *2) (-12 (-5 *3 (-110)) (-5 *1 (-770 *2)) (-4 *2 (-969)))))
+ (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8))
+ (-5 *4 (-627 (-1080 *8))) (-4 *5 (-970)) (-4 *8 (-970))
+ (-4 *6 (-1141 *5)) (-5 *2 (-627 *6)) (-5 *1 (-470 *5 *6 *7 *8))
+ (-4 *7 (-1141 *6)))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-1084)) (-5 *2 (-411)) (-5 *1 (-1088)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-381 (-521))) (-4 *1 (-511 *3))
+ (-4 *3 (-13 (-378) (-1105)))))
+ ((*1 *1 *2) (-12 (-4 *1 (-511 *2)) (-4 *2 (-13 (-378) (-1105)))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-511 *2)) (-4 *2 (-13 (-378) (-1105))))))
(((*1 *2 *2)
- (-12 (-5 *2 (-586 (-586 *3))) (-4 *3 (-783)) (-5 *1 (-1090 *3)))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-268 *2)) (-4 *2 (-662)) (-4 *2 (-1118)))))
-(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4)
- (-12 (-5 *3 (-1066)) (-5 *5 (-626 (-201))) (-5 *6 (-201))
- (-5 *7 (-626 (-520))) (-5 *4 (-520)) (-5 *2 (-958)) (-5 *1 (-688)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-586 (-2 (|:| |k| (-611 *3)) (|:| |c| *4))))
- (-5 *1 (-570 *3 *4 *5)) (-4 *3 (-783))
- (-4 *4 (-13 (-157) (-653 (-380 (-520))))) (-14 *5 (-849)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-108)) (-4 *5 (-13 (-281) (-135))) (-4 *6 (-728))
- (-4 *7 (-783)) (-4 *8 (-983 *5 *6 *7)) (-5 *2 (-586 *3))
- (-5 *1 (-542 *5 *6 *7 *8 *3)) (-4 *3 (-1021 *5 *6 *7 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-108)) (-4 *5 (-13 (-281) (-135)))
- (-5 *2
- (-586 (-2 (|:| -1714 (-1079 *5)) (|:| -3790 (-586 (-880 *5))))))
- (-5 *1 (-993 *5 *6)) (-5 *3 (-586 (-880 *5)))
- (-14 *6 (-586 (-1083)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-281) (-135)))
- (-5 *2
- (-586 (-2 (|:| -1714 (-1079 *4)) (|:| -3790 (-586 (-880 *4))))))
- (-5 *1 (-993 *4 *5)) (-5 *3 (-586 (-880 *4)))
- (-14 *5 (-586 (-1083)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-108)) (-4 *5 (-13 (-281) (-135)))
- (-5 *2
- (-586 (-2 (|:| -1714 (-1079 *5)) (|:| -3790 (-586 (-880 *5))))))
- (-5 *1 (-993 *5 *6)) (-5 *3 (-586 (-880 *5)))
- (-14 *6 (-586 (-1083))))))
+ (-12 (-4 *3 (-13 (-784) (-425))) (-5 *1 (-1111 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-1105))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-391 (-1079 *1))) (-5 *1 (-289 *4)) (-5 *3 (-1079 *1))
- (-4 *4 (-424)) (-4 *4 (-512)) (-4 *4 (-783))))
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-316 *4 *5 *6)) (-4 *4 (-1123))
+ (-4 *5 (-1141 *4)) (-4 *6 (-1141 (-381 *5)))
+ (-5 *2 (-2 (|:| |num| (-627 *5)) (|:| |den| *5))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-562 (-821 *3))) (-4 *3 (-815 *3))
+ (-4 *3 (-13 (-784) (-425))) (-5 *1 (-1111 *3 *2))
+ (-4 *2 (-562 (-821 *3))) (-4 *2 (-815 *3))
+ (-4 *2 (-13 (-404 *3) (-1105))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-587 (-521))) (-5 *1 (-929 *3)) (-14 *3 (-521)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-587 (-202))) (-5 *2 (-587 (-1067))) (-5 *1 (-171))))
((*1 *2 *3)
- (-12 (-4 *1 (-837)) (-5 *2 (-391 (-1079 *1))) (-5 *3 (-1079 *1)))))
-(((*1 *2 *1) (-12 (-4 *1 (-733 *2)) (-4 *2 (-157)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-706)) (-5 *2 (-108)) (-5 *1 (-538 *3)) (-4 *3 (-505)))))
-(((*1 *2 *3 *4 *4 *5 *6 *7)
- (-12 (-5 *5 (-1083))
- (-5 *6
- (-1
- (-3
- (-2 (|:| |mainpart| *4)
- (|:| |limitedlogs|
- (-586 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
- "failed")
- *4 (-586 *4)))
- (-5 *7
- (-1 (-3 (-2 (|:| -4016 *4) (|:| |coeff| *4)) "failed") *4 *4))
- (-4 *4 (-13 (-1104) (-27) (-403 *8)))
- (-4 *8 (-13 (-424) (-783) (-135) (-960 *3) (-582 *3)))
- (-5 *3 (-520))
- (-5 *2 (-2 (|:| |ans| *4) (|:| -1924 *4) (|:| |sol?| (-108))))
- (-5 *1 (-937 *8 *4)))))
-(((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *3 (-626 (-201))) (-5 *4 (-520)) (-5 *5 (-108))
- (-5 *2 (-958)) (-5 *1 (-681)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-586 *6)) (-4 *6 (-983 *3 *4 *5)) (-4 *3 (-424))
- (-4 *3 (-512)) (-4 *4 (-728)) (-4 *5 (-783))
- (-5 *1 (-902 *3 *4 *5 *6)))))
+ (-12 (-5 *3 (-587 (-202))) (-5 *2 (-587 (-1067))) (-5 *1 (-275))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-587 (-202))) (-5 *2 (-587 (-1067))) (-5 *1 (-280)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-560 *1)) (-4 *1 (-277)))))
+(((*1 *2 *3) (-12 (-5 *3 (-872 *2)) (-5 *1 (-908 *2)) (-4 *2 (-970)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-620 *4 *3)) (-4 *4 (-1012))
- (-4 *3 (-1012)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-352) (-352))) (-5 *4 (-352))
- (-5 *2
- (-2 (|:| -3429 *4) (|:| -2967 *4) (|:| |totalpts| (-520))
- (|:| |success| (-108))))
- (-5 *1 (-724)) (-5 *5 (-520)))))
-(((*1 *2)
- (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-339 *3 *4))
- (-4 *3 (-340 *4))))
- ((*1 *2) (-12 (-4 *1 (-340 *3)) (-4 *3 (-157)) (-5 *2 (-108)))))
-(((*1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-60 *3)) (-14 *3 (-1083))))
- ((*1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-67 *3)) (-14 *3 (-1083))))
- ((*1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-70 *3)) (-14 *3 (-1083))))
- ((*1 *2 *1) (-12 (-4 *1 (-368)) (-5 *2 (-1169))))
- ((*1 *2 *3) (-12 (-5 *3 (-361)) (-5 *2 (-1169)) (-5 *1 (-370))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1066)) (-5 *4 (-791)) (-5 *2 (-1169)) (-5 *1 (-1046))))
- ((*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1169)) (-5 *1 (-1046))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-586 (-791))) (-5 *2 (-1169)) (-5 *1 (-1046)))))
-(((*1 *2 *2) (-12 (-5 *2 (-520)) (-5 *1 (-854)))))
+ (|partial| -12 (-4 *4 (-1123)) (-4 *5 (-1141 *4))
+ (-5 *2 (-2 (|:| |radicand| (-381 *5)) (|:| |deg| (-707))))
+ (-5 *1 (-136 *4 *5 *3)) (-4 *3 (-1141 (-381 *5))))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1113 *3 *4 *5 *2)) (-4 *3 (-513)) (-4 *4 (-729))
+ (-4 *5 (-784)) (-4 *2 (-984 *3 *4 *5)))))
+(((*1 *1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-587 (-1049 *4 *5))) (-5 *3 (-1 (-108) *5 *5))
+ (-4 *4 (-13 (-1013) (-33))) (-4 *5 (-13 (-1013) (-33)))
+ (-5 *1 (-1050 *4 *5))))
+ ((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-587 (-1049 *3 *4))) (-4 *3 (-13 (-1013) (-33)))
+ (-4 *4 (-13 (-1013) (-33))) (-5 *1 (-1050 *3 *4)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-759)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-984 *3 *4 *2)) (-4 *3 (-970)) (-4 *4 (-729))
+ (-4 *2 (-784))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729))
+ (-4 *4 (-784)))))
+(((*1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-855)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-229 *3 *4 *5 *6)) (-4 *3 (-970)) (-4 *4 (-784))
+ (-4 *5 (-242 *4)) (-4 *6 (-729)) (-5 *2 (-108)))))
+(((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-60 *3)) (-14 *3 (-1084))))
+ ((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-67 *3)) (-14 *3 (-1084))))
+ ((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-70 *3)) (-14 *3 (-1084))))
+ ((*1 *2 *1) (-12 (-4 *1 (-369)) (-5 *2 (-1170))))
+ ((*1 *2 *3) (-12 (-5 *3 (-362)) (-5 *2 (-1170)) (-5 *1 (-371))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1067)) (-5 *4 (-792)) (-5 *2 (-1170)) (-5 *1 (-1047))))
+ ((*1 *2 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1170)) (-5 *1 (-1047))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-587 (-792))) (-5 *2 (-1170)) (-5 *1 (-1047)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-381 *2)) (-4 *2 (-1141 *5))
+ (-5 *1 (-744 *5 *2 *3 *6))
+ (-4 *5 (-13 (-337) (-135) (-961 (-381 (-521)))))
+ (-4 *3 (-597 *2)) (-4 *6 (-597 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-587 (-381 *2))) (-4 *2 (-1141 *5))
+ (-5 *1 (-744 *5 *2 *3 *6))
+ (-4 *5 (-13 (-337) (-135) (-961 (-381 (-521))))) (-4 *3 (-597 *2))
+ (-4 *6 (-597 (-381 *2))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-381 (-881 *3))) (-5 *1 (-426 *3 *4 *5 *6))
+ (-4 *3 (-513)) (-4 *3 (-157)) (-14 *4 (-850))
+ (-14 *5 (-587 (-1084))) (-14 *6 (-1165 (-627 *3))))))
(((*1 *1 *1)
- (-12 (-5 *1 (-545 *2)) (-4 *2 (-37 (-380 (-520)))) (-4 *2 (-969)))))
-(((*1 *1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-980))))
- ((*1 *1 *2) (-12 (-5 *2 (-1083)) (-5 *1 (-980)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-908 *2)) (-4 *2 (-1104)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-908 *2)) (-4 *2 (-1104)))))
+ (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-587 (-381 *7)))
+ (-4 *7 (-1141 *6)) (-5 *3 (-381 *7)) (-4 *6 (-337))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-587 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-531 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-513)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4010 *4)))
+ (-5 *1 (-896 *4 *3)) (-4 *3 (-1141 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-774)) (-5 *4 (-981)) (-5 *2 (-958)) (-5 *1 (-773))))
- ((*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-958)) (-5 *1 (-773))))
+ (-12 (-5 *3 (-775)) (-5 *4 (-982)) (-5 *2 (-959)) (-5 *1 (-774))))
+ ((*1 *2 *3) (-12 (-5 *3 (-775)) (-5 *2 (-959)) (-5 *1 (-774))))
((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-586 (-352))) (-5 *5 (-586 (-776 (-352))))
- (-5 *6 (-586 (-289 (-352)))) (-5 *3 (-289 (-352))) (-5 *2 (-958))
- (-5 *1 (-773))))
+ (-12 (-5 *4 (-587 (-353))) (-5 *5 (-587 (-777 (-353))))
+ (-5 *6 (-587 (-290 (-353)))) (-5 *3 (-290 (-353))) (-5 *2 (-959))
+ (-5 *1 (-774))))
((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-289 (-352))) (-5 *4 (-586 (-352)))
- (-5 *5 (-586 (-776 (-352)))) (-5 *2 (-958)) (-5 *1 (-773))))
+ (-12 (-5 *3 (-290 (-353))) (-5 *4 (-587 (-353)))
+ (-5 *5 (-587 (-777 (-353)))) (-5 *2 (-959)) (-5 *1 (-774))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-289 (-352))) (-5 *4 (-586 (-352))) (-5 *2 (-958))
- (-5 *1 (-773))))
+ (-12 (-5 *3 (-290 (-353))) (-5 *4 (-587 (-353))) (-5 *2 (-959))
+ (-5 *1 (-774))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-586 (-289 (-352)))) (-5 *4 (-586 (-352)))
- (-5 *2 (-958)) (-5 *1 (-773)))))
-(((*1 *2 *3 *4 *3 *4 *3)
- (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *2 (-958))
- (-5 *1 (-692)))))
-(((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| -2972 *3) (|:| |gap| (-706)) (|:| -2060 (-717 *3))
- (|:| -3753 (-717 *3))))
- (-5 *1 (-717 *3)) (-4 *3 (-969))))
- ((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-969)) (-4 *5 (-728)) (-4 *3 (-783))
- (-5 *2
- (-2 (|:| -2972 *1) (|:| |gap| (-706)) (|:| -2060 *1)
- (|:| -3753 *1)))
- (-4 *1 (-983 *4 *5 *3))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783))
- (-5 *2
- (-2 (|:| -2972 *1) (|:| |gap| (-706)) (|:| -2060 *1)
- (|:| -3753 *1)))
- (-4 *1 (-983 *3 *4 *5)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *3 (-281)) (-4 *3 (-157)) (-4 *4 (-346 *3))
- (-4 *5 (-346 *3)) (-5 *2 (-2 (|:| -2060 *3) (|:| -3753 *3)))
- (-5 *1 (-625 *3 *4 *5 *6)) (-4 *6 (-624 *3 *4 *5))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-2 (|:| -2060 *3) (|:| -3753 *3))) (-5 *1 (-636 *3))
- (-4 *3 (-281)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-545 *2)) (-4 *2 (-37 (-380 (-520)))) (-4 *2 (-969)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-520)) (-5 *1 (-391 *2)) (-4 *2 (-512)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-108)) (-5 *1 (-312 *3 *4 *5)) (-14 *3 (-586 (-1083)))
- (-14 *4 (-586 (-1083))) (-4 *5 (-360))))
- ((*1 *2)
- (-12 (-5 *2 (-108)) (-5 *1 (-312 *3 *4 *5)) (-14 *3 (-586 (-1083)))
- (-14 *4 (-586 (-1083))) (-4 *5 (-360)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1083)) (-5 *4 (-880 (-520))) (-5 *2 (-303))
- (-5 *1 (-305)))))
-(((*1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-364)))))
-(((*1 *2 *2) (-12 (-5 *1 (-145 *2)) (-4 *2 (-505))))
- ((*1 *1 *2) (-12 (-5 *2 (-586 (-520))) (-5 *1 (-896)))))
+ (-12 (-5 *3 (-587 (-290 (-353)))) (-5 *4 (-587 (-353)))
+ (-5 *2 (-959)) (-5 *1 (-774)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-969)) (-4 *4 (-1012)) (-5 *2 (-586 *1))
- (-4 *1 (-355 *3 *4))))
+ (-12 (-5 *2 (-1080 (-381 (-881 *3)))) (-5 *1 (-426 *3 *4 *5 *6))
+ (-4 *3 (-513)) (-4 *3 (-157)) (-14 *4 (-850))
+ (-14 *5 (-587 (-1084))) (-14 *6 (-1165 (-627 *3))))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-1113 *3 *4 *5 *2)) (-4 *3 (-513))
+ (-4 *4 (-729)) (-4 *5 (-784)) (-4 *2 (-984 *3 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970)) (-5 *2 (-587 (-156))))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-792))))
+ ((*1 *1 *1) (-5 *1 (-792))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1080 *3)) (-4 *3 (-323)) (-5 *1 (-331 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *2 (-157)) (-4 *2 (-970)) (-5 *1 (-651 *2 *3))
+ (-4 *3 (-589 *2))))
+ ((*1 *2 *2) (-12 (-5 *1 (-771 *2)) (-4 *2 (-157)) (-4 *2 (-970)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-425))
+ (-5 *2
+ (-587
+ (-2 (|:| |eigval| (-3 (-381 (-881 *4)) (-1074 (-1084) (-881 *4))))
+ (|:| |geneigvec| (-587 (-627 (-381 (-881 *4))))))))
+ (-5 *1 (-267 *4)) (-5 *3 (-627 (-381 (-881 *4)))))))
+(((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-365)))))
+(((*1 *2 *1) (-12 (-4 *1 (-46 *3 *2)) (-4 *3 (-970)) (-4 *2 (-728))))
((*1 *2 *1)
- (-12 (-5 *2 (-586 (-671 *3 *4))) (-5 *1 (-671 *3 *4)) (-4 *3 (-969))
- (-4 *4 (-662))))
+ (-12 (-5 *2 (-707)) (-5 *1 (-49 *3 *4)) (-4 *3 (-970))
+ (-14 *4 (-587 (-1084)))))
((*1 *2 *1)
- (-12 (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *2 (-586 *1))
- (-4 *1 (-877 *3 *4 *5)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-849)) (-4 *5 (-512)) (-5 *2 (-626 *5))
- (-5 *1 (-883 *5 *3)) (-4 *3 (-596 *5)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1083)) (-5 *5 (-1007 (-201))) (-5 *2 (-855))
- (-5 *1 (-853 *3)) (-4 *3 (-561 (-496)))))
- ((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *4 (-1083)) (-5 *5 (-1007 (-201))) (-5 *2 (-855))
- (-5 *1 (-853 *3)) (-4 *3 (-561 (-496)))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1007 (-201))) (-5 *1 (-854))))
- ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-1 (-201) (-201))) (-5 *3 (-1007 (-201)))
- (-5 *1 (-854))))
- ((*1 *1 *2 *2 *2 *2 *3)
- (-12 (-5 *2 (-1 (-201) (-201))) (-5 *3 (-1007 (-201)))
- (-5 *1 (-854))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1007 (-201))) (-5 *1 (-855))))
- ((*1 *1 *2 *2 *3 *3 *3)
- (-12 (-5 *2 (-1 (-201) (-201))) (-5 *3 (-1007 (-201)))
- (-5 *1 (-855))))
- ((*1 *1 *2 *2 *3)
- (-12 (-5 *2 (-1 (-201) (-201))) (-5 *3 (-1007 (-201)))
- (-5 *1 (-855))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-586 (-1 (-201) (-201)))) (-5 *3 (-1007 (-201)))
- (-5 *1 (-855))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-586 (-1 (-201) (-201)))) (-5 *3 (-1007 (-201)))
- (-5 *1 (-855))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-201) (-201))) (-5 *3 (-1007 (-201)))
- (-5 *1 (-855))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-201) (-201))) (-5 *3 (-1007 (-201)))
- (-5 *1 (-855)))))
-(((*1 *1 *1) (-12 (-5 *1 (-842 *2)) (-4 *2 (-281)))))
+ (-12 (-5 *2 (-521)) (-5 *1 (-200 *3 *4)) (-4 *3 (-13 (-970) (-784)))
+ (-14 *4 (-587 (-1084)))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-229 *4 *3 *5 *6)) (-4 *4 (-970)) (-4 *3 (-784))
+ (-4 *5 (-242 *3)) (-4 *6 (-729)) (-5 *2 (-707))))
+ ((*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-251))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1080 *8)) (-5 *4 (-587 *6)) (-4 *6 (-784))
+ (-4 *8 (-878 *7 *5 *6)) (-4 *5 (-729)) (-4 *7 (-970))
+ (-5 *2 (-587 (-707))) (-5 *1 (-295 *5 *6 *7 *8))))
+ ((*1 *2 *1) (-12 (-4 *1 (-303 *3)) (-4 *3 (-337)) (-5 *2 (-850))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-348 *3 *4)) (-4 *3 (-784)) (-4 *4 (-157))
+ (-5 *2 (-707))))
+ ((*1 *2 *1) (-12 (-4 *1 (-443 *3 *2)) (-4 *3 (-157)) (-4 *2 (-23))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-513)) (-5 *2 (-521)) (-5 *1 (-568 *3 *4))
+ (-4 *4 (-1141 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-646 *3)) (-4 *3 (-970)) (-5 *2 (-707))))
+ ((*1 *2 *1) (-12 (-4 *1 (-786 *3)) (-4 *3 (-970)) (-5 *2 (-707))))
+ ((*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-833 *3)) (-4 *3 (-1013))))
+ ((*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-834 *3)) (-4 *3 (-1013))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-587 *6)) (-4 *1 (-878 *4 *5 *6)) (-4 *4 (-970))
+ (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-587 (-707)))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-878 *4 *5 *3)) (-4 *4 (-970)) (-4 *5 (-729))
+ (-4 *3 (-784)) (-5 *2 (-707))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-899 *3 *2 *4)) (-4 *3 (-970)) (-4 *4 (-784))
+ (-4 *2 (-728))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1113 *3 *4 *5 *6)) (-4 *3 (-513)) (-4 *4 (-729))
+ (-4 *5 (-784)) (-4 *6 (-984 *3 *4 *5)) (-5 *2 (-707))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1127 *3 *4)) (-4 *3 (-970)) (-4 *4 (-1156 *3))
+ (-5 *2 (-521))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1148 *3 *4)) (-4 *3 (-970)) (-4 *4 (-1125 *3))
+ (-5 *2 (-381 (-521)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1182 *3)) (-4 *3 (-337)) (-5 *2 (-770 (-850)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1184 *3 *4)) (-4 *3 (-784)) (-4 *4 (-970))
+ (-5 *2 (-707)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-4 *1 (-1141 *3)) (-4 *3 (-970))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-850)) (-4 *1 (-1143 *3 *4)) (-4 *3 (-970))
+ (-4 *4 (-728))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-381 (-521))) (-4 *1 (-1146 *3)) (-4 *3 (-970)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-586 (-2 (|:| -2526 (-1083)) (|:| -3043 *4))))
- (-5 *1 (-817 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012))))
+ (-12 (-5 *2 (-587 (-2 (|:| -2529 (-1084)) (|:| -3045 *4))))
+ (-5 *1 (-818 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013))))
((*1 *2 *1)
- (-12 (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012))
- (-4 *7 (-1012)) (-5 *2 (-586 *1)) (-4 *1 (-1015 *3 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-154 *4)) (-5 *1 (-164 *4 *3))
- (-4 *4 (-13 (-336) (-781))) (-4 *3 (-1140 *2)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-820 *4)) (-4 *4 (-1012)) (-5 *1 (-818 *4 *3))
- (-4 *3 (-1118))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-820 *3)) (-4 *3 (-1012)))))
+ (-12 (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013))
+ (-4 *7 (-1013)) (-5 *2 (-587 *1)) (-4 *1 (-1016 *3 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3)
+ (-12 (-5 *3 (-521)) (-5 *5 (-627 (-202))) (-5 *4 (-202))
+ (-5 *2 (-959)) (-5 *1 (-689)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-108)) (-5 *1 (-766)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-587 (-239))) (-5 *4 (-1084)) (-5 *2 (-108))
+ (-5 *1 (-239)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-706))
- (-5 *1 (-421 *4 *5 *6 *3)) (-4 *3 (-877 *4 *5 *6)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-908 *2)) (-4 *2 (-1104)))))
+ (|partial| -12 (-5 *3 (-110)) (-4 *2 (-1013)) (-4 *2 (-784))
+ (-5 *1 (-109 *2)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-425))) (-5 *1 (-1111 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-1105))))))
+(((*1 *2 *3 *3 *4 *5 *5)
+ (-12 (-5 *5 (-108)) (-4 *6 (-425)) (-4 *7 (-729)) (-4 *8 (-784))
+ (-4 *3 (-984 *6 *7 *8))
+ (-5 *2 (-587 (-2 (|:| |val| *3) (|:| -1884 *4))))
+ (-5 *1 (-1021 *6 *7 *8 *3 *4)) (-4 *4 (-989 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-587 (-2 (|:| |val| (-587 *8)) (|:| -1884 *9))))
+ (-5 *5 (-108)) (-4 *8 (-984 *6 *7 *4)) (-4 *9 (-989 *6 *7 *4 *8))
+ (-4 *6 (-425)) (-4 *7 (-729)) (-4 *4 (-784))
+ (-5 *2 (-587 (-2 (|:| |val| *8) (|:| -1884 *9))))
+ (-5 *1 (-1021 *6 *7 *4 *8 *9)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-425)) (-4 *4 (-513))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4034 *4)))
+ (-5 *1 (-896 *4 *3)) (-4 *3 (-1141 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-843 *3)) (-4 *3 (-282)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-587 *5) *6))
+ (-4 *5 (-13 (-337) (-135) (-961 (-381 (-521))))) (-4 *6 (-1141 *5))
+ (-5 *2 (-587 (-2 (|:| |poly| *6) (|:| -3192 *3))))
+ (-5 *1 (-746 *5 *6 *3 *7)) (-4 *3 (-597 *6))
+ (-4 *7 (-597 (-381 *6)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-587 *5) *6))
+ (-4 *5 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521)))))
+ (-4 *6 (-1141 *5))
+ (-5 *2 (-587 (-2 (|:| |poly| *6) (|:| -3192 (-595 *6 (-381 *6))))))
+ (-5 *1 (-749 *5 *6)) (-5 *3 (-595 *6 (-381 *6))))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))))
+(((*1 *2 *3) (-12 (-5 *3 (-362)) (-5 *2 (-1170)) (-5 *1 (-365))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-365)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))))
+(((*1 *2 *2) (-12 (-5 *2 (-353)) (-5 *1 (-1167))))
+ ((*1 *2) (-12 (-5 *2 (-353)) (-5 *1 (-1167)))))
(((*1 *2 *2 *2)
- (-12 (-4 *3 (-336)) (-5 *1 (-702 *2 *3)) (-4 *2 (-645 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-785 *2)) (-4 *2 (-969)) (-4 *2 (-336)))))
+ (|partial| -12 (-4 *3 (-337)) (-5 *1 (-825 *2 *3))
+ (-4 *2 (-1141 *3)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-199 *2 *3)) (-4 *2 (-13 (-969) (-783)))
- (-14 *3 (-586 (-1083))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3 (-520))) (-4 *3 (-969)) (-5 *1 (-94 *3))))
- ((*1 *1 *2 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-969)) (-5 *1 (-94 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-969)) (-5 *1 (-94 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-361)) (-5 *2 (-1169)) (-5 *1 (-364))))
- ((*1 *2 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-1169)) (-5 *1 (-364)))))
+ (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729))
+ (-4 *4 (-784)) (-4 *2 (-513)))))
+(((*1 *2 *3) (-12 (-5 *3 (-202)) (-5 *2 (-1067)) (-5 *1 (-171))))
+ ((*1 *2 *3) (-12 (-5 *3 (-202)) (-5 *2 (-1067)) (-5 *1 (-275))))
+ ((*1 *2 *3) (-12 (-5 *3 (-202)) (-5 *2 (-1067)) (-5 *1 (-280)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1083)) (-4 *4 (-512)) (-4 *4 (-783))
- (-5 *1 (-529 *4 *2)) (-4 *2 (-403 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-336)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *2 (-108))
- (-5 *1 (-472 *3 *4 *5 *6)) (-4 *6 (-877 *3 *4 *5))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-586 *6)) (-4 *6 (-783)) (-4 *4 (-336)) (-4 *5 (-728))
- (-5 *2 (-108)) (-5 *1 (-472 *4 *5 *6 *7)) (-4 *7 (-877 *4 *5 *6)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-201)) (-5 *4 (-520))
- (-5 *5 (-3 (|:| |fn| (-361)) (|:| |fp| (-62 -4045)))) (-5 *2 (-958))
- (-5 *1 (-684)))))
-(((*1 *1) (-5 *1 (-265))))
-(((*1 *2 *1) (-12 (-4 *1 (-934 *3)) (-4 *3 (-1118)) (-5 *2 (-108))))
- ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1105 *3)) (-4 *3 (-1012)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-586 (-520))) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-520))
- (-14 *4 (-706)) (-4 *5 (-157)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-512))
- (-5 *2 (-2 (|:| -2972 *4) (|:| -2060 *3) (|:| -3753 *3)))
- (-5 *1 (-895 *4 *3)) (-4 *3 (-1140 *4))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783))
- (-5 *2 (-2 (|:| -2060 *1) (|:| -3753 *1))) (-4 *1 (-983 *3 *4 *5))))
+ (-12 (-4 *4 (-13 (-337) (-135) (-961 (-381 (-521)))))
+ (-4 *3 (-1141 *4)) (-5 *1 (-746 *4 *3 *2 *5)) (-4 *2 (-597 *3))
+ (-4 *5 (-597 (-381 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-381 *5))
+ (-4 *4 (-13 (-337) (-135) (-961 (-381 (-521))))) (-4 *5 (-1141 *4))
+ (-5 *1 (-746 *4 *5 *2 *6)) (-4 *2 (-597 *5)) (-4 *6 (-597 *3)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-803)) (-5 *3 (-587 (-239))) (-5 *1 (-237)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-587 *1)) (-4 *1 (-984 *4 *5 *6)) (-4 *4 (-970))
+ (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-108))))
((*1 *2 *1 *1)
- (-12 (-4 *3 (-512)) (-4 *3 (-969))
- (-5 *2 (-2 (|:| -2972 *3) (|:| -2060 *1) (|:| -3753 *1)))
- (-4 *1 (-1140 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1164 *5)) (-4 *5 (-582 *4)) (-4 *4 (-512))
- (-5 *2 (-108)) (-5 *1 (-581 *4 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-201)) (-5 *4 (-520)) (-5 *2 (-958)) (-5 *1 (-694)))))
+ (-12 (-4 *1 (-984 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-729))
+ (-4 *5 (-784)) (-5 *2 (-108))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1113 *3 *4 *5 *6)) (-4 *3 (-513)) (-4 *4 (-729))
+ (-4 *5 (-784)) (-4 *6 (-984 *3 *4 *5)) (-5 *2 (-108))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1113 *4 *5 *6 *3)) (-4 *4 (-513)) (-4 *5 (-729))
+ (-4 *6 (-784)) (-4 *3 (-984 *4 *5 *6)) (-5 *2 (-108)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1119)))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1113 *3 *4 *5 *2)) (-4 *3 (-513)) (-4 *4 (-729))
+ (-4 *5 (-784)) (-4 *2 (-984 *3 *4 *5)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-472 (-380 (-520)) (-216 *5 (-706)) (-793 *4)
- (-223 *4 (-380 (-520)))))
- (-14 *4 (-586 (-1083))) (-14 *5 (-706)) (-5 *2 (-108))
- (-5 *1 (-473 *4 *5)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-201)) (-5 *4 (-520)) (-5 *2 (-958)) (-5 *1 (-694)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1122)) (-4 *5 (-1140 *4))
- (-5 *2
- (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-380 *5))
- (|:| |c2| (-380 *5)) (|:| |deg| (-706))))
- (-5 *1 (-136 *4 *5 *3)) (-4 *3 (-1140 (-380 *5))))))
+ (-12 (-5 *3 (-1067))
+ (-4 *4 (-13 (-425) (-784) (-961 (-521)) (-583 (-521))))
+ (-5 *2 (-108)) (-5 *1 (-201 *4 *5)) (-4 *5 (-13 (-1105) (-29 *4))))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-586 (-352))) (-5 *3 (-586 (-238))) (-5 *1 (-236))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-586 (-352))) (-5 *1 (-440))))
- ((*1 *2 *1) (-12 (-5 *2 (-586 (-352))) (-5 *1 (-440))))
+ (-12 (-5 *2 (-587 (-353))) (-5 *3 (-587 (-239))) (-5 *1 (-237))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-587 (-353))) (-5 *1 (-441))))
+ ((*1 *2 *1) (-12 (-5 *2 (-587 (-353))) (-5 *1 (-441))))
((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-849)) (-5 *4 (-802)) (-5 *2 (-1169)) (-5 *1 (-1165))))
+ (-12 (-5 *3 (-850)) (-5 *4 (-803)) (-5 *2 (-1170)) (-5 *1 (-1166))))
((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-849)) (-5 *4 (-1066)) (-5 *2 (-1169)) (-5 *1 (-1165)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-586 (-717 *3))) (-5 *1 (-717 *3)) (-4 *3 (-512))
- (-4 *3 (-969)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1033 *3 *4 *2 *5)) (-4 *4 (-969)) (-4 *5 (-214 *3 *4))
- (-4 *2 (-214 *3 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-988 *3 *4 *5 *6)) (-4 *3 (-424)) (-4 *4 (-728))
- (-4 *5 (-783)) (-4 *6 (-983 *3 *4 *5)) (-5 *2 (-108))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-988 *4 *5 *6 *3)) (-4 *4 (-424)) (-4 *5 (-728))
- (-4 *6 (-783)) (-4 *3 (-983 *4 *5 *6)) (-5 *2 (-108)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-871 *4)) (-5 *1 (-1072 *3 *4)) (-14 *3 (-849))
- (-4 *4 (-969)))))
-(((*1 *2 *1 *3 *3 *3 *2)
- (-12 (-5 *3 (-706)) (-5 *1 (-614 *2)) (-4 *2 (-1012)))))
+ (-12 (-5 *3 (-850)) (-5 *4 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1166)))))
+(((*1 *2 *3 *3 *3 *4 *5)
+ (-12 (-5 *5 (-587 (-587 (-202)))) (-5 *4 (-202))
+ (-5 *2 (-587 (-872 *4))) (-5 *1 (-1116)) (-5 *3 (-872 *4)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-707)) (-5 *3 (-872 *5)) (-4 *5 (-970))
+ (-5 *1 (-1073 *4 *5)) (-14 *4 (-850))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-587 (-707))) (-5 *3 (-707)) (-5 *1 (-1073 *4 *5))
+ (-14 *4 (-850)) (-4 *5 (-970))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-587 (-707))) (-5 *3 (-872 *5)) (-4 *5 (-970))
+ (-5 *1 (-1073 *4 *5)) (-14 *4 (-850)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-586 (-2 (|:| -1916 *4) (|:| -2528 (-520)))))
- (-4 *4 (-1140 (-520))) (-5 *2 (-673 (-706))) (-5 *1 (-414 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-391 *5)) (-4 *5 (-1140 *4)) (-4 *4 (-969))
- (-5 *2 (-673 (-706))) (-5 *1 (-416 *4 *5)))))
+ (-12 (-5 *3 (-1138 *5 *4)) (-4 *4 (-425)) (-4 *4 (-757))
+ (-14 *5 (-1084)) (-5 *2 (-521)) (-5 *1 (-1027 *4 *5)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *2 (-587 (-1084))) (-5 *1 (-1087)) (-5 *3 (-1084)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-872 *3) (-872 *3))) (-5 *1 (-160 *3))
+ (-4 *3 (-13 (-337) (-1105) (-927)))))
+ ((*1 *2)
+ (|partial| -12 (-4 *4 (-1123)) (-4 *5 (-1141 (-381 *2)))
+ (-4 *2 (-1141 *4)) (-5 *1 (-315 *3 *4 *2 *5))
+ (-4 *3 (-316 *4 *2 *5))))
+ ((*1 *2)
+ (|partial| -12 (-4 *1 (-316 *3 *2 *4)) (-4 *3 (-1123))
+ (-4 *4 (-1141 (-381 *2))) (-4 *2 (-1141 *3)))))
+(((*1 *2 *1 *1 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1)))
+ (-4 *1 (-282))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1383 *1)))
+ (-4 *1 (-282)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-1164 *4)) (-4 *4 (-1118)) (-4 *1 (-214 *3 *4)))))
+ (-12 (-5 *2 (-1165 *4)) (-4 *4 (-1119)) (-4 *1 (-215 *3 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-513) (-135))) (-5 *1 (-498 *3 *2))
+ (-4 *2 (-1156 *3))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-337) (-342) (-562 (-521)))) (-4 *4 (-1141 *3))
+ (-4 *5 (-661 *3 *4)) (-5 *1 (-502 *3 *4 *5 *2)) (-4 *2 (-1156 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-337) (-342) (-562 (-521)))) (-5 *1 (-503 *3 *2))
+ (-4 *2 (-1156 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-13 (-513) (-135)))
+ (-5 *1 (-1061 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-520)) (-4 *5 (-322)) (-5 *2 (-391 (-1079 (-1079 *5))))
- (-5 *1 (-1117 *5)) (-5 *3 (-1079 (-1079 *5))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1016)) (-5 *1 (-1087)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-201)) (-5 *5 (-520)) (-5 *2 (-1114 *3))
- (-5 *1 (-725 *3)) (-4 *3 (-899))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *3 (-586 (-586 (-871 (-201))))) (-5 *4 (-108))
- (-5 *1 (-1114 *2)) (-4 *2 (-899)))))
-(((*1 *2 *3 *4 *4 *3)
- (|partial| -12 (-5 *4 (-559 *3))
- (-4 *3 (-13 (-403 *5) (-27) (-1104)))
- (-4 *5 (-13 (-424) (-960 (-520)) (-783) (-135) (-582 (-520))))
- (-5 *2 (-2 (|:| -4016 *3) (|:| |coeff| *3)))
- (-5 *1 (-522 *5 *3 *6)) (-4 *6 (-1012)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-586 (-2 (|:| |gen| *3) (|:| -3260 *4))))
- (-4 *3 (-1012)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-589 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-407)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-586 (-2 (|:| -2526 (-1083)) (|:| -3043 (-410)))))
- (-5 *1 (-1087)))))
+ (-12 (-5 *3 (-594 (-381 *6))) (-5 *4 (-1 (-587 *5) *6))
+ (-4 *5 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521)))))
+ (-4 *6 (-1141 *5)) (-5 *2 (-587 (-381 *6))) (-5 *1 (-749 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-594 (-381 *7))) (-5 *4 (-1 (-587 *6) *7))
+ (-5 *5 (-1 (-392 *7) *7))
+ (-4 *6 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521)))))
+ (-4 *7 (-1141 *6)) (-5 *2 (-587 (-381 *7))) (-5 *1 (-749 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-595 *6 (-381 *6))) (-5 *4 (-1 (-587 *5) *6))
+ (-4 *5 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521)))))
+ (-4 *6 (-1141 *5)) (-5 *2 (-587 (-381 *6))) (-5 *1 (-749 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-595 *7 (-381 *7))) (-5 *4 (-1 (-587 *6) *7))
+ (-5 *5 (-1 (-392 *7) *7))
+ (-4 *6 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521)))))
+ (-4 *7 (-1141 *6)) (-5 *2 (-587 (-381 *7))) (-5 *1 (-749 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-594 (-381 *5))) (-4 *5 (-1141 *4)) (-4 *4 (-27))
+ (-4 *4 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521)))))
+ (-5 *2 (-587 (-381 *5))) (-5 *1 (-749 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-594 (-381 *6))) (-5 *4 (-1 (-392 *6) *6))
+ (-4 *6 (-1141 *5)) (-4 *5 (-27))
+ (-4 *5 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521)))))
+ (-5 *2 (-587 (-381 *6))) (-5 *1 (-749 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-595 *5 (-381 *5))) (-4 *5 (-1141 *4)) (-4 *4 (-27))
+ (-4 *4 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521)))))
+ (-5 *2 (-587 (-381 *5))) (-5 *1 (-749 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-595 *6 (-381 *6))) (-5 *4 (-1 (-392 *6) *6))
+ (-4 *6 (-1141 *5)) (-4 *5 (-27))
+ (-4 *5 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521)))))
+ (-5 *2 (-587 (-381 *6))) (-5 *1 (-749 *5 *6)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-201)) (-5 *4 (-520)) (-5 *2 (-958)) (-5 *1 (-694)))))
-(((*1 *2 *1) (-12 (-4 *1 (-229 *2)) (-4 *2 (-1118)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-983 *3 *4 *2)) (-4 *3 (-969)) (-4 *4 (-728))
- (-4 *2 (-783))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-983 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-728))
- (-4 *4 (-783)))))
+ (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1013)) (-4 *5 (-1013))
+ (-4 *6 (-1013)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-622 *4 *5 *6)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-586 (-51))) (-5 *1 (-820 *3)) (-4 *3 (-1012)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1066)) (-5 *3 (-759)) (-5 *1 (-758)))))
+ (-12 (-5 *2 (-950 (-777 (-521)))) (-5 *1 (-546 *3)) (-4 *3 (-970)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-473 (-381 (-521)) (-217 *5 (-707)) (-794 *4)
+ (-224 *4 (-381 (-521)))))
+ (-14 *4 (-587 (-1084))) (-14 *5 (-707)) (-5 *2 (-108))
+ (-5 *1 (-474 *4 *5)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-587 (-2 (|:| -2529 (-1084)) (|:| -3045 (-411)))))
+ (-5 *1 (-1088)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-970)) (-14 *3 (-587 (-1084)))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-200 *2 *3)) (-4 *2 (-13 (-970) (-784)))
+ (-14 *3 (-587 (-1084))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-587 *8)) (-5 *4 (-587 *9)) (-4 *8 (-984 *5 *6 *7))
+ (-4 *9 (-989 *5 *6 *7 *8)) (-4 *5 (-425)) (-4 *6 (-729))
+ (-4 *7 (-784)) (-5 *2 (-707)) (-5 *1 (-987 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-587 *8)) (-5 *4 (-587 *9)) (-4 *8 (-984 *5 *6 *7))
+ (-4 *9 (-1022 *5 *6 *7 *8)) (-4 *5 (-425)) (-4 *6 (-729))
+ (-4 *7 (-784)) (-5 *2 (-707)) (-5 *1 (-1054 *5 *6 *7 *8 *9)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-513)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784))
+ (-5 *2 (-587 *1)) (-4 *1 (-984 *3 *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-627 *8)) (-4 *8 (-878 *5 *7 *6))
+ (-4 *5 (-13 (-282) (-135))) (-4 *6 (-13 (-784) (-562 (-1084))))
+ (-4 *7 (-729))
+ (-5 *2
+ (-587
+ (-2 (|:| |eqzro| (-587 *8)) (|:| |neqzro| (-587 *8))
+ (|:| |wcond| (-587 (-881 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1165 (-381 (-881 *5))))
+ (|:| -2470 (-587 (-1165 (-381 (-881 *5))))))))))
+ (-5 *1 (-853 *5 *6 *7 *8)) (-5 *4 (-587 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-627 *8)) (-5 *4 (-587 (-1084))) (-4 *8 (-878 *5 *7 *6))
+ (-4 *5 (-13 (-282) (-135))) (-4 *6 (-13 (-784) (-562 (-1084))))
+ (-4 *7 (-729))
+ (-5 *2
+ (-587
+ (-2 (|:| |eqzro| (-587 *8)) (|:| |neqzro| (-587 *8))
+ (|:| |wcond| (-587 (-881 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1165 (-381 (-881 *5))))
+ (|:| -2470 (-587 (-1165 (-381 (-881 *5))))))))))
+ (-5 *1 (-853 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-627 *7)) (-4 *7 (-878 *4 *6 *5))
+ (-4 *4 (-13 (-282) (-135))) (-4 *5 (-13 (-784) (-562 (-1084))))
+ (-4 *6 (-729))
+ (-5 *2
+ (-587
+ (-2 (|:| |eqzro| (-587 *7)) (|:| |neqzro| (-587 *7))
+ (|:| |wcond| (-587 (-881 *4)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1165 (-381 (-881 *4))))
+ (|:| -2470 (-587 (-1165 (-381 (-881 *4))))))))))
+ (-5 *1 (-853 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-627 *9)) (-5 *5 (-850)) (-4 *9 (-878 *6 *8 *7))
+ (-4 *6 (-13 (-282) (-135))) (-4 *7 (-13 (-784) (-562 (-1084))))
+ (-4 *8 (-729))
+ (-5 *2
+ (-587
+ (-2 (|:| |eqzro| (-587 *9)) (|:| |neqzro| (-587 *9))
+ (|:| |wcond| (-587 (-881 *6)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1165 (-381 (-881 *6))))
+ (|:| -2470 (-587 (-1165 (-381 (-881 *6))))))))))
+ (-5 *1 (-853 *6 *7 *8 *9)) (-5 *4 (-587 *9))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-627 *9)) (-5 *4 (-587 (-1084))) (-5 *5 (-850))
+ (-4 *9 (-878 *6 *8 *7)) (-4 *6 (-13 (-282) (-135)))
+ (-4 *7 (-13 (-784) (-562 (-1084)))) (-4 *8 (-729))
+ (-5 *2
+ (-587
+ (-2 (|:| |eqzro| (-587 *9)) (|:| |neqzro| (-587 *9))
+ (|:| |wcond| (-587 (-881 *6)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1165 (-381 (-881 *6))))
+ (|:| -2470 (-587 (-1165 (-381 (-881 *6))))))))))
+ (-5 *1 (-853 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-627 *8)) (-5 *4 (-850)) (-4 *8 (-878 *5 *7 *6))
+ (-4 *5 (-13 (-282) (-135))) (-4 *6 (-13 (-784) (-562 (-1084))))
+ (-4 *7 (-729))
+ (-5 *2
+ (-587
+ (-2 (|:| |eqzro| (-587 *8)) (|:| |neqzro| (-587 *8))
+ (|:| |wcond| (-587 (-881 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1165 (-381 (-881 *5))))
+ (|:| -2470 (-587 (-1165 (-381 (-881 *5))))))))))
+ (-5 *1 (-853 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-627 *9)) (-5 *4 (-587 *9)) (-5 *5 (-1067))
+ (-4 *9 (-878 *6 *8 *7)) (-4 *6 (-13 (-282) (-135)))
+ (-4 *7 (-13 (-784) (-562 (-1084)))) (-4 *8 (-729)) (-5 *2 (-521))
+ (-5 *1 (-853 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-627 *9)) (-5 *4 (-587 (-1084))) (-5 *5 (-1067))
+ (-4 *9 (-878 *6 *8 *7)) (-4 *6 (-13 (-282) (-135)))
+ (-4 *7 (-13 (-784) (-562 (-1084)))) (-4 *8 (-729)) (-5 *2 (-521))
+ (-5 *1 (-853 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-627 *8)) (-5 *4 (-1067)) (-4 *8 (-878 *5 *7 *6))
+ (-4 *5 (-13 (-282) (-135))) (-4 *6 (-13 (-784) (-562 (-1084))))
+ (-4 *7 (-729)) (-5 *2 (-521)) (-5 *1 (-853 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-627 *10)) (-5 *4 (-587 *10)) (-5 *5 (-850))
+ (-5 *6 (-1067)) (-4 *10 (-878 *7 *9 *8)) (-4 *7 (-13 (-282) (-135)))
+ (-4 *8 (-13 (-784) (-562 (-1084)))) (-4 *9 (-729)) (-5 *2 (-521))
+ (-5 *1 (-853 *7 *8 *9 *10))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-627 *10)) (-5 *4 (-587 (-1084))) (-5 *5 (-850))
+ (-5 *6 (-1067)) (-4 *10 (-878 *7 *9 *8)) (-4 *7 (-13 (-282) (-135)))
+ (-4 *8 (-13 (-784) (-562 (-1084)))) (-4 *9 (-729)) (-5 *2 (-521))
+ (-5 *1 (-853 *7 *8 *9 *10))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-627 *9)) (-5 *4 (-850)) (-5 *5 (-1067))
+ (-4 *9 (-878 *6 *8 *7)) (-4 *6 (-13 (-282) (-135)))
+ (-4 *7 (-13 (-784) (-562 (-1084)))) (-4 *8 (-729)) (-5 *2 (-521))
+ (-5 *1 (-853 *6 *7 *8 *9)))))
(((*1 *2 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-512) (-783) (-960 (-520)))) (-5 *2 (-289 *4))
- (-5 *1 (-166 *4 *3)) (-4 *3 (-13 (-27) (-1104) (-403 (-154 *4))))))
+ (-12 (-4 *4 (-13 (-513) (-784) (-961 (-521)))) (-5 *2 (-290 *4))
+ (-5 *1 (-167 *4 *3)) (-4 *3 (-13 (-27) (-1105) (-404 (-154 *4))))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-424) (-783) (-960 (-520)) (-582 (-520))))
- (-5 *1 (-1108 *3 *2)) (-4 *2 (-13 (-27) (-1104) (-403 *3))))))
+ (-12 (-4 *3 (-13 (-425) (-784) (-961 (-521)) (-583 (-521))))
+ (-5 *1 (-1109 *3 *2)) (-4 *2 (-13 (-27) (-1105) (-404 *3))))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959))
+ (-5 *1 (-689)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-587 (-521))) (-5 *2 (-587 (-627 (-521))))
+ (-5 *1 (-1023)))))
+(((*1 *2 *2) (-12 (-5 *2 (-290 (-202))) (-5 *1 (-189)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-729))
+ (-4 *3 (-13 (-784) (-10 -8 (-15 -1430 ((-1084) $))))) (-4 *5 (-513))
+ (-5 *1 (-669 *4 *3 *5 *2)) (-4 *2 (-878 (-381 (-881 *5)) *4 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *4 (-970)) (-4 *5 (-729))
+ (-4 *3
+ (-13 (-784)
+ (-10 -8 (-15 -1430 ((-1084) $))
+ (-15 -1611 ((-3 $ "failed") (-1084))))))
+ (-5 *1 (-910 *4 *5 *3 *2)) (-4 *2 (-878 (-881 *4) *5 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-587 *6))
+ (-4 *6
+ (-13 (-784)
+ (-10 -8 (-15 -1430 ((-1084) $))
+ (-15 -1611 ((-3 $ "failed") (-1084))))))
+ (-4 *4 (-970)) (-4 *5 (-729)) (-5 *1 (-910 *4 *5 *6 *2))
+ (-4 *2 (-878 (-881 *4) *5 *6)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-110)))))
+(((*1 *2)
+ (-12 (-4 *3 (-1123)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4)))
+ (-5 *2 (-1165 *1)) (-4 *1 (-316 *3 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-108)) (-5 *1 (-38 *3)) (-4 *3 (-1141 (-47))))))
+(((*1 *1 *1) (-4 *1 (-1053))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1012)) (-4 *4 (-1012))
- (-4 *6 (-1012)) (-5 *2 (-1 *6 *5)) (-5 *1 (-621 *5 *4 *6)))))
+ (-12 (-5 *4 (-587 *5)) (-4 *5 (-1141 *3)) (-4 *3 (-282))
+ (-5 *2 (-108)) (-5 *1 (-428 *3 *5)))))
(((*1 *2 *3 *4 *2 *5 *6)
(-12
(-5 *5
- (-2 (|:| |done| (-586 *11))
- (|:| |todo| (-586 (-2 (|:| |val| *3) (|:| -1883 *11))))))
- (-5 *6 (-706))
- (-5 *2 (-586 (-2 (|:| |val| (-586 *10)) (|:| -1883 *11))))
- (-5 *3 (-586 *10)) (-5 *4 (-586 *11)) (-4 *10 (-983 *7 *8 *9))
- (-4 *11 (-988 *7 *8 *9 *10)) (-4 *7 (-424)) (-4 *8 (-728))
- (-4 *9 (-783)) (-5 *1 (-986 *7 *8 *9 *10 *11))))
+ (-2 (|:| |done| (-587 *11))
+ (|:| |todo| (-587 (-2 (|:| |val| *3) (|:| -1884 *11))))))
+ (-5 *6 (-707))
+ (-5 *2 (-587 (-2 (|:| |val| (-587 *10)) (|:| -1884 *11))))
+ (-5 *3 (-587 *10)) (-5 *4 (-587 *11)) (-4 *10 (-984 *7 *8 *9))
+ (-4 *11 (-989 *7 *8 *9 *10)) (-4 *7 (-425)) (-4 *8 (-729))
+ (-4 *9 (-784)) (-5 *1 (-987 *7 *8 *9 *10 *11))))
((*1 *2 *3 *4 *2 *5 *6)
(-12
(-5 *5
- (-2 (|:| |done| (-586 *11))
- (|:| |todo| (-586 (-2 (|:| |val| *3) (|:| -1883 *11))))))
- (-5 *6 (-706))
- (-5 *2 (-586 (-2 (|:| |val| (-586 *10)) (|:| -1883 *11))))
- (-5 *3 (-586 *10)) (-5 *4 (-586 *11)) (-4 *10 (-983 *7 *8 *9))
- (-4 *11 (-1021 *7 *8 *9 *10)) (-4 *7 (-424)) (-4 *8 (-728))
- (-4 *9 (-783)) (-5 *1 (-1053 *7 *8 *9 *10 *11)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *2 (-586 (-1066))) (-5 *1 (-981)) (-5 *3 (-1066)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-936)) (-5 *2 (-791)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-586 *6)) (-4 *6 (-983 *3 *4 *5)) (-4 *3 (-135))
- (-4 *3 (-281)) (-4 *3 (-512)) (-4 *4 (-728)) (-4 *5 (-783))
- (-5 *1 (-902 *3 *4 *5 *6)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-512) (-135)))
- (-5 *2 (-2 (|:| -1912 *3) (|:| -1924 *3))) (-5 *1 (-1134 *4 *3))
- (-4 *3 (-1140 *4)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-201)) (-5 *4 (-520))
- (-5 *5 (-3 (|:| |fn| (-361)) (|:| |fp| (-62 -4045)))) (-5 *2 (-958))
- (-5 *1 (-684)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-586 *8)) (-5 *3 (-1 (-108) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-983 *5 *6 *7)) (-4 *5 (-512))
- (-4 *6 (-728)) (-4 *7 (-783)) (-5 *1 (-902 *5 *6 *7 *8)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-855))
- (-5 *2
- (-2 (|:| |brans| (-586 (-586 (-871 (-201)))))
- (|:| |xValues| (-1007 (-201))) (|:| |yValues| (-1007 (-201)))))
- (-5 *1 (-141))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-855)) (-5 *4 (-380 (-520)))
- (-5 *2
- (-2 (|:| |brans| (-586 (-586 (-871 (-201)))))
- (|:| |xValues| (-1007 (-201))) (|:| |yValues| (-1007 (-201)))))
- (-5 *1 (-141)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-901 *3 *4 *5 *6)) (-4 *3 (-969)) (-4 *4 (-728))
- (-4 *5 (-783)) (-4 *6 (-983 *3 *4 *5)) (-4 *3 (-512))
- (-5 *2 (-108)))))
+ (-2 (|:| |done| (-587 *11))
+ (|:| |todo| (-587 (-2 (|:| |val| *3) (|:| -1884 *11))))))
+ (-5 *6 (-707))
+ (-5 *2 (-587 (-2 (|:| |val| (-587 *10)) (|:| -1884 *11))))
+ (-5 *3 (-587 *10)) (-5 *4 (-587 *11)) (-4 *10 (-984 *7 *8 *9))
+ (-4 *11 (-1022 *7 *8 *9 *10)) (-4 *7 (-425)) (-4 *8 (-729))
+ (-4 *9 (-784)) (-5 *1 (-1054 *7 *8 *9 *10 *11)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-513)) (-5 *2 (-587 (-707))) (-5 *1 (-896 *4 *3))
+ (-4 *3 (-1141 *4)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-587 (-792))) (-5 *1 (-792)))))
(((*1 *2 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-512) (-783) (-960 (-520)))) (-5 *2 (-289 *4))
- (-5 *1 (-166 *4 *3)) (-4 *3 (-13 (-27) (-1104) (-403 (-154 *4))))))
- ((*1 *2 *1) (-12 (-4 *1 (-733 *2)) (-4 *2 (-157))))
- ((*1 *2 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-157))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-424) (-783) (-960 (-520)) (-582 (-520))))
- (-5 *1 (-1108 *3 *2)) (-4 *2 (-13 (-27) (-1104) (-403 *3))))))
-(((*1 *2)
- (-12 (-5 *2 (-849)) (-5 *1 (-414 *3)) (-4 *3 (-1140 (-520)))))
+ (-12 (-4 *4 (-13 (-513) (-784) (-961 (-521)))) (-5 *2 (-290 *4))
+ (-5 *1 (-167 *4 *3)) (-4 *3 (-13 (-27) (-1105) (-404 (-154 *4))))))
+ ((*1 *2 *1) (-12 (-4 *1 (-734 *2)) (-4 *2 (-157))))
+ ((*1 *2 *1) (-12 (-4 *1 (-922 *2)) (-4 *2 (-157))))
((*1 *2 *2)
- (-12 (-5 *2 (-849)) (-5 *1 (-414 *3)) (-4 *3 (-1140 (-520))))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-337 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1012)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-108))
- (-4 *6 (-13 (-424) (-783) (-960 (-520)) (-582 (-520))))
- (-4 *3 (-13 (-27) (-1104) (-403 *6) (-10 -8 (-15 -2188 ($ *7)))))
- (-4 *7 (-781))
- (-4 *8
- (-13 (-1142 *3 *7) (-336) (-1104)
- (-10 -8 (-15 -2155 ($ $)) (-15 -3517 ($ $)))))
- (-5 *2
- (-3 (|:| |%series| *8)
- (|:| |%problem| (-2 (|:| |func| (-1066)) (|:| |prob| (-1066))))))
- (-5 *1 (-395 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1066)) (-4 *9 (-908 *8))
- (-14 *10 (-1083)))))
-(((*1 *2 *3) (-12 (-5 *3 (-352)) (-5 *2 (-1066)) (-5 *1 (-279)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-586 *5) *6))
- (-4 *5 (-13 (-336) (-135) (-960 (-380 (-520))))) (-4 *6 (-1140 *5))
- (-5 *2 (-586 (-2 (|:| |poly| *6) (|:| -3190 *3))))
- (-5 *1 (-745 *5 *6 *3 *7)) (-4 *3 (-596 *6))
- (-4 *7 (-596 (-380 *6)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-586 *5) *6))
- (-4 *5 (-13 (-336) (-135) (-960 (-520)) (-960 (-380 (-520)))))
- (-4 *6 (-1140 *5))
- (-5 *2 (-586 (-2 (|:| |poly| *6) (|:| -3190 (-594 *6 (-380 *6))))))
- (-5 *1 (-748 *5 *6)) (-5 *3 (-594 *6 (-380 *6))))))
-(((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-1066)) (-5 *2 (-709)) (-5 *1 (-110))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1083)) (-5 *3 (-1016)) (-5 *1 (-730)))))
+ (-12 (-4 *3 (-13 (-425) (-784) (-961 (-521)) (-583 (-521))))
+ (-5 *1 (-1109 *3 *2)) (-4 *2 (-13 (-27) (-1105) (-404 *3))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784))
+ (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-914 *4 *5 *6 *7 *3))
+ (-4 *3 (-989 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784))
+ (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-108))
+ (-5 *1 (-1020 *4 *5 *6 *7 *3)) (-4 *3 (-989 *4 *5 *6 *7)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-587 *1)) (-5 *3 (-587 *7)) (-4 *1 (-989 *4 *5 *6 *7))
+ (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784))
+ (-4 *7 (-984 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-587 *7)) (-4 *7 (-984 *4 *5 *6)) (-4 *4 (-425))
+ (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-587 *1))
+ (-4 *1 (-989 *4 *5 *6 *7))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-587 *1)) (-4 *1 (-989 *4 *5 *6 *3)) (-4 *4 (-425))
+ (-4 *5 (-729)) (-4 *6 (-784)) (-4 *3 (-984 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784))
+ (-4 *3 (-984 *4 *5 *6)) (-5 *2 (-587 *1))
+ (-4 *1 (-989 *4 *5 *6 *3)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-969)) (-5 *1 (-1068 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1156 *2 *3 *4)) (-4 *2 (-969)) (-14 *3 (-1083))
- (-14 *4 *2))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-391 *2)) (-4 *2 (-281)) (-5 *1 (-842 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-380 (-880 *5))) (-5 *4 (-1083))
- (-4 *5 (-13 (-281) (-135))) (-5 *2 (-51)) (-5 *1 (-843 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-391 (-880 *6))) (-5 *5 (-1083)) (-5 *3 (-880 *6))
- (-4 *6 (-13 (-281) (-135))) (-5 *2 (-51)) (-5 *1 (-843 *6)))))
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-927))))))
+(((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-1067)) (-5 *2 (-710)) (-5 *1 (-110))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-1017)) (-5 *1 (-731)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-627 *2)) (-4 *4 (-1141 *2))
+ (-4 *2 (-13 (-282) (-10 -8 (-15 -3358 ((-392 $) $)))))
+ (-5 *1 (-468 *2 *4 *5)) (-4 *5 (-383 *2 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1034 *3 *2 *4 *5)) (-4 *4 (-215 *3 *2))
+ (-4 *5 (-215 *3 *2)) (-4 *2 (-970)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-970)) (-4 *3 (-784))
+ (-5 *2 (-2 (|:| |val| *1) (|:| -2997 (-521)))) (-4 *1 (-404 *3))))
+ ((*1 *2 *1)
+ (|partial| -12
+ (-5 *2 (-2 (|:| |val| (-821 *3)) (|:| -2997 (-821 *3))))
+ (-5 *1 (-821 *3)) (-4 *3 (-1013))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-729)) (-4 *5 (-784)) (-4 *6 (-970))
+ (-4 *7 (-878 *6 *4 *5))
+ (-5 *2 (-2 (|:| |val| *3) (|:| -2997 (-521))))
+ (-5 *1 (-879 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-337)
+ (-10 -8 (-15 -2189 ($ *7)) (-15 -2801 (*7 $))
+ (-15 -2812 (*7 $))))))))
(((*1 *1 *1)
- (-12 (-5 *1 (-312 *2 *3 *4)) (-14 *2 (-586 (-1083)))
- (-14 *3 (-586 (-1083))) (-4 *4 (-360))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-797 *3)) (-5 *2 (-520))))
- ((*1 *1 *1) (-4 *1 (-926)))
- ((*1 *1 *2) (-12 (-5 *2 (-520)) (-4 *1 (-936))))
- ((*1 *1 *2) (-12 (-5 *2 (-380 (-520))) (-4 *1 (-936))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-936)) (-5 *2 (-706))))
- ((*1 *1 *1) (-4 *1 (-936))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-589 *2 *3 *4)) (-4 *2 (-1012)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2)
- (-12 (-4 *4 (-1122)) (-4 *5 (-1140 *4)) (-4 *6 (-1140 (-380 *5)))
- (-5 *2 (-586 (-586 *4))) (-5 *1 (-314 *3 *4 *5 *6))
- (-4 *3 (-315 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-315 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-1140 *3))
- (-4 *5 (-1140 (-380 *4))) (-4 *3 (-341)) (-5 *2 (-586 (-586 *3))))))
-(((*1 *1 *1) (-12 (-4 *1 (-115 *2)) (-4 *2 (-1118))))
- ((*1 *1 *1) (-12 (-5 *1 (-611 *2)) (-4 *2 (-783))))
- ((*1 *1 *1) (-12 (-5 *1 (-615 *2)) (-4 *2 (-783))))
- ((*1 *1 *1) (-5 *1 (-791)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-791))))
+ (-12 (-5 *1 (-313 *2 *3 *4)) (-14 *2 (-587 (-1084)))
+ (-14 *3 (-587 (-1084))) (-4 *4 (-361))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-798 *3)) (-5 *2 (-521))))
+ ((*1 *1 *1) (-4 *1 (-927)))
+ ((*1 *1 *2) (-12 (-5 *2 (-521)) (-4 *1 (-937))))
+ ((*1 *1 *2) (-12 (-5 *2 (-381 (-521))) (-4 *1 (-937))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-937)) (-5 *2 (-707))))
+ ((*1 *1 *1) (-4 *1 (-937))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-597 *2)) (-4 *2 (-970)) (-4 *2 (-337))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-337)) (-5 *1 (-600 *4 *2))
+ (-4 *2 (-597 *4)))))
+(((*1 *1 *1) (-12 (-4 *1 (-115 *2)) (-4 *2 (-1119))))
+ ((*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-784))))
+ ((*1 *1 *1) (-12 (-5 *1 (-616 *2)) (-4 *2 (-784))))
+ ((*1 *1 *1) (-5 *1 (-792)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-792))))
((*1 *2 *1)
- (-12 (-4 *2 (-13 (-781) (-336))) (-5 *1 (-979 *2 *3))
- (-4 *3 (-1140 *2)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-908 *2)) (-4 *2 (-1104)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-303)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3)
- (-12 (-5 *3 (-520)) (-5 *5 (-626 (-201))) (-5 *4 (-201))
- (-5 *2 (-958)) (-5 *1 (-686)))))
-(((*1 *2 *3) (-12 (-5 *3 (-880 (-201))) (-5 *2 (-201)) (-5 *1 (-279)))))
-(((*1 *2 *3 *3 *3 *3)
- (-12 (-4 *4 (-424)) (-4 *3 (-728)) (-4 *5 (-783)) (-5 *2 (-108))
- (-5 *1 (-421 *4 *3 *5 *6)) (-4 *6 (-877 *4 *3 *5)))))
-(((*1 *2 *3 *4 *4 *3 *5)
- (-12 (-5 *4 (-559 *3)) (-5 *5 (-1079 *3))
- (-4 *3 (-13 (-403 *6) (-27) (-1104)))
- (-4 *6 (-13 (-424) (-960 (-520)) (-783) (-135) (-582 (-520))))
- (-5 *2 (-537 *3)) (-5 *1 (-516 *6 *3 *7)) (-4 *7 (-1012))))
- ((*1 *2 *3 *4 *4 *4 *3 *5)
- (-12 (-5 *4 (-559 *3)) (-5 *5 (-380 (-1079 *3)))
- (-4 *3 (-13 (-403 *6) (-27) (-1104)))
- (-4 *6 (-13 (-424) (-960 (-520)) (-783) (-135) (-582 (-520))))
- (-5 *2 (-537 *3)) (-5 *1 (-516 *6 *3 *7)) (-4 *7 (-1012)))))
-(((*1 *1 *1 *1) (|partial| -4 *1 (-124))))
+ (-12 (-4 *2 (-13 (-782) (-337))) (-5 *1 (-980 *2 *3))
+ (-4 *3 (-1141 *2)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959))
+ (-5 *1 (-684)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1084)) (-5 *4 (-881 (-521))) (-5 *2 (-304))
+ (-5 *1 (-306)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-757)) (-14 *5 (-1084)) (-5 *2 (-587 (-1138 *5 *4)))
+ (-5 *1 (-1027 *4 *5)) (-5 *3 (-1138 *5 *4)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-337)) (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-108))
+ (-5 *1 (-473 *4 *5 *6 *3)) (-4 *3 (-878 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-587
+ (-2 (|:| -3162 (-707))
+ (|:| |eqns|
+ (-587
+ (-2 (|:| |det| *7) (|:| |rows| (-587 (-521)))
+ (|:| |cols| (-587 (-521))))))
+ (|:| |fgb| (-587 *7)))))
+ (-4 *7 (-878 *4 *6 *5)) (-4 *4 (-13 (-282) (-135)))
+ (-4 *5 (-13 (-784) (-562 (-1084)))) (-4 *6 (-729)) (-5 *2 (-707))
+ (-5 *1 (-853 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-323)) (-5 *2 (-392 (-1080 (-1080 *4))))
+ (-5 *1 (-1118 *4)) (-5 *3 (-1080 (-1080 *4))))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
+ (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202)))
+ (-5 *5 (-3 (|:| |fn| (-362)) (|:| |fp| (-61 LSFUN2))))
+ (-5 *2 (-959)) (-5 *1 (-690)))))
+(((*1 *2 *1) (-12 (-4 *1 (-734 *2)) (-4 *2 (-157))))
+ ((*1 *2 *1) (-12 (-4 *1 (-922 *2)) (-4 *2 (-157)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-586 (-47))) (-5 *2 (-391 *3)) (-5 *1 (-38 *3))
- (-4 *3 (-1140 (-47)))))
+ (-12 (-5 *4 (-587 (-47))) (-5 *2 (-392 *3)) (-5 *1 (-38 *3))
+ (-4 *3 (-1141 (-47)))))
((*1 *2 *3)
- (-12 (-5 *2 (-391 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1140 (-47)))))
+ (-12 (-5 *2 (-392 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1141 (-47)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-586 (-47))) (-4 *5 (-783)) (-4 *6 (-728))
- (-5 *2 (-391 *3)) (-5 *1 (-41 *5 *6 *3)) (-4 *3 (-877 (-47) *6 *5))))
+ (-12 (-5 *4 (-587 (-47))) (-4 *5 (-784)) (-4 *6 (-729))
+ (-5 *2 (-392 *3)) (-5 *1 (-41 *5 *6 *3)) (-4 *3 (-878 (-47) *6 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-586 (-47))) (-4 *5 (-783)) (-4 *6 (-728))
- (-4 *7 (-877 (-47) *6 *5)) (-5 *2 (-391 (-1079 *7)))
- (-5 *1 (-41 *5 *6 *7)) (-5 *3 (-1079 *7))))
+ (-12 (-5 *4 (-587 (-47))) (-4 *5 (-784)) (-4 *6 (-729))
+ (-4 *7 (-878 (-47) *6 *5)) (-5 *2 (-392 (-1080 *7)))
+ (-5 *1 (-41 *5 *6 *7)) (-5 *3 (-1080 *7))))
((*1 *2 *3)
- (-12 (-4 *4 (-281)) (-5 *2 (-391 *3)) (-5 *1 (-152 *4 *3))
- (-4 *3 (-1140 (-154 *4)))))
+ (-12 (-4 *4 (-282)) (-5 *2 (-392 *3)) (-5 *1 (-152 *4 *3))
+ (-4 *3 (-1141 (-154 *4)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-108)) (-4 *4 (-13 (-336) (-781))) (-5 *2 (-391 *3))
- (-5 *1 (-164 *4 *3)) (-4 *3 (-1140 (-154 *4)))))
+ (-12 (-5 *5 (-108)) (-4 *4 (-13 (-337) (-782))) (-5 *2 (-392 *3))
+ (-5 *1 (-164 *4 *3)) (-4 *3 (-1141 (-154 *4)))))
((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-336) (-781))) (-5 *2 (-391 *3))
- (-5 *1 (-164 *4 *3)) (-4 *3 (-1140 (-154 *4)))))
+ (-12 (-4 *4 (-13 (-337) (-782))) (-5 *2 (-392 *3))
+ (-5 *1 (-164 *4 *3)) (-4 *3 (-1141 (-154 *4)))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-336) (-781))) (-5 *2 (-391 *3))
- (-5 *1 (-164 *4 *3)) (-4 *3 (-1140 (-154 *4)))))
+ (-12 (-4 *4 (-13 (-337) (-782))) (-5 *2 (-392 *3))
+ (-5 *1 (-164 *4 *3)) (-4 *3 (-1141 (-154 *4)))))
((*1 *2 *3)
- (-12 (-4 *4 (-322)) (-5 *2 (-391 *3)) (-5 *1 (-193 *4 *3))
- (-4 *3 (-1140 *4))))
+ (-12 (-4 *4 (-323)) (-5 *2 (-392 *3)) (-5 *1 (-194 *4 *3))
+ (-4 *3 (-1141 *4))))
((*1 *2 *3)
- (-12 (-5 *2 (-391 *3)) (-5 *1 (-414 *3)) (-4 *3 (-1140 (-520)))))
+ (-12 (-5 *2 (-392 *3)) (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-706)) (-5 *2 (-391 *3)) (-5 *1 (-414 *3))
- (-4 *3 (-1140 (-520)))))
+ (-12 (-5 *4 (-707)) (-5 *2 (-392 *3)) (-5 *1 (-415 *3))
+ (-4 *3 (-1141 (-521)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-586 (-706))) (-5 *2 (-391 *3)) (-5 *1 (-414 *3))
- (-4 *3 (-1140 (-520)))))
+ (-12 (-5 *4 (-587 (-707))) (-5 *2 (-392 *3)) (-5 *1 (-415 *3))
+ (-4 *3 (-1141 (-521)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-586 (-706))) (-5 *5 (-706)) (-5 *2 (-391 *3))
- (-5 *1 (-414 *3)) (-4 *3 (-1140 (-520)))))
+ (-12 (-5 *4 (-587 (-707))) (-5 *5 (-707)) (-5 *2 (-392 *3))
+ (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-706)) (-5 *2 (-391 *3)) (-5 *1 (-414 *3))
- (-4 *3 (-1140 (-520)))))
+ (-12 (-5 *4 (-707)) (-5 *2 (-392 *3)) (-5 *1 (-415 *3))
+ (-4 *3 (-1141 (-521)))))
((*1 *2 *3)
- (-12 (-5 *2 (-391 (-154 (-520)))) (-5 *1 (-418))
- (-5 *3 (-154 (-520)))))
+ (-12 (-5 *2 (-392 (-154 (-521)))) (-5 *1 (-419))
+ (-5 *3 (-154 (-521)))))
((*1 *2 *3)
(-12
(-4 *4
- (-13 (-783)
- (-10 -8 (-15 -1429 ((-1083) $))
- (-15 -1610 ((-3 $ "failed") (-1083))))))
- (-4 *5 (-728)) (-4 *7 (-512)) (-5 *2 (-391 *3))
- (-5 *1 (-428 *4 *5 *6 *7 *3)) (-4 *6 (-512))
- (-4 *3 (-877 *7 *5 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-281)) (-5 *2 (-391 (-1079 *4))) (-5 *1 (-430 *4))
- (-5 *3 (-1079 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-391 *6) *6)) (-4 *6 (-1140 *5)) (-4 *5 (-336))
- (-4 *7 (-13 (-336) (-135) (-660 *5 *6))) (-5 *2 (-391 *3))
- (-5 *1 (-462 *5 *6 *7 *3)) (-4 *3 (-1140 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-391 (-1079 *7)) (-1079 *7)))
- (-4 *7 (-13 (-281) (-135))) (-4 *5 (-783)) (-4 *6 (-728))
- (-5 *2 (-391 *3)) (-5 *1 (-500 *5 *6 *7 *3))
- (-4 *3 (-877 *7 *6 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-391 (-1079 *7)) (-1079 *7)))
- (-4 *7 (-13 (-281) (-135))) (-4 *5 (-783)) (-4 *6 (-728))
- (-4 *8 (-877 *7 *6 *5)) (-5 *2 (-391 (-1079 *8)))
- (-5 *1 (-500 *5 *6 *7 *8)) (-5 *3 (-1079 *8))))
- ((*1 *2 *3) (-12 (-5 *2 (-391 *3)) (-5 *1 (-514 *3)) (-4 *3 (-505))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-586 *5) *6))
- (-4 *5 (-13 (-336) (-135) (-960 (-520)) (-960 (-380 (-520)))))
- (-4 *6 (-1140 *5)) (-5 *2 (-586 (-593 (-380 *6))))
- (-5 *1 (-597 *5 *6)) (-5 *3 (-593 (-380 *6)))))
+ (-13 (-784)
+ (-10 -8 (-15 -1430 ((-1084) $))
+ (-15 -1611 ((-3 $ "failed") (-1084))))))
+ (-4 *5 (-729)) (-4 *7 (-513)) (-5 *2 (-392 *3))
+ (-5 *1 (-429 *4 *5 *6 *7 *3)) (-4 *6 (-513))
+ (-4 *3 (-878 *7 *5 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-282)) (-5 *2 (-392 (-1080 *4))) (-5 *1 (-431 *4))
+ (-5 *3 (-1080 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-392 *6) *6)) (-4 *6 (-1141 *5)) (-4 *5 (-337))
+ (-4 *7 (-13 (-337) (-135) (-661 *5 *6))) (-5 *2 (-392 *3))
+ (-5 *1 (-463 *5 *6 *7 *3)) (-4 *3 (-1141 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-392 (-1080 *7)) (-1080 *7)))
+ (-4 *7 (-13 (-282) (-135))) (-4 *5 (-784)) (-4 *6 (-729))
+ (-5 *2 (-392 *3)) (-5 *1 (-501 *5 *6 *7 *3))
+ (-4 *3 (-878 *7 *6 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-392 (-1080 *7)) (-1080 *7)))
+ (-4 *7 (-13 (-282) (-135))) (-4 *5 (-784)) (-4 *6 (-729))
+ (-4 *8 (-878 *7 *6 *5)) (-5 *2 (-392 (-1080 *8)))
+ (-5 *1 (-501 *5 *6 *7 *8)) (-5 *3 (-1080 *8))))
+ ((*1 *2 *3) (-12 (-5 *2 (-392 *3)) (-5 *1 (-515 *3)) (-4 *3 (-506))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-587 *5) *6))
+ (-4 *5 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521)))))
+ (-4 *6 (-1141 *5)) (-5 *2 (-587 (-594 (-381 *6))))
+ (-5 *1 (-598 *5 *6)) (-5 *3 (-594 (-381 *6)))))
((*1 *2 *3)
(-12 (-4 *4 (-27))
- (-4 *4 (-13 (-336) (-135) (-960 (-520)) (-960 (-380 (-520)))))
- (-4 *5 (-1140 *4)) (-5 *2 (-586 (-593 (-380 *5))))
- (-5 *1 (-597 *4 *5)) (-5 *3 (-593 (-380 *5)))))
+ (-4 *4 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521)))))
+ (-4 *5 (-1141 *4)) (-5 *2 (-587 (-594 (-381 *5))))
+ (-5 *1 (-598 *4 *5)) (-5 *3 (-594 (-381 *5)))))
((*1 *2 *3)
- (-12 (-5 *3 (-755 *4)) (-4 *4 (-783)) (-5 *2 (-586 (-611 *4)))
- (-5 *1 (-611 *4))))
+ (-12 (-5 *3 (-756 *4)) (-4 *4 (-784)) (-5 *2 (-587 (-612 *4)))
+ (-5 *1 (-612 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-520)) (-5 *2 (-586 *3)) (-5 *1 (-632 *3))
- (-4 *3 (-1140 *4))))
+ (-12 (-5 *4 (-521)) (-5 *2 (-587 *3)) (-5 *1 (-633 *3))
+ (-4 *3 (-1141 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-783)) (-4 *5 (-728)) (-4 *6 (-322)) (-5 *2 (-391 *3))
- (-5 *1 (-634 *4 *5 *6 *3)) (-4 *3 (-877 *6 *5 *4))))
+ (-12 (-4 *4 (-784)) (-4 *5 (-729)) (-4 *6 (-323)) (-5 *2 (-392 *3))
+ (-5 *1 (-635 *4 *5 *6 *3)) (-4 *3 (-878 *6 *5 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-783)) (-4 *5 (-728)) (-4 *6 (-322))
- (-4 *7 (-877 *6 *5 *4)) (-5 *2 (-391 (-1079 *7)))
- (-5 *1 (-634 *4 *5 *6 *7)) (-5 *3 (-1079 *7))))
+ (-12 (-4 *4 (-784)) (-4 *5 (-729)) (-4 *6 (-323))
+ (-4 *7 (-878 *6 *5 *4)) (-5 *2 (-392 (-1080 *7)))
+ (-5 *1 (-635 *4 *5 *6 *7)) (-5 *3 (-1080 *7))))
((*1 *2 *3)
- (-12 (-4 *4 (-728))
+ (-12 (-4 *4 (-729))
(-4 *5
- (-13 (-783)
- (-10 -8 (-15 -1429 ((-1083) $))
- (-15 -1610 ((-3 $ "failed") (-1083))))))
- (-4 *6 (-281)) (-5 *2 (-391 *3)) (-5 *1 (-666 *4 *5 *6 *3))
- (-4 *3 (-877 (-880 *6) *4 *5))))
+ (-13 (-784)
+ (-10 -8 (-15 -1430 ((-1084) $))
+ (-15 -1611 ((-3 $ "failed") (-1084))))))
+ (-4 *6 (-282)) (-5 *2 (-392 *3)) (-5 *1 (-667 *4 *5 *6 *3))
+ (-4 *3 (-878 (-881 *6) *4 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-728))
- (-4 *5 (-13 (-783) (-10 -8 (-15 -1429 ((-1083) $))))) (-4 *6 (-512))
- (-5 *2 (-391 *3)) (-5 *1 (-668 *4 *5 *6 *3))
- (-4 *3 (-877 (-380 (-880 *6)) *4 *5))))
+ (-12 (-4 *4 (-729))
+ (-4 *5 (-13 (-784) (-10 -8 (-15 -1430 ((-1084) $))))) (-4 *6 (-513))
+ (-5 *2 (-392 *3)) (-5 *1 (-669 *4 *5 *6 *3))
+ (-4 *3 (-878 (-381 (-881 *6)) *4 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-728)) (-4 *5 (-783)) (-4 *6 (-13 (-281) (-135)))
- (-5 *2 (-391 *3)) (-5 *1 (-669 *4 *5 *6 *3))
- (-4 *3 (-877 (-380 *6) *4 *5))))
+ (-12 (-4 *4 (-729)) (-4 *5 (-784)) (-4 *6 (-13 (-282) (-135)))
+ (-5 *2 (-392 *3)) (-5 *1 (-670 *4 *5 *6 *3))
+ (-4 *3 (-878 (-381 *6) *4 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-783)) (-4 *5 (-728)) (-4 *6 (-13 (-281) (-135)))
- (-5 *2 (-391 *3)) (-5 *1 (-677 *4 *5 *6 *3))
- (-4 *3 (-877 *6 *5 *4))))
+ (-12 (-4 *4 (-784)) (-4 *5 (-729)) (-4 *6 (-13 (-282) (-135)))
+ (-5 *2 (-392 *3)) (-5 *1 (-678 *4 *5 *6 *3))
+ (-4 *3 (-878 *6 *5 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-783)) (-4 *5 (-728)) (-4 *6 (-13 (-281) (-135)))
- (-4 *7 (-877 *6 *5 *4)) (-5 *2 (-391 (-1079 *7)))
- (-5 *1 (-677 *4 *5 *6 *7)) (-5 *3 (-1079 *7))))
+ (-12 (-4 *4 (-784)) (-4 *5 (-729)) (-4 *6 (-13 (-282) (-135)))
+ (-4 *7 (-878 *6 *5 *4)) (-5 *2 (-392 (-1080 *7)))
+ (-5 *1 (-678 *4 *5 *6 *7)) (-5 *3 (-1080 *7))))
((*1 *2 *3)
- (-12 (-5 *2 (-391 *3)) (-5 *1 (-931 *3))
- (-4 *3 (-1140 (-380 (-520))))))
+ (-12 (-5 *2 (-392 *3)) (-5 *1 (-932 *3))
+ (-4 *3 (-1141 (-381 (-521))))))
((*1 *2 *3)
- (-12 (-5 *2 (-391 *3)) (-5 *1 (-963 *3))
- (-4 *3 (-1140 (-380 (-880 (-520)))))))
+ (-12 (-5 *2 (-392 *3)) (-5 *1 (-964 *3))
+ (-4 *3 (-1141 (-381 (-881 (-521)))))))
((*1 *2 *3)
- (-12 (-4 *4 (-1140 (-380 (-520))))
- (-4 *5 (-13 (-336) (-135) (-660 (-380 (-520)) *4)))
- (-5 *2 (-391 *3)) (-5 *1 (-994 *4 *5 *3)) (-4 *3 (-1140 *5))))
+ (-12 (-4 *4 (-1141 (-381 (-521))))
+ (-4 *5 (-13 (-337) (-135) (-661 (-381 (-521)) *4)))
+ (-5 *2 (-392 *3)) (-5 *1 (-995 *4 *5 *3)) (-4 *3 (-1141 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-1140 (-380 (-880 (-520)))))
- (-4 *5 (-13 (-336) (-135) (-660 (-380 (-880 (-520))) *4)))
- (-5 *2 (-391 *3)) (-5 *1 (-996 *4 *5 *3)) (-4 *3 (-1140 *5))))
+ (-12 (-4 *4 (-1141 (-381 (-881 (-521)))))
+ (-4 *5 (-13 (-337) (-135) (-661 (-381 (-881 (-521))) *4)))
+ (-5 *2 (-392 *3)) (-5 *1 (-997 *4 *5 *3)) (-4 *3 (-1141 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-728)) (-4 *5 (-783)) (-4 *6 (-424))
- (-4 *7 (-877 *6 *4 *5)) (-5 *2 (-391 (-1079 (-380 *7))))
- (-5 *1 (-1078 *4 *5 *6 *7)) (-5 *3 (-1079 (-380 *7)))))
- ((*1 *2 *1) (-12 (-5 *2 (-391 *1)) (-4 *1 (-1122))))
+ (-12 (-4 *4 (-729)) (-4 *5 (-784)) (-4 *6 (-425))
+ (-4 *7 (-878 *6 *4 *5)) (-5 *2 (-392 (-1080 (-381 *7))))
+ (-5 *1 (-1079 *4 *5 *6 *7)) (-5 *3 (-1080 (-381 *7)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-392 *1)) (-4 *1 (-1123))))
((*1 *2 *3)
- (-12 (-5 *2 (-391 *3)) (-5 *1 (-1129 *3)) (-4 *3 (-1140 (-520))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1164 *3)) (-4 *3 (-969)) (-5 *1 (-648 *3 *4))
- (-4 *4 (-1140 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-706)) (-5 *4 (-520)) (-5 *1 (-417 *2)) (-4 *2 (-969)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-520)) (|has| *1 (-6 -4230)) (-4 *1 (-346 *3))
- (-4 *3 (-1118)))))
-(((*1 *1 *1) (-12 (-4 *1 (-115 *2)) (-4 *2 (-1118))))
- ((*1 *1 *1) (-12 (-5 *1 (-611 *2)) (-4 *2 (-783))))
- ((*1 *1 *1) (-12 (-5 *1 (-615 *2)) (-4 *2 (-783))))
- ((*1 *1 *1) (-5 *1 (-791)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-791))))
+ (-12 (-5 *2 (-392 *3)) (-5 *1 (-1130 *3)) (-4 *3 (-1141 (-521))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-108))
+ (-5 *1 (-903 *4 *5 *6 *3)) (-4 *3 (-984 *4 *5 *6)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-338 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013))
+ (-5 *2 (-1067)))))
+(((*1 *1 *1) (-12 (-4 *1 (-115 *2)) (-4 *2 (-1119))))
+ ((*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-784))))
+ ((*1 *1 *1) (-12 (-5 *1 (-616 *2)) (-4 *2 (-784))))
+ ((*1 *1 *1) (-5 *1 (-792)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-792))))
((*1 *2 *1)
- (-12 (-4 *2 (-13 (-781) (-336))) (-5 *1 (-979 *2 *3))
- (-4 *3 (-1140 *2)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-706)) (-4 *1 (-596 *3)) (-4 *3 (-969)) (-4 *3 (-336))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-706)) (-5 *4 (-1 *5 *5)) (-4 *5 (-336))
- (-5 *1 (-599 *5 *2)) (-4 *2 (-596 *5)))))
-(((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-969)) (-4 *5 (-728)) (-4 *3 (-783))
- (-5 *2 (-2 (|:| -2060 *1) (|:| -3753 *1))) (-4 *1 (-877 *4 *5 *3))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-969)) (-5 *2 (-2 (|:| -2060 *1) (|:| -3753 *1)))
- (-4 *1 (-1140 *3)))))
+ (-12 (-4 *2 (-13 (-782) (-337))) (-5 *1 (-980 *2 *3))
+ (-4 *3 (-1141 *2)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-838)) (-5 *2 (-392 (-1080 *1))) (-5 *3 (-1080 *1)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-1165 *5)) (-5 *3 (-707)) (-5 *4 (-1031)) (-4 *5 (-323))
+ (-5 *1 (-491 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-132)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1 (-1037 *4 *3 *5))) (-4 *4 (-37 (-381 (-521))))
+ (-4 *4 (-970)) (-4 *3 (-784)) (-5 *1 (-1037 *4 *3 *5))
+ (-4 *5 (-878 *4 (-493 *3) *3))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1 (-1114 *4))) (-5 *3 (-1084)) (-5 *1 (-1114 *4))
+ (-4 *4 (-37 (-381 (-521)))) (-4 *4 (-970)))))
+(((*1 *1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-894)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1140 *5)) (-4 *5 (-336))
- (-4 *7 (-1140 (-380 *6)))
- (-5 *2 (-2 (|:| |answer| *3) (|:| -3829 *3)))
- (-5 *1 (-518 *5 *6 *7 *3)) (-4 *3 (-315 *5 *6 *7))))
+ (-12 (-5 *3 (-587 *8)) (-5 *4 (-108)) (-4 *8 (-984 *5 *6 *7))
+ (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784)) (-5 *2 (-587 *10))
+ (-5 *1 (-569 *5 *6 *7 *8 *9 *10)) (-4 *9 (-989 *5 *6 *7 *8))
+ (-4 *10 (-1022 *5 *6 *7 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1140 *5)) (-4 *5 (-336))
- (-5 *2
- (-2 (|:| |answer| (-380 *6)) (|:| -3829 (-380 *6))
- (|:| |specpart| (-380 *6)) (|:| |polypart| *6)))
- (-5 *1 (-519 *5 *6)) (-5 *3 (-380 *6)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-728)) (-4 *5 (-783)) (-4 *6 (-281))
- (-5 *2 (-586 (-706))) (-5 *1 (-713 *3 *4 *5 *6 *7))
- (-4 *3 (-1140 *6)) (-4 *7 (-877 *6 *4 *5)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1012)))))
-(((*1 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-586 (-2 (|:| |val| (-586 *8)) (|:| -1883 *9))))
- (-5 *4 (-706)) (-4 *8 (-983 *5 *6 *7)) (-4 *9 (-988 *5 *6 *7 *8))
- (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783)) (-5 *2 (-1169))
- (-5 *1 (-986 *5 *6 *7 *8 *9))))
+ (-12 (-5 *3 (-587 (-716 *5 (-794 *6)))) (-5 *4 (-108)) (-4 *5 (-425))
+ (-14 *6 (-587 (-1084))) (-5 *2 (-587 (-967 *5 *6)))
+ (-5 *1 (-572 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-586 (-2 (|:| |val| (-586 *8)) (|:| -1883 *9))))
- (-5 *4 (-706)) (-4 *8 (-983 *5 *6 *7)) (-4 *9 (-1021 *5 *6 *7 *8))
- (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783)) (-5 *2 (-1169))
- (-5 *1 (-1053 *5 *6 *7 *8 *9)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-706)) (-5 *2 (-1079 *4)) (-5 *1 (-490 *4))
- (-4 *4 (-322)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-619 *2)) (-4 *2 (-1012))))
+ (-12 (-5 *3 (-587 (-716 *5 (-794 *6)))) (-5 *4 (-108)) (-4 *5 (-425))
+ (-14 *6 (-587 (-1084)))
+ (-5 *2
+ (-587 (-1055 *5 (-493 (-794 *6)) (-794 *6) (-716 *5 (-794 *6)))))
+ (-5 *1 (-572 *5 *6))))
+ ((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-587 *8)) (-5 *4 (-108)) (-4 *8 (-984 *5 *6 *7))
+ (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784))
+ (-5 *2 (-587 (-951 *5 *6 *7 *8))) (-5 *1 (-951 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-587 *8)) (-5 *4 (-108)) (-4 *8 (-984 *5 *6 *7))
+ (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784))
+ (-5 *2 (-587 (-951 *5 *6 *7 *8))) (-5 *1 (-951 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-587 (-716 *5 (-794 *6)))) (-5 *4 (-108)) (-4 *5 (-425))
+ (-14 *6 (-587 (-1084))) (-5 *2 (-587 (-967 *5 *6)))
+ (-5 *1 (-967 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-586 *5) (-586 *5))) (-5 *4 (-520))
- (-5 *2 (-586 *5)) (-5 *1 (-619 *5)) (-4 *5 (-1012)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1118)) (-5 *1 (-348 *4 *2))
- (-4 *2 (-13 (-346 *4) (-10 -7 (-6 -4230)))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-289 *3)) (-4 *3 (-512)) (-4 *3 (-783)))))
+ (-12 (-5 *3 (-587 *8)) (-5 *4 (-108)) (-4 *8 (-984 *5 *6 *7))
+ (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784)) (-5 *2 (-587 *1))
+ (-4 *1 (-989 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-587 *8)) (-5 *4 (-108)) (-4 *8 (-984 *5 *6 *7))
+ (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784))
+ (-5 *2 (-587 (-1055 *5 *6 *7 *8))) (-5 *1 (-1055 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-587 *8)) (-5 *4 (-108)) (-4 *8 (-984 *5 *6 *7))
+ (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784))
+ (-5 *2 (-587 (-1055 *5 *6 *7 *8))) (-5 *1 (-1055 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-587 *7)) (-4 *7 (-984 *4 *5 *6)) (-4 *4 (-513))
+ (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-587 *1))
+ (-4 *1 (-1113 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-587 (-2 (|:| |val| (-587 *8)) (|:| -1884 *9))))
+ (-5 *4 (-707)) (-4 *8 (-984 *5 *6 *7)) (-4 *9 (-989 *5 *6 *7 *8))
+ (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784)) (-5 *2 (-1170))
+ (-5 *1 (-987 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-587 (-2 (|:| |val| (-587 *8)) (|:| -1884 *9))))
+ (-5 *4 (-707)) (-4 *8 (-984 *5 *6 *7)) (-4 *9 (-1022 *5 *6 *7 *8))
+ (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784)) (-5 *2 (-1170))
+ (-5 *1 (-1054 *5 *6 *7 *8 *9)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1065 (-587 (-521)))) (-5 *1 (-812))
+ (-5 *3 (-587 (-521)))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1065 (-587 (-521)))) (-5 *1 (-812))
+ (-5 *3 (-587 (-521))))))
+(((*1 *2 *1 *3 *3)
+ (-12 (|has| *1 (-6 -4234)) (-4 *1 (-554 *3 *4)) (-4 *3 (-1013))
+ (-4 *4 (-1119)) (-5 *2 (-1170)))))
+(((*1 *2) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-1168)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-228 *2 *3 *4 *5)) (-4 *2 (-969)) (-4 *3 (-783))
- (-4 *4 (-241 *3)) (-4 *5 (-728)))))
-(((*1 *2 *3 *4 *5 *4 *4 *4)
- (-12 (-4 *6 (-783)) (-5 *3 (-586 *6)) (-5 *5 (-586 *3))
- (-5 *2
- (-2 (|:| |f1| *3) (|:| |f2| (-586 *5)) (|:| |f3| *5)
- (|:| |f4| (-586 *5))))
- (-5 *1 (-1090 *6)) (-5 *4 (-586 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-586 *3)) (-4 *3 (-1118)) (-4 *1 (-102 *3)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *2 (-958))
- (-5 *1 (-691)))))
-(((*1 *2) (-12 (-5 *2 (-849)) (-5 *1 (-1167))))
- ((*1 *2 *2) (-12 (-5 *2 (-849)) (-5 *1 (-1167)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-783)) (-5 *2 (-586 (-586 (-586 *4))))
- (-5 *1 (-1090 *4)) (-5 *3 (-586 (-586 *4))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1164 *1)) (-4 *1 (-340 *4)) (-4 *4 (-157))
- (-5 *2 (-586 (-880 *4)))))
- ((*1 *2)
- (-12 (-4 *4 (-157)) (-5 *2 (-586 (-880 *4))) (-5 *1 (-389 *3 *4))
- (-4 *3 (-390 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-390 *3)) (-4 *3 (-157)) (-5 *2 (-586 (-880 *3)))))
- ((*1 *2)
- (-12 (-5 *2 (-586 (-880 *3))) (-5 *1 (-425 *3 *4 *5 *6))
- (-4 *3 (-512)) (-4 *3 (-157)) (-14 *4 (-849))
- (-14 *5 (-586 (-1083))) (-14 *6 (-1164 (-626 *3)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1164 (-425 *4 *5 *6 *7))) (-5 *2 (-586 (-880 *4)))
- (-5 *1 (-425 *4 *5 *6 *7)) (-4 *4 (-512)) (-4 *4 (-157))
- (-14 *5 (-849)) (-14 *6 (-586 (-1083))) (-14 *7 (-1164 (-626 *4))))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-201)) (-5 *2 (-1169)) (-5 *1 (-758)))))
-(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1066)) (-5 *3 (-520)) (-5 *1 (-217))))
+ (-12 (-4 *1 (-229 *2 *3 *4 *5)) (-4 *2 (-970)) (-4 *3 (-784))
+ (-4 *4 (-242 *3)) (-4 *5 (-729)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784))
+ (-4 *3 (-984 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-990 *5 *6 *7 *3 *4))
+ (-4 *4 (-989 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784))
+ (-4 *3 (-984 *5 *6 *7))
+ (-5 *2 (-587 (-2 (|:| |val| (-108)) (|:| -1884 *4))))
+ (-5 *1 (-990 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-834 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-51)))))
+(((*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-833 (-521))) (-5 *1 (-846))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-587 (-521))) (-5 *2 (-833 (-521))) (-5 *1 (-846)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1084)) (-5 *3 (-587 (-881 (-521))))
+ (-5 *4 (-290 (-154 (-353)))) (-5 *1 (-304))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1084)) (-5 *3 (-587 (-881 (-521))))
+ (-5 *4 (-290 (-353))) (-5 *1 (-304))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1084)) (-5 *3 (-587 (-881 (-521))))
+ (-5 *4 (-290 (-521))) (-5 *1 (-304))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1084)) (-5 *3 (-1165 (-290 (-154 (-353)))))
+ (-5 *1 (-304))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1084)) (-5 *3 (-1165 (-290 (-353)))) (-5 *1 (-304))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1084)) (-5 *3 (-1165 (-290 (-521)))) (-5 *1 (-304))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1084)) (-5 *3 (-627 (-290 (-154 (-353)))))
+ (-5 *1 (-304))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1084)) (-5 *3 (-627 (-290 (-353)))) (-5 *1 (-304))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1084)) (-5 *3 (-627 (-290 (-521)))) (-5 *1 (-304))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1084)) (-5 *3 (-290 (-154 (-353)))) (-5 *1 (-304))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1084)) (-5 *3 (-290 (-353))) (-5 *1 (-304))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1084)) (-5 *3 (-290 (-521))) (-5 *1 (-304))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1084)) (-5 *3 (-587 (-881 (-521))))
+ (-5 *4 (-290 (-631))) (-5 *1 (-304))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1084)) (-5 *3 (-587 (-881 (-521))))
+ (-5 *4 (-290 (-636))) (-5 *1 (-304))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1084)) (-5 *3 (-587 (-881 (-521))))
+ (-5 *4 (-290 (-638))) (-5 *1 (-304))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1084)) (-5 *3 (-1165 (-290 (-631)))) (-5 *1 (-304))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1084)) (-5 *3 (-1165 (-290 (-636)))) (-5 *1 (-304))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1084)) (-5 *3 (-1165 (-290 (-638)))) (-5 *1 (-304))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1084)) (-5 *3 (-627 (-290 (-631)))) (-5 *1 (-304))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1084)) (-5 *3 (-627 (-290 (-636)))) (-5 *1 (-304))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1084)) (-5 *3 (-627 (-290 (-638)))) (-5 *1 (-304))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1084)) (-5 *3 (-1165 (-631))) (-5 *1 (-304))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1084)) (-5 *3 (-1165 (-636))) (-5 *1 (-304))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1084)) (-5 *3 (-1165 (-638))) (-5 *1 (-304))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1084)) (-5 *3 (-627 (-631))) (-5 *1 (-304))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1084)) (-5 *3 (-627 (-636))) (-5 *1 (-304))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1084)) (-5 *3 (-627 (-638))) (-5 *1 (-304))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1084)) (-5 *3 (-290 (-631))) (-5 *1 (-304))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1084)) (-5 *3 (-290 (-636))) (-5 *1 (-304))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1084)) (-5 *3 (-290 (-638))) (-5 *1 (-304))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-1067)) (-5 *1 (-304))))
+ ((*1 *1 *1 *1) (-5 *1 (-792))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1065 (-381 *3))) (-5 *1 (-158 *3)) (-4 *3 (-282)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-587 (-521))) (-5 *2 (-627 (-521))) (-5 *1 (-1023)))))
+(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1067)) (-5 *3 (-521)) (-5 *1 (-218))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-586 (-1066))) (-5 *3 (-520)) (-5 *4 (-1066))
- (-5 *1 (-217))))
- ((*1 *1 *1) (-5 *1 (-791)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-791))))
- ((*1 *2 *1) (-12 (-4 *1 (-1142 *2 *3)) (-4 *3 (-727)) (-4 *2 (-969)))))
+ (-12 (-5 *2 (-587 (-1067))) (-5 *3 (-521)) (-5 *4 (-1067))
+ (-5 *1 (-218))))
+ ((*1 *1 *1) (-5 *1 (-792)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-792))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1143 *2 *3)) (-4 *3 (-728)) (-4 *2 (-970)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-587 (-792))) (-5 *1 (-1084)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-587 (-627 *5))) (-5 *4 (-521)) (-4 *5 (-337))
+ (-4 *5 (-970)) (-5 *2 (-108)) (-5 *1 (-953 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-587 (-627 *4))) (-4 *4 (-337)) (-4 *4 (-970))
+ (-5 *2 (-108)) (-5 *1 (-953 *4)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-322)) (-5 *3 (-520)) (-5 *2 (-1092 (-849) (-706))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2))
- (-4 *2 (-13 (-403 *3) (-926))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2))
- (-4 *2 (-13 (-403 *3) (-926))))))
+ (|partial| -12 (-5 *3 (-560 *4)) (-4 *4 (-784)) (-4 *2 (-784))
+ (-5 *1 (-559 *2 *4)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1118)) (-4 *4 (-346 *3))
- (-4 *5 (-346 *3)) (-5 *2 (-520))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-972 *3 *4 *5 *6 *7)) (-4 *5 (-969))
- (-4 *6 (-214 *4 *5)) (-4 *7 (-214 *3 *5)) (-5 *2 (-520)))))
-(((*1 *1 *1) (-12 (-5 *1 (-545 *2)) (-4 *2 (-969)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-586 (-520))) (-5 *2 (-586 (-626 (-520))))
- (-5 *1 (-1022)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-934 *3)) (-4 *3 (-1118)) (-4 *3 (-1012))
- (-5 *2 (-108)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3)
- (-12 (-5 *3 (-520)) (-5 *5 (-626 (-201))) (-5 *4 (-201))
- (-5 *2 (-958)) (-5 *1 (-688)))))
-(((*1 *2 *1) (-12 (-5 *2 (-586 (-559 *1))) (-4 *1 (-276)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1164 *1)) (-4 *1 (-340 *2)) (-4 *2 (-157))))
- ((*1 *2) (-12 (-4 *2 (-157)) (-5 *1 (-389 *3 *2)) (-4 *3 (-390 *2))))
- ((*1 *2) (-12 (-4 *1 (-390 *2)) (-4 *2 (-157)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1066)) (-5 *2 (-191 (-470))) (-5 *1 (-771)))))
+ (-12 (-5 *2 (-3 (-521) (-202) (-1084) (-1067) (-1089)))
+ (-5 *1 (-1089)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1 (-872 (-202)) (-202) (-202)))
+ (-5 *3 (-1 (-202) (-202) (-202) (-202))) (-5 *1 (-231)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-821 *4)) (-4 *4 (-1013)) (-5 *1 (-818 *4 *3))
+ (-4 *3 (-1013)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-336)) (-4 *4 (-346 *3)) (-4 *5 (-346 *3))
- (-5 *1 (-487 *3 *4 *5 *2)) (-4 *2 (-624 *3 *4 *5)))))
-(((*1 *2) (-12 (-5 *2 (-586 (-706))) (-5 *1 (-1167))))
- ((*1 *2 *2) (-12 (-5 *2 (-586 (-706))) (-5 *1 (-1167)))))
+ (-12 (-5 *2 (-1165 *1)) (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123))
+ (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4))))))
(((*1 *2 *2)
- (-12 (-5 *2 (-586 *7)) (-4 *7 (-988 *3 *4 *5 *6)) (-4 *3 (-424))
- (-4 *4 (-728)) (-4 *5 (-783)) (-4 *6 (-983 *3 *4 *5))
- (-5 *1 (-913 *3 *4 *5 *6 *7))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-586 *7)) (-4 *7 (-988 *3 *4 *5 *6)) (-4 *3 (-424))
- (-4 *4 (-728)) (-4 *5 (-783)) (-4 *6 (-983 *3 *4 *5))
- (-5 *1 (-1019 *3 *4 *5 *6 *7)))))
+ (|partial| -12 (-4 *3 (-513)) (-4 *3 (-157)) (-4 *4 (-347 *3))
+ (-4 *5 (-347 *3)) (-5 *1 (-626 *3 *4 *5 *2))
+ (-4 *2 (-625 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-587 (-560 *1))) (-4 *1 (-277)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-37 (-381 (-521))))
+ (-5 *2 (-2 (|:| -2880 (-1065 *4)) (|:| -2892 (-1065 *4))))
+ (-5 *1 (-1071 *4)) (-5 *3 (-1065 *4)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-405 *3 *2))
+ (-4 *2 (-404 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1048))))
+(((*1 *1 *2 *1) (-12 (-5 *1 (-117 *2)) (-4 *2 (-784)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729))
+ (-4 *4 (-784)) (-4 *2 (-425)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201)))
- (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201))
- (|:| |relerr| (-201))))
- (-5 *2 (-352)) (-5 *1 (-170)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1083)) (-4 *5 (-336)) (-5 *2 (-586 (-1113 *5)))
- (-5 *1 (-1172 *5)) (-5 *4 (-1113 *5)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-1083)) (-5 *2 (-586 (-730))) (-5 *1 (-265)))))
-(((*1 *1) (-5 *1 (-410))))
-(((*1 *2 *1 *2 *3)
- (|partial| -12 (-5 *2 (-1066)) (-5 *3 (-520)) (-5 *1 (-981)))))
+ (-12 (-5 *3 (-587 (-290 (-202)))) (-5 *2 (-108)) (-5 *1 (-243))))
+ ((*1 *2 *3) (-12 (-5 *3 (-290 (-202))) (-5 *2 (-108)) (-5 *1 (-243))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-108))
+ (-5 *1 (-903 *4 *5 *6 *3)) (-4 *3 (-984 *4 *5 *6)))))
+(((*1 *2 *2) (|partial| -12 (-5 *1 (-515 *2)) (-4 *2 (-506)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-707)) (-4 *4 (-13 (-513) (-135)))
+ (-5 *1 (-1135 *4 *2)) (-4 *2 (-1141 *4)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-335 (-110))) (-4 *2 (-970)) (-5 *1 (-651 *2 *4))
+ (-4 *4 (-589 *2))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *3 (-335 (-110))) (-5 *1 (-771 *2)) (-4 *2 (-970)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-201)) (-5 *4 (-520)) (-5 *2 (-958)) (-5 *1 (-694)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-871 *3)) (-4 *3 (-13 (-336) (-1104) (-926)))
- (-5 *1 (-160 *3)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-706)) (-4 *5 (-512))
- (-5 *2
- (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-895 *5 *3)) (-4 *3 (-1140 *5)))))
+ (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-881 (-154 *4))) (-4 *4 (-157))
+ (-4 *4 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-881 (-154 *5))) (-5 *4 (-850)) (-4 *5 (-157))
+ (-4 *5 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-881 *4)) (-4 *4 (-970)) (-4 *4 (-562 (-353)))
+ (-5 *2 (-154 (-353))) (-5 *1 (-721 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-881 *5)) (-5 *4 (-850)) (-4 *5 (-970))
+ (-4 *5 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-381 (-881 *4))) (-4 *4 (-513))
+ (-4 *4 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-381 (-881 *5))) (-5 *4 (-850)) (-4 *5 (-513))
+ (-4 *5 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-381 (-881 (-154 *4)))) (-4 *4 (-513))
+ (-4 *4 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-381 (-881 (-154 *5)))) (-5 *4 (-850))
+ (-4 *5 (-513)) (-4 *5 (-562 (-353))) (-5 *2 (-154 (-353)))
+ (-5 *1 (-721 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-290 *4)) (-4 *4 (-513)) (-4 *4 (-784))
+ (-4 *4 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-290 *5)) (-5 *4 (-850)) (-4 *5 (-513))
+ (-4 *5 (-784)) (-4 *5 (-562 (-353))) (-5 *2 (-154 (-353)))
+ (-5 *1 (-721 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-290 (-154 *4))) (-4 *4 (-513)) (-4 *4 (-784))
+ (-4 *4 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-290 (-154 *5))) (-5 *4 (-850)) (-4 *5 (-513))
+ (-4 *5 (-784)) (-4 *5 (-562 (-353))) (-5 *2 (-154 (-353)))
+ (-5 *1 (-721 *5)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-202)) (-5 *4 (-521))
+ (-5 *5 (-3 (|:| |fn| (-362)) (|:| |fp| (-62 G)))) (-5 *2 (-959))
+ (-5 *1 (-685)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-872 *3) (-872 *3))) (-5 *1 (-160 *3))
+ (-4 *3 (-13 (-337) (-1105) (-927))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-2 (|:| |var| (-587 (-1084))) (|:| |pred| (-51))))
+ (-5 *1 (-821 *3)) (-4 *3 (-1013)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-820 *4)) (-5 *3 (-1 (-108) *5)) (-4 *4 (-1012))
- (-4 *5 (-1118)) (-5 *1 (-818 *4 *5))))
+ (-12 (-5 *2 (-821 *4)) (-5 *3 (-1 (-108) *5)) (-4 *4 (-1013))
+ (-4 *5 (-1119)) (-5 *1 (-819 *4 *5))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-820 *4)) (-5 *3 (-586 (-1 (-108) *5))) (-4 *4 (-1012))
- (-4 *5 (-1118)) (-5 *1 (-818 *4 *5))))
+ (-12 (-5 *2 (-821 *4)) (-5 *3 (-587 (-1 (-108) *5))) (-4 *4 (-1013))
+ (-4 *5 (-1119)) (-5 *1 (-819 *4 *5))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-820 *5)) (-5 *3 (-586 (-1083)))
- (-5 *4 (-1 (-108) (-586 *6))) (-4 *5 (-1012)) (-4 *6 (-1118))
- (-5 *1 (-818 *5 *6))))
+ (-12 (-5 *2 (-821 *5)) (-5 *3 (-587 (-1084)))
+ (-5 *4 (-1 (-108) (-587 *6))) (-4 *5 (-1013)) (-4 *6 (-1119))
+ (-5 *1 (-819 *5 *6))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-108) *5)) (-4 *5 (-1118)) (-4 *4 (-783))
- (-5 *1 (-865 *4 *2 *5)) (-4 *2 (-403 *4))))
+ (-12 (-5 *3 (-1 (-108) *5)) (-4 *5 (-1119)) (-4 *4 (-784))
+ (-5 *1 (-866 *4 *2 *5)) (-4 *2 (-404 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-586 (-1 (-108) *5))) (-4 *5 (-1118)) (-4 *4 (-783))
- (-5 *1 (-865 *4 *2 *5)) (-4 *2 (-403 *4))))
+ (-12 (-5 *3 (-587 (-1 (-108) *5))) (-4 *5 (-1119)) (-4 *4 (-784))
+ (-5 *1 (-866 *4 *2 *5)) (-4 *2 (-404 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1083)) (-5 *4 (-1 (-108) *5)) (-4 *5 (-1118))
- (-5 *2 (-289 (-520))) (-5 *1 (-866 *5))))
+ (-12 (-5 *3 (-1084)) (-5 *4 (-1 (-108) *5)) (-4 *5 (-1119))
+ (-5 *2 (-290 (-521))) (-5 *1 (-867 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1083)) (-5 *4 (-586 (-1 (-108) *5))) (-4 *5 (-1118))
- (-5 *2 (-289 (-520))) (-5 *1 (-866 *5))))
+ (-12 (-5 *3 (-1084)) (-5 *4 (-587 (-1 (-108) *5))) (-4 *5 (-1119))
+ (-5 *2 (-290 (-521))) (-5 *1 (-867 *5))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-586 (-1083))) (-5 *3 (-1 (-108) (-586 *6)))
- (-4 *6 (-13 (-403 *5) (-814 *4) (-561 (-820 *4)))) (-4 *4 (-1012))
- (-4 *5 (-13 (-969) (-814 *4) (-783) (-561 (-820 *4))))
- (-5 *1 (-991 *4 *5 *6)))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-1064 *4)) (-5 *3 (-520)) (-4 *4 (-969))
- (-5 *1 (-1068 *4))))
- ((*1 *1 *2 *2 *1)
- (-12 (-5 *2 (-520)) (-5 *1 (-1156 *3 *4 *5)) (-4 *3 (-969))
- (-14 *4 (-1083)) (-14 *5 *3))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1118)) (-4 *4 (-346 *3))
- (-4 *5 (-346 *3)) (-5 *2 (-520))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-972 *3 *4 *5 *6 *7)) (-4 *5 (-969))
- (-4 *6 (-214 *4 *5)) (-4 *7 (-214 *3 *5)) (-5 *2 (-520)))))
-(((*1 *2 *3)
- (-12 (-4 *3 (-1140 (-380 (-520))))
- (-5 *2 (-2 (|:| |den| (-520)) (|:| |gcdnum| (-520))))
- (-5 *1 (-841 *3 *4)) (-4 *4 (-1140 (-380 *3)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1140 (-380 *2))) (-5 *2 (-520)) (-5 *1 (-841 *4 *3))
- (-4 *3 (-1140 (-380 *4))))))
+ (-12 (-5 *2 (-587 (-1084))) (-5 *3 (-1 (-108) (-587 *6)))
+ (-4 *6 (-13 (-404 *5) (-815 *4) (-562 (-821 *4)))) (-4 *4 (-1013))
+ (-4 *5 (-13 (-970) (-815 *4) (-784) (-562 (-821 *4))))
+ (-5 *1 (-992 *4 *5 *6)))))
+(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4
+ *4 *6 *4)
+ (-12 (-5 *4 (-521)) (-5 *5 (-627 (-202))) (-5 *6 (-615 (-202)))
+ (-5 *3 (-202)) (-5 *2 (-959)) (-5 *1 (-687)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-707)) (-4 *6 (-1013)) (-4 *3 (-829 *6))
+ (-5 *2 (-627 *3)) (-5 *1 (-629 *6 *3 *7 *4)) (-4 *7 (-347 *3))
+ (-4 *4 (-13 (-347 *6) (-10 -7 (-6 -4233)))))))
+(((*1 *1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-872 *5)) (-5 *3 (-707)) (-4 *5 (-970))
+ (-5 *1 (-1073 *4 *5)) (-14 *4 (-850)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-201)) (|:| |xend| (-201))
- (|:| |fn| (-1164 (-289 (-201)))) (|:| |yinit| (-586 (-201)))
- (|:| |intvals| (-586 (-201))) (|:| |g| (-289 (-201)))
- (|:| |abserr| (-201)) (|:| |relerr| (-201))))
- (-5 *2 (-352)) (-5 *1 (-183)))))
+ (-12 (-5 *3 (-1080 *4)) (-4 *4 (-323)) (-5 *2 (-886 (-1031)))
+ (-5 *1 (-320 *4)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-849)) (-4 *1 (-302 *3)) (-4 *3 (-336)) (-4 *3 (-341))))
- ((*1 *2 *1) (-12 (-4 *1 (-302 *2)) (-4 *2 (-336))))
+ (-12 (-5 *2 (-850)) (-4 *1 (-303 *3)) (-4 *3 (-337)) (-4 *3 (-342))))
+ ((*1 *2 *1) (-12 (-4 *1 (-303 *2)) (-4 *2 (-337))))
((*1 *2 *1)
- (-12 (-4 *1 (-343 *2 *3)) (-4 *3 (-1140 *2)) (-4 *2 (-157))))
+ (-12 (-4 *1 (-344 *2 *3)) (-4 *3 (-1141 *2)) (-4 *2 (-157))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1164 *4)) (-5 *3 (-849)) (-4 *4 (-322))
- (-5 *1 (-490 *4))))
+ (-12 (-5 *2 (-1165 *4)) (-5 *3 (-850)) (-4 *4 (-323))
+ (-5 *1 (-491 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-1033 *3 *2 *4 *5)) (-4 *4 (-214 *3 *2))
- (-4 *5 (-214 *3 *2)) (-4 *2 (-969)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-706)) (-4 *5 (-512))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-895 *5 *3)) (-4 *3 (-1140 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-733 *2)) (-4 *2 (-157))))
- ((*1 *2 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-157)))))
-(((*1 *1 *1) (-12 (-4 *1 (-346 *2)) (-4 *2 (-1118))))
+ (-12 (-4 *1 (-1034 *3 *2 *4 *5)) (-4 *4 (-215 *3 *2))
+ (-4 *5 (-215 *3 *2)) (-4 *2 (-970)))))
+(((*1 *2)
+ (-12 (-4 *1 (-323))
+ (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-818 *4 *5)) (-5 *3 (-818 *4 *6)) (-4 *4 (-1013))
+ (-4 *5 (-1013)) (-4 *6 (-607 *5)) (-5 *1 (-814 *4 *5 *6)))))
+(((*1 *1 *1) (-12 (-4 *1 (-347 *2)) (-4 *2 (-1119))))
((*1 *2 *2)
- (-12 (-4 *3 (-969)) (-5 *1 (-416 *3 *2)) (-4 *2 (-1140 *3))))
+ (-12 (-4 *3 (-970)) (-5 *1 (-417 *3 *2)) (-4 *2 (-1141 *3))))
((*1 *1 *1)
- (-12 (-5 *1 (-589 *2 *3 *4)) (-4 *2 (-1012)) (-4 *3 (-23))
+ (-12 (-5 *1 (-590 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23))
(-14 *4 *3))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-545 *2)) (-4 *2 (-37 (-380 (-520)))) (-4 *2 (-969)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-586 (-880 *3))) (-4 *3 (-424)) (-5 *1 (-333 *3 *4))
- (-14 *4 (-586 (-1083)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-586 *6)) (-4 *6 (-877 *3 *4 *5)) (-4 *3 (-424))
- (-4 *4 (-728)) (-4 *5 (-783)) (-5 *1 (-422 *3 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-586 *7)) (-5 *3 (-1066)) (-4 *7 (-877 *4 *5 *6))
- (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783))
- (-5 *1 (-422 *4 *5 *6 *7))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-586 *7)) (-5 *3 (-1066)) (-4 *7 (-877 *4 *5 *6))
- (-4 *4 (-424)) (-4 *5 (-728)) (-4 *6 (-783))
- (-5 *1 (-422 *4 *5 *6 *7))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-336)) (-4 *3 (-728)) (-4 *4 (-783))
- (-5 *1 (-472 *2 *3 *4 *5)) (-4 *5 (-877 *2 *3 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-586 (-715 *3 (-793 *4)))) (-4 *3 (-424))
- (-14 *4 (-586 (-1083))) (-5 *1 (-571 *3 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-512) (-783)))
- (-4 *2 (-13 (-403 (-154 *4)) (-926) (-1104)))
- (-5 *1 (-549 *4 *3 *2)) (-4 *3 (-13 (-403 *4) (-926) (-1104))))))
-(((*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-896)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1164 *4)) (-5 *3 (-706)) (-4 *4 (-322))
- (-5 *1 (-490 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-322)) (-5 *2 (-108))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1079 *4)) (-4 *4 (-322)) (-5 *2 (-108))
- (-5 *1 (-330 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-520)) (-5 *1 (-854)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-588 *3)) (-4 *3 (-969))
- (-5 *1 (-650 *3 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-969)) (-5 *1 (-770 *3)))))
-(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-201)) (-5 *4 (-520))
- (-5 *5 (-3 (|:| |fn| (-361)) (|:| |fp| (-62 G)))) (-5 *2 (-958))
- (-5 *1 (-684)))))
-(((*1 *1 *2) (-12 (-5 *1 (-203 *2)) (-4 *2 (-13 (-336) (-1104))))))
+(((*1 *2 *1) (-12 (-5 *2 (-587 (-1084))) (-5 *1 (-762)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |pde| (-586 (-289 (-201))))
- (|:| |constraints|
- (-586
- (-2 (|:| |start| (-201)) (|:| |finish| (-201))
- (|:| |grid| (-706)) (|:| |boundaryType| (-520))
- (|:| |dStart| (-626 (-201))) (|:| |dFinish| (-626 (-201))))))
- (|:| |f| (-586 (-586 (-289 (-201))))) (|:| |st| (-1066))
- (|:| |tol| (-201))))
- (-5 *2 (-108)) (-5 *1 (-188)))))
-(((*1 *2 *2 *3 *3 *4)
- (-12 (-5 *4 (-706)) (-4 *3 (-512)) (-5 *1 (-895 *3 *2))
- (-4 *2 (-1140 *3)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-983 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-728))
- (-4 *4 (-783)))))
-(((*1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-491 *3)) (-4 *3 (-13 (-662) (-25))))))
-(((*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-538 *3)) (-4 *3 (-505)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-108)) (-4 *5 (-13 (-336) (-781)))
- (-5 *2 (-586 (-2 (|:| -3493 (-586 *3)) (|:| -2967 *5))))
- (-5 *1 (-164 *5 *3)) (-4 *3 (-1140 (-154 *5)))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-336) (-781)))
- (-5 *2 (-586 (-2 (|:| -3493 (-586 *3)) (|:| -2967 *4))))
- (-5 *1 (-164 *4 *3)) (-4 *3 (-1140 (-154 *4))))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-849)) (-5 *4 (-1066)) (-5 *2 (-1169)) (-5 *1 (-1165)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-520)) (-5 *1 (-517))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1079 (-380 (-520)))) (-5 *1 (-870)) (-5 *3 (-520)))))
-(((*1 *1) (-5 *1 (-1166))))
-(((*1 *2 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-281)) (-5 *1 (-636 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-969)) (-4 *7 (-969))
- (-4 *6 (-1140 *5)) (-5 *2 (-1079 (-1079 *7)))
- (-5 *1 (-469 *5 *6 *4 *7)) (-4 *4 (-1140 *6)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *5 (-960 (-47)))
- (-4 *4 (-13 (-512) (-783) (-960 (-520)))) (-4 *5 (-403 *4))
- (-5 *2 (-391 (-1079 (-47)))) (-5 *1 (-408 *4 *5 *3))
- (-4 *3 (-1140 *5)))))
+ (-12 (-5 *3 (-587 *2)) (-4 *2 (-1141 *4)) (-5 *1 (-500 *4 *2 *5 *6))
+ (-4 *4 (-282)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-707))))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-411)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-151 *3)) (-4 *3 (-157)) (-4 *3 (-978)) (-4 *3 (-1104))
- (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-706)) (-4 *6 (-1012)) (-4 *3 (-828 *6))
- (-5 *2 (-626 *3)) (-5 *1 (-628 *6 *3 *7 *4)) (-4 *7 (-346 *3))
- (-4 *4 (-13 (-346 *6) (-10 -7 (-6 -4229)))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-586 (-991 *3 *4 *5))) (-4 *3 (-1012))
- (-4 *4 (-13 (-969) (-814 *3) (-783) (-561 (-820 *3))))
- (-4 *5 (-13 (-403 *4) (-814 *3) (-561 (-820 *3))))
- (-5 *1 (-992 *3 *4 *5)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-352)) (-5 *2 (-1169)) (-5 *1 (-1166)))))
-(((*1 *2 *1) (-12 (-4 *1 (-919 *2)) (-4 *2 (-1118)))))
-(((*1 *2 *2 *2 *2 *3 *3 *4)
- (|partial| -12 (-5 *3 (-559 *2))
- (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1083)))
- (-4 *2 (-13 (-403 *5) (-27) (-1104)))
- (-4 *5 (-13 (-424) (-960 (-520)) (-783) (-135) (-582 (-520))))
- (-5 *1 (-522 *5 *2 *6)) (-4 *6 (-1012)))))
-(((*1 *1 *1) (-5 *1 (-201)))
- ((*1 *1 *1)
- (-12 (-5 *1 (-312 *2 *3 *4)) (-14 *2 (-586 (-1083)))
- (-14 *3 (-586 (-1083))) (-4 *4 (-360))))
- ((*1 *1 *1) (-5 *1 (-352))) ((*1 *1) (-5 *1 (-352))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1164 *4)) (-4 *4 (-390 *3)) (-4 *3 (-281))
- (-4 *3 (-512)) (-5 *1 (-42 *3 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-849)) (-4 *4 (-336)) (-5 *2 (-1164 *1))
- (-4 *1 (-302 *4))))
- ((*1 *2) (-12 (-4 *3 (-336)) (-5 *2 (-1164 *1)) (-4 *1 (-302 *3))))
- ((*1 *2)
- (-12 (-4 *3 (-157)) (-4 *4 (-1140 *3)) (-5 *2 (-1164 *1))
- (-4 *1 (-382 *3 *4))))
+ (-12 (-4 *1 (-625 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-347 *3))
+ (-4 *5 (-347 *3)) (-5 *2 (-587 (-587 *3)))))
((*1 *2 *1)
- (-12 (-4 *3 (-281)) (-4 *4 (-917 *3)) (-4 *5 (-1140 *4))
- (-5 *2 (-1164 *6)) (-5 *1 (-386 *3 *4 *5 *6))
- (-4 *6 (-13 (-382 *4 *5) (-960 *4)))))
+ (-12 (-4 *1 (-973 *3 *4 *5 *6 *7)) (-4 *5 (-970))
+ (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-587 (-587 *5)))))
((*1 *2 *1)
- (-12 (-4 *3 (-281)) (-4 *4 (-917 *3)) (-4 *5 (-1140 *4))
- (-5 *2 (-1164 *6)) (-5 *1 (-387 *3 *4 *5 *6 *7))
- (-4 *6 (-382 *4 *5)) (-14 *7 *2)))
- ((*1 *2) (-12 (-4 *3 (-157)) (-5 *2 (-1164 *1)) (-4 *1 (-390 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-849)) (-5 *2 (-1164 (-1164 *4))) (-5 *1 (-490 *4))
- (-4 *4 (-322)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1066)) (-5 *1 (-303)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-1012)) (-4 *2 (-828 *4)) (-5 *1 (-628 *4 *2 *5 *3))
- (-4 *5 (-346 *2)) (-4 *3 (-13 (-346 *4) (-10 -7 (-6 -4229)))))))
-(((*1 *1) (-5 *1 (-1086))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1083)))))
-(((*1 *1 *1) (-4 *1 (-1052))))
+ (-12 (-5 *2 (-587 (-587 *3))) (-5 *1 (-1092 *3)) (-4 *3 (-1013)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-104)) (-5 *1 (-159)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-337)) (-4 *3 (-970))
+ (-5 *1 (-1069 *3)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-587 (-587 *3))) (-4 *3 (-1013)) (-5 *1 (-834 *3)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-3 (|:| |fst| (-408)) (|:| -1366 "void")))
+ (-5 *1 (-411)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-850)) (-5 *2 (-1080 *4)) (-5 *1 (-331 *4))
+ (-4 *4 (-323)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-144 *3 *2))
- (-4 *2 (-403 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1083)) (-4 *4 (-13 (-783) (-512))) (-5 *1 (-144 *4 *2))
- (-4 *2 (-403 *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-146)) (-5 *2 (-1083))))
- ((*1 *1 *1) (-4 *1 (-146))))
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-927))))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-1013)) (-5 *1 (-892 *2 *3)) (-4 *3 (-1013)))))
+(((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-410)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-405 *3 *2))
+ (-4 *2 (-404 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1048))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-982)) (-5 *3 (-1067)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-850)) (-5 *4 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1166)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1083))
- (-5 *2
- (-2 (|:| |zeros| (-1064 (-201))) (|:| |ones| (-1064 (-201)))
- (|:| |singularities| (-1064 (-201)))))
- (-5 *1 (-100)))))
+ (-12 (-5 *3 (-202)) (-5 *2 (-108)) (-5 *1 (-274 *4 *5)) (-14 *4 *3)
+ (-14 *5 *3)))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1008 (-777 (-202)))) (-5 *3 (-202)) (-5 *2 (-108))
+ (-5 *1 (-280))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-337)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *2 (-108))
+ (-5 *1 (-473 *3 *4 *5 *6)) (-4 *6 (-878 *3 *4 *5)))))
+(((*1 *2 *3 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959))
+ (-5 *1 (-688)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-309 *5 *6 *7 *8)) (-4 *5 (-403 *4)) (-4 *6 (-1140 *5))
- (-4 *7 (-1140 (-380 *6))) (-4 *8 (-315 *5 *6 *7))
- (-4 *4 (-13 (-783) (-512) (-960 (-520)))) (-5 *2 (-108))
- (-5 *1 (-839 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-309 (-380 (-520)) *4 *5 *6))
- (-4 *4 (-1140 (-380 (-520)))) (-4 *5 (-1140 (-380 *4)))
- (-4 *6 (-315 (-380 (-520)) *4 *5)) (-5 *2 (-108))
- (-5 *1 (-840 *4 *5 *6)))))
-(((*1 *2)
- (-12 (-4 *4 (-1122)) (-4 *5 (-1140 *4)) (-4 *6 (-1140 (-380 *5)))
- (-5 *2 (-706)) (-5 *1 (-314 *3 *4 *5 *6)) (-4 *3 (-315 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-315 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-1140 *3))
- (-4 *5 (-1140 (-380 *4))) (-5 *2 (-706)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1137 *4 *5)) (-5 *3 (-586 *5)) (-14 *4 (-1083))
- (-4 *5 (-336)) (-5 *1 (-851 *4 *5))))
+ (-12 (-5 *3 (-587 *4)) (-4 *4 (-970)) (-5 *2 (-1165 *4))
+ (-5 *1 (-1085 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-850)) (-5 *2 (-1165 *3)) (-5 *1 (-1085 *3))
+ (-4 *3 (-970)))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-5 *3 (-1 (-108) *5 *5)) (-4 *5 (-13 (-1013) (-33)))
+ (-5 *2 (-108)) (-5 *1 (-1049 *4 *5)) (-4 *4 (-13 (-1013) (-33))))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-834 *4)) (-4 *4 (-1013)) (-5 *2 (-587 (-707)))
+ (-5 *1 (-833 *4)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4234)) (-4 *1 (-115 *2)) (-4 *2 (-1119)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-587 (-992 *3 *4 *5))) (-4 *3 (-1013))
+ (-4 *4 (-13 (-970) (-815 *3) (-784) (-562 (-821 *3))))
+ (-4 *5 (-13 (-404 *4) (-815 *3) (-562 (-821 *3))))
+ (-5 *1 (-993 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-408)))))
+(((*1 *2 *3) (-12 (-5 *3 (-202)) (-5 *2 (-381 (-521))) (-5 *1 (-280)))))
+(((*1 *2 *2) (-12 (-5 *1 (-145 *2)) (-4 *2 (-506))))
+ ((*1 *1 *2) (-12 (-5 *2 (-587 (-521))) (-5 *1 (-897)))))
+(((*1 *2 *1) (-12 (-4 *1 (-277)) (-5 *2 (-587 (-110))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1065 *4)) (-4 *4 (-37 *3)) (-4 *4 (-970))
+ (-5 *3 (-381 (-521))) (-5 *1 (-1069 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-304)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -3727 *1) (|:| -3820 *1))) (-4 *1 (-282))))
+ ((*1 *2 *1 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |lm| (-360 *3)) (|:| |rm| (-360 *3))))
+ (-5 *1 (-360 *3)) (-4 *3 (-1013))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -3727 (-707)) (|:| -3820 (-707))))
+ (-5 *1 (-707))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-586 *5)) (-4 *5 (-336)) (-5 *2 (-1079 *5))
- (-5 *1 (-851 *4 *5)) (-14 *4 (-1083))))
- ((*1 *2 *3 *3 *4 *4)
- (-12 (-5 *3 (-586 *6)) (-5 *4 (-706)) (-4 *6 (-336))
- (-5 *2 (-380 (-880 *6))) (-5 *1 (-970 *5 *6)) (-14 *5 (-1083)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1066)) (-5 *1 (-1097)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-346 *2)) (-4 *2 (-1118)) (-4 *2 (-783))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-346 *3)) (-4 *3 (-1118))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-894 *2)) (-4 *2 (-783))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1044 *2)) (-4 *2 (-969))))
- ((*1 *1 *2) (-12 (-5 *2 (-586 *1)) (-4 *1 (-1044 *3)) (-4 *3 (-969))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-586 (-1072 *3 *4))) (-5 *1 (-1072 *3 *4))
- (-14 *3 (-849)) (-4 *4 (-969))))
- ((*1 *1 *1 *1)
- (-12 (-5 *1 (-1072 *2 *3)) (-14 *2 (-849)) (-4 *3 (-969)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-586 (-791))) (-5 *1 (-1083)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4229)) (-4 *1 (-211 *3))
- (-4 *3 (-1012))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-256 *3)) (-4 *3 (-1118)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-336) (-781))) (-5 *1 (-164 *3 *2))
- (-4 *2 (-1140 (-154 *3))))))
-(((*1 *1 *1 *1) (-5 *1 (-201)))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-201)) (-5 *1 (-202))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-154 (-201))) (-5 *1 (-202))))
+ (-12 (-4 *4 (-513)) (-5 *2 (-2 (|:| -3727 *3) (|:| -3820 *3)))
+ (-5 *1 (-896 *4 *3)) (-4 *3 (-1141 *4)))))
+(((*1 *1 *1 *1) (-5 *1 (-202)))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203))))
((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-404 *3 *2))
- (-4 *2 (-403 *3))))
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-405 *3 *2))
+ (-4 *2 (-404 *3))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-706)) (-5 *2 (-1 (-352))) (-5 *1 (-962))))
- ((*1 *1 *1 *1) (-4 *1 (-1047))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-520)) (-5 *1 (-517)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-1083))
- (-4 *4 (-13 (-424) (-783) (-135) (-960 (-520)) (-582 (-520))))
- (-5 *1 (-513 *4 *2)) (-4 *2 (-13 (-27) (-1104) (-403 *4))))))
+ (-12 (-5 *3 (-707)) (-5 *2 (-1 (-353))) (-5 *1 (-963))))
+ ((*1 *1 *1 *1) (-4 *1 (-1048))))
+(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-922 *2)) (-4 *2 (-157)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-586 *5)) (-5 *4 (-849)) (-4 *5 (-783))
- (-5 *2 (-57 (-586 (-611 *5)))) (-5 *1 (-611 *5)))))
-(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1 *8 *8))
- (-5 *5
- (-1 (-2 (|:| |ans| *7) (|:| -1924 *7) (|:| |sol?| (-108)))
- (-520) *7))
- (-5 *6 (-586 (-380 *8))) (-4 *7 (-336)) (-4 *8 (-1140 *7))
- (-5 *3 (-380 *8))
- (-5 *2
- (-2
- (|:| |answer|
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-586 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (|:| |a0| *7)))
- (-5 *1 (-530 *7 *8)))))
+ (-12 (-5 *4 (-587 *3)) (-4 *3 (-1141 *5)) (-4 *5 (-282))
+ (-5 *2 (-707)) (-5 *1 (-428 *5 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-587 (-881 *4))) (-5 *3 (-587 (-1084))) (-4 *4 (-425))
+ (-5 *1 (-847 *4)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-587 *4)) (-4 *4 (-337)) (-5 *2 (-1165 *4))
+ (-5 *1 (-751 *4 *3)) (-4 *3 (-597 *4)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-353) (-353))) (-5 *4 (-353))
+ (-5 *2
+ (-2 (|:| -3430 *4) (|:| -2968 *4) (|:| |totalpts| (-521))
+ (|:| |success| (-108))))
+ (-5 *1 (-725)) (-5 *5 (-521)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-497)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-850)) (-5 *2 (-1080 *4)) (-5 *1 (-331 *4))
+ (-4 *4 (-323)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1165 *5)) (-4 *5 (-728)) (-5 *2 (-108))
+ (-5 *1 (-779 *4 *5)) (-14 *4 (-707)))))
+(((*1 *2) (-12 (-5 *2 (-1084)) (-5 *1 (-1087)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1080 *3)) (-4 *3 (-342)) (-4 *1 (-303 *3))
+ (-4 *3 (-337)))))
+(((*1 *2 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1119)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-521)) (-4 *1 (-55 *4 *3 *5)) (-4 *4 (-1119))
+ (-4 *3 (-347 *4)) (-4 *5 (-347 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-920 *2)) (-4 *2 (-1119)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-756 *3)) (-4 *3 (-784)) (-5 *1 (-612 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1065 (-202))) (-5 *2 (-587 (-1067))) (-5 *1 (-171))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1065 (-202))) (-5 *2 (-587 (-1067))) (-5 *1 (-275))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1065 (-202))) (-5 *2 (-587 (-1067))) (-5 *1 (-280)))))
+(((*1 *2 *1 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| |polnum| (-718 *3)) (|:| |polden| *3) (|:| -3745 (-707))))
+ (-5 *1 (-718 *3)) (-4 *3 (-970))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784))
+ (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3745 (-707))))
+ (-4 *1 (-984 *3 *4 *5)))))
(((*1 *1 *2 *2 *3)
- (-12 (-5 *2 (-706)) (-4 *3 (-1118)) (-4 *1 (-55 *3 *4 *5))
- (-4 *4 (-346 *3)) (-4 *5 (-346 *3))))
+ (-12 (-5 *2 (-707)) (-4 *3 (-1119)) (-4 *1 (-55 *3 *4 *5))
+ (-4 *4 (-347 *3)) (-4 *5 (-347 *3))))
((*1 *1) (-5 *1 (-156)))
- ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1066)) (-4 *1 (-362))))
- ((*1 *1) (-5 *1 (-367)))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-706)) (-4 *1 (-591 *3)) (-4 *3 (-1118))))
+ ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1067)) (-4 *1 (-363))))
+ ((*1 *1) (-5 *1 (-368)))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-707)) (-4 *1 (-592 *3)) (-4 *3 (-1119))))
((*1 *1)
- (-12 (-4 *3 (-1012)) (-5 *1 (-813 *2 *3 *4)) (-4 *2 (-1012))
- (-4 *4 (-606 *3))))
- ((*1 *1) (-12 (-5 *1 (-817 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1012))))
- ((*1 *1) (-12 (-5 *1 (-1072 *2 *3)) (-14 *2 (-849)) (-4 *3 (-969))))
- ((*1 *1 *1) (-5 *1 (-1083))) ((*1 *1) (-5 *1 (-1083)))
- ((*1 *1) (-5 *1 (-1099))))
-(((*1 *2)
- (-12 (-5 *2 (-1169)) (-5 *1 (-1096 *3 *4)) (-4 *3 (-1012))
- (-4 *4 (-1012)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-626 *4)) (-5 *3 (-849)) (|has| *4 (-6 (-4231 "*")))
- (-4 *4 (-969)) (-5 *1 (-951 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-586 (-626 *4))) (-5 *3 (-849))
- (|has| *4 (-6 (-4231 "*"))) (-4 *4 (-969)) (-5 *1 (-951 *4)))))
+ (-12 (-4 *3 (-1013)) (-5 *1 (-814 *2 *3 *4)) (-4 *2 (-1013))
+ (-4 *4 (-607 *3))))
+ ((*1 *1) (-12 (-5 *1 (-818 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013))))
+ ((*1 *1) (-12 (-5 *1 (-1073 *2 *3)) (-14 *2 (-850)) (-4 *3 (-970))))
+ ((*1 *1 *1) (-5 *1 (-1084))) ((*1 *1) (-5 *1 (-1084)))
+ ((*1 *1) (-5 *1 (-1100))))
+(((*1 *1 *1 *1 *2)
+ (|partial| -12 (-5 *2 (-108)) (-5 *1 (-546 *3)) (-4 *3 (-970)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1084)) (-5 *2 (-1 *6 *5)) (-5 *1 (-644 *4 *5 *6))
+ (-4 *4 (-562 (-497))) (-4 *5 (-1119)) (-4 *6 (-1119)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-49 *3 *4)) (-4 *3 (-969))
- (-14 *4 (-586 (-1083)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-199 *3 *4)) (-4 *3 (-13 (-969) (-783)))
- (-14 *4 (-586 (-1083))))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-1118)) (-5 *1 (-165 *3 *2)) (-4 *2 (-613 *3)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-619 *3)) (-4 *3 (-1012)))))
+ (-12 (-4 *3 (-337)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4)))
+ (-5 *2 (-1165 *6)) (-5 *1 (-310 *3 *4 *5 *6))
+ (-4 *6 (-316 *3 *4 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-927))))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-707)) (-4 *1 (-348 *3 *4)) (-4 *3 (-784))
+ (-4 *4 (-157))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-707)) (-4 *1 (-1184 *3 *4)) (-4 *3 (-784))
+ (-4 *4 (-970)))))
(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1083)) (-5 *3 (-586 *1)) (-4 *1 (-403 *4))
- (-4 *4 (-783))))
+ (-12 (-5 *2 (-1084)) (-5 *3 (-587 *1)) (-4 *1 (-404 *4))
+ (-4 *4 (-784))))
((*1 *1 *2 *1 *1 *1 *1)
- (-12 (-5 *2 (-1083)) (-4 *1 (-403 *3)) (-4 *3 (-783))))
+ (-12 (-5 *2 (-1084)) (-4 *1 (-404 *3)) (-4 *3 (-784))))
((*1 *1 *2 *1 *1 *1)
- (-12 (-5 *2 (-1083)) (-4 *1 (-403 *3)) (-4 *3 (-783))))
+ (-12 (-5 *2 (-1084)) (-4 *1 (-404 *3)) (-4 *3 (-784))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1083)) (-4 *1 (-403 *3)) (-4 *3 (-783))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1083)) (-4 *1 (-403 *3)) (-4 *3 (-783)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-586 *6)) (-5 *4 (-1083)) (-4 *6 (-403 *5))
- (-4 *5 (-783)) (-5 *2 (-586 (-559 *6))) (-5 *1 (-529 *5 *6)))))
-(((*1 *2) (-12 (-4 *1 (-340 *3)) (-4 *3 (-157)) (-5 *2 (-108)))))
-(((*1 *2 *1 *2)
- (-12 (-4 *1 (-337 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1012)))))
-(((*1 *2 *1) (-12 (-4 *1 (-362)) (-5 *2 (-1066)))))
+ (-12 (-5 *2 (-1084)) (-4 *1 (-404 *3)) (-4 *3 (-784))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1084)) (-4 *1 (-404 *3)) (-4 *3 (-784)))))
+(((*1 *2 *3) (-12 (-5 *3 (-521)) (-5 *2 (-1170)) (-5 *1 (-931)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1067)) (-5 *2 (-587 (-1089))) (-5 *1 (-809)))))
+(((*1 *2 *3 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1141 *5))
+ (-4 *5 (-13 (-337) (-135) (-961 (-521))))
+ (-5 *2
+ (-2 (|:| |a| *6) (|:| |b| (-381 *6)) (|:| |h| *6)
+ (|:| |c1| (-381 *6)) (|:| |c2| (-381 *6)) (|:| -1639 *6)))
+ (-5 *1 (-941 *5 *6)) (-5 *3 (-381 *6)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1031)) (-5 *2 (-1170)) (-5 *1 (-768)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-586 (-2 (|:| -2526 *3) (|:| -3043 *4))))
- (-4 *3 (-1012)) (-4 *4 (-1012)) (-4 *1 (-1095 *3 *4))))
- ((*1 *1) (-12 (-4 *1 (-1095 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1012)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-336)) (-4 *3 (-969))
- (-5 *1 (-1068 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1014 *3)) (-5 *1 (-833 *3)) (-4 *3 (-341))
- (-4 *3 (-1012)))))
+ (-12 (-5 *2 (-587 (-2 (|:| -2529 *3) (|:| -3045 *4))))
+ (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *1 (-1096 *3 *4))))
+ ((*1 *1) (-12 (-4 *1 (-1096 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-627 *4)) (-5 *3 (-850)) (-4 *4 (-970))
+ (-5 *1 (-952 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-587 (-627 *4))) (-5 *3 (-850)) (-4 *4 (-970))
+ (-5 *1 (-952 *4)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-353)) (-5 *2 (-1170)) (-5 *1 (-1167)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-704))
+ (-12 (-5 *3 (-705))
(-5 *2
- (-2 (|:| -1796 (-352)) (|:| -2883 (-1066))
- (|:| |explanations| (-586 (-1066))) (|:| |extra| (-958))))
- (-5 *1 (-521))))
+ (-2 (|:| -1797 (-353)) (|:| -2884 (-1067))
+ (|:| |explanations| (-587 (-1067))) (|:| |extra| (-959))))
+ (-5 *1 (-522))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-704)) (-5 *4 (-981))
+ (-12 (-5 *3 (-705)) (-5 *4 (-982))
(-5 *2
- (-2 (|:| -1796 (-352)) (|:| -2883 (-1066))
- (|:| |explanations| (-586 (-1066))) (|:| |extra| (-958))))
- (-5 *1 (-521))))
+ (-2 (|:| -1797 (-353)) (|:| -2884 (-1067))
+ (|:| |explanations| (-587 (-1067))) (|:| |extra| (-959))))
+ (-5 *1 (-522))))
((*1 *2 *3 *4)
- (-12 (-4 *1 (-722)) (-5 *3 (-981))
+ (-12 (-4 *1 (-723)) (-5 *3 (-982))
(-5 *4
- (-2 (|:| |fn| (-289 (-201)))
- (|:| -1667 (-586 (-1007 (-776 (-201))))) (|:| |abserr| (-201))
- (|:| |relerr| (-201))))
+ (-2 (|:| |fn| (-290 (-202)))
+ (|:| -2442 (-587 (-1008 (-777 (-202))))) (|:| |abserr| (-202))
+ (|:| |relerr| (-202))))
(-5 *2
- (-2 (|:| -1796 (-352)) (|:| |explanations| (-1066))
- (|:| |extra| (-958))))))
+ (-2 (|:| -1797 (-353)) (|:| |explanations| (-1067))
+ (|:| |extra| (-959))))))
((*1 *2 *3 *4)
- (-12 (-4 *1 (-722)) (-5 *3 (-981))
+ (-12 (-4 *1 (-723)) (-5 *3 (-982))
(-5 *4
- (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201)))
- (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201))
- (|:| |relerr| (-201))))
+ (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202)))
+ (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202))
+ (|:| |relerr| (-202))))
(-5 *2
- (-2 (|:| -1796 (-352)) (|:| |explanations| (-1066))
- (|:| |extra| (-958))))))
+ (-2 (|:| -1797 (-353)) (|:| |explanations| (-1067))
+ (|:| |extra| (-959))))))
((*1 *2 *3 *4)
- (-12 (-4 *1 (-736)) (-5 *3 (-981))
+ (-12 (-4 *1 (-737)) (-5 *3 (-982))
(-5 *4
- (-2 (|:| |xinit| (-201)) (|:| |xend| (-201))
- (|:| |fn| (-1164 (-289 (-201)))) (|:| |yinit| (-586 (-201)))
- (|:| |intvals| (-586 (-201))) (|:| |g| (-289 (-201)))
- (|:| |abserr| (-201)) (|:| |relerr| (-201))))
- (-5 *2 (-2 (|:| -1796 (-352)) (|:| |explanations| (-1066))))))
+ (-2 (|:| |xinit| (-202)) (|:| |xend| (-202))
+ (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202)))
+ (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202)))
+ (|:| |abserr| (-202)) (|:| |relerr| (-202))))
+ (-5 *2 (-2 (|:| -1797 (-353)) (|:| |explanations| (-1067))))))
((*1 *2 *3)
- (-12 (-5 *3 (-744))
+ (-12 (-5 *3 (-745))
(-5 *2
- (-2 (|:| -1796 (-352)) (|:| -2883 (-1066))
- (|:| |explanations| (-586 (-1066)))))
- (-5 *1 (-741))))
+ (-2 (|:| -1797 (-353)) (|:| -2884 (-1067))
+ (|:| |explanations| (-587 (-1067)))))
+ (-5 *1 (-742))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-744)) (-5 *4 (-981))
+ (-12 (-5 *3 (-745)) (-5 *4 (-982))
(-5 *2
- (-2 (|:| -1796 (-352)) (|:| -2883 (-1066))
- (|:| |explanations| (-586 (-1066)))))
- (-5 *1 (-741))))
+ (-2 (|:| -1797 (-353)) (|:| -2884 (-1067))
+ (|:| |explanations| (-587 (-1067)))))
+ (-5 *1 (-742))))
((*1 *2 *3 *4)
- (-12 (-4 *1 (-772)) (-5 *3 (-981))
+ (-12 (-4 *1 (-773)) (-5 *3 (-982))
(-5 *4
- (-2 (|:| |lfn| (-586 (-289 (-201)))) (|:| -3794 (-586 (-201)))))
- (-5 *2 (-2 (|:| -1796 (-352)) (|:| |explanations| (-1066))))))
+ (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202)))))
+ (-5 *2 (-2 (|:| -1797 (-353)) (|:| |explanations| (-1067))))))
((*1 *2 *3 *4)
- (-12 (-4 *1 (-772)) (-5 *3 (-981))
+ (-12 (-4 *1 (-773)) (-5 *3 (-982))
(-5 *4
- (-2 (|:| |fn| (-289 (-201))) (|:| -3794 (-586 (-201)))
- (|:| |lb| (-586 (-776 (-201)))) (|:| |cf| (-586 (-289 (-201))))
- (|:| |ub| (-586 (-776 (-201))))))
- (-5 *2 (-2 (|:| -1796 (-352)) (|:| |explanations| (-1066))))))
+ (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202)))
+ (|:| |lb| (-587 (-777 (-202)))) (|:| |cf| (-587 (-290 (-202))))
+ (|:| |ub| (-587 (-777 (-202))))))
+ (-5 *2 (-2 (|:| -1797 (-353)) (|:| |explanations| (-1067))))))
((*1 *2 *3)
- (-12 (-5 *3 (-774))
+ (-12 (-5 *3 (-775))
(-5 *2
- (-2 (|:| -1796 (-352)) (|:| -2883 (-1066))
- (|:| |explanations| (-586 (-1066)))))
- (-5 *1 (-773))))
+ (-2 (|:| -1797 (-353)) (|:| -2884 (-1067))
+ (|:| |explanations| (-587 (-1067)))))
+ (-5 *1 (-774))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-774)) (-5 *4 (-981))
+ (-12 (-5 *3 (-775)) (-5 *4 (-982))
(-5 *2
- (-2 (|:| -1796 (-352)) (|:| -2883 (-1066))
- (|:| |explanations| (-586 (-1066)))))
- (-5 *1 (-773))))
+ (-2 (|:| -1797 (-353)) (|:| -2884 (-1067))
+ (|:| |explanations| (-587 (-1067)))))
+ (-5 *1 (-774))))
((*1 *2 *3 *4)
- (-12 (-4 *1 (-823)) (-5 *3 (-981))
+ (-12 (-4 *1 (-824)) (-5 *3 (-982))
(-5 *4
- (-2 (|:| |pde| (-586 (-289 (-201))))
+ (-2 (|:| |pde| (-587 (-290 (-202))))
(|:| |constraints|
- (-586
- (-2 (|:| |start| (-201)) (|:| |finish| (-201))
- (|:| |grid| (-706)) (|:| |boundaryType| (-520))
- (|:| |dStart| (-626 (-201))) (|:| |dFinish| (-626 (-201))))))
- (|:| |f| (-586 (-586 (-289 (-201))))) (|:| |st| (-1066))
- (|:| |tol| (-201))))
- (-5 *2 (-2 (|:| -1796 (-352)) (|:| |explanations| (-1066))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-826))
+ (-587
+ (-2 (|:| |start| (-202)) (|:| |finish| (-202))
+ (|:| |grid| (-707)) (|:| |boundaryType| (-521))
+ (|:| |dStart| (-627 (-202))) (|:| |dFinish| (-627 (-202))))))
+ (|:| |f| (-587 (-587 (-290 (-202))))) (|:| |st| (-1067))
+ (|:| |tol| (-202))))
+ (-5 *2 (-2 (|:| -1797 (-353)) (|:| |explanations| (-1067))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-827))
(-5 *2
- (-2 (|:| -1796 (-352)) (|:| -2883 (-1066))
- (|:| |explanations| (-586 (-1066)))))
- (-5 *1 (-825))))
+ (-2 (|:| -1797 (-353)) (|:| -2884 (-1067))
+ (|:| |explanations| (-587 (-1067)))))
+ (-5 *1 (-826))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-826)) (-5 *4 (-981))
+ (-12 (-5 *3 (-827)) (-5 *4 (-982))
(-5 *2
- (-2 (|:| -1796 (-352)) (|:| -2883 (-1066))
- (|:| |explanations| (-586 (-1066)))))
- (-5 *1 (-825)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-829 *2)) (-4 *2 (-1012))))
- ((*1 *1 *2) (-12 (-5 *1 (-829 *2)) (-4 *2 (-1012)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-706)) (-4 *5 (-322)) (-4 *6 (-1140 *5))
- (-5 *2
- (-586
- (-2 (|:| -1831 (-626 *6)) (|:| |basisDen| *6)
- (|:| |basisInv| (-626 *6)))))
- (-5 *1 (-466 *5 *6 *7))
- (-5 *3
- (-2 (|:| -1831 (-626 *6)) (|:| |basisDen| *6)
- (|:| |basisInv| (-626 *6))))
- (-4 *7 (-1140 *6)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-706)) (-4 *1 (-983 *3 *4 *5)) (-4 *3 (-969))
- (-4 *4 (-728)) (-4 *5 (-783)) (-4 *3 (-512)))))
+ (-2 (|:| -1797 (-353)) (|:| -2884 (-1067))
+ (|:| |explanations| (-587 (-1067)))))
+ (-5 *1 (-826)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-830 *2)) (-4 *2 (-1013))))
+ ((*1 *1 *2) (-12 (-5 *1 (-830 *2)) (-4 *2 (-1013)))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-110)) (-5 *4 (-707)) (-4 *5 (-425)) (-4 *5 (-784))
+ (-4 *5 (-961 (-521))) (-4 *5 (-513)) (-5 *1 (-40 *5 *2))
+ (-4 *2 (-404 *5))
+ (-4 *2
+ (-13 (-337) (-277)
+ (-10 -8 (-15 -2801 ((-1036 *5 (-560 $)) $))
+ (-15 -2812 ((-1036 *5 (-560 $)) $))
+ (-15 -2189 ($ (-1036 *5 (-560 $))))))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-587 (-453 *4 *5))) (-14 *4 (-587 (-1084)))
+ (-4 *5 (-425)) (-5 *2 (-587 (-224 *4 *5))) (-5 *1 (-575 *4 *5)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-783)) (-5 *1 (-857 *3 *2)) (-4 *2 (-403 *3))))
+ (-12 (-4 *3 (-784)) (-5 *1 (-858 *3 *2)) (-4 *2 (-404 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-1083)) (-5 *2 (-289 (-520))) (-5 *1 (-858)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1118)) (-5 *1 (-348 *4 *2))
- (-4 *2 (-13 (-346 *4) (-10 -7 (-6 -4230)))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-289 (-201))) (-5 *4 (-1083))
- (-5 *5 (-1007 (-776 (-201)))) (-5 *2 (-586 (-201))) (-5 *1 (-170))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-289 (-201))) (-5 *4 (-1083))
- (-5 *5 (-1007 (-776 (-201)))) (-5 *2 (-586 (-201))) (-5 *1 (-274)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-586 (-289 (-201)))) (-5 *4 (-706))
- (-5 *2 (-626 (-201))) (-5 *1 (-242)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-586 *6)) (-5 *4 (-586 (-1064 *7))) (-4 *6 (-783))
- (-4 *7 (-877 *5 (-492 *6) *6)) (-4 *5 (-969))
- (-5 *2 (-1 (-1064 *7) *7)) (-5 *1 (-1036 *5 *6 *7)))))
-(((*1 *2 *3 *4 *4 *4 *5 *5 *3)
- (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *5 (-201))
- (-5 *2 (-958)) (-5 *1 (-687)))))
+ (-12 (-5 *3 (-1084)) (-5 *2 (-290 (-521))) (-5 *1 (-859)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-586 *2)) (-4 *2 (-1140 *4)) (-5 *1 (-499 *4 *2 *5 *6))
- (-4 *4 (-281)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-706))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-706)) (-5 *1 (-110))))
- ((*1 *2 *1) (-12 (-5 *2 (-706)) (-5 *1 (-110))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-228 *4 *3 *5 *6)) (-4 *4 (-969)) (-4 *3 (-783))
- (-4 *5 (-241 *3)) (-4 *6 (-728)) (-5 *2 (-706))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-228 *3 *4 *5 *6)) (-4 *3 (-969)) (-4 *4 (-783))
- (-4 *5 (-241 *4)) (-4 *6 (-728)) (-5 *2 (-706))))
- ((*1 *2 *1) (-12 (-4 *1 (-241 *3)) (-4 *3 (-783)) (-5 *2 (-706)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1083)) (-5 *2 (-108)) (-5 *1 (-110))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-276)) (-5 *3 (-1083)) (-5 *2 (-108))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-276)) (-5 *3 (-110)) (-5 *2 (-108))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1083)) (-5 *2 (-108)) (-5 *1 (-559 *4)) (-4 *4 (-783))))
+ (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-1170))
+ (-5 *1 (-422 *4 *5 *6 *3)) (-4 *3 (-878 *4 *5 *6)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-338 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-425))) (-5 *1 (-1111 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-1105))))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4233)) (-4 *1 (-460 *4))
+ (-4 *4 (-1119)) (-5 *2 (-108)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-759)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1165 *1)) (-4 *1 (-341 *4)) (-4 *4 (-157))
+ (-5 *2 (-627 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-157)) (-5 *2 (-627 *4)) (-5 *1 (-390 *3 *4))
+ (-4 *3 (-391 *4))))
+ ((*1 *2) (-12 (-4 *1 (-391 *3)) (-4 *3 (-157)) (-5 *2 (-627 *3)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-521)) (-4 *1 (-297 *2 *4)) (-4 *4 (-124))
+ (-4 *2 (-1013))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-521)) (-5 *1 (-335 *2)) (-4 *2 (-1013))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-521)) (-5 *1 (-360 *2)) (-4 *2 (-1013))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-521)) (-5 *1 (-392 *2)) (-4 *2 (-513))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-110)) (-5 *2 (-108)) (-5 *1 (-559 *4)) (-4 *4 (-783))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1012)) (-5 *2 (-108)) (-5 *1 (-815 *5 *3 *4))
- (-4 *3 (-814 *5)) (-4 *4 (-561 (-820 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-586 *6)) (-4 *6 (-814 *5)) (-4 *5 (-1012))
- (-5 *2 (-108)) (-5 *1 (-815 *5 *6 *4)) (-4 *4 (-561 (-820 *5))))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-706)) (-4 *4 (-281)) (-4 *6 (-1140 *4))
- (-5 *2 (-1164 (-586 *6))) (-5 *1 (-427 *4 *6)) (-5 *5 (-586 *6)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-706)) (-4 *1 (-299 *3 *4)) (-4 *3 (-969))
- (-4 *4 (-727)) (-4 *3 (-157)))))
+ (-12 (-5 *3 (-521)) (-4 *2 (-1013)) (-5 *1 (-590 *2 *4 *5))
+ (-4 *4 (-23)) (-14 *5 *4)))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-521)) (-5 *1 (-756 *2)) (-4 *2 (-784)))))
+(((*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1013)) (-4 *1 (-212 *3))))
+ ((*1 *1) (-12 (-4 *1 (-212 *2)) (-4 *2 (-1013)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1080 *1)) (-4 *1 (-937)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1066)) (-5 *3 (-586 (-238))) (-5 *1 (-236))))
- ((*1 *1 *2) (-12 (-5 *2 (-1066)) (-5 *1 (-238)))))
-(((*1 *2 *2) (-12 (-5 *1 (-619 *2)) (-4 *2 (-1012)))))
+ (-12 (-5 *3 (-1080 *2)) (-4 *2 (-404 *4)) (-4 *4 (-13 (-784) (-513)))
+ (-5 *1 (-31 *4 *2)))))
+(((*1 *2 *2) (-12 (-5 *1 (-620 *2)) (-4 *2 (-1013)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1083)) (-5 *3 (-586 (-496))) (-5 *1 (-496)))))
+ (-12 (-5 *2 (-1084)) (-5 *3 (-587 (-497))) (-5 *1 (-497)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1182 *3)) (-4 *3 (-337)) (-5 *2 (-108)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-336) (-10 -8 (-15 ** ($ $ (-380 (-520)))))))
- (-5 *2 (-586 *4)) (-5 *1 (-1038 *3 *4)) (-4 *3 (-1140 *4))))
- ((*1 *2 *3 *3 *3)
- (-12 (-4 *3 (-13 (-336) (-10 -8 (-15 ** ($ $ (-380 (-520)))))))
- (-5 *2 (-586 *3)) (-5 *1 (-1038 *4 *3)) (-4 *4 (-1140 *3)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-919 *2)) (-4 *2 (-1118)))))
-(((*1 *1 *2) (-12 (-5 *2 (-586 *3)) (-4 *3 (-1118)) (-5 *1 (-300 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-586 *3)) (-4 *3 (-1118)) (-5 *1 (-483 *3 *4))
- (-14 *4 (-520)))))
+ (-12 (-5 *3 (-587 *2)) (-5 *1 (-457 *2)) (-4 *2 (-1141 (-521))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1080 *4)) (-4 *4 (-323))
+ (-4 *2
+ (-13 (-376)
+ (-10 -7 (-15 -2189 (*2 *4)) (-15 -2715 ((-850) *2))
+ (-15 -2470 ((-1165 *2) (-850))) (-15 -3654 (*2 *2)))))
+ (-5 *1 (-330 *2 *4)))))
(((*1 *1 *1) (-4 *1 (-34)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2))
- (-4 *2 (-13 (-403 *3) (-926)))))
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-927)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1155 *3))
- (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1126 *3 *4))))
+ (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3))
+ (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1124 *3))
- (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1147 *3 *4)) (-4 *5 (-908 *4))))
+ (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3))
+ (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520))))
- (-5 *1 (-1069 *3))))
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
+ (-5 *1 (-1070 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520))))
- (-5 *1 (-1070 *3)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-352) (-352))) (-5 *4 (-352))
- (-5 *2
- (-2 (|:| -3429 *4) (|:| -2967 *4) (|:| |totalpts| (-520))
- (|:| |success| (-108))))
- (-5 *1 (-724)) (-5 *5 (-520)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2))
- (-4 *2 (-13 (-403 *3) (-926))))))
-(((*1 *1 *1 *1 *1) (-5 *1 (-791))) ((*1 *1 *1 *1) (-5 *1 (-791)))
- ((*1 *1 *1) (-5 *1 (-791))))
-(((*1 *2 *2) (-12 (-5 *2 (-520)) (-5 *1 (-232)))))
-(((*1 *2 *3 *3 *3 *4 *5 *4 *6)
- (-12 (-5 *3 (-289 (-520))) (-5 *4 (-1 (-201) (-201)))
- (-5 *5 (-1007 (-201))) (-5 *6 (-520)) (-5 *2 (-1114 (-854)))
- (-5 *1 (-291))))
- ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7)
- (-12 (-5 *3 (-289 (-520))) (-5 *4 (-1 (-201) (-201)))
- (-5 *5 (-1007 (-201))) (-5 *6 (-520)) (-5 *7 (-1066))
- (-5 *2 (-1114 (-854))) (-5 *1 (-291))))
- ((*1 *2 *3 *3 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-289 (-520))) (-5 *4 (-1 (-201) (-201)))
- (-5 *5 (-1007 (-201))) (-5 *6 (-201)) (-5 *7 (-520))
- (-5 *2 (-1114 (-854))) (-5 *1 (-291))))
- ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8)
- (-12 (-5 *3 (-289 (-520))) (-5 *4 (-1 (-201) (-201)))
- (-5 *5 (-1007 (-201))) (-5 *6 (-201)) (-5 *7 (-520)) (-5 *8 (-1066))
- (-5 *2 (-1114 (-854))) (-5 *1 (-291)))))
-(((*1 *2 *3 *3)
- (-12
- (-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-706)) (|:| |poli| *7)
- (|:| |polj| *7)))
- (-4 *5 (-728)) (-4 *7 (-877 *4 *5 *6)) (-4 *4 (-424)) (-4 *6 (-783))
- (-5 *2 (-108)) (-5 *1 (-421 *4 *5 *6 *7)))))
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
+ (-5 *1 (-1071 *3)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-871 *3) (-871 *3))) (-5 *1 (-160 *3))
- (-4 *3 (-13 (-336) (-1104) (-926))))))
+ (-12 (-5 *3 (-881 *4)) (-4 *4 (-13 (-282) (-135)))
+ (-4 *2 (-878 *4 *6 *5)) (-5 *1 (-853 *4 *5 *6 *2))
+ (-4 *5 (-13 (-784) (-562 (-1084)))) (-4 *6 (-729)))))
+(((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-821 *4)) (-4 *4 (-1013)) (-5 *2 (-108))
+ (-5 *1 (-818 *4 *5)) (-4 *5 (-1013))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-821 *5)) (-4 *5 (-1013)) (-5 *2 (-108))
+ (-5 *1 (-819 *5 *3)) (-4 *3 (-1119))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-587 *6)) (-5 *4 (-821 *5)) (-4 *5 (-1013))
+ (-4 *6 (-1119)) (-5 *2 (-108)) (-5 *1 (-819 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-521)) (-4 *4 (-729)) (-4 *5 (-784)) (-4 *2 (-970))
+ (-5 *1 (-295 *4 *5 *2 *6)) (-4 *6 (-878 *2 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-761)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-1 (-587 *2) *2 *2 *2)) (-4 *2 (-1013))
+ (-5 *1 (-98 *2))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1013)) (-5 *1 (-98 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-893 *3)) (-4 *3 (-894)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-850)) (-5 *1 (-722)))))
(((*1 *1 *1) (-4 *1 (-34)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2))
- (-4 *2 (-13 (-403 *3) (-926)))))
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-927)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1155 *3))
- (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1126 *3 *4))))
+ (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3))
+ (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1124 *3))
- (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1147 *3 *4)) (-4 *5 (-908 *4))))
+ (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3))
+ (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520))))
- (-5 *1 (-1069 *3))))
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
+ (-5 *1 (-1070 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520))))
- (-5 *1 (-1070 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-892 *3)) (-4 *3 (-893)))))
-(((*1 *1 *2) (-12 (-5 *2 (-586 (-791))) (-5 *1 (-791)))))
-(((*1 *2 *2 *3 *3)
- (|partial| -12 (-5 *3 (-1083))
- (-4 *4 (-13 (-281) (-783) (-135) (-960 (-520)) (-582 (-520))))
- (-5 *1 (-531 *4 *2))
- (-4 *2 (-13 (-1104) (-886) (-1047) (-29 *4))))))
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
+ (-5 *1 (-1071 *3)))))
+(((*1 *2 *3 *3 *1)
+ (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784))
+ (-4 *3 (-984 *4 *5 *6)) (-5 *2 (-3 *3 (-587 *1)))
+ (-4 *1 (-989 *4 *5 *6 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-521))) (-5 *1 (-968)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-707)) (-5 *1 (-790 *2)) (-4 *2 (-37 (-381 (-521))))
+ (-4 *2 (-157)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-586 *3)) (-4 *3 (-1012)) (-4 *1 (-1010 *3))))
- ((*1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1012)))))
-(((*1 *2 *1) (-12 (-5 *2 (-586 (-520))) (-5 *1 (-250)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-336)) (-4 *5 (-512))
- (-5 *2
- (-2 (|:| |minor| (-586 (-849))) (|:| -3190 *3)
- (|:| |minors| (-586 (-586 (-849)))) (|:| |ops| (-586 *3))))
- (-5 *1 (-88 *5 *3)) (-5 *4 (-849)) (-4 *3 (-596 *5)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-512)) (-4 *5 (-728)) (-4 *6 (-783))
- (-4 *7 (-983 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-586 *7)) (|:| |badPols| (-586 *7))))
- (-5 *1 (-902 *4 *5 *6 *7)) (-5 *3 (-586 *7)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-229 *2)) (-4 *2 (-1118)))))
+ (-12 (-5 *2 (-587 *3)) (-4 *3 (-1013)) (-4 *1 (-1011 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))))
+(((*1 *1 *1) (-12 (-5 *1 (-269 *2)) (-4 *2 (-21)) (-4 *2 (-1119)))))
+(((*1 *1 *1) (-4 *1 (-573)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-574 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-927) (-1105))))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1113 *3 *4 *5 *2)) (-4 *3 (-513)) (-4 *4 (-729))
+ (-4 *5 (-784)) (-4 *2 (-984 *3 *4 *5)))))
+(((*1 *2)
+ (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3))
+ (-4 *5 (-1141 (-381 *4))) (-5 *2 (-627 (-381 *4))))))
(((*1 *1 *1) (-4 *1 (-34)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2))
- (-4 *2 (-13 (-403 *3) (-926)))))
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-927)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1155 *3))
- (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1126 *3 *4))))
+ (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3))
+ (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1124 *3))
- (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1147 *3 *4)) (-4 *5 (-908 *4))))
+ (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3))
+ (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520))))
- (-5 *1 (-1069 *3))))
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
+ (-5 *1 (-1070 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520))))
- (-5 *1 (-1070 *3)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-201)) (-5 *1 (-202))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-154 (-201))) (-5 *1 (-202))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-404 *3 *2))
- (-4 *2 (-403 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1047))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-586 *7)) (-4 *7 (-877 *4 *5 *6)) (-4 *4 (-424))
- (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-1169))
- (-5 *1 (-421 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-706)) (-5 *6 (-108)) (-4 *7 (-424)) (-4 *8 (-728))
- (-4 *9 (-783)) (-4 *3 (-983 *7 *8 *9))
- (-5 *2
- (-2 (|:| |done| (-586 *4))
- (|:| |todo| (-586 (-2 (|:| |val| (-586 *3)) (|:| -1883 *4))))))
- (-5 *1 (-986 *7 *8 *9 *3 *4)) (-4 *4 (-988 *7 *8 *9 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-706)) (-4 *6 (-424)) (-4 *7 (-728)) (-4 *8 (-783))
- (-4 *3 (-983 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-586 *4))
- (|:| |todo| (-586 (-2 (|:| |val| (-586 *3)) (|:| -1883 *4))))))
- (-5 *1 (-986 *6 *7 *8 *3 *4)) (-4 *4 (-988 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783))
- (-4 *3 (-983 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-586 *4))
- (|:| |todo| (-586 (-2 (|:| |val| (-586 *3)) (|:| -1883 *4))))))
- (-5 *1 (-986 *5 *6 *7 *3 *4)) (-4 *4 (-988 *5 *6 *7 *3))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-706)) (-5 *6 (-108)) (-4 *7 (-424)) (-4 *8 (-728))
- (-4 *9 (-783)) (-4 *3 (-983 *7 *8 *9))
- (-5 *2
- (-2 (|:| |done| (-586 *4))
- (|:| |todo| (-586 (-2 (|:| |val| (-586 *3)) (|:| -1883 *4))))))
- (-5 *1 (-1053 *7 *8 *9 *3 *4)) (-4 *4 (-1021 *7 *8 *9 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-706)) (-4 *6 (-424)) (-4 *7 (-728)) (-4 *8 (-783))
- (-4 *3 (-983 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-586 *4))
- (|:| |todo| (-586 (-2 (|:| |val| (-586 *3)) (|:| -1883 *4))))))
- (-5 *1 (-1053 *6 *7 *8 *3 *4)) (-4 *4 (-1021 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783))
- (-4 *3 (-983 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-586 *4))
- (|:| |todo| (-586 (-2 (|:| |val| (-586 *3)) (|:| -1883 *4))))))
- (-5 *1 (-1053 *5 *6 *7 *3 *4)) (-4 *4 (-1021 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4 *5 *5 *4 *6)
- (-12 (-5 *4 (-520)) (-5 *6 (-1 (-1169) (-1164 *5) (-1164 *5) (-352)))
- (-5 *3 (-1164 (-352))) (-5 *5 (-352)) (-5 *2 (-1169))
- (-5 *1 (-723)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-512)) (-5 *1 (-567 *2 *3)) (-4 *3 (-1140 *2)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-553 *2 *3)) (-4 *3 (-1118)) (-4 *2 (-1012))
- (-4 *2 (-783)))))
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
+ (-5 *1 (-1071 *3)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-110))))
+ ((*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-110))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-229 *4 *3 *5 *6)) (-4 *4 (-970)) (-4 *3 (-784))
+ (-4 *5 (-242 *3)) (-4 *6 (-729)) (-5 *2 (-707))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-229 *3 *4 *5 *6)) (-4 *3 (-970)) (-4 *4 (-784))
+ (-4 *5 (-242 *4)) (-4 *6 (-729)) (-5 *2 (-707))))
+ ((*1 *2 *1) (-12 (-4 *1 (-242 *3)) (-4 *3 (-784)) (-5 *2 (-707)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-872 *3)) (-4 *3 (-13 (-337) (-1105) (-927)))
+ (-5 *1 (-160 *3)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-1165 (-521))) (-5 *3 (-521)) (-5 *1 (-1023))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-1165 (-521))) (-5 *3 (-587 (-521))) (-5 *4 (-521))
+ (-5 *1 (-1023)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-927))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-587 (-587 *6))) (-4 *6 (-878 *3 *5 *4))
+ (-4 *3 (-13 (-282) (-135))) (-4 *4 (-13 (-784) (-562 (-1084))))
+ (-4 *5 (-729)) (-5 *1 (-853 *3 *4 *5 *6)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1086 (-381 (-521)))) (-5 *1 (-169)))))
(((*1 *1 *1) (-4 *1 (-34)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2))
- (-4 *2 (-13 (-403 *3) (-926)))))
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-927)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1155 *3))
- (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1126 *3 *4))))
+ (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3))
+ (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1124 *3))
- (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1147 *3 *4)) (-4 *5 (-908 *4))))
+ (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3))
+ (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520))))
- (-5 *1 (-1069 *3))))
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
+ (-5 *1 (-1070 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520))))
- (-5 *1 (-1070 *3)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-380 (-1079 (-289 *3)))) (-4 *3 (-13 (-512) (-783)))
- (-5 *1 (-1040 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-586 (-586 *8))) (-5 *3 (-586 *8))
- (-4 *8 (-983 *5 *6 *7)) (-4 *5 (-512)) (-4 *6 (-728)) (-4 *7 (-783))
- (-5 *2 (-108)) (-5 *1 (-902 *5 *6 *7 *8)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1122)) (-4 *5 (-1140 *4))
- (-5 *2 (-2 (|:| -2972 (-380 *5)) (|:| |poly| *3)))
- (-5 *1 (-136 *4 *5 *3)) (-4 *3 (-1140 (-380 *5))))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-108)) (-5 *1 (-414 *3)) (-4 *3 (-1140 (-520))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-837)) (-4 *5 (-728)) (-4 *6 (-783))
- (-4 *7 (-877 *4 *5 *6)) (-5 *2 (-391 (-1079 *7)))
- (-5 *1 (-834 *4 *5 *6 *7)) (-5 *3 (-1079 *7))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-837)) (-4 *5 (-1140 *4)) (-5 *2 (-391 (-1079 *5)))
- (-5 *1 (-835 *4 *5)) (-5 *3 (-1079 *5)))))
-(((*1 *2)
- (-12 (-5 *2 (-108)) (-5 *1 (-414 *3)) (-4 *3 (-1140 (-520))))))
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
+ (-5 *1 (-1071 *3)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-353)) (-5 *2 (-1170)) (-5 *1 (-1167)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-323)) (-5 *2 (-108)) (-5 *1 (-194 *4 *3))
+ (-4 *3 (-1141 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-587 (-587 (-521)))) (-5 *1 (-897))
+ (-5 *3 (-587 (-521))))))
+(((*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-143))))
+ ((*1 *2 *1) (-12 (-5 *2 (-143)) (-5 *1 (-803))))
+ ((*1 *2 *3) (-12 (-5 *3 (-872 *2)) (-5 *1 (-908 *2)) (-4 *2 (-970)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-761)))))
+(((*1 *2 *3 *4 *5 *6 *7 *6)
+ (|partial| -12
+ (-5 *5
+ (-2 (|:| |contp| *3)
+ (|:| -1514 (-587 (-2 (|:| |irr| *10) (|:| -2132 (-521)))))))
+ (-5 *6 (-587 *3)) (-5 *7 (-587 *8)) (-4 *8 (-784)) (-4 *3 (-282))
+ (-4 *10 (-878 *3 *9 *8)) (-4 *9 (-729))
+ (-5 *2
+ (-2 (|:| |polfac| (-587 *10)) (|:| |correct| *3)
+ (|:| |corrfact| (-587 (-1080 *3)))))
+ (-5 *1 (-570 *8 *9 *3 *10)) (-5 *4 (-587 (-1080 *3))))))
(((*1 *1 *1) (-4 *1 (-34)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2))
- (-4 *2 (-13 (-403 *3) (-926)))))
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-927)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1155 *3))
- (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1126 *3 *4))))
+ (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3))
+ (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1124 *3))
- (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1147 *3 *4)) (-4 *5 (-908 *4))))
+ (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3))
+ (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520))))
- (-5 *1 (-1069 *3))))
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
+ (-5 *1 (-1070 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520))))
- (-5 *1 (-1070 *3)))))
-(((*1 *1 *1 *1) (-5 *1 (-791))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-424))
- (-5 *2
- (-586
- (-2 (|:| |eigval| (-3 (-380 (-880 *4)) (-1073 (-1083) (-880 *4))))
- (|:| |eigmult| (-706))
- (|:| |eigvec| (-586 (-626 (-380 (-880 *4))))))))
- (-5 *1 (-266 *4)) (-5 *3 (-626 (-380 (-880 *4)))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1140 (-520))))))
-(((*1 *2 *1) (-12 (-4 *1 (-934 *3)) (-4 *3 (-1118)) (-5 *2 (-108))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-1072 *3 *4)) (-14 *3 (-849))
- (-4 *4 (-969)))))
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
+ (-5 *1 (-1071 *3)))))
+(((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1087))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1084)) (-5 *2 (-1170)) (-5 *1 (-1087))))
+ ((*1 *2 *3 *1) (-12 (-5 *3 (-1084)) (-5 *2 (-1170)) (-5 *1 (-1087)))))
+(((*1 *2)
+ (-12 (-5 *2 (-381 (-881 *3))) (-5 *1 (-426 *3 *4 *5 *6))
+ (-4 *3 (-513)) (-4 *3 (-157)) (-14 *4 (-850))
+ (-14 *5 (-587 (-1084))) (-14 *6 (-1165 (-627 *3))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1014 *4)) (-4 *4 (-1012)) (-5 *2 (-1 *4))
- (-5 *1 (-941 *4))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-352))) (-5 *1 (-962)) (-5 *3 (-352))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1007 (-520))) (-5 *2 (-1 (-520))) (-5 *1 (-967)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-820 *3)) (-4 *3 (-1012)))))
+ (-12 (-5 *3 (-1008 (-777 (-353)))) (-5 *2 (-1008 (-777 (-202))))
+ (-5 *1 (-280)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1 (-872 (-202)) (-872 (-202)))) (-5 *3 (-587 (-239)))
+ (-5 *1 (-237))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-872 (-202)) (-872 (-202)))) (-5 *1 (-239))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-587 (-453 *5 *6))) (-5 *3 (-453 *5 *6))
+ (-14 *5 (-587 (-1084))) (-4 *6 (-425)) (-5 *2 (-1165 *6))
+ (-5 *1 (-575 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-368))))
+ ((*1 *2 *1) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-1100)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-154 (-202))) (-5 *5 (-521)) (-5 *6 (-1067))
+ (-5 *3 (-202)) (-5 *2 (-959)) (-5 *1 (-695)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2))
- (-4 *2 (-13 (-403 *3) (-926)))))
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-927)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1155 *3))
- (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1126 *3 *4))))
+ (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3))
+ (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1124 *3))
- (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1147 *3 *4)) (-4 *5 (-908 *4))))
- ((*1 *1 *1) (-4 *1 (-461)))
+ (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3))
+ (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4))))
+ ((*1 *1 *1) (-4 *1 (-462)))
((*1 *2 *2)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520))))
- (-5 *1 (-1069 *3))))
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
+ (-5 *1 (-1070 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520))))
- (-5 *1 (-1070 *3)))))
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
+ (-5 *1 (-1071 *3)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-586 (-2 (|:| |val| *3) (|:| -1883 *4))))
- (-5 *1 (-1049 *3 *4)) (-4 *3 (-13 (-1012) (-33)))
- (-4 *4 (-13 (-1012) (-33))))))
-(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-1066)) (-4 *6 (-424)) (-4 *7 (-728)) (-4 *8 (-783))
- (-4 *4 (-983 *6 *7 *8)) (-5 *2 (-1169))
- (-5 *1 (-711 *6 *7 *8 *4 *5)) (-4 *5 (-988 *6 *7 *8 *4)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1052)) (-5 *2 (-129))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1052)) (-5 *2 (-132)))))
-(((*1 *2 *3)
- (-12 (|has| *2 (-6 (-4231 "*"))) (-4 *5 (-346 *2)) (-4 *6 (-346 *2))
- (-4 *2 (-969)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1140 *2))
- (-4 *4 (-624 *2 *5 *6)))))
+ (-12 (-5 *2 (-587 (-2 (|:| |val| *3) (|:| -1884 *4))))
+ (-5 *1 (-1050 *3 *4)) (-4 *3 (-13 (-1013) (-33)))
+ (-4 *4 (-13 (-1013) (-33))))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-202)) (-5 *4 (-521))
+ (-5 *5 (-3 (|:| |fn| (-362)) (|:| |fp| (-62 G)))) (-5 *2 (-959))
+ (-5 *1 (-685)))))
+(((*1 *1 *2 *3 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-872 (-202)) (-202))) (-5 *3 (-1008 (-202)))
+ (-5 *1 (-855))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-872 (-202)) (-202))) (-5 *3 (-1008 (-202)))
+ (-5 *1 (-855))))
+ ((*1 *1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-872 (-202)) (-202))) (-5 *3 (-1008 (-202)))
+ (-5 *1 (-856))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-872 (-202)) (-202))) (-5 *3 (-1008 (-202)))
+ (-5 *1 (-856)))))
+(((*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-108)))))
+(((*1 *2 *1) (-12 (-4 *1 (-513)) (-5 *2 (-108)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012))
- (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-108)))))
-(((*1 *2)
- (-12 (-5 *2 (-1169)) (-5 *1 (-1096 *3 *4)) (-4 *3 (-1012))
- (-4 *4 (-1012)))))
-(((*1 *2 *3)
- (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-520))) (-5 *1 (-967)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1083))
- (-4 *4 (-13 (-281) (-783) (-135) (-960 (-520)) (-582 (-520))))
- (-5 *1 (-399 *4 *2)) (-4 *2 (-13 (-1104) (-29 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-380 (-880 *5))) (-5 *4 (-1083)) (-4 *5 (-135))
- (-4 *5 (-13 (-424) (-960 (-520)) (-783) (-582 (-520))))
- (-5 *2 (-289 *5)) (-5 *1 (-540 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-871 *3) (-871 *3))) (-5 *1 (-160 *3))
- (-4 *3 (-13 (-336) (-1104) (-926))))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-586 (-520))) (-5 *2 (-626 (-520))) (-5 *1 (-1022)))))
-(((*1 *1 *2) (-12 (-5 *2 (-361)) (-5 *1 (-575)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12
- (-5 *3
- (-1 (-3 (-2 (|:| -4016 *4) (|:| |coeff| *4)) "failed") *4))
- (-4 *4 (-336)) (-5 *1 (-530 *4 *2)) (-4 *2 (-1140 *4)))))
-(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-336)) (-5 *1 (-702 *2 *3)) (-4 *2 (-645 *3))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-785 *2)) (-4 *2 (-969)) (-4 *2 (-336)))))
-(((*1 *2 *3 *4 *5 *5 *4 *6)
- (-12 (-5 *5 (-559 *4)) (-5 *6 (-1079 *4))
- (-4 *4 (-13 (-403 *7) (-27) (-1104)))
- (-4 *7 (-13 (-424) (-960 (-520)) (-783) (-135) (-582 (-520))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1831 (-586 *4))))
- (-5 *1 (-516 *7 *4 *3)) (-4 *3 (-596 *4)) (-4 *3 (-1012))))
- ((*1 *2 *3 *4 *5 *5 *5 *4 *6)
- (-12 (-5 *5 (-559 *4)) (-5 *6 (-380 (-1079 *4)))
- (-4 *4 (-13 (-403 *7) (-27) (-1104)))
- (-4 *7 (-13 (-424) (-960 (-520)) (-783) (-135) (-582 (-520))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1831 (-586 *4))))
- (-5 *1 (-516 *7 *4 *3)) (-4 *3 (-596 *4)) (-4 *3 (-1012)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-908 *2)) (-4 *2 (-1104)))))
-(((*1 *1 *1) (-12 (-5 *1 (-1105 *2)) (-4 *2 (-1012)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-380 (-880 *3))) (-5 *1 (-425 *3 *4 *5 *6))
- (-4 *3 (-512)) (-4 *3 (-157)) (-14 *4 (-849))
- (-14 *5 (-586 (-1083))) (-14 *6 (-1164 (-626 *3))))))
+ (|partial| -12 (-5 *2 (-587 (-821 *3))) (-5 *1 (-821 *3))
+ (-4 *3 (-1013)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-518)))))
+(((*1 *2 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959))
+ (-5 *1 (-693)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-336)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-380 *4)))
- (-5 *2 (-1164 *6)) (-5 *1 (-309 *3 *4 *5 *6))
- (-4 *6 (-315 *3 *4 *5)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1048 *2 *3)) (-4 *2 (-13 (-1012) (-33)))
- (-4 *3 (-13 (-1012) (-33))))))
+ (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-4 *3 (-513))
+ (-5 *2 (-1080 *3)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-1023)))))
+(((*1 *1 *2) (-12 (-5 *2 (-362)) (-5 *1 (-576)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3)
+ (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *5 (-108))
+ (-5 *2 (-959)) (-5 *1 (-690)))))
+(((*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-792)))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3)
+ (-12 (-5 *3 (-521)) (-5 *5 (-627 (-202))) (-5 *4 (-202))
+ (-5 *2 (-959)) (-5 *1 (-690)))))
(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1 (-496) (-586 (-496)))) (-5 *1 (-110))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-496) (-586 (-496)))) (-5 *1 (-110)))))
-(((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5
- (-1 (-2 (|:| |ans| *6) (|:| -1924 *6) (|:| |sol?| (-108))) (-520)
- *6))
- (-4 *6 (-336)) (-4 *7 (-1140 *6))
+ (-12 (-5 *2 (-156)) (-5 *1 (-1073 *3 *4)) (-14 *3 (-850))
+ (-4 *4 (-970)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-627 *8)) (-5 *4 (-707)) (-4 *8 (-878 *5 *7 *6))
+ (-4 *5 (-13 (-282) (-135))) (-4 *6 (-13 (-784) (-562 (-1084))))
+ (-4 *7 (-729))
(-5 *2
- (-3 (-2 (|:| |answer| (-380 *7)) (|:| |a0| *6))
- (-2 (|:| -4016 (-380 *7)) (|:| |coeff| (-380 *7))) "failed"))
- (-5 *1 (-530 *6 *7)) (-5 *3 (-380 *7)))))
+ (-587
+ (-2 (|:| |det| *8) (|:| |rows| (-587 (-521)))
+ (|:| |cols| (-587 (-521))))))
+ (-5 *1 (-853 *5 *6 *7 *8)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-587 (-1 (-108) *8))) (-4 *8 (-984 *5 *6 *7))
+ (-4 *5 (-513)) (-4 *6 (-729)) (-4 *7 (-784))
+ (-5 *2 (-2 (|:| |goodPols| (-587 *8)) (|:| |badPols| (-587 *8))))
+ (-5 *1 (-903 *5 *6 *7 *8)) (-5 *4 (-587 *8)))))
+(((*1 *2 *1) (-12 (-4 *1 (-798 *3)) (-5 *2 (-521)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-380 (-880 *3))) (-5 *1 (-425 *3 *4 *5 *6))
- (-4 *3 (-512)) (-4 *3 (-157)) (-14 *4 (-849))
- (-14 *5 (-586 (-1083))) (-14 *6 (-1164 (-626 *3))))))
+ (|partial| -12 (-5 *2 (-1 (-497) (-587 (-497)))) (-5 *1 (-110))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-497) (-587 (-497)))) (-5 *1 (-110)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-297 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-124))
+ (-4 *3 (-728)))))
+(((*1 *1) (-5 *1 (-982))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-380 (-880 (-154 (-520))))) (-5 *2 (-586 (-154 *4)))
- (-5 *1 (-351 *4)) (-4 *4 (-13 (-336) (-781)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-586 (-380 (-880 (-154 (-520))))))
- (-5 *4 (-586 (-1083))) (-5 *2 (-586 (-586 (-154 *5))))
- (-5 *1 (-351 *5)) (-4 *5 (-13 (-336) (-781))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-512)) (-5 *2 (-885 *3)) (-5 *1 (-1071 *4 *3))
- (-4 *3 (-1140 *4)))))
+ (-12 (-5 *3 (-587 *7)) (-4 *7 (-784)) (-4 *5 (-838)) (-4 *6 (-729))
+ (-4 *8 (-878 *5 *6 *7)) (-5 *2 (-392 (-1080 *8)))
+ (-5 *1 (-835 *5 *6 *7 *8)) (-5 *4 (-1080 *8))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-838)) (-4 *5 (-1141 *4)) (-5 *2 (-392 (-1080 *5)))
+ (-5 *1 (-836 *4 *5)) (-5 *3 (-1080 *5)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-586 *7)) (|:| -1883 *8)))
- (-4 *7 (-983 *4 *5 *6)) (-4 *8 (-988 *4 *5 *6 *7)) (-4 *4 (-424))
- (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-108))
- (-5 *1 (-913 *4 *5 *6 *7 *8))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-586 *7)) (|:| -1883 *8)))
- (-4 *7 (-983 *4 *5 *6)) (-4 *8 (-988 *4 *5 *6 *7)) (-4 *4 (-424))
- (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-108))
- (-5 *1 (-1019 *4 *5 *6 *7 *8)))))
-(((*1 *2 *1) (-12 (-4 *1 (-733 *2)) (-4 *2 (-157))))
- ((*1 *2 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-157)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-969))
- (-4 *2 (-13 (-377) (-960 *4) (-336) (-1104) (-258)))
- (-5 *1 (-415 *4 *3 *2)) (-4 *3 (-1140 *4)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-849))
- (-5 *2 (-1164 (-586 (-2 (|:| -3429 *4) (|:| -2716 (-1030))))))
- (-5 *1 (-319 *4)) (-4 *4 (-322)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-520)) (-5 *1 (-352)))))
+ (-12 (-4 *4 (-513)) (-5 *2 (-886 *3)) (-5 *1 (-1072 *4 *3))
+ (-4 *3 (-1141 *4)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-832 *3)) (-4 *3 (-1013)) (-5 *2 (-1015 *3))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-1013)) (-5 *2 (-1015 (-587 *4))) (-5 *1 (-833 *4))
+ (-5 *3 (-587 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-1013)) (-5 *2 (-1015 (-1015 *4))) (-5 *1 (-833 *4))
+ (-5 *3 (-1015 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *2 (-1015 *3)) (-5 *1 (-833 *3)) (-4 *3 (-1013)))))
(((*1 *2 *3 *2)
- (-12
- (-5 *2
- (-2 (|:| |theta| (-201)) (|:| |phi| (-201)) (|:| -1640 (-201))
- (|:| |scaleX| (-201)) (|:| |scaleY| (-201)) (|:| |scaleZ| (-201))
- (|:| |deltaX| (-201)) (|:| |deltaY| (-201))))
- (-5 *3 (-586 (-238))) (-5 *1 (-236))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-2 (|:| |theta| (-201)) (|:| |phi| (-201)) (|:| -1640 (-201))
- (|:| |scaleX| (-201)) (|:| |scaleY| (-201)) (|:| |scaleZ| (-201))
- (|:| |deltaX| (-201)) (|:| |deltaY| (-201))))
- (-5 *1 (-238))))
- ((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-352)) (-5 *2 (-1169)) (-5 *1 (-1166))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-352)) (-5 *2 (-1169)) (-5 *1 (-1166))))
- ((*1 *2 *1 *3 *3 *4 *4 *4)
- (-12 (-5 *3 (-520)) (-5 *4 (-352)) (-5 *2 (-1169)) (-5 *1 (-1166))))
+ (-12 (-5 *3 (-110)) (-4 *4 (-970)) (-5 *1 (-651 *4 *2))
+ (-4 *2 (-589 *4))))
+ ((*1 *2 *3 *2) (-12 (-5 *3 (-110)) (-5 *1 (-771 *2)) (-4 *2 (-970)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959))
+ (-5 *1 (-684)))))
+(((*1 *1 *1 *1 *1 *1)
+ (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729))
+ (-4 *4 (-784)) (-4 *2 (-513)))))
+(((*1 *1 *2 *2) (-12 (-4 *1 (-511 *2)) (-4 *2 (-13 (-378) (-1105))))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-587 *7)) (-5 *3 (-521)) (-4 *7 (-878 *4 *5 *6))
+ (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784))
+ (-5 *1 (-422 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-290 (-202))) (-5 *2 (-290 (-381 (-521))))
+ (-5 *1 (-280)))))
+(((*1 *1 *1 *1) (-5 *1 (-792))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1084)) (-5 *2 (-108)) (-5 *1 (-110))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-277)) (-5 *3 (-1084)) (-5 *2 (-108))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-277)) (-5 *3 (-110)) (-5 *2 (-108))))
((*1 *2 *1 *3)
- (-12
- (-5 *3
- (-2 (|:| |theta| (-201)) (|:| |phi| (-201)) (|:| -1640 (-201))
- (|:| |scaleX| (-201)) (|:| |scaleY| (-201)) (|:| |scaleZ| (-201))
- (|:| |deltaX| (-201)) (|:| |deltaY| (-201))))
- (-5 *2 (-1169)) (-5 *1 (-1166))))
- ((*1 *2 *1)
- (-12
- (-5 *2
- (-2 (|:| |theta| (-201)) (|:| |phi| (-201)) (|:| -1640 (-201))
- (|:| |scaleX| (-201)) (|:| |scaleY| (-201)) (|:| |scaleZ| (-201))
- (|:| |deltaX| (-201)) (|:| |deltaY| (-201))))
- (-5 *1 (-1166))))
- ((*1 *2 *1 *3 *3 *3 *3 *3)
- (-12 (-5 *3 (-352)) (-5 *2 (-1169)) (-5 *1 (-1166)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-706)) (-5 *1 (-614 *3)) (-4 *3 (-969)) (-4 *3 (-1012)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-626 *8)) (-4 *8 (-877 *5 *7 *6))
- (-4 *5 (-13 (-281) (-135))) (-4 *6 (-13 (-783) (-561 (-1083))))
- (-4 *7 (-728))
- (-5 *2
- (-586
- (-2 (|:| |eqzro| (-586 *8)) (|:| |neqzro| (-586 *8))
- (|:| |wcond| (-586 (-880 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1164 (-380 (-880 *5))))
- (|:| -1831 (-586 (-1164 (-380 (-880 *5))))))))))
- (-5 *1 (-852 *5 *6 *7 *8)) (-5 *4 (-586 *8))))
+ (-12 (-5 *3 (-1084)) (-5 *2 (-108)) (-5 *1 (-560 *4)) (-4 *4 (-784))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-110)) (-5 *2 (-108)) (-5 *1 (-560 *4)) (-4 *4 (-784))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-626 *8)) (-5 *4 (-586 (-1083))) (-4 *8 (-877 *5 *7 *6))
- (-4 *5 (-13 (-281) (-135))) (-4 *6 (-13 (-783) (-561 (-1083))))
- (-4 *7 (-728))
- (-5 *2
- (-586
- (-2 (|:| |eqzro| (-586 *8)) (|:| |neqzro| (-586 *8))
- (|:| |wcond| (-586 (-880 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1164 (-380 (-880 *5))))
- (|:| -1831 (-586 (-1164 (-380 (-880 *5))))))))))
- (-5 *1 (-852 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-626 *7)) (-4 *7 (-877 *4 *6 *5))
- (-4 *4 (-13 (-281) (-135))) (-4 *5 (-13 (-783) (-561 (-1083))))
- (-4 *6 (-728))
- (-5 *2
- (-586
- (-2 (|:| |eqzro| (-586 *7)) (|:| |neqzro| (-586 *7))
- (|:| |wcond| (-586 (-880 *4)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1164 (-380 (-880 *4))))
- (|:| -1831 (-586 (-1164 (-380 (-880 *4))))))))))
- (-5 *1 (-852 *4 *5 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-626 *9)) (-5 *5 (-849)) (-4 *9 (-877 *6 *8 *7))
- (-4 *6 (-13 (-281) (-135))) (-4 *7 (-13 (-783) (-561 (-1083))))
- (-4 *8 (-728))
- (-5 *2
- (-586
- (-2 (|:| |eqzro| (-586 *9)) (|:| |neqzro| (-586 *9))
- (|:| |wcond| (-586 (-880 *6)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1164 (-380 (-880 *6))))
- (|:| -1831 (-586 (-1164 (-380 (-880 *6))))))))))
- (-5 *1 (-852 *6 *7 *8 *9)) (-5 *4 (-586 *9))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-626 *9)) (-5 *4 (-586 (-1083))) (-5 *5 (-849))
- (-4 *9 (-877 *6 *8 *7)) (-4 *6 (-13 (-281) (-135)))
- (-4 *7 (-13 (-783) (-561 (-1083)))) (-4 *8 (-728))
- (-5 *2
- (-586
- (-2 (|:| |eqzro| (-586 *9)) (|:| |neqzro| (-586 *9))
- (|:| |wcond| (-586 (-880 *6)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1164 (-380 (-880 *6))))
- (|:| -1831 (-586 (-1164 (-380 (-880 *6))))))))))
- (-5 *1 (-852 *6 *7 *8 *9))))
+ (-12 (-4 *5 (-1013)) (-5 *2 (-108)) (-5 *1 (-816 *5 *3 *4))
+ (-4 *3 (-815 *5)) (-4 *4 (-562 (-821 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-626 *8)) (-5 *4 (-849)) (-4 *8 (-877 *5 *7 *6))
- (-4 *5 (-13 (-281) (-135))) (-4 *6 (-13 (-783) (-561 (-1083))))
- (-4 *7 (-728))
- (-5 *2
- (-586
- (-2 (|:| |eqzro| (-586 *8)) (|:| |neqzro| (-586 *8))
- (|:| |wcond| (-586 (-880 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1164 (-380 (-880 *5))))
- (|:| -1831 (-586 (-1164 (-380 (-880 *5))))))))))
- (-5 *1 (-852 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-626 *9)) (-5 *4 (-586 *9)) (-5 *5 (-1066))
- (-4 *9 (-877 *6 *8 *7)) (-4 *6 (-13 (-281) (-135)))
- (-4 *7 (-13 (-783) (-561 (-1083)))) (-4 *8 (-728)) (-5 *2 (-520))
- (-5 *1 (-852 *6 *7 *8 *9))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-626 *9)) (-5 *4 (-586 (-1083))) (-5 *5 (-1066))
- (-4 *9 (-877 *6 *8 *7)) (-4 *6 (-13 (-281) (-135)))
- (-4 *7 (-13 (-783) (-561 (-1083)))) (-4 *8 (-728)) (-5 *2 (-520))
- (-5 *1 (-852 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-626 *8)) (-5 *4 (-1066)) (-4 *8 (-877 *5 *7 *6))
- (-4 *5 (-13 (-281) (-135))) (-4 *6 (-13 (-783) (-561 (-1083))))
- (-4 *7 (-728)) (-5 *2 (-520)) (-5 *1 (-852 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-626 *10)) (-5 *4 (-586 *10)) (-5 *5 (-849))
- (-5 *6 (-1066)) (-4 *10 (-877 *7 *9 *8)) (-4 *7 (-13 (-281) (-135)))
- (-4 *8 (-13 (-783) (-561 (-1083)))) (-4 *9 (-728)) (-5 *2 (-520))
- (-5 *1 (-852 *7 *8 *9 *10))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-626 *10)) (-5 *4 (-586 (-1083))) (-5 *5 (-849))
- (-5 *6 (-1066)) (-4 *10 (-877 *7 *9 *8)) (-4 *7 (-13 (-281) (-135)))
- (-4 *8 (-13 (-783) (-561 (-1083)))) (-4 *9 (-728)) (-5 *2 (-520))
- (-5 *1 (-852 *7 *8 *9 *10))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-626 *9)) (-5 *4 (-849)) (-5 *5 (-1066))
- (-4 *9 (-877 *6 *8 *7)) (-4 *6 (-13 (-281) (-135)))
- (-4 *7 (-13 (-783) (-561 (-1083)))) (-4 *8 (-728)) (-5 *2 (-520))
- (-5 *1 (-852 *6 *7 *8 *9)))))
-(((*1 *2 *2) (-12 (-5 *2 (-520)) (-5 *1 (-855)))))
-(((*1 *1 *1 *1 *1 *1)
- (-12 (-4 *1 (-983 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-728))
- (-4 *4 (-783)) (-4 *2 (-512)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-559 *3)) (-4 *3 (-13 (-403 *5) (-27) (-1104)))
- (-4 *5 (-13 (-424) (-960 (-520)) (-783) (-135) (-582 (-520))))
- (-5 *2 (-537 *3)) (-5 *1 (-522 *5 *3 *6)) (-4 *6 (-1012)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-512)) (-4 *5 (-728)) (-4 *6 (-783))
- (-4 *7 (-983 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-586 *7)) (|:| |badPols| (-586 *7))))
- (-5 *1 (-902 *4 *5 *6 *7)) (-5 *3 (-586 *7)))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-520)) (-14 *3 (-706))
- (-4 *4 (-157))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1083)) (-4 *4 (-13 (-783) (-512))) (-5 *1 (-144 *4 *2))
- (-4 *2 (-403 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1005 *2)) (-4 *2 (-403 *4)) (-4 *4 (-13 (-783) (-512)))
- (-5 *1 (-144 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1005 *1)) (-4 *1 (-146))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-146)) (-5 *2 (-1083))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-437 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23))))
- ((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-706)) (-5 *1 (-1182 *3 *4)) (-4 *3 (-783))
- (-4 *4 (-157)))))
-(((*1 *2 *2) (-12 (-5 *2 (-201)) (-5 *1 (-202))))
- ((*1 *2 *2) (-12 (-5 *2 (-154 (-201))) (-5 *1 (-202))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-404 *3 *2))
- (-4 *2 (-403 *3))))
- ((*1 *1 *1) (-4 *1 (-1047))))
-(((*1 *2 *3 *3 *3)
- (|partial| -12
- (-4 *4 (-13 (-135) (-27) (-960 (-520)) (-960 (-380 (-520)))))
- (-4 *5 (-1140 *4)) (-5 *2 (-1079 (-380 *5))) (-5 *1 (-562 *4 *5))
- (-5 *3 (-380 *5))))
- ((*1 *2 *3 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 (-391 *6) *6)) (-4 *6 (-1140 *5))
- (-4 *5 (-13 (-135) (-27) (-960 (-520)) (-960 (-380 (-520)))))
- (-5 *2 (-1079 (-380 *6))) (-5 *1 (-562 *5 *6)) (-5 *3 (-380 *6)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-983 *3 *4 *2)) (-4 *3 (-969)) (-4 *4 (-728))
- (-4 *2 (-783))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-983 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-728))
- (-4 *4 (-783)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1118)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-51)) (-5 *1 (-765)))))
-(((*1 *1)
- (-12 (-5 *1 (-589 *2 *3 *4)) (-4 *2 (-1012)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-785 *2)) (-4 *2 (-969)) (-4 *2 (-336)))))
-(((*1 *1 *1 *1) (-5 *1 (-147)))
- ((*1 *1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-147)))))
-(((*1 *1 *1) (-12 (-4 *1 (-596 *2)) (-4 *2 (-969))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-512)) (-4 *4 (-157)) (-4 *5 (-346 *4))
- (-4 *6 (-346 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4)))
- (-5 *1 (-625 *4 *5 *6 *3)) (-4 *3 (-624 *4 *5 *6))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-157)) (-4 *2 (-969)) (-5 *1 (-650 *2 *3))
- (-4 *3 (-588 *2))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-157)) (-4 *2 (-969)) (-5 *1 (-650 *2 *3))
- (-4 *3 (-588 *2))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-770 *2)) (-4 *2 (-157)) (-4 *2 (-969))))
- ((*1 *1 *1) (-12 (-5 *1 (-770 *2)) (-4 *2 (-157)) (-4 *2 (-969)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-587 *3)) (-4 *3 (-1012)))))
-(((*1 *1 *1) (-5 *1 (-981))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-586 (-520))) (-5 *1 (-223 *3 *4))
- (-14 *3 (-586 (-1083))) (-4 *4 (-969))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-586 (-520))) (-14 *3 (-586 (-1083)))
- (-5 *1 (-426 *3 *4 *5)) (-4 *4 (-969))
- (-4 *5 (-214 (-3474 *3) (-706)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-586 (-520))) (-5 *1 (-452 *3 *4))
- (-14 *3 (-586 (-1083))) (-4 *4 (-969)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-586 (-1066))) (-5 *1 (-1099)))))
+ (-12 (-5 *3 (-587 *6)) (-4 *6 (-815 *5)) (-4 *5 (-1013))
+ (-5 *2 (-108)) (-5 *1 (-816 *5 *6 *4)) (-4 *4 (-562 (-821 *5))))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959))
+ (-5 *1 (-692)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-521)) (-5 *3 (-707)) (-5 *1 (-518)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959))
+ (-5 *1 (-684)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-586 *2)) (-4 *2 (-403 *4)) (-5 *1 (-144 *4 *2))
- (-4 *4 (-13 (-783) (-512))))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-586 *6)) (-4 *6 (-983 *3 *4 *5)) (-4 *3 (-512))
- (-4 *4 (-728)) (-4 *5 (-783)) (-5 *1 (-902 *3 *4 *5 *6)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-520)) (-5 *2 (-1169)) (-5 *1 (-1166))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-352)) (-5 *2 (-1169)) (-5 *1 (-1166)))))
+ (-12 (-5 *3 (-587 (-521))) (-5 *2 (-521)) (-5 *1 (-457 *4))
+ (-4 *4 (-1141 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-759)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-1165 (-587 *3))) (-4 *4 (-282))
+ (-5 *2 (-587 *3)) (-5 *1 (-428 *4 *3)) (-4 *3 (-1141 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-143)) (-5 *1 (-803)))))
(((*1 *2 *2 *2)
- (-12 (-5 *2 (-626 *3)) (-4 *3 (-969)) (-5 *1 (-951 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-586 (-626 *3))) (-4 *3 (-969)) (-5 *1 (-951 *3))))
- ((*1 *2 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-969)) (-5 *1 (-951 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-586 (-626 *3))) (-4 *3 (-969)) (-5 *1 (-951 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-586 (-793 *5))) (-14 *5 (-586 (-1083))) (-4 *6 (-424))
- (-5 *2
- (-2 (|:| |dpolys| (-586 (-223 *5 *6)))
- (|:| |coords| (-586 (-520)))))
- (-5 *1 (-443 *5 *6 *7)) (-5 *3 (-586 (-223 *5 *6))) (-4 *7 (-424)))))
-(((*1 *2 *1) (-12 (-5 *2 (-706)) (-5 *1 (-300 *3)) (-4 *3 (-1118))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-706)) (-5 *1 (-483 *3 *4)) (-4 *3 (-1118))
- (-14 *4 (-520)))))
-(((*1 *2 *3 *3 *3 *3)
- (-12 (-5 *3 (-520)) (-5 *2 (-108)) (-5 *1 (-451)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1083))
- (-5 *2 (-3 (|:| |fst| (-407)) (|:| -1365 "void"))) (-5 *1 (-1086)))))
+ (-12 (-5 *2 (-627 *3))
+ (-4 *3 (-13 (-282) (-10 -8 (-15 -3358 ((-392 $) $)))))
+ (-4 *4 (-1141 *3)) (-5 *1 (-468 *3 *4 *5)) (-4 *5 (-383 *3 *4))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-627 *3))
+ (-4 *3 (-13 (-282) (-10 -8 (-15 -3358 ((-392 $) $)))))
+ (-4 *4 (-1141 *3)) (-5 *1 (-468 *3 *4 *5)) (-4 *5 (-383 *3 *4)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729))
+ (-4 *4 (-784)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-970))
+ (-4 *2 (-13 (-378) (-961 *4) (-337) (-1105) (-259)))
+ (-5 *1 (-416 *4 *3 *2)) (-4 *3 (-1141 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1180 *3 *4)) (-4 *3 (-784)) (-4 *4 (-970))
+ (-5 *2 (-2 (|:| |k| (-756 *3)) (|:| |c| *4))))))
+(((*1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-855)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-282)) (-4 *5 (-347 *4)) (-4 *6 (-347 *4))
+ (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3)))
+ (-5 *1 (-1035 *4 *5 *6 *3)) (-4 *3 (-625 *4 *5 *6)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-424) (-783) (-960 (-520)) (-582 (-520))))
- (-5 *1 (-393 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1104) (-403 *3)))
- (-14 *4 (-1083)) (-14 *5 *2)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-424) (-783) (-960 (-520)) (-582 (-520))))
- (-4 *2 (-13 (-27) (-1104) (-403 *3) (-10 -8 (-15 -2188 ($ *4)))))
- (-4 *4 (-781))
- (-4 *5
- (-13 (-1142 *2 *4) (-336) (-1104)
- (-10 -8 (-15 -2155 ($ $)) (-15 -3517 ($ $)))))
- (-5 *1 (-395 *3 *2 *4 *5 *6 *7)) (-4 *6 (-908 *5)) (-14 *7 (-1083)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-791) (-791))) (-5 *1 (-110))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-791) (-586 (-791)))) (-5 *1 (-110))))
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-927))))))
+(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-855)))))
+(((*1 *1 *1) (-12 (-4 *1 (-614 *2)) (-4 *2 (-1119)))))
+(((*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-518)))))
+(((*1 *2 *2) (-12 (-5 *2 (-290 (-202))) (-5 *1 (-243)))))
+(((*1 *1 *1) (-12 (-5 *1 (-821 *2)) (-4 *2 (-1013)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1119)) (-5 *1 (-349 *4 *2))
+ (-4 *2 (-13 (-347 *4) (-10 -7 (-6 -4234)))))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-587 (-51))) (-5 *1 (-821 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-425)) (-4 *3 (-784)) (-4 *3 (-961 (-521)))
+ (-4 *3 (-513)) (-5 *1 (-40 *3 *2)) (-4 *2 (-404 *3))
+ (-4 *2
+ (-13 (-337) (-277)
+ (-10 -8 (-15 -2801 ((-1036 *3 (-560 $)) $))
+ (-15 -2812 ((-1036 *3 (-560 $)) $))
+ (-15 -2189 ($ (-1036 *3 (-560 $))))))))))
+(((*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-784)) (-5 *1 (-455 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-108)) (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521))))))
+(((*1 *1) (-5 *1 (-982))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-202)) (-5 *2 (-1170)) (-5 *1 (-759)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-792) (-792))) (-5 *1 (-110))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-792) (-587 (-792)))) (-5 *1 (-110))))
((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1 (-791) (-586 (-791)))) (-5 *1 (-110))))
+ (|partial| -12 (-5 *2 (-1 (-792) (-587 (-792)))) (-5 *1 (-110))))
((*1 *2 *1)
- (-12 (-5 *2 (-1169)) (-5 *1 (-191 *3))
+ (-12 (-5 *2 (-1170)) (-5 *1 (-192 *3))
(-4 *3
- (-13 (-783)
- (-10 -8 (-15 -2543 ((-1066) $ (-1083))) (-15 -1677 (*2 $))
- (-15 -3288 (*2 $)))))))
- ((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-367))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-520)) (-5 *2 (-1169)) (-5 *1 (-367))))
- ((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-470))))
- ((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-1099))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-520)) (-5 *2 (-1169)) (-5 *1 (-1099)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-209)) (-4 *3 (-969)) (-4 *4 (-783)) (-4 *5 (-241 *4))
- (-4 *6 (-728)) (-5 *2 (-1 *1 (-706))) (-4 *1 (-228 *3 *4 *5 *6))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-969)) (-4 *3 (-783)) (-4 *5 (-241 *3)) (-4 *6 (-728))
- (-5 *2 (-1 *1 (-706))) (-4 *1 (-228 *4 *3 *5 *6))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-706)) (-4 *1 (-241 *2)) (-4 *2 (-783)))))
+ (-13 (-784)
+ (-10 -8 (-15 -2544 ((-1067) $ (-1084))) (-15 -1678 (*2 $))
+ (-15 -3971 (*2 $)))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-368))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-521)) (-5 *2 (-1170)) (-5 *1 (-368))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-471))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1100))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-521)) (-5 *2 (-1170)) (-5 *1 (-1100)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-290 (-202))) (-5 *2 (-381 (-521))) (-5 *1 (-280)))))
(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-336)) (-4 *4 (-346 *3)) (-4 *5 (-346 *3))
- (-5 *1 (-487 *3 *4 *5 *2)) (-4 *2 (-624 *3 *4 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-512)) (-4 *5 (-346 *4)) (-4 *6 (-346 *4))
- (-4 *7 (-917 *4)) (-4 *2 (-624 *7 *8 *9))
- (-5 *1 (-488 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-624 *4 *5 *6))
- (-4 *8 (-346 *7)) (-4 *9 (-346 *7))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-624 *2 *3 *4)) (-4 *2 (-969))
- (-4 *3 (-346 *2)) (-4 *4 (-346 *2)) (-4 *2 (-336))))
+ (-12 (-5 *2 (-587 (-881 *3))) (-4 *3 (-425)) (-5 *1 (-334 *3 *4))
+ (-14 *4 (-587 (-1084)))))
((*1 *2 *2)
- (|partial| -12 (-4 *3 (-336)) (-4 *3 (-157)) (-4 *4 (-346 *3))
- (-4 *5 (-346 *3)) (-5 *1 (-625 *3 *4 *5 *2))
- (-4 *2 (-624 *3 *4 *5))))
- ((*1 *1 *1)
- (|partial| -12 (-5 *1 (-626 *2)) (-4 *2 (-336)) (-4 *2 (-969))))
+ (-12 (-5 *2 (-587 *6)) (-4 *6 (-878 *3 *4 *5)) (-4 *3 (-425))
+ (-4 *4 (-729)) (-4 *5 (-784)) (-5 *1 (-423 *3 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-587 *7)) (-5 *3 (-1067)) (-4 *7 (-878 *4 *5 *6))
+ (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784))
+ (-5 *1 (-423 *4 *5 *6 *7))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-587 *7)) (-5 *3 (-1067)) (-4 *7 (-878 *4 *5 *6))
+ (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784))
+ (-5 *1 (-423 *4 *5 *6 *7))))
((*1 *1 *1)
- (|partial| -12 (-4 *1 (-1033 *2 *3 *4 *5)) (-4 *3 (-969))
- (-4 *4 (-214 *2 *3)) (-4 *5 (-214 *2 *3)) (-4 *3 (-336))))
- ((*1 *2 *2) (-12 (-5 *2 (-586 *3)) (-4 *3 (-783)) (-5 *1 (-1090 *3)))))
-(((*1 *2 *3 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *2 (-958))
- (-5 *1 (-687)))))
+ (-12 (-4 *2 (-337)) (-4 *3 (-729)) (-4 *4 (-784))
+ (-5 *1 (-473 *2 *3 *4 *5)) (-4 *5 (-878 *2 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-587 (-716 *3 (-794 *4)))) (-4 *3 (-425))
+ (-14 *4 (-587 (-1084))) (-5 *1 (-572 *3 *4)))))
(((*1 *2 *3 *4)
(-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4)))
- (-5 *1 (-642 *3 *4)) (-4 *3 (-1118)) (-4 *4 (-1118)))))
-(((*1 *1 *1) (-5 *1 (-791))) ((*1 *1 *1 *1) (-5 *1 (-791)))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1118))))
- ((*1 *1 *2) (-12 (-5 *1 (-1131 *2)) (-4 *2 (-1118)))))
-(((*1 *2 *1) (-12 (-4 *1 (-512)) (-5 *2 (-108)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-108) (-110) (-110))) (-5 *1 (-110)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-586 *6)) (-4 *6 (-983 *3 *4 *5)) (-4 *3 (-512))
- (-4 *4 (-728)) (-4 *5 (-783)) (-5 *1 (-902 *3 *4 *5 *6))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-586 *7)) (-5 *3 (-108)) (-4 *7 (-983 *4 *5 *6))
- (-4 *4 (-512)) (-4 *5 (-728)) (-4 *6 (-783))
- (-5 *1 (-902 *4 *5 *6 *7)))))
+ (-5 *1 (-643 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1119)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-108)) (-5 *3 (-587 (-239))) (-5 *1 (-237))))
+ ((*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-239))))
+ ((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-440))))
+ ((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-440)))))
+(((*1 *1 *1) (-5 *1 (-792))) ((*1 *1 *1 *1) (-5 *1 (-792)))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1119))))
+ ((*1 *1 *2) (-12 (-5 *1 (-1132 *2)) (-4 *2 (-1119)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-967 *4 *5)) (-4 *4 (-13 (-782) (-282) (-135) (-946)))
+ (-14 *5 (-587 (-1084))) (-5 *2 (-587 (-587 (-948 (-381 *4)))))
+ (-5 *1 (-1189 *4 *5 *6)) (-14 *6 (-587 (-1084)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-587 (-881 *5))) (-5 *4 (-108))
+ (-4 *5 (-13 (-782) (-282) (-135) (-946)))
+ (-5 *2 (-587 (-587 (-948 (-381 *5))))) (-5 *1 (-1189 *5 *6 *7))
+ (-14 *6 (-587 (-1084))) (-14 *7 (-587 (-1084)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-587 (-881 *5))) (-5 *4 (-108))
+ (-4 *5 (-13 (-782) (-282) (-135) (-946)))
+ (-5 *2 (-587 (-587 (-948 (-381 *5))))) (-5 *1 (-1189 *5 *6 *7))
+ (-14 *6 (-587 (-1084))) (-14 *7 (-587 (-1084)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-587 (-881 *4)))
+ (-4 *4 (-13 (-782) (-282) (-135) (-946)))
+ (-5 *2 (-587 (-587 (-948 (-381 *4))))) (-5 *1 (-1189 *4 *5 *6))
+ (-14 *5 (-587 (-1084))) (-14 *6 (-587 (-1084))))))
+(((*1 *1 *1) (|partial| -4 *1 (-133))) ((*1 *1 *1) (-4 *1 (-323)))
+ ((*1 *1 *1) (|partial| -12 (-4 *1 (-133)) (-4 *1 (-838)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1165 *5)) (-4 *5 (-728)) (-5 *2 (-108))
+ (-5 *1 (-779 *4 *5)) (-14 *4 (-707)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1079 (-520))) (-5 *1 (-169)) (-5 *3 (-520))))
- ((*1 *2 *3 *2) (-12 (-5 *3 (-706)) (-5 *1 (-718 *2)) (-4 *2 (-157))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1079 (-520))) (-5 *1 (-870)) (-5 *3 (-520)))))
-(((*1 *1 *2) (-12 (-5 *2 (-586 (-1007 (-380 (-520))))) (-5 *1 (-238))))
- ((*1 *1 *2) (-12 (-5 *2 (-586 (-1007 (-352)))) (-5 *1 (-238)))))
+ (-12 (-5 *3 (-1165 (-290 (-202)))) (-5 *2 (-1165 (-290 (-353))))
+ (-5 *1 (-280)))))
(((*1 *2 *1)
- (-12 (-4 *2 (-13 (-1012) (-33))) (-5 *1 (-1048 *3 *2))
- (-4 *3 (-13 (-1012) (-33))))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-626 *3))
- (-4 *3 (-13 (-281) (-10 -8 (-15 -1507 ((-391 $) $)))))
- (-4 *4 (-1140 *3)) (-5 *1 (-467 *3 *4 *5)) (-4 *5 (-382 *3 *4)))))
+ (-12 (-4 *1 (-554 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1119))
+ (-5 *2 (-587 *3)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-336)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *2 (-586 *6))
- (-5 *1 (-472 *3 *4 *5 *6)) (-4 *6 (-877 *3 *4 *5))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-586 (-833 *3))) (-5 *1 (-832 *3)) (-4 *3 (-1012)))))
-(((*1 *1 *1 *1 *2 *3)
- (-12 (-5 *2 (-586 (-1048 *4 *5))) (-5 *3 (-1 (-108) *5 *5))
- (-4 *4 (-13 (-1012) (-33))) (-4 *5 (-13 (-1012) (-33)))
- (-5 *1 (-1049 *4 *5))))
- ((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-586 (-1048 *3 *4))) (-4 *3 (-13 (-1012) (-33)))
- (-4 *4 (-13 (-1012) (-33))) (-5 *1 (-1049 *3 *4)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4229)) (-4 *1 (-459 *4))
- (-4 *4 (-1118)) (-5 *2 (-108)))))
-(((*1 *1 *1 *1) (-5 *1 (-791))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-352))))
- ((*1 *1 *1 *1) (-4 *1 (-505)))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-654 *2)) (-4 *2 (-336))))
- ((*1 *1 *2) (-12 (-5 *1 (-654 *2)) (-4 *2 (-336))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-706)))))
+ (-12 (-4 *2 (-13 (-1013) (-33))) (-5 *1 (-1049 *3 *2))
+ (-4 *3 (-13 (-1013) (-33))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-587 *2)) (-4 *2 (-404 *4)) (-5 *1 (-144 *4 *2))
+ (-4 *4 (-13 (-784) (-513))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-282) (-135))) (-4 *5 (-729)) (-4 *6 (-784))
+ (-4 *7 (-878 *4 *5 *6)) (-5 *2 (-587 (-587 *7)))
+ (-5 *1 (-421 *4 *5 *6 *7)) (-5 *3 (-587 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-108)) (-4 *5 (-13 (-282) (-135))) (-4 *6 (-729))
+ (-4 *7 (-784)) (-4 *8 (-878 *5 *6 *7)) (-5 *2 (-587 (-587 *8)))
+ (-5 *1 (-421 *5 *6 *7 *8)) (-5 *3 (-587 *8)))))
+(((*1 *2 *1) (-12 (-4 *1 (-920 *2)) (-4 *2 (-1119)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-802 (-893 *3) (-893 *3))) (-5 *1 (-893 *3))
+ (-4 *3 (-894)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-353))))
+ ((*1 *1 *1 *1) (-4 *1 (-506)))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-337))))
+ ((*1 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-337))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-707)))))
+(((*1 *2 *1) (-12 (-4 *1 (-614 *3)) (-4 *3 (-1119)) (-5 *2 (-108)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-587 (-473 *3 *4 *5 *6))) (-4 *3 (-337)) (-4 *4 (-729))
+ (-4 *5 (-784)) (-5 *1 (-473 *3 *4 *5 *6)) (-4 *6 (-878 *3 *4 *5))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-337)) (-4 *3 (-729)) (-4 *4 (-784))
+ (-5 *1 (-473 *2 *3 *4 *5)) (-4 *5 (-878 *2 *3 *4))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-587 *1)) (-4 *1 (-989 *4 *5 *6 *3)) (-4 *4 (-425))
+ (-4 *5 (-729)) (-4 *6 (-784)) (-4 *3 (-984 *4 *5 *6))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-587 *1)) (-5 *3 (-587 *7)) (-4 *1 (-989 *4 *5 *6 *7))
+ (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784))
+ (-4 *7 (-984 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-587 *7)) (-4 *7 (-984 *4 *5 *6)) (-4 *4 (-425))
+ (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-587 *1))
+ (-4 *1 (-989 *4 *5 *6 *7))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784))
+ (-4 *3 (-984 *4 *5 *6)) (-5 *2 (-587 *1))
+ (-4 *1 (-989 *4 *5 *6 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))))
(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-520)) (-4 *1 (-591 *3)) (-4 *3 (-1118))))
+ (-12 (-5 *2 (-521)) (-4 *1 (-592 *3)) (-4 *3 (-1119))))
((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-520)) (-4 *1 (-591 *2)) (-4 *2 (-1118)))))
-(((*1 *2 *3) (-12 (-5 *3 (-289 (-201))) (-5 *2 (-201)) (-5 *1 (-279)))))
-(((*1 *2 *2) (-12 (-5 *2 (-352)) (-5 *1 (-1166))))
- ((*1 *2) (-12 (-5 *2 (-352)) (-5 *1 (-1166)))))
+ (-12 (-5 *3 (-521)) (-4 *1 (-592 *2)) (-4 *2 (-1119)))))
+(((*1 *2) (-12 (-5 *2 (-587 (-1084))) (-5 *1 (-100)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1165 *4)) (-4 *4 (-970)) (-4 *2 (-1141 *4))
+ (-5 *1 (-417 *4 *2))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-381 (-1080 (-290 *5)))) (-5 *3 (-1165 (-290 *5)))
+ (-5 *4 (-521)) (-4 *5 (-13 (-513) (-784))) (-5 *1 (-1041 *5)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-424)) (-4 *3 (-783)) (-4 *3 (-960 (-520)))
- (-4 *3 (-512)) (-5 *1 (-40 *3 *2)) (-4 *2 (-403 *3))
- (-4 *2
- (-13 (-336) (-276)
- (-10 -8 (-15 -2800 ((-1035 *3 (-559 $)) $))
- (-15 -2811 ((-1035 *3 (-559 $)) $))
- (-15 -2188 ($ (-1035 *3 (-559 $))))))))))
-(((*1 *2 *3) (-12 (-5 *3 (-871 *2)) (-5 *1 (-907 *2)) (-4 *2 (-969)))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6
- *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8
- *9)
- (-12 (-5 *4 (-626 (-201))) (-5 *5 (-108)) (-5 *6 (-201))
- (-5 *7 (-626 (-520)))
- (-5 *8 (-3 (|:| |fn| (-361)) (|:| |fp| (-78 CONFUN))))
- (-5 *9 (-3 (|:| |fn| (-361)) (|:| |fp| (-75 OBJFUN))))
- (-5 *3 (-520)) (-5 *2 (-958)) (-5 *1 (-689)))))
+ (-12 (-5 *2 (-587 *6)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-513))
+ (-4 *4 (-729)) (-4 *5 (-784)) (-5 *1 (-903 *3 *4 *5 *6)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1067)) (-5 *3 (-760)) (-5 *1 (-759)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-340 *3)) (-4 *3 (-157)) (-4 *3 (-512))
- (-5 *2 (-1079 *3)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1 (-108) *9)) (-5 *5 (-1 (-108) *9 *9))
- (-4 *9 (-983 *6 *7 *8)) (-4 *6 (-512)) (-4 *7 (-728))
- (-4 *8 (-783)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1353 (-586 *9))))
- (-5 *3 (-586 *9)) (-4 *1 (-1112 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1 (-108) *8 *8)) (-4 *8 (-983 *5 *6 *7))
- (-4 *5 (-512)) (-4 *6 (-728)) (-4 *7 (-783))
- (-5 *2 (-2 (|:| |bas| *1) (|:| -1353 (-586 *8))))
- (-5 *3 (-586 *8)) (-4 *1 (-1112 *5 *6 *7 *8)))))
-(((*1 *2 *1 *1 *3 *4)
- (-12 (-5 *3 (-1 (-108) *5 *5)) (-5 *4 (-1 (-108) *6 *6))
- (-4 *5 (-13 (-1012) (-33))) (-4 *6 (-13 (-1012) (-33)))
- (-5 *2 (-108)) (-5 *1 (-1048 *5 *6)))))
-(((*1 *1 *1) (-4 *1 (-978))))
+ (-12 (-5 *2 (-1165 (-707))) (-5 *1 (-615 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-410)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-154 (-202))) (-5 *5 (-521)) (-5 *6 (-1067))
+ (-5 *3 (-202)) (-5 *2 (-959)) (-5 *1 (-695)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-513))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2114 *4)))
+ (-5 *1 (-896 *4 *3)) (-4 *3 (-1141 *4)))))
(((*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-156))))
- ((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-1165))))
- ((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-1166)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1166))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1167)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-337)) (-5 *1 (-949 *3 *2)) (-4 *2 (-597 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-337)) (-5 *2 (-2 (|:| -3192 *3) (|:| -1419 (-587 *5))))
+ (-5 *1 (-949 *5 *3)) (-5 *4 (-587 *5)) (-4 *3 (-597 *5)))))
+(((*1 *2) (-12 (-5 *2 (-1056 (-1067))) (-5 *1 (-365)))))
+(((*1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-931))))
+ ((*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-931)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))))
+(((*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1013)) (-5 *1 (-834 *3)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-560 *3)) (-4 *3 (-13 (-404 *5) (-27) (-1105)))
+ (-4 *5 (-13 (-425) (-961 (-521)) (-784) (-135) (-583 (-521))))
+ (-5 *2 (-538 *3)) (-5 *1 (-523 *5 *3 *6)) (-4 *6 (-1013)))))
+(((*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-759)))))
+(((*1 *1 *1 *1) (-4 *1 (-506))))
+(((*1 *2 *3) (-12 (-5 *3 (-587 *2)) (-5 *1 (-1094 *2)) (-4 *2 (-337)))))
+(((*1 *1) (-5 *1 (-143))))
+(((*1 *2 *3) (-12 (-5 *3 (-707)) (-5 *2 (-1 (-353))) (-5 *1 (-963)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2))
- (-4 *2 (-13 (-403 *3) (-926))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1044 *3)) (-4 *3 (-969)) (-5 *2 (-586 (-586 (-156)))))))
-(((*1 *2 *3 *3 *4 *5 *3 *6)
- (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *5 (-201))
- (-5 *6 (-3 (|:| |fn| (-361)) (|:| |fp| (-79 FCN)))) (-5 *2 (-958))
- (-5 *1 (-682)))))
-(((*1 *1 *2) (-12 (-5 *2 (-586 *3)) (-4 *3 (-1012)) (-4 *1 (-211 *3))))
- ((*1 *1) (-12 (-4 *1 (-211 *2)) (-4 *2 (-1012)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-626 *3))
- (-4 *3 (-13 (-281) (-10 -8 (-15 -1507 ((-391 $) $)))))
- (-4 *4 (-1140 *3)) (-5 *1 (-467 *3 *4 *5)) (-4 *5 (-382 *3 *4))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-626 *3))
- (-4 *3 (-13 (-281) (-10 -8 (-15 -1507 ((-391 $) $)))))
- (-4 *4 (-1140 *3)) (-5 *1 (-467 *3 *4 *5)) (-4 *5 (-382 *3 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783))
- (-4 *3 (-983 *5 *6 *7)) (-5 *2 (-108))
- (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-988 *5 *6 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783))
- (-4 *3 (-983 *5 *6 *7))
- (-5 *2 (-586 (-2 (|:| |val| (-108)) (|:| -1883 *4))))
- (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-988 *5 *6 *7 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1066)) (-5 *1 (-1100))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1066)) (-5 *1 (-1100)))))
-(((*1 *2 *3) (-12 (-5 *2 (-380 (-520))) (-5 *1 (-517)) (-5 *3 (-520)))))
-(((*1 *1 *2 *2 *2)
- (-12 (-5 *1 (-203 *2)) (-4 *2 (-13 (-336) (-1104)))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-654 *2)) (-4 *2 (-336))))
- ((*1 *1 *2) (-12 (-5 *1 (-654 *2)) (-4 *2 (-336))))
- ((*1 *2 *1 *3 *4 *4)
- (-12 (-5 *3 (-849)) (-5 *4 (-352)) (-5 *2 (-1169)) (-5 *1 (-1165)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-934 *3)) (-4 *3 (-1118)) (-4 *3 (-1012))
- (-5 *2 (-108)))))
-(((*1 *2 *3) (-12 (-5 *3 (-706)) (-5 *2 (-1 (-352))) (-5 *1 (-962)))))
+ (-12 (-5 *2 (-1165 *1)) (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123))
+ (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4))))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-521)) (-4 *4 (-13 (-513) (-135))) (-5 *1 (-498 *4 *2))
+ (-4 *2 (-1156 *4))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-521)) (-4 *4 (-13 (-337) (-342) (-562 *3)))
+ (-4 *5 (-1141 *4)) (-4 *6 (-661 *4 *5)) (-5 *1 (-502 *4 *5 *6 *2))
+ (-4 *2 (-1156 *6))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-521)) (-4 *4 (-13 (-337) (-342) (-562 *3)))
+ (-5 *1 (-503 *4 *2)) (-4 *2 (-1156 *4))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1065 *4)) (-5 *3 (-521)) (-4 *4 (-13 (-513) (-135)))
+ (-5 *1 (-1061 *4)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-880 *4)) (-4 *4 (-969)) (-4 *4 (-561 *2))
- (-5 *2 (-352)) (-5 *1 (-720 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-880 *5)) (-5 *4 (-849)) (-4 *5 (-969))
- (-4 *5 (-561 *2)) (-5 *2 (-352)) (-5 *1 (-720 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-380 (-880 *4))) (-4 *4 (-512))
- (-4 *4 (-561 *2)) (-5 *2 (-352)) (-5 *1 (-720 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-380 (-880 *5))) (-5 *4 (-849)) (-4 *5 (-512))
- (-4 *5 (-561 *2)) (-5 *2 (-352)) (-5 *1 (-720 *5))))
+ (|partial| -12 (-5 *3 (-1165 *4)) (-4 *4 (-583 (-521)))
+ (-5 *2 (-1165 (-521))) (-5 *1 (-1190 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-773))
+ (-5 *3
+ (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202)))
+ (|:| |lb| (-587 (-777 (-202)))) (|:| |cf| (-587 (-290 (-202))))
+ (|:| |ub| (-587 (-777 (-202))))))
+ (-5 *2 (-959))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-289 *4)) (-4 *4 (-512)) (-4 *4 (-783))
- (-4 *4 (-561 *2)) (-5 *2 (-352)) (-5 *1 (-720 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-289 *5)) (-5 *4 (-849)) (-4 *5 (-512))
- (-4 *5 (-783)) (-4 *5 (-561 *2)) (-5 *2 (-352))
- (-5 *1 (-720 *5)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-586 (-520))) (-5 *1 (-928 *3)) (-14 *3 (-520)))))
-(((*1 *2 *2 *3 *4 *4)
- (-12 (-5 *4 (-520)) (-4 *3 (-157)) (-4 *5 (-346 *3))
- (-4 *6 (-346 *3)) (-5 *1 (-625 *3 *5 *6 *2))
- (-4 *2 (-624 *3 *5 *6)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *2 (-958))
- (-5 *1 (-683)))))
-(((*1 *2 *2 *2) (-12 (-5 *1 (-145 *2)) (-4 *2 (-505)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-108)) (-4 *4 (-13 (-336) (-781))) (-5 *2 (-391 *3))
- (-5 *1 (-164 *4 *3)) (-4 *3 (-1140 (-154 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-336) (-781))) (-5 *2 (-391 *3))
- (-5 *1 (-164 *4 *3)) (-4 *3 (-1140 (-154 *4))))))
-(((*1 *2 *1) (-12 (-5 *2 (-586 (-1066))) (-5 *1 (-1099)))))
-(((*1 *2 *1) (-12 (-5 *2 (-586 (-104))) (-5 *1 (-159)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-424))) (-5 *1 (-1110 *3 *2))
- (-4 *2 (-13 (-403 *3) (-1104))))))
+ (-12 (-4 *1 (-773))
+ (-5 *3
+ (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202)))))
+ (-5 *2 (-959)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-587 *2)) (-4 *2 (-878 *4 *5 *6)) (-4 *4 (-425))
+ (-4 *5 (-729)) (-4 *6 (-784)) (-5 *1 (-422 *4 *5 *6 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-1100)))))
+(((*1 *2 *1) (-12 (-5 *2 (-587 (-104))) (-5 *1 (-159)))))
(((*1 *2)
- (-12 (-14 *4 *2) (-4 *5 (-1118)) (-5 *2 (-706))
- (-5 *1 (-213 *3 *4 *5)) (-4 *3 (-214 *4 *5))))
+ (-12 (-14 *4 *2) (-4 *5 (-1119)) (-5 *2 (-707))
+ (-5 *1 (-214 *3 *4 *5)) (-4 *3 (-215 *4 *5))))
((*1 *2 *1)
- (-12 (-4 *1 (-296 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-124))
- (-5 *2 (-706))))
+ (-12 (-4 *1 (-297 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-124))
+ (-5 *2 (-707))))
((*1 *2)
- (-12 (-4 *4 (-336)) (-5 *2 (-706)) (-5 *1 (-301 *3 *4))
- (-4 *3 (-302 *4))))
- ((*1 *2 *1) (-12 (-5 *2 (-706)) (-5 *1 (-334 *3)) (-4 *3 (-1012))))
- ((*1 *2) (-12 (-4 *1 (-341)) (-5 *2 (-706))))
- ((*1 *2 *1) (-12 (-5 *2 (-706)) (-5 *1 (-359 *3)) (-4 *3 (-1012))))
+ (-12 (-4 *4 (-337)) (-5 *2 (-707)) (-5 *1 (-302 *3 *4))
+ (-4 *3 (-303 *4))))
+ ((*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-335 *3)) (-4 *3 (-1013))))
+ ((*1 *2) (-12 (-4 *1 (-342)) (-5 *2 (-707))))
+ ((*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-360 *3)) (-4 *3 (-1013))))
((*1 *2)
- (-12 (-4 *4 (-1012)) (-5 *2 (-706)) (-5 *1 (-397 *3 *4))
- (-4 *3 (-398 *4))))
+ (-12 (-4 *4 (-1013)) (-5 *2 (-707)) (-5 *1 (-398 *3 *4))
+ (-4 *3 (-399 *4))))
((*1 *2 *1)
- (-12 (-5 *2 (-706)) (-5 *1 (-589 *3 *4 *5)) (-4 *3 (-1012))
+ (-12 (-5 *2 (-707)) (-5 *1 (-590 *3 *4 *5)) (-4 *3 (-1013))
(-4 *4 (-23)) (-14 *5 *4)))
((*1 *2)
- (-12 (-4 *4 (-157)) (-4 *5 (-1140 *4)) (-5 *2 (-706))
- (-5 *1 (-659 *3 *4 *5)) (-4 *3 (-660 *4 *5))))
- ((*1 *2 *1) (-12 (-5 *2 (-706)) (-5 *1 (-755 *3)) (-4 *3 (-783))))
- ((*1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-930))))
+ (-12 (-4 *4 (-157)) (-4 *5 (-1141 *4)) (-5 *2 (-707))
+ (-5 *1 (-660 *3 *4 *5)) (-4 *3 (-661 *4 *5))))
+ ((*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-756 *3)) (-4 *3 (-784))))
+ ((*1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-931))))
((*1 *2 *1)
- (-12 (-4 *2 (-13 (-781) (-336))) (-5 *1 (-979 *2 *3))
- (-4 *3 (-1140 *2)))))
+ (-12 (-4 *2 (-13 (-782) (-337))) (-5 *1 (-980 *2 *3))
+ (-4 *3 (-1141 *2)))))
+(((*1 *2 *3 *4 *3 *5 *3)
+ (-12 (-5 *4 (-627 (-202))) (-5 *5 (-627 (-521))) (-5 *3 (-521))
+ (-5 *2 (-959)) (-5 *1 (-691)))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4229)) (-4 *1 (-139 *3))
- (-4 *3 (-1118))))
+ (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4233)) (-4 *1 (-139 *3))
+ (-4 *3 (-1119))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1118)) (-5 *1 (-550 *3))))
+ (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1119)) (-5 *1 (-551 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-613 *3)) (-4 *3 (-1118))))
+ (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-614 *3)) (-4 *3 (-1119))))
((*1 *2 *1 *3)
- (|partial| -12 (-4 *1 (-1112 *4 *5 *3 *2)) (-4 *4 (-512))
- (-4 *5 (-728)) (-4 *3 (-783)) (-4 *2 (-983 *4 *5 *3))))
+ (|partial| -12 (-4 *1 (-1113 *4 *5 *3 *2)) (-4 *4 (-513))
+ (-4 *5 (-729)) (-4 *3 (-784)) (-4 *2 (-984 *4 *5 *3))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-706)) (-5 *1 (-1116 *2)) (-4 *2 (-1118)))))
-(((*1 *2 *1) (-12 (-4 *1 (-917 *2)) (-4 *2 (-512)) (-4 *2 (-505))))
- ((*1 *1 *1) (-4 *1 (-978))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-336))
- (-5 *2
- (-2 (|:| A (-626 *5))
- (|:| |eqs|
- (-586
- (-2 (|:| C (-626 *5)) (|:| |g| (-1164 *5)) (|:| -3190 *6)
- (|:| |rh| *5))))))
- (-5 *1 (-749 *5 *6)) (-5 *3 (-626 *5)) (-5 *4 (-1164 *5))
- (-4 *6 (-596 *5))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-336)) (-4 *6 (-596 *5))
- (-5 *2 (-2 (|:| -3927 (-626 *6)) (|:| |vec| (-1164 *5))))
- (-5 *1 (-749 *5 *6)) (-5 *3 (-626 *6)) (-5 *4 (-1164 *5)))))
+ (-12 (-5 *3 (-707)) (-5 *1 (-1117 *2)) (-4 *2 (-1119)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3)
+ (-12 (-5 *4 (-627 (-202))) (-5 *5 (-627 (-521))) (-5 *6 (-202))
+ (-5 *3 (-521)) (-5 *2 (-959)) (-5 *1 (-689)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2))
- (-4 *2 (-13 (-403 *3) (-926))))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-983 *3 *4 *2)) (-4 *3 (-969)) (-4 *4 (-728))
- (-4 *2 (-783))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-983 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-728))
- (-4 *4 (-783)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-352) (-352))) (-5 *4 (-352))
+ (-12 (-5 *2 (-587 (-587 *3))) (-4 *3 (-784)) (-5 *1 (-1091 *3)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-707)) (-4 *4 (-282)) (-4 *6 (-1141 *4))
+ (-5 *2 (-1165 (-587 *6))) (-5 *1 (-428 *4 *6)) (-5 *5 (-587 *6)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-587 *6)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-135))
+ (-4 *3 (-282)) (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-784))
+ (-5 *1 (-903 *3 *4 *5 *6)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *5 (-560 *4)) (-5 *6 (-1084))
+ (-4 *4 (-13 (-404 *7) (-27) (-1105)))
+ (-4 *7 (-13 (-425) (-961 (-521)) (-784) (-135) (-583 (-521))))
(-5 *2
- (-2 (|:| -3429 *4) (|:| -2967 *4) (|:| |totalpts| (-520))
- (|:| |success| (-108))))
- (-5 *1 (-724)) (-5 *5 (-520)))))
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2470 (-587 *4))))
+ (-5 *1 (-523 *7 *4 *3)) (-4 *3 (-597 *4)) (-4 *3 (-1013)))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1118)) (-5 *1 (-550 *3))))
+ (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1119)) (-5 *1 (-551 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1118)) (-5 *1 (-1064 *3)))))
-(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7)
- (-12 (-5 *3 (-520)) (-5 *5 (-108)) (-5 *6 (-626 (-201)))
- (-5 *7 (-3 (|:| |fn| (-361)) (|:| |fp| (-75 OBJFUN))))
- (-5 *4 (-201)) (-5 *2 (-958)) (-5 *1 (-689)))))
+ (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1119)) (-5 *1 (-1065 *3)))))
+(((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4234)) (-4 *1 (-347 *2)) (-4 *2 (-1119))
+ (-4 *2 (-784))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-108) *3 *3)) (|has| *1 (-6 -4234))
+ (-4 *1 (-347 *3)) (-4 *3 (-1119)))))
(((*1 *1 *1 *2)
- (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-969)) (-4 *3 (-727))
- (-4 *2 (-336))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-201))))
+ (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-970)) (-4 *3 (-728))
+ (-4 *2 (-337))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-202))))
((*1 *1 *1 *1)
- (-3700 (-12 (-5 *1 (-268 *2)) (-4 *2 (-336)) (-4 *2 (-1118)))
- (-12 (-5 *1 (-268 *2)) (-4 *2 (-445)) (-4 *2 (-1118)))))
- ((*1 *1 *1 *1) (-4 *1 (-336)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-352))))
+ (-3703 (-12 (-5 *1 (-269 *2)) (-4 *2 (-337)) (-4 *2 (-1119)))
+ (-12 (-5 *1 (-269 *2)) (-4 *2 (-446)) (-4 *2 (-1119)))))
+ ((*1 *1 *1 *1) (-4 *1 (-337)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-353))))
((*1 *1 *2 *2)
- (-12 (-5 *2 (-1035 *3 (-559 *1))) (-4 *3 (-512)) (-4 *3 (-783))
- (-4 *1 (-403 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-445)))
+ (-12 (-5 *2 (-1036 *3 (-560 *1))) (-4 *3 (-513)) (-4 *3 (-784))
+ (-4 *1 (-404 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-446)))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1164 *3)) (-4 *3 (-322)) (-5 *1 (-490 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-496)))
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-323)) (-5 *1 (-491 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-497)))
((*1 *1 *2 *3)
- (-12 (-4 *4 (-157)) (-5 *1 (-565 *2 *4 *3)) (-4 *2 (-37 *4))
- (-4 *3 (|SubsetCategory| (-662) *4))))
+ (-12 (-4 *4 (-157)) (-5 *1 (-566 *2 *4 *3)) (-4 *2 (-37 *4))
+ (-4 *3 (|SubsetCategory| (-663) *4))))
((*1 *1 *1 *2)
- (-12 (-4 *4 (-157)) (-5 *1 (-565 *3 *4 *2)) (-4 *3 (-37 *4))
- (-4 *2 (|SubsetCategory| (-662) *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-577 *2)) (-4 *2 (-157)) (-4 *2 (-336))))
+ (-12 (-4 *4 (-157)) (-5 *1 (-566 *3 *4 *2)) (-4 *3 (-37 *4))
+ (-4 *2 (|SubsetCategory| (-663) *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-578 *2)) (-4 *2 (-157)) (-4 *2 (-337))))
((*1 *1 *2 *3)
- (-12 (-4 *4 (-157)) (-5 *1 (-602 *2 *4 *3)) (-4 *2 (-653 *4))
- (-4 *3 (|SubsetCategory| (-662) *4))))
+ (-12 (-4 *4 (-157)) (-5 *1 (-603 *2 *4 *3)) (-4 *2 (-654 *4))
+ (-4 *3 (|SubsetCategory| (-663) *4))))
((*1 *1 *1 *2)
- (-12 (-4 *4 (-157)) (-5 *1 (-602 *3 *4 *2)) (-4 *3 (-653 *4))
- (-4 *2 (|SubsetCategory| (-662) *4))))
+ (-12 (-4 *4 (-157)) (-5 *1 (-603 *3 *4 *2)) (-4 *3 (-654 *4))
+ (-4 *2 (|SubsetCategory| (-663) *4))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-624 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-346 *2))
- (-4 *4 (-346 *2)) (-4 *2 (-336))))
- ((*1 *1 *1 *1) (-5 *1 (-791)))
+ (-12 (-4 *1 (-625 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-347 *2))
+ (-4 *4 (-347 *2)) (-4 *2 (-337))))
+ ((*1 *1 *1 *1) (-5 *1 (-792)))
((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-794 *2 *3 *4 *5)) (-4 *2 (-336))
- (-4 *2 (-969)) (-14 *3 (-586 (-1083))) (-14 *4 (-586 (-706)))
- (-14 *5 (-706))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-1012))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-917 *2)) (-4 *2 (-512))))
+ (|partial| -12 (-5 *1 (-795 *2 *3 *4 *5)) (-4 *2 (-337))
+ (-4 *2 (-970)) (-14 *3 (-587 (-1084))) (-14 *4 (-587 (-707)))
+ (-14 *5 (-707))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-821 *2)) (-4 *2 (-1013))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-918 *2)) (-4 *2 (-513))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-972 *3 *4 *2 *5 *6)) (-4 *2 (-969))
- (-4 *5 (-214 *4 *2)) (-4 *6 (-214 *3 *2)) (-4 *2 (-336))))
+ (-12 (-4 *1 (-973 *3 *4 *2 *5 *6)) (-4 *2 (-970))
+ (-4 *5 (-215 *4 *2)) (-4 *6 (-215 *3 *2)) (-4 *2 (-337))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-969)) (-5 *1 (-1068 *3))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1171 *2)) (-4 *2 (-336))))
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-5 *1 (-1069 *3))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-337))))
((*1 *1 *1 *1)
- (|partial| -12 (-4 *2 (-336)) (-4 *2 (-969)) (-4 *3 (-783))
- (-4 *4 (-728)) (-14 *6 (-586 *3))
- (-5 *1 (-1174 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-877 *2 *4 *3))
- (-14 *7 (-586 (-706))) (-14 *8 (-706))))
+ (|partial| -12 (-4 *2 (-337)) (-4 *2 (-970)) (-4 *3 (-784))
+ (-4 *4 (-729)) (-14 *6 (-587 *3))
+ (-5 *1 (-1175 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-878 *2 *4 *3))
+ (-14 *7 (-587 (-707))) (-14 *8 (-707))))
((*1 *1 *1 *2)
- (-12 (-5 *1 (-1185 *2 *3)) (-4 *2 (-336)) (-4 *2 (-969))
- (-4 *3 (-779)))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1112 *3 *4 *5 *2)) (-4 *3 (-512)) (-4 *4 (-728))
- (-4 *5 (-783)) (-4 *2 (-983 *3 *4 *5)))))
-(((*1 *1 *2 *3 *1 *3)
- (-12 (-5 *2 (-820 *4)) (-4 *4 (-1012)) (-5 *1 (-817 *4 *3))
- (-4 *3 (-1012)))))
+ (-12 (-5 *1 (-1186 *2 *3)) (-4 *2 (-337)) (-4 *2 (-970))
+ (-4 *3 (-780)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1180 *3 *4)) (-4 *3 (-784)) (-4 *4 (-970))
+ (-5 *2 (-108))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-108)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-970))
+ (-4 *4 (-780)))))
(((*1 *2 *3 *4 *5)
- (-12 (-4 *6 (-1140 *9)) (-4 *7 (-728)) (-4 *8 (-783)) (-4 *9 (-281))
- (-4 *10 (-877 *9 *7 *8))
- (-5 *2
- (-2 (|:| |deter| (-586 (-1079 *10)))
- (|:| |dterm|
- (-586 (-586 (-2 (|:| -1552 (-706)) (|:| |pcoef| *10)))))
- (|:| |nfacts| (-586 *6)) (|:| |nlead| (-586 *10))))
- (-5 *1 (-713 *6 *7 *8 *9 *10)) (-5 *3 (-1079 *10)) (-5 *4 (-586 *6))
- (-5 *5 (-586 *10)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1083))
- (-4 *4 (-13 (-783) (-281) (-960 (-520)) (-582 (-520)) (-135)))
- (-5 *2 (-1 *5 *5)) (-5 *1 (-740 *4 *5))
- (-4 *5 (-13 (-29 *4) (-1104) (-886))))))
+ (-12 (-5 *4 (-1084)) (-5 *5 (-1008 (-202))) (-5 *2 (-856))
+ (-5 *1 (-854 *3)) (-4 *3 (-562 (-497)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1084)) (-5 *2 (-856)) (-5 *1 (-854 *3))
+ (-4 *3 (-562 (-497)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 (-202) (-202))) (-5 *1 (-856))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-202) (-202))) (-5 *3 (-1008 (-202)))
+ (-5 *1 (-856)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1025)) (-4 *3 (-784)) (-5 *2 (-587 *1))
+ (-4 *1 (-404 *3))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-587 (-821 *3))) (-5 *1 (-821 *3))
+ (-4 *3 (-1013))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784))
+ (-5 *2 (-587 *1)) (-4 *1 (-878 *3 *4 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-729)) (-4 *5 (-784)) (-4 *6 (-970))
+ (-4 *7 (-878 *6 *4 *5)) (-5 *2 (-587 *3))
+ (-5 *1 (-879 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-337)
+ (-10 -8 (-15 -2189 ($ *7)) (-15 -2801 (*7 $))
+ (-15 -2812 (*7 $))))))))
(((*1 *2 *3 *4 *2)
- (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-588 *5)) (-4 *5 (-969))
- (-5 *1 (-52 *5 *2 *3)) (-4 *3 (-785 *5))))
+ (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-589 *5)) (-4 *5 (-970))
+ (-5 *1 (-52 *5 *2 *3)) (-4 *3 (-786 *5))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-626 *3)) (-4 *1 (-390 *3)) (-4 *3 (-157))))
- ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-785 *2)) (-4 *2 (-969))))
+ (-12 (-5 *2 (-627 *3)) (-4 *1 (-391 *3)) (-4 *3 (-157))))
+ ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-786 *2)) (-4 *2 (-970))))
((*1 *2 *3 *2 *2 *4 *5)
- (-12 (-5 *4 (-94 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-969))
- (-5 *1 (-786 *2 *3)) (-4 *3 (-785 *2)))))
+ (-12 (-5 *4 (-94 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-970))
+ (-5 *1 (-787 *2 *3)) (-4 *3 (-786 *2)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-108) (-110) (-110))) (-5 *1 (-110)))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1118)) (-5 *1 (-550 *3))))
+ (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1119)) (-5 *1 (-551 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1118)) (-5 *1 (-1064 *3)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-557 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012))
- (-5 *2 (-108)))))
+ (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1119)) (-5 *1 (-1065 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1086 (-381 (-521)))) (-5 *1 (-169)) (-5 *3 (-521)))))
(((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21)))
((*1 *1 *1 *1) (|partial| -5 *1 (-126)))
((*1 *1 *1 *1)
- (-12 (-5 *1 (-191 *2))
+ (-12 (-5 *1 (-192 *2))
(-4 *2
- (-13 (-783)
- (-10 -8 (-15 -2543 ((-1066) $ (-1083))) (-15 -1677 ((-1169) $))
- (-15 -3288 ((-1169) $)))))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-268 *2)) (-4 *2 (-21)) (-4 *2 (-1118))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-268 *2)) (-4 *2 (-21)) (-4 *2 (-1118))))
+ (-13 (-784)
+ (-10 -8 (-15 -2544 ((-1067) $ (-1084))) (-15 -1678 ((-1170) $))
+ (-15 -3971 ((-1170) $)))))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-269 *2)) (-4 *2 (-21)) (-4 *2 (-1119))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-269 *2)) (-4 *2 (-21)) (-4 *2 (-1119))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-442 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23))))
- ((*1 *1 *1) (-12 (-4 *1 (-442 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23))))
+ (-12 (-4 *1 (-443 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23))))
+ ((*1 *1 *1) (-12 (-4 *1 (-443 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23))))
((*1 *1 *1)
- (-12 (-4 *1 (-624 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-346 *2))
- (-4 *4 (-346 *2))))
+ (-12 (-4 *1 (-625 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-347 *2))
+ (-4 *4 (-347 *2))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-624 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-346 *2))
- (-4 *4 (-346 *2))))
- ((*1 *1 *1) (-5 *1 (-791))) ((*1 *1 *1 *1) (-5 *1 (-791)))
+ (-12 (-4 *1 (-625 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-347 *2))
+ (-4 *4 (-347 *2))))
+ ((*1 *1 *1) (-5 *1 (-792))) ((*1 *1 *1 *1) (-5 *1 (-792)))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-969)) (-5 *1 (-1068 *3))))
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-5 *1 (-1069 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-969)) (-5 *1 (-1068 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-871 (-201))) (-5 *1 (-1115))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1162 *2)) (-4 *2 (-1118)) (-4 *2 (-21))))
- ((*1 *1 *1) (-12 (-4 *1 (-1162 *2)) (-4 *2 (-1118)) (-4 *2 (-21)))))
-(((*1 *2 *1) (-12 (-4 *1 (-241 *2)) (-4 *2 (-783))))
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-5 *1 (-1069 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-872 (-202))) (-5 *1 (-1116))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1163 *2)) (-4 *2 (-1119)) (-4 *2 (-21))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1163 *2)) (-4 *2 (-1119)) (-4 *2 (-21)))))
+(((*1 *2 *1) (-12 (-4 *1 (-242 *2)) (-4 *2 (-784))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1083)) (-5 *1 (-793 *3)) (-14 *3 (-586 *2))))
- ((*1 *2 *1) (-12 (-5 *2 (-1083)) (-5 *1 (-892 *3)) (-4 *3 (-893))))
- ((*1 *2 *1) (-12 (-5 *2 (-1083)) (-5 *1 (-914))))
- ((*1 *2 *1) (-12 (-5 *2 (-1083)) (-5 *1 (-1005 *3)) (-4 *3 (-1118))))
+ (|partial| -12 (-5 *2 (-1084)) (-5 *1 (-794 *3)) (-14 *3 (-587 *2))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-893 *3)) (-4 *3 (-894))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-915))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-1006 *3)) (-4 *3 (-1119))))
((*1 *2 *1)
- (-12 (-4 *1 (-1142 *3 *4)) (-4 *3 (-969)) (-4 *4 (-727))
- (-5 *2 (-1083))))
- ((*1 *2) (-12 (-5 *2 (-1083)) (-5 *1 (-1160 *3)) (-14 *3 *2))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-983 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-728))
- (-4 *4 (-783)) (-4 *2 (-424)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-758)))))
-(((*1 *1 *2 *2) (-12 (-5 *1 (-268 *2)) (-4 *2 (-1118))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1083)) (-5 *3 (-1066)) (-5 *1 (-914))))
+ (-12 (-4 *1 (-1143 *3 *4)) (-4 *3 (-970)) (-4 *4 (-728))
+ (-5 *2 (-1084))))
+ ((*1 *2) (-12 (-5 *2 (-1084)) (-5 *1 (-1161 *3)) (-14 *3 *2))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-425)) (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-784))
+ (-5 *2 (-587 *3)) (-5 *1 (-903 *4 *5 *6 *3))
+ (-4 *3 (-984 *4 *5 *6)))))
+(((*1 *1) (-12 (-4 *1 (-399 *2)) (-4 *2 (-342)) (-4 *2 (-1013)))))
+(((*1 *1 *2 *2) (-12 (-5 *1 (-269 *2)) (-4 *2 (-1119))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-1067)) (-5 *1 (-915))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1083)) (-5 *3 (-1007 *4)) (-4 *4 (-1118))
- (-5 *1 (-1005 *4)))))
-(((*1 *1)
- (|partial| -12 (-4 *1 (-340 *2)) (-4 *2 (-512)) (-4 *2 (-157)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1064 (-586 (-520)))) (-5 *1 (-811))
- (-5 *3 (-586 (-520))))))
+ (-12 (-5 *2 (-1084)) (-5 *3 (-1008 *4)) (-4 *4 (-1119))
+ (-5 *1 (-1006 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1065 (-587 (-521)))) (-5 *1 (-812)))))
+(((*1 *2 *1) (-12 (-4 *1 (-782)) (-5 *2 (-521))))
+ ((*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-834 *3)) (-4 *3 (-1013))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-986 *4 *3)) (-4 *4 (-13 (-782) (-337)))
+ (-4 *3 (-1141 *4)) (-5 *2 (-521))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-13 (-513) (-784) (-961 *2) (-583 *2) (-425)))
+ (-5 *2 (-521)) (-5 *1 (-1028 *4 *3))
+ (-4 *3 (-13 (-27) (-1105) (-404 *4)))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1084)) (-5 *5 (-777 *3))
+ (-4 *3 (-13 (-27) (-1105) (-404 *6)))
+ (-4 *6 (-13 (-513) (-784) (-961 *2) (-583 *2) (-425)))
+ (-5 *2 (-521)) (-5 *1 (-1028 *6 *3))))
+ ((*1 *2 *3 *4 *3 *5)
+ (|partial| -12 (-5 *4 (-1084)) (-5 *5 (-1067))
+ (-4 *6 (-13 (-513) (-784) (-961 *2) (-583 *2) (-425)))
+ (-5 *2 (-521)) (-5 *1 (-1028 *6 *3))
+ (-4 *3 (-13 (-27) (-1105) (-404 *6)))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-381 (-881 *4))) (-4 *4 (-425)) (-5 *2 (-521))
+ (-5 *1 (-1029 *4))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1084)) (-5 *5 (-777 (-381 (-881 *6))))
+ (-5 *3 (-381 (-881 *6))) (-4 *6 (-425)) (-5 *2 (-521))
+ (-5 *1 (-1029 *6))))
+ ((*1 *2 *3 *4 *3 *5)
+ (|partial| -12 (-5 *3 (-381 (-881 *6))) (-5 *4 (-1084))
+ (-5 *5 (-1067)) (-4 *6 (-425)) (-5 *2 (-521)) (-5 *1 (-1029 *6))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *2 (-521)) (-5 *1 (-1102 *3)) (-4 *3 (-970)))))
(((*1 *1 *1 *1)
- (-12 (-5 *1 (-586 *2)) (-4 *2 (-1012)) (-4 *2 (-1118)))))
+ (-12 (-5 *1 (-587 *2)) (-4 *2 (-1013)) (-4 *2 (-1119)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-849)) (-4 *6 (-13 (-512) (-783)))
- (-5 *2 (-586 (-289 *6))) (-5 *1 (-197 *5 *6)) (-5 *3 (-289 *6))
- (-4 *5 (-969))))
- ((*1 *2 *1) (-12 (-5 *1 (-391 *2)) (-4 *2 (-512))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-537 *5)) (-4 *5 (-13 (-29 *4) (-1104)))
- (-4 *4 (-13 (-424) (-960 (-520)) (-783) (-582 (-520))))
- (-5 *2 (-586 *5)) (-5 *1 (-535 *4 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-537 (-380 (-880 *4))))
- (-4 *4 (-13 (-424) (-960 (-520)) (-783) (-582 (-520))))
- (-5 *2 (-586 (-289 *4))) (-5 *1 (-540 *4))))
+ (-12 (-5 *4 (-850)) (-4 *6 (-13 (-513) (-784)))
+ (-5 *2 (-587 (-290 *6))) (-5 *1 (-198 *5 *6)) (-5 *3 (-290 *6))
+ (-4 *5 (-970))))
+ ((*1 *2 *1) (-12 (-5 *1 (-392 *2)) (-4 *2 (-513))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-538 *5)) (-4 *5 (-13 (-29 *4) (-1105)))
+ (-4 *4 (-13 (-425) (-961 (-521)) (-784) (-583 (-521))))
+ (-5 *2 (-587 *5)) (-5 *1 (-536 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-538 (-381 (-881 *4))))
+ (-4 *4 (-13 (-425) (-961 (-521)) (-784) (-583 (-521))))
+ (-5 *2 (-587 (-290 *4))) (-5 *1 (-541 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-1008 *3 *2)) (-4 *3 (-781)) (-4 *2 (-1057 *3))))
+ (-12 (-4 *1 (-1009 *3 *2)) (-4 *3 (-782)) (-4 *2 (-1058 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-586 *1)) (-4 *1 (-1008 *4 *2)) (-4 *4 (-781))
- (-4 *2 (-1057 *4))))
+ (-12 (-5 *3 (-587 *1)) (-4 *1 (-1009 *4 *2)) (-4 *4 (-782))
+ (-4 *2 (-1058 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-424))) (-5 *1 (-1110 *3 *2))
- (-4 *2 (-13 (-403 *3) (-1104)))))
+ (-12 (-4 *3 (-13 (-784) (-425))) (-5 *1 (-1111 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-1105)))))
((*1 *2 *1)
- (-12 (-5 *2 (-1177 (-1083) *3)) (-5 *1 (-1184 *3)) (-4 *3 (-969))))
+ (-12 (-5 *2 (-1178 (-1084) *3)) (-5 *1 (-1185 *3)) (-4 *3 (-970))))
((*1 *2 *1)
- (-12 (-5 *2 (-1177 *3 *4)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-783))
- (-4 *4 (-969)))))
-(((*1 *2 *1) (-12 (-5 *2 (-896)) (-5 *1 (-833 *3)) (-4 *3 (-1012)))))
+ (-12 (-5 *2 (-1178 *3 *4)) (-5 *1 (-1187 *3 *4)) (-4 *3 (-784))
+ (-4 *4 (-970)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-881 *5)) (-4 *5 (-970)) (-5 *2 (-453 *4 *5))
+ (-5 *1 (-873 *4 *5)) (-14 *4 (-587 (-1084))))))
(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-143)))
((*1 *1 *1 *1)
- (-12 (-5 *1 (-191 *2))
+ (-12 (-5 *1 (-192 *2))
(-4 *2
- (-13 (-783)
- (-10 -8 (-15 -2543 ((-1066) $ (-1083))) (-15 -1677 ((-1169) $))
- (-15 -3288 ((-1169) $)))))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-268 *2)) (-4 *2 (-25)) (-4 *2 (-1118))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-268 *2)) (-4 *2 (-25)) (-4 *2 (-1118))))
+ (-13 (-784)
+ (-10 -8 (-15 -2544 ((-1067) $ (-1084))) (-15 -1678 ((-1170) $))
+ (-15 -3971 ((-1170) $)))))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-269 *2)) (-4 *2 (-25)) (-4 *2 (-1119))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-269 *2)) (-4 *2 (-25)) (-4 *2 (-1119))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-296 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-124))))
+ (-12 (-4 *1 (-297 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-124))))
((*1 *1 *2 *1)
- (-12 (-4 *3 (-13 (-336) (-135))) (-5 *1 (-372 *3 *2))
- (-4 *2 (-1140 *3))))
+ (-12 (-4 *3 (-13 (-337) (-135))) (-5 *1 (-373 *3 *2))
+ (-4 *2 (-1141 *3))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-442 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23))))
+ (-12 (-4 *1 (-443 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23))))
((*1 *1 *1 *1)
- (-12 (-4 *2 (-336)) (-4 *3 (-728)) (-4 *4 (-783))
- (-5 *1 (-472 *2 *3 *4 *5)) (-4 *5 (-877 *2 *3 *4))))
- ((*1 *1 *1 *1) (-5 *1 (-496)))
+ (-12 (-4 *2 (-337)) (-4 *3 (-729)) (-4 *4 (-784))
+ (-5 *1 (-473 *2 *3 *4 *5)) (-4 *5 (-878 *2 *3 *4))))
+ ((*1 *1 *1 *1) (-5 *1 (-497)))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-624 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-346 *2))
- (-4 *4 (-346 *2))))
- ((*1 *1 *1 *1) (-5 *1 (-791)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-1012))))
+ (-12 (-4 *1 (-625 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-347 *2))
+ (-4 *4 (-347 *2))))
+ ((*1 *1 *1 *1) (-5 *1 (-792)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-821 *2)) (-4 *2 (-1013))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-969)) (-5 *1 (-1068 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-871 (-201))) (-5 *1 (-1115))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1162 *2)) (-4 *2 (-1118)) (-4 *2 (-25)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1112 *3 *4 *5 *6)) (-4 *3 (-512)) (-4 *4 (-728))
- (-4 *5 (-783)) (-4 *6 (-983 *3 *4 *5)) (-5 *2 (-586 *5)))))
-(((*1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-739)))))
-(((*1 *2 *1 *2)
- (-12 (|has| *1 (-6 -4230)) (-4 *1 (-1152 *2)) (-4 *2 (-1118)))))
-(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-695)))))
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-5 *1 (-1069 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-872 (-202))) (-5 *1 (-1116))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1163 *2)) (-4 *2 (-1119)) (-4 *2 (-25)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-586 (-1 (-108) *8))) (-4 *8 (-983 *5 *6 *7))
- (-4 *5 (-512)) (-4 *6 (-728)) (-4 *7 (-783))
- (-5 *2 (-2 (|:| |goodPols| (-586 *8)) (|:| |badPols| (-586 *8))))
- (-5 *1 (-902 *5 *6 *7 *8)) (-5 *4 (-586 *8)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-586 (-520))) (-5 *1 (-928 *3)) (-14 *3 (-520)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-586 (-51))) (-5 *1 (-820 *3)) (-4 *3 (-1012)))))
+ (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784))
+ (-4 *3 (-984 *5 *6 *7)) (-5 *2 (-108))
+ (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784))
+ (-4 *3 (-984 *5 *6 *7))
+ (-5 *2 (-587 (-2 (|:| |val| (-108)) (|:| -1884 *4))))
+ (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))))
+(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-696)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-304)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202)))
+ (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202))
+ (|:| |relerr| (-202))))
+ (-5 *2 (-108)) (-5 *1 (-275)))))
(((*1 *1 *1 *1)
- (-12 (-5 *1 (-586 *2)) (-4 *2 (-1012)) (-4 *2 (-1118)))))
+ (-12 (-5 *1 (-587 *2)) (-4 *2 (-1013)) (-4 *2 (-1119)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-316 *4 *3 *5)) (-4 *4 (-1123)) (-4 *3 (-1141 *4))
+ (-4 *5 (-1141 (-381 *3))) (-5 *2 (-108))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3))
+ (-4 *5 (-1141 (-381 *4))) (-5 *2 (-108))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3))
+ (-4 *5 (-1141 (-381 *4))) (-5 *2 (-108)))))
+(((*1 *2 *1) (-12 (-4 *3 (-970)) (-5 *2 (-587 *1)) (-4 *1 (-1045 *3)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-491 *3)) (-4 *3 (-13 (-662) (-25))))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1100)))))
+ (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-492 *3)) (-4 *3 (-13 (-663) (-25))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-381 *6)) (-4 *5 (-1123)) (-4 *6 (-1141 *5))
+ (-5 *2 (-2 (|:| -2997 (-707)) (|:| -2973 *3) (|:| |radicand| *6)))
+ (-5 *1 (-136 *5 *6 *7)) (-5 *4 (-707)) (-4 *7 (-1141 *3)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *2 (-521)) (-5 *1 (-526 *3)) (-4 *3 (-961 *2)))))
+(((*1 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203))))
+ ((*1 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-586 *6)) (-4 *6 (-983 *3 *4 *5)) (-4 *3 (-135))
- (-4 *3 (-281)) (-4 *3 (-512)) (-4 *4 (-728)) (-4 *5 (-783))
- (-5 *1 (-902 *3 *4 *5 *6)))))
-(((*1 *2)
- (-12 (-4 *4 (-157)) (-5 *2 (-1079 (-880 *4))) (-5 *1 (-389 *3 *4))
- (-4 *3 (-390 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-390 *3)) (-4 *3 (-157)) (-4 *3 (-336))
- (-5 *2 (-1079 (-880 *3)))))
- ((*1 *2)
- (-12 (-5 *2 (-1079 (-380 (-880 *3)))) (-5 *1 (-425 *3 *4 *5 *6))
- (-4 *3 (-512)) (-4 *3 (-157)) (-14 *4 (-849))
- (-14 *5 (-586 (-1083))) (-14 *6 (-1164 (-626 *3))))))
-(((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| -2413 *3) (|:| |coef1| (-717 *3)) (|:| |coef2| (-717 *3))))
- (-5 *1 (-717 *3)) (-4 *3 (-512)) (-4 *3 (-969)))))
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-927))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *2 (-587 *2))) (-5 *4 (-587 *5))
+ (-4 *5 (-37 (-381 (-521)))) (-4 *2 (-1156 *5))
+ (-5 *1 (-1158 *5 *2)))))
(((*1 *1 *1 *1)
- (-12 (-5 *1 (-586 *2)) (-4 *2 (-1012)) (-4 *2 (-1118)))))
-(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
- (-12 (-5 *3 (-1066)) (-5 *4 (-520)) (-5 *5 (-626 (-154 (-201))))
- (-5 *2 (-958)) (-5 *1 (-690)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-520)) (-5 *1 (-391 *2)) (-4 *2 (-512)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-1169)) (-5 *1 (-792))))
- ((*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1169)) (-5 *1 (-792))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1066)) (-5 *4 (-791)) (-5 *2 (-1169)) (-5 *1 (-792))))
+ (-12 (-5 *1 (-587 *2)) (-4 *2 (-1013)) (-4 *2 (-1119)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-513) (-784)))
+ (-4 *2 (-13 (-404 (-154 *4)) (-927) (-1105)))
+ (-5 *1 (-550 *4 *3 *2)) (-4 *3 (-13 (-404 *4) (-927) (-1105))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1165 *1)) (-4 *1 (-341 *2)) (-4 *2 (-157))))
+ ((*1 *2) (-12 (-4 *2 (-157)) (-5 *1 (-390 *3 *2)) (-4 *3 (-391 *2))))
+ ((*1 *2) (-12 (-4 *1 (-391 *2)) (-4 *2 (-157)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-793))))
+ ((*1 *2 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1170)) (-5 *1 (-793))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1067)) (-5 *4 (-792)) (-5 *2 (-1170)) (-5 *1 (-793))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-520)) (-5 *2 (-1169)) (-5 *1 (-1064 *4))
- (-4 *4 (-1012)) (-4 *4 (-1118)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-3 (-520) (-201) (-1083) (-1066) (-1088)))
- (-5 *1 (-1088)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-337 *3 *2)) (-4 *3 (-1012)) (-4 *2 (-1012)))))
-(((*1 *2 *1) (-12 (-4 *1 (-797 *3)) (-5 *2 (-520)))))
+ (-12 (-5 *3 (-521)) (-5 *2 (-1170)) (-5 *1 (-1065 *4))
+ (-4 *4 (-1013)) (-4 *4 (-1119)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1008 (-777 (-202)))) (-5 *2 (-202)) (-5 *1 (-171))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1008 (-777 (-202)))) (-5 *2 (-202)) (-5 *1 (-275))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1008 (-777 (-202)))) (-5 *2 (-202)) (-5 *1 (-280)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-587 (-1084))) (-4 *4 (-1013))
+ (-4 *5 (-13 (-970) (-815 *4) (-784) (-562 (-821 *4))))
+ (-5 *1 (-53 *4 *5 *2))
+ (-4 *2 (-13 (-404 *5) (-815 *4) (-562 (-821 *4)))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-513) (-784) (-961 (-521))))
+ (-5 *2 (-154 (-290 *4))) (-5 *1 (-167 *4 *3))
+ (-4 *3 (-13 (-27) (-1105) (-404 (-154 *4))))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-425) (-784) (-961 (-521)) (-583 (-521))))
+ (-5 *2 (-154 *3)) (-5 *1 (-1109 *4 *3))
+ (-4 *3 (-13 (-27) (-1105) (-404 *4))))))
(((*1 *1 *1 *2)
(-12
(-5 *2
- (-2 (|:| -4082 (-586 (-791))) (|:| -1224 (-586 (-791)))
- (|:| |presup| (-586 (-791))) (|:| -1661 (-586 (-791)))
- (|:| |args| (-586 (-791)))))
- (-5 *1 (-1083))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-586 (-586 (-791)))) (-5 *1 (-1083)))))
-(((*1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-930))))
- ((*1 *2 *2) (-12 (-5 *2 (-520)) (-5 *1 (-930)))))
-(((*1 *1 *2) (-12 (-4 *1 (-606 *2)) (-4 *2 (-1118))))
- ((*1 *2 *1) (-12 (-5 *2 (-586 (-1083))) (-5 *1 (-1083)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-586 (-586 (-586 *4)))) (-5 *2 (-586 (-586 *4)))
- (-4 *4 (-783)) (-5 *1 (-1090 *4)))))
+ (-2 (|:| -2152 (-587 (-792))) (|:| -2641 (-587 (-792)))
+ (|:| |presup| (-587 (-792))) (|:| -2946 (-587 (-792)))
+ (|:| |args| (-587 (-792)))))
+ (-5 *1 (-1084))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-587 (-587 (-792)))) (-5 *1 (-1084)))))
+(((*1 *1 *2) (-12 (-4 *1 (-607 *2)) (-4 *2 (-1119))))
+ ((*1 *2 *1) (-12 (-5 *2 (-587 (-1084))) (-5 *1 (-1084)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-707)) (-5 *4 (-521)) (-5 *1 (-418 *2)) (-4 *2 (-970)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-706)) (-5 *2 (-1164 (-586 (-520)))) (-5 *1 (-451))))
+ (-12 (-5 *3 (-707)) (-5 *2 (-1165 (-587 (-521)))) (-5 *1 (-452))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1118)) (-5 *1 (-550 *3))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1119)) (-5 *1 (-551 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1118)) (-5 *1 (-1064 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1118)) (-5 *1 (-1064 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-336) (-781)))
- (-5 *2 (-2 (|:| |start| *3) (|:| -3493 (-391 *3))))
- (-5 *1 (-164 *4 *3)) (-4 *3 (-1140 (-154 *4))))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1119)) (-5 *1 (-1065 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1119)) (-5 *1 (-1065 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1015 *3 *4 *5 *6 *2)) (-4 *3 (-1012)) (-4 *4 (-1012))
- (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *2 (-1012)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-783)) (-5 *2 (-108))))
- ((*1 *1 *1 *1) (-5 *1 (-791))))
-(((*1 *2 *2) (-12 (-5 *2 (-586 (-289 (-201)))) (-5 *1 (-242)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-586 (-991 *4 *5 *2))) (-4 *4 (-1012))
- (-4 *5 (-13 (-969) (-814 *4) (-783) (-561 (-820 *4))))
- (-4 *2 (-13 (-403 *5) (-814 *4) (-561 (-820 *4))))
- (-5 *1 (-53 *4 *5 *2))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-586 (-991 *5 *6 *2))) (-5 *4 (-849)) (-4 *5 (-1012))
- (-4 *6 (-13 (-969) (-814 *5) (-783) (-561 (-820 *5))))
- (-4 *2 (-13 (-403 *6) (-814 *5) (-561 (-820 *5))))
- (-5 *1 (-53 *5 *6 *2)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-520)) (-4 *1 (-1124 *4)) (-4 *4 (-969)) (-4 *4 (-512))
- (-5 *2 (-380 (-880 *4)))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-520)) (-4 *1 (-1124 *4)) (-4 *4 (-969)) (-4 *4 (-512))
- (-5 *2 (-380 (-880 *4))))))
+ (-12 (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *2 (-587 *1))
+ (-4 *1 (-984 *3 *4 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-251)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-228 *3 *4 *2 *5)) (-4 *3 (-969)) (-4 *4 (-783))
- (-4 *5 (-728)) (-4 *2 (-241 *4)))))
+ (-12 (-4 *1 (-1016 *3 *4 *5 *6 *2)) (-4 *3 (-1013)) (-4 *4 (-1013))
+ (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-784)) (-5 *2 (-108))))
+ ((*1 *1 *1 *1) (-5 *1 (-792))))
(((*1 *2 *2 *3)
- (-12 (-4 *3 (-512)) (-4 *4 (-346 *3)) (-4 *5 (-346 *3))
- (-5 *1 (-1109 *3 *4 *5 *2)) (-4 *2 (-624 *3 *4 *5)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-706)) (-5 *3 (-108)) (-5 *1 (-106))))
- ((*1 *2 *2) (-12 (-5 *2 (-849)) (|has| *1 (-6 -4220)) (-4 *1 (-377))))
- ((*1 *2) (-12 (-4 *1 (-377)) (-5 *2 (-849)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-520)) (-4 *1 (-624 *3 *4 *5)) (-4 *3 (-969))
- (-4 *4 (-346 *3)) (-4 *5 (-346 *3)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-783)) (-5 *2 (-108))))
- ((*1 *1 *1 *1) (-5 *1 (-791)))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-832 *3)) (-4 *3 (-1012)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1177 (-1083) *3)) (-4 *3 (-969)) (-5 *1 (-1184 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1177 *3 *4)) (-4 *3 (-783)) (-4 *4 (-969))
- (-5 *1 (-1186 *3 *4)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *4 (-520))) (-5 *5 (-1 (-1064 *4))) (-4 *4 (-336))
- (-4 *4 (-969)) (-5 *2 (-1064 *4)) (-5 *1 (-1068 *4)))))
-(((*1 *2) (-12 (-5 *2 (-1055 (-1066))) (-5 *1 (-364)))))
-(((*1 *2 *3) (-12 (-5 *3 (-496)) (-5 *1 (-495 *2)) (-4 *2 (-1118))))
- ((*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-496)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-758)))))
-(((*1 *2 *3) (-12 (-5 *3 (-586 (-520))) (-5 *2 (-706)) (-5 *1 (-541)))))
+ (-12 (-5 *3 (-587 (-587 (-587 *4)))) (-5 *2 (-587 (-587 *4)))
+ (-4 *4 (-784)) (-5 *1 (-1091 *4)))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-5 *2 (-850)) (-5 *1 (-1014 *3 *4)) (-14 *3 *2)
+ (-14 *4 *2))))
+(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-759)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-229 *3 *4 *2 *5)) (-4 *3 (-970)) (-4 *4 (-784))
+ (-4 *5 (-729)) (-4 *2 (-242 *4)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-802 (-893 *3) (-893 *3))) (-5 *1 (-893 *3))
+ (-4 *3 (-894)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-587 *5)) (-4 *5 (-404 *4)) (-4 *4 (-13 (-784) (-513)))
+ (-5 *2 (-792)) (-5 *1 (-31 *4 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-154 (-201))) (-5 *4 (-520)) (-5 *2 (-958))
- (-5 *1 (-694)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-783)) (-5 *2 (-108))))
- ((*1 *1 *1 *1) (-5 *1 (-791))))
+ (-12 (-5 *4 (-1084)) (-5 *2 (-1 (-202) (-202))) (-5 *1 (-641 *3))
+ (-4 *3 (-562 (-497)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-1084)) (-5 *2 (-1 (-202) (-202) (-202)))
+ (-5 *1 (-641 *3)) (-4 *3 (-562 (-497))))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-784)) (-5 *2 (-108))))
+ ((*1 *1 *1 *1) (-5 *1 (-792)))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-833 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5)
+ (-12 (-5 *3 (-1067)) (-5 *5 (-627 (-202))) (-5 *6 (-627 (-521)))
+ (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-694)))))
+(((*1 *1 *2) (-12 (-5 *2 (-381 (-521))) (-5 *1 (-195)))))
+(((*1 *2 *1) (-12 (-5 *2 (-392 *3)) (-5 *1 (-843 *3)) (-4 *3 (-282)))))
+(((*1 *2 *3) (-12 (-5 *3 (-497)) (-5 *1 (-496 *2)) (-4 *2 (-1119))))
+ ((*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-497)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-51)) (-5 *1 (-766)))))
(((*1 *2)
- (-12 (-14 *4 (-706)) (-4 *5 (-1118)) (-5 *2 (-126))
- (-5 *1 (-213 *3 *4 *5)) (-4 *3 (-214 *4 *5))))
- ((*1 *2)
- (-12 (-4 *4 (-336)) (-5 *2 (-126)) (-5 *1 (-301 *3 *4))
- (-4 *3 (-302 *4))))
- ((*1 *2)
- (-12 (-5 *2 (-706)) (-5 *1 (-363 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
- (-4 *5 (-157))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-336)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *2 (-520))
- (-5 *1 (-472 *3 *4 *5 *6)) (-4 *6 (-877 *3 *4 *5))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-586 *6)) (-4 *6 (-783)) (-4 *4 (-336)) (-4 *5 (-728))
- (-5 *2 (-520)) (-5 *1 (-472 *4 *5 *6 *7)) (-4 *7 (-877 *4 *5 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-905 *3)) (-4 *3 (-969)) (-5 *2 (-849))))
- ((*1 *2) (-12 (-4 *1 (-1171 *3)) (-4 *3 (-336)) (-5 *2 (-126)))))
-(((*1 *1 *1) (-5 *1 (-981))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-706)) (-4 *1 (-1140 *3)) (-4 *3 (-969)))))
+ (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-340 *3 *4))
+ (-4 *3 (-341 *4))))
+ ((*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-5 *2 (-108)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-282) (-135))) (-4 *5 (-13 (-784) (-562 (-1084))))
+ (-4 *6 (-729)) (-5 *2 (-381 (-881 *4))) (-5 *1 (-853 *4 *5 *6 *3))
+ (-4 *3 (-878 *4 *6 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-627 *7)) (-4 *7 (-878 *4 *6 *5))
+ (-4 *4 (-13 (-282) (-135))) (-4 *5 (-13 (-784) (-562 (-1084))))
+ (-4 *6 (-729)) (-5 *2 (-627 (-381 (-881 *4))))
+ (-5 *1 (-853 *4 *5 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-587 *7)) (-4 *7 (-878 *4 *6 *5))
+ (-4 *4 (-13 (-282) (-135))) (-4 *5 (-13 (-784) (-562 (-1084))))
+ (-4 *6 (-729)) (-5 *2 (-587 (-381 (-881 *4))))
+ (-5 *1 (-853 *4 *5 *6 *7)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-784)) (-5 *2 (-108))))
+ ((*1 *1 *1 *1) (-5 *1 (-792))))
+(((*1 *2) (-12 (-5 *2 (-1084)) (-5 *1 (-1087)))))
+(((*1 *2 *2 *2 *2 *3 *3 *4)
+ (|partial| -12 (-5 *3 (-560 *2))
+ (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1084)))
+ (-4 *2 (-13 (-404 *5) (-27) (-1105)))
+ (-4 *5 (-13 (-425) (-961 (-521)) (-784) (-135) (-583 (-521))))
+ (-5 *1 (-523 *5 *2 *6)) (-4 *6 (-1013)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1080 *3)) (-4 *3 (-323)) (-5 *1 (-331 *3)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-706)) (-5 *1 (-1072 *3 *4)) (-14 *3 (-849))
- (-4 *4 (-969)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-849)) (-5 *1 (-955 *2))
- (-4 *2 (-13 (-1012) (-10 -8 (-15 * ($ $ $))))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-706)) (-5 *1 (-791))))
- ((*1 *1 *1) (-5 *1 (-791))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-756)) (-14 *5 (-1083)) (-5 *2 (-586 (-1137 *5 *4)))
- (-5 *1 (-1026 *4 *5)) (-5 *3 (-1137 *5 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-537 *3)) (-4 *3 (-336)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-783)) (-5 *2 (-108))))
- ((*1 *1 *1 *1) (-5 *1 (-791)))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-831 *3)) (-4 *3 (-1012)) (-5 *2 (-108))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-832 *3)) (-4 *3 (-1012))))
+ (-12 (-5 *2 (-707)) (-5 *1 (-1073 *3 *4)) (-14 *3 (-850))
+ (-4 *4 (-970)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1141 *2)) (-4 *2 (-970)))))
+(((*1 *2)
+ (-12 (-5 *2 (-381 (-881 *3))) (-5 *1 (-426 *3 *4 *5 *6))
+ (-4 *3 (-513)) (-4 *3 (-157)) (-14 *4 (-850))
+ (-14 *5 (-587 (-1084))) (-14 *6 (-1165 (-627 *3))))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-784)) (-5 *2 (-108))))
+ ((*1 *1 *1 *1) (-5 *1 (-792)))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-832 *3)) (-4 *3 (-1013)) (-5 *2 (-108))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-833 *3)) (-4 *3 (-1013))))
((*1 *2 *1 *1)
- (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1012)) (-5 *2 (-108)))))
-(((*1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-998 *3)) (-4 *3 (-125)))))
-(((*1 *1) (-5 *1 (-759))))
-(((*1 *2) (-12 (-5 *2 (-849)) (-5 *1 (-637))))
- ((*1 *2 *2) (-12 (-5 *2 (-849)) (-5 *1 (-637)))))
-(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10)
- (|partial| -12 (-5 *2 (-586 (-1079 *13))) (-5 *3 (-1079 *13))
- (-5 *4 (-586 *12)) (-5 *5 (-586 *10)) (-5 *6 (-586 *13))
- (-5 *7 (-586 (-586 (-2 (|:| -1552 (-706)) (|:| |pcoef| *13)))))
- (-5 *8 (-586 (-706))) (-5 *9 (-1164 (-586 (-1079 *10))))
- (-4 *12 (-783)) (-4 *10 (-281)) (-4 *13 (-877 *10 *11 *12))
- (-4 *11 (-728)) (-5 *1 (-644 *11 *12 *10 *13)))))
+ (-12 (-4 *1 (-1011 *3)) (-4 *3 (-1013)) (-5 *2 (-108)))))
+(((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-999 *3)) (-4 *3 (-125)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-707)) (-4 *1 (-300 *3 *4)) (-4 *3 (-970))
+ (-4 *4 (-728)) (-4 *3 (-157)))))
+(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-587 *1)) (-4 *1 (-282)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-970)) (-5 *1 (-417 *3 *2)) (-4 *2 (-1141 *3)))))
(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1066)) (-4 *1 (-337 *2 *4)) (-4 *2 (-1012))
- (-4 *4 (-1012))))
+ (-12 (-5 *3 (-1067)) (-4 *1 (-338 *2 *4)) (-4 *2 (-1013))
+ (-4 *4 (-1013))))
((*1 *1 *2)
- (-12 (-4 *1 (-337 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-1012)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-758)))))
-(((*1 *1) (-5 *1 (-997))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-140 *2 *3 *4)) (-14 *2 (-849)) (-4 *3 (-336))
- (-14 *4 (-918 *2 *3))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *2 (-157)) (-5 *1 (-263 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1140 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
- (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-340 *2)) (-4 *2 (-157)) (-4 *2 (-512))))
- ((*1 *1 *1)
- (|partial| -12 (-5 *1 (-651 *2 *3 *4 *5 *6)) (-4 *2 (-157))
- (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
- (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-5 *1 (-654 *2)) (-4 *2 (-336))))
- ((*1 *1) (-12 (-5 *1 (-654 *2)) (-4 *2 (-336))))
- ((*1 *1 *1) (|partial| -4 *1 (-658)))
- ((*1 *1 *1) (|partial| -4 *1 (-662)))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-424)) (-4 *6 (-728)) (-4 *7 (-783))
- (-4 *3 (-983 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3)))
- (-5 *1 (-711 *5 *6 *7 *3 *4)) (-4 *4 (-988 *5 *6 *7 *3))))
- ((*1 *2 *2 *1)
- (|partial| -12 (-4 *1 (-985 *3 *2)) (-4 *3 (-13 (-781) (-336)))
- (-4 *2 (-1140 *3))))
- ((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1064 *3)) (-4 *3 (-969)) (-5 *1 (-1068 *3)))))
+ (-12 (-4 *1 (-338 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))))
+(((*1 *1 *1) (-12 (-5 *1 (-1106 *2)) (-4 *2 (-1013)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-201)) (-5 *4 (-520)) (-5 *2 (-958)) (-5 *1 (-694)))))
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1141 *5)) (-4 *5 (-337))
+ (-5 *2
+ (-2 (|:| |ir| (-538 (-381 *6))) (|:| |specpart| (-381 *6))
+ (|:| |polypart| *6)))
+ (-5 *1 (-531 *5 *6)) (-5 *3 (-381 *6)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-368))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-1100)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-587 (-821 *3))) (-5 *1 (-821 *3))
+ (-4 *3 (-1013)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1007 *3)) (-5 *1 (-1005 *3)) (-4 *3 (-1118))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1118))))
- ((*1 *1 *2) (-12 (-5 *1 (-1131 *2)) (-4 *2 (-1118)))))
+ (-12 (-5 *2 (-1008 *3)) (-5 *1 (-1006 *3)) (-4 *3 (-1119))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1119))))
+ ((*1 *1 *2) (-12 (-5 *1 (-1132 *2)) (-4 *2 (-1119)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3)
+ (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *5 (-202))
+ (-5 *2 (-959)) (-5 *1 (-689)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1013)) (-4 *5 (-1013))
+ (-4 *6 (-1013)) (-5 *2 (-1 *6 *5)) (-5 *1 (-622 *4 *5 *6)))))
+(((*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-510)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-587 *6)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-513))
+ (-4 *4 (-729)) (-4 *5 (-784)) (-5 *1 (-903 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-587 *7)) (-5 *3 (-108)) (-4 *7 (-984 *4 *5 *6))
+ (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-784))
+ (-5 *1 (-903 *4 *5 *6 *7)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-625 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-347 *2))
+ (-4 *4 (-347 *2)))))
+(((*1 *2 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-894)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-5 *1 (-1069 *3)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-108))))
+ ((*1 *1 *2 *2) (-12 (-5 *1 (-269 *2)) (-4 *2 (-1119))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-408))))
+ ((*1 *1 *1 *1) (-5 *1 (-792)))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-950 *3)) (-4 *3 (-1119)))))
+(((*1 *2)
+ (-12 (-5 *2 (-886 (-1031))) (-5 *1 (-317 *3 *4)) (-14 *3 (-850))
+ (-14 *4 (-850))))
+ ((*1 *2)
+ (-12 (-5 *2 (-886 (-1031))) (-5 *1 (-318 *3 *4)) (-4 *3 (-323))
+ (-14 *4 (-1080 *3))))
+ ((*1 *2)
+ (-12 (-5 *2 (-886 (-1031))) (-5 *1 (-319 *3 *4)) (-4 *3 (-323))
+ (-14 *4 (-850)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1119)) (-5 *2 (-707)) (-5 *1 (-165 *4 *3))
+ (-4 *3 (-614 *4)))))
+(((*1 *2)
+ (-12 (-4 *4 (-157)) (-5 *2 (-1080 (-881 *4))) (-5 *1 (-390 *3 *4))
+ (-4 *3 (-391 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-391 *3)) (-4 *3 (-157)) (-4 *3 (-337))
+ (-5 *2 (-1080 (-881 *3)))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1080 (-381 (-881 *3)))) (-5 *1 (-426 *3 *4 *5 *6))
+ (-4 *3 (-513)) (-4 *3 (-157)) (-14 *4 (-850))
+ (-14 *5 (-587 (-1084))) (-14 *6 (-1165 (-627 *3))))))
+(((*1 *2 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1119)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-336)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *2 (-108))
- (-5 *1 (-472 *3 *4 *5 *6)) (-4 *6 (-877 *3 *4 *5))))
- ((*1 *2 *1) (-12 (-4 *1 (-658)) (-5 *2 (-108))))
- ((*1 *2 *1) (-12 (-4 *1 (-662)) (-5 *2 (-108)))))
-(((*1 *2 *2) (-12 (-5 *2 (-520)) (-5 *1 (-517)))))
+ (|partial| -12 (-5 *2 (-980 (-948 *3) (-1080 (-948 *3))))
+ (-5 *1 (-948 *3)) (-4 *3 (-13 (-782) (-337) (-946))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-289 (-201))) (-5 *2 (-289 (-352))) (-5 *1 (-279)))))
+ (-12 (-5 *3 (-290 (-353))) (-5 *2 (-290 (-202))) (-5 *1 (-280)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1140 *5)) (-4 *5 (-336))
- (-5 *2 (-2 (|:| -3655 (-391 *3)) (|:| |special| (-391 *3))))
- (-5 *1 (-663 *5 *3)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1079 *3)) (-4 *3 (-322)) (-5 *1 (-330 *3)))))
-(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3)
- (-12 (-5 *4 (-626 (-201))) (-5 *5 (-626 (-520))) (-5 *6 (-201))
- (-5 *3 (-520)) (-5 *2 (-958)) (-5 *1 (-687)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1083)) (-5 *2 (-1 *6 *5)) (-5 *1 (-643 *4 *5 *6))
- (-4 *4 (-561 (-496))) (-4 *5 (-1118)) (-4 *6 (-1118)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-108))))
- ((*1 *1 *2 *2) (-12 (-5 *1 (-268 *2)) (-4 *2 (-1118))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-407))))
- ((*1 *1 *1 *1) (-5 *1 (-791)))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-949 *3)) (-4 *3 (-1118)))))
-(((*1 *2 *3 *4 *5 *6 *7 *6)
- (|partial| -12
- (-5 *5
- (-2 (|:| |contp| *3)
- (|:| -3493 (-586 (-2 (|:| |irr| *10) (|:| -2421 (-520)))))))
- (-5 *6 (-586 *3)) (-5 *7 (-586 *8)) (-4 *8 (-783)) (-4 *3 (-281))
- (-4 *10 (-877 *3 *9 *8)) (-4 *9 (-728))
- (-5 *2
- (-2 (|:| |polfac| (-586 *10)) (|:| |correct| *3)
- (|:| |corrfact| (-586 (-1079 *3)))))
- (-5 *1 (-569 *8 *9 *3 *10)) (-5 *4 (-586 (-1079 *3))))))
+ (-12 (-5 *3 (-627 (-381 (-521))))
+ (-5 *2
+ (-587
+ (-2 (|:| |outval| *4) (|:| |outmult| (-521))
+ (|:| |outvect| (-587 (-627 *4))))))
+ (-5 *1 (-715 *4)) (-4 *4 (-13 (-337) (-782))))))
(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1164 (-586 *3))) (-4 *4 (-281))
- (-5 *2 (-586 *3)) (-5 *1 (-427 *4 *3)) (-4 *3 (-1140 *4)))))
-(((*1 *1 *1 *1) (-4 *1 (-505))))
-(((*1 *2 *3) (-12 (-5 *3 (-1164 *1)) (-4 *1 (-340 *2)) (-4 *2 (-157))))
- ((*1 *2) (-12 (-4 *2 (-157)) (-5 *1 (-389 *3 *2)) (-4 *3 (-390 *2))))
- ((*1 *2) (-12 (-4 *1 (-390 *2)) (-4 *2 (-157)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1164 (-1164 *4))) (-4 *4 (-969)) (-5 *2 (-626 *4))
- (-5 *1 (-952 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-892 *3)) (-4 *3 (-893)))))
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *6) (|:| -1925 *6) (|:| |sol?| (-108))) (-521)
+ *6))
+ (-4 *6 (-337)) (-4 *7 (-1141 *6))
+ (-5 *2 (-2 (|:| |answer| (-538 (-381 *7))) (|:| |a0| *6)))
+ (-5 *1 (-531 *6 *7)) (-5 *3 (-381 *7)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1138 *5 *4)) (-4 *4 (-757)) (-14 *5 (-1084))
+ (-5 *2 (-521)) (-5 *1 (-1027 *4 *5)))))
(((*1 *2 *1)
- (-12
- (-5 *2
- (-586
- (-2
- (|:| -2526
- (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201)))
- (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201))
- (|:| |relerr| (-201))))
- (|:| -3043
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1064 (-201)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -1667
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite|
- "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated"))))))))
- (-5 *1 (-515))))
+ (|partial| -12 (-4 *1 (-151 *3)) (-4 *3 (-157)) (-4 *3 (-506))
+ (-5 *2 (-381 (-521)))))
((*1 *2 *1)
- (-12 (-4 *1 (-553 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1118))
- (-5 *2 (-586 *4)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-352)) (-5 *1 (-92)))))
-(((*1 *1 *1)
- (-12 (|has| *1 (-6 -4230)) (-4 *1 (-1152 *2)) (-4 *2 (-1118)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-589 *2 *3 *4)) (-4 *2 (-1012)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-586 (-833 *3))) (-5 *1 (-832 *3)) (-4 *3 (-1012)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-336)) (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-108))
- (-5 *1 (-472 *4 *5 *6 *3)) (-4 *3 (-877 *4 *5 *6)))))
+ (|partial| -12 (-5 *2 (-381 (-521))) (-5 *1 (-392 *3)) (-4 *3 (-506))
+ (-4 *3 (-513))))
+ ((*1 *2 *1) (|partial| -12 (-4 *1 (-506)) (-5 *2 (-381 (-521)))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-734 *3)) (-4 *3 (-157)) (-4 *3 (-506))
+ (-5 *2 (-381 (-521)))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-381 (-521))) (-5 *1 (-770 *3)) (-4 *3 (-506))
+ (-4 *3 (-1013))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-381 (-521))) (-5 *1 (-777 *3)) (-4 *3 (-506))
+ (-4 *3 (-1013))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-922 *3)) (-4 *3 (-157)) (-4 *3 (-506))
+ (-5 *2 (-381 (-521)))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *2 (-381 (-521))) (-5 *1 (-933 *3))
+ (-4 *3 (-961 *2)))))
+(((*1 *1 *2 *3)
+ (-12
+ (-5 *3
+ (-587
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2)
+ (|:| |xpnt| (-521)))))
+ (-4 *2 (-513)) (-5 *1 (-392 *2))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |contp| (-521))
+ (|:| -1514 (-587 (-2 (|:| |irr| *4) (|:| -2132 (-521)))))))
+ (-4 *4 (-1141 (-521))) (-5 *2 (-392 *4)) (-5 *1 (-415 *4)))))
(((*1 *2)
- (-12 (-4 *1 (-322))
- (-5 *2 (-586 (-2 (|:| -1916 (-520)) (|:| -2647 (-520))))))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-871 *3)) (-4 *3 (-13 (-336) (-1104) (-926)))
- (-5 *1 (-160 *3)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-586 (-1083))) (-5 *3 (-51)) (-5 *1 (-820 *4))
- (-4 *4 (-1012)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-586 (-849))) (-5 *1 (-1013 *3 *4)) (-14 *3 (-849))
- (-14 *4 (-849)))))
+ (-12 (-4 *4 (-157)) (-5 *2 (-1080 (-881 *4))) (-5 *1 (-390 *3 *4))
+ (-4 *3 (-391 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-391 *3)) (-4 *3 (-157)) (-4 *3 (-337))
+ (-5 *2 (-1080 (-881 *3)))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1080 (-381 (-881 *3)))) (-5 *1 (-426 *3 *4 *5 *6))
+ (-4 *3 (-513)) (-4 *3 (-157)) (-14 *4 (-850))
+ (-14 *5 (-587 (-1084))) (-14 *6 (-1165 (-627 *3))))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-108))
+ (-12 (-4 *2 (-1141 *4)) (-5 *1 (-744 *4 *2 *3 *5))
+ (-4 *4 (-13 (-337) (-135) (-961 (-381 (-521))))) (-4 *3 (-597 *2))
+ (-4 *5 (-597 (-381 *2)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *2 (-1141 *4)) (-5 *1 (-744 *4 *2 *5 *3))
+ (-4 *4 (-13 (-337) (-135) (-961 (-381 (-521))))) (-4 *5 (-597 *2))
+ (-4 *3 (-597 (-381 *2))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-594 (-381 *6))) (-5 *4 (-381 *6)) (-4 *6 (-1141 *5))
+ (-4 *5 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521)))))
(-5 *2
- (-2 (|:| |contp| (-520))
- (|:| -3493 (-586 (-2 (|:| |irr| *3) (|:| -2421 (-520)))))))
- (-5 *1 (-414 *3)) (-4 *3 (-1140 (-520)))))
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2470 (-587 *4))))
+ (-5 *1 (-747 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-108))
+ (-12 (-5 *3 (-594 (-381 *6))) (-4 *6 (-1141 *5))
+ (-4 *5 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521)))))
+ (-5 *2 (-2 (|:| -2470 (-587 (-381 *6))) (|:| -1201 (-627 *5))))
+ (-5 *1 (-747 *5 *6)) (-5 *4 (-587 (-381 *6)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-595 *6 (-381 *6))) (-5 *4 (-381 *6)) (-4 *6 (-1141 *5))
+ (-4 *5 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521)))))
(-5 *2
- (-2 (|:| |contp| (-520))
- (|:| -3493 (-586 (-2 (|:| |irr| *3) (|:| -2421 (-520)))))))
- (-5 *1 (-1129 *3)) (-4 *3 (-1140 (-520))))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-545 *2)) (-4 *2 (-37 (-380 (-520)))) (-4 *2 (-969)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-545 *2)) (-4 *2 (-37 (-380 (-520)))) (-4 *2 (-969)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-586 (-793 *5))) (-14 *5 (-586 (-1083))) (-4 *6 (-424))
- (-5 *2 (-586 (-586 (-223 *5 *6)))) (-5 *1 (-443 *5 *6 *7))
- (-5 *3 (-586 (-223 *5 *6))) (-4 *7 (-424)))))
-(((*1 *2 *1) (-12 (-4 *1 (-733 *2)) (-4 *2 (-157)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1048 *4 *5)) (-4 *4 (-13 (-1012) (-33)))
- (-4 *5 (-13 (-1012) (-33))) (-5 *2 (-108)) (-5 *1 (-1049 *4 *5)))))
-(((*1 *2 *3) (-12 (-5 *2 (-391 *3)) (-5 *1 (-514 *3)) (-4 *3 (-505))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-728)) (-4 *5 (-783)) (-4 *6 (-281)) (-5 *2 (-391 *3))
- (-5 *1 (-678 *4 *5 *6 *3)) (-4 *3 (-877 *6 *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-728)) (-4 *5 (-783)) (-4 *6 (-281))
- (-4 *7 (-877 *6 *4 *5)) (-5 *2 (-391 (-1079 *7)))
- (-5 *1 (-678 *4 *5 *6 *7)) (-5 *3 (-1079 *7))))
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2470 (-587 *4))))
+ (-5 *1 (-747 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-595 *6 (-381 *6))) (-4 *6 (-1141 *5))
+ (-4 *5 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521)))))
+ (-5 *2 (-2 (|:| -2470 (-587 (-381 *6))) (|:| -1201 (-627 *5))))
+ (-5 *1 (-747 *5 *6)) (-5 *4 (-587 (-381 *6))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1148 *3 *4)) (-4 *3 (-970)) (-4 *4 (-1125 *3))
+ (-5 *2 (-381 (-521))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1165 (-1165 *4))) (-4 *4 (-970)) (-5 *2 (-627 *4))
+ (-5 *1 (-953 *4)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-587 (-2 (|:| |gen| *3) (|:| -3261 (-521)))))
+ (-5 *1 (-335 *3)) (-4 *3 (-1013))))
((*1 *2 *1)
- (-12 (-4 *3 (-424)) (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783))
- (-5 *2 (-391 *1)) (-4 *1 (-877 *3 *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-783)) (-4 *5 (-728)) (-4 *6 (-424)) (-5 *2 (-391 *3))
- (-5 *1 (-904 *4 *5 *6 *3)) (-4 *3 (-877 *6 *5 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-728)) (-4 *5 (-783)) (-4 *6 (-424))
- (-4 *7 (-877 *6 *4 *5)) (-5 *2 (-391 (-1079 (-380 *7))))
- (-5 *1 (-1078 *4 *5 *6 *7)) (-5 *3 (-1079 (-380 *7)))))
- ((*1 *2 *1) (-12 (-5 *2 (-391 *1)) (-4 *1 (-1122))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-512)) (-5 *2 (-391 *3)) (-5 *1 (-1143 *4 *3))
- (-4 *3 (-13 (-1140 *4) (-512) (-10 -8 (-15 -2257 ($ $ $)))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-966 *4 *5)) (-4 *4 (-13 (-781) (-281) (-135) (-945)))
- (-14 *5 (-586 (-1083)))
+ (-12 (-5 *2 (-587 (-2 (|:| |gen| *3) (|:| -3261 (-707)))))
+ (-5 *1 (-360 *3)) (-4 *3 (-1013))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-587 (-2 (|:| -1916 *3) (|:| -2997 (-521)))))
+ (-5 *1 (-392 *3)) (-4 *3 (-513))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-587 (-2 (|:| |gen| *3) (|:| -3261 (-707)))))
+ (-5 *1 (-756 *3)) (-4 *3 (-784)))))
+(((*1 *2 *3 *3 *3 *3 *4)
+ (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-353) (-353))) (-5 *4 (-353))
(-5 *2
- (-586 (-1054 *4 (-492 (-793 *6)) (-793 *6) (-715 *4 (-793 *6)))))
- (-5 *1 (-1188 *4 *5 *6)) (-14 *6 (-586 (-1083))))))
-(((*1 *2 *3) (-12 (-5 *2 (-520)) (-5 *1 (-525 *3)) (-4 *3 (-960 *2))))
+ (-2 (|:| -3430 *4) (|:| -2968 *4) (|:| |totalpts| (-521))
+ (|:| |success| (-108))))
+ (-5 *1 (-725)) (-5 *5 (-521)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-970)) (-5 *2 (-1165 *3)) (-5 *1 (-649 *3 *4))
+ (-4 *4 (-1141 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970)) (-5 *2 (-108)))))
+(((*1 *2 *1 *2)
+ (-12 (|has| *1 (-6 -4234)) (-4 *1 (-1153 *2)) (-4 *2 (-1119)))))
+(((*1 *2 *3) (-12 (-5 *2 (-521)) (-5 *1 (-526 *3)) (-4 *3 (-961 *2))))
((*1 *2 *1)
- (-12 (-4 *1 (-1015 *3 *4 *2 *5 *6)) (-4 *3 (-1012)) (-4 *4 (-1012))
- (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *2 (-1012)))))
-(((*1 *1 *1) (-5 *1 (-791)))
+ (-12 (-4 *1 (-1016 *3 *4 *2 *5 *6)) (-4 *3 (-1013)) (-4 *4 (-1013))
+ (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013)))))
+(((*1 *1 *1) (-5 *1 (-792)))
((*1 *2 *1)
- (-12 (-4 *1 (-1015 *2 *3 *4 *5 *6)) (-4 *3 (-1012)) (-4 *4 (-1012))
- (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *2 (-1012))))
- ((*1 *1 *2) (-12 (-5 *2 (-520)) (-4 *1 (-1065))))
- ((*1 *2 *1) (-12 (-5 *2 (-1066)) (-5 *1 (-1083)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-758)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-586 *3)) (-4 *3 (-1118)))))
-(((*1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-854)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-520)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime"))
- (-5 *1 (-391 *4)) (-4 *4 (-512)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-586 (-706))) (-5 *3 (-108)) (-5 *1 (-1072 *4 *5))
- (-14 *4 (-849)) (-4 *5 (-969)))))
-(((*1 *1 *1) (-4 *1 (-601))) ((*1 *1 *1) (-5 *1 (-1030))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-545 *2)) (-4 *2 (-37 (-380 (-520)))) (-4 *2 (-969)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-586 (-1088))) (-5 *1 (-1088))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1083)) (-5 *3 (-586 (-1088))) (-5 *1 (-1088)))))
-(((*1 *1) (-5 *1 (-410))))
+ (-12 (-4 *1 (-1016 *2 *3 *4 *5 *6)) (-4 *3 (-1013)) (-4 *4 (-1013))
+ (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013))))
+ ((*1 *1 *2) (-12 (-5 *2 (-521)) (-4 *1 (-1066))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-1084)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-587 *3)) (-4 *3 (-1119)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-347 *3)) (-4 *3 (-1119)) (-4 *3 (-784)) (-5 *2 (-108))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *1 (-347 *4)) (-4 *4 (-1119))
+ (-5 *2 (-108)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-587 *2)) (-4 *2 (-404 *4)) (-5 *1 (-144 *4 *2))
+ (-4 *4 (-13 (-784) (-513))))))
+(((*1 *2 *2) (-12 (-5 *1 (-889 *2)) (-4 *2 (-506)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-759)))))
+(((*1 *1) (-5 *1 (-411))))
+(((*1 *1 *1) (-4 *1 (-602))) ((*1 *1 *1) (-5 *1 (-1031))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-850)) (-5 *2 (-441)) (-5 *1 (-1166)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970)) (-5 *2 (-587 (-872 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-587 (-872 *3))) (-4 *3 (-970)) (-4 *1 (-1045 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-587 (-587 *3))) (-4 *1 (-1045 *3)) (-4 *3 (-970))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-587 (-872 *3))) (-4 *1 (-1045 *3)) (-4 *3 (-970)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-521)) (|has| *1 (-6 -4234)) (-4 *1 (-347 *3))
+ (-4 *3 (-1119)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784))
+ (-4 *3 (-984 *5 *6 *7))
+ (-5 *2 (-587 (-2 (|:| |val| (-108)) (|:| -1884 *4))))
+ (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))))
+(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1120 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-1101))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-1101)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-337) (-782)))
+ (-5 *2 (-2 (|:| |start| *3) (|:| -1514 (-392 *3))))
+ (-5 *1 (-164 *4 *3)) (-4 *3 (-1141 (-154 *4))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-521)) (|has| *1 (-6 -4224)) (-4 *1 (-378))
+ (-5 *2 (-850)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-521)) (-5 *1 (-1094 *2)) (-4 *2 (-337)))))
(((*1 *2)
- (-12 (-5 *2 (-626 (-838 *3))) (-5 *1 (-324 *3 *4)) (-14 *3 (-849))
- (-14 *4 (-849))))
- ((*1 *2)
- (-12 (-5 *2 (-626 *3)) (-5 *1 (-325 *3 *4)) (-4 *3 (-322))
- (-14 *4
- (-3 (-1079 *3)
- (-1164 (-586 (-2 (|:| -3429 *3) (|:| -2716 (-1030)))))))))
+ (-12 (-4 *3 (-513)) (-5 *2 (-587 *4)) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-391 *3)))))
+(((*1 *2)
+ (-12 (-4 *4 (-1123)) (-4 *5 (-1141 *4)) (-4 *6 (-1141 (-381 *5)))
+ (-5 *2 (-707)) (-5 *1 (-315 *3 *4 *5 *6)) (-4 *3 (-316 *4 *5 *6))))
((*1 *2)
- (-12 (-5 *2 (-626 *3)) (-5 *1 (-326 *3 *4)) (-4 *3 (-322))
- (-14 *4 (-849)))))
-(((*1 *2 *3) (-12 (-5 *3 (-380 (-520))) (-5 *2 (-201)) (-5 *1 (-279)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-336) (-10 -8 (-15 ** ($ $ (-380 (-520)))))))
- (-5 *2 (-586 *4)) (-5 *1 (-1038 *3 *4)) (-4 *3 (-1140 *4))))
- ((*1 *2 *3 *3 *3 *3 *3)
- (-12 (-4 *3 (-13 (-336) (-10 -8 (-15 ** ($ $ (-380 (-520)))))))
- (-5 *2 (-586 *3)) (-5 *1 (-1038 *4 *3)) (-4 *4 (-1140 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1064 (-201))) (-5 *2 (-586 (-1066))) (-5 *1 (-170))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1064 (-201))) (-5 *2 (-586 (-1066))) (-5 *1 (-274))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1064 (-201))) (-5 *2 (-586 (-1066))) (-5 *1 (-279)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1007 (-776 (-352)))) (-5 *2 (-1007 (-776 (-201))))
- (-5 *1 (-279)))))
-(((*1 *1) (-5 *1 (-981))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-586 *2)) (-4 *2 (-877 *4 *5 *6)) (-4 *4 (-424))
- (-4 *5 (-728)) (-4 *6 (-783)) (-5 *1 (-421 *4 *5 *6 *2)))))
+ (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3))
+ (-4 *5 (-1141 (-381 *4))) (-5 *2 (-707))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970)) (-5 *2 (-707)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1015 *3 *2 *4 *5 *6)) (-4 *3 (-1012)) (-4 *4 (-1012))
- (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *2 (-1012)))))
-(((*1 *2 *1) (-12 (-5 *2 (-391 *3)) (-5 *1 (-842 *3)) (-4 *3 (-281)))))
-(((*1 *1) (-5 *1 (-410))))
-(((*1 *1 *1) (-5 *1 (-981))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1030)) (-5 *2 (-108)) (-5 *1 (-757)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-760)))))
-(((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1118))))
+ (-12 (-4 *1 (-1016 *3 *2 *4 *5 *6)) (-4 *3 (-1013)) (-4 *4 (-1013))
+ (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013)))))
+(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4)
+ (-12 (-5 *4 (-627 (-202))) (-5 *5 (-627 (-521))) (-5 *3 (-521))
+ (-5 *2 (-959)) (-5 *1 (-693)))))
+(((*1 *2 *1)
+ (|partial| -12
+ (-4 *3 (-13 (-784) (-961 (-521)) (-583 (-521)) (-425)))
+ (-5 *2
+ (-2
+ (|:| |%term|
+ (-2 (|:| |%coef| (-1150 *4 *5 *6))
+ (|:| |%expon| (-293 *4 *5 *6))
+ (|:| |%expTerms|
+ (-587 (-2 (|:| |k| (-381 (-521))) (|:| |c| *4))))))
+ (|:| |%type| (-1067))))
+ (-5 *1 (-1151 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1105) (-404 *3)))
+ (-14 *5 (-1084)) (-14 *6 *4))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-1049 *3 *2)) (-4 *3 (-13 (-1013) (-33)))
+ (-4 *2 (-13 (-1013) (-33))))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-950 (-777 (-521))))
+ (-5 *3 (-1065 (-2 (|:| |k| (-521)) (|:| |c| *4)))) (-4 *4 (-970))
+ (-5 *1 (-546 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1119))))
((*1 *1 *2)
- (-12 (-5 *2 (-880 (-352))) (-5 *1 (-312 *3 *4 *5))
- (-4 *5 (-960 (-352))) (-14 *3 (-586 (-1083)))
- (-14 *4 (-586 (-1083))) (-4 *5 (-360))))
+ (-12 (-5 *2 (-881 (-353))) (-5 *1 (-313 *3 *4 *5))
+ (-4 *5 (-961 (-353))) (-14 *3 (-587 (-1084)))
+ (-14 *4 (-587 (-1084))) (-4 *5 (-361))))
((*1 *1 *2)
- (-12 (-5 *2 (-380 (-880 (-352)))) (-5 *1 (-312 *3 *4 *5))
- (-4 *5 (-960 (-352))) (-14 *3 (-586 (-1083)))
- (-14 *4 (-586 (-1083))) (-4 *5 (-360))))
+ (-12 (-5 *2 (-381 (-881 (-353)))) (-5 *1 (-313 *3 *4 *5))
+ (-4 *5 (-961 (-353))) (-14 *3 (-587 (-1084)))
+ (-14 *4 (-587 (-1084))) (-4 *5 (-361))))
((*1 *1 *2)
- (-12 (-5 *2 (-289 (-352))) (-5 *1 (-312 *3 *4 *5))
- (-4 *5 (-960 (-352))) (-14 *3 (-586 (-1083)))
- (-14 *4 (-586 (-1083))) (-4 *5 (-360))))
+ (-12 (-5 *2 (-290 (-353))) (-5 *1 (-313 *3 *4 *5))
+ (-4 *5 (-961 (-353))) (-14 *3 (-587 (-1084)))
+ (-14 *4 (-587 (-1084))) (-4 *5 (-361))))
((*1 *1 *2)
- (-12 (-5 *2 (-880 (-520))) (-5 *1 (-312 *3 *4 *5))
- (-4 *5 (-960 (-520))) (-14 *3 (-586 (-1083)))
- (-14 *4 (-586 (-1083))) (-4 *5 (-360))))
+ (-12 (-5 *2 (-881 (-521))) (-5 *1 (-313 *3 *4 *5))
+ (-4 *5 (-961 (-521))) (-14 *3 (-587 (-1084)))
+ (-14 *4 (-587 (-1084))) (-4 *5 (-361))))
((*1 *1 *2)
- (-12 (-5 *2 (-380 (-880 (-520)))) (-5 *1 (-312 *3 *4 *5))
- (-4 *5 (-960 (-520))) (-14 *3 (-586 (-1083)))
- (-14 *4 (-586 (-1083))) (-4 *5 (-360))))
+ (-12 (-5 *2 (-381 (-881 (-521)))) (-5 *1 (-313 *3 *4 *5))
+ (-4 *5 (-961 (-521))) (-14 *3 (-587 (-1084)))
+ (-14 *4 (-587 (-1084))) (-4 *5 (-361))))
((*1 *1 *2)
- (-12 (-5 *2 (-289 (-520))) (-5 *1 (-312 *3 *4 *5))
- (-4 *5 (-960 (-520))) (-14 *3 (-586 (-1083)))
- (-14 *4 (-586 (-1083))) (-4 *5 (-360))))
+ (-12 (-5 *2 (-290 (-521))) (-5 *1 (-313 *3 *4 *5))
+ (-4 *5 (-961 (-521))) (-14 *3 (-587 (-1084)))
+ (-14 *4 (-587 (-1084))) (-4 *5 (-361))))
((*1 *1 *2)
- (-12 (-5 *2 (-1083)) (-5 *1 (-312 *3 *4 *5)) (-14 *3 (-586 *2))
- (-14 *4 (-586 *2)) (-4 *5 (-360))))
+ (-12 (-5 *2 (-1084)) (-5 *1 (-313 *3 *4 *5)) (-14 *3 (-587 *2))
+ (-14 *4 (-587 *2)) (-4 *5 (-361))))
((*1 *1 *2)
- (-12 (-5 *2 (-289 *5)) (-4 *5 (-360)) (-5 *1 (-312 *3 *4 *5))
- (-14 *3 (-586 (-1083))) (-14 *4 (-586 (-1083)))))
- ((*1 *1 *2) (-12 (-5 *2 (-626 (-380 (-880 (-520))))) (-4 *1 (-357))))
- ((*1 *1 *2) (-12 (-5 *2 (-626 (-380 (-880 (-352))))) (-4 *1 (-357))))
- ((*1 *1 *2) (-12 (-5 *2 (-626 (-880 (-520)))) (-4 *1 (-357))))
- ((*1 *1 *2) (-12 (-5 *2 (-626 (-880 (-352)))) (-4 *1 (-357))))
- ((*1 *1 *2) (-12 (-5 *2 (-626 (-289 (-520)))) (-4 *1 (-357))))
- ((*1 *1 *2) (-12 (-5 *2 (-626 (-289 (-352)))) (-4 *1 (-357))))
- ((*1 *1 *2) (-12 (-5 *2 (-380 (-880 (-520)))) (-4 *1 (-369))))
- ((*1 *1 *2) (-12 (-5 *2 (-380 (-880 (-352)))) (-4 *1 (-369))))
- ((*1 *1 *2) (-12 (-5 *2 (-880 (-520))) (-4 *1 (-369))))
- ((*1 *1 *2) (-12 (-5 *2 (-880 (-352))) (-4 *1 (-369))))
- ((*1 *1 *2) (-12 (-5 *2 (-289 (-520))) (-4 *1 (-369))))
- ((*1 *1 *2) (-12 (-5 *2 (-289 (-352))) (-4 *1 (-369))))
- ((*1 *1 *2) (-12 (-5 *2 (-1164 (-380 (-880 (-520))))) (-4 *1 (-413))))
- ((*1 *1 *2) (-12 (-5 *2 (-1164 (-380 (-880 (-352))))) (-4 *1 (-413))))
- ((*1 *1 *2) (-12 (-5 *2 (-1164 (-880 (-520)))) (-4 *1 (-413))))
- ((*1 *1 *2) (-12 (-5 *2 (-1164 (-880 (-352)))) (-4 *1 (-413))))
- ((*1 *1 *2) (-12 (-5 *2 (-1164 (-289 (-520)))) (-4 *1 (-413))))
- ((*1 *1 *2) (-12 (-5 *2 (-1164 (-289 (-352)))) (-4 *1 (-413))))
+ (-12 (-5 *2 (-290 *5)) (-4 *5 (-361)) (-5 *1 (-313 *3 *4 *5))
+ (-14 *3 (-587 (-1084))) (-14 *4 (-587 (-1084)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-627 (-381 (-881 (-521))))) (-4 *1 (-358))))
+ ((*1 *1 *2) (-12 (-5 *2 (-627 (-381 (-881 (-353))))) (-4 *1 (-358))))
+ ((*1 *1 *2) (-12 (-5 *2 (-627 (-881 (-521)))) (-4 *1 (-358))))
+ ((*1 *1 *2) (-12 (-5 *2 (-627 (-881 (-353)))) (-4 *1 (-358))))
+ ((*1 *1 *2) (-12 (-5 *2 (-627 (-290 (-521)))) (-4 *1 (-358))))
+ ((*1 *1 *2) (-12 (-5 *2 (-627 (-290 (-353)))) (-4 *1 (-358))))
+ ((*1 *1 *2) (-12 (-5 *2 (-381 (-881 (-521)))) (-4 *1 (-370))))
+ ((*1 *1 *2) (-12 (-5 *2 (-381 (-881 (-353)))) (-4 *1 (-370))))
+ ((*1 *1 *2) (-12 (-5 *2 (-881 (-521))) (-4 *1 (-370))))
+ ((*1 *1 *2) (-12 (-5 *2 (-881 (-353))) (-4 *1 (-370))))
+ ((*1 *1 *2) (-12 (-5 *2 (-290 (-521))) (-4 *1 (-370))))
+ ((*1 *1 *2) (-12 (-5 *2 (-290 (-353))) (-4 *1 (-370))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1165 (-381 (-881 (-521))))) (-4 *1 (-414))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1165 (-381 (-881 (-353))))) (-4 *1 (-414))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1165 (-881 (-521)))) (-4 *1 (-414))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1165 (-881 (-353)))) (-4 *1 (-414))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1165 (-290 (-521)))) (-4 *1 (-414))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1165 (-290 (-353)))) (-4 *1 (-414))))
((*1 *2 *1)
(-12
(-5 *2
(-3
(|:| |nia|
- (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201)))
- (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201))
- (|:| |relerr| (-201))))
+ (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202)))
+ (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202))
+ (|:| |relerr| (-202))))
(|:| |mdnia|
- (-2 (|:| |fn| (-289 (-201)))
- (|:| -1667 (-586 (-1007 (-776 (-201)))))
- (|:| |abserr| (-201)) (|:| |relerr| (-201))))))
- (-5 *1 (-704))))
+ (-2 (|:| |fn| (-290 (-202)))
+ (|:| -2442 (-587 (-1008 (-777 (-202)))))
+ (|:| |abserr| (-202)) (|:| |relerr| (-202))))))
+ (-5 *1 (-705))))
((*1 *2 *1)
(-12
(-5 *2
- (-2 (|:| |xinit| (-201)) (|:| |xend| (-201))
- (|:| |fn| (-1164 (-289 (-201)))) (|:| |yinit| (-586 (-201)))
- (|:| |intvals| (-586 (-201))) (|:| |g| (-289 (-201)))
- (|:| |abserr| (-201)) (|:| |relerr| (-201))))
- (-5 *1 (-744))))
+ (-2 (|:| |xinit| (-202)) (|:| |xend| (-202))
+ (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202)))
+ (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202)))
+ (|:| |abserr| (-202)) (|:| |relerr| (-202))))
+ (-5 *1 (-745))))
((*1 *2 *1)
(-12
(-5 *2
(-3
(|:| |noa|
- (-2 (|:| |fn| (-289 (-201))) (|:| -3794 (-586 (-201)))
- (|:| |lb| (-586 (-776 (-201))))
- (|:| |cf| (-586 (-289 (-201))))
- (|:| |ub| (-586 (-776 (-201))))))
+ (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202)))
+ (|:| |lb| (-587 (-777 (-202))))
+ (|:| |cf| (-587 (-290 (-202))))
+ (|:| |ub| (-587 (-777 (-202))))))
(|:| |lsa|
- (-2 (|:| |lfn| (-586 (-289 (-201))))
- (|:| -3794 (-586 (-201)))))))
- (-5 *1 (-774))))
+ (-2 (|:| |lfn| (-587 (-290 (-202))))
+ (|:| -3797 (-587 (-202)))))))
+ (-5 *1 (-775))))
((*1 *2 *1)
(-12
(-5 *2
- (-2 (|:| |pde| (-586 (-289 (-201))))
+ (-2 (|:| |pde| (-587 (-290 (-202))))
(|:| |constraints|
- (-586
- (-2 (|:| |start| (-201)) (|:| |finish| (-201))
- (|:| |grid| (-706)) (|:| |boundaryType| (-520))
- (|:| |dStart| (-626 (-201))) (|:| |dFinish| (-626 (-201))))))
- (|:| |f| (-586 (-586 (-289 (-201))))) (|:| |st| (-1066))
- (|:| |tol| (-201))))
- (-5 *1 (-826))))
+ (-587
+ (-2 (|:| |start| (-202)) (|:| |finish| (-202))
+ (|:| |grid| (-707)) (|:| |boundaryType| (-521))
+ (|:| |dStart| (-627 (-202))) (|:| |dFinish| (-627 (-202))))))
+ (|:| |f| (-587 (-587 (-290 (-202))))) (|:| |st| (-1067))
+ (|:| |tol| (-202))))
+ (-5 *1 (-827))))
((*1 *1 *2)
- (-12 (-5 *2 (-586 *6)) (-4 *6 (-983 *3 *4 *5)) (-4 *3 (-969))
- (-4 *4 (-728)) (-4 *5 (-783)) (-4 *1 (-901 *3 *4 *5 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-960 *2)) (-4 *2 (-1118))))
+ (-12 (-5 *2 (-587 *6)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-970))
+ (-4 *4 (-729)) (-4 *5 (-784)) (-4 *1 (-902 *3 *4 *5 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-1119))))
((*1 *1 *2)
- (-3700
- (-12 (-5 *2 (-880 *3))
- (-12 (-2399 (-4 *3 (-37 (-380 (-520)))))
- (-2399 (-4 *3 (-37 (-520)))) (-4 *5 (-561 (-1083))))
- (-4 *3 (-969)) (-4 *1 (-983 *3 *4 *5)) (-4 *4 (-728))
- (-4 *5 (-783)))
- (-12 (-5 *2 (-880 *3))
- (-12 (-2399 (-4 *3 (-505))) (-2399 (-4 *3 (-37 (-380 (-520)))))
- (-4 *3 (-37 (-520))) (-4 *5 (-561 (-1083))))
- (-4 *3 (-969)) (-4 *1 (-983 *3 *4 *5)) (-4 *4 (-728))
- (-4 *5 (-783)))
- (-12 (-5 *2 (-880 *3))
- (-12 (-2399 (-4 *3 (-917 (-520)))) (-4 *3 (-37 (-380 (-520))))
- (-4 *5 (-561 (-1083))))
- (-4 *3 (-969)) (-4 *1 (-983 *3 *4 *5)) (-4 *4 (-728))
- (-4 *5 (-783)))))
+ (-3703
+ (-12 (-5 *2 (-881 *3))
+ (-12 (-2400 (-4 *3 (-37 (-381 (-521)))))
+ (-2400 (-4 *3 (-37 (-521)))) (-4 *5 (-562 (-1084))))
+ (-4 *3 (-970)) (-4 *1 (-984 *3 *4 *5)) (-4 *4 (-729))
+ (-4 *5 (-784)))
+ (-12 (-5 *2 (-881 *3))
+ (-12 (-2400 (-4 *3 (-506))) (-2400 (-4 *3 (-37 (-381 (-521)))))
+ (-4 *3 (-37 (-521))) (-4 *5 (-562 (-1084))))
+ (-4 *3 (-970)) (-4 *1 (-984 *3 *4 *5)) (-4 *4 (-729))
+ (-4 *5 (-784)))
+ (-12 (-5 *2 (-881 *3))
+ (-12 (-2400 (-4 *3 (-918 (-521)))) (-4 *3 (-37 (-381 (-521))))
+ (-4 *5 (-562 (-1084))))
+ (-4 *3 (-970)) (-4 *1 (-984 *3 *4 *5)) (-4 *4 (-729))
+ (-4 *5 (-784)))))
((*1 *1 *2)
- (-3700
- (-12 (-5 *2 (-880 (-520))) (-4 *1 (-983 *3 *4 *5))
- (-12 (-2399 (-4 *3 (-37 (-380 (-520))))) (-4 *3 (-37 (-520)))
- (-4 *5 (-561 (-1083))))
- (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783)))
- (-12 (-5 *2 (-880 (-520))) (-4 *1 (-983 *3 *4 *5))
- (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *5 (-561 (-1083))))
- (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783)))))
+ (-3703
+ (-12 (-5 *2 (-881 (-521))) (-4 *1 (-984 *3 *4 *5))
+ (-12 (-2400 (-4 *3 (-37 (-381 (-521))))) (-4 *3 (-37 (-521)))
+ (-4 *5 (-562 (-1084))))
+ (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784)))
+ (-12 (-5 *2 (-881 (-521))) (-4 *1 (-984 *3 *4 *5))
+ (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *5 (-562 (-1084))))
+ (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784)))))
((*1 *1 *2)
- (-12 (-5 *2 (-880 (-380 (-520)))) (-4 *1 (-983 *3 *4 *5))
- (-4 *3 (-37 (-380 (-520)))) (-4 *5 (-561 (-1083))) (-4 *3 (-969))
- (-4 *4 (-728)) (-4 *5 (-783)))))
-(((*1 *2 *3) (-12 (-5 *3 (-586 (-51))) (-5 *2 (-1169)) (-5 *1 (-792)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-969))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-871 (-201))) (-5 *1 (-1115))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1162 *2)) (-4 *2 (-1118)) (-4 *2 (-969)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-983 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-728))
- (-4 *4 (-783)) (-4 *2 (-512))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-983 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-728))
- (-4 *4 (-783)) (-4 *2 (-512)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-567 *4 *5))
- (-5 *3
- (-1 (-2 (|:| |ans| *4) (|:| -1924 *4) (|:| |sol?| (-108)))
- (-520) *4))
- (-4 *4 (-336)) (-4 *5 (-1140 *4)) (-5 *1 (-530 *4 *5)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-586 (-380 *7)))
- (-4 *7 (-1140 *6)) (-5 *3 (-380 *7)) (-4 *6 (-336))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-586 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-530 *6 *7)))))
-(((*1 *2 *1 *3 *3)
- (-12 (|has| *1 (-6 -4230)) (-4 *1 (-553 *3 *4)) (-4 *3 (-1012))
- (-4 *4 (-1118)) (-5 *2 (-1169)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-586 *3)) (-4 *3 (-1140 (-520))) (-5 *1 (-456 *3)))))
-(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-201)) (-5 *4 (-520))
- (-5 *5 (-3 (|:| |fn| (-361)) (|:| |fp| (-62 -4045)))) (-5 *2 (-958))
- (-5 *1 (-684)))))
-(((*1 *2 *3) (-12 (-5 *2 (-391 *3)) (-5 *1 (-514 *3)) (-4 *3 (-505)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-624 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-346 *2))
- (-4 *4 (-346 *2)))))
+ (-12 (-5 *2 (-881 (-381 (-521)))) (-4 *1 (-984 *3 *4 *5))
+ (-4 *3 (-37 (-381 (-521)))) (-4 *5 (-562 (-1084))) (-4 *3 (-970))
+ (-4 *4 (-729)) (-4 *5 (-784)))))
+(((*1 *2 *3) (-12 (-5 *3 (-587 (-51))) (-5 *2 (-1170)) (-5 *1 (-793)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-970)) (-4 *2 (-337)))))
+(((*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-897)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-970)) (-4 *2 (-337)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 (-587 *5))) (-4 *5 (-1156 *4))
+ (-4 *4 (-37 (-381 (-521))))
+ (-5 *2 (-1 (-1065 *4) (-587 (-1065 *4)))) (-5 *1 (-1158 *4 *5)))))
+(((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-1084)) (-5 *1 (-560 *3)) (-4 *3 (-784)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-586 (-1164 *5))) (-5 *4 (-520)) (-5 *2 (-1164 *5))
- (-5 *1 (-952 *5)) (-4 *5 (-336)) (-4 *5 (-341)) (-4 *5 (-969)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-352) (-352))) (-5 *4 (-352))
+ (-12 (-5 *3 (-587 (-521))) (-5 *4 (-834 (-521)))
+ (-5 *2 (-627 (-521))) (-5 *1 (-542))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-587 (-521))) (-5 *2 (-587 (-627 (-521))))
+ (-5 *1 (-542))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-587 (-521))) (-5 *4 (-587 (-834 (-521))))
+ (-5 *2 (-587 (-627 (-521)))) (-5 *1 (-542)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959))
+ (-5 *1 (-689)))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-269 *2)) (-4 *2 (-663)) (-4 *2 (-1119)))))
+(((*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-108)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1084)) (-5 *2 (-1170)) (-5 *1 (-759)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1119)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-269 (-777 *3))) (-4 *3 (-13 (-27) (-1105) (-404 *5)))
+ (-4 *5 (-13 (-425) (-784) (-961 (-521)) (-583 (-521))))
(-5 *2
- (-2 (|:| -3429 *4) (|:| -2967 *4) (|:| |totalpts| (-520))
- (|:| |success| (-108))))
- (-5 *1 (-724)) (-5 *5 (-520)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1118)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1083)) (-5 *5 (-586 (-380 (-880 *6))))
- (-5 *3 (-380 (-880 *6)))
- (-4 *6 (-13 (-512) (-960 (-520)) (-135)))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-586 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-526 *6)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-626 *3)) (-4 *3 (-281)) (-5 *1 (-636 *3)))))
+ (-3 (-777 *3)
+ (-2 (|:| |leftHandLimit| (-3 (-777 *3) "failed"))
+ (|:| |rightHandLimit| (-3 (-777 *3) "failed")))
+ "failed"))
+ (-5 *1 (-580 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-269 *3)) (-5 *5 (-1067))
+ (-4 *3 (-13 (-27) (-1105) (-404 *6)))
+ (-4 *6 (-13 (-425) (-784) (-961 (-521)) (-583 (-521))))
+ (-5 *2 (-777 *3)) (-5 *1 (-580 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-269 (-777 (-881 *5)))) (-4 *5 (-425))
+ (-5 *2
+ (-3 (-777 (-381 (-881 *5)))
+ (-2 (|:| |leftHandLimit| (-3 (-777 (-381 (-881 *5))) "failed"))
+ (|:| |rightHandLimit| (-3 (-777 (-381 (-881 *5))) "failed")))
+ "failed"))
+ (-5 *1 (-581 *5)) (-5 *3 (-381 (-881 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-269 (-381 (-881 *5)))) (-5 *3 (-381 (-881 *5)))
+ (-4 *5 (-425))
+ (-5 *2
+ (-3 (-777 *3)
+ (-2 (|:| |leftHandLimit| (-3 (-777 *3) "failed"))
+ (|:| |rightHandLimit| (-3 (-777 *3) "failed")))
+ "failed"))
+ (-5 *1 (-581 *5))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-269 (-381 (-881 *6)))) (-5 *5 (-1067))
+ (-5 *3 (-381 (-881 *6))) (-4 *6 (-425)) (-5 *2 (-777 *3))
+ (-5 *1 (-581 *6)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1167)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1007 (-776 (-201)))) (-5 *2 (-201)) (-5 *1 (-170))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1007 (-776 (-201)))) (-5 *2 (-201)) (-5 *1 (-274))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1007 (-776 (-201)))) (-5 *2 (-201)) (-5 *1 (-279)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-520)) (-4 *1 (-624 *3 *4 *5)) (-4 *3 (-969))
- (-4 *4 (-346 *3)) (-4 *5 (-346 *3)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-1030)) (-5 *1 (-105)))))
-(((*1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-635))))
- ((*1 *2 *2) (-12 (-5 *2 (-520)) (-5 *1 (-635)))))
+ (-12 (-5 *2 (-1 (-872 *3) (-872 *3))) (-5 *1 (-160 *3))
+ (-4 *3 (-13 (-337) (-1105) (-927))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-587 *8)) (-5 *4 (-587 *9)) (-4 *8 (-984 *5 *6 *7))
+ (-4 *9 (-989 *5 *6 *7 *8)) (-4 *5 (-425)) (-4 *6 (-729))
+ (-4 *7 (-784)) (-5 *2 (-707)) (-5 *1 (-987 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-587 *8)) (-5 *4 (-587 *9)) (-4 *8 (-984 *5 *6 *7))
+ (-4 *9 (-1022 *5 *6 *7 *8)) (-4 *5 (-425)) (-4 *6 (-729))
+ (-4 *7 (-784)) (-5 *2 (-707)) (-5 *1 (-1054 *5 *6 *7 *8 *9)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1067)) (-5 *3 (-587 (-239))) (-5 *1 (-237))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-239)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-1065 *3))) (-5 *2 (-1065 *3)) (-5 *1 (-1069 *3))
+ (-4 *3 (-37 (-381 (-521)))) (-4 *3 (-970)))))
(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1083)) (-5 *3 (-407)) (-4 *5 (-783))
- (-5 *1 (-1018 *5 *4)) (-4 *4 (-403 *5)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1030)) (-5 *1 (-105))))
- ((*1 *2 *1) (|partial| -12 (-5 *1 (-338 *2)) (-4 *2 (-1012))))
- ((*1 *2 *1) (|partial| -12 (-5 *2 (-1066)) (-5 *1 (-1100)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *2 (-958))
- (-5 *1 (-683)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1118)) (-5 *2 (-520)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-626 *4)) (-5 *3 (-849)) (-4 *4 (-969))
- (-5 *1 (-951 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-586 (-626 *4))) (-5 *3 (-849)) (-4 *4 (-969))
- (-5 *1 (-951 *4)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-586 (-51))) (-5 *1 (-820 *3)) (-4 *3 (-1012)))))
+ (-12 (-5 *2 (-1084)) (-5 *3 (-408)) (-4 *5 (-784))
+ (-5 *1 (-1019 *5 *4)) (-4 *4 (-404 *5)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-801 (-892 *3) (-892 *3))) (-5 *1 (-892 *3))
- (-4 *3 (-893)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-908 *2)) (-4 *2 (-1104)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-706)) (-4 *4 (-322)) (-5 *1 (-193 *4 *2))
- (-4 *2 (-1140 *4)))))
-(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (-132)) (-5 *2 (-108)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1164 *4)) (-5 *3 (-520)) (-4 *4 (-322))
- (-5 *1 (-490 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-832 (-520))) (-5 *1 (-845))))
+ (-12 (-5 *2 (-587 (-521))) (-5 *1 (-929 *3)) (-14 *3 (-521)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-850)) (-5 *4 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1166)))))
+(((*1 *2) (-12 (-5 *2 (-803)) (-5 *1 (-1168))))
+ ((*1 *2 *2) (-12 (-5 *2 (-803)) (-5 *1 (-1168)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-513) (-784) (-961 (-521)))) (-5 *2 (-108))
+ (-5 *1 (-167 *4 *3)) (-4 *3 (-13 (-27) (-1105) (-404 (-154 *4))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-408))))
((*1 *2 *3)
- (-12 (-5 *3 (-586 (-520))) (-5 *2 (-832 (-520))) (-5 *1 (-845)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-1066)) (-5 *3 (-520)) (-5 *1 (-217)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-512) (-135))) (-5 *1 (-497 *3 *2))
- (-4 *2 (-1155 *3))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-336) (-341) (-561 (-520)))) (-4 *4 (-1140 *3))
- (-4 *5 (-660 *3 *4)) (-5 *1 (-501 *3 *4 *5 *2)) (-4 *2 (-1155 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-336) (-341) (-561 (-520)))) (-5 *1 (-502 *3 *2))
- (-4 *2 (-1155 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-13 (-512) (-135)))
- (-5 *1 (-1060 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1118)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-126))))
- ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-769 *3)) (-4 *3 (-1012))))
- ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-776 *3)) (-4 *3 (-1012)))))
+ (-12 (-4 *4 (-13 (-425) (-784) (-961 (-521)) (-583 (-521))))
+ (-5 *2 (-108)) (-5 *1 (-1109 *4 *3))
+ (-4 *3 (-13 (-27) (-1105) (-404 *4))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-453 *4 *5)) (-14 *4 (-587 (-1084))) (-4 *5 (-970))
+ (-5 *2 (-881 *5)) (-5 *1 (-873 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1007 *3)) (-4 *3 (-1119)) (-5 *2 (-521)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-110)) (-4 *4 (-13 (-784) (-513))) (-5 *2 (-108))
+ (-5 *1 (-31 *4 *5)) (-4 *5 (-404 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-110)) (-4 *4 (-13 (-784) (-513))) (-5 *2 (-108))
+ (-5 *1 (-144 *4 *5)) (-4 *5 (-404 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-110)) (-4 *4 (-13 (-784) (-513))) (-5 *2 (-108))
+ (-5 *1 (-252 *4 *5)) (-4 *5 (-13 (-404 *4) (-927)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-110)) (-5 *2 (-108)) (-5 *1 (-276 *4)) (-4 *4 (-277))))
+ ((*1 *2 *3) (-12 (-4 *1 (-277)) (-5 *3 (-110)) (-5 *2 (-108))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-110)) (-4 *5 (-784)) (-5 *2 (-108))
+ (-5 *1 (-403 *4 *5)) (-4 *4 (-404 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-110)) (-4 *4 (-13 (-784) (-513))) (-5 *2 (-108))
+ (-5 *1 (-405 *4 *5)) (-4 *5 (-404 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-110)) (-4 *4 (-13 (-784) (-513))) (-5 *2 (-108))
+ (-5 *1 (-574 *4 *5)) (-4 *5 (-13 (-404 *4) (-927) (-1105))))))
+(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (-132)) (-5 *2 (-108)))))
(((*1 *2)
- (-12 (-4 *3 (-512)) (-5 *2 (-586 *4)) (-5 *1 (-42 *3 *4))
- (-4 *4 (-390 *3)))))
-(((*1 *1 *1) (-12 (-5 *1 (-268 *2)) (-4 *2 (-21)) (-4 *2 (-1118)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-35 *3 *4)) (-4 *3 (-1012)) (-4 *4 (-1012))
- (-5 *2 (-2 (|:| -2526 *3) (|:| -3043 *4))))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-201)) (-5 *3 (-706)) (-5 *1 (-202))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-154 (-201))) (-5 *3 (-706)) (-5 *1 (-202))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-404 *3 *2))
- (-4 *2 (-403 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1047))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *2 (-958))
- (-5 *1 (-693)))))
+ (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-340 *3 *4))
+ (-4 *3 (-341 *4))))
+ ((*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-5 *2 (-108)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-918 *2)) (-4 *2 (-513)) (-5 *1 (-130 *2 *4 *3))
+ (-4 *3 (-347 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-918 *2)) (-4 *2 (-513)) (-5 *1 (-472 *2 *4 *5 *3))
+ (-4 *5 (-347 *2)) (-4 *3 (-347 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-627 *4)) (-4 *4 (-918 *2)) (-4 *2 (-513))
+ (-5 *1 (-630 *2 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-918 *2)) (-4 *2 (-513)) (-5 *1 (-1134 *2 *4 *3))
+ (-4 *3 (-1141 *4)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-381 (-881 *3))) (-5 *1 (-426 *3 *4 *5 *6))
+ (-4 *3 (-513)) (-4 *3 (-157)) (-14 *4 (-850))
+ (-14 *5 (-587 (-1084))) (-14 *6 (-1165 (-627 *3))))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-970)) (-4 *5 (-729)) (-4 *3 (-784))
+ (-5 *2 (-2 (|:| -3727 *1) (|:| -3820 *1))) (-4 *1 (-878 *4 *5 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-970)) (-5 *2 (-2 (|:| -3727 *1) (|:| -3820 *1)))
+ (-4 *1 (-1141 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1119)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-707)) (-5 *1 (-790 *2)) (-4 *2 (-157))))
+ ((*1 *2 *3 *3 *2)
+ (-12 (-5 *3 (-707)) (-5 *1 (-790 *2)) (-4 *2 (-157)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1079 (-380 (-880 *3)))) (-5 *1 (-425 *3 *4 *5 *6))
- (-4 *3 (-512)) (-4 *3 (-157)) (-14 *4 (-849))
- (-14 *5 (-586 (-1083))) (-14 *6 (-1164 (-626 *3))))))
-(((*1 *2 *1) (-12 (-4 *1 (-220 *2)) (-4 *2 (-1118))))
+ (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3))
+ (-4 *5 (-1141 (-381 *4)))
+ (-5 *2 (-2 (|:| |num| (-1165 *4)) (|:| |den| *4))))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-821 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-4 *1 (-35 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013))
+ (-5 *2 (-2 (|:| -2529 *3) (|:| -3045 *4))))))
+(((*1 *1 *1) (-5 *1 (-202)))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-313 *2 *3 *4)) (-14 *2 (-587 (-1084)))
+ (-14 *3 (-587 (-1084))) (-4 *4 (-361))))
+ ((*1 *1 *1) (-5 *1 (-353))) ((*1 *1) (-5 *1 (-353))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-872 *3)) (-4 *3 (-13 (-337) (-1105) (-927)))
+ (-5 *1 (-160 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-872 *3) (-872 *3))) (-5 *1 (-160 *3))
+ (-4 *3 (-13 (-337) (-1105) (-927))))))
+(((*1 *2 *1) (-12 (-4 *1 (-221 *2)) (-4 *2 (-1119))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1112 *3 *4 *5 *2)) (-4 *3 (-512))
- (-4 *4 (-728)) (-4 *5 (-783)) (-4 *2 (-983 *3 *4 *5))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-706)) (-4 *1 (-1152 *3)) (-4 *3 (-1118))))
- ((*1 *2 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1118)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1079 *9)) (-5 *4 (-586 *7)) (-5 *5 (-586 *8))
- (-4 *7 (-783)) (-4 *8 (-969)) (-4 *9 (-877 *8 *6 *7)) (-4 *6 (-728))
- (-5 *2 (-1079 *8)) (-5 *1 (-294 *6 *7 *8 *9)))))
-(((*1 *2 *1) (-12 (-5 *1 (-842 *2)) (-4 *2 (-281)))))
-(((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *5 (-201))
- (-5 *2 (-958)) (-5 *1 (-688)))))
-(((*1 *2 *1) (-12 (-4 *1 (-398 *3)) (-4 *3 (-1012)) (-5 *2 (-706)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-758)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-586 (-559 (-47)))) (-5 *1 (-47))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-559 (-47))) (-5 *1 (-47))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1079 (-47))) (-5 *3 (-586 (-559 (-47)))) (-5 *1 (-47))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1079 (-47))) (-5 *3 (-559 (-47))) (-5 *1 (-47))))
- ((*1 *2 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157))))
- ((*1 *2 *3)
- (-12 (-4 *2 (-13 (-336) (-781))) (-5 *1 (-164 *2 *3))
- (-4 *3 (-1140 (-154 *2)))))
+ (|partial| -12 (-4 *1 (-1113 *3 *4 *5 *2)) (-4 *3 (-513))
+ (-4 *4 (-729)) (-4 *5 (-784)) (-4 *2 (-984 *3 *4 *5))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-849)) (-4 *1 (-302 *3)) (-4 *3 (-336)) (-4 *3 (-341))))
- ((*1 *2 *1) (-12 (-4 *1 (-302 *2)) (-4 *2 (-336))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-343 *2 *3)) (-4 *3 (-1140 *2)) (-4 *2 (-157))))
- ((*1 *2 *1)
- (-12 (-4 *4 (-1140 *2)) (-4 *2 (-917 *3)) (-5 *1 (-386 *3 *2 *4 *5))
- (-4 *3 (-281)) (-4 *5 (-13 (-382 *2 *4) (-960 *2)))))
- ((*1 *2 *1)
- (-12 (-4 *4 (-1140 *2)) (-4 *2 (-917 *3))
- (-5 *1 (-387 *3 *2 *4 *5 *6)) (-4 *3 (-281)) (-4 *5 (-382 *2 *4))
- (-14 *6 (-1164 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-849)) (-4 *5 (-969))
- (-4 *2 (-13 (-377) (-960 *5) (-336) (-1104) (-258)))
- (-5 *1 (-415 *5 *3 *2)) (-4 *3 (-1140 *5))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-586 (-559 (-463)))) (-5 *1 (-463))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-559 (-463))) (-5 *1 (-463))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1079 (-463))) (-5 *3 (-586 (-559 (-463))))
- (-5 *1 (-463))))
+ (-12 (-5 *2 (-707)) (-4 *1 (-1153 *3)) (-4 *3 (-1119))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1119)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1067)) (-5 *2 (-521)) (-5 *1 (-1102 *4))
+ (-4 *4 (-970)))))
+(((*1 *2 *3 *3 *3)
+ (|partial| -12 (-4 *4 (-13 (-337) (-135) (-961 (-521))))
+ (-4 *5 (-1141 *4)) (-5 *2 (-587 (-381 *5))) (-5 *1 (-941 *4 *5))
+ (-5 *3 (-381 *5)))))
+(((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-587 (-560 *2))) (-5 *4 (-1084))
+ (-4 *2 (-13 (-27) (-1105) (-404 *5)))
+ (-4 *5 (-13 (-513) (-784) (-961 (-521)) (-583 (-521))))
+ (-5 *1 (-253 *5 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1065 *3)) (-5 *1 (-158 *3)) (-4 *3 (-282)))))
+(((*1 *2)
+ (-12 (-4 *3 (-513)) (-5 *2 (-587 *4)) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-391 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1165 *5)) (-4 *5 (-728)) (-5 *2 (-108))
+ (-5 *1 (-779 *4 *5)) (-14 *4 (-707)))))
+(((*1 *2 *3 *2)
+ (-12
+ (-5 *2
+ (-587
+ (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-707)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *3 (-729)) (-4 *6 (-878 *4 *3 *5)) (-4 *4 (-425)) (-4 *5 (-784))
+ (-5 *1 (-422 *4 *3 *5 *6)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-513) (-784) (-961 (-521)))) (-5 *1 (-167 *3 *2))
+ (-4 *2 (-13 (-27) (-1105) (-404 (-154 *3))))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1079 (-463))) (-5 *3 (-559 (-463))) (-5 *1 (-463))))
+ (-12 (-5 *3 (-1084)) (-4 *4 (-13 (-513) (-784) (-961 (-521))))
+ (-5 *1 (-167 *4 *2)) (-4 *2 (-13 (-27) (-1105) (-404 (-154 *4))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-425) (-784) (-961 (-521)) (-583 (-521))))
+ (-5 *1 (-1109 *3 *2)) (-4 *2 (-13 (-27) (-1105) (-404 *3)))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1164 *4)) (-5 *3 (-849)) (-4 *4 (-322))
- (-5 *1 (-490 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-424)) (-4 *5 (-660 *4 *2)) (-4 *2 (-1140 *4))
- (-5 *1 (-710 *4 *2 *5 *3)) (-4 *3 (-1140 *5))))
- ((*1 *2 *1) (-12 (-4 *1 (-733 *2)) (-4 *2 (-157))))
- ((*1 *2 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-157))))
- ((*1 *1 *1) (-4 *1 (-978))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-908 *2)) (-4 *2 (-1104)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-1012)) (-5 *1 (-891 *2 *3)) (-4 *3 (-1012)))))
+ (-12 (-5 *3 (-1084))
+ (-4 *4 (-13 (-425) (-784) (-961 (-521)) (-583 (-521))))
+ (-5 *1 (-1109 *4 *2)) (-4 *2 (-13 (-27) (-1105) (-404 *4))))))
(((*1 *1) (-5 *1 (-108))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-201)) (-5 *4 (-520))
- (-5 *5 (-3 (|:| |fn| (-361)) (|:| |fp| (-62 G)))) (-5 *2 (-958))
- (-5 *1 (-684)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-282)) (-4 *3 (-918 *2)) (-4 *4 (-1141 *3))
+ (-5 *1 (-387 *2 *3 *4 *5)) (-4 *5 (-13 (-383 *3 *4) (-961 *3))))))
(((*1 *2 *3)
- (-12 (-4 *5 (-13 (-561 *2) (-157))) (-5 *2 (-820 *4))
- (-5 *1 (-155 *4 *5 *3)) (-4 *4 (-1012)) (-4 *3 (-151 *5))))
+ (-12 (-4 *5 (-13 (-562 *2) (-157))) (-5 *2 (-821 *4))
+ (-5 *1 (-155 *4 *5 *3)) (-4 *4 (-1013)) (-4 *3 (-151 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-586 (-1007 (-776 (-352)))))
- (-5 *2 (-586 (-1007 (-776 (-201))))) (-5 *1 (-279))))
- ((*1 *1 *2) (-12 (-5 *2 (-201)) (-5 *1 (-352))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-791)) (-5 *3 (-520)) (-5 *1 (-367))))
+ (-12 (-5 *3 (-587 (-1008 (-777 (-353)))))
+ (-5 *2 (-587 (-1008 (-777 (-202))))) (-5 *1 (-280))))
+ ((*1 *1 *2) (-12 (-5 *2 (-202)) (-5 *1 (-353))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-792)) (-5 *3 (-521)) (-5 *1 (-368))))
((*1 *1 *2)
- (-12 (-5 *2 (-1164 *3)) (-4 *3 (-157)) (-4 *1 (-382 *3 *4))
- (-4 *4 (-1140 *3))))
+ (-12 (-5 *2 (-1165 *3)) (-4 *3 (-157)) (-4 *1 (-383 *3 *4))
+ (-4 *4 (-1141 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-157)) (-4 *4 (-1140 *3))
- (-5 *2 (-1164 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1164 *3)) (-4 *3 (-157)) (-4 *1 (-390 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-390 *3)) (-4 *3 (-157)) (-5 *2 (-1164 *3))))
+ (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-157)) (-4 *4 (-1141 *3))
+ (-5 *2 (-1165 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-157)) (-4 *1 (-391 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-391 *3)) (-4 *3 (-157)) (-5 *2 (-1165 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-391 *1)) (-4 *1 (-403 *3)) (-4 *3 (-512))
- (-4 *3 (-783))))
+ (-12 (-5 *2 (-392 *1)) (-4 *1 (-404 *3)) (-4 *3 (-513))
+ (-4 *3 (-784))))
((*1 *1 *2)
- (-12 (-5 *2 (-586 *6)) (-4 *6 (-983 *3 *4 *5)) (-4 *3 (-969))
- (-4 *4 (-728)) (-4 *5 (-783)) (-5 *1 (-435 *3 *4 *5 *6))))
- ((*1 *1 *2) (-12 (-5 *2 (-1016)) (-5 *1 (-496))))
- ((*1 *2 *1) (-12 (-4 *1 (-561 *2)) (-4 *2 (-1118))))
+ (-12 (-5 *2 (-587 *6)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-970))
+ (-4 *4 (-729)) (-4 *5 (-784)) (-5 *1 (-436 *3 *4 *5 *6))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1017)) (-5 *1 (-497))))
+ ((*1 *2 *1) (-12 (-4 *1 (-562 *2)) (-4 *2 (-1119))))
((*1 *1 *2)
- (-12 (-4 *3 (-157)) (-4 *1 (-660 *3 *2)) (-4 *2 (-1140 *3))))
+ (-12 (-4 *3 (-157)) (-4 *1 (-661 *3 *2)) (-4 *2 (-1141 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-586 (-820 *3))) (-5 *1 (-820 *3)) (-4 *3 (-1012))))
- ((*1 *1 *2) (-12 (-5 *2 (-586 *3)) (-4 *3 (-969)) (-4 *1 (-905 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1083)) (-5 *1 (-980))))
+ (-12 (-5 *2 (-587 (-821 *3))) (-5 *1 (-821 *3)) (-4 *3 (-1013))))
+ ((*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-970)) (-4 *1 (-906 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1084)) (-5 *1 (-981))))
((*1 *1 *2)
- (-12 (-5 *2 (-880 *3)) (-4 *3 (-969)) (-4 *1 (-983 *3 *4 *5))
- (-4 *5 (-561 (-1083))) (-4 *4 (-728)) (-4 *5 (-783))))
+ (-12 (-5 *2 (-881 *3)) (-4 *3 (-970)) (-4 *1 (-984 *3 *4 *5))
+ (-4 *5 (-562 (-1084))) (-4 *4 (-729)) (-4 *5 (-784))))
((*1 *1 *2)
- (-3700
- (-12 (-5 *2 (-880 (-520))) (-4 *1 (-983 *3 *4 *5))
- (-12 (-2399 (-4 *3 (-37 (-380 (-520))))) (-4 *3 (-37 (-520)))
- (-4 *5 (-561 (-1083))))
- (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783)))
- (-12 (-5 *2 (-880 (-520))) (-4 *1 (-983 *3 *4 *5))
- (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *5 (-561 (-1083))))
- (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783)))))
+ (-3703
+ (-12 (-5 *2 (-881 (-521))) (-4 *1 (-984 *3 *4 *5))
+ (-12 (-2400 (-4 *3 (-37 (-381 (-521))))) (-4 *3 (-37 (-521)))
+ (-4 *5 (-562 (-1084))))
+ (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784)))
+ (-12 (-5 *2 (-881 (-521))) (-4 *1 (-984 *3 *4 *5))
+ (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *5 (-562 (-1084))))
+ (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784)))))
((*1 *1 *2)
- (-12 (-5 *2 (-880 (-380 (-520)))) (-4 *1 (-983 *3 *4 *5))
- (-4 *3 (-37 (-380 (-520)))) (-4 *5 (-561 (-1083))) (-4 *3 (-969))
- (-4 *4 (-728)) (-4 *5 (-783))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-586 *7)) (|:| -1883 *8)))
- (-4 *7 (-983 *4 *5 *6)) (-4 *8 (-988 *4 *5 *6 *7)) (-4 *4 (-424))
- (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-1066))
- (-5 *1 (-986 *4 *5 *6 *7 *8))))
- ((*1 *2 *1) (-12 (-5 *2 (-1083)) (-5 *1 (-997))))
- ((*1 *1 *2) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1118))))
+ (-12 (-5 *2 (-881 (-381 (-521)))) (-4 *1 (-984 *3 *4 *5))
+ (-4 *3 (-37 (-381 (-521)))) (-4 *5 (-562 (-1084))) (-4 *3 (-970))
+ (-4 *4 (-729)) (-4 *5 (-784))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-587 *7)) (|:| -1884 *8)))
+ (-4 *7 (-984 *4 *5 *6)) (-4 *8 (-989 *4 *5 *6 *7)) (-4 *4 (-425))
+ (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-1067))
+ (-5 *1 (-987 *4 *5 *6 *7 *8))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-998))))
+ ((*1 *1 *2) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1119))))
((*1 *1 *2)
- (-12 (-4 *1 (-1015 *3 *4 *5 *6 *2)) (-4 *3 (-1012)) (-4 *4 (-1012))
- (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *2 (-1012))))
+ (-12 (-4 *1 (-1016 *3 *4 *5 *6 *2)) (-4 *3 (-1013)) (-4 *4 (-1013))
+ (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013))))
((*1 *1 *2)
- (-12 (-4 *1 (-1015 *3 *4 *5 *2 *6)) (-4 *3 (-1012)) (-4 *4 (-1012))
- (-4 *5 (-1012)) (-4 *2 (-1012)) (-4 *6 (-1012))))
+ (-12 (-4 *1 (-1016 *3 *4 *5 *2 *6)) (-4 *3 (-1013)) (-4 *4 (-1013))
+ (-4 *5 (-1013)) (-4 *2 (-1013)) (-4 *6 (-1013))))
((*1 *1 *2)
- (-12 (-4 *1 (-1015 *3 *4 *2 *5 *6)) (-4 *3 (-1012)) (-4 *4 (-1012))
- (-4 *2 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012))))
+ (-12 (-4 *1 (-1016 *3 *4 *2 *5 *6)) (-4 *3 (-1013)) (-4 *4 (-1013))
+ (-4 *2 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013))))
((*1 *1 *2)
- (-12 (-4 *1 (-1015 *3 *2 *4 *5 *6)) (-4 *3 (-1012)) (-4 *2 (-1012))
- (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012))))
+ (-12 (-4 *1 (-1016 *3 *2 *4 *5 *6)) (-4 *3 (-1013)) (-4 *2 (-1013))
+ (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013))))
((*1 *1 *2)
- (-12 (-4 *1 (-1015 *2 *3 *4 *5 *6)) (-4 *2 (-1012)) (-4 *3 (-1012))
- (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012))))
+ (-12 (-4 *1 (-1016 *2 *3 *4 *5 *6)) (-4 *2 (-1013)) (-4 *3 (-1013))
+ (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013))))
((*1 *1 *2)
- (-12 (-5 *2 (-586 *1)) (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012))
- (-4 *4 (-1012)) (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-586 *7)) (|:| -1883 *8)))
- (-4 *7 (-983 *4 *5 *6)) (-4 *8 (-1021 *4 *5 *6 *7)) (-4 *4 (-424))
- (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-1066))
- (-5 *1 (-1053 *4 *5 *6 *7 *8))))
- ((*1 *1 *2) (-12 (-5 *2 (-1016)) (-5 *1 (-1088))))
- ((*1 *2 *1) (-12 (-5 *2 (-1016)) (-5 *1 (-1088))))
- ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-791)) (-5 *3 (-520)) (-5 *1 (-1099))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-791)) (-5 *3 (-520)) (-5 *1 (-1099))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-715 *4 (-793 *5)))
- (-4 *4 (-13 (-781) (-281) (-135) (-945))) (-14 *5 (-586 (-1083)))
- (-5 *2 (-715 *4 (-793 *6))) (-5 *1 (-1188 *4 *5 *6))
- (-14 *6 (-586 (-1083)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-880 *4)) (-4 *4 (-13 (-781) (-281) (-135) (-945)))
- (-5 *2 (-880 (-947 (-380 *4)))) (-5 *1 (-1188 *4 *5 *6))
- (-14 *5 (-586 (-1083))) (-14 *6 (-586 (-1083)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-715 *4 (-793 *6)))
- (-4 *4 (-13 (-781) (-281) (-135) (-945))) (-14 *6 (-586 (-1083)))
- (-5 *2 (-880 (-947 (-380 *4)))) (-5 *1 (-1188 *4 *5 *6))
- (-14 *5 (-586 (-1083)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1079 *4)) (-4 *4 (-13 (-781) (-281) (-135) (-945)))
- (-5 *2 (-1079 (-947 (-380 *4)))) (-5 *1 (-1188 *4 *5 *6))
- (-14 *5 (-586 (-1083))) (-14 *6 (-586 (-1083)))))
+ (-12 (-5 *2 (-587 *1)) (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013))
+ (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-587 *7)) (|:| -1884 *8)))
+ (-4 *7 (-984 *4 *5 *6)) (-4 *8 (-1022 *4 *5 *6 *7)) (-4 *4 (-425))
+ (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-1067))
+ (-5 *1 (-1054 *4 *5 *6 *7 *8))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1017)) (-5 *1 (-1089))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1017)) (-5 *1 (-1089))))
+ ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-792)) (-5 *3 (-521)) (-5 *1 (-1100))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-792)) (-5 *3 (-521)) (-5 *1 (-1100))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-716 *4 (-794 *5)))
+ (-4 *4 (-13 (-782) (-282) (-135) (-946))) (-14 *5 (-587 (-1084)))
+ (-5 *2 (-716 *4 (-794 *6))) (-5 *1 (-1189 *4 *5 *6))
+ (-14 *6 (-587 (-1084)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-881 *4)) (-4 *4 (-13 (-782) (-282) (-135) (-946)))
+ (-5 *2 (-881 (-948 (-381 *4)))) (-5 *1 (-1189 *4 *5 *6))
+ (-14 *5 (-587 (-1084))) (-14 *6 (-587 (-1084)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-716 *4 (-794 *6)))
+ (-4 *4 (-13 (-782) (-282) (-135) (-946))) (-14 *6 (-587 (-1084)))
+ (-5 *2 (-881 (-948 (-381 *4)))) (-5 *1 (-1189 *4 *5 *6))
+ (-14 *5 (-587 (-1084)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1080 *4)) (-4 *4 (-13 (-782) (-282) (-135) (-946)))
+ (-5 *2 (-1080 (-948 (-381 *4)))) (-5 *1 (-1189 *4 *5 *6))
+ (-14 *5 (-587 (-1084))) (-14 *6 (-587 (-1084)))))
((*1 *2 *3)
(-12
- (-5 *3 (-1054 *4 (-492 (-793 *6)) (-793 *6) (-715 *4 (-793 *6))))
- (-4 *4 (-13 (-781) (-281) (-135) (-945))) (-14 *6 (-586 (-1083)))
- (-5 *2 (-586 (-715 *4 (-793 *6)))) (-5 *1 (-1188 *4 *5 *6))
- (-14 *5 (-586 (-1083))))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-545 *2)) (-4 *2 (-37 (-380 (-520)))) (-4 *2 (-969)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1012)) (-4 *5 (-1012))
- (-4 *6 (-1012)) (-5 *2 (-1 *6 *5)) (-5 *1 (-621 *4 *5 *6)))))
-(((*1 *2 *3 *2)
- (-12
- (-5 *2
- (-586
- (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-706)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *3 (-728)) (-4 *6 (-877 *4 *3 *5)) (-4 *4 (-424)) (-4 *5 (-783))
- (-5 *1 (-421 *4 *3 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-871 *2)) (-5 *1 (-907 *2)) (-4 *2 (-969)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1044 *3)) (-4 *3 (-969)) (-5 *2 (-108)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-758)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-512)) (-4 *3 (-969))
- (-5 *2 (-2 (|:| -2060 *1) (|:| -3753 *1))) (-4 *1 (-785 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-94 *5)) (-4 *5 (-512)) (-4 *5 (-969))
- (-5 *2 (-2 (|:| -2060 *3) (|:| -3753 *3))) (-5 *1 (-786 *5 *3))
- (-4 *3 (-785 *5)))))
+ (-5 *3 (-1055 *4 (-493 (-794 *6)) (-794 *6) (-716 *4 (-794 *6))))
+ (-4 *4 (-13 (-782) (-282) (-135) (-946))) (-14 *6 (-587 (-1084)))
+ (-5 *2 (-587 (-716 *4 (-794 *6)))) (-5 *1 (-1189 *4 *5 *6))
+ (-14 *5 (-587 (-1084))))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-893 *3)) (-4 *3 (-894)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1101)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-792)))))
+(((*1 *2 *1) (-12 (-5 *2 (-897)) (-5 *1 (-834 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *3 *4 *4 *5 *4 *4 *5)
+ (-12 (-5 *3 (-1067)) (-5 *4 (-521)) (-5 *5 (-627 (-202)))
+ (-5 *2 (-959)) (-5 *1 (-694)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-927))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-108)) (-5 *1 (-49 *3 *4)) (-4 *3 (-970))
+ (-14 *4 (-587 (-1084)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-51)) (-5 *2 (-108)) (-5 *1 (-50 *4)) (-4 *4 (-1119))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-108)) (-5 *1 (-200 *3 *4)) (-4 *3 (-13 (-970) (-784)))
+ (-14 *4 (-587 (-1084)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-612 *3)) (-4 *3 (-784))))
+ ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-616 *3)) (-4 *3 (-784))))
+ ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-822 *3)) (-4 *3 (-784)))))
(((*1 *1 *2 *1)
- (-12 (|has| *1 (-6 -4229)) (-4 *1 (-139 *2)) (-4 *2 (-1118))
- (-4 *2 (-1012))))
+ (-12 (|has| *1 (-6 -4233)) (-4 *1 (-139 *2)) (-4 *2 (-1119))
+ (-4 *2 (-1013))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4229)) (-4 *1 (-139 *3))
- (-4 *3 (-1118))))
+ (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4233)) (-4 *1 (-139 *3))
+ (-4 *3 (-1119))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-613 *3)) (-4 *3 (-1118))))
+ (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-614 *3)) (-4 *3 (-1119))))
((*1 *1 *2 *1 *3)
- (-12 (-5 *2 (-1 (-108) *4)) (-5 *3 (-520)) (-4 *4 (-1012))
- (-5 *1 (-673 *4))))
+ (-12 (-5 *2 (-1 (-108) *4)) (-5 *3 (-521)) (-4 *4 (-1013))
+ (-5 *1 (-674 *4))))
((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-520)) (-5 *1 (-673 *2)) (-4 *2 (-1012))))
+ (-12 (-5 *3 (-521)) (-5 *1 (-674 *2)) (-4 *2 (-1013))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1048 *3 *4)) (-4 *3 (-13 (-1012) (-33)))
- (-4 *4 (-13 (-1012) (-33))) (-5 *1 (-1049 *3 *4)))))
+ (-12 (-5 *2 (-1049 *3 *4)) (-4 *3 (-13 (-1013) (-33)))
+ (-4 *4 (-13 (-1013) (-33))) (-5 *1 (-1050 *3 *4)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1118)) (-4 *4 (-346 *3))
- (-4 *5 (-346 *3)) (-5 *2 (-706))))
+ (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-347 *3))
+ (-4 *5 (-347 *3)) (-5 *2 (-707))))
((*1 *2 *1)
- (-12 (-4 *1 (-972 *3 *4 *5 *6 *7)) (-4 *5 (-969))
- (-4 *6 (-214 *4 *5)) (-4 *7 (-214 *3 *5)) (-5 *2 (-706)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-322)) (-5 *2 (-391 (-1079 (-1079 *4))))
- (-5 *1 (-1117 *4)) (-5 *3 (-1079 (-1079 *4))))))
+ (-12 (-4 *1 (-973 *3 *4 *5 *6 *7)) (-4 *5 (-970))
+ (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-707)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-521)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 (-707)) (-4 *5 (-157))))
+ ((*1 *1 *1 *2 *1 *2)
+ (-12 (-5 *2 (-521)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 (-707)) (-4 *5 (-157))))
+ ((*1 *2 *2 *3)
+ (-12
+ (-5 *2
+ (-473 (-381 (-521)) (-217 *5 (-707)) (-794 *4)
+ (-224 *4 (-381 (-521)))))
+ (-5 *3 (-587 (-794 *4))) (-14 *4 (-587 (-1084))) (-14 *5 (-707))
+ (-5 *1 (-474 *4 *5)))))
(((*1 *1 *2)
- (-12 (-4 *3 (-969)) (-5 *1 (-763 *2 *3)) (-4 *2 (-645 *3)))))
-(((*1 *1 *1 *1) (-5 *1 (-791))))
-(((*1 *1 *1) (-5 *1 (-791))))
-(((*1 *1) (-5 *1 (-410))))
+ (-12 (-4 *3 (-970)) (-5 *1 (-764 *2 *3)) (-4 *2 (-646 *3)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -2114 *3) (|:| |coef2| (-718 *3))))
+ (-5 *1 (-718 *3)) (-4 *3 (-513)) (-4 *3 (-970)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))))
+(((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *4 (-202))
+ (-5 *2
+ (-2 (|:| |brans| (-587 (-587 (-872 *4))))
+ (|:| |xValues| (-1008 *4)) (|:| |yValues| (-1008 *4))))
+ (-5 *1 (-141)) (-5 *3 (-587 (-587 (-872 *4)))))))
(((*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-108)))))
-(((*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-791)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-586 *6) "failed") (-520) *6 *6)) (-4 *6 (-336))
- (-4 *7 (-1140 *6))
- (-5 *2 (-2 (|:| |answer| (-537 (-380 *7))) (|:| |a0| *6)))
- (-5 *1 (-530 *6 *7)) (-5 *3 (-380 *7)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-2 (|:| -1551 (-520)) (|:| -3493 (-586 *3))))
- (-5 *1 (-414 *3)) (-4 *3 (-1140 (-520))))))
-(((*1 *1) (-5 *1 (-1165))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784))
+ (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-914 *4 *5 *6 *7 *3))
+ (-4 *3 (-989 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784))
+ (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-108))
+ (-5 *1 (-1020 *4 *5 *6 *7 *3)) (-4 *3 (-989 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202)))
+ (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202))
+ (|:| |relerr| (-202))))
+ (-5 *2
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular| "There are singularities at both end points")
+ (|:| |notEvaluated| "End point continuity not yet evaluated")))
+ (-5 *1 (-171)))))
+(((*1 *1 *1) (-5 *1 (-982))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1097 *4 *5))
+ (-4 *4 (-1013)) (-4 *5 (-1013)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1118)) (-4 *4 (-346 *3))
- (-4 *5 (-346 *3)) (-5 *2 (-706))))
+ (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-347 *3))
+ (-4 *5 (-347 *3)) (-5 *2 (-707))))
((*1 *2 *1)
- (-12 (-4 *1 (-972 *3 *4 *5 *6 *7)) (-4 *5 (-969))
- (-4 *6 (-214 *4 *5)) (-4 *7 (-214 *3 *5)) (-5 *2 (-706)))))
-(((*1 *2 *3)
- (-12 (|has| *6 (-6 -4230)) (-4 *4 (-336)) (-4 *5 (-346 *4))
- (-4 *6 (-346 *4)) (-5 *2 (-586 *6)) (-5 *1 (-487 *4 *5 *6 *3))
- (-4 *3 (-624 *4 *5 *6))))
- ((*1 *2 *3)
- (-12 (|has| *9 (-6 -4230)) (-4 *4 (-512)) (-4 *5 (-346 *4))
- (-4 *6 (-346 *4)) (-4 *7 (-917 *4)) (-4 *8 (-346 *7))
- (-4 *9 (-346 *7)) (-5 *2 (-586 *6))
- (-5 *1 (-488 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-624 *4 *5 *6))
- (-4 *10 (-624 *7 *8 *9))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-624 *3 *4 *5)) (-4 *3 (-969)) (-4 *4 (-346 *3))
- (-4 *5 (-346 *3)) (-4 *3 (-512)) (-5 *2 (-586 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-512)) (-4 *4 (-157)) (-4 *5 (-346 *4))
- (-4 *6 (-346 *4)) (-5 *2 (-586 *6)) (-5 *1 (-625 *4 *5 *6 *3))
- (-4 *3 (-624 *4 *5 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-972 *3 *4 *5 *6 *7)) (-4 *5 (-969))
- (-4 *6 (-214 *4 *5)) (-4 *7 (-214 *3 *5)) (-4 *5 (-512))
- (-5 *2 (-586 *7)))))
+ (-12 (-4 *1 (-973 *3 *4 *5 *6 *7)) (-4 *5 (-970))
+ (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-707)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1049 *2 *3)) (-4 *2 (-13 (-1013) (-33)))
+ (-4 *3 (-13 (-1013) (-33))))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-707)) (-4 *1 (-984 *3 *4 *5)) (-4 *3 (-970))
+ (-4 *4 (-729)) (-4 *5 (-784)) (-4 *3 (-513)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-729))
+ (-4 *3 (-13 (-784) (-10 -8 (-15 -1430 ((-1084) $))))) (-4 *5 (-513))
+ (-5 *1 (-669 *4 *3 *5 *2)) (-4 *2 (-878 (-381 (-881 *5)) *4 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *4 (-970)) (-4 *5 (-729))
+ (-4 *3
+ (-13 (-784)
+ (-10 -8 (-15 -1430 ((-1084) $))
+ (-15 -1611 ((-3 $ "failed") (-1084))))))
+ (-5 *1 (-910 *4 *5 *3 *2)) (-4 *2 (-878 (-881 *4) *5 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-587 *6))
+ (-4 *6
+ (-13 (-784)
+ (-10 -8 (-15 -1430 ((-1084) $))
+ (-15 -1611 ((-3 $ "failed") (-1084))))))
+ (-4 *4 (-970)) (-4 *5 (-729)) (-5 *1 (-910 *4 *5 *6 *2))
+ (-4 *2 (-878 (-881 *4) *5 *6)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-5 *1 (-1069 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1157 *2 *3 *4)) (-4 *2 (-970)) (-14 *3 (-1084))
+ (-14 *4 *2))))
(((*1 *2 *1)
- (-12 (-14 *3 (-586 (-1083))) (-4 *4 (-157))
- (-14 *6
- (-1 (-108) (-2 (|:| -2716 *5) (|:| -2647 *2))
- (-2 (|:| -2716 *5) (|:| -2647 *2))))
- (-4 *2 (-214 (-3474 *3) (-706))) (-5 *1 (-433 *3 *4 *5 *2 *6 *7))
- (-4 *5 (-783)) (-4 *7 (-877 *4 *2 (-793 *3))))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1164 *1)) (-4 *1 (-343 *4 *5)) (-4 *4 (-157))
- (-4 *5 (-1140 *4)) (-5 *2 (-626 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-157)) (-4 *5 (-1140 *4)) (-5 *2 (-626 *4))
- (-5 *1 (-381 *3 *4 *5)) (-4 *3 (-382 *4 *5))))
+ (-12 (-5 *2 (-108)) (-5 *1 (-1073 *3 *4)) (-14 *3 (-850))
+ (-4 *4 (-970)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1065 (-381 *3))) (-5 *1 (-158 *3)) (-4 *3 (-282)))))
+(((*1 *2)
+ (|partial| -12 (-4 *4 (-1123)) (-4 *5 (-1141 (-381 *2)))
+ (-4 *2 (-1141 *4)) (-5 *1 (-315 *3 *4 *2 *5))
+ (-4 *3 (-316 *4 *2 *5))))
((*1 *2)
- (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-157)) (-4 *4 (-1140 *3))
- (-5 *2 (-626 *3)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-57 *6)) (-4 *6 (-1118))
- (-4 *5 (-1118)) (-5 *2 (-57 *5)) (-5 *1 (-56 *6 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-216 *6 *7)) (-14 *6 (-706))
- (-4 *7 (-1118)) (-4 *5 (-1118)) (-5 *2 (-216 *6 *5))
- (-5 *1 (-215 *6 *7 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1118)) (-4 *5 (-1118))
- (-4 *2 (-346 *5)) (-5 *1 (-344 *6 *4 *5 *2)) (-4 *4 (-346 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1012)) (-4 *5 (-1012))
- (-4 *2 (-398 *5)) (-5 *1 (-396 *6 *4 *5 *2)) (-4 *4 (-398 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-586 *6)) (-4 *6 (-1118))
- (-4 *5 (-1118)) (-5 *2 (-586 *5)) (-5 *1 (-584 *6 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-885 *6)) (-4 *6 (-1118))
- (-4 *5 (-1118)) (-5 *2 (-885 *5)) (-5 *1 (-884 *6 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1064 *6)) (-4 *6 (-1118))
- (-4 *3 (-1118)) (-5 *2 (-1064 *3)) (-5 *1 (-1062 *6 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1164 *6)) (-4 *6 (-1118))
- (-4 *5 (-1118)) (-5 *2 (-1164 *5)) (-5 *1 (-1163 *6 *5)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-586 (-289 (-201)))) (-5 *3 (-201)) (-5 *2 (-108))
- (-5 *1 (-188)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-132)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1083)) (-5 *3 (-352)) (-5 *1 (-981)))))
-(((*1 *2 *1 *1)
- (|partial| -12 (-4 *1 (-302 *3)) (-4 *3 (-336)) (-4 *3 (-341))
- (-5 *2 (-1079 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-302 *3)) (-4 *3 (-336)) (-4 *3 (-341))
- (-5 *2 (-1079 *3)))))
+ (|partial| -12 (-4 *1 (-316 *3 *2 *4)) (-4 *3 (-1123))
+ (-4 *4 (-1141 (-381 *2))) (-4 *2 (-1141 *3)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1084))
+ (-5 *2 (-3 (|:| |fst| (-408)) (|:| -1366 "void"))) (-5 *1 (-1087)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-1148 *3 *2)) (-4 *3 (-970))
+ (-4 *2 (-1125 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-126)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-336) (-781))) (-5 *1 (-164 *3 *2))
- (-4 *2 (-1140 (-154 *3))))))
-(((*1 *2)
- (-12 (-4 *3 (-512)) (-5 *2 (-586 *4)) (-5 *1 (-42 *3 *4))
- (-4 *4 (-390 *3)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1012))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1012)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-849)) (-5 *3 (-586 (-238))) (-5 *1 (-236))))
- ((*1 *1 *2) (-12 (-5 *2 (-849)) (-5 *1 (-238)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-586 *4)) (-4 *4 (-781)) (-4 *4 (-336)) (-5 *2 (-706))
- (-5 *1 (-873 *4 *5)) (-4 *5 (-1140 *4)))))
-(((*1 *1 *1) (|partial| -4 *1 (-1059))))
-(((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-758)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1057 *3)) (-4 *3 (-1118)) (-5 *2 (-108)))))
-(((*1 *1) (-5 *1 (-132))) ((*1 *1 *1) (-5 *1 (-791))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-706)) (-5 *2 (-108))))
- ((*1 *2 *3 *3)
- (|partial| -12 (-5 *2 (-108)) (-5 *1 (-1119 *3)) (-4 *3 (-1012))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-1 (-108) *3 *3)) (-4 *3 (-1012)) (-5 *2 (-108))
- (-5 *1 (-1119 *3)))))
+ (-12 (-5 *2 (-108)) (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-513))
+ (-5 *2
+ (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-896 *4 *3)) (-4 *3 (-1141 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-587 (-290 (-202)))) (-5 *1 (-243)))))
+(((*1 *1 *1 *1)
+ (|partial| -12 (-4 *2 (-157)) (-5 *1 (-264 *2 *3 *4 *5 *6 *7))
+ (-4 *3 (-1141 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-157))
+ (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
+ (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *2 (-157))
+ (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
+ (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-729)) (-4 *4 (-784)) (-4 *5 (-282))
+ (-5 *1 (-845 *3 *4 *5 *2)) (-4 *2 (-878 *5 *3 *4))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1080 *6)) (-4 *6 (-878 *5 *3 *4)) (-4 *3 (-729))
+ (-4 *4 (-784)) (-4 *5 (-282)) (-5 *1 (-845 *3 *4 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-587 *2)) (-4 *2 (-878 *6 *4 *5))
+ (-5 *1 (-845 *4 *5 *6 *2)) (-4 *4 (-729)) (-4 *5 (-784))
+ (-4 *6 (-282)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-381 (-881 *3))) (-5 *1 (-426 *3 *4 *5 *6))
+ (-4 *3 (-513)) (-4 *3 (-157)) (-14 *4 (-850))
+ (-14 *5 (-587 (-1084))) (-14 *6 (-1165 (-627 *3))))))
+(((*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-855)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-802 (-893 *3) (-893 *3))) (-5 *1 (-893 *3))
+ (-4 *3 (-894)))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-46 *3 *4)) (-4 *3 (-969))
- (-4 *4 (-727))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-46 *3 *4)) (-4 *3 (-970))
+ (-4 *4 (-728))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-969)) (-5 *1 (-49 *3 *4))
- (-14 *4 (-586 (-1083)))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-970)) (-5 *1 (-49 *3 *4))
+ (-14 *4 (-587 (-1084)))))
((*1 *1 *2 *1 *1 *3)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1118))
- (-4 *4 (-346 *3)) (-4 *5 (-346 *3))))
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1119))
+ (-4 *4 (-347 *3)) (-4 *5 (-347 *3))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1118))
- (-4 *4 (-346 *3)) (-4 *5 (-346 *3))))
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1119))
+ (-4 *4 (-347 *3)) (-4 *5 (-347 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1118))
- (-4 *4 (-346 *3)) (-4 *5 (-346 *3))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1119))
+ (-4 *4 (-347 *3)) (-4 *5 (-347 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-57 *5)) (-4 *5 (-1118))
- (-4 *6 (-1118)) (-5 *2 (-57 *6)) (-5 *1 (-56 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-57 *5)) (-4 *5 (-1119))
+ (-4 *6 (-1119)) (-5 *2 (-57 *6)) (-5 *1 (-56 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-128 *5 *6 *7)) (-14 *5 (-520))
- (-14 *6 (-706)) (-4 *7 (-157)) (-4 *8 (-157))
+ (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-128 *5 *6 *7)) (-14 *5 (-521))
+ (-14 *6 (-707)) (-4 *7 (-157)) (-4 *8 (-157))
(-5 *2 (-128 *5 *6 *8)) (-5 *1 (-127 *5 *6 *7 *8))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-154 *5)) (-4 *5 (-157))
(-4 *6 (-157)) (-5 *2 (-154 *6)) (-5 *1 (-153 *5 *6))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-289 *3) (-289 *3))) (-4 *3 (-13 (-969) (-783)))
- (-5 *1 (-199 *3 *4)) (-14 *4 (-586 (-1083)))))
+ (-12 (-5 *2 (-1 (-290 *3) (-290 *3))) (-4 *3 (-13 (-970) (-784)))
+ (-5 *1 (-200 *3 *4)) (-14 *4 (-587 (-1084)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-216 *5 *6)) (-14 *5 (-706))
- (-4 *6 (-1118)) (-4 *7 (-1118)) (-5 *2 (-216 *5 *7))
- (-5 *1 (-215 *5 *6 *7))))
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-217 *5 *6)) (-14 *5 (-707))
+ (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-217 *5 *7))
+ (-5 *1 (-216 *5 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-268 *5)) (-4 *5 (-1118))
- (-4 *6 (-1118)) (-5 *2 (-268 *6)) (-5 *1 (-267 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-269 *5)) (-4 *5 (-1119))
+ (-4 *6 (-1119)) (-5 *2 (-269 *6)) (-5 *1 (-268 *5 *6))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1118)) (-5 *1 (-268 *3))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1119)) (-5 *1 (-269 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1066)) (-5 *5 (-559 *6))
- (-4 *6 (-276)) (-4 *2 (-1118)) (-5 *1 (-271 *6 *2))))
+ (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1067)) (-5 *5 (-560 *6))
+ (-4 *6 (-277)) (-4 *2 (-1119)) (-5 *1 (-272 *6 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-559 *5)) (-4 *5 (-276))
- (-4 *2 (-276)) (-5 *1 (-272 *5 *2))))
+ (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-560 *5)) (-4 *5 (-277))
+ (-4 *2 (-277)) (-5 *1 (-273 *5 *2))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-559 *1)) (-4 *1 (-276))))
+ (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-560 *1)) (-4 *1 (-277))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-626 *5)) (-4 *5 (-969))
- (-4 *6 (-969)) (-5 *2 (-626 *6)) (-5 *1 (-278 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-627 *5)) (-4 *5 (-970))
+ (-4 *6 (-970)) (-5 *2 (-627 *6)) (-5 *1 (-279 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-289 *5)) (-4 *5 (-783))
- (-4 *6 (-783)) (-5 *2 (-289 *6)) (-5 *1 (-287 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-290 *5)) (-4 *5 (-784))
+ (-4 *6 (-784)) (-5 *2 (-290 *6)) (-5 *1 (-288 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-309 *5 *6 *7 *8)) (-4 *5 (-336))
- (-4 *6 (-1140 *5)) (-4 *7 (-1140 (-380 *6))) (-4 *8 (-315 *5 *6 *7))
- (-4 *9 (-336)) (-4 *10 (-1140 *9)) (-4 *11 (-1140 (-380 *10)))
- (-5 *2 (-309 *9 *10 *11 *12))
- (-5 *1 (-306 *5 *6 *7 *8 *9 *10 *11 *12))
- (-4 *12 (-315 *9 *10 *11))))
+ (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-310 *5 *6 *7 *8)) (-4 *5 (-337))
+ (-4 *6 (-1141 *5)) (-4 *7 (-1141 (-381 *6))) (-4 *8 (-316 *5 *6 *7))
+ (-4 *9 (-337)) (-4 *10 (-1141 *9)) (-4 *11 (-1141 (-381 *10)))
+ (-5 *2 (-310 *9 *10 *11 *12))
+ (-5 *1 (-307 *5 *6 *7 *8 *9 *10 *11 *12))
+ (-4 *12 (-316 *9 *10 *11))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-311 *3)) (-4 *3 (-1012))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-312 *3)) (-4 *3 (-1013))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1122)) (-4 *8 (-1122))
- (-4 *6 (-1140 *5)) (-4 *7 (-1140 (-380 *6))) (-4 *9 (-1140 *8))
- (-4 *2 (-315 *8 *9 *10)) (-5 *1 (-313 *5 *6 *7 *4 *8 *9 *10 *2))
- (-4 *4 (-315 *5 *6 *7)) (-4 *10 (-1140 (-380 *9)))))
+ (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1123)) (-4 *8 (-1123))
+ (-4 *6 (-1141 *5)) (-4 *7 (-1141 (-381 *6))) (-4 *9 (-1141 *8))
+ (-4 *2 (-316 *8 *9 *10)) (-5 *1 (-314 *5 *6 *7 *4 *8 *9 *10 *2))
+ (-4 *4 (-316 *5 *6 *7)) (-4 *10 (-1141 (-381 *9)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1118)) (-4 *6 (-1118))
- (-4 *2 (-346 *6)) (-5 *1 (-344 *5 *4 *6 *2)) (-4 *4 (-346 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1119)) (-4 *6 (-1119))
+ (-4 *2 (-347 *6)) (-5 *1 (-345 *5 *4 *6 *2)) (-4 *4 (-347 *5))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-355 *3 *4)) (-4 *3 (-969))
- (-4 *4 (-1012))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-356 *3 *4)) (-4 *3 (-970))
+ (-4 *4 (-1013))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-391 *5)) (-4 *5 (-512))
- (-4 *6 (-512)) (-5 *2 (-391 *6)) (-5 *1 (-378 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-392 *5)) (-4 *5 (-513))
+ (-4 *6 (-513)) (-5 *2 (-392 *6)) (-5 *1 (-379 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-380 *5)) (-4 *5 (-512))
- (-4 *6 (-512)) (-5 *2 (-380 *6)) (-5 *1 (-379 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-381 *5)) (-4 *5 (-513))
+ (-4 *6 (-513)) (-5 *2 (-381 *6)) (-5 *1 (-380 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-386 *5 *6 *7 *8)) (-4 *5 (-281))
- (-4 *6 (-917 *5)) (-4 *7 (-1140 *6))
- (-4 *8 (-13 (-382 *6 *7) (-960 *6))) (-4 *9 (-281))
- (-4 *10 (-917 *9)) (-4 *11 (-1140 *10))
- (-5 *2 (-386 *9 *10 *11 *12))
- (-5 *1 (-385 *5 *6 *7 *8 *9 *10 *11 *12))
- (-4 *12 (-13 (-382 *10 *11) (-960 *10)))))
+ (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-387 *5 *6 *7 *8)) (-4 *5 (-282))
+ (-4 *6 (-918 *5)) (-4 *7 (-1141 *6))
+ (-4 *8 (-13 (-383 *6 *7) (-961 *6))) (-4 *9 (-282))
+ (-4 *10 (-918 *9)) (-4 *11 (-1141 *10))
+ (-5 *2 (-387 *9 *10 *11 *12))
+ (-5 *1 (-386 *5 *6 *7 *8 *9 *10 *11 *12))
+ (-4 *12 (-13 (-383 *10 *11) (-961 *10)))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-157)) (-4 *6 (-157))
- (-4 *2 (-390 *6)) (-5 *1 (-388 *4 *5 *2 *6)) (-4 *4 (-390 *5))))
+ (-4 *2 (-391 *6)) (-5 *1 (-389 *4 *5 *2 *6)) (-4 *4 (-391 *5))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-512)) (-5 *1 (-391 *3))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-513)) (-5 *1 (-392 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-969) (-783)))
- (-4 *6 (-13 (-969) (-783))) (-4 *2 (-403 *6))
- (-5 *1 (-394 *5 *4 *6 *2)) (-4 *4 (-403 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-970) (-784)))
+ (-4 *6 (-13 (-970) (-784))) (-4 *2 (-404 *6))
+ (-5 *1 (-395 *5 *4 *6 *2)) (-4 *4 (-404 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1012)) (-4 *6 (-1012))
- (-4 *2 (-398 *6)) (-5 *1 (-396 *5 *4 *6 *2)) (-4 *4 (-398 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1013)) (-4 *6 (-1013))
+ (-4 *2 (-399 *6)) (-5 *1 (-397 *5 *4 *6 *2)) (-4 *4 (-399 *5))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-459 *3)) (-4 *3 (-1118))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-460 *3)) (-4 *3 (-1119))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-476 *3 *4)) (-4 *3 (-1012))
- (-4 *4 (-783))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-477 *3 *4)) (-4 *3 (-1013))
+ (-4 *4 (-784))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-537 *5)) (-4 *5 (-336))
- (-4 *6 (-336)) (-5 *2 (-537 *6)) (-5 *1 (-536 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-538 *5)) (-4 *5 (-337))
+ (-4 *6 (-337)) (-5 *2 (-538 *6)) (-5 *1 (-537 *5 *6))))
((*1 *2 *3 *4)
(|partial| -12 (-5 *3 (-1 *6 *5))
- (-5 *4 (-3 (-2 (|:| -4016 *5) (|:| |coeff| *5)) "failed"))
- (-4 *5 (-336)) (-4 *6 (-336))
- (-5 *2 (-2 (|:| -4016 *6) (|:| |coeff| *6)))
- (-5 *1 (-536 *5 *6))))
+ (-5 *4 (-3 (-2 (|:| -3100 *5) (|:| |coeff| *5)) "failed"))
+ (-4 *5 (-337)) (-4 *6 (-337))
+ (-5 *2 (-2 (|:| -3100 *6) (|:| |coeff| *6)))
+ (-5 *1 (-537 *5 *6))))
((*1 *2 *3 *4)
(|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed"))
- (-4 *5 (-336)) (-4 *2 (-336)) (-5 *1 (-536 *5 *2))))
+ (-4 *5 (-337)) (-4 *2 (-337)) (-5 *1 (-537 *5 *2))))
((*1 *2 *3 *4)
(|partial| -12 (-5 *3 (-1 *6 *5))
(-5 *4
(-3
(-2 (|:| |mainpart| *5)
(|:| |limitedlogs|
- (-586 (-2 (|:| |coeff| *5) (|:| |logand| *5)))))
+ (-587 (-2 (|:| |coeff| *5) (|:| |logand| *5)))))
"failed"))
- (-4 *5 (-336)) (-4 *6 (-336))
+ (-4 *5 (-337)) (-4 *6 (-337))
(-5 *2
(-2 (|:| |mainpart| *6)
(|:| |limitedlogs|
- (-586 (-2 (|:| |coeff| *6) (|:| |logand| *6))))))
- (-5 *1 (-536 *5 *6))))
+ (-587 (-2 (|:| |coeff| *6) (|:| |logand| *6))))))
+ (-5 *1 (-537 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-550 *5)) (-4 *5 (-1118))
- (-4 *6 (-1118)) (-5 *2 (-550 *6)) (-5 *1 (-547 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-551 *5)) (-4 *5 (-1119))
+ (-4 *6 (-1119)) (-5 *2 (-551 *6)) (-5 *1 (-548 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-550 *6)) (-5 *5 (-550 *7))
- (-4 *6 (-1118)) (-4 *7 (-1118)) (-4 *8 (-1118)) (-5 *2 (-550 *8))
- (-5 *1 (-548 *6 *7 *8))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-551 *6)) (-5 *5 (-551 *7))
+ (-4 *6 (-1119)) (-4 *7 (-1119)) (-4 *8 (-1119)) (-5 *2 (-551 *8))
+ (-5 *1 (-549 *6 *7 *8))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1064 *6)) (-5 *5 (-550 *7))
- (-4 *6 (-1118)) (-4 *7 (-1118)) (-4 *8 (-1118)) (-5 *2 (-1064 *8))
- (-5 *1 (-548 *6 *7 *8))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1065 *6)) (-5 *5 (-551 *7))
+ (-4 *6 (-1119)) (-4 *7 (-1119)) (-4 *8 (-1119)) (-5 *2 (-1065 *8))
+ (-5 *1 (-549 *6 *7 *8))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-550 *6)) (-5 *5 (-1064 *7))
- (-4 *6 (-1118)) (-4 *7 (-1118)) (-4 *8 (-1118)) (-5 *2 (-1064 *8))
- (-5 *1 (-548 *6 *7 *8))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-551 *6)) (-5 *5 (-1065 *7))
+ (-4 *6 (-1119)) (-4 *7 (-1119)) (-4 *8 (-1119)) (-5 *2 (-1065 *8))
+ (-5 *1 (-549 *6 *7 *8))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1118)) (-5 *1 (-550 *3))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1119)) (-5 *1 (-551 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-586 *5)) (-4 *5 (-1118))
- (-4 *6 (-1118)) (-5 *2 (-586 *6)) (-5 *1 (-584 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-587 *5)) (-4 *5 (-1119))
+ (-4 *6 (-1119)) (-5 *2 (-587 *6)) (-5 *1 (-585 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-586 *6)) (-5 *5 (-586 *7))
- (-4 *6 (-1118)) (-4 *7 (-1118)) (-4 *8 (-1118)) (-5 *2 (-586 *8))
- (-5 *1 (-585 *6 *7 *8))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-587 *6)) (-5 *5 (-587 *7))
+ (-4 *6 (-1119)) (-4 *7 (-1119)) (-4 *8 (-1119)) (-5 *2 (-587 *8))
+ (-5 *1 (-586 *6 *7 *8))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-591 *3)) (-4 *3 (-1118))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-969)) (-4 *8 (-969))
- (-4 *6 (-346 *5)) (-4 *7 (-346 *5)) (-4 *2 (-624 *8 *9 *10))
- (-5 *1 (-622 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-624 *5 *6 *7))
- (-4 *9 (-346 *8)) (-4 *10 (-346 *8))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-969))
- (-4 *8 (-969)) (-4 *6 (-346 *5)) (-4 *7 (-346 *5))
- (-4 *2 (-624 *8 *9 *10)) (-5 *1 (-622 *5 *6 *7 *4 *8 *9 *10 *2))
- (-4 *4 (-624 *5 *6 *7)) (-4 *9 (-346 *8)) (-4 *10 (-346 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-512)) (-4 *7 (-512))
- (-4 *6 (-1140 *5)) (-4 *2 (-1140 (-380 *8)))
- (-5 *1 (-646 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1140 (-380 *6)))
- (-4 *8 (-1140 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-969)) (-4 *9 (-969)) (-4 *5 (-783))
- (-4 *6 (-728)) (-4 *2 (-877 *9 *7 *5))
- (-5 *1 (-664 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-728))
- (-4 *4 (-877 *8 *6 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-783)) (-4 *6 (-783)) (-4 *7 (-728))
- (-4 *9 (-969)) (-4 *2 (-877 *9 *8 *6))
- (-5 *1 (-665 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-728))
- (-4 *4 (-877 *9 *7 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-671 *5 *7)) (-4 *5 (-969))
- (-4 *6 (-969)) (-4 *7 (-662)) (-5 *2 (-671 *6 *7))
- (-5 *1 (-670 *5 *6 *7))))
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-592 *3)) (-4 *3 (-1119))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-970)) (-4 *8 (-970))
+ (-4 *6 (-347 *5)) (-4 *7 (-347 *5)) (-4 *2 (-625 *8 *9 *10))
+ (-5 *1 (-623 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-625 *5 *6 *7))
+ (-4 *9 (-347 *8)) (-4 *10 (-347 *8))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-970))
+ (-4 *8 (-970)) (-4 *6 (-347 *5)) (-4 *7 (-347 *5))
+ (-4 *2 (-625 *8 *9 *10)) (-5 *1 (-623 *5 *6 *7 *4 *8 *9 *10 *2))
+ (-4 *4 (-625 *5 *6 *7)) (-4 *9 (-347 *8)) (-4 *10 (-347 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-513)) (-4 *7 (-513))
+ (-4 *6 (-1141 *5)) (-4 *2 (-1141 (-381 *8)))
+ (-5 *1 (-647 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1141 (-381 *6)))
+ (-4 *8 (-1141 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-970)) (-4 *9 (-970)) (-4 *5 (-784))
+ (-4 *6 (-729)) (-4 *2 (-878 *9 *7 *5))
+ (-5 *1 (-665 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-729))
+ (-4 *4 (-878 *8 *6 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-784)) (-4 *6 (-784)) (-4 *7 (-729))
+ (-4 *9 (-970)) (-4 *2 (-878 *9 *8 *6))
+ (-5 *1 (-666 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-729))
+ (-4 *4 (-878 *9 *7 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-672 *5 *7)) (-4 *5 (-970))
+ (-4 *6 (-970)) (-4 *7 (-663)) (-5 *2 (-672 *6 *7))
+ (-5 *1 (-671 *5 *6 *7))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-969)) (-5 *1 (-671 *3 *4))
- (-4 *4 (-662))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-970)) (-5 *1 (-672 *3 *4))
+ (-4 *4 (-663))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-717 *5)) (-4 *5 (-969))
- (-4 *6 (-969)) (-5 *2 (-717 *6)) (-5 *1 (-716 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-718 *5)) (-4 *5 (-970))
+ (-4 *6 (-970)) (-5 *2 (-718 *6)) (-5 *1 (-717 *5 *6))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-157)) (-4 *6 (-157))
- (-4 *2 (-733 *6)) (-5 *1 (-734 *4 *5 *2 *6)) (-4 *4 (-733 *5))))
+ (-4 *2 (-734 *6)) (-5 *1 (-735 *4 *5 *2 *6)) (-4 *4 (-734 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-769 *5)) (-4 *5 (-1012))
- (-4 *6 (-1012)) (-5 *2 (-769 *6)) (-5 *1 (-768 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-770 *5)) (-4 *5 (-1013))
+ (-4 *6 (-1013)) (-5 *2 (-770 *6)) (-5 *1 (-769 *5 *6))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-769 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-769 *5))
- (-4 *5 (-1012)) (-4 *6 (-1012)) (-5 *1 (-768 *5 *6))))
+ (-12 (-5 *2 (-770 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-770 *5))
+ (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *1 (-769 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-776 *5)) (-4 *5 (-1012))
- (-4 *6 (-1012)) (-5 *2 (-776 *6)) (-5 *1 (-775 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-777 *5)) (-4 *5 (-1013))
+ (-4 *6 (-1013)) (-5 *2 (-777 *6)) (-5 *1 (-776 *5 *6))))
((*1 *2 *3 *4 *2 *2)
- (-12 (-5 *2 (-776 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-776 *5))
- (-4 *5 (-1012)) (-4 *6 (-1012)) (-5 *1 (-775 *5 *6))))
+ (-12 (-5 *2 (-777 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-777 *5))
+ (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *1 (-776 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-805 *5)) (-4 *5 (-1118))
- (-4 *6 (-1118)) (-5 *2 (-805 *6)) (-5 *1 (-804 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-806 *5)) (-4 *5 (-1119))
+ (-4 *6 (-1119)) (-5 *2 (-806 *6)) (-5 *1 (-805 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-807 *5)) (-4 *5 (-1118))
- (-4 *6 (-1118)) (-5 *2 (-807 *6)) (-5 *1 (-806 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-808 *5)) (-4 *5 (-1119))
+ (-4 *6 (-1119)) (-5 *2 (-808 *6)) (-5 *1 (-807 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-810 *5)) (-4 *5 (-1118))
- (-4 *6 (-1118)) (-5 *2 (-810 *6)) (-5 *1 (-809 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-811 *5)) (-4 *5 (-1119))
+ (-4 *6 (-1119)) (-5 *2 (-811 *6)) (-5 *1 (-810 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-817 *5 *6)) (-4 *5 (-1012))
- (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-817 *5 *7))
- (-5 *1 (-816 *5 *6 *7))))
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-818 *5 *6)) (-4 *5 (-1013))
+ (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-818 *5 *7))
+ (-5 *1 (-817 *5 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-820 *5)) (-4 *5 (-1012))
- (-4 *6 (-1012)) (-5 *2 (-820 *6)) (-5 *1 (-819 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-821 *5)) (-4 *5 (-1013))
+ (-4 *6 (-1013)) (-5 *2 (-821 *6)) (-5 *1 (-820 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-880 *5)) (-4 *5 (-969))
- (-4 *6 (-969)) (-5 *2 (-880 *6)) (-5 *1 (-874 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-881 *5)) (-4 *5 (-970))
+ (-4 *6 (-970)) (-5 *2 (-881 *6)) (-5 *1 (-875 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-783))
- (-4 *8 (-969)) (-4 *6 (-728))
+ (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-784))
+ (-4 *8 (-970)) (-4 *6 (-729))
(-4 *2
- (-13 (-1012)
- (-10 -8 (-15 -1601 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-706))))))
- (-5 *1 (-879 *6 *7 *8 *5 *2)) (-4 *5 (-877 *8 *6 *7))))
+ (-13 (-1013)
+ (-10 -8 (-15 -1602 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-707))))))
+ (-5 *1 (-880 *6 *7 *8 *5 *2)) (-4 *5 (-878 *8 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-885 *5)) (-4 *5 (-1118))
- (-4 *6 (-1118)) (-5 *2 (-885 *6)) (-5 *1 (-884 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-886 *5)) (-4 *5 (-1119))
+ (-4 *6 (-1119)) (-5 *2 (-886 *6)) (-5 *1 (-885 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-871 *5)) (-4 *5 (-969))
- (-4 *6 (-969)) (-5 *2 (-871 *6)) (-5 *1 (-906 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-872 *5)) (-4 *5 (-970))
+ (-4 *6 (-970)) (-5 *2 (-872 *6)) (-5 *1 (-907 *5 *6))))
((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 *2 (-880 *4))) (-4 *4 (-969))
- (-4 *2 (-877 (-880 *4) *5 *6)) (-4 *5 (-728))
+ (-12 (-5 *3 (-1 *2 (-881 *4))) (-4 *4 (-970))
+ (-4 *2 (-878 (-881 *4) *5 *6)) (-4 *5 (-729))
(-4 *6
- (-13 (-783)
- (-10 -8 (-15 -1429 ((-1083) $))
- (-15 -1610 ((-3 $ "failed") (-1083))))))
- (-5 *1 (-909 *4 *5 *6 *2))))
+ (-13 (-784)
+ (-10 -8 (-15 -1430 ((-1084) $))
+ (-15 -1611 ((-3 $ "failed") (-1084))))))
+ (-5 *1 (-910 *4 *5 *6 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-512)) (-4 *6 (-512))
- (-4 *2 (-917 *6)) (-5 *1 (-915 *5 *6 *4 *2)) (-4 *4 (-917 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-513)) (-4 *6 (-513))
+ (-4 *2 (-918 *6)) (-5 *1 (-916 *5 *6 *4 *2)) (-4 *4 (-918 *5))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-157)) (-4 *6 (-157))
- (-4 *2 (-921 *6)) (-5 *1 (-922 *4 *5 *2 *6)) (-4 *4 (-921 *5))))
+ (-4 *2 (-922 *6)) (-5 *1 (-923 *4 *5 *2 *6)) (-4 *4 (-922 *5))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-972 *3 *4 *5 *6 *7))
- (-4 *5 (-969)) (-4 *6 (-214 *4 *5)) (-4 *7 (-214 *3 *5))))
+ (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-973 *3 *4 *5 *6 *7))
+ (-4 *5 (-970)) (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-972 *3 *4 *5 *6 *7)) (-4 *5 (-969))
- (-4 *6 (-214 *4 *5)) (-4 *7 (-214 *3 *5))))
+ (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-973 *3 *4 *5 *6 *7)) (-4 *5 (-970))
+ (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-969)) (-4 *10 (-969))
- (-14 *5 (-706)) (-14 *6 (-706)) (-4 *8 (-214 *6 *7))
- (-4 *9 (-214 *5 *7)) (-4 *2 (-972 *5 *6 *10 *11 *12))
- (-5 *1 (-974 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2))
- (-4 *4 (-972 *5 *6 *7 *8 *9)) (-4 *11 (-214 *6 *10))
- (-4 *12 (-214 *5 *10))))
+ (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-970)) (-4 *10 (-970))
+ (-14 *5 (-707)) (-14 *6 (-707)) (-4 *8 (-215 *6 *7))
+ (-4 *9 (-215 *5 *7)) (-4 *2 (-973 *5 *6 *10 *11 *12))
+ (-5 *1 (-975 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2))
+ (-4 *4 (-973 *5 *6 *7 *8 *9)) (-4 *11 (-215 *6 *10))
+ (-4 *12 (-215 *5 *10))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1007 *5)) (-4 *5 (-1118))
- (-4 *6 (-1118)) (-5 *2 (-1007 *6)) (-5 *1 (-1003 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1008 *5)) (-4 *5 (-1119))
+ (-4 *6 (-1119)) (-5 *2 (-1008 *6)) (-5 *1 (-1004 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1007 *5)) (-4 *5 (-781))
- (-4 *5 (-1118)) (-4 *6 (-1118)) (-5 *2 (-586 *6))
- (-5 *1 (-1003 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1008 *5)) (-4 *5 (-782))
+ (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-587 *6))
+ (-5 *1 (-1004 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1005 *5)) (-4 *5 (-1118))
- (-4 *6 (-1118)) (-5 *2 (-1005 *6)) (-5 *1 (-1004 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1006 *5)) (-4 *5 (-1119))
+ (-4 *6 (-1119)) (-5 *2 (-1006 *6)) (-5 *1 (-1005 *5 *6))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1008 *4 *2)) (-4 *4 (-781))
- (-4 *2 (-1057 *4))))
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1009 *4 *2)) (-4 *4 (-782))
+ (-4 *2 (-1058 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1064 *5)) (-4 *5 (-1118))
- (-4 *6 (-1118)) (-5 *2 (-1064 *6)) (-5 *1 (-1062 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1065 *5)) (-4 *5 (-1119))
+ (-4 *6 (-1119)) (-5 *2 (-1065 *6)) (-5 *1 (-1063 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1064 *6)) (-5 *5 (-1064 *7))
- (-4 *6 (-1118)) (-4 *7 (-1118)) (-4 *8 (-1118)) (-5 *2 (-1064 *8))
- (-5 *1 (-1063 *6 *7 *8))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1065 *6)) (-5 *5 (-1065 *7))
+ (-4 *6 (-1119)) (-4 *7 (-1119)) (-4 *8 (-1119)) (-5 *2 (-1065 *8))
+ (-5 *1 (-1064 *6 *7 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1079 *5)) (-4 *5 (-969))
- (-4 *6 (-969)) (-5 *2 (-1079 *6)) (-5 *1 (-1077 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1080 *5)) (-4 *5 (-970))
+ (-4 *6 (-970)) (-5 *2 (-1080 *6)) (-5 *1 (-1078 *5 *6))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1095 *3 *4)) (-4 *3 (-1012))
- (-4 *4 (-1012))))
+ (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1096 *3 *4)) (-4 *3 (-1013))
+ (-4 *4 (-1013))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1128 *5 *7 *9)) (-4 *5 (-969))
- (-4 *6 (-969)) (-14 *7 (-1083)) (-14 *9 *5) (-14 *10 *6)
- (-5 *2 (-1128 *6 *8 *10)) (-5 *1 (-1123 *5 *6 *7 *8 *9 *10))
- (-14 *8 (-1083))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1129 *5 *7 *9)) (-4 *5 (-970))
+ (-4 *6 (-970)) (-14 *7 (-1084)) (-14 *9 *5) (-14 *10 *6)
+ (-5 *2 (-1129 *6 *8 *10)) (-5 *1 (-1124 *5 *6 *7 *8 *9 *10))
+ (-14 *8 (-1084))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1131 *5)) (-4 *5 (-1118))
- (-4 *6 (-1118)) (-5 *2 (-1131 *6)) (-5 *1 (-1130 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1132 *5)) (-4 *5 (-1119))
+ (-4 *6 (-1119)) (-5 *2 (-1132 *6)) (-5 *1 (-1131 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1131 *5)) (-4 *5 (-781))
- (-4 *5 (-1118)) (-4 *6 (-1118)) (-5 *2 (-1064 *6))
- (-5 *1 (-1130 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1132 *5)) (-4 *5 (-782))
+ (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-1065 *6))
+ (-5 *1 (-1131 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1137 *5 *6)) (-14 *5 (-1083))
- (-4 *6 (-969)) (-4 *8 (-969)) (-5 *2 (-1137 *7 *8))
- (-5 *1 (-1132 *5 *6 *7 *8)) (-14 *7 (-1083))))
+ (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1138 *5 *6)) (-14 *5 (-1084))
+ (-4 *6 (-970)) (-4 *8 (-970)) (-5 *2 (-1138 *7 *8))
+ (-5 *1 (-1133 *5 *6 *7 *8)) (-14 *7 (-1084))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-969)) (-4 *6 (-969))
- (-4 *2 (-1140 *6)) (-5 *1 (-1138 *5 *4 *6 *2)) (-4 *4 (-1140 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-970)) (-4 *6 (-970))
+ (-4 *2 (-1141 *6)) (-5 *1 (-1139 *5 *4 *6 *2)) (-4 *4 (-1141 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1149 *5 *7 *9)) (-4 *5 (-969))
- (-4 *6 (-969)) (-14 *7 (-1083)) (-14 *9 *5) (-14 *10 *6)
- (-5 *2 (-1149 *6 *8 *10)) (-5 *1 (-1144 *5 *6 *7 *8 *9 *10))
- (-14 *8 (-1083))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1150 *5 *7 *9)) (-4 *5 (-970))
+ (-4 *6 (-970)) (-14 *7 (-1084)) (-14 *9 *5) (-14 *10 *6)
+ (-5 *2 (-1150 *6 *8 *10)) (-5 *1 (-1145 *5 *6 *7 *8 *9 *10))
+ (-14 *8 (-1084))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-969)) (-4 *6 (-969))
- (-4 *2 (-1155 *6)) (-5 *1 (-1153 *5 *6 *4 *2)) (-4 *4 (-1155 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-970)) (-4 *6 (-970))
+ (-4 *2 (-1156 *6)) (-5 *1 (-1154 *5 *6 *4 *2)) (-4 *4 (-1156 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1164 *5)) (-4 *5 (-1118))
- (-4 *6 (-1118)) (-5 *2 (-1164 *6)) (-5 *1 (-1163 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1165 *5)) (-4 *5 (-1119))
+ (-4 *6 (-1119)) (-5 *2 (-1165 *6)) (-5 *1 (-1164 *5 *6))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1164 *5))
- (-4 *5 (-1118)) (-4 *6 (-1118)) (-5 *2 (-1164 *6))
- (-5 *1 (-1163 *5 *6))))
+ (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1165 *5))
+ (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-1165 *6))
+ (-5 *1 (-1164 *5 *6))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1179 *3 *4)) (-4 *3 (-783))
- (-4 *4 (-969))))
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1180 *3 *4)) (-4 *3 (-784))
+ (-4 *4 (-970))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-969)) (-5 *1 (-1185 *3 *4))
- (-4 *4 (-779)))))
-(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1083)) (-5 *1 (-559 *3)) (-4 *3 (-783)))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-970)) (-5 *1 (-1186 *3 *4))
+ (-4 *4 (-780)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-282)) (-5 *2 (-108)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-512)) (-4 *4 (-917 *3)) (-5 *1 (-130 *3 *4 *2))
- (-4 *2 (-346 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-512)) (-4 *5 (-917 *4)) (-4 *2 (-346 *4))
- (-5 *1 (-471 *4 *5 *2 *3)) (-4 *3 (-346 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-626 *5)) (-4 *5 (-917 *4)) (-4 *4 (-512))
- (-5 *2 (-626 *4)) (-5 *1 (-629 *4 *5))))
+ (-12 (-4 *3 (-13 (-513) (-784) (-961 (-521)))) (-5 *1 (-167 *3 *2))
+ (-4 *2 (-13 (-27) (-1105) (-404 (-154 *3))))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1084)) (-4 *4 (-13 (-513) (-784) (-961 (-521))))
+ (-5 *1 (-167 *4 *2)) (-4 *2 (-13 (-27) (-1105) (-404 (-154 *4))))))
((*1 *2 *2)
- (-12 (-4 *3 (-512)) (-4 *4 (-917 *3)) (-5 *1 (-1133 *3 *4 *2))
- (-4 *2 (-1140 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-151 *3)) (-4 *3 (-157)) (-4 *3 (-505)) (-5 *2 (-108))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-391 *3)) (-4 *3 (-505)) (-4 *3 (-512))))
- ((*1 *2 *1) (-12 (-4 *1 (-505)) (-5 *2 (-108))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-733 *3)) (-4 *3 (-157)) (-4 *3 (-505)) (-5 *2 (-108))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-769 *3)) (-4 *3 (-505)) (-4 *3 (-1012))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-776 *3)) (-4 *3 (-505)) (-4 *3 (-1012))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-921 *3)) (-4 *3 (-157)) (-4 *3 (-505)) (-5 *2 (-108))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-108)) (-5 *1 (-932 *3)) (-4 *3 (-960 (-380 (-520)))))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-586 (-520))) (-5 *1 (-1022)) (-5 *3 (-520)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-586 *5)) (-5 *4 (-520)) (-4 *5 (-781)) (-4 *5 (-336))
- (-5 *2 (-706)) (-5 *1 (-873 *5 *6)) (-4 *6 (-1140 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-706)) (-5 *2 (-352)) (-5 *1 (-962)))))
+ (-12 (-4 *3 (-13 (-425) (-784) (-961 (-521)) (-583 (-521))))
+ (-5 *1 (-1109 *3 *2)) (-4 *2 (-13 (-27) (-1105) (-404 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1084))
+ (-4 *4 (-13 (-425) (-784) (-961 (-521)) (-583 (-521))))
+ (-5 *1 (-1109 *4 *2)) (-4 *2 (-13 (-27) (-1105) (-404 *4))))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1067)) (-5 *3 (-710)) (-5 *1 (-110)))))
+(((*1 *2) (-12 (-4 *3 (-157)) (-5 *2 (-1165 *1)) (-4 *1 (-341 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-970)) (-5 *1 (-649 *3 *2)) (-4 *2 (-1141 *3)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-521) (-521))) (-5 *1 (-335 *3)) (-4 *3 (-1013))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-707) (-707))) (-5 *1 (-360 *3)) (-4 *3 (-1013))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4)
+ (-5 *1 (-590 *3 *4 *5)) (-4 *3 (-1013)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-706)) (-5 *1 (-49 *3 *4)) (-4 *3 (-969))
- (-14 *4 (-586 (-1083)))))
+ (-12 (-5 *2 (-707)) (-5 *1 (-49 *3 *4)) (-4 *3 (-970))
+ (-14 *4 (-587 (-1084)))))
((*1 *1 *2)
- (-12 (-5 *2 (-706)) (-5 *1 (-199 *3 *4)) (-4 *3 (-13 (-969) (-783)))
- (-14 *4 (-586 (-1083)))))
- ((*1 *1) (-12 (-4 *1 (-302 *2)) (-4 *2 (-341)) (-4 *2 (-336))))
+ (-12 (-5 *2 (-707)) (-5 *1 (-200 *3 *4)) (-4 *3 (-13 (-970) (-784)))
+ (-14 *4 (-587 (-1084)))))
+ ((*1 *1) (-12 (-4 *1 (-303 *2)) (-4 *2 (-342)) (-4 *2 (-337))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-308 *3 *4 *5 *2)) (-4 *3 (-336))
- (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-380 *4)))
- (-4 *2 (-315 *3 *4 *5))))
+ (|partial| -12 (-4 *1 (-309 *3 *4 *5 *2)) (-4 *3 (-337))
+ (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4)))
+ (-4 *2 (-316 *3 *4 *5))))
((*1 *1 *2)
- (-12 (-5 *2 (-706)) (-5 *1 (-363 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
+ (-12 (-5 *2 (-707)) (-5 *1 (-364 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
(-4 *5 (-157))))
- ((*1 *1) (-12 (-4 *2 (-157)) (-4 *1 (-660 *2 *3)) (-4 *3 (-1140 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-586 (-1066))) (-5 *1 (-367)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1085 (-380 (-520)))) (-5 *1 (-168)) (-5 *3 (-520)))))
-(((*1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-409)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-322)) (-5 *2 (-108)) (-5 *1 (-193 *4 *3))
- (-4 *3 (-1140 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1012)) (-4 *4 (-13 (-969) (-814 *3) (-783) (-561 *2)))
- (-5 *2 (-820 *3)) (-5 *1 (-991 *3 *4 *5))
- (-4 *5 (-13 (-403 *4) (-814 *3) (-561 *2))))))
-(((*1 *1 *2) (-12 (-5 *2 (-586 *3)) (-4 *3 (-783)) (-5 *1 (-454 *3)))))
+ ((*1 *1) (-12 (-4 *2 (-157)) (-4 *1 (-661 *2 *3)) (-4 *3 (-1141 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-368)))))
+(((*1 *2)
+ (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-340 *3 *4))
+ (-4 *3 (-341 *4))))
+ ((*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-5 *2 (-108)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-587 (-1080 *7))) (-5 *3 (-1080 *7))
+ (-4 *7 (-878 *4 *5 *6)) (-4 *4 (-838)) (-4 *5 (-729))
+ (-4 *6 (-784)) (-5 *1 (-835 *4 *5 *6 *7))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-587 (-1080 *5))) (-5 *3 (-1080 *5))
+ (-4 *5 (-1141 *4)) (-4 *4 (-838)) (-5 *1 (-836 *4 *5)))))
+(((*1 *2 *3 *4 *4 *5 *3)
+ (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *5 (-202))
+ (-5 *2 (-959)) (-5 *1 (-689)))))
+(((*1 *1 *2) (-12 (-5 *2 (-587 *1)) (-4 *1 (-1045 *3)) (-4 *3 (-970))))
+ ((*1 *2 *2 *1)
+ (|partial| -12 (-5 *2 (-381 *1)) (-4 *1 (-1141 *3)) (-4 *3 (-970))
+ (-4 *3 (-513))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-4 *1 (-1141 *2)) (-4 *2 (-970)) (-4 *2 (-513)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1179 *3 *4)) (-4 *3 (-783)) (-4 *4 (-969))
- (-5 *2 (-108))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-1185 *3 *4)) (-4 *3 (-969))
- (-4 *4 (-779)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3)
- (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *5 (-201))
- (-5 *2 (-958)) (-5 *1 (-688)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-110)) (-4 *4 (-13 (-783) (-512))) (-5 *2 (-108))
- (-5 *1 (-31 *4 *5)) (-4 *5 (-403 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-110)) (-4 *4 (-13 (-783) (-512))) (-5 *2 (-108))
- (-5 *1 (-144 *4 *5)) (-4 *5 (-403 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-110)) (-4 *4 (-13 (-783) (-512))) (-5 *2 (-108))
- (-5 *1 (-251 *4 *5)) (-4 *5 (-13 (-403 *4) (-926)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-110)) (-5 *2 (-108)) (-5 *1 (-275 *4)) (-4 *4 (-276))))
- ((*1 *2 *3) (-12 (-4 *1 (-276)) (-5 *3 (-110)) (-5 *2 (-108))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-110)) (-4 *5 (-783)) (-5 *2 (-108))
- (-5 *1 (-402 *4 *5)) (-4 *4 (-403 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-110)) (-4 *4 (-13 (-783) (-512))) (-5 *2 (-108))
- (-5 *1 (-404 *4 *5)) (-4 *5 (-403 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-110)) (-4 *4 (-13 (-783) (-512))) (-5 *2 (-108))
- (-5 *1 (-573 *4 *5)) (-4 *5 (-13 (-403 *4) (-926) (-1104))))))
-(((*1 *1 *1) (-12 (-5 *1 (-391 *2)) (-4 *2 (-512)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-706)) (-4 *1 (-1140 *3)) (-4 *3 (-969)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-336) (-135) (-960 (-380 (-520)))))
- (-4 *5 (-1140 *4)) (-5 *2 (-586 (-2 (|:| -1892 *5) (|:| -1607 *5))))
- (-5 *1 (-743 *4 *5 *3 *6)) (-4 *3 (-596 *5))
- (-4 *6 (-596 (-380 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-336) (-135) (-960 (-380 (-520)))))
- (-4 *4 (-1140 *5)) (-5 *2 (-586 (-2 (|:| -1892 *4) (|:| -1607 *4))))
- (-5 *1 (-743 *5 *4 *3 *6)) (-4 *3 (-596 *4))
- (-4 *6 (-596 (-380 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-336) (-135) (-960 (-380 (-520)))))
- (-4 *5 (-1140 *4)) (-5 *2 (-586 (-2 (|:| -1892 *5) (|:| -1607 *5))))
- (-5 *1 (-743 *4 *5 *6 *3)) (-4 *6 (-596 *5))
- (-4 *3 (-596 (-380 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-336) (-135) (-960 (-380 (-520)))))
- (-4 *4 (-1140 *5)) (-5 *2 (-586 (-2 (|:| -1892 *4) (|:| -1607 *4))))
- (-5 *1 (-743 *5 *4 *6 *3)) (-4 *6 (-596 *4))
- (-4 *3 (-596 (-380 *4))))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-892 *3)) (-4 *3 (-893)))))
-(((*1 *1 *1)
- (|partial| -12 (-4 *1 (-340 *2)) (-4 *2 (-157)) (-4 *2 (-512))))
- ((*1 *1 *1) (|partial| -4 *1 (-658))))
-(((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-758)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-1169)) (-5 *1 (-409)))))
-(((*1 *1) (-5 *1 (-1169))))
+ (-12 (-4 *3 (-1013)) (-4 *4 (-13 (-970) (-815 *3) (-784) (-562 *2)))
+ (-5 *2 (-821 *3)) (-5 *1 (-992 *3 *4 *5))
+ (-4 *5 (-13 (-404 *4) (-815 *3) (-562 *2))))))
+(((*1 *2 *2) (-12 (-5 *2 (-1031)) (-5 *1 (-304)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-627 *6)) (-5 *5 (-1 (-392 (-1080 *6)) (-1080 *6)))
+ (-4 *6 (-337))
+ (-5 *2
+ (-587
+ (-2 (|:| |outval| *7) (|:| |outmult| (-521))
+ (|:| |outvect| (-587 (-627 *7))))))
+ (-5 *1 (-494 *6 *7 *4)) (-4 *7 (-337)) (-4 *4 (-13 (-337) (-782))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-970))
+ (-4 *2 (-13 (-378) (-961 *4) (-337) (-1105) (-259)))
+ (-5 *1 (-416 *4 *3 *2)) (-4 *3 (-1141 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-513)) (-5 *2 (-707)) (-5 *1 (-42 *4 *3))
+ (-4 *3 (-391 *4)))))
+(((*1 *1) (-5 *1 (-1000))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1080 *7)) (-4 *7 (-878 *6 *4 *5)) (-4 *4 (-729))
+ (-4 *5 (-784)) (-4 *6 (-970)) (-5 *2 (-1080 *6))
+ (-5 *1 (-295 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-392 (-1080 (-521)))) (-5 *1 (-170)) (-5 *3 (-521)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-368))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-1100)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1058 *3)) (-4 *3 (-1119)) (-5 *2 (-108)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))))
+(((*1 *1) (-5 *1 (-1170))))
(((*1 *1 *2)
- (-12 (-5 *2 (-586 (-586 *3))) (-4 *3 (-969)) (-4 *1 (-624 *3 *4 *5))
- (-4 *4 (-346 *3)) (-4 *5 (-346 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-586 (-586 (-791)))) (-5 *1 (-791))))
+ (-12 (-5 *2 (-587 (-587 *3))) (-4 *3 (-970)) (-4 *1 (-625 *3 *4 *5))
+ (-4 *4 (-347 *3)) (-4 *5 (-347 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-587 (-587 (-792)))) (-5 *1 (-792))))
((*1 *2 *1)
- (-12 (-5 *2 (-1050 *3 *4)) (-5 *1 (-918 *3 *4)) (-14 *3 (-849))
- (-4 *4 (-336))))
+ (-12 (-5 *2 (-1051 *3 *4)) (-5 *1 (-919 *3 *4)) (-14 *3 (-850))
+ (-4 *4 (-337))))
((*1 *1 *2)
- (-12 (-5 *2 (-586 (-586 *5))) (-4 *5 (-969))
- (-4 *1 (-972 *3 *4 *5 *6 *7)) (-4 *6 (-214 *4 *5))
- (-4 *7 (-214 *3 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1030)) (-5 *1 (-303)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-586 *6)) (-4 *6 (-983 *3 *4 *5)) (-4 *3 (-424))
- (-4 *3 (-512)) (-4 *4 (-728)) (-4 *5 (-783))
- (-5 *1 (-902 *3 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-336) (-135) (-960 (-380 (-520)))))
- (-4 *5 (-1140 *4))
- (-5 *2 (-586 (-2 (|:| |deg| (-706)) (|:| -3190 *5))))
- (-5 *1 (-745 *4 *5 *3 *6)) (-4 *3 (-596 *5))
- (-4 *6 (-596 (-380 *5))))))
+ (-12 (-5 *2 (-587 (-587 *5))) (-4 *5 (-970))
+ (-4 *1 (-973 *3 *4 *5 *6 *7)) (-4 *6 (-215 *4 *5))
+ (-4 *7 (-215 *3 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1031)) (-5 *1 (-304)))))
+(((*1 *2 *1) (-12 (-5 *1 (-950 *2)) (-4 *2 (-1119)))))
+(((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-627 *11)) (-5 *4 (-587 (-381 (-881 *8))))
+ (-5 *5 (-707)) (-5 *6 (-1067)) (-4 *8 (-13 (-282) (-135)))
+ (-4 *11 (-878 *8 *10 *9)) (-4 *9 (-13 (-784) (-562 (-1084))))
+ (-4 *10 (-729))
+ (-5 *2
+ (-2
+ (|:| |rgl|
+ (-587
+ (-2 (|:| |eqzro| (-587 *11)) (|:| |neqzro| (-587 *11))
+ (|:| |wcond| (-587 (-881 *8)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1165 (-381 (-881 *8))))
+ (|:| -2470 (-587 (-1165 (-381 (-881 *8))))))))))
+ (|:| |rgsz| (-521))))
+ (-5 *1 (-853 *8 *9 *10 *11)) (-5 *7 (-521)))))
(((*1 *1 *2 *2 *3)
- (-12 (-5 *3 (-586 (-1083))) (-4 *4 (-1012))
- (-4 *5 (-13 (-969) (-814 *4) (-783) (-561 (-820 *4))))
- (-5 *1 (-991 *4 *5 *2))
- (-4 *2 (-13 (-403 *5) (-814 *4) (-561 (-820 *4))))))
+ (-12 (-5 *3 (-587 (-1084))) (-4 *4 (-1013))
+ (-4 *5 (-13 (-970) (-815 *4) (-784) (-562 (-821 *4))))
+ (-5 *1 (-992 *4 *5 *2))
+ (-4 *2 (-13 (-404 *5) (-815 *4) (-562 (-821 *4))))))
((*1 *1 *2 *2)
- (-12 (-4 *3 (-1012))
- (-4 *4 (-13 (-969) (-814 *3) (-783) (-561 (-820 *3))))
- (-5 *1 (-991 *3 *4 *2))
- (-4 *2 (-13 (-403 *4) (-814 *3) (-561 (-820 *3)))))))
-(((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-706)) (-4 *5 (-336)) (-5 *2 (-380 *6))
- (-5 *1 (-795 *5 *4 *6)) (-4 *4 (-1155 *5)) (-4 *6 (-1140 *5))))
- ((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-706)) (-5 *4 (-1156 *5 *6 *7)) (-4 *5 (-336))
- (-14 *6 (-1083)) (-14 *7 *5) (-5 *2 (-380 (-1137 *6 *5)))
- (-5 *1 (-796 *5 *6 *7))))
- ((*1 *2 *3 *3 *4)
- (|partial| -12 (-5 *3 (-706)) (-5 *4 (-1156 *5 *6 *7)) (-4 *5 (-336))
- (-14 *6 (-1083)) (-14 *7 *5) (-5 *2 (-380 (-1137 *6 *5)))
- (-5 *1 (-796 *5 *6 *7)))))
-(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-512))
- (-5 *2 (-2 (|:| -2060 *3) (|:| -3753 *3))) (-5 *1 (-1135 *4 *3))
- (-4 *3 (-1140 *4)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-380 *4)) (-4 *4 (-1140 *3))
- (-4 *3 (-13 (-336) (-135) (-960 (-520)))) (-5 *1 (-524 *3 *4)))))
+ (-12 (-4 *3 (-1013))
+ (-4 *4 (-13 (-970) (-815 *3) (-784) (-562 (-821 *3))))
+ (-5 *1 (-992 *3 *4 *2))
+ (-4 *2 (-13 (-404 *4) (-815 *3) (-562 (-821 *3)))))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1031)) (-5 *2 (-108)) (-5 *1 (-758)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-821 *3)) (-4 *3 (-1013)))))
(((*1 *2 *1)
- (-12 (-4 *2 (-1140 *3)) (-5 *1 (-372 *3 *2))
- (-4 *3 (-13 (-336) (-135))))))
-(((*1 *1 *1) (-12 (-4 *1 (-347 *2 *3)) (-4 *2 (-783)) (-4 *3 (-157))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-570 *2 *3 *4)) (-4 *2 (-783))
- (-4 *3 (-13 (-157) (-653 (-380 (-520))))) (-14 *4 (-849))))
- ((*1 *1 *1) (-12 (-5 *1 (-615 *2)) (-4 *2 (-783))))
- ((*1 *1 *1) (-12 (-5 *1 (-755 *2)) (-4 *2 (-783))))
- ((*1 *1 *1) (-12 (-4 *1 (-1179 *2 *3)) (-4 *2 (-783)) (-4 *3 (-969)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1140 (-520)))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1140 (-520))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1031 *2)) (-4 *2 (-1118)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-1031 *2)) (-4 *2 (-1118)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1012)) (-4 *5 (-1012))
- (-4 *6 (-1012)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-621 *4 *5 *6)))))
+ (-12 (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *2 (-587 *1))
+ (-4 *1 (-984 *3 *4 *5)))))
+(((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-587
+ (-2 (|:| |scalar| (-381 (-521))) (|:| |coeff| (-1080 *3))
+ (|:| |logand| (-1080 *3)))))
+ (-5 *1 (-538 *3)) (-4 *3 (-337)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970)) (-5 *2 (-1073 3 *3))))
+ ((*1 *1) (-12 (-5 *1 (-1073 *2 *3)) (-14 *2 (-850)) (-4 *3 (-970))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1044 (-202))) (-5 *1 (-1167))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1044 (-202))) (-5 *1 (-1167)))))
+(((*1 *2 *3) (-12 (-5 *2 (-587 (-521))) (-5 *1 (-518)) (-5 *3 (-521)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1032 *2)) (-4 *2 (-1119)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-1067)) (-5 *2 (-353)) (-5 *1 (-722)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3)
+ (-12 (-5 *3 (-521)) (-5 *5 (-627 (-202))) (-5 *4 (-202))
+ (-5 *2 (-959)) (-5 *1 (-687)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 (-1064 *4) (-1064 *4))) (-5 *2 (-1064 *4))
- (-5 *1 (-1187 *4)) (-4 *4 (-1118))))
+ (-12 (-5 *3 (-1 (-1065 *4) (-1065 *4))) (-5 *2 (-1065 *4))
+ (-5 *1 (-1188 *4)) (-4 *4 (-1119))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-586 (-1064 *5)) (-586 (-1064 *5)))) (-5 *4 (-520))
- (-5 *2 (-586 (-1064 *5))) (-5 *1 (-1187 *5)) (-4 *5 (-1118)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-201)) (-5 *4 (-520))
- (-5 *5 (-3 (|:| |fn| (-361)) (|:| |fp| (-62 G)))) (-5 *2 (-958))
- (-5 *1 (-684)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012))
- (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-108)))))
+ (-12 (-5 *3 (-1 (-587 (-1065 *5)) (-587 (-1065 *5)))) (-5 *4 (-521))
+ (-5 *2 (-587 (-1065 *5))) (-5 *1 (-1188 *5)) (-4 *5 (-1119)))))
+(((*1 *2)
+ (-12 (-5 *2 (-108)) (-5 *1 (-1065 *3)) (-4 *3 (-1013))
+ (-4 *3 (-1119)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1013)) (-4 *3 (-829 *5)) (-5 *2 (-627 *3))
+ (-5 *1 (-629 *5 *3 *6 *4)) (-4 *6 (-347 *3))
+ (-4 *4 (-13 (-347 *5) (-10 -7 (-6 -4233)))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-837)) (-4 *5 (-728)) (-4 *6 (-783))
- (-4 *7 (-877 *4 *5 *6)) (-5 *2 (-391 (-1079 *7)))
- (-5 *1 (-834 *4 *5 *6 *7)) (-5 *3 (-1079 *7))))
+ (-12 (-4 *3 (-1141 (-381 (-521))))
+ (-5 *2 (-2 (|:| |den| (-521)) (|:| |gcdnum| (-521))))
+ (-5 *1 (-842 *3 *4)) (-4 *4 (-1141 (-381 *3)))))
((*1 *2 *3)
- (-12 (-4 *4 (-837)) (-4 *5 (-1140 *4)) (-5 *2 (-391 (-1079 *5)))
- (-5 *1 (-835 *4 *5)) (-5 *3 (-1079 *5)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-375)) (-5 *2 (-706))))
- ((*1 *1 *1) (-4 *1 (-375))))
-(((*1 *2)
- (-12 (-5 *2 (-108)) (-5 *1 (-1096 *3 *4)) (-4 *3 (-1012))
- (-4 *4 (-1012)))))
+ (-12 (-4 *4 (-1141 (-381 *2))) (-5 *2 (-521)) (-5 *1 (-842 *4 *3))
+ (-4 *3 (-1141 (-381 *4))))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729))
+ (-4 *4 (-784))))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1113 *3 *4 *5 *2)) (-4 *3 (-513)) (-4 *4 (-729))
+ (-4 *5 (-784)) (-4 *2 (-984 *3 *4 *5)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-520)) (-4 *1 (-1006 *3)) (-4 *3 (-1118)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-706)) (-4 *4 (-512)) (-5 *1 (-895 *4 *2))
- (-4 *2 (-1140 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-546 *3)) (-4 *3 (-969))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-898 *3 *4 *5)) (-4 *3 (-969)) (-4 *4 (-727))
- (-4 *5 (-783)) (-5 *2 (-108)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1079 *3)) (-5 *1 (-842 *3)) (-4 *3 (-281)))))
-(((*1 *1 *2 *2)
- (-12 (-5 *2 (-586 (-520))) (-5 *1 (-928 *3)) (-14 *3 (-520)))))
-(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7)
- (-12 (-5 *3 (-520)) (-5 *5 (-626 (-201)))
- (-5 *6 (-3 (|:| |fn| (-361)) (|:| |fp| (-65 DOT))))
- (-5 *7 (-3 (|:| |fn| (-361)) (|:| |fp| (-66 IMAGE)))) (-5 *4 (-201))
- (-5 *2 (-958)) (-5 *1 (-691))))
- ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8)
- (-12 (-5 *3 (-520)) (-5 *5 (-626 (-201)))
- (-5 *6 (-3 (|:| |fn| (-361)) (|:| |fp| (-65 DOT))))
- (-5 *7 (-3 (|:| |fn| (-361)) (|:| |fp| (-66 IMAGE)))) (-5 *8 (-361))
- (-5 *4 (-201)) (-5 *2 (-958)) (-5 *1 (-691)))))
-(((*1 *2 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *2 (-958))
- (-5 *1 (-683)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-520)) (-5 *1 (-509)))))
-(((*1 *2 *3 *2)
- (-12 (-4 *1 (-722)) (-5 *2 (-958))
- (-5 *3
- (-2 (|:| |fn| (-289 (-201)))
- (|:| -1667 (-586 (-1007 (-776 (-201))))) (|:| |abserr| (-201))
- (|:| |relerr| (-201))))))
- ((*1 *2 *3 *2)
- (-12 (-4 *1 (-722)) (-5 *2 (-958))
- (-5 *3
- (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201)))
- (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201))
- (|:| |relerr| (-201)))))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-3 (-380 (-880 *6)) (-1073 (-1083) (-880 *6))))
- (-5 *5 (-706)) (-4 *6 (-424)) (-5 *2 (-586 (-626 (-380 (-880 *6)))))
- (-5 *1 (-266 *6)) (-5 *4 (-626 (-380 (-880 *6))))))
- ((*1 *2 *3 *4)
- (-12
- (-5 *3
- (-2 (|:| |eigval| (-3 (-380 (-880 *5)) (-1073 (-1083) (-880 *5))))
- (|:| |eigmult| (-706)) (|:| |eigvec| (-586 *4))))
- (-4 *5 (-424)) (-5 *2 (-586 (-626 (-380 (-880 *5)))))
- (-5 *1 (-266 *5)) (-5 *4 (-626 (-380 (-880 *5)))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-586 (-586 *3))) (-4 *3 (-1012)) (-5 *1 (-833 *3)))))
+ (-12 (-5 *2 (-521)) (-4 *1 (-1007 *3)) (-4 *3 (-1119)))))
+(((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-516)))))
+(((*1 *2)
+ (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-340 *3 *4))
+ (-4 *3 (-341 *4))))
+ ((*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-5 *2 (-108)))))
+(((*1 *2 *1 *1 *3 *4)
+ (-12 (-5 *3 (-1 (-108) *5 *5)) (-5 *4 (-1 (-108) *6 *6))
+ (-4 *5 (-13 (-1013) (-33))) (-4 *6 (-13 (-1013) (-33)))
+ (-5 *2 (-108)) (-5 *1 (-1049 *5 *6)))))
+(((*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1067)) (-5 *1 (-722)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-902 *4 *5 *6 *3)) (-4 *4 (-970)) (-4 *5 (-729))
+ (-4 *6 (-784)) (-4 *3 (-984 *4 *5 *6)) (-4 *4 (-513))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-586 *2)) (-5 *1 (-456 *2)) (-4 *2 (-1140 (-520))))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3)
- (-12 (-5 *3 (-520)) (-5 *5 (-626 (-201))) (-5 *4 (-201))
- (-5 *2 (-958)) (-5 *1 (-689)))))
+ (-12 (-4 *1 (-323)) (-5 *3 (-521)) (-5 *2 (-1093 (-850) (-707))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-759)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-281) (-135))) (-4 *5 (-728)) (-4 *6 (-783))
- (-4 *7 (-877 *4 *5 *6)) (-5 *2 (-586 (-586 *7)))
- (-5 *1 (-420 *4 *5 *6 *7)) (-5 *3 (-586 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-108)) (-4 *5 (-13 (-281) (-135))) (-4 *6 (-728))
- (-4 *7 (-783)) (-4 *8 (-877 *5 *6 *7)) (-5 *2 (-586 (-586 *8)))
- (-5 *1 (-420 *5 *6 *7 *8)) (-5 *3 (-586 *8)))))
+ (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-766)) (-5 *3 (-1067)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-843 *3)) (-4 *3 (-282)))))
+(((*1 *2)
+ (-12 (-5 *2 (-108)) (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1080 *2)) (-4 *2 (-878 (-381 (-881 *6)) *5 *4))
+ (-5 *1 (-669 *5 *4 *6 *2)) (-4 *5 (-729))
+ (-4 *4 (-13 (-784) (-10 -8 (-15 -1430 ((-1084) $)))))
+ (-4 *6 (-513)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1085 (-380 (-520)))) (-5 *1 (-168)) (-5 *3 (-520)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-586 (-820 *3))) (-5 *1 (-820 *3))
- (-4 *3 (-1012)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-871 *3) (-871 *3))) (-5 *1 (-160 *3))
- (-4 *3 (-13 (-336) (-1104) (-926))))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-281)) (-5 *2 (-108)))))
-(((*1 *1) (-5 *1 (-515))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-586 (-1066))) (-5 *1 (-367)))))
-(((*1 *2) (-12 (-5 *2 (-1066)) (-5 *1 (-695)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-545 *2)) (-4 *2 (-37 (-380 (-520)))) (-4 *2 (-969)))))
+ (-12 (-5 *3 (-587 (-521))) (-5 *2 (-1086 (-381 (-521))))
+ (-5 *1 (-169)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1065 (-1065 *4))) (-5 *2 (-1065 *4)) (-5 *1 (-1069 *4))
+ (-4 *4 (-37 (-381 (-521)))) (-4 *4 (-970)))))
+(((*1 *2 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-157)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-108)) (-5 *1 (-290 *3)) (-4 *3 (-513)) (-4 *3 (-784)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1178 (-1084) *3)) (-4 *3 (-970)) (-5 *1 (-1185 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1178 *3 *4)) (-4 *3 (-784)) (-4 *4 (-970))
+ (-5 *1 (-1187 *3 *4)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-513)) (-4 *3 (-970))
+ (-5 *2 (-2 (|:| -3727 *1) (|:| -3820 *1))) (-4 *1 (-786 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-94 *5)) (-4 *5 (-513)) (-4 *5 (-970))
+ (-5 *2 (-2 (|:| -3727 *3) (|:| -3820 *3))) (-5 *1 (-787 *5 *3))
+ (-4 *3 (-786 *5)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-586 *1)) (-4 *1 (-983 *4 *5 *6)) (-4 *4 (-969))
- (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-108))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-983 *3 *4 *5)) (-4 *3 (-969)) (-4 *4 (-728))
- (-4 *5 (-783)) (-5 *2 (-108))))
+ (-12 (-5 *3 (-707)) (-4 *4 (-970))
+ (-5 *2 (-2 (|:| -3727 *1) (|:| -3820 *1))) (-4 *1 (-1141 *4)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1150 *3 *4 *5)) (-4 *3 (-13 (-337) (-784)))
+ (-14 *4 (-1084)) (-14 *5 *3) (-5 *1 (-293 *3 *4 *5))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1 (-353))) (-5 *1 (-963)) (-5 *3 (-353)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-1013)) (-5 *1 (-892 *3 *2)) (-4 *3 (-1013)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-547 *3)) (-4 *3 (-970))))
((*1 *2 *1)
- (-12 (-4 *1 (-1112 *3 *4 *5 *6)) (-4 *3 (-512)) (-4 *4 (-728))
- (-4 *5 (-783)) (-4 *6 (-983 *3 *4 *5)) (-5 *2 (-108))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1112 *4 *5 *6 *3)) (-4 *4 (-512)) (-4 *5 (-728))
- (-4 *6 (-783)) (-4 *3 (-983 *4 *5 *6)) (-5 *2 (-108)))))
+ (-12 (-4 *1 (-899 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-728))
+ (-4 *5 (-784)) (-5 *2 (-108)))))
+(((*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-784)) (-5 *1 (-122 *3)))))
(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-871 *3) (-871 *3))) (-5 *1 (-160 *3))
- (-4 *3 (-13 (-336) (-1104) (-926))))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-132)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-1169)) (-5 *1 (-1166)))))
+ (-12 (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-587 *3))
+ (-5 *1 (-903 *4 *5 *6 *3)) (-4 *3 (-984 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1032 *2)) (-4 *2 (-1119)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| -1797 (-353)) (|:| -2884 (-1067))
+ (|:| |explanations| (-587 (-1067)))))
+ (-5 *2 (-959)) (-5 *1 (-280))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| -1797 (-353)) (|:| -2884 (-1067))
+ (|:| |explanations| (-587 (-1067))) (|:| |extra| (-959))))
+ (-5 *2 (-959)) (-5 *1 (-280)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-587 *7)) (-4 *7 (-984 *4 *5 *6)) (-4 *4 (-513))
+ (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-108))
+ (-5 *1 (-903 *4 *5 *6 *7)))))
(((*1 *2 *3)
(|partial| -12
(-5 *3
- (-2 (|:| |var| (-1083)) (|:| |fn| (-289 (-201)))
- (|:| -1667 (-1007 (-776 (-201)))) (|:| |abserr| (-201))
- (|:| |relerr| (-201))))
+ (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202)))
+ (|:| -2442 (-1008 (-777 (-202)))) (|:| |abserr| (-202))
+ (|:| |relerr| (-202))))
(-5 *2
(-2
(|:| |endPointContinuity|
@@ -16595,1529 +16660,1467 @@
(|:| |notEvaluated|
"End point continuity not yet evaluated")))
(|:| |singularitiesStream|
- (-3 (|:| |str| (-1064 (-201)))
+ (-3 (|:| |str| (-1065 (-202)))
(|:| |notEvaluated|
"Internal singularities not yet evaluated")))
- (|:| -1667
+ (|:| -2442
(-3 (|:| |finite| "The range is finite")
(|:| |lowerInfinite| "The bottom of range is infinite")
(|:| |upperInfinite| "The top of range is infinite")
(|:| |bothInfinite|
"Both top and bottom points are infinite")
(|:| |notEvaluated| "Range not yet evaluated")))))
- (-5 *1 (-515)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-520)) (-5 *1 (-217))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-586 (-1066))) (-5 *2 (-520)) (-5 *1 (-217)))))
-(((*1 *2 *3 *2)
- (-12 (-4 *2 (-13 (-336) (-781))) (-5 *1 (-164 *2 *3))
- (-4 *3 (-1140 (-154 *2)))))
- ((*1 *2 *3)
- (-12 (-4 *2 (-13 (-336) (-781))) (-5 *1 (-164 *2 *3))
- (-4 *3 (-1140 (-154 *2))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-299 *3 *4)) (-4 *3 (-969)) (-4 *4 (-727))
- (-5 *2 (-706))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-355 *3 *4)) (-4 *3 (-969)) (-4 *4 (-1012))
- (-5 *2 (-706))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-706)) (-5 *1 (-671 *3 *4)) (-4 *3 (-969))
- (-4 *4 (-662)))))
-(((*1 *2)
- (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-339 *3 *4))
- (-4 *3 (-340 *4))))
- ((*1 *2) (-12 (-4 *1 (-340 *3)) (-4 *3 (-157)) (-5 *2 (-108)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-586 (-2 (|:| |den| (-520)) (|:| |gcdnum| (-520)))))
- (-4 *4 (-1140 (-380 *2))) (-5 *2 (-520)) (-5 *1 (-841 *4 *5))
- (-4 *5 (-1140 (-380 *4))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-586 (-268 *3))) (-5 *1 (-268 *3)) (-4 *3 (-512))
- (-4 *3 (-1118)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-706)) (-4 *3 (-969)) (-4 *1 (-624 *3 *4 *5))
- (-4 *4 (-346 *3)) (-4 *5 (-346 *3))))
+ (-5 *1 (-516)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-347 *2)) (-4 *2 (-1119)) (-4 *2 (-784))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-347 *3)) (-4 *3 (-1119))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-895 *2)) (-4 *2 (-784))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1045 *2)) (-4 *2 (-970))))
+ ((*1 *1 *2) (-12 (-5 *2 (-587 *1)) (-4 *1 (-1045 *3)) (-4 *3 (-970))))
((*1 *1 *2)
- (-12 (-4 *2 (-969)) (-4 *1 (-1033 *3 *2 *4 *5)) (-4 *4 (-214 *3 *2))
- (-4 *5 (-214 *3 *2)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *3 (-706)) (-4 *4 (-13 (-512) (-135)))
- (-5 *1 (-1134 *4 *2)) (-4 *2 (-1140 *4)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1083)) (-5 *3 (-586 (-730))) (-5 *1 (-104)))))
+ (-12 (-5 *2 (-587 (-1073 *3 *4))) (-5 *1 (-1073 *3 *4))
+ (-14 *3 (-850)) (-4 *4 (-970))))
+ ((*1 *1 *1 *1)
+ (-12 (-5 *1 (-1073 *2 *3)) (-14 *2 (-850)) (-4 *3 (-970)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1084)) (-5 *5 (-587 *3))
+ (-4 *3 (-13 (-27) (-1105) (-404 *6)))
+ (-4 *6 (-13 (-425) (-784) (-135) (-961 (-521)) (-583 (-521))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-587 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-514 *6 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-587 (-587 (-202)))) (-5 *1 (-855)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-872 *3) (-872 *3))) (-5 *1 (-160 *3))
+ (-4 *3 (-13 (-337) (-1105) (-927))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-707)) (-5 *2 (-627 (-881 *4))) (-5 *1 (-952 *4))
+ (-4 *4 (-970)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1165 (-587 (-2 (|:| -3430 *4) (|:| -2716 (-1031))))))
+ (-4 *4 (-323)) (-5 *2 (-627 *4)) (-5 *1 (-320 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1115 *3)) (-4 *3 (-900)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-969)) (-5 *1 (-1068 *3))))
+ (-12 (-4 *3 (-337)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3))
+ (-5 *1 (-488 *3 *4 *5 *2)) (-4 *2 (-625 *3 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-513)) (-4 *5 (-347 *4)) (-4 *6 (-347 *4))
+ (-4 *7 (-918 *4)) (-4 *2 (-625 *7 *8 *9))
+ (-5 *1 (-489 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-625 *4 *5 *6))
+ (-4 *8 (-347 *7)) (-4 *9 (-347 *7))))
((*1 *1 *1)
- (-12 (-5 *1 (-1156 *2 *3 *4)) (-4 *2 (-969)) (-14 *3 (-1083))
- (-14 *4 *2))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-908 *2)) (-4 *2 (-1104)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 (-520))) (-4 *3 (-969)) (-5 *1 (-545 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 (-520))) (-4 *1 (-1124 *3)) (-4 *3 (-969))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 (-520))) (-4 *1 (-1155 *3)) (-4 *3 (-969)))))
+ (-12 (-4 *1 (-625 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-347 *2))
+ (-4 *4 (-347 *2)) (-4 *2 (-282))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-282)) (-4 *3 (-157)) (-4 *4 (-347 *3))
+ (-4 *5 (-347 *3)) (-5 *1 (-626 *3 *4 *5 *2))
+ (-4 *2 (-625 *3 *4 *5))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-627 *3)) (-4 *3 (-282)) (-5 *1 (-637 *3))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-973 *2 *3 *4 *5 *6)) (-4 *4 (-970))
+ (-4 *5 (-215 *3 *4)) (-4 *6 (-215 *2 *4)) (-4 *4 (-282)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-1031)) (-5 *1 (-105)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *6 (-850)) (-4 *5 (-282)) (-4 *3 (-1141 *5))
+ (-5 *2 (-2 (|:| |plist| (-587 *3)) (|:| |modulo| *5)))
+ (-5 *1 (-433 *5 *3)) (-5 *4 (-587 *3)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *4 (-1084)) (-5 *6 (-108))
+ (-4 *7 (-13 (-282) (-784) (-135) (-961 (-521)) (-583 (-521))))
+ (-4 *3 (-13 (-1105) (-887) (-29 *7)))
+ (-5 *2
+ (-3 (|:| |f1| (-777 *3)) (|:| |f2| (-587 (-777 *3)))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-196 *7 *3)) (-5 *5 (-777 *3)))))
+(((*1 *2 *2 *3 *4 *5)
+ (-12 (-5 *2 (-587 *9)) (-5 *3 (-1 (-108) *9))
+ (-5 *4 (-1 (-108) *9 *9)) (-5 *5 (-1 *9 *9 *9))
+ (-4 *9 (-984 *6 *7 *8)) (-4 *6 (-513)) (-4 *7 (-729)) (-4 *8 (-784))
+ (-5 *1 (-903 *6 *7 *8 *9)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-587 *7)) (-4 *7 (-984 *4 *5 *6)) (-4 *4 (-513))
+ (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-587 (-1176 *4 *5 *6 *7)))
+ (-5 *1 (-1176 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-587 *9)) (-5 *4 (-1 (-108) *9 *9))
+ (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-984 *6 *7 *8)) (-4 *6 (-513))
+ (-4 *7 (-729)) (-4 *8 (-784)) (-5 *2 (-587 (-1176 *6 *7 *8 *9)))
+ (-5 *1 (-1176 *6 *7 *8 *9)))))
+(((*1 *2 *2) (|partial| -12 (-5 *1 (-539 *2)) (-4 *2 (-506)))))
(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-520)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 (-706)) (-4 *5 (-157))))
+ (-12 (-5 *2 (-521)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 (-707)) (-4 *5 (-157))))
((*1 *1 *1)
- (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-520)) (-14 *3 (-706))
+ (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-521)) (-14 *3 (-707))
(-4 *4 (-157))))
((*1 *1 *1)
- (-12 (-4 *1 (-624 *2 *3 *4)) (-4 *2 (-969)) (-4 *3 (-346 *2))
- (-4 *4 (-346 *2))))
+ (-12 (-4 *1 (-625 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-347 *2))
+ (-4 *4 (-347 *2))))
((*1 *1 *2)
- (-12 (-4 *3 (-969)) (-4 *1 (-624 *3 *2 *4)) (-4 *2 (-346 *3))
- (-4 *4 (-346 *3))))
+ (-12 (-4 *3 (-970)) (-4 *1 (-625 *3 *2 *4)) (-4 *2 (-347 *3))
+ (-4 *4 (-347 *3))))
((*1 *1 *1)
- (-12 (-5 *1 (-1050 *2 *3)) (-14 *2 (-706)) (-4 *3 (-969)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1083)) (-5 *4 (-880 (-520))) (-5 *2 (-303))
- (-5 *1 (-305)))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-586 *6)) (-4 *6 (-983 *3 *4 *5))
- (-4 *3 (-512)) (-4 *4 (-728)) (-4 *5 (-783))
- (-5 *1 (-1175 *3 *4 *5 *6))))
- ((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-586 *8)) (-5 *3 (-1 (-108) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-983 *5 *6 *7)) (-4 *5 (-512))
- (-4 *6 (-728)) (-4 *7 (-783)) (-5 *1 (-1175 *5 *6 *7 *8)))))
-(((*1 *1 *2) (-12 (-5 *2 (-586 *3)) (-4 *3 (-1012)) (-5 *1 (-198 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-586 *3)) (-4 *3 (-1118)) (-4 *1 (-229 *3))))
- ((*1 *1) (-12 (-4 *1 (-229 *2)) (-4 *2 (-1118)))))
-(((*1 *2 *3 *1)
+ (-12 (-5 *1 (-1051 *2 *3)) (-14 *2 (-707)) (-4 *3 (-970)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-784))
+ (-4 *7 (-984 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-587 *7)) (|:| |badPols| (-587 *7))))
+ (-5 *1 (-903 *4 *5 *6 *7)) (-5 *3 (-587 *7)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1084)) (-5 *2 (-1 (-1080 (-881 *4)) (-881 *4)))
+ (-5 *1 (-1173 *4)) (-4 *4 (-337)))))
+(((*1 *1 *2) (-12 (-5 *2 (-290 (-154 (-353)))) (-5 *1 (-304))))
+ ((*1 *1 *2) (-12 (-5 *2 (-290 (-521))) (-5 *1 (-304))))
+ ((*1 *1 *2) (-12 (-5 *2 (-290 (-353))) (-5 *1 (-304))))
+ ((*1 *1 *2) (-12 (-5 *2 (-290 (-631))) (-5 *1 (-304))))
+ ((*1 *1 *2) (-12 (-5 *2 (-290 (-638))) (-5 *1 (-304))))
+ ((*1 *1 *2) (-12 (-5 *2 (-290 (-636))) (-5 *1 (-304))))
+ ((*1 *1) (-5 *1 (-304))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-757)) (-14 *5 (-1084)) (-5 *2 (-587 (-1138 *5 *4)))
+ (-5 *1 (-1027 *4 *5)) (-5 *3 (-1138 *5 *4)))))
+(((*1 *2 *1 *1)
(-12
(-5 *2
- (-2 (|:| |cycle?| (-108)) (|:| -3369 (-706)) (|:| |period| (-706))))
- (-5 *1 (-1064 *4)) (-4 *4 (-1118)) (-5 *3 (-706)))))
-(((*1 *2 *2) (-12 (-5 *2 (-154 (-201))) (-5 *1 (-202))))
- ((*1 *2 *2) (-12 (-5 *2 (-201)) (-5 *1 (-202))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-404 *3 *2))
- (-4 *2 (-403 *3))))
- ((*1 *1 *1) (-4 *1 (-1047))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-424)) (-4 *3 (-783)) (-4 *3 (-960 (-520)))
- (-4 *3 (-512)) (-5 *1 (-40 *3 *2)) (-4 *2 (-403 *3))
- (-4 *2
- (-13 (-336) (-276)
- (-10 -8 (-15 -2800 ((-1035 *3 (-559 $)) $))
- (-15 -2811 ((-1035 *3 (-559 $)) $))
- (-15 -2188 ($ (-1035 *3 (-559 $))))))))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1079 *1)) (-4 *1 (-936)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-520)) (-5 *4 (-626 (-201))) (-5 *2 (-958))
- (-5 *1 (-683)))))
+ (-2 (|:| |lm| (-360 *3)) (|:| |mm| (-360 *3)) (|:| |rm| (-360 *3))))
+ (-5 *1 (-360 *3)) (-4 *3 (-1013))))
+ ((*1 *2 *1 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| |lm| (-756 *3)) (|:| |mm| (-756 *3)) (|:| |rm| (-756 *3))))
+ (-5 *1 (-756 *3)) (-4 *3 (-784)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1118))))
+ (|partial| -12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1119))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-880 (-352))) (-5 *1 (-312 *3 *4 *5))
- (-4 *5 (-960 (-352))) (-14 *3 (-586 (-1083)))
- (-14 *4 (-586 (-1083))) (-4 *5 (-360))))
+ (|partial| -12 (-5 *2 (-881 (-353))) (-5 *1 (-313 *3 *4 *5))
+ (-4 *5 (-961 (-353))) (-14 *3 (-587 (-1084)))
+ (-14 *4 (-587 (-1084))) (-4 *5 (-361))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-380 (-880 (-352)))) (-5 *1 (-312 *3 *4 *5))
- (-4 *5 (-960 (-352))) (-14 *3 (-586 (-1083)))
- (-14 *4 (-586 (-1083))) (-4 *5 (-360))))
+ (|partial| -12 (-5 *2 (-381 (-881 (-353)))) (-5 *1 (-313 *3 *4 *5))
+ (-4 *5 (-961 (-353))) (-14 *3 (-587 (-1084)))
+ (-14 *4 (-587 (-1084))) (-4 *5 (-361))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-289 (-352))) (-5 *1 (-312 *3 *4 *5))
- (-4 *5 (-960 (-352))) (-14 *3 (-586 (-1083)))
- (-14 *4 (-586 (-1083))) (-4 *5 (-360))))
+ (|partial| -12 (-5 *2 (-290 (-353))) (-5 *1 (-313 *3 *4 *5))
+ (-4 *5 (-961 (-353))) (-14 *3 (-587 (-1084)))
+ (-14 *4 (-587 (-1084))) (-4 *5 (-361))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-880 (-520))) (-5 *1 (-312 *3 *4 *5))
- (-4 *5 (-960 (-520))) (-14 *3 (-586 (-1083)))
- (-14 *4 (-586 (-1083))) (-4 *5 (-360))))
+ (|partial| -12 (-5 *2 (-881 (-521))) (-5 *1 (-313 *3 *4 *5))
+ (-4 *5 (-961 (-521))) (-14 *3 (-587 (-1084)))
+ (-14 *4 (-587 (-1084))) (-4 *5 (-361))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-380 (-880 (-520)))) (-5 *1 (-312 *3 *4 *5))
- (-4 *5 (-960 (-520))) (-14 *3 (-586 (-1083)))
- (-14 *4 (-586 (-1083))) (-4 *5 (-360))))
+ (|partial| -12 (-5 *2 (-381 (-881 (-521)))) (-5 *1 (-313 *3 *4 *5))
+ (-4 *5 (-961 (-521))) (-14 *3 (-587 (-1084)))
+ (-14 *4 (-587 (-1084))) (-4 *5 (-361))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-289 (-520))) (-5 *1 (-312 *3 *4 *5))
- (-4 *5 (-960 (-520))) (-14 *3 (-586 (-1083)))
- (-14 *4 (-586 (-1083))) (-4 *5 (-360))))
+ (|partial| -12 (-5 *2 (-290 (-521))) (-5 *1 (-313 *3 *4 *5))
+ (-4 *5 (-961 (-521))) (-14 *3 (-587 (-1084)))
+ (-14 *4 (-587 (-1084))) (-4 *5 (-361))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1083)) (-5 *1 (-312 *3 *4 *5))
- (-14 *3 (-586 *2)) (-14 *4 (-586 *2)) (-4 *5 (-360))))
+ (|partial| -12 (-5 *2 (-1084)) (-5 *1 (-313 *3 *4 *5))
+ (-14 *3 (-587 *2)) (-14 *4 (-587 *2)) (-4 *5 (-361))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-289 *5)) (-4 *5 (-360))
- (-5 *1 (-312 *3 *4 *5)) (-14 *3 (-586 (-1083)))
- (-14 *4 (-586 (-1083)))))
+ (|partial| -12 (-5 *2 (-290 *5)) (-4 *5 (-361))
+ (-5 *1 (-313 *3 *4 *5)) (-14 *3 (-587 (-1084)))
+ (-14 *4 (-587 (-1084)))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-626 (-380 (-880 (-520))))) (-4 *1 (-357))))
+ (|partial| -12 (-5 *2 (-627 (-381 (-881 (-521))))) (-4 *1 (-358))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-626 (-380 (-880 (-352))))) (-4 *1 (-357))))
+ (|partial| -12 (-5 *2 (-627 (-381 (-881 (-353))))) (-4 *1 (-358))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-626 (-880 (-520)))) (-4 *1 (-357))))
+ (|partial| -12 (-5 *2 (-627 (-881 (-521)))) (-4 *1 (-358))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-626 (-880 (-352)))) (-4 *1 (-357))))
+ (|partial| -12 (-5 *2 (-627 (-881 (-353)))) (-4 *1 (-358))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-626 (-289 (-520)))) (-4 *1 (-357))))
+ (|partial| -12 (-5 *2 (-627 (-290 (-521)))) (-4 *1 (-358))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-626 (-289 (-352)))) (-4 *1 (-357))))
+ (|partial| -12 (-5 *2 (-627 (-290 (-353)))) (-4 *1 (-358))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-380 (-880 (-520)))) (-4 *1 (-369))))
+ (|partial| -12 (-5 *2 (-381 (-881 (-521)))) (-4 *1 (-370))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-380 (-880 (-352)))) (-4 *1 (-369))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-880 (-520))) (-4 *1 (-369))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-880 (-352))) (-4 *1 (-369))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-289 (-520))) (-4 *1 (-369))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-289 (-352))) (-4 *1 (-369))))
+ (|partial| -12 (-5 *2 (-381 (-881 (-353)))) (-4 *1 (-370))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-881 (-521))) (-4 *1 (-370))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-881 (-353))) (-4 *1 (-370))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-290 (-521))) (-4 *1 (-370))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-290 (-353))) (-4 *1 (-370))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1164 (-380 (-880 (-520))))) (-4 *1 (-413))))
+ (|partial| -12 (-5 *2 (-1165 (-381 (-881 (-521))))) (-4 *1 (-414))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1164 (-380 (-880 (-352))))) (-4 *1 (-413))))
+ (|partial| -12 (-5 *2 (-1165 (-381 (-881 (-353))))) (-4 *1 (-414))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1164 (-880 (-520)))) (-4 *1 (-413))))
+ (|partial| -12 (-5 *2 (-1165 (-881 (-521)))) (-4 *1 (-414))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1164 (-880 (-352)))) (-4 *1 (-413))))
+ (|partial| -12 (-5 *2 (-1165 (-881 (-353)))) (-4 *1 (-414))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1164 (-289 (-520)))) (-4 *1 (-413))))
+ (|partial| -12 (-5 *2 (-1165 (-290 (-521)))) (-4 *1 (-414))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1164 (-289 (-352)))) (-4 *1 (-413))))
+ (|partial| -12 (-5 *2 (-1165 (-290 (-353)))) (-4 *1 (-414))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-322)) (-4 *5 (-302 *4)) (-4 *6 (-1140 *5))
- (-5 *2 (-1079 (-1079 *4))) (-5 *1 (-712 *4 *5 *6 *3 *7))
- (-4 *3 (-1140 *6)) (-14 *7 (-849))))
+ (|partial| -12 (-4 *4 (-323)) (-4 *5 (-303 *4)) (-4 *6 (-1141 *5))
+ (-5 *2 (-1080 (-1080 *4))) (-5 *1 (-713 *4 *5 *6 *3 *7))
+ (-4 *3 (-1141 *6)) (-14 *7 (-850))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-586 *6)) (-4 *6 (-983 *3 *4 *5))
- (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783))
- (-4 *1 (-901 *3 *4 *5 *6))))
- ((*1 *2 *1) (|partial| -12 (-4 *1 (-960 *2)) (-4 *2 (-1118))))
+ (|partial| -12 (-5 *2 (-587 *6)) (-4 *6 (-984 *3 *4 *5))
+ (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784))
+ (-4 *1 (-902 *3 *4 *5 *6))))
+ ((*1 *2 *1) (|partial| -12 (-4 *1 (-961 *2)) (-4 *2 (-1119))))
((*1 *1 *2)
- (|partial| -3700
- (-12 (-5 *2 (-880 *3))
- (-12 (-2399 (-4 *3 (-37 (-380 (-520)))))
- (-2399 (-4 *3 (-37 (-520)))) (-4 *5 (-561 (-1083))))
- (-4 *3 (-969)) (-4 *1 (-983 *3 *4 *5)) (-4 *4 (-728))
- (-4 *5 (-783)))
- (-12 (-5 *2 (-880 *3))
- (-12 (-2399 (-4 *3 (-505))) (-2399 (-4 *3 (-37 (-380 (-520)))))
- (-4 *3 (-37 (-520))) (-4 *5 (-561 (-1083))))
- (-4 *3 (-969)) (-4 *1 (-983 *3 *4 *5)) (-4 *4 (-728))
- (-4 *5 (-783)))
- (-12 (-5 *2 (-880 *3))
- (-12 (-2399 (-4 *3 (-917 (-520)))) (-4 *3 (-37 (-380 (-520))))
- (-4 *5 (-561 (-1083))))
- (-4 *3 (-969)) (-4 *1 (-983 *3 *4 *5)) (-4 *4 (-728))
- (-4 *5 (-783)))))
+ (|partial| -3703
+ (-12 (-5 *2 (-881 *3))
+ (-12 (-2400 (-4 *3 (-37 (-381 (-521)))))
+ (-2400 (-4 *3 (-37 (-521)))) (-4 *5 (-562 (-1084))))
+ (-4 *3 (-970)) (-4 *1 (-984 *3 *4 *5)) (-4 *4 (-729))
+ (-4 *5 (-784)))
+ (-12 (-5 *2 (-881 *3))
+ (-12 (-2400 (-4 *3 (-506))) (-2400 (-4 *3 (-37 (-381 (-521)))))
+ (-4 *3 (-37 (-521))) (-4 *5 (-562 (-1084))))
+ (-4 *3 (-970)) (-4 *1 (-984 *3 *4 *5)) (-4 *4 (-729))
+ (-4 *5 (-784)))
+ (-12 (-5 *2 (-881 *3))
+ (-12 (-2400 (-4 *3 (-918 (-521)))) (-4 *3 (-37 (-381 (-521))))
+ (-4 *5 (-562 (-1084))))
+ (-4 *3 (-970)) (-4 *1 (-984 *3 *4 *5)) (-4 *4 (-729))
+ (-4 *5 (-784)))))
((*1 *1 *2)
- (|partial| -3700
- (-12 (-5 *2 (-880 (-520))) (-4 *1 (-983 *3 *4 *5))
- (-12 (-2399 (-4 *3 (-37 (-380 (-520))))) (-4 *3 (-37 (-520)))
- (-4 *5 (-561 (-1083))))
- (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783)))
- (-12 (-5 *2 (-880 (-520))) (-4 *1 (-983 *3 *4 *5))
- (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *5 (-561 (-1083))))
- (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783)))))
+ (|partial| -3703
+ (-12 (-5 *2 (-881 (-521))) (-4 *1 (-984 *3 *4 *5))
+ (-12 (-2400 (-4 *3 (-37 (-381 (-521))))) (-4 *3 (-37 (-521)))
+ (-4 *5 (-562 (-1084))))
+ (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784)))
+ (-12 (-5 *2 (-881 (-521))) (-4 *1 (-984 *3 *4 *5))
+ (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *5 (-562 (-1084))))
+ (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784)))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-880 (-380 (-520)))) (-4 *1 (-983 *3 *4 *5))
- (-4 *3 (-37 (-380 (-520)))) (-4 *5 (-561 (-1083))) (-4 *3 (-969))
- (-4 *4 (-728)) (-4 *5 (-783)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1066)) (-5 *2 (-1169)) (-5 *1 (-409)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-224)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1064 (-586 (-520)))) (-5 *1 (-811)))))
-(((*1 *2 *2) (-12 (-5 *2 (-520)) (-5 *1 (-509)))))
+ (|partial| -12 (-5 *2 (-881 (-381 (-521)))) (-4 *1 (-984 *3 *4 *5))
+ (-4 *3 (-37 (-381 (-521)))) (-4 *5 (-562 (-1084))) (-4 *3 (-970))
+ (-4 *4 (-729)) (-4 *5 (-784)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-696)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-225)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-513))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2258 *3)))
+ (-5 *1 (-896 *4 *3)) (-4 *3 (-1141 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-282)) (-5 *1 (-637 *3)))))
+(((*1 *2) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-766)))))
+(((*1 *2 *3) (-12 (-5 *3 (-353)) (-5 *2 (-202)) (-5 *1 (-280)))))
+(((*1 *2 *1) (-12 (-5 *2 (-587 (-1089))) (-5 *1 (-1089)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-1064 *3))) (-5 *2 (-1064 *3)) (-5 *1 (-1068 *3))
- (-4 *3 (-37 (-380 (-520)))) (-4 *3 (-969)))))
-(((*1 *1 *1 *1)
- (|partial| -12 (-4 *2 (-157)) (-5 *1 (-263 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1140 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
- (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-647 *2 *3 *4 *5 *6)) (-4 *2 (-157))
- (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
- (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-651 *2 *3 *4 *5 *6)) (-4 *2 (-157))
- (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
- (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
+ (-12 (-5 *3 (-521)) (-5 *4 (-392 *2)) (-4 *2 (-878 *7 *5 *6))
+ (-5 *1 (-679 *5 *6 *7 *2)) (-4 *5 (-729)) (-4 *6 (-784))
+ (-4 *7 (-282)))))
+(((*1 *1 *2) (-12 (-5 *2 (-756 *3)) (-4 *3 (-784)) (-5 *1 (-612 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-959)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1141 *3)) (-4 *3 (-970)) (-5 *2 (-1080 *3)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-587 (-1084))) (-5 *1 (-497)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1079 (-520))) (-5 *1 (-870)) (-5 *3 (-520))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-281)) (-4 *4 (-346 *3)) (-4 *5 (-346 *3))
- (-5 *1 (-1034 *3 *4 *5 *2)) (-4 *2 (-624 *3 *4 *5)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-380 (-880 *4))) (-5 *3 (-1083))
- (-4 *4 (-13 (-512) (-960 (-520)) (-135))) (-5 *1 (-526 *4)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-969)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-586 (-586 *8))) (-5 *3 (-586 *8))
- (-4 *8 (-877 *5 *7 *6)) (-4 *5 (-13 (-281) (-135)))
- (-4 *6 (-13 (-783) (-561 (-1083)))) (-4 *7 (-728)) (-5 *2 (-108))
- (-5 *1 (-852 *5 *6 *7 *8)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-336)) (-4 *4 (-512)) (-4 *5 (-1140 *4))
- (-5 *2 (-2 (|:| -1356 (-567 *4 *5)) (|:| -2703 (-380 *5))))
- (-5 *1 (-567 *4 *5)) (-5 *3 (-380 *5))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-586 (-1072 *3 *4))) (-5 *1 (-1072 *3 *4))
- (-14 *3 (-849)) (-4 *4 (-969))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-424)) (-4 *3 (-969))
- (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1)))
- (-4 *1 (-1140 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-586 (-1083))) (-5 *1 (-496)))))
-(((*1 *2 *1 *1 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1)))
- (-4 *1 (-281))))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1382 *1)))
- (-4 *1 (-281)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-706)) (-4 *4 (-13 (-512) (-135)))
- (-5 *1 (-1134 *4 *2)) (-4 *2 (-1140 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-706)) (-5 *1 (-391 *3)) (-4 *3 (-512))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-586 (-2 (|:| -1916 *4) (|:| -2528 (-520)))))
- (-4 *4 (-1140 (-520))) (-5 *2 (-706)) (-5 *1 (-414 *4)))))
+ (-12 (-5 *3 (-1084)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-639 *4 *5 *6 *7))
+ (-4 *4 (-562 (-497))) (-4 *5 (-1119)) (-4 *6 (-1119))
+ (-4 *7 (-1119)))))
+(((*1 *2 *1) (-12 (-4 *1 (-399 *3)) (-4 *3 (-1013)) (-5 *2 (-707)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-728)) (-4 *6 (-783)) (-4 *7 (-512))
- (-4 *3 (-877 *7 *5 *6))
- (-5 *2
- (-2 (|:| -2647 (-706)) (|:| -2972 *3) (|:| |radicand| (-586 *3))))
- (-5 *1 (-881 *5 *6 *7 *3 *8)) (-5 *4 (-706))
- (-4 *8
- (-13 (-336)
- (-10 -8 (-15 -2800 (*3 $)) (-15 -2811 (*3 $)) (-15 -2188 ($ *3))))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1014 *3)) (-5 *1 (-832 *3)) (-4 *3 (-1012))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1014 *3)) (-5 *1 (-833 *3)) (-4 *3 (-1012)))))
+ (-12 (-5 *4 (-1 (-587 *5) *6))
+ (-4 *5 (-13 (-337) (-135) (-961 (-381 (-521))))) (-4 *6 (-1141 *5))
+ (-5 *2 (-587 (-2 (|:| -2676 *5) (|:| -3192 *3))))
+ (-5 *1 (-746 *5 *6 *3 *7)) (-4 *3 (-597 *6))
+ (-4 *7 (-597 (-381 *6))))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-559 *1)) (-4 *1 (-403 *4)) (-4 *4 (-783))
- (-4 *4 (-512)) (-5 *2 (-380 (-1079 *1)))))
+ (-12 (-5 *3 (-560 *1)) (-4 *1 (-404 *4)) (-4 *4 (-784))
+ (-4 *4 (-513)) (-5 *2 (-381 (-1080 *1)))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-559 *3)) (-4 *3 (-13 (-403 *6) (-27) (-1104)))
- (-4 *6 (-13 (-424) (-960 (-520)) (-783) (-135) (-582 (-520))))
- (-5 *2 (-1079 (-380 (-1079 *3)))) (-5 *1 (-516 *6 *3 *7))
- (-5 *5 (-1079 *3)) (-4 *7 (-1012))))
+ (-12 (-5 *4 (-560 *3)) (-4 *3 (-13 (-404 *6) (-27) (-1105)))
+ (-4 *6 (-13 (-425) (-961 (-521)) (-784) (-135) (-583 (-521))))
+ (-5 *2 (-1080 (-381 (-1080 *3)))) (-5 *1 (-517 *6 *3 *7))
+ (-5 *5 (-1080 *3)) (-4 *7 (-1013))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1160 *5)) (-14 *5 (-1083)) (-4 *6 (-969))
- (-5 *2 (-1137 *5 (-880 *6))) (-5 *1 (-875 *5 *6)) (-5 *3 (-880 *6))))
+ (-12 (-5 *4 (-1161 *5)) (-14 *5 (-1084)) (-4 *6 (-970))
+ (-5 *2 (-1138 *5 (-881 *6))) (-5 *1 (-876 *5 *6)) (-5 *3 (-881 *6))))
((*1 *2 *1)
- (-12 (-4 *1 (-877 *3 *4 *5)) (-4 *3 (-969)) (-4 *4 (-728))
- (-4 *5 (-783)) (-5 *2 (-1079 *3))))
+ (-12 (-4 *1 (-878 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-729))
+ (-4 *5 (-784)) (-5 *2 (-1080 *3))))
((*1 *2 *1 *3)
- (-12 (-4 *4 (-969)) (-4 *5 (-728)) (-4 *3 (-783)) (-5 *2 (-1079 *1))
- (-4 *1 (-877 *4 *5 *3))))
+ (-12 (-4 *4 (-970)) (-4 *5 (-729)) (-4 *3 (-784)) (-5 *2 (-1080 *1))
+ (-4 *1 (-878 *4 *5 *3))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-728)) (-4 *4 (-783)) (-4 *6 (-969))
- (-4 *7 (-877 *6 *5 *4)) (-5 *2 (-380 (-1079 *3)))
- (-5 *1 (-878 *5 *4 *6 *7 *3))
+ (-12 (-4 *5 (-729)) (-4 *4 (-784)) (-4 *6 (-970))
+ (-4 *7 (-878 *6 *5 *4)) (-5 *2 (-381 (-1080 *3)))
+ (-5 *1 (-879 *5 *4 *6 *7 *3))
(-4 *3
- (-13 (-336)
- (-10 -8 (-15 -2188 ($ *7)) (-15 -2800 (*7 $)) (-15 -2811 (*7 $)))))))
+ (-13 (-337)
+ (-10 -8 (-15 -2189 ($ *7)) (-15 -2801 (*7 $)) (-15 -2812 (*7 $)))))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-1079 *3))
+ (-12 (-5 *2 (-1080 *3))
(-4 *3
- (-13 (-336)
- (-10 -8 (-15 -2188 ($ *7)) (-15 -2800 (*7 $)) (-15 -2811 (*7 $)))))
- (-4 *7 (-877 *6 *5 *4)) (-4 *5 (-728)) (-4 *4 (-783)) (-4 *6 (-969))
- (-5 *1 (-878 *5 *4 *6 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1083)) (-4 *5 (-512))
- (-5 *2 (-380 (-1079 (-380 (-880 *5))))) (-5 *1 (-965 *5))
- (-5 *3 (-380 (-880 *5))))))
-(((*1 *2 *1) (-12 (-4 *1 (-934 *3)) (-4 *3 (-1118)) (-5 *2 (-586 *3)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-988 *4 *5 *6 *3)) (-4 *4 (-424)) (-4 *5 (-728))
- (-4 *6 (-783)) (-4 *3 (-983 *4 *5 *6)) (-5 *2 (-108)))))
+ (-13 (-337)
+ (-10 -8 (-15 -2189 ($ *7)) (-15 -2801 (*7 $)) (-15 -2812 (*7 $)))))
+ (-4 *7 (-878 *6 *5 *4)) (-4 *5 (-729)) (-4 *4 (-784)) (-4 *6 (-970))
+ (-5 *1 (-879 *5 *4 *6 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1084)) (-4 *5 (-513))
+ (-5 *2 (-381 (-1080 (-381 (-881 *5))))) (-5 *1 (-966 *5))
+ (-5 *3 (-381 (-881 *5))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-303 *3)) (-4 *3 (-337)) (-4 *3 (-342)) (-5 *2 (-108))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1080 *4)) (-4 *4 (-323)) (-5 *2 (-108))
+ (-5 *1 (-331 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1165 *4)) (-4 *4 (-323)) (-5 *2 (-108))
+ (-5 *1 (-491 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-935 *3)) (-4 *3 (-1119)) (-5 *2 (-587 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1080 *5)) (-4 *5 (-337)) (-5 *2 (-587 *6))
+ (-5 *1 (-494 *5 *6 *4)) (-4 *6 (-337)) (-4 *4 (-13 (-337) (-782))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-626 *4)) (-4 *4 (-336)) (-5 *2 (-1079 *4))
- (-5 *1 (-493 *4 *5 *6)) (-4 *5 (-336)) (-4 *6 (-13 (-336) (-781))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1030)) (-5 *1 (-776 *3)) (-4 *3 (-1012)))))
+ (-12 (-5 *3 (-521)) (|has| *1 (-6 -4224)) (-4 *1 (-378))
+ (-5 *2 (-850)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-410)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-587 (-290 (-202)))) (-5 *3 (-202)) (-5 *2 (-108))
+ (-5 *1 (-189)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-308 *3 *4 *5 *6)) (-4 *3 (-336)) (-4 *4 (-1140 *3))
- (-4 *5 (-1140 (-380 *4))) (-4 *6 (-315 *3 *4 *5))
- (-5 *2 (-386 *4 (-380 *4) *5 *6))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1164 *6)) (-4 *6 (-13 (-382 *4 *5) (-960 *4)))
- (-4 *4 (-917 *3)) (-4 *5 (-1140 *4)) (-4 *3 (-281))
- (-5 *1 (-386 *3 *4 *5 *6))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-586 *6)) (-4 *6 (-877 *3 *4 *5)) (-4 *3 (-336))
- (-4 *4 (-728)) (-4 *5 (-783)) (-5 *1 (-472 *3 *4 *5 *6)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-817 *5 *3)) (-5 *4 (-820 *5)) (-4 *5 (-1012))
- (-4 *3 (-151 *6)) (-4 (-880 *6) (-814 *5))
- (-4 *6 (-13 (-814 *5) (-157))) (-5 *1 (-162 *5 *6 *3))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *2 (-817 *4 *1)) (-5 *3 (-820 *4)) (-4 *1 (-814 *4))
- (-4 *4 (-1012))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-817 *5 *6)) (-5 *4 (-820 *5)) (-4 *5 (-1012))
- (-4 *6 (-13 (-1012) (-960 *3))) (-4 *3 (-814 *5))
- (-5 *1 (-859 *5 *3 *6))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-817 *5 *3)) (-4 *5 (-1012))
- (-4 *3 (-13 (-403 *6) (-561 *4) (-814 *5) (-960 (-559 $))))
- (-5 *4 (-820 *5)) (-4 *6 (-13 (-512) (-783) (-814 *5)))
- (-5 *1 (-860 *5 *6 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-817 (-520) *3)) (-5 *4 (-820 (-520))) (-4 *3 (-505))
- (-5 *1 (-861 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-817 *5 *6)) (-5 *3 (-559 *6)) (-4 *5 (-1012))
- (-4 *6 (-13 (-783) (-960 (-559 $)) (-561 *4) (-814 *5)))
- (-5 *4 (-820 *5)) (-5 *1 (-862 *5 *6))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-813 *5 *6 *3)) (-5 *4 (-820 *5)) (-4 *5 (-1012))
- (-4 *6 (-814 *5)) (-4 *3 (-606 *6)) (-5 *1 (-863 *5 *6 *3))))
- ((*1 *2 *3 *4 *2 *5)
- (-12 (-5 *5 (-1 (-817 *6 *3) *8 (-820 *6) (-817 *6 *3)))
- (-4 *8 (-783)) (-5 *2 (-817 *6 *3)) (-5 *4 (-820 *6))
- (-4 *6 (-1012)) (-4 *3 (-13 (-877 *9 *7 *8) (-561 *4)))
- (-4 *7 (-728)) (-4 *9 (-13 (-969) (-783) (-814 *6)))
- (-5 *1 (-864 *6 *7 *8 *9 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-817 *5 *3)) (-4 *5 (-1012))
- (-4 *3 (-13 (-877 *8 *6 *7) (-561 *4))) (-5 *4 (-820 *5))
- (-4 *7 (-814 *5)) (-4 *6 (-728)) (-4 *7 (-783))
- (-4 *8 (-13 (-969) (-783) (-814 *5))) (-5 *1 (-864 *5 *6 *7 *8 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-817 *5 *3)) (-4 *5 (-1012)) (-4 *3 (-917 *6))
- (-4 *6 (-13 (-512) (-814 *5) (-561 *4))) (-5 *4 (-820 *5))
- (-5 *1 (-867 *5 *6 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-817 *5 (-1083))) (-5 *3 (-1083)) (-5 *4 (-820 *5))
- (-4 *5 (-1012)) (-5 *1 (-868 *5))))
- ((*1 *2 *3 *4 *5 *2 *6)
- (-12 (-5 *4 (-586 (-820 *7))) (-5 *5 (-1 *9 (-586 *9)))
- (-5 *6 (-1 (-817 *7 *9) *9 (-820 *7) (-817 *7 *9))) (-4 *7 (-1012))
- (-4 *9 (-13 (-969) (-561 (-820 *7)) (-960 *8))) (-5 *2 (-817 *7 *9))
- (-5 *3 (-586 *9)) (-4 *8 (-13 (-969) (-783)))
- (-5 *1 (-869 *7 *8 *9)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-156)))))
-(((*1 *1 *2) (-12 (-5 *2 (-586 (-1066))) (-5 *1 (-303))))
- ((*1 *1 *2) (-12 (-5 *2 (-1066)) (-5 *1 (-303)))))
-(((*1 *2 *2) (-12 (-5 *2 (-520)) (-5 *1 (-854)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-586 (-880 *3))) (-4 *3 (-424))
- (-5 *1 (-333 *3 *4)) (-14 *4 (-586 (-1083)))))
- ((*1 *2 *2)
- (|partial| -12 (-5 *2 (-586 (-715 *3 (-793 *4)))) (-4 *3 (-424))
- (-14 *4 (-586 (-1083))) (-5 *1 (-571 *3 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *2 (-512)) (-4 *2 (-424)) (-5 *1 (-895 *2 *3))
- (-4 *3 (-1140 *2)))))
-(((*1 *2 *3 *4 *5 *3 *6 *3)
- (-12 (-5 *3 (-520)) (-5 *5 (-154 (-201))) (-5 *6 (-1066))
- (-5 *4 (-201)) (-5 *2 (-958)) (-5 *1 (-694)))))
-(((*1 *2 *1) (-12 (-5 *2 (-586 (-559 *1))) (-4 *1 (-276)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-817 *4 *5)) (-5 *3 (-817 *4 *6)) (-4 *4 (-1012))
- (-4 *5 (-1012)) (-4 *6 (-606 *5)) (-5 *1 (-813 *4 *5 *6)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-296 *2 *3)) (-4 *2 (-1012)) (-4 *3 (-124))
- (-4 *3 (-727)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-520)) (-4 *4 (-13 (-512) (-135))) (-5 *1 (-497 *4 *2))
- (-4 *2 (-1155 *4))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-520)) (-4 *4 (-13 (-336) (-341) (-561 *3)))
- (-4 *5 (-1140 *4)) (-4 *6 (-660 *4 *5)) (-5 *1 (-501 *4 *5 *6 *2))
- (-4 *2 (-1155 *6))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-520)) (-4 *4 (-13 (-336) (-341) (-561 *3)))
- (-5 *1 (-502 *4 *2)) (-4 *2 (-1155 *4))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1064 *4)) (-5 *3 (-520)) (-4 *4 (-13 (-512) (-135)))
- (-5 *1 (-1060 *4)))))
+ (-12 (-5 *2 (-108)) (-5 *1 (-1073 *3 *4)) (-14 *3 (-850))
+ (-4 *4 (-970)))))
(((*1 *2 *3 *4)
- (-12 (-4 *2 (-1140 *4)) (-5 *1 (-743 *4 *2 *3 *5))
- (-4 *4 (-13 (-336) (-135) (-960 (-380 (-520))))) (-4 *3 (-596 *2))
- (-4 *5 (-596 (-380 *2)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *2 (-1140 *4)) (-5 *1 (-743 *4 *2 *5 *3))
- (-4 *4 (-13 (-336) (-135) (-960 (-380 (-520))))) (-4 *5 (-596 *2))
- (-4 *3 (-596 (-380 *2))))))
+ (-12 (-5 *3 (-627 *5)) (-5 *4 (-1165 *5)) (-4 *5 (-337))
+ (-5 *2 (-108)) (-5 *1 (-608 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-337)) (-4 *6 (-13 (-347 *5) (-10 -7 (-6 -4234))))
+ (-4 *4 (-13 (-347 *5) (-10 -7 (-6 -4234)))) (-5 *2 (-108))
+ (-5 *1 (-609 *5 *6 *4 *3)) (-4 *3 (-625 *5 *6 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-304))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-304)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1156 *4)) (-5 *1 (-1158 *4 *2))
+ (-4 *4 (-37 (-381 (-521)))))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1073 *2 *3)) (-14 *2 (-850)) (-4 *3 (-970)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-356 *3 *4)) (-4 *3 (-970)) (-4 *4 (-1013))
+ (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))))
+(((*1 *2 *1) (-12 (-5 *2 (-587 (-560 *1))) (-4 *1 (-277)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-337)) (-4 *3 (-970))
+ (-5 *2 (-2 (|:| -3727 *1) (|:| -3820 *1))) (-4 *1 (-786 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-94 *5)) (-4 *5 (-337)) (-4 *5 (-970))
+ (-5 *2 (-2 (|:| -3727 *3) (|:| -3820 *3))) (-5 *1 (-787 *5 *3))
+ (-4 *3 (-786 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-3 (|:| |fst| (-407)) (|:| -1365 "void")))
- (-5 *2 (-1169)) (-5 *1 (-1086))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1083))
- (-5 *4 (-3 (|:| |fst| (-407)) (|:| -1365 "void"))) (-5 *2 (-1169))
- (-5 *1 (-1086))))
- ((*1 *2 *3 *4 *1)
- (-12 (-5 *3 (-1083))
- (-5 *4 (-3 (|:| |fst| (-407)) (|:| -1365 "void"))) (-5 *2 (-1169))
- (-5 *1 (-1086)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-559 *2)) (-4 *2 (-13 (-27) (-1104) (-403 *4)))
- (-4 *4 (-13 (-512) (-783) (-960 (-520)) (-582 (-520))))
- (-5 *1 (-252 *4 *2)))))
+ (|partial| -12 (-5 *3 (-850))
+ (-5 *2 (-1165 (-587 (-2 (|:| -3430 *4) (|:| -2716 (-1031))))))
+ (-5 *1 (-320 *4)) (-4 *4 (-323)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1080 *9)) (-5 *4 (-587 *7)) (-5 *5 (-587 (-587 *8)))
+ (-4 *7 (-784)) (-4 *8 (-282)) (-4 *9 (-878 *8 *6 *7)) (-4 *6 (-729))
+ (-5 *2
+ (-2 (|:| |upol| (-1080 *8)) (|:| |Lval| (-587 *8))
+ (|:| |Lfact|
+ (-587 (-2 (|:| -1916 (-1080 *8)) (|:| -2997 (-521)))))
+ (|:| |ctpol| *8)))
+ (-5 *1 (-679 *6 *7 *8 *9)))))
+(((*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-233)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-707))
+ (-5 *1 (-422 *4 *5 *6 *3)) (-4 *3 (-878 *4 *5 *6)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-1006 (-881 (-521)))) (-5 *3 (-881 (-521)))
+ (-5 *1 (-304))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1006 (-881 (-521)))) (-5 *1 (-304)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-300 *3 *4)) (-4 *3 (-970)) (-4 *4 (-728))
+ (-5 *2 (-587 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-356 *3 *4)) (-4 *3 (-970)) (-4 *4 (-1013))
+ (-5 *2 (-587 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1065 *3)) (-5 *1 (-547 *3)) (-4 *3 (-970))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-587 *3)) (-5 *1 (-672 *3 *4)) (-4 *3 (-970))
+ (-4 *4 (-663))))
+ ((*1 *2 *1) (-12 (-4 *1 (-786 *3)) (-4 *3 (-970)) (-5 *2 (-587 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1156 *3)) (-4 *3 (-970)) (-5 *2 (-1065 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-881 (-202))) (-5 *2 (-202)) (-5 *1 (-280)))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-140 *2 *3 *4)) (-14 *2 (-850)) (-4 *3 (-337))
+ (-14 *4 (-919 *2 *3))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *2 (-157)) (-5 *1 (-264 *2 *3 *4 *5 *6 *7))
+ (-4 *3 (-1141 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-341 *2)) (-4 *2 (-157)) (-4 *2 (-513))))
+ ((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *2 (-157))
+ (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
+ (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-337))))
+ ((*1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-337))))
+ ((*1 *1 *1) (|partial| -4 *1 (-659)))
+ ((*1 *1 *1) (|partial| -4 *1 (-663)))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-784))
+ (-4 *3 (-984 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3)))
+ (-5 *1 (-712 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3))))
+ ((*1 *2 *2 *1)
+ (|partial| -12 (-4 *1 (-986 *3 *2)) (-4 *3 (-13 (-782) (-337)))
+ (-4 *2 (-1141 *3))))
+ ((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-5 *1 (-1069 *3)))))
(((*1 *1 *1 *2)
- (-12 (-5 *1 (-1048 *2 *3)) (-4 *2 (-13 (-1012) (-33)))
- (-4 *3 (-13 (-1012) (-33))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-706)) (-5 *4 (-1164 *2)) (-4 *5 (-281))
- (-4 *6 (-917 *5)) (-4 *2 (-13 (-382 *6 *7) (-960 *6)))
- (-5 *1 (-386 *5 *6 *7 *2)) (-4 *7 (-1140 *6)))))
+ (-12 (-5 *2 (-381 (-521))) (-5 *1 (-546 *3)) (-4 *3 (-37 *2))
+ (-4 *3 (-970)))))
+(((*1 *2 *1) (-12 (-4 *1 (-961 (-521))) (-4 *1 (-277)) (-5 *2 (-108))))
+ ((*1 *2 *1) (-12 (-4 *1 (-506)) (-5 *2 (-108))))
+ ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-834 *3)) (-4 *3 (-1013)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-424))) (-5 *1 (-1110 *3 *2))
- (-4 *2 (-13 (-403 *3) (-1104))))))
-(((*1 *1 *2) (-12 (-5 *2 (-586 *1)) (-4 *1 (-276))))
- ((*1 *1 *1) (-4 *1 (-276)))
- ((*1 *1 *2) (-12 (-5 *2 (-586 (-791))) (-5 *1 (-791))))
- ((*1 *1 *1) (-5 *1 (-791))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-322)) (-5 *2 (-391 (-1079 (-1079 *4))))
- (-5 *1 (-1117 *4)) (-5 *3 (-1079 (-1079 *4))))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1066)) (-5 *2 (-1169)) (-5 *1 (-1096 *4 *5))
- (-4 *4 (-1012)) (-4 *5 (-1012)))))
+ (|partial| -12 (-5 *2 (-587 (-881 *3))) (-4 *3 (-425))
+ (-5 *1 (-334 *3 *4)) (-14 *4 (-587 (-1084)))))
+ ((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-587 (-716 *3 (-794 *4)))) (-4 *3 (-425))
+ (-14 *4 (-587 (-1084))) (-5 *1 (-572 *3 *4)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2))
- (-4 *2 (-13 (-403 *3) (-926)))))
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-927)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1155 *3))
- (-5 *1 (-253 *3 *4 *2)) (-4 *2 (-1126 *3 *4))))
+ (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3))
+ (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-380 (-520)))) (-4 *4 (-1124 *3))
- (-5 *1 (-254 *3 *4 *2 *5)) (-4 *2 (-1147 *3 *4)) (-4 *5 (-908 *4))))
- ((*1 *1 *1) (-4 *1 (-258)))
+ (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3))
+ (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4))))
+ ((*1 *1 *1) (-4 *1 (-259)))
((*1 *2 *3)
- (-12 (-5 *3 (-391 *4)) (-4 *4 (-512))
- (-5 *2 (-586 (-2 (|:| -2972 (-706)) (|:| |logand| *4))))
- (-5 *1 (-293 *4))))
+ (-12 (-5 *3 (-392 *4)) (-4 *4 (-513))
+ (-5 *2 (-587 (-2 (|:| -2973 (-707)) (|:| |logand| *4))))
+ (-5 *1 (-294 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-312 *2 *3 *4)) (-14 *2 (-586 (-1083)))
- (-14 *3 (-586 (-1083))) (-4 *4 (-360))))
+ (-12 (-5 *1 (-313 *2 *3 *4)) (-14 *2 (-587 (-1084)))
+ (-14 *3 (-587 (-1084))) (-4 *4 (-361))))
((*1 *2 *1)
- (-12 (-5 *2 (-604 *3 *4)) (-5 *1 (-570 *3 *4 *5)) (-4 *3 (-783))
- (-4 *4 (-13 (-157) (-653 (-380 (-520))))) (-14 *5 (-849))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520))))
- (-5 *1 (-1069 *3))))
+ (-12 (-5 *2 (-605 *3 *4)) (-5 *1 (-571 *3 *4 *5)) (-4 *3 (-784))
+ (-4 *4 (-13 (-157) (-654 (-381 (-521))))) (-14 *5 (-850))))
((*1 *2 *2)
- (-12 (-5 *2 (-1064 *3)) (-4 *3 (-37 (-380 (-520))))
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
(-5 *1 (-1070 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
+ (-5 *1 (-1071 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-706)) (-4 *4 (-13 (-969) (-653 (-380 (-520)))))
- (-4 *5 (-783)) (-5 *1 (-1178 *4 *5 *2)) (-4 *2 (-1183 *5 *4))))
+ (-12 (-5 *3 (-707)) (-4 *4 (-13 (-970) (-654 (-381 (-521)))))
+ (-4 *5 (-784)) (-5 *1 (-1179 *4 *5 *2)) (-4 *2 (-1184 *5 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-706)) (-5 *1 (-1182 *3 *4))
- (-4 *4 (-653 (-380 (-520)))) (-4 *3 (-783)) (-4 *4 (-157)))))
-(((*1 *2 *1) (-12 (-5 *2 (-706)) (-5 *1 (-820 *3)) (-4 *3 (-1012))))
- ((*1 *2 *1) (-12 (-4 *1 (-1031 *3)) (-4 *3 (-1118)) (-5 *2 (-706)))))
-(((*1 *2 *3) (-12 (-5 *3 (-758)) (-5 *2 (-51)) (-5 *1 (-765)))))
-(((*1 *1) (-5 *1 (-999))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-512)) (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-108))
- (-5 *1 (-902 *4 *5 *6 *3)) (-4 *3 (-983 *4 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-1066)) (-5 *1 (-721)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-512))) (-5 *1 (-251 *3 *2))
- (-4 *2 (-13 (-403 *3) (-926))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-281) (-135))) (-4 *5 (-13 (-783) (-561 (-1083))))
- (-4 *6 (-728)) (-5 *2 (-586 *3)) (-5 *1 (-852 *4 *5 *6 *3))
- (-4 *3 (-877 *4 *6 *5)))))
+ (-12 (-5 *2 (-707)) (-5 *1 (-1183 *3 *4))
+ (-4 *4 (-654 (-381 (-521)))) (-4 *3 (-784)) (-4 *4 (-157)))))
+(((*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-821 *3)) (-4 *3 (-1013))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-1119)) (-5 *2 (-707)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-784))
+ (-4 *7 (-984 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-587 *7)) (|:| |badPols| (-587 *7))))
+ (-5 *1 (-903 *4 *5 *6 *7)) (-5 *3 (-587 *7)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-587 *7)) (-4 *7 (-984 *4 *5 *6)) (-4 *4 (-425))
+ (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-108))
+ (-5 *1 (-914 *4 *5 *6 *7 *8)) (-4 *8 (-989 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-587 *7)) (-4 *7 (-984 *4 *5 *6)) (-4 *4 (-425))
+ (-4 *5 (-729)) (-4 *6 (-784)) (-5 *2 (-108))
+ (-5 *1 (-1020 *4 *5 *6 *7 *8)) (-4 *8 (-989 *4 *5 *6 *7)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1079 *2)) (-4 *2 (-877 (-380 (-880 *6)) *5 *4))
- (-5 *1 (-668 *5 *4 *6 *2)) (-4 *5 (-728))
- (-4 *4 (-13 (-783) (-10 -8 (-15 -1429 ((-1083) $)))))
- (-4 *6 (-512)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-520)) (-5 *3 (-849)) (-5 *1 (-635))))
- ((*1 *2 *2 *2 *3 *4)
- (-12 (-5 *2 (-626 *5)) (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5))
- (-4 *5 (-336)) (-5 *1 (-903 *5)))))
+ (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))))
+(((*1 *1 *2) (-12 (-5 *1 (-204 *2)) (-4 *2 (-13 (-337) (-1105))))))
+(((*1 *1) (-5 *1 (-129))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1166))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1167)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-782) (-337))) (-5 *1 (-980 *2 *3))
+ (-4 *3 (-1141 *2)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *2 (-587 *1))
+ (-4 *1 (-984 *3 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-154 (-352))) (-5 *1 (-720 *3)) (-4 *3 (-561 (-352)))))
+ (-12 (-5 *2 (-154 (-353))) (-5 *1 (-721 *3)) (-4 *3 (-562 (-353)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-849)) (-5 *2 (-154 (-352))) (-5 *1 (-720 *3))
- (-4 *3 (-561 (-352)))))
+ (-12 (-5 *4 (-850)) (-5 *2 (-154 (-353))) (-5 *1 (-721 *3))
+ (-4 *3 (-562 (-353)))))
((*1 *2 *3)
- (-12 (-5 *3 (-154 *4)) (-4 *4 (-157)) (-4 *4 (-561 (-352)))
- (-5 *2 (-154 (-352))) (-5 *1 (-720 *4))))
+ (-12 (-5 *3 (-154 *4)) (-4 *4 (-157)) (-4 *4 (-562 (-353)))
+ (-5 *2 (-154 (-353))) (-5 *1 (-721 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-154 *5)) (-5 *4 (-849)) (-4 *5 (-157))
- (-4 *5 (-561 (-352))) (-5 *2 (-154 (-352))) (-5 *1 (-720 *5))))
+ (-12 (-5 *3 (-154 *5)) (-5 *4 (-850)) (-4 *5 (-157))
+ (-4 *5 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-880 (-154 *4))) (-4 *4 (-157)) (-4 *4 (-561 (-352)))
- (-5 *2 (-154 (-352))) (-5 *1 (-720 *4))))
+ (-12 (-5 *3 (-881 (-154 *4))) (-4 *4 (-157)) (-4 *4 (-562 (-353)))
+ (-5 *2 (-154 (-353))) (-5 *1 (-721 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-880 (-154 *5))) (-5 *4 (-849)) (-4 *5 (-157))
- (-4 *5 (-561 (-352))) (-5 *2 (-154 (-352))) (-5 *1 (-720 *5))))
+ (-12 (-5 *3 (-881 (-154 *5))) (-5 *4 (-850)) (-4 *5 (-157))
+ (-4 *5 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-880 *4)) (-4 *4 (-969)) (-4 *4 (-561 (-352)))
- (-5 *2 (-154 (-352))) (-5 *1 (-720 *4))))
+ (-12 (-5 *3 (-881 *4)) (-4 *4 (-970)) (-4 *4 (-562 (-353)))
+ (-5 *2 (-154 (-353))) (-5 *1 (-721 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-880 *5)) (-5 *4 (-849)) (-4 *5 (-969))
- (-4 *5 (-561 (-352))) (-5 *2 (-154 (-352))) (-5 *1 (-720 *5))))
+ (-12 (-5 *3 (-881 *5)) (-5 *4 (-850)) (-4 *5 (-970))
+ (-4 *5 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-380 (-880 *4))) (-4 *4 (-512)) (-4 *4 (-561 (-352)))
- (-5 *2 (-154 (-352))) (-5 *1 (-720 *4))))
+ (-12 (-5 *3 (-381 (-881 *4))) (-4 *4 (-513)) (-4 *4 (-562 (-353)))
+ (-5 *2 (-154 (-353))) (-5 *1 (-721 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-380 (-880 *5))) (-5 *4 (-849)) (-4 *5 (-512))
- (-4 *5 (-561 (-352))) (-5 *2 (-154 (-352))) (-5 *1 (-720 *5))))
+ (-12 (-5 *3 (-381 (-881 *5))) (-5 *4 (-850)) (-4 *5 (-513))
+ (-4 *5 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-380 (-880 (-154 *4)))) (-4 *4 (-512))
- (-4 *4 (-561 (-352))) (-5 *2 (-154 (-352))) (-5 *1 (-720 *4))))
+ (-12 (-5 *3 (-381 (-881 (-154 *4)))) (-4 *4 (-513))
+ (-4 *4 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-380 (-880 (-154 *5)))) (-5 *4 (-849)) (-4 *5 (-512))
- (-4 *5 (-561 (-352))) (-5 *2 (-154 (-352))) (-5 *1 (-720 *5))))
+ (-12 (-5 *3 (-381 (-881 (-154 *5)))) (-5 *4 (-850)) (-4 *5 (-513))
+ (-4 *5 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-289 *4)) (-4 *4 (-512)) (-4 *4 (-783))
- (-4 *4 (-561 (-352))) (-5 *2 (-154 (-352))) (-5 *1 (-720 *4))))
+ (-12 (-5 *3 (-290 *4)) (-4 *4 (-513)) (-4 *4 (-784))
+ (-4 *4 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-289 *5)) (-5 *4 (-849)) (-4 *5 (-512)) (-4 *5 (-783))
- (-4 *5 (-561 (-352))) (-5 *2 (-154 (-352))) (-5 *1 (-720 *5))))
+ (-12 (-5 *3 (-290 *5)) (-5 *4 (-850)) (-4 *5 (-513)) (-4 *5 (-784))
+ (-4 *5 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-289 (-154 *4))) (-4 *4 (-512)) (-4 *4 (-783))
- (-4 *4 (-561 (-352))) (-5 *2 (-154 (-352))) (-5 *1 (-720 *4))))
+ (-12 (-5 *3 (-290 (-154 *4))) (-4 *4 (-513)) (-4 *4 (-784))
+ (-4 *4 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-289 (-154 *5))) (-5 *4 (-849)) (-4 *5 (-512))
- (-4 *5 (-783)) (-4 *5 (-561 (-352))) (-5 *2 (-154 (-352)))
- (-5 *1 (-720 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1064 (-520))) (-5 *1 (-1068 *4)) (-4 *4 (-969))
- (-5 *3 (-520)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| -4036 *1) (|:| -4216 *1) (|:| |associate| *1)))
- (-4 *1 (-512)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1012)) (-5 *2 (-1066)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-880 *4)) (-4 *4 (-13 (-281) (-135)))
- (-4 *2 (-877 *4 *6 *5)) (-5 *1 (-852 *4 *5 *6 *2))
- (-4 *5 (-13 (-783) (-561 (-1083)))) (-4 *6 (-728)))))
-(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-854)))))
+ (-12 (-5 *3 (-290 (-154 *5))) (-5 *4 (-850)) (-4 *5 (-513))
+ (-4 *5 (-784)) (-4 *5 (-562 (-353))) (-5 *2 (-154 (-353)))
+ (-5 *1 (-721 *5)))))
+(((*1 *2)
+ (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-340 *3 *4))
+ (-4 *3 (-341 *4))))
+ ((*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-5 *2 (-108)))))
+(((*1 *2)
+ (-12
+ (-5 *2
+ (-1165 (-587 (-2 (|:| -3430 (-839 *3)) (|:| -2716 (-1031))))))
+ (-5 *1 (-325 *3 *4)) (-14 *3 (-850)) (-14 *4 (-850))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1165 (-587 (-2 (|:| -3430 *3) (|:| -2716 (-1031))))))
+ (-5 *1 (-326 *3 *4)) (-4 *3 (-323)) (-14 *4 (-3 (-1080 *3) *2))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1165 (-587 (-2 (|:| -3430 *3) (|:| -2716 (-1031))))))
+ (-5 *1 (-327 *3 *4)) (-4 *3 (-323)) (-14 *4 (-850)))))
+(((*1 *2 *1) (-12 (-4 *1 (-477 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-784)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-425) (-784) (-961 (-521)) (-583 (-521))))
+ (-5 *1 (-394 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1105) (-404 *3)))
+ (-14 *4 (-1084)) (-14 *5 *2)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-425) (-784) (-961 (-521)) (-583 (-521))))
+ (-4 *2 (-13 (-27) (-1105) (-404 *3) (-10 -8 (-15 -2189 ($ *4)))))
+ (-4 *4 (-782))
+ (-4 *5
+ (-13 (-1143 *2 *4) (-337) (-1105)
+ (-10 -8 (-15 -2156 ($ $)) (-15 -2184 ($ $)))))
+ (-5 *1 (-396 *3 *2 *4 *5 *6 *7)) (-4 *6 (-909 *5)) (-14 *7 (-1084)))))
+(((*1 *1 *2) (-12 (-5 *2 (-143)) (-5 *1 (-803)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-759)))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *3)
+ (-12 (-5 *3 (-521)) (-5 *4 (-1067)) (-5 *5 (-627 (-202)))
+ (-5 *2 (-959)) (-5 *1 (-684)))))
+(((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1084)) (-5 *1 (-615 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-587 (-716 *5 (-794 *6)))) (-5 *4 (-108)) (-4 *5 (-425))
+ (-14 *6 (-587 (-1084)))
+ (-5 *2
+ (-587 (-1055 *5 (-493 (-794 *6)) (-794 *6) (-716 *5 (-794 *6)))))
+ (-5 *1 (-572 *5 *6)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *2 (-520)) (-5 *1 (-525 *3)) (-4 *3 (-960 *2)))))
-(((*1 *2 *1)
- (|partial| -12
- (-4 *3 (-13 (-783) (-960 (-520)) (-582 (-520)) (-424)))
- (-5 *2
- (-2
- (|:| |%term|
- (-2 (|:| |%coef| (-1149 *4 *5 *6))
- (|:| |%expon| (-292 *4 *5 *6))
- (|:| |%expTerms|
- (-586 (-2 (|:| |k| (-380 (-520))) (|:| |c| *4))))))
- (|:| |%type| (-1066))))
- (-5 *1 (-1150 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1104) (-403 *3)))
- (-14 *5 (-1083)) (-14 *6 *4))))
-(((*1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-635))))
- ((*1 *2 *2) (-12 (-5 *2 (-520)) (-5 *1 (-635)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-299 *2 *3)) (-4 *3 (-727)) (-4 *2 (-969))
- (-4 *2 (-424))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-586 *4)) (-4 *4 (-1140 (-520))) (-5 *2 (-586 (-520)))
- (-5 *1 (-456 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-785 *2)) (-4 *2 (-969)) (-4 *2 (-424))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-877 *3 *4 *2)) (-4 *3 (-969)) (-4 *4 (-728))
- (-4 *2 (-783)) (-4 *3 (-424)))))
+ (-12 (-5 *3 (-587 (-497))) (-5 *2 (-1084)) (-5 *1 (-497)))))
+(((*1 *1 *1 *1) (|partial| -4 *1 (-124))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-215 *3 *2)) (-4 *2 (-1119)) (-4 *2 (-970))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-792))))
+ ((*1 *1 *1) (-5 *1 (-792)))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-872 (-202))) (-5 *2 (-202)) (-5 *1 (-1116))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1163 *2)) (-4 *2 (-1119)) (-4 *2 (-970)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-892 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-441)) (-5 *4 (-850)) (-5 *2 (-1170)) (-5 *1 (-1166)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-759)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4234)) (-4 *1 (-221 *2)) (-4 *2 (-1119)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-586 (-496))) (-5 *2 (-1083)) (-5 *1 (-496)))))
-(((*1 *1 *2) (-12 (-5 *2 (-586 (-132))) (-5 *1 (-129))))
- ((*1 *1 *2) (-12 (-5 *2 (-1066)) (-5 *1 (-129)))))
+ (-12 (-4 *1 (-824))
+ (-5 *3
+ (-2 (|:| |pde| (-587 (-290 (-202))))
+ (|:| |constraints|
+ (-587
+ (-2 (|:| |start| (-202)) (|:| |finish| (-202))
+ (|:| |grid| (-707)) (|:| |boundaryType| (-521))
+ (|:| |dStart| (-627 (-202))) (|:| |dFinish| (-627 (-202))))))
+ (|:| |f| (-587 (-587 (-290 (-202))))) (|:| |st| (-1067))
+ (|:| |tol| (-202))))
+ (-5 *2 (-959)))))
+(((*1 *2 *3 *4 *5 *4 *4 *4)
+ (-12 (-4 *6 (-784)) (-5 *3 (-587 *6)) (-5 *5 (-587 *3))
+ (-5 *2
+ (-2 (|:| |f1| *3) (|:| |f2| (-587 *5)) (|:| |f3| *5)
+ (|:| |f4| (-587 *5))))
+ (-5 *1 (-1091 *6)) (-5 *4 (-587 *5)))))
+(((*1 *2 *1) (-12 (-4 *3 (-970)) (-5 *2 (-587 *1)) (-4 *1 (-1045 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157))))
+ ((*1 *1 *1 *1) (-4 *1 (-446)))
+ ((*1 *1 *1) (-12 (-4 *1 (-734 *2)) (-4 *2 (-157))))
+ ((*1 *2 *2) (-12 (-5 *2 (-587 (-521))) (-5 *1 (-812))))
+ ((*1 *1 *1) (-5 *1 (-897)))
+ ((*1 *1 *1) (-12 (-4 *1 (-922 *2)) (-4 *2 (-157)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1015 *3 *4 *5 *6 *7)) (-4 *3 (-1012)) (-4 *4 (-1012))
- (-4 *5 (-1012)) (-4 *6 (-1012)) (-4 *7 (-1012)) (-5 *2 (-108)))))
+ (-12 (-4 *1 (-625 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-347 *3))
+ (-4 *5 (-347 *3)) (-5 *2 (-108))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-973 *3 *4 *5 *6 *7)) (-4 *5 (-970))
+ (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-108)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-587 (-792))) (-5 *1 (-1084)))))
+(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959))
+ (-5 *1 (-688)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-587 (-521))) (-5 *2 (-627 (-521))) (-5 *1 (-1023)))))
+(((*1 *1 *1) (-4 *1 (-979))))
+(((*1 *1 *1) (-4 *1 (-573)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-513))) (-5 *1 (-574 *3 *2))
+ (-4 *2 (-13 (-404 *3) (-927) (-1105))))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-380 *2)) (-4 *2 (-1140 *5))
- (-5 *1 (-743 *5 *2 *3 *6))
- (-4 *5 (-13 (-336) (-135) (-960 (-380 (-520)))))
- (-4 *3 (-596 *2)) (-4 *6 (-596 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-586 (-380 *2))) (-4 *2 (-1140 *5))
- (-5 *1 (-743 *5 *2 *3 *6))
- (-4 *5 (-13 (-336) (-135) (-960 (-380 (-520))))) (-4 *3 (-596 *2))
- (-4 *6 (-596 (-380 *2))))))
-(((*1 *2) (-12 (-5 *2 (-586 (-849))) (-5 *1 (-1167))))
- ((*1 *2 *2) (-12 (-5 *2 (-586 (-849))) (-5 *1 (-1167)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-611 *3)) (-4 *3 (-783))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-615 *3)) (-4 *3 (-783))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-755 *3)) (-4 *3 (-783)))))
-(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-13 (-512) (-135))) (-5 *1 (-1134 *3 *2))
- (-4 *2 (-1140 *3)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-336)) (-4 *3 (-969))
- (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1382 *1)))
- (-4 *1 (-785 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-510 *2)) (-4 *2 (-13 (-377) (-1104)))))
- ((*1 *1 *1 *1) (-4 *1 (-728))))
-(((*1 *2 *1) (-12 (-5 *2 (-586 (-1066))) (-5 *1 (-367))))
- ((*1 *2 *1) (-12 (-5 *2 (-586 (-1066))) (-5 *1 (-1099)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1072 *2 *3)) (-14 *2 (-849)) (-4 *3 (-969)))))
-(((*1 *2 *3 *4 *5 *6 *2 *7 *8)
- (|partial| -12 (-5 *2 (-586 (-1079 *11))) (-5 *3 (-1079 *11))
- (-5 *4 (-586 *10)) (-5 *5 (-586 *8)) (-5 *6 (-586 (-706)))
- (-5 *7 (-1164 (-586 (-1079 *8)))) (-4 *10 (-783))
- (-4 *8 (-281)) (-4 *11 (-877 *8 *9 *10)) (-4 *9 (-728))
- (-5 *1 (-644 *9 *10 *8 *11)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-871 (-201))) (-5 *2 (-1169)) (-5 *1 (-440)))))
+ (-12 (-5 *3 (-1084)) (-5 *4 (-881 (-521))) (-5 *2 (-304))
+ (-5 *1 (-306)))))
+(((*1 *1 *2) (-12 (-5 *1 (-204 *2)) (-4 *2 (-13 (-337) (-1105))))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-586 *3)) (-4 *3 (-281)) (-5 *1 (-163 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1083))
- (-4 *5 (-13 (-424) (-783) (-135) (-960 (-520)) (-582 (-520))))
- (-5 *2 (-537 *3)) (-5 *1 (-513 *5 *3))
- (-4 *3 (-13 (-27) (-1104) (-403 *5))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-871 *3) (-871 *3))) (-5 *1 (-160 *3))
- (-4 *3 (-13 (-336) (-1104) (-926))))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-512)) (-4 *3 (-969))
- (-5 *2 (-2 (|:| -2060 *1) (|:| -3753 *1))) (-4 *1 (-785 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-94 *5)) (-4 *5 (-512)) (-4 *5 (-969))
- (-5 *2 (-2 (|:| -2060 *3) (|:| -3753 *3))) (-5 *1 (-786 *5 *3))
- (-4 *3 (-785 *5)))))
+ (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1119)) (-5 *1 (-1043 *4 *2))
+ (-4 *2 (-13 (-554 (-521) *4) (-10 -7 (-6 -4233) (-6 -4234))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-784)) (-4 *3 (-1119)) (-5 *1 (-1043 *3 *2))
+ (-4 *2 (-13 (-554 (-521) *3) (-10 -7 (-6 -4233) (-6 -4234)))))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-521)) (-5 *4 (-108)) (-5 *5 (-627 (-202)))
+ (-5 *2 (-959)) (-5 *1 (-692)))))
+(((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-740)))))
(((*1 *2 *2 *2 *2 *2 *3)
- (-12 (-5 *2 (-626 *4)) (-5 *3 (-706)) (-4 *4 (-969))
- (-5 *1 (-627 *4)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-336)) (-4 *5 (-728)) (-4 *6 (-783)) (-5 *2 (-108))
- (-5 *1 (-472 *4 *5 *6 *3)) (-4 *3 (-877 *4 *5 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-201)) (-5 *4 (-520)) (-5 *2 (-958)) (-5 *1 (-694)))))
-(((*1 *1 *2) (-12 (-5 *2 (-380 (-520))) (-5 *1 (-457)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-586 (-871 *4))) (-5 *1 (-1072 *3 *4)) (-14 *3 (-849))
- (-4 *4 (-969)))))
+ (-12 (-5 *2 (-627 *4)) (-5 *3 (-707)) (-4 *4 (-970))
+ (-5 *1 (-628 *4)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-5 *1 (-1069 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1157 *2 *3 *4)) (-4 *2 (-970)) (-14 *3 (-1084))
+ (-14 *4 *2))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-587 (-521))) (-5 *2 (-833 (-521))) (-5 *1 (-846))))
+ ((*1 *2) (-12 (-5 *2 (-833 (-521))) (-5 *1 (-846)))))
(((*1 *2)
- (-12 (-4 *3 (-728)) (-4 *4 (-783)) (-4 *2 (-837))
- (-5 *1 (-429 *3 *4 *2 *5)) (-4 *5 (-877 *2 *3 *4))))
- ((*1 *2)
- (-12 (-4 *3 (-728)) (-4 *4 (-783)) (-4 *2 (-837))
- (-5 *1 (-834 *2 *3 *4 *5)) (-4 *5 (-877 *2 *3 *4))))
- ((*1 *2) (-12 (-4 *2 (-837)) (-5 *1 (-835 *2 *3)) (-4 *3 (-1140 *2)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1072 3 *3)) (-4 *3 (-969)) (-4 *1 (-1044 *3))))
- ((*1 *1) (-12 (-4 *1 (-1044 *2)) (-4 *2 (-969)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-545 *2)) (-4 *2 (-37 (-380 (-520)))) (-4 *2 (-969)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-108)) (-5 *3 (-586 (-238))) (-5 *1 (-236)))))
-(((*1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-1120)))))
+ (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-340 *3 *4))
+ (-4 *3 (-341 *4))))
+ ((*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-5 *2 (-108)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-25)) (-4 *3 (-783)) (-5 *2 (-586 *1))
- (-4 *1 (-403 *3))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-586 (-820 *3))) (-5 *1 (-820 *3))
- (-4 *3 (-1012))))
+ (-12 (-4 *3 (-337)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *2 (-108))
+ (-5 *1 (-473 *3 *4 *5 *6)) (-4 *6 (-878 *3 *4 *5)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-707))
+ (-4 *3 (-13 (-282) (-10 -8 (-15 -3358 ((-392 $) $)))))
+ (-4 *4 (-1141 *3)) (-5 *1 (-468 *3 *4 *5)) (-4 *5 (-383 *3 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-970)) (-5 *2 (-108)) (-5 *1 (-417 *4 *3))
+ (-4 *3 (-1141 *4))))
((*1 *2 *1)
- (|partial| -12 (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783))
- (-5 *2 (-586 *1)) (-4 *1 (-877 *3 *4 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-728)) (-4 *5 (-783)) (-4 *6 (-969))
- (-4 *7 (-877 *6 *4 *5)) (-5 *2 (-586 *3))
- (-5 *1 (-878 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-336)
- (-10 -8 (-15 -2188 ($ *7)) (-15 -2800 (*7 $))
- (-15 -2811 (*7 $))))))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-1186 *3 *4)) (-4 *1 (-347 *3 *4)) (-4 *3 (-783))
- (-4 *4 (-157))))
- ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-359 *2)) (-4 *2 (-1012))))
- ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-755 *2)) (-4 *2 (-783))))
- ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-755 *2)) (-4 *2 (-783))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1179 *2 *3)) (-4 *2 (-783)) (-4 *3 (-969))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-755 *3)) (-4 *1 (-1179 *3 *4)) (-4 *3 (-783))
- (-4 *4 (-969))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1179 *2 *3)) (-4 *2 (-783)) (-4 *3 (-969)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-586 *5) *6))
- (-4 *5 (-13 (-336) (-135) (-960 (-380 (-520))))) (-4 *6 (-1140 *5))
- (-5 *2 (-586 (-2 (|:| -2675 *5) (|:| -3190 *3))))
- (-5 *1 (-745 *5 *6 *3 *7)) (-4 *3 (-596 *6))
- (-4 *7 (-596 (-380 *6))))))
-(((*1 *2 *1)
- (-12
- (-5 *2
- (-586
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3)
- (|:| |xpnt| (-520)))))
- (-5 *1 (-391 *3)) (-4 *3 (-512))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *4 (-706)) (-4 *3 (-322)) (-4 *5 (-1140 *3))
- (-5 *2 (-586 (-1079 *3))) (-5 *1 (-466 *3 *5 *6))
- (-4 *6 (-1140 *5)))))
+ (-12 (-4 *1 (-984 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-729))
+ (-4 *5 (-784)) (-5 *2 (-108)))))
+(((*1 *1) (-4 *1 (-323))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1050 *2 *3)) (-4 *2 (-13 (-1013) (-33)))
+ (-4 *3 (-13 (-1013) (-33))))))
(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-849)) (-5 *2 (-706)) (-5 *1 (-1013 *4 *5)) (-14 *4 *3)
+ (-12 (-5 *3 (-850)) (-5 *2 (-707)) (-5 *1 (-1014 *4 *5)) (-14 *4 *3)
(-14 *5 *3))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-452 *4 *5)) (-14 *4 (-586 (-1083))) (-4 *5 (-969))
- (-5 *2 (-223 *4 *5)) (-5 *1 (-872 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-820 *3)) (-4 *3 (-1012)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-520)) (|has| *1 (-6 -4230)) (-4 *1 (-1152 *3))
- (-4 *3 (-1118)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2257 (-717 *3)) (|:| |coef2| (-717 *3))))
- (-5 *1 (-717 *3)) (-4 *3 (-512)) (-4 *3 (-969))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-512)) (-4 *3 (-969)) (-4 *4 (-728)) (-4 *5 (-783))
- (-5 *2 (-2 (|:| -2257 *1) (|:| |coef2| *1)))
- (-4 *1 (-983 *3 *4 *5)))))
-(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4)
- (-12 (-5 *3 (-626 (-201))) (-5 *4 (-520)) (-5 *2 (-958))
- (-5 *1 (-691)))))
-((-1196 . 724742) (-1197 . 724445) (-1198 . 724343) (-1199 . 724272)
- (-1200 . 724143) (-1201 . 724034) (-1202 . 723699) (-1203 . 723446)
- (-1204 . 722892) (-1205 . 722287) (-1206 . 722236) (-1207 . 722157)
- (-1208 . 722072) (-1209 . 721942) (-1210 . 721632) (-1211 . 721527)
- (-1212 . 721468) (-1213 . 721381) (-1214 . 721240) (-1215 . 721135)
- (-1216 . 720851) (-1217 . 720737) (-1218 . 720545) (-1219 . 720467)
- (-1220 . 720387) (-1221 . 720042) (-1222 . 719965) (-1223 . 719846)
- (-1224 . 719745) (-1225 . 719602) (-1226 . 719490) (-1227 . 719275)
- (-1228 . 719160) (-1229 . 718759) (-1230 . 718606) (-1231 . 718496)
- (-1232 . 718419) (-1233 . 718040) (-1234 . 717941) (-1235 . 717466)
- (-1236 . 717381) (-1237 . 717329) (-1238 . 717151) (-1239 . 717097)
- (-1240 . 716991) (-1241 . 716892) (-1242 . 714762) (-1243 . 714568)
- (-1244 . 714364) (-1245 . 714186) (-1246 . 714079) (-1247 . 714011)
- (-1248 . 713873) (-1249 . 713845) (-1250 . 713779) (-1251 . 713638)
- (-1252 . 712401) (-1253 . 712285) (-1254 . 712163) (-1255 . 711993)
- (-1256 . 711884) (-1257 . 711701) (-1258 . 711593) (-1259 . 711427)
- (-1260 . 711054) (-1261 . 710714) (-1262 . 710189) (-1263 . 710092)
- (-1264 . 709946) (-1265 . 709884) (-1266 . 709744) (-1267 . 709644)
- (-1268 . 709386) (-1269 . 709334) (-1270 . 709223) (-1271 . 709168)
- (-1272 . 706916) (-1273 . 706439) (-1274 . 706367) (-1275 . 706221)
- (-1276 . 706080) (-1277 . 706006) (-1278 . 704605) (-1279 . 704453)
- (-1280 . 704126) (-1281 . 703921) (-1282 . 703794) (-1283 . 703581)
- (-1284 . 703518) (-1285 . 703097) (-1286 . 702873) (-1287 . 702817)
- (-1288 . 702673) (-1289 . 702468) (-1290 . 701808) (-1291 . 701673)
- (-1292 . 701621) (-1293 . 701554) (-1294 . 701501) (-1295 . 701432)
- (-1296 . 696911) (-1297 . 696811) (-1298 . 696745) (-1299 . 696444)
- (-1300 . 696213) (-1301 . 696050) (-1302 . 695853) (-1303 . 695479)
- (-1304 . 695381) (-1305 . 694895) (-1306 . 694648) (-1307 . 694582)
- (-1308 . 694411) (-1309 . 694331) (-1310 . 694201) (-1311 . 693971)
- (-1312 . 693870) (-1313 . 693691) (-1314 . 693533) (-1315 . 693257)
- (-1316 . 693052) (-1317 . 692909) (-1318 . 691613) (-1319 . 691540)
- (-1320 . 691488) (-1321 . 691371) (-1322 . 690850) (-1323 . 690765)
- (-1324 . 690715) (-1325 . 690652) (-1326 . 690624) (-1327 . 690569)
- (-1328 . 690455) (-1329 . 690356) (-1330 . 690272) (-1331 . 689892)
- (-1332 . 689762) (-1333 . 689679) (-1334 . 689596) (-1335 . 689111)
- (-1336 . 688706) (-1337 . 688651) (-1338 . 688545) (-1339 . 688009)
- (-1340 . 687926) (-1341 . 687847) (-1342 . 687668) (-1343 . 687565)
- (-1344 . 687488) (-1345 . 687395) (-1346 . 687311) (-1347 . 687015)
- (-1348 . 686862) (-1349 . 686692) (-1350 . 686423) (-1351 . 686280)
- (-1352 . 686220) (-1353 . 686163) (-1354 . 686002) (-1355 . 685629)
- (-1356 . 685534) (-1357 . 685394) (-1358 . 685246) (-1359 . 684710)
- (-1360 . 684322) (-1361 . 684094) (-1362 . 683932) (-1363 . 683879)
- (-1364 . 683449) (-1365 . 683420) (-1366 . 683351) (-1367 . 683298)
- (-1368 . 683177) (-1369 . 683107) (-1370 . 682223) (-1371 . 682149)
- (-1372 . 682094) (-1373 . 681190) (-1374 . 681066) (-1375 . 680880)
- (-1376 . 680807) (-1377 . 680627) (-1378 . 680530) (-1379 . 680480)
- (-1380 . 680396) (-1381 . 680336) (-1382 . 679727) (-1383 . 679660)
- (-1384 . 679509) (-1385 . 679426) (-1386 . 678778) (-1387 . 678338)
- (-1388 . 678255) (-1389 . 664192) (-1390 . 663931) (-1391 . 663875)
- (-1392 . 663803) (-1393 . 663750) (-1394 . 663708) (-1395 . 663578)
- (-1396 . 663449) (-1397 . 663331) (-1398 . 663236) (-1399 . 663134)
- (-1400 . 662932) (-1401 . 662858) (-1402 . 662806) (-1403 . 662699)
- (-1404 . 661518) (-1405 . 661185) (-1406 . 661133) (-1407 . 660849)
- (-1408 . 659965) (-1409 . 659721) (-1410 . 659692) (-1411 . 659570)
- (-1412 . 659327) (-1413 . 659275) (-1414 . 659221) (-1415 . 659193)
- (-1416 . 659162) (-1417 . 659128) (-1418 . 659050) (-1419 . 658928)
- (-1420 . 658684) (-1421 . 658085) (-1422 . 657801) (-1423 . 657748)
- (-1424 . 657677) (-1425 . 657604) (-1426 . 657365) (-1427 . 657222)
- (-1428 . 657137) (-1429 . 652435) (-1430 . 652271) (-1431 . 652243)
- (-1432 . 652166) (-1433 . 652100) (-1434 . 650321) (-1435 . 650268)
- (-1436 . 650197) (-1437 . 650079) (-1438 . 650024) (-1439 . 649818)
- (-1440 . 649497) (-1441 . 649310) (-1442 . 649207) (-1443 . 648932)
- (-1444 . 648794) (-1445 . 648724) (-1446 . 648629) (-1447 . 648439)
- (-1448 . 648382) (-1449 . 647936) (-1450 . 647865) (-1451 . 647710)
- (-1452 . 647613) (-1453 . 647539) (-1454 . 647436) (-1455 . 647370)
- (-1456 . 647275) (-1457 . 647193) (-1458 . 646996) (-1459 . 646924)
- (-1460 . 646824) (-1461 . 646635) (-1462 . 646516) (-1463 . 646417)
- (-1464 . 646361) (-1465 . 646238) (-1466 . 645990) (-1467 . 645912)
- (-1468 . 645587) (-1469 . 645530) (-1470 . 645311) (-1471 . 645158)
- (-1472 . 645053) (-1473 . 644980) (-1474 . 644815) (-1475 . 644732)
- (-1476 . 644608) (-1477 . 644305) (-1478 . 644087) (-1479 . 643861)
- (-1480 . 643667) (-1481 . 643593) (-1482 . 638276) (-1483 . 638224)
- (-1484 . 638153) (-1485 . 638122) (-1486 . 638094) (-1487 . 638021)
- (-1488 . 637883) (-1489 . 637739) (-1490 . 637711) (-1491 . 637609)
- (-1492 . 637358) (-1493 . 637058) (-1494 . 636984) (-1495 . 636625)
- (-1496 . 636597) (-1497 . 636453) (-1498 . 636365) (-1499 . 636305)
- (-1500 . 636182) (-1501 . 636062) (-1502 . 636013) (-1503 . 635942)
- (-1504 . 635889) (-1505 . 635619) (-1506 . 635410) (-1507 . 634140)
- (-1508 . 633995) (-1509 . 633940) (-1510 . 633741) (-1511 . 633656)
- (-1512 . 633571) (-1513 . 633192) (-1514 . 633089) (-1515 . 632985)
- (-1516 . 632886) (-1517 . 632789) (-1518 . 632648) (-1519 . 632565)
- (-1520 . 632469) (-1521 . 632388) (-1522 . 632318) (-1523 . 630776)
- (-1524 . 630706) (-1525 . 630601) (-1526 . 630406) (-1527 . 630372)
- (-1528 . 630227) (-1529 . 629776) (-1530 . 629508) (-1531 . 629368)
- (-1532 . 629213) (-1533 . 629127) (-1534 . 628959) (-1535 . 628876)
- (-1536 . 628824) (-1537 . 628586) (-1538 . 628395) (-1539 . 628308)
- (-1540 . 627096) (-1541 . 627068) (-1542 . 627015) (-1543 . 626841)
- (-1544 . 626420) (-1545 . 626321) (-1546 . 626293) (-1547 . 626225)
- (-1548 . 625919) (-1549 . 625849) (-1550 . 625714) (-1551 . 625630)
- (-1552 . 625520) (-1553 . 625425) (-1554 . 625339) (-1555 . 625308)
- (-1556 . 624574) (-1557 . 624487) (-1558 . 624390) (-1559 . 624316)
- (-1560 . 624263) (-1561 . 624143) (-1562 . 624085) (-1563 . 623937)
- (-1564 . 623753) (-1565 . 623594) (-1566 . 623471) (-1567 . 623282)
- (-1568 . 623149) (-1569 . 623032) (-1570 . 622793) (-1571 . 622353)
- (-1572 . 622287) (-1573 . 622200) (-1574 . 622062) (-1575 . 621905)
- (-1576 . 621590) (-1577 . 621469) (-1578 . 621354) (-1579 . 621255)
- (-1580 . 620977) (-1581 . 620922) (-1582 . 620845) (-1583 . 620751)
- (-1584 . 620419) (-1585 . 620346) (-1586 . 620199) (-1587 . 620122)
- (-1588 . 619961) (-1589 . 619579) (-1590 . 619405) (-1591 . 619352)
- (-1592 . 619264) (-1593 . 619187) (-1594 . 619108) (-1595 . 619028)
- (-1596 . 618782) (-1597 . 618733) (-1598 . 618649) (-1599 . 618599)
- (-1600 . 618457) (-1601 . 617273) (-1602 . 617202) (-1603 . 616197)
- (-1604 . 616120) (-1605 . 616023) (-1606 . 615944) (-1607 . 615717)
- (-1608 . 615664) (-1609 . 615553) (-1610 . 615065) (-1611 . 613887)
- (-1612 . 613789) (-1613 . 613622) (-1614 . 613234) (-1615 . 613044)
- (-1616 . 612635) (-1617 . 612528) (-1618 . 612401) (-1619 . 610203)
- (-1620 . 609979) (-1621 . 609812) (-1622 . 609593) (-1623 . 609394)
- (-1624 . 609287) (-1625 . 608815) (-1626 . 608716) (-1627 . 608230)
- (-1628 . 607228) (-1629 . 607119) (-1630 . 607060) (-1631 . 606999)
- (-1632 . 606737) (-1633 . 606679) (-1634 . 606576) (-1635 . 606420)
- (-1636 . 606340) (-1637 . 605502) (-1638 . 605430) (-1639 . 605335)
- (-1640 . 605056) (-1641 . 604982) (-1642 . 604873) (-1643 . 604483)
- (-1644 . 604142) (-1645 . 604017) (-1646 . 603838) (-1647 . 603751)
- (-1648 . 603644) (-1649 . 603485) (-1650 . 603454) (-1651 . 603270)
- (-1652 . 602754) (-1653 . 602660) (-1654 . 602257) (-1655 . 602184)
- (-1656 . 601883) (-1657 . 601782) (-1658 . 601708) (-1659 . 601552)
- (-1660 . 601303) (-1661 . 601269) (-1662 . 601145) (-1663 . 600835)
- (-1664 . 600613) (-1665 . 600443) (-1666 . 600338) (-1667 . 600199)
- (-1668 . 599976) (-1669 . 599669) (-1670 . 599595) (-1671 . 599543)
- (-1672 . 599368) (-1673 . 599238) (-1674 . 599129) (-1675 . 598166)
- (-1676 . 597802) (-1677 . 597115) (-1678 . 596599) (-1679 . 596486)
- (-1680 . 596408) (-1681 . 596244) (-1682 . 595994) (-1683 . 595682)
- (-1684 . 595530) (-1685 . 595389) (-1686 . 595277) (-1687 . 595213)
- (-1688 . 594842) (-1689 . 594811) (-1690 . 594740) (-1691 . 594161)
- (-1692 . 594077) (-1693 . 594004) (-1694 . 593914) (-1695 . 593847)
- (-1696 . 593790) (-1697 . 593591) (-1698 . 593162) (-1699 . 592931)
- (-1700 . 592321) (-1701 . 592108) (-1702 . 591895) (-1703 . 591775)
- (-1704 . 591723) (-1705 . 587563) (-1706 . 587475) (-1707 . 586135)
- (-1708 . 586080) (-1709 . 585923) (-1710 . 585782) (-1711 . 585674)
- (-1712 . 585221) (-1713 . 585117) (-1714 . 584802) (-1715 . 584623)
- (-1716 . 584273) (-1717 . 584118) (-1718 . 584013) (-1719 . 583853)
- (-1720 . 583671) (-1721 . 583614) (-1722 . 583548) (-1723 . 582896)
- (-1724 . 582722) (-1725 . 582541) (-1726 . 582489) (-1727 . 582402)
- (-1728 . 582288) (-1729 . 581945) (-1730 . 581861) (-1731 . 581767)
- (-1732 . 581614) (-1733 . 581433) (-1734 . 581323) (-1735 . 581126)
- (-1736 . 580968) (-1737 . 580393) (-1738 . 580322) (-1739 . 580071)
- (-1740 . 579907) (-1741 . 579827) (-1742 . 579559) (-1743 . 579525)
- (-1744 . 578951) (-1745 . 578874) (-1746 . 578578) (-1747 . 578498)
- (-1748 . 578332) (-1749 . 578145) (-1750 . 578032) (-1751 . 577458)
- (-1752 . 577363) (-1753 . 577284) (-1754 . 577105) (-1755 . 575387)
- (-1756 . 575227) (-1757 . 574984) (-1758 . 574410) (-1759 . 574351)
- (-1760 . 574138) (-1761 . 573899) (-1762 . 573840) (-1763 . 573711)
- (-1764 . 573507) (-1765 . 573448) (-1766 . 573378) (-1767 . 572804)
- (-1768 . 572690) (-1769 . 572449) (-1770 . 571695) (-1771 . 571643)
- (-1772 . 571546) (-1773 . 571439) (-1774 . 571220) (-1775 . 570646)
- (-1776 . 570476) (-1777 . 570417) (-1778 . 570123) (-1779 . 570043)
- (-1780 . 569987) (-1781 . 569856) (-1782 . 569742) (-1783 . 569582)
- (-1784 . 568927) (-1785 . 568491) (-1786 . 568346) (-1787 . 568219)
- (-1788 . 568029) (-1789 . 567918) (-1790 . 567644) (-1791 . 567507)
- (-1792 . 567354) (-1793 . 567222) (-1794 . 566893) (-1795 . 566780)
- (-1796 . 563495) (-1797 . 563400) (-1798 . 563302) (-1799 . 563100)
- (-1800 . 563047) (-1801 . 562967) (-1802 . 562900) (-1803 . 562757)
- (-1804 . 562348) (-1805 . 562276) (-1806 . 562194) (-1807 . 561980)
- (-1808 . 561727) (-1809 . 561633) (-1810 . 561010) (-1811 . 560524)
- (-1812 . 560397) (-1813 . 560210) (-1814 . 560155) (-1815 . 559805)
- (-1816 . 559703) (-1817 . 559512) (-1818 . 559449) (-1819 . 558917)
- (-1820 . 558863) (-1821 . 558474) (-1822 . 558201) (-1823 . 557768)
- (-1824 . 557591) (-1825 . 557303) (-1826 . 557271) (-1827 . 557218)
- (-1828 . 557189) (-1829 . 557036) (-1830 . 556983) (-1831 . 556118)
- (-1832 . 555921) (-1833 . 555645) (-1834 . 555589) (-1835 . 555517)
- (-1836 . 555307) (-1837 . 555115) (-1838 . 554983) (-1839 . 554778)
- (-1840 . 554604) (-1841 . 554531) (-1842 . 554502) (-1843 . 554365)
- (-1844 . 554272) (-1845 . 553926) (-1846 . 553856) (-1847 . 553771)
- (-1848 . 553675) (-1849 . 553569) (-1850 . 553141) (-1851 . 553072)
- (-1852 . 552905) (-1853 . 552725) (-1854 . 552673) (-1855 . 552529)
- (-1856 . 552432) (-1857 . 552380) (-1858 . 552213) (-1859 . 551396)
- (-1860 . 551311) (-1861 . 551087) (-1862 . 550979) (-1863 . 550819)
- (-1864 . 550394) (-1865 . 550102) (-1866 . 549828) (-1867 . 549584)
- (-1868 . 549368) (-1869 . 548213) (-1870 . 548032) (-1871 . 547933)
- (-1872 . 547846) (-1873 . 547760) (-1874 . 547732) (-1875 . 547642)
- (-1876 . 547517) (-1877 . 547307) (-1878 . 546960) (-1879 . 546845)
- (-1880 . 546716) (-1881 . 546639) (-1882 . 546444) (-1883 . 546382)
- (-1884 . 546249) (-1885 . 546154) (-1886 . 546060) (-1887 . 546005)
- (-1888 . 545761) (-1889 . 545654) (-1890 . 545547) (-1891 . 545463)
- (-1892 . 545135) (-1893 . 545064) (-1894 . 544396) (-1895 . 544278)
- (-1896 . 544177) (-1897 . 544074) (-1898 . 544000) (-1899 . 543775)
- (-1900 . 543658) (-1901 . 543571) (-1902 . 543434) (-1903 . 543229)
- (-1904 . 543135) (-1905 . 542635) (-1906 . 542583) (-1907 . 542523)
- (-1908 . 542353) (-1909 . 541902) (-1910 . 541652) (-1911 . 541443)
- (-1912 . 541106) (-1913 . 541002) (-1914 . 540912) (-1915 . 540811)
- (-1916 . 535305) (-1917 . 535261) (-1918 . 534771) (-1919 . 534624)
- (-1920 . 534550) (-1921 . 534414) (-1922 . 534358) (-1923 . 534292)
- (-1924 . 533955) (-1925 . 533644) (-1926 . 533548) (-1927 . 533160)
- (-1928 . 532803) (-1929 . 532632) (-1930 . 532479) (-1931 . 531963)
- (-1932 . 531895) (-1933 . 531404) (-1934 . 531327) (-1935 . 531172)
- (-1936 . 530719) (-1937 . 530563) (-1938 . 530165) (-1939 . 529967)
- (-1940 . 529802) (-1941 . 529644) (-1942 . 529470) (-1943 . 529415)
- (-1944 . 529334) (-1945 . 528536) (-1946 . 528393) (-1947 . 528046)
- (-1948 . 527972) (-1949 . 527893) (-1950 . 527694) (-1951 . 527638)
- (-1952 . 527551) (-1953 . 527449) (-1954 . 527397) (-1955 . 527254)
- (-1956 . 526983) (-1957 . 526752) (-1958 . 526698) (-1959 . 526558)
- (-1960 . 526478) (-1961 . 526214) (-1962 . 526129) (-1963 . 526031)
- (-1964 . 525754) (-1965 . 525642) (-1966 . 525539) (-1967 . 525155)
- (-1968 . 524922) (-1969 . 524829) (-1970 . 524631) (-1971 . 524544)
- (-1972 . 524429) (-1973 . 524005) (-1974 . 523882) (-1975 . 523741)
- (-1976 . 523713) (-1977 . 523548) (-1978 . 523253) (-1979 . 523138)
- (-1980 . 523003) (-1981 . 522774) (-1982 . 522674) (-1983 . 522522)
- (-1984 . 522456) (-1985 . 522318) (-1986 . 522146) (-1987 . 522033)
- (-1988 . 521744) (-1989 . 521689) (-1990 . 520509) (-1991 . 520379)
- (-1992 . 520066) (-1993 . 519954) (-1994 . 519904) (-1995 . 519806)
- (-1996 . 519553) (-1997 . 519480) (-1998 . 519395) (-1999 . 519098)
- (-2000 . 518557) (-2001 . 518451) (-2002 . 517779) (-2003 . 517713)
- (-2004 . 517647) (-2005 . 517544) (-2006 . 517459) (-2007 . 517407)
- (-2008 . 516856) (-2009 . 516698) (-2010 . 516479) (-2011 . 516380)
- (-2012 . 516218) (-2013 . 516100) (-2014 . 515581) (-2015 . 515491)
- (-2016 . 515436) (-2017 . 515219) (-2018 . 514359) (-2019 . 514179)
- (-2020 . 513981) (-2021 . 513898) (-2022 . 513815) (-2023 . 513645)
- (-2024 . 513589) (-2025 . 513405) (-2026 . 513234) (-2027 . 513018)
- (-2028 . 512938) (-2029 . 512858) (-2030 . 512691) (-2031 . 511508)
- (-2032 . 511420) (-2033 . 511285) (-2034 . 510910) (-2035 . 510851)
- (-2036 . 510462) (-2037 . 510403) (-2038 . 510375) (-2039 . 510195)
- (-2040 . 510024) (-2041 . 509939) (-2042 . 509819) (-2043 . 509725)
- (-2044 . 509582) (-2045 . 509360) (-2046 . 509307) (-2047 . 509255)
- (-2048 . 509111) (-2049 . 509021) (-2050 . 508902) (-2051 . 507617)
- (-2052 . 507539) (-2053 . 507454) (-2054 . 507164) (-2055 . 507038)
- (-2056 . 506971) (-2057 . 506641) (-2058 . 505883) (-2059 . 505810)
- (-2060 . 505560) (-2061 . 505447) (-2062 . 505332) (-2063 . 505263)
- (-2064 . 505186) (-2065 . 504837) (-2066 . 504682) (-2067 . 504389)
- (-2068 . 504316) (-2069 . 504264) (-2070 . 503920) (-2071 . 503743)
- (-2072 . 503612) (-2073 . 503535) (-2074 . 503077) (-2075 . 502443)
- (-2076 . 502299) (-2077 . 501347) (-2078 . 501262) (-2079 . 501130)
- (-2080 . 500878) (-2081 . 500793) (-2082 . 500291) (-2083 . 500214)
- (-2084 . 500103) (-2085 . 499288) (-2086 . 499231) (-2087 . 499008)
- (-2088 . 498629) (-2089 . 498460) (-2090 . 497877) (-2091 . 497820)
- (-2092 . 497374) (-2093 . 497183) (-2094 . 497047) (-2095 . 496607)
- (-2096 . 496503) (-2097 . 496431) (-2098 . 496364) (-2099 . 496271)
- (-2100 . 496240) (-2101 . 496147) (-2102 . 496067) (-2103 . 495923)
- (-2104 . 495855) (-2105 . 495251) (-2106 . 495166) (-2107 . 494927)
- (-2108 . 494816) (-2109 . 494712) (-2110 . 494605) (-2111 . 492843)
- (-2112 . 492791) (-2113 . 492763) (-2114 . 492661) (-2115 . 492223)
- (-2116 . 491037) (-2117 . 490985) (-2118 . 490887) (-2119 . 490802)
- (-2120 . 490552) (-2121 . 490436) (-2122 . 490274) (-2123 . 490165)
- (-2124 . 490034) (-2125 . 489834) (-2126 . 489733) (-2127 . 489678)
- (-2128 . 489331) (-2129 . 489085) (-2130 . 488898) (-2131 . 488539)
- (-2132 . 488292) (-2133 . 488205) (-2134 . 487868) (-2135 . 487738)
- (-2136 . 487622) (-2137 . 487386) (-2138 . 487333) (-2139 . 487167)
- (-2140 . 487020) (-2141 . 486949) (-2142 . 486819) (-2143 . 486196)
- (-2144 . 486119) (-2145 . 485996) (-2146 . 485944) (-2147 . 485835)
- (-2148 . 485623) (-2149 . 485570) (-2150 . 485140) (-2151 . 485067)
- (-2152 . 484996) (-2153 . 484859) (-2154 . 484725) (-2155 . 482573)
- (-2156 . 482180) (-2157 . 481701) (-2158 . 481590) (-2159 . 481370)
- (-2160 . 481317) (-2161 . 481104) (-2162 . 480940) (-2163 . 480874)
- (-2164 . 480712) (-2165 . 480566) (-2166 . 480309) (-2167 . 480215)
- (-2168 . 480159) (-2169 . 480055) (-2170 . 479607) (-2171 . 479472)
- (-2172 . 479383) (-2173 . 479165) (-2174 . 478833) (-2175 . 478542)
- (-2176 . 478096) (-2177 . 477897) (-2178 . 477811) (-2179 . 477561)
- (-2180 . 477506) (-2181 . 477454) (-2182 . 477280) (-2183 . 477154)
- (-2184 . 477010) (-2185 . 476793) (-2186 . 476043) (-2187 . 475885)
- (-2188 . 453016) (-2189 . 452964) (-2190 . 452827) (-2191 . 452765)
- (-2192 . 452699) (-2193 . 452587) (-2194 . 452486) (-2195 . 452403)
- (-2196 . 452375) (-2197 . 451955) (-2198 . 451533) (-2199 . 451380)
- (-2200 . 448628) (-2201 . 448600) (-2202 . 448501) (-2203 . 448449)
- (-2204 . 448303) (-2205 . 448246) (-2206 . 447915) (-2207 . 447838)
- (-2208 . 447653) (-2209 . 447567) (-2210 . 446996) (-2211 . 446167)
- (-2212 . 446062) (-2213 . 446007) (-2214 . 445970) (-2215 . 445814)
- (-2216 . 445761) (-2217 . 445712) (-2218 . 445527) (-2219 . 445433)
- (-2220 . 445187) (-2221 . 445121) (-2222 . 445034) (-2223 . 445006)
- (-2224 . 444933) (-2225 . 444878) (-2226 . 444785) (-2227 . 444337)
- (-2228 . 444111) (-2229 . 443968) (-2230 . 443113) (-2231 . 443004)
- (-2232 . 442758) (-2233 . 442620) (-2234 . 442513) (-2235 . 442327)
- (-2236 . 442116) (-2237 . 441930) (-2238 . 441555) (-2239 . 441457)
- (-2240 . 441316) (-2241 . 441153) (-2242 . 441052) (-2243 . 440458)
- (-2244 . 440340) (-2245 . 440190) (-2246 . 440090) (-2247 . 439978)
- (-2248 . 439929) (-2249 . 439819) (-2250 . 439710) (-2251 . 439349)
- (-2252 . 439172) (-2253 . 439075) (-2254 . 438992) (-2255 . 438844)
- (-2256 . 438771) (-2257 . 437671) (-2258 . 437619) (-2259 . 437471)
- (-2260 . 437313) (-2261 . 437111) (-2262 . 437042) (-2263 . 436772)
- (-2264 . 436639) (-2265 . 436495) (-2266 . 436424) (-2267 . 435826)
- (-2268 . 435465) (-2269 . 435353) (-2270 . 435174) (-2271 . 435077)
- (-2272 . 434764) (-2273 . 434583) (-2274 . 434480) (-2275 . 434384)
- (-2276 . 434287) (-2277 . 434221) (-2278 . 434126) (-2279 . 433311)
- (-2280 . 433283) (-2281 . 433035) (-2282 . 432965) (-2283 . 432880)
- (-2284 . 432179) (-2285 . 432061) (-2286 . 428073) (-2287 . 428022)
- (-2288 . 427247) (-2289 . 427003) (-2290 . 426808) (-2291 . 426666)
- (-2292 . 426581) (-2293 . 425969) (-2294 . 425890) (-2295 . 425765)
- (-2296 . 425307) (-2297 . 425248) (-2298 . 425154) (-2299 . 425041)
- (-2300 . 424991) (-2301 . 424812) (-2302 . 424734) (-2303 . 424625)
- (-2304 . 424503) (-2305 . 424077) (-2306 . 424003) (-2307 . 423896)
- (-2308 . 423768) (-2309 . 423650) (-2310 . 423059) (-2311 . 422538)
- (-2312 . 422387) (-2313 . 422289) (-2314 . 422141) (-2315 . 422011)
- (-2316 . 421949) (-2317 . 421521) (-2318 . 421466) (-2319 . 421354)
- (-2320 . 421004) (-2321 . 420938) (-2322 . 420708) (-2323 . 419710)
- (-2324 . 419611) (-2325 . 419505) (-2326 . 419435) (-2327 . 418687)
- (-2328 . 418440) (-2329 . 418362) (-2330 . 417974) (-2331 . 417875)
- (-2332 . 417798) (-2333 . 417701) (-2334 . 417598) (-2335 . 417494)
- (-2336 . 417194) (-2337 . 417109) (-2338 . 416972) (-2339 . 416887)
- (-2340 . 416643) (-2341 . 416499) (-2342 . 416415) (-2343 . 415824)
- (-2344 . 415730) (-2345 . 415677) (-2346 . 415603) (-2347 . 415507)
- (-2348 . 415316) (-2349 . 415116) (-2350 . 415064) (-2351 . 414984)
- (-2352 . 414853) (-2353 . 414691) (-2354 . 414613) (-2355 . 414562)
- (-2356 . 414290) (-2357 . 414072) (-2358 . 413960) (-2359 . 413846)
- (-2360 . 413723) (-2361 . 413616) (-2362 . 413434) (-2363 . 413366)
- (-2364 . 413189) (-2365 . 412929) (-2366 . 412855) (-2367 . 412687)
- (-2368 . 412345) (-2369 . 412220) (-2370 . 412090) (-2371 . 411840)
- (-2372 . 411803) (-2373 . 411665) (-2374 . 410355) (-2375 . 410251)
- (-2376 . 410156) (-2377 . 408855) (-2378 . 408472) (-2379 . 408337)
- (-2380 . 408025) (-2381 . 407975) (-2382 . 407922) (-2383 . 407763)
- (-2384 . 407683) (-2385 . 407544) (-2386 . 407427) (-2387 . 407353)
- (-2388 . 406434) (-2389 . 406199) (-2390 . 406104) (-2391 . 406039)
- (-2392 . 405965) (-2393 . 405859) (-2394 . 405643) (-2395 . 405585)
- (-2396 . 405405) (-2397 . 405140) (-2398 . 405052) (-2399 . 404935)
- (-2400 . 404554) (-2401 . 404459) (-2402 . 404275) (-2403 . 403949)
- (-2404 . 403900) (-2405 . 403801) (-2406 . 403613) (-2407 . 403410)
- (-2408 . 403346) (-2409 . 403213) (-2410 . 402682) (-2411 . 402630)
- (-2412 . 402208) (-2413 . 401827) (-2414 . 401695) (-2415 . 401572)
- (-2416 . 401106) (-2417 . 401010) (-2418 . 400767) (-2419 . 400660)
- (-2420 . 400574) (-2421 . 400467) (-2422 . 400151) (-2423 . 399760)
- (-2424 . 399489) (-2425 . 399408) (-2426 . 399374) (-2427 . 399325)
- (-2428 . 398804) (-2429 . 398730) (-2430 . 398436) (-2431 . 398340)
- (-2432 . 398222) (-2433 . 397978) (-2434 . 397901) (-2435 . 397743)
- (-2436 . 397143) (-2437 . 397037) (-2438 . 396856) (-2439 . 396648)
- (-2440 . 396536) (-2441 . 396439) (-2442 . 396371) (-2443 . 396315)
- (-2444 . 396231) (-2445 . 396025) (-2446 . 395745) (-2447 . 395520)
- (-2448 . 395440) (-2449 . 395224) (-2450 . 395096) (-2451 . 394751)
- (-2452 . 392897) (-2453 . 392600) (-2454 . 392228) (-2455 . 391944)
- (-2456 . 391799) (-2457 . 391512) (-2458 . 391015) (-2459 . 390892)
- (-2460 . 390642) (-2461 . 390590) (-2462 . 390472) (-2463 . 390399)
- (-2464 . 390340) (-2465 . 390236) (-2466 . 389991) (-2467 . 389815)
- (-2468 . 389714) (-2469 . 388649) (-2470 . 388455) (-2471 . 388068)
- (-2472 . 387999) (-2473 . 387878) (-2474 . 387808) (-2475 . 387665)
- (-2476 . 387592) (-2477 . 387508) (-2478 . 387425) (-2479 . 387318)
- (-2480 . 387252) (-2481 . 387184) (-2482 . 386985) (-2483 . 386898)
- (-2484 . 386573) (-2485 . 386447) (-2486 . 386351) (-2487 . 386272)
- (-2488 . 386219) (-2489 . 385916) (-2490 . 385800) (-2491 . 385642)
- (-2492 . 385444) (-2493 . 385392) (-2494 . 385285) (-2495 . 385173)
- (-2496 . 385117) (-2497 . 385056) (-2498 . 384977) (-2499 . 384871)
- (-2500 . 384800) (-2501 . 384747) (-2502 . 384677) (-2503 . 384525)
- (-2504 . 384158) (-2505 . 384005) (-2506 . 383807) (-2507 . 383651)
- (-2508 . 383373) (-2509 . 383299) (-2510 . 382951) (-2511 . 382406)
- (-2512 . 382269) (-2513 . 382143) (-2514 . 382076) (-2515 . 381405)
- (-2516 . 381132) (-2517 . 381077) (-2518 . 380887) (-2519 . 380746)
- (-2520 . 380609) (-2521 . 380500) (-2522 . 380231) (-2523 . 380079)
- (-2524 . 379812) (-2525 . 379517) (-2526 . 379363) (-2527 . 379262)
- (-2528 . 377162) (-2529 . 376909) (-2530 . 376875) (-2531 . 376557)
- (-2532 . 376400) (-2533 . 376346) (-2534 . 376223) (-2535 . 375983)
- (-2536 . 375859) (-2537 . 375750) (-2538 . 375669) (-2539 . 375511)
- (-2540 . 375437) (-2541 . 375340) (-2542 . 375213) (-2543 . 370114)
- (-2544 . 370006) (-2545 . 369828) (-2546 . 369687) (-2547 . 369559)
- (-2548 . 368956) (-2549 . 368847) (-2550 . 368710) (-2551 . 368323)
- (-2552 . 368264) (-2553 . 368170) (-2554 . 368021) (-2555 . 367951)
- (-2556 . 367878) (-2557 . 367743) (-2558 . 367622) (-2559 . 367567)
- (-2560 . 367380) (-2561 . 367285) (-2562 . 366955) (-2563 . 366887)
- (-2564 . 366792) (-2565 . 366637) (-2566 . 366534) (-2567 . 366439)
- (-2568 . 365368) (-2569 . 365298) (-2570 . 365133) (-2571 . 364464)
- (-2572 . 364177) (-2573 . 363989) (-2574 . 363936) (-2575 . 363864)
- (-2576 . 363701) (-2577 . 363590) (-2578 . 363511) (-2579 . 363459)
- (-2580 . 363361) (-2581 . 363190) (-2582 . 363117) (-2583 . 363086)
- (-2584 . 363032) (-2585 . 362919) (-2586 . 362599) (-2587 . 362478)
- (-2588 . 362265) (-2589 . 362063) (-2590 . 361877) (-2591 . 361776)
- (-2592 . 361516) (-2593 . 360973) (-2594 . 360891) (-2595 . 360761)
- (-2596 . 360539) (-2597 . 360436) (-2598 . 360384) (-2599 . 360277)
- (-2600 . 360168) (-2601 . 360000) (-2602 . 359859) (-2603 . 359761)
- (-2604 . 359688) (-2605 . 359301) (-2606 . 359011) (-2607 . 358958)
- (-2608 . 358890) (-2609 . 358640) (-2610 . 358540) (-2611 . 358405)
- (-2612 . 358182) (-2613 . 358028) (-2614 . 357504) (-2615 . 357452)
- (-2616 . 357245) (-2617 . 357150) (-2618 . 357027) (-2619 . 356781)
- (-2620 . 356616) (-2621 . 356037) (-2622 . 355794) (-2623 . 355652)
- (-2624 . 355458) (-2625 . 355342) (-2626 . 355277) (-2627 . 355194)
- (-2628 . 354878) (-2629 . 354705) (-2630 . 354550) (-2631 . 354484)
- (-2632 . 354453) (-2633 . 354358) (-2634 . 353947) (-2635 . 353456)
- (-2636 . 353266) (-2637 . 353181) (-2638 . 353051) (-2639 . 352969)
- (-2640 . 352860) (-2641 . 352689) (-2642 . 352652) (-2643 . 352581)
- (-2644 . 352415) (-2645 . 352256) (-2646 . 352120) (-2647 . 351639)
- (-2648 . 351548) (-2649 . 351499) (-2650 . 351318) (-2651 . 350980)
- (-2652 . 350949) (-2653 . 350834) (-2654 . 350743) (-2655 . 350616)
- (-2656 . 350422) (-2657 . 350142) (-2658 . 350035) (-2659 . 349955)
- (-2660 . 349832) (-2661 . 349729) (-2662 . 349660) (-2663 . 349573)
- (-2664 . 349545) (-2665 . 349426) (-2666 . 349271) (-2667 . 349033)
- (-2668 . 348874) (-2669 . 348721) (-2670 . 348631) (-2671 . 348560)
- (-2672 . 348477) (-2673 . 348392) (-2674 . 348325) (-2675 . 347915)
- (-2676 . 347842) (-2677 . 347689) (-2678 . 347545) (-2679 . 347458)
- (-2680 . 347117) (-2681 . 347002) (-2682 . 346881) (-2683 . 346828)
- (-2684 . 346670) (-2685 . 346311) (-2686 . 346223) (-2687 . 346136)
- (-2688 . 346084) (-2689 . 345976) (-2690 . 345911) (-2691 . 345636)
- (-2692 . 345490) (-2693 . 345404) (-2694 . 345227) (-2695 . 345111)
- (-2696 . 344694) (-2697 . 344541) (-2698 . 344230) (-2699 . 342661)
- (-2700 . 342333) (-2701 . 342214) (-2702 . 342084) (-2703 . 341917)
- (-2704 . 341773) (-2705 . 341554) (-2706 . 341194) (-2707 . 340863)
- (-2708 . 340761) (-2709 . 340688) (-2710 . 340347) (-2711 . 340224)
- (-2712 . 340121) (-2713 . 340031) (-2714 . 339655) (-2715 . 339336)
- (-2716 . 339009) (-2717 . 338777) (-2718 . 338696) (-2719 . 338534)
- (-2720 . 338409) (-2721 . 338338) (-2722 . 338243) (-2723 . 338215)
- (-2724 . 338039) (-2725 . 337937) (-2726 . 337866) (-2727 . 337729)
- (-2728 . 337676) (-2729 . 337372) (-2730 . 337245) (-2731 . 337032)
- (-2732 . 336331) (-2733 . 336187) (-2734 . 335561) (-2735 . 335209)
- (-2736 . 334769) (-2737 . 334562) (-2738 . 334250) (-2739 . 334156)
- (-2740 . 333885) (-2741 . 333083) (-2742 . 332793) (-2743 . 332537)
- (-2744 . 332430) (-2745 . 331689) (-2746 . 331463) (-2747 . 331373)
- (-2748 . 331293) (-2749 . 331196) (-2750 . 331109) (-2751 . 330931)
- (-2752 . 330903) (-2753 . 330850) (-2754 . 330779) (-2755 . 330660)
- (-2756 . 330405) (-2757 . 329664) (-2758 . 329527) (-2759 . 329210)
- (-2760 . 329096) (-2761 . 328976) (-2762 . 328849) (-2763 . 328783)
- (-2764 . 328700) (-2765 . 328649) (-2766 . 328510) (-2767 . 328404)
- (-2768 . 327716) (-2769 . 324808) (-2770 . 324705) (-2771 . 324301)
- (-2772 . 324025) (-2773 . 323968) (-2774 . 323459) (-2775 . 323431)
- (-2776 . 323302) (-2777 . 323109) (-2778 . 322885) (-2779 . 322309)
- (-2780 . 322226) (-2781 . 322086) (-2782 . 322018) (-2783 . 321933)
- (-2784 . 321832) (-2785 . 321499) (-2786 . 321343) (-2787 . 320379)
- (-2788 . 320289) (-2789 . 319713) (-2790 . 319305) (-2791 . 319227)
- (-2792 . 319135) (-2793 . 319014) (-2794 . 318802) (-2795 . 318744)
- (-2796 . 318658) (-2797 . 318502) (-2798 . 318311) (-2799 . 317735)
- (-2800 . 317036) (-2801 . 316795) (-2802 . 316235) (-2803 . 315903)
- (-2804 . 314538) (-2805 . 314466) (-2806 . 314031) (-2807 . 313843)
- (-2808 . 313650) (-2809 . 313371) (-2810 . 312685) (-2811 . 312008)
- (-2812 . 311925) (-2813 . 311832) (-2814 . 311718) (-2815 . 311464)
- (-2816 . 310997) (-2817 . 310910) (-2818 . 310618) (-2819 . 310535)
- (-2820 . 309849) (-2821 . 309797) (-2822 . 309642) (-2823 . 309547)
- (-2824 . 309435) (-2825 . 309335) (-2826 . 309060) (-2827 . 308842)
- (-2828 . 308728) (-2829 . 308654) (-2830 . 308532) (-2831 . 307783)
- (-2832 . 307730) (-2833 . 307465) (-2834 . 307412) (-2835 . 307274)
- (-2836 . 307147) (-2837 . 306591) (-2838 . 305145) (-2839 . 304923)
- (-2840 . 304874) (-2841 . 304803) (-2842 . 304678) (-2843 . 304104)
- (-2844 . 303997) (-2845 . 303887) (-2846 . 303772) (-2847 . 303698)
- (-2848 . 303406) (-2849 . 303350) (-2850 . 303035) (-2851 . 302961)
- (-2852 . 302847) (-2853 . 302795) (-2854 . 302739) (-2855 . 302165)
- (-2856 . 302114) (-2857 . 302004) (-2858 . 301970) (-2859 . 301820)
- (-2860 . 301702) (-2861 . 301531) (-2862 . 301424) (-2863 . 301210)
- (-2864 . 301151) (-2865 . 300131) (-2866 . 300080) (-2867 . 299506)
- (-2868 . 299399) (-2869 . 299329) (-2870 . 299188) (-2871 . 298550)
- (-2872 . 298398) (-2873 . 298231) (-2874 . 298081) (-2875 . 297917)
- (-2876 . 297754) (-2877 . 297663) (-2878 . 297419) (-2879 . 296732)
- (-2880 . 296682) (-2881 . 296575) (-2882 . 296442) (-2883 . 295930)
- (-2884 . 295812) (-2885 . 295672) (-2886 . 295430) (-2887 . 295347)
- (-2888 . 295264) (-2889 . 295167) (-2890 . 294754) (-2891 . 294067)
- (-2892 . 294015) (-2893 . 293946) (-2894 . 293894) (-2895 . 293830)
- (-2896 . 293720) (-2897 . 293333) (-2898 . 293299) (-2899 . 293068)
- (-2900 . 292946) (-2901 . 292526) (-2902 . 292442) (-2903 . 291755)
- (-2904 . 291448) (-2905 . 291396) (-2906 . 291098) (-2907 . 290909)
- (-2908 . 290856) (-2909 . 290677) (-2910 . 290563) (-2911 . 290192)
- (-2912 . 290085) (-2913 . 290011) (-2914 . 289436) (-2915 . 285374)
- (-2916 . 285116) (-2917 . 285006) (-2918 . 284863) (-2919 . 284710)
- (-2920 . 284623) (-2921 . 284573) (-2922 . 284539) (-2923 . 284456)
- (-2924 . 284274) (-2925 . 283699) (-2926 . 283407) (-2927 . 283355)
- (-2928 . 282782) (-2929 . 282686) (-2930 . 282476) (-2931 . 281602)
- (-2932 . 281550) (-2933 . 281465) (-2934 . 281239) (-2935 . 281140)
- (-2936 . 280932) (-2937 . 280855) (-2938 . 280799) (-2939 . 280698)
- (-2940 . 280572) (-2941 . 280425) (-2942 . 280232) (-2943 . 279986)
- (-2944 . 279952) (-2945 . 279673) (-2946 . 279624) (-2947 . 279415)
- (-2948 . 278330) (-2949 . 277931) (-2950 . 277658) (-2951 . 275313)
- (-2952 . 275282) (-2953 . 275188) (-2954 . 275044) (-2955 . 274835)
- (-2956 . 274724) (-2957 . 274668) (-2958 . 274351) (-2959 . 274279)
- (-2960 . 273684) (-2961 . 272519) (-2962 . 272404) (-2963 . 272246)
- (-2964 . 272178) (-2965 . 272125) (-2966 . 272020) (-2967 . 271711)
- (-2968 . 271640) (-2969 . 271553) (-2970 . 271459) (-2971 . 271431)
- (-2972 . 271076) (-2973 . 270894) (-2974 . 270734) (-2975 . 270476)
- (-2976 . 270125) (-2977 . 269862) (-2978 . 269611) (-2979 . 269475)
- (-2980 . 269388) (-2981 . 269115) (-2982 . 268871) (-2983 . 268772)
- (-2984 . 268347) (-2985 . 268247) (-2986 . 268045) (-2987 . 267959)
- (-2988 . 267532) (-2989 . 267384) (-2990 . 267291) (-2991 . 267220)
- (-2992 . 267167) (-2993 . 267067) (-2994 . 266980) (-2995 . 266616)
- (-2996 . 266561) (-2997 . 266425) (-2998 . 266316) (-2999 . 266167)
- (-3000 . 266072) (-3001 . 266020) (-3002 . 265934) (-3003 . 265839)
- (-3004 . 265787) (-3005 . 265732) (-3006 . 265531) (-3007 . 265407)
- (-3008 . 265355) (-3009 . 265239) (-3010 . 265159) (-3011 . 264936)
- (-3012 . 264834) (-3013 . 264782) (-3014 . 264657) (-3015 . 264554)
- (-3016 . 264520) (-3017 . 264353) (-3018 . 264150) (-3019 . 264064)
- (-3020 . 263956) (-3021 . 263624) (-3022 . 263508) (-3023 . 263402)
- (-3024 . 262958) (-3025 . 262892) (-3026 . 262665) (-3027 . 262503)
- (-3028 . 262466) (-3029 . 261597) (-3030 . 261502) (-3031 . 261440)
- (-3032 . 261391) (-3033 . 261228) (-3034 . 260936) (-3035 . 260902)
- (-3036 . 260874) (-3037 . 260729) (-3038 . 260484) (-3039 . 260391)
- (-3040 . 260247) (-3041 . 260129) (-3042 . 259678) (-3043 . 258476)
- (-3044 . 258257) (-3045 . 258194) (-3046 . 258124) (-3047 . 258093)
- (-3048 . 258040) (-3049 . 258006) (-3050 . 257866) (-3051 . 257767)
- (-3052 . 257672) (-3053 . 255844) (-3054 . 255721) (-3055 . 255135)
- (** . 252058) (-3057 . 251992) (-3058 . 251665) (-3059 . 251592)
- (-3060 . 251493) (-3061 . 251389) (-3062 . 250139) (-3063 . 248638)
- (-3064 . 248516) (-3065 . 248450) (-3066 . 248188) (-3067 . 248093)
- (-3068 . 247994) (-3069 . 247943) (-3070 . 247575) (-3071 . 247523)
- (-3072 . 247148) (-3073 . 245608) (-3074 . 245534) (-3075 . 245436)
- (-3076 . 245268) (-3077 . 245160) (-3078 . 245001) (-3079 . 244829)
- (-3080 . 244758) (-3081 . 244534) (-3082 . 244454) (-3083 . 243390)
- (-3084 . 243275) (-3085 . 243157) (-3086 . 242997) (-3087 . 242614)
- (-3088 . 242520) (-3089 . 242349) (-3090 . 242220) (-3091 . 242101)
- (-3092 . 241945) (-3093 . 241209) (-3094 . 241024) (-3095 . 240929)
- (-3096 . 240829) (-3097 . 240773) (-3098 . 240690) (-3099 . 240571)
- (-3100 . 240515) (-3101 . 240449) (-3102 . 240340) (-3103 . 240179)
- (-3104 . 240042) (-3105 . 239815) (-3106 . 239502) (-3107 . 239419)
- (-3108 . 239351) (-3109 . 239292) (-3110 . 239198) (-3111 . 239121)
- (-3112 . 238826) (-3113 . 238700) (-3114 . 238627) (-3115 . 238529)
- (-3116 . 238413) (-3117 . 238066) (-3118 . 238013) (-3119 . 237914)
- (-3120 . 237807) (-3121 . 237514) (-3122 . 237442) (-3123 . 236804)
- (-3124 . 236550) (-3125 . 236257) (-3126 . 236184) (-3127 . 236083)
- (-3128 . 235959) (-3129 . 235560) (-3130 . 235473) (-3131 . 235282)
- (-3132 . 235231) (-3133 . 234071) (-3134 . 234022) (-3135 . 233973)
- (-3136 . 233798) (-3137 . 233727) (-3138 . 233563) (-3139 . 233410)
- (-3140 . 232856) (-3141 . 232724) (-3142 . 232610) (-3143 . 232558)
- (-3144 . 232330) (-3145 . 232158) (-3146 . 231980) (-3147 . 231911)
- (-3148 . 231526) (-3149 . 231282) (-3150 . 230159) (-3151 . 229789)
- (-3152 . 229578) (-3153 . 229406) (-3154 . 229323) (-3155 . 229163)
- (-3156 . 229038) (-3157 . 228967) (-3158 . 228851) (-3159 . 226070)
- (-3160 . 224823) (-3161 . 224636) (-3162 . 224554) (-3163 . 224382)
- (-3164 . 224303) (-3165 . 224251) (-3166 . 224181) (-3167 . 224029)
- (-3168 . 223869) (-3169 . 223729) (-3170 . 223485) (-3171 . 223019)
- (-3172 . 222932) (-3173 . 222760) (-3174 . 222554) (-3175 . 221451)
- (-3176 . 221359) (-3177 . 221219) (-3178 . 220509) (-3179 . 220435)
- (-3180 . 220351) (-3181 . 220199) (-3182 . 219922) (-3183 . 219764)
- (-3184 . 219554) (-3185 . 219458) (-3186 . 218983) (-3187 . 218917)
- (-3188 . 218849) (-3189 . 218768) (-3190 . 218612) (-3191 . 218422)
- (-3192 . 218370) (-3193 . 218315) (-3194 . 218177) (-3195 . 218015)
- (-3196 . 217880) (-3197 . 217465) (-3198 . 217301) (-3199 . 217155)
- (-3200 . 216881) (-3201 . 216780) (-3202 . 216587) (-3203 . 216465)
- (-3204 . 216413) (-3205 . 216219) (-3206 . 216081) (-3207 . 216010)
- (-3208 . 215939) (-3209 . 215886) (-3210 . 215457) (-3211 . 215374)
- (-3212 . 215235) (-3213 . 215077) (-3214 . 215007) (-3215 . 214933)
- (-3216 . 214881) (-3217 . 214832) (-3218 . 214744) (-3219 . 214585)
- (-3220 . 214372) (-3221 . 214300) (-3222 . 214247) (-3223 . 214149)
- (-3224 . 214057) (-3225 . 213926) (-3226 . 213756) (-3227 . 213683)
- (-3228 . 213182) (-3229 . 213024) (-3230 . 212883) (-3231 . 212800)
- (-3232 . 212279) (-3233 . 211699) (-3234 . 211486) (-3235 . 211268)
- (-3236 . 210272) (-3237 . 210088) (-3238 . 210027) (-3239 . 209901)
- (-3240 . 209635) (-3241 . 209491) (-3242 . 208989) (-3243 . 208767)
- (-3244 . 208442) (-3245 . 208311) (-3246 . 208252) (-3247 . 208159)
- (-3248 . 207785) (-3249 . 207135) (-3250 . 206942) (-3251 . 206086)
- (-3252 . 205952) (-3253 . 205729) (-3254 . 205610) (-3255 . 205508)
- (-3256 . 205253) (-3257 . 204456) (-3258 . 204379) (-3259 . 204319)
- (-3260 . 203109) (-3261 . 203008) (-3262 . 202621) (-3263 . 202537)
- (-3264 . 202476) (-3265 . 202381) (-3266 . 202237) (-3267 . 202157)
- (-3268 . 202011) (-3269 . 201772) (-3270 . 201719) (-3271 . 201459)
- (-3272 . 200844) (-3273 . 200771) (-3274 . 200450) (-3275 . 200351)
- (-3276 . 199751) (-3277 . 199685) (-3278 . 199508) (-3279 . 199228)
- (-3280 . 199154) (-3281 . 199096) (-3282 . 199003) (-3283 . 198933)
- (-3284 . 198836) (-3285 . 198783) (-3286 . 198664) (-3287 . 198521)
- (-3288 . 198099) (-3289 . 197923) (-3290 . 197767) (-3291 . 197476)
- (-3292 . 197343) (-3293 . 197133) (-3294 . 197040) (-3295 . 196940)
- (-3296 . 196881) (-3297 . 196828) (-3298 . 196649) (-3299 . 196370)
- (-3300 . 196266) (-3301 . 196189) (-3302 . 195743) (-3303 . 195223)
- (-3304 . 195152) (-3305 . 195037) (-3306 . 194930) (-3307 . 194756)
- (-3308 . 194654) (-3309 . 194388) (-3310 . 194305) (-3311 . 194115)
- (-3312 . 194012) (-3313 . 193682) (-3314 . 193386) (-3315 . 193308)
- (-3316 . 192544) (-3317 . 192516) (-3318 . 192464) (-3319 . 192391)
- (-3320 . 192303) (-3321 . 192161) (-3322 . 191912) (-3323 . 191817)
- (-3324 . 191716) (-3325 . 191609) (-3326 . 191538) (-3327 . 191392)
- (-3328 . 191287) (-3329 . 191229) (-3330 . 191142) (-3331 . 190813)
- (-3332 . 190779) (-3333 . 190702) (-3334 . 190646) (-3335 . 190501)
- (-3336 . 190312) (-3337 . 190238) (-3338 . 190135) (-3339 . 189961)
- (-3340 . 189805) (-3341 . 189733) (-3342 . 189564) (-3343 . 189466)
- (-3344 . 189302) (-3345 . 189246) (-3346 . 188851) (-3347 . 188702)
- (-3348 . 188587) (-3349 . 188344) (-3350 . 188289) (-3351 . 188233)
- (-3352 . 188131) (-3353 . 188024) (-3354 . 187917) (-3355 . 187820)
- (-3356 . 187671) (-3357 . 187612) (-3358 . 187546) (-3359 . 187298)
- (-3360 . 187011) (-3361 . 186683) (-3362 . 186512) (-3363 . 186398)
- (-3364 . 186051) (-3365 . 185919) (-3366 . 185614) (-3367 . 185513)
- (-3368 . 185476) (-3369 . 185414) (-3370 . 185315) (-3371 . 184955)
- (-3372 . 184685) (-3373 . 184515) (-3374 . 184406) (-3375 . 184303)
- (-3376 . 184226) (-3377 . 184160) (-3378 . 184059) (-3379 . 183731)
- (-3380 . 183624) (-3381 . 183372) (-3382 . 183289) (-3383 . 183234)
- (-3384 . 183030) (-3385 . 182959) (-3386 . 182744) (-3387 . 182635)
- (-3388 . 182567) (-3389 . 182424) (-3390 . 182315) (-3391 . 182177)
- (-3392 . 182103) (-3393 . 181945) (-3394 . 181804) (-3395 . 181773)
- (-3396 . 181699) (-3397 . 181615) (-3398 . 181408) (-3399 . 181282)
- (-3400 . 181254) (-3401 . 181201) (-3402 . 181131) (-3403 . 181060)
- (-3404 . 180901) (-3405 . 180827) (-3406 . 180686) (-3407 . 180577)
- (-3408 . 180448) (-3409 . 180378) (-3410 . 180036) (-3411 . 179983)
- (-3412 . 179912) (-3413 . 179744) (-3414 . 179620) (-3415 . 179458)
- (-3416 . 179381) (-3417 . 179164) (-3418 . 179098) (-3419 . 178991)
- (-3420 . 178505) (-3421 . 178420) (-3422 . 178323) (-3423 . 178250)
- (-3424 . 177994) (-3425 . 177835) (-3426 . 177680) (-3427 . 177463)
- (-3428 . 177306) (-3429 . 176995) (-3430 . 176873) (-3431 . 176741)
- (-3432 . 176626) (-3433 . 176557) (-3434 . 176440) (-3435 . 176326)
- (-3436 . 176269) (-3437 . 176126) (-3438 . 175810) (-3439 . 175630)
- (-3440 . 175435) (-3441 . 175375) (-3442 . 175247) (-3443 . 175153)
- (-3444 . 174518) (-3445 . 174444) (-3446 . 174208) (-3447 . 173928)
- (-3448 . 173798) (-3449 . 173698) (-3450 . 173554) (-3451 . 173451)
- (-3452 . 173298) (-3453 . 173236) (-3454 . 173099) (-3455 . 172993)
- (-3456 . 172898) (-3457 . 172842) (-3458 . 172776) (-3459 . 172639)
- (-3460 . 172499) (-3461 . 172319) (-3462 . 172245) (-3463 . 172164)
- (-3464 . 171818) (-3465 . 171686) (-3466 . 171619) (-3467 . 171546)
- (-3468 . 171328) (-3469 . 171081) (-3470 . 170985) (-3471 . 170901)
- (-3472 . 170792) (-3473 . 170687) (-3474 . 170371) (-3475 . 168796)
- (-3476 . 168731) (-3477 . 168525) (-3478 . 168418) (-3479 . 168039)
- (-3480 . 167973) (-3481 . 167485) (-3482 . 167374) (-3483 . 167294)
- (-3484 . 166800) (-3485 . 166618) (-3486 . 166565) (-3487 . 166480)
- (-3488 . 166406) (-3489 . 166323) (-3490 . 166225) (-3491 . 166062)
- (-3492 . 165970) (-3493 . 165518) (-3494 . 165137) (-3495 . 164831)
- (-3496 . 164753) (-3497 . 164626) (-3498 . 164574) (-3499 . 164350)
- (-3500 . 164258) (-3501 . 164155) (-3502 . 164017) (-3503 . 163397)
- (-3504 . 163125) (-3505 . 162955) (-3506 . 162476) (-3507 . 162098)
- (-3508 . 161819) (-3509 . 161620) (-3510 . 161496) (-3511 . 161410)
- (-3512 . 159946) (-3513 . 159897) (-3514 . 159784) (-3515 . 159401)
- (-3516 . 158858) (-3517 . 151904) (-3518 . 151822) (-3519 . 151485)
- (-3520 . 151393) (-3521 . 151334) (-3522 . 151103) (-3523 . 150991)
- (-3524 . 150933) (-3525 . 150711) (-3526 . 150544) (-3527 . 150442)
- (-3528 . 150341) (-3529 . 150226) (-3530 . 149974) (-3531 . 149840)
- (-3532 . 149707) (-3533 . 149373) (-3534 . 149056) (-3535 . 148792)
- (-3536 . 148188) (-3537 . 148046) (-3538 . 147873) (-3539 . 147786)
- (-3540 . 147701) (-3541 . 147596) (-3542 . 147457) (-3543 . 147387)
- (-3544 . 147300) (-3545 . 147238) (-3546 . 147186) (-3547 . 147104)
- (-3548 . 146497) (-3549 . 146426) (-3550 . 146370) (-3551 . 146261)
- (-3552 . 146142) (-3553 . 146033) (-3554 . 145926) (-3555 . 145802)
- (-3556 . 145679) (-3557 . 145626) (-3558 . 145526) (-3559 . 145396)
- (-3560 . 145225) (-3561 . 145070) (-3562 . 144612) (-3563 . 144444)
- (-3564 . 144035) (-3565 . 143521) (-3566 . 143460) (-3567 . 143359)
- (-3568 . 143255) (-3569 . 143107) (-3570 . 142860) (-3571 . 142765)
- (-3572 . 142624) (-3573 . 142409) (-3574 . 142326) (-3575 . 142268)
- (-3576 . 142026) (-3577 . 141941) (-3578 . 141832) (-3579 . 141524)
- (-3580 . 141437) (-3581 . 141341) (-3582 . 141016) (-3583 . 140964)
- (-3584 . 140821) (-3585 . 140214) (-3586 . 139905) (-3587 . 139697)
- (-3588 . 139471) (-3589 . 139372) (-3590 . 139319) (-3591 . 139232)
- (-3592 . 139180) (-3593 . 139069) (-3594 . 138915) (-3595 . 138606)
- (-3596 . 138488) (-3597 . 138374) (-3598 . 138322) (-3599 . 138249)
- (-3600 . 128719) (-3601 . 128629) (-3602 . 128477) (-3603 . 128184)
- (-3604 . 127964) (-3605 . 127877) (-3606 . 127753) (-3607 . 127688)
- (-3608 . 127461) (-3609 . 127404) (-3610 . 126595) (-3611 . 126488)
- (-3612 . 126353) (-3613 . 126297) (-3614 . 126160) (-3615 . 125967)
- (-3616 . 125814) (-3617 . 125710) (-3618 . 123295) (-3619 . 123240)
- (-3620 . 123077) (-3621 . 123020) (-3622 . 122922) (-3623 . 122588)
- (-3624 . 122522) (-3625 . 122430) (-3626 . 122318) (-3627 . 122148)
- (-3628 . 122030) (-3629 . 121811) (-3630 . 121742) (-3631 . 121624)
- (-3632 . 121555) (-3633 . 121482) (-3634 . 121306) (-3635 . 121254)
- (-3636 . 121173) (-3637 . 121013) (-3638 . 120854) (-3639 . 120540)
- (-3640 . 120446) (-3641 . 120280) (-3642 . 120213) (-3643 . 119989)
- (-3644 . 119917) (-3645 . 119840) (-3646 . 119453) (-3647 . 119375)
- (-3648 . 119246) (-3649 . 119194) (-3650 . 119120) (-3651 . 118909)
- (-3652 . 118709) (-3653 . 118450) (-3654 . 118341) (-3655 . 118264)
- (-3656 . 118048) (-3657 . 117913) (-3658 . 117830) (-3659 . 117760)
- (-3660 . 117686) (-3661 . 117531) (-3662 . 117401) (-3663 . 117317)
- (-3664 . 117121) (-3665 . 116880) (-3666 . 116759) (-3667 . 116633)
- (-3668 . 116524) (-3669 . 116280) (-3670 . 116065) (-3671 . 115574)
- (-3672 . 115453) (-3673 . 115394) (-3674 . 115247) (-3675 . 115088)
- (-3676 . 114808) (-3677 . 114261) (-3678 . 114099) (-3679 . 113998)
- (-3680 . 113943) (-3681 . 113784) (-3682 . 113470) (-3683 . 113326)
- (-3684 . 113239) (-3685 . 113131) (-3686 . 113072) (-3687 . 112873)
- (-3688 . 112799) (-3689 . 112427) (-3690 . 112271) (-3691 . 111779)
- (-3692 . 111488) (-3693 . 111290) (-3694 . 111200) (-3695 . 110944)
- (-3696 . 110843) (-3697 . 110788) (-3698 . 110658) (-3699 . 109930)
- (-3700 . 109758) (-3701 . 109661) (-3702 . 109488) (-3703 . 109381)
- (-3704 . 109329) (-3705 . 108732) (-3706 . 108647) (-3707 . 108596)
- (-3708 . 108562) (-3709 . 107910) (-3710 . 107876) (-3711 . 107803)
- (-12 . 107631) (-3713 . 107377) (-3714 . 107078) (-3715 . 106969)
- (-3716 . 106917) (-3717 . 106723) (-3718 . 106512) (-3719 . 106314)
- (-3720 . 106186) (-3721 . 106064) (-3722 . 105847) (-3723 . 105738)
- (-3724 . 105554) (-3725 . 105470) (-3726 . 105252) (-3727 . 105181)
- (-3728 . 105119) (-3729 . 103823) (-3730 . 103681) (-3731 . 103515)
- (-3732 . 103466) (-3733 . 103357) (-3734 . 103305) (-3735 . 103200)
- (-3736 . 103126) (-3737 . 102916) (-3738 . 102500) (-3739 . 102398)
- (-3740 . 102284) (-3741 . 102166) (-3742 . 102095) (-3743 . 101984)
- (-3744 . 101591) (-3745 . 101427) (-3746 . 101374) (-3747 . 101267)
- (-3748 . 101169) (-3749 . 100963) (-3750 . 100870) (-3751 . 100568)
- (-3752 . 100516) (-3753 . 100310) (-3754 . 100133) (-3755 . 100024)
- (-3756 . 99868) (-3757 . 99709) (-3758 . 99629) (-3759 . 99268)
- (-3760 . 98633) (-3761 . 98577) (-3762 . 98509) (-3763 . 98365)
- (-3764 . 98242) (-3765 . 98168) (-3766 . 97425) (-3767 . 95473)
- (-3768 . 95375) (-3769 . 95170) (-3770 . 95097) (-3771 . 94807)
- (-3772 . 94745) (-3773 . 94660) (-3774 . 94130) (-3775 . 93959)
- (-3776 . 93790) (-3777 . 93645) (-3778 . 93531) (-3779 . 93439)
- (-3780 . 93310) (-3781 . 93194) (-3782 . 93141) (-3783 . 93046)
- (-3784 . 92855) (-3785 . 92799) (-3786 . 92681) (-3787 . 92540)
- (-3788 . 92469) (-3789 . 92382) (-3790 . 91190) (-3791 . 91132)
- (-3792 . 91001) (-3793 . 90894) (-3794 . 90771) (-3795 . 90667)
- (-3796 . 90538) (-3797 . 90380) (-3798 . 90315) (-3799 . 90185)
- (-3800 . 90067) (-3801 . 90012) (-3802 . 89871) (-3803 . 89805)
- (-3804 . 89526) (-3805 . 89476) (-3806 . 89237) (-3807 . 89154)
- (-3808 . 89055) (-3809 . 88851) (-3810 . 88555) (-3811 . 88471)
- (-3812 . 88415) (-3813 . 88355) (-3814 . 88296) (-3815 . 88218)
- (-3816 . 88139) (-3817 . 87779) (-3818 . 87635) (-3819 . 87551)
- (-3820 . 87340) (-3821 . 87239) (-3822 . 87145) (-3823 . 87023)
- (-3824 . 86615) (-3825 . 86534) (-3826 . 86392) (-3827 . 86187)
- (-3828 . 85968) (-3829 . 85790) (-3830 . 85563) (* . 81040)
- (-3832 . 80938) (-3833 . 80883) (-3834 . 80760) (-3835 . 80595)
- (-3836 . 80465) (-3837 . 80342) (-3838 . 80099) (-3839 . 79516)
- (-3840 . 79422) (-3841 . 78576) (-3842 . 78467) (-3843 . 77762)
- (-3844 . 77524) (-3845 . 76978) (-3846 . 76746) (-3847 . 76694)
- (-3848 . 76624) (-3849 . 76502) (-3850 . 76313) (-3851 . 76240)
- (-3852 . 76085) (-3853 . 76054) (-3854 . 75695) (-3855 . 75363)
- (-3856 . 71753) (-3857 . 71641) (-3858 . 71535) (-3859 . 71406)
- (-3860 . 71190) (-3861 . 71044) (-3862 . 70931) (-3863 . 70814)
- (-3864 . 70786) (-3865 . 70719) (-3866 . 70388) (-3867 . 70265)
- (-3868 . 70110) (-3869 . 70082) (-3870 . 69942) (-3871 . 69725)
- (-3872 . 69573) (-3873 . 69521) (-3874 . 69184) (-3875 . 69156)
- (-3876 . 69049) (-3877 . 68013) (-3878 . 67810) (-3879 . 67728)
- (-3880 . 66304) (-3881 . 66233) (-3882 . 66177) (-3883 . 65938)
- (-3884 . 65679) (-3885 . 65623) (-3886 . 65592) (-3887 . 65414)
- (-3888 . 65319) (-3889 . 65153) (-3890 . 64480) (-3891 . 64400)
- (-3892 . 64274) (-3893 . 64133) (-3894 . 64105) (-3895 . 63971)
- (-3896 . 63907) (-3897 . 63728) (-3898 . 63571) (-3899 . 63486)
- (-3900 . 63331) (-3901 . 63273) (-3902 . 63055) (-3903 . 62896)
- (-3904 . 62714) (-3905 . 62589) (-3906 . 62439) (-3907 . 62306)
- (-3908 . 62059) (-3909 . 61845) (-3910 . 61742) (-3911 . 61687)
- (-3912 . 61610) (-3913 . 61557) (-3914 . 61320) (-3915 . 60746)
- (-3916 . 60635) (-3917 . 60550) (-3918 . 60442) (-3919 . 60344)
- (-3920 . 60219) (-3921 . 60163) (-3922 . 60132) (-3923 . 59541)
- (-3924 . 59432) (-3925 . 59345) (-3926 . 59249) (-3927 . 59145)
- (-3928 . 59073) (-3929 . 58926) (-3930 . 58735) (-3931 . 58594)
- (-3932 . 58470) (-3933 . 58385) (-3934 . 58279) (-3935 . 57865)
- (-3936 . 57692) (-3937 . 57525) (-3938 . 57419) (-3939 . 57283)
- (-3940 . 57157) (-3941 . 56872) (-3942 . 56838) (-3943 . 56687)
- (-3944 . 56604) (-3945 . 56439) (-3946 . 56108) (-3947 . 56011)
- (-3948 . 55913) (-3949 . 55634) (-3950 . 55561) (-3951 . 55509)
- (-3952 . 55438) (-3953 . 54864) (-3954 . 54737) (-3955 . 54579)
- (-3956 . 54498) (-3957 . 54445) (-3958 . 54290) (-3959 . 54197)
- (-3960 . 53803) (-3961 . 53607) (-3962 . 53455) (-3963 . 53343)
- (-3964 . 52981) (-3965 . 52801) (-3966 . 52773) (-3967 . 52718)
- (-3968 . 52622) (-3969 . 52548) (-3970 . 52471) (-3971 . 52415)
- (-3972 . 51967) (-3973 . 51887) (-3974 . 51859) (-3975 . 51756)
- (-3976 . 51685) (-3977 . 51527) (-3978 . 51145) (-3979 . 51092)
- (-3980 . 50915) (-3981 . 50887) (-3982 . 50614) (-3983 . 50526)
- (-3984 . 50355) (-3985 . 50282) (-3986 . 50059) (-3987 . 50006)
- (-3988 . 49820) (-3989 . 47573) (-3990 . 47520) (-3991 . 47423)
- (-3992 . 47342) (-3993 . 47140) (-3994 . 47024) (-3995 . 46903)
- (-3996 . 46782) (-3997 . 46673) (-3998 . 46578) (-3999 . 46402)
- (-4000 . 46183) (-4001 . 46037) (-4002 . 45815) (-4003 . 45686)
- (-4004 . 45563) (-4005 . 45355) (-4006 . 45258) (-4007 . 45203)
- (-4008 . 45130) (-4009 . 45026) (-4010 . 44946) (-4011 . 44829)
- (-4012 . 44504) (-4013 . 44121) (-4014 . 43985) (-4015 . 43792)
- (-4016 . 43737) (-4017 . 43652) (-4018 . 43347) (-4019 . 43273)
- (-4020 . 43160) (-4021 . 43107) (-4022 . 42720) (-4023 . 42579)
- (-4024 . 42320) (-4025 . 42254) (-4026 . 42180) (-4027 . 41264)
- (-4028 . 40949) (-4029 . 40758) (-4030 . 40649) (-4031 . 40579)
- (-4032 . 40478) (-4033 . 40401) (-4034 . 40373) (-4035 . 40221)
- (-4036 . 40032) (-4037 . 39506) (-4038 . 39423) (-4039 . 37804)
- (-4040 . 37578) (-4041 . 37425) (-4042 . 37318) (-4043 . 37111)
- (-4044 . 37041) (-4045 . 36964) (-4046 . 36849) (-4047 . 36615)
- (-4048 . 36299) (-4049 . 36008) (-4050 . 35883) (-4051 . 35825)
- (-4052 . 35794) (-4053 . 35683) (-4054 . 35617) (-4055 . 34906)
- (-4056 . 34780) (-4057 . 34610) (-4058 . 34348) (-4059 . 34210)
- (-4060 . 34127) (-4061 . 33997) (-4062 . 33868) (-4063 . 33710)
- (-4064 . 31859) (-4065 . 30998) (-4066 . 30794) (-4067 . 30668)
- (-4068 . 30615) (-4069 . 30552) (-4070 . 30500) (-4071 . 30253)
- (-4072 . 29968) (-4073 . 29888) (-4074 . 29775) (-4075 . 29692)
- (-4076 . 29572) (-4077 . 29377) (-4078 . 29275) (-4079 . 29142)
- (-4080 . 28957) (-4081 . 27590) (-4082 . 27556) (-4083 . 27428)
- (-4084 . 27298) (-4085 . 27179) (-4086 . 27055) (-4087 . 27027)
- (-4088 . 26945) (-4089 . 26865) (-4090 . 26689) (-4091 . 26655)
- (-4092 . 26577) (-4093 . 26436) (-4094 . 26236) (-4095 . 26090)
- (-4096 . 26011) (-4097 . 25196) (-4098 . 25008) (-4099 . 24822)
- (-4100 . 24610) (-4101 . 23955) (-4102 . 23883) (-4103 . 23800)
- (-4104 . 23681) (-4105 . 23334) (-4106 . 23036) (-4107 . 22951)
- (-4108 . 22857) (-4109 . 22720) (-4110 . 22604) (-4111 . 22421)
- (-4112 . 22316) (-4113 . 21813) (-4114 . 21692) (-4115 . 21569)
- (-4116 . 20917) (-4117 . 20801) (-4118 . 20309) (-4119 . 20092)
- (-4120 . 19969) (-4121 . 19532) (-4122 . 19184) (-4123 . 19099)
- (-4124 . 19033) (-4125 . 18981) (-4126 . 18915) (-4127 . 18769)
- (-4128 . 18431) (-4129 . 18338) (-4130 . 18180) (-4131 . 17927)
- (-4132 . 17746) (-4133 . 17662) (-4134 . 17538) (-4135 . 17479)
- (-4136 . 17102) (-4137 . 16968) (-4138 . 16764) (-4139 . 15891)
- (-4140 . 15640) (-4141 . 15343) (-4142 . 15145) (-4143 . 15036)
- (-4144 . 14909) (-4145 . 14387) (-4146 . 13962) (-4147 . 13162)
- (-4148 . 13107) (-4149 . 13051) (-4150 . 12709) (-4151 . 12524)
- (-4152 . 12453) (-4153 . 12380) (-4154 . 12271) (-4155 . 12147)
- (-4156 . 11523) (-4157 . 11436) (-4158 . 11354) (-4159 . 11115)
- (-4160 . 10876) (-4161 . 10809) (-4162 . 10360) (-4163 . 10288)
- (-4164 . 9905) (-4165 . 9853) (-4166 . 9787) (-4167 . 9625)
- (-4168 . 9547) (-4169 . 9032) (-4170 . 8711) (-4171 . 8600)
- (-4172 . 8486) (-4173 . 8413) (-4174 . 8385) (-4175 . 8264)
- (-4176 . 8232) (-4177 . 8076) (-4178 . 7937) (-4179 . 7775)
- (-4180 . 7707) (-4181 . 6597) (-4182 . 5718) (-4183 . 5584)
- (-4184 . 5439) (-4185 . 5283) (-4186 . 4975) (-4187 . 4835)
- (-4188 . 4719) (-4189 . 4486) (-4190 . 4384) (-4191 . 4317)
- (-4192 . 4230) (-4193 . 4100) (-4194 . 3445) (-4195 . 3376)
- (-4196 . 3142) (-4197 . 2969) (-4198 . 2668) (-4199 . 2531)
- (-4200 . 2191) (-4201 . 2022) (-4202 . 1783) (-4203 . 1625)
- (-4204 . 1327) (-4205 . 1240) (-4206 . 1095) (-4207 . 729)
- (-4208 . 571) (-4209 . 30)) \ No newline at end of file
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-587 (-202))) (-5 *4 (-707)) (-5 *2 (-627 (-202)))
+ (-5 *1 (-280)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *4 (-521))) (-5 *5 (-1 (-1065 *4))) (-4 *4 (-337))
+ (-4 *4 (-970)) (-5 *2 (-1065 *4)) (-5 *1 (-1069 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-784))
+ (-4 *2 (-984 *4 *5 *6)) (-5 *1 (-712 *4 *5 *6 *2 *3))
+ (-4 *3 (-989 *4 *5 *6 *2)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-113 *3)) (-14 *3 *2)))
+ ((*1 *1 *1) (-12 (-5 *1 (-113 *2)) (-14 *2 (-521))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-800 *3)) (-14 *3 *2)))
+ ((*1 *1 *1) (-12 (-5 *1 (-800 *2)) (-14 *2 (-521))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-521)) (-14 *3 *2) (-5 *1 (-801 *3 *4))
+ (-4 *4 (-798 *3))))
+ ((*1 *1 *1)
+ (-12 (-14 *2 (-521)) (-5 *1 (-801 *2 *3)) (-4 *3 (-798 *2))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-521)) (-4 *1 (-1127 *3 *4)) (-4 *3 (-970))
+ (-4 *4 (-1156 *3))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1127 *2 *3)) (-4 *2 (-970)) (-4 *3 (-1156 *2)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-587 (-792))) (-5 *1 (-1084)))))
+((-1197 . 724965) (-1198 . 724371) (-1199 . 724212) (-1200 . 724064)
+ (-1201 . 723960) (-1202 . 723851) (-1203 . 723746) (-1204 . 723718)
+ (-1205 . 723512) (-1206 . 723345) (-1207 . 723207) (-1208 . 723049)
+ (-1209 . 722912) (-1210 . 722741) (-1211 . 722636) (-1212 . 722586)
+ (-1213 . 722444) (-1214 . 722148) (-1215 . 722079) (-1216 . 721981)
+ (-1217 . 721837) (-1218 . 721806) (-1219 . 721719) (-1220 . 721616)
+ (-1221 . 721553) (-1222 . 721309) (-1223 . 721030) (-1224 . 720956)
+ (-1225 . 720731) (-1226 . 720303) (-1227 . 720220) (-1228 . 720167)
+ (-1229 . 720075) (-1230 . 719995) (-1231 . 719681) (-1232 . 719637)
+ (-1233 . 719560) (-1234 . 719337) (-1235 . 719257) (-1236 . 719129)
+ (-1237 . 719076) (-1238 . 719024) (-1239 . 718508) (-1240 . 718434)
+ (-1241 . 717994) (-1242 . 717836) (-1243 . 715706) (-1244 . 715592)
+ (-1245 . 715497) (-1246 . 715353) (-1247 . 715325) (-1248 . 715256)
+ (-1249 . 715169) (-1250 . 714786) (-1251 . 714573) (-1252 . 714432)
+ (-1253 . 713195) (-1254 . 712937) (-1255 . 712744) (-1256 . 712642)
+ (-1257 . 711430) (-1258 . 711356) (-1259 . 710853) (-1260 . 710685)
+ (-1261 . 710547) (-1262 . 710495) (-1263 . 710129) (-1264 . 709972)
+ (-1265 . 709688) (-1266 . 709626) (-1267 . 709508) (-1268 . 709420)
+ (-1269 . 709343) (-1270 . 709225) (-1271 . 709114) (-1272 . 708799)
+ (-1273 . 708704) (-1274 . 708597) (-1275 . 708528) (-1276 . 708434)
+ (-1277 . 708285) (-1278 . 708211) (-1279 . 707940) (-1280 . 706539)
+ (-1281 . 706286) (-1282 . 706215) (-1283 . 706050) (-1284 . 705987)
+ (-1285 . 705910) (-1286 . 705858) (-1287 . 705785) (-1288 . 705623)
+ (-1289 . 705538) (-1290 . 705477) (-1291 . 705410) (-1292 . 705353)
+ (-1293 . 705280) (-1294 . 705130) (-1295 . 705077) (-1296 . 705024)
+ (-1297 . 700503) (-1298 . 700212) (-1299 . 700077) (-1300 . 699700)
+ (-1301 . 699582) (-1302 . 699369) (-1303 . 699303) (-1304 . 698817)
+ (-1305 . 698752) (-1306 . 698337) (-1307 . 698110) (-1308 . 697769)
+ (-1309 . 697587) (-1310 . 697531) (-1311 . 696716) (-1312 . 696645)
+ (-1313 . 696504) (-1314 . 696404) (-1315 . 696290) (-1316 . 696224)
+ (-1317 . 695876) (-1318 . 695344) (-1319 . 694048) (-1320 . 693886)
+ (-1321 . 693553) (-1322 . 693496) (-1323 . 693352) (-1324 . 693279)
+ (-1325 . 693100) (-1326 . 693023) (-1327 . 692820) (-1328 . 692698)
+ (-1329 . 692414) (-1330 . 692230) (-1331 . 692143) (-1332 . 692088)
+ (-1333 . 691953) (-1334 . 691859) (-1335 . 691655) (-1336 . 691578)
+ (-1337 . 691505) (-1338 . 691427) (-1339 . 691374) (-1340 . 691290)
+ (-1341 . 691103) (-1342 . 691035) (-1343 . 690851) (-1344 . 690693)
+ (-1345 . 690643) (-1346 . 690566) (-1347 . 690342) (-1348 . 690068)
+ (-1349 . 689894) (-1350 . 689804) (-1351 . 689535) (-1352 . 689399)
+ (-1353 . 689319) (-1354 . 689262) (-1355 . 689188) (-1356 . 688918)
+ (-1357 . 688740) (-1358 . 688626) (-1359 . 688555) (-1360 . 688484)
+ (-1361 . 688096) (-1362 . 687476) (-1363 . 687420) (-1364 . 687367)
+ (-1365 . 686937) (-1366 . 686908) (-1367 . 686815) (-1368 . 686743)
+ (-1369 . 686618) (-1370 . 686534) (-1371 . 686370) (-1372 . 686341)
+ (-1373 . 686246) (-1374 . 686105) (-1375 . 685815) (-1376 . 685762)
+ (-1377 . 685582) (-1378 . 685316) (-1379 . 685195) (-1380 . 684864)
+ (-1381 . 684706) (-1382 . 684646) (-1383 . 684037) (-1384 . 683750)
+ (-1385 . 683671) (-1386 . 683600) (-1387 . 683526) (-1388 . 682935)
+ (-1389 . 682880) (-1390 . 668817) (-1391 . 668722) (-1392 . 668670)
+ (-1393 . 668491) (-1394 . 668406) (-1395 . 667995) (-1396 . 667335)
+ (-1397 . 667269) (-1398 . 667106) (-1399 . 667026) (-1400 . 666974)
+ (-1401 . 666878) (-1402 . 666765) (-1403 . 666490) (-1404 . 666407)
+ (-1405 . 666312) (-1406 . 666141) (-1407 . 665486) (-1408 . 665354)
+ (-1409 . 665249) (-1410 . 665005) (-1411 . 664892) (-1412 . 664861)
+ (-1413 . 664288) (-1414 . 663941) (-1415 . 663887) (-1416 . 663669)
+ (-1417 . 663584) (-1418 . 663454) (-1419 . 663376) (-1420 . 662936)
+ (-1421 . 662692) (-1422 . 662093) (-1423 . 661591) (-1424 . 661484)
+ (-1425 . 661356) (-1426 . 661285) (-1427 . 661216) (-1428 . 661163)
+ (-1429 . 661093) (-1430 . 656391) (-1431 . 656248) (-1432 . 656220)
+ (-1433 . 655629) (-1434 . 655390) (-1435 . 655274) (-1436 . 655179)
+ (-1437 . 655105) (-1438 . 654891) (-1439 . 654714) (-1440 . 654622)
+ (-1441 . 654301) (-1442 . 654187) (-1443 . 654088) (-1444 . 653891)
+ (-1445 . 653753) (-1446 . 653682) (-1447 . 653516) (-1448 . 653367)
+ (-1449 . 653310) (-1450 . 653060) (-1451 . 652878) (-1452 . 652456)
+ (-1453 . 652298) (-1454 . 652224) (-1455 . 651320) (-1456 . 651254)
+ (-1457 . 651182) (-1458 . 651056) (-1459 . 650697) (-1460 . 650596)
+ (-1461 . 650503) (-1462 . 650423) (-1463 . 650304) (-1464 . 650169)
+ (-1465 . 650038) (-1466 . 649618) (-1467 . 649504) (-1468 . 649431)
+ (-1469 . 648121) (-1470 . 648064) (-1471 . 647998) (-1472 . 647926)
+ (-1473 . 647874) (-1474 . 647791) (-1475 . 647679) (-1476 . 647354)
+ (-1477 . 647271) (-1478 . 647104) (-1479 . 647031) (-1480 . 646979)
+ (-1481 . 646906) (-1482 . 646832) (-1483 . 641515) (-1484 . 641369)
+ (-1485 . 641261) (-1486 . 640786) (-1487 . 640649) (-1488 . 640511)
+ (-1489 . 640169) (-1490 . 640074) (-1491 . 640000) (-1492 . 639906)
+ (-1493 . 639749) (-1494 . 639640) (-1495 . 639571) (-1496 . 639354)
+ (-1497 . 639250) (-1498 . 638918) (-1499 . 638847) (-1500 . 638787)
+ (-1501 . 638759) (-1502 . 638706) (-1503 . 638651) (-1504 . 638539)
+ (-1505 . 638348) (-1506 . 638277) (-1507 . 638007) (-1508 . 637798)
+ (-1509 . 637714) (-1510 . 637643) (-1511 . 637542) (-1512 . 637320)
+ (-1513 . 637224) (-1514 . 636772) (-1515 . 636667) (-1516 . 636562)
+ (-1517 . 635542) (-1518 . 635202) (-1519 . 634820) (-1520 . 634449)
+ (-1521 . 633634) (-1522 . 633513) (-1523 . 633233) (-1524 . 633016)
+ (-1525 . 632933) (-1526 . 632797) (-1527 . 632741) (-1528 . 632359)
+ (-1529 . 632262) (-1530 . 631964) (-1531 . 631696) (-1532 . 631616)
+ (-1533 . 631561) (-1534 . 631459) (-1535 . 631152) (-1536 . 631100)
+ (-1537 . 630957) (-1538 . 630833) (-1539 . 630642) (-1540 . 630543)
+ (-1541 . 630418) (-1542 . 630196) (-1543 . 630139) (-1544 . 629965)
+ (-1545 . 629883) (-1546 . 629815) (-1547 . 629701) (-1548 . 629633)
+ (-1549 . 629327) (-1550 . 629242) (-1551 . 629176) (-1552 . 629000)
+ (-1553 . 628941) (-1554 . 628846) (-1555 . 628760) (-1556 . 628484)
+ (-1557 . 628433) (-1558 . 628346) (-1559 . 627739) (-1560 . 627581)
+ (-1561 . 627514) (-1562 . 627394) (-1563 . 627321) (-1564 . 627262)
+ (-1565 . 627109) (-1566 . 626950) (-1567 . 626716) (-1568 . 626590)
+ (-1569 . 626495) (-1570 . 626378) (-1571 . 626325) (-1572 . 626221)
+ (-1573 . 626100) (-1574 . 626013) (-1575 . 625875) (-1576 . 625823)
+ (-1577 . 625709) (-1578 . 625394) (-1579 . 625304) (-1580 . 625189)
+ (-1581 . 624911) (-1582 . 624586) (-1583 . 624382) (-1584 . 624134)
+ (-1585 . 623802) (-1586 . 623607) (-1587 . 623440) (-1588 . 623363)
+ (-1589 . 623217) (-1590 . 623110) (-1591 . 623001) (-1592 . 622916)
+ (-1593 . 622705) (-1594 . 622617) (-1595 . 622543) (-1596 . 622160)
+ (-1597 . 622083) (-1598 . 621873) (-1599 . 621820) (-1600 . 621771)
+ (-1601 . 621381) (-1602 . 620197) (-1603 . 620071) (-1604 . 619066)
+ (-1605 . 618989) (-1606 . 617624) (-1607 . 617557) (-1608 . 617330)
+ (-1609 . 617262) (-1610 . 617103) (-1611 . 616615) (-1612 . 615437)
+ (-1613 . 615353) (-1614 . 615186) (-1615 . 615112) (-1616 . 614724)
+ (-1617 . 614117) (-1618 . 613736) (-1619 . 613550) (-1620 . 611352)
+ (-1621 . 611144) (-1622 . 610977) (-1623 . 610661) (-1624 . 610484)
+ (-1625 . 610324) (-1626 . 610241) (-1627 . 610068) (-1628 . 609582)
+ (-1629 . 609454) (-1630 . 608452) (-1631 . 608393) (-1632 . 608332)
+ (-1633 . 608188) (-1634 . 608103) (-1635 . 607735) (-1636 . 607612)
+ (-1637 . 607087) (-1638 . 606956) (-1639 . 606884) (-1640 . 606856)
+ (-1641 . 606782) (-1642 . 606748) (-1643 . 606696) (-1644 . 606483)
+ (-1645 . 606409) (-1646 . 606324) (-1647 . 606225) (-1648 . 606167)
+ (-1649 . 605936) (-1650 . 605777) (-1651 . 605627) (-1652 . 605490)
+ (-1653 . 605421) (-1654 . 605340) (-1655 . 605269) (-1656 . 605128)
+ (-1657 . 604875) (-1658 . 604818) (-1659 . 604662) (-1660 . 603710)
+ (-1661 . 603639) (-1662 . 603390) (-1663 . 603295) (-1664 . 603239)
+ (-1665 . 602859) (-1666 . 602747) (-1667 . 602642) (-1668 . 602544)
+ (-1669 . 602442) (-1670 . 602326) (-1671 . 602197) (-1672 . 601323)
+ (-1673 . 601148) (-1674 . 600922) (-1675 . 600792) (-1676 . 599975)
+ (-1677 . 599892) (-1678 . 599205) (-1679 . 599134) (-1680 . 599106)
+ (-1681 . 599026) (-1682 . 598953) (-1683 . 598652) (-1684 . 598570)
+ (-1685 . 598433) (-1686 . 598377) (-1687 . 598318) (-1688 . 598266)
+ (-1689 . 598210) (-1690 . 598158) (-1691 . 598051) (-1692 . 597869)
+ (-1693 . 597820) (-1694 . 597695) (-1695 . 597554) (-1696 . 597458)
+ (-1697 . 597117) (-1698 . 597065) (-1699 . 596920) (-1700 . 596867)
+ (-1701 . 596766) (-1702 . 596666) (-1703 . 596596) (-1704 . 596484)
+ (-1705 . 595829) (-1706 . 595795) (-1707 . 595702) (-1708 . 595537)
+ (-1709 . 595465) (-1710 . 595345) (-1711 . 595245) (-1712 . 595075)
+ (-1713 . 594703) (-1714 . 594599) (-1715 . 594282) (-1716 . 594254)
+ (-1717 . 594157) (-1718 . 594002) (-1719 . 593917) (-1720 . 593862)
+ (-1721 . 593616) (-1722 . 593310) (-1723 . 593215) (-1724 . 593085)
+ (-1725 . 593033) (-1726 . 592882) (-1727 . 592830) (-1728 . 592774)
+ (-1729 . 592680) (-1730 . 592571) (-1731 . 592516) (-1732 . 592417)
+ (-1733 . 592365) (-1734 . 592313) (-1735 . 591896) (-1736 . 591732)
+ (-1737 . 591574) (-1738 . 590999) (-1739 . 590862) (-1740 . 590743)
+ (-1741 . 590398) (-1742 . 590296) (-1743 . 590120) (-1744 . 589930)
+ (-1745 . 589356) (-1746 . 588905) (-1747 . 588853) (-1748 . 588680)
+ (-1749 . 588587) (-1750 . 588490) (-1751 . 588418) (-1752 . 587844)
+ (-1753 . 587774) (-1754 . 587589) (-1755 . 587482) (-1756 . 587291)
+ (-1757 . 587192) (-1758 . 586756) (-1759 . 586182) (-1760 . 586048)
+ (-1761 . 585921) (-1762 . 585777) (-1763 . 585707) (-1764 . 585578)
+ (-1765 . 585472) (-1766 . 585388) (-1767 . 585230) (-1768 . 584656)
+ (-1769 . 584588) (-1770 . 584518) (-1771 . 584337) (-1772 . 584285)
+ (-1773 . 584147) (-1774 . 583772) (-1775 . 583594) (-1776 . 583020)
+ (-1777 . 582794) (-1778 . 582711) (-1779 . 582640) (-1780 . 582560)
+ (-1781 . 582504) (-1782 . 582389) (-1783 . 582323) (-1784 . 582198)
+ (-1785 . 581706) (-1786 . 581447) (-1787 . 581394) (-1788 . 581309)
+ (-1789 . 581185) (-1790 . 581076) (-1791 . 580999) (-1792 . 580860)
+ (-1793 . 580707) (-1794 . 580564) (-1795 . 580224) (-1796 . 580111)
+ (-1797 . 576826) (-1798 . 576754) (-1799 . 576557) (-1800 . 576355)
+ (-1801 . 576283) (-1802 . 575972) (-1803 . 575894) (-1804 . 575826)
+ (-1805 . 575417) (-1806 . 575226) (-1807 . 575119) (-1808 . 574959)
+ (-1809 . 574819) (-1810 . 574731) (-1811 . 574108) (-1812 . 573795)
+ (-1813 . 573544) (-1814 . 573459) (-1815 . 573403) (-1816 . 573280)
+ (-1817 . 573224) (-1818 . 573127) (-1819 . 573076) (-1820 . 572960)
+ (-1821 . 572866) (-1822 . 572813) (-1823 . 572594) (-1824 . 572457)
+ (-1825 . 572346) (-1826 . 572294) (-1827 . 572176) (-1828 . 572112)
+ (-1829 . 571762) (-1830 . 571327) (-1831 . 571274) (-1832 . 571152)
+ (-1833 . 571093) (-1834 . 570981) (-1835 . 570907) (-1836 . 570855)
+ (-1837 . 570645) (-1838 . 570562) (-1839 . 570496) (-1840 . 570392)
+ (-1841 . 570240) (-1842 . 570046) (-1843 . 569937) (-1844 . 569593)
+ (-1845 . 569500) (-1846 . 569419) (-1847 . 569176) (-1848 . 569126)
+ (-1849 . 569049) (-1850 . 568956) (-1851 . 568849) (-1852 . 568755)
+ (-1853 . 568662) (-1854 . 568579) (-1855 . 568481) (-1856 . 568394)
+ (-1857 . 568339) (-1858 . 567993) (-1859 . 567941) (-1860 . 567796)
+ (-1861 . 567736) (-1862 . 567512) (-1863 . 567366) (-1864 . 567275)
+ (-1865 . 566850) (-1866 . 566748) (-1867 . 566626) (-1868 . 566434)
+ (-1869 . 566228) (-1870 . 565073) (-1871 . 564953) (-1872 . 564836)
+ (-1873 . 564666) (-1874 . 562812) (-1875 . 562725) (-1876 . 562539)
+ (-1877 . 562412) (-1878 . 562347) (-1879 . 562056) (-1880 . 561945)
+ (-1881 . 561887) (-1882 . 561644) (-1883 . 561489) (-1884 . 561427)
+ (-1885 . 561264) (-1886 . 561133) (-1887 . 561029) (-1888 . 560902)
+ (-1889 . 560808) (-1890 . 560699) (-1891 . 560453) (-1892 . 560390)
+ (-1893 . 560062) (-1894 . 559972) (-1895 . 559889) (-1896 . 557108)
+ (-1897 . 556953) (-1898 . 556902) (-1899 . 556831) (-1900 . 556443)
+ (-1901 . 556326) (-1902 . 556268) (-1903 . 556144) (-1904 . 555955)
+ (-1905 . 555455) (-1906 . 553503) (-1907 . 553448) (-1908 . 553135)
+ (-1909 . 553083) (-1910 . 552967) (-1911 . 552901) (-1912 . 552817)
+ (-1913 . 552480) (-1914 . 552384) (-1915 . 552246) (-1916 . 546740)
+ (-1917 . 546632) (-1918 . 546462) (-1919 . 546340) (-1920 . 545947)
+ (-1921 . 545806) (-1922 . 545671) (-1923 . 545573) (-1924 . 545473)
+ (-1925 . 545136) (-1926 . 544959) (-1927 . 544571) (-1928 . 543988)
+ (-1929 . 543922) (-1930 . 543645) (-1931 . 543492) (-1932 . 543385)
+ (-1933 . 542770) (-1934 . 542423) (-1935 . 541970) (-1936 . 541908)
+ (-1937 . 541801) (-1938 . 541003) (-1939 . 540885) (-1940 . 540853)
+ (-1941 . 540775) (-1942 . 540647) (-1943 . 540591) (-1944 . 539936)
+ (-1945 . 539877) (-1946 . 539783) (-1947 . 539656) (-1948 . 539309)
+ (-1949 . 535149) (-1950 . 535017) (-1951 . 534597) (-1952 . 534416)
+ (-1953 . 534356) (-1954 . 534254) (-1955 . 534056) (-1956 . 533970)
+ (-1957 . 533827) (-1958 . 533740) (-1959 . 531978) (-1960 . 531532)
+ (-1961 . 531452) (-1962 . 531239) (-1963 . 530852) (-1964 . 530770)
+ (-1965 . 530637) (-1966 . 530273) (-1967 . 530131) (-1968 . 529747)
+ (-1969 . 529578) (-1970 . 529451) (-1971 . 529392) (-1972 . 528871)
+ (-1973 . 528792) (-1974 . 528441) (-1975 . 528241) (-1976 . 528130)
+ (-1977 . 528032) (-1978 . 527931) (-1979 . 527846) (-1980 . 527761)
+ (-1981 . 527626) (-1982 . 527560) (-1983 . 527044) (-1984 . 526974)
+ (-1985 . 526809) (-1986 . 526283) (-1987 . 526174) (-1988 . 526070)
+ (-1989 . 525972) (-1990 . 525904) (-1991 . 525774) (-1992 . 525485)
+ (-1993 . 525235) (-1994 . 523135) (-1995 . 523085) (-1996 . 522843)
+ (-1997 . 522679) (-1998 . 522593) (-1999 . 522509) (-2000 . 522429)
+ (-2001 . 522289) (-2002 . 522102) (-2003 . 521430) (-2004 . 521303)
+ (-2005 . 521000) (-2006 . 520915) (-2007 . 520736) (-2008 . 520335)
+ (-2009 . 519784) (-2010 . 519652) (-2011 . 519603) (-2012 . 519404)
+ (-2013 . 519327) (-2014 . 519017) (-2015 . 518890) (-2016 . 518700)
+ (-2017 . 518627) (-2018 . 518562) (-2019 . 518314) (-2020 . 518234)
+ (-2021 . 518033) (-2022 . 517849) (-2023 . 517740) (-2024 . 517507)
+ (-2025 . 517435) (-2026 . 517208) (-2027 . 516665) (-2028 . 516373)
+ (-2029 . 516134) (-2030 . 515991) (-2031 . 515543) (-2032 . 514360)
+ (-2033 . 514279) (-2034 . 514185) (-2035 . 513958) (-2036 . 513875)
+ (-2037 . 513815) (-2038 . 513684) (-2039 . 513513) (-2040 . 513446)
+ (-2041 . 513252) (-2042 . 513178) (-2043 . 513077) (-2044 . 513022)
+ (-2045 . 512967) (-2046 . 512914) (-2047 . 512850) (-2048 . 512763)
+ (-2049 . 512690) (-2050 . 512637) (-2051 . 512566) (-2052 . 512447)
+ (-2053 . 512194) (-2054 . 512142) (-2055 . 512058) (-2056 . 511949)
+ (-2057 . 511791) (-2058 . 511552) (-2059 . 511486) (-2060 . 511357)
+ (-2061 . 511144) (-2062 . 511092) (-2063 . 510572) (-2064 . 510348)
+ (-2065 . 510289) (-2066 . 510203) (-2067 . 509782) (-2068 . 509498)
+ (-2069 . 509427) (-2070 . 509344) (-2071 . 509016) (-2072 . 508675)
+ (-2073 . 508412) (-2074 . 508360) (-2075 . 508175) (-2076 . 508020)
+ (-2077 . 507843) (-2078 . 507759) (-2079 . 507647) (-2080 . 507515)
+ (-2081 . 507447) (-2082 . 506736) (-2083 . 506651) (-2084 . 506542)
+ (-2085 . 506459) (-2086 . 506233) (-2087 . 505677) (-2088 . 505509)
+ (-2089 . 505427) (-2090 . 505326) (-2091 . 505273) (-2092 . 505216)
+ (-2093 . 504770) (-2094 . 504341) (-2095 . 504292) (-2096 . 504182)
+ (-2097 . 503603) (-2098 . 503439) (-2099 . 503259) (-2100 . 503124)
+ (-2101 . 503045) (-2102 . 502827) (-2103 . 501662) (-2104 . 501575)
+ (-2105 . 501363) (-2106 . 501266) (-2107 . 500961) (-2108 . 500805)
+ (-2109 . 500563) (-2110 . 500276) (-2111 . 500179) (-2112 . 500113)
+ (-2113 . 499908) (-2114 . 499527) (-2115 . 499474) (-2116 . 499389)
+ (-2117 . 499306) (-2118 . 499148) (-2119 . 499070) (-2120 . 498958)
+ (-2121 . 498891) (-2122 . 498818) (-2123 . 498744) (-2124 . 498670)
+ (-2125 . 498602) (-2126 . 498500) (-2127 . 498261) (-2128 . 498078)
+ (-2129 . 497827) (-2130 . 497725) (-2131 . 497445) (-2132 . 497338)
+ (-2133 . 497286) (-2134 . 497033) (-2135 . 496918) (-2136 . 496757)
+ (-2137 . 496661) (-2138 . 496445) (-2139 . 496283) (-2140 . 496217)
+ (-2141 . 496119) (-2142 . 496063) (-2143 . 495990) (-2144 . 495837)
+ (-2145 . 495760) (-2146 . 495125) (-2147 . 494161) (-2148 . 494127)
+ (-2149 . 494099) (-2150 . 493877) (-2151 . 493783) (-2152 . 493749)
+ (-2153 . 493525) (-2154 . 493314) (-2155 . 492476) (-2156 . 490324)
+ (-2157 . 490198) (-2158 . 489877) (-2159 . 489758) (-2160 . 489706)
+ (-2161 . 489621) (-2162 . 488175) (-2163 . 488102) (-2164 . 487906)
+ (-2165 . 487689) (-2166 . 487633) (-2167 . 487582) (-2168 . 487323)
+ (-2169 . 487079) (-2170 . 486954) (-2171 . 486527) (-2172 . 486448)
+ (-2173 . 486230) (-2174 . 485898) (-2175 . 485539) (-2176 . 485484)
+ (-2177 . 485193) (-2178 . 485090) (-2179 . 484599) (-2180 . 484424)
+ (-2181 . 484309) (-2182 . 484223) (-2183 . 484146) (-2184 . 477192)
+ (-2185 . 477119) (-2186 . 477030) (-2187 . 476804) (-2188 . 476672)
+ (-2189 . 453803) (-2190 . 453702) (-2191 . 453649) (-2192 . 453568)
+ (-2193 . 453518) (-2194 . 453385) (-2195 . 453328) (-2196 . 453243)
+ (-2197 . 453044) (-2198 . 452991) (-2199 . 452569) (-2200 . 452516)
+ (-2201 . 449764) (-2202 . 449705) (-2203 . 449598) (-2204 . 449515)
+ (-2205 . 449272) (-2206 . 449206) (-2207 . 448962) (-2208 . 448855)
+ (-2209 . 448407) (-2210 . 448160) (-2211 . 447950) (-2212 . 447121)
+ (-2213 . 447084) (-2214 . 447010) (-2215 . 446891) (-2216 . 446788)
+ (-2217 . 446633) (-2218 . 446562) (-2219 . 446113) (-2220 . 445815)
+ (-2221 . 445499) (-2222 . 445470) (-2223 . 445383) (-2224 . 445230)
+ (-2225 . 444806) (-2226 . 444676) (-2227 . 444567) (-2228 . 444428)
+ (-2229 . 444264) (-2230 . 443409) (-2231 . 443332) (-2232 . 443204)
+ (-2233 . 443148) (-2234 . 441956) (-2235 . 441854) (-2236 . 441787)
+ (-2237 . 441617) (-2238 . 441481) (-2239 . 441108) (-2240 . 440922)
+ (-2241 . 440870) (-2242 . 440707) (-2243 . 440485) (-2244 . 440433)
+ (-2245 . 440310) (-2246 . 440209) (-2247 . 440130) (-2248 . 439991)
+ (-2249 . 439913) (-2250 . 439773) (-2251 . 439625) (-2252 . 439551)
+ (-2253 . 439454) (-2254 . 439122) (-2255 . 438832) (-2256 . 438591)
+ (-2257 . 438481) (-2258 . 437381) (-2259 . 437304) (-2260 . 437233)
+ (-2261 . 437018) (-2262 . 436937) (-2263 . 436746) (-2264 . 436515)
+ (-2265 . 436459) (-2266 . 436112) (-2267 . 435666) (-2268 . 435632)
+ (-2269 . 435271) (-2270 . 434841) (-2271 . 434383) (-2272 . 434352)
+ (-2273 . 434253) (-2274 . 433858) (-2275 . 433750) (-2276 . 433494)
+ (-2277 . 433397) (-2278 . 433100) (-2279 . 433051) (-2280 . 432968)
+ (-2281 . 432940) (-2282 . 432858) (-2283 . 432821) (-2284 . 432723)
+ (-2285 . 432667) (-2286 . 432614) (-2287 . 431805) (-2288 . 427817)
+ (-2289 . 427746) (-2290 . 427666) (-2291 . 427275) (-2292 . 427081)
+ (-2293 . 426469) (-2294 . 426374) (-2295 . 426251) (-2296 . 426144)
+ (-2297 . 426049) (-2298 . 425928) (-2299 . 425758) (-2300 . 425675)
+ (-2301 . 425566) (-2302 . 425494) (-2303 . 425398) (-2304 . 425154)
+ (-2305 . 425058) (-2306 . 424632) (-2307 . 424552) (-2308 . 424316)
+ (-2309 . 424253) (-2310 . 424049) (-2311 . 423591) (-2312 . 423476)
+ (-2313 . 423181) (-2314 . 423110) (-2315 . 422980) (-2316 . 422919)
+ (-2317 . 422857) (-2318 . 421997) (-2319 . 421786) (-2320 . 421674)
+ (-2321 . 421412) (-2322 . 421346) (-2323 . 421204) (-2324 . 421105)
+ (-2325 . 421012) (-2326 . 420892) (-2327 . 420822) (-2328 . 420735)
+ (-2329 . 420648) (-2330 . 420459) (-2331 . 420389) (-2332 . 420290)
+ (-2333 . 420219) (-2334 . 419728) (-2335 . 419622) (-2336 . 419518)
+ (-2337 . 418987) (-2338 . 418118) (-2339 . 417508) (-2340 . 417399)
+ (-2341 . 417240) (-2342 . 417041) (-2343 . 416961) (-2344 . 416808)
+ (-2345 . 416701) (-2346 . 416536) (-2347 . 416369) (-2348 . 416061)
+ (-2349 . 415623) (-2350 . 415477) (-2351 . 415370) (-2352 . 414987)
+ (-2353 . 414843) (-2354 . 414781) (-2355 . 414685) (-2356 . 414530)
+ (-2357 . 414457) (-2358 . 414370) (-2359 . 413636) (-2360 . 413539)
+ (-2361 . 412905) (-2362 . 412775) (-2363 . 412702) (-2364 . 412456)
+ (-2365 . 412372) (-2366 . 412314) (-2367 . 412263) (-2368 . 412057)
+ (-2369 . 411950) (-2370 . 411876) (-2371 . 411732) (-2372 . 411583)
+ (-2373 . 411224) (-2374 . 411137) (-2375 . 410866) (-2376 . 410745)
+ (-2377 . 410662) (-2378 . 409361) (-2379 . 409291) (-2380 . 409188)
+ (-2381 . 409081) (-2382 . 408982) (-2383 . 408824) (-2384 . 408727)
+ (-2385 . 408657) (-2386 . 407738) (-2387 . 406442) (-2388 . 406339)
+ (-2389 . 405798) (-2390 . 405480) (-2391 . 405239) (-2392 . 404959)
+ (-2393 . 404782) (-2394 . 404182) (-2395 . 404133) (-2396 . 403978)
+ (-2397 . 403798) (-2398 . 403533) (-2399 . 402954) (-2400 . 402837)
+ (-2401 . 402718) (-2402 . 402666) (-2403 . 402287) (-2404 . 401961)
+ (-2405 . 401866) (-2406 . 401725) (-2407 . 401630) (-2408 . 401473)
+ (-2409 . 401295) (-2410 . 401197) (-2411 . 400837) (-2412 . 400564)
+ (-2413 . 400420) (-2414 . 400268) (-2415 . 400170) (-2416 . 400047)
+ (-2417 . 399791) (-2418 . 399696) (-2419 . 399558) (-2420 . 399456)
+ (-2421 . 399403) (-2422 . 399309) (-2423 . 399041) (-2424 . 398857)
+ (-2425 . 398771) (-2426 . 398645) (-2427 . 398611) (-2428 . 398332)
+ (-2429 . 398171) (-2430 . 397881) (-2431 . 397728) (-2432 . 397700)
+ (-2433 . 397647) (-2434 . 397481) (-2435 . 397281) (-2436 . 397188)
+ (-2437 . 397135) (-2438 . 397050) (-2439 . 396870) (-2440 . 396662)
+ (-2441 . 396525) (-2442 . 396386) (-2443 . 396192) (-2444 . 396052)
+ (-2445 . 395867) (-2446 . 395587) (-2447 . 394401) (-2448 . 394320)
+ (-2449 . 394217) (-2450 . 394151) (-2451 . 394077) (-2452 . 393777)
+ (-2453 . 393524) (-2454 . 393465) (-2455 . 393350) (-2456 . 393234)
+ (-2457 . 393089) (-2458 . 392980) (-2459 . 392775) (-2460 . 392702)
+ (-2461 . 392579) (-2462 . 392360) (-2463 . 392273) (-2464 . 392239)
+ (-2465 . 392180) (-2466 . 392024) (-2467 . 391779) (-2468 . 391653)
+ (-2469 . 391547) (-2470 . 390682) (-2471 . 390605) (-2472 . 390484)
+ (-2473 . 390373) (-2474 . 390243) (-2475 . 389830) (-2476 . 389493)
+ (-2477 . 389018) (-2478 . 388744) (-2479 . 388589) (-2480 . 388317)
+ (-2481 . 388220) (-2482 . 388168) (-2483 . 388075) (-2484 . 387998)
+ (-2485 . 387875) (-2486 . 387749) (-2487 . 387721) (-2488 . 387667)
+ (-2489 . 386125) (-2490 . 386016) (-2491 . 385967) (-2492 . 385629)
+ (-2493 . 385466) (-2494 . 385393) (-2495 . 385262) (-2496 . 385179)
+ (-2497 . 384819) (-2498 . 384753) (-2499 . 384650) (-2500 . 384616)
+ (-2501 . 384518) (-2502 . 384148) (-2503 . 384074) (-2504 . 384022)
+ (-2505 . 383925) (-2506 . 383761) (-2507 . 383652) (-2508 . 383553)
+ (-2509 . 383336) (-2510 . 383231) (-2511 . 383175) (-2512 . 383105)
+ (-2513 . 382846) (-2514 . 382485) (-2515 . 382418) (-2516 . 381747)
+ (-2517 . 381474) (-2518 . 381276) (-2519 . 381147) (-2520 . 380810)
+ (-2521 . 380412) (-2522 . 380268) (-2523 . 380096) (-2524 . 379898)
+ (-2525 . 379631) (-2526 . 379581) (-2527 . 379337) (-2528 . 379247)
+ (-2529 . 379093) (-2530 . 379037) (-2531 . 378477) (-2532 . 378325)
+ (-2533 . 378259) (-2534 . 378080) (-2535 . 378052) (-2536 . 377812)
+ (-2537 . 377743) (-2538 . 377678) (-2539 . 377431) (-2540 . 377350)
+ (-2541 . 377298) (-2542 . 377245) (-2543 . 377190) (-2544 . 372091)
+ (-2545 . 371289) (-2546 . 371188) (-2547 . 370992) (-2548 . 370619)
+ (-2549 . 370473) (-2550 . 370370) (-2551 . 370271) (-2552 . 370134)
+ (-2553 . 370075) (-2554 . 369566) (-2555 . 368456) (-2556 . 368384)
+ (-2557 . 368161) (-2558 . 367869) (-2559 . 367838) (-2560 . 367785)
+ (-2561 . 367666) (-2562 . 367581) (-2563 . 367362) (-2564 . 367151)
+ (-2565 . 366855) (-2566 . 366632) (-2567 . 366533) (-2568 . 366438)
+ (-2569 . 365950) (-2570 . 365880) (-2571 . 365821) (-2572 . 365735)
+ (-2573 . 365650) (-2574 . 365584) (-2575 . 365460) (-2576 . 365363)
+ (-2577 . 365335) (-2578 . 365135) (-2579 . 365056) (-2580 . 364713)
+ (-2581 . 364514) (-2582 . 363879) (-2583 . 363663) (-2584 . 363566)
+ (-2585 . 363465) (-2586 . 363352) (-2587 . 363281) (-2588 . 363178)
+ (-2589 . 362574) (-2590 . 361799) (-2591 . 361686) (-2592 . 361579)
+ (-2593 . 361336) (-2594 . 361213) (-2595 . 361131) (-2596 . 360973)
+ (-2597 . 360878) (-2598 . 360661) (-2599 . 360495) (-2600 . 360330)
+ (-2601 . 360193) (-2602 . 360007) (-2603 . 359618) (-2604 . 359514)
+ (-2605 . 359421) (-2606 . 359365) (-2607 . 359090) (-2608 . 358805)
+ (-2609 . 358693) (-2610 . 358638) (-2611 . 358572) (-2612 . 358432)
+ (-2613 . 358380) (-2614 . 358264) (-2615 . 357385) (-2616 . 357240)
+ (-2617 . 357188) (-2618 . 357119) (-2619 . 357055) (-2620 . 356881)
+ (-2621 . 356784) (-2622 . 356707) (-2623 . 355957) (-2624 . 355872)
+ (-2625 . 355775) (-2626 . 355679) (-2627 . 355624) (-2628 . 355483)
+ (-2629 . 355429) (-2630 . 355395) (-2631 . 355286) (-2632 . 355142)
+ (-2633 . 354852) (-2634 . 354689) (-2635 . 354485) (-2636 . 354402)
+ (-2637 . 354322) (-2638 . 354237) (-2639 . 354096) (-2640 . 353989)
+ (-2641 . 353888) (-2642 . 353781) (-2643 . 353728) (-2644 . 353562)
+ (-2645 . 353510) (-2646 . 353404) (-2647 . 353312) (-2648 . 353218)
+ (-2649 . 353150) (-2650 . 353056) (-2651 . 353022) (-2652 . 352901)
+ (-2653 . 352792) (-2654 . 352743) (-2655 . 352644) (-2656 . 352576)
+ (-2657 . 352441) (-2658 . 352357) (-2659 . 352256) (-2660 . 352121)
+ (-2661 . 351959) (-2662 . 351858) (-2663 . 351704) (-2664 . 351595)
+ (-2665 . 351494) (-2666 . 351466) (-2667 . 351383) (-2668 . 351317)
+ (-2669 . 351209) (-2670 . 351125) (-2671 . 350985) (-2672 . 350735)
+ (-2673 . 350295) (-2674 . 350230) (-2675 . 350126) (-2676 . 349716)
+ (-2677 . 349649) (-2678 . 349373) (-2679 . 349262) (-2680 . 349157)
+ (-2681 . 349056) (-2682 . 348951) (-2683 . 348896) (-2684 . 348652)
+ (-2685 . 348597) (-2686 . 348545) (-2687 . 348397) (-2688 . 348320)
+ (-2689 . 348235) (-2690 . 347991) (-2691 . 347878) (-2692 . 347720)
+ (-2693 . 347636) (-2694 . 347553) (-2695 . 347280) (-2696 . 347146)
+ (-2697 . 347000) (-2698 . 346847) (-2699 . 346781) (-2700 . 346657)
+ (-2701 . 346570) (-2702 . 346463) (-2703 . 346274) (-2704 . 345564)
+ (-2705 . 345420) (-2706 . 345346) (-2707 . 345253) (-2708 . 344874)
+ (-2709 . 344685) (-2710 . 344296) (-2711 . 343934) (-2712 . 343614)
+ (-2713 . 343345) (-2714 . 343244) (-2715 . 343100) (-2716 . 342773)
+ (-2717 . 342494) (-2718 . 342414) (-2719 . 342270) (-2720 . 341833)
+ (-2721 . 341673) (-2722 . 341563) (-2723 . 341510) (-2724 . 341383)
+ (-2725 . 341313) (-2726 . 341234) (-2727 . 340198) (-2728 . 339996)
+ (-2729 . 339905) (-2730 . 339753) (-2731 . 339607) (-2732 . 339439)
+ (-2733 . 337192) (-2734 . 337048) (-2735 . 336422) (-2736 . 336369)
+ (-2737 . 336284) (-2738 . 335981) (-2739 . 335875) (-2740 . 335659)
+ (-2741 . 335631) (-2742 . 335487) (-2743 . 335344) (-2744 . 335274)
+ (-2745 . 335069) (-2746 . 334328) (-2747 . 334170) (-2748 . 334080)
+ (-2749 . 334000) (-2750 . 333905) (-2751 . 333711) (-2752 . 333379)
+ (-2753 . 333351) (-2754 . 333185) (-2755 . 333005) (-2756 . 332743)
+ (-2757 . 332524) (-2758 . 331783) (-2759 . 331688) (-2760 . 331530)
+ (-2761 . 331409) (-2762 . 331315) (-2763 . 331221) (-2764 . 331155)
+ (-2765 . 329975) (-2766 . 329859) (-2767 . 329831) (-2768 . 329307)
+ (-2769 . 328619) (-2770 . 325711) (-2771 . 325487) (-2772 . 325066)
+ (-2773 . 324921) (-2774 . 324848) (-2775 . 324552) (-2776 . 324469)
+ (-2777 . 324386) (-2778 . 324312) (-2779 . 323062) (-2780 . 322486)
+ (-2781 . 322388) (-2782 . 322259) (-2783 . 322156) (-2784 . 321917)
+ (-2785 . 321801) (-2786 . 321773) (-2787 . 321700) (-2788 . 321541)
+ (-2789 . 321108) (-2790 . 320532) (-2791 . 320458) (-2792 . 320378)
+ (-2793 . 320232) (-2794 . 320173) (-2795 . 320060) (-2796 . 320005)
+ (-2797 . 319884) (-2798 . 319773) (-2799 . 319640) (-2800 . 319064)
+ (-2801 . 318365) (-2802 . 318162) (-2803 . 318000) (-2804 . 317926)
+ (-2805 . 317615) (-2806 . 317527) (-2807 . 317353) (-2808 . 317025)
+ (-2809 . 316873) (-2810 . 316594) (-2811 . 315908) (-2812 . 315231)
+ (-2813 . 314975) (-2814 . 314908) (-2815 . 314713) (-2816 . 314640)
+ (-2817 . 314515) (-2818 . 314418) (-2819 . 314236) (-2820 . 314095)
+ (-2821 . 313409) (-2822 . 313266) (-2823 . 313187) (-2824 . 313138)
+ (-2825 . 312894) (-2826 . 312799) (-2827 . 312524) (-2828 . 312267)
+ (-2829 . 312087) (-2830 . 311979) (-2831 . 311867) (-2832 . 311118)
+ (-2833 . 311034) (-2834 . 310769) (-2835 . 310716) (-2836 . 310509)
+ (-2837 . 310410) (-2838 . 310352) (-2839 . 310282) (-2840 . 310159)
+ (-2841 . 309772) (-2842 . 309714) (-2843 . 309661) (-2844 . 309087)
+ (-2845 . 308980) (-2846 . 308870) (-2847 . 308729) (-2848 . 308611)
+ (-2849 . 308495) (-2850 . 308147) (-2851 . 308094) (-2852 . 308020)
+ (-2853 . 307693) (-2854 . 307523) (-2855 . 307147) (-2856 . 306573)
+ (-2857 . 306522) (-2858 . 306412) (-2859 . 306256) (-2860 . 306077)
+ (-2861 . 305982) (-2862 . 305829) (-2863 . 305718) (-2864 . 305573)
+ (-2865 . 305443) (-2866 . 305325) (-2867 . 304441) (-2868 . 303867)
+ (-2869 . 303760) (-2870 . 303690) (-2871 . 303638) (-2872 . 303534)
+ (-2873 . 303106) (-2874 . 302995) (-2875 . 302943) (-2876 . 302756)
+ (-2877 . 302290) (-2878 . 301690) (-2879 . 301196) (-2880 . 300509)
+ (-2881 . 300270) (-2882 . 300163) (-2883 . 300068) (-2884 . 299556)
+ (-2885 . 299485) (-2886 . 299413) (-2887 . 299286) (-2888 . 299166)
+ (-2889 . 299096) (-2890 . 299065) (-2891 . 298943) (-2892 . 298256)
+ (-2893 . 298204) (-2894 . 298105) (-2895 . 298023) (-2896 . 297939)
+ (-2897 . 297843) (-2898 . 297685) (-2899 . 297508) (-2900 . 297295)
+ (-2901 . 297133) (-2902 . 296819) (-2903 . 296785) (-2904 . 296098)
+ (-2905 . 295791) (-2906 . 295718) (-2907 . 295530) (-2908 . 295427)
+ (-2909 . 295215) (-2910 . 295159) (-2911 . 294994) (-2912 . 294900)
+ (-2913 . 294816) (-2914 . 294577) (-2915 . 294002) (-2916 . 289940)
+ (-2917 . 289644) (-2918 . 289571) (-2919 . 289519) (-2920 . 289406)
+ (-2921 . 289107) (-2922 . 289070) (-2923 . 288999) (-2924 . 288707)
+ (-2925 . 288412) (-2926 . 287837) (-2927 . 287742) (-2928 . 286024)
+ (-2929 . 285974) (-2930 . 285852) (-2931 . 285778) (-2932 . 285723)
+ (-2933 . 285616) (-2934 . 285531) (-2935 . 285316) (-2936 . 284865)
+ (-2937 . 284837) (-2938 . 284749) (-2939 . 284662) (-2940 . 284513)
+ (-2941 . 284415) (-2942 . 284334) (-2943 . 284026) (-2944 . 283835)
+ (-2945 . 283654) (-2946 . 283620) (-2947 . 283592) (-2948 . 283511)
+ (-2949 . 283296) (-2950 . 283118) (-2951 . 282845) (-2952 . 280500)
+ (-2953 . 280469) (-2954 . 280370) (-2955 . 280233) (-2956 . 280091)
+ (-2957 . 279985) (-2958 . 279666) (-2959 . 279353) (-2960 . 279122)
+ (-2961 . 278527) (-2962 . 278453) (-2963 . 278338) (-2964 . 278285)
+ (-2965 . 278257) (-2966 . 278153) (-2967 . 278068) (-2968 . 277759)
+ (-2969 . 277554) (-2970 . 277458) (-2971 . 277355) (-2972 . 277289)
+ (-2973 . 276934) (-2974 . 276606) (-2975 . 275182) (-2976 . 275105)
+ (-2977 . 274917) (-2978 . 274848) (-2979 . 274597) (-2980 . 274402)
+ (-2981 . 274157) (-2982 . 273975) (-2983 . 273916) (-2984 . 273763)
+ (-2985 . 273577) (-2986 . 273387) (-2987 . 273030) (-2988 . 272888)
+ (-2989 . 272775) (-2990 . 272573) (-2991 . 272054) (-2992 . 271948)
+ (-2993 . 271896) (-2994 . 271743) (-2995 . 271674) (-2996 . 271518)
+ (-2997 . 271037) (-2998 . 270985) (-2999 . 270911) (-3000 . 270795)
+ (-3001 . 270761) (-3002 . 270617) (-3003 . 270398) (-3004 . 270260)
+ (-3005 . 270189) (-3006 . 270066) (-3007 . 269995) (-3008 . 269943)
+ (-3009 . 269887) (-3010 . 269447) (-3011 . 269391) (-3012 . 269282)
+ (-3013 . 268994) (-3014 . 268771) (-3015 . 268507) (-3016 . 268299)
+ (-3017 . 268139) (-3018 . 268056) (-3019 . 267998) (-3020 . 267865)
+ (-3021 . 267655) (-3022 . 267572) (-3023 . 266829) (-3024 . 266577)
+ (-3025 . 266425) (-3026 . 266373) (-3027 . 266264) (-3028 . 266123)
+ (-3029 . 265983) (-3030 . 265927) (-3031 . 265546) (-3032 . 264966)
+ (-3033 . 264904) (-3034 . 264852) (-3035 . 264696) (-3036 . 264643)
+ (-3037 . 264591) (-3038 . 264476) (-3039 . 264325) (-3040 . 264228)
+ (-3041 . 264166) (-3042 . 264100) (-3043 . 263993) (-3044 . 263881)
+ (-3045 . 262679) (-3046 . 262538) (-3047 . 262430) (-3048 . 262176)
+ (-3049 . 262052) (-3050 . 261792) (-3051 . 261722) (-3052 . 261691)
+ (-3053 . 261581) (-3054 . 261472) (-3055 . 259644) (-3056 . 259442)
+ (** . 256365) (-3058 . 256264) (-3059 . 256054) (-3060 . 255983)
+ (-3061 . 255812) (-3062 . 255727) (-3063 . 255283) (-3064 . 255206)
+ (-3065 . 253705) (-3066 . 253610) (-3067 . 253537) (-3068 . 253275)
+ (-3069 . 253222) (-3070 . 253078) (-3071 . 252866) (-3072 . 252696)
+ (-3073 . 252309) (-3074 . 252208) (-3075 . 250668) (-3076 . 250613)
+ (-3077 . 250498) (-3078 . 250384) (-3079 . 250216) (-3080 . 250105)
+ (-3081 . 249880) (-3082 . 249708) (-3083 . 249636) (-3084 . 249605)
+ (-3085 . 249414) (-3086 . 249324) (-3087 . 249030) (-3088 . 248882)
+ (-3089 . 248723) (-3090 . 248600) (-3091 . 248441) (-3092 . 248261)
+ (-3093 . 248090) (-3094 . 247917) (-3095 . 247181) (-3096 . 247025)
+ (-3097 . 246907) (-3098 . 246726) (-3099 . 246641) (-3100 . 246586)
+ (-3101 . 246331) (-3102 . 245757) (-3103 . 245374) (-3104 . 245283)
+ (-3105 . 245122) (-3106 . 245085) (-3107 . 244998) (-3108 . 244766)
+ (-3109 . 244559) (-3110 . 243474) (-3111 . 242920) (-3112 . 242717)
+ (-3113 . 242599) (-3114 . 242257) (-3115 . 242131) (-3116 . 242078)
+ (-3117 . 241962) (-3118 . 241909) (-3119 . 241675) (-3120 . 241344)
+ (-3121 . 241248) (-3122 . 240802) (-3123 . 240707) (-3124 . 240494)
+ (-3125 . 239856) (-3126 . 238675) (-3127 . 238563) (-3128 . 238164)
+ (-3129 . 238093) (-3130 . 237975) (-3131 . 237728) (-3132 . 237561)
+ (-3133 . 237364) (-3134 . 237017) (-3135 . 235857) (-3136 . 235724)
+ (-3137 . 235555) (-3138 . 235262) (-3139 . 235180) (-3140 . 235050)
+ (-3141 . 234997) (-3142 . 234931) (-3143 . 234831) (-3144 . 234717)
+ (-3145 . 234603) (-3146 . 234551) (-3147 . 234379) (-3148 . 234213)
+ (-3149 . 234185) (-3150 . 234066) (-3151 . 233361) (-3152 . 232238)
+ (-3153 . 232113) (-3154 . 232025) (-3155 . 231853) (-3156 . 231437)
+ (-3157 . 231317) (-3158 . 231283) (-3159 . 231165) (-3160 . 231007)
+ (-3161 . 229942) (-3162 . 228695) (-3163 . 228150) (-3164 . 228000)
+ (-3165 . 227828) (-3166 . 227516) (-3167 . 227437) (-3168 . 226640)
+ (-3169 . 226476) (-3170 . 226127) (-3171 . 225919) (-3172 . 225659)
+ (-3173 . 225535) (-3174 . 225363) (-3175 . 224964) (-3176 . 224843)
+ (-3177 . 224238) (-3178 . 224146) (-3179 . 224117) (-3180 . 224030)
+ (-3181 . 223643) (-3182 . 214113) (-3183 . 213798) (-3184 . 213725)
+ (-3185 . 213602) (-3186 . 213528) (-3187 . 213278) (-3188 . 213093)
+ (-3189 . 212908) (-3190 . 212260) (-3191 . 211719) (-3192 . 211563)
+ (-3193 . 211462) (-3194 . 211394) (-3195 . 211256) (-3196 . 211158)
+ (-3197 . 211092) (-3198 . 211007) (-3199 . 210728) (-3200 . 210591)
+ (-3201 . 210542) (-3202 . 210441) (-3203 . 210308) (-3204 . 210174)
+ (-3205 . 210040) (-3206 . 209902) (-3207 . 209845) (-3208 . 209760)
+ (-3209 . 209605) (-3210 . 209429) (-3211 . 209000) (-3212 . 208331)
+ (-3213 . 208107) (-3214 . 207774) (-3215 . 207651) (-3216 . 207532)
+ (-3217 . 207411) (-3218 . 207302) (-3219 . 207124) (-3220 . 206906)
+ (-3221 . 206813) (-3222 . 206569) (-3223 . 206253) (-3224 . 206204)
+ (-3225 . 205907) (-3226 . 205822) (-3227 . 205707) (-3228 . 205515)
+ (-3229 . 205417) (-3230 . 205344) (-3231 . 205019) (-3232 . 204942)
+ (-3233 . 204421) (-3234 . 203905) (-3235 . 203667) (-3236 . 203517)
+ (-3237 . 203361) (-3238 . 203259) (-3239 . 203160) (-3240 . 203109)
+ (-3241 . 202939) (-3242 . 202795) (-3243 . 202577) (-3244 . 202034)
+ (-3245 . 201932) (-3246 . 201785) (-3247 . 201615) (-3248 . 201460)
+ (-3249 . 201293) (-3250 . 200643) (-3251 . 200449) (-3252 . 200312)
+ (-3253 . 200198) (-3254 . 200128) (-3255 . 200009) (-3256 . 199922)
+ (-3257 . 199799) (-3258 . 199035) (-3259 . 198950) (-3260 . 198860)
+ (-3261 . 197650) (-3262 . 197595) (-3263 . 197318) (-3264 . 197153)
+ (-3265 . 196982) (-3266 . 196461) (-3267 . 196314) (-3268 . 196159)
+ (-3269 . 196015) (-3270 . 195665) (-3271 . 195522) (-3272 . 195470)
+ (-3273 . 195012) (-3274 . 194866) (-3275 . 194814) (-3276 . 194743)
+ (-3277 . 194691) (-3278 . 194576) (-3279 . 194321) (-3280 . 193563)
+ (-3281 . 193531) (-3282 . 193476) (-3283 . 193424) (-3284 . 193243)
+ (-3285 . 193143) (-3286 . 192652) (-3287 . 192361) (-3288 . 192308)
+ (-3289 . 191996) (-3290 . 191946) (-3291 . 191846) (-3292 . 191559)
+ (-3293 . 191481) (-3294 . 191271) (-3295 . 191193) (-3296 . 191092)
+ (-3297 . 191013) (-3298 . 190880) (-3299 . 190743) (-3300 . 190464)
+ (-3301 . 190358) (-3302 . 189362) (-3303 . 189229) (-3304 . 188732)
+ (-3305 . 188661) (-3306 . 188601) (-3307 . 188515) (-3308 . 188407)
+ (-3309 . 188278) (-3310 . 188148) (-3311 . 188098) (-3312 . 187984)
+ (-3313 . 187956) (-3314 . 187854) (-3315 . 187569) (-3316 . 187503)
+ (-3317 . 186957) (-3318 . 186831) (-3319 . 186705) (-3320 . 186632)
+ (-3321 . 186316) (-3322 . 186161) (-3323 . 186054) (-3324 . 185831)
+ (-3325 . 185717) (-3326 . 185498) (-3327 . 185294) (-3328 . 185182)
+ (-3329 . 185102) (-3330 . 185008) (-3331 . 184980) (-3332 . 184593)
+ (-3333 . 184538) (-3334 . 184504) (-3335 . 184352) (-3336 . 184222)
+ (-3337 . 184079) (-3338 . 183911) (-3339 . 183432) (-3340 . 183241)
+ (-3341 . 183067) (-3342 . 182774) (-3343 . 182686) (-3344 . 182588)
+ (-3345 . 182517) (-3346 . 182269) (-3347 . 182132) (-3348 . 181976)
+ (-3349 . 181888) (-3350 . 181683) (-3351 . 181440) (-3352 . 181338)
+ (-3353 . 181233) (-3354 . 181092) (-3355 . 180808) (-3356 . 180592)
+ (-3357 . 180467) (-3358 . 179197) (-3359 . 178496) (-3360 . 178356)
+ (-3361 . 178018) (-3362 . 177809) (-3363 . 177307) (-3364 . 177248)
+ (-3365 . 177134) (-3366 . 177042) (-3367 . 176594) (-3368 . 176509)
+ (-3369 . 175857) (-3370 . 175795) (-3371 . 175739) (-3372 . 175666)
+ (-3373 . 173251) (-3374 . 173171) (-3375 . 172978) (-3376 . 172923)
+ (-3377 . 172799) (-3378 . 172698) (-3379 . 172352) (-3380 . 172281)
+ (-3381 . 172093) (-3382 . 171990) (-3383 . 171861) (-3384 . 171614)
+ (-3385 . 171360) (-3386 . 171242) (-3387 . 171027) (-3388 . 170887)
+ (-3389 . 170856) (-3390 . 170650) (-3391 . 170197) (-3392 . 170120)
+ (-3393 . 170017) (-3394 . 169962) (-3395 . 169637) (-3396 . 169606)
+ (-3397 . 169539) (-3398 . 169460) (-3399 . 169330) (-3400 . 169092)
+ (-3401 . 168818) (-3402 . 168732) (-3403 . 168548) (-3404 . 168461)
+ (-3405 . 168332) (-3406 . 168110) (-3407 . 167880) (-3408 . 167666)
+ (-3409 . 167608) (-3410 . 167478) (-3411 . 166907) (-3412 . 166815)
+ (-3413 . 166741) (-3414 . 166685) (-3415 . 166613) (-3416 . 166414)
+ (-3417 . 166250) (-3418 . 166094) (-3419 . 166021) (-3420 . 165612)
+ (-3421 . 165126) (-3422 . 164887) (-3423 . 164508) (-3424 . 164456)
+ (-3425 . 164405) (-3426 . 164112) (-3427 . 161860) (-3428 . 161208)
+ (-3429 . 161105) (-3430 . 160794) (-3431 . 160655) (-3432 . 160520)
+ (-3433 . 160426) (-3434 . 160357) (-3435 . 160240) (-3436 . 159910)
+ (-3437 . 159312) (-3438 . 159122) (-3439 . 159069) (-3440 . 158889)
+ (-3441 . 158744) (-3442 . 158676) (-3443 . 158603) (-3444 . 158506)
+ (-3445 . 157622) (-3446 . 157499) (-3447 . 157405) (-3448 . 157088)
+ (-3449 . 156701) (-3450 . 156298) (-3451 . 156159) (-3452 . 156106)
+ (-3453 . 155854) (-3454 . 155713) (-3455 . 155487) (-3456 . 155357)
+ (-3457 . 155286) (-3458 . 155230) (-3459 . 155121) (-3460 . 154907)
+ (-3461 . 154728) (-3462 . 154423) (-3463 . 154336) (-3464 . 154119)
+ (-3465 . 154001) (-3466 . 153970) (-3467 . 153780) (-3468 . 153698)
+ (-3469 . 153480) (-3470 . 152857) (-3471 . 152698) (-3472 . 152320)
+ (-3473 . 152292) (-3474 . 152239) (-3475 . 151923) (-3476 . 151578)
+ (-3477 . 151327) (-3478 . 151121) (-3479 . 151050) (-3480 . 150820)
+ (-3481 . 150704) (-3482 . 150627) (-3483 . 150557) (-3484 . 150454)
+ (-3485 . 150124) (-3486 . 149891) (-3487 . 149377) (-3488 . 149190)
+ (-3489 . 149091) (-3490 . 148969) (-3491 . 148862) (-3492 . 148784)
+ (-3493 . 148692) (-3494 . 148608) (-3495 . 148446) (-3496 . 148376)
+ (-3497 . 148303) (-3498 . 147239) (-3499 . 147019) (-3500 . 146888)
+ (-3501 . 146796) (-3502 . 146693) (-3503 . 146498) (-3504 . 146443)
+ (-3505 . 146171) (-3506 . 145978) (-3507 . 145760) (-3508 . 145651)
+ (-3509 . 145539) (-3510 . 145210) (-3511 . 145029) (-3512 . 144943)
+ (-3513 . 143479) (-3514 . 143365) (-3515 . 143281) (-3516 . 143198)
+ (-3517 . 143027) (-3518 . 142832) (-3519 . 142803) (-3520 . 142680)
+ (-3521 . 141952) (-3522 . 141921) (-3523 . 141611) (-3524 . 141203)
+ (-3525 . 141024) (-3526 . 140915) (-3527 . 140812) (-3528 . 140728)
+ (-3529 . 140261) (-3530 . 140109) (-3531 . 139830) (-3532 . 139740)
+ (-3533 . 139521) (-3534 . 139380) (-3535 . 139302) (-3536 . 139223)
+ (-3537 . 139128) (-3538 . 139076) (-3539 . 138923) (-3540 . 138785)
+ (-3541 . 138603) (-3542 . 138516) (-3543 . 138464) (-3544 . 138394)
+ (-3545 . 137396) (-3546 . 137284) (-3547 . 137183) (-3548 . 136808)
+ (-3549 . 136780) (-3550 . 136587) (-3551 . 136514) (-3552 . 136437)
+ (-3553 . 136187) (-3554 . 136083) (-3555 . 136030) (-3556 . 135969)
+ (-3557 . 135301) (-3558 . 135228) (-3559 . 135098) (-3560 . 134673)
+ (-3561 . 134502) (-3562 . 134030) (-3563 . 133553) (-3564 . 133406)
+ (-3565 . 133251) (-3566 . 133183) (-3567 . 133046) (-3568 . 132975)
+ (-3569 . 132683) (-3570 . 132417) (-3571 . 132346) (-3572 . 132099)
+ (-3573 . 132012) (-3574 . 131751) (-3575 . 131699) (-3576 . 131500)
+ (-3577 . 131427) (-3578 . 131376) (-3579 . 131243) (-3580 . 131128)
+ (-3581 . 131035) (-3582 . 130856) (-3583 . 130741) (-3584 . 130643)
+ (-3585 . 130591) (-3586 . 130448) (-3587 . 130387) (-3588 . 130078)
+ (-3589 . 129960) (-3590 . 129468) (-3591 . 129364) (-3592 . 129333)
+ (-3593 . 129305) (-3594 . 129183) (-3595 . 129088) (-3596 . 128841)
+ (-3597 . 128532) (-3598 . 128433) (-3599 . 128346) (-3600 . 128186)
+ (-3601 . 128034) (-3602 . 127951) (-3603 . 127898) (-3604 . 126795)
+ (-3605 . 126698) (-3606 . 126556) (-3607 . 126432) (-3608 . 126317)
+ (-3609 . 126195) (-3610 . 126092) (-3611 . 125940) (-3612 . 125888)
+ (-3613 . 125758) (-3614 . 125704) (-3615 . 125624) (-3616 . 125568)
+ (-3617 . 125264) (-3618 . 124859) (-3619 . 124659) (-3620 . 124559)
+ (-3621 . 124437) (-3622 . 124185) (-3623 . 123851) (-3624 . 123447)
+ (-3625 . 123340) (-3626 . 123006) (-3627 . 122907) (-3628 . 122747)
+ (-3629 . 122373) (-3630 . 122288) (-3631 . 122251) (-3632 . 122184)
+ (-3633 . 122031) (-3634 . 121477) (-3635 . 121408) (-3636 . 121265)
+ (-3637 . 121136) (-3638 . 120886) (-3639 . 120824) (-3640 . 120746)
+ (-3641 . 120619) (-3642 . 120536) (-3643 . 120263) (-3644 . 120126)
+ (-3645 . 119877) (-3646 . 119790) (-3647 . 119741) (-3648 . 119440)
+ (-3649 . 118910) (-3650 . 118881) (-3651 . 118786) (-3652 . 118633)
+ (-3653 . 118515) (-3654 . 118213) (-3655 . 118043) (-3656 . 117785)
+ (-3657 . 117616) (-3658 . 117539) (-3659 . 117322) (-3660 . 117217)
+ (-3661 . 117110) (-3662 . 116809) (-3663 . 116616) (-3664 . 116539)
+ (-3665 . 116453) (-3666 . 115862) (-3667 . 115739) (-3668 . 115574)
+ (-3669 . 115419) (-3670 . 115005) (-3671 . 114939) (-3672 . 114890)
+ (-3673 . 114771) (-3674 . 114513) (-3675 . 114306) (-3676 . 114247)
+ (-3677 . 113746) (-3678 . 113672) (-3679 . 113572) (-3680 . 113519)
+ (-3681 . 113371) (-3682 . 113200) (-3683 . 113059) (-3684 . 112712)
+ (-3685 . 112646) (-3686 . 111077) (-3687 . 110934) (-3688 . 110880)
+ (-3689 . 110691) (-3690 . 110492) (-3691 . 110336) (-3692 . 110213)
+ (-3693 . 110034) (-3694 . 109758) (-3695 . 109398) (-3696 . 109325)
+ (-3697 . 109273) (-3698 . 109107) (-3699 . 109079) (-3700 . 108853)
+ (-3701 . 108674) (-3702 . 108567) (-3703 . 108395) (-3704 . 108193)
+ (-3705 . 108110) (-3706 . 107980) (-3707 . 107927) (-3708 . 107847)
+ (-3709 . 107480) (-3710 . 107393) (-3711 . 107338) (-3712 . 107038)
+ (-3713 . 106892) (-3714 . 106775) (-12 . 106603) (-3716 . 106529)
+ (-3717 . 106472) (-3718 . 106340) (-3719 . 105855) (-3720 . 105799)
+ (-3721 . 105729) (-3722 . 105602) (-3723 . 105409) (-3724 . 105269)
+ (-3725 . 105185) (-3726 . 105001) (-3727 . 104751) (-3728 . 104699)
+ (-3729 . 104570) (-3730 . 104518) (-3731 . 104371) (-3732 . 104253)
+ (-3733 . 104145) (-3734 . 103974) (-3735 . 103703) (-3736 . 103605)
+ (-3737 . 103308) (-3738 . 103234) (-3739 . 103072) (-3740 . 102833)
+ (-3741 . 102743) (-3742 . 102640) (-3743 . 102506) (-3744 . 102432)
+ (-3745 . 102334) (-3746 . 102175) (-3747 . 102069) (-3748 . 102014)
+ (-3749 . 101798) (-3750 . 101682) (-3751 . 101555) (-3752 . 101469)
+ (-3753 . 101396) (-3754 . 101101) (-3755 . 100892) (-3756 . 100769)
+ (-3757 . 100596) (-3758 . 100188) (-3759 . 100106) (-3760 . 99996)
+ (-3761 . 99810) (-3762 . 99744) (-3763 . 99688) (-3764 . 99490)
+ (-3765 . 99371) (-3766 . 99230) (-3767 . 99086) (-3768 . 98970)
+ (-3769 . 98724) (-3770 . 98454) (-3771 . 98266) (-3772 . 98109)
+ (-3773 . 98043) (-3774 . 97812) (-3775 . 97680) (-3776 . 97607)
+ (-3777 . 97290) (-3778 . 97161) (-3779 . 97087) (-3780 . 96977)
+ (-3781 . 96820) (-3782 . 96672) (-3783 . 96617) (-3784 . 96518)
+ (-3785 . 96409) (-3786 . 95888) (-3787 . 95285) (-3788 . 95229)
+ (-3789 . 95111) (-3790 . 95059) (-3791 . 94988) (-3792 . 94864)
+ (-3793 . 94378) (-3794 . 94225) (-3795 . 94137) (-3796 . 93997)
+ (-3797 . 93874) (-3798 . 93825) (-3799 . 93663) (-3800 . 92088)
+ (-3801 . 91942) (-3802 . 91833) (-3803 . 91715) (-3804 . 91663)
+ (-3805 . 91141) (-3806 . 90748) (-3807 . 90648) (-3808 . 90534)
+ (-3809 . 90184) (-3810 . 89887) (-3811 . 89550) (-3812 . 89476)
+ (-3813 . 89370) (-3814 . 89271) (-3815 . 89141) (-3816 . 89081)
+ (-3817 . 88923) (-3818 . 88669) (-3819 . 88558) (-3820 . 88352)
+ (-3821 . 88216) (-3822 . 87680) (-3823 . 87600) (-3824 . 87534)
+ (-3825 . 87412) (-3826 . 87213) (-3827 . 87139) (-3828 . 87017)
+ (-3829 . 86773) (-3830 . 86568) (-3831 . 86349) (-3832 . 86127)
+ (-3833 . 85900) (* . 81377) (-3835 . 81274) (-3836 . 81169)
+ (-3837 . 80583) (-3838 . 80393) (-3839 . 80174) (-3840 . 80016)
+ (-3841 . 79053) (-3842 . 79011) (-3843 . 78263) (-3844 . 77417)
+ (-3845 . 77248) (-3846 . 76392) (-3847 . 76286) (-3848 . 76178)
+ (-3849 . 75946) (-3850 . 75918) (-3851 . 75823) (-3852 . 75708)
+ (-3853 . 75540) (-3854 . 75472) (-3855 . 75375) (-3856 . 75308)
+ (-3857 . 75277) (-3858 . 75064) (-3859 . 71454) (-3860 . 71402)
+ (-3861 . 71300) (-3862 . 71175) (-3863 . 71108) (-3864 . 71056)
+ (-3865 . 70921) (-3866 . 70763) (-3867 . 70620) (-3868 . 70169)
+ (-3869 . 69838) (-3870 . 69616) (-3871 . 69522) (-3872 . 69457)
+ (-3873 . 69348) (-3874 . 69202) (-3875 . 69150) (-3876 . 68960)
+ (-3877 . 68873) (-3878 . 68645) (-3879 . 68402) (-3880 . 68317)
+ (-3881 . 68144) (-3882 . 67985) (-3883 . 67859) (-3884 . 66574)
+ (-3885 . 66514) (-3886 . 66424) (-3887 . 66193) (-3888 . 66119)
+ (-3889 . 65956) (-3890 . 65925) (-3891 . 65873) (-3892 . 65761)
+ (-3893 . 65282) (-3894 . 64609) (-3895 . 64550) (-3896 . 64304)
+ (-3897 . 64251) (-3898 . 64113) (-3899 . 63989) (-3900 . 63882)
+ (-3901 . 63779) (-3902 . 63568) (-3903 . 63421) (-3904 . 63250)
+ (-3905 . 63192) (-3906 . 63085) (-3907 . 62914) (-3908 . 62737)
+ (-3909 . 62620) (-3910 . 62513) (-3911 . 62315) (-3912 . 62102)
+ (-3913 . 61973) (-3914 . 61866) (-3915 . 61690) (-3916 . 61583)
+ (-3917 . 61400) (-3918 . 61163) (-3919 . 60589) (-3920 . 60476)
+ (-3921 . 60247) (-3922 . 59949) (-3923 . 59779) (-3924 . 59707)
+ (-3925 . 59622) (-3926 . 59513) (-3927 . 59435) (-3928 . 58899)
+ (-3929 . 58865) (-3930 . 57086) (-3931 . 56926) (-3932 . 56662)
+ (-3933 . 56538) (-3934 . 56385) (-3935 . 55976) (-3936 . 55828)
+ (-3937 . 55639) (-3938 . 55533) (-3939 . 55403) (-3940 . 55269)
+ (-3941 . 54803) (-3942 . 54598) (-3943 . 54540) (-3944 . 54480)
+ (-3945 . 52629) (-3946 . 52576) (-3947 . 52422) (-3948 . 52279)
+ (-3949 . 52223) (-3950 . 52063) (-3951 . 51816) (-3952 . 51718)
+ (-3953 . 51359) (-3954 . 51185) (-3955 . 50873) (-3956 . 50711)
+ (-3957 . 50604) (-3958 . 50445) (-3959 . 50362) (-3960 . 50184)
+ (-3961 . 49943) (-3962 . 49862) (-3963 . 49520) (-3964 . 49126)
+ (-3965 . 48994) (-3966 . 48863) (-3967 . 48718) (-3968 . 48663)
+ (-3969 . 48025) (-3970 . 47997) (-3971 . 47575) (-3972 . 47329)
+ (-3973 . 46529) (-3974 . 46452) (-3975 . 46341) (-3976 . 46113)
+ (-3977 . 46029) (-3978 . 45836) (-3979 . 44765) (-3980 . 44404)
+ (-3981 . 44297) (-3982 . 44226) (-3983 . 44123) (-3984 . 44066)
+ (-3985 . 44038) (-3986 . 43948) (-3987 . 43790) (-3988 . 43669)
+ (-3989 . 43560) (-3990 . 43405) (-3991 . 43155) (-3992 . 42791)
+ (-3993 . 42404) (-3994 . 42307) (-3995 . 42253) (-3996 . 42015)
+ (-3997 . 41902) (-3998 . 41795) (-3999 . 41621) (-4000 . 41500)
+ (-4001 . 41400) (-4002 . 41259) (-4003 . 41135) (-4004 . 40979)
+ (-4005 . 40951) (-4006 . 40885) (-4007 . 40802) (-4008 . 40672)
+ (-4009 . 40575) (-4010 . 39874) (-4011 . 39677) (-4012 . 39592)
+ (-4013 . 39499) (-4014 . 39400) (-4015 . 39245) (-4016 . 39183)
+ (-4017 . 39096) (-4018 . 39062) (-4019 . 38782) (-4020 . 38704)
+ (-4021 . 38506) (-4022 . 38299) (-4023 . 38005) (-4024 . 37629)
+ (-4025 . 37413) (-4026 . 37253) (-4027 . 37117) (-4028 . 36534)
+ (-4029 . 36408) (-4030 . 36083) (-4031 . 35965) (-4032 . 35863)
+ (-4033 . 35676) (-4034 . 35576) (-4035 . 35283) (-4036 . 35249)
+ (-4037 . 35125) (-4038 . 34635) (-4039 . 34400) (-4040 . 34331)
+ (-4041 . 34248) (-4042 . 34144) (-4043 . 32525) (-4044 . 31185)
+ (-4045 . 31027) (-4046 . 30969) (-4047 . 30597) (-4048 . 30488)
+ (-4049 . 30411) (-4050 . 30359) (-4051 . 30038) (-4052 . 29955)
+ (-4053 . 29868) (-4054 . 29797) (-4055 . 29733) (-4056 . 29577)
+ (-4057 . 29476) (-4058 . 29403) (-4059 . 29316) (-4060 . 29285)
+ (-4061 . 29169) (-4062 . 29141) (-4063 . 29054) (-4064 . 28902)
+ (-4065 . 28678) (-4066 . 28623) (-4067 . 28508) (-4068 . 28288)
+ (-4069 . 27427) (-4070 . 27167) (-4071 . 26963) (-4072 . 26911)
+ (-4073 . 26802) (-4074 . 26635) (-4075 . 26520) (-4076 . 26392)
+ (-4077 . 26169) (-4078 . 26089) (-4079 . 25975) (-4080 . 25915)
+ (-4081 . 25764) (-4082 . 25627) (-4083 . 25030) (-4084 . 23663)
+ (-4085 . 23059) (-4086 . 22985) (-4087 . 22908) (-4088 . 22732)
+ (-4089 . 22579) (-4090 . 22492) (-4091 . 22418) (-4092 . 22338)
+ (-4093 . 22260) (-4094 . 22131) (-4095 . 22005) (-4096 . 21824)
+ (-4097 . 21719) (-4098 . 21528) (-4099 . 21386) (-4100 . 21250)
+ (-4101 . 20435) (-4102 . 20217) (-4103 . 20065) (-4104 . 19856)
+ (-4105 . 19747) (-4106 . 19652) (-4107 . 19300) (-4108 . 19183)
+ (-4109 . 19096) (-4110 . 18922) (-4111 . 18888) (-4112 . 18839)
+ (-4113 . 18085) (-4114 . 17755) (-4115 . 17700) (-4116 . 17591)
+ (-4117 . 17538) (-4118 . 17397) (-4119 . 17291) (-4120 . 17232)
+ (-4121 . 17136) (-4122 . 16959) (-4123 . 16585) (-4124 . 16444)
+ (-4125 . 16321) (-4126 . 16268) (-4127 . 16109) (-4128 . 16039)
+ (-4129 . 15654) (-4130 . 15456) (-4131 . 15373) (-4132 . 15277)
+ (-4133 . 14999) (-4134 . 14895) (-4135 . 14733) (-4136 . 14441)
+ (-4137 . 14375) (-4138 . 14048) (-4139 . 13396) (-4140 . 13344)
+ (-4141 . 13204) (-4142 . 13081) (-4143 . 12208) (-4144 . 12128)
+ (-4145 . 11993) (-4146 . 11806) (-4147 . 11608) (-4148 . 11555)
+ (-4149 . 11430) (-4150 . 11005) (-4151 . 10690) (-4152 . 10637)
+ (-4153 . 10523) (-4154 . 10440) (-4155 . 10345) (-4156 . 10234)
+ (-4157 . 9855) (-4158 . 9785) (-4159 . 9161) (-4160 . 9036)
+ (-4161 . 8889) (-4162 . 8748) (-4163 . 8509) (-4164 . 8373)
+ (-4165 . 8299) (-4166 . 8243) (-4167 . 8098) (-4168 . 7939)
+ (-4169 . 7859) (-4170 . 7759) (-4171 . 7660) (-4172 . 7579)
+ (-4173 . 7064) (-4174 . 6886) (-4175 . 6742) (-4176 . 6648)
+ (-4177 . 6319) (-4178 . 5988) (-4179 . 5894) (-4180 . 5807)
+ (-4181 . 5752) (-4182 . 5550) (-4183 . 5388) (-4184 . 5322)
+ (-4185 . 5249) (-4186 . 4866) (-4187 . 4703) (-4188 . 4631)
+ (-4189 . 4559) (-4190 . 4481) (-4191 . 4362) (-4192 . 4267)
+ (-4193 . 4100) (-4194 . 3184) (-4195 . 3054) (-4196 . 3002)
+ (-4197 . 2631) (-4198 . 2525) (-4199 . 2416) (-4200 . 2260)
+ (-4201 . 1713) (-4202 . 1602) (-4203 . 1501) (-4204 . 1399)
+ (-4205 . 1163) (-4206 . 828) (-4207 . 749) (-4208 . 555) (-4209 . 472)
+ (-4210 . 417) (-4211 . 274) (-4212 . 98) (-4213 . 30)) \ No newline at end of file